|
<br />
<br />N
<br />co
<br />.....
<br /><:.0
<br />
<br />The optimal salinity control strategy ip a subbasin is the
<br />minimum cost array of individual measures (Yi) which achieve
<br />the desired degree of salinity control, The optimum may be
<br />determined as:
<br />n
<br />y ~ = min I: y I ............,......................... (33)
<br />J i=l
<br />
<br />subject to,
<br />x! <; x! i
<br />l. l.
<br />n x! x~
<br />L =
<br />i=l l. J
<br />where,
<br />
<br />= 1,2,.."n ....,.........................,(34)
<br />
<br />..,....".,.,..,....".,....,.......,....,. (35)
<br />
<br />x: '"
<br />J
<br />y: '"
<br />J
<br />n '"
<br />
<br />salt load reductions targeted for the jth subbasin
<br />at the second level;
<br />minimum cost of reducing x:; tons of salt from the
<br />subbasin; and J
<br />number of individual salinity control measures per
<br />subbasin.
<br />
<br />If Eqs. 33, 34, and 35 are solved repeatedly for values of x:
<br />ranging up to the maximum value attainable in the subbasin,J
<br />xj, then a cost-effectiveness relationship between y: and x:;
<br />Ccln be determined: J J
<br />
<br />y: = f(x:;) ............................................(36)
<br />J . J
<br />
<br />Similar analysis for all other subbasins yields a family of
<br />second level cost-effectiveness functions.
<br />
<br />For each river subsytem, the preceding analysis is repeated
<br />to determine a family of cost-effectiveness curves for level 3.
<br />Specifically,
<br />
<br />y~ = min
<br />
<br />m
<br />i: v:,............,..."..."..,....,...,... (37)
<br />j=l - J
<br />
<br />subject to,
<br />
<br />x: <; X:;
<br />J J
<br />
<br />j=1,2,.,.,m ...,....,..,....,....,....,..... (38)
<br />
<br /> n
<br /> i: x:; = x'
<br /> j=l J k
<br />in which,
<br />
<br />...'. ., .,..,.,..,..,.,. .,.,..,..,.,....,., (39)
<br />
<br />21
<br />
<br />.r,..
<br />\i.- ,"
<br />1)
<br />
<br />'''''''''..;
<br />
<br />.,.. ,
<br />
<br />
<br />~i;
<br />
<br />.~
<br />~
<br />.~
<br />n
<br />,
<br />
|