Laserfiche WebLink
Rock_Chute.xls <br />Page 2 of 3 <br />Rock Chute Design Calculations <br />(Version WI -July -2010, Based on Design of Rock Chutes by Robinson, Rice, Kadavy, ASAE, 1998) <br />Project: Canyon Dolomite - Old Quarry County: Fremont County, CO <br />Designer: John Jankousky Checked by: <br />Date: 5/28/2015 Date: <br />I. Calculate the normal depth in the inlet channel <br />High Flow <br />Cd = 1 00 <br />Yn = 1.64 <br />ft. <br />Area = 17.9 <br />ft2 <br />Qhgh = 98.7 <br />cfs <br />Scupstreamchannel = 0.018 <br />ft/ft <br />II. Calculate the critical depth in the chute <br />High Flow <br />Cd = 1 00 <br />YC = <br />1.68 <br />ft. <br />Area = <br />15.7 <br />ft2 <br />Qhiyh = <br />98.7 <br />cfs <br />HCe = <br />2.29 <br />ft. <br />hc, = <br />0.61 <br />ft. <br />10yc = <br />16.75 <br />ft. <br />0.715yc = <br />1.20 <br />ft. <br />Low Flow <br />y„ = 0.87 ft. (Normal depth) <br />Area = 7.5 ft2 (Flow area in channel) <br />Q,o,,,, = 29.6 cfs (Capacity in channel) <br />Low Flow <br />Cd = 1 00 <br />Low Flow <br />Ye = <br />0.83 <br />ft. <br />(Critical depth in chute) <br />Area = <br />6.3 <br />ft2 <br />(Flow area in channel) <br />Q10„, = <br />29.6 <br />cfs <br />(Capacity in channel) <br />HLe = <br />1.17 <br />ft. <br />(Total minimum specific energy head) <br />hc, = <br />0.34 <br />ft. <br />(Velocity head corresponding to yc) <br />--- <br />--- <br />(Approach velocity) <br />(Required inlet apron length) <br />0.715y� = <br />0.59 <br />ft. <br />(Depth of flow over the weir crest or brink) <br />III. Calculate the tailwater depth in the outlet channel <br />Hiph Flow <br />Cd = 1 00 <br />Low Flow <br />High Flow <br />Tw = 1.64 <br />ft. <br />Tw = 0.87 <br />ft. <br />(Tailwater depth) <br />Area = 17.9 <br />ft2 <br />Area = 7.5 <br />ft2 <br />(Flow area in channel) <br />Qhgh = 98.7 <br />cfs <br />Qb,„ = 29.6 <br />cfs <br />(Capacity in channel) <br />H2 = 0.00 <br />ft. <br />H2 = 0.00 <br />ft. <br />(Downstream head above weir crest, <br />(Approach velocity) <br />hw = <br />0.00 <br />ft. <br />H2 = 0, if H2 < 0.715*y,) <br />IV. Calculate the head for a trapezoidal shaped broadcrested weir <br />Tical and error procedure solving simultaneously for velocity and head <br />Cd = 1 00 <br />(Coefficient of discharge for broadcrested weirs) <br />High Flow <br />Hp= <br />2.67 <br />ft. <br />2.60 <br />ft. <br />(Weir head) <br />Area = <br />37.4 <br />ft2 <br />36.0 <br />ft2 <br />(Flow area in channel) <br />V. = <br />0.00 <br />fps <br />2.74 <br />fps <br />(Approach velocity) <br />hw = <br />0.00 <br />ft. <br />0.12 <br />ft. <br />(Velocity head corresponding to HP) <br />Qhgh = <br />98.7 <br />cfs <br />98.7 <br />cfs <br />(Capacity in channel) <br />Trial and error procedure solving simultaneously for velocity and head <br />Low Flow <br />Hp= <br />1.28 <br />ft. <br />1.21 <br />ft. <br />(Weir head) <br />Area = <br />12.6 <br />ft2 <br />11.7 <br />ft2 <br />(Flow area in channel) <br />Vo = <br />0.00 <br />fps <br />2.54 <br />fps <br />(Approach velocity) <br />hp, = <br />0.00 <br />ft. <br />0.10 <br />ft. <br />(Velocity head corresponding to HP) <br />Q'„ = <br />29.6 <br />cfs <br />29.6 <br />cfs <br />(Capacity in channel) <br />Tical and error procedure solving simultaneously for velocity and head <br />