Laserfiche WebLink
Rock_Chute.xls <br />Rock Chute Desian Data <br />(Version WI -July -2010, Based on Design of Rock Chutes by Robinson, Rice, Kadavy, ASAE, 1998) <br />Project: Canyon Dolomite - Old Ou County: Fremont Cormftl CO <br />Designer: John Jankousky Checked by: <br />Date: May ^8. 2015 Date: <br />Input <br />ups►ream IL.►►anr eWl <br />Bw = 6.& ft. <br />Side slopes = 3.0 (m:1) <br />Velocity n -value = 0.0 - <br />Bed slope = 0.0150 ft./ft. <br />ce. n value = a) velocity n from waterway program <br />or bl computed manninas n for channel Outfit <br />> 11 -HUM <br />Bw = <br />6.0 ft. <br />Factor of safety = <br />1.20 (FS) 1.2 Min <br />Side slopes = 2.0 (m:1) -2.0.1 max. <br />Bed slope (4:1) = <br />0.250 ft./ft -> 3.0:1 max <br />Freeboard = <br />0.5 ft. -' <br />t apron depth. d <br />= ' 0 ft <br />Pagel of 3 <br />> uuwreaurarn t nsw►a <br />Bw = 6.0 ft <br />Side slopes = 3.0 (m:1) <br />Velocity n -value = 0.035 <br />Bed slope = 0.0150 ft./ft. <br />Uesian Storm Uata (I able z. tU I G. WI-NKGS waae Stamuzatlon Structure NO. 41U): <br />Base flow = 0 0 <br />Apron elev --- Inlet =5920 r ft. - -- - Outle5850 ft. - (H,;, Note . The total required capacity is routed <br />through the chute (principal spillway) or <br />Q,,;gh = Runoff from design storm capacity from Table 2, FOTG Standard 410 in combination with an auxiliary spillway. <br />Q5 = Runofff from a 5 -year, 24-hour storm. Input tailwater (T w): <br />Qh9h= 98 7 cfs High flow storm nrcuah chute > Tw (ft.) = Pi rn <br />Q5 = cfs Low flow storm > Tw (ft.) = Pr rn <br />Starting Station =10+00.0 Notes: <br />hp„ _ 0.12 ft. (0.1 ft,) 1) Output given as tow Flow) values. <br />H, = 2.72 ft. h,,, = 0.61 ft. (0.34 ft) 2) Tailwater depth plus d must be at or above the <br />Energy _Grade Line % H. = 2.29 ft. hydraulic jump height for the chute to function. <br />- 3) Critical depth occurs 2y, - 4y, upstream of crest. <br />-0.715y, = 1.2 ft. 4) Use WI Const. Spec. 13, Class I non -woven <br />Hp = 2.6 ft. -------` •x(0.59 ft.) geotextile under rock. <br />Inlet (1.21 ft.) y� = 1.68 ft. �.� Z, = 0.96 ft. <br />Hydraulic Jump <br />Channel (0.83 ft.) • (0.48 ft.) - Height, zz = 63 ft. (1.29 ft.) <br />Slope <br />InletA ro I` .� <br />Yn = 1.64 ft. --- 10yc = 17 ft. <br />(0.87 ft.)Ham, = 69 ft. <br />40(D5o) = 46N''o <br />Velocit = 0yinlet 5.53 fps rad0at normal depth� 0S� --- <br />Critical Slopt <br />Note: When the normal depth (y„) in the inlet Geotextile <br />channel is less than the weir head (HP), ie., the weir capacity is less <br />than the channel capacity, restricted flow or ponding will occur. This <br />reduces velocity and prevents erosion upstream of the inlet apron. <br />Tw+d = 2.64 ft. - Tw o.k. <br />---r ---------- ft.) _o.k <br />-- _ <br />164 ft. (0.87 f.+ ? Outlet <br />2.5 1 Channel <br />1 <br />4 Outlet A ron <br />Rock Chute I� 15(Dso)(F,) >I <br />Bedding <br />Profile Along Centerline of Chute <br />Slope = 0.015 ft./ft. <br />d = 1 ft. (1 ft. minimum <br />suggested) <br />Velocitymtiet = 5.53 fps <br />at normal de^' <br />Typical Cross Section <br />12.3 cts/ft. <br />Equivalent unit discharge <br />Freeboard <br />= <br />Fs = <br />1.20 <br />Factor of safety (multiplier) <br />Berm <br />zI = <br />0.96 ft. <br />Normal depth in chute <br />Geotextile <br />n -value = <br />0.056 <br />Manning's roughness coefficient <br />HP. <br />-" <br />F.. <br />D50(Fs) = <br />16 <br />Minimum Design D50* <br />Rock Chute <br />2(D5o)(Fs) = <br />32.8 in. <br />Rock chute thickness <br />2 <br />Bedding <br />Tw + d = <br />2.64 ft. <br />Tailwater above outlet apron <br />Use HP <br />--` 6 ft. _. <br />Rock thickness = 32.8 in. <br />z2 = <br />2.63 ft. <br />Hydraulic jump height <br />along chute <br />*** <br />but not less than zz. <br />The outlet <br />will <br />function adequately <br />h Flow Storm Information <br />