Laserfiche WebLink
<br />Table 3. One season mixing of Lake PoweU. <br /> <br />C alend ar <br />Month <br /> <br />Monthly % <br />Su~pression <br />Idealized Final <br /> <br />Accumulative <br />"7. Annual <br />Suppression <br /> <br />Decrease in Surface <br />Temperature due to <br />Mixing (0C) <br />Idealized Final <br /> <br />Residual <br />Heat <br />(OC) <br /> <br />First Year (mixing from A pril through October) <br />4 29 28 02 5.21 <br />5 43 39 06 8.58 <br />6 50 44 11 11.00 <br />7 S2 42 18 12.09 <br />8 49 36 24 11.15 <br />9 38 22 27 7.73 <br />10 26 09 28 4.66 <br />II 14 -04 28 2.27 <br />12 05 -11 27.3 0.79 <br />Second Year (no mixing) <br />13 -16 <br />14 -14 <br />15 -13 <br />16 -11 <br />17 -07 <br />18 -05 <br />19 -04 <br />20 -03 <br />21 -02 <br />22 -02 <br />23 -02 <br />24 -01 <br /> <br />27- <br />27 <br />26 <br />26 <br />25 <br />24 <br />24 <br />23 <br />23 <br />23 <br />22.5 <br />22.5 <br /> <br />4.90 <br />7.59 <br />9.21 <br />9.28 <br />7.64 <br />4.08 <br />1.42 <br />-0.54 <br />-1.60 <br /> <br />. Nelsuppression at end of 1st year is 27.3% of 628.100 = 171,500 ac ft. <br />Net 1st year suppression after heat decay during 2nd year is 22.5qj:, = 142.173 ac ft. <br /> <br />0.31 <br />0.99 <br />1.79 <br />2.81 <br />3.51 <br />3.64 <br />3.24 <br />2.81 <br />2.39 <br /> <br />2.04 <br />1.82 <br />1.53 <br />1.14 <br />0.90 <br />0.68 <br />0.51 <br />0.39 <br />0.31 <br />0.26 <br />0.22 <br />0.19 <br /> <br />Table 4. Sequential mixing of Lake PoweU. <br /> <br /> Salvage <br /> Percent Residual During Year <br />Year Suppression Heat (OC) (Acre Feet) <br />1 27.3 2.39 171,500 <br />2 23.2 2.82 145,800 <br />3 22.4 2.90 141,100 <br />4 22.3 2.91 140,200 <br />over 4 22.3 2.91 140,200 <br />N+la -6.0 0.2 -36,000 <br /> <br />a.-rhe year after mixing is stopping evaporation of 6% over <br />normal will oc(ur. <br /> <br />Supp. = 57.37 + 9.085 Log (D) - 9.896 Log (EI) <br /> <br />This function has a correlation coefficient of 0.87. <br />Because of the significant decrease in correlation <br />when flow is ignored the model selected for <br /> <br />application to other Utah reservoirs was the lirst of <br />the three functions given. Even though flow index <br />data are not available for many Utah reservoirs, it <br />appears better to use a function for which flow can <br />be used where available and estimated at an <br />average value where it is missing. <br /> <br />Figure 15 displays the best lit regression model <br />using maximum depth, flow index, and elevation <br />as dependent variables with flow index constant at <br />.29 (a typical value for other than major reservoirs <br />with high carryover storage). Figure 16 shows the <br />variation of suppression with flow index, ignoring <br />elevation. <br /> <br />AppUcadon of Regression Model to <br />Utah Resenoln <br /> <br />The regression model was used to extend the <br />results of the detailed 6-month model to all other <br /> <br />36 <br />