Laserfiche WebLink
<br />I <br />I <br />II <br />I <br />I <br />I <br />I <br />I <br />I <br />I <br />I <br />I <br />I <br />I <br />I <br />I <br />I <br />I <br />I <br /> <br />Lesson 2 <br /> <br />where: <br /> <br />Qc = <br />Ac = <br />T = <br />g = <br /> <br />Basic Hydraulics - Participant Workbook <br /> <br />Critical discharge (cfs) <br />Cross-sectional area of flow (ft2) <br />Width of water surface (It) <br />Acceleration due to gravity (32.2 ft/s2) <br /> <br />2.5. OTHER DEPTH RELATIONSHIPS <br /> <br />HYDRAULIC DEPTH <br /> <br />EQUIVALENT DEPTH <br /> <br />Yh <br /> <br />A <br />T <br /> <br />~ <br /> <br />Ye=~ <br /> <br />.. <br />y,- <br /> <br />I 2y, I <br /> <br /> <br />y, <br /> <br />2.11 Hydraulic Depth <br /> <br />A. Hydraulic Depth <br /> <br />2.12 Equivalent Depth <br /> <br />The hydraulic depth, or mean depth, is olten used to define an average <br />depth condition in open channel flow. It is equal to the area of flow <br />divided by the top width of flow: <br /> <br />where: <br /> <br />B. Equivalent Depth <br /> <br />A <br />Yh=- <br />T <br /> <br />2-6 <br /> <br />Yh <br />A <br />T <br /> <br />Hydraulic depth (It) <br />Cross-sectional area of flow (ft2) <br />Top width of water surface (It) <br /> <br />= <br /> <br />= <br /> <br />= <br /> <br />The equivalent depth is often used as an approximate depth of flow in energy <br />dissipator calculations. It is the depth corresponding to an area of flow which <br />has a width that is twice the depth: <br /> <br />Y. =~ 2-7 <br /> <br />where: <br /> <br />y. <br />A <br /> <br />Equivalent depth (It) <br />Cross-sectional area of flow (ft2) <br /> <br />= <br /> <br />= <br /> <br />2-9 <br />