Laserfiche WebLink
<br /> <br />. <br /> <br />188 <br /> <br />HYDRAULIC ENGINEERING '94 <br /> <br />Tabl~ 2. !dov~ data for mooitorcd rocks. Transport velocity is travel distance <br />per ,!me.1R motIOI1; travel velocity is travel distance per IOtaI elasped time, Sporadic <br />moollonng of rock l2from 1322 to 1400 hr; no apparent movement was obsetved, <br /> <br />~otaI-r:une ~tavel Transport Ttavcl 1# Mean Step Tunes <br />Tune IR Mabon Distance Velocity Velocity Steps Length Otain <br />Roct~12 (s) (m) (mls) (mlmin) (mlstep) Size <br /> <br />1209 0 0 <br />1251 637* 159 0.25* 3,0 <br />1400 637* 159 0,25* 1.4 <br />1410 1132* 412 0,36* 3.5 <br />1400-1410 495 253 0.51 29.0 <br />*max taleS assuming no motion 1322-1400 hrs <br />Rock #17 <br />1207 0 0 <br />1241 284 141 0,50 42 18 7,8 <br />1401 284 141 0.50 1:2 18 7,8 <br /> <br />function ~ffers consid",:"bly from that measured by Schmidt and Ergenzin <br />(1~~(Flg. 2): At this tune, the difference can be attributed to differences r. flow <br />~uons dmmg data collection, In the case of the Phelan Creek data, the e nential <br />funCtion fits the data well, but inadequately describes the importance of the in~uent <br />but very long rest periods, This may be a result of the small data set. <br /> <br />~vel distance was meas~ for all nine tadio-equipped rocks (fable I). <br />Travel ~ and ~e1 ve~ty were compared to the size and shape pamneters of <br />the rocks. SIIICC the bme dUtatlOll of the distance measurements varied from about 2 <br />hr t!' 4.~ hr, travel v~locit? is ~sed to the rocks, The best fit was with mass, showing <br />a slight, IRVerse !"latI?"slnp (F.g. 3), Most comparisons were scattered, similar to that <br />of specific gravtty, (Ftg. 3), The shon study period may account for the scattered data' <br />a longer study penod may have allowed tbe relationships to develop more fully, , <br /> <br />27* <br />27* <br />30* <br />3 <br /> <br />5,9* <br />5,9* <br />13,7* <br />84,3 <br /> <br />77" <br />77" <br />181" <br />1110 <br /> <br />91 <br />91 <br /> <br />I::: <br />0,' <br />0.' <br />I:' 0.3 <br />~ 0.2 <br />Iii O.t <br />0.0 <br /> <br />1- PhcIon c..ct '990 I <br />-.. Schmidt and Ergenzinger(l992) <br /> <br />W=O.43-exp-(O.043.x <br />W=1.43.exp-(3.37.x) <br /> <br /> <br />20 <br /> <br />8 10 12 14 16 <br />REST PERIOD (miD) <br />Figure 2. pistribu!i"" of the d~ of rest periods with exponential function. <br />Exponential fmction from Schmidt and Ergenzinger (1992) shown for comparison, <br /> <br />Summarv <br /> <br />. <br /> <br />6 <br /> <br />18 <br /> <br />o <br /> <br />2 <br /> <br />~ tracking of sediment movements in natural settings provides urn ue da <br />unolJ!ainable ~ other methods. The Phelan Creek study, although limited b q short ta, <br />dutallon, provides data from a period when the tracked particles were highl/mobile. <br /> <br />~ <br /> <br />-It <br /> <br />. <br /> <br />. <br /> <br />189 <br /> <br />MONITORING GRAVEL MOVEMENT <br /> <br />I. <br />-:-; I 0 <br />i: 0 .f, 8 <br /> <br /> I. <br /> ~I 0 <br />0 i: 0 fl~O <br />0 0 <br />0 0 <br />.l, .,......" <br /> <br />. . <br />450 500 SSO 600 6SO 100 150 800 8SO 2.35 2.40 2.45 1.50 2jS 2.60 2.65 <br />MASS (g) sPECIFIC ORA VtrY <br /> <br />Figure 3. Ttavel velocity versus particle weight and specific gravity for tracked rocks, <br /> <br />Comparison of these data to those collected usin, a similar radio-tracldug technique <br />bu. under different hydraulic conditions (Ergennnger and Schmidt, 1990; Schmidt and <br />Ergenzinger, 1992), shows some similarities in transport velocity and step length but <br />large discrepancies in the length of rest periods, Continued field stndies on a variety <br />of fluvial systems, under varying flow and sediment transpon conditions, will provide <br />empirical data to funher deftne the stoChastic properties of sediment transport and <br />improve the prediction capabilities of bedload formulas and models, <br /> <br />Reflf":l'ellCr:S <br /> <br />Ch>cho, E.F,)r.. Burrows, R.L, and Emmell, W.W" Detection of """"'" sediment <br />movement using radio transmitterS, Proceedings of the XXIll Congress of the <br />International Association for Hydraulic Research, The National Research Couocil of <br />Canada, 1989, pp, B367-B373, <br /> <br />Chacho, E.F,)r., Burrows, R,L. and Emmett, W,W., Monitoring gravel movement <br />in rivers, Proceedings of the Steep Streams Workshop, Corps of Engineers, In Press. <br /> <br />Einstein. HA., The bed-load function for sediment transportation in open channel <br />flow, U,S, Dept, Agric" Techn. Bull. No.1026, 1950. <br /> <br />Ergenzinger,P" SchmidI,K.-H. & Busskamp,R" The Pebble Transmitter System <br />(PETS): FIISt results of a technique for studying coarse material erosion, transpon and <br />deposition, 7~t.'lChrift for c~""",",hnIoPie N F 33: Vol. 4: 1989, pp,503-508, <br /> <br />Ergenzinger ,P,& SchmidI,K,-H., StoChastic elements of bed load transport in a step- <br />pool mountain river. Aydmlo[JV in Mountainous Reirions "_Artificial ResP.I'Votrs: <br />Water and SIOIles IAHS Publ. no. 194, 1990, pp, 39-46, <br /> <br />Schmidt,K,-H, and Ergenzinger, P., Bedload entrainment, travel lengths, step <br />lengths, rest periods-studied with passive (iron, magnetic) and active (tadio) tracer <br />techniques, FNth Surface Pmcr_'..s and I.andfnnns, Vol. 17, 1992, pp, 147-164, <br /> <br />Wolman, M.O.. A method of sampling coarse river-bed material, American <br />Geonhvsicalllninu Ttans., Vol. 35, 1954, pp, 951-956, <br /> <br />Yang, C.T, and Sayre, W,W" StoChastic model for sand dispersion, Proceedings <br />ASCE. 1971, pp, 265-288. <br /> <br />l <br /> <br />, <br /> <br />:1 <br />~ <br /> <br />'- <br />