Laserfiche WebLink
<br />I <br />I <br /> <br />EM 1110-2-2902 <br />3 Mar 1969 <br /> <br />I <br /> <br />When N falls inside the kern, minimum reinforcement only is required and f. is found by the equa- <br />tion: <br /> <br />I <br /> <br />f, - (N# + 6M"#) F* _________________________________________________________(20) <br />bD bD' <br />When N falls outside the kern, the stress in the tension steel is: <br />f. = (d ; S) nf,F* __ ___ _ __ __ _ ___ _ ___ __ _ __ _ _ __ _ __ __ __ __ ___ _ __ _ __ __ __ __ __ _ (21) <br /> <br />and the stress in the compression steel is: <br />f'. = C ; d') 2nf.F* -- -- - - - - - - - -- - - - - - - -- -- -- - -- - -- - --- -- --- --- --- - --- - -- -- -- (22) <br /> <br /> <br />(4) Ultimate Strength Design Method. In addition to an elastic analysis, critical sections <br />should be investigated by the ultimate strength design method based on a minimum load factor <br />of 1.8. The following procedure is suggested: <br /> <br />e = M/N <br />T = A,f, <br />C, = A',Jy <br />Cb = d (87,000) / (87,000 + f,) <br />ab = k,cb (where k, = 0.85 when f'. = 4000) <br />C, = 0.85 f',abb (use b = 12") <br />~ F, = 0 = Pb + T - C, - C. <br />Pb = C. + C. - T <br /> <br />Find plastic centroid (location of resultant load which would give uniform strain across the <br />section) . <br /> <br />I <br /> <br />I <br />I <br />I <br /> <br />I <br /> <br />I <br />I <br />I <br />I <br />I <br /> <br />.Apply curved-beam correction factor, F, at inside face only of conduits with curved shells-see paragraph <br />5b(I). <br /> <br />N <br /> <br />I <br /> <br /> e ::M/N j <br />r Cc rs <br /> I -As <br /> 0 I <br /> "l <br /> A'- <br /> 5 <br /> I <br /> <br />T <br /> <br />I <br />I <br />I <br />I <br /> <br />Fig. ~. Typical Stres8 Diagram-Ultimate Strength Dengn <br /> <br />8 <br />