Laserfiche WebLink
<br />1684 . <br /> <br />OCTOBER 1973 <br /> <br />HY10 <br /> <br />in which V,'r = the average critical velocity at InClplcnt motion; and VcJw <br />= the dimensionless critical velocity. Eq. 13 is the basic equation which specifies <br />the flow condition when a sediment particle is rcady to move on the bottom <br />of an open channel. The values of IV I' * 2' and *) have to be determined <br />from experiments. The roughness function, B, depends on whether the boundary <br />is in a hydraulically smooth, transition, or completely rough regime. If we assume <br />that Nikuradsc's roughness height can be replaced by sediment particle diameter, <br />the relationship between B and shear velocity Reynolds number U. dj v is shown <br />in Fig. 2. Herein, v = kinematic viscosity. <br />In the hydraulically smooth regime, B is a furtction of only the shear velocity <br />Reynolds number, U.djv, i.e.: <br /> <br />U.d <br />B = 5.5 + 5.7510g-, <br />v <br /> <br />U.d <br />o < - < 5 . . . . . , . . . . . . . . . . . . (14) <br />v <br /> <br />Thcn Eq. 13 bccomcs <br /> <br /> <br />[ D J <br />log-- I <br />d <br />+1 <br />U,d <br />log ----;;- + 0.956 <br /> <br />~................(15) <br />1jI, + <l<3 <br /> <br />v <br />" <br /> <br />w <br /> <br />, <br />, <br /> <br />which is a hyperbola on a semilog plot between V cr/ wand U. d/ v. The relative <br />roughness, dj D, should not have any significant influence on the shape of <br />this hypcrbola in the hydraulically smooth rcgime, <br />In the completely rough regime, the protrusions reach outside the laminar <br />sublayer. The laminar friction contribution can be neglected, and B is a function <br />of only thc relative reghncss d/ D, i.e. <br /> <br />U.d <br />B = 8.5, - > 70 . . . . . . . . . . , . . . . . . . . . . . . . . . . . . (16) <br />v <br /> <br />~. <br />0:' <br />~,I <br />~" <br />~": <br />~. " <br />~,. <br />t <br />~f~ <br />f' <br />'.' <br />,~' <br /> <br />then Eq. 13 becomes <br /> <br />V [IOg~-1 ] <br />~= +1 <br />w 1.48 <br /> <br />~...................(I7) <br /><l<, + 1j13 <br /> <br />~"" <br />, <br />~:" <br /> <br />Eq. 17 indicates that in the completely rough regime, the plot of V cJ w against <br />U. d/ v is a straight horizontal line. The position of this horizontal line depends <br />on the value of relative roughness, ~ l' ~2' and W 3" <br />In the transition regime with the shear velocity Reynolds number between <br />5 and 70, protrusions extend partly outside the laminar sublayer. Both the laminar <br />friction and turbulent friction contributions should be considered. As shown <br />in Fig. 2, Bdeviates gradually fromEq. 14withincreasing U.d/v. It is reasonable <br />for us to expect that, basically, Eq. 15 still is valid but with thc relative roughness, <br />d/ D, playing an increasingly important role as U. dj v increases. <br />The flow condition corresponding to the incipient motion depends more or <br />Jess on the investigator's definition of incipient motion. Data used in this paper <br />include Casey, Grand Laboratory, Thijsse, and Tison's "initial motion" (30), <br /> <br />t'....... . <br />" <br />. <br /> <br />f[ <br />'.. <br />t <br />h <br />f <br />~; <br /> <br /> <br /> INCIPIENT MOTION .5 <br /> TABLE 1.-Flow Conditions at Incipient Motion <br />Particle Shear veloCity Dimensionless Number <br />size d, in Slope, Reynolds number, critical velocity, of data, <br />millimeters S RS6 = U. d/v Vc/w N <br />111 (21 (31 (4) 151 <br /> (a) Casey's Data <br />0.17 2.20 8.35 3 <br />0.68 10.35 2.671 2 <br />0.94 15.80 2.230 3 <br /> (b) Grand Laboratory's Data <br />IT 12.93 3.280 3 <br />2.0 51.0 2.606 I <br />4.0 187.0 2.444 4 <br />5.0 269.0 2.502 2 <br /> (c) Gilbert's Data <br />1.71 0.005-0.020 55.69 1.843 3 <br />3.17 0.0100-0.0105 166.75 1.892 2 <br />4.938 0.0105-0.0250 339.81 1.920 8 <br />7.01 0.011 757.04 2.208 2 <br /> (d) Kramer's Data <br />0.51 0.00100 6.40 4.667 1 <br />0.51 0.00125 6.55 3.656 2 <br />0.51 0.00166-0.00168 6.66 3.550 2 <br />0.51 0.00218-0.00228 6.76 3.577 2 <br />0.53 0.00098-0.00101 7.34 3.781 3 <br />0.53 0.00126 7.37 3.827 2 <br />0.53 0.00165-0.00173 8.17 3.t20 2 <br />0.53 0.00240-0.00246 8.34 3.206 2 <br />0.55 0.00100 7.93 4.073 I <br />0.55 0.00125 8.14 3.869 2 <br />0.55 0.00167 7.84 3.890 2 <br />0.55 0.00250 7.53 3.557 2 <br /> (c) Thijsse's Data <br />0,28 I 3.04 7.010 6 <br /> (f) Tison's Data <br />0.15 1.61 12.583 6 <br />0.25 2.64 7.385 5 <br />0.3 3.43 6.268 4 <br />1.0 19.33 2.913 4 <br />2.0 65.00 2.573 I <br /> (g) Vanoni's Data <br />0.102 L 1.50 27.673 4 <br /> (h) U.S. Waterways Experiment Stations's Data <br />0.2053 0.0010 2.47 8.165 4 <br />0.2053 0.0015 2.67 9.005 2 <br /> <br />:fJ <br />I <br />11 <br /> <br />~ <br /> <br /> <br />;" <br />