<br />1684 .
<br />
<br />OCTOBER 1973
<br />
<br />HY10
<br />
<br />in which V,'r = the average critical velocity at InClplcnt motion; and VcJw
<br />= the dimensionless critical velocity. Eq. 13 is the basic equation which specifies
<br />the flow condition when a sediment particle is rcady to move on the bottom
<br />of an open channel. The values of IV I' * 2' and *) have to be determined
<br />from experiments. The roughness function, B, depends on whether the boundary
<br />is in a hydraulically smooth, transition, or completely rough regime. If we assume
<br />that Nikuradsc's roughness height can be replaced by sediment particle diameter,
<br />the relationship between B and shear velocity Reynolds number U. dj v is shown
<br />in Fig. 2. Herein, v = kinematic viscosity.
<br />In the hydraulically smooth regime, B is a furtction of only the shear velocity
<br />Reynolds number, U.djv, i.e.:
<br />
<br />U.d
<br />B = 5.5 + 5.7510g-,
<br />v
<br />
<br />U.d
<br />o < - < 5 . . . . . , . . . . . . . . . . . . (14)
<br />v
<br />
<br />Thcn Eq. 13 bccomcs
<br />
<br />
<br />[ D J
<br />log-- I
<br />d
<br />+1
<br />U,d
<br />log ----;;- + 0.956
<br />
<br />~................(15)
<br />1jI, + <l<3
<br />
<br />v
<br />"
<br />
<br />w
<br />
<br />,
<br />,
<br />
<br />which is a hyperbola on a semilog plot between V cr/ wand U. d/ v. The relative
<br />roughness, dj D, should not have any significant influence on the shape of
<br />this hypcrbola in the hydraulically smooth rcgime,
<br />In the completely rough regime, the protrusions reach outside the laminar
<br />sublayer. The laminar friction contribution can be neglected, and B is a function
<br />of only thc relative reghncss d/ D, i.e.
<br />
<br />U.d
<br />B = 8.5, - > 70 . . . . . . . . . . , . . . . . . . . . . . . . . . . . . (16)
<br />v
<br />
<br />~.
<br />0:'
<br />~,I
<br />~"
<br />~":
<br />~. "
<br />~,.
<br />t
<br />~f~
<br />f'
<br />'.'
<br />,~'
<br />
<br />then Eq. 13 becomes
<br />
<br />V [IOg~-1 ]
<br />~= +1
<br />w 1.48
<br />
<br />~...................(I7)
<br /><l<, + 1j13
<br />
<br />~""
<br />,
<br />~:"
<br />
<br />Eq. 17 indicates that in the completely rough regime, the plot of V cJ w against
<br />U. d/ v is a straight horizontal line. The position of this horizontal line depends
<br />on the value of relative roughness, ~ l' ~2' and W 3"
<br />In the transition regime with the shear velocity Reynolds number between
<br />5 and 70, protrusions extend partly outside the laminar sublayer. Both the laminar
<br />friction and turbulent friction contributions should be considered. As shown
<br />in Fig. 2, Bdeviates gradually fromEq. 14withincreasing U.d/v. It is reasonable
<br />for us to expect that, basically, Eq. 15 still is valid but with thc relative roughness,
<br />d/ D, playing an increasingly important role as U. dj v increases.
<br />The flow condition corresponding to the incipient motion depends more or
<br />Jess on the investigator's definition of incipient motion. Data used in this paper
<br />include Casey, Grand Laboratory, Thijsse, and Tison's "initial motion" (30),
<br />
<br />t'....... .
<br />"
<br />.
<br />
<br />f[
<br />'..
<br />t
<br />h
<br />f
<br />~;
<br />
<br />
<br /> INCIPIENT MOTION .5
<br /> TABLE 1.-Flow Conditions at Incipient Motion
<br />Particle Shear veloCity Dimensionless Number
<br />size d, in Slope, Reynolds number, critical velocity, of data,
<br />millimeters S RS6 = U. d/v Vc/w N
<br />111 (21 (31 (4) 151
<br /> (a) Casey's Data
<br />0.17 2.20 8.35 3
<br />0.68 10.35 2.671 2
<br />0.94 15.80 2.230 3
<br /> (b) Grand Laboratory's Data
<br />IT 12.93 3.280 3
<br />2.0 51.0 2.606 I
<br />4.0 187.0 2.444 4
<br />5.0 269.0 2.502 2
<br /> (c) Gilbert's Data
<br />1.71 0.005-0.020 55.69 1.843 3
<br />3.17 0.0100-0.0105 166.75 1.892 2
<br />4.938 0.0105-0.0250 339.81 1.920 8
<br />7.01 0.011 757.04 2.208 2
<br /> (d) Kramer's Data
<br />0.51 0.00100 6.40 4.667 1
<br />0.51 0.00125 6.55 3.656 2
<br />0.51 0.00166-0.00168 6.66 3.550 2
<br />0.51 0.00218-0.00228 6.76 3.577 2
<br />0.53 0.00098-0.00101 7.34 3.781 3
<br />0.53 0.00126 7.37 3.827 2
<br />0.53 0.00165-0.00173 8.17 3.t20 2
<br />0.53 0.00240-0.00246 8.34 3.206 2
<br />0.55 0.00100 7.93 4.073 I
<br />0.55 0.00125 8.14 3.869 2
<br />0.55 0.00167 7.84 3.890 2
<br />0.55 0.00250 7.53 3.557 2
<br /> (c) Thijsse's Data
<br />0,28 I 3.04 7.010 6
<br /> (f) Tison's Data
<br />0.15 1.61 12.583 6
<br />0.25 2.64 7.385 5
<br />0.3 3.43 6.268 4
<br />1.0 19.33 2.913 4
<br />2.0 65.00 2.573 I
<br /> (g) Vanoni's Data
<br />0.102 L 1.50 27.673 4
<br /> (h) U.S. Waterways Experiment Stations's Data
<br />0.2053 0.0010 2.47 8.165 4
<br />0.2053 0.0015 2.67 9.005 2
<br />
<br />:fJ
<br />I
<br />11
<br />
<br />~
<br />
<br />
<br />;"
<br />
|