Laserfiche WebLink
<br />1682. OCTOBER 1973 <br />7rd2 P 7f'dJ <br />C~--w' =-(p - p)g <br />4 2 6' <br /> <br />. .()) <br /> <br />in which C~ drag coefficient at w; w = terminal fall velocity; and P, = <br />density of sediment particle. By substituting C~ with I.VI CD' and elirninatina <br /> <br />~,: <br /> <br />I <br />, <br />I <br />9----1 <br />I <br />I <br />I <br />I <br />I <br />I <br />I <br /> <br />, <br />~ <br />, <br /> <br /> <br />" <br /> <br /> <br />'0 <br /> <br />fR <br /> <br />'5 <br /> <br />, FIG. <br />, <br />. <br />, <br />, <br />, 11 <br />I <br />. <br />, 10 <br />t <br />! ~ <br /> <br />1.-Diagram of Forces Acting on Sediment Particle in Open Channel Flow <br /> <br /> <br />3.5.5"5.751O<J~ <br /> <br />.0..::: ::,:. <br />r,'"" " <br />" <br />'J <br />" , <br />.: I <br />I <br />I <br />I <br />I <br />I <br />I <br /> <br />......:.. <br />. ....~:. . <br />. ..1'...... <br /> <br />. 9 <br />o <br />~ II <br /> <br />" <br />~ 7 <br />" <br /> <br /> <br />" <br />a'8.S t <br />I <br />I <br />I <br />I <br />, <br /> <br />tOMPLETElYROUGH <br /> <br />" <br /> <br />Sl'OOT~ <br /> <br />TRANSITION <br /> <br />s <br />0.;: 0.4 <br /> <br /> <br /> <br />1.0 1.2 1.4 1.5 1.8 2.0 2.2 2.4 2.6 <br />lOGARITiIMOFSIl[ARVELOCITYREYNOLOSNUM8[R,10<J~ <br /> <br />FIG. 2.-Relationship Between Roughness Function and Shear Velocity Reynolds <br />Number (Ref. 18, Fig. 20.21) <br /> <br />Cv from Eqs. 2 and 3. the drag force becomes <br /> <br />'TTd3 <br />F D = --------;- (p ,- p)g V~ .. . . . . . . . . . . . . . . . . . . . . . . . . . (4; <br />61j1,w' <br /> <br />If we assume that the logarithmic law for velocity distribution (15) can be applied <br />in this case, then <br /> <br /> <br />INCIPIENT MOTION <br /> <br />. <br /> <br />v )' <br />. -L~ 5.75 log- + B. <br />U, d <br /> <br />. . (5) <br /> <br />in which V y =:: local velocity at distance y above the bed; and B :;;:: roughness <br />function. Then the local velocity at y = d becomes <br /> <br />V,= BU. <br /> <br />. (6) <br /> <br />The average velocity can be obtained by integrating Eq. 5 from y = E: to Y <br />== D with E -. 0 <br /> <br />V~ U, [5,75 (lOg ~ - I) + B] . . . . . . . . . . . . . . . . . . . . . . . (7) <br />From Eqs. 4, 6, and 7 <br /> <br />, <br /> <br />FD~ 1Td' (p _ P)g(V)' [ B ]' ........... (8). <br /> <br />6>1> ' ( D ) <br />, w 5.75 log d - I + B <br /> <br />The lift force acting on the particle can be obtained by <br /> <br />, <br /> <br />F ~ C :'!... d' ~ V' <br />L L4 2 J <br /> <br />The relationship between lift coefficient eLand drag coefficient CD can be <br />determined experimentally. If we let tV2C L = CD' and follow the same procedure <br />as in obtaining Eq. 8, we have <br /> <br />. .. (9) <br /> <br />FL~ 6:d: (P'-P)g(~)'[ ;)]' <br />, , w 5.75 (lOg d - I + B <br /> <br />The submerged weight of the particle is <br /> <br />'ITdJ <br />W'~6(P,-P)g ..........,.................. (II) <br /> <br />. . . . . . . . . (10) <br /> <br />Then the resistant force becomes <br /> <br />F.=>I>3(W,-FL) <br /> <br />>l>1Td3 {I (V)'[ B ]'} <br />=-2--(p,_p)g 1-- - ... (12) <br />6 >1>, >1>, W (D) <br />5.75 log d - I + B <br /> <br />in which *) = the friction coefficient. Assume that the incipient motion occurs <br />..'hen F D = F R" From Eqs. 8 and 12 <br /> <br />[5.75 (lOg D - I) <br />V" _ d <br />.. B <br /> <br />+I]~ <br /> <br />1jI, + 1j13 <br /> <br />. . . . . . . . . . . . . . (13) <br /> <br />,t,. <br /> <br />~-;-- <br /> <br />