Laserfiche WebLink
<br />-. <br /> <br />,. <br /> <br />2046 <br /> <br />NOVEMBER 1973 <br /> <br />HYl1 <br /> <br />!" <br /> <br />approaching or exceeding unity were included: an upper limit of F 0.8 was <br />applied in selecting data. <br />The data for coarse material up to 4 mm median diam were taken from <br />several sources. Fig. 2(a) shows the data for sand of diameter of 1.35 rnm <br />(20). The curve approaches a limiting value of F Rr asymptotically at low values <br />of the transport parameter, Gr' This asymptote therefore represents initial <br />'. I <br />motion, and IS denoted A. <br />The type of relationship suggested is a power function.of G s' with (Fgr - <br />A). This is examined in Fig. 2(b). The data/lie close to a line with slope 1.5, <br />i.e., for 10-' < G < 2 X 10-2 . <br />" <br />G" ~ 0.56 (F" - A)'" . . , . . . . . . . . . . . . . . . . . , , . . . (14) <br /> <br />in which A ~ 0.17, <br />The type of plot in Fig. 2(b) is very searching: F" - A = 0.02A represents <br />a 2% increase in velocity compared with the nominal start of motion, and F gr <br />- A = O.lA is a 10% increase. Thus quite small errors in the measurement <br />of average flow depth over an irregular bed cause a big change in the plotting <br />position. <br />Transport of Transitional Sizes of Sediment.-=-The analysis of data from various <br />sources for sand sizes within the transitional zone was next attempted, using <br />the same formula as appeared to fit coarse sediments but allowing n as well <br />as the initial motion parameter, A. to vary with VII" An optimizing procedure <br />obtained the values of A and n that give minimum scatter (on a least squares <br />basis in the x coordinate direction) in plots similar to Fig. 2. The theory was <br />well supported. There was a clear dependence of the optimum value of n on <br />Dg,. the trend being as expected from n = 0 at Dsr values above 35, towards <br />n = 1 for the finest sands considered. The initial motion coefficient, A, was <br />found to depend on D s' as expected, although there were inconsistencies for <br />the finer sizes. However. Eq. 14 was not of a sufficiently general form to <br />describe adequately the transport of sediments towards the fine end of the <br />transition range. The exponent should not be fixed at the value of 1.5 appropriate <br />for coarse material: it should be higher for finer materials. The analysis was <br />therefore extended, incorporating considerably more data, and generalizing the <br />equation to be tested to read: <br /> <br />(F" )m <br />G=C--I.. <br />I' A <br /> <br />, , . . . . . . . . . . . . . . . . . . . . . . . . . (15) <br /> <br />SECOND PHASE OF ANALySIS <br /> <br />~ '- <br />!;-" <br /> <br />The revised analysis was based entirely on the general function (Eq. 15) <br />and it was assumed that C, A, m, and n would all vary with sediment size, <br />D . In other words, the analysis optimized the values of four variable coefficients, <br />rather than two. Some 925 individual sediment transport experiments were used <br />in the analysis, of which 173 involved lightweight sediments of the type used <br />in small-scale hydraulic models. Fuller details of the procedures and results <br />are available elsewhere (20). <br />The work of' 14 investigators, who carried out a total of 52 sets of experiments <br />was considered: (Williams, 1966, 1970 (21,22); Laursen, 1957 (12); Mavis, ct <br /> <br />H <br /> <br />,. <br />r <br /> <br />HY11 <br /> <br />SEOIMENT TRANSPORT <br /> <br />, ~ , . <br />~. \~ Ii <br />i , <br />~ i , - <br />< <br />. . +---'*1' <br />~ ~ <br />~ ~ j..-A !7. <br />~ <br />. ~ ~ <br /> If. <br /> s ~ // <br />- ~~- ~- ,.I. <br /> I ."" <br /> .' <br /> e <br /> .. <br /> <br />. <br /> <br />: 6 6 2 ~ <br />I"01l3J3t<1l"lIl"d /</O/JOH 7I"/JJ/o// <br /> <br /> , . <br /> , <br />f- . , , <br /> . <br /> . , <br /> ! , <br /> ~ , <br /> 0 , <br /> ~ 0 <br /> ~ 0' . 1/ <br /> ~ 0 <br /> ,; <br /> s 0 ~ <br /> . <br /> 0 <br /> l/ .. <br /> <br />~ ~ ~ ~ 6 6 ~ ~ ~ ~ ~ <br />~ OIJ3JP'WIJI"-d NOJll<;;NYIJJ. <br /> <br />.. <br /> <br /> , <br /> , <br /> , <br />, , <br /> , <br /> , <br />f-- <br />~ , <br />~ , <br />f-c , <br /> . <br /> . <br /> ~ ,q,o ;)\g <br /> 0 <br />;;",-- I'-. <br /> . <br /> ~ i i "Iii == <br /> . 1 <br /> ..~... , <br /> , I-- ~~ H,,:~~ - <br /> ,.. ~ 0 <I <br /> .. <br /> <br />. <br /> <br />;~ <br /> <br />1 <br /> <br />~ ::t <br />W'lN?/NOd1l3 <br /> <br />, <br /> <br />o <br />o <br /> <br />o <br />. <br /> <br />~ <br /> <br />~ <br /> <br />" <br /> <br /> , <br />u : <br />i , <br />" Ci <br />~ , , - <br />~ , '>, <br />, <br /> <t == <br /> 0 << <br /> / I". ~ - <br /> :;t9 ~ - <br />. ! <br />0 . <br /> . - <br /> ~ , <br /> .. <br /> ~ - <br /> 0 / <br /> ..... ~ <br /> --:: <br /> ~ <br /> <br />" <br /> <br />:0" <br /> <br />. <br /> <br />... - .. ~ ~ ~ <br />? <br /> <br />a <br />o <br /> <br />~ <br /> <br />~ 8 8 ij <br />o 0 0 <br />, OJ.N3I:l1.:i:J30' <br /> <br />--... <br />. <br /> <br />.~ <br />iii <br />II' <br />! <br />I <br />i <br /> <br />2047 <br /> <br />.. <br /> <br />.. <br /> <br />.: <br /> <br />il <br />il <br />'j <br />1 <br />~ 4 <br />'j <br />11 <br /> <br />H <br />; ~ <br />II <br />II <br />I, <br />:1 <br />! <br />! <br />11 <br />'I <br />jl <br />!I <br />l' <br />~ <br />i <br />, <br />:~ <br />~ <br /> <br />. o' <br />... <br />~ <br />- ~ <br />'. <br />:i <br />. ~ <br />~ <br />_ 0 <br /> <br />~ <br />o <br />1i <br />~ <br />or <br />t: <br />o <br />0. <br />o <br />~ <br />~ <br />t- <br />~ <br />~ <br />. <br />E <br />ii <br /><Il <br />'ii <br />~ <br />. <br />~ <br />. <br />Cl <br />,5 <br />:J <br />~ <br />. <br />'u <br />i <br />o <br />~ <br />..; <br /> <br />.lo <br /> <br />.. <br /> <br />,,~ <br /> <br />.~. <br />.. <br />. <br />'g <br />tl <br />-, <br />o <br />.; <br />.0 <br /> <br />ci <br />ii: <br /> <br />~ <br /> <br /> <br />!{ <br />': ~ <br />