Laserfiche WebLink
<br /> <br />2044 <br /> <br />NOVEMBER 1973 <br /> <br />FIRST PHASE OF ANALYSIS <br /> <br />Because a much simpler relationship was expected for coarse sediment than <br />for intermediate sizes, this zone was examined first. <br />Evaluation of a.-Although F Ilr is not strongly dependent upon 0., a suitable <br />value had to be assessed. As Q: allows for the relative depth, data covering <br />a wide range of dj D are required. Most test series with well-established motion <br />cover a rather narrow range of depths, so data on the initial motion of gravels <br />in the range 6.2 mm < D < 28.1 mm wcre utilized (14). These cover a 200,fold <br />range of dl D. <br /> <br />3 <br /> <br />la) 'I <br /> <br />v <br />JgIs-II0 <br /> <br />\~ \~ ~ <br />O....a'l \" \~, \':'" <br />---..:..', 1/1 ~q ~ ~ <br /><:lr~J~_ '.!! \".?--, \\1- <br />-~C'O' "-~'" \~. <br />O:9s -+- ;--.fI~_ -+- . \. <br />'l><3 o-.i!.._",. \..,. <br />-+- M'~-,-y ,.~ <br />.. ,,'-. 'tbc~....." .OQ <br />'0 . . --...a_~ . <br />;c, " . ~""'Q---' <br />....... " " ...........-~-- <br />'" ... ~--'O <br />""" '....... ..C'.,. <br />......... ...... c,:-o <br />,....... "6S <br />.... .... '" <br />',""" "" <br /> <br />r <br /> <br />KEY <br />+ 6.22mm 9ra~ <br />I 8'Smm <br /><<:> lO'6mm <br />L: ~:g~:;; <br />. 29.'mm <br />, <br />0'0' <br /> <br />"0 <br /> <br />z <br /> <br />3 <br /> <br />0" <br />O/d <br /> <br />v <br />'9Is..liO <br /> <br />\ <br />\ <br />.............. ~"" \ 5<;p..- -critical flow <br />.'~~ '~GG GG <br /> <br />KEY e '- <br /> <br />e 6"mm c~lulo$r ac<<at. <br />. 5.0mm glass sph<ros <br />4) '6mm glass ~ V <br /> <br />{" I }' =Clog.l><cVO) <br />~g s-liO '" <br /> <br />(6) <br /> <br />z <br /> <br />/ <br />O'Ot <br /> <br /> <br />0./ <br />% <br /> <br />/.0 <br /> <br />FIG. 1.-EvlluBtion of Coefficient from Initial Movement of Coerse Sediment <br /> <br />By Eq. 10, in the coarse zone where viscous effects (and thus D r) are not <br />relevant, initial motion is defined by 0 = !(FCg); Le.: 8 <br /> <br />v <br />\l'32g(, I)D <br /> <br />constant x log (" :) . , . . , . . . . . . . . . . . . . (12) <br /> <br />This is plotted in Fig, !(a), on a long linear basis. <br />The data form two groups depending on whether the sediment considered <br /> <br />HY11 <br /> <br />HYll <br /> <br />2045 <br /> <br />, ~ <br />, <br />:1.:.1 <br />,', <br /> <br />.n <br />.:.'.'..'1 <br />~ <br />':'.j <br />:: <br /> <br />SEDIMENT TRANSPORT <br /> <br />is above or below 15 mm. Although there is appreciable scatter, each group <br />approximates to <br /> <br />V = constant x log (lOd) . . . . , . . . . . . . . . . . . . (13) <br />V32g(s - I)D D <br /> <br />(the lincs go through thc point Did = 10; V/~)D = 0). <br />The constant varies from 0.19 to 0.23, depending on whether the gravel is <br />fine or coarse, but there is not a systematic variation with diameter. An interaction <br />between the bed roughness and the free-surface could change the apparent <br />mobility of a sediment. Lines denoting F values of 0.8, 1.0, and 1.25 have <br />been added to Fig. I(a) tn demonstrate this factor. <br /> <br />., <br />"'f <br />;,i <br />. <br />;1 <br />q <br />" <br />':i <br />H <br />t <br /> <br />I <br />'I <br />" <br />'. <br />.~ <br />~ <br />~~ <br />~l <br />;1 <br />. <br /> <br /> 10. <br /> '" <br /> , <br /> " <br /> I <br /> 1 <br /> /0' <br /> I <br />ll~ , , <br /> . <br />, i <br />.} 1 <br /> " <br /> I <br /> 10~ <br /> T <br /> I <br /> : <br /> I <br /> I <br /> I <br /> I <br /> 10" , 10' <br /> ",.1 F. y <br /> gr. iJ1g0(s-1} IOg,O(!ffJ <br /> <br />'0" <br /> <br />f <br />f <br />of <br />~ <br />"' <br />," <br />.: <br /> <br /> <br />b-fGg" O.56(Fg,..O.17/ <br /> <br />f" <br /> <br />'" <br /> <br />, <br /> <br />10" <br /> <br />l:j'il ' <br /> <br />. <br />, <br />o~ <br /> <br />10.J <br /> <br />, <br /> <br />10~0'J <br /> <br />.5 ro'} <br /> <br />.s 10" <br />F9r - A <br /> <br />.5 100 <br /> <br /> <br />FIG. 2.-flume Transport Data (Ref. 211 <br /> <br />Fig. I(b) relating to glass spheres and cellulose acetate balls lends support <br />to a value of 10, but again there is some variation of the coefficient for supercritical <br />flow. In view of the closeness of the a value in Eq. 13 to the usual value <br />of 12.3 in the rough turbulent equation, the round figure, a == to, was accepted. <br />Transport of Coarse Scdiment.- The D ler- value that separates coarse sediment <br />from transitional sizes was at this stage unknown. Based on previous treatments <br />of sediment transport, and boundary friction on immobile surfaces, a median <br />sand diameter of between I mm and 2 mm appeared appropriate, i.e., a D <br />" <br />value between 25 and 50 (for sand in water at 150 C, D = 25 D with D in <br />millimeters). sr- <br /> <br />In order to avoid an upper phase of sediment transport, which the present <br />theory is not intended to cover, no flume data for channel Froude numbers <br /> <br />i- <br />'. <br />8 <br />1 <br />',1 <br />& <br /> <br />,:f <br />, <br /> <br />,j <br />~ <br />'5i <br />i <br />"~ <br />