Laserfiche WebLink
<br />BIOLOGICAL METHODS <br /> <br />Standard deviation of the mean or standard <br />error (s- ): <br />x <br /> <br />-1:2 S <br />Sx: -V sj{ = -.fii <br /> <br />(15) <br /> <br />4.2 Statistics for Stratified Random Samples <br /> <br />The calculations of the sample statistics for <br />stratified random sampling are as follows (see <br />2.2.2 Stratified random samples): <br />For the mean of stratum k: <br /> <br />nk <br />~ Yki <br />_ i=1 <br />y=- <br />nk <br /> <br />(16) <br /> <br />Le., simply compute an arithmetic average for <br />the measurements of stratum k. <br />For the variance of stratum k: <br /> <br />S2 = <br /> <br />nk ( nk ~ <br />~ Yki2 - ~ Yki 2 <br />i=1 i=1 <br />nk <br /> <br />(17) <br /> <br />nk -1 <br /> <br />i.e., simply Equation 12 applied to the data of <br />the kt h stratum. <br />For the mean of the stratified sample: <br /> <br />m <br />~ NkYk <br />_ k=1 <br />Yst = N <br /> <br />(18) <br /> <br />for either type allocation or alternatively for <br />proportional allocation: <br /> <br />m <br />~ nkYk <br />- k=1 <br />Yst = <br /> <br />(19) <br /> <br />n <br /> <br />No te that Equations (18) and (19) <br />identical only for proportional allocation. <br /> <br />4.3 Statistics for Subsamples <br /> <br />If simple random sampling is used to select a <br />subsample, the following formulas are used to <br />calculate the sample statistics (see 2.3 Sub- <br /> <br />sam piing) : <br />For the sample mean: <br /> <br />t <br /> <br />= 1 ~ (LiYi) <br />y= - .... ---:- <br />n i=1 Zl <br />n~Li <br />i=1 <br /> <br />(20) <br /> <br />where y is the average, computed over sub- <br />samples as well as for the sample <br />14 <br />_ j~1 Yi j (21) <br />Yi =--n- <br /> <br />where Yi j equals the observation for the {.!! <br />element in the itl! primary unit, and Lj is the <br />number of observations upon elements for <br />primary unit L <br />For the variance of the sample mean: <br /> <br />n 1\ ^ <br />s2 (y) = ~ (Yi - Yn)2 <br />n i-I <br />n(n-l) ( ~ lj)2 - <br />i=1 <br /> <br />(22) <br /> <br />1\ <br />where Yi is computed as <br /> <br />~. = LiYi <br />1 Zi <br /> <br />(23) <br /> <br />4 <br /> <br />^ <br />where Yn is computed as <br /> <br />! 1 n ^ = n <br />Yn =- ~ Yi = Y ~ lj <br />n i=1 i=1 <br /> <br />(24) <br /> <br />or alternatively <br /> <br />A <br />= 1 ^ (~ Yj}2 <br />s2 (y) = . ~i-- . <br />n n <br />n(n-1) (~ Lj}2 <br />i=1 <br /> <br />(25) <br /> <br />are <br /> <br />4.4 Rounding <br /> <br />The questions of rounding and the number of <br />digits to carry through the calculations always <br />arise in making statistical computations. <br />Measurement data are approximations, since <br />they are rounded when the measurements were <br />taken; count data and binomial data are not <br />subject to this type of approximation. <br />Observe the following rules when working <br />with measurement or continuous data. <br /> <br />. When rounding numbers to some number <br />of decimal places, first look at the digit to the <br /> <br />~ <br /> <br />10 <br />