Laserfiche WebLink
<br />TABLE VIII. --Estimate of scale changes during seeded periods with respect to <br />non-seeded periods as computed by three statistical methods. Scale chan~es <br />are shown as a function of the 500 mb wind direction. <br /> With Controls Without Controls <br /> Total Sample Scale Scale <br />Stratification Sample Size Change Change <br />(Degrees) Size Utilized Method (%) P- Value (%) P- Value <br />Climax I <br />210 thru 230 S 15 S 15 NPl +68 .248 >+200 .0344 <br /> NS 17 NS 17 NP2 +33 .397 +144 .166 <br /> (S 12, NS9) PAR +12 .405 <br />240 thru 270 S 47 S 47 NPl 0 .496 +5 .409 <br /> NS 38 NS 38 NP2 +29 .138 +16 .316 <br /> (S33, NS28) PAR +13 .255 <br />280 thru 300 S 34 S 34 NPl -12 .221 -33 .075 <br /> NS33 NS 33 NP2 -8 .302 -32 .059 <br /> (S2 7, NS28) PAR -20 .117 <br />310 thru 360 S 24 S 24 NP1 +58 .093 -7 .448 <br /> NS 43 NS 43 NP2 +9 .359 +2 .394 <br /> (S18, NS37) PAR +42 .102 <br />Climax II <br />210 thru 230 S 7 S 7 NPl -9 .386 <br /> NS 8 NS 8 NP2 +53 .330 <br /> (S5, NS5) PAR +49 .337 <br />240 thi'u 270 S 22 S 22 NPl +27 .075 +174 .0268 <br /> NS 18 NS 18 NP2 +56 .072 +98 .049 <br /> (S19, NSI2) PAR +14 .251 <br />280 thru 300 S 19 S 19 NPl -18 .176 -34 .0274 <br /> NS 13 NS 13 NP2 -31 .142 -12 . 115 <br /> (S16;NSI2) PAR -32 .111 <br />310 thru 360 S 13 S 13 NPl +48 .166 -20 .352 <br /> NS 27 NS 27 NP2 -23 .421 -11 .452 <br /> (S9, NS24) PAR +56 .136 <br /> <br />Wolf Creek Summit <br />220 thru 240 S 41 S 36 NPl +23 .152 +16 .245 <br /> NS 50 NS 47 NP2 +13 .212 +17 .212 <br /> (S:29, NS42) PAR +60 <br />250 thru 280 S 61 S 55 NPl +46 .056 +60 .043 <br /> NS 69 NS 60 NP2 +69 .0146 +66 .0202 <br /> (s:n, NS45) PAR +77 .0046 <br />290 thru 360 and S 62 S 56 NPl +10 .386 +27 .221 <br />o thru 210 NS 79 NS 74 NP2 +13 .323 +5 .421 <br /> (S:~8, NS34) PAR +18 .255 <br /> <br />drents having 700 mb wind sp~eds from 11 mps <br />tlirough 16 mps~ All tests indicate these snowfall <br />increases to be significant at the 30/0 level, with <br />rrtost tests indicating significance near the 1 % level. The <br />distribution of seeding effects with the 700 mb wind <br />sp~ed for the Climax samples suggest a double mode <br />with snowfall increases observed when seeding events <br />h~ving speeds from 6 mps to 7 mps and again fr0m <br />12 mps to 15 mps. This double mode is even more <br />apparent when seeding effects are distributed with the <br />500 mb wind speed (Table X). Snowfall increases are <br />observed for events having 500 mb wind speeds from <br />12 mps through 16 mps and again from 22 mps through <br /> <br />27 mps. For the Climax I sample all tests indicate <br />the snowfall increases of near 100% to over 200% are <br />significant at ab out the 2% level. when seeding events <br />having 500 mb wind speeds from 22 mps through <br />27 mp s. Some of the tests also indicate that the <br />snowfall increases observed \'.h en seeding events <br />having 500 mb wind speeds from 12 mps through <br />16 mps are significant at tae 1 % level. Thus, <br />significance is indicated by at least some tests for <br />both wind speed modes. The existence of this double <br />mode at Climax has been discussed previously by , <br />Chappell (1967) and is thought to relate to generator- <br />t~rget spacings embodied in the experimental design. <br /> <br />23 <br />