Laserfiche WebLink
<br />TABLE VI. --Estimate of scale changes during seeded periods with respect to <br />non-seeded periods as computed by three statistical methods. Scale changes <br />are shown as a function of a computed mean temperature advection in the <br />700-500 mb layer. <br /> With Controls Without Controls <br /> Total Sample Scale Scale <br />Stratification Sample Size Change Change <br />(C/12 hr) Size Utilized Method (%) P- Value (%) P- Value <br />Climax I <br />1. 4 to < 4. 4 S 25 S 25 NP1 >+200 .0031 >+200 .0044 <br /> NS 31 NS 31 NP2 +119 .047 >+200 .0119 <br /> (819, NS22) PAR +98 .0150 <br />-1. 6 to <+1. 4 S 50 S 50 NP1 -18 .159 -48 .0150 <br /> NS 55 NS 55 NP2 -16 .159 -28 .085 <br /> (S34, NS43) PAR -13 .215 <br />- 3. 6 to < - 1. 6 S 17 S 17 NP1 +67 .149 +73 . 154 <br /> NS 21 NS 21 NP2 +68 .179 +42 .206 <br /> (815, NS15) PAR +24 .201 <br />4.4 to < 14. 0 and S 28 S 28 NPl -28 .082 -36 .056 <br />-1 2. 0 to < - 3. 6 NS 24 NS 24 NP2 -17 .169 -29 .064 <br /> (S22, NS22) PAR -24 .109 <br />Climax II <br />1. 4 to < 4. 4 S 13 S 13 NP1 >+- 200 .100 >+200 .051 <br /> NS 15 NS 15 NP2 >+-200 .159 >+200 .066 <br /> (S11, NS11) PAR +75 .159 <br />-1. 6 to <+1. 4 S 26 S 26 NP1 +11 .305 -27 .215 <br /> NS 27 NS 27 NP2 -37 .261 -9 .382 <br /> (519, NS22) PAR +10 .367 <br />- 3. 6 to < - 1. 6 S 10 S 10 NP1 +20 .288 +80 .169 <br /> NS 13 NS 13 NP2 +130 .082 +190 .0367 <br /> (:39, NS9) PAR +14 .330 <br />4.4to<14.0 and S 12 S 12 NP1 -32 .087 -37 .0281 <br />- 12. 0 to < - 3. 6 NS 11 NS 11 NP2 < -50 .0322 -31 .057 <br /> (::)1 0, NS11) PAR -37 .048 <br />Wolf C reek Summit <br />O. 4 to < 5. 4 S 51 S 45 NP1 +48 . 121 +23 .261 <br /> NS 69 NS 60 NP2 +49 .142 +39 .192 <br /> (S24, NS36) PAR +62 .0197 <br />-0.6 to <+0.4 S 54 S 48 NP1 -10 .401 +23 .245 <br /> NS 65 NS 60 NP2 +24 .212 +33 .147 <br /> (S26, NS37) PAR +19 .233 <br />- 3. 6 to < - O. 6 S 47 S 42 NP1 +56 .0294 +63 .0495 <br /> NS 54 NS 53 NP2 +37 .064 +49 .0485 <br /> (S34, NS40) PAR +55 .0045 <br />5.4 to < 10. 0 and S 12 S 12 NP1 -5 .319 <-50 .095 <br />-10. 0 to < - 3. 6 NS 10 NS 8 NP2 <-50 .218 <-50 .075 <br /> (SlO, NS8) PAR +8 .421 <br /> <br />. It might be expected that modification <br />:potential would increase with the speed of the.hori- <br />"zontal wind flow since higher upward speeds would be <br />[nduced if the flow was near normal to the mountain <br />barrier. However, whether this potential is realized <br />in increased snowfall on top the mountain is also <br />clependent upon 1he total time it takes for (1) the <br />artificial nuclei to reach and activate in the cloud <br /> <br />system, (2) the crystal to grow, and (3) the crystal to <br />settle to the mountain. Thus, the generator-target <br />spacing arid the horizontal extent of the orographic <br />cloud itself become important considerations in <br />whether the existing modification potential is realized <br />at the top of the mountain. The interaction between <br />the ice nuclei concentration and crystal size becomes <br />increasingly important when seeding the very high <br /> <br />21 <br />