Laserfiche WebLink
<br />9 <br /> <br />Coalescence - Breakup <br /> <br />The coalescence term C(x) is that formulation given by Kovetz and <br /> <br />Olund (1969) as: <br /> <br />1 ~lIf XII <br />C(x) = 2' J f(x1)f{xIl)!(x1 ,xll)l3(x' ,xxll,x) dxll dx' <br />o 0 <br /> <br />- I co f(x)f(x')f(x,x') dx' <br />o <br /> <br />where <br /> <br />f(x') <br />f(xll) <br />I(x,x') = <br /> <br />= the density function of number at mass x' <br />= the density function of number as mass XII <br />the collection kernel given by: <br /> <br />% 2 2 <br />~(X,.XI) = 17' r [y (r,rl)J A V(r,r') <br />c <br /> <br />where y is the linear collision efficiency and A V is the relative terminal <br />c <br /> <br />velocity of the two drops <br /> <br />13 (Xl, XII, x) = the redistribution kernel chosen to be non-zero <br /> <br />only for those pairs of droplets which combine to <br /> <br />give rise upon redistribution to droplets of mass x. <br /> <br />13 is chosen to conserve both number and mass <br /> <br />upon redistribution. <br /> <br />The breakup termB(x) is that given by Srivastava (1971) as: <br /> <br />B(x) J cof(xl)K(x' ,x)P(xl) dx' - f(x)P(x) <br />x <br /> <br />'" <br /> <br />(eq. 5) <br /> <br />(eq. 6) <br /> <br />(eq. 7) <br />