Laserfiche WebLink
<br />where <br />x <br />x <br />y <br />Pv <br />T <br />r <br />0' <br />F <br />~ <br />It-' <br />Pd <br />R <br />Sv <br />! <br />L <br />J <br />K' <br />F' <br /> <br />8 <br /> <br />= mass of water in the droplet <br />= time rate of change in x <br />= mass of dissolved solute in the droplet <br />= cloud water vapor density <br />= cloud temperature <br />= radius of the droplet <br />= compensated molecular diffusion coefficient <br />= ventilation coefficient for mass transfer <br />= saturated vapor density of a plane, pure water surface <br />= relative humidity (fractional) <br />= surface tension of solution droplet <br />= density of the solution droplet <br />= gas constant for water vapor <br />= mole fraction of dissociated dissolved solute to water <br />= molal osmotic coefficient <br />= latent heat of condensation <br />= mechanical equivalent of heat <br />= compensated thermal conductivity <br />= ventilation coefficient for heat transfer <br /> <br />The relative humidity (H) is defined as: <br /> <br />H= .L <br />qs <br /> <br />where the local mixing ratio q is a computed state parameter of the model and <br /> <br />the saturation mixing ratio q is defined by: <br />s <br /> <br />O.62197e <br />s <br /> <br />q = <br />s P - e <br />s <br /> <br />(eq 2) <br /> <br />(eq. 3) <br /> <br />where P is pressure and e , the saturation vapor pressure is given by the Magnus <br />s <br /> <br />formula as: <br /> <br />e = 6.0178 exp [17.2694(T-273.16)/T-35.86)J <br />s <br /> <br />(eq. 4) <br />