THE STATEWIDE WATER SUPPPLY INITIATIVE The Technical Update to the COLORADO WATER PLAN

AGRICULTURAL DIVERSION DEMAND METHODOLOGY

PRESENTATION **AGENDA**

• Background / Process/ Methodology

Agricultural Diversion Demands/ Analysis

TECHNICAL WEBINARS

- February 19 SWSI Methodologies Overview and Population Data
- March 19 Municipal and Industrial Data & Methodologies
- April 23 Agricultural Data & Methodologies
- May 21 Environmental Data & Methodologies
- June 25 SWSI Tools & Next Steps

SIGN-UP FOR WEBINARS

ENHANCED STAKHOLDER

- 2017
 - Technical Advisory Groups
- 2018
 - Roundtable Presentations
- 2019
 - Implementation Working Group
 - Technical Webinars (Recorded and Posted)
 - Iterative Process with Basin Implementation Plans

UPDATING THE WATER PLAN

ANALYSIS + TECHNICAL UPDATE PHASE

BASIN PLAN UPDATE PHASE

COMPREHENSIVE UPDATE PHASE

TABLE 11-1

CYCLICAL PLANNING PROCESS Proposed by the CWCB

Product	Year Initiated
Basin Implementation Plans	2013
Colorado's Water Plan	2013
Statewide Water Supply Initiative	2016
Basin Implementation Plans	2018
Colorado's Water Plan	2020
Statewide Water Supply Initiative	2022

ACTIONS

- The CWCB will work with other state agencies, the basin roundtables, and the people of Colorado to update Colorado's Water Plan, beginning no later than 2020.
- 2. The CWCB will develop guidelines for Basin Roundtable WSRA grants to help facilitate the implementation of the BIPs.

TECHNICAL UPDATE METHODOLOGY

- New Water Plan-based approach •
- First update since the Water Plan
- First update to incorporate climate
- First update to use the hydrologic modeling

Scenario Planning

Scenario planning relies on several key driving multiple, plausible futures (or "scenarios"). In the fit lead "second cardiod and "scenarios" in the

Gap Analysis

Ø

0 C 2050

O

TA ENCONS

-

Water Supply Methodology

Current and Future Water Supplies

FACT SHEET

Estimates of current water supplies are necessary to understand the amount of water that is physically and meet current demands and any additional water supplies that may be available to meet future demands. were common externing warrange autocommon water supports that may be available to interest future demands. Lonerent water support supports information constraints of marking the origination of the support of the sup

Colorado's Water Plan included "Water Supply" as a key driver in each of its planning scenarios. Future water sup are projected to be impacted by climate change in the Cooperative Grov planning scenarios.

Impacts to Water Supplies from Climate Change

The CWCB has undertaken several studies and investigations on the impact of climate projects use in Colorado. Most notably was the development of the Colorado Climate Pan (CCP), which trends, climate modeling, and climate and hydrology projections to assist with the planning mources in Colorado. The CCP devaues the more recent global climate projections (CMPE) and the second secon s winhal ci nate and hydrological conditions.

okorado's Water Plan Incorporates the Impact of cl nning scenarios. The projections reflect "Hot and Dry" conditions and conditions that are in between Current Hot and Dry conditions ("In-between"). The climate projections are assigned to the planning scenarios as fol

A Business as Usual	Current
B Weak Economy	Current
C Cooperative Growth	In-between
D Adaptive Innovation	Hot and Dry
E Hot Growth	Hot and Dry

Presentation by Brown AND Caldwell Matt Lindburg - Principal www.brownandcaldwell.com

GOALS

Technical Update update goals:

- A <u>consistent statewide framework</u> for examining future water supply and demand scenarios.
- Tools and data for roundtables to update their basin plans (e.g. identify local solutions).
- Meet other Water Plan timing goals and actions (e.g. Chapter 6 Actions)
 - Monitor Drivers
 - Promote the use of scenario planning and adaptive strategies
 - Support the Colorado Decision Support System

STAKEHOLDER-DRIVEN METHODOLOGIES

2050 Demand Projections

- IPPs

= 2050 M&I Gap

- Hydrologic Modeling
- Municipal Modeling
- Agricultural Modeling
- Environmental Modeling
- Scenario Planning Across Major Drivers

AGRICULTURAL **METHODOLOGY**

Presentation by Kara Sobieski - Principal www.wilsonwatergroup.com

FACT SHEET **Agricultural Diversion** emand Methodology This fact sheet summarizes the methodologies used to estima diversion demands in the SWSI Update

Previous Methodology

Water demands and shortages for irrigated crops at the field level were estimated in 5W5I 2010. Irrigation water requirement, water supply limited consumptive use, and crop water shortages were estimated and aggregated at a basin level.

Updated Methodology:

In the SWSI Update, crop water demands will again be estimated. In addition, the river diversions or pumping necessary to meet crop water demands will also be estimated. Total agricultural water demands will account for consumptive needs at the field level plus the conveyance losses or pumping inefficiencies. As a result, agricultural demands (and gaps) will be higher than in SWSI 2010.

(T)

ANS AT LEE

00

Why did we make this change?

- Allows the use of planning models to analyze planning scenarios from Colorado's Water Plan Provides information and tools for basin roundtables to use in analyzing "what if" scenarios and for evaluating the
- · Provides consistency with estimates of municipal and industrial demands

Calculation Process for Current Agricultural Water Demands

Webinar Agenda

- What is an Agricultural Diversion Demand?
- Current Results
- How is this different than SWSI 2010?
- Planning Scenario Adjustments
- Planning Scenario Results
- What is an Agricultural "Gap"?
- How is the Agricultural Gap estimated?

What is an Agricultural Diversion Demand?

Agricultural Demand

• The amount of water supply that needs to be diverted or pumped to meet the full crop irrigation water requirement

Where does the data come from?

How is this different from SWSI 2010?

Previous Methodology

• Agricultural demands were estimated at the field (not at the headgate or well)

Why the change?

- Reflects true amount of water needed to meet agricultural demands
- Planning Models and "What-if" scenarios
- Consistency with M&SSI

CURRENT AGRICULTURAL DIVERSION DEMAND RESULTS

Currently:

- Nearly 13 million af of diversions + pumping
- Is needed to meet 6.2 million AF of IWR
- On 3.3 million acres of irrigated land

PLANNING SCENARIO ADJUSTMENTS

Urbanization Planned Agricultural Projects Ground Water Acreage Sustainability

Climate

Emerging Technologies

What is Urbanization?

As municipalities are expected to grow in the 2050 Planning Scenarios, anticipate that some municipal growth will occur onto currently irrigated agricultural lands (within or directly adjacent to current municipal boundaries)

Urbanization

- Only irrigated acreage within or directly adjacent to current municipal boundaries
- Captures urbanization of irrigated acreage only
- No assumptions on direction/magnitude of municipal growth
- Additional dry-up: 42,500 63,700 acres in the South Platte River Basin & 12,600 acres in Arkansas River Basin
- Approx. 230,000 acres that could come out of production statewide by 2050

Basin	Maximum Urbanized Acreage		
Arkansas	7,240		
Colorado	13,590		
Gunnison	14,600		
North Platte	40		
Republican	1,410		
Rio Grande	4,010		
South Platte/Metro	105,900		
Southwest	3,800		
White	360		
Yampa	1,500		
Total	152,450		

Planned Agricultural Projects

Planned agricultural development was identified by Basin Roundtables during Basin Implementation Planning efforts

- Yampa River Basin = 14,800 acres
- North Platte River Basin = 10,500 acres
- Increased acreage by 2050

Ground Water Acreage Sustainability

Irrigated acreage currently served by ground water supplies may not be sustainable by 2050, primarily due to falling aquifer levels and availability of augmentation supplies

Climate

In keeping with direction from the IBCC, certain Planning Scenarios show that climate will change by 2050 and impact agricultural demands.

Basin	"In-Between" Average IWR Increase	"Hot & Dry" Average IWR Increase
Arkansas	18%	26%
Colorado	20%	31%
Gunnison	22%	30%
North Platte	25%	39%
Republican	4%	11%
Rio Grande	15%	18%
South Platte/Metro	15%	24%
Southwest	26%	34%
White	22%	37%
Yampa	19%	34%

Business as Usual	Weak Economy	Cooperative Growth	Adaptive Innovation	Hot Growth
Current	Current	In-Between	Hot and Dry	Hot and Dry

CLIMATE EXAMPLE

Emerging Technologies

Based on Planning Scenario narratives, capture the potential effect of emerging technologies on agricultural demands in the 2050 Planning Scenarios.

- 1. Sprinkler Development Increase the amount of acreage served by sprinklers in the South Platte and Arkansas River basins.
- 2. Adaptive Innovation Planning Scenario Reduce crop irrigation water requirement and improve system efficiencies.

Improved System Efficiency by 10%; based on TAG input.

Planning Scenario Agricultural Diversion Demand Process

SCENARIO AGRICULTURAL DIVERSION DEMAND RESULTS

By 2050:

- Nearly 10.4 to 13.6 million AF of diversions + pumping
- Will be needed to meet 5.5 to 6.2 million AF of irrigation water requirement
- On 2.8 to 2.9 million acres of irrigated land

What is an Agricultural Gap?

Agricultural Gap

• The amount of additional water supply that would need to be diverted or pumped to meet any crop shortages

Agricultural Gap Results

- Existing Gap under Current conditions
- Incremental increase in Gap between Current and Planning Scenarios
- Existing and incremental crop shortages

How is the Agricultural Gap estimated?

- Allocates water based on physically and legally available flow (Prior Appropriation)
- Use current demands as maximum and adjust for Planning Scenario hydrology to estimate gaps where models are not available

