

StateDMI

Colorado Department of Natural Resources
Colorado Water Conservation Board

Division of Water Resources

Developed by:

 Riverside Technology, inc.

Version 03.11.00, 2010-08-11

 1

This page is intentionally blank.

This document is formatted for double-sided printing.

Cover graphic is Main_cover.

 2

Table of Contents

01_Cover.pdf

Blank Page

DISCLAIMER for CDSS Products

1 Acknowledgements

2 Introduction

2.1 How to Use this Documentation

2.2 CDSS Modeling Overview

2.3 Data Set Folder and File Conventions

2.4 Standard Procedures for Creating StateCU and StateMod Data Sets

2.5 Variations in StateMod Data Sets

 2.6 Commands and Processing Sequence

3 Getting Started

3.1 Starting StateDMI

 3.2 Select HydroBase Dialog

 3.3 Main Interface

 3.4 File Menu - Main Input and Output Control

 3.5 Edit Menu – Editing Commands

1

28

29

31

33

34

35

36

40

40

43

45

45

46

47

55

58

3

Table of Contents

 3.6 View Menu – Enable/Disable Display Features

3.7 Commands Menu – Insert Commands for Processing Data Components

 3.8 Run Menu – Running Commands

 3.9 Results Menu – View Data Set and Command Results

3.10 Tools Menu

 3.11 Help Menu

4 Creating StateCU Data Set Files

4.1 Control Data

 4.2 Climate Station Data

 4.3 Crop Characteristics/Coefficients Data

4.4 Delay Tables Data

 4.5 CU Location Data

5 Creating StateMod Data Set Files

5.1 Control Data

5.2 Stream Gage Data

5.3 Delay Table Data

5.4 Diversion Data

60

79

83

84

84

87

89

89

90

95

99

100

125

126

127

130

133

4

Table of Contents

5.5 Precipitation Data

5.6 Evaporation Data

5.7 Reservoir Data

5.8 Instream Flow Data

 5.9 Well Data

5.10 Stream Estimate Data

5.11 River Network Data

5.12 Operational Data

5.13 San Juan Sediment Recovery Plan Data

5.14 Spatial Data

6 Troubleshooting

7 Quality Control

7.1 Quality Control for StateDMI Software

7.2 Using StateDMI and TSTool to Quality Control Data and Processes

Command Glossary

Command Reference: #

Command Reference: */

161

161

162

174

182

198

205

210

210

211

213

215

215

225

227

245

247

5

Table of Contents

Command Reference: /*

Command Reference: AggregateWellRights ()

Command Reference: CalculateDiversionDemandTSMonthly()

Command Reference: CalculateDiversionDemandTSMonthlyAsMax()

Command Reference: CalculateDiversionStationEfficiencies()

Command Reference: CalculateStreamEstimateCoefficients()

Command Reference: CalculateWellDemandTSMonthly()

Command Reference: CalculateWellDemandTSMonthlyAsMax()

Command Reference: CalculateWellStationEfficiencies()

Command Reference: CheckBlaneyCriddle()

Command Reference: CheckClimateStations()

Command Reference: CheckCropCharacteristics()

Command Reference: CheckCropPatternTS()

Command Reference: CheckCULocations()

Command Reference: CheckDiversionDemandTSMonthly()

Command Reference: CheckDiversionHistoricalTSMonthly()

Command Reference: CheckDiversionRights()

249

251

257

261

263

265

267

269

271

273

275

277

279

281

283

285

287

6

Table of Contents

Command Reference: CheckDiversionStations()

Command Reference: CheckInstreamFlowDemandTSAverageMonthly()

Command Reference: CheckInstreamFlowRights()

Command Reference: CheckInstreamFlowStations()

Command Reference: CheckIrrigationPracticeTS()

Command Reference: CheckPenmanMonteith()

Command Reference: CheckReservoirRights()

Command Reference: CheckReservoirStations()

Command Reference: CheckRiverNetwork()

Command Reference: CheckStreamEstimateCoefficients()

Command Reference: CheckStreamEstimateStations()

Command Reference: CheckStreamGageStations()

Command Reference: CheckWellDemandTSMonthly()

Command Reference: CheckWellHistoricalPumpingTSMonthly()

Command Reference: CheckWellRights()

Command Reference: CheckWellStations()

Command Reference: CompareFiles()

289

291

293

295

297

299

301

303

305

307

309

311

313

315

317

319

321

7

Table of Contents

Command Reference: CreateCropPatternTSForCULocations()

Command Reference: CreateIrrigationPracticeTSForCULocations()

Command Reference: CreateNetworkFromRiverNetwork()

Command Reference: CreateRegressionTestCommandFile()

Command Reference: CreateRiverNetworkFromNetwork()

Command Reference: Exit()

Command Reference: FillClimateStation()

Command Reference: FillClimateStationsFromHydroBase()

Command Reference: FillCropPatternTSConstant()

Command Reference: FillCropPatternTSInterpolate()

Command Reference: FillCropPatternTSRepeat()

Command Reference: FillCropPatternUsingWellRights()

Command Reference: FillCULocation()

Command Reference: FillCULocationClimateStationWeights ()

Command Reference: FillCULocationsFromHydroBase()

Command Reference: FillCULocationsFromList()

Command Reference: FillDiversionDemandTSMonthlyAverage()

323

325

327

329

333

335

337

339

341

343

345

347

351

353

355

357

359

8

Table of Contents

Command Reference: FillDiversionDemandTSMonthlyConstant()

Command Reference: FillDiversionDemandTSMonthlyPattern()

Command Reference: FillDiversionHistoricalTSMonthlyAverage()

Command Reference: FillDiversionHistoricalTSMonthlyConstant()

Command Reference: FillDiversionHistoricalTSMonthlyPattern()

Command Reference: FillDiversionRight()

Command Reference: FillDiversionStation()

Command Reference: FillDiversionStationsFromHydroBase()

Command Reference: FillDiversionStationsFromNetwork()

Command Reference: FillInstreamFlowRight()

Command Reference: FillInstreamFlowStation()

Command Reference: FillInstreamFlowStationsFromHydroBase()

Command Reference: FillInstreamFlowStationsFromNetwork()

Command Reference: FillIrrigationPracticeTSAcreageUsingWellRights()

Command Reference: FillIrrigationPracticeTSInterpolate()

Command Reference: FillIrrigationPracticeTSRepeat()

Command Reference: FillNetworkFromHydroBase()

361

363

365

369

371

373

375

379

381

383

385

387

389

391

397

403

405

9

Table of Contents

Command Reference: FillReservoirRight()

Command Reference: FillReservoirStation()

Command Reference: FillReservoirStationsFromNetwork()

Command Reference: FillReservoirStationsFromHydroBase()

Command Reference: FillRiverNetworkFromHydroBase()

Command Reference: FillRiverNetworkFromNetwork()

Command Reference: FillRiverNetworkNode()

Command Reference: FillStreamEstimateStation()

Command Reference: FillStreamEstimateStationsFromHydroBase()

Command Reference: FillStreamEstimateStationsFromNetwork()

Command Reference: FillStreamGageStation()

Command Reference: FillStreamGageStationsFromHydroBase()

Command Reference: FillStreamGageStationsFromNetwork()

Command Reference: FillWellDemandTSMonthlyAverage()

Command Reference: FillWellDemandTSMonthlyConstant()

Command Reference: FillWellDemandTSMonthlyPattern()

Command Reference: FillWellHistoricalPumpingTSMonthlyAverage()

407

409

413

415

417

419

421

423

425

427

429

431

433

435

437

439

441

10

Table of Contents

Command Reference: FillWellHistoricalPumpingTSMonthlyConstant()

Command Reference: FillWellHistoricalPumpingTSMonthlyPattern()

Command Reference: FillWellRight()

Command Reference: FillWellStation()

Command Reference: FillWellStationsFromDiversionStations ()

Command Reference: FillWellStationsFromNetwork()

Command Reference: LimitDiversionDemandTSMonthlyToRights()

Command Reference: LimitDiversionHistoricalTSMonthlyToRights()

Command Reference: LimitWellDemandTSMonthlyToRights()

Command Reference: LimitWellHistoricalPumpingTSMonthlyToRights()

Command Reference: MergeListFileColumns()

Command Reference: MergeWellRights ()

Command Reference: OpenHydroBase()

Command Reference: PrintNetwork()

Command Reference: ReadBlaneyCriddleFromHydroBase()

Command Reference: ReadBlaneyCriddleFromStateCU()

Command Reference: ReadClimateStationsFromList()

443

445

447

449

453

455

457

461

465

469

473

475

481

483

485

487

489

11

Table of Contents

Command Reference: ReadClimateStationsFromStateCU()

Command Reference: ReadCropCharacteristicsFromHydroBase()

Command Reference: ReadCropCharacteristicsFromStateCU()

Command Reference: ReadCropPatternTSFromHydroBase()

Command Reference: ReadCropPatternTSFromStateCU()

Command Reference: ReadCULocationsFromList()

Command Reference: ReadCULocationsFromStateCU()

Command Reference: ReadCULocationsFromStateMod()

Command Reference: ReadDelayTablesMonthlyFromStateMod()

Command Reference: ReadDiversionDemandTSMonthlyFromStateMod()

Command Reference: ReadDiversionHistoricalTSMonthlyFromHydro Base()

Diversion Comment “Not Used” Flag

Structure “Currently in Use” Flag

Command Reference: ReadDiversionHistoricalTSMonthlyFromStateMod()

Command Reference: ReadDiversionRightsFromHydroBase()

Command Reference: ReadDiversionRightsFromStateMod()

Command Reference: ReadDiversionStationsFromList()

491

493

495

497

499

501

503

505

507

509

511

511

512

519

521

523

525

12

Table of Contents

Command Reference: ReadDiversionStationsFromNetwork()

Command Reference: ReadDiversionStationsFromStateMod()

Command Reference: ReadInstreamFlowDemandTSAverageMonthlyFromStateMod()

Command Reference: ReadInstreamFlowRightsFromHydroBase()

Command Reference: ReadInstreamFlowRightsFromStateMod()

Command Reference: ReadInstreamFlowStationsFromList()

Command Reference: ReadInstreamFlowStationsFromNetwork()

Command Reference: ReadInstreamFlowStationsFromStateMod()

Command Reference: ReadIrrigationPracticeTSFromHydroBase()

Command Reference: ReadIrrigationPracticeTSFromList()

Command Reference: ReadIrrigationPracticeTSFromStateCU()

Command Reference: ReadIrrigationWaterRequirementTSMonthlyFromStateCU()

Command Reference: ReadNetworkFromStateMod()

Command Reference: ReadPatternFile()

Command Reference: ReadPenmanMonteithFromHydroBase()

Command Reference: ReadPenmanMonteithFromStateCU()

Command Reference: ReadReservoirRightsFromHydroBase()

527

529

531

533

535

537

539

541

543

549

551

553

555

557

559

561

563

13

Table of Contents

Command Reference: ReadReservoirRightsFromStateMod()

Command Reference: ReadReservoirStationsFromList()

Command Reference: ReadReservoirStationsFromNetwork()

Command Reference: ReadReservoirStationsFromStateMod()

Command Reference: ReadRiverNetworkFromStateMod()

Command Reference: ReadStreamEstimateCoefficientsFromStateMod()

Command Reference: ReadStreamEstimateStationsFromList()

Command Reference: ReadStreamEstimateStationsFromNetwork()

Command Reference: ReadStreamEstimateStationsFromStateMod()

Command Reference: ReadStreamGageStationsFromList()

Command Reference: ReadStreamGageStationsFromNetwork()

Command Reference: ReadStreamGageStationsFromStateMod()

Command Reference: ReadWellDemandTSMonthlyFromStateMod()

Command Reference: ReadWellHistoricalPumpingTSMonthlyFromStateCU()

Command Reference: ReadWellHistoricalPumpingTSMonthlyFromStateMod()

Command Reference: ReadWellRightsFromHydroBase()

Command Reference: ReadWellRightsFromStateMod()

565

567

569

571

573

575

577

579

581

583

585

587

589

591

593

595

603

14

Table of Contents

Command Reference: ReadWellStationsFromList()

Command Reference: ReadWellStationsFromNetwork()

Command Reference: ReadWellStationsFromStateMod()

Command Reference: RemoveCropPatternTS()

Command Reference: RunCommands()

Command Reference: RunProgram()

Command Reference: RunPython()

Command Reference: SetBlaneyCriddle()

Command Reference: SetClimateStation()

Command Reference: SetCropCharacteristics()

Command Reference: SetCropPatternTS()

Command Reference: SetCropPatternTSFromList()

Command Reference: SetCULocation()

Command Reference: SetCULocationClimateStationWeights ()

Command Reference: setCULocationClimateStationWeightsFromHydroBase()

Command Reference: SetCULocationClimateStationWeightsFromList()

Command Reference: SetCULocationsFromList()

605

607

609

611

613

617

621

625

627

629

631

635

639

641

643

645

647

15

Table of Contents

Command Reference: SetDebugLevel()

Command Reference: SetDiversionAggregate ()

Command Reference: SetDiversionAggregateFromList()

Command Reference: SetDiversionDemandTSMonthly()

Command Reference: SetDiversionDemandTSMonthlyConstant()

Command Reference: SetDiversionHistoricalTSMonthly()

Command Reference: SetDiversionHistoricalTSMonthlyConstant()

Command Reference: SetDiversionMultiStruct()

Command Reference: SetDiversionMultiStructFromList()

Command Reference: SetDiversionRight()

Command Reference: SetDiversionStation()

Command Reference: SetDiversionStationCapacitiesFromTS()

Command Reference: SetDiversionStationDelayTablesFromNetwork()

Command Reference: SetDiversionStationDelayTablesFromRTN()

Command Reference: SetDiversionStationsFromList()

Command Reference: SetDiversionSystem()

Command Reference: SetDiversionSystemFromList()

649

651

653

657

659

661

663

665

667

669

671

675

677

679

681

685

687

16

Table of Contents

Command Reference: SetInstreamFlowDemandTSAverageMonthlyConstant()

Command Reference: SetInstreamFlowDemandTSAverageMonthlyFromRights()

Command Reference: SetInstreamFlowRight()

Command Reference: SetInstreamFlowStation()

Command Reference: SetIrrigationPracticeTS()

Command Reference: setIrrigationPracticeTSFromHydroBase()

Command Reference: SetIrrigationPracticeTSFromList()

Command Reference: setIrrigationPracticeTSMaxPumpingToRights()

Command Reference: SetIrrigationPracticeTSPumpingMaxUsingWell Rights()

Command Reference: SetIrrigationPracticeTSSprinklerAcreageFrom List()

Command Reference: SetIrrigationPracticeTSTotalAcreageToCropPatternTSTotalAcreage()

Command Reference: SetOutputPeriod()

Command Reference: SetOutputYearType()

Command Reference: SetPenmanMonteith()

Command Reference: SetReservoirAggregate ()

Command Reference: SetReservoirAggregateFromList()

Command Reference: SetReservoirRight()

691

693

695

697

699

703

711

717

721

727

731

735

737

739

741

743

745

17

Table of Contents

Command Reference: SetReservoirStation()

Command Reference: SetRiverNetworkNode()

Command Reference: SetStreamEstimateCoefficients()

Command Reference: SetStreamEstimateCoefficientsPFGage()

Command Reference: SetStreamEstimateStation()

Command Reference: SetStreamGageStation()

Command Reference: SetWarningLevel()

Command Reference: SetWellAggregate ()

Command Reference: SetWellAggregateFromList()

Command Reference: SetWellDemandTSMonthly()

Command Reference: SetWellDemandTSMonthlyConstant()

Command Reference: SetWellHistoricalPumpingTSMonthly()

Command Reference: SetWellHistoricalPumpingTSMonthlyConstant()

Command Reference: SetWellRight()

Command Reference: SetWellStation()

Command Reference: SetWellStationAreaToCropPatternTS ()

Command Reference: SetWellStationCapacitiesFromTS()

747

751

753

755

757

759

761

763

767

771

773

775

777

779

781

785

787

18

Table of Contents

Command Reference: SetWellStationCapacityToWellRights ()

Command Reference: SetWellStationDelayTablesFromNetwork()

Command Reference: SetWellStationDelayTablesFromRTN()

Command Reference: SetWellStationDepletionTablesFromRTN()

Command Reference: SetWellStationsFromList()

Command Reference: SetWellSystem()

Command Reference: SetWellSystemFromList()

Command Reference: SetWorkingDir()

Command Reference: SortBlaneyCriddle()

Command Reference: SortClimateStations()

Command Reference: SortCropCharacteristics()

Command Reference: SortCropPatternTS()

Command Reference: SortCULocations()

Command Reference: SortDiversionDemandTSMonthly()

Command Reference: SortDiversionHistoricalTSMonthly()

Command Reference: SortDiversionRights()

Command Reference: SortDiversionStations()

789

791

793

795

797

801

805

809

811

813

815

817

819

821

823

825

827

19

Table of Contents

Command Reference: SortInstreamFlowRights()

Command Reference: SortInstreamFlowStations()

Command Reference: SortIrrigationPracticeTS()

Command Reference: SortPenmanMonteith()

Command Reference: SortReservoirRights()

Command Reference: SortReservoirStations()

Command Reference: SortStreamEstimateStations()

Command Reference: SortStreamGageStations()

Command Reference: SortWellDemandTSMonthly()

Command Reference: SortWellHistoricalPumpingTSMonthly()

Command Reference: SortWellRights()

Command Reference: SortWellStations()

Command Reference: StartLog()

Command Reference: StartRegressionTestResultsReport()

Command Reference: TranslateBlaneyCriddle()

Command Reference: TranslateCropCharacteristics()

Command Reference: TranslateCropPatternTS()

829

831

833

835

837

839

841

843

845

847

849

851

853

855

857

859

861

20

Table of Contents

Command Reference: TranslatePenmanMonteith()

Command Reference: WriteBlaneyCriddleToList()

Command Reference: WriteBlaneyCriddleToStateCU()

Command Reference: WriteCheckFile()

Command Reference: WriteClimateStationsToList()

Command Reference: WriteClimateStationsToStateCU()

Command Reference: WriteCropCharacteristicsToList()

Command Reference: WriteCropCharacteristicsToStateCU()

Command Reference: WriteCropPatternTSToDateValue()

Command Reference: WriteCropPatternTSToStateCU()

Command Reference: WriteCULocationsToList()

Command Reference: WriteCULocationsToStateCU()

Command Reference: WriteDelayTablesDailyToList()

Command Reference: WriteDelayTablesDailyToStateMod()

Command Reference: WriteDelayTablesMonthlyToList()

Command Reference: WriteDelayTablesMonthlyToStateMod()

Command Reference: WriteDiversionDemandTSMonthlyToStateMod()

863

865

867

869

871

873

875

877

879

881

883

885

887

889

891

893

895

21

Table of Contents

Command Reference: WriteDiversionHistoricalTSMonthlyToStateMod()

Command Reference: WriteDiversionRightsToList()

Command Reference: WriteDiversionRightsToStateMod()

Command Reference: WriteDiversionStationsToList()

Command Reference: WriteDiversionStationsToStateMod()

Command Reference: WriteInstreamFlowDemandTSAverageMonthlyToStateMod()

Command Reference: WriteInstreamFlowRightsToList()

Command Reference: WriteInstreamFlowRightsToStateMod()

Command Reference: WriteInstreamFlowStationsToList()

Command Reference: WriteInstreamFlowStationsToStateMod()

Command Reference: WriteIrrigationPracticeTSToDateValue()

Command Reference: WriteIrrigationPracticeTSToStateCU()

Command Reference: WriteNetworkToStateMod()

Command Reference: WritePenmanMonteithToList()

Command Reference: WritePenmanMonteithToStateCU()

Command Reference: WriteReservoirRightsToList()

Command Reference: WriteReservoirRightsToStateMod()

897

899

901

903

905

907

909

911

913

915

917

919

921

923

925

927

929

22

Table of Contents

Command Reference: WriteReservoirStationsToList()

Command Reference: WriteReservoirStationsToStateMod()

Command Reference: WriteRiverNetworkToList()

Command Reference: WriteRiverNetworkToStateMod()

Command Reference: WriteStreamEstimateCoefficientsToList()

Command Reference: WriteStreamEstimateCoefficientsToStateMod()

Command Reference: WriteStreamEstimateStationsToList()

Command Reference: WriteStreamEstimateStationsToStateMod()

Command Reference: WriteStreamGageStationsToList()

Command Reference: WriteStreamGageStationsToStateMod()

Command Reference: WriteWellDemandTSMonthlyToStateMod()

Command Reference: WriteWellHistoricalPumpingTSMonthlyToStateMod()

Command Reference: WriteWellRightsToList()

Command Reference: WriteWellRightsToStateMod()

Command Reference: WriteWellStationsToList()

Command Reference: WriteWellStationsToStateMod()

Appendix: StateDMI Installation and Configuration

931

933

935

937

939

941

943

945

947

949

951

953

955

957

959

961

963

23

Table of Contents

1. Overview

2. Installing StateDMI as Part of CDSS

3. Installing StateDMI

4. Uninstalling StateDMI Software

Appendix: StateDMI Release Notes

StateDMI Version History

Known Limitations

Changes in Versions 3.11.00 – 3.11.01

Changes in Version 3.10.00

Changes in Versions 3.09.00 – 03.09.02

Changes in Versions 3.04.00 – 3.08.02

Changes in Versions 3.00.00 to 3.03.00

Changes in Version 2.18.00

Changes in Version 2.17.00

Changes in Version 2.16.00

Changes in Version 2.14.00

Changes in Version 2.02.00 – 2.13.00

963

963

964

973

975

975

978

978

978

978

980

981

983

983

983

984

984

24

Table of Contents

Changes in Version 2.01.00

Changes in Version 2.00.00

Changes in Version 1.22.00

Changes in Version 1.21.00

Changes in Version 1.20.05

Changes in Version 1.20.04

Changes in Version 1.20.03

Changes in Version 1.20.02

Changes in Version 1.20.01

Changes in Version 1.20.00

Changes in Version 1.18.10

Changes in Version 1.18.09

Changes in Version 1.18.08

Changes in Version 1.18.07

Changes in Version 1.18.06

Changes in Version 1.18.05

Changes in Version 1.18.04

984

985

985

985

985

985

985

985

985

986

986

986

986

986

986

986

986

25

Table of Contents

Changes in Version 1.18.03

Changes in Version 1.18.02

Changes in Version 1.18.01

Changes in Version 1.18.00

Changes in Version 1.17.21

Changes in Version 1.17.20

Changes in Version 1.17.19

Changes in Version 1.17.18

Changes in Version 1.17.17

Changes in Version 1.17.16

Changes in Version 1.17.15

Changes in Version 1.17.14

Changes in Version 1.17.13

Changes in Version 1.17.12

Changes in Version 1.17.11

Changes in Version 1.17.10

Changes in Version 1.17.09

987

987

987

987

987

987

987

988

988

988

988

988

989

989

989

990

990

26

Table of Contents

Changes in Version 1.17.08

Changes in Version 1.17.07

Changes in Version 1.17.06

Changes in Version 1.17.05

Changes in Version 1.17.04

Changes in Version 1.17.03

Changes in Version 1.17.02

Changes in Version 1.17.01

Changes in Version 1.17.00

Changes in Version 1.16.03

Changes in Version 1.16.02

Changes in Version 1.16.01

Changes in Version 1.16.00

Changes in Version 1.15.02

Changes in Version 1.15.01

Changes in Version 1.15.00

99_Spine.pdf

990

990

991

991

991

991

992

992

992

992

992

993

993

993

993

993

995

27

Blank Page

This page is intentionally blank.

 28

DISCLAIMER for CDSS Products
2002-02-16, Acrobat Distiller

CDSS products include data and software from State of Colorado sources and from external sources like
the U. S. Geological Survey (USGS). The following disclaimer applies to CDSS products:

CDSS products and associated access are under development at this time. Access is provided solely
to test and demonstrate CDSS capabilities. In the future, this access may be restricted or offered
for a fee. The State assumes no legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed herein. It is the user's
responsibility to determine the fitness of the data for a particular purpose.

 Disclaimer - 1 29

 StateDMI Documentation

This page is intentionally blank

.

Disclaimer - 2 30

1 Acknowledgements
Version 3.09.01, 2010-02-0

StateDMI has been developed by Riverside Technology, inc. (Riverside) with funding from the State of
Colorado, Water Conservation Board as part of Colorado’s Decision Support Systems (CDSS). StateDMI
continues to be developed as part of the SPDSS (South Platte Decision Support System) and other
projects.

Support for StateDMI can be contacted by emailing cdss@state.co.us.

 Acknowledgements - 1 31

mailto:cdss@state.co.us

 StateDMI Documentation

This page is intentionally blank.

Acknowledgements - 2 32

2 Introduction
Version 03.10.00, 2010-05-11

StateDMI is a tool that can be used to process and format data for CDSS models, including the StateCU
(consumptive use) and StateMod (surface water) models. The “DMI” corresponds to “Data Management
Interface,” which is a general term for a tool that translates data from one form to another. TSTool is a
DMI utility for processing time series. StateDGI and StatePP are other CDSS DMI utilities, which
process GIS data and generate input for the MODFLOW groundwater model. StateDMI’s input data are
read from the State of Colorado’s HydroBase database, spatial data files (e.g., ESRI shapefiles), text files,
and existing StateMod and StateCU data files. Output is written to StateCU, StateMod, and text formats.
StateDMI can be considered the middle application in the modeling process:

1. StateView and the CDSS web site are general HydroBase data-viewing tools, for initial data
evaluation.

2. StateDMI processes model data from HydroBase and other sources into model files (see also
TSTool, which performs a similar function for time series data).

3. The StateCU and StateMod models and graphical user interfaces are the final end-user
applications for modeling.

StateDMI uses a workflow command language (similar to TSTool) to describe how data should be
processed. The command language approach has a number of benefits:

1. It allows control of whether a data processing step occurs (or not).
2. It allows control of the order of data processing steps.
3. It allows complicated data processing sequences to be broken into manageable steps, which

allows evaluation of different combinations and facilitates troubleshooting.
4. It allows data processing procedures to be saved and rerun at a later time. Consequently,

complicated data processing steps can be remembered.
5. It allows data processing to be automated. For example, rather than interactively executing the

same steps each time data need to be processed, an effort can be made once to determine data
processing steps and record the steps in command files. The same steps can then be rerun later
with little effort.

6. It allows comments to be inserted in the data processing procedures. For example, data that are
read from HydroBase can be edited using commands and comments can be inserted with the
commands to explain the reason for the edits. Consequently, data processes are self-
documenting.

7. It allows commands to be updated and reused for other situations. For example, a sequence of
commands that is appropriate for one geographic region may also be appropriate for another
region. An existing command file can be read, modified slightly, and rerun for the new situation.

8. It facilitates extending software features. For example, a new model file format or database can
be implemented by adding new commands within the existing framework.

9. It allows tests for command workflows to be automated, simplifying software and process testing.

In spite of these benefits, command workflows can be somewhat intimidating. To address this issue, the
StateDMI interface provides a framework that provides interactive editors for commands and performs
checks on input and results. Documentation is also available for all commands.

 Introduction - 1 33

 StateDMI Documentation

The following chapters are available in this documentation:

Chapter 1 – Acknowledgements – recognizes contributors to the development and maintenance of the
StateDMI software.

Chapter 2 - Introduction (this chapter) provides background information about StateDMI and the CDSS
modeling framework and procedures.

Chapter 3 – Getting Started provides an overview of the StateDMI interface features.

Chapter 4 – Creating StateCU Data Set Files provides guidelines and examples of how StateDMI can
be used to create StateCU data set files.

Chapter 5 – Creating StateMod Data Set Files provides guidelines and examples of how StateDMI can
be used to create StateMod data set files.

Chapter 6 – Troubleshooting provides troubleshooting information.

Chapter 7 – Quality Control provides information about how StateDMI software and modeling
processes can be quality controlled.

The Command Reference provides a complete command reference with commands listed in alphabetical
order. Chapter 4 and Chapter 5 summarize the use of commands for each product. The Command
Reference is by far the longest part of the documentation. The Command Glossary at the start of the
Command Reference provides a list of parameters that are used in commands, which promotes
standardization of parameters.

The Installation and Configuration Appendix provides information about installing and configuring
StateDMI.

The Release Notes Appendix summarizes important software changes for each StateDMI version.

See also the doc\Training folder under the software installation, which includes slideshows and example
files for self-paced training.

2.1 How to Use this Documentation

The documentation is organized into chapters that provide overview material, with extensive reference
material at the end of the documentation. It is recommended that the documentation be used as follows:

1. New users should review the Introduction and Getting Started chapters to understand in general
how StateDMI operates.

2. When processing StateCU or StateMod files, review the introductory pages of the corresponding
chapters (Chapter 4 for StateCU and Chapter 5 for StateMod) to gain an appreciation of the data
files that will need to be processed.

3. To produce files for a specific data component (e.g., diversion stations), refer to the section in the
model chapter corresponding to the data component. Review the example(s) that are provided
and utilize similar steps when creating new commands files. The documentation provides
examples taken from actual data sets and, although not universally applicable, provides a good
starting point for new work. Refer to command files and documentation available with
downloadable data sets for the most current examples of production work.

2- Introduction 34

StateDMI Documentation

4. To fully understand how to use a command, whether in a new command file or an existing
command file that is being updated, refer to the Command Reference section at the end of the
documentation.

2.2 CDSS Modeling Overview

For CDSS, a major focus has been to develop an integrated data-centered system that can create basin-
wide data sets for planning purposes. The end result is basin models with hundreds or thousands of
model nodes, with associated water rights, time series data, etc. StateDMI breaks up the data processing
into sessions that focus on specific model data components that have corresponding data files. A
command file controls the creation of each model file. Although the overall modeling process is
complicated, StateDMI is organized to help facilitate creating an entire data set and individual model
files. See also the TSTool documentation – TSTool is used to process time series data in CDSS.

The primary purpose of the StateCU model is to estimate irrigation water requirement, although it does
also estimate non-irrigation requirements. Several input files need to be prepared to run the StateCU
model. The number of files depends on the complexity of the analysis. The StateCU documentation
describes the StateCU model files in detail.

The StateMod model is used to simulate surface water use considering the Prior Appropriation Doctrine
(first in time, first in right). Its primary purpose is to evaluate the water demand and supply in order to
allocate water. Whereas StateCU data sets focus primarily on historical data, StateMod data sets can have
several variations in order model various water allocation conditions and issues. The StateMod
documentation describes the StateMod model files in detail.

For CDSS modeling, the StateCU and StateMod models have some interdependency. For example, to
estimate acreage, water rights data (consistent with StateMod) can be used to turn parcels off if water
rights did not exist. Similarly, StateMod depends on the demand data produced by StateCU. Typically,
full StateCU data sets are prepared before StateMod data sets; however, as shown in the example above,
there is a need to produce some StateMod files when creating a StateCU data set. StateDMI supports this
by providing StateMod commands for products needed by StateCU. Once data sets for both models have
been created for a basin, it becomes easier to share model files and update them over time.

StateMod data sets are typically created for historical conditions, calculated demands (using full supply
demands), and baseline (the current system) cases. If historical or simulated diversions are available, they
can be provided to StateCU to evaluate a water supply limited condition. See the next section for more
information on various data sets types.

Given that StateCU and StateMod have numerous input files and a variety of run options, it can be
difficult to understand and maintain data sets. StateDMI helps streamline data processing so that data
flow is clearer.

When modeling, some efficiency can be gained by selecting key stream gages (those with a significant
period of record) and determining for each structure type (diversion, reservoir, instream flows, and wells)
the key and non-key structures. Key structures are modeled explicitly within StateCU and StateMod
while non-key structures may be aggregated. The use of aggregation is discussed where appropriate in
this documentation and is addressed in the model data set documentation.

 Introduction - 3 35

 StateDMI Documentation

2.3 Data Set Folder and File Conventions

The conventions used for StateCU and StateMod data set directories and files have changed over time, in
particular as new modeling challenges have been faced (e.g., groundwater, augmentation plans). Older
conventions are not discussed because CDSS data sets have generally been updated to current standards.
If necessary, refer to the model data set documentation for older data sets.

CDSS model data sets are developed by the State and contractors and are provided on the CDSS web site.
The data sets typically only contain input files in zip files and are named with an abbreviation of the basin
and the year of release (e.g., cm2005 for the Colorado basin data set released in 2005). Note that the
ending year of the model data is often less than the year of the release. Output files may not be made
available due to the size of the files; consequently, users will need to rerun the models to produce output
and/or refer to the data set documentation. StateCU and StateMod data sets are typically provided
separately and StateCU data sets are typically released earlier than StateMod data sets.

Folders under the main data set folder are described in the following table (adapted from “Recommended
Data Structure”, Ray Bennett, September 19, 2005). These conventions may change – see model data set
documentation and files for conventions used with specific data sets. Folders are listed alphabetically in
the following table; however, the order of processing is indicated by StateDMI menus and is described in
model data set documentation and command files. Guidelines fir data sets are as follows:

• Top-level Data Set Folder. The top-level data set folder (e.g., cm2005) will include all data and
results for the model data sets. An exception is GIS files, which may be located in a shared
location like the \cdss\gis folder, allowing multiple data sets to share GIS files, which can be
large. However, if possible, it is recommended that GIS files are included with a data set to allow
for stand-alone data sets.

• Relative Paths. The “flat” organization of data set folders facilitates the use of relative paths.
Model response files and command files should utilize relative paths when referring to folders
(e.g., ..\Diversions\cm2005.dds). This facilitates transport of data sets from one
location/computer to another.

• Final Model Folder. The final model folder (e.g., StateMod for the StateMod model), will
contain:

1. input files produced by data processing,
2. miscellaneous files that do not require processing (e.g., response and control files)
3. output files from the model run

• Folder Variations. Folders in addition to those described in the following table may be used to
simplify maintenance and use. For example, Historic, Calculated, and Baseline folders may be
used under the StateMod folder to separate main model variations. Additional data folders for
processing may be included if they clarify data management and processing.

• Supporting Files. Miscellaneous support files should be stored in folders with related data. For
example, historical reservoir end of month time series files (in addition to data that will be
queried from HydroBase) should be stored in the Reservoirs folder. If necessary, use a sub-folder
to clarify data management.

• Log Files. The StartLog() command can be used as the first command in a command file to
record processing that is performed. The log file can facilitate troubleshooting and serve as a
useful artifact if a data set needs to be reviewed at a later date.

• Quality Control. The complexity of modeling and the decisions that are made based on the
results require that quality control measures are implemented. Data checks can be performed
using the Check*() commands. See also the Quality Control chapter of this documentation.

4- Introduction 36

StateDMI Documentation

Performing quality control activities throughout modeling will help to minimize uncertainty about
the validity of the model results.

• Comments. Hand-edited data files and command files should include comments of the top
indicating the source and date for data. Comments should be included throughout command files
to describe processing.

CDSS Data Set Folder Conventions

Folder

Primary
Application
(1)

Description

C:\CDSS\data\Basin Main folder where basin includes data set release date (e.g.,
cm2005).

 Consumptive Use Application
.\ClimateCU CU Climate stations; temperature, precipitation, and frost time

series associated with StateCU.
.\Crops CU Crop characteristics and coefficients; crop pattern and

irrigation practice time series.
.\DelayCU CU Delay tables and assignment for StateCU limited supply

analysis.
.\DocCU CU Documentation associated with a consumptive use

application.
.\LocationCU CU CU locations and support list files.
.\StateCU CU StateCU model files (all input and output for a

consumptive use application).
 Surface Water Application

.\ClimateSW SW Precipitation and evaporation time series associated with
StateMod.

.\DelaySW SW Delay tables (monthly and daily) associated with StateMod.

.\DocSW SW Documentation associated with the surface water
application.

.\Diversions CU, SW, GW Diversion stations and rights, historical and demand time
series (monthly and daily), surface water aggregate, system,
and multi-structure lists.

.\Instream SW Instream flow stations and rights, demand time series
(average monthly, monthly, and daily).

.\Network SW StateMod network, generalized XML network.

.\Reservoirs CU, SW Reservoir stations and rights, end of month content and
target time series.

.\StateMod SW StateMod model files (all input and output files for a
surface water application).

.\StreamSW SW Stream files associated with StateMod (stream stations,
historical time series, stream estimate coefficients, etc.).

.\Wells CU, SW Well stations and rights, historical pumping and demand
time series, aggregation and system lists.

 Groundwater Application
.\Agg GW Aggregate polygons for StatePP.
.\DocGW GW Documentation associated with a groundwater application.
.\Edge GW Boundary conditions.

 Introduction - 5 37

 StateDMI Documentation

Folder

Primary
Application
(1) Description

.\MIPumping GW M&I pumping.

.\ModFate GW Fate of surface water returns.

.\Modflow GW MODFLOW files (all input and output files for a ground
water application).

.\PptRecharge GW Precipitation recharge associated with MODFLOW.

.\Prop GW Aquifer properties (K, SS, Sy, L).

.\RimInflows GW Rim inflows.

.\StateDGI GW GIS processing.

.\StatePP GW MODFLOW preprocessor.

.\StreamGW GW Stream files associated with the MODFLOW stream
package.

.\StreamInflow GW Stream inflow to the groundwater model.

.\Survey GW Stream survey data.

.\URF GW Unit response development.
(1) Primary Application: CU = consumptive use, SW = surface water allocation, GW = groundwater

Both StateCU and StateMod data sets include some files that are typically not automatically created.
These files include the main response and control files and the StateMod operational right file. However,
most other files can be created in an automated fashion. The processing of data files typically occurs in a
sequential fashion. Although modelers may have different approaches, StateDMI menus and
documentation are generally organized according to data component/product dependency. For example,
if one file depends on concepts or data from another file, then the dependent file is listed after the
independent file in menus and procedures. In this way, the creation of a file avoids “forward referencing”
another file that has not yet been created. However, some circular dependencies do occur in data
preparation and are discussed with examples.

Although StateDMI’s interface is organized based on a logical creation order of the StateCU and
StateMod files, it does not strictly impose rules on the order of creating files. StateDMI does encourage
the use of standard StateCU and StateMod file extensions, as described in each model’s documentation.
It does so by displaying the standard extensions in file choosers, although in most cases the user can
override with any file extension.

The above information describes the general folder structure for a data set. The guidelines for naming the
main data set folders are described below. Standard names for basin data set directories have been
adopted to promote consistency and simplify data review. This naming convention reflects the following
aspects of a data set:

• basin name, typically as an abbreviation (e.g., “rg” for Rio Grande)
• scope or scenario for the data modeled (e.g., whether a fraction or 100% of the consumptive use

is modeled)
• year that the data set was created (may not agree with the last year included in the model)

6- Introduction 38

StateDMI Documentation

The naming convention has changed over time and therefore legacy data set names do not agree with
current conventions. For example, early data sets modeled approximately 75% of the consumptive
demand. The next iteration of data modeled 100% of the consumptive demand, using aggregate stations
where necessary, and these data sets were designated with a “T”. Current conventions are to include all
effects by default and not use any special indicator like “T”. Therefore, the current naming convention
focuses on the year that the data set was prepared and it is assumed that the data set takes advantage of all
modeling capabilities. Short names are used because of an 8.3 character file name length limitation in
StateMod, although this limitation may be removed in the future.

The following table lists examples of standard data set names, based on currently available data sets:

Standard Names for Baseline Data Sets

Basin Data Set Name (1)
Arkansas No data sets have been produced (ar?)
Upper Colorado Main Stem cm
Gunnison gm
Rio Grande rg
San Juan/San Miguel/Dolores sj
South Platte sp
White wm
Yampa ym

The data set name recommendations have evolved over time and should be evaluated for each data set.
For example, to facilitate future updates (e.g., extending data sets by additional years of data), it may be
useful to NOT include the year in individual file names, using the year only for the main directory.
However, this practice may lead to confusion when comparing data files from different versions of data
sets because the year will not be included in the name. Conventions for each CDSS modeling effort
should be evaluated and discussed with State of Colorado project managers.

 Introduction - 7 39

 StateDMI Documentation

To generate a calibrated StateMod model includes developing three inter-related data sets (see Section
2.5 below for more information):

1. historical (also referred to as historic)
2. calculated
3. baseline

Example StateMod File Base Names

Model Run (StateMod
Response File)

Key Properties of Data Set

cm2005H.rsp Historical data set with 100% consumptive use included.
Demands are generally the historical diversions.
Reservoir targets are generally the historical end of month contents.
Because historical files are often shared with other data set variants,
the H may be omitted.

cm2005C.rsp Calculated data set with 100% consumptive use included.
Demands are calculated to equal the estimated headgate requirement
(e.g., maximum of StateCU irrigation water requirement divided by
average monthly efficiency AND historical diversions).
Reservoir targets are generally forecasted.

cm2005B.rsp Baseline data set with 100% consumptive use included.
Demands are the same as the calculated data set; however, municipal,
industrial, and trans-basin demands are set to a present or future value
and facilities constructed during the study period are estimated to be
on-line for the entire simulation.

Many of the files used in the historic, calculated and baseline data are the same. It is common for all the
data to be the same except for the diversion demands and reservoir targets files. Refer to model data set
documentation for detailed information about variations in data sets.

2.4 Standard Procedures for Creating StateCU and StateMod Data Sets

The previous sections described standard conventions for organizing data sets, including naming
directories and files within data sets. Chapter 4 – Creating StateCU Data Set Files and Chapter 5 –
Creating StateMod Data Set Files describe how to create each of the files necessary for each model.
The recommended standard procedure for creating model files for each data type is to follow the steps in
these chapters, illustrated by working examples from actual data sets.

The steps described in Chapters 4 and 5 provide general guidelines related to data analysis and
formatting. The following sections provide additional information related to variations in StateMod data
sets. These variations should be considered when determining the level of modeling to be performed for a
basin.

2.5 Variations in StateMod Data Sets

Chapters 4 and 5 discuss how to create all model files. However, some files (e.g., calculated demands)
are used only in the calculated and baseline data sets. The following sections describe the differences
between data sets.

8- Introduction 40

StateDMI Documentation

2.5.1 Creating a Historical Data Set

A historical data set is used to calibrate the model and match historical conditions. Historical time series
(e.g., diversions, well pumping) are used for demands. Differences between simulated results and the
historical time series are minimized by adjusting return flow patterns, stream estimate proration factors,
and other data. See the StateMod documentation for more information about historical data sets.

2.5.2 Creating a Calculated Data Set

A “calculated” data set is one that uses estimated demands, rather than simply using historical data (e.g.,
diversion time series and historical reservoir levels). To produce a calculated data set, revise the following
files from those used in the historic data simulation:

 The calculated control file (*C.ctl) is the same as the historical control file (*H.ctl) except header
cards are revised to indicate it is a calculated data set.

 The calculated diversion demand file (*C.ddm) is similar to the historical diversion demand file
(*H.ddm) except agricultural demands equal the estimated diversion headgate requirement for full
supply rather than historical diversions.

 The calculated well demand file (*C.wem) is similar to the historical well demand file (*H.wem)
except agricultural demands equal the estimated well pumping requirement (full supply) rather
than historical pumping.

 The calculated reservoir target file (*C.tar) is similar to the historical reservoir target file (*H.tar)
except reservoir targets are typically set to forecasted values. For example, individual time series
files stored in the supporting files directory may be combined into the complete file.

2.5.3 Creating a Baseline Data Set

A baseline data set represents current or future conditions, allowing an evaluation of the system for “what
if?” scenarios. To create a baseline data set, revise the following files from those used in the calculated
data simulation:

• The baseline control file (*B.ctl) is the same as the calculated control file (*C.ctl) except header
cards are revised to indicate it is a baseline data set.

• The baseline diversion demand file (*B.ddm) is similar to the calculated diversion demand file
(*C.ddm) except municipal, industrial and trans-basin demands are revised to equal the present or
estimated future demand. In addition, any diversions that may have been constructed during the
study period will be estimated to be on-line for the entire study period. Demands are typically
implemented by creating replacement time series files that are combined into the final model file.

• The baseline well demand file (*B.wem) is similar to the calculated well demand file (*C.wem)
except municipal, industrial and trans-basin demands are revised to equal the present or estimated
future demand. In addition, any wells that may have been constructed during the study period
will be estimated to be on-line for the entire study period. Demands are typically implemented by
creating replacement time series files that are combined into the final model file.

• The baseline reservoir target file (*B.tar) is similar to the calculated reservoir target file (*C.tar)
except any reservoirs that may have been constructed during the study period will be estimated to
be on-line for the entire study period. These reservoir targets are typically implemented by
creating replacement files by hand.

• The baseline reservoir station file (*B.res) is similar to the calculated reservoir station file
(*C.res) except any reservoirs that have been constructed during the study period may have a
different initial content value. These reservoir station files are typically implemented by using
data resets in the initial content.

 Introduction - 9 41

 StateDMI Documentation

2.5.4 Creating a Data Set with Aggregated Structures

In CDSS projects, the approach to modeling 100% of a basin’s consumptive use (CU) has been to
explicitly model key structures that include approximately 75% of the basins CU and aggregate the
remaining CU into aggregated stations. The model data sets are reviewed and enhanced over time to
improve the model’s representation of actual conditions. The aggregation process is typically
implemented as follows (see data set documentation for details for each basin):

1. Aggregated irrigation structures are identified in GIS software (e.g., the CDSS Toolbox software)
from an irrigated acreage coverage as those not explicitly modeled.

2. Aggregated irrigation groups are defined based on location and cumulative aggregated acreage.
Often aggregated groups are selected to coincide with a streamflow gage.

3. Aggregated reservoirs are defined based on non-explicitly modeled reservoir water rights. Often
aggregated groups are selected to coincide with a streamflow gage.

4. Aggregated M&I demands are defined based on non-explicitly modeled M&I demands based on
regional population data and per capita use estimates. Often aggregated groups are selected to
coincide with a streamflow gage.

5. Aggregated water right classes are defined based on class size and typical call dates in a basin.
These call dates are typically identified from an evaluation of historical call records and basin
interviews.

6. Aggregated irrigation, reservoir and M&I structures are added to the network file (*.net).
7. Aggregated irrigation structures, reservoirs and M&I uses are often located on the main stem in

order to include their CU without developing new hydrology data on small tributaries. StateDMI
commands recognize aggregate stations and process data accordingly.

In addition to diversion aggregate nodes, “systems” and “MultiStruct” nodes may be utilized in modeling.
See the StateMod diversion stations description for more information.

StateCU and StateMod model files do not include information to describe collections. Consequently,
StateDMI relies on commands like SetDiversionAggregateFromList() to supply information
to be used during processing. Neglecting to provide this information will impact the results (e.g.,
diversion time series will contain smaller values because the aggregation is not occurring).
2.5.5 Creating a StateMod Data Set with Daily Data

The steps necessary to create a daily historical data set from a monthly data set is described in detail in the
Frequently Asked Questions section of the StateMod documentation.

2.5.6 Creating a StateMod Data Set with Wells

The steps necessary to create a data set with wells are described in detail in the Frequently Asked
Questions section of the StateMod documentation.

10- Introduction 42

StateDMI Documentation

2.6 Commands and Processing Sequence

The StateDMI interface allows a list of commands to be created, which when processed result in the
creation of model data files and other output products. Several commands are often needed to create a
single model file, as shown in the following example:

StateDMI commands to create the Rio Grande Climate Stations File

Step 1 - read climate stations

The following reads from a list file...
ReadClimateStationsFromList(ListFile="climate.lst",IDCol="1")

Step 2 - set data manually

SetClimateStation(ID="newid",Latitude=100,Elevation=1999,Region1="ADAMS",
 Name="my station",IfNotFound=Add)

Step 3 - fill climate station information

FillClimateStationsFromHydroBase(ID="*")

Step 4 - write the climate stations file

WriteClimateStationsToStateCU(OutputFile="rgTW.CLI")

Step 5 – check data

CheckClimateStations(ID="*")
WriteCheckFile(OutputFile="cli.commands.StateDMI.check.html")

The general sequence of commands when creating a model file is:

1. Read data from an existing source (e.g., a list file, the HydroBase database, or a model file) using
Read*() commands. Delimited list files typically contain an identifier column, and data are
then often read from HydroBase. List files can be created from the model network, StateView,
etc.

2. If appropriate, set additional data (e.g., add information that was not present after the first item)
using Set*() commands. Existing or new data may be added.

3. If appropriate, fill data (e.g., fill all latitude values that have not been previously specified) using
Fill*() commands. Missing data can be filled but new data objects are not created.

4. If appropriate, further process data with commands that perform calculations (e.g., limit filled
diversion time series to water rights that were in effect at the time). Various data products require
commands of varying complexity.

5. Write output to model files, using Write*() commands.
6. Perform checks to ensure that data are suitable for modeling using Check*() commands.

The menus that list commands to process a specific file are generally listed in the above order, to
emphasize the order that commands should be used. In some cases, additional commands will be shown
because of additional processing that is required. Although StateDMI lists menus in the general order that
they would be used, commands should be used in the order that is appropriate to accomplish a task. In
particular, there are no restrictions on setting or filling values after a calculation has occurred.

StateDMI commands are free-format, using the syntax:

CommandName(Param1=Value1,Param2=”Value2”,...)

 Introduction - 11 43

 StateDMI Documentation

The command name corresponds to the command menus and each command is documented in the
Command Reference at the end of this manual. Parameters can be listed in any order, separated by
commas. In many cases, parameters have default values and do not need to be specified. Parameter
values that include white space or commas should be enclosed in double quotes. The StateDMI GUI
command editor dialogs help edit all commands.

StateCU and StateMod files each typically correspond to lists of objects. For example, StateMod data
sets include a list of diversion stations (corresponding to the .dds file). StateCU has a list of consumptive
use locations (corresponding to the .str file). Relationships between data objects occur through shared
data fields (e.g., station identifiers). For example, diversion historical time series use the diversion station
identifier.

StateDMI maintains lists of these objects in memory and manipulates the objects as commands are
processed. For example, a list of diversion stations can be read from a StateMod diversion station file
(dds). Additional diversion stations may then be added to the list using “set” commands. Because it is
possible that lists of objects may be created from multiple input sources, StateDMI usually allows lists of
objects to be appended. For example, both StateMod diversion stations (dds file) and wells (wes file) may
be considered as locations where irrigation water requirement should be estimated in StateCU. Such
locations are collectively referred to as CU Locations. Sort commands are available for most data types
to facilitate consistent output.

Because a model data set may contain many files, it is convenient to create the files in a logical order,
separating the work of creating a data set by using multiple command files. The convention used in this
documentation is to describe using one command file to create one model file. The model data set
documentation describes the order and logic in creating each model file.

12- Introduction 44

3 Getting Started
Version 3.09.01, 2010-02-11

This chapter provides an overview of the StateDMI graphical user interface (GUI). The StateDMI
interface has the following main purposes:

1. Provide an organized list of menus to facilitate configuration of command lists (workflows) to
create StateCU and StateMod data files.

2. Manage and run command workflows.
3. Provide general reusable tools to process StateCU and StateMod data.
4. Display and edit the model network used to define the connectivity of locations used in StateCU

and StateMod data sets.
5. Display the results of command workflow processing.
6. Provide automation and quality control tools to streamline data set creation.

The remainder of this chapter provides an overview of the graphical user interface, generally in the order
of the interface features and menus. Menu items are listed in alphabetical order or by functional order
(i.e., in the order that model files should typically be created).

3.1 Starting StateDMI

StateDMI is a Java application and therefore is run using a Java Runtime Environment (JRE). The JRE is
started using an executable file called StateDMI.exe, which is normally installed in \CDSS\StateDMI-
Version\bin. This file can be run from a command shell, by selecting it from Windows Explorer, or more
typically by selecting the CDSS…StateDMI-Version choice from the Start menu. The Version is the
version of StateDMI to run. Multiple versions of StateDMI can be installed at the same time, to allow
versions to remain with “frozen” data sets.

StateDMI provides features for StateCU and StateMod data sets, but not both at the same time. Start
StateDMI for the appropriate model as shown in the next section, or use the File…Switch to StateMod or
File…Switch to StateCU menus. If data files from one model are used by the other, StateDMI will
provide appropriate features for both models for the specific data files.

 Getting Started - 1 45

 StateDMI Documentation

3.2 Select HydroBase Dialog

Because one of the main input sources for StateDMI is the State of Colorado’s HydroBase database, at
startup you are requested to select a HydroBase database. A HydroBase database can also be selected
from the File...Open…HydroBase... menu.

SelectHydroBase

Select HydroBase Database Dialog

HydroBase is available on DVD from the Division of Water Resources. Future software updates may
allow StateDMI to access the database over the internet. In 2005 the Microsoft Access version of
HydroBase was phased out in favor of MSDE (did not allow a single database to contain all State data),
which has subsequently been replaced with SQL Server Express (allows the full Colorado database to be
distributed).

If using an old Microsoft Access HydroBase database, you should have already configured a HydroBase
ODBC DSN. You can select a local database and appropriate ODBC DSN, or, if you have access to a
SQL Server HydroBase server, you can select Use SQL Server Database, in which case the database
hostname is automatically determined from a predefine list – type in a new name if appropriate. You can
also cancel the login, in which case HydroBase features will be disabled but you will be able to work with
other data sources.

If a previous HydroBase connection has been made, then Cancel reverts to that connection.

See also the Installation and Configuration Appendix for information about the CDSS configuration
file, which can be used to set HydroBase selection defaults.

2 - Getting Started 46

StateDMI Documentation

3.3 Main Interface

The StateDMI main interface is divided into the following areas:

• Title Bar (top)
• Menu Bar (below title)
• Tool Bar (below menu bar)
• Commands list (middle)
• Results (below commands)
• Status Message areas (bottom)
• Map (under development, as separate window)
• Model Network (as a separate window)

After starting the software, the main interface will be blank, as shown in the following figure:

Main0

StateDMI Interface After Startup

At this point, new commands can be added to the Commands list using the Commands menu, or an
existing command file can be opened (File…Open…Command File). Commands, once visible, can be
edited and run.

 Getting Started - 3 47

 StateDMI Documentation

After opening a command file, the interface will appear similar to the following (the title bar displays the
name of the command file and the Commands area title displays the status of the current commands list).

Main1

StateDMI Interface after Loading a Commands File

After loading the command file, StateDMI executes an initialization phase where each command is
checked for basic errors. In the above example, a warning (yellow marker) and failure (red marker) are
shown because the indicated commands reference files or folders that do not exist. These issues will need
to be addressed before a complete run can occur. The following sections summarize the main GUI
features.

3.3.1 Title Bar

The title bar at the top of the StateDMI interface indicates whether StateCU or StateMod commands are
being edited, indicates the name of the command file, and whether changes to commands have been
made.

Main_Title

StateDMI Title Bar

4 - Getting Started 48

StateDMI Documentation

3.3.2 Menu Bar

The menu bar provides access to all the StateDMI features. StateDMI menus are generally consistent
with standard Windows software and are summarized below. Each menu is described in detail starting
with Section 3.4.

Menu Description
File Open and save data sets and commands files, select databases, select

whether StateCU or StateMod files are being processed. See Section
3.4.

Edit Cut/copy/paste and delete commands. See Section 3.5.
View Toggle visual components (e.g., map, network) on/off. See Section

3.6.
Commands Insert and edit commands to generate StateCU and StateMod model

files. The sub-menus are specific to the model, although some general
commands are present for each model’s menus. See Section 3.7.

Run Run commands to produce model output files and other data products.
See Section 3.8. Users typically use the run buttons at the bottom of
the Commands area.

Results Display the results of processing commands. The menus are currently
disabled. Instead, the overall results are typically written to model
files and can be viewed as files or in tabular format by selecting a
component at the bottom of the main window. See Section 3.9.

Tools Display diagnostics. See Section 3.10.
Help Display program version and support information. See Section 3.11.

3.3.3 Tool Bar

The tool bar provides graphical shortcuts to facilitate common actions:

Main_Toolbar

StateDMI Tool Bar

The following tools are available in the toolbar:

 Open a new blank command file. If changes to the current command file have occurred,
the user is given the option of saving the current file. This is the same as
File…New…Command File.

 Open an existing command file. If changes to the current command file have occurred,

the user is given the option of saving the current file. This is the same as
File…Open…Command File.

 Save changes to the current command file. This is the same as File…Save…Command
File.

 Getting Started - 5 49

 StateDMI Documentation

3.3.4 Command List

The Commands list occupies the middle part of the main interface and contains commands that can be
processed to create StateCU and StateMod data files.

Main_Commands

Commands List

The title for the Commands list indicates the number of commands, the number of commands selected
from, and whether any commands have failures or warnings. Some interface features (e.g., editing,
inserting new commands) operate on selected commands. The Commands list behaves according to
Windows conventions:

•
•
•
•

Single-click to select one item.
Ctrl-single-click to additionally select an item.
Shift-single-click to select everything between the previous selection and the current selection.
Double-click to display the command editor for the selected command.

Right-clicking over the Commands list displays a pop-up menu with useful command manipulation
choices, some of which are further described in following sections (e.g., edit menu choices are discussed
in Section 3.5 - Edit Menu). A summary of the pop-up menu choices is as follows:

Menu Choice Description
Show Command Status
(Success/Warning/Failure)

Displays a summary of problems encountered with the command, and
recommendations for correcting the problems.

Edit Edit the selected command using an edit dialog, which provides error
checks and formats the commands. Double-clicking on a command
will also display the command editor.

Cut Cut the selected commands for pasting.
Copy Copy the selected commands for pasting.
Paste (After Selected) Paste commands that have been cut/copied, pasted after the selected

row.
Delete Delete the selected commands (currently the same as Cut).
Find commands(s) using
substring…

Find commands in the command list using a substring. This displays
a dialog to enter the substring; press Enter and then the right-click in
the found items list to go to or select found items.

6 - Getting Started 50

StateDMI Documentation

Menu Choice Description
Find command using line
number…

Find a command using a line number. This is useful when correcting
a command that generated an error during processing.

Select All Select all the commands.
Deselect All Deselect all the commands. This is useful when inserting commands

at the end of the list.
Convert Selected
Commands to # Comments

Convert selected commands to # comments.

Convert Selected
Commands from #
Comments

Convert # comments to commands.

Run All Commands (create
all output)

Run all commands and create output (e.g., files). This is equivalent to
using the Run All Commands in the Commands list area.

Run All Commands (ignore
output commands)

Run all commands but skip any output commands. This is useful for
testing data processing steps but final output is not yet needed.

Run Selected Commands
(create all output)

Run selected commands and create output (e.g., files). This is
equivalent to using the Run Selected Commands in the Commands
list area.

Run Selected Commands
(ignore output commands)

Run selected commands but skip any output commands. This is
useful for testing data processing steps but final output is not yet
needed.

Cancel Command
Processing

If commands are currently being processed, this allows the processing
to be cancelled. The current command being processed will finish
before action is taken.

Commands are numbered to simplify editing. The command list also includes left and right gutters to
display graphics that help with error handling. The following figure illustrates a command workflow with
errors.

Main_Commands_Error

Command List Illustrating Error

The following error handling features are available:

• Clicking on the left gutter will hide and un-hide the gutter.
• The graphic in the left gutter indicates the severity of a problem (see below for full explanation).
• The colored box on the right indicates the severity of a problem and, when clicked on, positions

the visible list of commands to display the command corresponding to the problem.

 Getting Started - 7 51

 StateDMI Documentation

• Commands have three phases: 1) initialization, 2) discovery, 3) run. Initialization occurs when
reading a command file or adding a new command. The discover phase is executed only for
commands that generate information for other commands needed during editing, such as lists of
identifiers (discovery is not often used in StateDMI but is used extensively in the TSTool
software). The run phase is when commands are processed to generate results.

• Positioning the mouse over a graphic in the left or right gutter will show a popup message with
the problem information. The popup is only visible for a few seconds so use the right-click
popup menu Show Command Status (Success/Warning/Failure) for a dialog that does not
automatically disappear. See also the Results area Problems tab.

The meaning of the gutter symbols is described in the following table.

Command List Error Handling Graphics

Command List Left
Gutter Graphic

Description

No graphic Command is successful (a warning or failure has not been detected).
 The status is unknown, typically because the status will not be known

until a command runs.

The command has a problem that has been classified as non-fatal. For
example, a command to fill data may be used but results in no data being
filled. In general, commands with warnings need to be fixed unless work
is preliminary.

The command has failed, meaning that output is likely incomplete. A
problem summary and recommendation to fix the problem are available
in the status information. Commands with failures generally need to be
fixed. Software support should be contacted if the fix is not evident.

3.3.5 Results

The Results area shows the results of processing commands.

Main_ResultsChoices

StateDMI Results Area

Results can generally be displayed as output files and a component table, and a summary of problems is
also provided. See below for more information.

Results – Output Files

The main purpose of StateDMI is to prepare data set files with command workflows. The resulting model
files may be long, complex, and difficult to review. However, an experienced user may simply want to
scroll through the StateDMI output files and visually scan the data for completeness and accuracy. To
facilitate this approach, the list of files created during commands processing is displayed and can be
selected from the Output Files tab in the Results area. After selecting an output file, Notepad is used to

8 - Getting Started 52

StateDMI Documentation

display the file. Additional files can be selected if desired, with each being displayed in a separate
Notepad window. Currently, only files created during processing are listed (additional input files are not
listed).

Results – Problems

The Problems tab in the results area displays a summary of problems from all commands.

MainResultsProblems

This summary may be easier to use than individually displaying the status for each command with a
problem. In the future, functionality may be enabled to click on a row and select the offending command
in the command list. See also the Check*() commands and the WriteCheckFile() command,
which will create a check file in CSV and HTML format.

Results – StateCU and StateMod Components

Another option for viewing data is to display tabular records of the results, by data set component. To do
so, select from the lists in the StateCU Components and StateMod Components tabs. For most
command files, only one list will have choices but in some cases both lists may have choices. StateDMI
internally manages data for each model. After making a selection, a simple tabular display will be shown,
as in the following figure. The columns are typically shown in the order listed in the model
documentation, in order to agree with model file output.

Main_Results_CULocations

Example Tabular Results Display

The data shown in the table can be viewed, copied to other applications, saved to a file, and printed.
Printing may not provide the best representation of the data, especially if the table is very wide.
Consequently, the file representation of results (in the Output Files tab) may be more appropriate for

 Getting Started - 9 53

 StateDMI Documentation

printing. Columns can be sorted by right clicking on a column heading and picking the sort order. Note
that some output files may correspond to multiple components. This occurs when a file has a complex
structure that cannot easily be flattened into a single table.

3.3.6 Status Message Areas

The title bar and status message areas provide useful information about the current state of the interface
and command list.

Main_Status

Status Message Area

The status message area at the bottom of the StateDMI interface is split into three parts:

1. The left-most part is used to display general messages. For example, if commands are being run,
this area indicates the command that is being processed.

2. The second part shows two progress bars that are updated when processing commands. The left

progress bar shows the overall progress in the command file (percent of commands that have
been processed). The right progress bar shows the progress within the command – this capability
is only enabled in some commands that take longer to run.

3. The right-most status field provides a one-word status indicating when you should wait. The

command processor is implemented as a separate thread in the program. Consequently, when
commands are being processed, the application does not totally freeze while work occurs.
Because it is possible to perform other tasks while the commands are being processed, an
hourglass cursor is not used during processing and instead the progress meter and the one-word
status should be used to know if commands are currently being processed.

3.3.7 Map (Under Development)

The map interface uses a general mapping component available in other CDSS software. See the
GeoView Mapping Tools Appendix in the StateView and TSTool software for more information. The
map interface is not currently integrated with StateDMI commands but is used to provide a reference of
features that may be modeled with StateCU and StateMod. To display a map, use the File…Show Map
menu described below. Then select a GeoView project file (.gvp). For example, select the same project
file used by the StateMod GUI. The use of the map interface is being evaluated.

10 - Getting Started 54

StateDMI Documentation

3.4 File Menu - Main Input and Output Control

The File menu provides standard input and output features as described below.

Menu_File

File Menu

3.4.1 File…Open Menu

The File…Open menu allows opening input sources.

Menu_File_Open

File…Open Menu

The File…Open…Command File menu allows an existing command file to be opened. A new command
file can be started using the File…New…Command File menu item or corresponding tool on the tool bar.

The File…Open…Model Network allows a model network to be viewed and saved (see Section 3.6.1
and later).

The File…Open…HydroBase menu opens a connection the HydroBase database (see Section 3.2).

3.4.2 File…New

The File…New menu allows creation of a new command file and model network (see also Section 3.6.1
and later for more information about the network).

MenuFile_New

File…New Menu

 Getting Started - 11 55

 StateDMI Documentation

3.4.3 File…Save

The File…Save menu saves the contents of the Commands list.

MenuFile_Save

File…Save Menu

If a new command file has been started, you are prompted to specify a file name to save. The commands
can also be saved to a new file.

3.4.4 File…Properties

The File…Properties…HydroBase menu displays the following dialog, which is available if a
HydroBase connection has been made. The properties show HydroBase database information, including
the database that is being used, database version, and the water districts that are in the database being
queried. The water districts are determined from the structure table in HydroBase. The information that
is shown is consistent with that shown by other State of Colorado tools and is useful for troubleshooting.

Menu_File_HydroBaseProperties

HydroBase Properties

3.4.5 File…Set Working Directory

12 - Getting Started 56

StateDMI Documentation

The File…Set Working Directory menu item displays a file chooser dialog that allows you to select the
working directory. The working directory, when set properly, can greatly simplify command files
because relative file paths can be used for input and output. The working directory is normally set in one
of the following ways, with the current setting being defined by the most recent item that has occurred:

1. The startup directory for the StateDMI program,
2. The directory where a command file was opened,
3. The directory where a command file was saved,
4. The directory specified by a SetWorkingDir() command,
5. The directory specified by File…Set Working Directory.

The menu item is provided to allow the working directory to be set before a command file has been saved
(or opened) and it typically eliminates the need for SetWorkingDir() commands in command files.

3.4.6 File…Switch to StateCU and File…Switch to StateMod

The File…Switch to StateCU menu switches the StateDMI interface to operate on a StateCU data set.
The File…Switch to StateMod menu switches the StateDMI interface to operate on a StateMod data set.
These menus are necessary because StateDMI is designed to only show one model’s features at a time. A
noticeable change in behavior is that the Commands menu choices will reflect commands for the active
model.

3.4.7 File…Exit

The File…Exit menu exits StateDMI. You will be prompted to confirm the exit. If you have edited the
command list you will be prompted to save the commands.

 Getting Started - 13 57

 StateDMI Documentation

3.5 Edit Menu – Editing Commands

The Edit menu can be used to edit the Commands list. Specific edit features are described below. Right
clicking over the Commands list provides a popup menu with many choices described below.

Menu_Edit

Edit Menu

3.5.1 Cut/Copy/Paste/Delete

The Edit…Cut and Edit…Copy menu items are enabled if there are items in the Commands list. Cut
deletes the selected item(s) from the Commands list and saves its information in memory. Copy just
saves the information in memory. After Cut or Copy is executed, select an item in the Commands list
and use Paste (see below). Currently, these features do not allow interaction with other
applications. However, Ctrl-C and Ctrl-V do work with many text entry fields in StateDMI.

Paste is enabled if one or more items from the Commands list has been cut or copied. To paste the item,
select an item in the Commands list and press Edit…Paste Command(s) (After Selected). The new
item will be added after the selected item(s). To insert at the front of the list, you must paste after the first
item, and then cut and paste the first item to reverse the order.

The Delete choice currently works exactly like the Cut choice.

3.5.2 Select All/Deselect All Commands

The Edit…Select All Commands and Edit…Deselect All Commands menu items are enabled if there
are items in the Commands list. Use these menus to facilitate editing. Refer to the Commands list title
to see how many commands are currently selected.

3.5.3 Edit Command

The Edit…Command… menu can be used to edit an individual command. StateDMI will determine the
command that is being edited and will display the editor dialog for that command, performing data
checks. This feature is also accessible by right clicking on the Commands list and selecting the Edit
Command… menu item.

14 - Getting Started 58

StateDMI Documentation

3.5.4 Edit Command File

The Edit…Command File menu choice can be used to edit a commands file using Notepad. Currently,
there is no way to change the editor. You must re-read the command file into StateDMI after using the
editor in order for StateDMI to recognize the commands in the file.

3.5.5 Convert Selected Commands To/From Comments

The Edit…Convert selected commands to # comments menu can be used to toggle selected
commands in the Commands list to comments (lines that begin with #). This is useful when temporarily
disabling commands, rather than deleting them.

The Edit…Convert selected commands from # comments menu can be used to toggle selected
commands in the Commands list from comments back to active commands. This is useful when re-
enabling commands that were temporarily disabled.

Multi-line /* */ comment notation can be inserted using the Commands…General – Comments
menu.

 Getting Started - 15 59

 StateDMI Documentation

3.6 View Menu – Enable/Disable Display Features

The View menu enables and disables important StateDMI display features.

MenuView

View Menu

The View...Map menu item can be used to display a map. Currently this feature is under development.
Use the file selector dialog to open a GeoView project file (gvp). See the GeoView Mapping Tools
Appendix in StateView and TSTool documentation for more information about mapping tools. Map
features are envisioned to be enhanced in future software releases. GeoView project files are available
for StateView and StateMod data sets and can be selected to display in StateDMI.

The View…Model Network menu item displays a StateMod model network and allows edits to the
network. A model network represents the rivers and model nodes in a diagram, where the geographical
representation of rivers have been straightened and oriented to facilitate presentation of the network.
StateDMI commands can then extract station lists from the network for processing into data files. See
Section 3.6.5 for more information.

The Three-level Commands Menu option allows switching the command menu format. This option is
available primarily for developers and the default setting should not normally be changed.

3.6.1 Updating an old Makenet Network to New Format

Previously, the Makenet program was used to process a model network and produce StateMod model
files. The disadvantage of this approach was that the network file needed to be manually edited (there
was no graphical user interface) and the format of the file sometimes resulted in errors. StateDMI
understands how to read the old Makenet network file; consequently, the older files should be updated to
the new convention to take advantage of new features and simplify maintenance. To update an old
Makenet file to the new format:

1. If necessary, for an existing data set, rename the old *.net file to another name (e.g.,
XXX_orig.net). In many cases, StateDMI will be used to create an updated data set and therefore
a rename is unnecessary because old and new files are in different directories.

2. Select the File…Open…Model Network menu and select the old Makenet *.net file.
3. The StateDMI software will read the Makenet network file and display the network in a diagram

window. During this process, a number of pieces of information are lost, including stream labels
(now drawn with annotations), and page size (now setup as a layout). See the next section for
information about editing the network. Also during this step, adjustments to the network are
made. For example, blank nodes are removed since they are no longer needed. Confluence
nodes are explicitly represented in the network because they are needed for visualization. Some
node types like Import are converted to Other – all node types in the network now correspond
to a station type in StateMod data sets. The coordinates that are used after this step are those
defined in the Makenet file – it is envisioned that the coordinates could be scaled to physical
coordinates like UTM to allow overlaying spatial data layers.

16 - Getting Started 60

StateDMI Documentation

4. After the network is displayed, use the Save XML Network File tool in the network editor to save
the representation to a new network file. The file name can adhere to the same naming
convention as before (use *.net).

5. To modify the network, use the features described in Section 3.6.5.

Below is an example from a new generalized network file. The file format is XML (eXtensible Markup
Language), which is free format and allows new properties to be added as needed. Although the file can
be modified with an editor, the graphical network editor should be used in most cases in order to enforce
data conventions. The following example serves as the documentation for the network file format and the
format is described in the comments at the top of the file.

<!--
#>
#> StateMod XML Network File
#>
#> File generated by...
#> program: StateDMI 3.08.00 (2009-06-10)
#> user: rrb
#> date: Mon Jun 15 17:37:05 MDT 2009
#> host: DWRDENRRBXPPC2
#> directory: D:\Cdss\Data\Sp2008L\StreamSW
#> command line: StateDMI
#>
#> The StateMod XML network file is a generalized representation
#> of the StateMod network. It includes some of the information
#> in the StateMod river network file (*.rin) but also includes
#> spatial layout information needed to produce a diagram of the
#> network. The XML includes top-level properties for the
#> network, and data elements for each node in the network.
#> Each network node is represented as a single XML element
#> Node properties are stored as property = "value".
#>
#> Node connections are specified by either a
#> <DownstreamNode ID = "Node ID"/>
#> or
#> <UpstreamNode ID = "Node ID"/>
#> tag. There may be more than one upstream node, but at most
#> one downstream node.
#>
#> The XML network is typically created in one of three ways:
#>
#> 1) An old "makenet" (*.net) file is read and converted to
#> XML (e.g., in StateDMI). In this case, some internal
#> identifiers (e.g., for confluence nodes) will be defaulted in
#> order to have unique identifiers, and the coordinates will be
#> those from the Makenet file, in order to preserve the diagram
#> appearance from in the original Makenet file.
#>
#> 2) A StateMod river network file (*.rin) file is converted to
#> XML (e.g., by StateDMI). In this case, confluence nodes will
#> not be present and StateDMI can be used to set the coordinates
#> to actual physical coordinates (e.g., UTM). The coordinates
#> in the diagram will need to be repositioned to match a
#> straight-line representation, if such a representation is
#> desired.
#>
#> 3) A new network is created entirely within the StateDMI or
#> StateModGUI interface. In this case, the positioning of nodes
#> can occur as each node is defined in the network, or can occur
#> at the end.

 Getting Started - 17 61

 StateDMI Documentation

#>
#> Once a generalized XML network is available, StateDMI can be
#> used to create StateMod station files. The node type and the
#> "IsNaturalFlow" property are used to determine lists of
#> stations for various files.
#>
#> The following properties are used in this file. Elements are
#> indicated in <angle brackets> with element properties listed
#> below each element.
#>
#> NOTE:
#>
#> If any of the following have an ampersand (&), greater than (>)
#> or less than (<) in them, these values MUST be escaped (see
#> below):
#> - Page Layout ID
#> - Node ID
#> - Downstream Node ID
#> - Upstream Node ID
#> - Link Upstream Node ID
#> - Link Downstream Node ID
#> - Annotation Text
#>
#> The escape values are the following. These are automatically
#> inserted by the network-saving software, if the characters are
#> inserted when editing a network programmatically, but if the
#> network is edited by hand they must be inserted manually.
#>
#> & -> &
#> > -> >
#> < -> <
#>
#> <StateMod_Network> Indicates the bounds of network
#> definition
#>
#> XMin The minimum X coordinate used to
#> display the network, determined from
#> node coordinates.
#>
#> YMin The minimum Y coordinate used to
#> display the network, determined from
#> node coordinates.
#>
#> XMax The maximum X coordinate used to
#> display the network, determined from
#> node coordinates.
#>
#> YMax The maximum Y coordinate used to
#> display the network, determined from
#> node coordinates.
#>
#> LegendX The X coordinate of the lower-left point
#> of the legend.
#>
#> LegendY The Y coordinate of the lower-left point
#> of the legend.
#>
#> <PageLayout> Indicates properties for a page layout,
#> resulting in a reasonable representation
#> of the network in hard copy. One or
#> more page layouts may be provided in
#> order to support printing on various
#> sizes of paper.

18 - Getting Started 62

StateDMI Documentation

#>
#> IsDefault Indicates whether the page layout is the
#> one that should be loaded automatically
#> when the network is first displayed.
#> Only one PageLayout should have
#> this with a value of "True".
#> Recognized values are:
#> True
#> False
#>
#> PaperSize Indicates the paper size for a page
#> layout. Recognized values are:
#> 11x17 - 11x17 inches
#> A - 8.5x11 inches
#> B - 11x17 inches
#> C - 17x22 inches
#> D - 22x34 inches
#> E - 34x44 inches
#> Executive - 7.5x10 inches
#> Legal - 8.5x14 inches
#> Letter - 8.5x11 inches
#>
#> PageOrientation Indicates the orientation of the printed
#> page. Recognized values are:
#> Landscape
#> Portrait
#>
#> NodeLabelFontSize Indicates the size (in points) of the
#> font used for node labels.
#>
#> NodeSize Indicates the size (in points) of the
#> symbol used to represent a node.
#>
#> <Node> Data element for a node in the network.
#>
#> ID Identifier for the node, matching the
#> label on the diagram and the identifier
#> in the StateMod files. It is assumed
#> that the station identifier and river
#> node identifier are the same. The
#> identifier usually matches a State of
#> Colorado WDID, USGS gage ID, or other
#> standard identifier that can be queried.
#> Aggregate or "other" nodes use
#> identifiers as per modeling procedures.
#>
#> Area The natural flow contributing area.
#>
#> AlternateX The physical coordinates for the node,
#> AlternateY typically the UTM coordinate taken from
#> HydroBase or another data source.
#>
#> Description A description/name for the node,
#> typically taken from HydroBase or
#> another data source.
#>
#> IsNaturalFlow If "true", then the node is a location
#> where stream flows will be estimated
#> (and a station will be listed in the
#> StateMod stream estimate station file).
#> This property replaces the old IsBaseflow property.
#>
#> IsImport If "true", then the node is an import

 Getting Started - 19 63

 StateDMI Documentation

#> node, indicating that water will be
#> introduced into the stream network at
#> the node. This is commonly used to
#> represent transbasin diversions. This
#> property is only used to indicate how
#> the node should be displayed in the
#> network diagram.
#>
#> LabelPosition The position of the node label, relative
#> to the node symbol. Recognized values
#> are:
#> AboveCenter
#> UpperRight
#> Right
#> LowerRight
#> BelowCenter
#> LowerLeft
#> Left
#> UpperLeft
#> Center
#>
#> Precipitation The natural flow contributing area precipitation .
#>
#> Type The node type. This information is used
#> by software like StateDMI to extract
#> lists of nodes, for data processing.
#> Recognized values are:
#> Confluence
#> Diversion
#> Diversion and Well
#> End
#> Instream Flow
#> Other
#> Reservoir
#> Streamflow
#> Well
#> XConfluence
#>
#> X The coordinates used to display the node
#> Y in the diagram. These coordinates may
#> match the physical coordinates exactly,
#> may be interpolated from the coordinates
#> of neighboring nodes, or may be the
#> result of an edit.
#>
#> <DownstreamNode> Information about nodes downstream
#> from the current node. This information
#> is used to connect the nodes in the
#> network and is equivalent to the
#> StateMod river network file (*.rin)
#> "cstadn" data. Currently only one
#> downstream node is allowed.
#>
#> ID Identifier for the node downstream from
#> the current node.
#>
#> <UpstreamNode> Information about nodes upstream from the
#> current node. Repeat for all nodes
#> upstream of the current node.
#>
#> ID Identifier for the node upstream from
#> the current node.
#>

20 - Getting Started 64

StateDMI Documentation

#> <Annotation> Data element for a network annotation.
#>
#> FontName The name of the font in which the
#> annotation is drawn. Recognized values
#> are:
#> Arial
#> Courier
#> Helvetica
#>
#> FontSize The size of the font in which the
#> annotation is drawn.
#>
#> FontStyle The style of the font in which the
#> annotation is drawn. Recognized values
#> are:
#> Plain
#> Italic
#> Bold
#> BoldItalic
#>
#> Point The point at which to draw the
#> annotation. The value of "Point"
#> must be two numeric values separated by
#> a single comma. E.g:
#> Point="77.44,9.0"
#>
#> ShapeType The type of shape of the annotation.
#> The only recognized value is:
#> Text
#>
#> Text The text to be drawn on the network.
#>
#> TextPosition The position the text will be drawn,
#> relative to the "Point" value.
#> Recognized values are:
#> AboveCenter
#> UpperRight
#> Right
#> LowerRight
#> BelowCenter
#> LowerLeft
#> Left
#> UpperLeft
#> Center
#>
#> <Link> Data element for a network link.
#>
#> FromNodeID The ID of the node from which the link
#> is drawn.
#>
#> LineStyle The style in which the link line is
#> drawn. The only recognized value is:
#> Dashed
#>
#> ShapeType The type of shape being drawn. The only
#> recognized value is:
#> Link
#>
#> ToNodeID The ID of the node to which the link
#> is drawn.
#>
#>
#> EndHeader

 Getting Started - 21 65

 StateDMI Documentation

-->
<StateMod_Network
 XMin = "-550.000000"
 YMin = "-425.000000"
 XMax = "1650.000000"
 YMax = "1275.000000"
 LegendX = "1274.000000"
 LegendY = "-63.000000">
 <PageLayout ID = "Page Layout #1"
 IsDefault = "true"
 PaperSize = "E"
 PageOrientation = "Landscape"
 NodeLabelFontSize = "12"
 NodeSize = "14"/>
 <PageLayout ID = "Page Layout #2"
 IsDefault = "False"
 PaperSize = "D"
 PageOrientation = "Landscape"
 NodeLabelFontSize = "10"
 NodeSize = "20"/>
 <PageLayout ID = "Page Layout #3"
 IsDefault = "False"
 PaperSize = "B"
 PageOrientation = "Portrait"
 NodeLabelFontSize = "10"
 NodeSize = "14"/>
 <PageLayout ID = "Page Layout #4"
 IsDefault = "False"
 PaperSize = "C"
 PageOrientation = "Landscape"
 NodeLabelFontSize = "10"
 NodeSize = "20"/>
 <PageLayout ID = "Page Layout #5"
 IsDefault = "False"
 PaperSize = "D"
 PageOrientation = "Landscape"
 NodeLabelFontSize = "10"
 NodeSize = "20"/>
 <Node ID = "64_AWP003"
 AlternateX = "-999.0"
 AlternateY = "-999.0"
 Description = ""
 IsBaseflow = "false"
 IsNaturalFlow = "false"
 IsImport = "false"
 LabelPosition = "AboveCenter"
 Type = "Well"
 X = "1523.958333"
 Y = "565.291667">
 <DownstreamNode ID = "06764000"/>
 </Node>

 <Node ID = "64_AWP002"
 AlternateX = "-999.0"
 AlternateY = "-999.0"
 Description = ""
 IsBaseflow = "false"
 IsNaturalFlow = "false"
 IsImport = "false"
 LabelPosition = "BelowCenter"
 Type = "Well"
 X = "1527.083333"
 Y = "380.916667">

22 - Getting Started 66

StateDMI Documentation

 <DownstreamNode ID = "64_AWP004"/>
 </Node>

 <Node ID = "64_AWP004"
 AlternateX = "-999.0"
 AlternateY = "-999.0"
 Description = ""
 IsBaseflow = "false"
 IsNaturalFlow = "false"
 IsImport = "false"
 LabelPosition = "AboveCenter"
 Type = "Well"
 X = "1526.562500"
 Y = "413.208333">
 <DownstreamNode ID = "64_AWP005"/>
 <UpstreamNode ID = "64_AWP002"/>
 </Node>

... many nodes omitted ...

 <Node ID = "END"
 AlternateX = "-999.0"
 AlternateY = "-999.0"
 Description = ""
 IsBaseflow = "false"
 IsNaturalFlow = "false"
 IsImport = "false"
 LabelPosition = "AboveCenter"
 Type = "End"
 X = "1600.000000"
 Y = "524.041667">
 <UpstreamNode ID = "6499999"/>
 </Node>

 <Annotation
 ShapeType="Text"
 Text="SPDSS Lower South Platte River Basin Water Resources Planning Model"
 Point="594.431373,1053.161477"
 TextPosition="Center"
 FontName="Helvetica"
 FontStyle="Plain"
 FontSize="72"/>

... many annotations omitted ...

 <Link
 ShapeType="Link"
 LineStyle="Dashed"
 FromNodeID="0100513"
 ToNodeID="Jackson_I"/>

... many links omitted ...

</StateMod_Network>

3.6.2 Manually Creating a New StateMod Generalized Network

If a new model data set is being prepared (or a network for an existing data set cannot be created in
an automated way), a generalized network can be manually created using the following steps. In
this process, each node must be added to the network.

 Getting Started - 23 67

 StateDMI Documentation

1. Before creating the network in StateDMI, it is useful to have an idea of the general layout of the

network, where the streams in the data set follow the general geographical orientation. If the
river basin runs north south, then a portrait page orientation should be used. If the basin runs
east/west, then a landscape page orientation should be used.

2. After StateDMI has started, use the File…New…Model Network menu item. A network editor
window will be shown, with only a page outline, legend, and end node.

3. The network editor requires that a page size and orientation be specified (see the Section 3.6.5
Page Properties information for details). To start, pick a page layout that will be used for
editing and hardcopy review. If the network has many nodes, it may be necessary to pick a page
size for a plotter (if a plotter is available). If the network has only a few nodes, then 8.5x11 or
11x17 page size may be sufficient.

4. Add a node by right clicking on the end node and selecting Add Upstream Node. Repeat as
many times as necessary to complete the network. During this process, it may be necessary to
change the printed node and font sizes appropriate for the hardcopy network. See also other
network editor features described in Section 3.6.5, which may be used to position nodes.

5. Use the Save As XML tool at the top of the network editor to save the network file. This file can
then be used by StateDMI commands and can be opened later with File…Open…Model
Network.

The above procedure initializes a StateMod generalized network. Once created, the network editor
features can be used to change the network.

3.6.3 Automatically Creating a New StateMod Generalized Network

Features to automate creation of a network have been tested during StateDMI development. However,
various technical issues still remain and these features are not available for production work. The basic
procedure is envisioned to use the following steps:

1. Determine a list of stations to be modeled (e.g., from HydroBase).
2. Query location coordinates (e.g., latitude/longitude or UTM) and upstream/downstream

relationships (e.g., from HydroBase and/or NHD [National Hydrography Dataset]) and create a
network based on physical coordinates (stored in the “alternate coordinates” in the network file).

3. As appropriate, utilize existing and new network editor features to adjust the network diagram to
be more readable and suitable for modeling. For example, separate nodes that may be too close
together to read labels. The network node coordinates will therefore reflect user edits, but the
original “alternate” coordinates will still be available and could be used to draw a geographical
representation of the network.

Use of NHD may facilitate referencing diversion, reservoir, stream gages, and other locations to rivers,
thus allowing automated determination of upstream to downstream relationships. However, this
information is currently available in CDSS only on a limited basis and therefore the automated creation of
the network has not been possible.

3.6.4 Creating a New StateMod Generalized Network from an Existing StateMod River Network File

If an existing StateMod data set has no corresponding Makenet *.net file, it is possible to create a
generalized network file from the StateMod river network file (*.rin). However, StateDMI features to do
so have been tested only during development and technical issues remain. The basic procedure is
envisioned to use the following steps:

24 - Getting Started 68

StateDMI Documentation

1. Read the list of stations to be modeled from the StateMod *.rin river network file. This supplies
upstream/downstream relationships but does not provide coordinates for the network.

2. Query location coordinates (e.g., latitude/longitude or UTM) from HydroBase and create a
network based on physical coordinates (stored in the “alternate coordinates” in the network file).
Interpolate missing coordinates.

3. As appropriate, utilize existing and new network editor features to adjust the network diagram to
be more readable and suitable for modeling. For example, separate nodes that may be too close
together to read labels.

The above capabilities are available on a limited basis with current StateDMI commands. However, all
technical issues have not been resolved and therefore these features are currently not utilized in
production.

3.6.5 StateMod Model Network Editor

The View…Model Network menu item displays the editor window for the StateMod generalized model
network (*.net). This editor is available in StateDMI to make adjustments to the model network before
file generation. It is also available in the StateMod GUI, for small adjustments to the data set. It is
envisioned that the network editor will continue to be used with StateDMI for configuration model
networks and be used to a lesser extent in the StateMod GUI for editing. It is also envisioned that
additional tools will be added to the network editor to allow for more targeted use in StateDMI, and
StateMod GUI, for example to display the return flow locations, and to display the stations that are
referenced in an operating rule.

To use the network editor to adjust an existing model network, use the following basic steps:

1. Select the View…Model Network menu item and select the network (*.net) file to be edited.
2. The network file will be read and displayed in the editor window (see below).
3. Use the editor to add, delete, or move stations (nodes), or change the information associated with

the nodes. Also add annotations for stream names and main titles (see below for more
information).

4. Use the Save XML Network File tool to resave the file. This file can then be used with
ReadXXXStationsFromNetwork() commands when processing data.

5. Repeat any of the steps, as necessary.

Several issues must currently be considered when using the network editor:

1. When the XML file is written, the header contains the last commandsfile that is run. If these
commands contain strings that are prohibited in XML, errors may occur when the network file is
read for processing. In particular, lines of dashes “-----“ are prohibited, even in comments in the
commands file. StateDMI will try to remove offending text when writing the XML file, but
additional cases may arise. The workaround is to edit the XML file and remove the commands
from the header.

2. It is envisioned that an integrated approach can be taken where the network that is opened can be
used in modeling without supplying a file name for the network file. Therefore, some commands
will process the in memory network if it has been opened. This approach is being evaluated.
However, if a command reads a network file during processing and the network display is open,
the network display is not currently automatically refreshed. Although it is envisioned that the
visual representation of the network is fully integrated with commands processing, keeping the
steps separate at this time is probably wise, to avoid confusion. In other words, edit the network
interactively and save the result, and then specify the file name in commands.

 Getting Started - 25 69

 StateDMI Documentation

The following figure shows the network editor after a network file has been read and displayed:

NetworkEditor

Network Editor

The network editor consists of the following areas:

• Tools (top) – initiate actions (e.g., printing), switch mode, edit tools
• Main canvas (middle) – area where editing occurs
• Overview/reference window (lower left) – indicates the current view as a subset of the total

network
• Page properties (lower middle) – the settings used for the network display, if printed
• Node properties (lower right) – the properties of the node that was last selected.

26 - Getting Started 70

StateDMI Documentation

Tools

The tools that are available include the following:

 Print the entire network using the selected layout (page size, orientation, etc.) This is
useful for generation of final products.

 Print the visible network using letter-sized paper. This is useful for troubleshooting or
reviewing specific parts of the network.

 Save the entire network to an image file.

 Save the visible network extent to an image file. This is useful for creating inserts for

documents.

 Save the network to the XML file.

 Refresh the network (redraw).

 Zoom out by 50%, based on the current extent.

 Reset the scale to match the layout.

 Zoom in by 50%, based on the current extent.

 If a node position has changed, allow it to be undone (or redone).

 Pan the visible extent of the network – currently this is the default when clicking on

other than a node.

 Information tool – currently unused. It is envisioned that this tool could be enabled to
show model-related data from a data set.

 Select a feature – currently this is the default when clicking on a node.

Main Canvas

The main canvas displays the network for the current scale and location. Use the tools to scroll, pan, or
zoom to a specific region.

To move an existing node, select it with the mouse and drag to the new location. Use the Undo/Redo
tool if necessary to discard a change.

See sections below for information about adding/moving/deleting nodes and other actions.

Right-clicking on the canvas (not near a node), displays the following menu:

NetworkEditor_Popup

 Getting Started - 27 71

 StateDMI Documentation

The actions for the menu items are described in the following table.

Network Editor Popup Menu Items

Menu Item Action
Add Annotation Add an annotation at the point where the mouse was clicked. See Section

3.6.5.2 below.
Add Link Add a link between nodes. See Section 3.6.5.3 below.
Find Node Display the following dialog, listing all nodes in the network.

NetworkEditor_Popup_FindNode

After selecting a node and pressing OK, the network will scroll so that the
selected node is in the center of the network window.

Shaded Rivers If selected, shade the rivers based on stream order. This is useful to emphasize
upstream to downstream progression.

Draw Text If selected, draw text labels on the network. Text can be turned off if only the
lines need to be printed.

Editable If selected, the network is editable. If it is important to protect a network from
editing, the network can be made non-editable. Editing actions will then be
prohibited in the session.

Show Margins If selected, the page margins are shown, representing an approximate boundary
within which drawing should be limited. It is recommended that network
features not extend into the margins.

Show Half-Inch
Grid

If selected, a grid of lines will be drawn at half-inch intervals. This is useful for
layout purposes.

Snap to Grid If selected, nodes will be restricted to being positioned on grid lines.
Write Network
as List Files

Prompt for a base file name and then write delimited list files for each station
type, to be used as lists of stations with commands files. Each file is listed in
order of upstream to downstream. This recognizes that it can be more generic to
use list files with StateDMI processing, rather than reading from the network
itself. This approach is being evaluated as list files are used. Issues to be
resolved include:

1. DIV and D&W nodes both exist in the network and are written as
separate lists. Therefore two commands may be needed when
processing the lists.

2. Stream gages (FLO nodes) are written as one list and baseflow stations
(FLO and other stations where baseflow is True) are written as separate
lists. Users must decide which list to use.

28 - Getting Started 72

StateDMI Documentation

Overview/Reference Window

The overview window indicates the current extent of the network in the main canvas.

NetworkEditor_Overview

Click anywhere in the overview window to center the main canvas view on that point. Or, drag the
overview window extent box to a new location to reposition the network in the main canvas.

Page Properties

The page properties can be set for multiple layouts using the Page Properties settings.

NetworkEditor_PageProperties

Because one of the primary products related to the network is a printed network diagram, the network is
essentially configured as a document. Therefore, the graphics and text on the diagram are scaled (unlike
some map and graph displays where the text point size is constant even when the data scale changes).

Modelers responsible for data sets should define one or more layouts for the network to allow printing on
common page sizes. Often, there is so much detail on the network that a hard copy can only be printed on
large paper sizes. However, more unreadable versions may be appropriate for review. Once layouts are
defined, only minor changes should be required. It is recommended that the Page Layout name include
the page size and orientation.

Network editing should typically occur using the page layout that will be used in production printouts.
Differences in the relative dimensions of page sizes can cause some scaling in output when switching
between layouts.

 Getting Started - 29 73

 StateDMI Documentation

Node Properties

The node properties area in the network editor shows the node properties for the most recently selected
node.

NetworkEditor_NodeProperties

This is useful when scanning network node information. See the next section for information about
changing node properties.

3.6.5.1 Adding/Deleting/Changing a Node

To add a node, select a node, right click, and press Add Upstream Node. The following dialog is then
used to enter information about the new node (see below for information about changing node properties).

NetworkEditor_Add

Add Node Dialog

To delete a node, select a node, right-click, and press Delete Node. Currently you are not given the
chance to cancel and the Undo/Redo tool does not apply.

A node is moved by selecting the node on the network and dragging to a new location. To move multiple
nodes draw a box around nodes and then move the group. Node properties for an existing node are edited
by selecting a node in the network, right clicking, and pressing the Properties menu item, which will
display a dialog similar to the following:

30 - Getting Started 74

StateDMI Documentation

NetworkEditor_Popup_NodeProperties

Node Properties Dialog

The node types correspond either to StateMod station types or to node types needed for visualization
(e.g., confluences), which are not transferred to StateMod files. Although Makenet allowed Import and
Baseflow node types, these types are no longer supported. Instead, node types correspond to StateMod
station types, with the Other node type used where needed. The Is Baseflow check indicates that Area
and Precipitation information are available for the node – these data are used when processing stream
estimate stations.

3.6.5.2 Adding/Deleting/Changing Annotations

Annotations are text labels that can be drawn on the network. They are typically used for title, author,
revision date, stream names, etc., using font sizes appropriate for the information.

To add an annotation, right-click at a point of interest (not near a node) and select the Add Annotation
menu item, which will display the following dialog:

NetworkEditor_Popup_AddAnnotation

Pressing OK displays the annotation text centered at the point where the mouse was clicked. Once an
annotation is added, it can be moved and its properties can be set by right clicking on the annotation
anchor point and pressing Properties:

 Getting Started - 31 75

 StateDMI Documentation

NetworkEditor_Popup_AnnotationProperties

An annotation can be moved by selecting the annotation and dragging it to the new location.

An annotation can be deleted by right clicking on the annotation and pressing the Delete Annotation
menu item.

3.6.5.3 Adding/Deleting Links

Links are dashed lines between nodes, typically used to represent an operational relationship between
nodes (e.g., to represent carrier ditches). Annotations can be placed next to links to describe the link.

To add a link, right-click on the network (not near a node) and use the Add Link menu item. The
following dialog will be shown:

NetworkEditor_Popup_AddLink

After selecting nodes and pressing OK, the link will be drawn between the nodes as a straight dashed line.

To delete the link, select one of the nodes involved in the link, right-click and select Delete Link. If the
node is involved in more than one link, a list of links will be shown.

3.6.5.4 Printing the Network

To print the entire network, use the tool and follow the procedure described below. To save the

visible network as an image, use the tool and follow the procedure described below. Note that when
printing, curved graphics are drawn using a technique called “anti-aliasing,” where curves are created by
using shades of gray. This may result in graphics that are difficult to read for some page sizes.

When the print tools are used, several dialogs are shown, as required by the Java and Microsoft
environments. Although options are available in various dialogs, the following approach is recommended
(improvements are being evaluated):

32 - Getting Started 76

StateDMI Documentation

1. After selecting one of the tools mentioned above, a Java Page Setup dialog will be shown (this
should be the same regardless of Windows version):

NetworkEditor_Print1

Select the printer of interest by using the Printer… button, as discussed in the next item.

2. A Windows Page Setup dialog will be shown:

NetworkEditor_Print2

Pick a printer that can handle the page size specified in the current network editor page layout and
press OK.

 Getting Started - 33 77

 StateDMI Documentation

3. In the original dialog, select the paper size to match the current network layout and press OK:

NetworkEditor_Print3

4. A Windows Print dialog will be shown:

NetworkEditor_Print4

DO NOT change the printer settings. Simply press OK to finish printing.

34 - Getting Started 78

StateDMI Documentation

3.6.5.5 Saving the Network as an Image

To save the entire network as an image, use the tool and select an image file. To save the visible

network as an image, use the tool and select an image file.

3.7 Commands Menu – Insert Commands for Processing Data Components

The Commands menu lists groups of related commands that can be used to process model data. The
contents of the Commands menu will be appropriate for each model. For example, the top level menu
for StateCU is as follows:

MenuCommands_StateCU

Commands Menu for StateCU

The general guidelines for data and menus are:

• Components are grouped according to physical data and identify a primary component for each

group, which will supply the identifiers and names for individual data objects. For example, for
Climate Stations Data, StateCU has a climate stations file, which has identifiers and names for
climate stations. This component is the primary component in the “Climate Stations Data” group.
The secondary components are time series data at each station.

• As much as possible, groups and components are listed according to dependency and processing
order. For example, for StateCU, the CU Locations Data includes files that use crop types. The
definitions of crop types are stored in a separate file. Because the CU Locations files use the crop
types, and therefore depend on their definitions, crop data are listed before CU Locations data. The
recommended order is not required; however, it provides some structure to creating a data set.

In some cases, selecting a data component menu will display a dialog indicating that the files for that
component cannot be prepared with StateDMI and instead should be prepared with TSTool, a
spreadsheet, or some other software. The intent of the StateDMI menus is to show all data components in
order to help the user create a complete data set; however, other software may be required.

 Getting Started - 35 79

 StateDMI Documentation

The sub-menus for a data component provide specific commands for the file that is being processed.
Each sub-menu lists commands that can be inserted into the Commands list, which can then be processed
to produce output. For example, the menu for Climate Stations is:

MenuCommands_ClimateStations

Commands…Climate Stations Data…Climate Stations Menu

The menus for a specific data component typically include commands to read the list of objects, set
additional information, fill missing data, perform calculations (if appropriate), write output, and check the
data.

To edit an existing command, select the command in the Commands list and then use the right-click Edit
menu or the Edit…Command menu (or double-click on the command). This will display a command
editor specific to the command. See the Commands Reference at the end of this documentation.

To insert a new command at the end of the Commands list:

1. Make sure that no commands are selected in the Commands list (see the title above the
Commands list, which indicates if commands are selected).

2. Select the appropriate command menu and edit the command. After pressing OK in the command
dialog, the command will be inserted at the end of the Commands list.

To insert a new command before an existing command in the Commands list:

1. Select the command in the Commands list to insert before.
2. Select the appropriate command menu and edit the command. After pressing OK in the command

dialog, the command will be inserted before the first selected command in the Commands list.

Chapter 4 Creating StateCU Data Set Files and Chapter 5 Creating StateMod Data Set Files discuss
the sequence of commands that can be used to create model files. The Commands Reference describes
each command and the dialog that is used to edit the command.

36 - Getting Started 80

StateDMI Documentation

3.7.1 General Commands

General commands are listed under the Commands…General – … menus and can be used with any
model.

MenuCommands_General

Commands…General Menu

General Commands – Comments

Single-line comments in commands files start with the # character and can be used to document
commands. Multi-line comments start with the /* characters and end with */ (a convention used in C,
C++, C#, Java, and other programming languages). Multi-line comments are useful for commenting out
blocks of commands. The following dialog is used to edit one or more # comment lines:

c_comment

Comment Dialog

A menu choice is also available to insert a #@readOnly comment – this will alert StateDMI to warn the
user if they try to save the file. This special comment is useful for protecting command files that should
not be edited.

 Getting Started - 37 81

 StateDMI Documentation

General Commands – File Handling

File handling commands are useful for testing and other data management tasks.

The MergeListFileColumns() command is useful when processing list files. For example, the
StateView software can be used to export a list of structures, were the identifiers use separate WD and ID
columns. These columns can then be merged to produce a single WDID column, which can be processed
by StateDMI to create model files.

General Commands – HydroBase

The OpenHydroBase() command programmatically opens a connection to a HydroBase database.
This is useful if data from two databases need to be combined (open a connection, read data, open a new
connection, read from the second database).

General Commands – Logging

The StartLog() command can be used to start a log file, which records processing steps and is useful
in troubleshooting. Saving a specific log file also allows a comparison of data processing at different
times. It is recommended that log files have the same name as the command file, with an optional
date/time and the additional file extension *.log.

The SetDebugLevel() and SetWarningLevel() commands are usually only used in
troubleshooting.

General Commands – Running

The RunCommands() command can be used to run one command file within another. This is useful for
automated testing.

The RunProgram() and RunPython() commands are used to run external programs.

The Exit() command is useful for skipping over the last commands in a workflow, without having to
comment them out.

The SetWorkingDir() command is generally not used but is provided for backward compatibility.

General Commands – Test Processing

Test processing commands are used to validate the StateDMI software and standard workflow processes.
See the Quality Control chapter for more information.

38 - Getting Started 82

StateDMI Documentation

3.8 Run Menu – Running Commands

The Run menu processes the commands in the Commands list. Menu items similar to the following are
also available in a popup menu by right clicking on the Commands list.

MenuRun

Run Menu

The Run…All Commands (create all output) menu will process the commands in the Commands list
and create output if appropriate. For example, the Write*() commands will write the data objects that
are in memory to files.

The Run…All Commands (ignore output commands) menu will process the commands in the
Commands list, ignoring commands that generate output products. This is useful when testing data
processing commands and the (usually) slow write commands can be skipped.

The Run…Selected Commands (create all output) and Run…Selected Commands (create all
output) menus are similar to the above; however, only commands that are selected will be run.

The Run…Cancel Command Processing menu item is enabled if commands are currently being
processed. Use this menu item to cancel processing (e.g., if the commands result in excessive output or
processing time). Processing will stop after the currently running command finishes.

The Run…Command File choice will run a commands file without making the results available in the
interface. This feature is not yet implemented.

The Run…StateCU -version menu runs the StateCU model in order to display its version. This is useful
when troubleshooting problems. This menu item is currently disabled because the StateCU model
does not have a version option.

The Run…StateMod -version menu runs the StateMod model in order to display its version. This is
useful when troubleshooting problems. However, it relies on StateMod being in the PATH, which may
not be the case.

Select the Help…About menu to determine the version of StateCU and StateMod that was used when
developing StateDMI. Changes to the model file formats for other versions may not be recognized in
StateDMI.

 Getting Started - 39 83

 StateDMI Documentation

3.9 Results Menu – View Data Set and Command Results

The Results menu is currently disabled. It is envisioned as a way to view data set components from a
data set or commands processing.

The alternative is to select results in Results area in the bottom of the main window, which provides
access to all results.

3.10 Tools Menu

The Tools menu lists tools that perform useful tasks. Some of the menu items have been added to help
during development.

MenuTools

Tools Menu

The Tools…Administration Number Calculator… menu can be used to convert between the State of
Colorado’s administration numbers and appropriation dates. Administration numbers are used by
StateMod to determine the seniority of water rights.

The Tools…Compare Files menu provides tools for comparing files, in particular used by developers
during testing.

The Tools…List Surface Water Diversions tool can be used to list diversions from a StateMod
diversion stations file that ONLY have surface water supply.

The Tools…List Well Station Right Totals tool can be used to list well station right totals by station.
The Tools…Merge List File Columns tool can be used to interactively select a delimited file and merge
one or more columns to create a new column. This is useful, for example, when merging the WD and ID
columns from StateView exports, to create a WDID column in a list file that is used with modeling. See
also the companion MergeListFileColumns() command.

The Tools…Diagnostics menu displays the diagnostics interface, which is used to set message levels and
view messages as StateDMI processes data. This is useful for tracking data problems, which result in
warnings in display and analysis routines. Specify the level of detail for messages printed to various
output locations by changing the values in the diagnostics window. Higher levels result in more output
and slower performance.

40 - Getting Started 84

StateDMI Documentation

Diagnostics

Diagnostics

Review the messages in the status bar at the bottom of the main window if output is not as expected. For
more information, consult the log file or use the log file viewer (see next section), which contains these
messages as well as more detailed information. The log file is named StateDMI_USER.log and is created
in the logs directory under the StateDMI installation directory. The user name is consistent with your
system login. The View Log File and Launch Log File Viewer buttons will be enabled if the log file has
been created. The former will display the log file in a new window, as described below. The latter will
display the log file in Notepad.

 Getting Started - 41 85

 StateDMI Documentation

Selecting the View Log File button in the Tools…Diagnostics tool or selecting the Tools…Diagnostics
– View Log File menu will display the message log file viewer window:

DiagnosticsViewer

Log File Viewer Window

The log file viewer provides a summary of important warning messages in the top of the window.
Selecting a message and right clicking provides options to go to the message in the main log file (bottom
of the window) or go to the command in the main window.

The log file is useful for reviewing the detailed sequential steps of processing. However, the status
information and check file output created by the WriteCheckFile() command are generally easier to
use when troubleshooting workflow processing.

42 - Getting Started 86

StateDMI Documentation

3.11 Help Menu

The help menu displays the StateDMI version and support information.

MenuHelp

Help Menu

The Help…About StateDMI menu displays the program version number, as shown in the following
figure. Indicate the version number when reporting problems or suggestions.

MenuHelpAbout

Help...About StateDMI Dialog

If Tools…Diagnostics has been used to turn on debugging, then the above dialog will include a button
labeled Show Software/System Details, which can be used to display information about the computer
and StateDMI software. This information may be requested during troubleshooting.

The Help…View Documentation menu displays the software documentation in a web browser. Use the
navigable table of contents to jump to a specific section.

 Getting Started - 43 87

 StateDMI Documentation

This page is intentionally blank.

44 - Getting Started 88

4 Creating StateCU Data Set Files
Version 3.10.00, 2010-04-02

When StateDMI is used to process StateCU data set files, the Commands menu lists the StateCU data
groups (use File…Switch to StateCU if necessary to see the StateCU command menus):

MenuCommands_StateCU

Commands Menu when Used with StateCU Data Set Files

Each item corresponds to a data component group, under which are specific data components (products).
Each data product corresponds to a model input file and is discussed in the following sections. The
General commands are useful at any time (e.g., add comments). The top-level data groups utilize unique
data identifiers shared among the products in the group. For example, the CU Locations Data are all
referenced using a CU Location identifier (e.g., a ditch identifier).

Examples of StateCU model files are not included in this documentation. Refer to the StateCU model
documentation for detailed information about model file formats. Example command files are included
for each product and are taken from existing data sets. Command file logic may vary by data set and
existing data sets should be consulted if available. Data sets typically fall into two categories: those that
include groundwater (e.g., Arkansas, Rio Grande, and South Platte), and those that do not (e.g., Colorado,
Gunnison, San Juan, Yampa, White).

A StateCU analysis estimates water requirement at locations. StateDMI uses general terminology and
refers to the locations as “CU Locations”, although StateCU data sets may focus on structures, climate
stations, or other types of locations. Each CU Location is associated with climate data, crop patterns
(either determined from actual irrigated lands or unit areas), and irrigation practice data. The CDSS data
sets have in the past used the concept of County/HUC (Hydrologic Unit Code) to associate structures with
climate stations. StateDMI uses a more general Region1/Region2 notation (e.g., the actual regions might
be “County” and “” [no Region2]). The command editor dialogs provide information to help explain the
key data that are used to associate the various data components.

4.1 Control Data

StateCU control data (the response and control file) are currently not processed by StateDMI, although
commands may be added in the future. Currently you must create the StateCU control data using a text
editor or copy and modify an existing file.

 StateCU - 1 89

 StateDMI Documentation

4.2 Climate Station Data

Climate station data consists of:

MenuCommands_ClimateStationsData

• Climate stations
• Temperature time series (monthly)
• Frost date time series (yearly)
• Precipitation time series (monthly)

Each of the above data types is stored in a separate file, using the climate station identifier as the primary
identifier. Climate station weights are included in CU Location data. The processing of each data file is
discussed below.

4.2.1 Climate Stations

Climate stations used with StateCU often are selected by reviewing available climate time series data to
find stations with acceptable periods of record. TSTool or other software can be used to identify
acceptable climate stations. The Commands…Climate Stations Data…Climate Stations menus insert
commands to process climate station data:

MenuCommands_ClimateStations

Commands…Climate Stations Data…Climate Stations Data Menu

2 - StateCU 90

StateDMI Documentation

The following table summarizes the use of each command:

Climate Stations Data Commands

Command Description
ReadClimateStationsFromList() Read from a delimited list file the list of climate stations

to be included in the data set.
ReadClimateStationsFromStateCU() Read from a StateCU climate stations file the list of

climate stations to be included in the data set.
ReadClimateStationsFromHydroBase() Currently disabled. Read from HydroBase a list of

climate stations to be included in the data set. It is
envisioned that a county name or some other region
would be supplied to help select climate stations.
Instead, use the
FillClimateStationsFromHydroBase() command.

SetClimateStation() Set the data for, and optionally add, climate stations.
FillClimateStationsFromHydroBase() Fill missing data for defined climate stations, using data

from HydroBase.
FillClimateStation() Fill missing data for defined climate stations, user user-

supplied values.
SortClimateStations() Sort the climate stations by station identifier.
WriteClimateStationsToList() Write defined climate stations to a delimited list file.
WriteClimateStationsToStateCU() Write defined climate stations to a StateCU file.
CheckClimateStations() Check climate stations data for problems.
WriteCheckFile() Write the results of data checks to a file.

An example command file is shown below (adapted from the Colorado cm2006 StateCU data set):

StateDMI commands to create Colorado model climate stations file

Step 1 - read climate stations from a list

ReadClimateStationsFromList(ListFile="climsta.lst",IDCol=1)

Step 2 - fill climate stations from HydroBase

FillClimateStationsFromHydroBase(ID="*")

Step 3 - set/fill additional data not found in HydroBase

SetClimateStation(ID="3016",Region2="14080106",IfNotFound=Warn)
SetClimateStation(ID="1018",Region2="14040106",IfNotFound=Warn)
SetClimateStation(ID="1928",Elevation=6440,IfNotFound=Warn)
SetClimateStation(ID="0484",Region1="MOFFAT",IfNotFound=Add)

Step 4 - write the file

WriteClimateStationsToStateCU(OutputFile="..\StateCU\COclim2006.cli")

Step 5 - check results

CheckClimateStations(ID="*")
WriteCheckFile(OutputFile="CO.cli.StateDMI.check.html")

 StateCU - 3 91

 StateDMI Documentation

4.2.2 Temperature Time Series (Monthly)

Monthly temperature time series are not created by StateDMI. Instead, use TSTool or other software to
create the time series file. An example TSTool command file is shown below (adapted from the Rio
Grande data set). Refer to the TSTool documentation for current software features.

SetOutputPeriod(OutputStart="01/1950",OutputEnd="12/2002")
SetOutputYearType(OutputYearType=Calendar)

2184 - DEL NORTE 2 E
2184.NOAA.TempMean.Month~HydroBase

0130 - ALAMOSA SAN LUIS VALLEY RGNL
0130.NOAA.TempMean.Month~HydroBase
FillRegression(TSID="2184.NOAA.TempMean.Month",IndependentTSID="0130.NOAA.TempMean.Month",
 NumberOfEquations=OneEquation)
perform regress operation on the following

FillRegression(TSID="0130.NOAA.TempMean.Month",IndependentTSID="2184.NOAA.TempMean.Month",
 NumberOfEquations=OneEquation)
TS AlamosaFill = Copy(TSID="0130.NOAA.TempMean.Month",NewTSID="0130.NOAA.TempMean.Month.copy")

0776 - BLANCA
0776.NOAA.TempMean.Month~HydroBase
FillRegression(TSID="0776.NOAA.TempMean.Month",IndependentTSID="AlamosaFill",NumberOfEquations=OneEquation)

1458 - CENTER 4 SSW
1458.NOAA.TempMean.Month~HydroBase
FillRegression(TSID="1458.NOAA.TempMean.Month",IndependentTSID="AlamosaFill",NumberOfEquations=OneEquation)

3541 - GREAT SAND DUNES N M
3541.NOAA.TempMean.Month~HydroBase
FillRegression(TSID="3541.NOAA.TempMean.Month",IndependentTSID="AlamosaFill",NumberOfEquations=OneEquation)

3951 - HERMIT 7 ESE
3951.NOAA.TempMean.Month~HydroBase
FillRegression(TSID="3951.NOAA.TempMean.Month",IndependentTSID="0130.NOAA.TempMean.Month",
 NumberOfEquations=OneEquation)

5322 - MANASSA
5322.NOAA.TempMean.Month~HydroBase
FillRegression(TSID="5322.NOAA.TempMean.Month",IndependentTSID="AlamosaFill",NumberOfEquations=OneEquation)

5706 - MONTE VISTA 2 W
5706.NOAA.TempMean.Month~HydroBase
FillRegression(TSID="5706.NOAA.TempMean.Month",IndependentTSID="AlamosaFill",NumberOfEquations=OneEquation)

7337 - SAGUACHE
7337.NOAA.TempMean.Month~HydroBase
FillRegression(TSID="7337.NOAA.TempMean.Month",IndependentTSID="AlamosaFill",NumberOfEquations=OneEquation)

Free(TSList=LastMatchingTSID,TSID="AlamosaFill")

WriteStateMod(TSList=AllTS,OutputFile="..\StateCU\temp2002.stm")
CheckTimeSeries(CheckCriteria="Missing")
WriteCheckFile(OutputFile="rg2002_tmp.TSTool.check.html")

4 - StateCU 92

StateDMI Documentation

4.2.3 Frost Date Time Series (Yearly)

Yearly frost date time series are not created by StateDMI. Instead, use TSTool or other software to create
the time series file. Note that older versions of TSTool internally treated frost date time series as a special
time series with four frost dates per year. However, this representation could not be handled generically
by TSTool’s data filling and analysis features. Consequently, the current TSTool treats frost dates as
Julian days since the beginning of the year (day 1 = January 1), allowing data to be filled with any of the
standard commands, and time series to be graphed similar to other data. The following TSTool command
file excerpt illustrates how to create the StateCU frost date file (adapted from the Rio Grande data set).
Refer to the TSTool documentation for current software features.

SetOutputPeriod(OutputStart="1950",OutputEnd="2002")

0130 - ALAMOSA SAN LUIS VALLEY RGNL
0130.NOAA.FrostDateL28S.Year~HydroBase
0130.NOAA.FrostDateL32S.Year~HydroBase
0130.NOAA.FrostDateF32F.Year~HydroBase
0130.NOAA.FrostDateF28F.Year~HydroBase

0776 - BLANCA
0776.NOAA.FrostDateL28S.Year~HydroBase
0776.NOAA.FrostDateL32S.Year~HydroBase
0776.NOAA.FrostDateF32F.Year~HydroBase
0776.NOAA.FrostDateF28F.Year~HydroBase

1458 - CENTER 4 SSW
1458.NOAA.FrostDateL28S.Year~HydroBase
1458.NOAA.FrostDateL32S.Year~HydroBase
1458.NOAA.FrostDateF32F.Year~HydroBase
1458.NOAA.FrostDateF28F.Year~HydroBase

FillHistYearAverage(TSList=AllMatchingTSID,TSID="*")

WriteStateCU(OutputFile="..\StateCU\Frost2002.stm")
CheckTimeSeries(CheckCriteria="Missing")
WriteCheckFile(OutputFile="rg2002_frost.TSTool.check.html")

 StateCU - 5 93

 StateDMI Documentation

4.2.4 Precipitation Time Series (Monthly)

Monthly precipitation time series are not created by StateDMI. Instead, use TSTool or other software to
create the time series file. The following TSTool command file excerpt illustrates how to create the
StateCU precipitation time series file (adapted from the Rio Grande data set). Refer to the TSTool
documentation for current software features.

SetOutputPeriod(OutputStart="01/1950",OutputEnd="12/2002")
SetOutputYearType(OutputYearType=Calendar)

0130 - ALAMOSA SAN LUIS VALLEY RGNL
0130.NOAA.Precip.Month~HydroBase

0776 - BLANCA
0776.NOAA.Precip.Month~HydroBase

1458 - CENTER 4 SSW
1458.NOAA.Precip.Month~HydroBase

2184 - DEL NORTE 2 E
2184.NOAA.Precip.Month~HydroBase

3541 - GREAT SAND DUNES N M
3541.NOAA.Precip.Month~HydroBase

3951 - HERMIT 7 ESE
3951.NOAA.Precip.Month~HydroBase

5322 - MANASSA
5322.NOAA.Precip.Month~HydroBase

5706 - MONTE VISTA 2 W
5706.NOAA.Precip.Month~HydroBase

7337 - SAGUACHE
7337.NOAA.Precip.Month~HydroBase

FillHistMonthAverage(TSList=AllTS)

WriteStateMod(TSList=AllTS,OutputFile="..\StateCU\Ppt2002.stm")
CheckTimeSeries(CheckCriteria="Missing")
WriteCheckFile(OutputFile="rg2002_precip.TSTool.check.html")

6 - StateCU 94

StateDMI Documentation

4.3 Crop Characteristics/Coefficients Data

StateCU crop characteristics and coefficients files are small files that provide information about crops,
independent of irrigation practice.

MenuCommands_CropCharacteristicsCoefficientsData

The crop characteristics/coefficients data primary identifier is crop name (type), for example
ALFALFA.TR21. The information after the period is associated with an analysis method. Crop data
may be adjusted for high altitude or other local calibration efforts. The irrigated lands crop data (i.e., the
data in HydroBase) are typically saved as ALFALFA, etc., because these data are independent of the use
of the data. To make the crop names consistent during modeling, it is typical to use a Translate*()
command before writing the data. For example, translate the more generic names to the longer names
before writing the crop pattern time series to a file, specifying ID patterns to translate by location if
necessary. Translate commands are available for data products that include the crop names. In
documentation and software, crop “name”, “type”, and “identifier” are used interchangeably.

4.3.1 Crop Characteristics

Crop characteristics include information about crop types that are used in an analysis, including planting,
harvesting, and root depth data. Although only a few crops are typically used in an analysis in a basin, it
is often convenient to provide information for many crop types. Crop characteristics should be defined
before CU Locations because the crop types are used in the crop pattern time series file associated with
CU Locations.

The Commands…Crop Characteristics/Coefficients…Crop Characteristics menu inserts commands
to process the StateCU crop characteristics file:

MenuCommands_CropCharacterisitcs

 StateCU - 7 95

 StateDMI Documentation

The following table summarizes the use of each command:

Crop Characteristics Commands

Command Description
ReadCropCharacteristicsFromStateCU() Read from a StateCU file the crop

characteristics to include in the data set.
ReadCropCharacteristicsFromHydroBase() Read from HydroBase the crop characteristics

to include in the data set.
SetCropCharacteristics() Set the data for, and optionally add, crop

characteristics data.
TranslateCropCharacteristics() Translate crop characteristics name for specific

modeling conventions, such as locally
calibrated coefficients.

SortCropCharacteristics() Sort the crop characteristics by crop name.
WriteCropCharacteristicsToList() Write defined crop characteristics to a

delimited list file.
WriteCropCharacteristicsToStateCU() Write defined crop characteristics to a StateCU

file.
CheckCropCharacteristics() Check crop characteristics data for problems.
WriteCheckFile() Write the results of data checks to a file.

An example command file is shown below (adapted from the Rio Grande data set).

StartLog(LogFile="Crops_CCH.StateDMI.log")

StateDMI commands to create the Rio Grande Crop Characteristics File

Step 1 - read data from HydroBase

Read the general TR-21 characteristics first and then override with Rio Grande
data.
ReadCropCharacteristicsFromHydroBase(CUMethod="BLANEY-CRIDDLE_TR-21")
ReadCropCharacteristicsFromHydroBase(CUMethod="BLANEY-CRIDDLE_RIO_GRANDE")

Step 2 - adjust crop characteristics if needed
No resets are needed.

Step 3 - write the file

WriteCropCharacteristicsToStateCU(OutputFile="rg2007.cch")

Check the results

CheckCropCharacteristics(ID="*")
WriteCheckFile(OutputFile="Crops_CCH.StateDMI.check.html")

8 - StateCU 96

StateDMI Documentation

4.3.2 Blaney-Criddle Crop Coefficients

Blaney-Criddle crop coefficients estimate crop irrigation water requirement during the year or growing
season, based on reference conditions. For daily (perennial) crop curves, 25 values are required,
corresponding to the days of the year for month start/end and midpoints. For percent of season (annual)
crop curves, 21 values are required, corresponding to 0, 5, …, 100 percent of the growing season. The
Commands…Crop Characteristics/Coefficients…Blaney-Criddle Crop Coefficients menu inserts
commands to process the StateCU Blaney-Criddle crop coefficients file:

MenuCommands_BlaneyCriddle

The following table summarizes the use of each command:

Blaney-Criddle Crop Coefficient Commands

Command Description
ReadBlaneyCriddleFromStateCU() Read from a StateCU file the Blaney-Criddle

coefficient data to include in the data set.
ReadBlaneyCriddleFromHydroBase() Read from HydroBase the Blaney-Criddle coefficient

data to include in the data set.
SetBlaneyCriddle() Set the data for, and optionally add, Blaney-Criddle

coefficient data.
TranslateBlaneyCriddle() Translate crop name in Blaney-Criddle data, for

specific modeling conventions, such as locally
calibrated coefficients.

SortBlaneyCriddle() Sort the Blaney-Criddle data by crop name.
WriteBlaneyCriddleToList() Write defined Blaney-Criddle data to a delimited list

file.
WriteBlaneyCriddleToStateCU() Write defined Blaney-Criddle data to a StateCU file.
CheckBlaneyCriddle() Check Blaney-Criddle data for problems.
WriteCheckFile() Write the results of data checks to a file.

 StateCU - 9 97

 StateDMI Documentation

An example command file is shown below:

StartLog(LogFile="Crops_KBC.StateDMI.log")

StateDMI commands to create the Rio Grande Blaney-Criddle coefficients file

Step 1 - read data from HydroBase

Read the general Blaney-Criddle coefficients first and then override with Rio Grande
data.
ReadBlaneyCriddleFromHydroBase(BlaneyCriddleMethod="BLANEY-CRIDDLE_TR-21")
ReadBlaneyCriddleFromHydroBase(BlaneyCriddleMethod="BLANEY-CRIDDLE_RIO_GRANDE")

Step 3 - write the file

SortBlaneyCriddle(Order=Ascending)
WriteBlaneyCriddleToStateCU(OutputFile="rg2007.kbc")

Check the results

CheckBlaneyCriddle(ID="*")
WriteCheckFile(OutputFile="Crops_KBC.StateDMI.check.html")

4.3.3 Penman-Monteith Crop Coefficients

Penman-Monteith crop coefficients estimate crop irrigation water requirement during one or more growth
stages, with coefficients specified at 10 percent intervals (0… 100 per growth stage). ALFALFA crops
require 33 percent/coefficient pairs (3 growth stages), GRASS_PASTURE requires 11 (1 growth stage),
and all other crops require 22 (2 growth stages). The Commands…Crop
Characteristics/Coefficients…Penman-Monteith Crop Coefficients menu inserts commands to
process the StateCU Penman-Monteith crop coefficients file:

MenuCommands_PenmanMonteith

10 - StateCU 98

StateDMI Documentation

The following table summarizes the use of each command:

Penman-Monteith Crop Coefficient Commands

Command Description
ReadPenmanMonteithFromStateCU() Read from a StateCU file the Penman-Monteith

coefficient data to include in the data set.
ReadPenmanMonteithFromHydroBase() Read from HydroBase the Penman-Monteith

coefficient data to include in the data set.
SetPenmanMonteith () Set the data for, and optionally add, Penman-Monteith

coefficient data.
TranslatePenmanMonteith () Translate crop name in Penman-Monteith data, for

specific modeling conventions, such as locally
calibrated coefficients.

SortPenmanMonteith () Sort the Penman-Monteith data by crop name.
WritePenmanMonteithToList() Write defined Penman-Monteith data to a delimited list

file.
WritePenmanMonteithToStateCU() Write defined Penman-Monteith data to a StateCU file.
CheckPenmanMonteith () Check Penman-Monteith data for problems.
WriteCheckFile() Write the results of data checks to a file.

An example command file is shown below:

StartLog(LogFile="Crops_KPM.StateDMI.log")

StateDMI commands to create the Penman-Monteith crop coefficients file

Step 1 - read data from HydroBase

Read the general ASCE standardized coefficients
ReadPenmanMonteithFromHydroBase(PenmanMonteithMethod="PENMAN-MONTEITH_ALFALFA")

Step 3 - write the file

SortPenmanMonteith (Order=Ascending)
WritePenmanMonteithToStateCU(OutputFile="rg2007.kpm")

Check the results

CheckPenmanMonteith (ID="*")
WriteCheckFile(OutputFile="Crops_KPM.StateDMI.check.html")

4.4 Delay Tables Data

Delay tables data were used previously with StateCU when modeling river depletions. This approach is
no longer used. StateDMI features related to the delay tables data group have been disabled in StateDMI.

 StateCU - 11 99

 StateDMI Documentation

4.5 CU Location Data

The term CU Location is used to define a location where a consumptive use estimate is being determined.
Consumptive use is determined for the following locations:

1. Diversion structures with only surface water supply.
2. Diversion structures with surface and groundwater supply. In this case, the wells are identified as

an aggregate/system by ditch identifiers.
3. Wells or well fields with only groundwater supply. Agricultural locations are typically specified

as an aggregate/system by parcel identifiers. Municipal single wells and well fields can also be
modeled and are often defined as aggregate/systems by well identifiers.

The StateCU model, files, documentation, and interface primarily focus on consumptive use at structures
and terminology is dominated by “structure”. For example, one of the main input files to StateCU is the
structure (.str) file. However, to allow for more general application of StateCU, StateDMI uses the more
general term CU Location in its menus and documentation. The current StateDMI features do focus on
structure locations; however, the design allows for other types of locations. Examples of possible CU
Locations are:

• ditches (diversion structures) and wells
• climate stations
• water district
• county
• parcel of land (e.g., irrigated parcel)
• any location specified by a coordinate

CU Locations are the entry point into several StateCU data set files. Once CU Locations are defined,
other data objects, including crop patterns and irrigation practice, can be defined sequentially. In most
cases, the CU Location identifier (e.g., a structure identifier) is used in related files. Therefore, these
identifiers must be unique and are a primary key in all data processing.

StateCU previously managed CU Location data using county and HUC (Hydrologic Unit Code) identifier
combinations. For example, the StateCU .str file includes fields for county and HUC. These fields can be
treated generically as Region 1 and Region 2 because there is no real limitation to use county and HUC
within StateCU. Therefore, StateDMI uses the terms Region1 and Region2 for these fields. Commands
and the corresponding edit dialogs currently offer options only for county and HUC data but have been
configured to allow future enhancements for other types of regions (for example where Region 1 is
“climate station” and Region 2 is blank). More recent CU modeling is not tied to the County/HUC
convention.

Data associated with CU Locations using the location ID are:

• CU Locations
• Crop pattern time series (yearly)
• Irrigation practice (parameter) time series (yearly)
• Diversion rights – water supply limited analysis only
• Diversion historical time series (monthly) – water supply limited analysis only
• Well Rights – used to limit groundwater acreage
• Well Historical Pumping Time Series – can be limited to well rights

12 - StateCU 100

StateDMI Documentation

The menu to access commands for each data component associated with CU Locations is show below:

MenuCommands_CULocationsData

The following figure illustrates possible ditch and well water supply for parcels.

ParcelSupplyDiagram

Example Supply for Parcels

In this example, two ditches (D1 and D2, each represented with different hatching) provide surface water
supply to the indicated parcels. In some cases, only one ditch provides supply. Between the ditches, both
supply water to shared parcels. Wells can supplement surface water supply (parcels above the river) or
can be the sole supplier of water (lower right) and wells do not need to be physically located on a parcel
to provide supply to the parcel.

In addition to explicit locations (e.g., single ditch), CU Locations may consist of a collection of individual
parts. Currently, two main types of collections are recognized, as historically used in StateMod modeling:

 Aggregate – a group of diversions and/or wells where the water rights in the collection are
aggregated (the original distinct rights are not individually accessible in the data set files).
Aggregation reduces the number of water rights in model files, thereby decreasing the amount of
output and model run times. Aggregation of well rights was used in Rio Grande modeling.

 StateCU - 13 101

 StateDMI Documentation

 System – a group of diversions and/or wells where water rights in the collection are not
aggregated (each right is accessible in the data set files). For example, well systems are used in
the South Platte data set, where individual rights are related to augmentation plans (StateMod
plan stations). Output and model run times increase when individual rights are modeled.

In both cases, StateDMI assumes that the CU Location list includes all locations to be modeled. Any
locations that are aggregates or systems must be defined using the appropriate commands (see
Set*Aggregate() and Set*System() commands below). Diversions are grouped by specifying a
list of the individual ditch identifiers (e.g., D1 in the above figure may be an aggregate of more than one
ditch). Irrigation wells are grouped by indicating the parcel identifiers associated with wells (e.g., W6 –
W10 in the above figure may be grouped into a single location for modeling, using the parcel identifiers
to group the data). Municipal wells can be grouped by well identifier.

Aggregate and system identifier conventions are described in the Introduction chapter. In general,
StateCU data sets should use the same conventions as defined in a related StateMod data set. In
particular, when referencing a well station, use aggregate/system commands for well stations and when
referencing a diversion station, use aggregate/system commands for diversion stations.

14 - StateCU 102

StateDMI Documentation

4.5.1 CU Locations

The Commands…CU Locations Data…CU Locations menu inserts commands to process the CU
Locations (structure) file:

MenuCommands_CULocations

 StateCU - 15 103

 StateDMI Documentation

The following table summarizes the use of each command, in the order of the menu:

CU Location Commands

Command Description
ReadCULocationsFromList() Read from a delimited list file the CU Locations to include in

the data set.
ReadCULocationsFromStateCU() Read from a StateCU structure file the CU Locations to

include in the data set.
ReadCULocationsFromStateMod() Read from a StateMod diversion or well station file the CU

Locations to include in the data set.
SetCULocation() Set data for an existing CU Location or optionally add a new

CU Location.
SetCULocationsFromList() Read and set CU Location data from a delimited list file.
SetDiversionAggregate() For a diversion CU Location, indicate the parts that comprise

an aggregate diversion.
SetDiversionAggregatesFromList() For diversion CU Locations, indicate the parts that comprise

aggregate diversions, using data in a delimited list file.
SetDiversionSystem() For a diversion CU Location, indicate the parts that comprise a

diversion system.
SetDiversionSystemsFromList() For diversion CU Locations, indicate the parts that comprise

diversion systems, using data in a delimited list file.
SetWellAggregate() For a well CU Location, indicate the parts that comprise an

aggregate well.
SetWellAggregatesFromList() For well CU Locations, indicate the parts that comprise

aggregate wells, using data in a delimited list file.
SetWellSystem() For a well CU Location, indicate the parts that comprise a well

system.
SetWellSystemsFromList() For well CU Locations, indicate the parts that comprise well

systems, using data in a delimited list file.
SortCULocation() Sort the CU Locations. This is useful to force consistency

between files.
FillCULocationsFromList() Fill missing CU Location data, using data in a delimited list

file.
FillCULocationsFromHydroBase() Fill missing CU Location data, using data in HydroBase.
FillCULocation() Fill missing CU Location data, using user-supplied data.
SetCULocation
ClimateStationWeights()

Set climate station weight data for a CU Location, using user-
supplied data.

SetCULocationClimateStation
WeightsFromList()

Set climate station weight data for a CU Location, using data
in a delimited list file.

SetCULocationClimateStation
WeightsFromHydroBase()

Set climate station weight data for a CU Location, using data
in HydroBase. Legacy command – not currently used.

FillCULocation
ClimateStationWeights()

Fill climate station weight data for a CU location, using user-
supplied data.

WriteCULocationsToList() Write defined CU Locations data to a delimited list file.
WriteCULocationsToStateCU() Write defined CU Locations data to a StateCU file.
CheckCULocations() Check CU Location data for problems.
WriteCheckFile() Write the results of data checks to a file.

16 - StateCU 104

StateDMI Documentation

An example command file is shown below (from preliminary South Platte Sp2008L data set). Lists of
locations in this case have been generated from the StateMod network (see the StateMod chapter) and
separate lists are maintained for various surface and groundwater locations.

Sp2008L_STR.StateDMI
South Platte Decision Support System
Historic Consumptive Use Model
Structure File (*.str)

Step 1 - Read Structure List File (WDID, Name)

Structure List includes Key Structures from Task 3, Aggregate GW, and Aggregate SW
ReadCULocationsFromList(ListFile="Sp2008L_StructList.csv",IDCol=1,NameCol=3)

Step 2 - Read structure information from HydroBase (Latitude, County, HUC)
FillCULocationsFromHydroBase(ID="*",CULocType=Structure,Region1Type=County,Region2Type=HUC)

Step 3 - Assign AWC values based on Task 57, generate using the CDSS Toolbox

Key Structure AWC Values
SetCULocationsFromList(ListFile="AWC_2001.csv",IDCol=1,AWCCol=2)

GW AGG Structure AWC Values
SetCULocationsFromList(ListFile="AWC_Agg_GW.csv",IDCol=1,AWCCol=2)

SW AGG Structure AWC Values
SetCULocationsFromList(ListFile="AWC_Agg_SW.csv",IDCol=1,AWCCol=2)

Step 4 - Assign Elevation
FillCULocationsFromList(ListFile="Key_Elev.csv",IDCol=1,ElevationCol=3)

Step 5 - Set Demand Structure Information based on Demand Carrier
SetCULocation(ID="0100503_I",Latitude=40.38,Elevation=4533.00,
 Region1="WELD",Region2="10190003",AWC=0.1375,IfNotFound=Warn)

SetCULocation(ID="6400526",AWC=0.1393,IfNotFound=Warn)

Missing values assigned to Diversion Systems
SetCULocation(ID="0100503_D",Latitude=40.28567,Region1="MORGAN",IfNotFound=Warn)
DivSys and Aggregate use weighted latitude from climate station assignments
County and HUC information not assigned to DivSys or Aggregate Structures

Step 6 - Read structure climate weights from list created from the CDSS Toolbox Climate Tool
SetCULocationClimateStationWeightsFromList(ListFile="Climate_2001.csv",IDCol=1,
 StationIDCol=2,TempWtCol=3,PrecWtCol=3)

Step 8 - Fill Key Climate Station

FillCULocationClimateStationWeights(ID="01*",IncludeOrographicTempAdj=False,
IncludeOrographicPrecAdj=False,Weights="0945,1.0,1.0")

Step 7 - Write Structure File
SortCULocations()
WriteCULocationsToStateCU(OutputFile="SP2008L.str")

Check the results
CheckCULocations(ID="*")
WriteCheckFile(OutputFile="SP2008L.str.check.html")

 StateCU - 17 105

 StateDMI Documentation

The following command file illustrates creation of the CU Location file for a basin without groundwater
(taken from Colorado cm2006 data set):

ReadCULocationsFromList(ListFile="cmstrlist.csv",IDCol=1,NameCol=6)
FillCULocationsFromHydroBase(ID="*",CULocType=Structure,Region1Type=County,Region2Type=HUC)
SetCULocationsFromList(ListFile="cmstrlist.csv",IDCol=1,LatitudeCol=2,AWCCol=11)
SetCULocationsFromList(ListFile="plateau.csv",IDCol=1,Region1Col=2)
SetCULocationClimateStationWeightsFromList(ListFile="cowts.csv",
 StationIDCol=1,Region1Col=2,Region2Col=3,TempWtCol=4,PrecWtCol=5)
FillCULocationClimateStationWeights(ID="72_ADC065",Weights="3146,0.68,0.68,3489,0.32,0.32")
FillCULocationClimateStationWeights(ID="36*",Weights="4664,1.0,0,3592,0,1.0")
FillCULocationClimateStationWeights(ID="37*",Weights="2454,1.0,1.0")
FillCULocationClimateStationWeights(ID="38*",Weights="3359,1.0,1.0")
FillCULocationClimateStationWeights(ID="39*",Weights="7031,1.0,1.0")
FillCULocationClimateStationWeights(ID="45*",Weights="7031,1.0,1.0")
FillCULocationClimateStationWeights(ID="50*",Weights="3500,0.5,0.5,4664,0.5,0.5")
FillCULocationClimateStationWeights(ID="51*",Weights="3500,0.5,0.5,4664,0.5,0.5")
FillCULocationClimateStationWeights(ID="52*",Weights="9265,1.0,1.0")
FillCULocationClimateStationWeights(ID="53*",Weights="9265,1.0,1.0")
FillCULocationClimateStationWeights(ID="70*",Weights="0214,1.0,1.0")
FillCULocationClimateStationWeights(ID="72*",Weights="1741,1.0,1.0")
FillCULocationClimateStationWeights(ID="950001",Weights="3146,0.68,0.68,3489,0.32,0.32")
FillCULocationClimateStationWeights(ID="950010",Weights="7031,1.0,1.0")
FillCULocationClimateStationWeights(ID="950011",Weights="7031,1.0,1.0")
FillCULocationClimateStationWeights(ID="950050",Weights="3146,0.68,0.68,3489,0.32,0.32")
WriteCULocationsToStateCU(OutputFile="..\Statecu\cm2006.str",WriteHow=OverwriteFile)
Check the results
CheckCULocations(ID="*")
WriteCheckFile(OutputFile="cm2006.str.StateDMI.check.html")

4.5.2 Crop Pattern Time Series (Yearly)

Crop pattern time series indicate the annual crops and their acreage for each CU Location. The crop
pattern file contains a time series of crop patterns for CU Locations, over the period that is being
modeled. The crop pattern data include crop type names and area associated with the crop for the year. It
is not required that all CU Locations include crops but this is often the case. If a crop is added for a CU
Location in any year, StateDMI will output a value in each year. Consequently, a full time series will be
available for each location/crop combination, even if many years have zeros. It is therefore important to
fill such data appropriately such that missing data (e.g., -999) are removed from output.

The crop characteristics/coefficients data primary identifier is crop name (type), for example
ALFALFA.TR21. The information after the period is associated with an analysis method. Crop data
may be adjusted for high altitude or other local calibration efforts. The irrigated lands crop data are
typically saved as ALFALFA, etc. in HydroBase, because these data are independent of the use of the
data. To make the crop names consistent, use a TranslateCropPatternTS() command before
writing the data. For example, translate the more generic names from HydroBase to the longer names
before writing the crop pattern time series to a file, specifying ID patterns to translate by location if
necessary.

The crop pattern time series file format was originally defined by legacy software in which a total acreage
and fraction by crop is reported. Because the fraction has three significant figures, the resulting acreage
by crop, when computed from the total, is only accurate to 3 significant figures. In current StateDMI
software, the actual copy acreage is used in computations and the total and fraction are written to files
only for information purposes and to retain the historical file format. Consequently, comparing acreage
from old and new files may be slightly different due to the precision issue.

18 - StateCU 106

StateDMI Documentation

The Commands…CU Locations Data…Crop Patterns TS (Yearly) menu inserts commands to process
the crop patterns:

MenuCommands_CropPatternTS

 StateCU - 19 107

 StateDMI Documentation

The following table summarizes the use of each command, in the order of the menu items:

Crop Pattern Time Series Commands

Command Description
SetOutputPeriod() Set the output period for crop pattern time series.
ReadCULocationsFromList() Read CU Locations from a list file. Identifiers

should be specified and other columns may be
needed for data filling.

ReadCULocationsFromStateCU() Read from a StateCU file the CU Locations to
include in the data set.

SetDiversionAggregate() For a diversion CU Location, indicate the parts that
comprise an aggregate diversion.

SetDiversionAggregatesFromList() For diversion CU Locations, indicate the parts that
comprise aggregate diversions, using data in a
delimited list file.

SetDiversionSystem() For a diversion CU Location, indicate the parts that
comprise a diversion system.

SetDiversionSystemsFromList() For diversion CU Locations, indicate the parts that
comprise diversion systems, using data in a delimited
list file.

SetWellAggregate() For a well CU Location, indicate the parts that
comprise an aggregate well.

SetWellAggregatesFromList() For well CU Locations, indicate the parts that
comprise aggregate wells, using data in a delimited
list file.

SetWellSystem() For a well CU Location, indicate the parts that
comprise a well system.

SetWellSystemsFromList() For well CU Locations, indicate the parts that
comprise well systems, using data in a delimited list
file.

CreateCropPatternTSForCULocations() Create empty crop pattern time series data for each
CU Location. The resulting data can be updated with
other commands.

ReadCropPatternTSFromStateCU() Read crop pattern data from a StateCU file and
update the StateDMI information.

SetCropPatternTSFromList() Set crop pattern data from a list file, in order to
supplement data that are not in HydroBase. A list
file should be specified for each year of irrigated
lands data. The data can be processed with
HydroBase data as if they were parcels.

ReadCropPatternTSFromHydroBase() Read crop pattern data from HydroBase.
SetCropPatternTS() Set crop pattern data using user-supplied values.
TranslateCropPatternTS() Change a crop type in crop pattern data.
RemoveCropPatternTS() Remove a specific crop pattern time series.
FillCropPatternTSConstant() Fill missing crop pattern data with a constant value.
FillCropPatternTSInterpolate() Fill missing crop pattern data using interpolation.
FillCropPatternTSRepeat() Fill missing crop pattern data by repeating values.

20 - StateCU 108

StateDMI Documentation

Command Description
FillCropPatternTSUsingWellRights() Fill crop pattern time series using well rights. This is

used to turn off groundwater only parcels back in
time during the early data period. This legacy
command is typically no longer used.

SortCropPatternTS Sort crop pattern time series by location identifier.
WriteCropPatternTSToStateCU() Write defined crop pattern data to a StateCU file.
WriteCropPatternTSToDateValue() Write defined crop pattern data to a DateValue file.
CheckCropPatternTS() Check crop pattern data for problems.
WriteCheckFile() Write the results of data checks to a file.

There are several ways to define crop pattern data in StateDMI:

1. Read a CU Locations file using ReadCULocationsFromStateCU() or
ReadCULocationsFromList() and then read the associated crop patterns from HydroBase
using ReadCropPatternTSFromHydrobase(). This is typically used if irrigated lands
data have been populated in HydroBase and is the standard approach.

2. Read crop patterns from an existing crop patterns time series file using the
ReadCUCropPatternsFromStateCU() command. This is typically only used if an
existing file needs to be adjusted (e.g., by extending the period with fill options).

3. Utilize data that are not in HydroBase by using the SetCropPatternTSFromList()
command. This may be appropriate for new development where data have not yet been loaded
into HydroBase.

Once crop patterns are defined with the above commands, crop patterns for specific CU Locations can be
edited using SetCropPatternTS() and SetCropPatternTSFromList() commands. These
commands can also be used to supply values for specific locations, to be considered when irrigated lands
are processed from a database. For example, acreage can be assigned to a structure that is part of an
aggregate (but which does not have irrigated parcels in the database), and the supplied value will be
included in the aggregate when the irrigated lands from the database are processed. Because determining
crop patterns is a data- and labor-intensive effort, data are not typically available for each year in a
modeling period. Therefore, crop patterns known for specific years are often extended or interpolated for
other years using the FillCropPatternTSRepeat() and
FillCropPatternTSInterpolate() commands. An attempt was made in the Rio Grande to
relate crop patterns to agricultural statistics (crop planting and harvest data); however, this approach
proved to be inaccurate and the more straightforward methods are typically used. Finally, output can be
written using the WriteCropPatternsTSToStateCU() command.

 StateCU - 21 109

 StateDMI Documentation

An example commands file is shown below (from the Colorado cm2006 data set). This illustrates the
major steps in the standard approach.

Step 1 - Set output period and read CU locations
SetOutputPeriod(OutputStart="1950",OutputEnd="2006")
ReadCULocationsFromStateCU(InputFile="..\StateCU\cm2006.str")
Step 2 - Read SW aggregates
SetDiversionSystemFromList(ListFile="colorado_divsys.csv",IDCol=1,NameCol=2,
 PartIDsCol=3,PartsListedHow=InRow)
SetDiversionAggregateFromList(ListFile="colorado_agg.csv",IDCol=1,NameCol=2,
 PartIDsCol=3,PartsListedHow=InRow)
Step 3 - Create *.cds file form and read acreage/crops from HydroBase
CreateCropPatternTSForCULocations(ID="*",Units="ACRE")
ReadCropPatternTSFromHydroBase(ID="*")
Step 4 - Need to translate crops out of HB to include TR21 suffix
Translate all crops from HB to include .TR21 suffix
TranslateCropPatternTS(ID="*",OldCropType="GRASS_PASTURE",NewCropType="GRASS_PASTURE.TR21")
TranslateCropPatternTS(ID="*",OldCropType="CORN_GRAIN",NewCropType="CORN_GRAIN.TR21")
TranslateCropPatternTS(ID="*",OldCropType="ALFALFA",NewCropType="ALFALFA.TR21")
TranslateCropPatternTS(ID="*",OldCropType="SMALL_GRAINS",NewCropType="SPRING_GRAIN.TR21")
TranslateCropPatternTS(ID="*",OldCropType="VEGETABLES",NewCropType="VEGETABLES.TR21")
TranslateCropPatternTS(ID="*",OldCropType="ORCHARD_WO_COVER",NewCropType="ORCHARD_WO_COVER.TR21")
TranslateCropPatternTS(ID="*",OldCropType="ORCHARD_WITH_COVER",NewCropType="ORCHARD_WITH_COVER.TR21")
TranslateCropPatternTS(ID="*",OldCropType="DRY_BEANS",NewCropType="DRY_BEANS.TR21")
TranslateCropPatternTS(ID="*",OldCropType="GRAPES",NewCropType="GRAPES.TR21")
TranslateCropPatternTS(ID="*",OldCropType="WHEAT",NewCropType="SPRING_GRAIN.TR21")
TranslateCropPatternTS(ID="*",OldCropType="SUNFLOWER",NewCropType="SPRING_GRAIN.TR21")
TranslateCropPatternTS(ID="*",OldCropType="SOD_FARM",NewCropType="GRASS_PASTURE.TR21")
Step 5 - Translate crop names
use high-altitude coefficients for structures with more than 50% of irrigated
acreage above 6500 feet
TranslateCropPatternTS(ListFile="cm2005_HA.lst",IDCol=1,OldCropType="GRASS_PASTURE.TR21",
 NewCropType="GRASS_PASTURE.DWHA")
Step 6 - Fill Acreage
Fill SW structure acreage backword from 1999 to 1950
Fill acreage forward for all structures from 2000 to 2006
FillCropPatternTSRepeat(ID="*",CropType="*",FillStart=1950,FillEnd=1993,FillDirection=Backward)
FillCropPatternTSRepeat(ID="*",CropType="*",FillStart=1993,FillEnd=1999,FillDirection=Forward)
FillCropPatternTSRepeat(ID="*",CropType="*",FillStart=2000,FillEnd=2006,FillDirection=Forward)
Step 7 - Write final *.cds file
WriteCropPatternTSToStateCU(OutputFile="..\StateCU\cm2006.cds",WriteCropArea=True)
Check the results
CheckCropPatternTS(ID="*")
WriteCheckFile(OutputFile="cm2006.cds.StateDMI.check.html")

The following command file illustrates how to process crop characteristics in a basin with groundwater
supply (from preliminary South Platte Sp2008L data set). The main difference is that lists of locations are
defined using aggregate/system wells.

Sp2008L_CDS.StateDMI
__

StartLog(LogFile="Sp2008L_CDS.log")
Crop Distribution File (*.cds) for the SPDSS Consumptive Use Model

Step 1 - Set output period and read CU locations
SetOutputPeriod(OutputStart="1950",OutputEnd="2006")
ReadCULocationsFromStateCU(InputFile="..\LocationCU\SP2008L.str")

Step 2 - Read SW aggregates, divsys, demandsys, and GW aggregates

SetDiversionAggregateFromList(ListFile="..\Sp2008L_SWAgg.csv",IDCol=1,NameCol=2,PartIDsCol=3,
 PartsListedHow=InColumn)
SetDiversionSystemFromList(ListFile="..\Sp2008L_DivSys_CDS.csv",IDCol=1,NameCol=2,PartIDsCol=3,
 PartsListedHow=InRow)

22 - StateCU 110

StateDMI Documentation

SetWellSystemFromList(ListFile="..\SP_GWAGG_1956.csv",Year=1956,Div=1,PartType=Parcel,
 IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\SP_GWAGG_1976.csv",Year=1976,Div=1,PartType=Parcel,
 IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\SP_GWAGG_1987.csv",Year=1987,Div=1,PartType=Parcel,
 IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\SP_GWAGG_2001.csv",Year=2001,Div=1,PartType=Parcel,
 IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\SP_GWAGG_2005.csv",Year=2005,Div=1,PartType=Parcel,
 IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)

Step 3 - Create *.cds file form and read acreage/crops from HydroBase
CreateCropPatternTSForCULocations(ID="*",Units="ACRE")
ReadCropPatternTSFromHydroBase(ID="*")

Step 4 - Read well rights and determine gw-only structure acreage in 1950

ReadWellRightsFromStateMod(InputFile="..\Wells\Sp2008L_NotMerged.wer")
FillCropPatternTSUsingWellRights(ID="*",IncludeSurfaceWaterSupply=False,CropType="*",
 FillStart=1950,FillEnd=1955,ParcelYear=1956)

Step 5 -
Fill SW structure acreage backward from 1956 to 1950
Linearly interpolate acreage for all structures between 1956, 1976, 1987, 2001, and 2005
Fill acreage forward for all structures from 2005 to 2006
FillCropPatternTSRepeat(ID="*",CropType="*",FillStart=1950,FillEnd=1956,FillDirection=Backward)
FillCropPatternTSInterpolate(ID="*",CropType="*",FillStart=1956,FillEnd=1976)
FillCropPatternTSInterpolate(ID="*",CropType="*",FillStart=1976,FillEnd=1987)
FillCropPatternTSInterpolate(ID="*",CropType="*",FillStart=1987,FillEnd=2001)
FillCropPatternTSInterpolate(ID="*",CropType="*",FillStart=2001,FillEnd=2005)
FillCropPatternTSRepeat(ID="*",CropType="*",FillStart=2005,FillEnd=2006,FillDirection=Forward)

Step 6 - Set to Missing and Fill primary WDID of Demand Structure = 0
SetCropPatternTS(ID="0100503_D",SetStart=1950,SetEnd=2006,
 CropPattern="ALFALFA,0,CORN_GRAIN.TR21,0,SUGAR_BEETS,0,GRASS_PASTURE,0,VEGETABLES,0,SPRING_GRAIN.TR21,0",
 IrrigationMethod=Flood,SupplyType=Ground,ProcessWhen=Now)
SetCropPatternTS(ID="0100507_D",SetStart=1950,SetEnd=2006,
 CropPattern="ALFALFA,0,CORN_GRAIN.TR21,0,SUGAR_BEETS,0,GRASS_PASTURE,0,VEGETABLES,0,SPRING_GRAIN.TR21,0",
 IrrigationMethod=Flood,SupplyType=Ground,ProcessWhen=Now)
SetCropPatternTS(ID="0100687",SetStart=1950,SetEnd=2006,
 CropPattern="ALFALFA,0,CORN_GRAIN.TR21,0,SUGAR_BEETS,0,GRASS_PASTURE,0,VEGETABLES,0,SPRING_GRAIN.TR21,0",
 IrrigationMethod=Flood,SupplyType=Ground,ProcessWhen=Now)
SetCropPatternTS(ID="0200834",SetStart=1950,SetEnd=2006,
 CropPattern="ALFALFA,0,CORN_GRAIN.TR21,0,SUGAR_BEETS,0,GRASS_PASTURE,0,VEGETABLES,0,SPRING_GRAIN.TR21,0",
 IrrigationMethod=Flood,SupplyType=Ground,ProcessWhen=Now)

SetCropPatternTS(ID="6400511_D",SetStart=1950,SetEnd=2006,
 CropPattern="ALFALFA,0,CORN_GRAIN.TR21,0,SUGAR_BEETS,0,GRASS_PASTURE,0,VEGETABLES,0,SPRING_GRAIN.TR21,0",
 IrrigationMethod=Flood,SupplyType=Ground,ProcessWhen=Now)
Step 7 - No Acreage in HydroBase, Set to Missing = 0
SetCropPatternTS(ID="0100501",SetStart=1950,SetEnd=2006,
 CropPattern="ALFALFA,0,CORN_GRAIN.TR21,0,SUGAR_BEETS,0,GRASS_PASTURE,0,VEGETABLES,0,SPRING_GRAIN.TR21,0",
 IrrigationMethod=Flood,SupplyType=Ground,ProcessWhen=Now)
SetCropPatternTS(ID="0100513",SetStart=1950,SetEnd=2006,
 CropPattern="ALFALFA,0,CORN_GRAIN.TR21,0,SUGAR_BEETS,0,GRASS_PASTURE,0,VEGETABLES,0,SPRING_GRAIN.TR21,0",
 IrrigationMethod=Flood,SupplyType=Ground,ProcessWhen=Now)
SetCropPatternTS(ID="0100829",SetStart=1950,SetEnd=2006,
 CropPattern="ALFALFA,0,CORN_GRAIN.TR21,0,SUGAR_BEETS,0,GRASS_PASTURE,0,VEGETABLES,0,SPRING_GRAIN.TR21,0",
 IrrigationMethod=Flood,SupplyType=Ground,ProcessWhen=Now)

SetCropPatternTS(ID="6400519",SetStart=1950,SetEnd=2006,
 CropPattern="ALFALFA,0,CORN_GRAIN.TR21,0,SUGAR_BEETS,0,GRASS_PASTURE,0,VEGETABLES,0,SPRING_GRAIN.TR21,0",
 IrrigationMethod=Flood,SupplyType=Ground,ProcessWhen=Now)
Step 8 - Translate crop names to Locally Calibrated based on structure location and elevation
Source: Translate.xls (20070809)
Alfalfa
TranslateCropPatternTS(ID="*",OldCropType="ALFALFA",NewCropType="ALFALFA.TR21")
TranslateCropPatternTS(ListFile="SP2008_CCLP.csv",IDCol=1,OldCropType="ALFALFA.TR21",
 NewCropType="ALFALFA.CCLP")
TranslateCropPatternTS(ListFile="SP2008_CCUP.csv",IDCol=1,OldCropType="ALFALFA.TR21",
 NewCropType="ALFALFA.CCUP")

 StateCU - 23 111

 StateDMI Documentation

CORN_GRAIN
TranslateCropPatternTS(ID="*",OldCropType="CORN",NewCropType="CORN_GRAIN.TR21")
TranslateCropPatternTS(ListFile="SP2008_CCLP.csv",IDCol=1,OldCropType="CORN_GRAIN.TR21",
 NewCropType="CORN_GRAIN.CCLP")
TranslateCropPatternTS(ListFile="SP2008_CCUP.csv",IDCol=1,OldCropType="CORN_GRAIN.TR21",
 NewCropType="CORN_GRAIN.CCUP")
DRY_BEANS
TranslateCropPatternTS(ID="*",OldCropType="DRY_BEANS",NewCropType="DRY_BEANS.TR21")
TranslateCropPatternTS(ListFile="SP2008_CCLP.csv",IDCol=1,OldCropType="DRY_BEANS.TR21",
 NewCropType="DRY_BEANS.CCLP")
TranslateCropPatternTS(ListFile="SP2008_CCUP.csv",IDCol=1,OldCropType="DRY_BEANS.TR21",
 NewCropType="DRY_BEANS.CCUP")
GRASS_PASTURE
TranslateCropPatternTS(ID="*",OldCropType="GRASS_PASTURE",NewCropType="GRASS_PASTURE.TR21")
TranslateCropPatternTS(ListFile="SP2008_CCLP.csv",IDCol=1,OldCropType="GRASS_PASTURE.TR21",
 NewCropType="GRASS_PASTURE.CCLP")
TranslateCropPatternTS(ListFile="SP2008_CCUP.csv",IDCol=1,OldCropType="GRASS_PASTURE.TR21",
 NewCropType="GRASS_PASTURE.CCUP")
TranslateCropPatternTS(ListFile="SP2008_DWHA_OroAdj.csv",IDCol=1,OldCropType="GRASS_PASTURE.TR21",
 NewCropType="GRASS_PASTURE.DWHA")
SMALL_GRAINS
TranslateCropPatternTS(ID="*",OldCropType="SMALL_GRAINS",NewCropType="SPRING_GRAIN.TR21")
TranslateCropPatternTS(ListFile="SP2008_CCLP.csv",IDCol=1,OldCropType="SPRING_GRAIN.TR21",
 NewCropType="SPRING_GRAIN.CCLP")
TranslateCropPatternTS(ListFile="SP2008_CCUP.csv",IDCol=1,OldCropType="SPRING_GRAIN.TR21",
 NewCropType="SPRING_GRAIN.CCUP")
SUGAR_BEETS
TranslateCropPatternTS(ID="*",OldCropType="SUGAR_BEETS",NewCropType="SUGAR_BEETS.TR21")
TranslateCropPatternTS(ListFile="SP2008_CCLP.csv",IDCol=1,OldCropType="SUGAR_BEETS.TR21",
 NewCropType="SUGAR_BEETS.CCLP")
TranslateCropPatternTS(ListFile="SP2008_CCUP.csv",IDCol=1,OldCropType="SUGAR_BEETS.TR21",
 NewCropType="SUGAR_BEETS.CCUP")
SUGAR_BEETS
TranslateCropPatternTS(ID="*",OldCropType="VEGETABLES",NewCropType="VEGETABLES.TR21")
SOD_FARM
TranslateCropPatternTS(ID="*",OldCropType="SOD_FARM",NewCropType="BLUEGRASS.POCHOP")
ORCHARD_WO_COVER
TranslateCropPatternTS(ID="*",OldCropType="ORCHARD_WO_COVER",NewCropType="ORCHARD_WO_COVER.TR21")

Step 9 - Write final *.cds file
WriteCropPatternTSToStateCU(OutputFile="..\StateCU\Historic\SP2008L.cds",WriteHow=OverwriteFile)
WriteCropPatternTSToStateCU(OutputFile="SP2008L.cds",WriteHow=OverwriteFile)

24 - StateCU 112

StateDMI Documentation

4.5.3 Irrigation Practice Time Series (Yearly)

The irrigation practice (parameter) time series file contains CU Location parameter data that are available
as yearly time series. These data are also used as input to StateMod for use in groundwater and variable-
efficiency modeling. The data in the file include the following for each year:

• Maximum delivery efficiencies, which may be specified with SetIrrigationPracticeTS() or

SetIrrigationPracticeTSFromList() commands.
• Maximum flood irrigation efficiencies, which may be specified with

SetIrrigationPracticeTS() or SetIrrigationPracticeTSFromList(). This
applies to low efficiency irrigation methods such as flood and furrow.

• Maximum sprinkler irrigation efficiencies, which may be specified with
SetIrrigationPracticeTS() or SetIrrigationPracticeTSFromList(). This
applies to high efficiency irrigation methods such as sprinkler and drip.

• Acres irrigated from surface water only with flood irrigation (low efficiency irrigation). Data are
typically read from HydroBase and then estimated with interpolation or repeat. See the example
below.

• Acres irrigated from surface water only with sprinkler irrigation (high efficiency irrigation). Data are
typically read from HydroBase and then estimated with interpolation or repeat. See the example
below.

• Acres irrigated that have ground water supply (may also have surface water supply), flood irrigation
(low efficiency irrigation). Data are typically read from HydroBase and then estimated with
interpolation or repeat. See the example below.

• Acres irrigated that have ground water supply (may also have surface water supply), sprinkler
irrigation (high efficiency irrigation). Data are typically read from HydroBase and then estimated
with interpolation or repeat. See the example below.

• Maximum monthly pumping (ACFT), determined from summing the well yields/decrees for the wells
associated with the location, using the permit and right dates to turn on wells. The data are usually
processed with the SetIrrigationPracticeTSPumpingMaxToWellRights() command.

• Groundwater use mode, typically changed from defaults using the
SetIrrigationPraticeTS() command.

• Total acres for location. These numbers should be an exact duplicate of the total acreage from the
crop pattern time series. See the
SetIrrigationPracticeTSTotalAcreageFromCropPatternTSTotalAcreage()
command.

The definition of CU Locations as well/diversion system/aggregate is important because the logic to
process each type of location is different. The only way for StateDMI to know whether a CU location
is groundwater only is to check for an aggregate/system that is specified as a list of parcels. This is
because CU Locations data in the StateCU files have no indicator of whether a location is a diversion,
well or diversion supplemented by wells. This information could be determined from the irrigation
practice file; however, creating this file is the subject of this section and the file is not available as input!

Because the irrigation practice time series file contains multiple time series, the
CreateIrrigationPracticeTSForCULocations() command is used to create blank time
series for each CU location, each filled with missing data. Appropriate
SetIrrigationPracticeTS*() commands can then be used to define data values. Fill commands
can be used to fill in missing values during the output period.

 StateCU - 25 113

 StateDMI Documentation

The crop pattern time series file should have been previously created and is utilized as the “baseline” for
acreage by supplying the total acreage. The total acreage is maintained during irrigation practice data
filling, adjusting acreage parts as appropriate. General guidelines on setting acreage, as implemented by
commands discussed in this section, are as follows:

1. Crop pattern time series total acreage is relied on for the total acreage. Where inconsistencies
occur (e.g., groundwater acres are higher than total acres), the crop pattern total takes precedence.

2. Groundwater acreage takes precedence next because of data availability for groundwater supply
for parcels (well to parcel relationships). Total groundwater acreage is made consistent with the
total acreage, and may cause a cascade of acreage adjustments described in following items. In
cases where there is no groundwater supply, groundwater acreage is zero and surface water
acreage takes precedence.

a. Groundwater acreage irrigated by sprinklers takes precedence over flood irrigation, based
on irrigated lands irrigation method identification.

b. Groundwater acreage irrigated by flood is the remainder within the groundwater acreage.
3. Surface water only acreage (no groundwater supply) is set to total acres minus groundwater

supply acres.
a. Surface water acreage irrigated by sprinklers takes precedence over flood irrigation,

based on irrigated lands irrigation method identification.
b. Surface water acreage irrigated by flood irrigation is the remainder within the surface

water only acreage.

Consequently, the following acreage relationships are maintained, and are used at checks at various
locations during processing:

Total = Groundwater + SurfaceOnly

Total = (GroundwaterOnlySprinkler + GroundwaterOnlyFlood) + (SurfaceOnlySprinkler + SurfaceOnlyFlood)

The above logic is necessary to make the solution of acreage terms determinate and may result in a
cascade of acreage adjustments as values are set. If missing values remain after processing, it is
necessary to utilize more data to set observations (e.g., using well rights to limit acreage in the early part
of the period), or to use fill commands to fill gaps (which will result in the cascade of calculations
described above). During initial data set development, it may be useful to implement one command at a
time and review the results, studying the impacts of each command in filling in gaps.

26 - StateCU 114

StateDMI Documentation

The Commands… CU Locations Data…Irrigation Practice TS (Yearly) menu inserts commands to
process the StateCU irrigation practice file:

MenuCommands_IrrigationPracticeTS

 StateCU - 27 115

 StateDMI Documentation

The following table summarizes the use of each command:

Irrigation Practice Time Series Commands

Command Description
SetOutputPeriod() Set the output period for irrigation practice time series.
ReadCULocationsFromList() Read CU Locations from a list file. Identifiers should be

specified and other columns may be needed for data
filling.

ReadCULocationsFromStateCU() Read from a StateCU file the CU Locations to include in
the data set.

SetDiversionAggregate() For a diversion CU Location, indicate the parts that
comprise an aggregate diversion.

SetDiversionAggregateFromList() For diversion CU Locations, indicate the parts that
comprise aggregate diversions, using data in a delimited
list file.

SetDiversionSystem() For a diversion CU Location, indicate the parts that
comprise a diversion system.

SetDiversionSystemFromList() For diversion CU Locations, indicate the parts that
comprise diversion systems, using data in a delimited list
file.

SetWellAggregate() For a well CU Location, indicate the parts that comprise
an aggregate well.

SetWellAggregateFromList() For well CU Locations, indicate the parts that comprise
aggregate wells, using data in a delimited list file.

SetWellSystem() For a well CU Location, indicate the parts that comprise a
well system.

SetWellSystemFromList() For well CU Locations, indicate the parts that comprise
well systems, using data in a delimited list file.

CreateIrrigationPracticeTS
ForCULocations()

Create empty irrigation practice time series data for each
CU Location. The resulting data can be updated with
other commands.

ReadIrrigationPracticeTS
FromStateCU()

Read irrigation practice time series data from a StateCU
file.

ReadIrrigationPracticeTS
FromHydroBase()

Read irrigation practice acreage values from HydroBase.

ReadIrrigationPracticeTSFromList() Read irrigation practice time series data from a list,
optionally to combine with HydroBase data.

ReadCropPatternTSFromStateCU() Read crop pattern time series from a StateCU file, in order
to set the acreage total in the irrigation practice time
series.

SetIrrigationPracticeTS
TotalAcreage
ToCropPatternTSTotalAcreage()

Set the irrigation practice total acreage to the crop pattern
total acreage. This should be done after reading acreage
data from HydroBase and before any other acreage filling
occurs because the total is used as a check and is
maintained in final results.

SetIrrigationPracticeTSPumpingMax
UsingWellRights()

Set the irrigation practice pumping maximum time series
to well rights. See also
ReadWellRightsFromStateMod().

28 - StateCU 116

StateDMI Documentation

Command Description
SetIrrigationPracticeTSSprinkler
AcreageFromList()

Set the irrigation practice sprinkler acreage time series
from a list file.

SetIrrigationPracticeTS() Set irrigation practice data using user-supplied values.
SetIrrigationPracticeTSFromList() Set irrigation practice data from a delimited list file.
ReadWellRightsFromStateMod() Read a StateMod well rights file, for use with

SetIrrigationPracticeTSPumpingMax
UsingWellRights()and
FillIrrigationPracticeTS().

FillIrrigationPracticeTS
UsingWellRights()

Fill the irrigation practice acreage time series using well
rights. This is only applied to lands with groundwater
supply and is used in the early data period.

FillIrrigationPracticeTS
Interpolate()

Fill missing irrigation practice data using interpolation.

FillIrrigationPracticeTSRepeat() Fill missing irrigation practice data by repeating values.
SortIrrigationPracticeTS() Sort irrigation practice time series by location identifier.
WriteIrrigationPracticeTS
ToDateValue()

Write defined irrigation practice time series to a
DateValue file. This is useful if the data are to be used
with the TSTool software.

WriteIrrigationPracticeTS
ToStateCU()

Write defined irrigation practice time series to a StateCU
file.

CheckIrrigationPracticeTS() Check crop pattern data for problems.
WriteCheckFile() Write the results of data checks to a file.

The following example command file illustrates creating the irrigation practice file in a basin where
groundwater supply is not included (from Colorado cm2006 data set):

Step 1 - Set output period and read CU locations from structure file
SetOutputPeriod(OutputStart="1950",OutputEnd="2006")
ReadCULocationsFromStateCU(InputFile="..\StateCU\cm2006.str")
Step 2 - Read SW aggregates
SetDiversionSystemFromList(ListFile="colorado_divsys.csv",IDCol=1,NameCol=2,
 PartIDsCol=3,PartsListedHow=InRow)
SetDiversionAggregateFromList(ListFile="colorado_agg.csv",IDCol=1,NameCol=2,
 PartIDsCol=3,PartsListedHow=InRow)
Step 3 - Create form for *.ipy file
CreateIrrigationPracticeTSForCULocations(ID="*")
Step 5 - set max flood and surface water efficiencies and GWmode - NOT in HydroBase
Set Max SW Eff = 1.0
SetIrrigationPracticeTS(ID="*",SurfaceDelEffMax=1.0,FloodAppEffMax=.60,SprinklerAppEffMax=.80,
 PumpingMax=0,GWMode=2)
SetIrrigationPracticeTSFromList(ListFile="cmstrlist.csv",ID="*",SetStart=1950,
 SetEnd=2006,IDCol="1",SurfaceDelEffMaxCol="7",FloodAppEffMaxCol="8",SprinklerAppEffMaxCol="9")
Step 6 - Read category acreage from HydroBase
ReadIrrigationPracticeTSFromHydroBase(ID="*",Year="1993,2000",Div="5")
Step 8 - Read total acreage from *.cds file and Set total for *.ipy file
ReadCropPatternTSFromStateCU(InputFile="..\StateCU\cm2006.cds")
SetIrrigationPracticeTSTotalAcreageToCropPatternTSTotalAcreage(ID="*")
Step 9 - Fill all land use acreage
Fill groundwater acreage first
Fill surface water sprinkler and flood 1950-2006
Fill ground water sprinkler and flood 1950-2006
Step 9a - estimate total GW and total SW
FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-
GroundWater",FillStart="1950",FillEnd="1993",FillDirection="Backward")
FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-
GroundWater",FillStart="1993",FillEnd="1999",FillDirection="Forward")
FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-
GroundWater",FillStart="2000",FillEnd="2006",FillDirection="Forward")
Step 9b - fill remaining irrigation method values

 StateCU - 29 117

 StateDMI Documentation

FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-
SurfaceWaterOnlySprinkler",FillStart="1950",FillEnd="1993",FillDirection="Backward")
FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-
SurfaceWaterOnlySprinkler",FillStart="1993",FillEnd="1999",FillDirection="Forward")
FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-
SurfaceWaterOnlySprinkler",FillStart="2000",FillEnd="2006",FillDirection="Forward")
FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-
GroundWaterSprinkler",FillStart="1950",FillEnd="1993",FillDirection="Backward")
FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-
GroundWaterSprinkler",FillStart="1993",FillEnd="1999",FillDirection="Forward")
FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-
GroundWaterSprinkler",FillStart="2000",FillEnd="2006",FillDirection="Forward")
Step 10 - Write final ipy file
WriteIrrigationPracticeTSToStateCU(OutputFile="..\StateCU\cm2006.ipy")
Check the results
CheckIrrigationPracticeTS(ID="*")
WriteCheckFile(OutputFile="cm2006.ipy.StateDMI.check.html")

An example command file that considers groundwater is shown below (from Rio Grande data set):

StartLog(LogFile="LocationCU_IPY.StateDMI.log")

LocationCU_Ipy.StateDMI
Used for all three scenarios:
1. rg2007 Division 3
2. rg2007_SW Division 3 plus New Mexico
3. rg2007_GW Ground Water Basin Only

rrb 2007/10/09; Revised rgdssall_2007.csv = rgdssall_STR.csv
to add the following based on new URF coverage
27URF28
20URF00
24URF00
24IRF00
35URF00
26URF21

DOES INCLUDE 7 structures in New Mexico (90*).
These are:
ID="90ACEQM",Name="Acequia Madre, NM")
ID="90AMALIA",Name="Amalia Area")
ID="90CERRO",Name="Cerro and Association")
ID="90CERTO",Name="Cerrito Canal")
ID="90METRJ",Name="ME Trujillo")
ID="90PAPEN",Name="Plaza Arriba and Penasquita")
ID="90PDMD",Name="Plaza Del Media")

rrb 2007/09/18; File provided by Sam via Email on 9/19/2007. Revised as follows:

Revised to exclude 2002 data until Agro does additional analysis
Revised NoGIS_1936 to exclude the following structures already
in the 1936 coverage per Sam Email on 9/19.
Reset Taos No 3 (220639) because it sold in 1974
Removed extra output include by SAM
Revised sprinkler file from sprink_Acreage.csv to
Sprink_Acreage_2007.csv to get include 2003-2005 data

rrb 2007/08/07; Revised Ditches with Recharge decrees to use GW method 3 from method 1
rrb 2007/06/27; Comment out Excelsior (200627) so that it uses SW first
rrb 2007/06/27; Add San Luis Valley (200829) to use GW first

rrb 2007/06/18; Copied from Sam via FTP per Email 6/19/2007.
rrb 2007/06/18; Revised to exclude 2002 until questions answered by Agro

rrb 2007/06/20; Added 2002 back in because of the following enhancement
rrb 2007/06/20; To be consistent between years and the URF coverage

30 - StateCU 118

StateDMI Documentation

Revised GW only lands from:
Nosurf_1936.csv to 1936_GWonly_Agg.csv
Nosurf_1998.csv to 1998_GWonly_Agg.csv
Nosurf_2002.csv to 2002_GWonly_Agg.csv
__
Step 1 - read locations
Read locations with irrigation from a list file produced with the STR file

ReadCULocationsFromList(ListFile="rgdssall_STR.csv",IDCol=1,NameCol=2,LatitudeCol=3,
 ElevationCol=4,Region1Col=5,Region2Col=6,AWCCol=7)
__
Step 2 - define aggregates and systems
Diversions are collections using a list of WDIDs, and the list of IDs is
constant through the model period.
Aggregates will result in well rights being aggregated.
Systems will be modeled with all well rights (no aggregation).
Well-only lands are collections using a list of parcel identifiers, and
the lists are specified for each year where data are available because the
parcel identifiers change from year to year.

Diversions with and without groundwater supply...
SetDiversionAggregateFromList(ListFile="..\Diversions\rgTW_divaggregates.csv",
 IDCol=1,PartIDsCol=2,PartsListedHow=InRow)

SetDiversionSystemFromList(ListFile="rg2007_divsystems_Acres.csv",IDCol=1,
 PartIDsCol=2,PartsListedHow=InRow)

Wells with groundwater only supply..
SetWellSystemFromList(ListFile="..\Wells\1936_GWonly_agg.csv",Year=1936,Div=3,PartType=Parcel,IDCol=1,
 PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\Wells\1998_GWonly_agg.csv",Year=1998,Div=3,PartType=Parcel,IDCol=1,
 PartIDsCol=2,PartsListedHow=InColumn)
__
Step 3 - create irrigation practice time series...
Specify a start of 1936 to use 1936 data in filling.
Only 1950 to 2005 will be output at the end.
The createIrrigationPracticeTSForCULocations() command creates empty time
series for each location, so that they can be manipulated with following
commands.

SetOutputPeriod(OutputStart="1936",OutputEnd="2005")
CreateIrrigationPracticeTSForCULocations(ID="*")
__
Step 4 - fill/set data that are straightforward to set

Step 4a - set efficiency limits for all structures.
These values are not in HydroBase.
Question - where do these come from? StateCU? Circular?

setIrrigationPracticeTSFromList(ListFile="eff.csv",IDCol="1",SurfaceDelEffMaxCol="2",FloodAppEffMaxCol="3",
 SprinklerAppEffMaxCol="4")
SetIrrigationPracticeTSFromList(ListFile="eff_2007.csv",ID="*",IDCol="1",SurfaceDelEffMaxCol="2",
 FloodAppEffMaxCol="3",SprinklerAppEffMaxCol="4")

Step 4b - set the GWMode
The default is mutual ditch (GWMode=2).
Set GWMode for structures using the maximum supply mode (GWMode=1).
Does this have any impact on the order of importance of acreage below?

SetIrrigationPracticeTS(ID="200812",GWMode=3)
SetIrrigationPracticeTS(ID="200631",GWMode=3)
SetIrrigationPracticeTS(ID="200798",GWMode=3)
SetIrrigationPracticeTS(ID="200829",GWMode=3)
__
Step 5 - set the pumping maximum for all locations using well rights

Set the maximum well pumping to well water rights from the StateMod merged
rights, which contains merged rights from the multiple years of irrigated lands.
The number of days per month (30.4) is specified to convert CFS to AF/M and
agrees with the data processing done in Phase 4.
The full period will be set, including zeros at the beginning if no well

 StateCU - 31 119

 StateDMI Documentation

rights are available.
Locations that only have surface water (no well rights) will be set to zero
throughout the set period.
ReadWellRightsFromStateMod(InputFile="..\Wells\rg2007.wer",Append=False)
SetIrrigationPracticeTSPumpingMaxUsingWellRights(ID="*",IncludeSurfaceWaterSupply=True,
 IncludeGroundwaterOnlySupply="True",NumberOfDaysInMonth=30.4)
__
Step 6 - read the 1936 and 1998 Acreage/IrrigationMethod/SupplyType data

Step 6a - provide supplemental data to be used - not in HydroBase

SetIrrigationPracticeTSFromList(ListFile="..\Crops\NoGIS_1998.csv",ID="*",SetStart=1998,
 SetEnd=1998,IDCol="1",AcresTotalCol="3")
SetIrrigationPracticeTSFromList(ListFile="..\Crops\NoGIS_1936.csv",ID="*",SetStart=1936,
 SetEnd=1936,IDCol="1",AcresTotalCol="3")

Step 6b - read the data from HydroBase

Read 1936 and 1998 irrigated parcel data (area, irrigation method, supply
type[groundwater or not]) for each location.

After this step:
1. All acreage values for 1936 and 1998 will be set.
2. All other years will be missing.

ReadIrrigationPracticeTSFromHydroBase(ID="*",Year="1936,1998",Div="3")
__
Step 7 - read the crop pattern total acreage and set as the IPY total acreage

Step 7a - read CDS total acreage and set in IPY
The CDS total is used in all cases for the full period - include 1936 to
facilitate data checks and review trends. The extreme year 2002 is
ommitted so as to not impact data filling at the end of the period. It is
read at the end of processing and superimposed on the results.
The period 1950+ is written at the end.

After this step:
1. All acreage values for 1936 and 1998 will be set.
2. All other years will be missing.
3. Total acreage will be set for the entire period.

ReadCropPatternTSFromStateCU(InputFile="..\Crops\rg2007_With1936.cds")
SetIrrigationPracticeTSTotalAcreageToCropPatternTSTotalAcreage(ID="*",SetStart=1936,SetEnd=2005)
__
Step 8 - fill groundwater acreage time series

Step 8a - first limit the groundwater acreage using well rights

Fill the groundwater acreage data prior to 1998 using the 1998 parcels
and associated water rights.
Turn off parcels when a water right is not available for
the year. This uses the water right file before it is merged for
multiple years because the unmerged 1998 rights are needed (therefore
the water rights file from max pumping CANNOT be reused here).

After this step:
1. All groundwater acreage prior to 1998 will have been estimated by using
the 1998 well data. The irrigation method will therefore be controlled
by the 1998 data (This may result in overestimating sprinkler acres
prior to 1970, before which sprinkler acreage should be zero) and will
need to be further refined below.
2. Surface water only total acreage will have been estimated for all
locations as Total - GW.
3. Surface water acreage by irrigation method will have been set to zero
for groundwater only locations. For other locations additional
processing will occur below (from user-supplied sprinkler data and/or
interpolate/repeat of irrigation method time series).

ReadWellRightsFromStateMod(InputFile="..\Wells\rg2007_NotMerged.wer",Append=False)
FillIrrigationPracticeTSAcreageUsingWellRights(ID="*",IncludeSurfaceWaterSupply=True,
 IncludeGroundwaterOnlySupply="True",FillStart=1937,FillEnd=1997,ParcelYear=1998)

32 - StateCU 120

StateDMI Documentation

__
Step 8b - fill the groundwater total acres for years that could not be
set from well rights.

Since 1998 was used as the year for well rights, all years up to and
including 1998 will have groundwater total acres set. This will also
have resulted in surface water only total acres being set. Therefore,
just repeat the 1998 values forward in time to the end of the period.
Fill each irrigation method since the values will be set in 1998 and the
information needs to be retained. The groundwater total acres will be
computed from these values, and consequently the surface water total will
be computed.

After this step:
1. Groundwater total acreage will be set for all locations for the full
period.
2. Groundwater acreage by irrigation method will still be missing for
the years filled in this step, unless the groundwater total was zero,
in which case the irrigation method parts will also be zero. See
the step below to use RCWCD data to fill the irrigation method time
series.
3. Surface water only total acreage time series will be computed as
Total - GW acres.
4. Surface water only acreage by irrigation method will still be missing
in some cases until the RCWCD is read below and/or repeat/interpolation
of irrigation method time series occurs below.
Filling the total acres is NOT NORMALLY NEEDED. However, this will
fill in the 2002 data so that when groundwater acreage parts are set, they will
be able to compare and adjust to the total. Filling over 2002 is needed to
complete the standard process but 2002 will be superimposed on the end.

FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-GroundWaterFlood",
 FillStart="1998",FillEnd="2005",FillDirection="Forward")
FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-GroundWaterSprinkler",
 FillStart="1998",FillEnd="2005",FillDirection="Forward")
__
Step 8c - use RGWCD sprinkler data to adjust irrigation method
The sprinkler acreage in the list file input to the command below should be filled for the
period 1950 to 2005, interpolating between observed data and carried
forward from 1998 to 2005. This file indicates only sprinkler acreage
but not whether the acreage is for groundwater or surface-water only.
The above commands have focused on resolving groundwater acreage
total, utilizing 1998 data to determine whether FLOOD or SPRINKLER
for estimated years, the following command redistributes the acreage
within the groundwater total first, possibly resulting in a different
irrigation method mix than from above. A summary of the steps is as
follows:
1. GWsprinkler = min(Sprinkler_FromListFile,GWTotal)
where GWTotal has resulted from the above processing steps
and Sprinkler_ListFile is sprinkler acreage from the list file (no
assumption about ground/surface water yet - the focus is on
resolving the irrigation method within groundwater).
2. GWflood = GWtotal - GWsprinkler
2. SWsprinkler = min(Sprinkler_FromListFile - GWsprinkler, SWtotal)
4. SWflood = SWtotal - SWsprinkler.

Note: This step is used in the Rio Grande.
An alternative in basins like the South Platte is to use a set
command to explicitly set GWsprinkler and SWsprinkler to zero
in the early study period.

After this step:
1. All acreage terms should be set except where no sprinkler data were
available (in this case use a set command to set to zero if necessary) -
see the following step.
2. The end of the period, where sprinkler was not set, may need to be
repeated, interpolated from the last observation.

SetIrrigationPracticeTSSprinklerAcreageFromList(ListFile="..\SprinklerAcreage\sprink_acreage_2007.csv",
 ID="*",YearCol=2,IDCol="1",AcresSprinklerCol="3")
__

 StateCU - 33 121

 StateDMI Documentation

Step 8d - set sprinkler data to zero where RGWCD were not available in
the early period.

This will remove missing data from the early period.

After this step:
1) The only missing data should be at the end of the period where
sprinkler data were not provided from observations.

SetIrrigationPracticeTS(ID="*",SetStart=1936,SetEnd=1970,AcresSWSprinkler=0,AcresGWSprinkler=0)
__
Step 9 - fill surface water acres

Step 9a - fill before 1998 using 1936
Use interpolation between the 1936 and 1998 snapshots to fill in surface
water sprinkler and flood acres - this defines the split between
SWflood and SWsprinkler.
After the initial interpolation, the values are adjusted so that
TotalAcres - GWacres = SWflood + SWsprinkler
If necessary, SWflood and SWsprinkler are prorated up/down to
satisfy the above.

Note for the South Platte, since there is not a bounding year with data
at the start of the period, use fill repeat backwards at the period start.

Step 9b - fill acreage after 1998 by repeating 1998
Fill repeat after 1998 for all IPY acreage columns
Or should this go after Step 10 below?

FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-SurfaceWaterOnlySprinkler",
 FillStart="1998",FillEnd="2005",FillDirection="Forward")
FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-SurfaceWaterOnlyFlood",
 FillStart="1998",FillEnd="2005",FillDirection="Forward")

__
Step 10 - read the 2002 Acreage/IrrigationMethod/SupplyType data

Step 10a - provide supplemental data to be used - not in HydroBase

Step 10b - read the data from HydroBase

Read 2002 data.

#___
Step 10b; Replace Taos No 3 (220639
SetIrrigationPracticeTS(ID="220639",SetStart=1936,SetEnd=1973,AcresSWFlood=911.05,
 AcresSWSprinkler=0.0,AcresGWFlood=0.0,AcresGWSprinkler=0.0,AcresTotal=911.05)
SetIrrigationPracticeTS(ID="220639",SetStart=1974,SetEnd=2005,AcresSWFlood=109.24,
 AcresSWSprinkler=0.0,AcresGWFlood=0.0,AcresGWSprinkler=0.0,AcresTotal=109.24)
__
Step 11 - write the StateCU IPY file(s)

Step 11.a - write old format for Phase 4 comparison
First write old format to allow comparison with Phase 4 and use with
StateMod (not yet updated to version 12).
Problem - this may not be possible given the adjustments that are made
above - SAM will see if the old GW and Sprinkler data can be computed.

SortIrrigationPracticeTS()
WriteIrrigationPracticeTSToStateCU(OutputFile="..\CompareWithPhase4\Current\rg2007.Version10.ipy",
 OutputStart="1950",OutputEnd="2005",Version="10")

Step 11.b - write the final results for use with StateCU and StateMod
This uses the StateCU version 12+ output because all acreage
computations require that the 4 acreage columns add up to the total.

WriteIrrigationPracticeTSToStateCU(OutputFile="rg2007_With1936.ipy")
WriteIrrigationPracticeTSToStateCU(OutputFile="..\StateCU\rg2007.ipy",
 OutputStart="1950",OutputEnd="2005")

Store results in source directory and StateMod

34 - StateCU 122

StateDMI Documentation

WriteIrrigationPracticeTSToStateCU(OutputFile="rg2007.ipy",OutputStart="1950",
 OutputEnd="2005")
WriteIrrigationPracticeTSToStateCU(OutputFile="..\StateCU\Historic\rg2007.ipy",
 OutputStart="1950",OutputEnd="2005")
WriteIrrigationPracticeTSToStateCU(OutputFile="..\StateMod\Historic\rg2007.ipy",
 OutputStart="1950",OutputEnd="2005")

Check the results
CheckIrrigationPracticeTS(ID="*")
WriteCheckFile(OutputFile="LocationCU_IPY.StateDMI.check.html")

4.5.4 Diversion Water Rights

Diversion water rights, when used with StateCU, are used for a water supply limited by water rights
analysis and are typically copied from a StateMod data set. The relevant commands are included with
StateCU commands to facilitate creating the diversion rights file independent of a StateMod data set.
Refer to the StateMod chapter for information about creating the diversion water rights file.

4.5.5 Diversion Time Series

Diversion time series, when used with StateCU, are used for a water supply limited analysis and are
typically copied from a StateMod data set. The relevant commands are included with StateCU commands
to facilitate creating the diversion demand time series file independent of a StateMod data set. Refer to
the StateMod chapter for information about creating the diversion demand time series file.

4.5.6 Well Water Rights

Well water rights are used to set the maximum groundwater pumping data in the irrigation practice time
series. The relevant commands are included with StateCU commands to facilitate creating the well water
rights file independent of a StateMod data set. Refer to the StateMod chapter for information about
creating the well water rights file.

4.5.7 Well Historical Pumping Time Series (Monthly)

Historical pumping time series are typically produced by StateCU and are input to StateMod. The
commands to process well demand time series are included as a copy of those available with StateMod
data processing. However, these commands may not be suitable based on data availability. Refer to the
StateMod chapter for a description of these commands and approaches for creating the historical pumping
file for StateMod.

 StateCU - 35 123

 StateDMI Documentation

This page is intentionally blank.

36 - StateCU 124

5 Creating StateMod Data Set Files
Version 03.09.01, 2010-02-12

The Commands menu lists StateMod data components and groups when StateDMI is used to process
StateMod data set files (use File…Switch to StateMod if necessary to see the StateMod command
menus).

MenuCommands_StateMod

Commands Menu for StateMod

Each menu corresponds to a data component group. Each sub-menu corresponds to a StateMod data set
component and input file and is discussed in the following sections. The top-level data groups utilize
unique data identifiers shared among products in the group. For example, Diversion Data are all
referenced using a diversion station identifier. General Commands are useful at any time (e.g., add
comments) and are discussed in the Getting Started chapter.

Examples of StateMod model files are not included in this documentation. Refer to the StateMod model
documentation for detailed information about model file formats. Command file examples from CDSS
data sets are included in documentation; however, refer to the current data sets for current examples
because there may have been refinements in the approach.

The StateMod model is used to perform water allocation studies for a river basin. Most data files focus
on data groups that include primary data files (e.g., station files) and secondary data files (e.g., water
rights, time series). Some files provide more basic data (e.g., return flow patterns) and others provide
more complex data (e.g., operating rules and river network). The organization of the StateDMI
Commands menu is meant to facilitate creating data files in a logical order. However, there is generally

 StateMod - 1 125

 StateDMI Documentation

no limitation that prevents a user from combining commands in any desired order or working on files in
other than the order shown.

5.1 Control Data

StateMod control data consists of:

• Response file
• Control file
• Output control file

Control data are currently not processed by StateDMI, although commands may be added in the future
(e.g., to update the response file when a data file is written, so that the file names agree). Background
information about each file is provided in the following sections.

5.1.1 Response File

A StateMod response file (*.rsp) lists all the data files that are used in a model run and is specified to
StateMod on the command line (see the StateMod documentation). The StateMod GUI also uses the
response file when opening a data set. The response file is generally copied from an existing data set and
hand-edited as appropriate. The base name of the response file (the part before the extension) should
adhere to current modeling standards (see Section 2.2 – Data Set Directory and File Conventions). A
separate response file for each run (e.g., for historical, calculated, baseline, daily runs) is usually created
rather than editing the response file between runs. Note that some files can be specified as empty files, in
which case StateMod will ignore the input type. The convention is to use an empty “dummy” file in these
cases.

Recent updates to the StateMod model have introduced a free-format response file that allows data set
files to be listed in any order, or be omitted altogether. This simplifies the management of a data. It is
recommended that the newer free-format response file be used for StateMod because it allows more
flexibility and reduces errors. See the StateMod documentation for information about the response file.

It is recommended that the files in a StateMod response file be specified using only file names (no paths)
and that relative paths be used if necessary (e.g., ..\StateCU\rgTW.ddc). This allows the data set to be
moved from one location to another without requiring edits to response files.

Rather than requiring a response file during processing, StateDMI provides commands that directly read
needed files. For example, to process diversion station efficiencies, commands are provided to read the
irrigation water requirement and historical diversion time series files.

5.1.2 Control File

The control file (*.ctl) is a fixed-format file that specifies many of the run-time parameters to StateMod,
including the simulation period (note the simulation period may be less than the input data period to
shorten execution time) and parameters that control the execution (e.g., whether the run is for monthly or
daily data). See the StateMod documentation for a full explanation of control file parameters. The
meaning of data in some data files requires referencing the control file. For example, monthly
efficiencies in the diversion and well stations files are listed according to the year type (calendar, water,
or irrigation year) in the control file.

2 - StateMod 126

StateDMI Documentation

Rather than requiring that a control file is available during processing, StateDMI commands allow
parameters to be specified as needed. For example, the SetOutputYearType() command indicates
whether output should be calendar or water year.

5.1.3 Output Control File

The output control file (*.out or *.xou) contains data that will limit the extent of selected output file
requests when running StateMod in report mode. It is generated by StateMod using the –check option,
which assumes you will want to review historical streamflow stations only. The output control file can be
edited manually or with the StateMod GUI to add or remove additional structures for detailed output
review. The output control file is not used by StateDMI.

5.2 Stream Gage Data

StateMod uses water supply from streamflow data to satisfy demands (it does not simulate run-off from
precipitation). Stream gage data consists of:

• Stream gage stations
• Historical flow time series (monthly, daily)
• Natural flow time series (monthly, daily)

Each of the above data types is stored in a separate file, using the stream gage station identifier as the
primary identifier. The term “River” and “Stream” are sometimes used interchangeably in StateMod
documentation; however, StateDMI uses “Stream” in most cases. StateMod now supports separate
stream gage and stream estimate data (see Section 5.10 – Stream Estimate Data). Stream gage stations
correspond to locations where historical data are available, and when using separate stream gage and
estimate station files should not include stream estimate stations. However, until modeling conventions
begin utilizing separate stream gage and estimate station files, StateDMI also allows a combined stream
gage/estimate station file (in which case the stream estimate station file is not used).

The processing of each data file is discussed below.

5.2.1 Stream Gage Stations

Stream gage stations used with StateMod often are selected by reviewing available stream gage historical
time series data to find stations with acceptable periods of record. TSTool or other software can be used
to identify acceptable stream gage stations.

Stream gage station identifiers are typically USGS or other agency identifiers. These identifiers
correspond to data in HydroBase and other sources and therefore allow data to be located in the original
source.

 StateMod - 3 127

 StateDMI Documentation

The Commands…Stream Gage Data…Stream Gage Stations menus insert commands to process
stream gage station data:

MenuCommands_StreamGageStations

Commands…Stream Gage Data…Stream Gage Stations Menu

The following table summarizes the use of each command:

Stream Gage Station Commands

Command Description
ReadStreamGageStationsFromList() Read from a delimited list file the list of stream

gage stations to be included in the data set.
ReadStreamGageStationsFromNetwork() Read from a StateMod network file a list of

stream gage stations to be included in the data
set.

ReadStreamGageStationsFromStateMod() Read from a StateMod stream gage stations file
the list of stream gage stations to be included in
the data set.

SetStreamGageStation() Set the data for, and optionally add, stream gage
stations.

SortStreamGageStations() Sort the stream gage stations. This is useful to
force consistency between files.

FillStreamGageStationsFromHydroBase() Fill missing data for defined stream gage stations,
using data from HydroBase. For example,
retrieve the station names.

ReadNetworkFromStateMod() Read the network file for use in filling.
FillStreamGageStationsFromNetwork() Fill missing data for defined stream gage stations,

using data from a StateMod network file. This is
useful when the station names are not found in
HydroBase and numerous

4 - StateMod 128

StateDMI Documentation

Command Description
SetStreamGageStation() commands
would otherwise be required.

FillStreamGageStation() Fill missing data for defined stream gage stations,
user user-supplied values.

WriteStreamGageStationsToList() Write defined stream gage stations to a delimited
list file.

WriteStreamGageStationsToStateMod() Write defined stream gage stations to a StateMod
file.

CheckStreamGageStations() Check stream gage stations data for problems.
WriteCheckFile() Write the results of data checks to a file.

An example command file to create the stream gage station file, including stream estimate stations, is
shown below (from the Colorado cm2005 data set):

StartLog(LogFile="ris.commands.StateDMI.log")
ris.commands.StateDMI

StateDMI command file to create streamflow station file for the Colorado River

Step 1 - read streamgages and baseflows ids from the network file

ReadStreamGageStationsFromNetwork(InputFile="..\Network\cm2005.net",
 IncludeStreamEstimateStations="True")

Step 2 - read baseflow nodes names from HydroBase, fill in missing names from
the network file

FillStreamGageStationsFromHydroBase(ID="*",NameFormat=StationName,CheckStructures=True)
FillStreamGageStationsFromNetwork(ID="*",NameFormat="StationName")

Step 3 - set streamgage station to use to disaggregate monthly baseflows to daily

add set daily pattern gages for WD 36
SetStreamGageStation(ID="36*",DailyID="09047500",IfNotFound=Warn)
SetStreamGageStation(ID="954683",DailyID="09047500",IfNotFound=Warn)
SetStreamGageStation(ID="09046600",DailyID="09047500",IfNotFound=Warn)
… many similar commands omitted…

Step 4 - create streamflow station file

WriteStreamGageStationsToStateMod(OutputFile="..\StateMod\cm2005.ris")

Check the results
CheckStreamGageStations(ID="*")
WriteCheckFile(OutputFile="ris.commands.StateDMI.check.html")

 StateMod - 5 129

 StateDMI Documentation

 5.2.2 Stream Historical Time Series (Monthly, Daily)

StateDMI does not process stream historical time series. Instead, use TSTool, a spreadsheet, or other
software to create the monthly and daily historical streamflow time series files. For simple models, use
TSTool’s CreateFromList() command to specify a list of station identifiers and create time series
identifiers for HydroBase time series. The following TSTool command file excerpt illustrates how to
create a historical monthly streamflow time series (from the Colorado cm2005 data set):

rih.commands.TSTool

creates historical streamflow file for the Colorado River Basin.

step 1 - Extract data from Hydrobase or read *.stm files as noted below

SetInputPeriod(InputStart="10/1908",InputEnd="9/2005")
COLORADO R BELOW BAKER GULCH, NR GRAND LAKE, CO.
09010500.USGS.Streamflow.Month~HydroBase
COLORADO RIVER NEAR GRAND LAKE, CO.
09011000.USGS.Streamflow.Month~HydroBase
COLORADO RIVER NEAR GRANBY, CO.
09019500...MONTH~StateMod~09019500.stm
WILLOW CK BL WILLOW CK RESERVOIR
09021000...MONTH~StateMod~09021000.stm
FRASER RIVER NEAR WINTER PARK, CO.
09024000.USGS.Streamflow.Month~HydroBase
VASQUEZ CREEK AT WINTER PARK, CO.
09025000.USGS.Streamflow.Month~HydroBase
ST. LOUIS CREEK NEAR FRASER, CO.
09026500.USGS.Streamflow.Month~HydroBase
…many similar commands omitted…

Combine the two historic gages that sit on the Blue River above Dillon

BLUE RIVER NEAR DILLON, CO.
09046600.USGS.Streamflow.Month~HydroBase
Blue River at Dillon, CO
09047000.USGS.Streamflow.Month~HydroBase
FillFromTS(TSList=LastMatchingTSID,TSID="09046600.USGS.Streamflow.Month",
 IndependentTSList=LastMatchingTSID,
 IndependentTSID="09047000.USGS.Streamflow.Month")
Free(TSList=LastMatchingTSID,TSID="09047000.USGS.Streamflow.Month")

SNAKE RIVER NEAR MONTEZUMA, CO.
09047500.USGS.Streamflow.Month~HydroBase
…many similar commands omitted…

Use Homestake Creek near Red Cliff to fill missing values in Homestake Creek at
Gold Park

HOMESTAKE CREEK AT GOLD PARK, CO.
09064000.USGS.Streamflow.Month~HydroBase
09064500 - HOMESTAKE CREEK NEAR RED CLIFF, CO.
09064500.USGS.Streamflow.Month~HydroBase
FillRegression(TSID="09064000.USGS.Streamflow.Month",
 IndependentTSID="09064500.USGS.Streamflow.Month",
 NumberOfEquations=MonthlyEquations,Transformation=Log)
Free(TSList=LastMatchingTSID,TSID="09064500.USGS.Streamflow.Month")

Cross Creek nr Minturn, CO
09065100.USGS.Streamflow.Month~HydroBase
…many similar commands omitted

6 - StateMod 130

StateDMI Documentation

Imports from other basins-replacement files created from 1909-2005 historical
diversions
404657...MONTH~StateMod~404657.stm
504600...MONTH~StateMod~504600.stm
950040...MONTH~StateMod~950040.stm
954001...MONTH~StateMod~954001.stm

step 2 - Set output period and year type
SetOutputYearType(OutputYearType=water)
SetOutputPeriod(OutputStart="10/1908",OutputEnd="09/2005")

step 3 - write output file

WriteStateMod(TSList=AllTS,OutputFile="..\StateMod\cm2005.rih",Precision=0)
CheckStreamGageStations(ID=”*”)
WriteCheckFile(OutputFile=”rih.commands.StateDMI.check.html”)

5.2.3 Stream Natural Flow Time Series (Monthly, Daily)

The stream natural flow file contains streamflows from which have been removed the impacts of
historical diversions, return flows, well pumping, and reservoir storage, release, evaporation and seepage.
It is normally generated by StateMod using the –baseflow option (the term “natural flow” has replaced
“baseflow”, although software and documentation my still use the older term in places). To process
natural flow time series, it is necessary to create station and historical time series files, but not water
rights or demands. Stream natural flow time series for stream gage stations are not processed by
StateDMI. Instead, use StateMod’s baseflow module, TSTool, or other software to create monthly and
daily natural flow time series files.

When historical data are provided that allow 100% of human impacts to be removed, the natural flows
generated by StateMod are the same as true natural flows. When historical data are provided that
represent less than 100% of human impacts, it is implicitly assumed that the historical diversion and
reservoir impacts that are left in the gage will not change significantly under a "What If" scenario.

The monthly natural flow time series file created by StateMod is automatically named (*.xbm). However,
it is commonly renamed (*.rim) to ensure that a simulation scenario can be reproduced and allow input
data sets to be distributed without having to rerun the baseflow module.

5.3 Delay Table Data

Delay table data consists of:

• Monthly delay tables
• Daily delay tables

Delay tables indicate the pattern for return flows (for diversion and well stations) and depletions (for well
stations) and therefore should be available before processing diversion or well stations. Delay patterns
represent how a unit of water is distributed by percent over time. Each delay table has a unique numerical
identifier, and the identifier can be shared between monthly and daily files. StateDMI does not currently
provide tools to generate delay tables (see the Introduction chapter for background on CDSS tools).
However, commands are available to manipulate existing files.

 StateMod - 7 131

 StateDMI Documentation

5.3.1 Delay Tables (Monthly)

Monthly delay tables are typically produced manually (e.g., simple delay patterns) or by using the Glover
method, Stream Depletion Functions (SDFs), or Unit Response Functions (URFs). In CDSS, the
MakeRTN GIS tool has been used to develop return flow and depletion data for URF zones in the Rio
Grande.

Delay table identifiers have traditionally been assigned sequential integer identifiers because StateMod
does not support character identifiers for delay tables. Simple delay tables (e.g., return 100% of return
flow in the first month) have lower delay table numbers.

The Commands…Delay Tables Data…Delay Tables (Monthly) menu items insert commands to process
monthly delay table data:

MenuCommands_DelayTablesMonthly

Commands…Delay Tables Data…Delay Tables (Monthly) Menu

The following table summarizes the use of each command:

Delay Table (Monthly) Commands

Command Description
ReadDelayTablesMonthlyFromStateMod() Read monthly delay tables from a StateMod

delay tables file, optionally scaling the delay
values (e.g., to convert fraction to percent).

WriteDelayTablesMonthlyToList() Write monthly delay tables to a delimited list file.
WriteDelayTablesMonthlyToStateMod() Write monthly delay tables to a StateMod delay

tables file.

5.3.2 Delay Tables (Daily)

The Commands…Delay Tables Data…Delay Tables (Daily) menu items insert commands to process
daily delay table data:

MenuCommands_DelayTablesDaily

Commands…Delay Tables Data…Delay Tables (Daily) Menu

8 - StateMod 132

StateDMI Documentation

The following table summarizes the use of each command:

Delay Table (Daily) Commands

Command Description
ReadDelayTablesDailyFromStateMod() Read daily delay tables from a StateMod delay

tables file, optionally scaling the delay values
(e.g., to convert fraction to percent).

WriteDelayTablesDailyToList() Write daily delay tables to a delimited list file.
WriteDelayTablesDailyToStateMod() Write daily delay tables to a StateMod delay

tables file.

5.4 Diversion Data

Diversion data consists of:

• Diversion stations
• Diversion rights
• Historical flow time series (monthly, daily)
• Demand time series (monthly, monthly override, average monthly, daily)
• Irrigation practice (yearly)
• Consumptive water requirement (monthly, daily)
• Soil moisture time series (yearly)

Each of the above data types is stored in a separate file, using the diversion station identifier as the
primary identifier.

The processing of each data file is discussed below.

5.4.1 Diversion Stations

Each diversion station used with StateMod can be one of four types:

1. Explicit diversion, where no aggregation or special treatment occurs – this type is used for key
structures that need to be explicitly modeled. The diversion station diverts from a single point on
a water body. The diversion station identifier is usually a 7-character water district identifier (6-
character for old data sets) or fabricated identifier that starts with the water district number.

2. Diversion “MultiStruct,” used to represent two or more diversion stations that divert from
different tributaries but which serve the same lands. In this case, multiple diversion stations are
grouped and one is assigned as the primary diversion station. To model historical conditions,
each diversion station is represented in the network (e.g., using the WDID as the station
identifier) and diversion records, water rights, and capacities correspond to each diversion station.
To estimate average efficiencies (when evaluating demand time series), the total demand and
historical time series are considered. Additionally, when estimating demand time series, the total
demand is assigned to the primary structure and the demands for secondary structures are set to
zero. Operating rules are required to control the exchange of water between diversions in the
MultiStruct. This modeling construct should be defined using the
SetDiversionMultiStruct*() commands and only need to be defined when processing
demands.

 StateMod - 9 133

 StateDMI Documentation

3. Diversion system (a type of collection), where the characteristics (capacity, historical diversion,
demand) of multiple diversions are summed at one location and water rights are modeled
explicitly – this type is used when related diversion structures operate as a system to divert water
from a single water source. Only the diversion system identifier is included in the model network
and this identifier should be different from the parts in the collection. The naming convention
for modeling in CDSS is to use a primary ditch in the collection for the modeled node or select an
identifier that includes the district and “MS” or similar. Diversion systems should be defined
using the SetDiversionSystem*() commands and need to be defined when processing all
diversion station files (if diversion systems are used).

4. Diversion aggregate (a type of collection), which is the same as a diversion system except that
water rights are aggregated into classes. Aggregation of the water rights occurs when the
ReadDiversionRightsFromHydroBase() command is executed. The naming
convention for modeling in CDSS is to use an identifier similar to 20_ADCNNN, where the
leading 20 indicates the water district, ADC indicates aggregate diversion, and NNN is a number
to allow multiple diversion aggregates in a water district. This convention allows summary of
demand and supply for basins. Diversion aggregates should be defined using the
SetDiversionAggregate*() commands and need to be defined when processing all
diversion station files (if aggregates are used).

The determination of the diversion station type for each diversion station is usually made by reviewing
available data (e.g., water rights), and discussing administrative data with knowledgeable persons (e.g.,
water commissioners). Typically, key diversions have large capacities, irrigate larger acreage totals,
and/or have important water rights and administrative roles. Minor diversions, or groups of diversions for
which independent data are difficult to determine, may be lumped together in an aggregate or system.
Grouping diversions into aggregates reduces the overall number of model nodes and output. Various
commands refer to “collection type” when discussing aggregates and systems, in order to simplify
documentation.

The diversion stations file may be updated several times, as follows:

1. Initial creation (see this section).
2. Adjust diversion station capacities based on historical diversions (see Section 5.4.3).
3. Adjust diversion monthly efficiencies based on estimates from consumptive water requirement

(see Section 5.4.5).

However, it is also possible to create the secondary files using an initial list of diversion stations, and then
create the StateMod diversion stations file with one command file.

10 - StateMod 134

StateDMI Documentation

The Commands…Diversion Data…Diversion Stations menus insert commands to process diversion
station data:

MenuCommands_DiversionStations

Commands…Diversion Data…Diversion Stations Menu

The following table summarizes the use of each command:

Diversion Stations Commands

Command Description
SetOutputYearType() Set the output year type. For diversion

stations, this indicates the order of monthly
efficiencies in the diversion stations data.

ReadDiversionStationsFromList() Read from a delimited list file the list of
diversion stations to be included in the data
set.

ReadDiversionStationsFromNetwork() Read from a StateMod network file a list of
diversion stations to be included in the data
set.

ReadDiversionStationsFromStateMod() Read from a StateMod diversion stations
file the list of diversion stations to be

 StateMod - 11 135

 StateDMI Documentation

Command Description
included in the data set.

SetDiversionAggregate() Specify that a diversion station is an
aggregate and define its parts.

SetDiversionAggregateFromList() Specify that one or more diversion stations
are aggregates and define their parts, using
a delimited list file.

SetDiversionSystem() Specify that a diversion station is a system
and define its parts.

SetDiversionSystemFromList() Specify that one or more diversion stations
are systems and define their parts, using a
delimited list file.

SetDiversionStation() Set the data for, and optionally add,
diversion stations.

SetDiversionStationsFromList() Set the data for diversion stations from a
delimited list file.

SortDiversionStations() Sort the diversion stations. This is useful
to force consistency between files.

FillDiversionStationsFromHydroBase() Fill missing data for defined diversion
stations, using data from HydroBase. For
example, retrieve the station names, and
capacities.

FillDiversionStationsFromNetwork() Fill missing data for defined diversion
stations, using data from the network.

FillDiversionStation() Fill missing data for defined diversion
stations, using user-supplied values.

SetDiversionStationDelayTablesFromNetwork() Set default delay table information using
network relationships.

SetDiversionStationDelayTablesFromRTN() Set delay table information using
information in a return flow file.

WriteDiversionStationsToList() Write defined diversion stations to a
delimited list file.

WriteDiversionStationsToStateMod() Write defined diversion stations to a
StateMod file.

CheckDiversionStations() Check diversion stations data for problems.
WriteCheckFile() Write the results of data checks to a file.

If a multi-step process is used to create the diversion stations file, it is recommended that during initial
creation of the diversion stations file, suitable default values are assigned to complete as much
information as possible, including:

• capacity
• default monthly efficiencies
• acreage
• use and demand type
• delay tables

The following command file example (from the Colorado cm2005 data set) illustrates how to create a
diversion station file. The output file will in this case be updated with historical diversion time series in

12 - StateMod 136

StateDMI Documentation

subsequent processing but could be updated in one step if the time series file is created first (e.g., by
reading the diversion stations from a list file or the network when processing the time series file).

StartLog(LogFile="dds.commands.StateDMI.log")
dds.commands.StateDMI

StateDMI command file to create the "step 1" direct diversion station file

Step 1 - set year type and read list of direct diversion stations from network file

SetOutputYearType(OutputYearType=Water)
ReadDiversionStationsFromNetwork(InputFile="..\Network\cm2005.net")

Step 2 - read aggregate and diversion system structure assignments. Note that
want to combine historical acreage and capacites for aggs and diversion systems.

SetDiversionAggregateFromList(ListFile="cm_agg.csv",IDCol=1,NameCol=2,PartIDsCol=3,PartsListedHow=InRow)
SetDiversionSystemFromList(ListFile="cm_divsys.csv",IDCol=1,NameCol=2,PartIDsCol=3,PartsListedHow=InRow)
SetDiversionStation(ID="72_ADC054",IrrigatedAcres=1200,IfNotFound=Warn)
SetDiversionStation(ID="72_ADC055",IrrigatedAcres=928,IfNotFound=Warn)

Step 3 - read diversion station information from HydroBase and sort alphabetically

FillDiversionStationsFromHydroBase(ID="*")
SortDiversionStations(Order=Ascending)

Step 4 - set global options for all structures

SetDiversionStation(ID="*",RiverNodeID="ID",OnOff=1,ReplaceResOption=-
1,DailyID="4",DemandType=1,UseType=1,DemandSource=1,EffAnnual=60,IfNotFound=Warn)
SetDiversionStationDelayTablesFromNetwork(ID="*",DefaultTable=1)

Step 5 - overwrite downstream return flow location, efficiencies and delay patterns based
on return flow file: read annual average irrigation efficiencies from StateCU (*.def)

SetDiversionStationDelayTablesFromRTN(InputFile="cm2005.rtn",SetEfficiency=True)
SetDiversionStationsFromList(ListFile="cm2005.def",IDCol="1",EffMonthlyCol="2",
 Delim="Space",MergeDelim=True)

Step 6 - overide HydroBase capacities and demand sources

Transbasin Diversions - demscr=6 & resreplace=0 (does not get Green Mtn. replacement)
SetDiversionStation(ID="364626",ReplaceResOption=0,DemandSource=6,IfNotFound=Warn)
SetDiversionStation(ID="364684",ReplaceResOption=0,DemandSource=6,IfNotFound=Warn)
SetDiversionStation(ID="364685",ReplaceResOption=0,DemandSource=6,IfNotFound=Warn)
SetDiversionStation(ID="374614",ReplaceResOption=0,DemandSource=6,IfNotFound=Warn)
SetDiversionStation(ID="374641",ReplaceResOption=0,DemandSource=6,IfNotFound=Warn)
SetDiversionStation(ID="371091",ReplaceResOption=0,DemandSource=6,IfNotFound=Warn)
SetDiversionStation(ID="374648",ReplaceResOption=0,DemandSource=6,IfNotFound=Warn)
SetDiversionStation(ID="364683",Capacity=500.0,ReplaceResOption=0,DemandSource=6,IfNotFound=Warn)
SetDiversionStation(ID="364699",Capacity=77.0,ReplaceResOption=0,DemandSource=6,IfNotFound=Warn)
SetDiversionStation(ID="954683",Name="Continental_Hoosier_Tunnel",Capacity=500.0,
 ReplaceResOption=0,IrrigatedAcres=0,DemandSource=6,IfNotFound=Warn)
SetDiversionStation(ID="384613",Capacity=120,ReplaceResOption=0,DemandSource=6,IfNotFound=Warn)
SetDiversionStation(ID="384617",ReplaceResOption=0,DemandSource=6,IfNotFound=Warn)
SetDiversionStation(ID="384625",Capacity=1000.0,ReplaceResOption=0,DemandSource=6,IfNotFound=Warn)
SetDiversionStation(ID="954699",Name="Boustead_Summary",Capacity=1600.0,
 ReplaceResOption=0,IrrigatedAcres=0,DemandSource=6,IfNotFound=Warn)
SetDiversionStation(ID="514625",ReplaceResOption=0,DemandSource=6,IfNotFound=Warn)
SetDiversionStation(ID="514601",ReplaceResOption=0,DemandSource=6,IfNotFound=Warn)
SetDiversionStation(ID="514603",Capacity=500.0,ReplaceResOption=0,DemandSource=6,IfNotFound=Warn)
SetDiversionStation(ID="514634",ReplaceResOption=0,DemandSource=6,IfNotFound=Warn)
SetDiversionStation(ID="514655",ReplaceResOption=0,DemandSource=6,IfNotFound=Warn)
SetDiversionStation(ID="724721",ReplaceResOption=0,DemandSource=6,IfNotFound=Warn)
SetDiversionStation(ID="724715",ReplaceResOption=0,DemandSource=6,IfNotFound=Warn)
SetDiversionStation(ID="384717",ReplaceResOption=0,DemandSource=6,IfNotFound=Warn)

The following are carriers to transbasin tunnel collections - demscr=7
Missouri Tunnel - Carrier to Homestake Tunnel
SetDiversionStation(ID="374643",Capacity=600.0,ReplaceResOption=0,DemandSource=7,IfNotFound=Warn)

 StateMod - 13 137

 StateDMI Documentation

Hunter Tunnel - Carrier to Bousted Tunnel
SetDiversionStation(ID="381594",Capacity=310.0,ReplaceResOption=0,DemandSource=7,IfNotFound=Warn)
Moffat Tunnel Carriers
SetDiversionStation(ID="510728",ReplaceResOption=0,DemandSource=7,IfNotFound=Warn)
SetDiversionStation(ID="511310",Name="Vasquez_Creek",ReplaceResOption=0,DemandSource=7,IfNotFound=Warn)
SetDiversionStation(ID="511309",Name="St_Louis_Cr",ReplaceResOption=0,DemandSource=7,IfNotFound=Warn)
SetDiversionStation(ID="510639",Name="Jim_Creek",ReplaceResOption=0,DemandSource=7,IfNotFound=Warn)
SetDiversionStation(ID="511269",Name="Ranch_Creek",ReplaceResOption=0,DemandSource=7,IfNotFound=Warn)

StateDMI expects monthly values to be entered in Calendar Year.

The following are municipal and industrial diversions - demsrc=6
Rankin No. 1 Ditch, Dillon Valley W&SD
SetDiversionStation(ID="360784",DemandSource=6,
 EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10",IfNotFound=Warn)
Straight Creek Ditch, Town of Dillon
SetDiversionStation(ID="360829",Capacity=3.5,DemandSource=6,
 EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10",IfNotFound=Warn)
Climax Demands
SetDiversionStation(ID="360841",Capacity=53.19,ReplaceResOption=0,DemandSource=6,IfNotFound=Warn)
Keystone Snow Line Ditch (Snowmaking)
SetDiversionStation(ID="360908",Capacity=2.5,ReplaceResOption=0,DemandSource=6,IfNotFound=Warn)
Breckenridge Snowmaking
SetDiversionStation(ID="360989",ReplaceResOption=0,DemandSource=6,IfNotFound=Warn)
Breckenridge Municipal
SetDiversionStation(ID="361008",Capacity=4.87,DemandSource=6,
 EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10",IfNotFound=Warn)
Copper Mtn. Snowmaking
SetDiversionStation(ID="361016",Capacity=2.5,ReplaceResOption=0,DemandSource=6,IfNotFound=Warn)
Metcalf Ditch - Upper Eagle Valley Water Authority
SetDiversionStation(ID="370708",DemandSource=6,
 EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10",IfNotFound=Warn)
Town of Rifle Pump and Pipeline
SetDiversionStation(ID="390967",Capacity=8.5,DemandSource=6,
 EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10",IfNotFound=Warn)
East Snowmass Brush Creek Pipeline
SetDiversionStation(ID="381441",DemandSource=6,
 EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10",IfNotFound=Warn)
Glenwood L Water Company System
SetDiversionStation(ID="531051",DemandSource=6,
 EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10",IfNotFound=Warn)
SetDiversionStation(ID="530585",DemandSource=6,
 EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10",IfNotFound=Warn)
Maroon Ditch - Aspen
SetDiversionStation(ID="380854",DemandSource=6,
 EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10",IfNotFound=Warn)
Midland Flume Ditch - Aspen
SetDiversionStation(ID="380869",DemandSource=6,
 EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10",IfNotFound=Warn)
Carbondale Water System and Pipeline
SetDiversionStation(ID="381052",DemandSource=6,
 EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10",IfNotFound=Warn)
Redlands Power Canal
SetDiversionStation(ID="420541",Capacity=610.0,ReplaceResOption=0,DemandSource=6,IfNotFound=Warn)
Henderson Mine Water System
SetDiversionStation(ID="511070",Capacity=8.8,ReplaceResOption=0,DemandSource=6,IfNotFound=Warn)
Shoshone Power Plant
SetDiversionStation(ID="530584",ReplaceResOption=0,DemandSource=6,IfNotFound=Warn)
Grand Junction Demands
SetDiversionStation(ID="950051",Name="Grand Junction
Demands",Capacity=21.0,ReplaceResOption=0,IrrigatedAcres=0,DemandSource=6,
 EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10",IfNotFound=Warn)
Grand Junction Gunnison Pipeline
SetDiversionStation(ID="420520",ReplaceResOption=0,DemandSource=6,
 EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10",IfNotFound=Warn)
Grand Junction Colorado River Pipeline
SetDiversionStation(ID="720644",DemandSource=6,
 EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10",IfNotFound=Warn)
Molina Power Plant
SetDiversionStation(ID="720807",Capacity=50.0,ReplaceResOption=0,DemandSource=6,IfNotFound=Warn)
Palisade Town Pipeline

14 - StateMod 138

StateDMI Documentation

SetDiversionStation(ID="720816",Capacity=5.0,DemandSource=6,
 EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10",IfNotFound=Warn)
The following meet municipal demands for the Ute WCD
SetDiversionStation(ID="720920",Capacity=50.0,DemandSource=6,
 EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10",IfNotFound=Warn)
SetDiversionStation(ID="721339",DemandSource=6,
 EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10",IfNotFound=Warn)
SetDiversionStation(ID="950020",Name="Ute Water Treatment",Capacity=17.0,IrrigatedAcres=0,
 DemandSource=6,EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10",IfNotFound=Warn)
SetDiversionStation(ID="950030",Name="Mason Eddy-Ute",Capacity=7.0,IrrigatedAcres=0,DemandSource=6,
 EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10",IfNotFound=Warn)
SetDiversionStation(ID="721329",Name="Rapid Creek PP
DivSys",DemandSource=6,EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10",IfNotFound=Warn)
Keystone Municipal
SetDiversionStation(ID="955002",Name="Keystone Municipal",Capacity=2.0,IrrigatedAcres=0,DemandSource=6,
 EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10",IfNotFound=Warn)
Vail Municipal Use
SetDiversionStation(ID="955001",Name="Vail Valley Consolidated-Senior",Capacity=11.2,IrrigatedAcres=0,
 DemandSource=6,
 EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10",IfNotFound=Warn)
SetDiversionStation(ID="955003",Name="Vail Valley Consolidated-Non Irr",Capacity=13.0,IrrigatedAcres=0,
 DemandSource=6,
 EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10",IfNotFound=Warn)
Green Mtn. Hydro-Electric
SetDiversionStation(ID="360881",ReplaceResOption=0,DemandSource=6,IfNotFound=Warn)
Williams Fork Power Conduit
SetDiversionStation(ID="511237",ReplaceResOption=0,DemandSource=6,IfNotFound=Warn)
Green Mtn. Contract Water Users (Baseline Scenario only)
SetDiversionStation(ID="950060",Name="Green_Mtn_Contract_Dem.",Capacity=999,ReplaceResOption=0,
 IrrigatedAcres=0,DemandSource=6,IfNotFound=Warn)
Redlands Power Canal Irrigation (acres from 724713)
SetDiversionStation(ID="950050",Name="Redlands Power Canal-
Irr",Capacity=140.0,ReplaceResOption=0,IrrigatedAcres=4297,DemandSource=8,IfNotFound=Warn)

The following are reservoir carrier structures
Elliott Creek Feeder - carrier to Green Mtn. Res
SetDiversionStation(ID="360606",ReplaceResOption=0,DemandSource=7,IfNotFound=Warn)
Wolcott Pumping Pipeline - carrier to Wolcott Res
SetDiversionStation(ID="371146",Capacity=500,ReplaceResOption=0,DemandSource=7,
 EffAnnual=0,IfNotFound=Warn)
CBT Willow Creek Feeder
SetDiversionStation(ID="510958",ReplaceResOption=0,DemandSource=7,IfNotFound=Warn)
Windy Gap Pump Pipeline Canal - carrier up to Shadow Mtn and Granby
SetDiversionStation(ID="514700",ReplaceResOption=0,DemandSource=7,IfNotFound=Warn)

The following are project-specific diversions - demsrc and resreplace can vary
Silt Project
Grass Valley Canal
SetDiversionStation(ID="390563",ReplaceResOption=0,IrrigatedAcres=0,DemandSource=7,IfNotFound=Warn)
Silt Pump Canal - secondary structure in MS setup
SetDiversionStation(ID="390663",ReplaceResOption=0,IrrigatedAcres=0,DemandSource=7,
 EffAnnual=0,IfNotFound=Warn)
Dry Elk Valley Demands
SetDiversionStation(ID="950010",Name="Dry Elk Valley Irr",Capacity=45.0,
 IrrigatedAcres=2590,IfNotFound=Warn)
Irrigation Demands below Harvey Gap Reservoir - primary structure of MS setup
SetDiversionStation(ID="950011",Name="Farmers Irrigation
Comp",Capacity=72.0,IrrigatedAcres=2906,IfNotFound=Warn)

Collbran Project
Bonham Branch Pipeline
SetDiversionStation(ID="720542",ReplaceResOption=0,DemandSource=7,IfNotFound=Warn)
Cottonwood Branch Pipeline
SetDiversionStation(ID="720583",ReplaceResOption=0,DemandSource=7,IfNotFound=Warn)
Leon Park Feeder Canal
SetDiversionStation(ID="720746",ReplaceResOption=0,DemandSource=7,IfNotFound=Warn)
Park Creek Ditch (Vega)
SetDiversionStation(ID="720820",ReplaceResOption=0,IrrigatedAcres=0,DemandSource=7,IfNotFound=Warn)
Southside Canal
SetDiversionStation(ID="720879",ReplaceResOption=0,DemandSource=7,IfNotFound=Warn)

 StateMod - 15 139

 StateDMI Documentation

Cameo Demand/Grand Valley Area EW - Why resreplace set to 1 for these structures?
Grand Valley Irrigation Canal
SetDiversionStation(ID="720645",Capacity=650.0,ReplaceResOption=1,IfNotFound=Warn)
Orchard Mesa Irrigation District - primary structure in MS Setup
SetDiversionStation(ID="720813",Capacity=461.0,ReplaceResOption=0,DemandSource=3,IfNotFound=Warn)
SetDiversionStation(ID="950004",Name="OMID Hydraulic Pump",Capacity=272.0,ReplaceResOption=0,
 IrrigatedAcres=0,DemandSource=6,IfNotFound=Warn)
Grand Valley Project
SetDiversionStation(ID="720646",Capacity=1620.0,IrrigatedAcres=0,DemandSource=7,IfNotFound=Warn)
SetDiversionStation(ID="950001",Name="Grand Valley
Project",Capacity=850.0,ReplaceResOption=0,IrrigatedAcres=28900,DemandSource=8,IfNotFound=Warn)
Colorado River Pumping Plant - secondary source for OMID irrigation MS setup
SetDiversionStation(ID="721330",DemandSource=5,IfNotFound=Warn)
USA Power Plant
SetDiversionStation(ID="950002",Name="USA Power Plant",Capacity=800.0,ReplaceResOption=0,
 IrrigatedAcres=0,DemandSource=6,IfNotFound=Warn)
Orchard Mesa Check
SetDiversionStation(ID="950003",Name="Orchard Mesa Check",Capacity=1072.0,ReplaceResOption=0,
 IrrigatedAcres=0,DemandSource=6,IfNotFound=Warn)
SetDiversionStation(ID="950005",Name="OMID Pre-1985 Bypass",Capacity=1072.0,ReplaceResOption=0,
 IrrigatedAcres=0,DemandSource=6,IfNotFound=Warn)
SetDiversionStation(ID="950006",Name="OMID Post-1985
Bypass",Capacity=1072.0,ReplaceResOption=0,IrrigatedAcres=0,DemandSource=6,IfNotFound=Warn)
15-Mile Fish Requirement
SetDiversionStation(ID="952001",Name="15-Mile Fish
Requirement",Capacity=999,ReplaceResOption=0,IrrigatedAcres=0,DemandSource=6,IfNotFound=Warn)

The following structure is an aggregate M & I node -
this node is included (despite zero demand) to maintain consistency with other basins and for
potential future use.
SetDiversionStation(ID="72_AMC001",Name="72_AMC001 Colorado River nr Stateline",Capacity=999,
 IrrigatedAcres=0,DemandSource=6,IfNotFound=Warn)

The following structures are used for a dataset-specific scenario
Leonard Rice - 2 structures (Calculated and Baseline datasets only!)
SetDiversionStation(ID="950007",Name="USA PP-Winter-OM
Stip",Capacity=850.35,ReplaceResOption=0,IrrigatedAcres=0,DemandSource=6,IfNotFound=Warn)
SetDiversionStation(ID="950008",Name="USA PP-Summer-OM
Stip",Capacity=850.35,ReplaceResOption=0,IrrigatedAcres=0,DemandSource=6,IfNotFound=Warn)
SetDiversionStation(ID="950061",Name="Green_Mtn_Annual_Rep_Est.",Capacity=999,ReplaceResOption=0,
 IrrigatedAcres=0,DemandSource=6,IfNotFound=Warn)
SetDiversionStation(ID="953001",Name="Ruedi Rnd 1-Muni Demand",Capacity=999,ReplaceResOption=0,
 IrrigatedAcres=0,DemandSource=6,IfNotFound=Warn)
SetDiversionStation(ID="953002",Name="Ruedi Rnd 1-Ind Demand",Capacity=999,ReplaceResOption=0,
 IrrigatedAcres=0,DemandSource=6,IfNotFound=Warn)
SetDiversionStation(ID="953003",Name="Ruedi Rnd 2-Muni Demand",Capacity=999,ReplaceResOption=0,
 IrrigatedAcres=0,DemandSource=6,IfNotFound=Warn)
SetDiversionStation(ID="953004",Name="Ruedi Rnd 2-Ind Demand",Capacity=999,ReplaceResOption=0,
 IrrigatedAcres=0,DemandSource=6,IfNotFound=Warn)
SetDiversionStation(ID="953005",Name="Ruedi Addl Demand",Capacity=999,ReplaceResOption=0,
 IrrigatedAcres=0,DemandSource=6,IfNotFound=Warn)
Wolford Mtn Reservoir Demand (Baseline dataset only!)
SetDiversionStation(ID="953101",Name="Wolford Fraser Demand",Capacity=999,ReplaceResOption=0,
 IrrigatedAcres=0,DemandSource=6,IfNotFound=Warn)
SetDiversionStation(ID="953102",Name="Wolford MidPark Demand",Capacity=999,ReplaceResOption=0,
 IrrigatedAcres=0,DemandSource=6,IfNotFound=Warn)
SetDiversionStation(ID="953103",Name="Wolford Market Demand",Capacity=999,ReplaceResOption=0,
 IrrigatedAcres=0,DemandSource=6,IfNotFound=Warn)
C1 - structures (Calculated and Baseline datasets only!)
SetDiversionStation(ID="956001",Name="Future Depletion #1",Capacity=999,ReplaceResOption=0,
 IrrigatedAcres=0,DemandSource=6,IfNotFound=Warn)
SetDiversionStation(ID="956002",Name="Future Depletion #2",Capacity=999,ReplaceResOption=0,
 IrrigatedAcres=0,DemandSource=6,IfNotFound=Warn)

Demand nodes to release excess HUP water from Homestake, Dillon, Williams Fork, and
Wolford Reservoirs
SetDiversionStation(ID="954516D",Name="HUP Release
Node",OnOff=1,Capacity=99999,ReplaceResOption=0,IrrigatedAcres=0,DemandSource=7,
 EffAnnual=0,IfNotFound=Warn)
SetDiversionStation(ID="954512D",Name="HUP Release
Node",OnOff=1,Capacity=99999,ReplaceResOption=0,IrrigatedAcres=0,DemandSource=7,

16 - StateMod 140

StateDMI Documentation

 EffAnnual=0,IfNotFound=Warn)
SetDiversionStation(ID="953709D",Name="HUP Release
Node",OnOff=1,Capacity=99999,ReplaceResOption=0,IrrigatedAcres=0,DemandSource=7,
 EffAnnual=0,IfNotFound=Warn)
SetDiversionStation(ID="953668D",Name="HUP Release
Node",OnOff=1,Capacity=99999,ReplaceResOption=0,IrrigatedAcres=0,DemandSource=7,
 EffAnnual=0,IfNotFound=Warn)

The following are structures that need alternate return location definitions
510848 - change return flow pattern to mimic portion of returns that occur in the same month
SetDiversionStation(ID="510848",Returns="510546,40,4",IfNotFound=Warn)

StateDMI expects monthly values to be entered in Calendar Year.

Step 7 - setting efficiencies for specific structures
Acreage during the study period for the following 22 structures is different than what
it is today (the value in HydroBase). Crop water requirements calculated by
the CU Model are incorrect for the structures during the study period, but are correct
for the baseline scenario.
To avoid incorrect efficiencies being calculated by StateDMI (crop water requirement /
historical diversion),
we are setting the efficiencies for these structures equal to the basin-wide
efficiency (3/9/99), ra
Updated by James Heath (heath@lrcwe.com) with updated basin wide efficiencies (2/23/2006)

SetDiversionStation(ID="360687",EffMonthly="5,4,9,16,25,29,30,25,18,9,5,6",IfNotFound=Warn)
SetDiversionStation(ID="360725",EffMonthly="5,4,9,16,25,29,30,25,18,9,5,6",IfNotFound=Warn)
SetDiversionStation(ID="360728",EffMonthly="5,4,9,16,25,29,30,25,18,9,5,6",IfNotFound=Warn)
SetDiversionStation(ID="360729",EffMonthly="5,4,9,16,25,29,30,25,18,9,5,6",IfNotFound=Warn)
SetDiversionStation(ID="360765",EffMonthly="5,4,9,16,25,29,30,25,18,9,5,6",IfNotFound=Warn)
SetDiversionStation(ID="360780",EffMonthly="5,4,9,16,25,29,30,25,18,9,5,6",IfNotFound=Warn)
SetDiversionStation(ID="360800",EffMonthly="5,4,9,16,25,29,30,25,18,9,5,6",IfNotFound=Warn)
SetDiversionStation(ID="370519",EffMonthly="5,4,9,16,25,29,30,25,18,9,5,6",IfNotFound=Warn)
SetDiversionStation(ID="370571",EffMonthly="5,4,9,16,25,29,30,25,18,9,5,6",IfNotFound=Warn)
SetDiversionStation(ID="370723",EffMonthly="5,4,9,16,25,29,30,25,18,9,5,6",IfNotFound=Warn)
SetDiversionStation(ID="370848",EffMonthly="5,4,9,16,25,29,30,25,18,9,5,6",IfNotFound=Warn)
SetDiversionStation(ID="380528",EffMonthly="5,4,9,16,25,29,30,25,18,9,5,6",IfNotFound=Warn)
SetDiversionStation(ID="380572",EffMonthly="5,4,9,16,25,29,30,25,18,9,5,6",IfNotFound=Warn)
SetDiversionStation(ID="380663",EffMonthly="5,4,9,16,25,29,30,25,18,9,5,6",IfNotFound=Warn)
SetDiversionStation(ID="380939",EffMonthly="5,4,9,16,25,29,30,25,18,9,5,6",IfNotFound=Warn)
SetDiversionStation(ID="380996",EffMonthly="5,4,9,16,25,29,30,25,18,9,5,6",IfNotFound=Warn)
SetDiversionStation(ID="381062",EffMonthly="5,4,9,16,25,29,30,25,18,9,5,6",IfNotFound=Warn)
SetDiversionStation(ID="381078",EffMonthly="5,4,9,16,25,29,30,25,18,9,5,6",IfNotFound=Warn)

Step 8 - create "step 1" direct diversion station file

WriteDiversionStationsToStateMod(OutputFile="cm2005_dds.dds")

Check the results.
CheckDiversionStations(ID="*")
WriteCheckFile(OutputFile="dds.commands.StateDMI.check.html")

 5.4.2 Diversion Rights

Diversion rights correspond to the diversion stations, using the diversion station identifier to relate the
data. Diversion right identifiers are typically the diversion station identifier followed by .NN, where NN
is a sequential number starting with 01. Rights for diversion aggregate/system stations have rights
corresponding to water right classes.

 StateMod - 17 141

 StateDMI Documentation

The Commands…Diversion Data…Diversion Rights menu items insert commands to process diversion
rights data:

MenuCommands_DiversionRights

Commands…Diversion Data…Diversion Rights Menu

The following table summarizes the use of each command:

Diversion Rights Commands

Command Description
ReadDiversionStationsFromList() Read from a delimited file the list of diversion stations to be

included in the data set – the list indicates the stations for
which to process rights.

ReadDiversionStationsFrom
StateMod()

Read from a StateMod diversion stations file the list of
diversion stations to be included in the data set – the list
indicates the stations for which to process rights.

SetDiversionAggregate() Specify that a diversion is an aggregate and define its parts.
SetDiversionAggregateFromList() Specify that one or more diversions are aggregates and

define their parts, using a delimited list file.
SetDiversionSystem() Specify that a diversion is a system and define its parts.
SetDiversionSystemFromList() Specify that one or more diversions are systems and define

their parts, using a delimited list file.
ReadDiversionRights
FromHydroBase()

For each diversion station, read the corresponding diversion
rights from HydroBase.

ReadDiversionRights
FromStateMod()

Read diversion rights from a StateMod diversion rights file.

SetDiversionRight() Set the data for, and optionally add, diversion rights.

18 - StateMod 142

StateDMI Documentation

Command Description
SortDiversionRights() Sort the diversion rights. This is useful to force consistency

between files.
FillDiversionRight() Fill missing data for defined diversion rights, using user-

supplied values.
WriteDiversionRightsToList() Write defined diversion rights to a delimited file.
WriteDiversionRightsToStateMod() Write defined diversion rights to a StateMod file.
CheckDiversionRights() Check diversion rights data for problems.
WriteCheckFile() Write the results of data checks to a file.

An example command file to create the diversion rights file is shown below (from the Colorado cm2005
data set):

StartLog(LogFile="ddr.commands.StateDMI.log")
ddr.commands.StateDMI

StateDMI command file to create the direct diversion rights file for the Colorado model

Step 1 - read structures from preliminary direct diversion station file

ReadDiversionStationsFromStateMod(InputFile="cm2005_dds.dds")

Step 2 - read aggregate and diversion system structure assignments. Note that
want to combine water rights for aggs and diversion systems, but
water rights are assigned to primary and secondary components of multistructures

SetDiversionAggregateFromList(ListFile="cm_agg.csv",IDCol=1,NameCol=2,PartIDsCol=3,PartsListedHow=InRow)
SetDiversionSystemFromList(ListFile="cm_divsys.csv",IDCol=1,NameCol=2,PartIDsCol=3,PartsListedHow=InRow)

Step 3 - read diversion rights from HydroBase and define water rights classes
used for aggregate structures - but NOT for diversion systems

ReadDiversionRightsFromHydroBase(ID="*",OnOffDefault=1,
 AdminNumClasses="14854.00000,20427.18999,22729.21241,
 30895.21241,31258.00000,32023.28989,39095.38998,43621.42906,46674.00000,48966.00000,99999.")

Step 4 - set water rights for structure IDs different from or not included in HydroBase

Grand Valley Area - many rights obtain water through operations
SetDiversionRight(ID="720646.02",Name="Orchard Mesa Irr Dist
Sys",StationID="ID",OnOff=1,IfNotFound=Add,IfFound=Set)
SetDiversionRight(ID="720646.03",Name="Orchard Mesa Irr Dist
Sys",StationID="ID",OnOff=1,IfNotFound=Add,IfFound=Set)
SetDiversionRight(ID="720646.05",Name="USA Power
Plant",StationID="ID",Decree=800.0,OnOff=1,IfNotFound=Add,IfFound=Set)
SetDiversionRight(ID="720646.07",Name="Grand Valley
Proj",StationID="ID",AdministrationNumber=22729.19544,
 Decree=40.0,OnOff=1,IfNotFound=Add,IfFound=Set)
SetDiversionRight(ID="720646.08",Name="USA_PP_Winter_OM-
Stip",StationID="ID",AdministrationNumber=30895.21241,Decree=800.00,OnOff=1,IfNotFound=Add,IfFound=Set)
SetDiversionRight(ID="720646.09",Name="USA_PP_SummerSr_OM-
Stip",StationID="ID",AdministrationNumber=30895.21241,Decree=490,OnOff=1,IfNotFound=Add,IfFound=Set)
SetDiversionRight(ID="720646.10",Name="USA_PP_SummerJr_OM-
Stip",StationID="ID",AdministrationNumber=100000.1000,Decree=999.00,OnOff=1,IfNotFound=Add,IfFound=Set)
SetDiversionRight(ID="720813.01",Name="Orchard Mesa Irr Dist
Sys",StationID="ID",AdministrationNumber=99999.99999,Decree=999.0,OnOff=1,IfNotFound=Add,IfFound=Set)
SetDiversionRight(ID="950001.01",Name="Grand Valley Proj -
Irr",StationID="ID",AdministrationNumber=99999.99999,Decree=999.0,OnOff=1,IfNotFound=Add,IfFound=Warn)
SetDiversionRight(ID="950002.01",Name="USA Power Plant",StationID="ID",AdministrationNumber=99999.99999,
 Decree=999.0,OnOff=1,IfNotFound=Add,IfFound=Warn)
SetDiversionRight(ID="950003.01",Name="Orchard Mesa
Check",StationID="ID",AdministrationNumber=999999.0000,Decree=640.0,OnOff=1,IfNotFound=Add,IfFound=Warn)
SetDiversionRight(ID="950004.01",Name="OMID Hydraulic
Pump",StationID="ID",AdministrationNumber=99999.99999,Decree=999.0,OnOff=1,IfNotFound=Add,IfFound=Warn)
SetDiversionRight(ID="950005.01",Name="OMID Pre-1985

 StateMod - 19 143

 StateDMI Documentation

Bypass",StationID="ID",AdministrationNumber=999998.0000,Decree=1100.0,OnOff=1,
 IfNotFound=Add,IfFound=Warn)
SetDiversionRight(ID="950006.01",Name="OMID Post-1985
Bypass",StationID="ID",AdministrationNumber=30895.23492,Decree=1100.0,OnOff=1,
 IfNotFound=Add,IfFound=Warn)
SetDiversionRight(ID="950007.01",Name="USA PP Winter OM-
Stip",StationID="ID",AdministrationNumber=99999.90009,Decree=999.0,OnOff=1,IfNotFound=Add,IfFound=Warn)
SetDiversionRight(ID="950008.01",Name="USA PP Summer OM-
Stip",StationID="ID",AdministrationNumber=100000.1000,Decree=999.0,OnOff=1,IfNotFound=Add,IfFound=Warn)

... similar commands omitted...

Municipal Water Rights
SetDiversionRight(ID="955002.01",Name="Snake R Water Dist Well
1",StationID="ID",AdministrationNumber=18181.00000,Decree=0.03,OnOff=1,IfNotFound=Add,IfFound=Warn)
SetDiversionRight(ID="955002.02",Name="Snake R Water Dist Well
1",StationID="ID",AdministrationNumber=32075.25333,Decree=0.12,OnOff=1,IfNotFound=Add,IfFound=Warn)
SetDiversionRight(ID="955002.03",Name="Snake R Water Dist Well
1",StationID="ID",AdministrationNumber=44741.00000,Decree=1.23,OnOff=1,IfNotFound=Add,IfFound=Warn)
SetDiversionRight(ID="955001.01",Name="Vail Valley Water -
Irr",StationID="ID",AdministrationNumber=15646.00000,Decree=11.2,OnOff=1,IfNotFound=Add,IfFound=Warn)
SetDiversionRight(ID="955003.01",Name="Vail Valley Water -
NonIrr",StationID="ID",AdministrationNumber=42420.41366,Decree=13.0,OnOff=1,IfNotFound=Add,IfFound=Warn)
SetDiversionRight(ID="950051.01",Name="City of Grand Jnct",StationID="ID",AdministrationNumber=1.00000,
 Decree=999.0,OnOff=1,IfNotFound=Add,IfFound=Warn)
SetDiversionRight(ID="950020.01",Name="Ute Water Treatment
Plant",StationID="ID",AdministrationNumber=12753.00000,Decree=4.03,OnOff=1,IfNotFound=Add,IfFound=Warn)
SetDiversionRight(ID="950020.02",Name="Ute Water Treatment
Plant",StationID="ID",AdministrationNumber=30895.12724,Decree=1.95,OnOff=1,IfNotFound=Add,IfFound=Warn)
SetDiversionRight(ID="950020.03",Name="Ute Water Treatment
Plant",StationID="ID",AdministrationNumber=30895.24260,Decree=0.74,OnOff=1,IfNotFound=Add,IfFound=Warn)
SetDiversionRight(ID="950020.04",Name="Ute Water Treatment
Plant",StationID="ID",AdministrationNumber=32811.00000,Decree=2.12,OnOff=1,IfNotFound=Add,IfFound=Warn)
SetDiversionRight(ID="950020.05",Name="Ute Water Treatment
Plant",StationID="ID",AdministrationNumber=38847.00000,Decree=20.0,OnOff=1,IfNotFound=Add,IfFound=Warn)
SetDiversionRight(ID="950020.06",Name="Ute Water Treatment
Plant",StationID="ID",AdministrationNumber=46751.46599,Decree=11.00,OnOff=1,IfNotFound=Add,IfFound=Warn)
SetDiversionRight(ID="950020.07",Name="Ute Water Treatment
Plant",StationID="ID",AdministrationNumber=46995.00000,Decree=4.1,OnOff=1,IfNotFound=Add,IfFound=Warn)
SetDiversionRight(ID="950020.08",Name="Ute Water Treatment
Plant",StationID="ID",AdministrationNumber=41791.00000,Decree=15.00,OnOff=1,IfNotFound=Add,IfFound=Warn)
SetDiversionRight(ID="720816.01",Name="Palisade Town
Pipeline",StationID="ID",AdministrationNumber=12797.00000,Decree=1.44,OnOff=1,
 IfNotFound=Add,IfFound=Warn)
SetDiversionRight(ID="720816.02",Name="Palisade Town
Pipeline",StationID="ID",AdministrationNumber=14222.00000,Decree=3.55,OnOff=1,
 IfNotFound=Add,IfFound=Warn)
...similar commands omitted...

Industrial Water Rights
SetDiversionRight(ID="360989.01",Name="Maggie Pond
Snowmaking",StationID="ID",AdministrationNumber=99999.99999,Decree=999.0,OnOff=1,
 IfNotFound=Add,IfFound=Warn)
SetDiversionRight(ID="361016.01",Name="Copper Mtn
Snowmaking",StationID="ID",AdministrationNumber=99999.99999,Decree=999.0,OnOff=1,
 IfNotFound=Add,IfFound=Warn)
SetDiversionRight(ID="720807.01",Name="Molina Power
Plant",StationID="ID",AdministrationNumber=99999.99999,Decree=999.0,OnOff=1,IfNotFound=Add,IfFound=Warn)

TenMile Diversion No. 1 - set diversion b/c it has been "Transferred From" in 1996 database
SetDiversionRight(ID="360841.01",Name="TenMile Diversion
No.1",StationID="ID",AdministrationNumber=31566.00000,Decree=35.0,OnOff=1,IfNotFound=Add,IfFound=Warn)

Redlands Power Canal and Irrigation rights (420541 has 3 rights of which only the first is modified,
James Heath (heath@lrcwe.com))
SetDiversionRight(ID="420541.01",Name="Redlands Power
Canal",StationID="ID",AdministrationNumber=22283.20300,Decree=610.0,OnOff=1,IfNotFound=Add,IfFound=Set)
SetDiversionRight(ID="950050.01",Name="Redlands Power Canal-

20 - StateMod 144

StateDMI Documentation

Irr",StationID="ID",AdministrationNumber=22283.20300,Decree=60.0,OnOff=1,IfNotFound=Add,IfFound=Warn)
SetDiversionRight(ID="950050.02",Name="Redlands Power Canal-
Irr",StationID="ID",AdministrationNumber=34419.33414,Decree=80.0,OnOff=1,IfNotFound=Add,IfFound=Warn)

Silt Project default water rights - water obtained through operations
SetDiversionRight(ID="950010.01",Name="Dry Elk Valley Irr",StationID="ID",
 AdministrationNumber=99999.99999,Decree=0,OnOff=1,IfNotFound=Add,IfFound=Warn)
SetDiversionRight(ID="950011.01",Name="Farmers Irrigation
Comp",StationID="ID",AdministrationNumber=99999.99999,Decree=0,OnOff=1,IfNotFound=Add,IfFound=Warn)

15-Mile Reach - LR-2
SetDiversionRight(ID="952001.01",Name="15-Mile Fish
Require",StationID="ID",AdministrationNumber=99999.91000,Decree=0,OnOff=1,IfNotFound=Add,IfFound=Warn)

Excess HUP Releases from Homestake, Dillon, Williams Fork, and Wolford Reservoirs Water Rights
SetDiversionRight(ID="954516D.01",Name="HUP Release Node",StationID="ID",
 AdministrationNumber=99999.99999,Decree=0.0,OnOff=1,IfNotFound=Add,IfFound=Warn)
SetDiversionRight(ID="954512D.01",Name="HUP Release Node",StationID="ID",
 AdministrationNumber=99999.99999,Decree=0.0,OnOff=1,IfNotFound=Add,IfFound=Warn)
SetDiversionRight(ID="953709D.01",Name="HUP Release Node",StationID="ID",
 AdministrationNumber=99999.99999,Decree=0.0,OnOff=1,IfNotFound=Add,IfFound=Warn)
SetDiversionRight(ID="953668D.01",Name="HUP Release Node",StationID="ID",
 AdministrationNumber=99999.99999,Decree=0.0,OnOff=1,IfNotFound=Add,IfFound=Warn)

WOLFORD MOUNTAIN RESERVOIR DEMAND
SetDiversionRight(ID="953101.01",Name="Wolford_Fraser_Dem",StationID="ID",
 AdministrationNumber=99999.00000,Decree=0,OnOff=1,IfNotFound=Add,IfFound=Warn)
SetDiversionRight(ID="953102.01",Name="Wolford_MidPark_Dem",StationID="ID",
 AdministrationNumber=99999.00000,Decree=0,OnOff=1,IfNotFound=Add,IfFound=Warn)
SetDiversionRight(ID="953103.01",Name="Wolford_Market_Dem",StationID="ID",
 AdministrationNumber=99999.00000,Decree=0,OnOff=1,IfNotFound=Add,IfFound=Warn)

...similar commands omitted...
FUTURE DEPLETIONS
SetDiversionRight(ID="956001.01",Name="Future_Depletion_#1",StationID="ID",
 AdministrationNumber=99999.00000,Decree=0,OnOff=1,IfNotFound=Add,IfFound=Warn)
SetDiversionRight(ID="956002.01",Name="Future_Depletion_#2",StationID="ID",
 AdministrationNumber=99999.00000,Decree=0,OnOff=1,IfNotFound=Add,IfFound=Warn)

Cliff Ditch - both water rights reside under WDID 500539 - set 12 cfs of second water right to 500731
and reduce to 12 cfs at 500539 - this water right serves both 500539 & 500731
SetDiversionRight(ID="500731.01",Name="Cliff Ditch Hdg No
2",StationID="ID",AdministrationNumber=20676.19665,Decree=12.0,OnOff=1,IfNotFound=Add,IfFound=Set)
SetDiversionRight(ID="500539.02",Name="Cliff
Ditch",StationID="ID",AdministrationNumber=20676.19665,Decree=12.0,OnOff=1,IfNotFound=Add,IfFound=Set)

Step 5 - Add Free water rights for structures historically diverting more than water rights
Example from San Juan - replace section when we get a list of free river water rights
SetDiversionRight(ID="360662.99",Name="HOAGLAND CANAL
SPRUCE",StationID="360662",AdministrationNumber=99999.99999,Decree=999.00,IfNotFound=Add,IfFound=Set)
SetDiversionRight(ID="360729.99",Name="MAT NO 2
DITCH",StationID="360729",AdministrationNumber=99999.99999,Decree=999.00,IfNotFound=Add,IfFound=Set)
SetDiversionRight(ID="360734.99",Name="MCKAY
DITCH",StationID="360734",AdministrationNumber=99999.99999,Decree=999.00,IfNotFound=Add,IfFound=Set)
SetDiversionRight(ID="360765.99",Name="PALMER-MCKINLEY
DITCH",StationID="360765",AdministrationNumber=99999.99999,Decree=999.00,IfNotFound=Add,IfFound=Set)
...similar commands omitted...

Step 6 - add municipal aggregate rights - this agg node water right is set to zero as no
M&I uses need to be aggregated and accounted for.
the node is included to maintain consistency with other basins and for potential future use

 StateMod - 21 145

 StateDMI Documentation

SetDiversionRight(ID="72_AMC001.01",Name="72_AMC001 Colorado River nr
Stateline",StationID="ID",AdministrationNumber=1.00000,Decree=0.0,IfNotFound=Add,IfFound=Set)

Step 7 - create direct diverison rights file

WriteDiversionRightsToStateMod(OutputFile="..\STATEMOD\cm2005.ddr")

Check the results
CheckDiversionRights(ID="*")
WriteCheckFile(OutputFile="ddr.commands.StateDMI.check.html")

22 - StateMod 146

StateDMI Documentation

5.4.3 Diversion Historical Time Series (Monthly)

Diversion historical time series (monthly) correspond to each diversion station, using the station identifier
to relate the data.

The Commands…Diversion Data…Diversion Historical TS (Monthly) menus insert commands to
process diversion historical time series (monthly) data (and also update the diversion stations file because
of changes to the capacity data):

MenuCommands_DiversionHistoricalTSMonthly

Commands…Diversion Data…Diversion Historical TS (Monthly) Menu

 StateMod - 23 147

 StateDMI Documentation

The following table summarizes the use of each command:

Diversion Historical Time Series (Monthly) Commands

Command Description
SetOutputPeriod() Set the output period. Time series are automatically

extended to this period if necessary.
SetOutputYearType() Set the output year type, which is used when writing

the files and for monthly efficiency data order.
ReadDiversionStationsFromList() Read from a delimited file the list of diversion stations

to be included in the data set.
ReadDiversionStationsFromStateMod() Read from a StateMod diversion stations file the list of

diversion stations to be included in the data set.
SetDiversionAggregate() Specify that a diversion is an aggregate and define its

parts.
SetDiversionAggregateFromList() Specify that one or more diversions are aggregates and

define their parts, using a delimited list file.
SetDiversionSystem() Specify that a diversion is a system and define its

parts.
SetDiversionSystemFromList() Specify that one or more diversions are systems and

define their parts, using a delimited list file.
ReadDiversionHistoricalTSMonthly
FromHydroBase()

Read diversion historical time series (monthly) from
HydroBase, filling and adding aggregate/system part
time series if necessary.

ReadDiversionHistoricalTSMonthly
FromStateMod()

Read diversion historical time series (monthly) from a
StateMod file.

SetDiversionHistoricalTS
Monthly()

Set the data for a diversion historical time series
(monthly) by reading another time series (e.g., from a
file). This cannot be used to set the data for an
aggregate/system part (only the aggregate/system total
can be set).

SetDiversionHistoricalTS
MonthlyConstant()

Set the data for a diversion historical time series
(monthly) to a constant value. This cannot be used to
set the data for an aggregate/system part (only the
aggregate/system total can be set).

FillDiversionHistoricalTS
MonthlyAverage()

Fill missing data in diversion historical time series
(monthly) to the historical monthly average values. If
an aggregate/system, the historical average is
computed from the total.

FillDiversionHistoricalTS
MonthlyConstant()

Fill missing data in diversion historical time series
(monthly) to a constant value.

ReadPatternFile() Read the pattern file used with
FillDiversionHistoricalTS
MonthlyPattern() commands.

FillDiversionHistoricalTS
MonthlyPattern()

Fill missing data in diversion historical time series
(monthly) to the historical monthly average values,
using wet/dry/average values.

ReadDiversionRightsFromStateMod() Read the diversion rights file for use with the
LimitDiversionHistoricalTSMonthly
ToRights() command.

24 - StateMod 148

StateDMI Documentation

Command Description
LimitDiversionHistoricalTSMonthly
ToRights()

Limit the diversion historical time series (monthly) to
the water rights that were available at each point in
time.

SortDiversionHistoricalTS
Monthly()

Sort the diversion historical time series (monthly).
This is useful to force consistency between files.

WriteDiversionHistoricalTSMonthly
ToStateMod()

Write defined diversion historical time series
(monthly) to a StateMod file.

SetDiversionStationCapacities
FromTS()

Set the diversion station capacities to the maximum
historical time series value.

SetDiversionStation() Set diversion station information (e.g., to override
capacity changes from the previous step).

SetDiversionStationsFromList() Set diversion station information from a delimited file
(e.g., to override capacity changes from the previous
step).

WriteDiversionStationsToStateMod() Write diversion stations data to a StateMod diversion
stations file (use if the capacities have been updated).

CheckDiversionHistoricalTSMonthly() Check diversion historical monthly time series data for
problems.

WriteCheckFile() Write the results of data checks to a file.

An example command file to create the diversion historical time series (monthly) file is shown below
(from the Colorado cm2005 data set). Note that aggregate part time series are filled before being added to
the total for the aggregate station, and explicit diversion time series are filled separately after reading.

StartLog(LogFile="ddh.commands.StateDMI.log")
ddh.commands.StateDMI

StateDMI command file to create the historical diversion file
and the "step 2" direct diversion structure file, updated so structure
capacity = maximum historical diversion

Step 1 - set time-series period and year type

SetOutputPeriod(OutputStart="10/1908",OutputEnd="09/2005")
SetOutputYearType(OutputYearType=Water)

Step 2 - read structure list from preliminary direct diversion structure file

ReadDiversionStationsFromStateMod(InputFile="cm2005_dds.dds")

Step 3 - read aggregate and diversion system structure assignments. Note that
want to combine historical diversions for aggs and diversion systems, but
historical diversions are separate for primary and secondary components
of multistructures

SetDiversionAggregateFromList(ListFile="cm_agg.csv",IDCol=1,NameCol=2,PartIDsCol=3,
 PartsListedHow=InRow)
SetDiversionSystemFromList(ListFile="cm_divsys.csv",IDCol=1,NameCol=2,PartIDsCol=3,
 PartsListedHow=InRow)

Step 4 - read historical diversions from HydroBase. Note that want individual structures
in aggregates and diversion systems to be filled first, then diversions combined.

ReadDiversionHistoricalTSMonthlyFromHydroBase(ID="*",IncludeCollections=False,
 UseDiversionComments=True)

Step 5 - read fill pattern file, and assign patterns to water districts

ReadPatternFile(InputFile="fill2005.pat")

 StateMod - 25 149

 StateDMI Documentation

ReadDiversionHistoricalTSMonthlyFromHydroBase(ID="36*",IncludeExplicit=False,
 UseDiversionComments=True,
 PatternID="09037500",FillPatternOrder=1,FillAverageOrder=2)

Step 6 - assign transbasin diversions from streamflow gages

SetDiversionHistoricalTSMonthly(ID="364626",TSID="09047300.DWR.Streamflow.Month~HydroBase")
…similar commands omitted…
note that adams tunnel streamgage ID changed in 10/1996 from 09013000 to ADANETCO
SetDiversionHistoricalTSMonthly(ID="514634",TSID="514634...MONTH~StateMod~514634.stm")
Con-Hoosier System - Blue River Diversion, driven by operating rules to con-hoosier
summary demand
SetDiversionHistoricalTSMonthly(ID="364683",TSID="364683...MONTH~StateMod~zero.stm")
SetDiversionHistoricalTSMonthly(ID="364699",TSID="364699...MONTH~StateMod~zero.stm")
Fryingpan-Arkansas Project
SetDiversionHistoricalTSMonthly(ID="381594",TSID="381594...MONTH~StateMod~381594.stm")
SetDiversionHistoricalTSMonthly(ID="384625",TSID="384625...MONTH~StateMod~384625.stm")
SetDiversionHistoricalTSMonthly(ID="954699",TSID="954699...MONTH~StateMod~zero.stm")
…similar commands omitted…

Step 7 - set diversions from external time-series files

The following commands are added to access Task 11.2 replacement files
SetDiversionHistoricalTSMonthly(ID="380757",TSID="380757...MONTH~StateMod~380757.stm")
…similar commands omitted…#
The following structures are set for Municipal and Industrial Diversions
SetDiversionHistoricalTSMonthly(ID="360784",TSID="360784...MONTH~StateMod~360784.stm")
…similar commands omitted…

Set transbasin diversions to "0" prior to construction

Wurtz Ditch
SetDiversionHistoricalTSMonthlyConstant(ID="374648",Constant=0,SetEnd="01/1929")
…similar commands omitted…

Step 8 - fill historical diversion using pattern approach

FillDiversionHistoricalTSMonthlyPattern(ID="36*",PatternID="09034500")
…similar commands omitted…

Step 9 - Fill remaining missing with month average

FillDiversionHistoricalTSMonthlyAverage(ID="*")

Step 10 - Limit filled diversion to water rights. Exceptions include structure
receiving significant reservoir supply, carrier structures, etc.

LimitDiversionHistoricalTSMonthlyToRights(InputFile="..\statemod\cm2005.ddr",
 ID="*",IgnoreID="954683,952001,950010,950011")

Step 11 - sort structures and create historical diversion file

SortDiversionHistoricalTSMonthly(Order=Ascending)
WriteDiversionHistoricalTSMonthlyToStateMod(OutputFile="..\StateMod\cm2005.ddh")

Step 12 - update capacities and create final direct diversion station file

SetDiversionStationCapacitiesFromTS(ID="*")
WriteDiversionStationsToStateMod(OutputFile="..\statemod\cm2005.dds")

Check the results.
CheckDiversionHistoricalTSMonthly(ID="*")
WriteCheckFile(OutputFile="ddh.commands.StateDMI.check.html")

26 - StateMod 150

StateDMI Documentation

5.4.4 Diversion Historical Time Series (Daily)

StateDMI does not process daily diversion historical time series. TSTool, a spreadsheet, or other software
can be used to create the data. More commonly, the monthly demand data can be distributed to daily time
series internally by StateMod by specifying the appropriate daily station identifier.

5.4.5 Diversion Demand Time Series (Monthly)

Diversion demand time series (monthly) correspond to each diversion station, using the station identifier
to relate the data. Current modeling practices use variable monthly efficiency, computed by StateCU.
Average monthly efficiencies are also typically set from StateCU results (as a list file input when defining
diversion stations) but can also be computed by dividing irrigation water requirement time series from
StateCU by historical diversion time series. In CDSS, demands are typically computed for three different
data sets, as follows:

Historical Demand

Filled demands are limited by the water rights on-line at the time. Historical measured diversions are not
limited. Free water rights are assumed to either be on for the entire period, or beginning with the earliest
water right. In this case the demands are the same as the historical diversions, typically just a copy of the
historical diversions time series file. This approach can be accomplished by using the
LimitDiversionHistoricalTSMonthlyToRights() command.

Calculated Demand

Irrigation demands are calculated based on IWR/Effave. The entire period is limited by water rights on-
line at the time. Free water rights are assumed to either be on for the entire period, or beginning with the
earliest water right. This approach can be accomplished by using the
LimitDiversionDemandTSMonthlyToRights() command.

Baseline Calculated Demands

Demands are treated the same as for the calculated demand case. However, the entire period is limited by
the current water rights (to simulate current conditions). This approach can be accomplished by using the
LimitDiversionDemandTSMonthlyToRights(…,LimitToCurrent=True,…) command.

Special Considerations – Conditional Rights

Conditional water rights may be included in StateMod rights files and be turned off for the historical
demands by setting the rights switch to 0 (zero) in the historical data files. Conditional rights, if
considered in the Baseline data set, can be turned on. This requires that a different rights file be used with
the calculated data set files.

Special Considerations – Comparing Calculated and Historical Demands

For some data sets, it may be appropriate to use the CalculateDiversionDemandTSMonthlyAsMax()
command to set the diversion demands to the maximum of calculated and historical demands. Using this
approach can improve calibrations, for example:

• If the demand equals the historical value, then the diversion station at times operates at a
significantly lower efficiency than the average efficiency.

 StateMod - 27 151

 StateDMI Documentation

• If the demand equals IWR/Effave, then the diversion station may be water short and will try to
divert at least enough water to operate at an average efficiency.

Modelers should consider the above issues when deciding how to prepare data for a particular data set.

The Commands…Diversion Data…Diversion Demand TS (Monthly) menus insert commands to
process diversion demand time series (monthly) data (and optionally the diversion stations, to save
estimated efficiencies):

MenuCommands_DiversionDemandTSMonthly

Commands…Diversion Data…Diversion Demand TS (Monthly) Menu

28 - StateMod 152

StateDMI Documentation

The following table summarizes the use of each command:

Diversion Demand Time Series (Monthly) Commands

Command Description
SetOutputPeriod() Set the output period. Time series are

automatically extended to this period if
necessary.

SetOutputYearType() Set the output year type, which is used when
writing the files and for determining the
monthly efficiency order in station data.

ReadDiversionStationsFromList() Read from a delimited file the list of
diversion stations to be included in the data
set.

ReadDiversionStationsFromStateMod() Read from a StateMod diversion stations
file the list of diversion stations to be
included in the data set.

SetDiversionAggregate() Specify that a diversion is an aggregate and
define its parts.

SetDiversionAggregateFromList() Specify that one or more diversions are
aggregates and define their parts, using a
delimited list file.

SetDiversionSystem() Specify that a diversion is a system and
define its parts.

SetDiversionSystemFromList() Specify that one or more diversions are
systems and define their parts, using a
delimited list file.

SetDiversionMultiStruct() Specify that a diversion is a “MultiStruct”
and define its parts.

SetDiversionMultiStructFromList() Specify that one or more diversions are
“MultiStruct”s and define their parts, using
a delimited list file.

ReadIrrigationWaterRequirementTSMonthlyFrom
StateCU()

Read irrigation water requirement (IWR)
time series generated by the StateCU model.

ReadDiversionHistoricalTSMonthlyFromState
Mod()

Read diversion historical time series
(monthly) from a StateMod file.

CalculateDiversionStationEfficiencies() Calculate diversion station average monthly
efficiencies as IWR/Diversions.

SetDiversionStation() Set diversion station data, in particular
efficiency data to override the result from
the previous command.

SetDiversionStationsFromList() Set diversion station information from a
delimited file (e.g., to override capacity
changes from the previous step).

WriteDiversionStationsToStateMod() Write diversion stations to StateMod – the
data will include updated average
efficiencies.

CalculateDiversionDemandTSMonthly() Calculate the diversion demand time series
(monthly) using IWR/Effave and historical
diversion time series.

 StateMod - 29 153

 StateDMI Documentation

Command Description
CalculateDiversionDemandTSMonthlyAsMax() Calculate the diversion demand time series

(monthly) as the maximum of the demand
(see previous command) and the diversion
historical time series.

ReadDiversionDemandTSMonthlyFromStateMod() Read the diversion demand time series
(monthly) from a StateMod file, if a
previous result is being modified.

FillDiversionDemandTSMonthlyAverage() Fill missing data in diversion demand time
series (monthly) to the monthly average
values. If an aggregate/system, the average
is computed from the total.

FillDiversionDemandTSMonthlyConstant() Fill missing data in diversion demand time
series (monthly) to a constant value.

ReadPatternFile() Read the pattern file used with
FillDiversionDemandTS
MonthlyPattern() commands.

FillDiversionDemandTSMonthlyPattern() Fill missing data in diversion demand time
series (monthly) to the monthly average
values, using wet/dry/average values.

LimitDiversionDemandTSMonthlyToRights() Limit the diversion demand time series
(monthly) to the water rights that were
available at each point in time.

SetDiversionDemandTSMonthly() Set the data for a diversion demand time
series (monthly). This cannot be used to set
the data for an aggregate/system part (only
the aggregate/system total can be set). Use
this after the other commands to ensure that
values will remain set.

SetDiversionDemandTS
MonthlyConstant()

Set the data for a diversion demand time
series (monthly) to a constant value. This
cannot be used to set the data for an
aggregate/system part (only the
aggregate/system total can be set).

SortDiversionDemandTSMonthly() Sort the diversion demand time series
(monthly). This is useful to force
consistency between files.

WriteDiversionDemandTSMonthlyToStateMod() Write diversion demand time series
(monthly) to a StateMod file.

CheckDiversionDemandTSMonthly() Check diversion demand monthly time
series data for problems.

WriteCheckFile() Write the results of data checks to a file.

30 - StateMod 154

StateDMI Documentation

An example command file to create the diversion demand time series (monthly) file for the historical case
is shown below (adapted from Colorado cm2005 data set):

StartLog(LogFile="Hddm.commands.StateDMI.log")
Hddm.commands.StateDMI - Creates Upper Colorado River Historical Demand file

Step 1 - set the output period, used to compute averages...

SetOutputPeriod(OutputStart="10/1908",OutputEnd="9/2005")
SetOutputYearType(OutputYearType=Water)

Step 2 - read historical diversion file as demand - defined structures for *.ddm file

ReadDiversionDemandTSMonthlyFromStateMod(InputFile="..\statemod\cm2005.ddh")

Step 3 - override specific demands with time series...

SetDiversionDemandTSMonthly(ID="720807",TSID="720807..DivTotal.Month~StateMod~720807.stm")
Set carrier structures to zero
SetDiversionDemandTSMonthlyConstant(ID="360606",Constant=0)
SetDiversionDemandTSMonthlyConstant(ID="720542",Constant=0)
SetDiversionDemandTSMonthlyConstant(ID="720583",Constant=0)
SetDiversionDemandTSMonthlyConstant(ID="720746",Constant=0)
SetDiversionDemandTSMonthlyConstant(ID="720820",Constant=0)
SetDiversionDemandTSMonthlyConstant(ID="720879",Constant=0)
SetDiversionDemandTSMonthlyConstant(ID="724721",Constant=0)
Set GVP specific demands
SetDiversionDemandTSMonthlyConstant(ID="950003",Constant=100000,SetStart="11/1926")
SetDiversionDemandTSMonthlyConstant(ID="950005",Constant=60000,SetEnd="9/1984")
SetDiversionDemandTSMonthlyConstant(ID="950006",Constant=60000,SetStart="10/1984")
Set Excess HUP node demands for Homestake, Dillon, Williams Fork, and Wolford Reservoirs
SetDiversionDemandTSMonthlyConstant(ID="954516D",Constant=999999)
SetDiversionDemandTSMonthlyConstant(ID="954512D",Constant=999999)
SetDiversionDemandTSMonthlyConstant(ID="953709D",Constant=999999)
SetDiversionDemandTSMonthlyConstant(ID="953668D",Constant=999999)

Step 4 - write the time series to the StateMod file...

WriteDiversionDemandTSMonthlyToStateMod(OutputFile="..\statemod\cm2005H.ddm")

Check the results.
CheckDiversionDemandTSMonthly(ID="*")
WriteCheckFile(OutputFile="Hddm.commands.StatedDMI.check.html")

The following example illustrates how to create the calculated data set diversion demand time series
(from the Colorado cm2005 data set):

StartLog(LogFile="Cddm.commands.StateDMI.log")
Cddm.commands.StateDMI

StateDMI command file to create the Calculated demand file

Step 1 - set the output period, used to compute averages...

SetOutputPeriod(OutputStart="10/1908",OutputEnd="09/2005")
SetOutputYearType(OutputYearType=Water)

Step 2 - read historical diversion file -defines structures for *.ddm file
plus read *.ddh file

ReadDiversionStationsFromStateMod(InputFile="..\StateMod\cm2005.dds")
ReadDiversionHistoricalTSMonthlyFromStateMod(InputFile="..\StateMod\cm2005.ddh")

Step 3 - read StateCU *.iwr and *.def files (irrigation requirements and average efficiencies)

ReadIrrigationWaterRequirementTSMonthlyFromStateCU(InputFile="..\StateMod\cm2005.iwr")

 StateMod - 31 155

 StateDMI Documentation

CalculateDiversionStationEfficiencies(ID="*",EffMin=0,EffMax=60,EffCalcStart=10/1974,
 EffCalcEnd=9/2004,LEZeroInAverage=False)
SetDiversionStationsFromList(ListFile="cm2005.def",IDCol="1",EffMonthlyCol="2",Delim="Space",
 MergeDelim=True)

Step 4 - determine calculated demand =iwr/efficiency
- take max of calculated demand and historical diversion

CalculateDiversionDemandTSMonthly(ID="*")
CalculateDiversionDemandTSMonthlyAsMax(ID="*")

Step 5 - set carriers nodes demand to 0, set full demand and summary demand nodes

set carrier "transbasin" diversion to Divide Creek to "0", use operating rules to satisfy demand
SetDiversionDemandTSMonthlyConstant(ID="724721",Constant=0)
place summary demand at the Moffat Tunnel, zero out collection points
SetDiversionDemandTSMonthly(ID="514655",TSID="514655..DivTotal.Month~StateMod~514655.stm")
SetDiversionDemandTSMonthlyConstant(ID="510639",Constant=0)
SetDiversionDemandTSMonthlyConstant(ID="510728",Constant=0)
SetDiversionDemandTSMonthlyConstant(ID="511269",Constant=0)
SetDiversionDemandTSMonthlyConstant(ID="511309",Constant=0)
SetDiversionDemandTSMonthlyConstant(ID="511310",Constant=0)
SetDiversionDemandTSMonthlyConstant(ID="514603",Constant=0)
place summary demand at the Boustead Summary node, zero out collection points
SetDiversionDemandTSMonthly(ID="954699",TSID="954699..DivTotal.Month~StateMod~954699.stm")
SetDiversionDemandTSMonthlyConstant(ID="381594",Constant=0)
SetDiversionDemandTSMonthlyConstant(ID="384625",Constant=0)
Homestake - Zero Missouri Tunnel and drive by Homestake Reservoir Demend
SetDiversionDemandTSMonthlyConstant(ID="374643",Constant=0)
Collbran Project Feeder/Supply Canals
SetDiversionDemandTSMonthlyConstant(ID="720879",Constant=0)
SetDiversionDemandTSMonthlyConstant(ID="720820",Constant=0)
SetDiversionDemandTSMonthlyConstant(ID="720746",Constant=0)
Grand Valley Project Carrier (Roller Dam)
SetDiversionDemandTSMonthlyConstant(ID="720646",Constant=0)
SetDiversionDemandTSMonthlyConstant(ID="950001",Constant=0,SetEnd="09/1915")
Molina Power Project
SetDiversionDemandTSMonthlyConstant(ID="720583",Constant=0)
SetDiversionDemandTSMonthlyConstant(ID="720542",Constant=0)
SetDiversionDemandTSMonthly(ID="720807",
 TSID="720807..DivTotal.MONTH~StateMod~..\StateMod\cm2005H.ddm")
Silt Project / Grass Valley / Rifle Gap
SetDiversionDemandTSMonthlyConstant(ID="390663",Constant=0)
SetDiversionDemandTSMonthlyConstant(ID="390563",Constant=0)
Elliot Feeder to Green Mountain Res
SetDiversionDemandTSMonthlyConstant(ID="360606",Constant=0)

set demands for OMID Multi Structure - need to change demand calculation for 720813 in the future
when 721330 is operational. At that point an stm file will need to be created with the total
diversions
of structures 720813 and 721330.
SetDiversionDemandTSMonthlyConstant(ID="721330",Constant=0)
SetDiversionDemandTSMonthly(ID="720813",TSID="720813..DivTotal.MONTH~StateMod~..\StateMod\cm2005H.ddm")

Step 6 - set calculated demand to historic for structures whose historical acreage is different
from current

SetDiversionDemandTSMonthly(ID="360687",TSID="360687..DivTotal.MONTH~StateMod~..\StateMod\cm2005H.ddm")
SetDiversionDemandTSMonthly(ID="360725",TSID="360725..DivTotal.MONTH~StateMod~..\StateMod\cm2005H.ddm")
SetDiversionDemandTSMonthly(ID="360728",TSID="360728..DivTotal.MONTH~StateMod~..\StateMod\cm2005H.ddm")
SetDiversionDemandTSMonthly(ID="360729",TSID="360729..DivTotal.MONTH~StateMod~..\StateMod\cm2005H.ddm")
SetDiversionDemandTSMonthly(ID="360765",TSID="360765..DivTotal.MONTH~StateMod~..\StateMod\cm2005H.ddm")
SetDiversionDemandTSMonthly(ID="360780",TSID="360780..DivTotal.MONTH~StateMod~..\StateMod\cm2005H.ddm")
SetDiversionDemandTSMonthly(ID="360800",TSID="360800..DivTotal.MONTH~StateMod~..\StateMod\cm2005H.ddm")
SetDiversionDemandTSMonthly(ID="370519",TSID="370519..DivTotal.MONTH~StateMod~..\StateMod\cm2005H.ddm")
SetDiversionDemandTSMonthly(ID="370571",TSID="370571..DivTotal.MONTH~StateMod~..\StateMod\cm2005H.ddm")
SetDiversionDemandTSMonthly(ID="370723",TSID="370723..DivTotal.MONTH~StateMod~..\StateMod\cm2005H.ddm")
SetDiversionDemandTSMonthly(ID="370848",TSID="370848..DivTotal.MONTH~StateMod~..\StateMod\cm2005H.ddm")
SetDiversionDemandTSMonthly(ID="380528",TSID="380528..DivTotal.MONTH~StateMod~..\StateMod\cm2005H.ddm")
SetDiversionDemandTSMonthly(ID="380572",TSID="380572..DivTotal.MONTH~StateMod~..\StateMod\cm2005H.ddm")
SetDiversionDemandTSMonthly(ID="380663",TSID="380663..DivTotal.MONTH~StateMod~..\StateMod\cm2005H.ddm")

32 - StateMod 156

StateDMI Documentation

SetDiversionDemandTSMonthly(ID="380939",TSID="380939..DivTotal.MONTH~StateMod~..\StateMod\cm2005H.ddm")
SetDiversionDemandTSMonthly(ID="380996",TSID="380996..DivTotal.MONTH~StateMod~..\StateMod\cm2005H.ddm")
SetDiversionDemandTSMonthly(ID="381062",TSID="381062..DivTotal.MONTH~StateMod~..\StateMod\cm2005H.ddm")
SetDiversionDemandTSMonthly(ID="381078",TSID="381078..DivTotal.MONTH~StateMod~..\StateMod\cm2005H.ddm")
SetDiversionDemandTSMonthly(ID="950005",TSID="950005..DivTotal.MONTH~StateMod~..\StateMod\cm2005H.ddm")
SetDiversionDemandTSMonthly(ID="950006",TSID="950006..DivTotal.MONTH~StateMod~..\StateMod\cm2005H.ddm")

Set Ute WCD demand node structure and set other structures to zero
SetDiversionDemandTSMonthly(ID="950020",TSID="950020..DivTotal.Month~StateMod~950020.stm")
SetDiversionDemandTSMonthlyConstant(ID="950030",Constant=0)
SetDiversionDemandTSMonthlyConstant(ID="721339",Constant=0)
SetDiversionDemandTSMonthlyConstant(ID="720920",Constant=0)
SetDiversionDemandTSMonthlyConstant(ID="721329",Constant=0)

Set Orchard Mesa Check
SetDiversionDemandTSMonthly(ID="950003",TSID="950003..DivTotal.MONTH~StateMod~..\StateMod\cm2005H.ddm")

Set Excess HUP node demands for Homestake, Dillon, Williams Fork, and Wolford Reservoirs
SetDiversionDemandTSMonthlyConstant(ID="954516D",Constant=999999)
SetDiversionDemandTSMonthlyConstant(ID="954512D",Constant=999999)
SetDiversionDemandTSMonthlyConstant(ID="953709D",Constant=999999)
SetDiversionDemandTSMonthlyConstant(ID="953668D",Constant=999999)
Step 7 - write out calculated demand file

WriteDiversionDemandTSMonthlyToStateMod(OutputFile="..\StateMod\cm2005C.ddm")

Check the results
CheckDiversionDemandTSMonthly(ID="*")
WriteCheckFile(OutputFile="Cddm.commands.StateDMI.check.html")

The following example illustrates how to create the baseline data set diversion demand time series (from
the Colorado cm2005 data set):

StartLog(LogFile="Bddm.commands.StateDMI.log")
Bddm.commands.StateDMI

StateDMI command file to create the Baseline demand file

Step 1 - set time-series period and year type

SetOutputPeriod(OutputStart="10/1908",OutputEnd="09/2005")
SetOutputYearType(OutputYearType=Water)

Step 2 - read calculated demand file

ReadDiversionDemandTSMonthlyFromStateMod(InputFile="..\statemod\cm2005C.ddm")

Step 3 - set baseline demand that vary from calculated demand

TRANSBASIN DIVERSIONS

Con-Hoosier Transbasin Demands
SetDiversionDemandTSMonthly(ID="954683",TSID="954683..DivTotal.MONTH~StateMod~954683_baseline.stm")
Boustead Transbasin Demands
SetDiversionDemandTSMonthly(ID="954699",TSID="954699..DivTotal.MONTH~StateMod~954699_baseline.stm")
Moffat Transbasin Demands
SetDiversionDemandTSMonthly(ID="514655",TSID="514655..DivTotal.MONTH~StateMod~514655_baseline.stm")
Vidler Tunnel
SetDiversionDemandTSMonthly(ID="364626",TSID="364626..DivTotal.MONTH~StateMod~364626_baseline.stm")
Robert's Tunnel
SetDiversionDemandTSMonthly(ID="364684",TSID="364684..DivTotal.MONTH~StateMod~364684_baseline.stm")
BOREAS PASS DITCH
SetDiversionDemandTSMonthly(ID="364685",TSID="364685..DivTotal.MONTH~StateMod~364685_baseline.stm")
EWING DITCH AT TENNESSEE PASS, CO.
SetDiversionDemandTSMonthly(ID="371091",TSID="371091..DivTotal.MONTH~StateMod~371091_baseline.stm")
HOMESTAKE PROJ TUNNEL
SetDiversionDemandTSMonthly(ID="374614",TSID="374614..DivTotal.MONTH~StateMod~374614_baseline.stm")
COLUMBINE DITCH

 StateMod - 33 157

 StateDMI Documentation

SetDiversionDemandTSMonthly(ID="374641",TSID="374641..DivTotal.MONTH~StateMod~374641_baseline.stm")
WARREN E WURTS DITCH
SetDiversionDemandTSMonthly(ID="374648",TSID="374648..DivTotal.MONTH~StateMod~374648_baseline.stm")
BUSK - IVANHOE TUNNEL
SetDiversionDemandTSMonthly(ID="384613",TSID="384613..DivTotal.MONTH~StateMod~384613_baseline.stm")
INDEPENDENCE PASS TM DVR TUNNEL NO 1
SetDiversionDemandTSMonthly(ID="384617",TSID="384617..DivTotal.MONTH~StateMod~384617_baseline.stm")
BERTHOUD CANAL TUNNEL
SetDiversionDemandTSMonthly(ID="514625",TSID="514625..DivTotal.MONTH~StateMod~514625_baseline.stm")
ADAMS TUNNEL
SetDiversionDemandTSMonthly(ID="514634",TSID="514634..DivTotal.MONTH~StateMod~514634_baseline.stm")
WILLOW CREEK FEEDER
SetDiversionDemandTSMonthly(ID="510958",TSID="510958..DivTotal.MONTH~StateMod~510958_baseline.stm")
WINDY GAP PUMP
SetDiversionDemandTSMonthly(ID="514700",TSID="514700..DivTotal.MONTH~StateMod~514700_baseline.stm")
WEST THREE MILE DITCH
SetDiversionDemandTSMonthly(ID="384717",TSID="384717..DivTotal.MONTH~StateMod~384717_baseline.stm")

MUNICIPAL AND INDUSTRIAL

DILLON_VALLEY_W&SD_(RANKIN_NO._1_DITCH)
SetDiversionDemandTSMonthly(ID="360784",TSID="360784..DivTotal.MONTH~StateMod~360784_baseline.stm")
TOWN_OF_DILLON_(Straight_Creek_Ditch)
SetDiversionDemandTSMonthly(ID="360829",TSID="360829..DivTotal.MONTH~StateMod~360829_baseline.stm")
TENMILE DIVERSION NO 1 (Climax)
SetDiversionDemandTSMonthlyConstant(ID="360841",Constant=0)
Keystone Resort Snowmaking
SetDiversionDemandTSMonthly(ID="360908",TSID="360908..DivTotal.MONTH~StateMod~360908_baseline.stm")
TOWN_OF_BRECKENRIDGE_(Breckenridge_Pipeline)
SetDiversionDemandTSMonthly(ID="361008",TSID="361008..DivTotal.MONTH~StateMod~361008_baseline.stm")
COPPER_MOUNTAIN_SKI_AREA_SNOWMAKING
SetDiversionDemandTSMonthly(ID="361016",TSID="361016..DivTotal.MONTH~StateMod~361016_baseline.stm")
UPPER_EAGLE_VALLEY_WATER_AUTHORITY_(Metcalf_Ditch)
SetDiversionDemandTSMonthly(ID="370708",TSID="370708..DivTotal.MONTH~StateMod~370708_baseline.stm")
CARBONDALE WTR SYS & PL
SetDiversionDemandTSMonthly(ID="381052",TSID="381052..DivTotal.MONTH~StateMod~381052_baseline.stm")
Snowmass Water and Utility
SetDiversionDemandTSMonthly(ID="381441",TSID="381441..DivTotal.MONTH~StateMod~381441_baseline.stm")
RIFLE TOWN OF PUMP & PL
SetDiversionDemandTSMonthly(ID="390967",TSID="390967..DivTotal.MONTH~StateMod~390967_baseline.stm")
GRAND JCT GUNNISON P-L
SetDiversionDemandTSMonthly(ID="420520",TSID="420520..DivTotal.MONTH~StateMod~420520_baseline.stm")
REDLANDS POWER CANAL
SetDiversionDemandTSMonthly(ID="420541",TSID="420541..DivTotal.MONTH~StateMod~420541_baseline.stm")
HENDERSON MINE WTR SYS
SetDiversionDemandTSMonthly(ID="511070",TSID="511070..DivTotal.MONTH~StateMod~511070_baseline.stm")
SHOSHONE POWER PLANT
SetDiversionDemandTSMonthly(ID="530584",TSID="530584..DivTotal.MONTH~StateMod~530584_baseline.stm")
GLENWOOD L WATER CO SYS
SetDiversionDemandTSMonthly(ID="530585",TSID="530585..DivTotal.MONTH~StateMod~530585_baseline.stm")
TOWN_OF_CLIFTON_(Grand_Junction_Colorado_River_PL)
SetDiversionDemandTSMonthly(ID="720644",TSID="720644..DivTotal.MONTH~StateMod~720644_baseline.stm")
MOLINA POWER PLANT
SetDiversionDemandTSMonthly(ID="720807",TSID="720807..DivTotal.MONTH~StateMod~720807_baseline.stm")
PALISADE_TOWN_PIPELINE_(720816)_(TREATED_PLANT_FLOW)
SetDiversionDemandTSMonthly(ID="720816",TSID="720816..DivTotal.MONTH~StateMod~720816_baseline.stm")
Ute Water Treatment
SetDiversionDemandTSMonthly(ID="950020",TSID="950020..DivTotal.MONTH~StateMod~950020_baseline.stm")
CITY_OF_GRAND_JUNCTION
SetDiversionDemandTSMonthly(ID="950051",TSID="950051..DivTotal.MONTH~StateMod~950051_baseline.stm")
VAIL VALLEY CONSOLIDATED WATER DISTRICT - irr. season
SetDiversionDemandTSMonthly(ID="955001",TSID="955001..DivTotal.MONTH~StateMod~955001_baseline.stm")
TOTAL FOR ALL SNAKE RIVER WATER DISTRICT WELLS (KEYSTONE_MUNICIPAL)
SetDiversionDemandTSMonthly(ID="955002",TSID="955002..DivTotal.MONTH~StateMod~955002_baseline.stm")
VAIL VALLEY CONSOLIDATED WATER DISTRICT - nonirr. season
SetDiversionDemandTSMonthly(ID="955003",TSID="955003..DivTotal.MONTH~StateMod~955003_baseline.stm")

RESERVOIR STRUCTURES

GRN MTN HYDRO-ELECTRIC
SetDiversionDemandTSMonthly(ID="360881",TSID="360881..DivTotal.MONTH~StateMod~360881_baseline.stm")

34 - StateMod 158

StateDMI Documentation

WILLIAMS FORK POWER COND
SetDiversionDemandTSMonthly(ID="511237",TSID="511237..DivTotal.MONTH~StateMod~511237_baseline.stm")
Green Mountain Contract water
SetDiversionDemandTSMonthly(ID="950060",TSID="950060..DivTotal.MONTH~StateMod~950060_baseline.stm")
FRASER BASIN demands out of Wolford Mountain Reservoir
SetDiversionDemandTSMonthly(ID="953101",TSID="953101..DivTotal.MONTH~StateMod~953101_baseline.stm")
MIDDLE PARK demands out of Wolford Mountain Reservoir
SetDiversionDemandTSMonthly(ID="953102",TSID="953102..DivTotal.MONTH~StateMod~953102_baseline.stm")
Green Mtn Annual Rep Est
SetDiversionDemandTSMonthly(ID="950061",TSID="950061..DivTotal.MONTH~StateMod~950061_baseline.stm")
Ruedi Rnd 1-Muni Demand
SetDiversionDemandTSMonthly(ID="953001",TSID="953001..DivTotal.MONTH~StateMod~953001_baseline.stm")
Ruedi Rnd 1-Ind Demand
SetDiversionDemandTSMonthly(ID="953002",TSID="953002..DivTotal.MONTH~StateMod~953002_baseline.stm")
Ruedi Rnd 2-Muni Demand
SetDiversionDemandTSMonthly(ID="953003",TSID="953003..DivTotal.MONTH~StateMod~953003_baseline.stm")
Ruedi Rnd 2-Ind Demand
SetDiversionDemandTSMonthly(ID="953004",TSID="953004..DivTotal.MONTH~StateMod~953004_baseline.stm")

CAMEO DEMAND / GRAND VALLEY AREA

GRAND VALLEY PROJECT IRRIGATION (fill in years from 1909 to 1916)
SetDiversionDemandTSMonthly(ID="950001",TSID="950001..DivTotal.MONTH~StateMod~..\StateMod\cm2005C-
AcreageChange.ddm")
Orchard Mesa Irrigation District (OMID power) demand
SetDiversionDemandTSMonthlyConstant(ID="950002",Constant=0)
ORCHARD_MESA_CHECK
SetDiversionDemandTSMonthly(ID="950003",TSID="950003..DivTotal.MONTH~StateMod~950003_baseline.stm")
Orchard Mesa Irrigation District (OMID pump) demand
SetDiversionDemandTSMonthly(ID="950004",TSID="950004..DivTotal.MONTH~StateMod~950004_baseline.stm")
OMID Bypass (950005) time series for baseline data set
SetDiversionDemandTSMonthlyConstant(ID="950005",Constant=0)
OMID Bypass (950006) time series for baseline data set
SetDiversionDemandTSMonthly(ID="950006",TSID="950006..DivTotal.MONTH~StateMod~950006_baseline.stm")
USA PP-Winter-OM Stip
SetDiversionDemandTSMonthly(ID="950007",TSID="950007..DivTotal.MONTH~StateMod~950007_baseline.stm")
USA PP-Summer-OM Stip
SetDiversionDemandTSMonthly(ID="950008",TSID="950008..DivTotal.MONTH~StateMod~950008_baseline.stm")

FISH DEMAND (in Baseline it is located at instream flow node 952002)

15 Mile Reach area for endangered fish
SetDiversionDemandTSMonthlyConstant(ID="952001",Constant=0)

Step 4 - set calculated demand to current demand for structures whose historical acreage is
different from current

SetDiversionDemandTSMonthly(ID="360687",TSID="360687..DivTotal.MONTH~StateMod~..\StateMod\cm2005C-
AcreageChange.ddm")
SetDiversionDemandTSMonthly(ID="360725",TSID="360725..DivTotal.MONTH~StateMod~..\StateMod\cm2005C-
AcreageChange.ddm")
SetDiversionDemandTSMonthly(ID="360728",TSID="360728..DivTotal.MONTH~StateMod~..\StateMod\cm2005C-
AcreageChange.ddm")
SetDiversionDemandTSMonthly(ID="360729",TSID="360729..DivTotal.MONTH~StateMod~..\StateMod\cm2005C-
AcreageChange.ddm")
SetDiversionDemandTSMonthly(ID="360765",TSID="360765..DivTotal.MONTH~StateMod~..\StateMod\cm2005C-
AcreageChange.ddm")
SetDiversionDemandTSMonthly(ID="360780",TSID="360780..DivTotal.MONTH~StateMod~..\StateMod\cm2005C-
AcreageChange.ddm")
SetDiversionDemandTSMonthly(ID="360800",TSID="360800..DivTotal.MONTH~StateMod~..\StateMod\cm2005C-
AcreageChange.ddm")
SetDiversionDemandTSMonthly(ID="370519",TSID="370519..DivTotal.MONTH~StateMod~..\StateMod\cm2005C-
AcreageChange.ddm")
SetDiversionDemandTSMonthly(ID="370571",TSID="370571..DivTotal.MONTH~StateMod~..\StateMod\cm2005C-
AcreageChange.ddm")
SetDiversionDemandTSMonthly(ID="370723",TSID="370723..DivTotal.MONTH~StateMod~..\StateMod\cm2005C-
AcreageChange.ddm")
SetDiversionDemandTSMonthly(ID="370848",TSID="370848..DivTotal.MONTH~StateMod~..\StateMod\cm2005C-
AcreageChange.ddm")
SetDiversionDemandTSMonthly(ID="380528",TSID="380528..DivTotal.MONTH~StateMod~..\StateMod\cm2005C-
AcreageChange.ddm")

 StateMod - 35 159

 StateDMI Documentation

SetDiversionDemandTSMonthly(ID="380572",TSID="380572..DivTotal.MONTH~StateMod~..\StateMod\cm2005C-
AcreageChange.ddm")
SetDiversionDemandTSMonthly(ID="380663",TSID="380663..DivTotal.MONTH~StateMod~..\StateMod\cm2005C-
AcreageChange.ddm")
SetDiversionDemandTSMonthly(ID="380939",TSID="380939..DivTotal.MONTH~StateMod~..\StateMod\cm2005C-
AcreageChange.ddm")
SetDiversionDemandTSMonthly(ID="380996",TSID="380996..DivTotal.MONTH~StateMod~..\StateMod\cm2005C-
AcreageChange.ddm")
SetDiversionDemandTSMonthly(ID="381062",TSID="381062..DivTotal.MONTH~StateMod~..\StateMod\cm2005C-
AcreageChange.ddm")
SetDiversionDemandTSMonthly(ID="381078",TSID="381078..DivTotal.MONTH~StateMod~..\StateMod\cm2005C-
AcreageChange.ddm")

Step 5 - create baseline demand file

WriteDiversionDemandTSMonthlyToStateMod(OutputFile="..\statemod\cm2005B.ddm")

Check the results
CheckDiversionDemandTSMonthly(ID="*")
WriteCheckFile(OutputFile="Bddm.commands.StateDMI.check.html")

5.4.6 Diversion Demand Time Series Override (Monthly)

Demand override time series, if specified, will be used instead of the time series in the primary demand
file. StateDMI does not process demand time series override (monthly). If needed, TSTool, a
spreadsheet, or other software can be used to create the data.

5.4.7 Diversion Demand Time Series (Average Monthly)

StateDMI does not process demand time series (average monthly). If needed, TSTool, a spreadsheet, or
other software can be used to create the data.

5.4.8 Diversion Demand Time Series (Daily)

StateDMI does not process daily diversion demand time series. TSTool, a spreadsheet, or other software
can be used to create the data. More commonly, the monthly historical data can be distributed to daily
time series internally be StateMod by specifying the appropriate daily station identifier.

5.4.9 Irrigation Practice Time Series (Yearly)

The irrigation practice time series (yearly) file is created by the StateCU commands in StateDMI, for use
with a StateCU data set. The StateMod data set can reference the StateCU file or a copy of the file. This
file provides maximum efficiency, ground water acres, sprinkler acres, by year, to be used with variable
efficiency calculations. The consumptive water requirement file from the StateCU model (see next
section) is also used as input.

An example of variable efficiency is as follows: if the diversion is 100 and the CWR (IWR) is 25, the
efficiency is 25%; if the diversion is 25 and the CWR (IWR) is 20, the efficiency is 80%. If variable
efficiency is used and the irrigation practice time series file is provided, the efficiencies in the diversion
station file are ignored. If variable efficiency is used by the irrigation practice time series is not used, the
average efficiency in the structure station file is used.

5.4.10 Consumptive Water Requirement (Monthly, Daily)

StateDMI does not process consumptive water requirement time series. The consumptive water
requirement file is typically the same as the StateMod format IWR (irrigation water requirement) time

36 - StateMod 160

StateDMI Documentation

series file from StateCU output, for agricultural structures, but can contain consumptive water
requirement time series for municipal and industrial locations. Therefore, unlike the demand time series,
these data represent on-site requirements and do not reflect a delivery loss (as do diversion headgate
demands). See the StateMod documentation for more information about specifying the demand type.

5.4.11 Soil Moisture

The soil moisture file allows both StateCU and StateMod to consider soil moisture for supply. StateDMI
does not process the soil moisture file. Previously this file was the same as the StateCU parameter (*.par)
file, which supplied available water content to start each year; however, this file is not used in the new
version of StateCU.

5.5 Precipitation Data

Precipitation data consist of:

• Precipitation Time Series (Monthly)

Precipitation data are used to estimate net evaporation from reservoirs. Reservoir stations can reference
both precipitation and evaporation data, or may include only net evaporation data (evaporation -
precipitation). StateMod data sets do not include a file for precipitation stations. Therefore, the
precipitation time series referenced in reservoir stations (if net evaporation is not used) must use the same
identifiers found in the precipitation time series file.

5.5.1 Precipitation Time Series (Monthly)

StateDMI does not process precipitation time series. Instead, use TSTool, a spreadsheet or other software
to prepare the time series file. See Chapter 4 – Creating StateCU Data Set Files for an example TSTool
commands file for monthly precipitation data. Often, precipitation time series are not provided and
instead net evaporation time series (evaporation minus precipitation) are provided (see Section 5.6
Evaporation Data). The StateMod control file indicates whether the precipitation time series contain
monthly or average monthly values. Precipitation time series identifiers typically match the precipitation
station identifiers from HydroBase or other data source.

5.6 Evaporation Data

Evaporation data consist of:

• Evaporation Time Series (Monthly)

Evaporation data are used to estimate net evaporation from reservoirs. Reservoir stations can reference
both precipitation and evaporation data (in which case the net evaporation is computed by StateMod), or
may include only net evaporation data (evaporation - precipitation) in the evaporation time series.
StateMod data sets do not include a file for evaporation stations. Therefore, the evaporation time series
referenced in reservoir stations must use the same identifiers found in the evaporation time series file.

5.6.1 Evaporation Time Series (Monthly)

StateDMI does not process evaporation time series. Instead, use TSTool, a spreadsheet or other software
to prepare the time series file. The StateMod control file indicates whether the precipitation time series
contain monthly or average monthly values. For example, use TSTool to review the average monthly

 StateMod - 37 161

 StateDMI Documentation

values for key evaporation and precipitation stations and manually create an average monthly net
evaporation time series file. Evaporation time series identifiers typically match the evaporation station
identifiers from HydroBase or other data source.

5.7 Reservoir Data

Reservoir data consists of:

• Reservoir stations
• Reservoir rights
• Historical content time series (monthly, daily)
• Target time series (monthly, daily)

Each of the above data types is stored in a separate file, using the diversion station identifier as the
primary identifier.

The processing of each data file is discussed below.

5.7.1 Reservoir Stations

Each reservoir station used with StateMod can be one of two types:

1. Explicit reservoir, where no aggregation occurs – this type is used for key structures that need to
be explicitly modeled. The reservoir station identifier is usually a 7-character water district
identifier (6-character for old data sets) or fabricated identifier that starts with the water district
number.

2. Reservoir aggregate, in which reservoir characteristics (maximum volume) are summed and water
rights are aggregated into classes. Currently, aggregation of the water rights occurs when the
ReadReservoirRightsFromHydroBase() command is executed. The naming
convention for modeling in CDSS is to use an identifier similar to 20_ARCNNN, where the
leading 20 indicates the water district, ARC indicates aggregate reservoir, and NNN is a number to
allow multiple reservoir aggregates in a water district. This convention allows summary of
storage for basins. Aggregates should be defined using the SetReservoirAggregate*()
commands and need to be defined when processing all reservoir station files (if aggregates are
used).

Currently, StateDMI does not support Reservoir Systems (which would be similar to Diversion Systems),
in which reservoir physical characteristics are combined but all water rights are explicitly represented.

The determination of the reservoir station type for each reservoir station is usually made by reviewing
available data (e.g., water rights), and discussing administrative data with knowledgeable persons (e.g.,
water commissioners). Typically, key reservoirs have large capacities, and/or have important water rights
and administrative roles. Minor reservoirs, or groups of reservoirs for which independent data are
difficult to determine, may be lumped together in an aggregate or system. Grouping reservoirs into
aggregates reduces the overall number of model nodes, size of output, and model run time.

38 - StateMod 162

StateDMI Documentation

The Commands…Reservoir Data…Reservoir Stations menus insert commands to process reservoir
station data:

MenuCommands_ReservoirStations

Commands…Reservoir Data…Reservoir Stations Menu

The following table summarizes the use of each command:

Reservoir Stations Commands

Command Description
ReadReservoirStationsFromList() Read from a delimited list file the list of

reservoir stations to be included in the data set.
ReadReservoirStationsFromNetwork() Read from a StateMod network file a list of

reservoir stations to be included in the data set.
ReadReservoirStationsFromStateMod() Read from a StateMod reservoir stations file

the list of reservoir stations to be included in
the data set.

SetReservoirAggregate() Specify that a reservoir is an aggregate and
define its parts.

SetReservoirAggregateFromList() Specify that one or more reservoirs are
aggregates and define their parts, using a
delimited list file.

SetReservoirStation() Set the data for, and optionally add, reservoir
stations.

SortReservoirStations() Sort the reservoir stations. This is useful to
force consistency between files.

FillReservoirStationsFromHydroBase() Fill missing data for defined reservoir stations,
using data from HydroBase. For example,
retrieve the station names, and maximum

 StateMod - 39 163

 StateDMI Documentation

Command Description
volumes.

FillReservoirStationsFromNetwork() Fill missing data for defined reservoir stations,
using data from the network. For example,
retrieve the station names.

FillReservoirStation() Fill missing data for defined reservoir stations,
user user-supplied values.

WriteReservoirStationsToList() Write defined reservoir stations to a delimited
file.

WriteReservoirStationsToStateMod() Write defined reservoir stations to a StateMod
file.

CheckReservoirStations() Check reservoir stations data for problems.
WriteCheckFile() Write the results of data checks to a file.

An example command file to create the reservoir station file is shown below (from Colorado cm2005 data
set):

StartLog(LogFile="res.commands.StateDMI.log")
res.commands.StateDMI

Creates the reservoir station file for the Upper Colorado River monthly models
Initial reservoir contents are set to 9/1908 estimated contents

Phase IIIb modifications
to reflect reservoir storage as of October 1908 - zero out account owners' current
storage capacity if the reservoir came on-line during the study period.
No changes made to reservoirs that were on-line in 10/1908 (including aggregate storage).

Turned on Wolford Mountain and added Wolford Mountain accounts and storage rights per CWCB

Eliminated Unallocated Pool from Vega Reservoir; it was getting filled but not booked over
to the Power Exchange pool, and could not get released for use

commands used in this file establish reservoir capacity, fill date,
reservoir account ownership, area-capacity tables and representative
evaporation stations (see StateMod documentation)

Step 1 - read reservoirs from network file and sort alphabetically

ReadReservoirStationsFromNetwork(InputFile="..\network\cm2005.net")
SortReservoirStations(Order=Ascending)

Step 2 - read reservoir information from HydroBase

FillReservoirStationsFromHydroBase(ID="*")

Step 3 - set reservoir information not available in HydroBase including min/max
content, starting content, and account information

GREEN MOUNTAIN RESERVIOR Characteristics
SetReservoirStation(ID="363543",OnOff=3,OneFillRule=4,DailyID="5",ContentMin=0,ContentMax=154645,
 ReleaseMax=4010,DeadStorage=0,AccountID=1,
 AccountName="Hist_Users",AccountMax=66000,AccountInitial=0,AccountEvap=0,AccountOneFill=1,
 EvapStations="10008,100",IfNotFound=Warn)
SetReservoirStation(ID="363543",AccountID=2,AccountName="CBT_Pool",AccountMax=52000,
 AccountInitial=0,AccountEvap=0,AccountOneFill=1,IfNotFound=Warn)
SetReservoirStation(ID="363543",AccountID=3,AccountName="Contract",AccountMax=20000,
 AccountInitial=0,AccountEvap=0,AccountOneFill=1,IfNotFound=Warn)
SetReservoirStation(ID="363543",AccountID=4,AccountName="Silt_Proj",AccountMax=5000,
 AccountInitial=0,AccountEvap=0,AccountOneFill=1,IfNotFound=Warn)
SetReservoirStation(ID="363543",AccountID=5,AccountName="Inactive",AccountMax=11645,
 AccountInitial=0,AccountEvap=0,AccountOneFill=1,IfNotFound=Warn)
SetReservoirStation(ID="363543",AccountID=6,AccountName="SurplusFish",AccountMax=66000,
 AccountInitial=0,AccountEvap=0,IfNotFound=Warn)

40 - StateMod 164

StateDMI Documentation

... similar commands for other reservoirs omitted...

District 50 Aggregated Reservoirs
SetReservoirStation(ID="50_ARC006",Name="50_ARC006",OnOff=1,OneFillRule=-1,
 DailyID="5",ContentMin=0,ContentMax=11481,ReleaseMax=999999,DeadStorage=0,
 AccountID=1,AccountName="50_ARC006",AccountMax=11481,AccountInitial=11481,
 AccountEvap=0,AccountOneFill=1,EvapStations="10008,100",
 ContentAreaSeepage="0,0,0;11481,1148.1,0;9999999,1148.1,0",IfNotFound=Warn)
...similar commands for other reservoirs omitted...

WriteReservoirStationsToStateMod(OutputFile="..\statemod\cm2005.res")

Check the results
CheckReservoirStations(ID="*")
WriteCheckFile(OutputFile="res.commands.StateDMI.check.html")

5.7.2 Reservoir Rights

Reservoir rights correspond to the reservoir stations, using the reservoir station identifier to relate the
data. Reservoir right identifiers are typically the reservoir station identifier followed by .NN, where NN is
a sequential number starting with 01. Reservoir aggregate stations have rights corresponding to water
right classes.

The Commands…Reservoir Data…Reservoir Rights menu items insert commands to process reservoir
rights data:

MenuCommands_ReservoirRights

Commands…Reservoir Data…Reservoir Rights Menu

 StateMod - 41 165

 StateDMI Documentation

The following table summarizes the use of each command:

Reservoir Rights Commands

Command Description
ReadReservoirStationsFromList() Read from a delimited file the list of reservoir

stations to be included in the data set – the list
indicates the stations for which to process rights.

ReadReservoirStationsFromStateMod() Read from a StateMod reservoir stations file the
list of reservoir stations to be included in the data
set – the list indicates the stations for which to
process rights.

SetReservoirAggregate() Specify that a reservoir is an aggregate and define
its parts.

SetReservoirAggregateFromList() Specify that one or more reservoirs are aggregates
and define their parts, using a delimited list file.

ReadReservoirRightsFromHydroBase() For each reservoir station, read the corresponding
reservoir rights from HydroBase.

ReadReservoirRightsFromStateMod() Read reservoir rights from a StateMod reservoir
rights file.

SetReservoirRight() Set the data for, and optionally add, reservoir
rights.

SortReservoirRights() Sort the reservoir rights. This is useful to force
consistency between files.

FillReservoirRight() Fill missing data for defined reservoir rights,
using user-supplied values.

WriteReservoirRightsToList() Write defined reservoir rights to a delimited file.
WriteReservoirRightsToStateMod() Write defined reservoir rights to a StateMod file.
CheckReservoirRights() Check reservoir rights data for problems.
WriteCheckFile() Write the results of data checks to a file.

The following example command file (from the Colorado cm2005 data set) illustrates how to create the
reservoir rights file:

StartLog(LogFile="rer.commands.StateDMI.log")
rer.commands.StateDMI

Creates the reservoir rights file for the Upper Colorado River model

Step 1 - read reservoirs from reservoir station file

ReadReservoirStationsFromStateMod(InputFile="..\StateMod\cm2005.res")

Step 2 - read reservoir rights from HyroBase

ReadReservoirRightsFromHydroBase(ID="*",OnOffDefault=1)

Step 3 - assign rights to specific accounts, if required
assign rights not in hydrobase and free-river rights
SetReservoirRight(ID="363543.01",Name="GREEN_MOUNTAIN_RESERVOIR",StationID="ID",
 AdministrationNumber=31258.00000,Decree=154645,OnOff=1943,AccountDist="-5",
 RightType=1,FillType=1,IfNotFound=Warn,IfFound=Set)
Set Green Mountain's senior refill right to be junior to the Con-Hoosier and
Dillon/Roberts Tunnel projects and the Blue River Decree Exchange
this is based on agreements with the USBR and Denver.
SetReservoirRight(ID="363543.02",Name="GREEN_MOUNTAIN_RESERVOIR",StationID="ID",
 AdministrationNumber=38628.00001,Decree=6316,OnOff=1943,AccountDist="-5",

42 - StateMod 166

StateDMI Documentation

 RightType=1,FillType=2,IfNotFound=Warn,IfFound=Set)
SetReservoirRight(ID="363543.03",Name="GREEN_MOUNTAIN-refill",StationID="ID",
 AdministrationNumber=50403.49309,Decree=154645,OnOff=1943,AccountDist="-
5",FillType=2,IfNotFound=Add,IfFound=Set)
363543.04 right is used by Type 41 Rule in accordance with the Blue River Decree and the
Interim Policy
SetReservoirRight(ID="363543.04",Name="GREEN_MOUNTAIN_RES_Exch",StationID="ID",
 AdministrationNumber=38628.00000,Decree=154645,OnOff=1,AccountDist="-
5",FillType=2,IfNotFound=Add,IfFound=Warn)
Con-Hoosier Res (aka Upper Blue Lakes) set 0.00001 junior to Con-Hoosier tunnel diversion
SetReservoirRight(ID="363570.01",Name="CON_HOOSIER_RES-orig",StationID="ID",
 AdministrationNumber=35927.00001,Decree=10000,OnOff=1,AccountDist="1",
 FillType=1,IfNotFound=Warn,IfFound=Set)
SetReservoirRight(ID="363570.02",Name="CON_HOOSIER_RES-free",StationID="ID",
 AdministrationNumber=99999.99999,Decree=10000,OnOff=1,
 AccountDist="1",RightType=1,FillType=2,IfNotFound=Add,IfFound=Warn)
SetReservoirRight(ID="363575.01",Name="Clinton Gulch Original Modified",Decree=600,
 AccountDist="-9",FillType=1,IfNotFound=Warn,IfFound=Set)
SetReservoirRight(ID="363575.02",Name="CLINTON_GULCH-refill",StationID="ID",OnOff=1,
 AccountDist="-9",RightType=1,FillType=2,IfNotFound=Warn,IfFound=Set)
SetReservoirRight(ID="363575.03",Name="Clinton Gulch Modified Sr to Dillon",StationID="ID",
 AdministrationNumber=31257.99999,Decree=3650,OnOff=1,
 AccountDist="-9",RightType=1,FillType=1,IfNotFound=Add,IfFound=Warn)
Denver's Dillon Reservoir set junior to Colorado Springs' Conntinental Hoosier Project
SetReservoirRight(ID="364512.01",Name="DILLON_RESERVOIR-modify",StationID="ID",
 AdministrationNumber=35927.00005,Decree=252678,OnOff=1,AccountDist="-3",RightType=1,
 FillType=1,IfNotFound=Warn,IfFound=Set)
SetReservoirRight(ID="364512.02",Name="DILLON_RESERVOIR-refill",StationID="ID",
 AdministrationNumber=50038.49309,Decree=252678,OnOff=1,AccountDist="-3",RightType=1,
 FillType=1,IfNotFound=Warn,IfFound=Set)
SetReservoirRight(ID="373639.01",Name="Wolcott_Reservoir",StationID="ID",
 AdministrationNumber=42485.00000,Decree=65975,OnOff=1,AccountDist="-1",RightType=1,
 FillType=1,IfNotFound=Add,IfFound=Warn)
SetReservoirRight(ID="373699.01",AccountDist="-4",FillType=1,IfNotFound=Warn,IfFound=Set)
SetReservoirRight(ID="374516.01",AccountDist="-2",FillType=1,IfNotFound=Warn,IfFound=Set)
SetReservoirRight(ID="374516.02",Name="HOMESTAKE_RES-refill",StationID="ID",
 AdministrationNumber=99999.99999,Decree=43505,OnOff=1,AccountDist="-2",RightType=1,
 FillType=2,IfNotFound=Add,IfFound=Warn)
SetReservoirRight(ID="383713.01",Name="RUEDI_RESERVOIR",StationID="ID",OnOff=1,
 AccountDist="-6",RightType=1,FillType=1,IfNotFound=Warn,IfFound=Set)
SetReservoirRight(ID="383713.02",Name="RUEDI_RESERVOIR-refill",StationID="ID",
 Decree=101280,OnOff=1,AccountDist="-3",RightType=1,FillType=2,IfNotFound=Warn,IfFound=Set)
SetReservoirRight(ID="393505.01",AccountDist="1",FillType=1,IfNotFound=Warn,IfFound=Set)
SetReservoirRight(ID="393505.02",AccountDist="1",FillType=1,IfNotFound=Warn,IfFound=Set)
SetReservoirRight(ID="393505.03",Name="GRASS_VALLEY_RES-refill",StationID="ID",
 AdministrationNumber=99999.99999,Decree=5920,OnOff=1,
 AccountDist="1",RightType=1,FillType=2,IfNotFound=Add,IfFound=Warn)
SetReservoirRight(ID="393508.01",AccountDist="-2",FillType=1,IfNotFound=Warn,IfFound=Set)
SetReservoirRight(ID="393508.02",Name="RIFLE_GAP_RES-refill",StationID="ID",
 AdministrationNumber=99999.99999,Decree=13601,OnOff=1,AccountDist="-2",RightType=1,
 FillType=2,IfNotFound=Add,IfFound=Warn)
SetReservoirRight(ID="503668.01",Name="WOLFORD_MOUNTAIN_RES",StationID="ID",OnOff=1,
 AccountDist="-2",RightType=1,FillType=1,IfNotFound=Warn,IfFound=Set)
SetReservoirRight(ID="503668.02",Name="WOLFORD_MOUNTAIN_RES",StationID="ID",OnOff=1,
 AccountDist="3",RightType=1,FillType=1,IfNotFound=Warn,IfFound=Set)
SetReservoirRight(ID="503668.03",Name="WOLFORD_MOUNTAIN-refill",StationID="ID",
 AdministrationNumber=99999.99999,Decree=30000,OnOff=1,AccountDist="-2",RightType=1,
 FillType=2,IfNotFound=Add,IfFound=Warn)
SetReservoirRight(ID="513686.01",AccountDist="-3",FillType=1,IfNotFound=Warn,IfFound=Set)
SetReservoirRight(ID="513686.02",Name="MEADOW_CREEK_RES-refill",StationID="ID",
 AdministrationNumber=99999.99999,Decree=5100,OnOff=1,AccountDist="-3",RightType=1,
 FillType=2,IfNotFound=Add,IfFound=Warn)
SetReservoirRight(ID="513695.01",AccountDist="-2",FillType=1,IfNotFound=Warn,IfFound=Set)
SetReservoirRight(ID="513695.02",Name="SHADOW_MTN_RES-refill",StationID="ID",
 AdministrationNumber=99999.99999,Decree=19669,OnOff=1,AccountDist="-2",RightType=1,
 FillType=2,IfNotFound=Add,IfFound=Warn)
SetReservoirRight(ID="513709.01",AccountDist="-2",FillType=1,IfNotFound=Warn,IfFound=Set)
SetReservoirRight(ID="513709.02",AccountDist="-1",FillType=2,IfNotFound=Warn,IfFound=Set)
SetReservoirRight(ID="513710.01",AccountDist="-2",FillType=1,IfNotFound=Warn,IfFound=Set)
SetReservoirRight(ID="513710.02",Name="WILLOW_CREEK_RES-refill",StationID="ID",
 AdministrationNumber=99999.99999,Decree=10553,OnOff=1,

 StateMod - 43 167

 StateDMI Documentation

 AccountDist="-2",RightType=1,FillType=2,IfNotFound=Add,IfFound=Warn)
SetReservoirRight(ID="514620.01",Name="GRANBY_RESERVOIR",StationID="ID",
 AdministrationNumber=31258.00000,Decree=543758,OnOff=1,AccountDist="-2",RightType=1,
 FillType=1,IfNotFound=Add,IfFound=Warn)
SetReservoirRight(ID="514620.02",Name="GRANBY_RESERVOIR-refill",StationID="ID",
 AdministrationNumber=99999.99999,Decree=543758,OnOff=1,AccountDist="-2",RightType=1,
 FillType=2,IfNotFound=Add,IfFound=Warn)
SetReservoirRight(ID="723844.01",AccountDist="-3",FillType=1,IfNotFound=Warn,IfFound=Set)
SetReservoirRight(ID="723844.02",Name="VEGA_RESERVOIR_refill",StationID="ID",
 AdministrationNumber=99999.99999,Decree=33500,OnOff=1,AccountDist="-2",RightType=1,
 FillType=2,IfNotFound=Add,IfFound=Warn)

set rights for reservoirs and stock pond to capacity with senior water right

SetReservoirRight(ID="36_ARC001.01",Name="36_ARC001",StationID="ID",
 AdministrationNumber=1.00000,Decree=8702,OnOff=1,FillType=1,IfNotFound=Add,IfFound=Warn)
SetReservoirRight(ID="37_ARC002.01",Name="37_ARC002",StationID="ID",
 AdministrationNumber=1.00000,Decree=6671,OnOff=1,FillType=1,IfNotFound=Add,IfFound=Warn)
SetReservoirRight(ID="38_ARC003.01",Name="38_ARC003",StationID="ID",
 AdministrationNumber=1.00000,Decree=13074,OnOff=1,FillType=1,IfNotFound=Add,IfFound=Warn)
SetReservoirRight(ID="39_ARC004.01",Name="39_ARC004",StationID="ID",
 AdministrationNumber=1.00000,Decree=2236,OnOff=1,FillType=1,IfNotFound=Add,IfFound=Warn)
SetReservoirRight(ID="45_ARC005.01",Name="45_ARC005",StationID="ID",
 AdministrationNumber=1.00000,Decree=2054,OnOff=1,FillType=1,IfNotFound=Add,IfFound=Warn)
SetReservoirRight(ID="50_ARC006.01",Name="50_ARC006",StationID="ID",
 AdministrationNumber=1.00000,Decree=11481,OnOff=1,FillType=1,IfNotFound=Add,IfFound=Warn)
SetReservoirRight(ID="51_ARC007.01",Name="51_ARC007",StationID="ID",
 AdministrationNumber=1.00000,Decree=8480,OnOff=1,FillType=1,IfNotFound=Add,IfFound=Warn)
SetReservoirRight(ID="52_ARC008.01",Name="52_ARC008",StationID="ID",
 AdministrationNumber=1.00000,Decree=821,OnOff=1,FillType=1,IfNotFound=Add,IfFound=Warn)
SetReservoirRight(ID="53_ARC009.01",Name="53_ARC009",StationID="ID",
 AdministrationNumber=1.00000,Decree=8389,OnOff=1,FillType=1,IfNotFound=Add,IfFound=Warn)
SetReservoirRight(ID="72_ARC010.01",Name="72_ARC010",StationID="ID",
 AdministrationNumber=1.00000,Decree=25664,OnOff=1,FillType=1,IfNotFound=Add,IfFound=Warn)
SetReservoirRight(ID="72_ASC001.01",Name="72_ASC001",StationID="ID",
 AdministrationNumber=1.00000,Decree=2261,OnOff=1,FillType=1,IfNotFound=Add,IfFound=Warn)
SetReservoirRight(ID="953802.01",Name="LEON_CREEK_AGGREG_RES",StationID="ID",
 AdministrationNumber=1.00000,Decree=4933,OnOff=1,AccountDist="1",RightType=1,
 FillType=1,IfNotFound=Add,IfFound=Warn)
SetReservoirRight(ID="953800.01",Name="BONHAM_AGGREGATED_RES",StationID="ID",
 AdministrationNumber=1.00000,Decree=6778,OnOff=1,AccountDist="1",RightType=1,
 FillType=1,IfNotFound=Add,IfFound=Warn)
SetReservoirRight(ID="953801.01",Name="COTTONWOOD_AGGREG_RES",StationID="ID",
 AdministrationNumber=1.00000,Decree=3812,OnOff=1,AccountDist="1",RightType=1,
 FillType=1,IfNotFound=Add,IfFound=Warn)

Step 4 - create output for Historic and Calculated datasets

WriteReservoirRightsToStateMod(OutputFile="..\StateMod\cm2005.rer")

Step 5 - Reset Green Mountain Rights' Start Dates for Baseline dataset

SetReservoirRight(ID="363543.01",Name="GREEN_MOUNTAIN_RESERVOIR",StationID="ID",
 AdministrationNumber=31258.00000,Decree=154645,OnOff=1,AccountDist="-5",RightType=1,
 FillType=1,IfNotFound=Warn,IfFound=Set)
SetReservoirRight(ID="363543.02",Name="GREEN_MOUNTAIN_RESERVOIR",StationID="ID",
 AdministrationNumber=31258.00000,Decree=6316,OnOff=1,AccountDist="-5",RightType=1,
 FillType=2,IfNotFound=Warn,IfFound=Set)
SetReservoirRight(ID="363543.03",Name="GREEN_MOUNTAIN-refill",StationID="ID",
 AdministrationNumber=50403.49309,Decree=154645,OnOff=1,AccountDist="-5",
 FillType=2,IfNotFound=Add,IfFound=Set)

Step 6 - create output for Baseline dataset

WriteReservoirRightsToStateMod(OutputFile="..\StateMod\cm2005B.rer")

Check the results
CheckReservoirRights(ID="*")
WriteCheckFile(OutputFile="rer.commands.StateDMI.check.html")

44 - StateMod 168

StateDMI Documentation

5.7.3 Reservoir Content, Target Time Series (Monthly, Daily)

StateDMI does not process reservoir time series. Instead, use TSTool, a spreadsheet or other software to
prepare the time series file. For example, use TSTool’s CreateFromList() command to specify a
list of reservoir station identifiers and create time series identifiers for HydroBase time series.

The following example TSTool command file (from the Colorado cm2005 data set) illustrates how end of
month content time series can be created:

eom.commands.TSTool

commands in this file either pull historical EOM contents from the CRDSS database
(i.e. Rifle Gap) or from user-defined *.stm files

rrb 98/09/29; Revised aggregated reservoir and stockpond ID's (e.g. 36_ADC_001 = 36_ADC001)

Phase IIIb modifications
Include extended replacement files from Task 11.1 and Cont. Auth. #5
Add Wolford Mtn EOM Data from River District
Fill missing data using water district indicator gages determined in demandts runs
Fill with historical monthly average if no wetness pattern average available
Set start dates for reservoirs in March of year listed in Ray A fax (9/8/98)

James Heath, LRE (heath@lrcwe.com) updated the previous version of the file to reflect changes
in the TSTool commands and formatting. Data has also been updated through 2005. Some
underlying engineering estimates have changed and are reflected in this command file.

SetOutputPeriod(OutputStart="10/1908",OutputEnd="09/2005")
SetOutputYearType(OutputYearType=Water)
ReadPatternFile(PatternFile="..\Diversions\fill2005.pat")

GREEN MOUNTAIN RESERVOIR
363543...MONTH~StateMod~363543.stm

UPPER BLUE RESERVOIR (ConHoosier)
Data from HydroBase is used to better represent actual opperations of the reservoir in the cm2005
update rather than setting the contents to its maximum as in previous model versions.
363570.DWR.ResMeasStorage.Day~HydroBase
TS ConHoosier363570 = NewEndOfMonthTSFromDayTS(DayTSID="363570.DWR.ResMeasStorage.Day",Bracket=16)
Free(TSList=LastMatchingTSID,TSID="363570.DWR.ResMeasStorage.Day")
FillPattern(TSList=LastMatchingTSID,TSID="ConHoosier363570",PatternID="09037500")
SetConstant(TSList=LastMatchingTSID,TSID="ConHoosier363570",ConstantValue=0,SetEnd="03/1962")
FillInterpolate(TSList=LastMatchingTSID,TSID="ConHoosier363570",MaxIntervals=0,Transformation=None)

CLINTON GULCH RESERVOIR
Data from HydroBase is used to better represent actual opperations of the reservoir in the cm2005
update rather than setting the contents to its maximum as in previous model versions.
363575.DWR.ResMeasStorage.Day~HydroBase
TS ClintonGulch363575 = NewEndOfMonthTSFromDayTS(DayTSID="363575.DWR.ResMeasStorage.Day",Bracket=16)
Free(TSList=LastMatchingTSID,TSID="363575.DWR.ResMeasStorage.Day")
FillInterpolate(TSList=LastMatchingTSID,TSID=”ClintonGulch363575”,FillStart=”10/1992”,FillEnd=”09/2004)
FillPattern(TSList=LastMatchingTSID,TSID="ClintonGulch363575",PatternID="09037500")
SetConstant(TSList=LastMatchingTSID,TSID="ClintonGulch363575",ConstantValue=0,SetEnd="03/1977")
FillInterpolate(TSList=LastMatchingTSID,TSID="ClintonGulch363575",MaxIntervals=0,Transformation=None)

DILLON RESERVOIR
364512...MONTH~StateMod~364512.stm

36_ARC001...MONTH~StateMod~36_ARC001.stm
FillPattern(TSList=LastMatchingTSID,TSID="36_ARC001...MONTH",PatternID="09037500")

WOLCOTT RESERVOIR
373639...MONTH~StateMod~zero.stm

EAGLE PARK RESERVOIR
373699...MONTH~StateMod~zero.stm

 StateMod - 45 169

 StateDMI Documentation

Data is available in HydroBase for Eagle Park Reservoir but currently the reservor is only a
placeholder for future updates to fill in the details at a later date.
#373699.DWR.ResMeasStorage.Day~HydroBase
#TS EaglePark373699 = newEndOfMonthTSFromDayTS(373699.DWR.ResMeasStorage.Day,16)
#free(TSID="373699.DWR.ResMeasStorage.Day")
#fillPattern(EaglePark373699,09085000)
#setConstant(TSID="EaglePark373699",ConstantValue=0,SetEnd="04/1997")
#fillInterpolate(EaglePark373699,0,Linear)

HOMESTAKE PROJ RESERVOIR
Data from HydroBase is used exclusively as it was representative of what was previously in the .stm
file as used in previous model versions. This allows for easier updating in the future.
374516.DWR.ResMeasStorage.Day~HydroBase
TS Homestake374516 = NewEndOfMonthTSFromDayTS(DayTSID="374516.DWR.ResMeasStorage.Day",Bracket=16)
Free(TSList=LastMatchingTSID,TSID="374516.DWR.ResMeasStorage.Day")
FillPattern(TSList=LastMatchingTSID,TSID="Homestake374516",PatternID="09085000")
SetConstant(TSList=LastMatchingTSID,TSID="Homestake374516",ConstantValue=0,SetEnd="03/1967")
FillInterpolate(TSList=LastMatchingTSID,TSID="Homestake374516",MaxIntervals=0,Transformation=None)

37_ARC002...MONTH~StateMod~37_ARC002.stm
FillPattern(TSList=LastMatchingTSID,TSID="37_ARC002...MONTH",PatternID="09085000")

RUEDI RESERVOIR
383713...MONTH~StateMod~383713.stm

38_ARC003...MONTH~StateMod~38_ARC003.stm
FillPattern(TSList=LastMatchingTSID,TSID="38_ARC003...MONTH",PatternID="09085000")

GRASS VALLEY RESERVOIR
Data from HydroBase is used exclusively as it was representative of what was previously in the .stm
file as used in previous model versions. This allows for easier updating in the future.
There was one data point, in April 1981, that was replaced with 5989 af (mis-key).
393505.DWR.ResMeasStorage.Day~HydroBase
TS GrassValley393505 = NewEndOfMonthTSFromDayTS(DayTSID="393505.DWR.ResMeasStorage.Day",Bracket=16)
Free(TSList=LastMatchingTSID,TSID="393505.DWR.ResMeasStorage.Day")
FillPattern(TSList=LastMatchingTSID,TSID="GrassValley393505",PatternID="09095500")
FillInterpolate(TSList=LastMatchingTSID,TSID="GrassValley393505",MaxIntervals=0,Transformation=None)
SetConstant(TSList=LastMatchingTSID,TSID="GrassValley393505",ConstantValue=5989,
 SetStart="04/1981",SetEnd="04/1981")

RIFLE GAP RESERVOIR
Data from HydroBase is used exclusively as it was previously in past model versions.
August of 2004 appeared to be a typo and has been corrected below to what apeared to be the
correct value.
393508.DWR.ResMeasStorage.Day~HydroBase
TS RifleGap393508 = NewEndOfMonthTSFromDayTS(DayTSID="393508.DWR.ResMeasStorage.Day",Bracket=16)
Free(TSList=LastMatchingTSID,TSID="393508.DWR.ResMeasStorage.Day")
SetConstant(TSList=LastMatchingTSID,TSID="RifleGap393508",ConstantValue=700.16,
 SetStart="08/2004",SetEnd="08/2004")
FillPattern(TSList=LastMatchingTSID,TSID="RifleGap393508",PatternID="09095500")
SetConstant(TSList=LastMatchingTSID,TSID="RifleGap393508",ConstantValue=0,SetEnd="03/1967")
FillInterpolate(TSList=LastMatchingTSID,TSID="RifleGap393508",MaxIntervals=0,Transformation=None)

39_ARC004...MONTH~StateMod~39_ARC004.stm
FillPattern(TSList=LastMatchingTSID,TSID="39_ARC004...MONTH",PatternID="09095500")

45_ARC005...MONTH~StateMod~45_ARC005.stm
FillPattern(TSList=LastMatchingTSID,TSID="45_ARC005...MONTH",PatternID="09095500")

WOLFORD MOUNTAIN RES
503668...MONTH~StateMod~503668.stm
SetConstant(TSList=LastMatchingTSID,TSID="503668...MONTH",ConstantValue=0,SetEnd="03/1995")

50_ARC006...MONTH~StateMod~50_ARC006.stm
FillPattern(TSList=LastMatchingTSID,TSID="50_ARC006...MONTH",PatternID="09034500")

MEADOW CREEK RESERVOIR
Data from HydroBase is used exclusively as it was representative of what was previously in the .stm
file as used in previous model versions. This allows for easier updating in the future.
Additionally a shift has been added as it represents 300 af additional dead storage not represented
in the HydroBase records (as stated in the previous model version's .stm file).

46 - StateMod 170

StateDMI Documentation

513686.DWR.ResMeasStorage.Day~HydroBase
TS MeadowCreek513686 = NewEndOfMonthTSFromDayTS(DayTSID="513686.DWR.ResMeasStorage.Day",Bracket=16)
Free(TSList=LastMatchingTSID,TSID="513686.DWR.ResMeasStorage.Day")
FillPattern(TSList=LastMatchingTSID,TSID="MeadowCreek513686",PatternID="09034500")
AddConstant(TSList=LastMatchingTSID,TSID="MeadowCreek513686",ConstantValue=300)
SetConstant(TSList=LastMatchingTSID,TSID="MeadowCreek513686",ConstantValue=0,SetEnd="03/1956")
FillInterpolate(TSList=LastMatchingTSID,TSID="MeadowCreek513686",MaxIntervals=0,Transformation=None)

CBT SHADOW MTN GRAND L
Data from HydroBase is used exclusively as it was previously in past model versions.
513695.DWR.ResMeasStorage.Day~HydroBase
TS ShadowMountainGrandLake513695 =
NewEndOfMonthTSFromDayTS(DayTSID="513695.DWR.ResMeasStorage.Day",Bracket=16)
Free(TSList=LastMatchingTSID,TSID="513695.DWR.ResMeasStorage.Day")
FillPattern(TSList=LastMatchingTSID,TSID="ShadowMountainGrandLake513695",PatternID="09034500")
SetConstant(TSList=LastMatchingTSID,TSID="ShadowMountainGrandLake513695",
 ConstantValue=0,SetEnd="03/1946")
FillInterpolate(TSList=LastMatchingTSID,TSID="ShadowMountainGrandLake513695",
 MaxIntervals=0,Transformation=None)

WILLIAMS FORK RESERVOIR
513709...MONTH~StateMod~513709.stm

CBT WILLOW CREEK RES
Data from HydroBase is used exclusively as it was previously in past model versions.
513710.DWR.ResMeasStorage.Day~HydroBase
TS WillowCreek513710 = NewEndOfMonthTSFromDayTS(DayTSID="513710.DWR.ResMeasStorage.Day",Bracket=16)
Free(TSList=LastMatchingTSID,TSID="513710.DWR.ResMeasStorage.Day")
FillPattern(TSList=LastMatchingTSID,TSID="WillowCreek513710",PatternID="09034500")
SetConstant(TSList=LastMatchingTSID,TSID="WillowCreek513710",ConstantValue=0,SetEnd="03/1953")
FillInterpolate(TSList=LastMatchingTSID,TSID="WillowCreek513710",MaxIntervals=0,Transformation=None)

CBT GRANBY RESERVOIR
514620...MONTH~StateMod~514620.stm
Setting specific descrepencies that Meg Frantz and Heather Thompson found
durring the Windy Gap Firming Project modeling by Boyle Engineering
SetDataValue(TSList=LastMatchingTSID,TSID="514620...MONTH",SetDateTime="03/1954",NewValue=372900)
SetDataValue(TSList=LastMatchingTSID,TSID="514620...MONTH",SetDateTime="10/1960",NewValue=411100)
SetDataValue(TSList=LastMatchingTSID,TSID="514620...MONTH",SetDateTime="10/1961",NewValue=478100)
SetDataValue(TSList=LastMatchingTSID,TSID="514620...MONTH",SetDateTime="06/1967",NewValue=263400)

51_ARC007...MONTH~StateMod~51_ARC007.stm
FillPattern(TSList=LastMatchingTSID,TSID="51_ARC007...MONTH",PatternID="09034500")

52_ARC008...MONTH~StateMod~52_ARC008.stm
FillPattern(TSList=LastMatchingTSID,TSID="52_ARC008...MONTH",PatternID="09085000")

53_ARC009...MONTH~StateMod~53_ARC009.stm
FillPattern(TSList=LastMatchingTSID,TSID="53_ARC009...MONTH",PatternID="09085000")

VEGA RESERVOIR
723844...MONTH~StateMod~723844.stm
SetConstant(TSList=LastMatchingTSID,TSID="723844...MONTH",ConstantValue=0,SetEnd="03/1960")

72_ARC010...MONTH~StateMod~72_ARC010.stm
FillPattern(TSList=LastMatchingTSID,TSID="72_ARC010...MONTH",PatternID="09095500")

72_ASC001...MONTH~StateMod~72_ASC001.stm
FillPattern(TSList=LastMatchingTSID,TSID="72_ASC001...MONTH",PatternID="09095500")

BONHAM AGGREGATED RES
953800...MONTH~StateMod~953800.stm
FillPattern(TSList=LastMatchingTSID,TSID="953800...MONTH",PatternID="09095500")

COTTONWOOD AGGREG RES
953801...MONTH~StateMod~953801.stm
FillPattern(TSList=LastMatchingTSID,TSID="953801...MONTH",PatternID="09095500")

LEON CREEK AGGRES RES
953802...MONTH~StateMod~953802.stm
FillPattern(TSList=LastMatchingTSID,TSID="953802...MONTH",PatternID="09095500")

 StateMod - 47 171

 StateDMI Documentation

FillHistMonthAverage(TSList=AllTS)

WriteStateMod(TSList=AllTS,OutputFile="..\statemod\cm2005.eom",Precision=0)
CheckTimeSeries(CheckCriteria="Missing")
WriteCheckFile(OutputFile="eom.commands.TSTool.check.html")

Reservoir targets can be created similarly; however, each reservoir have a minimum target time series
(often zero) and a maximum target. StateMod will also allow the minimum target time series to be
omitted. The following command file (from the Colorado cm2005 data set) illustrates how to create the
historical case reservoir target file:

Htar.commands.TSTOOL

Targets for Step 1 calibration (release to target)
Minimum targets set to "0", Maximum targets same as eom file

SetOutputPeriod(OutputStart="10/1908",OutputEnd="09/2005")
SetOutputYearType(OutputYearType=Water)

Green Mountain Reservoir
363543...MONTH~StateMod~..\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="363543...MONTH",ConstantValue=0)
363543...MONTH~StateMod~..\statemod\cm2005.eom

UPPER BLUE RESERVOIR
363570...MONTH~StateMod~..\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="363570...MONTH",ConstantValue=0)
363570...MONTH~StateMod~..\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="363570...MONTH",
 MonthValues="0,0,0,2113,2113,2113,2113,1850,2113,2113,0,0",SetStart="04/1962")

CLINTON GULCH RESERVOIR
363575...MONTH~StateMod~..\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="363575...MONTH",ConstantValue=0)
363575...MONTH~StateMod~..\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="363575...MONTH",ConstantValue=4300,SetStart="04/1977")

DILLON RESERVOIR
364512...MONTH~StateMod~..\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="364512...MONTH",ConstantValue=0)
364512...MONTH~StateMod~..\statemod\cm2005.eom

36_ARC001...MONTH~StateMod~..\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="36_ARC001...MONTH",ConstantValue=0)
36_ARC001...MONTH~StateMod~..\statemod\cm2005.eom

WOLCOTT RESERVOIR
373639...MONTH~StateMod~..\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="373639...MONTH",ConstantValue=0)
373639...MONTH~StateMod~..\statemod\cm2005.eom

EAGLE PARK RESERVOIR
373699...MONTH~StateMod~..\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="373699...MONTH",ConstantValue=0)
373699...MONTH~StateMod~..\statemod\cm2005.eom

HOMESTAKE PROJ RESERVOIR
374516...MONTH~StateMod~..\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="374516...MONTH",ConstantValue=0)
374516...MONTH~StateMod~..\statemod\cm2005.eom

37_ARC002...MONTH~StateMod~..\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="37_ARC002...MONTH",ConstantValue=0)
37_ARC002...MONTH~StateMod~..\statemod\cm2005.eom

RUEDI RESERVOIR
383713...MONTH~StateMod~..\statemod\cm2005.eom

48 - StateMod 172

StateDMI Documentation

SetConstant(TSList=LastMatchingTSID,TSID="383713...MONTH",ConstantValue=0)
383713...MONTH~StateMod~..\statemod\cm2005.eom

38_ARC003...MONTH~StateMod~..\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="38_ARC003...MONTH",ConstantValue=0)
38_ARC003...MONTH~StateMod~..\statemod\cm2005.eom

GRASS VALLEY RESERVOIR
393505...MONTH~StateMod~..\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="393505...MONTH",ConstantValue=0)
393505...MONTH~StateMod~..\statemod\cm2005.eom

RIFLE GAP RESERVOIR
393508...MONTH~StateMod~..\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="393508...MONTH",ConstantValue=0)
393508...MONTH~StateMod~..\statemod\cm2005.eom

39_ARC004...MONTH~StateMod~..\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="39_ARC004...MONTH",ConstantValue=0)
39_ARC004...MONTH~StateMod~..\statemod\cm2005.eom

45_ARC005...MONTH~StateMod~..\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="45_ARC005...MONTH",ConstantValue=0)
45_ARC005...MONTH~StateMod~..\statemod\cm2005.eom

WOLFORD MOUNTAIN RES
503668...MONTH~StateMod~..\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="503668...MONTH",ConstantValue=0)
503668...MONTH~StateMod~..\statemod\cm2005.eom

50_ARC006...MONTH~StateMod~..\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="50_ARC006...MONTH",ConstantValue=0)
50_ARC006...MONTH~StateMod~..\statemod\cm2005.eom

MEADOW CREEK RESERVOIR
513686...MONTH~StateMod~..\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="513686...MONTH",ConstantValue=0)
513686...MONTH~StateMod~..\statemod\cm2005.eom

CBT SHADOW MTN GRAND L
513695...MONTH~StateMod~..\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="513695...MONTH",ConstantValue=0)
513695...MONTH~StateMod~..\statemod\cm2005.eom

WILLIAMS FORK RESERVOIR
513709...MONTH~StateMod~..\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="513709...MONTH",ConstantValue=0)
513709...MONTH~StateMod~..\statemod\cm2005.eom

CBT WILLOW CREEK RES
513710...MONTH~StateMod~..\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="513710...MONTH",ConstantValue=0)
513710...MONTH~StateMod~..\statemod\cm2005.eom

CBT GRANBY RESERVOIR
514620...MONTH~StateMod~..\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="514620...MONTH",ConstantValue=0)
514620...MONTH~StateMod~..\statemod\cm2005.eom

51_ARC007...MONTH~StateMod~..\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="51_ARC007...MONTH",ConstantValue=0)
51_ARC007...MONTH~StateMod~..\statemod\cm2005.eom

52_ARC008...MONTH~StateMod~..\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="52_ARC008...MONTH",ConstantValue=0)
52_ARC008...MONTH~StateMod~..\statemod\cm2005.eom

53_ARC009...MONTH~StateMod~..\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="53_ARC009...MONTH",ConstantValue=0)
53_ARC009...MONTH~StateMod~..\statemod\cm2005.eom

 StateMod - 49 173

 StateDMI Documentation

VEGA RESERVOIR
723844...MONTH~StateMod~..\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="723844...MONTH",ConstantValue=0)
723844...MONTH~StateMod~..\statemod\cm2005.eom

72_ARC010...MONTH~StateMod~..\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="72_ARC010...MONTH",ConstantValue=0)
72_ARC010...MONTH~StateMod~..\statemod\cm2005.eom

72_ASC001...MONTH~StateMod~..\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="72_ASC001...MONTH",ConstantValue=0)
72_ASC001...MONTH~StateMod~..\statemod\cm2005.eom

BONHAM AGGREGATED RES
953800...MONTH~StateMod~..\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="953800...MONTH",ConstantValue=0)
953800...MONTH~StateMod~..\statemod\cm2005.eom

COTTONWOOD AGGREG RES
953801...MONTH~StateMod~..\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="953801...MONTH",ConstantValue=0)
953801...MONTH~StateMod~..\statemod\cm2005.eom

LEON CREEK AGGREG RES
953802...MONTH~StateMod~..\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="953802...MONTH",ConstantValue=0)
953802...MONTH~StateMod~..\statemod\cm2005.eom

WriteStateMod(TSList=AllTS,OutputFile="..\StateMod\cm2005H.tar",Precision=0)
CheckTimeSeries(CheckCriteria=”Missing”)
WriteCheckFile(OutputFile=”Htar.commands.TSTool.check.html”)

5.8 Instream Flow Data

Instream flow data consist of:

• Instream flow stations
• Instream flow rights
• Instream flow demand time series (average monthly)
• Instream flow demand time series (monthly, daily)

Each of the above data types is stored in a separate file, using the instream flow station identifier as the
primary identifier. StateMod represents the instream flow as a stream reach, with upstream and
downstream termini. The processing of each data file is discussed below.

5.8.1 Instream Flow Stations

Instream flow stations used with StateMod are typically specified based on water rights for a stream
reach.

Key instream flow stations to include in a model are typically determined by reviewing available data,
including HydroBase water rights and the CWCB instream flow database, for streams that are included in
the model. The streams are those that are associated with stream gage, diversion, reservoir, and well
stations included in the data set. The upstream instream flow station identifier is usually a 7-character
water district identifier (6-character for old data sets) or fabricated identifier that starts with the water
district number. The downstream node is typically inserted into the network as an “other” node having
the same identifier as the upstream terminus followed by “_Dwn”.

50 - StateMod 174

StateDMI Documentation

The Commands…Instream Flow Data…Instream Flow Stations menu items insert commands to
process instream flow station data:

MenuCommands_InstreamFlowStations

Commands…Instream Flow Data…Instream Flow Stations Menu

The following table summarizes the use of each command:

Instream Flow Station Commands

Command Description
ReadInstreamFlowStationsFromList() Read from a delimited list file the list of instream

flow stations to be included in the data set.
ReadInstreamFlowStationsFromNetwork() Read from a StateMod network file a list of

instream flow stations to be included in the data
set.

ReadInstreamFlowStationsFromStateMod() Read from a StateMod instream flow stations file
the list of instream flow stations to be included in
the data set.

SetInstreamFlowStation() Set the data for, and optionally add, instream
flow stations.

SortInstreamFlowStations() Sort the instream flow stations. This is useful to
force consistency between files.

FillInstreamFlowStationsFromHydroBase() Fill missing data for defined instream flow
stations, using data from HydroBase. For
example, retrieve the station names.

FillInstreamFlowStationsFromNetwork() Fill missing data for defined instream flow
stations, using data from a StateMod network file.
This is useful when the station names are not
found in HydroBase and numerous
SetInstreamFlowStation() commands
would otherwise be required.

 StateMod - 51 175

 StateDMI Documentation

Command Description
FillInstreamFlowStation() Fill missing data for defined instream flow

stations, user user-supplied values.
WriteInstreamFlowStationsToList() Write defined instream flow stations to a

delimited file.
WriteInstreamFlowStationsToStateMod() Write defined instream flow stations to a

StateMod file.
CheckInstreamFlowStations() Check instream flow stations data for problems.
WriteCheckFile() Write the results of data checks to a file.

An example command file (from the Colorado cm2005 data set) to create the instream flow station file is
shown below:

StartLog(LogFile="ifs.commands.StateDMI.log")

Create the Colorad Instream Flow Stations file

Step 1 - read instream flow structures from network file, sort alphabetically.

ReadInstreamFlowStationsFromNetwork(InputFile="..\Network\cm2005.net")
SortInstreamFlowStations(Order=Ascending)

Step 2 - create file and set daily flags

SetInstreamFlowStation(ID="*",DailyID="0",DemandType=2)

Step 3 - set instream flow information for non-HB structures

Following insf are reservoir bypasses
SetInstreamFlowStation(ID="953508",Name="Rifle_Gap_Res_Bypass",UpstreamRiverNodeID="953508",
 DownstreamRiverNodeID="953508_Dwn",OnOff=1,DailyID="0",DemandType=2,IfNotFound=Warn)
SetInstreamFlowStation(ID="953543",Name="Green_Mtn_Res_Bypass",UpstreamRiverNodeID="953543",
 DownstreamRiverNodeID="953543_Dwn",OnOff=1,DailyID="0",DemandType=2,IfNotFound=Warn)
SetInstreamFlowStation(ID="953668",Name="Wolford_Res_Bypass",UpstreamRiverNodeID="953668",
 DownstreamRiverNodeID="953668_Dwn",OnOff=1,DailyID="0",DemandType=2,IfNotFound=Warn)
SetInstreamFlowStation(ID="953695",Name="Shadow_Mtn_Res_Bypass",UpstreamRiverNodeID="953695",
 DownstreamRiverNodeID="953695_Dwn",OnOff=1,DailyID="0",DemandType=2,IfNotFound=Warn)
SetInstreamFlowStation(ID="953709",Name="Williams_Fork_Res_Bypass",UpstreamRiverNodeID="953709",
 DownstreamRiverNodeID="953709_Dwn",OnOff=1,DailyID="0",DemandType=2,IfNotFound=Warn)
SetInstreamFlowStation(ID="953710",Name="Willow_Crk_Res_Bypass",UpstreamRiverNodeID="953710",
 DownstreamRiverNodeID="953710_Dwn",OnOff=1,DailyID="0",DemandType=2,IfNotFound=Warn)
SetInstreamFlowStation(ID="953713",Name="Ruedi_Res_Bypass",UpstreamRiverNodeID="953713",
 DownstreamRiverNodeID="953713_Dwn",OnOff=1,DailyID="0",DemandType=2,IfNotFound=Warn)
SetInstreamFlowStation(ID="951146",Name="Wolcott_PP_Bypass",UpstreamRiverNodeID="951146",
 OnOff=1,DailyID="0",DemandType=2,IfNotFound=Warn)
Following insf are minimum reservoir release requirements (operating rules control)
SetInstreamFlowStation(ID="954512",Name="Dillon_Res_Min_Rel",UpstreamRiverNodeID="954512",
 DownstreamRiverNodeID="954512_Dwn",OnOff=1,DailyID="0",DemandType=2,IfNotFound=Warn)
SetInstreamFlowStation(ID="954620",Name="Granby_Res_Min_Rel",UpstreamRiverNodeID="954620",
 DownstreamRiverNodeID="954620_Dwn",OnOff=1,DailyID="0",DemandType=1,IfNotFound=Warn)
Following insf are Fraser collection system bypass requirements (Denver's Moffat)
SetInstreamFlowStation(ID="950639",Name="Jim_Creek_Bypass",UpstreamRiverNodeID="950639",
 DownstreamRiverNodeID="950639_Dwn",OnOff=1,DailyID="0",DemandType=2,IfNotFound=Warn)
SetInstreamFlowStation(ID="951269",Name="Den_Ranch_Crk_Bypass",UpstreamRiverNodeID="951269",
 DownstreamRiverNodeID="951269_Dwn",OnOff=1,DailyID="0",DemandType=2,IfNotFound=Warn)
SetInstreamFlowStation(ID="951309",Name="St_Louis_Crk_Bypass",UpstreamRiverNodeID="951309",
 DownstreamRiverNodeID="951309_Dwn",OnOff=1,DailyID="0",DemandType=2,IfNotFound=Warn)
SetInstreamFlowStation(ID="951310",Name="Vasquez_Crk_Bypass",UpstreamRiverNodeID="951310",
 DownstreamRiverNodeID="951310_Dwn",OnOff=1,DailyID="0",DemandType=2,IfNotFound=Warn)
Following insf are minimum bypass for Williams Fork Diversion Project (Denver)
SetInstreamFlowStation(ID="954603",Name="Gumlick_Tunnel_Bypass",UpstreamRiverNodeID="954603"
 DownstreamRiverNodeID="954603_Dwn",OnOff=1,DailyID="0",DemandType=2,IfNotFound=Warn)
Following insf are minimum bypass for Fry-Ark Project
SetInstreamFlowStation(ID="950786",Name="Thomasville_Gage_Bypass",UpstreamRiverNodeID="950786",
 DownstreamRiverNodeID="950786_Dwn",OnOff=1,DailyID="0",DemandType=2,IfNotFound=Warn)

52 - StateMod 176

StateDMI Documentation

SetInstreamFlowStation(ID="951594",Name="Hunter_Crk_Bypass",UpstreamRiverNodeID="951594",
 DownstreamRiverNodeID="951594_Dwn",OnOff=1,DailyID="0",DemandType=2,IfNotFound=Warn)
SetInstreamFlowStation(ID="954625",Name="Boustead_Tunnel_Bypass",UpstreamRiverNodeID="954625",
 DownstreamRiverNodeID="954625_Dwn",OnOff=1,DailyID="0",DemandType=2,IfNotFound=Warn)
Following insf is minimum bypass below Homestake Tunnel (Col. Springs)
SetInstreamFlowStation(ID="954516",Name="Gold_Park_Gage_Min_Flow",UpstreamRiverNodeID="954516",
 DownstreamRiverNodeID="954516_Dwn",OnOff=1,DailyID="0",DemandType=2,IfNotFound=Warn)
Following insf is minimum release for the Clinton Res. agreement
SetInstreamFlowStation(ID="954655",Name="Winter_Park_Ski_Min_Flow",UpstreamRiverNodeID="954655",
 DownstreamRiverNodeID="954655_Dwn",OnOff=1,DailyID="0",DemandType=2,IfNotFound=Warn)
Insf node added above the Shoshone Power Plant to allow simulation of Green Mtn. Res.
operations prior to 1985
SetInstreamFlowStation(ID="950500",Name="Shoshone_Call_Flows",UpstreamRiverNodeID="950500",
 DownstreamRiverNodeID="950500_Dwn",OnOff=1,DailyID="0",DemandType=1,IfNotFound=Warn)
CWCB insf in 15-mile reach
SetInstreamFlowStation(ID="952002",Name="USFWS_Recomm._Fish_Flow",UpstreamRiverNodeID="952002",
 DownstreamRiverNodeID="952002_Dwn",OnOff=1,DailyID="0",DemandType=1,IfNotFound=Warn)
GVWM Bypass
SetInstreamFlowStation(ID="950099",Name="GVWM_Bypass",UpstreamRiverNodeID="950099",OnOff=1,
 DailyID="0",DemandType=2,IfNotFound=Warn)
Eagle River Minimum Flow Second Reach
SetInstreamFlowStation(ID="372059_2",Name="MIN_FLOW_EAGLE_RIVER_2",UpstreamRiverNodeID="372059_2",
 DownstreamRiverNodeID="372059_2_Dwn",OnOff=1,DailyID="0",DemandType=2,IfNotFound=Warn)

Step 4 - fill remaining instream flow information from HB and output file

FillInstreamFlowStationsFromHydroBase(ID="*")
WriteInstreamFlowStationsToStateMod(OutputFile="..\StateMod\cm2005.ifs",WriteHow=OverwriteFile)

Check the results
CheckInstreamFlowStations(ID="*")
WriteCheckFile(OutputFile="ifs.commands.StateDMI.check.html")

5.8.2 Instream Flow Rights

Instream flow rights correspond to the instream flow stations, using the instream flow station identifier to
relate the data. Instream flow right identifiers are typically the reservoir right identifier followed by .NN,
where NN is a sequential number starting with 01. The Commands…Instream Flow Data…Instream
Flow Rights menu items insert commands to process instream flow rights data:

MenuCommands_InstreamFlowRights

Commands…Instream Flow Data…Instream Flow Rights Menu

 StateMod - 53 177

 StateDMI Documentation

The following table summarizes the use of each command:

Instream Flow Rights Commands

Command Description
ReadInstreamFlowStations
FromList()

Read from a delimited file the list of instream flow stations to
be included in the data set – the list indicates the stations for
which to process rights.

ReadInstreamFlowStations
FromStateMod()

Read from a StateMod instream flow stations file the list of
instream flow stations to be included in the data set – the list
indicates the stations for which to process rights.

ReadInstreamFlowRights
FromHydroBase()

For each instream flow station, read the corresponding
instream flow rights from HydroBase.

ReadInstreamFlowRights
FromStateMod()

Read instream flow rights from a StateMod instream flow
rights file.

SetInstreamFlowRight() Set the data for, and optionally add, instream flow rights.
SortInstreamFlowRights() Sort the instream flow stations. This is useful to force

consistency between files.
FillInstreamFlowRight() Fill missing data for defined instream flow rights, using user-

supplied values.
WriteInstreamFlowRights
ToList()

Write instream flow rights to a delimited list file.

WriteInstreamFlowRights
ToStateMod()

Write instream flow rights to a StateMod file.

CheckInstreamFlowRights() Check instream flow rights data for problems.
WriteCheckFile() Write the results of data checks to a file.

An example command file to create the instream flow rights file is shown below (from the Colorado
cm2005 data set):

StartLog(LogFile="ifr.commands.StateDMI.log")
ifr.commands.StateDMI

StateDMI command file to create the annual instream flow rights file for the
Colorado model Historical and Calibrated models

Step 1 - read instream flow structures from instream flow structure file

ReadInstreamFlowStationsFromStateMod(InputFile="..\STATEMOD\cm2005.ifs")

Step 2 - read instream flow rights from HydroBase

ReadInstreamFlowRightsFromHydroBase(ID="*",OnOffDefault=1)

Step 3 - set instream flow rights for non-HydroBase structures

Following insf are reservoir bypasses
SetInstreamFlowRight(ID="953508.01",Name="Rifle_Gap_Res_Bypass",StationID="ID",
 AdministrationNumber=37503.36898,Decree=5.00,OnOff=1,IfNotFound=Add,IfFound=Warn)
SetInstreamFlowRight(ID="953543.01",Name="Green_Mtn_Res_Bypass",StationID="ID",
 AdministrationNumber=31257.99994,Decree=85.00,OnOff=1,IfNotFound=Add,IfFound=Warn)
SetInstreamFlowRight(ID="953668.01",Name="Wolford_Res_Bypass",StationID="ID",
 AdministrationNumber=50385.99999,Decree=13.00,OnOff=1,IfNotFound=Add,IfFound=Warn)
SetInstreamFlowRight(ID="953695.01",Name="Shadow_Mtn_Res_Bypass",StationID="ID",
 AdministrationNumber=31257.99999,Decree=50.00,OnOff=1,IfNotFound=Add,IfFound=Warn)
SetInstreamFlowRight(ID="953709.01",Name="Williams_Fork_Res_Bypass",StationID="ID",
 AdministrationNumber=31358.99999,Decree=15.00,OnOff=1,IfNotFound=Add,IfFound=Warn)
SetInstreamFlowRight(ID="953710.01",Name="Willow_Crk_Res_Bypass",StationID="ID",

54 - StateMod 178

StateDMI Documentation

 AdministrationNumber=31257.99999,Decree=7.00,OnOff=1,IfNotFound=Add,IfFound=Warn)
SetInstreamFlowRight(ID="953713.01",Name="Ruedi_Res_Bypass",StationID="ID",
 AdministrationNumber=39290.99999,Decree=110.00,OnOff=1,IfNotFound=Add,IfFound=Warn)
SetInstreamFlowRight(ID="951146.01",Name="Wolcott_PP_Bypass",StationID="ID",
 AdministrationNumber=42484.99999,Decree=110.00,OnOff=1,IfNotFound=Add,IfFound=Warn)
Following insf are minimum reservoir release requirements (operating rules control)
SetInstreamFlowRight(ID="954512.01",Name="Dillon_Res_Min_Rel",StationID="ID",
 AdministrationNumber=31257.99997,Decree=50.00,OnOff=1,IfNotFound=Add,IfFound=Warn)
SetInstreamFlowRight(ID="954620.01",Name="Granby_Res_Min_Rel",StationID="ID",
 AdministrationNumber=31257.99999,Decree=75.00,OnOff=1,IfNotFound=Add,IfFound=Warn)
Following insf are Fraser collection system bypass requirements (Denver's Moffat)
SetInstreamFlowRight(ID="950639.01",Name="Jim_Creek_Bypass",StationID="ID",
 AdministrationNumber=30870.26116,Decree=10.00,OnOff=1,IfNotFound=Add,IfFound=Warn)
SetInstreamFlowRight(ID="951269.01",Name="Den_Ranch_Crk_Bypass",StationID="ID",
 AdministrationNumber=30870.26116,Decree=4.00,OnOff=1,IfNotFound=Add,IfFound=Warn)
SetInstreamFlowRight(ID="951309.01",Name="St_Louis_Crk_Bypass",StationID="ID",
 AdministrationNumber=30870.26116,Decree=10.00,OnOff=1,IfNotFound=Add,IfFound=Warn)
SetInstreamFlowRight(ID="951310.01",Name="Vasquez_Crk_Bypass",StationID="ID",
 AdministrationNumber=30870.26116,Decree=8.00,OnOff=1,IfNotFound=Add,IfFound=Warn)
Following insf are minimum bypass for Williams Fork Diversion Project (Denver)
SetInstreamFlowRight(ID="954603.01",Name="Gumlick_Tunnel_Bypass",StationID="ID",
 AdministrationNumber=30870.26116,Decree=1.00,OnOff=1,IfNotFound=Add,IfFound=Warn)
Following insf are minimum bypass for Fry-Ark Project
SetInstreamFlowRight(ID="950786.01",Name="Thomasville_Gage_Bypass",StationID="ID",
 AdministrationNumber=39290.99999,Decree=200.00,OnOff=1,IfNotFound=Add,IfFound=Warn)
SetInstreamFlowRight(ID="951594.01",Name="Hunter_Crk_Bypass",StationID="ID",
 AdministrationNumber=39290.99999,Decree=21.00,OnOff=1,IfNotFound=Add,IfFound=Warn)
SetInstreamFlowRight(ID="954625.01",Name="Boustead_Tunnel_Bypass",StationID="ID",
 AdministrationNumber=39290.99999,Decree=30.00,OnOff=1,IfNotFound=Add,IfFound=Warn)
Following insf is minimum bypass below Homestake Tunnel (Col. Springs)
SetInstreamFlowRight(ID="954516.01",Name="Gold_Park_Gage_Min_Flow",StationID="ID",
 AdministrationNumber=39650.37519,Decree=24.00,OnOff=1,IfNotFound=Add,IfFound=Warn)
Following insf is minimum release for the Clinton Res. agreement
SetInstreamFlowRight(ID="954655.01",Name="Winter_Park_Ski_Min_Flow",StationID="ID",
 AdministrationNumber=30870.26116,Decree=3.90,OnOff=1,IfNotFound=Add,IfFound=Warn)
Insf node added above the Shoshone Power Plant to allow simulation of Green Mtn. Res.
operations prior to 1985
SetInstreamFlowRight(ID="950500.01",Name="Shoshone_Call_Flows",StationID="ID",
 AdministrationNumber=99999.80000,Decree=1250.00,OnOff=1,IfNotFound=Add,IfFound=Warn)
CWCB insf in 15-mile reach
SetInstreamFlowRight(ID="952002.01",Name="USFWS_Recomm._Fish_Flow",StationID="ID",
 AdministrationNumber=99999.92000,Decree=16000.00,OnOff=1,IfNotFound=Add,IfFound=Warn)
GVWM Bypass
SetInstreamFlowRight(ID="950099.01",Name="GVWM_Bypass",StationID="ID",
 AdministrationNumber=99999.00000,Decree=0.00,OnOff=1,IfNotFound=Add,IfFound=Warn)
Eagle River Minimum Flow Second Reach
SetInstreamFlowRight(ID="372059_2.01",Name="MIN_FLOW_EAGLE_RIVER_2",StationID="ID",
 AdministrationNumber=47558.00000,Decree=155.00,OnOff=1,IfNotFound=Add,IfFound=Warn)

Step 4 - create output file

WriteInstreamFlowRightsToStateMod(OutputFile="..\STATEMOD\cm2005.ifr")

Check the results
CheckInstreamFlowRights(ID="*")
WriteCheckFile(OutputFile="ifr.commands.StateDMI.check.html")

5.8.3 Instream Flow Demand Time Series (Average Monthly)

Instream flow demand time series correspond to the instream flow stations, using the instream flow
station identifier as a key. Instream flow demand time series (average monthly) are typically generated
from instream flow water rights. When read from HydroBase, these time series currently have the same
value for each month of the year (although future enhancements may support seasonal right values in
HydroBase).

 StateMod - 55 179

 StateDMI Documentation

The Commands…Instream Flow Data…Instream Flow Demands (Average Monthly) menu items
insert commands to process instream flow demand time series (average monthly):

MenuCommands_InstreamFlowDemandTSAverageMonthly

Commands…Instream Flow Data…Instream Flow Demand TS (Average Monthly) Menu

The following table summarizes the use of each command:

Instream Flow Demands (Average Monthly) Commands

Command Description
SetOutputYearType() Set the output year type for time series. This

should correspond to the model data set year
type and ensures that time series data are in the
proper order. Omitting this information may
result in missing data in the output.

ReadInstreamFlowDemandTSAverage
MonthylyFromStateMod()

Read the instream flow demand average
monthly time series from a StateMod file (if
reading and manipulating).

ReadInstreamFlowRightsFromStateMod() Read instream flow rights from a StateMod
instream flow rights file.

SetInstreamFlowDemandTSAverage
MonthlyFromRights()

For the specified instream flow water right(s),
create a demand time series (average monthly).

SetInstreamFlowDemandTSAverage
MonthlyConstant()

For the specified instream flow location, create
a demand time series (average monthly) that is
a constant value monthly pattern (twelve
values).

WriteInstreamFlowDemandTSAverageMonthly
ToStateMod()

Write defined instream flow demand time
series (average monthly) to a StateMod file.

CheckInstreamFlowDemandTSAverageMonthly() Check instream flow demand time series
(average monthy) data for problems.

WriteCheckFile() Write the results of data checks to a file.

56 - StateMod 180

StateDMI Documentation

An example command file to create the instream flow demand time series (average monthly) file is shown
below (from the Colorado cm2005 data set):

StartLog(LogFile="ifa.commands.StateDMI.log")
ifa.commands.StateDMI

StateDMI command file to create the annual instream flow demand file for the Colorado model

SetOutputYearType(OutputYearType=Water)

Structures and total demands (rights) are defined in the instream flow rights file

ReadInstreamFlowRightsFromStateMod(InputFile="..\StateMod\cm2005.ifr")

Step 1 - Set monthly instream flow demand to water rights for structures that are of
DemandType = 2 (*.dds)

SetInstreamFlowDemandTSAverageMonthlyFromRights(ID="3*",IfNotFound=Add)
SetInstreamFlowDemandTSAverageMonthlyFromRights(ID="5*",IfNotFound=Add)
SetInstreamFlowDemandTSAverageMonthlyFromRights(ID="7*",IfNotFound=Add)
SetInstreamFlowDemandTSAverageMonthlyFromRights(ID="9500*",IfNotFound=Add)
SetInstreamFlowDemandTSAverageMonthlyFromRights(ID="9506*",IfNotFound=Add)
SetInstreamFlowDemandTSAverageMonthlyFromRights(ID="9507*",IfNotFound=Add)
SetInstreamFlowDemandTSAverageMonthlyFromRights(ID="951*",IfNotFound=Add)
SetInstreamFlowDemandTSAverageMonthlyFromRights(ID="9535*",IfNotFound=Add)
SetInstreamFlowDemandTSAverageMonthlyFromRights(ID="9536*",IfNotFound=Add)
SetInstreamFlowDemandTSAverageMonthlyFromRights(ID="9537*",IfNotFound=Add)
SetInstreamFlowDemandTSAverageMonthlyFromRights(ID="9545*",IfNotFound=Add)
SetInstreamFlowDemandTSAverageMonthlyFromRights(ID="954603",IfNotFound=Add)
SetInstreamFlowDemandTSAverageMonthlyFromRights(ID="954625",IfNotFound=Add)
SetInstreamFlowDemandTSAverageMonthlyFromRights(ID="954655",IfNotFound=Add)

StateDMI expects monthly values to be entered in Calendar Year.

Step 2 - Set monthly instream flow demands that vary by month

SetInstreamFlowDemandTSAverageMonthlyConstant(ID="362000",
 MonthValues="3.00,3.00,3.00,3.00,6.00,6.00,6.00,6.00,6.00,3.00,3.00,3.00",IfNotFound=Add)
SetInstreamFlowDemandTSAverageMonthlyConstant(ID="362012",
 MonthValues="3.00,3.00,3.00,3.00,7.00,7.00,7.00,7.00,7.00,3.00,3.00,3.00",IfNotFound=Add)
SetInstreamFlowDemandTSAverageMonthlyConstant(ID="362030",
 MonthValues="10.00,10.00,10.00,10.00,20.00,20.00,20.00,20.00,20.00,20.00,10.00,10.00",IfNotFound=Add)
SetInstreamFlowDemandTSAverageMonthlyConstant(ID="362033",
 MonthValues="6.00,6.00,6.00,6.00,12.00,12.00,12.00,12.00,12.00,6.00,6.00,6.00",IfNotFound=Add)
SetInstreamFlowDemandTSAverageMonthlyConstant(ID="362037",
 MonthValues="16.00,16.00,16.00,16.00,32.00,32.00,32.00,32.00,32.00,32.00,16.00,16.00",IfNotFound=Add)
…similar commands omitted

Step 3 - Create StateMod file

WriteInstreamFlowDemandTSAverageMonthlyToStateMod(OutputFile="..\StateMod\cm2005.ifa")

Check the results
CheckInstreamFlowDemandTSAverageMonthly(ID="*")
WriteCheckFile(OutputFile="ifa.commands.StateDMI.check.html")

5.8.4 Instream Flow Demand Time Series (Monthly, Daily)

StateDMI does not process monthly or daily instream flow demand time series. In most cases, the
average monthly time series described in the previous section are sufficient. To create complete monthly
or daily time series, use TSTool, a spreadsheet, or other software to prepare the time series file.

 StateMod - 57 181

 StateDMI Documentation

5.9 Well Data

Wells can be used to supply water to irrigated lands and municipal/industrial (M&I) demands (similar to
diversions). However, in most cases, StateMod modeling and StateDMI focuses on agricultural wells.
For agriculture, wells can be the only source of supply or can supplement surface water supply from
diversion stations. Well features were added to the StateMod model after diversions; consequently, much
of the processing for wells is similar to diversions.

Well stations that supplement diversion stations are often determined through GIS, where the service area
for the diversion station is intersected with well locations. Well stations that fall within a service area, or
are within a reasonable distance, are associated with the ditch service area. However, at a more
fundamental level, diversion and well stations in CDSS are associated with irrigated parcels. The parcel
data and its supply relationship from diversions and wells are then stored in HydroBase and can be
processed by StateDMI. Because a service area will typically contain multiple wells, the wells in the
StateMod well station file are typically aggregated and given an identifier that matches the diversion
station. The diversion station is then indicated as a D&W (diversion and well) node in the model
network. In general a “well station” in the StateMod well station file is not actually a single hole in the
ground, but is a group of physical wells that serve an area.

Well station data consists of:

• Well stations (will be associated with a diversion station if the well supplements the diversion
station)

• Well rights
• Historical pumping time series (monthly, daily)
• Demand time series (monthly, daily)
• Irrigation practice time series (yearly)
• Consumptive water requirement time series (monthly, daily)
• Soil moisture time series (yearly)

Each of the above data types is stored in a separate file, using the well station identifier as the primary
identifier. The processing of each data file is discussed below, with background on specific issues.

5.9.1 Well Stations

Each well station used with StateMod can be one of the following types:

1. Explicit well, where the no aggregation occurs – this type is used for key structures that need to
be explicitly modeled. For example, this type of well station may be appropriate for a large
municipal supply well. This type of well does not supplement a diversion station and therefore
will have a unique identifier that is represented in the model network. The well station identifier
is usually a 7-character water district identifier or fabricated identifier that starts with the water
district number.

2. Well system, where the characteristics (capacity, historical diversion, demand) of multiple wells
are summed at one location and water rights are modeled explicitly – this type is used when
related well structures operate as a system (e.g., a well field). Only the well system identifier is
included in the model network and this identifier should be different from the parts in the
collection. Well systems should be defined using the SetWellSystem*() commands and
need to be defined when processing all well station files (if well systems are used). Well systems
can be one of the following types:

58 - StateMod 182

StateDMI Documentation

 Well-only supply (does not supplement diversions). The naming convention for

modeling in RGDSS is to use groundwater unit response function zones (URF); however,
aggregating wells by basin or some other logical grouping as appropriate.

 Well systems that supplement a diversion station’s supply. In this case the identifier for
the well should be the same as the diversion station, the well station should indicate the
diversion station identifier in the well station file, and the diversion station should be
represented in the network as a D&W node. Because relationships between wells and
diversion stations occur via parcels in HydroBase, the diversion station systems should be
defined (and the wells associated with each diversion station will consequently be treated
as a system).

3. Well aggregate, which is the same as a well system except that water rights are aggregated into

classes. Aggregation of the water rights typically occurs at the end of the command file with an
AggregateWellRights() command. Aggregates should be defined using the
SetWellAggregate*() commands.

Because the number of wells can be very large, well stations often are grouped by whether they
supplement surface water supply (in which case the well is associated with a diversion via its service
area) or are the only source of supply for irrigated lands (in which case the well is associated with one or
more parcels). Processing the data then involves interpreting relationships between parcels, wells (holes
in the ground), and diversion stations, in order to lump wells into a model station that represents the total
groundwater supply in an area.

 StateMod - 59 183

 StateDMI Documentation

The well stations file may be updated several times, as follows:

1. Initial creation (see this section).
2. Adjust well station capacities based on historical well pumping (see Section 5.9.3).
3. Adjust well monthly efficiencies based on estimates from consumptive water requirement (see

Section 5.9.5).

If a list of well stations is determined initially, the secondary files can be processed first and then the well
stations file can be fully created with one command file.

The Commands…Well Data…Well Stations menus insert commands to process well station data:

MenuCommands_WellStations

Commands…Well Data…Well Stations Menu

60 - StateMod 184

StateDMI Documentation

The following table summarizes the use of each command:

Well Stations Commands

Command Description
ReadWellStationsFromList() Re ad from a delimited list file the list of well

stations to be included in the data set.
ReadWellStationsFromNetwork() Read from a StateMod network file a list of well

stations to be included in the data set.
ReadWellStationsFromStateMod() Read from a StateMod diversion stations file the list

of well stations to be included in the data set.
SetWellAggregate() Specify that a well station is an aggregate and define

its parts.
SetWellAggregateFromList() Specify that one or more well stations are aggregates

and define their parts, using a delimited list file.
SetWellSystem() Specify that a well station is a system and define its

parts.
SetWellSystemFromList() Specify that one or more well stations are systems

and define their parts, using a delimited list file.
SetWellStation() Set the data for, and optionally add, well stations.
SetWellStationsFromList() Set well station data from a list file.
ReadCropPatternTSFromStateCU() Read the crop pattern time series file, for use by the

SetWellStationAreaToCropPatternTS()
command.

SetWellStationAreaToCropPatternTS() Set the well station area data to the maximum area
value from the crop pattern time series (see previous
command to read the rights).

ReadWellRightsFromStateMod() Read the well rights file, for use by the
SetWellStationCapacityToWellRights()
command.

SetWellStationCapacityToWelLRights() Set the well station capacity to the sum of the well
rights for the station (see the previous command to
read the rights).

SortWellStations() Sort the well stations. This is useful to force
consistency between files.

ReadDiversionStationsFromStateMod() Read the diversion stations data, to fill well station
data using
FillWellStationsFromDiversionStations().

FillWellStationsFromDiversionStations() Fill well stations from diversion stations (see the
previous command to read the diversion stations).

FillWellStationsFromNetwork() Fill missing data for defined well stations, using data
from the network. For example, retrieve the well
names, and capacities.

FillWellStation() Fill missing data for defined well stations, using user-
supplied values.

SetWellStationDelayTablesFromNetwork() Set default delay table information using network
relationships.

SetWellStationDelayTablesFromRTN() Set delay table information using information in a
return flow format file.

 StateMod - 61 185

 StateDMI Documentation

Command Description
SetWellStationDepletionTablesFromRTN() Set depletion table information using information in a

return flow format file.
WriteWellStationsToList() Write the well stations to a list file.
WriteWellStationsToStateMod() Write defined well stations to a StateMod file.
CheckWellStations() Check well station data for problems.
WriteCheckFile() Write the results of data checks to a file.

An initial well station list is typically created from the network. The list is then used to create other files,
including water rights and time series. Finally, the completed files can be read and summarized in the
well station file, to update the following:

• capacity
• default monthly efficiencies
• acreage
• use and demand type
• delay and depletion tables

In the future, some data are expected to be split out of the well station file, to minimize updating the
station file.

An example command file to create the initial well station file is shown below (from the preliminary
South Platte Sp2008L data set).

Wells_WES.StateDMI

StartLog(LogFile="Sp2008L_WES.log")

Step 1 - Set the output period, used to compute averages...
SetOutputPeriod(OutputStart="1950-01",OutputEnd="2006-12")

Step 2 - Read the list of well stations (all diversions + all well only)
ReadWellStationsFromList(ListFile="..\Network\sp2008L_Wells.csv",IDCol=1,NameCol=2,DiversionIDCol=8)

Step 2b - Read Aug and recharge well list (currently not in network, assigned to aug station ID)

readWellStationsFromList(ListFile="sp2008L_AugRchWells.csv",IDCol="1",NameCol="2",DiversionIDCol="8")

Step 3 - Read diversion station information. This allows some diversion data to
be transferred to wells (e.g., demand source) and provides memory for
aggregate/system information.
ReadDiversionStationsFromList(ListFile="..\Network\Sp2008L_Diversion.csv",IDCol=1,NameCol=2)

Step 4 - Set Well aggregates (GW Only lands)
SetWellSystemFromList(ListFile="1956_01_GW.csv",Year=1956,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="1976_01_GW.csv",Year=1976,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="1987_01_GW.csv",Year=1987,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="2001_01_GW.csv",Year=2001,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)

62 - StateMod 186

StateDMI Documentation

Step 5 - Set Diversion _IRR aggregates...
SetWellAggregateFromList(ListFile="..\Sp2008L_SwAgg.csv",Year=2001,Div=1,
 PartType=Ditch,IDCol=1,PartIDsCol=3,PartsListedHow=InRow)

Step 6 - Set Diversion Systems
SetWellSystemFromList(ListFile="..\Sp2008L_DivSys_DDH.csv",Year=2001,Div=1,
 PartType=Ditch,IDCol=1,PartIDsCol=3,PartsListedHow=InRow)

Step 7 - Set Diversion ID For D&W wells

Step 8 -**** Get capacity from well right file
FillWellStation(ID="*")

Step 9 - rrb 2007/10/10; Added commands to set well area to data in *.cds
ReadCropPatternTSFromStateCU(InputFile="..\Crops\Sp2008L.cds")
SetWellStationAreaToCropPatternTS(ID="*")

Step 10 - Fill remaining missing data in well stations...
FillWellStation(ID="*",RiverNodeID="ID",Capacity=999,DailyID="4",AdminNumShift=0,
 DemandType=1,UseType=1,DemandSource=1,EffAnnual=60)

Step 11 - Set delay and depletion data
SetWellStationDelayTablesFromRTN(InputFile="..\DelaySW\sp2008L_Sw.rtn",SetEfficiency=False)
SetWellStationDepletionTablesFromRTN(InputFile="..\DelaySW\sp2008L_Gw.rtn")

Include Aug & Recharge wells

Step 12 - rrb 2007/11/16 Read Well rights from a StateMod well right file
ReadWellRightsFromStateMod(InputFile="..\Wells\Sp2008L.wer")

Step 13 - rrb 2007/10/03 Set capacity to total of water rights
SetWellStationCapacityToWellRights(ID="*")

SmOpr
State of Colorado
Version: 1.00
Last revision date: 2006/10/27

SetWellStation(ID="0102522_AuW ",Name="RIVERSIDE Aug Well ",
 RiverNodeID="0102522_AuW ",Capacity=999.,DailyID="4",
 AdminNumShift=0,DiversionID="NA",DemandType=1,IrrigatedAcres=0.0,
 UseType=5,DemandSource=8,EffAnnual=100.0,Returns="06759910,100.0,1",
 Depletions="06759910,100.0,2",IfNotFound=Add)
SetWellStation(ID="0102528_AuW ",Name="FT Aug Well ",
 RiverNodeID="0102528_AuW ",Capacity=999.,DailyID="4",
 AdminNumShift=0,DiversionID="NA",DemandType=1,IrrigatedAcres=0.0,
 UseType=5,DemandSource=8,EffAnnual=100.0,Returns="06759910,100.0,1",
 Depletions="06759910,100.0,2",IfNotFound=Add)
SetWellStation(ID="0102529_AuW ",Name="UPPER Aug Well ",
 RiverNodeID="0102529_AuW ",Capacity=999.,DailyID="4",
 AdminNumShift=0,DiversionID="NA",DemandType=1,IrrigatedAcres=0.0,
 UseType=5,DemandSource=8,EffAnnual=100.0,Returns="06759910,100.0,1",
 Depletions="06759910,100.0,2",IfNotFound=Add)
…similar commands omitted…

rrb add Alternate Point wells SmAltP

SetWellStation(ID="0102520_AlP ",Name="Alternate Point ",
 Capacity= 999.,EffAnnual=100.0,IfNotFound=Add)
SetWellStation(ID="0102524_AlP ",Name="Alternate Point ",
 Capacity= 999.,EffAnnual=100.0,IfNotFound=Add)
…similar commands omitted…

SortWellStations(Order=Ascending)

 StateMod - 63 187

 StateDMI Documentation

Step 14 - Write the updated stations with estimated efficiencies to the StateMod file...
WriteWellStationsToStateMod(OutputFile="Sp2008L.wes")
WriteWellStationsToStateMod(OutputFile="..\StateMod\Historic\Sp2008L.wes")

Check well stations
CheckWellStations(ID="*")
WriteCheckFile(OutputFile="Sp2008L_WES.StateDMI.check.html")

5.9.2 Well Rights

Well rights correspond to the well stations, using the well station identifier to relate the data. Well right
identifiers are typically the HydroBase identifier if modeling all rights explicitly. For Rio Grande
modeling, right identifiers used the convention of well station identifier followed by W.NN, where W
indicates well right (to avoid conflict with diversion rights that would otherwise have the same identifier),
and NN is a sequential number starting with 01. Rights for well aggregate stations have rights
corresponding to water right classes.

The Commands…Well Data…Well Rights menu items insert commands to process well rights data:

MenuCommands_WellRights

Commands…Well Data…Well Rights Menu

64 - StateMod 188

StateDMI Documentation

The following table summarizes the use of each command. Note that well right aggregation (if aggregate
well stations are used) occurs after other processing.

Well Rights Commands

Command Description
ReadWellStationsFromList() Read from a delimited file the list of well stations to be

included in the data set – the list indicates the stations for
which to process rights.

ReadWellStationsFromNetwork() Read from the network the list of well stations to be
included in the data set – the list indicates the stations for
which to process rights.

ReadWellStationsFromStateMod() Read from a StateMod well stations file the list of well
stations to be included in the data set – the list indicates the
stations for which to process rights.

SetWellAggregate() Specify that a well station is an aggregate and define its
parts.

SetWellAggregateFromList() Specify that one or more well stations are aggregates and
define their parts, using a delimited list file.

SetWellSystem() Specify that a well station is a system and define its parts.
SetWellSystemFromList() Specify that one or more well stations are systems and

define their parts, using a delimited list file.
ReadWellRightsFromHydroBase() For each well station, read the corresponding well rights

from HydroBase.
ReadWellRightsFromStateMod() Read well rights from a StateMod well rights file.
SetWellRight() Set the data for, and optionally add, well rights.
FillWellRight() Fill missing data for defined well rights, using user-

supplied values.
MergeWellRights() Merge well rights determined from multiple years of

irrigated lands parcel data in HydroBase. This is necessary
to avoid double-counting rights. Well/parcel matching data
are unique to each year of parcel data.

AggregateWellRights() Aggregate well rights. This is used in some data sets to
reduce the number of well rights, which decreases model
run time and simplifies output.

SortWellRights() Sort the well rights. This is useful to force consistency
between files.

WriteWellRightsToList() Write well rights to a list file.
WriteWellRightsToStateMod() Write well rights to a StateMod file.
CheckWellRights() Check well right data for problems.
WriteCheckFile() Write the results of data checks to a file.

 StateMod - 65 189

 StateDMI Documentation

An example command file to create the well rights file is shown below (from preliminary South Platte
Sp2008L data set):

Sp2008L_WER.StateDMI

rrb 2009/06/09; Revised to read 2005 data and recognize Aug and Recharge wells are in the network

Well Rights File (*.wer)

StartLog(LogFile="Sp2008L_WER.log")

Step 1 - Read all structures

ReadWellStationsFromNetwork(InputFile="..\Network\Sp2008L.net")
SortWellStations()

Step 2 - define diversion and d&w aggregates and demand systems
SetWellAggregateFromList(ListFile="..\Sp2008L_SWAgg.csv",PartType=Ditch,
 IDCol=1,NameCol=2,PartIDsCol=3,PartsListedHow=InColumn,IfNotFound=Warn)
SetWellSystemFromList(ListFile="..\Sp2008L_DivSys_DDH.csv",PartType=Ditch,
 IDCol=1,NameCol=2,PartIDsCol=3,PartsListedHow=InRow,IfNotFound=Warn)

SetWellAggregateFromList(ListFile="Sp2008L_AugRchWell_Aggregates.csv",
 PartType=Well,IDCol=1,PartIDsCol=2,PartsListedHow=InRow)

Step 3- Set Well aggregates (GW Only lands)
rrb Same as provided by LRE as Sp_GWAgg_xxxx.csv except non WD 01 and 64 removed
SetWellSystemFromList(ListFile="..\Sp2008L_GWAgg_1956.csv",Year=1956,
 Div=1,PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\Sp2008L_GWAgg_1976.csv",Year=1976,
 Div=1,PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\Sp2008L_GWAgg_1987.csv",Year=1987,
 Div=1,PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\Sp2008L_GWAgg_2001.csv",Year=2001,
 Div=1,PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\Sp2008L_GWAgg_2005.csv",Year=2005,
 Div=1,PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)

Step 4 - Read Augmentation and Recharge Well Aggregate Parts
SetWellAggregateFromList(ListFile="Sp2008L_AugRchWell_Aggregates.csv",
 PartType=Well,IDCol=1,PartIDsCol=2,PartsListedHow=InRow,PartIDsColMax=25,IfNotFound=Ignore)
SetWellAggregateFromList(ListFile="Sp2008L_AlternatePoint_Aggregates.csv",
 PartType=Well,IDCol=1,PartIDsCol=2,PartsListedHow=InRow,PartIDsColMax=1,IfNotFound=Ignore)

Step 5 - Read rights from HydroBase

ReadWellRightsFromHydroBase(ID="*",IDFormat="HydroBaseID",
 Year="1956,1976,1987,2001,2005",Div="1",DefaultAppropriationDate="1950-01-01",
 DefineRightHow=RightIfAvailable,ReadWellRights=True,UseApex=True,OnOffDefault=AppropriationDate)

Step 6 - Sort and Write
Write Data Comments="True" provides output used for subsequent cds and ipy acreage filling
Write Data Comments="False" provides merged file used for seting ipy max pumping
SortWellRights(Order=LocationIDAscending,Order2=IDAscending)

WriteWellRightsToStateMod(OutputFile="Sp2008L_NotMerged.wer",WriteDataComments=True)
MergeWellRights(OutputFile="..\StateMod\Historic\Sp2008L.wer")
SortWellRights(Order=LocationIDAscending,Order2=IDAscending)

WriteWellRightsToStateMod(OutputFile="Sp2008L.wer",WriteDataComments=False,WriteHow=OverwriteFile)

66 - StateMod 190

StateDMI Documentation

WriteWellRightsToStateMod(OutputFile="..\StateCU\Historic\Sp2008L.wer",
 WriteDataComments=False,WriteHow=OverwriteFile)
WriteWellRightsToStateMod(OutputFile="..\StateMod\Historic\Sp2008L.wer",
 WriteDataComments=False,WriteHow=OverwriteFile)
Check the well rights
CheckWellRights(ID="*")

5.9.3 Well Historical Pumping Time Series (Monthly)

Well historical pumping time series (monthly) are estimated by the StateCU software. StateDMI does
provide commands to process well puming, as documented below. However, it is typical to use TSTool
or other software to process the StateCU output, as shown in the following example (adapted from
preliminary South Platte Sp2008L data set):

Sp2008L_WEH.TsTool

SetOutputPeriod(OutputStart="1950-01",OutputEnd="2006-12")

Read a list of recharge wells and set to zero.
Note that the following says to read a StateMod file with name "x".
An input type is needed but use the above and HandleMissingTSHow to trick it:
Specify the HandleMissingTSHow parameter to default to all missing values.
Then fill with zero below.
CreateFromList(ListFile="Sp2008L_AugRchWells.csv",IDCol=1,DataType="WellPumping",Interval=Month,
 InputType=StateMod,InputName="x",HandleMissingTSHow=DefaultMissingTS)
FillConstant(TSList=AllTS,ConstantValue=0)

Read a list of Alternate Point Structures (ID col = 2) and set to zero using same approach as above
CreateFromList(ListFile="Sp2008L_AlternatePoint.csv",IDCol=2,DataType="WellPumping",Interval=Month,
 InputType=StateMod,InputName="x",HandleMissingTSHow=DefaultMissingTS)
FillConstant(TSList=AllTS,ConstantValue=0)

Now read time series from the historical well pumping file produced by StateCU.
Don't read the time series file directly because it contains diversions and
wells. Instead, read the list of well stations with CreateFromList() and
specify the well pumping time series file to read. This takes a little
longer to run because the time series file is opened and read for each ID
in the list, but at least only the wells are added as time series.

CreateFromList(ListFile="..\Network\Sp2008L_Wells.csv",IDCol=1,DataType="WellPumping",Interval=Month,
 InputType=StateMod,InputName="..\StateCU\Historic\Sp2008L.gwp",HandleMissingTSHow=DefaultMissingTS)

Now output all of the time series

SortTimeSeries()
WriteStateMod(TSList=AllTS,OutputFile="Sp2008L.weh")
WriteStateMod(TSList=AllTS,OutputFile="..\StateMod\Historic\Sp2008L.weh")
CheckTimeSeries(CheckCriteria="Missing")
WriteCheckFile(OutputFile="Sp2008L_WEH.TSTool.check.html")

 StateMod - 67 191

 StateDMI Documentation

Commands are available in StateDMI to support alternative approaches. The Commands…Well
Data…Well Historical Pumping TS (Monthly) menu items insert commands to process well historical
pumping time series (monthly) data:

MenuCommands_WellHistoricalPumpingTSMonthly

Commands…Well Data…Well Historical Pumping TS (Monthly) Menu

68 - StateMod 192

StateDMI Documentation

The following table summarizes the use of each command.

Well Historical Pumping TS (Monthly) Commands

Command Description
SetOutputPeriod() Set the output period. Time series are

automatically extended to this period if
necessary.

SetOutputYearType() Set the output year type, which is used when
writing the files and for determining the
monthly efficiency order in station data.

ReadWellStationsFromList() Read from a delimited file the list of well
stations to be included in the data set.

ReadWellStationsFromStateMod() Read from a StateMod well stations file the list
of well stations to be included in the data set.

SetWellAggregate() Specify that a well station is an aggregate and
define its parts.

SetWellAggregateFromList() Specify that one or more well stations are
aggregates and define their parts, using a
delimited list file.

SetWellSystem() Specify that a well station is a system and
define its parts.

SetWellSystemFromList() Specify that one or more well stations are
systems and define their parts, using a
delimited list file.

ReadWellHistoricalPumpingTS
MonthlyFromStateCU()

Read well historical pumping time series
(monthly) from a StateCU results file
(StateMod time series format), when directly
manipulating an existing file.

SetWellHistoricalPumpingTSMonthly() Set the data for a well historical pumping time
series (monthly). This cannot be used to set the
data for an aggregate/system part (only the
aggregate/system total can be set).

SetWellHistoricalPumpingTS
MonthlyConstant()

Set the data for a well historical pumping time
series (monthly) to a constant value. This
cannot be used to set the data for an
aggregate/system part (only the
aggregate/system total can be set).

FillWellHistoricalPumpingTS
MonthlyAverage()

Fill missing data in well historical pumping
time series (monthly) to the historical monthly
average values. If an aggregate/system, the
historical average is computed from the total.

FillWellHistoricalPumpingTS
MonthlyConstant()

Fill missing data in well historical pumping
time series (monthly) to a constant value.

ReadPatternFile() Read the pattern file used with
FillWellHistoricalPumpingTS
MonthlyPattern() commands.

FillWellHistoricalPumpingTS
MonthlyPattern()

Fill missing data in well historical pumping
time series (monthly) to the monthly average
values, using wet/dry/average values.

 StateMod - 69 193

 StateDMI Documentation

Command Description
ReadWellRightsFromStateMod() Read well rights from a StateMod file, used to

limit the time series to rights.
LimitWellHistoricalPumpingTS
MonthlyToRights()

Limit the well historical pumping time series
(monthly) to the water rights that were
available at each point in time.

SortWellHistoricalPumpingTSMonthly() Sort the well historical pumping time series
(monthly). This is useful to force consistency
between files.

WriteWellHistoricalPumpingTS
MonthlyToStateMod()

Write well historical pumping time series
(monthly) to a StateMod file.

SetWellStationCapacitiesFromTS() Set well station capacities from historical
pumping time series maximum values, to
update the well station data.

SetWellStation() Set well station data (for example to override
capacities from time series).

SetWellStationsFromList() Set well station data (for example to override
capacities from time series).

WriteWellStationsToStateMod() Write well stations to a StateMod file (if the
stations have been updated).

CheckWellHistoricalPumpingTSMonthly() Check well historical pumping time series data
for problems.

WriteCheckFile() Write the results of data checks to a file.

5.9.4 Well Historical Pumping Time Series (Daily)

StateDMI does not process daily well pumping time series. Instead, use StateCU output, TSTool, a
spreadsheet, or other software to prepare the time series file.

5.9.5 Well Demand Time Series (Monthly)

Well demand time series (monthly) correspond to each well station, using the station identifier to relate
the data. Demands for well stations that supplement diversion stations are typically associated with the
diversion stations and are processed by commands described in Section 5.4.5 – Diversion Demand Time
Series (Monthly).

The following example TSTool file illustrates how historical well pumping time series can be used for the
historical demand case (from the preliminary South Platte Sp2008L data set):

Wells_Wem.TsTool; command used to create a historic well demand file
from a historic pumpinng file
SetOutputPeriod(OutputStart="1950-01",OutputEnd="2006-12")
ReadStateMod(InputFile="Sp2008L.weh")

SortTimeSeries()
WriteStateMod(TSList=AllTS,OutputFile="Sp2008L.wem")
WriteStateMod(TSList=AllTS,OutputFile="..\StateMod\Historic\Sp2008L.wem")
CheckTimeSeries(CheckCriteria="Missing")
WriteCheckFile(OutputFile="Sp2008L_WEH.TSTool.check.html")

70 - StateMod 194

StateDMI Documentation

StateDMI also provides commands to process the well demand time series, should an approach different
from the above be required. The Commands…Well Data…Well Demand TS (Monthly) menus insert
commands to process well demand time series (monthly) data (and optionally the well stations file, to
save estimated efficiencies):

MenuCommands_WellDemandTSMonthly

Commands…Well Data…Well Demand TS (Monthly) Menu

 StateMod - 71 195

 StateDMI Documentation

The following table summarizes the use of each command:

Well Demand Time Series (Monthly) Commands

Command Description
SetOutputPeriod() Set the output period. Time series are

automatically extended to this period if
necessary.

SetOutputYearType() Set the output year type, which is used when
writing the files.

ReadWellStationsFromList() Read from a delimited file the list of well
stations to be included in the data set.

ReadWellStationsFromStateMod() Read from a StateMod well stations file the
list of well stations to be included in the data
set.

SetWellAggregate() Specify that a well station is an aggregate
and define its parts.

SetWellAggregateFromList() Specify that one or more well stations are
aggregates and define their parts, using a
delimited list file.

SetWellSystem() Specify that a well station is a system and
define its parts.

SetWellSystemFromList() Specify that one or more well stations are
systems and define their parts, using a
delimited list file.

ReadWellDemandTSMonthlyFromStateMod() Read the well demand time series from a
StateMod file (if manipulating an existing
file).

ReadIrrigationWaterRequirementTSMonthlyFrom
StateCU()

Read irrigation water requirement (IWR)
time series generated by the StateCU model.

ReadWellHistoricalPumpingTSMonthlyFromState
Mod()

Read well historical pumping time series
(monthly) from a StateMod file (can also
read a StateCU file).

CalculateWellStationEfficiencies() Calculate well station average efficiencies
as IWR/Diversions.

SetWellStation() Set well station data, in particular efficiency
data, to override the result from the previous
command.

SetWellStationsFromList() Set well station data from a delimited file, in
particular efficiency data, to override the
result from the previous command.

WriteWellStationsToStateMod() Write well stations to StateMod – the data
will include updated average efficiencies.

CalculateWellDemandTSMonthly() Calculate the well demand time series
(monthly) using IWR/Effave and historical
pumping time series.

CalculateWellDemandTSMonthlyAsMax() Calculate the well demand time series
(monthly) as the maximum of the demand
(see previous command) and the well
historical pumping time series.

72 - StateMod 196

StateDMI Documentation

Command Description
SetWellDemandTSMonthly() Set the data for a well demand time series

(monthly). This cannot be used to set the
data for an aggregate/system part (only the
aggregate/system total can be set).

SetWellDemandTSMonthlyConstant() Set the data for a well demand time series
(monthly) to monthly constant values. This
cannot be used to set the data for an
aggregate/system part (only the
aggregate/system total can be set).

FillWellDemandTSMonthlyAverage() Fill missing data in well demand time series
(monthly) to the monthly average values. If
an aggregate/system, the average is
computed from the total.

FillWellDemandTSMonthlyConstant() Fill missing data in well demand time series
(monthly) to a constant value.

ReadPatternFile() Read the pattern file used with
FillWellDemandTS
MonthlyPattern() commands.

FillWellDemandTSMonthlyPattern() Fill missing data in well demand time series
(monthly) to the monthly average values,
using wet/dry/average values.

ReadWellRightsFromStateMod() Read well rights from a StateMod file, used
to limit the time series to rights.

LimitWellDemandTSMonthlyToRights() Limit the well demand time series (monthly)
to the water rights that were available at
each point in time.

SortWellDemandTSMonthly() Sort the well demand time series (monthly).
This is useful to force consistency between
files.

WriteWellDemandTSMonthlyToStateMod() Write well demand time series (monthly) to
a StateMod file.

CheckWellDemandTSMonthly() Check well demand time series data for
problems.

WriteCheckFile() Write the results of data checks to a file.

5.9.6 Irrigation Practice Time Series (Yearly)

The irrigation practice time series for well and diversion stations is typically copied from the StateCU
data files or the StateCU file is directly referenced.

5.9.7 Consumptive Water Requirement (Monthly, Daily)

The consumptive water requirement for well and diversion stations is typically copied from the StateCU
output or the StateCU file is directly referenced.

5.9.8 Soil Moisture Time Series (Yearly)

The soil moisture time series are stored in the same file as for diversion stations. See the StateMod
documentation for more information.

 StateMod - 73 197

 StateDMI Documentation

5.10 Stream Estimate Data

Stream estimate data consists of:

• Stream estimate stations
• Stream estimate coefficients
• Natural flow time series (monthly, daily)

Each of the above data types is stored in a separate file, using the stream estimate station identifier as the
primary identifier. Stream estimate stations correspond to locations where historical data are not
available, and instead streamflow is estimated by prorating gaged flows from other locations. StateMod
now supports separate stream gage (see Section 5.2 – Stream Gage Data) and stream estimate data;
however, stream estimate stations are often still mixed with stream gage stations in one station file (*.ris),
and stream estimate stations are indicated by stations that have data in the stream estimate coefficients
file. Stream estimate stations can correspond to existing diversion, reservoir, or well nodes, or can
correspond to the “other” node type, which will only have data in the network file and the stream estimate
files. In other words, a stream estimate “station” is a modeling term but does not correspond to a typical
station at which measurements are recorded. It is possible that a stream gage station has insufficient
historical data to serve as a true stream gage but the location of the gage is important in the model. In this
situation, the stream gage should not be identified as a flow node in the network but should instead be
identified as an “other” node type that is also a natural flow node. To support previous modeling
conventions, StateDMI allows combined stream gage/estimate stations lists in the stream stations file
(*.ris).

5.10.1 Stream Estimate Stations

The Commands…Stream Estimate Data…Stream Estimate Stations menus insert commands to
process stream estimate station data (in general, the features are very similar to the stream gage stations):

MenuCommands_StreamEstimateStations

Commands…Stream Estimate Data…Stream Estimate Stations Menu

74 - StateMod 198

StateDMI Documentation

The following table summarizes the use of each command:

Stream Estimate Station Commands

Command Description
ReadStreamEstimateStationsFromList() Read from a delimited list file the list of stream estimate

stations to be included in the data set.
ReadStreamEstimateStationsFromNetwork() Read from a StateMod network file a list of stream

estimate stations to be included in the data set.
ReadStreamEstimateStationsFromStateMod() Read from a StateMod stream estimate stations file the

list of stream estimate stations to be included in the data
set.

SetStreamEstimateeStation() Set the data for, and optionally add, stream estimate
stations.

SortStreamEstimateStations() Sort the stream estimate stations. This is useful to force
consistency between files.

FillStreamEstimateStationsFromHydroBase() Fill missing data for defined stream estimate stations,
using data from HydroBase. For example, retrieve the
station names.

ReadNetworkFromStateMod() Read the network file, providing data for the
FillStreamEstimateStationsFromNetwork()
command.

FillStreamEstimateStationsFromNetwork() Fill missing data for defined stream estimate stations,
using data from a StateMod network file. This is useful
when the station names are not found in HydroBase and
numerous SetStreamEstimateStation()
commands would otherwise be required.

FillStreamEstimateStation() Fill missing data for defined stream estimate stations, user
user-supplied values.

WriteStreamEstimateStationsToList() Write defined stream estimate stations to a delimited file.
WriteStreamEstimateStationsToStateMod() Write defined stream estimate stations to a StateMod file.
CheckStreamEstimateStations() Check stream estimate station data for problems.
WriteCheckFile() Write the results of data checks to a file.

An example command file to create the stream estimate station file is shown below (adapted from Rio
Grande data set but not implemented in production because a combined gage/estimate *.ris file was used,
note that some comments indicate the stations that are present in the stream gage station file):

Create the Rio Grande Stream Estimate Stations File

Note some stations that were in the original RIS file are now in the SES file.

ReadStreamEstimateStationsFromNetwork(InputFile="..\StateMod\rgTW.net")

Fill in the name from HydroBase...

FillStreamEstimateStationsFromHydroBase(ID="*",NameFormat="StationName_NodeType")
Set specific data, including name and daily ID overrides.

Set key gages to include actual daily observations

/* Stream gages are in the RIS

 StateMod - 75 199

 StateDMI Documentation

SetStreamGageStation(ID="08213500",Name="RG:THIRTYMILEBRG",DailyID="08213500",IfNotFound=Warn)
… similar commands omitted…
*/

Set these key gages to use higer gages (less depletion) in the estimation
of baseflows

/* Stream gages are in the RIS
SetStreamGageStation(ID="08221500",Name="RG:MONTEVISTA",DailyID="08220000",IfNotFound=Warn)
…similar commands omitted…
*/

Set all diversion point flow stations to key gages in their water districts

SetStreamEstimateStation(ID="20*",DailyID="08220000",IfNotFound=Warn)
…similar commands omitted…
Set gage flow stations to key gages in their general area
/* Stream gages are in the RIS
SetStreamGageStation(ID="08214500",Name="NCLEAR:BLWCONTRES",DailyID="08220000",IfNotFound=Warn)
…similar commands omitted…
*/
SetStreamEstimateStation(ID="VenAbvSan",Name="VenteroFlowAboveS",DailyID="08242500",
 IfNotFound=Warn)
/* Stream gages are in the RIS
SetStreamGageStation(ID="08250000",Name="CULEBRA:SANLUIS",DailyID="08242500",IfNotFound=Warn)
…similar commands omitted…

SetStreamGageStation(ID="McIntyreSpr",Name="MCINTYRESPRINGS",DailyID="0",IfNotFound=Warn)
…similar commands omitted…
*/
SetStreamEstimateStation(ID="BrkCrBFL",Name="BROOKCREEK",DailyID="08227500",IfNotFound=Warn)
…similar commands omitted…
Set all no flow nodes to use zero daily ID
/* Stream gages are in the RIS
SetStreamGageStation(ID="ROCKCRNF",Name="ROCKCRK-NF",DailyID=0,IfNotFound=Warn)
…similar commands omitted…
*/
Fill in the name from the network (anthing not filled or set above)...

FillStreamEstimateStationsFromNetwork(ID="*",NameFormat="StationName_NodeType")
Write the output...
WriteStreamEstimateStationsToStateMod(OutputFile="..\StateMod\rgTW.ses",
 WriteHow="OverwriteFile")
CheckStreamEstimateStations(ID=”*”)
WriteCheckFile(OutputFile=”ses.commands.StateDMI.check.html”)

An example command file to create a combined stream gage/estimate stations file is shown in Section
5.2 – Stream Gage Data.

5.10.2 Stream Estimate Coefficients

The stream estimate coefficients data indicate information to estimate natural streamflow at ungaged
locations, by prorating flows at stream gages. Each stream estimate station has data in the stream
estimate coefficients file. Proration factors may be any coefficient but are generally developed from
drainage area and precipitation data. During model calibration, the proration factors may be modified
using SetStreamEstimateCoefficients() commands.

76 - StateMod 200

StateDMI Documentation

The Commands…Stream Estimate Data…Stream Estimate Coefficients menus insert commands to
process stream estimate coefficient data:

MenuCommands_StreamEstimateCoefficientss

Commands…Stream Estimate Data…Stream Estimate Coefficients Menu

Note that although the stream estimate stations are the primary data component related to stream estimate
coefficients, the list of stream estimate stations is typically read from the network. This is because the
network file includes data necessary to process the coefficients, including upstream/downstream
relationships and the area*precipitation information. Area and precipitation data are typically developed
using GIS tools – currently StateDMI does not estimate these values.

 StateMod - 77 201

 StateDMI Documentation

The area and precipitation data provided at a stream gage station represents the total area and average
precipitation for that drainage area. The area and precipitation provided at a stream estimate station
represent the incremented area between that station and the next upstream stream gage station. In the
following figure, the incremented area between each node is 100 units. As presented, the total area (and
the area specified in the generalized network file) is equal for the stream gage station. At stream estimate
stations (i.e., natural flow nodes, also previously called baseflow nodes), the area is the incremental area
from the upstream stream gage (or gages) to the stream estimate station (or the headwater area if there is
no upstream gage in the basin): 100 units at point 2 and 200 units at point 3.

EXAMPLE:

Network area

The default method used to provide natural flow data to StateMod is the Gain Approach, which includes
two terms: the upstream gage term and the gain term. The StateMod Users' Manual discusses this
equation in detail. The following summarizes the method StateDMI’s
CalculateStreamEstimateCoefficients() command uses to provide natural flow
information to StateMod, using the Gain Approach.

• To estimate the gaged flow term, StateDMI determines all of the stream gage stations that have area-

precipitation data upstream of the stream estimate station. This results in a list of upstream stream
gage stations with a coefficient of +1 being entered on the first line of the stream estimate coefficients
file.

• To estimate the gaged component of the gain term, StateDMI identifies the downstream stream gage
stations and all upstream stream gage stations. This results in the downstream stream gage station
being assigned a coefficient of +1 and all the upstream stream gage stations being assigned a
coefficient of -1 on the second line of the stream estimate coefficients file.

• To estimate the proration factor component of the gain term, StateDMI calculates the ratio of the
incremental area-precipitation at the stream estimate station divided by the ungaged area-precipitation
(the downstream stream gage station area-precipitation minus the upstream stream gage station area-
precipitation).

78 - StateMod 202

StateDMI Documentation

• In the example above, the Gain approach results in the following at point 2:

 Gage term = stream gage station flow at point 1
 Gain term = 100/(400-100) * (flow (gage) at point 4 – flow (gage) at point 1).

The Neighboring Gage Approach is a second method that may be used to provide baseflow data to
headwater nodes only. Like the Gain Approach, this technique includes two terms: the upstream gage
term and the gain term. Implement this approach by using
SetStreamEstimateCoefficientsPFGage(ID,GageID) commands. The Neighboring Gage
approach is commonly used at headwater stream estimate stations to provide an ungaged hydrograph that
is more representative than the hydrograph from the Gain Approach. The following summarizes the
method used by StateDMI to provide natural flow information to StateMod using the Neighboring Gage
Approach:

• Because the gaged flow term is, by definition, null for a headwater node, no upstream stream gage

station values are entered on the first line of the stream estimate coefficients file.
• To estimate the gaged component of the gain term, StateDMI provides the neighboring gage assigned

by the user a coefficient of +1 on the second line of the stream estimate coefficients file.
• To estimate the proration factor component of the gain term, StateDMI calculates the ratio of the area

precipitation data provided at the natural flow node divided by the area-precipitation at stream gage
station assigned by the user.

• Assuming point 1 of the example is not a gage but instead is stream estimate station using the
Neighboring Gage Approach, then a typical application to a headwater node at point 1 would result in
the following (if the neighboring gage selected was at point 4):

Gage term = none
Gain term = 100/400 * (flow (gage) at point 4)

Note that when the Neighboring Gage approach is applied to a headwater node, StateDMI treats that
stream estimate station as if it were a gage. Therefore when the Neighboring Gage approach is used, the
area and precipitation data at any other stream estimate stations in the reach must be adjusted to reflect
that the aforementioned stream estimate station has taken on the characteristics of a gage. For the
example, where point 1 was a stream estimate station that uses the Neighboring Gage approach, the area
and precipitation assigned to points 2 and 3 would be altered as if a gage existed at point 1.

For example, to tie the characteristics of stream estimate station 360345 to stream gage station 09053000,
use the following command before the CalculateStreamEstimateCoefficients() command:

SetStreamEstimateCoefficientsPFGage(360345,09053000)

Use SetStreamEstimateCoefficients() commands, as appropriate, to edit the calculated
proration factor and coefficients. This is particularly useful if the calculated proration factor does not
accurately represent the hydrology at that baseflow node. For example, to adjust the proration factor for
stream estimate station 384625 to 0.6:

SetStreamEstimateCoefficients(ID=”384625”,ProrationFactor=0.6)

 StateMod - 79 203

 StateDMI Documentation

The following table summarizes the use of each command:

Stream Estimate Coefficients Commands

Command Description
ReadStreamEstimateCoefficientsFromStateMod() Read stream estimate coefficients from a

StateMod file, which is useful if simple
manipulation is occurring.

ReadStreamEstimateStationsFromList() Read from a delimited file a list of stream
estimate stations to be included in the data
set.

ReadStreamEstimateStationsFromNetwork() Read from a StateMod network file a list of
stream estimate stations to be included in
the data set.

ReadStreamEstimateStationsFromStateMod() Read from a StateMod stream estimate (or
gage) stations file a list of stream estimate
stations to be included in the data set.

SortStreamEstimateStations() Sort the stream estimate stations. The
default when read from the network is top
to bottom; however this order may be
difficult to interpret or compare with other
files and therefore sorting is useful.

SetStreamEstimateCoefficientsPFGage() Specify that the proration factor for a
stream estimate station should be
calculated using only the area*precipitation
data for a specific gage, rather than the
downstream node. The station is then
treated as if were a stream gage node for
other base flow calculations.

CalculateStreamEstimateCoefficients() Calculate stream estimate coefficients from
the network relationships and the
area*precipitation data stored in the
network for stream estimate stations.

SetStreamEstimateCoefficients() Set stream estimate coefficients, for
example, if the values that were calculated
need to be adjusted.

WriteStreamEstimateCoefficientssToList() Write defined stream estimate coefficients
to a delimited file.

WriteStreamEstimateCoefficientssToStateMod() Write defined stream estimate coefficients
to a StateMod file.

CheckStreamEstimateCoefficients() Check stream estimate coefficients data for
problems.

WriteCheckFile() Write the results of data checks to a file.

80 - StateMod 204

StateDMI Documentation

An example command file to create the stream estimate coefficients file is shown below (from the
Colorado cm2005 data set):

StartLog(LogFile="rib.commands.StateDMI.log")
rib.commands.StateDMI

Creates the Stream Estimate Station Coefficient Data file

Step 1 - read river nodes from the network file and create file framework

ReadStreamEstimateStationsFromNetwork(InputFile="..\Network\cm2005.net")

Step 2 - set preferred gages for "neighboring" gage approach
this baseflow nodes are generally on smaller non-gaged tribs and have
different flow characteristics than next downstream gages

SetStreamEstimateCoefficientsPFGage(ID="360645",GageID="09055300")
SetStreamEstimateCoefficientsPFGage(ID="360801",GageID="09055300")
SetStreamEstimateCoefficientsPFGage(ID="362002",GageID="09054000")
SetStreamEstimateCoefficientsPFGage(ID="360829",GageID="09047500")
SetStreamEstimateCoefficientsPFGage(ID="381441",GageID="09075700")
SetStreamEstimateCoefficientsPFGage(ID="382013",GageID="09075700")
SetStreamEstimateCoefficientsPFGage(ID="380959",GageID="09075700")
SetStreamEstimateCoefficientsPFGage(ID="381104",GageID="09075700")
SetStreamEstimateCoefficientsPFGage(ID="BaseFlow",GageID="09091500")
SetStreamEstimateCoefficientsPFGage(ID="450632",GageID="09092600")
SetStreamEstimateCoefficientsPFGage(ID="450685",GageID="09089500")
SetStreamEstimateCoefficientsPFGage(ID="450810",GageID="09089500")
SetStreamEstimateCoefficientsPFGage(ID="450788",GageID="09089500")
SetStreamEstimateCoefficientsPFGage(ID="500601",GageID="09041200")
SetStreamEstimateCoefficientsPFGage(ID="500627",GageID="09041200")
SetStreamEstimateCoefficientsPFGage(ID="510594",GageID="09026500")
SetStreamEstimateCoefficientsPFGage(ID="510728",GageID="09032000")
SetStreamEstimateCoefficientsPFGage(ID="510941",GageID="09033500")
SetStreamEstimateCoefficientsPFGage(ID="512061",GageID="09039000")
SetStreamEstimateCoefficientsPFGage(ID="520658",GageID="09060500")
SetStreamEstimateCoefficientsPFGage(ID="522006",GageID="09060500")
SetStreamEstimateCoefficientsPFGage(ID="530883",GageID="09060500")
SetStreamEstimateCoefficientsPFGage(ID="530632",GageID="09071300")
SetStreamEstimateCoefficientsPFGage(ID="530585",GageID="09085200")
SetStreamEstimateCoefficientsPFGage(ID="531051",GageID="09085200")
SetStreamEstimateCoefficientsPFGage(ID="720649",GageID="09097500")
SetStreamEstimateCoefficientsPFGage(ID="720580",GageID="09097500")
SetStreamEstimateCoefficientsPFGage(ID="720557",GageID="09104500")
SetStreamEstimateCoefficientsPFGage(ID="09104000",GageID="09104500")
SetStreamEstimateCoefficientsPFGage(ID="09101500",GageID="09104500")
SetStreamEstimateCoefficientsPFGage(ID="953800",GageID="09097500")
SetStreamEstimateCoefficientsPFGage(ID="720816",GageID="09104500")

Step 3 - calculate stream coefficients
CalculateStreamEstimateCoefficients()

Step 4 - set proration factors directly

SetStreamEstimateCoefficients(ID="364512",ProrationFactor=1.000,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="374641",ProrationFactor=0.200,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="374648",ProrationFactor=0.350,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="380880",ProrationFactor=1.000,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="381594",ProrationFactor=0.800,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="384617",ProrationFactor=0.700,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="510639",ProrationFactor=1.000,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="514603",ProrationFactor=0.800,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="514620",ProrationFactor=1.000,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="510728",ProrationFactor=1.000,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="530555",ProrationFactor=0.180,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="530678",ProrationFactor=0.230,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="531082",ProrationFactor=1.000,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="954683",ProrationFactor=0.400,IfNotFound=Warn)

Step 5 - create streamflow estimate coefficient file

 StateMod - 81 205

 StateDMI Documentation

WriteStreamEstimateCoefficientsToStateMod(OutputFile="..\StateMOD\cm2005.rib")

Check the results
CheckStreamEstimateCoefficients(ID="*")
WriteCheckFile(OutputFile="rib.commands.StateDMI.check.html")

5.10.3 Stream Estimate Natural Flow Time Series (Monthly, Daily)

Stream estimate natural flow time series for stream estimate stations are not processed by StateDMI.
Instead, use StateMod’s baseflow module, TSTool, or other software to crate monthly and daily base flow
time series files.

Refer to Section 5.2.3 – Stream Natural Flow Time Series (Monthly, Daily) for more information.

5.11 River Network Data

River network data consists of:

• Network (used by StateDMI, StateMod GUI)
• River network (used by StateMod)

The river network file used by StateMod is a relatively simple file, containing river node identifiers, river
node name, and downstream river node. The purpose of this file is to indicate the upstream to
downstream connectivity of model nodes. StateMod is designed to allow the river node identifiers to be
different from station identifiers. This allows, for example, multiple diversion stations to be located at the
same river node. Much of the detailed StateMod output is by river node, using river node identifiers.
However, StateDMI and the StateMod GUI enforce the convention that the river node identifiers are the
same as station identifiers in other files and allow only a single station at a river node. This tends to
minimize data errors and confusion with identifiers. To be consistent with StateMod documentation and
nomenclature, the term “river node” is used in some parts of StateDMI where a river node identifier is
needed in addition to a station identifier.

The network data are listed after other data components in this documentation and StateDMI menus,
mainly because network data (and the operational data described in Section 5.12) are related to higher-
level modeling concepts and do not need to be completely addressed until other data files are created.
There are two main ways that network data will be created:

1. An existing data set and model network are available and only minor changes to the network need
to occur. In this case, the StateDMI interface can be used to insert, delete, or modify nodes to
make minor edits to the network. Lists of stations can then be read from the network in order to
process all data files. This is the approach taken throughout the current StateDMI documentation.

2. Data files are created starting with lists of identifiers. For example, for a new data set, rather than
developing a network file and reading station identifiers from the network, simple delimited files
with lists of identifiers are used. These lists of station identifiers could be created by StateView
or other software. StateDMI supports this approach by allowing list files to be provided when
creating station files. Subsequent processing (e.g., for water rights and time series files), rely on
the StateMod format station files. This approach has not been fully implemented due to limited
resources and because of a number of technical issues. For example, some data file processing
requires that the network file be available (e.g., assigning default return flow locations). Also,
StateDMI does not currently provide the capability to display lists of stations to allow upstream to
downstream relationships to be defined. This capability is planned for the future. Consequently,

82 - StateMod 206

StateDMI Documentation

the only alternative at this time is to create a model network using the StateDMI interface.
Because efforts have focused on developing StateDMI to support existing modeling efforts,
option 1 is fully supported. When the list-based approach is fully supported, a network file would
be initialized using the list data and then data set maintenance would revert to option 1.

The generalized network file contains more data than the simple StateMod river network file:

• node locations, label position, and other information for the network diagram
• area and precipitation information used to calculate proration factors in the stream estimate

coefficients file (see Section 5.10.2 – Stream Estimate Coefficients)
• indicators for natural flow (stream estimate) nodes

The generalized network file was previously hand-edited and used as input to the Makenet program.
StateDMI generally allows reading the old Makenet file. However, the new version is in XML format
and allows for greater flexibility. See Section 3.6.1 – Updating an Old Makenet Format to New
Format for information about how to interactively convert an old network file to the new format. These
steps can also be performed using commands, as described below. StateMod only reads the river network
file. However, the generalized network file is needed by StateDMI and StateMod GUI. Therefore, effort
should be taken to keep these files synchronized. In general, all network editing should use the
generalized network and the StateMod river network file should be created from this file.

The processing of each data file is discussed below.

5.11.1 Network (used by StateDMI, StateMod GUI)

These features are under development but are made available for evaluation.

The Commands…River Network Data…Network menus insert commands to process the generalized
network file:

MenuCommands_Network

Commands…River Network Data…Network Menu

 StateMod - 83 207

 StateDMI Documentation

These commands can be used to convert a StateMod river network file to a generalized network file – this
may be necessary when StateDMI or Makenet was not used to create the StateMod river network file.
The StateMod river network file contains limited information about nodes and therefore information must
be read from other StateMod files. For most data sets, river network commands can be used instead (see
the next section).

The following table summarizes the use of each command:

Network Commands

Command Description
ReadNetworkFromStateMod() Read the generalized network from an XML

network file (for manipulation).
ReadRiverNetworkFromStateMod() Read the river network from a StateMod river

network file.
ReadStreamGageStationsFromStateMod() Read stream gage stations from a StateMod

stream gage stations file.
ReadDiversionStationsFromStateMod() Read diversion stations from a StateMod

diversion stations file.
ReadReservoirStationsFromStateMod() Read reservoir stations from a StateMod

reservoir stations file.
ReadInstreamFlowStationsFromStateMod() Read instream flow stations from a StateMod

instream flow stations file.
ReadWellStationsFromStateMod() Read well stations from a StateMod well

stations file.
ReadStreamEstimateStationsFromStateMod() Read stream estimate stations from a

StateMod stream estimate stations file.
CreateNetworkFromRiverNetwork() Create the generalized network from the

StateMod river network and information from
stations files.

FillNetworkFromHydroBase() Fill missing network information using
HydroBase.

WriteNetworkToStateMod() Write the generalized network to a StateMod
XML network file.

PrintNetwork() Print all or a subset of the network diagram.

An example command file to create the generalized network file is shown below (contrived example not
validated in production):

This commands file creates a generalized network file from an existing
StateMod network file (RIN).

ReadRiverNetworkFromStateMod("..\StateMod\rgTW_orig.rin")
ReadStreamGageStationsFromStateMod("..\StateMod\rgTW.ris")
ReadDiversionStationsFromStateMod("..\StateMod\rgTW.dds")
ReadReservoirStationsFromStateMod("..\StateMod\rgTW.res")
ReadInstreamFlowStationsFromStateMod("..\StateMod\rgTW.ifs")
ReadWellStationsFromStateMod("..\StateMod\rgTW.wes")
ReadStreamEstimateStationsFromStateMod("..\StateMod\rgTW.ses")
CreateNetworkFromRiverNetwork()
FillNetworkFromHydroBase(LocationEstimate="Interpolate")
WriteNetworkToStateMod(OutputFile="..\StateMod\rgtw.net",WriteHow="OverwriteFile")

84 - StateMod 208

StateDMI Documentation

After the above commands are run, the resulting network file can be edited with the network editor to add
stream labels, adjust node positions as necessary, and specify area/precipitation data that can be used
when processing stream estimate coefficients.

5.11.2 River Network (used by StateMod)

The Commands…River Network Data…River Network menus insert commands to process the
StateMod river network file:

MenuCommands_RiverNetwork

Commands…River Network Data…River Network Menu

These commands are used to convert the generalized network file, which StateDMI uses for the network
diagram, into the StateMod river network, which contains a subset of the data and is used by StateMod.
The following table summarizes the use of each command:

River Network Commands

Command Description
ReadNetworkFromStateMod() Read the generalized network from a StateMod XML (or

old Makenet) network file.
CreateRiverNetworkFromNetwork() Create the StateMod river network from the generalized

network data. Node names are not, by default taken from
the network because they may have been adjusted from
database names to facilitate labeling or presentation.

FillRiverNetworkFromHydroBase() Fill river network data (e.g., station names) from
HydroBase. This allows “official” names to be used in
the river network file, rather than those used in the
generalized network file.

FillRiverNetworkFromNetwork() Fill river network data (e.g., station names) from the
generalized network. This allows names that are not in
HydroBase (e.g., from aggregate nodes) to be taken from
the network file.

FillRiverNetworkNode() Fill river network data (e.g., station names) from user
supplied values.

 StateMod - 85 209

 StateDMI Documentation

Command Description
WriteRiverNetworkToList() Write the river network to a delimited file.
WriteRiverNetworkToStateMod() Write the river network to a StateMod river network file.
CheckRiverNetwork () Check river network data for problems.
WriteCheckFile() Write the results of data checks to a file.

An example command file to create the StateMod river network file is shown below (from the Colorado
cm2005 data set):

StartLog(LogFile="rin.commands.StateDMI.log")
rin.commands.StateDMI

creates the river newtork file for the Colorado River monthly/daily models

Step 1 - read river nodes from the network file and create file framework

ReadNetworkFromStateMod(InputFile="cm2005.net")
CreateRiverNetworkFromNetwork()

Step 2 - get node (diversion, stream stations, reservoirs, instream flows)
names from from HydroBase

FillRiverNetworkFromHydroBase(ID="*",NameFormat=StationName_NodeType)

Step 3 - read missing node names from network file

FillRiverNetworkFromNetwork(ID="*",NameFormat="StationName_NodeType",CommentFormat="StationID")

Step 4 - create StateMod river network file

WriteRiverNetworkToStateMod(OutputFile="..\StateMod\cm2005.rin")

Check the results
CheckRiverNetwork(ID="*")
WriteCheckFile(OutputFile="rin.commands.StateDMI.check.html")

The river network file that is created by the above commands should not in general be edited further.
Instead, if changes to the model network are needed, edit the generalized network file, using the
StateDMI network editor, and regenerate the StateMod river network file.

5.12 Operational Data

Operational data consist of the operational rights file (*.opr), which contains unique operation criteria
used within a river basin. Operational rights are priority based and control operations such as transfers
between structures, reservoir releases, etc. If a data set cannot be configured to simulate a known
behavior in a basin, then a new operational right type may need to be developed. The operational right file
is generally copied from the test data or base data and hand-edited according to the format described in
the StateMod Users' Manual.

StateDMI currently does not prepare the operational rights data file. Commands may be added in the
future, in particular to allow warnings to be generated when operational rights data do not match other
data.

5.13 San Juan Sediment Recovery Plan Data

StateDMI currently does not prepare the San Juan Sediment Recover Plan data file. Refer to the
StateMod documentation for more information.

86 - StateMod 210

StateDMI Documentation

5.14 Spatial Data

StateDMI currently does not prepare spatial data for the StateMod. StateMod itself does not use spatial
data files – the response file includes data for GIS to support the StateMod GUI. Standard spatial data
layers from CDSS can be used with a GeoView project file (*.gvp) to provide displays in the StateMod
GUI. See the GeoView Mapping Tools Appendix in the StateMod GUI Documentation for more
information.

Standard ESRI shapefiles as created by GIS software can be specified in the *.gvp file. For performance
and display reasons, the spatial data files associated with a data set are typically filtered by the StateMod
GUI to only contain the information related to the StateMod data set. Otherwise, displays may be
crowded with unnecessary information and performance will suffer. Shapefiles for stations and structures
in HydroBase are available on the CDSS web site. These shapefiles typically contain all data for a
division and therefore may need to be filtered for best performance, although it is usually possible to
simply use layers generated from HydroBase.

In order to take advantage of all StateMod GUI features, it may be necessary to create new spatial data
layers for points not represented in HydroBase, including aggregate and system nodes and also “other”
nodes. StateMod stations that are not included in standard spatial data files (e.g., aggregate structures)
can be digitized into shapefiles using standard GIS tools. See the StateMod GUI documentation for
information about configuring the layers for use in the StateMod GUI.

 StateMod - 87 211

 StateDMI Documentation

This page is intentionally blank.

88 - StateMod 212

6 Troubleshooting
Version 3.09.01, 2010-02-11

This chapter discusses how to troubleshoot StateDMI problems.

The StateDMI log file is created in the logs directory under the main installation directory (e.g.,
C:\CDSS\StateDMI-03.09.01\logs\StateDMI_USER.log), where the version will agree with the software
version.

The most common problems are program configuration (see the Installation and Configuration
Appendix), user input error (see the Command Reference for a summary of commands), and database
errors (more below). Other problems should be reported to the StateDMI developers (see
Acknowledgements for support contacts). When contacting support, provide as much information as
possible, including system information and the command file that is being run. For example, use the
Tools…Diagnostics tool to turn on the debugging checkbox and then get the system information from
Help…About. Send this information to support.

Checks have been implemented to detect common errors and use of the Check*() and
WriteCheckFile() commands is recommended. However, to fully diagnose a problem you may
need to refer to the log file. The log file is accessible from the Tools…Diagnostics – View Log File
dialog.

In general, when running StateDMI, you will be warned about problems with yellow and red markers
displayed next to commands in the command list.

Due to the complexity of the State of Colorado’s HydroBase database and other input sources and the
complexity of some commands, user and database errors can occur for a number of reasons. The
following table summarizes common errors and their fixes.

StateDMI Errors and Possible Solutions

Error Possible solutions
StateDMI does not
run (error at start-
up).

1. StateDMI uses a startup program to run and all files related to StateDMI
are stored in the installation folder. If the software does not run, files may
have been moved, removed, or modified, or there may be an
incompatibility with the computer. Try running the \CDSS\StateDMI-
Version\bin\StateDMI.exe program from a command shell window to see if
messages are printed.

2. Review problems reported in the \CDSS\StateDMI-
Version\logs\StateDMI_USER.log file.

3. Report the problem to support.
StateDMI fails on
large queries.

StateDMI may run out of memory on large queries. Increase the memory by
changing the value of the -mxNNm option in the \CDSS\StateDMI-
Version\bin\StateDMI.l4j.ini file. There is a limit of approximately 1440 MB
on 32-bit operating systems.

Commands appear
to be split into
pieces when
processed and
errors occur for the

Command files are simple text files and each command must exist on one line.
Comments are indicated by lines that start with a # character. When editing
commands files with a text editor, or when pasting commands into the
comment editor dialog, Ctrl-M characters (carriage return) may be inserted by
some software. These characters will display as ^M in some software or a box

 Troubleshooting - 1 213

 StateDMI Documentation

Error Possible solutions
partial commands. in Notepad.

To correct the problem, remove the Ctrl-M characters with an editor that is
able to display the characters.

Unable to find files
correctly.

The working directory is assumed to be the same as the location of the most
recently opened or saved command file. The current working directory is
generally displayed by editor dialogs that read or write files. If files are not
being found, verify that the path to the file is correct, whether specified as an
absolute path or relative to the command file. Confirm that the command file
is saved to a location relative to the files that are being referenced.

Unexpected failure. If there was a serious error in input, StateDMI may quit processing input. See
the log file for details. If the log file does not offer insight, contact support.

2 - Troubleshooting 214

7 Quality Control
Version 03.09.01, 2010-02-11

This chapter discusses how StateDMI software is quality controlled and how to use StateDMI to perform
quality control of data, processes, and other software. Similar capabilities are built into the TSTool
software.

7.1 Quality Control for StateDMI Software

StateDMI software provides many data processing commands. Each command typically provides
multiple parameters. The combination of commands and parameters coupled with potential data changes
and user errors can make it difficult to confirm that StateDMI software is performing as expected. In
particular, it would be very time consuming and expensive to manually check software functionality
every time a change is made. These are the same challenges faced by any software tool, including
spreadsheets, and models. To address this quality control concern, a testing framework has been built
into StateDMI to allow the software to test itself. Test cases can be defined for each command, with test
cases for various combinations of parameters. The suite of all the test cases can then be run to confirm
that the version of StateDMI does generate expected results. This approach performs regression testing
using the test framework and utilizes StateDMI’s error-handling features to provide visual feedback
during testing.

Test cases are developed by software developers as new features are implemented, according to the
following documentation. However, users can also develop test cases and this is encouraged to ensure
that all combinations of parameters and input data are tested. Users who provide verified test data and
results prior to new development can facilitate the new development.

7.1.1 Writing a Single Test Case

The following example illustrates a single test case (indented lines indicate commands that are too long to
fit on one line in the documentation).

Test setting diversion stations with a couple of generated stations
StartLog(LogFile="Results/Test_SetDiversionStation.StateDMI.log")
RemoveFile(InputFile="Results\Test_SetDiversionStation_out.csv")
RemoveFile(InputFile="Results\Test_SetDiversionStation_out_ReturnFlows.csv")
RemoveFile(InputFile="Results\Test_SetDiversionStation_out_Collections.csv")
SetDiversionStation(ID="2000505",Name="Diversion 1",RiverNodeID="ID",OnOff=1,
 Capacity=101,ReplaceResOption=0,DailyID="ID",UserName="User1",DemandType=1,
 IrrigatedAcres=1001,UseType=1,DemandSource=1,EffMonthly="60,61,62,63,64,65,66,67,68,69,70,71",
 Returns="ret11,75,101;ret12,25,102",IfNotFound=Add)
SetDiversionStation(ID="2000631",Name="Diversion 2",RiverNodeID="ID",OnOff=1,
 Capacity=102,ReplaceResOption=1,DailyID="ID",UserName="user2",DemandType=1,
 IrrigatedAcres=1002,UseType=1,DemandSource=1,EffMonthly="70,71,72,73,74,75,76,77,78,79,80,81",
 Returns="ret21,75,21;ret22,25,22",IfNotFound=Add)
Uncomment the following command to regenerate the expected results.
WriteDiversionStationsToList(OutputFile="ExpectedResults/Test_SetDiversionStation_out.csv")
WriteDiversionStationsToList(OutputFile="Results/Test_SetDiversionStation_out.csv")
CompareFiles(InputFile1="ExpectedResults/Test_SetDiversionStation_out.csv",
 InputFile2="Results/Test_SetDiversionStation_out.csv",WarnIfDifferent=True)
CompareFiles(InputFile1="ExpectedResults/Test_SetDiversionStation_out_ReturnFlows.csv",
 InputFile2="Results/Test_SetDiversionStation_out_ReturnFlows.csv",WarnIfDifferent=True)
CompareFiles(InputFile1="ExpectedResults/Test_SetDiversionStation_out_Collections.csv",
InputFile2="Results/Test_SetDiversionStation_out_Collections.csv",WarnIfDifferent=True)

Example Test Case Command File

 Quality Control - 1 215

Quality Control StateDMI Documentation

The purpose of the test case command file is to regenerate results and then compare the results to
previously generated and verified expected results. The example illustrates the basic steps that should be
included in any test case:

1. Start a log file to store the results of the specific test case. The previous log file will be closed
and the new log file will be used until it is closed. The log file is not crucial to the test but helps
with troubleshooting if necessary (for example if evaluating the test case output when run in a test
suite, as explained later in this chapter).

2. Remove the results that are to be generated by the test. This is necessary because if the
software fails and old results match expected results, it may appear that the command was
successful. The IfNotFound=Ignore parameter is useful because someone who is running
the tests for the first time may not have previous results to remove. Test developers should use
IfNotFound=Warn when setting up the test to confirm that the results being removed match
the name that is actually generated in a later command, and then switch to
IfNotFound=Ignore.

3. Generate or read test data. The SetDiversionStation() command is used in the
example to create a diversion station. This is a useful technique because it allows full control
over the initial data and minimizes the number of files associated with the test. Synthetic data are
often appropriate for simple tests. If the test requires more complicated data, then files can be
read.

4. Process the data using the command being tested. In the example, the
SetDiversionStation() command itself is being tested. In many cases, a single
command can be used in this step. However, in some cases, it is necessary to use multiple
commands (e.g., define diversion stations and then test a fill command). Using more than one
command is OK as long as each command is sufficiently tested with appropriate test cases to
ensure that a false pass does not occur.

5. Write the results. The resulting data objects are written to a standard format. Comma-separated
value files are useful for general testing because they are simple and the format will not change
over time. Note that two write commands are used in the example – one writes the expected
results and the other writes the results from the current test. The expected results should only be
written when the creator of the test has confirmed that it contains verified values. In the example,
the command to write expected results is commented out because the results were previously
generated. Commands to test writing a specific file format (e.g., StateMod time series file) might
read an original file, write a new file, and compare the two files (see next step).

6. Compare the expected results and the current results. The example uses the
CompareFiles() command to compare the CSV files generated for the expected and current
results. This command omits comment lines in the comparison because file headers often change
due to dynamic comments with date/time. If the software is functioning as expected, the data
lines in the file will exactly match. The example illustrates that if the files are different, a
warning will be generated because of the WarnIfDifferent=True parameter. Options for
comparing results include:

a. Use the CompareTimeSeries() command. This command is not implemented in
StateDMI but is available in TSTool – it may be implemented in StateDMI in the future.

b. If testing a read/write command, compare the results with the original data file. For
example, if the test case is to verify that a certain file format is properly read, then there
will generally also be a corresponding write command. The test case can then consist of
a command to read the file, a command to write the results, and a comparison command
to compare the two files. This may not work if the header of the file uses comment lines
that are not recognized by the CompareFiles() command. Another example where
the comparison may fail is the “total” column in StateMod time series files, which is the
sum of the other columns. This is typically generated with in-memory values that may

Quality Control - 2 216

StateDMI Documentation Quality Control

round off when printed, rather than being the total of the numbers as printed (this issue
may be corrected but unfortunately it will cause slight changes in many files and tests).

If the test case example command file is opened and run in StateDMI, it will produce diversion station
results, the log file, and the output files. If the expected and current results are the same, no errors will be
indicated. However, if the files are different, a warning indicator will be shown in the command list area
of the main window next to the CompareFiles() command.

General guidelines for defining test cases are as follows. Following these conventions will allow the test
cases to be incorporated into the full test suite used by software developers.

 Define the test case in a folder matching the command name (e.g., SetDiversionStation).
 Name the command file with prefix Test_, extension .StateDMI, and use the following guidelines,

in combination if appropriate:
o for the default case (default command parameter values) use the filename pattern

Test_CommandName.StateDMI
o If there is a reason to define a test for a specific data set or input, add additional

information to the filename, for example: Test_CommandName_cm2006.StateDMI
o If defining a test for legacy syntax (meaning that the current software will support

running old commands), name the command file as follows (and use the #@readOnly
comment tag described in Section 7.1.3): Test_CommandName_Legacy.StateDMI

o If defining a test for parameter values other than the default values, use a command file
name similar to the following, where the parameters are listed at the end of the file name
body: Test_CommandName_Param1=Value1,Param2=Value2.StateDMI
Although this can result in very long names, the explicit naming clarifies the purpose of
the test. If this becomes cumbersome, just indicate that a parameter is being tested, for
example: Test_CommandName_OutputPeriod.StateDMI

 Add a short comment to the top of the test case explaining the test.
 If many test cases are being defined for a command, consider including a spreadsheet or

document in the test folder to describe the tests in more detail. Additional tests that cannot
initially be implemented due to lack of resources can be documented as placeholders for future
implementation.

 Use as little data as possible to perform the test – long time series or big input files cause tests to
run longer and take up more space in the repository that is used for revision control. Even though
hundreds or thousands of tests may ultimately be defined, it is important to be able to run them in
a short time to facilitate testing.

 If possible, test only one command in the test – more complicated testing is described in Section
7.1.4. If multiple commands are needed, make absolutely sure that prerequisite commands are
functioning properly (make sure that they have tests).

 If an input file is needed, place it in a folder named Data, if necessary copying the same input
from another command – this may require additional disk space but ensures that each command
can stand alone. An exception to this is if the input data are very large, in which case data should
be stored with one command and be used by other commands.

 Write the expected results to a folder named ExpectedResults.
 Write the generated results and other dynamic content, including log file, to a folder named

Results. When using a revision control system, the files in this folder should be excluded from
the repository because they are dynamic.

 (Recommended) When creating output files, use _out in the filename before the extension and
use an extension that is appropriate for the file content – this helps identify final output products
in cases where intermediate files might be produced.

 Quality Control - 3 217

Quality Control StateDMI Documentation

7.1.2 Creating and Running a Test Suite

The previous section described how to define a single test case. However, opening and running each test
case command file would be very tedious and inefficient. Therefore, StateDMI provides a way to
generate and run test suites, which is the approach taken to perform a full regression test prior to a
software release. The following example command file
(test\regression\commands\TestSuites\commands\create\Create_RunTestSuite_commands.StateDMI)
illustrates how to create a test suite:

Create the regression test runner for the
StateDMI/test/regression/TestSuites/commands files.

Only command files that match Test_*.StateDMI are included in the output.
Don't append the generated commands, in order to force the old file to be
overwritten.

CreateRegressionTestCommandFile(SearchFolder="..\..\..\commands",
 OutputFile="..\run\RunRegressionTest_commands.StateDMI",
 Append=False,IncludeTestSuite="*",IncludeOS="*")

When the command file is run, it searches the indicated search folder for files matching the pattern
Test_*.StateDMI. It then uses this list to create a command file with contents similar to the following
excerpted example. This file will be listed as an output file after running the above command file. The
IncludeTestSuite and IncludeOS parameters are described in Section 7.1.3.

File generated by...
program: StateDMI 3.08.02 (2009-09-29)
user: sam
date: Wed Sep 30 11:21:51 MDT 2009
host: SOPRIS
directory: C:\Develop\StateDMI_SourceBuild\StateDMI\test\regression\TestSuites\commands\create
command line: StateDMI -home test\operational\CDSS

The following 321 test cases will be run to compare results with expected results.
Individual log files are generally created for each test.
The following test suites from @testSuite comments are included: *
Test cases for @os comments are included: *
StartRegressionTestResultsReport(OutputFile="RunRegressionTest_commands.StateDMI.out.txt")
RunCommands(InputFile="..\..\..\commands\AggregateWellRights\Test_AggregateWellRights_rg2007part.StateDMI")
RunCommands(InputFile="..\..\..\commands\CalculateDiversionDemandTSMonthly\
 Test_CalculateDiversionDemandTSMonthly.StateDMI")
RunCommands(InputFile="..\..\..\commands\CalculateDiversionDemandTSMonthlyAsMax\
 Test_CalculateDiversionDemandTSMonthlyAsMax.StateDMI")
RunCommands(InputFile="..\..\..\commands\CalculateDiversionStationEfficiencies\
 Test_CalculateDiversionStationEfficiencies.StateDMI")
RunCommands(InputFile="..\..\..\commands\CalculateStreamEstimateCoefficients\
 Test_CalculateStreamEstimateCoefficents_cm2005.StateDMI",
 ExpectedStatus=warning)
RunCommands(InputFile="..\..\..\commands\CalculateStreamEstimateCoefficients\
 Test_CalculateStreamEstimateCoefficients_gm2004.StateDMI",ExpectedStatus=warning)
RunCommands(InputFile="..\..\..\commands\CalculateStreamEstimateCoefficients\
 Test_CalculateStreamEstimateCoefficients_rg2007.StateDMI",ExpectedStatus=warning)
RunCommands(InputFile="..\..\..\commands\CalculateStreamEstimateCoefficients\
 Test_CalculateStreamEstimateCoefficients_rg2007b.StateDMI")
RunCommands(InputFile="..\..\..\commands\CalculateStreamEstimateCoefficients\
 Test_CalculateStreamEstimateCoefficients_sj2004.StateDMI",ExpectedStatus=warning)
R
RunCommands(InputFile="..\..\..\commands\FillDiversionStationsFromNetwork\
 Test_FillDiversionStationsFromNetwork.StateDMI")

Quality Control - 4 218

StateDMI Documentation Quality Control

RunCommands(InputFile="..\..\..\commands\FillInstreamFlowRight\Test_FillInstreamFlowRight.StateDMI")
RunCommands(InputFile="..\..\..\commands\FillInstreamFlowStation\Test_FillInstreamFlowStation.StateDMI")
RunCommands(InputFile="..\..\..\commands\FillInstreamFlowStationsFromHydroBase\
 Test_FillInstreamFlowStationsFromHydroBase.StateDMI")
RunCommands(InputFile="..\..\..\commands\FillInstreamFlowStationsFromNetwork\
 Test_FillStreamGageStationsFromNetwork.StateDMI")

The above command file can then be opened and run. Each RunCommands() command will run a
single test case command file. Warning and failure statuses from each test case command file are
propagated to the test suite RunCommands() command. The output from running the test suite will be
all of the output from individual test cases (in the appropriate Results folders) plus the regression test
report provided in the StateDMI Results…Output Files tab in the main window. An example of the
StateDMI main window after running the test suite is shown in the following figure. Note the warnings
and errors, which should be addressed before releasing the software (in some cases commands are
difficult to test and more development on the test framework is needed).

Main_RegressionTest

StateDMI Main Interface Showing Regression Test Results

 Quality Control - 5 219

Quality Control StateDMI Documentation

An excerpt from the output file is shown below:.

File generated by...
program: StateDMI 3.09.01 (2010-01-24)
user: sam
date: Fri Feb 12 08:15:00 MST 2010
host: AMAZON
directory: C:\Develop\StateDMI_SourceBuild\StateDMI\test\regression\TestSuites\commands\run
command line: StateDMI -home test\operational\CDSS

The test status below may be PASS or FAIL.
A test can pass even if the command file actual status is FAILURE, if failure is expected.
Test Commands Commands
Pass/ Expected Actual
Num Fail Status Status Command File
#---
 1 PASS SUCCESS SUCCESS C:\Develop\StateDMI_SourceBuild\StateDMI\test\regression\commands\
 AggregateWellRights\Test_AggregateWellRights_rg2007part.StateDMI
 2 PASS SUCCESS SUCCESS C:\Develop\StateDMI_SourceBuild\StateDMI\test\regression\commands\
 CalculateDiversionDemandTSMonthly\
 Test_CalculateDiversionDemandTSMonthly.StateDMI
 3 PASS SUCCESS SUCCESS C:\Develop\StateDMI_SourceBuild\StateDMI\test\regression\commands\

CalculateDiversionDemandTSMonthlyAsMax\Test_CalculateDiversionDemandTSMonthlyAsMax.StateDMI
 4 *FAIL* SUCCESS FAILURE C:\Develop\StateDMI_SourceBuild\StateDMI\test\regression\commands\
 CalculateDiversionStationEfficiencies\
 Test_CalculateDiversionStationEfficiencies.StateDMI
 5 PASS warning WARNING C:\Develop\StateDMI_SourceBuild\StateDMI\test\regression\commands\
 CalculateStreamEstimateCoefficients\
 Test_CalculateStreamEstimateCoefficents_cm2005.StateDMI
 6 PASS warning WARNING C:\Develop\StateDMI_SourceBuild\StateDMI\test\regression\commands\
 CalculateStreamEstimateCoefficients\
 Test_CalculateStreamEstimateCoefficients_gm2004.StateDMI
..many tests omitted…
 323 PASS SUCCESS SUCCESS C:\Develop\StateDMI_SourceBuild\StateDMI\test\regression\commands\
 WriteWellRightsToList\Test_WriteWellRightsToList.StateDMI
 324 PASS SUCCESS SUCCESS C:\Develop\StateDMI_SourceBuild\StateDMI\test\regression\commands\
 WriteWellRightsToStateMod\Test_WriteWellRightsToStateMod.StateDMI
 325 PASS SUCCESS SUCCESS C:\Develop\StateDMI_SourceBuild\StateDMI\test\regression\commands\
 WriteWellStationsToList\Test_WriteWellStationsToList.StateDMI
 326 PASS SUCCESS SUCCESS C:\Develop\StateDMI_SourceBuild\StateDMI\test\regression\commands\
 WriteWellStationsToStateMod\
 Test_WriteWellStationsToStateMod.StateDMI
#---
FAIL count = 9
PASS count = 317

A test passes if its expected status (SUCCESS) matches the actual status, and the test fails otherwise.
Note that there are cases where a test case is actually intended to fail, in order to test that StateDMI is
properly detecting and handling the failure (rather than ignoring it or crashing). In these cases, the
expected status (WARNING or FAILURE) must match the actual status to pass the test.

The features built into StateDMI can therefore be used to efficiently test the software, contributing to
increased software quality and efficient software releases. New development results in additional tests.
See the next section for more information on controlling the test process.

7.1.3 Controlling Tests with Special Comments

The previous two sections described how to define individual test cases and how to automatically create
and run a test suite comprised of test cases. However, there are special conditions that will cause the
normal testing procedures to fail, in particular:

 tests depend on a database that is not available
 tests depend on a database version that is not available (data in the “default” database have

changed)
 tests can only be run on a certain operating system
 tests depend on a specific environment configuration that is not easily reproduced for all users

Quality Control - 6 220

StateDMI Documentation Quality Control

Any of these conditions can cause a test case to fail, leading to inappropriate errors and wasted time
tracking down problems that do not exist. To address this issue, StateDMI recognizes special comments
that can be included in test case command files. The following table lists tags that can be placed in #
comments in command files to provide information for to the
CreateRegressionTestCommandFile() command and command processor. The syntax of the
special comments is illustrated by the following example:

#@expectedStatus Failure

Special #-comment Tags

Parameter Description
@expectedStatus Failure

@expectedStatus Warning

The RunCommands() command ExpectedStatus
parameter is by default Success. However, a different status
can be specified if it is expected that a command file will result in
Warning or Failure and still be a successful test. For
example, if a command is obsolete and should generate a failure,
the expected status can be specified as Failure and the test will
pass. Another example is to test that the software properly treats
a missing file as a failure.

@os Windows
@os UNIX

Using this tag indicates that the test is designed to work only on
the specified platform and will be included in the test suite by the
CreateRegressionTestCommandFile() command only
if the IncludeOS parameter includes the corresponding
operating system (OS) type. This is primarily used to test
specific features of the OS and similar but separate test cases
should be implemented for both OS types. If the OS type is not
specified as a tag in a command file, the test is always included.

@readOnly Use this tag to indicate that a command file is read-only. This is
useful when legacy command files are being tested because
StateDMI will automatically update old syntax to new.
Consequently, saving the command file will overwrite the legacy
syntax and void the test. If this tag is included, the StateDMI
interface will warn the user that the file is read-only and will only
save if the user indicates to do so.

@testSuite ABC Indicate that the command file should be considered part of the
specified test suite, as specified with the IncludeTestSuite
parameter of the
CreateRegressionTestCommandFile() command. Do
not specify a test suite tag for general tests. This tag is useful if a
group of tests require special setup, for example connecting to a
database. The suite names should be decided upon by the test
developer.

Using the above special comment tags, it is possible to create test suites that are appropriate for specific
environments. For example, using @testSuite HydroBase indicates that a test case should be
included in the HydroBase test suite, presumably run in an environment where a connection to HydroBase
has been opened. Consequently, multiple test suites can be created and run as appropriate depending on
the system environment.

 Quality Control - 7 221

Quality Control StateDMI Documentation

7.1.4 Verifying StateDMI Software Using a Full Dataset

The previous sections described how to test StateDMI software using a suite of test cases. This approach
can be utilized when performing general tests, for example prior to a normal software release. However,
there may be cases where StateDMI has been used to produce a large data set and it is desirable to
confirm that a software release will still create the full dataset without differences. For example, for the
State of Colorado’s Decision Support Systems, large basin model data sets are created and are subject to
significant scrutiny. Approaches previously described in this chapter can be utilized to verify that
StateDMI is functioning properly and creates the dataset files. The following procedure is recommended
and uses CDSS as an example:

1. If not already installed, install the data set in its default location (e.g.,
C:\CDSS\data\colorado_1_2007) – these files will not be modified during testing.

2. Create a parallel folder with a name indicating that it is being used for verification (e.g.,
C:\CDSS\data\colorado_1_2007_verify20090216).

3. Copy the data set files from step 1 to the folder created in step 2 (e.g., copy to
C:\CDSS\data\colorado_1_2007_verify20090216\colorado_1_2007) – these files will be
modified during testing.

4. Create a StateDMI command file in the folder created in step 2 that will run the tests (e.g.,
VerifyStateDMI.StateDMI). It is often easier to edit this command file with a text editor rather
than with StateDMI itself. The contents of the file are illustrated in the example below. Some
guidelines for this step are as follows:

a. Organize the command file by data set folder, in the order that data need to be created.
b. Process every *.StateDMI command to verify that it runs and generates the same results.
c. If command files do not produce the same results, copy the command file to a name with

“-updated” or similar in the filename and then change the file until it creates the expected
results. This may be required due to changes in the command, for example implementing
stricture error handling. These command files can then be shared with maintainers of the
data set so that future releases can be updated.

d. As tests are formalized, it may be beneficial to save a copy of this file with the original
data set so future tests can simply copy the verification command file rather than
recreating it (e.g., save in a QualityControl folder in the master data set). This effort will
allow the creator of the data set to quality control their work as well as helping to quality
control the software.

5. Run the command file – any warnings or failures should be evaluated to determine if they are due
to software or data changes. Software differences should be evaluated by software developers. It
may be necessary to use command parameters such as Version, available for some commands,
to recreate legacy data formats.

The following example command file (developed for the Colorado cm2005 data set) illustrates how
StateDMI software is verified using the full data set (indented lines indicate commands that are too long
to fit on one line in the documentation). Note that intermediate input files that would normally be
modified by other software (e.g., TSTool for CDSS data sets) could impact StateDMI verification.
However, a similar quality control procedure can be implemented for TSTool.

Guidelines for setting up the each test in the command file are as follows:

1. Remove output files that are generated from each individual command file that is run using
RemoveFile() commands. This will ensure that a test does not use old results for its output
comparison.

2. Run each individual command file using the RunCommands() command.

Quality Control - 8 222

StateDMI Documentation Quality Control

3. Compare the results of the run with the original data set file using the CompareFiles()
command.

StartLog(LogFile="VerifyStateDMI.StateDMI.log")
This command file verifies the StateDMI functionality by recreating a released
StateMod/StateCU data set. The general process is as follows:
1) Copy the entire original data set to this folder (e.g., do manually).
2) Commands below will remove output files from product and StateMod/StateCU
folders. This is done in case regeneration stops - don't want any confusion
with original output and what should be created here.
3) Commands below will run the command files used to generate the model files.
4) Commands below will use CompareFile() commands to compare results. Comment
lines are ignored so only data differences (processing output) will be
flagged.
If run interactively from StateDMI, indicators will show where results are
different. Differences must then be evaluated to determine if input data,
process, or software have changed. Differences may be valid.

Diversions

Stations...
RemoveFile(InputFile="colorado_1_2007\Diversions\cm2005_dds.dds")
#RunCommands(InputFile="colorado_1_2007\Diversions\dds.commands.StateDMI")
RunCommands(InputFile="colorado_1_2007\Diversions\dds.commands-updated.StateDMI")
CompareFiles(InputFile1="colorado_1_2007\Diversions\cm2005_dds.dds",
 InputFile2="..\colorado_1_2007\Diversions\cm2005_dds.dds",WarnIfDifferent=True)

Rights...
RemoveFile(InputFile="colorado_1_2007\StateMod\cm2005.ddr")
#RunCommands(InputFile="colorado_1_2007\Diversions\ddr.commands.StateDMI")
RunCommands(InputFile="colorado_1_2007\Diversions\ddr.commands-updated.StateDMI")
CompareFiles(InputFile1="colorado_1_2007\StateMod\cm2005.ddr",
 InputFile2="..\colorado_1_2007\StateMod\cm2005.ddr",WarnIfDifferent=True)

DDH (and final DDS)...
RemoveFile(InputFile="colorado_1_2007\StateMod\cm2005.ddh")
RemoveFile(InputFile="colorado_1_2007\StateMod\cm2005.dds")
#RunCommands(InputFile="colorado_1_2007\Diversions\ddh.commands.StateDMI")
RunCommands(InputFile="colorado_1_2007\Diversions\ddh.commands-updated.StateDMI")
CompareFiles(InputFile1="colorado_1_2007\StateMod\cm2005.ddh",
 InputFile2="..\colorado_1_2007\StateMod\cm2005.ddh",WarnIfDifferent=True)
CompareFiles(InputFile1="colorado_1_2007\StateMod\cm2005.dds",
 InputFile2="..\colorado_1_2007\StateMod\cm2005.dds",WarnIfDifferent=True)

IWR...
RemoveFile(InputFile="colorado_1_2007\StateMod\cm2005.iwr")
#RunCommands(InputFile="colorado_1_2007\Diversions\iwr.commands.StateDMI")
RunCommands(InputFile="colorado_1_2007\Diversions\iwr.commands-updated.StateDMI")
CompareFiles(InputFile1="colorado_1_2007\StateMod\cm2005.iwr",
 InputFile2="..\colorado_1_2007\StateMod\cm2005.iwr",WarnIfDifferent=True)

IWRB...
RemoveFile(InputFile="colorado_1_2007\StateMod\cm2005B.iwr")
#RunCommands(InputFile="colorado_1_2007\Diversions\iwrB.commands.StateDMI")
RunCommands(InputFile="colorado_1_2007\Diversions\iwrB.commands-updated.StateDMI")
CompareFiles(InputFile1="colorado_1_2007\StateMod\cm2005B.iwr",
 InputFile2="..\colorado_1_2007\StateMod\cm2005B.iwr",WarnIfDifferent=True)

Hddm...
RemoveFile(InputFile="colorado_1_2007\StateMod\cm2005H.ddm")
#RunCommands(InputFile="colorado_1_2007\Diversions\Hddm.commands.StateDMI")
RunCommands(InputFile="colorado_1_2007\Diversions\Hddm.commands-updated.StateDMI")
CompareFiles(InputFile1="colorado_1_2007\StateMod\cm2005H.ddm",
 InputFile2="..\colorado_1_2007\StateMod\cm2005H.ddm",WarnIfDifferent=True)

Cddm...

 Quality Control - 9 223

Quality Control StateDMI Documentation

RemoveFile(InputFile="colorado_1_2007\StateMod\cm2005C.ddm")
#RunCommands(InputFile="colorado_1_2007\Diversions\Cddm.commands.StateDMI")
RunCommands(InputFile="colorado_1_2007\Diversions\Cddm.commands-updated.StateDMI")
CompareFiles(InputFile1="colorado_1_2007\StateMod\cm2005C.ddm",
 InputFile2="..\colorado_1_2007\StateMod\cm2005C.ddm",WarnIfDifferent=True)

Cddm-AcreageChange...
/* Output file does not exist in master
RemoveFile(InputFile="colorado_1_2007\StateMod\cm2005C-AcreageChange.ddm")
#RunCommands(InputFile="colorado_1_2007\Diversions\Cddm-AcreageChange.commands.StateDMI")
RunCommands(InputFile="colorado_1_2007\Diversions\Cddm-AcreageChange.commands-updated.StateDMI")
CompareFiles(InputFile1="colorado_1_2007\StateMod\cm2005C-AcreageChange.ddm",
 InputFile2="..\colorado_1_2007\StateMod\cm2005C-AcreageChange.ddm",WarnIfDifferent=True)
*/

Bddm...
RemoveFile(InputFile="colorado_1_2007\StateMod\cm2005B.ddm")
#RunCommands(InputFile="colorado_1_2007\Diversions\Bddm.commands.StateDMI")
RunCommands(InputFile="colorado_1_2007\Diversions\Bddm.commands-updated.StateDMI")
CompareFiles(InputFile1="colorado_1_2007\StateMod\cm2005B.ddm",
 InputFile2="..\colorado_1_2007\StateMod\cm2005B.ddm",WarnIfDifferent=True)

instream

ifs...
RemoveFile(InputFile="colorado_1_2007\StateMod\cm2005.ifs")
#RunCommands(InputFile="colorado_1_2007\instream\ifs.commands.StateDMI")
RunCommands(InputFile="colorado_1_2007\instream\ifs.commands-updated.StateDMI")
CompareFiles(InputFile1="colorado_1_2007\StateMod\cm2005.ifs",
 InputFile2="..\colorado_1_2007\StateMod\cm2005.ifs",WarnIfDifferent=True)

ifr...
RemoveFile(InputFile="colorado_1_2007\StateMod\cm2005.ifr")
#RunCommands(InputFile="colorado_1_2007\instream\ifr.commands.StateDMI")
RunCommands(InputFile="colorado_1_2007\instream\ifr.commands-updated.StateDMI")
CompareFiles(InputFile1="colorado_1_2007\StateMod\cm2005.ifr",
 InputFile2="..\colorado_1_2007\StateMod\cm2005.ifr",WarnIfDifferent=True)

ifa...
RemoveFile(InputFile="colorado_1_2007\StateMod\cm2005.ifa")
#RunCommands(InputFile="colorado_1_2007\instream\ifa.commands.StateDMI")
RunCommands(InputFile="colorado_1_2007\instream\ifa.commands-updated.StateDMI")
CompareFiles(InputFile1="colorado_1_2007\StateMod\cm2005.ifa",
 InputFile2="..\colorado_1_2007\StateMod\cm2005.ifa",WarnIfDifferent=True)

network

rin...
RemoveFile(InputFile="colorado_1_2007\StateMod\cm2005.rin")
#RunCommands(InputFile="colorado_1_2007\network\rin.commands.StateDMI")
RunCommands(InputFile="colorado_1_2007\network\rin.commands-updated.StateDMI")
CompareFiles(InputFile1="colorado_1_2007\StateMod\cm2005.rin",
 InputFile2="..\colorado_1_2007\StateMod\cm2005.rin",WarnIfDifferent=True)

reservoirs

res...
RemoveFile(InputFile="colorado_1_2007\StateMod\cm2005.res")
#RunCommands(InputFile="colorado_1_2007\reservoirs\res.commands.StateDMI")

Quality Control - 10 224

StateDMI Documentation Quality Control

RunCommands(InputFile="colorado_1_2007\reservoirs\res.commands-updated.StateDMI")
CompareFiles(InputFile1="colorado_1_2007\StateMod\cm2005.res",
 InputFile2="..\colorado_1_2007\StateMod\cm2005.res",WarnIfDifferent=True)

rer...
RemoveFile(InputFile="colorado_1_2007\StateMod\cm2005.rer")
RemoveFile(InputFile="colorado_1_2007\StateMod\cm2005B.rer")
#RunCommands(InputFile="colorado_1_2007\reservoirs\rer.commands.StateDMI")
RunCommands(InputFile="colorado_1_2007\reservoirs\rer.commands-updated.StateDMI")
CompareFiles(InputFile1="colorado_1_2007\StateMod\cm2005.rer",
 InputFile2="..\colorado_1_2007\StateMod\cm2005.rer",WarnIfDifferent=True)
CompareFiles(InputFile1="colorado_1_2007\StateMod\cm2005B.rer",
 InputFile2="..\colorado_1_2007\StateMod\cm2005B.rer",WarnIfDifferent=True)

cmdly...
RemoveFile(InputFile="colorado_1_2007\StateMod\cmdly.res")
#RunCommands(InputFile="colorado_1_2007\reservoirs\cmdly.res.commands.StateDMI")
RunCommands(InputFile="colorado_1_2007\reservoirs\cmdly.res.commands-updated.StateDMI")
CompareFiles(InputFile1="colorado_1_2007\StateMod\cmdly.res",
 InputFile2="..\colorado_1_2007\StateMod\cmdly.res",WarnIfDifferent=True)

B.res...
RemoveFile(InputFile="colorado_1_2007\StateMod\cm2005B.res")
#RunCommands(InputFile="colorado_1_2007\reservoirs\cm2005B.res.commands.StateDMI")
RunCommands(InputFile="colorado_1_2007\reservoirs\cm2005B.res.commands-updated.StateDMI")
CompareFiles(InputFile1="colorado_1_2007\StateMod\cm2005B.res",
 InputFile2="..\colorado_1_2007\StateMod\cm2005B.res",WarnIfDifferent=True)

streamSW

ris...
RemoveFile(InputFile="colorado_1_2007\StateMod\cm2005.ris")
#RunCommands(InputFile="colorado_1_2007\streamSW\ris.commands.StateDMI")
RunCommands(InputFile="colorado_1_2007\streamSW\ris.commands-updated.StateDMI")
CompareFiles(InputFile1="colorado_1_2007\StateMod\cm2005.ris",
 InputFile2="..\colorado_1_2007\StateMod\cm2005.ris",WarnIfDifferent=True)

rib...
RemoveFile(InputFile="colorado_1_2007\StateMod\cm2005.rib")
#RunCommands(InputFile="colorado_1_2007\streamSW\rib.commands.StateDMI")
RunCommands(InputFile="colorado_1_2007\streamSW\rib.commands-updated.StateDMI")
CompareFiles(InputFile1="colorado_1_2007\StateMod\cm2005.rib",
 InputFile2="..\colorado_1_2007\StateMod\cm2005.rib",WarnIfDifferent=True)

Command File to Verify Data Set Creation

7.2 Using StateDMI and TSTool to Quality Control Data and Processes

The testing concepts discussed in this chapter can be utilized similarly to perform quality control on data
or processes. In many cases, these tests must be defined by software users because the data and processes
are only accessible and familiar to the users. However, once implemented, the tests can become a part of
standard software test suites to further increase software quality control. The following are examples of
tests that may be useful:

 Historical Data. For a database such as HydroBase, implement a sequence of tests to ensure that
data continue to exist, are accessible, and are in expected ranges. For example, for historical data,
set the period to query so that it is not likely to be impacted by new data being added to the
database, then create test command files to read many or all of the data types (use the
Read*HydroBase() commands). It is expected that these data should not change over time.

 Quality Control - 11 225

Quality Control StateDMI Documentation

Quality Control - 12

A failed test will indicate that the database contents have changed and impacts on users may need
to be evaluated (or at a minimum documented).

 Real-Time Data. Similarly, for recent historical data and real-time data, tests can be defined to
ensure that data are available, in this case, it may not be important that data match expected
results but only that data are returned. For example, TSTool capabilities to read time series and
then compute statistics on time series, such as the number of missing, can be used to check for
valid data. Additional test capabilities may need to be developed to fully implement these types
of tests. The purpose of this type of testing is to ensure that an operational system continues to
function as expected.

 Standard Processes. An organization’s staff typically defines and executes standard processes
to perform the business functions of the organizations. Related to water resources engineering,
these processes may involve data collection, processing, analysis, and modeling, using a variety
of tools. Standard tests, as described in this chapter, can confirm that a process is working as
intended by verifying logic and data processing. For example, a standard process can be run on
test data to confirm that it is still working. StateDMI and TSTool (or other tools) can be used to
automate file comparisons, or perhaps to run several programs and then compare files, in order to
demonstrate that a standard process is working.

 Models. Models can be complex and are often referred to as “black boxes” because it may not be
obvious what occurs inside a model. Tests can be implemented in a number of ways:

o Unit Tests. Similar to the small command files described in this chapter, small model
data sets can be defined and run to confirm that basic model functionality is correct.

o Full Tests. Full “accepted” data sets can be run, and tools can be used to verify that the
results are consistent with expected results. This is similar to testing StateDMI and
TSTool on full data sets.

o Results Evaluation. Assuming that the model software has tested out, tests can be
performed on any data set to confirm that results are reasonable. This recognizes that the
synergy of a variety of model inputs and the results from a simulation may indicate
unanticipated conditions (e.g., an impact is exponential rather than simply additive). The
test process can therefore check for missing or zero values, out of range, or combinations
of critical values.

The use of automated testing frameworks, such as the features available in StateDMI and TSTool, can
streamline quality control checks and lead to a more robust quality assurance program. If StateDMI or
TSTool are not used, then other test frameworks are highly desirable.

226

Command Glossary
Version 2.14.00, 2007-07-11, Acrobat Distiller

The following parameter names and terms are used throughout StateDMI commands. A term indicated in
bold font is a definition. A term indicated in bold courier font is a parameter name. Parameters
specific to one or a few commands are cross-referenced with the commands. Common parameters are
defined but long lists of corresponding commands are not provided. Possible values for parameters used
in modeling (e.g., numerical options) are described in StateCU and StateMod model documentation.

AccountDist – The account distribution option for reservoir rights. See the

fillReservoirRight(), and setReservoirRight() commands.

AccountEvap – Indicate how to distribute evaporation for a reservoir account. See the

fillReservoirStation() and setReservoirStation() commands.

AccountID – The account identifier for a reservoir account. A reservoir can have multiple accounts.

See the fillReservoirStation() and setReservoirStation() commands.

AccountInitial – The account initial content for a reservoir account. See the

fillReservoirStation() and setReservoirStation() commands.

AccountMax – The account maximum content for a reservoir account. See the

fillReservoirStation() and setReservoirStation() commands.

AccountName – The account name for a reservoir account. A reservoir can have multiple accounts.

See the fillReservoirStation() and setReservoirStation() commands.

AccountOneFill – Indicate how to handle one fill rule calculations for a reservoir account. See the

fillReservoirStation() and setReservoirStation() commands.

AcresGW – The groundwater acres for a CU Location. See the setIrrigationPracticeTS()

command.

AcresGWCol – The column number (or name) for groundwater acres. See the

setIrrigationPracticeTSFromList() command.

AcresGWFloodCol – The column number (or name) for groundwater flood acres. See the

setIrrigationPracticeTSFromList() command.

AcresGWSprinklerCol – The column number (or name) for groundwater sprinkler acres. See the

setIrrigationPracticeTSFromList() command.

AcresSprinkler – The sprinkler acres for a CU Location. See the

setIrrigationPracticeTS() command.

AcresSprinklerCol – The column number (or name) for sprinkler acres. See the

setIrrigationPracticeTSFromList() command.

AcresSWFloodCol – The column number (or name) for surface water flood acres. See the

setIrrigationPracticeTSFromList() command.

 Command Glossary - 1 227

Command Glossary StateDMI Documentation

AcresSWSprinklerCol – The column number (or name) for surface water sprinkler acres. See the

setIrrigationPracticeTSFromList() command.

AcresTotal – The total acres for a CU Location. See the setIrrigationPracticeTS()

command.

AcresTotalCol – The column number (or name) for total acres. See the

setIrrigationPracticeTSFromList() command.

AdministrationNumber – The administration number (numerical priority) for a water right. See the

fillDiversionRight(), fillInstreamFlowRight(), fillReservoirRight(),
fillWellRight(), setDiversionRight(), setInstreamFlowRight(),
setReservoirRight(), and setWellRight() commands.

AdminNumClasses – The administration number classes for water rights, used to define aggregates.

See the readDiversionRightsFromHydroBase(),
readReservoirRightsFromHydroBase(), readWellRightsFromHydroBase(),
and setIrrigationPracticeTSFromHydroBase() commands.

AdminNumShift – The administration number shift for a well station. See the

fillWellStation() and setWellStation() commands.

AdminNumShiftCol – The column number (or name) to be read from a delimited file for

AdminNumShift data. See the setWellStationsFromList() command.

Aggregate – See Collection.

Alias – A (generally) short identifier for a time series, used in place of the TSID, which simplifies

commands. The Alias and TSID values are interchangeable when used as parameters to
commands and may both be referred to as TSID in command editors. See also TSID.

Alias – A (generally) short identifier for a time series, used in place of the TSID, which simplifies

commands. When used to create/read a time series, the syntax of a command is typically similar
to: TS Alias = command(…). See also TSID.

AnalysisEnd – A DateTime that indicates the end of an analysis.

AnalysisStart – A DateTime that indicates the start of an analysis.

Append – Indicates whether data from a read should be appended to in-memory data. The default in

most cases is True, but in some cases in-memory data are to be discarded before the read. See the
readWellRightsFromStateMod() and readWellStationsFromStateMod()
commands.

AreaCol – The column number (or name) to be read from a delimited file for area data. See the

setCropPatternTSFromList() command.
AutoAdjust – Indicate that automatic adjustments should be made to data, typically in cases where

some type of version compatibility issue is being addressed. See the
writeCropCharacteristicsToStateCU() command.

Command Glossary - 2 228

StateDMI Documentation Command Glossary

AWC – The available water content (AWC) fraction, for a CU Location. See the setCULocation()
command.

AWCCol – The column number (or name) to be read from a delimited file for AWC data. See the

fillCULocationsFromList(), and setCULocationsFromList() commands.

BaseData – The base flow coefficient and station data for stream estimate stations. See the

setStreamEstimateCoefficients() command.

BlaneyCriddleMethod – The Blaney-Criddle method in HydroBase for Blaney-Criddle data.

Regional variations are provided. See the readBlaneyCriddleFromHydroBase()
command.

Capacity – The capacity for a diversion or well. See the fillDiversionStation(),

fillWellStation(), setDiversionStation(), and setWellStation()
commands.

CapacityCol – The column number (or name) to be read from a delimited file for Capacity data. See

the setDiversionStationsFromList() and setWellStationsFromList()
commands.

CheckStructures – Used when filling stream gage stations from HydroBase. See the

fillStreamGageStationsFromHydroBase() command.

Coefficients – Crop growth coefficients. See the setBlaneyCriddle() command.

Collection – A group of parts that modeled as a single item. StateMod diversions can be one of the

following:
• Aggregate – the physical characteristics of the diversion stations are combined, and the water

rights are aggregated into classes
• MultiStruct – multiple diversions are grouped but are each represented in the model network;

for historical modeling the time series at each point are used; for calculated demands the
demands are totaled at a key structure and set to zero for the others. The definition of a
MultiStruct is only necessary when processing demands.

• System – the physical characteristics of the diversion are combined, but water rights are
retained in their individual form.

CommentFormat – The format to use when setting the comment for a station. Various data can be

combined into the name. See the fillRiverNetworkFromNetwork() command.

Constant – A constant value used to fill or set time series. See the

fillCropPatternTSConstant(),
fillDiversionDemandTSMonthlyConstant(),
fillDiversionHistoricalTSMonthlyConstant(),
fillWellDemandTSMonthlyConstant(), and
setDiversionDemandTSMonthlyConstant() commands.

ContentAreaSeepage – Content/area/seepage table values for a reservoir station. See the

fillReservoirStation() and setReservoirStation() commands.

 Command Glossary - 3 229

Command Glossary StateDMI Documentation

ContentMax – The maximum content for a reservoir. See the fillReservoirStation() and
setReservoirStation() commands.

ContentMin – The minimum content for a reservoir. See the fillReservoirStation() and

setReservoirStation() commands.

CropPattern – A crop pattern (crop type and area values). See the setCropPatternTS()

command.

CropType – A crop type/name (e.g., ALFALFA), which in some cases may be a pattern (e.g.,

ALFALFA*). See the fillCropPatternTSConstant(), removeCropPatternTS(),
and setBlaneyCriddle(), and setCropCharacteristics() commands.

CropTypeCol – The column number (or name) to be read from a delimited file for CropType data.

See the setCropPatternTSFromList() commands.

CULocType – Consumptive use location (CU Location) type. StateDMI currently processes data for

structures but can be extended to process data for climate station locations. The location type can
therefore be used to control which database tables are queried for information. See the
fillCULocationFromHydroBase() command.

CUMethod – The CU method in HydroBase for crop type and characteristics. See the

readCropCharacteristicsFromHydroBase() command.

CurveType – Indicate whether crop growth data are for annual or perennial crops. See the

setBlaneyCriddle() command.

DailyID – The station identifier used to specify daily data for a station. See the

fillDiversionStation(), fillInstreamFlowStation(),
fillReservoirStation(), fillStreamEstimateStation(),
fillStreamGageStation(), fillWellStation(), setDiversionStation(),
setInstreamFlowStation(), setReservoirStation(),
setStreamEstimateStation(), and setWellStation() commands.

DailyIDCol – The column number (or name) to be read from a delimited file for DailyID data. See the

setDiversionStationsFromList() and setWellStationsFromList()
commands.

DatabaseName – The name of a database, when making a database connection. See the

openHydroBase() command.

DatabaseServer – The name of a database server, when making a database connection. See the

openHydroBase() command.

DataType – The data type used when processing time series, necessary when there are more than one

time series data types available. See the fillIrrigationPracticeTSInterpolate(),
and fillIrrigationPracticeTSRepeat() command.

DateTime – A date/time value, typically represented as a string, which indicates a point in time.

Date/time strings have a precision that is interpreted by the software. For example, the date/time
string 1990 has a precision of year, whereas the string 1990-01-12 has a precision of day.

Command Glossary - 4 230

StateDMI Documentation Command Glossary

DaysToFullCover – The days to full cover for a crop. See the setCropCharacteristics()

command.

DaysTo2ndCut – The days to second cut for a crop. See the setCropCharacteristics()

command.

DaysTo3rdCut – The days to third cut for a crop. See the setCropCharacteristics()

command.

DeadStorage – The dead storage for a reservoir. See the fillReservoirStation() and

setReservoirStation() commands.

Decree – The decree amount for a water right. See the fillDiversionRight(),

fillInstreamFlowRight(), fillReservoirRight(), fillWellRight(),
setDiversionRight(), setInstreamFlowRight(), setReservoirRight(), and
setWellRight() commands.

DecreeMin – The minimum decree to accept as a valid right (others are ignored). See the

readDiversionRightsFromHydroBase(), and
readReservoirRightsFromHydroBase() commands.

DefaultAppropriationDate – The default appropriation date to use with well right/permit data, if

a date is not available. See the readWellRightsFromHydroBase(), and
setIrrigationPracticeTSFromHydroBase() commands.

DefaultTable – The default delay table to use when setting returns from the river network. See the

setDiversionStationDelayTablesFromNetwork() and
setWellStationDelayTablesFromNetwork() commands.

DefineRightHow – Indicate how well rights should be defined from water right/permit data (e.g.,

earliest date, latest date, right if available). See the readWellRightsFromHydroBase(),
setIrrigationPracticeTSFromHydroBase(), and
fillWellStationsFromHydroBase() commands.

Delim – The delimiter character(s) used when processing delimited files. See the read*FromList()

and write*ToList() commands.

DemandSource – The demand source, indicating whether demands are estimated from geographic

information system acreage, total acreage estimate, etc., for a diversion station. See the
fillDiversionStation(), fillWellStation(), setDiversionStation(), and
setWellStation() commands.

DemandSourceCol – The column number (or name) to be read from a delimited file for

DemandSource data. See the setDiversionStationsFromList() and
setWellStationsFromList() commands.

DemandType – The demand type for a diversion station. See the fillDiversionStation() and

fillInstreamFlowStation(), fillWellStation(), setDiversionStation(),
setInstreamFlowStation(), and setWellStation() commands.

 Command Glossary - 5 231

Command Glossary StateDMI Documentation

DemandTypeCol – The column number (or name) to be read from a delimited file for DemandType
data. See the setDiversionStationsFromList() and
setWellStationsFromList() commands.

Depletions – The depletion locations, percentages, and delay table, for a well station. See the

fillWellStation() and setWellStation() commands.

Div – The water division associates with data. See the fillWellStationsFromHydroBase(),

and readWellRightsFromHydroBase(),
setIrrigationPracticeTSFromHydroBase(),
setIrrigationPracticeTSSprinklerAreaFromList(), setWellAggregate(),
setWellAggregateFromList(), setWellSystem(), and
setWellSystemFromList() commands.

DivAndWellGWAcreage – Indicate how to adjust the groundwater acreage for locations that have

surface diversion and groundwater supply. See the
synchronizeIrrigationPracticeAndCropPatternTS() command.

DiversionID – The diversion station identifier associated with a well station. See the

fillWellStation() and setWellStation() commands.

DiversionIDCol – The column number (or name) to be read from a delimited file for

DiversionID data. See the readWellStationsFromFromList() command.

DiversionIDCol – The column number (or name) to be read from a delimited file for

DiversionID data. See the setWellStationsFromList() command.

DownstreamRiverNodeID – The river node identifier for the downstream node in an instream flow

reach, for instream flow stations. It is also used to indicate the node downstream from a river
node, to indicate network connectivity. See the fillInstreamFlowStation(),
setInstreamFlowStation(), and setRiverNetworkNode() commands.

EarliestMoistureUseTemp – The earliest moisture use temperature for a crop. See the

setCropCharacteristics() command.

EffAnnual – The annual efficiency (%, 0-100) for a diversion station. See the

fillDiversionStation(), fillWellStation(), setDiversionStation(), and
setWellStation() commands.

EffAnnualCol – The column number (or name) to be read from a delimited file for EffAnnual data.

See the setDiversionStationsFromList() and setWellStationsFromList()
commands.

EffCalcEnd – A DateTime that indicates the end of an efficiency calculation analysis. See the

calculateDiversionStationEfficiencies() and
calculateWellStationEfficiencies() commands.

EffCalcStart – A DateTime that indicates the start of an efficiency calculation analysis. See the

calculateDiversionStationEfficiencies() and
calculateWellStationEfficiencies() commands.

Command Glossary - 6 232

StateDMI Documentation Command Glossary

Effmin – The minimum efficiency. See the calculateDiversionStationEfficiencies()
and calculateWellStationEfficiencies() commands.

EffMonthly – The monthly efficiency (%, 0-100) for a diversion station. The order of efficiencies in

the model data file depends on the model and control information. However, StateDMI requires
that efficiencies be entered in the order January through December. See the
fillDiversionStation(), fillWellStation(), setDiversionStation(), and
setWellStation() commands.

EffMonthlyCol – The column number (or name) to be read from a delimited file for EffMonthly

data. See the setDiversionStationsFromList() and
setWellStationsFromList() commands.

Effmax – The maximum efficiency. See the calculateDiversionStationEfficiencies()

and calculateWellStationEfficiencies() commands.

EffReportFile – The name of the report file containing the results of efficiency calculations. See the

calculateDiversionStationEfficiencies() and
calculateWellStationEfficiencies() commands.

Elevation – Elevation. See the fillClimateStation(), setClimateStation(), and

setCULocation() commands.

ElevationCol – The column number (or name) to be read from a delimited file for Elevation data.

See the fillCULocationsFromList(), readCULocationsFromList(), and
setCULocationsFromList() commands.

EvapStations – The list of evaporation stations and weights for a reservoir station. See the

fillReservoirStation() and setReservoirStation() commands.
FallFrostFlag – The fall frost flag for a crop. See the setCropCharacteristics()

command.

FillAverageOrder – When multiple fill techniques are used within one command, indicate the order

for filling using historical average. See the
fillDiversionHistoricalTSMonthlyFromHydroBase() command.

FillDirection – Indicate which direction (Forward or Backward) that filling should occur. This

is important because statistics computed to perform filling can be different depending on the
processing direction. See the fillCropPatternTSProrateAgStats(),
fillCropPatternTSRepeat(), and fillIrrigationPracticeTSRepeat()
commands.

FillEnd – A DateTime that indicates the end of a fill process.

FillFlag – A character flag used to indicate when time series values are filled. See the

fillDiversionDemandTSAverage(), fillDiversionDemandTSConstant(),
fillDiversionDemandTSPattern(), fillDiversionHistoricalTSAverage(),
fillDiversionHistoricalTSConstant(),
fillDiversionHistoricalTSMonthlyPattern(),
fillWellDemandTSMonthlyAverage(),

 Command Glossary - 7 233

Command Glossary StateDMI Documentation

fillWellDemandTSMonthlyConstant(), and
fillWellDemandTSMonthlyPattern() commands.

FillPatternOrder – When multiple fill techniques are used within one command, indicate the order

for filling using historical average patterns. See the
fillDiversionHistoricalTSMonthlyFromHydroBase() command.

FillStart – A DateTime that indicates the start of fill process.

FillType – The reservoir right fill type. See the fillReservoirRight() and

setReservoirRight() commands.

FillUsingCIU – Fill diversion records with additional zeros using the “currently in use” (CIU) data

from HydroBase. See the readDiversionHistoricalTSMonthlyFromHydroBase()
command.

FillUsingCIUFlag – Indicate how to flag filled data values when using “currently in use” (CIU) data

from HydroBase. See the readDiversionHistoricalTSMonthlyFromHydroBase()
command. The flags can be displayed on graphs.

FloodAppEffMax – The flood application efficiency maximum for a CU Location. See the

setIrrigationPracticeTS() command.

FloodAppEffMaxCol – The column number (or name) to be read from a delimited file for

FloodAppEffMax data. See the setIrrigationPracticeTSFromList() command.

FreeWaterAdministrationNumber – Indicate the administration number >= to which a right is

considered a free water right. See the
setIrrigationPracticeTSPumpingMaxUsingWellRights() command.

FreeWaterAppropriationDate – A date to be used for free water rights. See the

limitDiversionDemandTSMonthlyToRights(),
limitDiversionHistoricalTSMonthlyToRights(),
setIrrigationPracticeTSMaxPumpingToRights(), and
setIrrigationPracticeTSPumpingMaxUsingWellRights() commands.

FreeWaterMethod – Indicate how to handle processing of free water rights. See the

setIrrigationPracticeTSPumpingMaxUsingWellRights() command.

GageID – The stream gage station identifier to use instead of the downstream gage. See the

setStreamEstimateCoefficients() command.

GainData – The base flow coefficient and station data for stream estimate stations. See the

setStreamEstimateCoefficients() command.

GWMode – The groundwater mode for a CU Location. See the setIrrigationPracticeTS()

command.

GWModeCol – The column number (or name) for groundwater mode for a CU Location. See the

setIrrigationPracticeTSFromList() command.

Command Glossary - 8 234

StateDMI Documentation Command Glossary

GWOnlyGWAcreage – Indicate how to adjust the groundwater acreage for locations that have only
groundwater supply. See the
synchronizeIrrigationPracticeAndCropPatternTS() command.

HandleMissingHow – Indicate how to handle missing data values when processing time series. For

example, when adding time series, missing values can be ignored or can result in a missing value
in the result. See the add(), cumulate(), and subtract() commands.

HarvestMonth – The harvest month for a crop. See the setCropCharacteristics()

command.

HarvestDay – The harvest day for a crop. See the setCropCharacteristics() command.

ID – The identifier to match in a file. Typically this is a location (e.g., station, structure identifier) and

can be specified using a wildcard pattern (e.g., 20*). This parameter is used by many commands
as the primary key to associate data.

IDCol – The column number (or name) to be read from a delimited file for identifier data. See the

read*FromList() command.

IfFound – Indicate the action to be taken if a matching data item (usually by ID) is found. For

example, the action typically includes warning the user or continuing with a data edit. See the
set*() command.

IfNotFound – Indicate the action to be taken if a matching data item (usually by ID) is not found. For

example, the action typically includes warning the user or continuing with a data edit. See the
set*() commands.

IDFormat – The format to use for identifiers, used when default formatting is not appropriate. See the

readWellRightsFromHydroBase() command.

IgnoreDiversions – Indicate whether diversion nodes should be ignored by a command.

IgnoreDWs – Indicate whether D&W (diversion + well) nodes should be ignored by a command. See

the readWellStationsFromStateMod() command.

IgnoreID – A list of identifiers to ignore when processing a command. See the

limitDiversionDemandTSMonthlyToRights(), and
limitDiversionHistoricalTSMonthlyToRights() commands.

IgnoreLEZero – Indicate whether values less than or equal to zero should be ignored when computing

historical averages for time series. See the setIgnoreLEZero() command.

IgnoreWells – Indicate whether well nodes should be ignored by a command. See the

readWellStationsFromStateMod() command.

IncludeCollections – Indicate whether locations that are collections (aggregates and systems)

should be processed by a command. In particular, when processing time series, filling can be
controlled to occur for individual collection parts or on total time series. See the
fillDiversionHistoricalTSMonthlyAverage(),

 Command Glossary - 9 235

Command Glossary StateDMI Documentation

fillDiversionHistoricalTSMonthlyPattern(), and
fillDiversionHistoricalTSMonthlyFromHydroBase() commands.

IncludeExplicit – Indicate whether locations that are explicit (key) locations should be processed

by a command. In particular, when processing time series, filling can be controlled to occur for
explicit locations or collections (aggregates and systems). See the
fillDiversionHistoricalTSMonthlyFromHydroBase() command.

IncludeGroundwaterOnlySupply – Indicate whether locations that have only groundwater supply

should be processed by a command. See the
fillIrrigationPracticeTSAcreageUsingWellRights() and
setIrrigationPracticeTSPumpingMaxUsingWellRights() commands.

IncludeStreamEstimateStations – Indicate whether stream estimate stations should be

processed by a command. In particular, this is used when processing stream gage/estimate station
data. See the fillIrrigationPracticeTSAcreageUsingWellRights() and
readStreamGageStationsFromNetwork() command.

IncludeSurfaceWaterSupply – Indicate whether locations that have surface water supply should

be processed by a command. See the
setIrrigationPracticeTSPumpingMaxUsingWellRights() command.

InputEnd – A DateTime that indicates the end of a file read or a database query.
InputFile – The name/path for a file that is used as input to a command. See the

limitDiversionDemandTSMonthlyToRights(),
limitDiversionHistoricalTSMonthlyToRights(), and
ReadAgStatsTSFromDateValue() commands.

InputStart – A DateTime that indicates the start of file read or a database query.

Interval – The data interval (day or month) for delay tables. See the

writeDelayTablesToStateMod() command.

IrrigatedAcres – The irrigated acres for a diversion station. See the

fillDiversionStation(), fillWellStation(), setDiversionStation(), and
setWellStation() commands.

IrrigatedAcresCol – The column number (or name) to be read from a delimited file for

IrrigatedAcres data. See the setDiversionStationsFromList() and
setWellStationsFromList() commands.

IrrigationMethodCol – The column number (or name) for irrigation method (e.g., SPRINKLER,

FLOOD). See the setCropPatternTSFromList() and
setIrrigationPracticeTSFromList() commands.

LatestMoistureUseTemp – The latest moisture use temperature for a crop. See the

setCropCharacteristics() command.

Latitude – Latitude in decimal degrees. See the fillClimateStation(),

fillCULocation(), setClimateStation(), and setCULocation() commands.

Command Glossary - 10 236

StateDMI Documentation Command Glossary

LatitudeCol – The column number (or name) to be read from a delimited file for Latitude data. See
the fillCULocationsFromList(), readCULocationsFromList(), and
setCULocationsFromList() commands.

LengthOfSeason – The length of the growing season for a crop. See the

setCropCharacteristics() command.

LEZeroInAverage – Indicate whether historical averages should consider values less than or equal to

zero. See the calculateDiversionStationEfficiencies(),
calculateWellStationEfficiencies(),
fillDiversionDemandTSMonthlyPattern(),
fillDiversionHistoricalTSMonthlyPattern(),
fillWellDemandTSMonthlyPattern(),
fillWellHistoricalTSMonthlyFromHydroBase(),
setDiversionDemandTSMonthly(), setDiversionHistoricalTSMonthly(),
and setWellDemandTSMonthly() commands.

LimitToCurrent – Indicate whether only the most recent water rights conditions should be used when

limiting time series to rights (use a single value and not a step function). See the
limitDiversionDemandTSMonthlyToRights() command.

ListFile – The name of an input or output list (delimited) file to be written or read, specified using a
relative or absolute path. See the read*FromList() and write*toList() commands.

LocationEstimate – Indicate how to estimate missing coordinates for nodes, when used with

network diagram features. See the fillNetworkFromHydroBase() command.

LogFile – The name of the log file, specified using a relative or absolute path. See the

setLogFile() command.

LogFileLevel – The level for messages printed to the log file. See the setDebugLevel() and

setWarningLevel() commands.

MaxAppDepth – The maximum irrigation application depth for a crop. See the

setCropCharacteristics() command.

MaxIntervals – The maximum number of intervals to process when processing time series. For

example, indicate the widest gap of missing data to fill. See the
fillCropPatternTSInterpolate(), fillCropPatternTSProrateAgStats(),
fillIrrigationPracticeTSInterpolate(), and
fillIrrigationPracticeTSRepeat() commands.

MaxRechargeLimit – The maximum recharge limit (CFS) when modeling groundwater. See the

setRiverNetworkNode() command.

MaxRootZoneDepth – The maximum root zone depth for a crop. See the

setCropCharacteristics() command.

MergeDelim – Indicates whether adjacent delimiters should be treated as one when processing

delimited files. See the read*FromList() and write*ToList() commands.

 Command Glossary - 11 237

Command Glossary StateDMI Documentation

MonthValues – Monthly values used to set time series data. See the
setInstreamFlowdemandTSAverageMonthlyConstant() command.

MultiStruct – See Collection.

Name – The name associated with a data item (e.g., station, structure, water right name). This parameter

is used by many commands.

NameCol – The column number (or name) to be read from a delimited file for Name data. See the

fill*FromList() and set*FromList() commands.

NameFormat – The format to use when setting the name for a station from HydroBase. Various data

can be combined into the name. See the fillRiverNetworkFromHydroBase(),
fillRiverNetworkFromNetwork(), fillStreamEstimateStation(),
fillStreamEstimateStationsFromNetwork(), fillStreamGageStation(),
fillStreamGageStationsFromHydroBase(), and
fillStreamGageStationsFromNetwork() commands.

NewCropType – The new crop type. See the translateBlaneyCriddle(),

translateCropCharacteristics(), and translateCropPatternTS()
commands.

NumberOfDaysInMonth – The number of days in each month, used when an approximation is used

rather than exact values. See the setIrrigationPracticeTSMaxPumpingToRights()
command.

OldCropType – The old crop type. See the translateBlaneyCriddle(),

translateCropCharacteristics(), and translateCropPatternTS()
commands.

OneFillRule – The date for one fill rule administration for a reservoir. See the

fillReservoirStation() and setReservoirStation() commands.

OnOff – The on/off switch used to indicate if a station, right, or other information is active for a data

set. See fill*() and set*() commands for StateMod data files.

OnOffCol – The column number (or name) to be read from a delimited file for OnOff data. See the

setDiversionStationsFromList() command.

OnOffDefault – The default value of the OnOff parameter for water rights (e.g., 1, or as determined

from a water right appropriation date). See the
readDiversionRightsFromHydroBase(),
readInstreamFlowRightsFromHydroBase(), and
readReservoirRightsFromHydroBase(), and
readWellRightsFromHydroBase() commands.

OpRightID – The operational right identifier associated with a reservoir right. See the

fillReservoirRight() and setReservoirRight() commands.

Order – The primary order to sort data. See the sort*() commands.

Command Glossary - 12 238

StateDMI Documentation Command Glossary

Order2 – The secondary order to sort data. See the sort*() commands.

OrographicPrecAdjCol – The column number (or name) to be read from a delimited file for the

orographic precipitation adjustment factor. See the
setCULocationClimateStationWeightsFromList() command.

OrographicTempAdjCol – The column number (or name) to be read from a delimited file for the

orographic temperature adjustment factor. See the
setCULocationClimateStationWeightsFromList() command.

OutputEnd – A DateTime that indicates the end of output.

OutputFile – The name of an output file to be written, specified using a relative or absolute path.

OutputStart – A DateTime that indicates the start of output.

OutputYearType – Indicate the type of year (e.g., calendar year, water year) for output. See the

setOutputYearType() command.

ParcelAreaCol – The column number (or name) to be read from a delimited file for parcel area data

(used when overriding HydroBase data during development). See the
setIrrigationPracticeTSSprinklerAreaFromList() command.

ParcelIDCol – The column number (or name) to be read from a delimited file for ParcelID data.

See the setIrrigationPracticeTSSprinklerAreaFromList() command.

ParcelIDYear – The year to use for parcel identifiers (which can vary by year). See the

setIrrigationPracticeTSSprinklerAreaFromList() command.

ParcelYear – A specific year for irrigated lands parcel data. See the

fillIrrigationPracticeTSAcreageUsingWellRights(), and
setIrrigationPracticeTSPumpingMaxUsingWellRights() command.

PartIDs – The identifiers for parts of a collection (aggregates and systems). See the

setDiversionAggregate(), setDiversionMultiStruct(),
setDiversionSystem(), setReservoirAggregate(), setWellAggregate(),
and setWellSystem() commands.

PartIDsCol – The column number (or name) to be read from a delimited file for PartID data (an

identifier for part of a collection). See the setDiversionAggregatesFromList(),
setDiversionMultiStructFromList(), setDiversionSystemFromList(),
setReservoirAggregateFromList(), setWellAggregateFromList(), and
setWellSystemFromList() commands.

PartIDsColMax – The maximum column number (or name) to be read from a delimited file for

PartID data (an identifier for part of a collection). This is useful when ignoring additional
columns on the right side of a delimited file. See the
setDiversionAggregatesFromListFromList(),
setDiversionMultiStructFromList(), setDiversionSystemFromList(),
setReservoirAggregateFromList(), setWellAggregateFromList(), and
setWellSystemFromList() commands.

 Command Glossary - 13 239

Command Glossary StateDMI Documentation

PartIDsListedHow – Indicate whether part identifiers in a collection are listed in columns (one

record per collection) or rows (multiple rows per collection). See the
setDiversionAggregatesFromListFromList(),
setDiversionMultiStructFromList(), setDiversionSystemFromList(),
setReservoirAggregateFromList(), setWellAggregateFromList(), and
setWellSystemFromList() commands.

PatternFile – The file name for a pattern file. See the setPatternFile() command.

PatternID – An identifier for a pattern (e.g., WET, DRY, AVG). See the

fillDiversionDemandTSMonthlyPattern(),
fillDiversionHistoricalTSMonthlyPattern(),
fillWellDemandTSMonthlyPattern(), and
readDiversionHistoricalTSMonthlyFromHydroBase() commands.

PlantingMonth – The planting month for a crop. See the setCropCharacteristics()

command.

PlantingDay – The planting day for a crop. See the setCropCharacteristics() command.

Precision – The precision (digits after the decimal) for output. See the

writeBlaneyCriddleToStateCU() command.

PrecipStations – The list of precipitation stations and weights for a reservoir station. See the

fillReservoirStation() and setReservoirStation() commands.

PrecWtCol – The column number (or name) to be read from a delimited file for PrecWt (precipitation

weight) data. See the setCULocationsFromList() command.

ProcessData – Indicates whether crop pattern data should be processed or used only to define

relationships between data (which will then be used by another command). See the
readCropPatternTSFromHydroBase() command.

ProcessWhen – Indicates when crop pattern data should be processed. Data can be processed with the

command (immediate set) or when HydroBase data are read. The latter allows more
sophisticated processing that may be required. See the setCropPatternTS(),
setCropPatternTSFromList(), setIrrigationPracticeTS(), and
setIrrigationPracticeTSFromList() commands.

ProrationFactor – The proration factor for stream estimate stations. See the

setStreamEstimateCoefficients() command.

PumpingMax – The maximum monthly pumping rate for a CU Location. See the

setIrrigationPracticeTS() command.

PumpingMaxCol – The column number (or name) for pumping maximum. See the

setIrrigationPracticeTSFromList() command.

ReadWellRights – Indicates whether well rights should be read, rather than relying on summed

“pseudo rights”. The default is now to read individual well rights; however, this parameter can be

Command Glossary - 14 240

StateDMI Documentation Command Glossary

used to match data processing for earlier versions of the software. See the
fillWellStationsFromHydroBase(), readWellRightsFromHydroBase(), and
setIrrigationPracticeTSFromHydroBase() commands. See also UseApex.

Region1 – Traditionally, the StateCU model used County/HUC identifiers to indicate the bounds of an

area of interest, for calculations/reporting. StateDMI uses generalized Region1/Region2
identifiers, to allow more flexibility. See the fillClimateStation(),
fillCULocation(), setClimateStation(), and setCULocation() commands.
See also Region1Type.

Region1Col – The column number (or name) to be read from a delimited file for Region1 data. See

the fillCULocationsFromList(), readCULocationsFromList(),
setCULocationsFromList(), and setCULocationsFromList() commands.

Region1Type – Traditionally, the StateCU model used County/HUC identifiers to indicate the bounds

of an area of interest, for calculations/reporting. StateDMI uses generalized Region1/Region2
identifiers, to allow more flexibility and some commands use this parameter to indicate that
Region1 is County or another value. See the fillCULocationsFromHydroBase()
command. See also Region1.

Region2 – Traditionally, the StateCU model used County/HUC identifiers to indicate the bounds of an

area of interest, for calculations/reporting. StateDMI uses generalized Region1/Region2
identifiers, to allow more flexibility. See the fillClimateStation(),
fillCULocation(), setClimateStation(), and setCULocation() commands.
See also Region2Type.

Region2Col – The column number (or name) to be read from a delimited file for Region2 data. See

the fillCULocationsFromList(), readCULocationsFromList(),
setCULocationsFromList(), and setCULocationsFromList() commands.

Region2Type – Traditionally, the StateCU model used County/HUC identifiers to indicate the bounds

of an area of interest, for calculations/reporting. StateDMI uses generalized Region1/Region2
identifiers, to allow more flexibility and some commands use this parameter to indicate that
Region2 is HUC or another value. See the fillCULocationsFromHydroBase()
command. See also Region2.

ReleaseMax – The maximum release for a reservoir. See the fillReservoirStation() and

setReservoirStation() commands.

ReplaceResOption – The replacement reservoir option for a diversion station. See the

fillDiversionStation(), and setDiversionStation() commands.

ReplaceResOptionCol – The column number (or name) to be read from a delimited file for

ReplaceResOption data. See the setDiversionStationsFromList() command.

Returns – The return flow locations, percentages, and delay table, for a diversion or well station. See

the fillDiversionStation(), fillWellStation(), setDiversionStation(),
and setWellStation() commands.

RightType – The reservoir right type. See the fillReservoirRight() and

setReservoirRight() commands.

 Command Glossary - 15 241

Command Glossary StateDMI Documentation

RiverNodeID – The river node identifier associated with a station. See the

fillDiversionStation(), fillReservoirStation(),
fillStreamEstimateStation(), fillStreamGageStation(),
fillWellStation(), setDiversionStation(), setReservoirStation(), and
setStreamEstimateStation() commands.

RiverNodeIDCol – The column number (or name) to be read from a delimited file for

RiverNodeID data. See the setDiversionStationsFromList() and
setWellStationsFromList() commands.

Scale – A scale factor to apply to data. See the readDelayTablesFromStateMod() command.

SetEfficiency – Indicate whether to set the efficiency when setting delay table information. See the

setDiversionStationDelayTablesFromRTN() and
setWellStationDelayTablesFromRTN() commands.

SetEnd – A DateTime that indicates the end of a data set process.

SetFlag – A character flag used to indicate when time series values are set. See the

limitDiversionDemandTSMonthlyToRights(), and
limitDiversionHistoricalTSMonthlyToRights() commands.

SetStart – A DateTime that indicates the start of a data set process.

SetToMissing – Indicate whether a set command should result in missing data, rather than supplying

actual data values. This is sometimes necessary to undo previous processing. See the
setCropPatternTS() commands.

SpringFrostFlag – The spring frost flag for a crop. See the setCropCharacteristics()

command.

SprinklerAcreage – Indicate how to adjust the sprinkler acreage for locations that are irrigated by

sprinklers. See the synchronizeIrrigationPracticeAndCropPatternTS()
command.

SprinklerAppEffMax – The sprinkler application efficiency maximum for a CU Location. See the

setIrrigationPracticeTS() command.

SprinklerAppEffMaxCol – The column number (or name) to be read from a delimited file for

SprinklerAppEffMax data. See the setIrrigationPracticeTSFromList()
command.

StationID – The station identifier associated with a data item (e.g., the station ID associated with a

water right). See the fillDiversionRight(), fillInstreamFlowRight(),
fillReservoirRight(), fillWellRight(), setDiversionRight(),
setInstreamFlowRight(), and setWellRight() commands.

SupplyTypeCol – The column number (or name) for supply type (e.g., Surface or Ground

indicator). See the setIrrigationPracticeTSFromList() and
setCropPatternTSFromList() commands.

Command Glossary - 16 242

StateDMI Documentation Command Glossary

SurfaceDelEffMax – The surface water delivery efficiency maximum for a CU Location. See the

setIrrigationPracticeTS() command.

SurfaceDelEffMaxCol – The column number (or name) to be read from a delimited file for

SurfaceDelEffMax data. See the setIrrigationPracticeTSFromList()
command.

System – See Collection.

TempWtCol – The column number (or name) to be read from a delimited file for TempWt (temperature

weight) data. See the setCULocationsFromList() command.

TSID – Time series identifier, which is used to uniquely identify a time series. In full notation, this

consists of a string similar to the following:
Location.DataSource.DataType.Interval.Scenario~InputType~InputName. In abbreviated form,
the InputType and InputName are often omitted. The InputType and InputName are typically
used only by read and write commands. Because a TSID may be long (especially when file
names are used for the InputName), an Alias may be assigned to the time series. The TSID
parameter is typically used in commands for the time series that is being processed. See also
Alias.

TSID – When used as a command parameter the time series identifier indicates the time series to be

processed. The TSID or alias can typically be specified. See the
setDiversionDemandTSMonthly() and setWellDemandTSMonthly() commands.

Units – Units associated with a data, often time series. See the

createCropPatternTSForCULocations() and
createIrrigationPracticeTSForCULocations() commands.

UpstreamRiverNodeID – The river node identifier for the upstream node in an instream flow reach,

for instream flow stations. See the fillInstreamFlowStation(), and
setInstreamFlowStation() commands.

UseApex – Indicates whether well rights APEX (alternate point and exchange) data should be added to

water rights when they are read. See the fillWellStationsFromHydroBase(),
readWellRightsFromHydroBase(), and
setIrrigationPracticeTSFromHydroBase() commands. See also
ReadWellRights.

UseDiversionComments – Indicate whether diversion comments in HydroBase should be used to

provide additional zero diversion values for diversion time series. See the
readDiversionHistoricalTSMonthlyFromHydroBase() command.

UseOnOffDate – Indicate whether the OnOff switch value for water rights should be used to

determine the appropriation date for water rights. See the
limitDiversionDemandTSMonthlyToRights(),
limitDiversionHistoricalTSMonthlyToRights(), and
setIrrigationPracticeTSMaxPumpingToRights() commands.

 Command Glossary - 17 243

Command Glossary StateDMI Documentation

UserName – The user name for a diversion station. See the fillDiversionStation() and
setDiversionStation() commands.

UserNameCol – The column number (or name) to be read from a delimited file for UserName data.

See the setDiversionStationsFromList() command.

UseStoredProcedures – Indicates whether stored procedures should be used (versus straight SQL

calls). This is being used to transition HydroBase queries to stored procedures. See the
openHydroBase() command.

UseType – The water use type (e.g., to indicate agriculture) for a diversion station. See the

fillDiversionStation(), fillWellStation(), setDiversionStation(), and
setWellStation() commands.

UseTypeCol – The column number (or name) to be read from a delimited file for UseType data. See

the setDiversionStationsFromList() and setWellStationsFromList()
commands.

Version – Indicates the file version, to allow the software to handle different data formats. See the

readCropPatternTSFromStateCU(),
readIrrigationPracticeTSFromStateCU(), readStateModB(),
writeBlaneyCriddleToStateCU(), writeCropCharacteristicsToStateCU(),
writeCULocationsToStateCU(), and
writeIrrigationPracticeTSToStateCU() commands.

Weights – Station weights. See the fillCULocationClimateStationWeights() and

setCULocation() commands.

WorkingDir – The working directory for the software, which can be used with relative paths to form

absolute paths to files. See the setWorkingDir() command.

WriteCropArea – Indicate whether to write the crop area in addition to the percent, for the crop

pattern time series file. See the writeCropPatternTSToStateCU() commands.

WriteOnlyTotal – Indicate whether to write only the total crop area for the crop pattern time series

file. See the writeCropPatternTSToStateCU() commands.

WriteHow – Indicate how to write an output file (update or overwrite). See the write*() commands.

Year – Specify year(s) of interest. For example, when processing data related to wells, the year is used
to indicate the year for parcel data. See the fillWellStationsFromHydroBase(),
readIrrigationPracticeTSFromHydroBase(), readWellRightsFromHydroBase(),
setIrrigationPracticeTSFromHydroBase(),
setIrrigationPracticeTSSprinklerAreaFromList(), setWellAggregate(),
setWellSystem(), and setWellSystemFromList() commands.

YearCol – The column number (or name) to be read from a delimited file for Year data. See the

setIrrigationPracticeTSFromList() command.
.

Command Glossary - 18 244

Command Reference: #
Comment line

General Command

Version 3.08.02, 2010-01-06

The # command indicates single-line comments. Commands can be converted to and from # comments.
See also the /* and */ comment block commands, which are to comment multiple commands.

The following dialog is used to edit the command and illustrates the command syntax:

Comment

Command Editor

The command syntax is as follows:

Some text

A sample command file is as follows:

Some comments…

 Command Reference – # - 1 245

Command StateDMI Documentation

This page is intentionally blank.

Command Reference – # - 2 246

Command Reference: */
Comment block end

General Command

Version 3.08.02, 2010-01-06

The */ command ends a multi-line comment block and is useful for inserting long comments or
temporarily commenting out blocks of commands. See also the /* and # commands. Commands
between the /* and */ are not converted to comments but are skipped during processing.

The following dialog is used to edit the command and illustrates the command syntax:

CommentBlockEnd

*/ Command Editor

The command syntax is as follows:

*/

A sample command file is as follows:

/*
SomeCommentedOutCommands()…
*/

 Command Reference – */ - 1 247

*/ Command StateDMI Documentation

This page is intentionally blank.

Command Reference – */ - 2 248

Command Reference: /*
Comment block start

General Command

Version 3.08.02, 2010-01-06

The /* command starts a multi-line comment block and is useful for inserting long comments or
temporarily commenting out blocks of commands. See also the */ and # commands. Commands
between the /* and */ are not converted to comments but are skipped during processing.

The following dialog is used to edit the command and illustrates the command syntax:

CommentBlockStart

/* Command Editor

The command syntax is as follows:

/*

A sample command file is as follows:

/*
SomeCommentedOutCommands()…
*/

 Command Reference – /* - 1 249

/* Command StateDMI Documentation

This page is intentionally blank.

Command Reference – /* - 2 250

Command Reference: AggregateWellRights ()

Aggregate well right data from by weighting the decree by administration number

StateMod Command

Version 3.09.00, 2010-01-26

The AggregateWellRights() command aggregates well rights by weighting the decree by
administration number (in simple terms the number of days since 1849). It is typical to aggregate water
rights in basins where individual rights do not need to be modeled (modeling individual rights increases
the run time and amount of model output). For example, Río Grande well rights are typically aggregated;
however, South Platte rights are not, due to detailed modeling of augmentation plans. Aggregating well
rights is typically the last step in well right processing before writing the well rights file. The
ReadWellRightsFromHydroBase() command prior to StateDMI 2.14 performed aggregation in
one step; however, this is no longer desirable because unaggregated rights are needed for data processing,
such as limiting groundwater-only supply parcels back in time, and setting the pumping maximum in the
irrigation practice time series.

The following figure illustrates the difference between raw, merged, and aggregated rights. Raw rights
contain output for multiple years of irrigated lands parcel data. Merged rights consider all years of
irrigated lands data but avoid double-counting rights that result from more than one year of parcel data
processing (see the MergeWellRights() command).

setIrrigationPracticeTSPumpingMaxUsingWellRights_Example

The end result of aggregation is well rights that have an identifier matching the location, with a number
suffix. The suffix “.01” corresponds to rights with an administration number <= to the first
administration number class. The last administration number class should therefore be larger than any
administration number that is expected (e.g., use 99999.99999). Example output in StateMod format is as
follows:

 Command Reference – AggregateWellRights() - 1 251

AggregateWellRights() Command StateDMI Documentation

#> ID Name Struct Admin # Decree On/Off
#>---------eb----------------------eb----------eb--------------eb------eb------e

200511W.08 200511 57343.00000 3.01 2006
200812W.03 200812 21307.00000 4.68 1908
200812W.04 200812 29515.00000 45.48 1930
200812W.05 200812 32589.00000 954.42 1939
200812W.06 200812 37671.00000 1608.05 1953
200812W.07 200812 41917.00000 911.48 1964
200812W.08 200812 47211.00000 659.28 1979

The following steps occur to aggregate well water rights at each location where aggregate/systems are
specified with parcels or a well station has an associated diversion ID:

1. Initialize aggregate water rights. Aggregate water rights for each water class are initialized to
zero. If at the end of processing the value is still zero, a right will NOT be added for the class.
Aggregate rights for a groundwater-only location have an identifier that starts with the location.
Other locations that have supplemental supply use the location identifier, followed by a “W”. All
rights then have a .NN ending, corresponding to the water right class.

2. For each class, the following sums are calculated: sum(decree*AdminNum) and sum(decree),
where the administration number is determined from the appropriation date derived from the
original HydroBase administration number (it will not have a remainder).

3. After processing all rights for the location, the final administration number for the class is
determined (it will not have a remainder) as: int(sum(decree*AdminNum)/sum(decree)).

4. For each non-zero aggregate, a well right is added for the location. Only the whole number part
of the administration will be set (the remainder will be zero).

5. The well rights are added to the overall list for output. All previous rights for the location are
replaced by the aggregate rights.

If the output does not show aggregation as expected, verify that the location is properly being specified as
a groundwater only location with aggregate/system parcel list, and that the associated diversion ID is
specified in well station or list file used as input.

2 - Command Reference – AggregateWellRights() 252

StateDMI Documentation AggregateWellRights() Command

The following dialog is used to edit the command and illustrates the syntax of the command:

AggregateWellRights

AggregateWellRights() Command Editor

The command syntax is as follows:

AggregateWellRights(Parameter=Value,…)

Command Parameters

Parameter Description Default
AdminNumClasses A list of administration numbers, separated by spaces or

commas, to define the breaks for aggregate water rights,
for well aggregates. For example, if the class breaks are
10000.000, 20000.00000, and 99999.99999, the first
group will contain water rights with administration
numbers <= 10000.00000, the second will contain water
rights with administration number > 10000.00000 and
<= 20000.00000, and the third will contain water rights
with administration number > 20000.00000 and <=
99999.99999. The last administration number should be
larger than any data value that is expected to occur.

If not specified,
diversion
aggregates will be
treated as diversion
systems, with all
water rights
explicitly included
in output.

OnOffDefault Indicates how to set the on/off switch for resulting water
rights. A value of 1 indicates that the right is on for the
whole period. If the value is AppropriationDate,
the switch is set to the year corresponding to the
appropriation date, indicating that the right will be
turned on starting in the year. The appropriation date
for aggregate rights is taken from the whole number part
of the administration number because the remainder is a
result of the weighting and does not have meaning.

Appropriation
Date

 Command Reference – AggregateWellRights() - 3 253

AggregateWellRights() Command StateDMI Documentation

The following example illustrates the full process for creating well rights in the Rio Grande basin,
including well right aggregation (this is an abbreviated command file with repetitive steps removed):

StartLog(LogFile="Wells_wer.StateDMI.log")
Wells_WER.StateDMI

Step 1 - open a log file for this run

StartLog(LogFile="Wells_WER.StateDMI.log")

Step 2 - read stations
readWellStationsFromStateMod(InputFile="rg2007.wes")
ReadWellStationsFromStateMod(InputFile="rg2007.wes")

Step 3 - define aggregates and systems
Diversions are collections using a list of WDIDs, and the list of IDs is
constant through the model period.
Aggregates will result in well rights being aggregated.
Systems will be modeled with all well rights (no aggregation).
Well-only lands are collections using a list of parcel identifiers, and
the lists are specified for each year where data are available because the
parcel identifiers change from year to year.

Diversions with and without groundwater supply...
SetWellAggregateFromList(ListFile="..\Diversions\rgTW_divaggregates.csv",
 IDCol=1,PartIDsCol=2,PartsListedHow=InRow,PartType=Ditch)
SetDiversionSystemFromList(ListFile="..\Diversions\rgTW_divsystems.csv",
 IDCol=1,PartIDsCol=2,PartsListedHow=InRow, PartType=Ditch)
Wells with only groundwater supply...#
SetWellSystemFromList(ListFile="..\Wells\1998_GWonly_agg.csv",Year=1998,Div=3,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)

Step 4 - read rights from HydroBase (NO AGGREGATION)
Include Appropriation Date for on/off
1936 is included for more rights and because used in later data filling.
APEX is NOT used.

ReadWellRightsFromHydroBase(ID="*",IDFormat="HydroBaseID",Year="1998",Div="3",
 DefaultAppropriationDate="1950-01-01",DefineRightHow=RightIfAvailable,
 ReadWellRights=True,UseApex=False,OnOffDefault=AppropriationDate)

Step 5 - set data not in HydroBase
M&I are not tied to an irrigated parcel and therefore may not be in
HydroBase.
Also, StateDMI does not currently read well rights/permits for explicit
non-irrigation well locations.

5a; Set Alamosa Refuge
Mumm Well and estimated small wells (4 cfs) (refine only with additional information from USFWS)
SetWellRight(ID="20MS06W.98",Name="Small_ANWR_Wells",StationID="20MS06",
 AdministrationNumber=90000.00000,Decree=4.00,OnOff=1,IfNotFound=Add,IfFound=Warn)
…many omitted

Step 6 - write rights from multiple years of irrigated lands
Note since not aggregating, the ID's assigned will be
true Well IDs, not structure id.01, etc.
The *wer file is written containing all parcel years and
"data comments" on the right side of the file are written to
facilitate use when filling the *cds and *ipy files.
The following is used to fill the CDS and IPY acreage prior to 1998,
using the rights resulting from 1998 parcels.

SortWellRights(Order=LocationIDAscending,Order2=IDAscending)
WriteWellRightsToStateMod(OutputFile="rg2007_NotMerged.wer",WriteDataComments=True)

Step 7 - merge multiple years (but do not aggregate)
The water rights resulting from multiple years of parcel data (above) are
merged. Blocks of rights with the same right ID and location ID are
checked. If all are the same in two years, then all are kept in the
result. Otherwise, the rights from the year resulting in the highest

4 - Command Reference – AggregateWellRights() 254

StateDMI Documentation AggregateWellRights() Command

decree sum are kept in the result. The process compares two years at a
time, going through all years where data are available.
The following version of the file is used to set IPY max pumping.

MergeWellRights()
SortWellRights(Order=LocationIDAscending,Order2=IDAscending)
WriteWellRightsToStateMod(OutputFile="rg2007.wer")

WriteWellRightsToStateMod(OutputFile="rg2007.wer")
WriteWellRightsToStateMod(OutputFile="..\StateMod\Historic\rg2007.wer")

Step 8 - aggregate into water rights classes
This step is needed in the Rio Grande but not in the South Platte.
Rights are aggregated by weighting by decree and administration number.
The right identifiers are set to LocationID.##, where ## is the class.

AggregateWellRights(AdminNumClasses="10000.00000,20000.00000,25000.00000,
 30000.00000,35000.00000,40000.00000,45000.00000,99999.99999",OnOffDefault="AppropriationDate")
WriteWellRightsToStateMod(OutputFile="rg2007_Agg.wer")
WriteWellRightsToStateMod(OutputFile="..\StateMod\Historic\rg2007_Agg.wer")

Check the results
CheckWellRights(ID="*")
WriteCheckFile(OutputFile="Wells_wer.StateDMI.check.html")

 Command Reference – AggregateWellRights() - 5 255

AggregateWellRights() Command StateDMI Documentation

This page is intentionally blank.

6 - Command Reference – AggregateWellRights() 256

Command Reference:
CalculateDiversionDemandTSMonthly()

Calculate diversion demand time series (monthly) using irrigation water

requirement and average monthly efficiencies

StateMod Command
Version 3.09.01, 2010-02-01

The CalculateDiversionDemandTSMonthly() command calculates diversion demand time
series (monthly) by dividing the irrigation water requirement (IWR) time series (monthly) by average
monthly efficiencies. The diversion stations should first be read with another command (e.g.,
ReadDivsionStationsFromStateMod()) and provide the list of diversion stations to be
processed – every diversion station will have a demand time series in the result. The IWR time series
should have been read by a previous command. The diversion station efficiencies should also have been
calculated previously. The output year type must be specified correctly because efficiencies are stored in
diversion stations according to the year type for the StateMod data set. The following rules apply:

• If a diversion station is defined as a MultiStruct, the demand for the primary station (the first one

listed in the MultiStruct) is the sum of the demands for all of its parts and the average efficiency for
the total will be used (as set in previous commands). The demands for the secondary stations will be
set to zero.

• If required time series data are not available for calculations (i.e., no IWR time series is found), a
demand time series with zero values is created. This demand time series can be replaced with
SetDiversionDemandTSMonthly() commands, if necessary.

• If an IWR value for a month is zero, then the demand value for the month is set to zero (whether there
was a historical diversion or not). In this case the demand can later be adjusted to a larger value using
the CalculateDiversionDemandTSMonthlyAsMax() command.

• If the efficiency for a month is zero: if the IWR is zero, then the demand is set to zero; otherwise the
demand is set to missing.

 Command Reference – CalculateDiversionDemandTSMonthly() - 1 257

CalculateDiversionDemandTSMonthly() Command StateDMI Documentation

The following dialog is used to edit the command and illustrates the syntax of the command.

CalculateDiversionDemandTSMonthly

CalculateDiversionDemandTSMonthly() Command Editor

The command syntax is as follows:

CalculateDiversionDemandTSMonthly(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single diversion station identifier to match or a

pattern using wildcards (e.g., 20*).
None – must be
specified.

IfNotFound Used for error handling, one of the following:
• Fail – generate a failure message if the ID

is not matched
• Ignore – ignore (don’t add and don’t

generate a message) if the ID is not matched
• Warn – generate a warning message if the

ID is not matched

Warn

2 - Command Reference – CalculateDiversionDemandTSMonthly() 258

TSTool Documentation CalculateDiversionDemandTSMonthly () Command

The following abbreviated command file illustrates how irrigation water requirement time series can be
processed into average demand time series:

StartLog(LogFile="Cddm.commands.StateDMI.log")
Cddm.commands.StateDMI

StateDMI command file to create the Calculated demand file

Step 1 - set the output period, used to compute averages...

SetOutputPeriod(OutputStart="10/1908",OutputEnd="09/2005")
SetOutputYearType(OutputYearType=Water)

Step 2 - read historical diversion file -defines structures for *.ddm file
plus read *.ddh file

ReadDiversionStationsFromStateMod(InputFile="..\StateMod\cm2005.dds")
ReadDiversionHistoricalTSMonthlyFromStateMod(InputFile="..\StateMod\cm2005.ddh")

Step 3 - read StateCU *.iwr and *.def files (irrigation requirements and average efficiencies)

ReadIrrigationWaterRequirementTSMonthlyFromStateCU(InputFile="..\StateMod\cm2005.iwr")
calculateDiversionStationEfficiencies(ID="*",EffMin=0,EffMax=60,
 EffCalcStart=10/1974,EffCalcEnd=9/2004,LEZeroInAverage=False)
SetDiversionStationsFromList(ListFile="cm2005.def",IDCol="1",EffMonthlyCol="2",
 Delim="Space",MergeDelim=True)

Step 4 - determine calculated demand = iwr/efficiency
- take max of calculated demand and historical diversion

CalculateDiversionDemandTSMonthly(ID="*")
CalculateDiversionDemandTSMonthlyAsMax(ID="*")

Step 5 - set carriers nodes demand to 0, set full demand and summary demand nodes

set carrier "transbasin" diversion to Divide Creek to "0", use operating rules to satisfy demand
SetDiversionDemandTSMonthlyConstant(ID="724721",Constant=0)
place summary demand at the Moffat Tunnel, zero out collection points
SetDiversionDemandTSMonthly(ID="514655",TSID="514655..DivTotal.Month~StateMod~514655.stm")
… similar commands omitted…

Step 6 - set calculated demand to historic for structures whose historical acreage is
different from current

SetDiversionDemandTSMonthly(ID="360687",TSID="360687..DivTotal.MONTH~StateMod~..\StateMod\cm2005H.ddm")
SetDiversionDemandTSMonthly(ID="360725",TSID="360725..DivTotal.MONTH~StateMod~..\StateMod\cm2005H.ddm")
…similar commands omitted…

Set Ute WCD demand node structure and set other structures to zero
SetDiversionDemandTSMonthly(ID="950020",TSID="950020..DivTotal.Month~StateMod~950020.stm")
SetDiversionDemandTSMonthlyConstant(ID="950030",Constant=0)
… similar commands omitted…

Set Orchard Mesa Check
SetDiversionDemandTSMonthly(ID="950003",TSID="950003..DivTotal.MONTH~StateMod~..\StateMod\cm2005H.ddm")

Set Excess HUP node demands for Homestake, Dillon, Williams Fork, and Wolford Reservoirs
SetDiversionDemandTSMonthlyConstant(ID="954516D",Constant=999999)
…similar commands omitted…
Step 7 - write out calculated demand file

WriteDiversionDemandTSMonthlyToStateMod(OutputFile="..\StateMod\cm2005C.ddm")

Check the results
CheckDiversionDemandTSMonthly(ID="*")
WriteCheckFile(OutputFile="Cddm.commands.StateDMI.check.html")

 Command Reference – CalculateDiversionDemandTSMonthly () - 3 259

CalculateDiversionDemandTSMonthly() Command StateDMI Documentation

This page is intentionally blank.

4 - Command Reference – CalculateDiversionDemandTSMonthly() 260

Command Reference:
CalculateDiversionDemandTSMonthlyAsMax()

Calculate diversion demand time series (monthly) as the maximum of the existing

demands and the historical time series

StateMod Command
Version 3.09.01, 2010-02-01

The CalculateDiversionDemandTSMonthlyAsMax() command calculates diversion demand
time series (monthly) as the maximum of the existing demands and the historical diversion time series.
This command is typically used after the CalculateDiversionDemandTSMonthly() command.

If a diversion is defined as a MultiStruct, the primary diversion station will be checked using the sum of
the historical time series and a sum of the demand time series. Secondary diversion stations will not be
checked (the demand will likely have been set to zero in a previous
CalculateDiversionDemandTSMonthly() command).

If necessary, use set commands after this command to force demand time series values (e.g., zeros).

The following dialog is used to edit the command and illustrates the syntax of the command.

CalculateDiversionDemandTSMonthlyAsMax

CalculateDiversionDemandTSMonthlyAsMax() Command Editor

The command syntax is as follows:

CalculateDiversionDemandTSMonthlyAsMax(Parameter=value,…)

Command Reference – CalculateDiversionDemandTSMonthlyAsMax() - 1 261

CalculateDiversionDemandTSMonthlyAsMax() Command StateDMI Documentation

Command Parameters

Parameter Description Default
ID A single diversion station identifier to match or a

pattern using wildcards (e.g., 20*).
None – must be
specified.

IfNot
Found

Used for error handling, one of the following:
• Add – add the time series if the ID is not

matched and is not a wildcard
• Fail – generate a failure message if the ID

is not matched
• Ignore – ignore (don’t add and don’t

generate a message) if the ID is not matched
• Warn – generate a warning message if the

ID is not matched

Warn

The following abbreviated command file illustrates how irrigation water requirement time series can be
processed into average demand time series:

StartLog(LogFile="Cddm.commands.StateDMI.log")
Cddm.commands.StateDMI

StateDMI command file to create the Calculated demand file

Step 1 - set the output period, used to compute averages...

SetOutputPeriod(OutputStart="10/1908",OutputEnd="09/2005")
SetOutputYearType(OutputYearType=Water)

Step 2 - read historical diversion file -defines structures for *.ddm file
plus read *.ddh file

ReadDiversionStationsFromStateMod(InputFile="..\StateMod\cm2005.dds")
ReadDiversionHistoricalTSMonthlyFromStateMod(InputFile="..\StateMod\cm2005.ddh")

Step 3 - read StateCU *.iwr and *.def files (irrigation requirements and average efficiencies)

ReadIrrigationWaterRequirementTSMonthlyFromStateCU(InputFile="..\StateMod\cm2005.iwr")
calculateDiversionStationEfficiencies(ID="*",EffMin=0,EffMax=60,
 EffCalcStart=10/1974,EffCalcEnd=9/2004,LEZeroInAverage=False)
SetDiversionStationsFromList(ListFile="cm2005.def",IDCol="1",EffMonthlyCol="2",
 Delim="Space",MergeDelim=True)

Step 4 - determine calculated demand = iwr/efficiency
- take max of calculated demand and historical diversion

CalculateDiversionDemandTSMonthly(ID="*")
CalculateDiversionDemandTSMonthlyAsMax(ID="*")

Step 5 - set carriers nodes demand to 0, set full demand and summary demand nodes

set carrier "transbasin" diversion to Divide Creek to "0", use operating rules to satisfy
demand
SetDiversionDemandTSMonthlyConstant(ID="724721",Constant=0)
…similar commands omitted…
Step 7 - write out calculated demand file

WriteDiversionDemandTSMonthlyToStateMod(OutputFile="..\StateMod\cm2005C.ddm")

Check the results
CheckDiversionDemandTSMonthly(ID="*")
WriteCheckFile(OutputFile="Cddm.commands.StateDMI.check.html")

2 - Command Reference – CalculateDiversionDemandTSMonthlyAsMax() 262

Command Reference:
 CalculateDiversionStationEfficiencies()

Calculate diversion station average efficiencies using historical and irrigation

water requirement time series

StateMod Command
Version 3.09.01, 2010-02-01

This command is generally not used with current modeling procedures. Instead, a variable
efficiency approach is used where monthly average efficiencies are computed in StateCU and are
set in diversion stations using a SetDiversionStationsFromList(…,EffMonthlyCol=…)
command. This command is retained to duplicate previous work.

The CalculateDiversionStationEfficiencies() command calculates average monthly
efficiencies for diversion stations and updates the diversion station information in memory. Efficiencies
are calculated as irrigation water requirement divided by historical diversion time series. The detailed
results of calculations can optionally be printed to a report file. The diversion historical time series
(monthly) and irrigation water requirement time series (monthly) should be read or created with other
commands, and should be filled before calculations, if appropriate. Only StateMod diversion stations
with demand source for agricultural irrigation will be processed. The output year type must be specified
correctly because efficiencies are stored in diversion stations according to the year type for the StateMod
data set. Diversion MultiStruct stations are processed by using the total irrigation water requirement and
historical diversions for all stations in the MultiStruct. A
WriteDiversionStationsToStateMod() command must be executed to actually write the
updated efficiency data.

The following dialog is used to edit the command and illustrates the syntax of the command.

CalculateDiversionStationEfficiencies

CalculateDiversionStationEfficiencies() Command Editor

 Command Reference – CalculateDiversionStationEfficiencies() - 1 263

CalculateDiversionStationEfficiencies() Command StateDMI Documentation

The command syntax is as follows:

CalculateDiversionStationEfficiencies(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single diversion station identifier to match or a

pattern using wildcards (e.g., 20*).
None – must be
specified.

EffMin Minimum efficiency to allow, percent.
Calculated efficiencies less than this value will
be set to the minimum.

Do not constrain the
efficiency.

EffMax Maximum efficiency to allow, percent.
Calculated efficiencies greater than this value
will be set to the maximum.

Do not constrain the
efficiency.

EffCalcStart The start date (e.g., YYYY-MM) for efficiency
calculations. Use this to limit the period for data
considered in calculations.

Use the full period.

EffCalcEnd The end date (e.g., YYYY-MM) for efficiency
calculations. Use this to limit the period for data
considered in calculations.

Use the full period.

LEZeroInAverage If true, values less than or equal to zero will be
considered when computing monthly time series
averages. If false, values less than or equal to
zero will be excluded from the averages.

True

EffReportFile If specified, a high-detail report will be created,
listing for each diversion station the irrigation
water requirement, historical diversion, and
resulting efficiency values. Creating the report
slows processing slightly.

If blank, no report is
generated.

IfNotFound Used for error handling, one of the following:
• Fail – generate a failure message if the ID

is not matched
• Ignore – ignore (don’t add and don’t

generate a message) if the ID is not matched
• Warn – generate a warning message if the

ID is not matched

Warn

2 - Command Reference – CalculateDiversionStationEfficiencies() 264

Command Reference:
CalculateStreamEstimateCoefficients()

Calculate stream estimate coefficients data

StateMod Command

Version 3.09.01, 2010-02-01

The CalculateStreamEstimateCoefficients() command calculates stream estimate
coefficients for each stream estimate station that is in memory – the previous values will be overwritten.
If SetStreamEstimateCoefficientsPFGage() commands are used, they should be specified
before this command. Conversely, SetStreamEstimateCoefficients() commands, if used,
should be provided after this command. The following dialog is used to edit the command and illustrates
the syntax of the command.

CalculateStreamEstimateCoefficients

CalculateStreamEstimateCoefficients() Command Editor

The command syntax is as follows:

CalculateStreamEstimateCoefficients(Parameter=Value,,…)

Command Parameters

Parameter Description Default
 Currently, this command has no

parameters.

 Command Reference – CalculateStreamEstimateCoefficients() - 1 265

CalculateStreamEstimateCoefficients() Command StateDMI Documentation

The following command file illustrates how a StateMod stream estimate coefficients file can be created:

StartLog(LogFile="rib.commands.StateDMI.log")
rib.commands.StateDMI

Creates the Stream Estimate Station Coefficient Data file

Step 1 - read river nodes from the network file and create file framework

ReadStreamEstimateStationsFromNetwork(InputFile="..\Network\cm2005.net")

Step 2 - set preferred gages for "neighboring" gage approach
this baseflow nodes are generally on smaller non-gaged tribs and have
different flow characteristics than next downstream gages

SetStreamEstimateCoefficientsPFGage(ID="360645",GageID="09055300")
SetStreamEstimateCoefficientsPFGage(ID="360801",GageID="09055300")
SetStreamEstimateCoefficientsPFGage(ID="362002",GageID="09054000")
SetStreamEstimateCoefficientsPFGage(ID="360829",GageID="09047500")
..similar commands omitted…

Step 3 - calculate stream coefficients
CalculateStreamEstimateCoefficients()

Step 4 - set proration factors directly

SetStreamEstimateCoefficients(ID="364512",ProrationFactor=1.000,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="374641",ProrationFactor=0.200,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="374648",ProrationFactor=0.350,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="380880",ProrationFactor=1.000,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="381594",ProrationFactor=0.800,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="384617",ProrationFactor=0.700,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="510639",ProrationFactor=1.000,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="514603",ProrationFactor=0.800,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="514620",ProrationFactor=1.000,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="510728",ProrationFactor=1.000,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="530555",ProrationFactor=0.180,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="530678",ProrationFactor=0.230,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="531082",ProrationFactor=1.000,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="954683",ProrationFactor=0.400,IfNotFound=Warn)

Step 5 - create streamflow estimate coefficient file

WriteStreamEstimateCoefficientsToStateMod(OutputFile="..\StateMOD\cm2005.rib")

Check the results
CheckStreamEstimateCoefficients(ID="*")
WriteCheckFile(OutputFile="rib.commands.StateDMI.check.html")

2 - Command Reference – CalculateStreamEstimateCoefficients() 266

Command Reference:
CalculateWellDemandTSMonthly()

Calculate well demand time series (monthly) using irrigation water requirement

and average monthly efficiencies

StateMod Command
Version 3.09.01, 2010-02-01

The CalculateWellDemandTSMonthly() command calculates well demand time series (monthly)
by dividing the irrigation water requirement (IWR) time series (monthly) by average monthly efficiencies.
The IWR time series should have been read by a previous command. The well station efficiencies should
also have been calculated, set, or read using previous commands. The output year type must be specified
correctly because efficiencies are stored in well stations according to the year type for the StateMod data
set. If time series data are not available, a demand time series with zero values is created – this time
series can be replaced with SetWellDemandTSMonthly() commands, if necessary. Only well
stations that have a demand type (StateMod well station idvcomw) equal to one are processed. For
“diversion + well” well stations, the demand is typically calculated using only the diversion station IWR
and historical diversion time series and is written to the diversion demand time series file.

The following dialog is used to edit the command and illustrates the syntax of the command.

CalculateWellDemandTSMonthly

CalculateWellDemandTSMonthly() Command Editor

 Command Reference – CalculateWellDemandTSMonthly() - 1 267

CalculateWellDemandTSMonthly() Command StateDMI Documentation

The command syntax is as follows:

CalculateWellDemandTSMonthly(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single well station identifier to match or a

pattern using wildcards (e.g., 20*).
None – must be
specified.

IfNotFound Used for error handling, one of the following:
• Fail – generate a failure message if the ID

is not matched
• Ignore – ignore (don’t add and don’t

generate a message) if the ID is not matched
• Warn – generate a warning message if the

ID is not matched

Warn

2 - Command Reference – CalculateWellDemandTSMonthly() 268

Command Reference:
CalculateWellDemandTSMonthlyAsMax()

Calculate well demand time series (monthly) as the maximum of the existing

demands and the historical pumping time series

StateMod Command
Version 3.09.01, 2010-02-01

The CalculateWellDemandTSMonthlyAsMax() command calculates well demand time series
(monthly) as the maximum of the existing demands and the historical pumping time series.

The following dialog is used to edit the command and illustrates the syntax of the command.

CalculateWellDemandTSMonthlyAsMax

CalculateWellDemandTSMonthlyAsMax() Command Editor

 Command Reference – CalculateWellDemandTSMonthlyAsMax() - 1 269

CalculateWellDemandTSMonthlyAsMax() Command StateDMI Documentation

The command syntax is as follows:

CalculateWellDemandTSMonthlyAsMax(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single well station identifier to match or a

pattern using wildcards (e.g., 20*).
None – must be
specified.

IfNot
Found

Used for error handling, one of the following:
• Add – add the time series if the ID is not

matched and is not a wildcard
• Fail – generate a failure message if the ID

is not matched
• Ignore – ignore (don’t add and don’t

generate a message) if the ID is not matched
• Warn – generate a warning message if the

ID is not matched

Warn

2 - Command Reference – CalculateWellDemandTSMonthlyAsMax() 270

Command Reference:
CalculateWellStationEfficiencies()

Calculate well station average efficiencies using historical pumping and irrigation

water requirement time series

StateMod Command
Version 3.09.01, 2010-02-01

This command is generally not used with current modeling procedures. Instead, a variable
efficiency approach is used where monthly average efficiencies are computed in StateCU and are
set in well stations using a SetWellStationsFromList(…,EffMonthlyCol=…) command.
This command is retained to duplicate previous work.

The CalculateWellStationEfficiencies() command calculates average monthly efficiencies
for well stations and updates the well station information in memory. Efficiencies are calculated as
irrigation water requirement divided by historical well pumping time series. The detailed results of
calculations can optionally be printed to a report file. The well historical pumping time series (monthly)
and irrigation water requirement time series (monthly) should be read or created with other commands,
and should be filled before efficiency calculations, if appropriate. Only StateMod well stations with
demand type of 1 (monthly total demand) will be processed. The output year type must be specified
correctly because efficiencies are stored in diversion stations according to the year type for the StateMod
data set. A WriteWellStationsToStateMod() command must be executed to actually write the
updated efficiency data.

The following dialog is used to edit the command and illustrates the syntax of the command.

CalculateWellStationEfficiencies

CalculateWellStationEfficiencies() Command Editor

 Command Reference – CalculateWellStationEfficiencies() - 1 271

CalculateWellStationEfficiencies() Command StateDMI Documentation

The command syntax is as follows:

CalculateWellStationEfficiencies(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single well station identifier to match or a

pattern using wildcards (e.g., 20*).
None – must be
specified.

EffMin Minimum efficiency to allow, percent.
Calculated efficiencies less than this value will
be set to the minimum.

Do not constrain the
efficiency.

EffMax Maximum efficiency to allow, percent.
Calculated efficiencies greater than this value
will be set to the maximum.

Do not constrain the
efficiency.

EffCalcStart The start date (e.g., YYYY-MM) for efficiency
calculations. Use this to limit the period for data
considered in calculations.

Use the full period.

EffCalcEnd The end date (e.g., YYYY-MM) for efficiency
calculations. Use this to limit the period for data
considered in calculations.

Use the full period.

LEZeroInAverage If true, values less than or equal to zero will be
considered when computing monthly time series
averages. If false, values less than or equal to
zero will be excluded from the averages.

true

EffReportFile If specified, a high-detail report will be created,
listing for each well station the irrigation water
requirement, historical well pumping, and
resulting efficiency values. Creating the report
slows processing.

If blank, no report is
generated.

IfNotFound Used for error handling, one of the following:
• Fail – generate a failure message if the ID

is not matched
• Ignore – ignore (don’t add and don’t

generate a message) if the ID is not matched
• Warn – generate a warning message if the

ID is not matched

Warn

2 - Command Reference – CalculateWellStationEfficiencies() 272

Command Reference: CheckBlaneyCriddle()

Check Blaney-Criddle data for problems

StateCU Command
Version 3.08.02, 2010-01-05

The CheckBlaneyCriddle() command checks the Blaney-Criddle crop coefficient data for
problems. The command should usually be used with a WriteCheckFile() command at the end of a
command file.

The following dialog is used to edit the command and illustrates the syntax of the command.

CheckBlaneyCriddle

CheckBlaneyCriddle() Command Editor

 Command Reference – CheckBlaneyCriddle() - 1 273

CheckBlaneyCriddle() Command StateDMI Documentation

The command syntax is as follows:

CheckBlaneyCriddle(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID The name of the crop(s) to check. Use * to match

a pattern.
None – must be
specified.

IfNotFound One of the following:
• Fail – generate a failure message if the

identifier is not matched
• Ignore – ignore (don’t generate a message)

if the identifier is not matched
• Warn – generate a warning message if the

identifier is not matched

Warn

The following example command file illustrates how Blaney-Criddle coefficients can be defined,
checked, and written to a StateCU file:

StartLog(LogFile="Crops_KBC.StateDMI.log")

StateDMI commands to create the Rio Grande Blaney-Criddle coefficients File

History:

2004-03-16 Steven A. Malers, RTi Initial version using StateDMI.
2007-04-23 SAM, RTi Update for Rio Grande Phase 5.

Step 1 - read data from HydroBase

Read the general Blaney-Criddle coefficients first and then override with Rio Grande
data.
ReadBlaneyCriddleFromHydroBase(BlaneyCriddleMethod="BLANEY-CRIDDLE_TR-21")
ReadBlaneyCriddleFromHydroBase(BlaneyCriddleMethod="BLANEY-CRIDDLE_RIO_GRANDE")

Step 3 - write the file

SortBlaneyCriddle(Order=Ascending)
WriteBlaneyCriddleToStateCU(OutputFile="rg2007.kbc")

Check the results

CheckBlaneyCriddle(ID="*")
WriteCheckFile(OutputFile="rg2007.kbc.check.html")

2 - Command Reference – CheckBlaneyCriddle() 274

Command Reference: CheckClimateStations()

Check climate station data for problems

StateCU Command
Version 3.08.02, 2010-01-05

The CheckClimateStations() command checks the climate stations for problems. The command
should usually be used with a WriteCheckFile() command at the end of a command file.

The following dialog is used to edit the command and illustrates the syntax of the command.

CheckClimateStations

CheckClimateStations() Command Editor

 Command Reference – CheckClimateStations() - 1 275

CheckClimateStations() Command StateDMI Documentation

The command syntax is as follows:

CheckClimateStations(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID The identifier for the station(s) to check. Use * to

match a pattern.
None – must be
specified.

IfNotFound One of the following:
• Fail – generate a failure message if the

climate station identifier is not matched
• Ignore – ignore (don’t generate a message)

if the climate station identifier is not matched
• Warn – generate a warning message if the

climate station identifier is not matched

Warn

The following example command file illustrates how climate stations can be defined, sorted, checked, and
written to a StateCU file:

ReadClimateStationsFromList(ListFile="climsta.lst",IDCol=1)
FillClimateStationsFromHydroBase(ID="*")
SetClimateStation(ID="3016",Region2="14080106",IfNotFound=Warn)
SetClimateStation(ID="1018",Region2="14040106",IfNotFound=Warn)
SetClimateStation(ID="1928",Elevation=6440,IfNotFound=Warn)
SetClimateStation(ID="0484",Region1="MOFFAT",IfNotFound=Add)
SortClimateStations()
WriteClimateStationsToStateCU(OutputFile="COclim2006.cli")

Check the results

CheckClimateStations(ID="*")
WriteCheckFile(OutputFile="COclim2006.cli.check.html")

2 - Command Reference – CheckClimateStations () 276

Command Reference:
CheckCropCharacteristics()

Check crop characteristics data for problems

StateCU Command

Version 3.08.02, 2010-01-05

The CheckCropCharacteristics() command checks the crop characteristics data for problems.
The command should usually be used with a WriteCheckFile() command at the end of a command
file.

The following dialog is used to edit the command and illustrates the syntax of the command.

CheckCropCharacteristics

CheckCropCharacteristics() Command Editor

 Command Reference – CheckCropCharacteristics() - 1 277

CheckCropCharacteristics() Command StateDMI Documentation

The command syntax is as follows:

CheckCropCharacteristics(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID The name of the crop(s) to check. Use * to match

a pattern.
None – must be
specified.

IfNotFound One of the following:
• Fail – generate a failure message if the

identifier is not matched
• Ignore – ignore (don’t generate a message)

if the identifier is not matched
• Warn – generate a warning message if the

identifier is not matched

Warn

The following example command file illustrates how crop characteristics can be defined, checked, and
written to a StateCU file:

StartLog(LogFile="Crops_CCH.StateDMI.log")

StateDMI commands to create the Rio Grande Crop Characteristics File

History:

2004-03-16 Steven A. Malers, RTi Initial version using StateDMI.
2007-04-22 SAM, RTi Use new directory structure, current
software and HydroBase.

Step 1 - read data from HydroBase

Read the general TR-21 characteristics first and then override with Rio Grande
data.
ReadCropCharacteristicsFromHydroBase(CUMethod="BLANEY-CRIDDLE_TR-21")
ReadCropCharacteristicsFromHydroBase(CUMethod="BLANEY-CRIDDLE_RIO_GRANDE")

Step 2 - adjust crop characteristics if needed
No resets are needed.

Step 3 - write the file

WriteCropCharacteristicsToStateCU(OutputFile="rg2007.cch")

Check the results

CheckCropCharacteristics(ID="*")
WriteCheckFile(OutputFile="rg2007.cch.check.html")

2 - Command Reference – CheckCropCharacteristics () 278

Command Reference: CheckCropPatternTS()

Check crop pattern time series data for problems

StateCU Command
Version 3.08.02, 2010-01-05

The CheckCropPatternTS() command checks the crop pattern time series data for problems. The
command should usually be used with a WriteCheckFile() command at the end of a command file.

The following dialog is used to edit the command and illustrates the syntax of the command.

CheckCropPatternTS

CheckCropPatternTS() Command Editor

The command syntax is as follows:

CheckCropPatternTS(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID The name of the crop(s) to check. Use * to match a pattern. None – must be specified.
IfNotFound One of the following:

• Fail – generate a failure message if the identifier is
not matched

• Ignore – ignore (don’t generate a message) if the
identifier is not matched

• Warn – generate a warning message if the identifier is
not matched

Warn

 Command Reference – CheckCropPatternTS() - 1 279

CheckCropPatternTS() Command StateDMI Documentation

The following example command file illustrates how crop pattern time series can be defined, checked,
and written to a StateCU file:

Step 1 - Set output period and read CU locations
SetOutputPeriod(OutputStart="1950",OutputEnd="2006")
ReadCULocationsFromStateCU(InputFile="..\StateCU\cm2006.str")
Step 2 - Read SW aggregates
SetDiversionSystemFromList(ListFile="colorado_divsys.csv",IDCol=1,
 NameCol=2,PartIDsCol=3,PartsListedHow=InRow)
SetDiversionAggregateFromList(ListFile="colorado_agg.csv",IDCol=1,
 NameCol=2,PartIDsCol=3,PartsListedHow=InRow)
Step 3 - Create *.cds file form and read acreage/crops from HydroBase
CreateCropPatternTSForCULocations(ID="*",Units="ACRE")
ReadCropPatternTSFromHydroBase(ID="*")
Step 4 - Need to translate crops out of HB to include TR21 suffix
Translate all crops from HB to include .TR21 suffix
TranslateCropPatternTS(ID="*",OldCropType="GRASS_PASTURE",NewCropType="GRASS_PASTURE.TR21")
TranslateCropPatternTS(ID="*",OldCropType="CORN_GRAIN",NewCropType="CORN_GRAIN.TR21")
TranslateCropPatternTS(ID="*",OldCropType="ALFALFA",NewCropType="ALFALFA.TR21")
TranslateCropPatternTS(ID="*",OldCropType="SMALL_GRAINS",NewCropType="SPRING_GRAIN.TR21")
TranslateCropPatternTS(ID="*",OldCropType="VEGETABLES",NewCropType="VEGETABLES.TR21")
TranslateCropPatternTS(ID="*",OldCropType="ORCHARD_WO_COVER",NewCropType="ORCHARD_WO_COVER.TR21")
TranslateCropPatternTS(ID="*",OldCropType="ORCHARD_WITH_COVER",NewCropType="ORCHARD_WITH_COVER.TR21")
TranslateCropPatternTS(ID="*",OldCropType="DRY_BEANS",NewCropType="DRY_BEANS.TR21")
TranslateCropPatternTS(ID="*",OldCropType="GRAPES",NewCropType="GRAPES.TR21")
TranslateCropPatternTS(ID="*",OldCropType="WHEAT",NewCropType="SPRING_GRAIN.TR21")
TranslateCropPatternTS(ID="*",OldCropType="SUNFLOWER",NewCropType="SPRING_GRAIN.TR21")
TranslateCropPatternTS(ID="*",OldCropType="SOD_FARM",NewCropType="GRASS_PASTURE.TR21")
Step 5 - Translate crop names
use high-altitude coefficients for structures with more than 50% of
irrigated acreage above 6500 feet
TranslateCropPatternTS(ListFile="cm2005_HA.lst",IDCol=1,
 OldCropType="GRASS_PASTURE.TR21",NewCropType="GRASS_PASTURE.DWHA")
Step 6 - Fill Acreage
Fill SW structure acreage backword from 1999 to 1950
Fill acreage forward for all structures from 2000 to 2006
FillCropPatternTSRepeat(ID="*",CropType="*",FillStart=1950,FillEnd=1993,FillDirection=Backward)
FillCropPatternTSRepeat(ID="*",CropType="*",FillStart=1993,FillEnd=1999,FillDirection=Forward)
FillCropPatternTSRepeat(ID="*",CropType="*",FillStart=2000,FillEnd=2006,FillDirection=Forward)
Step 7 - Write final *.cds file
WriteCropPatternTSToStateCU(OutputFile="..\StateCU\cm2006.cds",
 WriteCropArea=True,WriteHow=OverwriteFile)
Check the results
CheckCropPatternTS(ID="*")
WriteCheckFile(OutputFile="cm2006.cds.StateDMI.check.html")

2 - Command Reference – CheckCropPatternTS () 280

Command Reference: CheckCULocations()

Check CU location data for problems

StateCU Command
Version 3.09.00, 2010-01-10

The CheckCULocations() command checks the CU Location data for problems. The command
should usually be used with a WriteCheckFile() command at the end of a command file.

The following dialog is used to edit the command and illustrates the syntax of the command.

CheckCULocations

CheckCULocations() Command Editor

The command syntax is as follows:

CheckCULocations(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID The identifier for the location(s) to check. Use *

to match a pattern.
None – must be
specified.

IfNotFound One of the following:
• Fail – generate a failure message if the

location identifier is not matched
• Ignore – ignore (don’t generate a message)

if the location identifier is not matched
• Warn – generate a warning message if the

location identifier is not matched

Warn

 Command Reference – CheckCULocations() - 1 281

CheckCULocations() Command StateDMI Documentation

The following example command file illustrates how CU locations can be defined, sorted, checked, and
written to a StateCU file (this is an abbreviated command file):

Sp2008L_STR.StateDMI
South Platte Decision Support System
Historic Consumptive Use Model
Structure File (*.str)

Step 1 - Read Structure List File (WDID, Name)

Structure List includes Key Structures from Task 3, Aggregate GW, and Aggregate SW
ReadCULocationsFromList(ListFile="Sp2008L_StructList.csv",IDCol=1,NameCol=3)

Step 2 - Read structure information from HydroBase (Latitude, County, HUC)
FillCULocationsFromHydroBase(ID="*",CULocType=Structure,Region1Type=County,Region2Type=HUC)

Step 3 - Assign AWC values based on Task 57, generate using the CDSS Toolbox

Key Structure AWC Values
SetCULocationsFromList(ListFile="AWC_2001.csv",IDCol=1,AWCCol=2)

GW AGG Structure AWC Values
SetCULocationsFromList(ListFile="AWC_Agg_GW.csv",IDCol=1,AWCCol=2)

SW AGG Structure AWC Values
SetCULocationsFromList(ListFile="AWC_Agg_SW.csv",IDCol=1,AWCCol=2)

Step 4 - Assign Elevation
FillCULocationsFromList(ListFile="Key_Elev.csv",IDCol=1,ElevationCol=3)

Step 5 - Set Demand Structure Information based on Demand Carrier
SetCULocation(ID="0100503_I",Latitude=40.38,Elevation=4533.00,Region1="WELD",
 Region2="10190003",AWC=0.1375,IfNotFound=Warn)
SetCULocation(I

SetCULocation(ID="6400526",AWC=0.1393,IfNotFound=Warn)

Missing values assigned to Diversion Systems
SetCULocation(ID="0100503_D",Latitude=40.28567,Region1="MORGAN",IfNotFound=Warn)
DivSys and Aggregate use weighted latitude from climate station assignments
County and HUC information not assigned to DivSys or Aggregate Structures

Step 6 - Read structure climate weights from list created from the CDSS Toolbox Climate Tool
SetCULocationClimateStationWeightsFromList(ListFile="Climate_2001.csv",IDCol=1,
 StationIDCol=2,TempWtCol=3,PrecWtCol=3)
SetCULocationClimateS
Set Climate Stations above 6500
SetCULocationClimateStationWeightsFromList(ListFile="SP2008_DWHA_OroAdj.csv",IDCol=1,
 StationIDCol=2,TempWtCol=3,PrecWtCol=4,OrographicTempAdjCol=6,OrographicPrecAdjCol=5)

Step 8 - Fill Key Climate Station

FillCULocationClimateStationWeights(ID="01*",IncludeOrographicTempAdj=False,
 IncludeOrographicPrecAdj=False,Weights="0945,1.0,1.0")

Step 7 - Write Structure File
SortCULocations()
WriteCULocationsToStateCU(OutputFile="SP2008L.str")
Check the results
CheckCULocations(ID="*")
WriteCheckFile(OutputFile="SP2008L.str.check.html")

2 - Command Reference – CheckCULocations () 282

Command Reference:
CheckDiversionDemandTSMonthly()

Check diversion demand time series (monthly) data for problems

StateMod Command

Version 3.09.01, 2010-02-05

The CheckDiversionDemandTSMonthly() command checks diversion demand monthly time
series for problems. The command should usually be used with a WriteCheckFile() command at
the end of a command file.

The following dialog is used to edit the command and illustrates the syntax of the command.

CheckDiversionDemandTSMonthly

CheckDiversionDemandTSMonthly() Command Editor

The command syntax is as follows:

CheckDiversionDemandTSMonthly(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID The identifier for the location(s) to check. Use *

to match a pattern.
None – must be
specified.

IfNotFound One of the following:
• Fail – generate a failure message if the

location identifier is not matched
• Ignore – ignore (don’t generate a message)

if the location identifier is not matched
• Warn – generate a warning message if the

location identifier is not matched

Warn

 Command Reference – CheckDiversionDemandTSMonthly() - 1 283

CheckDiversionDemandTSMonthly () Command StateDMI Documentation

The following excerpt from a command file illustrates how diversion demand time series can be checked
and written to a StateMod file:

Create diversion demand monthly time series file

WriteDiversionDemandTSMonthlyToStateMod(OutputFile="..\STATEMOD\rg2007C.ddm")

Check the results
CheckDiversionDemandTSMonthly(ID="*")
WriteCheckFile(OutputFile="Cddm.commands.StateDMI.check.html")

2 - Command Reference – CheckDiversionDemandTSMonthly () 284

Command Reference:
CheckDiversionHistoricalTSMonthly()

Check diversion historical time series (monthly) data for problems

StateMod Command

Version 3.09.01, 2010-02-05

The CheckDiversionHistoricalTSMonthly() command checks diversion historical monthly
time series for problems. The command should usually be used with a WriteCheckFile() command
at the end of a command file.

The following dialog is used to edit the command and illustrates the syntax of the command.

CheckDiversionHistoricalTSMonthly

CheckDiversionHistoricalTSMonthly() Command Editor

The command syntax is as follows:

CheckDiversionHistoricalTSMonthly(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID The identifier for the location(s) to check. Use *

to match a pattern.
None – must be
specified.

IfNotFound One of the following:
• Fail – generate a failure message if the

location identifier is not matched
• Ignore – ignore (don’t generate a message)

if the location identifier is not matched
• Warn – generate a warning message if the

location identifier is not matched

Warn

 Command Reference – CheckDiversionHistoricalTSMonthly() - 1 285

CheckDiversionHistoricalTSMonthly () Command StateDMI Documentation

The following excerpt from a command file illustrates how diversion historical time series can be checked
and written to a StateMod file:

Create diversion historical monthly time series file

WriteDiversionHistoricalTSMonthlyToStateMod(OutputFile="..\STATEMOD\rg2007.ddh")

Check the results
CheckDiversionHistoricalTSMonthly(ID="*")
WriteCheckFile(OutputFile="ddh.commands.StateDMI.check.html")

2 - Command Reference – CheckDiversionHistoricalTSMonthly () 286

Command Reference: CheckDiversionRights()

Check diversion rights data for problems

StateCU and StateMod Command
Version 3.09.00, 2010-01-24

The CheckDiversionRights() command checks diversion rights data for problems. The command
should usually be used with a WriteCheckFile() command at the end of a command file.

The following dialog is used to edit the command and illustrates the syntax of the command.

CheckDiversionRights

CheckDiversionRights() Command Editor

The command syntax is as follows:

CheckDiversionRights(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID The identifier for the location(s) to check. Use *

to match a pattern.
None – must be
specified.

IfNotFound One of the following:
• Fail – generate a failure message if the

location identifier is not matched
• Ignore – ignore (don’t generate a message)

if the location identifier is not matched
• Warn – generate a warning message if the

location identifier is not matched

Warn

 Command Reference – CheckDiversionRights() - 1 287

CheckDiversionRights() Command StateDMI Documentation

The following excerpt from a command file illustrates how diversion rights can be checked and written to
a StateMod file:

Create direct diversion rights file

WriteDiversionRightsToStateMod(OutputFile="..\STATEMOD\cm2005.ddr")

Check the results
CheckDiversionRights(ID="*")
WriteCheckFile(OutputFile="ddr.commands.StateDMI.check.html")

2 - Command Reference – CheckDiversionRights () 288

Command Reference: CheckDiversionStations()

Check diversion stations data for problems

StateMod Command
Version 3.09.01, 2010-02-01

The CheckDiversionStations() command checks diversion stations data for problems. The
command should usually be used with a WriteCheckFile() command at the end of a command file.

The following dialog is used to edit the command and illustrates the syntax of the command.

CheckDiversionStations

CheckDiversionStations() Command Editor

The command syntax is as follows:

CheckDiversionStations(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID The identifier for the location(s) to check. Use *

to match a pattern.
None – must be
specified.

IfNotFound One of the following:
• Fail – generate a failure message if the

location identifier is not matched
• Ignore – ignore (don’t generate a message)

if the location identifier is not matched
• Warn – generate a warning message if the

location identifier is not matched

Warn

 Command Reference – CheckDiversionStations() - 1 289

CheckDiversionStations() Command StateDMI Documentation

The following excerpt from a command file illustrates how diversion stations can be checked and written
to a StateMod file:

Create direct diversion stations file

WriteDiversionStationsToStateMod(OutputFile="..\STATEMOD\cm2005.dds")

Check the results
CheckDiversionStations (ID="*")
WriteCheckFile(OutputFile="dds.commands.StateDMI.check.html")

2 - Command Reference – CheckDiversionStations () 290

Command Reference:
CheckInstreamFlowDemandTSAverageMonthly()

Check instream flow demand time series (average monthly) data for problems

StateMod Command

Version 3.09.01, 2010-02-01

The CheckInstreamFlowDemandTSAverageMonthly() command checks instream flow
demand time series (average monthly) data for problems. The command should usually be used with a
WriteCheckFile() command at the end of a command file.

The following dialog is used to edit the command and illustrates the syntax of the command.

CheckInstreamFlowDemandTSAverageMonthly

CheckInstreamFlowDemandTSAverageMonthly() Command Editor

The command syntax is as follows:

CheckInstreamFlowDemandTSAverageMonthly(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID The identifier for the location(s) to check. Use *

to match a pattern.
None – must be
specified.

IfNotFound One of the following:
• Fail – generate a failure message if the

location identifier is not matched
• Ignore – ignore (don’t generate a message)

if the location identifier is not matched
• Warn – generate a warning message if the

location identifier is not matched

Warn

 Command Reference – CheckInstreamFlowDemandTSAverageMonthly() - 1 291

CheckInstreamFlowDemandTSAverageMonthly () Command StateDMI Documentation

The following excerpt from a command file illustrates how instream flow demand time series can be
checked and written to a StateMod file:

Create instream demand time series file

WriteInstreamFlowDemandTSAverageMonthlyToStateMod(OutputFile="..\STATEMOD\cm2005.ifa")

Check the results
CheckInstreamFlowDemandTSAverageMonthly(ID="*")
WriteCheckFile(OutputFile="ifa.commands.StateDMI.check.html")

2 - Command Reference – CheckInstreamFlowDemandTSAverageMonthly () 292

Command Reference:
CheckInstreamFlowRights()

Check instream flow rights data for problems

StateMod Command

Version 3.09.01, 2010-02-01

The CheckInstreamFlowRights() command checks instream flow rights data for problems. The
command should usually be used with a WriteCheckFile() command at the end of a command file.

The following dialog is used to edit the command and illustrates the syntax of the command.

CheckInstreamFlowRights

CheckInstreamFlowRights() Command Editor

The command syntax is as follows:

CheckInstreamFlowRights(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID The identifier for the location(s) to check. Use *

to match a pattern.
None – must be
specified.

IfNotFound One of the following:
• Fail – generate a failure message if the

location identifier is not matched
• Ignore – ignore (don’t generate a message)

if the location identifier is not matched
• Warn – generate a warning message if the

location identifier is not matched

Warn

 Command Reference – CheckInstreamFlowRights() - 1 293

CheckInstreamFlowRights() Command StateDMI Documentation

The following excerpt from a command file illustrates how instream flow rights can be checked and
written to a StateMod file:

Create instream flow rights file

WriteInstreamFlowRightsToStateMod(OutputFile="..\STATEMOD\cm2005.ifr")

Check the results
CheckInstreamFlowRights(ID="*")
WriteCheckFile(OutputFile="ifr.commands.StateDMI.check.html")

2 - Command Reference – CheckInstreamFlowRights () 294

Command Reference:
CheckInstreamFlowStations()

Check instream flow stations data for problems

StateMod Command

Version 3.09.01, 2010-02-01

The CheckInstreamFlowStations() command checks instream flow stations data for problems.
The command should usually be used with a WriteCheckFile() command at the end of a command
file.

The following dialog is used to edit the command and illustrates the syntax of the command.

CheckInstreamFlowStations

CheckInstreamFlowStations() Command Editor

 Command Reference – CheckInstreamFlowStations() - 1 295

CheckInstreamFlowStations() Command StateDMI Documentation

The command syntax is as follows:

CheckInstreamFlowStations(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID The identifier for the location(s) to check. Use * to match a

pattern.
None – must be
specified.

IfNotFound One of the following:
• Fail – generate a failure message if the location identifier

is not matched
• Ignore – ignore (don’t generate a message) if the location

identifier is not matched
• Warn – generate a warning message if the location

identifier is not matched

Warn

The following excerpt from a command file illustrates how instream flow stations can be checked and
written to a StateMod file:

Create instream flow stations file

WriteInstreamFlowStationsToStateMod(OutputFile="..\STATEMOD\cm2005.ifs")

Check the results
CheckInstreamFlowStations (ID="*")
WriteCheckFile(OutputFile="ifs.commands.StateDMI.check.html")

2 - Command Reference – CheckInstreamFlowStations () 296

Command Reference:
CheckIrrigationPracticeTS()

Check irrigation practice time series data for problems

StateCU Command

Version 3.08.02, 2010-01-05

The CheckIrrigationPracticeTS() command checks the irrigation practice time series data for
problems. The command should usually be used with a WriteCheckFile() command at the end of a
command file.

The following dialog is used to edit the command and illustrates the syntax of the command.

CheckIrrigationPracticeTS

CheckIrrigationPracticeTS() Command Editor

The command syntax is as follows:

CheckIrrigationPracticeTS(Parameter=Value,…)

 Command Reference – CheckIrrigationPracticeTS() - 1 297

CheckIrrigationPracticeTS() Command StateDMI Documentation

Command Parameters

Parameter Description Default
ID The location identifiers for the time series to check. Use *

to match a pattern.
None – must be specified.

IfNotFound One of the following:
• Fail – generate a failure message if the identifier is

not matched
• Ignore – ignore (don’t generate a message) if the

identifier is not matched
• Warn – generate a warning message if the identifier is

not matched

Warn

The following excerpt from a command file illustrates how irrigation practice time series can be checked
and written to a StateCU file:

Create irrigation practice file

WriteIrrigationPracticeTSToStateCU(OutputFile="cm2006.ipy")

Check the results
CheckIrrigationPracticeTS(ID="*")
WriteCheckFile(OutputFile="ipy.commands.StateDMI.check.html")

2 - Command Reference – CheckIrrigationPracticeTS () 298

Command Reference: CheckPenmanMonteith()

Check Penman-Monteith data for problems

StateCU Command
Version 3.10.00, 2010-04-02

The CheckPenmanMonteith() command checks the Penman-Monteith crop coefficient data for
problems. The command should usually be used with a WriteCheckFile() command at the end of a
command file.

The following dialog is used to edit the command and illustrates the syntax of the command.

CheckPenmanMonteith

CheckPenmanMonteith() Command Editor

 Command Reference – CheckPenmanMonteith () - 1 299

CheckPenmanMonteith() Command StateDMI Documentation

The command syntax is as follows:

CheckPenmanMonteith(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID The name of the crop(s) to check. Use * to match

a pattern.
None – must be
specified.

IfNotFound One of the following:
• Fail – generate a failure message if the

identifier is not matched
• Ignore – ignore (don’t generate a message)

if the identifier is not matched
• Warn – generate a warning message if the

identifier is not matched

Warn

The following example command file illustrates how Penman-Monteith coefficients can be defined,
checked, and written to a StateCU file:

StartLog(LogFile="Crops_KPM.StateDMI.log")

StateDMI commands to create the Penman-Monteith crop coefficients file

Step 1 - read data from HydroBase

Read the general ASCE standardized coefficients
ReadPenmanMonteithFromHydroBase(PenmanMonteithMethod="PENMAN-MONTEITH_ALFALFA")

Step 3 - write the file

SortPenmanMonteith()
WritePenmanMonteithToStateCU(OutputFile="rg2007.kpm")

Check the results

CheckPenmanMonteith(ID="*")
WriteCheckFile(OutputFile="Crops_KPM.StateDMI.check.html")

2 - Command Reference – CheckPenmanMonteith () 300

Command Reference: CheckReservoirRights()

Check reservoir rights data for problems

StateMod Command
Version 3.09.01, 2010-02-01

The CheckReservoirRights() command checks reservoir rights data for problems. The command
should usually be used with a WriteCheckFile() command at the end of a command file.

The following dialog is used to edit the command and illustrates the syntax of the command.

CheckReservoirRights

CheckReservoirRights() Command Editor

The command syntax is as follows:

CheckReservoirRights(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID The identifier for the location(s) to check. Use *

to match a pattern.
None – must be
specified.

IfNotFound One of the following:
• Fail – generate a failure message if the

location identifier is not matched
• Ignore – ignore (don’t generate a message)

if the location identifier is not matched
• Warn – generate a warning message if the

location identifier is not matched

Warn

 Command Reference – CheckReservoirRights() - 1 301

CheckReservoirRights() Command StateDMI Documentation

The following excerpt from a command file illustrates how reservoir rights can be checked and written to
a StateMod file:

Create reservoir rights file

WriteReservoirRightsToStateMod(OutputFile="..\STATEMOD\cm2005.rer")

Check the results
CheckReservoirRights(ID="*")
WriteCheckFile(OutputFile="ddr.commands.StateDMI.check.html")

2 - Command Reference – CheckReservoirRights () 302

Command Reference: CheckReservoirStations()

Check reservoir stations data for problems

StateMod Command
Version 3.09.01, 2010-02-01

The CheckReservoirStations() command checks reservoir stations data for problems. The
command should usually be used with a WriteCheckFile() command at the end of a command file.

The following dialog is used to edit the command and illustrates the syntax of the command.

CheckReservoirStations

CheckReservoirStations() Command Editor

The command syntax is as follows:

CheckReservoirStations(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID The identifier for the location(s) to check. Use *

to match a pattern.
None – must be
specified.

IfNotFound One of the following:
• Fail – generate a failure message if the

location identifier is not matched
• Ignore – ignore (don’t generate a message)

if the location identifier is not matched
• Warn – generate a warning message if the

location identifier is not matched

Warn

 Command Reference – CheckReservoirStations() - 1 303

CheckReservoirStations() Command StateDMI Documentation

The following excerpt from a command file illustrates how reservoir stations can be checked and written
to a StateMod file:

Create reservoir stations file

WriteReservoirStationsToStateMod(OutputFile="..\STATEMOD\cm2005.res")

Check the results
CheckReservoirStations (ID="*")
WriteCheckFile(OutputFile="res.commands.StateDMI.check.html")

2 - Command Reference – CheckReservoirStations () 304

Command Reference: CheckRiverNetwork()

Check river network data for problems

StateMod Command
Version 3.09.01, 2010-02-03

The CheckRiverNetwork() command checks river network data for problems. The command
should usually be used with a WriteCheckFile() command at the end of a command file.

The following dialog is used to edit the command and illustrates the syntax of the command.

CheckRiverNetwork

CheckRiverNetwork() Command Editor

The command syntax is as follows:

CheckRiverNetwork(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID The identifier for the location(s) to check. Use *

to match a pattern.
None – must be
specified.

IfNotFound One of the following:
• Fail – generate a failure message if the

location identifier is not matched
• Ignore – ignore (don’t generate a message)

if the location identifier is not matched
• Warn – generate a warning message if the

location identifier is not matched

Warn

 Command Reference – CheckRiverNetwork() - 1 305

CheckRiverNetwork() Command StateDMI Documentation

The following command file illustrates how a StateMod river network file can be created from the
generalized network file:

StartLog(LogFile="rin.commands.StateDMI.log")
rin.commands.StateDMI

creates the river network file for the Colorado River monthly/daily models

Step 1 - read river nodes from the network file and create file framework

ReadNetworkFromStateMod(InputFile="cm2005.net")
CreateRiverNetworkFromNetwork()

Step 2 - get node (diversion, stream stations, reservoirs, instream flows)
names from HydroBase

FillRiverNetworkFromHydroBase(ID="*",NameFormat=StationName_NodeType)

Step 3 - read missing node names from network file

FillRiverNetworkFromNetwork(ID="*",NameFormat="StationName_NodeType",
 CommentFormat="StationID")

Step 4 - create StateMod river network file

WriteRiverNetworkToStateMod(OutputFile="..\StateMod\cm2005.rin")

Check the results
CheckRiverNetwork(ID="*")
WriteCheckFile(OutputFile="rin.commands.StateDMI.check.html")

2 - Command Reference – CheckRiverNetwork() 306

Command Reference:
CheckStreamEstimateCoefficients()

Check stream estimate coefficients data for problems

StateMod Command

Version 3.09.01, 2010-02-01

The CheckStreamEstimateCoefficients() command checks stream estimate coefficients data
for problems. The command should usually be used with a WriteCheckFile() command at the end
of a command file.

The following dialog is used to edit the command and illustrates the syntax of the command.

CheckStreamEstimateCoefficients

CheckStreamEstimateCoefficients() Command Editor

The command syntax is as follows:

CheckStreamEstimateCoefficients(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID The identifier for the location(s) to check. Use *

to match a pattern.
None – must be
specified.

IfNotFound One of the following:
• Fail – generate a failure message if the

location identifier is not matched
• Ignore – ignore (don’t generate a message)

if the location identifier is not matched
• Warn – generate a warning message if the

location identifier is not matched

Warn

 Command Reference – CheckStreamEstimateStations() - 1 307

CheckStreamEstimateStations() Command StateDMI Documentation

The following command file illustrates how a StateMod stream estimate coefficients file can be created:

StartLog(LogFile="rib.commands.StateDMI.log")
rib.commands.StateDMI

Creates the Stream Estimate Station Coefficient Data file

Step 1 - read river nodes from the network file and create file framework

ReadStreamEstimateStationsFromNetwork(InputFile="..\Network\cm2005.net")

Step 2 - set preferred gages for "neighboring" gage approach
this baseflow nodes are generally on smaller non-gaged tribs and have
different flow characteristics than next downstream gages

SetStreamEstimateCoefficientsPFGage(ID="360645",GageID="09055300")
SetStreamEstimateCoefficientsPFGage(ID="360801",GageID="09055300")
SetStreamEstimateCoefficientsPFGage(ID="362002",GageID="09054000")
SetStreamEstimateCoefficientsPFGage(ID="360829",GageID="09047500")
..similar commands omitted…

Step 3 - calculate stream coefficients
CalculateStreamEstimateCoefficients()

Step 4 - set proration factors directly

SetStreamEstimateCoefficients(ID="364512",ProrationFactor=1.000,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="374641",ProrationFactor=0.200,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="374648",ProrationFactor=0.350,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="380880",ProrationFactor=1.000,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="381594",ProrationFactor=0.800,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="384617",ProrationFactor=0.700,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="510639",ProrationFactor=1.000,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="514603",ProrationFactor=0.800,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="514620",ProrationFactor=1.000,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="510728",ProrationFactor=1.000,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="530555",ProrationFactor=0.180,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="530678",ProrationFactor=0.230,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="531082",ProrationFactor=1.000,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="954683",ProrationFactor=0.400,IfNotFound=Warn)

Step 5 - create streamflow estimate coefficient file

WriteStreamEstimateCoefficientsToStateMod(OutputFile="..\StateMOD\cm2005.rib")

Check the results
CheckStreamEstimateCoefficients(ID="*")
WriteCheckFile(OutputFile="rib.commands.StateDMI.check.html")

2 - Command Reference – CheckStreamEstimateStations () 308

Command Reference:
CheckStreamEstimateStations()

Check stream estimate stations data for problems

StateMod Command

Version 3.09.01, 2010-02-01

The CheckStreamEstimateStations() command checks stream estimate stations data for
problems. The command should usually be used with a WriteCheckFile() command at the end of a
command file.

The following dialog is used to edit the command and illustrates the syntax of the command.

CheckStreamEstimateStations

CheckStreamEstimateStations() Command Editor

The command syntax is as follows:

CheckStreamEstimateStations(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID The identifier for the location(s) to check. Use *

to match a pattern.
None – must be
specified.

IfNotFound One of the following:
• Fail – generate a failure message if the

location identifier is not matched
• Ignore – ignore (don’t generate a message)

if the location identifier is not matched
• Warn – generate a warning message if the

location identifier is not matched

Warn

 Command Reference – CheckStreamEstimateStations() - 1 309

CheckStreamEstimateStations() Command StateDMI Documentation

The following excerpt from a command file illustrates how stream estimate stations can be checked and
written to a StateMod file:

Create stream gage stations file

WriteStreamEstimateStationsToStateMod(OutputFile="..\STATEMOD\cm2005.ses")

Check the results
CheckStreamEstimateStations (ID="*")
WriteCheckFile(OutputFile="ses.commands.StateDMI.check.html")

2 - Command Reference – CheckStreamEstimateStations () 310

Command Reference:
CheckStreamGageStations()

Check stream gage stations data for problems

StateMod Command

Version 3.09.01, 2010-02-01

The CheckStreamGageStations() command checks stream gage stations data for problems. The
command should usually be used with a WriteCheckFile() command at the end of a command file.

The following dialog is used to edit the command and illustrates the syntax of the command.

CheckStreamGageStations

CheckStreamGageStations() Command Editor

The command syntax is as follows:

CheckStreamGageStations(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID The identifier for the location(s) to check. Use *

to match a pattern.
None – must be
specified.

IfNotFound One of the following:
• Fail – generate a failure message if the

location identifier is not matched
• Ignore – ignore (don’t generate a message)

if the location identifier is not matched
• Warn – generate a warning message if the

location identifier is not matched

Warn

 Command Reference – CheckStreamGageStations() - 1 311

CheckStreamGageStations() Command StateDMI Documentation

The following excerpt from a command file illustrates how stream gage stations can be checked and
written to a StateMod file:

Create stream gage stations file

WriteStreamGageStationsToStateMod(OutputFile="..\STATEMOD\cm2005.ris")

Check the results
CheckStreamGageStations (ID="*")
WriteCheckFile(OutputFile="ris.commands.StateDMI.check.html")

2 - Command Reference – CheckStreamGageStations () 312

Command Reference:
CheckWellDemandTSMonthly()

Check well demand time series (monthly) data for problems

StateMod Command

Version 3.09.00, 2010-01-24

The CheckWellDemandTSMonthly() command checks well demand monthly time series for
problems. The command should usually be used with a WriteCheckFile() command at the end of a
command file.

The following dialog is used to edit the command and illustrates the syntax of the command.

CheckWellDemandTSMonthly

CheckWellDemandTSMonthly() Command Editor

The command syntax is as follows:

CheckWellDemandTSMonthly(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID The identifier for the location(s) to check. Use *

to match a pattern.
None – must be
specified.

IfNotFound One of the following:
• Fail – generate a failure message if the

location identifier is not matched
• Ignore – ignore (don’t generate a message)

if the location identifier is not matched
• Warn – generate a warning message if the

location identifier is not matched

Warn

 Command Reference – CheckWellDemandTSMonthly() - 1 313

CheckWellDemandTSMonthly () Command StateDMI Documentation

The following excerpt from a command file illustrates how well demand time series can be checked and
written to a StateMod file:

Create well demand file

WriteWellDemandTSMonthlyToStateMod(OutputFile="..\STATEMOD\rg2007.wem")

Check the results
CheckWellDemandTSMonthly(ID="*")
WriteCheckFile(OutputFile="wem.commands.StateDMI.check.html")

2 - Command Reference – CheckWellDemandTSMonthly () 314

Command Reference:
CheckWellHistoricalPumpingTSMonthly()

Check well historical pumping (monthly) data for problems

StateCU and StateMod Command

Version 3.09.00, 2010-01-24

The CheckWellHistoricalPumpingTSMonthly() command checks well historical pumping
monthly time series for problems. The command should usually be used with a WriteCheckFile()
command at the end of a command file.

The following dialog is used to edit the command and illustrates the syntax of the command.

CheckWellHistoricalPumpingTSMonthly

CheckWellHistoricalPumpingTSMonthly() Command Editor

The command syntax is as follows:

CheckWellHistoricalPumpingTSMonthly(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID The identifier for the location(s) to check. Use *

to match a pattern.
None – must be
specified.

IfNotFound One of the following:
• Fail – generate a failure message if the

location identifier is not matched
• Ignore – ignore (don’t generate a message)

if the location identifier is not matched
• Warn – generate a warning message if the

location identifier is not matched

Warn

 Command Reference – CheckWellHistoricalPumpingTSMonthly() - 1 315

CheckWellHistoricalPumpingTSMonthly () Command StateDMI Documentation

The following excerpt from a command file illustrates how well historical pumping time series can be
checked and written to a StateMod file:

Create well pumping file

WriteWellHistoricalPumpingTSMonthlyToStateMod(OutputFile="..\STATEMOD\rg2007.weh")

Check the results
CheckWellHistoricalPumpingTSMonthly(ID="*")
WriteCheckFile(OutputFile="weh.commands.StateDMI.check.html")

2 - Command Reference – CheckWellHistoricalPumpingTSMonthly () 316

Command Reference: CheckWellRights()

Check well rights data for problems

StateCU and StateMod Command
Version 3.09.00, 2010-01-24

The CheckWellRights() command checks well rights data for problems. The command should
usually be used with a WriteCheckFile() command at the end of a command file.

The following dialog is used to edit the command and illustrates the syntax of the command.

CheckWellRights

CheckWellRights() Command Editor

The command syntax is as follows:

CheckWellRights(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID The identifier for the location(s) to check. Use *

to match a pattern.
None – must be
specified.

IfNotFound One of the following:
• Fail – generate a failure message if the

location identifier is not matched
• Ignore – ignore (don’t generate a message)

if the location identifier is not matched
• Warn – generate a warning message if the

location identifier is not matched

Warn

 Command Reference – CheckWellRights() - 1 317

CheckWellRights() Command StateDMI Documentation

The following example command file illustrates how well rights can be defined, sorted, checked, and
written to a StateMod file:

Well Rights File (*.wer)

StartLog(LogFile="Sp2008L_WER.log")

Step 1 - Read all structures

ReadWellStationsFromNetwork(InputFile="..\Network\Sp2008L.net")
SortWellStations()

Step 2 - define diversion and d&w aggregates and demand systems
SetWellAggregateFromList(ListFile="..\Sp2008L_SWAgg.csv",PartType=Ditch,IDCol=1,
 NameCol=2,PartIDsCol=3,PartsListedHow=InColumn,IfNotFound=Warn)
SetWellSystemFromList(ListFile="..\Sp2008L_DivSys_DDH.csv",PartType=Ditch,IDCol=1,
 NameCol=2,PartIDsCol=3,PartsListedHow=InRow,IfNotFound=Warn)

SetWellAggregateFromList(ListFile="Sp2008L_AugRchWell_Aggregates.csv",PartType=Well,
 IDCol=1,PartIDsCol=2,PartsListedHow=InRow)

Step 3- Set Well aggregates (GW Only lands)
rrb Same as provided by LRE as Sp_GWAgg_xxxx.csv except non WD 01 and 64 removed
SetWellSystemFromList(ListFile="..\Sp2008L_GWAgg_1956.csv",Year=1956,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\Sp2008L_GWAgg_1976.csv",Year=1976,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\Sp2008L_GWAgg_1987.csv",Year=1987,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\Sp2008L_GWAgg_2001.csv",Year=2001,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\Sp2008L_GWAgg_2005.csv",Year=2005,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)

Step 4 - Read Augmentation and Recharge Well Aggregate Parts
SetWellAggregateFromList(ListFile="Sp2008L_AugRchWell_Aggregates.csv",PartType=Well,
 IDCol=1,PartIDsCol=2,PartsListedHow=InRow,PartIDsColMax=25,IfNotFound=Ignore)
SetWellAggregateFromList(ListFile="Sp2008L_AlternatePoint_Aggregates.csv",PartType=Well,
 IDCol=1,PartIDsCol=2,PartsListedHow=InRow,PartIDsColMax=1,IfNotFound=Ignore)

Step 5 - Read rights from HydroBase
ReadWellRightsFromHydroBase(ID="*",IDFormat="HydroBaseID",Year="1956,1976,1987,2001,2005",
 Div="1",DefaultAppropriationDate="1950-01-01",DefineRightHow=RightIfAvailable,
 ReadWellRights=True,UseApex=True,OnOffDefault=AppropriationDate)

Step 6 - Sort and Write
Write Data Comments="True" provides output used for subsequent cds & ipy acreage filling
Write Data Comments="False" provides merged file used for seting ipy max pumping
SortWellRights(Order=LocationIDAscending,Order2=IDAscending)

WriteWellRightsToStateMod(OutputFile="Sp2008L_NotMerged.wer",WriteDataComments=True)
MergeWellRights(OutputFile="..\StateMod\Historic\Sp2008L.wer")
SortWellRights(Order=LocationIDAscending,Order2=IDAscending)

WriteWellRightsToStateMod(OutputFile="Sp2008L.wer",
 WriteDataComments=False,WriteHow=OverwriteFile)
Check the well rights
CheckWellRights(ID="*")
WriteCheckFile(OutputFile="Sp2008L.wer.check.html",Title="Well Rights Check File")

2 - Command Reference – CheckWellRights () 318

Command Reference: CheckWellStations()

Check well stations data for problems

StateMod Command
Version 3.09.01, 2010-02-01

The CheckWellStations() command checks well stations data for problems. The command should
usually be used with a WriteCheckFile() command at the end of a command file.

The following dialog is used to edit the command and illustrates the syntax of the command.

CheckWellStations

CheckWellStations() Command Editor

The command syntax is as follows:

CheckWellStations(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID The identifier for the location(s) to check. Use *

to match a pattern.
None – must be
specified.

IfNotFound One of the following:
• Fail – generate a failure message if the

location identifier is not matched
• Ignore – ignore (don’t generate a message)

if the location identifier is not matched
• Warn – generate a warning message if the

location identifier is not matched

Warn

 Command Reference – CheckWellStations() - 1 319

CheckWellStations() Command StateDMI Documentation

The following excerpt from a command file illustrates how diversion stations can be checked and written
to a StateMod file:

Create well stations file

WriteWellStationsToStateMod(OutputFile="..\STATEMOD\rg2007.wes")

Check the results
CheckWellStations (ID="*")
WriteCheckFile(OutputFile="wes.commands.StateDMI.check.html")

2 - Command Reference – CheckWellStations () 320

Command Reference: CompareFiles()
Compare text files to determine whether they are different

General Command

Version 03.08.02, 2010-01-06

The CompareFiles() command compares text files to determine data differences. For example, the
command can be used to compare old and new files produced by a software process.

Each line in the file is compared. By default, lines beginning with # are treated as comment lines and are
ignored (see CommentLineChar to specify the comment indicator). Therefore, only non-comment
lines are compared. Differences and simple statistics are printed to the log file. A warning can be
generated if a difference is detected or if no differences are detected.

The following dialog is used to edit the command and illustrates the syntax for the command.

CompareFiles

CompareFiles() Command Editor

 Command Reference – CompareFiles() - 1 321

CompareFiles() Command StateDMI Documentation

The command syntax is as follows:

CompareFiles(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile1 The name of the first file to read. Enclose the name in

double quotes to protect whitespace and special
characters.

None – the file name
is required.

InputFile2 The name of the second file to read. Enclose the name in
double quotes to protect whitespace and special
characters.

None – the file name
is required.

CommentLineChar The character(s) that if found at the start of a line
indicate comment lines. Comment lines are ignored in
the comparison because they typically may include
information such as date/time that changes even if the
remainder of the file contents are the same.

#

WarnIfDifferent If True and at least one difference is detected, a warning
will be generated by the command, which will result in
software like TSTool displaying a warning. If False,
only status messages are written to the log file. The
warning is useful if it is critical to detect any difference
in the files.

Do not generate a
warning if the files
are different.
Differences are
printed to the log
file.

WarnIfSame If True and no differences are detected, a warning will
be generated by the command, which will result in
software like TSTool displaying a warning. If False,
only status messages are written to the log file. The
warning is useful if it is critical to detect files that are the
same.

Do not generate a
warning if the files
are the same.

The following example illustrates how two files can be compared. For example, use similar commands to
compare results from two model runs, two database queries, or when testing software:

CompareFiles(InputFile1="Data/A1.txt",InputFile2="Data/B1.txt",
 WarnIfDifferent=True)

Command Reference – CompareFiles() - 2 322

Command Reference:
CreateCropPatternTSForCULocations()

Create empty crop pattern time series for each CU Location

StateCU Command

Version 3.09.01, 2010-02-01

The CreateCropPatternTSForCULocations() command creates empty crop pattern time series
for each CU Location. This is necessary to ensure that the crop pattern time series are in the same order
as the CU locations and that lists of crop pattern time series are initialized for each location. The
following dialog is used to edit the command and illustrates the syntax of the command.

CreateCropPatternTSForCULocations

CreateCropPatternTSForCULocations() Command Editor

The command syntax is as follows:

CreateCropPatternTSForCULocations(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single CU Location identifier to match or a pattern

using wildcards (e.g., 20*).
None – must be
specified as *

Units The units for crop area time series. ACRE
IfNotFound Used for error handling, one of the following:

• Fail – generate a failure message if the ID is not
matched

• Ignore – ignore (don’t add and don’t generate a
message) if the ID is not matched

• Warn – generate a warning message if the ID is
not matched

Warn

 Command Reference – CreateCropPatternTSForCULocations() - 1 323

CreateCropPatternTSForCULocations() Command StateDMI Documentation

The following command file illustrates how to create a crop pattern time series file:

Step 1 - Set output period and read CU locations
SetOutputPeriod(OutputStart="1950",OutputEnd="2006")
ReadCULocationsFromStateCU(InputFile="..\StateCU\cm2006.str")
Step 2 - Read SW aggregates
SetDiversionSystemFromList(ListFile="colorado_divsys.csv",IDCol=1,
 NameCol=2,PartIDsCol=3,PartsListedHow=InRow)
SetDiversionAggregateFromList(ListFile="colorado_agg.csv",IDCol=1,
 NameCol=2,PartIDsCol=3,PartsListedHow=InRow)
Step 3 - Create *.cds file form and read acreage/crops from HydroBase
CreateCropPatternTSForCULocations(ID="*",Units="ACRE")
ReadCropPatternTSFromHydroBase(ID="*")
Step 4 - Need to translate crops out of HB to include TR21 suffix
Translate all crops from HB to include .TR21 suffix
TranslateCropPatternTS(ID="*",OldCropType="GRASS_PASTURE",NewCropType="GRASS_PASTURE.TR21")
TranslateCropPatternTS(ID="*",OldCropType="CORN_GRAIN",NewCropType="CORN_GRAIN.TR21")
TranslateCropPatternTS(ID="*",OldCropType="ALFALFA",NewCropType="ALFALFA.TR21")
TranslateCropPatternTS(ID="*",OldCropType="SMALL_GRAINS",NewCropType="SPRING_GRAIN.TR21")
TranslateCropPatternTS(ID="*",OldCropType="VEGETABLES",NewCropType="VEGETABLES.TR21")
TranslateCropPatternTS(ID="*",OldCropType="ORCHARD_WO_COVER",NewCropType="ORCHARD_WO_COVER.TR21")
TranslateCropPatternTS(ID="*",OldCropType="ORCHARD_WITH_COVER",NewCropType="ORCHARD_WITH_COVER.TR21")
TranslateCropPatternTS(ID="*",OldCropType="DRY_BEANS",NewCropType="DRY_BEANS.TR21")
TranslateCropPatternTS(ID="*",OldCropType="GRAPES",NewCropType="GRAPES.TR21")
TranslateCropPatternTS(ID="*",OldCropType="WHEAT",NewCropType="SPRING_GRAIN.TR21")
TranslateCropPatternTS(ID="*",OldCropType="SUNFLOWER",NewCropType="SPRING_GRAIN.TR21")
TranslateCropPatternTS(ID="*",OldCropType="SOD_FARM",NewCropType="GRASS_PASTURE.TR21")
Step 5 - Translate crop names
use high-altitude coefficients for structures with more than 50% of
irrigated acreage above 6500 feet
TranslateCropPatternTS(ListFile="cm2005_HA.lst",IDCol=1,
 OldCropType="GRASS_PASTURE.TR21",NewCropType="GRASS_PASTURE.DWHA")
Step 6 - Fill Acreage
Fill SW structure acreage backword from 1999 to 1950
Fill acreage forward for all structures from 2000 to 2006
FillCropPatternTSRepeat(ID="*",CropType="*",FillStart=1950,FillEnd=1993,FillDirection=Backward)
FillCropPatternTSRepeat(ID="*",CropType="*",FillStart=1993,FillEnd=1999,FillDirection=Forward)
FillCropPatternTSRepeat(ID="*",CropType="*",FillStart=2000,FillEnd=2006,FillDirection=Forward)
Step 7 - Write final *.cds file
WriteCropPatternTSToStateCU(OutputFile="..\StateCU\cm2006.cds",
 WriteCropArea=True,WriteHow=OverwriteFile)
Check the results
CheckCropPatternTS(ID="*")
WriteCheckFile(OutputFile="cm2006.cds.StateDMI.check.html")

2 - Command Reference – CreateCropPatternTSForCULocations() 324

Command Reference:
CreateIrrigationPracticeTSForCULocations()

Create empty irrigation practice time series for each CU Location

StateCU Command

Version 3.09.01, 2010-02-01

The CreateIrrigationPracticeTSForCULocations() command creates empty irrigation
practice time series for each CU Location. This ensures that the irrigation practice time series will be in
the same order as the CU locations initializes the time series with missing data values that can be filled
with other commands.

The following dialog is used to edit the command and illustrates the syntax of the command.

CreateIrrigationPracticeTSForCULocations

CreateIrrigationPracticeTSForCULocations() Command Editor

 Command Reference – CreateIrrigationPracticeTSForCULocations() - 1 325

CreateIrrigationPracticeTSForCULocations() Command StateDMI Documentation

The command syntax is as follows:

CreateIrrigationPracticeTSForCULocations(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single CU Location identifier to match

or a pattern using wildcards (e.g., 20*).
None – must be specified as *

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message if

the ID is not matched
• Ignore – ignore (don’t add and

don’t generate a message) if the ID is
not matched

• Warn – generate a warning message
if the ID is not matched

Warn

2 - Command Reference – CreateIrrigationPracticeTSForCULocations() 326

Command Reference:
CreateNetworkFromRiverNetwork()

Create a generalized network from a StateMod river network

StateCU Command

Version 3.09.01, 2010-02-01

The CreateNetworkFromRiverNetwork() command creates a generalized network from a
StateMod river network. This is used, for example, when a StateMod data set has been developed without
StateDMI and a generalized network file is now needed for full StateDMI use. The generalized network
file can be edited using the interactive model schematic editor. The following dialog is used to edit the
command and illustrates the syntax of the command.

CreateNetworkFromRiverNetwork

CreateNetworkFromRiverNetwork() Command Editor

 Command Reference – CreateNetworkFromRiverNetwork() - 1 327

CreateNetworkFromRiverNetwork() Command StateDMI Documentation

The command syntax is as follows:

CreateNetworkFromRiverNetwork()

Command Parameters

Parameter Description Default
 There are no parameters for this

command.

The following example command file illustrates how the command might be used:

Create a generalized XML network from individual StateMod files
Read the network, which contains upstream to downstream connectivity but does
not indicate node types
ReadRiverNetworkFromStateMod(InputFile=cm2005.rin)
Read the stations, which imply the node types
ReadRiverStreamGageStationsFromStateMod(InputFile=cm2005.ris)
ReadRiverDiversionStationsFromStateMod(InputFile=cm2005.dds)
ReadRiverReservoirStationsFromStateMod(InputFile=cm2005.res)
ReadRiverInstreamFlowStationsFromStateMod(InputFile=cm2005.ifs)
ReadRiverWellStationsFromStateMod(InputFile=cm2005.wes)
To be developed...
#ReadRiverPlanStationsFromStateMod()
ReadRiverStreamEstimateStationsFromStateMod(InputFile=cm2005.ris)
Now create the generalized network, using the connectivity and node types
CreateNetworkFromRiverNetwork()
Fill in node names and locations from HydroBase, if any is still missing
FillNetworkFromHydroBase()
Write the generalized network
WriteNetworkToStateMod(OutputFile="cm2005.net")
Check for errors (the following is not yet implemented)
#CheckNetwork()
WriteCheckFile(OutputFile="cm2005.net.check.html")

2 - Command Reference – CreateNetworkFromRiverNetwork() 328

Command Reference:
CreateRegressionTestCommandFile()

Create a command file to run software regression tests

General Command
Version 3.08.02, 2010-01-06

The CreateRegressionTestCommandFile() command is used for software testing (or
certification of processes used in operations) and creates a command file that includes a
StartRegressionTestResultsReport() and multiple RunCommands() commands. A
starting search folder is provided and all files that match the given pattern (by convention
Test_*.StateDMI) are assumed to be command files that can be run to test the software. The resulting
command file is a test suite comprised of all the individual tests and can be used to verify software before
release. The goal is to have all tests pass before software release.

The following table lists tags that can be placed in # comments in command files to provide information
for testing, for example:

#@expectedStatus Failure

Command # Comment Tags

Parameter Description
@expectedStatus Failure

@expectedStatus Warning

The RunCommands() command ExpectedStatus
parameter is by default Success. However, a different
status can be specified if it is expected that a command file
will result in Warning or Failure and still be a successful
test. For example, if a command is obsolete and should
generate a failure, the expected status can be specified as
Failure and the test will pass. Another example is to test
that the software properly treats a missing file as a failure.

@os Windows
@os UNIX

The test is designed to work only on the specified platform
and will be included in the test suite only if the IncludeOS
parameter includes the corresponding operating system (OS)
type. This is primarily used to test specific features of the OS
and similar but separate test cases should be implemented for
both OS types. If the OS type is not specified as a tag in a
command file, the test is always included (see also the
handling of included test suites).

@testSuite ABC Indicate that the command file should be considered part of
the specified test suite, as specified with the
IncludeTestSuite parameter. The test is included in all
test collections if the tag is not specified; therefore, for general
tests, do not specify a test suite. This tag is useful if a group
of tests require special setup, for example connecting to a
database. The suite names should be decided upon by the test
developer.

 Command Reference – CreateRegressionTestCommandFile() - 1 329

CreateRegressionTestCommandFile() Command StateDMI Documentation

The following dialog is used to edit the command and illustrates the syntax for the command.

CreateRegressionTestCommandFile

CreateRegressionTestCommandFile() Command Editor

The command syntax is as follows:

CreateRegressionTestCommandFile(Parameter=Value,…)

Command Parameters

Parameter Description Default
SearchFolder The folder to search for regression test command files.

All subfolders will also be searched.
None – must be
specified.

OutputFile The name of the command file to create, enclosed in
double quotes if the file contains spaces or other
special characters. A path relative to the command
file containing this command can be specified.

None – must be
specified.

SetupCommandFile The name of a StateDMI command file that supplies
setup commands, and which will be prepended to
output. Use such a file to open database connections
and set other global settings that apply to the entire
test run.

Do not include setup
commands.

FilenamePattern Pattern for StateDMI command files, using wildcards. Test_*.StateDMI
Append Indicate whether to append to the output file (True)

or overwrite (False). This allows multiple directory
trees to be searched for tests, where the first command
typically specifies False and additional commands
specify True.

True

IncludeTestSuite If *, all tests that match FilenamePattern and
IncludeOS are included. If a test suite is specified,
only include tests that have @testSuite tag values
that match a value in IncludeTestSuite. One or
more tags can be specified, separated by commas.

* – include all test
cases.

IncludeOS If *, all tests that match FilenamePattern and * – include all test

Command Reference – CreateRegressionTestCommandFile() - 2 330

StateDMI Documentation CreateRegressionTestCommandFile() Command

 Command Reference – CreateRegressionTestCommandFile() - 3

Parameter Description Default
IncludeTestSuite are included. If an OS is
specified, only include tests that have @os tag values
that match a value in IncludeTestSuite. This
tag is typically specified once or not at all.

cases.

See the RunCommands() documentation for how to set up a regression test. The following command
file illustrates how to create a regression test suite.

CreateRegressionTestCommandFile(SearchFolder="..\..\..\commands\general",
 OutputFile="..\run\RunRegressionTest_commands_general.StateDMI",
 Append=False)

An example of the output file from running the tests is:

File generated by...
program: StateDMI 3.08.02 (2009-09-29)
user: sam
date: Wed Sep 30 13:26:41 MDT 2009
host: SOPRIS
directory: C:\Develop\StateDMI_SourceBuild\StateDMI\test\regression\TestSuites\commands\run
command line: StateDMI

The test status below may be PASS or FAIL.
A test can pass even if the command file actual status is FAILURE, if failure is expected.
Test Commands Commands
Pass/ Expected Actual
Num Fail Status Status Command File
#---
 1 PASS SUCCESS SUCCESS
C:\Develop\StateDMI_SourceBuild\StateDMI\test\regression\commands\AggregateWellRights\Test_AggregateWellRights_rg2007part.StateDMI
 2 PASS SUCCESS SUCCESS C:\Develop\StateDMI_SourceBuild\StateDMI\test\regression\commands\CalculateDiversionDemandTSMonthly\
 Test_CalculateDiversionDemandTSMonthly.StateDMI
 3 PASS SUCCESS SUCCESS C:\Develop\StateDMI_SourceBuild\StateDMI\test\regression\commands\CalculateDiversionDemandTSMonthlyAsMax\
 Test_CalculateDiversionDemandTSMonthlyAsMax.StateDMI
 4 PASS SUCCESS SUCCESS C:\Develop\StateDMI_SourceBuild\StateDMI\test\regression\commands\CalculateDiversionStationEfficiencies\
 Test_CalculateDiversionStationEfficiencies.StateDMI
 5 PASS warning WARNING C:\Develop\StateDMI_SourceBuild\StateDMI\test\regression\commands\CalculateStreamEstimateCoefficients\
 Test_CalculateStreamEstimateCoefficents_cm2005.StateDMI
 6 PASS warning WARNING C:\Develop\StateDMI_SourceBuild\StateDMI\test\regression\commands\CalculateStreamEstimateCoefficients\
 Test_CalculateStreamEstimateCoefficients_gm2004.StateDMI
 7 PASS warning WARNING C:\Develop\StateDMI_SourceBuild\StateDMI\test\regression\commands\CalculateStreamEstimateCoefficients\
 Test_CalculateStreamEstimateCoefficients_rg2007.StateDMI

331

CreateRegressionTestCommandFile() Command StateDMI Documentation

Command Reference – CreateRegressionTestCommandFile() - 4

This page is intentionally blank.

332

Command Reference:
CreateRiverNetworkFromNetwork()

Create a StateMod river network from a generalized network

StateMod Command

Version 3.09.01, 2010-02-03

The CreateRiverNetworkFromNetwork() command creates a StateMod river network from a
generalized network. This is used, for example, when a change has been made to the generalized network
(e.g., by editing interactively in StateDMI) and a consistent StateMod river network file must be created.

CreateRiverNetworkFromRiverNetwork

CreateRiverNetworkFromRiverNetwork() Command Editor

 Command Reference – CreateRiverNetworkFromNetwork() - 1 333

CreateRiverNetworkFromNetwork() Command StateDMI Documentation

The command syntax is as follows:

CreateRiverNetworkFromRiverNetwork()

Command Parameters

Parameter Description Default
 There are no parameters for this

command.

The following command file illustrates how a StateMod river network file can be created from the
generalized network file:

StartLog(LogFile="rin.commands.StateDMI.log")
rin.commands.StateDMI

creates the river network file for the Colorado River monthly/daily models

Step 1 - read river nodes from the network file and create file framework

ReadNetworkFromStateMod(InputFile="cm2005.net")
CreateRiverNetworkFromNetwork()

Step 2 - get node (diversion, stream stations, reservoirs, instream flows)
names from HydroBase

FillRiverNetworkFromHydroBase(ID="*",NameFormat=StationName_NodeType)

Step 3 - read missing node names from network file

FillRiverNetworkFromNetwork(ID="*",NameFormat="StationName_NodeType",
 CommentFormat="StationID")

Step 4 - create StateMod river network file

WriteRiverNetworkToStateMod(OutputFile="..\StateMod\cm2005.rin")

Check the results
CheckRiverNetwork(ID="*")
WriteCheckFile(OutputFile="rin.commands.StateDMI.check.html")

2 - Command Reference – CreateRiverNetworkFromNetwork() 334

Command Reference: Exit()
Stop processing commands

General Command

Version 3.08.02, 2010-01-07

The Exit() command can be inserted anywhere in a command file and causes the processing of
commands to stop at that line. This is useful for temporarily processing a subset of a long list of
commands. Multi-line comments (/* */) can also be used to temporarily disable one or more
commands. It may also useful to add an Exit() command at the end of the file so that it is easy to
insert commands above this command when the end line is selected (rather than having to deselect all
commands when editing).

In the future the command may be enhanced to have parameters that more explicitly control processing
shut-down.

The following dialog is used to edit the command and illustrates the command syntax:

Exit

Exit() Command Editor

The command syntax is as follows:

Exit(Parameter=Value,…)

Command Parameters

Parameter Description Default
 There are currently no command parameters.

A sample command file is as follows:

Exit()

 Command Reference – Exit() - 1 335

Exit() Command StateDMI Documentation

This page is intentionally blank.

Command Reference – Exit() - 2 336

Command Reference: FillClimateStation()

Fill climate station data

StateCU Command
Version 3.08.02, 2010-01-05

The FillClimateStation() command fills missing data in existing climate stations. The following
dialog is used to edit the command and illustrates the syntax of the command.

FillClimateStation

FillClimateStation() Command Editor

 Command Reference – FillClimateStation() - 1 337

FillClimateStation() Command StateDMI Documentation

The command syntax is as follows:

FillClimateStation(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single climate station identifier to

match or a pattern using wildcards (e.g.,
20*).

None – must be specified.

Latitude The climate station latitude to be
assigned for all matching climate stations
with missing latitude.

If not specified, the original
value will remain.

Elevation The climate station elevation to be
assigned for all matching climate stations
with missing elevation.

If not specified, the original
value will remain.

Region1 The climate station Region1 (typically
county) to be assigned for all matching
climate stations with missing Region1.

If not specified, the original
value will remain.

Region2 The climate station Region2
(traditionally HUC but can be blank) to
be assigned for all matching climate
stations with missing Region2.

If not specified, the original
value will remain.

Name The climate station name to be assigned
for all matching climate stations with
missing name.

If not specified, the original
value will remain.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message if

the ID pattern is not matched
• Ignore – ignore (don’t generate a

message) if the ID pattern is not
matched

• Warn – generate a warning message
if the ID pattern is not matched

Warn

2 - Command Reference – FillClimateStation() 338

Command Reference:
FillClimateStationsFromHydroBase()

Fill climate station data from HydroBase

StateCU Command

Version 3.08.02, 2010-01-05

The FillClimateStationsFromHydroBase() command fills missing data in existing climate
stations, using HydroBase for data. The following dialog is used to edit the command and illustrates the
syntax of the command.

FillClimateStationsFromHydroBase

FillClimateStationsFromHydroBase() Command Editor

 Command Reference – FillClimateStationsFromHydroBase() - 1 339

FillClimateStationsFromHydroBase() Command StateDMI Documentation

The command syntax is as follows:

FillClimateStationsFromHydroBase(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single climate station identifier to

match or a pattern using wildcards (e.g.,
20*).

None – must be specified.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message if

the climate station is not found
• Ignore – ignore (don’t generate a

message) if the climate station is not
found

• Warn – generate a warning message
if the climate station is not found

Warn

The following example command file illustrates how climate stations can be defined, filled from
HydroBase, and written to a StateCU file:

ReadClimateStationsFromList(ListFile="climsta.lst",IDCol=1)
FillClimateStationsFromHydroBase(ID="*")
SetClimateStation(ID="3016",Region2="14080106",IfNotFound=Warn)
SetClimateStation(ID="1018",Region2="14040106",IfNotFound=Warn)
SetClimateStation(ID="1928",Elevation=6440,IfNotFound=Warn)
SetClimateStation(ID="0484",Region1="MOFFAT",IfNotFound=Add)
WriteClimateStationsToStateCU(OutputFile="COclim2006.cli")

2 - Command Reference – FillClimateStationsFromHydroBase() 340

Command Reference:
FillCropPatternTSConstant()

Fill crop pattern time series values using a constant value

StateCU Command

Version 3.09.01, 2010-02-01

The FillCropPatternTSConstant() command fills crop pattern time series data for a CU
Location, using a constant value. Only data for matching locations, years, and crop type are filled. A
common use of this command is to ensure that there are no missing data values for years when an
irrigated lands assessment has occurred. In this case it is assumed that if other data sources for the year of
study have not identified crops (e.g., GIS and user-supplied values), then remaining missing values
should be set to zero, indicating that no irrigation occurred. For example: if in one year a structure has
irrigated acreage but in another year is has no acreage, the time series for the crop acreage will have a
missing value in the second case. Using this command with a zero constant value will ensure that zero is
used for the second year. Subsequent data filling by repeating values or interpolation will be impacted by
the constant values.

The following dialog is used to edit the command and illustrates the syntax of the command.

FiiltCropPatternTSConstant

FillCropPatternTSConstant() Command Editor

 Command Reference – FillCropPatternTSConstant() - 1 341

FillCropPatternTSConstant() Command StateDMI Documentation

The command syntax is as follows:

FillCropPatternTSConstant(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single CU Location identifier to match or a

pattern using wildcards (e.g., 20*).
None – must be specified.

CropType A single crop type to match or a pattern using
wildcards (e.g., *).

None – must be specified.

Constant The constant value to be used to fill missing
data.

None – must be specified.

IncludeSurface
WaterSupply

Indicate whether locations with surface water
supply should be processed (those other than
groundwater-only locations).

True

IncludeGroundwater
OnlySupply

Indicate whether locations with only
groundwater supply (collections where
PartType=Parcel) should be processed.
Typically this is specified as True.

True

FillStart The first year to fill. If not specified, fill the
full period.

FillEnd The last year to fill. If not specified, fill the
full period.

IfNotFound Used for error handling, one of the following:
• Fail – generate a failure message if the

ID is not matched
• Ignore – ignore (don’t add and don’t

generate a message) if the ID is not
matched

• Warn – generate a warning message if
the ID is not matched

Warn

2 - Command Reference – FillCropPatternTSConstant() 342

Command Reference:
FillCropPatternTSInterpolate()

Fill crop pattern time series values using interpolation

StateCU Command

Version 3.09.01, 2010-02-01

The FillCropPatternTSInterpolate() command fills crop pattern time series data for a CU
Location, using interpolation. Data will not be extrapolated past the end-points and therefore another fill
method (e.g., FillCropPatternTSRepeat()) may be required after the interpolation command.
Filling is currently always in a forward direction. If the data set contains groundwater, it is typical to fill
groundwater-only crop pattern time series prior to the first year of HydroBase data using
FillCropPatternTSUsingWellRights() and use FillCropPatternTSRepeat() and/or
FillCropPatternTSInterpolate() for all other time series and parts of the period.

The following dialog is used to edit the command and illustrates the syntax of the command.

FilltCropPatternTSInterpolate

FillCropPatternTSInterpolate() Command Editor

 Command Reference – FillCropPatternTSInterpolate() - 1 343

FillCropPatternTSInterpolate() Command StateDMI Documentation

The command syntax is as follows:

FillCropPatternTSInterpolate(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single CU Location identifier to

match or a pattern using wildcards
(e.g., 20*).

None – must be
specified.

CropType A single crop type to match or a
pattern using wildcards (e.g., *).

None – must be
specified.

IncludeSurfaceWaterSupply Indicate whether locations with
surface water supply should be
processed (those other than
groundwater-only locations).

True

IncludeGroundwaterOnlySupply Indicate whether locations with
only groundwater supply
(collections where
PartType=Parcel) should be
processed. Typically this is
specified as true unless
FillCropPatternTS
UsingWellRights() has been
applied for the fill period.

True

FillStart The first year to fill. This should
be a year with observations to
allow interpolation.

If not specified, fill the
full period.

FillEnd The last year to fill. This should
be a year with observations to
allow interpolation.

If not specified, fill the
full period.

MaxIntervals The maximum number of intervals
to fill in any gap.

If not specified, fill the
entire gap.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure

message if the ID is not
matched

• Ignore – ignore (don’t add
and don’t generate a message)
if the ID is not matched

• Warn – generate a warning
message if the ID is not
matched

Warn

2 - Command Reference – FillCropPatternTSInterpolate() 344

Command Reference: FillCropPatternTSRepeat()

Fill crop pattern time series values by repeating values

StateCU Command
Version 3.09.01, 2010-02-01

The FillCropPatternTSRepeat() command fills crop pattern time series data for a CU Location
by repeating known values. Filling can occur forward or backward in time, but not both. Therefore, it
may be necessary to use two similar commands, one filling forward, and one filling backward, in order to
completely fill the ends of time series.

The following dialog is used to edit the command and illustrates the syntax of the command.

FilltCropPatternTSRepeat

FillCropPatternTSRepeat() Command Editor

 Command Reference – FillCropPatternTSRepeat() - 1 345

FillCropPatternTSRepeat() Command StateDMI Documentation

The command syntax is as follows:

FillCropPatternTSRepeat(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single CU Location identifier

to match or a pattern using
wildcards (e.g., 20*).

None – must be specified.

CropType A single crop type to match or a
pattern using wildcards (e.g., *).

None – must be specified.

IncludeSurfaceWaterSupply Indicate whether locations with
surface water supply should be
processed (those other than
groundwater-only locations).

True

IncludeGroundwaterOnlySupply Indicate whether locations with
only groundwater supply
(collections where
PartType=Parcel) should
be processed. Typically this is
specified as true.

True

FillStart The first year to fill, typically a
year with observations if filling
forward.

If not specified, fill the
full period.

FillEnd The last year to fill, typically a
year with observations if filling
backward.

If not specified, fill the
full period.

FillDirection The direction to fill, either
Forward or Backward.

Forward

MaxIntervals The maximum number of
intervals to fill in any gap.

If not specified, fill the
entire gap.

IfNotFound Used for error handling, one of
the following:
• Fail – generate a failure

message if the ID is not
matched

• Ignore – ignore (don’t
add and don’t generate a
message) if the ID is not
matched

• Warn – generate a warning
message if the ID is not
matched

Warn

2 - Command Reference – FillCropPatternTSRepeat() 346

Command Reference:
FillCropPatternUsingWellRights()

Fill missing crop pattern time series (yearly) acreage values using well rights

StateCU Command

Version 3.09.01, 2010-02-01

This is a legacy command that should not be used in current work. It is included to help migrate
legacy command files.

The FillCropPatternTSUsingWellRights() fills missing crop pattern time series (yearly)
information for CU locations using well rights. This command should typically only be used to fill data
in the period before the earliest modeling year for which data are available in HydroBase and helps
initialize the acreage data in the early period. For example, in the Río Grande, 1998 parcel data and
associated rights are used to fill the earlier period. The parcels associated with groundwater are turned off
earlier in time, in years when no well water rights are associated with parcels. This results in the crop
pattern acreage decreasing back in time. It is typical that only the groundwater-only locations are filled
with this command, given that the parcel’s supply can be related directly to well water rights. Crop
pattern time series for locations having surface water supply are often then interpolated or repeated back
in time. The following figure shows groundwater acreage filled using well water rights.

FiillCropPatternTSUsingWellRights_Example

Prerequisites:

1. This command should be executed after the crop pattern time series are read from HydroBase
(see ReadCropPatternTSFromHydroBase(), which saves a list of parcels associated with

 Command Reference – FillCropPatternTSUsingWellRights () - 1 347

FillCropPatternTSUsingWellRights() Command StateDMI Documentation

each location during processing). Data for lands that are not in HydroBase should have been
specified with SetCropPatternTSFromList() commands.

2. A non-merged, non-aggregated well water right file should have been read using the
ReadWellRightsFromStateMod() or similar command. A StateMod well rights file with
comments including parcel year and parcel identifier are needed to ensure that rights matching the
parcels for ParcelYear are available (see parameter description below).

The steps executed by the command are described below. Note that “CU location” refers to the StateCU
model identifier.

1. For each parcel found in the water rights data, create a yearly time series of decree. The resulting
time series indicates for a parcel the decreed water rights (y-axis) associated with the parcel over
time (x-axis).

2. Loop through each CU location that matches the ID pattern and perform the following:
a. Get the list of parcels associated with the location for ParcelYear, taken from the crop

pattern time series. The list of parcels will have been saved when the
ReadCropPatternTSFromHydroBase() command was processed.

b. For each year being processed, if acreage time series are missing, loop over the list of
parcels for the location (note that the parcel area will be multiplied by the ditch coverage
percent irrigated if the parcel is for a D&W node):
i. If no parcels were found for the location in the ParcelYear, set all crop pattern

time series to zero. Consequently, an estimate of zero acreage will occur.
ii. Otherwise, set the crop pattern time series values as follows:

A. If the decree time series for the parcel is zero in a year, set the acreage for all
crops and the total to zero for the year.

B. If the parcel has groundwater supply (one or more wells in ParcelYear):
increment the acreage for the crop grown on the parcel. Recompute the total
acreage.

C. If the result is missing, set the acreage for all crops and the total to zero.

2 - Command Reference – FillCropPatternTSUsingWellRights () 348

StateDMI Documentation FillCropPatternTSUsingWellRights() Command

The following dialog is used to edit the command and illustrates the syntax of the command:

FillCropPatternTSUsingWellRights

FillCropPatternTSUsingWellRights() Command Editor

 Command Reference – FillCropPatternTSUsingWellRights() - 3 349

FillCropPatternTSUsingWellRights() Command StateDMI Documentation

The command syntax is as follows:

FillCropPatternTSUsingWellRights(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single CU location identifier to match

or a pattern using wildcards (e.g., 20*).
None – must be
specified.

IncludeSurfaceWaterSupply Indicate whether locations with surface
water supply should be processed (those
other than groundwater-only locations).
Locations will only be processed if they
also have groundwater supply.
Currently this must always be
specified as False – interpolation or
repeat commands are typically used
for surface water supply lands.
Additional capability may be enabled
in the future.

True

IncludeGroundwaterOnlySupply Indicate whether locations with only
groundwater supply should be
processed. Typically this is specified as
true.

True

CropType Crop type(s) to fill or blank to fill all. If
more than one specific crop, separate
with commas.

Fill all.

FillStart A starting year to fill data, normally the
start of the output period.

The output period
start.

FillEnd An ending year to fill data, normally one
year prior to the ParcelYear.

The output period
end.

ParcelYear A calendar year to use for parcel data,
needed to determine relationships
between diversion stations/parcels/wells
and for well aggregate/systems. Only
the water rights generated from parcels
in this year will be used to limit
groundwater acreage.

None – must be
specified.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message

if the ID is not matched
• Ignore – ignore (don’t add and

don’t generate a message) if the ID
is not matched

• Warn – generate a warning message
if the ID is not matched

Warn

4 - Command Reference – FillCropPatternTSUsingWellRights () 350

Command Reference: FillCULocation()

Fill CU Location data

StateCU Command
Version 3.09.00, 2010-01-24

The FillCULocation() command fills missing data in existing CU Locations. The following dialog
is used to edit the command and illustrates the syntax of the command.

FillCULocation

FillCULocation() Command Editor

 Command Reference – FillCULocation() - 1 351

FillCULocation() Command StateDMI Documentation

The command syntax is as follows:

FillCULocation(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single CU Location identifier to match

or a pattern using wildcards (e.g., 20*).
None – must be specified.

Name The name to be assigned for matching
locations.

If not specified, the original
value will remain.

Latitude The latitude to be assigned for all
matching CU Locations with missing
latitude.

If not specified, the original
value will remain.

Elevation The elevation to be assigned for
matching locations.

If not specified, the original
value will remain.

Region1 The Region1 to be assigned for all
matching CU Locations with missing
Region1.

If not specified, the original
value will remain.

Region2 The Region2 to be assigned for all
matching CU Locations with missing
Region2.

If not specified, the original
value will remain.

AWC The available water content (AWC) to
be assigned for all matching CU
Locations with missing AWC.

If not specified, the original
value will remain.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message if

the ID pattern is not matched
• Ignore – ignore (don’t generate a

message) if the ID pattern is not
matched

• Warn – generate a warning message
if the ID pattern is not matched

Warn

2 - Command Reference – FillCULocation() 352

Command Reference:
FillCULocationClimateStationWeights ()

Fill CU Location climate station weights data

StateCU Command

Version 3.09.00, 2010-01-24

The FillCULocationClimateStationWeights() command fills climate station weights data in
existing CU Locations. Only locations that have no climate stations assigned will be modified. The
following dialog is used to edit the command and illustrates the syntax of the command.

FillCULocationClimateStationWeights

FillCULocationClimateStationWeights () Command Editor

 Command Reference – FillCULocationClimateStationWeights() - 1 353

FillCULocationClimateStationWeights() CommandStateDMI Documentation

The command syntax is as follows:

FillCULocationClimateStationWeights(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single CU Location identifier to match or a pattern using wildcards

(e.g., 20*).
None – must
be specified.

Include
Orographic
TempAdj

If True, include the orographic temperature adjustment factor, after the
Weights described below, specified as degrees/1000 feet.

False

Include
Orographic
PrecAdj

If True, include the orographic precipitation adjustment factor, after
the Weights described below, specified as a fraction 0.0 to 1.0. Place
after the orographic temperature adjustment factor if it is specified.

False

Weights A repeating pattern of StationID, TempWt, PrecWt, where the
station identifiers match climate station identifiers and the weights are
specified as fractions in the range 0.0 to 1.0. Also include the
orographic temperature and/or orographic precipitation adjustment
factors if the above parameters are True.

None – must
be specified.

IfNotFound Used for error handling, one of the following:
• Fail – generate a failure message if the ID pattern is not matched
• Ignore – ignore (don’t generate a message) if the ID pattern is not

matched
• Warn – generate a warning message if the ID pattern is not

matched

Warn

An example command file is shown below:

ReadCULocationsFromList(ListFile="cmstrlist.csv",IDCol=1,NameCol=6)
FillCULocationsFromHydroBase(ID="*",CULocType=Structure,Region1Type=County,Region2Type=HUC)
SetCULocationsFromList(ListFile="cmstrlist.csv",IDCol=1,LatitudeCol=2,AWCCol=11)
SetCULocationsFromList(ListFile="plateau.csv",IDCol=1,Region1Col=2)
SetCULocationClimateStationWeightsFromList(ListFile="cowts.csv",StationIDCol=1,
 Region1Col=2,Region2Col=3,TempWtCol=4,PrecWtCol=5)
FillCULocationClimateStationWeights(ID="72_ADC065",Weights="3146,0.68,0.68,3489,0.32,0.32")
FillCULocationClimateStationWeights(ID="36*",Weights="4664,1.0,0,3592,0,1.0")
FillCULocationClimateStationWeights(ID="37*",Weights="2454,1.0,1.0")
FillCULocationClimateStationWeights(ID="38*",Weights="3359,1.0,1.0")
FillCULocationClimateStationWeights(ID="39*",Weights="7031,1.0,1.0")
FillCULocationClimateStationWeights(ID="45*",Weights="7031,1.0,1.0")
FillCULocationClimateStationWeights(ID="50*",Weights="3500,0.5,0.5,4664,0.5,0.5")
FillCULocationClimateStationWeights(ID="51*",Weights="3500,0.5,0.5,4664,0.5,0.5")
FillCULocationClimateStationWeights(ID="52*",Weights="9265,1.0,1.0")
FillCULocationClimateStationWeights(ID="53*",Weights="9265,1.0,1.0")
FillCULocationClimateStationWeights(ID="70*",Weights="0214,1.0,1.0")
FillCULocationClimateStationWeights(ID="72*",Weights="1741,1.0,1.0")
FillCULocationClimateStationWeights(ID="950001",Weights="3146,0.68,0.68,3489,0.32,0.32")
FillCULocationClimateStationWeights(ID="950010",Weights="7031,1.0,1.0")
FillCULocationClimateStationWeights(ID="950011",Weights="7031,1.0,1.0")
FillCULocationClimateStationWeights(ID="950050",Weights="3146,0.68,0.68,3489,0.32,0.32")
WriteCULocationsToStateCU(OutputFile="cm2006.str",WriteHow=OverwriteFile)
Check the results
CheckCULocations(ID="*")
WriteCheckFile(OutputFile="cm2006.str.check.html")

2 - Command Reference – FillCULocationClimateStationWeights() 354

Command Reference:
FillCULocationsFromHydroBase()

Fill CU Location data from HydroBase

StateCU Command

Version 3.09.00, 2010-01-24

The FillCULocationsFromHydroBase() command fills missing data in existing CU Locations,
using HydroBase for data. The following dialog is used to edit the command and illustrates the syntax of
the command.

FillCULocationssFromHydroBase

FillCULocationsFromHydroBase() Command Editor

 Command Reference – FillCULocationsFromHydroBase() - 1 355

FillCULocationsFromHydroBase() Command StateDMI Documentation

The command syntax is as follows:

FillCULocationsFromHydroBase(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single CU Location identifier to match

or a pattern using wildcards (e.g., 20*).
None – must be specified.

CULocType Indicates whether CU Locations are
structures or climate stations, to indicate
which HydroBase data to query.

Structure

Region1Type The meaning of Region1 in the data set,
to indicate which HydroBase data to
query.

County

Region2Type The meaning of Region2 in the data set,
to indicate which HydroBase data to
query.

HUC

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message if

the ID pattern is not matched
• Ignore – ignore (don’t generate a

message) if the ID pattern is not
matched

• Warn – generate a warning message
if the ID pattern is not matched

Warn

2 - Command Reference – FillCULocationsFromHydroBase() 356

Command Reference: FillCULocationsFromList()

Fill missing CU Location data using information in a delimited file

StateCU Command
Version 03.09.00, 2010-01-24

The FillCULocationsFromList() command fills missing data in existing CU Locations by
reading information from a delimited file. The following dialog is used to edit the command and
illustrates the syntax of the command.

FillCULocationsFromList

FillCULocationsFromList() Command Editor

 Command Reference – FillCULocationsFromList() - 1 357

FillCULocationsFromList() Command StateDMI Documentation

The command syntax is as follows:

FillCULocationsFromList(Parameter=Value…)

Command Parameters

Parameter Description Default
ListFile Path to the delimited list file to read. None – must be specified.
IDCol The column number (1+) containing the

CU Location identifiers.
None – must be specified.

LatitudeCol The column number (1+) containing the
CU Location latitude.

If not specified, the previous
value will remain.

ElevationCol The column number (1+) containing the
CU Location elevation.

If not specified, the previous
value will remain.

Region1Col The column number (1+) containing the
CU Location Region1.

If not specified, the previous
value will remain.

Region2Col The column number (1+) containing the
CU Location Region2.

If not specified, the previous
value will remain.

NameCol The column number (1+) containing the
CU Location name.

If not specified, the previous
value will remain.

AWCCol The column number (1+) containing the
CU Location AWC.

If not specified, the previous
value will remain.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message if

the ID pattern is not matched
• Ignore – ignore (don’t generate a

message) if the ID pattern is not
matched

• Warn – generate a warning message
if the ID pattern is not matched

Warn

Lines starting with the # character are treated as comments. If the first line’s values are surrounded by
double quotes, the line is assumed to indicate column headings.

An example list file is shown below, which provides elevations for key locations:

#WDID/NAME/Elevation(ft),,
0100501,EMPIRE DITCH,4543
0100503_D,RIVERSIDE CANAL,4533
0100507_D,BIJOU CANAL,4495
0100511,WELDON VALLEY DITCH,4405
0100513,JACKSON LAKE INLET DITCH,4460
0100514,FT MORGAN CANAL,4347
0100515,UPPER PLATTE BEAVER CNL,4289
0100517,DEUEL SNYDER CANAL,4310
0100518,LOWER PLATTE BEAVER D,4247
0100519_D,TREMONT DITCH,4243
0100520,GILL STEVENS DITCH,4224
…

2 - Command Reference – FillCULocationsFromList() 358

Command Reference:
FillDiversionDemandTSMonthlyAverage()

Fill diversion demand time series (monthly) values using average monthly values

StateMod Command

Version 3.09.01, 2010-02-01

The FillDiversionDemandTSMonthlyAverage() command fills missing diversion demand
time series (monthly) data, using average monthly values. The averages are computed immediately after
reading time series (e.g., from HydroBase or a file) or calculation of the time series (e.g., from
IWR/Effave). The average values that are used during data filling are printed to the log file.

The following dialog is used to edit the command and illustrates the syntax of the command.

FilltDiversionDemandTSMonthlyAverage

FillDiversionDemandTSMonthlyAverage() Command Editor

Command Reference – FillDiversionDemandTSMonthlyAverage() - 1 359

FillDiversionDemandTSMonthlyAverage() Command StateDMI Documentation

The command syntax is as follows:

FillDiversionDemandTSMonthlyAverage(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single diversion station identifier to

match or a pattern using wildcards (e.g.,
20*).

None – must be specified.

FillStart The first year to fill. If not specified, fill the full
period.

FillEnd The last year to fill. If not specified, fill the full
period.

FillFlag If specified as a single character, data
flags will be enabled for the time series
and each filled value will be tagged with
the specified character. The flag can
then be used later to label graphs, etc.
The flag will be appended to existing
flags if necessary.

No flag is assigned.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message if

the ID is not matched
• Ignore – ignore (don’t add and

don’t generate a message) if the ID is
not matched

• Warn – generate a warning message
if the ID is not matched

Warn

2 - Command Reference – FillDiversionDemandTSMonthlyAverage() 360

Command Reference:
FillDiversionDemandTSMonthlyConstant()

Fill diversion demand time series (monthly) values using a constant value

StateMod Command

Version 3.09.01, 2010-02-01

The FillDiversionDemandTSMonthlyConstant() command fills missing diversion demand
time series (monthly) data, using a constant value. This command is useful, for example, to set demand
values to zero if other fill commands are unable to provide data estimates for missing data.

The following dialog is used to edit the command and illustrates the syntax of the command.

FillDiversionDemandTSMonthlyConstant

FillDiversionDemandTSMonthlyConstant() Command Editor

Command Reference – FillDiversionDemandTSMonthlyConstant() - 1 361

FillDiversionDemandTSMonthlyConstant() Command StateDMI Documentation

The command syntax is as follows:

FillDiversionDemandTSMonthlyConstant(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single diversion station identifier to

match or a pattern using wildcards (e.g.,
20*).

None – must be specified.

FillStart The first year to fill. If not specified, fill the full
period.

FillEnd The last year to fill. If not specified, fill the full
period.

Constant The constant value to be used to fill
missing data.

None – must be specified.

FillFlag If specified as a single character, data
flags will be enabled for the time series
and each filled value will be tagged with
the specified character. The flag can
then be used later to label graphs, etc.
The flag will be appended to existing
flags if necessary.

No flag is assigned.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message if

the ID is not matched
• Ignore – ignore (don’t add and

don’t generate a message) if the ID is
not matched

• Warn – generate a warning message
if the ID is not matched

Warn

2 - Command Reference – FillDiversionDemandTSMonthlyConstant() 362

Command Reference:
FillDiversionDemandTSMonthlyPattern()

Fill diversion demand time series (monthly) values using WET/DRY/AVG values

StateMod Command

Version 3.09.01, 2010-02-01

The FillDiversionDemandTSMonthlyPattern() command fills missing diversion demand
time series (monthly) data, using average monthly wet/dry/average values. The averages are computed
using patterns read by the ReadPatternFile() command. The average values that are used during
data filling are printed to the log file. For example, if a value is missing for May 1980, the pattern for the
specified pattern identifier is checked for WET, DRY, or AVG. The values of all May’s for WET, DRY, or
AVG are then averaged in the time series to be filled, and the resulting average used to fill missing data.
This command therefore will result in filled values that are more appropriate than simple averages;
however, work must be done to characterize the wet, dry, and average months.

The following dialog is used to edit the command and illustrates the syntax of the command.

FillDiversionDemandTSMonthlyPattern

FillDiversionDemandTSMonthlyPattern() Command Editor

Command Reference – FillDiversionDemandTSMonthlyPattern() - 1 363

FillDiversionDemandTSMonthlyPattern() Command StateDMI Documentation

The command syntax is as follows:

FillDiversionDemandTSMonthlyPattern(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single diversion station identifier to

match or a pattern using wildcards (e.g.,
20*).

None – must be specified.

FillStart The first year to fill. If not specified, fill the full
period.

FillEnd The last year to fill. If not specified, fill the full
period.

PatternID The pattern identifier for data read with a
ReadPatternFile() command.

None – must be specified.

LEZeroInAverage Indicates whether values ≤ 0 should be
considered when computing monthly
averages.

True

FillFlag If specified as a single character, data
flags will be enabled for the time series
and each filled value will be tagged with
the specified character. The flag can
then be used later to label graphs, etc.
The flag will be appended to existing
flags if necessary.

No flag is assigned.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message if

the ID is not matched
• Ignore – ignore (don’t add and

don’t generate a message) if the ID is
not matched

• Warn – generate a warning message
if the ID is not matched

Warn

2 - Command Reference – FillDiversionDemandTSMonthlyPattern() 364

Command Reference:
FillDiversionHistoricalTSMonthlyAverage()

Fill diversion historical time series (monthly) values using average monthly

values

StateMod Command
Version 3.09.01, 2010-02-01

The FillDiversionHistoricalTSMonthlyAverage() command fills missing diversion
historical time series (monthly) data, using average monthly values. The historical averages are computed
immediately after reading time series (e.g., from HydroBase or a file). The average values that are used
during data filling are printed to the log file.

The following dialog is used to edit the command and illustrates the syntax of the command.

FilltDiversionHistoricalTSMonthlyAverage

FillDiversionHistoricalTSMonthlyAverage() Command Editor

Command Reference – FillDiversionHistoricalTSMonthlyAverage() - 1 365

FillDiversionHistoricalTSMonthlyAverage() Command StateDMI Documentation

The command syntax is as follows:

FillDiversionHistoricalTSMonthlyAverage(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single diversion station identifier to

match or a pattern using wildcards (e.g.,
20*).

None – must be specified.

IncludeCollections Indicates whether time series for
collections (diversion stations that are
aggregates or systems) are included in
the processing. If the time series for
these stations have been filled during the
read, then it may not be necessary to fill
again. On the other hand, it may be
necessary to use the sum of the time
series to fill missing data.

True

FillStart The first date to fill. If not specified, fill the full
period.

FillEnd The last date to fill. If not specified, fill the full
period.

FillFlag If specified as a single character, data
flags will be enabled for the time series
and each filled value will be tagged with
the specified character. The flag can
then be used later to label graphs, etc.
The flag will be appended to existing
flags if necessary.

No flag is assigned.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message

if the ID is not matched
• Ignore – ignore (don’t add and

don’t generate a message) if the ID
is not matched

• Warn – generate a warning message
if the ID is not matched

Warn

2 - Command Reference – FillDiversionHistoricalTSMonthlyAverage() 366

StateDMI Documentation FillDiversionHistoricalTSMonthlyAverage () Command

The following abbreviated command file illustrates how the StateMod diversion historical time series file
can be produced. Note that an initial diversion stations file is read and is then updated based on time
series information.

StartLog(LogFile="ddh.commands.StateDMI.log")
ddh.commands.StateDMI

StateDMI command file to create the historical diversion file
and the "step 2" direct diversion structure file, updated so structure
capacity = maximum historical diversion

Step 1 - set time-series period and year type

SetOutputPeriod(OutputStart="10/1908",OutputEnd="09/2005")
SetOutputYearType(OutputYearType=Water)

Step 2 - read structure list from preliminary direct diversion structure file

ReadDiversionStationsFromStateMod(InputFile="cm2005_dds.dds")

Step 3 - read aggregate and diversion system structure assignments. Note that
want to combine historical diversions for aggs and diversion systems, but
historical diversions are separate for primary and secondary components
of multistructures

SetDiversionAggregateFromList(ListFile="cm_agg.csv",IDCol=1,NameCol=2,PartIDsCol=3,
 PartsListedHow=InRow)
SetDiversionSystemFromList(ListFile="cm_divsys.csv",IDCol=1,NameCol=2,PartIDsCol=3,
 PartsListedHow=InRow)

Step 4 - read historical diversions from HydroBase. Note that want individual structures
in aggregates and diversion systems to be filled first, then diversions
combined.

ReadDiversionHistoricalTSMonthlyFromHydroBase(ID="*",IncludeCollections=False,
 UseDiversionComments=True)

Step 5 - read fill pattern file, and assign patterns to water districts

ReadPatternFile(InputFile="fill2005.pat")
ReadDiversionHistoricalTSMonthlyFromHydroBase(ID="36*",IncludeExplicit=False,
 UseDiversionComments=True,
 PatternID="09037500",FillPatternOrder=1,FillAverageOrder=2)

Step 6 - assign transbasin diversions from streamflow gages

SetDiversionHistoricalTSMonthly(ID="364626",TSID="09047300.DWR.Streamflow.Month~HydroBase")
…similar commands omitted…
note that adams tunnel streamgage ID changed in 10/1996 from 09013000 to ADANETCO
SetDiversionHistoricalTSMonthly(ID="514634",TSID="514634...MONTH~StateMod~514634.stm")
Con-Hoosier System - Blue River Diversion, driven by operating rules to con-hoosier
summary demand
SetDiversionHistoricalTSMonthly(ID="364683",TSID="364683...MONTH~StateMod~zero.stm")
SetDiversionHistoricalTSMonthly(ID="364699",TSID="364699...MONTH~StateMod~zero.stm")
Fryingpan-Arkansas Project
SetDiversionHistoricalTSMonthly(ID="381594",TSID="381594...MONTH~StateMod~381594.stm")
SetDiversionHistoricalTSMonthly(ID="384625",TSID="384625...MONTH~StateMod~384625.stm")
SetDiversionHistoricalTSMonthly(ID="954699",TSID="954699...MONTH~StateMod~zero.stm")
…similar commands omitted…

Step 7 - set diversions from external time-series files

 Command Reference – FillDiversionHistoricalTSMonthlyAverage () - 3 367

FillDiversionHistoricalTSMonthlyAverage() Command StateDMI Documentation

The following commands are added to access Task 11.2 replacement files
SetDiversionHistoricalTSMonthly(ID="380757",TSID="380757...MONTH~StateMod~380757.stm")
…similar commands omitted…#
The following structures are set for Municipal and Industrial Diversions
SetDiversionHistoricalTSMonthly(ID="360784",TSID="360784...MONTH~StateMod~360784.stm")
…similar commands omitted…

Set transbasin diversions to "0" prior to construction

Wurtz Ditch
SetDiversionHistoricalTSMonthlyConstant(ID="374648",Constant=0,SetEnd="01/1929")
…similar commands omitted…

Step 8 - fill historical diversion using pattern approach

FillDiversionHistoricalTSMonthlyPattern(ID="36*",PatternID="09034500")
…similar commands omitted…

Step 9 - Fill remaining missing with month average

FillDiversionHistoricalTSMonthlyAverage(ID="*")

Step 10 - Limit filled diversion to water rights. Exceptions include structure
receiving significant reservoir supply, carrier structures, etc.

LimitDiversionHistoricalTSMonthlyToRights(InputFile="..\statemod\cm2005.ddr",
 ID="*",IgnoreID="954683,952001,950010,950011")

Step 11 - sort structures and create historical diversion file

SortDiversionHistoricalTSMonthly(Order=Ascending)
WriteDiversionHistoricalTSMonthlyToStateMod(OutputFile="..\StateMod\cm2005.ddh")

Step 12 - update capacities and create final direct diversion station file

SetDiversionStationCapacitiesFromTS(ID="*")
WriteDiversionStationsToStateMod(OutputFile="..\statemod\cm2005.dds")

Check the results.
CheckDiversionHistoricalTSMonthly(ID="*")
WriteCheckFile(OutputFile="ddh.commands.StateDMI.check.html")

4 - Command Reference – FillDiversionHistoricalTSMonthlyAverage() 368

Command Reference:
FillDiversionHistoricalTSMonthlyConstant()

Fill diversion historical time series (monthly) values using a constant value

StateMod Command

Version 3.09.01, 2010-02-01

The FillDiversionHistoricalTSMonthlyConstant() command fills missing diversion
historical time series (monthly) data, using a constant value. This command is useful, for example, to set
diversion values to zero if other fill commands are unable to provide data estimates for missing data.

The following dialog is used to edit the command and illustrates the syntax of the command.

FilltDiversionHistoricalTSMonthlyConstant

FillDiversionHistoricalTSMonthlyConstant() Command Editor

Command Reference – FillDiversionHistoricalTSMonthlyConstant() - 1 369

FillDiversionHistoricalTSMonthlyConstant() Command StateDMI Documentation

The command syntax is as follows:

FillDiversionHistoricalTSMonthlyConstant(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single diversion station identifier to

match or a pattern using wildcards (e.g.,
20*).

None – must be specified.

FillStart The first year to fill. If not specified, fill the full
period.

FillEnd The last year to fill. If not specified, fill the full
period.

Constant The constant value to be used to fill
missing data.

None – must be specified.

FillFlag If specified as a single character, data
flags will be enabled for the time series
and each filled value will be tagged with
the specified character. The flag can
then be used later to label graphs, etc.
The flag will be appended to existing
flags if necessary.

No flag is assigned.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message if

the ID is not matched
• Ignore – ignore (don’t add and

don’t generate a message) if the ID is
not matched

• Warn – generate a warning message
if the ID is not matched

Warn

2 - Command Reference – FillDiversionHistoricalTSMonthlyConstant() 370

Command Reference:
FillDiversionHistoricalTSMonthlyPattern()

Fill diversion historical time series (monthly) values using WET/DRY/AVG values

StateMod Command

Version 3.09.01, 2010-02-01

The FillDiversionHistoricalTSMonthlyPattern() command fills missing diversion
historical time series (monthly) data, using average monthly wet/dry/average values. The historical
averages are computed using patterns read by the ReadPatternFile() command. The average
values that are used during data filling are printed to the log file. For example, if a value is missing for
May 1980, the pattern for the specified pattern identifier is checked for WET, DRY, or AVG. The values of
all May’s for WET, DRY, or AVG are then averaged in the time series to be filled, and the resulting average
used to fill missing data. This command therefore will result in filled values that are more appropriate
than simple averages; however, work must be done to characterize the wet, dry, and average months.

The following dialog is used to edit the command and illustrates the syntax of the command.

FilltDiversionHistoricalTSMonthlyPattern

FillDiversionHistoricalTSMonthlyPattern() Command Editor

Command Reference – FillDiversionHistoricalTSMonthlyPattern() - 1 371

FillDiversionHistoricalTSMonthlyPattern() Command StateDMI Documentation

The command syntax is as follows:

FillDiversionHistoricalTSMonthlyPattern(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single diversion station identifier to

match or a pattern using wildcards (e.g.,
20*).

None – must be specified.

IncludeCollections Indicates whether time series for
collections (diversion stations that are
aggregates or systems) are included in
the processing. If the time series for
these stations have been filled during the
read, then it may not be necessary to fill
again. On the other hand, it may be
necessary to use the sum of the time
series to fill missing data.

True

FillStart The first date to fill. If not specified, fill the full
period.

FillEnd The last date to fill. If not specified, fill the full
period.

PatternID The pattern identifier for data read with
a ReadPatternFile() command.

None – must be specified.

LEZeroInAverage Indicates whether values ≤ 0 should be
considered when computing monthly
averages.

True

FillFlag If specified as a single character, data
flags will be enabled for the time series
and each filled value will be tagged with
the specified character. The flag can
then be used later to label graphs, etc.
The flag will be appended to existing
flags if necessary.

No flag is assigned.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message if

the ID is not matched
• Ignore – ignore (don’t add and

don’t generate a message) if the ID
is not matched

• Warn – generate a warning message
if the ID is not matched

Warn

2 - Command Reference – FillDiversionHistoricalTSMonthlyPattern() 372

Command Reference: FillDiversionRight()

Fill diversion right data

StateCU and StateMod Command
Version 3.09.00, 2010-01-26

The FillDiversionRight() command fills missing data in existing diversion rights. The following
dialog is used to edit the command and illustrates the syntax of the command.

FillDiversionRight

FillDiversionRight() Command Editor

 Command Reference – FillDiversionRight() - 1 373

FillDiversionRight() Command StateDMI Documentation

The command syntax is as follows:

FillDiversionRight(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single diversion right identifier to

match or a pattern using wildcards
(e.g., 20*).

None – must be specified.

Name The name to be assigned for all
matching diversion right identifiers
with missing name.

If not specified, the original
value will remain.

StationID The diversion station identifier to be
assigned for all matching diversion
right identifiers with missing
diversion station identifier.

If not specified, the original
value will remain.

AdministrationNumber The administration number to be
assigned for all matching diversion
right identifiers with missing
administration number.

If not specified, the original
value will remain.

Decree The water right decree to be assigned
for all matching diversion right
identifiers with missing administration
decree.

If not specified, the original
value will remain.

OnOff The on/off switch to be assigned for
all matching diversion right identifiers
with missing on/off switch, either 1
for on or 0 for off, a positive 4-digit
year to turn the right on starting in the
year, or a negative 4-digit year to turn
the right off starting in the year.

If not specified, the original
value will remain.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure

message if the ID is not matched
• Ignore – ignore (don’t generate

a message) if the ID is not
matched

• Warn – generate a warning
message if the ID is not matched

Warn

2 - Command Reference – FillDiversionRight() 374

Command Reference: FillDiversionStation()

Fill diversion station data

StateMod Command
Version 3.09.01, 2010-02-01

The FillDiversionStation() command fills missing data in existing diversion stations. The
following dialog is used to edit the command and illustrates the syntax of the command.

FillDiversionStation

FillDiversionStation() Command Editor

 Command Reference – FillDiversionStation() - 1 375

FillDiversionStation() Command StateDMI Documentation

The command syntax is as follows:

FillDiversionStation(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single diversion station identifier to match or a

pattern using wildcards (e.g., 20*).
None – must be specified.

Name The name to be assigned for all matching diversion
stations with missing name.

If not specified, the
original value will remain.

RiverNodeID The river node identifier to be assigned for all
matching diversion stations with missing river node
identifier. Specify ID to assign to the diversion
station identifier.

If not specified, the
original value will remain.

OnOff The on/off switch value to be assigned for all
matching diversion stations with missing switch,
either 1 for on or 0 for off.

If not specified, the
original value will remain.

Capacity The diversion station capacity to be assigned for all
matching diversion stations with missing capacity,
CFS.

If not specified, the
original value will remain.

ReplaceResOption The replacement reservoir option to be assigned for
all matching diversion stations with missing option,
as per the StateMod documentation.

If not specified, the
original value will remain.

DailyID The daily identifier to be assigned for all matching
diversion stations with missing daily identifier.

If not specified, the
original value will remain.

UserName The diversion user name (owner) to be assigned for
all matching diversion stations with missing user
name.

If not specified, the
original value will remain.

DemandType The demand type to be assigned for all matching
diversion stations with missing demand type (see
StateMod documentation).

If not specified, the
original value will remain.

IrrigatedAcres The irrigated acres to be assigned for all matching
diversion stations with missing irrigated acres.

If not specified, the
original value will remain.

UseType The use type to be assigned for all matching
diversion stations with missing user type (see
StateMod documentation).

If not specified, the
original value will remain.

DemandSource The demand source to be assigned for all matching
diversion stations with missing demand source (see
StateMod documentation).

If not specified, the
original value will remain.

EffAnnual The annual efficiency (percent, 0 - 100) to be
assigned for all matching diversion stations with
missing annual efficiency (see StateMod
documentation). Monthly efficiencies will be set to
the same value (but not used).

If not specified, the
original value will remain.

EffMonthly The monthly efficiencies (percent, 0 – 100) to be
assigned for all matching diversion stations with
missing data, specified as 12 comma-separated
values, January to December. The annual
efficiency will be set to the average value. The

If not specified, the
original value will remain.

2 - Command Reference – FillDiversionStation() 376

StateDMI Documentation FillDiversionStation() Command

Parameter Description Default
order of the values in the output file will be
according to the output year type set by
setOutputYearType(), or calendar by default.

Returns The return flows to be assigned for all matching
diversion stations with missing returns. Specify as
StationID,Percent,DelayTableID;
StationID,Percent,DelayTableID; etc.

If not specified, the
original value will remain.

IfNotFound Used for error handling, one of the following:
• Fail – generate a failure message if the ID is

not matched
• Ignore – ignore (don’t add and don’t generate

a message) if the ID is not matched
• Warn – generate a warning message if the ID is

not matched

Warn

 Command Reference – FillDiversionStation() - 3 377

FillDiversionStation() Command StateDMI Documentation

This page is intentionally blank.

4 - Command Reference – FillDiversionStation() 378

Command Reference:
FillDiversionStationsFromHydroBase()

Fill diversion station data from HydroBase

StateMod Command

Version 3.09.01, 2010-02-01

The FillDiversionStationsFromHydroBase() command fills missing data in existing
diversion stations, using HydroBase for data.

The following dialog is used to edit the command and illustrates the syntax of the command.

FillDiversionStationsFromHydroBase

FillDiversionStationsFromHydroBase() Command Editor

 Command Reference – FillDiversionStationsFromHydroBase() - 1 379

FillDiversionStationsFromHydroBase() Command StateDMI Documentation

The command syntax is as follows:

FillDiversionStationsFromHydroBase(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single diversion station identifier to

match or a pattern using wildcards (e.g.,
20*).

None – must be specified.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message if

the ID is not matched
• Ignore – ignore (don’t add and

don’t generate a message) if the ID is
not matched

• Warn – generate a warning message
if the ID is not matched

Warn

2 - Command Reference – FillDiversionStationsFromHydroBase() 380

Command Reference:
FillDiversionStationsFromNetwork()

Fill diversion station data from a StateMod network

StateMod Command

Version 3.09.01, 2010-02-01

The FillDiversionStationsFromNetwork() command fills missing data in diversion stations,
using a StateMod network for data. This command is usually used after filling from other sources (e.g.,
HydroBase), because the information in the network file may have been specified mainly for the diagram
and therefore does not necessarily match official data sources. It is assumed that the network has been
read in a previous command (e.g., when the list of diversion stations was originally read).

The following dialog is used to edit the command and illustrates the syntax of the command.

FillDiversionStationsFromNetwork

FillDiversionStationsFromNetwork() Command Editor

 Command Reference – FillDiversionStationsFromNetwork() - 1 381

FillDiversionStationsFromNetwork() Command StateDMI Documentation

The command syntax is as follows:

FillDiversionStationsFromNetwork(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single diversion station identifier to

match or a pattern using wildcards (e.g.,
20*).

None – must be specified.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message if

the ID is not matched
• Ignore – ignore (don’t add and

don’t generate a message) if the ID is
not matched

• Warn – generate a warning message
if the ID is not matched

Warn

The following example illustrates how to fill diversion station names from the network. A command to
fill from HydroBase or another source will often be run before the second command below.

ReadDiversionStationsFromNetwork(InputFile="sp2005.net")
FillDiversionStationsFromNetwork(ID="*")

2 - Command Reference – FillDiversionStationsFromNetwork() 382

Command Reference: FillInstreamFlowRight()

Fill instream flow right data

StateMod Command
Version 3.09.01, 2010-02-02

The FillInstreamFlowRight() command fills missing data in existing instream flow rights. The
following dialog is used to edit the command and illustrates the syntax of the command.

FillInstreamFlowRight

FillInstreamFlowRight() Command Editor

 Command Reference – FillInstreamFlowRight() - 1 383

FillInstreamFlowRight() Command StateDMI Documentation

The command syntax is as follows:

FillInstreamFlowRight(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single instream flow right identifier

to match or a pattern using wildcards
(e.g., 20*).

None – must be specified.

Name The name to be assigned for all
matching instream flow right
identifiers with missing name.

If not specified, the original
value will remain.

StationID The instream flow station identifier to
be assigned for all matching instream
flow right identifiers with missing
instream flow station identifier.

If not specified, the original
value will remain.

AdministrationNumber The administration number to be
assigned for all matching instream
flow right identifiers with missing
administration number.

If not specified, the original
value will remain.

Decree The water right decree to be assigned
for all matching instream flow right
identifiers with missing administration
decree.

If not specified, the original
value will remain.

OnOff The on/off switch to be assigned for
all matching instream flow right
identifiers with missing on/off switch,
either 1 for on or 0 for off, a positive
4-digit year to turn the right on
starting in the year, or a negative 4-
digit year to turn the right off starting
in the year.

If not specified, the original
value will remain.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure

message if the ID is not matched
• Ignore – ignore (don’t add and

don’t generate a message) if the
ID is not matched

• Warn – generate a warning
message if the ID is not matched

Warn

2 - Command Reference – FillInstreamFlowRight() 384

Command Reference: FillInstreamFlowStation()

Fill instream flow station data

StateMod Command
Version 3.09.01, 2010-02-01

The FillInstreamFlowStation() command fills missing data in existing instream flow stations.
The following dialog is used to edit the command and illustrates the syntax of the command.

FillInstreamFlowStation

FillInstreamFlowStation() Command Editor

 Command Reference – FillInstreamFlowStation() - 1 385

FillInstreamFlowStation() Command StateDMI Documentation

The command syntax is as follows:

FillInstreamFlowStation(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single instream flow station

identifier to match or a pattern using
wildcards (e.g., 20*).

None – must be specified.

Name The name to be assigned for all
matching instream flow station
identifiers with missing name.

If not specified, the original
value will remain.

UpstreamRiverNodeID The upstream river node identifier to
be assigned for all matching instream
flow station identifiers with missing
river node identifier.

If not specified, the original
value will remain.

DownstreamRiverNodeID The downstream river node identifier
to be assigned for all matching
instream flow station identifiers with
missing river node identifier.

If not specified, the original
value will remain.

OnOff The on/off switch to be assigned for
all matching instream flow station
identifiers with missing river node
identifier, either 1 for on or 0 for off.

If not specified, the original
value will remain.

DailyID The daily identifier to be assigned for
all matching stream gage identifiers
with missing river node identifier

If not specified, the original
value will remain.

DemandType The demand type to be assigned for
all matching instream flow stations
with missing demand type, one of:

1 – Monthly demand
2 – Average monthly demand

If not specified, the original
value will remain.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure

message if the ID is not matched
• Ignore – ignore (don’t generate

a message) if the ID is not
matched

• Warn – generate a warning
message if the ID is not matched

Warn

2 - Command Reference – FillInstreamFlowStation() 386

Command Reference:
FillInstreamFlowStationsFromHydroBase()

Fill instream flow station data from HydroBase

StateMod Command

Version 3.09.01, 2010-02-01

The FillInstreamFlowStationsFromHydroBase() command fills missing data in existing
instream flow stations, using HydroBase for data. The following dialog is used to edit the command and
illustrates the syntax of the command.

FillInstreamFlowStationsFromHydroBase

FillInstreamFlowStationsFromHydroBase() Command Editor

Command Reference – FillInstreamFlowStationsFromHydroBase() - 1 387

FillInstreamFlowStationsFromHydroBase() Command StateDMI Documentation

The command syntax is as follows:

FillInstreamFlowStationsFromHydroBase(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single instream flow station identifier

to match or a pattern using wildcards
(e.g., 20*).

None – must be specified.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message if

the ID is not matched
• Ignore – ignore (don’t generate a

message) if the ID is not matched
• Warn – generate a warning message

if the ID is not matched

Warn

2 - Command Reference – FillInstreamFlowStationsFromHydroBase() 388

Command Reference:
FillInstreamFlowStationsFromNetwork()

Fill instream flow station data from a StateMod network

StateMod Command

Version 3.09.01, 2010-02-01

The FillInstreamFlowStationsFromNetwork() command fills missing data in instream flow
stations, using a StateMod network for data. This command is usually used after filling from other
sources (e.g., HydroBase), because the information in the network file may have been specified mainly
for the diagram and therefore does not necessarily match official data sources. It is assumed that the
network has been read in a previous command (e.g., when the list of instream flow stations was originally
read).

The following dialog is used to edit the command and illustrates the syntax of the command.

FillInstreamFlowStationsFromNetwork

FillInstreamFlowStationsFromNetwork() Command Editor

 Command Reference – FillInstreamFlowStationsFromNetwork() - 1 389

FillInstreamFlowStationsFromNetwork() Command StateDMI Documentation

The command syntax is as follows:

FillInstreamFlowStationsFromNetwork(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single instream flow station identifier

to match or a pattern using wildcards
(e.g., 20*).

None – must be specified.

The following example illustrates how to fill instream flow station names from the network. A command
to fill from HydroBase or another source will often be run before the second command below.

ReadInstreamFlowStationsFromNetwork(InputFile="sp2005.net")
FillInstreamFlowStationsFromNetwork(ID="*")

2 - Command Reference – FillInstreamFlowStationsFromNetwork() 390

Command Reference:
FillIrrigationPracticeTSAcreageUsingWellRights()

Fill missing irrigation practice time series (yearly) acreage values using well

rights

StateMod Command
Version 3.09.01, 2010-02-01

The FillIrrigationPracticeTSAcreageUsingWellRights() fills missing irrigation
practice groundwater acreage time series (yearly) information for CU locations using well rights. This
command should only be used to fill data in the period before the earliest modeling year for which data
are available in HydroBase and helps initialize the acreage data in the early period. For example, in the
Rio Grande, 1998 parcel data and associated rights are used to fill the earlier period. The parcels
associated with groundwater are turned off earlier in time, in years when no well water rights are
associated with parcels. This results in the groundwater acreage decreasing back in time, as shown in the
following figure (in this case there is only a slight decrease from approximately 70,000 acres to 47,000
acres, with more change being in the irrigation method):

fillIrrigationPracticeTSAcreageUsingWellRights_Example

Prerequisites:

1. This command should be executed after the irrigation practice time series are read from
HydroBase (see ReadIrrigationPracticeTSFromHydroBase(), which saves a list of
parcels associated with each location during processing). Data for lands that are not in
HydroBase should have been specified with SetIrrigationPracticeTSFromList()
commands.

Command Reference – FillIrrigationPracticeTSAcreageUsingWellRights () - 1 391

FillIrrigationPracticeTSAcreageUsingWellRights() Command StateDMI Documentation

2. Total acreage has been set to the crop pattern time series total (see
SetIrrigationPracticeTSTotalAcreageToCropPatternTSTotalAcreage()).
The total acres are needed for checks.

3. A non-merged, non-aggregated well water right file should have been read using the
ReadWellRightsFromStateMod() or similar command. A StateMod well rights file with
comments including parcel year and parcel are needed to ensure that rights matching the parcels
for ParcelYear are available (see parameter description below).

The steps executed by the command are described below. Note that “CU location” refers to the StateCU
model identifier.

1. For each parcel found in the water rights data, create a yearly time series of decree. The resulting
time series indicates for a parcel the decreed water rights (y-axis) associated with the parcel over
time (x-axis).

2. Loop through each CU location that matches the ID pattern and perform the following:
a. Get the list of parcels associated with the location for ParcelYear, taken from the

irrigation practice time series. The list of parcels will have been saved when the
ReadIrrigationPracticeFromHydroBase() command was processed.

b. For each year being processed, if acreage time series are missing, loop over the list of
parcels for the location (note that the parcel area will be multiplied by the ditch coverage
percent irrigated if the parcel is for a D&W node):
i. If no parcels were found for the location in the ParcelYear, set all groundwater

acreage time series to zero. Consequently, an estimate of zero acreage will occur.
ii. Otherwise, set the groundwater acreage values as follows:

A. If the decree time series for the parcel is zero in a year, set the groundwater
acreage to zero for the year.

B. If the parcel has groundwater supply (one or more wells in ParcelYear):
if high efficiency irrigation method (DRIP or SPRINKLER), increment the
groundwater sprinkler acreage; if low efficiency (all other irrigation
methods), increment the groundwater flood acreage.

C. If the result is missing, set the groundwater sprinkler and flood to zero.
iii. Recompute the groundwater acreage by method and total. If either term is missing,

set the groundwater total to missing. Otherwise, set the groundwater total to the sum
of the parts.

iv. Recompute the surface water acreage by method and total. If either term is missing,
set the surface water total to missing. Otherwise, set the surface water total to the
sum of the parts.

v. Adjust the groundwater acres to total acres and cascade changes:
A. If groundwater only, set the groundwater acres to total acres if they do not

already match. Else, only adjust groundwater acres down to the total
(because surface water can take up the remainder).

B. Adjust the groundwater parts (SPRINKLER and FLOOD) to agree with the
new groundwater total. If one part is zero, adjust only the non-zero part to
match the total. Otherwise, prorate based on the original groundwater total
and acreage split.

C. Adjust the surface water total and parts (SPRINLER and FLOOD) to agree
with the new surface water total. The surface water total is first set to the
total acreage minus the groundwater acreage. Next adjust the parts. If one
part is zero, adjust only the non-zero part to match the total. Otherwise,
prorate based on the original surface water total and acreage split.

2 - Command Reference – FillIrrigationPracticeTSAcreageUsingWellRights () 392

StateDMI Documentation FillIrrigationPracticeTSAcreageUsingWellRights () Command

The following dialog is used to edit the command and illustrates the syntax of the command:

FillIrrigationPracticeTSAcreageUsingWellRights

FillIrrigationPracticeTSAcreageUsingWellRights() Command Editor

Command Reference – FillIrrigationPracticeTSAcreageUsingWellRights() - 3 393

FillIrrigationPracticeTSAcreageUsingWellRights() Command StateDMI Documentation

The command syntax is as follows:

FillIrrigationPracticeTSAcreageUsingWellRights(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single CU location identifier to match

or a pattern using wildcards (e.g., 20*).
None – must be
specified.

ParcelYear A calendar year to use for parcel data,
needed to determine relationships
between diversion stations/parcels/wells
and for well aggregate/systems. Only
the water rights generated from parcels
in this year will be used to limit
groundwater acreage.

None – must be
specified.

IncludeSurfaceWaterSupply Indicate whether locations with surface
water supply should be processed.
Locations will only be processed if they
also have groundwater supply.

True

IncludeGroundwaterOnlySupply Indicate whether locations with only
groundwater supply should be
processed.

True

FillStart A starting year to fill data, normally the
start of the output period.

The output period
start.

FillEnd An ending year to fill data, normally one
year prior to the ParcelYear.

The output period
end.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message

if the ID is not matched
• Ignore – ignore (don’t add and

don’t generate a message) if the ID
is not matched

• Warn – generate a warning message
if the ID is not matched

Warn

The following command file illustrates the use of the command:

Sp2008L_DDH.StateDMI

StartLog(LogFile="SP_IPY.log")
SetOutputPeriod(OutputStart="01/1950",OutputEnd="12/2006")
Step 1 - Read CU Locations from list

ReadCULocationsFromList(ListFile="..\Sp2008L_StructList.csv",IDCol=1)

Step 2 - Read SW aggregates, GW aggregates, and divsystems

SetDiversionAggregateFromList(ListFile="..\Sp2008L_SWAgg.csv",IDCol=1,
 NameCol=2,PartIDsCol=3,PartsListedHow=InColumn)
SetDiversionSystemFromList(ListFile="..\Sp2008L_DivSys_CDS.csv",IDCol=1,
 NameCol=2,PartIDsCol=3,PartsListedHow=InRow)

4 - Command Reference – FillIrrigationPracticeTSAcreageUsingWellRights () 394

StateDMI Documentation FillIrrigationPracticeTSAcreageUsingWellRights () Command

SetWellSystemFromList(ListFile="..\SP_GWAgg_1956.csv",Year=1956,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\SP_GWAgg_1976.csv",Year=1976,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\SP_GWAgg_1987.csv",Year=1987,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\SP_GWAgg_2001.csv",Year=2001,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\SP_GWAgg_2005.csv",Year=2005,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)

Step 3 - Create form for *.ipy file
CreateIrrigationPracticeTSForCULocations(ID="*")

Step 4 - Set conveyance efficiencies from file for key and sw aggregate structures - NOT in HydroBase
SetIrrigationPracticeTSFromList(ListFile="Sp2008L_Eff.csv",ID="*",
 SetStart=1950,SetEnd=2006,IDCol="1",SurfaceDelEffMaxCol="3")

Step 5 - set max flood and surface water efficiencies and GWmode - NOT in HydroBase
SetIrrigationPracticeTS(ID="*",SetStart=1950,SetEnd=2006,FloodAppEffMax=.6,SprinklerAppEffMax=.8,GWMode=2)

Step 6 - Read well rights file and Set Max pumping (use merged *.wer file)
ReadWellRightsFromStateMod(InputFile="..\Wells\Sp2008L.wer")
SetIrrigationPracticeTSPumpingMaxUsingWellRights(ID="*",IncludeSurfaceWaterSupply=True,
 IncludeGroundwaterOnlySupply="True",NumberOfDaysInMonth=30.4)
Step 7 - Read category acreage from HydroBase
ReadIrrigationPracticeTSFromHydroBase(ID="*",Div="1")

Step 8 - Read total acreage from *.cds file and Set total for *.ipy file
ReadCropPatternTSFromStateCU(InputFile="Sp2008L.cds")
SetIrrigationPracticeTSTotalAcreageToCropPatternTSTotalAcreage(ID="*")

Step 9 - Estimate 1950 ground water acreage based on active wells as defined in the non-merged *.wer file

ReadWellRightsFromStateMod(InputFile="..\Wells\Sp2008L_NotMerged.wer",Append=False)
FillIrrigationPracticeTSAcreageUsingWellRights(ID="*",IncludeSurfaceWaterSupply=True,
 IncludeGroundwaterOnlySupply="True",FillStart=1950,FillEnd=1955,ParcelYear=1956)

Step 10 - Fill Interpolate Acreage Type (SW and GW) 1956-2006
Step 11a - estimate total GW and total SW
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-GroundWater",FillStart="1956",FillEnd="1976")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-GroundWater",FillStart="1976",FillEnd="1987")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-GroundWater",FillStart="1987",FillEnd="2001")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-GroundWater",FillStart="2001",FillEnd="2005")
FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-
GroundWater",FillStart="2005",FillEnd="2006",FillDirection="Forward")

Step 11b - set sprinkler to zero in early period
SetIrrigationPracticeTS(ID="*",SetStart=1950,SetEnd=1969,AcresSWSprinkler=0,AcresGWSprinkler=0)

Step 11c - fill remaining irrigation method values
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
SurfaceWaterOnlySprinkler",FillStart="1969",FillEnd="1976")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
SurfaceWaterOnlySprinkler",FillStart="1976",FillEnd="1987")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
SurfaceWaterOnlySprinkler",FillStart="1987",FillEnd="2001")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
SurfaceWaterOnlySprinkler",FillStart="2001",FillEnd="2005")
FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-
SurfaceWaterOnlySprinkler",FillStart="2005",FillEnd="2006",FillDirection="Forward")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
GroundWaterSprinkler",FillStart="1969",FillEnd="1976")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
GroundWaterSprinkler",FillStart="1976",FillEnd="1987")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
GroundWaterSprinkler",FillStart="1987",FillEnd="2001")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
GroundWaterSprinkler",FillStart="2001",FillEnd="2005")
FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-

Command Reference – FillIrrigationPracticeTSAcreageUsingWellRights() - 5 395

FillIrrigationPracticeTSAcreageUsingWellRights() Command StateDMI Documentation

GroundWaterSprinkler",FillStart="2005",FillEnd="2006",FillDirection="Forward")

Step 12 - Set Acreage = 0 for structures that are in diversion systems, so acreage is not double accounted
SetIrrigationPracticeTS(ID="0100503_D",SetStart=1950,SetEnd=2006,AcresSWFlood=0,AcresSWSprinkler=0,
 AcresGWFlood=0,AcresGWSprinkler=0,PumpingMax=0,AcresTotal=0)
SetIrrigationPracticeTS(ID="0100507_D",SetStart=1950,SetEnd=2006,AcresSWFlood=0,AcresSWSprinkler=0,
 AcresGWFlood=0,AcresGWSprinkler=0,PumpingMax=0,AcresTotal=0)
SetIrrigationPracticeTS(ID="0100687",SetStart=1950,SetEnd=2006,AcresSWFlood=0,AcresSWSprinkler=0,
 AcresGWFlood=0,AcresGWSprinkler=0,PumpingMax=0,AcresTotal=0)

SetIrrigationPracticeTS(ID="0200834",SetStart=1950,SetEnd=2006,AcresSWFlood=0,AcresSWSprinkler=0,
 AcresGWFlood=0,AcresGWSprinkler=0,PumpingMax=0,AcresTotal=0)

SetIrrigationPracticeTS(ID="6400511_D",SetStart=1950,SetEnd=2006,AcresSWFlood=0,AcresSWSprinkler=0,
 AcresGWFlood=0,AcresGWSprinkler=0,PumpingMax=0,AcresTotal=0)

Step 13 - Set Acreage = 0, 1950-2006
SetIrrigationPracticeTS(ID="0100501",SetStart=1950,SetEnd=2006,AcresSWFlood=0,AcresSWSprinkler=0,
 AcresGWFlood=0,AcresGWSprinkler=0,PumpingMax=0,AcresTotal=0)
SetIrrigationPracticeTS(ID="0100513",SetStart=1950,SetEnd=2006,AcresSWFlood=0,AcresSWSprinkler=0,
 AcresGWFlood=0,AcresGWSprinkler=0,PumpingMax=0,AcresTotal=0)
SetIrrigationPracticeTS(ID="0100829",SetStart=1950,SetEnd=2006,AcresSWFlood=0,AcresSWSprinkler=0,
 AcresGWFlood=0,AcresGWSprinkler=0,PumpingMax=0,AcresTotal=0)

SetIrrigationPracticeTS(ID="6400519",SetStart=1950,SetEnd=2006,AcresSWFlood=0,AcresSWSprinkler=0,
 AcresGWFlood=0,AcresGWSprinkler=0,PumpingMax=0,AcresTotal=0)

Step 14 - Write final ipy file

WriteIrrigationPracticeTSToStateCU(OutputFile="Sp2008L.ipy",WriteHow=OverwriteFile)
WriteIrrigationPracticeTSToStateCU(OutputFile="..\StateCU\Historic\Sp2008L.ipy",WriteHow=OverwriteFile)
WriteIrrigationPracticeTSToStateCU(OutputFile="..\StateMod\Historic\Sp2008L.ipy",WriteHow=OverwriteFile)

6 - Command Reference – FillIrrigationPracticeTSAcreageUsingWellRights () 396

Command Reference:
FillIrrigationPracticeTSInterpolate()

Fill irrigation practice time series values using interpolation

StateCU Command

Version 3.09.01, 2010-02-01

The FillIrrigationPracticeTSInterpolate() command fills irrigation practice time series
data for a CU Location, using interpolation. Data will not be extrapolated past the end-points and
therefore another fill method (e.g., FillIrrigationPracticeTSRepeat()) may be required after
the interpolation command. Filling is currently always in a forward direction. Setting acreage values
results in a cascade of adjustments to maintain sums, and will be noted in the log file. Preference is given
to maintaining the total acreage, then groundwater acreage, and then surface water acreage. Irrigation
method within groundwater will agree with the total and the sprinkler and flood acreage will be prorated
based on previous values if necessary to adjust to the total. Similar adjustments are made to surface water
acreage.

If applied to acreage, it is typical to first fill the groundwater acreage separately and then use this
command to interpolate the surface water acreage by interpolating between years with observations.

Prerequisites for acreage filling:

1. This command should be executed after the irrigation practice time series are read from
HydroBase (see ReadIrrigationPracticeTSFromHydroBase()).

2. Total acreage has been set to the crop pattern time series total (see
SetIrrigationPracticeTSTotalAcreageToCropPatternTSTotalAcreage()).
The total acres are needed for checks.

3. The groundwater acreage should also have been filled using well rights before the first year of
observations using FillIrrigationPracticeTSAcreageUsingWellRights().

 Command Reference – FillIrrigationPracticeTSInterpolate() - 1 397

FillIrrigationPracticeTSInterpolate() Command StateDMI Documentation

The following dialog is used to edit the command and illustrates the syntax of the command.

FilltIrrigationPracticeTSInterpolate

FillIrrigationPracticeTSInterpolate() Command Editor

Currently, the following check is always done after interpolation on any acreage data to adjust acreage
parts to the total acreage:

1. If any of the acreage terms (surface water flood, surface water sprinkler, groundwater flood,
groundwater sprinkler) is missing, print a warning. This should not occur if valid FillStart
and FillEnd are specified, with observations at endpoints.

2. Compute the “target” surface water acreage as the total acreage minus the groundwater terms
(groundwater flood + sprinkler). Compute the actual surface water (from current in-memory
data) as the total of surface water flood and sprinkler acreage.

a. If the target is less than zero, the groundwater acres are greater than the total. Adjust the
groundwater acreage to the total, maintaining the ratio of flood and sprinkler acres to the
total as with the previous groundwater total. Recompute the target surface water total
acres (will be zero).

b. If the surface water actual is zero and its terms cannot be adjusted to the target, attempt to
adjust the groundwater acreage to make up the difference.

i. If the groundwater acreage terms are zero, print a warning – no adjustment is
possible. The user will need to take action.

ii. Else, adjust the groundwater to equal the total, maintaining the ratio of flood and
sprinkler acres to the total as with the previous groundwater total.

c. Else if the surface water actual is not zero, adjust the surface water total to match the
target, maintaining a ratio of surface water flood and sprinkler consistent with the
previous values. This may result in the surface water terms being set to zero.

2 - Command Reference – FillIrrigationPracticeTSInterpolate() 398

StateDMI Documentation FillIrrigationPracticeTSInterpolate () Command

The command syntax is as follows:

FillIrrigationPracticeTSInterpolate(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single CU Location identifier to match

or a pattern using wildcards (e.g., 20*).
None – must be specified.

DataType A single data type or blank for all data
types (see command editor for choices).

If not specified, fill all data types.

FillStart The first year to fill. Include an endpoint
with observations because they will be
needed for interpolation.

If not specified, fill the full
period.

FillEnd The last year to fill. Include an endpoint
with observations because they will be
needed for interpolation.

If not specified, fill the full
period.

MaxIntervals The maximum number of intervals to fill
in any gap.

If not specified, fill the entire
gap.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message if

the ID is not matched
• Ignore – ignore (don’t add and

don’t generate a message) if the ID is
not matched

• Warn – generate a warning message
if the ID is not matched

Warn

The following command file illustrates how to process the irrigation practice time series file where
groundwater supply is used:

Sp2008L_DDH.StateDMI

StartLog(LogFile="SP_IPY.log")
SetOutputPeriod(OutputStart="01/1950",OutputEnd="12/2006")
Step 1 - Read CU Locations from list

ReadCULocationsFromList(ListFile="..\Sp2008L_StructList.csv",IDCol=1)

Step 2 - Read SW aggregates, GW aggregates, and divsystems

SetDiversionAggregateFromList(ListFile="..\Sp2008L_SWAgg.csv",IDCol=1,
 NameCol=2,PartIDsCol=3,PartsListedHow=InColumn)
SetDiversionSystemFromList(ListFile="..\Sp2008L_DivSys_CDS.csv",IDCol=1,
 NameCol=2,PartIDsCol=3,PartsListedHow=InRow)

SetWellSystemFromList(ListFile="..\SP_GWAgg_1956.csv",Year=1956,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\SP_GWAgg_1976.csv",Year=1976,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\SP_GWAgg_1987.csv",Year=1987,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\SP_GWAgg_2001.csv",Year=2001,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\SP_GWAgg_2005.csv",Year=2005,Div=1,

 Command Reference – FillIrrigationPracticeTSInterpolate () - 3 399

FillIrrigationPracticeTSInterpolate() Command StateDMI Documentation

 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)

Step 3 - Create form for *.ipy file
CreateIrrigationPracticeTSForCULocations(ID="*")

Step 4 - Set conveyance efficiencies from file for key and sw aggregate structures - NOT in HydroBase
SetIrrigationPracticeTSFromList(ListFile="Sp2008L_Eff.csv",ID="*",
 SetStart=1950,SetEnd=2006,IDCol="1",SurfaceDelEffMaxCol="3")

Step 5 - set max flood and surface water efficiencies and GWmode - NOT in HydroBase
SetIrrigationPracticeTS(ID="*",SetStart=1950,SetEnd=2006,FloodAppEffMax=.6,SprinklerAppEffMax=.8,GWMode=2)

Step 6 - Read well rights file and Set Max pumping (use merged *.wer file)
ReadWellRightsFromStateMod(InputFile="..\Wells\Sp2008L.wer")
SetIrrigationPracticeTSPumpingMaxUsingWellRights(ID="*",IncludeSurfaceWaterSupply=True,
 IncludeGroundwaterOnlySupply="True",NumberOfDaysInMonth=30.4)
Step 7 - Read category acreage from HydroBase
ReadIrrigationPracticeTSFromHydroBase(ID="*",Div="1")

Step 8 - Read total acreage from *.cds file and Set total for *.ipy file
ReadCropPatternTSFromStateCU(InputFile="Sp2008L.cds")
SetIrrigationPracticeTSTotalAcreageToCropPatternTSTotalAcreage(ID="*")

Step 9 - Estimate 1950 ground water acreage based on active wells as defined in the non-merged *.wer
file

ReadWellRightsFromStateMod(InputFile="..\Wells\Sp2008L_NotMerged.wer",Append=False)
FillIrrigationPracticeTSAcreageUsingWellRights(ID="*",IncludeSurfaceWaterSupply=True,
 IncludeGroundwaterOnlySupply="True",FillStart=1950,FillEnd=1955,ParcelYear=1956)

Step 10 - Fill Interpolate Acreage Type (SW and GW) 1956-2006
Step 11a - estimate total GW and total SW
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
GroundWater",FillStart="1956",FillEnd="1976")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
GroundWater",FillStart="1976",FillEnd="1987")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
GroundWater",FillStart="1987",FillEnd="2001")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
GroundWater",FillStart="2001",FillEnd="2005")
FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-
GroundWater",FillStart="2005",FillEnd="2006",FillDirection="Forward")

Step 11b - set sprinkler to zero in early period
SetIrrigationPracticeTS(ID="*",SetStart=1950,SetEnd=1969,AcresSWSprinkler=0,AcresGWSprinkler=0)

Step 11c - fill remaining irrigation method values
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
SurfaceWaterOnlySprinkler",FillStart="1969",FillEnd="1976")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
SurfaceWaterOnlySprinkler",FillStart="1976",FillEnd="1987")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
SurfaceWaterOnlySprinkler",FillStart="1987",FillEnd="2001")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
SurfaceWaterOnlySprinkler",FillStart="2001",FillEnd="2005")
FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-
SurfaceWaterOnlySprinkler",FillStart="2005",FillEnd="2006",FillDirection="Forward")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
GroundWaterSprinkler",FillStart="1969",FillEnd="1976")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
GroundWaterSprinkler",FillStart="1976",FillEnd="1987")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
GroundWaterSprinkler",FillStart="1987",FillEnd="2001")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
GroundWaterSprinkler",FillStart="2001",FillEnd="2005")
FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-
GroundWaterSprinkler",FillStart="2005",FillEnd="2006",FillDirection="Forward")

Step 12 - Set Acreage = 0 for structures that are in diversion systems, so acreage is not double
accounted
SetIrrigationPracticeTS(ID="0100503_D",SetStart=1950,SetEnd=2006,AcresSWFlood=0,AcresSWSprinkler=0,

4 - Command Reference – FillIrrigationPracticeTSInterpolate() 400

StateDMI Documentation FillIrrigationPracticeTSInterpolate () Command

 AcresGWFlood=0,AcresGWSprinkler=0,PumpingMax=0,AcresTotal=0)
SetIrrigationPracticeTS(ID="0100507_D",SetStart=1950,SetEnd=2006,AcresSWFlood=0,AcresSWSprinkler=0,
 AcresGWFlood=0,AcresGWSprinkler=0,PumpingMax=0,AcresTotal=0)
SetIrrigationPracticeTS(ID="0100687",SetStart=1950,SetEnd=2006,AcresSWFlood=0,AcresSWSprinkler=0,
 AcresGWFlood=0,AcresGWSprinkler=0,PumpingMax=0,AcresTotal=0)

SetIrrigationPracticeTS(ID="0200834",SetStart=1950,SetEnd=2006,AcresSWFlood=0,AcresSWSprinkler=0,
 AcresGWFlood=0,AcresGWSprinkler=0,PumpingMax=0,AcresTotal=0)

SetIrrigationPracticeTS(ID="6400511_D",SetStart=1950,SetEnd=2006,AcresSWFlood=0,AcresSWSprinkler=0,
 AcresGWFlood=0,AcresGWSprinkler=0,PumpingMax=0,AcresTotal=0)

Step 13 - Set Acreage = 0, 1950-2006
SetIrrigationPracticeTS(ID="0100501",SetStart=1950,SetEnd=2006,AcresSWFlood=0,AcresSWSprinkler=0,
 AcresGWFlood=0,AcresGWSprinkler=0,PumpingMax=0,AcresTotal=0)
SetIrrigationPracticeTS(ID="0100513",SetStart=1950,SetEnd=2006,AcresSWFlood=0,AcresSWSprinkler=0,
 AcresGWFlood=0,AcresGWSprinkler=0,PumpingMax=0,AcresTotal=0)
SetIrrigationPracticeTS(ID="0100829",SetStart=1950,SetEnd=2006,AcresSWFlood=0,AcresSWSprinkler=0,
 AcresGWFlood=0,AcresGWSprinkler=0,PumpingMax=0,AcresTotal=0)

SetIrrigationPracticeTS(ID="6400519",SetStart=1950,SetEnd=2006,AcresSWFlood=0,AcresSWSprinkler=0,
 AcresGWFlood=0,AcresGWSprinkler=0,PumpingMax=0,AcresTotal=0)

Step 14 - Write final ipy file

WriteIrrigationPracticeTSToStateCU(OutputFile="Sp2008L.ipy",WriteHow=OverwriteFile)
WriteIrrigationPracticeTSToStateCU(OutputFile="..\StateCU\Historic\Sp2008L.ipy",WriteHow=OverwriteFile)
WriteIrrigationPracticeTSToStateCU(OutputFile="..\StateMod\Historic\Sp2008L.ipy",WriteHow=OverwriteFile)

 Command Reference – FillIrrigationPracticeTSInterpolate () - 5 401

FillIrrigationPracticeTSInterpolate() Command StateDMI Documentation

This page is intentionally blank.

6 - Command Reference – FillIrrigationPracticeTSInterpolate() 402

Command Reference:
FillIrrigationPracticeTSRepeat()

Fill irrigation practice time series values by repeating values

StateCU Command

Version 3.09.01, 2010-02-01

The FillIrrigationPracticeTSRepeat() command fills irrigation practice time series data for
a CU Location, by repeating known values. Filling can occur forward or backward in time, but not both.
Therefore, it may be necessary to use two similar commands, one filling forward, and one filling
backward, in order to completely fill the ends of time series. Setting acreage values results in a cascade
of adjustments to maintain sums, and will be noted in the log file. Preference is given to maintaining the
total acreage, then groundwater acreage, and then surface water acreage. Irrigation method within
groundwater will agree with the total and the sprinkler and flood acreage will be prorated based on
previous values if necessary to adjust to the total. Similar adjustments are made to surface water acreage.

The following dialog is used to edit the command and illustrates the syntax of the command.

FilltIrrigationPracticeTSRepeat

FillIrrigationPracticeTSRepeat() Command Editor

Currently, the following check is always done after filling on any acreage data to adjust acreage parts to
the total acreage:

 Command Reference – FillIrrigationpracticeTSRepeat() - 1 403

FillIrrigationPracticeTSRepeat() Command StateDMI Documentation

1. If any of the acreage terms (surface water flood, surface water sprinkler, groundwater flood,
groundwater sprinkler) is missing, print a warning. This should not occur if valid FillStart
and FillEnd are specified, with observations at endpoints.

2. Compute the “target” surface water acreage as the total acreage minus the groundwater terms
(groundwater flood + sprinkler). Compute the actual surface water (from current in-memory
data) as the total of surface water flood and sprinkler acreage.

a. If the target is less than zero, the groundwater acres are greater than the total. Adjust the
groundwater acreage to the total, maintaining the ratio of flood and sprinkler acres to the
total as with the previous groundwater total. Recompute the target surface water total
acres (will be zero).

b. If the surface water actual is zero and its terms cannot be adjusted to the target, attempt to
adjust the groundwater acreage to make up the difference.

i. If the groundwater acreage terms are zero, print a warning – no adjustment is
possible. The user will need to take action.

ii. Else, adjust the groundwater to equal the total, maintaining the ratio of flood and
sprinkler acres to the total as with the previous groundwater total.

c. Else if the surface water actual is not zero, adjust the surface water total to match the
target, maintaining a ratio of surface water flood and sprinkler consistent with the
previous values. This may result in the surface water terms being set to zero.

The command syntax is as follows:

FillIrrigationPracticeTSRepeat(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single CU Location identifier to match or a

pattern using wildcards (e.g., 20*).
None – must be specified.

DataType A single data type, CropArea-
AllSurfaceAcreageParts (for surface
water sprinkler and surface water flood), or
blank for all data types.

If not specified, fill all
data types.

FillStart The first year to fill. Specify as a year with
complete data if filling forward.

If not specified, fill the
full period.

FillEnd The last year to fill. Specify as a year with
complete data if filling backward.

If not specified, fill the
full period.

FillDirection The direction to fill, either Forward or
Backward.

Forward

MaxIntervals The maximum number of intervals to fill in any
gap.

If not specified, fill the
entire gap.

IfNotFound Used for error handling, one of the following:
• Fail – generate a failure message if the ID

is not matched
• Ignore – ignore (don’t add and don’t

generate a message) if the ID is not matched
• Warn – generate a warning message if the

ID is not matched

Warn

2 - Command Reference – FillIrrigationPracticeTSRepeat() 404

Command Reference:
FillNetworkFromHydroBase()

Fill generalized network data from HydroBase

StateMod Command

Version 3.09.01, 2010-02-01

The FillNetworkFromHydroBase() command fills missing location data in the generalized
network, using HydroBase for data. This is used, for example, when a generalized network has been
created from a StateMod river network. The following dialog is used to edit the command and illustrates
the syntax of the command.

FillNetworkFromHydroBase

FillNetworkFromHydroBase() Command Editor

 Command Reference – FillNetworkFromHydroBase() - 1 405

FillNetworkFromHydroBase() Command StateDMI Documentation

The command syntax is as follows:

FillNetworkFromHydroBase(Parameter=Value,…)

Command Parameters

Parameter Description Default
LocationEstimate Indicates how to estimate missing coordinates,

currently only:

• Interpolate – linearly interpolate

between known node locations.

Interpolate

The following example command file illustrates how the command might be used:

Create a generalized XML network from individual StateMod files
Read the network, which contains upstream to downstream connectivity but does
not indicate node types
ReadRiverNetworkFromStateMod(InputFile=cm2005.rin)
Read the stations, which imply the node types
ReadRiverStreamGageStationsFromStateMod(InputFile=cm2005.ris)
ReadRiverDiversionStationsFromStateMod(InputFile=cm2005.dds)
ReadRiverReservoirStationsFromStateMod(InputFile=cm2005.res)
ReadRiverInstreamFlowStationsFromStateMod(InputFile=cm2005.ifs)
ReadRiverWellStationsFromStateMod(InputFile=cm2005.wes)
To be developed...
#ReadRiverPlanStationsFromStateMod()
ReadRiverStreamEstimateStationsFromStateMod(InputFile=cm2005.ris)
Now create the generalized network, using the connectivity and node types
CreateNetworkFromRiverNetwork()
Fill in node names and locations from HydroBase, if any is still missing
FillNetworkFromHydroBase()
Write the generalized network
WriteNetworkToStateMod(OutputFile="cm2005.net")
Check for errors (the following is not yet implemented)
#CheckNetwork()
WriteCheckFile(OutputFile="cm2005.net.check.html")

2 - Command Reference – FillNetworkFromHydroBase() 406

Command Reference: FillReservoirRight()

Fill reservoir right data

StateMod Command
Version 3.09.01, 2010-02-01

The FillReservoirRight() command fills missing data in existing reservoir rights. The following
dialog is used to edit the command and illustrates the syntax of the command.

FillReservoirRight

FillReservoirRight() Command Editor

 Command Reference – FillReservoirRight() - 1 407

FillReservoirRight() Command StateDMI Documentation

The command syntax is as follows:

FillReservoirRight(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single reservoir right identifier to match or a

pattern using wildcards (e.g., 20*).
None – must be specified.

Name The name to be assigned for all matching
reservoir right identifiers with missing name.

If not specified, the original
value will remain.

StationID The reservoir station identifier to be assigned
for all matching reservoir right identifiers with
missing reservoir station identifier.

If not specified, the original
value will remain.

Administration
Number

The administration number to be assigned for
all matching reservoir right identifiers with
missing administration number.

If not specified, the original
value will remain.

Decree The water right decree to be assigned for all
matching reservoir right identifiers with
missing administration decree.

If not specified, the original
value will remain.

OnOff The on/off switch to be assigned for all
matching reservoir right identifiers with
missing on/off switch, either 1 for on or 0 for
off, a positive 4-digit year to turn the right on
starting in the year, or a negative 4-digit year to
turn the right off starting in the year.

If not specified, the original
value will remain.

AccountDist The account distribution option to be assigned
for all matching reservoir rights (see StateMod
documentation).

If not specified, the original
value will remain.

RightType The reservoir right type to be assigned for all
matching reservoir rights (see StateMod
documentation).

If not specified, the original
value will remain.

FillType The reservoir right fill type to be assigned for
all matching reservoir rights (see StateMod
documentation).

If not specified, the original
value will remain.

OpRightID The out-of-priority associated operational right
(see StateMod documentation).

If not specified, the original
value will remain.

IfNotFound Used for error handling, one of the following:
• Fail – generate a failure message if the ID

is not matched
• Ignore – ignore (don’t generate a

message) if the ID is not matched
• Warn – generate a warning message if the

ID is not matched

Warn

2 - Command Reference – FillReservoirRight() 408

Command Reference: FillReservoirStation()

Fill reservoir station data

StateMod Command
Version 3.09.01, 2010-02-01

The FillReservoirStation() command fills missing data in existing reservoir stations.

Currently, accounts cannot be filled, and if specified with this command, are set as if the
SetReservoirStation() command is being used.

 Command Reference – FillReservoirStation() - 1 409

FillReservoirStation() Command StateDMI Documentation

The following dialog is used to edit the command and illustrates the syntax of the command.

FillReservoirStation

FillReservoirStation() Command Editor

2 - Command Reference – FillReservoirStation() 410

StateDMI Documentation FillReservoirStation() Command

The command syntax is as follows:

FillReservoirStation(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single diversion station identifier to match or a

pattern using wildcards (e.g., 20*).
None – must be specified.

Name The name to be assigned for all matching reservoir
stations with missing name.

If not specified, the
original value will
remain.

RiverNodeID The river node identifier to be assigned for all
matching reservoir stations with missing river
node ID. Specify ID to assign to the reservoir
station ID.

If not specified, the
original value will
remain.

OnOff The on/off switch value to be assigned for all
matching reservoir stations with missing OnOff,
either 1 for on or 0 for off.

If not specified, the
original value will
remain.

OneFillRule The date for one fill rule administration (see the
StateMod documentation) to be assigned for all
matching reservoir stations with missing value.

If not specified, the
original value will
remain.

DailyID The daily identifier to be assigned for all matching
reservoir stations with missing value.

If not specified, the
original value will
remain.

ContentMin The reservoir minimum content, ACFT to be
assigned for all matching reservoir stations with
missing value.

If not specified, the
original value will
remain.

ContentMax The reservoir maximum content, ACFT to be
assigned for all matching reservoir stations with
missing value.

If not specified, the
original value will
remain.

ReleaseMax The reservoir maximum release, CFS to be
assigned for all matching reservoir stations with
missing value.

If not specified, the
original value will
remain.

DeadStorage The reservoir dead storage, ACFT to be assigned
for all matching reservoir stations with missing
value.

If not specified, the
original value will
remain.

AccountID A reservoir account identifier, a number 1+.
Reservoir accounts in the StateMod reservoir
station are identified only by the account name.
This AccountID lets the software know the
order of the accounts. If the AccountID is
specified as 1, all the accounts are deleted and a
new list of accounts is started. Therefore, specify
account information in sequential order.

Must be specified when
providing account
information.

AccountName A reservoir account name. If not specified, the
original value will
remain.

AccountMax The account maximum content, ACFT. If not specified, the
original value will

 Command Reference – FillReservoirStation() - 3 411

FillReservoirStation() Command StateDMI Documentation

Parameter Description Default
remain.

AccountInitial The account initial content, ACFT. If not specified, the
original value will
remain.

AccountEvap The account evaporation distribution – see the
StateMod documentation.

If not specified, the
original value will
remain.

AccountOneFill The account information for one fill calculations –
see the StateMod documentation.

If not specified, the
original value will
remain.

EvapStations A list of evaporation stations and weights (%) for
the reservoir station, using the format: ID,%;
ID,%.

If not specified, the
original value will
remain.

PrecipStations A list of precipitation stations and weights (%) for
the reservoir station, using the format: ID,%;
ID,%.

If not specified, the
original value will
remain.

ContentAreaSeepage Content/area/seepage values, using the format:
Content,Area,Seepage;
Content,Area,Seepage.

If not specified, the
original value will
remain.

4 - Command Reference – FillReservoirStation() 412

Command Reference:
FillReservoirStationsFromNetwork()

Fill reservoir station data from a StateMod network

StateMod Command

Version 3.09.01, 2010-02-01

The FillReservoirStationsFromNetwork() command fills missing data in reservoir stations,
using a StateMod network for data. This command usually is used after filling from other sources (e.g.,
HydroBase), because the information in the network file may have been specified mainly for the diagram
and therefore does not necessarily match official data sources. It is assumed that the network has been
read in a previous command (e.g., when the list of reservoir stations was originally read).

The following dialog is used to edit the command and illustrates the syntax of the command.

FillReservoirStationsFromNetwork

FillReservoirStationsFromNetwork() Command Editor

 Command Reference – FillReservoirStationsFromNetwork() - 1 413

FillReservoirStationsFromNetwork() Command StateDMI Documentation

The command syntax is as follows:

FillReservoirStationsFromNetwork(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single reservoir station identifier to

match or a pattern using wildcards (e.g.,
20*).

None – must be specified.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message if

the ID is not matched
• Ignore – ignore (don’t add and

don’t generate a message) if the ID is
not matched

• Warn – generate a warning message
if the ID is not matched

Warn

The following example illustrates how to fill reservoir station names from the network. A command to
fill from HydroBase or another source will often be run before the second command below.

ReadReservoirStationsFromList(InputFile="sp2005.csv")
FillReservoirStationsFromNetwork(ID="*")

2 - Command Reference – FillReservoirStationsFromNetwork() 414

Command Reference:
FillReservoirStationsFromHydroBase()

Fill reservoir station data from HydroBase

StateMod Command

Version 3.14.00, 2004-09-14, Color, Acrobat Distiller

The FillReservoirStationsFromHydroBase() command fills missing data in existing
reservoir stations, using HydroBase for data.

If not in HydroBase, a bounding zero value point is inserted as the first record in the curve. A maximum
bound of content 9999999 is also added, using the area and seepage of the last record from HydroBase.

The following dialog is used to edit the command and illustrates the syntax of the command.

FillReservoirStationsFromHydroBase

FillReservoirStationsFromHydroBase() Command Editor

 Command Reference – FillReservoirStationsFromHydroBase() - 1 415

FillReservoirStationsFromHydroBase() Command StateDMI Documentation

The command syntax is as follows:

FillReservoirStationsFromHydroBase(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single reservoir station identifier to

match or a pattern using wildcards (e.g.,
20*).

None – must be specified.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message if

the ID is not matched
• Ignore – ignore (don’t add and

don’t generate a message) if the ID is
not matched

• Warn – generate a warning message
if the ID is not matched

Warn

2 - Command Reference – FillReservoirStationsFromHydroBase() 416

Command Reference:
FillRiverNetworkFromHydroBase()

Fill StateMod river network data from HydroBase

StateMod Command

Version 3.09.01, 2010-02-01

The FillRiverNetworkFromHydroBase() command fills missing data in the StateMod river
network, using HydroBase for data. This is used, for example, when the river network has been created
from the generalized network and “official” node names are to be determined from HydroBase. The
following dialog is used to edit the command and illustrates the syntax of the command.

FillRiverNetworkFromHydroBase

FillRiverNetworkFromHydroBase() Command Editor

The command syntax is as follows:

FillRiverNetworkFromHydroBase(Parameter=Value,…)

 Command Reference – FillRiverNetworkFromHydroBase() - 1 417

FillRiverNetworkFromHydroBase() Command StateDMI Documentation

Command Parameters

Parameter Description Default
ID A single river station identifier to match or a

pattern using wildcards (e.g., 20*).
None – must be
specified.

NameFormat The format to use when setting the name, one of:

• StationName – use the station name from

HydroBase
• StationName_NodeType – use the first 20

characters of the name from Hydrobase + “_”
+ the node type (e.g., “ABC DITCH
_DIV”).

If blank, the original
values will remain
unchanged.

IfNotFound Used for error handling, one of the following:
• Fail – generate a failure message if the ID is

not matched
• Ignore – ignore (don’t add and don’t

generate a message) if the ID is not matched
• Warn – generate a warning message if the ID

is not matched

Warn

The following command file illustrates how a StateMod river network file can be created from the
generalized network file:

StartLog(LogFile="rin.commands.StateDMI.log")
rin.commands.StateDMI

creates the river network file for the Colorado River monthly/daily models

Step 1 - read river nodes from the network file and create file framework

ReadNetworkFromStateMod(InputFile="cm2005.net")
CreateRiverNetworkFromNetwork()

Step 2 - get node (diversion, stream stations, reservoirs, instream flows)
names from HydroBase

FillRiverNetworkFromHydroBase(ID="*",NameFormat=StationName_NodeType)

Step 3 - read missing node names from network file

FillRiverNetworkFromNetwork(ID="*",NameFormat="StationName_NodeType",
 CommentFormat="StationID")

Step 4 - create StateMod river network file

WriteRiverNetworkToStateMod(OutputFile="..\StateMod\cm2005.rin")

Check the results
CheckRiverNetwork(ID="*")
WriteCheckFile(OutputFile="rin.commands.StateDMI.check.html")

2 - Command Reference – FillRiverNetworkFromHydroBase() 418

Command Reference:
FillRiverNetworkFromNetwork()

Fill StateMod river network data from the generalized network

StateMod Command

Version 3.09.01, 2010-02-01

The FillRiverNetworkFromNetwork() command fills missing data in the StateMod river
network, using the generalized network for data. This is used, for example, when the river network has
been created from the generalized network and “official” node names are first filled from HydroBase.
Any remaining missing names can then be filled from the generalized network, using labels for the
diagram. The following dialog is used to edit the command and illustrates the syntax of the command.

FillRiverNetworkFromNetwork

FillRiverNetworkFromNetwork() Command Editor

The command syntax is as follows:

FillRiverNetworkFromNetwork(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single river station identifier to match

or a pattern using wildcards (e.g., 20*).
None – must be specified.

NameFormat The format to use when setting the name,
one of:

StationName

 Command Reference – FillRiverNetworkFromNetwork() - 1 419

FillRiverNetworkFromNetwork() Command StateDMI Documentation

Parameter Description Default
• StationName – use the station

name from HydroBase
• StationName_NodeType – use

the first 20 characters of the name
from Hydrobase + “_” + the node
type.

CommentFormat The format to use for the river station
comment, currently only:

• StationID – the river station

identifier.

If not specified, the original data
will remain unchanged.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message if

the ID is not matched
• Ignore – ignore (don’t add and

don’t generate a message) if the ID is
not matched

• Warn – generate a warning message
if the ID is not matched

Warn

The following command file illustrates how a StateMod river network file can be created from the
generalized network file:

StartLog(LogFile="rin.commands.StateDMI.log")
rin.commands.StateDMI

creates the river network file for the Colorado River monthly/daily models

Step 1 - read river nodes from the network file and create file framework

ReadNetworkFromStateMod(InputFile="cm2005.net")
CreateRiverNetworkFromNetwork()

Step 2 - get node (diversion, stream stations, reservoirs, instream flows)
names from HydroBase

FillRiverNetworkFromHydroBase(ID="*",NameFormat=StationName_NodeType)

Step 3 - read missing node names from network file

FillRiverNetworkFromNetwork(ID="*",NameFormat="StationName_NodeType",
 CommentFormat="StationID")

Step 4 - create StateMod river network file

WriteRiverNetworkToStateMod(OutputFile="..\StateMod\cm2005.rin")

Check the results
CheckRiverNetwork(ID="*")
WriteCheckFile(OutputFile="rin.commands.StateDMI.check.html")

2 - Command Reference – FillRiverNetworkFromNetwork() 420

Command Reference: FillRiverNetworkNode()

Fill river network node data

StateMod Command
Version 3.09.01, 2010-02-01

The FillRiverNetworkNode() command fills missing values in existing river network nodes. The
following dialog is used to edit the command and illustrates the syntax of the command.

FillRiverNetworkNode

FillRiverNetworkNode() Command Editor

 Command Reference – FillRiverNetworkNode() - 1 421

FillRiverNetworkNode() Command StateDMI Documentation

The command syntax is as follows:

FillRiverNetworkNode(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single river network node identifier

to match or a pattern using wildcards
(e.g., 20*).

None – must be specified.

Name The name to be assigned for all
matching river network nodes.

If not specified, missing values
will not be filled.

DownstreamRiverNodeID The downstream river node identifier
to be assigned for all matching river
network nodes.

If not specified, missing values
will not be filled.

MaxRechargeLimit The maximum recharge limit, CFS,
for groundwater modeling, assigned
for all matching river network nodes.

If not specified, missing values
will not be filled.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure

message if the ID is not matched
• Ignore – ignore (don’t add and

don’t generate a message) if the
ID is not matched

• Warn – generate a warning
message if the ID is not matched

Warn

2 - Command Reference – FillRiverNetworkNode() 422

Command Reference:
FillStreamEstimateStation()

Fill stream estimate station data

StateMod Command

Version 3.09.01, 2010-02-01

The FillStreamEstimateStation() command fills missing data in existing stream estimate
stations. The following dialog is used to edit the command and illustrates the syntax of the command.

FillStreamEstimateStation

FillStreamEstimateStation() Command Editor

 Command Reference – FillStreamEstimateStation() - 1 423

FillStreamEstimateStation() Command StateDMI Documentation

The command syntax is as follows:

FillStreamEstimateStation(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single stream estimate identifier to

match or a pattern using wildcards (e.g.,
20*).

None – must be specified.

RiverNodeID The river node identifier to be assigned
for all matching stream estimate
identifiers with missing river node
identifier

If not specified, the original
value will remain.

DailyID The daily identifier to be assigned for all
matching stream estimate identifiers with
missing river node identifier

If not specified, the original
value will remain.

Name The name to be assigned for all matching
stream estimate identifiers with missing
name.

If not specified, the original
value will remain.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message if

the ID is not matched
• Ignore – ignore (don’t add and

don’t generate a message) if the ID is
not matched

• Warn – generate a warning message
if the ID is not matched

Warn

2 - Command Reference – FillStreamEstimateStation() 424

Command Reference:
FillStreamEstimateStationsFromHydroBase()

Fill stream estimate station data from HydroBase

StateMod Command

Version 3.09.01, 2010-02-01

The FillStreamEstimateStationsFromHydroBase() command fills missing data in existing
stream estimate stations, using HydroBase for data. The following dialog is used to edit the command
and illustrates the syntax of the command.

FillStreamEstimateStationsFromHydroBase

FillStreamEstimateStationsFromHydroBase() Command Editor

Command Reference – FillStreamEstimateStationsFromHydroBase() - 1 425

FillStreamEstimateStationsFromHydroBase() Command StateDMI Documentation

The command syntax is as follows:

FillStreamEstimateStationsFromHydroBase(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single stream estimate station

identifier to match or a pattern using
wildcards (e.g., 20*).

None – must be specified.

NameFormat The format to use when setting the name,
one of:

• StationName – use the station

name from HydroBase
• StationName_NodeType – use

the first 20 characters of the name
from Hydrobase + “_” + the node
type.

StationName

Check
Structures

The old convention in StateMod was to
combine stream gage and stream
estimate stations in the stream gage
station file. A new convention that is
being evaluated is to have separate
stream gage and estimate station files.
Because stream estimate stations are
often at HydroBase structures, filling
names requires checking HydroBase
structures. Since this step is not needed
in the new convention, it is included as
an option. Specify True to check
structures when filling data from
HydroBase.

False

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message if

the ID is not matched
• Ignore – ignore (don’t add and

don’t generate a message) if the ID is
not matched

• Warn – generate a warning message
if the ID is not matched

Warn

2 - Command Reference – FillStreamEstimateStationsFromHydroBase() 426

Command Reference:
FillStreamEstimateStationsFromNetwork()

Fill stream estimate station data from a StateMod network

StateMod Command

Version 3.09.01, 2010-02-01

The FillStreamEstimateStationsFromNetwork() command fills missing data in existing
stream estimate stations, using a StateMod network for data. This command is usually used after filling
from other sources (e.g., HydroBase), because the information in the network file may have been
specified mainly for the diagram and therefore does not necessarily match official data sources. It is
assumed that the network has been read in a previous command (e.g., when the list of stream gage
stations was originally read).

The following dialog is used to edit the command and illustrates the syntax of the command.

FillStreamEstimateStationsFromNetwork

FillStreamEstimateStationsFromNetwork() Command Editor

Command Reference – FillStreamEstimateStationsFromNetwork() - 1 427

FillStreamEstimateStationsFromNetwork() Command StateDMI Documentation

The command syntax is as follows:

FillStreamEstimateStationsFromNetwork(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single stream estimate station

identifier to match or a pattern using
wildcards (e.g., 20*).

None – must be specified.

NameFormat The format to use when setting the name,
one of:

• StationName – use the station

name from HydroBase
• StationName_NodeType – use

the first 20 characters of the name
from Hydrobase + “_” + the node
type.

StationName

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message if

the ID is not matched
• Ignore – ignore (don’t add and

don’t generate a message) if the ID is
not matched

• Warn – generate a warning message
if the ID is not matched

Warn

2 - Command Reference – FillStreamEstimateStationsFromNetwork() 428

Command Reference: FillStreamGageStation()

Fill stream gage station data

StateMod Command
Version 3.09.01, 2010-02-01

The FillStreamGageStation() command fills missing data in existing stream gage stations. The
following dialog is used to edit the command and illustrates the syntax of the command.

FillStreamGageStation

FillStreamGageStation() Command Editor

 Command Reference – FillStreamGageStation() - 1 429

FillStreamGageStation() Command StateDMI Documentation

The command syntax is as follows:

FillStreamGageStation(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single stream gage identifier to match

or a pattern using wildcards (e.g., 20*).
None – must be specified.

Name The name to be assigned for all matching
stream gage identifiers with missing
name.

If not specified, the original
value will remain.

RiverNodeID The river node identifier to be assigned
for all matching stream gage identifiers
with missing river node identifier

If not specified, the original
value will remain.

DailyID The daily identifier to be assigned for all
matching stream gage identifiers with
missing river node identifier

If not specified, the original
value will remain.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message if

the ID is not matched
• Ignore – ignore (don’t add and

don’t generate a message) if the ID is
not matched

• Warn – generate a warning message
if the ID is not matched

Warn

2 - Command Reference – FillStreamGageStation() 430

Command Reference:
FillStreamGageStationsFromHydroBase()

Fill stream gage station data from HydroBase

StateMod Command

Version 3.09.01, 2010-02-01

The FillStreamGageStationsFromHydroBase() command fills missing data in existing
stream gage stations, using HydroBase for data.

The following dialog is used to edit the command and illustrates the syntax of the command.

FillStreamGageStationsFromHydroBase

FillStreamGageStationsFromHydroBase() Command Editor

The command syntax is as follows:

FillStreamGageStationsFromHydroBase(param=value,param=value,…)

Command Parameters

Parameter Description Default
ID A single stream gage station identifier to match or a pattern

using wildcards (e.g., 20*).
None – must be
specified.

NameFormat The format to use when setting the name, one of:
• StationName – use the station name from HydroBase
• StationName_NodeType – use the first 20

characters of the name from Hydrobase + “_” + the node
type.

StationName

Command Reference – FillStreamGageStationsFromHydroBase() - 1 431

FillStreamGageStationsFromHydroBase() Command StateDMI Documentation

Parameter Description Default
Check
Structures

The old convention in StateMod was to combine stream gage
and stream estimate stations in the stream gage station file.
A new convention that is being evaluated is to have separate
stream gage and estimate station files. Because stream
estimate stations are often at HydroBase structures, filling
names requires checking HydroBase structures. Since this
step is not needed in the new convention, it is included as an
option. Specify True to check structures when filling data
from HydroBase.

False

IfNotFound Used for error handling, one of the following:
• Fail – generate a failure message if the ID is not

matched
• Ignore – ignore (don’t add and don’t generate a

message) if the ID is not matched
• Warn – generate a warning message if the ID is not

matched

Warn

The following example command file illustrates the commands used to read stream gage stations from the
network and create a StateMod file:

StartLog(LogFile="ris.commands.StateDMI.log")
ris.commands.StateDMI

StateDMI command file to create streamflow station file for the Colorado River

Step 1 - read streamgages and baseflows ids from the network file

ReadStreamGageStationsFromNetwork(InputFile="..\Network\cm2005.net",
 IncludeStreamEstimateStations="True")

Step 2 - read baseflow nodes names from HydroBase,
fill in missing names from the network file

FillStreamGageStationsFromHydroBase(ID="*",NameFormat=StationName,CheckStructures=True)
FillStreamGageStationsFromNetwork(ID="*",NameFormat="StationName")

Step 3 - set streamgage station to use to disaggregate monthly baseflows to daily

add set daily pattern gages for WD 36
SetStreamGageStation(ID="36*",DailyID="09047500",IfNotFound=Warn)
…many similar commands omitted…

Step 4 - create streamflow station file

WriteStreamGageStationsToStateMod(OutputFile="..\StateMod\cm2005.ris")

Check the results
CheckStreamGageStations(ID="*")
WriteCheckFile(OutputFile="ris.commands.StateDMI.check.html")

2 - Command Reference – FillStreamGageStationsFromHydroBase() 432

Command Reference:
 FillStreamGageStationsFromNetwork()

Fill stream gage station data from a StateMod network

StateMod Command

Version 3.09.01, 2010-02-01

The FillStreamGageStationsFromNetwork() command fills missing data in stream gage
stations, using a StateMod network for data. This command is usually used after filling from other
sources (e.g., HydroBase), because the information in the network file may have been specified mainly
for the diagram and therefore does not necessarily match official data sources. It is assumed that the
network has been read in a previous command (e.g., when the list of stream gage stations was originally
read).

The following dialog is used to edit the command and illustrates the syntax of the command.

FllStreamGageStationsFromNetwork

FillStreamGageStationsFromNetwork() Command Editor

The command syntax is as follows:

FillStreamGageStationsFromNetwork(Parameter=Value,…)

 Command Reference – FillStreamGageStationsFromNetwork() - 1 433

FillStreamGageStationsFromNetwork() Command StateDMI Documentation

Command Parameters

Parameter Description Default
ID A single stream gage station identifier to match or a

pattern using wildcards (e.g., 20*).
None – must be
specified.

NameFormat The format to use when setting the name, one of:

• StationName – use the station name from

HydroBase
• StationName_NodeType – use the first 20

characters of the name from Hydrobase + “_” + the
node type.

StationName

IfNotFound Used for error handling, one of the following:
• Fail – generate a failure message if the ID is not

matched
• Ignore – ignore (don’t add and don’t generate a

message) if the ID is not matched
• Warn – generate a warning message if the ID is not

matched

Warn

The following example command file illustrates the commands used to read stream gage stations from the
network and create a StateMod file:

StartLog(LogFile="ris.commands.StateDMI.log")
ris.commands.StateDMI

StateDMI command file to create streamflow station file for the Colorado River

Step 1 - read streamgages and baseflows ids from the network file

ReadStreamGageStationsFromNetwork(InputFile="..\Network\cm2005.net",
 IncludeStreamEstimateStations="True")

Step 2 - read baseflow nodes names from HydroBase,
fill in missing names from the network file

FillStreamGageStationsFromHydroBase(ID="*",NameFormat=StationName,CheckStructures=True)
FillStreamGageStationsFromNetwork(ID="*",NameFormat="StationName")

Step 3 - set streamgage station to use to disaggregate monthly baseflows to daily

add set daily pattern gages for WD 36
SetStreamGageStation(ID="36*",DailyID="09047500",IfNotFound=Warn)
…many similar commands omitted…

Step 4 - create streamflow station file

WriteStreamGageStationsToStateMod(OutputFile="..\StateMod\cm2005.ris")

Check the results
CheckStreamGageStations(ID="*")
WriteCheckFile(OutputFile="ris.commands.StateDMI.check.html")

2 - Command Reference – FillStreamGageStationsFromNetwork() 434

Command Reference:
FillWellDemandTSMonthlyAverage()

Fill well demand time series (monthly) values using average monthly values

StateMod Command

Version 3.09.01, 2010-02-01

The FillWellDemandTSMonthlyAverage() command fills missing well demand time series
(monthly) data, using average monthly values. The averages are computed immediately after reading
time series (e.g., from HydroBase or a file) or calculation of the time series (e.g., from IWR/Effave). The
average values that are used during data filling are printed to the log file.

The following dialog is used to edit the command and illustrates the syntax of the command.

FilltWellDemandTSMonthlyAverage

FillWellDemandTSMonthlyAverage() Command Editor

 Command Reference – FillWellDemandTSMonthlyAverage() - 1 435

FillWellDemandTSMonthlyAverage() Command StateDMI Documentation

The command syntax is as follows:

FillWellDemandTSMonthlyAverage(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single well station identifier to match

or a pattern using wildcards (e.g., 20*).
None – must be specified.

FillStart The first year to fill. If not specified, fill the full
period.

FillEnd The last year to fill. If not specified, fill the full
period.

FillFlag If specified as a single character, data
flags will be enabled for the time series
and each filled value will be tagged with
the specified character. The flag can
then be used later to label graphs, etc.
The flag will be appended to existing
flags if necessary.

No flag is assigned.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message if

the ID is not matched
• Ignore – ignore (don’t add and

don’t generate a message) if the ID is
not matched

• Warn – generate a warning message
if the ID is not matched

Warn

2 - Command Reference – FillWellDemandTSMonthlyAverage() 436

Command Reference:
FillWellDemandTSMonthlyConstant()

Fill well demand time series (monthly) values using a constant value

StateMod Command

Version 3.09.01, 2010-02-01

The FillWellDemandTSMonthlyConstant() command fills missing well demand time series
(monthly) data, using a constant value. This command is useful, for example, to set demand values to
zero if other fill commands are unable to provide data estimates for missing data.

The following dialog is used to edit the command and illustrates the syntax of the command.

FilltWellDemandTSMonthlyConstant

FillWellDemandTSMonthlyConstant() Command Editor

 Command Reference – FillWellDemandTSMonthlyConstant() - 1 437

FillWellDemandTSMonthlyConstant() Command StateDMI Documentation

The command syntax is as follows:

FillWellDemandTSMonthlyConstant(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single well station identifier to match

or a pattern using wildcards (e.g., 20*).
None – must be specified.

FillStart The first year to fill. If not specified, fill the full
period.

FillEnd The last year to fill. If not specified, fill the full
period.

Constant The constant value to be used to fill
missing data.

None – must be specified.

FillFlag If specified as a single character, data
flags will be enabled for the time series
and each filled value will be tagged with
the specified character. The flag can
then be used later to label graphs, etc.
The flag will be appended to existing
flags if necessary.

No flag is assigned.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message if

the ID is not matched
• Ignore – ignore (don’t add and

don’t generate a message) if the ID is
not matched

• Warn – generate a warning message
if the ID is not matched

Warn

2 - Command Reference – FillWellDemandTSMonthlyConstant() 438

Command Reference:
FillWellDemandTSMonthlyPattern()

Fill well demand time series (monthly) values using WET/DRY/AVG values

StateMod Command

Version 3.09.01, 2010-02-01

The FillWellDemandTSMonthlyPattern() command fills missing well demand time series
(monthly) data, using average monthly wet/dry/average values. The averages are computed using
patterns read by the ReadPatternFile() command. The average values that are used during data
filling are printed to the log file. For example, if a value is missing for May 1980, the pattern for the
specified pattern identifier is checked for WET, DRY, or AVG. The values of all May’s for WET, DRY, or
AVG are then averaged in the time series to be filled, and the resulting average used to fill missing data.
This command therefore will result in filled values that are more appropriate than simple averages;
however, work must be done to characterize the wet, dry, and average months.

The following dialog is used to edit the command and illustrates the syntax of the command.

FilltWellDemandTSMonthlyPattern

FillWellDemandTSMonthlyPattern() Command Editor

 Command Reference – FillWellDemandTSMonthlyPattern() - 1 439

FillWellDemandTSMonthlyPattern() Command StateDMI Documentation

The command syntax is as follows:

FillWellDemandTSMonthlyPattern (Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single well station identifier to match

or a pattern using wildcards (e.g., 20*).
None – must be specified.

FillStart The first year to fill. If not specified, fill the full
period.

FillEnd The last year to fill. If not specified, fill the full
period.

PatternID The pattern identifier for data read with a
ReadPatternFile() command.

None – must be specified.

LEZeroInAverage Indicates whether values ≤ 0 should be
considered when computing monthly
averages.

True

FillFlag If specified as a single character, data
flags will be enabled for the time series
and each filled value will be tagged with
the specified character. The flag can
then be used later to label graphs, etc.
The flag will be appended to existing
flags if necessary.

No flag is assigned.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message if

the ID is not matched
• Ignore – ignore (don’t add and

don’t generate a message) if the ID is
not matched

• Warn – generate a warning message
if the ID is not matched

Warn

2 - Command Reference – FillWellDemandTSMonthlyPattern() 440

Command Reference:
FillWellHistoricalPumpingTSMonthlyAverage()

Fill well historical pumping time series (monthly) values using average monthly

values

StateCU and StateMod Command
Version 3.09.00, 2010-01-26

The FillWellHistoricalPumpingTSMonthlyAverage() command fills missing well
historical pumping time series (monthly) data, using average monthly values. The averages are computed
immediately after reading time series (e.g., from HydroBase or a file). The average values that are used
during data filling are printed to the log file.

The following dialog is used to edit the command and illustrates the syntax of the command.

FilltWellHistoricalPumpingTSMonthlyAverage

FillWellHistoricalPumpingTSMonthlyAverage() Command Editor

 Command Reference – FillWellHistoricalPumpingTSMonthlyAverage() - 1 441

FillWellHistoricalPumpingTSMonthlyAverage() Command StateDMI Documentation

The command syntax is as follows:

FillWellHistoricalPumpingTSMonthlyAverage(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single well station identifier to match

or a pattern using wildcards (e.g., 20*).
None – must be specified.

FillStart The first date to fill, YYYY-MM or
MM/YYYY.

If not specified, fill the full
period.

FillEnd The last date to fill, YYYY-MM or
MM/YYYY.

If not specified, fill the full
period.

FillFlag If specified as a single character, data
flags will be enabled for the time series
and each filled value will be tagged with
the specified character. The flag can
then be used later to label graphs, etc.
The flag will be appended to existing
flags if necessary.

No flag is assigned.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message if

the ID is not matched
• Ignore – ignore (don’t generate a

message) if the ID is not matched
• Warn – generate a warning message

if the ID is not matched

Warn

2 - Command Reference – FillWellHistoricalPumpingTSMonthlyAverage() 442

Command Reference:
FillWellHistoricalPumpingTSMonthlyConstant()

Fill well historical pumping time series (monthly) values using a constant value

StateCU and StateMod Command

Version 3.09.01, 2010-01-27

The FillWellHistoricalPumpingTSMonthlyConstant() command fills missing well
historical pumping time series (monthly) data, using a constant value. This command is useful, for
example, to set pumping values to zero if other fill commands are unable to provide data estimates for
missing data.

The following dialog is used to edit the command and illustrates the syntax of the command.

FilltWellHistoricalPumpingTSMonthlyConstant

FillWellHistoricalPumpingTSMonthlyConstant() Command Editor

 Command Reference – FillWellHistoricalPumpingTSMonthlyConstant() - 1 443

FillWellHistoricalPumpingTSMonthlyConstant() Command StateDMI Documentation

The command syntax is as follows:

FillWellHistoricalPumpingTSMonthlyConstant(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single well station identifier to match

or a pattern using wildcards (e.g., 20*).
None – must be specified.

FillStart The first year to fill, using format YYYY-
MM or MM/YYYY.

If not specified, fill the full
period.

FillEnd The last year to fill, using format YYYY-
MM or MM/YYYY.

If not specified, fill the full
period.

Constant The constant value to be used to fill
missing data.

None – must be specified.

FillFlag If specified as a single character, data
flags will be enabled for the time series
and each filled value will be tagged with
the specified character. The flag can
then be used later to label graphs, etc.
The flag will be appended to existing
flags if necessary.

No flag is assigned.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message if

the ID is not matched
• Ignore – ignore (don’t generate a

message) if the ID is not matched
• Warn – generate a warning message

if the ID is not matched

Warn

2 - Command Reference – FillWellHistoricalPumpingTSMonthlyConstant() 444

Command Reference:
FillWellHistoricalPumpingTSMonthlyPattern()

Fill well historical pumping time series (monthly) values using WET/DRY/AVG

values

StateCU and StateMod Command
Version 3.09.01, 2010-01-27

The FillWellHistoricalPumpingTSMonthlyPattern() command fills missing well
historical pumping time series (monthly) data, using average monthly wet/dry/average values. The
averages are computed using patterns read by the ReadPatternFile() command. The average
values that are used during data filling are printed to the log file. For example, if a value is missing for
May 1980, the pattern for the specified pattern identifier is checked for WET, DRY, or AVG. The values of
all May’s for WET, DRY, or AVG are then averaged in the time series to be filled, and the resulting average
used to fill missing data. This command therefore will result in filled values that are more appropriate
than simple averages; however, work must be done to characterize the wet, dry, and average months.

The following dialog is used to edit the command and illustrates the syntax of the command.

FilltWellHistoricalPumpingTSMonthlyPattern

FillWellHistoricalPumpingTSMonthlyPattern() Command Editor

 Command Reference – FillWellHistoricalPumpingTSMonthlyPattern() - 1 445

FillWellHistoricalPumpingTSMonthlyPattern() Command StateDMI Documentation

The command syntax is as follows:

FillWellHistoricalPumpingTSMonthlyPattern(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single well station identifier to match

or a pattern using wildcards (e.g., 20*).
None – must be specified.

FillStart The first date to fill, YYYY-MM or
MM/YYYY.

If not specified, fill the full
period.

FillEnd The last date to fill, YYYY-MM or
MM/YYYY.

If not specified, fill the full
period.

PatternID The pattern identifier for data read with a
ReadPatternFile() command.

None – must be specified.

LEZeroInAverage Indicates whether values ≤ 0 should be
considered when computing monthly
averages.

True

FillFlag If specified as a single character, data
flags will be enabled for the time series
and each filled value will be tagged with
the specified character. The flag can
then be used later to label graphs, etc.
The flag will be appended to existing
flags if necessary.

No flag is assigned.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message if

the ID is not matched
• Ignore – ignore (don’t generate a

message) if the ID is not matched
• Warn – generate a warning message

if the ID is not matched

Warn

2 - Command Reference – FillWellHistoricalPumpingTSMonthlyPattern() 446

Command Reference: FillWellRight()

Fill well right data

StateCU and StateMod Command
Version 3.09.00, 2010-01-26

The FillWellRight() command fills missing data in existing well rights. The following dialog is
used to edit the command and illustrates the syntax of the command.

FillWellRight

FillWellRight() Command Editor

 Command Reference – FillWellRight() - 1 447

FillWellRight() Command StateDMI Documentation

The command syntax is as follows:

FillWellRight(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single well right identifier to match

or a pattern using wildcards (e.g.,
20*).

None – must be specified.

Name The name to be assigned for all
matching well right identifiers with
missing name.

If not specified, the original
value will remain.

StationID The well station identifier to be
assigned for all matching well right
identifiers with missing well station
identifier.

If not specified, the original
value will remain.

AdministrationNumber The administration number to be
assigned for all matching well right
identifiers with missing administration
number.

If not specified, the original
value will remain.

Decree The water right decree to be assigned
for all matching well right identifiers
with missing administration decree.

If not specified, the original
value will remain.

OnOff The on/off switch to be assigned for
all matching well right identifiers with
missing on/off switch, either 1 for on
or 0 for off, a positive 4-digit year to
turn the right on starting in the year,
or a negative 4-digit year to turn the
right off starting in the year.

If not specified, the original
value will remain.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure

message if the ID is not matched
• Ignore – ignore (don’t generate

a message) if the ID is not
matched

• Warn – generate a warning
message if the ID is not matched

Warn

2 - Command Reference – FillWellRight() 448

Command Reference: FillWellStation()

Fill well station data

StateMod Command
Version 3.09.01, 2010-02-01

The FillWellStation() command fills missing data in existing well stations. The following dialog
is used to edit the command and illustrates the syntax of the command.

FillWellStation

FillWellStation() Command Editor

The command syntax is as follows:

FillWellStation(Parameter=Value,…)

 Command Reference – FillWellStation() - 1 449

FillWellStation() Command StateDMI Documentation

Command Parameters

Parameter Description Default
ID A single well station identifier to match or a pattern

using wildcards (e.g., 20*).
None – must be specified.

Name The name to be assigned for all matching well
stations with missing name.

If not specified, the original
value will remain.

RiverNodeID The river node identifier to be assigned for all
matching well stations with missing river node
identifier. Specify ID to assign to the well station
identifier.

If not specified, the original
value will remain.

OnOff The on/off switch value to be assigned for all
matching well stations with missing switch, either 1
for on or 0 for off.

If not specified, the original
value will remain.

Capacity The well station capacity to be assigned for all
matching well stations with missing capacity, CFS.

If not specified, the original
value will remain.

DailyID The daily identifier to be assigned for all matching
well stations with missing daily identifier or use ID to
use the station identifier.

If not specified, the original
value will remain.

AdminNumShift The administration number shift to be assigned to
water rights for all matching well stations with
missing value. See the “primary” flag in the
StateMod well station documentation.

If not specified, the original
value will remain.

DiversionID For all matching well stations, the diversion station
identifier associated with the well station. Typically,
where well water supplements surface supply, one
well station is assigned to the diversion station.
Specify ID to assign to the well station identifier.

If not specified, the original
value will remain.

DemandType The demand type to be assigned for all matching well
stations with missing demand type (see StateMod
documentation).

If not specified, the original
value will remain.

IrrigatedAcres The irrigated acres to be assigned for all matching
well stations with missing irrigated acres.

If not specified, the original
value will remain.

UseType The use type to be assigned for all matching well
stations with missing user type (see StateMod
documentation).

If not specified, the original
value will remain.

DemandSource The demand source to be assigned for all matching
well stations with missing demand source (see
StateMod documentation).

If not specified, the original
value will remain.

EffAnnual The annual efficiency (percent, 0 - 100) to be
assigned for all matching well stations with missing
annual efficiency (see StateMod documentation).
Monthly efficiencies will be set to the same value (but
not used).

If not specified, the original
value will remain.

EffMonthly The monthly efficiencies (percent, 0 – 100) to be
assigned for all matching well stations with missing
values, specified as 12 comma-separated values,
January to December. The annual efficiency will be
set to the average value. The order of the values in
the output file will be according to the output year

If not specified, the original
value will remain.

2 - Command Reference – FillWellStation() 450

StateDMI Documentation FillWellStation() Command

Parameter Description Default
type set by setOutputYearType(), or calendar
by default.

Returns The return flows to be assigned for all matching well
stations with missing returns. Specify as
StationID,Percent,DelayTableID;
StationID,Percent,DelayTableID; etc.

If not specified, the original
value will remain.

Depletions The depletions to be assigned for all matching well
stations with missing depletions. Specify as
StationID,Percent,DelayTableID;
StationID,Percent,DelayTableID; etc.

If not specified, the original
value will remain.

IfNotFound Used for error handling, one of the following:
• Fail – generate a failure message if the ID is not

matched
• Ignore – ignore (don’t add and don’t generate a

message) if the ID is not matched
• Warn – generate a warning message if the ID is

not matched

Warn

 Command Reference – FillWellStation() - 3 451

FillWellStation() Command StateDMI Documentation

This page is intentionally blank.

4 - Command Reference – FillWellStation() 452

Command Reference:
FillWellStationsFromDiversionStations ()

Fill well station data using diversion stations

StateMod Command

Version 3.09.01, 2010-02-01

The FillWellStationsFromDiversionStations() command fills missing well station data
for each location, using the corresponding diversion station (only for D&W model nodes). The diversion
stations must have been read or assigned with previous commands. The following data are filled: name,
demand source, demand type, use type.

The following dialog is used to edit the command and illustrates the syntax of the command.

FillWellStationsFromDiversionStations

FillWellStationsFromDiversionStations() Command Editor

 Command Reference – FillWellStationsFromDiversionStations() - 1 453

FillWellStationsFromDiversionStations () Command StateDMI Documentation

The command syntax is as follows:

FillWellStationsFromDiversionStations(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single well station identifier to match or a pattern

using wildcards (e.g., 20*).
None – must be
specified.

IfNotFound Used for error handling, one of the following:
• Fail – generate a failure message if the ID is not

matched
• Ignore – ignore (don’t add and don’t generate a

message) if the ID is not matched
• Warn – generate a warning message if the ID is not

matched

Warn

2 - Command Reference – FillWellStationsFromDiversionStations () 454

Command Reference:
FillWellStationsFromNetwork()

Fill well station data from a StateMod network

StateMod Command

Version 3.09.01, 2010-02-01

The FillWellStationsFromNetwork() command fills missing data in well stations, using a
StateMod network for data. This command is usually used after filling from other sources (e.g.,
HydroBase), because the information in the network file may have been specified mainly for the diagram
and therefore does not necessarily match official data sources. It is assumed that the network has been
read in a previous command (e.g., when the list of well stations was originally read).

The following dialog is used to edit the command and illustrates the syntax of the command.

FillWellStationsFromNetwork

FillWellStationsFromNetwork() Command Editor

 Command Reference – FillWellStationsFromNetwork() - 1 455

FillWellStationsFromNetwork() Command StateDMI Documentation

The command syntax is as follows:

FillWellStationsFromNetwork(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single well station identifier to match

or a pattern using wildcards (e.g., 20*).
None – must be specified.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message if

the ID is not matched
• Ignore – ignore (don’t add and

don’t generate a message) if the ID is
not matched

• Warn – generate a warning message
if the ID is not matched

Warn

The following example illustrates how to fill well station names from the network. A command to fill
from HydroBase or another source will often be run before the second command below.

ReadWellStationsFromNetwork(InputFile="sp2005.net")
FillWellStationsFromNetwork(ID="*")

2 - Command Reference – FillWellStationsFromNetwork() 456

Command Reference:
LimitDiversionDemandTSMonthlyToRights()

Limit diversion demand time series (monthly) to diversion rights

StateMod Command

Version 3.09.01, 2010-02-01

The LimitDiversionDemandTSMonthlyToRights() command limits diversion demand time
series (monthly) values to the water rights that were in effect at the time of the diversion, based on the
appropriation date corresponding to water right administration numbers. The functionality of this
command is nearly the same as the LimitDiversionHistoricalTSMonthlyToRights(),
except that demands are NOT reset to historical diversion observations, and demands can optionally be
limited to only the current rights. For each diversion station being processed, the cumulative rights are
determined at each point in time, creating a step-function in CFS units. Very junior water rights with
administration numbers greater than or equal to 90000.00000 can be assigned an appropriate date,
which is then used to compute an administration number for the check. The water rights must be supplied
from a StateMod diversion rights file – they are not taken from rights that may be in memory and the
rights used by this command cannot be further modified and written. For boundary purposes during the
check, a zero flow condition is imposed at 1800-01-01 and carried forward until a right is found. A
summary of the rights is printed to the log file.

If necessary, place set commands after the LimitDiversionDemandTSMonthlyToRights()
command so that the set commands will not be impacted by the
LimitDiversionDemandTSMonthlyToRights() command.

The water rights switch in the StateMod rights file is handled as follows:

 If the switch is zero, the water right is ignored in processing (it is not used to limit the data).
 If the switch is 1, no adjustments are done to the appropriation date for the water right.
 If the switch is +YYYY (indicating that the right should turn on in the given year):

o If the UseOnOffDate parameter is True, the appropriation date for the water right is
set to YYYY-01-01 during the limit process.

o If the UseOnOffDate parameter is False, the appropriation date from the
administration number is used.

 If the switch is -YYYY (indicating that the right should turn off after the given year):
o If the UseOnOffDate parameter is True, the appropriation date for the water right is

set to (YYYY+1)-01-01 and the decree is set to negative during the limit process.
o If the UseOnOffDate parameter is False, the appropriation date from the

administration number is used.

If the administration number cannot be converted to an appropriation date, then the water right OnOff
switch can be set to a year for each water right and UseOnOffDate=True should be specified.

If the sum of the water rights decrees is less than zero, it is reset to zero.

Command Reference – LimitDiversionDemandTSMonthlyToRights() - 1 457

LimitDiversionDemandTSMonthlyToRights() Command StateDMI Documentation

A summary of the logic is as follows:

 For each diversion station (ignored stations are skipped):

1. Determine the water rights for the diversion station. If no rights are available, skip the
remaining steps.

2. Determine the diversion demand time series (monthly). If no time series is available, skip the
remaining steps.

3. Process the water rights for the diversion station.
a. Convert the administration number to appropriation date. Use the same code as the

Administration Number Calculator tool in StateView. The prior adjudication date
associated with the administration number is ignored. See the explanation above for
how the water rights switch is handled.

b. Sort the rights according to the Julian day value for the appropriation date.
c. If the diversion station has a free water right (those with administration numbers

greater than or equal to 90000.00000): If the diversion station has a senior water
right, convert the free water right appropriation date to that of the senior water right
(therefore the free water right is in effect since the time of the senior right). If the
diversion station has no senior water right (it has only free water right[s]), use the
appropriation date corresponding to the FreeWaterAppropriationDate
parameter described below.

d. Add a bounding zero decree for 1800-01-01 for the early period of the step function.
e. Generate a step function of sorted dates and decrees using the information described

above. These values will be in CFS. Because appropriation dates are used, the sort
order may be different from that of the numerical administration number.

f. If the LimitToCurrent parameter value is True, discard all but the last value in
the step function.

g. Because the decrees are in CFS, convert to ACFT, considering the number of days in
each month.

4. Constrain the monthly time series to the step function, where the step function is defined by a
list of dates and decrees, determined from the previous step. If a value in the time series is
greater than the step function, set the value to the step function. Because of the conversion
from CFS to ACFT, monthly values in the step function will vary.

2 - Command Reference – LimitDiversionDemandTSMonthlyToRights() 458

StateDMI Documentation LimitDiversionDemandTSMonthlyToRights() Command

The following dialog is used to edit the command and illustrates the syntax of the command.

LimitDiversionDemandTSMonthlyToRights

LimitDiversionDemandTSMonthlyToRights() Command Editor

Command Reference – LimitDiversionDemandTSMonthlyToRights() - 3 459

LimitDiversionDemandTSMonthlyToRights() Command StateDMI Documentation

The command syntax is as follows:

LimitDiversionDemandTSMonthlyToRights(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the StateMod diversion rights file, surrounded

by double quotes. The rights in the file are read and are used
to constrain the diversion demand time series. The rights are
assumed to be sorted by structure.

None – must be
specified.

ID A single diversion station identifier to match or a pattern
using wildcards (e.g., 20*).

None – must be
specified.

IgnoreID A list of diversion stations to ignore when processing this
command. A list of comma-separated values can be
specified, where each value is a single identifier, or a pattern
using wildcards (similar to ID).

Do not ignore
any diversion
stations.

FreeWater
Appropriation
Date

A date to be used for the free water rights found in the rights
file. Free water rights are typically inserted to represent very
junior rights. Rights having an administration number
greater than or equal to 90000.00000 are assumed to be
free water rights and will use the specified free water
appropriation date when constraining the time series.

The date
corresponding
to an
administration
number of 0,
which is Dec
31, 1849.

UseOnOffDate If False, the appropriation date is always computed from
the administration number. If True and the value of the
OnOff switch is YYYY or –YYYY, assign the appropriation
date using the switch value (see notes earlier in the
command description).

False

LimitToCurrent Indicate whether only the most recent sum of rights should
be used when limiting the rights. This is appropriate when
generating the demands for a baseline data set representing
current conditions.

False

SetFlag If specified as a single character, data flags will be enabled
for the time series and each set value will be tagged with the
specified character. The flag can then be used later to label
graphs, etc. The flag will be appended to existing flags if
necessary.

No flag is
assigned.

4 - Command Reference – LimitDiversionDemandTSMonthlyToRights() 460

Command Reference:
LimitDiversionHistoricalTSMonthlyToRights()

Limit diversion historical time series (monthly) to diversion rights

StateMod Command

Version 3.09.01, 2010-02-01

The LimitDiversionHistoricalTSMonthlyToRights() command limits diversion historical
time series (monthly) values to the water rights that were in effect at the time of the diversion, based on
the appropriation date corresponding to water right administration numbers. For each diversion station
being processed, the cumulative rights are determined at each point in time, creating a step-function in
CFS units. Very junior water rights with administration numbers greater than or equal to 90000.00000
can be assigned an appropriate date, which is then used to compute an administration number for the
check. The water rights must be supplied from a StateMod diversion rights file – they are not taken from
rights that may be in memory and the rights used by this command cannot be further modified and
written. For boundary purposes during the check, a zero flow condition is imposed at 1800-01-01 and
carried forward until a right is found. A summary of the rights is printed to the log file.

This command does NOT reset recorded diversions. In order to detect recorded diversion values,
StateDMI checks the command file for the
LimitDiversionHistoricalTSMonthlyToRights() command . If the command is found,
then after reading data using the ReadDiversionHistoricalTSMonthlyFromHydroBase()
and SetDiversionHistoricalTSMonthly() commands, each time series is copied into a
backup. Any subsequent filling of the time series does not alter this backup. When limiting to rights, the
backup diversion data are checked and any observed values are enforced in the result. Consequently, the
rights values are only used for estimated data. A side effect of using the original data is that any values
that may have been set with other commands will be reset back to observed values. If necessary, place set
commands after the LimitDiversionHistoricalTSMonthlyToRights() command so that the
set commands will not be impacted by the
LimitDiversionHistoricalTSMonthlyToRights() command(s).

The water rights switch in the StateMod rights file is handled as follows:

 If the switch is zero, the water right is ignored in processing (it is not used to limit the data).
 If the switch is 1, no adjustments are done to the appropriation date for the water right.
 If the switch is +YYYY (indicating that the right should turn on in the given year):

o If the UseOnOffDate parameter is True, the appropriation date for the water right is
set to YYYY-01-01 during the limit process.

o If the UseOnOffDate parameter is False, the appropriation date from the
administration number is used.

 If the switch is -YYYY (indicating that the right should turn off after the given year):
o If the UseOnOffDate parameter is True, the appropriation date for the water right is

set to (YYYY+1)-01-01 and the decree is set to negative during the limit process.
o If the UseOnOffDate parameter is False, the appropriation date from the

administration number is used.

If the administration number cannot be converted to an appropriation date, then the water right OnOff
switch can be set to a year for each water right and UseOnOffDate=True should be specified.

Command Reference – LimitDiversionHistoricalTSMonthlyToRights() - 1 461

LimitDiversionHistoricalTSMonthlyToRights() Command StateDMI Documentation

If the sum of the water rights decrees is less than zero, it is reset to zero.

A summary of the logic is as follows:

 For each diversion station (ignored stations are skipped):

1. Determine the water rights for the diversion station. If no rights are available, skip the
remaining steps.

2. Determine the diversion historical time series (monthly). If no time series is available, skip
the remaining steps.

3. Process the water rights for the diversion station.
a. Convert the administration number to appropriation date. Use the same code as the

Administration Number Calculator tool in StateView. The prior adjudication date
associated with the administration number is ignored. See the explanation above for
how the water rights switch is handled.

b. Sort the rights according to the Julian day value for the appropriation date.
c. If the diversion station has a free water right (those with administration numbers

greater than or equal to 90000.00000): If the diversion station has a senior water
right, convert the free water right appropriation date to that of the senior water right
(therefore the free water right is in effect since the time of the senior right). If the
diversion station has no senior water right (it has only free water right[s]), use the
appropriation date corresponding to the FreeWaterAppropriationDate
parameter described below.

d. Add a bounding zero decree for 1800-01-01 for the early period of the step function.
e. Generate a step function of sorted dates and decrees using the information described

above. These values will be in CFS. Because appropriation dates are used, the sort
order may be different from that of the numerical administration number.

f. Because the decrees are in CFS, convert to ACFT, considering the number of days in
each month.

4. Constrain the monthly time series to the step function, where the step function is defined by a
list of dates and decrees, determined from the previous step. If a value in the time series is
greater than the step function, set the value to the step function. Because of the conversion
from CSFS to ACFT, monthly values in the step function will vary.

5. Reset observed values from the original data (as read from HydroBase or a replacement time
series read from a StateMod file – time series that are NOT read from HydroBase or
StateMod will NOT have a copy saved as original data).

2 - Command Reference – LimitDiversionHistoricalTSMonthlyToRights() 462

StateDMI Documentation LimitDiversionHistoricalTSMonthlyToRights() Command

The following dialog is used to edit the command and illustrates the syntax of the command.

LimitDiversionHistoricalTSMonthlyToRights

LimitDiversionHistoricalTSMonthlyToRights() Command Editor

The command syntax is as follows:

LimitDiversionHistoricalTSMonthlyToRights(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single diversion station identifier to

match or a pattern using wildcards
(e.g., 20*).

None – must be
specified.

InputFile The name of the StateMod diversion
rights file, surrounded by double
quotes. The rights in the file are read
and are used to constrain the historical
diversion time series. The rights are
assumed to be sorted by structure.

None – must be
specified.

IgnoreID A list of diversion stations to ignore
when processing this command. A list
of comma-separated values can be
specified, where each value is a single
identifier, or a pattern using wildcards
(similar to ID).

Do not ignore any
diversion stations.

FreeWaterAppropriationDate A date to be used for the free water
rights found in the rights file. Free
water rights are typically inserted to
represent very junior rights. Rights
having an administration number

The date
corresponding to
an administration
number of 0,
which is Dec 31,

Command Reference – LimitDiversionHistoricalTSMonthlyToRights() - 3 463

LimitDiversionHistoricalTSMonthlyToRights() Command StateDMI Documentation

Parameter Description Default
greater than or equal to
90000.00000 are assumed to be free
water rights and will use the specified
free water appropriation date when
constraining the time series.

1849.

UseOnOffDate If False, the appropriation date is
always computed from the
administration number. If True and
the value of the OnOff switch is YYYY
or –YYYY, assign the appropriation
date using the switch value (see notes
earlier in the command description).

False

SetFlag If specified as a single character, data
flags will be enabled for the time series
and each set value will be tagged with
the specified character. The flag can
then be used later to label graphs, etc.
The flag will be appended to existing
flags if necessary.

No flag is
assigned.

The following command file excerpt illustrates how time series can be limited to rights prior to writing
the StateMod time series file:

Step 8 - fill historical diversion using pattern approach

FillDiversionHistoricalTSMonthlyPattern(ID="36*",PatternID="09034500")
…similar commands omitted…

Step 9 - Fill remaining missing with month average

FillDiversionHistoricalTSMonthlyAverage(ID="*")

Step 10 - Limit filled diversion to water rights. Exceptions include structure
receiving significant reservoir supply, carrier structures, etc.

LimitDiversionHistoricalTSMonthlyToRights(InputFile="..\statemod\cm2005.ddr",
 ID="*",IgnoreID="954683,952001,950010,950011")

Step 11 - sort structures and create historical diversion file

SortDiversionHistoricalTSMonthly(Order=Ascending)
WriteDiversionHistoricalTSMonthlyToStateMod(OutputFile="..\StateMod\cm2005.ddh")

Step 12 - update capacities and create final direct diversion station file

SetDiversionStationCapacitiesFromTS(ID="*")
WriteDiversionStationsToStateMod(OutputFile="..\statemod\cm2005.dds")

Check the results.
CheckDiversionHistoricalTSMonthly(ID="*")
WriteCheckFile(OutputFile="ddh.commands.StateDMI.check.html")

4 - Command Reference – LimitDiversionHistoricalTSMonthlyToRights() 464

Command Reference:
LimitWellDemandTSMonthlyToRights()

Limit well demand time series (monthly) to diversion rights

StateMod Command

Version 3.09.01, 2010-02-01

The LimitWellDemandTSMonthlyToRights() command limits well demand time series
(monthly) values to the water rights that were in effect at the time of the well pumping, based on the
appropriation date corresponding to water right administration numbers. The functionality of this
command is nearly the same as the LimitDiversionDemandTSMonthlyToRights(). For each
well station being processed, the cumulative rights are determined at each point in time, creating a step-
function in CFS units. Very junior water rights with administration numbers greater than or equal to
90000.00000 can be assigned an appropriate date, which is then used to compute an administration
number for the check. The water rights must be supplied from a StateMod well rights file – they are not
taken from rights that may be in memory and the rights used by this command cannot be further modified
and written. For boundary purposes during the check, a zero flow condition is imposed at 1800-01-01
and carried forward until a right is found. A summary of the rights is printed to the log file.

If necessary, place set commands after the LimitWellDemandTSMonthlyToRights() command
so that the set commands will not be impacted by the LimitWellDemandTSMonthlyToRights()
command.

The water rights switch in the StateMod rights file is handled as follows:

 If the switch is zero, the water right is ignored in processing (it is not used to limit the data).
 If the switch is 1, no adjustments are done to the appropriation date for the water right.
 If the switch is +YYYY (indicating that the right should turn on in the given year):

o If the UseOnOffDate parameter is True, the appropriation date for the water right is
set to YYYY-01-01 during the limit process.

o If the UseOnOffDate parameter is False, the appropriation date from the
administration number is used.

 If the switch is -YYYY (indicating that the right should turn off after the given year):
o If the UseOnOffDate parameter is True, the appropriation date for the water right is

set to (YYYY+1)-01-01 and the decree is set to negative during the limit process.
o If the UseOnOffDate parameter is False, the appropriation date from the

administration number is used.

If the administration number cannot be converted to an appropriation date, then the water right OnOff
switch can be set to a year for each water right and UseOnOffDate=True should be specified.

If the sum of the water rights decrees is less than zero, it is reset to zero.

Command Reference – LimitWellDemandTSMonthlyToRights() - 1 465

LimitWellDemandTSMonthlyToRights() Command StateDMI Documentation

A summary of the logic is as follows:

 For each well station (ignored stations are skipped):

1. Determine the water rights for the well station. If no rights are available, skip the remaining
steps.

2. Determine the well demand time series (monthly). If no time series is available, skip the
remaining steps.

3. Process the water rights for the well station.
a. Convert the administration number to appropriation date. Use the same code as the

Administration Number Calculator tool in StateView. The prior adjudication date
associated with the administration number is ignored. See the explanation above for
how the water rights switch is handled.

b. Sort the rights according to the Julian day value for the appropriation date.
c. If the well station has a free water right (those with administration numbers greater

than or equal to 90000.00000): If the well station has a senior water right, convert
the free water right appropriation date to that of the senior water right (therefore the
free water right is in effect since the time of the senior right). If the well station has
no senior water right (it has only free water right[s]), use the appropriation date
corresponding to the FreeWaterAppropriationDate parameter described
below.

d. Add a bounding zero decree for 1800-01-01 for the early period of the step function.
e. Generate a step function of sorted dates and decrees using the information described

above. These values will be in CFS. Because appropriation dates are used, the sort
order may be different from that of the numerical administration number.

f. If the LimitToCurrent parameter value is True, discard all but the last value in
the step function.

g. Because the decrees are in CFS, convert to ACFT, considering the number of days in
each month.

4. Constrain the monthly time series to the step function, where the step function is defined by a
list of dates and decrees, determined from the previous step. If a value in the time series is
greater than the step function, set the value to the step function. Because of the conversion
from CFS to ACFT, monthly values in the step function will vary.

2 - Command Reference – LimitWellDemandTSMonthlyToRights() 466

StateDMI Documentation LimitWellDemandTSMonthlyToRights() Command

The following dialog is used to edit the command and illustrates the syntax of the command.

LimitWellDemandTSMonthlyToRights

LimitWellDemandTSMonthlyToRights() Command Editor

Command Reference – LimitWellDemandTSMonthlyToRights() - 3 467

LimitWellDemandTSMonthlyToRights() Command StateDMI Documentation

The command syntax is as follows:

LimitWellDemandTSMonthlyToRights(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the StateMod well rights file, surrounded by

double quotes. The rights in the file are read and are used to
constrain the well demand time series.

None – must be
specified.

ID A single well station identifier to match or a pattern using
wildcards (e.g., 20*).

None – must be
specified.

IgnoreID A list of well stations to ignore when processing this
command. A list of comma-separated values can be
specified, where each value is a single identifier, or a pattern
using wildcards (similar to ID).

Do not ignore
any well
stations.

FreeWater
Appropriation
Date

A date to be used for the free water rights found in the rights
file. Free water rights are typically inserted to represent very
junior rights. Rights having an administration number
greater than or equal to 90000.00000 are assumed to be
free water rights and will use the specified free water
appropriation date when constraining the time series.

The date
corresponding
to an
administration
number of 0,
which is Dec
31, 1849.

UseOnOffDate If False, the appropriation date is always computed from
the administration number. If True and the value of the
OnOff switch is YYYY or –YYYY, assign the appropriation
date using the switch value (see notes earlier in the
command description).

False

LimitToCurrent Indicate whether only the most recent sum of rights should
be used when limiting the rights. This is appropriate when
generating the demands for a baseline data set representing
current conditions.

False

SetFlag If specified as a single character, data flags will be enabled
for the time series and each set value will be tagged with the
specified character. The flag can then be used later to label
graphs, etc. The flag will be appended to existing flags if
necessary.

No flag is
assigned.

4 - Command Reference – LimitWellDemandTSMonthlyToRights() 468

Command Reference:
LimitWellHistoricalPumpingTSMonthlyToRights()

Limit well historical pumping time series (monthly) to well rights

StateCU and StateMod Command
Version 3.09.01, 2010-01-27

The LimitWellHistoricalPumpingTSMonthlyToRights() command limits well historical
pumping time series (monthly) values to the water rights that were in effect at the time of the well, based
on the appropriation date corresponding to water right administration numbers. For each well station
being processed, the cumulative rights are determined at each point in time, creating a step-function in
CFS units. Very junior water rights with administration numbers greater than or equal to 90000.00000
can be assigned an appropriate date, which is then used to compute an administration number for the
check. The water rights typically are supplied from a StateMod well rights file, although they can be
taken from rights in memory. If the rights are read from a file, they cannot be further modified and
written with other commands. For boundary purposes during the check, a zero flow condition is imposed
at 1800-01-01 and carried forward until a right is found. A summary of the rights is printed to the log
file.

If necessary, place set commands after the
LimitWellHistoricalPumpingTSMonthlyToRights() command so that the set commands
will not be impacted by the LimitWellHistoricalPumpingTSMonthlyToRights()
command.

The water rights switch in the StateMod rights file is handled as follows:

 If the switch is zero, the water right is ignored in processing (it is not used to limit the data).
 If the switch is 1, no adjustments are done to the appropriation date for the water right.
 If the switch is +YYYY (indicating that the right should turn on in the given year):

o If the UseOnOffDate parameter is True, the appropriation date for the water right is
set to YYYY-01-01 during the limit process.

o If the UseOnOffDate parameter is False, the appropriation date from the
administration number is used.

 If the switch is -YYYY (indicating that the right should turn off after the given year):
o If the UseOnOffDate parameter is True, the appropriation date for the water right is

set to (YYYY+1)-01-01 and the decree is set to negative during the limit process.
o If the UseOnOffDate parameter is False, the appropriation date from the

administration number is used.

If the administration number cannot be converted to an appropriation date, then the water right OnOff
switch can be set to a year for each water right and UseOnOffDate=True should be specified.

If the sum of the water rights decrees is less than zero, it is reset to zero.

Command Reference – LimitWellHistoricalPumpingTSMonthlyToRights() - 1 469

LimitWellHistoricalPumpingTSMonthlyToRights() Command StateDMI Documentation

A summary of the logic is as follows:

 For each well station (ignored stations are skipped):

1. Determine the water rights for the well station. If no rights are available, skip the remaining
steps.

2. Determine the historical pumping time series (monthly). If no time series is available, skip
the remaining steps.

3. Process the water rights for the well station.
a. Convert the administration number to appropriation date. Use the same code as the

Administration Number Calculator tool in StateView. The prior adjudication date
associated with the administration number is ignored. See the explanation above for
how the water rights switch is handled.

b. Sort the rights according to the Julian day value for the appropriation date.
c. If the well station has a free water right (those with administration numbers greater

than or equal to 90000.00000): If the well station has a senior water right, convert
the free water right appropriation date to that of the senior water right (therefore the
free water right is in effect since the time of the senior right). If the well station has
no senior water right (it has only free water right[s]), use the appropriation date
corresponding to the FreeWaterAppropriationDate parameter described
below.

d. Add a bounding zero decree for 1800-01-01 for the early period of the step function.
e. Generate a step function of sorted dates and decrees using the information described

above. These values will be in CFS. Because appropriation dates are used, the sort
order may be different from that of the numerical administration number.

f. If the LimitToCurrent parameter value is True, discard all but the last value in
the step function.

g. Because the decrees are in CFS, convert to ACFT, considering the number of days in
each month.

4. Constrain the monthly time series to the step function, where the step function is defined by a
list of dates and decrees, determined from the previous step. If a value in the time series is
greater than the step function, set the value to the step function. Because of the conversion
from CSFS to ACFT, monthly values in the step function will vary.

2 - Command Reference – LimitWellHistoricalPumpingTSMonthlyToRights() 470

StateDMI Documentation LimitWellHistoricalPumpingTSMonthlyToRights() Command

The following dialog is used to edit the command and illustrates the syntax of the command.

LimitWellHistoricalPumpingTSMonthlyToRights

LimitWellHistoricalPumpingTSMonthlyToRights() Command Editor

Command Reference – LimitWellHistoricalPumpingTSMonthlyToRights() - 3 471

LimitWellHistoricalPumpingTSMonthlyToRights() Command StateDMI Documentation

The command syntax is as follows:

LimitWellHistoricalPumpingTSMonthlyToRights(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single well station identifier to match or a pattern using

wildcards (e.g., 20*).
None – must be
specified.

InputFile The name of the StateMod well rights file, surrounded by
double quotes. The rights in the file are read and are used to
constrain the well historical pumping time series.

Use well rights
that have
previously been
defined.

IgnoreID A list of well stations to ignore when processing this
command. A list of comma-separated values can be
specified, where each value is a single identifier, or a pattern
using wildcards (similar to ID).

Do not ignore
any well
stations.

FreeWater
Appropriation
Date

A date to be used for the free water rights found in the rights
file. Free water rights are typically inserted to represent very
junior rights. Rights having an administration number
greater than or equal to 90000.00000 are assumed to be
free water rights and will use the specified free water
appropriation date when constraining the time series.

The date
corresponding
to an
administration
number of 0,
which is Dec
31, 1849.

LimitToCurrent Indicate whether only the most recent sum of rights should
be used when limiting the rights. This is appropriate when
generating the demands for a baseline data set representing
current conditions.

False

UseOnOffDate If False, the appropriation date is always computed from
the administration number. If True and the value of the
OnOff switch is YYYY or –YYYY, assign the appropriation
date using the switch value (see notes earlier in the
command description).

False

SetFlag If specified as a single character, data flags will be enabled
for the time series and each set value will be tagged with the
specified character. The flag can then be used later to label
graphs, etc. The flag will be appended to existing flags if
necessary.

No flag is
assigned.

4 - Command Reference – LimitWellHistoricalPumpingTSMonthlyToRights() 472

Command Reference: MergeListFileColumns()

Merge columns in a list file and write a new list file

General Command
Version 3.09.00, 2010-01-16

The MergeListFileColumns() command reads a comma-delimited list file, uses information from
existing columns to create a new column, and writes the new list file. As currently implemented,
whitespace will be trimmed from the original data. This command is useful for example, if the WD and
ID columns in a file need to be merged into a WDID column.

The following dialog is used to edit the command and illustrates command syntax:

MergeListFileColumns

MergeListFileColumns() Command Editor

 Command Reference – MergeListFileColumns() - 1 473

MergeListFileColumns() Command StateDMI Documentation

The command syntax is as follows:

MergeListFileColumns(Parameter=Value,…)

Command Parameters

Parameter Description Default
ListFile The name of the list file to read. None – must be specified.
OutputFile The name of the output list file to create.

This file will have the same contents as
the original file, with the new column at
the end.

None – must be specified.

Columns A comma-separated list of columns to
merge. Column numbers have a value ≥
1.

None – must be specified.

NewColumnName Name of the column to be created, which
will be added at the end of the original
columns.

None – must be specified.

SimpleMergeFormat Comma-separated list of formats
indicating how to format the merged
column, one of the following:

• Blank – concatenate the values.
• NN,NN (e.g., 2,5) – indicate the

widths for each part and merge as
strings where each part is right
justified and padded with spaces.

• 0N,0N (e.g., 02,05) – indicate the
widths for each part and merge as
integers where each part is right
justified and padded with zeros.

A more flexible formatting capability
may be added in the future.

Concatenate values.

The following example concatenates the WD and ID columns into a single WDID column by padding
with zeros. The first row of the list file should contain double-quoted column headers.

MergeListFileColumns(ListFile="poudre1.csv",OutputFile="poudre2.csv",
Columns="2,3",NewColumnName="WDID",SimpleMergeFormat="02,05")

2 - Command Reference – MergeListFileColumns() 474

Command Reference: MergeWellRights ()

Merge well right data from multiple parcel years into a common set of well rights

StateCU and StateMod Command
Version 3.09.00, 2010-01-26

The MergeWellRights() command merges well rights from multiple years of irrigated lands parcel
data as read with the ReadWellRightsFromHydroBase() command. Well rights initially are
generated for each parcel year by using well to parcel matching relationships. Because the parcel
identifiers change each year and new wells are added over time, the mix of well rights associated with
parcels changes. Well rights are generated from HydroBase for each independent year and then need to
be merged in order to NOT double count the well rights for modeling. The
ReadWellRightsFromHydroBase() and
WriteWellRightsToStateMod(…,WriteDataComments=True,…) commands are used to
generate a well rights file that contain the parcel data, typically with a file name similar to
rg2007_NotMerged.wer.

The following figure illustrates the difference between raw rights data for one year, merged rights for
multiple years, and aggregated rights created from the merged rights. Merged rights will typically be
higher than the raw rights because a few rights appear in some years but not in others (they are additive).
Aggregating rights reduces the number of rights in the data set by grouping rights into administration
number classes (see the AggregateWellRights() command) – this reduced the time needed to run
the model but limits the ability to refer to individual rights (e.g., in augmentation plans).

SetIrrigationPracticeTSPumpingMaxUsingWellRights_Example

An excerpt from a well rights file with data comments is shown below. The parcel year, well/parcel
matching class, and parcel ID are shown on the far right and are not part of the standard StateMod well

 Command Reference – MergeWellRights() - 1 475

MergeWellRights () Command StateDMI Documentation

right file. See CDSS technical memoranda for a description of well classes (SPDSS Task Memorandum
“SPDSS, Spatial System Integration Component, Well Class Adjustments”, March 15th, 2007).

#> ID Name Struct Admin # Decree On/Off PYr--Cls--PID
#>---------eb----------------------eb----------eb--------------eb------eb------exb--exb--exb----e
2005001 W0006 WELL NO 01 200812 31592.00000 2.34 1936 1936 1 3107
2005001 W0006 WELL NO 01 200812 38836.00000 1.23 1956 1936 1 3107
2005001 W0006 WELL NO 01 200812 31592.00000 2.34 1936 1998 2 11016
2005001 W0006 WELL NO 01 200812 38836.00000 1.23 1956 1998 2 11016
2005001 W0006 WELL NO 01 200812 31592.00000 1.19 1936 2002 2 20901
2005001 W0006 WELL NO 01 200812 38836.00000 0.62 1956 2002 2 20901
2005001 W0006 WELL NO 01 200812 31592.00000 1.15 1936 2002 5 20902
2005001 W0006 WELL NO 01 200812 38836.00000 0.61 1956 2002 5 20902

For the example shown, the well rights are the same for the 1936 and 1998 irrigated lands parcel data.
However, in 2002 there is a change. This may be due to several reasons, including:

• The results for each irrigated lands assessment were created with the HydroBase and other data
available at that time. HydroBase subsequently changed and original parcel/well matching work
was not redone.

• The parcel configuration changes in different years, resulting in different well match classes (note
class 5 wells above). For example a parcel may be whole in one year and split in another year,
due to changes in physical configuration or data processing procedures. If a parcel is split
between ditch service areas, a factor is applied to split the well among the ditches.

In order to generate a merged file that represents rights for the full period (and all active parcels and wells
in that period), it is necessary to compare the rights from each year and remove duplicates. The logic that
is implemented in this command for merging rights is as follows:

1. Extract any records that have a parcel year of -999 (indicative of explicit well rights not
associated with parcels that need to apply to the entire period) and do not process with the
following steps – these rights are added to the list at the end.

2. Determine the unique list of locations from the well rights, and the unique list of parcel years.
3. Merge the first and second years of data, then merge the results with the third year of data, etc.:

a. For each location ID, get the list of rights for each parcel year (or from the previous
results and the next parcel year being merged).

b. For the above list, get the list of water rights identifiers for the first year (or previous
merge). This divides the long list of water rights for a location into a more manageable
list. The administration number and well/permit match class are not considered.

c. Compare the two lists.
i. If the lists are exactly the same (same number and rights exactly match), then

include the rights from the first year (or previous merge). The parcel year is
retained for further comparisons.

ii. If the rights are not exactly the same, determine the sum of the decrees from each
year and include the rights for the year with the highest decree total. In some
cases, a new set of rights will be added, which were not present in the previous
results. This assumes that well use increases over time – currently the case
where wells are turned off is not handled.

Repeat step c for each well right identifier for a location, for the years of data that are
being compared.

d. If any rights were not considered above, add them to the list. For example, a year may
include right identifiers that did not exist in another year. In this case it is not possible to
compare the sum of rights – the sum in one year will be zero.

2 - Command Reference – MergeWellRights() 476

StateDMI Documentation MergeWellRights () Command

Repeat step 3 for each year of data, comparing the next year with the results from the previous
merge. In many cases the rights will simply be carried forward during the comparison, but in
some years a block of rights will be replaced.

4. Add to the final list the well rights that had a parcel ID of -999.
5. If an output file was specified with the OutputFile parameter, write the intermediate results to

a file (see the OutputFile parameter description in the table below).
6. If SumDecrees=True, further process the rights to sum decrees where the right identifier,

administration number, and on/off switch are equal. This reduces the number of rights, but the
overall decree will be the same. Water rights that are associated with estimated wells (class 4 or
9) are passed through without change in order to retain the original information for these
relationships. For example the same original well may be copied multiple times for an estimated
well and this information is evident when the original rights are retained. A more complete
evaluation of estimated wells could be performed if the merge process considered well locations.

After merging the rights, the file is typically written using WriteWellRightsToStateMod() with a
name similar to rg2007.wer. This file can be used to set irrigation practice time series pumping
maximum and can be used for StateMod modeling. It cannot be used to fill crop pattern and irrigation
practice acreage time series because a specific parcel year is needed (use the original non-merged rights
file with all years for filling acreage). If the well rights will be aggregated, as has been done in the Río
Grande modeling, then use the AggregateWellRights() command and create a third rights file for
use with StateMod. For the initial example above, the merged results are as follows:

#> ID Name Struct Admin # Decree On/Off PYr--Cls--PID
#>---------eb----------------------eb----------eb--------------eb------eb------exb--exb--exb----e
2005001 W0006 WELL NO 01 200812 31592.00000 2.34 1936
2005001 W0006 WELL NO 01 200812 38836.00000 1.23 1956

The following dialog is used to edit the command and illustrates the syntax of the command.

MergeWellRights

MergeWellRights() Command Editor

 Command Reference – MergeWellRights() - 3 477

MergeWellRights () Command StateDMI Documentation

The command syntax is as follows:

MergeWellRights(Parameter=value,…)

Command Parameters

Parameter Description Default
OutputFile If specified, the output file typically is the same as the

output file for the
WriteWellRightsToStateMod() command. The
filename will be pre-pended with wer-merged-
YYYY- to indicate the results of the merge after
considering the parcel year indicated by YYYY.

No file is created
to indicate results
of intermediate
processing.

MergeParcelYears If True, merge the water rights for multiple parcel
years as indicated by this documentation. If False, do
not merge (but can still sum decrees). This parameter
allows evaluation of combinations of the processing
steps.

True

SumDecrees If True, process the rights after the main merge logic to
combine rights where the identifier, administration
number, and on/off switch are the same, increasing the
decree to the combined value. Water rights that are
class 4 or 9 parcel matches (indicating estimated wells)
are not changed, to better understand the impact of
estimated wells.

True

4 - Command Reference – MergeWellRights() 478

StateDMI Documentation MergeWellRights () Command

The following example command file illustrates how well rights can be defined, sorted, merged, checked,
and written to a StateMod file:

Well Rights File (*.wer)

StartLog(LogFile="Sp2008L_WER.log")

Step 1 - Read all structures

ReadWellStationsFromNetwork(InputFile="..\Network\Sp2008L.net")
SortWellStations()

Step 2 - define diversion and d&w aggregates and demand systems
SetWellAggregateFromList(ListFile="..\Sp2008L_SWAgg.csv",PartType=Ditch,IDCol=1,
 NameCol=2,PartIDsCol=3,PartsListedHow=InColumn,IfNotFound=Warn)
SetWellSystemFromList(ListFile="..\Sp2008L_DivSys_DDH.csv",PartType=Ditch,IDCol=1,
 NameCol=2,PartIDsCol=3,PartsListedHow=InRow,IfNotFound=Warn)

SetWellAggregateFromList(ListFile="Sp2008L_AugRchWell_Aggregates.csv",PartType=Well,
 IDCol=1,PartIDsCol=2,PartsListedHow=InRow)

Step 3- Set Well aggregates (GW Only lands)
rrb Same as provided by LRE as Sp_GWAgg_xxxx.csv except non WD 01 and 64 removed
SetWellSystemFromList(ListFile="..\Sp2008L_GWAgg_1956.csv",Year=1956,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\Sp2008L_GWAgg_1976.csv",Year=1976,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\Sp2008L_GWAgg_1987.csv",Year=1987,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\Sp2008L_GWAgg_2001.csv",Year=2001,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\Sp2008L_GWAgg_2005.csv",Year=2005,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)

Step 4 - Read Augmentation and Recharge Well Aggregate Parts
SetWellAggregateFromList(ListFile="Sp2008L_AugRchWell_Aggregates.csv",PartType=Well,
 IDCol=1,PartIDsCol=2,PartsListedHow=InRow,PartIDsColMax=25,IfNotFound=Ignore)
SetWellAggregateFromList(ListFile="Sp2008L_AlternatePoint_Aggregates.csv",PartType=Well,
 IDCol=1,PartIDsCol=2,PartsListedHow=InRow,PartIDsColMax=1,IfNotFound=Ignore)

Step 5 - Read rights from HydroBase
ReadWellRightsFromHydroBase(ID="*",IDFormat="HydroBaseID",Year="1956,1976,1987,2001,2005",
 Div="1",DefaultAppropriationDate="1950-01-01",DefineRightHow=RightIfAvailable,
 ReadWellRights=True,UseApex=True,OnOffDefault=AppropriationDate)

Step 6 - Sort and Write
Write Data Comments="True" provides output used for subsequent cds & ipy acreage filling
Write Data Comments="False" provides merged file used for seting ipy max pumping
SortWellRights(Order=LocationIDAscending,Order2=IDAscending)

WriteWellRightsToStateMod(OutputFile="Sp2008L_NotMerged.wer",WriteDataComments=True)
MergeWellRights(OutputFile="..\StateMod\Historic\Sp2008L.wer")
SortWellRights(Order=LocationIDAscending,Order2=IDAscending)

WriteWellRightsToStateMod(OutputFile="Sp2008L.wer",
 WriteDataComments=False,WriteHow=OverwriteFile)
Check the well rights
CheckWellRights(ID="*")
WriteCheckFile(OutputFile="Sp2008L.wer.check.html",Title="Well Rights Check File")

 Command Reference – MergeWellRights() - 5 479

MergeWellRights () Command StateDMI Documentation

The following TSTool command file illustrates how various StateMod well right files can be processed to
generate time series of decrees, similar to the graph shown above. The command will automatically
generate a data set total time series. This visual check provides an understanding of the decrees in a basin
over time.

Read the unmerged and merged StateDMI *wer files to compare
SetOutputPeriod(OutputStart="1900-01",OutputEnd="2008-12")
ReadStateMod(InputFile="Sp2008L_Unmerged.wer",Alias="%L-Unmerged",Interval="Month")
ReadStateMod(InputFile="Sp2008L.wer",Alias="%L",Interval="Month")

6 - Command Reference – MergeWellRights() 480

Command Reference: OpenHydroBase()
Open a connection to a HydroBase database

General Command

Version 3.08.02, 2010-01-06

The OpenHydroBase() command opens a connection to a HydroBase database, allowing data to be
read from the database. This command is not typically used for interactive sessions but may be inserted
to run in batch only mode to allow a specific database and commands files to be distributed.

The following dialog is used to edit this command and illustrates the command syntax. The Database
type is used to control settings for parameters and is not itself a parameter.

OpenHydroBase

OpenHydroBase() Command Editor

The command syntax is as follows:

OpenHydroBase(Parameter=Value,…)

Command Parameters

Parameter Description Default
DatabaseServer Used with a SQL Server HydroBase.

Specify the SQL Server database
machine name. A list of choices will
be shown, corresponding to properties
in the CDSS.cfg configuration file.

Required if a SQL Server
database is used, and accepts the
generic value
DatabaseServer=local,
which will automatically be
translated to the name of the
local computer.

DatabaseName Used with a SQL Server HydroBase. HydroBase

 Command Reference – OpenHydroBase() - 1 481

OpenHydroBase() Command TSTool Documentation

Parameter Description Default
The name of the database typically
follows a pattern similar to:
HydroBase_CO_YYYYMMDD. A list
of choices will be shown,
corresponding to properties in the
CDSS.cfg configuration file.

OdbcDsn The ODBC DSN to use for the
connection, used only when working
with a Microsoft Access database.

Required if a Microsoft Access
database is used.

InputName The input name corresponding to the
~InputType~InputName
information in time series identifiers.
This is used when more than one
HydroBase connection is used in the
same command file.

Blank (no input name).

UseStoredProcedures Used with SQL Server, indicating
whether stored procedures are used.
Stored procedures are the default and
should be used except when testing
software.

True (used stored procedures).

RunMode Indicates when the command should be
run, one of:

BatchOnly – run the command only
in batch mode.
GUIOnly – run the command only in
GUI mode.
GUIAndBatch – run the command in
batch and GUI mode.

GUIAndBatch

The following example command file illustrates how to connect to a SQL Server database running on a
machine named “sopris”:

StartLog(LogFile="Results/Example_OpenHydroBase_DatabaseName.StateDMI.log")
OpenHydroBase(DatabaseServer="sopris",DatabaseName="HydroBase_CO_20060816")

Example_OpenHydroBase_DatabaseName

Command Reference – OpenHydroBase() - 2 482

Command Reference: PrintNetwork()

Print network to printer and/or file

StateMod Command
Version 3.09.01, 2010-02-01

This command is under development.

The PrintNetwork() command prints the network to a printer and/or to a file. This command is
useful for automating the output of network products. The following dialog is used to edit the command
and illustrates the syntax of the command.

PrintNetwork

PrintNetwork() Command Editor

 Command Reference – PrintNetwork() - 1 483

PrintNetwork() Command StateDMI Documentation

The command syntax is as follows:

PrintNetwork(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the network file to process. If not specified, the

network that has been
previously read into
memory will be used.

PageLayout The page layout that is configured for the network, as
shown in the network editor.

None – must be specified.

Printer The name of the printer to use as
//ServerName/PrinterName

Nothing will be sent to a
printer.

OutputFile The name of the output file to create. No file will be created.

2 - Command Reference – PrintNetwork () 484

Command Reference:
ReadBlaneyCriddleFromHydroBase()

Read Blaney-Criddle crop coefficients data from HydroBase

StateCU Command

Version 3.08.02, 2010-01-07

The ReadBlaneyCriddleFromHydroBase() command reads a list of Blaney-Criddle crop
coefficients from the HydroBase database. The crop coefficients can then be manipulated and output with
other commands. The following dialog is used to edit the command and illustrates the syntax of the
command.

ReadBlaneyCriddleFromHydroBase

ReadBlaneyCriddleFromHydroBase() Command Editor

The command syntax is as follows:

ReadBlaneyCriddleFromHydroBase(Parameter=Value,…)

Command Parameters

Parameter Description Default
BlaneyCriddleMethod The Blaney-Criddle method that is

defined in HydroBase for the crop
type and its coefficients.

None – must be specified.

The crop type (e.g., ALFALFA) is used as the unique identifier. Any previous crop coefficients objects
will be added to (or replaced if identifiers match).

The BlaneyCriddleMethod parameter corresponds to a value in HydroBase and allows regional
crop characteristics to be defined.

 Command Reference – ReadBlaneyCriddleFromHydroBase() - 1 485

ReadBlaneyCriddleFromHydroBase() Command StateDMI Documentation

The following example command file illustrates how to read Blaney-Criddle coefficients from
HydroBase, sort the data, create a StateCU file, and check the results:

StartLog(LogFile="Crops_KBC.StateDMI.log")

StateDMI commands to create the Rio Grande Blaney-Criddle coefficients File

History:

2004-03-16 Steven A. Malers, RTi Initial version using StateDMI.
2007-04-23 SAM, RTi Update for Rio Grande Phase 5.

Step 1 - read data from HydroBase

Read the general Blaney-Criddle coefficients first and then override with Rio Grande
data.
ReadBlaneyCriddleFromHydroBase(BlaneyCriddleMethod="BLANEY-CRIDDLE_TR-21")
ReadBlaneyCriddleFromHydroBase(BlaneyCriddleMethod="BLANEY-CRIDDLE_RIO_GRANDE")

Step 3 - write the file

SortBlaneyCriddle(Order=Ascending)
WriteBlaneyCriddleToStateCU(OutputFile="rg2007.kbc")

Check the results

CheckBlaneyCriddle(ID="*")
WriteCheckFile(OutputFile="rg2007.kbc.check.html")

2 - Command Reference – ReadBlaneyCriddleFromHydroBase() 486

Command Reference:
ReadBlaneyCriddleFromStateCU()

Read Blaney-Criddle crop coefficients data from a StateCU Blaney-Criddle crop

coefficients file

StateCU Command
Version 3.08.02, 2010-01-07

The ReadBlaneyCriddleFromStateCU() command reads Blaney-Criddle crop coefficients from
a StateCU Blaney-Criddle crop coefficients file and defines crop coefficients in memory. The crop
coefficients can then be manipulated and output with other commands. This command can be used to
adjust an existing crop coefficients file. The following dialog is used to edit the command and illustrates
the syntax of the command.

ReadBlaneyCriddleFromStateCU

ReadBlaneyCriddleFromStateCU() Command Editor

 Command Reference – ReadBlaneyCriddleFromStateCU() - 1 487

ReadBlaneyCriddleFromStateCU() Command StateDMI Documentation

The command syntax is as follows:

ReadBlaneyCriddleFromStateCU(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the input file to read, surrounded by

double quotes.
None – must be
specified.

2 - Command Reference – ReadBlaneyCriddleFromStateCU() 488

Command Reference:
ReadClimateStationsFromList()

Read climate station data from a list file to define climate stations

StateCU Command

Version 03.08.02, 2010-01-05

The ReadClimateStationsFromList() command reads a list of climate stations from a delimited
list file and defines climate stations in memory. The climate stations can then be manipulated and output
with other commands. The following dialog is used to edit the command and illustrates the syntax of the
command.

ReadClimateStationsFromList

ReadClimateStationsFromList() Command Editor

 Command Reference – ReadClimateStationsFromList() - 1 489

ReadClimateStationsFromList() Command StateDMI Documentation

The command syntax is as follows:

ReadClimateStationsFromList(Parameter=Value,…)

Command Parameters

Parameter Description Default
ListFile The name of the list file to be read. None – must be specified.
IDCol The column number (1+) containing the

climate station identifiers.
None – must be specified.

NameCol The column number (1+) containing the
climate station name.

None – optional (name will be
initialized to blank).

LatitudeCol The column number (1+) containing the
climate station latitude.

None – optional (latitude will be
initialized to missing data).

ElevationCol The column number (1+) containing the
climate station elevation.

None – optional (elevation will
be initialized to missing data).

Region1Col The column number (1+) containing the
climate station Region1.

None – optional (Region1 will be
initialized to blank).

Region2Col The column number (1+) containing the
climate station Region2.

None – optional (Region2 will be
initialized to blank).

At a minimum, the list file must contain a column with station identifiers. Lines starting with the #
character are treated as commas. Column names can be specified in the first non-comment line by
enclosing each column name in quotes.

An example list file is shown below, for example created from CDSS TSTool software:

Climate stations
“ID”,”Name”
0130,” ALAMOSA SAN LUIS VALLEY RGNL”
0776,”BLANCA”
1458,” CENTER 4 SSW”
2184,” DEL NORTE 2 E”
3541,” GREAT SAND DUNES N M”
3951,” HERMIT 7 ESE”
5322,” MANASSA”
5706,” MONTE VISTA 2 W”
7337,” SAGUACHE”

The following example command file illustrates how climate stations can be defined from a list and
written to a StateCU file:

ReadClimateStationsFromList(ListFile="climsta.lst",IDCol=1)
FillClimateStationsFromHydroBase(ID="*")
SetClimateStation(ID="3016",Region2="14080106",IfNotFound=Warn)
SetClimateStation(ID="1018",Region2="14040106",IfNotFound=Warn)
SetClimateStation(ID="1928",Elevation=6440,IfNotFound=Warn)
SetClimateStation(ID="0484",Region1="MOFFAT",IfNotFound=Add)
WriteClimateStationsToStateCU(OutputFile="COclim2006.cli")

2 - Command Reference – ReadClimateStationsFromList() 490

Command Reference:
ReadClimateStationsFromStateCU()

Read climate station data from a StateCU climate stations file to define climate

stations

StateCU Command
Version 3.08.02, 2010-01-05

The ReadClimateStationsFromStateCU() command reads a list of climate stations from a
StateCU climate stations file and defines climate stations in memory. The climate stations can then be
manipulated and output with other commands. This command can be used to adjust an existing climate
stations file. The following dialog is used to edit the command and illustrates the syntax of the command.

ReadClimateStationsFromStateCU

ReadClimateStationsFromStateCU() Command Editor

 Command Reference – ReadClimateStationsFromStateCU() - 1 491

ReadClimateStationsFromStateCU() Command StateDMI Documentation

The command syntax is as follows:

ReadClimateStationsFromStateCU(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the input file to read, surrounded by

double quotes.
None – must be
specified.

The following example command file illustrates how climate stations can be read from a StateCU file:

ReadClimateStationsFromStateCU(InputFile="COclim2006.cli")

2 - Command Reference – ReadClimateStationsFromStateCU() 492

Command Reference:
ReadCropCharacteristicsFromHydroBase()

Read crop characteristics data from HydroBase

StateCU Command

Version 3.08.02, 2010-01-07

The ReadCropCharacteristicsFromHydroBase() command reads a list of crops and their
characteristics from a HydroBase database. The crop characteristics can then be manipulated and output
with other commands. The following dialog is used to edit the command and illustrates the syntax of the
command.

ReadCropCharacteristicsFromHydroBase

ReadCropCharacteristicsFromHydroBase() Command Editor

Command Reference – ReadCropCharacteristicsFromHydroBase() - 1 493

ReadCropCharacteristicsFromHydroBase() Command StateDMI Documentation

The command syntax is as follows:

ReadCropCharacteristicsFromHydroBase(Parameter=Value,…)

Command Parameters

Parameter Description Default
CUMethod The CU method that is defined in

HydroBase for the crop type and its
characteristics.

None – must be specified.

The crop type (e.g., ALFALFA) is used as the unique identifier. Any previous crop characteristics objects
will be added to (or replaced if identifiers match). The crop types in HydroBase may actually include
some land use types that are not appropriate for StateCU (e.g., Water, NO_DATA). Currently these crop
types are still queried from HydroBase.

To allow for some flexibility in defining crop characteristics, a CU Method is used in HydroBase and can
be used to adjust crop characteristics for regional differences. For example, read the Soil Conservation
Service Irrigation Water Requirements Technical Release No. 21 (TR-21) characteristics first and then
reset the characteristics for a crop due to local conditions.

The following example illustrates how to create a StateCU crop characteristics file with data from
HydroBase:

StartLog(LogFile="Crops_CCH.StateDMI.log")

StateDMI commands to create the Rio Grande Crop Characteristics File

History:

2004-03-16 Steven A. Malers, RTi Initial version using StateDMI.
2007-04-22 SAM, RTi Use new directory structure, current
software and HydroBase.

Step 1 - read data from HydroBase

Read the general TR-21 characteristics first and then override with Rio Grande
data.
ReadCropCharacteristicsFromHydroBase(CUMethod="BLANEY-CRIDDLE_TR-21")
ReadCropCharacteristicsFromHydroBase(CUMethod="BLANEY-CRIDDLE_RIO_GRANDE")

Step 2 - adjust crop characteristics if needed
No resets are needed.

Step 3 - write the file

WriteCropCharacteristicsToStateCU(OutputFile="rg2007.cch")

Check the results

CheckCropCharacteristics(ID="*")
WriteCheckFile(OutputFile="rg2007.cch.check.html")

2 - Command Reference – ReadCropCharacteristicsFromHydroBase() 494

Command Reference:
ReadCropCharacteristicsFromStateCU()

Read crop characteristics data from a StateCU crop characteristics file

StateCU Command

Version 3.08.02, 2010-01-07

The ReadCropCharacteristicsFromStateCU() command reads a list of crops and their
characteristics from a StateCU crop characteristics file and defines crop characteristics in memory. The
crop characteristics can then be manipulated and output with other commands. This command can be
used to adjust an existing crop characteristics file. The following dialog is used to edit the command and
illustrates the syntax of the command.

ReadCropCharacteristicsFromStateCU

ReadCropCharacteristicsFromStateCU() Command Editor

Command Reference – ReadCropCharacteristicsFromStateCU() - 1 495

ReadCropCharacteristicsFromStateCU() Command StateDMI Documentation

The command syntax is as follows:

ReadCropCharacteristicsFromStateCU(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the input file to read, surrounded by

double quotes.
None – must be
specified.

2 - Command Reference – ReadCropCharacteristicsFromStateCU() 496

Command Reference:
ReadCropPatternTSFromHydroBase()

Read crop pattern time series data from HydroBase

StateCU Command

Version 3.09.01, 2010-02-01

The ReadCropPatternTSFromHydroBase() command reads crop pattern time series from
HydroBase and defines crop pattern time series in memory. The crop pattern time series can then be
manipulated and output with other commands. If a CU Location is a diversion, the crop pattern data are
read from HydroBase tables that contain irrigated acres for the ditch service area. If the CU Location is
an aggregate of parcels, the area is determined from the parcel data.

When processing crop pattern time series, data from HydroBase may need to be combined with user-
specified data. A single location or location that is part of an aggregate/system can have its data specified
with a SetCropPatternTS(…,ProcessWhen=WithParcels,…) or
SetCropPatternTSFromList(…,ProcessWhen=WithParcels,…) command. In this case, it
is expected that the acreage will not be found in HydroBase. Use set commands before the
ReadCropPatternTSFromHydroBase() command. It is recommended that a
SetCropPatternTSFromList(…,ProcessWhen=WithParcels,…) command be used for
each year of HydroBase data that is processed.

The following dialog is used to edit the command and illustrates the syntax of the command.

ReadCropPatternTSFromHydroBase_True

ReadCropPatternTSFromHydroBase() Command Editor

 Command Reference – ReadCropPatternTSFromHydroBase() - 1 497

ReadCropPatternTSFromHydroBase() Command StateDMI Documentation

The command syntax is as follows:

ReadCropPatternTSFromHydroBase(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single CU Location identifier to match

or a pattern using wildcards (e.g., 20*).
None – must be specified.

InputStart Starting year to read data. All available data will be read.
InputEnd Ending year to read data. All available data will be read.

The following command file illustrates how to create a crop pattern time series file:

Step 1 - Set output period and read CU locations
SetOutputPeriod(OutputStart="1950",OutputEnd="2006")
ReadCULocationsFromStateCU(InputFile="..\StateCU\cm2006.str")
Step 2 - Read SW aggregates
SetDiversionSystemFromList(ListFile="colorado_divsys.csv",IDCol=1,
 NameCol=2,PartIDsCol=3,PartsListedHow=InRow)
SetDiversionAggregateFromList(ListFile="colorado_agg.csv",IDCol=1,
 NameCol=2,PartIDsCol=3,PartsListedHow=InRow)
Step 3 - Create *.cds file form and read acreage/crops from HydroBase
CreateCropPatternTSForCULocations(ID="*",Units="ACRE")
ReadCropPatternTSFromHydroBase(ID="*")
Step 4 - Need to translate crops out of HB to include TR21 suffix
Translate all crops from HB to include .TR21 suffix
TranslateCropPatternTS(ID="*",OldCropType="GRASS_PASTURE",NewCropType="GRASS_PASTURE.TR21")
TranslateCropPatternTS(ID="*",OldCropType="CORN_GRAIN",NewCropType="CORN_GRAIN.TR21")
TranslateCropPatternTS(ID="*",OldCropType="ALFALFA",NewCropType="ALFALFA.TR21")
TranslateCropPatternTS(ID="*",OldCropType="SMALL_GRAINS",NewCropType="SPRING_GRAIN.TR21")
TranslateCropPatternTS(ID="*",OldCropType="VEGETABLES",NewCropType="VEGETABLES.TR21")
TranslateCropPatternTS(ID="*",OldCropType="ORCHARD_WO_COVER",NewCropType="ORCHARD_WO_COVER.TR21")
TranslateCropPatternTS(ID="*",OldCropType="ORCHARD_WITH_COVER",NewCropType="ORCHARD_WITH_COVER.TR21")
TranslateCropPatternTS(ID="*",OldCropType="DRY_BEANS",NewCropType="DRY_BEANS.TR21")
TranslateCropPatternTS(ID="*",OldCropType="GRAPES",NewCropType="GRAPES.TR21")
TranslateCropPatternTS(ID="*",OldCropType="WHEAT",NewCropType="SPRING_GRAIN.TR21")
TranslateCropPatternTS(ID="*",OldCropType="SUNFLOWER",NewCropType="SPRING_GRAIN.TR21")
TranslateCropPatternTS(ID="*",OldCropType="SOD_FARM",NewCropType="GRASS_PASTURE.TR21")
Step 5 - Translate crop names
use high-altitude coefficients for structures with more than 50% of
irrigated acreage above 6500 feet
TranslateCropPatternTS(ListFile="cm2005_HA.lst",IDCol=1,
 OldCropType="GRASS_PASTURE.TR21",NewCropType="GRASS_PASTURE.DWHA")
Step 6 - Fill Acreage
Fill SW structure acreage backword from 1999 to 1950
Fill acreage forward for all structures from 2000 to 2006
FillCropPatternTSRepeat(ID="*",CropType="*",FillStart=1950,FillEnd=1993,FillDirection=Backward)
FillCropPatternTSRepeat(ID="*",CropType="*",FillStart=1993,FillEnd=1999,FillDirection=Forward)
FillCropPatternTSRepeat(ID="*",CropType="*",FillStart=2000,FillEnd=2006,FillDirection=Forward)
Step 7 - Write final *.cds file
WriteCropPatternTSToStateCU(OutputFile="..\StateCU\cm2006.cds",
 WriteCropArea=True,WriteHow=OverwriteFile)
Check the results
CheckCropPatternTS(ID="*")
WriteCheckFile(OutputFile="cm2006.cds.StateDMI.check.html")

2 - Command Reference – ReadCropPatternTSFromHydroBase() 498

Command Reference:
ReadCropPatternTSFromStateCU()

Read crop pattern time series data from a StateCU file

StateCU Command

Version 3.09.01, 2010-02-01

The ReadCropPatternTSFromStateCU() command reads crop pattern time series data from a
StateCU crop pattern time series file and defines crop patterns in memory. The crop pattern time series
can then be manipulated and output with other commands. This command can be used to adjust an
existing crop pattern file or to set the total acreage in the irrigation practice time series file (see the
SetIrrigationPracticeTSTotalAcreageToCropPatternTSTotalAcreage()
command). Warning: when writing the crop pattern time series, the total acreage and the fractions
corresponding to each crop (three digits) are written. The acreage for each crop is also now written
but was not included in older versions of files. When reading the file with this command, the
default is to read the individual crop acreages and the total and fractions are computed based on
the individual crop acreages. Because the fraction is only three digits, crop areas computed from
the total and fraction may differ from the raw crop acreages. Consequently, comparing old and
new files may result in differences.

The following dialog is used to edit the command and illustrates the syntax of the command.

ReadCropPatternTSFromStateCU

ReadCropPatternTSFromStateCU() Command Editor

 Command Reference – ReadCropPatternTSFromStateCU() - 1 499

ReadCropPatternTSFromStateCU() Command StateDMI Documentation

The command syntax is as follows:

ReadCropPatternTSFromStateCU(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the input file to read, surrounded by

double quotes.
None – must be
specified.

Version A StateCU version, to allow backward compatibility
with files from an older software version. Refer to
StateCU documentation for a description of older file
formats.

Use the file format for
the most current StateCU
version.

ReadDataFrom Indicate how to read crop values, one of:
• CropArea – read the detailed crop acreage

values from the file (may not be available in very
old files)

• TotalAreaAndCropFraction – read the
total area and crop fractions and compute the crop
area from this information. Because fractions are
only 3 digits, the crop areas will only be accurate
to three digits (and may therefore not agree with
HydroBase or other input data).

CropArea

2 - Command Reference – ReadCropPatternTSFromStateCU() 500

Command Reference:
ReadCULocationsFromList()

Read CU Locations data from a list file

StateCU Command

Version 3.08.02, 2010-01-07

The ReadCULocationsFromList() command reads a list of CU Locations from a delimited list file
and defines CU Locations in memory. The CU Locations can then be manipulated and output with other
commands. The identifier column is required.

The following dialog is used to edit the command and illustrates the syntax of the command.

ReadCULocationsFromList

ReadCULocationsFromList() Command Editor

 Command Reference – ReadCULocationsFromList() - 1 501

ReadCULocationsFromList() Command StateDMI Documentation

The command syntax is as follows:

ReadCULocationsFromList(Parameter=Value,…)

Command Parameters

Parameter Description Default
ListFile The name of the list file to be read. None – must be specified.
IDCol The column number (1+) containing the

CU Location identifiers.
None – must be specified.

NameCol The column number (1+) containing the
CU Location name.

The name will be initialized to
blank.

LatitudeCol The column number (1+) containing the
CU Location latitude.

The latitude will be missing.

ElevationCol The column number (1+) containing the
CU Location elevation.

The elevation will be missing.

Region1Col The column number (1+) containing the
CU Location Region1.

The region1 will be initialized to
blank.

Region2Col The column number (1+) containing the
CU Location Region2.

The region2 will be initialized to
blank.

AWCCol The column number (1+) containing the
CU Location AWC.

The AWC will be missing.

At a minimum, the list file must contain a column with CU Location identifiers. Lines starting with the #
character are treated as comments. If the first line’s values are surrounded by double quotes, the line is
assumed to indicate column headings.

A sample list file is shown below:

#wdid,lat,long,county,huc,name,ceff,fleff,speff,gmode,awc
360645,39.84,-106.35,SUMMIT,14010002,GUTHRIE THOMAS DITCH,1,0.6,0.8,2,0.08
360649,39.78,-106.18,SUMMIT,14010002,HAMILTON DAVIDSON DITCH,1,0.6,0.8,2,0.08
360660,39.8,-106.16,SUMMIT,14010002,HIGH MILLER DITCH,1,0.6,0.8,2,0.12
360662,39.97,-106.38,SUMMIT,14010002,HOAGLAND CANAL,1,0.6,0.8,2,0.12
360671,39.74,-106.13,SUMMIT,14010002,INDEPENDENT BLUE DITCH,1,0.6,0.8,2,0.13
360687,39.77,-106.18,SUMMIT,14010002,KIRKWOOD DITCH,1,0.6,0.8,2,0.08
360709,40.01,-106.38,GRAND,14010002,LOBACK DITCH,1,0.6,0.8,2,0.09
360725,39.82,-106.25,SUMMIT,14010002,MARY DITCH,1,0.6,0.8,2,0.08
360728,39.83,-106.25,SUMMIT,14010002,MAT NO 1 DITCH,1,0.6,0.8,2,0.08

2 - Command Reference – ReadCULocationsFromList() 502

Command Reference:
ReadCULocationsFromStateCU()

Read CU Locations data from a StateCU structure file

StateCU Command

Version 3.08.02, 2010-01-07

The ReadCULocationsFromStateCU() command reads a list of CU Locations from a StateCU
structure file and defines CU Locations in memory. The CU Locations can then be manipulated and
output with other commands. This command can be used to adjust an existing CU Locations file. The
following dialog is used to edit the command and illustrates the syntax of the command.

ReadCULocationssFromStateCU

ReadCULocationsFromStateCU() Command Editor

 Command Reference – ReadCULocationsFromStateCU() - 1 503

ReadCULocationsFromStateCU() Command StateDMI Documentation

The command syntax is as follows:

ReadCULocationsFromStateCU(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the input file to read,

surrounded by double quotes.
None – must be specified.

2 - Command Reference – ReadCULocationsFromStateCU() 504

Command Reference:
ReadCULocationsFromStateMod()

Read CU Locations data from a StateMod diversion or well stations file

StateCU Command

Version 3.08.02, 2010-01-02

The ReadCULocationsFromStateMod() command reads a list of CU Locations from a StateMod
diversion or well stations file and defines CU Locations in memory. The CU Locations can then be
manipulated and output with other commands. The following dialog is used to edit the command and
illustrates the syntax of the command.

ReadCULocationssFromStateMod

ReadCULocationsFromStateMod() Command Editor

 Command Reference – ReadCULocationsFromStateMod() - 1 505

ReadCULocationsFromStateMod() Command StateDMI Documentation

The command syntax is as follows:

ReadCULocationsFromStateMod(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the input file to read,

surrounded by double quotes.
None – must be specified.

2 - Command Reference – ReadCULocationsFromStateMod() 506

Command Reference:
ReadDelayTablesMonthlyFromStateMod()

Read delay tables (monthly) data from a StateMod file

StateCU, StateMod Command

Version 3.09.01, 2010-02-01

The ReadDelayTablesMonthlyFromStateMod() command reads delay tables (monthly) from a
StateMod delay tables file. For example, this command may be used to convert a delay table file between
fraction and percent.

The following dialog is used to edit the command and illustrates the syntax of the command.

ReadDelayTablesMonthlyFromStateMod

ReadDelayTablesMonthlyFromStateMod() Command Editor

 Command Reference – ReadDelayTablesMonthlyFromStateMod() - 1 507

ReadDelayTablesMonthlyFromStateMod() Command StateDMI Documentation

The command syntax is as follows:

ReadDelayTablesMonthlyFromStateMod(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the input file to read,

surrounded by double quotes.
None – must be specified.

Scale If the StateMod delay table values are
specified as fractions rather than percent,
a scale of 100 can be used to convert the
StateMod delay tables to percent.

If not specified, no scale is
applied to the delay values.

2 - Command Reference – ReadDelayTablesMonthlyFromStateMod() 508

Command Reference:
ReadDiversionDemandTSMonthlyFromStateMod()

Read diversion demand time series (monthly) data from a StateMod file

StateMod Command

Version 3.09.01, 2010-02-01

The ReadDiversionDemandTSMonthlyFromStateMod() command reads diversion demand
time series (monthly). All time series are read, whether or not they match the list of diversion stations.

The following dialog is used to edit the command and illustrates the syntax of the command.

ReadDiversionDemandTSMonnthlyFromStateMod

ReadDiversionDemandTSMonthlyFromStateMod() Command Editor

Command Reference – ReadDiversionDemandTSMonthlyFromStateMod() - 1 509

ReadDiversionDemandTSMonthlyFromStateMod() Command StateDMI Documentation

The command syntax is as follows:

ReadDiversionDemandTSMonthlyFromStateMod(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the StateMod diversion demand time

series (monthly) file to read.
None – must be
specified.

2 - Command Reference – ReadDiversionDemandTSMonthlyFromStateMod() 510

Command Reference:
ReadDiversionHistoricalTSMonthlyFromHydro

Base()

Read diversion historical time series (monthly) data from HydroBase

StateMod Command
Version 3.09.01, 2010-02-01

The ReadDiversionHistoricalTSMonthlyFromHydroBase() command reads diversion
historical time series (monthly) from HydroBase, for each diversion station identifier that is specified.
Diversion comments and structure “currently in use” (CIU) can be checked for each time series in order
to set zero values that are not indicated in monthly data. The period from the SetOutputPeriod()
command is used to request data from HydroBase. After reading, the time series can be manipulated and
output with other commands.

If the diversion station is an aggregate/system, the time series from HydroBase will be added together. If
filling is not done at read time, then later commands can be used to fill data, operating on the sum. In
most cases, it is more technically correct to fill the aggregate/system part time series before adding them
together. The summed time series can then also be filled with other commands after the initial read, to
account for still missing data (e.g., fill with a constant value of zero). Attempts are made to fill the
complete output period.

Features are not currently enabled to fill the time series for explicit structures during the read – use
other fill commands after the read. Explicit structures and collections are typically processed with
separate commands. The IncludeExplicit and IncludeCollections parameters can be used
to indicate which diversion stations should be processed. For example, if pattern filling is done while
reading data for aggregate/systems, separate read commands will be needed to specify the pattern
identifier for each fill. A single read command can then be used to read the time series for explicit
structures.

Diversion Comment “Not Used” Flag

HydroBase contains diversion comment data with a not_used field. If the not_used value matches
one of the values shown in the following table for an irrigation year (November of the previous year to
October of the irrigation year), the diversion (or reservoir release) data for the specified irrigation year
can be interpreted as zero (see the State of Colorado’s Water Commissioner Manual for more
information):

Diversion Comment not_used Flag Resulting in Additional Zero Values

not_used Meaning (reason why diversion is zero)
A Structure is not usable
B No water is available
C Water available, but not taken
D Water taken in another structure

Command Reference – ReadDiversionHistoricalTSMonthlyFromHydroBase() - 1 511

ReadDiversionHistoricalTSMonthlyFromHydroBase() Command StateDMI Documentation

Structure “Currently in Use” Flag

The HydroBase structure data contains a “currently in use” (CIU) field. Unlike diversion comments, this
is a single value that is consistent with the current status of a structure (it is not a time series). The
following CIU values are used.

Structure CIU Flag Values and Meaning

CIU Meaning
A Active structure with contemporary diversion records
B Structure abandoned by the court
C Conditional structure
D Duplicate; ID no longer used
F Structure used as FROM number; located in another water district
H Historical structure only-no longer exists or has records, but has historical data
I Inactive structure which physically exists but no diversion records are kept
N Non-existent structure with no contemporary or historical records
U Active structure but diversion records are not maintained

If UseCIU=True is specified for this command, the following logic will be used to fill missing time
series values:

1. If the HydroBase CIU value is H or I for the structure associated with the time series:
a. Fill using the diversion comments (see above for interpretation of comments).
b. The limits of the time series are recomputed based on diversion data and comments, and

missing data at the end of the period are filled with zeros.
c. Missing data values at the end of the period will be filled with zeros, reflecting the fact

that the structure is off-line. These values are not included in historical averages because
they do not occur in the active life of the structure.

d. Missing data within the data period remain missing, and can be filled with other
commands such as FillHistMonthAverage().

e. Missing data prior to the first diversion values or comments remain missing, and can be
filled with other commands as appropriate, perhaps specific to each location.

2. If in HydroBase CIU=N:
a. Fill using the diversion comments (see above for interpretation of comments).
b. The limits of the time series are recomputed based on diversion data and comments, and

missing data at the beginning of the period are filled with zeros.
c. The remaining missing data in the active data period or at the end of the period remain

missing and can be filled with using other parameters or commands.

The specific logic for the command is as follows:

Loop through the diversion stations that have been read with previous commands.

1. If the diversion station identifier does not match the given ID pattern, do not complete the
following steps.

2. If explicit stations are being processed and the station is not an explicit station, do not complete
the following steps.

3. If collection stations (aggregates and systems) are being processed and the station is not a
collection, do not complete the following steps.

2 - Command Reference – ReadDiversionHistoricalTSMonthlyFromHydroBase() 512

StateDMI Documentation ReadDiversionHistoricalTSMonthlyFromHydroBase() Command

4. Process the time series for the station:
If a collection (aggregate or system), perform the following by looping through each part (this
guarantees that a time series will result, possibly only with missing data):

a. If a part identifier is not a WDID, generate an error (only WDIDs should be specified as
parts). This type of error should not be ignored and should be corrected.

b. Read the monthly diversion records for the part. If an error occurs (no data), create an
empty time series for the part with all missing data. Important – parts must be read from
HydroBase. There is no way to substitute another time series for a part.

c. If requested (UseDiversionComments=True), read the diversion comments and fill
missing values with additional zeros for irrigation years where diversion comments are
available.

d. If requested (FillUsingCIU=True) also fill with CIU as per the logic described
above.

e. If the first part of an aggregate is being processed, initialize the total time series to the
first part. Also initialize the backup copy that contains only observations.

f. If the second or greater part, add the observations to the backup copy total time series.
g. If filling has been requested using pattern and/or average, fill the part’s time series.
h. Add the part’s time series to the total. This represents the total of filled data, whereas the

backup copy contains only the observed values.
i. If all parts have been processed, calculate the monthly average limits of the backup copy

(observations only), which can be used in later fill commands. This may be a problem
with CIU since some zeros should not be in the average.

If an explicit station, perform the following:
a. If the station ID is not a WDID, generate a warning. Otherwise, read the time series

diversion records from HydroBase.
b. If the station ID is a WDID and diversion comments were requested

(UseDiversionComments=True), read the diversion comments from HydroBase
and fill additional values with zeros for irrigation years where diversion comments are
available.

c. If requested (FillUsingCIU=True) also fill with CIU as per the logic described
above.

d. If no time series was read, create an empty time series.
e. Calculate the monthly average limits of the time series, which can be used in later fill

commands. Need to evaluate CIU impact.
5. Add the time series to the list of time series being maintained for output.
6. Add a copy of the time series to the backup, to be used to set observed values when processing

the LimitDiversionHistoricalTSMonthlyToRights() command. Since explicit
stations’ time series are not filled, copy the time series as is. For aggregate time series, use the
backup copy of the time series.

The following command combinations will provide the same results:

 Process all diversion stations with one command (ID=”*”) with no filling.
 Process explicit diversion stations with one command

(ID=”*”,IncludeCollections=False) and collections with one or more commands
(ID=”X*”,IncludeExplicit=False), with no filling.

If historical patterns are not used for filling, then a smaller number of commands can be used.

 Command Reference – ReadDiversionHistoricalTSMonthlyFromHydroBase() - 3 513

ReadDiversionHistoricalTSMonthlyFromHydroBase() Command StateDMI Documentation

Note that a time series is automatically added only if the station ID is initially matched by the ID pattern.
A station that does not match any of the ID patterns in read commands will not automatically have a time
series added.

If multiple read commands are used, it may be necessary to use a
SortDiversionHistoricalTSMonthly() command to sort time series to match the diversion
stations.

The following dialog is used to edit the command and illustrates the syntax of the command, when
processing explicit structures (no aggregates or collections):

ReadDiversionHistoricalTSMonthlyFromHydroBase_Explicit

ReadDiversionHistoricalTSMonthlyFromHydroBase() Command Editor for Explicit Diversions

4 - Command Reference – ReadDiversionHistoricalTSMonthlyFromHydroBase() 514

StateDMI Documentation ReadDiversionHistoricalTSMonthlyFromHydroBase() Command

The following dialog is used to edit the command and illustrates the syntax of the command, when
processing collections (aggregates or collections):

ReadDiversionHistoricalTSMonthlyFromHydroBase_Explicit

ReadDiversionHistoricalTSMonthlyFromHydroBase() Command Editor for
Aggregates/Systems

 Command Reference – ReadDiversionHistoricalTSMonthlyFromHydroBase() - 5 515

ReadDiversionHistoricalTSMonthlyFromHydroBase() Command StateDMI Documentation

The command syntax is as follows:

ReadDiversionHistoricalTSMonthlyFromHydroBase(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single diversion station identifier to match or

a pattern using wildcards (e.g., 20*).
None – must be
specified.

IncludeExplicit Indicates whether explicit diversion stations
(those that are not aggregates or systems) should
be included in processing.

True

Include
Collections

Indicates whether diversion stations that are
collections (aggregates and systems) should be
included in processing.

True

LEZeroInAverage Indicate whether values ≤ 0 should be
considered when computing historical averages.

True

UseDiversion
Comments

Indicate whether diversion comments should be
checked when reading time series data.
Diversion comments may indicate additional
zero values.

True

FillUsingCIU Indicates whether the “currently in use” (CIU)
information is used to fill missing data. This
will result in additional zeros at the beginning or
end of the time series, depending on CIU value.
See the description of the logic above.

False (CIU
information is not
used to fill missing
data).

FillUsingCIUFlag For each missing data value that is filled using
the CIU information, tag the filled value as
follows:
• If FillUsingCIUFlag is specified as a

single character, tag filled values with the
specified character.

• If FillUsingCIUFlag=Auto is
specified, the CIU value (H, I, or N) from
HydroBase is used for the flag.

The flag can then be used later to label graphs,
etc. The flag will be appended to existing flags
if necessary.

No flag is assigned.

ReadStart A date, to monthly precision, indicating the start
of the read.

Read all available
data.

ReadEnd A date, to monthly precision, indicating the end
of the read.

Read all available
data.

PatternID The pattern identifier for data read with the
ReadPatternFile() command.

None – filling with
monthly average
pattern is not done.

FillPatternOrder If filling aggregates and systems during the
read, specify the order that monthly average
pattern filling should occur.

None – filling with
monthly average
pattern is not done.

PatternFillFlag If specified as a single character, data flags will
be enabled for the time series and each value

No flag is assigned.

6 - Command Reference – ReadDiversionHistoricalTSMonthlyFromHydroBase() 516

StateDMI Documentation ReadDiversionHistoricalTSMonthlyFromHydroBase() Command

Parameter Description Default
filled using a pattern will be tagged with the
specified character. The flag can then be used
later to label graphs, etc. The flag will be
appended to existing flags if necessary.

FillAverageOrder If filling aggregates and systems during the
read, specify the order that monthly average
filling should occur.

None – filling with
monthly average is not
done.

AverageFillFlag If specified as a single character, data flags will
be enabled for the time series and each value
filled using the historical average will be tagged
with the specified character. The flag can then
be used later to label graphs, etc. The flag will
be appended to existing flags if necessary.

No flag is assigned.

The following abbreviated command file illustrates how the StateMod diversion historical time series file
can be produced. Note that an initial diversion stations file is read and is then updated based on time
series information.

StartLog(LogFile="ddh.commands.StateDMI.log")
ddh.commands.StateDMI

StateDMI command file to create the historical diversion file
and the "step 2" direct diversion structure file, updated so structure
capacity = maximum historical diversion

Step 1 - set time-series period and year type

SetOutputPeriod(OutputStart="10/1908",OutputEnd="09/2005")
SetOutputYearType(OutputYearType=Water)

Step 2 - read structure list from preliminary direct diversion structure file

ReadDiversionStationsFromStateMod(InputFile="cm2005_dds.dds")

Step 3 - read aggregate and diversion system structure assignments. Note that
want to combine historical diversions for aggs and diversion systems, but
historical diversions are separate for primary and secondary components
of multistructures

SetDiversionAggregateFromList(ListFile="cm_agg.csv",IDCol=1,NameCol=2,PartIDsCol=3,
 PartsListedHow=InRow)
SetDiversionSystemFromList(ListFile="cm_divsys.csv",IDCol=1,NameCol=2,PartIDsCol=3,
 PartsListedHow=InRow)

Step 4 - read historical diversions from HydroBase. Note that want individual structures
in aggregates and diversion systems to be filled first, then diversions
combined.

ReadDiversionHistoricalTSMonthlyFromHydroBase(ID="*",IncludeCollections=False,
 UseDiversionComments=True)

Step 5 - read fill pattern file, and assign patterns to water districts

ReadPatternFile(InputFile="fill2005.pat")
ReadDiversionHistoricalTSMonthlyFromHydroBase(ID="36*",IncludeExplicit=False,
 UseDiversionComments=True,
 PatternID="09037500",FillPatternOrder=1,FillAverageOrder=2)

 Command Reference – ReadDiversionHistoricalTSMonthlyFromHydroBase() - 7 517

ReadDiversionHistoricalTSMonthlyFromHydroBase() Command StateDMI Documentation

Step 6 - assign transbasin diversions from streamflow gages

SetDiversionHistoricalTSMonthly(ID="364626",TSID="09047300.DWR.Streamflow.Month~HydroBase")
…similar commands omitted…
note that adams tunnel streamgage ID changed in 10/1996 from 09013000 to ADANETCO
SetDiversionHistoricalTSMonthly(ID="514634",TSID="514634...MONTH~StateMod~514634.stm")
Con-Hoosier System - Blue River Diversion, driven by operating rules to con-hoosier
summary demand
SetDiversionHistoricalTSMonthly(ID="364683",TSID="364683...MONTH~StateMod~zero.stm")
SetDiversionHistoricalTSMonthly(ID="364699",TSID="364699...MONTH~StateMod~zero.stm")
Fryingpan-Arkansas Project
SetDiversionHistoricalTSMonthly(ID="381594",TSID="381594...MONTH~StateMod~381594.stm")
SetDiversionHistoricalTSMonthly(ID="384625",TSID="384625...MONTH~StateMod~384625.stm")
SetDiversionHistoricalTSMonthly(ID="954699",TSID="954699...MONTH~StateMod~zero.stm")
…similar commands omitted…

Step 7 - set diversions from external time-series files

The following commands are added to access Task 11.2 replacement files
SetDiversionHistoricalTSMonthly(ID="380757",TSID="380757...MONTH~StateMod~380757.stm")
…similar commands omitted…#
The following structures are set for Municipal and Industrial Diversions
SetDiversionHistoricalTSMonthly(ID="360784",TSID="360784...MONTH~StateMod~360784.stm")
…similar commands omitted…

Set transbasin diversions to "0" prior to construction

Wurtz Ditch
SetDiversionHistoricalTSMonthlyConstant(ID="374648",Constant=0,SetEnd="01/1929")
…similar commands omitted…

Step 8 - fill historical diversion using pattern approach

FillDiversionHistoricalTSMonthlyPattern(ID="36*",PatternID="09034500")
…similar commands omitted…

Step 9 - Fill remaining missing with month average

FillDiversionHistoricalTSMonthlyAverage(ID="*")

Step 10 - Limit filled diversion to water rights. Exceptions include structure
receiving significant reservoir supply, carrier structures, etc.

LimitDiversionHistoricalTSMonthlyToRights(InputFile="..\statemod\cm2005.ddr",
 ID="*",IgnoreID="954683,952001,950010,950011")

Step 11 - sort structures and create historical diversion file

SortDiversionHistoricalTSMonthly(Order=Ascending)
WriteDiversionHistoricalTSMonthlyToStateMod(OutputFile="..\StateMod\cm2005.ddh")

Step 12 - update capacities and create final direct diversion station file

SetDiversionStationCapacitiesFromTS(ID="*")
WriteDiversionStationsToStateMod(OutputFile="..\statemod\cm2005.dds")

Check the results.
CheckDiversionHistoricalTSMonthly(ID="*")
WriteCheckFile(OutputFile="ddh.commands.StateDMI.check.html")

8 - Command Reference – ReadDiversionHistoricalTSMonthlyFromHydroBase() 518

Command Reference:
ReadDiversionHistoricalTSMonthlyFromStateMod()

Read diversion historical time series (monthly) data from a StateMod file

StateMod Command

Version 3.09.01, 2010-02-01

The ReadDiversionHistoricalTSMonthlyFromStateMod() command reads diversion
historical time series (monthly). This command is used when estimating average efficiencies and
calculating demand time series. All time series are read, whether or not they match the list of diversion
stations. Copies of the time series are NOT made for use as original data with the
Limit*ToRights() commands.

The following dialog is used to edit the command and illustrates the syntax of the command.

ReadDiversionHistoricalTSMonnthlyFromStateMod

ReadDiversionHistoricalTSMonthlyFromStateMod() Command Editor

Command Reference – ReadDiversionHistoricalTSMonthlyFromStateMod() - 1 519

ReadDiversionHistoricalTSMonthlyFromStateMod() Command StateDMI Documentation

The command syntax is as follows:

ReadDiversionHistoricalTSMonthlyFromStateMod(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the StateMod diversion historical

time series (monthly) file to read.
None – must be
specified.

2 - Command Reference – ReadDiversionHistoricalTSMonthlyFromStateMod() 520

Command Reference:
ReadDiversionRightsFromHydroBase()

Read diversion right data from HydroBase

StateCU and StateMod Command

Version 3.09.07, 2010-01-26

The ReadDiversionRightsFromHydroBase() command reads diversion net amount water rights
from HydroBase, for each diversion station that is defined. The diversion rights can then be manipulated
and output with other commands. Within a diversion station, rights are sorted by administration number
and order number. In some cases, multiple rights for the diversion station may be listed, each with the
same administration number. This is because the order number is different; however, the order number is
not listed in the StateMod output. In such cases, the individual rights are retained to allow comparison
with HydroBase.

The following dialog is used to edit the command and illustrates the syntax of the command.

ReadDiversionRightsFromHydroBase

ReadDiversionRightsFromHydroBase() Command Editor

If aggregating rights, the following steps occur (diversion systems use steps 1-2 and are then explicitly
added):

1. Water rights for each part of the aggregate are read from HydroBase, reporting errors as
necessary.

2. The rights are added to a list and are sorted by administration number. This ensures that the
cumulative list of rights is listed in order of administration number (in particular, this step is
important for diversion systems).

 Command Reference – ReadDiversionRightsFromHydroBase() - 1 521

ReadDiversionRightsFromHydroBase() Command StateDMI Documentation

3. Water rights are defined for each class (see the AdminNumClasses parameter description
below), initializing the decree to zero.

4. For each class, the following sums are calculated: sum(decree*AdminNum) and
sum(decree), where the administration number is determined from the appropriation date
derived from the original HydroBase administration number (it will not have a remainder).

5. The final administration number for the class is determined (it will not have a remainder):
int(sum(decree*AdminNum)/sum(decree))

Water rights that are less than the decree minimum are ignored.

The command syntax is as follows:

ReadDiversionRightsFromHydroBase(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single diversion station identifier to match or

a pattern using wildcards (e.g., 20*).
None – must be specified.

DecreeMin The minimum decree to accept as a valid right. 0.0 – read all rights.
IgnoreUseType A comma-separated list of HydroBase water

right use types to ignore (e.g., STO,IND),
needed to prevent double counting of some
rights.

Include all right types.

AdminNumClasses A list of administration numbers, separated by
spaces or commas, to define the breaks for
aggregate water rights, for diversion aggregates.
For example, if the class breaks are 10000.000,
20000.00000, and 99999.99999, the first group
will contain water rights with administration
numbers <= 10000.00000, the second will
contain water rights with administration number
> 10000.00000 and <= 20000.00000, and the
third will contain water rights with
administration number > 20000.00000 and <=
99999.99999.

If not specified, diversion
aggregates will be treated
as diversion systems, with
all water rights explicitly
included in output.

OnOffDefault Indicates how to set the on/off switch for all
water rights that are processed. A value of 1
indicates that the right is on for the whole
period. If the value is AppropriationDate,
the switch is set to the year corresponding to the
appropriation date, indicating that the right will
be turned on starting in the year. Use set
commands to reset the switch to other values.

Appropriation
Date

2 - Command Reference – ReadDiversionRightsFromHydroBase() 522

Command Reference:
ReadDiversionRightsFromStateMod()

Read diversion right data from a StateMod diversion rights file

StateCU and StateMod Command

Version 3.09.00, 2010-01-26

The ReadDiversionRightsFromStateMod() command reads diversion rights from a StateMod
diversion rights file. The diversion rights can then be manipulated and output with other commands.

The following dialog is used to edit the command and illustrates the syntax of the command.

ReadDiversionRightsFromStateMod

ReadDiversionRightsFromStateMod() Command Editor

 Command Reference – ReadDiversionRightsFromStateMod() - 1 523

ReadDiversionRightsFromStateMod() Command StateDMI Documentation

The command syntax is as follows:

ReadDiversionRightsFromStateMod(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the StateMod diversion rights file to

be read.
None – must be
specified.

2 - Command Reference – ReadDiversionRightsFromStateMod() 524

Command Reference:
ReadDiversionStationsFromList()

Read diversion stations data from a list file

StateCU and StateMod Command

Version 3.09.01, 2010-01-26

The ReadDiversionStationsFromList() command reads a list of diversion stations from a
delimited list file and defines diversion stations in memory. The diversion stations can then be
manipulated and output with other commands. The following dialog is used to edit the command and
illustrates the syntax of the command.

ReadDiversionStationsFromList

ReadDiversionStationsFromList() Command Editor

 Command Reference – ReadDiversionStationsFromList() - 1 525

ReadDiversionStationsFromList() Command StateDMI Documentation

The command syntax is as follows:

ReadDiversionStationsFromList(Parameter=value,…)

Command Parameters

Parameter Description Default
ListFile The name of the list file to be read. None – must be specified.
IDCol The column number (1+) containing the

diversion station identifiers.
None – must be specified.

NameCol The column number (1+) containing the
diversion station names.

None – optional (name will be
initialized to blank).

At a minimum, the list file must contain a column with diversion station identifiers. Lines starting with
the # character are treated as comments. If the first line’s values are surrounded by double quotes, the
line is assumed to indicate column headings.

A sample list file is shown below:

Diversions as list file

"ID","Latitude","County","HUC","Name"
200505,37.5,ALAMOSA,13010002,ALAMOSA D
200511,37.68,RIO GRANDE,13010001,ANACONDA D
200512,37.61,RIO GRANDE,13010002,ANDERSON D
200513,37.68,RIO GRANDE,13010002,ANNA RABER D
…

2 - Command Reference – ReadDiversionStationsFromList() 526

Command Reference:
ReadDiversionStationsFromNetwork()

Read diversion station data from a network file

StateCU and StateMod Command

Version 3.09.00, 2010-01-26

The ReadDiversionStationsFromNetwork() command reads a list of diversion stations from a
StateMod network file (XML or Makenet) and defines diversion stations in memory. The diversion
stations can then be manipulated and output with other commands.

The following dialog is used to edit the command and illustrates the syntax of the command.

ReadDiversionStationsFromNetwork

ReadDiversionStationsFromNetwork() Command Editor

 Command Reference – ReadDiversionStationsFromNetwork() - 1 527

ReadDiversionStationsFromNetwork() Command StateDMI Documentation

The command syntax is as follows:

ReadDiversionStationsFromNetwork(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the network file to

be read.
None – must be
specified.

2 - Command Reference – ReadDiversionStationsFromNetwork() 528

Command Reference:
ReadDiversionStationsFromStateMod()

Read diversion station data from a StateMod diversion stations file

StateCU and StateMod Command

Version 3.09.00, 2010-01-26

The ReadDiversionStationsFromStateMod() command reads a list of diversion stations from
a StateMod diversion stations file and defines diversion stations in memory. The diversion stations can
then be manipulated and output with other commands.

The following dialog is used to edit the command and illustrates the syntax of the command.

ReadDiversionStationsFromStateMod

ReadDiversionStationsFromStateMod() Command Editor

 Command Reference – ReadDiversionStationsFromStateMod() - 1 529

ReadDiversionStationsFromStateMod() Command StateDMI Documentation

The command syntax is as follows:

ReadDiversionStationsFromStateMod(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the StateMod diversion stations file

to be read.
None – must be
specified.

2 - Command Reference – ReadDiversionStationsFromStateMod() 530

Command Reference:
ReadInstreamFlowDemandTSAverageMonthlyFromStateMod()

Read instream flow demand time series (average monthly) data from a StateMod

instream flow demand time series (average monthly) file

StateMod Command
Version 3.09.01, 2010-02-02

The ReadInstreamFlowDemandTSAverageMonthlyFromStateMod() command reads
instream flow demand time series (average monthly) from a StateMod instream flow demand time series
(average monthly) file. The instream flow demand time series can then be manipulated and output with
other commands.

The following dialog is used to edit the command and illustrates the syntax of the command.

ReadInstreamFlowDemandTSAverageMonthlyFromStateMod

ReadInstreamFlowDemandTSAverageMonthlyFromStateMod() Command Editor

Command Reference – ReadInstreamFlowDemandTSAverageMonthlyFromStateMod() - 1 531

ReadInstreamFlowDemandTSAverageMonthlyFromStateMod() Command StateDMI Documentation

The command syntax is as follows:

ReadInstreamFlowDemandTSAverageMonthlyFromStateMod(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the StateMod instream flow demand

time series (average monthly) file to be read.
None – must be
specified.

2 - Command Reference – ReadInstreamFlowDemandTSAverageMonthlyFromStateMod() 532

Command Reference:
ReadInstreamFlowRightsFromHydroBase()

Read instream flow right data from HydroBase

StateMod Command

Version 3.09.01, 2010-02-01

The ReadInstreamFlowRightsFromHydroBase() command reads instream flow rights from
HydroBase, for each instream flow station that is defined. The instream flow rights can then be
manipulated and output with other commands.

The following dialog is used to edit the command and illustrates the syntax of the command.

ReadInstreamFlowRightsFromHydroBase

ReadInstreamFlowRightsFromHydroBase() Command Editor

Command Reference – ReadInstreamFlowRightsFromHydroBase() - 1 533

ReadInstreamFlowRightsFromHydroBase() Command StateDMI Documentation

The command syntax is as follows:

ReadInstreamFlowRightsFromHydroBase(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single instream flow station identifier

to match or a pattern using wildcards
(e.g., 20*).

None – must be specified.

OnOffDefault Indicates how to set the on/off switch for
all water rights that are processed. A
value of 1 indicates that the right is on
for the whole period. If the value is
AppropriationDate, the switch is
set to the year corresponding to the
appropriation date, indicating that the
right will be turned on starting in the
year. Use set commands to reset the
switch to other values.

Appropriation
Date

2 - Command Reference – ReadInstreamFlowRightsFromHydroBase() 534

Command Reference:
ReadInstreamFlowRightsFromStateMod()

Read instream flow right data from a StateMod instream flow rights file

StateMod Command

Version 3.09.01, 2010-02-02

The ReadInstreamFlowRightsFromStateMod() command reads instream flow rights from a
StateMod instream flow rights file. The instream flow rights can then be manipulated and output with
other commands.

The following dialog is used to edit the command and illustrates the syntax of the command.

ReadInstreamFlowRightsFromStateMod

ReadInstreamFlowRightsFromStateMod() Command Editor

Command Reference – ReadInstreamFlowRightsFromStateMod() - 1 535

ReadInstreamFlowRightsFromStateMod() Command StateDMI Documentation

The command syntax is as follows:

ReadInstreamFlowRightsFromStateMod(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the StateMod instream flow rights

file to be read.
None – must be
specified.

2 - Command Reference – ReadInstreamFlowRightsFromStateMod() 536

Command Reference:
ReadInstreamFlowStationsFromList()

Read instream flow station data from a list file

StateMod Command

Version 3.09.01, 2010-02-01

The ReadInstreamFlowStationsFromList() command reads a list of instream flow stations
from a delimited list file and defines instream flow stations in memory. The instream flow stations can
then be manipulated and output with other commands. The following dialog is used to edit the command
and illustrates the syntax of the command.

ReadInstreamFlowStationsFromList

ReadInstreamFlowStationsFromList() Command Editor

 Command Reference – ReadInstreamFlowStationsFromList() - 1 537

ReadInstreamFlowStationsFromList() Command StateDMI Documentation

The command syntax is as follows:

ReadInstreamFlowStationsFromList(Parameter=Value,…)

Command Parameters

Parameter Description Default
ListFile The name of the list file to be read. None – must be specified.
IDCol The column number (1+) containing the

stream gage station identifiers.
None – must be specified.

NameCol The column number (1+) containing the
stream gage station names.

None – optional (name will be
initialized to blank).

At a minimum, the list file must contain a column with instream flow station identifiers. Lines starting
with the # character are treated as comments. If the first line’s values are surrounded by double quotes,
the line is assumed to indicate column headings.

A sample list file is shown below:

Stream gage stations as a list file

"ID”,"Name"
IFS1,”INSTREAM FLOW REACH 1”
IFS2,”INSTREAM FLOW REACH 2”
…

2 - Command Reference – ReadInstreamFlowStationsFromList() 538

Command Reference:
ReadInstreamFlowStationsFromNetwork()

Read instream flow station data from a network file

StateMod Command

Version 3.09.01, 2010-02-01

The ReadInstreamFlowStationsFromNetwork() command reads a list of instream flow
stations from a StateMod network file (XML or old Makenet) and defines instream flow stations in
memory. The instream flow stations can then be manipulated and output with other commands. Instream
flow stations are actually modeled as a reach defined by upstream and downstream nodes. Both nodes
must be included in the network but the instream flow station file has a single record for each reach.

The following dialog is used to edit the command and illustrates the syntax of the command.

ReadInstreamFlowStationsFromNetwork

ReadInstreamFlowStationsFromNetwork() Command Editor

Command Reference – ReadInstreamFlowStationsFromNetwork() - 1 539

ReadInstreamFlowStationsFromNetwork() Command StateDMI Documentation

The command syntax is as follows:

ReadInstreamFlowStationsFromNetwork(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the network file to be read. None – must be specified.

2 - Command Reference – ReadInstreamFlowStationsFromNetwork() 540

Command Reference:
ReadInstreamFlowStationsFromStateMod()

Read instream flow station data from a StateMod instream flow stations file

StateMod Command

Version 3.09.01, 2010-02-01

The ReadInstreamFlowStationsFromStateMod() command reads a list of instream flow
stations from a StateMod instream flow stations file and defines instream flow stations in memory. The
instream flow stations can then be manipulated and output with other commands.

The following dialog is used to edit the command and illustrates the syntax of the command.

ReadInstreamFlowStationsFromStateMod

ReadInstreamFlowStationsFromStateMod() Command Editor

Command Reference – ReadInstreamFlowStationsFromStateMod() - 1 541

ReadInstreamFlowStationsFromStateMod() Command StateDMI Documentation

The command syntax is as follows:

ReadInstreamFlowStationsFromStateMod(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the StateMod instream flow stations

file to be read.
None – must be
specified.

2 - Command Reference – ReadInstreamFlowStationsFromStateMod() 542

Command Reference:
ReadIrrigationPracticeTSFromHydroBase()

Read irrigation practice time series (yearly) from HydroBase

StateMod Command

Version 3.09.01, 2010-02-01

The ReadIrrigationPracticeTSFromHydroBase() command reads parcel acreage data from
HydroBase and sets the irrigation practice acreage time series (yearly) information for CU locations.
Only years with data in HydroBase are processed. Values for other years must be estimated using other
commands (see FillIrrigationPracticeTS*()). This command should be executed before
other commands that estimate or set irrigation practice acreage time series.

The following figure illustrates possible water supply for parcels.

ParcelSupplyDiagram

Example Supply for Parcels

In this example, two ditches (D1 and D2, each represented with different hatching) provide surface water
supply to the indicated parcels. In some cases, only one ditch provides supply. Between the ditches, both
supply water to shared parcels. Wells can supplement surface water supply (parcels above the river) or
can be the sole supplier of water (lower right) and wells do not need to be physically located on a parcel
to provide supply to the parcel. For StateCU, well-only lands are identified by CU locations that are
defined by a collection (aggregate/system) of parcels. For StateMod, well-only lands are well stations
that do not have a related diversion station. In both cases, lands irrigated by surface water are identified
with ditch identifiers and parcels are associated with the ditches in HydroBase. Typically, well-only
lands are grouped and multiple wells provide supply to the collection of parcels. Processing logic is
different for ditch and well-only lands only in how the list of parcels is obtained.

The steps used to process irrigation practice time series are described below. Note that “CU location”
refers to the StateCU model identifier (which can be a collection of wells) and “well” refers to a hole in
the ground that has physical characteristics, water rights, and/or well permits.

Command Reference – ReadIrrigationPracticeTSFromHydroBase() - 1 543

ReadIrrigationPracticeTSFromHydroBase() Command StateDMI Documentation

Loop through each CU location that matches the ID pattern and perform the following:
For each year being processed (specified by the Year parameter or by default all available data in
HydroBase), perform the following:

1. Initialize all irrigation practice acreage time series to zero. Consequently, if no data are
found in a year, an “observation” of zero acreage will occur. Any previous data are reset.

2. Get the list of parcels associated with the location (note that in a given year there may be
zero or more parcels associated with a location):

a. If the location is a groundwater only location, get the list of parcels from the
aggregate/system definitions.

b. If the location is a ditch that is supplemented by groundwater (assumed as
possible because the StateCU CU Location data does not indicate whether a
location has groundwater supply and all may – one purpose of the IPY file is to
indicate groundwater supply over time):

i. If the ditch is explicit (no aggregate/system information has been
provided for the location), get the list of parcels associated with the
single ditch.

ii. If the ditch is an aggregate/system, get the list of parcels associated with
each part of the aggregate/system and form one list of parcels.

3. Read the parcel data using the parcel identifiers.
a. Query HydroBase to get the parcel data, using the year, division, and parcel

identifier.
b. Acreage not in HydroBase is appended to the parcel list. This acreage is supplied

by SetIrrigationPracticeTS() and
SetIrrigationPracticeTSFromList() commands with the
ProcessWhen=WithParcels parameter. These commands must be
specified before the ReadIrrigationPracticeTSFromHydroBase()
command. For the sake of processing, user-supplied acreage is treated as one
parcel for the specified year.

4. Process the parcels for the location:
a. If the parcel was associated with a ditch, the parcel area is multiplied by the ditch

service area percent irrigated value (actually a fraction in HydroBase), reflecting
the fact that only a portion of the parcel area is associated with the location.

b. The appropriate irrigation practice acreage time series are incremented. Total
acreage is always incremented. For IPY acreage purposes, SPRINKLER and
DRIP irrigation methods are treated as SPRINKLER (high efficiency) and all
other irrigation methods as FLOOD (low efficiency). A parcel is considered to
have groundwater supply if there is at least one well associated with the parcel
for the specific year (use supplied data must specify whether the supply is ground
or surface water). The combination of irrigation method and whether
ground/surface supply indicates the acreage time series that are incremented. If a
location does not have groundwater supply, it has surface supply only and the
surface water acreage values are incremented.

c. The total groundwater acres are set to the sum of the acres for SPRINKLER and
FLOOD. The total surface water acres are set to the sum of the acres for
SPRINKLER and FLOOD.

2 - Command Reference – ReadIrrigationPracticeTSFromHydroBase() 544

StateDMI Documentation ReadIrrigationPracticeTSFromHydroBase() Command

The following dialog is used to edit the command and illustrates the syntax of the command.

ReadIrrigationPracticeFromHydroBase

ReadIrrigationPracticeTSFromHydroBase() Command Editor

The command syntax is as follows:

ReadIrrigationPracticeTSFromHydroBase(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single CU location identifier to match or a pattern using

wildcards (e.g., 20*).
None – must be
specified.

Div A water division to use for parcel data, needed to determine
relationships between diversion stations/parcels/wells and for
well aggregate/systems.

None – must be
specified.

Year A calendar year to use for parcel data, needed to determine
relationships between diversion stations/parcels/wells and for
well aggregate/systems. Separate multiple years by commas.

All years in
HydroBase will be
processed.

The following command file illustrates how to process the irrigation practice time series file where
groundwater supply is not used:

Step 1 - Set output period and read CU locations from structure file
SetOutputPeriod(OutputStart="1950",OutputEnd="2006")
ReadCULocationsFromStateCU(InputFile="..\StateCU\cm2006.str")
Step 2 - Read SW aggregates
SetDiversionSystemFromList(ListFile="colorado_divsys.csv",IDCol=1,NameCol=2,PartIDsCol=3,
 PartsListedHow=InRow)
SetDiversionAggregateFromList(ListFile="colorado_agg.csv",IDCol=1,NameCol=2,PartIDsCol=3,
 PartsListedHow=InRow)
Step 3 - Create form for *.ipy file
CreateIrrigationPracticeTSForCULocations(ID="*")
Step 5 - set max flood and surface water efficiencies and GWmode - NOT in HydroBase
Set Max SW Eff = 1.0

Command Reference – ReadIrrigationPracticeTSFromHydroBase() - 3 545

ReadIrrigationPracticeTSFromHydroBase() Command StateDMI Documentation

SetIrrigationPracticeTS(ID="*",SurfaceDelEffMax=1.0,FloodAppEffMax=.60,
 SprinklerAppEffMax=.80,PumpingMax=0,GWMode=2)
SetIrrigationPracticeTSFromList(ListFile="cmstrlist.csv",ID="*",SetStart=1950,
 SetEnd=2006,IDCol="1",SurfaceDelEffMaxCol="7",FloodAppEffMaxCol="8",SprinklerAppEffMaxCol="9")
Step 6 - Read category acreage from HydroBase
ReadIrrigationPracticeTSFromHydroBase(ID="*",Year="1993,2000",Div="5")
Step 8 - Read total acreage from *.cds file and Set total for *.ipy file
ReadCropPatternTSFromStateCU(InputFile="..\StateCU\cm2006.cds")
SetIrrigationPracticeTSTotalAcreageToCropPatternTSTotalAcreage(ID="*")
Step 9 - Fill all land use acreage
Fill groundwater acreage first
Fill surface water sprinkler and flood 1950-2006
Fill ground water sprinkler and flood 1950-2006
Step 9a - estimate total GW and total SW
FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-
GroundWater",FillStart="1950",FillEnd="1993",FillDirection="Backward")
FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-
GroundWater",FillStart="1993",FillEnd="1999",FillDirection="Forward")
FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-
GroundWater",FillStart="2000",FillEnd="2006",FillDirection="Forward")
Step 9b - fill remaining irrigation method values
FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-SurfaceWaterOnlySprinkler",
 FillStart="1950",FillEnd="1993",FillDirection="Backward")
FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-
SurfaceWaterOnlySprinkler",FillStart="1993",
 FillEnd="1999",FillDirection="Forward")
FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-
SurfaceWaterOnlySprinkler",FillStart="2000",
 FillEnd="2006",FillDirection="Forward")
FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-GroundWaterSprinkler",FillStart="1950",
 FillEnd="1993",FillDirection="Backward")
FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-GroundWaterSprinkler",FillStart="1993",
 FillEnd="1999",FillDirection="Forward")
FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-GroundWaterSprinkler",FillStart="2000",
 FillEnd="2006",FillDirection="Forward")
Step 10 - Write final ipy file
WriteIrrigationPracticeTSToStateCU(OutputFile="..\StateCU\cm2006.ipy")
Check the results
CheckIrrigationPracticeTS(ID="*")
WriteCheckFile(OutputFile="cm2006.ipy.StateDMI.check.html")

The following command file illustrates how to process the irrigation practice time series file where
groundwater supply is used:

Sp2008L_DDH.StateDMI

StartLog(LogFile="SP_IPY.log")
SetOutputPeriod(OutputStart="01/1950",OutputEnd="12/2006")
Step 1 - Read CU Locations from list

ReadCULocationsFromList(ListFile="..\Sp2008L_StructList.csv",IDCol=1)

Step 2 - Read SW aggregates, GW aggregates, and divsystems

SetDiversionAggregateFromList(ListFile="..\Sp2008L_SWAgg.csv",IDCol=1,
 NameCol=2,PartIDsCol=3,PartsListedHow=InColumn)
SetDiversionSystemFromList(ListFile="..\Sp2008L_DivSys_CDS.csv",IDCol=1,
 NameCol=2,PartIDsCol=3,PartsListedHow=InRow)

SetWellSystemFromList(ListFile="..\SP_GWAgg_1956.csv",Year=1956,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\SP_GWAgg_1976.csv",Year=1976,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\SP_GWAgg_1987.csv",Year=1987,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\SP_GWAgg_2001.csv",Year=2001,Div=1,

4 - Command Reference – ReadIrrigationPracticeTSFromHydroBase() 546

StateDMI Documentation ReadIrrigationPracticeTSFromHydroBase() Command

 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\SP_GWAgg_2005.csv",Year=2005,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)

Step 3 - Create form for *.ipy file
CreateIrrigationPracticeTSForCULocations(ID="*")

Step 4 - Set conveyance efficiencies from file for key and sw aggregate structures - NOT in HydroBase
SetIrrigationPracticeTSFromList(ListFile="Sp2008L_Eff.csv",ID="*",
 SetStart=1950,SetEnd=2006,IDCol="1",SurfaceDelEffMaxCol="3")

Step 5 - set max flood and surface water efficiencies and GWmode - NOT in HydroBase
SetIrrigationPracticeTS(ID="*",SetStart=1950,SetEnd=2006,FloodAppEffMax=.6,SprinklerAppEffMax=.8,GWMode=2)

Step 6 - Read well rights file and Set Max pumping (use merged *.wer file)
ReadWellRightsFromStateMod(InputFile="..\Wells\Sp2008L.wer")
SetIrrigationPracticeTSPumpingMaxUsingWellRights(ID="*",IncludeSurfaceWaterSupply=True,
 IncludeGroundwaterOnlySupply="True",NumberOfDaysInMonth=30.4)
Step 7 - Read category acreage from HydroBase
ReadIrrigationPracticeTSFromHydroBase(ID="*",Div="1")

Step 8 - Read total acreage from *.cds file and Set total for *.ipy file
ReadCropPatternTSFromStateCU(InputFile="Sp2008L.cds")
SetIrrigationPracticeTSTotalAcreageToCropPatternTSTotalAcreage(ID="*")

Step 9 - Estimate 1950 ground water acreage based on active wells as defined in the non-merged *.wer
file

ReadWellRightsFromStateMod(InputFile="..\Wells\Sp2008L_NotMerged.wer",Append=False)
FillIrrigationPracticeTSAcreageUsingWellRights(ID="*",IncludeSurfaceWaterSupply=True,
 IncludeGroundwaterOnlySupply="True",FillStart=1950,FillEnd=1955,ParcelYear=1956)

Step 10 - Fill Interpolate Acreage Type (SW and GW) 1956-2006
Step 11a - estimate total GW and total SW
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
GroundWater",FillStart="1956",FillEnd="1976")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
GroundWater",FillStart="1976",FillEnd="1987")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
GroundWater",FillStart="1987",FillEnd="2001")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
GroundWater",FillStart="2001",FillEnd="2005")
FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-
GroundWater",FillStart="2005",FillEnd="2006",FillDirection="Forward")

Step 11b - set sprinkler to zero in early period
SetIrrigationPracticeTS(ID="*",SetStart=1950,SetEnd=1969,AcresSWSprinkler=0,AcresGWSprinkler=0)

Step 11c - fill remaining irrigation method values
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
SurfaceWaterOnlySprinkler",FillStart="1969",FillEnd="1976")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
SurfaceWaterOnlySprinkler",FillStart="1976",FillEnd="1987")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
SurfaceWaterOnlySprinkler",FillStart="1987",FillEnd="2001")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
SurfaceWaterOnlySprinkler",FillStart="2001",FillEnd="2005")
FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-
SurfaceWaterOnlySprinkler",FillStart="2005",FillEnd="2006",FillDirection="Forward")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
GroundWaterSprinkler",FillStart="1969",FillEnd="1976")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
GroundWaterSprinkler",FillStart="1976",FillEnd="1987")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
GroundWaterSprinkler",FillStart="1987",FillEnd="2001")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
GroundWaterSprinkler",FillStart="2001",FillEnd="2005")
FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-
GroundWaterSprinkler",FillStart="2005",FillEnd="2006",FillDirection="Forward")

Step 12 - Set Acreage = 0 for structures that are in diversion systems, so acreage is not double

Command Reference – ReadIrrigationPracticeTSFromHydroBase() - 5 547

ReadIrrigationPracticeTSFromHydroBase() Command StateDMI Documentation

accounted
SetIrrigationPracticeTS(ID="0100503_D",SetStart=1950,SetEnd=2006,AcresSWFlood=0,AcresSWSprinkler=0,
 AcresGWFlood=0,AcresGWSprinkler=0,PumpingMax=0,AcresTotal=0)
SetIrrigationPracticeTS(ID="0100507_D",SetStart=1950,SetEnd=2006,AcresSWFlood=0,AcresSWSprinkler=0,
 AcresGWFlood=0,AcresGWSprinkler=0,PumpingMax=0,AcresTotal=0)
SetIrrigationPracticeTS(ID="0100687",SetStart=1950,SetEnd=2006,AcresSWFlood=0,AcresSWSprinkler=0,
 AcresGWFlood=0,AcresGWSprinkler=0,PumpingMax=0,AcresTotal=0)

SetIrrigationPracticeTS(ID="0200834",SetStart=1950,SetEnd=2006,AcresSWFlood=0,AcresSWSprinkler=0,
 AcresGWFlood=0,AcresGWSprinkler=0,PumpingMax=0,AcresTotal=0)

SetIrrigationPracticeTS(ID="6400511_D",SetStart=1950,SetEnd=2006,AcresSWFlood=0,AcresSWSprinkler=0,
 AcresGWFlood=0,AcresGWSprinkler=0,PumpingMax=0,AcresTotal=0)

Step 13 - Set Acreage = 0, 1950-2006
SetIrrigationPracticeTS(ID="0100501",SetStart=1950,SetEnd=2006,AcresSWFlood=0,AcresSWSprinkler=0,
 AcresGWFlood=0,AcresGWSprinkler=0,PumpingMax=0,AcresTotal=0)
SetIrrigationPracticeTS(ID="0100513",SetStart=1950,SetEnd=2006,AcresSWFlood=0,AcresSWSprinkler=0,
 AcresGWFlood=0,AcresGWSprinkler=0,PumpingMax=0,AcresTotal=0)
SetIrrigationPracticeTS(ID="0100829",SetStart=1950,SetEnd=2006,AcresSWFlood=0,AcresSWSprinkler=0,
 AcresGWFlood=0,AcresGWSprinkler=0,PumpingMax=0,AcresTotal=0)

SetIrrigationPracticeTS(ID="6400519",SetStart=1950,SetEnd=2006,AcresSWFlood=0,AcresSWSprinkler=0,
 AcresGWFlood=0,AcresGWSprinkler=0,PumpingMax=0,AcresTotal=0)

Step 14 - Write final ipy file

WriteIrrigationPracticeTSToStateCU(OutputFile="Sp2008L.ipy",WriteHow=OverwriteFile)
WriteIrrigationPracticeTSToStateCU(OutputFile="..\StateCU\Historic\Sp2008L.ipy",WriteHow=OverwriteFile)
WriteIrrigationPracticeTSToStateCU(OutputFile="..\StateMod\Historic\Sp2008L.ipy",WriteHow=OverwriteFile)

6 - Command Reference – ReadIrrigationPracticeTSFromHydroBase() 548

Command Reference:
ReadIrrigationPracticeTSFromList()

Read irrigation practice time series data from information in a delimited file

StateCU Command

Version 3.09.01, 2010-02-01

The ReadIrrigationPracticeTSFromList() command reads irrigation practice time series
data for existing CU Locations by reading information from a delimited file. New locations are not added
and the information is added to existing locations. HydroBase may not contain all irrigated lands data.
For example, additional lands may have been identified after HydroBase was populated or acreage must
be set for a model identifier that is not a structure WDID in HydroBase (e.g., out of state lands). In this
case, the command can be used to provide additional data to supplement HydroBase.

ReadIrrigationPracticeTSFromList

ReadIrrigationPracticeTSFromList() Command Editor – Provide Parcel Data not in HydroBase

The command syntax is as follows:

ReadIrrigationPracticeTSFromList(Parameter=Value,…)

 Command Reference – ReadIrrigationPracticeTSFromList() - 1 549

ReadIrrigationPracticeTSFromList() Command StateDMI Documentation

Command Parameters

Parameter Description Default
ListFile Path to the delimited list file to read. None – must be specified.
ID A single CU location identifier to match or a

pattern using wildcards (e.g., 20*).
None – must be specified.

InputStart The first year to read from the file. If not specified, all years are
read from the file.

InputEnd The last year to read from the file. If not specified, all years are
read from the file.

YearCol The column number (1+) containing the year for
data.

The file values are applied to
each year in the data set.

IDCol The column number (1+) containing the CU
Location identifiers. These values are matched
against CU Location identifiers in the existing
irrigation practice data.

None – must be specified.

AcresCol The column number (1+) containing the crop
area.

If not specified, the previous
data values will remain.

IrrigationMethod
Col

The column number (1+) containing the
irrigation method, consistent with HydroBase
(e.g., SPRINKLER, FLOOD).

If not specified, the previous
data values will remain.

SupplyTypeCol The column number (1+) containing the supply
type (Surface or Ground).

If not specified, the previous
data values will remain.

Data file lines starting with the # character are treated as comments. If the first line’s values are
surrounded by double quotes, the line is assumed to indicate column headings. An example list file for
specifying acreage data (not in HydroBase) is shown below. Currently, supplemental acreage data can
have only a single irrigation method and supply type, to support irrigation practice time series processing.
Therefore, break supplemental acreage into multiple “parcels” if necessary.

The following data provide acreage for structures that did not have GIS data
and consequently no data in HydroBase. The data are specific to 1998 and are
used to set the CDS and IPY acres. The crop is used to provide CDS data. The
irrigation method and source are used to provide IPY data.
"ID","Crop","Acres","IrrigationMethod","SupplySource"
200500,1998,GRASS_PASTURE,0,Flood,Surface
200506,1998,GRASS_PASTURE,100,Flood,Surface
200507,1998,GRASS_PASTURE,50,Flood,Surface
200508,1998,GRASS_PASTURE,40,Flood,Surface
200522,1998,GRASS_PASTURE,40,Flood,Surface
200523,1998,GRASS_PASTURE,50,Flood,Surface
200526,1998,GRASS_PASTURE,40,Flood,Surface
200529,1998,GRASS_PASTURE,5,Flood,Surface
… etc…

2 - Command Reference – ReadIrrigationPracticeTSFromList() 550

Command Reference:
ReadIrrigationPracticeTSFromStateCU()

Read irrigation practice time series data from a StateCU file

StateCU Command

Version 3.09.01, 2010-02-01

The ReadIrrigationPracticeTSFromStateCU() command reads irrigation practice time series
data from a StateCU irrigation practice time series file and defines the data in memory. The irrigation
practice time series can then be manipulated and output with other commands. This command can be
used to adjust an existing irrigation practice file. See also the TSTool software, which can be used to
read, manipulate, and view irrigation practice time series.

The following dialog is used to edit the command and illustrates the syntax of the command.

ReadIrrigationPracticeTSFromStateCU

ReadIrrigationPracticeTSFromStateCU() Command Editor

Command Reference – ReadIrrigationPracticeTSFromStateCU() - 1 551

ReadIrrigationPracticeTSFromStateCU() Command StateDMI Documentation

The command syntax is as follows:

ReadIrrigationPracticeTSFromStateCU(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the file to read, surrounded by

double quotes.
None – must be
specified.

Version The StateCU version number, to allow backward
compatibility with file formats from an earlier
StateCU version.

Use the most current
known format.

2 - Command Reference – ReadIrrigationPracticeTSFromStateCU() 552

Command Reference:
ReadIrrigationWaterRequirementTSMonthlyFrom

StateCU()

Read irrigation water requirement time series data from a StateCU file

StateMod Command
Version 3.09.01, 2010-02-01

The ReadIrrigationWaterRequirementTSMonthlyFromStateCU() command reads
irrigation water requirement time series data from a StateCU irrigation water requirement time series file
and defines the data in memory. Currently this command is meant to read the IWR time series for use in
estimating average efficiencies and demands for StateMod – it is not supported in StateCU commands
(e.g., to read and modify the time series file). All time series are read, whether or not they match the list
of diversion stations. The following dialog is used to edit the command and illustrates the syntax of the
command.

ReadIrrigationWaterRequirementTSMonnthlyFromStateCU

ReadIrrigationWaterRequirementTSMonthlyFromStateCU() Command Editor

The command syntax is as follows:

ReadIrrigationWaterRequirementTSMonthlyFromStateCU(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the StateCU irrigation water

requirement file (StateMod time series format) to
read.

None – must be
specified.

Command Reference – ReadIrrigationWaterRequirementTSMonthlyFromStateCU() - 1 553

ReadIrrigationWaterRequirementTSMonthlyFromStateCU() Command StateDMI Documentation

The following abbreviated command file illustrates how irrigation water requirement time series can be
processed into average demand time series:

StartLog(LogFile="Cddm.commands.StateDMI.log")
Cddm.commands.StateDMI

StateDMI command file to create the Calculated demand file

Step 1 - set the output period, used to compute averages...

SetOutputPeriod(OutputStart="10/1908",OutputEnd="09/2005")
SetOutputYearType(OutputYearType=Water)

Step 2 - read historical diversion file -defines structures for *.ddm file
plus read *.ddh file

ReadDiversionStationsFromStateMod(InputFile="..\StateMod\cm2005.dds")
ReadDiversionHistoricalTSMonthlyFromStateMod(InputFile="..\StateMod\cm2005.ddh")

Step 3 - read StateCU *.iwr and *.def files (irrigation requirements and average efficiencies)

ReadIrrigationWaterRequirementTSMonthlyFromStateCU(InputFile="..\StateMod\cm2005.iwr")
calculateDiversionStationEfficiencies(ID="*",EffMin=0,EffMax=60,
 EffCalcStart=10/1974,EffCalcEnd=9/2004,LEZeroInAverage=False)
SetDiversionStationsFromList(ListFile="cm2005.def",IDCol="1",EffMonthlyCol="2",
 Delim="Space",MergeDelim=True)

Step 4 - determine calculated demand = iwr/efficiency
- take max of calculated demand and historical diversion

CalculateDiversionDemandTSMonthly(ID="*")
CalculateDiversionDemandTSMonthlyAsMax(ID="*")

Step 5 - set carriers nodes demand to 0, set full demand and summary demand nodes

set carrier "transbasin" diversion to Divide Creek to "0", use operating rules to satisfy demand
SetDiversionDemandTSMonthlyConstant(ID="724721",Constant=0)
place summary demand at the Moffat Tunnel, zero out collection points
SetDiversionDemandTSMonthly(ID="514655",TSID="514655..DivTotal.Month~StateMod~514655.stm")
… similar commands omitted…

Step 6 - set calculated demand to historic for structures whose historical acreage is
different from current

SetDiversionDemandTSMonthly(ID="360687",TSID="360687..DivTotal.MONTH~StateMod~..\StateMod\cm2005H.ddm")
SetDiversionDemandTSMonthly(ID="360725",TSID="360725..DivTotal.MONTH~StateMod~..\StateMod\cm2005H.ddm")
…similar commands omitted…

Set Ute WCD demand node structure and set other structures to zero
SetDiversionDemandTSMonthly(ID="950020",TSID="950020..DivTotal.Month~StateMod~950020.stm")
SetDiversionDemandTSMonthlyConstant(ID="950030",Constant=0)
… similar commands omitted…

Set Orchard Mesa Check
SetDiversionDemandTSMonthly(ID="950003",TSID="950003..DivTotal.MONTH~StateMod~..\StateMod\cm2005H.ddm")

Set Excess HUP node demands for Homestake, Dillon, Williams Fork, and Wolford Reservoirs
SetDiversionDemandTSMonthlyConstant(ID="954516D",Constant=999999)
…similar commands omitted…
Step 7 - write out calculated demand file

WriteDiversionDemandTSMonthlyToStateMod(OutputFile="..\StateMod\cm2005C.ddm")

Check the results
CheckDiversionDemandTSMonthly(ID="*")
WriteCheckFile(OutputFile="Cddm.commands.StateDMI.check.html")

2 - Command Reference – ReadIrrigationWaterRequirementTSMonthlyFromStateCU() 554

Command Reference:
ReadNetworkFromStateMod()

Read generalized network from a StateMod XML network file

StateMod Command

Version 3.09.01, 2010-02-01

The ReadNetworkFromStateMod() command reads the generalized network from a StateMod
XML network file. The network can then be manipulated and utilized by other commands. Normally the
generalized network is edited interactively in StateDMI (or StateMod GUI) and is used to generate lists of
stations, for further processing. However, this command can be used to read the network and allow
manipulation based on river upstream/downstream connectivity. See also commands like
ReadDiversionStationsFromNetwork(), which read a subset of the network, to facilitate
creation of specific model data files.

The following dialog is used to edit the command and illustrates the syntax of the command.

ReadNetworkFromStateMod

ReadNetworkFromStateMod() Command Editor

 Command Reference – ReadNetworkFromStateMod() - 1 555

ReadNetworkFromStateMod() Command StateDMI Documentation

The command syntax is as follows:

ReadNetworkFromStateMod(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the StateMod XML network file to

read.
None – must be
specified.

2 - Command Reference – ReadNetworkFromStateMod() 556

Command Reference: ReadPatternFile()

Read WET/DRY/AVG monthly pattern data file

StateCU and StateMod Command
Version 3.09.01, 2010-01-27

The ReadPatternFile() command reads monthly WET/DRY/AVG patterns from a file. This
information is used with Fill*Pattern() commands, which are more refined than commands that fill
with historical averages.

The following dialog is used to edit the command and illustrates the syntax of the command.

ReadPatternFile

ReadPatternFile() Command Editor

The command syntax is as follows:

ReadPatternFile(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the pattern file to be read. None – must be

specified.

 Command Reference – ReadPatternFile() - 1 557

ReadPatternFile() Command StateDMI Documentation

The pattern file format is very similar to the StateMod monthly time series file format except that instead
of monthly numerical values, the strings WET, DRY, or AVG are used to indicate the conditions during
the particular month. The pattern file contains pattern time series for one or more key locations, often
stream gages with long periods of record. The AnalyzePattern() command provided by the TSTool
software can be used to create the pattern file.

Monthly Streamflow Characterizations for Estimation of Missing Diversion Data
**

Years Shown = Calendar Years

Time series identifier = 08220000.CRDSS_USGS.QME.MONTH.1
Description = RIO GRANDE AT DEL NORTE
Located in water div, district = 3, 20
Located in county, state =
Located in HUC =
Latitude, longitude =

Characterizations are based on 25% and 75% cutoffs assuming a normal distribution

25% (ACFT) 8063 8410 11336 26024 107908 118306 37082 24135 15410 15075 10404 8946
75% (ACFT) 11564 11594 17564 49094 179836 241828 123255 63532 31008 29759 18286 12808

Yr JAN FEB MAR APR MAY JUN JUL AUG SEPT OCT NOV DEC
-e-b----------eb------eb------eb------eb------eb------eb------eb------eb------eb------eb------eb------eb------eb--------e
File generated by:

Program: Excel Spreatsheet
User: E. Armbruster
File: g:\projects\297\task6\rgmodel\ts_files\fill.pat
Date: October 26, 1999

Yr JAN FEB MAR APR MAY JUN JUL AUG SEPT OCT NOV DEC
-e-b----------eb------eb------eb------eb------eb------eb------eb------eb------eb------eb------eb------eb------eb--------e
 01/1950 - 12/1997 ACFT CYR
1950 08220000 WET WET AVG WET AVG AVG AVG AVG DRY DRY DRY DRY
1951 08220000 DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY AVG
1952 08220000 AVG AVG DRY WET WET WET WET WET AVG AVG AVG AVG
1953 08220000 AVG AVG AVG AVG DRY AVG AVG DRY DRY DRY AVG AVG
1954 08220000 AVG WET DRY AVG AVG DRY AVG AVG AVG AVG AVG DRY
1955 08220000 AVG AVG DRY DRY DRY AVG DRY AVG DRY DRY DRY DRY
1956 08220000 AVG AVG AVG DRY DRY DRY DRY DRY DRY DRY DRY DRY
1957 08220000 DRY DRY DRY AVG DRY WET WET WET WET AVG WET WET
1958 08220000 AVG WET AVG AVG WET AVG AVG AVG AVG AVG AVG AVG
1959 08220000 DRY DRY DRY DRY DRY DRY DRY AVG DRY AVG WET AVG
1960 08220000 AVG AVG WET WET AVG AVG AVG DRY DRY DRY DRY AVG
1961 08220000 DRY AVG AVG AVG AVG AVG DRY AVG AVG AVG AVG WET
1962 08220000 WET WET AVG WET WET AVG AVG AVG AVG AVG AVG AVG
1963 08220000 AVG AVG AVG AVG AVG DRY DRY DRY AVG DRY DRY DRY
1964 08220000 DRY DRY DRY DRY AVG DRY DRY AVG AVG DRY DRY DRY
1965 08220000 DRY DRY DRY WET WET WET WET WET WET WET WET WET
1966 08220000 WET AVG WET AVG AVG AVG AVG AVG AVG AVG AVG AVG
1967 08220000 DRY DRY AVG DRY DRY DRY AVG AVG AVG AVG DRY AVG
1968 08220000 AVG AVG AVG DRY AVG AVG AVG WET AVG AVG AVG AVG
1969 08220000 AVG AVG AVG AVG AVG AVG AVG AVG WET WET WET WET
1970 08220000 AVG AVG AVG DRY WET AVG AVG AVG WET WET AVG AVG
1971 08220000 WET WET WET AVG DRY AVG AVG DRY AVG AVG AVG AVG
1972 08220000 AVG AVG WET WET AVG DRY DRY DRY DRY AVG AVG AVG
1973 08220000 AVG AVG AVG AVG WET WET WET WET AVG AVG AVG AVG
1974 08220000 AVG AVG AVG DRY AVG DRY DRY DRY DRY DRY DRY DRY
1975 08220000 DRY DRY DRY DRY AVG WET WET WET AVG AVG WET AVG
1976 08220000 AVG AVG AVG AVG AVG AVG AVG AVG AVG AVG AVG DRY
1977 08220000 DRY DRY DRY AVG DRY DRY DRY DRY DRY DRY DRY DRY
1978 08220000 DRY DRY DRY DRY DRY AVG AVG DRY DRY AVG DRY DRY
1979 08220000 DRY DRY AVG WET WET WET WET AVG AVG DRY AVG AVG
1980 08220000 WET WET AVG AVG AVG WET WET AVG AVG AVG AVG AVG
1981 08220000 AVG AVG DRY AVG DRY DRY DRY AVG AVG WET WET AVG
1982 08220000 AVG AVG AVG AVG AVG AVG AVG WET WET WET WET WET
1983 08220000 WET AVG AVG DRY AVG AVG AVG AVG AVG WET AVG WET
1984 08220000 AVG AVG AVG AVG WET AVG AVG WET WET WET WET WET
1985 08220000 WET WET WET WET WET WET WET AVG WET WET WET WET
1986 08220000 WET WET WET WET WET WET WET WET WET WET WET WET
1987 08220000 WET WET WET WET WET WET WET WET AVG AVG AVG WET
1988 08220000 WET WET WET AVG DRY AVG AVG AVG AVG AVG AVG AVG
1989 08220000 AVG AVG WET WET AVG AVG AVG AVG AVG AVG AVG DRY
1990 08220000 DRY DRY AVG AVG AVG AVG AVG AVG AVG WET WET AVG
1991 08220000 AVG AVG AVG WET AVG AVG AVG AVG WET AVG AVG AVG
1992 08220000 AVG DRY AVG AVG AVG AVG AVG AVG AVG AVG AVG AVG
1993 08220000 AVG AVG AVG AVG AVG AVG AVG AVG WET AVG AVG AVG
1994 08220000 AVG AVG AVG AVG AVG AVG AVG DRY AVG WET AVG WET
1995 08220000 WET AVG WET AVG AVG WET WET WET WET AVG AVG AVG
1996 08220000 AVG WET AVG AVG AVG DRY DRY DRY DRY AVG AVG AVG
1997 08220000 AVG AVG WET AVG WET WET WET WET WET WET WET WET

2 - Command Reference – ReadPatternFile() 558

Command Reference:
ReadPenmanMonteithFromHydroBase()

Read Penman-Monteith crop coefficients data from HydroBase

StateCU Command

Version 3.10.00, 2010-04-02

The ReadPenmanMonteithFromHydroBase() command reads a list of Penman-Monteith crop
coefficients from the HydroBase database. The crop coefficients can then be manipulated and output with
other commands. The following dialog is used to edit the command and illustrates the syntax of the
command.

ReadPenmanMonteithFromHydroBase

ReadPenmanMonteithFromHydroBase() Command Editor

The command syntax is as follows:

ReadPenmanMonteithFromHydroBase(Parameter=Value,…)

Command Parameters

Parameter Description Default
PenmanMonteithMethod The Penman-Monteith method that

is defined in HydroBase for the
crop type and its coefficients.

None – must be specified.

The crop type (e.g., ALFALFA) is used as the unique identifier. Any previous crop coefficients objects
will be added to (or replaced if identifiers match).

The PenmanMonteithMethod parameter corresponds to a value in HydroBase and allows variations
on crop characteristics to be defined. In general the ASCE standardized coefficients are used.

 Command Reference – ReadPenmanMonteithFromHydroBase() - 1 559

ReadPenmanMonteithFromHydroBase() Command StateDMI Documentation

The following example command file illustrates how to read Penman-Monteith coefficients from
HydroBase, sort the data, create a StateCU file, and check the results:

StartLog(LogFile="Crops_KPM.StateDMI.log")

StateDMI commands to create the Penman-Monteith crop coefficients file

Step 1 - read data from HydroBase

Read the general ASCE standardized coefficients
ReadPenmanMonteithFromHydroBase(PenmanMonteithMethod="PENMAN-
MONTEITH_ALFALFA")

Step 3 - write the file

SortPenmanMonteith(Order=Ascending)
WritePenmanMonteithToStateCU(OutputFile="rg2007.kpm")

Check the results

CheckPenmanMonteith(ID="*")
WriteCheckFile(OutputFile="Crops_KPM.StateDMI.check.html")

2 - Command Reference – ReadPenmanMonteithFromHydroBase() 560

Command Reference:
ReadPenmanMonteithFromStateCU()

Read Penman-Monteith crop coefficients data from a StateCU Penman-Monteith

crop coefficients file

StateCU Command
Version 3.10.00, 2010-04-02

The ReadPenmanMonteithFromStateCU() command reads Penman-Monteith crop coefficients
from a StateCU Penman-Monteith crop coefficients file and defines crop coefficients in memory. The
crop coefficients can then be manipulated and output with other commands. This command can be used
to adjust an existing crop coefficients file. The following dialog is used to edit the command and
illustrates the syntax of the command.

ReadPenmanMonteithFromStateCU

ReadPenmanMonteithFromStateCU() Command Editor

 Command Reference – ReadPenmanMonteithFromStateCU() - 1 561

ReadPenmanMonteithFromStateCU() Command StateDMI Documentation

The command syntax is as follows:

ReadPenmanMonteithFromStateCU(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the input file to read, surrounded by

double quotes.
None – must be
specified.

2 - Command Reference – ReadPenmanMonteithFromStateCU() 562

Command Reference:
ReadReservoirRightsFromHydroBase()

Read reservoir right data from HydroBase

StateMod Command

Version 3.09.01, 2010-02-01

The ReadReservoirRightsFromHydroBase() command reads reservoir rights from HydroBase,
for each reservoir station that is defined. The reservoir rights can then be manipulated and output with
other commands. Within a reservoir station, rights are sorted by administration number and order
number. In some cases, multiple rights for the reservoir may be listed, each with the same administration
number. This is because the order number is different; however, the order number is not listed in the
StateMod output.

The following dialog is used to edit the command and illustrates the syntax of the command.

ReadReservoirRightsFromHydroBase

ReadReservoirRightsFromHydroBase() Command Editor

If aggregating rights, the following steps:

1. Water rights for each part of the aggregate are read from HydroBase, reporting errors as
necessary.

2. The rights are added to a list and are sorted by administration number. This ensures that the
cumulative list of rights is listed in order of administration number (this step will be necessary if
reservoir systems, similar to diversion systems, are supported – currently they are not).

3. Water rights are defined for each class (see the AdminNumClasses parameter description
below), initializing the decree to zero.

 Command Reference – ReadReservoirRightsFromHydroBase() - 1 563

ReadReservoirRightsFromHydroBase() Command StateDMI Documentation

4. For each class, the following sums are calculated: sum(decree*AdminNum) and
sum(decree), where the administration number is determined from the appropriation date
derived from the original HydroBase administration number (it will not have a remainder).

5. The final administration number for the class is determined (it will not have a remainder):
int(sum(decree*AdminNum)/sum(decree))

Water rights that are less than the decree minimum are ignored.

The command syntax is as follows:

ReadReservoirRightsFromHydroBase(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single reservoir station identifier to

match or a pattern using wildcards (e.g.,
20*).

None – must be specified.

DecreeMin The minimum decree to accept as a valid
right.

0.0 – read all rights.

AdminNumClasses A list of administration numbers,
separated by spaces or commas, to define
the breaks for aggregate water rights, for
reservoir aggregates. For example, if the
class breaks are 10000.000,
20000.00000, and 99999.99999, the first
group will contain water rights with
administration numbers <= 10000.00000,
the second will contain water rights with
administration number > 10000.00000
and <= 20000.00000, and the third will
contain water rights with administration
number > 20000.00000 and <=
99999.99999.

If not specified, diversion
aggregates will be treated as
diversion systems, with all water
rights explicitly included in
output.

OnOffDefault Indicates how to set the on/off switch for
all water rights that are processed. A
value of 1 indicates that the right is on
for the whole period. If the value is
AppropriationDate, the switch is
set to the year corresponding to the
appropriation date, indicating that the
right will be turned on starting in the
year. Use set commands to reset the
switch to other values.

Appropriation
Date

2 - Command Reference – ReadReservoirRightsFromHydroBase() 564

Command Reference:
ReadReservoirRightsFromStateMod()

Read reservoir right data from a StateMod reservoir rights file

StateMod Command

Version 3.09.01, 2010-02-01

The ReadReservoirRightsFromStateMod() command reads reservoir rights from a StateMod
reservoir rights file. The reservoir rights can then be manipulated and output with other commands.

The following dialog is used to edit the command and illustrates the syntax of the command.

ReadReservoirRightsFromStateMod

ReadReservoirRightsFromStateMod() Command Editor

 Command Reference – ReadReservoirRightsFromStateMod() - 1 565

ReadReservoirRightsFromStateMod() Command StateDMI Documentation

The command syntax is as follows:

ReadReservoirRightsFromStateMod(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the StateMod reservoir rights file to

read.
None – must be
specified.

2 - Command Reference – ReadReservoirRightsFromStateMod() 566

Command Reference:
ReadReservoirStationsFromList()

Read reservoir stations data from a list file

StateMod Command

Version 3.09.01, 2010-02-01

The ReadReservoirStationsFromList() command reads a list of reservoir stations from a
delimited list file and defines reservoir stations in memory. The reservoir stations can then be
manipulated and output with other commands. The following dialog is used to edit the command and
illustrates the syntax of the command.

ReadReservoirStationsFromList

ReadReservoirStationsFromList() Command Editor

 Command Reference – ReadReservoirStationsFromList() - 1 567

ReadReservoirStationsFromList() Command StateDMI Documentation

The command syntax is as follows:

ReadReservoirStationsFromList(Parameter=Value,…)

Command Parameters

Parameter Description Default
ListFile The name of the list file to be read. None – must be specified.
IDCol The column number (1+) containing the

reservoir station identifiers.
None – must be specified.

NameCol The column number (1+) containing the
reservoir station names.

None – optional (name will be
initialized to blank).

At a minimum, the list file must contain a column with diversion station identifiers. Lines starting with
the # character are treated as comments. If the first line’s values are surrounded by double quotes, the
line is assumed to indicate column headings.

A sample list file is shown below:

Reservoir stations as a list file

"ID”,"Name"
203536,”Reservoir 1”
203558,”Reservoir 2”
…

2 - Command Reference – ReadReservoirStationsFromList() 568

Command Reference:
ReadReservoirStationsFromNetwork()

Read reservoir station data from a network file

StateMod Command

Version 3.09.01, 2010-02-01

The ReadReservoirStationsFromNetwork() command reads a list of reservoir stations from a
StateMod network file (XML or older Makenet network file) and defines reservoir stations in memory.
The reservoir stations can then be manipulated and output with other commands.

The following dialog is used to edit the command and illustrates the syntax of the command.

ReadReservoirStationsFromNetwork

ReadReservoirStationsFromNetwork() Command Editor

 Command Reference – ReadReservoirStationsFromNetwork() - 1 569

ReadReservoirStationsFromNetwork() Command StateDMI Documentation

The command syntax is as follows:

ReadReservoirStationsFromNetwork(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the network file to be read. None – must be specified.

2 - Command Reference – ReadReservoirStationsFromNetwork() 570

Command Reference:
ReadReservoirStationsFromStateMod()

Read reservoir station data from a StateMod reservoir stations file

StateMod Command

Version 3.09.01, 2010-02-01

The ReadReservoirStationsFromStateMod() command reads a list of reservoir stations from
a StateMod reservoir stations file and defines reservoir stations in memory. The reservoir stations can
then be manipulated and output with other commands.

The following dialog is used to edit the command and illustrates the syntax of the command.

ReadReservoirStationsFromStateMod

ReadReservoirStationsFromStateMod() Command Editor

 Command Reference – ReadReservoirStationsFromStateMod() - 1 571

ReadReservoirStationsFromStateMod() Command StateDMI Documentation

The command syntax is as follows:

ReadReservoirStationsFromStateMod(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the StateMod reservoir stations file

to be read.
None – must be
specified.

2 - Command Reference – ReadReservoirStationsFromStateMod() 572

Command Reference:
ReadRiverNetworkFromStateMod()

Read river network from a StateMod river network file

StateMod Command

Version 3.09.01, 2010-02-01

The ReadRiverNetworkFromStateMod() command reads the river network from a StateMod
river network file. The river network can then be manipulated and utilized by other commands.
Normally the StateMod river network is only created as output, but it may be read if it is being converted
to a generalized network file.

The following dialog is used to edit the command and illustrates the syntax of the command.

ReadRiverNetworkFromStateMod

ReadRiverNetworkFromStateMod() Command Editor

 Command Reference – ReadRiverNetworkFromStateMod() - 1 573

ReadRiverNetworkFromStateMod() Command StateDMI Documentation

The command syntax is as follows:

ReadRiverNetworkFromStateMod(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the StateMod river network file to

be read.
None – must be
specified.

The following example command file illustrates how the command might be used:

Create a generalized XML network from individual StateMod files
Read the network, which contains upstream to downstream connectivity but does
not indicate node types
ReadRiverNetworkFromStateMod(InputFile=cm2005.rin)
Read the stations, which imply the node types
ReadRiverStreamGageStationsFromStateMod(InputFile=cm2005.ris)
ReadRiverDiversionStationsFromStateMod(InputFile=cm2005.dds)
ReadRiverReservoirStationsFromStateMod(InputFile=cm2005.res)
ReadRiverInstreamFlowStationsFromStateMod(InputFile=cm2005.ifs)
ReadRiverWellStationsFromStateMod(InputFile=cm2005.wes)
To be developed...
#ReadRiverPlanStationsFromStateMod()
ReadRiverStreamEstimateStationsFromStateMod(InputFile=cm2005.ris)
Now create the generalized network, using the connectivity and node types
CreateNetworkFromRiverNetwork()
Fill in node names and locations from HydroBase, if any is still missing
FillNetworkFromHydroBase()
Write the generalized network
WriteNetworkToStateMod(OutputFile="cm2005.net")
Check for errors (the following is not yet implemented)
#CheckNetwork()
WriteCheckFile(OutputFile="cm2005.net.check.html")

2 - Command Reference – ReadRiverNetworkFromStateMod() 574

Command Reference:
ReadStreamEstimateCoefficientsFromStateMod()

Read stream estimate coefficient data from a StateMod stream estimate
coefficients file

StateMod Command

Version 3.09.01, 2010-02-01

The ReadStreamEstimateCoefficientsFromStateMod() command reads stream estimate
coefficients from a StateMod stream estimate coefficients file. This information is associated with stream
estimate stations using the station identifier as the lookup. Stream estimate coefficients define how
streamflow is estimated at ungaged locations (stream estimate stations). The stream estimate coefficients
that are read can be manipulated and output with other commands.

The following dialog is used to edit the command and illustrates the syntax of the command.

ReadStreamEstimateCoefficientsFromStateMod

ReadStreamEstimateCoefficientsFromStateMod() Command Editor

Command Reference – ReadStreamEstimateCoefficientsFromStateMod() - 1 575

ReadStreamEstimateCoefficientsFromStateMod() Command StateDMI Documentation

The command syntax is as follows:

ReadStreamEstimateCoefficientsFromStateMod(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the StateMod stream estimate coefficients

file to be read.
None – must be specified.

2 - Command Reference – ReadStreamEstimateCoefficientsFromStateMod() 576

Command Reference:
ReadStreamEstimateStationsFromList()

Read stream estimate stations data from a list file

StateMod Command

Version 3.09.01, 2010-02-01

The ReadStreamEstimateStationsFromList() command reads a list of stream estimate
stations from a delimited list file and defines stream estimate stations in memory. The stream estimate
stations can then be manipulated and output with other commands. The following dialog is used to edit
the command and illustrates the syntax of the command.

ReadStreamEstimateStationsFromList

ReadStreamEstimateStationsFromList() Command Editor

 Command Reference – ReadStreamEstimateStationsFromList() - 1 577

ReadStreamEstimateStationsFromList() Command StateDMI Documentation

The command syntax is as follows:

ReadStreamEstimateStationsFromList(Parameter=Value,…)

Command Parameters

Parameter Description Default
ListFile The name of the list file to be read. None – must be specified.
IDCol The column number (1+) containing the

stream estimate station identifiers.
None – must be specified.

NameCol The column number (1+) containing the
stream estimate station names.

If not specified, set to blank.

RiverNodeIDCol The column number (1+) containing the
river node identifier.

If not specified, set to blank.

DailyIDCol The column number (1+) containing the
daily identifier (for estimating time
series).

If not specified, set to blank.

At a minimum, the list file must contain a column with stream estimate station identifiers. Lines starting
with the # character are treated as comments. If the first line’s values are surrounded by double quotes,
the line is assumed to indicate column headings.

A sample list file is shown below:

Stream estimate stations as a list file

"ID”,"Name"
NF1,”Natural flow 1”
NF2,”Natural flow 2”
…

2 - Command Reference – ReadStreamEstimateStationsFromList() 578

Command Reference:
ReadStreamEstimateStationsFromNetwork()

Read stream estimate station data from a network file

StateMod Command

Version 3.09.01, 2010-02-01

The ReadStreamEstimateStationsFromNetwork() command reads a list of stream estimate
stations from a StateMod network file (XML or Makenet) and defines stream estimate stations in
memory. Stream estimate stations are stations not of type FLOW but which are indicated as natural flow
nodes in the network. The default output order is that of the stream network, upstream to downstream.
The StateMod model requires that the stream gage station file be in the same order as the river network
file. The stream estimate stations that are read can be manipulated and output with other commands.

The following dialog is used to edit the command and illustrates the syntax of the command.

ReadStreamEstimateStationsFromNetwork

ReadStreamEstimateStationsFromNetwork() Command Editor

Command Reference – ReadStreamEstimateStationsFromNetwork() - 1 579

ReadStreamEstimateStationsFromNetwork() Command StateDMI Documentation

The command syntax is as follows:

ReadStreamEstimateStationsFromNetwork(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the network file to be read. Use the network that has previously

been read with other commands.

2 - Command Reference – ReadStreamEstimateStationsFromNetwork() 580

Command Reference:
ReadStreamEstimateStationsFromStateMod()

Read stream estimate station data from a StateMod stream estimate stations file

StateMod Command

Version 3.09.01, 2010-02-01

The ReadStreamEstimateStationsFromStateMod() command reads a list of stream estimate
stations from a StateMod stream estimate stations file and defines stream estimate stations in memory.
The stream estimate stations can then be manipulated and output with other commands.

The following dialog is used to edit the command and illustrates the syntax of the command.

ReadStreamEstimateStationsFromStateMod

ReadStreamEstimateStationsFromStateMod() Command Editor

Command Reference – ReadStreamEstimateStationsFromStateMod() - 1 581

ReadStreamEstimateStationsFromStateMod() Command StateDMI Documentation

The command syntax is as follows:

ReadStreamEstimateStationsFromStateMod(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the StateMod stream estimate stations file

to be read.
None – must be specified.

2 - Command Reference – ReadStreamEstimateStationsFromStateMod() 582

Command Reference:
ReadStreamGageStationsFromList()

Read stream gage station data from a list file

StateMod Command

Version 3.09.01, 2010-02-01

The ReadStreamGageStationsFromList() command reads a list of stream gage stations from a
delimited list file and defines stream gage stations in memory. The stream gage stations can then be
manipulated and output with other commands. The following dialog is used to edit the command and
illustrates the syntax of the command.

ReadStreamGageStationsFromList

ReadStreamGageStationsFromList() Command Editor

 Command Reference – ReadStreamGageStationsFromList() - 1 583

ReadStreamGageStationsFromList() Command StateDMI Documentation

The command syntax is as follows:

ReadStreamGageStationsFromList(Parameter=Value,…)

Command Parameters

Parameter Description Default
ListFile The name of the list file to be read. None – must be specified.
IDCol The column number (1+) containing the

stream gage station identifiers.
None – must be specified.

NameCol The column number (1+) containing the
stream gage station names.

If not specified, set to blank.

RiverNodeIDCol The column number (1+) containing the
river node identifier.

If not specified, set to blank.

DailyIDCol The column number (1+) containing the
daily identifier (for estimating time
series).

If not specified, set to blank.

At a minimum, the list file must contain a column with stream gage station identifiers. Lines starting with
the # character are treated as comments. If the first line’s values are surrounded by double quotes, the
line is assumed to indicate column headings.

A sample list file is shown below:

Stream gage stations as a list file

"ID”,"Name"
08213500,”RIO GRANDE RIVER AT THIRTY MILE BRIDGE NEAR CREEDE”
08214500,”NORTH CLEAR CREEK BELOW CONTINENTAL RESERVOIR”
…

2 - Command Reference – ReadStreamGageStationsFromList() 584

Command Reference:
ReadStreamGageStationsFromNetwork()

Read stream gage station data from a network file

StateMod Command

Version 3.09.01, 2010-02-01

The ReadStreamGageStationsFromNetwork() command reads a list of stream gage stations
from a StateMod network file (XML or Makenet) and defines stream gage stations in memory. The
stream gage stations can then be manipulated and output with other commands. The default output order
is that of the stream network, upstream to downstream. The StateMod model requires that the stream
gage station file be in the same order as the river network file.

Stream gages in the network are those defined as node type FLOW that are natural flow nodes. Stream
gages that are included in the network but which are not identified as natural flow nodes are omitted from
the stream gage station file – these nodes are typically treated as OTHER nodes in the network and will be
included in the river network file but not other station files.

If stream estimate stations are also included in processing, all nodes identified as natural flow nodes are
processed. See also the ReadStreamEstimateStationsFromNetwork() command.

The following dialog is used to edit the command and illustrates the syntax of the command.

ReadStreamGageStationsFromNetwork

ReadStreamGageStationsFromNetwork() Command Editor

Command Reference – ReadStreamGageStationsFromNetwork() - 1 585

ReadStreamGageStationsFromNetwork() Command StateDMI Documentation

The command syntax is as follows:

ReadStreamGageStationsFromNetwork(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the network file to be read. Use the

network that
has been
previously read.

IncludeStream
EstimateStations

Indicate whether stream estimate stations should also be
included. If False, only stream gage stations will be read.
If True, stream gage and estimate stations will be read and
will be treated as stream gage stations (separate stream gage
and stream estimate station files are being evaluated but
traditionally have been saved to the *ris file).

False

The following example command file illustrates the commands used to read stream gage stations from the
network and create a StateMod file:

StartLog(LogFile="ris.commands.StateDMI.log")
ris.commands.StateDMI

StateDMI command file to create streamflow station file for the Colorado River

Step 1 - read streamgages and baseflows ids from the network file

ReadStreamGageStationsFromNetwork(InputFile="..\Network\cm2005.net",
 IncludeStreamEstimateStations="True")

Step 2 - read baseflow nodes names from HydroBase,
fill in missing names from the network file

FillStreamGageStationsFromHydroBase(ID="*",NameFormat=StationName,CheckStructures=True)
FillStreamGageStationsFromNetwork(ID="*",NameFormat="StationName")

Step 3 - set streamgage station to use to disaggregate monthly baseflows to daily

add set daily pattern gages for WD 36
SetStreamGageStation(ID="36*",DailyID="09047500",IfNotFound=Warn)
…many similar commands omitted…

Step 4 - create streamflow station file

WriteStreamGageStationsToStateMod(OutputFile="..\StateMod\cm2005.ris")

Check the results
CheckStreamGageStations(ID="*")
WriteCheckFile(OutputFile="ris.commands.StateDMI.check.html")

2 - Command Reference – ReadStreamGageStationsFromNetwork() 586

Command Reference:
ReadStreamGageStationsFromStateMod()

Read stream gage station data from a StateMod stream gage stations file

StateMod Command

Version 3.09.01, 2010-02-01

The ReadStreamGageStationsFromStateMod() command reads a list of stream gage stations
from a StateMod stream gage stations file and defines stream gage stations in memory. The stream gage
stations can then be manipulated and output with other commands.

The following dialog is used to edit the command and illustrates the syntax of the command.

ReadStreamGageStationsFromStateMod

ReadStreamGageStationsFromStateMod() Command Editor

Command Reference – ReadStreamGageStationsFromStateMod() - 1 587

ReadStreamGageStationsFromStateMod() Command StateDMI Documentation

The command syntax is as follows:

ReadStreamGageStationsFromStateMod(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the StateMod stream gage stations

file to be read.
None – must be
specified.

2 - Command Reference – ReadStreamGageStationsFromStateMod() 588

Command Reference:
ReadWellDemandTSMonthlyFromStateMod()

Read well demand time series (monthly) from a StateMod file

StateMod Command

Version 3.09.01, 2010-02-01

The ReadWellDemandTSMonthlyFromStateMod() command reads a list of well demand time
series (monthly) from a StateMod monthly time series file. The file does not need to be a demand file
(e.g., it could be a historical pumping file); however, once read with this command, the data will need to
be processed with demand commands.

The StateMod well stations file contains stations for which only groundwater supply is available and
stations for which groundwater supply supplements surface water supply of a diversion station (in this
case the well station data includes the diversion station identifier). Parameters are available in this
command to read all demand time series or only demands for some well stations, to allow flexibility in
demand data processing. By default, all time series are read and are processed, whether they correspond
to well stations or not.

The following dialog is used to edit the command and illustrates the syntax of the command.

ReadWellDemandTSMonthlyFromStateMod

ReadWellDemandTSMonthlyFromStateMod() Command Editor

Command Reference – ReadWellDemandTSMonthlyFromStateMod() - 1 589

ReadWellDemandTSMonthlyFromStateMod() Command StateDMI Documentation

The command syntax is as follows:

ReadWellDemandTSMonthlyFromStateMod(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the StateMod monthly time series

file to read.
None – must be
specified.

IgnoreWells Indicate whether the well nodes should be
ignored. These are locations where only well
supply is used. This requires that well stations
have been read and the “associated diversion”
values are set.

False

IgnoreDWs Indicate whether the D&W nodes should be
ignored. These are locations where well supply
supplements surface water (diversion) supply.
This requires that well stations have been read
and the “associated diversion” values are set.

False

2 - Command Reference – ReadWellDemandTSMonthlyFromStateMod() 590

Command Reference:
ReadWellHistoricalPumpingTSMonthlyFromStateCU()

Read well historical pumping time series (monthly) data from a StateCU file

StateCU and StateMod Command

Version 3.09.00, 2010-01-26

The ReadWellHistoricalPumpingTSMonthlyFromStateCU() command reads well historical
pumping time series (monthly) and defines the data in memory. This command is used when estimating
average efficiencies and calculating demand time series. All time series are read, whether or not they
match the list of well stations. This command is equivalent to the
ReadWellHistoricalPumpingTSMonthlyFromStateMod() command – use the commands as
appropriate depending on which data set file is being read (the file format is the StateMod time series file
format).

The following dialog is used to edit the command and illustrates the syntax of the command.

ReadWellHistoricalPumpingTSMonnthlyFromStateCU

ReadWellHistoricalPumpingTSMonthlyFromStateCU() Command Editor

Command Reference – ReadWellHistoricalPumpingTSMonthlyFromStateCU() - 1 591

ReadWellHistoricalPumpingTSMonthlyFromStateCU() Command StateDMI Documentation

The command syntax is as follows:

ReadWellHisoricalPumpingTSMonthlyFromStateCU(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the well historical pumping time series

(monthly) file to read.
None – must be
specified.

2 - Command Reference – ReadWellHistoricalPumpingTSMonthlyFromStateCU() 592

Command Reference:
ReadWellHistoricalPumpingTSMonthlyFromStateMod()

Read well historical pumping time series (monthly) data from a StateMod file

StateMod Command

Version 3.09.00, 2010-01-26

The ReadWellHistoricalPumpingTSMonthlyFromStateMod() command reads well
historical pumping time series (monthly) and defines the data in memory. This command is used when
estimating average efficiencies and calculating demand time series. All time series are read, whether or
not they match the list of well stations. This command is equivalent to the
ReadWellHistoricalPumpingTSMonthlyFromStateCU() command – use the commands as
appropriate depending on which data set file is being read (the file format is the StateMod time series file
format).

The following dialog is used to edit the command and illustrates the syntax of the command.

ReadWellHistoricalPumpingTSMonnthlyFromStateMod

ReadWellHistoricalPumpingTSMonthlyFromStateMod() Command Editor

Command Reference – ReadWellHistoricalPumpingTSMonthlyFromStateMod() - 1 593

ReadWellHistoricalPumpingTSMonthlyFromStateMod() Command StateDMI Documentation

The command syntax is as follows:

ReadWellHisoricalPumpingTSMonthlyFromStateMod(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the StateMod well historical pumping time

series (monthly) file to read.
None – must be
specified.

2 - Command Reference – ReadWellHistoricalPumpingTSMonthlyFromStateMod() 594

Command Reference:
ReadWellRightsFromHydroBase()

Read well right data from HydroBase

StateCU and StateMod Command

Version 3.09.00, 2010-01-25

The ReadWellRightsFromHydroBase() command reads well rights from HydroBase for each
well station that is defined. The well rights can then be manipulated and output with other commands.

The following figure illustrates possible water supply for parcels.

ParcelSupplyDiagram

Example Supply for Parcels

In this example, two ditches (D1 and D2, represented with hatching in vertical and horizontal directions)
provide surface water supply to the indicated parcels. In some cases, only one ditch provides supply.
Both ditches supply water to shared parcels that are indicated by cross-hatching in the figure. Wells can
supplement surface water supply (parcels shown above the river in the figure) or can be the sole supplier
of water (lower right) and wells do not need to be physically located on a parcel to provide supply to the
parcel. For StateCU, well-only lands are identified by CU locations that are defined by a collection
(aggregate/system) of parcels. For StateMod, well-only lands are well stations that do not have a related
diversion station (and consequently also are defined by a list of parcels). Lands irrigated by surface water
are identified with ditch identifiers and parcels are associated with the ditches in HydroBase. Processing
logic is different for ditch and well-only lands only in how the list of parcels is obtained. Once a list of
parcels is obtained, the wells and corresponding rights/permits associated with the parcels can be
processed. Explicit wells and groups of such wells can also be modeled, in which case a list of WDIDs is
provided for the wells. StateMod and StateCU files do not contain enough detail to indicate all of these
conditions and therefore well station aggregate and system information is used by StateDMI (see the
SetWellAggregate(), SetWellAggregateFromList(), SetWellSystem(), and
SetWellSystemFromList() commands).

 Command Reference – ReadWellRightsFromHydroBase() - 1 595

ReadWellRightsFromHydroBase() Command StateDMI Documentation

A well (hole in the ground) in HydroBase can be a structure with water rights, a well permit, or both (a
matched location). In HydroBase, the relationship between well structure and well permit has been
determined in CDSS projects by using a common well attributes (e.g., name) or by spatial proximity
analysis using GIS tools. For general well data in HydroBase, there has been no explicit link to help
identify when a well structure matched a well permit: well structures do not reference permits and well
permits don’t reference well structures. This relationship is only available as a result of DSS projects
for modeling. Well permit records can be difficult to interpret because of replacement wells. Typically,
major wells do have water rights, although a corresponding permit may also exist, perhaps with different
date and other information. The CDSS projects have attempted to uniquely identify holes in the ground
such that subsequent data processing can treat the hole as a structure or permit, but not both (to avoid
double-counting). Wells were first modeled in the Rio Grande RGDSS project and subsequently the
South Platte.

The steps used to determine well rights are described below. Note that “well station” refers to the
StateMod model node (which is often a collection of wells associated with groundwater-only lands, a
ditch, or explicit well structures with WDIDs) and “well” refers to a hole in the ground that has physical
characteristics, water rights, and/or well permits, and a relationship with one or more parcels.

Loop through each location that matches the ID pattern and perform the following:

For each year being processed (specified by the Year parameter or by default all available parcel years in
HydroBase for the specified water division), perform the following:

1. Evaluate the type of location to set up further processing

a. If the location is a diversion station or collection specified with part type Ditch, go to step
2.

b. If the location is a well station or collection specified with part type Parcel, go to step 2.
c. If the location is an explicit well (with WDID) or collection specified with part type Well,

go to step 4 (no need to involve parcels in processing).
2. Get the list of parcels associated with the location (note that in a given year there may be zero or more

parcels associated with a location):
a. If the location is a groundwater-only location, get the list of parcels from the

aggregate/system definitions, where PartType=Parcel.
b. If the location diversion+well node (and/or an aggregate/system where PartType=Ditch):

i. If the ditch is explicit (no aggregate/system information has been provided for the
location), get the list of parcels associated with the single ditch.

ii. If the ditch is an aggregate/system, get the list of parcels associated with each part of
the aggregate/system and form one list of parcels.

3. Get the list of wells (holes in the ground) from the joined parcel/well data using the parcel identifiers.
a. Query HydroBase to get the joined parcel/well data, using the parcel year, division, and

parcel identifier.
4. Get the HydroBase well right/permit detailed data. Based on command parameters, read the

HydroBase well rights and permits as follows:
• If the ReadWellRights=False, use the well/parcel matching data without further reads;

consequently the resulting well right information may not exactly match all the rights that are
available in HydroBase because the well matching results are a sum of net amount rights.

• If ReadWellRights=True and a well has a WDID, the well rights are re-read from the
HydroBase net amounts table. This ensures that all information is considered, including
APEX. This parameter setting is recommended and will always be used for explicit wells
(those with no associated diversion).

2 - Command Reference – ReadWellRightsFromHydroBase() 596

StateDMI Documentation ReadWellRightsFromHydroBase() Command

• In either case, well permits are taken from the well/parcel matching data for quality control
reasons and because HydroBase traditionally has not been distributed with well permit data.

Use the DefineRightHow parameter value to determine how to define the right.
If the value of DefineRightHow=RightIfAvailable (recommended in current procedures):

 Set the date.
o If ReadWellRights=True, read the individual well rights from HydroBase. If a

water right is available, use the appropriation date (and corresponding administration
number) for the water right. If no date is available for the water right (this should not
happen), assign the administration number to the value corresponding to the
DefaultAppropriationDate parameter value or 99999.99999 as a final
default.

o If ReadWellRights=False, use the processed appropriation date determined
during the irrigated lands load process.

 Set the decree amount.
o If ReadWellRights=True, use the decree from the water rights (CFS). If

UseApex=True, the alternate point/exchange values will also be added to the well
right decree. Because well rights typically have either the decree or the APEX (not
both), this will result in water rights that are either the decree or the APEX value.
Multiply the right amount by the percent of the well that irrigates the parcel (AND
the percent of the parcel that is irrigated by the ditch if the lands are associated with a
ditch). If warnings are generated, it may be due to older well matching data
indicating that well rights should be in HydroBase; however, subsequent changes
now result in no net amounts in the database. Additional evaluation of loaded data
may need to occur.

o If ReadWellRights=False, assign the decree as the well yield determined from
well matching (converted from GPM to CFS), multiplied by the percent of the well
that irrigates the parcel (AND the percent of the parcel that is irrigated by the ditch if
the lands are associated with a ditch).

Else if DefineRightHow=EarliestDate (used with Phase 4 Rio Grande data set):
 From the DSS well matching data, use the earliest of the right’s appropriation date and

permit’s permit date. Convert the date to an administration number. If no date is available,
assign the administration number to the value corresponding to the
DefaultAppropriationDate parameter value or 99999.99999 as a final default.

 Assign the decree as the well yield, converted from GPM to CFS, multiplied by the percent of
the well that irrigates the parcel (AND the percent of the parcel that is irrigated by the ditch if
the lands are associated with a ditch).

 This option currently does not allow reading well right net amounts.
Else if DefineRightHow=LatestDate (used experimentally): similar to above, except the
latest date is used.

5. Add the StateMod well rights for the location by converting the HydroBase rights to StateMod rights.
• Water rights from HydroBase that are less than the decree minimum (.0005 CFS, as per

previously determined conventions) are ignored and during final output, water rights with a
decree of 0.00 (the StateMod file format) are ignored.

• The identifier will be assigned as specified by the IDFormat parameter.
• The name of the final right will include either water right (WDID and name) or permit

information (number, suffix, and replacement), depending on the input that was used.

In the above process, status messages and warnings are printed to the log file as appropriate and command
status messages are added. For example, the following information is listed in the log file: the number of

 Command Reference – ReadWellRightsFromHydroBase() - 3 597

ReadWellRightsFromHydroBase() Command StateDMI Documentation

parcels for a well station, the number of wells for the parcel, and the number of rights/permits for the
well.

After reading the well rights from HydroBase, it is typical to write the results to a file similar to
rg2007_NotMerged.wer. This file can then be used to fill crop pattern and irrigation practice acreage
time series. The water rights determined from multiple years can then be processed with the
MergeWellRights() command, resulting in a file that can be used for modeling (if all rights are to be
modeled) and to set the irrigation practice pumping maximum time series – this file typically has a name
similar to rg2007.wer. Finally, if aggregation of well rights by administration number class is desired, the
AggregateWellRights() command can be used, and the results written to a file with a name similar
to rg2007_Agg.wer.

The following dialog is used to edit the command and illustrates the syntax of the command.

ReadWellRightsFromHydroBase

ReadWellRightsFromHydroBase() Command Editor

An excerpt from a StateMod well rights file with data comments is shown below. The parcel year,
well/parcel matching class, and parcel ID are shown on the far right and are not part of the standard
StateMod well right file. Well class 4 and 9 are “estimated wells”, which are essentially a copy of other
wells. These values are used by the MergeWellRights() command. See CDSS technical
memoranda for a description of well classes (SPDSS Task Memorandum “SPDSS, Spatial System
Integration Component, Well Class Adjustments”, March 15th, 2007)

4 - Command Reference – ReadWellRightsFromHydroBase() 598

StateDMI Documentation ReadWellRightsFromHydroBase() Command

#> ID Name Struct Admin # Decree On/Off PYr--Cls--PID
#>---------eb----------------------eb----------eb--------------eb------eb------exb--exb--exb----e
2005001 W0006 WELL NO 01 200812 31592.00000 2.34 1936 1936 1 3107
2005001 W0006 WELL NO 01 200812 38836.00000 1.23 1956 1936 1 3107
2005001 W0006 WELL NO 01 200812 31592.00000 2.34 1936 1998 2 11016
2005001 W0006 WELL NO 01 200812 38836.00000 1.23 1956 1998 2 11016
2005001 W0006 WELL NO 01 200812 31592.00000 1.19 1936 2002 2 20901
2005001 W0006 WELL NO 01 200812 38836.00000 0.62 1956 2002 2 20901
2005001 W0006 WELL NO 01 200812 31592.00000 1.15 1936 2002 5 20902
2005001 W0006 WELL NO 01 200812 38836.00000 0.61 1956 2002 5 20902

The command syntax is as follows:

ReadWellRightsFromHydroBase(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single well station identifier to match or a pattern

using wildcards (e.g., 20*).
None – must be
specified.

Div A water division to use for parcel data, needed to
determine relationships between diversion
stations/parcels/wells and for well aggregate/systems.

None – must be
specified.

Year A calendar year to use for parcel data, needed to
determine relationships between diversion
stations/parcels/wells and for well aggregate/systems.
Separate multiple years with commas. If years are
specified and data for a year in HydroBase is omitted,
the results will be generated by ignoring the HydroBase
data year – this is only advised if a year of data in
HydroBase is purposefully being ignored for some
reason.

Read all parcel
years in HydroBase.

DecreeMin Minimum decree to include, CFS. Well permits are
converted from GPM to CFS prior to checking the value.
Note that StateMod well right files typically have a
precision of two digits after the decimal and therefore
including small rights may result in a decree of zero
(unless the rights sum/aggregate to a larger number).

.0005

IDFormat Indicate the format to be used for water right identifiers,
one of:
• HydroBaseID – use the 7-digit WDID if the well

structure identifier is used. If a well permit, use the
well receipt number followed by :P (see note below
about estimated wells). The identifier that is used is
controlled by the DefineRightHow parameter.
This value should be used when wells are being
explicitly modeled (no water right aggregation), such
as on the South Platte.

• StationIDW.NN – use the well station identifier
concantenated with W. and a two digit number. This
convention matches the approach that has
traditionally been used in earlier CDSS modeling, in
particular in Phase 4 Río Grande modeling where

StationIDW.NN
(because this was
used in the Rio
Grande; however,
HydroBaseID is
recommended when
not aggregating
rights, such as in the
South Platte).

 Command Reference – ReadWellRightsFromHydroBase() - 5 599

ReadWellRightsFromHydroBase() Command StateDMI Documentation

Parameter Description Default
well rights are aggregated. Modeling in the South
Platte requires that wells are not aggregated and
using the HydroBaseID is necessary.

Estimated wells, as defined by well supply to parcel
matching classes 4 and 9, have identifiers that are
concatenated with :PE if a permit or :WE if a well right.
This allows the wells to be uniquely identified when
processed with the MergeWellRights() command.

Default
Appropriation
Date

Some right/permit data does not have a date in data
records. For example, very old well permits may not
have a date. In these cases a default date can be assigned
to be used as the appropriation date in the well water
right. The appropriation date will be converted to a State
of Colorado administration number in StateMod water
rights.

The administration
number is set to
99999.99999.

DefineRightHow Wells (holes in the ground) are matched with water
rights, well permits, and occasionally “estimated” wells
necessary because a water right or permit could not be
found. In some cases a right and permit will both exist
for a well, each with their own dates. This parameter
indicates how to define the right in these cases and has a
value of:
• EarliestDate – will use the earliest date

determined from the right’s appropriation date and
the permit’s permit date from well matching data.
ReadWellRights=True is not enabled or used.

• LatestDate – will use the latest date determined
from the right’s appropriation date and the permit’s
permit date from well matching data.
ReadWellRights=True is not enabled or used.

• RightIfAvailable – will always use the water
right appropriation date, if available. If
ReadWellRights=True (see below), the net
amount rights are read. If
ReadWellRights=False, the processed well
data determined when irrigated lands are loaded into
HydroBase are used.

EarliestDate

ReadWellRights This parameter is only used when
DefineRightHow=RightIfAvailable, and
indicates whether individual water rights should be read
from HydroBase. The following values are recognized:
• True – the net amounts data are read, which may

result in multiple well water rights for a well WDID.
See also the UseApex parameter.

• False –a single processed water right will be
returned, which is the sum of net amount rights,
using the oldest appropriation date found for the
rights (APEX is not considered). This information is

True

6 - Command Reference – ReadWellRightsFromHydroBase() 600

StateDMI Documentation ReadWellRightsFromHydroBase() Command

Parameter Description Default
taken from the well/parcel matching results.

UseApex This parameter indicates whether to use alternate
point/exchange values when processing rights. The
following values are recognized:
• True – the APEX values corresponding to well

rights are added to the net amount right values,
resulting in a larger decree being considered for
some rights.

• False – the APEX values are not added to net
amount rights.

Because net amount rights usually either have a decreed
rate or an APEX amount, using True will generally
result in more water rights, where the resulting right
amount is either the decree or APEX.

False

OnOffDefault Indicates how to set the on/off switch for all water rights
that are processed. A value of 1 indicates that the right
is on for the whole period. If the value is
AppropriationDate, the switch is set to the year
corresponding to the appropriation date, indicating that
the right will be turned on starting in the year. Use set
commands to reset the switch to other values.

Appropriation
Date

Optimization Indicate how queries are performed, one of:
• UseLessMemory – run time will be slower, but

this may be required on computers that do not have
enough memory for optimization

• UseMoreMemory – run time will be faster, but
more computer memory is required

UseMoreMemory

The following example command file illustrates how well rights can be defined, sorted, checked, and
written to a StateMod file:

Well Rights File (*.wer)

StartLog(LogFile="Sp2008L_WER.log")

Step 1 - Read all structures

ReadWellStationsFromNetwork(InputFile="..\Network\Sp2008L.net")
SortWellStations()

Step 2 - define diversion and d&w aggregates and demand systems
SetWellAggregateFromList(ListFile="..\Sp2008L_SWAgg.csv",PartType=Ditch,IDCol=1,
 NameCol=2,PartIDsCol=3,PartsListedHow=InColumn,IfNotFound=Warn)
SetWellSystemFromList(ListFile="..\Sp2008L_DivSys_DDH.csv",PartType=Ditch,IDCol=1,
 NameCol=2,PartIDsCol=3,PartsListedHow=InRow,IfNotFound=Warn)

SetWellAggregateFromList(ListFile="Sp2008L_AugRchWell_Aggregates.csv",PartType=Well,
 IDCol=1,PartIDsCol=2,PartsListedHow=InRow)

Step 3- Set Well aggregates (GW Only lands)
rrb Same as provided by LRE as Sp_GWAgg_xxxx.csv except non WD 01 and 64 removed
SetWellSystemFromList(ListFile="..\Sp2008L_GWAgg_1956.csv",Year=1956,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\Sp2008L_GWAgg_1976.csv",Year=1976,Div=1,

 Command Reference – ReadWellRightsFromHydroBase() - 7 601

ReadWellRightsFromHydroBase() Command StateDMI Documentation

 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\Sp2008L_GWAgg_1987.csv",Year=1987,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\Sp2008L_GWAgg_2001.csv",Year=2001,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\Sp2008L_GWAgg_2005.csv",Year=2005,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)

Step 4 - Read Augmentation and Recharge Well Aggregate Parts
SetWellAggregateFromList(ListFile="Sp2008L_AugRchWell_Aggregates.csv",PartType=Well,
 IDCol=1,PartIDsCol=2,PartsListedHow=InRow,PartIDsColMax=25,IfNotFound=Ignore)
SetWellAggregateFromList(ListFile="Sp2008L_AlternatePoint_Aggregates.csv",PartType=Well,
 IDCol=1,PartIDsCol=2,PartsListedHow=InRow,PartIDsColMax=1,IfNotFound=Ignore)

Step 5 - Read rights from HydroBase
ReadWellRightsFromHydroBase(ID="*",IDFormat="HydroBaseID",Year="1956,1976,1987,2001,2005",
 Div="1",DefaultAppropriationDate="1950-01-01",DefineRightHow=RightIfAvailable,
 ReadWellRights=True,UseApex=True,OnOffDefault=AppropriationDate)

Step 6 - Sort and Write
Write Data Comments="True" provides output used for subsequent cds & ipy acreage filling
Write Data Comments="False" provides merged file used for seting ipy max pumping
SortWellRights(Order=LocationIDAscending,Order2=IDAscending)

WriteWellRightsToStateMod(OutputFile="Sp2008L_NotMerged.wer",WriteDataComments=True)
MergeWellRights(OutputFile="..\StateMod\Historic\Sp2008L.wer")
SortWellRights(Order=LocationIDAscending,Order2=IDAscending)

WriteWellRightsToStateMod(OutputFile="Sp2008L.wer",
 WriteDataComments=False,WriteHow=OverwriteFile)
Check the well rights
CheckWellRights(ID="*")
WriteCheckFile(OutputFile="Sp2008L.wer.check.html",Title="Well Rights Check File")

8 - Command Reference – ReadWellRightsFromHydroBase() 602

Command Reference:
ReadWellRightsFromStateMod()

Read well right data from a StateMod well rights file

StateCU and StateMod Command

Version 3.09.00, 2010-01-00

The ReadWellRightsFromStateMod() command reads well rights from a StateMod well rights
file. The well rights can then be manipulated and output with other commands. Current procedures for
processing some data files involve utilizing StateMod well rights file(s) as input rather than rereading
well rights from HydroBase. This ensures that the content and quality of the well rights file can be
verified and is used consistently when processing various model files. For example, StateMod well rights
files may be used for the following purposes:

1. Turning off groundwater only parcels irrigated lands (crop pattern and irrigation practice acreage
time series) prior to a specific year of parcel data. Parcels that do not have a well right in a year
are estimated to not be irrigated for the year (and prior years). This step typically uses a well
rights file that has NOT had water rights for various parcel years merged – data for a single parcel
year will be used. See the
WriteWellRightsToStateMod(…,WriteDataComments=True,…) command.

2. Setting the pumping maximum in the irrigation practice time series. This step typically uses a
well rights file that includes well rights for different parcel years that have been merged. For
example, well rights from 1998 parcels and those from 2002 parcels are merged to not double
count rights. See the MergeWellRights() command.

3. Setting the well station capacity to the total of the well rights. This step may use a merged rights
file or one that has been aggregated (well rights summed into administration number classes).
Aggregation is used in some data sets to decrease the complexity of the model. However,
aggregation is generally NOT performed in data sets such as the South Platte where augmentation
plans reference individual well rights. See the AggregateWellRights() command.

The well rights files mentioned above are typically written to separate files with unique names. To
support cases 1 and 2 above, the StateMod file should include “data comments” on the far right, which
include the well to parcel matching data (parcel year, class, parcel ID). An excerpt from a well rights file
with this information is shown below:

#> ID Name Struct Admin # Decree On/Off PYr--Cls--PID
#>---------eb----------------------eb----------eb--------------eb------eb------exb--exb--exb----e
#>
#>
2005001 W0006 WELL NO 01 200812 31592.00000 2.34 1936 1936 1 3107
2005001 W0006 WELL NO 01 200812 38836.00000 1.23 1956 1936 1 3107
2005001 W0006 WELL NO 01 200812 31592.00000 2.34 1936 1998 2 11016
2005001 W0006 WELL NO 01 200812 38836.00000 1.23 1956 1998 2 11016
2005001 W0006 WELL NO 01 200812 31592.00000 1.19 1936 2002 2 20901
2005001 W0006 WELL NO 01 200812 38836.00000 0.62 1956 2002 2 20901
2005001 W0006 WELL NO 01 200812 31592.00000 1.15 1936 2002 5 20902
2005001 W0006 WELL NO 01 200812 38836.00000 0.61 1956 2002 5 20902

 Command Reference – ReadWellRightsFromStateMod() - 1 603

ReadWellRightsFromStateMod() Command StateDMI Documentation

The following dialog is used to edit the command and illustrates the syntax of the command.

ReadWellRightsFromStateMod

ReadWellRightsFromStateMod() Command Editor

The command syntax is as follows:

ReadWellRightsFromStateMod(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the StateMod well rights file to be

read.
None – must be
specified.

Append Indicate whether the data should be appended to
in-memory well rights. Specify False if
processing well rights for independent tasks and
the current task should not be influenced by
previously read well rights.

True

2 - Command Reference – ReadWellRightsFromStateMod() 604

Command Reference:
ReadWellStationsFromList()

Read well stations data from a list file

StateMod Command

Version 3.09.00, 2010-01-24

The ReadWellStationsFromList() command reads a list of well stations from a delimited list file
and defines well stations in memory. The well stations can then be manipulated and output with other
commands. Reading from a list is more general than reading from a StateMod file.

The following dialog is used to edit the command and illustrates the syntax of the command.

ReadWellStationsFromList

ReadWellStationsFromList() Command Editor

 Command Reference – ReadWellStationsFromList() - 1 605

ReadWellStationsFromList() Command StateDMI Documentation

The command syntax is as follows:

ReadWellStationsFromList(Parameter=Value,…)

Command Parameters

Parameter Description Default
ListFile The name of the list file to be read. None – must be specified.
IDCol The column number (1+) containing the

well station identifiers.
None – must be specified.

NameCol The column number (1+) containing the
well station names.

None – optional (name will be
initialized to blank).

DiversionIDCol The column number (1+) containing the
diversion identifiers associated with the
well stations. This is needed in some
cases to determine when a location is a
diversion with supplemental well supply,
for example, when processing well
rights.

None – optional (diversion ID
will be initialized to blank).

At a minimum, the list file must contain a column with well station identifiers. Lines starting with the #
character are treated as comments. If the first line’s values are surrounded by double quotes, the line is
assumed to indicate column headings.

A sample list file is shown below:

sp2007L_AugRchWells.csv

rrb Augmentation and recharge wells from SmOpr
SmOpr
State of Colorado
Version: 1.00
Last revision date: 2006/10/27

rrb 2008/10/08 count = 17 + 4 21

0102522_AuW ,"RIVERSIDE AUG ",' ', ' ', ' ', ' ', ' ','NA'
0102528_AuW ,"FT MORGAN CNL AUG PLAN ",' ', ' ', ' ', ' ', ' ','NA'
0102529_AuW ,"UPPER PLATTE BEAVER AUG ",' ', ' ', ' ', ' ', ' ','NA'
0102535_ReW ,"LOWER PLATTE BEAVER AUG ",' ', ' ', ' ', ' ', ' ','NA'
0102535_AuW ,"LOWER PLATTE BEAVER AUG ",' ', ' ', ' ', ' ', ' ','NA'
6402015_ReW ,"TAMARAK ",' ', ' ', ' ', ' ', ' ','NA'
6402027_ReW ,"OVERLAND ",' ', ' ', ' ', ' ', ' ','NA'
6402518_AuW ,"HARMONY Aug Well ",' ', ' ', ' ', ' ', ' ','NA'
6402519_ReW ,"DINSDALE AUG ",' ', ' ', ' ', ' ', ' ','NA'
…

2 - Command Reference – ReadWellStationsFromList() 606

Command Reference:
ReadWellStationsFromNetwork()

Read well station data from a network file

StateCU and StateMod Command

Version 3.09.00, 2010-01-25

The ReadWellStationsFromNetwork() command reads a list of well stations from a StateMod
network file (XML or Makenet) and defines well stations in memory. The well stations can then be
manipulated and output with other commands.

The following dialog is used to edit the command and illustrates the syntax of the command.

ReadWellStationsFromNetwork

ReadWellStationsFromNetwork() Command Editor

The command syntax is as follows:

ReadWellStationsFromNetwork(param=value,…)

Command Parameters

Parameter Description Default
InputFile The name of the network file to read. None – must be specified.

 Command Reference – ReadWellStationsFromNetwork() - 1 607

ReadWellStationsFromNetwork() Command StateDMI Documentation

The following example command file illustrates how well rights can be defined, sorted, checked, and
written to a StateMod file:

Well Rights File (*.wer)

StartLog(LogFile="Sp2008L_WER.log")

Step 1 - Read all structures

ReadWellStationsFromNetwork(InputFile="..\Network\Sp2008L.net")
SortWellStations()

Step 2 - define diversion and d&w aggregates and demand systems
SetWellAggregateFromList(ListFile="..\Sp2008L_SWAgg.csv",PartType=Ditch,IDCol=1,
 NameCol=2,PartIDsCol=3,PartsListedHow=InColumn,IfNotFound=Warn)
SetWellSystemFromList(ListFile="..\Sp2008L_DivSys_DDH.csv",PartType=Ditch,IDCol=1,
 NameCol=2,PartIDsCol=3,PartsListedHow=InRow,IfNotFound=Warn)

SetWellAggregateFromList(ListFile="Sp2008L_AugRchWell_Aggregates.csv",PartType=Well,
 IDCol=1,PartIDsCol=2,PartsListedHow=InRow)

Step 3- Set Well aggregates (GW Only lands)
rrb Same as provided by LRE as Sp_GWAgg_xxxx.csv except non WD 01 and 64 removed
SetWellSystemFromList(ListFile="..\Sp2008L_GWAgg_1956.csv",Year=1956,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\Sp2008L_GWAgg_1976.csv",Year=1976,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\Sp2008L_GWAgg_1987.csv",Year=1987,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\Sp2008L_GWAgg_2001.csv",Year=2001,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\Sp2008L_GWAgg_2005.csv",Year=2005,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)

Step 4 - Read Augmentation and Recharge Well Aggregate Parts
SetWellAggregateFromList(ListFile="Sp2008L_AugRchWell_Aggregates.csv",PartType=Well,
 IDCol=1,PartIDsCol=2,PartsListedHow=InRow,PartIDsColMax=25,IfNotFound=Ignore)
SetWellAggregateFromList(ListFile="Sp2008L_AlternatePoint_Aggregates.csv",PartType=Well,
 IDCol=1,PartIDsCol=2,PartsListedHow=InRow,PartIDsColMax=1,IfNotFound=Ignore)

Step 5 - Read rights from HydroBase
ReadWellRightsFromHydroBase(ID="*",IDFormat="HydroBaseID",Year="1956,1976,1987,2001,2005",
 Div="1",DefaultAppropriationDate="1950-01-01",DefineRightHow=RightIfAvailable,
 ReadWellRights=True,UseApex=True,OnOffDefault=AppropriationDate)

Step 6 - Sort and Write
Write Data Comments="True" provides output used for subsequent cds & ipy acreage filling
Write Data Comments="False" provides merged file used for seting ipy max pumping
SortWellRights(Order=LocationIDAscending,Order2=IDAscending)

WriteWellRightsToStateMod(OutputFile="Sp2008L_NotMerged.wer",WriteDataComments=True)
MergeWellRights(OutputFile="..\StateMod\Historic\Sp2008L.wer")
SortWellRights(Order=LocationIDAscending,Order2=IDAscending)

WriteWellRightsToStateMod(OutputFile="Sp2008L.wer",
 WriteDataComments=False,WriteHow=OverwriteFile)
Check the well rights
CheckWellRights(ID="*")
WriteCheckFile(OutputFile="Sp2008L.wer.check.html",Title="Well Rights Check File")

2 - Command Reference – ReadWellStationsFromNetwork() 608

Command Reference:
ReadWellStationsFromStateMod()

Read well station data from a StateMod well stations file

StateCU and StateMod Command

Version 3.09.00, 2010-01-24

The ReadWellStationsFromStateMod() command reads a list of well stations from a StateMod
well stations file and defines well stations in memory. The well stations can then be manipulated and
output with other commands. The StateMod well stations file contains stations for which only
groundwater supply is available and stations for which groundwater supply supplements surface water
supply of a diversion station (in this case the well station data includes the diversion station identifier).
For some data (e.g., demands), StateMod accepts data from multiple files. For example, diversion and
diversion+well stations may read total demands from the diversion demands file and well (groundwater
only) stations may read demands from the well demands file. Parameters are available in this command
to read all well stations or only a subset, to allow flexibility in data processing. Other commands may
also process a subset, regardless of what is read.

The following dialog is used to edit the command and illustrates the syntax of the command.

ReadWellStationsFromStateMod

ReadWellStationsFromStateMod() Command Editor

 Command Reference – ReadWellStationsFromStateMod() - 1 609

ReadWellStationsFromStateMod() Command StateDMI Documentation

The command syntax is as follows:

ReadWellStationsFromStateMod(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the StateMod well stations file to be

read.
None – must be
specified.

IgnoreDWs Indicate whether the D&W well nodes should be
ignored. These are locations where well supply
supplements surface water (diversion) supply.

False

IgnoreWells Indicate whether the well nodes should be
ignored. These are locations where only well
supply is used.

False

2 - Command Reference – ReadWellStationsFromStateMod() 610

Command Reference: RemoveCropPatternTS()

Remove crop pattern time series

StateCU Command
Version 3.09.01, 2010-02-01

The RemoveCropPatternTS() command removes crop pattern time series data. This is useful when
inappropriate crop types have been processed into the crop pattern time series (e.g., unirrigated parcels),
which may be the case during when using preliminary data. The following dialog is used to edit the
command and illustrates the syntax of the command.

RemoveCropPatternTS

RemoveCropPatternTS() Command Editor

 Command Reference – RemoveCropPatternTS() - 1 611

RemoveCropPatternTS() Command StateDMI Documentation

The command syntax is as follows:

RemoveCropPatternTS(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single CU Location identifier or

pattern to match (e.g., 20*).
None – must be specified.

CropType A single crop type identifier to match. None – must be specified.
IfNotFound Used for error handling, one of the

following:
• Fail – generate a failure message if

the ID is not matched
• Ignore – ignore (don’t add and

don’t generate a message) if the ID is
not matched

• Warn – generate a warning message
if the ID is not matched

Warn

2 - Command Reference – RemoveCropPatternTS() 612

Command Reference: RunCommands()
Run a command file

Version 3.08.02, 2010-01-07

The RunCommands() command runs a command file. This command can be used to manage workflow
where multiple commands files are run and is also useful for testing, where a test suite consists of running
separate test case command files.

Command files that are run can themselves include RunCommands() commands. Each command file
that is run has knowledge if its initial working directory and relative paths referenced in the command file
are relative to this directory. This allows a master command file to reside in a different location than the
individual command files that are being run. The current working directory is reset to that of the
command file being run.

Currently the properties from the parent command file are NOT applied to the initial conditions when
running the command file. Therefore, global properties like input and output period are reset to defaults
before running the command file. A future enhancement may implement a property to indicate whether
to inherit the properties. The output from the command is also not added to the parent processor. Again,
a future enhancement may be to append output so that one final set of output is generated.

There is currently no special handling of log files; consequently, if the main command file opens a log file
and then a command file is run that opens a new log file, the main log file will be closed. This behavior is
being evaluated.

The following dialog is used to edit the command and illustrates the syntax for the command.

RunCommands

RunCommands() Command Editor

 Command Reference – RunCommands() - 1 613

RunCommands() Command StateDMI Documentation

The command syntax is as follows:

RunCommands(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the command file to run, enclosed in double

quotes if the file contains spaces or other special
characters. A path relative to the master command file
can be specified.

None – must be
specified.

ExpectedStatus Used for testing – indicates the expected status from the
command, one of:
• Unknown
• Success
• Warning
• Failure

Success

AppendResults Envisioned for implementation in the future. Indicate
whether time series results from each command file
should be appended to the overall time series results.
This parameter currently always defaults to False, but
support for True may be implemented in the future.
Consequently, only the time series results from the last
command file that is run will be displayed.

Currently always
False

The following example illustrates how the RunCommands() command can be used to test software (or
any implementation of commands that represent a standard process). First, individual command files are
implemented to test specific functionality, which will result in warnings if a test fails:

Test check diversion rights data where each checked value is in error
The set command won't let invalid data be set from parameters so read bad data
to trigger the check warnings.
Compare the data csv to make sure the data are being produced as expected
and the check file csv to make sure the checks are working.
The expected status is Warning because the check will detect the missing values.
#@expectedStatus Warning
StartLog(LogFile="Results/Test_CheckDiversionRights.StateDMI.log")
RemoveFile(InputFile="Results\Test_CheckDiversionRights_out.csv",IfNotFound=Ignore)
RemoveFile(InputFile="Results\Test_CheckDiversionRights_out_check.csv",IfNotFound=Ignore)
RemoveFile(InputFile="Results\Test_CheckDiversionRights_out_check.html",IfNotFound=Ignore)
Define a diversion station to trigger the check of stations
SetDiversionStation(ID="Diversion1",IfNotFound=Add)
SetDiversionRight(ID="Location1",IfNotFound=Add)
Also read some bad data...
ReadDiversionRightsFromStateMod(InputFile="Data\simple.ddr")
Uncomment the following command to regenerate the expected results.

WriteDiversionRightsToList(OutputFile="ExpectedResults/Test_CheckDiversionRights_out.csv")
WriteDiversionRightsToList(OutputFile="Results/Test_CheckDiversionRights_out.csv")
CompareFiles(InputFile1="ExpectedResults/Test_CheckDiversionRights_out.csv",
 InputFile2="Results/Test_CheckDiversionRights_out.csv",WarnIfDifferent=True)

Check the data and create the check file.
CheckDiversionRights(ID="*")
Uncomment the following command to regenerate the expected results.
WriteCheckFile(OutputFile="ExpectedResults/Test_CheckDiversionRights_out_check.csv")

Command Reference – RunCommands() - 2 614

StateDMI Documentation RunCommands() Command

WriteCheckFile(OutputFile="Results/Test_CheckDiversionRights_out_check.csv")
WriteCheckFile(OutputFile="Results/Test_CheckDiversionRights_out_check.html")
CompareFiles(InputFile1="ExpectedResults/Test_CheckDiversionRights_out_check.csv",
 InputFile2="Results/Test_CheckDiversionRights_out_check.csv",WarnIfDifferent=True)

Next, use the RunCommands() command to run one or more tests:

StartRegressionTestResultsReport(
 OutputFile="RunRegressionTest_commands_general.StateDMI.out.txt")
…
RunCommands(
 InputFile="..\..\..\commands\CheckDiversionRights\Test_CheckDiversionRights.StateDMI",
 ExpectedStatus=Warning)…

Each of the above command files should produce expected results, without warnings. If any command
file unexpectedly produces a warning, a warning will also be visible in StateDMI. The issue can then be
evaluated to determine whether a software or configuration change is necessary.

 Command Reference – RunCommands() - 3 615

RunCommands() Command StateDMI Documentation

This page is intentionally blank.

Command Reference – RunCommands() - 4 616

Command Reference: RunProgram()
Run an external program

General Command

Version 3.08.02, 2010-01-07

This command is under development. Preliminary development has occurred in the TSTool
software. The RunProgram() command runs an external program, given the full command line or
individual command line parts, and waits until the program is finished before processing additional
commands. The command will indicate a failure if the exit status from the program being run is non-zero.
It is therefore possible to call an external program that reads and/or writes recognized time series formats
to perform processing that StateDMI cannot. It is also useful to use StateDMI’s testing features to
implement quality control checks for other software tools.

StateDMI internally maintains a working directory that is used to convert relative paths to absolute paths
to locate files. The working directory is by default the location of the last command file that was opened.
The external program may assume that the working directory is the location from which StateDMI
software was started (or the installation location if started from a menu). Therefore, it may be necessary
to run StateDMI in batch mode from the directory where the external software’s data files exist, use
absolute paths to files, or use the ${WorkingDir} property in the command line. Use \” in the
command line or arguments to surround whitespace. Some operating systems may have limitations on
command line length. The following dialog is used to edit the command and illustrates command syntax.

RunProgram

RunProgram() Command Editor when Specifying Command Line

 Command Reference – RunProgram() - 1 617

RunProgram() Command StateDMI Documentation

The command syntax is as follows:

RunProgram(Parameter=Value…)

Command Parameters

Parameter Description Default
CommandLine The full program command line, with arguments.

If the program executable is found in the PATH
environment variable, then only the program name
needs to be specified. Otherwise, specify an
absolute path to the program or run StateDMI
from a command shell the same directory.

The ${WorkingDir} property can be used in
the command line to indicate the working
directory (command file location) when
specifying file names.

For Windows, it may be necessary to place a \”
at the start and end of the command line, if a full
command line is specified.

Must be specified if the
Program parameter is
not specified.

The Program
parameter will be used
if both are specified.

Program The name of the program to run. Program
arguments are specified using the ProgramArg#
parameter(s). See the CommandLine parameter
for more information about parameter formatting
and locating the executable.

Must be specified if the
CommandLine
parameter is not
specified.

ProgramArg1,
ProgramArg2,
etc.

Command like arguments used with Program. If
necessary, use ${WorkingDir} to specify the
working directory to locate files.

No arguments will be
used with Program.

UseCommandShell If specified as False, the program will be run
without using a command shell. A command shell
is needed if the program is a script (batch file), a
shell command, or uses >, |, etc.

True, using cmd.exe
/C on Windows and
/bin/sh –c on
UNIX/Linux.

Timeout The timeout in seconds – if the program has not
yet returned, the process will be ended. Zero
indicates no timeout. This behavior varies and
is being enhanced.

No timeout.

ExitStatus
Indicator

By default, the program exit status is determined
from the process that is run. Normally 0 means
success and non-zero indicates an error.
However, the program may not exit with a non-
zero exit status when an error occurs. If the
program instead uses an output string like STOP
3 to indicate the status, use this parameter to
indicate the leading string, which is followed by
the exit status (e.g., STOP).

Determine the exit
status from the process
exit value.

Command Reference – RunProgram() - 2 618

StateDMI Documentation RunProgram() Command

The following figure illustrates how a command would be entered using the program name and parts, and
use the command shell to run. Note that the output redirection character “>” is entered as a program
argument. The echo program on Windows is actually internal to the cmd.exe command shell and
therefore must be run using the command shell (the default behavior).

RunProgram_Program

RunProgram() Command Editor when Specifying Program and Arguments

 Command Reference – RunProgram() - 3 619

RunProgram() Command StateDMI Documentation

The following figure illustrates how a command can be run without a command shell and using the
program output to determine the exit status. The testecho.exe program is a compiled executable and can
therefore be run without a command shell. Because the standard output is being evaluated for the exit
value, the output cannot be redirected to a file with > (this would result in no output being available to
StateDMI to evaluate), and > is only recognized if running with a command shell in any case.

The following approach is suitable, for example, when running a compiled model or data analysis tool.
However, if the tool is run using a script or batch file, then a command shell must be used.

RunProgram_Program_ExitStatusIndicator

RunProgram() Command Editor when Specifying Program, Arguments, and Exit Status Indicator

Command Reference – RunProgram() - 4 620

Command Reference: RunPython()
Run a Python script

General Command

Version 3.08.02, 2010-01-07

This command is under development. Initial development is occurring in the TSTool software. The
RunPython() command runs a Python or Jython script, waiting until the script is finished before
processing additional commands. Python is a powerful scripting language that is widely used (see
http://www.python.org). This command allows either Python or Jython to be used as the interpreter. If
Python is used, then Python must be installed on the computer and be in the PATH environment variable.
The script is then run by running:

python Arguments

Jython (see http://www.jython.org) is a Java implementation of Python, allowing most Python scripts to
be run and also allowing integration with Java software, including using Java classes in scripts. This
allows existing Java components to be used and supports more robust integration and error handling. If
the Jython interpreter is used, no additional software needs to be installed. Additional features to utilize
Jython will be provided in future software releases (e.g., directly passing time series objects to/from
python scripts). Currently Jython only supports the Python 2.2 specification; however, future releases are
expected to support later specifications.

The following dialog is used to edit the command and illustrates the command syntax.

RunPython

RunPython() Command Editor

 Command Reference – RunPython() - 1 621

http://www.python.org/
http://www.jython.org/

RunPython() Command StateDMI Documentation

The command syntax is as follows:

RunPython(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The Python/Jython script to run,

specified as an absolute path or relative
to the command file.

None – must be specified.

Arguments Arguments to pass to the script, such as
the names of files to process. Use the
${WorkingDir} property to specify the
location of the command file. Separate
arguments by a space.

None – arguments are optional.

Interpreter The Python interpreter to run, either
Python or Jython.

Jython

The following command example illustrates how to run a Python script.

RunPython(InputFile="Data/Test_RunPython_1.py",
Interpreter="Jython",Arguments="${WorkingDir}/Data/Test_RunPython_1_Data
${WorkingDir}/Results/Test_RunPython_1_out.txt")

The corresponding Python script is as follows:

Test command for running Python script from TSTool

import sys
import os
print "start of script"
print 'os.getcwd()="' + os.getcwd() + '"'
infile = None
outfile = None
if (len(sys.argv) < 3):
 print "Error. Expecting input file name as first command line argument,
output file name as second."
 sys.exit(1)
else:
 infile = sys.argv[1]
 outfile = sys.argv[2]
 print 'Input file to process is "' + infile + '"'
 print 'Output file to create is "' + outfile + '"'

inf=open(infile,'r')
outf=open(outfile,'w')
for line in inf:
 outf.write("out: " + line)
inf.close()
outf.close()
print "end of script"

Command Reference – RunPython() - 2 622

StateDMI Documentation RunPython() Command

The data file is as follows:

Line 1 (first line)
Line 2
Line 3
Line 4
Line 5 (last line)

The output file is as follows:

out: Line 1 (first line)
out: Line 2
out: Line 3
out: Line 4
out: Line 5 (last line)

 Command Reference – RunPython() - 3 623

RunPython() Command StateDMI Documentation

This page is intentionally blank.

Command Reference – RunPython() - 4 624

Command Reference: SetBlaneyCriddle()

Set Blaney-Criddle crop coefficients data

StateCU Command
Version 3.08.02, 2010-01-07

The SetBlaneyCriddle() command sets data in existing Blaney-Criddle crop coefficients or adds a
new crop type with crop coefficients. The following dialog is used to edit the command and illustrates
the syntax of the command.

SetBlaneyCriddle

SetBlaneyCriddle() Command Editor

 Command Reference – SetBlaneyCriddle() - 1 625

SetBlaneyCriddle() Command StateDMI Documentation

The command syntax is as follows:

SetBlaneyCriddle(Parameter=Value,…)

Command Parameters

Parameter Description Default
CropType A crop type to match or a pattern

using wildcards (e.g., ALFALFA*).
None – must be specified.

CurveType Specify Percent for an annual crop
or Day for a perennial crop.

If not specified, the original
value will remain.

Coefficients A list of coefficients, surrounded by
double quotes.

If not specified, the original
value will remain.

IfNotFound Used for error handling, one of the
following:
• Add – add the crop if not found

using the provided information
• Fail – generate a failure

message if the crop is not found
• Ignore – ignore (don’t add

and don’t generate a message) if
the crop is not found

• Warn – generate a warning
message if the crop is not found

Warn

2 - Command Reference – SetBlaneyCriddle() 626

Command Reference: SetClimateStation()

Set climate station data

StateCU Command
Version 03.08.02, 2010-01-05

The SetClimateStation() command sets data in existing climate stations or adds a new climate
station. The following dialog is used to edit the command and illustrates the syntax of the command.

SetClimateStation

SetClimateStation() Command Editor

 Command Reference – SetClimateStation() - 1 627

SetClimateStation() Command StateDMI Documentation

The command syntax is as follows:

SetClimateStation(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single climate station identifier to

match or a pattern using wildcards (e.g.,
20*).

None – must be specified.

Latitude The climate station latitude to be
assigned for all matching climate
stations.

If not specified, the original
value will remain.

Elevation The climate station elevation to be
assigned for all matching climate
stations.

If not specified, the original
value will remain.

Region1 The climate station Region1 (typically
county) to be assigned for all matching
climate stations.

If not specified, the original
value will remain.

Region2 The climate station Region2 (typically
the HUC basin) to be assigned for all
matching climate stations.

If not specified, the original
value will remain.

Name The climate station name to be assigned
for all matching climate stations.

If not specified, the original
value will remain.

IfNotFound Used for error handling, one of the
following:
• Add – add the climate station if the

ID is not matched and is not a
wildcard

• Fail – generate a failure message if
the ID is not matched

• Ignore – ignore (don’t add and
don’t generate a message) if the ID is
not matched

• Warn – generate a warning message
if the ID is not matched

Warn

The following example command file illustrates how climate stations can be defined and written to a
StateCU file:

ReadClimateStationsFromList(ListFile="climsta.lst",IDCol=1)
FillClimateStationsFromHydroBase(ID="*")
SetClimateStation(ID="3016",Region2="14080106",IfNotFound=Warn)
SetClimateStation(ID="1018",Region2="14040106",IfNotFound=Warn)
SetClimateStation(ID="1928",Elevation=6440,IfNotFound=Warn)
SetClimateStation(ID="0484",Region1="MOFFAT",IfNotFound=Add)
WriteClimateStationsToStateCU(OutputFile="COclim2006.cli")

2 - Command Reference – SetClimateStation() 628

Command Reference: SetCropCharacteristics()
Set crop characteristics data

StateCU Command

Version 3.08.02, 2010-01-07

The SetCropCharacteristics() command sets data in existing crop characteristics or adds a new
crop type with crop characteristics. The following dialog is used to edit the command and illustrates the
syntax of the command.

SetCropCharacteristics

SetCropCharacteristics() Command Editor

 Command Reference – SetCropCharacteristics() - 1 629

SetCropCharacteristics() Command StateDMI Documentation

The command syntax is as follows:

SetCropCharacteristics(Parameter=Value,…)

Command Parameters

Parameter Description Default
CropType A crop type to match or a pattern

using wildcards (e.g., ALFALFA*).
None – must be specified.

PlantingMonth The planting month for the crop, as
an integer (1=January).

If not specified, the original
value will remain.

PlantingDay The planting day of month for the
crop, for the planning month.

If not specified, the original
value will remain.

HarvestMonth The harvest month for the crop, as
an integer (1=January).

If not specified, the original
value will remain.

HarvestDay The harvest day of month for the
crop, for the planning month.

If not specified, the original
value will remain.

DaysToFullCover Days to full cover. If not specified, the original
value will remain.

LengthOfSeason Length of growing season, days. If not specified, the original
value will remain.

EarliestMoistureUseTemp Earliest moisture use temperature, F. If not specified, the original
value will remain.

LatestMoistureUseTemp Latest moisture use temperature, F. If not specified, the original
value will remain.

MaxRootZoneDepth Maximum root zone depth. If not specified, the original
value will remain.

MaxAppDepth Maximum application depth. If not specified, the original
value will remain.

SpringFrostFlag Spring frost flag. 0 (mean)
FallFrostFlag Fall frost flag. 0 (mean)
DaysTo2ndCut Days between first and second cuts

(alfalfa).
If not specified, the original
value will remain.

DaysTo3rdCut Days between second and third cuts
(alfalfa).

If not specified, the original
value will remain.

IfNotFound Used for error handling, one of the
following:
• Add – add the climate station if

not found using the provided
information

• Fail – generate a failure
message if the climate station is
not found

• Ignore – ignore (don’t add
and don’t generate a message) if
the climate station is not found

• Warn – generate a warning
message if the climate station is
not found

Warn

2 - Command Reference – SetCropCharacteristics () 630

Command Reference: SetCropPatternTS()

Set crop pattern time series values

StateCU Command
Version 3.09.01, 2010-02-01

The SetCropPatternTS() command sets crop pattern time series data for a CU Location. The
combination of location ID, crop type, and year identify the data. It is recommended that the
SetCropPatternTSFromList() command be used instead to shorten commands files and allow
sharing of the data with SetIrrigationPracticeTSFromList() commands. There are two uses
for this command:

 Command Reference – SetCropPatternTS() - 1 631

SetCropPatternTS() Command StateDMI Documentation

1. Specify crop data for a location, to be processed with parcel data. For example, an irrigated lands

assessment using GIS might show zero acreage for a ditch but other information indicates that the
ditch irrigates lands. The ditch may be an individual (key) structure or may be part of an
aggregate/system. In this case, the specified data values contribute to the final data values in output.
The following dialog is used to edit the command and illustrates the syntax of the command. The
years typically agree with an irrigated lands assessment and the Process when value must be
specified as WithParcels. In this case, the SetCropPatternTS() commands should be
specified before ReadCropPatternTSFromHydroBase() or other similar commands. The
data will be processed as if they were read from HydroBase.

SetCropPatternTS_WithParcels

SetCropPatternTS() Command Editor (to specify parcel information)

2 - Command Reference – SetCropPatternTS() 632

StateDMI Documentation SetCropPatternTS() Command

2. Specify crop data to override (or supply) crop pattern data for a structure. In this case, the specified
data will be visible as the final data values in output and will not be considered when irrigated lands
parcels are processed. The Process when flag should be blank or Now. In this case, the
SetCropPatternTS() commands should be specified after
ReadCropPatternTSFromHydroBase() or other similar commands. It is recommended that
the previous alternative be used, in particular when multiple years of data are being processed and
need to be quality controlled.

SetCropPatternTS

SetCropPatternTS() Command Editor (to edit crop pattern time series)

 Command Reference – SetCropPatternTS() - 3 633

SetCropPatternTS() Command StateDMI Documentation

The command syntax is as follows:

SetCropPatternTS(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single CU Location identifier to match or a

pattern using wildcards (e.g., 20*).
None – must be specified.

SetStart The first year to set data values. If not specified, data are set for
the full output period.

SetEnd The last year to set data values. If not specified, data are set for
the full output period.

CropPattern A sequence of crop type and area values, to set
as data for the specified period.

None – must be specified.

SetStart Starting year to set data. Set for the full period.
SetEnd Ending year to set data. Set for the full period.
SetToMissing Indicate whether the crop pattern for the

specified years should be set to missing, instead
of supplying data values. This was used in the
Río Grande as follows: Read 1936, 1998, and
2002 data, resulting in crop pattern time series.
It is necessary to include all years in order to get
a complete list of crops over the period, even if
zero or missing in some years. After reading all
years, 2002 is set to missing using this
command and a standard filling approach is
used for the full period. Then, 2002 is read at
the end. The overall result is that 2002’s crops
are listed in the full period but only have non-
zero observations in 2002.

False

ProcessWhen Indicates when the specified data values should
be processed. If the parameter value is
WithParcels, then the values will be
considered when irrigated lands data are
processed with later
ReadCropPatternTSFromHydroBase().

Now, indicating that the acreage
should be set when the command
is processed (not when later read
commands are processed).

IfNotFound Used for error handling, one of the following:
• Fail – generate a failure message if the ID

is not matched
• Ignore – ignore (don’t add and don’t

generate a message) if the ID is not matched
• Warn – generate a warning message if the

ID is not matched

Warn

4 - Command Reference – SetCropPatternTS() 634

Command Reference:
SetCropPatternTSFromList()

Set crop pattern time series data from information in a delimited file

StateCU Command

Version 3.09.02, 2010-03-12

The SetCropPatternTSFromList() command sets crop pattern data for existing CU Locations by
reading information from a delimited file. New locations are not added. The data are set to zero for a
year being reset, and then values are applied for the year (acreage does not add to previous values). The
command can be used to set values over a period of 1+ years as follows:

1. If the SetStart and SetEnd parameters are specified and the year column is not specified,
then repeat the values from the file for each year in the set period. For example, this can be used
to provide acreage data not in HydroBase, for a specific year (set SetStart and SetEnd to the
same value).

2. If the year column is provided, use the year in the file to specify the year for the set. In this case,
SetStart and SetEnd control the period of data that will be processed from the file.

The command provides irrigated parcel acreage for two data processing situations:

1. Supplement HydroBase Acreage. If the ProcessWhen=WithParcels, the supplied data
will be processed when parcel data are read from HydroBase with
ReadCropPatternTSFromHydroBase(). HydroBase may not contain all irrigated lands
data. For example, additional lands may have been identified after HydroBase was populated or
acreage must be set for a model identifier that is not a structure WDID in HydroBase (e.g., out of
state lands). In this case, the command can be used to provide additional data to supplement
HydroBase. For example, this may be appropriate for diversion aggregates where part of the
data are in HydroBase for a year, but some parts of the aggregate require data to be provided by
this command. Therefore, it is important that the data are processed when reading from
HydroBase (otherwise a reset of HydroBase data might occur). Specifying the supply type allows
the FillCropPatternTSUsingWellRights() command to determine that a parcel has
groundwater only supply.

2. Provide Acreage Independent of HydroBase. If ProcessWhen=Now, the provided
information will be applied as the command is processed. This may be appropriate to explicitly
set data values, in the following cases:

a. Set acreage before processing HydroBase data are processed (where no data exist in
HydroBase).

b. Override values after HydroBase data have been processed (where HydroBase data are
inappropriate).

c. Supply acreage values independent of HydroBase.

For clarity in data management, it may be appropriate to use separate
SetCropPatternTSFromList() commands for each year of data. However, the command does
allow multiple years of data to be included in a single list file.

 Command Reference – SetCropPatternTSFromList() - 1 635

SetCropPatternTSFromList() Command StateDMI Documentation

The following dialog is used to edit the command and illustrates the syntax of the command for providing
acreage data that are not in HydroBase. The data will be processed when HydroBase data are read. The
file that is used is the same one used with the SetIrrigationPracticeTSFromList() and the
crop type and area should be specified (irrigation method and supply type are shown for consistency with
irrigation practice time series processing).

SetCropPatternTSFromList

SetCropPatternTSFromList() Command Editor – Provide Parcel Data not in HydroBase

The command syntax is as follows:

SetCropPatternTSFromList(Parameter=Value,…)

2 - Command Reference – SetCropPatternTSFromList() 636

StateDMI Documentation SetCropPatternTSFromList() Command

Command Parameters

Parameter Description Default
ListFile Path to the delimited list file to read. None – must be specified.
ID A single CU location identifier to match or a pattern

using wildcards (e.g., 20*).
None – must be specified.

SetStart The first year to set data values. If not specified, data are set for
the full output period.

SetEnd The last year to set data values. If not specified, data are set for
the full output period.

IDCol The column number (1+) containing the CU Location
identifiers. These values are matched against CU
Location identifiers in the existing irrigation practice
data.

None – must be specified.

YearCol The column number (1+) containing the year for data. The file values are applied to
each year in the data set.

CropTypeCol The column number (1+) containing the crop type. If not specified, the previous
data values will remain.

AreaCol The column number (1+) containing the crop area. If not specified, the previous
data values will remain.

Irrigation
MethodCol

The column number (1+) containing the irrigation
method, consistent with HydroBase (e.g.,
SPRINKLER, FLOOD).

If not specified, the previous
data values will remain.

SupplyTypeCol The column number (1+) containing the supply type
(Surface or Ground).

If not specified, the previous
data values will remain.

ProcessWhen When to process the data, one of:
• Now – set the values in the time series when the

command is encountered
• WithParcels – treat the data as raw parcel

data that should be processed when parcels are
read from HydroBase (see the
ReadCropPatternTSFromHydroBase()
command).

Now

Data file lines starting with the # character are treated as comments. If the first line’s values are
surrounded by double quotes, the line is assumed to indicate column headings. An example list file for
specifying acreage data (not in HydroBase) is shown below. Currently, supplemental acreage data can
have only a single irrigation method and supply type, to support irrigation practice time series processing.
Therefore, break supplemental acreage into multiple “parcels” if necessary.

The following data provide acreage for structures that did not have GIS data
and consequently no data in HydroBase. The data are specific to 1998 and are
used to set the CDS and IPY acres. The crop is used to provide CDS data. The
irrigation method and source are used to provide IPY data.
"ID","Crop","Acres","IrrigationMethod","SupplySource"
200500,GRASS_PASTURE,0,Flood,Surface
200506,GRASS_PASTURE,100,Flood,Surface
200507,GRASS_PASTURE,50,Flood,Surface
200508,GRASS_PASTURE,40,Flood,Surface
200522,GRASS_PASTURE,40,Flood,Surface
200523,GRASS_PASTURE,50,Flood,Surface
200526,GRASS_PASTURE,40,Flood,Surface
200529,GRASS_PASTURE,5,Flood,Surface
… etc…

 Command Reference – SetCropPatternTSFromList() - 3 637

SetCropPatternTSFromList() Command StateDMI Documentation

This page is intentionally blank.

4 - Command Reference – SetCropPatternTSFromList() 638

Command Reference: SetCULocation()

Set CU Location data

StateCU Command
Version 3.08.02, 2010-01-02

The SetCULocation() command sets data in existing CU Locations or adds a new CU Location. The
following dialog is used to edit the command and illustrates the syntax of the command.

SetCULocation

SetCULocation() Command Editor

 Command Reference – SetCULocation() - 1 639

SetCULocation() Command StateDMI Documentation

The command syntax is as follows:

SetCULocation(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single CU Location identifier to match

or a pattern using wildcards (e.g., 20*).
None – must be specified.

Latitude The latitude to be assigned for all
matching CU Locations.

If not specified, the original
value will remain.

Elevation The elevation to be assigned for all
matching CU Locations.

If not specified, the original
value will remain.

Region1 The Region1 to be assigned for all
matching CU Locations.

If not specified, the original
value will remain.

Region2 The Region2 to be assigned for all
matching CU Locations.

If not specified, the original
value will remain.

Name The name to be assigned for all matching
CU Locations.

If not specified, the original
value will remain.

AWC The available water content (AWC) to
be assigned for all matching CU
Locations.

If not specified, the original
value will remain.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message if

the ID pattern is not matched
• Ignore – ignore (don’t generate a

message) if the ID pattern is not
matched

• Warn – generate a warning message
if the ID pattern is not matched

Warn

2 - Command Reference – SetCULocation() 640

Command Reference:
SetCULocationClimateStationWeights ()

Set CU Location climate station weights data

StateCU Command

Version 3.09.00, 2010-01-24

The SetCULocationClimateStationWeights() command sets climate station weights data in
existing CU Locations. The following dialog is used to edit the command and illustrates the syntax of the
command.

SetCULocationClimateStationWeights

SetCULocationClimateStationWeights() Command Editor

 Command Reference – SetCULocationClimateStationWeights() - 1 641

SetCULocationClimateStationWeights() Command StateDMI Documentation

The command syntax is as follows:

SetCULocationClimateStationWeights(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single CU Location identifier to match

or a pattern using wildcards (e.g., 20*).
None – must be specified.

Include
Orographic
TempAdj

If True, include the orographic
temperature adjustment factor, after the
Weights described below, specified as
degrees/1000 feet.

False

Include
Orographic
PrecAdj

If True, include the orographic
precipitation adjustment factor, after the
Weights described below, specified as
a fraction 0.0 to 1.0. Place after the
orographic temperature adjustment factor
if it is specified.

False

Weights A repeating pattern of StationID,
TempWt, PrecWt, where the station
identifiers match climate station
identifiers and the weights are specified
as fractions in the range 0.0 to 1.0. Also
include the orographic temperature
and/or orographic precipitation
adjustment factors if the above
parameters are True.

None – must be specified.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message if

the ID pattern is not matched
• Ignore – ignore (don’t generate a

message) if the ID pattern is not
matched

• Warn – generate a warning message
if the ID pattern is not matched

Warn

2 - Command Reference – SetCULocationClimateStationWeights() 642

Command Reference:
setCULocationClimateStationWeightsFromHydro

Base()

Set CU Location climate station weights data from HydroBase

StateCU Command
Version 01.07.00, 2004-03-31, Color, Acrobat Distiller

The setCULocationClimateStationWeightsFromHydroBase() command sets climate
station weights data in existing CU Locations, using HydroBase for data. The following dialog is used to
edit the command and illustrates the syntax of the command.

setCULocationClimateStationWeightsFromHydroBase

setCULocationClimateStationWeightsFromHydroBase() Command Editor

 Command Reference – setCULocationClimateStationWeightsFromHydroBase() - 1 643

setCULocationClimateStationWeightsFromHydroBase() Command StateDMI Documentation

The command syntax is as follows:

setCULocationClimateStationWeightsFromHydroBase(param=value,…)

Command Parameters

Parameter Description Default
ID A single CU Location identifier to match

or a pattern using wildcards (e.g., 20*).
None – must be specified.

2 - Command Reference – setCULocationClimateStationWeightsFromHydroBase() 644

Command Reference:
SetCULocationClimateStationWeightsFromList()

Set CU Location climate station weights from data in a list file

StateCU and StateMod Command

Version 3.09.00, 2010-01-24

The SetCULocationClimateStationWeightsFromList() command reads climate station
weights from a list file and sets the information for CU Locations.

The following dialog is used to edit the command and illustrates the syntax of the command.

SetCULocationClimateStationWeightsFromList

SetCULocationClimateStationWeightsFromList() Command Editor

An example list file for setting data using Region1 (county) is shown below:

RGDSS.WTS - Hand built climate weights file for the RGDSS analysis
Base on Climate Assignment memo prepared 9/21/99
ID, Lat, County, HUC, TempWt, PrecWt
3951,37.7667,SAN JUAN,13010001,1.000,1.000
3951,37.7667,HINSDALE,13010001,1.000,1.000
2184,37.6833,RIO GRANDE,13010001,0.700,0.700
…

 Command Reference – SetCULocationClimateStationWeightsFromList() - 1 645

SetCULocationClimateStationWeightsFromList() Command StateDMI Documentation

An example list file for setting data by CU location ID is shown below:

#Date and Time |Thu May 03 11:31:37 2007
#Input Polygon Theme |2001_Acreage_CW
#Polygon ID Field |PARCEL_ID
#Climate Weights Workspace |S:\CDSS\GIS\Climate_Wts
#Orographic Grids Workspace |#
0200552,2220,0.19,1
0200552,3553,0.39,1
0200552,5116,0.42,1
0200805,1179,0.39,1
0200805,2220,0.1,1
0200805,3553,0.51,1

The command syntax is as follows:

SetCULocationClimateStationWeightsFromList(Parameter=Value,…)

Command Parameters

Parameter Description Default
ListFile The name of the input file to read, surrounded by

double quotes.
None – must be specified.

IDCol The column number (1+) containing the climate
station identifier.

None – must be specified. If
specified, Region1Col and
Region2Col should not be
specified.

Region1Col The column number (1+) containing the Region1
identifier.

If specified, the ID column
should not be specified.

Region2Col The column number (1+) containing the Region2
identifier.

If specified, the ID column
should not be specified.

TempWtCol The column number (1+) containing the temperature
station weights.

If not specified, the original
values remain.

PrecWtCol The column number (1+) containing the
precipitation station weights.

If not specified, the original
values remain.

Orographic
TempAdjCol

The column number (1+) containing the orographic
temperature adjustment factor (DEGF/1000 FT).

If not specified, the original
values remain.

Orographic
PrecAdjCol

The column number (1+) containing the orographic
precipitation adjustment factor (fraction).

If not specified, the original
values remain.

IfNotFound Used for error handling, one of the following:
• Fail – generate a failure message if the ID

pattern is not matched
• Ignore – ignore (don’t generate a message) if

the ID pattern is not matched
• Warn – generate a warning message if the ID

pattern is not matched

Warn

2 - Command Reference – SetCULocationClimateStationWeightsFromList() 646

Command Reference: SetCULocationsFromList()

Set CU Location data from information in a delimited file

StateCU Command
Version 3.08.02, 2010-01-07

The SetCULocationsFromList() command sets data in existing CU Locations by reading
information from a delimited file. New locations are not added. The following dialog is used to edit the
command and illustrates the syntax of the command.

SetCULocationsFromList

SetCULocationsFromList() Command Editor

 Command Reference – SetCULocationsFromList() - 1 647

SetCULocationsFromList() Command StateDMI Documentation

The command syntax is as follows:

SetCULocationsFromList(Parameter=Value,…)

Command Parameters

Parameter Description Default
ListFile Path to the delimited list file to read. None – must be specified.
IDCol The column number (1+) containing the

CU Location identifiers.
None – must be specified.

LatitudeCol The column number (1+) containing the
CU Location latitude.

If not specified, the previous
value will remain.

ElevationCol The column number (1+) containing the
CU Location elevation.

If not specified, the previous
value will remain.

Region1Col The column number (1+) containing the
CU Location Region1.

If not specified, the previous
value will remain.

Region2Col The column number (1+) containing the
CU Location Region2.

If not specified, the previous
value will remain.

NameCol The column number (1+) containing the
CU Location name.

If not specified, the previous
value will remain.

AWCCol The column number (1+) containing the
CU Location AWC.

If not specified, the previous
value will remain.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message if

the climate station is not found
• Ignore – ignore (don’t add and

don’t generate a message) if the
climate station is not found

• Warn – generate a warning message
if the climate station is not found

Warn

Lines starting with the # character are treated as comments. If the first line’s values are surrounded by
double quotes, the line is assumed to indicate column headings.

An example list file is shown below:

72_ADC064,MESA2
72_ADC063,MESA2
72_ARC010,MESA2
950030,MESA2
720766,MESA2
720731,MESA2
720514,MESA2
720933,MESA2
72_ADC062,MESA2
721339,MESA2
720580,MESA2

2 - Command Reference – SetCULocationsFromList() 648

Command Reference: SetDebugLevel()
Set Level for Debug Messages

General Command

Version 3.08.02, 2010-01-06

The SetDebugLevel() command is used to set debug levels for the screen and log file. The
following dialog is used to edit this command and illustrates the command syntax.

SetDebugLevel

SetDebugLevel() Command Editor

Debug messages are useful during troubleshooting. A general guideline is that a debug level of 1 prints
basic messages, 30 prints detailed information about processing, and 100 prints very low-level messages
about input/output. Intermediate values will result in more or less output.

This command is useful for troubleshooting and can be specified multiple times to increase debug output
for a specific command, if necessary.

 Command Reference – SetDebugLevel() - 1 649

SetDebugLevel() Command StateDMI Documentation

This page is intentionally blank.

2 - Command Reference – SetDebugLevel() 650

Command Reference: SetDiversionAggregate ()

Set diversion aggregate parts

StateCU and StateMod Command
Version 3.08.02, 2010-01-07

The SetDiversionAggregate() command sets diversion aggregate part identifier data for a
diversion (a CU Location that corresponds to a diversion or D&W node or StateMod diversion station).
Diversion aggregates are specified using a list of ditch identifiers, and the aggregation information applies
for the full model period (does not vary by year). To facilitate processing, it is often best to use list files
to specific aggregates (see SetDiversionAggregateFromList()). Aggregates by convention
have their water rights grouped into classes – to represent all water rights at a location, use a system (see
the similar System commands). See also the StateDMI Introduction chapter, which provides additional
information about aggregates and other modeling conventions. Aggregate information should be
specified after diversion locations are defined and before their use in other processing, such as reading
data from HydroBase.

The following dialog is used to edit the command and illustrates the syntax of the command.

SetDiversionAggregate

SetDiversionAggregate() Command Editor

 Command Reference – SetDiversionAggregate () - 1 651

SetDiversionAggregate () Command StateDMI Documentation

The command syntax is as follows:

SetDiversionAggregate(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID The diversion identifier to associate with

the collection of individual diversions.
None – must be specified.

PartIDs The list of part identifiers to comprise the
aggregate, for example ditch WDIDs that
will be found in HydroBase. The part
identifiers are by default of type Ditch.

None – must be specified.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message if

the identifier is not matched
• Ignore – ignore (don’t add and

don’t generate a message) if the
identifier is not matched

• Warn – generate a warning message
if the identifier is not matched

Warn

2 - Command Reference – SetDiversionAggregate () 652

Command Reference:
SetDiversionAggregateFromList()

Set diversion aggregate parts from data in a list file

StateCU and StateMod Command

Version 3.08.02, 2010-01-07

The SetDiversionAggregateFromList() command sets diversion aggregate part identifier data
for a diversion (a CU Location that corresponds to a diversion or D&W node or StateMod diversion
station). Diversion aggregates are specified using a list of ditch identifiers, and the aggregation
information applies for the full model period (does not vary by year). To facilitate processing, the list of
parts is specified in a delimited list file. Aggregates by convention have their water rights grouped into
classes – to represent all water rights at a location, use a system (see the similar System commands).
See also the StateDMI Introduction chapter, which provides additional information about aggregates and
other modeling conventions. Aggregate information should be specified after diversion locations are
defined and before their use in other processing, such as reading data from HydroBase.

The following dialog is used to edit the command and illustrates the syntax of the command.

SetDiversionAggregateFromList

SetDiversionAggregateFromList() Command Editor

 Command Reference – SetDiversionAggregateFromList() - 1 653

SetDiversionAggregateFromList() Command StateDMI Documentation

The command syntax is as follows:

SetDiversionAggregateFromList(Parameter=Value,…)

Command Parameters

Parameter Description Default
ListFile The name of the input file to read,

surrounded by double quotes.
None – must be specified.

IDCol The column number (1+) containing the
aggregate diversion identifiers.

None – must be specified.

NameCol The column number (1+) containing the
aggregate diversion name.

None – optional (name will
remain as previously defined).

PartIDsCol The column number (1+) for the first
column having part identifiers. The
identifiers are ditch WDIDs that will be
found in HydroBase. The part identifiers
are by default of type Ditch.

None – must be specified.

PartsListedHow If InRow, it is expected that all parts
defining an aggregate are listed in the
same row (as shown in the example
below). If InColumn, it is expected
that the parts defining an aggregate are
listed one per row, with multiple rows
defining the full aggregate
(PartIDsColMax is ignored in this
case).

None – must be specified.

PartIDsColMax The column number (1+) for the last
column having part identifiers. Use if
extra columns on the right need to be
excluded from the list.

Use all available non-blank
columns starting with
PartIDsCol.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message if

the aggregate identifier is not
matched

• Ignore – ignore (don’t add and
don’t generate a message) if the
aggregate identifier is not matched

• Warn – generate a warning message
if the aggregate identifier is not
matched

Warn

2 - Command Reference – SetDiversionAggregateFromList() 654

StateDMI Documentation SetDiversionAggregateFromList() Command

An example list file is shown below:

51_ADC001,Colorado River nr Granby,510580,510663,510703,510704,510707,510833,510841,510974,511032,511033,511048
51_ADC002,Willow Creek,510742,510818,510819,510847,510920,510930,510962
51_ADC003,Ranch Creek,510513,510568,510606,510681,510708,510727,510767
…

The following command file illustrates how diversion aggregates are defined with this command and how
the aggregate classes are specified when reading diversion rights from HydroBase:

ddr.commands.StateDMI

StateDMI command file to create the direct diversion rights file for the Colorado
model

Step 1 - read structures from preliminary direct diversion station file

ReadDiversionStationsFromStateMod(InputFile="cm2005_dds.dds")

Step 2 - read aggregate and diversion system structure assignments. Note that
want to combine water rights for aggs and diversion systems, but
water rights are assigned to primary and secondary components of
multistructures

SetDiversionAggregateFromList(ListFile="cm_agg.csv",IDCol=1,NameCol=2,PartIDsCol=3,
 PartsListedHow=InRow)
SetDiversionSystemFromList(ListFile="cm_divsys.csv",IDCol=1,NameCol=2,PartIDsCol=3,
 PartsListedHow=InRow)

Step 3 - read diversion rights from HydroBase and define water rights classes
used for aggregate structures - but NOT for diversion systems

ReadDiversionRightsFromHydroBase(ID="*",OnOffDefault=1,
 AdminNumClasses="14854.00000,20427.18999,22729.21241,30895.21241,31258.00000,
 32023.28989,39095.38998,43621.42906,46674.00000,48966.00000,99999.")

Step 4 - set water rights for structure IDs different from or not included in
HydroBase

Grand Valley Area - many rights obtain water through operations
SetDiversionRight(ID="720646.02",Name="Orchard Mesa Irr Dist
Sys",StationID="ID",OnOff=1,IfNotFound=Add,IfFound=Set)
SetDiversionRight(ID="720646.03",Name="Orchard Mesa Irr Dist
Sys",StationID="ID",OnOff=1,IfNotFound=Add,IfFound=Set)
SetDiversionRight(ID="720646.05",Name="USA Power
Plant",StationID="ID",Decree=800.0,OnOff=1,IfNotFound=Add,IfFound=Set)
SetDiversionRight(ID="720646.07",Name="Grand Valley
Proj",StationID="ID",AdministrationNumber=22729.19544,Decree=40.0,OnOff=1,
 IfNotFound=Add,IfFound=Set)
… commands omitted

Step 7 - create direct diverison rights file

WriteDiversionRightsToStateMod(OutputFile="cm2005.ddr")

 Command Reference – SetDiversionAggregateFromList () - 3 655

SetDiversionAggregateFromList() Command StateDMI Documentation

This page is intentionally blank.

4 - Command Reference – SetDiversionAggregateFromList() 656

Command Reference:
SetDiversionDemandTSMonthly()

Set diversion demand time series (monthly) data

StateMod Command

Version 3.09.01, 2010-02-01

The SetDiversionDemandTSMonthly() command sets the diversion demand time series
(monthly) for a specific diversion station, by reading another time series from a file or HydroBase. If data
already exist, the previous time series is discarded. The period of the time series is set to the output
period. This command is useful if data cannot be calculated in an automated fashion (e.g., municipal
demands may need to be specified manually). The following dialog is used to edit the command and
illustrates the syntax of the command.

SetDiversionDemandTSMonthly

SetDiversionDemandTSMonthly() Command Editor

 Command Reference – SetDiversionDemandTSMonthly() - 1 657

SetDiversionDemandTSMonthly() Command StateDMI Documentation

The command syntax is as follows:

SetDiversionDemandTSMonthly(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single diversion station identifier to match or a

pattern using wildcards (e.g., 20*).
None – must be
specified.

TSID The full time series identifier, which is used to
locate and read the time series. Currently time
series from StateMod and DateValue files are
recognized. See the TSTool input type
appendices for the formats of these files. Other
input types can be enabled if necessary.

None – must be
specified.

LEZeroInAverage Indicates whether values <= 0 should be
considered when computing historical averages.

True

IfNotFound Used for error handling, one of the following:
• Add – add the time series if the ID is not

matched and is not a wildcard
• Fail – generate a failure message if the ID

is not matched
• Ignore – ignore (don’t add and don’t

generate a message) if the ID is not matched
• Warn – generate a warning message if the

ID is not matched

Warn

2 - Command Reference – SetDiversionDemandTSMonthly() 658

Command Reference:
SetDiversionDemandTSMonthlyConstant()

Set diversion demand time series (monthly) data to a constant value

StateMod Command

Version 3.09.01, 2010-02-01

The SetDiversionDemandTSMonthlyConstant() command sets diversion demand time series
(monthly) data to a constant value. The output period can be set or will default to that defined by the
most recent SetOutputPeriod() command. If a matching time series is not found, it can be added to
the list of time series (at the end). The values that are set are treated the same as observations from
HydroBase. To ensure that set values remain, use the
SetDiversionDemandTSMonthlyConstant() command after other commands that may modify
the time series.

The following dialog is used to edit the command and illustrates the syntax of the command.

SetDiversionDemandTSMonthlyConstant

SetDiversionDemandTSMonthlyConstant() Command Editor

 Command Reference – SetDiversionDemandTSMonthlyConstant() - 1 659

SetDiversionDemandTSMonthlyConstant() Command StateDMI Documentation

The command syntax is as follows:

SetDiversionDemandTSMonthlyConstant(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single diversion station identifier to match or a

pattern using wildcards (e.g., 20*).
None – must be specified.

Constant A constant diversion demand value. None – must be specified.
SetStart The start of the period for the set, in a standard

date/time format for monthly data (e.g., YYYY-MM
or MM/YYYY).

The output period start.

SetEnd The end of the period for the set, in a standard
date/time format for monthly data (e.g., YYYY-MM
or MM/YYYY).

The output period end.

RecalcLimits If True, then the constant values will be treated
as observations and the historical averages will be
recalculated with the values. False will result in
the time series being set but the previous averages
remaining. The averages are used with fill
commands.

True

IfNotFound Used for error handling, one of the following:
• Add – add the time series if the ID is not

matched and is not a wildcard
• Fail – generate a failure message if the ID is

not matched
• Ignore – ignore (don’t add and don’t

generate a message) if the ID is not matched
• Warn – generate a warning message if the ID

is not matched

Warn

2 - Command Reference – SetDiversionDemandTSMonthlyConstant() 660

Command Reference:
SetDiversionHistoricalTSMonthly()

Set diversion historical time series (monthly) data by reading another time series

StateMod Command

Version 3.09.01, 2010-02-01

The SetDiversionHistoricalTSMonthly() command sets the diversion historical time series
(monthly) for a specific diversion, by reading another time series from HydroBase, or a StateMod or
DateValue file. This command is useful if data do not exist in the HydroBase database or are saved using
a different identifier (e.g., diversion records for transbasin structures may be saved as a gaged streamflow
time series). If data already exist, the previous time series is discarded. If a time series is not found, a
new time series can be added at the end of the time series list (use the
SortDiversionHistoricalTSMonthly() command if necessary before writing). The period of
the time series that is read is the output period from the SetOutputPeriod() command. The time
series are treated the same as those read from HydroBase with the
ReadDiversionHistoricalTSMonthlyFromHydroBase() command. For example, the
LimitDiversionHistoricalTSMonthlyToRights() command will not modify the
observations in the time series. If necessary, to ensure that set values remain for output, use the
SetDiversionHistoricalTSMonthly() command after other commands that may modify the
time series.

If time series are read from HydroBase, it is useful to use TSTool to first verify the time series identifier.
For example, for the Streamflow data type, the data source may be USGS, DWR, or other. Diversion
comments will be applied by default if available, resulting in additional zero values for diversions. Non-
fatal warnings will be generated in the log file for HydroBase time series that do not have diversion
comments (e.g., streamflow time series). Warnings are generated because it can be difficult to
differentiate a stream gate identifier from a diversion WDID.

The following dialog is used to edit the command and illustrates the syntax of the command.

 Command Reference – SetDiversionHistoricalTSMonthly() - 1 661

SetDiversionHistoricalTSMonthly() Command StateDMI Documentation

SetDiversionHistoricalTSMonthly

SetDiversionHistoricalTSMonthly() Command Editor

The command syntax is as follows:

SetDiversionHistoricalTSMonthly(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single diversion station identifier to match or a pattern using wildcards (e.g., 20*). None – must

be specified.
TSID The full time series identifier, which is used to locate and read the time series.

Currently time series from the following: HydroBase, StateMod file, DateValue file.
See the TSTool input type appendices for the formats of these files. Other input types
can be enabled if necessary.

None – must
be specified.

LEZeroIn
Average

Indicates whether values <= 0 should be considered when computing historical
averages. These averages are used later with the
FillDiversionHistoricalTSMonthlyAverage() and
FillDiversionHistoricalTSMonthlyPattern() commands.

True

IfNot
Found

Used for error handling, one of the following:
• Add – add the time series if the ID is not matched and is not a wildcard
• Fail – generate a failure message if the ID is not matched
• Ignore – ignore (don’t add and don’t generate a message) if the ID is not matched
• Warn – generate a warning message if the ID is not matched

Warn

2 - Command Reference – SetDiversionHistoricalTSMonthly() 662

Command Reference:
SetDiversionHistoricalTSMonthlyConstant()

Set diversion historical time series (monthly) data to a constant value

StateMod Command

Version 3.09.01, 2010-02-01

The SetDiversionHistoricalTSMonthlyConstant() command sets diversion historical time
series (monthly) data to a constant value. The output period can be set or will default to that defined by
the most recent SetOutputPeriod() command. If a matching time series is not found, it can be
added to the list of time series (at the end). The values that are set are treated the same as observations
from HydroBase. To ensure that set values remain, use the
SetDiversionHistoricalTSMonthlyConstant() command after other commands that may
modify the time series.

The following dialog is used to edit the command and illustrates the syntax of the command.

SetDiversionHistoricalTSMonthlyConstant

SetDiversionHistoricalTSMonthlyConstant() Command Editor

 Command Reference – SetDiversionHistoricalTSMonthlyConstant() - 1 663

SetDiversionHistoricalTSMonthlyConstant() Command StateDMI Documentation

The command syntax is as follows:

SetDiversionHistoricalTSMonthlyConstant(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single diversion station identifier to match or a

pattern using wildcards (e.g., 20*).
None – must be specified.

Constant A constant historical diversion value. None – must be specified.
SetStart The start of the period for the set, in a standard

date/time format for monthly data (e.g., YYYY-MM
or MM/YYYY).

The output period start.

SetEnd The end of the period for the set, in a standard
date/time format for monthly data (e.g., YYYY-MM
or MM/YYYY).

The output period end.

RecalcLimits If True, then the constant values will be treated
as observations and the historical averages will be
recalculated with the values. False will result in
the time series being set but the previous averages
remaining. The averages are used with fill
commands.

True

IfNotFound Used for error handling, one of the following:
• Add – add the time series if the ID is not

matched and is not a wildcard
• Fail – generate a failure message if the ID is

not matched
• Ignore – ignore (don’t add and don’t

generate a message) if the ID is not matched
• Warn – generate a warning message if the ID

is not matched

Warn

2 - Command Reference – SetDiversionHistoricalTSMonthlyConstant() 664

Command Reference: SetDiversionMultiStruct()

Set diversion MultiStruct parts

StateCU and StateMod Command
Version 3.09.01, 2010-02-01

The SetDiversionMultiStruct() command sets diversion MultiStruct part identifier data for a
diversion (a CU Location or StateMod diversion station). A diversion MultiStruct indicates that multiple
diversion stations take water from more than one tributary but irrigate the same lands. Each diversion
station is included in the model network and retains its normal capacity and historical diversions;
however, average efficiencies are calculated using the combined demand and historical diversion time
series. The demands for the primary structure (the first listed) are set to the total demands, with demands
for secondary stations being set to zero. Diversion MultiStruct definition commands are required only
when processing the demand time series. The following dialog is used to edit the command and
illustrates the syntax of the command.

SetDiversionMultiStruct

SetDiversionMultiStruct() Command Editor

 Command Reference – SetDiversionMultiStruct () - 1 665

SetDiversionMultiStruct() Command StateDMI Documentation

The command syntax is as follows:

SetDiversionMultiStruct(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID The diversion identifier to associate with

the MultiStruct part identifiers.
None – must be specified.

PartIDs The list of part identifiers to comprise the
MultiStruct, separated by commas and/or
spaces. The first identifier is the primary
diversion station, and the others are
secondary stations.

None – must be specified.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message if

the MultiStruct identifier is not
matched

• Ignore – ignore (don’t add and
don’t generate a message) if the
aggregate identifier is not matched

• Warn – generate a warning message
if the aggregate identifier is not
matched

Warn

2 - Command Reference – SetDiversionMultiStruct () 666

Command Reference:
SetDiversionMultiStructFromList()

Set diversion MultiStruct parts from data in a list file

StateCU and StateMod Command

Version 3.09.01, 2010-02-01

The SetDiversionMultiStructFromList() command reads diversion MultiStruct part
identifier data from a list file and saves the information for the diversion (a CU Location or StateMod
diversion station). A diversion MultiStruct indicates that multiple diversion stations take water from
more than one tributary but irrigate the same lands. Each diversion station is included in the model
network and retains its normal capacity and historical diversions; however, average efficiencies are
calculated using the combined demand and historical diversion time series. The demands for the primary
structure (the first listed) are set to the total demands, with demands for secondary stations being set to
zero. Diversion MultiStruct definition commands are required only when processing the demand time
series. The following dialog is used to edit the command and illustrates the syntax of the command.

SetDiversionMultiStructFromList

SetDiversionMultiStructFromList() Command Editor

 Command Reference – SetDiversionMultiStructFromList() - 1 667

SetDiversionMultiStructFromList() Command StateDMI Documentation

The command syntax is as follows:

SetDiversionMultiStructFromList(Parameter=Value,…)

Command Parameters

Parameter Description Default
ListFile The name of the input file to read,

surrounded by double quotes.
None – must be specified.

IDCol The column number (1+) containing the
diversion MultiStruct primary station
identifiers.

None – must be specified.

NameCol The column number (1+) containing the
diversion MultiStruct name.

None – optional (if not specified
the name will not be changed).

PartIDsCol The column number (1+) for the first
column having part identifiers.

None – must be specified.

PartIDsColMax The column number (1+) for the last
column having part identifiers.

Use all available columns.

PartsListedHow If InRow, it is expected that all parts
defining a system are listed in the same
row. If InColumn, it is expected that
the parts defining a system are listed one
per row, with multiple rows defining the
full system (PartIDsColMax is
ignored in this case).

None – must be specified.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message if

the MultiStruct identifier is not
matched

• Ignore – ignore (don’t add and
don’t generate a message) if the
aggregate identifier is not matched

• Warn – generate a warning message
if the aggregate identifier is not
matched

Warn

An example list file is shown below:

#AggID,Ditch,Ditch,Ditch,Ditch,Ditch,Ditch,Ditch,Ditch,Ditch,Ditch,Ditch,
20MS01,200516,200613,201004
20MS02,200623,201060,210521,210522
20MS03,200706,200784
20MS04,200814,200815
20MS05,200683,200775
…

2 - Command Reference – SetDiversionMultiStructFromList() 668

Command Reference: SetDiversionRight()

Set diversion right data

StateCU and StateMod Command
Version 3.09.00, 2010-01-26

The SetDiversionRight() command sets data in existing diversion rights or adds a new diversion
right. If a new right is added, it is added in alphabetical order according to the right identifier. The
following dialog is used to edit the command and illustrates the syntax of the command.

SetDiversionRight

SetDiversionRight() Command Editor

 Command Reference – SetDiversionRight() - 1 669

SetDiversionRight() Command StateDMI Documentation

The command syntax is as follows:

SetDiversionRight(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single diversion right identifier to

match or a pattern using wildcards
(e.g., 20*).

None – must be specified.

Name The name to be assigned for all
matching diversion rights.

If not specified, the original
value will remain.

StationID The diversion station identifier to be
assigned for all matching diversion
rights.

If not specified, the original
value will remain.

AdministrationNumber The administration number to be
assigned for all matching diversion
rights.

If not specified, the original
value will remain.

Decree The water right decree to be assigned
for all matching diversion rights.

If not specified, the original
value will remain.

OnOff The on/off switch value to be assigned
for all matching diversion rights, either
1 for on or 0 for off, a positive 4-digit
year to turn the right on starting in the
year, or a negative 4-digit year to turn
the right off starting in the year.

If not specified, the original
value will remain.

IfNotFound Used for error handling, one of the
following:
• Add – add the water right if the ID

is not matched and is not a
wildcard

• Fail – generate a failure message
if the ID is not matched

• Ignore – ignore (don’t add and
don’t generate a message) if the ID
is not matched

• Warn – generate a warning
message if the ID is not matched

Warn

IfFound Used for error handling, one of the
following:
• Set – set the water right data
• Fail – generate a failure message

if the ID is matched
• Ignore – ignore (don’t set and

don’t generate a message) if the ID
is matched

• Warn – generate a warning
message if the ID is matched

Warn

2 - Command Reference – SetDiversionRight() 670

Command Reference: SetDiversionStation()

Set diversion station data

StateMod Command
Version 3.09.01, 2010-02-01

The SetDiversionStation() command sets data in existing diversion stations or adds a new
diversion station. The following dialog is used to edit the command and illustrates the syntax of the
command.

SetDiversionStation

SetDiversionStation() Command Editor

The command syntax is as follows:

SetDiversionStation(Parameter=Value,…)

 Command Reference – SetDiversionStation() - 1 671

SetDiversionStation() Command StateDMI Documentation

Command Parameters

Parameter Description Default
ID A single diversion station identifier to match

or a pattern using wildcards (e.g., 20*).
None – must be specified.

Name The name to be assigned for all matching
diversion stations.

If not specified, the original
value will remain.

RiverNodeID The river node identifier to be assigned for
all matching diversion stations. Specify ID
to assign to the diversion station identifier.

If not specified, the original
value will remain.

OnOff The on/off switch value to be assigned for all
matching diversion stations, either 1 for on
or 0 for off.

If not specified, the original
value will remain.

Capacity The diversion station capacity, CFS. If not specified, the original
value will remain.

ReplaceResOption The replacement reservoir option, as per the
StateMod documentation.

If not specified, the original
value will remain.

DailyID The daily identifier to be assigned for all
matching diversion stations.

If not specified, the original
value will remain.

UserName The diversion user name (owner). If not specified, the original
value will remain.

DemandType The demand type to be assigned for all
matching diversion stations (see StateMod
documentation).

If not specified, the original
value will remain.

IrrigatedAcres The irrigated acres to be assigned for all
matching diversion stations.

If not specified, the original
value will remain.

UseType The use type to be assigned for all matching
diversion stations (see StateMod
documentation).

If not specified, the original
value will remain.

DemandSource The demand source to be assigned for all
matching diversion stations (see StateMod
documentation).

If not specified, the original
value will remain.

EffAnnual The annual efficiency (percent, 0 - 100) to
be assigned for all matching diversion
stations (see StateMod documentation).
Monthly efficiencies will be set to the same
value (but not used).

If not specified, the original
value will remain.

EffMonthly The monthly efficiencies (percent, 0 – 100)
to be assigned for all matching diversion
stations, specified as 12 comma-separated
values, January to December. The annual
efficiency will be set to the average value.
The order of the values in the output file will
be according to the output year type set by
SetOutputYearType(), or calendar by
default.

If not specified, the original
value will remain.

2 - Command Reference – SetDiversionStation() 672

StateDMI Documentation SetDiversionStation() Command

Parameter Description Default
Returns The return flows to be assigned for all

matching diversion stations. Specify as
StationID,Percent,DelayTableID;
StationID,Percent,DelayTableID;
etc.

If not specified, the original
value will remain.

IfNotFound Used for error handling, one of the
following:
• Add – add the diversion station if the ID

is not matched and is not a wildcard
• Fail – generate a failure message if the

ID is not matched
• Ignore – ignore (don’t add and don’t

generate a message) if the ID is not
matched

• Warn – generate a warning message if
the ID is not matched

Warn

 Command Reference – SetDiversionStation() - 3 673

SetDiversionStation() Command StateDMI Documentation

This page is intentionally blank.

4 - Command Reference – SetDiversionStation() 674

Command Reference:
SetDiversionStationCapacitiesFromTS()

Set diversion station capacity data as maximum historical diversion

StateMod Command

Version 3.09.01, 2010-02-01

The SetDiversionStationCapacitiesFromTS() command sets diversion station capacities to
the maximum historical time series (monthly) value. The historical time series must have been previously
read or calculated with other commands. Monthly ACFT values are converted to CFS units by applying
the conversion:

CFS = X ACFT/(1.9835*DaysInMonth)

The following dialog is used to edit the command and illustrates the syntax of the command.

SetDiversionStationCapacitiesFromTS

SetDiversionStationCapacitiesFromTS() Command Editor

 Command Reference – SetDiversionStationCapacitiesFromTS() - 1 675

SetDiversionStationCapacitiesFromTS() Command StateDMI Documentation

The command syntax is as follows:

SetDiversionStationCapacitiesFromTS(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single diversion station identifier to match or a

pattern using wildcards (e.g., 20*).
None – must be specified.

IfNotFound Used for error handling, one of the following:
• Fail – generate a failure message if the ID is not

matched
• Ignore – ignore (don’t add and don’t generate a

message) if the ID is not matched
• Warn – generate a warning message if the ID is not

matched

Warn

The following command file excerpt illustrates how time series can be limited to rights prior to writing
the StateMod time series file. Note that the original diversion stations file is read and a new one is
written.

Step 2 - read structure list from preliminary direct diversion structure file

ReadDiversionStationsFromStateMod(InputFile="cm2005_dds.dds")
…steps omitted…

Step 8 - fill historical diversion using pattern approach

FillDiversionHistoricalTSMonthlyPattern(ID="36*",PatternID="09034500")
…similar commands omitted…

Step 9 - Fill remaining missing with month average

FillDiversionHistoricalTSMonthlyAverage(ID="*")

Step 10 - Limit filled diversion to water rights. Exceptions include structure
receiving significant reservoir supply, carrier structures, etc.

LimitDiversionHistoricalTSMonthlyToRights(InputFile="..\statemod\cm2005.ddr",
 ID="*",IgnoreID="954683,952001,950010,950011")

Step 11 - sort structures and create historical diversion file

SortDiversionHistoricalTSMonthly(Order=Ascending)
WriteDiversionHistoricalTSMonthlyToStateMod(OutputFile="..\StateMod\cm2005.ddh")

Step 12 - update capacities and create final direct diversion station file

SetDiversionStationCapacitiesFromTS(ID="*")
WriteDiversionStationsToStateMod(OutputFile="..\statemod\cm2005.dds")

Check the results.
CheckDiversionHistoricalTSMonthly(ID="*")
WriteCheckFile(OutputFile="ddh.commands.StateDMI.check.html")

2 - Command Reference – SetDiversionStationCapacitiesFromTS() 676

Command Reference:
SetDiversionStationDelayTablesFromNetwork()

Set diversion station delay table data from the network

StateMod Command

Version 3.09.01, 2010-02-01

The SetDiversionStationDelayTablesFromNetwork() command sets delay table data in
existing diversion stations using network information. A default delay table is used to assign 100% of the
returns to the downstream node in the network. This command is often used to set a default before more
specific delay table information is set with the SetDiversionStationDelayTablesFromRTN()
command. The following dialog is used to edit the command and illustrates the syntax of the command.

SetDiversionStationDelayTablesFromNetwork

SetDiversionStationDelayTablesFromNetwork() Command Editor

 Command Reference – SetDiversionStationDelayTablesFromNetwork() - 1 677

SetDiversionStationDelayTablesFromNetwork() Command StateDMI Documentation

The command syntax is as follows:

SetDiversionStationDelayTablesFromNetwork(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single diversion station identifier to match or a

pattern using wildcards (e.g., 20*).
None – must be specified.

DefaultTable The default delay table to use when assigning the delay
tables.

None – must be specified.

IfNotFound Used for error handling, one of the following:
• Fail – generate a failure message if the ID is not

matched
• Ignore – ignore (don’t add and don’t generate a

message) if the ID is not matched
• Warn – generate a warning message if the ID is not

matched

Warn

2 - Command Reference – SetDiversionStationDelayTablesFromNetwork() 678

Command Reference:
SetDiversionStationDelayTablesFromRTN()

Set diversion station delay table data from an RTN format file

StateMod Command

Version 3.09.01, 2010-02-01

The SetDiversionStationDelayTableFromRTN() command sets delay table data in existing
diversion stations using information in an RTN format file, which is a format that has been used in CDSS
StateMod modeling, and is created by the “makertn” program. The following dialog is used to edit the
command and illustrates the syntax of the command.

SetDiversionStationDelayTablesFromRTN

SetDiversionStationDelayTablesFromRTN() Command Editor

 Command Reference – SetDiversionStationDelayTablesFromRTN() - 1 679

SetDiversionStationDelayTablesFromRTN() Command StateDMI Documentation

The command syntax is as follows:

SetDiversionStationDelayTablesFromRTN(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the RTN file to process. Specify an

absolute path or a path relative to the working directory.
None – must be specified.

SetEfficiency Indicates whether the default efficiency value in the file
should be used.

None – must be specified.

IfNotFound Used for error handling, one of the following:
• Fail – generate a failure message if the ID is not

matched
• Ignore – ignore (don’t add and don’t generate a

message) if the ID is not matched
• Warn – generate a warning message if the ID is not

matched

Warn

A sample RTN file is shown below:

200511 2 75 1
 200742 1 1
 200742 99 2
200742 2 75 1
 200787 1 1
 200787 99 2
200752 2 75 1
 20ADW07 1 1
 20ADW07 99 2

The first line contains the station identifier, number of return flow locations, default efficiency for the
station, and the default delay table to use for the return. For the number of return flow locations, the
following lines indicate the identifier for the station to receive the return, the percentage of the return to
receive, and the delay table for the return.

2 - Command Reference – SetDiversionStationDelayTablesFromRTN() 680

Command Reference:
SetDiversionStationsFromList()

Set diversion station data from a list file

StateMod Command

Version 3.09.01, 2010-02-01

The SetDiversionStationsFromList() command sets data in existing diversion stations (it
currently will not add a station – use ReadDiversionStationsFromList()). This command is
useful when data has been created from another program or process. The following dialog is used to edit
the command and illustrates the syntax of the command.

SetDiversionStationsFromList

SetDiversionStationsFromList() Command Editor

 Command Reference – SetDiversionStationsFromList() - 1 681

SetDiversionStationsFromList() Command StateDMI Documentation

The command syntax is as follows:

SetDiversionStationsFromList(Parameter=Value,…)

Command Parameters

Parameter Description Default
ListFile The name of the delimited input file to read.

Strings that include delimiter characters can
be surrounded by double quotes in the list
file. Lines starting with # are treated as
comments.

None – must be specified.

IDCol The column number (1+) containing the
diversion station identifiers.

If not specified, the original
value will remain.

NameCol The column number (1+) containing the
diversion station names.

If not specified, the original
value will remain.

RiverNodeIDCol The column number (1+) containing the
river node identifiers.

If not specified, the original
value will remain.

OnOffCol The column number (1+) containing the
on/off switch.

If not specified, the original
value will remain.

CapacityCol The column number (1+) containing the
capacity.

If not specified, the original
value will remain.

ReplaceResOptionCol The column number (1+) containing the
replacement reservoir option.

If not specified, the original
value will remain.

DailyIDCol The column number (1+) containing the
daily identifier.

If not specified, the original
value will remain.

UserNameCol The column number (1+) containing the
user name.

If not specified, the original
value will remain.

DemandTypeCol The column number (1+) containing the
demand type.

If not specified, the original
value will remain.

IrrigatedAcresCol The column number (1+) containing the
irrigated acres.

If not specified, the original
value will remain.

UseTypeCol The column number (1+) containing the use
type.

If not specified, the original
value will remain.

DemandSourceCol The column number (1+) containing the
demand source.

If not specified, the original
value will remain.

EffAnnualCol The column number (1+) containing the
annual efficiency. If the annual efficiency
is specified, each monthly efficiency will be
set to the annual value.

If not specified, the original
value will remain.

2 - Command Reference – SetDiversionStationsFromList() 682

StateDMI Documentation SetDiversionStationsFromList() Command

Parameter Description Default
EffMonthlyCol The column number (1+) containing the

monthly efficiency for January. The
efficiencies for other months should be
specified in columns that follow. The
annual efficiency is set to the average of the
monthly efficiencies. The efficiencies in
the list file must be listed January to
December as percent (0 to 100). The order
of the values in the StateMod diversion
stations will be according to the output year
type set by setOutputYearType(), or
calendar by default.

If not specified, the original
values will remain.

Delim The character(s) that delimits columns, or
one of the literal words:
• Space
• Tab
• Whitespace – spaces and tabs.

, (comma)

MergeDelim If True, then treat consecutive delimiter
characters as one delimiter. If False,
separate columns will result.

False

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message if

the ID is not matched
• Ignore – ignore (don’t add and don’t

generate a message) if the ID is not
matched

• Warn – generate a warning message if
the ID is not matched

Warn

The following example illustrates how to create diversion stations from a list file and then set the
efficiencies (in this case from a StateCU output file) from another list. The full data line is trimmed of
whitespace before processing and data in columns are automatically trimmed of whitespace after parsing.

StartLog(LogFile="commands.StateDMI.log")
For testing...
setOutputYearType(Water)
ReadDiversionStationsFromList(ListFile="rgdssall.csv",IDCol="1")
SetDiversionStationsFromList(
 ListFile="rg2007-diveff.csv",IDCol="1",
 EffMonthlyCol="2",Delim="Space",MergeDelim=True,IfNotFound=Warn)
WriteDiversionStationsToStateMod(OutputFile="rgdssall.dds")

 Command Reference – SetDiversionStationsFromList() - 3 683

SetDiversionStationsFromList() Command StateDMI Documentation

The following is an example of the list file used with the above:

Card 1 Control
format: (Free)
NOTE EFF1 IS JANUARY, EFF2 IS FEBRUARY, ETC.

ID cwelid: Well ID
Eff1 eff(1) Efficiency in month 1
Eff1 eff(2) Efficiency in month 2
...
Eff1 eff(12) Efficiency in month 12

#1 ID Eff1 Eff2 Eff3 Eff4 Eff5 Eff6'Eff7 Eff8 Eff9 Eff10 Eff11 Eff12
#----------eb------eb------eb------eb------eb------eb------eb---'---eb------eb------eb------eb------eb------exb----------eb-----

 200505 42. 42. 42. 42. 42. 42. 42. 42. 42. 42. 42. 42. ALAMOSA D
 200511 49. 49. 14. 8. 21. 30. 38. 35. 27. 11. 3. 4. ANACONDA D

4 - Command Reference – SetDiversionStationsFromList() 684

Command Reference: SetDiversionSystem()

Set diversion system parts

StateCU and StateMod Command
Version 3.08.02, 2010-01-07

The SetDiversionSystem() command sets diversion system part identifier data for a diversion (a
CU Location that corresponds to a diversion or D&W node or StateMod diversion station). Diversion
systems are specified using a list of ditch identifiers, and the system information applies for the full model
period (does not vary by year). To facilitate processing, it is often best to use list files to specific systems
(see SetDiversionSystemFromList()). Systems by convention have their water rights fully
represented in output – to aggregate water rights at a location, use an aggregate (see the similar
Aggregate commands). See also the StateDMI Introduction chapter, which provides additional
information about systems and other modeling conventions. System information should be specified after
diversion locations are defined and before their use in other processing, such as reading data from
HydroBase.

The following dialog is used to edit the command and illustrates the syntax of the command.

SetDiversionSystem

SetDiversionSystem() Command Editor

 Command Reference – SetDiversionSystem () - 1 685

SetDiversionSystem() Command StateDMI Documentation

The command syntax is as follows:

SetDiversionSystem(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID The diversion identifier to associate with

the collection of individual diversions.
None – must be specified.

PartIDs The list of part identifiers to comprise the
system, for example ditch WDIDs that
will be found in HydroBase. The part
identifiers are by default of type Ditch.

None – must be specified.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message if

the identifier is not matched
• Ignore – ignore (don’t add and

don’t generate a message) if the
identifier is not matched

• Warn – generate a warning message
if the identifier is not matched

Warn

2 - Command Reference – SetDiversionSystem () 686

Command Reference:
SetDiversionSystemFromList()

Set diversion system parts from data in a list file

StateCU and StateMod Command

Version 3.08.02, 2010-01-07

The SetDiversionSystemFromList() command sets diversion system part identifier data for a
diversion (a CU Location that corresponds to a diversion or D&W node or StateMod diversion station).
Diversion systems are specified using a list of ditch identifiers, and the system information applies for the
full model period (does not vary by year). To facilitate processing, the list of parts is specified in a
delimited list file. Systems by convention have their water rights fully represented in output – to
aggregate water rights at a location, use an aggregate (see the similar Aggregate commands). See also
the StateDMI Introduction chapter, which provides additional information about systems and other
modeling conventions. System information should be specified after diversion locations are defined and
before their use in other processing, such as reading data from HydroBase.

The following dialog is used to edit the command and illustrates the syntax of the command.

SetDiversionSystemFromList

SetDiversionSystemFromList() Command Editor

 Command Reference – SetDiversionSystemFromList() - 1 687

SetDiversionSystemFromList() Command StateDMI Documentation

The command syntax is as follows:

SetDiversionSystemFromList(Parameter=Value,…)

Command Parameters

Parameter Description Default
ListFile The name of the input file to read,

surrounded by double quotes.
None – must be specified.

IDCol The column number (1+) containing the
diversion system identifiers.

None – must be specified.

NameCol The column number (1+) containing the
diversion system name.

None – optional (name will
remain as previously defined).

PartIDsCol The column number (1+) for the first
column having part identifiers. The
identifiers are ditch WDIDs that will be
found in HydroBase. The part identifiers
are by default of type Ditch.

None – must be specified.

PartsListedHow If InRow, it is expected that all parts
defining a system are listed in the same
row (as shown in the example below). If
InColumn, it is expected that the parts
defining a system are listed one per row,
with multiple rows defining the full
system (PartIDsColMax is ignored in
this case).

None – must be specified.

PartIDsColMax The column number (1+) for the last
column having part identifiers. Use if
extra columns on the right need to be
excluded from the list.

Use all available non-blank
columns starting with
PartIDsCol.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message if

the system identifier is not matched
• Ignore – ignore (don’t add and

don’t generate a message) if the
system identifier is not matched

• Warn – generate a warning message
if the system identifier is not
matched

Warn

2 - Command Reference – SetDiversionSystemFromList() 688

StateDMI Documentation SetDiversionSystemFromList() Command

An example list file is shown below:

#the following are all divsystems
360649,Hamilton Davidson Div Sys,360649,360541
360662,Hoagland Div Sys,360662,360946,361018,361047,361020,361019,360945,361048,361049
380880,Mt. Sopris Div Sys,380880,381633
394725,Vulcan Ditch Div Sys,394725,390685
500734,Deberard Div Sys,500734,500548
510529,Big Lake Div Sys,510529,510584
510941,Vail Irr Div Sys,510941,511231
511309,FRASER RIVER DIVR PROJ,511309,510593
530555,Derby Div Sys,530555,530519,530521
720512,Arbogast Pump Div Sys,721072,720512
720852,RMG Div Sys,720852,720555
950050,Redlands Power Canal Irr,724713
720766,Ute WCD Carver Ranch,720766,721334
721329,Rapid Creek PP DivSys,721329,721235
720820,Park Creek DivSys,720820,720819

The following command file illustrates how diversion systems are defined with this command:

ddr.commands.StateDMI

StateDMI command file to create the direct diversion rights file for the Colorado model

Step 1 - read structures from preliminary direct diversion station file

ReadDiversionStationsFromStateMod(InputFile="cm2005_dds.dds")

Step 2 - read aggregate and diversion system structure assignments. Note that
want to combine water rights for aggs and diversion systems, but
water rights are assigned to primary and secondary components of multistructures

SetDiversionAggregateFromList(ListFile="cm_agg.csv",IDCol=1,NameCol=2,PartIDsCol=3,
 PartsListedHow=InRow)
SetDiversionSystemFromList(ListFile="cm_divsys.csv",IDCol=1,NameCol=2,PartIDsCol=3,
 PartsListedHow=InRow)

Step 3 - read diversion rights from HydroBase and define water rights classes
used for aggregate structures - but NOT for diversion systems

ReadDiversionRightsFromHydroBase(ID="*",OnOffDefault=1,
 AdminNumClasses="14854.00000,20427.18999,22729.21241,30895.21241,31258.00000,
 32023.28989,39095.38998,43621.42906,46674.00000,48966.00000,99999.")

Step 4 - set water rights for structure IDs different from or not included in HydroBase

Grand Valley Area - many rights obtain water through operations
SetDiversionRight(ID="720646.02",Name="Orchard Mesa Irr Dist
Sys",StationID="ID",OnOff=1,IfNotFound=Add,IfFound=Set)
SetDiversionRight(ID="720646.05",Name="USA Power
Plant",StationID="ID",Decree=800.0,OnOff=1,IfNotFound=Add,IfFound=Set)
SetDiversionRight(ID="720646.07",Name="Grand Valley
Proj",StationID="ID",AdministrationNumber=22729.19544,Decree=40.0,OnOff=1,
 IfNotFound=Add,IfFound=Set)
… commands omitted

Step 7 - create direct diverison rights file

WriteDiversionRightsToStateMod(OutputFile="cm2005.ddr")

 Command Reference – SetDiversionSystemFromList () - 3 689

SetDiversionSystemFromList() Command StateDMI Documentation

This page is intentionally blank.

4 - Command Reference – SetDiversionSystemFromList() 690

Command Reference:
SetInstreamFlowDemandTSAverageMonthlyConstant()

Set instream flow demand time series (average monthly) data to constant value(s)

StateMod Command

Version 3.09.01, 2010-02-02

The SetInstreamFlowDemandTSAveragMonthlyConstant() command sets instream flow
demand time series (average monthly) data to constant monthly values. Typically this command is used
to (re)set values after the SetInstreamFlowDemandTSAveragMonthlyFromRights()
command is used.

The following dialog is used to edit the command and illustrates the syntax of the command.

SetInstreamFlowDemandTSAverageMonthlyConstant

SetInstreamFlowDemandTSAverageMonthlyConstant() Command Editor

 Command Reference – SetInstreamFlowDemandTSAverageMonthlyConstant() - 1 691

SetInstreamFlowDemandTSAverageMonthlyConstant() Command StateDMI Documentation

The command syntax is as follows:

SetInstreamFlowDemandTSAverageMonthlyConstant(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single instream flow station identifier to match

or a pattern using wildcards (e.g., 20*).
None – must be specified.

MonthValues Twelve monthly instream flow demand time
series values for January through December.

None – must be specified.

RecalcLimits If True, then the time series average limits will
be recalculated. If False, the limits from
previously set data will be used (not typically
used).

True

IfNotFound Used for error handling, one of the following:
• Add – add the instream flow demand time

series if the ID is not matched and is not a
wildcard

• Fail – generate a failure message if the ID
is not matched

• Ignore – ignore (don’t add and don’t
generate a message) if the ID is not matched

• Warn – generate a warning message if the
ID is not matched

Warn

2 - Command Reference – SetInstreamFlowDemandTSAverageMonthlyConstant() 692

Command Reference:
SetInstreamFlowDemandTSAverageMonthlyFromRights()

Set instream flow demand time series (average monthly) data from instream flow

rights

StateMod Command
Version 3.09.01, 2010-02-02

The SetInstreamFlowDemandTSAverageMonthlyFromRights() command sets instream
flow demand time series (average monthly) data using instream flow water rights data that have been
previously read (e.g., from a ReadInstreamFlowRightsFromStateMod() command). The
resulting time series at each instream flow station represents the total water rights for the specified station.
The output year type is set to that defined by the most recent SetOutputYearType() command. For
average time series, it is only important that a sequence of months be specified in the time series. If water
year is used, then the data span two calendar years in memory. Incorrectly specifying the year type may
result in missing data in the output.

If necessary, the constant values determined from water rights can be reset using the
SetInstreamFlowDemandTSAverageMonthlyConstant() command.

The following dialog is used to edit the command and illustrates the syntax of the command.

SetInstreamFlowDemandTSAverageMonthlyFromRights

SetInstreamFlowDemandTSAverageMonthlyFromRights() Command Editor

 Command Reference – SetInstreamFlowDemandTSAverageMonthlyFromRights() - 1 693

SetInstreamFlowDemandTSAverageMonthlyFromRights() Command StateDMI Documentation

The command syntax is as follows:

SetInstreamFlowDemandTSAverageMonthlyFromRights(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single instream flow station identifier to match or a

pattern using wildcards (e.g., 20*).
None – must be specified.

IfNotFound Used for error handling, one of the following:
• Add – add the instream flow demand time series if

the ID is not matched and is not a wildcard
• Fail – generate a failure message if the ID is not

matched
• Ignore – ignore (don’t add and don’t generate a

message) if the ID is not matched
• Warn – generate a warning message if the ID is

not matched

Warn

2 - Command Reference – SetInstreamFlowDemandTSAverageMonthlyFromRights() 694

Command Reference: SetInstreamFlowRight()

Set instream flow right data

StateMod Command
Version 3.09.01, 2010-03-14, Color, Acrobat Distiller

The SetInstreamFlowRight() command sets data in existing instream flow rights or adds a new
instream flow right. If a new right is added, it is added in alphabetical order according to the right
identifier. Instream flow rights may be defined for a variety of reasons for modeling purposes where a
flow needs to be ensured.

The following dialog is used to edit the command and illustrates the syntax of the command.

SetInstreamFlowRight

SetInstreamFlowRight() Command Editor

 Command Reference – SetInstreamFlowRight() - 1 695

SetInstreamFlowRight() Command StateDMI Documentation

The command syntax is as follows:

SetInstreamFlowRight(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single instream flow right identifier to match

or a pattern using wildcards (e.g., 20*).
None – must be specified.

Name The name to be assigned for all matching
instream flow rights.

If not specified, the original
value will remain.

StationID The instream flow station identifier to be
assigned for all matching instream flow rights.

If not specified, the original
value will remain.

Administration
Number

The administration number to be assigned for
all matching instream flow rights.

If not specified, the original
value will remain.

Decree The water right decree to be assigned for all
matching instream flow rights.

If not specified, the original
value will remain.

OnOff The on/off switch value to be assigned for all
matching instream flow rights, either 1 for on
or 0 for off, a positive 4-digit year to turn the
right on starting in the year, or a negative 4-
digit year to turn the right off starting in the
year.

If not specified, the original
value will remain.

IfNotFound Used for error handling, one of the following:
• Add – add the instream flow right if the ID

is not matched and is not a wildcard
• Fail – generate a failure message if the

ID is not matched
• Ignore – ignore (don’t add and don’t

generate a message) if the ID is not
matched

• Warn – generate a warning message if the
ID is not matched

Warn

IfFound Used for error handling, one of the following:
• Set – set the instream flow right,

overwriting previous values if the ID is
matched

• Fail – generate a failure message if the
ID is matched

• Ignore – ignore (don’t add and don’t
generate a message) if the ID is matched

• Warn – generate a warning message if the
ID is matched

Warn

2 - Command Reference – SetInstreamFlowRight() 696

Command Reference: SetInstreamFlowStation()

Set instream flow station data

StateMod Command
Version 3.09.01, 2010-02-01

The SetInstreamFlowStation() command sets data in existing instream flow stations or adds a
new instream flow station. The following dialog is used to edit the command and illustrates the syntax of
the command.

SetInstreamFlowStation

SetInstreamFlowStation() Command Editor

 Command Reference – SetInstreamFlowStation() - 1 697

SetInstreamFlowStation() Command StateDMI Documentation

The command syntax is as follows:

SetInstreamFlowStation(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single instream flow station

identifier to match or a pattern using
wildcards (e.g., 20*).

None – must be specified.

Name The name to be assigned for all
matching instream flow stations.

If not specified, the original
value will remain.

UpstreamRiverNodeID The upstream river node identifier to
be assigned for all matching instream
flow stations.

If not specified, the original
value will remain.

DownstreamRiverNodeID The downstream river node identifier
to be assigned for all matching
instream flow stations.

If not specified, the original
value will remain.

OnOff The on/off switch value to be assigned
for all matching instream flow
stations, either 1 for on or 0 for off.

If not specified, the original
value will remain.

DailyID The daily identifier to be assigned for
all matching instream flow stations.

If not specified, the original
value will remain.

DemandType The demand type to be assigned for
all matching instream flow stations,
one of:

1 – Average monthly demand,
2 – Monthly demand.

If not specified, the original
value will remain.

IfNotFound Used for error handling, one of the
following:
• Add – add the instream flow

station if the ID is not matched
and is not a wildcard

• Fail – generate a failure
message if the ID is not matched

• Ignore – ignore (don’t add and
don’t generate a message) if the
ID is not matched

• Warn – generate a warning
message if the ID is not matched

Warn

2 - Command Reference – SetInstreamFlowStation() 698

Command Reference: SetIrrigationPracticeTS()

Set irrigation practice time series values

StateCU Command
Version 3.09.01, 2010-02-01

The SetIrrigationPracticeTS() command sets irrigation practice time series data for a CU
Location. Setting acreage values results in a cascade of adjustments to maintain sums, and will be noted
in the log file. Preference is given to maintaining the total acreage, then groundwater acreage, and then
surface water acreage. Irrigation method within groundwater will agree with the total and the sprinkler
and flood acreage will be prorated based on previous values if necessary to adjust to the total. Similar
adjustments are made to surface water acreage. The following dialog is used to edit the command and
illustrates the syntax of the command.

SetIrrigationPracticeTS

SetIrrigationPracticeTS() Command Editor

 Command Reference – SetIrrigationPracticeTS() - 1 699

SetIrrigationPracticeTS() Command StateDMI Documentation

The command syntax is as follows:

SetIrrigationPracticeTS (Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single CU Location identifier to match or a

pattern using wildcards (e.g., 20*).
None – must be specified.

SetStart The first year to set data values. If not specified, data are set for
the full output period.

SetEnd The last year to set data values. If not specified, data are set for
the full output period.

SurfaceDel
EffMax

Surface water delivery efficiency maximum (0.0
to 1.0).

If not specified, the original
value will remain.

FloodApp
EffMax

Flood application efficiency maximum (0.0 to
1.0).

If not specified, the original
value will remain.

SprinklerApp
EffMax

Sprinkler application efficiency maximum (0.0 to
1.0).

If not specified, the original
value will remain.

AcresSWFlood Acres irrigated by surface water, flood irrigation. If not specified, the original
value will remain, or will
recompute based on other set
values.

Acres
SWSprinkler

Acres irrigated by surface water, sprinkler
irrigation.

If not specified, the original
value will remain, or will
recompute based on other set
values.

Acres
GWFlood

Acres irrigated by groundwater, flood irrigation. If not specified, the original
value will remain, or will
recompute based on other set
values.

Acres
GWSprinkler

Acres irrigated by groundwater, sprinkler
irrigation.

If not specified, the original
value will remain, or will
recompute based on other set
values.

PumpingMax Maximum pumping, AF/M. If not specified, the original
value will remain.

GWMode Groundwater mode (see StateCU documentation). If not specified, the original
value will remain.

AcresTotal Total acres for location. This is normally set
from the crop pattern time series data.

If not specified, the original
value will remain.

IfNotFound Used for error handling, one of the following:
• Fail – generate a failure message if the ID

is not matched
• Ignore – ignore (don’t add and don’t

generate a message) if the ID is not matched
• Warn – generate a warning message if the ID

is not matched

Warn

2 - Command Reference – SetIrrigationPracticeTS() 700

StateDMI Documentation SetIrrigationPracticeTS() Command

The following command file illustrates how to process the irrigation practice time series file where
groundwater supply is used:

Sp2008L_DDH.StateDMI

StartLog(LogFile="SP_IPY.log")
SetOutputPeriod(OutputStart="01/1950",OutputEnd="12/2006")
Step 1 - Read CU Locations from list

ReadCULocationsFromList(ListFile="..\Sp2008L_StructList.csv",IDCol=1)

Step 2 - Read SW aggregates, GW aggregates, and divsystems

SetDiversionAggregateFromList(ListFile="..\Sp2008L_SWAgg.csv",IDCol=1,
 NameCol=2,PartIDsCol=3,PartsListedHow=InColumn)
SetDiversionSystemFromList(ListFile="..\Sp2008L_DivSys_CDS.csv",IDCol=1,
 NameCol=2,PartIDsCol=3,PartsListedHow=InRow)

SetWellSystemFromList(ListFile="..\SP_GWAgg_1956.csv",Year=1956,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\SP_GWAgg_1976.csv",Year=1976,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\SP_GWAgg_1987.csv",Year=1987,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\SP_GWAgg_2001.csv",Year=2001,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\SP_GWAgg_2005.csv",Year=2005,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)

Step 3 - Create form for *.ipy file
CreateIrrigationPracticeTSForCULocations(ID="*")

Step 4 - Set conveyance efficiencies from file for key and sw aggregate structures - NOT in HydroBase
SetIrrigationPracticeTSFromList(ListFile="Sp2008L_Eff.csv",ID="*",
 SetStart=1950,SetEnd=2006,IDCol="1",SurfaceDelEffMaxCol="3")

Step 5 - set max flood and surface water efficiencies and GWmode - NOT in HydroBase
SetIrrigationPracticeTS(ID="*",SetStart=1950,SetEnd=2006,FloodAppEffMax=.6,SprinklerAppEffMax=.8,GWMode=2)

Step 6 - Read well rights file and Set Max pumping (use merged *.wer file)
ReadWellRightsFromStateMod(InputFile="..\Wells\Sp2008L.wer")
SetIrrigationPracticeTSPumpingMaxUsingWellRights(ID="*",IncludeSurfaceWaterSupply=True,
 IncludeGroundwaterOnlySupply="True",NumberOfDaysInMonth=30.4)
Step 7 - Read category acreage from HydroBase
ReadIrrigationPracticeTSFromHydroBase(ID="*",Div="1")

Step 8 - Read total acreage from *.cds file and Set total for *.ipy file
ReadCropPatternTSFromStateCU(InputFile="Sp2008L.cds")
SetIrrigationPracticeTSTotalAcreageToCropPatternTSTotalAcreage(ID="*")

Step 9 - Estimate 1950 ground water acreage based on active wells as defined in the non-merged *.wer
file

ReadWellRightsFromStateMod(InputFile="..\Wells\Sp2008L_NotMerged.wer",Append=False)
FillIrrigationPracticeTSAcreageUsingWellRights(ID="*",IncludeSurfaceWaterSupply=True,
 IncludeGroundwaterOnlySupply="True",FillStart=1950,FillEnd=1955,ParcelYear=1956)

Step 10 - Fill Interpolate Acreage Type (SW and GW) 1956-2006
Step 11a - estimate total GW and total SW
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
GroundWater",FillStart="1956",FillEnd="1976")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
GroundWater",FillStart="1976",FillEnd="1987")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
GroundWater",FillStart="1987",FillEnd="2001")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
GroundWater",FillStart="2001",FillEnd="2005")
FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-

 Command Reference – SetIrrigationPracticeTS() - 3 701

SetIrrigationPracticeTS() Command StateDMI Documentation

GroundWater",FillStart="2005",FillEnd="2006",FillDirection="Forward")

Step 11b - set sprinkler to zero in early period
SetIrrigationPracticeTS(ID="*",SetStart=1950,SetEnd=1969,AcresSWSprinkler=0,AcresGWSprinkler=0)

Step 11c - fill remaining irrigation method values
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
SurfaceWaterOnlySprinkler",FillStart="1969",FillEnd="1976")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
SurfaceWaterOnlySprinkler",FillStart="1976",FillEnd="1987")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
SurfaceWaterOnlySprinkler",FillStart="1987",FillEnd="2001")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
SurfaceWaterOnlySprinkler",FillStart="2001",FillEnd="2005")
FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-
SurfaceWaterOnlySprinkler",FillStart="2005",FillEnd="2006",FillDirection="Forward")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
GroundWaterSprinkler",FillStart="1969",FillEnd="1976")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
GroundWaterSprinkler",FillStart="1976",FillEnd="1987")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
GroundWaterSprinkler",FillStart="1987",FillEnd="2001")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
GroundWaterSprinkler",FillStart="2001",FillEnd="2005")
FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-
GroundWaterSprinkler",FillStart="2005",FillEnd="2006",FillDirection="Forward")

Step 12 - Set Acreage = 0 for structures that are in diversion systems, so acreage is not double
accounted
SetIrrigationPracticeTS(ID="0100503_D",SetStart=1950,SetEnd=2006,AcresSWFlood=0,AcresSWSprinkler=0,
 AcresGWFlood=0,AcresGWSprinkler=0,PumpingMax=0,AcresTotal=0)
SetIrrigationPracticeTS(ID="0100507_D",SetStart=1950,SetEnd=2006,AcresSWFlood=0,AcresSWSprinkler=0,
 AcresGWFlood=0,AcresGWSprinkler=0,PumpingMax=0,AcresTotal=0)
SetIrrigationPracticeTS(ID="0100687",SetStart=1950,SetEnd=2006,AcresSWFlood=0,AcresSWSprinkler=0,
 AcresGWFlood=0,AcresGWSprinkler=0,PumpingMax=0,AcresTotal=0)

SetIrrigationPracticeTS(ID="0200834",SetStart=1950,SetEnd=2006,AcresSWFlood=0,AcresSWSprinkler=0,
 AcresGWFlood=0,AcresGWSprinkler=0,PumpingMax=0,AcresTotal=0)

SetIrrigationPracticeTS(ID="6400511_D",SetStart=1950,SetEnd=2006,AcresSWFlood=0,AcresSWSprinkler=0,
 AcresGWFlood=0,AcresGWSprinkler=0,PumpingMax=0,AcresTotal=0)

Step 13 - Set Acreage = 0, 1950-2006
SetIrrigationPracticeTS(ID="0100501",SetStart=1950,SetEnd=2006,AcresSWFlood=0,AcresSWSprinkler=0,
 AcresGWFlood=0,AcresGWSprinkler=0,PumpingMax=0,AcresTotal=0)
SetIrrigationPracticeTS(ID="0100513",SetStart=1950,SetEnd=2006,AcresSWFlood=0,AcresSWSprinkler=0,
 AcresGWFlood=0,AcresGWSprinkler=0,PumpingMax=0,AcresTotal=0)
SetIrrigationPracticeTS(ID="0100829",SetStart=1950,SetEnd=2006,AcresSWFlood=0,AcresSWSprinkler=0,
 AcresGWFlood=0,AcresGWSprinkler=0,PumpingMax=0,AcresTotal=0)

SetIrrigationPracticeTS(ID="6400519",SetStart=1950,SetEnd=2006,AcresSWFlood=0,AcresSWSprinkler=0,
 AcresGWFlood=0,AcresGWSprinkler=0,PumpingMax=0,AcresTotal=0)

Step 14 - Write final ipy file

WriteIrrigationPracticeTSToStateCU(OutputFile="Sp2008L.ipy",WriteHow=OverwriteFile)
WriteIrrigationPracticeTSToStateCU(OutputFile="..\StateCU\Historic\Sp2008L.ipy",WriteHow=OverwriteFile)
WriteIrrigationPracticeTSToStateCU(OutputFile="..\StateMod\Historic\Sp2008L.ipy",WriteHow=OverwriteFile)

4 - Command Reference – SetIrrigationPracticeTS() 702

Command Reference:
setIrrigationPracticeTSFromHydroBase()

Set irrigation practice time series (yearly) from HydroBase

StateMod Command

Version 02.14.00, 2007-07-03, Color, Acrobat Distiller

THIS COMMAND IS OBSOLETE – INSTEAD, USE THE
readIrrigationPracticeTSFromHydroBase() COMMAND. This older command was used
for Phase 4 Río Grande work, and only works with one year of parcel data (e.g., 1998). However, an
entirely new procedure has now been implemented, which can be applied to all basins. The new
procedure relies on processing water rights into a StateMod water rights file and then using this file as
input when processing parcels for the irrigation practice time series. Other commands have also been
implemented to allow more control over acreage processing.

The setIrrigationPracticeTSFromHydroBase() command uses data in HydroBase to set the
following irrigation practice time series (yearly) information for CU locations:

For each year of parcel data that is available, sprinkler acres for each location are set as the total of the
parcel areas that are irrigated using the SPRINKLER irrigation type. Parcels associated with ditches have
an area that is adjusted by the ditch coverage percent. All parcels associated with a CU location are used
to determine the total sprinkler acres for the CU location. The sprinkler acres can be different for each
year that parcels are available in HydroBase. Additional years of sprinkler data can be added using the
readIrrigationPracticeTSSprinklerAreaFromList() command. The resulting data
points can be used to fill the remaining period (e.g., see fillIrrigationPracticeTS*()
commands).
� The well water rights/permits associated with parcels are used to determine the earliest

appropriation date associated with each parcel. The groundwater acres value for the parcel is then
recognized from the earliest date forward in time, with the earlier period being set to zero. Note
that HydroBase data does not allow for turning off wells during the period – the wells currently in
HydroBase are assumed to be active from the appropriation/permit date until the current time.
Parcels associated with ditches have an area that is adjusted by the ditch coverage percent. All
parcels associated with a CU location are used to determine the total groundwater acres for the
CU location. If multiple years of parcel data are in HydroBase, the last year to be processed
will be in effect after the command is run. Therefore, the well rights/permits will be
associated with the most recent year of parcel data. Additional development is necessary to
evaluate how to merge multiple years of data.

� Maximum well pumping is NOT processed by this command. However, the water rights
resulting from the previous step are kept in memory and can be used by the
setIrrigationPracticeTSMaxPumpingToRights() command. Separate commands
are used in order to separate processing logic and minimize the command parameters necessary
for each step. This also emphasizes the fact that the maximum pumping depends on water rights
from the previous step. Therefore, the issue with handling multiple years of parcel data, if
resolved in the previous step, will also cascade to the maximum pumping data.

The processing is very similar to that of the readWellRightsFromHydroBase() command, except
that a list of CU locations is processed instead a list of StateMod well stations.

 Command Reference – setIrrigationPracticeTSFromHydroBase() - 1 703

setIrrigationPracticeTSFromHydroBase() Command StateDMI Documentation

The following figure illustrates possible water supply for parcels.

ParcelSupplyDiagram

Example Supply for Parcels

In this example, two ditches (D1 and D2, each represented with different cross-hatching) provide surface
water supply to the indicated parcels. In some cases, only one ditch provides supply. Between the
ditches, both supply water to shared parcels. Wells can supplement surface water supply (parcels above
the river) or can be the sole supplier of water (lower right) and wells do not need to be physically located
on a parcel to provide supply to the parcel. For StateCU, well-only lands are identified by CU locations
that are defined by a collection (aggregate/system) of parcels. For StateMod, well-only lands are well
stations that do not have a related diversion station. In both cases, lands irrigated by surface water are
identified with ditch identifiers and parcels are associated to the ditches in HydroBase. Typically, well-
only lands are grouped and multiple wells provide supply to the collection of parcels. Processing logic is
different for ditch and well-only lands.

A well (hole in the ground) in HydroBase can be either a structure with water rights, a well permit, or
both. In HydroBase, the relationship between well structure and well permit has been determined in
CDSS projects by using common well attributes (e.g., name) or by spatial proximity analysis using GIS
tools. However, for general well data in HydroBase, there has been no explicit link to help identify when
a well structure matched a well permit. Additionally, well permit records are difficult to interpret because
of replacement wells. Typically, major wells do have water rights, although the rights may have been
applied for after a matching well permit. Specific knowledge about the basin should be used when
evaluating the data. The CDSS projects have attempted to uniquely identify holes in the ground such that
subsequent data processing can treat the hole as a structure or permit, but not both (to avoid double-
counting). Wells were first modeled in the Río Grande RGDSS project and changes to HydroBase are
occurring to better store well data to avoid some of the issues mentioned above. When processing well
rights with this command, the CDSS processed data for wells (holes in the ground), water rights, and
permits are used (raw well right and well permit data are not used).

The steps used to process irrigation practice time series are described below. Note that “CU location”
refers to the StateCU model identifier (which can be a collection of wells) and “well” refers to a hole in
the ground that has physical characteristics, water rights, and/or well permits.

Process each CU location that matches the ID pattern:

2 - Command Reference – setIrrigationPracticeTSFromHydroBase() 704

StateDMI Documentation setIrrigationPracticeTSFromHydroBase() Command

 Process each year of parcel data. (see Year parameter).
Initialize the groundwater acreage time series to zeros.
If the CU location is an aggregate or system (specified using parcel ID, year, and div, and
indicating that the CU location has only groundwater supply):

Loop through each parcel that the well irrigates:
If the irrigation type for the parcel is SPRINKLER, increment the sprinkler acres
for the CU location, for the parcel year.
Determine wells associated with parcels.
Loop through each well:

Use the DefineRightHow parameter value to determine how to define
the right. If the value is EarliestDate:
� Use the earliest of the right’s appropriation date and permit’s

permit date. Convert the date to an administration number. If no
date is available, assign the administration number to the value
corresponding to the DefaultAppropriationDate
parameter value or 99999.99999 as a final default.

� Assign the decree as the well yield, converted from GPM to
CFS, multiplied by the percent of the well that irrigates the
parcel.

If the value of DefineRightHow is RightIfAvailable:
� If a water right is available, use the appropriation date (and

corresponding administration number) for the water right. If no
date is available for the water right (this should not happen),
assign the administration number to the value corresponding to
the DefaultAppropriationDate parameter value or
99999.99999 as a final default.

� Assign the decree as the well yield, converted from GPM to
CFS, multiplied by the percent of the well that irrigates the
parcel. In this case the yield may have been previously
converted from the water right CFS value.

Determine the earliest appropriation date for the rights. Increment the
groundwater acres for the CU location by the parcel area, for the period of the
earliest year to the end of the output period. Note that this calculation uses the
individual rights, not the aggregate, because a relationship to parcel is required.

Else if the CU location is associated with a diversion station (indicating that well pumping
supplements the diversion station surface water supply):

If the CU location is a collection (aggregate or system):
� Use the procedure described below to complete data processing.
Else if the CU location is explicitly modeled:
� Use the following procedure, treating the single diversion station as if it were the

only diversion structure part in an aggregate/system.
 Loop through each of the diversion structures associated with the CU location:

Determine the parcels that are irrigated by the diversion structure. Note that the
following logic is similar to that for well-only lands above, except that the
percent of the parcel served by the ditch is factored in.
Loop through each parcel that the diversion station irrigates:

If the irrigation type for the parcel is SPRINKLER, increment the
sprinkler acres for the CU location, for the parcel year.
Determine wells associated with parcels. Loop through each well:

 Command Reference – setIrrigationPracticeTSFromHydroBase() - 3 705

setIrrigationPracticeTSFromHydroBase() Command StateDMI Documentation

Use the DefineRightHow parameter value to determine how to define
the right.

If the value is EarliestDate:
� Use the earliest of the right’s appropriation date and permit’s

permit date. Convert the date to an administration number. If no
date is available for the water right, assign the administration
number to the value corresponding to the
DefaultAppropriationDate parameter value or
99999.99999 as a final default.

� Assign the decree as the well yield, converted from GPM to
CFS, multiplied by the percent of the well that irrigates the
parcel AND the percent of the parcel that is irrigated by the
ditch.

If the value of DefineRightHow is RightIfAvailable:
� If a water right is available, use the appropriation date (and

corresponding administration number) for the water right. If no
date is available for the water right (this should not happen),
assign the administration number to the value corresponding to
the DefaultAppropriationDate parameter value or
99999.99999 as a final default.

� Assign the decree as the well yield, converted from GPM to
CFS, multiplied by the percent of the well that irrigates the
parcel AND the percent of the parcel that is irrigated by the
ditch. In this case the yield may have been previously converted
from the water right CFS value.

Determine the earliest appropriation date for the rights. Increment the
groundwater acres for the CU location by the parcel area, for the period of the
earliest year to the end of the output period. Note that this calculation uses the
individual rights, not the aggregate, because a relationship to parcel is required.

Else if the CU location is a well and is explicitly modeled
 This case is not yet supported by StateDMI and has not been used in the past.

If aggregating rights (water rights classes are specified and the station is an aggregate or system), the
following steps occur (well systems use steps 1-2 and are then explicitly added):

1. Water rights for each part of the aggregate are read from HydroBase as described above,
reporting errors as necessary.

2. The rights are added to a list and are sorted by administration number. This ensures that the
cumulative list of rights is listed in order of administration number.

3. Water rights are defined for each class (see the AdminNumClasses parameter description
below), initializing the decree to zero.

4. For each class, the following sums are calculated: sum(decree*AdminNum) and
sum(decree), where the administration number is determined from the appropriation date
derived from the original HydroBase administration number (it will not have a remainder).

5. The final administration number for the class is determined (it will not have a remainder):
int(sum(decree*AdminNum))/sum(decree)

Water rights from HydroBase that are less than the decree minimum are ignored and during final output,
water rights with a decree of 0.00 (the StateMod file format) are ignored. The name of the final right will
include either water right (WDID and name) or permit information (number, suffix, and replacement),

4 - Command Reference – setIrrigationPracticeTSFromHydroBase() 706

StateDMI Documentation setIrrigationPracticeTSFromHydroBase() Command

depending on the input that was used. In the above process, status messages and warnings are printed to
the log file as appropriate. For example, the following information is listed: the number of parcels for a
CU location, the number of wells for the parcel, and the number of rights/permits for the well.

The following dialog is used to edit the command and illustrates the syntax of the command. Note that
the input is very similar to the readWellRightsFromHydroBase() command because water rights
are needed during processing.

setIrrigationPracticeFromHydroBase

setIrrigationPracticeTSFromHydroBase() Command Editor

 Command Reference – setIrrigationPracticeTSFromHydroBase() - 5 707

setIrrigationPracticeTSFromHydroBase() Command StateDMI Documentation

The command syntax is as follows:

setIrrigationPracticeTSFromHydroBase(param=value,…)

Command Parameters

Parameter Description Default
ID A single CU location identifier to match or a pattern

using wildcards (e.g., 20*).
None – must be
specified.

AdminNum
Classes

A list of administration numbers, separated by spaces
or commas, to define the breaks for aggregate water
rights, for well aggregates. For example, if the class
breaks are 10000.000, 20000.00000, and 99999.99999,
the first group will contain water rights with
administration numbers <= 10000.00000, the second
will contain water rights with administration number >
10000.00000 and <= 20000.00000, and the third will
contain water rights with administration number >
20000.00000 and <= 99999.99999.

If not specified, well
aggregates will be
treated as well
systems, with all water
rights explicitly
included in output.

InputStart The starting calendar year to use for parcel data,
needed to determine relationships between diversion
stations/parcels/wells and for well aggregate/systems.

A single year or blank can be specified.

All years in
HydroBase will be
processed, with the
most recent year being
used for final
groundwater acres and
water rights output.

InputEnd The ending calendar year to use for parcel data, needed
to determine relationships between diversion
stations/parcels/wells and for well aggregate/systems.

A single year or blank can be specified.

All years in
HydroBase will be
processed, with the
most recent year being
used for final
groundwater acres and
water rights output.

Div A water division to use for parcel data, needed to
determine relationships between diversion
stations/parcels/wells and for well aggregate/systems.

None – must be
specified.

Default
Appropriation
Date

Some right/permit data do not have a date in data
records. For example, very old well permits may not
have a date. In these cases a default date can be
assigned to be used as the appropriation date in the
well water right. The appropriation date will be
converted to a State of Colorado administration
number in StateMod water rights.

The administration
number is set to
99999.99999.

6 - Command Reference – setIrrigationPracticeTSFromHydroBase() 708

StateDMI Documentation setIrrigationPracticeTSFromHydroBase() Command

Parameter Description Default
DefineRightHow Wells (holes in the ground) are matched with water

rights, well permits, and occasionally “estimated”
wells necessary because a water right or permit could
not be found. In some cases a right and permit will
both exist for a well, each with their own dates. This
parameter indicates how to define the right in these
cases. A value of EarliestDate will use the
earliest date determined from the right’s appropriation
date and the permit’s permit date. A value of
RightIfAvailable will always use the water right
appropriation date, if available.

EarliestDate

ReadWellRights This parameter is only used when
DefineRightHow=RightIfAvailable, and
indicates whether individual water rights should be
read from HydroBase. The following values are
recognized:
• True – the net amounts data are read, which may

result in multiple well water rights for a well
WDID. See also the UseApex parameter.

• False – then a single processed water right will
be returned, which is the sum of net amount rights,
using the oldest appropriation date found for the
rights (APEX is not considered).

True

UseApex Indicate whether to use alternate point/exchange values
when processing rights. The following values are
recognized:
• True – the APEX values corresponding to well

rights are added to the net amount right values,
resulting in a larger decree being considered for
some rights.

• False – the APEX values are not added to net
amount rights.

Because net amount rights usually either have a
decreed rate or an APEX amount, using True will
generally result in more water rights, where the
resulting right amount is either the decree or APEX.

False

 Command Reference – setIrrigationPracticeTSFromHydroBase() - 7 709

setIrrigationPracticeTSFromHydroBase() Command StateDMI Documentation

This page is intentionally blank.

8 - Command Reference – setIrrigationPracticeTSFromHydroBase() 710

Command Reference:
SetIrrigationPracticeTSFromList()

Set irrigation practice time series data from information in a delimited file

StateCU Command

Version 3.09.01, 2010-02-17

The SetIrrigationPracticeTSFromList() command sets irrigation practice data for existing
CU Locations by reading information from a delimited file. New locations are not added. The command
can be used to set values over a period of 1+ years as follows:

1. If the SetStart and SetEnd parameters are specified and the year column is not specified,
then repeat the values from the file for each year in the set period. For example, this can be used
to repeat efficiency values through the period. Or, it can be used to provide acreage data not in
HydroBase, for a specific year (set SetStart and SetEnd to the same value).

2. If the year column is provided, use the year in the file to specify the year for the set. In this case,
SetStart and SetEnd control the period of data that will be processed from the file.

HydroBase may not contain all irrigated lands data. For example, additional lands may have been
identified after HydroBase was populated or acreage must be set for a model identifier that is not a
structure WDID in HydroBase (e.g., out of state lands). In this case, the command can be used to provide
additional data to supplement HydroBase.

It is typical that separate SetIrrigationPracticeTSFromList() commands are used for
different columns of data in the irrigation practice file. For example, efficiencies may be set with one
command and acreage with another command.

The information-only surface water total and groundwater total values will be updated to agree with the
acreage parts. However, no cascading adjustments will occur (as performed by
FillIrrigationPracticeInterpolate() and other commands).

 Command Reference – SetIrrigationPracticeTSFromList() - 1 711

SetIrrigationPracticeTSFromList() Command StateDMI Documentation

The following dialog is used to edit the command and illustrates the syntax of the command for repeating
values over the specified period, with the values being set as the command is processed (omitting the year
would repeat the values in all years):

SetIrrigationPracticeTSFromList

SetIrrigationPracticeTSFromList() Command Editor – Repeat Values

2 - Command Reference – SetIrrigationPracticeTSFromList() 712

StateDMI Documentation SetIrrigationPracticeTSFromList() Command

The following dialog is used to edit the command and illustrates the syntax of the command for providing
acreage data that are not in HydroBase, for a single year of data.

SetIrrigationPracticeTSFromList2

SetIrrigationPracticeTSFromList() Command Editor – Provide Parcel Data not in HydroBase

The command syntax is as follows:

SetIrrigationPracticeTSFromList(Parameter=Value,…)

 Command Reference – SetIrrigationPracticeTSFromList() - 3 713

SetIrrigationPracticeTSFromList() Command StateDMI Documentation

Command Parameters

Parameter Description Default
ListFile Path to the delimited list file to read. None – must be specified.
ID A single CU location identifier to match or a

pattern using wildcards (e.g., 20*).
None – must be specified.

SetStart The first year to set data values. If not specified, data are set for
the full output period.

SetEnd The last year to set data values. If not specified, data are set for
the full output period.

YearCol The column number (1+) containing the year for
data.

The file values are applied to
each year in the data set.

IDCol The column number (1+) containing the CU
Location identifiers. These values are matched
against CU Location identifiers in the existing
irrigation practice data.

None – must be specified.

SurfaceDel
EffMaxCol

The column number (1+) containing the surface
water delivery efficiency maximum.

If not specified, the previous
data values will remain.

FloodApp
EffMaxCol

The column number (1+) containing the flood
application efficiency maximum.

If not specified, the previous
data values will remain.

SprinklerApp
EffMaxCol

The column number (1+) containing the sprinkler
application efficiency maximum.

If not specified, the previous
data values will remain.

AcresSWFloodCol The column number (1+) containing the surface
water flood acres.

If not specified, the previous
data values will remain.

AcresSWSprinkler
Col

The column number (1+) containing the surface
water sprinkler acres.

If not specified, the previous
data values will remain.

AcresGWFloodCol The column number (1+) containing the
groundwater flood acres.

If not specified, the previous
data values will remain.

AcresGWSprinkler
Col

The column number (1+) containing the
groundwater sprinkler acres.

If not specified, the previous
data values will remain.

AcresTotalCol The column number (1+) containing the total
acres.

If not specified, the previous
data values will remain.

PumpingMaxCol The column number (1+) containing the monthly
maximum pumping rate.

If not specified, the previous
data values will remain.

GWModeCol The column number (1+) containing the
groundwater mode value.

If not specified, the previous
data values will remain.

Data file lines starting with the # character are treated as comments. If the first line’s values are
surrounded by double quotes, the line is assumed to indicate column headings. An example list file for
setting efficiencies is shown below (the year would be provided as a parameter and values would apply to
all years):

200505,0.70,0.7,0.8
200511,0.82,0.7,0.8
200512,0.71,0.7,0.8
200513,0.73,0.7,0.8
20MS01,0.80,0.7,0.8
200517,0.71,0.7,0.8
200518,0.88,0.7,0.8
200528,0.71,0.7,0.8
… etc. …

4 - Command Reference – SetIrrigationPracticeTSFromList() 714

StateDMI Documentation SetIrrigationPracticeTSFromList() Command

An example list file for specifying acreage data (not in HydroBase) is shown below (the year column
would be specified as a parameter and values would apply to the year in the list file). Currently,
supplemental acreage data can have only a single irrigation method and supply type.

The following data provide acreage for structures that did not have GIS data
and consequently no data in HydroBase. The data are specific to 1998 and are
used to set the CDS and IPY acres. The crop is used to provide CDS data. The
irrigation method and source are used to provide IPY data.
"ID","Crop","Acres","IrrigationMethod","SupplySource"
200500,GRASS_PASTURE,0,Flood,Surface
200506,GRASS_PASTURE,100,Flood,Surface
200507,GRASS_PASTURE,50,Flood,Surface
200508,GRASS_PASTURE,40,Flood,Surface
200522,GRASS_PASTURE,40,Flood,Surface
200523,GRASS_PASTURE,50,Flood,Surface
200526,GRASS_PASTURE,40,Flood,Surface
200529,GRASS_PASTURE,5,Flood,Surface
200530,GRASS_PASTURE,42,Flood,Surface
200532,GRASS_PASTURE,25,Flood,Surface
200533,GRASS_PASTURE,40,Flood,Surface
… etc…

 Command Reference – SetIrrigationPracticeTSFromList() - 5 715

SetIrrigationPracticeTSFromList() Command StateDMI Documentation

This page is intentionally blank.

6 - Command Reference – SetIrrigationPracticeTSFromList() 716

Command Reference:
setIrrigationPracticeTSMaxPumpingToRights()

Set the irrigation practice max pumping time series (yearly) to well rights

StateCU Command

Version 02.14.00, 2007-07-03, Color, Acrobat Distiller

THIS COMMAND IS OBSOLETE – INSTEAD, USE THE
setIrrigationPracticeTSPumpingMaxUsingWellRights() COMMAND. This older
command was used for Phase 4 Río Grande work, and only works with one year of parcel data (e.g.,
1998). However, an entirely new procedure has now been implemented, which can be applied to all
basins. The new procedure relies on processing water rights into a StateMod water rights file and then
using this file as input when processing parcels for the irrigation practice time series. Other commands
have also been implemented to allow more control over acreage processing.

The setIrrigationPracticeTSMaxPumpingToRights() command sets irrigation practice
maximum well pumping time series (yearly) values to the water rights that were in effect at the time of
the well, based on the appropriation date corresponding to water right administration numbers. The
functionality of this command is similar to the
limitDiversionHistoricalTSMonthlyToRights()command; however, the maximum
pumping is simply set to the water rights. For each CU location being processed that has water supply
from one or more wells, the cumulative rights are determined at each point in time, creating a step-
function in CFS units. Very junior water rights with administration numbers greater than or equal to
90000.00000 can be assigned an appropriate date, which is then used to compute an administration
number for the check. The water rights can be supplied from a StateMod well rights file or from a list of
rights in memory (e.g., as the result of the setIrrigationPracticeTSFromHydroBase()
command). Water rights from a file may include the effects of set commands. For boundary purposes
during the check, a zero flow condition is imposed at 1800-01-01 and carried forward until a right is
found. A summary of the rights is printed to the log file.

If necessary, place set commands after the
setIrrigationPracticeTSMaxPumpingToRights() command so that the set commands will
not be impacted by the setIrrigationPracticeTSMaxPumpingToRights() command.

The water rights switch in the StateMod rights is handled as follows:

� If the switch is zero, the water right is ignored in processing (it is not used to limit the data).
� If the switch is 1, no adjustments are done to the appropriation date for the water right.
� If the switch is +YYYY (indicating that the right should turn on in the given year):

o If the UseOnOffDate parameter is True, the appropriation date for the water right is
set to YYYY-01-01 during the limit process.

o If the UseOnOffDate parameter is False, the appropriation date from the
administration number is used.

� If the switch is -YYYY (indicating that the right should turn off after the given year):
o If the UseOnOffDate parameter is True, the appropriation date for the water right is

set to (YYYY+1)-01-01 and the decree is set to negative during the limit process.
o If the UseOnOffDate parameter is False, the appropriation date from the

administration number is used and the decree is set to negative during the limit process.

 Command Reference – setIrrigationPracticeTSMaxPumpingToRights() - 1 717

setIrrigationPracticeTSMaxPumpingToRights() Command StateDMI Documentation

If the administration number cannot be converted to an appropriation date, then the water right OnOff
switch can be set to a year for each water right and UseOnOffDate=True should be specified.

If the sum of the water rights decrees is less than zero, it is reset to zero.

A summary of the logic is as follows:

 For each CU location:

1. Determine the water rights for the CU location. If no rights are available, skip the remaining
steps.

2. Determine the irrigation practice time series (yearly). If no time series is available, skip the
remaining steps.

3. Process the water rights for the CU location.
a. Convert the administration number to appropriation date. Use the same code as the

Administration Number Calculator tool in StateView. The prior adjudication date
associated with the administration number is ignored. See the explanation above for
how the water rights switch is handled.

b. Sort the rights according to the Julian day value for the appropriation date.
c. If the CU location has a free water right (those with administration numbers greater

than or equal to 90000.00000): If the CU location has a senior water right, convert
the free water right appropriation date to that of the senior water right (therefore the
free water right is in effect since the time of the senior right). If the CU location has
no senior water right (it has only free water right[s]), use the appropriation date
corresponding to the FreeWaterAppropriationDate parameter described
below.

d. Add a bounding zero decree for 1800-01-01 for the early period of the step function.
e. Generate a step function of sorted dates and decrees using the information described

above. These values will be in CFS. Because appropriation dates are used, the sort
order may be different from that of the numerical administration number.

f. Because the decrees are in CFS, convert to ACFT, considering the number of days in
each month, to determine a maximum pumping ACFT per month. Because of the
conversion from CSFS to ACFT, monthly values in the step function will vary.

g. Using the monthly maximum values (January through December), determine the
maximum monthly pumping for a year. The step-function will then use dates with a
yearly precision because the value in the irrigation practice time series is the
maximum monthly pumping in each year.

4. Set the yearly maximum pumping time series to the step function, where the step function is
defined by a list of dates and decrees, determined from the previous step. The full period will
be set.

2 - Command Reference – setIrrigationPracticeTSMaxPumpingToRights() 718

StateDMI Documentation setIrrigationPracticeTSMaxPumpingToRights() Command

The following dialog is used to edit the command and illustrates the syntax of the command.

setIrrigationPracticeTSMaxPumpingToRights

setIrrigationPracticeTSMaxPumpingToRights() Command Editor

 Command Reference – setIrrigationPracticeTSMaxPumpingToRights() - 3 719

setIrrigationPracticeTSMaxPumpingToRights() Command StateDMI Documentation

The command syntax is as follows:

setIrrigationPracticeTSMaxPumpingToRights(param=value,…)

Command Parameters

Parameter Description Default
InputFile The name of the StateMod well rights file, surrounded by

double quotes. The rights in the file are read and are used
to set the CU location maximum pumping time series.
The rights are assumed to be sorted by structure.

If in-memory rights resulting from the
readIrrigationPracticeTSFromHydroBase()
command are used (InputFile is blank), these rights
may not exactly match those read from a StateMod well
rights file. The rights file may include the effects of set
commands.

Use StateMod
well rights in
memory, from
previous
commands.

ID A single CU location identifier to match or a pattern using
wildcards (e.g., 20*).

None – must be
specified.

FreeWater
Appropriation
Date

A date to be used for the free water rights found in the
rights file. Free water rights are typically inserted to
represent very junior rights. Rights having an
administration number greater than or equal to
90000.00000 are assumed to be free water rights and
will use the specified free water appropriation date when
constraining the time series.

The date
corresponding to
an administration
number of 0,
which is Dec 31,
1849.

UseOnOffDate If False, the appropriation date is always computed
from the administration number. If True and the value
of the OnOff switch for a right is YYYY or –YYYY,
assign the appropriation date using the switch value (see
notes earlier in the command description).

False

NumberOfDays
InMonth

The number of days in a month. This is used when a
constant value is needed.

Use the number
of days in the
month
corresponding to
the water
right/permit date.

SetFlag If specified as a single character, data flags will be
enabled for the time series and each set value will be
tagged with the specified character. The flag can then be
used later to label graphs, etc. The flag will be appended
to existing flags if necessary. This parameter is passed to
the same features as used in the limit*ToRights()
commands.

No flag is
assigned.

4 - Command Reference – setIrrigationPracticeTSMaxPumpingToRights() 720

Command Reference:
SetIrrigationPracticeTSPumpingMaxUsingWell

Rights()

Set the irrigation practice pumping maximum time series (yearly) to well rights

StateCU Command
Version 3.09.01, 2010-02-01

The SetIrrigationPracticeTSPumpingMaxUsingWellRights() command sets irrigation
practice well pumping maximum time series (yearly) values to the water rights that were in effect at each
year in the period, based on the appropriation date corresponding to water right administration numbers.
The functionality of this command is similar to the
LimitDiversionHistoricalTSMonthlyToRights() command; however, the maximum
pumping is simply set to the water rights. For each CU location being processed that has water supply
from one or more wells, the cumulative rights are determined at each point in time, creating a step-
function in CFS units. Very junior water rights are currently handled similar to other rights; however, a
“free water” concept may be implemented in the future. The water rights are expected to have been
processed with a previous command, for example ReadWellRightsFromStateMod(). In cases
where multiple years of irrigated lands data are available, it is typical to have merged the water rights
from multiple years using the MergeWellRights() command. Water rights from a file may include
the effects of set commands. A zero flow condition is imposed at the start of the period (when no rights
apply) and carried forward until a right is found.

The water rights on/off switch for each StateMod right is handled as follows:

 If the switch is zero, the water right is ignored in processing (it is not used to increment the
decrees in the time series).

 If the switch is 1, no adjustments are done to the appropriation date for the water right.
 If the switch is +YYYY (indicating that the right should turn on in the given year):

o If the switch is > the year from the appropriation date, set the right year to the switch.
This ensures that the right is not turned on earlier than it was appropriated.

 If the switch is -YYYY (indicating that the right should turn off after the given year):
o This case is not currently handled (the right is ignored as if the switch were zero) because

standard procedures result in rights that are increasing over time. Additional
enhancements are needed for this case, for example to ensure that the right is present with
a positive switch in the early period.

 Command Reference – SetIrrigationPracticeTSPumpingMaxUsingWellRights() - 1 721

SetIrrigationPracticeTSPumpingMaxUsingWellRights () Command StateDMI Documentation

An example of the resulting time series of decrees is shown in the following figure (this figure was
generated by using TSTool to read three well rights files and graphing the rights at location 200812).
Merged rights, since they represent more than one year of well/parcel matching, will typically result in
slightly higher values. Aggregated rights will result in “blocky” decree time series.

setIrrigationPracticeTSPumpingMaxUsingWellRights0

A summary of the logic is as follows:

1. For each location, create a time series of decrees from the water rights, with the result having
a monthly time step (since the pumping maximum is AF/M):

a. Determine the water rights for the CU location. If no rights are available, set the
water right time series to zero and skip the remaining steps.

b. Initialize the decree time series to zero for the period.
c. For each right, convert the administration number to appropriation date. Use the

same code as the Administration Number Calculator tool in StateView. The prior
adjudication date associated with the administration number is ignored.

d. Check the on/off switch. See the explanation above for how the water rights switch
is handled.

e. Add the decree value from the appropriation date (year and month) to the end of the
output period.

2. Determine the irrigation practice pumping maximum time series:
a. If no irrigation practice time series is available, skip the remaining steps.
b. Loop through each month in the period and get the decree value from the step 1

.above. Because the decrees are in CFS, convert to ACFT, considering the number of
days in each month, to determine a maximum pumping ACFT per month:

Pumping = Decree*1.9835*NumberOfDaysInMonth

Because of the conversion from CSFS to ACFT, monthly values in the step function
will vary unless the NumberOfDaysInMonth parameter is specified.

2 - Command Reference – SetIrrigationPracticeTSPumpingMaxUsingWellRights() 722

StateDMI Documentation SetIrrigationPracticeTSPumpingMaxUsingWellRights() Command

c. Using the monthly maximum values (January through December), determine and set
the maximum monthly pumping for a year. The step-function will then use dates
with a yearly precision because the value in the irrigation practice time series is the
maximum monthly pumping in each year.

The following dialog is used to edit the command and illustrates the syntax of the command.

SetIrrigationPracticeTSPumpingMaxToWellRights

SetIrrigationPracticeTSPumpingMaxUsingWellRights() Command Editor

The command syntax is as follows:

SetIrrigationPracticeTSPumpingMaxUsingWellRights(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single CU location identifier to match or a pattern

using wildcards (e.g., 20*).
None – must be specified.

Include
SurfaceWater
Supply

Indicate whether locations with surface water supply
should be included in processing. These locations are
determined as being any other than groundwater only
locations. This parameter is included to facilitate
evaluating the overall approach.

True

 Command Reference – SetIrrigationPracticeTSPumpingMaxUsingWellRights () - 3 723

SetIrrigationPracticeTSPumpingMaxUsingWellRights () Command StateDMI Documentation

Parameter Description Default
Include
GroundwaterOnly
Supply

Indicate whether locations with only groundwater supply
should be included in processing. These locations are
determined as being systems or aggregates specified by a
list of parcels. This parameter is included to facilitate
evaluating the overall approach.

True

SetStart The starting year to set pumping maximum to water
rights. This is typically blank.

OutputStart set by the
SetOutputPeriod()
command.

SetEnd The ending year to set pumping maximum to water
rights. This is typically blank.

OutputEnd set by the
SetOutputPeriod()
command.

FreeWaterMethod This parameter has not been added but may be added in
the future, to control how “free water rights” (those with
very junior administration numbers, such as
90000.00000) are handled. In general, free water rights
should not apply to well rights and this parameter may
never be implemented. Possible values are:
• AlwaysOn –Free water rights are always on for the

full period.
• AsSpecified – use the administration number for

the water right as specified. Typically this will result
in the right only being in effect in the future and
having no impact on the modeling period for this
command.

• UseSeniorRightAppropriationDate – use
the appropriation date for the senior water right for
the location. Consequently, the water right is active
for the full period that other water rights are active.

AsSpecified

FreeWater
Administration
Number

This parameter is currently not used since
FreeWaterMethod=AsSpecified is the default.
The administration number >= to which the right is
considered a “free water” right, typically 90000.00000 or
higher.

None.

FreeWater
Appropriation
Date

This parameter is currently not used since
FreeWaterMethod=AsSpecified is the default. A
date to be used for the free water rights found in the
rights file, when no other date can be determined (e.g., no
senior water for FreeWaterMethod=
UseSeniorRightAppropriationDate).

None.

NumberOfDays
InMonth

The number of days in a month when converting decree
CFS to AF/M (acre-feet/month). This is used when a
constant value is needed. For example, the StateCU
model uses 30.4 days per month.

Use the number of days in
the specific month.

4 - Command Reference – SetIrrigationPracticeTSPumpingMaxUsingWellRights() 724

StateDMI Documentation SetIrrigationPracticeTSPumpingMaxUsingWellRights() Command

Parameter Description Default
ParcelYear The year of parcel/well matching data to use for water

rights. This can be used if the StateMod well rights file
was written with parcel year, for example with
WriteWellRightsToStateMod(…,
WriteDataComments=True,…). This is useful if
evaluating the differences between rights determined
with different years of parcel/well matching data, and
rights from merged years.

Blank – use all water
rights.

IfNotFound Used for error handling, one of the following:
• Fail – generate a failure message if the ID is not

matched
• Ignore – ignore (don’t add and don’t generate a

message) if the ID is not matched
• Warn – generate a warning message if the ID is not

matched

Warn

The following command file illustrates how to process the irrigation practice time series file where
groundwater supply is used:

Sp2008L_DDH.StateDMI
StartLog(LogFile="SP_IPY.log")
SetOutputPeriod(OutputStart="01/1950",OutputEnd="12/2006")
Step 1 - Read CU Locations from list
ReadCULocationsFromList(ListFile="..\Sp2008L_StructList.csv",IDCol=1)
Step 2 - Read SW aggregates, GW aggregates, and divsystems

SetDiversionAggregateFromList(ListFile="..\Sp2008L_SWAgg.csv",IDCol=1,
 NameCol=2,PartIDsCol=3,PartsListedHow=InColumn)
SetDiversionSystemFromList(ListFile="..\Sp2008L_DivSys_CDS.csv",IDCol=1,
 NameCol=2,PartIDsCol=3,PartsListedHow=InRow)

SetWellSystemFromList(ListFile="..\SP_GWAgg_1956.csv",Year=1956,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\SP_GWAgg_1976.csv",Year=1976,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\SP_GWAgg_1987.csv",Year=1987,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\SP_GWAgg_2001.csv",Year=2001,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\SP_GWAgg_2005.csv",Year=2005,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
Step 3 - Create form for *.ipy file
CreateIrrigationPracticeTSForCULocations(ID="*")

Step 4 - Set conveyance efficiencies from file for key and sw aggregate structures - NOT in HydroBase
SetIrrigationPracticeTSFromList(ListFile="Sp2008L_Eff.csv",ID="*",
 SetStart=1950,SetEnd=2006,IDCol="1",SurfaceDelEffMaxCol="3")

Step 5 - set max flood and surface water efficiencies and GWmode - NOT in HydroBase
SetIrrigationPracticeTS(ID="*",SetStart=1950,SetEnd=2006,FloodAppEffMax=.6,SprinklerAppEffMax=.8,GWMode=2)

Step 6 - Read well rights file and Set Max pumping (use merged *.wer file)
ReadWellRightsFromStateMod(InputFile="..\Wells\Sp2008L.wer")
SetIrrigationPracticeTSPumpingMaxUsingWellRights(ID="*",IncludeSurfaceWaterSupply=True,
 IncludeGroundwaterOnlySupply="True",NumberOfDaysInMonth=30.4)
Step 7 - Read category acreage from HydroBase
ReadIrrigationPracticeTSFromHydroBase(ID="*",Div="1")

Step 8 - Read total acreage from *.cds file and Set total for *.ipy file
ReadCropPatternTSFromStateCU(InputFile="Sp2008L.cds")
SetIrrigationPracticeTSTotalAcreageToCropPatternTSTotalAcreage(ID="*")

 Command Reference – SetIrrigationPracticeTSPumpingMaxUsingWellRights () - 5 725

SetIrrigationPracticeTSPumpingMaxUsingWellRights () Command StateDMI Documentation

Step 9 - Estimate 1950 ground water acreage based on active wells as defined in the non-merged *.wer file

ReadWellRightsFromStateMod(InputFile="..\Wells\Sp2008L_NotMerged.wer",Append=False)
FillIrrigationPracticeTSAcreageUsingWellRights(ID="*",IncludeSurfaceWaterSupply=True,
 IncludeGroundwaterOnlySupply="True",FillStart=1950,FillEnd=1955,ParcelYear=1956)

Step 10 - Fill Interpolate Acreage Type (SW and GW) 1956-2006
Step 11a - estimate total GW and total SW
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-GroundWater",FillStart="1956",FillEnd="1976")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-GroundWater",FillStart="1976",FillEnd="1987")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-GroundWater",FillStart="1987",FillEnd="2001")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-GroundWater",FillStart="2001",FillEnd="2005")
FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-
GroundWater",FillStart="2005",FillEnd="2006",FillDirection="Forward")

Step 11b - set sprinkler to zero in early period
SetIrrigationPracticeTS(ID="*",SetStart=1950,SetEnd=1969,AcresSWSprinkler=0,AcresGWSprinkler=0)

Step 11c - fill remaining irrigation method values
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
SurfaceWaterOnlySprinkler",FillStart="1969",FillEnd="1976")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
SurfaceWaterOnlySprinkler",FillStart="1976",FillEnd="1987")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
SurfaceWaterOnlySprinkler",FillStart="1987",FillEnd="2001")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
SurfaceWaterOnlySprinkler",FillStart="2001",FillEnd="2005")
FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-
SurfaceWaterOnlySprinkler",FillStart="2005",FillEnd="2006",FillDirection="Forward")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
GroundWaterSprinkler",FillStart="1969",FillEnd="1976")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
GroundWaterSprinkler",FillStart="1976",FillEnd="1987")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
GroundWaterSprinkler",FillStart="1987",FillEnd="2001")
FillIrrigationPracticeTSInterpolate(ID="*",DataType="CropArea-
GroundWaterSprinkler",FillStart="2001",FillEnd="2005")
FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-
GroundWaterSprinkler",FillStart="2005",FillEnd="2006",FillDirection="Forward")

Step 12 - Set Acreage = 0 for structures that are in diversion systems, so acreage is not double counted
SetIrrigationPracticeTS(ID="0100503_D",SetStart=1950,SetEnd=2006,AcresSWFlood=0,AcresSWSprinkler=0,
 AcresGWFlood=0,AcresGWSprinkler=0,PumpingMax=0,AcresTotal=0)
SetIrrigationPracticeTS(ID="0100507_D",SetStart=1950,SetEnd=2006,AcresSWFlood=0,AcresSWSprinkler=0,
 AcresGWFlood=0,AcresGWSprinkler=0,PumpingMax=0,AcresTotal=0)
SetIrrigationPracticeTS(ID="0100687",SetStart=1950,SetEnd=2006,AcresSWFlood=0,AcresSWSprinkler=0,
 AcresGWFlood=0,AcresGWSprinkler=0,PumpingMax=0,AcresTotal=0)

SetIrrigationPracticeTS(ID="0200834",SetStart=1950,SetEnd=2006,AcresSWFlood=0,AcresSWSprinkler=0,
 AcresGWFlood=0,AcresGWSprinkler=0,PumpingMax=0,AcresTotal=0)

SetIrrigationPracticeTS(ID="6400511_D",SetStart=1950,SetEnd=2006,AcresSWFlood=0,AcresSWSprinkler=0,
 AcresGWFlood=0,AcresGWSprinkler=0,PumpingMax=0,AcresTotal=0)

Step 13 - Set Acreage = 0, 1950-2006
SetIrrigationPracticeTS(ID="0100501",SetStart=1950,SetEnd=2006,AcresSWFlood=0,AcresSWSprinkler=0,
 AcresGWFlood=0,AcresGWSprinkler=0,PumpingMax=0,AcresTotal=0)
SetIrrigationPracticeTS(ID="0100513",SetStart=1950,SetEnd=2006,AcresSWFlood=0,AcresSWSprinkler=0,
 AcresGWFlood=0,AcresGWSprinkler=0,PumpingMax=0,AcresTotal=0)
SetIrrigationPracticeTS(ID="0100829",SetStart=1950,SetEnd=2006,AcresSWFlood=0,AcresSWSprinkler=0,
 AcresGWFlood=0,AcresGWSprinkler=0,PumpingMax=0,AcresTotal=0)

SetIrrigationPracticeTS(ID="6400519",SetStart=1950,SetEnd=2006,AcresSWFlood=0,AcresSWSprinkler=0,
 AcresGWFlood=0,AcresGWSprinkler=0,PumpingMax=0,AcresTotal=0)

Step 14 - Write final ipy file

WriteIrrigationPracticeTSToStateCU(OutputFile="Sp2008L.ipy",WriteHow=OverwriteFile)

6 - Command Reference – SetIrrigationPracticeTSPumpingMaxUsingWellRights() 726

Command Reference:
SetIrrigationPracticeTSSprinklerAcreageFrom

List()

Set irrigation practice time series sprinkler acreage time series values using a list

file

StateCU Command
Version 3.09.01, 2010-02-01

The SetIrrigationPracticeTSSprinklerAcreageFromList() command sets irrigation
practice time series sprinkler acreage data for a CU Location, using data from a list file, and adjusts other
acreage terms accordingly to maintain the total acreage. This command is typically applied after all other
data read and filling occurs, in order to utilize sprinkler acreage data that has been obtained for historical
years. For example, the command is used in the Río Grande because user supplied sprinkler data are
available, but may not be applied in the South Platte, where more years of irrigated lands data are in
HydroBase. The list file typically contains sprinkler acreage by model location for the full period and
may have been interpolated between observations and repeated on the ends of the period.

Prerequisites:

1. This command should be executed after the irrigation practice time series are read from
HydroBase (see ReadIrrigationPracticeTSFromHydroBase()).

2. Total acreage has been set to the crop pattern time series total (see
SetIrrigationPracticeTSTotalAcreageToCropPatternTSTotalAcreage()).
The total acres are needed for checks.

3. The groundwater acreage should also have been filled using well rights before the first year of
observations using FillIrrigationPracticeTSAcreageUsingWellRights().

4. The surface water acreage should have been filled during the early period using
FillIrrigationPracticeTSInterpolate().

5. The end of the period should have acreage filled using
FillIrrigationPracticeTSRepeat().

 Command Reference – SetIrrigationPracticeTSSprinklerAcreageFromList () - 1 727

SetIrrigationPracticeTSSprinklerAcreageFromList() Command StateDMI Documentation

The following dialog is used to edit the command and illustrates the syntax of the command.

SettIrrigationPracticeTSSprinklerAcreageFromList

SetIrrigationPracticeTSSprinklerAcreageFromList() Command Editor

The sprinkler list file is processed one record at a time. The following check is done after setting the
sprinkler acreage for a location and year:

1. Set the groundwater sprinkler acreage (GWsprinkler) to the minimum of the list file sprinkler
acreage (ListFile) and the previous groundwater sprinkler value (GWprev).

2. Set the surface water sprinkler acreage (SWsprinkler to min((ListFile – GWsprinkler), SWprev).
Then ensures that a negative number does not result.

3. Set the groundwater flood acreage (GWflood) to the previous groundwater total minus the
groundwater sprinkler (GWsprinkler) acreage. This may result in a zero value based on previous
adjustments.

4. Set the surface water flood acreage (SWflood) to the previous surface water total minus surface
water sprinkler acres. This may result in a zero value based on previous adjustments.

2 - Command Reference – SetIrrigationPracticeTSSprinklerAcreageFromList () 728

StateDMI Documentation SetIrrigationPracticeTSSprinklerAcreageFromList () Command

The command syntax is as follows:

SetIrrigationPracticeTSSprinklerAcreageFromList(Parameter=Value,…)

Command Parameters

Parameter Description Default
ListFile Name of comma-delimited file

containing sprinkler acreage for locations
over time.

None – must be specified.

ID A single CU Location identifier to match
or a pattern using wildcards (e.g., 20*).

None – must be specified.

SetStart The first year to set data. If not specified, set the full
period, using all available data
from the list file.

SetEnd The last year to set data. If not specified, set the full
period, using all available data
from the list file.

IDCol The column (1+) in the list file
containing the location ID.

None – must be specified.

YearCol The column (1+) in the list file
containing the year.

None – must be specified.

AcresSprinklerCol The column (1+) in the list file
containing the sprinkler acres for the
location and year.

None – must be specified.

 Command Reference – SetIrrigationPracticeTSSprinklerAcreageFromList() - 3 729

SetIrrigationPracticeTSSprinklerAcreageFromList() Command StateDMI Documentation

This page is intentionally blank.

4 - Command Reference – SetIrrigationPracticeTSSprinklerAcreageFromList () 730

Command Reference:
SetIrrigationPracticeTSTotalAcreageToCropPatternTSTotalAcreage()

Set the irrigation practice time series total acreage to the crop pattern time series

for each CU Location, and adjust irrigation practice acreage components as
necessary

StateCU Command

Version 3.09.01, 2010-02-01

The SetIrrigationPracticeTSTotalAcreageToCropPatternTSTotalAcreage()
command sets the total acreage data in the irrigation practice time series (yearly) to the total for the crop
pattern time series (yearly). The crop pattern time series should have been previously filled so that every
year in the study period has observed or estimated values. Subsequent processing of irrigation practice
acreage with other commands will ensure that acreage components (e.g., acres for irrigation
sprinkler/flood method and ground/surface water source) add up to the total acres. To use this command,
irrigation practice and crop pattern time series must be available in memory from previous commands
(see the ReadIrrigationPracticeTSFromHydroBase() and
ReadCropPatternTSFromStateCU() command). This command should be used after irrigation
practice acreage time series are read from HydroBase, but before other filling of other acreage values
occurs. This ensures that the total acreage controls when estimating acreage terms in the irrigation
practice time series.

Currently, the command performs NO adjustments to any other acreage data in the irrigation practice time
series. For this reason, this command should be used before any other irrigation practice acreage filling
occurs. The following dialog is used to edit the command and illustrates the syntax of the command.

SetIrrigationPracticeTSTotalAcreageToCropPatternTSTotalAcreage

SetIrrigationPracticeTSTotalAcreageToCropPatternTSTotalAcreage() Command Editor

The command syntax is as follows:

 Command Reference – SetIrrigationPracticeTSTotalAcreageToCropPatternTSTotalAcreage() - 1 731

SetIrrigationPracticeTSTotalAcreageToCropPatternTSTotalAcreage () StateDMI Documentation

SetIrrigationPracticeTSTotalAcreageToCropPatternTSTotalAcreage(
Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single CU Location identifier to match or a pattern

using wildcards (e.g., 20*). All matched locations in
irrigation practice time series will be processed.

None – must be specified.

SetStart The starting year to set the data. Starting year set with
SetOutputPeriod(), or
the start of the time series.

SetEnd The ending year to set the data. Ending year set with
SetOutputPeriod(), or
the end of the time series.

IfNotFound Used for error handling, one of the following:
• Fail – generate a failure message if the ID is not

matched
• Ignore – ignore (don’t add and don’t generate a

message) if the ID is not matched
• Warn – generate a warning message if the ID is

not matched

Warn

The following command file illustrates how this command can be used:

Step 1 - Set output period and read CU locations from structure file
SetOutputPeriod(OutputStart="1950",OutputEnd="2006")
ReadCULocationsFromStateCU(InputFile="..\StateCU\cm2006.str")
Step 2 - Read SW aggregates
SetDiversionSystemFromList(ListFile="colorado_divsys.csv",IDCol=1,NameCol=2,PartIDsCol=3,
 PartsListedHow=InRow)
SetDiversionAggregateFromList(ListFile="colorado_agg.csv",IDCol=1,NameCol=2,PartIDsCol=3,
 PartsListedHow=InRow)
Step 3 - Create form for *.ipy file
CreateIrrigationPracticeTSForCULocations(ID="*")
Step 5 - set max flood and surface water efficiencies and GWmode - NOT in HydroBase
Set Max SW Eff = 1.0
SetIrrigationPracticeTS(ID="*",SurfaceDelEffMax=1.0,FloodAppEffMax=.60,
 SprinklerAppEffMax=.80,PumpingMax=0,GWMode=2)
SetIrrigationPracticeTSFromList(ListFile="cmstrlist.csv",ID="*",SetStart=1950,
 SetEnd=2006,IDCol="1",SurfaceDelEffMaxCol="7",FloodAppEffMaxCol="8",SprinklerAppEffMaxCol="9")
Step 6 - Read category acreage from HydroBase
ReadIrrigationPracticeTSFromHydroBase(ID="*",Year="1993,2000",Div="5")
Step 8 - Read total acreage from *.cds file and Set total for *.ipy file
ReadCropPatternTSFromStateCU(InputFile="..\StateCU\cm2006.cds")
SetIrrigationPracticeTSTotalAcreageToCropPatternTSTotalAcreage(ID="*")
Step 9 - Fill all land use acreage
Fill groundwater acreage first
Fill surface water sprinkler and flood 1950-2006
Fill ground water sprinkler and flood 1950-2006
Step 9a - estimate total GW and total SW
FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-
GroundWater",FillStart="1950",FillEnd="1993",FillDirection="Backward")
FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-
GroundWater",FillStart="1993",FillEnd="1999",FillDirection="Forward")
FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-
GroundWater",FillStart="2000",FillEnd="2006",FillDirection="Forward")
Step 9b - fill remaining irrigation method values
FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-SurfaceWaterOnlySprinkler",
 FillStart="1950",FillEnd="1993",FillDirection="Backward")

2 - Command Reference – SetIrrigationPracticeTSTotalAcreageToCropPatternTSTotalAcreage () 732

StateDMI Documentation SetIrrigationPracticeTSTotalAcreageToCropPatternTSTotalAcreage() Command

FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-
SurfaceWaterOnlySprinkler",FillStart="1993",
 FillEnd="1999",FillDirection="Forward")
FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-
SurfaceWaterOnlySprinkler",FillStart="2000",
 FillEnd="2006",FillDirection="Forward")
FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-GroundWaterSprinkler",FillStart="1950",
 FillEnd="1993",FillDirection="Backward")
FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-GroundWaterSprinkler",FillStart="1993",
 FillEnd="1999",FillDirection="Forward")
FillIrrigationPracticeTSRepeat(ID="*",DataType="CropArea-GroundWaterSprinkler",FillStart="2000",
 FillEnd="2006",FillDirection="Forward")
Step 10 - Write final ipy file
WriteIrrigationPracticeTSToStateCU(OutputFile="..\StateCU\cm2006.ipy")
Check the results
CheckIrrigationPracticeTS(ID="*")
WriteCheckFile(OutputFile="cm2006.ipy.StateDMI.check.html")

 Command Reference – SetIrrigationPracticeTSTotalAcreageToCropPatternTSTotalAcreage () - 3 733

SetIrrigationPracticeTSTotalAcreageToCropPatternTSTotalAcreage () StateDMI Documentation

This page is intentionally blank.

4 - Command Reference – SetIrrigationPracticeTSTotalAcreageToCropPatternTSTotalAcreage () 734

Command Reference: SetOutputPeriod()
Set the Output Period for Time Series

General Command

Version 3.08.02, 2010-01-07

The SetOutputPeriod() command sets the output period for time series. Specifying the output
period is necessary when creating model files or filling an extended period (time series will not
automatically be extended by fill commands). The following dialog is used to edit this command and
illustrates the syntax of the command. Note that the output period should always use calendar month and
year, even if other than calendar year are used for output (see SetOutputYearType()).

SetOutputPeriod

SetOutputPeriod() Command Editor

 Command Reference – SetOutputPeriod() - 1 735

SetOutputPeriod() Command StateDMI Documentation

The command syntax is as follows:

SetOutputPeriod(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputStart The output period start, in a standard

date/time format. The precision of this
value should match that of data because
it is used to iterate through the data. For
example, if monthly data are being
processed, specify the OutputStart
using year and month.

None – must be specified.

OutputEnd The output period end, in a standard
date/time format. The precision of this
value should match that of data because
it is used to iterate through the data. For
example, if monthly data are being
processed, specify the OutputStart
using year and month.

None – must be specified.

2 - Command Reference – SetOutputPeriod() 736

Command Reference: SetOutputYearType()
Set the output year type for time series and other data

General Command

Version 3.08.02, 2010-01-07

The SetOutputYearType() command sets the output year type for time series and other time-
dependent data (e.g., the order of monthly efficiencies in the StateMod diversion stations file depends on
the year type). The output period used with SetOutputPeriod() should always use calendar month
and year, even if other than calendar year are used for the output year type. The following dialog is used
to edit this command and illustrates the syntax of the command.

SetOutputYearType

SetOutputYearType() Command

 Command Reference – SetOutputYearType() - 1 737

SetOutputYearType() Command StateDMI Documentation

The command syntax is as follows:

SetOutputYearType(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputYearType The output year type, one of:

Calendar – each year is Jan – Dec.
NovToOct – each year is Nov of the
previous year to Oct of the current year
Water – each water year is Oct of the
previous year to Sep of the current year.

None – must be specified.

2 - Command Reference – SetOutputYearType() 738

Command Reference: SetPenmanMonteith()

Set Penman-Monteith crop coefficients data

StateCU Command
Version 3.10.00, 2010-04-02

The SetPenmanMonteith() command sets data in existing Penman-Monteith crop coefficients or
adds a new crop type with crop coefficients. The following dialog is used to edit the command and
illustrates the syntax of the command.

SetPenmanMonteith

SetPenmanMonteith() Command Editor

 Command Reference – SetPenmanMonteith() - 1 739

SetPenmanMonteith () Command StateDMI Documentation

The command syntax is as follows:

SetPenmanMonteith(Parameter=Value,…)

Command Parameters

Parameter Description Default
CropType A crop type to match or a pattern

using wildcards (e.g., ALFALFA*).
None – must be specified.

Coefficients A list of coefficients, surrounded by
double quotes.

If not specified, the original
value will remain.

IfNotFound Used for error handling, one of the
following:
• Add – add the crop if not found

using the provided information
• Fail – generate a failure

message if the crop is not found
• Ignore – ignore (don’t add

and don’t generate a message) if
the crop is not found

• Warn – generate a warning
message if the crop is not found

Warn

2 - Command Reference – SetPenmanMonteith () 740

Command Reference: SetReservoirAggregate ()

Set reservoir aggregate parts

StateMod Command
Version 3.09.01, 2010-02-01

The SetReservoirAggregate() command sets reservoir aggregate part identifier data for a
reservoir. Aggregate reservoirs are defined as a combination of other reservoirs and may be used, for
example, to aggregate stock ponds or other small reservoirs. This command should be specified before
commands that need aggregate information during processing (e.g., those that read data from HydroBase).
The following dialog is used to edit the command and illustrates the syntax of the command.

SetReservoirAggregate

SetReservoirAggregate() Command Editor

 Command Reference – SetReservoirAggregate () - 1 741

SetReservoirAggregate () Command StateDMI Documentation

The command syntax is as follows:

SetReservoirAggregate(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID The reservoir identifier to associate with

the aggregate part identifiers.
None – must be specified.

PartIDs The list of part identifiers to comprise the
aggregate.

None – must be specified.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message if

the ID is not matched
• Ignore – ignore (don’t add and

don’t generate a message) if the ID is
not matched

• Warn – generate a warning message
if the ID is not matched

Warn

2 - Command Reference – SetReservoirAggregate () 742

Command Reference:
SetReservoirAggregateFromList()

Set reservoir aggregate parts from data in a list file

StateMod Command

Version 3.09.01, 2010-02-01

The SetReservoirAggregateFromList() command reads reservoir aggregate part identifier data
from a list file and saves the information for the reservoir. Aggregate reservoirs are defined as a
combination of other reservoirs and may be used, for example, to aggregate stock ponds or other small
reservoirs. Using a list file to define the aggregate allows the aggregate list to be shared between different
commands files, minimizing errors. This command should be specified before commands that need
aggregate information during processing (e.g., those that read data from HydroBase). The following
dialog is used to edit the command and illustrates the syntax of the command.

SetReservoirAggregateFromList

SetReservoirAggregateFromList() Command Editor

 Command Reference – SetReservoirAggregateFromList() - 1 743

SetReservoirAggregateFromList() Command StateDMI Documentation

The command syntax is as follows:

SetReservoirAggregateFromList(Parameter=Value,…)

Command Parameters

Parameter Description Default
ListFile The name of the input file to read,

surrounded by double quotes.
None – must be specified.

IDCol The column number (1+) containing the
aggregate reservoir identifiers.

None – must be specified.

NameCol The column number (1+) containing the
aggregate reservoir name.

None – optional (name will be
initialized to blank).

PartIDsCol The column number (1+) for the first
column having part identifiers.

None – must be specified.

PartIDsColMax The column number (1+) for the last
column having part identifiers.

Use all available columns.

PartsListedHow If InRow, it is expected that all parts
defining an aggregate are listed in the
same row. If InColumn, it is expected
that the parts defining an aggregate are
listed one per row, with multiple rows
defining the full aggregate
(PartIDsColMax is ignored in this
case).

None – must be specified.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message if

the ID is not matched
• Ignore – ignore (don’t add and

don’t generate a message) if the ID is
not matched

• Warn – generate a warning message
if the ID is not matched

Warn

An example list file is shown below:

Aggregate Reservoirs
20ARW01,203531,203533,203534,203535,203537,203540,203542,203543,203544,203545,203546
21ARW01,213584,213585,213586,213587,213589,217001
22ARW01,223301,223302,223303,223304,223305,223578,223580,223581,223583,223584
22ARW02,223575
24ARW01,243579,243580
25ARW01,250728,250729,250730,250731,253500,253501,253502,253503,253504,253505,253506
26ARW01,260721,260722,260723,260724,260725,263300,263581,263583,263584,263585,263586
27ARW01,273301,273303,273304,273305,273306,273307,273308,273309,273310,273311,273312
…

2 - Command Reference – SetReservoirAggregateFromList() 744

Command Reference: SetReservoirRight()

Set reservoir right data

StateMod Command
Version 3.09.01, 2010-02-01

The SetReservoirRight() command sets data in existing reservoir rights or adds a new reservoir
right. If a new right is added, it is added in alphabetical order according to the right identifier. The
following dialog is used to edit the command and illustrates the syntax of the command.

SetReservoirRight

SetReservoirRight() Command Editor

 Command Reference – SetReservoirRight() - 1 745

SetReservoirRight() Command StateDMI Documentation

The command syntax is as follows:

SetReservoirRight(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single reservoir right identifier to match or a pattern

using wildcards (e.g., 20*).
None – must be specified.

Name The name to be assigned for all matching reservoir
rights.

If not specified, the
original value will remain.

StationID The reservoir station identifier to be assigned for all
matching reservoir rights.

If not specified, the
original value will remain.

Administration
Number

The administration number to be assigned for all
matching reservoir rights.

If not specified, the
original value will remain.

Decree The water right decree to be assigned for all matching
reservoir rights.

If not specified, the
original value will remain.

OnOff The on/off switch value to be assigned for all matching
reservoir rights, either 1 for on or 0 for off, a positive 4-
digit year to turn the right on starting in the year, or a
negative 4-digit year to turn the right off starting in the
year.

If not specified, the
original value will remain.

AccountDist The account distribution option to be assigned for all
matching reservoir rights (see StateMod documentation).

If not specified, the
original value will remain.

RightType The reservoir right type to be assigned for all matching
reservoir rights (see StateMod documentation).

If not specified, the
original value will remain.

FillType The reservoir right fill type to be assigned for all
matching reservoir rights (see StateMod documentation).

If not specified, the
original value will remain.

OpRightID The out-of-priority associated operational right (see
StateMod documentation).

If not specified, the
original value will remain.

IfNotFound Used for error handling, one of the following:
• Add – add the reservoir right if the ID is not matched

and is not a wildcard
• Fail – generate a failure message if the ID is not

matched
• Ignore – ignore (don’t add and don’t generate a

message) if the ID is not matched
• Warn – generate a warning message if the ID is not

matched

Warn

IfFound Used for error handling, one of the following:
• Set – set the reservoir right if the ID is matched
• Fail – generate a failure message if the ID is

matched
• Ignore – ignore (don’t add and don’t generate a

message) if the ID is matched
• Warn – generate a warning message if the ID is

matched

Warn

2 - Command Reference – SetReservoirRight() 746

Command Reference: SetReservoirStation()

Set reservoir station data

StateMod Command
Version 3.09.01, 2010-02-01

The SetReservoirStation() command sets data in existing reservoir stations or adds a new
reservoir station. Because there are a large number of parameters, it may be desirable to use several
commands for the same reservoir. Only one reservoir account can be assigned per command – an account
identifier of 1 will clear all accounts before new accounts are defined. Bounding zero and high-end
records are not automatically added for the content/area/seepage data – modelers must specify the bounds
to prevent StateMod errors (the FillReservoirStationsFromHydroBase() command will
provide bounding values).

 Command Reference – SetReservoirStation() - 1 747

SetReservoirStation() Command StateDMI Documentation

The following dialog is used to edit the command and illustrates the syntax of the command.

SetReservoirStation

SetReservoirStation() Command Editor

The command syntax is as follows:

SetReservoirStation(Parameter=Value,…)

2 - Command Reference – SetReservoirStation() 748

StateDMI Documentation SetReservoirStation() Command

Command Parameters

Parameter Description Default
ID A single reservoir station identifier to match or a

pattern using wildcards (e.g., 20*).
None – must be
specified.

Name The name to be assigned for all matching reservoir
stations.

If not specified, the
original value will
remain.

RiverNodeID The river node identifier to be assigned for all
matching reservoir stations. Specify ID to assign
to the reservoir station identifier.

If not specified, the
original value will
remain.

OnOff The on/off switch value to be assigned for all
matching reservoir stations, either 1 for on or 0 for
off.

If not specified, the
original value will
remain.

OneFillRule The date for one fill rule administration (see the
StateMod documentation) to be assigned for all
matching reservoir stations.

If not specified, the
original value will
remain.

DailyID The daily identifier to be assigned for all matching
reservoir stations.

If not specified, the
original value will
remain.

ContentMin The reservoir minimum content, ACFT. If not specified, the
original value will
remain.

ContentMax The reservoir maximum content, ACFT. If not specified, the
original value will
remain.

ReleaseMax The reservoir maximum release, CFS. If not specified, the
original value will
remain.

DeadStorage The reservoir dead storage, ACFT. If not specified, the
original value will
remain.

AccountID A reservoir account identifier, a number 1+.
Reservoir accounts in the StateMod reservoir
station are identified only by the account name.
This AccountID lets the software know the order
of the accounts. If the AccountID is specified as
1, all the accounts are deleted and a new list of
accounts is started. Therefore, specify account
information in sequential order.

Must be specified when
providing account
information.

AccountName A reservoir account name. If not specified, the
original value will
remain.

AccountMax The account maximum content, ACFT. If not specified, the
original value will
remain.

AccountInitial The account initial content, ACFT. If not specified, the
original value will
remain.

 Command Reference – SetReservoirStation() - 3 749

SetReservoirStation() Command StateDMI Documentation

Parameter Description Default
AccountEvap The account evaporation distribution – see the

StateMod documentation.
If not specified, the
original value will
remain.

AccountOneFill The account information for one fill calculations –
see the StateMod documentation.

If not specified, the
original value will
remain.

EvapStations A list of evaporation stations and weights (%) for
the reservoir station, using the format: ID,%;
ID,%

If not specified, the
original value will
remain.

PrecipStations A list of precipitation stations and weights (%) for
the reservoir station, using the format: ID,%;
ID,%

If not specified, the
original value will
remain.

ContentAreaSeepage Content/area/seepage values, using the format:
Content,Area,Seepage;
Content,Area,Seepage.

If not specified, the
original value will
remain.

IfNotFound Used for error handling, one of the following:
• Add – add the reservoir station if the ID is not

matched and is not a wildcard
• Fail – generate a failure message if the ID is

not matched
• Ignore – ignore (don’t add and don’t

generate a message) if the ID is not matched
• Warn – generate a warning message if the ID

is not matched

Warn

The following example illustrates how to set multiple accounts for one reservoir (note that more
information is set in the first command whereas only account information is set in subsequent
commands):

GREEN MOUNTAIN RESERVIOR Characteristics
SetReservoirStation(ID="363543",OnOff=3,OneFillRule=4,DailyID="5",ContentMin=0,
 ContentMax=154645,ReleaseMax=4010,DeadStorage=0,AccountID=1,
 AccountName="Hist_Users",AccountMax=66000,AccountInitial=0,AccountEvap=0,
 AccountOneFill=1,EvapStations="10008,100",IfNotFound=Warn)
SetReservoirStation(ID="363543",AccountID=2,AccountName="CBT_Pool",AccountMax=52000,
 AccountInitial=0,AccountEvap=0,AccountOneFill=1,IfNotFound=Warn)
SetReservoirStation(ID="363543",AccountID=3,AccountName="Contract",AccountMax=20000,
 AccountInitial=0,AccountEvap=0,AccountOneFill=1,IfNotFound=Warn)
SetReservoirStation(ID="363543",AccountID=4,AccountName="Silt_Proj",AccountMax=5000,
 AccountInitial=0,AccountEvap=0,AccountOneFill=1,IfNotFound=Warn)
SetReservoirStation(ID="363543",AccountID=5,AccountName="Inactive",AccountMax=11645,
 AccountInitial=0,AccountEvap=0,AccountOneFill=1,IfNotFound=Warn)
SetReservoirStation(ID="363543",AccountID=6,AccountName="SurplusFish",AccountMax=66000,
 AccountInitial=0,AccountEvap=0,IfNotFound=Warn)

4 - Command Reference – SetReservoirStation() 750

Command Reference: SetRiverNetworkNode()

Set river network node data

StateMod Command
Version 3.09.01, 2010-02-01

The SetRiverNetworkNode() command sets data in existing river network nodes or adds a new
river network node. The following dialog is used to edit the command and illustrates the syntax of the
command.

SetRiverNetworkNode

SetRiverNetworkNode() Command Editor

 Command Reference – SetRiverNetworkNode() - 1 751

SetRiverNetworkNode() Command StateDMI Documentation

The command syntax is as follows:

SetRiverNetworkNode(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single river network node identifier

to match or a pattern using wildcards
(e.g., 20*).

None – must be specified.

Name The name to be assigned for all
matching river network nodes.

If not specified, the original
value will remain.

DownstreamRiverNodeID The downstream river node identifier
to be assigned for all matching river
network nodes.

If not specified, the original
value will remain.

Comment The comment to be assigned for all
matching river network nodes.

If not specified, the original
value will remain.

MaxRechargeLimit The maximum recharge limit, CFS,
for groundwater modeling, assigned
for all matching river network nodes.

If not specified, the original
value will remain.

IfNotFound Used for error handling, one of the
following:
• Add – add the river network node

if the ID is not matched and is not
a wildcard (note that nodes that
are upstream and downstream
of the addition are NOT
automatically changed)

• Fail – generate a failure
message if the ID is not matched

• Ignore – ignore (don’t add and
don’t generate a message) if the
ID is not matched

• Warn – generate a warning
message if the ID is not matched

Warn

2 - Command Reference – SetRiverNetworkNode() 752

Command Reference:
SetStreamEstimateCoefficients()

Set stream estimate coefficients data

StateMod Command

Version 3.09.01, 2010-02-01

The SetStreamEstimateCoefficients() command sets data in existing stream estimate
coefficients – the previous values will be overwritten. If base or gain data are specified, the original
values will be replaced (not appended). The following dialog is used to edit the command and illustrates
the syntax of the command.

SetStreamEstimateCoefficients

SetStreamEstimateCoefficients() Command Editor

The command syntax is as follows:

SetStreamEstimateCoefficients(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single stream estimate station identifier to match or a

pattern using wildcards (e.g., 20*).
None – must be
specified.

Proration
Factor

The proration factor for all matching stream estimate
stations.

If not specified, the
original value will

 Command Reference – SetStreamEstimateCoefficients() - 1 753

SetStreamEstimateCoefficients() Command StateDMI Documentation

Parameter Description Default
remain.

BaseData The base flow coefficient and station ID pairs to be
assigned for all matching stream estimate stations.
Repeat for as many pairs as necessary, separated by
commas.

If not specified, the
original value will
remain.

GainData The gain flow coefficient and station ID pairs to be
assigned for all matching stream estimate stations.
Repeat for as many pairs as necessary, separated by
commas.

If not specified, the
original value will
remain.

IfNotFound Used for error handling, one of the following:
• Add – add the stream estimate coefficients if the ID

is not matched and is not a wildcard
• Fail – generate a failure message if the ID is not

matched
• Ignore – ignore (don’t add and don’t generate a

message) if the ID is not matched
• Warn – generate a warning message if the ID is not

matched

Warn

The following command file illustrates how a StateMod stream estimate coefficients file can be created:

StartLog(LogFile="rib.commands.StateDMI.log")
rib.commands.StateDMI

Creates the Stream Estimate Station Coefficient Data file

Step 1 - read river nodes from the network file and create file framework

ReadStreamEstimateStationsFromNetwork(InputFile="..\Network\cm2005.net")

Step 2 - set preferred gages for "neighboring" gage approach
this baseflow nodes are generally on smaller non-gaged tribs and have
different flow characteristics than next downstream gages

SetStreamEstimateCoefficientsPFGage(ID="360645",GageID="09055300")
...similar commands omitted…

Step 3 - calculate stream coefficients
CalculateStreamEstimateCoefficients()

Step 4 - set proration factors directly

SetStreamEstimateCoefficients(ID="364512",ProrationFactor=1.000,IfNotFound=Warn)
…similar commands omitted…

Step 5 - create streamflow estimate coefficient file

WriteStreamEstimateCoefficientsToStateMod(OutputFile="..\StateMOD\cm2005.rib")

Check the results
CheckStreamEstimateCoefficients(ID="*")
WriteCheckFile(OutputFile="rib.commands.StateDMI.check.html")

2 - Command Reference – SetStreamEstimateCoefficients() 754

Command Reference:
SetStreamEstimateCoefficientsPFGage()

Set stream estimate coefficients to use a specific gage for proration factor

calculations

StateMod Command
Version 3.09.01, 2010-02-01

The SetStreamEstimateCoefficientsPFGage() command indicates that the proration factor
for a specified station/node should be calculated using only the area*precipitation value for the specified
stream gage, rather than the next downstream node. The station/node is then treated as if it were a stream
gage node for other natural flow calculations (as carried out by the
CalculateStreamEstimateCoefficients() command). These commands should be specified
before the CalculateStreamEstimateCoefficients() command.

The following dialog is used to edit the command and illustrates the syntax of the command.

SetStreamEstimateCoefficientsPFGage

SetStreamEstimateCoefficientsPFGage() Command Editor

The command syntax is as follows:

SetStreamEstimateCoefficientsPFGage(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single stream estimate station

identifier to match.
None – must be specified.

GageID A stream gage station identifier to use,
instead of the downstream gage.

None – must be specified.

 Command Reference – SetStreamEstimateCoefficientsPFGage() - 1 755

SetStreamEstimateCoefficientsPFGage() Command StateDMI Documentation

The following command file illustrates how a StateMod stream estimate coefficients file can be created:

StartLog(LogFile="rib.commands.StateDMI.log")
rib.commands.StateDMI

Creates the Stream Estimate Station Coefficient Data file

Step 1 - read river nodes from the network file and create file framework

ReadStreamEstimateStationsFromNetwork(InputFile="..\Network\cm2005.net")

Step 2 - set preferred gages for "neighboring" gage approach
this baseflow nodes are generally on smaller non-gaged tribs and have
different flow characteristics than next downstream gages

SetStreamEstimateCoefficientsPFGage(ID="360645",GageID="09055300")
SetStreamEstimateCoefficientsPFGage(ID="360801",GageID="09055300")
SetStreamEstimateCoefficientsPFGage(ID="362002",GageID="09054000")
SetStreamEstimateCoefficientsPFGage(ID="360829",GageID="09047500")
..similar commands omitted…

Step 3 - calculate stream coefficients
CalculateStreamEstimateCoefficients()

Step 4 - set proration factors directly

SetStreamEstimateCoefficients(ID="364512",ProrationFactor=1.000,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="374641",ProrationFactor=0.200,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="374648",ProrationFactor=0.350,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="380880",ProrationFactor=1.000,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="381594",ProrationFactor=0.800,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="384617",ProrationFactor=0.700,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="510639",ProrationFactor=1.000,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="514603",ProrationFactor=0.800,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="514620",ProrationFactor=1.000,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="510728",ProrationFactor=1.000,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="530555",ProrationFactor=0.180,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="530678",ProrationFactor=0.230,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="531082",ProrationFactor=1.000,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="954683",ProrationFactor=0.400,IfNotFound=Warn)

Step 5 - create streamflow estimate coefficient file

WriteStreamEstimateCoefficientsToStateMod(OutputFile="..\StateMOD\cm2005.rib")

Check the results
CheckStreamEstimateCoefficients(ID="*")
WriteCheckFile(OutputFile="rib.commands.StateDMI.check.html")

2 - Command Reference – SetStreamEstimateCoefficientsPFGage() 756

Command Reference:
SetStreamEstimateStation()

Set stream estimate station data

StateMod Command

Version 3.09.01, 2010-02-01

The SetStreamEstimateStation() command sets data in existing stream estimate stations or
adds a new stream estimate station. The following dialog is used to edit the command and illustrates the
syntax of the command.

SetStreamEstimateStation

SetStreamEstimateStation() Command Editor

 Command Reference – SetStreamEstimateStation() - 1 757

SetStreamEstimateStation() Command StateDMI Documentation

The command syntax is as follows:

SetStreamEstimateStation(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single stream estimate station

identifier to match or a pattern using
wildcards (e.g., 20*).

None – must be specified.

Name The name to be assigned for all matching
stream estimate stations.

If not specified, the original
value will remain.

RiverNodeID The river node identifier to be assigned
for all matching stream estimate stations.

If not specified, the original
value will remain.

DailyID The daily identifier to be assigned for all
matching stream estimate stations.

If not specified, the original
value will remain.

IfNotFound Used for error handling, one of the
following:
• Add – add the stream estimate

station if the ID is not matched and is
not a wildcard

• Fail – generate a failure message if
the ID is not matched

• Ignore – ignore (don’t add and
don’t generate a message) if the ID is
not matched

• Warn – generate a warning message
if the ID is not matched

Warn

2 - Command Reference – SetStreamEstimateStation() 758

Command Reference: SetStreamGageStation()

Set stream gage station data

StateMod Command
Version 3.09.01, 2010-02-01

The SetStreamGageStation () command sets data in existing stream gage stations or adds a new
stream gage station. The following dialog is used to edit the command and illustrates the syntax of the
command.

SetStreamGageStation

SetStreamGageStation() Command Editor

The command syntax is as follows:

SetStreamGageStation(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single stream gage station identifier to

match or a pattern using wildcards (e.g.,
20*).

None – must be specified.

Name The name to be assigned for all matching
stream gage stations.

If not specified, the original
value will remain.

RiverNodeID The river node identifier to be assigned
for all matching stream gage stations.

If not specified, the original
value will remain.

 Command Reference – SetStreamGageStation() - 1 759

SetStreamGageStation() Command StateDMI Documentation

Parameter Description Default
DailyID The daily identifier to be assigned for all

matching stream gage stations.
If not specified, the original
value will remain.

IfNotFound Used for error handling, one of the
following:
• Add – add the stream gage station if

the ID is not matched and is not a
wildcard

• Fail – generate a failure message if
the ID is not matched

• Ignore – ignore (don’t add and
don’t generate a message) if the ID is
not matched

• Warn – generate a warning message
if the ID is not matched

Warn

The following example command file illustrates the commands used to read stream gage stations from the
network and create a StateMod file:

StartLog(LogFile="ris.commands.StateDMI.log")
ris.commands.StateDMI

StateDMI command file to create streamflow station file for the Colorado River

Step 1 - read streamgages and baseflows ids from the network file

ReadStreamGageStationsFromNetwork(InputFile="..\Network\cm2005.net",
 IncludeStreamEstimateStations="True")

Step 2 - read baseflow nodes names from HydroBase,
fill in missing names from the network file

FillStreamGageStationsFromHydroBase(ID="*",NameFormat=StationName,CheckStructures=True)
FillStreamGageStationsFromNetwork(ID="*",NameFormat="StationName")

Step 3 - set streamgage station to use to disaggregate monthly baseflows to daily

add set daily pattern gages for WD 36
SetStreamGageStation(ID="36*",DailyID="09047500",IfNotFound=Warn)
…many similar commands omitted…

Step 4 - create streamflow station file

WriteStreamGageStationsToStateMod(OutputFile="..\StateMod\cm2005.ris")

Check the results
CheckStreamGageStations(ID="*")
WriteCheckFile(OutputFile="ris.commands.StateDMI.check.html")

2 - Command Reference – SetStreamGageStation() 760

Command Reference: SetWarningLevel()
Set Level for Warning Messages

General Command

Version 3.08.02, 2010-01-07

The SetWarningLevel() command is used to set warning levels for the screen and log file. The
following dialog is used to edit this command and illustrates the command syntax. The default is warning
level 1 to the screen and 2 to the log file.

SetWarningLevel

SetWarningLevel() Command Editor

Warning messages are useful during troubleshooting. A general guideline is that a warning level of 1
prints important messages that a user should see, 2 prints warnings that by default are printed to the log
file but are not displayed in the user interface, and 100 prints very low-level messages about
input/output. Intermediate values will result in more or less output.

This command is useful for troubleshooting and can be specified multiple times to increase warning
information for a specific command, if necessary.

 Command Reference – SetWarningLevel() - 1 761

SetWarningLevel() Command StateDMI Documentation

This page is intentionally blank.

2 - Command Reference – SetWarningLevel() 762

Command Reference: SetWellAggregate ()

Set well aggregate parts

StateCU and StateMod Command
Version 3.09.00, 2010-01-21

The SetWellAggregate() command sets well aggregate part identifier data for a well (a CU
Location that corresponds to a location with well supply, or StateMod well station). Well aggregates are
specified using a list of part identifiers as follows:

• Part type is Ditch – the collection includes wells that are associated with a list of ditches,
identified using ditch water district identifiers (WDIDs). The list of ditches is used for the full
period.

• Part type is Parcel – the collection includes wells that are associated with a list of parcels. The
division and year must be specified in the command because well to parcel relationships are
determined for specific years.

• Part type is Well – the collection includes wells identified by well WDID (permit receipt number
is not supported).

To facilitate processing, it is often best to use list files to specific aggregates (see
SetWellAggregateFromList()). Aggregates by convention have their water rights grouped into
classes – to represent all water rights at a location, use a system (see the similar System commands).
See also the StateDMI Introduction chapter, which provides additional information about aggregates and
other modeling conventions. Aggregate information should be specified after well locations are defined
and before their use in other processing, such as reading data from HydroBase.

 Command Reference – SetWellAggregate() - 1 763

SetWellAggregate() Command StateDMI Documentation

The following dialog is used to edit the command and illustrates the syntax of the command.

SetWellAggregate

SetWellAggregate() Command Editor

2 - Command Reference – SetWellAggregate () 764

StateDMI Documentation SetWellAggregate() Command

The command syntax is as follows:

SetWellAggregate(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID The well identifier to associate with the

collection of individual wells.
None – must be specified.

PartType Indicate the type of features being aggregated
and specified by PartIDs, one of:
• Ditch – the PartIDs (ditch WDIDs)

indicate ditch service areas supplemented
by wells.

• Parcel – the PartIDs (parcel numbers
from GIS processing) indicate parcels
irrigated by wells, with no surface water
supply.

• Well – the PartIDs indicate wells
(WDIDs), with no surface water supply.

None – must be specified.

Year The year defining the parcels. Required when PartType is
Parcel because parcel
identifiers from well matching
are specific to the data year.

Div Water division for the parcels in the aggregate. Required when PartType is
Parcel because parcels require
the division.

PartIDs The list of part identifiers to comprise the
aggregate. See the PartType description
above.

None – must be specified.

IfNotFound Used for error handling, one of the following:
• Fail – generate a failure message if the

identifier is not matched
• Ignore – ignore (don’t add and don’t

generate a message) if the identifier is not
matched

• Warn – generate a warning message if the
identifier is not matched

Warn

 Command Reference – SetWellAggregate() - 3 765

SetWellAggregate() Command StateDMI Documentation

This page is intentionally blank.

4 - Command Reference – SetWellAggregate () 766

Command Reference:
SetWellAggregateFromList()

Set well aggregate parts from data in a list file

StateCU and StateMod Command

Version 3.09.00, 2010-01-21

The SetWellAggregateFromList() command sets well aggregate part identifier data for a well (a
CU Location that corresponds to a location with well supply, or StateMod well station). Well aggregates
are specified using a list of part identifiers as follows:

• Part type is Ditch – the collection includes wells that are associated with a list of ditches,
identified using ditch water district identifiers (WDIDs). The list of ditches is used for the full
period.

• Part type is Parcel – the collection includes wells that are associated with a list of parcels. The
division and year must be specified in the command because well to parcel relationships are
determined for specific years.

• Part type is Well – the collection includes wells identified by well WDID (permit receipt number
is not supported).

To facilitate processing, the list of parts is specified in a delimited list file. Aggregates by convention
have their water rights grouped into classes – to represent all water rights at a location, use a system (see
the similar System commands). See also the StateDMI Introduction chapter, which provides additional
information about aggregates and other modeling conventions. Aggregate information should be
specified after well locations are defined and before their use in other processing, such as reading data
from HydroBase.

The SetWellSystemFromList() command is often used instead of the
SetWellAggregateFromList() command if specific well rights are referred in augmentation plans
(therefore the examples shown below are contrived).

 Command Reference – SetWellAggregateFromList() - 1 767

SetWellAggregateFromList() Command StateDMI Documentation

The following dialog is used to edit the command and illustrates the syntax of the command.

SetWellAggregateFromList

SetWellAggregateFromList() Command Editor

The command syntax is as follows:

SetWellAggregateFromList(Parameter=Value,…)

Command Parameters

Parameter Description Default
ListFile The name of the input file to read,

surrounded by double quotes.
None – must be specified.

PartType Indicate the type of features being
aggregated and specified by PartIDs,
one of:
• Ditch – the PartIDs (ditch

WDIDs) indicate ditch service areas
supplemented by wells.

None – must be specified.

2 - Command Reference – SetWellAggregateFromList() 768

StateDMI Documentation SetWellAggregateFromList() Command

Parameter Description Default
• Parcel – the PartIDs (parcel

numbers from GIS processing)
indicate parcels irrigated by wells,
with no surface water supply.

• Well – the PartIDs indicate wells
(WDIDs), with no surface water
supply.

Year The year defining the parcels. Required when PartType is
Parcel because parcel
identifiers from well matching
are specific to the data year.

Div Water division for the parcels in the
aggregate.

Required when PartType is
Parcel because parcels require
the division.

IDCol The column number (1+) containing the
aggregate well identifiers.

None – must be specified.

NameCol The column number (1+) containing the
aggregate well name.

None – optional (name will
remain as before).

PartIDsCol The column number (1+) for the first
column having part identifiers.

None – must be specified.

PartsListedHow If InRow, it is expected that all parts
defining an aggregate are listed in the
same row. If InColumn, it is expected
that the parts defining an aggregate are
listed one per row, with multiple rows
defining the full aggregate
(PartIDsColMax is ignored in this
case).

None – must be specified.

PartIDsColMax The column number (1+) for the last
column having part identifiers. Use if
extra columns on the right need to be
excluded from the list.

Use all available non-blank
columns starting with
PartIDsCol.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message if

the aggregate identifier is not
matched

• Ignore – ignore (don’t add and
don’t generate a message) if the
aggregate identifier is not matched

• Warn – generate a warning message
if the aggregate identifier is not
matched

Warn

 Command Reference - SetWellAggregateFromList() - 3 769

SetWellAggregateFromList() Command StateDMI Documentation

The following example illustrates a list file is used with PartType=Parcel and
PartsListedHow=InColumn:

"UZONES","PARCEL"
20URF0,16831
20URF0,16832
20URF0,16834
…
20URF0,18606
20URF24,10295
20URF24,10318
…

The following example illustrates a list file is used with PartType=Ditch and
PartsListedHow=InColumn, with the name being provided in column 2:

Aggregate_ID/Agg_Name/WDID
01_ADP037,South Platte River below Kersey Co North 2,0100643
01_ADP037,South Platte River below Kersey Co North 2,0100644
01_ADP037,South Platte River below Kersey Co North 2,0100835
01_ADP037,South Platte River below Kersey Co North 2,0104486

4 - Command Reference – SetWellAggregateFromList() 770

Command Reference:
SetWellDemandTSMonthly()

Set well demand time series (monthly) data

StateMod Command

Version 3.09.01, 2010-02-01

The SetWellDemandTSMonthly() command sets the well demand time series (monthly) for a
specific well, by reading another time series. If data already exist, the previous time series is discarded.
The period of the time series is set to the output period. This command is useful if data cannot be
calculated in an automated fashion (e.g., municipal demands may need to be specified manually). The
following dialog is used to edit the command and illustrates the syntax of the command.

SetWellDemandTSMonthly

SetWellDemandTSMonthly() Command Editor

 Command Reference – SetWellDemandTSMonthly() - 1 771

SetWellDemandlTSMonthly() Command StateDMI Documentation

The command syntax is as follows:

SetWellDemandTSMonthly(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single well station identifier to match or a

pattern using wildcards (e.g., 20*).
None – must be
specified.

TSID The full time series identifier, which is used to
locate and read the time series. Currently time
series from StateMod and DateValue files, and
HydroBase are recognized. See the TSTool
input type appendices for the formats of these
files. Other input types can be enabled if
necessary.

None – must be
specified.

LEZeroInAverage Indicates whether values <= 0 should be
considered when computing historical averages.

True

IfNotFound Used for error handling, one of the following:
• Add – add the time series if the ID is not

matched and is not a wildcard
• Fail – generate a failure message if the ID

is not matched
• Ignore – ignore (don’t add and don’t

generate a message) if the ID is not matched
• Warn – generate a warning message if the

ID is not matched

Warn

2 - Command Reference – SetWellDemandTSMonthly() 772

Command Reference:
SetWellDemandTSMonthlyConstant()

Set well demand time series (monthly) data to a constant value

StateMod Command

Version 3.09.01, 2010-02-01

The SetWellDemandTSMonthlyConstant() command sets well demand time series (monthly)
data to a constant value. The output period can be set or will default to that defined by the most recent
SetOutputPeriod() command. If a matching time series is not found, it can be added to the list of
time series (at the end). The values that are set are treated the same as observations from HydroBase. To
ensure that set values remain, use the SetWellDemandTSMonthlyConstant() command after
other commands that may modify the time series.

The following dialog is used to edit the command and illustrates the syntax of the command.

SetWellDemandTSMonthlyConstant

SetWellDemandTSMonthlyConstant() Command Editor

 Command Reference – SetWellDemandTSMonthlyConstant() - 1 773

SetWellDemandTSMonthlyConstant() Command StateDMI Documentation

The command syntax is as follows:

SetWellDemandTSMonthlyConstant(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single well station identifier to match or a

pattern using wildcards (e.g., 20*).
None – must be specified.

Constant A constant well demand value. None – must be specified.
SetStart The start of the period for the set, in a standard

date/time format for monthly data (e.g., YYYY-MM
or MM/YYYY).

The output period start.

SetEnd The end of the period for the set, in a standard
date/time format for monthly data (e.g., YYYY-MM
or MM/YYYY).

The output period end.

RecalcLimits If True, then the constant values will be treated
as observations and the historical averages will be
recalculated with the values. False will result in
the time series being set but the previous averages
remaining. The averages are used with fill
commands.

True

IfNotFound Used for error handling, one of the following:
• Add – add the time series if the ID is not

matched and is not a wildcard
• Fail – generate a failure message if the ID is

not matched
• Ignore – ignore (don’t add and don’t

generate a message) if the ID is not matched
• Warn – generate a warning message if the ID

is not matched

Warn

2 - Command Reference – SetWellDemandTSMonthlyConstant() 774

Command Reference:
SetWellHistoricalPumpingTSMonthly()

Set well historical pumping time series (monthly) data

StateCU and StateMod Command

Version 3.09.00, 2010-01-26

The SetWellHistoricalPumpingTSMonthly() command sets the well historical pumping time
series (monthly) for a specific well, by reading another time series. If data already exist, the previous
time series is discarded. The period of the time series is set to the output period. This command is useful
if data cannot be calculated in an automated fashion (e.g., municipal pumping may need to be specified
manually). The following dialog is used to edit the command and illustrates the syntax of the command.

SetWellHistoricalPumpingTSMonthly

SetWellHistoricalPumpingTSMonthly() Command Editor

 Command Reference – SetWellHistoricalPumpingTSMonthly() - 1 775

SetWellHistoricalPumpingTSMonthly() Command StateDMI Documentation

The command syntax is as follows:

SetWellHistoricalPumpingTSMonthly(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single well station identifier to match or a

pattern using wildcards (e.g., 20*).
None – must be
specified.

TSID The full time series identifier, which is used to
locate and read the time series. Currently time
series from StateMod and DateValue files, and
HydroBase are recognized. See the TSTool
input type appendices for the formats of these
files. Other input types can be enabled if
necessary.

None – must be
specified.

LEZeroInAverage Indicates whether values <= 0 should be
considered when computing historical averages.

True

IfNotFound Used for error handling, one of the following:
• Add – add the time series if the ID is not

matched and is not a wildcard
• Fail – generate a failure message if the ID

is not matched
• Ignore – ignore (don’t add and don’t

generate a message) if the ID is not matched
• Warn – generate a warning message if the

ID is not matched

Warn

2 - Command Reference – SetWellHistoricalPumpingTSMonthly() 776

Command Reference:
SetWellHistoricalPumpingTSMonthlyConstant()

Set well historical pumping time series (monthly) data to a constant value

StateCU and StateMod Command

Version 3.09.00, 2010-01-26

The SetWellHistoricalPumpingTSMonthlyConstant() command sets well historical
pumping time series (monthly) data to a constant value. The output period can be set or will default to
that defined by the most recent SetOutputPeriod() command. If a matching time series is not
found, it can be added to the list of time series (at the end).

The following dialog is used to edit the command and illustrates the syntax of the command.

SetWellHistoricalPumpingTSMonthlyConstant

SetWellHistoricalPumpingTSMonthlyConstant() Command Editor

 Command Reference – SetWellHistoricalPumpingTSMonthlyConstant() - 1 777

SetWellHistoricalPumpingTSMonthlyConstant() Command StateDMI Documentation

The command syntax is as follows:

SetWellHistoricalPumpingTSMonthlyConstant(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single well station identifier to

match or a pattern using wildcards
(e.g., 20*).

None – must be specified.

Constant A constant historical value to set. None – must be specified.
SetStart The start of the period for the set, in a

standard date/time format for monthly
data (e.g., YYYY-MM or MM/YYYY).

The output period start.

SetEnd The end of the period for the set, in a
standard date/time format for monthly
data (e.g., YYYY-MM or MM/YYYY).

The output period end.

RecalcLimits If True, then the time series limits
will be recalculated as if the provided
values are observations. If False,
the limits from before the set will
remain.

True

IfNotFound Used for error handling, one of the
following:
• Add – add the time series if the

ID is not matched and is not a
wildcard

• Fail – generate a failure
message if the ID is not matched

• Ignore – ignore (don’t add and
don’t generate a message) if the
ID is not matched

• Warn – generate a warning
message if the ID is not matched

Warn

2 - Command Reference – SetWellHistoricalPumpingTSMonthlyConstant() 778

Command Reference: SetWellRight()

Set well right data

StateCU and StateMod Command
Version 3.09.00, 2010-01-28

The SetWellRight() command sets data in existing well rights or adds a new well right. If a new
right is added, it is added in alphabetical order according to the right identifier. The following dialog is
used to edit the command and illustrates the syntax of the command.

SetWellRight

SetWellRight() Command Editor

 Command Reference – SetWellRight() - 1 779

SetWellRight() Command StateDMI Documentation

The command syntax is as follows:

SetWellRight(Parameter=Value…)

Command Parameters

Parameter Description Default
ID A single well right identifier to match

or a pattern using wildcards (e.g.,
20*).

None – must be specified.

Name The name to be assigned for all
matching well rights.

If not specified, the original
value will remain.

StationID The well station identifier to be
assigned for all matching well rights.

If not specified, the original
value will remain.

AdministrationNumber The administration number to be
assigned for all matching well rights.

If not specified, the original
value will remain.

Decree The water right decree to be assigned
for all matching well rights.

If not specified, the original
value will remain.

OnOff The on/off switch value to be assigned
for all matching well rights, either 1
for on or 0 for off, a positive 4-digit
year to turn the right on starting in the
year, or a negative 4-digit year to turn
the right off starting in the year.

If not specified, the original
value will remain.

IfNotFound Used for error handling, one of the
following:
• Add – add the water right if the ID

is not matched and is not a
wildcard

• Fail – generate a failure message
if the ID is not matched

• Ignore – ignore (don’t add and
don’t generate a message) if the ID
is not matched

• Warn – generate a warning
message if the ID is not matched

Warn

IfFound Used for error handling, one of the
following:
• Set – set the water right data
• Fail – generate a failure message

if the ID is matched
• Ignore – ignore (don’t set and

don’t generate a message) if the ID
is matched

• Warn – generate a warning
message if the ID is matched

Warn

2 - Command Reference – SetWellRight() 780

Command Reference: SetWellStation()

Set well station data

StateMod Command
Version 3.09.01, 2010-02-01

The SetWellStation() command sets data in existing well stations or adds a new well station. The
following dialog is used to edit the command and illustrates the syntax of the command.

SetWellStation

SetWellStation() Command Editor

 Command Reference – SetWellStation() - 1 781

SetWellStation() Command StateDMI Documentation

The command syntax is as follows:

SetWellStation(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single well station identifier to match or a pattern

using wildcards (e.g., 20*).
None – must be
specified.

Name The name to be assigned for all matching well stations. If not specified, the
original value will
remain.

RiverNodeID The river node identifier to be assigned for matching
well stations. Specify ID to set to the well station
identifier.

If not specified, the
original value will
remain.

OnOff The on/off switch value to be assigned for all matching
well stations, either 1 for on or 0 for off.

If not specified, the
original value will
remain.

Capacity The well station capacity, CFS. If not specified, the
original value will
remain.

DailyID The daily identifier to be assigned for all matching
well stations. Specify ID to set to the well station
identifier.

If not specified, the
original value will
remain.

AdminNumShift For all matching well stations, a shift to be applied to
the administration number for well rights. See the
“primary” flag in the StateMod well station
documentation.

If not specified, the
original value will
remain.

DiversionID For all matching well stations, the diversion station
identifier associated with the well station. Typically,
where well water supplements surface supply, one well
station is assigned to the diversion station. Specify ID
to assign to the well station identifier.

If not specified, the
original value will
remain.

DemandType The demand type to be assigned for all matching well
stations (see StateMod documentation).

If not specified, the
original value will
remain.

IrrigatedAcres The irrigated acres to be assigned for all matching well
stations.

If not specified, the
original value will
remain.

UseType The use type to be assigned for all matching well
stations (see StateMod documentation).

If not specified, the
original value will
remain.

DemandSource The demand source to be assigned for all matching
well stations (see StateMod documentation).

If not specified, the
original value will
remain.

EffAnnual The annual efficiency (percent, 0 - 100) to be assigned
for matching well stations. Monthly efficiencies will
be set to the same value (but not used).

If not specified, the
original value will
remain.

2 - Command Reference – SetWellStation() 782

StateDMI Documentation SetWellStation() Command

Parameter Description Default
EffMonthly The monthly efficiencies (percent, 0 – 100) to be

assigned for all matching well stations, specified as 12
comma-separated values, January to December. The
annual efficiency will be set to the average value. The
order of the values in the output file will be according
to the output year type set by
setOutputYearType(), or calendar by default.

If not specified, the
original value will
remain.

Returns The return flows to be assigned for all matching well
stations. Specify as
StationID,Percent,DelayTableID;
StationID,Percent,DelayTableID etc.

If not specified, the
original value will
remain.

Depletions The depletions to be assigned for all matching well
stations. Specify as
StationID,Percent,DelayTableID;
StationID,Percent,DelayTableID etc.

If not specified, the
original value will
remain.

IfNotFound Used for error handling, one of the following:
• Add – add the well station if the ID is not matched

and is not a wildcard
• Fail – generate a failure message if the ID is not

matched
• Ignore – ignore (don’t add and don’t generate a

message) if the ID is not matched
• Warn – generate a warning message if the ID is

not matched

Warn

 Command Reference – SetWellStation() - 3 783

SetWellStation() Command StateDMI Documentation

This page is intentionally blank.

4 - Command Reference – SetWellStation() 784

Command Reference:
SetWellStationAreaToCropPatternTS ()

Set the well station area to the crop pattern time series maximum

StateMod Command

Version 3.09.01, 2010-02-01

The SetWellStationAreaToCropPatternTS() command sets the well station area for each well
station to the maximum crop pattern time series total area. The crop pattern time series must have been
read or assigned with previous commands. If there is no crop pattern time series, the area will not be set.

The following dialog is used to edit the command and illustrates the syntax of the command.

SetWellStationAreaToCropPatternTS

SetWellStationAreaToCropPatternTS() Command Editor

 Command Reference – SetWellStationAreaToCropPatternTS() - 1 785

SetWellStationAreaToCropPatternTS () Command StateDMI Documentation

The command syntax is as follows:

SetWellStationAreaToCropPatternTS(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single well station identifier to match or a pattern

using wildcards (e.g., 20*).
None – must be
specified.

IfNotFound Used for error handling, one of the following:
• Fail – generate a failure message if the ID is not

matched
• Ignore – ignore (don’t add and don’t generate a

message) if the ID is not matched
• Warn – generate a warning message if the ID is not

matched

Warn

The following command file excerpt illustrates how the crop pattern time series can be used to set the
irrigated area for the well stations:

ReadCropPatternTSFromStateCU(InputFile="..\Crops\Sp2008L.cds")
SetWellStationAreaToCropPatternTS(ID="*")

2 - Command Reference – SetWellStationAreaToCropPatternTS () 786

Command Reference:
SetWellStationCapacitiesFromTS()

Set well station capacity data as maximum historical pumping

StateCU and StateMod Command

Version 3.09.01, 2010-01-27

The SetWellStationCapacitiesFromTS() command sets well station capacities to the
maximum historical pumping time series (monthly) value. The historical time series must have been
previously read or calculated with other commands. Monthly ACFT values are converted to CFS units by
applying the conversion:

CFS = X ACFT/(1.9835*DaysInMonth)

The following dialog is used to edit the command and illustrates the syntax of the command.

SetWellStationCapacitiesFromTS

SetWellStationCapacitiesFromTS() Command Editor

 Command Reference – SetWellStationCapacitiesFromTS() - 1 787

SetWellStationCapacitiesFromTS() Command StateDMI Documentation

The command syntax is as follows:

SetWellStationCapacitiesFromTS(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single well station identifier to match or a pattern

using wildcards (e.g., 20*).
None – must be specified.

IfNotFound Used for error handling, one of the following:
• Fail – generate a failure message if the ID is not

matched
• Ignore – ignore (do not generate a message) if the

ID is not matched
• Warn – generate a warning message if the ID is not

matched

Warn

2 - Command Reference – SetWellStationCapacitiesFromTS() 788

Command Reference:
SetWellStationCapacityToWellRights ()

Set the well station capacity to well rights

StateMod Command

Version 3.09.01, 2010-02-01

The SetWellStationCapacityToWellRights() command sets the well station capacity for
each well station to the sum of the well rights corresponding to the station. The well rights must have
been read or assigned with previous commands. If there are no well rights in the file, the capacity is set to
zero.

The following dialog is used to edit the command and illustrates the syntax of the command.

SetWellStationCapacityToWellRights

SetWellStationCapacityToWellRights() Command Editor

 Command Reference – SetWellStationCapacityToWellRights() - 1 789

SetWellStationCapacityToWellRights () Command StateDMI Documentation

The command syntax is as follows:

SetWellStationCapacityToWellRights(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single well station identifier to match or a pattern

using wildcards (e.g., 20*).
None – must be
specified.

IfNotFound Used for error handling, one of the following:
• Fail – generate a failure message if the ID is not

matched
• Ignore – ignore (don’t add and don’t generate a

message) if the ID is not matched
• Warn – generate a warning message if the ID is not

matched

Warn

The following command file excerpt illustrates how the well station capacities can be set to the sum of the
water rights:

Read Well rights from a StateMod well right file
ReadWellRightsFromStateMod(InputFile="..\Wells\Sp2008L.wer")
Set capacity to total of water rights
SetWellStationCapacityToWellRights(ID="*")

2 - Command Reference – SetWellStationCapacityToWellRights () 790

Command Reference:
SetWellStationDelayTablesFromNetwork()

Set well station delay table data from the network

StateMod Command

Version 3.09.01, 2010-02-01

The SetWellStationDelayTableFromNetwork() command sets delay table data in existing
well stations using network information. A default delay table is used to assign 100% of the returns to the
downstream node in the network.

The following dialog is used to edit the command and illustrates the syntax of the command.

SetWellStationDelayTablesFromNetwork

SetWellStationDelayTablesFromNetwork() Command Editor

 Command Reference – SetWellStationDelayTablesFromNetwork() - 1 791

SetWellStationDelayTablesFromNetwork() Command StateDMI Documentation

The command syntax is as follows:

SetWellStationDelayTablesFromNetwork(Parameter=Value,…)

Command Parameters

Parameter Description Default
ID A single well station identifier to match or a pattern

using wildcards (e.g., 20*).
None – must be specified.

DefaultTable The default delay table to use when assigning the delay
tables.

1

IfNotFound Used for error handling, one of the following:
• Fail – generate a failure message if the ID is not

matched
• Ignore – ignore (don’t add and don’t generate a

message) if the ID is not matched
• Warn – generate a warning message if the ID is not

matched

Warn

2 - Command Reference – SetWellStationDelayTablesFromNetwork() 792

Command Reference:
SetWellStationDelayTablesFromRTN()

Set well station delay table data from an RTN format file

StateMod Command

Version 3.09.01, 2010-02-01

The SetWellStationDelayTableFromRTN() command sets delay table data in existing well
stations using information in an RTN format file, which is a format that has been used in CDSS StateMod
modeling. The following dialog is used to edit the command and illustrates the syntax of the command.

SetWellStationDelayTablesFromRTN

SetWellStationDelayTablesFromRTN() Command Editor

 Command Reference – SetWellStationDelayTablesFromRTN() - 1 793

SetWellStationDelayTablesFromRTN() Command StateDMI Documentation

The command syntax is as follows:

SetWellStationDelayTablesFromRTN(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the RTN file to process. Specify an

absolute path or a path relative to the working directory.
None – must be specified.

SetEfficiency Indicates whether the default efficiency value in the file
should be used.

False

IfNotFound Used for error handling, one of the following:
• Fail – generate a failure message if the ID is not

matched
• Ignore – ignore (don’t add and don’t generate a

message) if the ID is not matched
• Warn – generate a warning message if the ID is not

matched

Warn

A sample RTN file is shown below:

200511 2 75 1
 200742 1 1
 200742 99 2
200742 2 75 1
 200787 1 1
 200787 99 2
200752 2 75 1
 20ADW07 1 1
 20ADW07 99 2

The first line contains the station identifier, number of return flow locations, default efficiency for the
station, and the default delay table to use for the return. For the number of return flow locations, the
following lines indicate the identifier for the station to receive the return, the percentage of the return to
receive, and the delay table for the return.

2 - Command Reference – SetWellStationDelayTablesFromRTN() 794

Command Reference:
SetWellStationDepletionTablesFromRTN()

Set well station depletion table data from an RTN format file

StateMod Command

Version 3.09.01, 2010-02-01

The SetWellStationDepletionTableFromRTN() command sets depletion table data in existing
well stations using information in an RTN format file, which is a format that has been used in CDSS
StateMod modeling. The following dialog is used to edit the command and illustrates the syntax of the
command.

SetWellStationDepletionTablesFromRTN

SetWellStationDepletionTablesFromRTN() Command Editor

 Command Reference – SetWellStationDepletionTablesFromRTN() - 1 795

SetWellStationDepletionTablesFromRTN() Command StateDMI Documentation

The command syntax is as follows:

SetWellStationDepletionTablesFromRTN(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the RTN file to process. Specify an

absolute path or a path relative to the working directory.
None – must be specified.

IfNotFound Used for error handling, one of the following:
• Fail – generate a failure message if the ID is not

matched
• Ignore – ignore (don’t add and don’t generate a

message) if the ID is not matched
• Warn – generate a warning message if the ID is not

matched

Warn

A sample RTN file is shown below:

200511 2 0 1
 200742 0 1
 200742 100 2
200742 2 0 1
 200787 0 1
 200787 100 2
200752 2 0 1
 20ADW07 0 1
 20ADW07 100 2

The first line contains the station identifier, number of depletion locations, default efficiency for the
station (unused – included because file format is the same as the return flow file), and the default delay
table to use for the depletion. For the number of depletion locations, the following lines indicate the
identifier for the station to receive the depletion, the percentage of the depletion to receive, and the delay
table for the depletion.

2 - Command Reference – SetWellStationDepletionTablesFromRTN() 796

Command Reference: SetWellStationsFromList()

Set well station data from a list file

StateMod Command
Version 3.09.01, 2010-02-01

The SetWellStationFromList() command sets data in existing well stations (it currently will not
add a station – use ReadWellStationsFromList()). The following dialog is used to edit the
command and illustrates the syntax of the command, in this case to set the well station average monthly
efficiencies.

SetWellStationsFromList

SetWellStationsFromList() Command Editor

 Command Reference – SetWellStationsFromList() - 1 797

SetWellStationsFromList() Command StateDMI Documentation

The command syntax is as follows:

SetWellStationsFromList(Parameter=Value,…)

Command Parameters

Parameter Description Default
ListFile The name of the delimited input file to read.

Strings that include delimiter characters can
be surrounded by double quotes in the list
file. Lines starting with # are treated as
comments.

None – must be specified.

IDCol The column number (1+) containing the well
station identifiers.

If not specified, the original
value will remain.

NameCol The column number (1+) containing the well
station names.

If not specified, the original
value will remain.

RiverNodeIDCol The column number (1+) containing the river
node identifiers.

If not specified, the original
value will remain.

OnOffCol The column number (1+) containing the
on/off switch.

If not specified, the original
value will remain.

CapacityCol The column number (1+) containing the
capacity.

If not specified, the original
value will remain.

AdminNumShiftCol The column number (1+) containing the
administration number shift value.

If not specified, the original
value will remain.

DiversionIDCol The column number (1+) containing the
associated diversion identifier.

If not specified, the original
value will remain.

DailyIDCol The column number (1+) containing the daily
identifier.

If not specified, the original
value will remain.

DemandTypeCol The column number (1+) containing the
demand type.

If not specified, the original
value will remain.

IrrigatedAcresCol The column number (1+) containing the
irrigated acres.

If not specified, the original
value will remain.

UseTypeCol The column number (1+) containing the use
type.

If not specified, the original
value will remain.

DemandSourceCol The column number (1+) containing the
demand source.

If not specified, the original
value will remain.

EffAnnualCol The column number (1+) containing the
annual efficiency. If the annual efficiency is
specified, each monthly efficiency will be set
to the annual value.

If not specified, the original
value will remain.

2 - Command Reference – SetWellStationsFromList() 798

StateDMI Documentation SetWellStationsFromList() Command

Parameter Description Default
EffMonthlyCol The column number (1+) containing the

monthly efficiency for January. The
efficiencies for other months should be
specified in columns that follow. The annual
efficiency is set to the average of the monthly
efficiencies. The efficiencies in the list file
must be listed January to December as
percent (0 to 100). The order of the values in
the StateMod well stations will be according
to the output year type set by
setOutputYearType(), or calendar by
default.

If not specified, the original
values will remain.

Delim The character(s) that delimits columns, or one
of the literal words:
• Space
• Tab
• Whitespace – spaces and tabs.

, (comma)

MergeDelim If True, then treat consecutive delimiter
characters as one delimiter. If False,
separate columns will result.

False

IfNotFound Used for error handling, one of the following:
• Fail – generate a failure message if the

ID is not matched
• Ignore – ignore (don’t add and don’t

generate a message) if the ID is not
matched

• Warn – generate a warning message if
the ID is not matched

Warn

The following example illustrates how to create well stations from a list file and then set the efficiencies
(in this case from a StateCU output file) from another list. The full data line is trimmed of whitespace
before processing and data in columns are automatically trimmed of whitespace after parsing.

StartLog(LogFile="commands.StateDMI.log")
ReadWellStationsFromList(ListFile="rgdssall.csv",IDCol="1")
SetWellStationsFromList(ListFile="rg2004.wef",IDCol="1",
 EffMonthlyCol="2",Delim="Space",MergeDelim=True,IfNotFound=Warn)
WriteWellStationsToStateMod(OutputFile="rgdssall.dds")

 Command Reference – SetWellStationsFromList() - 3 799

SetWellStationsFromList() Command StateDMI Documentation

The following is an example of the list file used with the above:

Card 1 Control
format: (Free)
NOTE EFF1 IS JANUARY, EFF2 IS FEBRUARY, ETC.

ID cwelid: Well ID
Eff1 eff(1) Efficiency in month 1
Eff1 eff(2) Efficiency in month 2
...
Eff1 eff(12) Efficiency in month 12

#1 ID Eff1 Eff2 Eff3 Eff4 Eff5 Eff6'Eff7 Eff8 Eff9 Eff10 Eff11 Eff12
#----------eb------eb------eb------eb------eb------eb------eb---'---eb------eb------eb------eb------eb------exb----------eb-----

 200505 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ALAMOSA D
 200511 0. 0. 0. 0. 0. 0. 80. 80. 80. 0. 0. 0. ANACONDA D

4 - Command Reference – SetWellStationsFromList() 800

Command Reference: SetWellSystem()

Set well system parts

StateCU and StateMod Command
Version 3.09.00, 2010-01-21

The SetWellSystem() command sets well system part identifier data for a well (a CU Location that
corresponds to a location with well supply, or StateMod well station). Well systems are specified using a
list of part identifiers as follows:

• Part type is Ditch – the collection includes wells that are associated with a list of ditches,
identified using ditch water district identifiers (WDIDs). The list of ditches is used for the full
period.

• Part type is Parcel – the collection includes wells that are associated with a list of parcels. The
division and year must be specified in the command because well to parcel relationships are
determined for specific years.

• Part type is Well – the collection includes wells identified by well WDID (permit receipt number
is not supported).

To facilitate processing, it is often best to use list files to specific aggregates (see
SetWellSystemFromList()). Systems by convention have their water rights fully represented in
output – to aggregate water rights at a location, use an aggregate (see the similar Aggregate
commands). See also the StateDMI Introduction chapter, which provides additional information about
aggregates and other modeling conventions. System information should be specified after well locations
are defined and before their use in other processing, such as reading data from HydroBase.

 Command Reference – SetWellSystem() - 1 801

SetWellSystem() Command StateDMI Documentation

The following dialog is used to edit the command and illustrates the syntax of the command.

SetWellSystem

SetWellSystem() Command Editor

2 - Command Reference – SetWellSystem() 802

StateDMI Documentation SetWellSystem() Command

The command syntax is as follows:

SetWellSystem (Parameter=Value,…)

Command Parameters

Parameter Description Default
ID The well identifier to associate with the

collection of individual wells.
None – must be specified.

PartType Indicate the type of features being
aggregated and specified by PartIDs,
one of:
• Ditch – the PartIDs (ditch

WDIDs) indicate ditch service areas
supplemented by wells.

• Parcel – the PartIDs (parcel
numbers from GIS processing)
indicate parcels irrigated by wells,
with no surface water supply.

• Well – the PartIDs indicate wells
(WDIDs), with no surface water
supply.

None – must be specified.

Year The year defining the parcels. Required when PartType is
Parcel because parcel
identifiers from well matching
are specific to the data year.

Div Water division for the parcels in the
system.

Required when PartType is
Parcel because parcels require
the division.

PartIDs The list of part identifiers to comprise the
system.

None – must be specified.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message if

the identifier is not matched
• Ignore – ignore (don’t add and

don’t generate a message) if the
identifier is not matched

• Warn – generate a warning message
if the identifier is not matched

Warn

 Command Reference - SetWellSystem() - 3 803

SetWellSystem() Command StateDMI Documentation

This page is intentionally blank.

4 - Command Reference – SetWellSystem() 804

Command Reference: SetWellSystemFromList()

Set well system parts from data in a list file

StateCU and StateMod Command
Version 3.09.00, 2010-01-21

The SetWellSystemFromList() command sets well system part identifier data for a well (a CU
Location that corresponds to a location with well supply, or StateMod well station). Well systems are
specified using a list of part identifiers as follows:

• Part type is Ditch – the collection includes wells that are associated with a list of ditches,
identified using ditch water district identifiers (WDIDs). The list of ditches is used for the full
period.

• Part type is Parcel – the collection includes wells that are associated with a list of parcels. The
division and year must be specified in the command because well to parcel relationships are
determined for specific years.

• Part type is Well – the collection includes wells identified by well WDID (permit receipt number
is not supported).

To facilitate processing, the list of parts is specified in a delimited list file. Systems by convention have
their water rights fully represented in output – to aggregate water rights at a location, use an aggregate
(see the similar Aggregate commands). See also the StateDMI Introduction chapter, which provides
additional information about systems and other modeling conventions. System information should be
specified after well locations are defined and before their use in other processing, such as reading data
from HydroBase.

 Command Reference – SetWellSystemFromList() - 1 805

SetWellSystemFromList() Command StateDMI Documentation

The following dialog is used to edit the command and illustrates the syntax of the command.

SetWellSystemFromList

SetWellSystemFromList() Command Editor

The command syntax is as follows:

SetWellSystemFromList(Parameter=Value,…)

Command Parameters

Parameter Description Default
ListFile The name of the input file to read,

surrounded by double quotes.
None – must be specified.

PartType Indicate the type of features being
aggregated and specified by PartIDs, one
of:
• Ditch – the PartIDs (ditch WDIDs)

indicate ditch service areas
supplemented by wells.

• Parcel – the PartIDs (parcel

None – must be specified.

2 - Command Reference – SetWellSystemFromList() 806

StateDMI Documentation SetWellSystemFromList () Command

Parameter Description Default
numbers from GIS processing) indicate
parcels irrigated by wells, with no
surface water supply.

• Well – the PartIDs indicate wells
(WDIDs), with no surface water supply.

Year The year defining the parcels. Required when PartType is
Parcel because parcel
identifiers from well matching
are specific to the data year.

Div Water division for the parcels in the system. Required when PartType is
Parcel because parcels
require the division.

IDCol The column number (1+) containing the
well system identifiers.

None – must be specified.

NameCol The column number (1+) containing the
well system name.

None – optional (name will
remain as before).

PartIDsCol The column number (1+) for the first
column having part identifiers.

None – must be specified.

PartsListedHow If InRow, it is expected that all parts
defining a system are listed in the same
row. If InColumn, it is expected that the
parts defining a system are listed one per
row, with multiple rows defining the full
system (PartIDsColMax is ignored in
this case).

None – must be specified.

PartIDsColMax The column number (1+) for the last
column having part identifiers. Use if extra
columns on the right need to be excluded
from the list.

Use all available non-blank
columns starting with
PartIDsCol.

IfNotFound Used for error handling, one of the
following:
• Fail – generate a failure message if

the aggregate identifier is not matched
• Ignore – ignore (don’t add and don’t

generate a message) if the aggregate
identifier is not matched

• Warn – generate a warning message if
the aggregate identifier is not matched

Warn

Command Reference SetWellSystemFromList () - 3 807

SetWellSystemFromList() Command StateDMI Documentation

The following example illustrates a list file is used with PartType=Parcel and
PartsListedHow=InColumn:

"UZONES","PARCEL"
20URF0,16831
20URF0,16832
20URF0,16834
…
20URF0,18606
20URF24,10295
20URF24,10318
…

The following example illustrates a list file is used with PartType=Ditch and
PartsListedHow=InColumn, with the name being provided in column 2:

System_ID/Agg_Name/WDID
01_ADP037,South Platte River below Kersey Co North 2,0100643
01_ADP037,South Platte River below Kersey Co North 2,0100644
01_ADP037,South Platte River below Kersey Co North 2,0100835
01_ADP037,South Platte River below Kersey Co North 2,0104486

4 - Command Reference – SetWellSystemFromList() 808

Command Reference: SetWorkingDir()
Set the working directory for the software

General Command

Version 3.08.02, 2010-01-07

The SetWorkingDir() command is used to define the working directory for a set of commands. The
working directory, when set properly, can greatly simplify commands files because relative file paths can
be used for input and output. The working directory is normally set in one of the following ways, with
the current setting being defined by the most recent item that has occurred:

1. The startup directory for the StateDMI program,
2. The directory where a commands file was opened,
3. The directory where a commands file was saved,
4. The directory specified by a SetWorkingDir() command,
5. The directory specified by File…Set Working Directory.

In most cases, a SetWorkingDir() command is not needed. However, for complicated command
files, it may be necessary to change the working directory from one directory to another. Setting the
working directory to an absolute path causes all relative paths for input and output files to be appended to
the working directory. The following dialog is used to edit the command and illustrates the syntax of the
command. The Browse button allows you to select the working directory.

SetWorkingDir

SetWorkingDir() Command Editor

 Command Reference – SetWorkingDir() - 1 809

SetWorkingDir() Command StateDMI Documentation

The command syntax is as follows:

SetWorkingDir(WorkingDir)

Command Parameters

Parameter Description Default
WorkingDir Working directory for the software, with

which relative paths are converted into
absolute paths.

None – must be specified.

2 - Command Reference – SetWorkingDir() 810

Command Reference: SortBlaneyCriddle()

Sort Blaney-Criddle data

StateCU Command
Version 03.08.02, 2010-01-07

The SortBlaneyCriddle() command sorts the Blaney-Criddle crop coefficients using the crop
name.

The following dialog is used to edit the command and illustrates the syntax of the command.

SortBlaneyCriddle

SortBlaneyCriddle() Command Editor

 Command Reference – SortBlaneyCriddle() - 1 811

SortBlaneyCriddle() Command StateDMI Documentation

The command syntax is as follows:

SortBlaneyCriddle(Parameter=Value,…)

Command Parameters

Parameter Description Default
Order Indicate the order for the sort for the crop name.

Currently only Ascending is supported. The
older Alphabetical will be converted
automatically.

Ascending

2 - Command Reference – SortBlaneyCriddle() 812

Command Reference: SortClimateStations()

Sort climate stations

StateCU Command
Version 3.08.02, 2010-01-05

The SortClimateStations() command sorts the climate stations using the station identifiers.

The following dialog is used to edit the command and illustrates the syntax of the command.

SortClimateStations

SortClimateStations() Command Editor

 Command Reference – SortClimateStations() - 1 813

SortClimateStations() Command StateDMI Documentation

The command syntax is as follows:

SortClimateStations(Parameter=Value,…)

Command Parameters

Parameter Description Default
Order Indicate the sort order. Currently only

Ascending is supported.
Ascending

The following example command file illustrates how climate stations can be defined, sorted, and written
to a StateCU file:

ReadClimateStationsFromList(ListFile="climsta.lst",IDCol=1)
FillClimateStationsFromHydroBase(ID="*")
SetClimateStation(ID="3016",Region2="14080106",IfNotFound=Warn)
SetClimateStation(ID="1018",Region2="14040106",IfNotFound=Warn)
SetClimateStation(ID="1928",Elevation=6440,IfNotFound=Warn)
SetClimateStation(ID="0484",Region1="MOFFAT",IfNotFound=Add)
SortClimateStations()
WriteClimateStationsToStateCU(OutputFile="COclim2006.cli")

2 - Command Reference – SortClimateStations () 814

Command Reference: SortCropCharacteristics()

Sort crop characteristics

StateCU Command
Version 3.08.02, 2010-01-07

The SortCropCharacteristics() command sorts the crop characteristics using the crop name,
and is typically used before writing output.

The following dialog is used to edit the command and illustrates the syntax of the command.

SortCropCharacteristics

SortCropCharacteristics() Command Editor

 Command Reference – SortCropCharacteristics() - 1 815

SortCropCharacteristics() Command StateDMI Documentation

The command syntax is as follows:

SortCropCharacteristics(Parameter=Value,…)

Command Parameters

Parameter Description Default
Order Indicate the order for the sort for the crop name.

Currently only Ascending is supported. The
older Alphabetical will be converted
automatically.

Ascending

2 - Command Reference – SortCropCharacteristics() 816

Command Reference: SortCropPatternTS()

Sort crop pattern time series

StateCU Command
Version 3.09.01, 2010-02-01

The SortCropPatternTS() command sorts the crop pattern time series using the location identifier,
and is typically used before writing output.

The following dialog is used to edit the command and illustrates the syntax of the command.

SortCropPatternTS

SortCropPatternTS() Command Editor

 Command Reference – SortCropPatternTS() - 1 817

SortCropPatternTS() Command StateDMI Documentation

The command syntax is as follows:

SortCropPatternTS(Parameter=Value,…)

Command Parameters

Parameter Description Default
Order Indicate the order for the sort. Currently only

Ascending is supported. The older
Alphabetical will be converted
automatically.

Ascending

2 - Command Reference – SortCropPatternTS() 818

Command Reference: SortCULocations()

Sort CU Locations

StateCU Command
Version 3.09.00, 2010-01-10

The SortCULocations() command sorts the CU Locations.

The following dialog is used to edit the command and illustrates the syntax of the command.

SortCULocations

SortCULocations() Command Editor

 Command Reference – SortCULocations() - 1 819

SortCULocations() Command StateDMI Documentation

The command syntax is as follows:

SortCULocations(Parameter=Value,…)

Command Parameters

Parameter Description Default
Order Indicate the sort order for identifiers. Currently only

Ascending is supported. The older Alphabetical
is automatically converted to Ascending.

Ascending

2 - Command Reference – SortCULocations() 820

Command Reference:
SortDiversionDemandTSMonthly()

Sort diversion demand time series (monthly)

StateMod Command

Version 3.09.01, 2010-02-01

The SortDiversionDemandTSMonthly() command sorts the diversion demand time series
(monthly) in alphabetical order, using the time series identifier (typically by the location since the
location will vary between time series). This command is useful if time series have been added during
processing and therefore the time series order no longer agrees with the diversion station order.

The following dialog is used to edit the command and illustrates the syntax of the command.

SortDiversionDemandTSMonthly

SortDiversionDemandTSMonthly() Command Editor

 Command Reference – SortDiversionDemandTSMonthly() - 1 821

SortDiversionDemandTSMonthly() Command StateDMI Documentation

The command syntax is as follows:

SortDiversionDemandTSMonthly(Parameter=Value,…)

Command Parameters

Parameter Description Default
Order Indicate the order for the sort. Currently only

Ascending is supported. The older Alphabetical
is automatically converted to Ascending.

Ascending

2 - Command Reference – SortDiversionDemandTSMonthly() 822

Command Reference:
SortDiversionHistoricalTSMonthly()

Sort diversion historical time series (monthly)

StateMod Command

Version 3.09.01, 2010-02-01

The SortDiversionHistoricalTSMonthly() command sorts the diversion historical time series
(monthly) in alphabetical order, using the time series identifier (typically by the location since the
location will vary between time series). This command is useful if time series have been added during
processing and therefore the time series order no longer agrees with the diversion station order.

The following dialog is used to edit the command and illustrates the syntax of the command.

SortDiversionHistoricalTSMonthly

SortDiversionHistoricalTSMonthly() Command Editor

 Command Reference – SortDiversionHistoricalTSMonthly() - 1 823

SortDiversionHistoricalTSMonthly() Command StateDMI Documentation

The command syntax is as follows:

SortDiversionHistoricalTSMonthly(Parameter=Value,…)

Command Parameters

Parameter Description Default
Order Indicate the order for the sort. Currently only

Ascending is supported. The older Alphabetical
is automatically converted to Ascending.

Ascending

2 - Command Reference – SortDiversionHistoricalTSMonthly() 824

Command Reference: SortDiversionRights()

Sort diversion rights

StateCU and StateMod Command
Version 3.09.01, 2010-01-26

The SortDiversionRights() command sorts the diversion rights. This is useful to enforce
consistency between files and simplify file comparison.

The following dialog is used to edit the command and illustrates the syntax of the command.

SortDiversionRights

SortDiversionRights() Command Editor

The command syntax is as follows:

SortDiversionRights(Parameter=Value,…)

Command Parameters

Parameter Description Default
Order Indicate the order for the sort. Currently only

Ascending is supported. The older Alphabetical
is automatically converted to Ascending.

Ascending

 Command Reference – SortDiversionRights() - 1 825

SortDiversionRights() Command StateDMI Documentation

This page is intentionally blank.

2 - Command Reference – SortDiversionRights() 826

Command Reference: SortDiversionStations()

Sort diversion stations

StateMod Command
Version 3.09.01, 2010-02-01

The SortDiversionStations() command sorts the diversion stations by station identifier.

The following dialog is used to edit the command and illustrates the syntax of the command.

SortDiversionStations

SortDiversionStations() Command Editor

 Command Reference – SortDiversionStations() - 1 827

SortDiversionStations() Command StateDMI Documentation

The command syntax is as follows:

SortDiversionStations(Parameter=Value,…)

Command Parameters

Parameter Description Default
Order Indicate the order for the sort. Currently only

Ascending is supported. The older Alphabetical
is automatically converted to Ascending.

Ascending

2 - Command Reference – SortDiversionStations() 828

Command Reference: SortInstreamFlowRights()

Sort instream flow rights

StateMod Command
Version 3.09.01, 2010-02-01

The SortInstreamFlowRights() command sorts the instream flow rights by right identifier. This
is useful to enforce consistency between files and simplify file comparison.

The following dialog is used to edit the command and illustrates the syntax of the command.

SortInstreamFlowRights

SortInstreamFlowRights() Command Editor

The command syntax is as follows:

SortInstreamFlowRights(Parameter=Value,…)

Command Parameters

Parameter Description Default
Order Indicate the order for the sort. Currently only

Ascending is supported. The older Alphabetical
is automatically converted to Ascending.

Ascending

 Command Reference – SortInstreamFlowRights() - 1 829

SortInstreamFlowRights() Command StateDMI Documentation

This page is intentionally blank.

2 - Command Reference – SortInstreamFlowRights() 830

Command Reference:
SortInstreamFlowStations()

Sort instream flow stations

StateMod Command

Version 3.09.01, 2010-02-01

The SortInstreamFlowStations() command sorts the instream flow stations.

The following dialog is used to edit the command and illustrates the syntax of the command.

SortInstreamFlowStations

SortInstreamFlowStations() Command Editor

 Command Reference – SortInstreamFlowStations() - 1 831

SortInstreamFlowStations() Command StateDMI Documentation

The command syntax is as follows:

SortInstreamFlowStations (Parameter=Value,…)

Command Parameters

Parameter Description Default
Order Indicate the order for the sort. Currently only

Ascending is supported. The older Alphabetical
is automatically converted to Ascending.

Ascending

2 - Command Reference – SortInstreamFlowStations() 832

Command Reference: SortIrrigationPracticeTS()

Sort irrigation practice time series

StateCU Command
Version 3.09.01, 2010-02-01

The SortIrrigationPracticeTS() command sorts the irrigation practice time series using the
location identifier, and is typically used before writing output.

The following dialog is used to edit the command and illustrates the syntax of the command.

SortIrrigationPracticeTS

SortIrrigationPracticeTS() Command Editor

 Command Reference – SortIrrigationPracticeTS() - 1 833

SortIrrigationPracticeTS() Command StateDMI Documentation

The command syntax is as follows:

SortIrrigationPracticeTS(Parameter=Value,…)

Command Parameters

Parameter Description Default
Order Indicate the order for the sort. Currently only

Ascending is supported. The older
Alphabetical will be converted
automatically.

Ascending

2 - Command Reference – SortIrrigationPracticeTS() 834

Command Reference: SortPenmanMonteith()

Sort Penman-Monteith data

StateCU Command
Version 03.10.00, 2010-04-02

The SortPenmanMonteith() command sorts the Penman-Monteith crop coefficients using the crop
name.

The following dialog is used to edit the command and illustrates the syntax of the command.

SortPenmanMonteith

SortPenmanMonteith() Command Editor

 Command Reference – SortPenmanMonteith() - 1 835

SortPenmanMonteith () Command StateDMI Documentation

The command syntax is as follows:

SortPenmanMonteith(Parameter=Value,…)

Command Parameters

Parameter Description Default
Order Indicate the order for the sort for the crop name.

Currently only Ascending is supported. The
older Alphabetical will be converted
automatically.

Ascending

2 - Command Reference – SortPenmanMonteith () 836

Command Reference: SortReservoirRights()

Sort reservoir rights

StateMod Command
Version 3.09.01, 2010-02-01

The SortReservoirRights() command sorts the reservoir rights. This is useful to enforce
consistency between files and simplify file comparison.

The following dialog is used to edit the command and illustrates the syntax of the command.

SortReservoirRights

SortReservoirRights() Command Editor

 Command Reference – SortReservoirRights() - 1 837

SortReservoirRights() Command StateDMI Documentation

The command syntax is as follows:

SortReservoirRights(Parameter=Value,…)

Command Parameters

Parameter Description Default
Order Indicate the order for the sort. Currently only

Ascending is supported. The older Alphabetical
is automatically converted to Ascending.

Ascending

2 - Command Reference – SortReservoirRights() 838

Command Reference: SortReservoirStations()

Sort reservoir stations

StateMod Command
Version 3.09.01, 2010-02-01

The SortReservoirStations() command sorts the reservoir stations by station identifier.

The following dialog is used to edit the command and illustrates the syntax of the command.

SortReservoirStations

SortReservoirStations() Command Editor

 Command Reference – SortReservoirStations() - 1 839

SortReservoirStations() Command StateDMI Documentation

The command syntax is as follows:

SortReservoirStations(Parameter=Value,…)

Command Parameters

Parameter Description Default
Order Indicate the order for the sort. Currently only

Ascending is supported. The older Alphabetical
is automatically converted to Ascending.

Ascending.

2 - Command Reference – SortReservoirStations() 840

Command Reference:
SortStreamEstimateStations()

Sort stream estimate stations

StateMod Command

Version 3.09.01, 2010-02-01

The SortStreamEstimateStations() command sorts the stream estimate stations by station
identifier.

The following dialog is used to edit the command and illustrates the syntax of the command.

SortStreamEstimateStations

SortStreamEstimateStations() Command Editor

 Command Reference – SortStreamEstimateStations() - 1 841

SortStreamEstimateStations() Command StateDMI Documentation

The command syntax is as follows:

SortStreamEstimateStations (Parameter=Value,…)

Command Parameters

Parameter Description Default
Order Indicate the order for the sort. Currently only

Ascending is supported. The older Alphabetical
is automatically converted to Ascending.

Ascending

2 - Command Reference – SortStreamEstimateStations() 842

Command Reference: SortStreamGageStations()

Sort stream gage stations

StateMod Command
Version 3.09.01, 2010-02-01

The SortStreamGageStations() command sorts the stream gage stations by identifier.

The following dialog is used to edit the command and illustrates the syntax of the command.

SortStreamGageStations

SortStreamGageStations() Command Editor

 Command Reference – SortStreamGageStations() - 1 843

SortStreamGageStations() Command StateDMI Documentation

The command syntax is as follows:

SortStreamGageStations(Parameter=Value,…)

Command Parameters

Parameter Description Default
Order Indicate the order for the sort. Currently only

Ascending is supported. The older Alphabetical
is automatically converted to Ascending.

Ascending

2 - Command Reference – SortStreamGageStations() 844

Command Reference:
SortWellDemandTSMonthly()

Sort well demand time series (monthly)

StateMod Command

Version 3.09.01, 2010-01-27

The SortWellDemandTSMonthly() command sorts the well demand time series (monthly) in
alphabetical order, using the time series identifier (typically by the location since the location will vary
between time series). This command is useful if time series have been added during processing and
therefore the time series order no longer agrees with the well station order.

The following dialog is used to edit the command and illustrates the syntax of the command.

SortWellDemandTSMonthly

SortWellDemandTSMonthly () Command Editor

 Command Reference – SortWellDemandTSMonthly() - 1 845

SortWellDemandTSMonthly() Command StateDMI Documentation

The command syntax is as follows:

SortWellDemandTSMonthly(Parameter=Value,…)

Command Parameters

Parameter Description Default
Order Indicate the order for the sort. Currently only

Ascending is supported. The older Alphabetical
is automatically converted to Ascending.

Ascending

2 - Command Reference – SortWellDemandTSMonthly() 846

Command Reference:
SortWellHistoricalPumpingTSMonthly()

Sort well historical pumping time series (monthly)

StateCU and StateMod Command

Version 3.09.01, 2010-01-27

The SortWellHistoricalPumpingTSMonthly() command sorts the well historical pumping
time series (monthly) in alphabetical order, using the time series identifier (typically by the location since
the location will vary between time series). This command is useful if time series have been added during
processing and therefore the time series order no longer agrees with the well station order.

The following dialog is used to edit the command and illustrates the syntax of the command.

SortWellHistoricalPumpingTSMonthly

SortWellHistoricalPumpingTSMonthly () Command Editor

 Command Reference – SortWellHistoricalPumpingTSMonthly() - 1 847

SortWellHistoricalPumpingTSMonthly() Command StateDMI Documentation

The command syntax is as follows:

SortWellHistoricalPumpingTSMonthly(Parameter=Value,…)

Command Parameters

Parameter Description Default
Order Indicate the order for the sort. Currently only

Ascending is supported. The older Alphabetical
is automatically converted to Ascending.

Ascending

2 - Command Reference – SortWellHistoricalPumpingTSMonthly() 848

Command Reference: SortWellRights()

Sort well rights

StateMod Command
Version 3.09.00, 2010-01-24

The SortWellRights() command sorts the well rights. This is useful to enforce consistency
between files and simplify file comparison.

The following dialog is used to edit the command and illustrates the syntax of the command.

SortWellRights

SortWellRights() Command Editor

 Command Reference – SortWellRights() - 1 849

SortWellRights() Command StateDMI Documentation

The command syntax is as follows:

SortWellRights(Parameter=Value,…)

Command Parameters

Parameter Description Default
Order Indicate the primary sort order, one of:

• IDAscending
• LocationIDAscending (typically

specified)

IDAscending

Order2 Indicate the secondary sort order, one of:
• IDAscending (typically specified)
• LocationIDAscending

None – must be specified. Typically
IDAscending is specified.

2 - Command Reference – SortWellRights() 850

Command Reference: SortWellStations()

Sort well stations

StateMod Command
Version 3.09.01, 2010-02-01

The SortWellStations() command sorts the well stations.

The following dialog is used to edit the command and illustrates the syntax of the command.

SortWellStations

SortWellStations() Command Editor

 Command Reference – SortWellStations() - 1 851

SortWellStations() Command StateDMI Documentation

The command syntax is as follows:

SortWellStations(Parameter=Value,…)

Command Parameters

Parameter Description Default
Order Indicate the order for the sort. Currently only

Ascending is supported. The older Alphabetical
is automatically converted to Ascending.

Ascending

2 - Command Reference – SortWellStations() 852

Command Reference: StartLog()
(Re)start the log file

General Command

Version 03.02.00, 2008-11-19

The StartLog() command (re)starts the log file. It is useful to insert this command as the first
command in a command file, in order to persistently record the results of processing. A useful standard is
to name the log file the same as the command file, with an additional .log extension, and this convention
is enforced by default. A date or date/time can optionally be added to the log file name.

The following dialog is used to edit the command and illustrates the syntax for the command.

StartLog

StartLog() Command Editor

 Command Reference – StartLog() - 1 853

StartLog() Command StateDMI Documentation

The command syntax is as follows:

StartLog(Parameter=Value,…)

Command Parameters

Parameter Description Default
LogFile The name of the log file to write surrounded by double

quotes. The extension of .log will automatically be added,
if not specified.

If not specified, the
existing file will be
restarted.

Suffix Indicates that a suffix will be added before the .log
extension, one of:

 Date – add a date suffix of the form YYYYMMDD.
 DateTime – add a date/time suffix of the form
YYYYMMDD_HHMMSS.

This is useful for automatically archiving logs
corresponding to commands files, to allow checking the
output at a later time. However, generating date/time
stamped log files can increase the amount of disk space
that is used.

Do not add the
suffix.

The following example command file illustrates how to open a log file at the start of processing:

StartLog(LogFile="Example_StartLog.log")
Remainder of comments and commands follow…

Command Reference – StartLog() - 2 854

Command Reference:
StartRegressionTestResultsReport()

Start a report file to contain regression test results

General Command
Version 3.08.02, 2010-01-06

The StartRegressionTestResultsReport() command starts a report file to be written to as
regression tests are run. The CreateRegressionTestCommandFile() automatically inserts this
command. The CompareFiles() and CompareTimeSeries() commands will write to this file if
it is available.

The following dialog is used to edit the command and illustrates the syntax for the command.

StartRegressionTestResultsReport

StartRegressionTestResultsReport() Command Editor

 Command Reference – StartRegressionTestResultsReport() - 1 855

StartRegressionTestResultsReport() Command StateDMI Documentation

The command syntax is as follows:

StartRegressionTestResultsReport(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the report file, enclosed in double quotes if

the file contains spaces or other special characters. A
path relative to the command file can be specified.

None – must be
specified.

See the RunCommands() documentation for how to set up a regression test. The following command
file illustrates how to start the results report:

StartRegressionTestResultsReport(
 OutputFile="RunRegressionTest_commands_general.StateDMI.out.txt")
…
RunCommands(InputFile="..\..\..\commands\ReadClimateStationsFromList\
 Test_ReadClimateStationsFromList.StateDMI")
…

Each of the above command files should produce expected time series results, without warnings. If any
command file unexpectedly produces a warning, a warning will also be visible in StateDMI. The issue
can then be evaluated to determine whether a software or configuration change is necessary.

Command Reference – StartRegressionTestResultsReport() - 2 856

Command Reference: TranslateBlaneyCriddle()

Translate Blaney-Criddle crop types from one value to another

StateCU Command
Version 3.08.02, 2010-01-07

The TranslateBlaneyCriddle() command translates Blaney-Criddle data. In particular, it
converts one crop type to another. Primary uses of the command are:

1. A data source may use one variant of the crop type (e.g., ORCHARD W/O COVER but the rest of
a StateCU data set uses another type (e.g., ORCHARD_WO_COVER). In this case the command is
used simply to change the spelling of a crop type.

2. The raw crop data may need to be adjusted to reflect differences in crops, for modeling purposes.
For example, the original data may identify pasture (e.g., GRASS_PASTURE) but for modeling
the crop type is set to a different value (e.g., GRASS_PASTURE_HA) for high altitude
coefficients. The following example illustrates a command of this type.

The following dialog is used to edit the command and illustrates the syntax of the command (for the
second case listed above):

TranslateBlaneyCriddle

TranslateBlaneyCriddle() Command Editor

 Command Reference – TranslateBlaneyCriddle() - 1 857

TranslateBlaneyCriddle() Command StateDMI Documentation

The command syntax is as follows:

TranslateBlaneyCriddle(Parameter=Value,…)

Command Parameters

Parameter Description Default
OldCropType A single crop type identifier to match.

This crop type will be replaced with the
value for NewCropType.

None – must be specified.

NewCropType The new crop type to use. None – must be specified.

The following simple example illustrates how to translate a crop type:

ReadBlaneyCriddleFromHydroBase(BlaneyCriddleMethod="BLANEY-CRIDDLE_TR-21")
TranslateBlaneyCriddle(OldCropType="GRASS_PASTURE.TR21",NewCropType="GRASS_PASTURE")

2 - Command Reference – TranslateBlaneyCriddle() 858

Command Reference:
TranslateCropCharacteristics()

Translate crop characteristics crop types from one value to another

StateCU Command

Version 3.08.02, 2010-01-07

The TranslateCropCharacteristics() command translates crop characteristics data. In
particular, it converts one crop type to another. Primary uses of the command are:

1. A data source may use one variant of the crop type (e.g., ORCHARD W/O COVER but the rest of
a StateCU data set uses another type (e.g., ORCHARD_WO_COVER). In this case the command is
used simply to change the spelling of a crop type.

2. The raw crop data may need to be adjusted to reflect differences in crops, for modeling purposes.
For example, the original data may identify pasture (e.g., GRASS_PASTURE) but for modeling
the crop type is set to a different value (e.g., GRASS_PASTURE_HA) for high altitude
coefficients. The following example illustrates a command of this type.

The following dialog is used to edit the command and illustrates the syntax of the command (for the
second case listed above):

TranslateCropCharacteristics

TranslateCropCharacteristics() Command Editor

 Command Reference – TranslateCropCharacteristics() - 1 859

TranslateCropCharacteristics() Command StateDMI Documentation

The command syntax is as follows:

TranslateCropCharacteristics(Parameter=value,…)

Command Parameters

Parameter Description Default
OldCropType A single crop type identifier to match.

This crop type will be replaced with the
value for NewCropType.

None – must be specified.

NewCropType The new crop type to use. None – must be specified.

The following simple example illustrates how to translate a crop type from the more specific name to a
more generic name:

ReadCropCharacteristicsFromHydroBase(CUMethod="BLANEY-CRIDDLE_TR-21")
TranslateCropCharacteristics(OldCropType="ALFALFA.TR21",NewCropType="ALFALFA")

2 - Command Reference – TranslateCropCharacteristics() 860

Command Reference: TranslateCropPatternTS()

Translate crop pattern time series crop types from one value to another

StateCU Command
Version 3.09.01, 2010-02-01

The TranslateCropPatternTS() command translates crop pattern time series data. In particular,
it converts one crop type to another. Primary uses of the command are:

1. A data source may be using one variant of the crop type (e.g., ORCHARD W/O COVER but the
rest of a StateCU data set uses another type (e.g., ORCHARD_WO_COVER). In this case the
command is used simply to change the spelling of a crop type.

2. The raw crop data may need to be adjusted to reflect differences in crops, for modeling purposes.
For example, the original data may identify pasture (e.g., ALFALFA) but for modeling the crop
type is set to a different value (e.g., ALFALFA.CCRG) for high altitude coefficients. The
following example illustrates a command of this type, using a list file to provide location
identifiers at which crop types should be adjusted for the high-altitude crop coefficients (by
translating to a different crop type).

If the new crop name is the same as an existing crop name, the time series will be combined to give new
totals for the crop. The following dialog is used to edit the command and illustrates the syntax of the
command (for the second case listed above):

TranslateCropPatternTS

TranslateCropPatternTS() Command Editor

The command syntax is as follows:

TranslateCropPatternTS(Parameter=Value,…)

 Command Reference – TranslateCropPatternTS() - 1 861

TranslateCropPatternTS() Command StateDMI Documentation

Command Parameters

Parameter Description Default
ID A single CU Location identifier to match or a pattern

using wildcards (e.g., 20*).
None – must be specified.

ListFile The name of an input file to read, surrounded by double
quotes.

If not specified, crop
patterns for all locations
will be processed.

IDCol If ListFile is specified, this parameter specifies the
column number (1+) containing the CU Location
identifiers.

None – must be specified.

OldCropType A single crop type identifier to match. This crop type
will be replaced with the value for NewCropType.

None – must be specified.

NewCropType The new crop type to use. None – must be specified.
IfNotFound Used for error handling, one of the following:

• Fail – generate a failure message if the ID is not
matched

• Ignore – ignore (don’t add and don’t generate a
message) if the ID is not matched

• Warn – generate a warning message if the ID is not
matched

Warn

The following command file illustrates how to create a crop pattern time series file:

Step 1 - Set output period and read CU locations
SetOutputPeriod(OutputStart="1950",OutputEnd="2006")
ReadCULocationsFromStateCU(InputFile="..\StateCU\cm2006.str")
Step 2 - Read SW aggregates
SetDiversionSystemFromList(ListFile="colorado_divsys.csv",IDCol=1,
 NameCol=2,PartIDsCol=3,PartsListedHow=InRow)
SetDiversionAggregateFromList(ListFile="colorado_agg.csv",IDCol=1,
 NameCol=2,PartIDsCol=3,PartsListedHow=InRow)
Step 3 - Create *.cds file form and read acreage/crops from HydroBase
CreateCropPatternTSForCULocations(ID="*",Units="ACRE")
ReadCropPatternTSFromHydroBase(ID="*")
Step 4 - Need to translate crops out of HB to include TR21 suffix
Translate all crops from HB to include .TR21 suffix
TranslateCropPatternTS(ID="*",OldCropType="GRASS_PASTURE",NewCropType="GRASS_PASTURE.TR21")
TranslateCropPatternTS(ID="*",OldCropType="CORN_GRAIN",NewCropType="CORN_GRAIN.TR21")
TranslateCropPatternTS(ID="*",OldCropType="ALFALFA",NewCropType="ALFALFA.TR21")
…similar commands omitted…
Step 5 - Translate crop names
use high-altitude coefficients for structures with more than 50% of
irrigated acreage above 6500 feet
TranslateCropPatternTS(ListFile="cm2005_HA.lst",IDCol=1,
 OldCropType="GRASS_PASTURE.TR21",NewCropType="GRASS_PASTURE.DWHA")
Step 6 - Fill Acreage
Fill SW structure acreage backword from 1999 to 1950
Fill acreage forward for all structures from 2000 to 2006
FillCropPatternTSRepeat(ID="*",CropType="*",FillStart=1950,FillEnd=1993,FillDirection=Backward)
FillCropPatternTSRepeat(ID="*",CropType="*",FillStart=1993,FillEnd=1999,FillDirection=Forward)
FillCropPatternTSRepeat(ID="*",CropType="*",FillStart=2000,FillEnd=2006,FillDirection=Forward)
Step 7 - Write final *.cds file
WriteCropPatternTSToStateCU(OutputFile="..\StateCU\cm2006.cds",
 WriteCropArea=True,WriteHow=OverwriteFile)
Check the results
CheckCropPatternTS(ID="*")
WriteCheckFile(OutputFile="cm2006.cds.StateDMI.check.html")

2 - Command Reference – TranslateCropPatternTS() 862

Command Reference:
TranslatePenmanMonteith()

Translate Penman-Monteith crop types from one value to another

StateCU Command

Version 3.10.00, 2010-04-02

The TranslatePenmanMonteith() command translates Pennman-Monteith data. In particular, it
converts one crop type to another. Primary uses of the command are:

1. A data source may use one variant of the crop type (e.g., ORCHARD W/O COVER but the rest of
a StateCU data set uses another type (e.g., ORCHARD_WO_COVER). In this case the command is
used simply to change the spelling of a crop type.

2. The raw crop data may need to be adjusted to reflect differences in crops, for modeling purposes.
For example, the original data may identify pasture (e.g., GRASS_PASTURE) but for modeling
the crop type is set to a different value (e.g., GRASS_PASTURE.ASCE) for ASCE standardized
coefficients. The following example illustrates a command of this type.

The following dialog is used to edit the command and illustrates the syntax of the command (for the
second case listed above):

TranslatePenmanMonteith

TranslatePenmanMonteith() Command Editor

 Command Reference – TranslatePenmanMonteith () - 1 863

TranslatePenmanMonteith() Command StateDMI Documentation

The command syntax is as follows:

TranslatePenmanMonteith(Parameter=Value,…)

Command Parameters

Parameter Description Default
OldCropType A single crop type identifier to match.

This crop type will be replaced with the
value for NewCropType.

None – must be specified.

NewCropType The new crop type to use. None – must be specified.

The following simple example illustrates how to translate a crop type:

ReadPenmanMonteithFromHydroBase(PenmanMonteithMethod="PENMAN-MONTEITH_ALFALFA")
TranslatePenmanMonteith(OldCropType="ALFALFA",NewCropType=”ALFALFA.ASCE")

2 - Command Reference – TranslatePenmanMonteith() 864

Command Reference:
WriteBlaneyCriddleToList()

Write Blaney-Criddle crop coefficients data to a delimited file

StateCU Command

Version 3.08.02, 2010-01-07

The WriteBlaneyCriddleToList() command writes Blaney-Criddle crop coefficients data to a
delimited file. The following dialog is used to edit the command and illustrates the syntax of the
command.

WriteBlaneyCriddleToList

WriteBlaneyCriddleToList() Command Editor

 Command Reference – WriteBlaneyCriddleToList() - 1 865

WriteBlaneyCriddleToList() Command StateDMI Documentation

The command syntax is as follows:

WriteBlaneyCriddleToList(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write,

surrounded by double quotes.
None – must be specified.

WriteHow OverwriteFile if the file should be
overwritten or UpdateFile if the file
should be updated, resulting in the
previous header being carried forward.

OverwriteFile

Delimiter The delimiter character to use between
columns.

Comma

The following example illustrates how to process crop characteristics data from HydroBase:

ReadBlaneyCriddleFromHydroBase(BlaneyCriddleMethod="BLANEY-CRIDDLE_TR-21")
WriteBlaneyCriddleToList(OutputFile="test.lst")

2 - Command Reference – WriteBlaneyCriddleToList() 866

Command Reference:
WriteBlaneyCriddleToStateCU()

Write Blaney-Criddle crop coefficients data to a StateCU file

StateCU Command

Version 3.08.02, 2010-01-07

The WriteBlaneyCriddleToStateCU() command writes Blaney-Criddle crop coefficients that
have been defined to a StateCU Blaney-Criddle crop coefficients file.

The following dialog is used to edit the command and illustrates the syntax of the command.

WriteBlaneyCriddleToStateCU

WriteBlaneyCriddleToStateCU() Command Editor

 Command Reference – WriteBlaneyCriddleToStateCU() - 1 867

WriteBlaneyCriddleToStateCU() Command StateDMI Documentation

The command syntax is as follows:

WriteBlaneyCriddleToStateCU(Parameter=value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write, surrounded by

double quotes.
None – must be
specified.

Version The StateCU version, indicating the version of the file
format to write.

Write the most
current version
format.

Precision The number of digits after the decimal for curve values,
used for backward compatibility with older file versions.

3

WriteHow OverwriteFile if the file should be overwritten or
UpdateFile if the file should be updated, resulting in
the previous header being carried forward.

OverwriteFile

The following example command file illustrates how to read Blaney-Criddle coefficients from
HydroBase, sort the data, create a StateCU file, and check the results:

StartLog(LogFile="Crops_KBC.StateDMI.log")

StateDMI commands to create the Rio Grande Blaney-Criddle coefficients File

History:

2004-03-16 Steven A. Malers, RTi Initial version using StateDMI.
2007-04-23 SAM, RTi Update for Rio Grande Phase 5.

Step 1 - read data from HydroBase

Read the general Blaney-Criddle coefficients first and then override with Rio Grande
data.
ReadBlaneyCriddleFromHydroBase(BlaneyCriddleMethod="BLANEY-CRIDDLE_TR-21")
ReadBlaneyCriddleFromHydroBase(BlaneyCriddleMethod="BLANEY-CRIDDLE_RIO_GRANDE")

Step 3 - write the file

SortBlaneyCriddle(Order=Ascending)
WriteBlaneyCriddleToStateCU(OutputFile="rg2007.kbc")

Check the results

CheckBlaneyCriddle(ID="*")
WriteCheckFile(OutputFile="rg2007.kbc.check.html")

2 - Command Reference – WriteBlaneyCriddleToStateCU() 868

Command Reference: WriteCheckFile()
Write a check file containing a summary of data/processing problems

Version 3.09.00, 2010-01-14

The WriteCheckFile() command summarizes the results of command processing warning/failure
messages in a “check file”. This file is useful for reviewing results and for quality control. The check file
is essentially a persistent record of any problems that occurred during processing, whereas a full log file
contains a sequential list of processing. Multiple check commands can be used as appropriate and one or
more check files can be written.

The following dialog is used to edit the command and illustrates the syntax for the command, in this case
applied to climate stations data.

WriteCheckFile

WriteCheckFile() Command Editor

 Command Reference – WriteCheckFile() - 1 869

WriteCheckFile() Command StateDMI Documentation

The command syntax is as follows:

WriteCheckFile(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the check file to create, enclosed in double quotes if

the file contains spaces or other special characters. A path
relative to the command file containing this command can be
specified.

Specify a filename with .html extension to generate an HTML
file or .csv to generate a comma-separated value file suitable for
use with Excel. The HTML file will contain more information
and include navigation links.

None – must be
specified.

Title A title that will be shown in the output file. This is
recommended to provide context for results because the default
title uses the command file name.

Auto-generated and
includes command
file name.

Command Reference – WriteCheckFile() - 2 870

Command Reference:
WriteClimateStationsToList()

Write climate station data to a delimited file

StateCU Command

Version 3.08.02, 2010-01-05

The WriteClimateStationsToList() command writes climate stations data to a delimited file.
The following dialog is used to edit the command and illustrates the syntax of the command.

WriteClimateStationsToList

WriteClimateStationsToList() Command Editor

 Command Reference – WriteClimateStationsToList() - 1 871

WriteClimateStationsToList() Command StateDMI Documentation

The command syntax is as follows:

WriteClimateStationsToList(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write,

surrounded by double quotes.
None – must be specified.

WriteHow OverwriteFile if the file should be
overwritten or UpdateFile if the file
should be updated, resulting in the
previous header being carried forward.

OverwriteFile

Delimiter The delimiter character to use between
columns.

Comma

The following example illustrates how to process climate data from HydroBase, starting with a list of
station identifiers, and creating a full list of climate station data:

ReadClimateStationsFromList(ListFile="idonly.csv",IDCol="2")
FillClimateStationsFromHydroBase(ID="*")
WriteClimateStationsToList(OutputFile="COclim2006.csv")

2 - Command Reference – WriteClimateStationsToList() 872

Command Reference:
WriteClimateStationsToStateCU()

Write climate station data to a StateCU file

StateCU Command

Version 3.08.02, 2010-01-05

The WriteClimateStationsToStateCU() command writes climate stations that have been
defined to a StateCU climate stations file. The following dialog is used to edit the command and
illustrates the syntax of the command.

WriteClimateStationsToStateCU

WriteClimateStationsToStateCU() Command Editor

 Command Reference – WriteClimateStationsToStateCU() - 1 873

WriteClimateStationsToStateCU() Command StateDMI Documentation

The command syntax is as follows:

WriteClimateStationsToStateCU(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write,

surrounded by double quotes.
None – must be specified.

WriteHow OverwriteFile if the file should be
overwritten or UpdateFile if the file
should be updated, resulting in the
previous header being carried forward.

OverwriteFile

The following example command file illustrates how climate stations can be defined and written to a
StateCU file:

ReadClimateStationsFromList(ListFile="climsta.lst",IDCol=1)
FillClimateStationsFromHydroBase(ID="*")
SetClimateStation(ID="3016",Region2="14080106",IfNotFound=Warn)
SetClimateStation(ID="1018",Region2="14040106",IfNotFound=Warn)
SetClimateStation(ID="1928",Elevation=6440,IfNotFound=Warn)
SetClimateStation(ID="0484",Region1="MOFFAT",IfNotFound=Add)
WriteClimateStationsToStateCU(OutputFile="COclim2006.cli")

2 - Command Reference – WriteClimateStationsToStateCU() 874

Command Reference:
WriteCropCharacteristicsToList()

Write crop characteristics data to a delimited file

StateCU Command

Version 3.08.02, 2010-01-07

The WriteCropCharacteristicsToList() command writes crop characteristics data to a
delimited file. The following dialog is used to edit the command and illustrates the syntax of the
command.

WriteCropCharacteristicsToList

WriteCropCharacteristicsToList() Command Editor

 Command Reference – WriteCropCharacteristicsToList() - 1 875

WriteCropCharacteristicsToList() Command StateDMI Documentation

The command syntax is as follows:

WriteCropCharacteristicsToList(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write,

surrounded by double quotes.
None – must be specified.

WriteHow OverwriteFile if the file should be
overwritten or UpdateFile if the file
should be updated, resulting in the
previous header being carried forward.

OverwriteFile

Delimiter The delimiter character to use between
columns.

Comma

The following example illustrates how to process crop characteristics data from HydroBase:

ReadCropCharacteristicsFromHydroBase(CUMethod="BLANEY-CRIDDLE_TR-21")
WriteCropCharacteristicsToList(OutputFile="test.csv")

2 - Command Reference – WriteCropCharacteristicsToList() 876

Command Reference:
WriteCropCharacteristicsToStateCU()

Write crop characteristics data to a StateCU file

StateCU Command

Version 3.08.02, 2010-01-07

The WriteCropCharacteristicsToStateCU() command writes crop characteristics data to a
StateCU climate crop characteristics file.

The following dialog is used to edit the command and illustrates the syntax of the command.

WriteCropCharacteristicsToStateCU

WriteCropCharacteristicsToStateCU() Command Editor

The command syntax is as follows:

WriteCropCharacteristicsToStateCU(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write,

surrounded by double quotes.
None – must be specified.

Version Indicate whether output should be
formatted for a specific version of
StateCU file.

Write the most current version.

AutoAdjust Automatically adjust the crop names by
removing trailing .XXX characters (the
period and any trailing characters). This
may be needed because current modeling
procedures use a longer crop name (e.g.,

False

 Command Reference – WriteCropCharacteristicsToStateCU() - 1 877

WriteCropCharacteristicsToStateCU() Command StateDMI Documentation

Parameter Description Default
ALFALFA.TR21) whereas older
procedures simply used ALFALFA. The
conversion is necessary to allow
comparison with older files.

WriteHow OverwriteFile if the file should be
overwritten or UpdateFile if the file
should be updated, resulting in the
previous header being carried forward.

OverwriteFile

The following example illustrates how to create a StateCU crop characteristics file with data from
HydroBase:

StartLog(LogFile="Crops_CCH.StateDMI.log")

StateDMI commands to create the Rio Grande Crop Characteristics File

History:

2004-03-16 Steven A. Malers, RTi Initial version using StateDMI.
2007-04-22 SAM, RTi Use new directory structure, current
software and HydroBase.

Step 1 - read data from HydroBase

Read the general TR-21 characteristics first and then override with Rio Grande
data.
ReadCropCharacteristicsFromHydroBase(CUMethod="BLANEY-CRIDDLE_TR-21")
ReadCropCharacteristicsFromHydroBase(CUMethod="BLANEY-CRIDDLE_RIO_GRANDE")

Step 2 - adjust crop characteristics if needed
No resets are needed.

Step 3 - write the file

WriteCropCharacteristicsToStateCU(OutputFile="rg2007.cch")

Check the results

CheckCropCharacteristics(ID="*")
WriteCheckFile(OutputFile="rg2007.cch.check.html")

2 - Command Reference – WriteCropCharacteristicsToStateCU() 878

Command Reference:
WriteCropPatternTSToDateValue()

Write crop pattern time series data to a DateValue file

StateCU Command

Version 3.09.01, 2010-02-01

The WriteCropPatternTSToDateValue() command writes crop pattern time series to a
DateValue time series file. This file can be used with TSTool, a spreadsheet, or other software. The
following dialog is used to edit the command and illustrates the syntax of the command.

WriteCropPatternTSToDateValue

WriteCropPatternTSToDateValue() Command Editor

 Command Reference – WriteCropPatternTSToDateValue() - 1 879

WriteCropPatternTSToDateValue() Command StateDMI Documentation

The command syntax is as follows:

WriteCropPatternTSToDateValue(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write,

surrounded by double quotes.
None – must be specified.

WriteHow OverwriteFile if the file should be
overwritten or UpdateFile if the file
should be updated, resulting in the
previous header being carried forward.

OverwriteFile

2 - Command Reference – WriteCropPatternTSToDateValue() 880

Command Reference:
WriteCropPatternTSToStateCU()

Write crop pattern time series data to a StateCU file

StateCU Command

Version 3.09.01, 2010-02-01

The WriteCropPatternTSToStateCU() command writes crop pattern time series to the StateCU
crop pattern file. A number of parameters are available to control the format and content of output.

The following dialog is used to edit the command and illustrates the syntax of the command.

WriteCropPatternTSToStateCU

WriteCropPatternTSToStateCU() Command Editor

 Command Reference – WriteCropPatternTSToStateCU() - 1 881

WriteCropPatternTSToStateCU() Command StateDMI Documentation

The command syntax is as follows:

WriteCropPatternTSToStateCU(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write,

surrounded by double quotes.
None – must be specified.

OutputStart The starting year for output. Write the full period.
OutputEnd The ending year for output. Write the full period.
WriteCropArea If specified as True, the crop area for each

crop will be written in addition to the
percentage of the total area. This is being
phased in as a feature of StateCU and this
parameter may be removed in the future.

True

WriteOnlyTotal If specified as True, only the total for the
location will be written. This is useful if it
is desired to generate an annual total time
series file.

False

Version Indicate the StateCU version file format.
An older version format may need to be
written when modifying older data sets or
comparing current and previous data sets.

Write the must current
StateCU version’s format.

WriteHow OverwriteFile if the file should be
overwritten or UpdateFile if the file
should be updated, resulting in the previous
header being carried forward.

OverwriteFile

2 - Command Reference – WriteCropPatternTSToStateCU() 882

Command Reference: WriteCULocationsToList()

Write CU Locations data to a delimited file

StateCU Command
Version 3.09.00, 2010-01-24

The WriteCULocationsToList() command writes CU Locations data to a delimited file. The
following dialog is used to edit the command and illustrates the syntax of the command.

WriteCULocationsToList

WriteCULocationsToList() Command Editor

 Command Reference – WriteCULocationsToList() - 1 883

WriteCULocationsToList() Command StateDMI Documentation

The command syntax is as follows:

WriteCULocationsToList(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write,

surrounded by double quotes.
None – must be specified.

WriteHow OverwriteFile if the file should be
overwritten or UpdateFile if the file
should be updated, resulting in the
previous header being carried forward.

OverwriteFile

Delimiter The delimiter character to use between
columns.

Comma

The following example illustrates how to process CU Locations data from HydroBase, starting with a list
of station identifiers, and creating a full list of data:

ReadCULocationsFromList(ListFile="list.csv")
FillCULocationsFromHydroBase(ID="*",CULocType="Structure",Region1Type="County",Region2Type="HUC")
WriteCULocationsToList(OutputFile="test2.lst")

2 - Command Reference – WriteCULocationsToList() 884

Command Reference:
WriteCULocationsToStateCU()

Write CU Location data to a StateCU file

StateCU Command

Version 3.09.00, 2010-01-24

The WriteCULocationsToStateCU() command writes CU Locations that have been defined to a
StateCU structure file. The following dialog is used to edit the command and illustrates the syntax of the
command.

WriteCULocationsToStateCU

WriteCULocationsToStateCU() Command Editor

 Command Reference – WriteCULocationsToStateCU() - 1 885

WriteCULocationsToStateCU() Command StateDMI Documentation

The command syntax is as follows:

WriteCULocationsToStateCU(Parameter=Value…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write,

surrounded by double quotes.
None – must be specified.

Version Indicate the StateCU version, to allow
writing file formats for older versions of
StateCU.

Write the format for the most
current know StateCU version.

WriteHow OverwriteFile if the file should be
overwritten or UpdateFile if the file
should be updated, resulting in the previous
header being carried forward.

OverwriteFile

2 - Command Reference – WriteCULocationsToStateCU() 886

Command Reference:
WriteDelayTablesDailyToList()

Write delay tables (daily) data to a delimited file

StateMod Command

Version 3.09.01, 2010-02-04

The WriteDelayTablesDailyToList() command writes daily delay tables that have been
defined to a delimited file. The following dialog is used to edit the command and illustrates the syntax of
the command.

WriteDelayTablesDailyToList

WriteDelayTablesDailyToList() Command Editor

 Command Reference – WriteDelayTablesDailyToList() - 1 887

WriteDelayTablesDailyToList() Command StateDMI Documentation

The command syntax is as follows:

WriteDelayTablesDailyToList(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write,

surrounded by double quotes.
None – must be specified.

Delimiter The character used to delimit columns in
the file.

, (comma)

WriteHow OverwriteFile if the file should be
overwritten or UpdateFile if the file
should be updated, resulting in the
previous header being carried forward.

OverwriteFile

2 - Command Reference – WriteDelayTablesDailyToList() 888

Command Reference:
WriteDelayTablesDailyToStateMod()

Write delay tables (daily) data to a StateMod file

StateMod Command

Version 3.09.01, 2010-02-01

The WriteDelayTablesDailyToStateMod() command writes daily delay tables that have been
defined to a StateMod delay tables file. The following dialog is used to edit the command and illustrates
the syntax of the command.

WriteDelayTablesDailyToStateMod

WriteDelayTablesDailyToStateMod() Command Editor

 Command Reference – WriteDelayTablesDailyToStateMod() - 1 889

WriteDelayTablesDailyToStateMod() Command StateDMI Documentation

The command syntax is as follows:

WriteDelayTablesDailyToStateMod(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write,

surrounded by double quotes.
None – must be specified.

Precision The number of digits after the decimal
point for data values.

2

WriteHow OverwriteFile if the file should be
overwritten or UpdateFile if the file
should be updated, resulting in the
previous header being carried forward.

OverwriteFile

2 - Command Reference – WriteDelayTablesDailyToStateMod() 890

Command Reference:
WriteDelayTablesMonthlyToList()

Write delay tables (monthly) data to a delimited file

StateMod Command

Version 3.09.01, 2010-02-04

The WriteDelayTablesMonthlyToList() command writes monthly delay tables that have been
defined to a delimited file. The following dialog is used to edit the command and illustrates the syntax of
the command.

WriteDelayTablesMonthlyToList

WriteDelayTablesMonthlyToList() Command Editor

 Command Reference – WriteDelayTablesMonthlyToList() - 1 891

WriteDelayTablesMonthlyToList() Command StateDMI Documentation

The command syntax is as follows:

WriteDelayTablesMonthlyToList(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write,

surrounded by double quotes.
None – must be specified.

Delimiter The character used to delimit columns in
the file.

, (comma)

WriteHow OverwriteFile if the file should be
overwritten or UpdateFile if the file
should be updated, resulting in the
previous header being carried forward.

OverwriteFile

2 - Command Reference – WriteDelayTablesMonthlyToList() 892

Command Reference:
WriteDelayTablesMonthlyToStateMod()

Write delay tables (monthly) data to a StateMod file

StateMod Command

Version 3.09.01, 2010-02-01

The WriteDelayTablesMonthlyToStateMod() command writes monthly delay tables that have
been defined to a StateMod delay tables file. The following dialog is used to edit the command and
illustrates the syntax of the command.

WriteDelayTablesMonthlyToStateMod

WriteDelayTablesMonthlyToStateMod() Command Editor

 Command Reference – WriteDelayTablesMonthlyToStateMod() - 1 893

WriteDelayTablesMonthlyToStateMod() Command StateDMI Documentation

The command syntax is as follows:

WriteDelayTablesMonthlyToStateMod(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write,

surrounded by double quotes.
None – must be specified.

Precision The number of digits after the decimal
point for data values.

2

WriteHow OverwriteFile if the file should be
overwritten or UpdateFile if the file
should be updated, resulting in the
previous header being carried forward.

OverwriteFile

2 - Command Reference – WriteDelayTablesMonthlyToStateMod() 894

Command Reference:
WriteDiversionDemandTSMonthlyToStateMod()

Write diversion demand time series (monthly) to a StateMod file

StateMod Command

Version 3.09.01, 2010-02-01

The WriteDiversionDemandTSMonthlyToStateMod() command writes diversion demand
time series (monthly) to a StateMod diversion demand time series file. The following dialog is used to
edit the command and illustrates the syntax of the command.

WriteDiversionDemandTSMonthlyToStateMod

WriteDiversionDemandTSMonthlyToStateMod() Command Editor

 Command Reference – WriteDiversionDemandTSMonthlyToStateMod() - 1 895

WriteDiversionDemandTSMonthlyToStateMod() Command StateDMI Documentation

The command syntax is as follows:

WriteDiversionDemandTSMonthlyToStateMod(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write,

surrounded by double quotes.
None – must be specified.

OutputStart The start date to write, using format
YYYY-MM or MM/YYYY.

Full period will be written.

OutputEnd The end date to write, using format
YYYY-MM or MM/YYYY.

Full period will be written.

OutputYearType The output year type to write, one of:
• Calendar – January to December.
• NovToOct – November to October.
• Water – October to September.

Calendar, or the value set by
the previous
SetOutputYearType()
command.

Precision The number of digits after the decimal to
write.

2

MissingValue The value to write for missing data. -999
WriteHow OverwriteFile if the file should be

overwritten or UpdateFile if the file
should be updated, resulting in the
previous header being carried forward.

OverwriteFile

2 - Command Reference – WriteDiversionDemandTSMonthlyToStateMod() 896

Command Reference:
WriteDiversionHistoricalTSMonthlyToStateMod()

Write diversion historical time series (monthly) to a StateMod file

StateMod Command

Version 3.09.01, 2010-02-01

The WriteDiversionHistoricalTSMonthlyToStateMod() command writes diversion
historical time series (monthly) to a StateMod diversion historical time series file. The following dialog
is used to edit the command and illustrates the syntax of the command.

WriteDiversionHistoricalTSMonthlyToStateMod

WriteDiversionHistoricalTSMonthlyToStateMod() Command Editor

 Command Reference – WriteDiversionHistoricalTSMonthlyToStateMod() - 1 897

WriteDiversionHistoricalTSMonthlyToStateMod() Command StateDMI Documentation

The command syntax is as follows:

WriteDiversionHistoricalTSMonthlyToStateMod(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write,

surrounded by double quotes.
None – must be specified.

OutputStart The start date to write, using format
YYYY-MM or MM/YYYY.

Full period will be written.

OutputEnd The end date to write, using format
YYYY-MM or MM/YYYY.

Full period will be written.

OutputYearType The output year type to write, one of:
• Calendar – January to December.
• NovToOct – November to October.
• Water – October to September.

Calendar, or the value set by
the previous
SetOutputYearType()
command.

Precision The number of digits after the decimal to
write.

2

MissingValue The value to write for missing data. -999
WriteHow OverwriteFile if the file should be

overwritten or UpdateFile if the file
should be updated, resulting in the
previous header being carried forward.

OverwriteFile

2 - Command Reference – WriteDiversionHistoricalTSMonthlyToStateMod() 898

Command Reference:
WriteDiversionRightsToList()

Write diversion rights data to a delimited file

StateCU and StateMod Command

Version 3.09.00, 2010-01-26

The WriteDiversionRightsToList() command writes diversion rights data to a delimited file.

The following dialog is used to edit the command and illustrates the syntax of the command.

WriteDiversionRightsToList

WriteDiversionRightsToList() Command Editor

 Command Reference – WriteDiversionRightsToList() - 1 899

WriteDiversionRightsToList() Command StateDMI Documentation

The command syntax is as follows:

WriteDiversionRightsToList(param=value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write,

surrounded by double quotes.
None – must be specified.

WriteHow OverwriteFile if the file should be
overwritten or UpdateFile if the file
should be updated, resulting in the
previous header being carried forward.

OverwriteFile

Delimiter The delimiter character to use between
columns.

Comma

The following example illustrates how to create a list of diversion rights from a list of stations:

ReadDiversionStationsFromList(ListFile="test.csv")
ReadDiversionRightsFromHydroBase(ID="*")
WriteDiversionRightsToList(OutputFile="rights.csv")

2 - Command Reference – WriteDiversionRightsToList() 900

Command Reference:
WriteDiversionRightsToStateMod()

Write diversion rights data to a StateMod file

StateCU and StateMod Command

Version 3.09.00, 2010-01-26

The WriteDiversionRightsToStateMod() command writes diversion rights that have been
defined to a StateMod diversion rights file. The following dialog is used to edit the command and
illustrates the syntax of the command.

WriteDiversionRightsToStateMod

WriteDiversionRightsToStateMod() Command Editor

The command syntax is as follows:

WriteDiversionRightsToStateMod(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write,

surrounded by double quotes.
None – must be specified.

WriteHow OverwriteFile if the file should be
overwritten or UpdateFile if the file
should be updated, resulting in the
previous header being carried forward.

OverwriteFile

 Command Reference – WriteDiversionRightsToStateMod() - 1 901

WriteDiversionRightsToStateMod() Command StateDMI Documentation

This page is intentionally blank.

2 - Command Reference – WriteDiversionRightsToStateMod() 902

Command Reference:
WriteDiversionStationsToList()

Write diversion station data to a delimited file

StateMod Command

Version 3.09.01, 2010-02-01

The WriteDiversionStationsToList() command writes diversion stations data to a delimited
file. In addition to the main station file, files with suffixes _Collections and _ReturnFlows are written,
containing secondary station information.

The following dialog is used to edit the command and illustrates the syntax of the command.

WriteDiversionStationsToList

WriteDiversionStationsToList() Command Editor

 Command Reference – WriteDiversionStationsToList() - 1 903

WriteDiversionStationsToList() Command StateDMI Documentation

The command syntax is as follows:

WriteDiversionStationsToList(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write,

surrounded by double quotes.
None – must be specified.

WriteHow OverwriteFile if the file should be
overwritten or UpdateFile if the file
should be updated, resulting in the
previous header being carried forward.

OverwriteFile

Delimiter The delimiter character to use between
columns.

Comma

The following example illustrates how to create a list of diversion stations from a network file:

ReadDiversionStationsFromNetwork(InputFile="cm2005.net")
WriteDiversionStationsToList(OutputFile="cm2005.csv")

2 - Command Reference – WriteDiversionStationsToList() 904

Command Reference:
WriteDiversionStationsToStateMod()

Write diversion stations data to a StateMod file

StateMod Command

Version 3.09.01, 2010-02-01

The WriteDiversionStationsToStateMod() command writes diversion stations that have been
defined to a StateMod diversion stations file. The following dialog is used to edit the command and
illustrates the syntax of the command.

WriteDiversionStationsToStateMod

WriteDiversionStationsToStateMod() Command Editor

 Command Reference – WriteDiversionStationsToStateMod() - 1 905

WriteDiversionStationsToStateMod() Command StateDMI Documentation

The command syntax is as follows:

WriteDiversionStationsToStateMod(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write,

surrounded by double quotes.
None – must be specified.

WriteHow OverwriteFile if the file should be
overwritten or UpdateFile if the file
should be updated, resulting in the
previous header being carried forward.

OverwriteFile

2 - Command Reference – WriteDiversionStationsToStateMod() 906

Command Reference:
WriteInstreamFlowDemandTSAverageMonthlyToStateMod()

Write instream flow demand time series (average monthly) data to a StateMod file

StateMod Command

Version 3.09.01, 2010-02-02

The WriteInstreamFlowDemandTSAverageMonthlyToStateMod() command writes
instream flow demand time series (average monthly) that have been defined to a StateMod instream flow
demand time series (average monthly) file. The following dialog is used to edit the command and
illustrates the syntax of the command.

WriteInstreamFlowDemandTSAverageMonthlyToStateMod

WriteInstreamFlowDemandTSAverageMonthlyToStateMod() Command Editor

 Command Reference – WriteInstreamFlowDemandTSAverageMonthlyToStateMod() - 1 907

WriteInstreamFlowDemandTSAverageMonthlyToStateMod() Command StateDMI Documentation

The command syntax is as follows:

WriteInstreamFlowDemandTSAverageMonthlyToStateMod(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write,

surrounded by double quotes.
None – must be specified.

OutputYearType The output year type for the StateMod
file.

Calendar

Precision The number of digits after the decimal
point for output values.

0

MissingValue The value to use in output for missing
data.

-999

WriteHow OverwriteFile if the file should be
overwritten or UpdateFile if the file
should be updated, resulting in the
previous header being carried forward.

OverwriteFile

2 - Command Reference – WriteInstreamFlowDemandTSAverageMonthlyToStateMod() 908

Command Reference:
WriteInstreamFlowRightsToList()

Write instream flow rights data to a delimited file

StateMod Command

Version 3.09.01, 2010-02-01

The WriteInstreamFlowRightsToList() command writes instream flow rights data to a
delimited file.

The following dialog is used to edit the command and illustrates the syntax of the command.

WriteInstreamFlowRightsToList

WriteInstreamFlowRightsToList() Command Editor

 Command Reference – WriteInstreamFlowRightsToList() - 1 909

WriteInstreamFlowRightsToList() Command StateDMI Documentation

The command syntax is as follows:

WriteInstreamFlowRightsToList(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write,

surrounded by double quotes.
None – must be specified.

WriteHow OverwriteFile if the file should be
overwritten or UpdateFile if the file
should be updated, resulting in the
previous header being carried forward.

OverwriteFile

Delimiter The delimiter character to use between
columns.

Comma

The following example illustrates how to create a list of instream flow rights from a list of stations:

ReadInstreamFlowStationsFromList(ListFile="cm2005.ifs.csv")
ReadInstreamFlowRightsFromHydroBase(ID="*")
WriteInstreamFlowRightsToList(OutputFile="cm2005.ifr.csv")

2 - Command Reference – WriteInstreamFlowRightsToList() 910

Command Reference:
WriteInstreamFlowRightsToStateMod()

Write instream flow rights data to a StateMod file

StateMod Command

Version 3.09.01, 2010-02-01

The WriteInstreamFlowRightsToStateMod() command writes instream flow rights that have
been defined to a StateMod instream flow rights file. The following dialog is used to edit the command
and illustrates the syntax of the command.

WriteInstreamFlowRightsToStateMod

WriteInstreamFlowRightsToStateMod() Command Editor

 Command Reference – WriteInstreamFlowRightsToStateMod() - 1 911

WriteInstreamFlowRightsToStateMod() Command StateDMI Documentation

The command syntax is as follows:

WriteInstreamFlowRightsToStateMod(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write,

surrounded by double quotes.
None – must be specified.

WriteHow OverwriteFile if the file should be
overwritten or UpdateFile if the file
should be updated, resulting in the
previous header being carried forward.

OverwriteFile

2 - Command Reference – WriteInstreamFlowRightsToStateMod() 912

Command Reference:
WriteInstreamFlowStationsToList()

Write instream flow station data to a delimited file

StateMod Command

Version 3.09.01, 2010-02-01

The WriteInstreamFlowStationsToList() command writes instream flow stations data to a
delimited file.

The following dialog is used to edit the command and illustrates the syntax of the command.

WriteInstreamFlowStationsToList

WriteInstreamFlowStationsToList() Command Editor

 Command Reference – WriteInstreamFlowStationsToList() - 1 913

WriteInstreamFlowStationsToList() Command StateDMI Documentation

The command syntax is as follows:

WriteInstreamFlowStationsToList(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write,

surrounded by double quotes.
None – must be specified.

WriteHow OverwriteFile if the file should be
overwritten or UpdateFile if the file
should be updated, resulting in the
previous header being carried forward.

OverwriteFile

Delimiter The delimiter character to use between
columns.

Comma

The following example illustrates how to create a list of instream flow stations from a network file:

ReadInstreamFlowStationsFromNetwork(InputFile="cm2005.net")
WriteInstreamFlowStationsToList(OutputFile="cm2005.ifs.csv”)

2 - Command Reference – WriteInstreamFlowStationsToList() 914

Command Reference:
WriteInstreamFlowStationsToStateMod()

Write instream flow stations data to a StateMod file

StateMod Command

Version 3.09.01, 2010-02-01

The WriteInstreamFlowStationsToStateMod() command writes instream flow stations that
have been defined to a StateMod instream flow stations file. The following dialog is used to edit the
command and illustrates the syntax of the command.

WriteInstreamFlowStationsToStateMod

WriteInstreamFlowStationsToStateMod() Command Editor

 Command Reference – WriteInstreamFlowStationsToStateMod() - 1 915

WriteInstreamFlowStationsToStateMod() Command StateDMI Documentation

The command syntax is as follows:

WriteInstreamFlowStationsToStateMod(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write,

surrounded by double quotes.
None – must be specified.

WriteHow OverwriteFile if the file should be
overwritten or UpdateFile if the file
should be updated, resulting in the
previous header being carried forward.

OverwriteFile

2 - Command Reference – WriteInstreamFlowStationsToStateMod() 916

Command Reference:
WriteIrrigationPracticeTSToDateValue()

Write irrigation practice time series data to a DateValue file

StateCU Command

Version 01.17.00, 2005-01-20, Color, Acrobat Distiller

The WriteIrrigationPracticeTSToDateValue() command writes irrigation practice time
series to a DateValue time series file. This file can be used with TSTool, a spreadsheet, or other software.
The following dialog is used to edit the command and illustrates the syntax of the command.

WriteIrrigationPracticeTSToDateValue

WriteIrrigationPracticeTSToDateValue() Command Editor

 Command Reference – WriteIrrigationPracticeTSToDateValue() - 1 917

WriteIrrigationPracticeTSToDateValue() Command StateDMI Documentation

The command syntax is as follows:

WriteIrrigationPracticeTSToDateValue(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write,

surrounded by double quotes.
None – must be specified.

WriteHow OverwriteFile if the file should be
overwritten or UpdateFile if the file
should be updated, resulting in the
previous header being carried forward.

OverwriteFile

2 - Command Reference – WriteIrrigationPracticeTSToDateValue() 918

Command Reference:
WriteIrrigationPracticeTSToStateCU()

Write irrigation practice time series data to a StateCU file

StateCU Command

Version 3.09.01, 2010-02-01

The WriteIrrigationPracticeTSToStateCU() command writes irrigation practice time series
to a StateCU crop pattern file. The following dialog is used to edit the command and illustrates the
syntax of the command.

WriteIrrigationPracticeTSToStateCU

WriteIrrigationPracticeTSToStateCU() Command Editor

 Command Reference – WriteIrrigationPracticeTSToStateCU() - 1 919

WriteIrrigationPracticeTSToStateCU() Command StateDMI Documentation

The command syntax is as follows:

WriteIrrigationPracticeTSToStateCU(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write,

surrounded by double quotes.
None – must be specified.

OutputStart Starting year for output. Write all years.
OutputEnd Ending year for output. Write all years.
PrecisionForArea The number of digits after the decimal

point for area values.
1

Version Indicate the StateCU version, to control
the file format. It is sometimes
necessary to write an older version to
compare data sets or update an old data
set.

Write the most current format.

OneLocationPerFile Useful for troubleshooting and
verification. If True, then each
location is written to a separate file.

False

CheckData Check the data for integrity (do values
add up). Set to False if processing
preliminary data.

True

WriteHow OverwriteFile if the file should be
overwritten or UpdateFile if the file
should be updated, resulting in the
previous header being carried forward.

OverwriteFile

2 - Command Reference – WriteIrrigationPracticeTSToStateCU() 920

Command Reference:
WriteNetworkToStateMod()

Write generalized network data to a StateMod file

StateMod Command

Version 3.09.01, 2010-02-01

The WriteNetworkToStateMod() command writes the generalized network to a StateMod XML
network file. The following dialog is used to edit the command and illustrates the syntax of the
command.

WriteNetworkToStateMod

WriteNetworkToStateMod() Command Editor

 Command Reference – WriteNetworkToStateMod() - 1 921

WriteNetworkToStateMod() Command StateDMI Documentation

The command syntax is as follows:

WriteNetworkToStateMod(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write,

surrounded by double quotes.
None – must be specified.

WriteHow OverwriteFile if the file should be
overwritten or UpdateFile if the file
should be updated, resulting in the
previous header being carried forward.

OverwriteFile

The following example command file illustrates how the command might be used:

Create a generalized XML network from individual StateMod files
Read the network, which contains upstream to downstream connectivity but does
not indicate node types
ReadRiverNetworkFromStateMod(InputFile=cm2005.rin)
Read the stations, which imply the node types
ReadRiverStreamGageStationsFromStateMod(InputFile=cm2005.ris)
ReadRiverDiversionStationsFromStateMod(InputFile=cm2005.dds)
ReadRiverReservoirStationsFromStateMod(InputFile=cm2005.res)
ReadRiverInstreamFlowStationsFromStateMod(InputFile=cm2005.ifs)
ReadRiverWellStationsFromStateMod(InputFile=cm2005.wes)
To be developed...
#ReadRiverPlanStationsFromStateMod()
ReadRiverStreamEstimateStationsFromStateMod(InputFile=cm2005.ris)
Now create the generalized network, using the connectivity and node types
CreateNetworkFromRiverNetwork()
Fill in node names and locations from HydroBase, if any is still missing
FillNetworkFromHydroBase()
Write the generalized network
WriteNetworkToStateMod(OutputFile="cm2005.net")
Check for errors (the following is not yet implemented)
#CheckNetwork()
WriteCheckFile(OutputFile="cm2005.net.check.html")

2 - Command Reference – WriteNetworkToStateMod() 922

Command Reference:
WritePenmanMonteithToList()

Write Penman-Monteith crop coefficients data to a delimited file

StateCU Command

Version 3.10.00, 2010-04-02

The WritePenmanMonteithToList() command writes Penman-Monteith crop coefficients data
to a delimited file. The following dialog is used to edit the command and illustrates the syntax of the
command.

WritePenmanMonteithToList

WritePenmanMonteithToList() Command Editor

 Command Reference – WritePenmanMonteithToList() - 1 923

WritePenmanMonteithToList() Command StateDMI Documentation

The command syntax is as follows:

WritePenmanMonteithToList(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write,

surrounded by double quotes.
None – must be specified.

WriteHow OverwriteFile if the file should be
overwritten or UpdateFile if the file
should be updated, resulting in the
previous header being carried forward.

OverwriteFile

Delimiter The delimiter character to use between
columns.

Comma

The following example illustrates how to process crop characteristics data from HydroBase:

ReadPenmanMonteithFromHydroBase(PenmanMonteithMethod="PENMAN-MONTEITH_ALFALFA")
WritePenmanMonteithToList(OutputFile="test.csv")

2 - Command Reference – WritePenmanMonteithToList() 924

Command Reference:
WritePenmanMonteithToStateCU()

Write Penman-Monteith crop coefficients data to a StateCU file

StateCU Command

Version 3.10.00, 2010-04-02

The WritePenmanMonteithToStateCU() command writes Penman-Monteith crop coefficients
that have been defined to a StateCU Penman-Monteith crop coefficients file.

The following dialog is used to edit the command and illustrates the syntax of the command.

WritePenmanMonteithToStateCU

WritePenmanMonteithToStateCU() Command Editor

 Command Reference – WritePenmanMonteithToStateCU() - 1 925

WritePenmanMonteithToStateCU() Command StateDMI Documentation

The command syntax is as follows:

WritePenmanMonteithToStateCU(Parameter=value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write, surrounded by

double quotes.
None – must be
specified.

Precision The number of digits after the decimal for curve values,
used for backward compatibility with older file versions.

3

WriteHow OverwriteFile if the file should be overwritten or
UpdateFile if the file should be updated, resulting in
the previous header being carried forward.

OverwriteFile

The following example command file illustrates how to read Penman-Monteith coefficients from
HydroBase, sort the data, create a StateCU file, and check the results:

StartLog(LogFile="Crops_KPM.StateDMI.log")

StateDMI commands to create the Penman-Monteith crop coefficients file

Step 1 - read data from HydroBase

Read the general ASCE standardized coefficients
ReadPenmanMonteithFromHydroBase(PenmanMonteithMethod="PENMAN-MONTEITH_ALFALFA")

Step 3 - write the file

SortPenmanMonteith()
WritePenmanMonteithToStateCU(OutputFile="rg2007.kpm")

Check the results

CheckPenmanMonteith(ID="*")
WriteCheckFile(OutputFile="Crops_KPM.StateDMI.check.html")

2 - Command Reference – WritePenmanMonteithToStateCU() 926

Command Reference:
WriteReservoirRightsToList()

Write reservoir rights data to a delimited file

StateMod Command

Version 3.09.01, 2010-02-01

The WriteReservoirRightsToList() command writes reservoir rights data to a delimited file.

The following dialog is used to edit the command and illustrates the syntax of the command.

WriteReservoirRightsToList

WriteReservoirRightsToList() Command Editor

 Command Reference – WriteReservoirRightsToList() - 1 927

WriteReservoirRightsToList() Command StateDMI Documentation

The command syntax is as follows:

WriteReservoirRightsToList(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write,

surrounded by double quotes.
None – must be specified.

WriteHow OverwriteFile if the file should be
overwritten or UpdateFile if the file
should be updated, resulting in the
previous header being carried forward.

OverwriteFile

Delimiter The delimiter character to use between
columns.

Comma

The following example illustrates how to create a list of reservoir rights from a list of stations:

ReadReservoirStationsFromList(ListFile="cm2005.res.csv",IDCol=1)
ReadReservoirRightsFromHydroBase(ID="*")
WriteReservoirRightsToList(OutputFile="cm2005.rer.csv")

2 - Command Reference – WriteReservoirRightsToList() 928

Command Reference:
WriteReservoirRightsToStateMod()

Write reservoir rights data to a StateMod file

StateMod Command

Version 3.09.01, 2010-02-01

The WriteReservoirRightsToStateMod() command writes reservoir rights that have been
defined to a StateMod reservoir rights file. The following dialog is used to edit the command and
illustrates the syntax of the command.

WriteReservoirRightsToStateMod

WriteReservoirRightsToStateMod() Command Editor

 Command Reference – WriteReservoirRightsToStateMod() - 1 929

WriteReservoirRightsToStateMod() Command StateDMI Documentation

The command syntax is as follows:

WriteReservoirRightsToStateMod(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write,

surrounded by double quotes.
None – must be specified.

WriteHow OverwriteFile if the file should be
overwritten or UpdateFile if the file
should be updated, resulting in the
previous header being carried forward.

OverwriteFile

2 - Command Reference – WriteReservoirRightsToStateMod() 930

Command Reference:
WriteReservoirStationsToList()

Write reservoir station data to a delimited file

StateMod Command

Version 3.09.01, 2010-02-01

The WriteReservoirStationsToList() command writes reservoir stations data to a delimited
file. In addition to the main station file, files with suffixes _Collections, _Accounts,
_ContentAreaSeepage, _EvapStations, and _PrecipStations are written, containing secondary station
information.

The following dialog is used to edit the command and illustrates the syntax of the command.

WriteReservoirStationsToList

WriteReservoirStationsToList() Command Editor

 Command Reference – WriteReservoirStationsToList() - 1 931

WriteReservoirStationsToList() Command StateDMI Documentation

The command syntax is as follows:

WriteReservoirStationsToList(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write,

surrounded by double quotes.
None – must be specified.

WriteHow OverwriteFile if the file should be
overwritten or UpdateFile if the file
should be updated, resulting in the
previous header being carried forward.

OverwriteFile

Delimiter The delimiter character to use between
columns.

Comma

The following example illustrates how to create a list of diversion stations from a network file:

ReadReservoirStationsFromNetwork(InputFile="rg2007.net")
WriteReservoirStationsToList(OutputFile="rg2007.csv")

2 - Command Reference – WriteReservoirStationsToList() 932

Command Reference:
WriteReservoirStationsToStateMod()

Write reservoir stations data to a StateMod file

StateMod Command

Version 3.09.01, 2010-02-01

The WriteReservoirStationsToStateMod() command writes reservoir stations that have been
defined to a StateMod reservoir stations file. The following dialog is used to edit the command and
illustrates the syntax of the command.

WriteReservoirStationsToStateMod

WriteReservoirStationsToStateMod() Command Editor

 Command Reference – WriteReservoirStationsToStateMod() - 1 933

WriteReservoirStationsToStateMod() Command StateDMI Documentation

The command syntax is as follows:

WriteReservoirStationsToStateMod(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write,

surrounded by double quotes.
None – must be specified.

WriteHow OverwriteFile if the file should be
overwritten or UpdateFile if the file
should be updated, resulting in the
previous header being carried forward.

OverwriteFile

2 - Command Reference – WriteReservoirStationsToStateMod() 934

Command Reference: WriteRiverNetworkToList()

Write river network data to a delimited file

StateMod Command
Version 3.09.01, 2010-02-01

The WriteRiverNetworkToList() command writes river network data to a delimited file. It is
often more useful to write lists of individual station types. Consequently, see commands like
WriteDiversionStationsToList().

The following dialog is used to edit the command and illustrates the syntax of the command.

WriteRiverNetworkToList

WriteRiverNetworkToList() Command Editor

 Command Reference – WriteRiverNetworkToList() - 1 935

WriteRiverNetworkToList() Command StateDMI Documentation

The command syntax is as follows:

WriteRiverNetworkToList(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write,

surrounded by double quotes.
None – must be specified.

WriteHow OverwriteFile if the file should be
overwritten or UpdateFile if the file
should be updated, resulting in the
previous header being carried forward.

OverwriteFile

Delimiter The delimiter character to use between
columns.

Comma

The following example illustrates how to create a list of river network nodes from a network file:

ReadNetworkFromStateMod(InputFile="cm2005.net")
CreateRiverNetworkFromNetwork()
WriteRiverNetworkToList(OutputFile="cm2005.rin.csv")

2 - Command Reference – WriteRiverNetworkToList() 936

Command Reference:
WriteRiverNetworkToStateMod()

Write StateMod river network data to a StateMod file

StateMod Command

Version 3.09.01, 2010-02-01

The WriteRiverNetworkToStateMod() command writes the river network to a StateMod river
network file. The following dialog is used to edit the command and illustrates the syntax of the
command.

WriteRiverNetworkToStateMod

WriteRiverNetworkToStateMod() Command Editor

The command syntax is as follows:

WriteRiverNetworkToStateMod(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write,

surrounded by double quotes.
None – must be specified.

WriteHow OverwriteFile if the file should be
overwritten or UpdateFile if the file
should be updated, resulting in the
previous header being carried forward.

OverwriteFile

 Command Reference – WriteRiverNetworkToStateMod() - 1 937

WriteRiverNetworkToStateMod() Command StateDMI Documentation

The following command file illustrates how a StateMod river network file can be created from the
generalized network file:

StartLog(LogFile="rin.commands.StateDMI.log")
rin.commands.StateDMI

creates the river network file for the Colorado River monthly/daily models

Step 1 - read river nodes from the network file and create file framework

ReadNetworkFromStateMod(InputFile="cm2005.net")
CreateRiverNetworkFromNetwork()

Step 2 - get node (diversion, stream stations, reservoirs, instream flows)
names from HydroBase

FillRiverNetworkFromHydroBase(ID="*",NameFormat=StationName_NodeType)

Step 3 - read missing node names from network file

FillRiverNetworkFromNetwork(ID="*",NameFormat="StationName_NodeType",
 CommentFormat="StationID")

Step 4 - create StateMod river network file

WriteRiverNetworkToStateMod(OutputFile="..\StateMod\cm2005.rin")

Check the results
CheckRiverNetwork(ID="*")
WriteCheckFile(OutputFile="rin.commands.StateDMI.check.html")

2 - Command Reference – WriteRiverNetworkToStateMod() 938

Command Reference:
WriteStreamEstimateCoefficientsToList()

Write stream estimate coefficients data to a delimited file

StateMod Command

Version 3.09.01, 2010-02-01

The WriteStreamEstimateCoefficientsToList() command writes stream estimate
coefficient data to a delimited file. The following dialog is used to edit the command and illustrates the
syntax of the command.

WriteStreamEstimateCoefficientsToList

WriteStreamEstimateCoefficientsToList() Command Editor

 Command Reference – WriteStreamEstimateCoefficientsToList() - 1 939

WriteStreamEstimateCoefficientsToList() Command StateDMI Documentation

The command syntax is as follows:

WriteStreamEstimateCoefficientsToList(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write,

surrounded by double quotes.
None – must be specified.

WriteHow OverwriteFile if the file should be
overwritten or UpdateFile if the file
should be updated, resulting in the
previous header being carried forward.

OverwriteFile

Delimiter The delimiter character to use between
columns.

Comma

2 - Command Reference – WriteStreamEstimateCoefficientsToList() 940

Command Reference:
WriteStreamEstimateCoefficientsToStateMod()

Write stream estimate coefficients data to a StateMod file

StateMod Command

Version 3.09.01, 2010-02-01

The WriteStreamEstimateCoefficientsToStateMod() command writes stream estimate
coefficients that have been defined to a StateMod stream estimate coefficients file. The following dialog
is used to edit the command and illustrates the syntax of the command.

WriteStreamEstimateCoefficientsToStateMod

WriteStreamEstimateCoefficientsToStateMod() Command Editor

The command syntax is as follows:

WriteStreamEstimateCoefficientsToStateMod(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write,

surrounded by double quotes.
None – must be specified.

WriteHow OverwriteFile if the file should be
overwritten or UpdateFile if the file
should be updated, resulting in the
previous header being carried forward.

OverwriteFile

 Command Reference – WriteStreamEstimateCoefficientsToStateMod() - 1 941

WriteStreamEstimateCoefficientsToStateMod() Command StateDMI Documentation

The following command file illustrates how a StateMod stream estimate coefficients file can be created:

StartLog(LogFile="rib.commands.StateDMI.log")
rib.commands.StateDMI

Creates the Stream Estimate Station Coefficient Data file

Step 1 - read river nodes from the network file and create file framework

ReadStreamEstimateStationsFromNetwork(InputFile="..\Network\cm2005.net")

Step 2 - set preferred gages for "neighboring" gage approach
this baseflow nodes are generally on smaller non-gaged tribs and have
different flow characteristics than next downstream gages

SetStreamEstimateCoefficientsPFGage(ID="360645",GageID="09055300")
SetStreamEstimateCoefficientsPFGage(ID="360801",GageID="09055300")
SetStreamEstimateCoefficientsPFGage(ID="362002",GageID="09054000")
SetStreamEstimateCoefficientsPFGage(ID="360829",GageID="09047500")
..similar commands omitted…

Step 3 - calculate stream coefficients
CalculateStreamEstimateCoefficients()

Step 4 - set proration factors directly

SetStreamEstimateCoefficients(ID="364512",ProrationFactor=1.000,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="374641",ProrationFactor=0.200,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="374648",ProrationFactor=0.350,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="380880",ProrationFactor=1.000,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="381594",ProrationFactor=0.800,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="384617",ProrationFactor=0.700,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="510639",ProrationFactor=1.000,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="514603",ProrationFactor=0.800,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="514620",ProrationFactor=1.000,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="510728",ProrationFactor=1.000,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="530555",ProrationFactor=0.180,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="530678",ProrationFactor=0.230,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="531082",ProrationFactor=1.000,IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="954683",ProrationFactor=0.400,IfNotFound=Warn)

Step 5 - create streamflow estimate coefficient file

WriteStreamEstimateCoefficientsToStateMod(OutputFile="..\StateMOD\cm2005.rib")

Check the results
CheckStreamEstimateCoefficients(ID="*")
WriteCheckFile(OutputFile="rib.commands.StateDMI.check.html")

2 - Command Reference – WriteStreamEstimateCoefficientsToStateMod() 942

Command Reference:
WriteStreamEstimateStationsToList()

Write stream estimate station data to a delimited file

StateMod Command

Version 3.09.01, 2010-02-01

The WriteStreamEstimateStationsToList() command writes stream estimate stations data to
a delimited file. The following dialog is used to edit the command and illustrates the syntax of the
command.

WriteStreamEstimateStationsToList

WriteStreamEstimateStationsToList() Command Editor

 Command Reference – WriteStreamEstimateStationsToList() - 1 943

WriteStreamEstimateStationsToList() Command StateDMI Documentation

The command syntax is as follows:

WriteStreamEstimateStationsToList(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write,

surrounded by double quotes.
None – must be specified.

WriteHow OverwriteFile if the file should be
overwritten or UpdateFile if the file
should be updated, resulting in the
previous header being carried forward.

OverwriteFile

Delimiter The delimiter character to use between
columns.

Comma

The following example illustrates how to create a list of stream estimate stations from a network file:

ReadStreamEstimateStationsFromNetwork(InputFile="rgTW.net")
WriteStreamEstimateStationsToList(OutputFile="rgTW.ses.csv")

2 - Command Reference – WriteStreamEstimateStationsToList() 944

Command Reference:
WriteStreamEstimateStationsToStateMod()

Write stream estimate stations data to a StateMod file

StateMod Command

Version 3.09.01, 2010-02-01

The WriteStreamEstimateStationsToStateMod() command writes stream estimate stations
that have been defined to a StateMod stream estimate stations file. The following dialog is used to edit
the command and illustrates the syntax of the command.

WriteStreamEstimateStationsToStateMod

WriteStreamEstimateStationsToStateMod() Command Editor

 Command Reference – WriteStreamEstimateStationsToStateMod() - 1 945

WriteStreamEstimateStationsToStateMod() Command StateDMI Documentation

The command syntax is as follows:

WriteStreamEstimateStationsToStateMod(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write,

surrounded by double quotes.
None – must be specified.

WriteHow OverwriteFile if the file should be
overwritten or UpdateFile if the file
should be updated, resulting in the
previous header being carried forward.

OverwriteFile

2 - Command Reference – WriteStreamEstimateStationsToStateMod() 946

Command Reference:
WriteStreamGageStationsToList()

Write stream gage station data to a delimited file

StateMod Command

Version 3.09.01, 2010-02-01

The WriteStreamGageStationsToList() command writes stream gage stations data to a
delimited file. The following dialog is used to edit the command and illustrates the syntax of the
command.

WriteStreamGageStationsToList

WriteStreamGageStationsToList() Command Editor

 Command Reference – WriteStreamGageStationsToList() - 1 947

WriteStreamGageStationsToList() Command StateDMI Documentation

The command syntax is as follows:

WriteStreamGageStationsToList(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write,

surrounded by double quotes.
None – must be specified.

WriteHow OverwriteFile if the file should be
overwritten or UpdateFile if the file
should be updated, resulting in the
previous header being carried forward.

OverwriteFile

Delimiter The delimiter character to use between
columns.

Comma

The following example illustrates how to create a list of stream gage stations from a network file:

ReadStreamGageStationsFromNetwork(InputFile="cm2005.net")
WriteStreamGageStationsToList(OutputFile="cm2005.ris.csv")

2 - Command Reference – WriteStreamGageStationsToList() 948

Command Reference:
WriteStreamGageStationsToStateMod()

Write stream gage stations data to a StateMod file

StateMod Command

Version 3.09.01, 2010-02-01

The WriteStreamGageStationsToStateMod() command writes stream gage stations that have
been defined to a StateMod stream gage stations file. The following dialog is used to edit the command
and illustrates the syntax of the command.

WriteStreamGageStationsToStateMod

WriteStreamGageStationsToStateMod() Command Editor

The command syntax is as follows:

WriteStreamGageStationsToStateMod(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write,

surrounded by double quotes.
None – must be specified.

WriteHow OverwriteFile if the file should be
overwritten or UpdateFile if the file
should be updated, resulting in the
previous header being carried forward.

OverwriteFile

 Command Reference – WriteStreamGageStationsToStateMod() - 1 949

WriteStreamGageStationsToStateMod() Command StateDMI Documentation

The following example command file illustrates the commands used to read stream gage stations from the
network and create a StateMod file:

StartLog(LogFile="ris.commands.StateDMI.log")
ris.commands.StateDMI

StateDMI command file to create streamflow station file for the Colorado River

Step 1 - read streamgages and baseflows ids from the network file

ReadStreamGageStationsFromNetwork(InputFile="..\Network\cm2005.net",
 IncludeStreamEstimateStations="True")

Step 2 - read baseflow nodes names from HydroBase,
fill in missing names from the network file

FillStreamGageStationsFromHydroBase(ID="*",NameFormat=StationName,CheckStructures=True)
FillStreamGageStationsFromNetwork(ID="*",NameFormat="StationName")

Step 3 - set streamgage station to use to disaggregate monthly baseflows to daily

add set daily pattern gages for WD 36
SetStreamGageStation(ID="36*",DailyID="09047500",IfNotFound=Warn)
…many similar commands omitted…

Step 4 - create streamflow station file

WriteStreamGageStationsToStateMod(OutputFile="..\StateMod\cm2005.ris")

Check the results
CheckStreamGageStations(ID="*")
WriteCheckFile(OutputFile="ris.commands.StateDMI.check.html")

2 - Command Reference – WriteStreamGageStationsToStateMod() 950

Command Reference:
WriteWellDemandTSMonthlyToStateMod()

Write well demand time series (monthly) to a StateMod file

StateMod Command

Version 3.09.01, 2010-02-01

The WriteWellDemandTSMonthlyToStateMod() command writes well demand time series
(monthly) to a StateMod well demand time series file. The following dialog is used to edit the command
and illustrates the syntax of the command.

WriteWellDemandTSMonthlyToStateMod

WriteWellDemandTSMonthlyToStateMod() Command Editor

 Command Reference – WriteWellDemandTSMonthlyToStateMod() - 1 951

WriteWellDemandTSMonthlyToStateMod() Command StateDMI Documentation

The command syntax is as follows:

WriteWellDemandTSMonthlyToStateMod(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write,

surrounded by double quotes.
None – must be specified.

OutputStart The start date to write, using format
YYYY-MM or MM/YYYY.

Full period will be written.

OutputEnd The end date to write, using format
YYYY-MM or MM/YYYY.

Full period will be written.

OutputYearType The output year type to write, one of:
• Calendar – January to December.
• NovToOct – November to October.
• Water – October to September.

Calendar, or the value set by
the previous
SetOutputYearType()
command.

Precision The number of digits after the decimal to
write.

2

MissingValue The value to write for missing data. -999
WriteHow OverwriteFile if the file should be

overwritten or UpdateFile if the file
should be updated, resulting in the
previous header being carried forward.

OverwriteFile

2 - Command Reference – WriteWellDemandTSMonthlyToStateMod() 952

Command Reference:
WriteWellHistoricalPumpingTSMonthlyToStateMod()

Write well historical pumping time series (monthly) to a StateMod file

StateCU and StateMod Command

Version 3.09.01, 2010-01-27

The WriteWellHistoricalPumpingTSMonthlyToStateMod() command writes well
historical pumping time series (monthly) to a StateMod time series file. The following dialog is used to
edit the command and illustrates the syntax of the command.

WriteWellHistoricalPumpingTSMonthlyToStateMod

WriteWellHistoricalPumpingTSMonthlyToStateMod() Command Editor

 Command Reference – WriteWellHistoricalPumpingTSMonthlyToStateMod() - 1 953

WriteWellHistoricalPumpingTSMonthlyToStateMod() Command StateDMI Documentation

The command syntax is as follows:

WriteWellHistoricalPumpingTSMonthlyToStateMod(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write,

surrounded by double quotes.
None – must be specified.

OutputStart The start date to write, using format
YYYY-MM or MM/YYYY.

Full period will be written.

OutputEnd The end date to write, using format
YYYY-MM or MM/YYYY.

Full period will be written.

OutputYearType The output year type to write, one of:
• Calendar – January to December.
• NovToOct – November to October.
• Water – October to September.

Calendar, or the value set by
the previous
SetOutputYearType()
command.

Precision The number of digits after the decimal to
write.

2

MissingValue The value to write for missing data. -999
WriteHow OverwriteFile if the file should be

overwritten or UpdateFile if the file
should be updated, resulting in the
previous header being carried forward.

OverwriteFile

2 - Command Reference – WriteWellHistoricalPumpingTSMonthlyToStateMod() 954

Command Reference: WriteWellRightsToList()

Write well rights data to a delimited file

StateCU and StateMod Command
Version 3.09.00, 2010-01-25

The WriteWellRightsToList() command writes well rights data to a delimited file.

The following dialog is used to edit the command and illustrates the syntax of the command.

WriteWellRightsToList

WriteWellRightsToList() Command Editor

 Command Reference – WriteWellRightsToList() - 1 955

WriteWellRightsToList() Command StateDMI Documentation

The command syntax is as follows:

WriteWellRightsToList(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write,

surrounded by double quotes.
None – must be specified.

WriteHow OverwriteFile if the file should be
overwritten or UpdateFile if the file
should be updated, resulting in the
previous header being carried forward.

OverwriteFile

Delimiter The delimiter character to use between
columns.

Comma

The following example illustrates how to create a list of well rights from a list of stations:

ReadWellStationsFromList(ListFile="test.lst")
ReadWellRightsFromHydroBase(ID="*")
WriteWellRightsToList(OutputFile="rights.lst")

2 - Command Reference – WriteWellRightsToList() 956

Command Reference:
WriteWellRightsToStateMod()

Write well rights data to a StateMod file

StateMod Command

Version 3.09.00, 2010-01-25

The WriteWellRightsToStateMod() command writes well rights to a StateMod well rights file.
The current in-memory rights are written. See also the MergeWellRights() and
AggregateWellRights() commands.

The following dialog is used to edit the command and illustrates the syntax of the command.

WriteWellRightsToStateMod

WriteWellRightsToStateMod() Command Editor

The command syntax is as follows:

WriteWellRightsToStateMod(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write, surrounded by double quotes. None – must be

specified.
WriteHow OverwriteFile if the file should be overwritten or

UpdateFile if the file should be updated, resulting in the
previous header being carried forward.

OverwriteFile

WriteData
Comments

Write comments to the right of normal data, including the parcel
year, parcel/well matching class, and parcel ID. This information
is necessary to fill irrigation practice and crop pattern time series
with well water rights. Typically, a “_NotMerged.wer” well right
file is written and then merged and possibly aggregated rights files
are written.

False

 Command Reference – WriteWellRightsToStateMod() - 1 957

WriteWellRightsToStateMod() Command StateDMI Documentation

An excerpt from a well rights file with data comments is shown below:

#> ID Name Struct Admin # Decree On/Off PYr--Cls--PID
#>---------eb----------------------eb----------eb--------------eb------eb------exb--exb--exb----e
2005001 W0006 WELL NO 01 200812 31592.00000 2.34 1936 1936 1 3107
2005001 W0006 WELL NO 01 200812 38836.00000 1.23 1956 1936 1 3107
2005001 W0006 WELL NO 01 200812 31592.00000 2.34 1936 1998 2 11016
2005001 W0006 WELL NO 01 200812 31592.00000 1.15 1936 2002 5 20902
2005001 W0006 WELL NO 01 200812 38836.00000 0.61 1956 2002 5 20902
…

The following example command file illustrates how well rights can be defined, sorted, checked, and
written to a StateMod file:

Well Rights File (*.wer)
StartLog(LogFile="Sp2008L_WER.log")

Step 1 - Read all structures
ReadWellStationsFromNetwork(InputFile="..\Network\Sp2008L.net")

Step 2 - define diversion and d&w aggregates and demand systems
SetWellAggregateFromList(ListFile="..\Sp2008L_SWAgg.csv",PartType=Ditch,IDCol=1,
 NameCol=2,PartIDsCol=3,PartsListedHow=InColumn,IfNotFound=Warn)
SetWellSystemFromList(ListFile="..\Sp2008L_DivSys_DDH.csv",PartType=Ditch,IDCol=1,
 NameCol=2,PartIDsCol=3,PartsListedHow=InRow,IfNotFound=Warn)

SetWellAggregateFromList(ListFile="Sp2008L_AugRchWell_Aggregates.csv",PartType=Well,
 IDCol=1,PartIDsCol=2,PartsListedHow=InRow)

Step 3- Set Well aggregates (GW Only lands)
rrb Same as provided by LRE as Sp_GWAgg_xxxx.csv except non WD 01 and 64 removed
SetWellSystemFromList(ListFile="..\Sp2008L_GWAgg_1956.csv",Year=1956,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\Sp2008L_GWAgg_1976.csv",Year=1976,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\Sp2008L_GWAgg_1987.csv",Year=1987,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\Sp2008L_GWAgg_2001.csv",Year=2001,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="..\Sp2008L_GWAgg_2005.csv",Year=2005,Div=1,
 PartType=Parcel,IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)

Step 4 - Read Augmentation and Recharge Well Aggregate Parts
SetWellAggregateFromList(ListFile="Sp2008L_AugRchWell_Aggregates.csv",PartType=Well,
 IDCol=1,PartIDsCol=2,PartsListedHow=InRow,PartIDsColMax=25,IfNotFound=Ignore)
SetWellAggregateFromList(ListFile="Sp2008L_AlternatePoint_Aggregates.csv",PartType=Well,
 IDCol=1,PartIDsCol=2,PartsListedHow=InRow,PartIDsColMax=1,IfNotFound=Ignore)

Step 5 - Read rights from HydroBase
ReadWellRightsFromHydroBase(ID="*",IDFormat="HydroBaseID",Year="1956,1976,1987,2001,2005",
 Div="1",DefaultAppropriationDate="1950-01-01",DefineRightHow=RightIfAvailable,
 ReadWellRights=True,UseApex=True,OnOffDefault=AppropriationDate)

Step 6 - Sort and Write
Write Data Comments="True" provides output used for subsequent cds & ipy acreage filling
Write Data Comments="False" provides merged file used for seting ipy max pumping
SortWellRights(Order=LocationIDAscending,Order2=IDAscending)

WriteWellRightsToStateMod(OutputFile="Sp2008L_NotMerged.wer",WriteDataComments=True)
MergeWellRights(OutputFile="..\StateMod\Historic\Sp2008L.wer")
SortWellRights(Order=LocationIDAscending,Order2=IDAscending)

WriteWellRightsToStateMod(OutputFile="Sp2008L.wer",WriteDataComments=False,WriteHow=OverwriteFile)
Check the well rights
CheckWellRights(ID="*")
WriteCheckFile(OutputFile="Sp2008L.wer.check.html",Title="Well Rights Check File")

2 - Command Reference – WriteWellRightsToStateMod() 958

Command Reference: WriteWellStationsToList()

Write well station data to a delimited file

StateMod Command
Version 3.09.01, 2010-02-01

The WriteWellStationsToList() command writes well stations data to a delimited file. In
addition to the main station file, files with suffixes _Collections, _Depletions, and _ReturnFlows are
written, containing secondary station information.

The following dialog is used to edit the command and illustrates the syntax of the command.

WriteWellStationsToList

WriteWellStationsToList() Command Editor

 Command Reference – WriteWellStationsToList() - 1 959

WriteWellStationsToList() Command StateDMI Documentation

The command syntax is as follows:

WriteWellStationsToList(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write,

surrounded by double quotes.
None – must be specified.

WriteHow OverwriteFile if the file should be
overwritten or UpdateFile if the file
should be updated, resulting in the
previous header being carried forward.

OverwriteFile

Delimiter The delimiter character to use between
columns.

Comma

The following example illustrates how to create a list of well stations from a network file:

ReadWellStationsFromNetwork(InputFile="rgtw.net")
WriteWellStationsToList(OutputFile="rgtw.wes.csv")

2 - Command Reference – WriteWellStationsToList() 960

Command Reference:
WriteWellStationsToStateMod()

Write well stations data to a StateMod file

StateCU StateMod Command

Version 3.09.01, 2010-01-27

The WriteWellStationsToStateMod() command writes well stations that have been defined to a
StateMod well stations file. The following dialog is used to edit the command and illustrates the syntax
of the command.

WriteWellStationsToStateMod

WriteWellStationsToStateMod() Command Editor

 Command Reference – WriteWellStationsToStateMod() - 1 961

WriteWellStationsToStateMod() Command StateDMI Documentation

The command syntax is as follows:

WriteWellStationsToStateMod(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the output file to write,

surrounded by double quotes.
None – must be specified.

WriteHow OverwriteFile if the file should be
overwritten or UpdateFile if the file
should be updated, resulting in the
previous header being carried forward.

OverwriteFile

2 - Command Reference – WriteWellStationsToStateMod() 962

Appendix: StateDMI Installation and
Configuration

 Version 03.09.01, 2010-02-15

1. Overview

This appendix describes how to install StateDMI in the CDSS (Colorado's Decision Support Systems)
environment. CDSS consists of the HydroBase database, modeling, and data viewing/editing software.
StateDMI can be used within this system to process data from the HydroBase database, CDSS model
files, and other files.

2. Installing StateDMI as Part of CDSS

Standard locations of StateDMI software files are as follows. Files are normally installed on Windows on
the C: drive but can be installed in a shared location on a server.

\CDSS\StateDMI-Version Top-level install directory.
 bin\ Software directory for StateDMI.bat file

and Java JAR files.
 batik*.jar Scalable Vector Graphics (SVG) output

packages.
 Blowfish*.jar Used for encryption/security.
 cdss.domain*.jar CDSS components.
 HydroBaseDMI*.jar State of Colorado HydroBase database

interface package.
 jcommon.jar, jfreechart.jar Plotting package.
 jsr173_1.0_api.jar,
 libXMLJava.jar

 XML support.

 jython.jar Jython support.
 sqljdbc4.jar Microsoft SQL Server packages.
 RTi_Common*.jar Riverside Technology, inc. supporting

packages.
 SatmonSysDMI*.jar State of Colorado Satellite Monitoring

System package.
 shellcon.exe Executable program used to read from the

Windows registry (e.g., to determine the
default web browser and list available
ODBC data source names). – PHASING
OUT.

 StateDMI.exe Executable program to run StateDMI using
the JRE software.

 StateDMI.l4j.ini Configuration file for StateDMI.exe
launcher.

 StateDMI*.jar StateDMI program components.
 StateMod*.jar State of Colorado’s StateMod and StateCU

model packages.
 TSCommandProcessor*.jar Time series command processor package.

 Appendix - Installation and Configuration - 1 963

Installation and Configuration StateDMI Documentation

 doc\StateDMI\UserManual\ Main documentation directory for
StateDMI.

 StateDMI.pdf StateDMI documentation as PDF.
 jre*\ Java Runtime Environment (JRE) used by

StateDMI.
 logs\ Directory for StateDMI log files (should be

writable).
 system\ Directory for system files.
 CDSS.cfg CDSS configuration file for HydroBase

database connection.
 DATAUNIT Data units file.
 StateDMI.cfg Configuration file to modify StateDMI

defaults (under development).

3. Installing StateDMI

Use the following instructions to install StateDMI using the StateDMI_CDSS_Version_Setup.exe installer
program, for example if StateDMI software was downloaded from the CDSS web site
(http://cdss.state.co.us):

1. Run the StateDMI_CDSS_Version_Setup.exe file by selecting from Windows Explorer, the
Start…Run… menu, or from a command shell. The setup filename will include a version
number (e.g., StateDMI_CDSS_03.09.01_Setup.exe).

You must be logged into the computer using an account with administrator privileges. If you
have administrative privileges, the following welcome will be displayed, and the installation can
continue:

2 - Appendix - Installation and Configuration 964

http://cdss.state.co.us/

StateDMI Documentation Installation and Configuration

Install_Welcome

Press Next to continue with the installation.

 Appendix - Installation and Configuration - 3 965

Installation and Configuration StateDMI Documentation

Install_Disclaimer

StateDMI is distributed with CDSS with no license restrictions. However the disclaimer must be
acknowledged. Press I Agree to continue with the installation.

4 - Appendix - Installation and Configuration 966

StateDMI Documentation Installation and Configuration

2. Several components can be selected for the install as shown in the following dialog. Position the
mouse over a component to see its description.

Install_SelectComponents

Select the components to install and press Next.

 Appendix - Installation and Configuration - 5 967

Installation and Configuration StateDMI Documentation

3. The following dialog is then shown and is used to select the installation location for StateDMI.
Multiple versions of StateDMI can be installed and there are no dependencies between the
versions. It is recommenced that the default install location shown is used.

Install_SelectFolder

After selecting the install location, press Next.

Note that this location will be saved as a Windows registry setting
(HKEY_LOCAL_MACHINE\Software\State of Colorado\StateDMI-Version\Path) to allow future
updates to check for and default to the same install location, and to allow the standard software
uninstall procedure to work correctly.

6 - Appendix - Installation and Configuration 968

StateDMI Documentation Installation and Configuration

4. The following dialog will be shown to select the menu for the software:

Install_StartMenuFolder

After selecting the folder, press Install.

 Appendix - Installation and Configuration - 7 969

Installation and Configuration StateDMI Documentation

5. The following dialog will show the progress of the installation:

Install_Complete

Press Show details to see the files that were installed or press Next to continue.

6. If the CDSS Base Components were selected for install (the default), the following dialog will be
displayed:

Install_HydroBaseQuestion

StateDMI and other CDSS software can utilize HydroBase running on the local computer as well as
other computers. Press Yes if HydroBase has been installed on another computer in the network

8 - Appendix - Installation and Configuration 970

StateDMI Documentation Installation and Configuration

environment and may be used by the software (then continue to the next step). Otherwise, press No
(skip to step 8).

7. The following dialog allows additional HydroBase servers to be specified for use by CDSS software

(the example below configures CDSS software to list the dwrappsdb HydroBase server in choices and
defaults to HydroBase on the local computer):

Install_HydroBaseConfiguration

After entering the name of a HydroBase server and the default server to use, press Done.

8. The following dialog will then be shown asking whether the StateDMI software should be run:

Install_RunStateDMIQuestion

Press Yes to run the software or No to exit the installation procedure.

 Appendix - Installation and Configuration - 9 971

Installation and Configuration StateDMI Documentation

3.1 StateDMI Configuration Files

StateDMI requires minimal configuration after installation. This section describes StateDMI
configuration files that can be customized for a system.

3.1.1 Data Units File

The system\DATAUNIT file under the main installation directory contains data unit information that
defines conversions and output precision. In most cases the default file can be used but additional units
may need to be added for a user's needs (in this case please notify the developers so the units can be
added to the default file distributed with installations). Currently, the data units file is the only source for
units information – in the future units may be determined from the various input sources.

3.1.2 CDSS Configuration File

By default, StateDMI will automatically look for HydroBase databases on the current (local) machine and
the State servers. State server databases are typically only accessible to State of Colorado computers. If
SQL Server HydroBase versions have been installed on a different machine, the \CDSS\StateDMI-
Version\system\CDSS.cfg file can be used to indicate the database servers. An example of the
configuration file is as follows:

[HydroBase]

ServerNames="ServerName,local"
DefaultServerName="ServerName"
DefaultDatabaseName="HydroBase_CO_20080730"

The CDSS configuration properties are described in the following table:

CDSS HydroBase Database Configuration Properties

Property Description Default
ServerNames A comma-separated list of server names to list in the

HydroBase login dialog.
The state server
is listed.

Default
ServerName

The default HydroBase server name to use. This allows
the HydroBase login dialog to preselect a default that
applies to most users in the system.

greenmtn.
state.co.us

Default
DatabaseName

The default HydroBase database name to use. This allows
the HydroBase login dialog to preselect a default that
applies to most users in the system.

Database
Engine

Reserved for internal use.

DatabaseName The database name to use for the initial connection. This
overrides the default server.

Database
Server

The server name to use for the initial connection. This
overrides the default server.

SystemLogin Reserved for internal use.
SystemPassword Reserved for internal use.
UserLogin Reserved for internal use.

10 - Appendix - Installation and Configuration 972

4. Uninstalling StateDMI Software

To uninstall StateDMI software, select CDSS…Uninstall…StateDMI-Version from the Start menu and
confirm the uninstall. User data will remain installed.

Uninstall_Confirmation

Press Uninstall to uninstall the software.

 Appendix - Installation and Configuration - 11 973

Installation and Configuration StateDMI Documentation

The following dialog shows the status of the uninstall.

Uninstall_Complete

Press Show details to see the list of files that were removed. Press Done to exit the uninstall.

12 - Appendix - Installation and Configuration 974

Appendix: StateDMI Release Notes
Version 03.11.01, 2010-08-11

This appendix provides information about changes that have occurred in StateDMI versions.

StateDMI Version History

The following table summarizes the StateDMI release history. See the following section for more
detailed information about each version. Recent release note items are categorized as follows:

Bug Fix – A bug has been fixed. Users should evaluate whether their work is impacted.

Known Limitation – A known limitation has been documented and may impact the user. The limitation
will be addressed in a future release.
Change – An existing feature has been changed.

Remove – A feature has been removed.

New Feature – A new feature has been added, with functionality that was not previously available.

StateDMI Version History Summary (most current at top)

StateDMI Version Version Information Release Date
3.11.00 – 3.11.01 Minor maintenance releases. Windows 7 installer. 2010-08-11
3.10.00 Add StateCU Penman-Monteith crop coefficients

commands. Include training materials with software.
2010-05-11

3.09.00 – 3.09.02 Update to use Java 1.6 release 18 to increase performance.
Increase performance on slow commands. Update all
documentation. Several bug fixes.

2010-02-18

3.04.00 – 3.08.02 Several changes have been made based on feedback for the
3.03.00+ releases, and enhancements related to South Platte
processing. All StateCU and StateMod components now
have check commands. Version 3.08.00 is meant to be
evaluated by modelers in production work.

2009-09-29

3.03.00 All commands have been updated to the new error handling
design, similar to TSTool. During this effort, all commands
were cleaned up, including updating command editors to
indicate required and optional commands. Many commands
were updated to impose consistent behavior throughout
commands. Additional warnings may now be generated to
force users to be more explicit in handling issues in
processing. In particular, identifiers must be specified (no *
default) and IfNotFound=Add is required to add new
data in set commands. Note: only the release notes in the
documentation have been updated – a complete
documentation update will be included in an upcoming
release.

2009-02-16

2.18.00 Improve irrigation practice (IPY) file processing to remove
additional NaN and missing values in results.

2007-10-18

 Appendix – Release Notes - 1 975

Release Notes StateDMI Documentation

StateDMI Version Version Information Release Date
2.17.00 Crop pattern time series acreage values are now explicitly

written and the total/fraction information is for information
only. This is compatible with changes in StateCU 12.19.

2007-10-17

2.16.00 Major changes in processing the irrigation practice (IPY)
file. In particular, each command results in a full estimate
of all acreage values.

2007-09-09

2.14.00 Implemented many changes to implement new well data
processing. Refer to the documentation for well stations and
rights, crop pattern time series, and irrigation practice time
series for more information.

2007-07-11

2.02.00 – 2.13.00 Versions released leading up to 2.14, which has features for
data processing approach for well data.

2.01.00 Update crop names to 30-characters in StateCU files, update
IPY file format to StateCU version 12, implement initial
CIU filling features for diversions.

2007-03-02

2.00.00 First version using new installer. 2006-11-03
1.22.00 Update handling of well rights identifiers. 2006-10-24
1.21.00 Read well rights from net amounts table, add APEX to

decree for wells.
2006-10-09

1.20.05 Add additional sort commands to menus; remove code that
resets groundwater to sprinkler if groundwater is less.

2006-07-07

1.20.04 Add list output files to viewing choices in main window. 2006-06-13
1.20.03 Add read*FromList() commands to more menus. 2006-06-12
1.20.02 Add translate commands for crop characteristics and

Blaney-Criddle files, improve well processing.
2006-04-30

1.20.01 Continue to improve well processing. 2006-04-24
1.20.00 Improve well processing. 2006-04-10
1.18.10 Update to allow wells and D&Ws to be ignored when

processing well demand time series list.
2006-01-30

1.18.09 Implemented several fixes in network editor. 2005-12-23
1.18.08 Add commands to fill diversion, instream flow, reservoir,

and well stations from the network.
2005-12-06

1.18.07 Update filling crop patterns with AgStats to better handle
case where location does not grow all crops to be filled.

2005-11-22

1.18.06 Maintenance update. 2005-11-21
1.18.05 Add more complete headers to crop pattern and irrigation

practice time series, fill CU locations with AWC and
elevation.

2005-11-02

1.18.04 Change so that when processing well demands and
efficiencies, only process stations where idvcomw=1.

2005-10-18

1.18.03 Maintenance update. 2005-10-13
1.18.02 Use NA as default diversion station ID for well stations. 2005-10-12
1.18.01 Change command dialogs to use scrollable area and allow

double click on command to start an edit.
2005-10-10

1.18.00 Add commands for well pumping time series. 2005-10-03
1.17.21 Add list output files to results file list. 2005-09-27
1.17.20 Fix several bugs in processing crop commands. 2005-08-18
1.17.19 Fix two bugs handling diversion time series for aggregates. 2005-08-11

2 - Appendix – Release Notes 976

StateDMI Documentation Release Notes

StateDMI Version Version Information Release Date
1.17.18 Enhance crop pattern and irrigation practice acreage

synchronization.
2005-07-27

1.17.17 Updates to help with comparison of old data sets. 2005-07-13
1.17.16 Fix a bug in processing crop pattern time series. 2005-07-08
1.17.15 Add option to control processing well rights. 2005-06-28
1.17.14 Add features to facilitate comparing StateCU data sets. 2005-06-03
1.17.13 Enable new messaging and log file viewer and commands to

write list files.
2005-04-05

1.17.12 Add warnings for obsolete commands. 2005-03-25
1.17.11 StateCU IPY features are enabled. New log file viewer is

enabled. Enable StateCU and StateMod results viewers
regardless of menus that are active.

2005-03-24

1.17.10 Enable right switch as appropriation date year and resolve
related issues in aggregate rights, limiting to rights.

2005-03-14

1.17.09 When reading stream gage stations from the network, make
the default output order the network order.

2005-02-14

1.17.08 Handle the water rights switch when limiting diversion and
demand time series to rights.

2005-02-10

1.17.07 Add command to limit diversion demands to rights. 2005-02-09
1.17.06 Additional fixes for processing diversion historical and

demand time series.
2005-02-07

1.17.05 Fix problem limiting diversion time series to rights. Expand
fill capabilities for aggregate/system diversion time series.
Several other small fixes.

2005-02-03

1.17.04 Reservoir accounts are no longer automatically adjusted if
dead storage is specified, setting station ID using “ID” in
rights now works.

2005-02-01

1.17.03 Fix problem where creating instream flow demand average
monthly time series needed the output year type.

2005-01-31

1.17.02 Fix problem where diversion historical time series without
monthly data in HydroBase were causing a premature end to
filling with historical average.

2005-01-27

1.17.01 Fix problem with historical diversion time series being
missing when not found in HydroBase.

2005-01-26

1.17.00 Several enhancements and fixes for processing diversion
station historical time series (monthly). First release with
tabular output displays.

2005-01-26

1.16.03 Fix output year type bug. Change default when writing files
to overwrite.

2005-01-13

1.16.02 Fix so that conversion of makenet network retains label
positions. Other minor updates.

2005-01-12

1.16.01 Fix case where station IDs that look like WDID but are not
were causing HydroBase query errors. Other minor updates.

2005-12-17

1.16.00 Fix a number of errors in the setReservoirStation()
command dialog.

2004-11-11

1.15.02 Official release for all StateCU and StateDMI features, with
complete documentation.

2004-10-01

1.15.01 Includes StateMod well files, lacking some documentation. 2004-09-30

 Appendix – Release Notes - 3 977

Release Notes StateDMI Documentation

StateDMI Version Version Information Release Date
1.15.00 Includes all StateMod files except wells. 2004-09-16
1.14.00 Additional changes to all features except wells. 2004-08-22
1.13.00 Finalize features for network files, delay tables, instream

flow, reservoirs, and diversions.
2004-07-12

1.12.00 Implement menus for all StateMod data components and
implement station data features.

2004-06-01

1.11.00 Add fillCULocationClimateStationWeights()
and update translateCropPatternTS() to take a list
file.

2004-05-08

1.10.00 Minor changes to StateCU features based on user feedback.
Begin implementing StateMod file features.

2004-04-10

1.09.00 Includes StateCU data file features. 2004-04-08
1.05.00b – 1.08.00b Beta version for discussions with the State. Many changes

in response to StateCU changes.
2004-01-13 –
2004-04-01

1.01.00 – 1.04.00 Internal versions for development.
1.00.00 Initial version with framework. 2002-09-10

Known Limitations

 Known Limitation Printing the network or saving as an image may not work. If necessary, use a

screen capture tool to capture and print an image. Printing will be enhanced in an upcoming release.
 Known Limitation There are no commands for StateMod plan stations; however, plan stations can

be represented in the network.

Changes in Versions 3.11.00 – 3.11.01

 Bug Fix [03.11.00] Fix bug where the
ReadWellRightsFromHydroBase(DefineRightHow) parameter was generating an error if
left blank (work-around is to explicitly specify the parameter).

 Change [3.11.01] Update installer to support Vista and Windows 7 installations.
 New Feature [03.11.00] Include CDSS Overview presentation with software under doc folder.

Changes in Version 3.10.00

 Bug Fix [03.10.00] Fix bug where Paste menus were not enabled on first copy/cut action.
 New Feature [03.10.00] Support has been added for StateCU Penman-Monteith crop coefficient

processing, similar to Blaney-Criddle commands.
 New Feature [03.10.00] Training materials are now included with the installation in the

doc\Training folder. Several slideshows are included, with supporting examples.

Changes in Versions 3.09.00 – 03.09.02

 Bug Fix [03.09.02] Commands read from a command file that have invalid parameters were not

always generating a visible warning for the user – this has been fixed.

4 - Appendix – Release Notes 978

StateDMI Documentation Release Notes

 Bug Fix [03.09.02] The SetCropPatternTSFromList(…ProcessWhen=Now..)
command, when used with a file that had multiple crops for a location, would only set the acreage for
the last crop listed (all others were set to zero in a year). The command has been updated to properly
handle multiple crops at a location.

 Bug Fix [3.09.01] The SortWellRights() command editor was not correctly displaying the
Order2 parameter upon re-edit – this has been fixed.

 Bug Fix [3.09.01] Fix bug where the SetIrrigationPracticeTSFromList() command
was swapping the columns for surface water acres flood and groundwater acres flood. This command
has also been updated to compute the groundwater total and surface water total values. The totals are
provided for information only (not used by StateCU).

 Bug Fix [3.09.01] StateMod time series files could not be read if they did not have at least one
comment at the top – this has been fixed.

 Bug Fix [3.09.00] The Set*AggregateFromList() and Set*SystemFromList()
commands now will set the station name if the NameCol is specified when
PartsListedHow=InColumn. The set will only occur if the original value is blank and the first
non-blank value in the list file will be used. Previously the name could only be set if the parts were
provided in a single row.

 Bug Fix [3.09.00] The MergeWellRights() command would result in no rights if all the
original rights were explicit (not determined from parcel matching). This is an extreme case that
normally would not be encountered.

 Bug Fix [3.09.00] The ReadWellFromHydroBase() command was always setting the date for
well permits to the default date – this has been fixed. The bug was introduced in version 3.04.00.

 Change [3.09.01] All documentation has been updated to current software features.
 Change [3.09.00] The ReadIrrigationPracticeTSFromHydroBase() command has been

updated to include the Optimization parameter, with the default now being to use more memory
to increase performance.

 Change [3.09.01] Writing StateMod time series files will now write the total as the sum of the
monthly or daily values as printed in the file (previously was computed as the in-memory total, which
results in a different value). The total will also now be shown as a missing value more often due to
more checks on the other values (previously may have been shown as zero). Output from commands
that write time series may be slightly different; however, this column is not used by models and
therefore results will not change.

 Change [3.09.00] The Java Runtime Environment (JRE) version 1.6 was updated to release 18,
providing increased performance.

 Change [3.09.00] The ReadWellRightsFromHydroBase() command has been updated to
include the Optimization parameter, with the default now being to use more memory to increase
performance.

 Change [3.09.00] The SetDiversionAggregateFromList() and
SetDiversionSystemFromList() commands now CANNOT be used to specify collection
information for StateMod well stations. Instead, use the SetWellAggregateFromList() and
SetWellSystemFromList() commands. This change allows error handling to be more robust
and focuses well processing on well data.

 New Feature [3.09.00] Add the Administration Number Calculator tool to help users convert
between appropriation dates and administration numbers.

 Appendix – Release Notes - 5 979

Release Notes StateDMI Documentation

Changes in Versions 3.04.00 – 3.08.02

 Bug Fix [3.08.02] The CalculateStreamEstimateCoefficients() command was

ignoring information from the SetStreamEstimateCoefficientsPFGage() commands –
this bug was introduced in the 3.+ version and has been fixed.

 Bug Fix [3.08.02] The SetStreamGageStation() command was generating an error about the
ID not being matched even when it was – this has been fixed.

 Bug Fix [3.08.02] Commands that set aggregate/system information from a list file were trying to
match an empty ID from a blank line in the list file – this generated warnings and has been fixed.

 Bug Fix [3.08.00] The FillWellStationsFromDiversionStations() command was
using the wrong station to fill data – this would be evident from incorrect well station names.

 Bug Fix [3.08.00] The ReadWellHistoricalPumpingTSFromStateCU() and
ReadWellHistoricalPumpingTSFromStateMod()commands were not accessing the list of
well rights for checks for whether a station is a diversion or well – some time series were not being
read.

 Bug Fix [3.07.00] The FillCropPatternTSConstant() command would only allow integer
constants – this has been fixed to also allow floating point values.

 Bug Fix [3.06.00] The network editor annotation dialog would indicate an invalid Y coordinate for
networks that were very wide compared to the height – this has been fixed.

 Bug Fix [3.04.00] The SetRiverNetworkNode() and FillRiverNetworkNode()
commands were not functioning properly, resulting in values not getting set – this has been fixed.

 Bug Fix [3.04.00] The Read*FromNetwork() commands were not properly handling the case
where no network file was specified – this has been fixed.

 Bug Fix [3.04.00] The ReadWellRightsFromHydroBase() command was ignoring the
Year parameter and was trying to read all years in HydroBase – this has been fixed.

 Change [3.08.02] The CompareFiles() command WarnIfDifferent parameter has been
changed to IfDifferent, to allow for more parameter values and be similar to other commands.
The WarnIfSame parameter has similarly been changed to IfSame. Old commands are
automatically updated.

 Change [3.08.00] The Set*TSConstant() commands have been updated to by default reset the
original data limits, based on typical use of the command. The RecalcLimits parameter can be
used to skip this computation. This change may have some impact on data that is filled with the
Fill*HistMonthAverage() commands.

 Change [3.07.00] The Java Runtime Environment (JRE) was updated from version 1.4.2 to version
1.6, providing increased performance and allowing upgrades in other areas. In particular, a new SQL
Server database driver is now being used to allow an update to SQL Server 2008 for HydroBase.

 Change [3.06.00] The MergeWellRights() command has been updated to include the
SumDecrees parameter to merge multiple rights that are otherwise the same.

 Change [3.06.00] Some previous output check features have been disabled in preparation of
finalizing the new check design (see CheckWellRights()). Check commands have been added
for all StateCU components.

6 - Appendix – Release Notes 980

StateDMI Documentation Release Notes

 Change [3.05.00] The MergeWellRights() command now explicitly passes through well rights
that have no parcel year, in order to retain rights from explicit well (or well collections) that do not
utilize parcel relationships.

 Change [3.04.00] The Set*AggregateFromList(), Set*SystemFromList() and
SetDiversionMultiStructFromList() commands now warn about missing files when the
commands are loaded.

 Change [3.04.00] Fill and set commands for StateMod diversion stations, instream flow stations,
river network nodes, reservoir stations, stream gage and estimate stations, well stations, and water
rights have been updated to trim whitespace from parameters because extra whitespace included in
quoted values was causing identifiers to not be matched properly and values to be formatted
incorrectly.

 Remove [3.06.00] The StateCU commands related to delay tables have been removed since these
files are no longer used with StateCU.

 New Feature [3.08.00] Add check commands for all StateMod components. Check commands are
now in place for all components produced by StateDMI. Future releases may add additional specific
checks to these commands.

 New Feature [3.08.00] Add the ReadInstreamFlowDemandTSAverageMonthly()
command.

 New Feature [3.07.00] Add the SortCropPatternTS() command.
 New Feature [3.04.00] The progress indicator for commands is now active and has been enabled for

the ReadWellRightsFromHydroBase() command. Additional commands will be updated in
future releases to show progress within the command, in particular for longer-running commands.

 New Feature [3.04.00] The Problems tab has been added in the results area to summarize the
warning/failure messages from all commands. The WriteCheckFile() command also has been
added to format the messages to a file. The CheckWellRights() command has been added to
check well rights and generate warning/failure messages. Additional check commands will be
implemented in upcoming releases using this design.

Changes in Versions 3.00.00 to 3.03.00

 Bug Fix [3.08.00] The ReadIrrigationPracticeTSFromHydroBase() and
ReadWellRightsFromHydroBase() commands were allowing WDIDs to be provided that
were not associated with the water division provided by the Div parameter – a warning has now been
added and offending locations will not be processed to ensure that only locations in the specified
division are processed by the command. Some data sets may need to be updated to ensure that
separate commands are used to process data in different divisions.

 Bug Fix [3.03.00] The ReadRiverNetworkFromStateMod() command was not reading the
comment and groundwater maximum recharge correctly – this has been fixed.

 Bug Fix [3.03.00] The Set*TSConstant() commands were not recognizing the set period when
adding a new time series (the output period was always used for the set) – this has been fixed.

 Bug Fix [3.03.00] Well historical pumping time series (monthly) commands were included under
diversion data rather than well data.

 Bug Fix [3.02.00] Fix the ReadWellStationsFromStateMod() command – variable
efficiencies were being read such that the first month was used for all months.

 Appendix – Release Notes - 7 981

Release Notes StateDMI Documentation

 Bug Fix [3.02.00] Fix the WriteDelayTables*ToStateMod() command – the table
identifier and number of values in the table were not being written correctly. Also add the
Precision parameter to allow more flexibility and simplify software testing.

 Bug Fix [3.02.00] Fix the SetWellStation() and SetDiversionStation() commands –
previously using “ID” in the river node field would not automatically use the station identifier.

 Bug Fix [3.02.00] The Fill/Set ReservoirStation() command was setting the on/off
switch instead of the one fill rule value when new stations were added. – this has been fixed. Setting
values in existing reservoirs did not have the problem.

 Change [3.03.00] The Set*TSConstant() commands now set the original data limits to that of
the set data when new time series are added (averages are computed by including values <= 0) – this
allows filling with average or pattern with a later command.

 Change [3.03.00] The FillNetworkFromHydroBase() command has been updated to
automatically project geographic coordinates to UTM if only geographic are available in the database.

 Change [3.02.00] The ReadDelayTablesFromStateMod() command has been renamed
ReadDelayTablesMonthlyFromStateMod() and
ReadDelayTablesDailyFromStateMod() in order to minimize confusion about command
functionality related to various data components.

 Change [3.02.00] The SetInstreamFlowDemandTSAverageMonthlyConstant() and
SetInstreamFlowDemandTSAverageMonthlyFromRights() commands will now by
default warn if the requested time series is not found. Specify the IfNotFound=Add parameter to
request that the time series be added in this situation. This allows for increased error handling and
quality control.

 Change [3.02.00] The WriteDelayTablesToStateMod() command has been renamed
WriteDelayTablesMonthlyToStateMod() and
WriteDelayTablesDailyToStateMod() in order to minimize confusion about command
functionality related to various data components.

 Change [3.02.00] Change the FillStreamEstimateStationsFromHydroBase()
command to optionally check for structure information in HydroBase – previously only station
information could be filled.

 Change [3.02.00] Commands that generate list files now include header comments with a short
description of the file. The command file and other information are also now included in comments.

 Change [3.02.00] Most set and fill commands now use the IfNotFound parameter, to give more
control of error handling. The Ignore value for the parameter has been added to allow warnings to
be ignored, if such a case is expected as possible. Some commands may generate warnings – set the
parameter appropriately to remove the warning.

 Change [3.02.00] The main interface has been simplified to be more similar to TSTool. Features to
manage full datasets have been disabled but may be enabled in the future.

 Change [3.02.00] Where appropriate, menu items have been prefixed with “1: “, “2: “, etc. to
indicate that related commands are generally used in a sequence. For example, it may be necessary to
read a water rights file in order to set time series using the rights.

 Remove [3.03.00] The FillWellStationsFromHydroBase() command has been removed –
its capabilities are included in other fill commands, and the change removes redundant processing and
allows for better error handling.

 New Feature [3.03.00] Enable the LimitWellDemandTSMonthlyToRights() command.

8 - Appendix – Release Notes 982

StateDMI Documentation Release Notes

 New Feature [3.03.00] Add the SortDiversionDemandTSMonthly() command.
 New Feature [3.03.00] Add the SortWellDemandTSMonthly() command.
 New Feature [3.03.00] Add the FillRiverNetworkNode() command.
 New Feature [3.03.00] Add the SetWellDemandTSMonthlyConstant() command.
 New Feature [3.02.00] Commands have been updated to use new command status error handling,

similar to the TSTool software. Problems (if any are detected) and corresponding recommendations
are noted for each command.

Changes in Version 2.18.00

 Additional changes in IPY processing to correct for some NaN and -999 values that were being

generated. Additional care has been taken to set values to zero in some cases, resulting in more
complete computation of other acreage terms.

Changes in Version 2.17.00

 There is a major change in this release in how the crop pattern time series acreages are written to the

CDS file. Previously, the acreage was written as a total and a fraction by crop. When the file was
read (e.g., when processing the irrigation practice [IPY] file), this resulted in only three significant
digits of precision and the resulting acreage by crop would not match that of the raw values in
HydroBase, the GIS layers, the total in the CDS file, or the total computed in the IPY file (based on
supply source). The legacy approach was maintained for a long time to allow comparison of model
results but it became increasingly difficult to perform quality control on data as it moved through the
system. The new approach writes the actual acreage for each crop. The fraction is still displayed but
is for information only and is not used in computations. StateCU version 12.19 or later can be used to
read the acreage column (prior versions used the total and fraction). It is important that the CDS and
IPY files are generated with the same version of StateDMI (2.17.00 or later for both, or versions
earlier than 2.17.00 for both).

 The IPY acreage values are now written by default to a precision of .1 and can be controlled with the
PrecisionForArea parameter. This is necessary to minimize errors in round-off and warnings
about acreage totals, in particular because acreage are categorized by supply type (surface and ground
water) and irrigation method (flood and sprinkler) and fractions when rounded to integers were
difficult to automatically prorate, especially with the processing described in version 2.16.00 notes
below.

 The setIrrigationPracticeFromList() command can be used instead of the
readIrrigationPracticeFromList() command. This sets the IPY values at the time the
command is executed, instead of providing parcels that are later read when processing HydroBase
parcels. For example, using the read command on an aggregate provides aggregate part data to be
considered when reading data from HydroBase (which may supply data for other parts of the
aggregate). Using the set command will set the values as the command is processed.

Changes in Version 2.16.00

 The incremental releases leading up to and culminating with this release have implemented major

changes in the processing of the irrigation practice (IPY) file. In particular, dependencies between
commands that process IPY acreage have been removed. For each command, the acreage numbers
are computed using the currently available information, with general order and importance of data
being total acreage, then groundwater acreage (when groundwater data are available), then surface

 Appendix – Release Notes - 9 983

Release Notes StateDMI Documentation

water acreage. This recognizes that the total acreage from the CDS file should control and that
groundwater acreage estimates (e.g., from center pivot irrigation and field data) are the most reliable.
Each command initiates a cascade of computations in order to compute IPY acreages as completely as
possible. For example, setting groundwater acreage does not try to adjust the total but will try to
compute the remaining surface water acres (total – groundwater), and then if possible the acreage by
irrigation method (flood or sprinkler). Consequently, as commands are executed to process the data,
values will be converted from missing (-999) to specified or computed values. In troubleshooting
data processing, commands can be incrementally uncommented to evaluate the results of each step.
Log messages may indicate that some computation could not be done (e.g., groundwater total acres
are set but split between flood and sprinkler cannot be done).

 The writeIrrigationPracticeToStateCU() command has been updated to include a
OneLocationPerFile parameter. This is useful during troubleshooting because by default the
IPY file is printed in blocks of years. By printing one location per file, the full period for a structure
can be reviewed. This option is particularly useful if write commands are used after each major step
of processing, in order to see the impacts of a command on results.

Changes in Version 2.14.00

 Review all current procedures for the well rights, crop pattern time series, and irrigation practice time

series, update all command reference documentation, and make minor software changes based on
review.

 Fix bug in readWellRightsFromHydroBase() command – the DefineRightHow
parameter was always being set to EarliestDate. The impacts of this bug should be minor, based
on a previous review of different parameter combinations.

 Change so that when specifying aggregate/systems using a list file, if the list file specifies a location
that is not found in the data set, the user will be warned.

 Add ability to read the associated diversion ID when reading a well station list file – this allows well
right aggregation to properly handle different location types.

 The fillWellStationsFromHydroBase() command is being phased out. Instead, use
fillWellStationsFromDiversionStations(),
setWellStationAreaFromCropPatternTS(), and
setWellStationCapacityFromWellRights() commands.

 Update the Command menu to have three levels, to improve usability and allow further consolidation
of StateCU and StateMod commands.

Changes in Version 2.02.00 – 2.13.00

 These versions were made with features to explore implementing a new modeling approach and were

finalized in version 2.14 – see the notes for that version.

Changes in Version 2.01.00

 Add setRiverNetworkNode() command to set river node network information, mainly to

change the node name.
 Update the CCH, CDS, and KBC files to default to new 30-character crop names. The previous file

versions can still be read using a Version=10 parameter.
 Update the IPY file format to by default use the new format with more columns for acreage. The

processing logic to fill the values is not yet in place. Therefore, the Version=10 parameter should
be used when writing the IPY file, until the next release.

10 - Appendix – Release Notes 984

StateDMI Documentation Release Notes

 Add preliminary features to fill diversion records with “currently in use” (CIU) information when
using the readDiversionHistoricalTSMonthlyFromHydroBase() command – features
will be finalized after further testing.

 Implement improvements in the installer to better handle configuration of the HydroBase settings.

Changes in Version 2.00.00

 First version using the new installer, to facilitate distribution and installation of the software.
 Remove need for well water rights to be sorted in a particular order to be processed for the StateCU

IPY file. The max pumping values in the IPY file will generally have a higher maximum.

Changes in Version 1.22.00

 Change readWellRightsFromHydroBase() IDFormat parameter dialog note and fix to make

sure that identifiers are still being formatted properly for the previous release.

Changes in Version 1.21.00

 Adjust reading well rights to reread from the database rather than relying on the “wells” table. This

results in slower run times and potentially more water rights in output files. The South Platte and Rio
Grande modeling approaches are different and use different command parameters when reading well
rights.

 Add APEX amounts to the net amount decrees. This results in larger decrees in model files.

Changes in Version 1.20.05

 Fixed problem where some sort commands were not available from menus.
 In synchronizeIrrigationPracticeAndCropPatternTS(), remove code that resets

groundwater acreage to sprinkler acreage if groundwater is less – it is unneeded based on modeling
conventions.

Changes in Version 1.20.04

 When writing list files, add the files to the list of output files available in the GUI.

Changes in Version 1.20.03

 Add read*FromList() commands to all menus that through oversight did not have them added

previously.
 Fix problem with “see check file” dialog being shown before editing commands.

Changes in Version 1.20.02

 Continue to improve well processing.
 Always create the check file for well stations and rights.
 Add the translateBlaneyCriddle() and translateCropCharacteristics()

commands to change crop name to facilitate modeling.

Changes in Version 1.20.01

 Appendix – Release Notes - 11 985

Release Notes StateDMI Documentation

 Continue to improve well processing.

Changes in Version 1.20.00

 Improve well processing based on user feedback.

Changes in Version 1.18.10

 Update the readWellDemandTSMonthlyFromStateMod() command to allow ignoring wells

or D&Ws, to facilitate processing subsets of the data set.

Changes in Version 1.18.09

 Implemented several fixes in the network editor.

Changes in Version 1.18.08

 To allow filling station names from the network file, add the following commands:
fillDiversionStationsFromNetwork(),
fillInstreamFlowStationsFromNetwork(),
fillReservoirStationsFromNetwork(), fillWellStationsFromNetwork().

 Add elevation to the readCULocationsFromList() command.

Changes in Version 1.18.07

 Add AWC to the readCULocationsFromList() command.
 Fix the fillCropPatternTSProrateAgStats() command so that all county crops are used

even if a location does not have a crop type.

Changes in Version 1.18.06

 Add the readDiversionDemandTSMonthlyFromStateMod() command.
 Improve packaging of image files with Jar files to resolve issues with icons not displaying in the

network editor.

Changes in Version 1.18.05

 Add the setDiversionStationsFromList() and setWellStationsFromList()

commands.
 Update fillCULocation() and setCULocation() to include elevation and AWC.
 Update the StateCU CDS and IPY file headers to include more complete headers, as expected by

StateMod.
 Add the mergeListFileColumns() command.

Changes in Version 1.18.04

 Implement minor changes to well processing based on user feedback.
 When processing well demand time series to calculate average efficiencies or to estimate demands

using average efficiencies, only process well stations where idvcomw=1.

12 - Appendix – Release Notes 986

StateDMI Documentation Release Notes

Changes in Version 1.18.03

 Implement changes to better support product-oriented file management.

Changes in Version 1.18.02

 For well stations, default the associated well to NA rather than N/A.

Changes in Version 1.18.01

 Change command dialogs to use scrollable text areas instead of text fields of a fixed size. This allows

longer commands to be fully viewed.
 Double-clicking on a command now displays the editor for the command.

Changes in Version 1.18.00

 Add commands for well pumping time series (historical monthly).
 Reverse the Run All Commands and Run Selected Commands buttons to agree with the TSTool

order.
 Add graphical buttons at the top of the main window to facilitate opening and saving commands files.
 Add a complete menu for well historical time series monthly (previously only a subset of commands

was included).

Changes in Version 1.17.21

 Update to include write*ToList() output files in the results file list.
 Add the efficiency report that is created when processing demands to the output results file list.

Changes in Version 1.17.20

 For well-only aggregates, do not put a W in the water right ID. D&W nodes still have the W, as per the

Watright software.
 Fix a bug where the last year filling crop pattern time series was not getting normalized to basin

statistics.
 Fix a bug in the setCropPatternTS() command overriding an existing pattern causes erroneous

output.
 When using a time series that is read from an external file, reset the period to the output period so that

the time series can be filled.
 Fix a bug where when filling time series with a constant, the start and end dates were not being

handled properly.
 When filling diversion time series with diversion comments, read the comments after setting the

period of record.
 Add the setDiversionDemandTSMonthlyConstant() command.

Changes in Version 1.17.19

 Fix bug where missing file with the readAgStatsTSFromDateValue() command was not

being handled gracefully.
 Add IgnoreUseType parameter to the readDiversionRightsFromHydroBase()

command, to address double counting of some rights in HydroBase.

 Appendix – Release Notes - 13 987

Release Notes StateDMI Documentation

 Change so that if an aggregate/system diversion part has missing capacity, the total capacity is not
incremented for the part (which has a large default value).

 Fix so that an aggregate/system historical diversion is handled properly, even if the first part has no
data in the database.

Changes in Version 1.17.18

 Fix a bug in the writeCropPatternTSToStateCU() command where the WriteCropArea

parameter was not defaulting properly.
 Implement new parameters in the
synchronizeIrrigationPracticeAndCropPatternTS() command to allow more
options in synchronizing acreage.

 Update the setIrrigationPracticeTSMaxPumpingToRights() command to have the
NumberOfDaysInMonth parameter, to be consistent with StateCU conventions.

 Update the fillCropPatternTSProrateAgStats() command to include the
NormalizeTotals parameter, to allow acreage to be prorated to the totals for a group of crop
types.

Changes in Version 1.17.17

 Update the readCropPatternTSFromHydroBase() command to truncate parcel acreage to .2

to compare to work done by Leonard Rice. This feature is available only in test mode.
 Update the setIrrigationPracticeTSFromList() command so that data other than

efficiencies can be set.

Changes in Version 1.17.16

 Fix bug where the setCropPatternTS() command results were not getting refreshed after the

initial processing, resulting in zeros in the output for totals.
 Add a tool to print surface-only diversions to the log file. This is useful for finding diversion stations

that are not D&W model nodes.

Changes in Version 1.17.15

 Add DefineRightHow=LatestDate when processing well rights.

Changes in Version 1.17.14

 Change writeCropPatternTSToStateCU() command to optionally write only the total

acreage by location, to facilitate comparison with previous data sets, and to use the output period, if
specified.

 Add the file version to the readCropPatternTSFromStateCU() and
readIrrigationPracticeTSFromStateCU() commands, to facilitate comparison with
previous data sets.

 Add the openHydroBase() command.
 Add the ReadStart and ReadEnd parameters to the
readDiversionHistoricalTS*FromHydroBase() commands.

 Fix bug where reading historical diversion time series was initializing the first part in an aggregate
and then adding the part again.

 Enable flags for filling diversions with historical average, pattern, constant, and limiting to rights.

14 - Appendix – Release Notes 988

StateDMI Documentation Release Notes

Changes in Version 1.17.13

 Change the log file warning level to 3 to reflect application warnings being level 1, command

warnings being level 2, and important low-level warnings being level 3.
 Finalize results displays for reservoirs, wells, instream flow and network data.
 Begin phasing in stored procedures to production version.
 Add write*ToList() commands.
 Add the readReservoirRightsFromStateMod(), readWellRightsFromStateMod()

commands.
 Add the readStreamEstimateCoefficientsFromStateMod() command.
 Add the readDelayTablesFromStateCU() and
readCULocationDelayTableAssignmentsFromStateCU() commands.

 Add sortBlaneyCriddle() command and add precision to
writeBlaneyCriddleToStateCU() to facilitate comparison with previous data sets.

 Add version to writeCULocationsToStateCU() to facilitate comparison with previous data
sets.

 Convert commands to messaging that is integrated with the log file viewer.
 Update the setIrrigationPracticeTSSPrinklerAreaFromList() command to allow

using the area in the list file, to facilitate comparison with previous data sets.
 Fix bug where sortReservoirStations() was not being recognized.
 Add ability to open new model networks.
 Add the startLog() command.
 Fix a bug where the dialog for the commands file was not being initialized to a recently accessed

directory.

Changes in Version 1.17.12

 Add warnings for obsolete commands.
 Change message levels to minimize console output.

Changes in Version 1.17.11

 The StateCU IPY file can now be processed. See specific changes below.
 Irrigation practice time series groundwater and sprinkler acreage can now be read from HydroBase

using the setIrrigationPracticeTSFromHydroBase() command.
 The setIrrigationPracticeTSMaxPumpingToRights() command will now use water

rights from the setIrrigationPracticeTSFromHydroBase() command, or read a
StateMod well rights file.

 The setIrrigationPracticeTSSprinklerAreaFromList() command has been enabled
to process snapshots of sprinkler parcels from a list file and HydroBase.

 A new log file viewer has been enabled. The old Notepad default viewer is still available but the new
viewer provides a summary of level 1 and 2 warning messages and allows navigation in the large log
file. Additional enhancements will be enabled in future releases in order to simplify the interpretation
of messages. In particular, additional attention is focusing on the classification of warnings and
errors.

 The results of a commands run were previously tied to whether StateCU or StateMod menus were
activated. Output components for both models are now listed to simplify access to results. The
prototype displays are being finalized.

 Appendix – Release Notes - 15 989

Release Notes StateDMI Documentation

Changes in Version 1.17.10

 Add the synchronizeIrrigationPracticeAndCropPatternTS() command for

processing the irrigation practice time series.
 Add writeCropPatternTSToStateCU() to the irrigation practice time series commands to

update the file after synchronization.
 The irrigation practice commands to assign the maximum pumping, groundwater acreage, and

sprinkler acreage are not yet functional.
 Add the sortCULocations() command to sort the data before writing.
 Add the sortDiversionRights(), sortReservoirRights(),
sortInstreamFlowRights(), and sortWellRights() commands to sort right data before
writing.

 Update the readWellRightsFromHydroBase() command to have the DefineRightHow
and DefaultAppropriationDate parameters to control how StateMod rights are created from
well rights and permits.

 Update the readDiversionRightsFromHydroBase(),
readReservoirRightsFromHydroBase(),
readInstreamFlowRightsFromHydroBase(), and
readWellRightsFromHydroBase() commands to include the OnOffDefault parameter to
allow the right switch to be set to the appropriation date year.

 Update the above commands that aggregate rights to set aggregate rights to the integer value for the
decree-weighted appropriation date. Previously the fractional remainder was not cleared and the
resulting administration numbers could give erroneous appropriation dates (e.g., when used with the
limitDiversionHistoricalTSMonthlyToRights() or similar commands).

 Update the limitDiversionHistoricalTSMonthlyToRights() and
limitDiversionDemandTSMonthlyToRights() commands to have the UseOnOffDate
parameter, allowing the appropriation date to be determined from the administration number or the
OnOff switch (when a year).

 When processing diversion and well rights, ignore water rights that have units other than C or CFS.
Previously only C was checked but there is apparently a change in HydroBase.

 Implement initial enhancements to the log file viewer, which provides a summary of warning
messages and provides navigation tools for the log file.

Changes in Version 1.17.09

 When reading stream gage stations from the network, make the default output order the network

order, which is expected by StateMod. Previously, stream gages were listed first and then other
baseflow nodes.

 Rearrange the order of the diversion demand time series (monthly) menus to reflect typical use.

Changes in Version 1.17.08

 Handle the water rights switch in the StateMod diversion rights file when using the
limitDiversionHistoricalTSMonthlyToRights() and
limitDiversionDemandTSMonthlyToRights() commands.

Changes in Version 1.17.07

 Add limitDiversionDemandTSMonthlyToRights().

16 - Appendix – Release Notes 990

StateDMI Documentation Release Notes

Changes in Version 1.17.06

 The first time series part in an aggregate/system was not being filled in the
readDiversionHistoricalTSMonthlyFromHydroBase() command. This has been
fixed.

 The efficiency report from the calculateDiversionStationEfficiencies() command is
now listed in the output files and can be displayed.

 The list of stations to ignore in the limitDiversionHistoricalTSMonthlyToRights()
command was not being processed correctly, resulting in an error. This has been fixed.

Changes in Version 1.17.05

 The limitDiversionHistoricalTSMonthlyToRights() command was not triggering a

save of the original time series, as needed. This has been fixed. The documentation for the command
was also significantly expanded.

 In calculateDiversionDemandTSMonthly(), change so that if the efficiency and IWR is
zero, set the demand to zero. Previously it was set to missing. This will also impact well demands.

 Add the IncludeCollections parameter to the
fillDiversionHistoricalTSMonthlyAverage() and
fillDiversionHistoricalTSMonthlyPattern() commands to allow diversion aggregate
and system stations to be ignored in processing (because they can also be filled during the read).

 Enhance readDiversionHistoricalTSMonthlyFromHydroBase() to allow filling of
aggregate/system parts before aggregation.

 The fill period from command parameters was not being considered when filling time series with a
pattern – this has been fixed.

 The setDiversionHistoricalTSConstant() and other similar commands were not using
the SetStart when specified by the user.

 The fillDiversionStation(), setDiversionStation(), fillWellStation(), and
setWellStation() commands were not properly transferring efficiencies specified in calendar
year to water year data in station files.

Changes in Version 1.17.04

 Previously, if the dead storage value for a reservoir was specified, the reservoir accounts were

adjusted down by this amount and the dead storage was always written as zero. This was a
workaround for a limitation in StateMod. The dead storage value is now written as specified and
accounts are not adjusted.

 Setting or filling rights by specifying a StationID of “ID” was not previously working. The software
will now set the station ID to the first part of the right (the part before “.”).

 Added a warning when processing diversion demand time series (monthly) if no diversion stations
have been read.

Changes in Version 1.17.03

 Fix bug in setInstreamFlowDemandTSAverageMonthlyFromRights() where the period

for the time series was incorrectly being taken from the setOutputPeriod() command. It now
uses the setOutputYearType() command information.

 Fix bug where the calculateStreamEstimateCoefficients() command was generating
an error about the command not being recognized. This was a spurious message that was removed.

 Appendix – Release Notes - 17 991

Release Notes StateDMI Documentation

 Change so that reading stations from the network results in the river node identifier being set to the
station identifier. Previously the river node identifier was set to missing and required an additional
fill or set command to assign the value.

Changes in Version 1.17.02

 Fix bug filling fillDiversionHistoricalTSMonthlyAverage() where missing original

data was causing the command to end. Time series with no original data are now not filled with
historical averages and the processing is allowed to continue through other time series.

 Begin simplifying readSprinklerParcelsFromList() – additional enhancements need to be
completed before the command can be used in production.

Changes in Version 1.17.01

 The readDiversionHistoricalTSMonthlyFromHydroBase() command was not

allocating memory for blank time series – therefore subsequent filling was ignored and output was
missing.

Changes in Version 1.17.00

 Introduce tabular displays for output components, available at the bottom of the main interface.

These displays can be used to review data while find-tuning commands. Additional enhancements to
these displays will occur – this is an initial release of these features.

 Rework the size of the display panels in the main interface to provide more display area for
commands. The other panel areas are still retained but may be removed or hidden in the future.

 Add sortDiversionHistoricalTSMonthly() command to facilitate maintaining
consistency with the diversion station file.

 Update the setHistoricalDiversionHistoricalTSMonthly() command to allow
reading from HydroBase, for cases where a diversion’s time series may actually be stored under a
different identifier (e.g., a stream gage). Also save a backup copy of the time series after reading, for
use with the limitDiversionHistoricalTSMonthlyToRights() command.

 Fix the limitDiversionHistoricalTSMonthlyToRights() command – previously the
list of rights was accumulating as diversion stations were processed, instead of just using the rights
for the specific diversion station.

 Fix an error in the setReservoirStation() command editor dialog – the account name was
being discarded when re-editing an old command.

 Fix inconsistencies in the Select All and Deselect All commands menus – previously the behavior
was not correct.

Changes in Version 1.16.03

 The default for commands that write files is now to overwrite files. The previous default of updating

the file was resulting in long file headers.
 Setting the output year type with setOutputYearType() was not being recognized. This

impacted both output of time series and processing of data like diversion station efficiencies.
 Add setDiversionHistoricalTSMonthlyConstant() – this eliminates the need for

replacement files in some cases.

Changes in Version 1.16.02

18 - Appendix – Release Notes 992

StateDMI Documentation Release Notes

 The setDiversionStationDelayTablesFromRTN() command editor dialog was changing
the spelling of the command after edits – this has been corrected.

 For station collections (aggregates and systems), the station name in the list file was not being used to
set data for the stations – this has been corrected.

 When reading an old Makenet network file into StateDMI, the label positions were being reversed –
this has been fixed. It may be necessary to reconvert networks to retain the original label positions.

Changes in Version 1.16.01

 Diversion, reservoir, well, and instream flow station identifiers that looked like WDIDs but which

were not (e.g., 990001) were resulting in HydroBase queries, which caused an error. Additional error
handling has been enabled.

 The setDiversionStationDelayTablesFromRTN() command editor dialog was changing
the spelling of the command after edits – this has been corrected.

Changes in Version 1.16.00

 Added to troubleshooting to explain errors caused by Ctrl-M characters in commands.
 Added a popup menu choice for commands to find a command using a line number – this facilitates

debugging the commands.
 Updated the command editor dialog and documentation for the setReservoirStation()

command to clarify the meaning of AccountID. The AccountName parameter was also
mistakenly being set to the AccountID.

 Fix limitation where the position of the legend in the network was not being saved after the legend
was interactively moved.

 Fix bug where after adding a new node in the network, the node cannot be selected for further
changes.

 Display the page margins on the network diagram by default.
 Clarify the documentation for system and aggregate commands to indicate that the commands should

be specified before reading data from HydroBase.

Changes in Version 1.15.02

 Completed documentation for all data files.
 Updated documentation to discuss conventions for station identifiers.
 Updated documentation to incorporate general information from old StateMod Appendix B

procedures manual.
 Updated documentation to include well demand commands.
 Updated network data documentation to describe use of the network up front versus list files.
 Fixed several well demand command editor dialogs were not displaying correctly.
 Fixed problem where fill commands for time series were not updating the time series to the files.
 Enable viewing results in text editor.

Changes in Version 1.15.01

 Includes all well file commands.

Changes in Version 1.15.00

 All StateMod files are supported except for wells. Well features are preliminary.

 Appendix – Release Notes - 19 993

Release Notes StateDMI Documentation

 Change StateCU IPY file format to match previous version. The precision for some data that are in
more than one file (e.g., area) is once again inconsistent.

20 - Appendix – Release Notes 994

This page, when printed, can be used for a spine in a binder.

Colorado's Decision Support Systems (CDSS)
StateDMI

995

996

	01_Cover.pdf
	Blank Page
	DISCLAIMER for CDSS Products
	1 Acknowledgements
	2 Introduction
	2.1 How to Use this Documentation
	2.2 CDSS Modeling Overview
	2.3 Data Set Folder and File Conventions
	2.4 Standard Procedures for Creating StateCU and StateMod Data Sets
	2.5 Variations in StateMod Data Sets
	2.5.1 Creating a Historical Data Set
	2.5.2 Creating a Calculated Data Set
	2.5.3 Creating a Baseline Data Set
	2.5.4 Creating a Data Set with Aggregated Structures
	2.5.5 Creating a StateMod Data Set with Daily Data
	2.5.6 Creating a StateMod Data Set with Wells

	 2.6 Commands and Processing Sequence
	3 Getting Started
	3.1 Starting StateDMI
	 3.2 Select HydroBase Dialog
	 3.3 Main Interface
	3.3.1 Title Bar
	 3.3.2 Menu Bar
	3.3.3 Tool Bar
	 3.3.4 Command List
	3.3.5 Results
	3.3.6 Status Message Areas
	3.3.7 Map (Under Development)

	 3.4 File Menu - Main Input and Output Control
	3.4.1 File…Open Menu
	3.4.2 File…New
	 3.4.3 File…Save
	3.4.4 File…Properties
	3.4.5 File…Set Working Directory
	3.4.6 File…Switch to StateCU and File…Switch to StateMod
	3.4.7 File…Exit

	 3.5 Edit Menu – Editing Commands
	3.5.1 Cut/Copy/Paste/Delete
	3.5.2 Select All/Deselect All Commands
	3.5.3 Edit Command
	3.5.4 Edit Command File
	3.5.5 Convert Selected Commands To/From Comments

	 3.6 View Menu – Enable/Disable Display Features
	3.6.1 Updating an old Makenet Network to New Format
	3.6.2 Manually Creating a New StateMod Generalized Network
	3.6.3 Automatically Creating a New StateMod Generalized Network
	3.6.4 Creating a New StateMod Generalized Network from an Existing StateMod River Network File
	3.6.5 StateMod Model Network Editor

	3.7 Commands Menu – Insert Commands for Processing Data Components
	 3.7.1 General Commands

	 3.8 Run Menu – Running Commands
	 3.9 Results Menu – View Data Set and Command Results
	3.10 Tools Menu
	 3.11 Help Menu
	4 Creating StateCU Data Set Files
	4.1 Control Data
	 4.2 Climate Station Data
	4.2.1 Climate Stations
	 4.2.2 Temperature Time Series (Monthly)
	 4.2.3 Frost Date Time Series (Yearly)
	 4.2.4 Precipitation Time Series (Monthly)

	 4.3 Crop Characteristics/Coefficients Data
	4.3.1 Crop Characteristics
	 4.3.2 Blaney-Criddle Crop Coefficients
	4.3.3 Penman-Monteith Crop Coefficients

	4.4 Delay Tables Data
	 4.5 CU Location Data
	 4.5.1 CU Locations
	4.5.2 Crop Pattern Time Series (Yearly)
	The following command file illustrates how to process crop characteristics in a basin with groundwater supply (from preliminary South Platte Sp2008L data set). The main difference is that lists of locations are defined using aggregate/system wells.
	 4.5.3 Irrigation Practice Time Series (Yearly)
	4.5.4 Diversion Water Rights
	4.5.5 Diversion Time Series
	4.5.6 Well Water Rights
	4.5.7 Well Historical Pumping Time Series (Monthly)

	5 Creating StateMod Data Set Files
	5.1 Control Data
	5.1.1 Response File
	5.1.2 Control File
	5.1.3 Output Control File

	5.2 Stream Gage Data
	5.2.1 Stream Gage Stations
	 5.2.2 Stream Historical Time Series (Monthly, Daily)
	5.2.3 Stream Natural Flow Time Series (Monthly, Daily)

	5.3 Delay Table Data
	 5.3.1 Delay Tables (Monthly)
	5.3.2 Delay Tables (Daily)

	5.4 Diversion Data
	5.4.1 Diversion Stations
	 5.4.2 Diversion Rights
	 5.4.3 Diversion Historical Time Series (Monthly)
	 5.4.4 Diversion Historical Time Series (Daily)
	5.4.5 Diversion Demand Time Series (Monthly)
	5.4.6 Diversion Demand Time Series Override (Monthly)
	5.4.7 Diversion Demand Time Series (Average Monthly)
	5.4.8 Diversion Demand Time Series (Daily)
	5.4.9 Irrigation Practice Time Series (Yearly)
	5.4.10 Consumptive Water Requirement (Monthly, Daily)
	5.4.11 Soil Moisture

	5.5 Precipitation Data
	5.5.1 Precipitation Time Series (Monthly)

	5.6 Evaporation Data
	5.6.1 Evaporation Time Series (Monthly)

	5.7 Reservoir Data
	5.7.1 Reservoir Stations
	5.7.2 Reservoir Rights
	5.7.3 Reservoir Content, Target Time Series (Monthly, Daily)

	5.8 Instream Flow Data
	5.8.1 Instream Flow Stations
	5.8.2 Instream Flow Rights
	5.8.3 Instream Flow Demand Time Series (Average Monthly)
	5.8.4 Instream Flow Demand Time Series (Monthly, Daily)

	 5.9 Well Data
	5.9.1 Well Stations
	5.9.2 Well Rights
	5.9.3 Well Historical Pumping Time Series (Monthly)
	5.9.4 Well Historical Pumping Time Series (Daily)
	5.9.5 Well Demand Time Series (Monthly)
	5.9.6 Irrigation Practice Time Series (Yearly)
	5.9.7 Consumptive Water Requirement (Monthly, Daily)
	5.9.8 Soil Moisture Time Series (Yearly)

	5.10 Stream Estimate Data
	5.10.1 Stream Estimate Stations
	5.10.2 Stream Estimate Coefficients
	5.10.3 Stream Estimate Natural Flow Time Series (Monthly, Daily)

	5.11 River Network Data
	5.11.1 Network (used by StateDMI, StateMod GUI)
	5.11.2 River Network (used by StateMod)

	5.12 Operational Data
	5.13 San Juan Sediment Recovery Plan Data
	5.14 Spatial Data
	6 Troubleshooting
	7 Quality Control
	7.1 Quality Control for StateDMI Software
	7.1.1 Writing a Single Test Case
	7.1.2 Creating and Running a Test Suite
	7.1.3 Controlling Tests with Special Comments
	7.1.4 Verifying StateDMI Software Using a Full Dataset

	7.2 Using StateDMI and TSTool to Quality Control Data and Processes
	Command Glossary
	Command Reference: #
	Command Reference: */
	Command Reference: /*
	Command Reference: AggregateWellRights ()
	Command Reference: CalculateDiversionDemandTSMonthly()
	Command Reference: CalculateDiversionDemandTSMonthlyAsMax()
	Command Reference: CalculateDiversionStationEfficiencies()
	Command Reference: CalculateStreamEstimateCoefficients()
	Command Reference: CalculateWellDemandTSMonthly()
	Command Reference: CalculateWellDemandTSMonthlyAsMax()
	Command Reference: CalculateWellStationEfficiencies()
	Command Reference: CheckBlaneyCriddle()
	Command Reference: CheckClimateStations()
	Command Reference: CheckCropCharacteristics()
	Command Reference: CheckCropPatternTS()
	Command Reference: CheckCULocations()
	Command Reference: CheckDiversionDemandTSMonthly()
	Command Reference: CheckDiversionHistoricalTSMonthly()
	Command Reference: CheckDiversionRights()
	Command Reference: CheckDiversionStations()
	Command Reference: CheckInstreamFlowDemandTSAverageMonthly()
	Command Reference: CheckInstreamFlowRights()
	Command Reference: CheckInstreamFlowStations()
	Command Reference: CheckIrrigationPracticeTS()
	Command Reference: CheckPenmanMonteith()
	Command Reference: CheckReservoirRights()
	Command Reference: CheckReservoirStations()
	Command Reference: CheckRiverNetwork()
	Command Reference: CheckStreamEstimateCoefficients()
	Command Reference: CheckStreamEstimateStations()
	Command Reference: CheckStreamGageStations()
	Command Reference: CheckWellDemandTSMonthly()
	Command Reference: CheckWellHistoricalPumpingTSMonthly()
	Command Reference: CheckWellRights()
	Command Reference: CheckWellStations()
	Command Reference: CompareFiles()
	Command Reference: CreateCropPatternTSForCULocations()
	Command Reference: CreateIrrigationPracticeTSForCULocations()
	Command Reference: CreateNetworkFromRiverNetwork()
	Command Reference: CreateRegressionTestCommandFile()
	Command Reference: CreateRiverNetworkFromNetwork()
	Command Reference: Exit()
	Command Reference: FillClimateStation()
	Command Reference: FillClimateStationsFromHydroBase()
	Command Reference: FillCropPatternTSConstant()
	Command Reference: FillCropPatternTSInterpolate()
	Command Reference: FillCropPatternTSRepeat()
	Command Reference: FillCropPatternUsingWellRights()
	Command Reference: FillCULocation()
	Command Reference: FillCULocationClimateStationWeights ()
	Command Reference: FillCULocationsFromHydroBase()
	Command Reference: FillCULocationsFromList()
	Command Reference: FillDiversionDemandTSMonthlyAverage()
	Command Reference: FillDiversionDemandTSMonthlyConstant()
	Command Reference: FillDiversionDemandTSMonthlyPattern()
	Command Reference: FillDiversionHistoricalTSMonthlyAverage()
	Command Reference: FillDiversionHistoricalTSMonthlyConstant()
	Command Reference: FillDiversionHistoricalTSMonthlyPattern()
	Command Reference: FillDiversionRight()
	Command Reference: FillDiversionStation()
	Command Reference: FillDiversionStationsFromHydroBase()
	Command Reference: FillDiversionStationsFromNetwork()
	Command Reference: FillInstreamFlowRight()
	Command Reference: FillInstreamFlowStation()
	Command Reference: FillInstreamFlowStationsFromHydroBase()
	Command Reference: FillInstreamFlowStationsFromNetwork()
	Command Reference: FillIrrigationPracticeTSAcreageUsingWellRights()
	Command Reference: FillIrrigationPracticeTSInterpolate()
	Command Reference: FillIrrigationPracticeTSRepeat()
	Command Reference: FillNetworkFromHydroBase()
	Command Reference: FillReservoirRight()
	Command Reference: FillReservoirStation()
	Command Reference: FillReservoirStationsFromNetwork()
	Command Reference: FillReservoirStationsFromHydroBase()
	Command Reference: FillRiverNetworkFromHydroBase()
	Command Reference: FillRiverNetworkFromNetwork()
	Command Reference: FillRiverNetworkNode()
	Command Reference: FillStreamEstimateStation()
	Command Reference: FillStreamEstimateStationsFromHydroBase()
	Command Reference: FillStreamEstimateStationsFromNetwork()
	Command Reference: FillStreamGageStation()
	Command Reference: FillStreamGageStationsFromHydroBase()
	Command Reference: FillStreamGageStationsFromNetwork()
	Command Reference: FillWellDemandTSMonthlyAverage()
	Command Reference: FillWellDemandTSMonthlyConstant()
	Command Reference: FillWellDemandTSMonthlyPattern()
	Command Reference: FillWellHistoricalPumpingTSMonthlyAverage()
	Command Reference: FillWellHistoricalPumpingTSMonthlyConstant()
	Command Reference: FillWellHistoricalPumpingTSMonthlyPattern()
	Command Reference: FillWellRight()
	Command Reference: FillWellStation()
	Command Reference: FillWellStationsFromDiversionStations ()
	Command Reference: FillWellStationsFromNetwork()
	Command Reference: LimitDiversionDemandTSMonthlyToRights()
	Command Reference: LimitDiversionHistoricalTSMonthlyToRights()
	Command Reference: LimitWellDemandTSMonthlyToRights()
	Command Reference: LimitWellHistoricalPumpingTSMonthlyToRights()
	Command Reference: MergeListFileColumns()
	Command Reference: MergeWellRights ()
	Command Reference: OpenHydroBase()
	Command Reference: PrintNetwork()
	Command Reference: ReadBlaneyCriddleFromHydroBase()
	Command Reference: ReadBlaneyCriddleFromStateCU()
	Command Reference: ReadClimateStationsFromList()
	Command Reference: ReadClimateStationsFromStateCU()
	Command Reference: ReadCropCharacteristicsFromHydroBase()
	Command Reference: ReadCropCharacteristicsFromStateCU()
	Command Reference: ReadCropPatternTSFromHydroBase()
	Command Reference: ReadCropPatternTSFromStateCU()
	Command Reference: ReadCULocationsFromList()
	Command Reference: ReadCULocationsFromStateCU()
	Command Reference: ReadCULocationsFromStateMod()
	Command Reference: ReadDelayTablesMonthlyFromStateMod()
	Command Reference: ReadDiversionDemandTSMonthlyFromStateMod()
	Command Reference: ReadDiversionHistoricalTSMonthlyFromHydro Base()
	Diversion Comment “Not Used” Flag
	Structure “Currently in Use” Flag
	Command Reference: ReadDiversionHistoricalTSMonthlyFromStateMod()
	Command Reference: ReadDiversionRightsFromHydroBase()
	Command Reference: ReadDiversionRightsFromStateMod()
	Command Reference: ReadDiversionStationsFromList()
	Command Reference: ReadDiversionStationsFromNetwork()
	Command Reference: ReadDiversionStationsFromStateMod()
	Command Reference: ReadInstreamFlowDemandTSAverageMonthlyFromStateMod()
	Command Reference: ReadInstreamFlowRightsFromHydroBase()
	Command Reference: ReadInstreamFlowRightsFromStateMod()
	Command Reference: ReadInstreamFlowStationsFromList()
	Command Reference: ReadInstreamFlowStationsFromNetwork()
	Command Reference: ReadInstreamFlowStationsFromStateMod()
	Command Reference: ReadIrrigationPracticeTSFromHydroBase()
	Command Reference: ReadIrrigationPracticeTSFromList()
	Command Reference: ReadIrrigationPracticeTSFromStateCU()
	Command Reference: ReadIrrigationWaterRequirementTSMonthlyFromStateCU()
	Command Reference: ReadNetworkFromStateMod()
	Command Reference: ReadPatternFile()
	Command Reference: ReadPenmanMonteithFromHydroBase()
	Command Reference: ReadPenmanMonteithFromStateCU()
	Command Reference: ReadReservoirRightsFromHydroBase()
	Command Reference: ReadReservoirRightsFromStateMod()
	Command Reference: ReadReservoirStationsFromList()
	Command Reference: ReadReservoirStationsFromNetwork()
	Command Reference: ReadReservoirStationsFromStateMod()
	Command Reference: ReadRiverNetworkFromStateMod()
	Command Reference: ReadStreamEstimateCoefficientsFromStateMod()
	Command Reference: ReadStreamEstimateStationsFromList()
	Command Reference: ReadStreamEstimateStationsFromNetwork()
	Command Reference: ReadStreamEstimateStationsFromStateMod()
	Command Reference: ReadStreamGageStationsFromList()
	Command Reference: ReadStreamGageStationsFromNetwork()
	Command Reference: ReadStreamGageStationsFromStateMod()
	Command Reference: ReadWellDemandTSMonthlyFromStateMod()
	Command Reference: ReadWellHistoricalPumpingTSMonthlyFromStateCU()
	Command Reference: ReadWellHistoricalPumpingTSMonthlyFromStateMod()
	Command Reference: ReadWellRightsFromHydroBase()
	Command Reference: ReadWellRightsFromStateMod()
	Command Reference: ReadWellStationsFromList()
	Command Reference: ReadWellStationsFromNetwork()
	Command Reference: ReadWellStationsFromStateMod()
	Command Reference: RemoveCropPatternTS()
	Command Reference: RunCommands()
	Command Reference: RunProgram()
	Command Reference: RunPython()
	Command Reference: SetBlaneyCriddle()
	Command Reference: SetClimateStation()
	Command Reference: SetCropCharacteristics()
	Command Reference: SetCropPatternTS()
	Command Reference: SetCropPatternTSFromList()
	Command Reference: SetCULocation()
	Command Reference: SetCULocationClimateStationWeights ()
	Command Reference: setCULocationClimateStationWeightsFromHydroBase()
	Command Reference: SetCULocationClimateStationWeightsFromList()
	Command Reference: SetCULocationsFromList()
	Command Reference: SetDebugLevel()
	Command Reference: SetDiversionAggregate ()
	Command Reference: SetDiversionAggregateFromList()
	Command Reference: SetDiversionDemandTSMonthly()
	Command Reference: SetDiversionDemandTSMonthlyConstant()
	Command Reference: SetDiversionHistoricalTSMonthly()
	Command Reference: SetDiversionHistoricalTSMonthlyConstant()
	Command Reference: SetDiversionMultiStruct()
	Command Reference: SetDiversionMultiStructFromList()
	Command Reference: SetDiversionRight()
	Command Reference: SetDiversionStation()
	Command Reference: SetDiversionStationCapacitiesFromTS()
	Command Reference: SetDiversionStationDelayTablesFromNetwork()
	Command Reference: SetDiversionStationDelayTablesFromRTN()
	Command Reference: SetDiversionStationsFromList()
	Command Reference: SetDiversionSystem()
	Command Reference: SetDiversionSystemFromList()
	Command Reference: SetInstreamFlowDemandTSAverageMonthlyConstant()
	Command Reference: SetInstreamFlowDemandTSAverageMonthlyFromRights()
	Command Reference: SetInstreamFlowRight()
	Command Reference: SetInstreamFlowStation()
	Command Reference: SetIrrigationPracticeTS()
	Command Reference: setIrrigationPracticeTSFromHydroBase()
	Command Reference: SetIrrigationPracticeTSFromList()
	Command Reference: setIrrigationPracticeTSMaxPumpingToRights()
	Command Reference: SetIrrigationPracticeTSPumpingMaxUsingWell Rights()
	Command Reference: SetIrrigationPracticeTSSprinklerAcreageFrom List()
	Command Reference: SetIrrigationPracticeTSTotalAcreageToCropPatternTSTotalAcreage()
	Command Reference: SetOutputPeriod()
	Command Reference: SetOutputYearType()
	Command Reference: SetPenmanMonteith()
	Command Reference: SetReservoirAggregate ()
	Command Reference: SetReservoirAggregateFromList()
	Command Reference: SetReservoirRight()
	Command Reference: SetReservoirStation()
	Command Reference: SetRiverNetworkNode()
	Command Reference: SetStreamEstimateCoefficients()
	Command Reference: SetStreamEstimateCoefficientsPFGage()
	Command Reference: SetStreamEstimateStation()
	Command Reference: SetStreamGageStation()
	Command Reference: SetWarningLevel()
	Command Reference: SetWellAggregate ()
	Command Reference: SetWellAggregateFromList()
	Command Reference: SetWellDemandTSMonthly()
	Command Reference: SetWellDemandTSMonthlyConstant()
	Command Reference: SetWellHistoricalPumpingTSMonthly()
	Command Reference: SetWellHistoricalPumpingTSMonthlyConstant()
	Command Reference: SetWellRight()
	Command Reference: SetWellStation()
	Command Reference: SetWellStationAreaToCropPatternTS ()
	Command Reference: SetWellStationCapacitiesFromTS()
	Command Reference: SetWellStationCapacityToWellRights ()
	Command Reference: SetWellStationDelayTablesFromNetwork()
	Command Reference: SetWellStationDelayTablesFromRTN()
	Command Reference: SetWellStationDepletionTablesFromRTN()
	Command Reference: SetWellStationsFromList()
	Command Reference: SetWellSystem()
	Command Reference: SetWellSystemFromList()
	Command Reference: SetWorkingDir()
	Command Reference: SortBlaneyCriddle()
	Command Reference: SortClimateStations()
	Command Reference: SortCropCharacteristics()
	Command Reference: SortCropPatternTS()
	Command Reference: SortCULocations()
	Command Reference: SortDiversionDemandTSMonthly()
	Command Reference: SortDiversionHistoricalTSMonthly()
	Command Reference: SortDiversionRights()
	Command Reference: SortDiversionStations()
	Command Reference: SortInstreamFlowRights()
	Command Reference: SortInstreamFlowStations()
	Command Reference: SortIrrigationPracticeTS()
	Command Reference: SortPenmanMonteith()
	Command Reference: SortReservoirRights()
	Command Reference: SortReservoirStations()
	Command Reference: SortStreamEstimateStations()
	Command Reference: SortStreamGageStations()
	Command Reference: SortWellDemandTSMonthly()
	Command Reference: SortWellHistoricalPumpingTSMonthly()
	Command Reference: SortWellRights()
	Command Reference: SortWellStations()
	Command Reference: StartLog()
	Command Reference: StartRegressionTestResultsReport()
	Command Reference: TranslateBlaneyCriddle()
	Command Reference: TranslateCropCharacteristics()
	Command Reference: TranslateCropPatternTS()
	Command Reference: TranslatePenmanMonteith()
	Command Reference: WriteBlaneyCriddleToList()
	Command Reference: WriteBlaneyCriddleToStateCU()
	Command Reference: WriteCheckFile()
	Command Reference: WriteClimateStationsToList()
	Command Reference: WriteClimateStationsToStateCU()
	Command Reference: WriteCropCharacteristicsToList()
	Command Reference: WriteCropCharacteristicsToStateCU()
	Command Reference: WriteCropPatternTSToDateValue()
	Command Reference: WriteCropPatternTSToStateCU()
	Command Reference: WriteCULocationsToList()
	Command Reference: WriteCULocationsToStateCU()
	Command Reference: WriteDelayTablesDailyToList()
	Command Reference: WriteDelayTablesDailyToStateMod()
	Command Reference: WriteDelayTablesMonthlyToList()
	Command Reference: WriteDelayTablesMonthlyToStateMod()
	Command Reference: WriteDiversionDemandTSMonthlyToStateMod()
	Command Reference: WriteDiversionHistoricalTSMonthlyToStateMod()
	Command Reference: WriteDiversionRightsToList()
	Command Reference: WriteDiversionRightsToStateMod()
	Command Reference: WriteDiversionStationsToList()
	Command Reference: WriteDiversionStationsToStateMod()
	Command Reference: WriteInstreamFlowDemandTSAverageMonthlyToStateMod()
	Command Reference: WriteInstreamFlowRightsToList()
	Command Reference: WriteInstreamFlowRightsToStateMod()
	Command Reference: WriteInstreamFlowStationsToList()
	Command Reference: WriteInstreamFlowStationsToStateMod()
	Command Reference: WriteIrrigationPracticeTSToDateValue()
	Command Reference: WriteIrrigationPracticeTSToStateCU()
	Command Reference: WriteNetworkToStateMod()
	Command Reference: WritePenmanMonteithToList()
	Command Reference: WritePenmanMonteithToStateCU()
	Command Reference: WriteReservoirRightsToList()
	Command Reference: WriteReservoirRightsToStateMod()
	Command Reference: WriteReservoirStationsToList()
	Command Reference: WriteReservoirStationsToStateMod()
	Command Reference: WriteRiverNetworkToList()
	Command Reference: WriteRiverNetworkToStateMod()
	Command Reference: WriteStreamEstimateCoefficientsToList()
	Command Reference: WriteStreamEstimateCoefficientsToStateMod()
	Command Reference: WriteStreamEstimateStationsToList()
	Command Reference: WriteStreamEstimateStationsToStateMod()
	Command Reference: WriteStreamGageStationsToList()
	Command Reference: WriteStreamGageStationsToStateMod()
	Command Reference: WriteWellDemandTSMonthlyToStateMod()
	Command Reference: WriteWellHistoricalPumpingTSMonthlyToStateMod()
	Command Reference: WriteWellRightsToList()
	Command Reference: WriteWellRightsToStateMod()
	Command Reference: WriteWellStationsToList()
	Command Reference: WriteWellStationsToStateMod()
	Appendix: StateDMI Installation and Configuration
	1. Overview
	2. Installing StateDMI as Part of CDSS
	3. Installing StateDMI
	3.1 StateDMI Configuration Files
	3.1.1 Data Units File
	3.1.2 CDSS Configuration File

	4. Uninstalling StateDMI Software
	Appendix: StateDMI Release Notes
	StateDMI Version History
	Known Limitations
	Changes in Versions 3.11.00 – 3.11.01
	Changes in Version 3.10.00
	Changes in Versions 3.09.00 – 03.09.02
	Changes in Versions 3.04.00 – 3.08.02
	Changes in Versions 3.00.00 to 3.03.00
	Changes in Version 2.18.00
	Changes in Version 2.17.00
	Changes in Version 2.16.00
	Changes in Version 2.14.00
	Changes in Version 2.02.00 – 2.13.00
	Changes in Version 2.01.00
	Changes in Version 2.00.00
	Changes in Version 1.22.00
	Changes in Version 1.21.00
	Changes in Version 1.20.05
	Changes in Version 1.20.04
	Changes in Version 1.20.03
	Changes in Version 1.20.02
	Changes in Version 1.20.01
	Changes in Version 1.20.00
	Changes in Version 1.18.10
	Changes in Version 1.18.09
	Changes in Version 1.18.08
	Changes in Version 1.18.07
	Changes in Version 1.18.06
	Changes in Version 1.18.05
	Changes in Version 1.18.04
	Changes in Version 1.18.03
	Changes in Version 1.18.02
	Changes in Version 1.18.01
	Changes in Version 1.18.00
	Changes in Version 1.17.21
	Changes in Version 1.17.20
	Changes in Version 1.17.19
	Changes in Version 1.17.18
	Changes in Version 1.17.17
	Changes in Version 1.17.16
	Changes in Version 1.17.15
	Changes in Version 1.17.14
	Changes in Version 1.17.13
	Changes in Version 1.17.12
	Changes in Version 1.17.11
	Changes in Version 1.17.10
	Changes in Version 1.17.09
	Changes in Version 1.17.08
	Changes in Version 1.17.07
	Changes in Version 1.17.06
	Changes in Version 1.17.05
	Changes in Version 1.17.04
	Changes in Version 1.17.03
	Changes in Version 1.17.02
	Changes in Version 1.17.01
	Changes in Version 1.17.00
	Changes in Version 1.16.03
	Changes in Version 1.16.02
	Changes in Version 1.16.01
	Changes in Version 1.16.00
	Changes in Version 1.15.02
	Changes in Version 1.15.01
	Changes in Version 1.15.00
	99_Spine.pdf

