StateDMI

{ ' StateDMI (StateCU) - C:\,CDSS' data‘colorado_1_2007_verify20081020%colorado_1 - | Ellll
File Edit ‘“iew Commands PRun Results Tools Help
O =
ricommands {264 commands, 0 selected, 0 with Failures, 1 with warnings
1 |startLog(LogFile="dds.commands. StateDMI.log") -
Z |# dds.commands. StateDMI
ER
4 |# sStateDMI command file to create the "step 1" direct diwversion station file
I
i |# Step 1 - set year type and read 1ist of direct diwversion stations from network file
7|
& |setOutputvearType(OutputyearType=Water)
2 |readhiversionStationsFromietwork (InputFile=". . \Netwarkscm2005. net")
1 g
13 ¢ sStep 2 - read aggregate and diversion system structure assignments. Note that
12 ¢ want to combine historical acreage and capacites for aggs and diwversion systems.
13 g

14 |SetDiversionfggregateFromlist{ListFile="cm_agqg.csv", IDCal=1, NaneCal=2, PartIDsCal =3, PartsListedHow=Tnke
15 |SetDiversionSystemFromlist{ListFile="cm_ divsys.csv'", IDCal=1,NaneCal=2, PartIDsCal =3, PartsListedHow=Tnke
18 |SetDiversionStation(ID="7z_ADCOS54", Irrigatedicres=1200, IfNotFaund=Warn)

17 |SetDiversionStation(ID="7F2_ADCO55", Irrigatedicres=928, IfNotFound=Warn)

18 ¢
18 ¢ Step 3 - read diversion station information from HydroBase and sort alphabetically
20 |
21 IFil11DiversionStationsFromHydroBase(ID="*")
22 |SortDiversionStations(Order=Ascending)

23 |
24 | Step 4 - set global options for all structures -
Rl | oo
Rum Selected Commands | Run All Commands | Clear Commands |
rResults

Output Files I Pr-:-blemsl SkateCl Compnnentsl SkakeMod Componentsl

CCD3Sdatalcolorado_1_2007 _werifv20031020colorado_1 2007\ Diversionsidds, commands, StateDMILlog
CCD53datalcolorado_1_2007 _werifv200310200colorado_1 2007\ Diversionsicrn2005_dds. dds
D53 datalcolorado_1_2007_werifv2003 1020 colorado_1_ 2007\ Diversions'dds. commands, SkateDMI, check. html

IReadv

Processed: WriteCheckFile(OutputFile="dds. commands. StateDMI. check, htrml™) “

Colorado Department of Natural Resources
Colorado Water Conservation Board
Division of Water Resources

Developed by:

w~Riverside Technology, inc.

Version 03.11.00, 2010-08-11

This page is intentionally blank.

This document is formatted for double-sided printing.

Table of Contents

01_Cover.pdf

Blank Page

28

DISCLAIMER for CDSS Products

29

1 Acknowledgements,

31

2 Introduction

33

2.1 How to Use this Documentation

34

2.2 CDSS Modeling Overview,

35

2.3 Data Set Folder and File Conventions

36

2.4 Standard Procedures for Creating StateCU and StateMod Data Sets

40

2.5 Variations in StateMod Data Sets

40

2.6 Commands and Processing Sequence

43

3 Getting Started

45

45

3.1 Starting StateDMI

3.2 Select HydroBase Dialog

46

3.3 Main Interface

a7

3.4 File Menu - Main Input and Output Control

55

3.5 Edit Menu — Editing Commands,

58

Table of Contents

3.6 View Menu — Enable/Disable Display Features

60

3.7 Commands Menu — Insert Commands for Processing Data Components,

79

3.8 Run Menu — Running Commands,

83

3.9 Results Menu — View Data Set and Command Results

84

3.10 Tools Menu

84

3.11 Help Menu

87

4 Creating StateCU Data Set Files

89

4.1 Control Data

89

4.2 Climate Station Data

90

4.3 Crop Characteristics/Coefficients Data

95

99

4.4 Delay Tables Data

4.5 CU Location Data

100

125

5 Creating StateMod Data Set Files

5.1 Control Data

126

127

5.2 Stream Gage Data

5.3 Delay Table Data

130

5.4 Diversion Data

133

Table of Contents

5.5 Precipitation Data 161
5.6 Evaporation Data 161
5.7 Reservoir Data 162
5.8 Instream Flow Data 174
5.9 Well Data 182
5.10 Stream Estimate Data 198
5.11 River Network Data 205
5.12 Operational Data 210
5.13 San Juan Sediment Recovery Plan Data 210
5.14 Spatial Data 211
6 Troubleshooting 213
7 Quality Control 215
7.1 Quality Control for StateDMI Software 215
7.2 Using StateDMI and TSTool to Quality Control Data and Processes 225
Command Glossary. 227
Command Reference: #. 245
Command Reference: */. 247

Table of Contents

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

I* 249
AggregateWellRights () 251
CalculateDiversionDemandTSMonthly() 257
CalculateDiversionDemandTSMonthlyAsMax() 261
CalculateDiversionStationEfficiencies() 263
CalculateStreamEstimateCoefficients() 265
CalculateWellDemandTSMonthly() 267
CalculateWellDemandTSMonthlyAsMax(). 269
CalculateWellStationEfficiencies() 271
CheckBlaneyCriddle() 273
CheckClimateStations() 275
CheckCropCharacteristics() 277
CheckCropPatternTS() 279
CheckCULocations() 281
CheckDiversionDemandTSMonthly() 283
CheckDiversionHistoricalTSMonthly() 285
CheckDiversionRights() 287

Table of Contents

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference

CheckDiversionStations()

289

CheckinstreamFlowRights()

CheckinstreamFlowDemandTSAverageMonthly()

291

293

295

CheckinstreamFlowStations()

297

ChecklrrigationPractice TS()

CheckPenmanMonteith()

299

CheckReservoirRights()

301

CheckReservoirStations()

303

CheckRiverNetwork()

305

CheckStreamEstimateCoefficients()

307

CheckStreamEstimateStations()

309

CheckStreamGageStations()

311

313

CheckWellDemandTSMonthly()

CheckWellHistoricalPumpingTSMonthly()

315

CheckWellRights()

317

CheckWellStations()

319

: CompareFiles()

321

Table of Contents

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

CreateCropPatternTSForCULocations()

323

CreatelrrigationPracticeTSForCULocations()

CreateNetworkFromRiverNetwork()

325

327

CreateRegressionTestCommandFile()

329

CreateRiverNetworkFromNetwork()

333

Exit()

335

FillClimateStation()

337

FillClimateStationsFromHydroBase().

339

FillCropPatternTSConstant()

341

FillCropPatternTSInterpolate()

343

FillCropPatternTSRepeat()

345

347

FillCropPatternUsingWellRights()

351

FillCULocation()

353

FillCULocationClimateStationWeights ()

355

FillCULocationsFromHydroBase()

FillCULocationsFromList()

357

FillDiversionDemandTSMonthlyAverage()

359

Table of Contents

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

FillDiversionDemandTSMonthlyConstant()

361

FillDiversionDemandTSMonthlyPattern()

363

FillDiversionHistoricalTSMonthlyAverage()

365

FillDiversionHistoricalTSMonthlyConstant()

369

FillDiversionHistoricalTSMonthlyPattern()

371

FillDiversionRight()

373

FillDiversionStation()

375

FillDiversionStationsFromHydroBase()

379

FillDiversionStationsFromNetwork()

381

FillinstreamFlowRight()

383

FilllnstreamFlowStation()

385

387

FillinstreamFlowStationsFromHydroBase()

389

FillinstreamFlowStationsFromNetwork()

391

FilllrrigationPracticeTSAcreageUsingWellRights().

397

FilllrrigationPracticeTSInterpolate()

FilllrrigationPracticeTSRepeat()

A03

FillNetworkFromHydroBase()

405

Table of Contents

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

FillReservoirRight()

407

FillReservoirStation()

409

FillReservoirStationsFromNetwork()

413

FillReservoirStationsFromHydroBase()

A15

FillRiverNetworkFromHydroBase()

417

FillRiverNetworkFromNetwork()

A19

FillRiverNetworkNode()

421

FillStreamEstimateStation().

A23

FillStreamEstimateStationsFromHydroBase()

425

FillStreamEstimate StationsFromNetwork()

A27

FillStreamGageStation().

429

A31

FillStreamGageStationsFromHydroBase()

433

FillStreamGageStationsFromNetwork()

A35

FillWellDemandTSMonthlyAverage()

437

FillWellDemandTSMonthlyConstant()

FillWellDemandTSMonthlyPattern()

A39

FillwellHistoricalPumpingTSMonthlyAverage()

441

10

Table of Contents

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

FillWellHistoricalPumpingTSMonthlyConstant() 443
FillWellHistoricalPumping TSMonthlyPattern() 445
FillWellRight(). 447
FillWwellStation() 449
FillWellStationsFromDiversionStations () 453
FillWellStationsFromNetwork() 455
LimitDiversionDemandTSMonthlyToRights() 457
LimitDiversionHistoricalTSMonthlyToRights() 461
LimitWellDemandTSMonthlyToRights() 465
LimitWellHistoricalPumpingTSMonthlyToRights() 469
MergeListFileColumns() 473
MergeWellRights () 475
OpenHydroBase() 481
PrintNetwork(). 483
ReadBlaneyCriddleFromHydroBase() 485
ReadBlaneyCriddleFromStateCU() 487
ReadClimateStationsFromList() 489

11

Table of Contents

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference

ReadClimateStationsFromStateCU()

491

ReadCropCharacteristicsFromHydroBase()

A93

ReadCropCharacteristicsFromState CU()

495

ReadCropPatternTSFromHydroBase()

A97

ReadCropPatternTSFromStateCU()

499

ReadCULocationsFromList()

501

ReadCULocationsFromState CU()

503

ReadCULocationsFromStateMod()

505

ReadDelayTablesMonthlyFromStateMod()

507

ReadDiversionDemandTSMonthlyFromStateMod()

509

511

: ReadDiversionHistoricalTSMonthlyFromHydro Base()

Diversion Comment “Not Used” Flag

511

512

Structure “Currently in Use” Flag

Command Reference

Command Reference

Command Reference

Command Reference

519

: ReadDiversionHistoricalTSMonthlyFromStateMod()

: ReadDiversionRightsFromHydroBase()

521

: ReadDiversionRightsFromStateMod()

523

: ReadDiversionStationsFromList()

525

12

Table of Contents

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

ReadDiversionStationsFromNetwork()

527

ReadDiversionStationsFromStateMod()

529

ReadInstreamFlowDemandTSAverageMonthlyFromStateMod()

ReadInstreamFlowRightsFromHydroBase()

531

533

ReadInstreamFlowRightsFromStateMod()

535

ReadInstreamFlowStationsFromList()

537

ReadInstreamFlowStationsFromNetwork()

539

ReadInstreamFlowStationsFromStateMod()

541

ReadlrrigationPracticeTSFromHydroBase()

543

ReadlrrigationPracticeTSFromList()

549

ReadlrrigationPracticeTSFromState CU()

551

553

ReadlrrigationWaterRequirementTSMonthlyFromStateCU()

555

ReadNetworkFromStateMod()

557

ReadPatternFile()

559

ReadPenmanMonteithFromHydroBase()

ReadPenmanMonteithFromStateCU()

561

ReadReservoirRightsFromHydroBase()

563

13

Table of Contents

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

ReadReservoirRightsFromStateMod ().

565

ReadReservoirStationsFromList()

567

ReadReservoirStationsFromNetwork()

569

ReadReservoirStationsFromStateMod().

571

ReadRiverNetworkFromStateMod()

573

ReadStreamEstimateCoefficientsFromStateMod()

575

ReadStreamEstimateStationsFromList()

577

ReadStreamEstimateStationsFromNetwork()

579

ReadStreamEstimateStationsFromStateMod()

581

ReadStreamGageStationsFromList()

583

ReadStreamGageStationsFromNetwork()

585

587

ReadStreamGageStationsFromStateMod ()

589

ReadWellDemandTSMonthlyFromStateMod()

591

ReadWellHistoricalPumping TSMonthlyFromState CU()

593

ReadWellHistoricalPumpingTSMonthlyFromStateMod()

ReadWellRightsFromHydroBase()

595

ReadWellRightsFromStateMod()

603

14

Table of Contents

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

ReadWellStationsFromList() 605
ReadWellStationsFromNetwork() 607
ReadWellStationsFromStateMod() 609
RemoveCropPatternTS() 611
RunCommands() 613
RunProgram() 617
RunPython() 621
SetBlaneyCriddle() 625
SetClimateStation() 627
SetCropCharacteristics() 629
SetCropPatternTS(), 631
SetCropPatternTSFromList() 635
SetCULocation() 639
SetCULocationClimateStationWeights () 641
setCULocationClimateStationWeightsFromHydroBase() 643
SetCULocationClimateStationWeightsFromList() 645
SetCULocationsFromList() 647

15

Table of Contents

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

SetDebugLevel()

649

SetDiversionAggregate ()

651

SetDiversionAggregateFromList()

653

SetDiversionDemandTSMonthly()

657

SetDiversionDemandTSMonthlyConstant()

659

SetDiversionHistoricalTSMonthly()

661

SetDiversionHistoricalTSMonthlyConstant()

663

SetDiversionMultiStruct().

665

SetDiversionMultiStructFromList()

667

SetDiversionRight().

669

SetDiversionStation()

671

675

SetDiversionStationCapacitiesFromTS()

SetDiversionStationDelayTablesFromNetwork()

677

679

SetDiversionStationDelayTablesFromRTN()

681

SetDiversionStationsFromList()

SetDiversionSystem()

685

SetDiversionSystemFromList()

687

16

Table of Contents

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

SetInstreamFlowDemandTSAverageMonthlyConstant() 691
SetlnstreamFlowDemandTSAverageMonthlyFromRights() 693
SetInstreamFlowRight() 695
SetlnstreamFlowStation() 697
SetlrrigationPracticeTS() 699
setlrrigationPracticeTSFromHydroBase() 703
SetlrrigationPracticeTSFromList() 711
setlrrigationPracticeTSMaxPumpingToRights(). 717
SetlrrigationPracticeTSPumpingMaxUsingWell Rights() 721
SetlrrigationPractice TSSprinklerAcreageFrom List() 727
SetlrrigationPracticeTSTotalAcreageToCropPatternTSTotalAcreage(). 731
SetOutputPeriod() 735
SetOutputYearType() 737
SetPenmanMonteith() 739
SetReservoirAggregate () 741
SetReservoirAggregateFromList() 743
SetReservoirRight() 745

17

Table of Contents

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

SetReservoirStation()

747

SetRiverNetworkNode()

751

SetStreamEstimateCoefficients()

753

SetStreamEstimateCoefficientsPFGage()

755

SetStreamEstimateStation()

757

SetStreamGageStation()

759

SetWarningLevel()

761

SetWellAggregate ().

763

SetWellAggregateFromList()

767

SetWellDemandTSMonthly()

771

SetWellDemandTSMonthlyConstant()

773

775

SetWellHistoricalPumpingTSMonthly()

777

SetWellHistoricalPumpingTSMonthlyConstant()

779

SetWellRight()

781

SetWellStation()

SetWellStationAreaToCropPatternTS ()

785

SetWellStationCapacitiesFromTS()

787

18

Table of Contents

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

SetWellStationCapacity ToWellRights (). 789
SetWellStationDelayTablesFromNetwork() 791
SetWellStationDelayTablesFromRTN() 793
SetWellStationDepletionTablesFromRTN() 795
SetWellStationsFromList() 797
SetWellSystem() 801
SetWellSystemFromList() 805
SetWorkingDir() 809
SortBlaneyCriddle() 811
SortClimateStations() 813
SortCropCharacteristics() 815
SortCropPatternTS() 817
SortCULocations() 819
SortDiversionDemandTSMonthly() 821
SortDiversionHistoricalTSMonthly() 823
SortDiversionRights() 825
SortDiversionStations() 827

19

Table of Contents

Command Reference: SortinstreamFlowRights() 829
Command Reference: SortInstreamFlowStations() 831
Command Reference: SortlrrigationPracticeTS() 833
Command Reference: SortPenmanMonteith() 835
Command Reference: SortReservoirRights() 837
Command Reference: SortReservoirStations() 839
Command Reference: SortStreamEstimateStations() 841
Command Reference: SortStreamGageStations() 843
Command Reference: SortWellDemandTSMonthly() 845
Command Reference: SortWellHistoricalPumpingTSMonthly() 847
Command Reference: SortWellRights() 849
Command Reference: SortWellStations() 851
Command Reference: StartLog() 853
Command Reference: StartRegressionTestResultsReport() 855
Command Reference: TranslateBlaneyCriddle() 857
Command Reference: TranslateCropCharacteristics() 859
Command Reference: TranslateCropPatternTS() 861

20

Table of Contents

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

TranslatePenmanMonteith()

863

WriteBlaneyCriddleToList()

865

WriteBlaneyCriddleToStateCU()

867

WriteCheckFile()

869

WriteClimateStationsToList()

871

WriteClimateStationsToStateCU()

873

WriteCropCharacteristicsToList().

875

WriteCropCharacteristicsToState CU()

877

WriteCropPatternTSToDateValue()

879

WriteCropPatternTSToState CU()

881

WriteCULocationsToList()

883

885

WriteCULocationsToStateCU()

887

WriteDelayTablesDailyToList()

889

WriteDelayTablesDailyToStateMod().

891

WriteDelayTablesMonthlyToList()

WriteDelayTablesMonthlyToStateMod()

893

WriteDiversionDemandTSMonthlyToStateMod ()

895

21

Table of Contents

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

WriteDiversionHistoricalTSMonthlyToStateMod()

897

WriteDiversionRightsToList().

899

WriteDiversionRightsToStateMod()

901

WriteDiversionStationsToList()

903

WriteDiversionStationsToStateMod ().

905

WritelnstreamFlowDemandTSAverageMonthlyToStateMod ()

907

WritelnstreamFlowRightsToList()

909

WritelnstreamFlowRightsToStateMod()

911

WriteInstreamFlowStationsToList()

913

WritelnstreamFlowStationsToStateMod()

915

WritelrrigationPracticeTSToDateValue()

917

919

WritelrrigationPractice TSToStateCU()

921

WriteNetworkToStateMod()

923

WritePenmanMonteithToList()

925

WritePenmanMonteithToState CU()

WriteReservoirRightsToList()

927

WriteReservoirRightsToStateMod()

929

22

Table of Contents

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Command Reference:

Appendix: StateDMI Installation and Configuration

WriteReservoirStationsToList()

931

WriteReservoirStationsToStateMod ()

933

WriteRiverNetworkToList()

935

WriteRiverNetworkToStateMod()

937

WriteStreamEstimateCoefficientsToList()

939

WriteStreamEstimateCoefficientsToStateMod()

941

WriteStreamEstimateStationsToList()

943

WriteStreamEstimateStationsToStateMod()

945

WriteStreamGageStationsToList()

947

WriteStreamGageStationsToStateMod ()

949

WriteWellDemandTSMonthly ToStateMod().

951

953

WriteWellHistoricalPumpingTSMonthlyToStateMod()

955

WriteWellRightsToList()

957

WriteWellRightsToStateMod ().

959

WriteWellStationsToList()

WriteWellStationsToStateMod()

961

963

23

Table of Contents

1. Overview, 963
2. Installing StateDMI as Part of CDSS, 963
3. Installing StateDMI 964
4. Uninstalling StateDMI Software 973
Appendix: StateDMI Release Notes 975
StateDMI Version History. 975
Known Limitations 978
Changes in Versions 3.11.00 — 3.11.01 978
Changes in Version 3.10.00 978
Changes in Versions 3.09.00 — 03.09.02 978
Changes in Versions 3.04.00 — 3.08.02 980
Changes in Versions 3.00.00 to 3.03.00. 981
Changes in Version 2.18.00 983
Changes in Version 2.17.00. 983
Changes in Version 2.16.00 983
Changes in Version 2.14.00. 984
Changes in Version 2.02.00 — 2.13.00 984

24

Table of Contents

Changes in Version 2.01.00

984

Changes in Version 2.00.00.

985

Changes in Version 1.22.00

985

985

Changes in Version 1.21.00.

985

Changes in Version 1.20.05

Changes in Version 1.20.04.

985

Changes in Version 1.20.03

985

Changes in Version 1.20.02

985

Changes in Version 1.20.01

985

Changes in Version 1.20.00.

986

Changes in Version 1.18.10

986

Changes in Version 1.18.09

986

986

Changes in Version 1.18.08

Changes in Version 1.18.07.

986

Changes in Version 1.18.06

986

Changes in Version 1.18.05

986

Changes in Version 1.18.04

986

25

Table of Contents

Changes in Version 1.18.03

987

Changes in Version 1.18.02

987

Changes in Version 1.18.01

987

987

Changes in Version 1.18.00.

987

Changes in Version 1.17.21

Changes in Version 1.17.20,

987

Changes in Version 1.17.19

987

Changes in Version 1.17.18

988

Changes in Version 1.17.17

988

Changes in Version 1.17.16

988

Changes in Version 1.17.15

988

Changes in Version 1.17.14.

988

989

Changes in Version 1.17.13

Changes in Version 1.17.12

989

Changes in Version 1.17.11

989

Changes in Version 1.17.10,

990

Changes in Version 1.17.09

990

26

Table of Contents

Changes in Version 1.17.08

990

Changes in Version 1.17.07.

990

Changes in Version 1.17.06

991

991

Changes in Version 1.17.05

991

Changes in Version 1.17.04

Changes in Version 1.17.03

991

Changes in Version 1.17.02

992

Changes in Version 1.17.01

992

Changes in Version 1.17.00

992

Changes in Version 1.16.03

992

Changes in Version 1.16.02

992

Changes in Version 1.16.01

993

993

Changes in Version 1.16.00

Changes in Version 1.15.02

993

Changes in Version 1.15.01

993

Changes in Version 1.15.00.

993

99_Spine.pdf.

995

27

This page is intentionally blank.

28

DISCLAIMER for CDSS Products

2002-02-16, Acrobat Distiller

CDSS products include data and software from State of Colorado sources and from external sources like
the U. S. Geological Survey (USGS). The following disclaimer applies to CDSS products:

CDSS products and associated access are under development at this time. Access is provided solely
to test and demonstrate CDSS capabilities. In the future, this access may be restricted or offered
for a fee. The State assumes no legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed herein. It is the user’s
responsibility to determine the fitness of the data for a particular purpose.

29 Disclaimer - 1

StateDMI Documentation

This page is intentionally blank

Disclaimer - 2 30

1 Acknowledgements

Version 3.09.01, 2010-02-0

StateDMI has been developed by Riverside Technology, inc. (Riverside) with funding from the State of
Colorado, Water Conservation Board as part of Colorado’s Decision Support Systems (CDSS). StateDMI
continues to be developed as part of the SPDSS (South Platte Decision Support System) and other
projects.

Support for StateDMI can be contacted by emailing cdss@state.co.us.

31 Acknowledgements - 1

mailto:cdss@state.co.us

StateDMI Documentation

Acknowledgements - 2 32

2 Introduction

Version 03.10.00, 2010-05-11

StateDMI is a tool that can be used to process and format data for CDSS models, including the StateCU
(consumptive use) and StateMod (surface water) models. The “DMI” corresponds to “Data Management
Interface,” which is a general term for a tool that translates data from one form to another. TSTool is a
DMI utility for processing time series. StateDGI and StatePP are other CDSS DMI utilities, which
process GIS data and generate input for the MODFLOW groundwater model. StateDMI’s input data are
read from the State of Colorado’s HydroBase database, spatial data files (e.g., ESRI shapefiles), text files,
and existing StateMod and StateCU data files. Output is written to StateCU, StateMod, and text formats.
StateDMI can be considered the middle application in the modeling process:

1.

2.

3.

StateView and the CDSS web site are general HydroBase data-viewing tools, for initial data
evaluation.

StateDMI processes model data from HydroBase and other sources into model files (see also
TSTool, which performs a similar function for time series data).

The StateCU and StateMod models and graphical user interfaces are the final end-user
applications for modeling.

StateDMI uses a workflow command language (similar to TSTool) to describe how data should be
processed. The command language approach has a number of benefits:

1.
2.
3.

8.

9.

It allows control of whether a data processing step occurs (or not).

It allows control of the order of data processing steps.

It allows complicated data processing sequences to be broken into manageable steps, which
allows evaluation of different combinations and facilitates troubleshooting.

It allows data processing procedures to be saved and rerun at a later time. Consequently,
complicated data processing steps can be remembered.

It allows data processing to be automated. For example, rather than interactively executing the
same steps each time data need to be processed, an effort can be made once to determine data
processing steps and record the steps in command files. The same steps can then be rerun later
with little effort.

It allows comments to be inserted in the data processing procedures. For example, data that are
read from HydroBase can be edited using commands and comments can be inserted with the
commands to explain the reason for the edits. Consequently, data processes are self-
documenting.

It allows commands to be updated and reused for other situations. For example, a sequence of
commands that is appropriate for one geographic region may also be appropriate for another
region. An existing command file can be read, modified slightly, and rerun for the new situation.
It facilitates extending software features. For example, a new model file format or database can
be implemented by adding new commands within the existing framework.

It allows tests for command workflows to be automated, simplifying software and process testing.

In spite of these benefits, command workflows can be somewhat intimidating. To address this issue, the
StateDMI interface provides a framework that provides interactive editors for commands and performs
checks on input and results. Documentation is also available for all commands.

33 Introduction - 1

StateDMI Documentation

The following chapters are available in this documentation:

Chapter 1 — Acknowledgements — recognizes contributors to the development and maintenance of the
StateDMI software.

Chapter 2 - Introduction (this chapter) provides background information about StateDMI and the CDSS
modeling framework and procedures.

Chapter 3 — Getting Started provides an overview of the StateDMI interface features.

Chapter 4 — Creating StateCU Data Set Files provides guidelines and examples of how StateDMI can
be used to create StateCU data set files.

Chapter 5 — Creating StateMod Data Set Files provides guidelines and examples of how StateDMI can
be used to create StateMod data set files.

Chapter 6 — Troubleshooting provides troubleshooting information.

Chapter 7 — Quality Control provides information about how StateDMI software and modeling
processes can be quality controlled.

The Command Reference provides a complete command reference with commands listed in alphabetical
order. Chapter 4 and Chapter 5 summarize the use of commands for each product. The Command
Reference is by far the longest part of the documentation. The Command Glossary at the start of the
Command Reference provides a list of parameters that are used in commands, which promotes
standardization of parameters.

The Installation and Configuration Appendix provides information about installing and configuring
StateDMI.

The Release Notes Appendix summarizes important software changes for each StateDMI version.

See also the doc\Training folder under the software installation, which includes slideshows and example
files for self-paced training.

2.1 How to Use this Documentation

The documentation is organized into chapters that provide overview material, with extensive reference
material at the end of the documentation. It is recommended that the documentation be used as follows:

1. New users should review the Introduction and Getting Started chapters to understand in general
how StateDMI operates.

2. When processing StateCU or StateMod files, review the introductory pages of the corresponding
chapters (Chapter 4 for StateCU and Chapter 5 for StateMod) to gain an appreciation of the data
files that will need to be processed.

3. To produce files for a specific data component (e.g., diversion stations), refer to the section in the
model chapter corresponding to the data component. Review the example(s) that are provided
and utilize similar steps when creating new commands files. The documentation provides
examples taken from actual data sets and, although not universally applicable, provides a good
starting point for new work. Refer to command files and documentation available with
downloadable data sets for the most current examples of production work.

2- Introduction 34

StateDMI Documentation

4. To fully understand how to use a command, whether in a new command file or an existing
command file that is being updated, refer to the Command Reference section at the end of the
documentation.

2.2 CDSS Modeling Overview

For CDSS, a major focus has been to develop an integrated data-centered system that can create basin-
wide data sets for planning purposes. The end result is basin models with hundreds or thousands of
model nodes, with associated water rights, time series data, etc. StateDMI breaks up the data processing
into sessions that focus on specific model data components that have corresponding data files. A
command file controls the creation of each model file. Although the overall modeling process is
complicated, StateDMI is organized to help facilitate creating an entire data set and individual model
files. See also the TSTool documentation — TSTool is used to process time series data in CDSS.

The primary purpose of the StateCU model is to estimate irrigation water requirement, although it does
also estimate non-irrigation requirements. Several input files need to be prepared to run the StateCU
model. The number of files depends on the complexity of the analysis. The StateCU documentation
describes the StateCU model files in detail.

The StateMod model is used to simulate surface water use considering the Prior Appropriation Doctrine
(first in time, first in right). Its primary purpose is to evaluate the water demand and supply in order to
allocate water. Whereas StateCU data sets focus primarily on historical data, StateMod data sets can have
several variations in order model various water allocation conditions and issues. The StateMod
documentation describes the StateMod model files in detail.

For CDSS modeling, the StateCU and StateMod models have some interdependency. For example, to
estimate acreage, water rights data (consistent with StateMod) can be used to turn parcels off if water
rights did not exist. Similarly, StateMod depends on the demand data produced by StateCU. Typically,
full StateCU data sets are prepared before StateMod data sets; however, as shown in the example above,
there is a need to produce some StateMod files when creating a StateCU data set. StateDMI supports this
by providing StateMod commands for products needed by StateCU. Once data sets for both models have
been created for a basin, it becomes easier to share model files and update them over time.

StateMod data sets are typically created for historical conditions, calculated demands (using full supply
demands), and baseline (the current system) cases. If historical or simulated diversions are available, they
can be provided to StateCU to evaluate a water supply limited condition. See the next section for more
information on various data sets types.

Given that StateCU and StateMod have numerous input files and a variety of run options, it can be
difficult to understand and maintain data sets. StateDMI helps streamline data processing so that data
flow is clearer.

When modeling, some efficiency can be gained by selecting key stream gages (those with a significant
period of record) and determining for each structure type (diversion, reservoir, instream flows, and wells)
the key and non-key structures. Key structures are modeled explicitly within StateCU and StateMod
while non-key structures may be aggregated. The use of aggregation is discussed where appropriate in
this documentation and is addressed in the model data set documentation.

35 Introduction - 3

StateDMI Documentation

2.3 Data Set Folder and File Conventions

The conventions used for StateCU and StateMod data set directories and files have changed over time, in
particular as new modeling challenges have been faced (e.g., groundwater, augmentation plans). Older
conventions are not discussed because CDSS data sets have generally been updated to current standards.
If necessary, refer to the model data set documentation for older data sets.

CDSS model data sets are developed by the State and contractors and are provided on the CDSS web site.
The data sets typically only contain input files in zip files and are named with an abbreviation of the basin
and the year of release (e.g., cm2005 for the Colorado basin data set released in 2005). Note that the
ending year of the model data is often less than the year of the release. Output files may not be made
available due to the size of the files; consequently, users will need to rerun the models to produce output
and/or refer to the data set documentation. StateCU and StateMod data sets are typically provided
separately and StateCU data sets are typically released earlier than StateMod data sets.

Folders under the main data set folder are described in the following table (adapted from “Recommended
Data Structure”, Ray Bennett, September 19, 2005). These conventions may change — see model data set
documentation and files for conventions used with specific data sets. Folders are listed alphabetically in
the following table; however, the order of processing is indicated by StateDMI menus and is described in
model data set documentation and command files. Guidelines fir data sets are as follows:

o Top-level Data Set Folder. The top-level data set folder (e.g., cm2005) will include all data and
results for the model data sets. An exception is GIS files, which may be located in a shared
location like the \cdss\gis folder, allowing multiple data sets to share GIS files, which can be
large. However, if possible, it is recommended that GIS files are included with a data set to allow
for stand-alone data sets.

o Relative Paths. The “flat” organization of data set folders facilitates the use of relative paths.
Model response files and command files should utilize relative paths when referring to folders
(e.g., ..\Diversions\cm2005.dds). This facilitates transport of data sets from one
location/computer to another.

o Final Model Folder. The final model folder (e.g., StateMod for the StateMod model), will
contain:

1. input files produced by data processing,
2. miscellaneous files that do not require processing (e.g., response and control files)
3. output files from the model run

o Folder Variations. Folders in addition to those described in the following table may be used to
simplify maintenance and use. For example, Historic, Calculated, and Baseline folders may be
used under the StateMod folder to separate main model variations. Additional data folders for
processing may be included if they clarify data management and processing.

e Supporting Files. Miscellaneous support files should be stored in folders with related data. For
example, historical reservoir end of month time series files (in addition to data that will be
gueried from HydroBase) should be stored in the Reservoirs folder. If necessary, use a sub-folder
to clarify data management.

o LogFiles. The St art Log() command can be used as the first command in a command file to
record processing that is performed. The log file can facilitate troubleshooting and serve as a
useful artifact if a data set needs to be reviewed at a later date.

e Quality Control. The complexity of modeling and the decisions that are made based on the
results require that quality control measures are implemented. Data checks can be performed
using the Check* () commands. See also the Quality Control chapter of this documentation.

4- Introduction 36

StateDMI Documentation

Performing quality control activities throughout modeling will help to minimize uncertainty about
the validity of the model results.
e Comments. Hand-edited data files and command files should include comments of the top
indicating the source and date for data. Comments should be included throughout command files
to describe processing.

CDSS Data Set Folder Conventions

Primary
Application

Folder (1) Description

C:\CDSS\data\Basin Main folder where basin includes data set release date (e.g.,
cm2005).

Consumptive Use Application

AClimateCU Cu Climate stations; temperature, precipitation, and frost time
series associated with StateCU.

ACrops CuU Crop characteristics and coefficients; crop pattern and
irrigation practice time series.

\DelayCU Cu Delay tables and assignment for StateCU limited supply
analysis.

ADocCU CuU Documentation associated with a consumptive use
application.

\LocationCU CU CU locations and support list files.

AStateCU Cu StateCU model files (all input and output for a
consumptive use application).

Surface Water Application

AClimateSW sSwW Precipitation and evaporation time series associated with
StateMod.

\DelaySW SW Delay tables (monthly and daily) associated with StateMod.

ADocSW SW Documentation associated with the surface water
application.

ADiversions CU, SW, GW | Diversion stations and rights, historical and demand time
series (monthly and daily), surface water aggregate, system,
and multi-structure lists.

Anstream SW Instream flow stations and rights, demand time series
(average monthly, monthly, and daily).

ANetwork SW StateMod network, generalized XML network.

J\Reservoirs CuU, SW Reservoir stations and rights, end of month content and
target time series.

AStateMod SW StateMod model files (all input and output files for a
surface water application).

AStreamSW SW Stream files associated with StateMod (stream stations,
historical time series, stream estimate coefficients, etc.).

AWells CU, swW Well stations and rights, historical pumping and demand
time series, aggregation and system lists.

Groundwater Application

\Agg GW Aggregate polygons for StatePP.

ADocGW GW Documentation associated with a groundwater application.

AEdge GW Boundary conditions.

37 Introduction - 5

StateDMI Documentation

Primary
Application
Folder (1) Description
AMIPumping GW M&I pumping.
\ModFate GW Fate of surface water returns.
AModflow GW MODFLOW files (all input and output files for a ground
water application).
\PptRecharge GW Precipitation recharge associated with MODFLOW.
AProp GW Aquifer properties (K, SS, Sy, L).
ARimInflows GW Rim inflows.
A\StateDGI GW GIS processing.
\StatePP GW MODFLOW preprocessor.
AStreamGW GW Stream files associated with the MODFLOW stream
package.
AStreamInflow GW Stream inflow to the groundwater model.
ASurvey GW Stream survey data.
AURF GW Unit response development.

(1) Primary Application: CU = consumptive use, SW = surface water allocation, GW = groundwater

Both StateCU and StateMod data sets include some files that are typically not automatically created.
These files include the main response and control files and the StateMod operational right file. However,
most other files can be created in an automated fashion. The processing of data files typically occurs in a
sequential fashion. Although modelers may have different approaches, StateDMI menus and
documentation are generally organized according to data component/product dependency. For example,
if one file depends on concepts or data from another file, then the dependent file is listed after the
independent file in menus and procedures. In this way, the creation of a file avoids “forward referencing”
another file that has not yet been created. However, some circular dependencies do occur in data
preparation and are discussed with examples.

Although StateDMI’s interface is organized based on a logical creation order of the StateCU and
StateMod files, it does not strictly impose rules on the order of creating files. StateDMI does encourage
the use of standard StateCU and StateMod file extensions, as described in each model’s documentation.
It does so by displaying the standard extensions in file choosers, although in most cases the user can
override with any file extension.

The above information describes the general folder structure for a data set. The guidelines for naming the
main data set folders are described below. Standard names for basin data set directories have been
adopted to promote consistency and simplify data review. This naming convention reflects the following
aspects of a data set:

e basin name, typically as an abbreviation (e.g., “rg” for Rio Grande)

e scope or scenario for the data modeled (e.g., whether a fraction or 100% of the consumptive use
is modeled)

o year that the data set was created (may not agree with the last year included in the model)

6- Introduction 38

StateDMI Documentation

The naming convention has changed over time and therefore legacy data set names do not agree with
current conventions. For example, early data sets modeled approximately 75% of the consumptive
demand. The next iteration of data modeled 100% of the consumptive demand, using aggregate stations
where necessary, and these data sets were designated with a “T”. Current conventions are to include all
effects by default and not use any special indicator like “T”. Therefore, the current naming convention
focuses on the year that the data set was prepared and it is assumed that the data set takes advantage of all
modeling capabilities. Short names are used because of an 8.3 character file name length limitation in
StateMod, although this limitation may be removed in the future.

The following table lists examples of standard data set names, based on currently available data sets:

Standard Names for Baseline Data Sets

Basin Data Set Name (1)

Arkansas No data sets have been produced (ar?)
Upper Colorado Main Stem cm

Gunnison gm

Rio Grande rg

San Juan/San Miguel/Dolores | sj

South Platte sp

White wm

Yampa ym

The data set name recommendations have evolved over time and should be evaluated for each data set.
For example, to facilitate future updates (e.g., extending data sets by additional years of data), it may be
useful to NOT include the year in individual file names, using the year only for the main directory.
However, this practice may lead to confusion when comparing data files from different versions of data
sets because the year will not be included in the name. Conventions for each CDSS modeling effort
should be evaluated and discussed with State of Colorado project managers.

39

Introduction - 7

StateDMI Documentation

To generate a calibrated StateMod model includes developing three inter-related data sets (see Section
2.5 below for more information):

1. historical (also referred to as historic)
2. calculated
3. baseline

Example StateMod File Base Names

Model Run (StateMod | Key Properties of Data Set
Response File)
cm2005H.rsp Historical data set with 1200% consumptive use included.

Demands are generally the historical diversions.

Reservoir targets are generally the historical end of month contents.
Because historical files are often shared with other data set variants,
the H may be omitted.

cm2005C.rsp Calculated data set with 100% consumptive use included.

Demands are calculated to equal the estimated headgate requirement
(e.g., maximum of StateCU irrigation water requirement divided by
average monthly efficiency AND historical diversions).

Reservoir targets are generally forecasted.

cm2005B.rsp Baseline data set with 100% consumptive use included.

Demands are the same as the calculated data set; however, municipal,
industrial, and trans-basin demands are set to a present or future value
and facilities constructed during the study period are estimated to be
on-line for the entire simulation.

Many of the files used in the historic, calculated and baseline data are the same. It is common for all the
data to be the same except for the diversion demands and reservoir targets files. Refer to model data set
documentation for detailed information about variations in data sets.

2.4 Standard Procedures for Creating StateCU and StateMod Data Sets

The previous sections described standard conventions for organizing data sets, including naming
directories and files within data sets. Chapter 4 — Creating StateCU Data Set Files and Chapter 5 —
Creating StateMod Data Set Files describe how to create each of the files necessary for each model.
The recommended standard procedure for creating model files for each data type is to follow the steps in
these chapters, illustrated by working examples from actual data sets.

The steps described in Chapters 4 and 5 provide general guidelines related to data analysis and
formatting. The following sections provide additional information related to variations in StateMod data
sets. These variations should be considered when determining the level of modeling to be performed for a
basin.

2.5 Variations in StateMod Data Sets
Chapters 4 and 5 discuss how to create all model files. However, some files (e.g., calculated demands)

are used only in the calculated and baseline data sets. The following sections describe the differences
between data sets.

8- Introduction 40

StateDMI Documentation

2.5.1 Creating a Historical Data Set

A historical data set is used to calibrate the model and match historical conditions. Historical time series
(e.g., diversions, well pumping) are used for demands. Differences between simulated results and the
historical time series are minimized by adjusting return flow patterns, stream estimate proration factors,
and other data. See the StateMod documentation for more information about historical data sets.

2.5.2 Creating a Calculated Data Set

A “calculated” data set is one that uses estimated demands, rather than simply using historical data (e.qg.,
diversion time series and historical reservoir levels). To produce a calculated data set, revise the following
files from those used in the historic data simulation:

= The calculated control file (*C.ctl) is the same as the historical control file (*H.ctl) except header
cards are revised to indicate it is a calculated data set.

= The calculated diversion demand file (*C.ddm) is similar to the historical diversion demand file
(*H.ddm) except agricultural demands equal the estimated diversion headgate requirement for full
supply rather than historical diversions.

= The calculated well demand file (*C.wem) is similar to the historical well demand file (*H.wem)
except agricultural demands equal the estimated well pumping requirement (full supply) rather
than historical pumping.

= The calculated reservoir target file (*C.tar) is similar to the historical reservoir target file (*H.tar)
except reservoir targets are typically set to forecasted values. For example, individual time series
files stored in the supporting files directory may be combined into the complete file.

2.5.3 Creating a Baseline Data Set

A baseline data set represents current or future conditions, allowing an evaluation of the system for “what
if?” scenarios. To create a baseline data set, revise the following files from those used in the calculated
data simulation:

e The baseline control file (*B.ctl) is the same as the calculated control file (*C.ctl) except header
cards are revised to indicate it is a baseline data set.

e The baseline diversion demand file (*B.ddm) is similar to the calculated diversion demand file
(*C.ddm) except municipal, industrial and trans-basin demands are revised to equal the present or
estimated future demand. In addition, any diversions that may have been constructed during the
study period will be estimated to be on-line for the entire study period. Demands are typically
implemented by creating replacement time series files that are combined into the final model file.

e The baseline well demand file (*B.wem) is similar to the calculated well demand file (*C.wem)
except municipal, industrial and trans-basin demands are revised to equal the present or estimated
future demand. In addition, any wells that may have been constructed during the study period
will be estimated to be on-line for the entire study period. Demands are typically implemented by
creating replacement time series files that are combined into the final model file.

e The baseline reservoir target file (*B.tar) is similar to the calculated reservoir target file (*C.tar)
except any reservoirs that may have been constructed during the study period will be estimated to
be on-line for the entire study period. These reservoir targets are typically implemented by
creating replacement files by hand.

e The baseline reservoir station file (*B.res) is similar to the calculated reservoir station file
(*C.res) except any reservoirs that have been constructed during the study period may have a
different initial content value. These reservoir station files are typically implemented by using
data resets in the initial content.

41 Introduction - 9

StateDMI Documentation

2.5.4 Creating a Data Set with Aggregated Structures

In CDSS projects, the approach to modeling 100% of a basin’s consumptive use (CU) has been to
explicitly model key structures that include approximately 75% of the basins CU and aggregate the
remaining CU into aggregated stations. The model data sets are reviewed and enhanced over time to
improve the model’s representation of actual conditions. The aggregation process is typically
implemented as follows (see data set documentation for details for each basin):

1.

2.

S

Aggregated irrigation structures are identified in GIS software (e.g., the CDSS Toolbox software)
from an irrigated acreage coverage as those not explicitly modeled.

Aggregated irrigation groups are defined based on location and cumulative aggregated acreage.
Often aggregated groups are selected to coincide with a streamflow gage.

Aggregated reservoirs are defined based on non-explicitly modeled reservoir water rights. Often
aggregated groups are selected to coincide with a streamflow gage.

Aggregated M&I demands are defined based on non-explicitly modeled M&I demands based on
regional population data and per capita use estimates. Often aggregated groups are selected to
coincide with a streamflow gage.

Aggregated water right classes are defined based on class size and typical call dates in a basin.
These call dates are typically identified from an evaluation of historical call records and basin
interviews.

Aggregated irrigation, reservoir and M&I structures are added to the network file (*.net).
Aggregated irrigation structures, reservoirs and M&aI uses are often located on the main stem in
order to include their CU without developing new hydrology data on small tributaries. StateDMI
commands recognize aggregate stations and process data accordingly.

In addition to diversion aggregate nodes, “systems” and “MultiStruct” nodes may be utilized in modeling.
See the StateMod diversion stations description for more information.

StateCU and StateMod model files do not include information to describe collections. Consequently,
StateDMI relies on commands like Set Di ver si onAggr egat eFr onli st () to supply information
to be used during processing. Neglecting to provide this information will impact the results (e.g.,
diversion time series will contain smaller values because the aggregation is not occurring).

2.5.5 Creating a StateMod Data Set with Daily Data

The steps necessary to create a daily historical data set from a monthly data set is described in detail in the
Frequently Asked Questions section of the StateMod documentation.

2.5.6 Creating a StateMod Data Set with Wells

The steps necessary to create a data set with wells are described in detail in the Frequently Asked
Questions section of the StateMod documentation.

10- Introduction 42

StateDMI Documentation

2.6 Commands and Processing Sequence

The StateDMI interface allows a list of commands to be created, which when processed result in the
creation of model data files and other output products. Several commands are often needed to create a
single model file, as shown in the following example:

#
#

#
#

#
#

StateDM commands to create the Rio Grande Climate Stations File
Step 1 - read clinate stations
#

The following reads froma
ReadC i mat eSt at i onsFronli st (

Step 2 - set data manually

SetdimateStati on(l D="new d", Latitude=100, El evati on=1999, Regi on1="ADAMS",
Name="ny station", |fNot Found=Add)

Step 3 - fill climate station information

ﬁi I'1CimteStati onsFronHydroBase(| D="*")

z Step 4 - wite the climate stations file

WiteC inmateStationsToStateCY(Qutput File="rgTWCLI")
i Step 5 — check data

Checkd imateStations(ID="*")
WiteCheckFil e(QutputFile="cli.comands. StateDM . check. htm ")

st file...
stFil

L e="climate.lst",|DCol ="1")

The general sequence of commands when creating a model file is:

1.

5.
6.

Read data from an existing source (e.g., a list file, the HydroBase database, or a model file) using
Read* () commands. Delimited list files typically contain an identifier column, and data are
then often read from HydroBase. List files can be created from the model network, StateView,
etc.

If appropriate, set additional data (e.g., add information that was not present after the first item)
using Set * () commands. Existing or new data may be added.

If appropriate, fill data (e.g., fill all latitude values that have not been previously specified) using
Fi Il *() commands. Missing data can be filled but new data objects are not created.

If appropriate, further process data with commands that perform calculations (e.g., limit filled
diversion time series to water rights that were in effect at the time). Various data products require
commands of varying complexity.

Write output to model files, using Wi t e* () commands.

Perform checks to ensure that data are suitable for modeling using Check* () commands.

The menus that list commands to process a specific file are generally listed in the above order, to
emphasize the order that commands should be used. In some cases, additional commands will be shown
because of additional processing that is required. Although StateDMI lists menus in the general order that
they would be used, commands should be used in the order that is appropriate to accomplish a task. In
particular, there are no restrictions on setting or filling values after a calculation has occurred.

StateDMI commands are free-format, using the syntax:

ConmandName(Par anil=Val uel, Par an2="Val ue2”, ...)

43 Introduction - 11

StateDMI Documentation

The command name corresponds to the command menus and each command is documented in the
Command Reference at the end of this manual. Parameters can be listed in any order, separated by
commas. In many cases, parameters have default values and do not need to be specified. Parameter
values that include white space or commas should be enclosed in double quotes. The StateDMI GUI
command editor dialogs help edit all commands.

StateCU and StateMod files each typically correspond to lists of objects. For example, StateMod data
sets include a list of diversion stations (corresponding to the .dds file). StateCU has a list of consumptive
use locations (corresponding to the .str file). Relationships between data objects occur through shared
data fields (e.g., station identifiers). For example, diversion historical time series use the diversion station
identifier.

StateDMI maintains lists of these objects in memory and manipulates the objects as commands are
processed. For example, a list of diversion stations can be read from a StateMod diversion station file
(dds). Additional diversion stations may then be added to the list using “set” commands. Because it is
possible that lists of objects may be created from multiple input sources, StateDMI usually allows lists of
objects to be appended. For example, both StateMod diversion stations (dds file) and wells (wes file) may
be considered as locations where irrigation water requirement should be estimated in StateCU. Such
locations are collectively referred to as CU Locations. Sort commands are available for most data types
to facilitate consistent output.

Because a model data set may contain many files, it is convenient to create the files in a logical order,
separating the work of creating a data set by using multiple command files. The convention used in this
documentation is to describe using one command file to create one model file. The model data set
documentation describes the order and logic in creating each model file.

12- Introduction 44

3 Getting Started

Version 3.09.01, 2010-02-11

This chapter provides an overview of the StateDMI graphical user interface (GUI). The StateDMI
interface has the following main purposes:

1. Provide an organized list of menus to facilitate configuration of command lists (workflows) to
create StateCU and StateMod data files.

2. Manage and run command workflows.

3. Provide general reusable tools to process StateCU and StateMod data.

4. Display and edit the model network used to define the connectivity of locations used in StateCU
and StateMod data sets.

5. Display the results of command workflow processing.

6. Provide automation and quality control tools to streamline data set creation.

The remainder of this chapter provides an overview of the graphical user interface, generally in the order
of the interface features and menus. Menu items are listed in alphabetical order or by functional order
(i.e., in the order that model files should typically be created).

3.1 Starting StateDMI

StateDMI is a Java application and therefore is run using a Java Runtime Environment (JRE). The JRE is
started using an executable file called StateDMI.exe, which is normally installed in \CDSS\StateDMI-
Version\bin. This file can be run from a command shell, by selecting it from Windows Explorer, or more
typically by selecting the CDSS...StateDMI-Version choice from the Start menu. The Version is the
version of StateDMI to run. Multiple versions of StateDMI can be installed at the same time, to allow
versions to remain with “frozen” data sets.

StateDMI provides features for StateCU and StateMod data sets, but not both at the same time. Start
StateDMI for the appropriate model as shown in the next section, or use the File...Switch to StateMod or
File...Switch to StateCU menus. If data files from one model are used by the other, StateDMI will
provide appropriate features for both models for the specific data files.

45 Getting Started - 1

StateDMI Documentation

3.2 Select HydroBase Dialog

Because one of the main input sources for StateDMI is the State of Colorado’s HydroBase database, at
startup you are requested to select a HydroBase database. A HydroBase database can also be selected
from the File...Open...HydroBase... menu.

Select HydroBase E|

Connection:| Use SOL Server Database
Daktabase Hostname:|local w
Database Mames: HyerEase_CO_EEIEI'?JEI?Dl| w

Madel {For menu configuration):| StatecU w

[oK H Cancel

Select the HydroBase to open.

SelectHydroBase
Select HydroBase Database Dialog

HydroBase is available on DVD from the Division of Water Resources. Future software updates may
allow StateDMI to access the database over the internet. In 2005 the Microsoft Access version of
HydroBase was phased out in favor of MSDE (did not allow a single database to contain all State data),
which has subsequently been replaced with SQL Server Express (allows the full Colorado database to be
distributed).

If using an old Microsoft Access HydroBase database, you should have already configured a HydroBase
ODBC DSN. You can select a local database and appropriate ODBC DSN, or, if you have access to a
SQL Server HydroBase server, you can select Use SQL Server Database, in which case the database
hostname is automatically determined from a predefine list — type in a new name if appropriate. You can
also cancel the login, in which case HydroBase features will be disabled but you will be able to work with
other data sources.

If a previous HydroBase connection has been made, then Cancel reverts to that connection.

See also the Installation and Configuration Appendix for information about the CDSS configuration
file, which can be used to set HydroBase selection defaults.

2 - Getting Started 46

StateDMI Documentation

3.3 Main Interface
The StateDMI main interface is divided into the following areas:

Title Bar (top)

Menu Bar (below title)

Tool Bar (below menu bar)

Commands list (middle)

Results (below commands)

Status Message areas (bottom)

Map (under development, as separate window)
Model Network (as a separate window)

After starting the software, the main interface will be blank, as shown in the following figure:

L. StateDMI (StateCU) - no commands saved Z||E|b__(|
File Edit View <Commands FRun Tools Help
=l
rCommands {0 commands, 0 selected, 0 with Failures, 0with warnings)
1
z
3
4
5
g
7
g
o
ig
11

rResulks

Output Files | problems | StateCU Components | StateMod Components

Jpen a command file or add new commands, I 0%])]Read\;

Main0

StateDMI Interface After Startup

At this point, new commands can be added to the Commands list using the Commands menu, or an
existing command file can be opened (File...Open...Command File). Commands, once visible, can be
edited and run.

47 Getting Started - 3

StateDMI Documentation

After opening a command file, the interface will appear similar to the following (the title bar displays the
name of the command file and the Commands area title displays the status of the current commands list).

. StateDMI (StateCU) - C:\Develop\StateDMI_SourceBuild\StateDMIMestiregressionlUserManualRefAFillCULocationsFromHydroBase\em2006.str-up... [Z|[E|[‘S__<|

File Edit View Commands Run Tools Help

Ned

Commands (25 commands, 0 selected, 1 with Failures, 1 with warnings

1 @|ReadClLocationsFromList{ListFile="cmstrlist.csw", IDCol=1,NameCol=8) s
2 |[Fil1CULocationsFromHydroBase (ID=""",CULacType=5tructure, RegionlType=County, Region2Type=HUC)

I |SetCULocationsFromList(ListFile="cmstrlist.csv",IDCol=1,LatitudeCol=2, M Col=11)

4 |setCULocationsFromList(ListFile="plateau.csv",IDCol=1,RegionlCol=z2]

5 |setCULocationClimateStationweightsFromlist (ListFile="cowts. csv", StationIDCol=1,RegionlCol=2,Region2Col =3, TempWtCol =4, PrecWtCol =5)

& |Fi11CULocationClimateStationwed ghts (ID="72_ADCOB5" ,Weights="3146,0.68,0.68,3489,0.32,0.32")

7 [FillCULocationClimateStationweights(ID="36*",Weights="4664,1.0,0,3592,0,1.0")

g "

Fil1CULocationClimateStationWeights(ID="37*" ,Weights="2454,1.0,1.0")
2 |Fi11CuLocationC]imateStationweights (ID="3&*",Weights="3359,1.0,1.0")
10 |Fil1CULocationClimateStationWeights(ID="39*" Weights="7031,1.0,1.0"3
21 Fil1CULocationClimateStationiWed ghts (ID="45*" ,Weights="r031,1.0,1.0")
12 |Fi11CULocationC] imateStationwei ghts(ID="50*",Weights="3500,0.5,0.5,4664,0.5,0.5") =
17 |Fil1CULocationClimateStationWedghts{ID="51*",Weights="3500,0.5,0.5,4664,0.5,0.5") P
14 lei11-m s Tk T nb il ol £ TR E S L ol u £ 1 4_mn

Run All Commands Clear Commands

Result:

Output Files | problems | StateCl Components | StateMod Components

IUse the Run menufbuttons to run the commands, | 0% | 0% |Ready
Mainl

StateDMI Interface after Loading a Commands File

After loading the command file, StateDMI executes an initialization phase where each command is
checked for basic errors. In the above example, a warning (yellow marker) and failure (red marker) are
shown because the indicated commands reference files or folders that do not exist. These issues will need
to be addressed before a complete run can occur. The following sections summarize the main GUI
features.

3.3.1 Title Bar

The title bar at the top of the StateDMI interface indicates whether StateCU or StateMod commands are
being edited, indicates the name of the command file, and whether changes to commands have been
made.

| StateDMI (StateCU) - C:\Develop\StateDMI_SourceBuild\StateDMIMtestiregressionlserManualRefAFilICULocationsFromHydroBase\em2006.str-up. ..) EI[‘S_<|

" Main_Title

StateDMI Title Bar

4 - Getting Started 48

StateDMI Documentation

3.3.2 Menu Bar

The menu bar provides access to all the StateDMI features. StateDMI menus are generally consistent
with standard Windows software and are summarized below. Each menu is described in detail starting
with Section 3.4.

Menu Description

File Open and save data sets and commands files, select databases, select
whether StateCU or StateMod files are being processed. See Section
3.4.

Edit Cut/copy/paste and delete commands. See Section 3.5.

View Toggle visual components (e.g., map, network) on/off. See Section
3.6.

Commands | Insert and edit commands to generate StateCU and StateMod model
files. The sub-menus are specific to the model, although some general
commands are present for each model’s menus. See Section 3.7.
Run Run commands to produce model output files and other data products.
See Section 3.8. Users typically use the run buttons at the bottom of
the Commands area.

Results Display the results of processing commands. The menus are currently
disabled. Instead, the overall results are typically written to model
files and can be viewed as files or in tabular format by selecting a
component at the bottom of the main window. See Section 3.9.

Tools Display diagnostics. See Section 3.10.
Help Display program version and support information. See Section 3.11.
3.3.3 Tool Bar

The tool bar provides graphical shortcuts to facilitate common actions:

D

StateDMI Tool Bar

Main_Toolbar

The following tools are available in the toolbar:

[Open a new blank command file. If changes to the current command file have occurred,
the user is given the option of saving the current file. This is the same as
File...New...Command File.

= Open an existing command file. If changes to the current command file have occurred,
the user is given the option of saving the current file. This is the same as
File...Open...Command File.

= Save changes to the current command file. This is the same as File...Save...Command

File.

49 Getting Started - 5

StateDMI Documentation

3.3.4 Command List

The Commands list occupies the middle part of the main interface and contains commands that can be
processed to create StateCU and StateMod data files.

ri_ommands (25 commands, 0 selecked, 1 with Failures, 1 with warnings)

14 ReadCULocationsFromList{ListFile="cmstrlist.csv'", IDCol=1, NameCol=6A7 P
< |Fi11CULacationsFromHy droBase (ID=""",CULocType=Structure, RegionlType=County, RegionzTrpes
SetClUlacationsFromList{ListFile="cmstrlist.csv'", IDCal=1, LatitudeCal=2, AW Cal=11)
SetClUlacationsFromList{ListFile="plateau.csv",IDCal=1,RegionlCal=2)
SetClUlacationl] imateStationwel ghtsFromList{Li1stFile="cowts. csv", StationIDCol=1, Eegianili
FillCULacationZlimatestationweights(ID="7Fz_ADC 085" ,Weights="3146,0.68,0.68,3489,0.32,0.
FillCULacationZlimatestationweights(ID="36%" ,Weights="4864,1.0,0,35%92,0,1.0")
FillCULacationClimateStationweights(ID="37*",Weights="2454,1.0,1.0"7
FillCULacatiaonClimatestationweights(ID="38%",Weights="3359,1.0
10 |IFi11CULocationClimatesStationwedghts (ID="39*" ,Weights="7031,1.0,
Ju]
5

o fg wotm b0 bl

13 IFi11CULlocationClimatestationwed ghts (ID="45*" ,wWeights="7031, 1.
12 IFi11CULlocationClimatestationwed ghts (ID="50%",Weights="3500,0.

173 Ll i [l N 1 RSO SR,y [PO R O U A S) R S o S L 2 L T Ry R S T o W R Y Pl B U LY

£ *

Fun &l Commands] [Clear Commands

»4664,0.5,0.5") =

b
b
"y
4

Main_Commands

Commands List

The title for the Commands list indicates the number of commands, the number of commands selected
from, and whether any commands have failures or warnings. Some interface features (e.g., editing,
inserting new commands) operate on selected commands. The Commands list behaves according to
Windows conventions:

Single-click to select one item.

Ctrl-single-click to additionally select an item.

Shift-single-click to select everything between the previous selection and the current selection.
Double-click to display the command editor for the selected command.

Right-clicking over the Commands list displays a pop-up menu with useful command manipulation
choices, some of which are further described in following sections (e.g., edit menu choices are discussed
in Section 3.5 - Edit Menu). A summary of the pop-up menu choices is as follows:

Menu Choice Description

Show Command Status Displays a summary of problems encountered with the command, and
(Success/Warning/Failure) | recommendations for correcting the problems.

Edit Edit the selected command using an edit dialog, which provides error

checks and formats the commands. Double-clicking on a command
will also display the command editor.

Cut Cut the selected commands for pasting.

Copy Copy the selected commands for pasting.

Paste (After Selected) Paste commands that have been cut/copied, pasted after the selected
row.

Delete Delete the selected commands (currently the same as Cut).

Find commands(s) using Find commands in the command list using a substring. This displays

substring... a dialog to enter the substring; press Enter and then the right-click in

the found items list to go to or select found items.

6 - Getting Started 50

StateDMI Documentation

Menu Choice

Description

Find command using line
number-...

Find a command using a line number. This is useful when correcting
a command that generated an error during processing.

Select All

Select all the commands.

Deselect All

Deselect all the commands. This is useful when inserting commands
at the end of the list.

Convert Selected
Commands to # Comments

Convert selected commands to # comments.

Convert Selected
Commands from #
Comments

Convert # comments to commands.

Run All Commands (create
all output)

Run all commands and create output (e.g., files). This is equivalent to
using the Run All Commands in the Commands list area.

Run All Commands (ignore
output commands)

Run all commands but skip any output commands. This is useful for
testing data processing steps but final output is not yet needed.

Run Selected Commands
(create all output)

Run selected commands and create output (e.g., files). This is
equivalent to using the Run Selected Commands in the Commands
list area.

Run Selected Commands
(ignore output commands)

Run selected commands but skip any output commands. This is
useful for testing data processing steps but final output is not yet
needed.

Cancel Command
Processing

If commands are currently being processed, this allows the processing
to be cancelled. The current command being processed will finish
before action is taken.

Commands are numbered to simplify editing. The command list also includes left and right gutters to
display graphics that help with error handling. The following figure illustrates a command workflow with
errors.

rCommands {25 commands, 0 selected, 2 with Failures, 2 with warnings)

1 |ReadCULocationsFromList(ListFile="cmstrlist.csv",IDCol=1,NameCol=5) =

< @|Fi11CULocationsFromHy droBase (ID=""*",CllLocType=Structure, RegionlType=County, RegionzType=HUC)

T @|setCULocationsFromlist{ListFile="cmstrlist.csv", IDCol=1,Latitudelol =2, 2 Col=11]

4 |setClULocationsFromlist{ListFile="plateau.csv",IDCol=1,RegionlCal=2)

5 @setClUlocationClimatestationwet ghtsFromli st(L15tF1Te="cowts. csv'", StationIDCol=1,RegicnlCal=2,Reg

8 |FillCULocationClimatestationweights(ID="7z_ADC0ES" ,Weights="3146,0.68,0.68,3489,0.32,0.32")

7 |FillCULocationClimatestationweights(ID="36%",Weights="4664,1.0,0,3592,0,1.0")

& |Fi11CULocationClimateStationWei ghts(ID="37*",Weights="2454,1.0,1.0")

2 |Fi11CULocationClimateStationwei ghts(ID="38*",Weights="3359,1.0
10 |Fi11CULocationClimateStationwWeights(ID="39%" ,Weights="r031,1.0
11 IFi11CULocationSlimateStationwet ghts (ID="45%" ,Weights="7031,1.0

5

L) 0“:]
»1.0")
L] 'CI“:]
12 IFi11CULocationclimatestationwei ghts(ID="50%",Weights="3500,0.5,0.5,4664,0.5,0.5") v

13 F2T7m I e e et e e T S vemde e e cde e clide i e o P TR M el nd ol e MArms A Faral BN R TR (=]

< >

Clear Commands

Main_Commands_Error

I T

Run All Commands]

Command List lllustrating Error
The following error handling features are available:

o Clicking on the left gutter will hide and un-hide the gutter.

e The graphic in the left gutter indicates the severity of a problem (see below for full explanation).

o The colored box on the right indicates the severity of a problem and, when clicked on, positions
the visible list of commands to display the command corresponding to the problem.

51 Getting Started - 7

StateDMI Documentation

¢ Commands have three phases: 1) initialization, 2) discovery, 3) run. Initialization occurs when
reading a command file or adding a new command. The discover phase is executed only for
commands that generate information for other commands needed during editing, such as lists of
identifiers (discovery is not often used in StateDMI but is used extensively in the TSTool
software). The run phase is when commands are processed to generate results.

e Positioning the mouse over a graphic in the left or right gutter will show a popup message with
the problem information. The popup is only visible for a few seconds so use the right-click
popup menu Show Command Status (Success/Warning/Failure) for a dialog that does not
automatically disappear. See also the Results area Problems tab.

The meaning of the gutter symbols is described in the following table.

Command List Error Handling Graphics

Command List Left

Gutter Graphic Description
No graphic Command is successful (a warning or failure has not been detected).
L] The status is unknown, typically because the status will not be known

until a command runs.

The command has a problem that has been classified as non-fatal. For
example, a command to fill data may be used but results in no data being
filled. In general, commands with warnings need to be fixed unless work
is preliminary.

The command has failed, meaning that output is likely incomplete. A

(X} problem summary and recommendation to fix the problem are available
in the status information. Commands with failures generally need to be
fixed. Software support should be contacted if the fix is not evident.

3.3.5 Results

The Results area shows the results of processing commands.

rResulks

Qukput Files | Problems | StatecU Components | StateMod Components

Main_ResultsChoices

StateDMI Results Area

Results can generally be displayed as output files and a component table, and a summary of problems is
also provided. See below for more information.

Results — Output Files

The main purpose of StateDMI is to prepare data set files with command workflows. The resulting model
files may be long, complex, and difficult to review. However, an experienced user may simply want to
scroll through the StateDMI output files and visually scan the data for completeness and accuracy. To
facilitate this approach, the list of files created during commands processing is displayed and can be
selected from the Output Files tab in the Results area. After selecting an output file, Notepad is used to

8 - Getting Started 52

StateDMI Documentation

display the file. Additional files can be selected if desired, with each being displayed in a separate
Notepad window. Currently, only files created during processing are listed (additional input files are not

listed).

Results — Problems

The Problems tab in the results area displays a summary of problems from all commands.

rResults
Cutput Files Problems | Skatecl) Components | StateMod Components
|Sever'rly Type Command Problem Recommendation

1 WARNMING [CommandRun FeadClULocationsFromList(ListFile="c... |The input file "C;\DevelophStateDM_So... |Specify an existing input file (may be ... A
2 FAILURE CommandRun SetCULocationsFromList(ListFile="cms... |List file " \Develop'StateDM_SourceB ... |Verify that the file exists and is readab ...

3 FAILURE ComimandRun SetCULocationsFromList(ListFile="cms. .. |Unexpected error setting CU location d... |See log file for details.

4 FLILURE CommandRun SetCULocationsFromList(ListFile="plat... |List file "C:\DevelophStateDM_SourceB. .. |Werify that the file exists and is readab ..

5 FAILURE CommandRun SetCULocationsFromList(ListFile="plat... |Unexpected error setting CU location d... |See log file for details.

R FAILLIRFE CommandRun SetCLLncatinnClimateStatinohWeinkt=Fr_ L ist fils "CDevelnniState Dbl SourceR Werify that the file sxists and is readab M

MainResultsProblems

This summary may be easier to use than individually displaying the status for each command with a
problem. In the future, functionality may be enabled to click on a row and select the offending command
in the command list. See also the Check* () commands and the Wi t eCheckFi | e() command,
which will create a check file in CSV and HTML format.

Results — StateCU and StateMod Components

Another option for viewing data is to display tabular records of the results, by data set component. To do
s0, select from the lists in the StateCU Components and StateMod Components tabs. For most
command files, only one list will have choices but in some cases both lists may have choices. StateDMI
internally manages data for each model. After making a selection, a simple tabular display will be shown,
as in the following figure. The columns are typically shown in the order listed in the model
documentation, in order to agree with model file output.

L | StateDMI - CU Locations

AVAILABLE
WATER
NUMBER OF |CONTENT
LATITUDE |ELEVATION CLIMATE AWC,
D NAME (DEC. DEG.) |(FT) REGION1 REGION2 [STATIONS [(FRACTION)
1 [380645 |GUTHRIE THOMAS DITCH 3984 SUMMIT 14010002 2 0.0500] (A
2 [360649 |HAMILTON D&YIDSON DI 978 SUMMIT 14010002 2 0.0800
3 [360660 |HIGH MILLER DITCH 3560 SUMMIT 14010002 z 01200
4 [80662 |HOAGLAND CAMAL 3997 SUMMIT 14010002 2 01200
5 [360671 |MDEFENDENT BLUE DIT 874 SUMMIT 14010002 z 01300
§ |360667 |KIRKWOOD DITCH 3977 SUMMIT 14010002 2 0.0500
7 [380709 |LOBACK DITCH 40.01 GRAND 14010002 2 0.0900
8 [360725 |MARY DITCH 62 SUMMIT 14010002 z 00600
0 [360728 |MAT MO1 OITCH 3963 SUMMIT 14010002 2 0.0500] v
Export] [Print] [oK]

Main_Results_CULocations

Example Tabular Results Display

The data shown in the table can be viewed, copied to other applications, saved to a file, and printed.
Printing may not provide the best representation of the data, especially if the table is very wide.
Consequently, the file representation of results (in the Output Files tab) may be more appropriate for

53

Getting Started - 9

StateDMI Documentation

printing. Columns can be sorted by right clicking on a column heading and picking the sort order. Note
that some output files may correspond to multiple components. This occurs when a file has a complex
structure that cannot easily be flattened into a single table.

3.3.6 Status Message Areas

The title bar and status message areas provide useful information about the current state of the interface
and command list.

IPrncessed: writeheckFile! OutputFile="cmz006, str. SkakeDMI, check, html™) Ready |

Main_Status

Status Message Area
The status message area at the bottom of the StateDMI interface is split into three parts:

1. The left-most part is used to display general messages. For example, if commands are being run,
this area indicates the command that is being processed.

2. The second part shows two progress bars that are updated when processing commands. The left
progress bar shows the overall progress in the command file (percent of commands that have
been processed). The right progress bar shows the progress within the command — this capability
is only enabled in some commands that take longer to run.

3. The right-most status field provides a one-word status indicating when you should wait. The
command processor is implemented as a separate thread in the program. Consequently, when
commands are being processed, the application does not totally freeze while work occurs.
Because it is possible to perform other tasks while the commands are being processed, an
hourglass cursor is not used during processing and instead the progress meter and the one-word
status should be used to know if commands are currently being processed.

3.3.7 Map (Under Development)

The map interface uses a general mapping component available in other CDSS software. See the
GeoView Mapping Tools Appendix in the StateView and TSTool software for more information. The
map interface is not currently integrated with StateDMI commands but is used to provide a reference of
features that may be modeled with StateCU and StateMod. To display a map, use the File...Show Map
menu described below. Then select a GeoView project file (.gvp). For example, select the same project
file used by the StateMod GUI. The use of the map interface is being evaluated.

10 - Getting Started 54

StateDMI Documentation

3.4 File Menu - Main Input and Output Control

The File menu provides standard input and output features as described below.

Z=8 Edit “iew Commands

Open
Mew

Save

Properties

Set Working Direckory ...

Switch ba SkakeMaod
Exit
File Menu

3.4.1 File...Open Menu

The File...Open menu allows opening input sources.

| Command File ...

Madel Metwark. ...

HydroBase ... |

File...Open Menu

Menu_File

Menu_File_Open

The File...Open...Command File menu allows an existing command file to be opened. A new command
file can be started using the File...New...Command File menu item or corresponding tool on the tool bar.

The File...Open...Model Network allows a model network to be viewed and saved (see Section 3.6.1

and later).

The File...Open...HydroBase menu opens a connection the HydroBase database (see Section 3.2).

3.4.2 File...New

The File...New menu allows creation of a new command file and model network (see also Section 3.6.1

and later for more information about the network).

| Command File
Maodel Metwark, ...

File...New Menu

MenuFile_New

55

Getting Started - 11

StateDMI Documentation

3.4.3 File...Save

The File...Save menu saves the contents of the Commands list.

Commands s ...

MenuFile_Save

File...Save Menu

If a new command file has been started, you are prompted to specify a file name to save. The commands
can also be saved to a new file.

3.4.4 File...Properties

The File...Properties...HydroBase menu displays the following dialog, which is available if a
HydroBase connection has been made. The properties show HydroBase database information, including
the database that is being used, database version, and the water districts that are in the database being
queried. The water districts are determined from the structure table in HydroBase. The information that
is shown is consistent with that shown by other State of Colorado tools and is useful for troubleshooting.

L StateDMI| - HydroBase Properties E|@|PZ|

HydroBase Database Host: AMAEON b
ODEC Data Source Name: HydroBase (internally defined)
Database design wersion appears to be: Z00705ELEOO070E5ZE

Databasze does use stored procedures.
No time series product annmotation provider choices available.
The database wused by StateDMNI appears to include the following water

districts, based on the structure information in the database

(transhasin structures are not reflected in the list):

1l - South Platte: Greeley to Balzac
Z - Bouth Platte: Denwver Gage to Greesley
3 - Cache La Poudre Riwver
4 - Big Thompson Riwver
E - Bc. VWrain Creek
& - Boulder Cresk
7 - Clear Creek
8 - South Platte Cheesman to Denwer Gage
3 - Eear Creek
10 - Fountain Creek
11 - Arkansas: Headwaters to S5alida b
£ >
[Search H Prink H Save H Close]
Ready

Menu_File_HydroBaseProperties

HydroBase Properties

3.4.5 File...Set Working Directory

12 - Getting Started 56

StateDMI Documentation

The File...Set Working Directory menu item displays a file chooser dialog that allows you to select the
working directory. The working directory, when set properly, can greatly simplify command files
because relative file paths can be used for input and output. The working directory is normally set in one
of the following ways, with the current setting being defined by the most recent item that has occurred:

The startup directory for the StateDMI program,

The directory where a command file was opened,

The directory where a command file was saved,

The directory specified by a Set Wor ki ngDi r () command,
The directory specified by File...Set Working Directory.

agrwdE

The menu item is provided to allow the working directory to be set before a command file has been saved
(or opened) and it typically eliminates the need for Set Wor ki ngDi r () commands in command files.

3.4.6 File...Switch to StateCU and File...Switch to StateMod

The File...Switch to StateCU menu switches the StateDMI interface to operate on a StateCU data set.
The File...Switch to StateMod menu switches the StateDMI interface to operate on a StateMod data set.
These menus are necessary because StateDMI is designed to only show one model’s features at a time. A
noticeable change in behavior is that the Commands menu choices will reflect commands for the active
model.

3.4.7 File...Exit

The File...Exit menu exits StateDMI. You will be prompted to confirm the exit. If you have edited the
command list you will be prompted to save the commands.

57 Getting Started - 13

StateDMI Documentation

3.5 Edit Menu — Editing Commands

The Edit menu can be used to edit the Commands list. Specific edit features are described below. Right
clicking over the Commands list provides a popup menu with many choices described below.

([Yigw Commands Fun Toals F
Cut Commandis)
Copy Commandis)

Delete Command(s)

Select All Cormmands

Deselect All Commands

Caommand. ..

Command File, ..

Corvett selecked commands ko # comments

Convert selected commands from # comments

Edit Menu

Menu_Edit

3.5.1 Cut/Copy/Paste/Delete

The Edit...Cut and Edit...Copy menu items are enabled if there are items in the Commands list. Cut
deletes the selected item(s) from the Commands list and saves its information in memory. Copy just
saves the information in memory. After Cut or Copy is executed, select an item in the Commands list
and use Paste (see below). Currently, these features do not allow interaction with other
applications. However, Ctrl-C and Ctrl-V do work with many text entry fields in StateDMI.

Paste is enabled if one or more items from the Commands list has been cut or copied. To paste the item,
select an item in the Commands list and press Edit...Paste Command(s) (After Selected). The new
item will be added after the selected item(s). To insert at the front of the list, you must paste after the first
item, and then cut and paste the first item to reverse the order.

The Delete choice currently works exactly like the Cut choice.

3.5.2 Select All/Deselect All Commands

The Edit...Select All Commands and Edit...Deselect All Commands menu items are enabled if there
are items in the Commands list. Use these menus to facilitate editing. Refer to the Commands list title
to see how many commands are currently selected.

3.5.3 Edit Command

The Edit...Command... menu can be used to edit an individual command. StateDMI will determine the
command that is being edited and will display the editor dialog for that command, performing data
checks. This feature is also accessible by right clicking on the Commands list and selecting the Edit
Command... menu item.

14 - Getting Started 58

StateDMI Documentation

3.5.4 Edit Command File

The Edit...Command File menu choice can be used to edit a commands file using Notepad. Currently,
there is no way to change the editor. You must re-read the command file into StateDMI after using the
editor in order for StateDMI to recognize the commands in the file.

3.5.5 Convert Selected Commands To/From Comments

The Edit...Convert selected commands to # comments menu can be used to toggle selected
commands in the Commands list to comments (lines that begin with #). This is useful when temporarily
disabling commands, rather than deleting them.

The Edit...Convert selected commands from # comments menu can be used to toggle selected
commands in the Commands list from comments back to active commands. This is useful when re-
enabling commands that were temporarily disabled.

Multi-line / * */ comment notation can be inserted using the Commands...General — Comments
menu.

59 Getting Started - 15

StateDMI Documentation

3.6 View Menu — Enable/Disable Display Features

The View menu enables and disables important StateDMI display features.

Commands Run

| Map
Model Metwork
|+ Three-level Commands Menu

MenuView

View Menu

The View...Map menu item can be used to display a map. Currently this feature is under development.
Use the file selector dialog to open a GeoView project file (gvp). See the GeoView Mapping Tools
Appendix in StateView and TSTool documentation for more information about mapping tools. Map
features are envisioned to be enhanced in future software releases. GeoView project files are available
for StateView and StateMod data sets and can be selected to display in StateDMI.

The View...Model Network menu item displays a StateMod model network and allows edits to the
network. A model network represents the rivers and model nodes in a diagram, where the geographical
representation of rivers have been straightened and oriented to facilitate presentation of the network.
StateDMI commands can then extract station lists from the network for processing into data files. See
Section 3.6.5 for more information.

The Three-level Commands Menu option allows switching the command menu format. This option is
available primarily for developers and the default setting should not normally be changed.

3.6.1 Updating an old Makenet Network to New Format

Previously, the Makenet program was used to process a model network and produce StateMod model
files. The disadvantage of this approach was that the network file needed to be manually edited (there
was no graphical user interface) and the format of the file sometimes resulted in errors. StateDMI
understands how to read the old Makenet network file; consequently, the older files should be updated to
the new convention to take advantage of new features and simplify maintenance. To update an old
Makenet file to the new format:

1. If necessary, for an existing data set, rename the old *.net file to another name (e.g.,
XXX_orig.net). In many cases, StateDMI will be used to create an updated data set and therefore
a rename is unnecessary because old and new files are in different directories.

Select the File...Open...Model Network menu and select the old Makenet *.net file.

3. The StateDMI software will read the Makenet network file and display the network in a diagram
window. During this process, a number of pieces of information are lost, including stream labels
(now drawn with annotations), and page size (now setup as a layout). See the next section for
information about editing the network. Also during this step, adjustments to the network are
made. For example, blank nodes are removed since they are no longer needed. Confluence
nodes are explicitly represented in the network because they are needed for visualization. Some
node types like | nport are converted to Ot her — all node types in the network now correspond
to a station type in StateMod data sets. The coordinates that are used after this step are those
defined in the Makenet file — it is envisioned that the coordinates could be scaled to physical
coordinates like UTM to allow overlaying spatial data layers.

N

16 - Getting Started 60

StateDMI Documentation

5.

After the network is displayed, use the Save XML Network File tool in the network editor to save
the representation to a new network file. The file name can adhere to the same naming
convention as before (use *.net).

To modify the network, use the features described in Section 3.6.5.

Below is an example from a new generalized network file. The file format is XML (eXtensible Markup
Language), which is free format and allows new properties to be added as needed. Although the file can
be modified with an editor, the graphical network editor should be used in most cases in order to enforce
data conventions. The following example serves as the documentation for the network file format and the
format is described in the comments at the top of the file.

<I--
H#H>
#>
#>
#>
#>
#>
#H>
H#H>
#H>
H#H>
#H>

#>

#>

#>

#>

StateMod XML Network File

File generated by...

program: StateDMI 3.08.00 (2009-06-10)
user: rrb

date: Mon Jun 15 17:37:05 MDT 2009
host: DWRDENRRBXPPC2

directory: D:\Cdss\Data\Sp2008L\StreamSW

command line: StateDMI

#> The StateMod XML network file is a generalized representation
#> of the StateMod network. It includes some of the information
#> 1In the StateMod river network file (*.rin) but also includes
#> spatial layout information needed to produce a diagram of the
#> network. The XML includes top-level properties for the

#> network, and data elements for each node in the network.

#> Each network node is represented as a single XML element

#> Node properties are stored as property = "value".
#>

#> Node connections are specified by either a

#> <DownstreamNode ID = "Node ID"/>

#> or

#> <UpstreamNode 1D = "Node ID"/>

#> tag. There may be more than one upstream node, but at most
#> one downstream node.

#> The XML network is typically created in one of three ways:

#> 1) An old "makenet" (*.net) file is read and converted to

#> XML (e.g-, in StateDMI). In this case, some internal

#> identifiers (e.g., for confluence nodes) will be defaulted in
#> order to have unique identifiers, and the coordinates will be
#> those from the Makenet file, in order to preserve the diagram
#> appearance from in the original Makenet file.

#> 2) A StateMod river network file (*.rin) file is converted to
#> XML (e.g., by StateDMI). In this case, confluence nodes will
#> not be present and StateDMI can be used to set the coordinates
#> to actual physical coordinates (e.g., UTM). The coordinates
#> 1In the diagram will need to be repositioned to match a

#> straight-line representation, if such a representation is

#> desired.

#> 3) A new network is created entirely within the StateDMI or

#> StateModGUI interface. In this case, the positioning of nodes
#> can occur as each node is defined in the network, or can occur
#> at the end.

61 Getting Started - 17

StateDMI Documentation

#>

#> Once a generalized XML network is available, StateDMI can be
#> used to create StateMod station files. The node type and the
#> "lIsNaturalFlow" property are used to determine lists of

#> stations for various files.

#>

#> The following properties are used in this file. Elements are
#> Indicated in <angle brackets> with element properties listed
#> below each element.

#>

#> NOTE:

#>

#> If any of the following have an ampersand (&), greater than (&)
#> or less than (<) in them, these values MUST be escaped (see

#> below):

#> - Page Layout 1D

#> - Node ID

#H> - Downstream Node 1D

#> - Upstream Node ID

#> - Link Upstream Node 1D
#> - Link Downstream Node 1D
#H> - Annotation Text

#>

#> The escape values are the following. These are automatically
#> inserted by the network-saving software, if the characters are
#> 1nserted when editing a network programmatically, but if the
#> network is edited by hand they must be inserted manually.

#>

#> & -> &

#> > -> >

#> < -> &It;

#H>

#> <StateMod_ Network> Indicates the bounds of network

#> definition

#>

#> XMin The minimum X coordinate used to

#> display the network, determined from
#> node coordinates.

#>

#> YMin The minimum Y coordinate used to

#> display the network, determined from
#> node coordinates.

#>

#> XMax The maximum X coordinate used to

#> display the network, determined from
#> node coordinates.

#H>

#> YMax The maximum Y coordinate used to

#> display the network, determined from
#> node coordinates.

#>

#> LegendX The X coordinate of the lower-left point
#> of the legend.

#>

#> LegendY The Y coordinate of the lower-left point
#> of the legend.

#>

#> <PageLayout> Indicates properties for a page layout,
#> resulting in a reasonable representation
#> of the network in hard copy. One or
#> more page layouts may be provided in
#> order to support printing on various
#> sizes of paper.

18 - Getting Started 62

StateDMI Documentation

#>

#> IsDefault Indicates whether the page layout is the
#> one that should be loaded automatically
#> when the network is first displayed.

#> Only one PagelLayout should have

#> this with a value of "True".

#> Recognized values are:

#H> True

#> False

#>

#> PaperSize Indicates the paper size for a page

#> layout. Recognized values are:

#> 11x17 - 11x17 inches

#> A - 8.5x11 inches

#> B - 11x17 inches

#> C - 17x22 inches

#> D - 22x34 inches

#> E - 34x44 inches

#> Executive - 7.5x10 inches

#> Legal - 8.5x14 inches

#> Letter - 8.5x11 inches

#>

#> PageOrientation Indicates the orientation of the printed
#> page. Recognized values are:

#> Landscape

#> Portrait

#>

#> NodeLabelFontSize Indicates the size (in points) of the
#> font used for node labels.

#>

#> NodeSize Indicates the size (in points) of the
#> symbol used to represent a node.

#>

#> <Node> Data element for a node in the network.
#>

#> 1D Identifier for the node, matching the
#> label on the diagram and the identifier
#> in the StateMod files. It is assumed
#> that the station identifier and river
#> node identifier are the same. The

#> identifier usually matches a State of
#> Colorado WDID, USGS gage ID, or other
#> standard identifier that can be queried.
#> Aggregate or "other" nodes use

#> identifiers as per modeling procedures.
#>

#> Area The natural flow contributing area.

#>

#> AlternateX The physical coordinates for the node,
#> AlternateY typically the UTM coordinate taken from
#> HydroBase or another data source.

#>

#> Description A description/name for the node,

#> typically taken from HydroBase or

#> another data source.

#>

#> IsNaturalFlow If "true", then the node is a location
#> where stream flows will be estimated

#> (and a station will be listed in the

#> StateMod stream estimate station file).
#> This property replaces the old IsBaseflow property.
#H>

#> Islmport IT "true”, then the node is an import

63 Getting Started - 19

StateDMI Documentation

#H> node, indicating that water will be

#> introduced into the stream network at
#> the node. This is commonly used to

#> represent transbasin diversions. This
#> property is only used to indicate how
#> the node should be displayed in the

#> network diagram.

#>

#> LabelPosition The position of the node label, relative
#> to the node symbol. Recognized values
#H> are:

#> AboveCenter

#> UpperRight

#> Right

#> LowerRight

#> BelowCenter

#> LowerLeft

#> Left

#> UpperLeft

#H> Center

#>

#> Precipitation The natural flow contributing area precipitation .
#>

#> Type The node type. This information is used
#> by software like StateDMI to extract

#> lists of nodes, for data processing.

#> Recognized values are:

#> Confluence

#> Diversion

#> Diversion and Well

#> End

#> Instream Flow

#> Other

#> Reservoir

#> Streamflow

#> well

#> XConfluence

#>

#> X The coordinates used to display the node
#> Y in the diagram. These coordinates may
#> match the physical coordinates exactly,
#> may be interpolated from the coordinates
#> of neighboring nodes, or may be the

#> result of an edit.

#>

#> <DownstreamNode> Information about nodes downstream

#> from the current node. This information
#> is used to connect the nodes in the

#> network and is equivalent to the

#> StateMod river network Ffile (*.rin)

#> "cstadn' data. Currently only one

#> downstream node is allowed.

#>

#> ID Identifier for the node downstream from
#> the current node.

#>

#> <UpstreamNode> Information about nodes upstream from the
#> current node. Repeat for all nodes

#> upstream of the current node.

#H>

#> ID Identifier for the node upstream from

#> the current node.

#>

20 - Getting Started 64

StateDMI Documentation

#H> <Annotation> Data element for a network annotation.
#>

#H> FontName The name of the font in which the

#> annotation is drawn. Recognized values
#> are:

#> Arial

#H> Courier

#> Helvetica

#>

#H> FontSize The size of the font in which the

#> annotation is drawn.

#H>

#> FontStyle The style of the font in which the
#> annotation is drawn. Recognized values
#> are:

#H> Plain

#> Italic

#H> Bold

#> Boldltalic

#H>

#> Point The point at which to draw the

#H> annotation. The value of "Point"

#> must be two numeric values separated by
#> a single comma. E.g:

#> Point="77.44,9.0"

#>

#> ShapeType The type of shape of the annotation.
#> The only recognized value is:

#> Text

#>

#> Text The text to be drawn on the network.
#>

#H> TextPosition The position the text will be drawn,
#> relative to the "Point" value.

#> Recognized values are:

#> AboveCenter

#> UpperRight

#> Right

#> LowerRight

#> BelowCenter

#H> LowerLeft

#> Left

#> UpperLeft

#> Center

#H>

#H> <Link> Data element for a network link.

#>

#H> FromNodelD The ID of the node from which the link
#> is drawn.

#H>

#> LineStyle The style in which the link line is
#> drawn. The only recognized value is:
#> Dashed

#H>

#> ShapeType The type of shape being drawn. The only
#> recognized value is:

#> Link

#H>

#H> ToNodelD The ID of the node to which the link
#> is drawn.

#H>

#>

#> EndHeader

65 Getting Started - 21

StateDMI Documentation

——
<StateMod_Network
XMin = ""-550.000000"
YMin = *-425.000000""
XMax = ''1650.000000""

YMax = "1275.000000"

LegendX = "1274.000000"

LegendY = ""-63.000000"">

<PagelLayout ID = "Page Layout #1'"
IsDefault = "true"
PaperSize = "E"
PageOrientation = "Landscape™
NodeLabelFontSize = "12"
NodeSize = '14"/>

<PagelLayout ID = "Page Layout #2'

IsDefault = "False"
PaperSize = "D"
PageOrientation = "Landscape™

NodeLabelFontSize = "10"
NodeSize = ""20"/>

<PagelLayout ID = "Page Layout #3"
IsDefault = "False"
PaperSize = "B"
PageOrientation = "Portrait”
NodeLabelFontSize = "10"
NodeSize = ""14"/>

<PagelLayout ID = "'Page Layout #4"

IsDefault = "False”
PaperSize = "'C"
PageOrientation = "Landscape™

NodeLabelFontSize = "10"
NodeSize = "20"/>
<PagelLayout ID = "'Page Layout #5"

IsDefault = "False"
PaperSize = "D"
PageOrientation = "Landscape™

NodeLabelFontSize = "10"
NodeSize = ""20"/>
<Node ID = "64_AWPO03"

AlternateX = ""-999.0"
AlternateY = "-999.0"
Description = """

IsBaseflow = "false"
IsNaturalFlow = "false"
Islmport = "false”
LabelPosition = "AboveCenter"
Type = "Well"

X = "1523.958333"

Y = "565.291667"">

<DownstreamNode 1D = "06764000"/>
</Node>

<Node ID = "'64_AWP0O02"
AlternateX = "-999.0"
AlternateY = ""-999.0"
Description = "
IsBaseflow = "false"
IsNaturalFlow = "false"
Islmport = "false"
LabelPosition = "BelowCenter"
Type = "Well"
X '"1527.083333"
Y ''380.916667"">

22 - Getting Started 66

StateDMI Documentation

<DownstreamNode ID = *'64_AWP004"/>

</Node>

<Node ID = "'64_AWP0O04"
AlternateX = "-999.0"
AlternateY = ""-999.0"
Description = "
IsBaseflow = "false"
IsNaturalFlow = "false"
Islmport = "false"
LabelPosition = "AboveCenter"
Type = "Well"

X = "1526.562500"

Y = "413.208333">

<DownstreamNode ID = "64_AWP005"/>

<UpstreamNode 1D = "64_AWP002"/>
</Node>

... many nodes omitted ...

<Node 1D = "END"

AlternateX = "-999.0"
AlternateY = "-999.0"
Description = "

IsBaseflow = "false"
IsNaturalFlow = "false"
Islmport = "false"
LabelPosition = "AboveCenter"
Type = "End"

X = "1600.000000""

Y = ""524.041667">

<UpstreamNode ID = *6499999"/>
</Node>

<Annotation
ShapeType=""Text"
Text=""SPDSS Lower South Platte River Basin Water Resources Planning Model"
Point="594.431373,1053.161477"
TextPosition="Center"’
FontName="Helvetica"
FontStyle="Plain”
FontSize="72"/>

--- many annotations omitted ...
<Link
ShapeType=""Link"
LineStyle="Dashed"
FromNode 1D=""0100513"
ToNodelD=""Jackson_I1"/>
... many links omitted ...

</StateMod_Network>

3.6.2 Manually Creating a New StateMod Generalized Network

If a new model data set is being prepared (or a network for an existing data set cannot be created in
an automated way), a generalized network can be manually created using the following steps. In
this process, each node must be added to the network.

67 Getting Started - 23

StateDMI Documentation

1. Before creating the network in StateDMI, it is useful to have an idea of the general layout of the
network, where the streams in the data set follow the general geographical orientation. If the
river basin runs north south, then a portrait page orientation should be used. If the basin runs
east/west, then a landscape page orientation should be used.

2. After StateDMI has started, use the File...New...Model Network menu item. A network editor
window will be shown, with only a page outline, legend, and end node.

3. The network editor requires that a page size and orientation be specified (see the Section 3.6.5
Page Properties information for details). To start, pick a page layout that will be used for
editing and hardcopy review. If the network has many nodes, it may be necessary to pick a page
size for a plotter (if a plotter is available). If the network has only a few nodes, then 8.5x11 or
11x17 page size may be sufficient.

4. Add a node by right clicking on the end node and selecting Add Upstream Node. Repeat as
many times as necessary to complete the network. During this process, it may be necessary to
change the printed node and font sizes appropriate for the hardcopy network. See also other
network editor features described in Section 3.6.5, which may be used to position nodes.

5. Use the Save As XML tool at the top of the network editor to save the network file. This file can
then be used by StateDMI commands and can be opened later with File...Open...Model
Network.

The above procedure initializes a StateMod generalized network. Once created, the network editor
features can be used to change the network.

3.6.3 Automatically Creating a New StateMod Generalized Network

Features to automate creation of a network have been tested during StateDMI development. However,
various technical issues still remain and these features are not available for production work. The basic
procedure is envisioned to use the following steps:

1. Determine a list of stations to be modeled (e.g., from HydroBase).

2. Query location coordinates (e.g., latitude/longitude or UTM) and upstream/downstream
relationships (e.g., from HydroBase and/or NHD [National Hydrography Dataset]) and create a
network based on physical coordinates (stored in the “alternate coordinates” in the network file).

3. As appropriate, utilize existing and new network editor features to adjust the network diagram to
be more readable and suitable for modeling. For example, separate nodes that may be too close
together to read labels. The network node coordinates will therefore reflect user edits, but the
original “alternate” coordinates will still be available and could be used to draw a geographical
representation of the network.

Use of NHD may facilitate referencing diversion, reservoir, stream gages, and other locations to rivers,
thus allowing automated determination of upstream to downstream relationships. However, this
information is currently available in CDSS only on a limited basis and therefore the automated creation of
the network has not been possible.

3.6.4 Creating a New StateMod Generalized Network from an Existing StateMod River Network File

If an existing StateMod data set has no corresponding Makenet *.net file, it is possible to create a
generalized network file from the StateMod river network file (*.rin). However, StateDMI features to do
so have been tested only during development and technical issues remain. The basic procedure is
envisioned to use the following steps:

24 - Getting Started 68

StateDMI Documentation

1. Read the list of stations to be modeled from the StateMod *.rin river network file. This supplies
upstream/downstream relationships but does not provide coordinates for the network.

2. Query location coordinates (e.g., latitude/longitude or UTM) from HydroBase and create a
network based on physical coordinates (stored in the “alternate coordinates” in the network file).
Interpolate missing coordinates.

3. As appropriate, utilize existing and new network editor features to adjust the network diagram to
be more readable and suitable for modeling. For example, separate nodes that may be too close
together to read labels.

The above capabilities are available on a limited basis with current StateDMI commands. However, all
technical issues have not been resolved and therefore these features are currently not utilized in
production.

3.6.5 StateMod Model Network Editor

The View...Model Network menu item displays the editor window for the StateMod generalized model
network (*.net). This editor is available in StateDMI to make adjustments to the model network before
file generation. It is also available in the StateMod GUI, for small adjustments to the data set. It is
envisioned that the network editor will continue to be used with StateDMI for configuration model
networks and be used to a lesser extent in the StateMod GUI for editing. It is also envisioned that
additional tools will be added to the network editor to allow for more targeted use in StateDMI, and
StateMod GUI, for example to display the return flow locations, and to display the stations that are
referenced in an operating rule.

To use the network editor to adjust an existing model network, use the following basic steps:

1. Select the View...Model Network menu item and select the network (*.net) file to be edited.

2. The network file will be read and displayed in the editor window (see below).

3. Use the editor to add, delete, or move stations (nodes), or change the information associated with
the nodes. Also add annotations for stream names and main titles (see below for more
information).

4. Use the Save XML Network File tool to resave the file. This file can then be used with
ReadXXXSt at i onsFr omNet wor k() commands when processing data.

5. Repeat any of the steps, as necessary.

Several issues must currently be considered when using the network editor:

1. When the XML file is written, the header contains the last commandsfile that is run. If these
commands contain strings that are prohibited in XML, errors may occur when the network file is
read for processing. In particular, lines of dashes “-----* are prohibited, even in comments in the
commands file. StateDMI will try to remove offending text when writing the XML file, but
additional cases may arise. The workaround is to edit the XML file and remove the commands
from the header.

2. Itisenvisioned that an integrated approach can be taken where the network that is opened can be
used in modeling without supplying a file name for the network file. Therefore, some commands
will process the in memory network if it has been opened. This approach is being evaluated.
However, if a command reads a network file during processing and the network display is open,
the network display is not currently automatically refreshed. Although it is envisioned that the
visual representation of the network is fully integrated with commands processing, keeping the
steps separate at this time is probably wise, to avoid confusion. In other words, edit the network
interactively and save the result, and then specify the file name in commands.

69 Getting Started - 25

StateDMI Documentation

The following figure shows the network editor after a network file has been read and displayed:

{ iStateDMI - StateMod Network -10] x|
EEC PRI
[L wl‘iT“‘tp-‘Eh L*-.*-." %o B ot ot Tt o too
3 -f -l e i
e T A A
o
L [J——
L -
B - [- -
o - o--
o~ o - -
- [-
B - o -
-] [- -
~Page Properties ~Mode Properties
Page Layout: |11x1 7 Landscape j
et Mame
iE Typee:
— Default Layout? [5 i
T = ezcription:
::_ L_I:L Paper Size: |B - 11x17 &~ I 5
—_ Paper Crientation: Landscape 'l . ‘r‘:
T = . . .] -
.l —— __—IJ—'- Frintec Font Size: E "I e
0 F=ly Prirted Mode Size: E - I
Acdd Layout | Delete Layout |
I 353 2B57SE, -232 551057

NetworkEditor

Network Editor
The network editor consists of the following areas:

e Tools (top) — initiate actions (e.g., printing), switch mode, edit tools
Main canvas (middle) — area where editing occurs

o Overview/reference window (lower left) — indicates the current view as a subset of the total
network

o Page properties (lower middle) — the settings used for the network display, if printed

o Node properties (lower right) — the properties of the node that was last selected.

26 - Getting Started 70

StateDMI Documentation

Tools

The tools that are available include the following:

o

» &

2 O3

®

ndo Fedo

K7
e
1

Main Canvas

Print the entire network using the selected layout (page size, orientation, etc.) This is
useful for generation of final products.

Print the visible network using letter-sized paper. This is useful for troubleshooting or
reviewing specific parts of the network.

Save the entire network to an image file.

Save the visible network extent to an image file. This is useful for creating inserts for
documents.

Save the network to the XML file.

Refresh the network (redraw).

Zoom out by 50%, based on the current extent.

Reset the scale to match the layout.
Zoom in by 50%, based on the current extent.
If a node position has changed, allow it to be undone (or redone).

Pan the visible extent of the network — currently this is the default when clicking on
other than a node.

Information tool — currently unused. It is envisioned that this tool could be enabled to
show model-related data from a data set.

Select a feature — currently this is the default when clicking on a node.

The main canvas displays the network for the current scale and location. Use the tools to scroll, pan, or
zoom to a specific region.

To move an existing node, select it with the mouse and drag to the new location. Use the Undo/Redo
tool if necessary to discard a change.

See sections below for information about adding/moving/deleting nodes and other actions.

Right-clicking on the canvas (hot near a node), displays the following menu:

Add Annotation
add Link.

Find Mode
Shaded Rivers
v Draw Text
v Editable

v Show Margins
Show Half-Inch Grid
Snap ko Grid
Wyrite Metwork as Lisk Files

NetworkEditor_Popup

71 Getting Started - 27

StateDMI Documentation

The actions for the menu items are described in the following table.

Network Editor Popup Menu ltems

Menu Item Action

Add Annotation | Add an annotation at the point where the mouse was clicked. See Section
3.6.5.2 below.

Add Link Add a link between nodes. See Section 3.6.5.3 below.

Find Node Display the following dialog, listing all nodes in the network.

Select the Mode ko Fi x|

Select the node 1o find in the netwark
. &

Ok | Cancel

NetworkEditor_Popup_FindNode

After selecting a node and pressing OK, the network will scroll so that the
selected node is in the center of the network window.

Shaded Rivers If selected, shade the rivers based on stream order. This is useful to emphasize
upstream to downstream progression.

Draw Text If selected, draw text labels on the network. Text can be turned off if only the
lines need to be printed.
Editable If selected, the network is editable. If it is important to protect a network from

editing, the network can be made non-editable. Editing actions will then be
prohibited in the session.

Show Margins If selected, the page margins are shown, representing an approximate boundary
within which drawing should be limited. It is recommended that network
features not extend into the margins.

Show Half-Inch | If selected, a grid of lines will be drawn at half-inch intervals. This is useful for
Grid layout purposes.

Snap to Grid If selected, nodes will be restricted to being positioned on grid lines.
Write Network Prompt for a base file name and then write delimited list files for each station
as List Files type, to be used as lists of stations with commands files. Each file is listed in

order of upstream to downstream. This recognizes that it can be more generic to
use list files with StateDMI processing, rather than reading from the network
itself. This approach is being evaluated as list files are used. Issues to be
resolved include:

1. DIV and D&W nodes both exist in the network and are written as
separate lists. Therefore two commands may be needed when
processing the lists.

2. Stream gages (FLO nodes) are written as one list and baseflow stations
(FLO and other stations where baseflow is True) are written as separate
lists. Users must decide which list to use.

28 - Getting Started 72

StateDMI Documentation

Overview/Reference Window

The overview window indicates the current extent of the network in the main canvas.

= §-=
N ——s

'-—l
L
!

NetworkEditor_Overview

Click anywhere in the overview window to center the main canvas view on that point. Or, drag the
overview window extent box to a new location to reposition the network in the main canvas.

Page Properties

The page properties can be set for multiple layouts using the Page Properties settings.

Page Propetties

Page Layout: |1 1217 Landzcape ;I

et Mame |

Default Layout? W
Paper Size: |B - 11x17 LI
Paper Oriertation: Landscape;l

Printed Fort Size: E ~ I
Frirted Mode Size: E - I

Add Layout Delete Layout |

NetworkEditor_PageProperties

Because one of the primary products related to the network is a printed network diagram, the network is
essentially configured as a document. Therefore, the graphics and text on the diagram are scaled (unlike
some map and graph displays where the text point size is constant even when the data scale changes).

Modelers responsible for data sets should define one or more layouts for the network to allow printing on
common page sizes. Often, there is so much detail on the network that a hard copy can only be printed on
large paper sizes. However, more unreadable versions may be appropriate for review. Once layouts are
defined, only minor changes should be required. It is recommended that the Page Layout name include
the page size and orientation.

Network editing should typically occur using the page layout that will be used in production printouts.
Differences in the relative dimensions of page sizes can cause some scaling in output when switching
between layouts.

73 Getting Started - 29

StateDMI Documentation

Node Properties

The node properties area in the network editor shows the node properties for the most recently selected
node.

—~Mode Propeties

Type: |Diversion
De=crigtion; [PETERSOM D 1
ID: |2:30625
X% MES2. 714286, 1272 211803
Aft. W% [K21755 500000, 42161582 000000

NetworkEditor_NodeProperties

This is useful when scanning network node information. See the next section for information about
changing node properties.

3.6.5.1 Adding/Deleting/Changing a Node

To add a node, select a node, right click, and press Add Upstream Node. The following dialog is then
used to enter information about the new node (see below for information about changing node properties).

{:Add Node E x|
~Exizting Modes

Dowenstrearm Mode: (201828
Up=treamn Mads: [CONFL_12 -]

~Mewe Mode Data
Mode 1D
Mode Type:

|z Bazetlow:

1= Import:

K | Cancel |

NetworkEditor_Add

Add Node Dialog

To delete a node, select a node, right-click, and press Delete Node. Currently you are not given the
chance to cancel and the Undo/Redo tool does not apply.

A node is moved by selecting the node on the network and dragging to a new location. To move multiple
nodes draw a box around nodes and then move the group. Node properties for an existing node are edited
by selecting a node in the network, right clicking, and pressing the Properties menu item, which will
display a dialog similar to the following:

30 - Getting Started 74

StateDMI Documentation

(sMNode Properties - 200922TM

ICx:

Type:
Description:
L

N

|z Bazeflowy:
I= Import:
Area:
Precipitation:

Lakel Position:
Dowwnztream node:

200922Th|

FLOWY - Streamtlowy

[

WEMINUCHE PASS D
21.332379
7935361957

|

r

.01 0000
0010000

Left ~

200922 (model node)

200922 (disgrarm node)

Apply | Ok | Cancel |

NetworkEditor_Popup_NodeProperties
Node Properties Dialog

The node types correspond either to StateMod station types or to node types needed for visualization
(e.g., confluences), which are not transferred to StateMod files. Although Makenet allowed | npor t and
Basef | ownode types, these types are no longer supported. Instead, node types correspond to StateMod
station types, with the Ot her node type used where needed. The Is Baseflow check indicates that Area
and Precipitation information are available for the node — these data are used when processing stream
estimate stations.

3.6.5.2 Adding/Deleting/Changing Annotations

Annotations are text labels that can be drawn on the network. They are typically used for title, author,
revision date, stream names, etc., using font sizes appropriate for the information.

To add an annotation, right-click at a point of interest (not near a node) and select the Add Annotation
menu item, which will display the following dialog:

Enter the annoktat

Enter the annatation text:
ISDme et

X

Ok | Cancel |

NetworkEditor_Popup_AddAnnotation

Pressing OK displays the annotation text centered at the point where the mouse was clicked. Once an
annotation is added, it can be moved and its properties can be set by right clicking on the annotation
anchor point and pressing Properties:

Getting Started - 31

75

StateDMI Documentation

{_:StateDMI - Node Properties - 10| x|

Text:|xxx
W:)-39.577a85
No|FT4 327469

Text Position: |Certer ~ I
Fort Matne: |Helvetica ™ I

Font Size: |11

Fart Style: [Plain ~ I

Apply | il | Cancel

NetworkEditor_Popup_AnnotationProperties

An annotation can be moved by selecting the annotation and dragging it to the new location.

An annotation can be deleted by right clicking on the annotation and pressing the Delete Annotation
menu item.

3.6.5.3 Adding/Deleting Links

Links are dashed lines between nodes, typically used to represent an operational relationship between
nodes (e.g., to represent carrier ditches). Annotations can be placed next to links to describe the link.

To add a link, right-click on the network (not near a node) and use the Add Link menu item. The
following dialog will be shown:

ToMode: 05213500 7|
(8]38 | Cancel |

NetworkEditor_Popup_AddLink
After selecting nodes and pressing OK, the link will be drawn between the nodes as a straight dashed line.

To delete the link, select one of the nodes involved in the link, right-click and select Delete Link. If the
node is involved in more than one link, a list of links will be shown.

3.6.5.4 Printing the Network

=

visible network as an image, use the tool and follow the procedure described below. Note that when
printing, curved graphics are drawn using a technique called *“anti-aliasing,” where curves are created by
using shades of gray. This may result in graphics that are difficult to read for some page sizes.

To print the entire network, use the tool and follow the procedure described below. To save the

When the print tools are used, several dialogs are shown, as required by the Java and Microsoft
environments. Although options are available in various dialogs, the following approach is recommended
(improvements are being evaluated):

32 - Getting Started 76

StateDMI Documentation

1. After selecting one of the tools mentioned above, a Java Page Setup dialog will be shown (this

should be the same regardless of Windows version):

— Paper
Sie: [T abloid =~
Source; I.-'-‘-.utu:umatin:all_l,l Select j
— Origntatian — Marginz [inches]

" Partrait Left: IEI.?E
¥ Landscape Top: IEI.?E

Right: IEI.?E
B ottorn: IEI.?E

[k I Cancel | Frinter... Q

NetworkEditor_Print1

Select the printer of interest by using the Printer... button, as discussed in the next item.

2. A Windows Page Setup dialog will be shown:

Page Setup

— Printer

Type:

Mame:

2

Status: Feady

HF Lazerlet 8150 Seriez PS

Where: MWHORSETOOTHSMDIAN

Comment;

Properties. .. |

Metwaork... |

| [E 2k, I Cancel

NetworkEditor_Print2

Pick a printer that can handle the page size specified in the current network editor page layout and

press OK.

77

Getting Started - 33

StateDMI Documentation

3. Inthe original dialog, select the paper size to match the current network layout and press OK:

— Paper

Sizer

Source:; I.-'l'-.utc-maticall_l,l Select j
— Orientation targing [inches)

" Partrait Left: |D.?5 Right: ||:|.?5
{* Landscape Top: IEI.?E B attan; IEI.?E

ak Cancel | Printer... |

NetworkEditor_Print3

4. A Windows Print dialog will be shown:

print 21 x|
— Printer
Properties. .. |

M arne:

Status: Fleady
Type: HF Lazerlet 8150 Senes PS
Where: MHORSETOOTHMMDIARM

Cornrment: [Print to fil=

— Frint range Copies
& 4l Mumber of copies: m
" Pages from: |1 ba: 9999

= Selection Iﬁl [T Callate
I-L\\STI Cancel

DO NOT change the printer settings. Simply press OK to finish printing.

NetworkEditor_Print4

34 - Getting Started 78

StateDMI Documentation

3.6.5.5 Saving the Network as an Image

To save the entire network as an image, use the & tool and select an image file. To save the visible
S

network as an image, use the ™= tool and select an image file.

3.7 Commands Menu — Insert Commands for Processing Data Components

The Commands menu lists groups of related commands that can be used to process model data. The

contents of the Commands menu will be appropriate for each model. For example, the top level menu
for StateCU is as follows:

Commands Tools Help
Climate Stations Data]
| Crop Characteristics/Coefficients Data b
U Locations Data ¥

General - Comments
General - File Handling
General - HydroBase
General - Logging

General - Running

- T v v v

General - Test Processing
MenuCommands_StateCU

Commands Menu for StateCU
The general guidelines for data and menus are:

e Components are grouped according to physical data and identify a primary component for each
group, which will supply the identifiers and names for individual data objects. For example, for
Climate Stations Data, StateCU has a climate stations file, which has identifiers and names for
climate stations. This component is the primary component in the “Climate Stations Data” group.
The secondary components are time series data at each station.

e As much as possible, groups and components are listed according to dependency and processing
order. For example, for StateCU, the CU Locations Data includes files that use crop types. The
definitions of crop types are stored in a separate file. Because the CU Locations files use the crop
types, and therefore depend on their definitions, crop data are listed before CU Locations data. The
recommended order is not required; however, it provides some structure to creating a data set.

In some cases, selecting a data component menu will display a dialog indicating that the files for that
component cannot be prepared with StateDMI and instead should be prepared with TSTool, a
spreadsheet, or some other software. The intent of the StateDMI menus is to show all data components in
order to help the user create a complete data set; however, other software may be required.

79 Getting Started - 35

StateDMI Documentation

The sub-menus for a data component provide specific commands for the file that is being processed.
Each sub-menu lists commands that can be inserted into the Commands list, which can then be processed
to produce output. For example, the menu for Climate Stations is:

| Climate Stations - Commmands

ReadClimatestationsFromList() ...
ReadClimatestationsFromSkakeCLU0 ..

SekClimatesStation() ...

FillZlirmatestationsFromHydroBased) ...
FillZlimatestation) ...

SortClimatestationsy ...

WriteClimatestationsToLisk() ...
WriteClimateStationsToStateCU) .,

CheckClimatestations() ...
wWriteZheckFilet ..,

MenuCommands_ClimateStations

Commands...Climate Stations Data...Climate Stations Menu

The menus for a specific data component typically include commands to read the list of objects, set
additional information, fill missing data, perform calculations (if appropriate), write output, and check the
data.

To edit an existing command, select the command in the Commands list and then use the right-click Edit
menu or the Edit...Command menu (or double-click on the command). This will display a command
editor specific to the command. See the Commands Reference at the end of this documentation.

To insert a new command at the end of the Commands list:

1. Make sure that no commands are selected in the Commands list (see the title above the
Commands list, which indicates if commands are selected).

2. Select the appropriate command menu and edit the command. After pressing OK in the command
dialog, the command will be inserted at the end of the Commands list.

To insert a new command before an existing command in the Commands list:

1. Select the command in the Commands list to insert before.
2. Select the appropriate command menu and edit the command. After pressing OK in the command
dialog, the command will be inserted before the first selected command in the Commands list.

Chapter 4 Creating StateCU Data Set Files and Chapter 5 Creating StateMod Data Set Files discuss
the sequence of commands that can be used to create model files. The Commands Reference describes
each command and the dialog that is used to edit the command.

36 - Getting Started 80

StateDMI Documentation

3.7.1 General Commands

General commands are listed under the Commands...General — ... menus and can be used with any
model.

Commands Ay Tools Help

Climate Stations Data b
Crop Characteristics /Coefficients Daka »
I Locations Daka b

General - Comments
General - File Handling
General - HydroBase
General - Logging

General - Running

v T v v v v

General - Tesk Processing
MenuCommands_General

Commands...General Menu
General Commands — Comments

Single-line comments in commands files start with the # character and can be used to document
commands. Multi-line comments start with the /* characters and end with */ (a convention used in C,
C++, C#, Java, and other programming languages). Multi-line comments are useful for commenting out
blocks of commands. The following dialog is used to edit one or more # comment lines:

L | Edit # Comments @

Enter ane ar more comments (leading # will be added automatically if not shown),
See also the [* and *| commands For multi-line comments, which are useful For commenting out mulkiple commands.,

Check the results

Camrments:

[Cancel][4] 4]

c_comment

Comment Dialog

A menu choice is also available to insert a #@ eadOnl y comment — this will alert StateDMI to warn the
user if they try to save the file. This special comment is useful for protecting command files that should
not be edited.

81 Getting Started - 37

StateDMI Documentation

General Commands — File Handling

File handling commands are useful for testing and other data management tasks.

The Mer geLi st Fi | eCol umms() command is useful when processing list files. For example, the
StateView software can be used to export a list of structures, were the identifiers use separate WD and ID
columns. These columns can then be merged to produce a single WDID column, which can be processed
by StateDMI to create model files.

General Commands — HydroBase

The OpenHydr oBase() command programmatically opens a connection to a HydroBase database.
This is useful if data from two databases need to be combined (open a connection, read data, open a new
connection, read from the second database).

General Commands — Logging

The St art Log() command can be used to start a log file, which records processing steps and is useful
in troubleshooting. Saving a specific log file also allows a comparison of data processing at different
times. It is recommended that log files have the same name as the command file, with an optional
date/time and the additional file extension *.log.

The Set DebugLevel () and Set War ni ngLevel () commands are usually only used in
troubleshooting.

General Commands — Running

The RunComrands() command can be used to run one command file within another. This is useful for
automated testing.

The RunPr ogr am() and RunPyt hon() commands are used to run external programs.

The Exi t () command is useful for skipping over the last commands in a workflow, without having to
comment them out.

The Set Wor ki ngDi r () command is generally not used but is provided for backward compatibility.
General Commands — Test Processing

Test processing commands are used to validate the StateDMI software and standard workflow processes.
See the Quality Control chapter for more information.

38 - Getting Started 82

StateDMI Documentation

3.8 Run Menu — Running Commands

The Run menu processes the commands in the Commands list. Menu items similar to the following are
also available in a popup menu by right clicking on the Commands list.

Tools Help

&l Commands (create all outpuk)

&l Carmands (ignore oukput commands)
Selected Commands {create all oukput)
Selected Commands (ignore oukput commands)

Run StakeMod -version
MenuRun

Run Menu

The Run...All Commands (create all output) menu will process the commands in the Commands list
and create output if appropriate. For example, the Wi t e* () commands will write the data objects that
are in memory to files.

The Run...All Commands (ignore output commands) menu will process the commands in the
Commands list, ignoring commands that generate output products. This is useful when testing data
processing commands and the (usually) slow write commands can be skipped.

The Run...Selected Commands (create all output) and Run...Selected Commands (create all
output) menus are similar to the above; however, only commands that are selected will be run.

The Run...Cancel Command Processing menu item is enabled if commands are currently being
processed. Use this menu item to cancel processing (e.g., if the commands result in excessive output or
processing time). Processing will stop after the currently running command finishes.

The Run...Command File choice will run a commands file without making the results available in the
interface. This feature is not yet implemented.

The Run...StateCU -version menu runs the StateCU model in order to display its version. This is useful
when troubleshooting problems. This menu item is currently disabled because the StateCU model
does not have a version option.

The Run...StateMod -version menu runs the StateMod model in order to display its version. This is
useful when troubleshooting problems. However, it relies on StateMod being in the PATH, which may
not be the case.

Select the Help...About menu to determine the version of StateCU and StateMod that was used when
developing StateDMI. Changes to the model file formats for other versions may not be recognized in
StateDMI.

83 Getting Started - 39

StateDMI Documentation

3.9 Results Menu — View Data Set and Command Results

The Results menu is currently disabled. It is envisioned as a way to view data set components from a
data set or commands processing.

The alternative is to select results in Results area in the bottom of the main window, which provides
access to all results.

3.10 Tools Menu

The Tools menu lists tools that perform useful tasks. Some of the menu items have been added to help
during development.

Tools WEEH

Adrministration Mumber Calculakar, .,
Compare Files r

Lisk Surface Water Diversions
List Well Station Right Totals

HydroBase - Parcel Water Supply. ..

Diagnostics. ..

Diagroskics - Wiew Log File .,

MenuTools

Tools Menu

The Tools...Administration Number Calculator... menu can be used to convert between the State of
Colorado’s administration numbers and appropriation dates. Administration numbers are used by
StateMod to determine the seniority of water rights.

The Tools...Compare Files menu provides tools for comparing files, in particular used by developers
during testing.

The Tools...List Surface Water Diversions tool can be used to list diversions from a StateMod
diversion stations file that ONLY have surface water supply.

The Tools...List Well Station Right Totals tool can be used to list well station right totals by station.
The Tools...Merge List File Columns tool can be used to interactively select a delimited file and merge
one or more columns to create a new column. This is useful, for example, when merging the WD and ID
columns from StateView exports, to create a WDID column in a list file that is used with modeling. See
also the companion Mer geLi st Fi | eCol uims() command.

The Tools...Diagnostics menu displays the diagnostics interface, which is used to set message levels and
view messages as StateDMI processes data. This is useful for tracking data problems, which result in
warnings in display and analysis routines. Specify the level of detail for messages printed to various
output locations by changing the values in the diagnostics window. Higher levels result in more output
and slower performance.

40 - Getting Started 84

StateDMI Documentation

L ' StateDMI - Diagnostics

More detailed messages are printed as the message level increases,
(0 results in none of the messages being printed)
Maosk recent log file = "C:\Develop)stateDMI_SourceBuild StateDMItestoper ationall CD53Yogs\ SkateDMI_sam. log”
Message type Console outpuk Status bar Loqg File
Status ||:| | |1 | |2 |
\Warning |IZI | |1 | |3 |
Debug |IZI | |III | |3|J | Allows debug
essage history Show messages
Status[1]: Set debug level For Status history to 0 ~

Status[1]: Set warning level for Status hiskary ko 1
Status[1]: Set skatus level For Status hiskary ko 1
Status[1]: Set debug level For Log file to 0
Status[1]: Set warning level for Log file to 3
Status[1]: Set skatus level For Log file to 2

Status[1]: Debug has been turned off \E
% | >
[Flush Log File] [Restart Log File] [Mew Log File]
[Apply] [Wiew Log File] [Launch Log File Wiewer] [Close]
Diagnostics
Diagnostics

Review the messages in the status bar at the bottom of the main window if output is not as expected. For
more information, consult the log file or use the log file viewer (see next section), which contains these
messages as well as more detailed information. The log file is named StateDMI_USER.log and is created
in the logs directory under the StateDMI installation directory. The user name is consistent with your
system login. The View Log File and Launch Log File Viewer buttons will be enabled if the log file has
been created. The former will display the log file in a new window, as described below. The latter will
display the log file in Notepad.

85 Getting Started - 41

StateDMI Documentation

Selecting the View Log File button in the Tools...Diagnostics tool or selecting the Tools...Diagnostics
— View Log File menu will display the message log file viewer window:

& StateDMI - Message Log

=]

Log File Sumrmary - 1445 messages (1 Warning[1], 1444 Warningl2])
Show messages for evels: [T ¥ toi (2 | .
:Warning[2]{24,824}tCheckCULocations_Command_runCommandJ: CU location "7Z0221" climate station "1741" orograph:ﬁ
:Uarning[2]<24,825>tCheckCULocations_Command.runCommandJ: CT location "7208Z1" climate station "174l" orograph
Warningl[2]1<Z4, 826> (CheckCULocations_Command. runCommand) : C7 location "7Z08E3" elewvation (-333.0) is inwvalid.
iwarning[21{24,827}tCheckCULocations_Command_runCommandJ: CT location "7Z08Z3" climate station "1741" orograph
EUarning[2]<24,828>tCheckCULocat.ions_Command.runCommandJ: CT location "7202Z3" climate station "174l" orograph
:Warning[21<24,829>tCheckCULocations_Command_runCommandJ: CU location "72Z0831" elewvation (-%55.0) is inwalid.
Warning[Z]<Z4,830* (CheckCULocations_Command. runConmand) @ CU location "7Z0831" climate station "1741" orographl o
5 | @
Log File Cankents - Ci\DevelopiStateDMI_SourceBuildiStateDMIkest) operationalhCDS 5 ogs| StakeDMI_sam.log - 4773 lines
MESSAGE
[FEEERS [ET(FILICOLOCat1onsFronHydrobase_Lommand . Funbommand] - F1lling Sed780 Latitude - Lo LlEd =
|Status[Z2] (F1llCULocationsFroumHydroBase Command. runCommand) : Filling 360736 Pegionl -» County: SUMHIT |
%Status[Z](FillCULocationsFrDmHyerBase_Command_runCommandJ: Filling 360796 RegionZ -» HUC: 14010002
gStatuS[ZI(FillCULocationsFromHydroBase_Command.runCommandJ: Filling 360795 Latitude -= 39.814850
EStatus[Z](FillCULocationsFromHydroBase_Command_runCommandJ: Filling 360800 Regionl -= County: STUMMIT
EStatuS[Z](FillCULocationsFromHydroBase Command. runConmand) @ Filling 260200 Regiong -» HUOC: 14010002
EStatus[Z](FillCULocationsFromHydroBase:Command_runCommandJ: Filling 360800 Latitude -» 32_777z240
EStatuS[Z](FillCULocationsFromHydroBase Command. runlommand) : Filling 260201 Legionl -» County: STUMMIT
EStatus[Z](FillCULocationsFromHydroBase:Command_runCommandJ: Filling 360801 Regionz -»> HUC: 1401000Z
EStatuS[Z]iFillCULocationsFrDmHyerBase Command . runCommand) - Filling 360801 Latitude -= 39.BEBE30
§Status[21(FillCULocationsFromHydroBase:Command_runCommandJ: Filling 360868 Regionl -» Countsy: SUMMIT
EStatuS[Z]iFillCULocationsFrDmHyerBase_Command_runCommandJ: Filling 360868 RegionZ -» HUC: 14010002 |
a;.: s i e e ; At e 2 - = i Lo 2 PO 2L [X A l?-
Print Log Fils] ’ Print Summary] [Open] [Close]

Log File Viewer Window

DiagnosticsViewer

The log file viewer provides a summary of important warning messages in the top of the window.
Selecting a message and right clicking provides options to go to the message in the main log file (bottom
of the window) or go to the command in the main window.

The log file is useful for reviewing the detailed sequential steps of processing. However, the status
information and check file output created by the Wi t eCheckFi | e() command are generally easier to
use when troubleshooting workflow processing.

42 - Getting Started

86

StateDMI Documentation

3.11 Help Menu

The help menu displays the StateDMI version and support information.

About StateDMI

Yiew Documentation
MenuHelp

Help Menu

The Help...About StateDMI menu displays the program version number, as shown in the following
figure. Indicate the version number when reporting problems or suggestions.

About StateDMI [X]
SkateDMI
Creates daka sek Files For StateCU and StakeMod by
processing data in files and the HydroBase database,
Version 3.09,01 (Z010-01-24)

Developed with StateMod Yersion 12,29 (2009-03-121)
Developed with SkakeCU Yersion 12
Developed by Riverside Technology, inc.
Funded by
Colorado Division of Water Resources
Colorado Water Conservation Board
Send comments ko
cdss@state. co.us

ok |[Show SaftwareSystem Details

MenuHelpAbout

Help...About StateDMI Dialog

If Tools...Diagnostics has been used to turn on debugging, then the above dialog will include a button
labeled Show Software/System Details, which can be used to display information about the computer
and StateDMI software. This information may be requested during troubleshooting.

The Help...View Documentation menu displays the software documentation in a web browser. Use the
navigable table of contents to jump to a specific section.

87 Getting Started - 43

StateDMI Documentation

44 - Getting Started 88

4 Creating StateCU Data Set Files

Version 3.10.00, 2010-04-02

When StateDMI is used to process StateCU data set files, the Commands menu lists the StateCU data
groups (use File...Switch to StateCU if necessary to see the StateCU command menus):

Commands ANy Tools Help

Cliate Skakions Data [
| Crop Characteristics/Coefficients Data b
ClJ Locations Data b

General - Comments
General - File Handling
General - HydroBase
General - Logging
General - Running

- T v v v v

General - Tesk Processing
MenuCommands_StateCU

Commands Menu when Used with StateCU Data Set Files

Each item corresponds to a data component group, under which are specific data components (products).
Each data product corresponds to a model input file and is discussed in the following sections. The
General commands are useful at any time (e.g., add comments). The top-level data groups utilize unique
data identifiers shared among the products in the group. For example, the CU Locations Data are all
referenced using a CU Location identifier (e.g., a ditch identifier).

Examples of StateCU model files are not included in this documentation. Refer to the StateCU model
documentation for detailed information about model file formats. Example command files are included
for each product and are taken from existing data sets. Command file logic may vary by data set and
existing data sets should be consulted if available. Data sets typically fall into two categories: those that
include groundwater (e.g., Arkansas, Rio Grande, and South Platte), and those that do not (e.g., Colorado,
Gunnison, San Juan, Yampa, White).

A StateCU analysis estimates water requirement at locations. StateDMI uses general terminology and
refers to the locations as “CU Locations”, although StateCU data sets may focus on structures, climate
stations, or other types of locations. Each CU Location is associated with climate data, crop patterns
(either determined from actual irrigated lands or unit areas), and irrigation practice data. The CDSS data
sets have in the past used the concept of County/HUC (Hydrologic Unit Code) to associate structures with
climate stations. StateDMI uses a more general Regionl/Region2 notation (e.g., the actual regions might
be “County” and “” [no Region2]). The command editor dialogs provide information to help explain the
key data that are used to associate the various data components.

4.1 Control Data
StateCU control data (the response and control file) are currently not processed by StateDMI, although

commands may be added in the future. Currently you must create the StateCU control data using a text
editor or copy and modify an existing file.

89 StateCU - 1

StateDMI Documentation

4.2 Climate Station Data

Climate station data consists of:

Tools Help

(- Climate Stations]
| Crop Characteristics/Coefficients Data »| Temperature TS (Monthly Average)
U Locations Data » Fraost Daktes TS (Yearly)
Precipitation T3 {Monthhky)

e I e —— k- [9
MenuCommands_ClimateStationsData

Climate stations

Temperature time series (monthly)
Frost date time series (yearly)
Precipitation time series (monthly)

Each of the above data types is stored in a separate file, using the climate station identifier as the primary
identifier. Climate station weights are included in CU Location data. The processing of each data file is
discussed below.

4.2.1 Climate Stations

Climate stations used with StateCU often are selected by reviewing available climate time series data to
find stations with acceptable periods of record. TSTool or other software can be used to identify
acceptable climate stations. The Commands...Climate Stations Data...Climate Stations menus insert
commands to process climate station data:

Climate Stations - Commmands

ReadClimatestationsFromList() ...
ReadClimatestationsFromskateCU0 ..

SetClimatestation() ...

FillZlimatestationsFromHydroBased) ...
FillZlimatestationd) ...

SortClimatestationsy ...

WriteClimateStationsToLisk() ...
WriteClimateStationsToStateCU) .,

CheckClimatestations() ...
wWriteZheckFilet ..,

MenuCommands_ClimateStations

Commands...Climate Stations Data...Climate Stations Data Menu

2 - StateCU 90

StateDMI Documentation

The following table summarizes the use of each command:

Climate Stations Data Commands

Command Description

Readd i mat eSt at i onsFronii st () Read from a delimited list file the list of climate stations
to be included in the data set.

Readd i mat eSt at i onsFr ontt at eCU() Read from a StateCU climate stations file the list of

climate stations to be included in the data set.

Readd i mat eSt at i onsFronHydroBase() | Currently disabled. Read from HydroBase a list of
climate stations to be included in the data set. Itis
envisioned that a county name or some other region
would be supplied to help select climate stations.
Instead, use the
FilldinateStationsFronmHydroBase() command.

Setd i mateStation() Set the data for, and optionally add, climate stations.

FilldinmateStationsFronHydroBase() | Fill missing data for defined climate stations, using data
from HydroBase.

FillQimteStation() Fill missing data for defined climate stations, user user-
supplied values.

Sortd i mateStations() Sort the climate stations by station identifier.

Wited imteStationsToList() Write defined climate stations to a delimited list file.

Wited imteStationsToStateClU() Write defined climate stations to a StateCU file.

Checkd i mat eSt ati ons() Check climate stations data for problems.

Wit eCheckFil e() Write the results of data checks to a file.

An example command file is shown below (adapted from the Colorado cm2006 StateCU data set):

StateDMI commands to create Colorado model climate stations file
#

Step 1 - read climate stations from a list

#

ReadClimateStationsFromList(ListFile="climsta.lst",1DCol=1)

#

Step 2 - Fill climate stations from HydroBase

#

FillClimateStationsFromHydroBase(I1D=""*"")

#

Step 3 - set/fill additional data not found in HydroBase

#
SetClimateStation(1D="3016",Region2="14080106", I fNotFound=Warn)
SetClimateStation(1D="1018",Region2="14040106", I fNotFound=Warn)
SetClimateStation(1D="1928",Elevation=6440, | fNotFound=Warn)
SetClimateStation(1D="0484",Regionl=""MOFFAT", IfNotFound=Add)

#

Step 4 - write the file

#
WriteClimateStationsToStateCU(OutputFile="__\StateCU\COclim2006.cli')
#

Step 5 - check results

#

CheckClimateStations(1D=""*")
WriteCheckFile(OutputFile="CO.cli.StateDMI.check._html')

91 StateCU - 3

StateDMI Documentation

4.2.2 Temperature Time Series (Monthly)

Monthly temperature time series are not created by StateDMI. Instead, use TSTool or other software to
create the time series file. An example TSTool command file is shown below (adapted from the Rio
Grande data set). Refer to the TSTool documentation for current software features.

SetOutputPeriod(OutputStart="01/1950",0utputEnd="12/2002")

SetOutputYearType(OutputYearType=Calendar)

#

2184 - DEL NORTE 2 E

2184 _NOAA.TempMean .Month~HydroBase

#

#

0130 - ALAMOSA SAN LUIS VALLEY RGNL

0130.NOAA.TempMean .Month~HydroBase

FillRegression(TSID="2184 _NOAA.TempMean._.Month", IndependentTSID="0130.NOAA.TempMean.Month",
NumberOfEquations=0OneEquation)

perform regress operation on the following

#

FillRegression(TSID="0130.NOAA.TempMean._.Month", IndependentTSID="2184 _NOAA.TempMean.Month",
NumberOfEquations=0OneEquation)

TS AlamosaFill = Copy(TSID="0130.NOAA.TempMean.Month" ,NewTSID="0130.NOAA.TempMean.Month.copy'")

#

#

0776 - BLANCA

0776 .NOAA . TempMean .Month~HydroBase

FillRegression(TSID="0776.NOAA.TempMean.Month", IndependentTSID="AlamosaFill" ,NumberOfEquations=0OneEquation)

#

#

1458 - CENTER 4 SSW

1458 _NOAA.TempMean .Month~HydroBase

FillRegression(TSID="1458 _NOAA.TempMean._.Month", IndependentTSID=""AlamosaFill",NumberOfEquations=OneEquation)

#

#

3541 - GREAT SAND DUNES N M

3541 _NOAA.TempMean.Month~HydroBase

FillRegression(TSID="3541_NOAA.TempMean.Month", IndependentTSID=""AlamosaFill",NumberOfEquations=OneEquation)

#

#

3951 - HERMIT 7 ESE

3951 .NOAA.TempMean .Month~HydroBase

FillRegression(TSI1D="3951_.NOAA.TempMean.Month", IndependentTSID="0130.NOAA.TempMean .Month",
NumberOfEquations=0neEquation)

#

#

5322 - MANASSA

5322 _NOAA.TempMean.Month~HydroBase

FillRegression(TSID="5322_NOAA.TempMean.Month", IndependentTSID=""AlamosaFill",NumberOfEquations=OneEquation)
#

#

5706 - MONTE VISTA 2 W

5706 .NOAA . TempMean .Month~HydroBase

FillRegression(TSID="5706.NOAA.TempMean.Month", IndependentTSID=""AlamosaFill",NumberOfEquations=OneEquation)
#

#

7337 - SAGUACHE

7337 _.NOAA.TempMean .Month~HydroBase

FillRegression(TSID="7337 .NOAA.TempMean.Month", IndependentTSID=""AlamosaFill",NumberOfEquations=0OneEquation)
#

#

Free(TSList=LastMatchingTSID,TSID="AlamosaFill")

#

WriteStateMod(TSList=AlITS,OutputFile=""__\StateCU\temp2002.stm'™)

CheckTimeSeries(CheckCriteria="Missing")

WriteCheckFile(OutputFile="rg2002_tmp.TSTool .check.html')

4 - StateCU 92

StateDMI Documentation

4.2.3 Frost Date Time Series (Yearly)

Yearly frost date time series are not created by StateDMI. Instead, use TSTool or other software to create
the time series file. Note that older versions of TSTool internally treated frost date time series as a special
time series with four frost dates per year. However, this representation could not be handled generically
by TSTool’s data filling and analysis features. Consequently, the current TSTool treats frost dates as
Julian days since the beginning of the year (day 1 = January 1), allowing data to be filled with any of the
standard commands, and time series to be graphed similar to other data. The following TSTool command
file excerpt illustrates how to create the StateCU frost date file (adapted from the Rio Grande data set).

Refer to the TSTool documentation for current software features.

SetOutputPeriod(OutputStart="1950",0utputEnd="2002")
#

0130 - ALAMOSA SAN LUIS VALLEY RGNL
0130.NOAA_FrostDatel28S.Year~HydroBase
0130.NOAA_FrostDatel32S.Year~HydroBase
0130.NOAA.FrostDateF32F.Year~HydroBase
0130.NOAA_FrostDateF28F.Year~HydroBase
#

#

0776 - BLANCA

0776 .NOAA . FrostDatelL28S.Year~HydroBase
0776 _NOAA _FrostDatel32S.Year~HydroBase
0776 _NOAA _FrostDateF32F.Year~HydroBase
0776 .NOAA.FrostDateF28F.Year~HydroBase
#

#

1458 - CENTER 4 SSW

1458 .NOAA _FrostDatel28S.Year~HydroBase
1458 .NOAA_FrostDatel32S.Year~HydroBase
1458 .NOAA.FrostDateF32F.Year~HydroBase
1458 .NOAA.FrostDateF28F.Year~HydroBase
#

#

FillHistYearAverage(TSList=AlIMatchingTSID,TSID="*"")
#
#

WriteStateCU(OutputFile="__\StateCU\Frost2002.stm™)
CheckTimeSeries(CheckCriteria="Missing")
WriteCheckFile(OutputFile="rg2002_frost.TSTool.check.html')

93

StateCU - 5

StateDMI Documentation

4.2.4 Precipitation Time Series (Monthly)

Monthly precipitation time series are not created by StateDMI. Instead, use TSTool or other software to
create the time series file. The following TSTool command file excerpt illustrates how to create the
StateCU precipitation time series file (adapted from the Rio Grande data set). Refer to the TSTool
documentation for current software features.

SetOutputPeriod(OutputStart="01/1950",0utputEnd="12/2002")
SetOutputYearType(OutputYearType=Calendar)
#

#

0130 - ALAMOSA SAN LUIS VALLEY RGNL
0130.NOAA.Precip-Month~HydroBase

#

#

0776 - BLANCA

0776 .NOAA .Precip.Month~HydroBase

#

#

1458 - CENTER 4 SSW

1458 _NOAA . Precip.Month~HydroBase

#

#

2184 - DEL NORTE 2 E

2184 _NOAA_Precip.-Month~HydroBase

#

#

3541 - GREAT SAND DUNES N M

3541 _NOAA_Precip.Month~HydroBase

#

#

3951 - HERMIT 7 ESE

3951 _NOAA_Precip.Month~HydroBase

#

#

5322 - MANASSA

5322 _NOAA .Precip.-Month~HydroBase

#

#

5706 - MONTE VISTA 2 W

5706 .NOAA .Precip.Month~HydroBase

#

#

7337 - SAGUACHE

7337 .NOAA .Precip.-Month~HydroBase

#

#

FillHistMonthAverage(TSList=AlITS)

#

#
WriteStateMod(TSList=AlITS,OutputFile=". _\StateCU\Ppt2002.stm")
CheckTimeSeries(CheckCriteria="Missing")
WriteCheckFile(OutputFile="rg2002_precip.TSTool.check_html')

6 - StateCU 94

StateDMI Documentation

4.3 Crop Characteristics/Coefficients Data

StateCU crop characteristics and coefficients files are small files that provide information about crops,
independent of irrigation practice.

Commands Toals Help
Climate Stations Data]
iCrop Charactetistics/Coefficients Data b RS RaEIEn ey i]

U Locations Data b Blanew-Criddle Crop Coefficients ¢

Penman-Monteith Crop Coefficients »

MenuCommands_CropCharacteristicsCoefficientsData

iT—araral - CArarnanks [

The crop characteristics/coefficients data primary identifier is crop name (type), for example

ALFALFA. TR21. The information after the period is associated with an analysis method. Crop data
may be adjusted for high altitude or other local calibration efforts. The irrigated lands crop data (i.e., the
data in HydroBase) are typically saved as ALFALFA, etc., because these data are independent of the use
of the data. To make the crop names consistent during modeling, it is typical to use a Tr ansl at e* ()
command before writing the data. For example, translate the more generic names to the longer names
before writing the crop pattern time series to a file, specifying ID patterns to translate by location if
necessary. Translate commands are available for data products that include the crop names. In
documentation and software, crop “name”, “type”, and “identifier” are used interchangeably.

4.3.1 Crop Characteristics

Crop characteristics include information about crop types that are used in an analysis, including planting,
harvesting, and root depth data. Although only a few crops are typically used in an analysis in a basin, it
is often convenient to provide information for many crop types. Crop characteristics should be defined
before CU Locations because the crop types are used in the crop pattern time series file associated with
CU Locations.

The Commands...Crop Characteristics/Coefficients...Crop Characteristics menu inserts commands
to process the StateCU crop characteristics file:

Crop Characteristics - Commands
ReadCropCharacteristicsFromStateCUd) ...

ReadCropCharacteristicsFrombydroBase) ...

SetCropCharacteriskics() ...

TranslateCropCharacteristics() ...
SortCropCharackeriskics() ...

writeCropiZharacteristicsToList(y . ..
WrikeCropiCharacteriskics ToSkakeCU

CheckCropCharacteristics() ...
wrikeCheckFile() L.

MenuCommands_CropCharacterisitcs

95 StateCU - 7

StateDMI Documentation

The following table summarizes the use of each command:

Crop Characteristics Commands

Command . Description
ReadCr opChar act eri sti csFrontst at eCU() Read from a StateCU file the crop

- characteristics to include in the data set.
ReadCr opCharacteri sticsFronHydroBase() | Read from HydroBase the crop characteristics
to include in the data set.

Set CropCharacteristics() Set the data for, and optionally add, crop
characteristics data.
Transl at eCropCharacteri stics() Translate crop characteristics name for specific

modeling conventions, such as locally
calibrated coefficients.

Sort CropCharacteri stics() Sort the crop characteristics by crop name.

WiteCropCharacteristicsToList() Write defined crop characteristics to a
delimited list file.

WiteCropCharacteristicsToStateClJ() Write defined crop characteristics to a StateCU
file.

CheckCropCharacteri stics() Check crop characteristics data for problems.

WiteCheckFile() Write the results of data checks to a file.

An example command file is shown below (adapted from the Rio Grande data set).

StartLog(LogFile="Crops_CCH.StateDMI .log"")
#

StateDMI commands to create the Rio Grande Crop Characteristics File

Read the general TR-21 characteristics first and then override with Rio Grande
data.
ReadCropCharacteristicsFromHydroBase(CUMethod=""BLANEY-CRIDDLE_TR-21"")
ReadCropCharacteristicsFromHydroBase (CUMethod=""BLANEY-CRIDDLE_RIO_GRANDE")
#
Step 2 - adjust crop characteristics if needed

#
#
Step 1 - read data from HydroBase
#
#
#

No resets are needed.

z Step 3 - write the file
xriteCropCharacteristicsToStateCU(OutputFiIe:"r92007-cch")
% Check the results

CheckCropCharacteristics(1D="*")
WriteCheckFi le(OutputFile="Crops_CCH.StateDMI .check.html™)

8 - StateCU 96

StateDMI Documentation

4.3.2 Blaney-Criddle Crop Coefficients

Blaney-Criddle crop coefficients estimate crop irrigation water requirement during the year or growing
season, based on reference conditions. For daily (perennial) crop curves, 25 values are required,
corresponding to the days of the year for month start/end and midpoints. For percent of season (annual)
crop curves, 21 values are required, corresponding to 0, 5, ..., 100 percent of the growing season. The
Commands...Crop Characteristics/Coefficients...Blaney-Criddle Crop Coefficients menu inserts
commands to process the StateCU Blaney-Criddle crop coefficients file:

| Blaney-Criddle Crop Coefficients - Commands

ReadBlaneyCriddieFromstateC Ul ..
ReadBlaneyCriddleFromHydroBase) ...

SetBlaney Criddlel) ...
TranslateBlaney Criddled) ...

SortBlanesyCriddlel) ...

WriteBlaneyriddleToLisk() ...
WriteBlaneyCriddleToStateCU0 L.

CheckBlaneyCriddlely ...

wWriteZheckFilet ..,

MenuCommands_BlaneyCriddle

The following table summarizes the use of each command:

Blaney-Criddle Crop Coefficient Commands

Command

Description

ReadBl aneyCri ddl eFr onfst at eCU()

Read from a StateCU file the Blaney-Criddle
coefficient data to include in the data set.

ReadBl aneyCri ddl eFr onHydr oBase()

Read from HydroBase the Blaney-Criddle coefficient
data to include in the data set.

Set Bl aneyCri ddl e()

Set the data for, and optionally add, Blaney-Criddle
coefficient data.

Transl at eBl aneyCri ddl e()

Translate crop name in Blaney-Criddle data, for
specific modeling conventions, such as locally
calibrated coefficients.

Sort Bl aneyCri ddl e()

Sort the Blaney-Criddle data by crop name.

Wit eBl aneyCri ddl eToLi st ()

Write defined Blaney-Criddle data to a delimited list
file.

Wit eBl aneyCri ddl eToSt at eCU()

Write defined Blaney-Criddle data to a StateCU file.

CheckBl aneyCri ddl e()

Check Blaney-Criddle data for problems.

Wit eCheckFile()

Write the results of data checks to a file.

97 StateCU - 9

StateDMI Documentation

An example command file is shown below:

StartLog(LogFile="Crops_KBC.StateDMI.log™)

#

StateDMI commands to create the Rio Grande Blaney-Criddle coefficients file
Step 1 - read data from HydroBase

Read the general Blaney-Criddle coefficients first and then override with Rio Grande
data.
ReadBlaneyCriddleFromHydroBase(BlaneyCriddleMethod=""BLANEY-CRIDDLE_TR-21"")
ReadBlaneyCriddleFromHydroBase(BlaneyCriddleMethod="BLANEY-CRIDDLE_RI10_GRANDE'")
#

Step 3 - write the file

#

SortBlaneyCriddle(Order=Ascending)
WriteBlaneyCriddleToStateCU(OutputFile="rg2007 .kbc')

#

Check the results

#

CheckBlaneyCriddle(ID="*"")
WriteCheckFile(OutputFile="Crops_KBC.StateDMI.check.html')

#
#
#
#
#
#

4.3.3 Penman-Monteith Crop Coefficients

Penman-Monteith crop coefficients estimate crop irrigation water requirement during one or more growth
stages, with coefficients specified at 10 percent intervals (0... 100 per growth stage). ALFALFA crops
require 33 percent/coefficient pairs (3 growth stages), GRASS_PASTURE requires 11 (1 growth stage),
and all other crops require 22 (2 growth stages). The Commands...Crop
Characteristics/Coefficients...Penman-Monteith Crop Coefficients menu inserts commands to
process the StateCU Penman-Monteith crop coefficients file:

Penman-Monteith Crop Coefficients - Commands

ReadPenmanMonteithFromStateC) ...
ReadPenmanMonteithFromHydroBased) ...

SetPenmanianteithil ...

TranslatePenmanionteith) ...
SortPenmanMonteith) L.

WritePenmanMonteithToListd) ...
WritePenmantMonteithTostateCU0) ...

CheckPenmanionteith) ...
WriteCheckFilel) ...

MenuCommands_PenmanMonteith

10 - StateCU 98

StateDMI Documentation

The following table summarizes the use of each command:

Penman-Monteith Crop Coefficient Commands

Command Description

ReadPenmanMbnt ei t hFr ont at eCUY() Read from a StateCU file the Penman-Monteith
coefficient data to include in the data set.
ReadPennanhont ei t hFr ontHydr oBase() | Read from HydroBase the Penman-Monteith
coefficient data to include in the data set.

Set Penmanhont ei th () Set the data for, and optionally add, Penman-Monteith
. coefficient data.
Transl at ePenmanhontei th () Translate crop name in Penman-Monteith data, for

specific modeling conventions, such as locally
calibrated coefficients.

Sort Penmanhbntei th () Sort the Penman-Monteith data by crop name.

Wit ePenmanhnt ei t hToLi st () Write defined Penman-Monteith data to a delimited list
file.

Wi t ePenmanhont eﬁ thToSt at eCl() Write defined Penman-Monteith data to a StateCU file.

CheckPenmanhont ei th () Check Penman-Monteith data for problems.

Wi teCheckFil e() Write the results of data checks to a file.

An example command file is shown below:

StartLog(LogFile="Crops_KPM.StateDMI .log"™")

#

StateDMI commands to create the Penman-Monteith crop coefficients file
#

Step 1 - read data from HydroBase

#

Read the general ASCE standardized coefficients
ReadPenmanMonteithFromHydroBase (PenmanMonteithMethod=""PENMAN-MONTEITH_ALFALFA™)
#

Step 3 - write the file

#

SortPenmanMonteith (Order=Ascending)
WritePenmanMonteithToStateCU(OutputFile="rg2007 .kpm™)

#

Check the results

#

CheckPenmanMonteith (ID="*")
WriteCheckFile(OutputFile="Crops_KPM.StateDMI .check.html')

4.4 Delay Tables Data

Delay tables data were used previously with StateCU when modeling river depletions. This approach is
no longer used. StateDMI features related to the delay tables data group have been disabled in StateDMI.

99 StateCU - 11

StateDMI Documentation

4.5 CU Location Data

The term CU Location is used to define a location where a consumptive use estimate is being determined.
Consumptive use is determined for the following locations:

1. Diversion structures with only surface water supply.

2. Diversion structures with surface and groundwater supply. In this case, the wells are identified as
an aggregate/system by ditch identifiers.

3. Wells or well fields with only groundwater supply. Agricultural locations are typically specified
as an aggregate/system by parcel identifiers. Municipal single wells and well fields can also be
modeled and are often defined as aggregate/systems by well identifiers.

The StateCU model, files, documentation, and interface primarily focus on consumptive use at structures
and terminology is dominated by “structure”. For example, one of the main input files to StateCU is the
structure (.str) file. However, to allow for more general application of StateCU, StateDMI uses the more
general term CU Location in its menus and documentation. The current StateDMI features do focus on
structure locations; however, the design allows for other types of locations. Examples of possible CU
Locations are:

ditches (diversion structures) and wells
climate stations

water district

county

parcel of land (e.g., irrigated parcel)
any location specified by a coordinate

CU Locations are the entry point into several StateCU data set files. Once CU Locations are defined,
other data objects, including crop patterns and irrigation practice, can be defined sequentially. In most
cases, the CU Location identifier (e.g., a structure identifier) is used in related files. Therefore, these
identifiers must be unique and are a primary key in all data processing.

StateCU previously managed CU Location data using county and HUC (Hydrologic Unit Code) identifier
combinations. For example, the StateCU .str file includes fields for county and HUC. These fields can be
treated generically as Region 1 and Region 2 because there is no real limitation to use county and HUC
within StateCU. Therefore, StateDMI uses the terms Regionl and Region2 for these fields. Commands
and the corresponding edit dialogs currently offer options only for county and HUC data but have been
configured to allow future enhancements for other types of regions (for example where Region 1 is
“climate station” and Region 2 is blank). More recent CU modeling is not tied to the County/HUC
convention.

Data associated with CU Locations using the location 1D are:

CU Locations

Crop pattern time series (yearly)

Irrigation practice (parameter) time series (yearly)

Diversion rights — water supply limited analysis only

Diversion historical time series (monthly) — water supply limited analysis only
Well Rights — used to limit groundwater acreage

Well Historical Pumping Time Series — can be limited to well rights

12 - StateCU 100

StateDMI Documentation

The menu to access commands for each data component associated with CU Locations is show below:

Commands ANy Tools Help

Climate Stations Data r

Crop CharacteristicsCoefficients Data b Linoay
U Locakions Daka U Locations [

-

Crop Pattern T3 {Yearl)

General - Comments ¥
Itrigation Practice TS (Yearlh) b

General - File Handling F
izeneral - HydroBase b Diversion Rights b
General - Lagaging p Diversion Hisktorical TS (Monthly) b
General - Running Y w'ell Rights 3

]

Well Historical Pumping T3 {Monthly) k

MenuCommands_CULocationsData

General - Test Processing

The following figure illustrates possible ditch and well water supply for parcels.

o

D = Ditch: W= Well

*
WL

ParcelSupplyDiagram

Example Supply for Parcels

In this example, two ditches (D1 and D2, each represented with different hatching) provide surface water
supply to the indicated parcels. In some cases, only one ditch provides supply. Between the ditches, both
supply water to shared parcels. Wells can supplement surface water supply (parcels above the river) or
can be the sole supplier of water (lower right) and wells do not need to be physically located on a parcel
to provide supply to the parcel.

In addition to explicit locations (e.g., single ditch), CU Locations may consist of a collection of individual
parts. Currently, two main types of collections are recognized, as historically used in StateMod modeling:

= Aggregate — a group of diversions and/or wells where the water rights in the collection are
aggregated (the original distinct rights are not individually accessible in the data set files).
Aggregation reduces the number of water rights in model files, thereby decreasing the amount of
output and model run times. Aggregation of well rights was used in Rio Grande modeling.

101 StateCU - 13

StateDMI Documentation

= System — a group of diversions and/or wells where water rights in the collection are not
aggregated (each right is accessible in the data set files). For example, well systems are used in
the South Platte data set, where individual rights are related to augmentation plans (StateMod
plan stations). Output and model run times increase when individual rights are modeled.

In both cases, StateDMI assumes that the CU Location list includes all locations to be modeled. Any
locations that are aggregates or systems must be defined using the appropriate commands (see

Set * Aggr egat e() and Set * Syst en{) commands below). Diversions are grouped by specifying a
list of the individual ditch identifiers (e.g., D1 in the above figure may be an aggregate of more than one
ditch). Irrigation wells are grouped by indicating the parcel identifiers associated with wells (e.g., W6 —
W10 in the above figure may be grouped into a single location for modeling, using the parcel identifiers
to group the data). Municipal wells can be grouped by well identifier.

Aggregate and system identifier conventions are described in the Introduction chapter. In general,
StateCU data sets should use the same conventions as defined in a related StateMod data set. In
particular, when referencing a well station, use aggregate/system commands for well stations and when
referencing a diversion station, use aggregate/system commands for diversion stations.

14 - StateCU 102

StateDMI Documentation

4.5.1 CU Locations

The Commands...CU Locations Data...CU Locations menu inserts commands to process the CU
Locations (structure) file:

CU Locations - Commmands

ReadCULocakionsFromList() ...
ReadZlLocationsFromStateC L) ...
ReadCULocationsFromStatetod() ...

SebCLocationd) ...
SetCULocationsFromList() ...
SetDiversionfagregatel) ...
SetDiversionAggregateFromList() ...
SetDiversionSystemd) ...
SetDiversionSystemFramlist() ..,
setwellaggregate!) ..,
SetwelldggregateFromlist() ..,
SetWellSystemd) ...
SetwellSystemPFromList() ...

SortCLocations() ...

FillZUL ocationsFromListd) ..,
FillZULocationsFromHydroBase() ...
FillZULocationd) ...

SetCULocationClimateStationheights ...
SetCULacakionClimateStationdeightsFramLisk() ...

[Legary] SebCULocationClimatest aticnweightsFromHydroBass() ..
FillZlULocationClimatest ationWweights() ...

WriteZULocationsToLisk() ...
WriteCULocationsToSkateCU0) ..

CheckULocations() ...
WriteCheckFile) ...

MenuCommands_CULocations

103 StateCU - 15

StateDMI Documentation

The following table summarizes the use of each command, in the order of the menu:

CU Location Commands

Command

Description

ReadCULocat i onsFronili st ()

Read from a delimited list file the CU Locations to include in
the data set.

ReadCULocat i onsFr ontst at eCU()

Read from a StateCU structure file the CU Locations to
include in the data set.

ReadCULocat i onsFr onfst at eMbd()

Read from a StateMod diversion or well station file the CU
Locations to include in the data set.

Set CULocat i on()

Set data for an existing CU Location or optionally add a new
CU Location.

Set CULocat i onsFronlLi st ()

Read and set CU Location data from a delimited list file.

Set Di ver si onAggr egat e()

For a diversion CU Location, indicate the parts that comprise
an aggregate diversion.

Set Di ver si onAggr egat esFronli st ()

For diversion CU Locations, indicate the parts that comprise
aggregate diversions, using data in a delimited list file.

Set Di ver si onSyst em()

For a diversion CU Location, indicate the parts that comprise a
diversion system.

Set Di ver si onSyst ensFronLi st ()

For diversion CU Locations, indicate the parts that comprise
diversion systems, using data in a delimited list file.

Set Wl | Aggr egat e()

For a well CU Location, indicate the parts that comprise an
aggregate well.

Set Wl | Aggr egat esFronli st ()

For well CU Locations, indicate the parts that comprise
aggregate wells, using data in a delimited list file.

Set Vel | Syst em()

For a well CU Location, indicate the parts that comprise a well
system.

Set Wl | Syst ensFronLi st ()

For well CU Locations, indicate the parts that comprise well
systems, using data in a delimited list file.

Sort CULocat i on()

Sort the CU Locations. This is useful to force consistency
between files.

Fi || CULocati onsFronii st ()

Fill missing CU Location data, using data in a delimited list
file.

Fi || CULocat i onsFr onHydr oBase()

Fill missing CU Location data, using data in HydroBase.

Fill CULocati on()

Fill missing CU Location data, using user-supplied data.

Set CULocat i on
C i mat eSt ati onWei ght s()

Set climate station weight data for a CU Location, using user-
supplied data.

Set CULocat i onCl i mat eSt ati on
Wei ght sFronLi st ()

Set climate station weight data for a CU Location, using data
in a delimited list file.

Set CULocati onCl i mat eSt ati on
Wi ght sFr onmHydr oBase()

Set climate station weight data for a CU Location, using data
in HydroBase. Legacy command — not currently used.

Fill CULocati on
Climat eStati onWei ght s()

Fill climate station weight data for a CU location, using user-
supplied data.

Wit eCULocati onsToLi st ()

Write defined CU Locations data to a delimited list file.

WiteCULocati onsToSt at eCU()

Write defined CU Locations data to a StateCU file.

CheckCULocat i ons()

Check CU Location data for problems.

Wit eCheckFile()

Write the results of data checks to a file.

16 - StateCU

104

StateDMI Documentation

An example command file is shown below (from preliminary South Platte Sp2008L data set). Lists of
locations in this case have been generated from the StateMod network (see the StateMod chapter) and
separate lists are maintained for various surface and groundwater locations.

Sp2008L_STR.StateDMI

South Platte Decision Support System
Historic Consumptive Use Model
Structure File (*.str)

#

#

#

#

#

Step 1 - Read Structure List File (WDID, Name)

#

Structure List includes Key Structures from Task 3, Aggregate GW, and Aggregate SW

ReadCULocationsFromList(ListFile="Sp2008L_StructList.csv",1DCol=1,NameCol=3)

#

Step 2 - Read structure information from HydroBase (Latitude, County, HUC)

FillCULocationsFromHydroBase(ID=""*",CULocType=Structure,RegionlType=County,Region2Type=HUC)

#

Step 3 - Assign AWC values based on Task 57, generate using the CDSS Toolbox

#

Key Structure AWC Values

SetCULocationsFromList(ListFile="AWC_2001.csv", IDCol=1,AWCCol=2)

#

GW AGG Structure AWC Values

SetCULocationsFromList(ListFile="AWC_Agg_GW.csv", IDCol=1,AWCCol=2)

#

SW AGG Structure AWC Values

SetCULocationsFromList(ListFile="AWC_Agg_SW.csv", IDCol=1,AWCCol=2)

#

Step 4 - Assign Elevation

FillCULocationsFromList(ListFile="Key Elev.csv", IDCol=1,ElevationCol=3)

#

Step 5 - Set Demand Structure Information based on Demand Carrier

SetCULocation(ID="0100503 I",Latitude=40.38,Elevation=4533.00,
Regionl="WELD",Region2="10190003",AWC=0.1375, IfNotFound=Warn)

#

SetCULocation(ID=""6400526",AWC=0.1393, I fNotFound=Warn)

#

Missing values assigned to Diversion Systems

SetCULocation(ID=""0100503 D" ,Latitude=40.28567,Regionl=""MORGAN", IfNotFound=Warn)

DivSys and Aggregate use weighted latitude from climate station assignments

County and HUC information not assigned to DivSys or Aggregate Structures

#

Step 6 - Read structure climate weights from list created from the CDSS Toolbox Climate Tool

SetCULocationClimateStationWeightsFromList(ListFile="Climate_2001.csv",1DCol=1,
StationlDCol=2,TempWtCol=3,PrecWtCol=3)

#

Step 8 - Fill Key Climate Station

#

FillCULocationClimateStationWeights(1D="01*", IncludeOrographicTempAdj=False,

IncludeOrographicPrecAdj=False,Weights="0945,1.0,1.0")

#

Step 7 - Write Structure File

SortCULocations()

WriteCULocationsToStateCU(OutputFile="SP2008L.str')

#

Check the results

CheckCULocations(1D=""*"")

WriteCheckFile(OutputFile="SP2008L.str.check.html')

105 StateCU - 17

StateDMI Documentation

The following command file illustrates creation of the CU Location file for a basin without groundwater

(taken from Colorado cm2006 data set):

ReadCULocationsFromList(ListFile="cmstrl
FillCULocationsFromHydroBase(1D=""*",CULo
SetCULocationsFromList(ListFile="cmstrli
SetCULocationsFromList(ListFile="plateau
SetCULocationClimateStationWeightsFromLi
StationlIDCol=1,RegionlCol=2,Region2Col
FillCULocationClimateStationWeights(1D="
FillCULocationClimateStationWeights(ID="
FillCULocationClimateStationWeights(1D="
FillCULocationClimateStationWeights(ID=""
FillCULocationClimateStationWeights(1D="
FillCULocationClimateStationWeights(ID=""
FillCULocationClimateStationWeights(1D="
FillCULocationClimateStationWeights(ID="
FillCULocationClimateStationWeights(1D="
FillCULocationClimateStationWeights(ID="
FillCULocationClimateStationWeights(1D="
FillCULocationClimateStationWeights(1D="
FillCULocationClimateStationWeights(1D="
FillCULocationClimateStationWeights(1D=""
FillCULocationClimateStationWeights(1D="
FillCULocationClimateStationWeights(1D="
WriteCULocationsToStateCU(OutputFile=""_.
Check the results
CheckCULocations(1D=""*"")

ist_csv", IDCol=1,NameCol=6)
cType=Structure,RegionlType=County,Region2Type=HUC)
st.csv",IDCol=1,LatitudeCol=2,AWCCol=11)
.csv",IDCol=1,RegionlCol=2)
st(ListFile="cowts.csv",

=3, TempWtCol=4,PrecWtCol=5)

89,0.32,0.32")

N~ B

36*" ,Weights="4664,1.0,0,35 o
37*" ,Weights="2454,1.
38*" ,Weights="3359,1.
39*" ,Weights="7031,1.
45*" \Weights="7031,1.
50*" ,Weights="3500,0.
51*" ,Weights="3500,0.
52*" ,Weights=""9265,1.
53*" ,Weights="9265,1.
70*" ,Weights="0214,1.
72*" ,Weights="1741,1.
950001" ,Weights="3146, .68
950010" ,Weights="7031, -0
950011",Weights="7031,1.0,1.0")
950050" ,Weights=""3146,0.68,0.68,3489,0.32,0.32")
\Statecu\cm2006.str" ,WriteHow=OverwriteFile)

OCO0O0O0OUUIOO OO
RPRRPRROORRRPE

R Ou

,3489,0.32,0.32")

WriteCheckFile(OutputFile="cm2006.str.StateDMI .check._html')

4.5.2 Crop Pattern Time Series (Yearly)

Crop pattern time series indicate the annual crops and their acreage for each CU Location. The crop

pattern file contains a time series of crop patte

rns for CU Locations, over the period that is being

modeled. The crop pattern data include crop type names and area associated with the crop for the year. It

is not required that all CU Locations include ¢

rops but this is often the case. If a crop is added for a CU

Location in any year, StateDMI will output a value in each year. Consequently, a full time series will be
available for each location/crop combination, even if many years have zeros. It is therefore important to
fill such data appropriately such that missing data (e.g., -999) are removed from output.

The crop characteristics/coefficients data prim

ary identifier is crop name (type), for example

ALFALFA. TR21. The information after the period is associated with an analysis method. Crop data

may be adjusted for high altitude or other loca

| calibration efforts. The irrigated lands crop data are

typically saved as ALFALFA, etc. in HydroBase, because these data are independent of the use of the

data. To make the crop names consistent, use

aTransl at eCropPat t er nTS() command before

writing the data. For example, translate the more generic names from HydroBase to the longer names

before writing the crop pattern time series to a
necessary.

The crop pattern time series file format was or

file, specifying ID patterns to translate by location if

iginally defined by legacy software in which a total acreage

and fraction by crop is reported. Because the fraction has three significant figures, the resulting acreage
by crop, when computed from the total, is only accurate to 3 significant figures. In current StateDMI

software, the actual copy acreage is used in co

mputations and the total and fraction are written to files

only for information purposes and to retain the historical file format. Consequently, comparing acreage
from old and new files may be slightly different due to the precision issue.

18 - StateCU

106

StateDMI Documentation

The Commands...CU Locations Data...Crop Patterns TS (Yearly) menu inserts commands to process

the crop patterns:

Crop Pattern TS (Yearly) - Commmands

SetOutputPeriod) ...

ReadCULocakionsFromList() ...
ReadCULacakionsFromStateCU) ..

SetDiversionfggragatel) ...
SetDiversionfggregateFromListd ...
SetDiversionSyskemt) ...
SetDiversionSystemFromList() ...
Setwelldggregated) ...
setWelaggregateFromList() ...
Seti'ellTystem() ...
SetWellSystemFromList) ...

CreateCropPatternTSForCULocakions) ...

ReadCropPatternTSFromStateCU) ...
SetCropPatternT3FromList() ...
ReadCropPatternTsFromHydroBasel) ...

SetCropPatkernTsg) ...
TranslateCropPatkernTal) ...
RemowveCropPatternTS{) ...

FillZropPatternTSConstant() ...
FillZropPatternTSInterpolakely ..
FillZropPatternTsRepeat) ...

L egacy] FllCropPatrernTallsingWalkights() ...

SorkCropPatternTa() ...

WriteCropPatkernTSToState U0 |,
WiteZropPatternTSToDatevaluel) ...

CheckiZropPatternTal) ...
WriteCheckFile() ...

MenuCommands_CropPatternTS

107

StateCU - 19

StateDMI Documentation

The following table summarizes the use of each command, in the order of the menu items:

Crop Pattern Time Series Commands

Command

Description

Set Qut put Peri od()

Set the output period for crop pattern time series.

ReadCULocat i onsFronli st ()

Read CU Locations from a list file. Identifiers
should be specified and other columns may be
needed for data filling.

ReadCULocat i onsFr ontst at eCU()

Read from a StateCU file the CU Locations to
include in the data set.

Set Di ver si onAggr egat e()

For a diversion CU Location, indicate the parts that
comprise an aggregate diversion.

Set Di ver si onAggr egat esFronli st ()

For diversion CU Locations, indicate the parts that
comprise aggregate diversions, using data in a
delimited list file.

Set Di ver si onSyst em()

For a diversion CU Location, indicate the parts that
comprise a diversion system.

Set Di ver si onSyst ensFronLi st ()

For diversion CU Locations, indicate the parts that
comprise diversion systems, using data in a delimited
list file.

Set Wl | Aggr egat e()

For a well CU Location, indicate the parts that
comprise an aggregate well.

Set Wl | Aggr egat esFronli st ()

For well CU Locations, indicate the parts that
comprise aggregate wells, using data in a delimited
list file.

Set Wl | Syst em()

For a well CU Location, indicate the parts that
comprise a well system.

Set Wl | Syst ensFronli st ()

For well CU Locations, indicate the parts that
comprise well systems, using data in a delimited list
file.

Creat eCropPatt er nTSFor CULocat i ons()

Create empty crop pattern time series data for each
CU Location. The resulting data can be updated with
other commands.

ReadCr opPat t er nTSFr onftst at eCU()

Read crop pattern data from a StateCU file and
update the StateDMI information.

Set Cr opPat t er nTSFr onLi st ()

Set crop pattern data from a list file, in order to
supplement data that are not in HydroBase. A list
file should be specified for each year of irrigated
lands data. The data can be processed with
HydroBase data as if they were parcels.

ReadCr opPat t er nTSFr onHydr oBase()

Read crop pattern data from HydroBase.

Set CropPatternTS()

Set crop pattern data using user-supplied values.

Transl at eCropPatt ernTS()

Change a crop type in crop pattern data.

RenoveCropPatt ernTS()

Remove a specific crop pattern time series.

Fill CropPatternTSConst ant ()

Fill missing crop pattern data with a constant value.

Fill CropPatternTSl nterpol ate()

Fill missing crop pattern data using interpolation.

Fill CropPatternTSRepeat ()

Fill missing crop pattern data by repeating values.

20 - StateCU

108

StateDMI Documentation

Command Description

Fi Il CropPatternTSUsi ngVel I Rights() | Fill crop pattern time series using well rights. This is
used to turn off groundwater only parcels back in
time during the early data period. This legacy
command is typically no longer used.

Sort CropPatternTS Sort crop pattern time series by location identifier.
Wi teCropPatternTSToSt at eCQU() Write defined crop pattern data to a StateCU file.
WiteCropPatternTSToDat eVal ue() Write defined crop pattern data to a DateValue file.
CheckCropPat t er nTS() Check crop pattern data for problems.

Wi teCheckFile() Write the results of data checks to a file.

There are several ways to define crop pattern data in StateDMI:

1. Read a CU Locations file using ReadCULocat i onsFr onfst at eCU() or
ReadCULocat i onsFronli st () and then read the associated crop patterns from HydroBase
using ReadCr opPat t er nTSFr onmHydr obase() . This is typically used if irrigated lands
data have been populated in HydroBase and is the standard approach.

2. Read crop patterns from an existing crop patterns time series file using the
ReadCUCr opPat t er nsFr ontst at eCU() command. This is typically only used if an
existing file needs to be adjusted (e.g., by extending the period with fill options).

3. Utilize data that are not in HydroBase by using the Set Cr opPat t er nTSFr onLi st ()
command. This may be appropriate for new development where data have not yet been loaded
into HydroBase.

Once crop patterns are defined with the above commands, crop patterns for specific CU Locations can be
edited using Set Cr opPatt er nTS() and Set Cr opPat t er nTSFr onili st () commands. These
commands can also be used to supply values for specific locations, to be considered when irrigated lands
are processed from a database. For example, acreage can be assigned to a structure that is part of an
aggregate (but which does not have irrigated parcels in the database), and the supplied value will be
included in the aggregate when the irrigated lands from the database are processed. Because determining
crop patterns is a data- and labor-intensive effort, data are not typically available for each year in a
modeling period. Therefore, crop patterns known for specific years are often extended or interpolated for
other years using the Fi | | Cr opPat t er nTSRepeat () and

Fi Il CropPatternTSI nt er pol at e() commands. An attempt was made in the Rio Grande to
relate crop patterns to agricultural statistics (crop planting and harvest data); however, this approach
proved to be inaccurate and the more straightforward methods are typically used. Finally, output can be
written using the Wi t eCr opPat t er nsTSToSt at eCU() command.

109 StateCU - 21

StateDMI Documentation

An example commands file is shown below (from the Colorado cm2006 data set). This illustrates the
major steps in the standard approach.

Step 1 - Set output period and read CU locations

SetOutputPeriod(OutputStart="1950",0utputEnd=""2006"")

ReadCULocationsFromStateCU(InputFile="._\StateCU\cm2006.str")

Step 2 - Read SW aggregates

SetDiversionSystemFromList(ListFile="colorado_divsys.csv', IDCol=1,NameCol=2,
PartlDsCol=3,PartsListedHow=I1nRow)

SetDiversionAggregateFromList(ListFile="colorado_agg.csv', IDCol=1,NameCol=2,
PartlDsCol=3,PartsListedHow=InRow)

Step 3 - Create *.cds file form and read acreage/crops from HydroBase

CreateCropPatternTSForCULocations(ID="*",Units=""ACRE")

ReadCropPatternTSFromHydroBase(1D=""*"")

Step 4 - Need to translate crops out of HB to include TR21 suffix

Translate all crops from HB to include .TR21 suffix

TranslateCropPatternTS(ID="*",01dCropType=""GRASS_PASTURE" ,NewCropType=""GRASS_PASTURE.TR21'")

TranslateCropPatternTS(ID="*",01dCropType=""CORN_GRAIN" ,NewCropType=""CORN_GRAIN.TR21'")

TranslateCropPatternTS(ID=""*",01dCropType=""ALFALFA" ,NewCropType="ALFALFA_TR21'")

TranslateCropPatternTS(ID=""*",01dCropType=""SMALL_GRAINS" ,NewCropType=""SPRING_GRAIN.TR21")

TranslateCropPatternTS(ID="*",01dCropType="VEGETABLES" ,NewCropType="VEGETABLES.TR21"")

TranslateCropPatternTS(ID="*",01dCropType=""0RCHARD_WO_COVER" ,NewCropType=""0RCHARD_WO_COVER.TR21'")

TranslateCropPatternTS(ID=""*",01dCropType="0RCHARD_WITH_COVER" ,NewCropType="0RCHARD_WITH_COVER.TR21")

TranslateCropPatternTS(ID=""*",01dCropType=""DRY_BEANS" ,NewCropType="DRY_BEANS.TR21")

TranslateCropPatternTS(ID=""*",01dCropType=""GRAPES" ,NewCropType=""GRAPES.TR21")

TranslateCropPatternTS(ID="*",01dCropType="WHEAT" ,NewCropType=""SPRING_GRAIN.TR21'")

TranslateCropPatternTS(ID=""*",01dCropType=""SUNFLOWER" ,NewCropType=""SPRING_GRAIN.TR21'")

TranslateCropPatternTS(ID=""*",001dCropType=""SOD_FARM" ,NewCropType=""GRASS_PASTURE.TR21'")

Step 5 - Translate crop names

use high-altitude coefficients for structures with more than 50% of irrigated

acreage above 6500 feet

TranslateCropPatternTS(ListFile="cm2005_HA.Ist",1DCol=1,01dCropType="GRASS_PASTURE.TR21",
NewCropType=""GRASS_PASTURE.DWHA™)

Step 6 - Fill Acreage

Fill SW structure acreage backword from 1999 to 1950

Fill acreage forward for all structures from 2000 to 2006

FillCropPatternTSRepeat(I1D=""*",CropType="*",FillStart=1950,Fi l IEnd=1993,Fil IDirection=Backward)

FillCropPatternTSRepeat(1D=""*",CropType="*",FillStart=1993,Fill1End=1999,FillDirection=Forward)

FillCropPatternTSRepeat(1D=""*",CropType=""*",FillStart=2000,Fill1End=2006,FillDirection=Forward)

Step 7 - Write final *.cds file

WriteCropPatternTSToStateCU(OutputFile="__\StateCU\cm2006.cds",WriteCropArea=True)

Check the results

CheckCropPatternTS(ID=""*"")

WriteCheckFile(OutputFile="cm2006.cds.StateDMI .check._html')

The following command file illustrates how to process crop characteristics in a basin with groundwater
supply (from preliminary South Platte Sp2008L data set). The main difference is that lists of locations are
defined using aggregate/system wells.

Sp2008L_CDS.StateDMI

tartLog(LogFile="Sp2008L_CDS.log")
rop Distribution File (*.cds) for the SPDSS Consumptive Use Model

HHHEHHHHI
[@N)]

Step 1 - Set output period and read CU locations

SetOutputPeriod(OutputStart="1950",0utputEnd=""2006"")

ReadCULocationsFromStateCU(InputFile=""__\LocationCU\SP2008L.str")

#

Step 2 - Read SW aggregates, divsys, demandsys, and GW aggregates

#

SetDiversionAggregateFromList(ListFile="._\Sp2008L_SWAgg.csv', IDCol=1,NameCol=2,PartiIDsCol=3,
PartsListedHow=InColumn)

SetDiversionSystemFromList(ListFile=""__\Sp2008L_DivSys_CDS.csv", IDCol=1,NameCol=2,PartiIDsCol=3,
PartsListedHow=1nRow)

#

22 - StateCU 110

StateDMI Documentation

SetWellSystemFromList(ListFile="_.\SP_GWAGG_1956.csv",Year=1956,Div=1,PartType=Parcel,
IDCol=1,PartiIDsCol=2,PartsListedHow=InColumn)

SetWelISystemFromList(ListFile="__\SP_GWAGG_1976.csv",Year=1976,Div=1,PartType=Parcel,
IDCol=1,PartiIDsCol=2,PartsListedHow=InColumn)

SetWellSystemFromList(ListFile="_.\SP_GWAGG_1987.csv",Year=1987,Div=1,PartType=Parcel,
IDCol=1,PartiIDsCol=2,PartsListedHow=InColumn)

SetWellISystemFromList(ListFile=""__\SP_GWAGG_2001.csv",Year=2001,Div=1,PartType=Parcel,
IDCol=1,PartiIDsCol=2,PartsListedHow=InColumn)

SetWellSystemFromList(ListFile="_.\SP_GWAGG_2005.csv",Year=2005,Div=1,PartType=Parcel,
IDCol=1,PartiIDsCol=2,PartsListedHow=InColumn)

#

Step 3 - Create *.cds file form and read acreage/crops from HydroBase

CreateCropPatternTSForCULocations(ID=""*",Units="ACRE")

ReadCropPatternTSFromHydroBase(1D=""*"")

#

Step 4 - Read well rights and determine gw-only structure acreage in 1950

#

ReadWel IRightsFromStateMod(InputFile=""__\Wel 1s\Sp2008L_NotMerged.wer'")

FillCropPatternTSUsingWelIRights(1D="*", IncludeSurfaceWaterSupply=False,CropType="*"",
FillStart=1950,Fill1End=1955,ParcelYear=1956)

#

Step 5 -

Fill SW structure acreage backward from 1956 to 1950

Linearly interpolate acreage for all structures between 1956, 1976, 1987, 2001, and 2005
Fill acreage forward for all structures from 2005 to 2006

FillCropPatternTSRepeat(I1D="*",CropType="*",FillStart=1950,Fil IEnd=1956,FilIDirection=Backward)

FillCropPatternTSInterpolate(ID="*",CropType="*",FillStart=1956,FillEnd=1976)

FillCropPatternTSInterpolate(ID="*",CropType="*",FillStart=1976,Fill1End=1987)

FillCropPatternTSinterpolate(ID="*",CropType="*",FillStart=1987,FillEnd=2001)

FillCropPatternTSInterpolate(ID="*",CropType="*",Fill1Start=2001,FillEnd=2005)

FillCropPatternTSRepeat(1D=""*",CropType=""*",FillStart=2005,Fill1End=2006,FillDirection=Forward)

#

Step 6 - Set to Missing and Fill primary WDID of Demand Structure = 0O

SetCropPatternTS(1D="0100503_D",SetStart=1950, SetEnd=2006,
CropPattern="ALFALFA,0,CORN_GRAIN.TR21,0,SUGAR_BEETS,0,GRASS_PASTURE,O0,VEGETABLES,0,SPRING_GRAIN.TR21,0",
IrrigationMethod=Flood, SupplyType=Ground,ProcessWhen=Now)

SetCropPatternTS(1D=""0100507_D",SetStart=1950, SetEnd=2006,
CropPattern="ALFALFA,0,CORN_GRAIN.TR21,0,SUGAR_BEETS,0,GRASS_PASTURE,0,VEGETABLES,0,SPRING_GRAIN.TR21,0",
IrrigationMethod=Flood, SupplyType=Ground,ProcessWhen=Now)

SetCropPatternTS(1D=""0100687",SetStart=1950, SetEnd=2006,
CropPattern="ALFALFA,0,CORN_GRAIN.TR21,0,SUGAR_BEETS,0,GRASS_PASTURE,O0,VEGETABLES,0,SPRING_GRAIN.TR21,0",
IrrigationMethod=Flood, SupplyType=Ground,ProcessWhen=Now)

SetCropPatternTS(1D=""0200834",SetStart=1950, SetEnd=2006,
CropPattern="ALFALFA,0,CORN_GRAIN.TR21,0,SUGAR_BEETS,0,GRASS_PASTURE,O0,VEGETABLES,0,SPRING_GRAIN.TR21,0",
IrrigationMethod=Flood, SupplyType=Ground,ProcessWhen=Now)

#

SetCropPatternTS(1D=""6400511_D",SetStart=1950,SetEnd=2006,
CropPattern="ALFALFA,0,CORN_GRAIN.TR21,0,SUGAR_BEETS,0,GRASS_PASTURE,O0,VEGETABLES,0,SPRING_GRAIN.TR21,0",
IrrigationMethod=Flood, SupplyType=Ground,ProcessWhen=Now)

Step 7 - No Acreage in HydroBase, Set to Missing = 0

SetCropPatternTS(1D=""0100501",SetStart=1950, SetEnd=2006,
CropPattern="ALFALFA,0,CORN_GRAIN.TR21,0,SUGAR_BEETS,0,GRASS_PASTURE,O0,VEGETABLES,0,SPRING_GRAIN.TR21,0",
IrrigationMethod=Flood, SupplyType=Ground,ProcessWhen=Now)

SetCropPatternTS(1D="0100513",SetStart=1950, SetEnd=2006,
CropPattern="ALFALFA,0,CORN_GRAIN.TR21,0,SUGAR_BEETS,0,GRASS_PASTURE,O0,VEGETABLES,0,SPRING_GRAIN.TR21,0",
IrrigationMethod=Flood, SupplyType=Ground,ProcessWhen=Now)

SetCropPatternTS(1D=""0100829",SetStart=1950, SetEnd=2006,
CropPattern="ALFALFA,0,CORN_GRAIN.TR21,0,SUGAR_BEETS,0,GRASS_PASTURE,O0,VEGETABLES,0,SPRING_GRAIN.TR21,0",
IrrigationMethod=Flood, SupplyType=Ground,ProcessWhen=Now)

#

SetCropPatternTS(1D=""6400519",SetStart=1950, SetEnd=2006,
CropPattern="ALFALFA,0,CORN_GRAIN.TR21,0,SUGAR_BEETS,0,GRASS_PASTURE,O0,VEGETABLES,0,SPRING_GRAIN.TR21,0",
IrrigationMethod=Flood, SupplyType=Ground,ProcessWhen=Now)

Step 8 - Translate crop names to Locally Calibrated based on structure location and elevation

Source: Translate.xls (20070809)

Alfalfa

TranslateCropPatternTS(ID="*",01dCropType="ALFALFA" ,NewCropType="ALFALFA.TR21'")

TranslateCropPatternTS(ListFile="SP2008_CCLP.csv",IDCol=1,01dCropType="ALFALFA.TR21",
NewCropType=""ALFALFA_CCLP")

TranslateCropPatternTS(ListFile="SP2008_CCUP.csv"', IDCol=1,01dCropType="ALFALFA.TR21",
NewCropType=""ALFALFA_CCUP'")

111 StateCU - 23

StateDMI Documentation

CORN_GRAIN

TranslateCropPatternTS(I1D="*",001dCropType=""CORN" ,NewCropType=""CORN_GRAIN.TR21'"")

TranslateCropPatternTS(ListFile="SP2008_CCLP.csv", IDCol=1,01dCropType="CORN_GRAIN.TR21",
NewCropType=""CORN_GRAIN.CCLP')

TranslateCropPatternTS(ListFile=""SP2008_CCUP.csv", IDCol=1,01dCropType="CORN_GRAIN.TR21",
NewCropType=""CORN_GRAIN.CCUP'")

DRY_BEANS

TranslateCropPatternTS(ID=""*",01dCropType="DRY_BEANS" ,NewCropType="DRY_BEANS.TR21')

TranslateCropPatternTS(ListFile="SP2008_CCLP.csv"', IDCol=1,01dCropType="DRY_BEANS.TR21",
NewCropType=""DRY_BEANS.CCLP')

TranslateCropPatternTS(ListFile="SP2008_CCUP.csv", IDCol=1,0ldCropType="DRY_BEANS.TR21",
NewCropType="DRY_BEANS.CCUP')

GRASS_PASTURE

TranslateCropPatternTS(ID="*",01dCropType=""GRASS_PASTURE" ,NewCropType="GRASS_PASTURE.TR21'")

TranslateCropPatternTS(ListFile="SP2008_CCLP.csv", IDCol=1,01dCropType="GRASS_ PASTURE.TR21",
NewCropType=""GRASS_PASTURE.CCLP'")

TranslateCropPatternTS(ListFile="SP2008_CCUP.csv", IDCol=1,01dCropType=""GRASS_PASTURE.TR21",
NewCropType=""GRASS_PASTURE.CCUP')

TranslateCropPatternTS(ListFile="SP2008_DWHA_OroAdj .csv', IDCol=1,0ldCropType="GRASS_PASTURE.TR21",
NewCropType=""GRASS_PASTURE.DWHA™)

SMALL_GRAINS

TranslateCropPatternTS(I1D=""*"",01dCropType=""SMALL_GRAINS" ,NewCropType=""SPRING_GRAIN.TR21')

TranslateCropPatternTS(ListFile=""SP2008_CCLP.csv", IDCol=1,0ldCropType="SPRING_GRAIN.TR21",
NewCropType=""SPRING_GRAIN.CCLP'")

TranslateCropPatternTS(ListFile="SP2008_CCUP.csv", IDCol=1,01dCropType=""SPRING_GRAIN.TR21",
NewCropType=""SPRING_GRAIN.CCUP'™)

SUGAR_BEETS

TranslateCropPatternTS(ID=""*",01dCropType=""SUGAR_BEETS" ,NewCropType=""SUGAR_BEETS.TR21")

TranslateCropPatternTS(ListFile="SP2008_CCLP.csv", IDCol=1,01dCropType=""SUGAR_BEETS.TR21",
NewCropType=""SUGAR_BEETS.CCLP'")

TranslateCropPatternTS(ListFile="SP2008_CCUP.csv", IDCol=1,01dCropType=""SUGAR_BEETS.TR21",
NewCropType=""SUGAR_BEETS.CCUP'")

SUGAR_BEETS

TranslateCropPatternTS(ID="*",01dCropType="VEGETABLES" ,NewCropType="VEGETABLES.TR21'")

SOD_FARM

TranslateCropPatternTS(ID=""*",01dCropType=""SOD_FARM" ,NewCropType="BLUEGRASS .POCHOP'")

ORCHARD_WO_COVER

TranslateCropPatternTS(ID="*",01dCropType="0ORCHARD_WO_COVER" ,NewCropType=""ORCHARD_WO_COVER.TR21'")

#

Step 9 - Write final *.cds file

WriteCropPatternTSToStateCU(OutputFile="__\StateCU\Historic\SP2008L.cds",WriteHow=OverwriteFile)

WriteCropPatternTSToStateCU(OutputFile="SP2008L.cds",WriteHow=OverwriteFile)

24 - StateCU 112

StateDMI Documentation

4.5.3 Irrigation Practice Time Series (Yearly)

The irrigation practice (parameter) time series file contains CU Location parameter data that are available
as yearly time series. These data are also used as input to StateMod for use in groundwater and variable-
efficiency modeling. The data in the file include the following for each year:

o Maximum delivery efficiencies, which may be specified with Set I rri gati onPracti ceTS() or
SetlrrigationPracticeTSFronii st() commands.

o Maximum flood irrigation efficiencies, which may be specified with
SetlrrigationPracticeTS() orSetlrrigationPracticeTSFroniist(). This
applies to low efficiency irrigation methods such as flood and furrow.

e Maximum sprinkler irrigation efficiencies, which may be specified with
SetlrrigationPracticeTS() orSetlrrigationPracticeTSFromniist(). This
applies to high efficiency irrigation methods such as sprinkler and drip.

e Acres irrigated from surface water only with flood irrigation (low efficiency irrigation). Data are
typically read from HydroBase and then estimated with interpolation or repeat. See the example
below.

e Acres irrigated from surface water only with sprinkler irrigation (high efficiency irrigation). Data are
typically read from HydroBase and then estimated with interpolation or repeat. See the example
below.

e Acres irrigated that have ground water supply (may also have surface water supply), flood irrigation
(low efficiency irrigation). Data are typically read from HydroBase and then estimated with
interpolation or repeat. See the example below.

e Acres irrigated that have ground water supply (may also have surface water supply), sprinkler
irrigation (high efficiency irrigation). Data are typically read from HydroBase and then estimated
with interpolation or repeat. See the example below.

e Maximum monthly pumping (ACFT), determined from summing the well yields/decrees for the wells
associated with the location, using the permit and right dates to turn on wells. The data are usually
processed with the Set | rri gati onPract i ceTSPunpi ngMaxToWel | Ri ght s() command.

e Groundwater use mode, typically changed from defaults using the
SetlrrigationPraticeTS() command.

e Total acres for location. These numbers should be an exact duplicate of the total acreage from the

crop pattern time series. See the
SetlrrigationPracti ceTSTot al Acr eageFr onCr opPat t er nTSTot al Acr eage()

command.

The definition of CU Locations as well/diversion system/aggregate is important because the logic to
process each type of location is different. The only way for StateDMI to know whether a CU location
is groundwater only is to check for an aggregate/system that is specified as a list of parcels. This is
because CU Locations data in the StateCU files have no indicator of whether a location is a diversion,
well or diversion supplemented by wells. This information could be determined from the irrigation
practice file; however, creating this file is the subject of this section and the file is not available as input!

Because the irrigation practice time series file contains multiple time series, the
CreatelrrigationPracti ceTSFor CULocati ons() command is used to create blank time
series for each CU location, each filled with missing data. Appropriate
SetlrrigationPracticeTS*() commands can then be used to define data values. Fill commands
can be used to fill in missing values during the output period.

113 StateCU - 25

StateDMI Documentation

The crop pattern time series file should have been previously created and is utilized as the “baseline” for
acreage by supplying the total acreage. The total acreage is maintained during irrigation practice data
filling, adjusting acreage parts as appropriate. General guidelines on setting acreage, as implemented by
commands discussed in this section, are as follows:

1. Crop pattern time series total acreage is relied on for the total acreage. Where inconsistencies
occur (e.g., groundwater acres are higher than total acres), the crop pattern total takes precedence.
2. Groundwater acreage takes precedence next because of data availability for groundwater supply
for parcels (well to parcel relationships). Total groundwater acreage is made consistent with the
total acreage, and may cause a cascade of acreage adjustments described in following items. In
cases where there is no groundwater supply, groundwater acreage is zero and surface water
acreage takes precedence.
a. Groundwater acreage irrigated by sprinklers takes precedence over flood irrigation, based
on irrigated lands irrigation method identification.
b. Groundwater acreage irrigated by flood is the remainder within the groundwater acreage.
3. Surface water only acreage (no groundwater supply) is set to total acres minus groundwater
supply acres.
a. Surface water acreage irrigated by sprinklers takes precedence over flood irrigation,
based on irrigated lands irrigation method identification.
b. Surface water acreage irrigated by flood irrigation is the remainder within the surface
water only acreage.

Consequently, the following acreage relationships are maintained, and are used at checks at various
locations during processing:

Total = Groundwater + SurfaceOnly
Total = (GroundwaterOnlysprinkier + GroundwaterOnlygioq) + (SurfaceOnlysprinkier + SurfaceOnlygiooq)

The above logic is necessary to make the solution of acreage terms determinate and may result in a
cascade of acreage adjustments as values are set. If missing values remain after processing, it is
necessary to utilize more data to set observations (e.g., using well rights to limit acreage in the early part
of the period), or to use fill commands to fill gaps (which will result in the cascade of calculations
described above). During initial data set development, it may be useful to implement one command at a
time and review the results, studying the impacts of each command in filling in gaps.

26 - StateCU 114

StateDMI Documentation

The Commands... CU Locations Data...Irrigation Practice TS (Yearly) menu inserts commands to
process the StateCU irrigation practice file:

Irrigation Practice TS (Yearly) - Commmands

SebOukbputPeriod) ...

ReadClLocationsFromLisk) ...
ReadClLocationsFramstateC0) ...

SetDiversionfgoregatel) ...
SetDiversionfgoregateFromLisk) ...
SetDiversionSwstemt) ...
SetDiversionSystemFromListd ...
Setwelldgaregatel) ...
SetwelldggregateFromListd) ...
SetwellSystern) ..
SetWellSystemPFromList) ...

CreatelrrigationPracticeTsForZLocations() ...
ReadlrtigationPracticeTSFromskakeCLC ..
ReadlIrrigationPracticeTSFromHwdroBase() ...
ReadIrrigationPracticeTSFromLisk() ...

1: ReadCropPatternTSFromState L) ...

21 SetlrrigationPrackice TSTokaloreageToCropPatternTSTokalboreagel) ..
SetIrrigationPractice T3PumpingMaxJsingelRights .
SetIrrigationPracticeTSSprinklerdcreageFromLisk) ...
SetIrrigationPracticeTal) ...

SetlrrigationPracticeTSFramLisk() ...

1: ReadWellRightsFromStateMod) ...
21 FillTlrrigationPractice T3Acreage sing'WelRights() ...

FilllrrigationPractice T3Interpolated) ..,
FilllrrigationPracticeTSRepeat) ...

SortIrrigationPracticeTS() ...

WriteIrrigationPractice T3 ToDateyalued) ...
WritelrrigationPracticeTSToState L) ...

CheckIrrigationPractice TSy ...
WiteCheckFiled) ...

MenuCommands_|rrigationPracticeTS

115 StateCU - 27

StateDMI Documentation

The following table summarizes the use of each command:

Irrigation Practice Time Series Commands

Command

Description

Set Qut put Peri od()

Set the output period for irrigation practice time series.

ReadCULocat i onsFronli st ()

Read CU Locations from a list file. Identifiers should be
specified and other columns may be needed for data
filling.

ReadCULocat i onsFr ontst at eCU()

Read from a StateCU file the CU Locations to include in
the data set.

Set Di ver si onAggr egat e()

For a diversion CU Location, indicate the parts that
comprise an aggregate diversion.

Set Di ver si onAggr egat eFr omLi st ()

For diversion CU Locations, indicate the parts that
comprise aggregate diversions, using data in a delimited
list file.

Set Di ver si onSyst em()

For a diversion CU Location, indicate the parts that
comprise a diversion system.

Set Di ver si onSyst enfronli st ()

For diversion CU Locations, indicate the parts that
comprise diversion systems, using data in a delimited list
file.

Set Wl | Aggr egat e()

For a well CU Location, indicate the parts that comprise
an aggregate well.

Set Wl | Aggr egat eFronLi st ()

For well CU Locations, indicate the parts that comprise
aggregate wells, using data in a delimited list file.

Set Vél T Syst en()

For a well CU Location, indicate the parts that comprise a
well system.

Set Wl | Syst enfronli st ()

For well CU Locations, indicate the parts that comprise
well systems, using data in a delimited list file.

CreatelrrigationPracticeTS
For CULocat i ons()

Create empty irrigation practice time series data for each
CU Location. The resulting data can be updated with
other commands.

Readl rrigati onPracticeTS
Fronst at eCUY()

Read irrigation practice time series data from a StateCU
file.

Readl rrigati onPracti ceTS
Fr omHydr oBase()

Read irrigation practice acreage values from HydroBase.

Readl rrigati onPracti ceTSFromLi st ()

Read irrigation practice time series data from a list,
optionally to combine with HydroBase data.

ReadCr opPat t er nTSFr ontst at eCU()

Read crop pattern time series from a StateCU file, in order
to set the acreage total in the irrigation practice time
series.

SetlrrigationPracticeTS
Tot al Acr eage
ToCropPat t er nTSTot al Acr eage()

Set the irrigation practice total acreage to the crop pattern
total acreage. This should be done after reading acreage
data from HydroBase and before any other acreage filling
occurs because the total is used as a check and is
maintained in final results.

SetlrrigationPracti ceTSPunpi ngivax
Usi ngVeél | Ri ght s()

Set the irrigation practice pumping maximum time series
to well rights. See also
ReadWel | Ri ght sFrontt at evbd() .

28 - StateCU

116

StateDMI Documentation

Command

Description

SetlrrigationPracticeTSSpri nkler
Acr eageFronLi st ()

Set the irrigation practice sprinkler acreage time series
from a list file.

SetlrrigationPracticeTS()

Set irrigation practice data using user-supplied values.

SetlrrigationPracti ceTSFronli st ()

Set irrigation practice data from a delimited list file.

ReadWel | Ri ght sFrontt at evbd()

Read a StateMod well rights file, for use with

SetlrrigationPracti ceTSPunpi nghvax
Usi ngWel | Ri ght s()and
FilllrrigationPracticeTS().

FilllrrigationPracticeTS Fill the irrigation practice acreage time series using well

Usi ngVel | Ri ght s() rights. This is only applied to lands with groundwater
supply and is used in the early data period.

FilllrrigationPracticeTS Fill missing irrigation practice data using interpolation.

il
nt er pol at e()
i

FilllrrigationPracticeTSRepeat () Fill missing irrigation practice data by repeating values.

SortlrrigationPracticeTS() Sort irrigation practice time series by location identifier.

WitelrrigationPracticeTS

Write defined irrigation practice time series to a
ToDat eVal ue()

DateValue file. This is useful if the data are to be used
with the TSTool software.

WitelrrigationPracticeTS Write defined irrigation practice time series to a StateCU
ToSt at eCU() file

ChecklrrigationPracticeTS() Check crop pattern data for problems.

Wit eCheckFil e() Write the results of data checks to a file.

The following example command file illustrates creating the irrigation practice file in a basin where
groundwater supply is not included (from Colorado cm2006 data set):

Step 1 - Set output period and read CU locations from structure file

SetOutputPeriod(OutputStart="1950",0utputEnd=""2006"")

ReadCULocationsFromStateCU(InputFile=""__\StateCU\cm2006.str")

Step 2 - Read SW aggregates

SetDiversionSystemFromList(ListFile="colorado_divsys.csv",1DCol=1,NameCol=2,
PartlDsCol=3,PartsListedHow=1nRow)

SetDiversionAggregateFromList(ListFile="colorado_agg.csv", IDCol=1,NameCol=2,
PartlDsCol=3,PartsListedHow=InRow)

Step 3 - Create form for *_ipy file

CreatelrrigationPracticeTSForCULocations(ID="*"")

Step 5 - set max flood and surface water efficiencies and GWmode - NOT in HydroBase

Set Max SW Eff = 1.0

SetlrrigationPracticeTS(ID=""*",SurfaceDelEffMax=1.0,FloodAppEffMax=.60,SprinklerAppEffMax=.80,
PumpingMax=0,GWMode=2)

SetlrrigationPracticeTSFromList(ListFile="cmstrlist.csv", ID="*", SetStart=1950,
SetEnd=2006, IDCol=""1",SurfaceDelEffMaxCol="7",FloodAppEffMaxCol="8",SprinklerAppEffMaxCol="9")

Step 6 - Read category acreage from HydroBase

ReadlrrigationPracticeTSFromHydroBase(1D=""*",Year="1993,2000",Div="5")

Step 8 - Read total acreage from *.cds file and Set total for *.ipy file

ReadCropPatternTSFromStateCU(InputFile="_.\StateCU\cm2006.cds"")

SetlrrigationPracticeTSTotalAcreageToCropPatternTSTotalAcreage(1D=""*"")

Step 9 - Fill all land use acreage

Fill groundwater acreage first

Fill surface water sprinkler and flood 1950-2006

Fill ground water sprinkler and flood 1950-2006

Step 9a - estimate total GW and total SW

FilllrrigationPracticeTSRepeat(ID="*",DataType=""CropArea-

GroundWater" ,FillStart="1950",Fil IEnd=""1993" ,FillDirection="Backward™)

GroundWater™ ,FillStart="1993",FilIEnd=""1999" ,FilIDirection="Forward™)

FilllrrigationPracticeTSRepeat(ID="*",DataType=""CropArea-

GroundWater" ,FillStart="2000",FilIEnd=""2006",FillDirection="Forward™)

Step 9b - Fill remaining irrigation method values

117 StateCU - 29

StateDMI Documentation

FilllrrigationPracticeTSRepeat(ID=""*",DataType=""CropArea-
SurfaceWaterOnlySprinkler"” ,FillStart="1950",Fil1End="1993" ,FilIDirection="Backward")
FilllrrigationPracticeTSRepeat(ID="*",DataType=""CropArea-
SurfaceWaterOnlySprinkler" ,FillStart="1993" ,FillIEnd="1999" ,FillDirection="Forward")
FilllrrigationPracticeTSRepeat(ID=""*",DataType=""CropArea-
SurfaceWaterOnlySprinkler™”,FillStart="2000",Fi lIEnd="2006",FillDirection="Forward"™)
FilllrrigationPracticeTSRepeat(ID="*",DataType=""CropArea-

GroundWaterSprinkler'” ,FillStart="1950",FillEnd=""1993" ,FillDirection="Backward")
FilllrrigationPracticeTSRepeat(ID=""*",DataType=""CropArea-
GroundWaterSprinkler”,FillStart="1993",FillEnd="1999" ,FillDirection="Forward")
FilllrrigationPracticeTSRepeat(ID=""*",DataType=""CropArea-
GroundWaterSprinkler”,FillStart="2000",FillEnd="2006",FillDirection="Forward")

Step 10 - Write final ipy file
WritelrrigationPracticeTSToStateCU(OutputFile=""__\StateCU\cm2006. ipy")

Check the results

ChecklrrigationPracticeTS(ID=""*")
WriteCheckFile(OutputFile="cm2006. ipy.StateDMI .check._html')

An example command file that considers groundwater is shown below (from Rio Grande data set):

StartLog(LogFile="LocationCU_IPY._StateDMI.log")
#

LocationCU_Ipy.StateDMI

Used for all three scenarios:
1. rg2007 Division 3
2. rg2007_SW Division 3 plus New Mexico
3. rg2007_GW Ground Water Basin Only

rrb 2007/10/09; Revised rgdssall_2007.csv = rgdssall_STR.csv
to add the following based on new URF coverage

27URF28

20URFO0

24URF0O0

241RFOO

35URF0O0

26URF21

DOES INCLUDE 7 structures in New Mexico (90%).

These are:
ID=""90ACEQM" ,Name=""Acequia Madre, NM')
ID=""90AMALIA™" ,Name=""Amalia Area')
ID=""90CERRO" ,Name=""Cerro and Association')
ID=""90CERTO" ,Name=""Cerrito Canal")
ID=""90METRJ"" ,Name="ME Trujillo")
ID=""90PAPEN" ,Name=""Plaza Arriba and Penasquita')
I1D=""90PDMD"* ,Name=""Plaza Del Media')

rrb 2007/09/18; File provided by Sam via Email on 9/19/2007. Revised as follows:

Revised to exclude 2002 data until Agro does additional analysis
Revised NoGIS_1936 to exclude the following structures already
in the 1936 coverage per Sam Email on 9/19.

Reset Taos No 3 (220639) because it sold in 1974

Removed extra output include by SAM

Revised sprinkler file from sprink_Acreage.csv to
Sprink_Acreage_2007.csv to get include 2003-2005 data

rrb 2007/08/07; Revised Ditches with Recharge decrees to use GW method 3 from method 1
rrb 2007/06/27; Comment out Excelsior (200627) so that it uses SW first
rrb 2007/06/27; Add San Luis Valley (200829) to use GW Ffirst

rrb 2007/06/18; Copied from Sam via FTP per Email 6/19/2007.
rrb 2007/06/18; Revised to exclude 2002 until questions answered by Agro

rrb 2007/06/20; Added 2002 back in because of the following enhancement
rrb 2007/06/20; To be consistent between years and the URF coverage

HEHHHFHHHFHFHHHFEFEFEFRFR R HHFFFEFEE RIS

30 - StateCU 118

StateDMI Documentation

Revised GW only lands from:
Nosurf_1936.csv to 1936_GWonly_Agg.csv
Nosurf_1998.csv to 1998 GWonly_Agg.csv
Nosurf_2002.csv to 2002_GWonly_Agg.csv

Step 1 - read locations
Read locations with irrigation from a list file produced with the STR file

DHHFHHFHHHH

eadCULocationsFromList(ListFile="rgdssall_STR.csv",1DCol=1,NameCol=2,LatitudeCol=3,
ElevationCol=4,RegionlCol=5,Region2Col=6,AWCCol=7)

#

Step 2 - define aggregates and systems

Diversions are collections using a list of WDIDs, and the list of IDs is

constant through the model period.

Aggregates will result in well rights being aggregated.

Systems will be modeled with all well rights (no aggregation).

Well-only lands are collections using a list of parcel identifiers, and

the lists are specified for each year where data are available because the

parcel identifiers change from year to year.

#

Diversions with and without groundwater supply...

SetDiversionAggregateFromList(ListFile=". _\Diversions\rgTW_divaggregates.csv',
IDCol=1,PartlDsCol=2,PartsListedHow=1nRow)

#

SetDiversionSystemFromList(ListFile="rg2007_divsystems_Acres.csv", IDCol=1,
PartiDsCol=2,PartsListedHow=I1nRow)

#

Wells with groundwater only supply..

SetWelISystemFromList(ListFile="_.\Wells\1936_GWonly_agg.csv",Year=1936,Div=3,PartType=Parcel, IDCol=1,
PartiDsCol=2,PartsListedHow=InColumn)

SetWelISystemFromList(ListFile="__\Wells\1998 GWonly_agg.csv",Year=1998,Div=3,PartType=Parcel, I1DCol=1,
PartiDsCol=2,PartsListedHow=InColumn)

Step 3 - create irrigation practice time series...
Specify a start of 1936 to use 1936 data in filling.
Only 1950 to 2005 will be output at the end.
The createlrrigationPracticeTSForCULocations() command creates empty time
series for each location, so that they can be manipulated with following
commands.

HHHFEHHFHHHR

SetOutputPeriod(OutputStart="1936",0utputEnd=""2005")

CreatelrrigationPracticeTSForCULocations(ID=""*"")

#

Step 4 - fill/set data that are straightforward to set

#

Step 4a - set efficiency limits for all structures.

These values are not in HydroBase.

Question - where do these come from? StateCU? Circular?

#

setlrrigationPracticeTSFromList(ListFile="eff.csv",IDCol="1",SurfaceDel EffMaxCol="2",FloodAppEffMaxCol="3",
SprinklerAppEffMaxCol="4"")

SetlrrigationPracticeTSFromList(ListFile="eff_2007.csv", ID="*",1DCol=""1",SurfaceDel EffMaxCol="2",
FloodAppEffMaxCol="3",SprinklerAppEffMaxCol="4")

Step 4b - set the GWMode

The default is mutual ditch (GWMode=2).

Set GWMode for structures using the maximum supply mode (GWMode=1).

Does this have any impact on the order of importance of acreage below?
#

SetlrrigationPracticeTS(1D="200812",GWMode=3)
SetlrrigationPracticeTS(ID="200631",GWMode=3)
SetlrrigationPracticeTS(ID="200798",GWMode=3)
SetlrrigationPracticeTS(1D="200829",GWMode=3)

Step 5 - set the pumping maximum for all locations using well rights

Set the maximum well pumping to well water rights from the StateMod merged
rights, which contains merged rights from the multiple years of irrigated lands.
The number of days per month (30.4) is specified to convert CFS to AF/M and
agrees with the data processing done in Phase 4.

The full period will be set, including zeros at the beginning if no well

HHHFHRHFHHFHR

119 StateCU - 31

StateDMI Documentation

rights are available.

Locations that only have surface water (no well rights) will be set to zero

throughout the set period.

ReadWel IRightsFromStateMod(InputFile=""__\Wells\rg2007.wer",Append=False)

SetlrrigationPracticeTSPumpingMaxUsingWel IRights(1D="*", IncludeSurfaceWaterSupply=True,
IncludeGroundwaterOnlySupply="True",NumberOfDaysInMonth=30.4)

#

Step 6 - read the 1936 and 1998 Acreage/lIrrigationMethod/SupplyType data
#

Step 6a - provide supplemental data to be used - not in HydroBase

#

SetlrrigationPracticeTSFromList(ListFile=""__\Crops\NoGIS_1998.csv", ID=""*",SetStart=1998,
SetEnd=1998, IDCol=""1",AcresTotalCol="3")

SetlrrigationPracticeTSFromList(ListFile="__\Crops\NoGIS_1936.csv", ID=""*",SetStart=1936,
SetEnd=1936, IDCol="1",AcresTotalCol="3")

Step 6b - read the data from HydroBase

Read 1936 and 1998 irrigated parcel data (area, irrigation method, supply
type[groundwater or not]) for each location.

After this step:
1. All acreage values for 1936 and 1998 will be set.
2. All other years will be missing.

eadlrrigationPracticeTSFromHydroBase(1D="*",Year=""1936,1998" ,Div=""3")

Step 7 - read the crop pattern total acreage and set as the IPY total acreage

Step 7a - read CDS total acreage and set in IPY
The CDS total is used in all cases for the full period - include 1936 to
facilitate data checks and review trends. The extreme year 2002 is
ommitted so as to not impact data Filling at the end of the period. It is
read at the end of processing and superimposed on the results.
The period 1950+ is written at the end.

After this step:

1. All acreage values for 1936 and 1998 will be set.
2. All other years will be missing.

3. Total acreage will be set for the entire period.

HHEHHFHFEHEHEHFHR R HFHHOHFFHHEHEHEHEHH®

ReadCropPatternTSFromStateCU(InputFile="__\Crops\rg2007_With1936.cds")
SetlrrigationPracticeTSTotalAcreageToCropPatternTSTotalAcreage(1D="*",SetStart=1936,SetEnd=2005)

Step 8 - Fill groundwater acreage time series
Step 8a - first limit the groundwater acreage using well rights

Fill the groundwater acreage data prior to 1998 using the 1998 parcels
and associated water rights.

Turn off parcels when a water right is not available for

the year. This uses the water right file before it is merged for
multiple years because the unmerged 1998 rights are needed (therefore
the water rights file from max pumping CANNOT be reused here).

After this step:

1. All groundwater acreage prior to 1998 will have been estimated by using
the 1998 well data. The irrigation method will therefore be controlled
by the 1998 data (This may result in overestimating sprinkler acres
prior to 1970, before which sprinkler acreage should be zero) and will
need to be further refined below.

2. Surface water only total acreage will have been estimated for all
locations as Total - GW.

3. Surface water acreage by irrigation method will have been set to zero
for groundwater only locations. For other locations additional
processing will occur below (from user-supplied sprinkler data and/or
interpolate/repeat of irrigation method time series).

HEHHHHFHFH R HHHHFFFEEEEERHR

ReadWel IRightsFromStateMod(InputFile=""__\Wells\rg2007_NotMerged.wer"' ,Append=False)
FilllrrigationPracticeTSAcreageUsingWel IRights(I1D="*", IncludeSurfaceWaterSupply=True,
IncludeGroundwaterOnlySupply="True" ,FillStart=1937,FillIEnd=1997 ,ParcelYear=1998)

32 - StateCU 120

StateDMI Documentation

Step 8b - Fill the groundwater total acres for years that could not be
set from well rights.

Since 1998 was used as the year for well rights, all years up to and
including 1998 will have groundwater total acres set. This will also
have resulted in surface water only total acres being set. Therefore,
just repeat the 1998 values forward in time to the end of the period.
Fill each irrigation method since the values will be set in 1998 and the
information needs to be retained. The groundwater total acres will be
computed from these values, and consequently the surface water total will
be computed.

After this step:

1. Groundwater total acreage will be set for all locations for the full
period.

2. Groundwater acreage by irrigation method will still be missing for
the years filled in this step, unless the groundwater total was zero,
in which case the irrigation method parts will also be zero. See
the step below to use RCWCD data to fill the irrigation method time
series.

3. Surface water only total acreage time series will be computed as
Total - GW acres.

4. Surface water only acreage by irrigation method will still be missing
in some cases until the RCWCD is read below and/or repeat/interpolation
of irrigation method time series occurs below.

Filling the total acres is NOT NORMALLY NEEDED. However, this will

fill in the 2002 data so that when groundwater acreage parts are set, they will
be able to compare and adjust to the total. Filling over 2002 is needed to
complete the standard process but 2002 will be superimposed on the end.

TMHEIFHFHFHRFHFHFHFFFEFR TR

illlrrigationPracticeTSRepeat(ID=""*",6DataType=""CropArea-GroundWaterFlood",
FillStart="1998" ,FillEnd=""2005",FilIDirection="Forward")
FilllrrigationPracticeTSRepeat(1D="*",DataType=""CropArea-GroundWaterSprinkler",
FillStart="1998",FillEnd="2005",FillDirection="Forward")

Step 8c - use RGWCD sprinkler data to adjust irrigation method
The sprinkler acreage in the list file input to the command below should be filled for the
period 1950 to 2005, interpolating between observed data and carried
forward from 1998 to 2005. This file indicates only sprinkler acreage
but not whether the acreage is for groundwater or surface-water only.
The above commands have focused on resolving groundwater acreage
total, utilizing 1998 data to determine whether FLOOD or SPRINKLER
for estimated years, the following command redistributes the acreage
within the groundwater total first, possibly resulting in a different
irrigation method mix than from above. A summary of the steps is as
follows:
1. GWsprinkler = min(Sprinkler_FromListFile,GWTotal)
where GWTotal has resulted from the above processing steps
and Sprinkler_ListFile is sprinkler acreage from the list file (no
assumption about ground/surface water yet - the focus is on
resolving the irrigation method within groundwater).
2. GWflood = GWtotal - GWsprinkler
2. SWsprinkler = min(Sprinkler_FromListFile - GWsprinkler, SWtotal)
4. SWFlood = SWtotal - SWsprinkler.

Note: This step is used in the Rio Grande.
An alternative in basins like the South Platte is to use a set
command to explicitly set GWsprinkler and SWsprinkler to zero
in the early study period.

After this step:

1. All acreage terms should be set except where no sprinkler data were
available (in this case use a set command to set to zero if necessary) -
see the following step.

2. The end of the period, where sprinkler was not set, may need to be
repeated, interpolated from the last observation.

DHFHHFEHHFHRFHFHHHBFHFFEFEEHE R

etlrrigationPracticeTSSprinklerAcreageFromList(ListFile="__\SprinklerAcreage\sprink_acreage_2007.csv",
I1D=""*",YearCol=2, IDCol="1",AcresSprinklerCol="3")
#

121 StateCU - 33

StateDMI Documentation

Step 8d - set sprinkler data to zero where RGWCD were not available in
the early period.

This will remove missing data from the early period.
After this step:
1) The only missing data should be at the end of the period where

sprinkler data were not provided from observations.

etlrrigationPracticeTS(ID="*",SetStart=1936,SetEnd=1970,AcresSWSprinkler=0,AcresGWSprinkler=0)

Step 9 - Fill surface water acres

Step 9a - fill before 1998 using 1936

Use interpolation between the 1936 and 1998 snapshots to fill in surface

water sprinkler and flood acres - this defines the split between

SWFflood and SWsprinkler.

After the initial interpolation, the values are adjusted so that
TotalAcres - GWacres = SWflood + SWsprinkler
IT necessary, SWflood and SWsprinkler are prorated up/down to
satisfy the above.

Note for the South Platte, since there is not a bounding year with data
at the start of the period, use fill repeat backwards at the period start.

Step 9b - Fill acreage after 1998 by repeating 1998
Fill repeat after 1998 for all IPY acreage columns
Or should this go after Step 10 below?

THHHEFHHRFEHFAHRAHERFHRIAERRFOHR TR TR FE IR

illlrrigationPracticeTSRepeat(I1D="*",DataType=""CropArea-SurfaceWaterOnlySprinkler",
FillStart="1998" ,FillEnd=""2005",FilIDirection="Forward')
FilllrrigationPracticeTSRepeat(1D=""*",DataType=""CropArea-SurfaceWaterOnlyFlood",
FillStart="1998" ,FillEnd=""2005",FilIDirection="Forward")

Step 10 - read the 2002 Acreage/IrrigationMethod/SupplyType data
Step 10a - provide supplemental data to be used - not in HydroBase
Step 10b - read the data from HydroBase

Read 2002 data.

HHEHFEHHEHHEHHFHH®

Step 10b; Replace Taos No 3 (220639
SetlrrigationPracticeTS(1D="220639",SetStart=1936,SetEnd=1973,AcresSWFlood=911.05,
AcresSWSprinkler=0.0,AcresGWFlood=0.0,AcresGWSprinkler=0.0,AcresTotal=911.05)
SetlrrigationPracticeTS(1D="220639",SetStart=1974,SetEnd=2005,AcresSWFlood=109.24,
AcresSWSprinkler=0.0,AcresGWFlood=0.0,AcresGWSprinkler=0.0,AcresTotal=109.24)

Step 11 - write the StateCU IPY file(s)

Step 11.a - write old format for Phase 4 comparison
First write old format to allow comparison with Phase 4 and use with
StateMod (not yet updated to version 12).
Problem - this may not be possible given the adjustments that are made
above - SAM will see if the old GW and Sprinkler data can be computed.

HHEHHFHFHHHR

SortlrrigationPracticeTS(Q)
WritelrrigationPracticeTSToStateCU(OutputFile="__\CompareWithPhase4\Current\rg2007.VersionlO.ipy",
OutputStart="1950",0utputEnd=""2005",Version="10"")

#

Step 11.b - write the final results for use with StateCU and StateMod
This uses the StateCU version 12+ output because all acreage

computations require that the 4 acreage columns add up to the total.
#

WritelrrigationPracticeTSToStateCU(OutputFile="rg2007_With1936.ipy")

WritelrrigationPracticeTSToStateCU(OutputFile=""__\StateCU\rg2007.ipy",
OutputStart="1950",0utputEnd="2005"")

#

Store results in source directory and StateMod

34 - StateCU 122

StateDMI Documentation

WritelrrigationPracticeTSToStateCU(OutputFile="rg2007.ipy",OutputStart="1950",
OutputEnd="2005")

WritelrrigationPracticeTSToStateCU(OutputFile=""__\StateCU\Historic\rg2007.ipy",
OutputStart="1950",0utputEnd=""2005"")

WritelrrigationPracticeTSToStateCU(OutputFile="__\StateMod\Historic\rg2007.ipy",
OutputStart="1950",0utputEnd=""2005"")

#

Check the results

ChecklrrigationPracticeTS(ID="*")

WriteCheckFile(OutputFile="LocationCU_IPY.StateDMI .check.html')

4.5.4 Diversion Water Rights

Diversion water rights, when used with StateCU, are used for a water supply limited by water rights
analysis and are typically copied from a StateMod data set. The relevant commands are included with
StateCU commands to facilitate creating the diversion rights file independent of a StateMod data set.
Refer to the StateMod chapter for information about creating the diversion water rights file.

4.5.5 Diversion Time Series

Diversion time series, when used with StateCU, are used for a water supply limited analysis and are
typically copied from a StateMod data set. The relevant commands are included with StateCU commands
to facilitate creating the diversion demand time series file independent of a StateMod data set. Refer to
the StateMod chapter for information about creating the diversion demand time series file.

4.5.6 Well Water Rights

Well water rights are used to set the maximum groundwater pumping data in the irrigation practice time
series. The relevant commands are included with StateCU commands to facilitate creating the well water
rights file independent of a StateMod data set. Refer to the StateMod chapter for information about
creating the well water rights file.

4.5.7 Well Historical Pumping Time Series (Monthly)

Historical pumping time series are typically produced by StateCU and are input to StateMod. The
commands to process well demand time series are included as a copy of those available with StateMod
data processing. However, these commands may not be suitable based on data availability. Refer to the
StateMod chapter for a description of these commands and approaches for creating the historical pumping
file for StateMod.

123 StateCU - 35

StateDMI Documentation

36 - StateCU 124

5 Creating StateMod Data Set Files

Version 03.09.01, 2010-02-12

The Commands menu lists StateMod data components and groups when StateDMI is used to process
StateMod data set files (use File...Switch to StateMod if necessary to see the StateMod command
menus).

Commands [y Tools Help
Skream Gage Data
Delay Table Data
Diversion Data
Precipitation Daka
Evaporation Daka
Reservair Data
Instream Flow Data
Well Daka
Stream Estimate Data
River Network Data
Cperational Data
San Juan Sediment Recovery Plan Data

T v v ¥ ¥ ¥ ¥ ¥ ¥ ¥ Y v ¥

Spatial Data

General - Comments
General - File Handling
General - HydroBase

General - Logging

- v v v v

General - Running

General - Test Processing LB

MenuCommands_StateMod

Commands Menu for StateMod

Each menu corresponds to a data component group. Each sub-menu corresponds to a StateMod data set
component and input file and is discussed in the following sections. The top-level data groups utilize
unique data identifiers shared among products in the group. For example, Diversion Data are all
referenced using a diversion station identifier. General Commands are useful at any time (e.g., add
comments) and are discussed in the Getting Started chapter.

Examples of StateMod model files are not included in this documentation. Refer to the StateMod model
documentation for detailed information about model file formats. Command file examples from CDSS
data sets are included in documentation; however, refer to the current data sets for current examples
because there may have been refinements in the approach.

The StateMod model is used to perform water allocation studies for a river basin. Most data files focus
on data groups that include primary data files (e.g., station files) and secondary data files (e.g., water
rights, time series). Some files provide more basic data (e.g., return flow patterns) and others provide
more complex data (e.g., operating rules and river network). The organization of the StateDMI
Commands menu is meant to facilitate creating data files in a logical order. However, there is generally

125 StateMod - 1

StateDMI Documentation

no limitation that prevents a user from combining commands in any desired order or working on files in
other than the order shown.

5.1 Control Data
StateMod control data consists of:

o Response file
e Control file
e Output control file

Control data are currently not processed by StateDMI, although commands may be added in the future
(e.g., to update the response file when a data file is written, so that the file names agree). Background
information about each file is provided in the following sections.

5.1.1 Response File

A StateMod response file (*.rsp) lists all the data files that are used in a model run and is specified to
StateMod on the command line (see the StateMod documentation). The StateMod GUI also uses the
response file when opening a data set. The response file is generally copied from an existing data set and
hand-edited as appropriate. The base name of the response file (the part before the extension) should
adhere to current modeling standards (see Section 2.2 — Data Set Directory and File Conventions). A
separate response file for each run (e.g., for historical, calculated, baseline, daily runs) is usually created
rather than editing the response file between runs. Note that some files can be specified as empty files, in
which case StateMod will ignore the input type. The convention is to use an empty “dummy” file in these
cases.

Recent updates to the StateMod model have introduced a free-format response file that allows data set
files to be listed in any order, or be omitted altogether. This simplifies the management of a data. It is
recommended that the newer free-format response file be used for StateMod because it allows more
flexibility and reduces errors. See the StateMod documentation for information about the response file.

It is recommended that the files in a StateMod response file be specified using only file names (no paths)
and that relative paths be used if necessary (e.g., ..\StateCU\rgTW.ddc). This allows the data set to be
moved from one location to another without requiring edits to response files.

Rather than requiring a response file during processing, StateDMI provides commands that directly read
needed files. For example, to process diversion station efficiencies, commands are provided to read the
irrigation water requirement and historical diversion time series files.

5.1.2 Control File

The control file (*.ctl) is a fixed-format file that specifies many of the run-time parameters to StateMod,
including the simulation period (note the simulation period may be less than the input data period to
shorten execution time) and parameters that control the execution (e.g., whether the run is for monthly or
daily data). See the StateMod documentation for a full explanation of control file parameters. The
meaning of data in some data files requires referencing the control file. For example, monthly
efficiencies in the diversion and well stations files are listed according to the year type (calendar, water,
or irrigation year) in the control file.

2 - StateMod 126

StateDMI Documentation

Rather than requiring that a control file is available during processing, StateDMI commands allow
parameters to be specified as needed. For example, the Set Qut put Year Type() command indicates
whether output should be calendar or water year.

5.1.3 Output Control File

The output control file (*.out or *.xou) contains data that will limit the extent of selected output file
requests when running StateMod in report mode. It is generated by StateMod using the —check option,
which assumes you will want to review historical streamflow stations only. The output control file can be
edited manually or with the StateMod GUI to add or remove additional structures for detailed output
review. The output control file is not used by StateDMI.

5.2 Stream Gage Data

StateMod uses water supply from streamflow data to satisfy demands (it does not simulate run-off from
precipitation). Stream gage data consists of:

e Stream gage stations
o Historical flow time series (monthly, daily)
o Natural flow time series (monthly, daily)

Each of the above data types is stored in a separate file, using the stream gage station identifier as the
primary identifier. The term “River” and “Stream” are sometimes used interchangeably in StateMod
documentation; however, StateDMI uses “Stream” in most cases. StateMod now supports separate
stream gage and stream estimate data (see Section 5.10 — Stream Estimate Data). Stream gage stations
correspond to locations where historical data are available, and when using separate stream gage and
estimate station files should not include stream estimate stations. However, until modeling conventions
begin utilizing separate stream gage and estimate station files, StateDMI also allows a combined stream
gage/estimate station file (in which case the stream estimate station file is not used).

The processing of each data file is discussed below.

5.2.1 Stream Gage Stations

Stream gage stations used with StateMod often are selected by reviewing available stream gage historical
time series data to find stations with acceptable periods of record. TSTool or other software can be used
to identify acceptable stream gage stations.

Stream gage station identifiers are typically USGS or other agency identifiers. These identifiers

correspond to data in HydroBase and other sources and therefore allow data to be located in the original
source.

127 StateMod - 3

StateDMI Documentation

The Commands...Stream Gage Data...Stream Gage Stations menus insert commands to process

stream gage station data:

Stream Gage Stations - Commands

ReadStreamizagestationsFromList(y ...

ReadstreamizagestationsFromietwark(y ..

ReadStreamizagestationsFramstateiod() ...

SekstreamGagestation) ...

SorkStreamGagestations() ...

FillstreamGagesStationsFromHydroBase) ..,
1: ReadmebworkFromstatetMod() ...
2: FillstreamizagestationsFrombletwarkly . ..

FillstreamGagestation) ...

WrikeStreamizagestationsTaLisk() ...
WriteStreamGagestationsToStateMod() ..,

CheckstreamGagestations(), ..

WriteCheckFilel) ...

MenuCommands_StreamGageStations

Commands...Stream Gage Data...Stream Gage Stations Menu

The following table summarizes the use of each command:

Stream Gage Station Commands

Command

Description

ReadSt r eanGageSt at i onsFronLi st ()

Read from a delimited list file the list of stream
gage stations to be included in the data set.

ReadSt r eanGageSt at i onsFr omNet wor k()

Read from a StateMod network file a list of
stream gage stations to be included in the data
set.

ReadSt r eanGageSt at i onsFr ontt at evbd()

Read from a StateMod stream gage stations file
the list of stream gage stations to be included in
the data set.

Set St reantzageSt ati on()

Set the data for, and optionally add, stream gage
stations.

Sort St reamGageSt ati ons()

Sort the stream gage stations. This is useful to
force consistency between files.

Fill StreamGageSt ati onsFr onHydr oBase()

Fill missing data for defined stream gage stations,
using data from HydroBase. For example,
retrieve the station names.

ReadNet wor kFr onst at evbd()

Read the network file for use in filling.

Fill StreanGageSt ati onsFr omNet wor k()

Fill missing data for defined stream gage stations,
using data from a StateMod network file. This is
useful when the station names are not found in
HydroBase and numerous

4 - StateMod

128

StateDMI Documentation

Command Description

Set St r eanGageSt at i on() commands
. . would otherwise be required.
FillStreanGageStation() Fill missing data for defined stream gage stations,
_ _ _ user user-supplied values.

WiteStreanGageStationsToli st () Write defined stream gage stations to a delimited
list file.

WiteStreanGageStati onsToSt at eMobd() Write defined stream gage stations to a StateMod
file.

CheckStreanmGagesSt at i ons() Check stream gage stations data for problems.

Wi teCheckFile() Write the results of data checks to a file.

An example command file to create the stream gage station file, including stream estimate stations, is
shown below (from the Colorado cm2005 data set):

StartLog(LogFile="ris.commands.StateDMI.log")

ris.commands.StateDMI

#

StateDMI command file to create streamflow station file for the Colorado River

#

Step 1 - read streamgages and baseflows ids from the network file

#

ReadStreamGageStationsFromNetwork(InputFile=". _\Network\cm2005.net",
IncludeStreamEstimateStations="True')

#

Step 2 - read baseflow nodes names from HydroBase, fill in missing names from

the network file

#

FillStreamGageStationsFromHydroBase(1D=""*",NameFormat=StationName,CheckStructures=True)

FillStreamGageStationsFromNetwork(ID="*"",NameFormat=""StationName')

#

Step 3 - set streamgage station to use to disaggregate monthly baseflows to daily

#

add set daily pattern gages for WD 36

SetStreamGageStation(1D=""36*",Daily1D=""09047500", I fNotFound=Warn)

SetStreamGageStation(1D=""954683",Dai ly1D=""09047500", IfNotFound=Warn)

SetStreamGageStation(1D=""09046600" ,Dai lyID="09047500", I fNotFound=Warn)

. many similar commands omitted..

#

Step 4 - create streamflow station file

#

WriteStreamGageStationsToStateMod(OutputFile=". _\StateMod\cm2005.ris")

#

Check the results

CheckStreamGageStations(I1D=""*"")

WriteCheckFile(OutputFile="ris.commands.StateDMI.check.html')

129 StateMod - 5

StateDMI Documentation

5.2.2 Stream Historical Time Series (Monthly, Daily)

StateDMI does not process stream historical time series. Instead, use TSTool, a spreadsheet, or other
software to create the monthly and daily historical streamflow time series files. For simple models, use
TSTool’s Cr eat eFr omLi st () command to specify a list of station identifiers and create time series
identifiers for HydroBase time series. The following TSTool command file excerpt illustrates how to
create a historical monthly streamflow time series (from the Colorado cm2005 data set):

rih_commands.TSTool

#

creates historical streamflow file for the Colorado River Basin.

#

step 1 - Extract data from Hydrobase or read *.stm files as noted below

#

SetlnputPeriod(InputStart="10/1908", InputEnd=""9/2005"")

COLORADO R BELOW BAKER GULCH, NR GRAND LAKE, CO.

09010500.USGS. Streamflow.Month~HydroBase

COLORADO RIVER NEAR GRAND LAKE, CO.

09011000.USGS. Streamflow.Month~HydroBase

COLORADO RIVER NEAR GRANBY, CO.

09019500. . -MONTH~StateMod~09019500.stm

WILLOW CK BL WILLOW CK RESERVOIR

09021000. . -MONTH~StateMod~09021000.stm

FRASER RIVER NEAR WINTER PARK, CO.

09024000.USGS . Streamflow.Month~HydroBase

VASQUEZ CREEK AT WINTER PARK, CO.

09025000 .USGS . Streamflow.Month~HydroBase

ST. LOUIS CREEK NEAR FRASER, CO.

09026500 .USGS . Streamflow.Month~HydroBase

.many similar commands omitted..

#

Combine the two historic gages that sit on the Blue River above Dillon

#

BLUE RIVER NEAR DILLON, CO.

09046600 . USGS . Streamflow._Month~HydroBase

Blue River at Dillon, CO

09047000 .USGS . Streamflow.Month~HydroBase

FillFromTS(TSList=LastMatchingTSID,TSID="09046600.USGS.Streamflow.Month",
IndependentTSList=LastMatchingTSID,
IndependentTSID="09047000.USGS.Streamflow.Month')

Free(TSList=LastMatchingTSID,TSID="09047000.USGS.Streamflow.Month'")

#

SNAKE RIVER NEAR MONTEZUMA, CO.

09047500.USGS . Streamflow.Month~HydroBase

.many similar commands omitted..

#

Use Homestake Creek near Red Cliff to fill missing values in Homestake Creek at

Gold Park

#

HOMESTAKE CREEK AT GOLD PARK, CO.

09064000 .USGS. Streamflow.Month~HydroBase

09064500 - HOMESTAKE CREEK NEAR RED CLIFF, CO.

09064500 .USGS. Streamflow.Month~HydroBase

FillRegression(TSID="09064000.USGS.Streamflow.Month",
IndependentTSID="09064500.USGS.Streamflow.Month",
NumberOfEquations=MonthlyEquations, Transformation=Log)

Free(TSList=LastMatchingTSID,TSID="09064500.USGS.Streamflow.Month')

#

Cross Creek nr Minturn, CO

09065100.USGS . Streamflow.Month~HydroBase

.many similar commands omitted

6 - StateMod 130

StateDMI Documentation

#

Imports from other basins-replacement files created from 1909-2005 historical
diversions

404657 . . .MONTH~StateMod~404657 .stm

504600. . .MONTH~StateMod~504600.stm

950040. . .MONTH~StateMod~950040.stm

954001. . .MONTH~StateMod~954001.stm

#

step 2 - Set output period and year type
SetOutputYearType(OutputYearType=water)
SetOutputPeriod(OutputStart="10/1908",0utputEnd=""09/2005")

#

step 3 - write output file

#

WriteStateMod(TSList=AlITS,OutputFile=". _\StateMod\cm2005.rih",Precision=0)
CheckStreamGageStations(1D=""*"")
WriteCheckFile(OutputFile="rih.commands.StateDMI.check.html’’)

5.2.3 Stream Natural Flow Time Series (Monthly, Daily)

The stream natural flow file contains streamflows from which have been removed the impacts of
historical diversions, return flows, well pumping, and reservoir storage, release, evaporation and seepage.
It is normally generated by StateMod using the —basef | owoption (the term “natural flow” has replaced
“baseflow”, although software and documentation my still use the older term in places). To process
natural flow time series, it is necessary to create station and historical time series files, but not water
rights or demands. Stream natural flow time series for stream gage stations are not processed by
StateDMI. Instead, use StateMod’s baseflow module, TSTool, or other software to create monthly and
daily natural flow time series files.

When historical data are provided that allow 100% of human impacts to be removed, the natural flows
generated by StateMod are the same as true natural flows. When historical data are provided that
represent less than 100% of human impacts, it is implicitly assumed that the historical diversion and
reservoir impacts that are left in the gage will not change significantly under a "What If" scenario.

The monthly natural flow time series file created by StateMod is automatically named (*.xbm). However,
it is commonly renamed (*.rim) to ensure that a simulation scenario can be reproduced and allow input
data sets to be distributed without having to rerun the baseflow module.

5.3 Delay Table Data
Delay table data consists of:

e Monthly delay tables
e Daily delay tables

Delay tables indicate the pattern for return flows (for diversion and well stations) and depletions (for well
stations) and therefore should be available before processing diversion or well stations. Delay patterns
represent how a unit of water is distributed by percent over time. Each delay table has a unique numerical
identifier, and the identifier can be shared between monthly and daily files. StateDMI does not currently
provide tools to generate delay tables (see the Introduction chapter for background on CDSS tools).
However, commands are available to manipulate existing files.

131 StateMod - 7

StateDMI Documentation

5.3.1 Delay Tables (Monthly)

Monthly delay tables are typically produced manually (e.g., simple delay patterns) or by using the Glover
method, Stream Depletion Functions (SDFs), or Unit Response Functions (URFS). In CDSS, the
MakeRTN GIS tool has been used to develop return flow and depletion data for URF zones in the Rio
Grande.

Delay table identifiers have traditionally been assigned sequential integer identifiers because StateMod
does not support character identifiers for delay tables. Simple delay tables (e.g., return 100% of return
flow in the first month) have lower delay table numbers.

The Commands...Delay Tables Data...Delay Tables (Monthly) menu items insert commands to process
monthly delay table data:

Delay Tables (Monthly) - Commands

ReadDelayTablesMonthlyFromStaterod) ...

WriteDelay TablesMonthlyToLisk) ...
WriteDelay TablesMonthlyToStatelod) ...

MenuCommands_DelayTablesMonthly

Commands...Delay Tables Data...Delay Tables (Monthly) Menu
The following table summarizes the use of each command:

Delay Table (Monthly) Commands

Command Description

ReadDel ayTabl eshMont hl yFrontt at eMod() | Read monthly delay tables from a StateMod
delay tables file, optionally scaling the delay
values (e.g., to convert fraction to percent).

Wit eDel ayTabl esMont hl yToLi st () Write monthly delay tables to a delimited list file.
Wit eDel ayTabl esMont hl yToSt at eMod() Write monthly delay tables to a StateMod delay
tables file.

5.3.2 Delay Tables (Daily)

The Commands...Delay Tables Data...Delay Tables (Daily) menu items insert commands to process
daily delay table data:

Delay Tables (Daily) - Commmands

ReadDelayTablesDailyFromstateMod) ...

WriteDelayTablesDaily Tolisk() ...
WiteDelayTablesDaily TostateMod) ...

MenuCommands_DelayTablesDaily

Commands...Delay Tables Data...Delay Tables (Daily) Menu

8 - StateMod 132

StateDMI Documentation

The following table summarizes the use of each command:

Delay Table (Daily) Commands

Command Description

ReadDel ayTabl esDai | yFronfst at eMod() | Read daily delay tables from a StateMod delay

tables file, optionally scaling the delay values
(e.g., to convert fraction to percent).

Wi teDel ayTabl esDai | yToLi st () Write daily delay tables to a delimited list file.

Wi teDel ayTabl esDai | yToSt at eMod() | Write daily delay tables to a StateMod delay

tables file.

5.4 Diversion Data

Diversion data consists of:

Diversion stations

Diversion rights

Historical flow time series (monthly, daily)

Demand time series (monthly, monthly override, average monthly, daily)
Irrigation practice (yearly)

Consumptive water requirement (monthly, daily)

Soil moisture time series (yearly)

Each of the above data types is stored in a separate file, using the diversion station identifier as the
primary identifier.

The processing of each data file is discussed below.

5.4.1 Diversion Stations

Each diversion station used with StateMod can be one of four types:

1. Explicit diversion, where no aggregation or special treatment occurs — this type is used for key

structures that need to be explicitly modeled. The diversion station diverts from a single point on
a water body. The diversion station identifier is usually a 7-character water district identifier (6-
character for old data sets) or fabricated identifier that starts with the water district number.
Diversion “MultiStruct,” used to represent two or more diversion stations that divert from
different tributaries but which serve the same lands. In this case, multiple diversion stations are
grouped and one is assigned as the primary diversion station. To model historical conditions,
each diversion station is represented in the network (e.g., using the WDID as the station
identifier) and diversion records, water rights, and capacities correspond to each diversion station.
To estimate average efficiencies (when evaluating demand time series), the total demand and
historical time series are considered. Additionally, when estimating demand time series, the total
demand is assigned to the primary structure and the demands for secondary structures are set to
zero. Operating rules are required to control the exchange of water between diversions in the
MultiStruct. This modeling construct should be defined using the

Set Di ver si onMul ti Struct*() commands and only need to be defined when processing
demands.

133 StateMod - 9

StateDMI Documentation

3. Diversion system (a type of collection), where the characteristics (capacity, historical diversion,
demand) of multiple diversions are summed at one location and water rights are modeled
explicitly — this type is used when related diversion structures operate as a system to divert water
from a single water source. Only the diversion system identifier is included in the model network
and this identifier should be different from the parts in the collection. The naming convention
for modeling in CDSS is to use a primary ditch in the collection for the modeled node or select an
identifier that includes the district and “MS” or similar. Diversion systems should be defined
using the Set Di ver si onSyst ent () commands and need to be defined when processing all
diversion station files (if diversion systems are used).

4. Diversion aggregate (a type of collection), which is the same as a diversion system except that
water rights are aggregated into classes. Aggregation of the water rights occurs when the
ReadDi ver si onRi ght sFr omHydr oBase() command is executed. The naming
convention for modeling in CDSS is to use an identifier similar to 20_ ADCNNN, where the
leading 20 indicates the water district, ADC indicates aggregate diversion, and NNNis a number
to allow multiple diversion aggregates in a water district. This convention allows summary of
demand and supply for basins. Diversion aggregates should be defined using the
Set Di ver si onAggr egat e* () commands and need to be defined when processing all
diversion station files (if aggregates are used).

The determination of the diversion station type for each diversion station is usually made by reviewing
available data (e.g., water rights), and discussing administrative data with knowledgeable persons (e.g.,
water commissioners). Typically, key diversions have large capacities, irrigate larger acreage totals,
and/or have important water rights and administrative roles. Minor diversions, or groups of diversions for
which independent data are difficult to determine, may be lumped together in an aggregate or system.
Grouping diversions into aggregates reduces the overall number of model nodes and output. Various
commands refer to “collection type” when discussing aggregates and systems, in order to simplify
documentation.

The diversion stations file may be updated several times, as follows:

1. Initial creation (see this section).

2. Adjust diversion station capacities based on historical diversions (see Section 5.4.3).

3. Adjust diversion monthly efficiencies based on estimates from consumptive water requirement
(see Section 5.4.5).

However, it is also possible to create the secondary files using an initial list of diversion stations, and then
create the StateMod diversion stations file with one command file.

10 - StateMod 134

StateDMI Documentation

The Commands...Diversion Data...Diversion Stations menus insert commands to process diversion

station data:

Diversion Stations - Commands

SetoutputyearTypel) ...

ReadDiversionStationsFromList() ...

ReadDiversionStationsFromietwaorkl) . ..

ReadDiversionStationsFromatakeMod ...

SetDiversionfggregatel) ...
SetDiversionAggregateFromLisk() ..
SetDiversionSystemi) ...

SetDiversionSystemFromList() ...

SetDiversionSkation) ...
SetDiversionSkationsFramList() ..

SortDiversion3tations) ...

FillDiversionSkakionsFromHydraBased) ...

FillsviversionstationsFromMetwork)
FillDiversionSkakion() ...

SetDiversionStationDelay TablesFromiMebwork() ...
SetDiversionStationDelayTablesFromR TR ...

WriteDiversionStationsToLisk() ...

WriteDiversionSkationsToStakeMod) ...

CheckDiversionstakions) ...
witeCheckFile!) ...

Commands...Diversion Data...Diver

The following table summarizes the use of each command:

MenuCommands_DiversionStations

sion Stations Menu

Diversion Stations Commands

Command

Description

Set Cut put Year Type()

Set the output year type. For diversion
stations, this indicates the order of monthly
efficiencies in the diversion stations data.

ReadDi ver si onSt at i onsFronli st ()

Read from a delimited list file the list of
diversion stations to be included in the data
set.

ReadDi ver si onSt at i onsFr onNet wor k()

Read from a StateMod network file a list of
diversion stations to be included in the data
set.

ReadDi ver si onSt at i onsFr onfst at eMod()

Read from a StateMod diversion stations
file the list of diversion stations to be

135

StateMod - 11

StateDMI Documentation

Command Description
included in the data set.

Set Di ver si onAggr egat e() Specify that a diversion station is an
aggregate and define its parts.

Set Di ver si onAggr egat eFr onti st () Specify that one or more diversion stations

are aggregates and define their parts, using
a delimited list file.

SetDiversionSysten() Specify that a diversion station is a system
: : _ and define its parts.
Set i ver si onSyst enfronti st () Specify that one or more diversion stations

are systems and define their parts, using a
delimited list file.

Set Di ver si onSt ati on() Set the data for, and optionally add,
diversion stations.

Set Di versi onSt ati onsFrontLi st () Set the data for diversion stations from a
delimited list file.

Sort Di versionStations() Sort the diversion stations. This is useful
to force consistency between files.

Fi Il DiversionStationsFronHydroBase() Fill missing data for defined diversion

stations, using data from HydroBase. For
example, retrieve the station names, and

capacities.
Fi Il Di versionStationsFronmNet wor k() Fill missing data for defined diversion
stations, using data from the network.
FillDiversionStation() Fill missing data for defined diversion

stations, using user-supplied values.

Set Di ver si onSt ati onDel ayTabl esFromNet wor k() | Set default delay table information using
network relationships.

Set Di ver si onSt at i onDel ayTabI esFr On’RTN() Set de|ay table information using
information in a return flow file.

WiteDiversionStationsToList() Write defined diversion stations to a
delimited list file.

WiteD versionStationsToSt at eMd() Write defined diversion stations to a
StateMod file.

CheckDi versi onStations() Check diversion stations data for problems.

WiteCheckFile() Write the results of data checks to a file.

If a multi-step process is used to create the diversion stations file, it is recommended that during initial
creation of the diversion stations file, suitable default values are assigned to complete as much
information as possible, including:

capacity

default monthly efficiencies
acreage

use and demand type

delay tables

The following command file example (from the Colorado cm2005 data set) illustrates how to create a
diversion station file. The output file will in this case be updated with historical diversion time series in

12 - StateMod 136

StateDMI Documentation

subsequent processing but could be updated in one step if the time series file is created first (e.g., by
reading the diversion stations from a list file or the network when processing the time series file).

StartLog(LogFile="dds.commands.StateDMI . log")
dds.commands.StateDMI

H*

StateDMI command file to create the "step 1" direct diversion station file

#
#
Step 1 - set year type and read list of direct diversion stations from network file

#

SetOutputYearType(OutputYearType=Water)
ReadDiversionStationsFromNetwork(InputFile=""__\Network\cm2005.net")

#

Step 2 - read aggregate and diversion system structure assignments. Note that

want to combine historical acreage and capacites for aggs and diversion systems.

#

SetDiversionAggregateFromList(ListFile="cm_agg.csv", IDCol=1,NameCol=2,PartIDsCol=3,PartsListedHow=InRow)
SetDiversionSystemFromList(ListFile="cm_divsys.csv", IDCol=1,NameCol=2,PartlDsCol=3,PartsListedHow=InRow)
SetDiversionStation(ID="72_ADC054", IrrigatedAcres=1200, I fNotFound=Warn)
SetDiversionStation(ID="72_ADC055", IrrigatedAcres=928, I fNotFound=Warn)

#

Step 3 - read diversion station information from HydroBase and sort alphabetically

#

FillDiversionStationsFromHydroBase(ID="*")

SortDiversionStations(Order=Ascending)

#

Step 4 - set global options for all structures

#

SetDiversionStation(ID="*",RiverNodelD="1D",0n0ff=1,ReplaceResOption=-
1,DailylD="4",DemandType=1,UseType=1,DemandSource=1,EffAnnual=60, I fNotFound=Warn)
SetDiversionStationDelayTablesFromNetwork(I1D="*" ,DefaultTable=1)

#

Step 5 - overwrite downstream return flow location, efficiencies and delay patterns based

on return flow file: read annual average irrigation efficiencies from StateCU (*.def)
#

SetDiversionStationDelayTablesFromRTN(InputFile="cm2005.rtn",SetEfficiency=True)
SetDiversionStationsFromList(ListFile="cm2005.def", 1DCol=""1" ,EffMonthlyCol="2",

Delim=""Space"' ,MergeDelim=True)
#
Step 6 - overide HydroBase capacities and demand sources
#
Transbasin Diversions - demscr=6 & resreplace=0 (does not get Green Mtn. replacement)
SetDiversionStation(1D="364626",ReplaceResOption=0,DemandSource=6, I fNotFound=Warn)
SetDiversionStation(1D="364684",ReplaceResOption=0,DemandSource=6, I fNotFound=Warn)
SetDiversionStation(1D=""364685",ReplaceResOption=0,DemandSource=6, I fNotFound=Warn)
SetDiversionStation(1D="374614" ,ReplaceResOption=0,DemandSource=6, I fNotFound=Warn)
SetDiversionStation(1D="374641" ,ReplaceResOption=0,DemandSource=6, I fNotFound=Warn)
SetDiversionStation(I1D="371091",ReplaceResOption=0,DemandSource=6, I fNotFound=Warn)
SetDiversionStation(1D="374648",ReplaceResOption=0,DemandSource=6, I fNotFound=Warn)
SetDiversionStation(1D="364683",Capacity=500.0,ReplaceResOption=0,DemandSource=6, I fNotFound=Warn)
SetDiversionStation(1D="364699",Capacity=77.0,ReplaceResOption=0,DemandSource=6, I fNotFound=Warn)
SetDiversionStation(1D="954683",Name=""Continental_Hoosier_Tunnel",Capacity=500.0,

ReplaceResOption=0, IrrigatedAcres=0,DemandSource=6, I fNotFound=Warn)
SetDiversionStation(1D="384613",Capacity=120,ReplaceResOption=0,DemandSource=6, I fNotFound=Warn)
SetDiversionStation(1D="384617",ReplaceResOption=0,DemandSource=6, I fNotFound=Warn)
SetDiversionStation(1D="384625",Capacity=1000.0,ReplaceResOption=0,DemandSource=6, I fNotFound=Warn)
SetDiversionStation(1D="954699" ,Name=""Boustead_Summary",Capacity=1600.0,

ReplaceResOption=0, IrrigatedAcres=0,DemandSource=6, I fNotFound=Warn)
SetDiversionStation(1D="514625" ,ReplaceResOption=0,DemandSource=6, | fNotFound=Warn)
SetDiversionStation(1D="514601",ReplaceResOption=0,DemandSource=6, I fNotFound=Warn)
SetDiversionStation(1D="514603",Capacity=500.0,ReplaceResOption=0,DemandSource=6, I fNotFound=Warn)
SetDiversionStation(1D="514634",ReplaceResOption=0,DemandSource=6, I fNotFound=Warn)
SetDiversionStation(1D="514655" ,ReplaceResOption=0,DemandSource=6, | fNotFound=Warn)
SetDiversionStation(1D="724721" ,ReplaceResOption=0,DemandSource=6, I fNotFound=Warn)
SetDiversionStation(1D="724715" ,ReplaceResOption=0,DemandSource=6, I fNotFound=Warn)
SetDiversionStation(1D="384717",ReplaceResOption=0,DemandSource=6, I fNotFound=Warn)

#

The following are carriers to transbasin tunnel collections - demscr=7

Missouri Tunnel - Carrier to Homestake Tunnel
SetDiversionStation(1D="374643",Capacity=600.0,ReplaceResOption=0,DemandSource=7, I fNotFound=Warn)

137 StateMod - 13

StateDMI Documentation

Hunter Tunnel - Carrier to Bousted Tunnel
SetDiversionStation(1D="381594",Capacity=310.0,ReplaceResOption=0,DemandSource=7, IfNotFound=Warn)

Moffat Tunnel Carriers
SetDiversionStation(1D="510728",ReplaceResOption=0,DemandSource=7, I fNotFound=Warn)
SetDiversionStation(I1D="511310",Name=""Vasquez_Creek" ,ReplaceResOption=0,DemandSource=7, IfNotFound=Warn)
SetDiversionStation(1D="511309" ,Name=""St_Louis_Cr",ReplaceResOption=0,DemandSource=7, I fNotFound=Warn)
SetDiversionStation(I1D="510639",Name=""Jim_Creek" ,ReplaceResOption=0,DemandSource=7, 1 fNotFound=Warn)
SetDiversionStation(1D="511269" ,Name=""Ranch_Creek",ReplaceResOption=0,DemandSource=7, I fNotFound=Warn)
#

StateDMI expects monthly values to be entered in Calendar Year.
#

The following are municipal and industrial diversions - demsrc=6

Rankin No. 1 Ditch, Dillon Valley W&SD

SetDiversionStation(1D=""360784",DemandSource=6,
EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10", IfNotFound=Warn)

Straight Creek Ditch, Town of Dillon

SetDiversionStation(1D="360829",Capacity=3.5,DemandSource=6,
EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10", IfNotFound=Warn)

Climax Demands

SetDiversionStation(1D="360841",Capacity=53.19,ReplaceResOption=0,DemandSource=6, I fNotFound=Warn)

Keystone Snow Line Ditch (Snowmaking)

SetDiversionStation(1D="360908",Capacity=2.5,ReplaceResOption=0,DemandSource=6, I fNotFound=Warn)

Breckenridge Snowmaking

SetDiversionStation(1D="360989",ReplaceResOption=0,DemandSource=6, I fNotFound=Warn)

Breckenridge Municipal

SetDiversionStation(1D="361008",Capacity=4.87,DemandSource=6,
EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10", IfNotFound=Warn)

Copper Mtn. Snowmaking
SetDiversionStation(1D="361016",Capacity=2.5,ReplaceResOption=0,DemandSource=6, I fNotFound=Warn)
Metcalf Ditch - Upper Eagle Valley Water Authority

SetDiversionStation(1D="370708" ,DemandSource=6,
EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10", IfNotFound=Warn)

Town of Rifle Pump and Pipeline

SetDiversionStation(I1D="390967",Capacity=8.5,DemandSource=6,
EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10", IfNotFound=Warn)

East Snowmass Brush Creek Pipeline

SetDiversionStation(1D=""381441" ,DemandSource=6,
EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10", IfNotFound=Warn)

Glenwood L Water Company System

SetDiversionStation(I1D="531051",DemandSource=6,
EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10", IfNotFound=Warn)

SetDiversionStation(1D=""530585",DemandSource=6,
EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10", IfNotFound=Warn)

Maroon Ditch - Aspen

SetDiversionStation(1D="380854",DemandSource=6,
EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10", IfNotFound=Warn)

Midland Flume Ditch - Aspen

SetDiversionStation(1D="380869",DemandSource=6,
EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10", IfNotFound=Warn)

Carbondale Water System and Pipeline

SetDiversionStation(1D="381052",DemandSource=6,
EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10", IfNotFound=Warn)

Redlands Power Canal

SetDiversionStation(1D="420541",Capacity=610.0,ReplaceResOption=0,DemandSource=6, I fNotFound=Warn)

Henderson Mine Water System

SetDiversionStation(1D="511070",Capacity=8.8,ReplaceResOption=0,DemandSource=6, I fNotFound=Warn)

Shoshone Power Plant

SetDiversionStation(1D="530584",ReplaceResOption=0,DemandSource=6, I fNotFound=Warn)

Grand Junction Demands

SetDiversionStation(I1D="950051" ,Name="Grand Junction

Demands',Capacity=21.0,ReplaceResOption=0, IrrigatedAcres=0,DemandSource=6,
EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10", IfNotFound=Warn)

Grand Junction Gunnison Pipeline

SetDiversionStation(1D="420520",ReplaceResOption=0,DemandSource=6,
EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10", IfNotFound=Warn)

Grand Junction Colorado River Pipeline

SetDiversionStation(I1D="720644" ,DemandSource=6,
EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10", IfNotFound=Warn)

Molina Power Plant

SetDiversionStation(I1D="720807",Capacity=50.0,ReplaceResOption=0,DemandSource=6, I fNotFound=Warn)

Palisade Town Pipeline

14 - StateMod 138

StateDMI Documentation

SetDiversionStation(ID="720816",Capacity=5.0,DemandSource=6,
EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10", IfNotFound=Warn)

The following meet municipal demands for the Ute WCD

SetDiversionStation(1D="720920",Capacity=50.0,DemandSource=6,
EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10", IfNotFound=Warn)

SetDiversionStation(1D="721339",DemandSource=6,
EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10", IfNotFound=Warn)

SetDiversionStation(I1D="950020",Name="Ute Water Treatment",Capacity=17.0,lIrrigatedAcres=0,
DemandSource=6,EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10", IfNotFound=Warn)

SetDiversionStation(1D="950030",Name=""Mason Eddy-Ute'",Capacity=7.0, IrrigatedAcres=0,DemandSource=6,
EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10", IfNotFound=Warn)

SetDiversionStation(1D="721329" ,Name="Rapid Creek PP

DivSys",DemandSource=6,EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10", 1fNotFound=Warn)

Keystone Municipal

SetDiversionStation(1D="955002" ,Name=""Keystone Municipal',Capacity=2.0, IrrigatedAcres=0,DemandSource=6,
EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10", IfNotFound=Warn)

Vail Municipal Use

SetDiversionStation(1D=""955001" ,Name="Vail Valley Consolidated-Senior",Capacity=11.2,IrrigatedAcres=0,
DemandSource=6,
EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10", IfNotFound=Warn)

SetDiversionStation(1D="955003",Name="Vail Valley Consolidated-Non Irr",Capacity=13.0, IrrigatedAcres=0,
DemandSource=6,
EffMonthly="10,12,14,44,55,62,61,56,44,26,0,10", IfNotFound=Warn)

Green Mtn. Hydro-Electric

SetDiversionStation(1D="360881",ReplaceResOption=0,DemandSource=6, I fNotFound=Warn)

Williams Fork Power Conduit

SetDiversionStation(1D="511237",ReplaceResOption=0,DemandSource=6, I fNotFound=Warn)

Green Mtn. Contract Water Users (Baseline Scenario only)

SetDiversionStation(1D=""950060",Name=""Green_Mtn_Contract_Dem.",Capacity=999,ReplaceResOption=0,
IrrigatedAcres=0,DemandSource=6, IfNotFound=Warn)

Redlands Power Canal Irrigation (acres from 724713)

SetDiversionStation(1D="950050",Name=""Redlands Power Canal-

Irr”,Capacity=140.0,ReplaceResOption=0, IrrigatedAcres=4297 ,DemandSource=8, I fNotFound=Warn)

#

The following are reservoir carrier structures

Elliott Creek Feeder - carrier to Green Mtn. Res

SetDiversionStation(I1D=""360606",ReplaceResOption=0,DemandSource=7, I fNotFound=Warn)

Wolcott Pumping Pipeline - carrier to Wolcott Res

SetDiversionStation(I1D="371146",Capacity=500,ReplaceResOption=0,DemandSource=7,
EffAnnual=0, I fNotFound=Warn)

CBT Willow Creek Feeder
SetDiversionStation(I1D="510958",ReplaceResOption=0,DemandSource=7, I fNotFound=Warn)
Windy Gap Pump Pipeline Canal - carrier up to Shadow Mtn and Granby

SetDiversionStation(1D="514700",ReplaceResOption=0,DemandSource=7, I fNotFound=Warn)
#
The following are project-specific diversions - demsrc and resreplace can vary

Silt Project

Grass Valley Canal

SetDiversionStation(1D="390563",ReplaceResOption=0, IrrigatedAcres=0,DemandSource=7, I fNotFound=Warn)
Silt Pump Canal - secondary structure in MS setup

SetDiversionStation(1D="390663",ReplaceResOption=0, IrrigatedAcres=0,DemandSource=7,
EffAnnual=0, I fNotFound=Warn)

Dry Elk Valley Demands

SetDiversionStation(I1D="950010",Name="Dry Elk Valley Irr", Capacity=45.0,
IrrigatedAcres=2590, IfNotFound=Warn)

Irrigation Demands below Harvey Gap Reservoir - primary structure of MS setup

SetDiversionStation(ID="950011",Name="Farmers lIrrigation

Comp'*,Capacity=72.0, IrrigatedAcres=2906, I fNotFound=Warn)

#
Collbran Project
Bonham Branch Pipeline

SetDiversionStation(1D="720542" ,ReplaceResOption=0,DemandSource=7, IfNotFound=Warn)

Cottonwood Branch Pipeline
SetDiversionStation(I1D="720583",ReplaceResOption=0,DemandSource=7, I fNotFound=Warn)

Leon Park Feeder Canal

SetDiversionStation(1D="720746" ,ReplaceResOption=0,DemandSource=7, I fNotFound=Warn)

Park Creek Ditch (Vega)

SetDiversionStation(1D="720820",ReplaceResOption=0, IrrigatedAcres=0,DemandSource=7, 1 fNotFound=Warn)
Southside Canal
SetDiversionStation(1D="720879",ReplaceResOption=0,DemandSource=7, I fNotFound=Warn)

#

139 StateMod - 15

StateDMI Documentation

Cameo Demand/Grand Valley Area EW - Why resreplace set to 1 for these structures?
Grand Valley Irrigation Canal
SetDiversionStation(1D="720645",Capacity=650.0,ReplaceResOption=1, IfNotFound=Warn)

Orchard Mesa Irrigation District - primary structure in MS Setup

SetDiversionStation(1D="720813",Capacity=461.0,ReplaceResOption=0,DemandSource=3, I fNotFound=Warn)

SetDiversionStation(1D="950004",Name=""OMID Hydraulic Pump",Capacity=272.0,ReplaceResOption=0,
IrrigatedAcres=0,DemandSource=6, IfNotFound=Warn)

Grand Valley Project

SetDiversionStation(I1D="720646",Capacity=1620.0, IrrigatedAcres=0,DemandSource=7, IfNotFound=Warn)

SetDiversionStation(1D="950001" ,Name=""Grand Valley

Project",Capacity=850.0,ReplaceResOption=0, IrrigatedAcres=28900,DemandSource=8, I fNotFound=Warn)

Colorado River Pumping Plant - secondary source for OMID irrigation MS setup
SetDiversionStation(1D="721330",DemandSource=5, I fNotFound=Warn)
USA Power Plant

SetDiversionStation(1D="950002",Name=""USA Power Plant",Capacity=800.0,ReplaceResOption=0,
IrrigatedAcres=0,DemandSource=6, IfNotFound=Warn)

Orchard Mesa Check

SetDiversionStation(1D=""950003" ,Name=""0rchard Mesa Check",Capacity=1072.0,ReplaceResOption=0,
IrrigatedAcres=0,DemandSource=6, I fNotFound=Warn)

SetDiversionStation(1D="950005",Name="0OMID Pre-1985 Bypass',Capacity=1072.0,ReplaceResOption=0,
IrrigatedAcres=0,DemandSource=6, I fNotFound=Warn)

SetDiversionStation(1D=""950006"" ,Name="OMID Post-1985

Bypass'',Capacity=1072.0,ReplaceResOption=0, IrrigatedAcres=0,DemandSource=6, I fNotFound=Warn)

15-Mile Fish Requirement

SetDiversionStation(1D="952001" ,Name=""15-Mile Fish

Requirement",Capacity=999,ReplaceResOption=0, IrrigatedAcres=0,DemandSource=6, I fNotFound=Warn)

#

The following structure is an aggregate M & 1 node -

this node is included (despite zero demand) to maintain consistency with other basins and for

potential future use.

SetDiversionStation(ID="72_AMCO01" ,Name="72_AMCO01 Colorado River nr Stateline',Capacity=999,
IrrigatedAcres=0,DemandSource=6, IfNotFound=Warn)

#
The following structures are used for a dataset-specific scenario
Leonard Rice - 2 structures (Calculated and Baseline datasets only!)

SetDiversionStation(I1D="950007" ,Name="USA PP-Winter-OM

Stip",Capacity=850.35,ReplaceResOption=0, IrrigatedAcres=0,DemandSource=6, I fNotFound=Warn)

SetDiversionStation(1D="950008" ,Name=""USA PP-Summer-OM

Stip",Capacity=850.35,ReplaceResOption=0, IrrigatedAcres=0,DemandSource=6, I fNotFound=Warn)

SetDiversionStation(ID="950061",Name=""Green_Mtn_Annual_Rep_Est.",Capacity=999,ReplaceResOption=0,
IrrigatedAcres=0,DemandSource=6, I fNotFound=Warn)

SetDiversionStation(I1D="953001" ,Name=""Ruedi Rnd 1-Muni Demand",Capacity=999,ReplaceResOption=0,
IrrigatedAcres=0,DemandSource=6, IfNotFound=Warn)

SetDiversionStation(1D="953002" ,Name=""Ruedi Rnd 1-Ind Demand",Capacity=999,ReplaceResOption=0,
IrrigatedAcres=0,DemandSource=6, IfNotFound=Warn)

SetDiversionStation(1D="953003",Name=""Ruedi Rnd 2-Muni Demand",Capacity=999,ReplaceResOption=0,
IrrigatedAcres=0,DemandSource=6, IfNotFound=Warn)

SetDiversionStation(1D="953004" ,Name="Ruedi Rnd 2-Ind Demand",Capacity=999,ReplaceResOption=0,
IrrigatedAcres=0,DemandSource=6, I fNotFound=Warn)

SetDiversionStation(1D=""953005" ,Name=""Ruedi Addl Demand",Capacity=999,ReplaceResOption=0,
IrrigatedAcres=0,DemandSource=6, IfNotFound=Warn)

Wolford Mtn Reservoir Demand (Baseline dataset only!)

SetDiversionStation(1D="953101",Name="Wolford Fraser Demand',Capacity=999,ReplaceResOption=0,
IrrigatedAcres=0,DemandSource=6, IfNotFound=Warn)

SetDiversionStation(1D="953102" ,Name="Wolford MidPark Demand",Capacity=999,ReplaceResOption=0,
IrrigatedAcres=0,DemandSource=6, IfNotFound=Warn)

SetDiversionStation(1D="953103",Name="Wolford Market Demand',Capacity=999,ReplaceResOption=0,
IrrigatedAcres=0,DemandSource=6, IfNotFound=Warn)

Cl1 - structures (Calculated and Baseline datasets only!)

SetDiversionStation(ID="956001",Name=""Future Depletion #1",6Capacity=999,ReplaceResOption=0,
IrrigatedAcres=0,DemandSource=6, ITNotFound=Warn)

SetDiversionStation(1D="956002",Name=""Future Depletion #2",Capacity=999,ReplaceResOption=0,
IrrigatedAcres=0,DemandSource=6, IfNotFound=Warn)

#
Demand nodes to release excess HUP water from Homestake, Dillon, Williams Fork, and
Wolford Reservoirs

SetDiversionStation(1D="954516D",Name=""HUP Release

Node",0nOff=1,Capacity=99999,ReplaceResOption=0, IrrigatedAcres=0,DemandSource=7,
EffAnnual=0, I fNotFound=Warn)

SetDiversionStation(1D="954512D" ,Name=""HUP Release

Node",0nOff=1,Capacity=99999,ReplaceResOption=0, IrrigatedAcres=0,DemandSource=7,

16 - StateMod 140

StateDMI Documentation

EffAnnual=0, I fNotFound=Warn)
SetDiversionStation(1D="953709D" ,Name=""HUP Release
Node™,0nOff=1,Capacity=99999,ReplaceResOption=0, IrrigatedAcres=0,DemandSource=7,
EffAnnual=0, I fNotFound=Warn)
SetDiversionStation(1D="953668D",Name=""HUP Release
Node™,0nOff=1,Capacity=99999,ReplaceResOption=0, IrrigatedAcres=0,DemandSource=7,
EffAnnual=0, IfNotFound=Warn)

#
The following are structures that need alternate return location definitions
510848 - change return flow pattern to mimic portion of returns that occur in the same month

SetDiversionStation(1D="510848",Returns="510546,40,4", IfNotFound=Warn)

#

StateDMI expects monthly values to be entered in Calendar Year.

#

Step 7 - setting efficiencies for specific structures

Acreage during the study period for the following 22 structures is different than what
it is today (the value in HydroBase). Crop water requirements calculated by

the CU Model are incorrect for the structures during the study period, but are correct
for the baseline scenario.

To avoid incorrect efficiencies being calculated by StateDMI (crop water requirement /
historical diversion),

we are setting the efficiencies for these structures equal to the basin-wide

efficiency (3/9/99), ra

Updated by James Heath (heath@lrcwe.com) with updated basin wide efficiencies (2/23/2006)
#

SetDiversionStation(1D="360687",EffMonthly="5,4,9,16,25,29,30,25,18,9,5,6", IfNotFound=Warn)
SetDiversionStation(1D="360725" ,EffMonthly="5,4,9,16,25,29,30,25,18,9,5,6", IfNotFound=Warn)
SetDiversionStation(1D="360728" ,EffMonthly="5,4,9,16,25,29,30,25,18,9,5,6", IfNotFound=Warn)
SetDiversionStation(1D="360729",EffMonthly="5,4,9,16,25,29,30,25,18,9,5,6", IfNotFound=Warn)
SetDiversionStation(1D="360765",EffMonthly="5,4,9,16,25,29,30,25,18,9,5,6", IfNotFound=Warn)
SetDiversionStation(1D="360780",EffMonthly="5,4,9,16,25,29,30,25,18,9,5,6", IfNotFound=Warn)
SetDiversionStation(1D="360800",EffMonthly="5,4,9,16,25,29,30,25,18,9,5,6", IfNotFound=Warn)
SetDiversionStation(1D="370519",EffMonthly="5,4,9,16,25,29,30,25,18,9,5,6", IfNotFound=Warn)
SetDiversionStation(1D="370571" ,EffMonthly="5,4,9,16,25,29,30,25,18,9,5,6", IfNotFound=Warn)
SetDiversionStation(I1D="370723" ,EffMonthly="5,4,9,16,25,29,30,25,18,9,5,6", IfNotFound=Warn)
SetDiversionStation(1D="370848" ,EffMonthly="5,4,9,16,25,29,30,25,18,9,5,6", IfNotFound=Warn)
SetDiversionStation(1D="380528",EffMonthly="5,4,9,16,25,29,30,25,18,9,5,6", IfNotFound=Warn)
SetDiversionStation(1D="380572",EffMonthly="5,4,9,16,25,29,30,25,18,9,5,6", IfNotFound=Warn)
SetDiversionStation(1D="380663" ,EffMonthly="5,4,9,16,25,29,30,25,18,9,5,6", IfNotFound=Warn)
SetDiversionStation(1D="'380939" ,EffMonthly="5,4,9,16,25,29,30,25,18,9,5,6", IfNotFound=Warn)
SetDiversionStation(1D="380996" ,EffMonthly="5,4,9,16,25,29,30,25,18,9,5,6", IfNotFound=Warn)
SetDiversionStation(1D="381062" ,EffMonthly="5,4,9,16,25,29,30,25,18,9,5,6", IfNotFound=Warn)
SetDiversionStation(1D="381078" ,EffMonthly="5,4,9,16,25,29,30,25,18,9,5,6", IfNotFound=Warn)

#

Step 8 - create "'step 1" direct diversion station file

#

WriteDiversionStationsToStateMod(OutputFile="cm2005_dds.dds"™)

#

Check the results.
CheckDiversionStations(1D="*")
WriteCheckFile(OutputFile="dds.commands.StateDMI .check.html')

5.4.2 Diversion Rights

Diversion rights correspond to the diversion stations, using the diversion station identifier to relate the
data. Diversion right identifiers are typically the diversion station identifier followed by . NN, where NN
is a sequential number starting with 01. Rights for diversion aggregate/system stations have rights
corresponding to water right classes.

141 StateMod - 17

StateDMI Documentation

The Commands...Diversion Data...Diversion Rights menu items insert commands to process diversion

rights data:

Diversion Rights - Commands

ReadDiversionstationsFromList() ...
ReadbiversionStationsFromStateMod() . ..

SetDiversionfgoregatel) ...

SetDiversionAggregateFromList) ...

SetDiversionSystemi) ...

SetDiversionSystemFromListd ...

ReadDiversionRightsFromHydroBase) ...
ReadDiversionRightsFromatateMod(y ...

SetDiversionRight() ...

SortDiversionRights) ..

FillTiversionRighte) ...

WriteDiversionRightsToList() ..,
WriteDiversionRightsToStakeMod?) ...

CheckDiversionRights() ...
WiteCheckFiled) ...

MenuCommands_DiversionRights

Commands...Diversion Data...Diversion Rights Menu

The following table summarizes the use of each command:

Diversion Rights Commands

Command

Description

ReadDi ver si onSt ati onsFronLi st ()

Read from a delimited file the list of diversion stations to be
included in the data set — the list indicates the stations for
which to process rights.

ReadDi ver si onSt ati onsFrom
St at eMod()

Read from a StateMod diversion stations file the list of
diversion stations to be included in the data set — the list
indicates the stations for which to process rights.

Set Di ver si onAggr egat e()

Specify that a diversion is an aggregate and define its parts.

Set Di ver si onAggr egat eFr omLi st ()

Specify that one or more diversions are aggregates and
define their parts, using a delimited list file.

Set Di ver si onSyst en()

Specify that a diversion is a system and define its parts.

Set Di ver si onSyst enfronlLi st ()

Specify that one or more diversions are systems and define
their parts, using a delimited list file.

ReadDi ver si onRi ght s
Fr omHydr oBase()

For each diversion station, read the corresponding diversion
rights from HydroBase.

ReadDi ver si onRi ght s
Fr ontt at eMod()

Read diversion rights from a StateMod diversion rights file.

Set Di ver si onRi ght ()

Set the data for, and optionally add, diversion rights.

18 - StateMod

142

StateDMI Documentation

Command Description

Sort Di ver si onRi ght s() Sort the diversion rights. This is useful to force consistency
between files.

Fi Il DiversionRi ght() Fill missing data for defined diversion rights, using user-
supplied values.

WiteDiversionRi ghtsToLi st () Write defined diversion rights to a delimited file.

WiteDiversionRi ght sToSt at eMdd() | Write defined diversion rights to a StateMod file.

CheckDi ver si onRi ght s() Check diversion rights data for problems.

Wi teCheckFile() Write the results of data checks to a file.

An example command file to create the diversion rights file is shown below (from the Colorado cm2005
data set):

StartLog(LogFile="ddr.commands.StateDMI . log™)
ddr.commands.StateDMI

StateDMI command file to create the direct diversion rights file for the Colorado model

Step 1 - read structures from preliminary direct diversion station file
eadDiversionStationsFromStateMod(InputFile="cm2005_dds.dds")

Step 2 - read aggregate and diversion system structure assignments. Note that

want to combine water rights for aggs and diversion systems, but
water rights are assigned to primary and secondary components of multistructures

B R R T P e e

SetDiversionAggregateFromList(ListFile="cm_agg.csv", IDCol=1,NameCol=2,PartlDsCol=3,PartsListedHow=InRow)
SetDiversionSystemFromList(ListFile="cm_divsys.csv", IDCol=1,NameCol=2,PartlDsCol=3,PartsListedHow=InRow)
#

Step 3 - read diversion rights from HydroBase and define water rights classes

used for aggregate structures - but NOT for diversion systems

#

ReadDiversionRightsFromHydroBase(1D="*",0nOffDefault=1,
AdminNumClasses="14854.00000,20427.18999,22729.21241,
30895.21241,31258.00000,32023.28989,39095.38998,43621.42906,46674.00000,48966 .00000,99999.'")

#

Step 4 - set water rights for structure IDs different from or not included in HydroBase

#

Grand Valley Area - many rights obtain water through operations

SetDiversionRight(1D="720646.02" ,Name="0rchard Mesa Irr Dist

Sys™,StationID=""1D",0n0ff=1, IfTNotFound=Add, I fFound=Set)

SetDiversionRight(1D="720646.03" ,Name="0rchard Mesa Irr Dist

Sys",StationID="I1D",0n0ff=1, IfNotFound=Add, I fFound=Set)

SetDiversionRight(I1D="720646.05" ,Name="USA Power

Plant™,StationID="1D",Decree=800.0,0n0ff=1, IfNotFound=Add, I fFound=Set)

SetDiversionRight(1D="720646.07" ,Name="Grand Valley

Proj",StationID="ID",AdministrationNumber=22729.19544,

Decree=40.0,0n0ff=1, I fNotFound=Add, I fFound=Set)
SetDiversionRight(1D="720646.08",Name=""USA_PP_Winter_OM-
Stip",StationID="1D",AdministrationNumber=30895.21241,Decree=800.00,0n0ff=1, IfNotFound=Add, I fFound=Set)
SetDiversionRight(1D="720646.09" ,Name=""USA_PP_SummerSr_OM-
Stip",StationID="I1D",AdministrationNumber=30895.21241,Decree=490,0n0ff=1, IfNotFound=Add, I fFound=Set)
SetDiversionRight(1D="720646.10" ,Name=""USA_PP_SummerJr_OM-
Stip",StationID="1D",AdministrationNumber=100000.1000,Decree=999.00,0n0ff=1, IfNotFound=Add, I fFound=Set)
SetDiversionRight(1D="720813.01" ,Name="0rchard Mesa Irr Dist
Sys",StationID=""ID",AdministrationNumber=99999.99999,Decree=999.0,0n0ff=1, IfNotFound=Add, I fFound=Set)
SetDiversionRight(1D="950001.01",Name="Grand Valley Proj -
Irr”,StationID="ID",AdministrationNumber=99999.99999,Decree=999.0,0n0ff=1, I fNotFound=Add, I fFound=Warn)
SetDiversionRight(1D="950002.01" ,Name=""USA Power Plant",StationID="ID",AdministrationNumber=99999.99999,

Decree=999.0,0n0ff=1, I fNotFound=Add, I fFound=Warn)

SetDiversionRight(1D=""950003.01" ,Name="0rchard Mesa

Check™,StationID=""1D",AdministrationNumber=999999.0000,Decree=640.0,0n0ff=1, I fNotFound=Add, I fFound=Warn)

SetDiversionRight(1D="950004.01",Name="0OMID Hydraulic

Pump™,StationID="ID",AdministrationNumber=99999.99999,Decree=999.0,0n0ff=1, IfNotFound=Add, I fFound=Warn)

SetDiversionRight(1D=""950005.01" ,Name=""OMID Pre-1985

143 StateMod - 19

StateDMI Documentation

Bypass',StationID="1D",AdministrationNumber=999998.0000,Decree=1100.0,0n0ff=1,
I1fNotFound=Add, I fFound=Warn)

SetDiversionRight(ID="'950006.01" ,Name="OMID Post-1985

Bypass',StationID="1D",AdministrationNumber=30895.23492,Decree=1100.0,0n0ff=1,
I1fNotFound=Add, I fFound=Warn)

SetDiversionRight(1D=""950007.01" ,Name=""USA PP Winter OM-

Stip",StationID="1D",AdministrationNumber=99999.90009,Decree=999.0,0n0ff=1, IfNotFound=Add, I fFound=Warn)

SetDiversionRight(1D=""950008.01" ,Name=""USA PP Summer OM-

Stip",StationID="1D",AdministrationNumber=100000.1000,Decree=999.0,0n0ff=1, IfNotFound=Add, I fFound=Warn)

#

... similar commands omitted. ..

#

#

Municipal Water Rights

SetDiversionRight(1D="955002.01" ,Name=""Snake R Water Dist Well

1" ,StationID="ID",AdministrationNumber=18181.00000,Decree=0.03,0n0ff=1, I fNotFound=Add, I fFound=Warn)

SetDiversionRight(1D=""955002.02" ,Name=""Snake R Water Dist Well

1" ,StationID="1D",AdministrationNumber=32075.25333,Decree=0.12,0n0ff=1, I fNotFound=Add, I fFound=Warn)

SetDiversionRight(1D=""955002.03" ,Name=""Snake R Water Dist Well

1" ,StationID="ID",AdministrationNumber=44741.00000,Decree=1.23,0n0ff=1, I fNotFound=Add, I fFound=Warn)

SetDiversionRight(1D="955001.01",Name="Vail Valley Water -

Irr”,StationID="ID",AdministrationNumber=15646.00000,Decree=11.2,0n0ff=1, I fNotFound=Add, I fFound=Warn)

SetDiversionRight(1D="955003.01" ,Name="Vail Valley Water -

Nonlrr',StationID=""1D",AdministrationNumber=42420.41366,Decree=13.0,0n0ff=1, IfNotFound=Add, I fFound=Warn)

SetDiversionRight(1D=""950051.01" ,Name=""City of Grand Jnct",StationlID="ID",AdministrationNumber=1.00000,
Decree=999.0,0n0ff=1, I fNotFound=Add, I fFound=Warn)

SetDiversionRight(1D="950020.01",Name=""Ute Water Treatment

Plant",StationID="ID",AdministrationNumber=12753.00000,Decree=4_03,0n0ff=1, I fNotFound=Add, I fFound=Warn)

SetDiversionRight(1D="950020.02" ,Name="Ute Water Treatment

Plant™,StationID=""1D",AdministrationNumber=30895.12724 ,Decree=1.95,0n0ff=1, I fNotFound=Add, I fFound=Warn)

SetDiversionRight(1D="950020.03",Name=""Ute Water Treatment

Plant",StationID="ID",AdministrationNumber=30895.24260,Decree=0.74,0n0ff=1, I fNotFound=Add, I fFound=Warn)

SetDiversionRight(1D=""950020.04" ,Name="Ute Water Treatment

Plant™,StationID="1D",AdministrationNumber=32811.00000,Decree=2.12,0n0ff=1, I fNotFound=Add, I fFound=Warn)

SetDiversionRight(1D="950020.05",Name=""Ute Water Treatment

Plant",StationID="ID",AdministrationNumber=38847.00000,Decree=20.0,0n0ff=1, IfNotFound=Add, I fFound=Warn)

SetDiversionRight(1D=""950020.06",Name="Ute Water Treatment

Plant",StationID="1D",AdministrationNumber=46751.46599,Decree=11.00,0n0ff=1, IfNotFound=Add, I fFound=Warn)

SetDiversionRight(1D="950020.07",Name="Ute Water Treatment

Plant™,StationID=""1D",AdministrationNumber=46995.00000,Decree=4.1,0n0ff=1, IfNotFound=Add, I fFound=Warn)

SetDiversionRight(1D=""950020.08",Name="Ute Water Treatment

Plant",StationID="1D",AdministrationNumber=41791.00000,Decree=15.00,0n0ff=1, IfNotFound=Add, I fFound=Warn)

SetDiversionRight(1D="720816.01",Name="Palisade Town

Pipeline",StationID="1D",AdministrationNumber=12797.00000,Decree=1.44,0n0ff=1,
I1fNotFound=Add, I fFound=Warn)

SetDiversionRight(1D="720816.02" ,Name="Palisade Town

Pipeline',StationID="ID",AdministrationNumber=14222_.00000,Decree=3.55,0n0ff=1,
IfNotFound=Add, I fFound=Warn)

...similar commands omitted. ..

#

Industrial Water Rights

SetDiversionRight(1D="360989.01",Name="Maggie Pond

Snowmaking',StationID="ID",AdministrationNumber=99999.99999,Decree=999.0,0n0ff=1,
I1fNotFound=Add, I fFound=Warn)

SetDiversionRight(1D="361016.01",Name=""Copper Mtn

Snowmaking',StationID="1D",AdministrationNumber=99999.99999,Decree=999.0,0n0ff=1,
I1fNotFound=Add, I fFound=Warn)

SetDiversionRight(1D="720807.01",Name="Molina Power

Plant™,StationID=""1D",AdministrationNumber=99999.99999,Decree=999.0,0n0ff=1, IfNotFound=Add, I fFound=Warn)

#

TenMile Diversion No. 1 - set diversion b/c it has been "Transferred From" in 1996 database

SetDiversionRight(ID="360841.01" ,Name="TenMile Diversion

No.1",StationID="ID",AdministrationNumber=31566.00000,Decree=35.0,0n0ff=1, I fNotFound=Add, I fFound=Warn)

#

#

#

Redlands Power Canal and Irrigation rights (420541 has 3 rights of which only the first is modified,

James Heath (heath@lrcwe.com))

SetDiversionRight(1D="420541.01" ,Name=""Redlands Power

Canal™,StationID=""1D",AdministrationNumber=22283.20300,Decree=610.0,0n0ff=1, IfNotFound=Add, I fFound=Set)

SetDiversionRight(1D=""950050.01",Name=""Redlands Power Canal-

20 - StateMod 144

StateDMI Documentation

Irr”,StationID="ID",AdministrationNumber=22283.20300,Decree=60.0,0n0ff=1, I fNotFound=Add, I fFound=Warn)

SetDiversionRight(1D="950050.02" ,Name=""Redlands Power Canal-

Irr”,StationID="ID",AdministrationNumber=34419.33414,Decree=80.0,0n0ff=1, I fNotFound=Add, I fFound=Warn)

#

#

#

Silt Project default water rights - water obtained through operations

SetDiversionRight(1D="950010.01",Name="Dry Elk Valley Irr", StationlID=""1D",
AdministrationNumber=99999.99999,Decree=0,0n0ff=1, I fNotFound=Add, I fFound=Warn)

SetDiversionRight(ID="'950011.01" ,Name=""Farmers Irrigation

Comp',StationID=""1D",AdministrationNumber=99999.99999,Decree=0,0n0ff=1, I fNotFound=Add, I fFound=Warn)

#

#

#

15-Mile Reach - LR-2

SetDiversionRight(1D="952001.01" ,Name=""15-Mile Fish

Require",StationID=""1D",AdministrationNumber=99999.91000,Decree=0,0n0ff=1, I fNotFound=Add, I fFound=Warn)

#

#

#

Excess HUP Releases from Homestake, Dillon, Williams Fork, and Wolford Reservoirs Water Rights

SetDiversionRight(1D="'954516D.01" ,Name="HUP Release Node',StationlD="ID",
AdministrationNumber=99999.99999,Decree=0.0,0n0ff=1, ITNotFound=Add, I fFound=Warn)

SetDiversionRight(1D="954512D.01" ,Name=""HUP Release Node'",StationID="1D",
AdministrationNumber=99999_.99999,Decree=0.0,0n0ff=1, IfNotFound=Add, I fFound=Warn)

SetDiversionRight(1D=""953709D.01" ,Name=""HUP Release Node'",StationlD="ID",
AdministrationNumber=99999.99999,Decree=0.0,0n0ff=1, IfNotFound=Add, I fFound=Warn)

SetDiversionRight(1D="953668D.01" ,Name=""HUP Release Node'",StationID="1D",
AdministrationNumber=99999.99999,Decree=0.0,0n0ff=1, IfNotFound=Add, I fFound=Warn)

#

#

#

WOLFORD MOUNTAIN RESERVOIR DEMAND

SetDiversionRight(1D="953101.01",Name="Wolford_Fraser_Dem",StationID="1D",
AdministrationNumber=99999.00000,Decree=0,0n0ff=1, I fNotFound=Add, I fFound=Warn)

SetDiversionRight(1D="953102.01",Name=""Wolford_MidPark_Dem",StationID=""1D",
AdministrationNumber=99999.00000,Decree=0,0n0ff=1, I fNotFound=Add, I fFound=Warn)

SetDiversionRight(1D="953103.01",Name="Wolford_Market_Dem",StationlID="1D",
AdministrationNumber=99999.00000,Decree=0,0n0ff=1, I fNotFound=Add, I fFound=Warn)

#

...similar commands omitted. ..

FUTURE DEPLETIONS

SetDiversionRight(1D="956001.01",Name=""Future_Depletion_#1",StationlD="ID",
AdministrationNumber=99999.00000,Decree=0,0n0ff=1, I fNotFound=Add, I fFound=Warn)

SetDiversionRight(1D=""956002.01",Name=""Future_Depletion_#2",StationID=""1D",
AdministrationNumber=99999.00000,Decree=0,0n0ff=1, IfNotFound=Add, I fFound=Warn)

#

#

CIiff Ditch - both water rights reside under WDID 500539 - set 12 cfs of second water right to 500731

and reduce to 12 cfs at 500539 - this water right serves both 500539 & 500731

SetDiversionRight(ID="500731.01" ,Name="Cliff Ditch Hdg No

2" ,StationlD=""ID",AdministrationNumber=20676.19665,Decree=12_.0,0n0ff=1, IfNotFound=Add, I fFound=Set)

SetDiversionRight(1D=""500539.02" ,Name=""Cliff

Ditch",StationID="1D",AdministrationNumber=20676.19665,Decree=12.0,0n0ff=1, IfNotFound=Add, I fFound=Set)

#

#

Step 5 - Add Free water rights for structures historically diverting more than water rights

Example from San Juan - replace section when we get a list of free river water rights

SetDiversionRight(ID="'360662.99" ,Name="HOAGLAND CANAL

SPRUCE",StationlD="360662" ,AdministrationNumber=99999.99999,Decree=999.00, I fNotFound=Add, 1 fFound=Set)

SetDiversionRight(1D="360729.99" ,Name="MAT NO 2

DITCH",StationlD="360729",AdministrationNumber=99999.99999,Decree=999 .00, I fNotFound=Add, I fFound=Set)

SetDiversionRight(1D="360734.99",Name=""MCKAY

DITCH",StationlD="360734",AdministrationNumber=99999.99999,Decree=999 .00, I fNotFound=Add, I fFound=Set)

SetDiversionRight(1D=""360765.99",Name=""PALMER-MCKINLEY

DITCH",StationlD="360765" ,AdministrationNumber=99999.99999,Decree=999.00, I fNotFound=Add, I fFound=Set)
..similar commands omitted. ..

Step 6 - add municipal aggregate rights - this agg node water right is set to zero as no
M&l uses need to be aggregated and accounted for.
the node is included to maintain consistency with other basins and for potential future use

o

145 StateMod - 21

StateDMI Documentation

#
SetDiversionRight(1D="72_AMC001.01",Name="72_AMC001 Colorado River nr

Stateline",StationID="1D",AdministrationNumber=1.00000,Decree=0.0, I fNotFound=Add, I fFound=Set)
#

Step 7 - create direct diverison rights file

#

WriteDiversionRightsToStateMod(OutputFile="__\STATEMOD\cm2005.ddr")
#

Check the results
CheckDiversionRights(ID="*"")
WriteCheckFile(OutputFile="ddr.commands.StateDMI.check.html")

22 - StateMod 146

StateDMI Documentation

5.4.3 Diversion Historical Time Series (Monthly)

Diversion historical time series (monthly) correspond to each diversion station, using the station identifier

to relate the data.

The Commands...Diversion Data...Diversion Historical TS (Monthly) menus insert commands to
process diversion historical time series (monthly) data (and also update the diversion stations file because
of changes to the capacity data):

Diversion Historical TS {Monthly) - Commands

SeboukputPeriod) ..
SeboutputYear Tvpel) ..,

ReadDiversionstationsFromLisk() ...

ReadbiversionStationsFrom3tateMod(y . ..

SetDiversionfgoregatel) ...
SetDiversionfaggregateFramLisk() ..
SetDiversiongystem) ...
SetDiversionSystemFromListd ...

ReadDiversionHistarical TSMonthlyFromHydroBase) ...
ReadDiversionHistarical TSMankhlyFromatateiod() ...

SetDiversionHistorical TSMonthle() ..
SetDiversionHistorical TSMonthly Constank .

FilDiversionHistorical T3MonthiyvAveraged) ..
FillTiversionHistoricalTSMonthlyZonstant() ...
1: ReadPatternFile) ...

21 FilliversionHiskarical TSMankhlyPakkernl) .

1: ReadDiversionRightsFromsStakeMod() ...

21 LimitDiversionHistarical TSMaonthly ToRights() ..

SortDiversionHistoricalTSMonthlk ...

riteDiversionHistorical TSManthly ToStateMaod() ...

SetDiversionStationCapacitiesFromTa() . ..
SetDiversionStation) ...
SetDiversionStationsFromLisk() ...
WriteDiversionStationsToStateMod() ...

CheckDiversionHistorical T3Monthivl ..
WriteCheckFilel) ...

MenuCommands_DiversionHistoricalTSMonthly

Commands...Diversion Data...Diversion Historical TS (Monthly) Menu

147

StateMod - 23

StateDMI Documentation

The following table summarizes the use of each command:

Diversion Historical Time Series (Monthly) Commands

Command

Description

Set Qut put Peri od()

Set the output period. Time series are automatically
extended to this period if necessary.

Set Qut put Year Type()

Set the output year type, which is used when writing
the files and for monthly efficiency data order.

ReadDi ver si onSt ati onsFromnLi st ()

Read from a delimited file the list of diversion stations
to be included in the data set.

ReadDi ver si onSt at i onsFr ontt at eMod()

Read from a StateMod diversion stations file the list of
diversion stations to be included in the data set.

Set Di ver si onAggr egat e()

Specify that a diversion is an aggregate and define its
parts.

Set Di ver si onAggr egat eFr onlLi st ()

Specify that one or more diversions are aggregates and
define their parts, using a delimited list file.

Set Di ver si onSyst en()

Specify that a diversion is a system and define its
parts.

Set Di ver si onSyst enfronlLi st ()

Specify that one or more diversions are systems and
define their parts, using a delimited list file.

ReadDi ver si onHi st ori cal TSMont hl y
Fr omHydr oBase()

Read diversion historical time series (monthly) from
HydroBase, filling and adding aggregate/system part
time series if necessary.

ReadDi ver si onHi st ori cal TSMont hl y
Fr ontt at eMod()

Read diversion historical time series (monthly) from a
StateMod file.

Set Di ver si onHi storical TS
Mont hl y()

Set the data for a diversion historical time series
(monthly) by reading another time series (e.g., from a
file). This cannot be used to set the data for an
aggregate/system part (only the aggregate/system total
can be set).

Set Di versi onHi storical TS
Mont hl yConst ant ()

Set the data for a diversion historical time series
(monthly) to a constant value. This cannot be used to
set the data for an aggregate/system part (only the
aggregate/system total can be set).

Fill D versionH storical TS
Mont hl yAver age()

Fill missing data in diversion historical time series
(monthly) to the historical monthly average values. If
an aggregate/system, the historical average is
computed from the total.

Fill D versionH storical TS
Mont hl yConst ant ()

Fill missing data in diversion historical time series
(monthly) to a constant value.

ReadPatternFi |l e()

Read the pattern file used with
Fill D versionHistorical TS
Mont hl yPat t er n() commands.

Fill D versionH storical TS
Mont hl yPat t ern()

Fill missing data in diversion historical time series
(monthly) to the historical monthly average values,
using wet/dry/average values.

ReadDi ver si onRi ght sFrontt at evbd()

Read the diversion rights file for use with the
Li m t Di versi onHi storical TSvont hl y

ToRi ght s() command.

24 - StateMod

148

StateDMI Documentation

Command Description

Li m t O versi onHi storical TSMnthly Limit the diversion historical time series (monthly) to

ToRi ght s() the water rights that were available at each point in
time.

Sort Di versi onHi storical TS Sort the diversion historical time series (monthly).

Mont hl y () This is useful to force consistency between files.

Wi teDi versionH storical TSVbnthly Write defined diversion historical time series

ToSt at ebd() (monthly) to a StateMod file.

Set Di ver si onSt ati onCapaci ties Set the diversion station capacities to the maximum

FromTs() historical time series value.

Set Di versi onStati on() Set diversion station information (e.g., to override
capacity changes from the previous step).

Set Di ver si onSt at i onsFronii st () Set diversion station information from a delimited file
(e.g., to override capacity changes from the previous
step).

WiteDi versionStationsToStat eMod() Write diversion stations data to a StateMod diversion

stations file (use if the capacities have been updated).

CheckDi versi onHi storical TSMnthly() | Check diversion historical monthly time series data for

problems.

Wi teCheckFil e() Write the results of data checks to a file.

An example command file to create the diversion historical time series (monthly) file is shown below

(from the Colorado cm2005 data set). Note that aggregate part time series are filled before being added to

the total for the aggregate station, and explicit diversion time series are filled separately after reading.

StartLog(LogFile="ddh.commands.StateDMI .log")
ddh.commands.StateDMI

#

StateDMI command file to create the historical diversion file

and the ''step 2" direct diversion structure file, updated so structure
capacity = maximum historical diversion

#

Step 1 - set time-series period and year type

#

SetOutputPeriod(OutputStart="10/1908",0utputEnd="09/2005")
SetOutputYearType(OutputYearType=Water)
#

Step 2 - read structure list from preliminary direct diversion structure file
#

ReadDiversionStationsFromStateMod(InputFile="cm2005_dds.dds")

#

Step 3 - read aggregate and diversion system structure assignments. Note that
want to combine historical diversions for aggs and diversion systems, but
historical diversions are separate for primary and secondary components
of multistructures

#

S

etDiversionAggregateFromList(ListFile="cm_agg.csv", IDCol=1,NameCol=2,PartiDsCol=3,
PartsListedHow=InRow)

SetDiversionSystemFromList(ListFile="cm_divsys.csv', IDCol=1,NameCol=2,PartiDsCol=3,
PartsListedHow=InRow)

#

Step 4 - read historical diversions from HydroBase. Note that want individual structures
in aggregates and diversion systems to be filled first, then diversions combined.
#

ReadDiversionHistoricalTSMonthlyFromHydroBase(1D="*", IncludeCollections=False,
UseDiversionComments=True)

#

Step 5 - read Ffill pattern file, and assign patterns to water districts

#

ReadPatternFile(InputFile="fil12005.pat")

149 StateMod - 25

StateDMI Documentation

ReadDiversionHistoricalTSMonthlyFromHydroBase (I1D="36*", IncludeExplicit=False,
UseDiversionComments=True,
PatternID="09037500",FillIPatternOrder=1,FillAverageOrder=2)

#

Step 6 - assign transbasin diversions from streamflow gages

#

SetDiversionHistorical TSMonthly(1D="364626",TS1D="09047300.DWR.Streamflow.Month~HydroBase"")

.similar commands omitted..

note that adams tunnel streamgage ID changed in 10/1996 from 09013000 to ADANETCO

SetDiversionHistorical TSMonthly(I1D="'514634" ,TSID="'514634. . .MONTH~StateMod~514634.stm'")

Con-Hoosier System - Blue River Diversion, driven by operating rules to con-hoosier

summary demand

SetDiversionHistorical TSMonthly(I1D="'364683",TSID=""364683. . .MONTH~StateMod~zero.stm'")

SetDiversionHistorical TSMonthly(ID=""364699" ,TSID=""364699. . .MONTH~StateMod~zero.stm'")

Fryingpan-Arkansas Project

SetDiversionHistoricalTSMonthly(1D="381594",TS1D="381594. . _.MONTH~StateMod~381594_stm')

SetDiversionHistoricalTSMonthly(1D="384625",TSID=""384625. . _.MONTH~StateMod~384625.stm")

SetDiversionHistorical TSMonthly(I1D=""954699" , TSID=""954699. . .MONTH~StateMod~zero.stm"")

..similar commands omitted..

#

Step 7 - set diversions from external time-series files

#

The following commands are added to access Task 11.2 replacement files

SetDiversionHistoricalTSMonthly(1D="380757",TSID=""380757 . . .MONTH~StateMod~380757 .stm"")

.similar commands omitted.#

The following structures are set for Municipal and Industrial Diversions

SetDiversionHistoricalTSMonthly(1D="360784",TSI1D="360784. . _.MONTH~StateMod~360784.stm')

.similar commands omitted..

#

Set transbasin diversions to 0" prior to construction
#

Wurtz Ditch

SetDiversionHistoricalTSMonthlyConstant(1D="374648",Constant=0,SetEnd="01/1929"")
..similar commands omitted..

#

Step 8 - Fill historical diversion using pattern approach

#

FillDiversionHistoricalTSMonthlyPattern(1D="36*",PatternlD="09034500"")

..similar commands omitted..

#

Step 9 - Fill remaining missing with month average

illDiversionHistoricalTSMonthlyAverage(1D="*"")

Step 10 - Limit filled diversion to water rights. Exceptions include structure

#
#
F
#
#
receiving significant reservoir supply, carrier structures, etc.
#

L

imitDiversionHistoricalTSMonthlyToRights(InputFile=""__\statemod\cm2005.ddr",
ID=""*", IgnorelD=""954683,952001,950010,950011"")

Step 11 - sort structures and create historical diversion file

HHH

SortDiversionHistoricalTSMonthly(Order=Ascending)
WriteDiversionHistoricalTSMonthlyToStateMod(OutputFile=". _.\StateMod\cm2005.ddh")
#

Step 12 - update capacities and create final direct diversion station file
#

SetDiversionStationCapacitiesFromTS(I1D="*"")
WriteDiversionStationsToStateMod(OutputFile=""__\statemod\cm2005.dds")

#

Check the results.

CheckDiversionHistorical TSMonthly(ID="*"")
WriteCheckFile(OutputFile="ddh.commands.StateDMI .check.html')

26 - StateMod 150

StateDMI Documentation

5.4.4 Diversion Historical Time Series (Daily)

StateDMI does not process daily diversion historical time series. TSTool, a spreadsheet, or other software
can be used to create the data. More commonly, the monthly demand data can be distributed to daily time
series internally by StateMod by specifying the appropriate daily station identifier.

5.4.5 Diversion Demand Time Series (Monthly)

Diversion demand time series (monthly) correspond to each diversion station, using the station identifier
to relate the data. Current modeling practices use variable monthly efficiency, computed by StateCU.
Average monthly efficiencies are also typically set from StateCU results (as a list file input when defining
diversion stations) but can also be computed by dividing irrigation water requirement time series from
StateCU by historical diversion time series. In CDSS, demands are typically computed for three different
data sets, as follows:

Historical Demand

Filled demands are limited by the water rights on-line at the time. Historical measured diversions are not
limited. Free water rights are assumed to either be on for the entire period, or beginning with the earliest
water right. In this case the demands are the same as the historical diversions, typically just a copy of the
historical diversions time series file. This approach can be accomplished by using the

Lim tDi versi onHi stori cal TSMont hl yToRi ght s() command.

Calculated Demand

Irrigation demands are calculated based on IWR/Eff,.. The entire period is limited by water rights on-
line at the time. Free water rights are assumed to either be on for the entire period, or beginning with the
earliest water right. This approach can be accomplished by using the

Lim tDi versi onDemandTSMont hl yToRi ght s() command.

Baseline Calculated Demands

Demands are treated the same as for the calculated demand case. However, the entire period is limited by
the current water rights (to simulate current conditions). This approach can be accomplished by using the
Li m t Di ver si onDemandTSMont hl yToRi ght s(.., Li mi t ToCurr ent =Tr ue, ..) command.

Special Considerations — Conditional Rights

Conditional water rights may be included in StateMod rights files and be turned off for the historical
demands by setting the rights switch to 0 (zero) in the historical data files. Conditional rights, if
considered in the Baseline data set, can be turned on. This requires that a different rights file be used with
the calculated data set files.

Special Considerations — Comparing Calculated and Historical Demands
For some data sets, it may be appropriate to use the Cal cul at eDi ver si onDemandTSMont hl yAsMax()

command to set the diversion demands to the maximum of calculated and historical demands. Using this
approach can improve calibrations, for example:

o If the demand equals the historical value, then the diversion station at times operates at a
significantly lower efficiency than the average efficiency.

151 StateMod - 27

StateDMI Documentation

o If the demand equals IWR/Effy., then the diversion station may be water short and will try to
divert at least enough water to operate at an average efficiency.

Modelers should consider the above issues when deciding how to prepare data for a particular data set.

The Commands...Diversion Data...Diversion Demand TS (Monthly) menus insert commands to
process diversion demand time series (monthly) data (and optionally the diversion stations, to save
estimated efficiencies):

Diversion Demand TS (Monthly) - Commands

SeboukputPeriod) ..
SeboukputYearTvpel) ...

ReadDiversionStationsFromLisk() ...
ReadDiversionstationsFromatakeMod(y ...

SetDiversionAggregated) ...
SetDiversionfgoregateFromLisk) ...
SetDiversionSwystemt) ...
SetDiversionSystemFromListd ...
SetDiversionMulkiskruct(), ..
SetDiversionfultiSkructFromList). ..

1: ReadlIrrigationit'aterRequirement TSMontblvFromsState U .
2: ReadDiversionHiskoricalTSMonthlyFromStateMod() ...
[Legacy] 3: CalculakeDiversionskationEFficiencies() ...
SetDiversionstation) ...

SetDiversionStationsFromList() . ..
WriteDiversionStationsTostateMod() ...

CalculateDiversionDemandTSMonthle() ...
CalculateDiversionDemand TSMonkbly Astiax ...
ReadbiversionDemandT3MonthivFromstateMod ...

FilliversionDemandT3Monthly Averagely ...
FilDiversionDemandT3Monkthly Constank) ...
1: ReadPatternFile() ...

21 FillDiversionDemandT3MonthlvPattern) ...

LirnitDiversionDemandTSMankhly TaRights() ...
SetDiversionDemandT SMonthl ...
SetDiversionDemandT SMonthlyConstant() ..

SortDiversionDemandTSMonthle() ...
riteDiversionDemandTSMonthly ToSkakeMod(...

CheckDiversionDemandTSMonkhle () ..
writeCheckFiled) ...

MenuCommands_DiversionDemandTSMonthly

Commands...Diversion Data...Diversion Demand TS (Monthly) Menu

28 - StateMod 152

StateDMI Documentation

The following table summarizes the use of each command:

Diversion Demand Time Series (Monthly) Commands

Command

Description

Set Qut put Peri od()

Set the output period. Time series are
automatically extended to this period if
necessary.

Set Qut put Year Type()

Set the output year type, which is used when
writing the files and for determining the
monthly efficiency order in station data.

ReadDi ver si onSt ati onsFronLi st ()

Read from a delimited file the list of
diversion stations to be included in the data
set.

ReadDi ver si onSt at | onsFr ont at eMod()

Read from a StateMod diversion stations
file the list of diversion stations to be
included in the data set.

Set Di ver si onAggr egat e()

Specify that a diversion is an aggregate and
define its parts.

Set Di ver si onAggr egat eFr omnLi st ()

Specify that one or more diversions are
aggregates and define their parts, using a
delimited list file.

Set Di ver si onSyst en()

Specify that a diversion is a system and
define its parts.

Set Di ver si onSyst enfronlLi st ()

Specify that one or more diversions are
systems and define their parts, using a
delimited list file.

Set Di versi onMul ti Struct ()

Specify that a diversion is a “MultiStruct”
and define its parts.

Set Di versi onMul t1 Struct FronLi st ()

Specify that one or more diversions are
“MultiStruct”s and define their parts, using
a delimited list file.

Readl rri gat i onWat er Requi r enent TSMont hl yFr om
St at eCU()

Read irrigation water requirement (IWR)
time series generated by the StateCU model.

ReadDi ver si onHi st ori cal TSMont hl yFr ontt at e
Mod()

Read diversion historical time series
(monthly) from a StateMod file.

Cal cul at eDi versi onSt ati onEffi ci enci es()

Calculate diversion station average monthly
efficiencies as IWR/Diversions.

Set Di versi onStati on()

Set diversion station data, in particular
efficiency data to override the result from
the previous command.

Set Di ver si onSt at i onsFronii st ()

Set diversion station information from a
delimited file (e.g., to override capacity
changes from the previous step).

WiteDiversionStationsToSt at evbd()

Write diversion stations to StateMod — the
data will include updated average
efficiencies.

Cal cul at eDi ver si onDenandTSMont hl y ()

Calculate the diversion demand time series
(monthly) using IWR/Eff,, and historical
diversion time series.

153

StateMod - 29

StateDMI Documentation

Command

Description

Cal cul at eDi ver si onDenandTSMont hl yAsMax()

Calculate the diversion demand time series
(monthly) as the maximum of the demand

(see previous command) and the diversion
historical time series.

ReadDi ver si onDemandTSMont hl yFr ontst at eMod()

Read the diversion demand time series
(monthly) from a StateMod file, if a
previous result is being modified.

Fi | | Di ver si onDenandTSMont hl yAver age()

Fill missing data in diversion demand time
series (monthly) to the monthly average
values. If an aggregate/system, the average
is computed from the total.

Fi | | Di ver si onDenandTSMont hl yConst ant ()

Fill missing data in diversion demand time
series (monthly) to a constant value.

ReadPatternFi | e()

Read the pattern file used with
Fill Di versi onDemandTS

Mont hl yPat t er n() commands.

Fi || Di ver si onDenandTSMont hl yPat t er n()

Fill missing data in diversion demand time
series (monthly) to the monthly average
values, using wet/dry/average values.

Lim t D ver si onDemandTSMont hl yToRi ght s()

Limit the diversion demand time series
(monthly) to the water rights that were
available at each point in time.

Set Di ver si onDemandTSMont hl y()

Set the data for a diversion demand time
series (monthly). This cannot be used to set
the data for an aggregate/system part (only
the aggregate/system total can be set). Use
this after the other commands to ensure that
values will remain set.

Set Di ver si onDenandTS
Mont hl yConst ant ()

Set the data for a diversion demand time
series (monthly) to a constant value. This
cannot be used to set the data for an
aggregate/system part (only the
aggregate/system total can be set).

Sort Di ver si onDemandTSMont hl y()

Sort the diversion demand time series
(monthly). This is useful to force
consistency between files.

Wit eDi versi onDenandTSMont hl yToSt at evbd()

Write diversion demand time series
(monthly) to a StateMod file.

CheckDi ver si onDenmandTSMont hl y()

Check diversion demand monthly time
series data for problems.

Wit eCheckFil e()

Write the results of data checks to a file.

30 - StateMod 154

StateDMI Documentation

An example command file to create the diversion demand time series (monthly) file for the historical case
is shown below (adapted from Colorado cm2005 data set):

StartLog(LogFile=""Hddm.commands.StateDMI . log")

Hddm.commands.StateDMI - Creates Upper Colorado River Historical Demand file

#

Step 1 - set the output period, used to compute averages...

#

SetOutputPeriod(OutputStart="10/1908",0utputEnd="9/2005")
SetOutputYearType(OutputYearType=Water)

#

Step 2 - read historical diversion file as demand - defined structures for *.ddm file
#

ReadDiversionDemandTSMonthlyFromStateMod(InputFile=""_ .\statemod\cm2005.ddh"")

#

Step 3 - override specific demands with time series...

#
SetDiversionDemandTSMonthly(I1D=""720807",TSID="720807. .DivTotal .Month~StateMod~720807.stm'")
Set carrier structures to zero
SetDiversionDemandTSMonthlyConstant(1D=""360606",Constant=0)
SetDiversionDemandTSMonthlyConstant(1D="720542" ,Constant=0)
SetDiversionDemandTSMonthlyConstant(1D="720583",Constant=0)
SetDiversionDemandTSMonthlyConstant(1D="720746",Constant=0)
SetDiversionDemandTSMonthlyConstant(1D="720820",Constant=0)
SetDiversionDemandTSMonthlyConstant(1D=""720879",Constant=0)
SetDiversionDemandTSMonthlyConstant(1D="724721",Constant=0)

Set GVP specific demands
SetDiversionDemandTSMonthlyConstant(1D=""950003",Constant=100000,SetStart="11/1926"")
SetDiversionDemandTSMonthlyConstant(1D=""950005",Constant=60000,SetEnd=""9/1984"")
SetDiversionDemandTSMonthlyConstant(1D="950006",Constant=60000, SetStart="10/1984")
Set Excess HUP node demands for Homestake, Dillon, Williams Fork, and Wolford Reservoirs
SetDiversionDemandTSMonthlyConstant(1D=""954516D" ,Constant=999999)
SetDiversionDemandTSMonthlyConstant(1D="954512D",Constant=999999)
SetDiversionDemandTSMonthlyConstant(1D="953709D",Constant=999999)
SetDiversionDemandTSMonthlyConstant(1D="953668D" ,Constant=999999)

#

Step 4 - write the time series to the StateMod file...

#

WriteDiversionDemandTSMonthlyToStateMod(OutputFile="__\statemod\cm2005H.ddm")

#

Check the results.

CheckDiversionDemandTSMonthly (ID=""*"")
WriteCheckFile(OutputFile="Hddm.commands.StatedDMI .check.html')

The following example illustrates how to create the calculated data set diversion demand time series
(from the Colorado cm2005 data set):

StartLog(LogFile="Cddm.commands.StateDMI . log")
Cddm.commands.StateDMI

*

#
#
#
#
#

StateDMI command file to create the Calculated demand file

Step 1 - set the output period, used to compute averages...

SetOutputPeriod(OutputStart="10/1908",0utputEnd="09/2005")
SetOutputYearType(OutputYearType=Water)
#

#
#
#

Step 2 - read historical diversion file -defines structures for *.ddm file
plus read *.ddh file

ReadDiversionStationsFromStateMod(InputFile="__\StateMod\cm2005.dds")
ReadDiversionHistoricalTSMonthlyFromStateMod(InputFile="__\StateMod\cm2005.ddh")

#
#
#

Step 3 - read StateCU *.iwr and *.def files (irrigation requirements and average efficiencies)

ReadlrrigationWaterRequirementTSMonthlyFromStateCU(InputFile="__\StateMod\cm2005. iwr')

155 StateMod - 31

StateDMI Documentation

CalculateDiversionStationEfficiencies(1D="*",EffMin=0,EffMax=60,EffCalcStart=10/1974,
EffCalcEnd=9/2004,LEZerolnAverage=False)

SetDiversionStationsFromList(ListFile="cm2005.def", IDCol=""1" ,EffMonthlyCol=""2",Delim=""Space",
MergeDel im=True)

#

Step 4 - determine calculated demand =iwr/efficiency

- take max of calculated demand and historical diversion
#

CalculateDiversionDemandTSMonthly(ID=""*"")
CalculateDiversionDemandTSMonthlyAsMax(ID=""*"")
#
Step 5 - set carriers nodes demand to 0, set full demand and summary demand nodes
#
set carrier "transbasin" diversion to Divide Creek to "0", use operating rules to satisfy demand
SetDiversionDemandTSMonthlyConstant(1D=""724721" ,Constant=0)
place summary demand at the Moffat Tunnel, zero out collection points
SetDiversionDemandTSMonthly(ID="514655",TSID="514655. .DivTotal .Month~StateMod~514655._stm")
SetDiversionDemandTSMonthlyConstant(1D="'510639",Constant=0)
SetDiversionDemandTSMonthlyConstant(1D="'510728",Constant=0)
SetDiversionDemandTSMonthlyConstant(1D="'511269" ,Constant=0)
SetDiversionDemandTSMonthlyConstant(1D=""511309",Constant=0)
SetDiversionDemandTSMonthlyConstant(1D=""511310",Constant=0)
SetDiversionDemandTSMonthlyConstant(1D="'514603",Constant=0)
place summary demand at the Boustead Summary node, zero out collection points
SetDiversionDemandTSMonthly(ID="954699",TSID=""954699. .DivTotal .Month~StateMod~954699.stm")
SetDiversionDemandTSMonthlyConstant(1D=""381594" ,Constant=0)
SetDiversionDemandTSMonthlyConstant(1D="'384625" ,Constant=0)
Homestake - Zero Missouri Tunnel and drive by Homestake Reservoir Demend
SetDiversionDemandTSMonthlyConstant(1D=""374643" ,Constant=0)
Collbran Project Feeder/Supply Canals
SetDiversionDemandTSMonthlyConstant(ID="720879",Constant=0)
SetDiversionDemandTSMonthlyConstant(1D="720820",Constant=0)
SetDiversionDemandTSMonthlyConstant(1D=""720746" ,Constant=0)
Grand Valley Project Carrier (Roller Dam)
SetDiversionDemandTSMonthlyConstant(ID="720646",Constant=0)
SetDiversionDemandTSMonthlyConstant(1D=""950001",Constant=0,SetEnd="09/1915")
Molina Power Project
SetDiversionDemandTSMonthlyConstant(1D="720583",Constant=0)
SetDiversionDemandTSMonthlyConstant(1D=""720542" ,Constant=0)
SetDiversionDemandTSMonthly(ID="720807",

TSI1D=""720807. .DivTotal _.MONTH~StateMod~. .\StateMod\cm2005H.ddm")
Silt Project / Grass Valley 7/ Rifle Gap
SetDiversionDemandTSMonthlyConstant(1D=""390663" ,Constant=0)
SetDiversionDemandTSMonthlyConstant(1D=""390563" ,Constant=0)
Elliot Feeder to Green Mountain Res
SetDiversionDemandTSMonthlyConstant(1D=""360606"",Constant=0)
#
set demands for OMID Multi Structure - need to change demand calculation for 720813 in the future
when 721330 is operational. At that point an stm file will need to be created with the total
diversions
of structures 720813 and 721330.
SetDiversionDemandTSMonthlyConstant(1D="721330",Constant=0)

SetDiversionDemandTSMonthly(I1D="720813",TSID="720813. .DivTotal .MONTH~StateMod~. .\StateMod\cm2005H.ddm"")

#

Step 6 - set calculated demand to historic for structures whose historical acreage is different
from current

#

SetDiversionDemandTSMonthly (1D="360687",TSID=""360687. .DivTotal .MONTH~StateMod~. . \StateMod\cm2005H .ddm"'")
SetDiversionDemandTSMonthly(ID="'360725",TSID="360725. .DivTotal .MONTH~StateMod~. .\StateMod\cm2005H.ddm"")
SetDiversionDemandTSMonthly(I1D="360728",TSID="360728. .DivTotal .MONTH~StateMod~. .\StateMod\cm2005H.ddm"")
SetDiversionDemandTSMonthly(I1D=""360729",TSID=""360729. .DivTotal .MONTH~StateMod~. .\StateMod\cm2005H.ddm"")
SetDiversionDemandTSMonthly(ID=""360765",TSID=""360765. .DivTotal .MONTH~StateMod~. .\StateMod\cm2005H.ddm"")
SetDiversionDemandTSMonthly(1D=""360780",TSID=""360780. .DivTotal .MONTH~StateMod~. . \StateMod\cm2005H .ddm"'")
SetDiversionDemandTSMonthly(I1D=""360800", TSID="360800. .DivTotal .MONTH~StateMod~. .\StateMod\cm2005H.ddm"")
SetDiversionDemandTSMonthly(ID="370519",TSID="370519. .DivTotal .MONTH~StateMod~. .\StateMod\cm2005H.ddm"")
SetDiversionDemandTSMonthly(I1D=""370571",TSID=""370571. .DivTotal .MONTH~StateMod~. .\StateMod\cm2005H.ddm"")
SetDiversionDemandTSMonthly (1D=""370723",TSID="370723. .DivTotal .MONTH~StateMod~. . \StateMod\cm2005H .ddm"'")
SetDiversionDemandTSMonthly(I1D="370848",TSID="370848. .DivTotal .MONTH~StateMod~. .\StateMod\cm2005H.ddm"")
SetDiversionDemandTSMonthly(I1D="380528",TSID="380528. .DivTotal .MONTH~StateMod~. .\StateMod\cm2005H.ddm"")
SetDiversionDemandTSMonthly(I1D=""380572",TSID=""380572. .DivTotal .MONTH~StateMod~. .\StateMod\cm2005H.ddm"")
SetDiversionDemandTSMonthly (1D=""380663", TSID=""380663. .DivTotal .MONTH~StateMod~. . \StateMod\cm2005H .ddm"'")

32 - StateMod 156

StateDMI Documentation

SetDiversionDemandTSMonthly(I1D="380939",TSID="380939. .DivTotal .MONTH~StateMod~. .\StateMod\cm2005H.ddm"")
SetDiversionDemandTSMonthly(I1D=""380996",TSID=""380996. .DivTotal .MONTH~StateMod~. .\StateMod\cm2005H.ddm"")
SetDiversionDemandTSMonthly(ID="'381062",TSID="381062. .DivTotal .MONTH~StateMod~. .\StateMod\cm2005H.ddm"")
SetDiversionDemandTSMonthly(1D="381078",TSID="381078. .DivTotal .MONTH~StateMod~. .\StateMod\cm2005H.ddm"")
SetDiversionDemandTSMonthly(I1D=""950005", TSID=""950005. .DivTotal .MONTH~StateMod~. .\StateMod\cm2005H.ddm"")
SetDiversionDemandTSMonthly(I1D=""950006",TSID=""950006. .DivTotal .MONTH~StateMod~. .\StateMod\cm2005H.ddm"")
#

Set Ute WCD demand node structure and set other structures to zero
SetDiversionDemandTSMonthly(I1D="950020", TSID="950020. .DivTotal .Month~StateMod~950020.stm"™)
SetDiversionDemandTSMonthlyConstant(1D=""950030",Constant=0)
SetDiversionDemandTSMonthlyConstant(ID="721339",Constant=0)
SetDiversionDemandTSMonthlyConstant(1D="720920",Constant=0)
SetDiversionDemandTSMonthlyConstant(1D="721329",Constant=0)

#

Set Orchard Mesa Check
SetDiversionDemandTSMonthly(I1D="950003",TSID=""950003. .DivTotal .MONTH~StateMod~. .\StateMod\cm2005H.ddm"")
#

Set Excess HUP node demands for Homestake, Dillon, Williams Fork, and Wolford Reservoirs
SetDiversionDemandTSMonthlyConstant(1D=""954516D",Constant=999999)
SetDiversionDemandTSMonthlyConstant(1D=""954512D",Constant=999999)
SetDiversionDemandTSMonthlyConstant(1D=""953709D",Constant=999999)
SetDiversionDemandTSMonthlyConstant(1D=""953668D",Constant=999999)

Step 7 - write out calculated demand file

#

WriteDiversionDemandTSMonthlyToStateMod(OutputFile="__\StateMod\cm2005C.ddm")

#

Check the results

CheckDiversionDemandTSMonthly (1D=""*"")

WriteCheckFile(OutputFile="Cddm.commands.StateDMI .check.html")

The following example illustrates how to create the baseline data set diversion demand time series (from
the Colorado cm2005 data set):

StartLog(LogFile=""Bddm.commands.StateDMI . log")

Bddm.commands.StateDMI

#

StateDMI command file to create the Baseline demand file

#
#
Step 1 - set time-series period and year type

#

SetOutputPeriod(OutputStart="10/1908",0utputEnd="09/2005")
SetOutputYearType(OutputYearType=Water)

#

Step 2 - read calculated demand file

#
ReadDiversionDemandTSMonthlyFromStateMod(InputFile="__\statemod\cm2005C.ddm")
#

Step 3 - set baseline demand that vary from calculated demand
#

TRANSBASIN DIVERSIONS

H*

Con-Hoosier Transbasin Demands

SetDiversionDemandTSMonthly (I1D="'954683",TSID=""954683. .DivTotal .MONTH~StateMod~954683_baseline.stm')
Boustead Transbasin Demands
SetDiversionDemandTSMonthly(I1D="954699",TSID="954699. .DivTotal .MONTH~StateMod~954699 baseline.stm")
Moffat Transbasin Demands
SetDiversionDemandTSMonthly(ID="'514655",TSID="'514655. .DivTotal .MONTH~StateMod~514655_ baseline.stm")
Vidler Tunnel
SetDiversionDemandTSMonthly(I1D="364626",TSID="364626. .DivTotal .MONTH~StateMod~364626_baseline.stm")
Robert®s Tunnel
SetDiversionDemandTSMonthly(I1D=""364684",TSID=""364684. .DivTotal .MONTH~StateMod~364684 baseline.stm")
BOREAS PASS DITCH
SetDiversionDemandTSMonthly(I1D="364685",TSID="364685. .DivTotal .MONTH~StateMod~364685_baseline.stm")
EWING DITCH AT TENNESSEE PASS, CO.
SetDiversionDemandTSMonthly(I1D="371091",TSID="371091. .DivTotal .MONTH~StateMod~371091_baseline.stm")
HOMESTAKE PROJ TUNNEL
SetDiversionDemandTSMonthly(ID="374614" ,TSID="374614. .DivTotal _.MONTH~StateMod~374614_ baseline.stm")
COLUMBINE DITCH

157 StateMod - 33

StateDMI Documentation

SetDiversionDemandTSMonthly(ID="374641",TSID="374641. .DivTotal .MONTH~StateMod~374641_baseline.stm")
WARREN E WURTS DITCH
SetDiversionDemandTSMonthly(I1D=""374648",TSID=""374648. .DivTotal .MONTH~StateMod~374648 baseline.stm")
BUSK - 1VANHOE TUNNEL
SetDiversionDemandTSMonthly(ID="384613",TSID="384613. .DivTotal .MONTH~StateMod~384613_baseline.stm")
INDEPENDENCE PASS TM DVR TUNNEL NO 1
SetDiversionDemandTSMonthly(ID="'384617",TSID="384617. .DivTotal .MONTH~StateMod~384617_baseline.stm")
BERTHOUD CANAL TUNNEL
SetDiversionDemandTSMonthly(ID="514625",TSID="514625. .DivTotal .MONTH~StateMod~514625_baseline.stm")
ADAMS TUNNEL
SetDiversionDemandTSMonthly (ID="514634" ,TSID="514634. .DivTotal .MONTH~StateMod~514634 baseline.stm')
WILLOW CREEK FEEDER
SetDiversionDemandTSMonthly(1D="'510958",TSID="'510958. .DivTotal .MONTH~StateMod~510958 baseline.stm")
WINDY GAP PUMP
SetDiversionDemandTSMonthly(I1D=""514700",TSID="514700. .DivTotal .MONTH~StateMod~514700_baseline.stm")
WEST THREE MILE DITCH
SetDiversionDemandTSMonthly(ID="384717" ,TSID="384717. .DivTotal _.MONTH~StateMod~384717_baseline.stm")
#

MUNICIPAL AND INDUSTRIAL

#

DILLON_VALLEY_W&SD_(RANKIN_NO._1 DITCH)
SetDiversionDemandTSMonthly(I1D=""360784",TSID=""360784. .DivTotal .MONTH~StateMod~360784_baseline.stm")
TOWN_OF_DILLON_(Straight_Creek_Ditch)
SetDiversionDemandTSMonthly(I1D="360829",TSID="360829. .DivTotal .MONTH~StateMod~360829 baseline.stm")
TENMILE DIVERSION NO 1 (Climax)

SetDiversionDemandTSMonthlyConstant(1D=""360841" ,Constant=0)

Keystone Resort Snowmaking
SetDiversionDemandTSMonthly(I1D="360908",TSID="360908. .DivTotal .MONTH~StateMod~360908_baseline.stm")
TOWN_OF_BRECKENRIDGE_(Breckenridge_Pipeline)
SetDiversionDemandTSMonthly(I1D="361008",TSID=""361008. .DivTotal .MONTH~StateMod~361008_ baseline.stm")
COPPER_MOUNTAIN_SKI_AREA_SNOWMAKING
SetDiversionDemandTSMonthly(I1D="361016",TSID="361016. .DivTotal .MONTH~StateMod~361016_baseline.stm")
UPPER_EAGLE_VALLEY_WATER_AUTHORITY_(Metcalf_Ditch)
SetDiversionDemandTSMonthly(ID="370708",TSID="370708. .DivTotal .MONTH~StateMod~370708_baseline.stm")
CARBONDALE WTR SYS & PL
SetDiversionDemandTSMonthly(ID="381052",TSID="381052. .DivTotal .MONTH~StateMod~381052_baseline.stm")
Snowmass Water and Utility
SetDiversionDemandTSMonthly(1D="'381441" ,TSID=""381441. .DivTotal .MONTH~StateMod~381441_ baseline.stm")
RIFLE TOWN OF PUMP & PL
SetDiversionDemandTSMonthly(I1D="390967",TSID="390967. .DivTotal .MONTH~StateMod~390967_baseline.stm")
GRAND JCT GUNNISON P-L
SetDiversionDemandTSMonthly(1D="'420520",TSID=""420520. .DivTotal .MONTH~StateMod~420520_baseline.stm")
REDLANDS POWER CANAL
SetDiversionDemandTSMonthly(1D="420541",TSID="420541. .DivTotal .MONTH~StateMod~420541_baseline.stm")
HENDERSON MINE WTR SYS
SetDiversionDemandTSMonthly(I1D=""511070",TSID="511070. .DivTotal .MONTH~StateMod~511070_baseline.stm")
SHOSHONE POWER PLANT
SetDiversionDemandTSMonthly(I1D="530584",TSID="530584. .DivTotal .MONTH~StateMod~530584_baseline.stm")
GLENWOOD L WATER CO SYS
SetDiversionDemandTSMonthly(I1D=""530585", TSID="530585. .DivTotal .MONTH~StateMod~530585_ baseline.stm")
TOWN_OF_CLIFTON_(Grand_Jdunction_Colorado_River_PL)
SetDiversionDemandTSMonthly(ID="720644" ,TSID="720644. .DivTotal .MONTH~StateMod~720644_baseline.stm")
MOLINA POWER PLANT
SetDiversionDemandTSMonthly(I1D=""720807",TSID="720807. .DivTotal .MONTH~StateMod~720807_baseline.stm")
PALISADE_TOWN_PIPELINE_(720816)_(TREATED_PLANT_FLOW)
SetDiversionDemandTSMonthly(ID="720816",TSID="720816. .DivTotal .MONTH~StateMod~720816_baseline.stm")
Ute Water Treatment
SetDiversionDemandTSMonthly(1D="'950020", TSID=""950020. .DivTotal .MONTH~StateMod~950020_baseline.stm")
CITY_OF_GRAND_JUNCTION
SetDiversionDemandTSMonthly(I1D=""950051",TSID=""950051. .DivTotal .MONTH~StateMod~950051_baseline.stm")
VAIL VALLEY CONSOLIDATED WATER DISTRICT - irr. season
SetDiversionDemandTSMonthly(1D=""955001", TSID=""955001. .DivTotal .MONTH~StateMod~955001_baseline.stm")
TOTAL FOR ALL SNAKE RIVER WATER DISTRICT WELLS (KEYSTONE_MUNICIPAL)
SetDiversionDemandTSMonthly(I1D="955002",TSID="955002. .DivTotal .MONTH~StateMod~955002_baseline.stm")
VAIL VALLEY CONSOLIDATED WATER DISTRICT - nonirr. season
SetDiversionDemandTSMonthly(1D=""955003", TSID=""955003. .DivTotal .MONTH~StateMod~955003_baseline.stm")
#

RESERVOIR STRUCTURES

#

GRN MTN HYDRO-ELECTRIC
SetDiversionDemandTSMonthly(I1D=""360881",TSID="360881. .DivTotal .MONTH~StateMod~360881_baseline.stm')

34 - StateMod 158

StateDMI Documentation

WILLIAMS FORK POWER COND
SetDiversionDemandTSMonthly(I1D=""511237",TSID="511237. .DivTotal .MONTH~StateMod~511237_baseline.stm")
Green Mountain Contract water
SetDiversionDemandTSMonthly(I1D="950060",TSID="950060. .DivTotal .MONTH~StateMod~950060_baseline.stm")
FRASER BASIN demands out of Wolford Mountain Reservoir
SetDiversionDemandTSMonthly(I1D=""953101",TSID=""953101. .DivTotal .MONTH~StateMod~953101_baseline.stm")
MIDDLE PARK demands out of Wolford Mountain Reservoir
SetDiversionDemandTSMonthly(ID="953102",TSID="953102. .DivTotal .MONTH~StateMod~953102_baseline.stm")
Green Mtn Annual Rep Est
SetDiversionDemandTSMonthly(ID="'950061",TSID=""950061. .DivTotal .MONTH~StateMod~950061_baseline.stm")
Ruedi Rnd 1-Muni Demand
SetDiversionDemandTSMonthly(I1D="953001",TSID="953001. .DivTotal .MONTH~StateMod~953001_baseline.stm")
Ruedi Rnd 1-Ind Demand
SetDiversionDemandTSMonthly(1D=""953002",TSID=""953002. .DivTotal .MONTH~StateMod~953002_baseline.stm")
Ruedi Rnd 2-Muni Demand
SetDiversionDemandTSMonthly(I1D="953003",TSID="953003. .DivTotal .MONTH~StateMod~953003_baseline.stm")
Ruedi Rnd 2-Ind Demand
SetDiversionDemandTSMonthly(1D=""953004",TSID=""953004. .DivTotal .MONTH~StateMod~953004_baseline.stm")
#

CAMEO DEMAND / GRAND VALLEY AREA

#

GRAND VALLEY PROJECT IRRIGATION (Ffill in years from 1909 to 1916)
SetDiversionDemandTSMonthly(ID="'950001", TSID=""950001. .DivTotal .MONTH~StateMod~. .\StateMod\cm2005C-
AcreageChange .ddm™)

Orchard Mesa Irrigation District (OMID power) demand
SetDiversionDemandTSMonthlyConstant(1D=""950002",Constant=0)

ORCHARD_MESA_CHECK
SetDiversionDemandTSMonthly(I1D="950003",TSID="950003. .DivTotal .MONTH~StateMod~950003_baseline.stm")
Orchard Mesa Irrigation District (OMID pump) demand
SetDiversionDemandTSMonthly(1D=""950004", TSID=""950004. .DivTotal .MONTH~StateMod~950004_ baseline.stm")
OMID Bypass (950005) time series for baseline data set
SetDiversionDemandTSMonthlyConstant(1D=""950005",Constant=0)

OMID Bypass (950006) time series for baseline data set
SetDiversionDemandTSMonthly(ID="'950006", TSID=""950006. .DivTotal .MONTH~StateMod~950006_baseline.stm")
USA PP-Winter-OM Stip
SetDiversionDemandTSMonthly(I1D="950007",TSID="950007 . .DivTotal .MONTH~StateMod~950007_baseline.stm")
USA PP-Summer-OM Stip
SetDiversionDemandTSMonthly(1D="'950008", TSID=""950008. .DivTotal .MONTH~StateMod~950008 baseline.stm")
#

FISH DEMAND (in Baseline it is located at instream flow node 952002)

#

15 Mile Reach area for endangered fish
SetDiversionDemandTSMonthlyConstant(1D="'952001",Constant=0)

#

Step 4 - set calculated demand to current demand for structures whose historical acreage is

different from current

#
SetDiversionDemandTSMonthly(I1D="360687",TSID=""360687. .DivTotal .MONTH~StateMod~. . \StateMod\cm2005C-
AcreageChange .ddm™)
SetDiversionDemandTSMonthly(I1D=""360725",TSID=""360725. .DivTotal .MONTH~StateMod~. . \StateMod\cm2005C-
AcreageChange .ddm'™)
SetDiversionDemandTSMonthly(I1D="360728",TSID=""360728. .DivTotal .MONTH~StateMod~. . \StateMod\cm2005C-
AcreageChange .ddm™)
SetDiversionDemandTSMonthly(I1D=""360729",TSID=""360729. .DivTotal .MONTH~StateMod~. .\StateMod\cm2005C-
AcreageChange .ddm'™)
SetDiversionDemandTSMonthly(ID="360765",TSID=""360765. .DivTotal .MONTH~StateMod~. . \StateMod\cm2005C-
AcreageChange .ddm™)
SetDiversionDemandTSMonthly(I1D=""360780",TSID=""360780. .DivTotal .MONTH~StateMod~. .\StateMod\cm2005C-
AcreageChange .ddm'™)
SetDiversionDemandTSMonthly(I1D="360800",TSID=""360800. .DivTotal .MONTH~StateMod~. . \StateMod\cm2005C-
AcreageChange .ddm™)
SetDiversionDemandTSMonthly(ID="370519",TSID=""370519. .DivTotal .MONTH~StateMod~. . \StateMod\cm2005C-
AcreageChange .ddm™™)
SetDiversionDemandTSMonthly(ID="'370571",TSID=""370571. .DivTotal .MONTH~StateMod~. .\StateMod\cm2005C-
AcreageChange .ddm™)
SetDiversionDemandTSMonthly(ID="370723",TSID=""370723. .DivTotal .MONTH~StateMod~. . \StateMod\cm2005C-
AcreageChange .ddm™™)
SetDiversionDemandTSMonthly(ID="'370848",TSID="370848. .DivTotal .MONTH~StateMod~. .\StateMod\cm2005C-
AcreageChange .ddm™)
SetDiversionDemandTSMonthly(I1D="380528",TSI1D="380528. .DivTotal .MONTH~StateMod~. . \StateMod\cm2005C-
AcreageChange .ddm'™)

159 StateMod - 35

StateDMI Documentation

SetDiversionDemandTSMonthly(ID="380572",TSID=""380572. .DivTotal .MONTH~StateMod~. . \StateMod\cm2005C-
AcreageChange.ddm™)

SetDiversionDemandTSMonthly (ID="'380663",TSID="380663. .DivTotal .MONTH~StateMod~. .\StateMod\cm2005C-
AcreageChange .ddm™)
SetDiversionDemandTSMonthly(I1D="380939",TSID=""380939. .DivTotal .MONTH~StateMod~. . \StateMod\cm2005C-
AcreageChange.ddm™)
SetDiversionDemandTSMonthly (ID="'380996" , TSID=""380996. .DivTotal .MONTH~StateMod~. .\StateMod\cm2005C-
AcreageChange .ddm™)
SetDiversionDemandTSMonthly(I1D="381062",TSID=""381062. .DivTotal .MONTH~StateMod~. . \StateMod\cm2005C-
AcreageChange.ddm™)
SetDiversionDemandTSMonthly(I1D="'381078",TSID="381078. .DivTotal .MONTH~StateMod~. .\StateMod\cm2005C-
AcreageChange .ddm™)

#

Step 5 - create baseline demand file

#

WriteDiversionDemandTSMonthlyToStateMod(OutputFile="__\statemod\cm2005B.ddm")

#

Check the results

CheckDiversionDemandTSMonthly (1D="*"")
WriteCheckFile(OutputFile="Bddm.commands.StateDMI .check.html')

5.4.6 Diversion Demand Time Series Override (Monthly)

Demand override time series, if specified, will be used instead of the time series in the primary demand
file. StateDMI does not process demand time series override (monthly). If needed, TSTool, a
spreadsheet, or other software can be used to create the data.

5.4.7 Diversion Demand Time Series (Average Monthly)

StateDMI does not process demand time series (average monthly). If needed, TSTool, a spreadsheet, or
other software can be used to create the data.

5.4.8 Diversion Demand Time Series (Daily)

StateDMI does not process daily diversion demand time series. TSTool, a spreadsheet, or other software
can be used to create the data. More commonly, the monthly historical data can be distributed to daily
time series internally be StateMod by specifying the appropriate daily station identifier.

5.4.9 Irrigation Practice Time Series (Yearly)

The irrigation practice time series (yearly) file is created by the StateCU commands in StateDMI, for use
with a StateCU data set. The StateMod data set can reference the StateCU file or a copy of the file. This
file provides maximum efficiency, ground water acres, sprinkler acres, by year, to be used with variable
efficiency calculations. The consumptive water requirement file from the StateCU model (see next
section) is also used as input.

An example of variable efficiency is as follows: if the diversion is 100 and the CWR (IWR) is 25, the
efficiency is 25%; if the diversion is 25 and the CWR (IWR) is 20, the efficiency is 80%. If variable
efficiency is used and the irrigation practice time series file is provided, the efficiencies in the diversion
station file are ignored. If variable efficiency is used by the irrigation practice time series is not used, the
average efficiency in the structure station file is used.

5.4.10 Consumptive Water Requirement (Monthly, Daily)

StateDMI does not process consumptive water requirement time series. The consumptive water
requirement file is typically the same as the StateMod format IWR (irrigation water requirement) time

36 - StateMod 160

StateDMI Documentation

series file from StateCU output, for agricultural structures, but can contain consumptive water
requirement time series for municipal and industrial locations. Therefore, unlike the demand time series,
these data represent on-site requirements and do not reflect a delivery loss (as do diversion headgate
demands). See the StateMod documentation for more information about specifying the demand type.

5.4.11 Soil Moisture

The soil moisture file allows both StateCU and StateMod to consider soil moisture for supply. StateDMI
does not process the soil moisture file. Previously this file was the same as the StateCU parameter (*.par)
file, which supplied available water content to start each year; however, this file is not used in the new
version of StateCU.

5.5 Precipitation Data
Precipitation data consist of:
e Precipitation Time Series (Monthly)

Precipitation data are used to estimate net evaporation from reservoirs. Reservoir stations can reference
both precipitation and evaporation data, or may include only net evaporation data (evaporation -
precipitation). StateMod data sets do not include a file for precipitation stations. Therefore, the
precipitation time series referenced in reservoir stations (if net evaporation is not used) must use the same
identifiers found in the precipitation time series file.

5.5.1 Precipitation Time Series (Monthly)

StateDMI does not process precipitation time series. Instead, use TSTool, a spreadsheet or other software
to prepare the time series file. See Chapter 4 — Creating StateCU Data Set Files for an example TSTool
commands file for monthly precipitation data. Often, precipitation time series are not provided and
instead net evaporation time series (evaporation minus precipitation) are provided (see Section 5.6
Evaporation Data). The StateMod control file indicates whether the precipitation time series contain
monthly or average monthly values. Precipitation time series identifiers typically match the precipitation
station identifiers from HydroBase or other data source.

5.6 Evaporation Data
Evaporation data consist of:

e Evaporation Time Series (Monthly)
Evaporation data are used to estimate net evaporation from reservoirs. Reservoir stations can reference
both precipitation and evaporation data (in which case the net evaporation is computed by StateMod), or
may include only net evaporation data (evaporation - precipitation) in the evaporation time series.
StateMod data sets do not include a file for evaporation stations. Therefore, the evaporation time series
referenced in reservoir stations must use the same identifiers found in the evaporation time series file.
5.6.1 Evaporation Time Series (Monthly)
StateDMI does not process evaporation time series. Instead, use TSTool, a spreadsheet or other software

to prepare the time series file. The StateMod control file indicates whether the precipitation time series
contain monthly or average monthly values. For example, use TSTool to review the average monthly

161 StateMod - 37

StateDMI Documentation

values for key evaporation and precipitation stations and manually create an average monthly net
evaporation time series file. Evaporation time series identifiers typically match the evaporation station
identifiers from HydroBase or other data source.

5.7 Reservoir Data
Reservoir data consists of:

Reservoir stations

Reservoir rights

Historical content time series (monthly, daily)
Target time series (monthly, daily)

Each of the above data types is stored in a separate file, using the diversion station identifier as the
primary identifier.

The processing of each data file is discussed below.
5.7.1 Reservoir Stations
Each reservoir station used with StateMod can be one of two types:

1. Explicit reservoir, where no aggregation occurs — this type is used for key structures that need to
be explicitly modeled. The reservoir station identifier is usually a 7-character water district
identifier (6-character for old data sets) or fabricated identifier that starts with the water district
number.

2. Reservoir aggregate, in which reservoir characteristics (maximum volume) are summed and water
rights are aggregated into classes. Currently, aggregation of the water rights occurs when the
ReadReser voi r Ri ght sFronmHydr oBase() command is executed. The naming
convention for modeling in CDSS is to use an identifier similar to 20_ ARCNNN, where the
leading 20 indicates the water district, ARC indicates aggregate reservoir, and NNN is a number to
allow multiple reservoir aggregates in a water district. This convention allows summary of
storage for basins. Aggregates should be defined using the Set Reser voi r Aggr egat e* ()
commands and need to be defined when processing all reservoir station files (if aggregates are
used).

Currently, StateDMI does not support Reservoir Systems (which would be similar to Diversion Systems),
in which reservoir physical characteristics are combined but all water rights are explicitly represented.

The determination of the reservoir station type for each reservoir station is usually made by reviewing
available data (e.g., water rights), and discussing administrative data with knowledgeable persons (e.g.,
water commissioners). Typically, key reservoirs have large capacities, and/or have important water rights
and administrative roles. Minor reservoirs, or groups of reservoirs for which independent data are
difficult to determine, may be lumped together in an aggregate or system. Grouping reservoirs into
aggregates reduces the overall number of model nodes, size of output, and model run time.

38 - StateMod 162

StateDMI Documentation

The Commands...Reservoir Data...Reservoir Stations menus insert commands to process reservoir

station data:

Reseryoir Stations - Commmands

ReadReservoirStationsFromListy) ...

ReadReservoirStationsFromMetwark ...

ReadReservairStationsFramstakeMad) ...

SetReservoirfagregate) ...

SetReservoirfagregateFrombist . ..

SetReservoirstations) ..,

SortReservoirstations() ..

FillreservoirstationsFromHydroBasel) ...

FilReservaoirstationsFromietwark(y ..

FilleservoirStation() ...

WriteR eseryvoirstations ToLisk() ...
WriteReservairstationsToSkakeMod(y ...

CheckReservoirstations(y ...

riteCheckFilel) |

MenuCommands_ReservoirStations

Commands...Reservoir Data...Reservoir Stations Menu

The following table summarizes the use of each command:

Reservoir Stations Commands

Command

Description

ReadReservoi r St ati onsFronli st ()

Read from a delimited list file the list of

reservoir stations to be included in the data set.

ReadReser voi r St at i onsFr omNet wor k()

Read from a StateMod network file a list of

reservoir stations to be included in the data set.

ReadReser voi r St at i onsFr ontt at eMod()

Read from a StateMod reservoir stations file
the list of reservoir stations to be included in
the data set.

Set Reser voi r Aggr egat e()

Specify that a reservoir is an aggregate and
define its parts.

Set Reser voi r Aggr egat eFr onLi st ()

Specify that one or more reservoirs are
aggregates and define their parts, using a
delimited list file.

Set ReservoirStation()

Set the data for, and optionally add, reservoir
stations.

Sort ReservoirStations()

Sort the reservoir stations. This is useful to
force consistency between files.

Fil | Reservoir StationsFrontHydr oBase()

Fill missing data for defined reservoir stations,
using data from HydroBase. For example,
retrieve the station names, and maximum

163

StateMod -

39

StateDMI Documentation

Command

Description

volumes.

Fil | ReservoirStationsFronNet wor k()

Fill missing data for defined reservoir stations,
using data from the network. For example,
retrieve the station names.

Fill ReservoirStation()

Fill missing data for defined reservoir stations,
user user-supplied values.

WiteReservoirStationsToLi st ()

Write defined reservoir stations to a delimited
file.

WiteReservoirStati onsToSt at eMbd()

Write defined reservoir stations to a StateMod
file.

CheckReservoirStations()

Check reservoir stations data for problems.

Wit eCheckFil e()

Write the results of data checks to a file.

An example command file to create the reservoir station file is shown below (from Colorado cm2005 data
set):

StartLog(LogFile="res.commands.StateDMI.log™")
res.commands.StateDMI

Creates the reservoir station file for the Upper Colorado River monthly models
Initial reservoir contents are set to 9/1908 estimated contents

Phase 111b modifications
to reflect reservoir storage as of October 1908 - zero out account owners®™ current
storage capacity if the reservoir came on-line during the study period.
No changes made to reservoirs that were on-line in 10/1908 (including aggregate storage).

Turned on Wolford Mountain and added Wolford Mountain accounts and storage rights per CWCB

Eliminated Unallocated Pool from Vega Reservoir; it was getting filled but not booked over
to the Power Exchange pool, and could not get released for use

commands used in this file establish reservoir capacity, fill date,
reservoir account ownership, area-capacity tables and representative
evaporation stations (see StateMod documentation)

Step 1 - read reservoirs from network file and sort alphabetically

HHEHHFHFHFHHHF R

ReadReservoirStationsFromNetwork(InputFile=""__\network\cm2005.net")
SortReservoirStations(Order=Ascending)

H*

Step 2 - read reservoir information from HydroBase

Step 3 - set reservoir information not available in HydroBase including min/max
content, starting content, and account information

B W H R

GREEN MOUNTAIN RESERVIOR Characteristics
SetReservoirStation(1D="363543",0n0ff=3,0neFillRule=4,DailyID="5",ContentMin=0,ContentMax=154645,
ReleaseMax=4010,DeadStorage=0,AccountliD=1,
AccountName="Hist_Users",AccountMax=66000,Accountlinitial=0,AccountEvap=0,AccountOneFill=1,
EvapStations="10008,100", I fNotFound=Warn)
SetReservoirStation(1D="363543",AccountlD=2,AccountName=""CBT_Pool",AccountMax=52000,
AccountInitial=0,AccountEvap=0,AccountOneFill=1, IfNotFound=Warn)
SetReservoirStation(1D=""363543",AccountlD=3,AccountName=""Contract",AccountMax=20000,
AccountlInitial=0,AccountEvap=0,AccountOneFill=1, IfNotFound=Warn)
SetReservoirStation(1D="363543",AccountlD=4,AccountName="Silt_Proj",AccountMax=5000,
AccountInitial=0,AccountEvap=0,AccountOneFill=1, IfNotFound=Warn)
SetReservoirStation(1D="363543",AccountlD=5,AccountName=""Inactive",AccountMax=11645,
AccountlInitial=0,AccountEvap=0,AccountOneFill=1, IfNotFound=Warn)
SetReservoirStation(1D="363543",AccountlD=6,AccountName=""SurplusFish",AccountMax=66000,
AccountInitial=0,AccountEvap=0, I fNotFound=Warn)

40 - StateMod 164

StateDMI Documentation

. similar commands for other reservoirs omitted...

#

District 50 Aggregated Reservoirs

SetReservoirStation(I1D="50_ARC006" ,Name="50_ARC006",0nO0ff=1,0neFillRule=-1,
DailyID="5",ContentMin=0,ContentMax=11481,ReleaseMax=999999, DeadStorage=0,
AccountlID=1,AccountName="50_ARCO006",AccountMax=11481,Accountinitial=11481,
AccountEvap=0,AccountOneFill=1,EvapStations="10008,100",
ContentAreaSeepage="0,0,0;11481,1148.1,0;9999999,1148.1,0", I fNotFound=Warn)

...similar commands for other reservoirs omitted...

#

WriteReservoirStationsToStateMod(OutputFile=""__\statemod\cm2005.res")

#

Check the results

CheckReservoirStations(ID="*"")

WriteCheckFile(OutputFile="res.commands.StateDMI.check.html')

5.7.2 Reservoir Rights

Reservoir rights correspond to the reservoir stations, using the reservoir station identifier to relate the
data. Reservoir right identifiers are typically the reservoir station identifier followed by . NN, where NN is
a sequential number starting with 01. Reservoir aggregate stations have rights corresponding to water
right classes.

The Commands...Reservoir Data...Reservoir Rights menu items insert commands to process reservoir
rights data:

Reservoir Rights - Commands

ReadreseryvoirstationsFromLisk() ...
R eadReservoirStationsFramsStateMad() ...

SetReservoiraggregated) ...
SetReservoirdggregakeFromList() ..,

ReadReservoirRightsFromHwdroBasel) . ..
R eadreservoirRightsFromstateMad() ...

SetReservoirRight ...
SortReservoirRights .
FillReservairRight) ...

wWriteReservoirRightsToLisk() ...
WriteReservoirRights ToStakeMaod() | ..

CheckReservoirRights() ...
WriteCheckFilel) ...

MenuCommands_ReservoirRights

Commands...Reservoir Data...Reservoir Rights Menu

165 StateMod - 41

StateDMI Documentation

The following table summarizes the use of each command:

Reservoir Rights Commands

Command Description

ReadReser voi r St ati onsFrontLi st () Read from a delimited file the list of reservoir
stations to be included in the data set — the list
indicates the stations for which to process rights.
ReadReser voi r St ati onsFrontt at eMdd() | Read from a StateMod reservoir stations file the
list of reservoir stations to be included in the data
set — the list indicates the stations for which to
process rights.

Set Reser voi r Aggr egat e() Specify that a reservoir is an aggregate and define
its parts.
Set Reser voi r Aggr egat eFr onti st () Specify that one or more reservoirs are aggregates

- and define their parts, using a delimited list file.
ReadReser voi r Ri ght sFronHydr oBase() For each reservoir station, read the corresponding
reservoir rights from HydroBase.

ReadReser voi r Ri ght sFrontt at eMbd() Read reservoir rights from a StateMod reservoir
rights file.

Set Reservoi r Ri ght () Set the data for, and optionally add, reservoir
rights.

Sort Reser voi r R ghts() Sort the reservoir rights. This is useful to force
consistency between files.

FillReservoirRight() Fill missing data for defined reservoir rights,
using user-supplied values.

Wi teReservoirRi ghtsToLi st () Write defined reservoir rights to a delimited file.

Wi teReservoirRi ghtsToSt at eMbd() Write defined reservoir rights to a StateMod file.

CheckReser voi r Ri ght s() Check reservoir rights data for problems.

Wit eCheckFi |l e() Write the results of data checks to a file.

The following example command file (from the Colorado cm2005 data set) illustrates how to create the
reservoir rights file:

StartLog(LogFile="rer.commands.StateDMI .log")
rer.commands.StateDMI

z Creates the reservoir rights file for the Upper Colorado River model
z Step 1 - read reservoirs from reservoir station file
geadReservoirStationsFromStateMod(lnputFiIe="..\StateMod\cmZOOS.res")
Z Step 2 - read reservoir rights from HyroBase
geadReservoirRightsFromHydroBase(lD:"*",OnOffDefauIt:l)

z Step 3 - assign rights to specific accounts, if required

assign rights not in hydrobase and free-river rights

SetReservoirRight(1D="363543.01" ,Name=""GREEN_MOUNTAIN_RESERVOIR",StationID=""1D",
AdministrationNumber=31258.00000,Decree=154645,0n0ff=1943,AccountDist=""-5",
RightType=1,FillType=1, IfNotFound=Warn, I fFound=Set)

Set Green Mountain®"s senior refill right to be junior to the Con-Hoosier and

Dillon/Roberts Tunnel projects and the Blue River Decree Exchange

this is based on agreements with the USBR and Denver.

SetReservoirRight(1D="363543.02" ,Name=""GREEN_MOUNTAIN_RESERVOIR",StationID=""1D",
AdministrationNumber=38628.00001,Decree=6316,0n0ff=1943, AccountDist=""-5",

42 - StateMod 166

StateDMI Documentation

RightType=1,FillType=2, IfNotFound=Warn, I fFound=Set)

SetReservoirRight(1D="363543.03",Name=""GREEN_MOUNTAIN-refill",StationID="I1D",
AdministrationNumber=50403.49309,Decree=154645,0n0ff=1943,AccountDist=""-

5",FillType=2, IfNotFound=Add, I fFound=Set)

363543.04 right is used by Type 41 Rule in accordance with the Blue River Decree and the

Interim Policy

SetReservoirRight(1D="363543.04" ,Name="GREEN_MOUNTAIN_RES_Exch",StationID="1D",
AdministrationNumber=38628.00000,Decree=154645,0n0ff=1,AccountDist=""-

5", FillType=2, IfNotFound=Add, I fFound=Warn)

Con-Hoosier Res (aka Upper Blue Lakes) set 0.00001 junior to Con-Hoosier tunnel diversion

SetReservoirRight(1D="363570.01",Name=""CON_HOOSIER_RES-orig",StationlD="1D",
AdministrationNumber=35927.00001,Decree=10000,0n0ff=1,AccountDist=""1",

FillType=1, IfNotFound=Warn, I fFound=Set)

SetReservoirRight(1D="363570.02" ,Name=""CON_HOOSIER_RES-free",StationID="1D",
AdministrationNumber=99999.99999,Decree=10000,0n0ff=1,
AccountDist=""1",RightType=1,FillType=2, IfNotFound=Add, I fFound=Warn)

SetReservoirRight(1D=""363575.01" ,Name="Clinton Gulch Original Modified", Decree=600,
AccountDist="-9",FillType=1, IfNotFound=Warn, I fFound=Set)

SetReservoirRight(1D="363575.02" ,Name="CLINTON_GULCH-refill",StationlD="1D",0n0ff=1,
AccountDist="-9" ,RightType=1,FillType=2, IfNotFound=Warn, I fFound=Set)

SetReservoirRight(1D=""363575.03" ,Name="Clinton Gulch Modified Sr to Dillon",StationID="ID",
AdministrationNumber=31257.99999,Decree=3650,0n0ff=1,
AccountDist="-9",RightType=1,FillType=1, IfNotFound=Add, I fFound=Warn)

Denver®s Dillon Reservoir set junior to Colorado Springs® Conntinental Hoosier Project

SetReservoirRight(1D="364512.01" ,Name=""DILLON_RESERVOIR-modify",StationID=""1D",
AdministrationNumber=35927.00005,Decree=252678,0n0ff=1,AccountDist="-3" ,RightType=1,
FillType=1, IfNotFound=Warn, I fFound=Set)

SetReservoirRight(1D="364512.02" ,Name="DILLON_RESERVOIR-refill", StationID=""1D",
AdministrationNumber=50038.49309,Decree=252678,0n0ff=1,AccountDist=""-3" ,RightType=1,
FillType=1, IfNotFound=Warn, IfFound=Set)

SetReservoirRight(1D=""373639.01" ,Name="Wolcott_Reservoir"',StationID="1D",
AdministrationNumber=42485_.00000,Decree=65975,0n0ff=1,AccountDist=""-1" ,RightType=1,
FillType=1, IfNotFound=Add, I fFound=Warn)

SetReservoirRight(1D=""373699.01",AccountDist="-4",FillType=1, IfNotFound=Warn, I fFound=Set)

SetReservoirRight(1D=""374516.01",AccountDist="-2",FillType=1, IfNotFound=Warn, I fFound=Set)

SetReservoirRight(I1D="374516.02" ,Name=""HOMESTAKE_RES-refill',StationID="1ID",
AdministrationNumber=99999.99999, Decree=43505,0n0ff=1,AccountDist="-2" ,RightType=1,
FillType=2, IfNotFound=Add, I fFound=Warn)

SetReservoirRight(1D=""383713.01" ,Name="RUEDI_RESERVOIR" ,StationID="ID",0n0ff=1,
AccountDist="-6",RightType=1,FillType=1, IfNotFound=Warn, I fFound=Set)

SetReservoirRight(1D="383713.02" ,Name=""RUEDI_RESERVOIR-refill", StationID="I1D",
Decree=101280,0n0ff=1,AccountDist="-3",RightType=1,FillType=2, IfNotFound=Warn, I fFound=Set)

SetReservoirRight(1D=""393505.01",AccountDist="1",FillIType=1, IfNotFound=Warn, I fFound=Set)

SetReservoirRight(1D=""393505.02" ,AccountDist="1" ,FilIType=1, I fNotFound=Warn, I fFound=Set)

SetReservoirRight(1D="393505.03" ,Name=""GRASS_VALLEY_RES-refill", StationID=""1D",
AdministrationNumber=99999.99999,Decree=5920,0n0ff=1,
AccountDist=""1",RightType=1,FillType=2, IfNotFound=Add, I fFound=Warn)

SetReservoirRight(1D=""393508.01",AccountDist="-2",FillType=1, IfNotFound=Warn, I fFound=Set)

SetReservoirRight(1D=""393508.02" ,Name="RIFLE_GAP_RES-refill",StationID="1D",
AdministrationNumber=99999.99999,Decree=13601,0n0ff=1,AccountDist="-2" ,RightType=1,
FillType=2, IfNotFound=Add, I fFound=Warn)

SetReservoirRight(1D="503668.01",Name="WOLFORD_MOUNTAIN_RES",StationID="ID",0n0ff=1,
AccountDist="-2",RightType=1,FillType=1, IfNotFound=Warn, I fFound=Set)

SetReservoirRight(1D="503668.02" ,Name=""WOLFORD_MOUNTAIN_RES",StationlID="ID",0n0ff=1,
AccountDist="3",RightType=1,FillType=1, IfNotFound=Warn, I fFound=Set)

SetReservoirRight(1D="503668.03" ,Name="WOLFORD_MOUNTAIN-refill", StationID=""1D",
AdministrationNumber=99999.99999, Decree=30000,0n0ff=1,AccountDist="-2" ,RightType=1,
FillType=2, IfNotFound=Add, I fFound=Warn)

SetReservoirRight(1D=""513686.01",AccountDist="-3",FillType=1, IfNotFound=Warn, I fFound=Set)

SetReservoirRight(1D="513686.02" ,Name=""MEADOW_CREEK_RES-refill",StationID=""1D",
AdministrationNumber=99999.99999,Decree=5100,0n0ff=1,AccountDist="-3",RightType=1,
FillType=2, IfNotFound=Add, I fFound=Warn)

SetReservoirRight(1D="513695.01",AccountDist="-2",FillType=1, IfNotFound=Warn, I fFound=Set)

SetReservoirRight(1D="513695.02" ,Name=""SHADOW_MTN_RES-refill", StationlD="1D",
AdministrationNumber=99999.99999,Decree=19669,0n0ff=1,AccountDist=""-2" ,RightType=1,
FillType=2, IfNotFound=Add, I fFound=Warn)

SetReservoirRight(1D=""513709.01",AccountDist="-2",FillType=1, IfNotFound=Warn, I fFound=Set)

SetReservoirRight(1D=""513709.02" ,AccountDist="-1",FillType=2, IfNotFound=Warn, I fFound=Set)

SetReservoirRight(1D=""513710.01",AccountDist="-2",FillType=1, IfNotFound=Warn, I fFound=Set)

SetReservoirRight(1D="513710.02" ,Name="WILLOW_CREEK_RES-refill", StationlD="1D",
AdministrationNumber=99999.99999,Decree=10553,0n0ff=1,

167 StateMod - 43

StateDMI Documentation

AccountDist="-2",RightType=1,FillType=2, IfNotFound=Add, I fFound=Warn)

SetReservoirRight(1D=""514620.01",Name="GRANBY_RESERVOIR",StationID="I1D",
AdministrationNumber=31258.00000,Decree=543758,0n0ff=1,AccountDist=""-2" ,RightType=1,
FillType=1, IfNotFound=Add, I fFound=Warn)

SetReservoirRight(1D=""514620.02" ,Name=""GRANBY_RESERVOIR-refil I, StationID="I1D",
AdministrationNumber=99999.99999,Decree=543758,0n0ff=1,AccountDist="-2" ,RightType=1,
FillType=2, IfNotFound=Add, I fFound=Warn)

SetReservoirRight(1D="723844.01",AccountDist="-3",FillType=1, IfNotFound=Warn, I fFound=Set)

SetReservoirRight(1D=""723844.02" ,Name=""VEGA_RESERVOIR_refill",StationlD="I1D",
AdministrationNumber=99999.99999,Decree=33500,0n0ff=1,AccountDist="-2" ,RightType=1,
FillType=2, IfNotFound=Add, I fFound=Warn)

#
set rights for reservoirs and stock pond to capacity with senior water right
#
S

etReservoirRight(1D="36_ARC001.01",Name="36_ARC001",StationlD=""1D",
AdministrationNumber=1.00000,Decree=8702,0n0ff=1,Fil1Type=1, IfNotFound=Add, I fFound=Warn)
SetReservoirRight(ID="37_ARC002.01",Name="37_ARC002",StationID="1D",
AdministrationNumber=1.00000,Decree=6671,0n0ff=1,FillType=1, IfNotFound=Add, I fFound=Warn)
SetReservoirRight(1D="38_ARC003.01",Name="38_ARC003",StationlD=""1D",
AdministrationNumber=1.00000,Decree=13074,0n0ff=1,FillType=1, I fNotFound=Add, I fFound=Warn)
SetReservoirRight(ID="39_ARC004.01",Name="39_ARC004",StationID="1D",
AdministrationNumber=1.00000,Decree=2236,0n0ff=1,FillType=1, IfNotFound=Add, I fFound=Warn)
SetReservoirRight(1D="45_ARC005.01",Name="45_ARC005",StationID="1D",
AdministrationNumber=1.00000,Decree=2054,0n0ff=1,FillType=1, IfNotFound=Add, I fFound=Warn)
SetReservoirRight(1D=""50_ARC006.01" ,Name="50_ARCO006",StationID="1D",
AdministrationNumber=1.00000,Decree=11481,0n0ff=1,FillType=1, IfNotFound=Add, | fFound=Warn)
SetReservoirRight(1D="51_ARC007.01",Name="51_ARC0O07",StationlD="1D",
AdministrationNumber=1.00000,Decree=8480,0n0ff=1,FillType=1, IfNotFound=Add, I fFound=Warn)
SetReservoirRight(1D=""52_ARC008.01" ,Name="52_ARCO008",StationID="1D",
AdministrationNumber=1.00000,Decree=821,0n0ff=1,FillType=1, IfNotFound=Add, I fFound=Warn)
SetReservoirRight(1D="53_ARC009.01",Name="53_ARC009",StationlD="1D",
AdministrationNumber=1.00000,Decree=8389,0n0ff=1,FillType=1, IfNotFound=Add, I fFound=Warn)
SetReservoirRight(1D="72_ARC010.01" ,Name="72_ARC010",StationID="1D",
AdministrationNumber=1.00000,Decree=25664,0n0ff=1,FillType=1, IfNotFound=Add, I fFound=Warn)
SetReservoirRight(ID=""72_ASC001.01",Name="72_ASC001",StationID="1D",
AdministrationNumber=1.00000,Decree=2261,0n0ff=1,FillType=1, IfNotFound=Add, I fFound=Warn)
SetReservoirRight(1D="953802.01" ,Name=""LEON_CREEK_AGGREG_RES",StationID="1D",
AdministrationNumber=1.00000,Decree=4933,0n0ff=1,AccountDist=""1",RightType=1,
FillType=1, IfNotFound=Add, I fFound=Warn)
SetReservoirRight(1D="953800.01",Name=""BONHAM_AGGREGATED_RES",StationID="I1D",
AdministrationNumber=1.00000,Decree=6778,0n0ff=1,AccountDist=""1" ,RightType=1,
FillType=1, IfNotFound=Add, I fFound=Warn)
SetReservoirRight(1D="953801.01",Name="COTTONWOOD_AGGREG_RES",StationlD="1D",
AdministrationNumber=1.00000,Decree=3812,0n0ff=1,AccountDist=""1" ,RightType=1,
FillType=1, IfNotFound=Add, I fFound=Warn)

#

Step 4 - create output for Historic and Calculated datasets

#
WriteReservoirRightsToStateMod(OutputFile="__\StateMod\cm2005.rer"")
#

Step 5 - Reset Green Mountain Rights® Start Dates for Baseline dataset

#

SetReservoirRight(1D=""363543.01",Name=""GREEN_MOUNTAIN_RESERVOIR",StationID="1D",
AdministrationNumber=31258.00000,Decree=154645,0n0ff=1,AccountDist=""-5" ,RightType=1,
FillType=1, IfNotFound=Warn, I fFound=Set)

SetReservoirRight(1D=""363543.02" ,Name=""GREEN_MOUNTAIN_RESERVOIR",StationID="1D",
AdministrationNumber=31258.00000,Decree=6316,0n0ff=1,AccountDist="-5" ,RightType=1,
FillType=2, IfNotFound=Warn, I fFound=Set)

SetReservoirRight(1D=""363543.03" ,Name="GREEN_MOUNTAIN-refill",StationID="I1D"",
AdministrationNumber=50403.49309,Decree=154645,0n0ff=1,AccountDist=""-5",
FillType=2, IfNotFound=Add, I fFound=Set)

#

Step 6 - create output for Baseline dataset

#
WriteReservoirRightsToStateMod(OutputFile="._\StateMod\cm2005B.rer"")
#

Check the results
CheckReservoirRights(ID=""*")
WriteCheckFile(OutputFile="rer.commands.StateDMI .check.html')

44 - StateMod 168

StateDMI Documentation

5.7.3 Reservoir Content, Target Time Series (Monthly, Daily)

StateDMI does not process reservoir time series. Instead, use TSTool, a spreadsheet or other software to
prepare the time series file. For example, use TSTool’s Cr eat eFr onli st () command to specify a
list of reservoir station identifiers and create time series identifiers for HydroBase time series.

The following example TSTool command file (from the Colorado cm2005 data set) illustrates how end of
month content time series can be created:

eom.commands.TSTool

commands in this file either pull historical EOM contents from the CRDSS database
(i.e. Rifle Gap) or from user-defined *.stm files

rrb 98/09/29; Revised aggregated reservoir and stockpond ID"s (e.g. 36_ADC_001 = 36_ADC001)

Phase 111b modifications
Include extended replacement files from Task 11.1 and Cont. Auth. #5
Add Wolford Mtn EOM Data from River District
Fill missing data using water district indicator gages determined in demandts runs
Fill with historical monthly average if no wetness pattern average available
Set start dates for reservoirs in March of year listed in Ray A fax (9/8/98)

James Heath, LRE (heath@lrcwe.com) updated the previous version of the file to reflect changes
in the TSTool commands and formatting. Data has also been updated through 2005. Some
underlying engineering estimates have changed and are reflected in this command file.

HHEIFEHEHFEHHFH TR

SetOutputPeriod(OutputStart="10/1908",0utputEnd=""09/2005"")
SetOutputYearType(OutputYearType=Water)
ReadPatternFile(PatternFile=". _\Diversions\fill2005._pat')
#

GREEN MOUNTAIN RESERVOIR

363543. . .MONTH~StateMod~363543.stm

#

UPPER BLUE RESERVOIR (ConHoosier)

Data from HydroBase is used to better represent actual opperations of the reservoir in the cm2005
update rather than setting the contents to its maximum as in previous model versions.
363570.DWR.ResMeasStorage .Day~HydroBase

TS ConHoosier363570 = NeweEndOfMonthTSFromDayTS(DayTSID="363570.DWR.ResMeasStorage.Day",Bracket=16)
Free(TSList=LastMatchingTSID,TSID="363570.DWR.ResMeasStorage.Day"")
FillPattern(TSList=LastMatchingTSID,TSID="ConHoosier363570",PatternlD="09037500")
SetConstant(TSList=LastMatchingTSID,TSID="ConHoosier363570",ConstantValue=0,SetEnd="03/1962"")
Filllnterpolate(TSList=LastMatchingTSID,TSID=""ConHoosier363570" ,MaxIntervals=0, Transformation=None)
#

CLINTON GULCH RESERVOIR

Data from HydroBase is used to better represent actual opperations of the reservoir in the cm2005
update rather than setting the contents to its maximum as in previous model versions.
363575.DWR.ResMeasStorage .Day~HydroBase

TS ClintonGulch363575 = NewEndOfMonthTSFromDayTS(DayTSI1D=""363575.DWR.ResMeasStorage.Day",Bracket=16)
Free(TSList=LastMatchingTSID,TSID="363575.DWR.ResMeasStorage.Day"")
Filllnterpolate(TSList=LastMatchingTSID,TSID="ClintonGulch363575”,FillStart="10/1992",FillEnd="09/2004)
FillPattern(TSList=LastMatchingTSID,TSID="ClintonGulch363575",PatternlD="09037500"")
SetConstant(TSList=LastMatchingTSID,TSID="ClintonGulch363575",ConstantValue=0,SetEnd="03/1977"")
Filllnterpolate(TSList=LastMatchingTSID,TSID="ClintonGulch363575" ,MaxIntervals=0, Transformation=None)
#

DILLON RESERVOIR

364512. . .MONTH~StateMod~364512.stm

#

36_ARCO01...MONTH~StateMod~36_ARCO0O1.stm
FillPattern(TSList=LastMatchingTSID,TSID=""36_ARCO01.._.MONTH",PatternlD="09037500"")
#

WOLCOTT RESERVOIR

373639. . .MONTH~StateMod~zero.stm

#

EAGLE PARK RESERVOIR

373699. . .MONTH~StateMod~zero.stm

169 StateMod - 45

StateDMI Documentation

Data is available in HydroBase for Eagle Park Reservoir but currently the reservor is only a

placeholder for future updates to fill in the details at a later date.

#373699 .DWR . ResMeasStorage . Day~HydroBase

#TS EaglePark373699 = newEndOfMonthTSFromDayTS(373699.DWR.ResMeasStorage .Day,16)

#Free(TSI1D=""373699.DWR.ResMeasStorage.Day")

#FfillPattern(EaglePark373699,09085000)

#setConstant(TSID="EaglePark373699" ,ConstantValue=0,SetEnd="04/1997"")

#Filllnterpolate(EaglePark373699,0,Linear)

#

HOMESTAKE PROJ RESERVOIR

Data from HydroBase is used exclusively as it was representative of what was previously in the .stm

file as used in previous model versions. This allows for easier updating in the future.

374516 .DWR .ResMeasStorage .Day~HydroBase

TS Homestake374516 = NewEndOfMonthTSFromDayTS(DayTSID="374516.DWR.ResMeasStorage.Day",Bracket=16)

Free(TSList=LastMatchingTSID,TSID="374516.DWR.ResMeasStorage.Day"")

FillPattern(TSList=LastMatchingTSID,TSID="Homestake374516",PatternlD="09085000"")

SetConstant(TSList=LastMatchingTSID,TSID=""Homestake374516",ConstantValue=0,SetEnd="03/1967"")

Filllnterpolate(TSList=LastMatchingTSID,TSID=""Homestake374516" ,MaxIntervals=0,Transformation=None)

#

37_ARCO002. . .MONTH~StateMod~37_ARC0O02.stm

FillPattern(TSList=LastMatchingTSID,TSID="37_ARC002. ..MONTH",PatternlD="09085000"")

#

RUEDI RESERVOIR

383713. . .MONTH~StateMod~383713.stm

#

38_ARC003. . .MONTH~StateMod~38_ARC0O03.stm

FillPattern(TSList=LastMatchingTSID,TSID="38_ARC003...MONTH",PatternlD="09085000")

#

GRASS VALLEY RESERVOIR

Data from HydroBase is used exclusively as it was representative of what was previously in the .stm

file as used in previous model versions. This allows for easier updating in the future.

There was one data point, in April 1981, that was replaced with 5989 af (mis-key).

393505.DWR.ResMeasStorage . Day~HydroBase

TS GrassValley393505 = NewEndOfMonthTSFromDayTS(DayTSID="393505.DWR.ResMeasStorage.Day" ,Bracket=16)

Free(TSList=LastMatchingTSID,TSI1D="393505.DWR.ResMeasStorage.Day"")

FillPattern(TSList=LastMatchingTSID,TSID="GrassValley393505",PatternlD="09095500"")

Filllnterpolate(TSList=LastMatchingTSID,TSID="GrassValley393505",MaxIntervals=0,Transformation=None)

SetConstant(TSList=LastMatchingTSID,TSID="GrassVal ley393505",ConstantValue=5989,
SetStart="04/1981",SetEnd="'04/1981"")

#

RIFLE GAP RESERVOIR

Data from HydroBase is used exclusively as it was previously in past model versions.

August of 2004 appeared to be a typo and has been corrected below to what apeared to be the

correct value.

393508.DWR.ResMeasStorage . Day~HydroBase

TS RifleGap393508 = NewEndOfMonthTSFromDayTS(DayTSID="393508.DWR.ResMeasStorage .Day"",Bracket=16)

Free(TSList=LastMatchingTSID,TSID="393508.DWR.ResMeasStorage.Day"")

SetConstant(TSList=LastMatchingTSID,TSID="RifleGap393508",ConstantValue=700.16,
SetStart="08/2004",SetEnd=""08/2004")

FillPattern(TSList=LastMatchingTSID,TSID="RifleGap393508",PatternlD="09095500"")

SetConstant(TSList=LastMatchingTSID,TSID="RifleGap393508",ConstantValue=0,SetEnd="03/1967"")

Filllnterpolate(TSList=LastMatchingTSID,TSID="RifleGap393508" ,MaxIntervals=0,Transformation=None)

#

39_ARCO04. . .MONTH~StateMod~39_ARC0O04.stm

FillPattern(TSList=LastMatchingTSID,TSID="39_ARC004.._MONTH",PatternlD="09095500")

#

45_ARCO05. . .MONTH~StateMod~45_ARCO05.stm

FillPattern(TSList=LastMatchingTSID,TSID="45_ARC005. . .MONTH",PatternlD="09095500")

#

WOLFORD MOUNTAIN RES

503668. . .MONTH~StateMod~503668.stm

SetConstant(TSList=LastMatchingTSID,TSID="503668...MONTH",ConstantValue=0,SetEnd=""03/1995"")

#

50_ARCO006 . . .MONTH~StateMod~50_ARCO06.stm

FillPattern(TSList=LastMatchingTSID,TSID="50_ARC006. ..MONTH",PatternlD="09034500"")

#

MEADOW CREEK RESERVOIR

Data from HydroBase is used exclusively as it was representative of what was previously in the .stm

file as used in previous model versions. This allows for easier updating in the future.

Additionally a shift has been added as it represents 300 af additional dead storage not represented

in the HydroBase records (as stated in the previous model version®s .stm file).

46 - StateMod 170

StateDMI Documentation

513686 .DWR.ResMeasStorage .Day~HydroBase
TS MeadowCreek513686 = NewEndOfMonthTSFromDayTS(DayTSID="513686.DWR.ResMeasStorage.Day",Bracket=16)
Free(TSList=LastMatchingTSID,TSID="513686.DWR.ResMeasStorage.Day"")
FillPattern(TSList=LastMatchingTSID,TSID="MeadowCreek513686" ,PatternlD="09034500"")
AddConstant(TSList=LastMatchingTSID,TSID="MeadowCreek513686",ConstantValue=300)
SetConstant(TSList=LastMatchingTSID,TSID=""MeadowCreek513686",ConstantValue=0,SetEnd="03/1956"")
Filllnterpolate(TSList=LastMatchingTSID,TSID="MeadowCreek513686" ,MaxIntervals=0,Transformation=None)
#
CBT SHADOW MTN GRAND L
Data from HydroBase is used exclusively as it was previously in past model versions.
513695 .DWR.ResMeasStorage .Day~HydroBase
TS ShadowMountainGrandLake513695 =
NewEndOfMonthTSFromDayTS(DayTS1D="513695.DWR.ResMeasStorage.Day",Bracket=16)
Free(TSList=LastMatchingTSID,TSI1D="513695.DWR.ResMeasStorage.Day"")
FillPattern(TSList=LastMatchingTSID,TSID=""ShadowMountainGrandLake513695",PatternlD="09034500")
SetConstant(TSList=LastMatchingTSID,TSID=""ShadowMountainGrandLake513695",

ConstantValue=0,SetEnd="03/1946")
Filllnterpolate(TSList=LastMatchingTSID,TSID=""ShadowMountainGrandLake513695",

MaxIntervals=0, Transformation=None)
#
WILLIAMS FORK RESERVOIR
513709. . .MONTH~StateMod~513709.stm
#
CBT WILLOW CREEK RES
Data from HydroBase is used exclusively as it was previously in past model versions.
513710.DWR.ResMeasStorage .Day~HydroBase
TS WillowCreek513710 = NewEndOfMonthTSFromDayTS(DayTSID="513710.DWR.ResMeasStorage.Day" ,Bracket=16)
Free(TSList=LastMatchingTSID,TSID="513710.DWR.ResMeasStorage.Day"")
FillPattern(TSList=LastMatchingTSID,TSID="WillowCreek513710",PatterniD="09034500"")
SetConstant(TSList=LastMatchingTSID,TSID="WillowCreek513710",ConstantValue=0,SetEnd="03/1953"")
Filllnterpolate(TSList=LastMatchingTSID,TSID="WillowCreek513710" ,MaxIntervals=0,Transformation=None)
#
CBT GRANBY RESERVOIR
514620. . .MONTH~StateMod~514620.stm
Setting specific descrepencies that Meg Frantz and Heather Thompson found
durring the Windy Gap Firming Project modeling by Boyle Engineering
SetDataValue(TSList=LastMatchingTSID,TSID="514620...MONTH",SetDateTime="03/1954" ,NewValue=372900)
SetDataValue(TSList=LastMatchingTSID,TSID="514620...MONTH",SetDateTime="10/1960" ,NewValue=411100)
SetDataValue(TSList=LastMatchingTSID,TSID="514620...MONTH",SetDateTime="10/1961" ,NewValue=478100)
SetDataValue(TSList=LastMatchingTSID,TSID="514620.._MONTH",SetDateTime=""06/1967",NewValue=263400)
#
51_ARCO07 . . .MONTH~StateMod~51_ARCO07 .stm
FillPattern(TSList=LastMatchingTSID,TSID="51_ARC0O07...MONTH",PatternlD="09034500")
#
52_ARCO008. . .MONTH~StateMod~52_ARCO08.stm
FillPattern(TSList=LastMatchingTSID,TSID="52_ARCO008.._.MONTH",PatternliD="09085000"")
#
53_ARC009. . .MONTH~StateMod~53_ARCO09.stm
FillPattern(TSList=LastMatchingTSID,TSID="53_ARCO009.._MONTH",PatternliD="09085000"")
#
VEGA RESERVOIR
723844 . . _MONTH~StateMod~723844 .stm
SetConstant(TSList=LastMatchingTSID,TSID="723844_ . _MONTH",ConstantValue=0,SetEnd="03/1960")
#
72_ARC010. . .MONTH~StateMod~72_ARC010.stm
FillPattern(TSList=LastMatchingTSID,TSID="72_ARC010...MONTH",PatternlD="09095500"")
#
72_ASC001. . .MONTH~StateMod~72_ASC001.stm
FillPattern(TSList=LastMatchingTSID,TSID=""72_ASC001...MONTH",PatternlD="09095500"")
#
BONHAM AGGREGATED RES
953800. . -.MONTH~StateMod~953800.stm
FillPattern(TSList=LastMatchingTSID,TSID="953800...MONTH",PatternlD="09095500")
#
COTTONWOOD AGGREG RES
953801. . .MONTH~StateMod~953801.stm
FillPattern(TSList=LastMatchingTSID,TSID="953801...MONTH",PatternlD="09095500")
#
LEON CREEK AGGRES RES
953802. . .MONTH~StateMod~953802.stm
FillPattern(TSList=LastMatchingTSID,TSID="953802. . _MONTH",PatternlD="09095500")

171 StateMod - 47

StateDMI Documentation

FillHistMonthAverage(TSList=AlITS)

#
WriteStateMod(TSList=AlITS,OutputFile="__\statemod\cm2005.eom",Precision=0)
CheckTimeSeries(CheckCriteria="Missing")
WriteCheckFile(OutputFile="eom.commands.TSTool .check._html')

Reservoir targets can be created similarly; however, each reservoir have a minimum target time series
(often zero) and a maximum target. StateMod will also allow the minimum target time series to be
omitted. The following command file (from the Colorado cm2005 data set) illustrates how to create the
historical case reservoir target file:

Htar.commands.TSTOOL

#

Targets for Step 1 calibration (release to target)

Minimum targets set to 0", Maximum targets same as eom file

#

SetOutputPeriod(OutputStart="10/1908",0utputEnd=""09/2005")

SetOutputYearType(OutputYearType=Water)

#

Green Mountain Reservoir

363543. . _.MONTH~StateMod~. . \statemod\cm2005.eom

SetConstant(TSList=LastMatchingTSID,TSID="363543.. _MONTH",ConstantValue=0)

363543. . _MONTH~StateMod~. .\statemod\cm2005.eom

#

UPPER BLUE RESERVOIR

363570. . .MONTH~StateMod~. .\statemod\cm2005.eom

SetConstant(TSList=LastMatchingTSID,TSID=""363570...MONTH",ConstantValue=0)

363570. . .MONTH~StateMod~. .\statemod\cm2005. eom

SetConstant(TSList=LastMatchingTSID,TSID=""363570...MONTH",
Monthvalues="0,0,0,2113,2113,2113,2113,1850,2113,2113,0,0", SetStart="04/1962")

#

CLINTON GULCH RESERVOIR

363575. . _.MONTH~StateMod~. . \statemod\cm2005.eom

SetConstant(TSList=LastMatchingTSID,TSID=""363575. . .MONTH",ConstantValue=0)

363575. . .MONTH~StateMod~. .\statemod\cm2005.eom

SetConstant(TSList=LastMatchingTSID,TSID=""363575. . _MONTH",ConstantValue=4300,SetStart="04/1977"")

#

DILLON RESERVOIR

364512. . _MONTH~StateMod~. .\statemod\cm2005.eom

SetConstant(TSList=LastMatchingTSID,TSID="364512.._MONTH",ConstantValue=0)

364512. . _.MONTH~StateMod~. . \statemod\cm2005.eom

#

36_ARCOO01. . _MONTH~StateMod~. .\statemod\cm2005.eom

SetConstant(TSList=LastMatchingTSID,TSID=""36_ARC001. . .MONTH",ConstantValue=0)

36_ARCOO1. . .MONTH~StateMod~. .\statemod\cm2005.eom

#

WOLCOTT RESERVOIR

373639. . .MONTH~StateMod~. .\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="373639.._.MONTH",ConstantValue=0)
373639. . _.MONTH~StateMod~. .\statemod\cm2005.eom

#

EAGLE PARK RESERVOIR

373699. . .MONTH~StateMod~. .\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID=""373699. . _.MONTH",ConstantValue=0)
373699. . _.MONTH~StateMod~. .\statemod\cm2005.eom

#

HOMESTAKE PROJ RESERVOIR

374516. . .MONTH~StateMod~. .\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID=""374516. . _MONTH",ConstantValue=0)
374516. . .MONTH~StateMod~. .\statemod\cm2005.eom

#

37_ARC0O02. . _.MONTH~StateMod~. . \statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID=""37_ARCO002.._MONTH",ConstantValue=0)
37_ARC002. . _.MONTH~StateMod~. .\statemod\cm2005.eom

#

RUEDI RESERVOIR

383713. . .MONTH~StateMod~. .\statemod\cm2005.eom

48 - StateMod 172

StateDMI Documentation

SetConstant(TSList=LastMatchingTSID,TSID=""383713.._MONTH",ConstantValue=0)
383713. . _.MONTH~StateMod~. . \statemod\cm2005.eom

#

38_ARCO003. . _.MONTH~StateMod~. .\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID=""38_ARC003. . .MONTH",ConstantValue=0)
38_ARCO003. . .MONTH~StateMod~. .\statemod\cm2005.eom

#

GRASS VALLEY RESERVOIR

393505. . .MONTH~StateMod~. .\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="393505.. _MONTH",ConstantValue=0)
393505. . .MONTH~StateMod~. .\statemod\cm2005.eom

#

RIFLE GAP RESERVOIR

393508. . .MONTH~StateMod~. .\statemod\cm2005. eom
SetConstant(TSList=LastMatchingTSID,TSID="393508.._.MONTH",ConstantValue=0)
393508. . .MONTH~StateMod~. .\statemod\cm2005.eom

#

39 _ARCO004. . _MONTH~StateMod~. .\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID=""39_ARC004. . .MONTH",ConstantValue=0)
39_ARCO04. . _MONTH~StateMod~. .\statemod\cm2005.eom

#

45 ARCO005. . _.MONTH~StateMod~. .\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID=""45_ARCO005.._MONTH",ConstantValue=0)
45 _ARCO05. . _.MONTH~StateMod~. .\statemod\cm2005.eom

#

WOLFORD MOUNTAIN RES

503668. . .MONTH~StateMod~. .\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="503668. . _.MONTH",ConstantValue=0)
503668. . .MONTH~StateMod~. .\statemod\cm2005.eom

#

50_ARCO006. . .MONTH~StateMod~. .\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="50_ARCO06.._.MONTH",ConstantValue=0)
50_ARCOO06. . .MONTH~StateMod~. .\statemod\cm2005.eom

#

MEADOW CREEK RESERVOIR

513686. . .MONTH~StateMod~. .\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="513686...MONTH",ConstantValue=0)
513686. . .MONTH~StateMod~. . \statemod\cm2005.eom

#

CBT SHADOW MTN GRAND L

513695. . .MONTH~StateMod~. .\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="513695. . .MONTH",ConstantValue=0)
513695. . _.MONTH~StateMod~. .\statemod\cm2005.eom

#

WILLIAMS FORK RESERVOIR

513709. . _.MONTH~StateMod~. . \statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="513709. . _.MONTH",ConstantValue=0)
513709. . .MONTH~StateMod~. .\statemod\cm2005.eom

#

CBT WILLOW CREEK RES

513710. . .MONTH~StateMod~. .\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="513710...MONTH",ConstantValue=0)
513710. . .MONTH~StateMod~. .\statemod\cm2005.eom

#

CBT GRANBY RESERVOIR

514620. . .MONTH~StateMod~. .\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="514620...MONTH",ConstantValue=0)
514620. . .MONTH~StateMod~. . \statemod\cm2005.eom

#

51_ARCO0O07. . .MONTH~StateMod~. .\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="51_ARCOO07...MONTH",ConstantValue=0)
51 ARCOO07...MONTH~StateMod~. .\statemod\cm2005.eom

#

52_ARCO008. . .MONTH~StateMod~. .\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID=""52_ARCO008.._.MONTH",ConstantValue=0)
52_ARCO0O08. . .MONTH~StateMod~. .\statemod\cm2005.eom

#

53_ARCO009. . .MONTH~StateMod~. .\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID=""53_ARCO009.._MONTH",ConstantValue=0)
53 _ARCO009. . .MONTH~StateMod~. .\statemod\cm2005.eom

#

173

StateMod - 49

StateDMI Documentation

VEGA RESERVOIR

723844 . . _MONTH~StateMod~. . \statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="723844.._MONTH",ConstantValue=0)
723844 . . .MONTH~StateMod~. .\statemod\cm2005.eom

#

72_ARCO010. . .MONTH~StateMod~. .\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="72_ARC010...MONTH",ConstantValue=0)
72_ARCO010. . .MONTH~StateMod~. .\statemod\cm2005.eom

#

72_ASC001. . .MONTH~StateMod~. .\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="72_ASC001...MONTH",ConstantValue=0)
72_ASCO001. . .MONTH~StateMod~. .\statemod\cm2005.eom

#

BONHAM AGGREGATED RES

953800. . .MONTH~StateMod~. . \statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="953800. . .MONTH",ConstantValue=0)
953800. . .MONTH~StateMod~. .\statemod\cm2005.eom

#

COTTONWOOD AGGREG RES

953801. . .MONTH~StateMod~. .\statemod\cm2005 .eom
SetConstant(TSList=LastMatchingTSID,TSID=""953801. . .MONTH",ConstantValue=0)
953801. . .MONTH~StateMod~. . \statemod\cm2005.eom

#

LEON CREEK AGGREG RES

953802. . .MONTH~StateMod~. .\statemod\cm2005.eom
SetConstant(TSList=LastMatchingTSID,TSID="953802.._.MONTH",ConstantValue=0)
953802. . _.MONTH~StateMod~. .\statemod\cm2005.eom

#

#
WriteStateMod(TSList=AlITS,OutputFile="__\StateMod\cm2005H.tar",Precision=0)
CheckTimeSeries(CheckCriteria="Missing’)
WriteCheckFile(OutputFile="Htar.commands.TSTool .check._html”)

5.8 Instream Flow Data
Instream flow data consist of:

Instream flow stations

Instream flow rights

Instream flow demand time series (average monthly)
Instream flow demand time series (monthly, daily)

Each of the above data types is stored in a separate file, using the instream flow station identifier as the
primary identifier. StateMod represents the instream flow as a stream reach, with upstream and
downstream termini. The processing of each data file is discussed below.

5.8.1 Instream Flow Stations

Instream flow stations used with StateMod are typically specified based on water rights for a stream
reach.

Key instream flow stations to include in a model are typically determined by reviewing available data,
including HydroBase water rights and the CWCB instream flow database, for streams that are included in
the model. The streams are those that are associated with stream gage, diversion, reservoir, and well
stations included in the data set. The upstream instream flow station identifier is usually a 7-character
water district identifier (6-character for old data sets) or fabricated identifier that starts with the water
district number. The downstream node is typically inserted into the network as an “other” node having
the same identifier as the upstream terminus followed by “_Dwn”.

50 - StateMod 174

StateDMI Documentation

The Commands...Instream Flow Data...Instream Flow Stations menu items insert commands to

process instream flow station data:

Instream Flow Stations - Commands

ReadInstreamFlowStationsFromLisk() ...

ReadInstreamFlowstationsFromietwark() ..

ReadInstreamFlowstationsFromsStateMod | ..

SetInstreamFlowStation]) ...

SortInstreamFlowstations) ...

FilllnstreamFlowstationsFromHydroBasel) ...

FilllnskreamFlowskationsFromMetwork ...

FilllnskreamFlowskation) ...

wWriteInstreamFlowstationsToLiskt) ...
WriteInstreamFlowstationsToSkakeMod() ...

CheckInstreamFloveStations) ...

writeCheckFile() ...

MenuCommands_InstreamFlowStations

Commands...Instream Flow Data...Instream Flow Stations Menu

The following table summarizes the use of each command:

Instream Flow Station Commands

Command

Description

Readl nst r eantl owSt ati onsFromnli st ()

Read from a delimited list file the list of instream
flow stations to be included in the data set.

Readl nst r eant| owSt ati onsFr omNet wor k()

Read from a StateMod network file a list of
instream flow stations to be included in the data
set.

Readl nst r eant| owSt at i onsFr ontt at evbd()

Read from a StateMod instream flow stations file
the list of instream flow stations to be included in
the data set.

Set | nstreantl owSt at i on()

Set the data for, and optionally add, instream
flow stations.

Sort | nstreanfl owSt ati ons()

Sort the instream flow stations. This is useful to
force consistency between files.

Fil Il nstreantl owSt ati onsFronmHydr oBase()

Fill missing data for defined instream flow
stations, using data from HydroBase. For
example, retrieve the station names.

Fil Il nstreantl owSt ati onsFr omNet wor k()

Fill missing data for defined instream flow
stations, using data from a StateMod network file.
This is useful when the station names are not
found in HydroBase and numerous

Set | nstreanfl owSt ati on() commands
would otherwise be required.

175

StateMod - 51

StateDMI Documentation

Command Description

Filllnstreantl owst ation() Fill missing data for defined instream flow
stations, user user-supplied values.

Witelnstreantl owSt ationsToli st () Write defined instream flow stations to a
delimited file.

Wi tel nstreantl owSt ati onsToSt at eMbd() Write defined instream flow stations to a
StateMod file.

Checkl nstreantl owSt ati ons() Check instream flow stations data for problems.

Wit eCheckFil e() Write the results of data checks to a file.

An example command file (from the Colorado cm2005 data set) to create the instream flow station file is
shown below:

StartLog(LogFile="ifs.commands.StateDMI.log")
#
Create the Colorad Instream Flow Stations file
#
Step 1 - read instream flow structures from network file, sort alphabetically.
#
ReadInstreamFlowStationsFromNetwork(InputFile="__.\Network\cm2005.net')
SortlnstreamFlowStations(Order=Ascending)
#
Step 2 - create file and set daily flags
#
SetiInstreamFlowStation(ID=""*",DailyID="0",DemandType=2)
#
Step 3 - set instream flow information for non-HB structures
#
Following insf are reservoir bypasses
SetiInstreamFlowStation(1D=""953508" ,Name=""Rifle_Gap_Res_Bypass',UpstreamRiverNodelD="953508",
DownstreamRiverNodelD=""953508_Dwn",0nOff=1,DailyID="0",DemandType=2, IfNotFound=Warn)
SetInstreamFlowStation(1D="'953543" ,Name=""Green_Mtn_Res_Bypass",UpstreamRiverNodelD="953543",
DownstreamRiverNodelD="953543_Dwn",0nOff=1,DailylD="0",DemandType=2, I fNotFound=Warn)
SetInstreamFlowStation(1D=""953668",Name="Wolford_Res_Bypass",UpstreamRiverNodelD="953668",
DownstreamRiverNodelD="953668_Dwn",0nO0ff=1,DailyID="0",DemandType=2, IfNotFound=Warn)
SetInstreamFlowStation(1D=""953695" ,Name=""Shadow_Mtn_Res_Bypass",UpstreamRiverNodelD=""953695",
DownstreamRiverNodelD="953695_Dwn",0nOff=1,DailylD="0",DemandType=2, I fNotFound=Warn)
SetinstreamFlowStation(1D=""953709" ,Name="Williams_Fork_Res_Bypass',UpstreamRiverNodelD="953709",
DownstreamRiverNodelD=""953709_Dwn",0nO0ff=1,DailyID="0",DemandType=2, IfNotFound=Warn)
SetinstreamFlowStation(1D=""953710",Name=""Willow_Crk_Res_Bypass",UpstreamRiverNodelD="953710",
DownstreamRiverNodelD="953710_Dwn",0nOff=1,DailyID="0",DemandType=2, IfNotFound=Warn)
SetinstreamFlowStation(1D=""953713",Name=""Ruedi_Res_Bypass",UpstreamRiverNodelD="953713",
DownstreamRiverNodelD=""953713 Dwn",0nOff=1,DailyID="0",DemandType=2, IfNotFound=Warn)
SetinstreamFlowStation(1D=""951146" ,Name=""Wolcott_PP_Bypass",UpstreamRiverNodelD="951146",
OnOff=1,DailyID="0",DemandType=2, I fNotFound=Warn)
Following insf are minimum reservoir release requirements (operating rules control)
SetiInstreamFlowStation(1D="954512" ,Name="Dillon_Res_Min_Rel" ,UpstreamRiverNodelD="954512",
DownstreamRiverNodelD=""954512 Dwn",0nOff=1,DailyID="0",DemandType=2, IfNotFound=Warn)
SetInstreamFlowStation(1D="'954620" ,Name=""Granby_Res_Min_Rel" ,UpstreamRiverNodelD="954620",
DownstreamRiverNodelD=""954620_Dwn",0nOff=1,DailyID="0",DemandType=1, IfNotFound=Warn)
Following insf are Fraser collection system bypass requirements (Denver®s Moffat)
SetinstreamFlowStation(1D=""950639" ,Name=""Jim_Creek_ Bypass",UpstreamRiverNodelD="950639",
DownstreamRiverNodelD="950639_Dwn",0nOff=1,DailyID="0",DemandType=2, I fNotFound=Warn)
SetiInstreamFlowStation(1D=""951269" ,Name="Den_Ranch_Crk_Bypass',UpstreamRiverNodelD="951269",
DownstreamRiverNodelD=""951269 Dwn",0nOff=1,DailyID="0",DemandType=2, IfNotFound=Warn)
SetInstreamFlowStation(1D=""951309" ,Name=""St_Louis_Crk_Bypass",UpstreamRiverNodelD="951309",
DownstreamRiverNodelD="951309_Dwn",0nOff=1,DailyID="0",DemandType=2, IfNotFound=Warn)
SetInstreamFlowStation(1D="'951310",Name="Vasquez_Crk_Bypass",UpstreamRiverNodelD="951310",
DownstreamRiverNodelD="951310_Dwn",0nOff=1,DailyID="0",DemandType=2, IfNotFound=Warn)
Following insf are minimum bypass for Williams Fork Diversion Project (Denver)
SetInstreamFlowStation(1D=""954603" ,Name=""Guml ick_Tunnel_Bypass",UpstreamRiverNodelD="954603"
DownstreamRiverNodelD="954603_Dwn",0nO0ff=1,DailyID="0",DemandType=2, IfNotFound=Warn)
Following insf are minimum bypass for Fry-Ark Project
SetinstreamFlowStation(1D=""950786" ,Name="Thomasville_Gage Bypass'",UpstreamRiverNodelD="950786",
DownstreamRiverNodelD="950786_Dwn",0OnOff=1,DailyID="0",DemandType=2, I fNotFound=Warn)

52 - StateMod 176

StateDMI Documentation

SetInstreamFlowStation(1D=""951594" ,Name=""Hunter_Crk_Bypass",UpstreamRiverNodelD="951594",
DownstreamRiverNodelD="951594 Dwn",0nOff=1,DailyID="0",DemandType=2, IfNotFound=Warn)

SetinstreamFlowStation(1D="'954625" ,Name=""Boustead_Tunnel_Bypass",UpstreamRiverNodelD="954625",
DownstreamRiverNodelD=""954625 Dwn",0nOff=1,DailyID="0",DemandType=2, IfNotFound=Warn)

Following insf is minimum bypass below Homestake Tunnel (Col. Springs)

SetinstreamFlowStation(1D=""954516",Name=""Gold_Park_Gage_Min_Flow",UpstreamRiverNodelD="954516",
DownstreamRiverNodelD=""954516_Dwn",0nOff=1,DailyID="0",DemandType=2, IfNotFound=Warn)

Following insf is minimum release for the Clinton Res. agreement

SetInstreamFlowStation(1D=""954655" ,Name="Winter_Park_Ski_Min_Flow",UpstreamRiverNodelD="954655",
DownstreamRiverNodelD=""954655 Dwn",0nOff=1,DailyID="0",DemandType=2, IfNotFound=Warn)

Insf node added above the Shoshone Power Plant to allow simulation of Green Mtn. Res.

operations prior to 1985

SetInstreamFlowStation(1D=""950500",Name=""Shoshone_Call_Flows",UpstreamRiverNodelD="950500",
DownstreamRiverNodelD="950500_Dwn',0OnOff=1,DailylD="0",DemandType=1, IfNotFound=Warn)

CWCB insf in 15-mile reach

SetInstreamFlowStation(1D=""952002" ,Name=""USFWS_Recomm._Fish_Flow",UpstreamRiverNodelD="952002",
DownstreamRiverNodelD="952002_Dwn",0nOff=1,DailyID="0",DemandType=1, I fNotFound=Warn)

GVWM Bypass

SetInstreamFlowStation(1D=""950099" ,Name=""GVWM_Bypass"",UpstreamRiverNodeID=""950099",0n0ff=1,
DailyID="0",DemandType=2, I fNotFound=Warn)

Eagle River Minimum Flow Second Reach

SetInstreamFlowStation(1D=""372059 2" ,Name=""MIN_FLOW_EAGLE_RIVER_2",UpstreamRiverNodelD="372059_2",
DownstreamRiverNodelD=""372059_2 Dwn",0nOff=1,DailylID="0",DemandType=2, IfNotFound=Warn)

#

Step 4 - FTill remaining instream flow information from HB and output file

#

FilllnstreamFlowStationsFromHydroBase(1D=""*"")

WritelnstreamFlowStationsToStateMod(OutputFile=""__\StateMod\cm2005.ifs",WriteHow=OverwriteFile)

#

Check the results

ChecklInstreamFlowStations(ID=""*"")

WriteCheckFile(OutputFile="ifs.commands.StateDMI.check.html')

5.8.2 Instream Flow Rights

Instream flow rights correspond to the instream flow stations, using the instream flow station identifier to
relate the data. Instream flow right identifiers are typically the reservoir right identifier followed by . NN,
where NN is a sequential number starting with 01. The Commands...Instream Flow Data...Instream
Flow Rights menu items insert commands to process instream flow rights data:

Instream Flow Rights - Commands
ReadInstreamFlowstationsFromLisk) ...
ReadInstreamFlowstationsFromsStateMod | ..

ReadInstreamFlowRightsFromHydroBased) ...
ReadInstreamFlowRightsFromStateMod | ..

SetInstreamFlowRight() ...
sortInstreamFlowRights.) ...
FilllnstreamFlowRight(y ...

wWriteInstreamFlowRightsToListd) ...
WriteInstreamFlowRightsToStakeMod ...

CheckInstreamFlowRights() ...
writeCheckFile() ...

MenuCommands_InstreamFlowRights

Commands...Instream Flow Data...Instream Flow Rights Menu

177 StateMod - 53

StateDMI Documentation

The following table summarizes the use of each command:

Instream Flow Rights Commands

Command

Description

Readl nstr eanfl owSt at i ons
FromLi st ()

Read from a delimited file the list of instream flow stations to
be included in the data set — the list indicates the stations for
which to process rights.

Readl nst r eanfl owSt at i ons
Frontt at eMod()

Read from a StateMod instream flow stations file the list of
instream flow stations to be included in the data set — the list
indicates the stations for which to process rights.

Readl nst r eantl owRi ght s
FromHydr oBase()

For each instream flow station, read the corresponding
instream flow rights from HydroBase.

Readl nst reantl owRi ght s
Frontt at eMod()

Read instream flow rights from a StateMod instream flow
rights file.

Set | nst reanFl owR ght ()

Set the data for, and optionally add, instream flow rights.

Sort | nstreanfl owRi ghts()

Sort the instream flow stations. This is useful to force
consistency between files.

Fil'llnstreantl owRi ght ()

Fill missing data for defined instream flow rights, using user-
supplied values.

Wit el nstreanFl owRi ghts
ToLi st ()

Write instream flow rights to a delimited list file.

Wit el nstreanFl owRi ghts
ToSt at eMbd()

Write instream flow rights to a StateMod file.

Checkl nstreantl owRi ght s()

Check instream flow rights data for problems.

Wit eCheckFil e()

Write the results of data checks to a file.

An example command file to create the instream flow rights file is shown below (from the Colorado
cm2005 data set):

StartLog(LogFile="ifr.commands.StateDMI.log")
i1fr.commands.StateDMI

StateDMI command file to create the annual instream flow rights file for the
Colorado model Historical and Calibrated models

Step 1 - read instream flow structures from instream flow structure file
eadInstreamFlowStationsFromStateMod(InputFile="__\STATEMOD\cm2005.ifs")

Step 2 - read instream flow rights from HydroBase
eadInstreamFlowRightsFromHydroBase(1D=""*",0n0OffDefaul t=1)

Step 3 - set instream flow rights for non-HydroBase structures

HHFIHEHFOHFHF R

Following insf are reservoir bypasses
SetInstreamFlowRight(I1D="953508.01",Name=""Rifle_Gap_Res_Bypass",StationID="1D",
AdministrationNumber=37503.36898,Decree=5.00,0n0ff=1, IfNotFound=Add, I fFound=Warn)
SetinstreamFlowRight(1D="953543.01" ,Name=""Green_Mtn_Res_Bypass",StationID="1D",
AdministrationNumber=31257.99994 ,Decree=85.00,0n0ff=1, I fNotFound=Add, I fFound=Warn)
SetInstreamFlowRight(1D="953668.01",Name="Wolford_Res_Bypass",StationlD="I1D",
AdministrationNumber=50385.99999,Decree=13.00,0n0ff=1, I fNotFound=Add, I fFound=Warn)
SetinstreamFlowRight(I1D="953695.01",Name=""Shadow_Mtn_Res_Bypass',StationID="1D",
AdministrationNumber=31257.99999,Decree=50.00,0n0ff=1, IfNotFound=Add, I fFound=Warn)
SetInstreamFlowRight(I1D="953709.01" ,Name="Williams_Fork_Res_ Bypass',StationlD="ID",
AdministrationNumber=31358.99999,Decree=15.00,0n0ff=1, I fNotFound=Add, I fFound=Warn)
SetiInstreamFlowRight(ID="953710.01",Name="Willow_Crk_Res_Bypass',StationlID="1D",

54 - StateMod 178

StateDMI Documentation

AdministrationNumber=31257.99999,Decree=7.00,0n0ff=1, IfNotFound=Add, I fFound=Warn)
SetinstreamFlowRight(I1D="953713.01",Name="Ruedi_Res_Bypass',StationlD="ID",
AdministrationNumber=39290.99999,Decree=110.00,0n0ff=1, I fNotFound=Add, I fFound=Warn)
SetinstreamFlowRight(1D="951146.01",Name=""Wolcott_PP_Bypass',StationlD="I1D",
AdministrationNumber=42484_99999,Decree=110.00,0n0ff=1, I fNotFound=Add, I fFound=Warn)
Following insf are minimum reservoir release requirements (operating rules control)
SetiInstreamFlowRight(1D="954512_.01" ,Name="Dillon_Res_Min_Rel",StationID="1D",
AdministrationNumber=31257.99997 ,Decree=50.00,0n0ff=1, I fNotFound=Add, I fFound=Warn)
SetInstreamFlowRight(I1D="954620.01",Name="Granby_Res_Min_Rel",StationlD="1D",
AdministrationNumber=31257.99999,Decree=75.00,0n0ff=1, IfNotFound=Add, I fFound=Warn)
Following insf are Fraser collection system bypass requirements (Denver®s Moffat)
SetInstreamFlowRight(I1D="950639.01",Name="Jim_Creek_Bypass',StationlD="I1D",
AdministrationNumber=30870.26116,Decree=10.00,0n0ff=1, IfNotFound=Add, I fFound=Warn)
SetiInstreamFlowRight(1D=""951269.01" ,Name="Den_Ranch_Crk_Bypass',StationID="1D",
AdministrationNumber=30870.26116,Decree=4.00,0n0ff=1, IfNotFound=Add, I fFound=Warn)
SetInstreamFlowRight(I1D="951309.01",Name=""St_Louis_Crk_Bypass",StationID="I1D",
AdministrationNumber=30870.26116 ,Decree=10.00,0n0ff=1, I fNotFound=Add, I fFound=Warn)
SetiInstreamFlowRight(1D=""951310.01",Name=""Vasquez_Crk_Bypass',StationID="1D",
AdministrationNumber=30870.26116,Decree=8.00,0n0ff=1, IfNotFound=Add, I fFound=Warn)
Following insf are minimum bypass for Williams Fork Diversion Project (Denver)
SetInstreamFlowRight(I1D="954603.01",Name=""Gumlick_Tunnel_Bypass',StationID="1D",
AdministrationNumber=30870.26116,Decree=1.00,0n0ff=1, IfNotFound=Add, I fFound=Warn)
Following insf are minimum bypass for Fry-Ark Project
SetInstreamFlowRight(I1D="950786.01",Name=""Thomasville_Gage Bypass',StationlD="I1D",
AdministrationNumber=39290.99999,Decree=200.00,0n0ff=1, I fNotFound=Add, I fFound=Warn)
SetInstreamFlowRight(1D="951594.01",Name=""Hunter_Crk_Bypass',StationlD="I1D",
AdministrationNumber=39290.99999,Decree=21.00,0n0ff=1, I fNotFound=Add, I fFound=Warn)
SetInstreamFlowRight(I1D="954625.01",Name="Boustead_Tunnel_Bypass'",StationID="1D",
AdministrationNumber=39290.99999,Decree=30.00,0n0ff=1, I fNotFound=Add, I fFound=Warn)
Following insf is minimum bypass below Homestake Tunnel (Col. Springs)
SetiInstreamFlowRight(1D="954516.01" ,Name="Gold_Park_Gage_ Min_Flow",StationlID="1D",
AdministrationNumber=39650.37519,Decree=24_.00,0n0ff=1, I fNotFound=Add, I fFound=Warn)
Following insf is minimum release for the Clinton Res. agreement
SetiInstreamFlowRight(1D="'954655.01" ,Name="Winter_Park_Ski_Min_Flow",StationID="1D",
AdministrationNumber=30870.26116 ,Decree=3.90,0n0ff=1, I fNotFound=Add, I fFound=Warn)
Inst node added above the Shoshone Power Plant to allow simulation of Green Mtn. Res.
operations prior to 1985
SetiInstreamFlowRight(1D=""950500.01" ,Name=""Shoshone_Call_Flows",StationID="1D",
AdministrationNumber=99999.80000,Decree=1250.00,0n0ff=1, I fNotFound=Add, I fFound=Warn)
CWCB insf in 15-mile reach
SetInstreamFlowRight(1D="952002.01",Name=""USFWS_Recomm._Fish_Flow",StationlD="1D",
AdministrationNumber=99999.92000,Decree=16000.00,0n0ff=1, IfNotFound=Add, I fFound=Warn)
GVWM Bypass
SetInstreamFlowRight(I1D="950099.01" ,Name=""GVWM_Bypass',StationID=""ID",
AdministrationNumber=99999.00000,Decree=0.00,0n0ff=1, IfNotFound=Add, I fFound=Warn)
Eagle River Minimum Flow Second Reach
SetiInstreamFlowRight(ID="372059_2.01",Name="MIN_FLOW_EAGLE_RIVER_2",StationID="1D",
AdministrationNumber=47558_00000,Decree=155.00,0n0ff=1, I fNotFound=Add, I fFound=Warn)

#

Step 4 - create output file

#
WritelnstreamFlowRightsToStateMod(OutputFile=""__\STATEMOD\cm2005. ifr")
#

Check the results
ChecklInstreamFlowRights(ID=""*"")
WriteCheckFile(OutputFile="ifr.commands.StateDMI.check.html')

5.8.3 Instream Flow Demand Time Series (Average Monthly)

Instream flow demand time series correspond to the instream flow stations, using the instream flow
station identifier as a key. Instream flow demand time series (average monthly) are typically generated
from instream flow water rights. When read from HydroBase, these time series currently have the same
value for each month of the year (although future enhancements may support seasonal right values in
HydroBase).

179 StateMod - 55

StateDMI Documentation

The Commands...Instream Flow Data...Instream Flow Demands (Average Monthly) menu items
insert commands to process instream flow demand time series (average monthly):

Instream Flow Demand TS (Average Monthly) - Commands

SetOutputyearTypel) ...
ReadInstreamFlowDemandTsaverageMonthlyFromstakeMod ..

1: ReadInstreamFlowRightsFrom3Statetod) ...
21 SetlnstreamFlowlemandT3AverageMaonthlyFromRights() ..

SetlnstreamFlowDemandTSAverageMonthlyConskant() ...
weriteInstreamFlowDemandTSaverageMonthly ToStakeMod() ...

CheckInstreamFlowbemandTSAverageionthly() ...
weriteCheckFile() ...

MenuCommands_InstreamFlowDemandTSAverageMonthly

Commands...Instream Flow Data...Instream Flow Demand TS (Average Monthly) Menu
The following table summarizes the use of each command:

Instream Flow Demands (Average Monthly) Commands

Command Description

Set Qut put Year Type() Set the output year type for time series. This
should correspond to the model data set year
type and ensures that time series data are in the
proper order. Omitting this information may
result in missing data in the output.

Readl nst r eantl owDemandTSAver age Read the instream flow demand average
Mont hyl yFronst at eMod() monthly time series from a StateMod file (if
reading and manipulating).

Readl nst r eantl owRi ght sFr ontt at eMbd() Read instream flow rights from a StateMod
instream flow rights file.

Set | nst r eantl owDenmandTSAver age For the specified instream flow water right(s),

Mont hl yFromR ght s() create a demand time series (average monthly).

Set I nstr eantl owDenandTSAver age For the specified instream flow location, create

Mont hl yConst ant () a demand time series (average monthly) that is

a constant value monthly pattern (twelve
values).

Wi tel nstreantl owDemandTSAver ageMont hl'y Write defined instream flow demand time
ToSt at ehbd() series (average monthly) to a StateMod file.

Checkl nst r eantl owDemandTSAver ageMont hl y() | Check instream flow demand time series
(average monthy) data for problems.

Wit eCheckFil e() Write the results of data checks to a file.

56 - StateMod 180

StateDMI Documentation

An example command file to create the instream flow demand time series (average monthly) file is shown
below (from the Colorado cm2005 data set):

StartLog(LogFile="ifa.commands.StateDMI . log")

i1fa.commands.StateDMI

z StateDMI command file to create the annual instream flow demand file for the Colorado model
getOutputYearType(OutputYearType:Water)

z Structures and total demands (rights) are defined in the instream flow rights file
zeadInstreamFIowRightsFromStateMod(lnputFiIe="..\StateMod\cmZOOS.ifr")

#

Step 1 - Set monthly instream flow demand to water rights for structures that are of
DemandType = 2 (*.dds)

#

SetInstreamFlowDemandTSAverageMonthlyFromRights(1D=""3*", 1 fNotFound=Add)
SetInstreamFlowDemandTSAverageMonthlyFromRights(1D=""5*", 1 fNotFound=Add)
SetInstreamFlowDemandTSAverageMonthlyFromRights(1D=""7*", 1 fNotFound=Add)
SetlInstreamFlowDemandTSAverageMonthlyFromRights(1D=""9500*", IfNotFound=Add)
SetInstreamFlowDemandTSAverageMonthlyFromRights(1D=""9506*", I fNotFound=Add)
SetInstreamFlowDemandTSAverageMonthlyFromRights(I1D="9507*", I fNotFound=Add)
SetInstreamFlowDemandTSAverageMonthlyFromRights(I1D="951*", 1 fNotFound=Add)
SetlInstreamFlowDemandTSAverageMonthlyFromRights(1D=""9535*", I fNotFound=Add)
SetInstreamFlowDemandTSAverageMonthlyFromRights(1D="9536*", I fNotFound=Add)
SetInstreamFlowDemandTSAverageMonthlyFromRights(1D="9537*", I fNotFound=Add)
SetInstreamFlowDemandTSAverageMonthlyFromRights(1D="9545*" I fNotFound=Add)
SetlInstreamFlowDemandTSAverageMonthlyFromRights(1D="954603", I fNotFound=Add)
SetlInstreamFlowDemandTSAverageMonthlyFromRights(1D=""954625", I fNotFound=Add)
SetlInstreamFlowDemandTSAverageMonthlyFromRights(1D="954655", I fNotFound=Add)

3+

StateDMI expects monthly values to be entered in Calendar Year.

#

#

#

Step 2 - Set monthly instream flow demands that vary by month

#

SetlInstreamFlowDemandTSAverageMonthlyConstant(1D="362000",

MonthValues="3.00,3.00,3.00,3.00,6.00,6.00,6.00,6.00,6.00,3.00,3.00,3.00", IfNotFound=Add)

SetInstreamFlowDemandTSAverageMonthlyConstant(1D="362012",
Monthvalues="3.00,3.00,3.00,3.00,7.00,7.00,7.00,7.00,7.00,3.00,3.00,3.00", IfNotFound=Add)

SetInstreamFlowDemandTSAverageMonthlyConstant(1D="362030",
Monthvalues="10.00,10.00,10.00,10.00,20.00,20.00,20.00,20.00,20.00,20.00,10.00,10.00", 1fNotFound=Add)

SetInstreamFlowDemandTSAverageMonthlyConstant(1D=""362033",
Monthvalues="6.00,6.00,6.00,6.00,12.00,12.00,12.00,12.00,12.00,6.00,6.00,6.00", IfNotFound=Add)

SetlInstreamFlowDemandTSAverageMonthlyConstant(1D="362037",
Monthvalues="16.00,16.00,16.00,16.00,32.00,32.00,32.00,32.00,32.00,32.00,16.00,16.00", 1 fNotFound=Add)

..similar commands omitted

#

Step 3 - Create StateMod file

#

WritelnstreamFlowDemandTSAverageMonthlyToStateMod(OutputFile=""__\StateMod\cm2005.ifa"")

#

Check the results

ChecklInstreamFlowDemandTSAverageMonthly (ID=""*"")

WriteCheckFile(OutputFile="ifa.commands.StateDMI.check.html')

5.8.4 Instream Flow Demand Time Series (Monthly, Daily)

StateDMI does not process monthly or daily instream flow demand time series. In most cases, the
average monthly time series described in the previous section are sufficient. To create complete monthly
or daily time series, use TSTool, a spreadsheet, or other software to prepare the time series file.

181 StateMod - 57

StateDMI Documentation

5.9 Well Data

Wells can be used to supply water to irrigated lands and municipal/industrial (M&I) demands (similar to
diversions). However, in most cases, StateMod modeling and StateDMI focuses on agricultural wells.
For agriculture, wells can be the only source of supply or can supplement surface water supply from
diversion stations. Well features were added to the StateMod model after diversions; consequently, much
of the processing for wells is similar to diversions.

Well stations that supplement diversion stations are often determined through GIS, where the service area
for the diversion station is intersected with well locations. Well stations that fall within a service area, or
are within a reasonable distance, are associated with the ditch service area. However, at a more
fundamental level, diversion and well stations in CDSS are associated with irrigated parcels. The parcel
data and its supply relationship from diversions and wells are then stored in HydroBase and can be
processed by StateDMI. Because a service area will typically contain multiple wells, the wells in the
StateMod well station file are typically aggregated and given an identifier that matches the diversion
station. The diversion station is then indicated as a D&W (diversion and well) node in the model
network. In general a “well station” in the StateMod well station file is not actually a single hole in the
ground, but is a group of physical wells that serve an area.

Well station data consists of:

o Well stations (will be associated with a diversion station if the well supplements the diversion
station)

Well rights

Historical pumping time series (monthly, daily)

Demand time series (monthly, daily)

Irrigation practice time series (yearly)

Consumptive water requirement time series (monthly, daily)

Soil moisture time series (yearly)

Each of the above data types is stored in a separate file, using the well station identifier as the primary
identifier. The processing of each data file is discussed below, with background on specific issues.

5.9.1 Well Stations
Each well station used with StateMod can be one of the following types:

1. Explicit well, where the no aggregation occurs — this type is used for key structures that need to
be explicitly modeled. For example, this type of well station may be appropriate for a large
municipal supply well. This type of well does not supplement a diversion station and therefore
will have a unique identifier that is represented in the model network. The well station identifier
is usually a 7-character water district identifier or fabricated identifier that starts with the water
district number.

2. Well system, where the characteristics (capacity, historical diversion, demand) of multiple wells
are summed at one location and water rights are modeled explicitly — this type is used when
related well structures operate as a system (e.g., a well field). Only the well system identifier is
included in the model network and this identifier should be different from the parts in the
collection. Well systems should be defined using the Set Wl | Syst ent () commands and
need to be defined when processing all well station files (if well systems are used). Well systems
can be one of the following types:

58 - StateMod 182

StateDMI Documentation

= Well-only supply (does not supplement diversions). The naming convention for
modeling in RGDSS is to use groundwater unit response function zones (URF); however,
aggregating wells by basin or some other logical grouping as appropriate.

= Well systems that supplement a diversion station’s supply. In this case the identifier for
the well should be the same as the diversion station, the well station should indicate the
diversion station identifier in the well station file, and the diversion station should be
represented in the network as a D&W node. Because relationships between wells and
diversion stations occur via parcels in HydroBase, the diversion station systems should be
defined (and the wells associated with each diversion station will consequently be treated
as a system).

3. Well aggregate, which is the same as a well system except that water rights are aggregated into
classes. Aggregation of the water rights typically occurs at the end of the command file with an
Aggr egat eVl | Ri ght s() command. Aggregates should be defined using the
Set Vel | Aggr egat e* () commands.

Because the number of wells can be very large, well stations often are grouped by whether they
supplement surface water supply (in which case the well is associated with a diversion via its service
area) or are the only source of supply for irrigated lands (in which case the well is associated with one or
more parcels). Processing the data then involves interpreting relationships between parcels, wells (holes
in the ground), and diversion stations, in order to lump wells into a model station that represents the total
groundwater supply in an area.

183 StateMod - 59

StateDMI Documentation

The well stations file may be updated several times, as follows:

N =

Initial creation (see this section).
Adjust well station capacities based on historical well pumping (see Section 5.9.3).
Adjust well monthly efficiencies based on estimates from consumptive water requirement (see

Section 5.9.5).

If a list of well stations is determined initially, the secondary files can be processed first and then the well
stations file can be fully created with one command file.

The Commands...Well Data...Well Stations menus insert commands to process well station data:

Well stations - Commmands

ReadwellStationsFromList() ...
ReadWwellStationsFromietwork() ...
ReadWellStationsFromStatetod() ...

sebwelfdggregatel) ...
SebwellfggregateFramList() ...
SetwellSystem) ...
SebwellSysternFromList() ...

SetWellStation) ...
SebwellstationsFromList ..

1! ReadCropPatternTSFromStakeCL0 L.

2: setwellstationAreaToCropPatternTSl) ...
1: ReadwelRightsFromatateMod() ...

2: SebwellSkationZ apacity TowellRights(y . ..

SortelStations(...

1: ReadDiversionStationsFromStateMod) ...
21 FillwellstationsFromDiversionStations() ...
FillwelStationsFromMetwark() ...
FillwellStationd) ...

SebwellstationDelay TablesFrommetwaorkD ...
SetWellStationDelay TablesFromR TR ...
SebwellstationDepletionTablesFromP TR .

WrikeWellSkationsTaLisk() ...
writeWwellStationsToStateMod?) ..,

Checkwelstations(...
WriteCheckFilel) ...

Commands...Well Data...Well Stations Menu

MenuCommands_WellStations

60 - StateMod

184

StateDMI Documentation

The following table summarizes the use of each command:

Well Stations Commands

Command

Description

ReadWel | St at i onsFromli st ()

Re ad from a delimited list file the list of well
stations to be included in the data set.

ReadWel | St at i onsFr omNet wor k()

Read from a StateMod network file a list of well
stations to be included in the data set.

ReadWel | St at i onsFr ontt at evbd()

Read from a StateMod diversion stations file the list
of well stations to be included in the data set.

Set Wl | Aggr egat e()

Specify that a well station is an aggregate and define
its parts.

Set Wl | Aggr egat eFronli st ()

Specify that one or more well stations are aggregates
and define their parts, using a delimited list file.

Set Vel | Syst em()

Specify that a well station is a system and define its
parts.

Set Wl | Syst enfr onLi st ()

Specify that one or more well stations are systems
and define their parts, using a delimited list file.

Set Wl | Station()

Set the data for, and optionally add, well stations.

Set Wl | St ati onsFromnli st ()

Set well station data from a list file.

ReadCr opPat t er nTSFr onfst at eCU()

Read the crop pattern time series file, for use by the
Set Wl | St ati onAreaToCr opPatternTS()

command.

Set Wl | St ati onAreaToCr opPatternTS()

Set the well station area data to the maximum area
value from the crop pattern time series (see previous
command to read the rights).

ReadWel | Ri ght sFrontt at eMbd()

Read the well rights file, for use by the
Set Wl | St ati onCapacityToWel | Ri ght s()

command.

Set Wl | St ati onCapaci t yToWel LRi ght s()

Set the well station capacity to the sum of the well
rights for the station (see the previous command to
read the rights).

SortWel | Stations()

Sort the well stations. This is useful to force
consistency between files.

ReadDi ver si onSt at i onsFr ontt at eMod()

Read the diversion stations data, to fill well station
data using
Fillwell StationsFronDi versionStations().

FillWell StationsFronDi versionStations()

Fill well stations from diversion stations (see the
previous command to read the diversion stations).

FillWell StationsFromNet wor k()

Fill missing data for defined well stations, using data
from the network. For example, retrieve the well
names, and capacities.

Fillwell Station()

Fill missing data for defined well stations, using user-
supplied values.

Set Vel | St at i onDel ayTabl esFr oniNet wor k()

Set default delay table information using network
relationships.

Set Vel | St ati onDel ayTabl esFr onRTN()

Set delay table information using information in a
return flow format file.

185

StateMod - 61

StateDMI Documentation

Command Description

Set Vel | St ati onDepl eti onTabl esFronRTN() | Set depletion table information using information in a
return flow format file.

WiteWell StationsToList () Write the well stations to a list file.

WiteWel | StationsToSt at eMbd() Write defined well stations to a StateMod file.
CheckVel | St ati ons() Check well station data for problems.

Wit eCheckFile() Write the results of data checks to a file.

An initial well station list is typically created from the network. The list is then used to create other files,
including water rights and time series. Finally, the completed files can be read and summarized in the
well station file, to update the following:

capacity

default monthly efficiencies
acreage

use and demand type

delay and depletion tables

In the future, some data are expected to be split out of the well station file, to minimize updating the
station file.

An example command file to create the initial well station file is shown below (from the preliminary
South Platte Sp2008L data set).

WelIs_WES.StateDMI

tartLog(LogFile="Sp2008L_WES.log")

HHOHFHFHHHR

Step 1 - Set the output period, used to compute averages.. .
SetOutputPeriod(OutputStart="1950-01",0utputEnd=""2006-12")

#

#

Step 2 - Read the list of well stations (all diversions + all well only)

ReadWel IStationsFromList(ListFile=""__\Network\sp2008L_Wells.csv",1DCol=1,NameCol=2,DiversionlDCol=8)

Step 2b - Read Aug and recharge well list (currently not in network, assigned to aug station ID)
#
readWel IStationsFromList(ListFile="sp2008L_AugRchWells.csv', IDCol="1",6NameCol="2",DiversionlIDCol="8")
#
#
Step 3 - Read diversion station information. This allows some diversion data to
be transferred to wells (e.g., demand source) and provides memory for
aggregate/system information.
ReadDiversionStationsFromList(ListFile=""_ _\Network\Sp2008L_Diversion.csv", IDCol=1,NameCol=2)
#
#
Step 4 - Set Well aggregates (GW Only lands)
SetWel ISystemFromList(ListFile="1956_01_ GW.csv",Year=1956,Div=1,
PartType=Parcel, IDCol=1,PartIDsCol=2,PartsListedHow=1nColumn)
SetWellSystemFromList(ListFile="1976_01 GW.csv",Year=1976,Div=1,
PartType=Parcel, IDCol=1,PartIDsCol=2,PartsListedHow=1nColumn)
SetWel ISystemFromList(ListFile="1987_01 GW.csv",Year=1987,Div=1,
PartType=Parcel, IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)
SetWellSystemFromList(ListFile="2001_01 GW.csv",Year=2001,Div=1,
PartType=Parcel, IDCol=1,PartlDsCol=2,PartsListedHow=InColumn)

62 - StateMod 186

StateDMI Documentation

#

Step 5 - Set Diversion _IRR aggregates...

SetWellAggregateFromList(ListFile="__.\Sp2008L_SwAgg.csv',bYear=2001,Div=1,
PartType=Ditch, IDCol=1,PartlDsCol=3,PartsListedHow=InRow)

#

#

Step 6 - Set Diversion Systems

SetWelISystemFromList(ListFile="_.\Sp2008L_DivSys_DDH.csv",Year=2001,Div=1,
PartType=Ditch, IDCol=1,PartlDsCol=3,PartsListedHow=InRow)

Step 7 - Set Diversion ID For D&W wells

Step 8 -**** Get capacity from well right file
11WellStation(1D="*"")

oW T

Step 9 - rrb 2007/10/10; Added commands to set well area to data in *.cds

ReadCropPatternTSFromStateCU(InputFile=""_ _\Crops\Sp2008L.cds")

SetWellStationAreaToCropPatternTS(ID=""*"")

#

Step 10 - Fill remaining missing data in well stations...

FillWellStation(1D="*",RiverNodelD="1D",Capacity=999,DailylID="4" ,AdminNumShift=0,
DemandType=1,UseType=1,DemandSource=1,EffAnnual=60)

#

Step 11 - Set delay and depletion data
SetWellStationDelayTablesFromRTN(InputFile=""__.\DelaySW\sp2008L_Sw.rtn",SetEfficiency=False)
SetWellStationDepletionTablesFromRTN(InputFile="__\DelaySW\sp2008L_Gw.rtn"")
#

Include Aug & Recharge wells

#

Step 12 - rrb 2007/11/16 Read Well rights from a StateMod well right Ffile
ReadWel IRightsFromStateMod(InputFile=""__\Wells\Sp2008L.wer"")

#

Step 13 - rrb 2007/10/03 Set capacity to total of water rights
SetWellStationCapacityToWel IRights(ID=""*"")

#

#

SmOpr

State of Colorado

Version: 1.00

Last revision date: 2006/10/27

#

SetWelIStation(1D=""0102522_AuW **,Name="RIVERSIDE Aug Well ",

RiverNodelD="0102522_AuW '*,Capacity=999.,DailylID="4",
AdminNumShift=0,DiversionlID="NA",DemandType=1, IrrigatedAcres=0.0,
UseType=5,DemandSource=8,EffAnnual=100.0,Returns="06759910,100.0,1",
Depletions="06759910,100.0,2", IfTNotFound=Add)

SetWelIStation(1D="0102528 AuW **,Name="FT Aug Well ",
RiverNodelD="0102528_AuW ",Capacity=999.,DailylD="4",
AdminNumShift=0,DiversionlID="NA",DemandType=1, IrrigatedAcres=0.0,
UseType=5,DemandSource=8,EffAnnual=100.0,Returns="06759910,100.0,1",
Depletions="06759910,100.0,2", I fNotFound=Add)

SetWellStation(1D="0102529_ AuW ' ,Name="UPPER Aug Well ",
RiverNodelD="0102529_ AuW ' ,Capacity=999.,DailylID="4",
AdminNumShift=0,DiversionlD="NA",DemandType=1, IrrigatedAcres=0.0,
UseType=5,DemandSource=8,EffAnnual=100.0,Returns="06759910,100.0,1",
Depletions="06759910,100.0,2", IfNotFound=Add)

..similar commands omitted..

#
#
rrb add Alternate Point wells SmAItP
#
S

etWellIStation(I1D=""0102520_AIP '*,Name="Alternate Point ",
Capacity= 999.,EffAnnual=100.0, IfNotFound=Add)
SetWellStation(1D="0102524_AIP " ,Name="Alternate Point ",

Capacity= 999.,EffAnnualzloo.O,IfNotFound:Add)
..similar commands omitted..
#
SortWelIStations(Order=Ascending)

187 StateMod - 63

StateDMI Documentation

Step 14 - Write the updated stations with estimated efficiencies to the StateMod file...
WriteWellStationsToStateMod(OutputFile="Sp2008L.wes"")
WriteWellStationsToStateMod(OutputFile=""__\StateMod\Historic\Sp2008L .wes"")

#

Check well stations

CheckWel lIStations(1D="*"")

WriteCheckFile(OutputFile="Sp2008L_WES.StateDMI .check_html'")

5.9.2 Well Rights

Well rights correspond to the well stations, using the well station identifier to relate the data. Well right
identifiers are typically the HydroBase identifier if modeling all rights explicitly. For Rio Grande
modeling, right identifiers used the convention of well station identifier followed by W NN, where W
indicates well right (to avoid conflict with diversion rights that would otherwise have the same identifier),
and NN is a sequential number starting with 01. Rights for well aggregate stations have rights
corresponding to water right classes.

The Commands...Well Data...Well Rights menu items insert commands to process well rights data:
Well Rights - Commmands

ReadWellStationsFromListl) ...
ReadwellstationsFromietwork ...
R eadwellstationsFramstateMad() ...

setwelldggregated) ...
setwelldggregateFromlist() ..,
SetWellSystemd) ...
SetwellSystemFromList() ...

ReadWwellRightsFromHydroBase() ...
ReadwellRightsFromstateMod() ...

SetwellRight() ...
FillwellRight(...

MergeiwellRights() ...
AggregatewelRightsy) ...
SortwellRights() ...

WritetWellRightsToLisk() ...
WriteWelRightsToSkakeMod() ...

CheckwellRights() ...

witeCheckFiled) ..,
MenuCommands_WellRights

Commands...Well Data...Well Rights Menu

64 - StateMod 188

StateDMI Documentation

The following table summarizes the use of each command. Note that well right aggregation (if aggregate
well stations are used) occurs after other processing.

Well Rights Commands

Command

Description

ReadWel | St ati onsFronli st ()

Read from a delimited file the list of well stations to be
included in the data set — the list indicates the stations for
which to process rights.

ReadWel | St at i onsFr omNet wor k()

Read from the network the list of well stations to be
included in the data set — the list indicates the stations for
which to process rights.

ReadWel | St ati onsFrontt at eMbd()

Read from a StateMod well stations file the list of well
stations to be included in the data set — the list indicates the
stations for which to process rights.

Set Wl | Aggr egat e()

Specify that a well station is an aggregate and define its
parts.

Set Wl | Aggr egat eFronLi st ()

Specify that one or more well stations are aggregates and
define their parts, using a delimited list file.

Set Wl | Syst em()

Specify that a well station is a system and define its parts.

Set Wl | Syst enfronli st ()

Specify that one or more well stations are systems and
define their parts, using a delimited list file.

ReadWel | Ri ght sFronmHydr oBase()

For each well station, read the corresponding well rights
from HydroBase.

ReadWel | Ri ght sFrontt at evbd()

Read well rights from a StateMod well rights file.

Set Vel TR ght ()

Set the data for, and optionally add, well rights.

FTTVel TR ght ()

Fill missing data for defined well rights, using user-
supplied values.

Mer geVeél | Ri ght s()

Merge well rights determined from multiple years of
irrigated lands parcel data in HydroBase. This is necessary
to avoid double-counting rights. Well/parcel matching data
are unique to each year of parcel data.

Aggr egat eVl | Ri ght s()

Aggregate well rights. This is used in some data sets to
reduce the number of well rights, which decreases model
run time and simplifies output.

Sort VeI TR ghts()

Sort the well rights. This is useful to force consistency
between files.

WiteWel | R ghtsToList()

Write well rights to a list file.

WiteWel | R ghtsToSt at eMod()

Write well rights to a StateMod file.

CheckWel | Ri ght s()

Check well right data for problems.

Wit eCheckFil e()

Write the results of data checks to a file.

189 StateMod - 65

StateDMI Documentation

An example command file to create the well rights file is shown below (from preliminary South Platte
Sp2008L data set):

z Sp2008L_WER.StateDMI

z rrb 2009/06/09; Revised to read 2005 data and recognize Aug and Recharge wells are in the network
z Well Rights File (*.wer)

gtartLog(LogFiIe:"Sp2008L_WER_Iog")

#

Step 1 - Read all structures

#

ReadWel IStationsFromNetwork(InputFile=""_ . \Network\Sp2008L.net')
SortWellStations()

Step 2 - define diversion and d&w aggregates and demand systems

SetWel lAggregateFromList(ListFile="". _\Sp2008L_SWAgg.csv",PartType=Ditch,
IDCol=1,NameCol=2,PartlDsCol=3,PartsListedHow=InColumn, I fNotFound=Warn)

SetWel ISystemFromList(ListFile="..\Sp2008L_DivSys DDH.csv",PartType=Ditch,
IDCol=1,NameCol=2,PartlDsCol=3,PartsListedHow=InRow, IfNotFound=Warn)

#

SetWel lAggregateFromList(ListFile="Sp2008L_AugRchWell_Aggregates.csv",
PartType=Well, IDCol=1,PartlDsCol=2,PartsListedHow=InRow)

#

#

Step 3- Set Well aggregates (GW Only lands)

rrb Same as provided by LRE as Sp_GWAgg_xxxx.csv except non WD 01 and 64 removed

SetWel ISystemFromList(ListFile="..\Sp2008L_GWAgg_1956.csv",Year=1956,
Div=1,PartType=Parcel,1DCol=1,PartlDsCol=2,PartsListedHow=InColumn)

SetWellISystemFromList(ListFile=""__.\Sp2008L_GWAgg_1976.csv",Year=1976,
Div=1,PartType=Parcel, IDCol=1,PartlDsCol=2,PartsListedHow=InColumn)

SetWel ISystemFromList(ListFile="..\Sp2008L_GWAgg_1987.csv",Year=1987,
Div=1,PartType=Parcel,1DCol=1,PartlDsCol=2,PartsListedHow=InColumn)

SetWelISystemFromList(ListFile=""__.\Sp2008L_GWAgg_2001.csv",Year=2001,
Div=1,PartType=Parcel,1DCol=1,PartlDsCol=2,PartsListedHow=InColumn)

SetWel ISystemFromList(ListFile="..\Sp2008L_GWAgg_2005.csv",Year=2005,
Div=1,PartType=Parcel, IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)

#

#

Step 4 - Read Augmentation and Recharge Well Aggregate Parts

SetWel lAggregateFromList(ListFile="Sp2008L_AugRchwWell_Aggregates.csv",
PartType=Well, IDCol=1,PartlDsCol=2,PartsListedHow=InRow,PartlDsColMax=25, I fNotFound=lgnore)

SetWel lAggregateFromList(ListFile="Sp2008L_AlternatePoint_Aggregates.csv",
PartType=Well, IDCol=1,PartlDsCol=2,PartsListedHow=InRow,PartIDsColMax=1, IfNotFound=Ignore)

#

Step 5 - Read rights from HydroBase

#

ReadWel IRightsFromHydroBase(I1D=""*", IDFormat=""HydroBaselD",
Year="1956,1976,1987,2001,2005",Div=""1",Defaul tAppropriationDate="1950-01-01",
DefineRightHow=RightlfAvailable,ReadWel IRights=True,UseApex=True,OnOffDefault=AppropriationDate)

#

Step 6 - Sort and Write

Write Data Comments="True" provides output used for subsequent cds and ipy acreage filling

Write Data Comments="False"™ provides merged file used for seting ipy max pumping

SortWelIRights(Order=LocationlDAscending,Order2=1DAscending)

#

#

WriteWel IRightsToStateMod(OutputFile="Sp2008L_NotMerged.wer",WriteDataComments=True)

MergeWel IRights(OutputFile=". .\StateMod\Historic\Sp2008L.wer"")

SortWelIRights(Order=LocationlDAscending,Order2=1DAscending)

#

#

WriteWel IRightsToStateMod(OutputFile="Sp2008L.wer" ,WriteDataComments=False,WriteHow=OverwriteFile)

66 - StateMod 190

StateDMI Documentation

WriteWel IRightsToStateMod(OutputFile="__\StateCU\Historic\Sp2008L.wer"",
WriteDataComments=False,WriteHow=OverwriteFile)

WriteWel IRightsToStateMod(OutputFile="_. _\StateMod\Historic\Sp2008L.wer",
WriteDataComments=False,WriteHow=OverwriteFile)

Check the well rights

CheckWelIRights(ID=""*"")

5.9.3 Well Historical Pumping Time Series (Monthly)

Well historical pumping time series (monthly) are estimated by the StateCU software. StateDMI does
provide commands to process well puming, as documented below. However, it is typical to use TSTool
or other software to process the StateCU output, as shown in the following example (adapted from
preliminary South Platte Sp2008L data set):

#

Sp2008L_WEH.TsTool

#

SetOutputPeriod(OutputStart="1950-01",0utputEnd=""2006-12")

#

Read a list of recharge wells and set to zero.

Note that the following says to read a StateMod file with name "x'.

An input type is needed but use the above and HandleMissingTSHow to trick it:

Specify the HandleMissingTSHow parameter to default to all missing values.

Then Fill with zero below.

CreateFromList(ListFile="Sp2008L_AugRchWells.csv", IDCol=1,DataType="WellPumping", Interval=Month,
InputType=StateMod, InputName="x",HandleMissingTSHow=Defaul tMissingTS)

FillConstant(TSList=AlITS,ConstantValue=0)

#

Read a list of Alternate Point Structures (ID col = 2) and set to zero using same approach as above

CreateFromList(ListFile="Sp2008L_AlternatePoint.csv", IDCol=2,DataType="WellPumping", Interval=Month,
InputType=StateMod, InputName="x",HandleMissingTSHow=Defaul tMissingTS)

FillConstant(TSList=AlITS,ConstantValue=0)

#

Now read time series from the historical well pumping file produced by StateCU.
Don"t read the time series file directly because it contains diversions and

wells. Instead, read the list of well stations with CreateFromList() and

specify the well pumping time series file to read. This takes a little

longer to run because the time series file is opened and read for each ID

in the list, but at least only the wells are added as time series.

#
C

reateFromList(ListFile=""__.\Network\Sp2008L_Wells.csv", IDCol=1,DataType="WellPumping", Interval=Month,
InputType=StateMod, InputName="". .\StateCU\Historic\Sp2008L.gwp" ,HandleMissingTSHow=Defaul tMissingTS)

Now output all of the time series

SortTimeSeries()

WriteStateMod(TSList=AlITS,OutputFile="Sp2008L.weh"')
WriteStateMod(TSList=AlITS,OutputFile="__\StateMod\Historic\Sp2008L.weh"")
CheckTi meSeri es(CheckCriteria="M ssing")

Wi teCheckFil e(Qut put Fi | e="Sp2008L_WEH. TSTool . check. ht m ")

191 StateMod - 67

StateDMI Documentation

Commands are available in StateDMI to support alternative approaches. The Commands...Well
Data...Well Historical Pumping TS (Monthly) menu items insert commands to process well historical
pumping time series (monthly) data:

Well Historical Pumping TS (Monthly) - Commands

SetOutputPeriod() ...
SetoutputyearTypel) ...

ReadwellStationsFramList ...
ReadwellStationsFromstaterod) ...

sebwelfggregatel) ...
SetWelldggregateFromList) ...
SebwelTystem) ..
SebwellsystemFromList() ...

ReadwelHistoricalPumping TSMonthlyFromstateC 0 L.,

SebwellHistoricalPumpingTSMonthly .
SetWellHistoricalPumpingT3MonthlyConstankd) ...

FillwelHistoricalPurping TaMonkhivAveraged ...
Fill'welHistaric alPurping TSMonkhivConstantd ...
1: ReadPatternFiles) ...

21 FillwelHistoricalPumpingTSMonthlyPatternl) ...

1: ReadwelRightsFromsStateMody) ...
21 LimitWwelHistoricalPumping TSMonthly ToRighks()

SorbWellHistoricalPunping TSMonthked L.
writewelHistoricalPumping TSMonthly ToStakeMod | .

SebwellstationCapacitiesFromTal) ...
SetWellstationd) ...
SebwellstationsFromListd ...

WriteWellStationsToStateMod() ...

CheckiwelHistaricalPurping T3Manthl(..
WikeCheckFile() ...

MenuCommands_WellHistoricalPumpingTSMonthly

Commands...Well Data...Well Historical Pumping TS (Monthly) Menu

68 - StateMod

192

StateDMI Documentation

The following table summarizes the use of each command.

Well Historical Pumping TS (Monthly) Commands

Command

Description

Set Qut put Peri od()

Set the output period. Time series are
automatically extended to this period if
necessary.

Set Qut put Year Type()

Set the output year type, which is used when
writing the files and for determining the
monthly efficiency order in station data.

ReadWel | St ati onsFronlLi st ()

Read from a delimited file the list of well
stations to be included in the data set.

ReadWel | St ati onsFrontt at evbd()

Read from a StateMod well stations file the list
of well stations to be included in the data set.

Set Wl | Aggr egat e()

Specify that a well station is an aggregate and
define its parts.

Set Wl | Aggr egat eFr onii st ()

Specify that one or more well stations are
aggregates and define their parts, using a
delimited list file.

Set Wl | Syst em()

Specify that a well station is a system and
define its parts.

Set Wl | Syst enfronlLi st ()

Specify that one or more well stations are
systems and define their parts, using a
delimited list file.

ReadWel | Hi st ori cal Punpi ngTS
Mont hl yFr ontst at eCU()

Read well historical pumping time series
(monthly) from a StateCU results file
(StateMod time series format), when directly
manipulating an existing file.

Set Vel | Hi st ori cal Punmpi ngTSMont hl y()

Set the data for a well historical pumping time
series (monthly). This cannot be used to set the
data for an aggregate/system part (only the
aggregate/system total can be set).

Set Wl | Hi st ori cal Punmpi ngTS
Mont hl yConst ant ()

Set the data for a well historical pumping time
series (monthly) to a constant value. This
cannot be used to set the data for an
aggregate/system part (only the
aggregate/system total can be set).

FillWell H storical Punpi ngTS
Mont hl yAver age()

Fill missing data in well historical pumping
time series (monthly) to the historical monthly
average values. If an aggregate/system, the
historical average is computed from the total.

FillWellH storical Punpi ngTS
Mont hl yConst ant ()

Fill missing data in well historical pumping
time series (monthly) to a constant value.

ReadPatternFi |l e()

Read the pattern file used with
FillwWellHi storical Punpi ngTS
Mont hl yPat t er n() commands.

FillWell H storical Punpi ngTS
Mont hl yPat t ern()

Fill missing data in well historical pumping
time series (monthly) to the monthly average
values, using wet/dry/average values.

193

StateMod - 69

StateDMI Documentation

Command Description

ReadVel | Ri ght sFronft at eMbd() Read well rights from a StateMod file, used to
limit the time series to rights.

Li m tWel | H stori cal Punpi ngTS Limit the well historical pumping time series

Mont hl yToRi ght s() (monthly) to the water rights that were

available at each point in time.

SortWel | Hi stori cal Punpi ngTSMont hiy() Sort the well historical pumping time series
(monthly). This is useful to force consistency
between files.

WiteWel | Hi storical Punpi ngTS Write well historical pumping time series
Mont hl yToSt f"‘t ehbd() . (monthly) to a StateMod file.
Set Vel | St ati onCapaci ti esFromS() Set well station capacities from historical

pumping time series maximum values, to
update the well station data.

Set Vel | St ation() Set well station data (for example to override
capacities from time series).

Set Vel | St ati onsFronLi st () Set well station data (for example to override
capacities from time series).

WiteVel | StationsToStat eMd() Write well stations to a StateMod file (if the
stations have been updated).

CheckVel | H stori cal Punpi ngTSMont hly () Check well historical pumping time series data
for problems.

WiteCheckFile() Write the results of data checks to a file.

5.9.4 Well Historical Pumping Time Series (Daily)

StateDMI does not process daily well pumping time series. Instead, use StateCU output, TSTool, a
spreadsheet, or other software to prepare the time series file.

5.9.5 Well Demand Time Series (Monthly)

Well demand time series (monthly) correspond to each well station, using the station identifier to relate
the data. Demands for well stations that supplement diversion stations are typically associated with the
diversion stations and are processed by commands described in Section 5.4.5 — Diversion Demand Time
Series (Monthly).

The following example TSTool file illustrates how historical well pumping time series can be used for the
historical demand case (from the preliminary South Platte Sp2008L data set):

#

Wells _Wem.TsTool; command used to create a historic well demand file
from a historic pumpinng file
SetOutputPeriod(OutputStart=""1950-01",0utputEnd=""2006-12"")
ReadStateMod(InputFile=""Sp2008L .weh'")

#

SortTimeSeries()

WriteStateMod(TSList=AlITS,OutputFile="Sp2008L.wem"™)
WriteStateMod(TSList=AlITS,OutputFile="_._\StateMod\Historic\Sp2008L.wem'")
CheckTi meSeri es(CheckCriteria="M ssing")

Wit eCheckFil e(Qut put Fil e="Sp2008L WEH. TSTool . check. htm ")

70 - StateMod 194

StateDMI Documentation

StateDMI also provides commands to process the well demand time series, should an approach different
from the above be required. The Commands...Well Data...Well Demand TS (Monthly) menus insert
commands to process well demand time series (monthly) data (and optionally the well stations file, to
save estimated efficiencies):

Well Demand TS (Monthly) - Commmands

SeboukputPeriod) ..
SeboukputYearTvpel) ...

ReadWelStationsFromLisk) ...
ReadWellStationsFromStateMod) ...

Setwelldggregated) ...
setwelldggregateFromListd) ...
SetWellSystemt) ...
SebwellSystemFromList() ...

ReadWelDemandTSManthlyFromstakeMad) ...

1: ReadlIrrigation' aterRequirement TSMontblvFromsState U L.

21 ReadwWellHistaricalPumpinaTsManthlyFromstakeMod() ..
3 CalculateWellStationEfficienciest) ...

SebwellStation) ...

SebWellStationsFramList ...
WriteWellStationsToStateMod() ...

CalculatewellDemandTSManthly L.
CalculateWelDemandTSMonthly Aslax) ...

SetwellDemandTSManthly ..
SetWellDemandTSManthlyCanstank() ..

FillwelDemandTaMontbly Average ...
FillwelDemandTaMonthiyConstant(l ...
1: ReadPatternFile() ...

21 Fil'welDemandTSMonthlyPatternly ...

ReadwellRightsFromStatefod() ...
LiritWelDermandTaMonthly ToRighks ...

SortwelDemandTaManthly(l ..
witeWellDemandTsMonthly Tostaterod() ...

CheckwelDemandTsMonthly(l ...
WriteCheckFilel) ...

MenuCommands_WelIDemandTSMonthly

Commands...Well Data...Well Demand TS (Monthly) Menu

195

StateMod - 71

StateDMI Documentation

The following table summarizes the use of each command:

Well Demand Time Series (Monthly) Commands

Command

Description

Set Qut put Peri od()

Set the output period. Time series are
automatically extended to this period if
necessary.

Set Qut put Year Type()

Set the output year type, which is used when
writing the files.

ReadWel | St ati onsFronLi st ()

Read from a delimited file the list of well
stations to be included in the data set.

ReadWel | St ati onsFrontt at evbd()

Read from a StateMod well stations file the
list of well stations to be included in the data
set.

Set Wl | Aggr egat e()

Specify that a well station is an aggregate
and define its parts.

Set Wl | Aggr egat eFr onii st ()

Specify that one or more well stations are
aggregates and define their parts, using a
delimited list file.

Set Wl | Syst em()

Specify that a well station is a system and
define its parts.

Set Wl | Syst enfronlLi st ()

Specify that one or more well stations are
systems and define their parts, using a
delimited list file.

ReadWel | DenandTSMont hl yFr onSt at eMod()

Read the well demand time series from a
StateMod file (if manipulating an existing
file).

Readl rri gat i onWat er Requi r enent TSMont hl yFr om
St at eCU()

Read irrigation water requirement (IWR)
time series generated by the StateCU model.

ReadWel | Hi st ori cal Punpi ngTSMont hl yFr ontt at e
Mod()

Read well historical pumping time series
(monthly) from a StateMod file (can also
read a StateCU file).

Cal cul ateWel | Stati onEfficiencies()

Calculate well station average efficiencies
as IWR/Diversions.

Set Wl | St ation()

Set well station data, in particular efficiency
data, to override the result from the previous
command.

Set Wl | St ati onsFronLi st ()

Set well station data from a delimited file, in
particular efficiency data, to override the
result from the previous command.

WiteWel | StationsToSt at eMod()

Write well stations to StateMod — the data
will include updated average efficiencies.

Cal cul at ewel | DenandTSMont hl y ()

Calculate the well demand time series
(monthly) using IWR/Eff,,. and historical
pumping time series.

Cal cul at eWel | DenandTSMont hl yAsMax()

Calculate the well demand time series
(monthly) as the maximum of the demand
(see previous command) and the well
historical pumping time series.

72 - StateMod 196

StateDMI Documentation

Command

Description

Set VI | DemandTSMont hl y ()

Set the data for a well demand time series
(monthly). This cannot be used to set the
data for an aggregate/system part (only the
aggregate/system total can be set).

Set Wl | DenandTSMont hl yConst ant ()

Set the data for a well demand time series
(monthly) to monthly constant values. This
cannot be used to set the data for an
aggregate/system part (only the
aggregate/system total can be set).

Fi || Wl | DenandTSMont hl yAver age()

Fill missing data in well demand time series
(monthly) to the monthly average values. If
an aggregate/system, the average is
computed from the total.

Fi | I Vel | DenandTSMont hl yConst ant ()

Fill missing data in well demand time series
(monthly) to a constant value.

ReadPat ternFi | e()

Read the pattern file used with
Fi Il Wl | DemandTS
Mont hl yPat t er n() commands.

Fi Il Vel | DemandTSMont hl yPat t er n()

Fill missing data in well demand time series
(monthly) to the monthly average values,
using wet/dry/average values.

ReadWel | Ri ght sFrontt at evbd()

Read well rights from a StateMod file, used
to limit the time series to rights.

Li mi t Vel | Denmand TSVont hl yToR ght s()

Limit the well demand time series (monthly)
to the water rights that were available at
each point in time.

Sor t Vil | DemandTSMont hl y ()

Sort the well demand time series (monthly).
This is useful to force consistency between
files.

Wit eWel | DemandTSMont hl yToSt at evbd()

Write well demand time series (monthly) to
a StateMod file.

CheckWel | DemandTSMont hl y()

Check well demand time series data for
problems.

Wit eCheckFil e()

Write the results of data checks to a file.

5.9.6 Irrigation Practice Time Series (Yearly)

The irrigation practice time series for well and diversion stations is typically copied from the StateCU

data files or the StateCU file is directly referenced.

5.9.7 Consumptive Water Requirement (Monthly, Daily)

The consumptive water requirement for well and diversion stations is typically copied from the StateCU

output or the StateCU file is directly referenced.

5.9.8 Soil Moisture Time Series (Yearly)

The soil moisture time series are stored in the same file as for diversion stations. See the StateMod

documentation for more information.

197

StateMod - 73

StateDMI Documentation

5.10 Stream Estimate Data
Stream estimate data consists of:

e Stream estimate stations
e Stream estimate coefficients
o Natural flow time series (monthly, daily)

Each of the above data types is stored in a separate file, using the stream estimate station identifier as the
primary identifier. Stream estimate stations correspond to locations where historical data are not
available, and instead streamflow is estimated by prorating gaged flows from other locations. StateMod
now supports separate stream gage (see Section 5.2 — Stream Gage Data) and stream estimate data;
however, stream estimate stations are often still mixed with stream gage stations in one station file (*.ris),
and stream estimate stations are indicated by stations that have data in the stream estimate coefficients
file. Stream estimate stations can correspond to existing diversion, reservoir, or well nodes, or can
correspond to the “other” node type, which will only have data in the network file and the stream estimate
files. In other words, a stream estimate “station” is a modeling term but does not correspond to a typical
station at which measurements are recorded. It is possible that a stream gage station has insufficient
historical data to serve as a true stream gage but the location of the gage is important in the model. In this
situation, the stream gage should not be identified as a flow node in the network but should instead be
identified as an “other” node type that is also a natural flow node. To support previous modeling
conventions, StateDMI allows combined stream gage/estimate stations lists in the stream stations file
(*.ris).

5.10.1 Stream Estimate Stations

The Commands...Stream Estimate Data...Stream Estimate Stations menus insert commands to
process stream estimate station data (in general, the features are very similar to the stream gage stations):

Stream Estimate Stations - Commands

ReadstreamEstimatestationsFromListy . ..
ReadstreamEstimatestationsFromMetwark() ...
ReadStreamEstimateStationsFromStatetod() ...

SetstreamEstimatestation) ...
SortStreamEskimateStations:) ...

FillstreamEstimatestationsFromHydroBasel) ...
1! ReadmebworkFramStateMad() ...

2 FillstreamEstimatestationsFromietworky . .,
FillstreamEskimatestation) ...

WriteStreamEstimatestationsToLisk) ...
W'rikeStreamE skimatestationsToStakeMod) ...

heckStreamEstimatesStations) ...
weriteCheckFile() L.

MenuCommands_StreamEstimateStations

Commands...Stream Estimate Data...Stream Estimate Stations Menu

74 - StateMod 198

StateDMI Documentation

The following table summarizes the use of each command:

Stream Estimate Station Commands

Command Description

ReadStreantsti nmat eSt ati onsFronii st () Read from a delimited list file the list of stream estimate

stations to be included in the data set.

ReadSt r eantst i mat eSt at i onsFr omNet wor k() Read from a StateMod network file a list of stream

estimate stations to be included in the data set.

ReadStreanksti nat eSt ati onsFrontt at eMdd() | Read from a StateMod stream estimate stations file the

list of stream estimate stations to be included in the data

set.

Set Streantsti mateeStati on() Set the data for, and optionally add, stream estimate
stations.

Sort Streantsti mat eStati ons() Sort the stream estimate stations. This is useful to force

consistency between files.

FillStreankEsti mateStationsFrontydroBase() | Fill missing data for defined stream estimate stations,

station names.

using data from HydroBase. For example, retrieve the

ReadNet wor kFr ontt at eMbd() Read the network file, providing data for the
Fill StreanEsti mat eSt ati onsFr onNet wor k()
command.

FillStreantsti mateStati onsFromNet wor k() Fill missing data for defined stream estimate stations,

using data from a StateMod network file. This is useful
when the station names are not found in HydroBase and
numerous Set St r eanEst i mat eSt ati on()
commands would otherwise be required.

Fill Streanktsti mateStation() Fill missing data for defined stream estimate stations, user
user-supplied values.

WiteStreankEsti mateStationsToLi st () Write defined stream estimate stations to a delimited file.

WiteStreankEsti mateStati onsToSt at eMbd() Write defined stream estimate stations to a StateMod file.

CheckStreanEsti mat eSt ati ons() Check stream estimate station data for problems.

WiteCheckFile() Write the results of data checks to a file.

An example command file to create the stream estimate station file is shown below (adapted from Rio
Grande data set but not implemented in production because a combined gage/estimate *.ris file was used,

note that some comments indicate the stations that are present in the stream gage station file):

Create the Rio Grande Stream Estimate Stations File

#

Note some stations that were in the original RIS Ffile are now in the SES file.
#

#

ReadStreamEstimateStationsFromNetwork(InputFile="__\StateMod\rgTW.net")

#

Fill in the name from HydroBase...

#
FillStreamEstimateStationsFromHydroBase(1D=""*"",NameFormat=""StationName_NodeType')
Set specific data, including name and daily ID overrides.

#

Set key gages to include actual daily observations

/* Stream gages are in the RIS

199

StateMod - 75

StateDMI Documentation

SetStreamGageStation(I1D="08213500" ,Name=""RG:THIRTYMILEBRG" ,Daily1D="08213500", I fNotFound=Warn)

. similar commands omitted..

*/

#

Set these key gages to use higer gages (less depletion) in the estimation

of baseflows

#

/* Stream gages are in the RIS

SetStreamGageStation(1D="08221500",Name=""RG:MONTEVISTA" ,Dai ly1D="08220000", 1 fNotFound=Warn)

..similar commands omitted..

*/

#

Set all diversion point flow stations to key gages in their water districts

#

SetStreamEstimateStation(1D="20*",DailyID="08220000", IfNotFound=Warn)

..similar commands omitted..

Set gage flow stations to key gages in their general area

/* Stream gages are in the RIS

SetStreamGageStation(1D="08214500",Name=""NCLEAR:BLWCONTRES",Dai lyI1D="08220000", I fNotFound=Warn)

..similar commands omitted..

*/

SetStreamEstimateStation(I1D="VenAbvSan",Name="VenteroFlowAboveS",Dailyl1D="08242500",
IfNotFound=Warn)

/* Stream gages are in the RIS

SetStreamGageStation(1D="08250000",Name=""CULEBRA:SANLUIS" ,Daily1D=""08242500", I fNotFound=Warn)

..similar commands omitted..

#

SetStreamGageStation(I1D="McIntyreSpr" ,Name="MCINTYRESPRINGS" ,DailyID="0", IfNotFound=Warn)

..similar commands omitted..

*/

SetStreamEstimateStation(1D=""BrkCrBFL",Name=""BROOKCREEK" ,Dai ly1D=""08227500", 1 fNotFound=Warn)

.similar commands omitted..

Set all no flow nodes to use zero daily ID

/* Stream gages are in the RIS

SetStreamGageStation(I1D=""ROCKCRNF"" ,Name=""ROCKCRK-NF" ,Dai ly1D=0, I fNotFound=Warn)

.similar commands omitted..

*/

Fill in the name from the network (anthing not filled or set above)...

#

FillStreamEstimateStationsFromNetwork(1D=""*",NameFormat=""StationName_NodeType')

Write the output...

WriteStreamEstimateStationsToStateMod(OutputFile="_.\StateMod\rgTW.ses",
WriteHow="OverwriteFile)

CheckStreamEstimateStations(I1D="*")

WriteCheckFile(OutputFile="ses.commands.StateDMI .check._html”)

An example command file to create a combined stream gage/estimate stations file is shown in Section
5.2 — Stream Gage Data.

5.10.2 Stream Estimate Coefficients

The stream estimate coefficients data indicate information to estimate natural streamflow at ungaged
locations, by prorating flows at stream gages. Each stream estimate station has data in the stream
estimate coefficients file. Proration factors may be any coefficient but are generally developed from
drainage area and precipitation data. During model calibration, the proration factors may be modified
using Set St r eanEst i mat eCoef fi ci ent s() commands.

76 - StateMod 200

StateDMI Documentation

The Commands...Stream Estimate Data...Stream Estimate Coefficients menus insert commands to
process stream estimate coefficient data:

Stream Estimate Coefficients - Commands

ReadStreamEstimateCoefficientsFromStaterMod) ...

ReadstreamEstimatestationsFromLisk() ...
ReadstreamEstimatestationsFramMetwarkl) ...
ReadstreamEstimatestationsFromstateftod) ...

SortStreamEstimatestations ...

SetStreamEstimateoefficientsPFGagel) ...
CalculatestreamEstimateCoefficients() ...
SetStreamEstimakeCoefFicients(y ...

WriteStreamEstimateCoefficientsToList() ..
WriteStreamEstimateCoefficientsTostakeMod) ...

CheckstreamEstimateCoefficients) ...
wrike_heckFile) L.

MenuCommands_StreamEstimateCoefficientss

Commands...Stream Estimate Data...Stream Estimate Coefficients Menu

Note that although the stream estimate stations are the primary data component related to stream estimate
coefficients, the list of stream estimate stations is typically read from the network. This is because the
network file includes data necessary to process the coefficients, including upstream/downstream
relationships and the area*precipitation information. Area and precipitation data are typically developed
using GIS tools — currently StateDMI does not estimate these values.

201 StateMod - 77

StateDMI Documentation

The area and precipitation data provided at a stream gage station represents the total area and average
precipitation for that drainage area. The area and precipitation provided at a stream estimate station
represent the incremented area between that station and the next upstream stream gage station. In the
following figure, the incremented area between each node is 100 units. As presented, the total area (and
the area specified in the generalized network file) is equal for the stream gage station. At stream estimate
stations (i.e., natural flow nodes, also previously called baseflow nodes), the area is the incremental area
from the upstream stream gage (or gages) to the stream estimate station (or the headwater area if there is
no upstream gage in the basin): 100 units at point 2 and 200 units at point 3.

EXAMPLE:
At
A =100
A =100
Atd
A =100
A =100 A =total area
A, =Network area
AL 3 A = gage
A,=300 =baseflow node
A =700
At
A =400
A =400

The default method used to provide natural flow data to StateMod is the Gain Approach, which includes
two terms: the upstream gage term and the gain term. The StateMod Users' Manual discusses this
equation in detail. The following summarizes the method StateDMI’s

Cal cul at eSt r eantst i mat eCoef fi ci ent s() command uses to provide natural flow
information to StateMod, using the Gain Approach.

e To estimate the gaged flow term, StateDMI determines all of the stream gage stations that have area-
precipitation data upstream of the stream estimate station. This results in a list of upstream stream
gage stations with a coefficient of +1 being entered on the first line of the stream estimate coefficients
file.

e To estimate the gaged component of the gain term, StateDMI identifies the downstream stream gage
stations and all upstream stream gage stations. This results in the downstream stream gage station
being assigned a coefficient of +1 and all the upstream stream gage stations being assigned a
coefficient of -1 on the second line of the stream estimate coefficients file.

e To estimate the proration factor component of the gain term, StateDMI calculates the ratio of the
incremental area-precipitation at the stream estimate station divided by the ungaged area-precipitation
(the downstream stream gage station area-precipitation minus the upstream stream gage station area-
precipitation).

78 - StateMod 202

StateDMI Documentation

¢ Inthe example above, the Gain approach results in the following at point 2:

Gage term = stream gage station flow at point 1
Gain term = 100/(400-100) * (flow (gage) at point 4 — flow (gage) at point 1).

The Neighboring Gage Approach is a second method that may be used to provide baseflow data to
headwater nodes only. Like the Gain Approach, this technique includes two terms: the upstream gage
term and the gain term. Implement this approach by using

Set St reanEst i mat eCoef fi ci ent sPFGage(| D, Gagel D) commands. The Neighboring Gage
approach is commonly used at headwater stream estimate stations to provide an ungaged hydrograph that
is more representative than the hydrograph from the Gain Approach. The following summarizes the
method used by StateDMI to provide natural flow information to StateMod using the Neighboring Gage
Approach:

e Because the gaged flow term is, by definition, null for a headwater node, no upstream stream gage
station values are entered on the first line of the stream estimate coefficients file.

e To estimate the gaged component of the gain term, StateDMI provides the neighboring gage assigned
by the user a coefficient of +1 on the second line of the stream estimate coefficients file.

e To estimate the proration factor component of the gain term, StateDMI calculates the ratio of the area
precipitation data provided at the natural flow node divided by the area-precipitation at stream gage
station assigned by the user.

e Assuming point 1 of the example is not a gage but instead is stream estimate station using the
Neighboring Gage Approach, then a typical application to a headwater node at point 1 would result in
the following (if the neighboring gage selected was at point 4):

Gage term = none
Gain term = 100/400 * (flow (gage) at point 4)

Note that when the Neighboring Gage approach is applied to a headwater node, StateDMI treats that
stream estimate station as if it were a gage. Therefore when the Neighboring Gage approach is used, the
area and precipitation data at any other stream estimate stations in the reach must be adjusted to reflect
that the aforementioned stream estimate station has taken on the characteristics of a gage. For the
example, where point 1 was a stream estimate station that uses the Neighboring Gage approach, the area
and precipitation assigned to points 2 and 3 would be altered as if a gage existed at point 1.

For example, to tie the characteristics of stream estimate station 360345 to stream gage station 09053000,
use the following command before the Cal cul at eSt r eanEst i mat eCoef fi ci ent s() command:

Set St reanEst i mat eCoef fi ci ent sPFGage(360345, 09053000)

Use Set St r eanEst i mat eCoef fi ci ent s() commands, as appropriate, to edit the calculated
proration factor and coefficients. This is particularly useful if the calculated proration factor does not
accurately represent the hydrology at that baseflow node. For example, to adjust the proration factor for
stream estimate station 384625 to 0.6:

Set St reanEst i mat eCoef fi ci ent s(1 D="384625", Pror ati onFact or =0. 6)

203 StateMod - 79

StateDMI Documentation

The following table summarizes the use of each command:

Stream Estimate Coefficients Commands

Command

Description

ReadSt r eantst i mat eCoef fi ci ent skronfst at eMod()

Read stream estimate coefficients from a
StateMod file, which is useful if simple
manipulation is occurring.

ReadSt r eanEst i mat eSt at i onsFronli st ()

Read from a delimited file a list of stream
estimate stations to be included in the data
set.

ReadSt r eanEst i mat eSt at i onsFr omNet wor k()

Read from a StateMod network file a list of
stream estimate stations to be included in
the data set.

ReadsSt r eanEst | mat eSt at | onsFr onSt at eMod()

Read from a StateMod stream estimate (or
gage) stations file a list of stream estimate
stations to be included in the data set.

Sort Streantsti mateStati ons()

Sort the stream estimate stations. The
default when read from the network is top
to bottom; however this order may be
difficult to interpret or compare with other
files and therefore sorting is useful.

Set St reantst i mat eCoef fi ci ent sPFGage()

Specify that the proration factor for a
stream estimate station should be
calculated using only the area*precipitation
data for a specific gage, rather than the
downstream node. The station is then
treated as if were a stream gage node for
other base flow calculations.

Cal cul at eSt reantsti mat eCoeffici ents()

Calculate stream estimate coefficients from
the network relationships and the
area*precipitation data stored in the
network for stream estimate stations.

Set St reanEst i mat eCoef fi ci ent s()

Set stream estimate coefficients, for
example, if the values that were calculated
need to be adjusted.

WiteStreantsti mat eCoeffici entssTolLi st ()

Write defined stream estimate coefficients
to a delimited file.

WiteStreantsti mat eCoeffici ent ssToSt at evbd()

Write defined stream estimate coefficients
to a StateMod file.

CheckStreantsti mat eCoef fici ents()

Check stream estimate coefficients data for
problems.

Wit eCheckFil e()

Write the results of data checks to a file.

80 - StateMod 204

StateDMI Documentation

An example command file to create the stream estimate coefficients file is shown below (from the
Colorado cm2005 data set):

StartLog(LogFile="rib.commands.StateDMI . log")

rib.commands.StateDMI

z Creates the Stream Estimate Station Coefficient Data file

i Step 1 - read river nodes from the network file and create file framework
geadStreamEstimateStationsFromNetwork(InputFiIe:"__\Network\cm2005_net")

z Step 2 - set preferred gages for "neighboring”™ gage approach

this baseflow nodes are generally on smaller non-gaged tribs and have
different flow characteristics than next downstream gages
#

SetStreamEstimateCoefficientsPFGage(1D=""360645",GagelD=""09055300"")
SetStreamEstimateCoefficientsPFGage(1D=""360801",GageD=""09055300'")
SetStreamEstimateCoefficientsPFGage(1D="362002",GageD=""09054000"")
SetStreamEstimateCoefficientsPFGage(1D=""360829" ,GagelD="09047500"")
SetStreamEstimateCoefficientsPFGage(1D="381441",GagelD=""09075700"")
SetStreamEstimateCoefficientsPFGage(1D=""382013",GageD=""09075700"")
SetStreamEstimateCoefficientsPFGage(1D="380959",GagelD=""09075700"")
SetStreamEstimateCoefficientsPFGage(1D=""381104",GagelD=""09075700"")
SetStreamEstimateCoefficientsPFGage(1D=""BaseFlow",GagelD="09091500"")

SetStreamEstimateCoefficientsPFGage(1D=""450632"
SetStreamEstimateCoefficientsPFGage(1D="450685"
SetStreamEstimateCoefficientsPFGage(1D="450810"
SetStreamEstimateCoefficientsPFGage(1D=""450788"
SetStreamEstimateCoefficientsPFGage(1D="500601"
SetStreamEstimateCoefficientsPFGage(I1D="500627"
SetStreamEstimateCoefficientsPFGage(1D="510594"
SetStreamEstimateCoefficientsPFGage(1D="510728"
SetStreamEstimateCoefficientsPFGage(1D=""510941"
SetStreamEstimateCoefficientsPFGage(I1D="512061"
SetStreamEstimateCoefficientsPFGage(1D="520658"
SetStreamEstimateCoefficientsPFGage(1D="522006""
SetStreamEstimateCoefficientsPFGage(1D="530883"
SetStreamEstimateCoefficientsPFGage(I1D="530632"
SetStreamEstimateCoefficientsPFGage(1D="530585"
SetStreamEstimateCoefficientsPFGage(1D=""531051"
SetStreamEstimateCoefficientsPFGage(1D="720649"
SetStreamEstimateCoefficientsPFGage(1D="720580"
SetStreamEstimateCoefficientsPFGage(1D="720557"

SetStreamEstimateCoefficientsPFGage(1D=""09104000",GageD=""09104500"")
SetStreamEstimateCoefficientsPFGage(1D=""09101500",Gage1D=""09104500"")

SetStreamEstimateCoefficientsPFGage(1D=""953800"
SetStreamEstimateCoefficientsPFGage(1D="720816"
#

Step 3 - calculate stream coefficients
CalculateStreameEstimateCoefficients()

#

Step 4 - set proration factors directly

#

SetStreamEstimateCoefficients(1D=""364512" ,ProrationFactor=1.
SetStreamEstimateCoefficients(1D=""374641" ,ProrationFactor=0.

,Gage 1D=""09092600"")
,Gage 1D=""09089500"")
,Gage 1D=""09089500"")
,Gage 1D="09089500"")
,Gage 1D=""09041200"")
,Gage 1D="09041200"")
,Gage 1D="09026500"")
,Gage 1D="09032000"")
,Gage 1D="09033500"")
,Gage 1D=""09039000"")
,Gage 1D=""09060500"")
,Gage 1D=""09060500"")
,Gage 1D="09060500"")
,Gage1D="09071300"")
,Gage 1D="09085200"")
,Gage 1D="09085200"")
,Gage 1D=""09097500"")
,Gage 1D=""09097500"")
,Gage 1D="09104500"")

,Gagel1D="09097500"")
,Gagel1D="09104500"")

000, I fNotFound=Warn)
200, IfNotFound=Warn)

SetStreamEstimateCoefficients(1D=""374648",ProrationFactor=0.350, I fNotFound=Warn)
SetStreamEstimateCoefficients(1D=""380880",ProrationFactor=1.000, I fNotFound=Warn)
SetStreamEstimateCoefficients(1D="381594" ,ProrationFactor=0.800, I fNotFound=Warn)
SetStreamEstimateCoefficients(1D=""384617",ProrationFactor=0.700, I fNotFound=Warn)
SetStreamEstimateCoefficients(1D=""510639",ProrationFactor=1.000, I fNotFound=Warn)
SetStreamEstimateCoefficients(1D="514603",ProrationFactor=0.800, I fNotFound=Warn)
SetStreamEstimateCoefficients(1D="514620",ProrationFactor=1.000, I fNotFound=Warn)
SetStreamEstimateCoefficients(1D=""510728",ProrationFactor=1.000, I fNotFound=Warn)
SetStreamEstimateCoefficients(1D=""530555",ProrationFactor=0.180, I fNotFound=Warn)
SetStreamEstimateCoefficients(1D="530678",ProrationFactor=0.230, I fNotFound=Warn)
SetStreamEstimateCoefficients(1D=""531082",ProrationFactor=1.000, I fNotFound=Warn)
SetStreamEstimateCoefficients(1D=""954683",ProrationFactor=0.400, I fNotFound=Warn)
#

Step 5 - create streamflow estimate coefficient file

205 StateMod - 81

StateDMI Documentation

#
WriteStreamEstimateCoefficientsToStateMod(OutputFile="__\StateMOD\cm2005.rib")
#

Check the results

CheckStreamEstimateCoefficients(ID="*")
WriteCheckFile(OutputFile="rib.commands.StateDMI.check.html')

5.10.3 Stream Estimate Natural Flow Time Series (Monthly, Daily)

Stream estimate natural flow time series for stream estimate stations are not processed by StateDMI.
Instead, use StateMod’s baseflow module, TSTool, or other software to crate monthly and daily base flow
time series files.

Refer to Section 5.2.3 — Stream Natural Flow Time Series (Monthly, Daily) for more information.
5.11 River Network Data
River network data consists of:

o Network (used by StateDMI, StateMod GUI)
¢ River network (used by StateMod)

The river network file used by StateMod is a relatively simple file, containing river node identifiers, river
node name, and downstream river node. The purpose of this file is to indicate the upstream to
downstream connectivity of model nodes. StateMod is designed to allow the river node identifiers to be
different from station identifiers. This allows, for example, multiple diversion stations to be located at the
same river node. Much of the detailed StateMod output is by river node, using river node identifiers.
However, StateDMI and the StateMod GUI enforce the convention that the river node identifiers are the
same as station identifiers in other files and allow only a single station at a river node. This tends to
minimize data errors and confusion with identifiers. To be consistent with StateMod documentation and
nomenclature, the term “river node” is used in some parts of StateDMI where a river node identifier is
needed in addition to a station identifier.

The network data are listed after other data components in this documentation and StateDMI menus,
mainly because network data (and the operational data described in Section 5.12) are related to higher-
level modeling concepts and do not need to be completely addressed until other data files are created.
There are two main ways that network data will be created:

1. An existing data set and model network are available and only minor changes to the network need
to occur. In this case, the StateDMI interface can be used to insert, delete, or modify nodes to
make minor edits to the network. Lists of stations can then be read from the network in order to
process all data files. This is the approach taken throughout the current StateDMI documentation.

2. Data files are created starting with lists of identifiers. For example, for a new data set, rather than
developing a network file and reading station identifiers from the network, simple delimited files
with lists of identifiers are used. These lists of station identifiers could be created by StateView
or other software. StateDMI supports this approach by allowing list files to be provided when
creating station files. Subsequent processing (e.g., for water rights and time series files), rely on
the StateMod format station files. This approach has not been fully implemented due to limited
resources and because of a number of technical issues. For example, some data file processing
requires that the network file be available (e.g., assigning default return flow locations). Also,
StateDMI does not currently provide the capability to display lists of stations to allow upstream to
downstream relationships to be defined. This capability is planned for the future. Consequently,

82 - StateMod 206

StateDMI Documentation

the only alternative at this time is to create a model network using the StateDMI interface.
Because efforts have focused on developing StateDMI to support existing modeling efforts,
option 1 is fully supported. When the list-based approach is fully supported, a network file would
be initialized using the list data and then data set maintenance would revert to option 1.

The generalized network file contains more data than the simple StateMod river network file:

¢ node locations, label position, and other information for the network diagram
area and precipitation information used to calculate proration factors in the stream estimate
coefficients file (see Section 5.10.2 — Stream Estimate Coefficients)

e indicators for natural flow (stream estimate) nodes

The generalized network file was previously hand-edited and used as input to the Makenet program.
StateDMI generally allows reading the old Makenet file. However, the new version is in XML format
and allows for greater flexibility. See Section 3.6.1 — Updating an Old Makenet Format to New
Format for information about how to interactively convert an old network file to the new format. These
steps can also be performed using commands, as described below. StateMod only reads the river network
file. However, the generalized network file is needed by StateDMI and StateMod GUI. Therefore, effort
should be taken to keep these files synchronized. In general, all network editing should use the
generalized network and the StateMod river network file should be created from this file.

The processing of each data file is discussed below.
5.11.1 Network (used by StateDMI, StateMod GUI)
These features are under development but are made available for evaluation.

The Commands...River Network Data...Network menus insert commands to process the generalized
network file:

Metwork {(used by StateDMI, StateMod GUI) - Commands

ReadMebworkFromStatefod() ...

' ReadRivertletworkFromatateMod) ...

! ReadstreamGagestationsFromstakeMad) | ..

i ReadDiversionStationsFromataterod) ...

i ReadR.eservoirStationsFromstateMod) ...

i ReadInstreamFlowStationsFromStateiMod() ...

i ReadWellStationsFromStakeMod | ..

' ReadstreamEstimatesStationsFromstateMod() ...

L = I L I L R

i CreatehlebworkFromRiverMebwork() ...
FilletwarkFromHwdroBase) ...
WriteMetworkToStateMod?) ...
PrintMetvark() ...

MenuCommands_Network

Commands...River Network Data...Network Menu

207 StateMod - 83

StateDMI Documentation

These commands can be used to convert a StateMod river network file to a generalized network file — this
may be necessary when StateDMI or Makenet was not used to create the StateMod river network file.
The StateMod river network file contains limited information about nodes and therefore information must
be read from other StateMod files. For most data sets, river network commands can be used instead (see

the next section).

The following table summarizes the use of each command:

Network Commands

Command

Description

ReadNet wor kFr onst at eMbd()

Read the generalized network from an XML
network file (for manipulation).

ReadRi ver Net wor kFr ontt at evbd()

Read the river network from a StateMod river
network file.

ReadSt r eanGageSt at i onsFr ontt at evbd()

Read stream gage stations from a StateMod
stream gage stations file.

ReadDi ver si onSt at | onsFr onSt at eMod()

Read diversion stations from a StateMod
diversion stations file.

ReadReser voi r St at i onsFr ontt at eMod()

Read reservoir stations from a StateMod
reservoir stations file.

Readl nst r eant| owSt at i onsFr ontt at evbd()

Read instream flow stations from a StateMod
instream flow stations file.

ReadWel | St ati onsFrontt at eMbd()

Read well stations from a StateMod well
stations file.

ReadSt r eanEst i mat eSt at | onsFr onSt at eMod()

Read stream estimate stations from a
StateMod stream estimate stations file.

Cr eat eNet wor kFr onRi ver Net wor k()

Create the generalized network from the
StateMod river network and information from
stations files.

Fi | | Net wor kFr onHydr oBase()

Fill missing network information using
HydroBase.

Wit eNetwor kToSt at eMod()

Write the generalized network to a StateMod
XML network file.

Pri nt Net wor k()

Print all or a subset of the network diagram.

An example command file to create the generalized network file is shown below (contrived example not

validated in production):

StateMod network file (RIN).
#

CreateNetworkFromRiverNetwork()

This commands file creates a generalized network file from an existing

ReadRiverNetworkFromStateMod (" . .\StateMod\rgTW_orig.rin')
ReadStreamGageStationsFromStateMod (™. .\StateMod\rgTW.ris"™)
ReadDiversionStationsFromStateMod ("' . .\StateMod\rgTW.dds'")
ReadReservoirStationsFromStateMod(™. .\StateMod\rgTW.res')
ReadlInstreamFlowStationsFromStateMod (" . .\StateMod\rgTW.ifs"™)
ReadWel IStationsFromStateMod(". .\StateMod\rgTW.wes")
ReadStreamEstimateStationsFromStateMod("' . .\StateMod\rgTW.ses")

FilINetworkFromHydroBase(LocationEstimate="Interpolate')
WriteNetworkToStateMod(OutputFile=". _\StateMod\rgtw.net" ,WriteHow=""OverwriteFile')

84 - StateMod

208

StateDMI Documentation

After the above commands are run, the resulting network file can be edited with the network editor to add
stream labels, adjust node positions as necessary, and specify area/precipitation data that can be used

when processing stream estimate coefficients.

5.11.2 River Network (used by StateMod)

The Commands...River Network Data...River Network menus insert commands to process the

StateMod river network file:

River Network {used by StateMod) - Commands

ReadietworkFromstateMod() ...

CreateRiverMetworkFromMebwork() ...

SetRiverhetwarkMode() ...

FillRtiverMetwarkFromHydroBase() ...
FillRiverMetworkFromietwork() ...
FillRiverMetworkhadey ..

WriteRiverMebworkToList ..,
WriteRiverMetwarkToStakeMod() ...

CheckRivertetworkl) ...

writeCheckFile() ...

MenuCommands_RiverNetwork

Commands...River Network Data...River Network Menu

These commands are used to convert the generalized network file, which StateDMI uses for the network
diagram, into the StateMod river network, which contains a subset of the data and is used by StateMod.
The following table summarizes the use of each command:

River Network Commands

Command

Description

ReadNet wor kFr ontst at evbd()

Read the generalized network from a StateMod XML (or
old Makenet) network file.

Cr eat eRi ver Net wor kFr omNet wor k()

Create the StateMod river network from the generalized
network data. Node names are not, by default taken from
the network because they may have been adjusted from
database names to facilitate labeling or presentation.

Fi || Ri ver Net wor kFr onHydr oBase()

Fill river network data (e.g., station names) from
HydroBase. This allows “official” names to be used in
the river network file, rather than those used in the
generalized network file.

Fi | | Ri ver Net wor kFr omNet wor k()

Fill river network data (e.g., station names) from the
generalized network. This allows names that are not in
HydroBase (e.g., from aggregate nodes) to be taken from
the network file.

Fi || Ri ver Net wor kNode()

Fill river network data (e.g., station names) from user
supplied values.

209 StateMod - 85

StateDMI Documentation

Command Description

WiteR verNet workTolLi st () Write the river network to a delimited file.

WiteRi ver Net wor kToSt at eMbd() Write the river network to a StateMod river network file.
CheckRi ver Net wor k () Check river network data for problems.

Wi teCheckFile() Write the results of data checks to a file.

An example command file to create the StateMod river network file is shown below (from the Colorado
cm2005 data set):

StartLog(LogFile="rin.commands.StateDMI.log")

rin.commands.StateDMI

#

creates the river newtork file for the Colorado River monthly/daily models
#

Step 1 - read river nodes from the network file and create file framework
#

ReadNetworkFromStateMod(InputFile="cm2005.net")
CreateRiverNetworkFromNetwork()

#

Step 2 - get node (diversion, stream stations, reservoirs, instream flows)
names from from HydroBase

#

FillRiverNetworkFromHydroBase(I1D=""*",NameFormat=StationName_NodeType)

#

Step 3 - read missing node names from network file

#

FilIRiverNetworkFromNetwork(ID="*"_ NameFormat="StationName_NodeType',CommentFormat="StationlID")
#

Step 4 - create StateMod river network file

#

WriteRiverNetworkToStateMod(OutputFile="__\StateMod\cm2005.rin")

#

Check the results

CheckRiverNetwork(1D="*"")

WriteCheckFile(OutputFile="rin.commands.StateDMI.check.html')

The river network file that is created by the above commands should not in general be edited further.
Instead, if changes to the model network are needed, edit the generalized network file, using the
StateDMI network editor, and regenerate the StateMod river network file.

5.12 Operational Data

Operational data consist of the operational rights file (*.opr), which contains unique operation criteria
used within a river basin. Operational rights are priority based and control operations such as transfers
between structures, reservoir releases, etc. If a data set cannot be configured to simulate a known
behavior in a basin, then a new operational right type may need to be developed. The operational right file
is generally copied from the test data or base data and hand-edited according to the format described in
the StateMod Users' Manual.

StateDMI currently does not prepare the operational rights data file. Commands may be added in the
future, in particular to allow warnings to be generated when operational rights data do not match other
data.

5.13 San Juan Sediment Recovery Plan Data

StateDMI currently does not prepare the San Juan Sediment Recover Plan data file. Refer to the
StateMod documentation for more information.

86 - StateMod 210

StateDMI Documentation

5.14 Spatial Data

StateDMI currently does not prepare spatial data for the StateMod. StateMod itself does not use spatial
data files — the response file includes data for GIS to support the StateMod GUI. Standard spatial data
layers from CDSS can be used with a GeoView project file (*.gvp) to provide displays in the StateMod
GUI. See the GeoView Mapping Tools Appendix in the StateMod GUI Documentation for more
information.

Standard ESRI shapefiles as created by GIS software can be specified in the *.gvp file. For performance
and display reasons, the spatial data files associated with a data set are typically filtered by the StateMod
GUI to only contain the information related to the StateMod data set. Otherwise, displays may be
crowded with unnecessary information and performance will suffer. Shapefiles for stations and structures
in HydroBase are available on the CDSS web site. These shapefiles typically contain all data for a
division and therefore may need to be filtered for best performance, although it is usually possible to
simply use layers generated from HydroBase.

In order to take advantage of all StateMod GUI features, it may be necessary to create new spatial data
layers for points not represented in HydroBase, including aggregate and system nodes and also “other”
nodes. StateMod stations that are not included in standard spatial data files (e.g., aggregate structures)
can be digitized into shapefiles using standard GIS tools. See the StateMod GUI documentation for
information about configuring the layers for use in the StateMod GUI.

211 StateMod - 87

StateDMI Documentation

This page is intentionally blank.

88 - StateMod 212

6 Troubleshooting

Version 3.09.01, 2010-02-11
This chapter discusses how to troubleshoot StateDMI problems.

The StateDMI log file is created in the logs directory under the main installation directory (e.g.,
C:\CDSS\StateDMI-03.09.01\ogs\StateDMI_USER.log), where the version will agree with the software
version.

The most common problems are program configuration (see the Installation and Configuration
Appendix), user input error (see the Command Reference for a summary of commands), and database
errors (more below). Other problems should be reported to the StateDMI developers (see
Acknowledgements for support contacts). When contacting support, provide as much information as
possible, including system information and the command file that is being run. For example, use the
Tools...Diagnostics tool to turn on the debugging checkbox and then get the system information from
Help...About. Send this information to support.

Checks have been implemented to detect common errors and use of the Check* () and

Wit eCheckFil e() commands is recommended. However, to fully diagnose a problem you may
need to refer to the log file. The log file is accessible from the Tools...Diagnostics — View Log File
dialog.

In general, when running StateDMI, you will be warned about problems with yellow and red markers
displayed next to commands in the command list.

Due to the complexity of the State of Colorado’s HydroBase database and other input sources and the
complexity of some commands, user and database errors can occur for a number of reasons. The
following table summarizes common errors and their fixes.

StateDMI Errors and Possible Solutions

Error Possible solutions

StateDMI does not | 1. StateDMI uses a startup program to run and all files related to StateDMI
run (error at start- are stored in the installation folder. If the software does not run, files may
up). have been moved, removed, or modified, or there may be an

incompatibility with the computer. Try running the \CDSS\StateDMI-
Version\bin\StateDMI.exe program from a command shell window to see if
messages are printed.

2. Review problems reported in the \CDSS\StateDMI-
Version\logs\StateDMI_USER.log file.

3. Report the problem to support.

StateDMI fails on StateDMI may run out of memory on large queries. Increase the memory by

large queries. changing the value of the - nk NNmoption in the \CDSS\StateDMI-

Version\bin\StateDMI.I4j.ini file. There is a limit of approximately 1440 MB

on 32-bit operating systems.

Commands appear | Command files are simple text files and each command must exist on one line.

to be split into Comments are indicated by lines that start with a # character. When editing
pieces when commands files with a text editor, or when pasting commands into the
processed and comment editor dialog, Ctrl-M characters (carriage return) may be inserted by

errors occur for the | some software. These characters will display as * Min some software or a box

213 Troubleshooting - 1

StateDMI Documentation

Error Possible solutions
partial commands. | in Notepad.

To correct the problem, remove the Ctrl-M characters with an editor that is
able to display the characters.

Unable to find files | The working directory is assumed to be the same as the location of the most
correctly. recently opened or saved command file. The current working directory is
generally displayed by editor dialogs that read or write files. If files are not
being found, verify that the path to the file is correct, whether specified as an
absolute path or relative to the command file. Confirm that the command file
is saved to a location relative to the files that are being referenced.
Unexpected failure. | If there was a serious error in input, StateDMI may quit processing input. See
the log file for details. If the log file does not offer insight, contact support.

2 - Troubleshooting 214

7 Quality Control

Version 03.09.01, 2010-02-11

This chapter discusses how StateDMI software is quality controlled and how to use StateDMI to perform
quality control of data, processes, and other software. Similar capabilities are built into the TSTool
software.

7.1 Quality Control for StateDMI Software

StateDMI software provides many data processing commands. Each command typically provides
multiple parameters. The combination of commands and parameters coupled with potential data changes
and user errors can make it difficult to confirm that StateDMI software is performing as expected. In
particular, it would be very time consuming and expensive to manually check software functionality
every time a change is made. These are the same challenges faced by any software tool, including
spreadsheets, and models. To address this quality control concern, a testing framework has been built
into StateDMI to allow the software to test itself. Test cases can be defined for each command, with test
cases for various combinations of parameters. The suite of all the test cases can then be run to confirm
that the version of StateDMI does generate expected results. This approach performs regression testing
using the test framework and utilizes StateDMI’s error-handling features to provide visual feedback
during testing.

Test cases are developed by software developers as new features are implemented, according to the
following documentation. However, users can also develop test cases and this is encouraged to ensure
that all combinations of parameters and input data are tested. Users who provide verified test data and
results prior to new development can facilitate the new development.

7.1.1 Writing a Single Test Case

The following example illustrates a single test case (indented lines indicate commands that are too long to
fit on one line in the documentation).

Test setting diversion stations with a couple of generated stations
StartLog(LogFile="Results/Test_SetDiversionStation.StateDMI.log")
RemoveFile(InputFile="Results\Test_SetDiversionStation_out.csv')
RemoveFile(InputFile="Results\Test_SetDiversionStation_out_ReturnFlows.csv'")
RemoveFile(InputFile="Results\Test_SetDiversionStation_out_Collections.csv')
SetDiversionStation(1D=""2000505" ,Name="Diversion 1",RiverNodelD="ID",0n0ff=1,
Capacity=101,ReplaceResOption=0,DailyID="1D",UserName="User1l" ,DemandType=1,
IrrigatedAcres=1001,UseType=1,DemandSource=1,EffMonthly="60,61,62,63,64,65,66,67,68,69,70,71",
Returns="retll1,75,101;retl12,25,102", IfNotFound=Add)
SetDiversionStation(1D="2000631",Name="Diversion 2" ,RiverNodelD="ID",0n0ff=1,
Capacity=102,ReplaceResOption=1,DailylID="1D",UserName="user2" ,DemandType=1,
IrrigatedAcres=1002,UseType=1,DemandSource=1,EffMonthly="70,71,72,73,74,75,76,77,78,79,80,81",
Returns="ret21,75,21;ret22,25,22", IfNotFound=Add)
Uncomment the following command to regenerate the expected results.
WriteDiversionStationsToList(OutputFile="ExpectedResults/Test_SetDiversionStation_out.csv')
WriteDiversionStationsToList(OutputFile="Results/Test_SetDiversionStation_out.csv')
CompareFiles(InputFilel="ExpectedResults/Test_SetDiversionStation_out.csv",
InputFile2="Results/Test_SetDiversionStation_out.csv",WarnlfDifferent=True)
CompareFiles(InputFilel="ExpectedResults/Test_SetDiversionStation_out_ReturnFlows.csv",
InputFile2="Results/Test_SetDiversionStation_out_ReturnFlows.csv" ,WarnlfDifferent=True)
CompareFiles(InputFilel="ExpectedResults/Test_SetDiversionStation_out_Collections.csv",
InputFile2="Results/Test_SetDiversionStation_out_Collections.csv" ,WarnlfDifferent=True)

Example Test Case Command File

215 Quality Control - 1

Quality Control StateDMI Documentation

The purpose of the test case command file is to regenerate results and then compare the results to
previously generated and verified expected results. The example illustrates the basic steps that should be
included in any test case:

1.

Start a log file to store the results of the specific test case. The previous log file will be closed
and the new log file will be used until it is closed. The log file is not crucial to the test but helps
with troubleshooting if necessary (for example if evaluating the test case output when run in a test
suite, as explained later in this chapter).
Remove the results that are to be generated by the test. This is necessary because if the
software fails and old results match expected results, it may appear that the command was
successful. The | f Not Found=Il gnor e parameter is useful because someone who is running
the tests for the first time may not have previous results to remove. Test developers should use
| f Not Found=War n when setting up the test to confirm that the results being removed match
the name that is actually generated in a later command, and then switch to
| f Not Found=I gnor e.
Generate or read test data. The Set Di ver si onSt ati on() command is used in the
example to create a diversion station. This is a useful technique because it allows full control
over the initial data and minimizes the number of files associated with the test. Synthetic data are
often appropriate for simple tests. If the test requires more complicated data, then files can be
read.
Process the data using the command being tested. In the example, the
Set Di versi onSt ati on() command itself is being tested. In many cases, a single
command can be used in this step. However, in some cases, it is necessary to use multiple
commands (e.g., define diversion stations and then test a fill command). Using more than one
command is OK as long as each command is sufficiently tested with appropriate test cases to
ensure that a false pass does not occur.
Write the results. The resulting data objects are written to a standard format. Comma-separated
value files are useful for general testing because they are simple and the format will not change
over time. Note that two write commands are used in the example — one writes the expected
results and the other writes the results from the current test. The expected results should only be
written when the creator of the test has confirmed that it contains verified values. In the example,
the command to write expected results is commented out because the results were previously
generated. Commands to test writing a specific file format (e.g., StateMod time series file) might
read an original file, write a new file, and compare the two files (see next step).
Compare the expected results and the current results. The example uses the
Conpar eFi | es() command to compare the CSV files generated for the expected and current
results. This command omits comment lines in the comparison because file headers often change
due to dynamic comments with date/time. If the software is functioning as expected, the data
lines in the file will exactly match. The example illustrates that if the files are different, a
warning will be generated because of the War nl f Di f f er ent =Tr ue parameter. Options for
comparing results include:
a. Use the CompareTimeSeries() command. This command is not implemented in
StateDMI but is available in TSTool — it may be implemented in StateDMI in the future.
b. If testing a read/write command, compare the results with the original data file. For
example, if the test case is to verify that a certain file format is properly read, then there
will generally also be a corresponding write command. The test case can then consist of
a command to read the file, a command to write the results, and a comparison command
to compare the two files. This may not work if the header of the file uses comment lines
that are not recognized by the Conpar eFi | es() command. Another example where
the comparison may fail is the “total” column in StateMod time series files, which is the
sum of the other columns. This is typically generated with in-memory values that may

Quality Control - 2 216

StateDMI Documentation Quality Control

round off when printed, rather than being the total of the numbers as printed (this issue
may be corrected but unfortunately it will cause slight changes in many files and tests).

If the test case example command file is opened and run in StateDMI, it will produce diversion station
results, the log file, and the output files. If the expected and current results are the same, no errors will be
indicated. However, if the files are different, a warning indicator will be shown in the command list area
of the main window next to the Conpar eFi | es() command.

General guidelines for defining test cases are as follows. Following these conventions will allow the test
cases to be incorporated into the full test suite used by software developers.

o Define the test case in a folder matching the command name (e.g., SetDiversionStation).

¢ Name the command file with prefix Test_, extension .StateDMI, and use the following guidelines,
in combination if appropriate:

o for the default case (default command parameter values) use the filename pattern
Test_ CommandName.StateDMI

o0 Ifthere is a reason to define a test for a specific data set or input, add additional
information to the filename, for example: Test CommandName_cm2006.StateDMI

o If defining a test for legacy syntax (meaning that the current software will support
running old commands), name the command file as follows (and use the #@ eadOnl y
comment tag described in Section 7.1.3): Test_CommandName_Legacy.StateDMI

o If defining a test for parameter values other than the default values, use a command file
name similar to the following, where the parameters are listed at the end of the file name
body: Test_CommandName_Paraml=Valuel,Param2=Value2.StateDMI
Although this can result in very long names, the explicit naming clarifies the purpose of
the test. If this becomes cumbersome, just indicate that a parameter is being tested, for
example: Test CommandName_OutputPeriod.StateDMI

e Add ashort comment to the top of the test case explaining the test.

e If many test cases are being defined for a command, consider including a spreadsheet or
document in the test folder to describe the tests in more detail. Additional tests that cannot
initially be implemented due to lack of resources can be documented as placeholders for future
implementation.

e Use as little data as possible to perform the test — long time series or big input files cause tests to
run longer and take up more space in the repository that is used for revision control. Even though
hundreds or thousands of tests may ultimately be defined, it is important to be able to run them in
a short time to facilitate testing.

e If possible, test only one command in the test — more complicated testing is described in Section
7.1.4. If multiple commands are needed, make absolutely sure that prerequisite commands are
functioning properly (make sure that they have tests).

o [faninput file is needed, place it in a folder named Data, if necessary copying the same input
from another command — this may require additional disk space but ensures that each command
can stand alone. An exception to this is if the input data are very large, in which case data should
be stored with one command and be used by other commands.

o Write the expected results to a folder named ExpectedResults.

o Write the generated results and other dynamic content, including log file, to a folder named
Results. When using a revision control system, the files in this folder should be excluded from
the repository because they are dynamic.

e (Recommended) When creating output files, use _out in the filename before the extension and
use an extension that is appropriate for the file content — this helps identify final output products
in cases where intermediate files might be produced.

217 Quality Control - 3

Quality Control StateDMI Documentation

7.1.2 Creating and Running a Test Suite

The previous section described how to define a single test case. However, opening and running each test
case command file would be very tedious and inefficient. Therefore, StateDMI provides a way to
generate and run test suites, which is the approach taken to perform a full regression test prior to a
software release. The following example command file
(test\regression\commands\TestSuites\commands\create\Create_RunTestSuite_commands.StateDMI)
illustrates how to create a test suite:

Create the regression test runner for the
StateDMI1/test/regression/TestSuites/commands files.

#
#
#
#
Only command files that match Test *.StateDMI are included in the output.
Don"t append the generated commands, in order to force the old file to be
overwritten.

#

CreateRegressionTestCommandFile(SearchFolder="__.\..\..\commands",
OutputFile=""_. .\run\RunRegressionTest _commands.StateDMI",

Append=False, IncludeTestSuite="*", Include0S="*"")

When the command file is run, it searches the indicated search folder for files matching the pattern
Test_*.StateDMI. It then uses this list to create a command file with contents similar to the following
excerpted example. This file will be listed as an output file after running the above command file. The
I ncl udeTest Sui t e and | ncl udeCS parameters are described in Section 7.1.3.

File generated by. ..

program: StateDMI 3.08.02 (2009-09-29)

user: sam

date: Wed Sep 30 11:21:51 MDT 2009

host: SOPRIS

directory: C:\Develop\StateDMI_SourceBuild\StateDMI\test\regression\TestSuites\commands\create

command line: StateDMI -home test\operational\CDSS

The following 321 test cases will be run to compare results with expected results.

Individual log files are generally created for each test.

The following test suites from @testSuite comments are included: *

Test cases for @os comments are included: *

StartRegressionTestResultsReport(OutputFile="RunRegressionTest_commands.StateDMI.out.txt")

RunCommands(InputFile="__\._.\._.\commands\AggregateWel IRights\Test_AggregateWel IRights_rg2007part.StateDMI')

RunCommands(InputFile="__\..\..\commands\CalculateDiversionDemandTSMonthly\
Test_CalculateDiversionDemandTSMonthly.StateDMI')

RunCommands(InputFile=""___.\._\commands\CalculateDiversionDemandTSMonthlyAsMax\
Test_CalculateDiversionDemandTSMonthlyAsMax.StateDMI'™)

RunCommands(InputFile="__\..\..\commands\CalculateDiversionStationEfficiencies\
Test_CalculateDiversionStationEfficiencies.StateDMI')

RunCommands(InputFile="____.\._\commands\CalculateStreamEstimateCoefficients\

Test_CalculateStreamEstimateCoefficents_cm2005.StateDMI",

ExpectedStatus=warning)

HHEHHHHHHHHHHR

RunCommands(InputFile="__\..\..\commands\CalculateStreamEstimateCoefficients\
Test_CalculateStreamEstimateCoefficients_gm2004.StateDMI" ,ExpectedStatus=warning)
RunCommands(InputFile="__\..\._.\commands\CalculateStreamEstimateCoefficients\
Test_CalculateStreamEstimateCoefficients_rg2007.StateDMI",ExpectedStatus=warning)
RunCommands(InputFile="__\..\..\commands\CalculateStreamEstimateCoefficients\
Test_CalculateStreamEstimateCoefficients_rg2007b.StateDMI™)
RunCommands(InputFile="____.\._\commands\CalculateStreamEstimateCoefficients\

Test_CalculateStreamEstimateCoefficients_sj2004.StateDMI",ExpectedStatus=warning)
R
RunCommands(InputFile="___.\..\commands\FillDiversionStationsFromNetwork\
Test_FillDiversionStationsFromNetwork.StateDMI'™)

Quality Control - 4 218

StateDMI Documentation Quality Control

RunCommands(InputFile="___._.\._\commands\FilllnstreamFlowRight\Test_FilllnstreamFlowRight.StateDMI')

RunCommands(InputFile="__\..\.._.\commands\FilllnstreamFlowStation\Test_FilllnstreamFlowStation.StateDMI')

RunCommands(InputFile="__\..\..\commands\FilllnstreamFlowStationsFromHydroBase\
Test_FilllnstreamFlowStationsFromHydroBase.StateDMI™)

RunCommands(InputFile="___._.\._.\commands\FillInstreamFlowStationsFromNetwork\
Test_FillStreamGageStationsFromNetwork.StateDMI™)

The above command file can then be opened and run. Each RunCommands() command will run a
single test case command file. Warning and failure statuses from each test case command file are
propagated to the test suite RunConmrands () command. The output from running the test suite will be
all of the output from individual test cases (in the appropriate Results folders) plus the regression test
report provided in the StateDMI Results...Output Files tab in the main window. An example of the
StateDMI main window after running the test suite is shown in the following figure. Note the warnings
and errors, which should be addressed before releasing the software (in some cases commands are
difficult to test and more development on the test framework is needed).

L StateDMI (StateMod) - C:\DevelopStateDMI_SourceBuild\StateDMIMest\regression}TestSuites\commandsiruniRunRegressionTest_co... g@g|

File Edit ‘iew ©Commands Run Tools Help
DeEE
Commands {332 commands, 0 selected, 4 with Failures, 5 with warnings
1 |# File generated by... ~
2 |# program: StateDMI 3.09.01 (2010-01-24) :
I |# user: sam
4 & date: Fri Feb 12 02:14:30 MST 2010
5 |# host: AMAZON
& |# directory: CoyDevelophStateDMI_SourceBui 1dhStateDMINtesth\regressiontTestSui tes\commands'create
7 |# command line: StateDMI -home test“operational“CDSS
F |#
2 |# The following 326 test cases will be run to compare results with expected results.
10 |# Individual log files are generally created for each test.
11 |# The following test suites from @testSuite comments are included: * =

12 | Test cases for @os comments are included: * =
13 |StartRegressionTestResultsReport(OutputFile="RunRegressionTest_commands. StateDMI.out. txt")
14 |RunCommands (InputFile="..%..%..commands‘\AggregateWe]T1Rights Test_Aggregatewe] 1Rights_rgz007part. StateDMI™)

15 |RunCommands (InputFile="..
16 |RunCommands (InputFile="..
17 @|RunCommands (TnputFile="..
18 |RunCommands (InputFile="..
12 |RunCommands (InputFile="..
20 |RunCommands (InputFile="..
21 |RunCommands (InputFile="..
22 |RunCommands (InputFile="..
23 |RunCommands (InputFile="..
24 |RunCommands (InputFile="..

<

[T T

il

. commandshCalculateDiversionDemandTsMonthlyhTest_Calcul ateDiversionDemandTsMonthly . StateDl
. wcommandshCalculateDiversionDemandTsMonthlyAsMax Test_CalculateliversionDemandTsMonthly As|
CyoommandshyCalculateDiversionStationEfficiencieshTest_CalculateDiversionstationEfficiencie
CwoommandshCalculatestreamEstimateCoefficientsh\Test_CalculatestreamEstimateCoefficents_cmz
CyoommandshCalculateStreamEstimateCoefficientsyTest_CalculatestreamEstimateCoefficients_gm
CwoommandshCalculateStreamEstimateCoefficientsyTest_CalculatestreamEstimateCoefficients_rg
CycommandshyCalculateStreamEstimateCoefficientsyTest_CalculatesStreamEstimateCoefficients_rg
CwoommandshCalculatestreamEstimateCoefficients\Test_CalculatestreamEstimateCoefficients_sj
CyoommandshyCalculateStreamEstimateCoefficientsyTest_CalculatestreamEstimateCoefficients_wm
.hoommandshCalculateStreamEstimateCoefficientshTest_CalculateStreamEstimateCoefficients_ym =

>

Run All Commands

Clear Commands

Result

Output Files | problems | StateCl) Components || StateMod Components
DML, out, bxt

ourceBuild'S!

mandsrun|Runk \Test_commands.

Processed: RunCommands(InputFile=", 4.\, .\commands\WwritewellStationsToStateMod) Test_WritewellStationsToStatemM |

StateDMI Main Interface Showing Regression Test Results

Main_RegressionTest

219

Quality Control - 5

Quality Control

StateDMI Documentation

An excerpt from the output file is shown below:.

File generated by...
program StateDM 3.09.01 (2010-01-24)
user: sam
date: Fri Feb 12 08:15:00 MST 2010
host: AVAZON
directory: C: \ Devel op\ St at eDM _Sour ceBui | d\ St at eDM \ t est\ r egr essi on\ Test Sui t es\ conmands\ r un
command |ine: StateDM -hone test\operational\CDSS
#
The test status bel ow may be PASS or FAIL.
A test can pass even if the command file actual status is FAILURE, if failure is expected.
Test Conmands Conmands
Pass/ Expected Act ual
Num Fai | St at us St at us Command Fil e
T T T .
1 PASS SUCCESS SUCCESS C: \ Devel op\ St at eDM _Sour ceBui | d\ St at eDM \ t est\ r egr essi on\ comrands\
Aggr egat eVl | Ri ght s\ Test _Aggr egat eVl | R ghts_rg2007part . St at eDM
2 PASS SUCCESS SUCCESS C:\ Devel op\ St at eDM _Sour ceBui | d\ St at eDM \ t est \ r egr essi on\ commands\
Cal cul at eDi ver si onDemandTSMont hl y\
Test _Cal cul at eDi ver si onDenmandTSMont hl y. St at eDM
3 PASS SUCCESS SUCCESS C:\ Devel op\ St at eDM _Sour ceBui | d\ St at eDM \ t est \ r egr essi on\ commands\

Cal cul at eDi ver si onDenmandTSMont hl yAsMax\ Test _Cal cul at eDi ver si onDemandTSMont hl yAsMax. St at eDM

4 *FAIL* SUCCESS FAI LURE C:\ Devel op\ St at eDM _Sour ceBui | d\ St at eDM \ t est \ r egr essi on\ commands\
Cal cul at eDi ver si onSt ati onEf fi ci enci es\
Test _Cal cul at eDi versi onSt ati onEf fici enci es. St at eDM
5 PASS warning WARNI NG C:\ Devel op\ St at eDM _Sour ceBui | d\ St at eDM \ t est \ r egr essi on\ commands\
Cal cul at eSt reanEtst i mat eCoef fi ci ent s\
Test _Cal cul at eSt reanEst i mat eCoef fi cent s_cnR005. St at eDM
6 PASS warning WARNI NG C: \ Devel op\ St at eDM _Sour ceBui | d\ St at eDM \ t est \ r egr essi on\ conmands\
Cal cul at eSt reanEtst i mat eCoef fi ci ent s\
Test _Cal cul at eStreanEst i mat eCoef fi ci ents_gnR2004. St at eDM
..many tests omtted...
323 PASS SUCCESS SUCCESS C: \ Devel op\ St at eDM _Sour ceBui | d\ St at eDM \ t est\ r egr essi on\ comrands\
WiteWell R ghtsToList\Test_WiteWl | R ghtsTolLi st. StateDM
324 PASS SUCCESS SUCCESS C:\ Devel op\ St at eDM _Sour ceBui | d\ St at eDM \ t est \ r egr essi on\ conmands\
WiteWel | R ghtsToSt at eMod\ Test _WiteWl | Ri ght sToSt at evbd. St at eDM
325 PASS SUCCESS SUCCESS C: \ Devel op\ St at eDM _Sour ceBui | d\ St at eDM \ t est \ r egr essi on\ conmands\
WiteWell StationsToList\Test WiteWl | StationsTolLi st. StateDM
326 PASS SUCCESS SUCCESS C: \ Devel op\ St at eDM _Sour ceBui | d\ St at eDM \ t est\ r egr essi on\ comrands\

FAIL count =
PASS count =

WiteWell Stati onsToSt at eMod\
Test _WiteWel | Stati onsToSt at eMbd. St at eDM

A test passes if its expected status (SUCCESS) matches the actual status, and the test fails otherwise.
Note that there are cases where a test case is actually intended to fail, in order to test that StateDMI is
properly detecting and handling the failure (rather than ignoring it or crashing). In these cases, the
expected status (WARNING or FAILURE) must match the actual status to pass the test.

The features built into StateDMI can therefore be used to efficiently test the software, contributing to

increased software quality and efficient software releases. New development results in additional tests.
See the next section for more information on controlling the test process.

7.1.3 Controlling Tests with Special Comments

The previous two sections described how to define individual test cases and how to automatically create
and run a test suite comprised of test cases. However, there are special conditions that will cause the
normal testing procedures to fail, in particular:

e tests depend on a database that is not available
tests depend on a database version that is not available (data in the “default” database have
changed)

e tests can only be run on a certain operating system

o tests depend on a specific environment configuration that is not easily reproduced for all users

Quality Control - 6 220

StateDMI Documentation Quality Control

Any of these conditions can cause a test case to fail, leading to inappropriate errors and wasted time
tracking down problems that do not exist. To address this issue, StateDMI recognizes special comments
that can be included in test case command files. The following table lists tags that can be placed in #
comments in command files to provide information for to the

Cr eat eRegr essi onTest ComrandFi | e() command and command processor. The syntax of the
special comments is illustrated by the following example:

#@xpect edStat us Failure

Special #-comment Tags

Parameter Description

@xpectedStatus Failure | The RunCommands() command Expect edSt at us

i parameter is by default Success. However, a different status
@xpectedStatus VArning | can pe specified if it is expected that a command file will result in
Vr ni ng or Fai | ur e and still be a successful test. For
example, if a command is obsolete and should generate a failure,
the expected status can be specified as Fai | ur e and the test will
pass. Another example is to test that the software properly treats
a missing file as a failure.

@s W ndows Using this tag indicates that the test is designed to work only on
@s UNI X the specified platform and will be included in the test suite by the
Cr eat eRegr essi onTest CommandFi | e() command only
if the | ncl udeGS parameter includes the corresponding
operating system (OS) type. This is primarily used to test
specific features of the OS and similar but separate test cases
should be implemented for both OS types. If the OS type is not
specified as a tag in a command file, the test is always included.
@eadOnly Use this tag to indicate that a command file is read-only. This is
useful when legacy command files are being tested because
StateDMI will automatically update old syntax to new.
Consequently, saving the command file will overwrite the legacy
syntax and void the test. If this tag is included, the StateDMI
interface will warn the user that the file is read-only and will only
save if the user indicates to do so.

@estSuite ABC Indicate that the command file should be considered part of the
specified test suite, as specified with the I ncl udeTest Sui t e
parameter of the

Cr eat eRegr essi onTest CommandFi | e() command. Do
not specify a test suite tag for general tests. This tag is useful if a
group of tests require special setup, for example connecting to a
database. The suite names should be decided upon by the test
developer.

Using the above special comment tags, it is possible to create test suites that are appropriate for specific
environments. For example, using @ est Sui t e Hydr oBase indicates that a test case should be
included in the HydroBase test suite, presumably run in an environment where a connection to HydroBase
has been opened. Consequently, multiple test suites can be created and run as appropriate depending on
the system environment.

221 Quality Control - 7

Quality Control StateDMI Documentation

7.1.4 Verifying StateDMI Software Using a Full Dataset

The previous sections described how to test StateDMI software using a suite of test cases. This approach
can be utilized when performing general tests, for example prior to a normal software release. However,
there may be cases where StateDMI has been used to produce a large data set and it is desirable to
confirm that a software release will still create the full dataset without differences. For example, for the
State of Colorado’s Decision Support Systems, large basin model data sets are created and are subject to
significant scrutiny. Approaches previously described in this chapter can be utilized to verify that
StateDMI is functioning properly and creates the dataset files. The following procedure is recommended
and uses CDSS as an example:

1. If not already installed, install the data set in its default location (e.g.,
C:\CDSS\data\colorado_1_2007) - these files will not be modified during testing.

2. Create a parallel folder with a name indicating that it is being used for verification (e.g.,
C:\CDSS\data\colorado_1 2007_verify20090216).

3. Copy the data set files from step 1 to the folder created in step 2 (e.g., copy to
C:\CDSS\data\colorado_1 2007_verify20090216\colorado_1 2007) — these files will be
modified during testing.

4. Create a StateDMI command file in the folder created in step 2 that will run the tests (e.g.,
VerifyStateDMI.StateDMI). It is often easier to edit this command file with a text editor rather
than with StateDMI itself. The contents of the file are illustrated in the example below. Some
guidelines for this step are as follows:

a. Organize the command file by data set folder, in the order that data need to be created.

b. Process every *.StateDMI command to verify that it runs and generates the same results.

c. If command files do not produce the same results, copy the command file to a name with
“-updated” or similar in the filename and then change the file until it creates the expected
results. This may be required due to changes in the command, for example implementing
stricture error handling. These command files can then be shared with maintainers of the
data set so that future releases can be updated.

d. As tests are formalized, it may be beneficial to save a copy of this file with the original
data set so future tests can simply copy the verification command file rather than
recreating it (e.g., save in a QualityControl folder in the master data set). This effort will
allow the creator of the data set to quality control their work as well as helping to quality
control the software.

5. Run the command file — any warnings or failures should be evaluated to determine if they are due
to software or data changes. Software differences should be evaluated by software developers. It
may be necessary to use command parameters such as Ver si on, available for some commands,
to recreate legacy data formats.

The following example command file (developed for the Colorado cm2005 data set) illustrates how
StateDMI software is verified using the full data set (indented lines indicate commands that are too long
to fit on one line in the documentation). Note that intermediate input files that would normally be
modified by other software (e.g., TSTool for CDSS data sets) could impact StateDMI verification.
However, a similar quality control procedure can be implemented for TSTool.

Guidelines for setting up the each test in the command file are as follows:

1. Remove output files that are generated from each individual command file that is run using
RenoveFi | e() commands. This will ensure that a test does not use old results for its output
comparison.

2. Run each individual command file using the RunConmmands() command.

Quality Control - 8 222

StateDMI Documentation Quality Control

3. Compare the results of the run with the original data set file using the Conpar eFi | es()
command.

StartLog(LogFile="VerifyStateDMI .StateDMI . log")

This command file verifies the StateDMI functionality by recreating a released
StateMod/StateCU data set. The general process is as follows:

1) Copy the entire original data set to this folder (e.g., do manually).

2) Commands below will remove output files from product and StateMod/StateCU
folders. This is done in case regeneration stops - don®"t want any confusion
with original output and what should be created here.

3) Commands below will run the command files used to generate the model files.
4) Commands below will use CompareFile() commands to compare results. Comment
lines are ignored so only data differences (processing output) will be
flagged.

If run interactively from StateDMI, indicators will show where results are
different. Differences must then be evaluated to determine if input data,
process, or software have changed. Differences may be valid.

HHEHFHHFH R

HH R R R R R R R T R R R R R R R

g g g g g g g g g
HHHHHHHH R H R H A

Diversions

HHHHH R

T

#

Stations. ..

RemoveFile(InputFile="colorado_1_2007\Diversions\cm2005_dds.dds")

#RunCommands(InputFile="colorado_1_2007\Diversions\dds.commands.StateDMI'")

RunCommands(InputFile="colorado_1_2007\Diversions\dds.commands-updated.StateDMI')

CompareFiles(InputFilel="colorado_1_2007\Diversions\cm2005_dds.dds",
InputFile2="_._\colorado_1 2007\Diversions\cm2005_dds.dds",WarnlfDifferent=True)

#
Rights. ..
RemoveFile(InputFile="colorado_1_2007\StateMod\cm2005.ddr"")
#RunCommands(InputFile="colorado_1 2007\Diversions\ddr.commands.StateDMI'")
RunCommands(InputFile="colorado_1_2007\Diversions\ddr.commands-updated.StateDMI')
CompareFiles(InputFilel="colorado_1_2007\StateMod\cm2005.ddr",
InputFile2="__\colorado_1_2007\StateMod\cm2005.ddr" ,WarnlfDifferent=True)
#
DDH (and final DDS)...
RemoveFile(InputFile="colorado_1_2007\StateMod\cm2005.ddh')
RemoveFile(InputFile="colorado_1_2007\StateMod\cm2005.dds")
#RunCommands(InputFile="colorado_1_ 2007\Diversions\ddh.commands.StateDMI'")
RunCommands(InputFile="colorado_1_2007\Diversions\ddh.commands-updated.StateDMI')
CompareFiles(InputFilel="colorado_1_2007\StateMod\cm2005.ddh",
InputFile2="__.\colorado_1_2007\StateMod\cm2005.ddh" ,WarnlfDifferent=True)
CompareFiles(InputFilel="colorado_1_2007\StateMod\cm2005.dds",
InputFile2=""__\colorado_1_2007\StateMod\cm2005.dds" ,WarnlfDifferent=True)
#
IWR. ..
RemoveFile(InputFile="colorado_1_2007\StateMod\cm2005. iwr')
#RunCommands(InputFile="colorado_1_2007\Diversions\iwr.commands.StateDMI'")
RunCommands(InputFile="colorado_1_2007\Diversions\iwr.commands-updated.StateDMI')
CompareFiles(InputFilel="colorado_1_2007\StateMod\cm2005. iwr",
InputFile2=". _\colorado_1 2007\StateMod\cm2005. iwr" ,WarnlfDifferent=True)

#

IWRB. ..

RemoveFile(InputFile="colorado_1_2007\StateMod\cm2005B. iwr')

#RunCommands(InputFile="colorado_1 2007\Diversions\iwrB.commands.StateDMI"'")

RunCommands(InputFile=""colorado_1_2007\Diversions\iwrB.commands-updated.StateDMI'")

CompareFiles(InputFilel="colorado_1_2007\StateMod\cm2005B. iwr",
InputFile2="_._\colorado_1_2007\StateMod\cm2005B. iwr" ,WarnlfDifferent=True)

#

Hddm. ..

RemoveFile(InputFile="colorado_1_2007\StateMod\cm2005H.ddm")

#RunCommands (InputFile="colorado_1_2007\Diversions\Hddm.commands.StateDMI'")

RunCommands(InputFile="colorado_1 2007\Diversions\Hddm.commands-updated.StateDMI'")

CompareFiles(InputFilel="colorado_1_2007\StateMod\cm2005H.ddm",
InputFile2="_._\colorado_1_ 2007\StateMod\cm2005H.ddm" ,WarnlfDifferent=True)

#

Cddm. ..

223 Quality Control -

Quality Control StateDMI Documentation

RemoveFile(InputFile="colorado_1_2007\StateMod\cm2005C.ddm")

#RunCommands(InputFile="colorado_1_2007\Diversions\Cddm.commands.StateDMI'")

RunCommands(InputFile="colorado_1 2007\Diversions\Cddm.commands-updated.StateDMI'")

CompareFiles(InputFilel="colorado_1_2007\StateMod\cm2005C.ddm",
InputFile2="__\colorado_1_2007\StateMod\cm2005C.ddm" ,WarnlfDifferent=True)

#

Cddm-AcreageChange. ..

/* Output file does not exist in master

RemoveFile(InputFile="colorado_1_2007\StateMod\cm2005C-AcreageChange.ddm™)

#RunCommands(InputFile="colorado_1_ 2007\Diversions\Cddm-AcreageChange.commands.StateDMI')

RunCommands(InputFile="colorado_1_2007\Diversions\Cddm-AcreageChange.commands-updated.StateDMI'")

CompareFiles(InputFilel="colorado_1_2007\StateMod\cm2005C-AcreageChange.ddm",
InputFile2="_..\colorado_1_2007\StateMod\cm2005C-AcreageChange.ddm" ,WarnlfDifferent=True)

*/

#

Bddm. ..

RemoveFile(InputFile="colorado_1_2007\StateMod\cm2005B.ddm")

#RunCommands(InputFile="colorado_1_2007\Diversions\Bddm.commands.StateDMI'")

RunCommands(InputFile="colorado_1 2007\Diversions\Bddm.commands-updated.StateDMI'")

CompareFiles(InputFilel="colorado_1_2007\StateMod\cm2005B.ddm",
InputFile2="__\colorado_1_2007\StateMod\cm2005B.ddm" ,WarnlfDifferent=True)

#

B R T R R O B R R

T T TR

instream

HHHHHHH R A

T R T R R O R R

#

ifs. ..

RemoveFile(InputFile="colorado_1 2007\StateMod\cm2005.ifs")

#RunCommands(InputFile="colorado_1_2007\instream\ifs.commands.StateDMI'")

RunCommands(InputFile="colorado_1_2007\instream\ifs.commands-updated.StateDMI'")

CompareFiles(InputFilel="colorado_1_2007\StateMod\cm2005.ifs",
InputFile2="__\colorado_1 2007\StateMod\cm2005.ifs" ,WarnlfDifferent=True)

#

ifr._.

RemoveFile(InputFile="colorado_1_2007\StateMod\cm2005.ifr")

#RunCommands(InputFile="colorado_1_2007\instream\ifr.commands.StateDMI'")

RunCommands(InputFile="colorado_1_2007\instream\ifr.commands-updated.StateDMI'")

CompareFiles(InputFilel="colorado_1_2007\StateMod\cm2005.ifr",
InputFile2="__\colorado_1_2007\StateMod\cm2005.ifr" ,WarnlfDifferent=True)

#

ifa...

RemoveFile(InputFile="colorado_1_2007\StateMod\cm2005.ifa")

#RunCommands(InputFile="colorado_1_2007\instream\ifa.commands.StateDMI'")

RunCommands(InputFile="colorado_1 2007\instream\ifa.commands-updated.StateDMI'")

CompareFiles(InputFilel="colorado_1_2007\StateMod\cm2005.ifa",
InputFile2=""__\colorado_1_2007\StateMod\cm2005.ifa" ,WarnlfDifferent=True)

#

THHHHHH A

B R T R R R T R R

network

FHE A G L G G L A A A

HHHHHHH A

#

rin...

RemoveFile(InputFile="colorado_1_2007\StateMod\cm2005.rin")

#RunCommands(InputFile="colorado_1_2007\network\rin.commands.StateDMI'")

RunCommands(InputFile="colorado_1_2007\network\rin.commands-updated.StateDMI')

CompareFiles(InputFilel="colorado_1_2007\StateMod\cm2005.rin",
InputFile2="__.\colorado_1_2007\StateMod\cm2005.rin" ,WarnlfDifferent=True)

#

HHAHAH AR A R R R R R R R R R

T T T R R

reservoirs

THHEHHH A A

B T R R R R R R R

#

res...

RemoveFile(InputFile="colorado_1_ 2007\StateMod\cm2005.res"™)

#RunCommands(InputFile="colorado_1_ 2007\reservoirs\res.commands.StateDMI"'")

Quality Control - 10 224

StateDMI Documentation Quality Control

RunCommands(InputFile="colorado_1_2007\reservoirs\res.commands-updated.StateDMI')

CompareFiles(InputFilel="colorado_1_2007\StateMod\cm2005.res",
InputFile2="__\colorado_1 2007\StateMod\cm2005.res" ,WarnlfDifferent=True)

#

rer...

RemoveFile(InputFile="colorado_1 2007\StateMod\cm2005.rer")

RemoveFile(InputFile="colorado_1_2007\StateMod\cm2005B.rer")

#RunCommands(InputFile="colorado_1_2007\reservoirs\rer.commands.StateDMI')

RunCommands(InputFile="colorado_1_2007\reservoirs\rer.commands-updated.StateDMI')

CompareFiles(InputFilel="colorado_1_2007\StateMod\cm2005.rer",
InputFile2="__.\colorado_1_2007\StateMod\cm2005.rer" ,WarnlfDifferent=True)

CompareFiles(InputFilel="colorado_1_2007\StateMod\cm2005B.rer",
InputFile2="_.\colorado_1_2007\StateMod\cm2005B.rer" ,WarnlfDifferent=True)

#

cmdly. ..

RemoveFile(InputFile="colorado_1_2007\StateMod\cmdly.res'™)

#RunCommands(InputFile="colorado_1_2007\reservoirs\cmdly.res.commands.StateDMI"")

RunCommands(InputFile="colorado_1_2007\reservoirs\cmdly.res.commands-updated.StateDMI")

CompareFiles(InputFilel="colorado_1_2007\StateMod\cmdly.res",
InputFile2=""__\colorado_1 2007\StateMod\cmdly.res" ,WarnlfDifferent=True)

#

B.res...

RemoveFile(InputFile="colorado_1_2007\StateMod\cm2005B.res")

#RunCommands(InputFile="colorado_1_2007\reservoirs\cm2005B.res.commands.StateDMI')

RunCommands(InputFile="colorado_1_2007\reservoirs\cm2005B.res.commands-updated.StateDMI'")

CompareFiles(InputFilel="colorado_1_2007\StateMod\cm2005B.res",
InputFile2="_._\colorado_1 2007\StateMod\cm2005B.res" ,WarnlfDifferent=True)

#

FHE A G L G G L A A A

HHHEHHH R A

streamSW

HHEHHH A A

#

ris...

RemoveFile(InputFile="colorado_1_2007\StateMod\cm2005.ris"™)

#RunCommands (InputFile="colorado_1_2007\streamSW\ris.commands.StateDMI'")

RunCommands(InputFile="colorado_1_2007\streamSW\ris.commands-updated.StateDMI")

CompareFiles(InputFilel="colorado_1_2007\StateMod\cm2005.ris",
InputFile2="__\colorado_1_ 2007\StateMod\cm2005.ris" ,WarnlfDifferent=True)

#

rib...

RemoveFile(InputFile="colorado_1_2007\StateMod\cm2005.rib"™)

#RunCommands(InputFile="colorado_1_2007\streamSW\rib.commands.StateDMI'")

RunCommands(InputFile="colorado_1_2007\streamSW\rib.commands-updated.StateDMI'")

CompareFiles(InputFilel="colorado_1_2007\StateMod\cm2005.rib",
InputFile2="__\colorado_1 2007\StateMod\cm2005.rib" ,WarnlfDifferent=True)

#

Command File to Verify Data Set Creation
7.2 Using StateDMI and TSTool to Quality Control Data and Processes

The testing concepts discussed in this chapter can be utilized similarly to perform quality control on data
or processes. In many cases, these tests must be defined by software users because the data and processes
are only accessible and familiar to the users. However, once implemented, the tests can become a part of
standard software test suites to further increase software quality control. The following are examples of
tests that may be useful:

e Historical Data. For a database such as HydroBase, implement a sequence of tests to ensure that
data continue to exist, are accessible, and are in expected ranges. For example, for historical data,
set the period to query so that it is not likely to be impacted by new data being added to the
database, then create test command files to read many or all of the data types (use the
Read* Hydr oBase() commands). It is expected that these data should not change over time.

225 Quality Control - 11

Quality Control StateDMI Documentation

A failed test will indicate that the database contents have changed and impacts on users may need
to be evaluated (or at a minimum documented).

o Real-Time Data. Similarly, for recent historical data and real-time data, tests can be defined to
ensure that data are available, in this case, it may not be important that data match expected
results but only that data are returned. For example, TSTool capabilities to read time series and
then compute statistics on time series, such as the number of missing, can be used to check for
valid data. Additional test capabilities may need to be developed to fully implement these types
of tests. The purpose of this type of testing is to ensure that an operational system continues to
function as expected.

e Standard Processes. An organization’s staff typically defines and executes standard processes
to perform the business functions of the organizations. Related to water resources engineering,
these processes may involve data collection, processing, analysis, and modeling, using a variety
of tools. Standard tests, as described in this chapter, can confirm that a process is working as
intended by verifying logic and data processing. For example, a standard process can be run on
test data to confirm that it is still working. StateDMI and TSTool (or other tools) can be used to
automate file comparisons, or perhaps to run several programs and then compare files, in order to
demonstrate that a standard process is working.

o Models. Models can be complex and are often referred to as “black boxes” because it may not be
obvious what occurs inside a model. Tests can be implemented in a number of ways:

0 Unit Tests. Similar to the small command files described in this chapter, small model
data sets can be defined and run to confirm that basic model functionality is correct.

o0 Full Tests. Full “accepted” data sets can be run, and tools can be used to verify that the
results are consistent with expected results. This is similar to testing StateDMI and
TSTool on full data sets.

0 Results Evaluation. Assuming that the model software has tested out, tests can be
performed on any data set to confirm that results are reasonable. This recognizes that the
synergy of a variety of model inputs and the results from a simulation may indicate
unanticipated conditions (e.g., an impact is exponential rather than simply additive). The
test process can therefore check for missing or zero values, out of range, or combinations
of critical values.

The use of automated testing frameworks, such as the features available in StateDMI and TSTool, can
streamline quality control checks and lead to a more robust quality assurance program. If StateDMI or
TSTool are not used, then other test frameworks are highly desirable.

Quality Control - 12 226

Command Glossary

Version 2.14.00, 2007-07-11, Acrobat Distiller

The following parameter names and terms are used throughout StateDMI commands. A term indicated in
bold font is a definition. A term indicated in bol d couri er fontis a parameter name. Parameters
specific to one or a few commands are cross-referenced with the commands. Common parameters are
defined but long lists of corresponding commands are not provided. Possible values for parameters used
in modeling (e.g., numerical options) are described in StateCU and StateMod model documentation.

Account Di st — The account distribution option for reservoir rights. See the
fill ReservoirRi ght(),andset ReservoirRi ght () commands.

Account Evap - Indicate how to distribute evaporation for a reservoir account. See the
fill ReservoirStation() andset ReservoirStation() commands.

Account | D- The account identifier for a reservoir account. A reservoir can have multiple accounts.
Seethefill ReservoirStation() andset Reservoi rStation() commands.

Account | ni ti al —The account initial content for a reservoir account. See the
fill ReservoirStation() andset ReservoirStation() commands.

Account Max — The account maximum content for a reservoir account. See the
fill ReservoirStation() andset Reservoir Station() commands.

Account Nane — The account name for a reservoir account. A reservoir can have multiple accounts.
Seethefill ReservoirStation() andset ReservoirStation() commands.

Account OneFi | | - Indicate how to handle one fill rule calculations for a reservoir account. See the
fill ReservoirStation() andset Reservoir Station() commands.

Acr es GV~ The groundwater acres for a CU Location. Seetheset|lrri gati onPracticeTS()
command.

Acr esGACol — The column number (or name) for groundwater acres. See the
setlrrigationPracti ceTSFronLi st () command.

Acr esGAWFl oodCol — The column number (or name) for groundwater flood acres. See the
setlrrigationPracticeTSFronii st() command.

Acr esGABpri nkl er Col — The column number (or name) for groundwater sprinkler acres. See the
setlrrigationPracticeTSFronii st() command.

Acr esSpri nkl er —The sprinkler acres for a CU Location. See the
setlrrigationPracti ceTS() command.

Acr esSpri nkl er Col —The column number (or name) for sprinkler acres. See the
setlrrigationPracti ceTSFromnLi st () command.

Acr esSWFl oodCol — The column number (or name) for surface water flood acres. See the
setlrrigationPracti ceTSFronLi st () command.

227 Command Glossary - 1

Command Glossary StateDMI Documentation

Acr esSW5pr i nkl er Col — The column number (or name) for surface water sprinkler acres. See the
setlrrigationPracti ceTSFromnLi st () command.

Acr esTot al — The total acres for a CU Location. SeethesetIrri gati onPracti ceTS()
command.

Acr esTot al Col — The column number (or name) for total acres. See the
setlrrigationPracticeTSFronli st() command.

Adm ni st rati onNurber — The administration number (numerical priority) for a water right. See the
fillDiversionRi ght(),filllnstreantl owRight(),fillReservoirRight(),
fillWell Ri ght(),setDi versionRight(),setlnstreanfFl owRi ght (),
set Reservoi rRi ght (), and set Wl | Ri ght () commands.

Adm nNuntCl asses — The administration number classes for water rights, used to define aggregates.
See the r eadDi ver si onRi ght sFrontHydr oBase(),
readReser voi r R ght sFronmHydr oBase(), readWel | R ght sFronmHydr oBase(),
andsetlrrigationPracti ceTSFronHydr oBase() commands.

Adm nNunshi ft — The administration number shift for a well station. See the
fillwell Station() andset Wl | Stati on() commands.

Adm nNunshi ft Col — The column number (or name) to be read from a delimited file for
Adm nNunshi ft data. Seetheset Wl | Stati onsFronLi st () command.

Aggregate — See Collection.

Alias — A (generally) short identifier for a time series, used in place of the TSID, which simplifies
commands. The Alias and TSID values are interchangeable when used as parameters to
commands and may both be referred to as TSID in command editors. See also TSID.

Al i as — A (generally) short identifier for a time series, used in place of the TSID, which simplifies
commands. When used to create/read a time series, the syntax of a command is typically similar
to: TS Alias = conmmand(..). Seealso TSID.

Anal ysi send — A DateTime that indicates the end of an analysis.
Anal ysi sSt art — A DateTime that indicates the start of an analysis.

Append - Indicates whether data from a read should be appended to in-memory data. The default in
most cases is True, but in some cases in-memory data are to be discarded before the read. See the
readVel | Ri ght sFrontt at eMbd() andr eadWel | St at i onsFr onfst at eMod()
commands.

Ar eaCol - The column number (or name) to be read from a delimited file for area data. See the
set CropPat t er nTSFronLi st () command.

Aut 0Adj ust - Indicate that automatic adjustments should be made to data, typically in cases where
some type of version compatibility issue is being addressed. See the
writeCropCharacteristicsToStateCU() command.

Command Glossary - 2 228

StateDMI Documentation Command Glossary

AWC — The available water content (AWC) fraction, for a CU Location. See the set CULocat i on()
command.

AWCCol - The column number (or name) to be read from a delimited file for AWC data. See the
fill CULocati onsFronii st (),andset CULocati onsFronli st () commands.

BaseDat a — The base flow coefficient and station data for stream estimate stations. See the
set StreantEsti mat eCoeffi ci ents() command.

Bl aneyCri ddl eMet hod — The Blaney-Criddle method in HydroBase for Blaney-Criddle data.
Regional variations are provided. See the r eadBl aneyCri ddl eFr onHydr oBase()
command.

Capaci t y — The capacity for a diversion or well. Seethefi ||l Di versi onStation(),
fillWellStation(),setDiversionStation(),andset\Well Station()
commands.

Capaci t yCol — The column number (or name) to be read from a delimited file for Capacity data. See
the set Di versi onSt ati onsFronli st () andset Wel | St ati onsFronLi st ()
commands.

CheckSt ruct ur es — Used when filling stream gage stations from HydroBase. See the
fill StreanGageSt ati onsFronmHydr oBase() command.

Coef fi ci ent s — Crop growth coefficients. See the set Bl aneyCri ddl e() command.

Collection — A group of parts that modeled as a single item. StateMod diversions can be one of the

following:

e Aggregate — the physical characteristics of the diversion stations are combined, and the water
rights are aggregated into classes

e MultiStruct — multiple diversions are grouped but are each represented in the model network;
for historical modeling the time series at each point are used; for calculated demands the
demands are totaled at a key structure and set to zero for the others. The definition of a
MultiStruct is only necessary when processing demands.

e System — the physical characteristics of the diversion are combined, but water rights are
retained in their individual form.

Comment For mat — The format to use when setting the comment for a station. Various data can be
combined into the name. Seethefi || Ri ver Net wor kFr oniNet wor k() command.

Const ant — A constant value used to fill or set time series. See the
fill CropPatternTSConstant (),
fillDi versi onDemandTSMont hl yConst ant (),
fillDiversionHi storical TSMont hl yConst ant (),
fillwell DemandTSMont hl yConst ant (), and
set Di ver si onDenandTSMont hl yConst ant () commands.

Cont ent Ar eaSeepage — Content/area/seepage table values for a reservoir station. See the
fill ReservoirStation() andset ReservoirStation() commands.

229 Command Glossary - 3

Command Glossary StateDMI Documentation

Cont ent Max — The maximum content for a reservoir. Seethefil | ReservoirStation() and
set Reservoir Stati on() commands.

Cont ent M n — The minimum content for a reservoir. Seethefil | Reservoir Station() and
set Reservoir Station() commands.

Cr opPat t er n — A crop pattern (crop type and area values). See the set Cr opPatt ernTS()
command.

CropType — A crop type/name (e.g., ALFALFA), which in some cases may be a pattern (e.g.,
ALFALFA*). Seethefill CropPatternTSConstant (), renoveCropPatternTS(),
and set Bl aneyCri ddl e(), and set CropChar act eri sti cs() commands.

Cr opTypeCol - The column number (or name) to be read from a delimited file for Cr opType data.
See the set Cr opPat t er nTSFr omnLi st () commands.

CULocType — Consumptive use location (CU Location) type. StateDMI currently processes data for
structures but can be extended to process data for climate station locations. The location type can
therefore be used to control which database tables are queried for information. See the
fill CULocati onFronmHydr oBase() command.

CUMet hod — The CU method in HydroBase for crop type and characteristics. See the
readCr opCharacteri sti csFronHydr oBase() command.

Cur veType - Indicate whether crop growth data are for annual or perennial crops. See the
set Bl aneyCri ddl e() command.

Dai | yl D- The station identifier used to specify daily data for a station. See the
fillD versionStation(),filllnstreanfFl owStation(),
fillRReservoirStation(),fill StreanEsti mateStation(),
fill StreantzageStation(),fillWlIStation(),setDiversionStation(),
setl nstreanfl owSt ati on(),set ReservoirStation(),
set Streanksti mateStati on(),andset Wl | St ati on() commands.

Dai | yl DCol — The column number (or name) to be read from a delimited file for DailyID data. See the
set Di versi onSt ati onsFronLi st () andset Wl | St ati onsFronLi st ()
commands.

Dat abaseName — The name of a database, when making a database connection. See the
openHydr oBase() command.

Dat abaseSer ver — The name of a database server, when making a database connection. See the
openHydr oBase() command.

Dat aType — The data type used when processing time series, necessary when there are more than one
time series data types available. Seethefilllrrigati onPracticeTSInterpol ate(),
andfilllrrigationPracti ceTSRepeat () command.

DateTime — A date/time value, typically represented as a string, which indicates a point in time.
Date/time strings have a precision that is interpreted by the software. For example, the date/time
string 1990 has a precision of year, whereas the string 1990- 01- 12 has a precision of day.

Command Glossary - 4 230

StateDMI Documentation Command Glossary

DaysToFul | Cover — The days to full cover for a crop. See the set Cr opChar act eri sti cs()
command.

DaysTo2ndCut — The days to second cut for a crop. See the set CropChar acteri stics()
command.

DaysTo3r dCut — The days to third cut for a crop. See the set Cr opChar acteri stics()
command.

DeadSt or age — The dead storage for a reservoir. Seethefil| Reservoir Station() and
set Reservoir Stati on() commands.

Decr ee — The decree amount for a water right. Seethefi || Di versi onRi ght (),
filllnstreantl owRi ght (),fill ReservoirRight(),fillWellR ght(),
set Di versi onRi ght (), set | nstreanfl owRi ght (), set ReservoirRi ght(),and
set Wl | Ri ght () commands.

Decr eeM n — The minimum decree to accept as a valid right (others are ignored). See the
readDi ver si onRi ght sFronmHydr oBase(), and
readReser voi r R ght sFronmHydr oBase() commands.

Def aul t Appr opri ati onDat e — The default appropriation date to use with well right/permit data, if
a date is not available. See the r eadWel | Ri ght sFr onHydr oBase(), and
setlrrigationPracti ceTSFronHydr oBase() commands.

Def aul t Tabl e — The default delay table to use when setting returns from the river network. See the
set Di versi onSt ati onDel ayTabl esFr omNet wor k() and
set Wl | St ati onDel ayTabl esFr omNet wor k() commands.

Def i neRi ght How- Indicate how well rights should be defined from water right/permit data (e.g.,
earliest date, latest date, right if available). See the r eadWel | Ri ght sFr onHydr oBase(),
setlrrigationPracti ceTSFromHydr oBase(), and
fillwell Stati onsFronmHydr oBase() commands.

Del i m— The delimiter character(s) used when processing delimited files. See the r ead* Fr onii st ()
andwrite*ToLi st () commands.

DemandSour ce — The demand source, indicating whether demands are estimated from geographic
information system acreage, total acreage estimate, etc., for a diversion station. See the
fillDiversionStation(),fillWllStation(),setDi versionStation(),and
set Wl | St ati on() commands.

DemandSour ceCol — The column number (or name) to be read from a delimited file for
DermandSour ce data. See the set Di ver si onSt ati onsFronLi st () and
set Vel | St ati onsFronLi st () commands.

DemandType — The demand type for a diversion station. Seethefi |l | Di versi onStati on() and
filllnstreanFl owStation(),fillWlIl Station(),setDiversionStation(),
setl nstreantl owSt ati on(),andset Wel | St ati on() commands.

231 Command Glossary - 5

Command Glossary StateDMI Documentation

DemandTypeCol — The column number (or name) to be read from a delimited file for DemandTy pe
data. Seethe set Di versi onSt ati onsFromnLi st () and
set Vel | St ati onsFronLi st () commands.

Depl et i ons — The depletion locations, percentages, and delay table, for a well station. See the
fillWwell Station() andset Wl | Stati on() commands.

Di v — The water division associates with data. Seethefil | Wel | St ati onsFronmHydr oBase(),
and r eadWel | Ri ght sFronHydr oBase(),
setlrrigationPracticeTSFronHydroBase(),
setlrrigationPracticeTSSprinkl er AreaFronii st(),set Wl | Aggregate(),
set Wl | Aggr egat eFronLi st (), set Wl | Systen(), and
set Vel | Syst enfr omLi st () commands.

D vAndWel | GAAcr eage — Indicate how to adjust the groundwater acreage for locations that have
surface diversion and groundwater supply. See the
synchroni zelrrigati onPracti ceAndCr opPatt ernTS() command.

Di ver si onl D- The diversion station identifier associated with a well station. See the
fillwell Station() andset Wl | Stati on() commands.

Di ver si onl DCol - The column number (or name) to be read from a delimited file for
Di ver si onl Ddata. See ther eadWel | St ati onsFr onfr onLi st () command.

Di ver si onl DCol — The column number (or name) to be read from a delimited file for
Di ver si onl Ddata. See the set Wl | St ati onsFr onLi st () command.

Downst r eanRi ver Nodel D- The river node identifier for the downstream node in an instream flow
reach, for instream flow stations. It is also used to indicate the node downstream from a river
node, to indicate network connectivity. Seethefil |l |l nstreantl owSt ati on(),
set | nstreanfl owSt ati on(),and set Ri ver Net wor kNode() commands.

Earl i est Moi st ur eUseTenp — The earliest moisture use temperature for a crop. See the
set CropCharacteristics() command.

Ef f Annual — The annual efficiency (%, 0-100) for a diversion station. See the
fillDiversionStation(),fillWllStation(),setDi versionStation(),and
set Wl | St ati on() commands.

Ef f Annual Col - The column number (or name) to be read from a delimited file for Ef f Annual data.
See the set Di ver si onSt ati onsFronLi st () andset Wl | St ati onsFronii st ()
commands.

Ef f Cal cEnd — A DateTime that indicates the end of an efficiency calculation analysis. See the
cal cul ateDi versi onStati onEfficiencies() and
cal cul ateVel | Stati onEffi ci enci es() commands.

Ef f Cal cSt art — A DateTime that indicates the start of an efficiency calculation analysis. See the
cal cul ateDi versi onStati onEfficiencies() and
cal cul ateWel | Stati onEffici enci es() commands.

Command Glossary - 6 232

StateDMI Documentation Command Glossary

Ef f mi n — The minimum efficiency. See the cal cul at eDi ver si onSt ati onEf fi ci enci es()
and cal cul ateWel | St ati onEf fi ci enci es() commands.

Ef f Mont hl y — The monthly efficiency (%, 0-100) for a diversion station. The order of efficiencies in
the model data file depends on the model and control information. However, StateDMI requires
that efficiencies be entered in the order January through December. See the
fillDiversionStation(),fillWllStation(),setDi versionStation(),and
set Wl | St ati on() commands.

Ef f Mont hl yCol - The column number (or name) to be read from a delimited file for Ef f Mont hl y
data. Seetheset Di versi onSt ati onsFronili st () and
set Vel | St ati onsFronLi st () commands.

Ef f max — The maximum efficiency. See the cal cul at eDi ver si onSt ati onEf fi ci enci es()
and cal cul ateWel | St ati onEffi ci enci es() commands.

Ef f Report Fi | e — The name of the report file containing the results of efficiency calculations. See the
cal cul ateDi versi onStati onEffici encies() and
cal cul ateWel | St ati onEffi ci enci es() commands.

El evati on —Elevation. Seethefill CimateStation(),setdimateStation(),and
set CULocat i on() commands.

El evat i onCol — The column number (or name) to be read from a delimited file for EI evat i on data.
Seethefill CULocati onsFronii st (),readCULocati onsFroniist(),and
set CULocat i onsFronii st () commands.

EvapsSt at i ons — The list of evaporation stations and weights for a reservoir station. See the
fill ReservoirStation() andset Reservoir Station() commands.

Fal | Frost Fl ag — The fall frost flag for a crop. See the set Cr opChar acteri stics()
command.

Fi Il Aver ageOr der —When multiple fill techniques are used within one command, indicate the order
for filling using historical average. See the
fill Di versionHi storical TSMont hl yFr onHydr oBase() command.

Fi | | Di recti on - Indicate which direction (For war d or Backwar d) that filling should occur. This
is important because statistics computed to perform filling can be different depending on the
processing direction. Seethefil| CropPatternTSProrat eAgSt at s(),
fillCropPatternTSRepeat (),andfilllrrigati onPracti ceTSRepeat ()
commands.

Fi I | End — A DateTime that indicates the end of a fill process.

Fi I | Fl ag — A character flag used to indicate when time series values are filled. See the
fill Di versi onDemandTSAverage(),fill D versi onDemandTSConst ant (),
fillDi versionDemandTSPattern(),fill Di versionH storical TSAverage(),
fill Di versionHi storical TSConstant (),
fill Di versionHi storical TSMont hl yPattern(),
fillWwell DemandTSMont hl yAver age(),

233 Command Glossary - 7

Command Glossary StateDMI Documentation

fillwell DemandTSMont hl yConst ant (), and
fillwell DemandTSMont hl yPat t ern() commands.

Fi Il Patt ernOr der —When multiple fill techniques are used within one command, indicate the order
for filling using historical average patterns. See the
fillDi versionHistorical TSMont hl yFr omHydr oBase() command.

Fill Start — A DateTime that indicates the start of fill process.

Fi | | Type — The reservoir right fill type. Seethefil | Reservoi rRi ght () and
set Reservoi r Ri ght () commands.

Fi I'l Usi ngCl U-Fill diversion records with additional zeros using the “currently in use” (CIU) data
from HydroBase. See the r eadDi ver si onHi st ori cal TSMont hl yFr onHydr oBase()
command.

Fi | | Usi ngCl UFl ag — Indicate how to flag filled data values when using “currently in use” (CIU) data
from HydroBase. See the r eadDi ver si onHi st ori cal TSMont hl yFr onmHydr oBase()
command. The flags can be displayed on graphs.

FI oodAppEf f Max — The flood application efficiency maximum for a CU Location. See the
setlrrigationPracticeTS() command.

Fl oodAppEf f MaxCol — The column number (or name) to be read from a delimited file for
FI oodAppEf f Max data. Seethesetlrri gati onPracti ceTSFronLi st () command.

Fr eeWat er Adni ni strati onNunber - Indicate the administration number >= to which a right is
considered a free water right. See the
setlrrigationPracti ceTSPunpi ngMaxUsi ngWel | Ri ght s() command.

Fr eeWat er Appr opri ati onDat e — A date to be used for free water rights. See the
['imtDiversi onDemandTSMont hl yToRi ght s(),
l'imtD versionHi storical TSMont hl yToRi ght s(),
setlrrigationPracti ceTSMaxPunpi ngToRi ght s(), and
setlrrigationPracti ceTSPunpi ngMaxUsi ng\Wel | Ri ght s() commands.

Fr eeWat er Met hod - Indicate how to handle processing of free water rights. See the
setlrrigationPracti ceTSPunpi ngMaxUsi ngWel | Ri ght s() command.

Gagel D- The stream gage station identifier to use instead of the downstream gage. See the
set St reanksti mat eCoef fi ci ent s() command.

Gai nDat a — The base flow coefficient and station data for stream estimate stations. See the
set St reanksti mat eCoef fi ci ent s() command.

GWWbde — The groundwater mode for a CU Location. SeethesetlIrri gati onPracticeTS()
command.

GWWbdeCol — The column number (or name) for groundwater mode for a CU Location. See the
setlrrigationPracti ceTSFromnLi st() command.

Command Glossary - 8 234

StateDMI Documentation Command Glossary

GAONl yGWACT eage — Indicate how to adjust the groundwater acreage for locations that have only
groundwater supply. See the
synchroni zelrrigati onPracti ceAndCropPatt ernTS() command.

Handl eM ssi ngHow- Indicate how to handle missing data values when processing time series. For
example, when adding time series, missing values can be ignored or can result in a missing value
in the result. See the add(), cunul ate(),and subtract () commands.

Har vest Mont h — The harvest month for a crop. See the set Cr opChar acteri sti cs()
command.

Har vest Day — The harvest day for a crop. See the set Cr opChar act eri sti cs() command.

I D— The identifier to match in a file. Typically this is a location (e.g., station, structure identifier) and
can be specified using a wildcard pattern (e.g., 20*). This parameter is used by many commands
as the primary key to associate data.

| DCol - The column number (or name) to be read from a delimited file for identifier data. See the
r ead* Fr onli st () command.

| f Found — Indicate the action to be taken if a matching data item (usually by ID) is found. For
example, the action typically includes warning the user or continuing with a data edit. See the
set *() command.

| f Not Found — Indicate the action to be taken if a matching data item (usually by ID) is not found. For
example, the action typically includes warning the user or continuing with a data edit. See the
set * () commands.

| DFor mat — The format to use for identifiers, used when default formatting is not appropriate. See the
readVel | Ri ght sFromHydr oBase() command.

I gnor eDi ver si ons — Indicate whether diversion nodes should be ignored by a command.

| gnor eDWs — Indicate whether D&W (diversion + well) nodes should be ignored by a command. See
the r eadWel | St at i onsFr onft at eMbd() command.

I gnor el D— A list of identifiers to ignore when processing a command. See the
limtDiversi onDemandTSMont hl yToRi ght s(), and
limtDiversionHi storical TSMont hl yToRi ght s() commands.

| gnor eLEZer o — Indicate whether values less than or equal to zero should be ignored when computing
historical averages for time series. See the set | gnor eLEZer o() command.

| gnor eVl | s — Indicate whether well nodes should be ignored by a command. See the
readWel | St ati onsFronft at eMbd() command.

I ncl udeCol | ecti ons - Indicate whether locations that are collections (aggregates and systems)
should be processed by a command. In particular, when processing time series, filling can be
controlled to occur for individual collection parts or on total time series. See the
fillDi versionHistorical TSMont hl yAver age(),

235 Command Glossary - 9

Command Glossary StateDMI Documentation

fill Di versionHi storical TSMont hl yPattern(),and
fillDiversionHi storical TSMont hl yFr onHydr oBase() commands.

I ncl udeExpl i cit — Indicate whether locations that are explicit (key) locations should be processed
by a command. In particular, when processing time series, filling can be controlled to occur for
explicit locations or collections (aggregates and systems). See the
fill Di versionHi storical TSMont hl yFr onHydr oBase() command.

I ncl udeG oundwat er Onl ySuppl y — Indicate whether locations that have only groundwater supply
should be processed by a command. See the
filllrrigationPracticeTSAcreageUsi ngWel | Ri ghts() and
setlrrigationPracti ceTSPunpi ngMaxUsi ng\Wel | Ri ght s() commands.

I ncl udeSt reantst i mat eSt at i ons — Indicate whether stream estimate stations should be
processed by a command. In particular, this is used when processing stream gage/estimate station
data. Seethefilllrrigati onPracti ceTSAcreageUsi ng\Wel |l Ri ghts() and
readSt r eamGagesSt at i onsFr onNet wor k() command.

I ncl udeSur f aceWat er Suppl y — Indicate whether locations that have surface water supply should
be processed by a command. See the
setlrrigationPracti ceTSPunpi ngMaxUsi ng\Wel | Ri ght s() command.

I nput End — A DateTime that indicates the end of a file read or a database query.

I nput Fi | e — The name/path for a file that is used as input to a command. See the
lintDiversi onDemandTSMont hl yToRi ght s(),
limtD versionHi storical TSMont hl yToRi ght s(), and
ReadAgsSt at sTSFr onDat eVal ue() commands.

I nput St art — A DateTime that indicates the start of file read or a database query.

I nt er val — The data interval (day or month) for delay tables. See the
writeDel ayTabl esToSt at eMbd() command.

I rrigat edAcr es — The irrigated acres for a diversion station. See the
fillDiversionStation(),fillWllStation(),setDi versionStation(),and
set Vel | St ati on() commands.

I rrigat edAcr esCol — The column number (or name) to be read from a delimited file for
I rrigatedAcres data. Seetheset Di versi onStati onsFromnli st () and
set Vel | St ati onsFronLi st () commands.

I rrigati onMet hodCol - The column number (or name) for irrigation method (e.g., SPRI NKLER,
FLOQOD). See the set Cr opPat t er nTSFronLi st () and
setlrrigationPracticeTSFronli st() commands.

Lat est Mbi st ur eUseTenp — The latest moisture use temperature for a crop. See the
set CropCharacteristics() command.

Lati t ude — Latitude in decimal degrees. Seethefill Cli mateStati on(),
fillCULocation(),setdimteStation(),andset CULocati on() commands.

Command Glossary - 10 236

StateDMI Documentation Command Glossary

Lati t udeCol — The column number (or name) to be read from a delimited file for Latitude data. See
thefill CULocati onsFronii st(),readCULocati onsFronii st (), and
set CULocat i onsFronii st () commands.

Lengt hOF Season — The length of the growing season for a crop. See the
set CropCharacteristics() command.

LEZer ol nAver age — Indicate whether historical averages should consider values less than or equal to
zero. Seethe cal cul at eDi versi onStati onEffi ci enci es(),
cal cul ateVel | Stati onEffici encies(),
fill Di versi onDemandTSMont hl yPattern(),
fill Di versionHi storical TSMont hl yPattern(),
fillwWell DemandTSMont hl yPattern(),
fillwell Hi storical TSvont hl yFronHydr oBase(),
set Di ver si onDemandTSMont hl y(), set Di ver si onHi stori cal TSMont hl y(),
and set VWl | DemandTSMont hl y() commands.

Li m t ToCur r ent — Indicate whether only the most recent water rights conditions should be used when
limiting time series to rights (use a single value and not a step function). See the
limtDiversi onDemandTSMont hl yToRi ght s() command.

Li st Fi | e — The name of an input or output list (delimited) file to be written or read, specified using a
relative or absolute path. See the r ead* Fronli st () andwrite*toLi st () commands.

Locat i onEst i mat e — Indicate how to estimate missing coordinates for nodes, when used with
network diagram features. See thefi | | Net wor kFr onHydr oBase() command.

LogFi | e — The name of the log file, specified using a relative or absolute path. See the
set LogFi | e() command.

LogFi | eLevel —The level for messages printed to the log file. See the set DebugLevel () and
set V\ar ni ngLevel () commands.

Max AppDept h — The maximum irrigation application depth for a crop. See the
set CropCharacteristics() command.

Max| nt er val s — The maximum number of intervals to process when processing time series. For
example, indicate the widest gap of missing data to fill. See the
fill CropPatternTSl nterpolate(), fill CropPatternTSProrat eAgStats(),
filllrrigationPracticeTSInterpolate(),and
filllrrigationPracticeTSRepeat () commands.

MaxRechar geLi m t — The maximum recharge limit (CFS) when modeling groundwater. See the
set Ri ver Net wor kNode() command.

Max Root ZoneDept h — The maximum root zone depth for a crop. See the
set CropChar acteri stics() command.

Mer geDel i m- Indicates whether adjacent delimiters should be treated as one when processing
delimited files. See the r ead* FromLi st () andwri t e*ToLi st () commands.

237 Command Glossary - 11

Command Glossary StateDMI Documentation

Mont hVal ues — Monthly values used to set time series data. See the
set | nstreanfl owdemandTSAver ageMont hl yConst ant () command.

MultiStruct — See Collection.

Nane — The name associated with a data item (e.qg., station, structure, water right name). This parameter
is used by many commands.

NanmeCol - The column number (or name) to be read from a delimited file for Name data. See the
fill*FromList() andset*Fronli st () commands.

NanmeFor mat — The format to use when setting the name for a station from HydroBase. Various data
can be combined into the name. Seethefi | | Ri ver Net wor kFr onHydr oBase(),
fill Ri ver Networ kFromNetwork(),fill StreanEsti mateStation(),
fill StreanEsti mat eSt ati onsFromNetwor k() ,fill StreamGageStation(),
fill StreanGageSt ati onsFrontydr oBase(), and
fill StreantzageSt ati onsFr omNet wor k() commands.

NewCr opType — The new crop type. Seethetransl at eBl aneyCri ddl e(),
transl at eCropCharacteristics(),andtransl ateCropPatternTS()
commands.

Nunber OF Days| nMont h — The number of days in each month, used when an approximation is used
rather than exact values. Seethesetlrri gati onPracti ceTSMaxPunpi ngToRi ght s()
command.

A dCr opType — The old crop type. See thet ransl at eBl aneyCri ddl e(),
transl at eCropCharacteristics(),andtransl ateCropPatternTS()
commands.

OneFi | | Rul e — The date for one fill rule administration for a reservoir. See the
fillReservoirStation() andset Reservoir Station() commands.

OnOF f - The on/off switch used to indicate if a station, right, or other information is active for a data
set. Seefill*() andset*() commands for StateMod data files.

OnO f Col — The column number (or name) to be read from a delimited file for OnOF f data. See the
set Di ver si onSt ati onsFronLi st () command.

OnOF f Def aul t — The default value of the OnOF f parameter for water rights (e.g., 1, or as determined
from a water right appropriation date). See the
readDi ver si onRi ght sFronHydr oBase(),
r eadl nst r eantl owRi ght sFronHydr oBase() , and
r eadReser voi r Ri ght sFronmHydr oBase(), and
readWel | Ri ght sFrontHydr oBase() commands.

OpRi ght | D— The operational right identifier associated with a reservoir right. See the
fill ReservoirRi ght() andset ReservoirRi ght () commands.

Or der — The primary order to sort data. See the sort *() commands.

Command Glossary - 12 238

StateDMI Documentation Command Glossary

O der 2 — The secondary order to sort data. See the sort *() commands.

Or ogr aphi cPrecAdj Col — The column number (or name) to be read from a delimited file for the
orographic precipitation adjustment factor. See the
set CULocati onCl i mat eSt at i onWei ght sFronli st () command.

O ogr aphi cTenpAdj Col — The column number (or name) to be read from a delimited file for the
orographic temperature adjustment factor. See the
set CULocati onCl i mat eSt at i onWei ght sFronli st () command.

Qut put End — A DateTime that indicates the end of output.
CQut put Fi | e — The name of an output file to be written, specified using a relative or absolute path.
Qut put St art — A DateTime that indicates the start of output.

Qut put Year Type - Indicate the type of year (e.g., calendar year, water year) for output. See the
set Qut put Year Type() command.

Par cel Ar eaCol - The column number (or name) to be read from a delimited file for parcel area data
(used when overriding HydroBase data during development). See the
setlrrigationPracti ceTSSpri nkl er AreaFronili st () command.

Par cel | DCol - The column number (or name) to be read from a delimited file for Par cel | D data.
Seethesetlrrigati onPracti ceTSSpri nkl er AreaFronLi st () command.

Par cel | DYear — The year to use for parcel identifiers (which can vary by year). See the
setlrrigationPracti ceTSSpri nkl erAreaFronLi st () command.

Par cel Year — A specific year for irrigated lands parcel data. See the
filllrrigationPracticeTSAcreageUsi ngWel | Ri ghts(),and
setlrrigationPracti ceTSPunpi ngMaxUsi ng\Wel | Ri ght s() command.

Par t | Ds — The identifiers for parts of a collection (aggregates and systems). See the
set Di ver si onAggregate(),setDi versionMul ti Struct (),
set Di ver si onSysten(), set Reservoi r Aggr egat e(), set Wl | Aggr egat e(),
and set Wel | Syst enm() commands.

Par t | DsCol — The column number (or name) to be read from a delimited file for Par t | Ddata (an
identifier for part of a collection). See the set Di ver si onAggr egat esFronLi st (),
set Di versionMul ti Struct Fronli st(),setDi versi onSyst enfronLi st (),
set Reser voi r Aggr egat eFronLi st (), set Wl | Aggr egat eFroniLi st (), and
set Vel | Syst entr omLi st () commands.

Par t | DsCol Max — The maximum column number (or name) to be read from a delimited file for
Par t | Ddata (an identifier for part of a collection). This is useful when ignoring additional
columns on the right side of a delimited file. See the
set Di ver si onAggr egat esFr onli st Fronli st (),
set Di versi onMul ti Struct FronLi st (), set Di versi onSyst enfronLi st (),
set Reservoi r Aggr egat eFronii st (), set Vel | Aggr egat eFronli st (), and
set Wl | Syst enfr onli st () commands.

239 Command Glossary - 13

Command Glossary StateDMI Documentation

Part | DsLi st edHow- Indicate whether part identifiers in a collection are listed in columns (one
record per collection) or rows (multiple rows per collection). See the
set Di ver si onAggr egat esFronLi st Fronli st (),
set Di versi onMul ti Struct FronLi st (), set Di versi onSyst enfronLi st (),
set Reservoi r Aggr egat eFronili st (), set Vel | Aggr egat eFronli st (), and
set Wl | Syst enfr onli st () commands.

Pat t er nFi | e — The file name for a pattern file. See the set Patt ernFi | e() command.

Pat t er nl D— An identifier for a pattern (e.g., \ET, DRY, AVG). See the
fill Di versi onDemandTSMont hl yPattern(),
fillDi versionHistorical TSMont hl yPattern(),
fillwell DemandTSMont hl yPattern(), and
readDi ver si onHi st ori cal TSMont hl yFr omHydr oBase() commands.

Pl ant i nghMbnt h — The planting month for a crop. See the set CropChar acteri stics()
command.

Pl ant i ngDay - The planting day for a crop. See the set Cr opChar act eri sti cs() command.

Pr eci si on — The precision (digits after the decimal) for output. See the
writeBl aneyCriddl eToSt at eCU() command.

Preci pSt at i ons — The list of precipitation stations and weights for a reservoir station. See the
fill ReservoirStation() andset ReservoirStation() commands.

PrecW Col - The column number (or name) to be read from a delimited file for Pr ecW (precipitation
weight) data. See the set CULocat i onsFromnLi st () command.

Pr ocessDat a - Indicates whether crop pattern data should be processed or used only to define
relationships between data (which will then be used by another command). See the
readCr opPat t er nTSFr onHydr oBase() command.

Pr ocessWhen — Indicates when crop pattern data should be processed. Data can be processed with the
command (immediate set) or when HydroBase data are read. The latter allows more
sophisticated processing that may be required. See the set Cr opPatt ernTS(),
set CropPatternTSFronLi st(),setlrrigationPracticeTS(),and
setlrrigationPracti ceTSFronLi st () commands.

Pror ati onFact or — The proration factor for stream estimate stations. See the
set StreanEst i mat eCoef fi ci ent s() command.

Punpi ngMax — The maximum monthly pumping rate for a CU Location. See the
setlrrigationPracti ceTS() command.

Punpi ngMaxCol - The column number (or name) for pumping maximum. See the
setlrrigationPracti ceTSFromnLi st () command.

ReadWel | Ri ght s — Indicates whether well rights should be read, rather than relying on summed
“pseudo rights”. The default is now to read individual well rights; however, this parameter can be

Command Glossary - 14 240

StateDMI Documentation Command Glossary

used to match data processing for earlier versions of the software. See the
fillWwellStationsFronHydroBase(),readWel | Ri ght sFronHydr oBase(), and
setlrrigationPracti ceTSFromHydr oBase() commands. See also UseApex.

Regi onl - Traditionally, the StateCU model used County/HUC identifiers to indicate the bounds of an
area of interest, for calculations/reporting. StateDMI uses generalized Regionl/Region2
identifiers, to allow more flexibility. Seethefill Cli mateStati on(),
fill CULocation(),setClimteStation(),andset CULocation() commands.
See also Regi on1Type.

Regi on1Col - The column number (or name) to be read from a delimited file for Regi on1 data. See
thefill CULocati onsFronii st (),readCULocati onsFromnli st (),
set CULocat i onsFronii st (), and set CULocat i onsFromnLi st () commands.

Regi on1Type - Traditionally, the StateCU model used County/HUC identifiers to indicate the bounds
of an area of interest, for calculations/reporting. StateDMI uses generalized Regionl/Region2
identifiers, to allow more flexibility and some commands use this parameter to indicate that
Regi on1l is Count y or another value. Seethefi |l | CULocati onsFr onHydr oBase()
command. See also Regi onl.

Regi on2 - Traditionally, the StateCU model used County/HUC identifiers to indicate the bounds of an
area of interest, for calculations/reporting. StateDMI uses generalized Region1/Region2
identifiers, to allow more flexibility. Seethefill C i mateStati on(),
fill CULocation(),setClimateStation(),andset CULocation() commands.
See also Regi on2Type.

Regi on2Col - The column number (or name) to be read from a delimited file for Regi on2 data. See
thefill CULocati onsFronili st (),readCULocati onsFronli st (),
set CULocat i onsFronli st (), and set CULocat i onsFronLi st () commands.

Regi on2Type - Traditionally, the StateCU model used County/HUC identifiers to indicate the bounds
of an area of interest, for calculations/reporting. StateDMI uses generalized Region1/Region2
identifiers, to allow more flexibility and some commands use this parameter to indicate that
Regi on2 is HUC or another value. Seethefil | CULocati onsFronmHydr oBase()
command. See also Regi on2.

Rel easeMax — The maximum release for a reservoir. Seethefil | ReservoirStati on() and
set Reservoir Station() commands.

Repl aceResOpt i on — The replacement reservoir option for a diversion station. See the
fill DiversionStation(),andsetDi versionStation() commands.

Repl aceResOpt i onCol - The column number (or name) to be read from a delimited file for
Repl aceResOpt i on data. See the set Di ver si onSt ati onsFr onli st () command.

Ret ur ns — The return flow locations, percentages, and delay table, for a diversion or well station. See
thefill Di versionStation(),fillWell Station(),setD versionStation(),
and set Wl | St ati on() commands.

Ri ght Type — The reservoir right type. Seethefi || ReservoirRi ght () and
set Reservoi r Ri ght () commands.

241 Command Glossary - 15

Command Glossary StateDMI Documentation

Ri ver Nodel D- The river node identifier associated with a station. See the
fillD versionStation(),fill ReservoirStation(),
fill Streanksti mateStation(),fill StreanfzageStation(),
fillwWellStation(),setDiversionStation(),setReservoirStation(),and
set Streantsti mat eSt ati on() commands.

Ri ver Nodel DCol - The column number (or name) to be read from a delimited file for
Ri ver Nodel Ddata. Seethe set Di ver si onStati onsFromnii st () and
set Wl | St ati onsFronli st () commands.

Scal e — A scale factor to apply to data. See the r eadDel ayTabl esFr onfst at eMod() command.

Set Ef fi ci ency - Indicate whether to set the efficiency when setting delay table information. See the
set Di versi onSt ati onDel ayTabl esFr onRTN() and
set Vel | St ati onDel ayTabl esFr omRTN() commands.

Set End — A DateTime that indicates the end of a data set process.

Set FI ag — A character flag used to indicate when time series values are set. See the
limtDiversi onDemandTSMont hl yToRi ght s(), and
limtDiversionHi storical TSMont hl yToRi ght s() commands.

Set St art — A DateTime that indicates the start of a data set process.

Set ToM ssi ng - Indicate whether a set command should result in missing data, rather than supplying
actual data values. This is sometimes necessary to undo previous processing. See the
set CropPatt ernTS() commands.

Spri ngFrost Fl ag — The spring frost flag for a crop. See the set CropChar acteri stics()
command.

Spri nkl er Acr eage — Indicate how to adjust the sprinkler acreage for locations that are irrigated by
sprinklers. See the synchroni zelrri gati onPracti ceAndCropPatternTS()
command.

Spri nkl er AppEf f Max — The sprinkler application efficiency maximum for a CU Location. See the
setlrrigationPracticeTS() command.

Spri nkl er AppEf f MaxCol — The column number (or name) to be read from a delimited file for
Spri nkl er AppEf f Max data. Seethesetlrrigati onPracti ceTSFronli st ()
command.

St ati onl D- The station identifier associated with a data item (e.g., the station ID associated with a
water right). Seethefill Di versi onRight(),filllnstreanfl owk ght (),
fill ReservoirRight(),fillWellRi ght(),setDi versionRi ght(),
set | nstreantl owRi ght (), andset Wl | Ri ght () commands.

Suppl yTypeCol - The column number (or name) for supply type (e.g., Sur f ace or G ound
indicator). Seethesetlrrigati onPracti ceTSFronLi st () and
set CropPatt er nTSFronLi st () commands.

Command Glossary - 16 242

StateDMI Documentation Command Glossary

Sur f aceDel Ef f Max — The surface water delivery efficiency maximum for a CU Location. See the
setlrrigationPracticeTS() command.

Sur f aceDel Ef f MaxCol — The column number (or name) to be read from a delimited file for
Sur f aceDel Ef f Max data. Seethesetlrrigati onPracti ceTSFronii st ()
command.

System — See Collection.

TenmpW Col - The column number (or name) to be read from a delimited file for TenpW (temperature
weight) data. See the set CULocat i onsFromnii st () command.

TSID - Time series identifier, which is used to uniquely identify a time series. In full notation, this
consists of a string similar to the following:
Location.DataSource.DataType.Interval.Scenario~InputType~InputName. In abbreviated form,
the InputType and InputName are often omitted. The InputType and InputName are typically
used only by read and write commands. Because a TSID may be long (especially when file
names are used for the InputName), an Alias may be assigned to the time series. The TSID
parameter is typically used in commands for the time series that is being processed. See also
Alias.

TSI D- When used as a command parameter the time series identifier indicates the time series to be
processed. The TSID or alias can typically be specified. See the
set Di ver si onDemandTSMont hl y() and set Wel | DenmandTSMont hl y() commands.

Uni t s — Units associated with a data, often time series. See the
creat eCropPat t er nTSFor CULocat i ons() and
createlrrigati onPracti ceTSFor CULocati ons() commands.

Upst r eanRi ver Nodel D- The river node identifier for the upstream node in an instream flow reach,
for instream flow stations. Seethefil || nstreanfl owSt ati on(), and
set | nstreantl owSt ati on() commands.

UseApex - Indicates whether well rights APEX (alternate point and exchange) data should be added to
water rights when they are read. Seethefil| Wel | St ati onsFronHydr oBase(),
readWel | Ri ght sFronHydr oBase(), and
setlrrigationPracti ceTSFronmHydr oBase() commands. See also
ReadWel | Ri ght's.

UseDi ver si onComrent s — Indicate whether diversion comments in HydroBase should be used to
provide additional zero diversion values for diversion time series. See the
readDi ver si onHi st ori cal TSMont hl yFr omHydr oBase() command.

UseOnOX f Dat e — Indicate whether the OnOf f switch value for water rights should be used to
determine the appropriation date for water rights. See the
l'imtD versi onDemandTSMont hl yToRi ght s(),
IinmtDiversionHi storical TSMont hl yToRi ght s(), and
setlrrigationPracti ceTSMaxPunpi ngToRi ght s() commands.

243 Command Glossary - 17

Command Glossary StateDMI Documentation

User Nanme — The user name for a diversion station. Seethefi || Di versi onStati on() and
set Di versi onSt ati on() commands.

User NanmeCol - The column number (or name) to be read from a delimited file for User Nane data.
See the set Di ver si onSt at i onsFronLi st () command.

UseSt or edPr ocedur es — Indicates whether stored procedures should be used (versus straight SQL
calls). This is being used to transition HydroBase queries to stored procedures. See the
openHydr oBase() command.

UseType — The water use type (e.g., to indicate agriculture) for a diversion station. See the
fill DiversionStation(),fillWellStation(),setDi versionStation(),and
set Vel | Stati on() commands.

UseTypeCol - The column number (or name) to be read from a delimited file for UseType data. See
the set Di ver si onSt ati onsFronli st () andset Wel | St ati onsFronli st ()
commands.

Ver si on — Indicates the file version, to allow the software to handle different data formats. See the
readCr opPatt er nTSFrontst at eCU() ,
readl rrigati onPracti ceTSFrontt ateCU(),readSt at eModB(),
writeBl aneyCri ddl eToStateCU(),witeCropCharacteristicsToStateCU(),
writeCULocati onsToSt at eCU() , and
writelrrigationPracti ceTSToSt at eCU() commands.

Wei ght s — Station weights. Seethefil | CULocati onC i mat eSt ati onWei ght s() and
set CULocat i on() commands.

Wor ki ngDi r — The working directory for the software, which can be used with relative paths to form
absolute paths to files. See the set Wor ki ngDi r () command.

Wit eCr opAr ea — Indicate whether to write the crop area in addition to the percent, for the crop
pattern time series file. Seethewr it eCropPatternTSToSt at eCU() commands.

WiteOnl yTot al - Indicate whether to write only the total crop area for the crop pattern time series
file. SeethewriteCropPatternTSToSt at eCU() commands.

W i t eHow- Indicate how to write an output file (update or overwrite). See thewri t e*() commands.

Year — Specify year(s) of interest. For example, when processing data related to wells, the year is used
to indicate the year for parcel data. Seethefil |l Wel | St ati onsFronHydr oBase(),

readl rrigati onPracti ceTSFrontydr oBase(),readWel | Ri ght sFronHydr oBase(),
setlrrigationPracti ceTSFronmHydroBase(),

setlrrigationPracticeTSSprinkl er AreaFroniist(),set Wl | Aggregate(),

set Wl | System(), and set Wl | Syst enfronli st () commands.

Year Col — The column number (or name) to be read from a delimited file for Year data. See the
setlrrigationPracti ceTSFronLi st () command.

Command Glossary - 18 244

Command Reference: #

Comment line

General Command

Version 3.08.02, 2010-01-06

The # command indicates single-line comments. Commands can be converted to and from # comments.
See also the / * and */ comment block commands, which are to comment multiple commands.

The following dialog is used to edit the command and illustrates the command syntax:

=1 Edit # Comments ﬂ

Eriter ane ar more cotmments (leading # will be added automsatically it not shown).

Zee also the * and * commands for multi-ling comments, swhich are uzeful for commerting out multiple commands.
0 10 20 30 40 50 &0 g
12345678901 2345678901234567890123456789012345675901234567839012345678901 234567590
Uncomnment the following command to regenerate the expected resultz file.
WriteDateValue(OutputFile="ExpectedResults\Test WriteDateValue CommentBlock ou

Carnimerits:

Kl | B

Cancel | [0].4 |

Comment

Command Editor
The command syntax is as follows:

Sone text

A sample command file is as follows:

#
Some comments..
#

245 Command Reference — # - 1

Command StateDMI Documentation

Command Reference — # - 2 246

Command Reference: */

Comment block end

General Command

Version 3.08.02, 2010-01-06

The */ command ends a multi-line comment block and is useful for inserting long comments or
temporarily commenting out blocks of commands. See also the / * and # commands. Commands
between the / * and */ are not converted to comments but are skipped during processing.

The following dialog is used to edit the command and illustrates the command syntax:

o] Edit */ command x|
Thiz command ends a multi-line comment block, which iz useful for cammenting out multiple commands.
Lze the & cammand to start the comment block.

See alzo the # command far commenting single lines.

wf

Cotnrnand:

Cancel | (0],9 |

CommentBlockEnd

*/ Command Editor
The command syntax is as follows:
*/

A sample command file is as follows:

/*
SomeCommentedOutCommands()..
*/

247 Command Reference —*/ - 1

*/ Command StateDMI Documentation

Command Reference —*/ - 2 248

Command Reference: /*

Comment block start

General Command

Version 3.08.02, 2010-01-06

The / * command starts a multi-line comment block and is useful for inserting long comments or
temporarily commenting out blocks of commands. See also the */ and # commands. Commands
between the / * and */ are not converted to comments but are skipped during processing.

The following dialog is used to edit the command and illustrates the command syntax:

) Edit /* command |
Thiz command starts a comment block, and iz uzed to comment out multiple commands.
Li=ze the *f cammand to end the block of comments.

J,-'fr

ot

Cancel | Ok |

CommentBlockStart

/* Command Editor
The command syntax is as follows:
/ *

A sample command file is as follows:

/*
SomeCommentedOutCommands()..
*/

249 Command Reference — /* - 1

/* Command StateDMI Documentation

Command Reference — /* - 2 250

Command Reference: AggregateWellRights ()

Aggregate well right data from by weighting the decree by administration number

StateMod Command

Version 3.09.00, 2010-01-26

The Aggr egat eVl | Ri ght s() command aggregates well rights by weighting the decree by
administration number (in simple terms the number of days since 1849). It is typical to aggregate water
rights in basins where individual rights do not need to be modeled (modeling individual rights increases
the run time and amount of model output). For example, Rio Grande well rights are typically aggregated;
however, South Platte rights are not, due to detailed modeling of augmentation plans. Aggregating well
rights is typically the last step in well right processing before writing the well rights file. The

ReadWel | Ri ght sFronmHydr oBase() command prior to StateDMI 2.14 performed aggregation in
one step; however, this is no longer desirable because unaggregated rights are needed for data processing,
such as limiting groundwater-only supply parcels back in time, and setting the pumping maximum in the
irrigation practice time series.

The following figure illustrates the difference between raw, merged, and aggregated rights. Raw rights
contain output for multiple years of irrigated lands parcel data. Merged rights consider all years of
irrigated lands data but avoid double-counting rights that result from more than one year of parcel data
processing (see the Mer geWl | Ri ght s() command).

200812 Cumulative Well Water Rights

red=1993, blue=19325,1998 2002 merged, green=merged and aggregated
FS

aa00 66
4000.00 /
360000 /
3200.00 ﬁ
2E00.00 J:J

2400.00

2000.00
600,00 /
1200.00

800.00 fs“fy

400.00 /

| | | | | o | | | | | | | | | | | | | | |
n.on 1905 1940 1915 1920 1925 1930 1935 1940 1945 1950 1955 1950 1965 1970 1975 1020 1225 1000 1925 2000 2005

—200212 Total Well Rights for Location, add 2,240, add 1.230, add 2.720, add 1.230, add 0,890, add 0.290, add 0620, add 0.620, add 2670, add -
—200212 Total Well Rights for Location, add 2340, add 1.230, add 2.780, add 1.230, add 1.780, add 1.240, add 2 670, add 1.240, add 0.560, add :
200212 Tatal Well Rights far Location, add 1.070, add 4620, add 58.720, add 1003 960, add 1601.240, add 822 940, add 650.930, 200312 State

setlrrigationPracticeTSPumpingMaxUsingWellRights_Example

The end result of aggregation is well rights that have an identifier matching the location, with a number
suffix. The suffix “.01” corresponds to rights with an administration number <= to the first
administration number class. The last administration number class should therefore be larger than any
administration number that is expected (e.g., use 99999.99999). Example output in StateMod format is as
follows:

251 Command Reference — AggregateWellRights() - 1

AggregateWellRights() Command StateDMI Documentation

#> 1D Name Struct Admin # Decree On/0ff
H>—— eb----—-———---— eb---————-——- eb---———-——————- eb------ eb---—-- e
200511wW.08 200511 57343 .00000 3.01 2006
200812W.03 200812 21307.00000 4.68 1908
200812W.04 200812 29515.00000 45.48 1930
200812W.05 200812 32589.00000 954.42 1939
200812W.06 200812 37671.00000 1608.05 1953
200812wW.07 200812 41917.00000 911.48 1964
200812wW.08 200812 47211.00000 659.28 1979

The following steps occur to aggregate well water rights at each location where aggregate/systems are
specified with parcels or a well station has an associated diversion ID:

1.

Initialize aggregate water rights. Aggregate water rights for each water class are initialized to
zero. If at the end of processing the value is still zero, a right will NOT be added for the class.
Aggregate rights for a groundwater-only location have an identifier that starts with the location.
Other locations that have supplemental supply use the location identifier, followed by a “W”. All
rights then have a .NN ending, corresponding to the water right class.

For each class, the following sums are calculated: sum(decree*AdminNum) and sum(decree),
where the administration number is determined from the appropriation date derived from the
original HydroBase administration number (it will not have a remainder).

After processing all rights for the location, the final administration number for the class is
determined (it will not have a remainder) as: int(sum(decree* AdminNum)/sum(decree)).

For each non-zero aggregate, a well right is added for the location. Only the whole number part
of the administration will be set (the remainder will be zero).

The well rights are added to the overall list for output. All previous rights for the location are
replaced by the aggregate rights.

If the output does not show aggregation as expected, verify that the location is properly being specified as
a groundwater only location with aggregate/system parcel list, and that the associated diversion ID is
specified in well station or list file used as input.

2 - Command Reference — AggregateWellRights() 252

StateDMI Documentation AggregateWellRights() Command

The following dialog is used to edit the command and illustrates the syntax of the command:

Edit AggregateWellRights() Command E]

This cammand aggregates well waker rights, resulking in Fewer water rights, This increases madel perfarmance.
Aggreqation occurs by weighting decree and administration numbers ak a location,

Watker right classes must be supplied as administration number (HMNRE, RENAN) Breaks,

The resulting agareqate rights replace the ariginal rights.

Admin, number classes: | 5000,00000, 30000, 00000, 35000, 00000, 40000, 00000, 45000, 00000, 99999, 99399
CnOff defaulk: | AppropriationDate » | Optional - default OnofF switch (default=AppropriationDate),

AoggregatelWlellRights (Adwminiume lasses="10000, 00000, 20
Qoo0., 00000, 25000, 00000, 30000, 00000, 35000, 00000, 40000
Lo0oo0, 45000, 00000,99999 990999 Oonoffhefault="Appro

priationbate™)

Command:

[Ok H Cancel]

AggregateWellRights

AggregateWellRights() Command Editor
The command syntax is as follows:
Aggr egat eVl | Ri ght s(Par anet er =Val ue, ..)

Command Parameters

Parameter Description Default

Adm nNunCl asses | A list of administration numbers, separated by spaces or | If not specified,
commas, to define the breaks for aggregate water rights, | diversion

for well aggregates. For example, if the class breaks are | aggregates will be
10000.000, 20000.00000, and 99999.99999, the first treated as diversion
group will contain water rights with administration systems, with all
numbers <= 10000.00000, the second will contain water | water rights

rights with administration number > 10000.00000 and explicitly included
<=20000.00000, and the third will contain water rights | in output.

with administration number > 20000.00000 and <=
99999.99999. The last administration number should be
larger than any data value that is expected to occur.
OnOf f Def aul t Indicates how to set the on/off switch for resulting water | Appr opri ati on
rights. A value of 1 indicates that the right is on for the Dat e

whole period. If the value is Appr opri at i onDat e,
the switch is set to the year corresponding to the
appropriation date, indicating that the right will be
turned on starting in the year. The appropriation date
for aggregate rights is taken from the whole number part
of the administration number because the remainder is a
result of the weighting and does not have meaning.

253 Command Reference — AggregateWellRights() - 3

AggregateWellRights() Command StateDMI Documentation

The following example illustrates the full process for creating well rights in the Rio Grande basin,
including well right aggregation (this is an abbreviated command file with repetitive steps removed):

StartLog(LogFile="Wells_wer.StateDMI .log")
Wells_WER.StateDMI

#

Step 1 - open a log file for this run

#
StartLog(LogFile="Wells_WER.StateDMI .log")
#

Step 2 - read stations
readWellStationsFromStateMod(InputFile="rg2007.wes")
ReadWel IStationsFromStateMod(InputFile="rg2007.wes')

Step 3 - define aggregates and systems
Diversions are collections using a list of WDIDs, and the list of IDs is
constant through the model period.

Aggregates will result in well rights being aggregated.

Systems will be modeled with all well rights (no aggregation).
Well-only lands are collections using a list of parcel identifiers, and
the lists are specified for each year where data are available because the
parcel identifiers change from year to year.

HHFEHEHEHEHHFHH

Diversions with and without groundwater supply...

SetWel lAggregateFromList(ListFile="__\Diversions\rgTW_divaggregates.csv',
IDCol=1,PartiIDsCol=2,PartsListedHow=InRow,PartType=Ditch)

SetDiversionSystemFromList(ListFile=""__\Diversions\rgTW_divsystems.csv",
IDCol=1,PartiIDsCol=2,PartsListedHow=InRow, PartType=Ditch)

Wells with only groundwater supply...#

SetWelISystemFromList(ListFile="_.\Wells\1998 GWonly agg.csv',Year=1998,Div=3,
PartType=Parcel, IDCol=1,PartIDsCol=2,PartsListedHow=InColumn)

Step 4 - read rights from HydroBase (NO AGGREGATION)

Include Appropriation Date for on/off

1936 is included for more rights and because used in later data filling.
APEX is NOT used.

#

R

eadWel IRightsFromHydroBase(1D=""*", IDFormat=""HydroBaselD",Year="1998",Div="3",
DefaultAppropriationDate="1950-01-01",DefineRightHow=RightlfAvailable,
ReadWel IRights=True,UseApex=False,OnOffDefault=AppropriationDate)

Step 5 - set data not in HydroBase
M&I are not tied to an irrigated parcel and therefore may not be in
HydroBase.
Also, StateDMI does not currently read well rights/permits for explicit
non-irrigation well locations.

HHHHHHHR

5a; Set Alamosa Refuge

Mumm Well and estimated small wells (4 cfs) (refine only with additional information from USFWS)

SetWel IRight(1D=""20MS06W.98" ,Name=""Smal I_ANWR_Wells",StationlD="20MS06",
AdministrationNumber=90000.00000,Decree=4.00,0n0ff=1, IfNotFound=Add, I fFound=Warn)

.many omitted

Step 6 - write rights from multiple years of irrigated lands
Note since not aggregating, the ID"s assigned will be
true Well IDs, not structure id.Ol1, etc.
The *wer file is written containing all parcel years and
""data comments' on the right side of the file are written to
facilitate use when filling the *cds and *ipy files.
The following is used to fill the CDS and IPY acreage prior to 1998,
using the rights resulting from 1998 parcels.

HHHFEHFHFHF R

SortWelIRights(Order=LocationlDAscending,Order2=1DAscending)
WriteWel IRightsToStateMod(OutputFile="rg2007_NotMerged.wer" ,WriteDataComments=True)

H*

Step 7 - merge multiple years (but do not aggregate)

The water rights resulting from multiple years of parcel data (above) are
merged. Blocks of rights with the same right ID and location ID are
checked. |If all are the same in two years, then all are kept in the
result. Otherwise, the rights from the year resulting in the highest

O H

4 - Command Reference — AggregateWellRights() 254

StateDMI Documentation AggregateWellRights() Command

decree sum are kept in the result. The process compares two years at a
time, going through all years where data are available.
The following version of the file is used to set IPY max pumping.

#
MergeWel IRights()
SortWel IRights(Order=LocationlDAscending,Order2=1DAscending)

WriteWellRightsToStateMod(OutputFile="rg2007.wer"")

#

WriteWel IRightsToStateMod(OutputFile="rg2007 .wer"")

WriteWel IRightsToStateMod(OutputFile="_ _\StateMod\Historic\rg2007.wer')
#

Step 8 - aggregate into water rights classes

This step is needed in the Rio Grande but not in the South Platte.

Rights are aggregated by weighting by decree and administration number.
The right identifiers are set to LocationlID.##, where ## is the class.
#

AggregateWel IRights(AdminNumClasses=""10000.00000,20000.00000,25000.00000,
30000.00000, 35000.00000,40000.00000,45000.00000,99999.99999",0nOffDefaul t=""AppropriationDate')
WriteWel IRightsToStateMod(OutputFile="rg2007_Agg.-wer'")
WriteWel IRightsToStateMod(OutputFile="__\StateMod\Historic\rg2007_Agg.wer')
#
Check the results
CheckWel IRights(ID=""*"")
WriteCheckFile(OutputFile="Wells_wer.StateDMI .check.html')

255 Command Reference — AggregateWellRights() - 5

AggregateWellRights() Command StateDMI Documentation

6 - Command Reference — AggregateWellRights() 256

Command Reference:
CalculateDiversionDemandTSMonthly()

Calculate diversion demand time series (monthly) using irrigation water
requirement and average monthly efficiencies

StateMod Command

Version 3.09.01, 2010-02-01

The Cal cul at eDi ver si onDemandTSMont hl y() command calculates diversion demand time
series (monthly) by dividing the irrigation water requirement (IWR) time series (monthly) by average
monthly efficiencies. The diversion stations should first be read with another command (e.g.,

ReadDi vsi onSt at i onsFr ontt at ebd()) and provide the list of diversion stations to be
processed — every diversion station will have a demand time series in the result. The IWR time series
should have been read by a previous command. The diversion station efficiencies should also have been
calculated previously. The output year type must be specified correctly because efficiencies are stored in
diversion stations according to the year type for the StateMod data set. The following rules apply:

If a diversion station is defined as a MultiStruct, the demand for the primary station (the first one
listed in the MultiStruct) is the sum of the demands for all of its parts and the average efficiency for
the total will be used (as set in previous commands). The demands for the secondary stations will be
set to zero.

If required time series data are not available for calculations (i.e., no IWR time series is found), a
demand time series with zero values is created. This demand time series can be replaced with

Set Di ver si onDenandTSMont hl y() commands, if necessary.

If an IWR value for a month is zero, then the demand value for the month is set to zero (whether there
was a historical diversion or not). In this case the demand can later be adjusted to a larger value using
the Cal cul at eDi ver si onDenandTSMont hl yAsMax() command.

If the efficiency for a month is zero: if the IWR is zero, then the demand is set to zero; otherwise the
demand is set to missing.

25 pmmand Reference — CalculateDiversionDemandTSMonthly() - 1

CalculateDiversionDemandTSMonthly() Command StateDMI Documentation

The following dialog is used to edit the command and illustrates the syntax of the command.

Edit CaleulateDiversionDemandTSMonthly() Command

This command calculates the diversion demand time series (monthly) by dividing the I'WR. (aka CWH) time series by the average monthly efficizncies,
For diversion Multistruct locations, the demand For the primary (first) diversion station is the sum of all demands

and the average efficiency For the total will be used (as set in previous commands),

The diversion station identifier is used to match the kime series that is read.

The output period must be specified with a previous command.

Diversion station ID: |* Required - stations to process {use * For wildcard),

IF nok Found: A Optional - indicate action if no match is found {defaulk=Warn).
CalculateliversionbemandTSMonthly [ID="%")

Command:

[Cancel ” Ok,]

CalculateDiversionDemandTSMonthly

CalculateDiversionDemandTSMonthly() Command Editor

The command syntax is as follows:
Cal cul at eDi ver si onDemandTSMont hl y(Par amet er =Val ue, ..)

Command Parameters

Parameter Description Default

I D A single diversion station identifier to match or a | None — must be
pattern using wildcards (e.g., 20*). specified.

| f Not Found Used for error handling, one of the following: Vrn
o Fai |l —generate a failure message if the ID

is not matched
e | gnore —ignore (don’t add and don’t
generate a message) if the ID is not matched
e \\Ar n — generate a warning message if the
ID is not matched

2 - Command Reference — CalculateDiversionDemandTSMontiR58

TSTool Documentation CalculateDiversionDemandTSMonthly () Command

The following abbreviated command file illustrates how irrigation water requirement time series can be
processed into average demand time series:

StartLog(LogFile=""Cddm.commands.StateDMI . log™)
Cddm.commands.StateDMI

H*

StateDMI command file to create the Calculated demand Ffile

#
#
#
Step 1 - set the output period, used to compute averages...
#

SetOutputPeriod(OutputStart="10/1908",0utputEnd="09/2005")
SetOutputYearType(OutputYearType=Water)

#

Step 2 - read historical diversion file -defines structures for *.ddm file

plus read *.ddh file

#

ReadDiversionStationsFromStateMod(InputFile="__\StateMod\cm2005.dds"")

ReadDiversionHistoricalTSMonthlyFromStateMod(InputFile="__\StateMod\cm2005.ddh")

#

Step 3 - read StateCU *.iwr and *.def files (irrigation requirements and average efficiencies)

#

ReadlrrigationWaterRequirementTSMonthlyFromStateCU(InputFile="__\StateMod\cm2005. iwr')

calculateDiversionStationEfficiencies(1D="*" EffMin=0,EffMax=60,
EffCalcStart=10/1974,EffCalcEnd=9/2004,LEZerolnAverage=False)

SetDiversionStationsFromList(ListFile="cm2005.def",1DCol=""1" ,EffMonthlyCol="2",
Delim=""Space"' ,MergeDelim=True)

#

Step 4 - determine calculated demand = iwr/efficiency

- take max of calculated demand and historical diversion
#

CalculateDiversionDemandTSMonthly (ID=""*"")

CalculateDiversionDemandTSMonthlyAsMax(ID=""*"")

#

Step 5 - set carriers nodes demand to 0, set full demand and summary demand nodes

#

set carrier "transbasin™ diversion to Divide Creek to 0", use operating rules to satisfy demand
SetDiversionDemandTSMonthlyConstant(1D=""724721" ,Constant=0)

place summary demand at the Moffat Tunnel, zero out collection points

SetDiversionDemandTSMonthly (ID="514655",TSID="'514655. .DivTotal .Month~StateMod~514655.stm'")

. similar commands omitted..

#

Step 6 - set calculated demand to historic for structures whose historical acreage is

different from current

#
SetDiversionDemandTSMonthly(I1D=""360687",TSID=""360687. .DivTotal .MONTH~StateMod~. .\StateMod\cm2005H.ddm"")
SetDiversionDemandTSMonthly(ID="'360725",TSID=""360725. .DivTotal .MONTH~StateMod~. .\StateMod\cm2005H.ddm"")
..similar commands omitted..

#

Set Ute WCD demand node structure and set other structures to zero
SetDiversionDemandTSMonthly(ID="'950020", TSID="950020. .DivTotal .Month~StateMod~950020.stm"")
SetDiversionDemandTSMonthlyConstant(1D=""950030",Constant=0)

. similar commands omitted..

#

Set Orchard Mesa Check
SetDiversionDemandTSMonthly(I1D="'950003", TSID=""950003. .DivTotal .MONTH~StateMod~. .\StateMod\cm2005H.ddm"")
#

Set Excess HUP node demands for Homestake, Dillon, Williams Fork, and Wolford Reservoirs
SetDiversionDemandTSMonthlyConstant(1D=""954516D",Constant=999999)

.similar commands omitted..

Step 7 - write out calculated demand file

#

WriteDiversionDemandTSMonthlyToStateMod(OutputFile="__\StateMod\cm2005C.ddm")

#

Check the results

CheckDiversionDemandTSMonthly (ID=""*"")
WriteCheckFile(OutputFile="Cddm.commands.StateDMI .check.html')

2E@hmand Reference — CalculateDiversionDemandTSMonthly () - 3

CalculateDiversionDemandTSMonthly() Command StateDMI Documentation

4 - Command Reference — CalculateDiversionDemandTSMonthR60

Command Reference:
CalculateDiversionDemandTSMonthlyAsMax()

Calculate diversion demand time series (monthly) as the maximum of the existing
demands and the historical time series

StateMod Command

Version 3.09.01, 2010-02-01

The Cal cul at eDi ver si onDemandTSMont hl yAsMax() command calculates diversion demand
time series (monthly) as the maximum of the existing demands and the historical diversion time series.
This command is typically used after the Cal cul at eDi ver si onDemandTSMont hl y() command.

If a diversion is defined as a MultiStruct, the primary diversion station will be checked using the sum of
the historical time series and a sum of the demand time series. Secondary diversion stations will not be
checked (the demand will likely have been set to zero in a previous

Cal cul at eDi ver si onDemandTSMont hl y() command).

If necessary, use set commands after this command to force demand time series values (e.g., zeros).

The following dialog is used to edit the command and illustrates the syntax of the command.

Edit CalculateDiversionDemandTSMonthlyAsMax() Command

This command calculates the diversion demand time series as the maximum of the demand time series and historical diversion time series,
&n initial estimate of the demand time series must have been made (e.q., from IWR/EFFawve).

For diversion MultiSkruct locations, the comparison For the primary (First) diversion skation is made using the primary

station demand and total historical time series For the MultiStruct parts.

Demands For secondary locations are not checked (they should be zero from previous commands).

The diversion station identifier is used to match the time series that is read.

The output period must be specified with a previous command.

Diversion skation ID; [* Required - skations to process {use * for wildcard).

If nat Found: w Cptional - indicate action if no match is Found {default=\arn}.
CalculatelbiversionDemandTiNonthlyisMax (ID="+M)

Command:

Cancel H Ok,]

CalculateDiversionDemandTSMonthlyAsMax

CalculateDiversionDemandTSMonthlyAsMax() Command Editor
The command syntax is as follows:

Cal cul at eDi ver si onDemandTSMont hl yAsMax(Par anet er =val ue, ..)

ComP&ll Reference — CalculateDiversionDemandTSMonthlyAsMax() - 1

CalculateDiversionDemandTSMonthlyAsMax() Command StateDMI Documentation

Command Parameters

Parameter Description Default
I D A single diversion station identifier to match or a | None — must be
pattern using wildcards (e.g., 20*). specified.
| f Not Used for error handling, one of the following: Varn
Found e Add - add the time series if the ID is not
matched and is not a wildcard
e Fail —generate a failure message if the ID

is not matched
e | gnor e —ignore (don’t add and don’t
generate a message) if the ID is not matched
e \\Ar n — generate a warning message if the
ID is not matched

The following abbreviated command file illustrates how irrigation water requirement time series can be
processed into average demand time series:

StartLog(LogFile="Cddm.commands.StateDMI .log")

Cddm.commands.StateDMI

#

StateDMI command file to create the Calculated demand file

#
#
Step 1 - set the output period, used to compute averages...
#

SetOutputPeriod(OutputStart="10/1908",OutputEnd=""09/2005")
SetOutputYearType(OutputYearType=Water)

#

Step 2 - read historical diversion file -defines structures for *.ddm file

plus read *.ddh file

#

ReadDiversionStationsFromStateMod(InputFile=""__.\StateMod\cm2005.dds"")

ReadDiversionHistoricalTSMonthlyFromStateMod(InputFile="_ _\StateMod\cm2005.ddh")

#

Step 3 - read StateCU *.iwr and *.def files (irrigation requirements and average efficiencies)

#

ReadlrrigationWaterRequirementTSMonthlyFromStateCU(InputFile="__\StateMod\cm2005. iwr')

calculateDiversionStationEfficiencies(1D="*" ,EffMin=0, EffMax=60,
EffCalcStart=10/1974,EffCalcEnd=9/2004,LEZerolnAverage=False)

SetDiversionStationsFromList(ListFile="cm2005.def",1DCol=""1" ,EffMonthlyCol="2",
Delim=""Space' ,MergeDelim=True)

#

Step 4 - determine calculated demand = iwr/efficiency

- take max of calculated demand and historical diversion
#

CalculateDiversionDemandTSMonthly(1D=""*"")
CalculateDiversionDemandTSMonthlyAsMax(I1D=""*")

#

Step 5 - set carriers nodes demand to 0, set full demand and summary demand nodes
#

set carrier 'transbasin™ diversion to Divide Creek to "0", use operating rules to satisfy
demand

SetDiversionDemandTSMonthlyConstant(1D="724721" ,Constant=0)

.similar commands omitted..

Step 7 - write out calculated demand file

#

WriteDiversionDemandTSMonthlyToStateMod(OutputFile="__\StateMod\cm2005C.ddm")

#

Check the results

CheckDiversionDemandTSMonthly (ID=""*"")
WriteCheckFile(OutputFile="Cddm.commands.StateDMI .check._html')

2 - Command Reference — CalculateDiversionDemandTSMontHR@Max()

Command Reference:
CalculateDiversionStationEfficiencies()

Calculate diversion station average efficiencies using historical and irrigation
water requirement time series

StateMod Command

Version 3.09.01, 2010-02-01

This command is generally not used with current modeling procedures. Instead, a variable
efficiency approach is used where monthly average efficiencies are computed in StateCU and are
set in diversion stations using a Set Di ver si onSt ati onsFronli st (.., Ef f Mont hl yCol =..)
command. This command is retained to duplicate previous work.

The Cal cul at eDi versi onSt ati onEf fi ci enci es() command calculates average monthly
efficiencies for diversion stations and updates the diversion station information in memory. Efficiencies
are calculated as irrigation water requirement divided by historical diversion time series. The detailed
results of calculations can optionally be printed to a report file. The diversion historical time series
(monthly) and irrigation water requirement time series (monthly) should be read or created with other
commands, and should be filled before calculations, if appropriate. Only StateMod diversion stations
with demand source for agricultural irrigation will be processed. The output year type must be specified
correctly because efficiencies are stored in diversion stations according to the year type for the StateMod
data set. Diversion MultiStruct stations are processed by using the total irrigation water requirement and
historical diversions for all stations in the MultiStruct. A

WiteDi versionStationsToSt at eMbd() command must be executed to actually write the
updated efficiency data.

The following dialog is used to edit the command and illustrates the syntax of the command.

Edit CalculateDiversionStationEfficiencies() Command

This command calculates monthly efficiencies For each diversion station that is defined,

Efficiencies are computed as the ratio of irrigation {consumptive) water requirement divided by historical diversions.
It is expected that both sets of time series have been filed appropriately.

If the efficiency report file is provided, details of the efficiency calculations will be printed to the Ffile,

Diversion skation 10: || Required - stations to process (use * For wildcard),

Efficiency min. (%) (0 Optional - minimum efficiency {default=no constraint),

Efficiency max. (%) |60 Cptional - maximum efficiency (default=no constraint),

Calculation start date; [10/1974 Optional - stark date For efficiency calculations (blank=all}.
Calculation end date: |9/2004 Optional - end date For efficiency calculations (blank=all).
«= zero values in average?: |False Optional - are values <= zero used in averages {used later in Filing)? {default=True.)
Efficiency report file;
If not found: w Optional - indicate action if no match is Found {default="Warn),

CaloulateDiversionStationEfficiencies (ID="*",EffHin=0, EffMax=60,EffCalcstart=10/1974,E

fflaloEnd=9/2004, LEZeroIniverage=Fal=se)
Command:

[Add Working Directory H (a4][Cancel]

CalculateDiversionStationEfficiencies

CalculateDiversionStationEfficiencies() Command Editor

2B83mmand Reference — CalculateDiversionStationEfficiencies() - 1

CalculateDiversionStationEfficiencies() Command

StateDMI Documentation

The command syntax is as follows:

Cal cul at eDi versi onStati onEf fi ci enci es(Par anet er =Val ue, ..)

Command Parameters

Calculated efficiencies greater than this value
will be set to the maximum.

Parameter Description Default

I D A single diversion station identifier to match or a | None — must be
pattern using wildcards (e.g., 20*). specified.

Eff M n Minimum efficiency to allow, percent. Do not constrain the
Calculated efficiencies less than this value will efficiency.
be set to the minimum.

Ef f Max Maximum efficiency to allow, percent. Do not constrain the

efficiency.

EffCal cStart

The start date (e.g., YYYY-MM) for efficiency
calculations. Use this to limit the period for data
considered in calculations.

Use the full period.

Ef f Cal cEnd

The end date (e.g., YYYY-MM) for efficiency
calculations. Use this to limit the period for data
considered in calculations.

Use the full period.

LEZer ol nAver age

If true, values less than or equal to zero will be
considered when computing monthly time series
averages. If f al se, values less than or equal to
zero will be excluded from the averages.

True

Ef f ReportFile

If specified, a high-detail report will be created,
listing for each diversion station the irrigation
water requirement, historical diversion, and
resulting efficiency values. Creating the report
slows processing slightly.

If blank, no report is
generated.

| f Not Found

Used for error handling, one of the following:

e Fai | —generate a failure message if the ID
is not matched

e | gnor e —ignore (don’t add and don’t
generate a message) if the ID is not matched

e \MAr n — generate a warning message if the
ID is not matched

Var n

2 - Command Reference — CalculateDiversionStationEfficiencie® 54

Command Reference:
CalculateStreamEstimateCoefficients()

Calculate stream estimate coefficients data

StateMod Command

Version 3.09.01, 2010-02-01

The Cal cul at eSt r eantst i nat eCoef fi ci ent s() command calculates stream estimate
coefficients for each stream estimate station that is in memory — the previous values will be overwritten.
If Set St r eanEst i mat eCoef fi ci ent sPFGage() commands are used, they should be specified
before this command. Conversely, Set St r eanEst i nat eCoef fi ci ent s() commands, if used,
should be provided after this command. The following dialog is used to edit the command and illustrates
the syntax of the command.

Edit CalculateStreamEstimateCoefficients{) Command §|

This command calculates the skream estimate coefficients, which are used bo prorate Flow From gaged to ungaged locations.
Skream eskimate stations must have been previously read or set before using this command.

The StateMod netwark must have been previously read or set before using this command,

Information from previous SetStreamEstimateCoefficientsPFGage) commands is considered during processing.

Use SetStreamEstimateCoefficients{) commands after this command to override the calculated walues,

CalculateitreamEstimateCoefficients()

Command:

[Ok H Cancel]

CalculateStreamEstimateCoefficients

CalculateStreamEstimateCoefficients() Command Editor
The command syntax is as follows:
Cal cul at eSt r eantst i mat eCoef fi ci ent s(Par anet er =Vval ue, , ..)

Command Parameters

Parameter Description Default
Currently, this command has no
parameters.

2B8Hmmand Reference — CalculateStreamEstimateCoefficients() - 1

CalculateStreamEstimateCoefficients() Command

StateDMI Documentation

The following command file illustrates how a StateMod stream estimate coefficients file can be created:

StartLog(LogFile="rib.commands.StateDMI.log")

rib.commands.StateDMI

#

Creates the Stream Estimate Station Coefficient Data file
#

Step 1 - read river nodes from the network file and create file framework

#

ReadStreamEstimateStationsFromNetwork(InputFile=". _.\Network\cm2005.net")

#

Step 2 - set preferred gages for "neighboring” gage approach
this baseflow nodes are generally on smaller non-gaged tribs and have
different flow characteristics than next downstream gages

#

SetStreamEstimateCoefficientsPFGage(1D=""360645",GageID="09055300"")
SetStreamEstimateCoefficientsPFGage(1D="360801",GagelD=""09055300"")
SetStreamEstimateCoefficientsPFGage(1D="362002",Gage 1D=""09054000"")
SetStreamEstimateCoefficientsPFGage(1D=""360829",GagelD=""09047500"")

..similar commands omitted..

z Step 3 - calculate stream coefficients
CalculateStreamEstimateCoefficients()

z Step 4 - set proration factors directly
zetStreamEstimateCoefficients(lD:"364512",ProrationFactor:1

SetStreamEstimateCoefficients(I1D=""381594" ,ProrationFactor=0
SetStreamEstimateCoefficients(I1D=""384617" ,ProrationFactor=0
SetStreamEstimateCoefficients(I1D="510639",ProrationFactor=1
SetStreamEstimateCoefficients(1D=""514603",ProrationFactor=0

SetStreamEstimateCoefficients(I1D=""530678" ,ProrationFactor=0
SetStreamEstimateCoefficients(I1D="531082" ,ProrationFactor=1
SetStreamEstimateCoefficients(1D=""954683" ,ProrationFactor=0
#

Step 5 - create streamflow estimate coefficient file

#

-000, IfNotFound=Warn)
SetStreamEstimateCoefficients(ID=""374641" ,ProrationFactor=0.
SetStreamEstimateCoefficients(1D=""374648",ProrationFactor=0.
SetStreamEstimateCoefficients(ID=""380880",ProrationFactor=1.

200, I fNotFound=Warn)
350, IfNotFound=Warn)
000, IfNotFound=Warn)

.800, IfNotFound=Warn)
-700, I fNotFound=Warn)
.000, IfNotFound=Warn)
-800, IfNotFound=Warn)
SetStreamEstimateCoefficients(ID="514620",ProrationFactor=1.
SetStreamEstimateCoefficients(I1D="510728",ProrationFactor=1.
SetStreamEstimateCoefficients(ID="530555",ProrationFactor=0.
-230, IfNotFound=Warn)
.000, IfNotFound=Warn)
-400, I fNotFound=Warn)

000, IfNotFound=Warn)
000, IfNotFound=Warn)
180, IfNotFound=Warn)

WriteStreamEstimateCoefficientsToStateMod(OutputFile="_._\StateMOD\cm2005.rib")

#
Check the results
CheckStreamEstimateCoefficients(1D=""*")

WriteCheckFile(OutputFile="rib.commands.StateDMI.check.html'™)

2 - Command Reference — CalculateStreamEstimateCoefficient®56

Command Reference:
CalculateWellDemand TSMonthly()

Calculate well demand time series (monthly) using irrigation water requirement
and average monthly efficiencies

StateMod Command

Version 3.09.01, 2010-02-01

The Cal cul at eVl | DemandTSMont hl y() command calculates well demand time series (monthly)
by dividing the irrigation water requirement (IWR) time series (monthly) by average monthly efficiencies.
The IWR time series should have been read by a previous command. The well station efficiencies should
also have been calculated, set, or read using previous commands. The output year type must be specified
correctly because efficiencies are stored in well stations according to the year type for the StateMod data
set. If time series data are not available, a demand time series with zero values is created — this time
series can be replaced with Set Wl | DemandTSMont hl y() commands, if necessary. Only well
stations that have a demand type (StateMod well station i dvconmw) equal to one are processed. For
“diversion + well” well stations, the demand is typically calculated using only the diversion station IWR
and historical diversion time series and is written to the diversion demand time series file.

The following dialog is used to edit the command and illustrates the syntax of the command.

Edit CalculateWellDemandTSMonthly() Command E|

This cormmand calculates the well demand time series {monthly) by dividing the I'WR/CWR time series by the average monthly efficiencies.
The well station identifier is used ko match the time series that is read.
The output period rust be specified with a previous command.

Wwell station ID: | * Required - stations to process {use * For wildcard).

If not Found: w Optional - indicate action i no match is Found {default=\"arn}.

CalculatelelllemandTSMonthly (ID="#*")

Command:

Cancel H 014 l

CalculateWellDemandTSMonthly

CalculateWellDemandTSMonthly() Command Editor

267 Command Reference — CalculateWellDemandTSMonthly() - 1

CalculateWellDemandTSMonthly() Command

StateDMI Documentation

The command syntax is as follows:

Cal cul at eVl | DemandTSMont hl y(Par anet er =Val ue, ..)

Command Parameters

Parameter Description Default

| D A single well station identifier to match or a None — must be
pattern using wildcards (e.g., 20*). specified.

| f Not Found Used for error handling, one of the following: Varn

e Fail —generate a failure message if the ID
is not matched

e | gnor e —ignore (don’t add and don’t
generate a message) if the ID is not matched

e \\Ar n — generate a warning message if the
ID is not matched

2 - Command Reference — CalculateWellDemandTSMonthly() 268

Command Reference:
CalculateWellDemand TSMonthlyAsMax()

Calculate well demand time series (monthly) as the maximum of the existing
demands and the historical pumping time series

StateMod Command

Version 3.09.01, 2010-02-01

The Cal cul at eVl | DemandTSMont hl yAsMax () command calculates well demand time series
(monthly) as the maximum of the existing demands and the historical pumping time series.

The following dialog is used to edit the command and illustrates the syntax of the command.

Edit CalculateWellDemandTSMonthbyhsiax() Command

This cormmand calculates the well demand time series as the maximum of the demand time series and historical purmping time series.
An initial estimate of the demand time series must have been made (e.q., from I'WR/EFFawe).
The well station identifier is used to match the time series that is read.
The output period must be specified with a previous cammand.
Well skation ID; |* Required - skations to process (use * For wildcard),
If nok Found: W Optional - indicate action if no match is found (default=\arn),

CalculateWelllemandTINonthlyisHax (ID="1*")

Zommand:

Cancel H (8] 4]

CalculateWellDemandTSMonthlyAsMax

CalculateWellDemandTSMonthlyAsMax() Command Editor

28&8nand Reference — CalculateWellDemandTSMonthlyAsMax() - 1

CalculateWellDemandTSMonthlyAsMax() Command

StateDMI Documentation

The command syntax is as follows:

Cal cul at eVl | DemandTSMont hl yAsMax(Par anet er =Val ue, ..)

Command Parameters

Parameter Description Default
I D A single well station identifier to match or a None — must be
pattern using wildcards (e.g., 20*). specified.
::f NOEI Used for error handling, one of the following: Var n
oun

e Add - add the time series if the ID is not
matched and is not a wildcard

e Fail —generate a failure message if the ID
is not matched

e | gnor e —ignore (don’t add and don’t
generate a message) if the ID is not matched

e \\Ar n — generate a warning message if the
ID is not matched

2 - Command Reference — CalculateWellDemandTSMonthlyAsI2a(0

Command Reference:
CalculateWellStationEfficiencies()

Calculate well station average efficiencies using historical pumping and irrigation
water requirement time series

StateMod Command

Version 3.09.01, 2010-02-01

This command is generally not used with current modeling procedures. Instead, a variable
efficiency approach is used where monthly average efficiencies are computed in StateCU and are
set in well stations using a Set Wl | St at i onsFr onli st (.., Ef f Mont hl yCol =..) command.
This command is retained to duplicate previous work.

The Cal cul at eWel | St ati onEffi ci enci es() command calculates average monthly efficiencies
for well stations and updates the well station information in memory. Efficiencies are calculated as
irrigation water requirement divided by historical well pumping time series. The detailed results of
calculations can optionally be printed to a report file. The well historical pumping time series (monthly)
and irrigation water requirement time series (monthly) should be read or created with other commands,
and should be filled before efficiency calculations, if appropriate. Only StateMod well stations with
demand type of 1 (monthly total demand) will be processed. The output year type must be specified
correctly because efficiencies are stored in diversion stations according to the year type for the StateMod
dataset. AWiteWl | StationsToSt at eMod() command must be executed to actually write the
updated efficiency data.

The following dialog is used to edit the command and illustrates the syntax of the command.

Edit Calculate¥ellStationEfficiencies{) Command @

This command calculates monthly efficiencies For each well station that is defined.

Efficiencies are computed as the ratio of irvigation {consurmptive) water requirement divided by hiskarical purping.
It is expected that both sets of time series have been filled appropriately,

If the efficiency report file is provided, details of the efficiency calculations will be prinked to the File,

el skation ID: | * Required - skations to process (use * For wildcard),
Efficiency min. (%) (10 Optional - minimurn efficiency (default=no constraink).
Efficiency max. (%) |70 Optional - maximum efficiency {default=no constraint),
Calculation start date: Optional - stark date For efficiency calculations (blank=all}.
Calculation end date: Optional - end date For efficiency calculations (blank=all},
<= zero values in average?: A4 Optional - are walues <= zero used in averages {used later in Filing)? {default=True.)
Efficiency report File:
IF not found: A4 Optional - indicate action if no match is Found (default=\warn).

CalculateWelldtationEfficiencies (ID="*", ELfMin=10, E££fMax="70)

Command:

[add Wearking Directaory ” K,][Cancel]

CalculateWellStationEfficiencies

CalculateWellStationEfficiencies() Command Editor

271 Command Reference — CalculateWellStationEfficiencies() - 1

CalculateWellStationEfficiencies() Command

StateDMI Documentation

The command syntax is as follows:

Cal cul ateVel | St ati onEf fi ci enci es(Par anet er =Val ue, ..)

Command Parameters

Calculated efficiencies greater than this value
will be set to the maximum.

Parameter Description Default

I D A single well station identifier to match or a None — must be
pattern using wildcards (e.g., 20*). specified.

Eff Mn Minimum efficiency to allow, percent. Do not constrain the
Calculated efficiencies less than this value will efficiency.
be set to the minimum.

Ef f Max Maximum efficiency to allow, percent. Do not constrain the

efficiency.

EffCal cStart

The start date (e.g., YYYY-MM) for efficiency
calculations. Use this to limit the period for data
considered in calculations.

Use the full period.

Ef f Cal cEnd

The end date (e.g., YYYY-MM) for efficiency
calculations. Use this to limit the period for data
considered in calculations.

Use the full period.

LEZer ol nAver age

If true, values less than or equal to zero will be
considered when computing monthly time series
averages. If f al se, values less than or equal to
zero will be excluded from the averages.

true

Ef f ReportFile

If specified, a high-detail report will be created,
listing for each well station the irrigation water
requirement, historical well pumping, and
resulting efficiency values. Creating the report
slows processing.

If blank, no report is
generated.

| f Not Found

Used for error handling, one of the following:

o Fai |l —generate a failure message if the ID
is not matched

e | gnore —ignore (don’t add and don’t
generate a message) if the ID is not matched

e \\Ar n — generate a warning message if the
ID is not matched

Var n

2 - Command Reference — CalculateWellStationEfficiencies() 272

Command Reference: CheckBlaneyCriddle()

Check Blaney-Criddle data for problems

StateCU Command

Version 3.08.02, 2010-01-05

The CheckBl aneyCri ddl e() command checks the Blaney-Criddle crop coefficient data for

problems. The command should usually be used witha Wi t eCheckFi | e() command at the end of a
command file.

The following dialog is used to edit the command and illustrates the syntax of the command.

Edit CheckBlaneyCriddle() Command E|

This command checks StateCU Blaney-Criddle crop coefficients,
Currently no cross-checks are done with other StakeCU components,
Warnings are generated For the Follow conditions;
11 Missing {undefined) required values,
21 Invalid numerical values (e.q., day = 365),
Crop bvpe (name); |* Required - specifv the crops to check {use * For wildcard).
If nat Found: w Cptional - indicate action if no match is found (defaulk="Yarn],

CheckEBlaneyCriddle (ID="+")

Command;

[Ok H Cancel]

CheckBlaneyCriddle

CheckBlaneyCriddle() Command Editor

273 Command Reference — CheckBlaneyCriddle() - 1

CheckBlaneyCriddle() Command

StateDMI Documentation

The command syntax is as follows:

CheckBl aneyCri ddl e(Par anet er =Val ue, ..)

Command Parameters

Parameter Description Default

I D The name of the crop(s) to check. Use * to match | None — must be
a pattern. specified.

I f Not Found One of the following: Varn

e Fail —generate a failure message if the
identifier is not matched

e | gnore —ignore (don’t generate a message)
if the identifier is not matched

e \WAr n — generate a warning message if the
identifier is not matched

The following example command file illustrates how Blaney-Criddle coefficients can be defined,
checked, and written to a StateCU file:

StartLog(LogFile="Crops_KBC.StateDMI.log™")
#

StateDMI commands to create the Rio Grande Blaney-Criddle coefficients File

History:

2004-03-16 Steven A. Malers, RTi

Initial version using StateDMI.

Update for Rio Grande Phase 5.

Step 1 - read data from HydroBase

Read the general Blaney-Criddle coefficients first and then override with Rio Grande

data.

#
#
#
#
#
2007-04-23 SAM, RTi
#
#
#
#
#

ReadBlaneyCriddleFromHydroBase(BlaneyCriddleMethod="BLANEY-CRIDDLE_TR-21")
ReadBlaneyCriddleFromHydroBase(BlaneyCriddleMethod=""BLANEY-CRIDDLE_RIO_GRANDE')

#

Step 3 - write the file

#

SortBlaneyCriddle(Order=Ascending)
WriteBlaneyCriddleToStateCU(OutputFile="rg2007.kbc'™)

#

Check the results

#

CheckBlaneyCriddle(ID=""*"")
WriteCheckFile(OutputFile="rg2007.kbc.check.html')

2 - Command Reference — CheckBlaneyCriddle() 274

Command Reference: CheckClimateStations()

Check climate station data for problems

StateCU Command

Version 3.08.02, 2010-01-05

The Checkd i mat eSt at i ons() command checks the climate stations for problems. The command
should usually be used witha W i t eCheckFi | e() command at the end of a command file.

The following dialog is used to edit the command and illustrates the syntax of the command.

Edit CheckClimateStations() Command

This command checks StateCU climate station data.
Currently no cross-checks are done with other StateCU components,
Warnings are generated for the follow conditions:

131 Missing (undefined) required values,

23 Invvalid numerical walues (e.qg., latitude = 90 decrees),

Climate station identifier; |* Required - specify the climate stations to check {use * for wildcard).
If nat found: " Cptional - indicate action if no match is Found (defaulk='Warn),

CheckClimateS3tations (ID="*")

Command;

[oK][Cancel]

CheckClimateStations

CheckClimateStations() Command Editor

275 Command Reference — CheckClimateStations() - 1

CheckClimateStations() Command StateDMI Documentation

The command syntax is as follows:
Checkd i mat eSt ati ons(Par anet er =Val ue, ..)

Command Parameters

Parameter Description Default

I D The identifier for the station(s) to check. Use * to | None — must be
match a pattern. specified.

I f Not Found One of the following: Varn
e Fail —generate a failure message if the

climate station identifier is not matched
e | gnore —ignore (don’t generate a message)
if the climate station identifier is not matched
e \WAr n — generate a warning message if the
climate station identifier is not matched

The following example command file illustrates how climate stations can be defined, sorted, checked, and
written to a StateCU file:

ReadClimateStationsFromList(ListFile="climsta.lst",IDCol=1)
FillClimateStationsFromHydroBase(ID="*"")
SetClimateStation(1D="3016",Region2=""14080106", I fNotFound=Warn)
SetClimateStation(1D="1018",Region2=""14040106", I fNotFound=Warn)
SetClimateStation(ID="1928",Elevation=6440, ITNotFound=Warn)
SetClimateStation(ID="0484",Regionl="MOFFAT", ITNotFound=Add)
SortClimateStations()
WriteClimateStationsToStateCU(OutputFile="COclim2006.cli')

#

Check the results

#

CheckClimateStations(ID="*"")
WriteCheckFile(OutputFile="COclim2006.cli.check.html'™)

2 - Command Reference — CheckClimateStations () 276

Command Reference:
CheckCropCharacteristics()

Check crop characteristics data for problems

StateCU Command

Version 3.08.02, 2010-01-05

The CheckCr opCharacteri sti cs() command checks the crop characteristics data for problems.
The command should usually be used with a Wi t eCheckFi | e() command at the end of a command

file.

The following dialog is used to edit the command and illustrates the syntax of the command.

Edit CheckCropCharacteristics() Command

This command checks StateCU crop characteristics,
Zurrently no cross-checks are done with other StateC U components,
Warnings are generated For the Follow conditions:
1) Missing {undefined) required walues.
2 Invalid numerical walues {e.g., month = 12).
Crop bype (name): || Required - specify the crops to check (use * For wildcard).
If nat Found: b Optional - indicate action if no match is found (defaulk="Yarn],

CheckCropCharacteristics (ID="+")

Command:

[oK H Cancel]

CheckCropCharacteristics

CheckCropCharacteristics() Command Editor

277 Command Reference — CheckCropCharacteristics() - 1

CheckCropCharacteristics() Command StateDMI Documentation

The command syntax is as follows:
CheckCr opCharacteri sti cs(Paranet er=val ue, ..

Command Parameters

Parameter Description Default

I D The name of the crop(s) to check. Use * to match | None — must be
a pattern. specified.

I f Not Found One of the following: Varn
e Fail —generate a failure message if the

identifier is not matched

e | gnore —ignore (don’t generate a message)
if the identifier is not matched

e \WAr n — generate a warning message if the
identifier is not matched

The following example command file illustrates how crop characteristics can be defined, checked, and
written to a StateCU file:

StartLog(LogFile="Crops_CCH.StateDMI.log™)

#
StateDMI commands to create the Rio Grande Crop Characteristics File
History:

#
#
#
#
2004-03-16 Steven A. Malers, RTi Initial version using StateDMI.

2007-04-22 SAM, RTi Use new directory structure, current
software and HydroBase.

#
#
#
#
#

Step 1 - read data from HydroBase

Read the general TR-21 characteristics first and then override with Rio Grande
data.
ReadCropCharacteristicsFromHydroBase (CUMethod="BLANEY-CRIDDLE_TR-21"'")
ReadCropCharacteristicsFromHydroBase (CUMethod=""BLANEY-CRIDDLE_RI0O_GRANDE')
#
Step 2 - adjust crop characteristics if needed

No resets are needed.

i Step 3 - write the file
xriteCropCharacteristicsToStateCU(OutputFiIez"rgZOO?.cch")
z Check the results

#

CheckCropCharacteristics(ID="*")
WriteCheckFile(OutputFile="rg2007.cch.check.html™)

2 - Command Reference — CheckCropCharacteristics () 278

Command Reference: CheckCropPatternTS()

Check crop pattern time series data for problems

StateCU Command

Version 3.08.02, 2010-01-05

The CheckCr opPat t er nTS() command checks the crop pattern time series data for problems. The
command should usually be used witha W i t eCheckFi | e() command at the end of a command file.

The following dialog is used to edit the command and illustrates the syntax of the command.

Edit CheckCropPatternT5{) Command @

This command checks StateCU crop pattern time series at CI locations,
Currently no cross-checks are done with other StateC U components.
Crop acreade in a year is each used to calculate the bakal acreage and fraction For crop - anly the crop acreage and total are checked.
Warnings are generated For the Follow conditions:
13 Missing {undefined) required walues.
23 Invalid numerical walues (e.g., negative acreage),

U location identifier: |* Required - specify the CU locations to check {use * For wildcard),
If mot Found: w Optional - indicate action if no match is Found (default=\"arn},

CheckCropPatternTs3 (ID="*")

Command;

[o] 4 H Cancel]

CheckCropPatternTS

CheckCropPatternTS() Command Editor
The command syntax is as follows:
CheckCr opPat t er nTS(Par anet er =Val ue, ..)

Command Parameters

Parameter Description Default
| D The name of the crop(s) to check. Use * to match a pattern. | None — must be specified.
| f Not Found | One of the following: Varn

e Fail —generate a failure message if the identifier is
not matched

e | gnore —ignore (don’t generate a message) if the
identifier is not matched

e \WAr n — generate a warning message if the identifier is
not matched

279 Command Reference — CheckCropPatternTS() - 1

CheckCropPatternTS() Command StateDMI Documentation

The following example command file illustrates how crop pattern time series can be defined, checked,
and written to a StateCU file:

Step 1 - Set output period and read CU locations
SetOutputPeriod(OutputStart="1950",0utputEnd=""2006"")
ReadCULocationsFromStateCU(InputFile="._\StateCU\cm2006.str")
Step 2 - Read SW aggregates
SetDiversionSystemFromList(ListFile="colorado_divsys.csv",1DCol=1,
NameCol=2,PartlDsCol=3,PartsListedHow=InRow)
SetDiversionAggregateFromList(ListFile="colorado_agg.csv", I1DCol=1,
NameCol=2,PartlDsCol=3,PartsListedHow=1nRow)
Step 3 - Create *.cds file form and read acreage/crops from HydroBase
CreateCropPatternTSForCULocations(ID="*",Units=""ACRE")
ReadCropPatternTSFromHydroBase(1D=""*"")
Step 4 - Need to translate crops out of HB to include TR21 suffix
Translate all crops from HB to include .TR21 suffix
TranslateCropPatternTS(ID="*",01dCropType=""GRASS_PASTURE" ,NewCropType=""GRASS_PASTURE.TR21'")
TranslateCropPatternTS(ID="*",01dCropType=""CORN_GRAIN" ,NewCropType=""CORN_GRAIN.TR21'")
TranslateCropPatternTS(ID=""*",01dCropType=""ALFALFA" ,NewCropType="ALFALFA_TR21'")
TranslateCropPatternTS(ID=""*",01dCropType=""SMALL_GRAINS" ,NewCropType=""SPRING_GRAIN.TR21")
TranslateCropPatternTS(ID="*",01dCropType="VEGETABLES" ,NewCropType="VEGETABLES.TR21"")
TranslateCropPatternTS(ID="*",01dCropType=""0RCHARD_WO_COVER" ,NewCropType=""0RCHARD_WO_COVER.TR21'")
TranslateCropPatternTS(ID=""*",01dCropType="0RCHARD_WITH_COVER" ,NewCropType="0RCHARD_WITH_COVER.TR21")
TranslateCropPatternTS(ID=""*",01dCropType=""DRY_BEANS" ,NewCropType="DRY_BEANS.TR21")
TranslateCropPatternTS(ID=""*",01dCropType=""GRAPES" ,NewCropType=""GRAPES.TR21")
TranslateCropPatternTS(ID="*",01dCropType="WHEAT" ,NewCropType=""SPRING_GRAIN.TR21'")
TranslateCropPatternTS(ID=""*",01dCropType=""SUNFLOWER" ,NewCropType=""SPRING_GRAIN.TR21'")
TranslateCropPatternTS(ID=""*",001dCropType=""SOD_FARM" ,NewCropType=""GRASS_PASTURE.TR21'")
Step 5 - Translate crop names
use high-altitude coefficients for structures with more than 50% of
irrigated acreage above 6500 feet
TranslateCropPatternTS(ListFile=""cm2005_HA.Ist",1DCol=1,
OldCropType="GRASS_PASTURE.TR21" ,NewCropType=""GRASS_PASTURE.DWHA™)
Step 6 - Fill Acreage
Fill SW structure acreage backword from 1999 to 1950
Fill acreage forward for all structures from 2000 to 2006
FillCropPatternTSRepeat(I1D=""*",CropType="*",FillStart=1950,Fi l IEnd=1993,Fil IDirection=Backward)
FillCropPatternTSRepeat(1D=""*",CropType="*",FillStart=1993,Fill1End=1999,FillDirection=Forward)
FillCropPatternTSRepeat(1D=""*",CropType=""*",FillStart=2000,Fill1End=2006,FillDirection=Forward)
Step 7 - Write final *.cds file
WriteCropPatternTSToStateCU(OutputFile="__\StateCU\cm2006.cds",
WriteCropArea=True,WriteHow=OverwriteFile)
Check the results
CheckCropPatternTS(ID="*"")
WriteCheckFile(OutputFile="cm2006.cds.StateDMI .check_html')

2 - Command Reference — CheckCropPatternTS () 280

Command Reference: CheckCULocations()

Check CU location data for problems

StateCU Command

Version 3.09.00, 2010-01-10

The CheckCULocat i ons() command checks the CU Location data for problems. The command
should usually be used witha W i t eCheckFi | e() command at the end of a command file.

The following dialog is used to edit the command and illustrates the syntax of the command.

Edit CheckCULocations{) Command

This command checks CU Locakions, generating warnings for the Follow conditions:
13 Missing {undefined) required values,
23 Invvalid numerical values (e.g., negative climate skation weights),

CheckCULocations (ID="*"T)

Command;

[8] 4 H Cancel]

CUl location identifier: *| Reqguired - specify the CU locations to check (use * faor wildcard),

If nok Found: w Optional - indicate action if no match is Found {default=\varn}.

CheckCULocations() Command Editor
The command syntax is as follows:
CheckCULocat i ons(Par anet er =Val ue, ..)

Command Parameters

CheckCULocations

location identifier is not matched

e | gnor e —ignore (don’t generate a message)
if the location identifier is not matched

o \r n - generate a warning message if the
location identifier is not matched

Parameter Description Default

I D The identifier for the location(s) to check. Use * | None — must be
to match a pattern. specified.

| f Not Found One of the following: Varn
e Fai | —generate a failure message if the

281 Command Reference — CheckCULocations() - 1

CheckCULocations() Command StateDMI Documentation

The following example command file illustrates how CU locations can be defined, sorted, checked, and
written to a StateCU file (this is an abbreviated command file):

Sp2008L_STR.StateDMI

South Platte Decision Support System
Historic Consumptive Use Model
Structure File (*.str)

#

#

#

#

#

Step 1 - Read Structure List File (WDID, Name)

#

Structure List includes Key Structures from Task 3, Aggregate GW, and Aggregate SW

ReadCULocationsFromList(ListFile="Sp2008L_StructList.csv",I1DCol=1,NameCol=3)

#

Step 2 - Read structure information from HydroBase (Latitude, County, HUC)

FillCULocationsFromHydroBase(1D=""*",CULocType=Structure,RegionlType=County,Region2Type=HUC)

#

Step 3 - Assign AWC values based on Task 57, generate using the CDSS Toolbox

#

Key Structure AWC Values

SetCULocationsFromList(ListFile="AWC_2001.csv", IDCol=1,AWCCol=2)

#

GW AGG Structure AWC Values

SetCULocationsFromList(ListFile="AWC_Agg GW.csv',IDCol=1,AWCCol=2)

#

SW AGG Structure AWC Values

SetCULocationsFromList(ListFile="AWC_Agg SW.csv", IDCol=1,AWCCol=2)

#

Step 4 - Assign Elevation

FillCULocationsFromList(ListFile="Key Elev.csv",IDCol=1,ElevationCol=3)

#

Step 5 - Set Demand Structure Information based on Demand Carrier

SetCULocation(ID="0100503_I",Latitude=40.38,Elevation=4533.00,Regionl1="WELD",
Region2="10190003" ,AWC=0.1375, I fNotFound=Warn)

SetCULocation(l

#

SetCULocation(1D=""6400526",AWC=0.1393, I fNotFound=Warn)

#

Missing values assigned to Diversion Systems

SetCULocation(1D=""0100503_D",Latitude=40.28567,Regionl1=""MORGAN", I fNotFound=Warn)

DivSys and Aggregate use weighted latitude from climate station assignments

County and HUC information not assigned to DivSys or Aggregate Structures

#

Step 6 - Read structure climate weights from list created from the CDSS Toolbox Climate Tool

SetCULocationClimateStationWeightsFromList(ListFile="Climate_2001.csv", IDCol=1,
StationlIDCol=2,TempWtCol=3,PrecWtCol=3)

SetCULocationClimateS

Set Climate Stations above 6500

SetCULocationClimateStationWeightsFromList(ListFile="SP2008 DWHA_OroAdj .csv', IDCol=1,
StationIDCol=2,TempWtCol=3,PrecWtCol=4,0rographicTempAdjCol=6,0rographicPrecAdjCol=5)

#

Step 8 - Fill Key Climate Station

#

FillCULocationClimateStationWeights(1D="01*", IncludeOrographicTempAdj=False,
IncludeOrographicPrecAdj=False,Weights="0945,1.0,1.0")

#
Step 7 - Write Structure File
SortCULocations()

WriteCULocationsToStateCU(OutputFile="SP2008L.str')
Check the results

CheckCULocations(I1D=""*"")
WriteCheckFile(OutputFile="SP2008L.str.check._html')

2 - Command Reference — CheckCULocations () 282

Command Reference:
CheckDiversionDemandTSMonthly()

Check diversion demand time series (monthly) data for problems

StateMod Command

Version 3.09.01, 2010-02-05

The CheckDi ver si onDemandTSMont hl y() command checks diversion demand monthly time
series for problems. The command should usually be used witha Wi t eCheckFi | e() command at
the end of a command file.

The following dialog is used to edit the command and illustrates the syntax of the command.

Edit CheckDiversionDemand TSMonthly() Command

This command checks diversion demand time series (monkhly), generating warnings for the Follow conditions:
1) Missing walues.
23 Inwvalid walues (negatives).
3 Diversion skakion ID is nok Found (f diversion station list is available),
Diversion skation identifier: [* Required - specify the diversion demand time series (manthly) to check (use * For wildcard).

If not Found: A Cptional - indicate action if no match is Found (default="Warn).
CheckDiversionDemandTSMonthly (ID=rr+r)

Command:

[K H Cancel]

CheckDiversionDemandTSMonthly

CheckDiversionDemandTSMonthly() Command Editor
The command syntax is as follows:
CheckDi ver si onDenmandTSMont hl y(Par anet er =Val ue, ..)

Command Parameters

Parameter Description Default

I D The identifier for the location(s) to check. Use * | None — must be
to match a pattern. specified.

| f Not Found One of the following: Varn
e Fai | —generate a failure message if the

location identifier is not matched

e | gnor e —ignore (don’t generate a message)
if the location identifier is not matched

o \r n - generate a warning message if the
location identifier is not matched

283command Reference — CheckDiversionDemandTSMonthly() - 1

CheckDiversionDemandTSMonthly () Command StateDMI Documentation

The following excerpt from a command file illustrates how diversion demand time series can be checked
and written to a StateMod file:

#

Create diversion demand monthly time series file

#

WriteDiversionDemandTSMonthlyToStateMod(OutputFile=""_ .\STATEMOD\rg2007C.ddm"")
#

Check the results

CheckDiversionDemandTSMonthly (ID=""*"")
WriteCheckFile(OutputFile="Cddm.commands.StateDMI .check._html')

2 - Command Reference — CheckDiversionDemandTSMonthly @ 84

Command Reference:
CheckDiversionHistoricalTSMonthly()

Check diversion historical time series (monthly) data for problems

StateMod Command

Version 3.09.01, 2010-02-05

The CheckDi ver si onHi st ori cal TSMont hl y() command checks diversion historical monthly
time series for problems. The command should usually be used witha Wi t eCheckFi | e() command
at the end of a command file.

The following dialog is used to edit the command and illustrates the syntax of the command.

Edit CheckDiversionHistoricalTSMonthly{) Command

This command checks diversion historical time series {monthlv), generating warnings For the Follow conditions:
1) Missing values.
21 Invalid walues (negatives).
33 Diversion skation ID is nok Found (iF diversion skation list is available),

Diversion station identifier: *| Required - specify the diversion historical time series {monthly) to check (use * For wildcard).

IF maok Found: » Cptional - indicate action if no match is Found (default=\%'arn).
CheckDiversionHistorical TSMonthly (ID=f+r)

Command:

[4 H Cancel l

CheckDiversionHistoricalTSMonthly

CheckDiversionHistoricalTSMonthly() Command Editor
The command syntax is as follows:
CheckDi ver si onHi st ori cal TSMont hl y(Par amet er =Val ue, ..)

Command Parameters

Parameter Description Default

I D The identifier for the location(s) to check. Use* | None — must be
to match a pattern. specified.

I f Not Found One of the following: Varn
e Fail —generate a failure message if the

location identifier is not matched

e | gnor e —ignore (don’t generate a message)
if the location identifier is not matched

e \Ar n — generate a warning message if the
location identifier is not matched