

TSTool - Time Series Tool

Colorado Department of Natural Resources

Colorado Water Conservation Board
Division of Water Resources

Developed by:

Riverside Technology, inc.

Version 9.09.00, 2010-09-30

 1

This page is intentionally blank.

This document is formatted for double-sided printing.

 2

Table of Contents

01_Cover_CDSS.pdf

DISCLAIMER for CDSS Products

1 Acknowledgements

2 Introduction

2.1 Time Series Objects and Identifiers

2.2 Date/Time Conventions

 2.3 Time Scale for Time Series Data

2.4 Time Series Commands and Processing Sequence

2.5 Using Time Series Aliases

2.6 Time Series Ensembles

3 Getting Started

4 Commands

 4.1 Create Time Series

 4.2 Converting Time Series Identifier to Read Command

 4.3 Read Time Series

 4.4 Fill Time Series Data

4.5 Set Time Series Data

1

17

19

21

22

25

26

26

29

30

33

55

57

58

59

60

63

3

Table of Contents

4.6 Manipulate Time Series

 4.7 Analyze Time Series

4.8 Models

 4.9 Output Time Series

4.10 Commands for Specific Input Types

 4.11 Commands for Ensemble Processing

4.12 Commands for Table Processing

4.13 General Commands – Comments

 4.14 General Commands – File Handling

4.15 General Commands – Logging

4.16 General Commands – Running Commands and External Software

 4.17 General Commands – Test Processing

5 Tools

6 Examples of Use

7 Using the Map

8 Troubleshooting

 8.1 Obsolete Commands

63

64

64

65

65

66

66

66

68

68

68

69

71

81

99

109

113

4

Table of Contents

9 Quality Control

9.1 Quality Control for TSTool Software

9.2 Using TSTool to Quality Control Data

Command Glossary

Command Reference: #

Command Reference: /*

Command Reference: */

Command Reference: Time Series Identifier (TSID)

Command Reference: Add()

Command Reference: AddConstant()

Command Reference: AdjustExtremes()

Command Reference: AnalyzePattern()

Command Reference: ARMA()

Command Reference: Blend()

Command Reference: CalculateTimeSeriesStatistic()

Command Reference: TS Alias = ChangeInterval()

Irregular Time Series to Regular Time Series

119

119

127

129

139

141

143

145

147

149

151

153

157

163

165

171

171

5

Table of Contents

Regular Time Series to Regular Time Series

ACCM (Accumulation) to ACCM (Accumulation)

ACCM (Accumulation) to INST (Instantaneous)

ACCM (Accumulation) to MEAN

INST (Instantaneous) to INST (Instantaneous)

INST (Instantaneous) to ACCM (Accumulation)

INST (Instantaneous) to MEAN

 MEAN to MEAN

MEAN to ACCM (Accumulation)

MEAN to INST (Instantaneous)

Command Reference: ChangePeriod()

Command Reference: CheckTimeSeries()

Command Reference: CompareFiles()

Command Reference: CompareTimeSeries()

Command Reference: ComputeErrorTimeSeries()

Command Reference: ConvertDataUnits()

Command Reference: TS Alias = Copy()

173

173

174

174

175

176

176

178

178

178

185

187

191

193

197

199

201

6

Table of Contents

Command Reference: CopyEnsemble()

Command Reference: CopyTable()

Command Reference: CreateEnsembleFromOneTimeSeries()

Command Reference: CreateFromList()

Command Reference: CreateRegressionTestCommandFile()

Command Reference: Cumulate()

Command Reference: Delta()

Command Reference: DeselectTimeSeries()

Command Reference: TS Alias = Disaggregate()

Command Reference: Divide()

Command Reference: Exit()

Command Reference: ExpandTemplateFile()

Command Reference: FillConstant()

Command Reference: FillDayTSFrom2MonthTSAnd1DayTS()

Command Reference: FillFromTS()

Command Reference: FillHistMonthAverage()

Command Reference: FillHistYearAverage()

203

205

207

209

213

217

219

223

225

229

231

233

235

237

241

243

245

7

Table of Contents

Command Reference: FillInterpolate()

Command Reference: FillMixedStation()

Best Fit Indicators

 Mixed Station Analysis Tool

Command Editing

Command Reference: fillMOVE1()

Command Reference: FillMOVE2()

Command Reference: FillPattern()

60_Command_FillPrincipalComponentAnalysis.pdf

Command Reference: FillProrate()

Command Reference: FillRegression()

Command Reference: FillRepeat()

Command Reference: FillUsingDiversionComments()

Diversion Comment Not Used Flag

Structure Currently in Use Flag

Command Reference: Free()

Command Reference: FTPGet()

247

249

250

251

252

257

259

263

265

267

271

275

277

277

277

283

285

8

Table of Contents

Command Reference: InsertTimeSeriesIntoEnsemble ()

Command Reference: LagK()

Command Reference: ManipulateTableString()

Command Reference: Multiply()

Command Reference: TS Alias = NewDayTSFromMonthAndDayTS()

Command Reference: TS Alias = NewEndOfMonthTSFromDayTS()

Command Reference: NewEnsemble ()

Command Reference: TS Alias = NewPatternTimeSeries()

 Examples

 Examples

Command Reference: TS Alias = NewStatisticYearTS()

Example

Command Reference: NewTable ()

Command Reference: TS Alias = NewTimeSeries()

Command Reference: NewTreeView()

Command Reference: TS Alias = Normalize()

Command Reference: OpenCheckFile()

287

289

293

295

297

301

305

307

311

315

317

320

323

325

327

329

331

9

Table of Contents

Command Reference: OpenHydroBase()

Command Reference: ProcessTSProduct()

Command Reference: ReadDateValue()

Command Reference: TS Alias = ReadDateValue()

Command Reference: ReadDelimitedFile()

Command Reference: ReadHecDss()

Command Reference: ReadHydroBase()

Command Reference: TS Alias = ReadHydroBase()

Command Reference: ReadMODSIM()

Command Reference: TS Alias = ReadMODSIM()

Command Reference: ReadPatternFile()

Command Reference: TS Alias = ReadRiverWare()

Command Reference: ReadStateCU()

Command Reference: ReadStateCUB()

Command Reference: ReadStateMod()

Command Reference: ReadStateModB()

Command Reference: ReadTableFromDBF()

333

337

341

343

345

351

353

357

361

363

365

367

369

371

373

375

377

10

Table of Contents

Command Reference: ReadTableFromDelimitedFile()

Command Reference: TS Alias = ReadTimeSeries()

Command Reference: TS Alias = ReadUsgsNwis()

Command Reference: TS Alias = RelativeDiff()

Command Reference: RemoveFile()

Command Reference: ReplaceValue()

Command Reference: ResequenceTimeSeriesData()

Command Reference: RunCommands()

Command Reference: RunningAverage()

Command Reference: RunDSSUTL()

Command Reference: RunProgram()

Command Reference: RunPython()

Command Reference: Scale()

Command Reference: SelectTimeSeries()

Command Reference: SetAutoExtendPeriod()

Command Reference: SetAveragePeriod()

Command Reference: SetConstant()

379

381

383

385

389

391

393

397

399

403

407

411

415

417

419

421

423

11

Table of Contents

Command Reference: SetDataValue()

Command Reference: SetDebugLevel()

Command Reference: SetFromTS()

Command Reference: SetIgnoreLEZero()

Command Reference: SetIncludeMissingTS()

Command Reference: SetInputPeriod()

Command Reference: SetOutputPeriod()

Command Reference: SetOutputYearType()

Command Reference: SetPatternFile()

Command Reference: SetProperty()

Command Reference: SetTimeSeriesPropertiesFromTable()

Command Reference: SetTimeSeriesProperty()

Command Reference: SetToMax()

Command Reference: SetToMin()

Command Reference: SetWarningLevel()

Command Reference: SetWorkingDir()

Command Reference: ShiftTimeByInterval()

425

427

429

433

435

437

439

441

443

445

447

449

451

453

455

457

459

12

Table of Contents

Command Reference: SortTimeSeries()

Command Reference: StartLog()

Command Reference: StartRegressionTestResultsReport()

Command Reference: StateModMax()

Command Reference: Subtract()

Command Reference: TableMath()

Command Reference: TableTimeSeriesMath()

Command Reference: TimeSeriesToTable()

Command Reference: VariableLagK()

Command Reference: WebGet()

Command Reference: TS Alias = WeightTraces()

Command Reference: WriteCheckFile()

Command Reference: WriteDateValue()

Command Reference: WriteHecDss()

Command Reference: WriteProperty()

Command Reference: WriteRiverWare()

Command Reference: WriteStateCU()

461

463

465

467

469

471

473

475

479

485

487

491

493

495

499

501

503

13

Table of Contents

Command Reference: WriteStateMod()

Command Reference: WriteSummary()

Command Reference: WriteTableToDelimitedFile()

Command Reference: WriteTimeSeriesProperty()

Appendix: TSTool Installation and Configuration for CDSS

1. Overview

2. File Locations

3. Installing TSTool

 4. Uninstalling TSTool Software

5. Running TSTool

6. TSTool Configuration

1. TSTool Version History

Appendix: ColoradoIPP Input Type

Overview

ColoradoIPP and Standard Time Series Properties

Limitations

Appendix: Colorado Satellite Monitoring System (SMS) Input Type

505

507

509

511

513

513

513

514

523

524

525

531

557

557

557

557

559

14

Table of Contents

Overview

Appendix: Colorado Water HydroBase Guest (ColoradoWaterHBGuest) Input Type

Overview

ColoradoWaterHBGuest Web Service and Standard Time Series Properties

Limitations

Appendix: Colorado Water Satellite Monitoring System (ColoradoWaterSMS) Input Type

Overview

ColoradoWaterSMS Web Services and Standard Time Series Properties

Limitations

Appendix: DateValue Input Type

Appendix: HEC-DSS Input Type

Overview

HEC-DSS Files and Standard Time Series Properties

Limitations

Appendix: HydroBase Input Type

Appendix: RiverWare Input Type

Appendix: StateCU Input Type

559

561

561

561

561

563

563

563

564

565

569

569

569

570

571

585

587

15

Table of Contents

Appendix: StateCUB Input Type

Appendix: StateMod Input Type

Appendix: StateModB Input Type

Appendix: USGSNWIS Input Type

Appendix: TSView - Time Series Viewing Tools

 Overview

Time Series Terminology

 Time Series Properties Interface

 Time Series Traces

Time Series Views

 Time Series Product Reference

Appendix: GeoView Mapping Tools

Appendix: Spatial Data Format – ESRI Shapefile

Documentation Binder Spine Labels

591

595

599

603

605

606

606

609

616

617

647

665

687

689

16

DISCLAIMER for CDSS Products
2002-02-16

CDSS products include data and software from State of Colorado sources and from external sources like
the U. S. Geological Survey (USGS). The following disclaimer applies to CDSS products:

CDSS products and associated access are under development at this time. Access is provided solely
to test and demonstrate CDSS capabilities. In the future, this access may be restricted or offered
for a fee. The State assumes no legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed herein. It is the user's
responsibility to determine the fitness of the data for a particular purpose.

 Disclaimer - 1 17

 TSTool Documentation

This page is intentionally blank

.

Disclaimer - 2 18

1 Acknowledgements
Version 06.08.02, 2004-08-05

TSTool has been developed by Riverside Technology, inc. (RTi). Early development work was funded
by the State of Colorado, Water Conservation Board, under the Colorado River Decision Support System
(CRDSS). Later development occurred as part of CRDSS maintenance, the State of Colorado's Rio
Grande Decision Support System (RGDSS) and the State of Colorado’s South Platte Decision Support
System (SPDSS), under the umbrella CDSS effort (Colorado's Decision Support Systems).

Enhancements to the CDSS version have also been made by RTi in order to support a wider variety of
uses and data formats. Enhancements will continue to be made by RTi while offering backward
compatibility as much as possible.

Users are encouraged to provide general feedback to RTi using the email address:
support@riverside.com and to provide feedback specific to CDSS functionality (e.g., HydroBase,
StateMod, StateModB, and StateCU input types) using the email address: cdss@state.co.us. RTi's web
site is http://www.riverside.com. The CDSS web site is http://cdss.state.co.us.

The MOVE.1 and MOVE.2 procedures description was taken from:

Hirsch, R. M., 1982, A Comparison of Four Streamflow Record Extension Techniques: Water Resources
Research, Vol. 18, No. 4, pages 1081-1088.

Additional information can be found in:

Guidelines for Determining Flood Flow Frequency, Bulletin 17B, USGS.

 Acknowledgements - 1 19

http://cdss.state.co.us/

Acknowledgements TSTool Documentation

This page is intentionally blank.

Acknowledgements - 2 20

2 Introduction
Version 09.08.00, 2010-09-08

TSTool can be thought of as a time series calculator. TSTool displays, manipulates, and analyzes time
series data, either interactively or in batch (automated) mode. The TSTool GUI (Graphical User
Interface) provides access to viewing and analysis features, command editors, and provides error
feedback. Time series can be read from and written to a variety of file and database formats. Although a
graphical user interface is provided, the heart of TSTool's analytical features is a command workflow
processor. Depending on the task being performed, the command language may be used extensively or
not at all. This flexibility makes TSTool useful for basic data viewing and advanced analysis. The
documentation is divided into the following main sections.

Chapter 2 – Introduction provides background information on time series concepts and how TSTool
processes time series.

Chapter 3 – Getting Started provides an overview of TSTool interface features.

Chapter 4 – Commands provides a summary of time series processing commands.

Chapter 5 – Tools provides information about analysis tools.

Chapter 6 – Examples of Use provides examples of how TSTool is commonly used.

Chapter 7 – Using the Map provides information about using the map interface to link time series with
spatial data.

Chapter 8 – Troubleshooting provides troubleshooting information, including a list of obsolete
commands.

Chapter 9 – Quality Control provides guidelines and examples for using TSTool to quality control data
processing.

The Command Reference provides a complete command reference, with commands listed in
alphabetical order. Because some commands are used in more than one situation, this allows the
commands to be fully documented once, and referred to as needed.

The Installation and Configuration appendix provides information about installing and configuring
TSTool.

The Release Notes appendix summarizes TSTool changes over time.

Several appendices provide information about supported input types (appendices are inserted as additional
input types are added).

The TSView Time Series Viewing Tools appendix provides a general reference for time series viewing
features. These features are used throughout TSTool and other software developed by RTi.

The GeoView Mapping Tools appendix provides a general reference for the GeoView map interface.
The mapping interface is being phased in and is used by other software developed by RTi.

 Introduction - 1 21

 TSTool Documentation

This documentation can be printed double-sided and is best viewed as PDF to use the navigable table of
contents and bookmarks.

2.1 Time Series Objects and Identifiers

TSTool considers time series as objects that are queried, manipulated, viewed, and output. A time series
is defined as a series of date/time versus data pairs. Data generally consist of floating point values;
however, time series may contain other data (e.g., data quality flags). TSTool treats time series as either
regular interval (equal spacing of date/time) or irregular interval (e.g., infrequent measurements,
sometimes referred to as observations). Regular time series lend themselves to simpler storage and faster
processing because date/time information only needs to be stored for the endpoints and processing is less
complicated.

TSTool defines each time series as having an interval base and multiplier (e.g., 1Month, 24Hour). In
many cases, the multiplier is 1 and is not shown in output (e.g., Month rather than 1Month is shown).
In addition to a period of record, interval, and data values, time series have attributes, or metadata, that
include:

• Units (e.g., CFS)
• Data type (e.g., Streamflow)
• Data limits (the maximum, minimum, etc.)
• Description (generally a station or structure name)
• Missing data value (used internally to mark missing data and trigger data filling, often –999 or in

some cases NaN [Not a Number])
• Comments (often station comments, if available)
• Genesis history (a list of comments about how the time series was created and manipulated)

To manage time series, TSTool associates each time series with an identifier that uses the notation:

Location.Source.Type.Interval.Scenario[Seq]~InputType~InputName

Location.Source.Type.Interval.Scenario[Seq]~DataStoreName

The first five parts (Location.Source.Type.Interval.Scenario) are used to identify time
series, with further explanation below:

• Location – typically a physical location identifier, such as a station, basin, or sensor identifier.
• Source – a data provider identifier, usually a government or system identifier (e.g., USGS,

NWS), necessary because sometimes the provider for data changes for a location.
• Type – the data type, typically specific to the data (e.g., Streamflow, Precip) – TSTool

does not try to institute global data type definitions).
• Interval – the data interval, indicating the time between data values (e.g., 6Hour, Day,

Irregular).
• Scenario – an optional item that indicates a scenario (e.g., Hist, Filled, Max,

Critical).
• Seq – an optional item used in cases where multiple time series traces may be available, with all

other identifier information being equal (e.g., for simulations where multiple versions of input are
used or for cases when a historical time series is cut into annual traces, collectively known as

Introduction - 2 22

TSTool Documentation

ensembles). Typically the sequence number is a four-digit year corresponding to the data input
year.

The last part (~InputType~InputName or DataStoreName) is used indicate input information,
which allows TSTool locate and read the time series from a file or database. The input information was
introduced starting with TSTool version 5.04.00. The data store convention was introduced in TSTool
version 9.08.00 and allows any name to be used to define a data store – the details of the configuration are
defined in a properties file. This allows more flexibility in defining data connections. The data store
convention will be phased in as the software is enhanced.

A summary of input types that are currently supported or under development is listed in the following
table (see the input type appendices for more information about how time series identifiers are formatted
for specific input types). Features for these input types may or may not be available, depending on the
TSTool configuration (see the TSTool Installation and Configuration Appendix). The main constraint
on whether an input type is considered for implementation in TSTool is whether the input type is a
standard that is used in a relatively wide audience or for key applications. By supporting general formats,
TSTool can support the largest group of users and provide the most useful general features.

Input Types for TSTool

Input Type Description
ColoradoBNDSS State of Colorado Basin Needs Decision Support System (BNDSS)

database (under development).
ColoradoWaterHBGuest Web service for State of Colorado’s historical data.
ColoradoWaterSMS Web service for State of Colorado’s real-time data.
DateValue General delimited date/value file with extended header information,

able to store one or more time series.
Delimited Generic column-delimited format (see the

ReadDelimitedFile() command).
DIADvisor DIADvisor real-time environmental monitoring software, from

OneRain, Inc.
HEC-DSS Army Corp of Engineers binary time series database file used with

Hydrologic Engineering Center (HEC) software.
HydroBase State of Colorado database.
MexicoCSMN Hydrometeorological database for Mexico Coordinación Servicio

Meteorologico Nacional (CSMN, similar to US National Weather
Service).

MODSIM Colorado State University MODSIM model, version 7.
NWSCard National Weather Service River Forecast System (NWSRFS) card

file format for hourly data.
NWSRFS_ESPTraceEnsemble NWSRFS Ensemble Streamflow Prediction binary files.
NWSRFS_FS5Files NWSRFS binary FS5Files preprocessor and processed database.
RiversideDB Riverside Technology, inc. database used for real-time and

historical time series data (e.g., use with RiverTrak® System
software).

RiverWare University of Colorado Center for Advanced Decision Support for
Water and Environmental Systems (CADSWES) RiverWare model
data format.

SHEF Standard Hydrologic Exchange Format, a common data format used
by United States government agencies.

 Introduction - 3 23

 TSTool Documentation

Input Type Description
StateCU State of Colorado consumptive use model time series and report

formats.
StateCUB State of Colorado consumptive use model binary output file.
StateMod State of Colorado StateMod model time series file format.
StateModB State of Colorado StateMod model output binary file.
USGS NWIS United States Geological Survey National Water Information

System format

An example of a time series identifier for a monthly streamflow time series in HydroBase is:

09010500.USGS.Streamflow.Month~HydroBase

The same time series for a USGS NWIS input source might be identified using:

 09010500.USGS.Streamflow.Month~USGSNWIS~C:\temp\09010500.txt

In this example, the optional scenario (fifth part) and sequence number are not used. This identifier string
can be saved in a command file or time series product description file, which can be processed again later.
The identifier string allows TSTool to determine how to re-query the time series. The time series
identifier is useful for managing time series. The TSTool GUI typically handles creation of all time series
identifiers; however, identifiers can be created with an editor once the format is familiar. The path to files
can be absolute or relative to the command file. The latter is recommended to improve portability of files
between computers.

Because time series identifiers are somewhat cumbersome to work with, TSTool allows a time series alias
to be used instead. For example, the following command illustrates how a HydroBase time series can be
read and associated with an alias:

TS X = ReadTimeSeries(“09010500.USGS.Streamflow.Month~HydroBase”)

This allows the time series to be referred to as X during further processing (e.g., when manipulated with
commands). Whether full identifiers or aliases are used, the overall identifier must be unique during
processing to guarantee that time series commands are processed as desired (duplicate aliases and
identifiers can be present but the first one found will be used - see Section 2.4 Time Series Commands
and Processing Sequence for an example). TSTool ignores upper/lower case when comparing
identifiers, aliases, and other commands, although it is good practice to be consistent.

When editing commands, TSTool does not normally show the input type and input name parts of the
identifier because this information is most appropriate for read commands. There are cases where two
time series identifiers will be the same except for the input type and name. In these cases, an alias should
be assigned when reading the time series and the alias used in later commands. If for some reason an
alias cannot be used, the input type and name may need to be manually added if the command editors do
not display by default (e.g., in cases where the identifiers cannot be determined without actually running a
command).

Newer commands also allow the alias to be assigned even when reading multiple time series. This
convention uses an Alias parameter rather than the TS Alias = syntax and may be phased in as the
preferred syntax. For example, the alias may be assigned to the location identifier only.

Introduction - 4 24

TSTool Documentation

2.2 Date/Time Conventions

TSTool uses date/time information in several ways:

1. Data values in time series are associated with a date/time and the precision of all date/time
information should be consistent within the time series, as discussed below,

2. The data interval indicates the time spacing between data points and is represented as a multiplier
(optional if 1) and a base (e.g., Day, 24Hour),

3. The period of a time series is defined by start and end date/time values, using an appropriate
precision,

4. An analysis period may be used to indicate when data processing should occur,
5. Output is typically formatted for calendar year (January to December), water year (October to

November), or irrigation year (November to October) – calendar year is the default but can be
changed in some commands and output.

A date/time has a precision. For example, 2002-02 has a monthly precision and 2002-02-01 has a
daily precision. Each date/time object knows its precision and “extra” date/time information is set to
reasonable defaults (e.g., hour, minute, and second for a monthly precision date/time are set to zero and
the day is set to 1). The date/time precision is important because TSTool uses the date/time objects to
iterate through data, to compare dates, and to calculate a plotting position for graphs. Specifying
date/time information with incorrect precision may cause inconsistent behavior.

The TSTool documentation and user interface typically use ISO 8601 International Standard formats for
date/time information. For example, dates are represented using YYYY-MM-DD and times are represented
using hh:mm:ss. A combined date/time is represented as YYYY-MM-DD hh:mm:ss. In order to
support common use, TSTool also attempts to handle date/time information that uses United States and
other date formats. In such cases, the length of the date/time string and the position of special characters
are used to make a reasonable estimate of the format. Using ambiguous formats (e.g., two-digit years that
may be confused with months) may cause errors in processing. Adhering to the ISO 8601, standard
formats will result in the fewest number of errors. The appendices for various input types discuss issues
with date/time formats.

Plotting positions are computed by converting dates to floating point values, where the whole number is
the year, and the fraction is the fractional part of the year, considering the precision. The floating-point
date is then interpolated to the screen pixels, as integers. In most cases, the high-precision date/time parts
are irrelevant because they default to zero. However, in some cases the precision can impact plots
significantly. For example, when plotting daily and monthly data on the same graph, the monthly data
will be plotted ignoring the day whereas the daily values correspond days 1 to 31. The ability to plot
monthly data mid-month or end-of-month has not been implemented. The TSView Time Series Viewing
Tools Appendix provides examples of plots.

The date/time precision is very important when performing an analysis or converting between time series
file formats. For example, a file may contain 6Hour data using a maximum hour of 24 (e.g., 6, 12, 18,
24). When reading this data, TSTool will convert the hour 24 values to hour 0 of the next day.
Consequently, the hour and day of the original data will seemingly be shifted, even though the data are
actually consistent. This shift may also be perceived when converting from hourly data to daily data
because the hour can have a value of 0 to 23, whereas days in the month start with 1. The perceived shift
is purely an artifact of time values having a minimum value of zero.

 Introduction - 5 25

 TSTool Documentation

2.3 Time Scale for Time Series Data

The time scale for time series data gives an indication of how the data value were measured or computed.
The time scale is generally determined from the data type (or the data type and interval) and can be one of
the following (the abbreviations are often used in software choices):

• Instantaneous (INST): The data value represents the data observed at the time associated with the

reading (e.g., instantaneous temperature, streamflow, or snow depth). Instantaneous data may be of
irregular or regular interval, depending on the data collection system. If irregular, the precision of the
date/time associated with the reading may vary (e.g., automated collection systems may have very
precise times whereas infrequently recorded field measurements may only be recorded to the nearest
day).

• Accumulated (ACCM): The data value represents the accumulation of the observed data over the
preceding interval. The date/time associated with the data value corresponds to the end of the
interval. For example, precipitation (rain or snow recorded as melt) is often recorded as an
accumulation over some interval. Accumulated values are typically available as a regular time series,
although this is not a requirement (e.g., precipitation might be accumulated between times that a rain
gage is read and emptied).

• Mean (MEAN): The data value represents the mean value of observations during the preceding
interval. The date/time associated with the data value corresponds to the end of the interval. The
mean includes values after the previous timestamp and including the current timestamp. The
computation of mean values may be different depending on whether the original data are irregular or
regular. For example, if the original data are regular interval, then equal weight may be given to each
value when computing the mean (a simple mean). If the original data are irregular interval, then the
weight given to each irregular value may depend on the amount of time that a value was observed (a
time-weighted mean, not a simple mean).

Without having specific information about the time scale for data, TSTool assumes that all data are
instantaneous for displays. If time series are graphed using bars, an option is given to display the bar to
the left, centered on, or to the right of the date/time. If time series are graphed using lines or points, the
data values are drawn at the date/time corresponding to data values. This may not be appropriate for the
time scale of the data. In most cases, this default is adequate for displays. Graphing data of different time
scales together does result in visual inconsistencies. These issues are being evaluated and options may be
implemented in future releases of the software. In particular, an effort to automatically determine the
time scale from the data type and interval is being evaluated. This can be difficult given that data types
are not consistent between input types and time scale may be difficult to determine when reading time
series. Refer to the input type appendices for information about time scale.

The time scale is particularly important when changing the time interval of data. For example, conversion
of instantaneous data to mean involves an averaging process. Conversion of instantaneous data to
accumulated data involves summing the original data. Commands that change interval either operate only
on data of a certain time scale or require that the time scale be specified to control the conversion. Refer
to the command documentation for specific requirements.

2.4 Time Series Commands and Processing Sequence

Although TSTool can be run in batch mode (see Chapter 3 – Getting Started), you should be able to
perform all time series viewing and manipulation within the GUI. Commands are used to read,
manipulate, and output time series. Commands are processed sequentially from the first to the last

Introduction - 6 26

TSTool Documentation

commands using the steps described below. This section describes in detail the processing sequence. See
the examples in Chapter 6 – Examples of Use for illustrations of the processing sequence.

Note that older versions of TSTool (before version 5.xx.xx) did not allow multi-step manipulation
and therefore time series were read and manipulated in one step. This convention had limitations
and has been changed to allow multi-step operations on time series, allowing more options for
filling and manipulation. Old command files are supported as much as possible but some updates
to old command files may be required.

TSTool commands fall into three main categories:

1. Time series identifiers (see Section 2.1 – Time Series Objects and Identifiers), which are
equivalent to time series “read” commands (where the identifier input type is used to determine
which read command to use),

2. General commands, which are used to set properties like the period for output, and,
3. Time series commands, which are used to read and manipulate time series and output results.

Commands are processed sequentially and can be repeated as necessary. A typical user starts learning
TSTool by performing simple queries and displaying results while gradually utilizing more commands.
The current software uses command syntax as follows:

Command(Param1=Value1,Param2=”Value”,…)

Values that may contain spaces or commas are normally surrounded by double quotes. This notation is
useful for the following reasons:

• The parameter names are included in the command, in order to make the command more
readable.

• Because the parameter name is included, the parameters can generally be in any order. The
command editor dialogs will enforce a default older.

• Parameters that have default values can be omitted from the parameter list, shortening commands.
• New parameters can be added over time, without requiring parameter order to change in existing

commands.

The above notation is being used for new commands and older commands are being updated to the new
syntax as new software releases are made. Command editor dialogs will update old commands to the new
syntax and the processing code will recognize old and new command syntax. The Command Reference
illustrates the current command syntax.

The following sequence occurs when processing commands:

1. Parse the command. A time series identifier or command is parsed to determine how to execute
the command. Example commands are shown below. If the command is a general command, the
action is taken and a new command is read in step 1 (general commands can be specified multiple
times to change properties throughout a run). If the command results in reading or creating a time
series, steps 2 - 4 are executed, as described below. If a command is a time series manipulation
command, step 4 is executed.

Example commands
08235350.USGS.Streamflow.Month~HydroBase
08236000.USGS.Streamflow.Month~HydroBase
Add(TSID=”08235350.USGS.Streamflow.Month”,HandleMissingHow=IgnoreMissing,

 Introduction - 7 27

 TSTool Documentation

 TSList=SpecifiedTSID,AddTSID=”08236000.DWR.Streamflow.Month”)
08235350.USGS.Streamflow.Month~HydroBase

2. Read Time Series. TSTool recognizes that certain commands should read a new time series and

will perform the appropriate action. For example, in the above example, the time series identifier
08235350.USGS.Streamflow.Month~HydroBase indicates that the corresponding time
series should be read from a HydroBase database. The input type in the identifier (information
after the ~) is used to determine how to read the time series. Unless the SetInputPeriod()
command has been used, the entire time series period is read in this step because data filling
steps may require the full period (e.g., to determine regression relationships or long-term monthly
average).

Commands that do not cause a time series to be read (but instead to be manipulated) are described
in step 4.

If the input type, and if needed, input name, are specified in the identifier, they are only used in
the initial read. Additional manipulation commands only use the first five parts of the identifier
or the time series alias to identify the time series. If the same time series needs to be read from
two input types (e.g., to compare whether a time series was properly loaded into a database from
a file), use a different time series alias for each time series to uniquely identify each time series.
This may require using a specific variant of a read command that assigns an alias.

At the end of this step, a new time series will exist in TSTool’s memory.

3. Compute Data Limits. The time series data limits are computed because they may be needed

later for filling. This information includes the long-term monthly averages. These limits are
referred to as the original data limits.

4. Access and Manipulate Time Series. Commands that manipulate time series (fill, add, etc.) do

not automatically read the time series or make another copy. Instead, time series that are in
memory are located and manipulated. The following example illustrates how the time series
identified by 08235350.USGS.Streamflow.Month has its data values modified by adding
the data from the time series identified by 08236000.USGS.Streamflow.Month.

Example commands
08235350.USGS.Streamflow.Month~HydroBase
08236000.USGS.Streamflow.Month~HydroBase
Add(TSID=”08235350.USGS.Streamflow.Month”,HandleMissingHow=IgnoreMissing,TSList
=SpecifiedTSID,AddTSID=”08236000.DWR.Streamflow.Month”)
08235350.USGS.Streamflow.Month~HydroBase

To locate a time series so that it can be modified, TSTool first checks the alias of known time
series (those that have been defined in previous commands) against the current time series of
interest (TSID=”08235350.USGS.Streamflow.Month”), assuming that this string is an
alias. If the alias is not found, it checks the full identifier of known time series against the current
time series of interest. In this example, time series 08235350.USGS.Streamflow.Month
was read in the first step and is therefore found as a match for the identifier. Similarly, the
second time series in the command (08236000.USGS.Streamflow.Month) is found and is
used to process the command, resulting in a modification of the first time series. Sequential
manipulations of the same time series can occur (e.g., fill by one method, then fill by
another).

Introduction - 8 28

TSTool Documentation

To locate time series in memory, TSTool generally looks through the list of time series, searching
backwards from the current command being processed. Alternatively, the TSList parameter for
the command will be used if available. It is possible to use the same identifier more than once in
a command file while allowing localized processing of each time series; however, this may lead
to confusion and should be avoided. In the above example, the time series identified by
08235350.USGS.Streamflow.Month~HydroBase is read twice, once to be acted on by
the Add() command, and once with no manipulation (e.g., to compare the "before" and "after").

During processing, extra time series can accumulate and will be available for output. Use the
Free() command to free time series that are no longer needed. This removes the time series
from memory. See also the DeselectTimeSeries() and SelectTimeSeries()
commands. Output commands also may use the TSList parameter to indicate which time series
are to be output.

5. After processing the time series, a list of available time series that are in memory are listed in the

GUI. One or more of these time series can be selected and viewed using the Results menu or
analyzed using the Tools menu (also right click on time series listed in the results menu at the
bottom of the main window). Time series can also be saved in some of recognized input type
formats using the File...Save…Time Series As menus.

If running in batch mode using the -commands option, all of the above steps occur in sequence and the
GUI interfaces are not displayed. Old command files should be updated to reflect the new processing
sequence. Processing the example shown above results in three time series in memory:

1. A time series identified by 08235350.USGS.Streamflow.Month, containing the sum of
the two time series.

2. A time series identified by 08236000.USGS.Streamflow.Month, containing the input to
the Add() command.

3. A time series also identified by 08235350.USGS.Streamflow.Month, containing the
original data from the time series that is added to. This contains the original data because a time
series identifier by itself in a command list will cause the time series to be read.

These time series can be graphed or saved in an output file.

2.5 Using Time Series Aliases

The previous sections discussed time series identifiers and processing time series. The concept of a time
series alias was described as a “shortcut” when identifying a time series. Aliases are useful when creating
more complicated lists of commands, where using full time series identifiers become cumbersome.
Aliases are typically assigned when creating new time series using the following command syntax:

 TS Alias = SomeCommandThatCreatesATimeSeries()

 SomeCommandThatCreatesTimeSeries(Alias=”some pattern”)

Most supported time series input types do not inherently use aliases (an exception is the DateValue
format, which will initialize a time series’ alias if the input DateValue file specifies the information).
Instead, time series typically are identified by the location part of the time series identifier (e.g., a station
identifier). Although time series can use aliases to simplify processing, the location part of the identifier
will generally be used when outputting time series to files or databases.

 Introduction - 9 29

 TSTool Documentation

The time series manipulation features of TSTool facilitate using variations of an input time series for
analysis. For example, a time series may be read and manipulated to produce several variants, which are
then written for use in a model or analysis. The TS Alias = Copy() command could be used to
create copies of the original time series. An alternative is to use the TS Alias =
NewTimeSeries() command to create a new time series (specifying a location part of the time series
identifier that is suitable for output), and then use the SetFromTS() command to copy all or part of the
original time series into the new time series. These two commands therefore allow one time series to be
read and copied into new time series, each of which has a new location in the time series identifier. Other
commands also allow aliases to be assigned as time series are created.

If specified, time series aliases are generally output in the legends of graphs and other data products.

2.6 Time Series Ensembles

A time series ensemble is a group of related, typically overlapping, time series. Ensembles can be used to
manage related scenarios (e.g., input and results of model scenarios) or as a way of shifting a historical
time series so that years overlap. Many commands operate on a list of time series by using the parameters
TSList=EnsembleID and EnsembleID=”SomeID”. Statistics time series can be derived from
ensembles, for example to calculate the average condition over time (although care must be taken in
whether this can be interpreted as a time series of related values, for use as input to a process). Ensembles
are assigned unique identifiers and are displayed at the bottom of the TSTool main window in a separate
results tab. The following figure illustrates an ensemble of annual time series created from a long
historical time series.

Introduction - 10 30

TSTool Documentation

TSView/TSView_Graph_Traces

Example Trace Ensemble Plot Showing Historical Years

 Introduction - 11 31

 TSTool Documentation

This page is intentionally blank.

Introduction - 12 32

3 Getting Started
Version 08.15.03, 2008-06-10,

This chapter provides an overview of the TSTool graphical user interface. The TSTool GUI has three
main functions:

1. Display and analyze time series data. In this capacity, a graph or summary can be created and then

TSTool can be closed.
2. Format lists of time series for use with simulation models or other software. In this capacity, time

series that are read and displayed can be incorporated into a command file, which can be run to
generate model files.

3. Read time series and produce time series products (e.g., image files containing graphs), for use on
web sites or to facilitate review of database contents or model output. In this capacity TSTool is used
to generate data products in a streamlined fashion.

The remainder of this chapter provides an overview of the graphical user interface, in the order of the
menus on the menu bar.

3.1 Starting TSTool

Within the State of Colorado’s CDSS, TSTool can be started using Start…All
Programs…CDSS…TSTool (or Start…Programs…CDSS…TSTool).

If a command file has been created, it can be processed in batch mode using the following command line:

tstool –commands commands.TSTool

It is customary to name command files with a .TSTool file extension.

 Getting Started - 1 33

Getting Started TSTool Documentation

3.2 Select HydroBase Dialog

If the HydroBase input type is enabled (see the HydroBase Input Type Appendix), the HydroBase login
dialog will be automatically shown when TSTool starts in interactive mode. The dialog is used to select a
server and database for the State of Colorado’s HydroBase database. A HydroBase database can also be
selected from the File...Open…HydroBase... menu.

Menu_Open_HydroBase

Select HydroBase Database Dialog

You can also cancel the login, in which case HydroBase features will be disabled but you will be able to
work with other input types.

Getting Started - 2 34

TSTool Documentation Getting Started

3.3 Main Interface

The following figure illustrates the main TSTool interface during a typical session, immediately after
starting and completing the HydroBase database login. The main interface is divided into three main
areas:

• Input/Query Options (top left) and Time Series List area (top right)
• Commands (middle)
• Time Series Results (bottom)

Status and progress information is displayed at the bottom of the main window and also in the borders
around main panels (e.g., to show how many items are in a list and how many are selected).

GUI_MainBlank

Initial TSTool Interface

 Getting Started - 3 35

Getting Started TSTool Documentation

3.3.1 Input/Query Options and Time Series List Area

The upper part of the main window contains the Input/Query Options and Time Series List area. The
Input/Query Options choices help select time series information from input types. The interactive
interface is useful when searching a database or selecting a time series from a file that includes multiple
time series. An alternative to the following interactive approach is to use read commands from the
Commands menu (see the Commands chapter), which is appropriate for more complicated analysis. To
select time series, execute the following steps:

1. Select the Input Type. Input types define the storage format (e.g., database or file) for time series

data. The DateValue input type is the default. More specific input types (e.g., the HydroBase
database) may be the default if enabled. See the appropriate appendix for a description about
supported input types. Depending on the input type, some of the remaining selection choices may be
disabled or limited. In most cases, TSTool will assume that you are correctly associating an input
type with the actual input that is selected (i.e., that you will select a file that matches the input type
when Get Time Series List is pressed – see below). Selecting some input types may prompt for a
file, which is then listed in the Input Name choices.

2. Select the Data Type (if appropriate for the input type). For example, select Streamflow or

Diversion if using a HydroBase input type. For some input types, the data type will be listed as
Auto, indicating that the data type automatically will be determined from the input itself.

3. Select the Time Step (if appropriate for the input type). The time step, also referred to as the data

interval, will generally be limited by the input type. For example, if reading from the HydroBase
database, the Streamflow data type will result in Day, Month, and Irregular (real-time) time steps
being listed. The time step will be shown as Auto for some input and data types and will be
determined as data are read.

4. Specify the Where and Is clause(s) for the query (if appropriate for the input type). This information

will limit the number of time series that are returned. For some input types, choices will be displayed
as choices, whereas for other input types, all time series for the input type will be listed.

5. Press the Get Time Series List button in the Input/Query Options area, and TSTool will display a

list of matching time series in the Time Series List. If the input type is a file, you may first be
prompted to select the file containing the time series. The Time Series List shows a list of matching
time series, including standard time series information. As much as possible, the column headings
are consistent between different input types. The results are typically sorted by name or identifier if
from a database, or if read from a file are listed according to the order in the file. Right-click on the
column headings and select Sort Ascending to sort by that column (the other columns will adjust
accordingly). The sorts are alphabetical so some numeric fields may not sort as expected due to
spaces, etc.

6. Move time series to the Commands list in the center of the main interface selecting rows in the Time

Series list (must click in column two or greater) and then pressing the Copy Selected to Commands
button. Or, if appropriate, press the Copy All to Commands button. The Commands and Time
Series Results areas are discussed in the following section and can contain mixed data types and
time steps. Analysis commands may require that the units are compatible, but general viewing tools
do not require the same units. To mix data types, make multiple queries using the Input/Query
Options and Time Series List areas and select from the lists as necessary, accumulating time series
identifiers in the Commands list.

Getting Started - 4 36

TSTool Documentation Getting Started

After providing selection information, the main interface might look like the following figure:

GUI_MainWithCommands

TSTool after Pressing Get Time Series List and selecting from Time Series List

3.3.2 Command List and Command Error Indicators

The Commands list occupies the middle of the main interface and contains:

• Time series identifiers corresponding to time series selected from the Time Series List, and
• Commands selected from the Commands menu (see Chapter 4 – Commands).

Time series identifiers are added to the Commands list by single clicking on items in the Time Series
List and copying the identifiers to the Commands list. Time series identifiers are formatted by
transferring information from the appropriate columns in the Time Series List to the Commands list.

An alternative to using the Time Series List to select time series is to use specific read commands from
the Commands menu (e.g., use a ReadDateValue() command). Using read commands is useful
when performing a more complicated analysis on specific input sources (e.g., specific data files) or when
processing large amounts of data. The interactive interface is useful when searching a database or
generating a simple graph.

 Getting Started - 5 37

Getting Started TSTool Documentation

The Commands (and the Time Series Results) lists behave according to Windows conventions:

• Single-click to select one item.
• Ctrl-click to additionally select an item.
• Shift-click to select everything between the previous selection and the current selection.

Right-clicking over the Commands list displays a pop-up menu with useful command manipulation
choices, some of which are further described in following sections (e.g., edit menu choices are discussed
in Section 3.5 - Edit Menu). A summary of the pop-up menu choices is as follows:

Menu Choice Description
Show Command Status
Success/Warning/Failure

Displays the status of a command for each phase of command
processing (more discussion below after table).

Edit Edit the selected command using custom edit dialogs, which provide
error checks and format commands. Double-clicking on a command
also results in editing the command.

Cut Cut the selected commands for pasting.
Copy Copy the selected commands for pasting.
Paste Paste commands that have been cut/copied, pasted after the selected

row.
Delete Delete the selected commands (currently same as Cut).
Find Commands(s) Find commands in the command list. This displays a dialog. Use the

right-click in the found items to go to or select found items.
Select All Select all the commands.
Deselect All Deselect all the commands. This is useful because only selected

commands are processed (or all if none are selected). It is therefore
important not to unknowingly have one or a few commands selected
during processing.

Convert Selected
Commands to #
Comments

Convert selected commands to # comments.

Convert Selected
Commands from #
Comments

Convert # comments to commands.

Run All Commands
(create all output)

Run all commands and create output (e.g., graphs and files).

Run All Commands
(ignore output
commands)

Run all commands but skip any output commands. This is useful if a
batch command file has been read and time series are to be listed in the
GUI but output products are not to be generated automatically.

Run Selected Commands
(create all output)

Run selected commands and create output (e.g., graphs and files).

Run Selected Commands
(ignore output
commands)

Run selected commands but skip any output commands. This is useful
if a batch command file has been read and time series are to be listed in
the GUI but output products are not to be generated automatically.

Getting Started - 6 38

TSTool Documentation Getting Started

Initial enhancements to command editing and error handling were implemented in version 7.00.00 and
continue to be implemented. Commands are numbered to simplify editing. The command list also
includes left and right gutters to display graphics that help with error handling. The following figure
illustrates a command with an error (the first time series identifier has been edited to include an x,
resulting in an invalid identifier).

CommandListError

Command List Illustrating Error

The following error handling features are available:

• Clicking on the left gutter will hide and un-hide the gutter.
• The graphic in the left gutter indicates the severity of a problem (see below for full explanation).
• The colored box on the right indicates the severity of a problem and, when clicked on, positions

the visible list of commands to display the command corresponding to the problem.
• Commands have three phases: 1) initialization, 2) discovery, 3) run. Initialization occurs when

reading a command file or adding a new command. The discover phase is executed only for
commands that generate time series for other commands and provides other commands with
identifiers used in command editing. The run phase is when commands are processed to generate
output.

• Positioning the mouse over a graphic in the left or right gutter will show a popup message with
the problem information. The popup is only visible for a few seconds so use the right-click
popup menu Show Command Status (Success/Warning/Failure) for a dialog that does not
automatically disappear.

The meaning of the gutter symbols is described in the following table. The goal is to display the most
severe status to indicate problems; however, some commands are still being enhanced to support this
feature and may not display a status until after they are run.

Command List Error Handling Graphics

Command List Left
Gutter Graphic

Description

No graphic Command is successful (a warning or failure has not been detected).
 The status is unknown, typically because the command has not been

updated to fully take advantage of error handling features.

The command has a problem that has been classified as non-fatal. For
example, a command to fill data may be used but results in no data being
filled. In general, commands with warnings need to be fixed unless work
is preliminary.

The command has failed, meaning that output is likely incomplete. A
problem summary and recommendation to fix the problem are available
in the status information. Commands with failures generally need to be
fixed. Software support should be contacted if the fix is not evident.

 Getting Started - 7 39

Getting Started TSTool Documentation

Warning and failure messages continue to be enhanced as commands are updated to support the new error
handling features.

3.3.3 Time Series Results

The commands in the Commands list are processed by pressing the Run Selected Commands or Run
All Commands buttons below the commands list area (or by using the Run menu). The time series and
other output that result from processing are listed in the bottom of the main interface, as shown in the
following figure:

GUI_MainWithTS

TSTool after Running Commands

The time series listed in the Time Series Results list can then viewed using the Results menu, analyzed
further using the Tools menu, and output using the File…Save… menus. Only the selected time series
will be output (or all if none are selected).

In addition to time series, the following results may also be available:

• Ensembles – groups of time series with an ensemble identifier. Time series in an ensemble are
also shown in the Time Series tab. Right-click on item to access viewing and analysis options.

• Output Files – files that are created during processing. Single click on a file to view.
• Tables – column-oriented tables created during processing.

Two progress bars at the bottom of the main window are updated during processing. The left progress bar
indicates the overall progress in processing the commands (100% means that all commands have been
processed). The right progress bar is used with command that support incremental progress status

Getting Started - 8 40

TSTool Documentation Getting Started

updating, a feature that will be phased in over time. For example, if a single command processes many
time series, this progress bar can be used to indicate progress in the command.

Right-clicking over the Time Series Results list displays a pop-up menu with useful time series viewing
choices, including a choice to view the time series properties. The right-click menu choices are
summarized below:

Time Series Results List Popup Menu Choices
Menu Choice Description
Graph - Bar (left of date) Display bar graph for selected time series, drawing bars to the left of the

date.
Graph - Bar (center on
date)

Display bar graph for selected time series, drawing bars centered on the
date.

Graph - Bar (right of
date)

Display bar graph for selected time series, drawing bars to the right of the
date.

Graph - Duration Display a duration graph for the selected time series.
Graph - Line Display a line graph for selected time series.
Graph - Line (log Y-axis) Display a line graph for the selected time series, using a log10 y-axis.
Graph - Period of
Record

Display a period of record graph for the selected time series.

Graph – Point Display a graph using symbols but no connecting lines.
Graph – Predicted Value Display a graph of data and the predicted values from regression.
Graph – Predicted Value
Residual

Display a graph of data minus the predicted values from regression.

Graph - XY-Scatter Display an XY-scatter plot for the selected time series.
Table Display a scrollable table for the selected time series.
Report - Summary Display a summary for selected time series.
Find Time Series... Find time series in the time series list. This displays a dialog. Use the

right-click in the found items to go to or select found items.
Select All for Output Select all time series for output.
Deselect All Deselect all time series for output.
Time Series Properties Display the time series properties dialog (see the TSView Time Series

Viewing Tools appendix for a complete description of the properties
interface).

Viewing capabilities are described further in Section 3.9 - Results Menu and the TSView Time Series
Viewing Tools appendix.

The remainder of this chapter summarizes the TSTool menus.

 Getting Started - 9 41

Getting Started TSTool Documentation

3.4 File Menu - Main Input and Output Control

The File menu provides standard input and output features as described below. Some menus are visible
only when certain input types are enabled (see the Installation and Configuration Appendix). Some
menus are only enabled when time series have been processed.

Menu_File

File Menu

3.4.1 File…Open – Open Command File or Databases

The File…Open menu displays menu items as follows:

Menu_File_Open

File…Open Menu

The File…Open…Command File menu item displays a dialog to select an existing command file. After
a file is selected, the file contents replace the contents of the Commands list. If commands already exist
in the Commands list and have been modified, you are given the option of saving the existing commands
first. Opening a command file causes the working directory to be set to the directory from which the
command file was read, as if the setWorkingDir() command was executed. Consequently,
setWorkingDir() commands may not be needed.

TSTool will attempt to automatically update older command files to new syntax if a command has
changed. If a change occurs, the command file will be marked as modified and will need to be saved to
reflect the changes. If an error occurs updating a command, it will be marked with an error and a
comment will be inserted with the original command and indicating that an automated update could not
occur. Unrecognized commands are marked with an error and will generate errors if run.

The File…Open…HydroBase menu item displays the Select HydroBase dialog discussed in Section
3.2 (see also the HydroBase Input Type Appendix).

The File…Open…RiversideDB menu item displays a dialog to select a RiverTrak® System configuration
file, which specifies the location of a RiversideDB database (see the RiversideDB Input Type
Appendix).

Getting Started - 10 42

TSTool Documentation Getting Started

3.4.2 File…Save – Save Command File, and Time Series

The File…Save menu displays the following menu choices:

Menu_File_Save

File…Save Menu
The File…Save…Commands and File…Save…Commands As menu items save the contents of the
Commands list to a file. The name of the current command file is shown in the TSTool title bar. All
commands are saved, even if only a subset is selected. Saving a command file causes the working
directory to be set to the where the command file was written, as if the setWorkingDir() command
was executed. Consequently, setWorkingDir() commands may not be needed.

The File…Save…Time Series As menu item displays a file chooser dialog for saving time series in the
Time Series Results list. See the Input Type Appendices for examples of supported file formats. Only
the selected time series in the Time Series Results list are saved (or all, if none are selected). Not all
formats are supported because in most cases the write commands are used to automate processing of time
series.

3.4.3 Print Commands

The File…Print…Commands menu prints the contents of the Commands list. This is useful while
editing and troubleshooting commands.

3.4.4 Properties for Commands Run, TSTool Session, and Input Types

The File…Properties menu displays the following menu items:

Menu_File_Properties

File…Properties Menu

 Getting Started - 11 43

Getting Started TSTool Documentation

The File…Properties…Commands Run menu item displays information from the last time that the
commands were run, including global properties that impact results:

Menu_File_PropertiesRun

Properties of the Last Commands Run

Getting Started - 12 44

TSTool Documentation Getting Started

The File…Properties…TSTool Session menu item displays information about the current TSTool
session, as follows:

Menu_File_Properties_TSToolSession

TSTool Session Properties

 Getting Started - 13 45

Getting Started TSTool Documentation

The File…Properties…HydroBase menu item displays HydroBase properties, including the database
that is being used, database version, and the water districts that are in the database being queried. The
water districts are determined from the structure table in HydroBase. The information that is shown is
consistent with that shown by other State of Colorado tools and is useful for troubleshooting.

 Menu_File_HydroBase

HydroBase Properties Dialog

The File…Properties…RiversideDB menu item displays RiversideDB properties, if a RiversideDB
connection is in place.

3.4.5 Set Working Directory

The File…Set Working Directory menu item displays a file chooser dialog that allows you to select the
working directory. The working directory, when set properly, can greatly simplify command files
because relative file paths can be used for input and output. The working directory is normally set in one
of the following ways, with the current setting being defined by the most recent item that has occurred:

1. The startup directory for the TSTool program,
2. The directory where a command file was opened,
3. The directory where a command file was saved,
4. The directory specified by a SetWorkingDir() command,
5. The directory specified by File…Set Working Directory.

The menu item is provided to allow the working directory to be set before a command file has been saved
(or opened) and it typically eliminates the need for SetWorkingDir() commands in command files.

Getting Started - 14 46

TSTool Documentation Getting Started

3.4.6 Exit

The File…Exit menu exits TSTool. You will be prompted to confirm the exit. If commands have been
modified, you will be prompted to save before exiting. Commands may have been automatically updated
by TSTool if an old command file was read.

3.5 Edit Menu – Editing Commands

The Edit menu can be used to edit the Commands list. Edit options are enabled and disabled depending
on the status of the Commands list. Specific edit features are described below. Right clicking over the
Commands list provides a popup menu with many choices described below.

Menu_Edit

Edit Menu

3.5.1 Cut/Copy/Paste/Delete

The Edit…Cut and Edit…Copy menu items are enabled if there are items in the Commands list.
Currently, these features do not allow interaction with other applications. Cut deletes the selected
item(s) from the Commands list and saves its information in memory. Copy just saves the information
in memory. After Cut or Copy is executed, select an item in the Commands list and use Paste (see
below).

Paste is enabled if one or more commands from the Commands list has been cut or copied. To paste the
command(s), select commands in the Commands list and press Edit…Paste. The commands will be
added after the last selected command. To insert at the front of the list, paste after the first command, and
then cut and paste the first command to reverse the order.

The Delete choice currently works exactly like the Cut choice. Additionally, after lines in the
Commands have been selected, you can press the Clear Commands button below the Commands list to
cut/delete.

The Clear Commands button in the Commands area deletes the selected commands or all commands if
none are selected. You will be prompted to confirm the clear of no commands are specifically selected.

 Getting Started - 15 47

Getting Started TSTool Documentation

3.5.2 Select All Commands/Deselect All Commands

The Edit…Select All Commands and Edit…Deselect All Commands menu items are enabled if there
are items in the Commands list. Use these menus to facilitate editing. Note that when editing
commands it is often useful to deselect all commands so that new commands are added at the end of the
commands list.

3.5.3 Edit Command File

The Edit…Command File menu choice can be used to edit a command file using Notepad on Windows
or nedit on UNIX machines. Currently, there is no way to change the editor. You must re-read the
command file into TSTool after using the editor for TSTool to recognize the time series commands in the
command file. This feature is less useful that in the past because editor dialogs have now been
implemented for all commands.

3.5.4 Edit Command

The Edit…Command menu can be used to edit an individual command. TSTool will determine the
command that is being edited and will display the editor dialog for that command, performing data
checks. Most old commands will be automatically detected and will be converted to new command
syntax. This feature is also accessible by right clicking on the Commands list and selecting the Edit
menu item.

3.5.5 Convert Selected Commands To/From Comments

The Edit…Convert selected commands to comments menu can be used to toggle selected commands
in the Commands list to comments (lines that begin with #). This is useful when temporarily disabling
commands, rather than deleting them.

The Edit…Convert selected commands from comments menu can be used to toggle selected
commands in the Commands list from comments back to active commands. This is useful when re-
enabling commands that were temporarily disabled.

Note that the multi-line /* */ comment notation can be inserted using the Commands…General –
Comments menu.

Getting Started - 16 48

TSTool Documentation Getting Started

3.6 View Menu – Display Map Interface

The View menu currently has limited choices:

Menu_View

View Menu

The View…Map menu displays a map interface in a separate window. See the Using the Map chapter for
more information.

3.7 Commands Menu

The Commands menu provides several menus (as shown in the following figure), which allow time
series processing commands to be inserted into the Commands list.

Menu_Commands

Commands Menu

Time series commands are organized into the following categories:

1. Create Time Series - create one or more new time series in memory
2. Convert TS Identifier to Read Command – convert a time series identifier in the Commands list

area to a read command
3. Read Time Series – read time series from a file or database
4. Fill Time Series Missing Data - fill missing data
5. Set Time Series Contents – set time series data or properties
6. Manipulate Time Series - manipulate data by transforming the contents of the time series (e.g., scale

a time series’ data values)
7. Analyze Time Series – perform analysis on time series, without modifying the time series

 Getting Started - 17 49

Getting Started TSTool Documentation

8. Models – advanced or specific models that operate on time series data
9. Output Time Series – write time series results to a file or produce graphical products
10. HydroBase – commands specific to the HydroBase database
11. Ensemble Processing – commands that are specific to ensemble processing
12. Table Processing – commands that are specific to table processing
13. General – Comments – insert comments
14. General – File Handling – commands to manipulate files (e.g., remove)
15. General – Logging – commands for logging (e.g., open a log file, set message levels)
16. General – Running – commands to control running external programs
17. General – Test Processing – commands to process tests, to validate software and procedures

Chapter 4 – Commands discusses commands in more detail and the Command Reference at the back
of this documentation provides a reference for each command.

3.8 Run Menu – Run Commands

The Run menu processes the Commands list to generate the Time Series Results for output.

Menu_Run

Run Menu

The Run…All Commands (create all output) menu will process all the commands in the Commands
list and create output if appropriate. For example, the writeStateMod() command will write the
time series that are in memory to a StateMod file.

The Run…All Commands (ignore output commands) menu will process the commands in the
Commands list, ignoring commands that generate output products. With this option, you can process a
command file prepared for batch mode, but only have the time series available for viewing in the GUI
rather than generating the output files. For example, writeStateMod() commands will not be
processed. This increases performance and minimizes creation of files.

The Run…Selected Commands menu items are similar to the above, except that only selected
commands are run.

The Run…Cancel Command Processing menu items will be enabled if command processing is active,
and allows the processing to be cancelled. Processing may continue until the current command finishes.

The Run…Commands From File choice will run a command file but not generate any time series for
viewing in the GUI. This is equivalent to running in batch mode but initiating the run from the TSTool
GUI.

Getting Started - 18 50

TSTool Documentation Getting Started

Menu items similar to the above are also available in a popup menu by right clicking on the Commands
list.

3.8.1 Process TSProduct

The Run...Process TS Product File menu items can be used to create time series products by processing
time series product definition files. The TSView Time Series Viewing Tools Appendix describes the
format of these files. Time series product definition files can be saved from graph views using Save
As…Time Series Product. The ProcessTSProduct() command provides equivalent functionality.

3.9 Results Menu – Display Time Series

The Results menu displays time series that are listed in the Time Series Results list. The time series
can be viewed multiple times, using the same time series results.

Menu_Results

Results Menu

Graphing time series results in slightly different viewing options being available, depending on the type
of graph. In many cases, you will be able to see three views of time series, consisting of a graph,
summary, and table. Additionally, you can select the graph properties and choose the colors and symbols
to be used for each time series. The TSView Time Series Viewing Tools Appendix describes in detail
the graphing tools.

Most of the main Results menu choices are available in a popup menu that is displayed when right-
clicking on the Time Series Results list.

3.9.1 Graph - Bar

Bar graphs are generated by selecting time series from the Time Series Results list and pressing
Results…Graph - Bar menus. See the TSView Time Series Viewing Tools Appendix for information
about bar graphs. The position of the bars relative to the date/time position depends on whether data are
instantaneous, mean, or accumulated.

 Getting Started - 19 51

Getting Started TSTool Documentation

3.9.2 Graph - Duration

Duration graphs are generated by selecting time series in the Time Series Results list and selecting the
Results…Graph - Duration menu. See the TSView Time Series Viewing Tools Appendix for
information about duration graphs.

3.9.3 Graph - Line

A line graph is generated by selecting time series in the Time Series Results list and then selecting the
Results…Graph - Line menu. See the TSView Time Series Viewing Tools Appendix for information
about line graphs.

3.9.4 Graph - Line (log Y-axis)

Log Y-axis line graphs are generated by selecting time series in the Time Series Results list and then
selecting the Results…Graph - Line (log Y-axis) menu. See the TSView Time Series Viewing Tools
Appendix for information about log Y-axis line graphs.

3.9.5 Graph - Period of Record

The period of record graph is useful to display the availability of data over a period. Horizontal lines are
drawn for each time series, with breaks in the line indicating missing data. An alternative to this graph
type is to use the Tools…Data Coverage by Year report (see Chapter 5 – Tools). See the TSView Time
Series Viewing Tools Appendix for information about period of record graphs.

3.9.6 Graph – Point

Point graphs are useful for data that are collected infrequently. For example, the interval of the data may
be daily; however, values may only be available once per month, on various days of the months. See the
TSView Time Series Viewing Tools Appendix for information about point graphs.

3.9.7 Graph – Predicted Value

The predicted value graph requires as input two time series. First, a regression analysis is performed,
similar to the analysis done for the XY-Scatter plot. The original two time series are then plotted,
additionally with the time series that would be generated using the regression results. The predicted time
series and the original time series will be the same where their periods overlap, with only the predicted
time series shown outside of that period.

3.9.8 Graph – Predicted Value Residual

The predicted value residual graph performs the same analysis as the predicted value graph. Where the
original and predicted time series overlap, the difference is computed and plotted as a time series. The
resulting bar graph therefore shows the relative goodness of fit of the estimated time series.

3.9.9 Graph - XY-Scatter

An XY-scatter graph is generated by selecting two or more time series from the Time Series Results list
and then selecting the Results…Graph - XY-Scatter menu. See the TSView Time Series Viewing
Tools Appendix for information about XY-Scatter graphs.
3.9.10 Table

Getting Started - 20 52

TSTool Documentation Getting Started

A table display is generated by selecting one or more time series from the Time Series Results list and
then selecting the Results…Table menu. See the TSView Time Series Viewing Tools Appendix for
information about table displays.

3.9.11 Report - Summary

A summary report for time series can be generated by selecting time series in the Time Series Results
list and then selecting the Results…Report - Summary menu. See the TSView Time Series Viewing
Tools Appendix for information about summary displays.

3.9.12 Time Series Properties

Time series properties include all the information other than the data values. For example, properties
include the period of record, data units, processing history, etc

3.10 Tools Menu

The Tools menu lists tools that perform additional analysis on time series that are selected in the Time
Series Results list. These features are similar to the Results features in that a level of additional
analysis is performed to produce the data product.

Menu_Tools

Tools Menu

Analysis tools are described in more detail in Chapter 5 – Tools. The following sections describe the
Tools…Options and Tools…Diagnostics features.

3.10.1 Options

The Tools…Options menu displays program options. The General tab configures whether processing is
run in a thread (the default), meaning that the GUI will be responsive while processing occurs. Running
without threading should only be used at the suggestion of support when troubleshooting.

Menu_Tools_Options_General

 Getting Started - 21 53

Getting Started TSTool Documentation

The HydroBase tab can be used to specify the total length of water district identifiers (WDIDs), for use
with the HydroBase input type.

Tools_Options_HydroBase

The WDIDs are used as the location part of the time series identifier. A water district identifier is
comprised of a two-digit zero-padded water district (e.g., 01, 20) and a zero-padded identifier for
structures within the water district. For example, ditch headgates are typically numbered 500 or greater,
within each water district. For modeling purposes, the WDIDs are typically treated as character strings.
To allow for distinct and unambiguous identifiers, WDIDs are typically padded with zeros to have
consistent overall lengths. In the past, six characters were used for identifiers in model data sets.
However, this length is insufficient to handle identifiers in some water districts and therefore the default
in TSTool is seven characters. This menu item can be used to set the length if TSTool is being used to
create time series and the default length is not compatible with the needed output. The WDID length is
enforced when time series are listed. If necessary, the time series identifiers can be edited manually to
add or remove padding zeros.

3.10.1 Diagnostics

The Tools…Diagnostics menu displays the diagnostics interface, which is used to set message levels and
view messages as TSTool processes data. The Tools…Diagnostics – View Log File menu displays the
log file viewer. These tools are useful for troubleshooting problems. Refer to Chapter 5 Tools for more
information.

3.11 Help Menu

The help menu displays the version of TSTool.

Menu_Help

Help Menu

The Help…About TSTool menu displays the program version number, for use in troubleshooting and
support.

Getting Started - 22 54

4 Commands
Version 09.06.01, 2010-02-22

The Commands menu provides choices to insert commands in the Commands list.

Menu_Commands

Commands Menu

Commands are organized into the following categories:

1. Create Time Series - create one or more new time series in memory
2. Convert TS Identifier to Read Command – convert a time series identifier in the Commands list

area to a read command
3. Read Time Series – read time series from a file or database
4. Fill Time Series Missing Data - fill missing data
5. Set Time Series Contents – set time series data or properties
6. Manipulate Time Series - manipulate data by transforming the contents of the time series (e.g., scale

a time series’ data values)
7. Analyze Time Series – perform analysis on time series, without modifying the time series
8. Models – advanced or specific models that operate on time series data
9. Output Time Series – write time series results to a file or produce graphical products
10. HydroBase – commands specific to the HydroBase database
11. Ensemble Processing – commands that are specific to ensemble processing
12. Table Processing – commands that are specific to table processing
13. General – Comments – insert comments
14. General – File Handling – commands to manipulate files (e.g., remove)
15. General – Logging – commands for logging (e.g., open a log file, set message levels)
16. General – Running – commands to control running external programs
17. General – Test Processing – commands to process tests, to validate software and procedures

 Commands - 1 55

Commands TSTool Documentation

The menus for each category are discussed in the following sections. Selecting a command menu item
will display a command editor. The editor dialog and command syntax are described in detail in the
Command Reference at the end of this documentation. Menus are enabled/disabled depending on the
state of the application (e.g., whether time series are available).

Many commands allow a list of 1+ time series to be processed. The TSList command parameter is
available for many commands to indicate how the list of time series to be processed is determined. For
example, TSList=AllTS will process all available time series. Refer to the command reference for a
description of available parameters for a command. The standard values for the TSList parameter are
as follows:

TSList Parameter
Value

Description

AllMatchingTSID Process all time series that match the TSID parameter (typically can
contain wildcards). For example, specify TSID=A* or
TSID=A*.*.*.Month

AllTS Process all time series.
EnsembleID Process all time series for the ensemble identifier.
LastMatchingTSID Process the last (previous to the current command) TSID that matches

the TSID parameter.
SelectedTS Process all time series that have been selected with

SelectTimeSeries() commands.
SpecifiedTSID Process all time series in the specified list of time series identifiers (for

example when used with the Add() command the AddTSID parameter
is used to provide the specified identifiers).

The TSList parameter provides a flexible way to specify time series to be processed, and allows new
capabilities to be added for commands that use this parameter.

Commands - 2 56

TSTool Documentation Commands

4.1 Create Time Series

The Commands…Create Time Series menu inserts commands for creating new time series in memory.

Menu_Commands_CreateTimeSeries

Commands...Create Time Series Menu

These commands create new time series from external data (see CreateFromList()), by using user-
supplied data (see NewTimeSeries()), or by operating on existing time series. Time series created
from existing time series are fundamentally different from the original and cannot take its place with the
same identifier. For example, the data interval or identifier is different in the new time series.

One important difference between the commands is whether one or multiple time series are created as the
result of a command. For example, the TS Alias = commands create a single time series, which can
be referenced using the time series alias (Alias). However, other commands may create more than one
time series, and the identifiers for the time series are determined during the discovery phase of command
processing (e.g., when time series identifiers are read from a file, but the data are not).

 Commands - 3 57

Commands TSTool Documentation

4.2 Converting Time Series Identifier to Read Command

The Commands…Convert Time Series Identifier to Read Command menu converts a selected time
series identifier in the Commands list to a read command.

Menu_Commands_ConvertTSID

Commands...Convert Time Series Identifier to Read Command Menu

Currently, the only enabled feature is to convert a time series identifier to a TS Alias =
ReadTimeSeries() command. This is used to assign an alias to the time series, simplifying its use in
other commands. The input type from the time series identifier is interpreted by TSTool to determine
how to read the time series. Unlike other commands menus, this menu does not insert a new command.
It converts a single selected time series identifier.

In the future, it is envisioned that this menu will be enhanced to enable conversion of a time series
identifier to a specific read command – this will allow the features of each read command to be used.

See also the specific read commands discussed in the next section.

Commands - 4 58

TSTool Documentation Commands

4.3 Read Time Series

The Commands…Read Time Series menu inserts commands to read time series from a database or file.

Menu_Commands_ReadTimeSeries

Commands...Read Time Series Menu

Read commands are grouped into commands that process one or more time series in a file (Read*
choices in menu) and commands that read a specific time series (TS Alias = commands). The TS
Alias = commands assign an alias to the time series, which can then be referenced by other commands.

It may be useful to read many time series and then use the SelectTimeSeries() and
DeselectTimeSeries() commands to select a subset of the results (see output commands).

 Commands - 5 59

Commands TSTool Documentation

4.4 Fill Time Series Data

The Commands…Fill Time Series Data menu inserts commands for filling missing data in time series.

Menu_Commands_FillTimeSeries

Commands...Fill Time Series Missing Data Menu

Fill commands will only change values that are missing, whereas set commands (see next section) will
change values regardless of whether they are missing or non-missing. These commands can be executed
in sequence to apply multiple fill techniques to time series. Many commands accept the * wildcard for
the time series identifier, allowing all time series to be filled.

Time series may contain missing data due to the following reasons:

1. The data collection system is unavailable because of a failure, maintenance cycle, or hardware that is

turned off because of seasonal use
2. In a real-time system the most current data have not yet been received
3. Data collection hardware was not in place during a period (e.g., an early period)
4. Measured values are suspected of being in error and are changed to missing
5. Values in a computed time series cannot be computed (e.g., input data are missing)
6. A data source stores only observed values and non-recorded values are assumed to be missing rather

than a specific value (e.g., zero)

Observations that are available are typically either measured values or values that have been estimated by
the organization that collects and/or maintains the data. Data flags indicating missing data may or may
not be available in the original source data (e.g., an ‘m’ or ‘e’ character flag is often used to indicate
missing and estimated data).

Commands - 6 60

TSTool Documentation Commands

TSTool handles missing data by internally assigning a special numeric value where data are missing.
Different input types may have different missing data values but typically -999, a similar extreme value,
or NaN (not a number) is used. If the output period is specified using SetOutputPeriod(), then
extensions to the available time series period are filled with the missing data value. Data flags are
supported for some input types. TSTool displays and output products indicate missing data by blanks,
showing the missing data value, or a string (e.g., NC).

Filled time series are often required for use in computer models. TSTool provides a number of features
to fill time series data. The data filling process consists of analyzing available data and using the results
to estimate missing data values. The estimation process can be simple or complex, resulting in varying
degrees of error and statistical characteristics of the final time series. The data analysis uses data that are
available at the time that the fill command is encountered. Consequently if values have been changed
since the initial read (e.g., because of layered fill commands), the changed values may impact the
analysis. Basic statistical properties of the original data are saved after the initial read to allow use in later
fill commands. For example, for monthly time series, the historical monthly averages are computed after
the initial read to allow use with a FillHistMonthAverage() command.

The overall period that is being filled is controlled by the time series period or analysis period that is
specified with fill commands. TSTool will not automatically extend the period of a filled time series
after the time series is initially read. Use the SetInputPeriod() and SetOutputPeriod()
commands to control the time series period.

The following table lists the fill techniques that are supported by TSTool.

TSTool Fill Techniques and Associated Commands

Technique Command Typical Use
Constant FillConstant() Use when missing data can be estimated as a

constant. For example, if only the early
period of a "regulated" (e.g., reservoir) time
series is missing, it may be appropriate to set
the values to zero.

Monthly total,
daily pattern

FillDayTSFrom
2MonthTSAnd1DayTS()

Use to estimate a daily time series by
applying the pattern of a related daily time
series to monthly totals from the related and
current time series. For example, use to
estimate daily streamflow from monthly
total values.

Fill from time
series

FillFromTS() Use non-missing values from a time series to
fill missing values in another time series.

Historic
Monthly
Average

FillHistMonthAverage() Use with monthly time series to estimate
missing monthly values as the average of
historic monthly values. For example, if
applied to monthly precipitation data, a
missing July value would be set to the
average of observed July precipitation values
(zero is an observation).

 Commands - 7 61

Commands TSTool Documentation

TSTool Fill Techniques and Associated Commands (continued)

Technique Command Typical Use
Historic Year
Average

FillHistYearAverage() Use with yearly time series to estimate
missing data as the average of annual values.

Interpolation FillInterpolate() Use to estimate missing data by interpolating
between non-missing values. For example,
use to estimate reservoir level changes.

Mixed Station FillMixedStation() This command tries various combinations of
FillRegression() and
FillMove2() parameters with time series
at different locations, to use the best
combination.

Maintenance
of Variance

FillMOVE1() Use to estimate missing data using the
Maintenance of Variance Extension
(MOVE.1). For example, use to estimate
unregulated streamflow from a related gage.
This command is currently not enabled.

Maintenance
of Variance

FillMOVE2() Use to estimate missing data using the
Maintenance of Variance Extension
(MOVE.2). For example, use to estimate
unregulated streamflow from a related gage.
This approach has been shown to be slightly
better than the MOVE.1 approach.

Historic
Pattern
Averages

FillPattern() Similar to filling with historic averages with
additional complexity of classifying historic
months into categories. For example,
historic averages for wet, dry, and average
periods are computed and used as the
historic averages. This command requires
that the SetPatternFile() control
command also be used.

Prorate FillProrate() Fill a time series by prorating known values
with another time series.

Regression FillRegression() Use to estimate missing data by using
ordinary least squares regression. For
example, use to estimate streamflow from a
related gage.

Repeat FillRepeat() Use when it can be assumed that the last
observed value before a missing period is a
good estimate for missing data. For
example, use with "forecasted" data where
no future value is available for interpolation.

Using
diversion
comments

FillUsingDiversionComments() This command is only available with the
HydroBase input type and uses diversion
comments and the “not in use” flag to set
additional diversion amounts to zero.

Fill commands can be layered (e.g., use FillRegression(), then FillInterpolate(), then
FillConstant()). However, the analysis that occurs for each command may be impacted by earlier

Commands - 8 62

TSTool Documentation Commands

fill commands. If necessary, use the SetFromTS() command to piece together the results of
independent fill commands into a final time series. The Results...Graph - XY-Scatter output provides
options for selecting different fill techniques and viewing analysis details.

4.5 Set Time Series Data

The Commands…Set Time Series Contents menu inserts commands that set time series data and
properties. Unlike fill commands, set commands reset values regardless of whether the values were
missing in the time series.

Menu_Commands_SetTimeSeries

Commands...Set Time Series Contents Menu

4.6 Manipulate Time Series

The Commands…Manipulate Time Series menus insert commands for manipulating time series.

Menu_Commands_Manipulate

Commands...Manipulate Time Series Menu

Because the fundamental nature of the time series (e.g., data type, interval) is not changed, these
commands do not result in the creation of a new time series. Manipulation commands typically add
comments to the time series history, which can be viewed with time series properties.

 Commands - 9 63

Commands TSTool Documentation

4.7 Analyze Time Series

The Commands…Analyze Time Series menu inserts commands for analyzing time series, which
typically produce a report or other output product:

Menu_Commands_AnalyzeTimeSeries

Commands…Analyze Time Series Menu

4.8 Models

The Commands…Models menu inserts commands that perform tasks that are more complex than simple
data processes. TSTool does not retrieve or save model states, leaving the handling of states to each
model.

Menu_Commands_Models

Commands…Models Menu

Minimal model features are currently available. However, it is envisioned that additional capabilities will
be added in the future to facilitate calibration and model evaluation.

Commands - 10 64

TSTool Documentation Commands

4.9 Output Time Series

The Commands…Output Time Series menu inserts commands for outputting time series.

Menu_Commands_OutputTimeSeries

Commands...Output Time Series Menu

Commands that set global configuration values (e.g., output period) are listed at the start of the menu and
commands that operate on time series are listed last.

Using the output commands allows the results of processing to be saved but increases processing time. If
commands are processed repeatedly during analysis or debugging, the following steps may be taken to
increase overall efficiency:

1. Output commands that produce output files are not executed if the Commands list is processed
with Run… All Commands (ignore output commands) or Run…Selected Commands
(ignore output commands). Therefore, use this menu choice to ignore the output commands.

2. Only selected commands are processed. Therefore select all but the output commands.
3. Use an Exit() control command before output commands to skip the output commands. This

command can then be deleted or commented out when not needed.
4. Commands can be converted to comments using the Commands menu or the popup menu that is

displayed when right-clicking on the Commands list. Therefore, output commands can be
temporarily converted to comments until output needs to be created.

4.10 Commands for Specific Input Types

Depending on the input types that are enabled, additional command menus may be enabled. For example,
if the HydroBase input type is enabled, a HydroBase menu will be enabled, and will list commands
specific to HydroBase. In particular, commands like OpenHydroBase() are provided to make
database connections while processing commands.

 Commands - 11 65

Commands TSTool Documentation

4.11 Commands for Ensemble Processing

The Commands…Ensemble Processing menu provides commands specific to time series ensembles.
These commands can only be used with ensembles. However, many commands available in menus
described above can be used to process ensembles by processing all of the time series in the ensemble.
See the TSList=EnsembleID parameter in commands.

Menu_Commands_EnsembleProcessing

Commands…Ensemble Processing Menu

4.12 Commands for Table Processing

The Commands…Table Processing menu provides commands specific to table processing. Tables are
defined as row/column data (e.g., from delimited files or databases) where comments can be present in
the header and data records, the header defines labels for columns, and columns contain consistent data
types (i.e., a column has all dates, or all data values). Table commands are being phased in to support
processing such as creating time series lists, rating curve conversions and other transformations,
summarizing statistics, and report generation.

Menu_Commands_TableProcessing

Commands…Table Processing Menu

4.13 General Commands – Comments

The Commands…General – Comments menu provides choices to insert comments.

Menu_Commands_General_Comments

Commands…General – Comments Menu

4.13.1 Inserting # Comments

Comments are inserted by selecting a line in the Commands list and then selecting
Commands…General – Comments…# Comment(s). The comments will be inserted before the
selected commands. Unlike most other command editors, multiple command lines can be selected. The
interface will automatically insert the # character. The following dialog is used to edit comments.

Commands - 12 66

TSTool Documentation Commands

comments

Comment Editor

4.13.2 Start /* */ Comments

Multiple commands can be commented using the following notation:

/*
commented lines
commented lines
*/

This syntax is consistent with a number of programming languages, including C, C++, and Java, and can
be used to quickly disable multiple commands. Use the Commands…General – Comments…/* <start
comment> menu to start a comment above the selected command. Matching start and end comments
should be inserted. See also the exit control command. Currently there is no way to edit a block of
commented code. The notation is meant to be used to comment large blocks of commands, for example
during troubleshooting.

4.13.3 End /* */ Comments

Use the Commands…General…*/ <end comment> menu to end a multi-line comment in commands.

 Commands - 13 67

Commands TSTool Documentation

4.14 General Commands – File Handling

The Commands…General – File Handling menu provides choices to insert commands that process files.
The RemoveFile() command is mainly used in testing but additional capability may be added.

Menu_Commands_General_FileHandling

Commands…General – File Handling Menu

4.15 General Commands – Logging

The Commands…General – Logging menu provides choices to insert commands used in logging. It is
recommended that each command file use a StartLog() command as the first command, to create a
log file that can facilitate troubleshooting and reviewing work at a later time. Setting the debug and
warning level with commands can facilitate troubleshooting specific command logic.

Menu_Commands_General_Logging

Commands…General – Logging Menu

4.16 General Commands – Running Commands and External Software

The Commands…General - Running menu provides choices to insert commands related to running the
commands and external programs. A master command file can also be used to run other command files
(this approach is used in software testing as described in the next section).

Menu_Commands_General_Run

Commands…General – Running Menu

Commands - 14 68

TSTool Documentation Commands

4.17 General Commands – Test Processing

The Commands…General – Test Processing menu provides choices to insert commands related to
testing. A test case can be a simple test (e.g., test of a single command with a specific combination of
parameters) or a more complex test (e.g., a test of a command file used to process a data set file). The
CreateRegressionTestCommandFile() can be used to search a directory structure for command
files matching a pattern (e.g., Test_*.TSTool). This will create a master command file that includes
RunCommands() commands. These commands are used by software developers to create test suites to
verify TSTool software functionality and can also be used by software users to verify that a process is
certified and gives expected results. Comparing the results from a specific software version with
expected results is useful for diagnosing errors.

Menu_Commands_General_Testing

Commands…General – Test Processing Menu

The following is an example command file to run the CreateRegressionTestCommandFile()
command:

Create the regression test runner for the
TSTool/test/regression/TestSuites/commands_general files.

Only command files that match Test_*.TSTool are included in the output.
Don't append the generated commands, in order to force the old file to be
overwritten.

CreateRegressionTestCommandFile(SearchFolder="..\..\..\commands\general",
OutputFile="..\run\RunRegressionTest_commands_general.TSTool",Append=False)

The following command file is generated from the above and can be run to execute the individual tests.
Typically each test uses the CompareTimeSeries() or CompareFiles() command to generate a
warning if results are not as expected.

StartRegressionTestResultsReport(
OutputFile="RunRegressionTest_commands_general.TSTool.out.txt")
RunCommands(InputFile="..\..\..\commands\general\add\Test_Add_1.TSTool")
RunCommands(InputFile="..\..\..\commands\general\add\Test_Add_Ensemble_1.TSTool")
/RunCommands(InputFile="..\..\..\commands\general\ChangeInterval\
Test_ChangeInterval_IrregINST_To_3HourINST.TSTool")
… etc. …

 Commands - 15 69

Commands TSTool Documentation

This page is intentionally blank.

Commands - 16 70

5 Tools
Version 08.15.00, 2008-04-22

This chapter discusses the tools available under the Tools menu. The Tools menu lists tools that perform
additional analysis on time series that are selected in the Time Series Results list. These features are
similar to the Results menu features in that a level of additional analysis is performed to produce the data
product. Tools may or may not correspond to commands – often tools internally execute the features
available in commands, in order to implement a more complicated analysis.

Menu_Tools

Tools Menu

5.1 Analysis Tools

Analysis tools analyze time series and typically produce an output report.

Menu_Tools_Analysis

Tools…Analysis Menu

Currently, only the Mixed Station Analysis tool is available, and it is under development (see the next
section).

 Tools - 1 71

Tools TSTool Documentation

5.1.1 Mixed Station Analysis

This tool is under development.

The Mixed Station Analysis tool is an interactive tool that tries to find the best combination of time series
necessary to fill data using regression or the MOVE2 method. The optimal results can then optionally be
used as parameters for the FillMixedStation() command. The following figure illustrates the
Mixed Station Analysis tool.

Menu_Tools_MixedStationAnalysis

Mixed Station Analysis Interface

Tools - 2 72

TSTool Documentation Tools

5.2 Report Tools

Report tools analyze time series, typically creating a summary report.

Menu_Results_Report

Tools…Report Menu

5.2.1 Data Coverage by Year Report

The Tools…Report - Data Coverage by Year menu processes the time series that have been selected
and produces a report similar to the following (abbreviated). This report is useful, in particular, for
evaluating data availability for multiple time series over a period. Although effort has been taken to make
the report as compact as possible, it will likely need to be printed in landscape format on a large paper
size.

Menu_Results_Report_DataCoverage

Data Coverage by Year Report

 Tools - 3 73

Tools TSTool Documentation

5.2.2 Data Limits Summary Report

The Tools…Report - Data Limits Summary menu processes the time series that have been selected and
produces a report similar to the following (abbreviated). The data limits summary for each time series is
included. This report is useful, in particular, for evaluating data availability for specific time series.
Currently, only monthly time series have detailed summaries. All other data intervals shown overall
period summaries. The value -999 is used to indicate missing data.

Menu_Report_DataLimits

Data Limits Summary Report

Tools - 4 74

TSTool Documentation Tools

5.2.3 Month Summary Reports

The Tools…Report - Month Summary menus process the time series that have been selected and
produces a report similar to the following (abbreviated). This report is similar to default summary output
for monthly time series; however, it is applied to shorter data intervals, including minute, hour, and day
interval. Values are first accumulated to daily values (by averaging the values in a day if the Daily
Means report is chosen or by totaling the values in a day if the Daily Totals report is chosen). For
example, use total for precipitation and means for average flows or daily temperature. The daily values
are then further accumulated to produce monthly values, again using means or totals. The report includes
a header for the time series, the report, and footnotes. Values are only shown if full data are available for
a month and statistics are computed using only complete months.

Menu_Tools_MonthSummaryDailyMean

Monthly Summary (Daily Mean) Report

 Tools - 5 75

Tools TSTool Documentation

5.2.4 Year to Date Total Report

The Tools…Report - Year to Date Total menu processes the time series that have been selected and
produces a report similar to the following (abbreviated). This report is useful, in particular, for comparing
on a volumetric basis the different years of a time series over a full period. The year-to-date volumes are
sorted; to find a particular year, use the Search button on the report display. The report information can
then be used, for example, to select time series traces for analysis and output. Currently, this report can
only be used to process daily CFS data. Real-time data can be analyzed by first converting to a daily
interval using the ChangeInterval() command. Warning: some years may have no data at the
beginning of a year and the corresponding year-to-date totals will consequently be zero. Refer to
the data coverage and data limit reports for more detail.

Menu_Tools_Report_YearToDateTotal

Year to Date Total Report

Tools - 6 76

TSTool Documentation Tools

5.3 Map Tools

The Tools…Show on Map button is enabled when a map is displayed (using View…Map) and time series
are listed in the upper right part of the main window. The locations corresponding to selected time series
or all time series in this list can be displayed on the map. See Chapter 8 – Using the Map for more
information.

5.4 Diagnostics

Diagnostics features are useful for troubleshooting. When an error occurs, a small warning dialog may be
displayed, as shown in the following figure:

Diagnostics_Warning

Example Warning Message Dialog

If results are not as expected, also review the messages in the status bar at the bottom of the main or
secondary windows.

 Tools - 7 77

Tools TSTool Documentation

5.4.1 Diagnostics Settings

The Tools…Diagnostics menu item displays the Diagnostics dialog, which is used to set message levels
and view messages as the application runs. The Diagnostics dialog (see the following figure) can be
used to evaluate a problem.

Diagnostics

Diagnostics Interface

The settings at the top of the dialog are used to specify the level of detail for messages printed to the
console window, the status area at the bottom of the main window (and the Diagnostics dialog), and the
log file. The log file contains warning, status, and debug messages, many of which are not normally
displayed in the main interface. The log file is created in the logs directory under the installation
directory. The Diagnostics interface features are as follows:

Status, Warning, Debug Enter integer values, with larger numbers resulting in more
output and slower performance. Zero indicates no output. If
troubleshooting, a good guideline is to set the debug level to 10
or 30 (and select the Allow Debug checkbox). The default
settings are often enough for normal troubleshooting and result in
good software performance.

Allow Debug Select to enable debug messages. Turning on debug messages

will significantly slow down the software.

Tools - 8 78

TSTool Documentation Tools

Show Messages Select to display messages in the Diagnostics window.

Flush Log File Force messages to be written to the log file. Messages can be

buffered in memory and may not otherwise immediately be
written to the log file.

Restart Log File Restart the log file. This is useful if a long session has occurred

and troubleshooting will occur on new actions.

New Log File Open a new log file, with a new name.

Apply Apply the settings in the Diagnostics dialog.

View Log File View the log file in an integrated window. The View Log File

button will be enabled if the log file has been opened.

Launch Log File Viewer View the log file using a viewer from the operating system. On

Windows computers, Notepad will be used.

Close Apply the settings in the Diagnostics dialog and close the

window.

 Tools - 9 79

Tools TSTool Documentation

5.4.2 Diagnostics – View Log File

The Tools…Diagnostics – View Log File menu item displays the integrated log file viewer. Selecting
this menu item is equivalent to selecting the View Log File button in the Diagnostics dialog. The log file
viewer will be displayed in a window as shown in the following figure:

Diagnostics_ViewLog

Log File Viewer Window

The log file messages can be scrolled. To find a string in the log file, right-click and select the Find menu
item. The information in the log file can also be copied and pasted into email, when contacting support.

Tools - 10 80

6 Examples of Use
Version 08.15.00, 2008-05-01

This chapter provides examples for reading and manipulating time series data using TSTool. The heading
for the section gives an indication of the example purpose. Where appropriate, input and output types are
indicated to help users find an appropriate example. General examples are listed first, followed by more
complex examples.

6.1 General Examples
 6.1.1 General – One-time Time Series Display/Analysis
 6.1.2 General – Reproducing an Analysis with a Command File
6.2 Model Data Processing Examples
 6.2.1 Modeling – Preparing Model Files Using a Command File
 6.2.2 Modeling – Processing End of Month Reservoir Data (Input=HydroBase,

Output=StateMod)
 6.2.3 Modeling – Filling Reservoir Targets with a Pattern File (Input=HydroBase,

Output=StateMod)
 6.2.4 Modeling – Using a List File to Automate Time Series Processing (Input=HydroBase,

Output=StateMod)
 6.2.5 Modeling – Processing Frost Dates (Input=HydroBase, Output=StateCU)
 6.2.6 Modeling – Filling Streamflow using MOVE2 (Input=HydroBase)
6.3 Time Series Trace Examples
 6.3.1 Time Series Traces – Comparing Historical and Current Conditions (Input=HydroBase)
6.4 Time Series Product Examples
 6.4.1 Time Series Product – Using TSTool to Display Graphs from Another Software

Application
 6.4.2 Time Series Product – Automating Graphs for Compare Observed and Simulated Time

Series

6.1 General Examples

This section includes examples related to general TSTool use, which may be appropriate for general
users.

6.1.1 General – One-time Time Series Display/Analysis

The following example session illustrates how to query time series data for display, analysis, and
viewing.

1. Start TSTool. If the HydroBase or other database input types are enabled, select a database (see

Section 3.2- Select HydroBase Dialog, for example).
2. To manipulate time series in any way, first select the time series of interest (see Section 3.3 - Main

Interface). Pick appropriate input type, data type, and filter information. Press Get Time Series List
to list the available time series. After pressing Get Time Series List, a list of time series will be
shown in the upper-right corner of the interface.

3. Select one or more time series from the list and transfer to the Commands list as time series
identifiers. Time series identifiers are explained in Chapter 2 – Introduction.

4. Press the Run All Commands button to query the time series. They should now be listed in the
Results area.

 Examples - 1 81

Examples of Use TSTool Documentation

5. Use the Results and Tools menus to view the time series or the File…Save…Time Series As menus
to export as files. For example, display a line graph (using Results…Graph - Line) and then view
the time series as a summary or table.

6. Go back to the Commands list and use the Commands menu to manipulate time series. For
example:

• Insert a FillInterpolate() command to fill data

• Insert a Cumulate() or RunningAverage() command to transform the data

7. Repeat steps 4 – 5 to process and view time series.

6.1.2 General – Reproducing an Analysis with a Command File

To reproduce an analysis, save the commands shown in the Commands list to a command file and then
reload and run the commands later. For example, assuming that steps similar to the previous section have
been executed:

1. Use the File…Save…Commands As menu to save the commands. It is recommended that command

files be saved with a file extension .TSTool.
2. Exit TSTool and restart (alternatively, clear the commands using the Clear Commands button).
3. Use File…Open…Command File. Select the file that you previously saved.
4. Then run the commands by pressing the Run All Commands button. Display the results using the

Results menu.

As the above example shows, reproducing an analysis consists of saving a command file that can be
reused later. The main complications in this approach are that the environment in which the commands
are run may change over time. For example if using a HydroBase database, the database version, ODBC
data source name, database host, or working directory may be differ between computers. It is
recommended that commands use directories relative to a working directory (the folder where the
command file is saved) and that the working directory is defined consistently on different computers that
will use the commands. Using paths relative to the working directory will consequently allow command
files to be portable. TSTool will internally set the working directory that the directory where a command
file is opened or saved.

6.2 Model Data Processing Examples

Most computer models require data that adhere to a consistent format. TSTool facilitates processing
model data files with features that:

• Allow a specific period of record to be output
• Fill missing data
• Produce time series in a specific order

The following examples illustrate how to use TSTool to process model data.

6.2.1 Modeling – Preparing Model Files Using a Command File

To prepare model files, multiple commands will usually process numerous time series. Modelers often
run TSTool in batch mode from a command shell using a command like:

Examples - 2 82

TSTool Documentation Examples of Use

tstool -commands commandfile

However, it is recommended that command files be run using the GUI, if possible, in order to take
advantage of additional error-checking and feedback features.

TSTool provides command editor dialogs for every command and helps ensure the integrity of commands
by searching for input time series for each command. An effort has been made to make the current
TSTool recognize and process old commands. However, there have been some changes that will require
updates to commands. It is recommended that old command files be migrated to the new syntax using the
following approaches:

1. Review the release notes appendix when installing software updates.
2. Be familiar with this TSTool User Manual and, in particular, the command reference.
3. Run an existing command file and review the log file for warnings about commands that need to be

updated. Then edit the commands in the GUI (see the next step).
4. Open an existing command file using the File…Open…Command File menu . TSTool will attempt

to convert commands to new syntax as the file is loaded. Some older commands will not be updated
until they are edited in the command editors. Most command files focus on a particular data type and
filling technique. Therefore most updates will generally involve only a few changes.

A number of commands have been added/enhanced to promote reuse of command files in both batch and
GUI run modes. For example, the OpenHydroBase()indicates whether the command is active for
batch and GUI run modes. Choosing the correct setting simplifies exchange of command files between
users and operating environments.

When querying time series, select a subset of the commands for intermediate work to verify filling or
other manipulation. General commands (e.g., SetOutputPeriod()) may be required even if a subset
of time series is being processed, for example, to ensure that periods overlap.

TSTool by default reads all available data. However, the SetInputPeriod() is available to limit the
period that is read. The SetOutputPeriod() is used to control the period for output products.

 Examples - 3 83

Examples of Use TSTool Documentation

6.2.2 Modeling – Processing End of Month Reservoir Data (Input=HydroBase, Output=StateMod)

The following example illustrates how to create a monthly reservoir target file for StateMod using data
from HydroBase. Note however that end of month data may not always be available in HydroBase due to
data availability and quality control issues. If the data are not available in HydroBase, time series can be
read from files.

Reservoir target file commands
Each reservoir needs a minimum (zero) and maximum time series (from HydroBase)
SetOutputPeriod(OutputStart="10/1974",OutputEnd="9/1991")
setOutputYearType(Water)
CBT SHADOW MTN GRAND L
TS ShadowMtn = NewTimeSeries(NewTSID="513695.USBR.ResEOM.Month",Description="CBT SHADOW MTN
GRAND L",Units="AF",InitialValue=0)
513695.USBR.ResEOM.MONTH.
CBT GRANBY RESERVOIR
TS Granby = NewTimeSeries(NewTSID="51460.USBR.ResEOM.Month",Units="AF",InitialValue=0)
514620.USBR.ResEOM.MONTH.
DILLON RESERVOIR
TS Dillon = NewTimeSeries(NewTSID="364512.USBR.ResEOM.Month",Units="AF",InitialValue=0)
364512.DWB.ResEOM.MONTH.
GREEN MOUNTAIN RESERVIOR
TS GreenMtn = NewTimeSeries(NewTSID="363543.USBR.ResEOM.Month",Units="AF",InitialValue=0)
363543.USBR.ResEOM.MONTH.
RIFLE GAP RESERVOIR
TS RifleGap = NewTimeSeries(NewTSID="393508.USBR.ResEOM.Month",Units="AF",InitialValue=0)
393508.USBR.ResEOM.MONTH.
WriteStateMod(TSList=AllTS,OutputFile="coloup.tar")

ExamplesOfUse/Reservoir_EOM/Example_Reservoir_EOM.TSTool

Examples - 4 84

TSTool Documentation Examples of Use

6.2.3 Modeling – Filling Reservoir Targets with a Pattern File (Input=HydroBase, Output=StateMod)

The following example illustrates a command file for creating a StateMod reservoir target file, using
pattern filling.

eom.commands.TSTool

commands in this file either pull historical EOM contents from the CRDSS database
(i.e. Rifle Gap) or from user-defined *.stm files

setOutputPeriod(10/1908,09/2005)
setOutputYearType(Water)
setPatternFile("..\Diversions\fill2005.pat")

GREEN MOUNTAIN RESERVOIR
363543...MONTH~StateMod~363543.stm

UPPER BLUE RESERVOIR (ConHoosier)
Data from HydroBase is used to better represent actual opperations of the reservoir in the
cm2005 update
rather than setting the contents to its maximum as in previous model versions.
363570.DWR.ResMeasStorage.Day~HydroBase
TS ConHoosier363570 = newEndOfMonthTSFromDayTS(363570.DWR.ResMeasStorage.Day,16)
free(TSID="363570.DWR.ResMeasStorage.Day")
fillPattern(TSList=LastMatchingTSID,TSID="ConHoosier363570",PatternID="09037500")
setConstant(TSID="ConHoosier363570",ConstantValue=0,SetEnd="03/1962")
fillInterpolate(ConHoosier363570,0,Linear)

CLINTON GULCH RESERVOIR
Data from HydroBase is used to better represent actual opperations of the reservoir in the
cm2005 update
rather than setting the contents to its maximum as in previous model versions.
363575.DWR.ResMeasStorage.Day~HydroBase
TS ClintonGulch363575 = newEndOfMonthTSFromDayTS(363575.DWR.ResMeasStorage.Day,16)
free(TSID="363575.DWR.ResMeasStorage.Day")
fillInterpolate(ClintonGulch363575,0,Linear,10/1992,9/2004)
fillPattern(TSList=LastMatchingTSID,TSID="ClintonGulch363575",PatternID="09037500")
setConstant(TSID="ClintonGulch363575",ConstantValue=0,SetEnd="03/1977")
fillInterpolate(ClintonGulch363575,0,Linear)

DILLON RESERVOIR
364512...MONTH~StateMod~364512.stm

WOLCOTT RESERVOIR
373639...MONTH~StateMod~zero.stm
… similar commands for other reservoirs omitted…

Fill remaining missing data with historical averages
fillHistMonthAverage(TSList=AllTS)

writeStateMod(TSList=AllTS,OutputFile="..\statemod\cm2005.eom",Precision=0)

From Colorado_1_2007 CDSS data set

 Examples - 5 85

Examples of Use TSTool Documentation

6.2.4 Modeling – Using a List File to Automate Time Series Processing (Input=HydroBase,
Output=StateMod)

It may be desirable to read a file containing a list of station/structure identifiers and process the
corresponding time series. The following example illustrates a command file to use a list to read time
series from HydroBase and output a StateMod data file.

Example to illustrate how a delimited list of location identifiers can be used
to create time series identifiers for processing. This example creates
time series identifiers to read from the State of Colorado's HydroBase, and
outputs to a StateMod model file.

CreateFromList(ListFile="structure_list.txt",IDCol=1,DataSource=DWR,
DataType="DivTotal",Interval=Month,InputType=HydroBase,
HandleMissingTSHow=IgnoreMissingTS)
SetOutputYearType(Calendar)
WriteStateMod(TSList=AllTS,OutputFile="structure_list.stm")

ExamplesOfUse/CreateFromList/Example_CreateFromList

where the list file contains the following:

Structures for which to process data

WDID - State of Colorado Water District Identifier
Name - Structure name (from HydroBase)

"WDID","Name"
0100501,EMPIRE DITCH
0100503,RIVERSIDE CANAL
0100504,ILLINOIS DITCH

6.2.5 Modeling – Processing Frost Dates (Input=HydroBase, Output=StateCU)

Frost dates are special time series consisting of four dates per year. The dates correspond to:

•
•
•
•

Last day in spring that the temperature was 28° F
Last day in spring that the temperature was 32° F
First day in fall that the temperature was 32° F
First day in fall that the temperature was 28° F

These specific dates are currently consistent with the HydroBase and StateCU input types. Older versions
of TSTool (before version 06.00.00) treated frost dates as a single time series, where the four components
were internally manipulated as dates. The Add() command had a limited number of features supported
manipulating frost date time series. However, other commands could not be used to process the time
series. Consequently, display, analysis, and manipulation capabilities were limited.

As of TSTool version 06.00.00, TSTool handles each of the above data items as separate data types and
time series, internally treating the values as Julian days from January 1. The StateCU input type, which is
used when reading and writing frost date files, converts between Julian days and Month/Year in the file.

Examples - 6 86

TSTool Documentation Examples of Use

By handling as four separate numerical time series, all of TSTool’s manipulation tools can be used to fill
and analyze frost dates. This does require each time series to be specified, whereas before the four were
internally handled with a single time series identifier. Because frost dates are internally treated as
numerical Julian days, using the generic numerical Add() command functionality may result in
unexpected output if the time series overlap (Julian days will be added). To avoid this situation, use the
FillFromTS(), SetFromTS(), or Blend() commands when merging multiple time series. The
following example illustrates how to process a frost dates file for StateCU:

SetOutputPeriod(OutputStart="1950",OutputEnd="2002")

0130 - ALAMOSA SAN LUIS VALLEY RGNL
0130.NOAA.FrostDateL28S.Year~HydroBase
0130.NOAA.FrostDateL32S.Year~HydroBase
0130.NOAA.FrostDateF32F.Year~HydroBase
0130.NOAA.FrostDateF28F.Year~HydroBase
Add Meeker Stations (5484 and 5487)
then "free" 5487
5484.NOAA.FrostDateL28S.Year~HydroBase
5484.NOAA.FrostDateL32S.Year~HydroBase
5484.NOAA.FrostDateF32F.Year~HydroBase
5484.NOAA.FrostDateF28F.Year~HydroBase
5487.NOAA.FrostDateL28S.Year~HydroBase
5487.NOAA.FrostDateL32S.Year~HydroBase
5487.NOAA.FrostDateF32F.Year~HydroBase
5487.NOAA.FrostDateF28F.Year~HydroBase
FillFromTS(TSList=AllMatchingTSID,TSID="5484.NOAA.FrostDateL28S.Year",
IndependentTSList=AllMatchingTSID,IndependentTSID="5487.NOAA.FrostDateL28S.Year")
FillFromTS(TSList=AllMatchingTSID,TSID="5484.NOAA.FrostDateL32S.Year",

ExamplesOfUse/FrostDates/Example_FrostDates.TSTool

6.2.6 Modeling – Filling Streamflow Using MOVE2 (Input=HydroBase)

Data filling is an important activity for modeling. TSTool provides a number of data filling commands,
as described in Section 4.4 – Fill Time Series Data. Data filling can be accomplished using varying
levels of complexity. The approach used for data filling depends on the data type and interval. For
example, estimating daily precipitation may be difficult because relationships between daily precipitation
time series may not exist. TSTool provides tools for data filling but it does not automatically pick the
most appropriate fill methods (see the FillMixedStation() command and
Tools…Analysis…Mixed Station Analysis for help automating filling). Data filling involves a number
of steps:

1. Initial review of the data (e.g., using the Results…Report - Data Coverage by Year menu, and

graphs).
2. Review of the spatial proximity of gages using the TSTool View…Map Interface capability or GIS

software.

IndependentTSList=AllMatchingTSID,IndependentTSID="5487.NOAA.FrostDateL32S.Year")
FillFromTS(TSList=AllMatchingTSID,TSID="5484.NOAA.FrostDateF32F.Year",
IndependentTSList=AllMatchingTSID,IndependentTSID="5487.NOAA.FrostDateF32F.Year")
FillFromTS(TSList=AllMatchingTSID,TSID="5484.NOAA.FrostDateF28F.Year",
IndependentTSList=AllMatchingTSID,IndependentTSID="5487.NOAA.FrostDateF28F.Year")
Free(TSID="5487*")

FillHistYearAverage(TSList=AllMatchingTSID,TSID="*")

writeStateCU("..\StateCU\Frost2002.stm")

 Examples - 7 87

Examples of Use TSTool Documentation

3. Comparison of candidate time series (e.g., using the Results…Graph - XY-Scatter menu).
4. Apply data filling commands.
5. Review final results visually and review time series histories (by right-clicking on a time series in the

Time Series Results list and selecting Time Series Properties).

The data filling approach can be simple or complex. An example of a complex data filling technique is to
use the FillMOVE2() command on daily streamflow data. In particular, consider the following case:

• Time series 1 (TS1) has a long period of gaged unregulated data (e.g., a headwater): 1900 to 2000
• Time series 2 (TS2) has a shorter period of gaged data with 1920 to 1950 being unregulated and

1950 to 2000 being regulated (e.g., due to the construction of a reservoir)
• The goal is to produce an estimate of unregulated flow for TS2 for the full period 1900 to 2000.

This can be accomplished using the following commands:

Data filling example - assume daily DateValue time series as input

Generate some sample data for the example described above:
ts1 has observed values from 1900-2000
ts2 has observed values from 1920 to 1950 and regulated thereafter

Although data are generated below, they could be read from files or a
database. In this case, the SetOutputPeriod() command might need to be used
to ensure that the final result is for a required period.

TS ts1 = NewPatternTimeSeries(NewTSID="ts1..Streamflow.Day",Description="Time series
1, all unregulated",SetStart="1900-01-01",SetEnd="2000-12-
31",Units="CFS",PatternValues="1,2,4,7,12,6,2,1.5")
TS ts2 = NewPatternTimeSeries(NewTSID="ts2..Streamflow.Day",Description="Time series
1, unregulated from 1920 to 1950, regulated after",SetStart="1900-01-
01",SetEnd="2000-12-31",Units="CFS",PatternValues="2,3,6,10,15,3,2.5,2")

Clear out the period 1919- in ts2 because it was not recorded in our example.
SetConstant(TSList=AllMatchingTSID,TSID="ts2",ConstantValue=-999,SetEnd="1919-12-31")
Clear out the period 1951+ in ts2 because it is regulated and needs to
be filled with the result of unregulated MOVE2 analysis.
SetConstant(TSList=AllMatchingTSID,TSID="ts2",ConstantValue=-999,SetStart="1951-01-
01")
Analyze and fill the second time series. Transform the data to log10 and
use monthly equations…
FillMOVE2(TSID="ts2",IndependentTSID="ts1",NumberOfEquations=MonthlyEquations,Depende
ntAnalysisStart="1920-01-01",DependentAnalysisEnd="1950-12-
31",IndependentAnalysisStart="1900-01-01",IndependentAnalysisEnd="2000-12-
31",FillFlag="M")

ExamplesOfUse/Filling/Example_Filling.TSTool

The above example illustrates a somewhat complicated situation where data filling is facilitated by the
features of the FillMOVE2() command. If the FillMOVE2() command is not appropriate, then the
FillRegression() or other commands can be applied. In some cases, it may be appropriate to fill
different parts of the period using different independent time series. A simpler approach may involve
only a single filling step (e.g., fill the entire period using a single FillRegression() command).

Examples - 8 88

TSTool Documentation Examples of Use

6.3 Time Series Ensemble Examples

The general term time series ensemble refers to groups of a time series, often shown in overlapping
fashion. Common ways to create ensembles are:

• Split time series into N-year lengths and shift to overlap.
• Run a model multiple times with different input, in order to generate many possible outcomes.
• Generate synthetic data to use as input to a model.

Several TSTool commands have been implemented to create and process time series traces. Many other
commands allow ensembles to be specified to provide a list of time series for processing. TSTool
manages ensemble data by using an ensemble identifier and optionally using a trace (sequence) number
for each time series, which when processing historical data is typically the starting historical year for the
trace. For most functionality, the ensemble is simply a collection of the time series traces in the
ensemble.

6.3.1 Time Series Traces – Comparing Historical and Current Conditions (Input=HydroBase)

The following command file illustrates how historical time series traces can be plotted on top of real-time
data. The features illustrated in the example were implemented to help determine an estimate of future
flow based on current conditions.

StartLog(LogFile="Example_Ensemble.TSTool.log")
These commands query historical and real-time data at the lobatos gage and
compute a weighted "best-guess" for the flows at lobatos for the remainder
of the current year. In other words, the current year will be complete,
with observed at the beginning and historical "likely" at the end.

First get the historic daily lobatos gage and convert to traces. Shift each trace to
2008-01-01 (the current year) so that the data can overlay the current year's
values.
TS daily = readTimeSeries("08251500.USGS.Streamflow.Day~HydroBase")
CreateEnsemble(TSID="daily",TraceLength=1Year,EnsembleID="Lobatos",ReferenceDate="2008-01-
01",ShiftDataHow=ShiftToReference)

Now weight the traces using representative historic years.

TS lobatos_likely =
WeightTraces(EnsembleID="Lobatos",SpecifyWeightsHow="AbsoluteWeights",Weights="1997,.5,1998,.4,
1999,.1",NewTSID="Lobatos..Streamflow.Day.likely")

Now query the current (real-time) flows. HydroBase may only hold a few weeks or months
of data.

Uncomment the following line to see the actual real-time values
08251500 - RIO GRANDE RIVER NEAR LOBATOS
08251500.DWR.Streamflow-DISCHRG.Irregular~HydroBase
Convert the irrigular instantaneous values to a daily instantaneous (midnight)
TS lobatos_current = ChangeInterval(TSID="08251500.DWR.Streamflow-
DISCHRG.Irregular",NewInterval=Day,OldTimeScale=INST,NewTimeScale=INST)

Blend the current data to the end of the historical data (the current data
will override.

Blend(TSID="lobatos_current",IndependentTSID="lobatos_likely",BlendMethod=BlendAtEnd)

After the above commands are executed, time series in memory will include the traces and
the current time series. You can select only the time series of interest and plot
OR select many time series and then disable/enable in the plot. You may need to use
both approaches to find appropriate time series to weight.

ExamplesOfUse/Ensemble_Realtime+WeightedHistorical/Example_Realtime+WeightedHistorical

 Examples - 9 89

Examples of Use TSTool Documentation

The results of processing the above commands in TSTool are a list of the traces, a weighted time series
(based on three traces), and the current daily data, all at the same streamflow gage, as shown in the
following figure.

Example_LobatosCurrent_TSTool

Any of the time series can be selected and viewed.

The following features are useful for selecting appropriate traces:

1. Convert a time series to an ensemble and then plot all the traces. Use the graph properties to turn

traces on/off or use symbols to identify different traces.
2. Use the tools described in Chapter 5 - Tools to evaluate time series and traces. For example, the

Year to Date report can be used to determine how well different years compare volumetrically. The
NewStatisticYearTS() and NewStatisticTimeSeriesFromEnsemble() commands
create derived time series that are useful for evaluating ensemble time series.

Examples - 10 90

TSTool Documentation Examples of Use

Key traces and output time series can be selected and graphed, as shown below.

Example_LobatosCurrent_Graph

Example Graph of Traces and Combined Real-time/Historical Time Series

 Examples - 11 91

Examples of Use TSTool Documentation

6.4 Time Series Product Examples

Time series products are described in the TSView Time Series Viewing Tools appendix. In summary, a
time series product file can be generated that uses time series identifiers to indicate data to be processed,
and includes other properties (e.g., titles) to configure a graph. TSTool can process time series products
in a number of ways, as illustrated by the following examples.

6.4.1 Time Series Product - Using TSTool to Display Graphs from an Application

TSTool is primarily used as an interactive tool or to process command files in batch mode. However, it is
also possible to run TSTool with a command file, no main graphical user interface, and still display only
specific graphs. For example, TSTool can be called from an application to display a graph by reading
data from a recognized database or file format. This takes advantage of TSTool’s features rather than
adding additional features to the application. The following example illustrates how to display a graph of
precipitation and streamflow data in a single graph, using data from the State of Colorado’s HydroBase
database. TSTool should be started using a command line similar to:

tstool –commands example.tstool –nomaingui

Additionally, the HydroBase database to be used should be configured in the TSTool configuration file
(see the Installation and Configuration Appendix). In this run mode the main GUI is never made
visible. Because the interactive main interface is disabled, the normal HydroBase login dialog is not
shown; therefore, the HydroBase information must be defined in the configuration information.

Although it is possible to display several graphs at the same time, it is currently assumed that only one
graph will be shown. Closing the graph will close TSTool. The command file can be complex but in
many cases will be simple because an application is calling TSTool to display a single graph. The
following example shows a typical command file for this run mode:

Example command file to run TSTool without showing the main GUI
but showing a plot to the screen. When the plot window closes, TSTool will
exit without prompting. TSTool should be called using:

TSTool -commands ThisFile -nomaingui

This is useful for displaying plots from applications that only need to use
TSTool in a supporting role.

Process a time series product description file and display a plot window
to the screen.
ProcessTSProduct(TSProductFile="test.tsp",RunMode=GUIAndBatch,View=True)

Examples - 12 92

TSTool Documentation Examples of Use

The ProcessTSProduct() command references a time series product file. An example of the file is
as follows (see the TSView Time Series Viewing Tools Appendix for a full description of time series
product file properties):

[Product]

ProductType = "Graph"
TotalHeight = "400"
TotalWidth = "600"

[SubProduct 1]

GraphType = "Bar"
MainTitleString = "Precipitation"
BarPosition = "CenteredOnDate"

[Data 1.1]

Color = "Blue"
TSID = "7337.NOAA.Precip.Month~HydroBase"

[SubProduct 2]

GraphType = "Line"
MainTitleString = "Streamflow"

[Data 2.1]

SymbolSize = "7"
SymbolStyle = "Circle-Filled"
TSID = "08235350.USGS.Streamflow.Month~HydroBase"

[Data 2.2]

TSID = "08236000.DWR.Streamflow.Month~HydroBase"

 Examples - 13 93

Examples of Use TSTool Documentation

The resulting graph is shown in the following figure. Pressing Close will exit TSTool.

Example_NoMainGUI_Graph

Examples - 14 94

TSTool Documentation Examples of Use

6.4.2 Automating Graphs to Compare Observed and Simulated Time Series

It is often useful to automate comparison of observed and simulated time series (e.g., during model
calibration). For example, after making an adjustment to a model during calibration, many comparisons
may be made to evaluate the changes. TSTool can help with comparisons. For example, consider the
simulated and observed time series stored in a DateValue file (results.dv), as follows (in this example the
DateValue file was created by reading StateMod model input and output, and the TSID and DataType
lines were hand-edited in the DateValue file to facilitate this example).

DateValueTS 1.3 file
File generated by...
program: TSTool 6.08.02 (2004-07-27) Java
user: sam
date: Thu Jul 29 09:17:35 MDT 2004
host: host unknown
directory: J:\CDSS\develop\Apps\TSTool\test\Commands\createTraces
command: TSTool -home C:\CDSS
#---

Commands used to generate output:

09152500...MONTH~StateMod~J:\CDSS\Data\SWSI_Gunnison\StateMod\gunnv.rih
09152500.StateMod.River_Outflow.Month~StateModB~J:\CDSS\Data\SWSI_Gunnison\StateMod\gunnvb.b43

Delimiter = " "
NumTS = 2
TSID = "09152500..StreamFlow_Observed.MONTH" "09152500..Streamflow_Simulated.Month"
Alias = "" ""
Description = "09152500" "Gunn R. NR GrandJ _FLO"
DataType = "Streamflow_Observed" "Streamflow_Simulated"
Units = "ACFT" "ACFT"
MissingVal = -999.0000 -999.0000
Start = 1908-10
End = 2001-09

Time series comments/histories:

Creation history for time series 1 TSID=09152500...MONTH Alias=):

Read StateMod TS for 1908-10 to 2001-09 from "J:\CDSS\DataSets\SWSI_Gunnison\StateMod\gunnv.rih"

Creation history for time series 2 TSID=09152500.StateMod.River_Outflow.Month Alias=):

Read from "J:\CDSS\DataSets\SWSI_Gunnison\StateMod\gunnvb.b43 for 1908-10 to 2000-09

#EndHeader
Date "09152500...MONTH, ACFT" "09152500.StateMod.River_Outflow.Month, ACFT"
1908-10 -999.0000 82035.8828
. . . omitted . . .
1916-10 61488.5000 95692.6641
1916-11 56529.8000 97254.9297
1916-12 55339.6000 94700.1563
1917-01 52265.2000 47388.2305
1917-02 49984.2000 42303.5938
1917-03 79935.0000 64748.8125
. . . similar to end of file . . .

 Examples - 15 95

Examples of Use TSTool Documentation

These time series can be read into TSTool, an XY graph produced, and the time series product saved
(results.tsp), as shown in the following example. The original TSID properties have been inserted as
comments, corresponding to the original data. The absolute paths to the time series files have also been
replaced with relative paths, assuming that the command file to process the product is in the same folder
as the product file.

[Product]

ProductType = "Graph"
TotalWidth = "600"
TotalHeight = "400"
MainTitleString = "Streamflow Gage 09152500"
SubTitleString = "Comparison of Observed and Simulated"

[SubProduct 1]

GraphType = "XY-Scatter"
XYScatterMethod = "OLSRegression"
LegendFormat = "Auto"
MainTitleString = ""

[Data 1.1]

#TSID = "09152500...MONTH~StateMod~gunnv.rih"
TSID = "09152500..Streamflow_Observed.MONTH~DateValue~results.dv"

[Data 1.2]

#TSID = "09152500.StateMod.River_Outflow.Month~gunnvb.b43"
TSID = "09152500..Streamflow_Simulated.MONTH~DateValue~results.dv"

Finally, a command file (results.TSTool) can be created that processes the time series and time series
product file:

ProcessTSProduct(TSProductFile="results.tsp",RunMode=GUIAndBatch,
View=True,OutputFile="09152500.png")

Examples - 16 96

TSTool Documentation Examples of Use

The above commands can be run from the TSTool GUI or in batch mode to produce the following graph
(note in this example that the x-axis data values are so large that the software is having difficulty finding
good labels):

09152500.jpg

Because this approach relies primarily on the time series identifiers to associate the time series data with
the time series product, it is important to establish a concise and clean identifier scheme. The TSAlias
property can also be used in product files and will take precedence over TSID properties. Using time
series aliases can improve the readability of command files.

Once a working example is established, the example can be scaled up to a larger production either by
repeating the example (and changing identifiers) or by automatically changing the example to replace
strings. The latter is not currently part of TSTool; however, TSTool can call external programs (see the
RunProgram() and RunPython() commands), which can supplement the existing TSTool features.
Additional features are being added to TSTool to facilitate product generation.

 Examples - 17 97

Examples of Use TSTool Documentation

This page is intentionally blank.

Examples - 18 98

7 Using the Map
Version 06.16.01, 2006-03-03, Color, Acrobat Distiller

Although the main focus in TSTool is time series, many time series are associated with a location such as
a station, area, or sensor. This chapter discusses the relationship between time series and spatial data and
provides an overview of using map-related features in TSTool. Time series concepts (such as time series
identifiers) are discussed in detail in Chapter 2 – Introduction. Information about the map display tool
used in TSTool is provided in the GeoView Mapping Tools Appendix.

7.1 Time Series and Map Layer Relationships

An example is useful to provide an overview of the relationship between time series and map layers.

Map layers often indicate physical features (e.g., rivers, cities, roads, data collection stations) or features
that are overlaid on physical features (e.g., political boundaries, weather fronts, regions or points of
interest). A layer’s data consist of:

1. Features – the coordinate information that defines the shape that is drawn.
2. Attributes – a tabular list of data values associated with the features.
3. Metadata – data about the layer, including the source, coordinate system, history, etc.
4. Projection – the coordinate system for the coordinates, which is usually noted in metadata but

may also be indicated by a projection file or similar.
5. Symbology – to be visualized, a layer must be associated with a symbol (e.g., point symbol, line

width, polygon fill color), labels, and other visualization information.

The features and attributes are the primary data, and the other information facilitates using the features
and attributes.

Consider a data collection station, represented by a point on the map. This station may be located near a
river and collect streamflow stage (water depth). The station software may convert the stage to flow or
may allow this to be done by software. The station may also collect “climate” (meteorological) data such
as precipitation, temperature, wind speed and direction, etc. Each measurement type requires a sensor
and the cost of hardware typically controls the number and sensitivity of measuring devices. For data
management, the station is typically assigned an alphanumeric station identifier and each data type that is
collected is assigned an alphanumeric data type. The data are saved locally as date/value information and
are then transmitted to or requested from a data collecting system. The date/value information is
essentially time series. Data units and handling of missing data are considered during implementation of
data collection systems. Measurements may be taken regularly (e.g., once every fifteen minutes) or may
occur at irregular intervals, perhaps in response to some change in conditions. In nomenclature used with
TSTool, the former are called regular time series and the latter irregular, reflected by the data interval
(time step).

For the discussion purposes, consider only a meteorological station that measures precipitation and
temperature. For mapping purposes, a choice may be made to focus on the physical nature of the map, in
which case a single “Met Stations” (or “Climate Stations”) layer may be shown, using a single symbol.
This is suitable if the measurement types for such a station are consistent throughout a system or only one
data type is of interest. It is frequently the case that the real-time data that are collected are managed in a
database, with data being archived over time, for example resulting in the following time series for
precipitation data:

 Using the Map - 1 99

Using the Map TSTool Documentation

1. Real-time data (often provisional data available for a short period).
2. Real-time extended data – real-time data collected for the past year, for example, having received

limited or no quality control
3. Real-time archived data – real-time data for the historical period, quality controlled
4. Hourly accumulation – for example, convert real-time precipitation data to hourly totals
5. Daily accumulation – for example, convert hourly precipitation data to daily totals
6. Monthly accumulation – etc.
7. Yearly accumulation – etc.

The first two examples are often referred to as “real-time” data whereas the last five examples are often
referred to as “historical” data. In a system that is homogeneous, a map layer that shows “Precipitation
Stations” will imply that all of the above time series are available at the station. However, in a system
where, for various reasons, not all stations have real-time and historical data, more attention to detail may
be needed on maps.

To address this case, the map could show separate layers for real-time and historical stations (two layers).
However, this does not address the issue that there may be multiple categories of real-time data and
multiple categories of historical data. To address this issue, additional layers might be added for each
time series type, using the same or similar symbols for each layer. The limitation in this approach is that
the map now has many layers and many of the points will be the same and will therefore symbols will
plot on top of each other.

Layered symbols can be used to help with visualization. For example, use the symbol size and shape, and
configure the order of layers to ensure that multiple symbols drawing on each other will still allow
sufficient visibility of the symbols. This can be applied to indicate data types collected at a location, and
also data type/interval information. The following example shows this approach to indicate station type:

SymbolExample

Example of Symbol Layering

Using many layers and symbols to indicate time series data interval may not be appropriate if the symbols
are to be used for classification. For example, the symbol size or color may indicate a physical
characteristic of the feature. For this reason and because maps usually focus on physical features, using
symbols to indicate the various data intervals is not common. More common are maps that show a layer
for real-time data and a layer for historical data, as shown in the following figure:

Using the Map - 2 100

TSTool Documentation Using the Map

GeoView_StreamSymbols

Example Map Showing Real-time and Historical Data Layers

The map is useful because the user and software can determine where real-time time series SHOULD be
available, and where historical data SHOULD be available. The mapping tools can be integrated with
application software by hard-coding the data type and interval for real-time and historical data or use a
configuration file (e.g., to indicate that “historical” data should always have an interval of Month).

TSTool is a generic tool and therefore configuration information is required to make the link between the
map layers and time series. The approach that has been taken is to rely on a delimited lookup file, which
allows users to determine at what level to categorize map layers. More specific information allows a
more specific link (i.e., a time series in TSTool can be matched with a specific feature in a map layer)
while less information results in a looser link (i.e., several time series in TSTool may match one station
and selecting the station may result in more than one time series).

 Using the Map - 3 101

Using the Map TSTool Documentation

The following example illustrates the time series to map layer configuration file (use of this file in a
system is described in the Installation and Configuration Appendix):

This file allows time series in TSTool to be linked to stations in spatial
data layers. The columns are used as appropriate, depending on the direction
of the select (from time series list or from the map).

This file has been tested with the \CDSS\GIS\CO\co_TSTool.gvp file. Not all
possible combinations of time series and map layers have been defined - only
enough to illustrate the configuration.
Additional attributes need to be added to the point files to allow more
extensive functionality. For example, if attributes for data interval (time
step) and data source are added to the attributes, then a definition query
can be defined on the layer for displays to use the same data file. The
configuration below can then use the different names to configure the link
to time series.

This file is discussed in the TSTool documentation.

TS_InputType - the time series input type, as used in TSTool
TS_DataType - the data type shown in TSTool, specific to an input type
For example, TSTool uses "Streamflow" for HydroBase, whereas
for other input types a different data type string may be used.
TS_Interval - time series interval of interest (e.g.,"Month", "Day", "1Hour"
"Irregular")
Layer_Name - the layer name used in the map layer list
Layer_Location - the attribute that is used to identify a location, to be
matched against the time series data location
Layer_DataType - the attribute that is used to indicate the data type for a
station's time series (CURRENTLY NOT USED - UNDER EVALUATION)
Layer_Interval - the attribute that is used to indicate the interval for a
station's time series
Layer_DataSource - the attribute that is used to indicate the data source for
a station's time series.

When matching time series in the TSTool time series query list with features
on the map, the TS_* values are matched with the time series identifier
values and the Layer_* attributes are matched against specific time series.

Data layers are listed from largest interval to smallest.
"TS_InputType","TS_DataType","TS_Interval","Layer_Name","Layer_Location","Layer_DataSource"
HydroBase,DivTotal,Day,"Diversions",id_label_7,””
HydroBase,DivTotal,Month,"Diversions",id_label_7,””
HydroBase,EvapPan,Day,"Evaporation Stations",station_id,””
HydroBase,EvapPan,Month,"Evaporation Stations",station_id,””
HydroBase,Precip,Irregular,"Precipitation Stations",station_id,””
HydroBase,Precip,Day,"Precipitation Stations",station_id,””
HydroBase,Precip,Month,"Precipitation Stations",station_id,””
HydroBase,RelTotal,Day,"Reservoirs",id_label_7,””
HydroBase,RelTotal,Month,"Reservoirs",id_label_7,””
HydroBase,Streamflow-DISCHRG,Irregular,"Streamflow Gages - Real-time",station_id,””
HydroBase,Streamflow,Day,"Streamflow Gages - Historical",station_id,””
HydroBase,Streamflow,Month,"Streamflow Gages - Historical",station_id,””

Example Time Series to Map Layer Lookup File

The intent of the file is to allow lookup of map layers from time series and to allow lookup of time series
from map layers. The ability to perform these actions depends on the number of layers in the map and the
attributes in map layers. For example, in the last two lines of the above example, historical streamflow
time series are both linked to a single “Streamflow Gages – Historical” layer on the map. Consequently,

Using the Map - 4 102

TSTool Documentation Using the Map

it will not be possible from the map layer to indicate to TSTool that specifically day or month interval
data are requested (both daily and monthly time series would be selected). This behavior may be
appropriate, or more specific layers and attributes may be needed. Multiple maps are typically needed, in
order to meet all the various needs of users and therefore maps with more detail may need to be
configured for use with TSTool.

The following sections describe more specifically how to utilize the links between time series and map
layers.

7.2 Opening a Map

To open a map in TSTool, first select the View…Map menu item, which will display the following
window:

GeoView_Window_Blank

Map (GeoView) Window when First Opened

In this window, select File…Open Project and select a GeoView Project File (*.gvp), as shown below:

 Using the Map - 5 103

Using the Map TSTool Documentation

GeoView_Window_OpenProject

Opening a Map (GeoView Project) File

The format for a GVP file is described in the GeoView Mapping Tools Appendix. The file is a simple
text file that can be manually edited. Although using an ESRI MXD or other file was considered, such
file formats have been changing, are binary, and are proprietary in nature.

After opening the GVP file, a map will be displayed and the TSTool Tools…Show on Map button will
be enabled when appropriate.

7.3 Using Time Series to Select Locations on the Map

To select time series on the map, first select time series in the upper part of the TSTool interface and then
select the Tools…Select on Map menu item, as illustrated in the following figure:

Menu_Tools_SelectOnMap

Example of Selecting Time Series on the Map

Note that in the above example, the selection is initiated from the time series input/query list (not the time
series results at the bottom of the TSTool main window). The latter may be implemented in the future;
however, it is faster to use the input/query list because only time series header information is processed.

Using the Map - 6 104

TSTool Documentation Using the Map

When Tools…Select on Map is selected, features on the map are selected as follows:

1. The software tries to find appropriate map layers by matching the lookup file TS_DataType
and TS_Interval column values with the Data Type and Time Step values in the input/query
list.

2. The resulting layers (indicated by Layer_Name) are searched to match the ID (and optionally
Data Source) values in the input/query time series list with the attributes indicated by the
Layer_Location and Layer_DataSource lookup file (Layer_Interval can also
optionally be used).

3. Matching features are selected and the map zooms to highlight the features, as shown in the
following figure (the arrows have been added for illustration).

Menu_Tools_SelectOnMap2

Map after Using Time Series to Select Features

If the lookup file does not include a Layer_DataSource, then this value is ignored in the search.
Once selected on the map, users can evaluate the significance of the distribution of stations, etc. and can
use other map features.

 Using the Map - 7 105

Using the Map TSTool Documentation

To support this functionality, the attributes for the layer should include a column for the location
identifier, and optionally the data source, where the values match the values shown in TSTool.
Additionally providing an attribute for data interval allows another level of selection. In this case, the
intervals in the attributes must match those shown in TSTool. Providing all information will result in
record-level queries that allow a direct link between a time series and a layer.

7.4 Using Locations on the Map to Select Time Series

To select time series from the map:

1. Perform a time series query to create a list of time series (see the previous section for an
example). The map can be used to select time series in this list, but selecting from the map
will not initiate a database query or file read. This is because the variety of input types that
TSTool supports require specific information to query/read time series.

2. Select a layer of interest on the map. This layer should correspond to time series in the list from
the first step. For example, if the time series list contains daily streamflow time series, select the
map layer that corresponds to such data. For example:

GeoView_SelectLayer

3. Activate the select tool on the map interface toolbar:

GeoView_SelectLayer2

4. Draw a box around features of interest on the map. The software will attempt to match the

features in the time series list in the TSTool main window. To do so, it first matches the layer
name with the similar value in the lookup file. It then tries to match the ID (and optionally Data
Source) values in the input/query time series list with the attributes indicated by the
Layer_Location and Layer_DataSource lookup file (Layer_Interval can also be
used). Matched time series are selected in the list. Previous selections are not cleared – use the
right click popup menu to clear selections first if appropriate.

Using the Map - 8 106

TSTool Documentation Using the Map

GeoView_SelectLayer3

Selecting Features on the Map

GeoView_SelectLayer4

Time Series List After Select from Map

5. Once time series have been matched, the information can be copied to the commands area for

further processing. This capability is therefore useful for identifying available data for an area.

If not all selected features in a layer correspond to time series, a warning similar to the following may be
shown:

GeoView_SelectLayer_Warning

Selection Warning

This may indicate that the attributes in the spatial data are not detailed enough to do the lookup. For
example, a data source attribute may exist but may only apply to one data interval (e.g., real-time instead
of historical data types). A sufficient combination of layers and attributes in layers can avoid or minimize
such problems.

The above procedure is not completely robust in that the user may select a layer that does not match the
time series list. Additional features are being considered to minimize this possibility. However, the use
of the map interface is considered an advanced feature and some reliance is made on a user’s capability.

7.5 Spatial Analysis Commands

TSTool’s commands provide a powerful analysis and data processing capability. The above sections
provided an overview of how to link time series and spatial data. It is envisioned that in the future
commands will be added to perform processing of time series, considering spatial data (e.g., weight time
series based on their proximity to a point). The ability to perform spatial and temporal analysis in batch
mode will be implemented as appropriate to meet user requirements.

 Using the Map - 9 107

Using the Map TSTool Documentation

This page is intentionally blank.

Using the Map - 10 108

8 Troubleshooting
Version 09.03.00, 2009-04-13

This chapter discusses how to troubleshoot TSTool problems. Section 8.1 – Obsolete Commands lists
obsolete commands, which may no longer be supported by current software and should be phased out.

TSTool can run in interactive mode with a graphical user interface (GUI) and in batch mode. In both
cases a log file contains messages from the program. By default, the log file is created in the logs
directory under the main installation directory. It is recommended that the StartLog() command be
inserted as the first command in each command file, using the name of the commands file in its name.
The log file can then be viewed using the Tools…Diagnostics features (see Chapter 3 – Getting
Started). However, in most cases, the log file should only be used for major troubleshooting because it
contains technical details that may not be understandable by the user. The error-handling features of the
GUI provide a status for each command. Often, an error in an early command leads to additional errors in
other commands and therefore fixing the first error can resolve multiple problems.

The most common problems are program configuration (see the Installation and Configuration
Appendix), user input error (see the commands reference for command syntax), and data errors for
various input types (see below and see also the input type appendices). Other problems should be
reported to the TSTool developers (use the Help…About menu to list support contacts). You may need
to email the log file to support to help determine the nature of a problem.

When running the TSTool GUI, major problems will be indicated with an icon next to the offending
command (see Chapter 3 – Getting Started for a summary of command error handling features). When
running in batch mode, warnings are only printed to the log file. In either case, the log file viewer can be
used to pinpoint the source of problems. If the run has been successful the GUI will show no problem
indicators and the log file will contain primarily status messages, which provide useful information about
data processing.

The following table summarizes common errors and their fixes. If an error is occurring in batch mode, it
is useful to run via the GUI to utilize error feedback features.

 Troubleshooting - 1 109

Troubleshooting TSTool Documentation

TSTool Errors and Possible Solutions

Error Possible solutions
TSTool does not
run on Windows
(error at start-up).

1. If using the TSTool executable on Windows and the following is shown (or
a command line message is printed with a similar message):

Troubleshooting_LaunchError

This error may be shown if software files have been manually moved.
Reinstall using the installation program.

2. If TSTool is run on Windows using the batch file… The batch file (in the
bin directory under the main install point) uses a command shell window
that may be running out of environment space (in this case you should see
a message in the command shell window to that effect). To correct,
change the command shell window properties so that the initial memory is
4096 or greater. This may not take effect unless the command shell
window was started from the Start menu.

Additionally, to help diagnose errors, try running the TSTool.exe or TSTool.bat
batch file from a command shell rather than from a desktop shortcut or
Windows Explorer. Doing so may print useful messages to the command shell
window.

Time series (of any
data type) are not
returned from the
HydroBase
database.

1. Verify that the database includes the water districts of interest using the
File…Properties…HydroBase Information menu. HydroBase is
distributed for the State of Colorado and water divisions and the version
being used may be for a division.

2. Verify that the structure/station identifier is valid. For example, a USGS

gage identifier may have changed. To verify, try querying by its name
rather than the identifier. Also, use the CDSS StateView application to
view HydroBase data details for the station/structure (it may have been
renamed).

3. If a zero-filled time series file cannot be found, check its path or use the TS

alias = NewTimeSeries() command.
A specific time
series is not
returned from the
HydroBase
database.

Time series in HydroBase are tagged with the data source (e.g., USGS). These
data source abbreviations or their handling by software may have changed over
time and a data source in a time series identifier may not be valid. Current
software requires the data source for HydroBase time series, if a data source is
used with the data type in HydroBase. Try interactively querying the time
series to see if the data source has changed.

A data type
combination is not
available for
queries.

TSTool has been implemented to support various input types as much as
possible. However, it may not have features to view all time series in an input
type. Refer to the input type appendix for limitations on data handling.

Time series (of any TSTool queries time series by allocating memory for the requested period and

Troubleshooting - 2 110

TSTool Documentation Troubleshooting

Error Possible solutions
data type) have
-999 or other
missing values.

then filling in values from the database. The output period (or maximum if not
specified) may be such that time series values were not found in the database
and were set to the missing data value of -999. Use fill commands to fill the
missing data within the requested period.

TSTool fails on
large queries or
displays out of
memory error.

TSTool may run out of memory on queries (hundreds or thousands of time
series, depending on machine memory). More time series may be able to be
handled if run in batch mode because GUI resources are minimized. To
increase the amount of memory that TSTool will use:

1. If running on Windows using the TSTool.exe program (the default

configuration), increase the value of the –XmxNNNm option in the
bin\TSTool.l4j.ini file under the software installation folder.

2. If running on Windows using the TSTool.bat file, change the -XmxNNNm
option after the JRE program name to tell Java to allow more memory
(increase the number of MB NNN as appropriate for the amount of memory
available on the machine – use a high number to force using hard disk
swap space if desired).

3. If running on Linux or Unix using the tstool script, change the -XmxNNNm
option after the JRE program name to tell Java to allow more memory
(increase the number of MB NNN as appropriate for the amount of memory
available on the machine – use a high number to force using hard disk
swap space if desired).

Unexpected failure. If there was an error in input that was serious, TSTool may quit processing
input. See the log file for details. If the log file does not offer insight, contact
support. Specific causes of failure may include:
1. TSTool has been developed using a version of Java that is indicated in the

metadata for software files. Trying to use an older Java version may cause
unexpected errors. This will only be a problem in custom installations
where the default Java distributed with TSTool is not used. To determine
the Java version that is being used to run TSTool and that was used to
create the software, use Tools…Diagnostics and select the Allow debug
checkbox. Then use the Help…About TSTool menu item and press Show
Software/System Details to display information that includes the Java
version that is being used to run TSTool.

2. An unforeseen issue may be occurring. Contact support. You may need to
provide the data and command file being used, which will allow
troubleshooting and also allow developers to add additional tests to be run
before software is released.

Unable to find files
correctly.

The working directory is assumed to be the same as the location of the most
recently opened or saved command file. The current working directory is
generally displayed by editor dialogs that use a path and can also be displayed
using File…Properties…TSTool Session. If files are not being found, verify
that the path to the file is correct, whether specified as an absolute path or
relative to the command file.

When used with the
HydroBase input
type for a Microsoft
Access database, an
error occurs

1. TSTool tries to list the ODBC DSN that are available for HydroBase
databases. It does so by running the shellcon.exe program, typically
installed in \cdss\bin if TSTool is used with CDSS. If this directory is not
in the PATH environment variable, the program will not be found and an
error will occur. The PATH normally will include the directory after

 Troubleshooting - 3 111

Troubleshooting TSTool Documentation

Error Possible solutions
selecting the
HydroBase
database.

Microsoft Access
versions of
HydroBase have
not been used for
years so this
problem is unlikely.

installation, in order to allow TSTool to be run from directories other than
the installation directory. The PATH can be checked by opening a
command shell and typing path at the command prompt. If the PATH is
not properly set, edit it as follows:

• For Windows NT/2000/XP machines, add \CDSS\bin (or \Program

Files\RTi\RiverTrak\bin) to the PATH using the Settings...Control
Panel...System...Advanced...Environment Variables settings. You
may need to have the administrator perform this step.

• For Windows 95/98 machines, add \CDSS\bin (or \Program
Files\RTi\RiverTrak\bin) to the PATH in the autoexec.bat file. Reboot
to apply for all subsequent windows. You may have done this
previously.

A work-around is to manually type in the ODBC DSN in the entry field.

2. Only user ODBC DSNs are listed when selecting HydroBase. If the DSN
was defined as a system DSN, it will not be listed. Redefine the DSN as a
user DSN.

TSTool is unable to
load HEC-DSS
DLL files and
therefore HEC-DSS
features are
unavailable.

The HEC-DSS library files are distributed in the TSTool-Version/bin folder and
by default this is where TSTool looks for the files. If the start folder for
TSTool is changed from this folder, the files will not be found. Therefore, do
not reconfigure TSTool to start in other than the bin folder.

Troubleshooting - 4 112

TSTool Documentation Troubleshooting

8.1 Obsolete Commands

TSTool and the commands that it supports have evolved over time. In early versions, many commands
used syntax similar to the following:

-SomeCommand parameter

Later, the function notation with fixed parameter list was adopted:

someCommand(parameter1,parameter2)

Parameters for such commands were required to be in a specific order and enhancements were difficult to
implement because the parameter order needed to be maintained. Recent enhancements have added new
commands and converted older commands to a new free-format “named parameter” notation:

SomeCommand(Param1=Value1,Param2=Value2)

The new notation allows parameters to be omitted when using a default value, and allows new parameters
to be added to commands, as necessary, to enhance existing functionality. Old commands are being
transitioned to the new syntax until all commands have been updated. Support for the older notation is
provided where possible. In most cases, loading an old command file and/or editing an old command
with the command editor dialogs will automatically convert from old to new syntax. TSTool provides
warnings for commands that are not recognized or are out of date and cannot automatically be updated.

The following table lists obsolete commands. The TSID abbreviation, when inside parentheses for a
command, is interchangeable with the time series alias.

 Troubleshooting - 5 113

Troubleshooting TSTool Documentation

TSTool Command Summary – Obsolete Commands

Command Description Replacement
add(TSID,TSID1,
TSID2,...)

Add the 2nd+ time series to the first time series,
retaining the original identifier. This form of the
command is obsolete and should be updated to use
the new form described that includes a flag for
handling missing data.

Current Add().

-archive_dbhost HostName This option is normally set during installation and is
typically not specified in command files. Specify the
Internet host name for the remote HydroBase
database server. This is configured at installation
time and will be either "localpc" (for a local
Microsoft Access HydroBase database, indicating
that no remote server is used) or a machine name for
the Informix database server. To change the defaults
from those in the tstool.bat file, specify this option
again on the command line or edit the batch file. See
also -dbhost. This option is used in addition to the
-dbhost information to allow a TSTool user to
switch between the local PC and the main database
server.

OpenHydroBase() and
configuration information.

-averageperiod MM/YYYY
MM/YYYY

Specify the period to be used to compute averages
when the -fillhistave option is specified.

SetAveragePeriod()

-batch Indicates to run in batch mode. This is automatically
set if -commands is specified.

None – no longer used.

-browser Path This option is normally set during installation and is
typically not specified in command files. Specify the
path to the web browser to use for on-line
documentation.

None – no longer used.

CreateTraces() Create an ensemble from a time series. CreateEnsemble()
-cy Output in calendar year format. SetOutputYearType()
-d#[,#] Set the debug level. The first number is the debug

level for the screen. The second is for the log file. If
one level is specified, it is applied to the screen and
log file output.

SetDebugLevel()

-data_interval
Interval

Indicate the data interval (e.g., MONTH, DAY) to
use with all structures/stations indicated by the -
slist option. See the appendices for a list of
intervals for different input and data types. This
option is only available in batch mode.

CreateFromList()

-datasource
ODBCDataSourceName

Specify an ODBC Data Source Name to use for the
HydroBase database.

OpenHydroBase() and
configuration information.

-data_type Type Indicate the data type (e.g., DivTotal, DQME) to use
with all structures/stations indicated by the -slist
option. This option is only available in batch mode.
This command is obsolete.

CreateFromList()

Troubleshooting - 6 114

TSTool Documentation Troubleshooting

TSTool Command Summary – Obsolete Commands (continued)

Command Description Replacement
day_to_month_reservoir
(TSID,ndays,flag)

Read a daily time series and convert to a
monthly time series using the reservoir
method. This is generally only applied to
reservoir storage.

NewEndOfMonthTS
FromDayTS()
and
FillInterpolate()

-dbhost HostName This option is normally set during installation
and is typically not specified in command
files. Specify the Internet host name for the
primary HydroBase database server. This is
configured at installation time and will be
either localpc (for a local Microsoft Access
database) or a machine name for the Informix
database server. To change the defaults from
those in the tstool.bat file, specify this option
again on the command line or edit the batch
file.

OpenHydroBase() and
configuration information.

-detailedheader Insert time series creation information in
output headers. This preserves information
from the log file that may otherwise be lost.
The default is not to generate detailed headers.

See output command parameters to
control.

fillCarryForward() Fill by repeating value. FillRepeat()
fillconst (TSID,
Value)

Fill the time series with a constant value. FillConstant()

-fillData File Specify a StateMod format fill pattern file to
be used with the fillpattern()
command. This command can be repeated for
multiple pattern files.

SetPatternFile()

-fillhistave Currently only enabled for frost dates and
monthly data. Indicates that the time series
should be filled with the historical average
values from the output period where data are
missing (after filling by other methods). See
also the -averageperiod option.

FillHistMonthAverage()
and
FillHistYearAverage()

Graph g =
newGraph(GraphType,
Visibility,
TimeSeriesToGraph)

Create a new graph window. This command is no longer
supported. See
ProcessTSProduct().

-helpindex Path This option is normally set during installation
and is typically not specified in command
files. Specify the path to help index file for
on-line documentation.

No longer used.

-ignorelezero Treat data values <= 0 as missing when
computing averages but do not replace when
filling.

SetIgnoreLEZero()

-include_missing_ts If a time series cannot be found, include an
empty time series.

SetIncludeMissingTS()

 Troubleshooting - 7 115

Troubleshooting TSTool Documentation

TSTool Command Summary – Obsolete Commands (continued)

Command Description Replacement
-informix Indicate that Informix is used for HydroBase. Not used.
-missing Value Use the specified value for missing data values

(StateMod only). The default is -999.0.
See WriteStateMod().

-fillusingcomments This option only applies to diversion time series
and causes the diversion comments to be evaluated.
Comments that indicate no diversion in an
irrigation year will result in missing data for that
year being replaced with zeros.

FillUseDiversion
Comments()

month1/year1
month2/year2

Specifies beginning and ending months for period
of record - calculations are still based on the entire
period of record (i.e., regression values) but the
final output is according to these values, if given.
Month 1 is January. Years are 4-digit.

SetOutputPeriod()

-o outputfile Specify output file name. This is used in
conjunction with other -o options.

Write*() commands.

-odatevalue Output a DateValue format file. WriteDateValue()
-ostatemod Output a StateMod format file. WriteStateMod()
-osummary Output a time series summary. WriteSummary()
-osummarynostats Output a time series summary without statistics

(this is used with the data extension procedure
developed by Ayres for CDSS).

No longer supported.

regress(TSID1,TSID2) Performs a linear regression analysis between the
two time series, filling missing data of the first time
series. Regression information is printed to the log
file.

FillRegression()

regress12(TSID1,
TSID2)
regressMonthly(
TSID1,TSID2)

Same as regress() except 12 separate monthly
regressions values are calculated.

FillRegression()

regresslog(TSID1,
TSID2)

Same as regress() except regressions values
are calculated logarithmically.

FillRegression()

regresslog12(TSID1,
TSID2)
regressMonthlyLog(
TSID1,TSID2)

Same as regresslog() except 12 monthly
regressions values are calculated.

FillRegression()

setconst(TSID,Value) Set the time series to the given value for all data. If
the time series is not in the database, created an
empty time series and then set to a constant value.

SetConstant()

setconstbefore(TSID,
Value,Date)

The time series to the given value for all data on
and before the specified date (YYYY-MM or
MM/YYYY).

SetConstant()

setConstantBefore() Set a value constant before a date/time. SetConstant()
SetMissingDataValue() Set the missing data value used in a StateMod time

series.
See WriteStateMod().

Troubleshooting - 8 116

TSTool Documentation Troubleshooting

TSTool Command Summary – Obsolete Commands (continued)

Command Description Replacement
setQueryPeriod(
Start,End)

Set the global period to query databases and read
from files.

SetInputPeriod()

-sqlserver Specify that SQL Server is used for HydroBase. OpenHydroBase() and
configuration information.
SQL Server is also now the
default because Microsoft
Access is no longer
supported.

-slist File Create time series from a list file. CreateFromList()
-units value Output using the specified units (default is to use

database units).
No longer used. If
necessary, units can be
converted by a number of
commands including
ConvertUnits().

-w#[,#] Set the warning level. The first number is the
warning level for the screen. The second is for the
log file. If one level is specified, it is applied to the
screen and log file output.

SetWarningLevel()

-wy Output in water year format. SetOutputYearType()

 Troubleshooting - 9 117

Troubleshooting TSTool Documentation

This page is intentionally blank.

Troubleshooting - 10 118

9 Quality Control
Version 09.04.00, 2009-02-26

This chapter discusses how TSTool software is quality controlled and how to use TSTool for quality
control.

9.1 Quality Control for TSTool Software

TSTool software provides many data processing commands. Each command typically provides multiple
parameters. The combination of commands and parameters coupled with potential data changes and user
errors can make it difficult to confirm that TSTool software is itself performing as expected. To address
this quality control concern, several commands have been built into TSTool to facilitate using TSTool
itself to test functionality. Test cases can be defined for each command, with test cases for various
combinations of parameters. The suite of all the test cases can then be run to confirm that the version of
TSTool does properly generate expected results. This approach performs regression testing of the
software and utilizes TSTool’s error-handling features to provide visual feedback during testing.

Test cases are developed by software developers as new features are implemented, according to the
following documentation. However, users can also develop test cases and this is encouraged to ensure
that all combinations of parameters and input data are tested. Providing verified test data and results prior
to new development will facilitate the new development.

9.1.1 Writing a Single Test Case

A single test case is illustrated by the following example (indented lines indicate commands that are too
long to fit on one line in the documentation).

Test filling with interpolation where maximum gap interval to fill is 2.
StartLog(LogFile="Results/Test_FillInterpolate_MaxIntervals=2.TSTool.log")
RemoveFile(InputFile="Results/Test_FillInterpolate_MaxIntervals=2_out.dv",
 IfNotFound=Ignore)
TS ts1_day = NewPatternTimeSeries(NewTSID="ts1...Day",
 Description="test data 1",SetStart="2000-01-01",SetEnd="2003-05-13",
 PatternValues="1,2,3,2,1,-999,5,1,-999,-999,-999,1,3,5")
FillInterpolate(TSList=AllMatchingTSID,TSID="ts1_day",MaxIntervals=2)
Uncomment the following command to regenerate expected results.
WriteDateValue(OutputFile="ExpectedResults/Test_FillInterpolate_MaxIntervals=2_out.dv")
WriteDateValue(OutputFile="Results/Test_FillInterpolate_MaxIntervals=2_out.dv")
CompareFiles(InputFile1="ExpectedResults/Test_FillInterpolate_MaxIntervals=2_out.dv",
 InputFile2="Results/Test_FillInterpolate_MaxIntervals=2_out.dv",WarnIfDifferent=True)

Example Test Case Command File

The purpose of the test case command file is to regenerate results and then compare the results to
previously generated and verified expected results. The example illustrates the basic steps that should be
included in any test case:

1. Start a log file to store the results of the specific test case. The previous log file will be closed
and the new log file will be used until it is closed. The log file is not crucial to the test but helps
with troubleshooting if necessary (for example if evaluating the test case output when run in a test
suite, as explained later in this chapter).

 Quality Control - 1 119

Quality Control TSTool Documentation

2. Remove the results that are to be generated by the test. This is necessary because if the
software fails and old results match expected results, it may appear that the command was
successful. Using the IfNotFound=Ignore parameter is useful because someone who is
running the tests for the first time may not have previous results. Test developers should use
IfNotFound=Warn when setting up the test to confirm that the results being removed match
the name that is actually generated in a later command, and then switch to
IfNotFound=Ignore.

3. Generate or read time series data. The NewPatternTimeSeries() command is used in
the example to create a time series of repeating values. This is a useful technique because it
allows full control over the initial data and minimizes the number of files associated with the test.
Synthetic data are often appropriate for simple tests. If the test requires more complicated data,
then time series can be read from a DateValue or other time series file. For example, if
functionality of another software program is being implemented in TSTool, the data file from the
original software may be used.

4. Process the time series using the command being tested. In the example, the
FillInterpolate() command is being tested. In many cases, a single command can be
used in this step. However, in some cases, it is necessary to use multiple commands. This is OK
as long as each command or the sequence is sufficiently tested with appropriate test cases.

5. Write the results. The resulting time series are written to a standard format. The DateValue
format is useful for general testing because it closely represents all time series properties. Note
that two write commands are used in the example – one writes the expected results and the other
writes the results from the current test. The expected results should only be written when the
creator of the test has confirmed that it contains verified values. In the example, the command to
write expected results is commented out because the results were previously generated. Some
commands do not process time series; therefore, the WriteProperty() and
WriteTimeSeriesProperty() commands can be used to write processor properties (e.g.,
global output period) and time series properties (e.g., data limits). Additional properties will be
enabled as the software is enhanced.

6. Compare the expected results and the current results. The example uses the
CompareFiles() command to compare the DateValues files generated for the expected and
current results. This command omits comment lines in the comparison because file headers often
change due to dynamic comments with date/time. If the software is functioning as expected, the
data lines in the file will exactly match. The example illustrates that if the files are different, a
warning will be generated because of the WarnIfDifferent=True parameter. Other options
for comparing results include:

a. Use the CompareTimeSeries() command. This command expects to find matching
time series and will compare data values to a precision. For example, read one time
series from a DateValue file and then compare with the current time series in memory.
Using this command avoids potential issues with the DateValue or other file formats
changing over time (and requiring the expected results to be reverified); however, doing a
file comparison is often easier to troubleshoot because a graphical difference program can
visually illustrate differences that need to be evaluated.

b. If testing a read/write command, compare the results with the original data file. For
example, if the test case is to verify that a certain file format is properly read, then there
will generally also be a corresponding write command. The test case can then consist of
a command to read the file, a command to write the results, and a comparison command
to compare the two files. This may not work if the header of the file uses comment lines
that are not recognized by the CompareFiles() command.

If the example command file is opened and run in TSTool, it will produce time series results, the log file,
and the output file. If the expected and current results are the same, no errors will be indicated. However,

Quality Control - 2 120

TSTool Documentation Quality Control

if the files are different, a warning indicator will be shown in the command list area of the main window
next to the CompareFiles() command.

General guidelines for defining test cases are as follows. Following these conventions will allow the test
cases to be incorporated into the full test suite.

• Define the test case in a folder matching the command name.
• Name the command file with prefix Test_, extension .TSTool, and use the following guidelines:

o for the default case using the filename pattern Test_CommandName.TSTool
o If there is a reason to define a test for a specific data set or input, add additional

information to the filename, for example: Test_CommandName_RiverX.TSTool or
Test_CommandName_6Hour.TSTool

o If defining a test for legacy syntax, name the command file as follows (and see the
@readOnly comment tag described in Section 9.1.3):
Test_CommandName_Legacy.TSTool

o If defining a test for parameter values other than the default values, use a command file
name similar to the following, where the parameters are listed at the end of the file name
body: Test_CommandName_Param1=Value1,Param2=Value2.TSTool
Although this can result in very long names, the explicit naming clarifies the purpose of
the test. The name of the example command file shown above is
Test_FillInterpolate_MaxIntervals=2.TSTool.

• Add a short comment to the top of the test case explaining the test.
• Use as little data as possible to perform the test – long time series cause tests to run longer and

take up more space in the repository that is used for revision control. Even though hundreds or
thousands of tests may ultimately be defined, it is important to be able to run them in a short time
to facilitate testing.

• If possible, test only one command in the test – more complicated testing is described in Section
9.1.4.

• If an input file is needed, place it in a folder named Data, if necessary copying the same input
from another command – this may require additional disk space but ensures that each command
can stand alone.

• Write the expected results to a folder named ExpectedResults.
• Write the generated results and other dynamic content, including log file, to a folder named

Results.
• (Recommended) When creating output files, use _out in the filename before the extension and

use an extension that is appropriate for the file content – this helps identify final output products
in cases where intermediate files might be produced.

9.1.2 Creating and Running a Test Suite

The previous section described how to define a single test case. However, opening and running each test
case command file would be very tedious and inefficient. Therefore, TSTool provides a way to generate
and run test suites, which is the approach taken to perform a full regression test prior to a software
release.

 Quality Control - 3 121

Quality Control TSTool Documentation

The following example command file illustrates how to create a test suite:

Create the regression test runner for the
TSTool/test/regression/TestSuites/commands_general files.

Only command files that start with Test_ are included in the output.
Don't append the generated commands, in order to force the old file to be
overwritten.

CreateRegressionTestCommandFile(SearchFolder="..\..\..\commands\general",
 OutputFile="..\run\RunRegressionTest_commands_general_IncludeOS=Windows.TSTool",
 Append=False,IncludeTestSuite="*",IncludeOS="Windows")

When the command file is run, it searches the indicated search folder for files matching the pattern
Test_*.TSTool. It then uses this list to create a command file with contents similar to the following
example (its contents are truncated in the following figure due to length). This file will be listed as an
output file after running the above command file. The IncludeTestSuite and IncludeOS
parameters are described in Section 9.1.3.

File generated by...
program: TSTool 9.00.04 (2009-01-20)
user: sam
date: Tue Jan 20 22:56:17 MST 2009
host: SOPRIS
directory: C:\Develop\TSTool_SourceBuild\TSTool\test\regression\TestSuites\commands_general\create
command line: TSTool -home test/operational/RTi

The following 287 test cases will be run to compare results with expected results.
Individual log files are generally created for each test.
The following test suites from @testSuite comments are included: *
Test cases for @os comments are included: Windows
StartRegressionTestResultsReport(
 OutputFile="RunRegressionTest_commands_general_IncludeOS=Windows.TSTool.out.txt")
RunCommands(InputFile="..\..\..\commands\general\Add\Test_Add_1.TSTool")
RunCommands(InputFile="..\..\..\commands\general\Add\Test_Add_Ensemble_1.TSTool")
RunCommands(InputFile="..\..\..\commands\general\AddConstant\Test_AddConstant_1.TSTool")
RunCommands(InputFile="..\..\..\commands\general\AddConstant\Test_AddConstant_Legacy_Ast.TSTool")
RunCommands(InputFile="..\..\..\commands\general\AddConstant\Test_AddConstant_Legacy_NoAst.TSTool")
…omitted…
RunCommands(InputFile="..\..\..\commands\general\WriteSummary\Test_WriteSummary_1.TSTool")

The above command file can then be opened and run. Each RunCommands() command will run a
single test case command file. Warning and failure statuses from each test case command file are
propagated to the test suite RunCommands() command. The output from running the test suite will be
all of the output from individual test cases (in the appropriate Results folders) plus the regression test
report provided in the TSTool Results list in the main window. An example of the TSTool main window
after running the test suite is shown in the following figure. Note the warnings and errors, which should
be addressed before releasing the software (in some cases commands are difficult to test and more
development on the test framework is needed).

Quality Control - 4 122

TSTool Documentation Quality Control

GUI_MainRegressionTest

TSTool Main Interface Showing Regression Test Results

An excerpt from the output file is shown below (normally the test number would be sequential from 1 to
the number of tests but only a few examples are included below).

File generated by...
program: TSTool 9.00.04 (2009-01-20)
user: sam
date: Wed Feb 25 16:59:52 MST 2009
host: SOPRIS
directory: C:\Develop\TSTool_SourceBuild\TSTool\test\regression\TestSuites\commands_general\run
command line: TSTool

The test status below may be PASS or FAIL.
A test can pass even if the command file actual status is FAILURE, if failure is expected.
Test Commands Commands
Pass/ Expected Actual
Num Fail Status Status Command File
#---
 1 PASS SUCCESS SUCCESS C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\
 Add\Test_Add_1.TSTool
 2 PASS SUCCESS SUCCESS C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\
 Add\Test_Add_Ensemble_1.TSTool
 34 PASS Warning WARNING C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\
 CreateFromList\Test_CreateFromList_InputType=HydroBase,
 IDCol=1,DataSource=DWR,DataType=DivTotal,
 Interval=Month,IfNotFound=Ignore.TSTool
 35 PASS Failure FAILURE C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\
 CreateFromList\Test_CreateFromList_InputType=HydroBase,
 IDCol=1,DataSource=DWR,DataType=DivTotal,
 Interval=Month,IfNotFound=Warn.TSTool
 36 PASS Success SUCCESS C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\

 Quality Control - 5 123

Quality Control TSTool Documentation

 CreateFromList\Test_CreateFromList_InputType=HydroBase,
 OutputPeriod,IDCol=1,DataSource=DWR,DataType=DivTotal,
 Interval=Month,IfNotFound=Default.TSTool
 37 PASS Warning WARNING C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\
 CreateFromList\Test_CreateFromList_Legacy.TSTool
 38 PASS Failure FAILURE C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\
 CreateTraces_Alias\Test_CreateTraces_Legacy_1.TSTool
 251 *FAIL* SUCCESS FAILURE C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\
 SetWorkingDir\Test_SetWorkingDir_Legacy_Windows_WorkingDir=Temp,
 RunMode=GUIAndBatch.TSTool
 252 *FAIL* SUCCESS FAILURE C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\
 SetWorkingDir\Test_SetWorkingDir_Windows_WorkingDir=Temp,
 RunMode=GUIAndBatch.TSTool
 287 PASS SUCCESS SUCCESS C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\
 WriteTimeSeriesProperty\
 Test_WriteTimeSeriesProperty_PropertyName=DataLimitsOriginal.TSTool
#---
FAIL count = 6
PASS count = 281

A test passes if its expected status (by default SUCCESS) matches the actual status, and the test fails
otherwise. Note that there are cases where a test case is actually intended to fail, in order to test that
TSTool is properly detecting and handling the failure (rather than ignoring it or crashing).

The features built into TSTool can therefore be used to efficiently test the software, contributing to
increased software quality and efficient software releases. See the next section for more information on
controlling the test process.

9.1.3 Controlling Tests with Special Comments

The previous two sections described how to define individual test cases and how to automatically create
and run a test suite comprised of test cases. However, there are special conditions that will cause the
normal testing procedures to fail, in particular:

• tests depend on a database that is not available
• tests depend on a database version that is not available (data in the “default” database have

changed)
• tests can only be run on a certain operating system
• tests depend on a specific environment configuration that is not easily reproduced for all users

Any of these conditions can cause a test case to fail, leading to inappropriate errors and wasted time
tracking down problems that do not exist. To address this issue, TSTool recognizes special comments
that can be included in test case command files. The following table lists tags that can be placed in #
comments in command files to provide information for to the
CreateRegressionTestCommandFile() command and command processor. The syntax of the
special comments is illustrated by the following example:

#@expectedStatus Failure

Quality Control - 6 124

TSTool Documentation Quality Control

Special #-comment Tags

Parameter Description
@expectedStatus Failure

@expectedStatus Warning

The RunCommands() command ExpectedStatus
parameter is by default Success. However, a different status
can be specified if it is expected that a command file will result in
Warning or Failure and still be a successful test. For
example, if a command is obsolete and should generate a failure,
the expected status can be specified as Failure and the test will
pass. Another example is to test that the software properly treats
a missing file as a failure.

@os Windows
@os UNIX

Using this tag indicates that the test is designed to work only on
the specified platform and will be included in the test suite by the
CreateRegressionTestCommandFile() command only
if the IncludeOS parameter includes the corresponding
operating system (OS) type. This is primarily used to test
specific features of the OS and similar but separate test cases
should be implemented for both OS types. If the OS type is not
specified as a tag in a command file, the test is always included.

@readOnly Use this tag to indicate that a command file is read-only. This is
useful when legacy command files are being tested because
TSTool will automatically update old syntax to new.
Consequently, saving the command file will overwrite the legacy
syntax and void the test. If this tag is included, the TSTool
interface will warn the user that the file is read-only and will only
save if the user indicates to do so.

@testSuite ABC Indicate that the command file should be considered part of the
specified test suite, as specified with the IncludeTestSuite
parameter of the
CreateRegressionTestCommandFile() command. Do
not specify a test suite tag for general tests. This tag is useful if a
group of tests require special setup, for example connecting to a
database. The suite names should be decided upon by the test
developer.

Using the above special comment tags, it is possible to create test suites that are appropriate for specific
environments. For example, using @testSuite HydroBase indicates that a test case should be
included in the HydroBase test suite, presumably run in an environment where a connection to HydroBase
has been opened. Consequently, multiple test suites can be created and run as appropriate depending on
the system environment.

9.1.4 Verifying TSTool Software Using a Full Dataset

The previous sections described how to test TSTool software using a suite of test cases. This approach
can be utilized when performing general tests, for example prior to a normal software release. However,
there may be cases where TSTool has been used to produce a large data set and it is desirable to confirm
that a software release will still create the full dataset without differences. For example, for the State of
Colorado’s Decision Support Systems, large basin model data sets are created and are subject to
significant scrutiny. Approaches previously described in this chapter can be utilized to verify that TSTool
is functioning properly and creates the dataset files. The following procedure is recommended and uses
CDSS as an example:

 Quality Control - 7 125

Quality Control TSTool Documentation

1. If not already installed, install the data set in its default location (e.g.,

C:\CDSS\data\colorado_1_2007) – these files will not be modified during testing.
2. Create a parallel folder with a name indicating that it is being used for verification (e.g.,

C:\CDSS\data\colorado_1_2007_verify20090216).
3. Copy the data set files from step 1 to the folder created in step 2 (e.g., copy to

C:\CDSS\data\colorado_1_2007_verify20090216\colorado_1_2007) – these files will be
modified during testing.

4. Create a TSTool command file in the folder created in step 2 that will run the tests (e.g.,
VerifyTSTool.TSTool). It is often easier to edit this command file with a text editor rather than
with TSTool itself. The contents of the file are illustrated in the example below. Some
guidelines for this step are as follows:

a. Organize the command file by data set folder, in the order that data need to be created.
b. Process every *.TSTool command to verify that it runs and generates the same results.
c. If command files do not produce the same results, copy the command file to a name with

“-updated” or similar in the filename and then change the file until it creates the expected
results. This may be required due to changes in the command, for example implementing
stricture error handling. These command files can then be shared with maintainers of the
data set so that future releases can be updated.

d. As tests are formalized, it may be beneficial to save a copy of this file with the original
data set so future tests can simply copy the verification command file rather than
recreating it (e.g., save in a QualityControl folder in the master data set). This effort will
allow the creator of the data set to quality control their work as well as helping to quality
control the software.

5. Run the command file – any warnings or failures should be evaluated to determine if they are due
to software or data changes. Software differences should be evaluated by software developers. It
may be necessary to use command parameters such as Version, available for some commands,
to recreate legacy data formats.

The following example command file illustrates how TSTool software is verified using the full data set
(indented lines indicate commands that are too long to fit on one line in the documentation). Note that
intermediate input files that would normally be modified by other software (e.g., StateDMI for CDSS data
sets) could impact TSTool verification. However, a similar quality control procedure can be implemented
for StateDMI.

Guidelines for setting up the each test in the command file are as follows:

1. Remove output files that are generated from each individual command file that is run using
RemoveFile() commands. This will ensure that test does not use old results for its output
comparison.

2. Run each individual command file using the RunCommands() command.
3. Compare the results of the run with the original data set file using the CompareFiles()

command.

Quality Control - 8 126

TSTool Documentation Quality Control

StartLog(LogFile="VerifyTSTool.TSTool.log")
This command file verifies the TSTool functionality by recreating a released
StateMod/StateCU data set. The general process is as follows:
1) Copy the entire original data set to this folder (e.g., do manually).
2) Commands below will remove output files from product and StateMod/StateCU
folders. This is done in case regeneration stops - don't want any confusion
with original output and what should be created here.
3) Commands below will run the command files used to generate the model files.
4) Commands below will use CompareFile() commands to compare results. Comment
lines are ignored so only data differences (processing output) will be
flagged.
If run interactively from TSTool, indicators will show where results are
different. Differences must then be evaluated to determine if input data,
process, or software have changed. Differences may be valid.

Diversions

RemoveFile(InputFile="colorado_1_2007\Diversions\514634.stm")
RunCommands(InputFile="colorado_1_2007\Diversions\514634.stm.commands.TSTool")
CompareFiles(InputFile1="colorado_1_2007\Diversions\514634.stm",
 InputFile2="..\colorado_1_2007\Diversions\514634.stm",WarnIfDifferent=True)

RemoveFile(InputFile="colorado_1_2007\Diversions\954699.stm")
RunCommands(InputFile="colorado_1_2007\Diversions\954699.commands.TSTool")
CompareFiles(InputFile1="colorado_1_2007\Diversions\954699.stm",
 InputFile2="..\colorado_1_2007\Diversions\954699.stm",WarnIfDifferent=True)

RemoveFile(InputFile="colorado_1_2007\Diversions\Fraser.stm")
RunCommands(InputFile="colorado_1_2007\Diversions\Fraser.commands.TSTool")
CompareFiles(InputFile1="colorado_1_2007\Diversions\Fraser.stm",
 InputFile2="..\colorado_1_2007\Diversions\Fraser.stm",WarnIfDifferent=True)

instream

RemoveFile(InputFile="colorado_1_2007\statemod\cm2005.ifm")
RunCommands(InputFile="colorado_1_2007\instream\ifm.commands.tstool")
CompareFiles(InputFile1="colorado_1_2007\statemod\cm2005.ifm",
 InputFile2="..\colorado_1_2007\statemod\cm2005.ifm",WarnIfDifferent=True)

reservoirs

RemoveFile(InputFile="colorado_1_2007\reservoirs\363543-add.stm")
RemoveFile(InputFile="colorado_1_2007\reservoirs\364512-add.stm")
RemoveFile(InputFile="colorado_1_2007\reservoirs\503668-add.stm")
RemoveFile(InputFile="colorado_1_2007\reservoirs\513709-add.stm")
RemoveFile(InputFile="colorado_1_2007\reservoirs\514620-add.stm")
RemoveFile(InputFile="colorado_1_2007\reservoirs\723844-add.stm")
RemoveFile(InputFile="colorado_1_2007\reservoirs\838713-add.stm")
RunCommands(InputFile="colorado_1_2007\reservoirs\res.stm.commands.tstool")
CompareFiles(InputFile1="colorado_1_2007\reservoirs\363543-
add.stm",InputFile2="..\colorado_1_2007\reservoirs\363543.stm",WarnIfDifferent=True)
CompareFiles(InputFile1="colorado_1_2007\reservoirs\364512-add.stm",
 InputFile2="..\colorado_1_2007\reservoirs\364512-add.stm",WarnIfDifferent=True)
CompareFiles(InputFile1="colorado_1_2007\reservoirs\503668-add.stm",
 InputFile2="..\colorado_1_2007\reservoirs\503668-add.stm",WarnIfDifferent=True)
CompareFiles(InputFile1="colorado_1_2007\reservoirs\513709-add.stm",
 InputFile2="..\colorado_1_2007\reservoirs\513709-add.stm",WarnIfDifferent=True)
CompareFiles(InputFile1="colorado_1_2007\reservoirs\514620-add.stm",
 InputFile2="..\colorado_1_2007\reservoirs\514620-add.stm",WarnIfDifferent=True)
CompareFiles(InputFile1="colorado_1_2007\reservoirs\723844-add.stm",
 InputFile2="..\colorado_1_2007\reservoirs\723844-add.stm",WarnIfDifferent=True)
CompareFiles(InputFile1="colorado_1_2007\reservoirs\838713-add.stm",

 Quality Control - 9 127

Quality Control TSTool Documentation

 InputFile2="..\colorado_1_2007\reservoirs\838713-add.stm",WarnIfDifferent=True)

RemoveFile(InputFile="colorado_1_2007\statemod\cm2005B.tar")
RunCommands(InputFile="colorado_1_2007\reservoirs\Btar.commands.tstool")
CompareFiles(InputFile1="colorado_1_2007\statemod\cm2005B.tar",
 InputFile2="..\colorado_1_2007\statemod\cm2005B.tar",WarnIfDifferent=True)

RemoveFile(InputFile="colorado_1_2007\statemod\cm2005C.tar")
RunCommands(InputFile="colorado_1_2007\reservoirs\Ctar.commands.tstool")
CompareFiles(InputFile1="colorado_1_2007\statemod\cm2005C.tar",
 InputFile2="..\colorado_1_2007\statemod\cm2005C.tar",WarnIfDifferent=True)

RemoveFile(InputFile="colorado_1_2007\statemod\cm2005.eom")
RunCommands(InputFile="colorado_1_2007\reservoirs\eom.commands.tstool")
CompareFiles(InputFile1="colorado_1_2007\statemod\cm2005.eom",
 InputFile2="..\colorado_1_2007\statemod\cm2005.eom",WarnIfDifferent=True)

RemoveFile(InputFile="colorado_1_2007\statemod\cm2005H.tar")
RunCommands(InputFile="colorado_1_2007\reservoirs\Htar.commands.tstool")
CompareFiles(InputFile1="colorado_1_2007\statemod\cm2005H.tar",
 InputFile2="..\colorado_1_2007\statemod\cm2005H.tar",WarnIfDifferent=True)

streamSW

RemoveFile(InputFile="colorado_1_2007\streamSW\404657.stm")
RunCommands(InputFile="colorado_1_2007\streamSW\404657.commands.tstool")
CompareFiles(InputFile1="colorado_1_2007\streamSW\404657.stm",
 InputFile2="..\colorado_1_2007\streamSW\404657.stm",WarnIfDifferent=True)

RemoveFile(InputFile="colorado_1_2007\statemod\cm2005.rbd")
RunCommands(InputFile="colorado_1_2007\streamSW\rbd.commands.tstool")
CompareFiles(InputFile1="colorado_1_2007\statemod\cm2005.rbd",
 InputFile2="..\colorado_1_2007\statemod\cm2005.rbd",WarnIfDifferent=True)

RemoveFile(InputFile="..\colorado_1_2007\statemod\cm2005.rid")
RunCommands(InputFile="colorado_1_2007\streamSW\rid.commands.tstool")
CompareFiles(InputFile1="colorado_1_2007\statemod\cm2005.rid",
 InputFile2="..\colorado_1_2007\statemod\cm2005.rid",WarnIfDifferent=True)

RemoveFile(InputFile="colorado_1_2007\statemod\cm2005.rih")
RunCommands(InputFile="colorado_1_2007\streamSW\rih.commands.tstool")
CompareFiles(InputFile1="colorado_1_2007\statemod\cm2005.rih",
 InputFile2="..\colorado_1_2007\statemod\cm2005.rih",WarnIfDifferent=True)

TSTool - do after others, in case differences might cascade

RemoveFile(InputFile="colorado_1_2007\TSTool\fill2005.pat")
RunCommands(InputFile="colorado_1_2007\TSTool\fill2005.pat.commands.TSTool")
CompareFiles(InputFile1="colorado_1_2007\TSTool\fill2005.pat",
 InputFile2="..\colorado_1_2007\TSTool\fill2005.pat",WarnIfDifferent=True)

RemoveFile(InputFile="colorado_1_2007\TSTool\Patgage.xbg")
RunCommands(InputFile="colorado_1_2007\TSTool\pattern_gage_raw_data.commands.TSTool")
CompareFiles(InputFile1="colorado_1_2007\TSTool\patgage.xbg",
 InputFile2="..\colorado_1_2007\TSTool\patgage.xbg",WarnIfDifferent=True)

9.2 Using TSTool to Quality Control Data

This section will be expanded in the future. Current development is enhancing TSTool’s data quality
control features.

Quality Control - 10 128

Command Glossary
Version 07.01.00, 2007-03-02, Acrobat Distiller

The following parameter names and terms are used throughout TSTool commands. A term indicated in
bold font is a definition. A term indicated in bold courier font is a parameter name. Parameters that
are infrequently used are listed with the corresponding commands. Common parameters are defined but
long lists of corresponding commands are not provided.

a1,… – Used with the ARMA() command.

b1,… – Used with the ARMA() command.

Alias – A (generally) short identifier for a time series, used in place of the TSID, which simplifies

commands. The Alias and TSID values are interchangeable when used as parameters to
commands and may both be referred to as TSID in command editors. See also TSID.

Alias – A (generally) short identifier for a time series, used in place of the TSID, which simplifies

commands. When used to create/read a time series, the syntax of a command is typically similar
to: TS Alias = command(…). See also TSID.

AddTSID – Time series identifiers for time series to add. See the add() command.

AddValue – A numerical value to be added to a time series. See the addConstant() command.

AdjustMethod – Indicates the method used when adjusting a time series. See the

adjustExtremes() command.

AllowMissingCount – Indicate how many missing data values are allowed in an interval, in order to

allow processing. See the changeInterval() and newStatisticYearTS() commands.

AnalysisEnd – A DateTime that indicates the end of an analysis.

AnalysisMonth – One or more months indicating which months should be processed in the analysis.

See the fillRegression() command.

AnalysisStart – A DateTime that indicates the start of an analysis.

ARMAInterval – The data interval used in an ARMA analysis. See the ARMA() command.

AutoExtendPeriod – Indicate whether to autoextend the period of all time series to be the output

period. See the setAutoExtendPeriod()command.

AverageEnd – A DateTime that indicates the end of an averaging analysis. See the

setAveragePeriod() command.

AverageMethod – Indicate the method to use when averaging data. See the runningAverage()

command.

 Command Glossary - 1 129

Command Glossary TSTool Documentation

AverageStart – A DateTime that indicates the start of an averaging analysis. See the
setAveragePeriod() command.

BlendMethod – The method to use when blending time series. See the blend() command.

BlendTSID – Time series identifiers for time series to blend into main time series. See the blend()

command.

Bracket – The number of days to search forward and back for a non-missing value. See the

newEndOfMonthTSFromDayTS() and runningAverage() commands.

CalculateFactorHow – Indicate how to calculate the factor used when prorating values. See the

fillProrate() command.

CommandLine – The command line for a program to run. See the runProgram() command.

ConstantValue – A numerical value used for filling, etc. See the fillConstant(),

setConstant() and setConstantBefore() command.

DatabaseName – The name of a database, when making a database connection. See the

openHydroBase() command.

DatabaseServer – The name of a database server, when making a database connection. See the

openHydroBase() command.

DataSource – The data source to use when forming a TSID. See the createFromList()

command.

DataType – The data source to use when forming a TSID. See the createFromList() command.

DateTime – A date/time value, typically represented as a string, which indicates a point in time.

Date/time strings have a precision that is interpreted by the software. For example, the date/time
string 1990 has a precision of year, whereas the string 1990-01-12 has a precision of day.

DateTime – A specific date/time associated with time series data. See the setDataValue()

command.

DayTSID – Time series identifier for a daily time series. See the

newDayTSFromMonthAndDayTS() command.

DefaultFlow – Indicate a default flow value to be used if observations or filled values cannot be

found. See the lagK() command.

Delim – The delimiter character(s) used when processing delimited files. See the

createFromList() command.

DependentAnalysisEnd – A DateTime that indicates the end of an analysis of dependent time

series. See the fillMOVE2() command.

Command Glossary - 2 130

TSTool Documentation Command Glossary

DependentAnalysisStart – A DateTime that indicates the start of an analysis of dependent time
series. See the fillMOVE2() command.

Description – The description (name) for a time series. See the newTimeSeries() command.

DeselectAllFirst – Indicate whether to deselect all time series before processing the command.

See the selectTimeSeries()command.

DiffFlag – A character flag used to indicate when time series values are different. See the

compareTimeSeries() command.

Divisor – Indicate which time series is the divisor. See the relativeDiff() command.

DivisorTSID – Time series identifier for time series to divide another time series. See the divide()

command.

ExtremeToAdjust – Indicates whether the maximum or minimum value in a time series should be

adjusted. See the adjustExtremes() command.

ExtremeValue – The threshold value when adjusting extreme values. See the adjustExtremes()

command.

FillDirection – Indicate which direction (Foreward or Backward) filling should occur. See the

fillProrate() and fillRepeat() commands.

FillEnd – A DateTime that indicates the end of a fill process.

FillFlag – A character flag used to indicate when time series values are filled. See the

fillhistMonthAverage(), fillHistYearAverage(), fillMOVE2(),
fillProrate(), and fillRegression() commands.

FillNearest – Indicate whether missing data values should be filled with the nearest non-missing

value. See the lagK() command.

FillStart – A DateTime that indicates the start of fill process.

FillUsingCIU – Indicate whether missing data values should be filled using “currently in use” (CIU)

data from HydroBase. Additional zeros will be included in data. See the
fillUsingDiversionComments() command.

FillUsingCIUFlag – A character flag used to indicate when time series values are filled with CIU

information (see FillUsingCIU). See the fillUsingDiversionComments()
command.

FillUsingDivComments – Indicate whether missing data values should be filled using diversion

comments from HydroBase. Additional zeros will be included in data. See the
readHydroBase() and TS Alias = readHydroBase() commands. Also see the
fillUsingDiversionComments() command.

 Command Glossary - 3 131

Command Glossary TSTool Documentation

FillUsingDivCommentsFlag – A character flag used to indicate when time series values are filled.
See the readHydroBase(), and TS Alias = readHydroBase() commands.

HandleMissingHow – Indicate how to handle missing data values when processing time series. For

example, when adding time series, missing values can be ignored or can result in a missing value
in the result. See the add(), cumulate(), and subtract() commands.

HandleMissingTSHow – Indicate how to handle missing time series during processing. See the

createFromList() command.

ID – The identifier to match in a file. See the createFromList() command.

IDCol – The column number (or name) to be read from a delimited file. See the createFromList()

command.

IgnoreLEZero – Indicate whether values less than or equal to zero should be ignored when computing

historical averages for time series. See the setIgnoreLEZero() command.

IncludeMissingTS – Indicate whether missing time series (e.g., from a query or read) should

automatically be included using default information. See the setIncludeMissingTS()
command.

IndependentTSID – Time series identifier for the independent time series being processed. See the

fillFromTS(), fillMOVE2(), fillProrate(), fillRegression(),
setFromTS(), and setMax() commands.

InflowStates – The inflow states (initial states) when routing a flow time series. See the lagK()

command.

InitialValue – Indicate an initial value needed for computations. See the fillProrate() and

newTimeSeries() commands.

InputEnd – A DateTime that indicates the end of a file read or a database query.

InputFile, InputFile1, InputFile2 – The name of an input file to read, used by many

commands.

InputName – The input name to use when forming a TSID. See the createFromList() command.

InputStart – A DateTime that indicates the start of file read or a database query.

InputType – The input type to use when forming a TSID. See the createFromList() command.

Intercept – The intercept to be enforced when determining a line of best fit. See the

fillRegression() command.

Interval – The data interval to use when forming a TSID. See the createFromList(),

readHydroBase(), and shiftTimeByInterval() commands.

Command Glossary - 4 132

TSTool Documentation Command Glossary

K – The attenuation factor used when routing a flow time series. See the lagK() command.

Lag – The lag term for routing a flow time series. See the lagK() command.

Length – The length of a time series trace. See the createTraces() command.

ListFile – The name of an input or output list (delimited) file to be written or read, specified using a

relative or absolute path. See the createFromList() command.

LogFile – The name of the log file, specified using a relative or absolute path. See the

setLogFile() command.

LogFileLevel – The level for messages printed to the log file. See the setDebugLevel() and

setWarningLevel() commands.

MatchDataType – Indicate whether the data type part of a TSID should be matched when comparing

time series identifiers. See the compareTimeSeries() command.

MatchLocation – Indicate whether the location part of a TSID (Alias) should be matched when

comparing time series identifiers. See the compareTimeSeries() command.

MaxIntervals – The maximum number of intervals to process, typically used to limit a fill or analysis

procedure. See the adjustExtremes(), fillInterpolate(), and fillRepeat()
commands.

MaxValue – The maximum value in an analysis. See the normalize() and replaceValue()

commands.

Method – A method used when processing data, used to more specifically control how a command

functions. See the analyzePattern() and disaggregate() commands.

MinValue – The minimum value in an analysis. See the normalize() and replaceValue()

commands.

MinValueHow – Indicate how to determine the minimum value in an analysis. See the normalize()

command.

MissingValue – A numerical value used for missing data in time series. See the

writeStateMod() command.

MonthTSID – Time series identifier for a monthly time series. See the

newDayTSFromMonthAndDayTS() command.

MonthValues – Monthly values used for filling, etc. See the setConstant() command.

MultiplierTSID – Time series identifier for the time series to multiply the main time series. See the

multiply() command.

 Command Glossary - 5 133

Command Glossary TSTool Documentation

Multiplier – Value(s) to multiply time series value(s) by when processing. See the
shiftTimeByInterval() command.

NewDataType – The data type for a new time series, typically used where the data type must be

explicitly defined and is not determined from a TSID. See also NewTSID. See the
changeInterval() command.

NewInterval – The data interval for a new time series, typically used where the interval must be

explicitly defined and is not determined from a TSID. See also NewTSID. See the
changeInterval() command.

NewTimeScale – The new time scale (ACCM for accumulated data, INST for instantaneous data, MEAN

for mean data) for a time series. See the changeInterval() command.

NewTSID – The new time series identifier for a time series, used with commands that create new time

series. See the copy() and newDayTSFromMonthAndDayTS() commands.

NewUnits – The new data units for a time series. See the converDataUnits(), TS Alias =

readDateValue(), TS Alias = readMODSIM(), TS Alias = readNWSCard(),
and TS Alias = readRiverWare() commands.

NewValue – The new value in an analysis. See the replaceValue() and setDataValue()

commands.

NumEquations – Number of equations to use when analyzing data (typically one or monthly

equations). See the fillMOVE2() and fillRegression() commands.

ObsTSID – The time series identifier for an observed time series. See the lagK() command.

OdbcDSN – The Open Database Connectivity (ODBC) Data Source Name (DNS) for a database

connection. See the openHydroBase() command.

OldTimeScale – The old time scale (ACCM for accumulated data, INST for instantaneous data, MEAN

for mean data) for a time series. See the changeInterval() command.

OutflowStates – The outflow states (initial states) when routing a flow time series. See the lagK()

command.

OutputEnd – A DateTime that indicates the end of output.

OutputFile – The name of an output file to be written, specified using a relative or absolute path.

OutputStart – A DateTime that indicates the start of output.

OutputYearType – Indicate the type of year (e.g., calendar year, water year) for output. See the

setOutputYearType() command.

PatternFile – The file name for a pattern file. See setPatternFile() command.

Command Glossary - 6 134

TSTool Documentation Command Glossary

PatternID – An identifier for a pattern (e.g., WET, DRY, AVG). See the analyzePattern() and
fillPattern() commands.

Percentile – Percentile value(s) used when analyzing time series. See the analyzePattern()

command.

Pos – The position in the time series list. See the deselectTimeSeries() and

selectTimeSeries() commands.

pP – Used with the ARMA() command.

Precision – The precision (number of digits after the decimal point) used when comparing values or

formatting values for output. See the compareTimeSeries(), writeRiverWare(), and
writeStateMod() commands.

QueryEnd – A DateTime that indicates the end of a database query. The InputEnd parameter is

preferred and is used in new commands.

QueryStart – A DateTime that indicates the start of database query. The InputStart parameter is

preferred and is used in new commands.

qQ – Used with the ARMA() command.

Read24HourAsDay – Indicate that a time series with data interval 24Hour should be automatically

read as Day. See the readNwsCard() and TS Alias = readNwsCard() commands.

ReadEnd – A DateTime that indicates the end of a file read. See the readNWSCard() command. The

InputEnd parameter is preferred.

ReadStart – A DateTime that indicates the start of file read. See the readNWSCard() command.

The InputStart parameter is preferred.

RecalcLimits – Recalculate the data limits for a time series, usually when supplemental raw data are

being supplied after an initial read. See the fillUsingDiversionComments() command
(used with the State of Colorado’s HydroBase input type).

ReferenceDate – The starting date for a time series trace. See the createTraces() command.

Reset – A DateTime field that indicates when to reset data values in a manipulation. For example, a

time series may be set to zero at the start of each year when used with the cumulate()
command. See the cumulate() command.

RunMode – Typically used to indicate whether the command should be processed in batch mode, via the

GUI, or both. See the openHydroBase(), processTSProduct(), and
setWorkingDir() commands.

Scale – A scale factor to be applied to data. See the writeRiverWare() command.

ScaleValue – A numerical value used for scaling time series. See the scale() command.

 Command Glossary - 7 135

Command Glossary TSTool Documentation

Scenario – The scenario to use when forming a TSID. See the createFromList() command.

ScreenLevel – The level for messages printed to the screen (console). See the setDebugLevel()

and setWarningLevel() commands.

SelectAllFirst – Indicate whether to select all time series before processing the command. See the

deselectTimeSeries()command.

SearchStart – A DateTime that indicates the search start date/time in an analysis. See the

newStatisticYearTS() command.

SetEnd – A DateTime that indicates the end of a set process.

Set_scale – See the writeRiverWare() command.

SetStart – A DateTime that indicates the start of set process.

Set_units – See the writeRiverWare() command.

ShiftDataHow – Indicate how to shift time series traces. See the createTraces() command.

SpecifyWeightsHow – Indicate how to specify weights when processing time series. See the TS

Alias = weighTimeSeries() command.

Statistic – A statistic to evaluate. See the newStatisticYearTS() command.

SubtractTSID – Time series identifiers for time series to subtract. See the subtract() command.

Suffix – The suffix to be automatically applied to the name of a file. See the setLogFile()

command.

TestValue – A test value used in an analysis. See the newStatisticYearTS() command.

Timeout – The timeout when running an external program, after which processing will continue. See

the runProgram() command.

Tolerance – A value (or values) used to indicate an allowable error/difference. See the

compareTimeSeries() command.

TransferHow – Indicate how to transfer data during processing, either according to the date/time or

sequentially. The latter can be used when time series do not align on date/time (e.g., due to a
shift, leap year, etc.). See the setFromTS() command.

Transformation – Indicate whether the time series data should be transformed before processing.

See the fillInterpolate(), fillMOVE2() , and fillRegression() commands.

TSID – Time series identifier, which is used to uniquely identify a time series. In full notation, this

consists of a string similar to the following:
Location.DataSource.DataType.Interval.Scenario~InputType~InputName. In abbreviated form,
the InputType and InputName are often omitted. The InputType and InputName are typically
used only by read and write commands. Because a TSID may be long (especially when file

Command Glossary - 8 136

TSTool Documentation Command Glossary

names are used for the InputName), an Alias may be assigned to the time series. The TSID
parameter is typically used in commands for the time series that is being processed. See also
Alias.

TSID – When used as a command parameter the time series identifier indicates the time series to be

processed. The TSID or alias can typically be specified. See also Alias.

TSID1 – Time series identifier for the first daily time series in a command. See the

fillDayTSFrom2MonthTSAnd1DayTS() command.

TSID2 – Time series identifier for the first daily time series in a command. See the

fillDayTSFrom2MonthTSAnd1DayTS() command.

TSID_D1 – Time series identifier for the first time series in a command. See the TS Alias =

relativeDiff() command.

TSID_D2 – Time series identifier for the second daily time series in a command. See the

fillDayTSFrom2MonthTSAnd1DayTS() command.

TSID_M1 – Time series identifier for the first monthly time series in a command. See the

fillDayTSFrom2MonthTSAnd1DayTS() command.

TSID_M2 – Time series identifier for the second monthly time series in a command. See the

fillDayTSFrom2MonthTSAnd1DayTS() command.

TSList – Indicates how the list of time series is determined. Typical values are AllTS (process all

time series), AllMatchingTSID (process all time series having identifiers that match the TSID
parameter), SelectedTS (process all time series that have been selected with the
selectTimeSeries() and deselectTimeSeries() commands). This parameter is
being phased in to allow more flexibility when processing time series.

TSProductFile – The name of a time series product (TSProduct) file. See the

processTSProduct() command.

Units – The data units for a time series. See the newTimeSeries(), TS Alias =

readNWSRFSFS5Files(), and writeRiverWare() commands.

Version – Indicates the file version, to allow the software to handle different data formats. See the

readStateModB() command.

View – Indicate whether a product should be graphically previewed (as opposed to simply writing an

output file). See the processTSProduct() command.

UseStoredProcedures – Indicates whether stored procedures should be used (versus straight SQL

calls). This is being used to transition HydroBase queries to stored procedures. See the
openHydroBase() command.

 Command Glossary - 9 137

Command Glossary TSTool Documentation

WarnIfDifferent – Indicates whether a warning should be generated if data differences are detected.
See the compareTimeSeries() and compareFiles() commands.

WarnIfSame – Indicates whether a warning should be generated if data differences are NOT detected.

See the compareTimeSeries() and compareFiles() commands.

Weight –Weight(s) used when processing time series. See the TS Alias =

weighTimeSeries() command.

Where1, Where2 – Input filter information used when reading/querying data. See the

readHydroBase() command.

Year – Specify year(s) of interest. See the TS Alias = weighTimeSeries() command.

Command Glossary - 10 138

Command Reference: #
Comment line
Version 08.17.00, 2008-10-01

The # command indicates single-line comments. Commands can be converted to and from # comments.
See also the /* and */ comment block commands, which are to comment multiple commands.

The following dialog is used to edit the command and illustrates the command syntax:

Comment

Command Editor

The command syntax is as follows:

Some text

A sample command file is as follows:

Some comments…

 Command Reference – # - 1 139

Command TSTool Documentation

This page is intentionally blank.

Command Reference – # - 2 140

Command Reference: /*
Comment block start

Version 08.17.00, 2008-10-01

The /* command starts a multi-line comment block and is useful for inserting long comments or
temporarily commenting out blocks of commands. See also the */ and # commands. Commands
between the /* and */ are not converted to comments but are skipped during processing.

The following dialog is used to edit the command and illustrates the command syntax:

CommentBlockStart

/* Command Editor

The command syntax is as follows:

/*

A sample command file is as follows:

/*
SomeCommentedOutCommands()…
*/

 Command Reference – /* - 1 141

/* Command TSTool Documentation

This page is intentionally blank.

Command Reference – /* - 2 142

Command Reference: */
Comment block end

Version 08.17.00, 2008-10-01

The */ command ends a multi-line comment block and is useful for inserting long comments or
temporarily commenting out blocks of commands. See also the /* and # commands. Commands
between the /* and */ are not converted to comments but are skipped during processing.

The following dialog is used to edit the command and illustrates the command syntax:

CommentBlockEnd

*/ Command Editor

The command syntax is as follows:

*/

A sample command file is as follows:

/*
SomeCommentedOutCommands()…
*/

 Command Reference – */ - 1 143

*/ Command TSTool Documentation

This page is intentionally blank.

Command Reference – */ - 2 144

Command Reference: Time Series Identifier
(TSID)

Read a single time series given the time series identifier
Version 09.00.03, 2009-01-15

A time series identifier (TSID) command reads a single time series. In order to read the time series from
a persistent format (database, file, or web site), the TSID must contain the input type, and if necessary, the
input name. For example, a TSID command for the State of Colorado’s StateMod model file format is of
the form:

LocationID…Interval~StateMod~Filename

Refer to the StateMod Input Type appendix for a full description of the file format. Appendices are
available for all input types. A TSID command for a StateMod file is generated as follows:

1. Select the StateMod input type and appropriate time step in the main TSTool window.
2. Press the Get Time Series List button to list time series. A dialog will prompt for the StateMod

file and after selection the first year of data from the file will be read to get a list of identifiers.
The interval that is specified (Month or Day) indicates whether the file is a monthly or daily
format. The time series will be listed in the time series list in TSTool.

3. Select one or more time series from the list and copy to commands.

The following dialog is used to edit the command and illustrates the syntax of the command. Limited
checks are done while editing the command. However, once committed, TSTool will attempt to read the
time series metadata and will issue a warning if unable to read the data. Time series identifiers that
include filenames should typically be adjusted to a relative path to allow the files to be moved to another
location and run without errors. Use the Remove Working Directory button to remove the working
directory (or Add Working Directory) to add it.

TSID_StateMod

TSID Command Editor for a Time Series Read From a StateMod File

 Command Reference – TSID - 1 145

TSID Command TSTool Documentation

The following example is for a TSID for the State of Colorado’s HydroBase database. In this case there
is no filename in the identifier and therefore no need to adjust to a relative path.

TSID

TSID Command Editor for a Time Series Read From the HydroBase Database

After executing the command, the time series will have the identifier as originally requested, with no alias
being assigned. Use the TS Alias = ReadTimeSeries() command to assign an alias to the time
series, or use one of the specific read commands.

A sample command file to read time series from a StateMod file is as follows. In this case the absolute
paths have been adjusted to relative paths using the command editor dialog. Note also that the data
source and data type are not required because this information is not stored in the StateMod file.

09303000...MONTH~StateMod~whiteT.rih
09303400...MONTH~StateMod~whiteT.rih

A sample command file to read time series from the State of Colorado’s HydroBase database is as
follows:

06754000 - SOUTH PLATTE RIVER NEAR KERSEY
06754000.DWR.Streamflow.Month~HydroBase
06758500 - SOUTH PLATTE RIVER NEAR WELDONA
06758500.DWR.Streamflow.Month~HydroBase

Command Reference – TSID - 2 146

Command Reference: Add()
Add one or more time series to a time series (or ensemble)

Version 08.15.00, 2008-05-04

The Add() command adds regular interval time series. The receiving time series will be set to the sum
of itself and all indicated time series. See also the NewTimeSeries() command, which can create an
empty time series to receive a sum. If an ensemble is being processed, another ensemble can be added, a
single time series can be added to all time series in the ensemble, or a list of time series can be added to
the ensemble (the number in the list must match the number of time series in the ensemble).

This command will generate an error if the time series do not have compatible units. If the units are
compatible but are not the same (e.g., IN and FT), then the units of the part will be converted to the units
of the sum before addition. Missing data in the parts can be ignored (do not set the sum to missing) or
can result in missing values in the sum. The user should consider the implications of ignoring missing
data. Time series being added must have the same data interval.

The following dialog is used to edit the command and illustrates the syntax of the command.

Add

Add() Command Editor

 Command Reference – Add() - 1 147

Add() Command TSTool Documentation

The command syntax is as follows:

Add(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSID The time series identifier or alias for the time series to receive the

sum.
TSID or
EnsembleID must
be specified.

EnsembleID The ensemble to receive the sum, if processing an ensemble. TSID or
EnsembleID must
be specified.

AddTSList Indicates how the list of time series is specified, one of:
• AllTS – all time series before the command.
• AllMatchingTSID – all time series that match the

AddTSID (single TSID or TSID with wildcards) will be
added.

• EnsembleID – the time series from ensemble will be added.
• LastMatchingTSID – the last time series that matches the

TSID (single TSID or TSID with wildcards) will be added.
• SelectedTS – the time series are those selected with the

SelectTimeSeries() command.
• SpecifiedTSID – the specified list of time series given by

the AddTSID parameter.

AllTS (the time
series receiving the
sum will not be
added to itself)

AddTSID If the AddTSList parameter is SpecifiedTSID, provide the
list of time series identifiers (or alias) to add, separated by
commas. If the AddTSList parameter is AllMatchingTSID,
FirstMatchingTSID, or LastMatchingTSID, specify a
single TSID or a TSID with wildcards.

Must be specified if
TSList=
SpecifiedTSID,
ignored otherwise.

AddEnsembleID If the EnsembleID parameter is specified, providing an
ensemble ID will add the ensembles.

Use if an ensemble
is being added to
another ensemble.

Handle
MissingHow

Indicates how to handle missing data in a time series, one of:
• IgnoreMissing – create a result even if missing data are

encountered in one or more time series – this option is not as
rigorous as the others

• SetMissingIfOtherMissing – set the result missing if
any of the other time series values is missing

• SetMissingIfAnyMissing – set the result missing if
any time series value involved is missing

IgnoreMissing

A sample command file to add two time series from the State of Colorado’s HydroBase is as follows:

0100501 - EMPIRE DITCH
0100501.DWR.DivTotal.Month~HydroBase
0100503 - RIVERSIDE CANAL
0100503.DWR.DivTotal.Month~HydroBase
Add(TSID="0100501.DWR.DivTotal.Month",TSList="SpecifiedTSID",
AddTSID="0100503.DWR.DivTotal.Month",HandleMissingHow=IgnoreMissing)

Command Reference – Add() - 2 148

Command Reference: AddConstant()
Add a constant value to all data values in a time series (or ensemble)

Version 08.15.00, 2008-05-04

The AddConstant() command adds a constant value to each data value in a time series (or ensemble
of time series) within the specified period. This command is useful, for example, when a time series
needs to be adjusted for a constant bias. Another example is to adjust a reservoir total volume time series
by the dead pool storage in order to compute the active storage (or inverse). Missing data values will
remain missing in the result.

The following dialog is used to edit the command and illustrates the syntax of the command.

AddConstant

AddConstant() Command Editor

 Command Reference – AddConstant() - 1 149

AddConstant() Command TSTool Documentation

The command syntax is as follows:

AddConstant(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be

processed, one of:
• AllMatchingTSID – all time

series that match the TSID (single
TSID or TSID with wildcards) will
be modified.

• AllTS – all time series before the
command.

• EnsembleID – all time series in
the ensemble will be modified.

• LastMatchingTSID – the last
time series that matches the TSID
(single TSID or TSID with
wildcards) will be modified.

• SelectedTS – the time series are
those selected with the
SelectTimeSeries()
command.

AllTS

TSID The time series identifier or alias for the
time series to be modified.

TSID or EnsembleID must be
specified.

EnsembleID The ensemble to be modified, if
processing an ensemble.

TSID or EnsembleID must be
specified.

ConstantValue The data value to add to the time series. None – must be specified.
AnalysisStart The date/time to start analyzing data. Full period.
AnalysisEnd The date/time to end analyzing data. Full period.

A sample commands file to process data from the State of Colorado’s HydroBase is as follows:

2003536 - CONTINENTAL RES
2003536.DWR.ResMeasStorage.Day~HydroBase
AddConstant(TSList=AllMatchingTSID,TSID="2003536.DWR.ResMeasStorage.Day",
 ConstantValue=5000)

CommandReference/AddConstant/Example_AddConstant_HydroBase.TSTool

Command Reference – AddConstant() - 2 150

Command Reference: AdjustExtremes()
Adjust the extreme values in time series data

Version 08.16.04, 2008-09-15

The AdjustExtremes()command adjusts extreme values in time series (e.g., to remove negative
values from a time series that can only have values greater than or equal to zero), while preserving
“mass”.

The following dialog is used to edit the command and illustrates the syntax of the command.

AdjustExtremes

AdjustExtremes() Command Editor

The command syntax is as follows:

AdjustExtremes(Parameter=Value,…)

 Command Reference – AdjustExtremes() - 1 151

AdjustExtremes() Command TSTool Documentation

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be processed, one of:

• AllMatchingTSID – all time series that match the TSID
(single TSID or TSID with wildcards) will be modified.

• AllTS – all time series before the command.
• EnsembleID – all time series in the ensemble will be modified.
• FirstMatchingTSID – the first time series that matches the

TSID (single TSID or TSID with wildcards) will be modified.
• LastMatchingTSID – the last time series that matches the

TSID (single TSID or TSID with wildcards) will be modified.
• SelectedTS – the time series are those selected with the

SelectTimeSeries() command.

AllTS

TSID The time series identifier or alias for the time series to be modified,
using the * wildcard character to match multiple time series.

Required if
TSList=
*TSID.

EnsembleID The ensemble to be modified, if processing an ensemble. Required if
TSList=
EnsembleID.

AdjustMethod Only the Average adjust method is implemented, in which adjusted
data values are set to the average over the adjusted period, necessary
to maintain the total/mass of the original values. This method adjusts
extreme values by considering neighboring values equally on each
side of the point in question. When adjusting minimum values,
neighboring values are added until the average is above the allowed
extreme value, and all values that make up the sum are then set to the
average value. Missing values remain missing and therefore this
command should only be applied to filled data. If a satisfactory
result cannot be reached within this limit, then the original values are
not changed. Changed values are listed in the time series history,
which is viewed with the time series properties. Applying the
command will result in the time series having periods of constant
value, with the length of the period being controlled by the
magnitude of the extreme value.

None – must be
specified.

Extreme
ToAdjust

Indicate whether minimum (AdjustMinimum) or maximum
(AdjustMaximum) values to be adjusted.

None – must be
specified.

ExtremeValue The extreme value that is the limit of acceptable values. None – must be
specified.

MaxIntervals Indicates how many values on each side of a point are allowed to be
examined.

0, indicating no
limit.

AnalysisStart The date/time to start analyzing data. Full period.
AnalysisEnd The date/time to end analyzing data. Full period.

A sample command file using data from the State of Colorado’s HydroBase is as follows:

06759000 - BIJOU CREEK NEAR WIGGINS, CO.
06759000.USGS.Streamflow.Day~HydroBase
AdjustExtremes(TSList=AllMatchingTSID,TSID="06759000.USGS.Streamflow.Day",
AdjustMethod=Average,ExtremeToAdjust=AdjustMinimum,ExtremeValue=0,MaxIntervals=0)

Command Reference – AdjustExtremes() - 2 152

Command Reference: AnalyzePattern()
Determine historical average patterns for monthly time series

Version 09.05.01, 2009-10-28

The AnalyzePattern() command creates the pattern file for use with the FillPattern()
command (see also SetPatternFile()). Each time series to be processed is analyzed as follows:

1. Create a time series to contain the pattern identifiers for each month (e.g., DRY, AVG, WET).
2. For each month, determine the monthly values for the time series being analyzed (e.g., find all of

the January values).
3. Rank the values in ascending order.
4. Evaluate the percentile rank information for non-missing values and assign in the pattern time

series an appropriate pattern identifier. For example, if the percentile values are .25 and .75,
assign the first pattern identifier to values < 25% of the non-missing count, assign the second
pattern identifier to non-missing values >= 25% and < 75%, and assign the third identifier to the
non-missing values >= 75%.

The resulting pattern time series is then written to a file. This command is enabled for monthly data
only. See below for an example of a fill pattern file. One or more patterns can be included in each
pattern file, similar to StateMod time series files (see the StateMod Input Type Appendix), and multiple
pattern files can be used, if appropriate.

Years Shown = Water Years
Missing monthly data filled by the Mixed Station Method, USGS 1989
Time series identifier = 09034500.CRDSS_USGS.QME.MONTH.1
Description = COLORADO RIVER AT HOT SULPHUR SPRINGS, CO.
-e-b----------eb------eb------eb------eb------eb------eb------eb------eb------eb------eb------eb------eb------eb--------e
 10/1908 - 9/1996 ACFT WYR
1909 09034500 AVG AVG AVG WET WET AVG AVG AVG WET WET WET WET
1910 09034500 WET WET WET WET WET WET AVG AVG AVG AVG AVG AVG
1911 09034500 AVG AVG WET AVG AVG AVG AVG WET WET WET AVG WET
1912 09034500 WET WET WET WET WET AVG AVG WET WET WET WET WET
...ommitted...

The pattern file will by default contain all available data for the overlapping period and will be written in
calendar year. The output period can be set with the SetOutputPeriod() command and the output
year type can be set with the SetOutputYearType() command.

 Command Reference – AnalyzePattern() - 1 153

AnalyzePattern() Command TSTool Documentation

The following dialog is used to edit the AnalyzePattern() command and illustrates the syntax of the
command.

AnalyzePattern

AnalyzePattern() Command Editor

The command syntax is as follows:

AnalyzePattern(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be

processed, one of:
• AllMatchingTSID – all time

series that match the TSID (single
TSID or TSID with wildcards).

• AllTS – all time series before the
command.

• EnsembleID – all time series in
the ensemble.

• FirstMatchingTSID – the first
time series that matches the TSID
(single TSID or TSID with
wildcards).

• LastMatchingTSID – the last
time series that matches the TSID
(single TSID or TSID with
wildcards).

None – must be specified.

Command Reference – AnalyzePattern() - 2 154

TSTool Documentation AnalyzePattern() Command

 SelectedTS – the time series
selected with the
SelectTimeSeries()
command.

TSID The time series identifier or alias for the
time series to be processed, using the *
wildcard character to match multiple
time series.

Required if TSList=*TSID.

EnsembleID The ensemble to be processed, if
processing an ensemble.

Required if
TSList=EnsembleID.

Method Method used to determine the patterns.
Currently only Percentile is
recognized.

Percentile

Percentile A comma-separated list of percentiles for
cutoffs, used when
Method=Percentile. Values should
be 0 to 1 (e.g., .25, .75)

None – must be specified.

PatternID The pattern identifiers to use,
corresponding to the percentiles. Specify
one more than the number of percentiles
(e.g., DRY,AVG,WET).

None – must be specified.

OutputFile Output file to write, which will contain
the pattern information. Currently only
the StateMod pattern file format is
supported.

None – must be specified.

TableID The identifier for a new table to be
created, containing the sample values for
each month adjoining the percentile
positions. Each time series will be listed
in the first column as per the DataRow
parameter. For N percentile values, the
first N-1 values in the table will
correspond to the last value below a
percentile cutoff and the Nth value will
be the first value above the Nth
percentile value.

Optional – table will not be
created by default.

DataRow The contents of the first column,
indicating the time series.

Location, data type, and units, if
available.

Legacy Indicates whether to duplicate legacy
behavior (True) or use current behavior
(default, False). A bug was fixed in
TSTool 9.05.02 to correct a bug where
the last value in each bin sometimes
should have been in the larger cutoff bin.

False – use current behavior.

 Command Reference – AnalyzePattern() - 3 155

AnalyzePattern() Command TSTool Documentation

A sample command file to analyze streamflow data from the State of Colorado’s HydroBase and save
statistics in a table is as follows:

06720500 - SOUTH PLATTE RIVER AT HENDERSON
06720500.DWR.Streamflow.Month~HydroBase
06754000 - SOUTH PLATTE RIVER NEAR KERSEY
06754000.DWR.Streamflow.Month~HydroBase
AnalyzePattern(TSList=AllTS,Method=Percentile,
 Percentile="0.25,0.75",PatternID="DRY,AVG,WET",OutputFile="Div1.pat",
 TableID=”Statistics”,DataRow=”%L, %U”)

The following figure illustrates the resulting statistics:

AnalyzePatter_Table

Command Reference – AnalyzePattern() - 4 156

Command Reference: ARMA()
Lag and attenuate a time series using AutoRegressive Moving Average

Version 08.16.04, 2008-09-15

The ARMA() command lags and attenuates a time series (e.g., to route a streamflow time series
downstream). This approach preserves the “mass” of the data. The general equation for ARMA is:

O a O a O a O b I b I b It t t p t p t t q= ∗ + ∗ t q+ + ∗ + ∗ + ∗ + + ∗− − − −1 1 2 2 0 1 1... ... −

Where:

t = time step

Ot = output value at time t

It = input value at time t

a, b = ARMA coefficients

and the p and q values indicate the degree of the equation: ARMA(p,q).

The ARMA coefficients are determined by analyzing historical data and may be developed using a data
interval that is different than the data interval of the time series that is being manipulated. The
coefficients are typically computed by an external analysis program (TSTool does not perform this
function).

The time series to process can have any interval. The a and b coefficients are listed in the dialog from
left-most to right-most in the equation. Note that there are p a-coefficients and (q + 1) b-coefficients
(because there is a b-coefficient at time t0). The interval used to compute the ARMA coefficients can be
different from the data interval but the data and ARMA intervals must be divisible by a common interval.
The ARMA algorithm is executed as follows:

1. The data and ARMA intervals are checked and if they not the same, the data are expanded by

duplicating each value into a temporary array. For example, if the data interval is 6Hour and the
ARMA interval is 2Hour, each data value is expanded to three data values (2Hour values). If the data
interval is 6Hour and the ARMA interval is 10Hour, each data value is expanded to three data values
(2Hour values).

2. The ARMA equation is applied at each point in the expanded data array. However, because the
ARMA coefficients were developed using a specific interval, only the data values at the ARMA
interval are used in the equation. For example, if the expanded data array has 2Hour data and the
ARMA interval is 10Hour, then every fifth value will be used (e.g., t corresponds to the “current”
value and t – 1 corresponds to the fifth value before the current value). Because the ARMA algorithm
depends on a number of previous terms in both the input and output, there will be missing terms at the
beginning of the data array and in cases where missing data periods are encountered. Ideally ARMA
will be applied to filled data and only the initial conditions will be an issue. In this case the output
period should ideally be less than the total period so that the initial part of the routed time series can
be ignored. In cases where O values are missing, the algorithm first tries to use the I values. If any
values needed for the result are missing, the result is set to missing.

3. The final results are converted to a data interval that matches the original input, if necessary. If the
original data interval and the ARMA interval are the same, no conversion is necessary. For example,
if the original data interval is 6Hour and the ARMA interval is 10Hour, then the expanded data

 Command Reference – ARMA() - 1 157

ARMA() Command TSTool Documentation

interval will be 2Hour. Consequently, three sequential expanded values are averaged to obtain the
final 6Hour time series.

The following dialog is used to edit the command and illustrates the command syntax.

ARMA

ARMA() Command Editor

The command syntax is as follows:

ARMA(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be processed, one of:

• AllMatchingTSID – all time series that match the TSID
(single TSID or TSID with wildcards) will be modified.

• AllTS – all time series before the command.
• EnsembleID – all time series in the ensemble will be

modified.
• FirstMatchingTSID – the first time series that matches the

TSID (single TSID or TSID with wildcards) will be modified.

AllTS

Command Reference – ARMA() - 2 158

TSTool Documentation ARMA() Command

Parameter Description Default
• LastMatchingTSID – the last time series that matches the

TSID (single TSID or TSID with wildcards) will be modified.
• SelectedTS – the time series are those selected with the

SelectTimeSeries() command.
TSID The time series identifier or alias for the time series to be modified,

using the * wildcard character to match multiple time series.
Required if
TSList=*TSID.

EnsembleID The ensemble to be modified, if processing an ensemble. Required if
TSList=
EnsembleID.

ARMA
Interval

The ARMA interval to use in the analysis None – must be
specified.

a a coefficients. Optional.
b b coefficients. None – must be

specified.

A sample command file to process streamflow data from the USGS is as follows:

SetOutputPeriod(OutputStart="1936-01-01",OutputEnd="1936-03-31")
TS Original = ReadUsgsNwis(InputFile="Data/G03596000.in1")
TS Routed = Copy(TSID="Original",NewTSID="03596000.USGS.Streamflow.Day.Routed")
ARMA(TSList=AllMatchingTSID,TSID="Routed",ARMAInterval=2Hour,a="0.7325,
-0.3613,0.1345,0.5221,-0.2500,0.1381,-0.2643,0.0558",b="0.0263,0.0116,
-0.0146,-0.0081,0.0127,0.0798,0.0727,0.0523,0.0599")

 Command Reference – ARMA() - 3 159

ARMA() Command TSTool Documentation

The following figure shows the original and routed time series.

ARMA_graph

Example Graph Showing Original and ARMA-Routed Time Series

Command Reference – ARMA() - 4 160

TSTool Documentation ARMA() Command

The Cumulate() command can be used to verify mass balance of the original and routed time series
(see the Cumulate() command discussion below). For example, insert a Cumulate() command
near the end of a command file.

The following figure shows the time series from the previous graph, this time as cumulative time series.

ARMA_graph_cumulative

Example Graph Showing Original and ARMA-Routed Time Series as Cumulative Values

 Command Reference – ARMA() - 5 161

ARMA() Command TSTool Documentation

This page is intentionally blank.

Command Reference – ARMA() - 6 162

Command Reference: Blend()
Append a Time Series to the End of Another Time Series

Version 08.15.00, 2008-05-01

The Blend()command blends one time series into another, extending the first time series period if
necessary. This is typically used for combining time series for a station that has been renamed or to blend
historic and real-time data. The second (independent time series) will ALWAYS override the first time
series. See also the SetFromTS() and Add() commands. The Blend() command ensures that
single data values are used whereas Add() will add values if more than one value is available at the same
date/time. The SetFromTS() does not extend the period.

The following dialog is used to edit the command and illustrates the syntax of the command.

Blend

Blend() Command Editor

 Command Reference – Blend() - 1 163

Blend() Command TSTool Documentation

The command syntax is as follows:

Blend(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSID The time series identifier or alias for the

time series to be modified.
None – must be specified.

IndependentTSID The time series identifier or alias for the
time series to be blended to the first time
series.

None – must be specified.

BlendMethod The method used to blend the data, one
of:
• BlendAtEnd, resulting in the main

time series having the other time
series attached to the end of its
period.

None – must be specified.
Currently only BlendAtEnd is
recognized.

A sample command file to blend two time series from the State of Colorado’s HydroBase database is as
follows:

08236000 - ALAMOSA RIVER ABOVE TERRACE RESERVOIR
08236000.DWR.Streamflow.Month~HydroBase
08236500 - ALAMOSA RIVER BELOW TERRACE RESERVOIR
08236500.DWR.Streamflow.Month~HydroBase
Blend(TSID=”08236000.DWR.Streamflow.Month”,
 IndependentTSID=”08236500.DWR.Streamflow.Month”,
 BlendMethod=”BlendAtEnd”)

Command Reference – Blend() - 2 164

Command Reference:
CalculateTimeSeriesStatistic()

Calculate time series statistic
Version 09.08.01, 2010-09-15

The CalculateTimeSeriesStatistic() command calculates a statistic for a time series
(typically a single value) and optionally adds the result to a table (see the NewTable() command).
Multiple time series can be processed. The sample from each time series consists of data values for the
full period or a shorter period if specified for the command. Missing values are typically ignored unless
significant for the statistic (e.g., Statistic=MissingCount).

The following dialog is used to edit the command and illustrates the command syntax. Most statistics do
not require additional input; however, those that do utilize the Value* parameters to specify additional
information.

CalculateTimeSeriesStatiistic

CalculateTimeSeriesStatistic() Command Editor

 Command Reference – CalculateTimeSeriesStatistic () - 1 165

CalculateTimeSeriesStatistic() Command TSTool Documentation

The command syntax is as follows:

CalculateTimeSeriesStatistic(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be processed, one

of:
• AllMatchingTSID – all time series that

match the TSID (single TSID or TSID with
wildcards).

• AllTS – all time series before the command.
• EnsembleID – all time series in the ensemble.
• FirstMatchingTSID – the first time series

that matches the TSID (single TSID or TSID
with wildcards).

• LastMatchingTSID – the last time series
that matches the TSID (single TSID or TSID
with wildcards).

• SelectedTS – the time series selected with
the SelectTimeSeries() command.

AllTS

TSID The time series identifier or alias for the time series
to be processed, using the * wildcard character to
match multiple time series.

Required if
TSList=*TSID.

EnsembleID The ensemble to be processed, if processing an
ensemble.

Required if
TSList=EnsembleID.

Statistic Statistic to compute, one of the following:
• Count – number of data values total, including

missing and non-missing
• DeficitMax – the maximum deficit value

(where deficit is mean minus value)
• DeficitMean – the mean deficit value

(where deficit is mean minus value)
• DeficitMin – the minimum deficit value

(where deficit is mean minus value)
• DeficitSeqLengthMax – the maximum

number of sequential intervals where each value
is less than the mean (for example maximum
drought length)

• DeficitSeqLengthMean – the mean
number of sequential intervals where each value
is less than the mean (for example mean
drought length)

• DeficitSeqLengthMin – the minimum
number of sequential intervals where each value
is less than the mean (for example minimum
drought length)

• DeficitSeqMin – the maximum sum of
sequential values where each value is less than

None – must be specified.

Command Reference – CalculateTimeSeriesStatistic () - 2 166

TSTool Documentation CalculateTimeSeriesStatistic () Command

Parameter Description Default
the mean (for example maximum drought water
volume)

• DeficitSeqMean – the mean of the sum of
sequential values where each value is less than
the mean (for example mean drought water
volume)

• DeficitSeqMin – the minimum sum of
sequential values where each value is less than
the mean (for example minimum drought water
volume)

• Lag-1AutoCorrelation – the
autocorrelation between values and the those
that follow in the next time step, given by:
rk = Σi=1

N-k(Yi - Ymean)(Yi + k - Ymean)
 Σi=1

N(Yi - Ymean)2

• Last – last non-missing value
• Max – maximum value
• Mean – mean value
• Min – minimum value
• MissingCount – number of missing values
• MissingPercent – percent of values that

are missing
• NonmissingCount – number of non-missing

values
• NonmissingPercent – percent of values

that are not missing
• NqYY – restricted to daily data and typically

used to analyze return interval of low flows,
requires values of N, YY, and number of missing
allowed to be specified with Value parameters
(see Statistic Details table below)

• Skew – skew coefficient, as follows:
Cs = N Σi=1

N(Yi - Ymean)3

 (n – 1)(n – 2)s3

where s = standard deviation
• StdDev – standard deviation
• SurplusMin – the maximum surplus value

(where surplus is value minus mean)
• SurplusMean – the mean surplus value

(where surplus is value minus mean)
• SurplusMin – the minimum surplus value

(where surplus is value minus mean)
• SurplusSeqLengthMax – the maximum

number of sequential intervals where each value
is greater than the mean (for example maximum
water surplus length)

• SurplusSeqLengthMean – the mean
number of sequential intervals where each value

 Command Reference – CalculateTimeSeriesStatistic () - 3 167

CalculateTimeSeriesStatistic() Command TSTool Documentation

Parameter Description Default
is greater than the mean (for example mean
water surplus length)

• SurplusSeqLengthMin – the minimum
number of sequential intervals where each value
is greater than the mean (for example minimum
water surplus length)

• SurplusSeqMin – the maximum sum of
sequential values where each value is greater
than the mean (for example maximum water
surplus volume)

• SurplusSeqMean – the mean of the sum of
sequential values where each value is greater
than the mean (for example mean water surplus
volume)

• SurplusSeqMin – the minimum sum of
sequential values where each value is greater
than the mean (for example minimum water
surplus volume)

• Variance – variance
Value1 Input data required by the statistic. Currently the

dialog does not check the value for correctness – it
is checked when the statistic is computed.

See Statistic Details
table below.

Value2 Input data required by the statistic. Currently the
dialog does not check the value for correctness – it
is checked when the statistic is computed.

See Statistic Details
table below.

Value3 Input data required by the statistic. Currently the
dialog does not check the value for correctness – it
is checked when the statistic is computed.

See Statistic Details
table below.

AnalysisStart The date/time to start analyzing data. Full period is analyzed.
AnalysisEnd The date/time to end analyzing data. Full period is analyzed.
TableID Identifier for table that receives the statistic. Optional – table output is

not required.
TableTSIDColumn Table column name that is used to look up the time

series. If a matching TSID is not found, a row will
be added to the table. If a TSID is found, the
statistic cell value for the time series is modified.

Optional – table output is
not required.

TableTSIDFormat The specification to format the time series identifier
to insert into the TSID column. Use the format
choices and other characters to define a unique
identifier.

Time series alias if
available, or the time
series identifier.

TableStatistic
Column

Table column name to receive the statistic value. If
not found in the table, a new column is added
automatically.

Optional – table output is
not required.

Command Reference – CalculateTimeSeriesStatistic () - 4 168

TSTool Documentation CalculateTimeSeriesStatistic () Command

The following table provides additional information about specific statistics, in particular to describe how
the statistic is computed and whether additional input needs to be provided with Value command
parameters.

Statistic Details

Statistic Description Required Values
NqYY This statistic is typically used to evaluate the return period of

low flows and is implemented only for daily data. The N
indicates the number of daily values to be averaged and YY
indicates the return interval. For example, 7q10 indicates the
flow corresponding to the 10-year recurrence interval for
minimum average daily flow (for 7 days) in a year. This
statistic is computed as follows, using 7q10 as an example:
1. Determine the number of years to be analyzed (from

analysis period command parameters or time series data).
2. For each year, loop through each day from January 1 to

December 31. Compute an average flow by averaging 7
days, in this case with 3 values on each side of the current
day and including the current day. If at the end of the
year, use 3 values from adjoining years. The number of
missing data allowed is controlled by the Value3
command parameter.

3. For the year, save the minimum 7-day average.
4. Utilize the minimum values for all years, with log-Pearson

Type III distribution, to determine the value for the 10-
year recurrence interval. See
http://pubs.usgs.gov/sir/2008/5126/section3.html for a
description of NqYY and “Hydrology for Engineers, 3rd
Edition,” Linsley, Kohler, Paulhus for a description of
log-Pearson Type III distribution.

Value1 – specify the
number of daily values
to be averaged.
Currently this must be
an odd number to allow
bracketing the current
day.

Value2 – specify the
return interval (e.g.,
10).

Value3 – specify the
number of missing
values allowed in the
average (e.g., 0 for
most rigorous analysis).
It may be useful to set
this value if, for
example, a single daily
value is available in the
time series, for example
entered on the first day
of the month.

All other
statistics

Described above. No additional input
values are needed.

The following example illustrates how to use the command to compute the 7q10 statistic for daily flow:

TS linsley = ReadDateValue(InputFile="Data\linsley.dv")
 NewTable(TableID="Table1",Columns="TSID,string;7q10,double")
CalculateTimeSeriesStatistic(Statistic="NqYY",Value1=7,Value2=10,Value3=6,
 TableID="Table1",TableTSIDColumn="TSID",TableStatisticColumn="7q10")
WriteTableToDelimitedFile(TableID="Table1",
 OutputFile="Results/Test_CalculateTimeSeriesStatistic_7q10_linsley_out.csv")

 Command Reference – CalculateTimeSeriesStatistic () - 5 169

http://pubs.usgs.gov/sir/2008/5126/section3.html

CalculateTimeSeriesStatistic() Command TSTool Documentation

This page is intentionally blank.

Command Reference – CalculateTimeSeriesStatistic () - 6 170

Command Reference: TS Alias =
ChangeInterval()

Create a new time series by changing a time series data interval
Version 09.06.03, 2010-04-14

A ChangeInterval() command creates a new time series by changing the data interval of an existing
time series. The majority of the original header data (e.g., description, units) are copied to the new time
series. Time series data values have a time scale of accumulated (e.g., volume), mean, or instantaneous.
Changing the interval can also result in a change in the time scale (e.g., converting instantaneous values to
a mean value). Currently, the time scale for input and output time series is NOT automatically
determined from the data type and interval and must be specified as ACCM, MEAN, or INST.
Instantaneous values are recorded at the date/time of the value and typically apply to small intervals (e.g.
minute and hour). For mean and accumulated time series, the date/time for each value is at the end of the
interval for which the value applies.

Irregular time series have a date/time precision and a scale appropriate for the data. For example,
irregular minute time series may be used for instantaneous temperature or accumulated precipitation.
Irregular day time series may be used for “instantaneous” reservoir level. For regular time series, the data
intervals must align so that each larger interval aligns with the end-points of the corresponding smaller
intervals (e.g., the ends of 6-hour intervals align with the daily interval).

The following conversions are currently supported, with a description of the conversion process.

Irregular Time Series to Regular Time Series

An irregular time series can be converted to a regular time series. The ability to change from an irregular
or regular time series to an irregular time series is not currently implemented. Missing data is handled in
different ways depending on the old and new time scales. Each of the follow examples demonstrates how
missing data is interpreted.

The following conversion combinations are allowed.

Small Interval ACCM to Large Interval ACCM

When converting from small interval accumulated data to large interval accumulated data, values from
the old time series are summed for the new interval-ending date/time from the values in the old intervals
prior to this date/time.

The following illustrates the conversion from NHour to NHour (1Hour to 3Hour example):

Day 1,
Hour 0
(A)

Day 1,
Hour 1
(B)

Day 1,
Hour 2
(Missing)

Day 1,
Hour 3
(C)

Day 1,
Hour 4
(Missing)

Day 1,
Hour 5
(Missing)

Day 1,
Hour 6
(Missing)

Day 1,
Hour 0
=A

Day 1, Hour 3
=B+C

Day 1, Hour 6
= Missing

 Command Reference – ChangeInterval() - 1 171

ChangeInterval() Command TSTool Documentation

Large Interval ACCM to Small Interval ACCM

When converting from large interval accumulated data to small interval accumulated data, values from
the old time series are equally divided by the number of intervals prior to this date/time in the new time
series since the previous non-missing data.

The following illustrates the conversion from NHour to NHour (3Hour to 1Hour example):

Day 1,
Hour 0
(A)

Day 1, Hour 3
(B)

Day 1, Hour 6
(Missing)

Day 1, Hour 9
(C)

Day 1,
Hour 0
=A

Day 1,
Hour 1
=B/3

Day 1,
Hour 2
=B/3

Day 1,
Hour 3
=B/3

Day 1,
Hour 4
=C/6

Day 1,
Hour 5
=C/6

Day 1,
Hour 6
=C/6

Day 1,
Hour 7
=C/6

Day 1,
Hour 8
=C/6

Day 1,
Hour 9
=C/6

Small Interval MEAN or INST to Large Interval MEAN

When converting from instantaneous or mean data to mean data, mean values are calculated for the new
interval-ending date/time from the values in the old intervals prior to this date/time.

The following illustrates the conversion from NHour to NHour (1Hour to 3Hour example):

Day 1,
Hour 0
(A)

Day 1,
Hour 1
(B)

Day 1,
Hour 2
(Missing)

Day 1,
Hour 3
(C)

Day 1,
Hour 4
(Missing)

Day 1,
Hour 5
(Missing)

Day 1,
Hour 6
(Missing)

Day 1,
Hour 0
=A

Day 1, Hour 3
=(B+C)/2

Day 2, Hour 6
= Missing

Large Interval MEAN or INST to Small Interval MEAN

When converting from large interval mean or instantaneous data to small interval mean data, values from
the old time series are copied to the new interval-ending date/time time series.

The following illustrates the conversion from NHour to NHour (3Hour to 1Hour example):

Day 1,
Hour 0
(A)

Day 1, Hour 3
(B)

Day 1, Hour 6
(Missing)

Day 1, Hour 9
(C)

Day 1,
Hour 0
=A

Day 1,
Hour 1
=B

Day 1,
Hour 2
=B

Day 1,
Hour 3
=B

Day 1,
Hour 4
=C

Day 1,
Hour 5
=C

Day 1,
Hour 6
=C

Day 1,
Hour 7
=C

Day 1,
Hour 8
=C

Day 1,
Hour 9
=C

Small Interval INST to Large Interval INST

When converting from small interval instantaneous data to large interval instantaneous data, the data is
copied directly from the old time series when available. If the data is missing, the most recent previous
valid data is used.

The following illustrates the conversion from NHour to NHour (1Hour to 3Hour example):

Command Reference – ChangeInterval() - 2 172

TSTool Documentation ChangeInterval() Command

Day 1,
Hour 0
(A)

Day 1,
Hour 1
(B)

Day 1,
Hour 2
(Missing)

Day 1,
Hour 3
(C)

Day 1,
Hour 4
(Missing)

Day 1,
Hour 5
(D)

Day 1,
Hour 6
(Missing)

Day 1,
Hour 7
(E)

Day 1,
Hour 8
(F)

Day 1, Hour 0
=A

Day 1, Hour 3
=C

Day 1, Hour 6
=D

Large Interval INST to Small Interval INST

When converting from large interval instantaneous data to small interval instantaneous data, values from
the old time series are linearly interpolated to calculate values for the new time series.

The following illustrates the conversion from NHour to NHour (3Hour to 1Hour example):

Day 1,
Hour 0
(A)

Day 1, Hour 3
(B)

Day 1, Hour 6
(Missing)

Day 1, Hour 9
(C)

Day 1,
Hour 0
=A

Day 1,
Hour 1
=A+
(B-A)*
(1/3)

Day 1,
Hour 2
=A+
(B-A)*
(2/3)

Day 1,
Hour 3
=B

Day 1,
Hour 4
=B+
(C-B)*
(1/6)

Day 1,
Hour 5
= B+
(C-B)*
(2/6)

Day 1,
Hour 6
= B+
(C-B)*
(3/6)

Day 1,
Hour 7
= B+
(C-B)*
(4/6)

Day 1,
Hour 8
= B+
(C-B)*
(5/6)

Day 1,
Hour 9
=C

Regular Time Series to Regular Time Series

ACCM (Accumulation) to ACCM (Accumulation)

Small Interval ACCM (Accumulation) to Large Interval ACCM (Accumulation)

Changing the interval for small interval accumulated data to large interval accumulated data involves
summing the small interval data values for the period that overlaps the large interval.

Accumulated data have a timestamp corresponding to the interval-end for the accumulation. Conversions
involving time intervals that have zero values (e.g., Hour 0, Minute 0) result in a perceived shift in time
because the zero occurs on the boundary between larger intervals. The following examples illustrate the
accumulation for common cases. In cases where an accumulation jumps over two or more interval
categories (e.g., minute to day), the accumulation occurs as if the two intermediate accumulations
occurred in succession. In the following examples, the general representation is shown first, followed by
an example where appropriate.

The following illustrates the conversion from NHour to Day (6Hour to Day example, i equals the hour
multiplier):

Day 1,
Hour 0

Day 1,
Hour i

Day 1,
Hour 2i

Day 1,
Hour 3i

Day 2,
Hour 0

Day 1,
Hour 0

Day 1,
Hour 6 (A)

Day 1,
Hour 12 (B)

Day 1,
Hour 18 (C)

Day 2,
Hour 0 (D)

 Day 1 accumulation (A+B+C+D)

 Command Reference – ChangeInterval() - 3 173

ChangeInterval() Command TSTool Documentation

The following illustrates the conversion from NDay to Month (example for a month with 30 days):

Month 1,
Day 1 (A1)

…

… Month 1, Day
30 (A30)

Month 1 accumulation (A1 + … + A30)

Large Interval ACCM (Accumulation) to Small Interval ACCM (Accumulation)

Changing from large interval accumulation data to small interval mean data involves dividing each
accumulated value by the number of new values for that same period of record.

The following illustrates the conversion from Day to 6Hour (Day to 6Hour example, i equals the hour
multiplier):

Day 1 accumulate (A)
Day 1,
Hour 0

Day 1,
Hour i

Day 1,
Hour 2i

Day 1,
Hour 3i

Day 1,
Hour 0
= A/4

Day 1,
Hour 6
= A/4

Day 1,
Hour 12
= A/4

Day 1,
Hour 18
= A/4

ACCM (Accumulation) to INST (Instantaneous)

Accumulated to instantaneous is not currently supported.

ACCM (Accumulation) to MEAN

Small Interval ACCM to Large Interval MEAN

See Small Interval INST (Instantaneous) to Large Interval MEAN.

Interval ACCM to Same Interval MEAN

Changing the interval from accumulation data to the same interval mean data involves copying the data
from the old time series to the new time series (no changes to date values occur).

The following illustrates the conversion from 6Hour to 6Hour (6Hour to 6Hour example, i equals the hour
multiplier):

Day 1,
Hour 0

Day 1,
Hour i

Day 1,
Hour 2i

Day 1,
Hour 3i

Day 1,
Hour 0
(A)

Day 1,
Hour 6
(B)

Day 1,
Hour 12
(C)

Day 1,
Hour 18
(D)

Day 1,
Hour 0
=A

Day 1,
Hour 6
=B

Day 1,
Hour 12
=C

Day 1,
Hour 18
=D

Command Reference – ChangeInterval() - 4 174

TSTool Documentation ChangeInterval() Command

Large Interval ACCM to Small Interval MEAN

See Large Interval ACCM to Small Interval ACCM.

INST (Instantaneous) to INST (Instantaneous)

Small Interval INST (Instantaneous) to Large Interval INST (Instantaneous)

Changing the interval for small interval instantaneous data to large interval instantaneous data involves
assigning each date in the new time series a value from the corresponding date in the old time series. The
HandleMissingInputHow parameter indicates how to interpret a missing value in the old time
series. HandleMissingInputHow=KeepMissing will simply assign a missing value for that
date/time. HandleMissingInputHow=SetToZero will set the value to 0. Repeat fills the date
with data from the last non-missing value. Interpolation and using a non-missing future value may be
added in the future.

A special case is the ability to compute a statistic from the sample of values from the input time series,
using the Statistic parameter. For example, instantaneous 5 minute temperature data can be
converted to 1 day maximum values. In this case, each 1 day sample of values from the input time series
is used to compute the statistic. The initial handling of missing data described above is supported and
additionally the AllowMissingCount parameter is recognized to control computation of the statistic.

The following illustrates the conversion from NHour to Day (6Hour to Day example where
HandleMissingInputHow = Repeat, i equals the hour multiplier):

Day 1,
Hour 0

Day 1,
Hour i

Day 1,
Hour 2i

Day 1,
Hour 3i

Day 1,
Hour 0

Day 1,
Hour i

Day 1,
Hour 2i

Day 1,
Hour 3i

Day 1,
Hour 0
(A)

Day 1,
Hour 6
(B)

Day 1,
Hour 12
(C)

Day 1,
Hour 18
(D)

Missing
data

Day 1,
Hour 6
(E)

Day 1,
Hour 12
(F)

Day 1,
Hour 18
(G)

Day 1 instantaneous = A Day 2 instantaneous = D

Large Interval INST (Instantaneous) to Small Interval INST (Instantaneous)

Small interval instantaneous data is created from larger interval instantaneous data by linearly
interpolating between the previous and current large interval data to fill each value in the new time series
during that same period of time. If the value in the old time series is missing, the method specified by the
user in the HandleMissingInputHow parameter is used.

 Command Reference – ChangeInterval() - 5 175

ChangeInterval() Command TSTool Documentation

The following illustrates the conversion from Day to NHour (Day to 6Hour example, i equals the hour
multiplier):

Day 1 instantaneous (A) Day 2 instantaneous (B) Day 3 …
Day 1,
Hour 0

Day 1,
Hour i

Day 1,
Hour 2i

Day 1,
Hour 3i

Day 2,
Hour 0

Day 2,
Hour i

Day 2,
Hour 2i

Day 2,
Hour 3i

Day 1,
Hour 0
=A

Day 1,
Hour 6
=A+
(B-A)*
(6/24)

Day 1,
Hour 12
=A+
(B-A)*
(12/24)

Day 1,
Hour 18
=A+
(B-A)*
(18/24)

Day 2,
Hour 0
=B

Day 2,
Hour 6
…

Day 2,
Hour 12
…

Day 2,
Hour 18
…

These values are an interpolated value between
the Day 1 instantaneous value and the Day 2
instantaneous value using a time of 24 hours.

These values are an interpolated value
between the Day 2 instantaneous value
and the Day 3 instantaneous value using
a time of 24 hours.

In the future, the ability to repeat input values may be added.

INST (Instantaneous) to ACCM (Accumulation)

Instantaneous to accumulated is not currently supported.

INST (Instantaneous) to MEAN

Small Interval INST (Instantaneous) to Large Interval MEAN

Changing from small interval instantaneous data to large interval mean data involves adding together all
the values from the small interval time series over the larger interval for the corresponding time period
and then dividing by the number of data values used within this calculation. As in other conversions,
HandleMissingInputHow is first used to interpret missing data. If HandleEndpointHow =
AverageEndpoints, the values at each end of the interval are averaged for minute and hour inputs
(the parameter does not apply to day, month or year input).

The following illustrates the conversion from NHour to Day (6Hour to Day example with
HandleEndpointHow = IncludeFirstOnly, i equals the hour multiplier):

Day 1,
Hour 0

Day 1,
Hour i

Day 1,
Hour 2i

Day 1,
Hour 3i

Day 2,
Hour 0

Day 2,
Hour i

Day 2,
Hour 2i

Day 2,
Hour 3i

Day 1,
Hour 0

Day 1,
Hour 6

Day 1,
Hour 12

Day 1,
Hour 18

Day 2,
Hour 0

Day 2,
Hour 6

Day 2,
Hour 12

Day 2,
Hour 18

Value A B C D E F G H

Day 1 mean= (A+B+C+D)/4 Day 2 mean=(E+F+G+H)/4

Command Reference – ChangeInterval() - 6 176

TSTool Documentation ChangeInterval() Command

The following illustrates the conversion from NHour to Day (6Hour to Day example with
HandleEndpointHow = AverageEndpoints, i equals the hour multiplier):

Day 1,
Hour 0

Day 1,
Hour i

Day 1,
Hour 2i

Day 1,
Hour 3i

Day 2,
Hour 0

Day 2,
Hour i

Day 2,
Hour 2i

Day 2,
Hour 3i

Day 1,
Hour 0

Day 1,
Hour 6

Day 1,
Hour 12

Day 1,
Hour 18

Day 2,
Hour 0

Day 2,
Hour 6

Day 2,
Hour 12

Day 2,
Hour 18

Value A B C D E F G H I

Day 1 mean= ((A+E)/2 +B+C+D) / 4 Day 2 mean=((E+I)/2+F+G+H) / 4

Interval INST (Instantaneous) to Same Interval MEAN

If OutputFillMethod = Interpolate, see Large Interval INST (Instantaneous) to Small
Interval INST (Instantaneous). Otherwise, the values are duplicated from the old time series directly to
the new time series.

The following illustrates the conversion from 6Hour to 6Hour (6Hour to 6Hour example with
OutputFillMethod = Repeat, i equals the hour multiplier):

Day 1,
Hour 0

Day 1,
Hour i

Day 1,
Hour 2i

Day 1,
Hour 3i

Day 2,
Hour 0

Day 1,
Hour 0
(A)

Day 1,
Hour 6
(B)

Day 1,
Hour 12
(Missing)

Day 1,
Hour 18
(D)

Day 2,
Hour 0
(E)

Day 1,
Hour 0
=A

Day 1,
Hour 6
=B

Day 1,
Hour 12
=B

Day 1
Hour 18
=D

Day 2,
Hour 0
=E

Large Interval INST (Instantaneous) to Small Interval MEAN

If the OutputFillMethod = Interpolate, see Large Interval INST (Instantaneous) to Small
Interval INST (Instantaneous). The time series are handled in the same way. Otherwise, the values are
duplicated from the old time series directly to the new time series.

The following illustrates the conversion from Day to 6Hour (Day to 6Hour example with
OutputFillMethod = Repeat, i equals the hour multiplier):

Day 1 instantaneous = A
Day 1,
Hour 0

Day 1,
Hour i

Day 1,
Hour 2i

Day 1,
Hour 3i

Day 1,
Hour 0
=A

Day 1,
Hour 6
=A

Day 1,
Hour 12
=A

Day 1,
Hour 18
=A

Each of these values is equal to the
instantaneous value for that day.

 Command Reference – ChangeInterval() - 7 177

ChangeInterval() Command TSTool Documentation

MEAN to MEAN

Small Interval MEAN to Large Interval MEAN

See Small Interval INST (Instantaneous) to Large Interval MEAN.

Large Interval MEAN to Small Interval MEAN

Changing from large interval mean data to small interval mean data involves copying values from the old
time series into the new time series for that same period of record.

The following illustrates the conversion from Month to Day (Example for a month with 30):

Month Mean (A)
Day 1
=A

Day 2
=A

… Day 30
=A

MEAN to ACCM (Accumulation)

Small Interval MEAN to Large Interval ACCM (Accumulation)

See Small Interval INST (Instantaneous) to Large Interval MEAN.

Interval MEAN to Same Interval ACCM (Accumulation)

See Interval ACCM to Same Interval MEAN.

Large Interval MEAN to Small Interval ACCM (Accumulation)

See Large Interval ACCM to Small Interval ACCM.

MEAN to INST (Instantaneous)

Small Interval MEAN to Large Interval INST (Instantaneous)

Not currently supported.

Interval MEAN to Same Interval INST (Instantaneous)

Not currently supported. The data can be treated equivalently by most commands.

Large Interval MEAN to Small Interval INST (Instantaneous)

Changing the interval for large interval mean to small interval instantaneous data involves calculating a
value for each new interval based on trends found in the mean data. The following example demonstrates
how the data is converted from the old interval to the new interval. A general representation is shown
first followed by an example.

Command Reference – ChangeInterval() - 8 178

TSTool Documentation ChangeInterval() Command

The following illustrates the conversion from Day to NHour (Day to 6Hour example, i equals the hour
multiplier):

Day 1 mean
Day 1,
Hour 0

Day 1,
Hour i

Day 1,
Hour 2i

Day 1,
Hour 3i

Day 1,
Hour 0

Day 1,
Hour 6

Day 1,
Hour 12

Day 1,
Hour 18

The output instantaneous values for each input interval are computed using the current, next, and previous
mean values. All three values are useful because together they indicate whether the current value is part
of a continuous rise or fall, a peak or trough or simply a continuation of a steady value. These conditions
are illustrated in the following figure. The following rules are applied when converting from large
interval mean to small interval instantaneous:
• Missing data is initially converted using the method specified by the user in the

HandleMissingInputHow parameter.
• If the current input value is still missing, the instantaneous time series is also filled with missing data

for each interval that falls in the larger interval.
• If the previous or next mean values are missing, the current mean value for that interval is copied

directly to the instantaneous time series.

ChangeInterval_SQMEPic

Mean data illustration

 Command Reference – ChangeInterval() - 9 179

ChangeInterval() Command TSTool Documentation

• Another condition that may exist is a peak or trough. A peak exists when the current value is greater
than the previous and next values. A trough is when the current value is less than the next and
previous values.

1. In this case, an instantaneous peak (or trough) is calculated. Referring to the above
illustration, the magnitude of the peak is calculated by adding (or subtracting for a
trough) ¼ (a+b)/2 to the current mean.

2. The time of the instantaneous peak is initially set to the start date/time of the current
interval then shifted forward in time using the following calculation. The number of
instantaneous intervals per larger interval is multiplied by b/(a+b). That result is added
to the start date/time. The value for the start of the interval is set to the current value
minus ¼ a. The value for the end of the interval is set to the current value minus ¼ b.

3. The remaining instantaneous values for the interval are linearly interpolated between the
peak (or trough) and both endpoints.

• A final condition that may exist is a continuous rise or fall. A continuous rise or fall exists when the
current value is between the previous and next values.

1. In this case, the instantaneous value at the start of the interval is set to the current value
minus ¼ c (again using the above illustration).

2. The instantaneous value at the end of the larger interval is set to the current value plus ¼
a.

3. The values c and a are calculated. If c is less than a, then the simulated values are
computed by adding small but increasing increments to the starting endpoint until the last
point of the interval is reached. If a is less than c then the output values are computed by
subtracting small but increasing increments to the last endpoint until the first point of the
interval is reached.

After the instantaneous values are estimated using the above set of rules, they are adjusted so that the
volume over each interval is within a specified tolerance of the input mean volume. This tolerance is
specified with the Tolerance parameter. The volume for each interval uses the average of the first and
last endpoint.

This approach has been adapted from the NWSRFS CHANGE-T operation (see
http://www.nws.noaa.gov/oh/hrl/nwsrfs/users_manual/part5/_pdf/533changet.pdf).

The following dialog is used to edit the command and illustrates the syntax for the command. This
example is converting a monthly volume time series to annual water year (October to September)
volumes.

Command Reference – ChangeInterval() - 10 180

TSTool Documentation ChangeInterval() Command

ChangeInterval

ChangeInterval() Command Editor

The command syntax is as follows:

TS Alias = ChangeInterval(Parameter=Value,…)

Command Parameters

Parameter Description Default
Alias The alias to assign to the new time series. The time

series identifier for the new time series will be the same
as the original time series, with the new interval and
optionally a new data type (see the NewDataType
parameter).

None – must be
specified.

TSID The time series identifier or alias for the original (old)
time series.

None – must be
specified.

NewInterval The data interval for the new time series, from the
provided choices. For example: 6Hour, Day, Month,
Year.

None – must be
specified.

OldTimeScale The time scale for the original time series, one of:

ACCM – accumulated data
INST – instantaneous data
MEAN – mean data

None – must be
specified.

 Command Reference – ChangeInterval() - 11 181

ChangeInterval() Command TSTool Documentation

In the future, this parameter may be made optional if the
time scale can be determined from the data type.

NewTimeScale The time scale for the new time series (see
OldTimeScale for possible values). In the future, this
parameter may be made optional if the time scale can be
determined from the data type.

None – must be
specified.

Statistic Used in the case where INST (small interval) to INST
(large interval) conversion is occurring. A sample of
values from the input time series, corresponding to the
output interval, is determined and used to compute a
statistic instead of a simple value transfer. Statistics that
are currently supported are MAX and MIN. The
HandleMissingInputHow parameter is initially
used to adjust missing data and then the
AllowMissingCount parameter is used to check
whether the statistic can be computed.

The statistic is
determined from
the old and new
time scales.

OutputYearType The output year type if the output time series has an
interval of Year. The output year type can only be
specified for input time series having an interval of Day
or Month and the output can have a time scale of ACCM
(sum the input values) or MEAN (average the input
values). The AllowMissingCount parameter is
recognized.

Calendar

NewDataType The data type for the new time series. This will be set in
the identifier of the new time series.

Use the data type
from the original
time series.

NewUnits The units for the new time series. This will be set in the
identifier of the new time series.

Use the units
from the original
time series.

Tolerance Currently used when converting large interval MEAN
data to small interval INST data. After the new time
series is created, the volume of the new time series over
each old interval is compared to the old time series for
that same interval. If the difference between the two is
outside the specified tolerance percentage, then each
value in the new time series is adjusted so the totals will
match. The endpoints are averaged for this comparison.
Additionally, when the adjustment is made, the new
starting value is averaged with the ending value of the
previous interval so that the previous interval is not
overly affected by this calculation.

0.01

Handle
EndpointsHow

Indicates how endpoints should be handled when
changing from INST to MEAN, small interval to larger
interval (daily output or finer), one of:

AverageEndpoints – use both endpoint values for
new single value
IncludeFirstOnly – only use earlier endpoint

Average
Endpoints

AllowMissing
Count

The number of missing values allowed in the source 0 – do not allow

Command Reference – ChangeInterval() - 12 182

TSTool Documentation ChangeInterval() Command

interval(s) in order to produce a result. For example, if
converting daily data to monthly, a value of 5 would
allow <= 5 missing daily values and still compute the
result. This capability should be used with care because
it may result in data that are not representative of actual
conditions.

any missing data
in the source data
when computing
a result.

OutputFill
Method

Use to fill output when converting from INST to MEAN,
large interval time series to small interval time series, one
of:

Interpolate – linearly interpolate
Repeat – repeat values for the output

Repeat

HandleMissing
InputHow

Indicate how to handle missing values in input, one of:

KeepMissing – leave data missing
Repeat – repeat last non-missing value
SetToZero – set values to 0

The missing data is handled on input and the replacement
value, if any, is applied to input and used for calculations
just as if it was the actual value. The following cases do
not use this parameter:

• Irregular data
• Day and Month input converted to ACCM and

MEAN.

KeepMissing

Several example command files follow. The following command creates a Day ACCM time series from
a Month ACCM time series:

0109.NOAA.Precip.Day~HydroBase
TS 0109Month =
ChangeInterval(TSID="0109.NOAA.Precip.Day",NewInterval=Month,OldTimeScale=ACCM,NewTimeScale=ACCM)

The following commands create a 6Hour INST time series from a Day MEAN time series:

TS DayMEAN = NewPatternTimeSeries(NewTSID="ts1..SQME.Day",Description="Test data",
SetStart="2006-12-01",SetEnd="2007-01-31",
Units="CMSD",PatternValues="20,30,55,40,30,40,50,45,45,80,80,80,80")

TS 6HourINST =
ChangeInterval(TSID="DayMEAN",NewInterval=6Hour,OldTimeScale=MEAN,NewTimeScale=INST,
NewDataType=CMS)

The following commands create a Day MEAN time series from a 6Hour INST time series:

TS 6HourInst =
NewPatternTimeSeries(NewTSID="ts2..Flow.6Hour",IrregularInterval=6Hour,Description="Test
data",SetStart="2006-12-15 12",SetEnd="2007-01-29
00",Units="CFS",PatternValues="20,23,56,62,35,42")

TS DayMean2 =
ChangeInterval(TSID="6HourInst",NewInterval=Day,OldTimeScale=INST,NewTimeScale=MEAN,
HandleEndpointsHow=IncludeFirstOnly)

 Command Reference – ChangeInterval() - 13 183

ChangeInterval() Command TSTool Documentation

The following commands create a 3Hour INST time series from an Irregular (1Hour) INST time series:

TS IrregularINST =
NewPatternTimeSeries(NewTSID="ts1..Temp.Irregular",IrregularInterval=1Hour,Description="Test
data",SetStart="2006-12-15 00",SetEnd="2007-01-31 23",Units="DEGF",
PatternValues="20,23,-999,45,-999,-999,56,62,0,-3")

TS 3HourINST =
ChangeInterval(TSID="IrregularINST",NewInterval=3Hour,OldTimeScale=INST,NewTimeScale=INST)

Command Reference – ChangeInterval() - 14 184

Command Reference: ChangePeriod()
Change period of record for time series

Version 08.16.04, 2008-09-15

The ChangePeriod() command changes the period for the given time series, for example to extend
the time series. A longer period will be filled with missing values.

The following dialog is used to edit the command and illustrates the syntax of the command.

ChangePeriod

ChangePeriod() Command Editor

 Command Reference – ChangePeriod() - 1 185

ChangePeriod() Command TSTool Documentation

The command syntax is as follows:

ChangePeriod(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be

processed, one of:
• AllMatchingTSID – all time

series that match the TSID (single
TSID or TSID with wildcards) will
be modified.

• AllTS – all time series before the
command.

• EnsembleID – all time series in
the ensemble will be modified.

• FirstMatchingTSID – the first
time series that matches the TSID
(single TSID or TSID with
wildcards) will be modified.

• LastMatchingTSID – the last
time series that matches the TSID
(single TSID or TSID with
wildcards) will be modified.

• SelectedTS – the time series are
those selected with the
SelectTimeSeries()
command.

AllTS

TSID The time series identifier or alias for the
time series to be modified, using the *
wildcard character to match multiple
time series.

Required if TSList=*TSID.

EnsembleID The ensemble to be modified, if
processing an ensemble.

Required if
TSList=EnsembleID.

NewStart The new period start, specified to
precision that matches the time series
data interval.

Start will remain the same.

NewEnd The new period end, specified to
precision that matches the time series
data interval.

End will remain the same.

A sample command file to change the period of a time series from the State of Colorado’s HydroBase is
as follows:

08236000 - ALAMOSA RIVER ABOVE TERRACE RESERVOIR
08236000.DWR.Streamflow.Month~HydroBase
ChangePeriod(TSList=AllTS,NewStart="1900-01")

Command Reference – ChangePeriod() - 2 186

Command Reference: CheckTimeSeries()
Check time series data values against criteria

Version 09.07.01, 2010-08-18

The CheckTimeSeries() command checks time series data values against criteria, for example to
identify missing, erroneous, or extreme data values. A warning is generated for each match and time
series values optionally can be flagged, which allows annotation on graphs and reports. Matched values
can also be removed (if irregular interval), or set to missing. The WriteCheckFile() command can
be used to write a summary of the warnings. See also the Delta() command, which creates new time
series as the change between each value – this command may be necessary in cases where data reset ,
prior to using a performing a Change> check, for example.

The following dialog is used to edit the command and illustrates the command syntax.

CheckTimeSeries

CheckTimeSeries() Command Editor

The command syntax is as follows:

CheckTimeSeries(Parameter=Value,…)

 Command Reference – CheckTimeSeries () - 1 187

CheckTimeSeries() Command TSTool Documentation

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be processed, one of:

• AllMatchingTSID – all time series that match
the TSID (single TSID or TSID with wildcards)
will be processed.

• AllTS – all time series before the command will be
processed.

• EnsembleID – all time series in the ensemble will
be processed.

• LastMatchingTSID – the last time series that
matches the TSID (single TSID or TSID with
wildcards) will be processed.

• SelectedTS – the time series selected with the
SelectTimeSeries() command will be
processed.

AllTS

TSID The time series identifier or alias for the time series to
be processed, using the * wildcard character to match
multiple time series.

Required if
TSList=*TSID.

EnsembleID The ensemble to be modified, if processing an ensemble. Required if
TSList=
EnsembleID.

ValueToCheck One of the following:
• DataValue to indicate that raw data values should

be checked.
• Statistic to indicate that a statistic computed

from data values should be checked (future
enhancement).

DataValue.

CheckCriteria The criteria that is checked, one of:
• AbsChange> – check for absolute change from

one value to the next value > Value1
• AbsChangePercent> – check for absolute

change in percent from one value to the next value >
Value1.

• Change> – check for change > Value1.
• Change< – check for change < Value1.
• InRange – check for value >= Value1 and <=

Value2.
• OutOfRange – check for value < Value1 or >

Value2.
• Missing – check for missing values.
• Repeat – check for values that are the same as the

previous value.
• < – check for values < Value1.
• <= – check for values <= Value1.
• > – check for values > Value1.
• >= – check for values >= Value1.
• == – check for values equal to Value1.

None – must be
specified.

Command Reference – CheckTimeSeries () - 2 188

TSTool Documentation CheckTimeSeries() Command

Parameter Description Default
Value1 A parameter that is used for specific CheckCriteria

values.

Value2 A parameter that is used for specific CheckCriteria
values.

AnalysisStart The date/time to start analyzing data. Analyze full period.
AnalysisEnd The date/time to end analyzing data. Analyze full period.
ProblemType The problem type that will be shown in warning

messages.
CheckCriteria

MaxWarnings The maximum number of warnings to list for each time
series, useful if analysis results in many warnings.

List all warnings.

Flag A string to use for a flag on values that are detected
during the check, which will be shown in the HTML
summary report.

No flag.

FlagDesc Description for the flag. No description.
Action Action to take for matched values, in addition to

generating warnings:
• Remove – remove the values. For irregular interval

time series the values will be removed. For regular
interval time series the values will be set to missing.

• SetMissing – set the values to missing.

No action is taken.

 Command Reference – CheckTimeSeries() - 3 189

CheckTimeSeries() Command TSTool Documentation

This page is intentionally blank.

Command Reference – CheckTimeSeries () - 4 190

Command Reference: CompareFiles()
Compare text files to determine whether they are different

Version 09.07.00, 2010-06-14

The CompareFiles() command compares text files to determine data differences. For example, the
command can be used to compare old and new files produced by a software process.

Each line in the file is compared. By default, lines beginning with # are treated as comment lines and are
ignored (see CommentLineChar to specify the comment indicator). Therefore, only non-comment
lines are compared. Differences and simple statistics are printed to the log file. A warning can be
generated if a difference is detected or if no differences are detected (see also the
CompareTimeSeries()command).

The following dialog is used to edit the command and illustrates the syntax for the command.

CompareFiles

CompareFiles() Command Editor

 Command Reference – CompareFiles() - 1 191

CompareFiles() Command TSTool Documentation

The command syntax is as follows:

CompareFiles(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile1 The name of the first file to read. Enclose the name in

double quotes to protect whitespace and special
characters.

None – the file name
is required.

InputFile2 The name of the second file to read. Enclose the name in
double quotes to protect whitespace and special
characters.

None – the file name
is required.

CommentLineChar The character(s) that if found at the start of a line
indicate comment lines. Comment lines are ignored in
the comparison because they typically may include
information such as date/time that changes even if the
remainder of the file contents are the same.

#

AllowedDiff The number of lines allowed to be different, when
checking for differences. This is useful, for example,
when a non-comment line contains the date/time when
the file was generated.

0

WarnIfDifferent If True and at least one difference is detected, a warning
will be generated by the command, which will result in
software like TSTool displaying a warning. If False,
only status messages are written to the log file. The
warning is useful if it is critical to detect any difference
in the files.

Do not generate a
warning if the files
are different.
Differences are
printed to the log
file.

WarnIfSame If True and no differences are detected, a warning will
be generated by the command, which will result in
software like TSTool displaying a warning. If False,
only status messages are written to the log file. The
warning is useful if it is critical to detect files that are the
same.

Do not generate a
warning if the files
are the same.

The following example illustrates how two files can be compared. For example, use similar commands to
compare results from two model runs, two database queries, or when testing software:

CompareFiles(InputFile1="Data/A1.txt",InputFile2="Data/B1.txt",
 WarnIfDifferent=True)

Command Reference – CompareFiles() - 2 192

Command Reference: CompareTimeSeries()
Compare time series to find data value differences

Version 08.15.00, 2008-05-04

The CompareTimeSeries() command compares time series to determine data differences. Currently
time series header information is NOT compared – only data values are compared. It is designed to
process many time series in bulk fashion. For example, read commands can be used to read time series
from two different versions of a database, or from two files. Time series to compare are determined by
trying to match each available time series with another time series in the list (ignoring itself);
consequently, the list of time series should contain only pairs of time series.

Time series that are matched by TSID location and/or data type are compared value by value, with the
differences computed as the value from the second time series minus the value from the first time series.
The values can be rounded based on a specified precision. It may be important to read each set of time
series from files to ensure that final round off is consistent. The checks occur by comparing the
difference to one or more specified tolerances. Differences and simple statistics are printed to the log file.
Values that are different can optionally be tagged with a character flag, for use with the graphing package.
Time series of the differences can optionally be created. A warning can be generated if a difference is
detected, or if no differences are detected (see also the CompareFiles() and RunCommands()
commands).

The following dialog is used to edit the command and illustrates the syntax for the command.

CompareTimeSeries

CompareTimeSeries() Command Editor

 Command Reference – CompareTimeSeries() - 1 193

CompareTimeSeries() Command TSTool Documentation

The command syntax is as follows:

CompareTimeSeries(Parameter=Value,…)

Command Parameters

Parameter Description Default
MatchLocation Match the location part of time series identifiers when

matching time series to compare.
True

MatchDataType Match the data type part of time series identifiers when
matching time series to compare.

False

Precision When comparing data values, round the values to the
given precision. For example, a precision of 2 will round
to the hundredths place. This can be used to do
comparisons on the lowest precision of the available time
series.

Compare the
available values
without rounding.

Tolerance Specify a comma-separated list of values. The difference
in the time series values will be compared to the
tolerances and messages printed to the log file.

A tolerance of zero
will be used to detect
differences.

AnalysisStart The starting date/time to analyze for differences. Specify
a date/time of appropriate precision for the time series or
OutputStart to use the output start.

Analyze all available
data.

AnalysisEnd The ending date/time to analyze for differences. Specify
a date/time of appropriate precision for the time series or
OutputEnd to use the output end.

Analyze all available
data.

DiffFlag Specify as a single character to append a flag to the data
flags for the time series. Each value that is different is
flagged in both time series that are compared. The flag
can be displayed by the graphing package. This is useful
for verification processes. New time series will be
created with the original identifier preceded by Diff_.

Do not flag data.

CreateDiffTS Indicate whether a time series should be created
containing the differences between time series. This is
useful to visually evaluate the differences and process
the results with other commands.

False

WarnIfDifferent If True and at least one difference is detected, a warning
will be generated by the command, which will result in
software like TSTool displaying a warning. If False,
only status messages are written to the log file. The
warning is useful if it is critical to detect any change in
the time series.

Do not generate a
warning if time
series are different.
Differences are
printed to the log
file.

WarnIfSame If True and no differences are detected, a warning will
be generated by the command, which will result in
software like TSTool displaying a warning. If False,
only status messages are written to the log file. The
warning is useful if it is critical to detect that time series
are the same.

Do not generate a
warning if time
series are the same.

Command Reference – CompareTimeSeries() - 2 194

TSTool Documentation CompareTimeSeries() Command

The following example illustrates how time series from two files can be compared. For example, use
similar commands to compare results from two model runs or two database queries:

Example to compare files. Since they are different, a warning will be generated.
ReadDateValue(InputFile="RawData1.dv")
ReadDateValue(InputFile="RawData1Scaled.dv")
CompareTimeSeries(Precision=2,WarnIfDifferent=True)

The following example compares matching time series for the full available period, doing checks for
several tolerances:

CompareTimeSeries(Precision=2,Tolerance="0,.1,.5,1",DiffFlag="x")

The following example compares data only within the output period, as specified by the
SetOutputPeriod() command:

CompareTimeSeries(Precision=2,Tolerance="0,.1,.5,1",
AnalysisStart="OutputStart",AnalysisEnd="OutputEnd",DiffFlag="x")

 Command Reference – CompareTimeSeries() - 3 195

CompareTimeSeries() Command TSTool Documentation

This page is intentionally blank.

Command Reference – CompareTimeSeries() - 4 196

Command Reference:
ComputeErrorTimeSeries()

Compute the error between time series and create new time series for the results
Version 08.15.00, 2008-05-12

The ComputeErrorTimeSeries() command computes the error between two time series as
absolute value or percent, creating a new time series for each pair of time series that is compared. This is
useful for comparing observed and simulated time series. The time series that are created have the
simulated time series’ metadata but an alias can be assigned. The command can be used to process
multiple pairs of time series, each determined using the appropriate *TSList parameter.

The following dialog is used to edit the command and illustrates the command syntax.

ComputeErrorTimeSeries

ComputeErrorTimeSeries() Command Editor

The command syntax is as follows:

ComputeErrorTimeSeries(Parameter=Value,…)

Command Parameters

Parameter Description Default
Observed
TSList

Indicates the list of observed time series to be processed,
one of:
• AllMatchingTSID – all time series that match the

TSID (single TSID or TSID with wildcards) will be
modified.

AllTS

 Command Reference – ComputeErrorTimeSeries() - 1 197

ComputeErrorTimeSeries() Command TSTool Documentation

Parameter Description Default
• AllTS – all time series before the command.
• EnsembleID – all time series in the ensemble will be

compared.
• LastMatchingTSID – the last time series that

matches the TSID (single TSID or TSID with
wildcards) will be compared.

• SelectedTS – the time series are those selected with
the SelectTimeSeries() command.

Observed
TSID

The time series identifier or alias for the observed time
series, using the * wildcard character to match multiple time
series.

Use when
ObservedTSList=
*MatchingTSID.

Observed
EnsembleID

The observed ensemble to be compared, if processing an
ensemble.

Use when
ObservedTSList=
EnsembleID.

Simulated
TSList

Indicates how to determine the list of simulated time series
(see the explanation of ObservedTSList).

AllTS

Simulated
TSID

The time series identifier or alias for the simulated time
series (see the explanation of ObservedTSID).

Use when
SimulatedTSList=
*MatchingTSID.

Simulated
EnsembleID

The ensemble identifier for the simulated time series (see
the explanation of SimulatedEnsembleID).

Use when
SimulateddTSList=
EnsembleID

ErrorMeasure The error measure to compute, one of:
• PercentError – Simulated minus observed, divided

by observed.
• AbsoluteError – not yet implemented.

Alias The alias to be assigned to each trace in the ensemble. The
string can include:
• % specifiers from the LegendFormat property (see

the TSView Time Series Viewing Tools appendix).
• ${Property} strings, where Property is a value set

internally by the command processor (more
documentation will be provided in the future) or with
the SetProperty() command. This approach is
useful if the TSTool command file is dynamically
created with a script.

• Any literal characters.

None.

A sample command file is as follows (in this case using contrived data):

RemoveFile(InputFile="Results\Test_ComputeErrorTimeSeries_1_out.dv",WarnIfMissing=False)
TS ts1 = NewPatternTimeSeries(NewTSID="ts1..test.Day",Description="Test data",
 SetStart="1950-01-01",SetEnd="1951-03-12",Units="CFS",PatternValues="5,10,12,13,75")
TS ts2 = NewPatternTimeSeries(NewTSID="ts2..test.Day",Description="Test data",
 SetStart="1950-01-01",SetEnd="1951-03-12",Units="CFS",PatternValues="6,12,14,11.5,80")
ComputeErrorTimeSeries(ObservedTSList=AllMatchingTSID,ObservedTSID="ts1",
 SimulatedTSList=AllMatchingTSID,SimulatedTSID="ts2",ErrorMeasure=PercentError)
Uncomment the following command to regenerate the expected results file.
WriteDateValue(OutputFile="ExpectedResults\Test_ComputeErrorTimeSeries_1_out.dv")
WriteDateValue(OutputFile="Results\Test_ComputeErrorTimeSeries_1_out.dv")
CompareFiles(InputFile1="Results\Test_ComputeErrorTimeSeries_1_out.dv",
 InputFile2="ExpectedResults\Test_ComputeErrorTimeSeries_1_out.dv",WarnIfDifferent=True)

Command Reference – ComputeErrorTimeSeries() - 2 198

Command Reference: ConvertDataUnits()
Convert time series data units

Version 08.15.00, 2008-05-04

The ConvertDataUnits() command converts the data units for a time series (e.g., before output to
a file). Some read and write commands also may allow units to be converted.

The following dialog is used to edit the command and illustrates the syntax of the command.

ConvertDataUnits

ConvertDataUnits() Command Editor

The Dimension choice should be selected to narrow the list of available units to the appropriate
dimension. Next, select the New Data Units for the time series. The list of available data units is taken
from the information described in the TSTool DATAUNIT file (see the TSTool Installation and
Configuration Appendix for more information). If desired units are not available, contact the TSTool
developers to suggest adding units to the DATAUNIT file or edit the command manually after initial
creation.

The dialog cannot display the current units for the time series because the units are not available until
time series are actually processed – commands are edited before processing.

 Command Reference – ConvertDataUnits() - 1 199

ConvertDataUnits() Command TSTool Documentation

The command syntax is as follows:

ConvertDataUnits(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be

processed, one of:
• AllMatchingTSID – all time

series that match the TSID (single
TSID or TSID with wildcards) will
be modified.

• AllTS – all time series before the
command.

• EnsembleID – all time series in
the ensemble will be modified.

• LastMatchingTSID – the last
time series that matches the TSID
(single TSID or TSID with
wildcards) will be modified.

• SelectedTS – the time series are
those selected with the
SelectTimeSeries()
command.

AllTS

TSID The time series identifier or alias for the
time series to be modified, using the *
wildcard character to match multiple
time series.

TSID or EnsembleID must be
specified if identifiers are being
matched.

EnsembleID The ensemble to be modified, if
processing an ensemble.

TSID or EnsembleID must be
specified if identifiers are being
matched.

NewUnits The new data units. None – must be specified.

A sample commands file to convert the units of a time series from the State of Colorado’s HydroBase is
as follows:

08236000 - ALAMOSA RIVER ABOVE TERRACE RESERVOIR
08236000.DWR.Streamflow.Month~HydroBase
ConvertDataUnits(TSList=AllMatchingTSID,
 TSID="08236000.DWR.Streamflow.Month",NewUnits="CFSD")

Command Reference – ConvertDataUnits() - 2 200

Command Reference: TS Alias = Copy()
Create a new time series as a copy of a time series

Version 09.08.01, 2010-09-14

The TS Alias = Copy() command creates a copy of an existing time series, assigning an alias to the
result. The copy is an exact copy except that the alias is different (the TSID should also specified to be
unique). The alias can then be used for further time series manipulation. A copy of a time series is useful
when data filling or other manipulation will occur and the original time series needs to be maintained for
graphing or other purpose.

The following dialog is used to edit the command and illustrates the syntax for the command.

Copy

TS Alias = Copy() Command Editor

 Command Reference – TS Alias = Copy() - 1 201

TS Alias = Copy() Command TSTool Documentation

The command syntax is as follows:

TS Alias = Copy(Parameter=Value,…)

Command Parameters

Parameter Description Default
Alias The alias to assign to the new copy,

which can be used instead of the TSID
by other commands.

None – must be specified.

TSID The time series identifier or alias of the
time series to copy. The time series will
be found by searching backwards from
the copy command.

None – must be specified.

NewTSID A new time series identifier to assign to
the copy. This is useful to avoid
confusion with the original time series.
Use the Edit button to edit the time series
identifier parts. The data interval must
match that of the original time series.

Copy the original time series
TSID. If NewTSID is specified
but does not have a valid interval,
copy the interval from TSID.
The default cannot be determined
if an alias is used for the input
time series.

A sample commands file is as follows:

08223000 - RIO GRANDE RIVER AT ALAMOSA
08223000.DWR.Streamflow.Month~HydroBase
TS Filled = Copy(TSID="08223000.DWR.Streamflow.Month",
NewTSID="08223000.DWR.Streamflow.Month.Filled")

Command Reference – TS Alias = Copy() - 2 202

Command Reference: CopyEnsemble()
Create a new ensemble as a copy of an ensemble

Version 08.15.00, 2008-05-04

The CopyEnsemble() command creates a copy of an ensemble, copying all time series in the
ensemble and assigning a new identifier to the result. The copy is an exact copy except that the ensemble
identifier is different (the TSIDs for each ensemble time series should also specified to be unique).

The following dialog is used to edit the command and illustrates the syntax for the command.

CopyEnsemble

CopyEnsemble() Command Editor

 Command Reference – CopyEnsemble() - 1 203

CopyEnsemble() Command TSTool Documentation

The command syntax is as follows:

CopyEnsemble(Parameter=Value,…)

Command Parameters

Parameter Description Default
EnsembleID The ensemble to copy. None – must be specified.
NewEnsembleID The ensemble identifier for the new

ensemble
None – must be specified.

NewEnsembleName The name for the new ensemble. Blank.
NewTSID A new time series identifier to assign to

time series in the new ensemble. This is
useful to avoid confusion with the
original time series. Use the Edit button
to edit the time series identifier parts.
The data interval and sequence number
will be determined from the original time
series.

Copy the original time series
TSID.

A sample commands file to read a time series from the State of Colorado’s HydroBase, create an
ensemble from the time series, and make a copy is as follows:

09019500 - COLORADO RIVER NEAR GRANBY
09019500.USGS.Streamflow.Day~HydroBase
CreateEnsemble(TSID="09019500.USGS.Streamflow.Day",
 TraceLength=1Year,EnsembleID="Ensemble_1",EnsembleName="Test
Ensemble",ReferenceDate="2008-01-01",ShiftDataHow=ShiftToReference)
CopyEnsemble(NewEnsembleID="Ensemble_2",
 NewEnsembleName="Test ensemble 2",
 NewTSID="09019500.USGS.Streamflow..copy",EnsembleID="Ensemble_1")

Command Reference –CopyEnsemble() - 2 204

Command Reference: CopyTable()
Create a table as a (partial) copy of a table

Version 09.09.00, 2010-09-23

The CopyTable() command copies all or a subset of the columns from one table to create a new table.
For example, this is useful to create one-column lists that can be used to expand template files with the
ExpandTemplateFile() command.

The following dialog is used to edit the command and illustrates the syntax of the command (in this case
illustrating how values in a column named LocationID are copied to a new table).

CopyTable

CopyTable() Command Editor

 Command Reference – CopyTable () - 1 205

CopyTable() Command TSTool Documentation

The command syntax is as follows:

CopyTable(Parameter=Value,…)

Command Parameters

Parameter Description Default
TableID The identifier for the original table. None – must be

specified.
NewTableID The identifier for the new table. None – must be

specified.
IncludeColumns Specify the names of columns to copy, separated by

commas.
Copy all of the
columns.

Command Reference – CopyTable() - 2 206

Command Reference:
CreateEnsembleFromOneTimeSeries()

Create a new ensemble from a single time series
Version 09.05.00, 2009-10-06

This command was previously named CreateEnsemble().

The CreateEnsembleFromOneTimeSeries() command creates an ensemble by splitting up a
single time series into traces. For example, a historical time series can be split into 1-year overlapping
traces that are shifted to start in the current year.

The following dialog is used to edit the command and illustrates the syntax for the command.

CreateEnsembleFromOneTimeSeries

CreateEnsembleFromOneTimeSeries() Command Editor

 Command Reference – CreateEnsembleFromOneTimeSeries() - 1 207

CreateEnsembleFromOneTimeSeries() Command TSTool Documentation

The command syntax is as follows:

CreateEnsembleFromOneTimeSeries(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSID The time series identifier or alias for the

time series used to create the ensemble.
None – must be specified.

InputStart The date/time to start transferring data
from the time series.

Use all data.

InputEnd The date/time to end transferring data
from the time series.

Use all data.

EnsembleID The new ensemble identifier. None – must be specified.
EnsembleName The name for the new ensemble. Blank.
TraceLength An interval for the trace length (e.g.,

1Year, #Month or, #Day).
1Year

ReferenceDate The reference date indicates the starting
date for each trace and should be left
blank (resulting in a default of January 1
of the current year), or set to January 1 of
a year of interest (use the format
01/01/YYYY or YYYY-MM-DD). Each
trace can optionally be shifted (see
ShiftDataHow).

January 1 of the first year in the
source time series.

ShiftDataHow Indicates whether the traces should be
shifted. Possible values are:
• ShiftToReference – each trace

will be shifted to the reference date,
resulting in overlapping time series.

• NoShift – plotting the traces will
result in a total line that matches the
original time series, except that each
trace can be manipulated
individually.

NoShift

A sample command file to read a time series from the State of Colorado’s HydroBase and create an
ensemble from the time series is as follows:

09019500 - COLORADO RIVER NEAR GRANBY
09019500.USGS.Streamflow.Day~HydroBase
CreateEnsembleFromOneTimeSeries(TSID="09019500.USGS.Streamflow.Day",
 TraceLength=1Year,EnsembleID="Ensemble_1",EnsembleName="Test
Ensemble",ReferenceDate="2008-01-01",ShiftDataHow=ShiftToReference)

Command Reference – CreateEnsembleFromOneTimeSeries() - 2 208

Command Reference: CreateFromList()
Create one or more time series from a file containing a list of identifiers

Version 08.16.04, 2008-09-24

A CreateFromList() command creates one or more time series using identifiers from a list file, an
example of which is shown below:

Example list file. Comments start with the # character.
Column headings can be specified in the first non-comment row using quotes.
“Structure ID”,”Structure Name”
500501,Ditch 501
500502,Ditch 502
Invalid ID (see IfNotFound parameter)
509999,Ditch 9999

The command is typically used when reading time series from a database or binary file and can streamline
processing in the following situations:

• A list of identifiers may have been generated from a database query and saved to a file.
• A list of identifiers may have been extracted from a model data set.

TSTool reads the list file and internally creates a list of time series identifiers. The time series are of the
standard form:

 Location.DataSource.DataType.Interval[.Scenario]~InputType[~InputName]

where the brackets indicate optional information. TSTool then queries each time series, which can be
processed further.

Although it is possible to specify an input type that reads from files by also using the InputName, this is
not generally recommended because the CreateFromList() command can only specify one input file
name and the file will be reopened for each read. Instead, read commands for specific file formats should
be used because these commands are typically optimized to read multiple time series from the files. In
summary, the CreateFromList() command is useful with databases but performance may suffer
when used with file input types.

 Command Reference – CreateFromlist() - 1 209

CreateFromList() Command TSTool Documentation

The following dialog is used to edit the command and illustrates the syntax of the command.

CreateFromList

CreateFromList() Command Editor

The command syntax is as follows:

CreateFromList(Parameter=Value, …)

Command Parameters

Parameter Description Default
ListFile The name of the list file to read, surrounded

by double quotes.
None – must be specified.

IDCol The column (1+) in the list file containing
the location identifiers to use in time series
identifiers.

1

Delim The delimiter characters that separate
columns in the list file. If a space is used as
the delimiter, surround with another
delimiter characters or a character that is
unlikely to be found so that the space is not
discarded as white space (e.g., “~ ~”).

Comma

ID Indicate a pattern to filter the identifiers in
the list file. For example, use A* to only
process identifiers in the list file that start

Process all identifiers.

Command Reference – CreateFromList() - 2 210

TSTool Documentation CreateFromList() Command

Parameter Description Default
with A.

DataSource The data source in the time series identifier,
appropriate for InputType. For example,
if using the State of Colorado’s HydroBase,
USGS indicates that data are from the United
States Geological Survey. See the input type
appendices for more information on
available data types.

May or may not be required,
depending on the input type. Refer
to the input type appendices.

DataType The data type in the time series identifier, as
appropriate for InputType. For example,
if using the State of Colorado’s HydroBase,
DivTotal is used for diversion totals. See
the input type appendices for more
information on available data types.

Usually required for an input type.
Refer to the input type appendices.

Interval Data interval in the time series identifier,
using standard values such as 15Minute,
6Hour, Day, Month, Year.

None – must be specified.

Scenario Scenario in the time series identifier. Usually not required.
InputType The input type in the time series identifier.

For example, use HydroBase for the State of
Colorado’s HydroBase database. Refer to
the input type appendices or the TSTool
main GUI for options.

None – must be specified.

InputName The input name in the time series identifier. Typically only required if the input
type requires a file name.

IfNotFound Indicates how to handle missing time series,
one of:
• Warn – generate fatal warnings and do

not include in output.
• Ignore – generate non-fatal warnings

and do not include in output.
• Default – generate non-fatal warnings

and create empty time series for those
that could not be found. This requires
that a SetOutputPeriod()
command be used before the command
to define the period for default time
series.

Warn

DefaultUnits Default units when
IfNotFound=Default.

Blank – no units.

 Command Reference – CreateFromList() - 3 211

CreateFromList() Command TSTool Documentation

A sample command file to process monthly diversion data from the State of Colorado’s HydroBase
database is as follows:

Read monthly diversion total from HydroBase for the structures in the list
file. The data source is set to DWR because data source is saved in
HydroBase.
CreateFromList(ListFile="Data\Diversions.txt",IDCol=1,DataSource=DWR,
DataType=DivTotal,Interval=Month,InputType=HydroBase,IfNotFound=Default)

Command Reference – CreateFromList() - 4 212

Command Reference:
CreateRegressionTestCommandFile()

Create a command file to run software regression tests
Version 09.03.00, 2009-04-12

The CreateRegressionTestCommandFile() command is used for software testing (or
certification of processes used in operations) and creates a command file that includes a
StartRegressionTestResultsReport() and multiple RunCommands() commands. A
starting search folder is provided and all files that match the given pattern (by convention Test_*.TSTool)
are assumed to be command files that can be run to test the software. The resulting command file is a test
suite comprised of all the individual tests and can be used to verify software before release. The goal is to
have all tests pass before software release.

The following table lists tags that can be placed in # comments in command files to provide information
for testing, for example:

#@expectedStatus Failure

Command # Comment Tags

Parameter Description
@expectedStatus Failure

@expectedStatus Warning

The RunCommands() command ExpectedStatus
parameter is by default Success. However, a different
status can be specified if it is expected that a command
file will result in Warning or Failure and still be a
successful test. For example, if a command is obsolete
and should generate a failure, the expected status can be
specified as Failure and the test will pass. Another
example is to test that the software properly treats a
missing file as a failure.

@os Windows
@os UNIX

The test is designed to work only on the specified
platform and will be included in the test suite only if the
IncludeOS parameter includes the corresponding
operating system (OS) type. This is primarily used to
test specific features of the OS and similar but separate
test cases should be implemented for both OS types. If
the OS type is not specified as a tag in a command file,
the test is always included (see also the handling of
included test suites).

@testSuite ABC Indicate that the command file should be considered part
of the specified test suite, as specified with the
IncludeTestSuite parameter. The test is included
in all test collections if the tag is not specified; therefore,
for general tests, do not specify a test suite. This tag is
useful if a group of tests require special setup, for
example connecting to a database. The suite names
should be decided upon by the test developer.

 Command Reference – CreateRegressionTestCommandFile() - 1 213

CreateRegressionTestCommandFile() Command TSTool Documentation

The following dialog is used to edit the command and illustrates the syntax for the command.

CreateRegressionTestCommandFile

CreateRegressionTestCommandFile() Command Editor

The command syntax is as follows:

CreateRegressionTestCommandFile(Parameter=Value,…)

Command Parameters

Parameter Description Default
SearchFolder The folder to search for regression test command files.

All subfolders will also be searched.
None – must be
specified.

OutputFile The name of the command file to create, enclosed in
double quotes if the file contains spaces or other special
characters. A path relative to the command file
containing this command can be specified.

None – must be
specified.

SetupCommandFile The name of a TSTool command file that supplies setup
commands, and which will be prepended to output. Use
such a file to open database connections and set other
global settings that apply to the entire test run.

Do not include setup
commands.

FilenamePattern Pattern for TSTool command files, using wildcards. Test_*.TStool
Append Indicate whether to append to the output file (True) or

overwrite (False). This allows multiple directory
trees to be searched for tests, where the first command
typically specifies False and additional commands
specify True.

True

IncludeTestSuite If *, all tests that match FilenamePattern and
IncludeOS are included. If a test suite is specified,
only include tests that have @testSuite tag values
that match a value in IncludeTestSuite. One or
more tags can be specified, separated by commas.

* – include all test
cases.

Command Reference – CreateRegressionTestCommandFile() - 2 214

TSTool Documentation CreateRegressionTestCommandFile() Command

IncludeOS If *, all tests that match FilenamePattern and
IncludeTestSuite are included. If an OS is
specified, only include tests that have @os tag values
that match a value in IncludeTestSuite. This tag
is typically specified once or not at all.

* – include all test
cases.

See the RunCommands() documentation for how to set up a regression test. The following command
file illustrates how to create a regression test suite.

CreateRegressionTestCommandFile(SearchFolder="..\..\..\commands\general",
 OutputFile="..\run\RunRegressionTest_commands_general.TSTool",Append=False)

An example of the output file from running the tests is:

The test status below may be PASS or FAIL.
A test can pass even if the commands file actual status is FAILURE, if failure is expected.
Test Commands Commands
Pass/ Expected Actual
Num Fail Status Status Command File
#---
 1 PASS SUCCESS SUCCESS C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\add\Test_Add_1.TSTool
 2 PASS SUCCESS SUCCESS C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\add\Test_Add_Ensemble_1.TSTool
 3 PASS SUCCESS SUCCESS C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\addConstant\Test_AddConstant_1.TSTool
 4 PASS SUCCESS SUCCESS
C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\adjustExtremes\Test_AdjustExtremes_1.TSTool
…
 11 PASS SUCCESS SUCCESS
C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\ChangeInterval\Test_ChangeInterval_IrregINST_To_3HourINST.TSTool
 12 PASS SUCCESS SUCCESS C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\ChangePeriod\Test_ChangePeriod_1.TSTool
 13 PASS SUCCESS SUCCESS
C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\compareTimeSeries\Test_AllDifferent.TSTool
 14 PASS SUCCESS SUCCESS C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\compareTimeSeries\Test_AllSame.TSTool
 15 PASS SUCCESS SUCCESS
C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\ComputeErrorTimeSeries\Test_ComputeErrorTimeSeries_1.TSTool
 16 PASS SUCCESS SUCCESS
C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\convertDataUnits\Test_ConvertDataUnits_1.TSTool
 17 PASS SUCCESS SUCCESS C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\Copy\Test_Copy_1.TSTool
 18 PASS SUCCESS SUCCESS C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\CopyEnsemble\Test_CopyEnsemble_1.TSTool
 19 PASS SUCCESS SUCCESS
C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\CreateEnsemble\Test_CreateEnsemble_1.TSTool
 20 *FAIL* SUCCESS WARNING
C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\CreateFromList\Test_CreateFromList_1.TSTool
 21 PASS Failure FAILURE
C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\CreateTraces_Alias\Test_CreateTraces_Legacy_1.TSTool
 22 PASS SUCCESS SUCCESS C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\cumulate\Test_Cumulate_1.TSTool

 Command Reference – CreateRegressionTestCommandFile() - 3 215

CreateRegressionTestCommandFile() Command TSTool Documentation

This page is intentionally blank.

Command Reference – CreateRegressionTestCommandFile() - 4 216

Command Reference: Cumulate()
Convert time series data values to cumulative values

Version 08.15.00, 2008-05-04

The Cumulate()command converts a time series into cumulative values, which is useful for comparing
the cumulative trends of related time series (e.g., nearby gages or precipitation gages) and can serve as a
substitute for the double-mass graph, which has difficulty handling missing data. It is also useful to check
the mass balance when routing time series (the cumulative values before and after routine will track
closely). The following dialog is used to edit the command and illustrates the syntax of the command.

Cumulate

Cumulate() Command Editor

The command syntax is as follows:

Cumulate(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be processed, one of:

• AllMatchingTSID – all time series that match the TSID
(single TSID or TSID with wildcards) will be modified.

• AllTS – all time series before the command.
• EnsembleID – all time series in the ensemble will be modified.
• LastMatchingTSID – the last time series that matches the

TSID (single TSID or TSID with wildcards) will be modified.
• SelectedTS – the time series are those selected with the

SelectTimeSeries() command.

AllTS

TSID The time series identifier or alias for the time series to be modified,
using the * wildcard character to match multiple time series.

TSID or
EnsembleID
must be
specified.

 Command Reference – Cumulate() - 1 217

Cumulate() Command TSTool Documentation

Parameter Description Default
EnsembleID The ensemble to be modified, if processing an ensemble. TSID or

EnsembleID
must be
specified.

Handle
Missing
How

Indicate how to handle missing data, one of:

• CarryForwardIfMissing –carry forward the last non-

missing value
• SetMissingIfMissing – set the result to missing if the

original value is missing.

The only difference in output is that the period of missing data will
either be blank or a horizontal line in graphs.

SetMissing
IfMissing

Reset A MM-DD date, day (1-31), or month (1-12) indicating when to reset
the cumulative value to zero, before beginning to cumulate again.
The features of this parameter are under development.

Do not reset.

A sample command file to cumulate times from the State of Colorado’s HydroBase is as follows:

1458 - CENTER 4 SSW
1458.NOAA.Precip.Month~HydroBase
2184 - DEL NORTE 2 E
2184.NOAA.Precip.Month~HydroBase
Cumulate(TSList=AllTS,HandleMissingHow=CarryForwardIfMissing)

The following graph illustrates cumulative data for two precipitation gages in the same region, where
missing data results in carrying forward the last known value.

cumulate_graph

Example Graph Showing Results of cumulate() Command

Command Reference – Cumulate() - 2 218

Command Reference: Delta()
Create new time series where values are the difference between each value in

original time series
Version 9.07.00, 2010-08-05

The Delta() command creates a new time series from an input time series. The resulting values are
computed as the difference between each value and the previous value. Consequently, the delta result is
the change from the previous value. The CheckTimeSeries() command can be used to check time
series for changes that exceed a threshold; however, the Delta() command handles the complexity of
time series that reset to a new starting value – the output can be used in conjunction with
CheckTimeSeries(). The Delta() command will create as many output time series as there are
input time series.

The output value is simply the current value minus the previous value. The result is set to missing if this
value cannot be computed due to missing values, or in cases where a transition across a reset has errors.

If the data do reset, then the expected trend should be specified to allow the ResetMin and ResetMax
parameters to be properly interpreted. For example, if Trend=Increasing and a decrease is detected,
it is assumed that the values have circled past the reset values. In this case the command will attempt to
compute the change across the reset values. If this is not possible, then warnings will be generated and
the result will be set to missing. Specific cases that are handled are:

• The previous value is out of range – in this case the contribution from the out of range previous
value is added to the delta and default flag value is assigned (see Flag parameter description). A
warning will be generated.

• The current value is out of range – in this case the difference will be decreased because the reset
value has not be achieved. A warning will be generated.

The above special cases result in somewhat arbitrary difference values because the inputs do not
conform to expected values. Out of range values indicate erroneous data that should be corrected
before being used in further analysis.

Irregular-interval time series that result in differences not being computed will have missing values
inserted at appropriate locations to maintain consistent data point spacing with the original data.

 Command Reference – Delta () - 1 219

Delta() Command TSTool Documentation

The following dialog is used to edit the command and illustrates the command syntax.

Delta

Delta() Command Editor

The command syntax is as follows:

Delta(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be processed, one of:

• AllMatchingTSID – all time series that match the
TSID (single TSID or TSID with wildcards).

• AllTS – all time series before the command.
• EnsembleID – all time series in the ensemble

specified by TSID.
• FirstMatchingTSID – the first time series that

matches the TSID (single TSID or TSID with
wildcards).

• LastMatchingTSID – the last time series that
matches the TSID (single TSID or TSID with
wildcards).

• SelectedTS – the time series are those selected with
the SelectTimeSeries() command.

AllTS

TSID The time series identifier or alias for the time series to be
modified, using the * wildcard character to match multiple
time series.

Must be specified
if
TSList=*TSID.

EnsembleID The ensemble to be modified, if processing an ensemble. Must be specified

Command Reference – Delta () - 2 220

TSTool Documentation Delta() Command

Parameter Description Default
if TSList=
EnsembleID.

ResetMin The minimum expected data value, used when data are
expected to increase (or decrease) to a threshold and then
reset, for example raw precipitation values that reset to zero
when a container fills.

Data are not
expected to reset.

ResetMax The maximum expected data value, used when data are
expected to increase (or decrease) to a threshold and then
reset, for example raw precipitation values that reset to zero
when a container fills.

Data are not
expected to reset.

ExpectedTrend Indicates trend of data, used when values can reset:
• Decreasing – values should decrease and then reset
• Increasing – values should increase and then reset

Data are variable
and don’t reset at
fixed thresholds.

AnalysisStart The date/time to start analyzing data. Full period is
analyzed.

AnalysisEnd The date/time to end analyzing data. Full period is
analyzed.

Flag A string to flag problem values, or Auto for default flags:
• R – indicates reset transition out of range > ResetMax
• r – indicates reset transition out of range < ResetMin
• V – indicates value out of range > ResetMax
• v – indicates value out of range < ResetMin

Do not flag
problem values.

Alias Alias to assign to created time series. A literal string can be
specified or use %-specifiers to set the alias dynamically
(e.g., %L) to use the location part of the identifier.

None (but is
highly
recommended).

 Command Reference – Delta() - 3 221

Delta() Command TSTool Documentation

This page is intentionally blank.

Command Reference – Delta () - 4 222

Command Reference: DeselectTimeSeries()
Deselect time series

Version 09.04.03, 2009-08-24

The DeselectTimeSeries() command deselects output time series, as if done interactively, to
indicate which time series SHOULD NOT be operated on by following commands. The command
minimizes the need for the free() command when used in conjunction with other commands that use a
time series list based on selected time series (TSList=SelectedTS). See also the
SelectTimeSeries() command.

The following dialog is used to edit the command and illustrates the command syntax.

DeselectTimeSeries

DeselectTimeSeries() Command Editor

 Command Reference – DeselectTimeSeries() - 1 223

DeselectTimeSeries() Command TSTool Documentation

The command syntax is as follows:

DeselectTimeSeries(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be

processed, one of:
• AllMatchingTSID – all time

series that match the TSID (single
TSID or TSID with wildcards) will
be modified.

• AllTS – all time series before the
command.

• EnsembleID – all time series in
the ensemble will be modified.

• LastMatchingTSID – the last
time series that matches the TSID
(single TSID or TSID with
wildcards) will be modified.

• TSPosition – time series
specified by position in the results
list (see TSPosition parameter
below).

AllTS

TSID The time series identifier or alias for the
time series to be modified, using the *
wildcard character to match multiple
time series.

TSID or EnsembleID must be
specified if identifiers are being
matched.

EnsembleID The ensemble to be modified, if
processing an ensemble.

TSID or EnsembleID must be
specified if identifiers are being
matched.

TSPosition A list of time series positions in output
(1+), separated by commas.

Required if
TSList=TSPosition.

SelectAllFirst Indicates whether all time series should
be selected before deselecting the
specified time series: True or False.

False

A sample command file is as follows:

TS 401234 = NewPatternTimeSeries(NewTSID="401234..Precip.Day",
Description="Example data",SetStart="2000-01-01",SetEnd="2000-12-31",
Units="IN",PatternValues="0,1,3,0,0,0")
DeselectTimeSeries(TSList=AllMatchingTSID,TSID="40*",SelectAllFirst=True)

Command Reference – DeselectTimeSeries() - 2 224

Command Reference: TS Alias = Disaggregate()
Create a new time series with shorter interval

Version 08.16.04, 2008-09-22

The Disaggregate() command creates a new time series by disaggregating a time series with a
longer data interval into a time series with a shorter data interval. The resulting time series will have the
same metadata and identifier as the original time series, with a different data interval. See also the
general ChangeInterval() command.

Converting longer-interval data may cause a perceived shift in the time. For example, 1Day data shifted
to 24Hour data will result in the daily values being set at hour zero of the following day. This shift is
necessary to generically represent different time precision. Plots will also reflect the shift because hours
are not considered when computing plot positions for daily data. It is important to understand how
disaggregated data is treated with respect to time when using with other applications. If necessary, use
the ShiftTimeByInterval() command to manipulate the resulting output time series.

The following dialog is used to edit the command and illustrates the syntax for the command.

Disaggregate_Alias

Disaggregate() Command Editor

 Command Reference – Disaggregate() - 1 225

Disaggregate() Command TSTool Documentation

The command syntax is as follows:

TS Alias = Disaggregate(Parameter=Value,…)

Command Parameters

Parameter Description Default
Alias Alias for the disaggregated time series. The resulting

time series will have the same header information
and identifier as the original time series, with a
different data interval and alias.

None – must be
specified.

TSID The time series identifier or alias for the time series
to be disaggregated.

None – must be
specified.

Method The method used to perform the disaggregation, one
of the following:

Orsmbee – this method was presented in “Rainfall
Disaggregation Model for Continuous Hydrologic
Modeling,” Ormsbee, Lindell E., Journal of
Hydraulic Engineering, ASCE, April, 1989.
Currently the method has only been enabled for
disaggregating 1Day (not 24Hour) data to 6Hour
data.

SameValue – this simple method causes the
resulting time series to have the same value as the
original. For example, a monthly time series that is
disaggregated to a daily time series will result in each
daily value being the same as for the corresponding
value in the original monthly time series. Currently
the following disaggregations are supported:

• Year to Month
• Month to Day
• Day to NHour (including 24Hour)
• Hour to NMinute (including 60Minute)

None – must be
specified.

NewInterval The data interval for the disaggregated time series
(NHour, NDay, etc.).

None – must be
specified.

NewDataType The data type for the disaggregated time series, if
different from the original.

Same data type as the
original time series.

NewUnits The units for the disaggregated time series, if
different from the original.

Same units as the
original time series.

An example command file to process data from the State of Colorado’s HydroBase is as follows:

08223000 - RIO GRANDE RIVER AT ALAMOSA
TS DayTS = ReadTimeSeries("08223000.DWR.Streamflow.Day~HydroBase")
TS HourTS = Disaggregate(TSID="DayTS",Method=Ormsbee,NewInterval=6Hour)

Command Reference – Disaggregate() - 2 226

TSTool Documentation Disaggregate() Command

Examples of graphs for the original and disaggregated data are shown below, for the two disaggregation
methods:

disaggregate_SameValue_Graph

Daily Input Time Series and 6-Hour Disaggregated Time Series using SameValue Method

disaggregate_SameValue_Graph

Daily Input Time Series and 6-Hour Disaggregated Time Series using Ormsbee Method

 Command Reference – Disaggregate() - 3 227

Disaggregate() Command TSTool Documentation

This page is intentionally blank.

Command Reference – Disaggregate() - 4 228

Command Reference: Divide()
Divide the data values in one time series by data values in another time series

Version 08.16.04, 2008-09-24

The Divide()command divides one time series by another. This is useful for comparing the relative
size of time series values (see also RelativeDiff()). If the divisor is zero or missing, the result is set
to missing. Use the Scale() command to divide by a numerical value.

The following dialog is used to edit the command and illustrates the syntax of the command.

Divide

Divide() Command Editor

The command syntax is as follows:

Divide(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSID The time series identifier or alias for the time series to be

modified.
None – must be
specified.

DivisorTSID The time series identifier or alias for the time series that is the
divisor.

None – must be
specified.

 Command Reference – Divide() - 1 229

Divide() Command TSTool Documentation

A sample command file to process data from the State of Colorado’s HydroBase database is as follows:

2184 - DEL NORTE 2 E
2184.NOAA.TempMean.Month~HydroBase
5706 - MONTE VISTA 2 W
5706.NOAA.TempMean.Month~HydroBase
Divide(TSID="2184.NOAA.TempMean.Month",
 DivisorTSID="5706.NOAA.TempMean.Month")

The resulting graph is as follows:

divide_graph

Results from Divide() Command

Command Reference – Divide() - 2 230

Command Reference: Exit()
Stop processing commands

Version 08.16.04, 2008-09-25

The Exit() command can be inserted anywhere in a command file and causes the processing of
commands to stop at that line. This is useful for temporarily processing a subset of a long list of
commands. Multi-line comments (/* */) can also be used to temporarily disable one or more
commands. It may also useful to add an Exit() command at the end of the file so that it is easy to
insert commands above this command when the end line is selected (rather than having to deselect all
commands when editing).

In the future the command may be enhanced to have parameters that more explicitly control processing
shut-down.

The following dialog is used to edit the command and illustrates the command syntax:

Exit

Exit() Command Editor

The command syntax is as follows:

Exit(Parameter=Value,…)

Command Parameters

Parameter Description Default
 There are currently no command parameters.

A sample command file is as follows:

Exit()

 Command Reference – Exit() - 1 231

Exit() Command TSTool Documentation

This page is intentionally blank.

Command Reference – Exit() - 2 232

Command Reference: ExpandTemplateFile()
Process a template file to create the fully-expanded file

Version 09.09.00, 2010-09-23

The ExpandTemplateFile() command processes a template file (typically a command file or time
series product file but can be any text file) to create a fully-expanded file. Templates facilitate utilizing
conditional logic, loops, and other dynamic processing functionality. For example, a template can be
used to repeat commands for multiple location identifiers. Templates can also be applied to other text
files.

The FreeMarker software (http://freemarker.org) is used to implement templates. Refer to the online
documentation for information about the markup language used to create templates. The built-in
normalizeNewlines user directive is automatically used to ensure that expanded files use newline
characters appropriate for the operating system – this leads to extra first and last lines in the template
during processing.

Properties set with the SetProperty() command are passed to the template tool. One-column tables
are also passed as lists, using the table identifier as the property name. For example, use the
CopyTable() command to create a one-column table that can be used as a list for template expansion.

The following dialog is used to edit the command and illustrates the syntax for the command.

ExpandTemplateFile

ExpandTemplateFile() Command Editor

The command syntax is as follows:

ExpandTemplateFile(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the template file to process. None – must be specified.
OutputFile The name of the expanded output file. None – must be specified.

 Command Reference – ExpandTemplateFile() - 1 233

http://freemarker.org/

ExpandTemplateFile() Command TSTool Documentation

The following example illustrates a simple template command file and expanded result:

Simple test to expand a text file using FreeMarker
<#assign message="Hello World">
${message}

Simple test to expand a text file using FreeMarker
Hello World

The following example illustrates a template command file and expanded result to repeat a command for
a list of location identifiers. A block of multiple commands can be repeated, as appropriate. Long lines
are indented for illustration but would exist on a single line without indentation in the template file.

Simple template to illustrate how to repeat commands with a list of
location identifiers
Create a time series for each location
The following ensures that the created template is read-only, so users
modify the template instead:
#@readOnly
<#assign setStart = "2000-01-01">
<#assign setEnd = "2000-03-15">
<#assign units = "CFS">
<#assign locList = ["loc1", "loc2", "loc3", "loc4"]>
<#list locList as loc>
TS ${loc} =
NewPatternTimeSeries(NewTSID="${loc}..Streamflow.Day",SetStart="${setStart}",
 SetEnd="${setEnd}",Units="${units}",PatternValues="${loc_index + 1},0")
</#list>

Simple template to illustrate how to repeat commands with a list of location identifiers
Create a time series for each location
The following ensures that the created template is read-only, so users
modify the template instead:
#@readOnly
TS loc1 = NewPatternTimeSeries(NewTSID="loc1..Streamflow.Day",
 SetStart="2000-01-01",SetEnd="2000-03-15",
 Units="CFS",PatternValues="1,0")
TS loc2 = NewPatternTimeSeries(NewTSID="loc2..Streamflow.Day",
 SetStart="2000-01-01",SetEnd="2000-03-15",
 Units="CFS",PatternValues="2,0")
TS loc3 = NewPatternTimeSeries(NewTSID="loc3..Streamflow.Day",
 SetStart="2000-01-01",SetEnd="2000-03-15",
 Units="CFS",PatternValues="3,0")
TS loc4 = NewPatternTimeSeries(NewTSID="loc4..Streamflow.Day",
 SetStart="2000-01-01",SetEnd="2000-03-15",
 Units="CFS",PatternValues="4,0")

Command Reference – ExpandTemplateFile() - 2 234

Command Reference: FillConstant()
Fill missing time series data using a constant value

Version 09.07.02, 2010-08-20

The FillConstant() command fills the missing data in a time series with the specified value. This
fill technique is useful for filling missing data with zeros, perhaps as the last step in a sequence of filling
commands.

The following dialog is used to edit the command and illustrates the command syntax.

FillConstant

FillConstant() Command Editor

 Command Reference – FillConstant() - 1 235

FillConstant() Command TSTool Documentation

The command syntax is as follows:

FillConstant(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be processed, one

of:
• AllMatchingTSID – all time series that

match the TSID (single TSID or TSID with
wildcards) will be modified.

• AllTS – all time series before the command.
• EnsembleID – all time series in the ensemble

will be modified.
• FirstMatchingTSID – the first time series

that matches the TSID (single TSID or TSID
with wildcards) will be modified.

• LastMatchingTSID – the last time series
that matches the TSID (single TSID or TSID
with wildcards) will be modified.

• SelectedTS – the time series are those
selected with the SelectTimeSeries()
command.

AllTS

TSID The time series identifier or alias for the time series
to be modified, using the * wildcard character to
match multiple time series.

Required for
TSList=*TSID.

EnsembleID The ensemble to be modified, if processing an
ensemble.

Required for
TSList=EnsembleID.

ConstantValue Constant value to use when filling missing data. None – must be specified.
FillStart Date/time indicating the start of filling, using a

precision appropriate for the time series, or
OutputStart.

Fill the entire time series.

FillEnd Date/time indicating the end of filling, using a
precision appropriate for the time series, or
OutputEnd.

Fill the entire time series.

FillFlag If specified, data flags will be enabled for the time
series and each filled value will be tagged with the
specified string. The flag can then be used later to
label graphs, etc. The flag will be appended to
existing flags if necessary.

No flag is assigned.

A sample command file to fill a time series from the State of Colorado’s HydroBase is as follows:

08236500 - ALAMOSA RIVER BELOW TERRACE RESERVOIR
08236500.DWR.Streamflow.Month~HydroBase
FillConstant(TSList=AllMatchingTSID,TSID="08236500.DWR.Streamflow.Month",
ConstantValue=500,FillStart="1970-02",FillEnd="1970-10",FillFlag="C")

Command Reference – FillConstant() - 2 236

Command Reference:
FillDayTSFrom2MonthTSAnd1DayTS()

Fill a daily time series from monthly volumes and daily pattern
Version 08.16.04, 2008-09-19

The FillDayTSFrom2MonthTSAnd1DayTS() command fills a daily time series using the following
relationship:

D1i = D2i*(M1i/M2i)

where:

i = day
D1 is the daily data at location 1
M1 is the monthly data at location 1 (for the month corresponding to the day)
D2 is the daily data at location 2
M2 is the monthly data at location 2 (for the month corresponding to the day)

This fill method assumes the monthly time series are filled and reasonably correlated and that the daily
pattern D2 can be applied at D1. For example, use this command to fill daily streamflow where filled
monthly data are available at nearby locations and filled daily data is available at the independent (D2)
station.

 Command Reference – FillDayTSFrom2MonthTSAnd1DayTS() - 1 237

FillDayTSFrom2MonthTSAnd1DayTS() Command TSTool Documentation

The following dialog is used to edit the command and illustrates the syntax of the command. For all the
time series identifiers, the last matching identifier before the command will be matched for processing.
Currently there is no way to fill multiple time series with one command.

FillDayTSFrom2MonthTSAnd1DayTS

FillDayTSFrom2MonthTSAnd1DayTS() Command Editor

The command syntax is as follows:

FillDayTSFrom2MonthTSAnd1DayTS(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSID_D1 The time series identifier or alias for the daily time

series to be filled.
None – must be
specified.

TSID_M1 The time series identifier or alias for the monthly
time series, corresponding to TSID_D1, to supply
the monthly values to be distributed to daily.

None – must be
specified.

TSID_M2 The time series identifier or alias for the independent
monthly time series.

None – must be
specified.

TSID_D2 The time series identifier or alias for the independent
daily time series, corresponding to TSID_M2.

None – must be
specified.

FillStart Date/time indicating the start of filling, using a
precision appropriate for the time series, or
OutputStart.

Fill the entire time
series.

FillEnd Date/time indicating the end of filling, using a
precision appropriate for the time series, or
OutputEnd.

Fill the entire time
series.

Command Reference – FillMonthTSFrom2MonthTSAnd1DayTS() - 2 238

TSTool Documentation FillDayTSFrom2MonthTSAnd1DayTS() Command

An example command file to process data from the State of Colorado’s HydroBase is shown below with
the resulting graph of daily time series.

The following is D1:
(1995-1998) ALAMOSA RIVER ABOVE JASPER, CO USGS Streamflow Daily
08235350.USGS.Streamflow.Day~HydroBase
The following is M1:
(1995-1998) ALAMOSA RIVER ABOVE JASPER, CO USGS Streamflow Monthly
08235350.USGS.Streamflow.Month~HydroBase
The following is D2:
(1914-1998) ALAMOSA RIVER ABOVE TERRACE RESERVOIR, CO. DWR Streamflow Daily
08236000.DWR.Streamflow.Day~HydroBase
The following is M2:
(1914-1998) ALAMOSA RIVER ABOVE TERRACE RESERVOIR, CO. DWR Streamflow Monthly
08236000.DWR.Streamflow.Month~HydroBase
FillRegression(TSID="08235350.USGS.Streamflow.Month",
 IndependentTSID="08236000.DWR.Streamflow.Month",
 NumberOfEquations=OneEquation,Transformation=Linear)
FillDayTSFrom2MonthTSAnd1DayTS(TSID_D1="08235350.USGS.Streamflow.Day",
 TSID_M1="08235350.USGS.Streamflow.Month",
 TSID_M2="08236000.DWR.Streamflow.Month",TSID_D2="08236000.DWR.Streamflow.Day")

 Command Reference – FillDayTSFrom2MonthTSAnd1DayTS() - 3 239

FillDayTSFrom2MonthTSAnd1DayTS() Command TSTool Documentation

The following graph shows the two daily time series used in the command (zoomed in). Note that the
shape of the filled time series is similar to the other time series.

fillDayTSFrom2MonthTSAnd1DayTS_Graph

Example of Filled Data

Command Reference – FillMonthTSFrom2MonthTSAnd1DayTS() - 4 240

Command Reference: FillFromTS()
Fill missing time series data using data from another time series (or ensemble)

Version 09.08.01, 2010-09-14

The FillFromTS() command fills missing data in a time series (or ensemble) by transferring non-
missing values from another time series (or ensemble). This is useful when two time series typically have
very similar values. The filled time series is not automatically extended. A period can be specified to
limit the period that is checked for missing data. See also the SetFromTS() command, which will
transfer all values. If multiple time series or an ensemble is being processed, the number of independent
time series must be one or the same number as the time series being filled.

Data transfer occurs by date/time, not sequentially. This may be a problem if trying to fill from a time
series that has been shifted and leap years have caused an offset – an enhancement may be made in the
future to address this issue.

The following dialog is used to edit the command and illustrates the command syntax.

FillFromTS

FillFromTS() Command Editor

The command syntax is as follows:

FillFromTS(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be processed, one of: AllTS

 Command Reference – FillFromTS() - 1 241

FillFromTS() Command TSTool Documentation

Parameter Description Default
• AllMatchingTSID – all time series that match

the TSID (single TSID or TSID with wildcards)
will be modified.

• AllTS – all time series before the command.
• EnsembleID – all time series in the ensemble

will be modified.
• FirstMatchingTSID – the first time series

that matches the TSID (single TSID or TSID with
wildcards) will be modified.

• LastMatchingTSID – the last time series that
matches the TSID (single TSID or TSID with
wildcards) will be modified.

• SelectedTS – the time series are those selected
with the SelectTimeSeries() command.

TSID The time series identifier or alias for the time series to
be modified, using the * wildcard character to match
multiple time series.

Required when a
TSList=*TSID

EnsembleID The ensemble to be modified, if processing an
ensemble.

Required when
TSList=EnsembleID.

Independent
TSList

Indicates how to determine the list of independent time
series (see the explanation of TSList).

AllTS

Independent
TSID

The time series identifier or alias for the independent
time series (see the explanation of TSID).

Required when a
IndependentTSList=
*TSID

Independent
EnsembleID

The ensemble identifier for the independent time series
(see the explanation of EnsembleID).

Required when
IndependentTSList=
EnsembleID.

FillStart The date/time to start filling, if other than the full time
series period.

Fill the entire period.

FillEnd The date/time to end filling, if other than the full time
series period.

Fill the entire period.

RecalcLimits Available only for monthly time series. Indicate
whether the original data limits for the time series
should be recalculated after the filling the time series.
Setting to True is appropriate if the independent time
series provides observations consistent with the
original data.

False (only the values in
the initial time series will
be used for historical
data).

A sample command file to fill data from the State of Colorado’s HydroBase is as follows:

08241000 - TRINCHERA CREEK ABOVE MOUNTAIN HOME RESERVOIR
08241000.DWR.Streamflow.Month~HydroBase
08240500 - TRINCHERA CREEK ABOVE TURNER'S RANCH
08240500.DWR.Streamflow.Month~HydroBase
FillFromTS(TSList=AllMatchingTSID,TSID="08241000.DWR.Streamflow.Month",
 IndependentTSList=AllMatchingTSID,
 IndependentTSID="08240500.DWR.Streamflow.Month")

Command Reference – FillFromTS() - 2 242

Command Reference: FillHistMonthAverage()
Fill missing time series data using historical monthly average data

Version 09.07.00, 2010-06-14

The FillHistMonthAverage() command fills missing data in monthly time series with the average
monthly values. The average values are computed using the available data period (or specified averaging
period – see the SetAveragePeriod() command) immediately after the time series is read and are
then applied when this command is encountered.

The following dialog is used to edit the command and illustrates the syntax of the command.

FillHistMonthAverage

FillHistMonthAverage() Command Editor

The command syntax is as follows:

FillHistMonthAverage(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicate how to determine the list of time series to process,

one of:

 AllMatchingTSID – process time series that have

identifiers matching the TSID parameter.
 AllTS – process all the time series.
 FirstMatchingTSID – process the first time series

that has an identifier matching the TSID parameter.

None – must be specified.

 Command Reference – FillHistMonthAverage() - 1 243

FillHistMonthAverage() Command TSTool Documentation

Parameter Description Default
 LastMatchingTSID – process the last time series that

has an identifier matching the TSID parameter.
 SelectedTS – process the time series that are selected

(see SelectTimeSeries()).
TSID Used if TSList=AllMatchingTSID to indicate the time

series identifier or alias for the time series to be filled.
Specify * to match all time series or use a wildcard for one or
more identifier parts.

Required if
TSList=AllMatchin
gTSID.

FillStart Date/time indicating the start of filling, using a precision
appropriate for the time series, or OutputStart.

Fill the entire time series.

FillEnd Date/time indicating the end of filling, using a precision
appropriate for the time series, or OutputEnd.

Fill the entire time series.

FillFlag If specified, data flags will be enabled for the time series and
each filled value will be tagged with the specified string. The
flag can then be used later to label graphs, etc. The flag will
be appended to existing flags if necessary. Use Auto to use
a flag with the month abbreviation + Avg.

No flag is assigned.

FillFlag
Desc

Description for the fill flag, used in reports. Automatically generated.

The following command files fill a time series from the State of Colorado’s HydroBase:

0125 - ALAMOSA
0125.NOAA.Precip.Month~HydroBase
FillHistMonthAverage(TSList=AllMatchingTSID,TSID=”0125.NOAA.Precip.Month”,
FillFlag=”H”)

0125.NOAA.Precip.Month~HydroBase
FillHistMonthAverage(TSList=AllMatchingTSID,TSID=”019*”,FillFlag=”H”)

Time series data limits for the averages are printed to the log file, similar to the following examples (note
that the period for averaging is always shown and may be different than the output period).

Status: Historic averages for time series follow...
Time series: 0125.NOAA.Precip.Month (IN)
Monthly limits for period 1948-08 to 1949-12 are:
 # % # Not % Not
Month Min MinDate Max MaxDate Sum Miss. Miss. Miss. Miss. Mean
--
Jan 0.2 1949-01 0.2 1949-01 0.2 0 0.00 1 100.00 0.2
Feb 0.1 1949-02 0.1 1949-02 0.1 0 0.00 1 100.00 0.1
Mar 0.1 1949-03 0.1 1949-03 0.1 0 0.00 1 100.00 0.1
Apr -999.0 -999.0 -999.0 1 100.00 0 0.00 -999.0
May -999.0 -999.0 -999.0 1 100.00 0 0.00 -999.0
Jun 0.7 1949-06 0.7 1949-06 0.7 0 0.00 1 100.00 0.7
Jul 1.5 1949-07 1.5 1949-07 1.5 0 0.00 1 100.00 1.5
Aug 0.7 1949-08 0.8 1948-08 1.5 0 0.00 2 100.00 0.8
Sep 0.1 1948-09 1.1 1949-09 1.2 0 0.00 2 100.00 0.6
Oct 0.1 1949-10 0.5 1948-10 0.7 0 0.00 2 100.00 0.3
Nov 0.0 1949-11 0.8 1948-11 0.8 0 0.00 2 100.00 0.4
Dec 0.0 1949-12 0.2 1948-12 0.2 0 0.00 2 100.00 0.1
--
Period 0.0 1949-11 1.5 1949-07 6.9 2 11.76 15 88.24 0.5
--

Command Reference – FillHistMonthAverage() - 2 244

Command Reference: FillHistYearAverage()
Fill missing time series data using historical yearly average data

Version 08.15.00, 2008-05-04

The FillHistYearAverage() command fills missing data in yearly time series with the average
annual value. The average values are computed using the available data period (or specified averaging
period – see the SetAveragePeriod()command) immediately after the time series is read and are
then applied when this command is encountered.

The following dialog is used to edit the command and illustrates the syntax of the command.

FillHistYearAverage

FillHistYearAverage() Command Editor

The command syntax is as follows:

FillHistYearAverage(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicate how to determine the list of time

series to process, one of:

 AllMatchingTSID – process time

series that have identifiers matching
the TSID parameter.

 AllTS – process all the time series.
 SelectedTS – process the time

series that are selected (see

None – must be specified.

 Command Reference – FillHistYearAverage() - 1 245

FillHistYearAverage() Command TSTool Documentation

Parameter Description Default
selectTimeSeries()).

TSID Used if TSList=AllMatchingTSID
to indicate the time series identifier or
alias for the time series to be filled.
Specify * to match all time series or use
a wildcard for one or more identifier
parts.

Required if
TSList=AllMatchingTSID.

FillStart Date/time indicating the start of filling,
using a precision appropriate for the time
series, or OutputStart.

Fill the entire time series.

FillEnd Date/time indicating the end of filling,
using a precision appropriate for the time
series, or OutputEnd.

Fill the entire time series.

FillFlag If specified as a single character, data
flags will be enabled for the time series
and each filled value will be tagged with
the specified character. The flag can
then be used later to label graphs, etc.
The flag will be appended to existing
flags if necessary.

No flag is assigned.

A sample command file to fill data from the State of Colorado’s HydroBase is as follows:

LARIMER.NASS.CropArea-Vegetables, Harvested.Year~HydroBase
FillHistYearAverage(TSList=AllMatchingTSID,
TSID="LARIMER.NASS.CropArea-Vegetables, Harvested.Year")

Time series data limits for the averages are printed to the log file, similar to the following example (note
that the period for averaging is always shown and may be different than the output period).

Min: 95.0000 ACRE on 1954
Max: 2684.0000 ACRE on 1959
Sum: 11090.0000 ACRE
Mean: 1008.1818 ACRE
Number Missing: 42 (79.25%)
Number Not Missing: 11 (20.75%)
Total period: 1945 to 1997
Non-missing data period: 1945 to 1997

Command Reference – FillHistYearAverage() - 2 246

Command Reference: FillInterpolate()
Fill missing time series data by interpolating between known values

Version 09.07.02, 2010-08-20

The FillInterpolate() command fills missing data in a time series by interpolating between
known values within the same time series. The command currently will not extrapolate past end points.

The following dialog is used to edit the command and illustrates the syntax of the command.

FillInterpolate

FillInterpolate() Command Editor

The command syntax is as follows:

FillInterpolate(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be

processed, one of:
• AllMatchingTSID – all time

series that match the TSID (single
TSID or TSID with wildcards) will
be modified.

• AllTS – all time series before the

AllTS

 Command Reference – FillInterpolate() - 1 247

FillInterpolate() Command TSTool Documentation

Parameter Description Default
command.

• EnsembleID – all time series in
the ensemble will be modified.

• FirstMatchingTSID – the first
time series that matches the TSID
(single TSID or TSID with
wildcards) will be modified.

• LastMatchingTSID – the last
time series that matches the TSID
(single TSID or TSID with
wildcards) will be modified.

• SelectedTS – the time series are
those selected with the
SelectTimeSeries()
command.

TSID The time series identifier or alias for the
time series to be modified, using the *
wildcard character to match multiple
time series.

Required when
TSList=*TSID

EnsembleID The ensemble to be modified, if
processing an ensemble.

Required when
TSList=EnsembleID.

FillStart The starting date/time for the fill. Available period.
FillEnd The ending date/time for the fill. Available period.
MaxIntervals The maximum number of consecutive

intervals to fill (0 indicates no limits on
the number of consecutive intervals that
can be filled).

0

Transformation Indicate the data transformation to occur
for interpolation. Currently, None is the
only option and is the default. Earlier
versions used Linear.

None (no transformation).

FillFlag A string to flag data values that are filled. None – do not flag filled data.

A sample command file using data from the State of Colorado’s HydroBase is as follows:

06707500 - SOUTH PLATTE RIVER AT SOUTH PLATTE
06707500.DWR.Streamflow.Month~HydroBase
FillInterpolate(TSList=AllMatchingTSID,TSID="06707500.DWR.Streamflow.Month",
MaxIntervals=3,Transformation=None)

Command Reference – FillInterpolate() - 2 248

Command Reference: FillMixedStation()
Fill missing data in dependent time series using the best fit from 1+ independent

time series, using OLS regression or MOVE2, data transforms, one/monthly
equations

Version 09.06.03, 2009-09-01

The FillMixedStation() command fills missing data in a time series where one or more
independent time series is used to sequentially fill missing data. This approach has been developed to
automate analysis of regression filling (see Mixed Station Analysis Tool below) and to facilitate batch
filling of many related time series. Typically, the time series involved in the analysis are related, such as
being from nearby locations in a region.

For each dependent time series being filled, the Mixed Station Analysis (MSA) selects the independent
time series and parameters that result in the best filling results, considering combinations of the
following:

• The list of independent time series being considered can be constrained to a subset of available
time series.

• Filling methods include ordinary least squares (OLS) regression (see the FillRegression()
command for details) and MOVE2 (see the FillMOVE2() command for details).

• One equation or monthly equations can be used. However, both options cannot be evaluated
together due to the complexity of ranking and reporting results.

• The data can be transformed using log10, or no transformation can be applied.
• A minimum number of overlapping data points (N1) can be specified to indicate a valid

relationship.
• A minimum correlation coefficient r can be specified to indicate a valid relationship.
• The best fit indicator can be the correlation coefficient (R) or the standard error of prediction

(SEP, described below).

The interactive MSA tool is available to facilitate configuration of the FillMixedStation()
command. The primary uses of the MSA tool and FillMixedStation() command are:

• Use the MSA tool to evaluate filling options before finalizing the fill commands. For example,
run the MSA tool and review the output report to confirm the filling methodology and
corresponding command parameters. A FillMixedStation() command can then be created
and passed to the TSTool command list.

• If no evaluation is needed, use the or FillMixedStation() command editor to create a
single FillMixedStation() analysis command, which when run evaluates the best filling
parameters for filling and performs the filling. A single command can be used to fill many time
series.

Because extensive analysis may be necessary to evaluate all the combinations of parameters, the
FillMixedStation() command will be slower than other commands that specifically indicate how
to perform the filling. Performance can be increased by using the Mixed Station Analysis tool to
determine time series that result in the best fit, and excluding all other time series in the fill command.
The number of combinations can also be limited by reducing the number of parameter options and using
stricter limitations on the number of points and correlation coefficient that are required for a good
regression result.

 Command Reference – FillMixedStation() - 1 249

FillMixedStation() Command TSTool Documentation

The full MSA process is as follows:

1. For each dependent time series, perform a regression analysis using a unique combination of
parameters (e.g., use an independent time series, OLS regression with one equation, no data
transform). This results in 1+ regression results for each dependent time series.

2. Qualifying results (those that meet the requirements of minimum number of overlapping points
and correlation coefficient) are retained in a list for the dependent time series, for processing in
the next step.

3. The qualifying results are ranked according to the best fit indicator (e.g., R or standard error of
prediction SEP, as described below). If a monthly analysis is performed, the results for each
month are ranked.

4. Missing data in the dependent time series are filled using the regression results. If missing values
remain, the next highest ranking regression result is used until all missing values are filled (or no
additional qualifying regression results are available). Monthly filling occurs on each of the 12
months.

Best Fit Indicators

Best fit indicators that are available include:

1. Correlation coefficient, R, defined as:

R =
()[] ()[]∑ ∑∑ ∑
∑ ∑ ∑

−⋅−

−
2222 YYNXXN

YXXYN

where X is the independent and Y is the dependent for all overlapping data points.

2. Standard Error of Prediction (SEP), defined as:

SEP =
()

N
YY∑ − 2'

where Y is the observed value and Y’ and is the estimated value using the relationship determined
for filling, for all original points in the independent time series.

In the future, additional indicators may be added, such as the Nash-Sutcliffe efficiency coefficient.

Command Reference – FillMixedStation() - 2 250

TSTool Documentation FillMixedStation() Command

Mixed Station Analysis Tool

The Mixed Station Analysis tool is started after time series results are generated in TSTool, for example
as the result of reading a list of time series. The following dialog illustrates the parameters of the tool,
which are essentially the same as for the FillMixedStation() command that is described in the
next section.

tool_MixedStationAnalysis

Mixed Station Analysis Tool after Initial Display

The MSA tool is used as follows:

1. The tool will initially display default parameter values, but these values can be changed using the
interface. Select parameters as appropriate for the analysis. The corresponding
FillMixedStation() command is shown at the bottom of the window.

2. Press the Analyze button to perform the analysis. The analysis may run for several minutes.
3. When the analysis is complete, press the View Output File button to view the analysis results.
4. If satisfied with the results, meaning that reasonable relationships have been determined, go to the

following step. Otherwise adjust the analysis parameters and run the analysis again.
5. Use the Copy Command to TSTool button to copy the FillMixedStation() command to

TSTool. The command will be inserted as if it were edited from the Commands menu.

 Command Reference – FillMixedStation() - 3 251

FillMixedStation() Command TSTool Documentation

6. The MSA tool can then be closed and commands run as usual to automate data processing.

Subsequent edits of the command can occur using the normal command editor. The following section
provides an example of the standard command editor and a description of all of the parameters.

Command Editing

The following dialog is used to edit the FillMixedStation() command and illustrates the syntax of
the command:

FillMixedStation

FillMixedStation() Command Editor

Command Reference – FillMixedStation() - 4 252

TSTool Documentation FillMixedStation() Command

The command syntax is as follows:

FillMixedStation(Parameter=value,…)

Command Parameters

Parameter Description Default
DependentTSList Indicates the list of independent time series to

be processed, one of:
• AllMatchingTSID – all time series

that match the TSID (single TSID or
TSID with wildcards) will be processed.

• AllTS – all time series before the
command will be processed.

• EnsembleID – all time series in the
ensemble will be processed.

• FirstMatchingTSID – the first time
series that matches the TSID (single TSID
or TSID with wildcards) will be
processed.

• LastMatchingTSID – the last time
series that matches the TSID (single TSID
or TSID with wildcards) will be
processed.

 SelectedTS – the time series selected
with the SelectTimeSeries()
command will be processed.

None – must be specified.

DependentTSID The time series identifier or alias for the
dependent time series to be processed, using
the * wildcard character to match multiple
time series.

Required if
DependentTSList=
*TSID.

IndependentTSList Indicates the list of independent time series to
be considered for each dependent time series,
one of:
• AllMatchingTSID – all time series

that match the TSID (single TSID or
TSID with wildcards) will be processed.

• AllTS – all time series before the
command will be processed.

• EnsembleID – all time series in the
ensemble will be processed.

• FirstMatchingTSID – the first time
series that matches the TSID (single TSID
or TSID with wildcards) will be
processed.

• LastMatchingTSID – the last time
series that matches the TSID (single TSID
or TSID with wildcards) will be
processed.

• SelectedTS – the time series selected

None – must be specified.

 Command Reference – FillMixedStation() - 5 253

FillMixedStation() Command TSTool Documentation

Parameter Description Default
with the SelectTimeSeries()
command will be processed.

IndependentTSID The time series identifier or alias for the
independent time series to be compared, using
the * wildcard character to match multiple
time series.

Required if
IndependentTSList=
*TSID.

BestFitIndicator Specifies the indicator to use when
determining the best fit, one of:
 R (correlation coefficient).
 SEP (Standard Error of Prediction),

defined as the square root of the sum of
differences between the known dependent
value, and the value determined from the
equation of best fit at the same point.

 SEPTotal, when used with one
equation, it is the same as SEP. When
used with monthly equations, it is the
average error considering all months.

SEP.

AnalysisMethod Specify the method(s) to analyze the data, in
order to determine the best fit, including
OLSRegression and/or MOVE2. If
multiple methods are specified, separate with
commas and surround with double quotes.

OLSRegression

NumberOfEquations The number of equations to use for the
analysis: OneEquation or
MonthlyEquations. Only one may be
chosen. If necessary, use more than one
command to use different parameter
combinations for different groups of time
series.

None – must be specified.

Transformation Indicates how to transform the data before
analyzing. Specify as None (no
transformation) or Log (for Log10). If the
Log option is used, zero and negative values
in data are set to .001. Missing data are
ignored. If multiple values are selected,
separate with a comma and surround with
double quotes.

None (no transformation)

Intercept Specify as 0 to force the intercept of the best-
fit line through the origin. This is made
available only for OLS regression analysis on
untransformed data, to be consistent with the
FillRegression() command.

Do not force the intercept
through zero.

AnalysisStart The date/time to start the analysis, to focus on
a period appropriate for analysis. For
example, specify the unregulated period for
streamflow.

If blank, analyze the full
period.

AnalysisEnd The date/time to end the analysis. If blank, analyze the full
period.

Command Reference – FillMixedStation() - 6 254

TSTool Documentation FillMixedStation() Command

Parameter Description Default
FillStart The date/time to start filling, if other than the

full time series period.
If blank, fill the full period.

FillEnd The date/time to end filling, if other than the
full time series period.

If blank, fill the full period.

MinimumDataCount The minimum number of overlapping data
points that are required for a valid analysis
(N1 in FillRegression() and
FillMOVE2() documentation). If the
minimum count is not met, then the
independent time series is ignored for the
specific combination of parameters. For
example, if monthly equations are used, the
independent time series may be ignored for
the specific month; however, it may still be
analyzed for other months.

10

MinimumR The minimum correlation coefficient required
for a best fit. If the minimum is not met, then
the results are not considered in the best fit
ranking or filling.

0.5

OutputFile Output file for the results, either as a file name
to be written to the working directory, or a full
path.

If not specified, partial
results of the analysis may
be available in the log file.

The following example command file fills natural flow time series from a StaeMod file using one
equation (not monthly):

Test filling the gunnison monthly baseflow time series with
Mixed Station Analysis (all combinations for one equation)
StartLog(LogFile="fill-baseflow.log")
ReadStateMod(InputFile="gunnv.xbg")
FillMixedStation(BestFitIndicator=SEP,AnalysisMethod="MOVE2,OLSRegression",
NumberOfEquations=OneEquation,
Transformation="Log,None",OutputFile="Results.txt")
Check for missing data - all should be filled
CheckTimeSeries(CheckCriteria="Missing",MaxWarnings=10)
Check for negative flows - should not be any
CheckTimeSeries(CheckCriteria="<",Value1=0,MaxWarnings=10)

 Command Reference – FillMixedStation() - 7 255

FillMixedStation() Command TSTool Documentation

This page is intentionally blank.

Command Reference – FillMixedStation() - 8 256

Command Reference: fillMOVE1()
Fill Missing Time Series Data Using MOVE1 Procedure

Version 06.08.02, 2004-08-02, Color, Acrobat Distiller

The fillMOVE1() command has not been enabled. This documentation serves as a reference for
the MOVE1 procedure. Refer to the fillMOVE2() command.

The fillMOVE1() command is more sophisticated than the fillRegression() command.

Maintenance of variance extension (MOVE) procedures are methods of fitting straight lines to data. The
slope and intercept of the MOVE equations are computed differently than in ordinary least squares (OLS)
regression (see the fillRegression() command for a discussion of OLS regression). As shown
below, an area of a triangle is minimized in the MOVE procedures rather than a vertical distance as in
OLS regression. The MOVE procedures do not provide the minimum-variance estimate of a single value
but an ensemble of points estimated by the MOVE procedures will have the same variability as the true
values.

MOVE procedures are useful in extending record at gaging stations where the extended record will be
subsequently used in another analysis such as frequency analysis. MOVE procedures will provide about
the same estimates as OLS regression near the mean of the data but will provide smaller and larger
estimates at the extremes of the data set. The slope of the MOVE relation is steeper than OLS regression.
The MOVE procedures are based on only one independent variable and the assumption is that there is a
linear relation between the dependent and independent variables. If the untransformed data are not
linearly related, then it is common to transform the data using a logarithmic transformation.

The MOVE.1 procedure uses just the data from the N1 years of concurrent data. The MOVE.2 procedure
(see the fillMOVE2() command) uses the Two-Station Comparison procedure described in Appendix
7 of Bulletin 17B, Guidelines for Determining Flood Flow Frequency, USGS, to compute improved
estimates of the mean and variance for the dependent time series and uses all the data at the dependent
time series to estimate the mean and variance of the dependent time series. The MOVE.2 procedure has
been shown to be marginally better than MOVE.1.

 Command Reference – fillMOVE1() - 1 257

fillMOVE1() Command TSTool Documentation

Maintenance of Variance Extension (MOVE)

(Xi, Yi)

Minimize area
of triangle

Y

X

The MOVE.1 equation is used to estimate values for the dependent time series from the independent time
series:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+= 11

1

1

XXYY iS
S

i
x

y

or

ii bXaY +=

where

=1N concurrent or overlapping period of record
=1X mean for independent variable for years 1N

=1Y mean for dependent variable for years 1N
=1yS standard deviation for years 1N
=1xS standard deviation for years 1N

1

1

x

y

S
S

b =

11 - XbYa =

Note that the slope of the line does not include the correlation coefficient. This is the only difference
between OLS regression and MOVE.1.

Command Reference – fillMOVE1() - 2 258

Command Reference: FillMOVE2()
Fill missing data in time series using the Maintenance of Variance Extension

(MOVE.2) procedure
Version 08.15.00, 2008-05-04

The FillMOVE2() command fills missing data in a time series using the MOVE.2 procedure (see the
FillMOVE1() command for background information). The MOVE.2 procedure uses the Two-Station
Comparison procedure described in Appendix 7 of Bulletin 17B, Guidelines for Determining Flood
Flow Frequency, USGS, to compute improved estimates of the mean and variance at the dependent or
short-term station and uses all the data at the dependent time series to estimate the mean and variance of
the dependent time series. The MOVE.2 procedure has been shown to be marginally better than
MOVE.1. The following MOVE.2 equation is used to estimate values for the dependent time series from
the independent time series:

⎥
⎦

⎤
⎢
⎣

⎡
−+= XXYY iS

S

i x

y

where

=iY discharge for dependent time series
=iX discharge for independent time series

=X mean for independent time series for 21 NN + years (N 2 is the additional years in the long-
term time series)

=xS standard deviation for independent time series for 21 NN + years

()[]12
21

2
1 XXb

NN
N

YY −
+

+= (Equation 7-5a for Two-Station Comparison in Appendix 7
of Bulletin 17B)

[]2
12

2

21

212
y1

2

11

1122
x2

2
2

2
y11

21

2
y)XX(b

NN
NN

)Sr(1
2)3)(N(N

1)4)(N(NN
Sb1)(N1)S(N

1)N(N
1S −

+
+−

−−
−−

+−+−
−+

=

(Equation 7-10 for Two-Station Comparison in Appendix 7 of Bulletin 17B)
where

== r
S
S

rb
x

y ,
1

1 correlation coefficient (Note that b is the slope of the ordinary least squares regression

line.)
=1N concurrent or overlapping period of record
=2N additional years available at long-term site
=1X mean of independent time series for years 1N
=2X mean of independent time series for years 2N
=1yS standard deviation of dependent time series for years 1N
=1xS standard deviation of independent time series for years 1N

 Command Reference – FillMOVE2() - 1 259

FillMOVE2 () Command TSTool Documentation

The following dialog is used to edit the command and illustrates the command syntax.

FillMOVE2

FillMOVE2() Command Editor

Command Reference – FillMOVE2() - 2 260

TSTool Documentation FillMOVE2() Command

The command syntax is as follows:

FillMOVE2(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSID The time series identifier or alias for the

time series to be filled (dependent time
series).

None – must be specified.

IndependentTSID The time series identifier or alias for the
independent time series, to supply data.

None – must be specified.

NumberOf
Equations

OneEquation or
MonthlyEquations, indicating how
many relationships are to be determined.

OneEquation

Transformation Log or None, indicating the type of data
transformation. If the Log option is
used, zero and negative values are set to
.001 (-999 values are treated as
missing data and are ignored), and the
data values are transformed using log10.

None

Dependent
Analysis
Start/End

The period for N1 (overlapping data) that
is used to analyze the dependent time
series. For example, this may be the
unregulated period for streamflow data.
Typically, this is longer than the
independent analysis period.

Analyze the full period.

Independent
Analysis
Start/End

The period for N2 (non-overlapping data)
that is used to analyze the independent
time series. For example, this may be the
unregulated period for streamflow data.

Analyze the full period.

FillStart The date/time to start filling. Fill the full period.
FillEnd The date/time to end filling. Fill the full period.
FillFlag A single character to be used to flag

filled points on graphs and other output.
Do not flag filled data.

 Command Reference – FillMOVE2() - 3 261

FillMOVE2 () Command TSTool Documentation

A sample command file illustrating how to fill time series from the State of Colorado’s HydroBase is as
follows (MOVE2 and ordinary least squares regression are used to allow comparing the results):

StartLog(LogFile="Results/commands.TSTool.log",Suffix="Date")
SetOutputPeriod(OutputStart="1901-01",OutputEnd="2004-12")
06758500 - SOUTH PLATTE RIVER NEAR WELDONA
06758500.DWR.Streamflow.Month~HydroBase
06754000 - SOUTH PLATTE RIVER NEAR KERSEY
06754000.DWR.Streamflow.Month~HydroBase
FillMOVE2(TSID="06758500.DWR.Streamflow.Month",
 IndependentTSID="06754000.DWR.Streamflow.Month",
 NumberOfEquations=MonthlyEquations,DependentAnalysisStart="1952-10",
 DependentAnalysisEnd="2004-09",IndependentAnalysisStart="1901-01",
 IndependentAnalysisEnd="1950-12",FillStart="1930-01",
 FillEnd="1940-12",FillFlag="m")
06758500 - SOUTH PLATTE RIVER NEAR WELDONA
06758500.DWR.Streamflow.Month~HydroBase
06754000 - SOUTH PLATTE RIVER NEAR KERSEY
06754000.DWR.Streamflow.Month~HydroBase
FillRegression(TSID="06758500.DWR.Streamflow.Month",
IndependentTSID="06754000.DWR.Streamflow.Month")

Command Reference – FillMOVE2() - 4 262

Command Reference: FillPattern()
Fill missing time series data using historical average patterns

Version 08.16.04, 2008-09-19

The FillPattern()command fills missing data in a time series using historic averages based on a
pattern file. For example, if May 1910 is missing and the pattern indicates that May 1910 is a WET month,
then the average of all WET Mays is used to fill the time series. The pattern file indicates the
WET/DRY/AVG patterns and the time series to be filled supplies data to compute averages, for use in
filling. This feature is enabled for monthly data only. Averages are computed as described for the
FillHistMonthAverage() command. There is currently no way to limit the fill operation to a
period (the entire time series is filled). The pattern file is created with the AnalyzePattern()
command and a saved file must be read with a ReadPatternFile() command. See below for an
example of a fill pattern file. One or more patterns can be included in each pattern file, similar to
StateMod time series files (see the StateMod Input Type appendix), and multiple pattern files can be
used, if appropriate.

Years Shown = Water Years
Missing monthly data filled by the Mixed Station Method, USGS 1989
Time series identifier = 09034500.CRDSS_USGS.QME.MONTH.1
Description = COLORADO RIVER AT HOT SULPHUR SPRINGS, CO.
-e-b----------eb------eb------eb------eb------eb------eb------eb------eb------eb------eb------eb------eb------eb--------e
 10/1908 - 9/1996 ACFT WYR
1909 09034500 AVG AVG AVG WET WET AVG AVG AVG WET WET WET WET
1910 09034500 WET WET WET WET WET WET AVG AVG AVG AVG AVG AVG
1911 09034500 AVG AVG WET AVG AVG AVG AVG WET WET WET AVG WET
1912 09034500 WET WET WET WET WET AVG AVG WET WET WET WET WET
...ommitted...

The following dialog is used to edit the FillPattern() command and illustrates the syntax of the
command.

FillPattern

FillPattern() Command Editor

 Command Reference – FillPattern() - 1 263

FillPattern() Command TSTool Documentation

The command syntax is as follows:

FillPattern(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be processed, one

of:
• AllMatchingTSID – all time series that

match the TSID (single TSID or TSID with
wildcards) will be modified.

• AllTS – all time series before the command.
• EnsembleID – all time series in the ensemble

will be modified.
• FirstMatchingTSID – the first time series

that matches the TSID (single TSID or TSID
with wildcards) will be modified.

• LastMatchingTSID – the last time series
that matches the TSID (single TSID or TSID
with wildcards) will be modified.

• SelectedTS – the time series are those
selected with the SelectTimeSeries()
command.

AllTS

TSID The time series identifier or alias for the time series
to be modified, using the * wildcard character to
match multiple time series.

Required for
TSList=*TSID.

EnsembleID The ensemble to be modified, if processing an
ensemble.

Required for
TSList=EnsembleID.

PatternID The pattern identifier, matching a pattern read with
ReadPatternFile() commands.

None – must be specified.

A sample command file to process data from the State of Colorado’s StateMod model is as follows:

Read StateMod time series to fill
ReadStateMod(InputFile="..\StateMod\sjm_prelim.ddh")
Read the file containing the patterns
ReadPatternFile(PatternFile="fill.pat")
Fill time series having identifiers that start with "30"
FillPattern(TSList=AllMatchingTSID,TSID="30*",PatternID="09034500")
Write the results
WriteStateMod(TSList=AllTS,OutputFile="..\StateMod\sjm.ddh")

The above example fills all diversion time series with identifier starting with 30, using the pattern
09034500 (a stream gage for the region).

Command Reference – FillPattern() - 2 264

Command Reference: FillPrincipalComponent
Analysis()

Fill missing time series data using principal component analysis (PCA)
Version 09.04.00, 2009-06-11

This command is under development.

 Command Reference – FillPrincipalComponentAnalysis() - 1 265

FillPrincipalComponentAnalysis() Command TSTool Documentation

This page is intentionally blank.

Command Reference – FillPrincipalComponentAnalysis() - 2 266

Command Reference: FillProrate()
Fill missing time series data by prorating values in another time series

Version 08.16.04, 2008-09-30

The FillProrate() command fills missing data in time series by prorating values from another time
series. This fill technique is useful, for example, where two time series are likely to have the same
general trend and ratio of data values. The ratio can be computed two ways, as specified by the
FactorMethod parameter:

• NearestPoint – causes the ratio to be recomputed each time that a non-missing value is
found in both time series. The ratio computed from the nearest points in each time series is used
for filling until another value can be computed.

• AnalyzeAverage – computes the ratio as the average ratio of the time series (numerator) and
the independent time series (divisor). This was implemented to match an existing fill procedure
but can lead to some bias in the results. A different overall average will be obtained depending
on whether ratios are computed first and then averaged than if the sum of the numerators are
added and divided by the sum of the denominators. In the former, the choice of which time
series is in the denominator could impact results. More parameters may need to be added in the
future to implement an analysis different from the current defaults.

The initial computation of the ratio may require specifying an initial value due to missing data on the end-
points of the time series (see the InitialValue parameter). Alternatively, the time series can be filled
in one direction first and then filled in the other direction with a second command.

 Command Reference – FillProrate() - 1 267

FillProrate() Command TSTool Documentation

The following dialog is used to edit the command and illustrates the syntax of the command:

FillProrate

FillProrate() Command Editor

Command Reference – FillProrate() - 2 268

TSTool Documentation FillProrate() Command

The command syntax is as follows:

FillProrate(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be

processed, one of:
• AllMatchingTSID – all time

series that match the TSID (single
TSID or TSID with wildcards) will be
modified.

• AllTS – all time series before the
command.

• EnsembleID – all time series in the
ensemble will be modified.

• FirstMatchingTSID – the first
time series that matches the TSID
(single TSID or TSID with wildcards)
will be modified.

• LastMatchingTSID – the last
time series that matches the TSID
(single TSID or TSID with wildcards)
will be modified.

• SelectedTS – the time series are
those selected with the
SelectTimeSeries() command.

AllTS

TSID The time series identifier or alias for the
time series to be modified. Use the *
wildcard character to match multiple time
series.

Required for TSList=*TSID.

EnsembleID The ensemble to be modified, if
processing an ensemble.

Required for
TSList=EnsembleID.

IndependentTSID The time series identifier or alias for the
independent time series.

None – must be specified.

FillStart The starting date/time for the fill. Available period.
FillEnd The ending date/time for the fill. Available period.
FillFlag A one-character flag to tag data values

that are filled.
None – do not flag filled data.

FillDirection Specify the direction of the fill as
Forward or Backward.

Forward

FactorMethod Specify how to calculate the factor to use
in proration, one of:
• AnalyzeAverage – calculate the

factor of the average of the time series
divided by the independent time
series, using the analysis period.

• NearestPoint – calculate the
factor at the nearest point where both

NearestPoint

 Command Reference – FillProrate() - 3 269

FillProrate() Command TSTool Documentation

Parameter Description Default
time series have non-missing values.

AnalysisStart The starting date/time for the analysis,
used when FactorMethod
=AnalyzeAverage.

Analyze the full period.

AnalysisEnd The ending date/time for the analysis,
used when
FactorMethod=AnalyzeAverage.

Analyze the full period.

InitialValue The initial value to use for the filled time
series, for cases where a value may not be
available on the ends of the fill period,
one of:
• NearestBackward – search the

time series backward for the nearest
non-missing value.

• NearestForward – search the
time series forward for the nearest
non-missing value.

• Specify a number to use for the initial
value.

None – filling will not occur at
the end.

A sample command file to fill data from the State of Colorado’s HydroBase database is as follows:

06754000 - SOUTH PLATTE RIVER NEAR KERSEY
06754000.DWR.Streamflow.Month~HydroBase
06694700 - FOURMILE CREEK NEAR FAIRPLAY, CO.
06694700.USGS.Streamflow.Month~HydroBase
FillProrate(TSList=AllMatchingTSID,TSID="06754000.DWR.Streamflow.Month",
 IndependentTSID="06694700.USGS.Streamflow.Month",FillDirection=Forward,
 InitialValue=0)
06754000.DWR.Streamflow.Month~HydroBase

Command Reference – FillProrate() - 4 270

Command Reference: FillRegression()
Fill missing time series data using ordinary least squares regression

Version 08.15.00, 2008-05-04

The FillRegression() command fills missing data in a time series using ordinary least squares
(OLS) regression (see also the FillMOVE2() command). Regression can be applied only to regular
interval time series. The first time series selected (dependent time series) will be filled using the other
selected time series (independent time series). The periods of record and output period for the time series
should be verified to make sure that the time series periods overlap sufficiently. The Results…Graph -
XY-Scatter is a useful tool for reviewing data. Regression relationships are developed using the analysis
period for the time series and are applied to the fill period. Refer to the log file and time series properties
for analysis details.

In OLS regression, the vertical distance from the data point to the regression line is minimized. OLS
regression provides the minimum-variance estimate for a single value or observation. However, if an
ensemble of points is estimated from OLS regression, the estimated values will have lesser variability
than the true values.

Ordinary Least Squares (OLS)

(Xi, Yi)

Minimize
vertical

deviation

Y

X

 Command Reference – FillRegression() - 1 271

FillRegression() Command TSTool Documentation

The following OLS equation is used to estimate values for the dependent time series from the independent
time series:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+= 11

1

1

XXYY iS
S

ri
x

y

or

iXY bai +=

where

=1N concurrent or overlapping period of record
=1X mean for independent variable for years 1N

=1Y mean for dependent variable for years 1N
=1yS standard deviation for years 1N
=1xS standard deviation for years 1N

== r
S
S

rb
x

y ,
1

1 correlation coefficient

a = 11 - XbY

Note that the correlation coefficient, r, is used to compute the slope, b, of the line.

The following dialog is used to edit the command and illustrates the syntax of the command:

Command Reference – FillRegression() - 2 272

TSTool Documentation FillRegression() Command

FillRegression

FillRegression() Command Editor

 Command Reference – FillRegression() - 3 273

FillRegression() Command TSTool Documentation

The command syntax is as follows:

FillRegression(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSID The time series identifier or alias for the time series

to be filled.
None – must be specified.

Independent
TSID

The time series identifier or alias for the
independent time series. Right-clicking on a time
series allows it to be converted to a temporary time
series (TEMPTS).

None – must be specified.

NumberOf
Equations

The number of equations to use for the analysis:
OneEquation or MonthlyEquations.

OneEquation

AnalysisMonth Indicate the month to process when using monthly
equations. Currently only a single month can be
specified.

Process all months.

Transformation Indicates how to transform the data before
analyzing. Specify as None (previously Linear)
or Log (for Log10). If the Log option is used, zero
and negative values are set to .001 (missing data
values are ignored in the analysis).

None (no transformation).

Intercept Specify as 0 to force the intercept of the best-fit
line through the origin (not available for log
transformation).

Parameter is optional and if
specified the default is to
not force the intercept
through zero.

AnalysisStart The date/time to start the analysis – use to focus on
only a period appropriate from analysis. For
example specify the unregulated period for
streamflow.

Analyze the full period.

AnalysisEnd The date/time to end the analysis – use to focus on
only a period appropriate from analysis.

Analyze the full period.

FillStart The date/time to start filling, if other than the full
time series period.

Fill the full period.

FillEnd The date/time to end filling, if other than the full
time series period.

Fill the full period.

FillFlag A single character that will be used to flag filled
data.

Filled values will not be
flagged.

A sample command file to fill time series from the State of Colorado’s HydroBase is as follows:

06753400 - LONETREE CREEK AT CARR, CO.

th~HydroBase
AR NUNN, CO.

th~HydroBase

06753400.USGS.Streamflow.Mon
06753500 - LONETREE CREEK NE
06753500.USGS.Streamflow.Mon
FillRegression(TSID="06753400.USGS.Streamflow.Month",IndependentTSID="0675
3500.USGS.Streamflow.Month")

Command Reference – FillRegression() - 4 274

Command Reference: FillRepeat()
Fill missing time series data by repeating known data values

Version 09.09.00, 2010-09-23

The FillRepeat() command fills missing data in time series by repeating observations until another
observation is found. This fill technique is useful, for example, where time series are likely to be step-
wise or nearly constant, such as some reservoir and diversion time series.

The following dialog is used to edit the command and illustrates the syntax of the command.

FillRepeat

FillRepeat() Command Editor

 Command Reference – FillRepeat() - 1 275

FillRepeat() Command TSTool Documentation

The command syntax is as follows:

FillRepeat(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be

processed, one of:
• AllMatchingTSID – all time

series that match the TSID (single
TSID or TSID with wildcards) will
be modified.

• AllTS – all time series before the
command.

• EnsembleID – all time series in
the ensemble will be modified.

• LastMatchingTSID – the last
time series that matches the TSID
(single TSID or TSID with
wildcards) will be modified.

• SelectedTS – the time series are
those selected with the
SelectTimeSeries()
command.

AllTS

FillStart The starting date/time for the fill. Available period.
FillEnd The ending date/time for the fill. Available period.
FillDirection Specify the direction of the fill as

Forward or Backward.
Forward

MaxIntervals The maximum number of intervals to fill
in a data gap.

Fill all gaps.

Flag String to flag filled values. Prefix with +
to append the string to existing flag
values.

Do not flag filled values.

A sample command file to fill a time series from the State of Colorado’s HydroBase is as follows:

08236500 - ALAMOSA RIVER BELOW TERRACE RESERVOIR
08236500.DWR.Streamflow.Month~HydroBase
FillRepeat(TSList=AllMatchingTSID,TSID="08236500.DWR.Streamflow.Month",
 FillDirection=Forward)

Command Reference – FillRepeat() - 2 276

Command Reference:
FillUsingDiversionComments()

Fill missing time series data using HydroBase diversion comments and structure
CIU information

Version 09.07.02, 2010-08-20

This command is only appropriate for use with diversion (e.g., DivTotal, DivClass data types) and
reservoir release (e.g., RelTotal, RelClass data types) time series for the HydroBase input type.

The FillUsingDiversionComments() command fills missing data in time series by using
diversion comment and structure “currently in use” (CIU) information in HydroBase. This information is
used, for example, in cases where Water Commissioners have entered annual data values rather than daily
or monthly records.

Diversion Comment Not Used Flag

HydroBase contains diversion comment data with a not_used field. If the not_used value matches one of
the values shown in the following table for an irrigation year (November of the previous year to October
of the irrigation year), the diversion (or reservoir release) data for the specified irrigation year can be
interpreted as zero (see the State of Colorado’s Water Commissioner Manual for more information):

Diversion Comment not_used Flag Resulting in Additional Zero Values

not_used Meaning (reason why diversion is zero)
A Structure is not usable
B No water is available
C Water available, but not taken
D Water taken in another structure

Structure Currently in Use Flag

The HydroBase structure data contains a “currently in use” (CIU) field. Unlike diversion comments, this
is a single value that is consistent with the current status of a structure (it is not a time series). The
following CIU values are used.

Structure CIU Flag Values and Meaning

CIU Meaning
A Active structure with contemporary diversion records
B Structure abandoned by the court
C Conditional structure
D Duplicate; ID no longer used
F Structure used as FROM number; located in another water district
H Historical structure only-no longer exists or has records, but has historical data
I Inactive structure which physically exists but no diversion records are kept
N Non-existent structure with no contemporary or historical records
U Active structure but diversion records are not maintained

 Command Reference – FillUsingDiversionComments() - 1 277

FillUsingDiversionComments() Command TSTool Documentation

If UseCIU=True is specified for this command, the following logic will be used to fill missing time
series values:

1. If the HydroBase CIU value is H or I for the structure associated with the time series:
a. Fill using the diversion comments (see above for interpretation of comments).
b. The limits of the time series are recomputed based on diversion data and comments.
c. Missing data at the end of the period are filled with zeros, reflecting the fact that the

structure is off-line. In this case, the limits are always recomputed, regardless of the
value of the RecalcLimits command parameter. These values are not included in
historical averages because they do not occur in the active life of the structure.

d. Missing data within the data period remain missing, and can be filled with other
commands such as fillHistMonthAverage().

e. Missing data prior to the first diversion values or comments remain missing, and can be
filled with other commands as appropriate, perhaps specific to each location.

2. If in HydroBase CIU=N:
a. Fill using the diversion comments (see above for interpretation of comments).
b. The limits of the time series are recomputed based on diversion data and comments.
c. Missing data at the beginning of the period are filled with zeros. In this case, the limits

are always recomputed, regardless of the value of the RecalcLimits command
parameter.

d. The remaining missing data in the active data period or at the end of the period remain
missing and can be filled with other commands.

The output period for filled time series is handled as follows:

• If a global output period has been specified (e.g., with the setOutputPeriod() command)
then the time series will NOT be extended to include diversion comments and CIU codes beyond
the output period.

• If NO output period has been specified, the time series WILL be extended to include the longer
period from diversion comments. CIU information does not cause the time series to be extended.

After setting additional zero values using this command, the limits of the time series can be recomputed,
if appropriate, for use with the fillHistMonthAverage() command (see the
RecalcLimits=True parameter). If FillUsingCIU=true is specified, it overrides the
RecalcLimits parameter as per the logic described above.

See also the ReadHydroBase() and TS Alias = ReadHydroBase() commands, which allow
filling with diversion comments after reading data. Refer to the HydroBase Input Type Appendix for
more information about diversion time series.

Command Reference – FillUsingDiversionComments() - 2 278

TSTool Documentation FillUsingDiversionComments() Command

The following dialog is used to edit the command and illustrates the syntax of the command.

FillUsingDiversionComments

FillUsingDiversionComments() Command Editor

The command syntax is as follows:

FillUsingDiversionComments(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSID The time series identifier or alias for the

time series to be filled. Specify as * to
fill all time series.

None – must be specified.

FillStart The starting date/time for the fill. Available period.
FillEnd The ending date/time for the fill. Available period.

 Command Reference – FillUsingDiversionComments() - 3 279

FillUsingDiversionComments() Command TSTool Documentation

Parameter Description Default
FillFlag For each value that is filled using the

diversion comment not_used
information, tag the filled value as
follows:
• If FillFlag is specified as a single

character, tag filled values with the
specified character.

• If FillFlag=Auto is specified,
the diversion comment not_used
value (A, B, C, or D) from
HydroBase is used for the flag.

The flag can then be used later to label
graphs, etc. The flag will be appended to
existing flags if necessary.

No flag is assigned.

FillUsingCIU Indicates whether the “currently in use”
(CIU) information is used to fill missing
data. This will result in additional zeros
at the beginning or end of the time series,
depending on CIU value. See the
description of the logic above. Note that
this will cause the time series data limits
to be automatically recomputed,
regardless of the value of the
RecalcLimits parameter.

False (CIU information is not
used to fill missing data).

FillUsingCIUFlag For each missing data value that is filled
using the CIU information, tag the filled
value as follows:
• If FillUsingCIUFlag=Auto is

specified, the CIU value (H, I, or N)
from HydroBase is used for the flag.

• Else if FillUsingCIUFlag is
specified, tag filled values with the
specified character.

The flag can then be used later to label
graphs, etc. The flag will be appended to
existing flags if necessary.

No flag is assigned.

RecalcLimits Indicate whether the original data limits
for the time series should be recalculated
after the zero values are set. Zero values
are included in the monthly and annual
averages.

See the discussion above related to CIU –
time series that are impacted by CIU
always have their limits recalculated.

False (additional zeros are not
considered in the original data
averages).

Command Reference – FillUsingDiversionComments() - 4 280

TSTool Documentation FillUsingDiversionComments() Command

A sample commands file to fill diversion time series from the State of Colorado’s HydroBase is as
follows:

0100506 - PUTNAM DITCH
0100506.DWR.DivTotal.Month~HydroBase
0100503 - RIVERSIDE CANAL
0100503.DWR.DivTotal.Month~HydroBase
0100501 - EMPIRE DITCH
0100501.DWR.DivTotal.Month~HydroBase
FillUsingDiversionComments(TSID="*",RecalcLimits=True)

The following example fills one time series and labels the values with the flag.

Set the date to cause comments NOT to automatically extend the period.
setOutputPeriod(1950-01,1989-06)
0100713 - PIONEER DITCH
0100713.DWR.DivTotal.Month~HydroBase
FillUsingDiversionComments(TSID="*",FillFlag="Auto",RecalcLimits=False)

The corresponding graph created with data flags as labels is shown below (note the D symbols on the
right). It may be necessary to change the graph properties to display the data labels above the point in
order to see labels at the bottom of the graph.

fillUsingDiversionComment_Graph

Example Graph Showing Fill Flag (D labels indicate additional zero values)

 Command Reference – FillUsingDiversionComments() - 5 281

FillUsingDiversionComments() Command TSTool Documentation

This page is intentionally blank.

Command Reference – FillUsingDiversionComments() - 6 282

Command Reference: Free()
Free (remove) time series from memory

Version 08.16.02, 2008-07-28

The Free() command frees (removes) the selected time series from memory. The time series will
therefore not be available for use after that line in the command file. This command is useful for
discarding temporary time series needed for data manipulation (e.g., so that they are not written in output
and are not available for interactive plots). Freed time series are also removed from any ensembles that
reference the time series.

Rather than freeing time series, it may be more appropriate to use the SelectTimeSeries()
command, which can be used in conjunction with some commands to select time series and then operate
on the selected time series. This approach allows selective use of time series and minimized the need for
Free() commands. Many commands also use a TSList parameter to indicate which time series
should be operated on by a command.

The following dialog is used for editing the command and illustrates the command syntax.

Free

Free() Command Editor

 Command Reference – Free () - 1 283

Free() Command TSTool Documentation

The command syntax is as follows:

Free(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be

processed, one of:
• AllMatchingTSID – all time

series that match the TSID
(single TSID or TSID with
wildcards) will be modified.

• AllTS – all time series before
the command.

• EnsembleID – all time series
in the ensemble will be modified
(see the EnsembleID
parameter).

• LastMatchingTSID – the
last time series that matches the
TSID (single TSID or TSID
with wildcards) will be
modified.

• TSPosition – time series
specified by position in the
results list (see TSPosition
parameter below).

AllTS

TSID The time series identifier or alias for
the time series to be modified, using
the * wildcard character to match
multiple time series.

Required if
TSList=AllMatchingTSID or
TSList=FirstMatchingTSID

EnsembleID The ensemble to be modified, if
processing an ensemble.

Required if
TSList=EnsembleID

TSPosition A list of time series positions (1+) in
output, separated by commas.
Ranges can be specifed as Start-
End.

Required if
TSList=TSPosition

FreeEnsembleIfEmpty Indicate whether to free the
ensemble from which time series
were removed, if the ensemble is
empty (has no time series).

True

A sample command file is as follows:

Free(TSList=AllMatchingTSID,TSID="40*")

Command Reference – Free () - 2 284

Command Reference: FTPGet()
Retrieve file(s) from a remote system using file transfer protocol (FTP)

Version 08.16.00, 2008-16-00

The FTPGet() command retrieves one or more files from a remote system using file transfer protocol
(FTP). The retrieval is not recursive to child folders.

The following dialog is used to edit the command and illustrates the syntax for the command.

FTPGet

FTPGet() Command Editor

 Command Reference – FTPGet() - 1 285

FTPGet() Command TSTool Documentation

The command syntax is as follows:

FTPGet(Parameter=Value,…)

Command Parameters

Parameter Description Default
RemoteSite The address of the remote site, for

example: ftp.acme.com
None – must be specified.

Login The FTP login to use. anonymous
Password The FTP password to use. anonymous
RemoteFolder The folder on the remote site, for

example: /outgoing/data
Root folder (/).

FilePattern The pattern to use to determine which
files should be transferred. Simple
patterns are used, where * is a wildcard.

Retrieve all files in the
RemoteFolder.

DestinationFolder The folder to receive the files, can be
relative to the working directory.

None – must be specified.

TransferMode The transfer mode:
• ASCII – for text files
• Binary – for binary files

Binary

RetryCount The number of times to retry the login if
it fails (e.g., due to busy site).

3

RetryWait The amount of time to wait between
retries, seconds.

3

Command Reference – FTPGet() - 2 286

Command Reference:
InsertTimeSeriesIntoEnsemble ()

Insert 1+ time series into an existing ensemble
Version 09.05.00, 2009-10-12

The InsertTimeSeriesIntoEnsemble() command inserts 1+ time series into an ensemble. The
time series must have the same interval and data units as the time series in the ensemble. For example,
use the command to insert scenario time series into an ensemble.

The following dialog is used to edit the command and illustrates the syntax for the command.

InsertTimeSeriesIntoEnsemble

InsertTimeSeriesIntoEnsemble () Command Editor

 Command Reference – InsertTimeSeriesIntoEnsemble () - 1 287

InsertTimeSeriesIntoEnsemble () Command TSTool Documentation

The command syntax is as follows:

InsertTimeSeriesIntoEnsemble (Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be

added to the ensemble, one of:
• AllMatchingTSID – all time

series that match the TSID (single
TSID or TSID with wildcards).

• AllTS – all time series before the
command.

• EnsembleID – all time series in
the ensemble.

• FirstMatchingTSID – the first
time series that matches the TSID
(single TSID or TSID with
wildcards).

• LastMatchingTSID – the last
time series that matches the TSID
(single TSID or TSID with
wildcards).

• SelectedTS – the time series are
those selected with the
SelectTimeSeries()
command.

AllTS

TSID The time series identifier or alias for the
time series to be processed, using the *
wildcard character to match multiple
time series.

Required when
TSList=*TSID

EnsembleID The ensemble from which to retrieve
time series, if inserting time series from
an ensemble.

Required when
TSList=EnsembleID.

EnsembleID2 The identifier for the ensemble that is
receiving the time series.

None – must be specified.

A sample command file to create an ensemble from user-defined time series is as follows:

Test inserting time series into an ensemble from year interval time series
TS ts1 = NewPatternTimeSeries(NewTSID="ts1..Flow.Year",
 SetStart="1960",SetEnd="2000",Units="ACFT",
 PatternValues="1,2,5,8,,20")
TS ts2 = NewPatternTimeSeries(NewTSID="ts2..Flow.Year",
 SetStart="1950",SetEnd="2005",Units="ACFT",
 PatternValues="2,4,10,16,,40")
NewEnsemble(TSList=AllTS,
 NewEnsembleID="TestEnsemble",NewEnsembleName="Test Ensemble")
InsertTimeSeriesIntoEnsemble(Ensemble2=”TestEnsemble”)

Command Reference – InsertTimeSeriesIntoEnsemble() - 2 288

Command Reference: LagK()
Lag and attenuate (route) a time series

Version 08.17.00, 2008-10-06

The LagK() command can be used to lag and attenuate an input time series, resulting in a new time
series. The command is commonly used to route an instantaneous flow time series through a stretch of
river (reach). Lag and K routing is a common routing method that combines the concepts of:

1. Lagging the inflow to simulate travel time in a reach and,
2. Attenuating the wave to simulate the storage-outflow relationship for the reach (see Figure 1).

Inflows Lagged Inflows

Outflows
(lagged and attenuated)

Q

Time

Inflows Lagged Inflows

Outflows
(lagged and attenuated)

Q

Time
Figure 1: Lag and K Routing

At its fundamental level, the method solves the continuity equation using an approach similar to
Muskingum routing (assuming that the Muskingum parameter representing wave storage is negligible).
The governing equation for this routing method is given as:

t
SQQ outin Δ

Δ
=−

where:

Qin = instantaneous inflow [rate] lagged appropriately,
Qout = instantaneous outflow [rate] lagged appropriately,
ΔS = change in storage in the reach [volume],
Δt = time difference.

 Command Reference – LagK() - 1 289

LagK() Command TSTool Documentation

The relationship assumes an outflow-storage relationship of the form:

 S = k ⋅ Qout,

where:

k = attenuation for the outflow [time].

To ensure accurate results, k should be larger or equal to Δt/2. For discrete time steps these relationships
translate into:

2

,
12

2
1

1
21

2
tk

t
k

O
t

SII
O Δ

≥
+

Δ

−
Δ

++
=

where: I1 and I2 are the lagged inflows into the reach at the previous and current time step,
respectively,

 O1 and O2 are the outflows out of the reach at the previous and current time step, respectively,
S1 is the storage within the reach at the previous time step, defined as S1 = k⋅O1, and
Δt is the time difference between the two time steps.

In the case that either I1 , I2 or O1 are missing, these values will be set in the following order:

1. Use data from an observed time series (see ObsTSID parameter below).
2. Use the nearest value in the input time series (see FillNearest parameter below).
3. Use the nearest value in the observed time series (see FillNearest parameter and the

ObsTSID parameter below).
4. Use a defined default flow value (see DefaultFlow parameter below).

By default, the identifier of the resulting time series is the same as the original input time series, with the
data subtype set to “routed” (e.g., Streamflow becomes Streamflow-routed)

Command Reference – LagK() - 2 290

TSTool Documentation LagK() Command

The following dialog is used to edit the command and illustrates the syntax for the command:

LagK

LagK() Command Editor

Values for Lag and K can usually be established by comparing routed flows to downstream observations.
Alternatively, the Lag can be estimated using the reach length and wave speed in the reach. Without any
other information, K can be set to Lag/2.

The command syntax is as follows:

TS Alias = LagK(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSID Identifier or alias for the time series to be routed. It is assumed that

this series describes an instantaneous flow. Due to the lagging, the
first data values required for the computation of O2 are not available
within this time series and are therefore set to values set in the
InflowStates parameter. See also the ObsTSID time series, and
the FillNearest and DefaultFlow parameters.

None –
must be
specified.

ObsTSID Identifier or alias for an observed time series. If specified, the None

 Command Reference – LagK() - 3 291

LagK() Command TSTool Documentation

Parameter Description Default
missing values in the TSID time series will be taken from the
observed time series if non-missing. ObsTSID can be used in
conjunction with FillNearest to substitute a missing value in the
TSID time series with the nearest non-missing value in ObsTSID.

FillNearest If set to True, then when a missing data value is found anywhere in
the lagged period, a replacement value will be determined by
searching forward and back in time in the input time series to find the
nearest non-missing value. The maximum search window depends
on the interval of the TSID time series:

• <= Seconds: 1000 intervals
• Minute, Hour: 1 day
• Day: 1 Week
• > Day: 1 interval only

The assumption is that a flow value close in time will be
representative of the missing value and will not result in significant
errors.
This option has lower precedence than specifying the ObsTSID data.
It can also find non-missing data in the ObsTSID if ObsTSID is
defined (lower precedence). Both options have a higher precedence
than DefaultFlow.

False

DefaultFlow A flow value in the units of the input time series that is substituted for
missing values in the input time series. This has the lowest
precedence of all missing data substitutions. It will be applied at any
time in the lagged period.

0

Lag Lag time for the modeled reach in the units of the TSID time series
base interval. For example, if the input time series is 10 minutes, the
units of Lag are assumed to be minutes. The Lag value is not
required to be evenly divisible by the time step interval; values in the
time series between time steps will be linearly interpolated.

Required

K Attenuation factor to be applied to the wave. The units of K are time,
and like the Lag value, it is assumed to have the same units as the
input time series.

Required

InflowStates Comma-delimited list of default inflow values prior to the start of the
time series. The order of the values is earliest to latest. The array
must specify (Lag/multiplier) + 1 values; i.e., a 10 minute interval
with a LAG of 30 must be provided with 30/10 + 1 = 4 inflow
carryover values. Note: Specifying values that are not consistent
with the Lag and K parameters will result in oscillation!

0 for each
value

OutflowStates Comma-delimited list of default outflow values prior to the start of
the time series. See InflowStates for details.

0 for each
value

A sample command file is as follows (commands to read time series are omitted):

TS LKPN6routed = LagK(TSID=LKPN6.USGS.QIN.1HOUR,Lag=3,K=2,FillNearest=true)

Command Reference – LagK() - 4 292

Command Reference: ManipulateTableString()
Manipulate string a string column in a table

Version 09.09.00, 2010-09-23

The ManipulateTableString() command manipulates a string column in a table. For example, it
may be necessary to manipulate strings in a table in order to match time series identifier parts, so that
lookups can occur.

The input is specified by a table column name (InputColumn1) and either a second input column name
(InputColumn2) or a constant string value (InputValue2), with the result being placed in the output
column (OutputColumn). Missing/blank input will be considered as empty strings when formatting
the output.

The following dialog is used to edit the command and illustrates the syntax of the command (in this case
illustrating how the contents of column String2 are prepended to the contents of a column named
String1 and placed in the output column String3).

ManipulateTableString

ManipulateTableString() Command Editor

 Command Reference – ManipulateTableString () - 1 293

ManipulateTableString() Command TSTool Documentation

The command syntax is as follows:

ManipulateTableString(Parameter=Value,…)

Command Parameters

Parameter Description Default
TableID The identifier for the table to process. None – must be

specified.
InputColumn1 The name of a column containing strings, as the first

input.
None – must be
specified.

Operator The operation to perform on the input strings. For
example, Append will append the second input to the
first input.

None – must be
specified.

InputColumn2 The name of a column containing strings, as the second
input.

Required if
InputValue2 is not
specified.

InputValue2 A string constant, as the second input. Required if
InputColumn2 is
not specified.

OutputColumn The name of a column to receive the output. None – must be
specified.

Command Reference – ManipulateTableString() - 2 294

Command Reference: Multiply()
Multiply the data values in a time series by data values in another time series

Version 08.16.04, 2008-09-24

The Multiply()command multiplies one time series by another. Missing data in either time series
causes the result to be missing. See also the Scale() command, which multiplies time series by a
numerical value.

The following dialog is used to edit the command and illustrates the syntax of the command.

Multiply

Multiply() Command Editor

 Command Reference – Multiply() - 1 295

Multiply() Command TSTool Documentation

The command syntax is as follows:

Multiply(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSID The time series identifier or alias for the time series to be

modified.
None – must be
specified.

MultiplierTSID The time series identifier or alias for the time series that is the
multiplier.

None – must be
specified.

A sample command file is as follows (this example does not necessarily make sense but illustrates how
the Multiply() command can be used for numerical calculations in an analysis):

2184 - DEL NORTE 2 E
2184.NOAA.TempMean.Month~HydroBase
5706 - MONTE VISTA 2 W
5706.NOAA.TempMean.Month~HydroBase
Multiply(TSID="2184.NOAA.TempMean.Month",
 MultiplierTSID="5706.NOAA.TempMean.Month")

Command Reference – Multiply() - 2 296

Command Reference: TS Alias =
NewDayTSFromMonthAndDayTS()

Create a new daily time series from monthly total and daily pattern
Version 08.16.04, 2008-09-23

The NewDayTSFromMonthAndDayTS() command creates a new daily time series by distributing a
monthly time series according to the pattern of the independent daily time series. This command
currently only handles processing monthly ACFT and daily CFS time series. This command is useful
where a monthly flow time series is known at a location, and a daily pattern is known at a related gage.
The new time series is assigned the given identifier and alias. The following calculations are performed:

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

∗⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛∗=

∑
=

=

MonthNdayi

i
i

i
i

DayTS

DayTS
AC

FT
s

DAY
NDAYS
ACFTMonthTSDayTS sin

1

2

1

1
1

43560
86400
122

where, for days in a month:

DayTS2i = the daily value being estimated in daily time series 2
MonthTS2 = the monthly value being used for volumes for time series 2, shown in units of
ACFT/NDAYS (equivalent to ACFT/Month)
NDAYS = the number of days in the month
DayTS1i = the daily value for indicator daily time series 1
ΣDayTS1i = the sum of the daily values for indicator time series for the a month

In summary, the monthly volume in ACFT/NDAYS is first converted to an average monthly CFS rate by
multiplying by 43560/86400 (or 1/1.9835), and finally the average CFS value is prorated by the ratio of
the indicator daily time series daily value divided by the total daily flows for the month, to give a daily
CFS value for each day of the month. In this case, the last term is simply a ratio (converting daily
average CFS to daily ACFT and calculating the ratio would result in the same value).

Days with missing data are excluded from the summation and the estimated values. The output period is
the global output period from SetOutputPeriod(), or if not set the period from the daily time series
is used.

 Command Reference – NewDayTSFromMonthAndDayTS() - 1 297

NewDayTSFromMonthAndDayTS() Command TSTool Documentation

For example, consider May a may total for MonthTS2 = 1001.7 ACFT and daily values (CFS) as follows:

 Day 1 = 14
14
13
13
14
14
15
15
15
16
17
17
16
18
18
17
18
18
18
18
17
17
17
17
16
16
17
18
18
17

 Day 31 = 17

The total is 505 CFS. The estimated value for day 1 of the second daily time series would then be:

1001.7 * (1/1.9835) * (14/505) = 14 CFS

In this case, the indicator time series was the same as the time series being estimated and therefore the
estimated value should be the same as the indicator.

Command Reference – NewDayTSFromMonthAndDayTS() - 2 298

TSTool Documentation NewDayTSFromMonthAndDayTS() Command

The following dialog is used to edit the command and illustrates the syntax for the command.

NewDayTSFromMonthAndDayTS_Alias

TS Alias = NewDayTSFromMonthAndDayTS() Command Editor

The command syntax is as follows:

TS Alias = NewDayTSFromMonthAndDayTS(Parameter=Value,…)

Command Parameters

Parameter Description Default
Alias The alias of the new time series. None – must be specified.
NewTSID The time series identifier of the new time

series. The interval must be Day.
None – must be specified.

MonthTSID The time series identifier or alias for a
monthly time series supplying monthly
ACFT values.

None – must be specified.

DayTSID The time series identifier or alias for a
daily time series supplying daily flow
values (only the pattern is used).

None – must be specified.

 Command Reference – NewDayTSFromMonthAndDayTS() - 3 299

NewDayTSFromMonthAndDayTS() Command TSTool Documentation

A sample command file to process data from the State of Colorado’s HydroBase is as follows:

SetOutputPeriod(OutputStart="1950-01",OutputEnd="2002-12")
08236500 - ALAMOSA RIVER BELOW TERRACE RESERVOIR
08236500.DWR.Streamflow.Day~HydroBase
08236000 - ALAMOSA RIVER ABOVE TERRACE RESERVOIR
08236000.DWR.Streamflow.Month~HydroBase
TS DayTS = NewDayTSFromMonthAndDayTS(NewTSID="08236000.DWR.Streamflow.Day",
 MonthTSID="08236000.DWR.Streamflow.Month",
 DayTSID="08236500.DWR.Streamflow.Day")

A graph of data resulting from this command may look similar to the following. Note that the each time
series has a similar pattern, but at different levels.

newDayTSFromMonthAndDayTS_Graph

Result of NewDayTSFromMonthAndDayTS() Command

Command Reference – NewDayTSFromMonthAndDayTS() - 4 300

Command Reference: TS Alias =
NewEndOfMonthTSFromDayTS()

Use a daily time series to create an end of month time series
Version 08.16.04, 2008-09-23

The NewEndOfMonthTSFromDayTS() command is typically used to convert a daily reservoir storage
time series to an end of month reservoir storage time series. The command can also be applied to other
data types (e.g., measured well levels).

Changing from a daily to an end of month monthly time series is accomplished by starting on the month
ending day and searching in both directions (backward then forward by expanding until the bracket is
reached) for a daily measurement. The number of days to search in each direction (the bracket) should
not be so large as to produce unrealistic results. It is possible that no value will be found for a particular
month, with the given restraints. In this case, other fill commands (e.g., FillInterpolate()) can be
applied to estimate the remaining missing data.

The following dialog is used to edit the command and illustrates the syntax of the command.

NewEndOfMonthTSFromDayTS_Alias

TS Alias = NewEndOfMonthTSFromDayTS() Command Editor

 Command Reference – NewEndOfMonthTSFromDayTS() - 1 301

NewEndOfMonthTSFromDayTS() Command TSTool Documentation

The command syntax is as follows:

TS Alias = NewEndOfMonthTSFromDayTS(Parameter=Value,…)

Command Parameters

Parameter Description Default
Alias The alias for the new time series. None – must be specified.
DayTSID The time series identifier or alias of the

daily time series to be searched for data.
None – must be specified.

Bracket The number of days to search from the
end of the month, in order to find a daily
value to transfer to the end of the month.

None – must be specified.

A sample command file for estimating reservoir contents, using data from the State of Colorado’s
HydroBase database is:

2003536 - CONTINENTAL RES
2003536.DWR.ResMeasStorage.Day~HydroBase
TS Continental = NewEndOfMonthTSFromDayTS(DayTSID="2003536.DWR.ResMeasStorage.Day",
 Bracket=15)

A sample command file for estimating well levels is:

384549104445101 - SCO1506611ABC
384549104445101.USGS.WellLevel.Day~HydroBase
TS WellMonth =
NewEndOfMonthTSFromDayTS(DayTSID="384549104445101.USGS.WellLevel.Day",Bracket=30)
FillInterpolate(TSList=AllMatchingTSID,TSID="WellMonth",
 MaxIntervals=0,Transformation=None)

Command Reference – NewEndOfMonthTSFromDayTS() - 2 302

TSTool Documentation NewEndOfMonthTSFromDayTS() Command

To evaluate the results of this command, it is useful to graph both the input and results, changing the
graph properties to add symbols to see the individual measurements, as shown in the following figure.

newEndOfMonthTSFromDayTS_Graph

Results of NewEndOfMonthTSFromDayTS() Command

 Command Reference – NewEndOfMonthTSFromDayTS() - 3 303

NewEndOfMonthTSFromDayTS() Command TSTool Documentation

This page is intentionally blank.

Command Reference – NewEndOfMonthTSFromDayTS() - 4 304

Command Reference: NewEnsemble ()
Create a new ensemble and optionally include 1+ time series

Version 09.05.00, 2009-10-12

The NewEnsemble () command creates a new ensemble and optionally inserts 1+ existing time series.
For example, use the command to create an ensemble that includes multiple scenarios.

It is envisioned that time series added to the ensemble can optionally be copied and the period changed, in
order to isolate the data from the original time series. However, currently the time series from the main
processor list are simply associated with the ensemble. Consequently, if other commands change the time
series (for example free the time series), the ensemble will reflect the changes. Overcoming this issue
will require design changes that need to be evaluated.

The following dialog is used to edit the command and illustrates the syntax for the command.

NewEnsemble

NewEnsemble () Command Editor

The command syntax is as follows:

NewEnsemble (Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be

processed, one of:
• AllMatchingTSID – all time

series that match the TSID (single
TSID or TSID with wildcards).

AllTS

 Command Reference – NewEnsemble () - 1 305

NewEnsemble () Command TSTool Documentation

• AllTS – all time series before the
command.

• EnsembleID – all time series in
the ensemble.

• FirstMatchingTSID – the first
time series that matches the TSID
(single TSID or TSID with
wildcards).

• LastMatchingTSID – the last
time series that matches the TSID
(single TSID or TSID with
wildcards).

• SelectedTS – the time series are
those selected with the
SelectTimeSeries()
command.

TSID The time series identifier or alias for the
time series to be processed, using the *
wildcard character to match multiple
time series.

Required when
TSList=*TSID

EnsembleID The ensemble to be processed, if
processing an ensemble.

Required when
TSList=EnsembleID.

NewEnsembleID The new ensemble identifier. None – must be specified.
NewEnsembleName The name for the new ensemble. Blank.
InputStart The date/time to start transferring data

from the time series. Envisioned as
future enhancement.

Use all data.

InputEnd The date/time to end transferring data
from the time series. Envisioned as
future enhancement.

Use all data.

CopyTimeSeries Copy the time series to the ensemble
rather than using time series in the main
time series list. This protects the data in
the ensemble from general processing
commands. Envisioned as future
enhancement.

Associate time series in the main
time series list with the new
ensemble.

A sample command file to create an ensemble from user-defined time series is as follows:

Test creating an ensemble from year interval time series
TS ts1 = NewPatternTimeSeries(NewTSID="ts1..Flow.Year",
 SetStart="1960",SetEnd="2000",Units="ACFT",
 PatternValues="1,2,5,8,,20")
TS ts2 = NewPatternTimeSeries(NewTSID="ts2..Flow.Year",
 SetStart="1950",SetEnd="2005",Units="ACFT",
 PatternValues="2,4,10,16,,40")
NewEnsemble(TSList=AllTS,
 NewEnsembleID="TestEnsemble",NewEnsembleName="Test Ensemble")

Command Reference – NewEnsemble() - 2 306

Command Reference: TS Alias =
NewPatternTimeSeries()

Create a new time series containing a pattern of repeating values
Version 08.15.00, 2008-05-04

The TS Alias = NewPatternTimeSeries() command creates a new time series containing a
repeating pattern of numbers. This command is useful for generating data to test other commands.

The following dialog is used to edit the command and illustrates the syntax for the command.

NewPatternTimeSeries

TS Alias = NewPatternTimeSeries() Command Editor

The command syntax is as follows:

TS Alias = NewPatternTimeSeries(Parameter=Value,…)

Command Parameters

Parameter Description Default
Alias The alias of the new time series, which can be used

instead of the TSID in other commands.
None – must be
specified.

NewTSID The time series identifier to be assigned to the new
time series, which is useful to avoid confusion with
the original time series.

None.

IrregularInterval Interval to use to populate irregular time series (e.g.,
1Hour, Month), necessary because data need to be
assigned somehow.

None – must be
specified for
irregular time series.

Description Description for the time series. None.
SetStart Start date/time to set data. None – must be

 Command Reference – TS Alias = NewPatternTimeSeries() - 1 307

TS Alias = NewPatternTimeSeries() Command TSTool Documentation

Parameter Description Default
specified.

SetEnd End date/time to set data. None – must be
specified.

Units Units for the data values. None.
PatternValues Data values, separated by commas. None – must be

specified.

Examples

The following example commands file illustrates how to create a pattern time series for testing:

TS Alias = NewPatternTimeSeries(NewTSID="MyLoc..MyData.Day",
 Description="Test data",SetStart="1950-01-01",
 SetEnd="1951-03-12",Units="CFS",PatternValues="5,10,12,13,75")
WriteDateValue(OutputFile="Results\Example_NewPatternTimeSeries_out.dv")

Command Reference – TS Alias = NewPatternTimeSeries() - 2 308

Command Reference: TS Alias =
NewStatisticTimeSeries()

Create a time series containing a repeating year of statistics determined from a
time series

Version 09.05.01, 2009-10-19

The TS Alias = NewStatisticTimeSeries() command uses data from a time series to
calculate a statistic for each interval in the year, and assigns the statistic value to each corresponding
interval for the full period. For example, for a statistic of Mean calculated from a daily time series, all
January 1 values will be averaged and the resulting January 1 values for the entire time series will be set
to the mean value. Similarly, if monthly data are analyzed, all January values in the result will be set to
the mean of the January values in the original time series. This command is useful for superimposing the
long-term historical statistic on the original time series or real-time conditions. Leap year statistics are
computed and are only visible in leap years of the output time series. Missing data in the original time
series will by default still result in the statistic being computed, but the AllowMissingCount and
MinimumSampleSize parameters control the impacts of missing values.

The following dialog is used to edit the command and illustrates the syntax for the command.

NewStatisticTimeSeries

TS Alias = NewStatisticTimeSeries() Command Editor

 Command Reference – TS Alias = NewStatisticTimeSeries() - 1 309

TS Alias = NewStatisticTimeSeries() Command TSTool Documentation

The command syntax is as follows:

TS Alias = NewStatisticTimeSeries(Parameter=value,…)

Command Parameters

Parameter Description Default
Alias The alias of the new time series, which can be used

instead of the TSID in other commands.
None – must be
specified.

TSID The time series identifier (or alias) of the time series
to analyze.

None – must be
specified.

NewTSID The time series identifier to be assigned to the new
time series, which is useful to avoid confusion with
the original time series.

None – use the same
identifier as the
original time series.

Statistic See the Available Statistics table below. None – must be
specified.

Allow
Missing
Count

The number of missing values allowed in the source
interval(s) in order to produce a result. This capability
should be used with care because it may result in data
that are not representative of actual conditions.

Allow any number
of missing values.

MinimumSampleSize The minimum number of values required in the
sample to compute the statistic. If the minimum
sample size is not available, the result will be set to
missing.

Minimum sample
size is defined by
the statistic.

AnalysisStart The date/time for the analysis start, using a precision
that matches the original time series. This controls the
sample size.

Analyze the full
period.

AnalysisEnd The date/time for the analysis start, using a precision
that matches the original time series. This controls
the sample size.

Analyze the full
period.

OutputStart The date/time for the output start, using a precision
that matches the original time series. The repeating
statistic will fill this period.

Output the full
period.

OutputEnd The date/time for the analysis start, using a precision
that matches the original time series. The repeating
statistic will fill this period.

Output the full
period.

Available Statistics

Statistic Description Limitations
Max Maximum of all values in the sample. None.
Mean Mean of all values in the sample. None.
Median Median of all values in the sample. None.
Min Minimum of all values in the sample. None.

Command Reference – TS Alias = NewStatisticTimeSeries() - 2 310

TSTool Documentation TS Alias = NewStatisticTimeSeries() Command

Examples

The following example command file illustrates how to generate test data and a corresponding statistics
time series:

Test of computing a statistic time series for monthly data,
Assign 2 months of data so that the mean is different from any month
TS ts1 = NewPatternTimeSeries(NewTSID="ts1..Streamflow.Month",Description="Test data",
 SetStart="1950-01",SetEnd="1951-12",Units="CFS",
 PatternValues=".5,1.5,,3.5,4.5,5.5,6.5,7.5,8.5,9.5,10.5,11.5,1.5,2.5,3.5,
 4.5,5.5,6.5,7.5,8.5,9.5,10.5,11.5,12.5")
Double the above
TS ts2 = NewPatternTimeSeries(NewTSID="ts2..Streamflow.Month",
 Description="Test data",
 SetStart="1951-01",SetEnd="1952-12",Units="CFS",
 PatternValues="1.5,3.5,,7.5,9.5,11.5,13.5,15.5,17.5,19.5,
 21.5,23.5,2.5,4.5,6.5,8.5,10.5,12.5,14.5,16.5,18.5,20.5,22.5,24.5")
TS ts1_mean = NewStatisticTimeSeries(TSID="ts1",NewTSID="ts1..Streamflow.Month.Mean",
 Statistic=Mean)
TS ts2_mean = NewStatisticTimeSeries(TSID="ts2",NewTSID="ts2..Streamflow.Month.Mean",
 Statistic=Mean)
WriteDateValue(OutputFile="Results\Test_NewStatisticTimeSeries_Month_Mean_out.dv")

 Command Reference – TS Alias = NewStatisticTimeSeries() - 3 311

TS Alias = NewStatisticTimeSeries() Command TSTool Documentation

The following figure illustrates the results. Note that by default the statistic is computed even if missing
values exist in the sample. This can be controlled by the AllowMissingCount and
MinimumSampleSize parameters.

Command Reference – TS Alias = NewStatisticTimeSeries() - 4 312

Command Reference: TS Alias =
NewStatisticTimeSeriesFromEnsemble()

Create a time series containing a statistic determined from a time series
ensemble

Version 09.05.01, 2009-10-26

The TS Alias = NewStatisticTimeSeriesFromEnsemble() command uses data from time
series in an ensemble to calculate a statistic for each interval in the ensemble, and assigns the statistic
value to the corresponding interval in the result. For example, for a statistic of Mean applied to a daily
time series, all January 1, 1970 values will be used for the sample and the mean value will be assigned to
January 1, 1970 in the output time series. Leap year values will be included if they are included in the
period of the ensemble.

The following dialog is used to edit the command and illustrates the syntax for the command.

NewStatisticTimeSeriesFromEnsemble

TS Alias = NewStatisticTimeSeriesFromEnsemble() Command Editor

 Command Reference – TS Alias = NewStatisticTimeSeriesFromEnsemble() - 1 313

TS Alias = NewStatisticTimeSeriesFromEnsemble() Command TSTool Documentation

The command syntax is as follows:

TS Alias = NewStatisticTimeSeriesFromEnsemble(Parameter=Value,…)

Command Parameters

Parameter Description Default
Alias The alias of the new time series, which can be used

instead of the TSID in other commands.
None – must be
specified.

EnsembleID The identifier for the ensemble to analyze. None – must be
specified.

NewTSID The time series identifier to be assigned to the new time
series, which is useful to avoid confusion with the original
time series. This parameter may be required in the
future.

None – use the same
identifier as the
original time series.

Statistic The statistic to compute. See the Available Statistics
table below.

None – must be
specified.

Allow
Missing
Count

The number of missing values allowed in the sample of
values in order to produce a result. This capability should
be used with care because it may result in data that are not
representative of actual conditions.

Missing values are
ignored in the sample
used to compute the
statistic.

MinimumSample
Size

The minimum number of values in the sample that are
required to compute the statistic.

Use the sample with
no restrictions,
although some
statistics may have
requirements.

AnalysisStart The date/time for the analysis start, using a precision that
matches the original time series.

Analyze the full
period.

AnalysisEnd The date/time for the analysis start, using a precision that
matches the original time series.

Analyze the full
period.

OutputStart The date/time for the output start, using a precision that
matches the original time series. An output period longer
than the analysis period will result in missing values in
output.

Output the full
period.

OutputEnd The date/time for the output start, using a precision that
matches the original time series. An output period longer
than the analysis period will result in missing values in
output.

Output the full
period.

Available Statistics

Statistic Description Limitations
Max Maximum of all values in the sample. None.
Mean Mean of all values in the sample. None.
Median Median of all values in the sample. None.
Min Minimum of all values in the sample. None.

Command Reference – TS Alias = NewStatisticTimeSeriesFromEnsemble() - 2 314

TSTool Documentation TS Alias = NewStatisticTimeSeriesFromEnsemble() Command

Examples

The following example command file illustrates how to compute the mean statistic for one monthly data:

Test computing a statistic time series for Month data where Statistic=Mean
StartLog(LogFile="Results/Test_NewStatisticTimeSeriesFromEnsemble_Month_Mean.TSTool.log")
Define 2 years of data that when averaged equal even numbers
The 2nd time series is shifted by 1 from the first.
Include missing values in the first time series but not the second.
TS ts1 = NewPatternTimeSeries(NewTSID="ts1..Streamflow.Month",Description="test data 1",
SetStart="2000-01",SetEnd="2001-12",Units="CFS",
 PatternValues=".5,1.5,,3.5,4.5,5.5,6.5,7.5,8.5,9.5,10.5,11.5,
 1.5,2.5,3.5,4.5,5.5,6.5,7.5,8.5,9.5,10.5,11.5,12.5")
TS ts2 = NewPatternTimeSeries(NewTSID="ts2..Streamflow.Month",Description="test data 2",
 SetStart="2000-01",SetEnd="2001-12",Units="CFS",
 PatternValues="1.5,2.5,3.5,4.5,5.5,6.5,7.5,8.5,9.5,10.5,11.5,12.5,
 2.5,3.5,4.5,5.5,6.5,7.5,8.5,9.5,10.5,11.5,12.5,13.5")
Create an ensemble to hold the above time series
NewEnsemble(TSList=AllTS,NewEnsembleID="TestEnsemble",NewEnsembleName="Test Ensemble")
Compute the statistic
TS Mean = NewStatisticTimeSeriesFromEnsemble(EnsembleID="TestEnsemble",
 NewTSID="Test..Streamflow.Month.Mean",
 Statistic=Mean)

The following figure illustrates the results:

 Command Reference – TS Alias = NewStatisticTimeSeriesFromEnsemble() - 3 315

TS Alias = NewStatisticTimeSeriesFromEnsemble() Command TSTool Documentation

NewStatisticTimeSeriesFromEnsemble_Table

NewStatisticTimeSeriesFromEnsemble() Command Results

Command Reference – TS Alias = NewStatisticTimeSeriesFromEnsemble() - 4 316

Command Reference: TS Alias =
NewStatisticYearTS()

Create a new yearly time series containing a statistic determined from each year
of another time series

Version 09.06.02, 2010-03-11

The TS Alias = NewStatisticYearTS() command creates a new yearly time series, where
each yearly value in the resulting time series contains a statistic determined from the sample of points
from the corresponding year in the original time series. For example, if the original time series has a
daily time step, then the sample that is analyzed will contain 365 or 366 values (depending on leap year).
Calendar years are used by default; however, the OutputYearType parameter can be used to specify
that different year types are analyzed. Other commands (e.g., ChangeInterval()) can produce a
similar result for a limited number of statistics, for example converting a monthly time series to an annual
total or mean. See also the NewStatisticTimeSeries(),
NewStatisticTimeSeriesFromEnsemble(), CalculateTimeSeriesStatistic(), and
CheckTimeSeries() commands.

For hourly and finer interval, values are considered to be in a year when the year in the date/time matches
the year of interested. This may lead to some issues if the last value in a year is actually recorded at hour
0 or later of the following year.

The following dialog is used to edit the command and illustrates the syntax for the command.

NewStatisticYearTS

TS Alias = NewStatisticYearTS() Command Editor

 Command Reference – TS Alias = NewStatisticYearTS() - 1 317

TS Alias = NewStatisticYearTS() Command TSTool Documentation

The command syntax is as follows:

TS Alias = NewStatisticYearTS(Parameter=value,…)

Command Parameters

Parameter Description Default
Alias The alias of the new time series, which can be used

instead of the TSID in other commands.
None – must be
specified.

TSID The time series identifier (or alias) of the time
series to analyze.

None – must be
specified.

NewTSID The time series identifier to be assigned to the new
time series, which is useful to avoid confusion with
the original time series.

Use the same
identifier as the
original time series,
with an interval of
Year and a scenario
matching the statistic.

Statistic See the Available Statistics table below. None – must be
specified.

TestValue A test value used when analyzing the statistic. This parameter is
required for some
statistics and not used
for others. See the
statistics table below.

AllowMissingCount The number of missing values allowed in the
source interval(s) in order to produce a result. If an
analysis window is specified (default is to analyze
full years), then missing values outside of the
analysis window are not considered as missing.
Gaps at the end of the time series will be
considered missing if within the analysis window.

Allow any number of
missing values.

MinimumSampleSize The minimum sample size in order to compute the
statistic.

No minimum,
although the statistic
may have
requirements.

OutputYearType The output year type. For example, an output year
type of NovToOct spans November of the
previous calendar year to October of the current
calendar year. All other parameters should still be
specified in calendar year and the
AnalysisWindowStart can have a month that
is prior to the AnalysisWindowEnd month.

Calendar

AnalysisStart The starting date/time for the analysis using
calendar dates (e.g., 2001-01-01), with precision
consistent with the time series interval. This will
limit the data being analyzed at the ends of the time
series and controls the length of the output time
series. The analysis period is typically set to align
with years consistent with the output year type.

Analyze the full
period, extending the
period to include full
years.

AnalysisEnd The ending date/time for the analysis using Analyze the full

Command Reference – TS Alias = NewStatisticYearTS() - 2 318

TSTool Documentation TS Alias = NewStatisticYearTS() Command

Parameter Description Default
calendar dates (e.g., 2001-01-01) , with precision
consistent with the time series interval. This will
limit the data being analyzed at the ends of the time
series and controls the length of the output time
series. The analysis period is typically set to align
with years consistent with the output year type.

period, extending the
period to include full
years.

AnalysisWindowStart The calendar date/time for the analysis start within
each year. Specify using the format MM, MM-DD,
MM-DD hh, or MM-DD hh:mm, consistent with
the time series interval precision. A year of 2000
will be used internally to parse the date/time. Use
this parameter to limit data processing within the
year, for example to analyze only a season. Data
will be considered missing only if missing within
this analysis window. If specifying for other than
calendar year, the analysis window start month may
be greater than the analysis window end month.

Analyze the full year.

AnalysisWindowEnd Specify date/time for the analysis end within each
year. See AnalysisWindowStart for details.

Analyze the full year.

SearchStart Within the analysis window, this indicates the
starting date/time for the search. Specify using the
format MM, MM-DD, MM-DD hh, or MM-DD
hh:mm, consistent with the time series interval
precision. A year of 2000 will be used internally
to parse the date/time. This parameter is useful in
cases where the processing considers seasonal
aspects of the analysis window; for example, use
when determining frost dates (when temperature is
less than or equal to freezing) to ensure that the
search starts from the middle of the normal growing
season. Searches move forward in time except for
the following statistics, in which case
SearchStart will be the start of the search
window, but will be the last value checked:
DayOfLast*, MonthOfLast*.

Use the analysis
window start and
end. Search forward
for most statistics.
Search backward for
DayOfLast* and
MonthOfLast*
statistics.

Available Statistics

The following statistics are computed from a sample determined using the analysis window. If no
analysis window is specified, then the default is to analyze complete years, where the years correspond to
the OutputYearType. For example, for OutputYearType=NovToDec, November 1, 2000 to
October 31, 2001 from the input corresponds to output year 2001.

Statistic Description Limitations
DayOfFirstGE Julian day of the year (1-366, relative to the start

of the OutputYearType) for the first data
value >= TestValue. Searches start at the
start of the analysis window and move forward.

Input time series must be
daily or smaller interval.

DayOfFirstGT Similar to DayOfFirstGE, for values >
TestValue.

Input time series must be
daily or smaller interval.

 Command Reference – TS Alias = NewStatisticYearTS() - 3 319

TS Alias = NewStatisticYearTS() Command TSTool Documentation

Statistic Description Limitations
DayOfFirstLE Similar to DayOfFirstGE, for values <=

TestValue.
Input time series must be
daily or smaller interval.

DayOfFirstLT Similar to DayOfFirstGE, for values <
TestValue.

Input time series must be
daily or smaller interval.

DayOfLastGE Julian day of the year (1-366, relative to the start
of the OutputYearType) for the last data value
>= TestValue. Searches start at the start of
the analysis window and move backward.

Input time series must be
daily or smaller interval.

DayOfLastGT Similar to DayOfLastGE, for values >
TestValue.

Input time series must be
daily or smaller interval.

DayOfLastLE Similar to DayOfLastGE, for values <=
TestValue.

Input time series must be
daily or smaller interval.

DayOfLastLT Similar to DayOfLastGE, for values <
TestValue.

Input time series must be
daily or smaller interval.

DayOfMax Julian day of the year (1-366, relative to the start
of the OutputYearType) for the first
maximum value in the time series.

Input time series must be
daily or smaller interval.

DayOfMin Julian day of the year (1-366, relative to the start
of the OutputYearType) for the first minimum
value in the time series.

Input time series must be
daily or smaller interval.

GECount Count of values in a year >= TestValue.
GEPercent Percent of values in a year >= TestValue,

based on the total number of points in the year.

GTCount Count of values in a year > TestValue.
GTPercent Percent of values in a year > TestValue, based

on the total number of points in the year.

LECount Count of values in a year <= TestValue.
LEPercent Percent of values in a year <= TestValue,

based on the total number of points in the year.

LTCount Count of values in a year < TestValue.
LTPercent Percent of values in a year < TestValue, based

on the total number of points in the year.

Max Maximum value in a year.
Mean Mean of values in a year.
Min Minimum value in a year.
MissingCount Number of missing values in a year.
MissingPercent Percent missing values in a year.
MonthOfFirstGE Month the year (1-12, relative to the start of the

OutputYearType) for the first data value >=
TestValue. Searches start at the start of the
analysis window and move forward.

Input time series must be
monthly or smaller
interval.

MonthOfFirstGT Similar to DayOfFirstGE, for values >
TestValue.

Input time series must be
monthly or smaller
interval.

MonthOfFirstLE Similar to DayOfFirstGE, for values <=
TestValue.

Input time series must be
monthly or smaller
interval.

MonthOfFirstLT Similar to DayOfFirstGE, for values <
TestValue.

Input time series must be
monthly or smaller

Command Reference – TS Alias = NewStatisticYearTS() - 4 320

TSTool Documentation TS Alias = NewStatisticYearTS() Command

Statistic Description Limitations
interval.

MonthOfLastGE Month of the year (1-12, relative to the start of the
OutputYearType) for the last data value >=
TestValue. Searches start at the end of the
analysis window and move backward.

Input time series must be
monthly or smaller
interval.

MonthOfLastGT Similar to DayOfLastGE, for values >
TestValue.

Input time series must be
monthly or smaller
interval.

MonthOfLastLE Similar to DayOfLastGE, for values <=
TestValue.

Input time series must be
monthly or smaller
interval.

MonthOfLastLT Similar to DayOfLastGE, for values <
TestValue.

Input time series must be
monthly or smaller
interval.

MonthOfMax Month of the year (1-12, relative to the start of the
OutputYearType) for the first maximum value
in the time series.

Input time series must be
monthly or smaller
interval.

MonthOfMin Month of the year (1-12, relative to the start of the
OutputYearType) for the first minimum value
in the time series.

Input time series must be
monthly or smaller
interval.

Total Total of values in a year.

Example

The following example commands file computes the last spring frost date for 28 degrees and 32 degrees,
searching backwards from June 30 each year, and the first fall frost date for 32 and 28 degrees, searching
forwards from July 1 each year:

StartLog(LogFile="FrostDates_HydroBase.log")
SetOutputPeriod(OutputStart="1950-01",OutputEnd="2004-12")
3553 - GREELEY UNC
3553.NOAA.TempMin.Day~HydroBase
TS 3553_FrostDateL28S = NewStatisticYearTS(TSID="3553.NOAA.TempMin.Day",
 NewTSID="3553.NOAA.FrostDateL28S.Year",
 Statistic=DayOfLastLE,TestValue=28,
 SearchStart="06/30")
TS 3553_FrostDateL32S = NewStatisticYearTS(TSID="3553.NOAA.TempMin.Day",
 NewTSID="3553.NOAA.FrostDateL32S.Year",
 Statistic=DayOfLastLE,TestValue=32,
 SearchStart="06/30")
TS 3553_FrostDateF32F = NewStatisticYearTS(TSID="3553.NOAA.TempMin.Day",
 NewTSID="3553.NOAA.FrostDateF32F.Year",
 Statistic=DayOfFirstLE,TestValue=32,
 SearchStart="07/01")
TS 3553_FrostDateF28F = NewStatisticYearTS(TSID="3553.NOAA.TempMin.Day",
 NewTSID="3553.NOAA.FrostDateF28F.Year",
 Statistic=DayOfFirstLE,TestValue=28,
 SearchStart="07/01")
Free(TSID="*.*.TempMin.*")
WriteStateCU(OutputFile="Results/Test.FrostDates")

 Command Reference – TS Alias = NewStatisticYearTS() - 5 321

TS Alias = NewStatisticYearTS() Command TSTool Documentation

This page is intentionally blank.

Command Reference – TS Alias = NewStatisticYearTS() - 6 322

Command Reference: NewTable ()
Create a new table

Version 09.04.02, 2009-07-28

The NewTable() command creates a table with named columns, each of which is a specified data type.
Tables are used to hold information about data objects, such as statistics for time series. Commands like
CalculateTimeSeriesStatistic() can add information to tables. Tables can be written as final
data products or artifacts of processing. Characteristics of the table are as follows:

• Each column can only contain a single data type
• The default precision for numbers for display and output is 2 digits after the decimal – additional

formatting features may be available in write commands and may be added later
• Tables are referenced using the TableID
• Cells in tables are referenced using the column name and cell values that identify rows (such as

time series identifiers)

The following dialog is used to edit the command and illustrates the syntax for the command.

NewTable

NewTable () Command Editor

 Command Reference – NewTable () - 1 323

NewTable () Command TSTool Documentation

The command syntax is as follows:

NewTable (Parameter=Value,…)

Command Parameters

Parameter Description Default
TableID Identifier for the table – should be unique

among tables that are defined.
None – must be specified.

Columns The column names and data types are
defined using the format
ColumnName,DataType;
ColumnName,DataType. Column
names can contain spaces; however,
simple short names are generally handled
better by display features and minimize
errors in referencing the columns. Data
types are specified using the following
strings:
• datetime – date and time
• double – double precision number
• float – single precision number
• integer – integer (-2147483648 to

2147483647)
• short – short integer (-32768 to

32767)
• string – Unicode string

No columns will be defined.

Command Reference – NewTable() - 2 324

Command Reference: TS Alias =
NewTimeSeries()

Create a new time series
Version 09.08.01, 2010-09-15

The NewTimeSeries() command creates a new time series in memory and assigns it an alias. This
time series can then be manipulated (e.g., added to, filled). This command is useful, for example, to
create a new time series to receive the results of a series of manipulations, rather than having the results
accumulate in the first time series.

The following dialog is used to edit the command and illustrates the syntax for the command. The new
time series identifier is edited by pressing the Edit button.

NewTimeSeries

NewTimeSeries() Command Editor

 Command Reference – NewTimeSeries() - 1 325

NewTimeSeries() Command TSTool Documentation

The command syntax is as follows:

TS Alias = NewTimeSeries(Parameter=Value,…)

Command Parameters

Parameter Description Default
Alias The alias of the new time series, which

can be used in place of the TSID in other
commands.

None – must be specified.

NewTSID The time series identifier of the new time
series. The editor dialog formats the
identifier from its parts.

None – must be specified with at
least minimal information
(location, data type, interval).

Description The description for the time series, used
in output.

Blank.

SetStart The start of the time series data period,
or blank to use the output period defined
with the SetOutputPeriod()
command.

Use the start from
SetOutputPeriod().

SetEnd The end of the time series data period, or
blank to use the output period defined
with the SetOutputPeriod()
command.

Use the end from
SetOutputPeriod().

Units Data units for the time series. Blank.
InitialValue The initial value to populate the time

series.
Initialize the time series to
missing data.

The example commands file shown below creates a new time series and initializes it to a constant of 20
CFS. Uncommenting the first command would allow the SetStart and SetEnd parameters to be
removed from the NewTimeSeries() command. The interval (Month below) must match a
recognized type but the other parts of the identifier are not standardized.

SetOutputPeriod(OutputStart="1950-01",OutputEnd="2002-12")
TS station1 = NewTimeSeries(NewTSID="Station1.MyModel.Streamflow.Month",
 Description="Example Description",SetStart="1950-01",
 SetEnd="2002-12",Units="CFS",InitialValue=20)

Command Reference – NewTimeSeries() - 2 326

Command Reference: NewTreeView()
Create a new tree view using a definition file

Version 09.07.00, 2010-07-20

The NewTreeView() command creates a tree view, which is a hierarchical listing of time series. The
resulting view is dispayed in the Views section of the TSTool Results area and provides interactive
access to data. The view is defined using a simple text file, as shown in the following example:

Test data for displaying a tree view of time series results
Label: Top-level label
 TS: ts1*
 Label: Second-level label
 TS: ts2*
 Label: Another second-level label
 TS: ts3*

Tree view definition files have the following characteristics:

• Comments are indicated by lines starting with #.
• Indentations indicate the level (branch) in the tree:

o Use the tab character to indicate indentation
o The indentation on one row cannot be more than 1 greater than the previous row

• The content for the tree is indicated by keywords:
o Label: indicates that the string following the colon will be used to label a branch.

 A single top-level label is required
o TS: indicates that a time series identifier pattern will be used to identify time series in the

tree. Wildcard conventions follow rules consistent with the
TSList=AllMatchingTSID ,TSID=… command parameters.

The following figure illustrates the resulting view that is displayed in TSTool for the above example,
using contrived data. The time series in the tree view can be selected and a pop-up menu can be used to
generate graphs. Consequently, the view allows the results of processing to be presented in a way that is
more customized than a simple list. It is envisioned that additional functionality will be implemented, for
example to output the view as HTML with navigation links.

NewTreeView_Results

Example of Tree View in TSTool Results

 Command Reference – NewTreeView() - 1 327

NewTreeView() Command TSTool Documentation

The following dialog is used to edit the command and illustrates the syntax of the command.

NewTreeView

NewTreeView() Command Editor

The command syntax is as follows:

NewTreeView(Parameter=Value,…)

Command Parameters

Parameter Description Default
ViewID Identifier to assign to the view, which

allows the view to be used with other
commands.

None – must be specified.

InputFile The name of the view definition file to
read, as an absolute path or relative to the
command file location.

None – must be specified.

Command Reference – NewTreeView () - 2 328

Command Reference: TS Alias = Normalize()
Create a normalized time series

Version 08.16.04, 2008-09-22

A Normalize() command can be inserted to create a new normalized time series from an existing time
series, assigning an alias to the result. Normalized time series are useful for analyzing trends and
relationships and for allowing time series with different units to be plotted or analyzed together. For
example, the range of data values can be normalized to the range 0 to 1. The alias that is assigned to the
time series can be referenced by other commands.

The following dialog is used to edit the command and illustrates the syntax of the command.

normalize

Normalize() Command Editor

The command syntax is as follows:

TS Alias = Normalize(Parameter=Value,…)

 Command Reference – Normalize() - 1 329

Normalize() Command TSTool Documentation

Command Parameters

Parameter Description Default
Alias The alias for the new time series. None – must be specified.
TSID The time series identifier or alias for the time series to

be normalized.
None – must be specified.

MinValue
Method

Indicates how to determine the minimum data value to
process, one of:
• MinFromTS – get the minimum value from the

time series (typical)
• MinZero – use zero (e.g., if negative values are to

be ignored)

None – must be specified.

MinValue The minimum normalized value (e.g., 0). None – must be specified.
MaxValue The maximum normalized value (e.g., 1). None – must be specified.

A sample command file to process data from the State of Colorado’s HydroBase database is as follows:

06730500 - BOULDER CREEK AT MOUTH, NEAR LONGMONT, CO.
06730500.USGS.Streamflow.Month~HydroBase
TS NormalizedTS = Normalize(TSID="06730500.USGS.Streamflow.Month",
 MinValueMethod=MinFromTS,MinValue=0.0,MaxValue=1.0)

The results are as follows:

Normalize_Graph

Results of Normalize() Command

Command Reference – Normalize() - 2 330

Command Reference: OpenCheckFile()
Open a check file

Version 08.16.03, 2008-08-21

The OpenCheckFile() command opens an HTML check file, which is intended to provide a
summary of results, in contrast to other feedback features:

• the log file provides a sequential and at times highly-detailed list of information, warning, and
optionally debug messages that help troubleshoot processing errors; however, it is often not
suitable for end users

• the interactive graphical icons that indicate problems with commands focus on commands and the
processing sequence; however, even if all commands run there may be problems with results

• the check file checks the results, providing various tabular lists of issues

This command should be inserted near the top of commands, in order to accumulate checks generated
during processing. The information is formatted when command processing is complete and the file can
be viewed as results.

A useful standard is to name the check file the same as the command file, with an additional _check.html
extension. A date or date/time can optionally be added to the check file name.

The following dialog is used to edit the command and illustrates the syntax for the command.

OpenCheckFile

OpenCheckFile() Command Editor

 Command Reference – OpenCheckFile() - 1 331

OpenCheckFile () Command TSTool Documentation

The command syntax is as follows:

OpenCheckFile(Parameter=Value,…)

Command Parameters

Parameter Description Default
CheckFile The name of the check file to write surrounded by double

quotes. The extension of .html will automatically be
added if not specified.

None – must be
specified.

Suffix Indicates that a suffix will be added before the .html
extension, one of:

 Date – add a date suffix of the form YYYYMMDD.
 DateTime – add a date/time suffix of the form
YYYYMMDD_HHMMSS.

This is useful for automatically archiving check files
corresponding to command files, to allow checking the
output at a later time. However, date/time stamping the
files may use a lot of disk space for repeated processes.

Do not add the
suffix.

A sample command file to open a check file is as follows:

OpenCheckFile(CheckFile="streamflow_check.html")

Example_OpenCheckFile

Command Reference – OpenCheckFile () - 2 332

Command Reference: OpenHydroBase()
Open a connection to a HydroBase database

Version 09.03.00, 2009-04-12

The OpenHydroBase() command opens a connection to a HydroBase database, allowing data to be
read from the database (e.g., with ReadHydroBase() commands and time series identifiers that have
~HydroBase input types). This command is not typically used for interactive sessions but may be
inserted to run in batch only mode to allow a specific database and commands files to be distributed. It
may also be used in cases where time series are read from different HydroBase databases, perhaps to
compare the contents of the databases – in this case two OpenHydroBase() commands would be used.
When connecting to a SQL Server database, a connection will be tried for SQL Server (Express) and
older MSDE databases. If both fail, a warning will be shown.

The following dialog is used to edit this command and illustrates the command syntax. The Database
type is used to control settings for parameters and is not itself a parameter.

OpenHydroBase

OpenHydroBase() Command Editor

 Command Reference – OpenHydroBase() - 1 333

OpenHydroBase() Command TSTool Documentation

The command syntax is as follows:

OpenHydroBase(Parameter=Value,…)

Command Parameters

Parameter Description Default
DatabaseServer Used with a SQL Server HydroBase.

Specify the SQL Server database
machine name. A list of choices will
be shown, corresponding to properties
in the CDSS.cfg configuration file.

Required if a SQL Server
database is used, and accepts the
generic value
DatabaseServer=local,
which will automatically be
translated to the name of the
local computer.

DatabaseName Used with a SQL Server HydroBase.
The name of the database typically
follows a pattern similar to:
HydroBase_CO_YYYYMMDD. A list
of choices will be shown,
corresponding to properties in the
CDSS.cfg configuration file.

HydroBase

OdbcDsn The ODBC DSN to use for the
connection, used only when working
with a Microsoft Access database.

Required if a Microsoft Access
database is used.

InputName The input name corresponding to the
~InputType~InputName
information in time series identifiers.
This is used when more than one
HydroBase connection is used in the
same commands file.

Blank (no input name).

UseStoredProcedures Used with SQL Server, indicating
whether stored procedures are used.
Stored procedures are the default and
should be used except when testing
software.

True (used stored procedures).

RunMode Indicates when the command should be
run, one of:

BatchOnly – run the command only
in batch mode.
GUIOnly – run the command only in
GUI mode.
GUIAndBatch – run the command in
batch and GUI mode.

GUIAndBatch

Command Reference – OpenHydroBase() - 2 334

TSTool Documentation OpenHydroBase() Command

The following example command file illustrates how to connect to a SQL Server database running on a
machine named “sopris”:

StartLog(LogFile="Results/Example_OpenHydroBase_DatabaseName.TSTool.log")
OpenHydroBase(DatabaseServer="sopris",DatabaseName="HydroBase_CO_20060816")
TS ts = ReadHydroBase(TSID="BOXHUDCO.DWR.Streamflow.Month")

Example_OpenHydroBase_DatabaseName

The following example command file illustrates how to make two HydroBase database connections, in
this case to test whether the stored procedure and SQL queries return the same results (the InputName
parameter is used to tell TSTool which connection to use when reading data based on time series
identifiers):

OpenHydroBase(DatabaseServer="hbserver",RunMode=GUIAndBatch,
 UseStoredProcedures=True,InputName="SP")
OpenHydroBase(DatabaseServer="hbserver",RunMode=GUIAndBatch,
 UseStoredProcedures=False,InputName="NoSP")
TS ts_sp =
ReadHydroBase(TSID="BOXHUDCO.DWR.Streamflow.Month~HydroBase~SP")
TS ts_nosp =
ReadHydroBase(TSID="BOXHUDCO.DWR.Streamflow.Month~HydroBase~NoSP")

Example_OpenHydroBase_TwoConnections.TSTool

The following example commands file illustrates how to connect to a Microsoft Access database
(although Microsoft Access databases are no longer supported):

OpenHydroBase(RunMode=GUIAndBatch,OdbcDsn="HydroBase_DIV1_20030701")

 Command Reference – OpenHydroBase() - 3 335

OpenHydroBase() Command TSTool Documentation

This page is intentionally blank.

Command Reference – OpenHydroBase() - 4 336

Command Reference: ProcessTSProduct()
Process a time series product file to produce output

Version 09.07.02, 2010-08-20

The ProcessTSProduct() command automates creation of time series data products. Products are
described in time series product description (*.tsp) files, which are typically created by using the
Save…Time Series Product choice in graph windows (a future enhancements may allow creation of text
products from summary or table views). See the TSView Time Series Viewing Tools appendix for more
information about time series products. For example, the following sequence of actions can be used to
define and use time series product description files:

1. Use TSTool and interactively select time series using the main window. The time series identifiers

and/or aliases will be referenced in the time series product.
2. Interactively view a graph (e.g., Results…Graph – Line) and edit its properties by right clicking on

the graph and selecting the Properties choice (e.g., set titles and legend properties).
3. Save the graph as a time series product from the graph window using the Save…Time Series

Product choice. Typically the product is saved in a location close to the command file. An example
time series product file is as follows:

[Product]

ProductType = "Graph"

[SubProduct 1]

GraphType = "Line"
MainTitleString = "Streamflow (Monthly Total)"

[Data 1.1]

TSID = "08223000.DWR.Streamflow.Month~HydroBase"

[Data 1.2]

TSID = "08220500.DWR.Streamflow.Month~HydroBase"

4. Add a ProcessTSProduct() command to the original commands to allow the product to be

created automatically. Select the time series product file created in the previous step.
5. Save the commands in a file (e.g., named stations.TSTool) so that they can be run again. The

command file and time series product definition files must be used consistently (e.g., the time series
identifiers and directory paths must be consistent).

If the product does not appear as intended, especially for complicated products, it may be necessary to
edit the file and make the following corrections:

• Specify Color or other properties so that they are explicitly set and not defaulted.
• Verify that file paths in TSID properties are valid for the machine (may need to convert absolute

paths to relative paths).

 Command Reference – ProcessTSProduct() - 1 337

ProcessTSProduct() Command TSTool Documentation

Time series identifiers in the product file are used as follows:

• If the time series are in TSTool’s Results area, the time series will be used without rereading.
• Otherwise, the TSID is used to read the time series and must therefore contain enough

information to locate and read the time series, such as the ~InputType~InputName
information on at the end of the TSID.

If the TSAlias property is found in the product file, then the time series corresponding to the alias must
be processed by a command file and be available in TSTool’s Results area.

The following dialog is used to edit the ProcessTSProduct() command and illustrates the command
syntax. The path to the file can be absolute or relative to the working directory. The Browse button can
be used to select the time series product description file (if a relative path is desired, delete the leading
path after the select or use the Remove Working Directory from TSP button).

ProcessTSProduct

ProcessTSProduct() Command Editor

Command Reference – ProcessTSProduct() - 2 338

TSTool Documentation ProcessTSProduct() Command

The command syntax is as follows:

ProcessTSProduct(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSProductFile The time series product file to process.

The path to the file can be absolute or
relative to the working directory. The
Browse button can be used to select the
file to write (if a relative path is desired,
delete the leading path after the select).

None – must be specified.

RunMode Indicate the run mode to process the
product, one of:

• BatchOnly – indicates that the

product should only be processed in
batch mode.

• GUIOnly – indicates that the
product should only be processed
when the TSTool GUI is used (useful
when Preview is set to Preview).

• GUIAndBatch – indicates that the
product should be processed in batch
and GUI mode.

None – must be specified.

View Indicates whether the output should be
previewed interactively, one of:

• True – display the graph.
• False – do not display the graph

(specify the output file instead to
automate image creation).

None – must be specified.

OutputFile The absolute or relative path to an output
file. Use this parameter with
View=False to automate image
processing. If the filename ends in
“jpg”, a JPEG image file will be
produced. If the filename ends in “png”,
a PNG file will be produced
(recommended).

Graph file will not be created.

DefaultSaveFile Used with experimental feature to
enabling editing in the time series table
that corresponds to a graph view.
Specify the default DateValue filename
to save edits.

Editing is disabled.

 Command Reference – ProcessTSProduct() - 3 339

ProcessTSProduct() Command TSTool Documentation

A sample command file to process a data product using State of Colorado HydroBase data is as follows:

08235350 - ALAMOSA RIVER ABOVE JASPER
08235350.USGS.Streamflow.Day~HydroBase
08236000 - ALAMOSA RIVER ABOVE TERRACE RESERVOIR
08236000.DWR.Streamflow.Day~HydroBase
7337 - SAGUACHE
7337.NOAA.Precip.Month~HydroBase
ProcessTSProduct(TSProductFile="Example_ProcessTSProduct.tsp")

After using the above dialog to edit the command, the time series product can be processed from TSTool
as follows:

1. Interactively load and run the command file:
a. Open the command file, in this case containing the above commands file.
b. Process the commands using Run All Commands. The graph will be displayed for

review.

2. Load and run the command file in one step:

Use the Run…Process TSProduct File menus to select and process the product file. The time
series must be in the Results area or must be specified with enough information in the product file
to read the time series.

3. Run TSTool in batch mode by specifying an output file (and optionally changing the RunMode

parameter to BatchOnly) using:

 tstool –commands commands.TSTool

The working directory will be set to the directory for the commands file and output will be
relative to that directory.

Command Reference – ProcessTSProduct() - 4 340

Command Reference: ReadDateValue()
Read all time series from a DateValue File

Version 09.07.02, 2010-08-20

The ReadDateValue() command reads all the time series in a DateValue file into memory (see the
DateValue Input Type Appendix).

The following dialog is used to edit the command and illustrates the syntax for the command. The path to
the file can be absolute or relative to the working directory. The Browse button can be used to select the
file to read (if a relative path is desired, delete the leading path after the select). Use the TS Alias =
ReadDateValue() command to read a single time series from a DateValue file. Note that reading a
DateValue file that was created for time series that have aliases will result in the aliases being assigned to
the result.

ReadDateValue

ReadDateValue() Command Editor

 Command Reference – ReadDateValue() - 1 341

ReadDateValue() Command TSTool Documentation

The command syntax is as follows:

ReadDateValue(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the DateValue input file to

read, surrounded by double quotes to
protect whitespace and special
characters. Global property values can
be used with the syntax
${PropertyName} (see also the
SetProperty() command).

None – must be specified.

NewUnits Units to convert data to (must be in the
system/DATAUNIT configuration file
under the TSTool installation folder).

Use the data units from the file.

InputStart Starting date/time to read data, in
precision consistent with data.

Read all data.

InputEnd Ending date/time to read data, in
precision consistent with data.

Read all data.

A sample command file is as follows:

ReadDateValue(InputFile="Data\08251500.DWR.Streamflow.IRREGULAR.dv")

Command Reference – ReadDateValue() - 2 342

Command Reference: TS Alias =
ReadDateValue()

Read a single time series from a DateValue File
Version 08.16.04, 2008-09-24

The TS Alias = ReadDateValue() command reads a single time series from a DateValue file
(see the DateValue Input Type Appendix) and assigns an alias to the result. This command should not
be confused with the ReadDateValue() command that does not use the alias, which reads all time
series in a DateValue file. Currently the file being read must contain only one time series.

The following dialog is used to edit the command and illustrates the syntax.

ReadDateValue_Alias

TS Alias = ReadDateValue() Command Editor

 Command Reference – TS Alias = ReadDateValue() - 1 343

TS Alias = ReadDateValue() Command TSTool Documentation

The command syntax is as follows:

TS Alias = ReadDateValue(Parameter=Value,…)

Command Parameters

Parameter Description Default
Alias Alias for the new time series that is read

from the file, which can be used instead
of the TSID in other commands.

None – must be specified.

InputFile The name of the DateValue input file to
read, surrounded by double quotes. The
path to the file can be absolute or relative
to the working directory.

None – must be specified.

TSID A time series identifier pattern to filter
the read – this parameter is currently not
used. Therefore the DateValue file
should contain only one time series.

Currently ignored.

NewUnits The new units for the time series. The
data values will be converted to these
units.

Use the units read from the file.

InputStart The start of the period to read data –
specify if the period should be different
from the global query period.

Use the global query period.

InputEnd The end of the period to read data –
specify if the period should be different
from the global query period.

Use the global query period.

A sample command file is as follows:

TS TS_ARMA = ReadDateValue(InputFile="TS_ARMA.out")

Command Reference – TS Alias = ReadDateValue() - 2 344

Command Reference: ReadDelimitedFile()
Read time series from a delimited file

Version 09.06.04, 2010-05-25

The ReadDelimitedFile() command reads one or more time series from a column-oriented
delimited file, where columns contain date/time and values. This command is useful for processing
comma-separated-value (CSV) files exported from spreadsheets and mining data from the web (see also
the WebGet() and FTPGet() commands). The command processes three main types of information:

1. Comments in the header (before data) and embedded in data records (e.g., because bad data values

were commented out).
2. Column headers embedded in the file.
3. Data records, in column format, containing date/time strings, data values, and other information.
4. Metadata, such as station identifiers, data types, units, and interval.

The mapping of data in the file to data in the time series occurs first by assigning column names, using
one of the following methods:

1. Read column names from a line in the file, suitable when the column headings are simple strings and

agree closely with the contents of the data columns.
2. Assign column names with command parameters. The file being read may include metadata within

column headings and data records; however, the information can be difficult to extract because of
formatting. For example, column headings may include the data type as “Precipitation\n(in)” (where
\n indicates a newline). Consequently, the command supports assigning column names via command
parameters in order to ensure robust data handling.

In any case, rather than trying to automatically determine other metadata like data type and units from the
column heading, the values can be assigned with the DataType and Units parameters. Additional
functionality may be added in the future automate metadata discovery. Examples of use for the two cases
are shown below.

The command syntax is as follows:

ReadDelimitedFile(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the delimited input file to read,

surrounded by double quotes to protect whitespace
and special characters. Global property values
can be used with the syntax ${PropertyName}
(see also the SetProperty() command).

None – must be
specified.

Delimiter The delimiter character(s) that separate columns. None – must be
specified.

TreatConsecutive
DelimitersAsOne

Indicate whether consecutive delimiter characters
should be treated as a single delimiter, for example,
when multiple spaces are used to line up columns.

False (columns are
separated by a single
delimiter character)

Comment Character(s) that if found at the start of lines in the
file, indicate that the line is a comment. The

 Command Reference – ReadDelimitedFile() - 1 345

ReadDelimitedFile () Command TSTool Documentation

characters are interpreted individually (e.g., #$
indicates that lines starting with # or $ will be
treated as comments).

SkipRows Indicate absolute rows (1+) in the file to skip, using
single numbers and ranges a-b, separated by
commas. Rows are skipped prior to other
processing.

No rows will be
skipped.

SkipRowsAfter
Comments

Indicate the number of rows to skip after header
comments. Use this parameter to skip column
headers prior to the data lines. This parameter is
typically not used if column names are read from
the file.

No rows will be
skipped.

ColumnNames The user-specified names for columns in the file,
used to ensure that column headings in files are
properly interpreted. These names are used in
other parameters to specify columns in the file.
Separate column names with commas. Column
names can be specified as literal strings or as
FC[start:stop] to read columns from the file
header (assumed to be the first row after leading
comments), where start is 1+ and stop is
blank to read all columns or a negative number to
indicate the offset from the end column.

None – must be
specified.

DateTimeColumn The column matching a value in ColumnNames,
which indicates the date/time column in the file.

None – must be
specified.

DateTimeFormat The format for date/time strings in the date/time
column.

Under development –
the format is
automatically
determined in most
cases.

DateColumn The column matching a string in ColumnNames,
which indicates the date column in the file.

Under development.

TimeColumn The column matching a string in ColumnNames,
which indicates the time column in the file.

Under development.

ValueColumn The column(s) matching a string in
ColumnNames, which indicate the data value
columns. Separate column names with commas.
The FC[start:stop] notation discussed for
ColumnNames can also be used.

None – must be
specified.

LocationID The location identifier(s) to assign to time series
for each of the value columns (or specify one value
to apply to all columns). The FC[start:stop]
notation discussed for ColumnNames can also be
used.

None – must be
specified.

Provider The data provider identifier to assign to time series
for each of the value columns (or specify one value
to apply to all columns).

No provider will be
assigned.

DataType The data type to assign to time series for each of
the value columns (or specify one value to apply to
all columns).

Use the value column
names for the data
types.

Command Reference – ReadDelimitedFile () - 2 346

TSTool Documentation ReadDelimitedFile () Command

Interval The interval for the time series. Only one interval
is recognized for all the time series in the file.
Interval choices are provided when editing the
command. If it is possible that the date/times are
not evenly spaced, then use the IRREGULAR
interval.

None – must be
specified.

Scenario The scenario to assign to time series for each of the
value columns (or specify one value to apply to all
columns).

No scenario will be
assigned.

Units The data units to assign to time series for each of
the value columns (or specify one value to apply to
all columns).

No units will be
assigned.

Missing Strings that indicate missing data in the file (e.g.,
“m”).

Interpret empty column
values as missing data.

Alias The alias to assign to time series, as a literal string
or using the special formatting characters listed by
the command editor. The alias is a short identifier
used by other commands to locate time series for
processing.

No alias will be
assigned.

Example of Column Names Assigned with Command Parameter

The following example for two time series (gate height and discharge) illustrates a format where column
headings are complex enough to require assignment of column names using a command parameter:

#---------------------------- Provisional Data -------------------------------
#This system is maintained by the Colorado Division of Water Resources.
#Contact: Colorado Division of Water Resources (303) 866-3581

#All data presented on the Colorado Surface Water Conditions web site are
#provisional and subject to revision. Data users are cautioned to consider
#carefully the provisional nature of the information before using it for
#decisions that concern personal or public safety or the conduct of business
#that involves substantial monetary or operational consequences.

#Data is returned in TAB delimited format. Data miners may find help on automating
#queries and formatting parameters at http://www.dwr.state.co.us/help

#Gaging Station: ALVA B. ADAMS TUNNEL AT EAST PORTAL NEAR ESTES PARK (ADATUNCO)
#Retrieved: 3/30/2010 03:04
#---
Station Date/Time GAGE_HT (ft) DISCHRG (cfs)
ADATUNCO 2006-10-01 00:00 2.34 225
ADATUNCO 2006-10-01 00:15 2.34 225
…etc…

 Command Reference – ReadDelimitedFile () - 3 347

ReadDelimitedFile () Command TSTool Documentation

The following dialog is used to edit the command and illustrates the syntax for the command. Note that
the column headings are skipped because they are assigned with a command parameter.

ReadDelimitedFile

ReadDelimitedFile() Command Editor when Literally Specifying Column Names

The following example command file retrieves real-time time series data from the State of Colorado’s
website and reads the data:

WebGet(URI="http://www.dwr.state.co.us/SurfaceWater/data/export_tabular.aspx?
 IDADATUNCO&MTYPEGAGE_HT,DISCHRG&INTERVAL1&START10/1/06&END10/6/06",
 LocalFile="Data\ Data\CO-DWR-ADATUNCO-tab.txt ")
ReadDelimitedFile(InputFile="Data\CO-DWR-ADATUNCO-tab.txt",
 Delimiter="\t",ColumnNames="ID,
 DateTime,GAGE_HT,DISCHRG",
 DateTimeColumn="DateTime",ValueColumn="GAGE_HT,DISCHRG",
 SkipRowsAfterComments="1",LocationID="ADATUNCO",
 Provider="DWR",DataType="GAGE_HT,DISCHRG",Interval=15Minute,
 Units="ft,cfs",Alias="%L%T")

Command Reference – ReadDelimitedFile () - 4 348

TSTool Documentation ReadDelimitedFile () Command

Example of Column Names Read from the File

The following simple example of annual county population data illustrates a format that allows reading
column names from the file. In this case, the rows and columns have been transposed from the original
format to be compatible with this command and in the command example shown in the figure below the
“County” heading is replaced with “Year” to more clearly indicate the contents.

County,COLORADO,Adams,Alamosa,Arapahoe,Archuleta,Baca,Bent,Boulder,Broomfield,Chaffee,…
2000,4338793,366660,15132,491134,10027,4514,5991,296018,0,16294,2229,9386,…
2001,4456408,360389,15314,502567,10532,4486,5911,282794,41529,16382,2195,9479,…
…etc..

The following dialog is used to edit the command and illustrates the syntax for the command.

ReadDelimitedFile2

ReadDelimitedFile() Command Editor when Reading Column Names from the File

 Command Reference – ReadDelimitedFile () - 5 349

ReadDelimitedFile () Command TSTool Documentation

The following example command file retrieves population forecast data from the State of Colorado’s
website, transposes the rows and columns using a Python script, and reads the time series data.

StartLog(LogFile="DOLA-county-pop.TSTool.log")
This command file retrieves population data from the Colorado State Demographer
website and processes the data into time series for use in analysis.

First retrieve the data from the DOLA web site.
WebGet(URI="http://www.dola.state.co.us/dlg/demog/population/forecasts/counties1yr.csv",
 LocalFile="DOLA-counties1yr.csv")

Transpose the rows/columns to match TSTool time series notation with dates in the
first column.
SetProperty(PropertyName="ScriptDir",PropertyType=String,
RunPython(InputFile="${InstallDir}\python\table\transpose-csv.py",
 Arguments="\"${WorkingDir}\DOLA-counties1yr.csv\"
 \"${WorkingDir}\DOLA-counties1yr-trans.csv\"",Interpreter="Python")

Read into time series from the delimited CSV file.
Define column names dynamically based on the first non-comment line in the file
ReadDelimitedFile(InputFile="DOLA-counties1yr-trans.csv",Delimiter=",",
 ColumnNames="Year,FC[2:]",DateTimeColumn="Year",ValueColumn="FC[2:]",
 LocationID="FC[2:]",Provider="DOLA",DataType="Population",Interval=Year,Units="Persons",
 Alias="%L-pop")

Command Reference – ReadDelimitedFile () - 6 350

Command Reference: ReadHecDss()
Read time series from a HEC-DSS File

Version 09.03.04, 2009-04-22

The ReadHecDss() command reads time series from a HEC-DSS file. See the HEC-DSS Input Type
Appendix for information about how time series properties are assigned using HEC-DSS file data.
Current limitations for the command include:

• Irregular time series cannot be read.
• HEC-DSS uses times through 2400. However, TSTool will convert this to 0000 of the next day.

Year, month, and day data are not impacted.

The following dialog is used to edit the command and illustrates the syntax for the command. In the
future, it is envisioned that choices for A – F parts will be made available using data from the file.

ReadHecDss

ReadHecDss() Command Editor

 Command Reference – ReadHecDss() - 1 351

ReadHecDss() Command TSTool Documentation

The command syntax is as follows:

ReadHecDss(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the HEC-DSS input file to read,

surrounded by double quotes to protect whitespace and
special characters.

None – must be specified.

A The A part (basin name) to match, using * as a
wildcard. The location part of the TSTool time series
identifier is set to A:B.

Match all.

B The B part (location) to match, using * as a wildcard.
The location part of the TSTool time series identifier is
set to A:B.

Match all.

C The C part (parameter) to match, using * as a wildcard.
The TSTool data type is set to this value.

Match all.

E The E part (interval) to match, using * as a wildcard. Match all.
F The F part (scenario) to match, using * as a wildcard. Match all.
Pathname The HEC-DSS pathname for a time series, as specified

in the HEC-DSS documentation. Currently wildcards
are not allowed. If specified, this will be used instead
of the A-F parameters.

Use the A-F parameters.

InputStart Starting date/time to read data, in precision consistent
with data.

Read all data.

InputEnd Ending date/time to read data, in precision consistent
with data.

Read all data.

Location The location to assign for the time series identifier. Use
%A … %F to indicate the Apart … Fpart (D part is not
available). The assignment will impact the Alias
assignment. This is useful when only Bpart is desired
as the location identifier.

Apart:Bpart (%A:%B).

Alias Alias to assign to the output time series. See the
LegendFormat property described in the TSView
Time Series Viewing Tools appendix. For example,
%L is full location, %T is data type (parameter in HEC-
DSS notation), %I is interval, and %Z is scenario.

None is assigned.
However, if the location
contains periods that are in
conflict with time series
identifier conventions, the
alias is set to the identifier
with periods, and the
periods are replaced with
spaces in the full time
series identifier.

A sample command file is as follows:

ReadHecDss(InputFile="sample.dss",InputStart="1992-01-01",
 InputEnd="1992-12-31",Alias="%L_%T_%Z")

Command Reference – ReadHecDss() - 2 352

Command Reference: ReadHydroBase()
Read time series from a HydroBase database

Version 09.07.02, 2010-08-20

The ReadHydroBase() command reads one or more time series from the HydroBase database (see the
HydroBase Input Type Appendix). It is designed to utilize query criteria to process large numbers of
time series.

The following special actions occur, depending on data type:

1. Daily diversion (DivTotal and DivClass) and reservoir release (RelTotal and
RelClass) time series have their values automatically carried forward to fill data within
irrigation years (Nov to Oct). HydroBase only stores full months of data when non-zero
observations or non-zero filled values occur in a month. Therefore, this filling action should only
provide additional zero values. Irrigation years with no observations remain as missing after the
read. See the FillHistMonthAverage() command, which is often used to fill completely
missing years.

2. Daily, monthly, and yearly diversion and reservoir release time series can optionally be filled
using diversion comments, which indicate when irritation years should be treated as missing. See
the FillUsingDivComments parameter below. Note that diversion comments should not
conflict with more detailed records but and provide additional information. The older
FillUsingDivComments() command is also available for filling.

 Command Reference – ReadHydroBase() - 1 353

ReadHydroBase() Command TSTool Documentation

The following dialog is used to edit the command and illustrates the syntax for the command.

ReadHydroBase

ReadHydroBase() Command Editor

The Data type, Data interval, and Where input fields are similar to those from the main TSTool
interface. However, whereas the interactive interface first requires a query to find the matching time
series list and then an interactive select for specific time series identifiers, the ReadHydroBase()
command reads the time series list and the corresponding data for the time series. This can greatly
shorten commands files and simplify command logic, especially when processing large amounts of data.

Currently the Data type and Data interval must be entered manually (drop-down choices are not
available), according to the HydroBase Input Type Appendix. Currently, only the structure data types
(in particular diversions) are supported in the above dialog and have been tested. Support for other data
types will be added as resources allow.

Command Reference – ReadHydroBase() - 2 354

TSTool Documentation ReadHydroBase() Command

The command syntax is as follows:

ReadHydroBase(Parameter=Value,…)

Command Parameters

Parameter Description Default
DataType The data type to be queried, as documented in the

HydroBase Input Type Appendix. The following
conditions apply:
 For diversions, use DivClass without the

SFUT sub-type. The SFUT sub-type will be
added after data are queried.

 For reservoir releases, use RelClass without
the SFUT sub-type. The SFUT sub-type will
be added after data are queried.

None – must
be specified.

Interval The data interval for the time series, as
documented in the HydroBase Input Type
Appendix (e.g. Day, Month, Year).

None – must
be specified.

InputName The HydroBase database connection input name to
use for the connection, as initialized in
OpenHydroBase(), which allows reading from
more than one HydroBase in the same commands
file.

Use the
default
HydroBase
connection.

WhereN The “where” clauses to be applied when querying
data, matching the values in the Where fields in the
command editor dialog and the TSTool main
interface. The parameters should be named
Where1, Where2, etc., with a gap resulting in the
remaining items being ignored. The format of each
value is:

“Item;Operator;Value”

Where Item indicates a data field to be filtered on,
Operator is the type of constraint, and Value is the
value to be checked when querying.

Warning: Currently the >= and <= operators will
produce errors – this issue is being evaluated.
Work around by using the Less Than and
Greater Than operators with appropriate
Value.

If not
specified, the
query will
not be
limited and
very large
numbers of
time series
may be
queried.

InputStart Start of the period to query, specified as a date/time
with a precision that matches the requested data
interval.

Read all
available
data.

InputEnd End of the period to query, specified as a date/time
with a precision that matches the requested data
interval.

Read all
available
data.

FillUsingDivComments Indicate whether to fill diversion and reservoir
release time series using diversion comments.

False

 Command Reference – ReadHydroBase() - 3 355

ReadHydroBase() Command TSTool Documentation

Parameter Description Default
FillUsingDivCommentsFlag If specified as a single character, data flags will be

enabled for the time series and each filled value
will be tagged with the specified character. The
flag can then be used later to label graphs, etc. The
flag will be appended to existing flags if necessary.

No flag is
assigned.

IfMissing Indicate the action to be taken if the requested time
series is missing, one of:
• Ignore – ignore the time series (do not warn

and the time series will not be available)
• Warn – generate a failure for the command

Warn

A sample command file is as follows (read all reservoir releases to structure 0300905):

ReadHydroBase(DataType="DivClass",Interval="Day",
Where1="District;Equals;3",
Where2="Structure ID;Equals;905",Where3="SFUT;Contains;s:2")

Command Reference – ReadHydroBase() - 4 356

Command Reference: TS Alias =
ReadHydroBase()

Read a single time series from a HydroBase Database
Version 08.16.03, 2008-08-20

The TS Alias = ReadHydroBase() command reads a single time series from a HydroBase
database (see the HydroBase Input Type Appendix) and assigns an alias to the result. This command
should not be confused with the ReadHydroBase() command that does not use the alias, which reads
one or more matching time series from a HydroBase database.

The following special actions occur, depending on data type:

1. Daily diversion (DivTotal and DivClass) and reservoir release (RelTotal and
RelClass) time series have their values automatically carried forward to fill data within
irrigation years (Nov to Oct). HydroBase only stores full months of data when non-zero
observations or non-zero filled values occur in a month. Therefore, this filling action should only
provide additional zero values. Irrigation years with no observations remain as missing after the
read. See the FillHistMonthAverage() command, which is often used to fill completely
missing years.

2. Daily, monthly, and yearly diversion and reservoir release time series can optionally be filled
using diversion comments, which indicate when irritation years should be treated as missing. See
the FillUsingDivComments parameter below. Note that diversion comments should not
conflict with more detailed records but and provide additional information. The older
FillUsingDivComments() command is also available for filling.

 Command Reference – TS Alias = ReadHydroBase() - 1 357

TS Alias = ReadHydroBase() Command TSTool Documentation

The following dialog is used to edit the command and illustrates the syntax.

ReadHydroBase_Alias

TS Alias = ReadHydroBase() Command Editor

Command Reference – TS Alias = ReadHydroBase() - 2 358

TSTool Documentation TS Alias = ReadHydroBase() Command

The command syntax is as follows:

TS Alias = ReadHydroBase(Parameter=Value…)

Command Parameters

Parameter Description Default
Alias Alias for the new time series that is

read from the file.
None – must be specified.

TSID A time series identifier to read – see
the HydroBase Input Type
Appendix.

Required – specify the time
series identifier to read.

InputName The HydroBase database connection
input name to use for the
connection, as initialized in
OpenHydroBase(), which allows
reading from more than one
HydroBase in the same commands
file.

Use the default HydroBase
connection.

InputStart The start of the period to read data –
specify if the period should be
different from the global input
period.

Use the global input period.

InputEnd The end of the period to read data –
specify if the period should be
different from the global input
period.

Use the global input period.

FillUsingDivComments Indicate whether to fill diversion and
reservoir release time series using
diversion comments.

False

FillUsingDivCommentsFlag If specified as a single character,
data flags will be enabled for the
time series and each filled value will
be tagged with the specified
character. The flag can then be used
later to label graphs, etc. The flag
will be appended to existing flags if
necessary.

No flag is assigned.

IfMissing Indicate the action to be taken if the
requested time series is missing, one
of:
• Ignore – ignore the time series

(do not warn and the time series
will not be available)

• Warn – generate a failure for
the command

Warn

A sample command file to read a diversion time series is as follows:

TS NorthPoudreDiv = ReadHydroBase(TSID="0300905.DWR.DivTotal.Day~HydroBase")

 Command Reference – TS Alias = ReadHydroBase() - 3 359

TS Alias = ReadHydroBase() Command TSTool Documentation

This page is intentionally blank.

Command Reference – TS Alias = ReadHydroBase() - 4 360

Command Reference: ReadMODSIM()
Read all time series from a MODSIM output file

Version 08.16.04, 2008-09-09

The ReadMODSIM() command reads all the time series in a MODSIM output file (see the MODSIM
Input Type Appendix). The actual reading occurs as the commands are being processed.

The following dialog is used to edit the command and illustrates the syntax for the command. Use the TS
Alias = ReadMODSIM() command to read a single time series from a MODSIM file.

ReadMODSIM

ReadMODSIM() Command Editor

The command syntax is as follows:

ReadMODSIM(Parameter=Value…)

Command Parameters

Parameter Description Default
InputFile The name of the MODSIM file to read,

surrounded by double quotes. The path
to the file can be absolute or relative to
the working directory.

None – must be specified.

InputStart The start of the period to read data,
specified to the precision of the dates
used with data.

Use the global query period.

InputEnd The end of the period to read data,
specified to the precision of the dates
used with data.

Use the global query period.

 Command Reference – ReadMODSIM() - 1 361

ReadMODSIM() Command TSTool Documentation

A sample command file is as follows:

ReadMODSIM(InputFile="Data\CALIB42.FLO")

Command Reference – ReadMODSIM() - 2 362

Command Reference: TS Alias = ReadMODSIM()
Read a single time series from a MODSIM output file

Version 08.16.04, 2008-09-09

The TS Alias = ReadMODSIM() command reads a single time series from a MODSIM file (see the
MODSIM Input Type Appendix) and assigns an alias to the result. This command should not be
confused with the ReadMODSIM() command that does not use the alias, which reads all time series in a
MODSIM file.

The following dialog is used to edit the command and illustrates the syntax. When a file is selected, the
available data types are listed, based on the file extension (the types are not read from the file).

ReadMODSIM_Alias

TX Alias = ReadMODSIM() Command Editor

 Command Reference – TS Alias = ReadMODSIM() - 1 363

TS Alias = ReadMODSIM() Command TSTool Documentation

The command syntax is as follows:

TS Alias = ReadMODSIM(Parameter=Value,…)

Command Parameters

Parameter Description Default
Alias Alias for the new time series that is read

from the file, which can be used instead
of the TSID in other commands.

None – must be specified.

InputFile The name of the MODSIM file to read,
surrounded by double quotes. The path
to the file can be absolute or relative to
the working directory.

None – must be specified.

TSID A time series identifier pattern to filter
the read – this is constructed in the editor
dialog from individual identifier parts –
the location and data type are specified
and used in the time series identifier.

None – must be specified to
match a single time series.

InputStart The start of the period to read data –
specify if the period should be different
from the global query period.

Use the global query period.

InputEnd The end of the period to read data –
specify if the period should be different
from the global query period.

Use the global query period.

A sample command file is as follows:

TS Alias =
ReadMODSIM(InputFile="BIGTOM17.RES",TSID="GREELEYCBT..STOR_TRG..")

Command Reference – TS Alias = ReadMODSIM() - 2 364

Command Reference: ReadPatternFile()
Read the pattern file to be used with FillPattern() commands

Version 08.16.04, 2008-09-19

The ReadPatternFile() command reads pattern time series to be used with FillPattern()
commands (see the FillPattern() command for more information). The patterns indicate whether a
month is wet, dry, or average, although any number of characterizations can be used. One or more
patterns can be included in each pattern file, similar to StateMod time series files (see the StateMod Input
Type appendix), and multiple pattern files can be used, if appropriate. The following example illustrates
the file format. See also the AnalyzePattern() command, which can be used to generate the file.

Years Shown = Water Years
Missing monthly data filled by the Mixed Station Method, USGS 1989
Time series identifier = 09034500.CRDSS_USGS.QME.MONTH.1
Description = COLORADO RIVER AT HOT SULPHUR SPRINGS, CO.
-e-b----------eb------eb------eb------eb------eb------eb------eb------eb------eb------eb------eb------eb------eb--------e
 10/1908 - 9/1996 ACFT WYR
1909 09034500 AVG AVG AVG WET WET AVG AVG AVG WET WET WET WET
1910 09034500 WET WET WET WET WET WET AVG AVG AVG AVG AVG AVG
1911 09034500 AVG AVG WET AVG AVG AVG AVG WET WET WET AVG WET
1912 09034500 WET WET WET WET WET AVG AVG WET WET WET WET WET
...ommitted...

The following dialog is used to edit the command and illustrates the command syntax.

ReadPatternFile

ReadPatternFile() Command Editor

The command syntax is as follows:

ReadPatternFile(Parameter=Value,…)

Command Parameters

Parameter Description Default
PatternFile The path to the pattern file, which can be

absolute or relative to the working
directory.

None – must be specified.

A sample command file is as follows:

ReadPatternFile(PatternFile="fill.pat")

 Command Reference – ReadPatternFile() - 1 365

ReadPatternFile() Command TSTool Documentation

This page is intentionally blank.

Command Reference – ReadPatternFile() - 2 366

Command Reference: TS Alias =
ReadRiverWare()

Read a single time series from a RiverWare file
Version 08.16.04, 2008-09-09

The TS Alias = ReadRiverWare() command reads a single time series from a RiverWare file
(see the RiverWare Input Type Appendix) and assigns an alias to the result.

The following dialog is used to edit the command and illustrates the command syntax.

ReadRiverWare_Alias

TS Alias = ReadRiverWare() Command Editor

 Command Reference – TS Alias = ReadRiverWare() - 1 367

TS Alias = ReadRiverWare() Command TSTool Documentation

The command syntax is as follows:

TS Alias = ReadRiverWare(Parameter=Value,…)

Command Parameters

Parameter Description Default
Alias Alias for the new time series that is read

from the file, which can be used instead
of the TSID in other commands.

None – must be specified.

InputFile The name of the RiverWare file to read,
surrounded by double quotes. The path
to the file can be absolute or relative to
the working directory.

None – must be specified.

Units The units for the time series. The data
values will be converted to these units.
TSTool by default understands certain
units abbreviations and attempting to
convert to or from unknown units may
not be possible. The ability to handle
user-defined units is being evaluated.
See the Scale() and
ConvertDataUnits() commands.

Use the units read from the file.

InputStart The start of the period to read data –
specify if the period should be different
from the global query period.

Use the global query period.

InputEnd The end of the period to read data –
specify if the period should be different
from the global query period.

Use the global query period.

A sample command file is as follows:

TS ts1 = ReadRiverWare(InputFile="SouthHolstonData.SOGPoolElevation")

Command Reference – TS Alias = ReadRiverWare() - 2 368

Command Reference: ReadStateCU()
Read time series from a StateCU time series or report File

Version 09.07.02, 2010-08-20

The ReadStateCU() command reads all the time series in a StateCU time series file (e.g., frost dates)
or report file (e.g., IWR, WSL) (see the StateCU Input Type Appendix).

The following dialog is used to edit the command and illustrates the syntax for the command.

ReadStateCU

ReadStateCU() Command Editor

 Command Reference – ReadStateCU() - 1 369

ReadStateCU() Command TSTool Documentation

The command syntax is as follows:

ReadStateCU(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the StateCU time series or

report file to read, surrounded by double
quotes.

None – must be specified.

InputStart The starting date/time to read, specified
to a precision (month or year) that
matches the data file.

Read all the data.

InputEnd The ending date/time to read, specified to
a precision (month or year) that matches
the data file.

Read all the data.

TSID A time series identifier pattern that will
be used to filter the list of time series that
are read. See the figure above for
examples.

Read all time series.

NewScenario A new scenario to use for the TSID.
This is useful when reading data from
multiple model runs that otherwise
would have the same TSIDs.

No scenario.

AutoAdjust Indicate whether to automatically adjust
time series identifiers to use a dash “-”
instead of period “.” in the data type,
necessary because StateCU data types
(e.g., crop types that include CU method)
have a period that interferes with the
normal TSID convention.

True

CheckData Indicate whether to check the data for
integrity after reading. Currently only
the irrigation practice time series can be
checked, to verify that the acreage totals
are the sum of the parts.

True

A sample commands file is as follows:

ReadStateCU(InputFile="Data\ym2004.iwr")

Command Reference – ReadStateCU() - 2 370

Command Reference: ReadStateCUB()
Read time series from a StateCU binary output time series file

Version 08.17.00, 2008-10-02

The ReadStateCUB() command reads time series from a StateCU binary output time series file (see
the StateCUB Input Type Appendix). The actual reading occurs as the commands are being processed.
For this reason and because the number of time series in the binary file is usually large, if any other
commands reference the StateCU binary file time series, the time series identifiers must be specified
manually or use wildcards in identifiers (identifiers are not available to list in dialogs). Only data types
that contain floating point numbers will be read.

The following dialog is used to edit the command and illustrates the syntax for the command.

ReadStateCUB

ReadStateCUB() Command Editor

 Command Reference – ReadStateCUB() - 1 371

ReadStateCUB() Command TSTool Documentation

The command syntax is as follows:

ReadStateCUB(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the StateCU binary time

series file to read, surrounded by double
quotes. The path to the file can be
absolute or relative to the working
directory.

None – must be specified.

TSID Time series identifier pattern to filter the
read.

Read all time series.

InputStart The starting date/time to read data,
specified to Month precision.

Read all data.

InputEnd The ending date/time to read data,
specified to Month precision.

Read all data.

The following example command file illustrates how to read all CU Shortage time series:

ReadStateCUB(InputFile="Data\farmers.BD1",TSID="*.*.CU Shortage.*.*")

The following example illustrates how to read all time series from a binary file with debug turned on to
echo all information that is read.

StartLog(LogFile="commands.TSTool.log")
SetDebugLevel(LogFileLevel=1)
ReadStateCUB(InputFile="Data\farmers.BD1")

Command Reference – ReadStateCUB() - 2 372

Command Reference: ReadStateMod()
Read all the time series from a StateMod time series file

Version 09.05.03, 2009-11-17

The ReadStateMod() command reads all the time series in a StateMod time series file (see the
StateMod Input Type Appendix). Single time series can be read by using time series identifier (TSID)
commands.

Water rights files also can be read and converted to time series – this is useful for visualization, water
supply analysis, and is used to test well right processing. Considering all water rights for a location based
on the administration number results in a step function of decree over time. Monthly and yearly time
series use calendar year and a right is active if it is turned on anywhere in the month or year. Free water
rights (e.g., those having administration numbers > 90000.00000 are treated like other rights and therefore
may not impact the results in the current period because the corresponding appropriation date is in the
future (additional parameters may be added in the future to allow more ways to process these rights). If
processing well rights and multiple years of parcel data are processed, this command executes the same
logic as the StateDMI MergeWellRights() command.

The following dialog is used to edit the command and illustrates the syntax for the command.

ReadStateMod

ReadStateMod() Command Editor

 Command Reference – ReadStateMod() - 1 373

ReadStateMod() Command TSTool Documentation

The command syntax is as follows:

ReadStateMod(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the StateMod time series file to read,

surrounded by double quotes. The path to the file can be
absolute or relative to the working directory. Global
property values can be inserted using the syntax
${PropertyName} (see also the SetProperty()
command).

None – must be specified.

InputStart The start of the period to read data – specify if the period
should be different from the global query period.
Specify to a precision that matches the data. If reading
water rights, the output time series will start on this date.

Use the global query
period or if not specified
read all data.

The default for water
rights is the date of the
first right.

InputEnd The end of the period to read data – specify if the period
should be different from the global query period.
Specify to a precision that matches the data. If reading
water rights, the output time series will end on this date.

Use the global query
period or if not specified
read all data.

The default for water
rights is the date of the
last right.

Alias The alias to assign to the time series that are read. Use
the format choices and other characters to define a
unique alias.

No alias is assigned.

Interval When reading a water right file, specify the interval for
the resulting time series, one of Day, Month, or Year.

Year

Spatial
Aggregation

When reading a water right file, indicate how time series
are to be aggregated spatially, one of:
• Location – aggregate by the station identifier.
• Parcel – (only used with well rights) aggregate

based on the parcel number and parcel year.
• None – do not aggregate spatially, which will result

in constant value time series for each water right.

Location

ParcelYear When processing a well water right file, indicate the year
of parcel data to process. Parcel configurations change
from year to year, and a single year of parcel data can be
processed if desired.

Process all parcel years.

A sample command file is as follows:

ReadStateMod(InputFile="ym2004.ddh")

Command Reference – ReadStateMod() - 2 374

Command Reference: ReadStateModB()
Read time series from a StateMod binary output time series file

Version 09.06.00, 2010-01-05

The ReadStateModB() command reads time series from a StateMod binary output time series file
(see the StateModB Input Type Appendix). The identifiers (or aliases) from the time series will be
available as choices when editing other commands. If this causes performance issues due to the large
number of time series that may be read, limit the time series that are read using the TSID parameter.

The following dialog is used to edit the command and illustrates the syntax for the command.

ReadStateModB

ReadStateModB() Command Editor

 Command Reference – ReadStateModB() - 1 375

ReadStateModB() Command TSTool Documentation

The command syntax is as follows:

ReadStateModB(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the StateMod binary time series file

to read, surrounded by double quotes. The path to
the file can be absolute or relative to the working
directory. Global property values can be inserted
using the syntax ${PropertyName} (see also
the SetProperty() command).

None – must be
specified.

TSID Time series identifier pattern to filter the read.
Use periods to indicate separate TSID parts and
use * to match patterns within the parts.

Read all time series.

InputStart The starting date/time to read data, specified to
Day or Month precision based on whether a
daily or monthly model run.

Read all data.

InputEnd The ending date/time to read data, specified to
Day or Month precision based on whether a
daily or monthly model run.

Read all data.

Version StateMod version number using the form NN.NN
(padded with leading zero for version 9)
corresponding to the file, necessary because the
file version number (and consequently
parameters) cannot be automatically detected in
older versions. Changes in binary file format
occurred with version 9.01 and 9.69, mainly to
add new data types. The StateMod file version
for version 11+ is automatically detected.

Detect from the file if
possible.

Alias The alias to assign to the time series that are read.
Use the format choices and other characters to
define a unique alias.

No alias is assigned.

The following example command file illustrates how to read all Available_Flow time series for
identifiers starting with 44 (e.g., to extract all such time series for a water district):

ReadStateModB(InputFile="..\StateMod\ym2002b.b43",TSID="44*.*.Available_Flow.*")

The following example illustrates how to read all time series from a binary file that was created with
StateMod version 9.53. As shown in the example, debug can be turned on for the log file to evaluate
issues with the file format.

StartLog(LogFile="commands.TSTool.log")
SetDebugLevel(0,1)
ReadStateModB(InputFile="COLOFB.B43",Version="09.53")

Command Reference – ReadStateModB() - 2 376

Command Reference: ReadTableFromDBF()
Read a table from a dBASE file

Version 09.09.00, 2010-09-23

The ReadTableFromDBF() command reads a table from a dBASE file, such as the files used with
ESRI GIS shapefiles. dBASE files are self-contained binary database files.

Handling of dBASE files is limited and support for newer features may not be included.

The following dialog is used to edit the command and illustrates the syntax for the command.

ReadTableFromDBF

ReadTableFromDBF() Command Editor

 Command Reference – ReadTableFromDBF() - 1 377

ReadTableFromDBF() Command TSTool Documentation

The command syntax is as follows:

ReadTableFromDBF(Parameter=Value,…)

Command Parameters

Parameter Description Default
TableID Identifier to assign to the table that is

read, which allows the table data to be
used with other commands.

None – must be specified.

InputFile The name of the file to read, as an
absolute path or relative to the command
file location.

None – must be specified.

Command Reference – ReadTableFromDBF() - 2 378

Command Reference:
ReadTableFromDelimitedFile()

Read a table from a delimited file
Version 09.04.00, 2009-06-16

The ReadTableFromDelimitedFile() command reads a table from a comma-delimited file.
Table files have the following characteristics:

• Comments indicated by lines starting with # are stripped during the read.
• Extraneous non-data lines in the file can be skipped during the read using the SkipLines

parameter.
• Column headings indicated by “quoted” values in the first non-comment line will be used to

assign string names to the columns. If no quoted values are present, columns will not have
headings.

• Data in columns are assumed to be of consistent type (i.e., all numerical data or all text), based on
rows after the header.

• Once read, row numbers (1+) can be referenced by other commands.

Tables are used by other commands when performing lookups of information or generating summary
information from processing.

The following dialog is used to edit the command and illustrates the syntax for the command.

ReadTableFromDelimitedFile

ReadTableFromDelimitedFile() Command Editor

 Command Reference – ReadTableFromDelimitedFile() - 1 379

ReadTableFromDelimitedFile() Command TSTool Documentation

The command syntax is as follows:

ReadTableFromDelimitedFile(Parameter=Value,…)

Command Parameters

Parameter Description Default
TableID Identifier to assign to the table that is

read, which allows the table data to be
used with other commands.

None – must be specified.

InputFile The name of the file to read, as an
absolute path or relative to the command
file location.

None – must be specified.

SkipLines Indicates the number of lines in the file
to skip, which otherwise would interfere
with reading row data. Individual row
numbers and ranges can be specified, for
example: 1,5-6,17

No lines are skipped.

HeaderLines Indicate the rows that include header
information, which should be used for
column names. Currently this should
only be one row, although a range may
be fully supported in the future.

If the first non-comment line
contains quoted field names, they
are assumed to be headers.
Otherwise, no headers are read.

The following example command file illustrates how to read a table from a delimited file:

ReadTableFromDelimitedFile(TableID="Table1",
 InputFile="Sample.csv",SkipRows="2")

An excerpt from a simple delimited file is:

A comment
some junk to be skipped
“Header1”,”Header2”,”Header3”
1,1.0,1.0
2,2.0,1.5
3,3.0,2.0

Command Reference – ReadTableFromDelimitedFile() - 2 380

Command Reference: TS Alias =
ReadTimeSeries()

Read a single time series using a full time series identifier
Version 08.16.04, 2008-09-23

The TS Alias = ReadTimeSeries()reads a single time series from any input type. This
generalized command is useful for converting time series identifiers from the TSTool interface into read
commands that assign an alias to a time series. Because the command is generic, it does not offer specific
parameters that may be found in read commands for specific input types. Use the specific read
commands where available for additional functionality and more specific error handling.

The following dialog is used to edit the command and illustrates the syntax of the command.

ReadTimeSeies_Alias

ReadTimeSeries() Command Editor

 Command Reference – ReadTimeSeries() - 1 381

ReadTimeSeries() Command TSTool Documentation

The command syntax is as follows:

TS Alias = ReadTimeSeries(Parameter=Value,…)

Command Parameters

Parameter Description Default
Alias The alias assigned to the time series. None – must be specified.
TSID The time series identifier of the time

series to read. The identifier should
include the input type (and input name, if
required). See the input type appendices
for examples of time series identifiers for
various input types.

None – must be specified.

IfNotFound Indicates how to handle missing time
series, one of:
• Warn – generate fatal warnings and

do not include in output.
• Ignore – generate non-fatal

warnings and do not include in
output.

• Default – generate non-fatal
warnings and create empty time
series for those that could not be
found. This requires that a
SetOutputPeriod() command
be used before the command to
define the period for default time
series.

Warn

DefaultUnits Default units when
IfNotFound=Default.

Blank – no units.

A sample command file to read data from the State of Colorado’s HydroBase is as follows:

TS Alamosa =
 ReadTimeSeries(TSID="08235350.USGS.Streamflow.Day~HydroBase")

Command Reference – ReadTimeSeries() - 2 382

Command Reference: TS Alias =
ReadUsgsNwis()

Read a single time series from a USGS NWIS file
Version 08.16.04, 2008-09-05

The TS Alias = ReadUsgsNwis() command reads a single time series from a USGS NWIS file
(see the USGSNWIS Input Type Appendix) and assigns an alias to the result. Currently only the daily
streamflow format is supported and the file being read must contain only one time series. The data type
is assigned as Streamflow, with units CFS.

The following dialog is used to edit the command and illustrates the syntax.

ReadUsgsNwis

TS Alias = ReadUsgsNwis() Command Editor

 Command Reference – TS Alias = ReadUsgsNwis() - 1 383

TS Alias = ReadUsgsNwis() Command TSTool Documentation

The command syntax is as follows:

TS Alias = ReadUsgsNwis(Parameter=Value,…)

Command Parameters

Parameter Description Default
Alias Alias for the new time series that is read

from the file, which can be used instead
of the TSID in other commands.

None – must be specified.

InputFile The name of the USGS NWIS file to
read, surrounded by double quotes. The
path to the file can be absolute or relative
to the working directory.

None – must be specified.

InputStart The start of the period to read data –
specify if the period should be different
from the global query period.

Use the global query period.

InputEnd The end of the period to read data –
specify if the period should be different
from the global query period.

Use the global query period.

A sample command file is as follows:

TS ts1 = ReadUsgsNwis(InputFile="G03451500.txt")

Command Reference – TS Alias = ReadUsgsNwis() - 2 384

Command Reference: TS Alias = RelativeDiff()
Create a relative difference time series

Version 08.16.04, 2008-09-23

A RelativeDiff() command can be inserted to create a new relative difference time series,
computed by subtracting the time series and then dividing by one of the time series. This is useful when
analyzing the relative magnitudes of two time series over time. Most of the properties for the new time
series are the same as the first time series. The alias for the result can be referenced by other commands.
The divisor can be either of the time series. The result is set to missing if either time series value is
missing or the divisor is zero.

The following dialog is used to edit the command and illustrates its syntax.

RelativeDiff_Allias

RelativeDiff() Command Editor

 Command Reference – RelativeDiff() - 1 385

RelativeDiff() Command TSTool Documentation

The command syntax is as follows:

TS Alias = RelativeDiff(Parameter=Value)

Command Parameters

Parameter Description Default
Alias The alias for the new time series. None – must be

specified.
TSID1 The time series identifier or alias for the first time series. None – must be

specified.
TSID2 The time series identifier or alias for the second time series

(subtracted from the first).
None – must be
specified.

Divisor Indicates whether the first time series is the divisor
(DivideByTS1) or the second time series is the divisor
(DivideByTS2).

None – must be
specified.

A sample command file to process data from the State of Colorado’s HydroBase database is as follows:

StartLog(LogFile="Example_RelativeDiff.log")
SetOutputPeriod(OutputStart="01/1912",OutputEnd="12/1998")
(1912-1998) RIO GRANDE AT ALAMOSA, CO. DWR Streamflow Monthly
TS Alamosa = readTimeSeries("08223000.DWR.Streamflow.Month~HydroBase")
(1890-1998) RIO GRANDE NEAR DEL NORTE, CO. DWR Streamflow Monthly
TS DelNorte = readTimeSeries("08220000.USGS.Streamflow.Month~HydroBase")
TS RelativeDiff =
 RelativeDiff(TSID1="DelNorte",TSID2="Alamosa",Divisor=DivideByTS1)

Command Reference – RelativeDiff() - 2 386

TSTool Documentation RelativeDiff() Command

The input time series for the command are shown in the following figure:

relativeDiff_GraphData

Data for the RelativeDiff() Command

 Command Reference – RelativeDiff() - 3 387

RelativeDiff() Command TSTool Documentation

The results of processing the commands are shown in the following figure:

relativeDiff_Graph

Results of the RelativeDiff() Command

Command Reference – RelativeDiff() - 4 388

Command Reference: RemoveFile()
Remove a file

Version 09.02.00, 2009-04-03

The RemoveFile() command removes a file from the file system. This command is used in testing
software to remove results files before attempting to regenerate the results.

A failure will be generated if the file exists and cannot be removed (e.g., due to file permissions or being
locked by another process).

Even read-only files may be removed by this command, depending on how the operating system and
computer environment handle access permissions.

The following dialog is used to edit the command and illustrates the syntax for the command.

RemoveFile

RemoveFile() Command Editor

 Command Reference – RemoveFile() - 1 389

RemoveFile() Command TSTool Documentation

The command syntax is as follows:

RemoveFile(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the file to delete. None – must be specified.
IfNotFound Indicate action if the file is not found,

one of:
• Ignore – ignore the missing file

(do not warn).
• Warn – generate a warning (use this

if the file truly is expected and a
missing file is a cause for concern).

• Fail – generate a failure (use this if
the file truly is expected and a
missing file is a cause for concern).

Ignore

The following example command file illustrates how to remove a file:

RemoveFile(InputFile="Results/output.dv")

Command Reference – RemoveFile() - 2 390

Command Reference: ReplaceValue()
Replace a range of data values with a constant Value

Version 09.07.01, 2010-08-18

The ReplaceValue() command replaces a range of values in a time series with a constant value, sets
the values to missing, or removes the values (if an irregular time series). If the missing value indicator is
a number in the range, missing values also will be replaced. This command is useful for filtering out
erroneous data values. See also the CheckTimeSeries() command, which provides for a variety of
checks and also allows values to be set to missing or removed.

The following dialog is used to edit the command and illustrates the syntax of the command:

ReplaceValue

ReplaceValue() Command Editor

The command syntax is as follows:

ReplaceValue(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be processed,

one of:
• AllMatchingTSID – all time series that

match the TSID (single TSID or TSID with
wildcards) will be processed.

• AllTS – all time series before the command.
• EnsembleID – all time series in the

ensemble will be processed.

AllTS

 Command Reference – ReplaceValue() - 1 391

ReplaceValue() Command TSTool Documentation

• FirstMatchingTSID – the first time
series that matches the TSID (single TSID or
TSID with wildcards) will be processed.

• LastMatchingTSID – the last time series
that matches the TSID (single TSID or TSID
with wildcards) will be processed.

• SelectedTS – the time series are those
selected with the SelectTimeSeries()
command.

TSID The time series identifier or alias for the time
series to be processed, using the * wildcard
character to match multiple time series.

Required if
TSList=*TSID.

EnsembleID The ensemble to be processed, if processing an
ensemble.

Required if
TSList=EnsembleID.

MinValue The minimum value to replace. None – must be specified.
MaxValue The maximum value to replace. If not specified, only data

values that exactly match
the minimum value will be
replaced.

NewValue The new data value. Required, unless the
Action parameter is
specified.

Action An action to take with values that are matched:
• Remove – remove the data points. This can

only be specified for irregular interval time
series and will be interpreted as
SetMissing for regular interval time
series.

• SetMissing – set values to missing.

No action is taken and the
NewValue parameter
must be specified.

SetStart The date/time to start filling, if other than the full
time series period.

Check the full period.

SetEnd The date/time to end filling, if other than the full
time series period.

Check the full period.

AnalysisStart The starting date/time within the calendar year to
replace data. The window CANNOT cross
calendar year boundaries (this may be allowed in
the future). Use multiple commands if necessary.

Process each full year.

AnalysisEnd The ending date/time within the calendar year to
replace data.

Process each full year.

A sample command file to process from the State of Colorado’s HydroBase database is as follows:

08235700 - ALAMOSA RIVER BELOW CASTLEMAN GULCH NEAR JASPER
08235700.DWR.Streamflow.Month~HydroBase
ReplaceValue(TSList=AllTS,MinValue=-100000,MaxValue=0,NewValue=0)

Command Reference – ReplaceValue() - 2 392

Command Reference:
ResequenceTimeSeriesData()

Resequence time series data (shuffle years of data)
Version 09.05.02, 2009-11-04

The ResequenceTimeSeriesData() command resequences data in time series by
shifting/shuffling/repeating values from one year to another, creating new time series for each time series.
For example, January 1950 might be shifted to January 1990. This command is useful for generating
synthetic time series by resequencing historical data. The following constraints apply to the command as
currently implemented:

1. Processing by default occurs by calendar year, with the sequence specified as calendar years. If
an alternate output year type is used (see the OutputYearType parameter). The
OutputStart year is considered to be consistent with the output year type.

2. The sequence of years must currently be supplied as a column of years in a table (rows of years
may be added in a future enhancement).

3. Full start and end years are required, matching the output year type.
4. Currently the command can only be applied to month interval data. For a daily data interval,

several technical issues must be resolved before the feature can be implemented:
a. If a short year (i.e., non-leap year with 365 days) is transferred to a long year (i.e., a leap

year with 366 days), the first day after the short year is used for the 366th day during the
transfer. What to do if the year being transferred is the last in the data set and no more
years are available for the 366th day – repeat the last day?

b. If a long year (i.e., leap year with 366 days) is transferred to a short year (i.e., a non-leap
year with 365 days), the 366th day in the leap year is not transferred.

5. The original period is by default retained in the output time series. For example, if the original
data are 1937 to 1997, the resequenced data will also be in a time series with a period 1937 to
1997. The OutputStart parameter can be used to shift the start year of output.

The command is designed to work with a table that provides sequence information. For example, see the
ReadTableFromDelimitedFile() command and the example shown below.

 Command Reference – ResequenceTimeSeriesData() - 1 393

ResequenceTimeSeriesData() Command TSTool Documentation

The following dialog is used to edit the command and illustrates the syntax of the command.

ResequenceTimeSeriesData

ResequenceTimeSeriesData() Command Editor

The command syntax is as follows:

ResequenceTimeSeriesData(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be processed, one of:

• AllMatchingTSID – all time series that match
the TSID (single TSID or TSID with wildcards)
will be processed.

• AllTS – all time series before the command will
be processed.

• EnsembleID – all time series in the ensemble
will be processed.

• FirstMatchingTSID – the first time series
that matches the TSID will be processed.

• LastMatchingTSID – the last time series that
matches the TSID (single TSID or TSID with
wildcards) will be processed.

• SelectedTS – the time series selected with the
SelectTimeSeries() command will be
processed.

AllTS

TSID The time series identifier or alias for the time series to
be modified, using the * wildcard character to match
multiple time series.

Required when
TSList=*TSID.

EnsembleID The ensemble to be modified, if processing an Required when

Command Reference – ResequenceTimeSeriesData () - 2 394

TSTool Documentation ResequenceTimeSeriesData() Command

Parameter Description Default
ensemble. TSList=

EnsembleID.
TableID The identifier for the sequence table to use, which

indicates the dates to use when resequencing data (e.g.,
list of years for data sequence). For example, see the
ReadTableFromDelimitedFile() command.
The years should be consistent with the
OutputYearType.

None – must be
specified.

TableColumn The column name containing the sequence
information. Note that the input table must have
column names in a header record.

None – must be
specified.

TableRowStart The first data row number (1+) containing the first year
in the new sequence.

Use all rows.

TableRowEnd The last data row number (1+) containing the first year
in the new sequence.

Use all rows.

OutputYearType The output year type, indicating the year extent for the
resequencing, one of:
• Calendar – January to December
• NovToDec – November of previous calendar year

to October of current year.
• Water – October of previous calendar year to

September of current year.

Calendar

OutputStart The output start as a four-digit year that is consistent
with OutputYearType. For example, if processing
water years, the OutputStart would be the first
water year in the output (and start in October of the
previous calendar year). The output end is relative to
the output start and includes the number of years in the
sequence.

Same as the original
input data or use the
global output start if
specified. The output
months will be
adjusted for the
output year type.

NewScenario The new scenario to assign to the created time series,
resulting in a unique TSID.

Not specified, but a
new scenario and/or
alias must be
specified.

Alias Alias to assign to the output time series. See the
LegendFormat property described in the TSView
Time Series Viewing Tools appendix. For example,
%L is full location, %T is data type, %I is interval, and
%Z is scenario.

Not specified, but a
new scenario and/or
alias must be
specified.

 Command Reference – ResequenceTimeSeriesData() - 3 395

ResequenceTimeSeriesData() Command TSTool Documentation

The following example:

1. Reads a list of time series from a StateMod model file.
2. Reads a sequence of years from a delimited file.
3. Resequences the StateMod time series data.
4. Writes the resequenced file to a new StateMod file.

Read all demand time series…
ReadStateMod(InputFile=”..\StateMod\gunnC2005.xbm”)
Read the sequence of years to use…
Table 0001HK0101 = ReadTableFromDelimitedFile(InputFile=”0001HK0101.csv”)
Resequence the StateMod time series…
ResequenceTimeSeriesData(TSList=AllTS,TableID=”0001HK0101”,
TableColumn=”Trace1”,NewScenario=”KNN0101”,Alias=”%L-KNN0101”)
Write the resequenced data for StateMod
WriteStateMod(TSList=AllMatchingTSID,TSID=”*KNN*”,
 OutputFile=”..\StateMod0101\gunnC2005.xbm”)

The year sequence is specified in a file similar to the following.

Some comments
“Trace1”,”Trace2”,…
1905,1967,…
1920,1943,…
etc.

Variations on the example can be implemented, for example, to process output products after the run.

Command Reference – ResequenceTimeSeriesData () - 4 396

Command Reference: RunCommands()
Run a command file

Version 09.00.00, 2010-09-30

The RunCommands() command runs a command file using a separate command processor. This
command can be used to manage workflow where multiple commands files are run, and is also used
extensively for testing, where a test suite consists of running separate test case command files.

Command files that are run can themselves include RunCommands() commands. Each command file
that is run has knowledge if its initial working directory and relative paths referenced in the command file
are relative to this directory. This allows a master command file to reside in a different location than the
individual command files that are being run. The current working directory is reset to that of the
command file being run.

Data stores from the parent command processor are by default passed to the child command processor.
Consequently, database connections can be opened once and shared between command files.

Currently the properties from the parent command file are NOT applied to the initial conditions
when running the command file. Therefore, global properties like input and output period are reset to
defaults before running the command file. A future enhancement may implement a command parameter
to indicate whether to share the properties with the parent processor. The output from the command is
also not added to the parent processor. Again, a future enhancement may be to append output so that one
final set of output is generated.

There is currently no special handling of log files; consequently, if the main command file opens a log file
and then a command file is run that opens a new log file, the main log file will be closed. This behavior is
being evaluated.

The following dialog is used to edit the command and illustrates the syntax for the command.

RunCommands

RunCommands() Command Editor

 Command Reference – RunCommands() - 1 397

RunCommands() Command TSTool Documentation

The command syntax is as follows:

RunCommands(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the command file to run, enclosed in double

quotes if the file contains spaces or other special
characters. A path relative to the master command file
can be specified.

None – must be
specified.

ExpectedStatus Used for testing – indicates the expected status from the
command, one of:
• Unknown
• Success
• Warning
• Failure

Success

ShareDataStores Indicate whether data stores in the parent should be
shared with the child command processor. Normally this
should be done so that databases can be opened once.
Note that opening data stores in the child command file
will not make the data stores available in the parent.

Share

The following example illustrates how the RunCommands() command can be used to test TSTool
software (or any implementation of commands). First, individual command files are implemented to test
specific functionality, which will result in warnings if a test fails:

StartLog(LogFile="Results/Test_ReadStateMod_1.TSTool.log")
TS Alias = NewPatternTimeSeries(NewTSID="MyLoc..MyData.Day",
 Description="Test data",SetStart="1950-01-01",
 SetEnd="1951-03-12",Units="CFS",PatternValues="5,10,12,13,75")
Uncomment the following command to regenerate the expected results file.
WriteStateMod(TSList=AllTS,
OutputFile="ExpectedResults\Test_ReadStateMod_1_out.stm")
ReadStateMod(InputFile="ExpectedResults\Test_ReadStateMod_1_out.stm")
CompareTimeSeries(Precision=3,Tolerance=".001",DiffFlag="X",
 WarnIfDifferent=True)

Next, use the RunCommands() command to run one or more tests:

StartRegressionTestResultsReport(
 OutputFile="RunRegressionTest_commands_general.TSTool.out.txt")
…
RunCommands(InputFile="..\..\..\commands\general\ReadStateMod\Test_ReadStateMod_1.TSTool")
…

Each of the above command files should produce expected time series results, without warnings. If any
command file unexpectedly produces a warning, a warning will also be visible in TSTool. The issue can
then be evaluated to determine whether a software or configuration change is necessary.

Command Reference – RunCommands() - 2 398

Command Reference: RunningAverage()
Convert time series data to running average values

Version 09.07.02, 2010-08-19

The RunningAverage() command converts a time series’ raw data values to a running average,
resulting in data that are smoothed. New time series are NOT created. There are two versions of the
command. The centered running average requires that the number intervals on each site of a point be
specified (e.g., specifying 1 will average 3 values at each point). The N-year running average is
computed by averaging the current year and N - 1 values from previous years, for a specific date. An
average value is produced only if N non-missing values are available. Currently N-year running average
values for Feb 29 for daily or finer data will always be missing because a sufficient number of values will
not be found – an option may be added in the future to allow Feb 29 values to be computed based on
fewer than N values.

The following dialog is used to edit the command and illustrates the centered running average command
syntax.

RunningAverage_centered

RunningAverage() Command Editor for Centered Running Average

 Command Reference – RunningAverage() - 1 399

RunningAverage() Command TSTool Documentation

The following dialog illustrates the N-year running average command syntax.

RunningAverage_nyear

RunningAverage() Command Editor for N-Year Running Average

Command Reference – RunningAverage() - 2 400

TSTool Documentation RunningAverage() Command

The command syntax is as follows:

RunningAverage(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be processed, one of:

• AllMatchingTSID – all time series that match
the TSID (single TSID or TSID with wildcards)
will be modified.

• AllTS – all time series before the command.
• EnsembleID – all time series in the ensemble will

be modified.
• LastMatchingTSID – the last time series that

matches the TSID (single TSID or TSID with
wildcards) will be modified.

• SelectedTS – the time series are those selected
with the SelectTimeSeries() command.

AllTS

TSID The time series identifier or alias for the time series to
be modified, using the * wildcard character to match
multiple time series.

Required if
TSList=*TSID.

EnsembleID The ensemble to be modified, if processing an
ensemble.

Required if
TSList=
EnsembleID.

AverageMethod The method used to create the running average, one of:

• Centered – values on each side of a date/time are

averaged.
• Future – average the next N (bracket) values but

do not include the current value.
• FutureInclusive – average the next N

(bracket) values and also include the current value.
• N-Year – values for the current year and (N – 1)

preceding years, for the same date/time, are
averaged.

• Previous – average the previous N (bracket)
values but do not include the current value.

• PreviousInclusive – average the previous N
(bracket) values and also include the current value.

None – must be
specified.

Bracket For centered running average, the bracket is the number
of points on each side of the current point (therefore a
value of 1 will average 3 data values). For N-year
running average, the bracket is the total number of years
to average, including the current year.

None – must be
specified.

 Command Reference – RunningAverage() - 3 401

RunningAverage() Command TSTool Documentation

A sample command file to convert State of Colorado HydroBase diversion time series to running
averages is as follows:

0100501 - EMPIRE DITCH
TS Center = readTimeSeries("0100501.DWR.DivTotal.Month~HydroBase")
RunningAverage(TSList=AllMatchingTSID,TSID="Center",
 AverageMethod=Centered,Bracket=3)
TS NYear = readTimeSeries("0100501.DWR.DivTotal.Month~HydroBase")
RunningAverage(TSList=AllMatchingTSID,TSID="NYear",
 AverageMethod=NYear,Bracket=5)
0100501.DWR.DivTotal.Month~HydroBase

The resulting graph is as follows:

RunningAverage_graph

Results from RunningAverage() Commands

Command Reference – RunningAverage() - 4 402

Command Reference: RunDSSUTL()
Run the DSSUTL and other utility programs from the US Army Corps of Engineers

Version 09.03.00, 2009-04-10

The RunDSSUTL() command runs the Army Corps of Engineers’ DSSUTL program and other utility
programs, which are used with HEC-DSS files. See also the HEC-DSS Input Type appendix. This
command formats the command line for the program, runs the program, and checks the exit value. A
non-zero exit value will result in a failure status for the command.

TSTool internally maintains a working directory that is used to convert relative paths to absolute paths in
order to locate files. The working directory is by default the location of the last command file that was
opened. The location of the program being run (e.g., DSSUTL.EXE) is determined by the operating
system using the PATH environment variable; therefore, use the ${WorkingDir} property in the
command line if the program location is not in PATH. Use \” in the command line or arguments to
surround whitespace.

It is not clear whether DSSUTL and other program have limits on path or filename length, but if
this appears to be the case, use shorter names. If a program is not provided with correct input, it
may go into interactive mode, in which case TSTool may appear to stop when running the
command. Currently there is no way to kill the process and TSTool must be stopped and restarted.

The following table summarizes how the command treats input for various utility programs. Required
arguments are for the RunDSSUTL() command but may be optional if the program is run on the
command line.

RunDSSUTL() Command Handling of HEC-DSS Utility Program Input

Progam Description DSSFILE=

Argument
INPUT=
Argument

OUTPUT=
Argument

DSSUTL Data Storage System Utility Program Required Required Optional
DSPLAY Data Storage System Graphics Utility Required Required Optional
DSSMATH Utility Program for Mathematical

Manipulation of HEC-DSS Data
Not used – use
OPEN()
command.

Required Optional

REPGEN Report Generator – not fully
supported due to different
command line argument
conventions.

DSSTS Regular Interval Time-Series Data
Entry Program

Required Required Optional

DSSITS Irregular Interval Time-Series Data
Entry Program

Required Required Optional

DSSPD Paired Data Entry Program Required Required Optional
DSSTXT Text Data Entry Program Required Required Optional
DWINDO Interactive Data Entry and Editing This interactive program is not supported by

RunDSSUTL() command.
WATDSS Watstore to DSS Data Entry Program

– not fully supported due to
different command line argument

Required Required Optional

 Command Reference – RunDSSUTL() - 1 403

RunDSSUTL() Command TSTool Documentation

Progam Description DSSFILE=
Argument

INPUT= OUTPUT=
Argument Argument

conventions.
NWSDSS National Weather Service to Data

Storage System Conversion Utility –
not fully supported due to different
command line argument
conventions.

Required

Required Optional

PREAD Functions, Macros, and Screens – not
fully supported due to interactive
prompts.

The following dialog is used to edit the command and illustrates the command syntax. Note that the
DSSUTL.EXE location is in this case not included in the PATH environment variable and is specified with
the DssutlProgram parameter, using ${WorkingDir}. The HEC-DSS and input files are relative
to the working directory.

RunDSSUTL

RunDSSUTL() Command Editor when Specifying Command Line

Command Reference – RunDSSUTL() - 2 404

TSTool Documentation RunDSSUTL() Command

The command syntax is as follows:

RunDSSUTL(Parameter=Value…)

Command Parameters

Parameter Description Default
DssFile The HEC-DSS filename as an absolute path or

relative to the working directory. The file must
exist because TSTool does not interface with the
program interactive mode prompts. The
parameter is passed to the program using the
DSSFILE= command line argument.

None – must be
specified for most
programs.

InputFile The DSS utility program command file to run.
The file must exist because TSTool does not
interface with the utility program interactive mode
prompts. The input file name is passed to the
program using the INPUT= command line
argument.

None – must be
specified.

OutputFile The DSS utility program output file, which
contains logging information. This is passed to
the program using the OUTPUT= command line
argument. Specifying the argument will cause
output to be printed to the file and not the screen.
Note that some utility program commands write to
other output files (controlled by the command file
or other command line arguments), which should
not be confused with the output file for this
argument.

Not required – output
will be to screen if
command shell window
is shown.

DssutlProgram The DSS utility program to run. The PATH
environment variable is used to locate the
executable if a full path is not specified. Specify
the specific DSS utility program to run if the
default value is not appropriate.

If not specified,
DSSUTL.EXE will be
used and must be
located in a directory
listed in the PATH
environment variable.

 Command Reference – RunDSSUTL() - 3 405

RunDSSUTL() Command TSTool Documentation

This page is intentionally blank.

Command Reference – RunDSSUTL() - 4 406

Command Reference: RunProgram()
Run an external program

Version 09.03.00, 2009-04-08

The RunProgram() command runs an external program, given the full command line or individual
command line parts, and waits until the program is finished before processing additional commands. The
TSTool command will indicate a failure if the exit status from the program being run is non-zero. It is
therefore possible to call an external program that reads and/or writes recognized time series formats to
perform processing that TSTool cannot. One use of this command is to create a calibration environment
where a model is run and then the results are read and displayed using TSTool. It is also useful to use
TSTool’s testing features to implement quality control checks for other software tools.

TSTool internally maintains a working directory that is used to convert relative paths to absolute paths to
locate files. The working directory is by default the location of the last command file that was opened.
The external program may assume that the working directory is the location from which TSTool software
was started (or the installation location if started from a menu). Therefore, it may be necessary to run
TSTool in batch mode from the directory where the external software’s data files exist, use absolute paths
to files, or use the ${WorkingDir} property in the command line. Use \” in the command line or
arguments to surround whitespace. Some operating systems may have limitations on command line
length. The following dialog is used to edit the command and illustrates the command syntax.

RunProgram

RunProgram() Command Editor when Specifying Command Line

 Command Reference – RunProgram() - 1 407

RunProgram() Command TSTool Documentation

The command syntax is as follows:

RunProgram(Parameter=Value…)

Command Parameters

Parameter Description Default
CommandLine The full program command line, with arguments.

If the program executable is found in the PATH
environment variable, then only the program name
needs to be specified. Otherwise, specify an
absolute path to the program or run TSTool from a
command shell the same directory.

The ${WorkingDir} property can be used in
the command line to indicate the working
directory (command file location) when
specifying file names.

For Windows, it may be necessary to place a \”
at the start and end of the command line, if a full
command line is specified.

Must be specified if the
Program parameter is
not specified.

The Program
parameter will be used
if both are specified.

Program The name of the program to run. Program
arguments are specified using the ProgramArg#
parameter(s). See the CommandLine parameter
for more information about parameter formatting
and locating the executable.

Must be specified if the
CommandLine
parameter is not
specified.

ProgramArg1,
ProgramArg2,
etc.

Command like arguments used with Program. If
necessary, use ${WorkingDir} to specify the
working directory to locate files.

No arguments will be
used with Program.

UseCommandShell If specified as False, the program will be run
without using a command shell. A command shell
is needed if the program is a script (batch file), a
shell command, or uses >, |, etc.

True, using cmd.exe
/C on Windows and
/bin/sh –c on
UNIX/Linux.

Timeout The timeout in seconds – if the program has not
yet returned, the process will be ended. Zero
indicates no timeout. This behavior varies and
is being enhanced.

No timeout.

ExitStatus
Indicator

By default, the program exit status is determined
from the process that is run. Normally 0 means
success and non-zero indicates an error.
However, the program may not exit with a non-
zero exit status when an error occurs. If the
program instead uses an output string like STOP
3 to indicate the status, use this parameter to
indicate the leading string, which is followed by
the exit status (e.g., STOP).

Determine the exit
status from the process
exit value.

Command Reference – RunProgram() - 2 408

TSTool Documentation RunProgram() Command

The following figure illustrates how a command would be entered using the program name and parts, and
use the command shell to run. Note that the output redirection character “>” is entered as a program
argument. The echo program on Windows is actually internal to the cmd.exe command shell and
therefore must be run using the command shell (the default behavior).

RunProgram_Program

RunProgram() Command Editor when Specifying Program and Arguments

 Command Reference – RunProgram() - 3 409

RunProgram() Command TSTool Documentation

The following figure illustrates how a command can be run without a command shell and using the
program output to determine the exit status. The testecho.exe program is a compiled executable and can
therefore be run without a command shell. Because the standard output is being evaluated for the exit
value, the output cannot be redirected to a file with > (this would result in no output being available to
TSTool to evaluate), and > is only recognized if running with a command shell in any case.

The following approach is suitable, for example, when running a compiled model or data analysis tool.
However, if the tool is run using a script or batch file, then a command shell must be used.

RunProgram_Program_ExitStatusIndicator

RunProgram() Command Editor when Specifying Program, Arguments, and Exit Status Indicator

Command Reference – RunProgram() - 4 410

Command Reference: RunPython()
Run a Python script

Version 09.07.00, 2010-07-14

The RunPython() command runs a Python script, waiting until execution is finished before processing
additional commands. Python is a powerful scripting language that is widely used (see
http://www.python.org). This command allows Python scripts to be run using a variety of Python
interpreters, as shown in the following table:

RunPython() Supported Python Interpreters

Interpreter
(Website)

Language, Program Name
(Example Install Home)

Comments

IronPython
(ironpython.net)

.NET, ipy
(C:\Program Files\IronPython 2.6)

Useful for integrating with .NET
applications, in particular to manipulate
Microsoft Office software data files. Can
use .NET assembly code (but this code in
a Python script is only recognized by
IronPython). Integration can occur within
a running .NET application (essentially
extending the functionality of the .NET
application). Version 2.6 requires .NET
2.0. Version 2.6.1 requires .NET 4.0.

Jython
(www.jython.org)

Java, jython
(C:\jython2.5.1)

Useful for integrating with Java
applications, such as TSTool. Can use
Java code (but this code in a Python script
is only recognized by Jython).

Jython embedded
(www.jython.org)

Java
(C:\jython2.5.1, but must use the
installer option to create a JAR file in
order to embed – this is the file that is
distributed with TSTool).

Useful for integrating with Java
applications, such as TSTool. Can use
Java code (but this code in a Python script
is only recognized by Jython). Integration
can occur within a running Java
application (essentially extending the
functionality of the Java application).

Python
(www.python.org)

C, python
(C:\Python25)

The original Python interpreter, which
defines the Python language specification.

Python implementations have similar file organization, with the main executable (or batch file) residing in
the main install folder. Core functionality is typically completely handled within the interpreter code
and/or Python code included in the Lib folder under the main installation folder. Extended capabilities
such as third-party add-ons are made available as module libraries that are installed in the Lib\site-
packages folder. These folders are typically automatically included in the Python path and will be found
when import statements are used in Python scripts. The folder for the main Python script that is run to
start an execution is also typically included in the Python path by the interpreter at runtime. If any
additional Python modules needed to be found, they can be added to the Python path at runtime (see the
PythonPath command parameter below).

If the embedded Jython is used, then there may be no reliance on any other software if the core Python
capabilities can be used. However, if third-party packages are used, it may be best to install them with the

 Command Reference – RunPython() - 1 411

http://www.python.org/

RunPython() Command TSTool Documentation

Jython distribution (e.g., in Lib\site-packages) so that the packages can be used for independent testing
prior to use in the embedded interpreter. For example, perform a typical Jython install (e.g., into
C:\Jython2.5.1), install the third-party packages into this location (using the installer for the package or
directly copying into the Lib\site-packages folder), and then specify the
PythonPath=C:\Jython2.5.1\Lib\site-packages) command parameter.

If a non-embedded approach is used, then IronPython, Jython, or Python must be installed on the
computer for the appropriate Interpreter command parameter value. The interpreter program will be
found if the installation folder is defined in the PATH environment variable, or use the Program
command parameter to specify the full path to the interpreter program to run. The script is then run by
running the following (see full parameter descriptions below):

Program InputFile Arguments

The following dialog is used to edit the command and illustrates the command syntax.

RunPython

RunPython() Command Editor

Command Reference – RunPython() - 2 412

TSTool Documentation RunPython() Command

The command syntax is as follows:

RunPython(Parameter=Value,…)

Command Parameters

Parameter Description Default
Interpreter The Python interpreter to run, one of:

• IronPython
• Jython
• JythonEmbedded
• Python

None – must be specified.

Program The Python interpreter program to run.
Specify as a full path to the installed
program, or only the program name (in
which case the path to the program must
be included in the PATH environment
variable).

Determined based on the
Interpreter parameter:
• IronPython: ipy
• Jython: jython
• Python: python

PythonPath Additional locations for modules, to be
added to the Python path. Specify paths
separated by ; or :. For embedded
Jython, the sys.path is updated prior
to running the script. For non-embedded
interpreters, the JYTHONPATH
environment variable is updated for the
interpreter, which results in sys.path
being updated.

None – the core Python
capabilities are available.

InputFile The Python script to run, specified as an
absolute path or relative to the command
file. See the Arguments parameter for
information about using properties to
specify the location.

None – must be specified.

Arguments Arguments to pass to the script, such as
the names of files to process. Use the
${WorkingDir} property to specify
the location of the command file. Use
${InstallDir} for the TSTool
install folder. Use \” to surround
arguments that include spaces. Separate
arguments by a space.

None – arguments are optional.

The following command example illustrates how to run a Python script.

RunPython(InputFile="Data/readwritefile.py",
Interpreter="JythonEmbedded",Arguments="${WorkingDir}/Data/readwritefile.txt
${WorkingDir}/Results/Test_RunPython_Interpreter=JythonEmbedded_out.txt")

 Command Reference – RunPython() - 3 413

RunPython() Command TSTool Documentation

The corresponding Python script is as follows:

Test command for running Python script from TSTool

import sys
import os
print "start of script"
print 'os.getcwd()="' + os.getcwd() + '"'
infile = None
outfile = None
if (len(sys.argv) < 3):
 print "Error. Expecting input file name as first command line argument,
output file name as second."
 sys.exit(1)
else:
 infile = sys.argv[1]
 outfile = sys.argv[2]
 print 'Input file to process is "' + infile + '"'
 print 'Output file to create is "' + outfile + '"'

inf=open(infile,'r')
outf=open(outfile,'w')
for line in inf:
 outf.write("out: " + line)
inf.close()
outf.close()
print "end of script"

The data file is as follows:

Line 1 (first line)
Line 2
Line 3
Line 4
Line 5 (last line)

The output file is as follows:

out: Line 1 (first line)
out: Line 2
out: Line 3
out: Line 4
out: Line 5 (last line)

Command Reference – RunPython() - 4 414

Command Reference: Scale()
Scale time series data values by a constant value

Version 08.15.00, 2008-05-11

The Scale() command scales each non-missing value in the specified time series.

The following dialog is used to edit the command and illustrates the command syntax.

Scale

Scale() Command Editor

The command syntax is as follows:

Scale(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be

processed, one of:
• AllMatchingTSID – all time series

that match the TSID (single TSID or
TSID with wildcards) will be modified.

• AllTS – all time series before the
command.

• EnsembleID – all time series in the
ensemble will be modified.

• LastMatchingTSID – the last time
series that matches the TSID (single
TSID or TSID with wildcards) will be
modified.

• SelectedTS – the time series are those

AllTS

 Command Reference – Scale () - 1 415

Scale() Command TSTool Documentation

Parameter Description Default
selected with the
SelectTimeSeries() command.

TSID The time series identifier or alias for the time
series to be modified, using the * wildcard
character to match multiple time series.

TSID or EnsembleID
must be specified if
identifiers are being
matched.

EnsembleID The ensemble to be modified, if processing an
ensemble.

TSID or EnsembleID
must be specified if
identifiers are being
matched.

ScaleValue One of the following:
• The numerical value to scale to the time

series.
• DaysInMonth to indicate a scale of the

number of days in the month.
• DaysInMonthInverse to indicate a

scale of the inverse of the number of days
in the month.

None – must be specified.

AnalysisStart The date/time to start analyzing data. Full period is analyzed.
AnalysisEnd The date/time to end analyzing data. Full period is analyzed.
NewUnits New data units for the resulting time series. Do not change the units.

The following example scales a precipitation time series from the State of Colorado’s HydroBase by a
factor of 3.5:

1458 - CENTER 4 SSW
1458.NOAA.Precip.Month~HydroBase
Scale(TSList=AllMatchingTSID,TSID="1458.NOAA.Precip.Month",ScaleValue=3.5)

The following example scales a monthly streamflow time series with units of ACFT (volume per month)
in order to convert the data to average CFS flow values (note that two scale commands are required
because the DaysInMonthInverse value cannot currently be combined with a numerical value in one
command). See also the ConvertDataUnits() command for simple units conversions.

06754000 - SOUTH PLATTE RIVER NEAR KERSEY
06754000.DWR.Streamflow.Month~HydroBase
Scale(TSList=AllMatchingTSID,TSID="06754000.DWR.Streamflow.Month",
 ScaleValue=.5042)
Scale(TSList=AllMatchingTSID,TSID="06754000.DWR.Streamflow.Month",
 ScaleValue=DaysInMonthInverse,NewUnits="CFS")
06754000.DWR.Streamflow.Month~HydroBase

Command Reference – Scale () - 2 416

Command Reference: SelectTimeSeries()
Select time series for additional processing

Version 09.09.00, 2010-09-23

The SelectTimeSeries() command selects output time series, as if done interactively, to indicate
which time series should be operated on by following commands. The command minimizes the need for
the Free() command, when used in conjunction with other commands that use a time series list based
on selected time series (TSList=SelectedTS). See also the DeselectTimeSeries() command.

The following dialog is used to edit the command and illustrates the command syntax.

SelectTimeSeries

SelectTimeSeries() Command Editor

The command syntax is as follows:

SelectTimeSeries(Parameter=Value,…)

 Command Reference – SelectTimeSeries() - 1 417

SelectTimeSeries() Command TSTool Documentation

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be

processed, one of:
• AllMatchingTSID – all time

series that match the TSID (single
TSID or TSID with wildcards) will
be modified.

• AllTS – all time series before the
command.

• EnsembleID – all time series in
the ensemble will be modified (see
the EnsembleID parameter).

• LastMatchingTSID – the last
time series that matches the TSID
(single TSID or TSID with
wildcards) will be modified.

• TSPosition – time series
specified by position in the results
list (see TSPosition parameter
below).

AllTS

TSID The time series identifier or alias for the
time series to be modified, using the *
wildcard character to match multiple
time series.

Required if TSList=*TSID

EnsembleID The ensemble to be modified, if
processing an ensemble.

Required if
TSList=EnsembleID

TSPosition A list of time series positions (1+) in
output, separated by commas. Ranges
can be specified as Start-End.

Required if
TSList=TSPosition

DeselectAllFirst Indicates whether all time series should
be deselected before selecting the
specified time series: True or False.

False

PropertyName Name of user-defined property to check.
PropertyCriterion Criterion to evaluate to determine which

properties match.
Required if PropertyName is
specified.

PropertyValue Value to check against the property
value, using criterion.

Required if PropertyName is
specified.

A sample command file is as follows:

TS 401234 = NewPatternTimeSeries(NewTSID="401234..Precip.Day",
Description="Example data",SetStart="2000-01-01",SetEnd="2000-12-31",
Units="IN",PatternValues="0,1,3,0,0,0")
SelectTimeSeries(TSList=AllMatchingTSID,TSID="40*",DeselectAllFirst=True)

Command Reference – SelectTimeSeries() - 2 418

Command Reference: SetAutoExtendPeriod()
Set whether time series periods should automatically be extended to the output

period
Version 08.16.03, 2008-07-29

By default, the time series period is extended to include the output period, if specified, when a time series
is read. See also the SetOutputPeriod() command. If the extended period subsequently contains
missing data, it can be filled with other commands. The SetAutoExtendPeriod() command can be
used to change this setting if it is not desirable (e.g., for performance reasons).

The following dialog is used to edit the command and illustrates the command syntax.

SetAutoExtendPeriod

SetAutoExtendPeriod() Command Editor

The command syntax is as follows:

SetAutoExtendPeriod(Parameter=Value,…)

Command Parameters

Parameter Description Default
AutoExtendPeriod Indicate whether the period of time series

should automatically be extended to the
output period when time series are read,
True or False.

None – must be specified. The
default is True if this command
is not used.

A sample command file is as follows:

SetAutoExtendPeriod(AutoExtendPeriod=False)

 Command Reference – SetAutoExtendPeriod() - 1 419

SetAutoExtendPeriod() Command TSTool Documentation

This page is intentionally blank.

Command Reference – SetAutoExtendPeriod() - 2 420

Command Reference: SetAveragePeriod()
Set the period used to compute historical averages

Version 08.16.03, 2008-07-29

The SetAveragePeriod() command sets the period that is used to compute historic averages used
with the FillHistMonthAverage() and FillHistYearAverage() commands. If the
averaging period is not specified, the available period is used. Use a SetAveragePeriod() command
if a subset of the data should be used to compute averages.

The following dialog is used to edit this command and illustrates the command syntax.

SetAveragePeriod

SetAveragePeriod() Command Editor

 Command Reference – SetAveragePeriod() - 1 421

SetAveragePeriod() Command TSTool Documentation

The command syntax is as follows:

SetAveragePeriod(Parameter=Value,…)

Command Parameters

Parameter Description Default
AverageStart The date for the start of the averaging

period. The precision of the date should
agree with that of time series to be
processed, and is limited to monthly and
yearly precision.

None – must be specified.

AverageEnd The date for the end of the averaging
period. The precision of the date should
agree with that of time series to be
processed, and is limited to monthly and
yearly precision.

None – must be specified.

A sample command file is as follows:

SetAveragePeriod(1950-01,2002-12)

Command Reference – SetAveragePeriod() - 2 422

Command Reference: SetConstant()
Set time series data to a single or monthly constant values

Version 08.15.00, 2008-05-11

The SetConstant() command sets the values of a time series to a single or monthly constant values.

The following dialog is used to edit the command and illustrates the command syntax:

SetConstant

SetConstant() Command Editor

 Command Reference – SetConstant() - 1 423

SetConstant() Command TSTool Documentation

The command syntax is as follows:

SetConstant(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be

processed, one of:
• AllMatchingTSID – all time

series that match the TSID (single
TSID or TSID with wildcards) will
be modified.

• AllTS – all time series before the
command.

• EnsembleID – all time series in
the ensemble will be modified.

• LastMatchingTSID – the last
time series that matches the TSID
(single TSID or TSID with
wildcards) will be modified.

• SelectedTS – the time series are
those selected with the
SelectTimeSeries()
command.

AllTS

TSID The time series identifier or alias for the
time series to be modified, using the *
wildcard character to match multiple
time series.

Required if TSList=*TSID.

EnsembleID The ensemble to be modified, if
processing an ensemble.

Required if
TSList=EnsembleID.

ConstantValue The constant value to use as the data
value.

None – must be specified, or
specify monthly values.

MonthValues Monthly values to use as the data values.
Twelve values can be specified,
separated by commas. If the time series
data interval is less than monthly, each
date/time will be set for a specific month.

None – must be specified, or
specify a constant value.

SetStart The starting date/time for the data set. Set data for the full period.
SetEnd The ending date/time for the data set. Set data for the full period.

A sample command file to process a time series from the State of Colorado’s HydroBase is as follows
(only the early period is set to zero):

08235700 - ALAMOSA RIVER BELOW CASTLEMAN GULCH NEAR JASPER
08235700.DWR.Streamflow.Month~HydroBase
SetConstant(TSList=AllMatchingTSID,TSID="08235700.DWR.Streamflow.Month",
 ConstantValue=0,SetEnd="1950-01")

Command Reference – SetConstant() - 2 424

Command Reference: SetDataValue()
Set a data value at a single date/time

Version 08.16.04, 2008-09-12

The SetDataValue() command sets a single data value in a time series. Consequently, it can be used
to condition a value for subsequent filling (e.g., with FillRepeat()) or to "hard-code" data that may
not be available in files or databases. It is good practice to insert comments when editing data to
explain the edits. See also the SetConstant() command.

The following dialog is used to edit the command and illustrates the syntax of the command.

SetDataValue

SetDataValue() Command Editor

 Command Reference – SetDataValue() - 1 425

SetDataValue() Command TSTool Documentation

The command syntax is as follows:

SetDataValue(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be

processed, one of:
• AllMatchingTSID – all time

series that match the TSID (single
TSID or TSID with wildcards) will
be modified.

• AllTS – all time series before the
command.

• EnsembleID – all time series in
the ensemble will be modified.

• FirstMatchingTSID – the first
time series that matches the TSID
(single TSID or TSID with
wildcards) will be modified.

• LastMatchingTSID – the last
time series that matches the TSID
(single TSID or TSID with
wildcards) will be modified.

• SelectedTS – the time series are
those selected with the
SelectTimeSeries()
command.

AllTS

TSID The time series identifier or alias for the
time series to be modified, using the *
wildcard character to match multiple
time series.

Required if TSList=*TSID.

EnsembleID The ensemble to be modified, if
processing an ensemble.

Required if
TSList=EnsembleID.

SetDateTime The date/time at which the data value
should be set. Specify the date/time
precision according to the time series that
is being manipulated.

None – must be specified.

NewValue The new data value. None – must be specified.

A sample command file to process data from the State of Colorado’s HydroBase database is as follows:

08235700 - ALAMOSA RIVER BELOW CASTLEMAN GULCH NEAR JASPER
08235700.DWR.Streamflow.Month~HydroBase
SetDataValue(TSList=AllMatchingTSID,TSID=”08235700.DWR.Streamflow.Month”,
 SetDateTime=”1950-01”,NewValue=550)

Command Reference – SetDataValue() - 2 426

Command Reference: SetDebugLevel()
Set level for debug messages

Version 08.16.00, 2008-07-08

The setDebugLevel() command sets the debug levels for screen and log file diagnostic messages.
This command can be used multiple times with different debug level (e.g., to isolate a problem).
Currently the debug level applies to all components. In the future logging control may be grouped by
component. Levels are not completely consistent but the following guidelines can be followed:

0 = no messages
1 = important messages generated in applications
2 = important messages generated in commands
3+ = messages generated in commands that may explain other problems
10+ = messages in processing code that may still be useful to end users
30+ = low-level messages, for example generated while reading from files or databases

The following dialog is used to edit this command and illustrates the command syntax.

SetDebugLevel

SetDebugLevel() Command Editor

 Command Reference – SetDebugLevel() - 1 427

SetDebugLevel() Command TSTool Documentation

The command syntax is as follows:

SetDebugLevel(Parameter=Value,…)

Command Parameters

Parameter Description Default
ScreenLevel The debug level for the screen (0+). Keep previous setting.
LogFileLevel The debug level for the log file (0+). Keep previous setting.

A sample command file is as follows:

SetDebugLevel(ScreenLevel=0,LogFileLevel=10)

.

Command Reference – SetDebugLevel() - 2 428

Command Reference: SetFromTS()
Set time series data using another time series

Version 08.16.03, 2008-08-18

The SetFromTS() command sets data in a dependent time series by transferring values from an
independent time series. A period can be specified to limit the period that is processed. See also the
FillFromTS() command, which will transfer values only when the dependent time series has missing
data. Only data values are transferred – time series header information (e.g., data type, alias) will not be
modified. If multiple time series or an ensemble is being processed, the number of independent time
series must be one or the same number as the time series being filled.

The following dialog is used to edit the command and illustrates the command syntax.

SetFromTS

SetFromTS() Command Editor

The command syntax is as follows:

SetFromTS(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be processed,

one of:
• AllMatchingTSID – all time series that

AllTS

 Command Reference – SetFromTS() - 1 429

SetFromTS() Command TSTool Documentation

Parameter Description Default
match the TSID (single TSID or TSID with
wildcards) will be modified.

• AllTS – all time series before the command.
• EnsembleID – all time series in the

ensemble will be modified.
• FirstMatchingTSID – the first time

series that matches the TSID (single TSID or
TSID with wildcards) will be modified.

• LastMatchingTSID – the last time series
that matches the TSID (single TSID or TSID
with wildcards) will be modified.

• SelectedTS – the time series are those
selected with the SelectTimeSeries()
command.

TSID The time series identifier or alias for the time
series to be modified, using the * wildcard
character to match multiple time series.

Required when
TSList=*TSID

EnsembleID The ensemble to be modified, if processing an
ensemble.

Required when
TSList=EnsembleID.

Independent
TSList

Indicates how to determine the list of independent
time series (see the explanation of TSList).

AllTS

Independent
TSID

The time series identifier or alias for the
independent time series (see the explanation of
TSID).

Required when a
IndependentTSList=
*TSID

Independent
EnsembleID

The ensemble identifier for the independent time
series (see the explanation of EnsembleID).

Required when
IndepndentTSList=
EnsembleID.

SetStart The date/time to start setting data, if other than
the full time series period.

Full period if * is
specified.

SetEnd The date/time to end setting data, if other than the
full time series period.

Full period if * is
specified.

TransferHow Indicates how to transfer data:
• ByDateTime – a date/time in one time

series will be lined up with the other time
series.

• Sequentially – data from the
independent will be transferred sequentially,
even if the date/time does not align (used
when transferring continuous data over Feb
28/29, without gaps).

None – must be specified.

HandleMissingHow Indicates how to handle missing data in the
independent time series:
• IgnoreMissing – missing values in the

independent time series WILL NOT be
transferred to the dependent time series.

• SetMissing – missing values in the
independent time series WILL be transferred
to the dependent time series.

SetMissing

RecalcLimits Available only for monthly time series. Indicate False (only the values in

Command Reference – SetFromTS() - 2 430

TSTool Documentation SetFromTS() Command

Parameter Description Default
whether the original data limits for the time series
should be recalculated after the setting the time
series values. Setting to True is appropriate if
the independent time series provides observations
consistent with the original data.

the initial time series will
be used for historical
data).

A sample command file to process data from the State of Colorado’s HydroBase is as follows:

08241000 - TRINCHERA CREEK ABOVE MOUNTAIN HOME RESERVOIR
08241000.DWR.Streamflow.Month~HydroBase
08240500 - TRINCHERA CREEK ABOVE TURNER'S RANCH
08240500.DWR.Streamflow.Month~HydroBase
SetFromTS(TSList=AllMatchingTSID,TSID="08241000.DWR.Streamflow.Month",
 IndependentTSList=AllMatchingTSID,
 IndependentTSID="08240500.DWR.Streamflow.Month",
 TransferHow=ByDateTime)

 Command Reference – SetFromTS() - 3 431

SetFromTS() Command TSTool Documentation

This page is intentionally blank.

Command Reference – SetFromTS() - 4 432

Command Reference: SetIgnoreLEZero()
Indicate whether time series data values <= zero should be ignored in historical

averages
Version 08.16.00, 2008-07-09

The SetIgnoreLEZero() command sets the global property that indicates whether the computation
of historical averages for time series should ignore values less than or equal to zero. By default, all values
(other than the missing data placeholder) are used to compute averages. This command is useful when it
is appropriate to ignore zero and negative values in averages, for example in cases where zero is assigned
as an observation but may influence averages inappropriately. Commands that are concerned with this
issue also typically provide a parameter and therefore using this global command may not be appropriate.

The following dialog is used to edit this command and illustrates the syntax of the command.

SetIgnoreLEZero

SetIgnoreLEZero() Command Editor

The command syntax is as follows:

SetIgnoreLEZero(Parameter=Value,…)

Command Parameters

Parameter Description Default
IgnoreLEZero Indicates whether the computation of

historical averages should ignore values
less than or equal to zero, True or
False.

If this command is not used, the
default is False.

A sample command file is as follows:

SetIgnoreLEZero(IgnoreLEZero=True)

 Command Reference – SetIgnoreLEZero() - 1 433

SetIgnoreLEZero() Command TSTool Documentation

This page is intentionally blank.

Command Reference – SetIgnoreLEZero() - 2 434

Command Reference: SetIncludeMissingTS()
Indicate whether missing time series should automatically be added as blank time

series
Version 08.16.00, 2008-07-16

The SetIncludeMissingTS() command sets the global property that indicates whether time series
that cannot be found should automatically be added as a time series with missing data. By default, time
series that cannot be found generate a warning. This command is useful when processing large amounts
of data, to guarantee a placeholder time series even if time series are not found. For example, use the
command in the early stages of work to evaluate command sequence logic without addressing every data
issue, and then remove the command when focusing on data.

The following dialog is used to edit this command and illustrates the syntax of the command.

SetIncludeMissingTS

SetIncludeMissingTS() Command Editor

The command syntax is as follows:

SetIncludeMissingTS(Parameter=Value,…)

Command Parameters

Parameter Description Default
IncludeMissingTS Indicates whether time series that are not

found with read commands should
automatically be added with missing
data.

If this command is not used, the
default is False.

A sample command file is as follows:

SetIncludeMissingTS(IncludeMissingTS=True)

 Command Reference – SetIncludeMissingTS() - 1 435

SetIncludeMissingTS() Command TSTool Documentation

This page is intentionally blank.

Command Reference –SetIncludeMissingTS() - 2 436

Command Reference: SetInputPeriod()
Set the period for reading time series from files and querying from databases

Version 08.15.00, 2008-05-11

The SetInputPeriod() command sets the period used for reading time series data from files and
querying data from databases. The default is to read/query all available data so that all data are available
for analysis and data filling. However, a shorter period may be desirable to increase performance (e.g.,
when processing real-time data) or to force matching a historical period. This command replaces the
SetQueryPeriod() command. See also the SetOutputPeriod() command.

The following dialog is used to edit the command and illustrates the command syntax.

SetInputPeriod

SetInputPeriod() Command Editor

 Command Reference – SetInputPeriod() - 1 437

SetInputPeriod() Command TSTool Documentation

The command syntax is as follows:

SetInputPeriod(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputStart The date/time to start reading/querying time

series data, one of:
• A date/time string (see dialog above for

examples).
• CurrentToYear, CurrentToMonth,

CurrentToDay, CurrentToHour,
CurrentToMinute, indicating the
current date/time to the specified
precision.

• A Current* value +- an interval, for
example: CurrentToMinute –
7Day

None – must be specified.

InputEnd The date/time to end reading/querying time
series data, one of:
• A date/time string (see dialog above for

examples).
• CurrentToYear, CurrentToMonth,

CurrentToDay, CurrentToHour,
CurrentToMinute, indicating the
current date/time to the specified
precision.

• A Current* value +- an interval, for
example: CurrentToMinute –
7Day

• An expression involving InputStart,
used similar to the Current* values.

None – must be specified.

A sample commands file for historical data from the State of Colorado’s HydroBase is as follows:

SetInputPeriod(InputStart="1950-01",InputEnd="2000-09")
06754000 - SOUTH PLATTE RIVER NEAR KERSEY
06754000.DWR.Streamflow.Month~HydroBase

A sample commands file for real-time data is as follows:

SetInputPeriod(InputStart="CurrentToMinute - 14Day",
 InputEnd="CurrentToMinute + 1Hour")
06754000 - SOUTH PLATTE RIVER NEAR KERSEY
06754000.DWR.Streamflow-DISCHRG.Irregular~HydroBase

Command Reference – SetInputPeriod() - 2 438

Command Reference: SetOutputPeriod()
Set the output period for time series

Version 09.08.01, 2010-09-14

The SetOutputPeriod() command sets the output period for time series. See also the
SetInputPeriod() command. The period for a time series when read or created will be set to the
maximum of the following periods, in order to satisfy output and data filling requirements:

• available data,
• output period (if specified),
• input period (if specified).

Specifying the output period is necessary when creating model files or filling an extended period (time
series will not automatically be extended by fill commands).

The following dialog is used to edit this command and illustrates the syntax of the command. Note that
the output period should always use calendar month and year, even if other than calendar year are used
for output (see SetOutputYearType()).

 Command Reference – SetOutputPeriod() - 1 439

SetOutputPeriod() Command TSTool Documentation

SetOutputPeriod

SetOutputPeriod() Command Editor

The command syntax is as follows:

SetOutputPeriod(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputStart The date/time to start output. None – must be specified.
OutputEnd The date/time to end output. None – must be specified.

A sample commands file is as follows:

SetOutputPeriod(OutputStart="1950-01",OutputEnd="2002-12")

Command Reference – SetOutputPeriod() - 2 440

Command Reference: SetOutputYearType()
Set the output year type for time series

Version 09.05.02, 2009-11-02

The SetOutputYearType() command sets the global output year type for output reports and files.
The default for most operations is calendar year (January through December); alternate year definitions
may be useful. The global output year type is recognized by some common tools and commands that
create output. Many write commands also allow the year type to be specified for the command.
Internally, all data are managed using calendar years and are converted to different year types during
output or display. The ChangeInterval() command also allows time series to be converted to
annual values where the value corresponds to a year type.

The following dialog is used to edit the command and illustrates the command syntax.

SetOutputYearType

SetOutputYearType() Command Editor

 Command Reference – SetOutputYearType() - 1 441

SetOutputYearType() Command TSTool Documentation

The command syntax is as follows:

SetOutputYearType(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputYearType The output year type, one of:

• Calendar – January through

December.
• NovToOct – November of the

previous calendar year to October of
the current calendar year. For
example, year 1970 spans Nov 1969
to Oct 1970.

• Water – October of the previous
calendar year through September of
the current calendar year (and water
year). For example, water year 1970
spans Oct 1969 to Sep 1970.

In the future, more generic types like
NovToOct may be implemented.

If this command is not specified,
Calendar is the default.

A sample commands file is as follows:

SetOutputYearType(OutputYearType=Calendar)

Command Reference – SetOutputYearType() - 2 442

Command Reference: SetPatternFile()
Set the pattern file to be used with FillPattern() commands

Version 08.16.04, 2008-09-19

This command has been replaced with ReadPatternFile() – TSTool will automatically convert
the command.

The SetPatternFile() command specifies a pattern file to be used with FillPattern()
commands (see the FillPattern() command for more information).

The following dialog is used to edit the command and illustrates the command syntax.

SetPatternFile

SetPatternFile() Command Editor

The command syntax is as follows:

SetPatternFile(PatternFile)

Command Parameters

Parameter Description Default
PatternFile The path to the pattern file, which can be

absolute or relative to the working
directory. The Browse button can be
used to select the pattern file (if a relative
path is desired, remove the leading path
after the select).

None – must be specified.

A sample commands file is as follows:

SetPatternFile("fill.pat")

 Command Reference – SetPatternFile() - 1 443

SetPatternFile() Command TSTool Documentation

This page is intentionally blank.

Command Reference – SetPatternFile() - 2 444

Command Reference: SetProperty()
Set a property for the time series processor

Version 09.08.02, 2010-09-23

The SetProperty() command sets the value of a property used by the time series processor, which
means that the properties are available to all commands. These properties will ultimately be accessible by
any command using ${Property} notation, for example to specify filenames more dynamically.
However, currently only a few commands utilize the properties. This command should not be confused
with the SetTimeSeriesProperty() command, which sets a property on specific time series.

The following dialog is used to edit this command and illustrates the syntax of the command.

SetProperty

SetProperty() Command Editor

 Command Reference – SetProperty() - 1 445

SetProperty() Command TSTool Documentation

The command syntax is as follows:

SetProperty(Parameter=Value,…)

Command Parameters

Parameter Description Default
PropertyName The property name. None – must be specified.
PropertyType The property type, used for validation, one of:

• DateTime – a date/time.
• Double – a floating point number
• Integer – an integer
• String – a string

None – must be specified.

PropertyValue The value of the property, adhering to property
type constraints.

None – must be specified.

A sample commands file is as follows:

SetProperty(PropertyName="Scenario",PropertyType=String,PropertyValue="Likely")

Command Reference – SetProperty() - 2 446

Command Reference:
SetTimeSeriesPropertiesFromTable()

Set time series properties using values in a table
Version 09.09.00, 2010-09-23

The SetTimeSeriesPropertiesFromTable() command sets user-defined time series properties
using values in a table. This is useful, for example, when additional attributes are available for locations
associated with time series. The time series can then be selected for processing by matching properties
with the SelectTimeSeries() command.

The following dialog is used to edit the command and illustrates the command syntax (in this case the
location part of the time series identifier is used to match the contents of the “loc” column in the table).

SetTimeSeriesPropertiesFromTable

SetTimeSeriesPropertiesFromTable() Command Editor

The command syntax is as follows:

SetTimeSeriesPropertiesFromTable(Parameter=Value,…)

 Command Reference – SetTimeSeriesPropertiesFromTable() - 1 447

SetTimeSeriesPropertiesFromTable() Command TSTool Documentation

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be

processed, one of:
• AllMatchingTSID – all time

series that match the TSID (single
TSID or TSID with wildcards) will
be modified.

• AllTS – all time series before the
command.

• EnsembleID – all time series in
the ensemble will be modified (see
the EnsembleID parameter).

• FirstMatchingTSID – the first
time series that matches the TSID
(single TSID or TSID with
wildcards) will be modified.

• LastMatchingTSID – the last
time series that matches the TSID
(single TSID or TSID with
wildcards) will be modified.

AllTS

TSID The time series identifier or alias for the
time series to be modified, using the *
wildcard character to match multiple
time series.

Required if TSList=*TSID

EnsembleID The ensemble to be modified, if
processing an ensemble.

Required if
TSList=EnsembleID

TableID The identifier for the table that contains
properties.

None – must be specified.

TableTSIDColumn Table column name that is used to
match the time series identifier for
processing.

None – must be specified.

TableTSIDFormat The specification to format the time
series identifier to match the TSID
column. Use the format choices and
other characters to define a unique
identifier.

Time series alias if available, or
otherwise the time series identifier.

TableInputColumns The name(s) of the column(s) to supply
properties for the matching time series.
Separate column names with commas.

None – must be specified.

Command Reference – SetTimeSeriesPropertiesFromTable() - 2 448

Command Reference: SetTimeSeriesProperty()
Set time series properties

Version 09.09.00, 2010-09-23

The SetTimeSeriesProperty() command sets the value of time series properties. Properties that
are used to uniquely identify the time series cannot be set because other commands need to utilize this
information to reference the time series; therefore, properties that cannot be changed include the location
identifier, data source, data type, interval, and scenario. See also the
SetTimeSeriesPropertiesFromTable()and SelectTimeSeries() commands.

The following dialog is used to edit this command and illustrates the syntax of the command.

SetTimeSeriesProperty

SetTimeSeriesProperty() Command Editor

The command syntax is as follows:

SetTimeSeriesProperty(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be processed,

one of:
• AllMatchingTSID – all time series that

match the TSID (single TSID or TSID with
wildcards) will be modified.

• AllTS – all time series before the command.
• EnsembleID – all time series in the

ensemble will be modified.
• FirstMatchingTSID – the last time

AllTS

 Command Reference – SetTimeSeriesProperty() - 1 449

SetTimeSeriesProperty() Command TSTool Documentation

series that matches the TSID (single TSID or
TSID with wildcards) will be modified.

• LastMatchingTSID – the last time series
that matches the TSID (single TSID or TSID
with wildcards) will be modified.

• SelectedTS – the time series are those
selected with the SelectTimeSeries()
command.

TSID The time series identifier or alias for the time
series to be modified, using the * wildcard
character to match multiple time series.

Required if
TSList=*TSID.

EnsembleID The ensemble to be modified, if processing an
ensemble.

Required if
TSList=EnsembleID.

Description The description to assign to the time series. Use
the format choices and other characters to define
a unique alias.

None.

Units The data units to assign to the time series. The
units should agree with the time series data
values.

None.

Editable If set to True, then graphing the time series will
enable interactive editing features, including the
ability to save the edited time series.

False

PropertyName Name of user-defined property.
PropertyType Property type, to ensure proper initialization and

data check.
Required if
PropertyName is
specified.

PropertyValue Value for property, adhering to the property type
requirements.

Required if
PropertyName is
specified.

A sample command file to set a property for time series read from a StateMod file is as follows:

ReadStateMod(InputFile="Data\ym2004.ddh")
SetTimeSeriesProperty(Units="AF/M")

Command Reference – SetTimeSeriesProperty() - 2 450

Command Reference: SetToMax()
Set data values to the maximum of values from one or more time series

Version 08.16.04, 2008-09-25

The SetToMax() command sets a time series to contain, for each time step, the maximum of its own
values and those of one or more additional (independent) time series. This command replaces the
SetMax() command. See also the SetToMin() command.

The following dialog is used to edit the command and illustrates the command syntax.

SetToMax

SetToMax() Command Editor

 Command Reference – SetToMax() - 1 451

SetToMax() Command TSTool Documentation

The command syntax is as follows:

SetToMax(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSID The time series identifier or alias for the time

series to be modified.
None – must be specified.

IndependentTSList Indicates how the list of time series is specified,
one of:
• AllTS – all time series before the command.
• AllMatchingTSID – all time series that

match the IndependentTSID (single
TSID or TSID with wildcards).

• EnsembleID – the time series from the
specified ensemble will be processed.

• FirstMatchingTSID – the first time
series that matches the TSID (single TSID or
TSID with wildcards) will be processed.

• LastMatchingTSID – the last time series
that matches the TSID (single TSID or TSID
with wildcards) will be processed.

• SelectedTS – the time series are those
selected with the SelectTimeSeries()
command.

• SpecifiedTSID – the specified list of
time series given by the
IndependentTSID parameter.

AllTS (the time series
receiving the result will
not be checked)

IndependentTSID If the IndependentTSList=
SpecifiedTSID, provide the list of time
series identifiers (or alias) to process, separated
by commas. If the IndependentTSList
parameter is AllMatchingTSID,
FirstMatchingTSID, or
LastMatchingTSID, specify a single TSID or
a TSID with wildcards.

Required if
TSList=*TSID.

Independent
EnsembleID

Ensemble identifier. Required if
TSList=EnsembleID.

A sample command file to process data from the State of Colorado’s HydroBase database is as follows:

08236000 - ALAMOSA RIVER ABOVE TERRACE RESERVOIR
08236000.DWR.Streamflow.Month~HydroBase
08236500 - ALAMOSA RIVER BELOW TERRACE RESERVOIR
08236500.DWR.Streamflow.Month~HydroBase
SetToMax(TSID="08236000.DWR.Streamflow.Month",
 IndependentTSList=SpecifiedTSID,
 IndependentTSID="08236500.DWR.Streamflow.Month")

Command Reference – SetToMax() - 2 452

Command Reference: SetToMin()
Set data values to the minimum of values from one or more time series

Version 08.16.04, 2008-09-25

The SetToMin() command sets a time series to contain, for each time step, the minimum of its own
values and those of one or more additional (independent) time series.

The following dialog is used to edit the command and illustrates the command syntax.

SetToMin

SetToMin() Command Editor

 Command Reference – SetToMin() - 1 453

SetToMin() Command TSTool Documentation

The command syntax is as follows:

SetToMin(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSID The time series identifier or alias for the time

series to be modified.
None – must be specified.

IndependentTSList Indicates how the list of time series is specified,
one of:
• AllTS – all time series before the command.
• AllMatchingTSID – all time series that

match the IndependentTSID (single
TSID or TSID with wildcards).

• EnsembleID – the time series from the
specified ensemble will be processed.

• FirstMatchingTSID – the first time
series that matches the TSID (single TSID or
TSID with wildcards) will be processed.

• LastMatchingTSID – the last time series
that matches the TSID (single TSID or TSID
with wildcards) will be processed.

• SelectedTS – the time series are those
selected with the SelectTimeSeries()
command.

• SpecifiedTSID – the specified list of
time series given by the
IndependentTSID parameter.

AllTS (the time series
receiving the result will
not be checked)

IndependentTSID If the IndependentTSList=
SpecifiedTSID, provide the list of time
series identifiers (or alias) to process, separated
by commas. If the IndependentTSList
parameter is AllMatchingTSID,
FirstMatchingTSID, or
LastMatchingTSID, specify a single TSID or
a TSID with wildcards.

Required if
TSList=*TSID.

Independent
EnsembleID

Ensemble identifier. Required if
TSList=EnsembleID.

A sample command file to process data from the State of Colorado’s HydroBase database is as follows:

08236000 - ALAMOSA RIVER ABOVE TERRACE RESERVOIR
08236000.DWR.Streamflow.Month~HydroBase
08236500 - ALAMOSA RIVER BELOW TERRACE RESERVOIR
08236500.DWR.Streamflow.Month~HydroBase
SetToMin(TSID="08236000.DWR.Streamflow.Month",
 IndependentTSList=SpecifiedTSID,
 IndependentTSID="08236500.DWR.Streamflow.Month")

Command Reference – SetToMin() - 2 454

Command Reference: SetWarningLevel()
Set level for warning messages

Version 08.16.00, 2008-08-24

The SetWarningLevel() command sets the warning levels for the screen and log file. Higher
warning levels are useful for troubleshooting commands. The higher the level, the more messages will be
generated. This command can be used multiple times, for example to isolate a problem. Currently the
warning level applies to all components. In the future logging control may be grouped by component.
Levels are not completely consistent but the following guidelines can be followed:

0 = no messages
1 = important messages generated in applications
2 = important messages generated in commands
3+ = messages generated in commands that may explain other problems
10+ = messages in processing code that may still be useful to end users
30+ = low-level messages, for example generated while reading from files or databases

The following dialog is used to edit this command and illustrates the command syntax.

SetWarningLevel

SetWarningLevel() Command Editor

 Command Reference – SetWarningLevel() - 1 455

SetWarningLevel() Command TSTool Documentation

The command syntax is as follows:

SetWarningLevel(Parameter=Value,…)

Command Parameters

Parameter Description Default
ScreenLevel The warning level for the screen (0+). Keep previous setting.
LogFileLevel The warning level for the log file (0+). Keep previous setting

A sample commands file is as follows:

SetWarningLevel(ScreenLevel=1,LogFileLevel=10)

Command Reference – SetWarningLevel() - 2 456

Command Reference: SetWorkingDir()
Set working directory

Version 08.16.03, 2008-07-30

The SetWorkingDir() command sets the working directory for following commands. The working
directory is normally set in one of the following ways, with the current setting being defined by the most
recent action that has occurred:

1. The startup directory for the TSTool program,
2. The directory containing the most recently opened or saved command file.
3. The directory specified by a SetWorkingDir() command,
4. The directory specified by File…Set Working Directory.

In most cases, a SetWorkingDir() command is not needed and should be avoided because it may
complicate commands and troubleshooting. However, for complicated command files that process
data in multiple directories, it may be useful to change the working directory during processing. Setting
the working directory to an absolute path causes all relative paths for input and output files to be
appended to the working directory. Relative paths that use “../” can be specified to move up and down a
directory tree. The current working directory during processing is reset to the initial working directory
(the location of the command file) each time that the commands are run.

In any case, it is recommended that paths used in command parameters be specified using relative paths
(relative to the command file) so that command files and associated data files can be easily moved from
one computer to another.

The following dialog is used to edit the command and illustrates the syntax of the command.

SetWorkingDir

SetWorkingDir() Command Editor

 Command Reference – SetWorkingDir() - 1 457

SetWorkingDir() Command TSTool Documentation

The command syntax is as follows:

SetWorkingDir(Parameter=Value,…)

Command Parameters

Parameter Description Default
WorkingDir The working directory that should be

used. Specify a relative path (e.g., “..”)
to adjust the current working directory.

None – must be specified.

RunMode Indicate the run mode in which the
command should be applied, one of:
• GUIOnly – the command applies

only to interactive runs
• GUIAndBatch – the command

applies to interactive and batch runs
• BatchOnly – the command applies

to batch runs only

GUIAndBatch

A sample command file is as follows:

SetWorkingDir(WorkingDir="C:\temp")

Command Reference – SetWorkingDir() - 2 458

Command Reference: ShiftTimeByInterval()
Shift time series data by one or more time intervals

Version 08.15.00, 2008-05-11

The ShiftTimeByInterval()command shifts a time series in time. This command can be used to
perform a simple shift (e.g., to shift hourly data because the Disaggregate() command did not result
in data being set at the desired hours) and to perform simple routing.

The following dialog is used to edit the command and illustrates the command syntax.

ShiftTimeByInterval

ShiftTimeByInterval() Command Editor

The command syntax is as follows:

ShiftTimeByInterval(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be processed, one of:

• AllMatchingTSID – all time series that match the TSID
(single TSID or TSID with wildcards) will be modified.

• AllTS – all time series before the command.
• EnsembleID – all time series in the ensemble will be

AllTS

 Command Reference – ShiftTimeByInterval() - 1 459

ShiftTimeByInterval() Command TSTool Documentation

Parameter Description Default
modified.

• LastMatchingTSID – the last time series that matches
the TSID (single TSID or TSID with wildcards) will be
modified.

• SelectedTS – the time series are those selected with the
SelectTimeSeries() command.

TSID The time series identifier or alias for the time series to be
modified, using the * wildcard character to match multiple time
series.

TSID or
EnsembleID must
be specified if
identifiers are being
matched.

EnsembleID The ensemble to be modified, if processing an ensemble. TSID or
EnsembleID must
be specified if
identifiers are being
matched.

ShiftData Interval,multiplier tuples to apply to the data to perform the
shift. All values should be separated by commas. An interval
of -1 indicates that the previous time step should be shifted to
the current time step. If the interval is –1 and the multiplier is
1, the previous time step is shifted to the current and multiplied
by 1, effectively shifting the time series by one interval.

None – at least 1
value,multiplier tuple
must be specified.

A sample command file to shift data from the State of Colorado’s HydroBase is as follows:

08213500 - RIO GRANDE RIVER AT THIRTY MILE BRIDGE NEAR CREEDE
08213500.DWR.Streamflow.Day~HydroBase
ShiftTimeByInterval(TSList=AllMatchingTSID,TSID="08213500.DWR.Streamflow.Day",
 ShiftData="-1,1")
08213500.DWR.Streamflow.Day~HydroBase

ShiftTimeByInterval_graph

Results from ShiftTimeByInterval() Command

Command Reference – ShiftTimeByInterval() - 2 460

Command Reference: SortTimeSeries()
Sort time series by their identifiers

Version 08.15.00, 2008-05-11

The SortTimeSeries() command sorts the time series alphabetically using the time series identifier.
This command is useful for ordering time series before writing output, for example to facilitate
comparison with another version of the output or to be consistent with other data files.

The following dialog is used to edit the command and illustrates the syntax for the command.

SortTimeSeries

SortTimeSeries() Command Editor

The command syntax is as follows:

SortTimeSeries(Parameter=Value,…)

Command Parameters

Parameter Description Default
 Currently no parameters are available for this command.

 Command Reference – SortTimeSeries() - 1 461

SortTimeSeries() Command TSTool Documentation

A sample command file using data from the State of Colorado’s HydroBase is as follows:

06759100 - BIJOU CREEK NEAR FT. MORGAN, CO.
06759100.USGS.Streamflow.Month~HydroBase
06759000 - BIJOU CREEK NEAR WIGGINS, CO.
06759000.USGS.Streamflow.Month~HydroBase
BOXHUDCO - BOX ELDER CREEK NEAR HUDSON, CO
BOXHUDCO.DWR.Streamflow.Month~HydroBase
06756500 - CROW CREEK NEAR BARNSVILLE, CO.
06756500.USGS.Streamflow.Month~HydroBase
06758300 - KIOWA CREEK AT BENNETT, CO.
06758300.USGS.Streamflow.Month~HydroBase
06758000 - KIOWA CREEK AT ELBERT, CO.
06758000.USGS.Streamflow.Month~HydroBase
06757600 - KIOWA CREEK AT K-79 RES, NEAR EASTONVILLE, CO.
06757600.DWR.Streamflow.Month~HydroBase
06758200 - KIOWA CREEK AT KIOWA, CO.
06758200.USGS.Streamflow.Month~HydroBase
06753400 - LONETREE CREEK AT CARR, CO.
06753400.USGS.Streamflow.Month~HydroBase
06753990 - LONETREE CREEK NEAR GREELEY, CO.
06753990.USGS.Streamflow.Month~HydroBase
06753500 - LONETREE CREEK NEAR NUNN, CO.
06753500.USGS.Streamflow.Month~HydroBase
06759910 - SOUTH PLATTE RIVER AT COOPER BRIDGE NEAR BALZAC
06759910.DWR.Streamflow.Month~HydroBase
06759500 - SOUTH PLATTE RIVER AT FORT MORGAN
06759500.USGS.Streamflow.Month~HydroBase
06756995 - SOUTH PLATTE RIVER AT MASTERS, CO.
06756995.USGS.Streamflow.Month~HydroBase
06757000 - SOUTH PLATTE RIVER AT SUBLETTE, CO.
06757000.USGS.Streamflow.Month~HydroBase
06754000 - SOUTH PLATTE RIVER NEAR KERSEY
06754000.DWR.Streamflow.Month~HydroBase
06758500 - SOUTH PLATTE RIVER NEAR WELDONA
06758500.DWR.Streamflow.Month~HydroBase
06758100 - WEST KIOWA CREEK AT ELBERT, CO.
06758100.USGS.Streamflow.Month~HydroBase
SortTimeSeries()

Command Reference – SortTimeSeries() - 2 462

Command Reference: StartLog()
(Re)start the log file

Version 09.08.01, 2010-09-14

The StartLog() command (re)starts the log file. It is useful to insert this command as the first
command in a command file, in order to persistently record the results of processing. A useful standard is
to name the log file the same as the command file, with an additional .log extension, and this convention
is enforced by default. A date or date/time can optionally be added to the log file name.

The following dialog is used to edit the command and illustrates the syntax for the command.

StartLog

StartLog() Command Editor

 Command Reference – StartLog() - 1 463

StartLog() Command TSTool Documentation

The command syntax is as follows:

StartLog(Parameter=Value,…)

Command Parameters

Parameter Description Default
LogFile The name of the log file to write surrounded by double

quotes. The extension of .log will automatically be added,
if not specified.

If not specified, the
existing file will be
restarted.

Suffix Indicates that a suffix will be added before the .log
extension, one of:

 Date – add a date suffix of the form YYYYMMDD.
 DateTime – add a date/time suffix of the form
YYYYMMDD_HHMMSS.

This is useful for automatically archiving logs
corresponding to commands files, to allow checking the
output at a later time. However, generating date/time
stamped log files can increase the amount of disk space
that is used.

Do not add the
suffix.

A sample command file to process State of Colorado HydroBase data is as follows (the Add() command
will generate an error because the units of the time series are incompatible):

StartLog(LogFile="Example_StartLog.log")
06753400 - LONETREE CREEK AT CARR, CO.
06753400.USGS.Streamflow.Month~HydroBase
1179 - BYERS 5 ENE
1179.NOAA.Precip.Month~HydroBase
Add(TSID="06753400.USGS.Streamflow.Month",AddTSList=AllTS,HandleMissingHow="IgnoreMissing")

Command Reference – StartLog() - 2 464

Command Reference:
StartRegressionTestResultsReport()

Start a report file to contain regression test results
Version 08.15.00, 2008-05-11

The StartRegressionTestResultsReport() command starts a report file to be written to as
regression tests are run. The CreateRegressionTestCommandFile() automatically inserts this
command. The CompareFiles() and CompareTimeSeries() commands will write to this file if
it is available.

The following dialog is used to edit the command and illustrates the syntax for the command.

StartRegressionTestResultsReport

StartRegressionTestResultsReport() Command Editor

 Command Reference – StartRegressionTestResultsReport() - 1 465

StartRegressionTestResultsReport() Command TSTool Documentation

The command syntax is as follows:

StartRegressionTestResultsReport(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the report file, enclosed in double quotes if

the file contains spaces or other special characters. A
path relative to the command file can be specified.

None – must be
specified.

See the RunCommands() documentation for how to set up a regression test. The following command
file illustrates how to start the results report:

StartRegressionTestResultsReport(
 OutputFile="RunRegressionTest_commands_general.TSTool.out.txt")
…
RunCommands(InputFile="..\..\..\commands\general\ReadStateMod\Test_ReadStateMod_1.TSTool")
…

Each of the above command files should produce expected time series results, without warnings. If any
command file unexpectedly produces a warning, a warning will also be visible in TSTool. The issue can
then be evaluated to determine whether a software or configuration change is necessary. An example of
the output file is:

SUCCESS C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\add\Test_Add_1.TSTool
SUCCESS C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\addConstant\Test_AddConstant_1.TSTool
SUCCESS C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\adjustExtremes\Test_AdjustExtremes_1.TSTool
SUCCESS
C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\analyzePattern\Test_AnalyzePattern_FromMonthDataValues.TSTool
SUCCESS C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\ARMA\Test_ARMA_1.TSTool
SUCCESS C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\blend\Test_Blend_1.TSTool
SUCCESS
C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\ChangeInterval\Test_ChangeInterval_DayMean_To_MonthMean.TSTool
SUCCESS C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\ChangePeriod\Test_ChangePeriod_1.TSTool
SUCCESS C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\compareTimeSeries\Test_AllDifferent.TSTool
SUCCESS C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\compareTimeSeries\Test_AllSame.TSTool
SUCCESS C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\convertDataUnits\Test_ConvertDataUnits_1.TSTool
SUCCESS C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\Copy\Test_Copy_1.TSTool
SUCCESS C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\CreateEnsemble\Test_CreateEnsemble_1.TSTool
FAILURE C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\CreateFromList\Test_CreateFromList_1.TSTool
WARNING C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\CreateTraces_Alias\Test_CreateTraces_1.TSTool
SUCCESS C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\cumulate\Test_Cumulate_1.TSTool
SUCCESS
C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\DeselectTimeSeries\Test_DeselectTimeSeries_1.TSTool
SUCCESS C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\Disaggregate_Alias\Test_Disaggregate_1.TSTool
SUCCESS C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\divide\Test_Divide_1.TSTool
WARNING C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\fillCarryForward\Test_FillCarryForward_1.TSTool
SUCCESS C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\fillConstant\Test_FillConstant_Day.TSTool

Command Reference – StartRegressionTestResultsReport() - 2 466

Command Reference: StateModMax()
Compute the maximum of time series in two StateMod files

Version 08.16.04, 2008-09-23

A StateModMax() command performs the following actions:

1. Read all time series from one StateMod time series file,
2. Read all time series from a second StateMod time series file,
3. Generate a list of time series that contains the maximum values comparing matching time series

(using the location identifier). The first list is updated and the second list is discarded.

This command is useful, for example, when creating a demand time series file that is to be the maximum
of historical diversions and irrigation water requirement divided by an average efficiency. It is assumed
that the specified time series have matching identifiers (the first file is used as the master list) and have
consistent units and data intervals. After the time series have been processed, they can be viewed or
written out as a new StateMod file (see the WriteStateMod() command).

The following dialog is used to edit the command and illustrates the syntax for the command.

StateModMax

StateModMax() Command Editor

 Command Reference – StateModMax() - 1 467

StateModMax() Command TSTool Documentation

The command syntax is as follows:

StateModMax(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile1 The name of the first StateMod time

series file to read, surrounded by double
quotes. The path to the file can be
absolute or relative to the working
directory.

None – must be specified.

InputFile2 The name of the second StateMod time
series file to read, which must have the
same data interval and units as the first
file.

None – must be specified.

A sample command file is as follows:

StateModMax("rgTW.ddh","rgTWC_prelim.ddm")
WriteStateMod("rgTW.ddm",*)

Command Reference – StateModMax() - 2 468

Command Reference: Subtract()
Subtract one or more time series from another time series

Version 08.15.00, 2008-05-12

The Subtract() command subtracts time series of the same interval. The receiving time series will
have data values set to its original values minus the data values in the indicated time series. If an
ensemble is being processed, another ensemble can be subtracted, a single time series can be subtracted
from all time series in the ensemble, or a list of time series can be subtracted from the ensemble (the
number in the list must match the number of time series in the ensemble).

This command will generate an error if the time series do not have compatible units. If the units are
compatible but are not the same (e.g., IN and FT), then the units of the part will be converted to the units
of the result before subtraction. Missing data in the parts can be ignored (do not set the result to missing)
or can set missing values in the result. The user should consider the implications of ignoring missing
data. Time series being subtracted must have the same data interval.

The following dialog is used to edit the command and illustrates the syntax of the command.

Subtract

Subtract() Command Editor

The command syntax is as follows:

Subtract(Parameter=Value,…)

 Command Reference – Subtract() - 1 469

Subtract() Command TSTool Documentation

Command Parameters

Parameter Description Default
TSID The time series identifier or alias for the time series to

receive the result.
TSID or EnsembleID
must be specified.

EnsembleID The ensemble to receive the result, if processing an
ensemble.

TSID or EnsembleID
must be specified.

Subtract
TSList

Indicates how the list of time series is specified, one of:
• AllTS – all time series before the command.
• AllMatchingTSID – all time series that match the

AddTSID (single TSID or TSID with wildcards) will
be subtracted.

• EnsembleID – the time series from ensemble will be
subtracted.

• LastMatchingTSID – the last time series that
matches the TSID (single TSID or TSID with
wildcards) will be subtracted.

• SelectedTS – the time series are those selected with
the SelectTimeSeries() command.

• SpecifiedTSID – the specified list of time series
given by the SubtractTSID parameter. If using
version 8.02.00 or earlier, use SpecifiedTS.

AllTS (the time series
receiving the sum will
not be subtracted from
itself)

SubtractTSID If the SubtractTSList parameter is
SpecifiedTSID, provide the list of time series
identifiers (or alias) to subtract, separated by commas. If
the SubtractTSList parameter is
AllMatchingTSID, specify a single TSID or a TSID
with wildcards.

Must be specified if
TSList=
SpecifiedTSID,
ignored otherwise.

Subtract
EnsembleID

If the EnsembleID parameter is specified, providing an
ensemble ID will subtract the ensembles.

Use if an ensemble is
being subtracted from
another ensemble.

Handle
MissingHow

Indicates how to handle missing data in a time series, one
of:
• IgnoreMissing – create a result even if missing

data are encountered in one or more time series – this
option is not as rigorous as the others

• SetMissingIfOtherMissing – set the result
missing if any of the other time series values is missing

• SetMissingIfAnyMissing – set the result
missing if any time series value involved is missing

IgnoreMissing

A sample command file to subtract data from the State of Colorado’s HydroBase is as follows:

0100501 - EMPIRE DITCH
0100501.DWR.DivTotal.Month~HydroBase
0100503 - RIVERSIDE CANAL
0100503.DWR.DivTotal.Month~HydroBase
Subtract(TSID="0100501.DWR.DivTotal.Month",SubtractTSList=SpecifiedTSID,
 SubtractTSID="0100503.DWR.DivTotal.Month",
 HandleMissingHow="IgnoreMissing")

Command Reference – Subtract() - 2 470

Command Reference: TableMath()
Perform simple math operation on columns in a table

Version 09.08.01, 2010-09-14

The TableMath() command performs a simple math operation on columns in a table. Although the
design of the command could support more advanced cell range addressing schemes, it currently
processes complete columns of data. For example, a table that is populated by the
CalculateTimeSeriesStatistic() command could be manipulated to produce a new column of
data. This command and related table commands are not an attempt to replace full-feature spreadsheet
programs but are intended to help automate common data processing tasks.

The input is specified by a table column name (Input1) and either a second input column name or a
constant value (Input2), with the result being placed in the output column (Output). Output that
cannot be computed is set to the NonValue value.

The following dialog is used to edit the command and illustrates the syntax of the command (in this case
illustrating how values in a column named ts1 are multiplied by the number 2.

TableMath

TableMath() Command Editor

 Command Reference – TableMath () - 1 471

TableMath() Command TSTool Documentation

The command syntax is as follows:

TableMath(Parameter=Value,…)

Command Parameters

Parameter Description Default
TableID The identifier for the table to process. None – must be

specified.
Input1 First input column name. None – must be

specified.
Operator The operator to be applied as follows:

Input1 Operator Input2 = Output
For example:
Input1 * Input2 = Output

None – must be
specified.

Input2 Second input column name, or a constant value to use as
input.

None – must be
specified.

Output Output column name. If the column is not found it will be
added to the table and will contain the results of processing.

None – must be
specified.

NonValue The value to use in cases where an output result could not
be computed (missing input, division by zero). Null will
result in blanks in output whereas NaN may be shown in
some output products, depending on the specifications for
the format.

Null

Command Reference – TableMath() - 2 472

Command Reference: TableTimeSeriesMath()
Perform simple math operation on time series using table input

Version 09.08.01, 2010-09-15

The TableTimeSeriesMath() command performs a simple math operation on time series using
values from a table. For example, a table that is populated by the
CalculateTimeSeriesStatistic() command or ReadTableFromDelimitedFile()
could be used to modify time series data. See also the TableMath() command.

The table value is determined by matching the time series identifier (formatted according to the
TableTSIDFormat parameter) with the TSID value in the table column specified by the
TableTSIDColumn parameter.

The following dialog is used to edit the command and illustrates the syntax of the command.

TableTimeSeriesMath

TableTimeSeriesMath() Command Editor

 Command Reference – TableTimeSeriesMath () - 1 473

TableTimeSeriesMath() Command TSTool Documentation

The command syntax is as follows:

TableTimeSeriesMath(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be processed, one

of:
• AllMatchingTSID – all time series that

match the TSID (single TSID or TSID with
wildcards).

• AllTS – all time series before the command.
• EnsembleID – all time series in the ensemble.
• FirstMatchingTSID – the first time series

that matches the TSID (single TSID or TSID
with wildcards).

• LastMatchingTSID – the last time series
that matches the TSID (single TSID or TSID
with wildcards).

• SelectedTS – the time series selected with
the SelectTimeSeries() command.

AllTS

TSID The time series identifier or alias for the time series
to be processed, using the * wildcard character to
match multiple time series.

Required if
TSList=*TSID.

EnsembleID The ensemble to be processed, if processing an
ensemble.

Required if
TSList=EnsembleID.

Operator The operator to be applied to the time series and
table input.

None – must be specified.

TableID Identifier for table that provides input. None – must be specified.
TableTSIDColumn Table column name that is used to match the time

series identifier for processing.
None – must be specified.

TableTSIDFormat The specification to format the time series identifier
to match the TSID column. Use the format choices
and other characters to define a unique identifier.

Time series alias if
available, or otherwise
the time series identifier.

TableInput
Column

Table column name to retrieve the table value. None – must be specified.

The delimited file corresponding to that used in the above dialog example is shown below. In this
example, the time series identifiers have location parts with values ts1 and ts2.

Simple test data
"TSID","DataValue"
ts1,2
ts2,3

Command Reference – TableTimeSeriesMath() - 2 474

Command Reference: TimeSeriesToTable()
Copy one or more time series into a table

Version 09.05.00, 2009-10-06

The TimeSeriesToTable() command copies one or more time series into a table. The time series
must be regular interval (no irregular interval time series) and the intervals must match. Currently the
command can only be used to create a new table but in the future the command is envisioned to write into
an existing table. This command is useful when performing table analysis processing and outputting table
formats (e.g., with the WriteTableToDelimitedFile() command).

The following dialog is used to edit the command and illustrates the syntax of the command.

TimeSeriesToTable

TimeSeriesToTable() Command Editor

The command syntax is as follows:

TimeSeriesToTable(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be

processed, one of:
• AllMatchingTSID – all time

series that match the TSID (single
TSID or TSID with wildcards) will

AllTS

 Command Reference – TimeSeriesToTable () - 1 475

TimeSeriesToTable() Command TSTool Documentation

Parameter Description Default
be modified.

• AllTS – all time series before the
command.

• EnsembleID – all time series in
the ensemble will be modified.

• FirstMatchingTSID – the first
time series that matches the TSID
(single TSID or TSID with
wildcards) will be modified.

• LastMatchingTSID – the last
time series that matches the TSID
(single TSID or TSID with
wildcards) will be modified.

• SelectedTS – the time series are
those selected with the
SelectTimeSeries()
command.

TSID The time series identifier or alias for the
time series to be modified, using the *
wildcard character to match multiple
time series.

Required when
TSList=*TSID

EnsembleID The ensemble to be modified, if
processing an ensemble.

Required when
TSList=EnsembleID.

TableID The identifier for the table to copy data
into (or the identifier for the new table to
create if
IfTableNotFound=Create).

None – must be specified.

DateTimeColumn The table column name to receive
date/time information.

None – must be specified.

DataColumn The data column name(s) to receive time
series data. This parameter may in the
future allow multiple names separated by
a delimiter. However, multiple names
are currently supported by using time
series property format specifiers,
available in a list of choices. These
specifiers are consistent with other
commands and the legend formatter in
the graphing tool.

None – must be specified.

DataRow1 First table row for data (1+), where the
row number is data only (column names
are not considered a data row).

None – must be specified.

OutputStart The starting date/time for the copy. Available period.
OutputEnd The ending date/time for the copy. Available period.
IfTableNotFound Indicate action if the table identifier is

not matched, one of:
• Create – create a new table
• Warn – warn that the table was not

matched

Warn

Command Reference – TimeSeriesToTable() - 2 476

TSTool Documentation TimeSeriesToTable () Command

A sample command file is as follows (this command file is used to verify the command during testing):

Test copying annual time series to a table, and also create the table
StartLog(LogFile="Results/Test_TimeSeriesToTable_Year_Create.TSTool.log")
RemoveFile(InputFile="Results/Test_TimeSeriesToTable_Year_Create_out.csv",
 IfNotFound=Ignore)
TS ts1 = NewPatternTimeSeries(NewTSID="ts1..Flow.Year",SetStart="1960",
 SetEnd="2000",Units="ACFT",PatternValues="1,2,5,8,,20")
TS ts2 = NewPatternTimeSeries(NewTSID="ts2..Flow.Year",SetStart="1950",
 SetEnd="2005",Units="ACFT",PatternValues="2,4,10,16,,40")
TimeSeriesToTable(TableID=TestTable,DateTimeColumn=Year,DataColumn=%L-%T,
 DataRow=1,IfTableNotFound="Create")
Generate the results.
WriteTableToDelimitedFile(TableID="TestTable",
 OutputFile="Results\Test_TimeSeriesToTable_Year_Create_out.csv")
Uncomment the following to recreate expected results
WriteTableToDelimitedFile(TableID="TestTable",
OutputFile="ExpectedResults\Test_TimeSeriesToTable_Year_Create_out.csv")
CompareFiles(InputFile1="ExpectedResults/Test_TimeSeriesToTable_Year_Create_out.csv",
 InputFile2="Results/Test_TimeSeriesToTable_Year_Create_out.csv",IfDifferent=Warn)

The resulting table will be listed in the Tables area of the TSTool interface and clicking on the
TestTable identifier will display the table similar to the following:

TimeSeriesToTabl2

 Command Reference – TimeSeriesToTable () - 3 477

TimeSeriesToTable() Command TSTool Documentation

This page is intentionally blank.

Command Reference – TimeSeriesToTable() - 4 478

Command Reference: VariableLagK()
Lag and attenuate (route) a time series with parameters that vary by rate

Version 09.03.04, 2009-04-22

The VariableLagK() command can be used to lag and attenuate an input time series, resulting in a
new time series. The command is commonly used to route an instantaneous flow time series through a
stretch of river (reach). Lag and K routing is a common routing method that combines the concepts of:

1. Lagging the inflow to simulate travel time in a reach and,
2. Attenuating the wave to simulate the storage-outflow relationship for the reach (see Figure 1).

Inflows Lagged Inflows

Outflows
(lagged and attenuated)

Q

Time

Inflows Lagged Inflows

Outflows
(lagged and attenuated)

Q

Time
Figure 1: Lag and K Routing

At its fundamental level, the method solves the continuity equation using an approach similar to
Muskingum routing (assuming that the Muskingum parameter representing wave storage is negligible).
The governing equation for this routing method is given as:

t
SQQ outin Δ

Δ
=−

where:

Qin = instantaneous inflow [rate] lagged appropriately,
Qout = instantaneous outflow [rate] lagged appropriately,
ΔS = change in storage in the reach [volume],
Δt = time difference.

 Command Reference – VariableLagK() - 1 479

VariableLagK() Command TSTool Documentation

The relationship assumes an outflow-storage relationship of the form:

 S = k ⋅ Qout,

where:

k = attenuation for the outflow [time].

To ensure accurate results, k should be larger or equal to Δt/2. For discrete time steps these relationships
translate into:

2

,
12

2
1

1
21

2
tk

t
k

O
t

SII
O Δ

≥
+

Δ

−
Δ

++
=

where: I1 and I2 are the lagged inflows into the reach at the previous and current time step,
respectively,

 O1 and O2 are the outflows out of the reach at the previous and current time step, respectively,
S1 is the storage within the reach at the previous time step, defined as S1 = k⋅O1, and
Δt is the time difference between the two time steps.

Values for Lag and K can usually be established by comparing routed flows to downstream observations.
Alternatively, the Lag can be estimated using the reach length and wave speed in the reach. Without any
other information, K can be set to Lag/2.

The above discussion applies where the Lag and K parameters are single values (as implemented in the
LagK() command). However, there are cases where the values vary by flow, which is handled by this
command. The approach that is implemented is an adaptation of that described in National Weather
Service River Forecast System LAG/K documentation:
http://www.nws.noaa.gov/oh/hrl/nwsrfs/users_manual/part2/_pdf/24lagk.pdf.

Command Reference – VariableLagK() - 2 480

http://www.nws.noaa.gov/oh/hrl/nwsrfs/users_manual/part2/_pdf/24lagk.pdf

TSTool Documentation VariableLagK() Command

The following dialog is used to edit the command and illustrates the syntax for the command:

ViriableLagK

VariableLagK() Command Editor

The command syntax is as follows:

VariableLagK(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSID Identifier or alias for the time series to be routed. It is

assumed that this series describes an instantaneous flow. Due
to the lagging, the first data values required for the
computation of O2 are not available within this time series and
are therefore set to values set in the InflowStates
parameter.

None – must be
specified.

NewTSID Identifier for the new (routed) time series. This is required to
ensure that the internal identifier for the time series is unique
and accurate for the data. The interval of the identifier must
be the same as for the time series specified by TSID.

None – must be
specified.

 Command Reference – VariableLagK() - 3 481

VariableLagK() Command TSTool Documentation

Parameter Description Default
FlowUnits The units of the flow data specified in the Lag and K tables.

These units must be compatible with the time series units.
The table values will be converted to the time series units if
the units are not the same.

None – must be
specified.

LagInterval The base interval for the time data specified in the Lag and K
tables. The interval must be compatible with the time series
base interval. The table values will be converted to the time
series time interval if the intervals are not the same. For
example, table data specified in Hour base interval will be
converted to Minute if the time series being routed contains
NMinute data.

None – must be
specified.

Lag Flow value and lag time pairs to control routing. The units of
the data values are as specified by the FlowUnits parameter
(see above). The units of the lag are time as specified by the
LagInterval parameter. The Lag value is not required to
be evenly divisible by the time step interval; values in the time
series between time steps will be linearly interpolated. Use
commas and semi-colons to separate values, for example:

 100.0,10;200.0,20

None – must be
specified.

K Flow value and K time pairs to control routing. The
attenuation factor K is applied to the wave. The units of K are
time as specified by the LagInterval parameter. Use
commas and semi-colons to separate values, for example:

 100.0,5;200.0,10

None – must be
specified.

InflowStates Comma-delimited list of default inflow values prior to the start
of the time series. The order of the values is earliest to latest.
The array must specify (Lag/multiplier) + 1 values; i.e., a 10
minute interval with a LAG of 30 must be provided with 30/10
+ 1 = 4 inflow carryover values. Note: Specifying values that
are not consistent with the Lag and K parameters will result
in oscillation!

0 for each value

CURRENTLY
ALWAYS
DEFAULT

OutflowStates Comma-delimited list of default outflow values prior to the
start of the time series. See InflowStates for details.

0 for each value

CURRENTLY
ALWAYS
DEFAULT

Alias The alias that will be assigned to the new time series. No alias will be
assigned.

Command Reference – VariableLagK() - 4 482

TSTool Documentation VariableLagK() Command

A sample command file is as follows (commands to read time series are omitted):

Test routing at 3 hour interval
StartLog(LogFile="Results/Test_VariableLagK_3hr.TSTool.log")#
Read NWSCard input file
TS Inflow = ReadNwsCard(InputFile="Data\3HR_INPUT.SQIN")

Route using the same routing parameters used in the mcp3 input deck
(metric units: Lag(hrs) K(hrs) Q(cms)
Lag
K
24.0 200.0 12.0 600.00 9.0 1500.0 42.0 3000.0
24.0 200.0 12.0 600.00 9.0 1500.0 42.0 3000.0

VariableLagK(TSID="Inflow",NewTSID="TestLoc..SQIN.3Hour.routed",DataUnits=CMS,
 LagInterval=Hour,Lag="200,24.0;600,12.0;1500,9.0;3000,42.0",
 K="200,24.0;600,12.0;1500,9.0;3000,42.0",Alias="3Hr")

 Command Reference – VariableLagK() - 5 483

VariableLagK() Command TSTool Documentation

This page is intentionally blank.

Command Reference – VariableLagK() - 6 484

Command Reference: WebGet()
Retrieve a file from a website

Version 09.06.03, 2010-04-05

The WebGet() command retrieves content from a website and writes the content to a local file. The
transfer occurs using binary characters and the local copy is the same as that shown by View…Source (or
View…Page Source) in the web browser. This command is useful for mining time series data from
provider web sites. The local file can then be processed with additional commands such as
ReadFromDelimitedFile().

Extraneous content (such as HTML markup around text) and inconsistencies in newline characters (\r\n
for windows and \n on other systems) may lead to some issues in processing the content. Additional
command capabilities may be implemented to help handle these issues.

The following dialog is used to edit the command and illustrates the syntax for the command. This
example reads stream gage data from the State of Colorado’s website.

WebGet

WebGet() Command Editor

 Command Reference – WebGet() - 1 485

WebGet() Command TSTool Documentation

The command syntax is as follows:

WebGet(Parameter=Value,…)

Command Parameters

Parameter Description Default
URI The Uniform Resource Identifier (URI)

for the content to be retrieved. This is
often also referred to as the Uniform
Resource Locator (URL).

None – must be specified.

LocalFile The local file in which to save the
content.

None – must be specified.

Command Reference – WebGet() - 2 486

Command Reference: TS Alias = WeightTraces()
Create a time series by weighting data from time series ensemble traces

Version 08.15.00, 2008-04-24,

The WeightTraces() command creates a new time series as a weighted sum of time series ensemble
traces, for example as produced by a CreateEnsemble() command. If any trace contains missing
data for a point, the resulting time series value will also be missing. Note that this approach may not be
appropriate for some analyses – the user should evaluate the implications of whether the weighted result
appropriately reflects the (in)dependence of input data.

The following dialog is used to edit the command and illustrates the syntax of the command.

TS_weightTraces

WeightTraces() Command Editor

 Command Reference – WeightTraces() - 1 487

WeightTraces() Command TSTool Documentation

The command syntax is as follows:

TS Alias = WeightTraces(Parameter=Value,…)

Command Parameters

Parameter Description Default
Alias The alias of the new time series. None – must be specified.
EnsembleID The ensemble identifier indicating time

series to be processed (e.g., from a
CreateEnemble() command). Time
series matching the years specified by the
Weights parameter will be processed.

None – must be specified.

SpecifyWeightsHow Weights are currently only applied as
AbsoluteWeights (in the future an
option may be added to normalized
weights to 1.0 accounting for missing
data in the traces).

Must be
AbsoluteWeights.

Weights Specify pairs of trace year and weights
(0-1.0), used to create the new time
series. Trace years must be manually
entered because at the time that the
command is edited, time series have not
yet been queried. The weights do not
need to add to 1. Example data are:
1995,.5,1998,.3,2005,.2

None – must be specified.

NewTSID The time series identifier for the new
time series that is created. This typically
uses the same information as the original
time series, with an added scenario.

None – must be specified.

Command Reference – WeightTraces() - 2 488

TSTool Documentation WeightTraces() Command

A sample commands file is as follows (longer commands that wrap are shown indented):

Create annual traces from a time series shifted to the current year
The original time series is read from HydroBase

(1995-1998) ALAMOSA RIVER ABOVE JASPER, CO USGS Streamflow Day
08235350.USGS.Streamflow.Day~HydroBase
CreateEnsemble(TSID="08235350.USGS.Streamflow.Day",TraceLength=1Year,
 EnsembleID="Ensemble_Jasper",
 EnsembleName="ALAMOSA RIVER ABOVE JASPER, CO",
 ReferenceDate="2008-01-01",ShiftDataHow=ShiftToReference)
TS WeightedTS = WeightTraces(EnsembleID="Ensemble_Jasper",
 SpecifyWeightsHow="AbsoluteWeights",
 Weights="1997,.5,1998,.4,1999,.1",
 NewTSID="08235350.USGS.Streamflow.Day.weighted")
WriteDateValue(OutputFile="Results/WeightTraces_out.dv")

UserManualExamples/TestCases/CommandReference/WeightTraces/WeightTraces.TSTool

The results from the commands are shown in the following graph:

WeighTraces_Graph

Results of the WeightTraces() Command

 Command Reference – WeightTraces() - 3 489

WeightTraces() Command TSTool Documentation

This page is intentionally blank.

Command Reference – WeightTraces() - 4 490

Command Reference: WriteCheckFile()
Write a check file containing a summary of data/processing problems

Version 09.03.04, 2009-04-23

The WriteCheckFile() command summarizes the results of command processing warning/failure
messages in a “check file”. This file is useful for reviewing results and for quality control. The check file
is essentially a persistent record of any problems that occurred during processing, whereas a full log file
contains a sequential list of processing.

The following dialog is used to edit the command and illustrates the syntax for the command.

WriteCheckFile

WriteCheckFile() Command Editor

The command syntax is as follows:

WriteCheckFile(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the check file to create, enclosed in double

quotes if the file contains spaces or other special
characters. A path relative to the command file
containing this command can be specified.

Specify a filename with .html extension to generate an
HTML file or .csv to generate a comma-separated value
file suitable for use with Excel. The HTML file will
contain more information and include navigation links.

None – must be
specified.

 Command Reference – WriteCheckFile() - 1 491

WriteCheckFile() Command TSTool Documentation

This page is intentionally blank.

Command Reference – WriteCheckFile() - 2 492

Command Reference: WriteDateValue()
Write time series to a DateValue format file

Version 08.18.02, 2008-11-18

The WriteDateValue() command writes time series to the specified DateValue format file. See the
DateValue Input Type Appendix for more information about the file format. The time series being
written must have the same data interval – use the TSList parameter to select appropriate time series.

The following dialog is used to edit the command and illustrates the syntax of the command.

WriteDateValue

WriteDateValue() Command Editor

The command syntax is as follows:

WriteDateValue(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The DateValue output file. The path to the file can

be absolute or relative to the working directory
(command file location).

None – must be specified.

Delimiter The delimiter character to use between data values.
Comma is the only other allowed value other than the
default space.

Space.

Precision The number of digits after the decimal for numerical
output.

4 (in the future may
default based on data type)

MissingValue The value to write to the file to indicate a missing
value in the time series.

As initialized when
reading the time series or

 Command Reference – WriteDateValue() - 1 493

WriteDateValue() Command TSTool Documentation

Parameter Description Default
creating a new time series,
typically -999, NaN, or
another value that is not
expected in data.

OutputStart The date/time for the start of the output. Use the global output
period.

OutputEnd The date/time for the end of the output. Use the global output
period.

TSList Indicates the list of time series to be processed, one
of:
• AllMatchingTSID – all time series that

match the TSID (single TSID or TSID with
wildcards) will be processed.

• AllTS – all time series before the command.
• EnsembleID – all time series in the ensemble

will be processed.
• FirstMatchingTSID – the first time series

that matches the TSID (single TSID or TSID
with wildcards) will be processed.

• LastMatchingTSID – the last time series that
matches the TSID (single TSID or TSID with
wildcards) will be processed.

• SelectedTS – the time series are those
selected with the SelectTimeSeries()
command.

AllTS

TSID The time series identifier or alias for the time series
to be processed, using the * wildcard character to
match multiple time series.

Required if
TSList=*TSID.

EnsembleID The ensemble to be modified, if processing an
ensemble.

Required if TSList=
EnsembleID.

A sample command file to process data from the State of Colorado’s HydroBase database is as follows:

0100501 - EMPIRE DITCH
0100501.DWR.DivTotal.Month~HydroBase
0100503 - RIVERSIDE CANAL
0100503.DWR.DivTotal.Month~HydroBase
WriteDateValue(OutputFile="Diversions.dv")

Command Reference – WriteDateValue() - 2 494

Command Reference: WriteHecDss()
Write time series to a HEC-DSS File

Version 09.03.00, 2009-04-10

The WriteHecDss() command writes time series to a HEC-DSS file. See the HEC-DSS Input Type
Appendix for information about how time series properties are output to HEC-DSS files. Current
limitations of the command are:

• Irregular time series are not supported – the focus of initial development has been regular interval
time series.

• 24-hour time series in TSTool cannot be written to HEC-DSS because HEC-DSS only supports
1DAY interval. Therefore, the time series must be converted to a daily time series before writing.
An option to convert 24-hour values to 1DAY may be added to this command in the future.

• HEC-DSS uses times through 2400. TSTool will convert this to 0000 of the next day. Year,
month, and day data are not impacted. The internal TSTool values will be converted to hour
2400 when writing. Therefore, reading from a HEC-DSS file and then writing should result in no
change in data.

• Time series that are written overwrite existing time series, but only for the period that is written.
Therefore, previously written values may remain, even if not appropriate. A future enhancement
will allow the option of removing the old data before writing new data. The work-around is to
write a period that is sufficiently long to guarantee that old data values do not remain in the file,
or clear the file out with another tool such as DSSUTL before writing.

• Currently the connections to the HEC-DSS file will remain open after the write, in order to
minimize performance degradation for multiple write commands. However, this will lock the
HEC-DSS file so that other commands or programs cannot perform file manipulation, such as
removing the file. The connections will automatically time out after several minutes. A future
enhancement will ensure that the file connections can be closed.

The A-F parts of the HEC-DSS time series pathname by default are taken from the time series properties,
as follows:

• The A and B parts are taken from the time series identifier location, where location should be
defined as A:B.

• The C part is taken from the time series data type.
• The D part is taken from the time series period in memory or as defined by the output period.
• The E part is taken from the time series interval.
• The F part is taken from the time series identifier scenario.

These conventions can be overruled by specifying the parts explicitly with command parameters. The
parameter values will apply to all time series being written.

 Command Reference – WriteHecDss() - 1 495

WriteHecDss() Command TSTool Documentation

The following dialog is used to edit the command and illustrates the syntax for the command.

WriteHecDss

WriteHecDss() Command Editor

The command syntax is as follows:

WriteHecDss(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the HEC-DSS file to write,

surrounded by double quotes to protect
whitespace and special characters. If the file
does not exist it will be created.

None – must be specified.

Type The HEC-DSS time series type, indicating
whether the time series is instantaneous, mean,
or accumulated.

None – must be specified.

TSList Indicates the list of time series to be processed,
one of:
• AllMatchingTSID – all time series that

match the TSID (single TSID or TSID
with wildcards) will be processed.

AllTS

Command Reference – WriteHecDss() - 2 496

TSTool Documentation WriteHecDss() Command

Parameter Description Default
• AllTS – all time series before the

command will be processed.
• EnsembleID – all time series in the

ensemble will be processed.
• FirstMatchingTSID – the first time

series that matches the TSID (single TSID
or TSID with wildcards) will be processed.

• LastMatchingTSID – the last time
series that matches the TSID (single TSID
or TSID with wildcards) will be processed.

• SelectedTS – the time selected with the
SelectTimeSeries() command will
be processed.

TSID The time series identifier or alias for the time
series to be processed, using the * wildcard
character to match multiple time series.

Required if TSList=*TSID.

EnsembleID The ensemble to be processed, if processing an
ensemble.

Required if TSList=
EnsembleID.

OutputStart The date/time for the start of the output. Use the global output period or
write all available data.

OutputEnd The date/time for the end of the output. Use the global output period or
write all available data.

Precision The number of digits after the decimal for
numerical output.

HEC-DSS default.

A The DSS path A-part to use for the time series
as written to the HEC-DSS file.

Time series identifier location
part before the : (if : is present)
or the entire location if : is not
present.

B The DSS path B-part to use for the time series
as written to the HEC-DSS file.

Time series identifier location
part after the : (if : is present) or
the blank if : is not present.

C The DSS path C-part to use for the time series
as written to the HEC-DSS file.

Time series identifier data type.

E The DSS path E-part to use for the time series
as written to the HEC-DSS file.

Time series identifier data
interval, converted to HEC-
DSS conventions.

F The DSS path F-part to use for the time series
as written to the HEC-DSS file.

Time series identifier scenario.

Replace Under development – whether to replace the
contents of the previous time series in the
HEC-DSS file.

Only replace what is actually
written.

Close Indicate whether to close connections to the
HEC-DSS file and allow other processes to
move/rename/delete the file. Specifying as
True may slow the software as files are
repeatedly opened and closed.

False – let the HEC-DSS
internal software close the
connection after timing out.

 Command Reference – WriteHecDss() - 3 497

WriteHecDss() Command TSTool Documentation

A sample command file is as follows:

WriteHecDss(OutputFile="sample.dss",TYPE=PER-AVER,
 OutputStart="1992-01-01",OutputEnd="1992-12-31")

Command Reference – WriteHecDss() - 4 498

Command Reference: WriteProperty()
Write a time series processor property to a file

Version 08.15.00, 2008-05-11

The WriteProperty() command writes the value of a time series processor property to a file. This is
useful for testing that properties are being set. It could also be used to pass information from TSTool to
another program. The format of the output is:

 Property=”Value”

The following dialog is used to edit this command and illustrates the syntax of the command.

WriteProperty

WriteProperty() Command Editor

 Command Reference – WriteProperty() - 1 499

WriteProperty() Command TSTool Documentation

The command syntax is as follows:

WriteProperty(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The property file to write, as an absolute path or

relative to the command file.
None – must be specified.

PropertyName The property name to write None – must be specified.
Append Indicates whether the property should be

appended to the file (True) or overwrite the
file (False).

True

A sample command file is as follows:

WriteProperty(OutputFile="Results/Example_WriteProperty.txt",
 PropertyName="WorkingDir")

Command Reference – WriteProperty() - 2 500

Command Reference: WriteRiverWare()
Write time series to a RiverWare format file

Version 08.15.00, 2008-05-12

The WriteRiverWare() command writes one time series to the specified RiverWare format file. See
the RiverWare Input Type Appendix for more information about the file format.

The following dialog is used to edit the command and illustrates the syntax of the command.

WriteRiverWare

WriteRiverWare() Command Editor

 Command Reference – WriteRiverWare() - 1 501

WriteRiverWare() Command TSTool Documentation

The command syntax is as follows:

WriteRiverWare(Parameter=Value, …)

Command Parameters

Parameter Description Default
TSList Indicate how to determine the list of time

series to process (only first one is
written), one of:
 AllMatchingTSID – process time

series that have identifiers matching
the TSID parameter.

 AllTS – process all the time series.
 SelectedTS – process the time

series that are selected (see
SelectTimeSeries()).

None – must be specified.

TSID Used if TSList=AllMatchingTSID
to indicate the time series identifier or
alias for the time series to be filled.
Specify * to match all time series or use
a wildcard for one or more identifier
parts.

Required if
TSList=AllMatchingTSID.

OutputFile The RiverWare file to write. The path to
the file can be absolute or relative to the
working directory. The Browse button
can be used to select the file to write (if a
relative path is desired, delete the leading
path after the select).

None – must be specified.

Units The data units to be output. Specify
units that are recognized by RiverWare –
the units are not actually converted but
the new units string is used in the output
file.

Use the units in the time series.

Scale See the RiverWare Input Type
Appendix.

1

Set_units See the RiverWare Input Type
Appendix.

Set_units are not output.

Set_scale See the RiverWare Input Type
Appendix.

Set_scale are not output.

Precision The number of digits after the decimal to
write.

4

A sample command file to write data from the State of Colorado’s HydroBase is as follows:

08213500 - RIO GRANDE RIVER AT THIRTY MILE BRIDGE NEAR CREEDE
08213500.DWR.Streamflow.Month~HydroBase
WriteRiverWare(TSList=AllTS,OutputFile="08213500.Month.RiverWare",Precision=2)

Command Reference – WriteRiverWare() - 2 502

Command Reference: WriteStateCU()
Write time series to a StateCU format file

Version 08.16.04, 2008-09-04

The WriteStateCU() command writes time series to the specified StateCU frost dates format file.
Currently only the frost dates file can be written with this command. See the WriteStateMod()
command to write StateMod format files (e.g., for the precipitation, temperature, and diversion time series
files used with the StateCU model). See the StateCU Input Type Appendix for more information about
the file format. All time series matching the data types FrostDateL28S, FrostDateL32S,
FrostDateF32F, and FrostDateF28F will be written (all other time series will be ignored). Other
StateCU files may be supported in the future. See also the StateDMI software, which processes other
StateCU files.

The following dialog is used to edit the command and illustrates the syntax of the command.

WriteStateCU

WriteStateCU() Command Editor

 Command Reference – WriteStateCU() - 1 503

WriteStateCU() Command TSTool Documentation

The command syntax is as follows:

WriteStateCU(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The StateCU frost dates output file. The

path to the file can be absolute or relative
to the working directory.

None – must be specified.

OutputStart The date/time for the start of the output. Use the global output period.
OutputEnd The date/time for the end of the output. Use the global output period.

A sample command file is as follows, using data from the State of Colorado’s HydroBase database:

0109 - AKRON 4 E
0109.NOAA.FrostDateL28S.Year~HydroBase
0109.NOAA.FrostDateL32S.Year~HydroBase
0109.NOAA.FrostDateF32F.Year~HydroBase
0109.NOAA.FrostDateF28F.Year~HydroBase
WriteStateCU(OutputFile="test.stm")

Command Reference – WriteStateCU() - 2 504

Command Reference: WriteStateMod()
Write time series to a StateMod format file

Version 08.15.00, 2008-05-12

The WriteStateMod() command writes the time series in memory to the specified StateMod format
file. See the StateMod Input Type Appendix for more information about the file format. It is expected
that the time series have the same interval. The time series identifier location part is written as the
identifier, even if an alias is assigned to a time series.

The following dialog is used to edit the command and illustrates the syntax of the command.

WriteStateMod

WriteStateMod() Command Editor

 Command Reference – WriteStateMod() - 1 505

WriteStateMod() Command TSTool Documentation

The command syntax is as follows:

WriteStateMod(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicate how to determine the list of time

series to process, one of:

 AllMatchingTSID – process time

series that have identifiers matching the
TSID parameter.

 AllTS – process all the time series.
 SelectedTS – process the time series

that are selected (see
SelectTimeSeries()).

None – must be specified.

TSID Used if TSList=AllMatchingTSID to
indicate the time series identifier or alias for
the time series to be filled. Specify * to
match all time series or use a wildcard for
one or more identifier parts.

Required if
TSList=AllMatchingTSID.

OutputFile The StateMod file to write. The path to the
file can be absolute or relative to the
working directory (command file location).

None – must be specified.

OutputStart The date/time for the start of the output. Use the global output period.
OutputEnd The date/time for the end of the output. Use the global output period.
MissingValue The value to write for missing data. -999
Precision The number of digits to use after the

decimal point, for data values. A negative
number indicates that if the formatted
number is larger than the allowed output
width, adjust the format accordingly by
truncating fractional digits. A special value
of –2001 is equivalent to –2 and
additionally NO decimal point will be
printed for large values.

The default output precision if
not specified is -2, which is then
reset based on the data units (see
the system\DATAUNIT file).

A sample command file to process data from the State of Colorado’s HydroBase is as follows:

SetOutputPeriod(OutputStart="1950-01",OutputEnd="2002-12")
08213500 - RIO GRANDE RIVER AT THIRTY MILE BRIDGE NEAR CREEDE
08213500.DWR.Streamflow.Month~HydroBase
08217000 - RIO GRANDE AT WASON, BELOW CREEDE, CO.
08217000.USGS.Streamflow.Month~HydroBase
WriteStateMod(TSList=AllTS,OutputFile="RioGrande.rih")

Command Reference – WriteStateMod() - 2 506

Command Reference: WriteSummary()
Write time series to a summary format file

Version 09.07.00, 2010-08-09

The WriteSummary() command writes time series to a summary report file, as text or HMTL. The
format of the file is a default for the data interval. The total/average column in reports (if output) is based
on the units – a parameter may be added in the future to allow more flexibility.

The following dialog is used to edit the command and illustrates the syntax of the command.

WriteSummary

WriteSummary() Command Editor

 Command Reference – WriteSummary() - 1 507

WriteSummary() Command TSTool Documentation

The command syntax is as follows:

WriteSummary(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The summary file. The path to the file can be absolute

or relative to the working directory (command file
location). Specifying a filename with an “html”
extension will result in HTML output, which is color-
coded for missing values and has notes for flagged
values.

None – must be
specified.

TSList Indicates the list of time series to be processed, one of:
• AllMatchingTSID – all time series that match

the TSID (single TSID or TSID with wildcards)
will be processed.

• AllTS – all time series before the command.
• EnsembleID – all time series in the ensemble

will be processed.
• FirstMatchingTSID – the first time series that

matches the TSID (single TSID or TSID with
wildcards) will be processed.

• LastMatchingTSID – the last time series that
matches the TSID (single TSID or TSID with
wildcards) will be processed.

• SelectedTS – the time series are those selected
with the SelectTimeSeries() command.

AllTS

TSID The time series identifier or alias for the time series to
be processed, using the * wildcard character to match
multiple time series.

Required if
TSList=*TSID.

EnsembleID The ensemble to be processed, if processing an
ensemble.

Required if
TSList=
EnsembleID.

OutputStart The date/time for the start of the output. Use the global output
period.

OutputEnd The date/time for the end of the output. Use the global output
period.

OutputYearType The output year type, in particular for formatting
monthly and daily time series.

Calendar

A sample command file to process data from the State of Colorado’s HydroBase is as follows:

SetOutputPeriod(OutputStart="1950-01",OutputEnd="2002-12")
08213500 - RIO GRANDE RIVER AT THIRTY MILE BRIDGE NEAR CREEDE
08213500.DWR.Streamflow.Month~HydroBase
08217000 - RIO GRANDE AT WASON, BELOW CREEDE, CO.
08217000.USGS.Streamflow.Month~HydroBase
WriteSummary(TSList=AllTS,OutputFile="RioGrandeStreamflow.txt",TSList="AllTS")

Command Reference – WriteSummary() - 2 508

Command Reference:
WriteTableToDelimitedFile()

Write a table to a delimited file
Version 09.04.00, 2009-06-16

The WriteTableToDelimitedFile() command writes a table to a comma-delimited file. This
command is the analog to the ReadTableFromDelimitedFile() command. It can be used to
provide tabular data to other programs, such as spreadsheet programs.

A standard file header is written with comment lines that start with the # character. If available, column
names will be written in double quotes as the first non-comment row. Formatting for cell values is
limited and the precision of floating point numbers may be inappropriate – this will be addressed in future
updates.

The following dialog is used to edit the command and illustrates the syntax for the command.

WriteTableToDelimitedFile

WriteTableToDelimitedFile() Command Editor

 Command Reference – WriteTableToDelimitedFile() - 1 509

WriteTableToDelimitedFile() Command TSTool Documentation

The command syntax is as follows:

WriteTableToDelimitedFile(Parameter=Value,…)

Command Parameters

Parameter Description Default
TableID Identifier for the table to write. None – must be specified.
OutputFile The name of the file to write, as an

absolute path or relative to the command
file location.

None – must be specified.

Command Reference – WriteTableToDelimitedFile() - 2 510

Command Reference:
WriteTimeSeriesProperty()

Write a time series property to a file
Version 08.16.03, 2008-08-18

This command is under development and is used primarily for software testing. In particular one
limitation is that the time series identifier is not included in output and therefore properties for
multiple time series are not uniquely identified.

The WriteTimeSeriesProperty() command writes the value of a time series property to a file.
This command should not be confused with the WriteProperty() command, which writes processor
properties. This is useful for testing whether properties are being set. It could also be used to pass
information from TSTool to another program. The format of the output is:

 Property=”Value”

Multi-line properties will be contained within the quotes. The number of properties is limited at this time,
as needed for testing software, but may be increased in the future. The format of output may also change
in the future.

The following dialog is used to edit this command and illustrates the syntax of the command.

WriteTimeSeriesProperty

WriteTimeSeriesProperty() Command Editor

 Command Reference – WriteTimeSeriesProperty() - 1 511

WriteTimeSeriesProperty() Command TSTool Documentation

The command syntax is as follows:

WriteTimeSeriesProperty(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be processed,

one of:
• AllMatchingTSID – all time series that

match the TSID (single TSID or TSID with
wildcards) will be modified.

• AllTS – all time series before the
command.

• EnsembleID – all time series in the
ensemble will be modified.

• FirstMatchingTSID – the first time
series that matches the TSID (single TSID
or TSID with wildcards) will be modified.

• LastMatchingTSID – the last time
series that matches the TSID (single TSID
or TSID with wildcards) will be modified.

• SelectedTS – the time series are those
selected with the
SelectTimeSeries() command.

AllTS

TSID The time series identifier or alias for the time
series to be modified, using the * wildcard
character to match multiple time series.

Required when
TSList=*TSID

EnsembleID The ensemble to be modified, if processing an
ensemble.

Required when
TSList=EnsembleID.

OutputFile The property file to write, as an absolute path or
relative to the command file.

None – must be specified.

PropertyName The property name to write. None – must be specified.
Append Indicates whether the property should be

appended to the file (True) or overwrite the
file (False).

True

A sample command file is as follows:

WriteTimeSeriesProperty(OutputFile="Results/Example_WriteTimeSeriesProperty.txt",
 PropertyName="DataLimitsOriginal")

Command Reference – WriteTimeSeriesProperty() - 2 512

Appendix: TSTool Installation and Configuration
for CDSS

CDSS Version, 09.08.00, 2010-09-08

1. Overview

This appendix describes how to install TSTool in the CDSS (Colorado's Decision Support Systems)
environment. CDSS consists of the HydroBase database, modeling, and data viewing/editing software.
TSTool can be used within this system to process time series from the HydroBase database, CDSS model
files, and other databases and files.

2. File Locations

Standard locations of TSTool software files are as follows. Files are normally installed on Windows on
the C: drive but can be installed in a shared location on a server.

C: \CDSS\TSTool-Version Top-level install directory.
 bin\ Software program files directory.
 batik*.jar Scalable Vector Graphics (SVG)

output packages.
 Blowfish*.jar Used for encryption/security.
 cdss.domain*.jar CDSS components.
 h2*.jar H2 embedded database.
 HydroBaseDMI*.jar State of Colorado HydroBase

database interface package.
 jcommon.jar, jfreechart.jar Plotting package.
 jsr173_1.0_api.jar, libXMLJava.jar XML support.
 jython.jar Jython support.
 msbase.jar
 mssqlserver.jar
 msutil.jar

 Microsoft SQL Server packages.

 NWSRFS_DMI*.jar National Weather Service River
Forecast System (NWSRFS)
package.

 RiversideDB_DMI*.jar Riverside Technology, inc.,
RiversideDB database package.

 RTi_Common*.jar Riverside Technology, inc.
supporting packages.

 SatmonSysDMI*.jar State of Colorado Satellite
Monitoring System package.

 shellcon.exe Executable program used to read
from the Windows registry (e.g., to
determine the default web browser
and list available ODBC data source
names). – PHASING OUT.

 StateMod*.jar State of Colorado’s StateMod and
StateCU model packages.

 Appendix - Installation and Configuration - 1 513

Installation and Configuration TSTool Documentation

 TSCommandProcessor*.jar Time series command processor
package.

 tstool Shell script to run TSTool on Linux.
 TSTool.bat Batch file to run TSTool using the

JRE software. This may need to be
edited if the installation is not
standard.

 TSTool.exe Executable program to run TSTool
using the JRE software,
recommended over batch file.

 TSTool.l4j.ini Configuration file for TSTool.exe
launcher.

 TSTool*.jar TSTool program components.
 doc\TSTool\UserManual\ Main documentation directory for

TSTool.
 TSTool.pdf TSTool documentation as PDF.
 examples\ Example data and command files.
 logs\ Directory for TSTool log files

(should be writable).
 system\ Directory for system files.
 CDSS.cfg CDSS configuration file for

HydroBase database configuration.
 DATAUNIT Data units file.
 TSTool.cfg Configuration file to modify TSTool

defaults.
 jre*\ Java Runtime Environment used by

TSTool

3. Installing TSTool

TSTool can be installed either as part of the HydroBase Tools CD/DVD installation, or as a separate
installation. In both cases, is recommended that the normal CDSS file structure be used.

3.1 Installing TSTool from the “HydroBase data set Analysis Query Tools CD/DVD”

If you have purchased a HydroBase CD/DVD, TSTool will be installed during the CD install process.
Refer to the installation instructions for that distribution. The version that is installed may be older than
the version available on the CDSS web site; however, multiple versions can be installed and run
independently.

3.2 Installing TSTool from the TSTool Setup File

Use the following instructions to install TSTool using the TSTool_CDSS_Version_Setup.exe installer
program, for example if TSTool software was downloaded from the CDSS web site
(http://cdss.state.co.us):

1. Run the TSTool_CDSS_Version_Setup.exe file by selecting from Windows Explorer, the Start…
Run… menu, or from a command shell. You must be logged into the computer using an account
with administrator privileges. Otherwise, the following warning will be displayed:

Appendix - Installation and Configuration - 2 514

http://cdss.state.co.us/

TSTool Documentation Installation and Configuration

Install_AdministratorWarning

If you have administrative privileges, the following welcome will be displayed, and the
installation can continue:

Install_Welcome

Press Next to continue with the installation.

 Appendix - Installation and Configuration - 3 515

Installation and Configuration TSTool Documentation

Install_Disclaimer

TSTool is distributed with CDSS with no license restrictions. However the disclaimer must be
acknowledged. Press I Agree to continue with the installation.

Appendix - Installation and Configuration - 4 516

TSTool Documentation Installation and Configuration

2. Several components can be selected for the install as shown in the following dialog. Position the
mouse over a component to see its description.

Install_SelectComponents

Select the components to install and press Next.

 Appendix - Installation and Configuration - 5 517

Installation and Configuration TSTool Documentation

3. The following dialog is then shown and is used to select the installation location for TSTool.
Multiple versions of TSTool can be installed and there are no dependencies between the versions.
It is recommenced that the default install location shown is used.

Install_SelectFolder

After selecting the install location, press Next.

Note that this location will be saved as a Windows registry setting
(HKEY_LOCAL_MACHINE\Software\State of Colorado\TSTool-Version\Path) to allow future
updates to check for and default to the same install location, and to allow the standard software
uninstall procedure to work correctly.

Appendix - Installation and Configuration - 6 518

TSTool Documentation Installation and Configuration

4. The following dialog will be shown to select the menu for the software:

Install_StartMenuFolder

After selecting the folder, press Install.

 Appendix - Installation and Configuration - 7 519

Installation and Configuration TSTool Documentation

5. The following dialog will show the progress of the installation:

Install_Complete

Press Show details to see the files that were installed or press Next to continue.

6. If the CDSS Base Components were selected for install, the following dialog will be displayed:

Install_HydroBaseQuestion

TSTool and other CDSS software can utilize HydroBase running on the local computer as well as
other computers. Press Yes if HydroBase has been installed on another computer in the network
environment and may be used by the software (then continue to the next step). Also press Yes if

Appendix - Installation and Configuration - 8 520

TSTool Documentation Installation and Configuration

TSTool will be run in batch mode because the specific HydroBase name must be specified in
configuration files. Otherwise, press No (skip to step 8).

7. The following dialog allows additional HydroBase servers to be specified for use by CDSS software
(the example below configures CDSS software to list the dwrappsdb HydroBase server in choices and
defaults to HydroBase on the local computer). The dialog will initially show previous settings from
the \CDSS\TSTool-Version\system\CDSS.cfg file and settings typically only need to be changed after
installing a new HydroBase version.

Install_HydroBaseConfiguration

After entering the name of a HydroBase server and the default server to use, press Done.

8. The following dialog will then be shown asking whether the TSTool software should be run:

Install_RunTSToolQuestion

Press Yes to run the software or No to exit the installation procedure.

 Appendix - Installation and Configuration - 9 521

Installation and Configuration TSTool Documentation

9. TSTool is distributed with a default configuration for CDSS. If you have edited the configuration
properties, you can import the old configuration file using the Help…Import Configuration… menu’.

3.3 Installing TSTool on a File Server

TSTool can be installed on a file server, which allows software updates to be made in one location,
thereby eliminating the need to install software on individual machines. For this type of installation, all
computers that access the software should typically have similar configuration, including network
configuration. The standard installer described in this documentation focuses on individual installs on
user computers. To make TSTool software installed on a server available to other computers, perform the
following (this is typically performed by system administrators):

1. Run the TSTool_CDSS_Version_Setup.exe installer as described above. During installation
specify the TSTool installation home using a drive letter and path for the server or specify a
Universal Naming Convention (UNC) path (e.g., \\ServerName\CDSS\TSTool-Version).

2. Or….Copy the files from a local installation to a network location. The TSTool software will
detect the file location when run using the TSTool.exe file. If the TSTool.bat file is used to run
the software, it may need to be modified to specify the location of files on the server.

The menus and shortcuts will only be configured for the computer from which the installation was run.
Therefore, menus and shortcuts for other computers will need to be manually configured.

If TSTool has been installed on a local computer and it is also available on the network, the network
version can be run by running the software in the ServerName\CDSS\TSTool-Version\bin folder. The
software will expect that file locations use the same drives as when the software was installed.

Appendix - Installation and Configuration - 10 522

TSTool Documentation Installation and Configuration

4. Uninstalling TSTool Software

To uninstall TSTool software, select the CDSS…Uninstall…TSTool from the Start menu and confirm
the uninstall. CDSS components that are used by other software (e.g., CDSS Base component software)
as well as user data will remain installed.

Uninstall_Confirmation

Press Uninstall to uninstall the software.

 Appendix - Installation and Configuration - 11 523

Installation and Configuration TSTool Documentation

The following dialog shows the status of the uninstall.

Uninstall_Complete

Press Show details to see the list of files that were removed. Press Done to exit the uninstall.

5. Running TSTool

TSTool can be started in several ways as described below.

5.1 CDSS Menu

The Start…All Programs…CDSS…TSTool-Version (or Start… Programs… CDSS… TSTool-
Version) menu can be used to start the software. This runs the TSToolInstallHome\bin\TSTool.exe
software.

5.2 Command Line Executable

The installation process does NOT add the TSToolInstallHome\bin folder to the path; however, this
addition can be made by the user, allowing the TSTool software to be started anywhere by running
TSTool. Running TSTool from any location will result in the software being run in the installation
location. Specifying a command file on the command line or interactively will reset the working
directory to that of the command file.

Appendix - Installation and Configuration - 12 524

TSTool Documentation Installation and Configuration

5.3 TSTool Batch File – Windows

A batch file can be used to run the TSTool.exe program, for example using the –commands command
line parameter to specify a command file. In this case it may be necessary to specify the absolute path to
the command file to ensure that the software can locate related files.

6. TSTool Configuration

TSTool requires minimal configuration after installation. This section describes TSTool configuration
files that can be customized for a system. Configuration is specified for each TSTool installation.
Installations on a server use one configuration for all users.

6.1 TSTool Configuration File

The system\TSTool.cfg file under the main installation directory contains top-level configuration
information for TSTool. The format of the file is as follows:

Configuration file for TSTool

[TSTool]

ColoradoSMSEnabled = true
DateValueEnabled = true
HydroBaseEnabled = true
RiverWareEnabled = true
StateCUEnabled = true
StateModEnabled = true

MapLayerLookupFile = "\cdss\gis\co\TimeSeriesMapLookup.csv"

LicenseOwner = "CDSS"
LicenseType = CDSS
LicenseCount = NoLimit
LicenseExpires = Never
LicenseKey = 00-77960bdfb1dde707-1dd052fe0327a332-a07266ee645e8845-7560192d374235c5-
1dd052fe0327a332

Example TSTool Configuration File

The example illustrates the format of the file. The *Enabled properties can be used to enable/disable
input types. Common formats are enabled by default and more specialized formats are disabled by
default, if not specified in the file. For example, use HydroBaseEnabled = false to disable the
automatic HydroBase login that occurs with the HydroBase input type (e.g., if HydroBase is unavailable
for some reason). The license properties are assigned by developers and should not normally be changed
by TSTool users. Each input type can have additional properties, although only a few currently do, as
described below.

The optional MapLayerLookupFile property indicates the name of the time series to map layer
lookup file. See the Map Configuration section below.

 Appendix - Installation and Configuration - 13 525

Installation and Configuration TSTool Documentation

6.2 Data Units File

The system\DATAUNIT file under the main installation directory contains data unit information that
defines conversions and output precision. In most cases the default file can be used but additional units
may need to be added for a user's needs (in this case please notify the developers so the units can be
added to the default file distributed with installations). Currently, the DATAUNIT file is the only source
for units information – in the future units may be determined from the various input sources.

6.3 HydroBase Configuration

The following properties can be defined in the TSTool.cfg file in a [HydroBase] section to control how
TSTool interacts with HydroBase. See also the CDSS Configuration File section below.

TSTool HydroBase Configuration Properties

Property Description Default
AutoConnect If False, a HydroBase login dialog will be shown at startup.

If True, the default database information in the CDSS
configuration file (see next section) will be used to
automatically connect to the database, and the login dialog will
not be shown.

False

WDIDLength Indicates the length of water district identifiers (WDIDs)
constructed from separate WD and ID data, when creating time
series identifiers. Because time series identifier strings are
compared literally, it is important that the WDIDs are
consistent within a commands file.

7

6.4 CDSS Configuration File

By default, TSTool will automatically look for HydroBase databases on the current (local) machine and
the State servers. State server databases are typically only accessible to State of Colorado computers. If
SQL Server or MSDE HydroBase versions have been installed on a different machine, the \cdss\TSTool-
Version\system\CDSS.cfg file can be used to indicate the database servers. An example of the
configuration file is as follows:

[HydroBase]

ServerNames="ServerName,local"
DefaultServerName="ServerName"
DefaultDatabaseName="HydroBase_CO_20080730"

[ColoradoSMS]

ServerNames="ServerName,local"
DefaultServerName="ServerName"
DefaultDatabaseName="RealtimeStreamflow"
UserLogin="UserLogin"

The ColoradoSMS input type is being used to support annotation of real-time data graphs with alert
information, within the State of Colorado’s offices.

Appendix - Installation and Configuration - 14 526

TSTool Documentation Installation and Configuration

Properties can be specified on the TSTool command line using the notation “Property=Value” and
will in some cases override the values in the configuration file. These features are under development as
necessary.

The CDSS configuration properties are described in the following tables:

CDSS HydroBase Database Configuration Properties

Property Description Default
ServerNames A comma-separated list of server names to list in the

HydroBase login dialog.
The state server
is listed.

Default
ServerName

The default HydroBase server name to use. This allows
the HydroBase login dialog to preselect a default that
applies to most users in the system. If TSTool is run in
batch mode and the HydroBase input type is enabled, use
this property to make a default connection to HydroBase,
for use with other commands in the batch run.

greenmtn.
state.co.us

Default
DatabaseName

The default HydroBase database name to use. This allows
the HydroBase login dialog to preselect a default that
applies to most users in the system. If TSTool is run in
batch mode and the HydroBase input type is enabled, use
this property to make a default connection to HydroBase,
for use with other commands in the batch run.

Database
Engine

Reserved for internal use.

DatabaseName The database name to use for the initial connection. This
overrides the default server.

Database
Server

The server name to use for the initial connection. This
overrides the default server.

SystemLogin Reserved for internal use.
SystemPassword Reserved for internal use.
UserLogin Reserved for internal use.

 Appendix - Installation and Configuration - 15 527

Installation and Configuration TSTool Documentation

CDSS Satellite Monitoring System (ColoradoSMS) Database Configuration Properties

Property Description Default
ServerNames A comma-separated list of server names to list in the SMS

login dialog.
The state server
is listed.

Default
ServerName

The default SMS database server name to use. This allows
the SMS login dialog to preselect a default that applies to
most users in the system. If TSTool is run in batch mode
and the ColoradoSMS input type is enabled, use this
property to make a default connection to the SMS
database, for use with other commands in the batch run.

greenmtn.
state.co.us

Default
DatabaseName

The default SMS database name to use. This allows the
SMS login dialog to preselect a default that applies to most
users in the system. If TSTool is run in batch mode and
the ColoradoSMS input type is enabled, use this property
to make a default connection to the SMS database, for use
with other commands in the batch run.

Database
Engine

Reserved for internal use.

DatabaseName The database name to use for the initial connection. This
overrides the default server.

Database
Server

The server name to use for the initial connection. This
overrides the default server.

SystemLogin Reserved for internal use.
SystemPassword Reserved for internal use.
UserLogin The user login, for use with TSTool batch runs. The

ColoradoSMS.UserLogin parameter can be specified
on the command line and will be used when making the
initial SMS database connection.

The SMS database cannot currently be opened with a login dialog. Therefore, correct information must
be specified in the CDSS configuration file and the TSTool command line.

Appendix - Installation and Configuration - 16 528

TSTool Documentation Installation and Configuration

6.4 Map Configuration

TSTool can display maps configured as GeoView project files. See the GeoView Mapping Tools
Appendix for more information about these files. To allow a link between time series and map layers,
use the TimeSeriesMapLayerLook property in the TSTool.cfg file to specify a time series to map
layer lookup file (see the TSTool Configuration File section above). The following example file
illustrates the contents of the lookup file:

This file allows time series in TSTool to be linked to stations in spatial
data layers. The columns are used as appropriate, depending on the direction
of the select (from time series list or from the map).

This file has been tested with the \CDSS\GIS\CO\co_TSTool.gvp file. Not all
possible combinations of time series and map layers have been defined - only
enough to illustrate the configuration.
Additional attributes need to be added to the point files to allow more
extensive functionality. For example, if attributes for data interval (time
step) and data source are added to the attributes, then a definition query
can be defined on the layer for displays to use the same data file. The
configuration below can then use the different names to configure the link
to time series.

TS_InputType - the time series input type, as used in TSTool
TS_DataType - the data type shown in TSTool, specific to an input type
For example, TSTool uses "Streamflow" for HydroBase, whereas
for other input types a different data type string may be used.
TS_Interval - time series interval of interest (e.g.,"Month", "Day", "1Hour"
"Irregular")
Layer_Name - the layer name used in the map layer list
Layer_Location - the attribute that is used to identify a location, to be
matched against the time series data location
Layer_DataType - the attribute that is used to indicate the data type for a
station's time series (CURRENTLY NOT USED - UNDER EVALUATION)
Layer_Interval - the attribute that is used to indicate the interval for a
station's time series
Layer_DataSource - the attribute that is used to indicate the data source for
a station's time series.

When matching time series in the TSTool time series query list with features
on the map, the TS_* values are matched with the time series identifier
values and the Layer_* attributes are matched against specific time series.

Data layers are listed from largest interval to smallest.
"TS_InputType","TS_DataType","TS_Interval","Layer_Name","Layer_Location","Layer_DataSource"
HydroBase,DivTotal,Day,"Diversions",id_label_7,""
HydroBase,DivTotal,Month,"Diversions",id_label_7,""
HydroBase,EvapPan,Day,"Evaporation Stations",station_id,""
HydroBase,EvapPan,Month,"Evaporation Stations",station_id,""
HydroBase,Precip,Irregular,"Precipitation Stations",station_id,""
HydroBase,Precip,Day,"Precipitation Stations",station_id,""
HydroBase,Precip,Month,"Precipitation Stations",station_id,""
HydroBase,RelTotal,Day,"Reservoirs",id_label_7,""
HydroBase,RelTotal,Month,"Reservoirs",id_label_7,""
HydroBase,Streamflow-DISCHRG,Irregular,"Streamflow Gages - Real-time",station_id,""
HydroBase,Streamflow,Day,"Streamflow Gages - Historical",station_id,""
HydroBase,Streamflow,Month,"Streamflow Gages - Historical",station_id,""

Example Time Series Map Layer Lookup File

The columns in the lookup file indicate how information in the time series input/query list can be matched
against time series in map layers. In particular, the TS* columns define values that are seen in the
TSTool interface and the Layer* columns define the layer and attribute names for map layers. The
Layer_Interval and Layer_DataSource are optional but if specified result in more specific
links between time series and map layers.

 Appendix - Installation and Configuration - 17 529

Installation and Configuration TSTool Documentation

This page is intentionally blank.

Appendix - Installation and Configuration - 18 530

Appendix: TSTool Release Notes
Version 9.09.00, 2010-09-30

This appendix provides information about changes that have occurred in TSTool versions.

1. TSTool Version History

The following table summarizes the TSTool release history. See the following sections for more detailed
information about each version. Only recent versions are documented in detail. Comments for minor
versions may be listed under a version that is publicly released. Recent release note items are categorized
as follows:

Bug Fix – A bug has been fixed. Users should evaluate whether their work is impacted.

Known Limitation – A known limitation has been documented and may impact the user. The limitation
will be addressed in a future release.
Change – An existing feature has been changed.

Remove – A feature has been removed.

New Feature – A new feature has been added, with functionality that was not previously available.

TSTool Version History Summary (most current at top)

TSTool Version Summary of Changes in Version Release Date
9.09.00 Add additional commands for table processing. Improve

template integration with processor properties and tables.
2010-09-30

9.08.00 – 9.08.01 Support connecting to more than one RiversideDB and
introduce the concept of named data stores as an alternative to
input type/name. Add TableMath() and
TableTimeSeriesMath() commands.

2010-09-15

9.07.00 – 9.07.02 Add HTML summary, improve data flag handling, improve
Python integration, initial support for ColoradoWaterHBGuest
web service, include training materials, other maintenance.

2010-08-20

9.06.00 – 9.06.04 Initial support for ColoradoWaterSMS web service, enhance
RiversideDB support, various improvements.

2010-05-25

9.05.00 – 9.05.03 Enhancements to support additional time series and ensemble
processing, in particular to compute statistics for drought
studies.

2009-11-17

9.04.00 – 9.04.02 The following features are now at production level:
ReadTableFromDelimitedFile(),
WriteTableToDelimitedFile(),
ResequenceTimeSeriesData(). The
CalculateTimeSeriesStatistic() command and
additional table processing features have been added.

2009-07-28

 Appendix – Release Notes - 1 531

Release Notes TSTool Documentation

TSTool Version Summary of Changes in Version Release Date
9.01.00 – 9.03.06 Add VariableLagK() and RunDSSUTL() commands, fix

several bugs, and enhance several commands. Add
preliminary CheckTimeSeries(),
WriteCheckFile() commands. Enhance the
ChangeInterval() command and documentation.

2009-04-29

9.00.00 – 9.00.05 Update from Java 1.4.2 to Java 1.6, various bug fixes. 2009-02-05
8.18.00 – 8.18.02 Initial HEC-DSS support. Improved RiversideDB support. 2008-11-24
8.17.01 – 8.17.02 Bug fixes for 8.17.00. See below. New features include

File…New to open a new command file and add support for
new StateMod 12.29 binary file format.

2008-10-29

8.17.00 All commands are updated to the new error handling and
named parameter notation. Many other minor changes have
been made for consistency. Many minor user-requested
enhancements have been implemented. Several minor bugs
reported by users have been fixed. The StateCUB (StateCU
binary output file) has been enabled.

2008-10-06

8.16.00 – 8.16.02 Migrate additional commands to new error-handling and
named parameter notation. Add RunPython() and
FTPGet() commands.

2008-07-22

8.15.01 – 8.15.03 Fix a number of problems where migration of commands from
fixed parameter to named parameter syntax resulted in some
old command files not being handled. The command file is
also now marked as modified if any commands are
automatically updated. Added more error checks, such as in
DateValue file reading to help provide better feedback to
users.

2008-06-11

8.13.00 – 8.14.02 Add commands to set properties, for use by other commands
(e.g., to configure file names). Continue updating commands
to utilize the new error handling.

2008-02-20

8.03.00 – 8.12.06 Update many commands to utilize new error handling and
consistently handle the TSList parameter. Add ensemble
processing to many commands. Enable ability for read
commands to run in discovery mode to let other commands
know time series identifiers. Add more commands to compute
statistics time series.

2008-01-14

8.00.00 – 8.02.00 Update main interface to use new error-handling visualization
features. Add several commands to allow TSTool to perform
regression tests on itself.

2007-12-03

7.04.00 Various updates for HydroBase including adding support for
administrative flow station. Allow reading StateMod rights
files and handle new StateCU file formats.

2007-06-22

7.01.00 Support new SFUT(G) coding for HydroBase diversion
classes, and allow CIU when filling diversion data. Fix a
number of bugs in the analyzePattern(),
fillInterpolate(), and cumulate() commands

2007-03-02

7.00.00 Begin distributing software using a new installer. Add CASS
livestock data and human population data.

2006-10-31

6.19.00 Update to extend period when filling with diversion
comments.

2006-05-19

2 - Appendix – Release Notes 532

TSTool Documentation Release Notes

TSTool Version Summary of Changes in Version Release Date
6.18.00 Add the runCommands() command to facilitate data

processing.
2006-05-02

6.17.00 Add the compareFiles() command to facilitate testing. 2006-04-17
6.16.02 Begin adding commands to test data, for alarms. 2006-04-17
6.16.01 Time series to map link is enabled. Improve UNC support.

Improve startup performance in batch mode.
2006-02-16

6.16.00 Begin adding support for NDFD (National Digitial Forecast
Database) input type, and maintenance.

2006-01-31

6.15.00 Begin adding time series to map link. 2006-01-16
6.14.00 Update some commands to named parameter notation, and

maintenance.
2005-12-14

6.13.00 Internal release. 2005-11-13
6.12.00 Improve error handling when running in batch mode with

graphs.
2005-10-05

6.11.00 Enable the ColoradoSMS input type for hydrograph
annotations and update batch mode features to better utilize
the CDSS configuration file.

2005-10-05

6.10.09 Maintenance release – convert some commands to use named
parameters.

2005-09-28

6.10.08 Maintenance release – convert some commands to use named
parameters. Add the newStatisticYearTS() command.

2005-09-22

6.10.07 Maintenance release – convert some commands to use named
parameters.

2005-08-24

6.10.06 Release corresponding to the CDSS CD release. 2005-08-04
6.10.05 Respond to CDSS testing feedback. 2005-08-01
6.10.04 Respond to CDSS testing feedback. Add additional query

filters for HydroBase stations and structures.
2005-07-20

6.10.03 BETA Begin phasing in saving time series products to HydroBase
and RiversideDB.

2005-07-08

6.10.02 BETA Update the openHydroBase() command to use free-
format parameters.

2005-06-28

6.10.01 BETA Begin enabling data flags for time series to support
enhancements to fill commands.

2005-06-03

6.10.00 BETA Initial release supporting HydroBase stored procedures with
initial prototypes of Mixed Station Analysis and related
features. Implement new message log viewer and commands
to simplify comparison of time series.

2005-06-01

6.09.03 Maintenance release. 2004-12-21
6.09.02 Maintenance release. 2004-10-05
6.09.01 Add NWSRFS FS5Files input type. 2004-09-01
6.09.00 Add readHydroBase() commands. 2004-08-27
6.08.02 Documentation made current to include all version 6 changes. 2004-07-27
6.08.01 Allow HydroBase connection to be made at startup. 2004-07-20
6.08.00 Allow wildcards in commands that read from StateCU and

StateModB input types.
2004-07-11

 Initial Java version. 1997-10-23

 Release Notes - 3 533

Release Notes TSTool Documentation

Known Limitation When saving time series product (*.tsp) files, the absolute path of files is saved. This

is not as portable as saving a path relative to the command file. It may be necessary to edit the product
file manually to change file paths from absolute to relative – the relative path will then be converted to
absolute when processed and time series files will be found, assuming that the locations are consistent.
Known Limitation The ReadStateCUB() command, unlike other read commands, does not provide a

discovery mode. Consequently, other commands will not be provided with a list of time series identifiers
for the binary file. The reason for this is that StateMod and StateCU binary files can contain a huge
number of time series and providing a list could be overwhelming and slow. Alternatives are being
evaluated. Currently, commands that reference time series in the binary files must use more generic
selection methods such as TSLIST=AllMatchingTSID and TSID with wildcards.
Known Limitation Plotting features do not know understand the concept of instantaneous, mean, and

accumulated time series (referred to as the time scale). All values are plotted at data value date/time. In
the future, features may be implemented to automatically determine from the time scale whether to adjust
the visual representation based on the time scale.

Changes in Version 9.09.00

 Bug Fix [09.00.00] The RunCommands() command was not passing data stores to the processor

used for the command file being run. This is now the default and a parameter has been added to not
pass the data stores.

 Bug Fix [09.00.00] Fix bug where File…Open HydroBase was not showing the HydroBase login.

 Change [09.09.00] Several commands have been updated to have Optional/Required language in
editors – this will continue until all commands are updated.

 Change [09.09.00] The ExpandTemplateFile() command now exposes processor properties
set with SetProperty() to the template expansion tool. One-column tables are also exposed as
lists. This allows template processing to be dynamically controlled.

 Change [09.09.00] The FillRepeat() command now accepts a FillFlag parameter.

 Change [09.09.00] The SetTimeSeriesProperty() command now allows a user-defined
property to be set.

 New Feature [09.09.00] Add the CopyTable() command, useful for creating one-column tables
for lists that can be used to expand templates.

 New Feature [09.09.00] Add the ManipulateTableString() command.

 New Feature [09.09.00] Add the SetTimeSeriesPropertiesFromTable() command,
which can be used to set user-defined properties for a time series.

 New Feature [09.09.00] Add the ReadTableFromDBF() command, which reads a table from a
dBASE file (e.g., associated with an ESRI GIS shapefile).

Changes in Versions 9.08.00 – 9.08.01

 Bug Fix [09.08.01] HydroBase AutoConnect property in TSTool configuration file was not being

recognized for non-CDSS configurations. This has been fixed.

4 - Appendix – Release Notes 534

TSTool Documentation Release Notes

 Bug Fix [09.08.01] The CalculateTimeSeriesStatistic() command now properly
matches time series identifiers in existing records rather than adding new records for output. The
statistic column also is automatically added if it does not exist.

 Bug Fix [09.08.00] Data units for HydroBase data were shown as blank in the time series list for
many data types – this has been fixed. Units have always been properly set in time series results.

 Bug Fix [09.08.00] Better handle time series with no data in graphs – time series are ignored and
warnings are not shown (see also new feature below that highlights such time series in the time series
list).

 Change [09.08.01] The RiversideDB query panel now has 6 input filters and choices are editable to
allow matching substrings.

 Change [09.08.01] The CalculateTimeSeriesStatistic() command now allows the
TSID column format to be specified, to allow more control over linking data.

 Change [09.08.00] The File…Open…RiversideDB functionality now reads a RiversideDB
configuration file rather than the full TSTool or RiverTrak® configuration file and does not prompt
for a login (by default data can be read but not written to the database). See the RiversideDB Data
Store appendix for more information.

 New Feature [09.08.01] Add TableMath() command to perform simple math on table columns.

 New Feature [09.08.01] Add TableTimeSeriesMath() command to perform simple math on
time series using input from a table.

 New Feature [09.08.00] Multiple RiversideDB databases can be opened using data store names.
Data stores are suitable for databases and binary files and are an alternative to the input type/name
convention. Data store names are now listed above the input types in the Input/Query area if data
stores are available.

 New Feature [09.08.00] Time series that do not have data are now indicated with red text in the time
series results list and are handled better in the graphing tool.

Changes in Versions 9.07.00 – 9.07.02

 Bug Fix [09.07.02] The RunningAverage() command was generating errors trying to compute

N-year running average values on Feb 29 for daily and finer data. The values are now set to missing.
 Bug Fix [09.07.00] The table display for time series now shows numbers right-justified. The

display had been left-justified for awhile.
 Change [09.07.02] The ReadStateCU(…,AutoAdjust=True,…) value is now the default to

help ensure that TSTool can properly handle StateCU data types that include periods.
 Change [09.07.01] The ReplaceValue() command now provides an Action parameter to

allow setting values to missing (or removing in irregular time series), and an analysis window can be
specified to process data in a part of the year.

 Change [09.07.01] The CheckTimeSeries() command now provides an Action parameter to
allow setting values to missing (or removing in irregular time series).

 Change [09.07.00] Period and monthly time series limits now include median, standard deviation,
and skew statistics to facilitate additional analysis.

 Change [09.07.00] Status messages now indicate the command being run during processing, in
addition to the progress percent estimate.

 Release Notes - 5 535

Release Notes TSTool Documentation

 Change [09.07.00] The WriteSummary() command now outputs an HTML file if the output file
extension is “html”, and allows the output year type to be specified in the command. An HTML
report is also available from the main window results menu. The HTML report color-codes missing
and flagged values and provides notes explaining flags. Additional enhancements to output will be
added in the future.

 Change [09.07.00] The CompareFiles() command now has an AllowedDiff parameter to
indicate that a certain number of lines are allowed to be different, which is useful, for example, for
comparing files that have a date/time or software version in output.

 Change [09.07.00] The ReadDelimitedFile() command has improved error handling when
invalid column names are specified in parameters.

 Change [09.07.00] The FillHistMonthAverage() command now accepts FillFlag=Auto
and FillFlagDesc to better control flagging of filled values.

 Change [09.07.00] The CheckTimeSeries() command now accepts Flag and FlagDesc
parameters to annotate values that are detected during the check, and the Change> and Change<
check criteria have been added.

 Change [09.07.00] The # comment command now automatically has a status of success after
editing, which avoids the “unknown status” indicator next to the command.

 Change [09.07.00] The RunPython() command now uses Jython 2.5.1 (when running the Jython
embedded interpreter). Support has also been added for IronPython (the .NET implementation of
Python) and additional parameters have been added to facilitate integration in various environments).

 New Feature [09.07.02] Training materials are included in the doc/Training folder under the
installation. Additional examples will be added in the future.

 New Feature [09.07.00] An initial implementation of the ColoradoWaterHBGuest web services has
been added, which allows accessing HydroBase via web services (no need for local database install).
Initial work focuses on the DivTotal data type. Other data types will be handled in the future.

 New Feature [09.07.00] Flags associated with time series are now handled better. The 1-character
limitation has been removed internally and restrictions imposed by commands will be removed over
time. Flagged values are automatically noted on the HTML summary report.

 New Feature [09.07.00] The results area now provides Views, which allow more customized ways
of listing, viewing time series. An initial version of the NewTreeView() command has been
implemented to create a tree view. Additional views will be added in the future.

Changes in Versions 9.06.00 – 9.06.05

 Bug Fix [09.06.02] The CalculateTimeSeriesStatistic() command was reporting

fraction for the missing and non-missing percent statistics – it has been fixed to report percent.
 Bug Fix [09.06.02] Running commands with SetOutputPeriod() and then loading a command

file might display warnings for time series read commands because an attempt was made to change
the period even though data values are not available. Running the commands would clear the
warnings. This has been fixed so that warnings are not generated when loading the command file.

 Bug Fix [09.06.02] Commands read from a command file that have invalid parameters were not
always generating a visible warning for the user – this has been fixed.

6 - Appendix – Release Notes 536

TSTool Documentation Release Notes

 Bug Fix [09.06.02] The NewStatisticYearTS(…,SearchStart…) parameter was disabled
in the 9.05.x release but has now been restored. The bug resulted in major errors in calculating frost
dates (such as time series having mostly very low or high days in year).

 Bug Fix [09.06.00] Copying a block of time series from the query results area to the command list
when a command was selected resulted in the query results order being reversed – this has been fixed.

 Change [09.06.04] The ReadDelimitedFile() command has been updated to support reading
column headings from the delimited file.

 Change [09.06.02] The ChangeInterval() command now includes a Statistic parameter
that supports computing MAX and MIN statistics for INST (small) to INST (large) interval
conversions. For example, use this feature to convert instantaneous temperature data to day
maximum and minimum temperatures. Additional statistic support will be added in the future.

 Change [09.06.02] Opening a new HydroBase or RiversideDB database with File…Open now
refreshes the input filters for the new connection, rather than just relying on startup configuration. A
warning is now displayed when the HydroBase or RiversideDB input types are selected but no
database connection is available.

 Change [09.06.01] The WriteCheckFile() command now includes the execution time for each
command – this facilitates evaluation of software performance.

 New Feature [09.06.05] Add viewing capabilities for PNG and JPG output files.

 New Feature [09.06.04] Add ${InstallDir} global property for processor to facilitate locating
supporting files (e.g., Python scripts) in the installed environment. This property is recognized by
commands that expand processor properties (see documentation).

 New Feature [09.06.04] Initial support for ColoradoIPP input type in main interface and
ReadColoradoIPP() command.

 New Feature [09.06.03] The WebGet() command has been added to allow downloading content
from a website.

 New Feature [09.06.03] The ReadFromDelimitedFile() command functionality has been
fully enabled and documented.

 New Feature [09.06.02] Querying the time series list from a RiversideDB database now displays a
join of time series, station, and location data, and the query can be filtered by the values.

 New Feature [09.06.01] If the TSTool configuration file indicates that the HydroBase input type is
enabled and the HydroBase.AutoConnect=True property is set, then the HydroBase dialog
will not be shown and the information in the CDSS configuration file will be used to make the
HydroBase connection. This is useful when TSTool is installed in a server environment and everyone
will use the same HydroBase connection.

 New Feature [09.06.00] The ColoradoWaterSMS input type has been added for interactive queries
and TSID commands (specialized read commands have not been implemented). This allows TSTool
users to access Colorado’s real-time data via internet web services and then analyze it with TSTool
features. The web services DO NOT provide access to data from external data providers such as the
USGS. Additional enhancements will be made in future releases.

 New Feature [09.06.00] The data units that are globally used by TSTool can now be viewed using
the View… Data Units menu. Data units are important for units conversion and when displaying
data.

 Release Notes - 7 537

Release Notes TSTool Documentation

Changes in Versions 9.05.00 – 9.05.03

 Bug Fix [09.05.01] The AnalyzePattern() command was miscalculating positions of cutoff

values, which, depending on the number of values in a sample, sometimes resulted in an edge pattern
value being determined as one position to0 low. For example, a value near one of the percentile
cutoffs would be reported as AVG when it should have been WET. This behavior resulted in a slight
bias towards lower categories having higher values due to the extra value. This has been fixed;
however, a Legacy parameter has been added to duplicate old behavior, in cases where old behavior
needs to be retained.

 Bug Fix [09.05.00] Time series identifier commands that have invalid time series (e.g., not
connected to database or using an invalid file name) generate an error when the command file is
loaded. The “discovery” mode would not pass on the identifier to other commands and editors might
fail when an empty identifier list is encountered. The identifiers are now passed on to other
commands.

 Change [09.05.03] Update the ReadStateMod() and ReadStateModB() commands to allow
an alias to be assigned time series that are read, and recognize ${property} values in the input
filename. Also update the ReadStateMod() command editor to better handle water right files.

 Change [09.05.03] Update the NewStatisticTimeSeries() command to handle year, hour,
and minute data interval in addition to previous support for month and day.

 Change [09.05.02] Update the NewStatisticYearTS()to generate the output time series in
year type other than calendar and handle other than daily time series (previous limitation).

 Change [09.05.02] Update the ChangeInterval() command to create year interval time series
from daily and monthly data, where the output year type is other than calendar year.

 Change [09.05.02] Update the ResequenceTimeSeriesData() command to process output
year types other than calendar year.

 Change [09.05.01] Update the NewStatisticTimeSeries() command to include Min, Max,
and Median statistics, output period (in particular to allow output to be shortened to one year), and
add a parameter to require a minimum sample size for computations.

 Change [09.05.01] Update the NewStatisticTimeSeriesFromEnsemble() command to
include Min, Max, and Median statistics, output period (in particular to allow output to be shortened
to one year), and add a parameter to require a minimum sample size for computations.

 Change [09.05.01] Update the CalculateTimeSeriesStatistic() command to calculate
the following statistics: DeficitMax, DeficitMean, DeficitMin,
DeficitSeqLengthMax, DeficitSeqLengthMean, DeficitSeqLengthMin,
DeficitSeqMax, DeficitSeqMean, DeficitSeqMin, Lag-1AutoCorrelation, Skew,
StdDev, SurplusMax, SurplusMean, SurplusMin, SurplusSeqLengthMax,
SurplusSeqLengthMean, SurplusSeqLengthMin, SurplusSeqMax,
SurplusSeqMean, SurplusSeqMin, Variance.

 Change [09.05.01] Update the AnalyzePattern() command to allow saving output statistics to
a new table, which can then be written to a file with another command.

 Change [09.05.00] Rename the CreateEnsemble() command to
CreateEnsembleFromOneTimeSeries() to reflect the command’s specific functionality and
to avoid confusion with related commands.

8 - Appendix – Release Notes 538

TSTool Documentation Release Notes

 Change [09.05.00] Allow DateValue format files to be written with no time series. This facilitates
software testing and helps troubleshoot production command files. Previously an error was
generated.

 New Feature [09.05.01] Add table display to ensemble results – all time series in the ensemble can
therefore quickly be displayed.

 New Feature [09.05.00] Add NewEnsemble() command to create a new ensemble and optionally
insert 1+ time series into the ensemble.

 New Feature [09.05.00] Add InsertTimeSeriesIntoEnsemble() command to insert time
series into an existing ensemble.

 New Feature [09.05.00] Add TimeSeriesToTable() command to copy time series data to a
table.

 New Feature [09.05.00] Add ExpandTemplateFile() command to implement templates using
FreeMarker (http://freemarker.org). This facilitates adding conditional logic, loops, etc., to command
files.

Changes in Versions 9.04.00 – 9.04.03

 Bug Fix [09.04.03] Fix bug in ResequenceTimeSeriesData() command where the last year

in the resequenced time series contained missing values.
 Change [09.04.00] Finalize ReadTableFromDelimitedFile() command features for

production use.
 Change [09.04.01] Finalize ResequenceTimeSeriesData() command for initial production

use.
 New Feature [09.04.02] Add NewTable() command to create an empty table that can receive

output from other commands.
 New Feature [09.04.02] Add CalculateTimeSeriesStatistic() command to compute

statistics and optionally save in a table.
 New Feature [09.04.02] Add initial Principal Component Analysis (PCA) tool and
FillPrincipalComponentAnalysis() command – the command will be finalized after
additional testing and review.

 New Feature [09.04.01] Enable ability to read RiversideDB information from TSTool configuration
file for batch runs.

 New Feature [09.04.00] Add WriteTableToDelimitedFile() command. This command is
initially being used to test the read command but can be utilized as more table features are enabled.

Changes in Versions 9.01.00 – 9.03.04

 Bug Fix [09.03.05] Update the ChangeInterval() command to better handle negative values in

some computations.
 Bug Fix [09.03.04] The SetTimeSeriesProperty() command was not allowing wildcards in

the TSID parameter – this has been fixed.
 Bug Fix [09.03.00] The CreateFromList() command now ignores lines in the input that result

in empty location identifiers – this was causing unexpected warnings.

 Release Notes - 9 539

http://freemarker.org/

Release Notes TSTool Documentation

 Bug Fix [09.01.01] The FillRegression() command was not recognizing the
AnalysisStart and AnalysisEnd parameters – this has been fixed.

 Bug Fix [09.01.00] Fix WriteSummary() to output in water year if the year type has been set
with SetOutputYearType().

 Bug Fix [09.03.00] Fix several issues with the ReadHecDss() and WriteHecDss() commands
related to hour 23/24 conversions and address feedback about the previous release.

 Change [09.03.06] Update ChangeInterval() command documentation to reflect current
software capabilities. Also update the dialog to clarify notes about some parameters.

 Change [09.03.04] Update WriteSHEF() to provide more override parameters and allow
appending to the output file.

 Change [09.03.02] Update VariableLagK() to allow negative lag.

 Change [09.03.00] Update RemoveFile() to fail if the file was not removed – users will need to
check file permissions if the remove did not occur.

 Change [09.03.00] Finalize the VariableLagK() command features for release. The
DataUnits parameter has been changed to FlowUnits and comments and command messages
now also use “flow”.

 Change [09.03.00] Update RunCommand() to provide parameters to specify the program name
and each command line argument, in addition to the previous single command line – this facilitates
handling of spaces in program name and arguments. Add the ExitStatusIndicator parameter
to allow specification of a string to detect the exit status in output. Allow double quotes to be
“escaped” in the program name and arguments by using \”. Add the UseCommandShell
parameter to indicate whether the command shell should be used – disabling the command shell for
simple executable calls can increase performance and simplify error handling.

 Change [09.02.00] Change Lag() to append “routed” to the scenario, instead of setting the data
sub-type – this more cleanly ensures that distinct yet similar time series result from the command.

 Change [09.01.00] Update WriteSummary() to offer full TSList parameter options similar to
other commands.

 New Feature [09.03.06] Use default HTML viewing program for user environment when viewing
HTML files (such as check files) and add documentation as Help…View Documentation menu.

 New Feature [09.03.04] Add preliminary CheckTimeSeries() command to test time series for
invalid values, perform quality control, etc.

 New Feature [09.03.04] Add preliminary WriteCheckFile() command to write a summary of
command processing warnings and failures.

 New Feature [09.03.00] Add RunDSSUTL() command to run the Army Corps of Engineers’ HEC
DSSUTL program and other utility programs.

 New Feature [09.01.00] Add output year type NovToOct, similar to WaterYear, suitable for use
with some systems. WriteStateMod() and WriteSummary() now recognize this year type.

 New Feature [09.01.00] Add the Problems tab to the results to list all warning/failure messages
from running the commands. Additional features will be implemented to facilitate viewing. The
listing can be sorted by right-clicking on the column heading and can be copied and saved to a file.

Changes in Versions 9.00.00 – 9.00.05

10 - Appendix – Release Notes 540

TSTool Documentation Release Notes

 Bug Fix [09.00.05] Using the Exit() command would not display the results generated prior to
the command – this has been fixed.

 Bug Fix [09.00.05] The ReadHydroBase() command allowed too many where clauses in
queries. A maximum of 6 criteria can be queried based on the current HydroBase interface design,
and criteria beyond 6 were being ignored. The command and its editor now only allow up to 6
criteria.

 Bug Fix [09.00.04] Writing time series with missing values to NWS Card format could result in
values inappropriate for Card files – the software now converts internal missing data values (e.g.,
NaN) to -999 when writing Card files.

 Bug Fix [09.00.03] The Copy() command was generating an error when operating on time series
with hour interval data and data flags – this has been fixed.

 Bug Fix [09.00.03] The Multiply() and Divide() commands’ default behavior is to reset the
data units on the modified time series to units*units or units/units, respectively. However, if the
second time series has blank units then **, etc. could result – this has been corrected. Additionally,
the NewUnits parameter has been added to both commands to allow the units to be reset to
appropriate values.

 Bug Fix [09.00.00] Reading USGS NWIS time series using a TSID command resulted in null dates
in the period – this has been fixed.

 Change [09.00.03] Upgrade the editor for TSID (time series identifier commands) to allow
removing/adding the working directory from file names in the identifiers.

 Change [09.00.00] Upgrade Java from version 1.4.2 to 1.6, allowing use of updated third-party
components and resulting in an increase in performance.

Changes in Versions 8.18.00 – 8.18.02

 Bug Fix [08.18.02] Fix limitation where the cell selection behavior in many tabular displays was not

correct when running with Java 5+. TSTool will continue to be distributed with Java 1.4.2 in the
short term but Java 6 will be phased in when tests are complete.

 Bug Fix [08.18.01] Fix the SetInputPeriod() and SetOutputPeriod() commands –
spaces between parameters were not being handled.

 Bug Fix [08.18.01] Fix the uninstaller to remove the python folder used for utility scripts, which
results in a complete uninstall.

 Change [08.18.01] Add the MissingValue parameter to the WriteDateValue() command,
in particular to support time series read from formats with very large or small values used for missing
data.

 Change [08.18.01] Improve support for the RiversideDB database – all standard time series data
tables are now supported.

 New Feature [08.18.02] Begin distributing example data with the installer, starting with DateValue
examples. See the TSTool-Version/examples/data/DateValue folder.

 New Feature [08.18.02] Add the Help…Import Configuration menu item, which allows a TSTool
configuration file to be merged with the current file (e.g., for use after a new software install).

 Release Notes - 11 541

Release Notes TSTool Documentation

 New Feature [08.18.00] Add preliminary support for reading HEC-DSS files in the main interface
and the ReadHecDss() command. Irregular time series are not supported and by default only the
first data block is read – use the ReadHecDSS() command with a period to read the full period.

Changes in Versions 8.17.01 – 8.17.02

 Bug Fix [08.17.02] When opening HydroBase with File…Open HydroBase more than one time,

the Where filters were not being reset for the new database connection – this has been fixed.
 Bug Fix [08.17.02] When loading command files that had time series identifier commands with

extra spaces, the user may have seen an error. The error goes away when running the commands.
The software now removes unneeded spaces at load so that they are not considered part of the time
series identifiers, and the errors consequently do not occur at load.

 Bug Fix [08.17.01] When run in batch mode, TSTool was not recognizing the default HydroBase
connection information in the CDSS.cfg configuration file – this has been fixed, allowing TSTool to
access HydroBase in batch mode.

 Bug Fix [08.17.01] Fix the bug where no TSList parameter for RunningAverage() caused an
error when running.

 Bug Fix [08.17.01] The following commands were not properly transitioning the TSID parameter
for older command files to new syntax. The behavior is now to set TSList=AllMatchingTSID
if the older command TSID parameter includes * and TSList=LastMatchingTSID if no
wildcard is used. This matches legacy functionality and also supports current conventions. Problems
may have occurred if the same TSID was reused in the command file because all
TSList=AllMatchingTSID was used and more time series would have been operated on than
desired. The updated commands are: AddConstant(), AdjustExtremes(), ARMA(),
ConvertDataUnits(), FillConstant(), FillFromTS(), FillInterpolate(),
FillPattern(), FillRepeat(), Free(), ReplaceValue(), RunningAverage(),
Scale(), SetConstant(), SetDataValue(), SetFromTS(),
ShiftTimeByInterval().

 Bug Fix [08.17.02] Similar to the previous item, the following commands were not properly
transitioning the IndependentTSID parameter for older command files to new syntax and have
been updated: FillFromTS(), SetFromTS(), SetToMax(), SetToMin().

 Change [08.17.02] The Add() and Subtract() commands now automatically update old syntax
to the current syntax – previously a message would be displayed indicating that the command had to
be recreated.

 Change [08.17.02] Previously, time series aliases with periods would be treated as full time series
identifiers and could only be matched with other full time series identifiers during processing. This
may have resulted in no match. Aliases with periods are now allowed to be specified and will result
in a match with similar aliases when compared with parameters that use the alias. Care must be taken
to NOT specify an alias with periods that is the same as a full time series identifier, and which is not
intended to be a match. In general, aliases that use periods should either match the full time series
identifier or be different enough to not result in an unintended match.

 Change [08.17.02] When opening a command file, read commands are run in “discovery” mode in
order to determine time series identifiers for command editors. Previous versions would do a full
read of the data at this point, which was slow – this has been fixed so that only time series metadata
are read when loading command files.

12 - Appendix – Release Notes 542

TSTool Documentation Release Notes

 New Feature [08.17.02] Add the File…New menu to allow clearing the current commands and
starting a new command file.

 New Feature [08.17.02] StateMod binary output files as of version 12.29 had a change in the file
header – this version of TSTool is able to read the new format while being backward compatible with
old formats.

Changes in Versions 8.16.03 – 8.17.00

 Bug Fix [08.17.00] Fix RiverWare file reading. Because RiverWare dates always include 24:00,

even when not needed, parsing some dates was causing roll-over into the next month. The 24:00 is
now ignored for day, month, and year interval time series.

 Bug Fix [08.17.00] Fix StateModB file reading – previously an error was occurring when no
reservoirs were in the data set.

 Bug Fix [08.16.03] Re-enable the general ReadTimeSeries() command in the GUI. It was
thought that this command would be phased out in favor of specific read commands. However, it is
useful in some cases and provides a companion to the CreateFromList() command. Also
update the command to allow more control over handling missing time series with the IfNotFound
parameter.

 Bug Fix [08.17.00] Fix the FillRepeat() command – the MaxIntervals parameter could not
be set in the command editor.

 Bug Fix [08.17.00] Fix many editor dialogs – the TSID entry field was disabled for
TSList=FirstMatchingTSID and TSList=LastMatchingTSID. These parameter values
were added for specific commands but became available globally for other commands.

 Bug Fix [08.16.03] When running in batch mode on Linux the menu bar graphic was loaded at
startup. This causes an error when an X11 connection is not configured (e.g., for cron jobs). This
error may still result if processing graphical products in batch mode – more will be done later
including updating the Java version used by TSTool.

 Bug Fix [08.16.03] Fix the ReadNwsCard() command to once again enable the NewUnits
parameter – this bug was introduced in version 08.03.00.

 Bug Fix [08.16.03] Fix so that reading an NWS Card file that is not 24Hour will generate an error if
Read24HourAsDay=True is specified.

 Change [08.17.00] Update the following commands to have new error handling and convert to
named parameter notation (if not previously converted): AdjustExtremes(), ARMA(),
CreateFromList(), Disaggregate(), Divide(), Exit(),
FillDayTSFrom2MonthTSAnd1DayTS(), FillInterpolate(), FillPattern(),
FillProrate(), Multiply(), NewDayTSFromMonthAndDayTS(),
NewEndOfMonthTSFromDayTS(), Normalize(), ReadDateValue(), ReadMODSIM(),
ReadNwsrfsFS5Files(), ReadPatternFile(), ReadRiverWare(),
ReadTimeSeries(), ReadUsgsNwis(), RelativeDiff(), ReplaceValue(),
SetDataValue(), SetToMax(), SetToMin(), StateModMax(), WriteStateCU(). All
commands are now updated to the new error handling and named parameter notation.

 Change [08.17.00] Disable hiding of problem gutter in main GUI. The problem icons will always
be shown and mouse over will popup the command status.

 Change [08.17.00] /*, */ and Exit() commands now have command editors even though these
commands have no parameters – this provides a consistent handling of all commands.

 Release Notes - 13 543

Release Notes TSTool Documentation

 Change [08.17.00] Change SetPatternFile() to ReadPatternFile(). The command
will automatically be converted when a command file is read.

 Change [08.17.00] Change SetMax() to SetToMax(). The command will automatically be
converted when a command file is read.

 Change [08.17.00] Change RemoveFile(WarnIfMissing=…) to
RemoveFile(IfNotFound=…) to be consistent with other commands. The command will
automatically be converted when a command file is read.

 Change [08.17.00] Update the FillInterpolate() command to have the FillStart,
FillEnd, and FillFlag parameters.

 Change [08.17.00] Update the CreateFromList() command to change the
HandleMissingHow parameter to IfNotFound and change the default to Warn. Users can then
decide whether missing time series should be a fatal problem, should be ignored, or should result in
default empty time series. Also change the default delimiter to comma (was comma and space) to
more explicitly handle comma separated value files.

 Change [08.17.00] Update the ReadNwsrfsFS5Files() command to allow a relative path for
the file.

 Change [08.17.00] Update the WriteSHEF() command to include the DataTypePELookup
parameter, to allow assigning the PE code when running in environments when such information is
not automatically initialized.

 Change [08.17.00] Update the CompareFiles() command to include the CommentLineChar
parameter, to allow setting the comment line character to other than the default (#).

 Change [08.17.00] Add full command editor for the LagK() command.

 Change [08.16.03] Update the ReadHydroBase() commands to have the IfMissing
parameter, to indicate how to handle missing time series. See also the information about the
OpenCheckFile() command below.

 Change [08.16.03] Update the FillFromTS()and SetFromTS() commands to have the
RecalcLimits parameter, to recalculate the historical data limits as if all the data were observed in
the merged time series. This facilitates combining time series from different sources to create one
observed time series.

 Change [08.16.03] Update the SetFromTS() command to have the HandleMissingHow
parameter, to allow missing data to be ignored during the transfer.

 New Feature [08.16.03] Add the ReadStateCUB() command and ability to read StateCU (State
of Colorado Consumptive Use model) binary output files in the main interface.

 New Feature [08.16.03] Add the initial version of the OpenCheckFile() command, to facilitate
checking results. ReadHydroBase() commands that fail will be listed in the check file.
Additional checks will be enabled in the future as the command is enhanced. The check file is
viewable in the results area. It is expected that formatting of the output file will change.

 New Feature [08.16.03] Add the WriteTimeSeriesProperty() command, to facilitate
software testing, in particular to write the data limits to test new FillFromTS() and
SetFromTS() command features. In the future this may also be used to save time series
information, such as statistics. Additional time series properties will be added over time.

Changes in Versions 8.16.00 – 8.16.02

14 - Appendix – Release Notes 544

TSTool Documentation Release Notes

 Bug Fix [08.16.00] TSTool running in batch mode was always exiting with status 0, even if errors
occurred. It will now exit with status 1 if any warnings or errors occurred in processing. Refer to the
log file for problems or run interactively to fix command input errors.

 Bug Fix [08.16.00] In the Free() command, the matched time series are now also freed in reverse
order from the list in memory – previously the logic may have freed the wrong time series if multiple
time series were matched in a pattern.

 Bug Fix [08.16.00] The FillStart and FillEnd parameters were not being recognized by the
FillFromTS() command – this has been fixed.

 Change [08.16.02] Update the CopyEnsemble()command to have the NewAlias parameter, to
allow more flexibility in identifying time series in the copy.

 Change [08.16.02] Update the CreateRegressionTestCommandFile()command to
recognize @os and @testSuite tags in command file comments, to control collection of test
command files.

 Change [08.16.00] Reset global properties (except logging levels) to defaults at the start of
command processor runs. Previously this was not done and global properties like output period could
still be in effect if rerunning commands interactively.

 Change [08.16.02] Update the following command to have new error handling and convert to named
parameter notation (if not previously converted): SetAutoExtendPeriod(),
SetAveragePeriod(), SetWorkingDir().

 Change [08.16.00] Update the following command to have new error handling and convert to named
parameter notation (if not previously converted): DeselectTimeSeries(),
SelectTimeSeries(), SetDebugLevel(), SetIgnoreLEZero(),
SetIncludeMissingTS(), SetOutputYearType(), SetWarningLevel().

 Change [08.16.00] Update the CreateRegressionTestCommandFile() and
RunCommands() command to better support testing. The expected status for a command file can
now be indicated in a comment. The output report now indicates the expected and actual status and
whether the test had an overall pass/fail. See examples of how to use these commands in the
documentation.

 Change [08.16.00] Update the Free()command to use the TSList parameter, to allow more
flexibility in selecting time series. Also add the FreeEnsembleIfEmpty parameter to remove
empty ensembles.

 Change [08.16.00] Update the WriteDateValue()command to have the Precision
parameter, to allow more flexibility in formatting output. The default is still 4 digits after the
decimal.

 New Feature [08.16.02] Begin adding Python example scripts to the distribution, located in the
python folder. Additional scripts will be added over time.

 New Feature [08.16.00] Add the FTPGet() command to retrieve files from remote systems using
file transfer protocol (FTP).

 New Feature [08.16.00] Add the RunPython() command to run Python/Jython scripts.

 Remove [08.16.00] Remove the SetMissingDataValue() command, which has not been
supported in the GUI for some time. The SetTimeSeriesProperty() or another command
may be updated to specify the missing data value for the time series.

 Release Notes - 15 545

Release Notes TSTool Documentation

 Remove [08.16.00] Remove the SetRegressionPeriod() command, which has not been
supported in the GUI for some time. The regression analysis period can be set in the
FillRegression() command parameters.

Changes in Versions 8.15.00 – 8.15.03

 Bug Fix [08.15.03] Re-enable the ability to read default HydroBase connection information from the

system/CDSS.cfg file when running in batch mode. This allows the user to configure HydroBase once
and use with any command file that is run.

 Bug Fix [08.15.03] Re-enable the ability to run TSTool in batch mode with –nomaingui and have
plot windows display until the Close button is pressed. This had been broken in version 8.00.00+.

 Bug Fix [08.15.00] Fix a bug in the Add() and Subtract() commands introduced after
08.02.00. Additional flexibility was enabled to specify the time series list but the new features were
not backward compatible with old command files in all cases, in particular when a list of specified
time series identifiers was used. Version 08.15.00 is backward compatible and translates old
commands on the fly. A workaround is to use version 08.02.00 and change the command parameters
to use TSList=SelectedTS (instead of AddTSList=SelectedTSID or
TSList=SelectedTSID).

 Bug Fix [08.15.00] Fix a bug in the SetConstant() command introduced after 08.02.00.
Additional flexibility was enabled to specify the time series list but the new features were not
backward compatible in all cases. In particular the TSList parameter default is now
LastMatchingTSID when updating old command files (was mistakenly defaulted to
AllMatchingTSID).

 Bug Fix [08.15.00] The ability to right-click on the command list and search for a command was
recently broken and has been fixed.

 Bug Fix [08.15.00] Printing the Analysis Details from an XY-scatter plot was broken and has been
fixed.

 Bug Fix [08.15.00] Fix so that the obsolete SetConstantBefore() command is treated as an
unknown command and verify that all unknown commands are loaded, to allow editing and
correction. Previously some obsolete commands might be skipped when loading command files.

 Bug Fix [08.15.00] Fix the ReadNwsCard() command for ensemble files to handle leap years in
the ESP run period (case where ESP run start is Feb 29 is still not handled). Also handle the
nonstandard period header produced by the NWS ESPADP software – previously this format error
had to be corrected outside of TSTool.

 Bug Fix [08.15.00] Fix the ReadNwsCard() command to handle reading ensemble files where
ESP was run on the last day of the year. The conversion of 1-24 hour to 0-23 hour was causing the
data to be shifted by one full month in this case. Also allow an optional ensemble identifier and name
to be specified, which will create an ensemble recognized by TSTool.

 Bug Fix [08.15.00] Fix the FillUsingDiversionComments() command (used when
processing HydroBase diversions). A bug was present that caused the filling to not occur when
operating on only one time series (filling worked when operating on all time series).

 Bug Fix [08.15.00] Fix the FillMOVE2() command to properly handle legacy command
parameters (prior to named parameter syntax) – this problem only occurred for old command files.

 Bug Fix [08.15.00] Fix the SetFromTS() command to properly handle legacy command
parameters (prior to named parameter syntax) – this problem only occurred for old command files.

16 - Appendix – Release Notes 546

TSTool Documentation Release Notes

 Change [08.15.03] Change the Copy() command to be more forgiving when reading old command
files. The required NewTSID parameter will now be defaulted to a copy of TSID with scenario
“copy”. Using an alias for TSID will still require updating the command to specify appropriate
NewTSID parameter information.

 Change [08.15.02] Change the ChangePeriod() command to also operate on ensembles.

 Change [08.15.00] Change DateValue time series file reading to NOT allow multiple adjacent
delimiters and do not allow mixing of space and tabs for delimiters. For example, when using
commas as the delimiter, “,,” would not result in a missing value. The updated software is more strict
in order to prevent inadvertent data errors. The default delimiter is a space. If for example, columns
are being pasted from Excel using tabs as the delimiter, make sure to add the following line at the top
of the DateValue file:
Delimiter = “ “
where a tab character is inside the quotes.

 Change [08.15.00] Change DateValue time series reading to generate a more explicit error if the file
does not exist, to facilitate error checks. Command files that reference invalid files may now generate
errors at different processing steps.

 Change [08.15.00] Update the WriteDateValue() command to recognize ensembles.

 Change [08.15.00] Update the Blend() command to current error handling and parameter naming
conventions. The old syntax is recognized and will be automatically updated.

 Change [08.15.00] Fix the WeightTraces() command – it had been disabled for some time and
has now been updated with command parameters and error handling consistent with current
standards. The old syntax is no longer recognized because the command now operates on an
ensemble identifier (old depended on less robust time series identifier conventions).

 Change [08.15.00] The “REF TS” label shown in the legend for plots, indicating which time series
is used in the overview (reference) window under the main plot has been removed. On-screen, saved
images, and printed plots should now look the same.

 Change [08.15.00] Improve the startup so that database queries for choices do not cause user
interface problems.

 Change [08.15.00] Software is now distributed with installers that install to a versioned folder and
indicate the software version in menus. This allows multiple versions of the software to be installed
at the same time. Previous versions evaluated this approach without full installers.

 New Feature [08.15.00] Indicate that the command file is modified when reading a command file
and changes to command syntax are automatically applied. This will occur with commands that have
been fully updated to the new error handling (you are not required to edit the command for its syntax
to be updated). The command file can then be saved to accept the automatic changes.

Changes in Versions 8.13.00 – 08.14.02

 Bug Fix Warning dialogs in command editors were inadvertently turned off in a previous release

and have been enabled again.
 Bug Fix Fix so that the TSAlias is used if specified in time series product files (used with
ProcessTSProduct()). This allows aliases to be configured in commands and passed to pre-
generated product files, to streamline product processing.

 Release Notes - 17 547

Release Notes TSTool Documentation

 Change The WriteDateValue() command has been updated to include a Delimiter
parameter (e.g., to allow comma to be specified) and the output period can be set in the command.
The alias is also now printed in column headings if it has been specified.

 New Feature Continue updating commands to have new error handling and to enable ensemble
processing for many commands.

 New Feature Add SetProperty() and SetPropertyFromNwsrfsAppDefault()
commands to set controlling information for processing. In particular, it is envisioned that this
capability will be used to set date/time and filename information at the top of a command file, for use
in other commands throughout the command file.

 New Feature Add ability to recognize ${Property} in read/write commands for DateValue,
NwsCard, and NwsrfsEspTraceEnsemble commands. This capability will be added to other
commands in future releases.

 New Feature Add the ability to set the time series alias dynamically in the
ReadNwsrfsEspTraceEnsemble() command.

 New Feature Add preliminary capability in the ReadDelimitedFile() command – additional
work will be completed to fully enable this command.

 New Feature Add the ComputeErrorTimeSeries() command, to create a time series
indicating the difference between, for example, observed and simulated time series. Percent error is
enabled and additional error measures may be added in the future.

 New Feature The RunPython() command has been enabled in preliminary fashion, with the goal
of implementing full support for calling external Python processing scripts, to support more complex
processing.

 New Feature Add the ResequenceTimeSeriesData() command to resequence years of data
in a time series, given a list of years.

Changes in Versions 8.03.00 – 08.12.06

 Bug Fix Fix NwsrfsEspTranceEnsemble handling to handle leap year and correct bug where time

zone was not being handled properly (one hour off).
 Change Many commands have been updated to use the TSList parameter, which indicates the time

series to be processed by the command. Commands are backward compatible; however, the new
parameter will not be recognized by older versions of TSTool. Once this parameter is enabled in a
command, it will allow additional values to be recognized in the future (e.g., getting the list of time
series from a table may be enabled). A consistent approach for the parameter also promotes
consistency between commands.

 Change As much as possible, update commands that read time series to provide the list of time
series identifiers to other commands. This facilitates command editing. For example, when a
Read*() command is inserted, it will partially run (discovery mode) to read time series information,
but not the full data. The time series information is then made available to later commands to
facilitate editing the commands.

 Change Expand the capabilities of the SetTimeSeriesProperty() to include setting whether
editable – editable time series will enable editing capabilities in the graph view. Add the
DefaultSaveFile parameter to the ProcessTSProduct() command to help automate saving
edited time series.

18 - Appendix – Release Notes 548

TSTool Documentation Release Notes

 Change Change all results to a tabbed panel of lists, with appropriate mouse actions. For example, a
variety of actions can be taken by right-clicking on the time series results. However, for output files,
a single click on a file will result in the file being displayed.

 Change Include most output files in the results tab. Some secondary files are not yet included but
will be as additional commands are updated with improved error handling.

 Change Reorganize general command menus to group related commands and avoid a long list of
general commands.

 Change Reorganize into a separate command menu commands that only apply to ensembles.
 Change The performance of the ShiftTimeByInterval() command has been greatly

improved.
 Change Running “TSTool File.TSTool” will cause the command file to be loaded, but not run. To

run in batch mode, continue to run with “TSTool –commands File.TSTool”.
 Remove Remove obsolete commands from menus. Running old command files will warn about the

obsolete commands and recommend new commands. Most of these commands have not been used
for a long time: SetConstantBefore() was previously replaced with SetConstant().
FillCarryForward() was previously replaced with FillRepeat().

 New Feature Add the ReadTableFromDelimitedFile() and
ResequenceTimeSeriesData() commands to facilitate generation of stochastic time series.

 New Feature Add the CreateEnsemble() command to create an ensemble of time series from a
single time series (e.g., by shifting and overlapping each year of the time series).

 New Feature Add the CopyEnsemble() command, which copies each time series in an ensemble.
 New Feature Add the NewStatisticTimeSeriesFromEnsemble() command, which

generates a statistic (e.g., “Mean”) time series from an ensemble.
 New Feature Add a command menu group and results tab for table processing. Add the
ReadTableFromDelimitedFile() command, for example to read a CSV file. It is envisioned
that table commands will be used to further automate and streamline processing.

 New Feature The NewStatisticTimeSeries() command has been added to generate a
statistic time series determined from a time series. For example, for the “Mean” statistic, the mean of
all Jan 1 daily values are repeated throughout the period for each Jan 1. This allows the mean to be
graphed or otherwise used for analysis.

Changes in Versions 8.00.00 – 08.02.00

 Change The Copy() command now requires a new time series identifier to be specified, in order to

avoid confusion with the original time series identifier. Old commands will fail if a valid new
identifier is not specified. A simple workaround is to use the same location and interval as the
original time series and “copy” for the scenario. Because an alias is assigned to the copy, this full
time series identifier will likely only be used for displays about time series details.

 Change Begin distributing TSTool such that when installed the software lives in a separate
versioned folder with a name similar to “TSTool-08.02.00”. This allows different versions of the
software to be installed at the same time, in case a specific version must be used and to allow for
transition to new versions without conflicts with other software that may share components. A zip
file install is available and a full installer is being created, similar to previous versions.

 Release Notes - 19 549

Release Notes TSTool Documentation

 New Feature Initial implementation of new error-handling features, which display graphics to the
left and right of the command area indicating warnings and failures. The intent is to provide users
with more immediate and accessible feedback and minimize the need to review the log file. Black
dots after running indicate commands that have not been updated to the new error handling. Right
click on a command and select “Show Command Status” to see useful information about resolving a
problem. A command has 3 phases: initialization, discovery, and run, each with a status of unknown,
success, warning, or failure.

 New Feature Process commands on a separate thread. This allows the GUI to remain responsive
and show command progress during running. Features are being implemented to cancel processing.

 New Feature Add CreateRegressionTestCommandFile(), RemoveFile(), and
StartRegressionTestResultsReport() commands to facilitate creating command test
suites, to allow regression testing. Use these commands to create test suites for testing, to automate
testing for future releases.

 New Feature Add the WriteProperty() command to write a processor property (e.g., the output
start date) to a file, primarily for use in testing.

 New Feature Add the RemoveFile() command for use in testing, and can also be used in normal
processing.

 New Feature Add the NewPatternTimeSeries() command, which can be used to generate
test data for other commands, and can also be used for normal processing.

Changes in Versions 7.02.00 – 07.04.00

 Remove checkbox for stored procedures from HydroBase login – the transition to stored procedures

has been complete for some time.
 Allow the readStateMod() command to read water rights files – this was implemented to verify

CDSS StateDMI software processing.
 Add support for HydroBase administrative flow stations.
 Add the setToMin() command similar to setMax().
 Update the TSTool PDF documentation to include navigation.
 Update the HydroBase fillUsingDiversionComments() command to optionally fill with the

CIU (currently in use) flag.
 Improve the sizing of the time series query list table.
 Change installer so that when TSTool is run in batch mode from the command line, the working

directory is the starting location, rather than the software installation home.
 Update to allow the readNWSRFSFS5Files() command to work in batch mode.
 Update to handle new StateCU file formats.

Changes in Version 7.01.00

 HydroBase 20061003 and later has a G: at the end of the SFUT and the F: has been expanded to

seven characters. This version of TSTool handles the new identifiers and is backward compatible
with older databases and commands files. Old commands files using SFUT should return the same
results as before.

 The time series list area now has a minimum height consistent with the HydroBase input type – lists
of time series from StateMod or other files are now more readable.

 The analyzePattern() command dialog now correctly forces the user to use percentiles in the
range of 0 to 1. The command has also been updated to use the output period from
setOutputPeriod() and the year type from setOutputYearType() to write the pattern file.

20 - Appendix – Release Notes 550

TSTool Documentation Release Notes

Consequently, the input time series are no longer required to be the specific water year period to
control output. The previous version added “_pattern” on the location part of the TSID, but the
current version instead sets the data type to “Pattern” – this will allow the pattern file output to be
directly used with fillPattern(), using standard locations.

 When saving commands files, the “TSTool” file extension is automatically added. This is compatible
with the new installer, which lets the operating know that the extension should be associated with
TSTool.

 Fix the fillInterpolate() command to allow time series identifiers with space.
 Fix the cumulate() command to allow the HandleMissingHow parameter to not be specified – it

will default to SetMissingIfMissing.
 The fillUsingDiversionComments() command has been updated to use the CIU HydroBase

data to provide more zeros.
 Update to support new StateCU file formats with longer crop names, consistent with similar

StateDMI software updates.
 The installer includes several improvements, including more ability to configure the HydroBase

information, and displaying previously set HydroBase configuration information as defaults.

Changes in Version 7.00.00

 Begin using the Nullsoft Scriptable Install System (NSIS) to build software installers.
 Begin distributing TSTool as an executable file TSTool.exe, which starts up the Java Runtime

Environment. This allows for simpler configuration of the Start menu and gives users a more
traditional executable to run.

 The software organization is slightly different from the previous releases in order to recognize clearer
boundaries between components. Several new Jar files are provided, rather than being merged with
other Jar files. The Installation and Configuration Appendix lists the files.

 Add support for Colorado Agricultural Livestock Statistics and human population time series in
HydroBase.

Changes in Version 6.19.00

 Update fillUsingDiversionComments() to extend time series with diversion comments

available outside the normal diversion records period, if no query or output period has been specified.

Changes in Version 6.18.00

 Add runCommands() to allow a controlling commands file to run other commands files.

Changes in Version 6.17.00

 Add compareFiles() to help with regression testing, to verify current and expected results.

Changes in Version 6.16.02

 Begin adding data test commands in development mode – these commands will evaluate time series

for critical conditions.
 Reenabled fillMove2(), which was unintentionally disabled in a previous release.

Changes in Version 6.16.01

 First version that includes operational features to support link between time series and map interface.

 Release Notes - 21 551

Release Notes TSTool Documentation

 Increase performance at startup when no main GUI is shown, for cases when TSTool is being used to
provide graphs for other software.

 Add support for Universal Naming Convention (UNC) for software home in startup files.
 Change View…Map Interface to View…Map.

Changes in Version 6.16.00

 Implement hooks for the NDFD input type.
 Improve handling of NWS Card file extensions in commands and File…Save menu choices.
 Add map interaction features. See the Installation and Configuration Appendix for more

information about configuring links with maps.

Changes in Version 6.15.00

 Begin implementing link between time series and map interface.
 Reorder general command menus to be more consistent with other software.
 Add warning if time series cannot be retrieved from the RiversideDB input type.

Changes in Version 6.14.00

 Change the setQueryPeriod() command to setInputPeriod() to be consistent with other

software nomenclature. The old command is still supported.
 The readNwsCard() and TS Alias = readNwsCard() commands both now use the named-

parameter notation and have the new Read24HourAsDay parameter.
 Blank lines in commands files now display properly.
 Fix bug where time series table sometimes showed half-drawn rows.
 Fix bugs where StateMod binary and StateCU input type file chooser prompt would not allow a

cancel of the file select to occur. Cancel now results in the previous file that was selected being
displayed.

Changes in Version 6.12.00

 Improve error handling for processing time series products. In particular, TSTool now returns a non-

zero exit status if there is an error processing a product. This can be detected by external software
that is running TSTool.

Changes in Version 6.11.00

 Enable the ColoradoSMS input type and begin adding alert annotations for streamflow graphs.
 Fix bug so that if a commands file is specified using a relative path, the working directory is

interpreted correctly to determine the full path to the commands file.
 Add the ability to accept Parameter=Value command line parameters. This will allow override

of configuration file information.
 Convert processTSProduct() to use named parameters and ensure that output can be viewed

even if in batch mode with no main GUI.
 Update so that for batch runs, the CDSS.cfg file information for HydroBase is used to make the initial

connection. Phase out the HydroBase database properties in the TSTool.cfg file.

Changes in Version 6.10.09

 Convert cumulate() to use named parameters and begin development of a new Reset parameter.

22 - Appendix – Release Notes 552

TSTool Documentation Release Notes

 Convert readStateModB() to use named parameters and add the Version parameter to allow
reading of old files. The features associated with the Version parameter are under development.

 Update the newStatisticYearTS() to support calculation of maximum and minimum values in
a year and count of values in a year above/below a test value. Also update the command to better
handle incomplete data at the end of the analysis period.

 Update the openHydroBase() command to check the CDSS.cfg information and provide database
server and database name choices to the user, to minimize errors in use.

Changes in Version 6.10.08

 Convert fillConstant() to use named parameters.
 Convert newTimeSeries() to use named parameters.
 Add the newStatisticYearTS() command, in particular to support calculation of frost date

time series.
 Update openHydroBase() to accept the database name parameter.
 Double-clicking on a command will now cause the editor for the command to be displayed.
 Add a Command Glossary to the documentation and begin to standardize command parameter names

to be consistent.

Changes in Version 6.10.07

 Convert scale() to use named parameters.
 Change TS X = … to TS Alias = … in menus. Start to change notation in documentation and

command dialogs.
 Convert copy() to use named parameters and add the ability to assign a new TSID to the copy.
 Convert writeStateMod() to use named parameters and add ability to select time series to write.
 Convert readStateMod() to use named parameters and add parameters for the input period..

Changes in Version 6.10.06

 Official release to support stored procedures.
 Documentation made current to reflect changes since the last documentation issue.
 Respond to feedback from previous 6.10.x incremental releases.
 Fix bug where XY-Scatter graph was not working due to changes in the 6.10.00 BETA release.

Changes in Version 6.10.05

 Add the lagK() command.
 Update the fillProrate() command InitialValue parameter to support
NearestForward and NearestBackward.

Changes in Version 6.10.04

 Add additional input filter choices for HydroBase structures and stations, consistent with the

StateView software.
 Update the fillProrate() command to include the ComputeFactorHow parameter to allow

computing the proration factor based on an average of ratios. Update the command to support free-
format parameters.

 Update the selectTimeSeries() command to allow combinations of selection filters, to allow
more flexibility.

 Add the ability to query HydroBase infrequent diversion and reservoir release time series.

 Release Notes - 23 553

Release Notes TSTool Documentation

Changes in Version 6.10.03 BETA

 Input filters for HydroBase well structures and stations are now handled properly.
 Add initial support for saving time series products to HydroBase and RiversideDB.

Changes in Version 6.10.02 BETA

 Update the openHydroBase() command to use free-format parameters.

Changes in Version 6.10.01 BETA

 Enable ability to have data flags for daily and monthly data.
 Update the writeRiverWare() command to handle time steps other than hourly.

Changes in Version 6.10.00 BETA

 Begin releasing support for HydroBase stored procedures.
 Begin development of generic changeInterval() command and update to free-format

parameters.
 Begin work on the Mixed Station Analysis tool and fillMixedStation() command.
 Update the fillRegression() command to support free-format parameters.
 Begin work on the analyzePattern() command.
 Add the Commands…Analyze Time Series menu for analysis commands.
 Add the Commands…Models menu for more complicated modeling commands.
 Add the Tools…Analysis menu for analysis tools.
 Begin implementing the generic log file viewer, which allows links between commands and log

messages.
 Change defaults to NOT display messages to the console, to improve performance.
 Add the point graph type.
 Add the predicted value graph type.
 Add the predicted value residual graph type.
 Add the sortTimeSeries() command.
 Add the ability for the readNWSCard() command to read 1+ time series.
 Add the startLog() command.
 Add the compareTimeSeries() command.
 Update the fillHistMonthAverage() and fillHistYearAverage() commands to have

fill flag and free-format parameters.
 Add a warning in the add() command when frost date time series are added and indicate more

appropriate commands.

Changes in Version 6.09.03

 Fix bug where initial directory with spaces in name was causing errors.

Changes in Version 6.09.02

 Added release notes to documentation.
 Fix bug in NWSRFS FS5Files input type where identifiers with underscores were not being handled.
 StateModB input type reservoir data types (and some well types) had ? for data groups – this has been

resolved using StateMod 10.27 HTML documentation.

24 - Appendix – Release Notes 554

Changes in Version 6.09.01

 Added NWSRFS FS5Files input type support, for use with the National Weather Service River

Forecast System (NWSRFS).
 Fix summary reports (daily totals and means) to handle minute data.

Changes in Version 6.09.00

 Add the readHydroBase() command to read one or more HydroBase time series while filtering

based on location, ID, etc.

Changes in Version 6.08.02

 Documentation updated to reflect all version 6 changes.
 Minor corrections to interface based on documentation review.

Changes in Version 6.08.01

 For the HydroBase input type, allow the ODBC DSN to be specified in the TSTool configuration file,

to allow a HydroBase connection to be made at startup without prompting. This supports the CDSS
CD distribution.

Changes in Version 6.08.00

 Allow StateCU input type time series read commands to allow wildcards.
 Allow StateMod input type time series read commands to allow wildcards.

 Appendix – Release Notes - 25 555

Release Notes TSTool Documentation

This page is intentionally blank.

26 - Appendix – Release Notes 556

Appendix: ColoradoIPP Input Type
2010-05-20

Overview

The ColoradoIPP input type corresponds to the Identified Projects and Processes (IPP) database used by
the Colorado Water Conservation Board (CWCB) to evaluate long-term water supply conditions in the
State of Colorado. The database stores several primary object types (referred to as subject types), which
have metadata and related time series. Subject types include:

• Basin (river basins, pending new database development)
• County
• Provider (entities that provide water to users)
• Project (water projects associated with providers)
• State (pending new database development)

ColoradoIPP and Standard Time Series Properties

The standard time series identifier for ColoradoIPP time series is of the form:

Location.DataSource.DataType.Interval.Scenario~ColoradoIPP

More specifically, the identifier follows the convention:

SubjectType:SubjectID.DataSource.DataType-Subtype-Method-Submethod.Year.Scenario~ColoradoIPP

where identifier parts are described as follows:

• SubjectType is County, Project, or Provider.
• SubjectID is the identifier for a SubjectType object, for example the county name

(currently Provider and Project identifiers are numbers; however, the database will be
updated to use a unique, human-readable string).

• DataSource is the data source for the time series (currently this is a verbose string;
however, the database will be updated to use a unique, human-readable string).

• DataType is the time series data type (e.g., demand).
• Subtype is a sub-type for the time series (e.g., percapita).
• Method is the method by which the data were determined (e.g., estimated or observed).
• Submethod is a modifier for the method (e.g., if different approaches are used to estimate data).
• Year is always the 4-digit year for the data (only annual time series are currently saved in the

database).
• Scenario is often blank but may indicate the scenario for data (e.g., low, middle, high).

Limitations

ColoradoIPP data are often sparse. Software such as TSTool can be used to fill or extend data. The
database is under development and will evolve slightly as design changes are implemented and data are
loaded.

 Appendix - ColoradoIPP Input Type - 1 557

ColoradoIPP Input Type

This page is intentionally blank.

Appendix - ColoradoIPP Input Type - 2 558

Appendix: Colorado Satellite Monitoring System
(SMS) Input Type

2010-03-03

Overview

The State of Colorado’s Satellite Monitoring System (SMS) database stores observations, configuration
information, processed data, and alarms, related to field observations collected from real-time stations
throughout the State of Colorado. This database has links to HydroBase (see the HydroBase Input Type
Appendix).

The database is currently only used to provide alarm information, for use as annotations on real-time data
from HydroBase. In the future, additional capability may be added to read raw and processed time series
from the Colorado SMS database.

See also the ColoradoWaterSMS Input Type appendix, which uses a web service to provide access to
real-time streamflow and other data types.

 Appendix - ColoradoSMS Input Type - 1 559

ColoradoSMS Input Type

This page is intentionally blank.

Appendix - ColoradoSMS Input Type - 2 560

Appendix: Colorado Water HydroBase Guest
(ColoradoWaterHBGuest) Input Type

2010-08-20

Overview

The State of Colorado’s HydroBase database is the primary database for water data in Colorado.
However, using the HydroBase input type in TSTool (see the HydroBase Input Type appendix) requires
a direct connection to the database, and a local installation of the database may not be available. The
ColoradoWaterHBGuest input type provides internet web service access to historical data and is
described here:

http://cdss.state.co.us/DNN/ViewData/WebServices/tabid/90/Default.aspx

Although the above web service provides many data types, the ColoradoWaterHBGuest input type
currently only supports accessing diversion totals on day, month, and year interval. Support for
additional data types is envisioned in the future.

The ColoradoWaterSMS input type (see the Colorado Water SMS Input Type appendix) provides access
to real-time data using a web service.

ColoradoWaterHBGuest Web Service and Standard Time Series Properties

The standard time series identifier format for ColoradoWaterHBGuest time series is of the form:

 Location.DataSource.DataType.Interval~ColoradoWaterHBGuest

The meaning of the parts is as follows:

• The Location is set to the State of Colorado’s water district identifier (WDID) for structures.
• The DataSource is set to the providing agency (e.g., DWR for diversion data).
• The DataType is set to the “measurement type” described in the State’s web service documentation

(e.g., DivTotal for total diversions through a structure). Refer to the HydroBase Input Type
appendix for a full list of time series data available in HydroBase.

• Interval is Day, Month, or Year, as requested. The interval string is converted from HydroBase
conventions of Daily and Annual (monthly and annual diversion data are stored together in
HydroBase and are identified as Annual data).

• The ColoradoWaterHBGuest input type indicates that the data are being read from the
ColoradoWaterHBGuest web service.

Limitations

The following limitations of the web service may impact users of the data.

• Data type – only the DivTotal data type has been implemented. Additional data types will be

supported in the future.
• Time series metadata – some metadata such as units and measurement counts currently are not

available from the web service. This information will be displayed as blank in the time series listing.

 Appendix - ColoradoWaterHBGuest Input Type - 1 561

http://cdss.state.co.us/DNN/ViewData/WebServices/tabid/90/Default.aspx

ColoradoWaterHBGuest Input Type

• Performance – time series metadata (lists of location/data type/interval combinations) are retrievable
from the web service by water district, water division, and single entry. In order for TSTool to
provide the user with “drill down” capability starting with a full list of available data, it is necessary
to request blocks of data from the web service. However, requesting too large a block results in
performance problems due to the bandwidth necessary to transmit data across the network.
Consequently, TSTool utilizes caching to store lists of time series metadata, grouped by water district,
data type, and interval. The cache is populated based on user requests. Consequently, the first time
that data are requested for a district, performance will be slower while the data are retrieved.
Subsequent listing of the time series should be fast. Time series data are not currently cached and
therefore there may be noticeable slowing for large queries. Additional optimization of data transfer
will be evaluated as web service use increases.

Appendix - ColoradoWaterHBGuest Input Type - 2 562

Appendix: Colorado Water Satellite Monitoring
System (ColoradoWaterSMS) Input Type

2010-08-20

Overview

The State of Colorado’s Satellite Monitoring System (SMS) database stores observations, configuration
information, processed data, and alarms, related to field observations collected from real-time stations
throughout the State of Colorado. This database has links to HydroBase and HydroBase also includes
real-time data (see the HydroBase Input Type Appendix). However, the HydroBase real-time time
series are only available to State of Colorado staff that has access to the State’s internal server. The
ColoradoWaterSMS input type provides internet web services access to real-time data and as described
here:

http://www.dwr.state.co.us/SurfaceWater/help.aspx

Raw observations as well as hourly and daily aggregations can be requested. Because the data are
considered provisional, time series data collected from external providers are NOT available and must be
retrieved from the original provider (e.g., USGS). Time series with DataSource=DWR and several
other data cooperators are available from this web service.

ColoradoWaterSMS Web Services and Standard Time Series Properties

The standard time series identifier format for ColoradoWaterSMS time series is of the form:

 Location.DataSource.DataType.Interval~ColoradoWaterSMS

The meaning of the parts is as follows:

• The Location is set to the State of Colorado’s station abbreviation, ABBREV (e.g., PLAKERCO),

which typically is formed from the river/basin name (PLA=Platte River), station location
(KER=Kersey), and state (CO=Colorado). Note that currently the web service does not provide the
original identifier and therefore the abbreviation is always used.

• The DataSource is set to the providing agency. For example, although data are stored in the
State’s database, the data provider may be USGS or another agency. If different from DWR, then the
data may also be available directly from the provider agency using the agency’s station identifier. In
fact, the State’s web services only provide DWR data and do not pass through provisional data from
other agencies.

• The DataType is set to the “variable” described in the State’s web service documentation.
Streamflow is the primary data type, indicated by DISCHRG. Reservoir/lake level is indicated by
ELEV, and storage by STORAGE.

• Interval is Irregular for raw data, which is generally evenly spaced but may include more
frequent observations during events. Hour and Day interval are also available as aggregated values.

• The ColoradoWaterSMS input type indicates that the data are being read from the
ColoradoWaterSMS web service.

 Appendix - ColoradoWaterSMS Input Type - 1 563

ColoradoWaterSMS Input Type

Limitations

The following limitations of the web service may impact users of the data.

• Data type – a description of data types is not available from the web service and therefore cannot

automatically be displayed by software. A query to determine a list of data types from time series is
performed once and will result in a noticeable delay when the ColoradoWaterSMS input type is
initially selected. Subsequent listing of time series will be relatively fast.

• Interval – the interval for raw observations is not provided by the web service and therefore real-time
data interval is shown in TSTool as Irregular. Stations generally report at regular N-minute
intervals; however, some also provide additional event-triggered values that result in more
observations in a shorter timeframe. The web service does allow requesting hour and day interval
aggregations, which are computed from the raw data.

• Station – provider identifiers, spatial data (county, state, HUC, lat/long, UTM) are not currently
available for time series lists. ABBREV may not be assigned for all stations, in particular for external
providers.

• Data units – are currently not available from the web service. Units are hard-coded for some data
types, and are left blank for other data types, pending clarification from the State.

• Data – web service requests must be made with a query period. A default query period of the most
recent 14 days is used to ensure that some data are returned. Optionally, use the
SetInputPeriod() command in TSTool to specify a longer period. Some stations may not
report data in off-season periods.

Appendix - ColoradoWaterSMS Input Type - 2 564

Appendix: DateValue Input Type
2008-05-13,

Overview

The DateValue time series file format can be used to store one or more time series of consistent time
interval. The format has been developed by Riverside Technology, inc. The example below shows the
format of the file. Important comments about the file format are:

• The file is divided into a header section (top) and data section (bottom). Comments can occur

anywhere in the file and are lines that start with #.
• The default delimiter between property columns and data columns is a space. Use the Delimiter

property to reset the delimiter (e.g., to a tab). Adjacent delimiters WILL NOT be merged into one
column.

• If not specified, many of the header properties will be set to reasonable defaults as data are read by
software such as TSTool. However, as much information as possible should be specified to allow
complete time series handling. Header information is displayed by applications like TSTool to allow
selection of time series before the data section is read.

• Properties are checked in a case-independent fashion.
• The TSID, Start, End, and Units properties are important for basic time series handling.
• The interval part of the TSID is used to determine how memory should be allocated for data.
• The Start and End values are used to allocate memory for regular interval time series. Dates

associated with data values are used to allocate memory for irregular interval time series.
• For regular interval time series, if data lines between the start and end dates are omitted, the

unspecified values are set to the missing data value for the time series (default is -999).

DateValueTS 1.1 file

This is a sample of a typical DateValue minute time series. This format
was developed by Riverside Technology, inc. to store time series data. An
example file is as follows and conforms to the following guidelines:

* Comments are lines that start with #.
* Applications often add a comments section at the top indicating how the
file was created
* Any line that starts with a number is assumed to be a data line.
* Date hours should be in the range 0 to 23 (an hour of 24 will be
converted to hour 0 of the next day).
* If a time is necessary, the date/time may be separated by a space, T, :, or
@. If a space is used, use a date and time column headings,
if headings are used.
* The same general format is used for year, month, day, hour, and minute
data, except the format of the date is adjusted accordingly.
* If multiple time series are written, header variables are delimited with
space or tab characters. Data are delimited by tab or space (or use the
Delimiter property to set the delimiters used for data lines)
* Internally, the time series identifier may initially be set using the file
name. For example, a file name of XXX.USGS.Streamflow.MONTH will result
in the location being set to "XXX", the data source to "USGS", the data
type to "Streamflow", and the interval to 1 month. The identifier
information is reset if individual properties are specified in the file.
* This format is free-format and additional information may be added in
future (e.g., data quality strings).

 Appendix - DateValue Input Type - 1 565

DateValue Input Type

* For portability, data in a DateValue file should have compatible intervals.
* Header variables and column headers can be enclosed in double quotes if
the data contain spaces.
* Missing data can either be coded as the missing data value or no value
* Missing records will result in missing data being used when read.

The following header variables are recognized. This information can be
used by software.
Version = 1.1 # Optional. File format version
 # (to handle format changes)
Delimiter = " " # Optional. Delimiter for property and data lines
 # (default is space)
NumTS = 2 # Optional. Number of time series in file
 # (default is 1)
TSID = “XXX.USGS.Streamflow.15MINUTE” “YYY.USGS.Streamflow.15Minute”
 # Required.
 # List of time series identifiers in file
 # Location.Source.DataType.Interval.Scenario
 # Do not include input type and name in identifier
SequenceNum = 1950 1951 # Optional – used with time series traces.
 # Indicates the year for the trace
Description = "Flow at XXX" "Flow at Y"
 # Optional. Description for each time series.
DataFlags = true,1 false # Optional. Indicates whether data flags (e.g.,
 # character data quality) are provided. If true,
 # specify the maximum number of characters that
 # will be be used in any flag (the default is 2 if
 # not specified). The data value column for each
 # time series with data flags is followed by a
 # column for the data flag. Surround the flags by
 # “” if a flag is not specified or is a space.
DataType = Streamflow Streamflow
 # Optional. Data types for each time series
 # (consistent with TSID if specified).
 # The default is to use the data type in the TSID
 # Supplied to simplify use by other programs.
Units = CFS CFS # Optional. Units for each time series
 # (default is no units).
MissingVal = -999 -999 # Optional. Missing data value for each
 # time series (default is -999).
IncludeCount = true # Optional. If true, column after date/time
 # is record count (1...) (default is false).
IncludeTotalTime = true # Optional. If true, column after date
 # is cumulative time (0...) (default is false).
Both of above can be true, and both columns will be added after the date
Start = 1996-10-18:00:00 # Required. Start date for time series
End = 1997-06-14:00:00 # Required. End date for time series
 # Period dates should be of a precision consistent
 # with the dates used in the data section below.
Optional. The following line can be read into a spreadsheet or database for
headers. The lines above this line can be ignored in a spreadsheet import.
The number of headings should agree with the number of columns.
Date "Time" "Count" "TotalTime" "Description 1" “DataFlag1” "Description 2"
1996-10-18 00:00 1 0 110.74 “m” 14.2
1996-10-18 00:15 2 15 113.24 “” 13.7
...

Appendix - DateValue Input Type - 2 566

 DateValue Input Type

DateValue Files and Standard Time Series Properties

The standard time series identifier for DateValue files is of the form:

Location.DataSource.DataType.Interval.Scenario~DateValue~PathToFile

Because DateValue time series files are a persistent storage format for in-memory time series objects that
have been developed by RTi, the properties stored in the file closely match the standard time series
properties of the objects. In particular, the time series data type, units, and missing data value are
consistent with time series header information. The TSID property in a DateValue file is directly applied
to time series objects read from the file, allowing explicit identification of the time series in the file,
regardless of the name of the file. This allows multiple time series to be saved in a single file. The data
source typically agrees with that determined from a data-supplying agency or model that generates the
data.

Limitations

DateValue files have the following limitations:

• The header information in DateValue files may be too technical for some general tools. However,

simple delimited files cannot be handled as rigorously by some applications, like TSTool.
Spreadsheets can import DateValue files easily by ignoring the header lines.

• Because date/time values are included on every data line, processing DateValue time series files
requires more disk space and processing time. However, using the dates on each line also allows gaps
in data to be omitted from the file. Inclusion of the date/times for each data point is considered a
reasonable trade-off to ensure data quality and readability. Many other time series file formats also
include the date/time on each line.

 Appendix - DateValue Input Type - 3 567

DateValue Input Type

This page is intentionally blank.

Appendix - DateValue Input Type - 4 568

Appendix: HEC-DSS Input Type
2009-01-14

Overview

HEC-DSS input type refers to the United States Army Corps of Engineers’ Hydrologic Engineering
Center (HEC) Data Storage System (DSS). Refer to the following web sites for more information:

http://www.hec.usace.army.mil (main web site)

http://www.hec.usace.army.mil/software/legacysoftware/hec-dss_pc-dos/documentation/overview.pdf
(HEC-DSS User’s Guide and Utility Program Manuals overview)

HEC-DSS Files and Standard Time Series Properties

The standard time series identifier used with TSTool and other software is of the form:

Location.DataSource.DataType.Interval.Scenario~InputType~PathToFile

The implementation of the identifier for HEC-DSS files is of the form:

Apart:Bpart.HEC-DSS.Cpart.Epart.Fpart~HEC-DSS~PathToFile

HEC-DSS time series identifier information is taken from the A-F “pathname parts” used to identify
HEC-DSS time series. The following assignments are made:

• The location part of the identifier is set to the A-part, a colon, and the B-part. This retains the original

HEC-DSS location information. The colon and period characters cannot be used in the original
HEC-DSS A- and B- parts because they conflict with the identifier implementation described
above. Instead, it is recommended that dashes, underscores, and other delimiting characters
are used within the parts if the HEC-DSS data will be used extensively with TSTool.

• The data source part of the identifier by default is set to HEC-DSS to indicate that “HEC-DSS” is the
provider of the data. In the future this could be used to store the data source (data provider) such as
“USGS”, “NWS”, etc., if such information could be obtained from the HEC-DSS time series
pathname or supplemental data.

• The data type is set to the C-part. In HEC-DSS, this is referred to as the “parameter”. In HEC-DSS
the term “type” is used to indicate whether a time series is instantaneous, mean, or accumulated. The
period character cannot be used in the original HEC-DSS C-part when used with TSTool.

• The data interval is set to the E-part. The period character cannot be used in the original HEC-
DSS E-part when used with TSTool. Currently the irregular interval is not supported, but will
be added in the future.

• The scenario is set to the F-part. The period character cannot be used in the original HEC-DSS
E-part when used with TSTool.

• The data units are determined from time series information.
• The D-part is initially used to assign the time series period, but is reset with information from the time

series data records, if available. The D-part dates are of the form DDMonYYYY or DDMMYYYY –
DDMonYYYY. A single date indicates the start of a data block in the HEC-DSS data management
scheme (see the HEC-DSS documentation referenced above). Two dates indicates the starting and
ending data blocks for a condensed catalog (list of time series); however, in this case the ending date

 Appendix – HEC-DSS Input Type - 1 569

http://www.hec.usace.army.mil/software/legacysoftware/hec-dss_pc-dos/documentation/overview.pdf

HEC-DSS Input Type

is actually the start of the last data block. The size of each data block depends on the time series
interval (e.g., year interval data are stored in blocks of centuries). The HEC-DSS standards for block
size are used in conjunction with the time series interval to set the time series end date as appropriate.

• The missing data value is assigned to the internal representation for HEC-DSS files (a large negative
number).

• The description is by default set to the location, a comma, followed by the data type.

Limitations

The following limitations are known with the HEC-DSS input type:

• A- and B- parts that include colons will cause an error when converting HEC-DSS identifiers
to/from the convention described above – avoid using colons in the A- and B- parts.

• A-, B-, C-, E-, and F- parts that include periods will cause an error when converting to/from
HEC-DSS identifiers to the convention described above – avoid using colons in the location
identifier. If encountered, the alias for the time series is set to the full identifier with periods.
The periods are then removed before setting the full identifier.

• Irregular data are not fully implemented but are supported by the software architecture – they will
be enabled in the future.

• Paired data are not currently read – the data are envisioned to be read into the table objects
supported by TSTool.

• Access to supplemental data such as station comments is not implemented but is supported by the
software architecture.

• Data units from HEC-DSS time series are read and used with the time series. However,
conversion between units may not be supported if the units are not included in the data units file
used by software. Additional data unit definitions can be added if necessary to facilitate
conversions.

• HEC-DSS can store the observation date/time for data to a higher precision than the time series
data interval. For example, the observation date/time for an annual value may be July 30, 2400 of
the year. The additional precision is ignored when read. An observation time at the end of an
interval that might result in a different base date/time (e.g., hour 2400 causing the day to
increment for daily interval data), is handled to prevent the rollover.

• Plotting capabilities do not recognize the data scale (instantaneous, mean, accumulated) – line
graphs are always drawn as if data were instantaneous. This could be addressed by enhancing the
software to utilize a data type file and display styles to determine when data types are
instantaneous, mean, or accumulated.

Appendix – HEC-DSS Input Type - 2 570

Appendix: HydroBase Input Type
2008-09-22

Overview

The State of Colorado’s HydroBase database stores a variety of time series data. The time series
conventions described here, in particular for time series identifiers, are consistent for major CDSS
software components including TSTool, StateView/CWRAT, StateDMI, and StateMod GUI. This allows
for consistent features and sharing of data between software tools.

The current database design splits time series into three main categories:

1. Data related to structures or administrative data maintained by the State of Colorado (e.g.,
diversions, reservoirs). Structure locations are typically identified using a water district identifier
(WDID), consisting of a two digit State of Colorado water district number and a trailing structure
identifier (which in the past was four digits but has been increased to five or more digits to
support longer identifiers). Although a single WDID identifier is used when identifying time
series, the separate WD and ID fields are generally needed to find information in HydroBase.

2. Data for stations, consisting mainly of location information and time series (e.g., NOAA
precipitation data, USGS streamflow). Station locations are typically identified using a station
identifier from the data source. For example, stations can use a USGS identifier, a State of
Colorado Satellite Monitoring System abbreviation, or other identifier.

3. Data recorded at locations that are not stations or structures. For example, Water Information
Sheet (WIS) are daily spreadsheets used to administer water. Although WIS contain data values
for structures an stations, the time series are extracted from database tables that are not directly
associated with structure or station database tables. Other examples include Colorado and
national agricultural crop statistics.

A structure or station may have more than one identifiers depending on the number of agencies involved
with data collection, etc. For example, a reservoir may have a State of Colorado WDID because it has
water rights, a Bureau of Reclamation identifier, a US Geological Survey identifier, and a second State of
Colorado identifier because real-time data are collected. HydroBase collects data from many sources;
however, the State has not attempted in all cases to cross-references the identifiers. For example, a
streamflow station may have a partial time series record with a “USGS” data source and identifier and a
partial time series record with a “DWR” (Division of Water Resources) data source and identifier – the
user must recognize that this may be the same station, under different management at different times.

HydroBase is updated for release to the public approximately once per year, although internal updates
may occur year-round. Time series are used with CDSS (Colorado's Decision Support Systems)
applications and follow basic time series standards when used by TSTool and other software.

 Appendix - HydroBase Input Type - 1 571

HydroBase Input Type

HydroBase and Standard Time Series Properties

The standard time series identifier format for HydroBase time series is of the form:

Location.DataSource.DataType.Interval~HydroBase

Due to the variety of data types, sources, and formats in HydroBase, time series properties can be set a
number of ways. General guidelines are as follows:

• The location part of the time series identifier is set to a station or structure identifier, which is

typically the identifier used by the managing agency. For example, USGS stream gages will use the
8-digit USGS identifier and State of Colorado diversions will use a structure WDID.

• The source part of the time series identifier corresponds to the current source of the data. For
example, if the current provider for a time series is the USGS, then the data source will be USGS. If
the State of Colorado has at some point taken over maintenance of a station from the USGS, then the
data source will be DWR. Individual data records may indicate a variety of data sources. The
convention in HydroBase is to store the data records under the current data source, rather than force
the user to query more than one time series and merge the time series. If, however, a station has
moved, then separate time series will typically be stored, likely under different identifiers.

• The data type part of the time series identifier as much as possible uses the “measurement type”
information in HydroBase or a readable and reasonable data type phrase. For example “Precip” is a
measurement type for station data and “DivTotal” (diversion total) is a measurement type for
diversion data. In some cases, especially with real-time data, the data type may not exactly match
HydroBase. For example, HydroBase uses a measurement type “RT_Rate” for multiple stream
related data types. TSTool uses a data type of “Streamflow”. In the past, TSTool and other software
used data types that did not as closely match the measurement types in HydroBase. For example,
daily streamflow was identified as QME (a National Weather Service notation) because that is how it
was defined in CRDSS modeling efforts. The table at the bottom of this appendix describes all
available HydroBase data types and provides guidance for upgrading from old data types.

• Data intervals are set based on the tables that are being queried. In most cases, a regular interval like
DAY or MONTH is used. IRREGULAR is used for real-time data because there is currently no way
to know without doubt what the regular data interval is (e.g., 15MIN). Data that are measured
infrequently (e.g., reservoir field measurements) are typically stored as a regular interval time series
with interval DAY. This allows more flexibility in data processing and filling.

• In older versions of TSTool, the scenario part of the identifier was sometimes used to supplement the
data type information. For example, real-time flow data in the database has a number of attributes
(Streamflow, RT_Rate, DISCHRG) that cannot easily fit into the standard time series identifier.
The current version of TSTool uses datatype-subdatatype where necessary and generally does not use
the scenario for normal time series identifiers (WIS time series are an exception) and this field is
being reserved to possibly indicate historical data, filled data, etc.

• Units are set based on the database table definitions.
• Period of record is set based on the available database contents. Periods are typically not determined

by checking the data because this would require querying large amounts of data. When listing time
series, periods are normally determined from summary information available in the database. In
some cases, the period of record information is not saved at a precision sufficient to accurately
represent the true period (e.g., the database may indicate data for years but not months). Therefore,
the true period will only be available when data are actually queried.

• Missing data are typically set to -999 in time series but are typically stored as nulls in the database.
• The input type of the time series identifier may not be used for older applications. The new

convention is being phased in and uses an input type of HydroBase (e.g.,

Appendix - HydroBase Input Type - 2 572

 HydroBase Input Type

12345678.USGS.QME.DAY~HydroBase). If multiple HydroBase connections are needed, the
input name may also be added (e.g., 12345678.USGS.QME.DAY~HydroBase~ServerName),
although this capability is only in the evaluation stage.

• The time scale for data (whether accumulated [ACCM], instantaneous [INST], or mean [MEAN]) is not
automatically determined from the data type and interval.

Diversion data may be retrieved from several tables in HydroBase, including daily and monthly detailed
records, infrequent values, diversion comments, and currently in use values. The TSTool
ReadHydroBase() command gives several options for handling data and the
FillUsingDiversionComments() command can be used to fill with additional zero values. When
using time series identifiers to read time series, the following defaults are used:

• Daily DivClass and DivTotal time series are filled using the carry-forward technique
implemented by the State of Colorado. Missing irrigation years remain missing. Years with data
are filled with zeros at the start and values are carried forward until another observation is found,
or to the end of the irrigation year.

• Diversion comments and “currently in use” flag are NOT automatically applied. This default
may change in the future but is retained for historical data processing reasons.

The following tables present a summary of time series identifier fields for the HydroBase data types.
Data sources may be added and/or removed with data updates. Data types are listed by major group and
are alphabetized by the data type description within the group. The time scale is provided to facilitate
data use, in particular when changing the time interval.

 Appendix - HydroBase Input Type - 3 573

HydroBase Input Type

HydroBase Time Series Types and Standard Time Series Identifier Fields
Agricultural Crop and Livestock Data

Data
Group

Data Type
Description Location Data

Source Data Type
Available
Intervals and
Time Scale

Comments

Colorado
Agricultural
Statistics
Service crop
area harvested

County
Name

CASS CropAreaHarvest
ed-Commodity_
Practice

Commodity and
practice are from
available values in
HydroBase.

Year INST See NASS data for
orchards, pasture,
and vegetables.
Perennial crops
usually have only
harvested value.

CASS area
planted

County
Name

CASS CropAreaPlanted
-Commodity_
Practice

Commodity and
practice are from
available values in
HydroBase.

Year INST Annual crops
should have
planted value but
use maximum of
planted and
harvested if
necessary.

Agricultural/
CASS

CASS livestock
head

County
Name

CASS LivestockHead-
Commodity_
Type

Commodity and type
are from available
values in HydroBase.

Year INST For each
commodity (e.g.,
sheep), multiple
types (e.g. sheep at
various maturity
levels).

Agricultural/
GIS

CDSS irrigated
lands
assessment
result.

See also
Diversion
Comments
below.

WDID CDSSGIS CropAreaAllIrri
gation-CropType

CropAreaDrip-
CropType

CropAreaFlood-
CropType

CropAreaFurrow-
CropType

CropAreaSprinkl
er-CropType

CropType is taken
from available values
in HydroBase.

Year INST Data are only
available for years
where DSS
projects or data
refreshes have
occurred. Partial
data for
intermediate years
may be available in
spatial data layer
attributes but not
HydroBase. Data
are available for
lands served by
surface water
structures, listed by
crop/year/irrigation
type.

Agricultural/
NASS

CropArea County
Name

NASS CropArea-
Commodity

Commodity is taken
from available values
in HydroBase.

Year INST See CASS data
where available.
NASS does not
distinguish
between planted
and harvested.
NASS data are
useful for orchards,
pasture, and
vegetables, which
may not be
reported in CASS.

Appendix - HydroBase Input Type - 4 574

 HydroBase Input Type

HydroBase Time Series Types and Standard Time Series Identifier Fields (Climate Data)
Climate Group Table 1 of 2

Data
Group

Data Type
Description Location Data

Source Data Type
Available
Intervals and
Time Scale

Comments

Evaporation (Pan) Station ID NOAA EvapPan

Old (obsolete) data type
was EPAN.

Day ACCM,
Month ACCM

Frost Dates
(derived from
temperatures)

Station ID COAGM,
NOAA

FrostDateL28S,
FrostDateL32S,
FrostDateF28F,
FrostDateF32F

Old (obsolete) data type
was FrostDate or
FrostDates.

Year INST Time series in
software are the
Julian day of the
year (1-366) to
allow graphing,
filling, and
manipulation.

Precipitation Station ID COAGM,
NOAA

Precip

Old (obsolete) data type
was PTPX.

Day ACCM,
Month ACCM,
Irregular
ACCM

Irregular data are
real-time
increments.

Snow
(accumulation on
ground during
interval).

Station ID NOAA Snow

Old (obsolete) data type
was SNOG.

Day ACCM,
Month ACCM

Snow course
depth and snow
water equivalent

Station ID SCS SnowCourseDepth,
SnowCourseSWE

Old (obsolete) data type
was SnowCrse, SNWE.

Day INST Values are
recorded on a day,
with one or more
times a month.

Solar radiation Station ID COAGM Solar

Old (obsolete) data type
was RADS.

Day ACCM

Temperature
(instantaneous)

Station ID various Temp Irregular
INST

Temperature
(maximum)

Station ID COAGM,
NOAA

TempMax

Old (obsolete) data type
was MaxTemp, TAMN.

Day INST

Temperature
(mean of
maximum daily
values)

Station ID COAGM,
NOAA

TempMeanMax

Old (obsolete) data type
was MaxTemp, TAMX
with monthly interval.

Month MEAN

Temperature
(mean)

Station ID COAGM,
NOAA

TempMean

Old (obsolete) data type
was MeanTemp, TAVG.

Month MEAN

Temperature
(minimum)

Station ID COAGM,
NOAA

TempMin

Old (obsolete) data type
was MinTemp, TAMN.

Day INST

Climate

Temperature
(mean of
minimum daily
values)

Station ID COAGM,
NOAA

TempMeanMin

Old (obsolete) data type
was MinTemp, TAMN
with monthly interval.

Month MEAN

 Appendix - HydroBase Input Type - 5 575

HydroBase Input Type

HydroBase Time Series Types and Standard Time Series Identifier Fields (Climate Data)
Climate Group Table 2 of 2

Data
Group

Data Type
Description Location Data

Source Data Type
Available
Intervals and
Time Scale

Comments

Vapor pressure
(mean daily)

StationID COAGM VaporPressure

Old (obsolete) data type
was VP, MVP.

Day MEAN Climate

Wind run Station ID AGRO,
COAGM

Wind

Old (obsolete) data type
was UDIS.

Day ACCM

HydroBase Time Series Types and Standard Time Series Identifier Fields (Demographic Data)

Demographic data are related to human population. See the Agricultural Data above for livestock
population.

Data
Group

Data Type
Description Location Data

Source Data Type(s)
Available
Intervals and
Time Scale

Comments

Demographics Human
population
(persons)

Area_type-
Area_name

The type
indicates
whether a
county,
municipality,
state, etc.

The name
agrees with
the type.

The
combination
defines a
unique
location.

(blank)

This could be
assumed from
the
Pop_type
part of the
data type;
however, the
data source is
not readily
available in
HydroBase.

HumanPopulat
ion-
Pop_type

The population
type is
Census,
Estimated,
etc.

Year INST See CDSS
documents for
information on
how population
estimates are
determined.

Appendix - HydroBase Input Type - 6 576

 HydroBase Input Type

HydroBase Time Series Types and Standard Time Series Identifier Fields (Diversion Data)

Data
Group

Data Type
Description Location Data

Source Data Type
Available
Intervals and
Time Scale

Comments

Diversion Class
(showing water
color)

WDID DWR DivClass-SFUT

Old (obsolete) data
type was DQME,
Div, or
Diversion.

Day MEAN,
Month INST or
ACCM,
Year INST or
ACCM

SFUT is encoded as:

S:s F:f U:u
T:t

s = source
f = from
u = use
t = type

Annual values are
for irrigation year
(Nov-Oct).

Diversion
Comment (the
acreage for a
diversion and
string data flag
indicating
whether a
structure irrigated
in a year)

WDID DWR DivComment Year INST or
ACCM

The numerical time
series value is set to
the acreage for the
year. The data
quality flag is set to
the HydroBase
diversion_comment.
not_used flag.
Therefore, this time
series can be used to
extract total acreage
for a structure and
determine if
diversions should be
zero for a year.

Annual values are
for irrigation year
(Nov-Oct).

Diversion

May include
records for
reservoir and
well
structures, as
per State of
Colorado
administration
practices.

See also
reservoir data.

Diversion Total
(sum of all
DivClass records
for a structure).

WDID DWR DivTotal

Old (obsolete) data
type was DQME,
Div, or
Diversion.

Day MEAN,
Month INST or
ACCM, Year
INST or ACCM

Annual values are
for irrigation (Nov-
Oct) year.

 Appendix - HydroBase Input Type - 7 577

HydroBase Input Type

The above table summarizes how diversion records are available as time series. However, to determine a
complete diversion time series, it is necessary to understand the various ways that diversion records can
be stored. See also the State of Colorado’s Water Commissioner Manual.

Raw data observations for a diversion structure are stored as one or more of the following forms in
HydroBase:

 Daily water class time series. These data are recorded using irrigation year (November to
October). If one or more values have been entered in a month, then HydroBase will include a full
month of data. Days at the beginning of the irrigation year that have no observed values at the
start of the year should be considered to be zero, regardless of values found in previous irrigation
years. Once an observation occurs, then days within the month where an observation was not
recorded are set to the last observed value. Therefore, if an irrigation year contains at least one
value, that irrigation year will have at least one month of values (with no missing in the month).
To preserve space in HydroBase, months with no observations are not included in the daily data
in the database. If a year has no observation, then no data are available in HydroBase for the year
and a determination of whether the data values should be zero or other must be determined using
other data (see below) or engineering judgment. TSTool and StateView by default implement
the carry-forward procedure within irrigation years.

 Diversion comments. Diversion comments may be included for an irrigation year. The not_used
flag indicates if a diversion was not used in a year. If this is the case, then daily diversion records
should not be available and a zero value can be assumed for the water year. TSTool and
StateView DO NOT by default use diversion comments when providing daily or monthly
time series.

 Infrequent water class. Infrequent water class values can be entered as an annual value for the
irrigation year, or as a monthly value. The data can be accessed as time series in TSTool,
although no specific capabilities have been implemented to supplement the daily or monthly time
series.

Processed (derived) data records are created as follows:

 Daily total diversion. Daily water class values are accumulated to daily total records. Similar to
the daily water class, any month that has at least one value will result in a month with no missing
data. To preserve space in HydroBase, only months that include an observation are included in
HydroBase. Other months in the same irrigation year should be carried forward. Irrigation years
with no observation have no records in HydroBase and a determination of whether the data values
should be zero or other must be made using other data (see below) or engineering judgment.
TSTool and StateView by default implement the carry-forward procedure within irrigation
years.

 Monthly water class. Monthly water class is computed by converting the daily water class values
(average CFS) to ACFT for each day of the month, and adding the values. Because of the way
that daily data are treated, a month will either have all daily values or none. A month with no
data will have its value set to missing in the database. Full irrigation years with no observation
will result in a full year of missing values, and a determination of whether the data values should
be zero or other must be determined using other data (see below) or engineering judgment.
Unlike daily data, monthly diversion records are included in HydroBase for the full data period.
Full years of missing values may be included in the database.

 Monthly total diversion. This is derived using the same procedure as monthly water class;
however, the daily total diversion is used as input.

 Infrequent data are not considered when producing the monthly total time series.

Appendix - HydroBase Input Type - 8 578

 HydroBase Input Type

Therefore, to determine a complete time series, the following must be performed, using TSTool or other
software:

Daily time series:

1. Read the daily time series from HydroBase. The default in TSTool and StateView is now to carry
forward daily diversion time series within the irrigation year.

2. Utilize the diversion comments to set additional years of data to zero. Using diversion comments
is an option with TSTool and StateDMI time series read commands.

3. For years with no data, use an appropriate fill technique. If it is known that the ditch did not
operate, then zeros should be used. If it is known that the ditch did operate, use historical
averages or some other method to fill the data.

4. HydroBase infrequent diversions could be used to supplement the data, but currently there is no
software to help users with this process.

Monthly time series:

1. Read the monthly time series from HydroBase. Any irrigation year with at least one daily
observation results in 12 monthly time series values.

2. Utilize the diversion comments to set additional years of data to zero. Using diversion comments
is an option with TSTool and StateDMI time series read commands.

3. For years with no data, use an appropriate fill technique. If it is known that the ditch did not
operate, then zeros should be used. If it is known that the ditch did operate, use historical
averages or some other method to fill the data.

4. HydroBase infrequent diversions could be used to supplement the data, but currently there is no
software to help users with this process.

Yearly time series:

1. Infrequent time series can be read by TSTool and can supplement the above data. However,
currently there is no software to help users with this process. General TSTool commands must be
used as appropriate.

HydroBase Time Series Types and Standard Time Series Identifier Fields (Hardware Data)

Data
Group

Data Type
Description Location Data

Source
Data
Type(s)

Available
Intervals and
Time Scale

Comments

Hardware Battery voltage

Station
ID

DWR Battery Irregular
INST

Limited data are
available. This data
type allows remote
system maintenance
checks.

Hardware data types are not commonly available have been implemented as a test and to allow for greater
future use.

 Appendix - HydroBase Input Type - 9 579

HydroBase Input Type

HydroBase Time Series Types and Standard Time Series Identifier Fields (Reservoir Data)
Reservoir Group Table 1 of 2

Data
Group

Data Type
Description

Location Data
Source

Data Type Available
Intervals and
Time Scale

Comments

Field
Measurements

WDID DWR,
other

ResMeasElev,
ResMeasEvap,
ResMeasFill,
ResMeas
Release,
ResMeas
Storage

Old (obsolete) data
type was RSTO.

Day INST,
Day ACCM,
Day ACCM,
Day ACCM,
Day ACCM

Reservoir measurements
are often recorded at the
beginning or end of the
month.

Pool Elevation Station
ID or
State of
CO
Abbrev.

DWR,
other

PoolElev Irregular
INST

Real-time data for
reservoirs are recorded
using a station
abbreviation that does
not match a WDID.

Release Class
(showing water
color)

WDID DWR RelClass-SFUT Day MEAN,
Month INST or
ACCM,
Year INST or
ACCM

SFUT is encoded as:

S:s F:f U:u T:t

s = source
f = from
u = use
t = type

Annual values are for
irrigation year (Nov-
Oct).

Release
Comment (the
acreage for a
release and string
data flag)

WDID DWR RelComment Year INST or
ACCM

See DivComment
comments. Sometimes
acreage is associated
with reservoirs. Annual
values are for irrigation
year (Nov-Oct).

Reservoir

Release Total
(sum of all
RelClass
records for a
structure).

WDID DWR RelTotal Day MEAN, Month
INST or ACCM,
Year INST or
ACCM

Annual values are for
irrigation year (Nov –
Oct).

Appendix - HydroBase Input Type - 10 580

 HydroBase Input Type

HydroBase Time Series Types and Standard Time Series Identifier Fields (Reservoir Data)
Reservoir Group Table 2 of 2

Data
Group

Data Type
Description Location Data

Source Data Type
Available
Intervals and
Time Scale

Comments

Release
(instantaneous)

Station
ID

DWR,
other

Release Irregular
INST

Real-time data for
reservoirs are recorded
using a station
abbreviation that does not
match a WDID.

Reservoir
Storage (end of
month).

WDID USBR,
DWR,
other

ResEOM

Old (obsolete) data
type was RSTO.

Month INST Few time series are
available.

Reservoir
Storage (end of
year).

WDID USBR,
DWR,
other

ResEOY Year INST From annual_res table.
Annual value is for
irrigation year (Nov-Oct).

Reservoir

Storage
(instantaneous)

Station
ID or
State of
CO
Abbrev.

DWR,
other

Storage Irregular
INST

Real-time data for
reservoirs are recorded
using a station
abbreviation that does not
match a WDID.

 Appendix - HydroBase Input Type - 11 581

HydroBase Input Type

HydroBase Time Series Types and Standard Time Series Identifier Fields (Stream Data)

Data
Group

Data Type
Description

Location Data
Source

Data Type Available
Intervals and
Time Scale

Comments

Natural Flow Station
ID

USBR NaturalFlow

Old (obsolete) data
type was
Nat_flow, NQME

Month INST or
ACCM

Stage Station
ID

DWR,
other

Stage Irregular
INST

Real-time data.

Streamflow DWR
Abbrev.
or USGS
station
ID

DWR,
USGS,
other

Streamflow

Old (obsolete) daily,
monthly data type
was QME. Old real-
time data type used
RT_rate and
scenario DISCHRG
or other VAXfield to
indicate channel.

Day MEAN,
Month INST or
ACCM,
Irregular
INST

Real-time data use
Irregular time interval.

Streamflow
(maximum of
daily mean)

Station
ID

DWR,
USGS

StreamflowMax

Old (obsolete) data
type was Maxq,
Maxflow.

Month INST

Streamflow
(minimum of
daily mean)

Station
ID

DWR,
USGS

StreamflowMin

Old (obsolete) data
type was Minq,
Minflow.

Month INST

Stream

Water
temperature
(instantaneous)

Station
ID, State
of CO
Abbrev.

DWR,
other

WatTemp Irregular
INST

Real-time data, using
identifier that does not
match USGS or other
identifier for historical
data.

Appendix - HydroBase Input Type - 12 582

 HydroBase Input Type

 HydroBase Time Series Types and Standard Time Series Identifier Fields
(Water Information Sheet Data)

Data
Group

Data Type
Description Location Data

Source Data Type
Available
Interval
and Time
Scale

Comments

WIS Water
Information
Sheet (WIS) cell
values, over time

WIS row
identifier.
For example,
structures
have an
identifier
wdid:NNNN
NNN, where
the leading
“wdid:” is a
literal string
and the
following
information
is the actual
WDID.
Similarly,
stations start
with “stat:”,
followed by a
station ID;
confluences
with “conf:”,
followed by
the
HydroBase
wd_water
numbers for
the tributary
and the larger
stream; other
row types
with “othr:”,
followed by a
sequential
number in
the WIS.

DWR Data types match the WIS
columns, as follows:
WISPointFlow,
WISNaturalFlow,
WISDeliveryFlow,
WISGainLoss,
WISRelease,
WISPriorityDiversion,
WISDeliveryDiversion,
WISTribNaturalFlow,
WISTribDeliveryFlow,
WISDryRiver (not currently
implemented – may be
implemented as a data flag in
the future).

Day MEAN The scenario
part of the time
series identifier
is set to the
sheet name.
Over time, WIS
with a particular
sheet name may
be modified in
format. The
combination of
sheet name and
row identifier
can be used to
find data.

The time series
description is
set to the row
label.

Data values are
as stored for the
WIS, which
reflect the gain
method used
when the sheet
was stored.

 Appendix - HydroBase Input Type - 13 583

HydroBase Input Type

HydroBase Time Series Types and Standard Time Series Identifier Fields (Well Data)

Data
Group

Data Type
Description

Location Data
Source*

Data Type Available
Intervals and
Time Scale

Comments

Well Well level
(elevation)

Location
identifier,
based on the
current data
source. For
example, if
the data
source is
USGS, the
location
identifier
will be the
USGS
identifier.

BJORKLUND
CH2MHILL
CSU
CWSD
DWR
FOX
HALAPASKA
HILLIER
MCCONAGHY
NELSON
ROBSON
ROBSONBANT
SCHNEIDER
SEO
SMITH
SOUTHMETRO
SPDSS
USGS
USGS_NAWQA
WILSON

*as of 2005-
06-16

WellLevel Day INST,
Irregular
INST

Daily data are
historical
measurements,
often at the ends of
a month. A well
may have multiple
identifiers.
However, the
identifier presented
in TSTool is that
corresponding to
the current data
source. Use
StateView to see
alternate identifiers
for the location, to
cross-reference
with data outside
of HydroBase.

Irregular data are
real-time using
state station
abbreviations,
which do not
match the identifier
for historical data.

Limitations

HydroBase has the following limitations related to time series storage:

• The station and structure measurement types and time series tables defined in HydroBase do not

always allow information to be determined from database records. Instead, some time series
properties must be hard-coded based on the table design. For example, the meas_type table has a
MeanTemp, MaxTemp, MinTemp types defined, but these refer primarily to the separate daily tables
for such data. The monthly_temp table includes avg_max_t, avg_min_t, and mean_t fields that do not
correspond one-to-one with meas_type values. Therefore, applications like TSTool use data types
that are not specifically defined as strings in HydroBase, which have consequently been hard-coded.
This is an issue with station and structure time series.

• Real-time data types in HydroBase do not directly translate to time series data types used in TSTool.
An effort has been made to be as consistent as possible while using data types that can be understood
by users.

• Data units are not defined consistently in tables. Some tables have a units string and others do not
and the units abbreviations are not always consistent (units of “A” are often used for acre-feet and
“C” for CFS). A master units table is not used in HydroBase to enforce data units consistency
throughout the database.

• The time scale for time series (whether accumulated, instantaneous, or mean) is not automatically
determined from the data type and interval. Users much understand how to interpret the data, in
particular when changing the data interval.

Appendix - HydroBase Input Type - 14 584

Appendix: RiverWare Input Type
2008-09-03

Overview

RiverWare is a river and reservoir model developed by the Center for Advanced Decision Support for
Water and Environmental Systems (CADSWES) at the University of Colorado. RiverWare uses data
management interfaces (DMIs) to read time series data from various formats at run-time. The format
described in this appendix is a standard time series format that is imported into the RiverWare data sets
and can be output during runs. The example below shows the format of a file. Refer to the RiverWare
Data Management Interface documentation for more information. Important comments about the file
format are:

• The file is divided into a header section (top) and data section (bottom). Comments can occur

anywhere in the file and are lines starting with #.
• The data period is defined by the start_date and end_date keywords. Date/times must include

hours and minutes regardless of the date/time precision (the more precise information is ignored if not
needed). For day, month, and year interval data, specify 24:00 at the end of the line.

• The data interval is defined by the timestep keyword and consists of an integer multiplier and a
base interval string, separated by a space. Recognized intervals are HOUR, DAY, WEEK, MONTH, and
YEAR.

• The data units are specified using the units keyword and are the units after the scale is applied.
The scale keyword indicates a value that should be applied to the data values to result in the
specified units. For example, a data value of 1.5 with units of cfs and a scale of 1000 will result
of a value of 1500 cfs in memory.

• Optional set_units and set_scale keywords may be used similar to units and scale to
indicate the units and scale to be converted to when data are read. These properties can be written by
TSTool’s writeRiverWare() command but currently are not evaluated by TSTool when reading
data.

The following example illustrates the format of a RiverWare file.

Comments
start_date: 1903-01-01 06:00
end_date: 2001-12-31 24:00
timestep: 6 HOUR
scale: 1
set_scale: 1
units: ft
set_units: ft
1356.00
1356.00
1356.00
1356.00
1356.00
NaN
NaN
…

 Appendix - RiverWare Input Type - 1 585

RiverWare Input Type

RiverWare Files and Standard Time Series Properties

The standard time series identifier for RiverWare time series files is of the form:

Location..DataType.Interval~RiverWare~PathToFile

RiverWare time series files contain limited information to assign to standard time series properties. The
following assignments are made:

• The location part of the identifier is taken from the first part of the file name. It is assumed that the

file name is of the form ObjectName.SlotName.
• The data source part of the time identifier is left blank.
• The data type is taken from the second part of the file name. It is assumed that the file name is of the

form ObjectName.SlotName.
• The data interval is determined from the timestep property in the file.
• The data units are determined from the units property in the file. Currently the set_units

property is not evaluated when reading data.
• The missing data value is assigned to NaN (not a number).
• The description is set to the location, a comma, followed by the data type.

Limitations

RiverWare files have the following limitations:

• RiverWare time series files require that units be spelled exactly as required by RiverWare, including

upper/lower case. TSTool currently does not know about RiverWare units and therefore commands
like writeRiverWare() must be used to verify that the units are correct for RiverWare.

• Only one time series can be saved in a file (other RiverWare files support multiple time series and
may be supported in the future).

• RiverWare files do not store the data type or location information for the time series. These values
are assigned from the file name, as described above. Relying on a file name convention may cause
errors if the convention is not followed.

• Data lines do not contain the date. Therefore, it is difficult to use the files in other applications
without first assigning dates for all the values.

Appendix - RiverWare Input Type - 2 586

Appendix: StateCU Input Type
2004-05-27, Acrobat Distiller

Overview

The StateCU time series input type corresponds to the file formats used by the State of Colorado's
StateCU consumptive use model, including:

• Crop pattern time series file, yearly (*.cds)
• Irrigation water requirement, formatted for StateMod (*.ddc)
• Historical direct diversions, monthly (*.ddh) and daily (*.ddd) (in StateMod format but treated as

StateCU input when used with a StateCU data set)
• Irrigation practice time series, yearly (*.ipy)
• Irrigation water requirement (IWR, *.iwr) and water supply limited (WSL, *.wsl) output report

files, including monthly and yearly values
• Frost dates, yearly
• Precipitation, monthly (in StateMod format)
• Temperature, monthly (in StateMod format)

See also the StateMod input type, which corresponds to StateMod input files, and the StateModB input
type, which corresponds to StateMod binary output files.

See the StateCU Documentation for a complete description of StateCU input files. Refer to the StateMod
Documentation for files that use the StateMod file format.

Important comments about the StateCU file formats are:

• Input files are divided into a header section (top) and data section (bottom). Comments can occur

only at the top and are lines that begin with #.
• One or more time series can be stored in a file.
• Consistency in the order and number of the stations is required for each year of data, within the file.
• Other than comments, input files are fixed-format, compatible with FORTRAN applications. See the

StateCU Documentation and StateMod Documentation for field specifications.
• Input file formats are optimized to allow a full year of data to be read for the entire data set. Reading

a time series for a single location for the full period requires reading through the entire file.
• The precision of data values may be controlled by software, resulting in more or fewer fractional

digits. This may lead to round-off differences when comparing raw data values output by the
software.

 Appendix - StateCU Input Type - 1 587

StateCU Input Type

StateCU Files and Standard Time Series Properties

The standard time series identifier for StateCU files is of the form:

Location.StateCU..Month~StateCU~PathToDDCFile (for DDC file)
Location.StateCU.CropArea-AllCrops.Year~StateCU~PathToIWRReport (for IWR report acreage)
Location.StateCU.IWR.Month~StateCU~PathToIWRReport (for IWR report monthly IWR)
Location.StateCU.IWR.Year~StateCU~PathToIWRReport (for IWR report yearly IWR)
Location.StateCU.IWR_Depth.Year~StateCU~PathToIWRReport (for IWR report IWR depth)
Location.StateCU.CropArea-AllCrops.Year~StateCU~PathToWSLReport (for WSL report acreage)
Location.StateCU.WSL.Month~StateCU~PathToWSLReport (for WSL report monthly WSL)
Location.StateCU.WSL.Year~StateCU~PathToWSLReport (for WSL report yearly WSL)
Location.StateCU.WSL_Depth.Year~StateCU~PathToWSLReport (for WSL report WSL depth)
Location.StateCU.DataType.Interval~StateCU~PathToFile (historical time series data files)

StateCU files contain limited header information (e.g., period of record but no data type). Time series
properties are set using the following guidelines:

• For input files, the location part of the time series identifier is taken from the identifier field in the

data records (from the first year of data). A change in the year indicates that all time series have been
identified. For output files, the location is identified by lines that start with an underscore (this allows
the StateCU interface to search for identifiers in output).

• The source part of the time series identifier is set to StateCU or blank.
• The data type may not be assigned because it is not defined in the file (e.g., temperature and

precipitation time series). Currently no interpretation of the file name extension occurs. Some
specific applications may set the data type, based on reading a StateCU data set response file (and
therefore knowing the specific contents of the file).

• The data interval is assigned as Day, Month, or Year based on the file format (determined
automatically).

• The scenario is typically not assigned.
• The input type part of the time series identifier is set to StateCU, indicating the file format.

Software will use the interval and/or examine the file contents to verify whether the data are in daily
or monthly format.

• The input name part of the time series identifier is set to the file name, either as the full path or a
relative path to the working directory.

• The units are assigned to those indicated in the file header or based on the file type.
• The missing data value is assigned to -999.0.
• The description is set to the same value as the location. A verbose description can typically be

determined by cross-referencing the identifier with another StateCU data file (e.g., CU Locations,
*.str).

• The period is set based on the header information.

Appendix - StateCU Input Type - 2 588

 StateCU Input Type

Limitations

StateCU files have the following limitations:

• The formats of the files do not facilitate extracting one time series from the file. Software has been

optimized to perform this within current constraints.
• Some time series properties are not explicitly included in StateCU files (e.g., data type). Therefore,

general software like TSTool may not be able to provide default information. For example, a graph
may show multiple time series with nearly the same legend text because more detailed information
cannot be defaulted. The following has not been implemented but may be in the future: DDC file
data type = IWR.

• Although the complete output report files contain all values needed to evaluate water balance, these
values are not available in files that can be easily read as time series. Currently the verbose reports
are not available for reading as part of the StateCU input type.

 Appendix - StateCU Input Type - 3 589

StateCU Input Type

This page is intentionally blank.

Appendix - StateCU Input Type - 4 590

Appendix: StateCUB Input Type
(StateCU Binary Output Files)

2008-08-27

Overview

The StateCUB time series input type corresponds to the file format used by the State of Colorado's
StateCU consumptive use model, in particular the binary output file. These files contain important water
balance information for every location in the model. The following table summarizes the contents of the
binary files and corresponding text report files (all files can be large for large data sets).

Node Type Monthly
Binary File

Monthly
Report File

CU locations *.bd1 *.dwb

The following documentation describes the format of the BD1 binary file. See the StateCU
Documentation for a complete description of StateCU output files. The following is a summary to
explain how TSTool handles the format.

Unlike the StateMod binary files, the StateCU BD1 file does not have a fixed length record throughout
the file. Different sections of the file have fixed length segments, depending on the contents of the
section. The main sections and their format are described below, using terminology consistent with
StateCU.

Header Records (File Metadata)

Field Data Type Description
1 NumStr integer Number of structures (CU locations).
2 NumTS integer Number of time steps. The data period for the file is determined

from first time series record plus (NumTS – 1).
3 NumStrVar integer Number of variables associated with each structure.
4 NumTSVar integer Number of time series variables (parameters) associated with each

structure.
5 NumTSA integer Number of time steps in a year (1, 12, 365), although 12 (monthly

data) is currently the only supported value.

Structure Header Records (Structure Metadata)

Repeat the following for NumStrVar:

Field Data Type Description
1 StructureVarType char(1) The type of the structure variable: R for floating

point number, I for integer, C for character string.
2 StructureVarLen integer Length of structure variable in bytes.
3 StructureVarName char(24) Structure variable name.
4 StructureVarInReport integer Whether the structure is in the DWB report file.
5 StructureVarReportHeader char(60) The report header to use for the structure variable.

 Appendix - StateCUB Input Type - 1 591

StateCUB Input Type

Time Series Header Records (Time Series Metadata)

Repeat the following for NumTSVar:

Field Data Type Description
1 TimeSeriesVarType char(1) The type of the time series variable: R for floating

point number, I for integer, C for character string.
2 TimeSeriesVarLen integer Length of time series variable in bytes.
3 TimeSeriesVarName char(24) Time series variable name.
4 TimeSeriesVarInReport integer Whether the structure is in the DWB report file.
5 TimeSeriesVarUnits char(10) The units for the time series.

Structure Variable Data Records

Repeat the following for NumStr, and for each NumStrVar. The order of the variables is not fixed;
however, the “Structure Index” variable contains a numeric identifier that is used to sort the structures to
lookup structures when reading the time series.

Field Data Type Description
1 StructureVarValue As per

metadata.
The values of the structure variables, including
“Structure Index” (1+), “Structure ID”, “Structure
Name”. Additional variables may be added later.
The index is used to create a sorted list of structure
identifiers and names for applications like TSTool.

Time Series Data Records

Repeat the following looping on NumStr, then NumTimeSteps, and then NumTimeSeriesVar. The order
of time series variables is the same for all structures and throughout the entire file (variable “X” will
always be in the same position in the inner loop). The order of the structures may not agree with the order
of the metadata from above. The “Structure Index” variable in the time series records is used to map the
time series to the structure identified in the metadata above.

Field Data Type Description
1 TimeSeriesVarValue As per

metadata.
The values of the time series variables, including
“Structure Index” (matching “Structure Index”
from the structure data), “Year” (Calendar 4-
digit), “Month Index” (1-12), and variable names
for values at each time step. Additional variables
may be added later.

A visual representation of data is as follows (note that Structure 1 is an internal looping representation
and the actual structure is identified by the “Structure Index” variable for the time series):

Structure 1
 Timestep 1
 Variable 1
 …
 Variable NumStrVar
 Timestep 2
 Variable 1
 …

Appendix - StateCUB Input Type - 2 592

 StateCUB Input Type

 Variable NumStrVar
 …
 TimeStep NumTS
Structure 2

Timestep 1
 Variable 1
 …
 Variable NumStrVar
 Timestep 2
 Variable 1
 …
 Variable NumStrVar
 …
 TimeStep NumTS
…
Structure NumStr

The order of the structures in the time series data block may not be the same as that in the header
metadata due to the constraints of the StateCU model and how it writes each section during different
phases of execution. Therefore, at initialization, the “Structure Index” variable value for each time series
is read for the first timestep of each structure to determine the mapping of the structure in the time series
data block with that in the main header.

Some time series variables are integers (e.g., the year and month) and some are characters (e.g., the month
name and model flags). The integer variable “Year” has the same value for 12 monthly time steps and
then increases by one. The variable “Month Index” repeats the values 1 – 12 through the period of the
time series. Only floating point parameters are read by default. In the future, integer and character time
series may be allowed or the character values may be translated to a lookup table of numbers.

StateCU BD1 Files and Standard Time Series Properties

The standard time series identifier for StateCUB binary time series is of the form:

Location.StateCU.DataType.Interval~StateCUB~PathToFile

Time series properties are set using the following guidelines:

• The location part of the time series identifier is taken from the structure identifier field in the data.
• The data source part of the time series identifier is set to StateCU, because StateCU has created the

output time series.
• The data type is assigned as the variable (parameter) name described above – See the StateCU

documentation for more information.
• The data interval is assigned as Month.
• The scenario is set to blank (not used).
• The input type is set to StateCUB.
• The input name is set to the name of the file.
• The units are determined from the time series variable metadata.
• The missing data value is assigned to -999.0.
• The description is set to the structure name.
• The period is set to the information in the first time series record incremented by the number of

timesteps in the file (minus one). Current the file only contains calendar year data (January to
December).

 Appendix - StateCUB Input Type - 3 593

StateCUB Input Type

Limitations

StateCU binary files have the following limitations:

• The file does not contain a format version; therefore, it is difficult for software to handle changes in

the file format. However, the current format is designed to allow for changing structure and time
series parameters without changing the file format.

• The file does not contain header information indicating the source of the file (e.g., the creation date,
user, directory, StateCU response file, command line). Therefore, it is difficult to know with
certainty how a file was created.

• Leap years are not explicitly handled with 29 days during model calculations. Therefore there may be
some loss of precision as data are processed through the model. Refer to the StateCU documentation
for more information on how values are calculated.

Appendix - StateCUB Input Type - 4 594

Appendix: StateMod Input Type
2004-07-27, Acrobat Distiller

Overview

The StateMod time series input type corresponds to the file format used by the State of Colorado's
StateMod model, including standard daily, monthly, average monthly (referred to as annual in the
StateMod documentation) file formats. See also the StateModB input type, which corresponds to
StateMod binary output files and the StateCU input type, which corresponds to the State of Colorado’s
StateCU consumptive use model.

The following example illustrates the format of the three main file formats. See the StateMod
Documentation for a complete description of StateMod input files. Important comments about the file
format are:

• The file is divided into a header section (top) and data section (bottom). Comments can occur only at

the top and are lines that begin with #.
• One or more time series can be stored in a file.
• Consistency in the order and number of the stations is required for each year of data, within the file.
• Other than comments, the file is fixed-format, compatible with FORTRAN applications. See the

StateMod Documentation for field specifications.
• The format is optimized to allow a full year of data to be read for the entire data set. Reading a time

series for a single location for the full period requires reading through the entire file.
• In addition to the required values, a total/average value is accepted as the far-right value on each data

line. This value may be ignored by applications (it can be computed from the data values on the line
if necessary).

• The precision of data values may be controlled by software, resulting in more or fewer fractional
digits. This may lead to round-off differences when comparing raw data values with the total/average
in the optional end column.

StateMod time series files can have 3 main forms (monthly, average monthly, daily) as
described below. The order of time series is important for
some files (e.g., order of diversion time series should match order of
diversion stations in .dds file); however, StateMod is being updated over
time to remove this requirement). Different StateMod input files have
slight variations on the general format (e.g., the reservoir target file
has two time series for each reservoir for minimum and maximum targets).
Missing data are typically indicated by -999.
The generic extension for StateMod time series files is .stm, although specific
extensions are used in a StateMod data set.

1) This is an example of a StateMod monthly time series for water year data:

Comments are lines at the top of the file starting with the # character.
The header may contain software-generated comments about the time series.
The remainder of the file is fixed format, with the first non-comment
line being a header with the following elements (i5,1x,i4,5x,i5,1x,i4,a5,a5):

Beginning month (1=Jan)
Beginning year (4-digit)
Ending month
Ending year
Data units (AF/M, ACFT, CFS or ""), where rates are for diversions and
flow, and volume is for reservoir contents. Units are not used for
dimensionless data (like weight or percent).

 Appendix - StateMod Input Type - 1 595

StateMod Input Type

Year type (CYR=calendar, WYR=water, IYR=irrigation)

Data lines then follow with:
Year Station 12-monthly-values year-total/average (i4, 1x, a12, 12f8, f10)
The year value is optional and is generally not read as input but is
computed for output. The year in data lines corresponds to the calendar type.
An example follows:
 10/1926 - 9/1998 ACFT WYR
1927 08236000 1229.8 892.6 922.3 737.9 555.4 922.3 7049.4 32263.6
31000.1 14541.0 5662.9 8326.7 104104.0
1927 08235250 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 -
999.0 -999.0 -999.0 -999.0 0.0
1927 08235700 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 -
999.0 -999.0 -999.0 -999.0 0.0
1927 08236500 1047.3 595.1 614.9 614.9 555.4 1900.2 6769.7 31226.2
20338.8 14777.1 9465.3 4476.8 92381.5
...

2) This is an example of a StateMod average monthly time series for water year data:

The average monthly time series is a pattern of twelve monthly values
that are applied for each year in the period.
The format is exactly the same as a monthly time series; however, the
years in the header should be set to zero and year and month are ignored in data rows
and can therefore be blank.

An example follows:
 10/ 0 - 9/ 0 ACFT WYR
 08236000 1229.8 892.6 922.3 737.9 555.4 922.3 7049.4 32263.6
31000.1 14541.0 5662.9 8326.7 104104.0
 08235250 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 -
999.0 -999.0 -999.0 -999.0 0.0
 08235700 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 -
999.0 -999.0 -999.0 -999.0 0.0
 08236500 1047.3 595.1 614.9 614.9 555.4 1900.2 6769.7 31226.2
20338.8 14777.1 9465.3 4476.8 92381.5
...

3) This is an example of a StateMod daily time series for water year data:

The daily time series is similar to the monthly time series except that
a year and month are included on the data lines and 28, 30, or 31 daily
data values can occur on each line (end values ignored, depending on month).
The data format is (i4, i4, 1x, a12, 31f8, f8). The month total/average
is optional and is generally read as input but is computed for output.
Regardless of the calendar type in the header, the year and month in data records use
calendar year (month 1 = January).

An example follows:
 10/1926 - 9/1998 ACFT WYR
1926 10 08236000 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -
999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -
999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00
0.00 0.00
...
1927 4 08236000 38.00 42.00 42.00 67.00 90.00 90.00 100.00 118.00
93.00 80.00 93.00 80.00 80.00 80.00 80.00 80.00 68.00 80.00 68.00
68.00 80.00 80.00 106.00 136.00 170.00 229.00 250.00 296.00 322.00 348.00
0.00 114.65
1927 4 08235250 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -
999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -
999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00
0.00 0.00
...

Appendix - StateMod Input Type - 2 596

 StateMod Input Type

StateMod Files and Standard Time Series Properties

The standard time series identifier for StateMod files is of the format:

Location...Interval~StateMod~PathToFile

StateMod files contain limited header information. Time series properties are set using the following
guidelines:

• The location part of the time series identifier is taken from the identifier field in the data records

(from the first year of data). A change in the year indicates that all time series have been identified.
• The data source part of the time series identifier is set to StateMod or blank. In the past this

information was used to indicate the input type (file format) in the time series identifier; however, the
new input type notation has a specific field for the input type and therefore data source can be used
more appropriately. In the future, it may be possible to pass along the original input source but this
information cannot currently be saved in the StateMod file format.

• The data type is often not assigned because it is not defined in the file. Currently no interpretation of
the file name extension occurs. Some specific applications (e.g., the StateMod GUI) may set the data
type, based on reading a StateMod data set response file (and therefore knowing the specific contents
of the file).

• The data interval is assigned as Day or Month based on the file format (determined automatically).
• The scenario is typically not assigned. Older software may use the scenario to store the file name;

however, the new time series identifier notation stores the file name as the input name field (see
below).

• The input type part of the time series identifier is set to StateMod, indicating the file format.
Software will use the interval and/or examine the file contents to verify whether the data are in daily
or monthly format.

• The input name part of the time series identifier is set to the file name, either as the full path or a
relative path to the working directory.

• The units are assigned to those indicated in the file header.
• The missing data value is assigned to -999.0.
• The description is set to the same value as the location. A verbose description can typically be

determined by cross-referencing the identifier with another StateMod data file (e.g., diversion
stations).

• The period is set based on the header information.

Limitations

StateMod files have the following limitations:

• The format of the does not facilitate extracting one time series from the file. Software has been

optimized to perform this within current constraints.
• Some time series properties are not explicitly included in StateMod files (e.g., data type). Therefore,

general software like TSTool may not be able to provide default information. For example, a graph
may show multiple time series with nearly the same legend text because more detailed information
cannot be defaulted.

• If two time series for the same station are stored in the same file (e.g., reservoir maximum and
minimum targets), there is no way to uniquely identify the two time series. The application or user
must understand the file type and data organization. Some specific software (e.g., StateMod GUI)
may be able to recognize the specific format.

 Appendix - StateMod Input Type - 3 597

StateMod Input Type

This page is intentionally blank.

Appendix - StateMod Input Type - 4 598

Appendix: StateModB Input Type
(StateMod Binary Output Files)

2004-07-27, Acrobat Distiller

Overview

The StateModB time series input type corresponds to the file format used by the State of Colorado's
StateMod model, in particular the binary FORTRAN direct access output files. These files contain
important water balance information for every node in the model network. The following table
summarizes the contents of the binary files and corresponding text report files (all files can be large for
large data sets):

Node Type Monthly
Binary File

Monthly
Report File

Daily Binary
File

Daily
Report File

Diversion *.b43 *.xdd *.b49 *.xdy
Instream flow *.b43 *.xdd *.b49 *.xdy
Reservoir *.b44 *.xre *.b50 *.xry
Stream gage and
Stream estimate

*.b43 *.xdd *.b49 *.xdy

Well *.b42 *.xwe *.b65 *.xwy

The following documentation describes the format of the B43 binary file. Other files are similar. See the
StateMod Documentation for a complete description of StateMod output files. Important comments
about the file format are:

• The file is generated by StateMod as a direct access binary file with fixed-length records. The record

length is 140 bytes.
• The file is divided into a header section (top) and data section (bottom).
• The format is optimized to allow a full year of data to be read for the entire data set. Efficiently

reading a time series for a single location for the full period requires reading appropriate lines of the
file using direct access. Because the file is binary and consistent for a given data set, file reads can be
optimized.

• The data period and the calendar year type are consistent with the StateMod control file.
• All character strings are left justified and are padded with spaces. Therefore, software that reads the

file should trim trailing spaces after reading the strings.
• River node identifiers in record 5 are included for all nodes in the network and data records (record

11) follow this order. Subsequent lists for various node types are a subset of the list in record 5 and
have data items to reference the position in the river node list. Time series are queried using the
identifiers in records 6+. However, the river node position is actually used to retrieve data in the file.

 Appendix - StateModB Input Type - 1 599

StateModB Input Type

The B43 binary file contains the following records:

Record Field StateMod
Variable Type Description

1 iystr0 integer Beginning year of simulation, for year type in
StateMod control file.

1

2 iyend0 integer Ending year of simulation, for year type in StateMod
control file.

1 numsta integer Number of river nodes.
2 numdiv integer Number of direct diversions.
3 numifr integer Number of instream flows.
4 numres integer Number of reservoirs.
5 numown integer Number of reservoir owners.
6 nrsact integer Number of active reservoirs.
7 numrun integer Number of base flow nodes.
8 numdivw integer Number of diversion structures with wells.

2

9 numdxw integer Number of well only structures.
3 1 xmonam(14) Each is

char(4).
Month names corresponding to the calendar type for
the simulation. This information is provided as a
convenience for data processing. For example, if the
year type is WYR (water year), xmonam(1) is
‘OCT’. The 13th value is ‘TOT’ and the 14th value is
‘AVE’.

4 1 mthday(12) Each is
integer.

Number of days per month, corresponding to the
calendar type for the simulation. This information is
provided as a convenience for data processing and to
convert daily data values to monthly. For example,
if the year type is WYR (water year), mthday(1) is
31 for October. The number of days in February is
typically 28 and is used for all data processing,
regardless of whether a year is a leap year.

1 j integer Counter for record type 5.
2 cstaid(j) char(12) River node identifiers.

5
Repeat
record for
numsta

3 stanam(j) real(6) River node names.

1 j integer Counter for record type 6.
2 cdivid(j) char(12) Diversion identifier.
3 divnam(j) real(6) Diversion name.

6
Repeat
record for
numdiv 4 idvsta(j) integer River node position (1+) to allow cross-reference

with river nodes.
1 j integer Counter for record type 7.
2 cifrid(j) char(12) Instream flow identifier.
3 xfrnam(j) real(6) Instream flow name.

7
Repeat
record for
numifr 4 ifrsta(j) integer River node position (1+) to allow cross-reference

with river nodes.
1 j integer Counter for record type 8.
2 cresid(j) char(12) Reservoir identifier.
3 resnam(j) real(6) Reservoir name.

8
Repeat
record for
numres 4 irssta integer River node position (1+) to allow cross-reference

with river nodes.

Appendix - StateModB Input Type - 2 600

 StateModB Input Type

Record Field StateMod
Variable Type Description

1 j integer Counter for record type 9.
2 crunid(j) char(12) Base flow node identifier.
3 runnam(j) real(6) Base flow node name.

9
Repeat
record for
numrun 4 irusta(j) integer River node position (1+) to allow cross-reference

with river nodes.
1 j integer Counter for record type 10.
2 cdividw(j) char(12) Well identifier.
3 divnamw(j) real(6) Well name.

10
Repeat
record for
numdivw 4 idvstw(j) integer River node position (1+) to allow cross-reference

with river nodes.
1 dat(1) real Demand Total_Demand
2 dat(2) real Demand CU_Demand
3 dat(3) real Water Supply From_River_By_Priority
4 dat(4) real Water Supply From_River_By_Storage
5 dat(5) real Water Supply From_River_By_Exchange
6 dat(6) real Water Supply From_Well
7 dat(7) real Water Supply From_Carrier_By_Priority
8 dat(8) real Water Supply From_Carrier_By_Storage
9 dat(9) real Water Supply Carried_Water
10 dat(10) real Water Supply From_Soil
11 dat(11) real Water Supply Total_Supply
12 dat(12) real Shortage Total_Short
13 dat(13) real Shortage CU_Short
14 dat(14) real Water Use Consumptive_Use
15 dat(15) real Water Use To_Soil
16 dat(16) real Water Use Total_Return
17 dat(17) real Water Use Loss
18 dat(18) real Station In/Out Upstream_Inflow
19 dat(19) real Station In/Out Reach_Gain
20 dat(20) real Station In/Out Return_Flow
21 dat(21) real Station In/Out Well_Depletion
22 dat(22) real Station In/Out To_From_GW_Storage
23 dat(23) real Station Balance River_Inflow
24 dat(24) real Station Balance River_Divert
25 dat(25) real Station Balance River_By_Well
26 dat(26) real Station Balance River_Outflow
27 dat(27) real Available Flow Available_Flow
28 dat(28) real Structure type (Na):

• < 0 = Baseflow node (e.g., -10001 indicates a
diversion that is a baseflow node).

• 0 = Well only.
• 1-5000 = Diversion
• 5001 – 7500 = Instream flow
• 7501 – 10000 = Reservoir

11
Repeat
record for
every river
node
numsta, for
every month
of the
simulation.

See the
StateMod
documentation
for a full
description of
parameters.

Parameters are
grouped as
shown in the
*.xdd file.

29 dat(29) real Number of structures at this node (typically 1).

 Appendix - StateModB Input Type - 3 601

StateModB Input Type

StateMod B43 Files and Standard Time Series Properties

The standard time series identifier for StateMod binary time series is of the form:

Location.StateMod.DataType.Interval~StateModB~PathToFile

Time series properties are set using the following guidelines:

• The location part of the time series identifier is taken from the identifier field in the data. The

identifier for the specific node type (e.g., diversion) is used, not the river node identifier. The river
node identifier is often the same as for the specific node type, but this is not a requirement within
StateMod.

• The data source part of the time series identifier is set to StateMod, because StateMod has created
the output time series.

• The data type is assigned as the parameter name (see record 11 above, without using the group).
• The data interval is assigned as Month or Day, depending on the file extension.
• The scenario is set to blank.
• The input type is set to StateModB.
• The input name is set to the name of the file.
• The units for daily data are assigned as CFS. The units for monthly data in the files are average CFS

for the month and are converted to ACFT, assuming a constant number of days per month, as read
from record 4. February normally has 28 days per month in the header and therefore leap years have
one fewer days than actual.

• The missing data value is assigned to -999.0.
• The description is set to the node name.
• The period is set based on the header information in record 1 (for the year) and record 3 (to determine

the start and end months, based on the calendar type).

Limitations

StateMod binary files have the following limitations:

• The file does not contain a format version; therefore, it is difficult for software to handle changes in

the file format.
• The file does not contain header information indicating the source of the file (e.g., the creation date,

user, directory, StateMod response file, command line). Therefore, it is difficult to know with
certainty how a file was created.

• Leap years are not explicitly handled with 29 days.
• Baseflow nodes in record 9 may have the same identifier as other nodes because any node can be a

baseflow node. This can be confusing since software may list the node in more than one list. The
software that reads the file filters out duplicate time series identifiers to try to resolve this problem.

• This documentation is limited in that it presents the file format only for the *.b43 file. Additional
documentation may be added in the future.

Appendix - StateModB Input Type - 4 602

Appendix: USGSNWIS Input Type
2004-07-27, Acrobat Distiller

Overview

The USGSNWIS time series input type corresponds to the United States Geological Survey (USGS)
National Water Information System (NWIS) format. A number of formats are available but currently
only the surface water daily format is supported. Data files can be created by saving USGS web site data
to a text file. The example below shows the format of a daily surface water file. Important comments
about the file format are:

• The file is divided into a header section (top) and data section (bottom). Comments can occur only at

the top and are lines that begin with #.
• Optional data flags are saved with the data values, if available (e.g., e indicates estimated data).

Applications like TSTool may include features to use the data flags.
• HTML remnants may be present at the end of the file. These lines are stripped out during time series

processing.

The following example illustrates the format of a USGS NWIS file.

U.S. Geological Survey
National Water Information System
Retrieved: 2002-01-28 13:35:25 EST

This file contains published daily mean streamflow data.

This information includes the following fields:

agency_cd Agency Code
site_no USGS station number
dv_dt date of daily mean streamflow
dv_va daily mean streamflow value, in cubic-feet per-second
dv_cd daily mean streamflow value qualification code

Sites in this file include:
USGS 03451500 FRENCH BROAD RIVER AT ASHEVILLE, NC

agency_cd site_no dv_dt dv_va dv_cd
5s 15s 10d 12n 3s
USGS 03451500 1895-10-01 740
USGS 03451500 1895-10-02 740
...
USGS 03451500 1985-01-20 1100 e
USGS 03451500 1985-01-21 1100 e
USGS 03451500 1985-01-22 1100 e
...
USGS 03451500 2000-09-28 675
USGS 03451500 2000-09-29 597
USGS 03451500 2000-09-30 550

<p>Microsoft VBScript runtime error '800a01a8'
<p>
Object required: 'db'
<p>
/ctp_workgroup/cgi-bin/includes/Inc_htm_utils.asp
, line 217
<p>Microsoft VBScript runtime error '800a01a8'
<p>Object

 Appendix - USGSNWIS Input Type - 1 603

USGSNWIS Input Type

USGSNWIS Files and Standard Time Series Properties

The standard time series identifier for USGS NWIS time series is of the form:

Location.DataSource.DataType.Interval~USGSNWIS~PathToFile

It is difficult to automatically assign standard time series properties from a USGS NWIS file. The limited
support of this file format assumes the following:

• The location part of the time series identifier is taken from the second field (site_no) in the data

records.
• The source part of the time series identifier is taken from the first field (agency_cd) in the data

records.
• The data type is assigned as Streamflow (interpretation of the verbose dv_va field in the header

is not implemented).
• The data interval is assigned as 1Day (interpretation of the verbose dv_va field in the header is not

implemented).
• The input type is set to USGSNWIS, indicating the format of input.
• The input name is set to the absolute or relative path to the file.
• The Units are assigned as CFS.
• The missing data value is assigned to -999.0 (gaps in data records will result in this value).
• The description is set to the information after the Sites in this file include: line. It is

assumed that only one time series per file is used.

Limitations

USGSNWIS files have the following limitations:

• Riverside Technology, inc. is working to support the standard USGS file format(s). Limited

information is available for the file specifications. Currently only the daily surface water format has
been tested.

• Additional specific limitation will be listed when file format specifications are fully determined.
• The period for the data is not available in the file header. Therefore the period is determined from the

first and last dates in the data records. This introduces a slight performance penalty.
• Although data flags are read in for use by applications, no standard flag values are enforced (the end

user will need to know the meaning of the flags to use them properly).

Appendix - USGSNWIS Input Type - 2 604

Appendix: TSView - Time Series Viewing Tools
Color, 2006-09-28, Original Maintained with TSTool, Acrobat Distiller

Overview
Time Series Terminology
Time Series Properties Interface
 Time Series Properties – General
 Time Series Properties – Comments
 Time Series Properties – Period
 Time Series Properties – Limits
 Time Series Properties – History
 Time Series Properties – Data Flags
Time Series Traces
Time Series Views
 Time Series Graph View
 Line Graph
 Line Graph – Log Y Axis
 Bar Graph
 Double Mass Curve
 Duration Graph
 Period of Record Graph
 XY-Scatter Graph
 Time Series Product Properties
 Product Properties – General
 Product Properties – Titles
 Product Properties – Layout
 Graph Properties – General
 Graph Properties – Graph Type
 Graph Properties – Titles
 Graph Properties – X Axis
 Graph Properties – Y Axis
 Graph Properties – Label
 Graph Properties – Legend
 Graph Properties – Zoom
 Graph Properties – Analysis
 Graph Properties – Annotations
 Time Series Properties – General
 Time Series Properties – Graph Type
 Time Series Properties – Axes
 Time Series Properties – Symbol
 Time Series Properties – Label
 Time Series Properties – Legend
 Time Series Properties - Analysis
 Changing a Graph Page Layout
 Time Series Summary View
 Time Series Table View
Time Series Product Reference

 Appendix - TSView - 1 605

TSView Time Series Viewing Tools

Overview

The TSView package contains integrated software components that can be used with software
applications to enable time series viewing capabilities. The main purpose of the TSView package is to
provide simple, consistent, and flexible displays that can be used in a variety of applications with little or
no reconfiguration. TSView also provides features to configure and process time series products (e.g.,
graphs), where the time series data are stored separately from the configuration information.

The TSView package has been developed by Riverside Technology, inc., using Java technology. TSView
interfaces can be embedded in Java applications and can be used in web pages either as embedded applets
or stand-alone windows. TSView tools operate similarly on Microsoft Windows and UNIX operating
systems.

This appendix describes general TSView features and can be used as a reference for how to configure and
use TSView components. Software program documentation may include specific information about
using TSView features.

Time Series Terminology

The TSView package treats time series as objects that can be read, manipulated, and output in various
formats. A time series is defined as having header information (attributes) and data, which usually
consists of a series of date/time versus data pairs. Internally, time series are considered to have either
regular interval (equal spacing of date/time) or irregular interval (e.g., occasional observations). Regular
time series lend themselves to simpler storage and faster processing because date/time information can be
stored only for the endpoints. The following basic attributes are stored for each time series:

•

•

•

•
•
•
•
•
•

Data interval as an interval base (e.g., Month, Hour) and multiplier (e.g., 1 for month, or 24 for
hour) - in many cases, the multiplier is 1 and is not shown in output (e.g., Month rather than
1Month),
Data type (e.g., Streamflow), which ideally can be checked to determine if a time series contains
mean, instantaneous, or accumulated values,
Units (e.g., CFS), which ideally can be used to make units conversions and look up precision for
output,
Period of record, using dates that are of an appropriate precision for the interval,
Data limits (the maximum, minimum, etc.),
Description (generally a station, structure, or sensor name),
Missing data value (used internally to mark missing data and trigger data filling, often -999),
Comments (often station comments, if available),
Genesis history (a list of comments about how the time series was created).

In order to uniquely and consistently identify time series, a multi-part time series identifier is employed,
having the following parts:

• Location (or location-sublocation)
• Data source
• Data type (or datatype-subdatatype)
• Data interval (time step)
• Scenario

Appendix - TSView - 2 606

 TSView Time Series Viewing Tools

and optionally:

• Sequence number (currently being evaluated)
• Input type
• Input name

These time series attributes are typically concatenated into a time series identifier string. The following
example illustrates how the basic identifier parts can be used (without input type and name):

12345678.USGS.Streamflow.DAY.HIST

The above example identifies a USGS streamflow gage identified as location 12345678, at which
historic average daily flow data are available. If possible, data types appropriate for the input type should
be used to avoid confusion; however, time series file input types often do not contain a simple data type
abbreviation (see the input type appendices in the TSTool Documentation for more information). The
above example illustrates that the scenario can be used to qualify the data (in this case as historic data,
HIST). The scenario is often omitted. When the scenario is used, it often indicates some specific
condition (e.g., FLOOD, DROUGHT, HIST, FILLED)

The optional input type and input name are used to specify the time series input format and storage
location, especially in cases where the identifier is saved in a file and the input type is needed for later
processing. For example:

12345678.USGS.Streamflow.DAY.HIST~USGSNWIS~C:\data\12345678.txt
12345678.USGS.Streamflow.DAY~HydroBase

The first example illustrates a time series identifier for a USGS National Water Information System data
file. The second example illustrates the identifier for the same time series, in the HydroBase database.
Using the input parts of the identifier allows software to transparently locate the data, and for the above
examples, would allow the time series to be read from each input source and compared.

The use of the input type and name is being phased into TSView and related components. Input types
that have been added to software more recently (e.g., as of version 05.04.00 of the TSTool application)
use the new convention and older input types are being updated accordingly. The TSTool appendices that
describe each input type identify issues with compatibility.

Using the above time series identifier convention omits use of time series attributes like the period of
record and the units, even though these attributes could conceivably be used to distinguish between time
series that are otherwise the same. Instead, it is assumed that the period of record and units can be
determined from the input and do not need to be part of the identifier. If necessary, different input files
can be used to further differentiate time series.

The TSView components use the time series identifiers extensively to locate and manage time series. For
example, graph properties for each time series are cross-referenced to time series by using the identifiers.
Perhaps most importantly, the time series identifiers as simple strings can be stored in files and can be
used by a variety of software to consistently and reliably locate data for processing.

 Appendix - TSView - 3 607

TSView Time Series Viewing Tools

The following table summarizes important time series terminology.

Time Series Terminology (listed alphabetically)

Term Description
Data Interval Time interval between time series data values. If a regular time series,

the interval is constant. If an irregular time series, the interval can vary.
Intervals are represented as an optional multiplier followed by a base
interval string (e.g., 1MONTH, 24HOUR) or IRREGULAR for irregular
time series.

Data Source A string abbreviation for a data source, which is part of the time series
identifier and typically indicates the origin of the data (e.g., an agency
abbreviation, or a model name if the result of a simulation).

Data Type A string abbreviation for a data type, which is part of the time series
identifier (e.g., Streamflow).

Date/Time Precision Date/time objects used with time series have a precision that corresponds
to the time series data interval. The precision is typically handled
transparently but it is important that the precision is consistent (e.g.,
monthly data should not use date/time objects with daily precision).
Displaying time series with various precision usually results in the
smallest time unit being used for labels.

Input Name A string input name corresponding to an input type, which is part of a
time series identifier. For database input types, the name may be omitted
or may be the name of the database connection (e.g., ARCHIVE). For
input files, the name is typically the name of the file.

Input Type A string abbreviation that indicates the input type (persistent format) for a
time series, and is part of a time series identifier. This is often the name
of a database (e.g., HydroBase, RiversideDB) or a standard data file
format type (e.g., StateMod, MODSIM, RiverWare).

Location A string identifier that is part of a time series identifier and typically
identifies a time series as being associated with a location (e.g., a stream
gage or sensor identifier). The location may be used with certain input
types to determine additional information (e.g., station characteristics may
be requested from a database table using the location).

Scenario A string label that is part of a time series identifier, and serves as a
modifier for the identifier (e.g., HIST for historical).

Sequence Number A number indicating the sequence position of a time series in a series.
For example, possible time series traces may be identified with a
sequence number matching the historical year for the data. The use of
sequence numbers with traces is being evaluated.

Time Series Product A graph or report that can be defined and reproduced. See the Time
Series Product Reference section.

Time Step See Data Interval.

Appendix - TSView - 4 608

 TSView Time Series Viewing Tools

Time Series Properties Interface

Time series properties are displayed in a tabbed panel as appropriate in applications (e.g., the TSTool
application can display the properties after time series are read and listed in the TSTool interface).
Differences between time series input types may result in variations in the properties (e.g., some input
types do not have descriptions for time series). The following figures describe the properties tabs. The
size of each tabbed panel is set to the size of the largest tab; therefore, some tabbed panels are not
completely filled.

 Appendix - TSView - 5 609

TSView Time Series Viewing Tools

Time Series Properties - General

TSView_TSProps_General

Time Series Properties - General

General time series properties are as follows:

Indentifier The five-part time series identifier without the input type and name. This identifier

is often used internally in applications to manage time series. See the Time Series
Terminology section for a complete explanation of time series identifiers.

Identifier (with
input)

The full identifier, including the input type and name (if available). The input type
and name indicate the format and storage of the data.

Alias A time series may be assigned an alias to facilitate processing (e.g., the alias is

used by the TSTool application in time series commands).

Sequence
Number

If the time series is part of a series of traces, the sequence number is used to
identify the trace. Often it is the year for the start of the trace.

Description The description is a mid-length phrase (i.e., longer than the location but shorter

than comments) describing the time series (e.g., XYZ RIVER AT ABC).

Units (Current) The units that are currently used for data. The units may have been converted

from the original.

Units (Original) The units in the original data source.

Appendix - TSView - 6 610

 TSView Time Series Viewing Tools

Time Series Properties – Comments

TSView_TSProps_Comments

Time Series Properties - Comments

Comments for time series can be created a number of ways and may be formatted specifically for an
application. Common ways of creating comments are:

• Read comments from the original data source - this is ideal; however, electronic comments are often

not available (e.g., the USGS previously published comments for data stations in hard copy water
reports; however, comments may no longer available electronically),

• Format comments from existing data pieces (e.g., the figure illustrates a standard set of comments for
State of Colorado data, using the HydroBase input type).

 Appendix - TSView - 7 611

TSView Time Series Viewing Tools

Time Series Properties – Period

TSView_TSProps_Period

Time Series Properties - Period

Properties related to the period are as follows:

Current
(reflects
manipulation)

The current period is used to allocate computer memory for the time series data.
This period may be set by an application (e.g., when creating model input files a
specific period may be used). The precision of the date/time objects should
generally be consistent with the time series data interval.

Original (from
input)

The original period can be used to indicate the full period available from a
database. Setting the original period can sometimes be complicated by how
missing data are handled (e.g., a database or file may indicate a certain period
but a much shorter period is actually available).

Total Points Total number of points in a time series. If a regular time series, this can be

computed from the period. If an irregular time series, the number of points is
determined from a count of all data values. The data points may include missing
data – see the data limits for additional information.

Appendix - TSView - 8 612

 TSView Time Series Viewing Tools

Time Series Properties – Limits

TSProps_Limits

Time Series Properties - Limits

Time series limits are determined for both the current data (top in figure) and the original data (bottom in
figure). This is useful because the original data may contain missing data, which are later filled. The data
limits are displayed consistent with the data interval. In the example shown, limits are computed for each
month. For other time series having other intervals, only overall data limits may be computed.

Theoretically, it is possible that a daily time series could have day limits (e.g., max/min values for each
day of the year), month limits (e.g., computed as an average of the daily values by month), and year limits
(e.g., computed as an average of all daily values in a year). However, automatically including this level
of detail decreases performance and it is difficult to automatically make the right decisions (e.g., about
whether to average or total values). Consequently, the limits are currently computed in a basic fashion on
the raw data (no interval changes).

 Appendix - TSView - 9 613

TSView Time Series Viewing Tools

Time Series Properties – History

TSProps_History

Time Series Properties - History

The time series history (sometimes called the genesis history) is a list of comments indicating how the
time series has been processed. The completeness of this history is totally dependent on the time series
input/output and manipulation software. Although efforts have been made to add appropriate comments
as time series are processed, enhancements to the history comments are always being considered.

At the bottom of the history list (see Read From) is the input name that was actually used to read the
data. This input name may or may not be exactly the same as the input name in the time series identifier.
For example, if reading from a HydroBase database, the time series identifier may specify an input type
of HydroBase and no input name (because the software knows from the other parts of the time series
identifier which database tables to read). However, it is also useful to know the actual table that is read in
order to help users and developers understand the data flow. If reading from a file input type, the Read
From information will show the full path to the file; however, the input name in the time series identifier
may only include a relative path.

Appendix - TSView - 10 614

 TSView Time Series Viewing Tools

Time Series Properties – Data Flags

TSView_TSProps_DataFlags

Time Series Properties - Data Flags

Time series data flags contain information that describe the quality of a data point. The missing data
value indicates a special number that is used to indicate that a data value is missing at a point. Currently
only floating point values are recognized; however the NaN (not a number) value is generally supported
for input types that use the convention. All time series are typically assigned a missing data value.

The Has Data Flags checkbox indicates whether the time series has data flags. Full support for data flags
is being phased in, based on whether an input type supports data flags. The USGS NWIS file format is an
example of an input type that supports data flags (e.g., e is used to indicate estimated data).

One of the issues with fully supporting data flags is that different input types (and even different data
within an input type) treat data flags inconsistently. Therefore, it is easier to add data flags to time series
visualization tools (e.g., label points on a graph with the flag) than to integrate data flags in data filling
and analysis features. Features related to data flags will continue to be enhanced.

 Appendix - TSView - 11 615

TSView Time Series Viewing Tools

Time Series Traces

In general, the term time series traces refers to a group of time series, often shown in overlapping fashion.
Common uses of time series traces are:

• Separate a full time series into annual traces and plot them on top of each other, shifted so that they

all start at the same date/time,
• Run a model or analytical tool multiple times, with input being a series of input traces, and generating

a series of output traces, in order to produce probabilistic simulations.

The power of using traces is that a large amount of data can be used to visualize and study statistical
qualities of the data, as shown in the following figure.

Graph_Traces

Example Graph for Time Series Traces

The TSView package supports time series traces at various levels. Time series properties include a
sequence number that can be used to identify a time series as being in a group of traces. However, for
data management and viewing, time series identifiers often do not indicate whether a time series is in a
group of traces (the sequence number is managed internally). Full support of time series traces is being
phased in.

Appendix - TSView - 12 616

 TSView Time Series Viewing Tools

Currently, applications like TSTool include features to create time series traces and TSView tools can be
used to view the time series as if they were separate time series. Additional visualization features are
being enabled as time allows.

The following sections describe the different time series views that are available in TSView. Although
most illustrations using simple time series, most features are also available for use with traces.

Time Series Views

The main components of the TSView package are configured to provide multiple views for time series
data. The three main views that are available are:

1. Graph - line, bar, or other graph
2. Summary - text report suitable for the data type and interval
3. Table - spreadsheet-like table with scrolling, suitable for export to other tools

The initial view for a time series list is typically determined from the actions of the software user. For
example, a Graph button may be displayed on a screen, which when pressed will result in a graph being
displayed. The time series that are displayed in the view can typically contain one or more time series
(some graph types may have a restriction on the number of graph types). To increase performance and
capacity, the TSView package as much as possible uses a single copy of the time series data for
visualization. For example, to generate graphs, the data for the time series objects are used directly rather
than being copied into a graphing tool's data space. This also allows TSView to more easily display
different data intervals on the same view because the data do not need to be forced into a consistent grid
data structure.

The following sections describe the three time series views. The graph view type requires more extensive
explanation due to the variety of graph properties.

 Appendix - TSView - 13 617

TSView Time Series Viewing Tools

Time Series Graph View

The graph view for time series supports a variety of graph types. The features of the various graph types
will be discussed in detail in the following sections, starting with basic graph types, followed by more
specific types.

Typically, the graph type is selected in the application (e.g., menus are available in TSTool for selecting
the graph type for a list of time series). In many applications, the graph type often defaults to a line
graph. The following figure illustrates a line graph for two monthly streamflow time series.

TSView_Graph_MonthFlow

Example Line Graph for Monthly Streamflow

The graph view is divided into the following main areas:

Graph
Canvas

The graph canvas is the area where the graph and legend are drawn. This area is
used to interact with the graph (e.g., zoom). More than one graph can be drawn in
the canvas (see the Time Series Product Reference section for additional
details). If zooming is supported for the graph, a box can be drawn with the
mouse to zoom in to a shorter period. Right-click over a graph of interest to show
the popup menu for graph properties and analysis details (e.g., regression results).
The canvas area is essentially a preview of a printed graph.

Appendix - TSView - 14 618

 TSView Time Series Viewing Tools

Reference
Graph

The reference graph below the main graph canvas shows the current view extent
(the white area in reference graph in the figure above). The reference graph is
only shown for graph types that support zooming. If shown, it can be used for
zooming, similar to the main graph. The time series with the longest period of
record is drawn in the reference graph to illustrate variations in the data over time
(this time series is noted in the main graph legend with REF TS – this label is not
shown in printed output).

Under the graph areas is a layer of buttons used for zooming. The Zoom Out
button will zoom to the full extent of the data.

The other buttons facilitate scrolling through data as described below. For all
scrolling operations, the visible graph extent (or page) is maintained during the
scroll. Scrolling can use the buttons or keys described below. To use the
keyboard, first click in the main graph canvas to shift focus to that area.

|< Home Scroll the visible window to the start
of the period.

<< Page Down Scroll the visible window one full
page to the left (earlier in time).

< Left Arrow Scroll the visible window 1/2 page to
the left.

> Right Arrow Scroll the visible window 1/2 page to
the right (later in time).

>> Page Up Scroll the visible window a full page
to the right.

Scroll/Zoom
Buttons

>| End Scroll the visible window to the end
of the period.

The bottom row of buttons provides features for displaying other views, printing,
and exporting:

Summary Display the summary view for the time series (see
the Time Series Summary View section).

Table Display the table view for the time series (see the

Time Series Table View section).

Print Print the graph. Because the physical extents of the
printed page are different from the visible window,
the printed graph may not exactly match the viewed
version (e.g., more or less axis labels may be used).

Main
Buttons

 Appendix - TSView - 15 619

TSView Time Series Viewing Tools

Save Save the graph as a Portable Network Graphic
(PNG) or JPEG graphic, a DateValue file (a useful
time series format), or a Time Series Product file
(see the Time Series Product Reference section)
by selecting from the choices. Depending on the
main application, saving to a database as a time
series product may also be enabled.

Close Close the graph window. If related summary or

table windows are still visible, the graph view can
be quickly re-displayed by pressing the Graph
button on the other view windows. If the graph
properties have been changed but have not been
saved, a warning will be displayed.

Status
Message
Area

The lower-left status message area is used to provide general user instructions and
feedback.

Mouse
Tracker
Area

The lower-right status message area is used to indicate the position of the mouse
on a graph, in data units. The coordinates are typically shown using an
appropriate precision as determined from the time series date/time precision and
data units.

Within each graph canvas it is possible to draw more than one graph, each with its own titles, legend, etc.
The Time Series Product Properties section (below) provides an example and discusses how to edit
graph properties. The Time Series Product Reference section describes in detail the format of Time
Series Product files. These files, when saved from the graph view, can be used to recreate a graph
interactively or in batch mode, at a later time.

Because TSView is a general tool, a number of rules are in place when viewing time series in graphs (see
the Time Series Product Properties section for information on changing specific graph properties to
override the defaults):

1. Time series plotted on the same graph should generally have the same units or have units that can be

readily converted. If the units are not consistent, you will be warned and the units will be displayed
in the legend rather on the axis. (A future enhancement may allow multiple axes, each with different
units.)

2. Time series can have different data intervals (e.g., daily data can be plotted with monthly data).

However, other output options, such as reports, may not allow the same flexibility. It is important to
understand the data type characteristics. For example, some data are instantaneous (e.g., real-time
streamflow) whereas other data are accumulated (e.g., precipitation) or mean (e.g., mean
temperature). Therefore, the representation of the data may need to be selected with care to ensure
consistency. For example, some data intervals and types may be better represented as bars and others
as lines or points.

3. Data values are plotted at exactly the point that they are recorded. The plot positions are determined

using the year as the whole number and months, days, etc. to determine the fractional part of the plot
position. The end-user does not typically see these computed positions because labeling uses data
units, including dates. The plot positions are determined from the dates associated with data and no

Appendix - TSView - 16 620

 TSView Time Series Viewing Tools

adjustments are made to plot in the middle an interval. For example, monthly data are plotted at the
first day of the month (not day 15). Properties to override this convention are being evaluated. Bar
graphs allow you to select whether the bars are drawn to the left or right of the date, or centered on
the date. This allows flexibility to show a period over which a value was recorded, if appropriate.

4. The mouse coordinates that are displayed by the mouse tracker are computed by interpolating screen

pixels back to data coordinates (which involves a conversion of the plot position to date/time
notation). Consequently, the values shown may be rounded off (depending on the zoom extent and
data precision). The mouse coordinates are displayed based on the precision of the time series data.
When moved, the mouse will display the same date until the date changes within the given precision.
For example, for monthly data, moving the mouse left to right, the mouse coordinate will display as
1999-01 as soon as the date changes from 1998-12 to 1999-01. The label will remain at
1999-01 until 1999-02 is encountered. Because data values are drawn at points, you should
therefore always position the mouse slightly to the right of the point to see the date corresponding to
the value. This is very important for bar graphs because the bar may extend over several dates. If
specific values need to be determined, use the summary or table views.

5. Labels for axes are determined automatically in most cases based on the font requirements, available

display space, and data range. Major and minor tic marks are drawn to help determine the data
coordinates. Labels are redrawn as the visible period is changed.

6. Graphs that can be zoomed do not allow the vertical axis to be re-scaled on the fly. This capability is

being evaluated.

7. Currently, graph types cannot be mixed for time series on a graph. In other words, a graph cannot

contain a bar graph for one time series and a line graph for another time series. This ability may be
added in the future. A work-around is to use multiple graphs on a page (see the Time Series Product
Properties section for an example).

8. The precision used to format graph labels is determined from data unit information provided by the

application. This generally produces acceptable graphs. However, in some cases, the range of values
being plotted results in inappropriate labels where label values are truncated and/or repeated.

9. Graph types can be changed after the initial display, with limitations. Graphs can be switched

between simple types like line and bar graphs; however, simple graphs cannot be changed to more
complex types.

The following sections describe various graph types supported by the TSView package. Graph properties
are mentioned in some sections. The discussion of how to change graph properties is included in the
Time Series Product Properties section after the graph type descriptions.

 Appendix - TSView - 17 621

TSView Time Series Viewing Tools

Line Graph

Line graph features have been illustrated in previous discussion. The line graph type is also used to
generate graphs with only points by setting the line style to None (for example, software that displays
daily data where gaps are expected may default to using symbols and no line).

TSView_Graph_MonthFlow

Appendix - TSView - 18 622

 TSView Time Series Viewing Tools

Line Graph - Log Y Axis

Log-axis line graphs are similar to simple line graphs. The following figure illustrates a typical graph.

TSView_Graph_LogMonthFlow

Example Log Y Axis Graph showing Monthly Streamflow

Characteristics of the log plot are:

• If the minimum data value is <= 0.0, then .001 is used for the minimum plotting value.

 Appendix - TSView - 19 623

TSView Time Series Viewing Tools

Bar Graph

The bar graph type produces a graph with parallel vertical bars, as shown in the following example:

TSView_Graph_BarDayPrecip

Example Bar Graph showing Daily Precipitation

The above example illustrates that at the given zoom extent (which is a small part of the full period - see
the white area in the reference graph), labels are drawn for months. Zooming in more would display the
day in the labels. The mouse tracker in all cases shows days since that is the precision of the data.
Characteristics of the bar graph are as follows:

• Bars can be plotted centered on, to the left of, or to the right of the dates. If multiple time series are

plotted, the overall total width of the bars will correspond to one data interval. If drawn to the left of
the date, the bars for all graphed time series are drawn to the left of the date. If drawn to the right of
the date, the bars for all graphed time series are drawn to the right of the date. If centered on the date,
half the bars are drawn to the left of the date, and half to the right

• Bar widths are determined based on the number of time series being plotted. Monthly time series use
a slightly narrower bar (larger gap between bars) because the number of days in a month varies. To
make bars stand out better, a white line may be drawn to separate adjacent bars. If bars are very
narrow the line is not drawn. Bars will always be drawn at least one pixel wide, even if this obscures
neighboring bars (zoom in to see more detail). Round-off in drawing bars may result in some bars
being slightly wider or narrower than other bars.

• Bars always end at the zero value on the Y axis. In other words, bars extend up or down from zero.
• The mouse cursor display dates relative to the axis and does not determine the data value relative to

edges of the bars. For example, if bars are plotted centered on dates, 1/2 of the bar will actually be in
the previous date, according to the mouse tracker.

Appendix - TSView - 20 624

 TSView Time Series Viewing Tools

Double Mass Curve

Double mass curves are currently disabled. An alternative is to use the TSTool application and generate
cumulative time series, which can be viewed in a line graph.

Duration Graph

A duration graph indicates the range of values in a time series and how often they occur, as shown in the
following example:

TSView_Graph_DurationMaxDayTemp

Example Duration Graph showing Maximum Monthly Temperatures

The algorithm for calculating and graphing a duration curve was taken from the book Handbook of
Applied Hydrology (edited by Ven Te Chow): “When the values of a hydrologic event are arranged in
the order of their descending magnitude, the percent of time for each magnitude to be equaled or
exceeded can be computed. A plotting of the magnitudes as ordinates against the corresponding percents
of time as abscissas results in a so-called duration curve. If the magnitude to be plotted is the discharge
of a stream, the duration curve is known as a flow-duration curve.” Features of duration graphs are as
follows:

• The zoom feature is disabled for this graph type.
• Although duration curves have traditionally been applied to streamflow or reservoir data, duration

graphs can be created for any time series data.
• Noticeable breaks in the curve are caused by a limited number of data points and/or values that are

measured as rounded values.

 Appendix - TSView - 21 625

TSView Time Series Viewing Tools

Period of Record Graph

The period of record graph is used to display the availability of data over a period, as shown in the
following figure:

TSView_Graph_PORMonthFlow

Example Period of Record Graph showing Monthly Streamflow

Characteristics of the period of record graph type are:

• Horizontal lines are drawn for each time series, with breaks in the line indicating missing data.
• Zooming is fully enabled, however, it may be difficult to see small breaks in the lines – it may be

necessary to display symbols at the data points. The data limits properties of each time series can also
be used to check for missing data. The TSTool application provides reporting features to summarize
data coverage.

• Because data values are not plotted, the y-axis is labeled with a legend index number. This also
allows the graph window to be compressed vertically, if desired.

Appendix - TSView - 22 626

 TSView Time Series Viewing Tools

XY-Scatter Graph

The XY-Scatter graph type can be used to compare data having the same data interval (units can be
different). This graph type is often used for the following comparisons:

1. The dependent time series (Y) requires filling and multiple independent time series (X) are analyzed

to find the best time series to use as the independent time series. One or more independent time series
can be plotted on the same graph.

2. The dependent time series (Y) contains observed data and one or more independent simulated time
series (X) are analyzed to determine which simulation is closed to actual observations.

3. The independent (X) and dependent (Y) time series are compared to determine whether any time of
relationship exists between data points. In this case, a single dependent time series may be compared
with multiple independent time series on the same graph.

Currently the XY-Scatter graph can have only a single dependent time series but can have one or more
independent time series. The following figure shows a typical graph.

TSView_Graph_XYMonthFlow

Example XY Scatter Graph showing Monthly Streamflow

Characteristics of the XY Scatter graph are:

• Labels and legend are automatically generated. See the Time Series Product Properties section

below for information about changing the appearance of the graph.
• Simple linear regression is initially performed to determine a line of best fit. See the Analysis tab in

the Time Series Product Properties section below for information about curve fit methods.
• A 45-degree line is currently not displayed because time series of different types and units may be

compared. Graph properties do allow the line of best fit to be forced to zero. The limits on the axes
are not automatically set to equal values for the same reason; however, a property to force the values
to be the same will be added.

• Zooming is disabled.
• Two or more time series must be specified and must have the same interval.

 Appendix - TSView - 23 627

TSView Time Series Viewing Tools

• Confidence intervals can be turned on, as shown in the following figure:

TSView_Graph_XYConfidence

The confidence intervals provide a useful way for assessing the quality of a point estimate. When a
regression line is of interest, the confidence interval on the line as a whole permits one to make
confidence statements about a number of values of the predictor variables simultaneously.
Confidence limits for the line are a function of the level of confidence (e.g., gamma = 95% or 99%),
and the F-test statistic (2, n-2 degrees of freedom, and level of significance =1-gamma). The
equations used to plot the confidence intervals are shown below (note that because the curves depend
on the data points, the shape and smoothness of the curves will depend on the number of points; the
points are sorted to generate a continuous line).

()[] () ()
()

2/1

1

2

22/12

1

1ˆ
2

12ˆ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

−
±−+=

∑
∑

=

=
n

j
j

i
n

j
jjiCI

xx

xx
n

yy
n

FxxByy
i

where:

iCIŷ

= confidence interval y value at xi

y = mean of y
B = slope of regression line equation y = A + Bxi

re YCIi is being computed xi = x value whe

Appendix - TSView - 24 628

 TSView Time Series Viewing Tools

x = mean of x
F = F distribution at (2, n-2) degrees of freedom and gamma significance

yi = y value of data point corresponding to xi

• selected, displays curve fit
information about the time series, as illustrated in the following figure:

n = number of points with x and y values
iŷ = y predicted by the equation y = A + Bxi

• The best-fit line can be turned off.

Right-clicking on the graph displays the Analysis Details menu, that, if

TSView_Graph_XYRegressionDetails

Example Analysis Details

he RMS error (or RMSE) is calculated in the following way:

ors
RMSE = √MSE = Square Root of the MSE

he RMSE can have different meanings, depending on how the data are being analyzed:

1.
MSE indicates the

2.

,
the RMSE would be zero. Values of RMSE can be used to evaluate the estimator for data filling.

T

SSE = Σ(Xi – Yi)2 = Sum of Square Errors
MSE = SSE/N = Mean of Sum of Square Err

T

If a measured (X) and a simulated (Y) time series are being compared to determine, for example,
to determine how well a model is simulating actual observations, then the R
error of a simulation when compared to the actual (comparing the values).
If two time series are evaluated to determine if the relationship between the time series can be
used to estimate missing values in one of the time series, then the difference between estimated
values (Yest) and the line of best fit (e.g., A + BX) is used to compute the RMSE. For a perfect fit

 Appendix - TSView - 25 629

TSView Time Series Viewing Tools

To provide as much information as possible for multiple uses, the XY-Scatter Graph Analysis Details
rovides both RMSE values. The default is to display a line of best fit, which is usually desirable

rently

p menu. Interactively changing
roperties allows graphs to be configured as desired. The following figure illustrates a time series

p
information. The graph properties allow the analysis to be done for data filling, if desired.
Time Series Product Properties

A time series product is one or more time series graphs, tables, or reports on a “page”, although cur
TSView focuses on graph products. Time series product properties can be displayed by right clicking on
a graph of interest and selecting the Properties menu item from the popu
p
product that has two graphs (see the Time Series Product Reference section for information about how
to define time series product files, which can be used to save a product).

nteractively, and the
roduct files described in the Time Series Product Reference section can be created and processed. The

ct file and display a graph similar

 size).

TSView_Graph_PrecipAndFlow

Example Graph Product showing Precipitation and Streamflow

In many cases, a graph product will consist of only a single graph (which may show one or more time
series). However, it is also useful to display multi-graph products, especially when related data types are
used. The TSView interface includes features to construct multi-graph products i
p
TSTool application, for example, can interactively create or read a produ
to the one shown above. Important considerations for multi-graph products are:

• The product page has its own set of properties (e.g., titles and

Appendix - TSView - 26 630

 TSView Time Series Viewing Tools

• Each graph area has its own properties (e.g., titles, labels, graph type, legend). These properties
comprise most of the properties for a product.
Each time series has its own properties (e.g., symbol, color). •

 If zooming is enabled, then zooming in one graph causes the same zoom to occur in related graphs.

e zoom group.

•
Each graph (and the reference graph) is assigned a zoom group number. This is used to indicate
which graphs should zoom together. Currently, all graphs are in the sam

Right clicking on a graph and pressing the Properties item in the popup menu will display the properties
for the graph. The following figures illustrate the properties tabbed panel:

ct_Props_All

Tabbed Panel to Edit Time Series Product Properties

pro

 TSView_TSProdu

The time series product properties display as three layers of tabbed panels. Characteristics of the

perties window are:

 Appendix - TSView - 27 631

TSView Time Series Viewing Tools

• The window is divided into a layout area (top-left) and tabs for different groups of properties. The
layout window shows the overall layout of graphs on a page and allows manipulation of the time
series product by dropping time series onto the layout.
The top layer of tabs (• uct Properties) is associated with product properties (the page).

ies. A

or the
ph is selected.

 between graphs and time series (where multiple graphs and/or time series exist for a

• t properties, update the graph(s), and close the properties
window.

nd
complexity of product definition files.

Prod
• The middle layer of tabs (Graph Properties) is associated with subproduct properties (graphs on the

page). The graph of interest is selected using the drop-down choice that shows the graph number and
graph main title. When initially displayed, the selected graph is the one that was clicked on to display
the Properties menu.

• The bottom layer of tabs (Time Series Properties) is associated with data (time series) propert
time series within a graph is selected using the drop-down choice that shows the time series number
within the graph, and the time series identifier. When initially displayed, the first time series f
selected gra

• The Apply button will apply the current properties and update the graph(s). Warning - when
changing
product), properties that are changed are applied automatically. This behavior is being
evaluated.
The Close button will apply the curren

• Only properties read from an original time series product file or that are set by the user will be saved
if a time series product is saved. Internal defaults are not saved. This minimizes the size a

The remaining discussion in this section illustrates each of the tabbed panels. The text-based properties
that are displayed in the panels are described in the Time Series Product Reference section.

Product Properties - General

TSView_TSProduct_Props_Product_Gene

Example Product General Properties
ral

The above figure illustrates the product General properties. The Product Enabled checkbox indicates
whether the product is enabled (currently view-only). The Product ID is used when saving the product
definition to a database. The Product Name is also used to when displaying lists of products.

Appendix - TSView - 28 632

 TSView Time Series Viewing Tools

Product Properties - Titles

TSView_TSProduct_Props_Product_Titles

Example Product Title Properties

Product Titles properties include title and subtitle. If blank, no title will be shown. Because graphs
(subproducts) also have a title and subtitle, the product titles are often only used when multiple graphs are
included on a page.

Product Properties - Layout

TSView_TSProduct_Props_Product_Layout

Example Product Layout Properties

Product Layout properties describe how graphs are laid out on the page. Currently, graphs can only be
organized in a vertical stack, although the design will support multiple columns. The layout properties
are updated automatically as graphs are added to or deleted from the layout window at the left. The
relative size of each graph on the page is controlled by using the LayoutYPercent general property
for each graph on the page (see below).

 Appendix - TSView - 29 633

TSView Time Series Viewing Tools

Graph Properties - General

TSView_TSProduct_Props_Graph_General

Example Graph General Properties

The above figure illustrates graph General properties. The Graph Enabled checkbox indicates whether
the graph is enabled (currently view-only). The vertical size of the graph on the page (percent) can also
be specified (the default is to size all the graphs on the page equally).

Graph Properties - Graph Type

TSView_TSProduct_Props_Graph_GraphType

Example Graph Graph Type Properties

Graph Type properties control the overall display of the data. The graph type can be changed after the
initial display only when switching between simple graph types (e.g., line and bar graphs). Some graph
types may have specific properties (e.g., bar width for bar graphs). If necessary, to change the graph type,
you can usually select the type from a main application, and generate a new graph.

Appendix - TSView - 30 634

 TSView Time Series Viewing Tools

Graph Properties - Titles

TSView_TSProduct_Props_Graph_Titles

Example Graph Title Properties

Graph Titles properties include title and subtitle. If blank, no title will be shown. Font properties can
also be specified. After applying the a change to the main title, the title will be added in the list of graphs.

Graph Properties - X Axis

TSView_TSProduct_Props_Graph_XAxis

Example Graph X Axis Properties

Graph X Axis properties include title, label, and grid properties. The Major Grid Color can be specified
by selecting from the available choices, which then fill in the text field with the given color selection.

 Appendix - TSView - 31 635

TSView Time Series Viewing Tools

Graph Properties - Y Axis

TSView_TSProduct_Props_Graph_YAxis

Example Graph Y Axis Properties

Graph Y Axis properties include the following:

• Left Title - this may be set to the data units but can be specified (the Y axis title is currently always

placed at the top of the Y axis).
• Label - the font for labels and precision of numerical labels can be specified.
• Axis Type - currently this is view-only.
• Min Value, Max Value - currently this is view-only but can be set in time series product definition

files (see the Time Series Product Reference section).
• Units, Ignore Units - currently these are view-only. If time series with incompatible units are

graphed, Ignore Units will be checked and the units may be shown in the legend.

Appendix - TSView - 32 636

 TSView Time Series Viewing Tools

Graph Properties - Label

TSView_TSProduct_Props_Graph_Label

Example Label Properties

Data points are not labeled by default because there are usually too many data labels to be legible.
However, for plots with limited data, or after zooming in, labels can be useful to identify points without
referring to tabular data. The label format can be defined using the choices next to the text field or by
entering literal text. For an XY Scatter plot, repeat the %v format (e.g., %v, %v) to show the independent
(X) and dependent (Y) data values. See the DataLabel properties in the Time Series Product
Reference section for label options.

Graph Properties - Legend

TSView_TSProduct_Props_Graph_Legend

Example Graph Legend Properties

Graph Legend properties include format and font properties. If the Legend Format is Auto, a default
legend format will be constructed from the time series description, identifier, and period of record. See
the LegendFormat property in the Time Series Product Reference section for legend formatting
options.

 Appendix - TSView - 33 637

TSView Time Series Viewing Tools

Graph Properties - Zoom

TSView_TSProduct_Props_Graph_Zoom

Example Graph Zoom Properties

Graph Zoom properties are currently view-only. Zoom will be enabled for graph types that support it
(e.g., duration graphs do not). The zoom group indicates how graphs should respond when other related
graphs on a page are zoomed and currently defaults to 1 for all graphs.

Graph Properties - Analysis

TSView_TSProduct_Props_Graph_Analysis

Example Graph Analysis Properties

Graph Analysis properties are available if the graph requires some type of analysis to produce the result
(e.g., curve fitting). See also the analysis tab for individual time series. For help with input, place the
mouse cursor over a field and a tool tip will be shown.

Appendix - TSView - 34 638

 TSView Time Series Viewing Tools

Graph Properties - Annotations

TSView_TSProduct_Props_Graph_Analysis

Example Graph Analysis Properties

Graph Annotations properties are used to add annotation objects to a graph. Annotations are text, line,
or other simple shapes and are stored as simple text properties in time series products (see the Time
Series Product Reference section below for more information). Annotations are placed on a graph
using data units or a percent of the graph dimension. This allows annotations to move if a graph uses
real-time data.

To add an annotation, press the Add Annotation button. Then select the Shape Type and specify
annotation properties, as appropriate. The example shown in the above figure places the string “Flood
Alarm” at the horizontal (X) center of the graph at a Y-coordinate of 5.5. A horizontal annotation line
could also be drawn using 0 to 100 percent on the X-axis at the same Y-coordinate.

 Appendix - TSView - 35 639

TSView Time Series Viewing Tools

Time Series Properties - General

TSView_TSProduct_Props_TS_Gemeral

Example Time Series General Properties

Time series General properties are currently view-only and indicate whether the time series is enabled for
the graph.

Time Series Properties - Graph Type

TSView_TSProduct_Props_TS_GraphType

Example Time Series Graph Type Properties

Time series Graph Type properties are currently disabled. Currently all time series in a graph must have
the same graph type.

Time Series Properties - Axes

TSView_TSProduct_Props_TS_Axes

Example Time Series Axes Properties

Time series Axes properties are currently view-only and show the graph axes to which a time series is
associated.

Appendix - TSView - 36 640

 TSView Time Series Viewing Tools

Time Series Properties - Symbol

TSView_TSProduct_Props_TS_Symbol

Example Time Series Symbol Properties

Time series Symbol properties define the graphical appearance of time series data. Properties are
enabled/disabled based on the graph type (e.g., the Symbol Style will be disabled if the graph type is
Bar). The symbol properties are consistent with the GeoView tools used for maps.

Time Series Properties - Label

TSView_TSProduct_Props_TS_Label

Example Time Series Label Properties

Time series Label properties allow the data label to be changed. Data points are not labeled by default
because there are usually too many data labels to be legible. However, for plots with limited data, or after
zooming in, labels can be useful to identify points without referring to tabular data. The label format can
be defined using the choices next to the text field or by entering literal text. For an XY Scatter plot,
repeat the %v format to show the independent (X) and dependent (Y) data values. See the DataLabel
properties in the Time Series Product Reference section for label options.

Time Series Properties - Legend

TSView_TSProduct_Props_TS_Legend

Example Time Series Legend Properties

Time series Legend properties allow the legend format to be changed. This is useful if the time series is
to have different legend labeling that the other time series in the graph. If the Legend Format is Auto, a
default legend format will be constructed from the time series description, identifier, and period of record.

 Appendix - TSView - 37 641

TSView Time Series Viewing Tools

See the LegendFormat property in the Time Series Product Reference section for legend formatting
options.

Time Series Properties - Analysis

TSView_TSProduct_Props_TS_Analysis

Example Graph Analysis Properties

Time Series Analysis properties are available if the graph requires some type of analysis to produce the
result (e.g., curve fitting).

Changing a Graph Page Layout

The default page layout for graphs is to display all time series in one graph. In this configuration, the
layout area at the top-left corner of the time series product window will display as shown below:

TSView_Layout_1Graph

Layout Window Showing One Graph

The layout area can be used to split the single graph into multiple graphs on the page. For example, two
graphs may be needed because of different units, time step, or graph type. Left clicking on a graph in the
layout area will select the graph – the selected graph is shown in gray. Right clicking on the layout area
displays a menu with available options:

Appendix - TSView - 38 642

 TSView Time Series Viewing Tools

TSView_Layout_Menu

Layout Window Menu

The actions taken by the menus are described below:

Add Graph Above
Selected

 Add a new graph above the selected graph, renumbering the graphs
as needed.

Add Graph Add a new graph below the selected graph, renumbering the graphs

as needed.

Add Graph at
Bottom

 Add a new graph below all existing graphs, giving the new graph the
next number in the sequence.

Remove Graph Remove the selected graph, renumbering the graphs as needed.

Move Graph Up Move the graph up one in the sequence, renumbering the graphs as

needed. The menu is enabled only when multiple graphs are
available.

Move Graph
Down

 Move the graph down one in the sequence, renumbering the graphs
as needed. The menu is enabled only when multiple graphs are
available.

When a new graph is added, it will not have any specific properties, time series data, or annotations, other
than the default properties that are assigned (e.g., the default graph type is Line), and when drawn it will
appear as a blank area. To see the graph, it will be necessary to set the graph’s properties and provide it
with data (and optionally, annotations). Properties and annotations are defined using the properties tabs
as documented in previous sections – use the Apply button to apply and view the changes. To set graph
properties, the graph to be modified should be selected from the choices at the top of the Graph
Properties tab panel (or by selecting the graph in the layout window).

To add time series data to the new graph (or an existing graph), two approaches can be taken:

1. Find the time series to be moved using the list in the time series properties panel. It may be
necessary to select a graph to find the time series – selecting a graph will not impact the ability to
move the time series to a different graph. In the list of time series, hold the left mouse button
down over a time series choice and drag the time series to a graph on the layout area. During this
process, the cursor will change to a new shape, as shown below:

 Appendix - TSView - 39 643

TSView Time Series Viewing Tools

TSView_Layout_MoveTS

Release the mouse over the graph in the layout area that is to receive the time series. The time
series will then be removed from the original graph and will be inserted into the new graph as the
last time series in the list.

2. Some software programs will allow dragging a time series from a display to the time series
product properties window. Similar to above, drag the time series onto the receiving graph in the
layout area. Refer to documentation for the specific software program for additional information
about whether this feature is available.

After adding a new graph and moving time series, it may be necessary to change the graph type for a
graph. For example, the top graph may show precipitation and the bottom graph may show streamflow
resulting from the precipitation. Precipitation is normally shown as bars and streamflow as a line. The
graph will initially be shown using the graph type that was originally selected. Change the graph type in
the new configuration, as appropriate, by selecting the graph to be changed and then use the Graph Type
tab.

Appendix - TSView - 40 644

 TSView Time Series Viewing Tools

Time Series Summary View

The time series summary view can be selected from the graph or table view using the Summary button.
Additionally, applications that use the TSView package may allow displaying a summary from a menu or
button option. A time series summary view can usually be produced quickly, whereas the table view uses
more resources. The following figure illustrates a typical summary view.

TSView_Summary_MonthFlow

Example Summary View showing Monthly Streamflow

The summary view has the following characteristics:

• The graph view can be displayed using the Graph button and the table view can be displayed using

the Table button.
• Each time series interval (e.g., Month, Day, Hour) has a default summary report format suitable for

the interval. This format may be made more specific if time series are read from specific data types
(e.g., if daily diversion time series are read from the HydroBase input type, the summary report will
use the State of Colorado diversion coding report format).

• The contents of the view can be printed.
• The summary can be saved as a text file or DateValue time series file.
• Limited search capabilities are available to search for a string in the text area.

 Appendix - TSView - 41 645

TSView Time Series Viewing Tools

Time Series Table View

The time series table view can be selected from the graph or summary view using the Table button.
Additionally, applications that use the TSView package may allow displaying a table from a menu or
button option. The table view is useful for viewing date and data values in a spreadsheet-like display. A
time series table view for a long period or many time series may require extra time to display, but usually
only a few seconds are required. The following figure illustrates a typical table view.

TSView_Table_MonthFlow

Example Table View showing Monthly Streamflow

Characteristics of the table view are:

• The summary view can be displayed using the Summary button and the graph view can be displayed

using the Graph button.
• The precision of dates matches the data interval for the time series.
• If time series with different intervals are selected, multiple tables will be displayed in the window.
• The table contents can be saved as a DateValue file, which is a useful delimited format file.

Appendix - TSView - 42 646

 TSView Time Series Viewing Tools

Time Series Product Reference

A time series product is a report, table, or graph, although currently TSView focuses on graph products.
Examples of time series products and their use are:

• Reports and graphs generated from a database to perform quality checks.
• Reports and graphs generated from model input and output to check a calibration or model results.
• Reports and graphs generated from a database for real-time data products, to monitor current

conditions or to create products for a web site.

The TSView package contains features to process time series product files in interactive and batch mode
to produce time series products. Currently, only graph products are supported. The time series graph
view allows a graph to be saved as a time series product file. This file describes the layout and contents of
the product but does not include the time series data itself; therefore, the time series product is relatively
small.

Time Series Product File Format

The time series product definition file format consists of comments (lines that start with #), sections
(indicated by[]), and simple property=value pairs. The following example illustrates the parts
of a product file:

Example Time Series Product file
Comments start with #
Sections are enclosed in [] and must be included

[Product]

product properties - surround with double quotes if values contain spaces
xxxxx="xxxxxx xx"

[SubProduct 1]

"sub-product", e.g., a graph on a page (page is product and may have
multiple graphs)

[Data 1.1]

First data item in the SubProduct (e.g., first time series).
TSID = ...

[Data 1.2]

Second data item in the SubProduct (e.g., first time series).
TSID = ...

[SubProduct 2]

[Data 2.1]

Annotations are associated with a SubProduct
[Annotation 2.1]

Annotation properties…
... etc. ...

Example Time Series Product File

 Appendix - TSView - 43 647

TSView Time Series Viewing Tools

Most properties, if not specified in the file, will default to reasonable values. The most important
property is TSID, which indicates time series identifier to be read for data. The time series identifier
follows the conventions described in the Time Series Terminology section. Some tools, like TSTool,
will match the TSID against time series that have already been read into memory, or, if necessary, read
the time series from a file or database if not in memory. The normal convention is to use a .tsp extension
for time series product file names.

The list of properties that can be used in a time series product definition file is quite extensive and new
properties are added as new features are enabled. As shown in the previous section, properties are
defined as simple variable=value pairs. These properties are used internally by the graph view (and
its properties window) regardless of whether the graph originated from a product file or interactively.
The following tables list the properties that are currently supported or envisioned to be enabled in the
future. The first set of properties are used to define the overall product (the full page).

Top-level Time Series Product Properties

Product
Property Description Default
Current
DateTime

The current date and time to be drawn as a vertical line on all graphs. If
the property is not specified, no current date/time line will be drawn. If
specified as Auto, the current system time will be used for the date/time.
If specified as a valid date/time string (e.g., 2002-02-05 15), the
string will be parsed to obtain the date/time. This property is often
specified internally by the application at run time.

Not drawn.

Current
DateTime
Color

Color to use to draw the current date and time. Colors can be specified
as named colors (e.g., red), hexadecimal RGB values (e.g.,
0xFF0000), integer triplets (e.g., 255,0,0) or floating point triplets
(e.g., 1.0,0.0,0.0).

Green

Enabled Indicates whether the product should be processed. Specify as True or
False.

True

LayoutNumber
OfColumns

The number of columns in the product. Currently always 1.

LayoutNumber
OfRows

The number of rows in the product. Currently equal to
the number of
graphs.

LayoutType Indicates how the graphs in a product are laid out. Only Grid is
supported.

Grid

MainTitle
FontName

Name of font to use for main title (Arial, Courier, Helvetica,
TimesRoman).

Arial

MainTitle
FontSize

Size, in points, for main title. 20

MainTitle
FontStyle

Font style (Bold, BoldItalic, Plain, PlainItalic). Plain

MainTitle
String

Main title for the product, centered at the top of the page. No main title.

OutputFile Output file when graph product is generated in batch mode. This
property is often set at run time by the application. This property is
ignored for ProductType=Report and must be specified at a
subproduct level.

C:\TEMP\tmp.png
on windows,
/tmp/tmp.png on
UNIX

Owner An identifier that indicates the owner of the TSProduct, used internally
when saving TSProduct definitions to a database that implements
permissions.

None – can be blank
if permissions are
not important.

Appendix - TSView - 44 648

 TSView Time Series Viewing Tools

Top-level Time Series Product Properties (continued)

Product Property Description Default
PeriodEnd Ending date for time series data in the

product. The date should be formatted
according to common conventions (e.g.,
YYYY-MM-DD HH:mm), and should
ideally be of appropriate precision for the
data being queried. This property is often
set at run time by the application.

Full period is read.

PeriodStart Starting date for time series data in the
product. The date should be formatted
according to common conventions (e.g.,
YYYY-MM-DD HH:mm), and should
ideally be of appropriate precision for the
data being queried. This property is often
set at run time by the application.

Full period is read.

PreviewOutput Indicates whether the product should be
visually previewed before output. This
property is often set at run time by the
application and is used to override
generation of the OutputFile.

false

ProductType Time series product type, one of:
• Graph – graph (see graph subproduct

properties).
• Report – report (see report

subproduct properties).

Graph

SubTitleFontName Name of font to use for subtitle (see
MainTitleFontName for font list).

Arial

SubTitleFontSize Size, in points, for subtitle. 10
SubTitleFontStyle Font style (see MainTitleFontStyle

for style list).
Plain

SubTitleString Subtitle for the product. No subtitle.
TotalHeight Height of the total drawing space, which

may include multiple graphs, pixels.
400

TotalWidth Width of the total drawing space, which
may include multiple graphs, pixels.

400

The subproduct properties are associated with the graphs on a page or report files. There can be one or
more graphs on a page, each with different properties. It is envisioned that graphs can be grouped into
several zoom groups, where zooming in on one graph will cause all graphs to scale similarly. However,
at this time, all graphs in a product are placed in a single zoom group. It is also envisioned that graphs
could be placed anywhere on the page; however, at this time, multiple graphs on a page can only be
stacked vertically, each using the full width of the page.

 Appendix - TSView - 45 649

TSView Time Series Viewing Tools

The following tables describe the subproduct (graph) properties.

Subproduct (Graph) Properties

Subproduct (Graph)
Property Description Default
BarPosition For use with bar graphs. This property

controls how bars are positioned relative
to the date and can have the values
CenteredOnDate, LeftOfDate, or
RightOfDate.

CenteredOnDate

BottomXAxisLabelFontName Name of font for bottom x-axis labels
(see Product MainLabelFontName).

Arial

BottomXAxisLabelFontSize Bottom x-axis labels font size, points. 10
BottomXAxisLabelFontStyle Bottom x-axis labels font style (see

Product MainLabelFontStyle).
Plain

BottomXAxisTitleFontName Name of font for bottom x-axis title (see
Product MainTitleFontName).

Helvetica

BottomXAxisTitleFontSize Bottom x-axis title font size, points. 12
BottomXAxisTitleFontStyle Bottom x-axis title font style (see

Product MainTitleFontStyle).
Plain

BottomXAxisLabelFormat Format for X-axis labels. Currently this
is confined to date/time axes and only
MM-DD is recognized.

Determined
automatically.

BottomXAxisMajorGridColor Color to use for the major grid. Most graph types
automatically set to
None.

BottomXAxisMinorGridColor Color to use for the minor grid. This
property is not implemented.

None

BottomXAxisTitleString Bottom X-axis title string. As appropriate for the
graph type (often
None if dates).

DataLabelFontName Name of font for data labels (see Product
MainLabelFontName).

Arial

DataLabelFontSize Data label font size, points. 10
DataLabelFontStyle Data label font style (see Product

MainLabelFontStyle).
Plain

Appendix - TSView - 46 650

 TSView Time Series Viewing Tools

Subproduct (Graph) Properties (continued)

Subproduct (Graph)
Property Description Default

Format specifiers to use for labeling data
points. If blank, no labels will be drawn.
If specified, labels are drawn for line
graphs and XY scatter plots. The
following format specifiers are available
(all other text in the format is treated
literally). The last three specifiers are
related to time series data and all others
are related to the date for a point. The
%v specifier can be specified twice for
XY Scatter plots to display the X and Y
values. If specified and the time series
data property is not specified, the graph
property will be used.
%% Literal percent.
%a Weekday name abbreviation.
%A Weekday name.
%B Month name.
%b Month name abbreviation.
%d Day number.
%H Hour (0-23), 2-digit.
%I Hour (1-12), 2-digit.
%J Day of year.
%m Month 2-digit.
%M Minute, 2-digit.
%p AM, PM.
%S Second, 2-digit.
%y Year, 2-digit.
%Y Year, 4-digit.
%Z Time zone.
%v Data value, formatted according

to units.
%U Data units.

DataLabelFormat

%q Data flag (e.g., quality).

Blank (no data point
labels).

 Appendix - TSView - 47 651

TSView Time Series Viewing Tools

Subproduct (Graph) Properties (continued)

Subproduct (Graph)
Property Description Default
DataLabelPosition Indicates the position of data labels, relative

to the data point: UpperRight, Right,
LowerRight, Below,
LowerLeft, Left, UpperLeft,
Above, Center. If specified and the time
series data property is not specified, the
graph property will be used.

Right

Enabled Indicates whether the sub-product should be
processed. Specify as True or False.

True

GraphHeight Graph height in pixels. Currently this
property is ignored (use Product
TotalHeight instead).

Product
TotalHeight
(minus space for titles,
etc.) if one graph, or
an even fraction of
Product
TotalHeight
(minus space for titles,
etc.) if multiple
graphs.

GraphType Indicates the graph type for all data in a
graph product. Available options are: Bar,
Duration, Line, PeriodOfRecord,
Point, XY-Scatter.

Line

GraphWidth Graph width in pixels. Currently this
property is ignored (use Product
TotalWidth instead).

Product
TotalWidth (minus
space for titles, etc.).

LayoutXPercent For the product grid layout, the width of the
graph as a total width of the product,
percent.

100 divided by the
number of columns in
the layout.

LayoutYPercent For the product grid layout, the height of the
graph as a total width of the product,
percent.

100 divided by the
number of rows in the
layout.

LeftYAxisIgnoreUnits Indicates whether to ignore units for the left
Y-axis. Normally, units are checked to
make sure that data can be plotted
consistently. If this property is set, then the
user will not be prompted at run-time to
make a decision. Specify as True or
False.

If not specified, the
units will be checked
at run-time and, if not
compatible, the user
will be prompted to
indicate whether to
ignore units in the
graphs. The property
will not be reset
automatically but will
be handled internally
using the interactively
supplied value.

Appendix - TSView - 48 652

 TSView Time Series Viewing Tools

Subproduct (Graph) Properties (continued)

Subproduct (Graph)
Property Description Default
LeftYAxisLabelFontName Name of font for left y-axis labels (see

Product MainLabelFontName).
Arial

LeftYAxisLabelFontSize Left y-axis labels font size, points. 10
LeftYAxisLabelFontStyle Left y-axis labels font style (see Product

MainLabelFontStyle).
Plain

LeftYAxisLabelPrecision If numeric data, the number of digits
after the decimal point in labels.

Automatically
determined from graph
type and/or data units.

LeftYAxisMajorGridColor Color to use for the major grid. Most graph types
automatically set to
lightgray.

LeftYAxisMax Maximum value for the left Y-Axis. Auto, automatically
determined. If the
actual data exceed the
value, the property
will be ignored.

LeftYAxisMin Minimum value for the left Y-Axis. Auto, automatically
determined. If the
actual data exceed the
value, the property
will be ignored.

LeftYAxisMinorGridColor Color to use for the minor grid. This
property is not implemented.

None

LeftYAxisTitleFontName Name of font for left y-axis title (see
Product MainTitleFontName).

Arial

LeftYAxisTitleFontSize Left y-axis title font size, points. 12
LeftYAxisTitleFontStyle Left y-axis title font style (see Product

MainTitleFontStyle).
Plain

LeftYAxisTitleString Left y-axis title string. Note that due to
limitations in Java graphics, the left
y-axis title is placed at the top of the
left y-axis so that it takes up roughly
the same space as the y-axis labels.
The top-most label is shifted down to
make room for the title.

As appropriate for the
graph type (often the
data units).

LeftYAxisType Left y-axis type (Log, or Linear). Linear
LeftYAxisUnits Left y-axis units. This property is

currently used internally and full
support is being phased in. See also
LeftYAxisIgnoreUnits.

Units from first valid
time series, or as
appropriate for the
graph type.

LegendFontName Name of font for legend (see Product
MainTitleFontName).

Arial

LegendFontSize Legend font size, points. 10
LegendFontStyle Legend font style (see Product

MainTitleFontStyle).
Plain

 Appendix - TSView - 49 653

TSView Time Series Viewing Tools

Subproduct (Graph) Properties (continued)

Subproduct (Graph)
Property Description Default

The legend format is composed of literal
characters and/or time series data format
specifiers, as follows.
Blank No legend will be displayed.
%% Literal percent
%A Time series alias
%D Description (e.g., RED RIVER

BELOW MY TOWN)
%F Full time series identifier (e.g.,

XX_FREE.USGS.QME.24HOUR.Trace1)
%I Full interval part of the identifier

(e.g., 24Hour).
%b Base part of the interval (e.g., Hour).
%m Multiplier part of the interval (e.g.,

24).
%L Full location part of the identifier

(e.g., XX_FREE).
%l Main part of the location (e.g., XX).
%w Sub-location (e.g., FREE).
%S The full source part of the identifier

(e.g., USGS).
%s Main data source (e.g., USGS).
%x Sub-source (reserved for future use).
%T Full data type (e.g., QME).
%t Main data type.
%k Sub-data type.
%U Data units (e.g., CFS).
%z Sequence number (used with traces).

LegendFormat

%Z Scenario part of identifier (e.g.,
Trace1).

Auto, which
uses
Description,
Identifier, Units,
Period

LegendPosition Position of the legend relative to the graph:
Bottom, InsideLowerLeft,
InsideLowerRight,
InsideUpperLeft,
InsideUpperRight, Left, None,
Right.

Bottom

Appendix - TSView - 50 654

 TSView Time Series Viewing Tools

Subproduct (Graph) Properties (continued)

Subproduct (Graph)
Property Description Default
MainTitleFontName Name of font to use for graph main title

(see Product MainTitleFontName).
Arial

MainTitleFontSize Size, in points, for graph main title. 10
MainTitleFontStyle Graph main title font style (see Product

MainTitleFontStyle).
Plain

MainTitleString Main title for the graph. None, or appropriate
for graph type.

PeriodEnd Ending date for time series data in the
sub-product. The date should be
formatted according to common
conventions (e.g., YYYY-MM-DD
HH:mm), and should ideally be of
appropriate precision for the data being
queried. This property is often set at
run time.

Full period is read.

PeriodStart Starting date for time series data in the
sub-product. The date should be
formatted according to common
conventions (e.g., YYYY-MM-DD
HH:mm), and should ideally be of
appropriate precision for the data being
queried. This property is often set at
run time.

Full period is read.

RightYAxisLabelFontName Name of font for right y-axis labels (see
Product.MainLabelFontName).
This property is not enabled.

Arial

RightYAxisLabelFontSize Right y-axis labels font size, points.
This property is not enabled.

10

RightYAxisLabelFontStyle Right y-axis labels font style (see
Product MainLabelFontStyle).
This property is not enabled.

Plain

RightYAxisTitleFontName Name of font for right y-axis title (see
Product MainTitleFontName). This
property is not enabled.

Arial

RightYAxisTitleFontSize Right y-axis title font size, points. This
property is not enabled.

12

RightYAxisTitleFontStyle Right y-axis title font style (see Product
MainTitleFontStyle). This
property is not enabled.

Plain

RightYAxisTitleString Right y-axis title string. This property
is not enabled.

 Appendix - TSView - 51 655

TSView Time Series Viewing Tools

Subproduct (Graph) Properties (continued)

Subproduct (Graph)
Property Description Default
SubTitleFontName Name of font to use for graph Sub title

(see Product MainTitleFontName).
Arial

SubTitleFontSize Size, in points, for graph sub title. 10
SubTitleFontStyle Graph sub title font style (see Product

MainTitleFontStyle).
Plain

SubTitleString Sub title for the graph. No subtitle.
TopXAxisLabelFontName Name of font for Top x-axis labels (see

Product.MainLabelFontName).
This property is not enabled.

Arial

TopXAxisLabelFontSize Top x-axis labels font size, points. This
property is not enabled.

10

TopXAxisLabelFontStyle Top x-axis labels font style (see Product
MainLabelFontStyle). This
property is not enabled.

Plain

TopXAxisTitleFontName Name of font for Top x-axis title (see
Product MainTitleFontName).
This property is not enabled.

Arial

TopXAxisTitleFontSize Top x-axis title font size, points. This
property is not enabled.

12

TopXAxisTitleFontStyle Top x-axis title font style (see Product
MainTitleFontStyle). This
property is not enabled.

Plain

TopXAxisTitleString Top X axis title string. This property is
not enabled.

As appropriate for the
graph type.

XYScatterAnalyzeForFilling Indicate whether the analysis should be
used to analyze for filling. If true, then
the XYScatterIntercept,
XYScatterFillPeriodStart, and
XYScatterFillPeriodEnd
properties may be specified.

False

XYScatterDependentAnaly
sisPeriodEnd

Specify the ending date/time for the
period to analyze the dependent time
series data, to determine the best-fit line.

Blank (analyze full
period).

XYScatterDependentAnaly
sisPeriodStart

Specify the starting date/time for the
period to analyze the dependent time
series data, to determine the best-fit line.

Blank (analyze full
period).

XYScatterFillPeriodEnd When
XYScatterAnalyzeForFilling=
true, indicates the ending date/time of
the period to fill, using standard
date/time string.

Blank (fill full
period).

Appendix - TSView - 52 656

 TSView Time Series Viewing Tools

Subproduct (Graph) Properties (continued)

Subproduct (Graph)
Property Description Default
XYScatterFillPeriodStart When

XYScatterAnalyzeForFilling
=true, indicates the starting date/time
of the period to fill, using standard
date/time string.

Blank (fill full period).

XYScatterIndependentAna
lysisPeriodEnd

Specify the ending date/time for the
period to analyze the independent time
series data, to determine the best-fit
line.

Blank (analyze full period).

XYScatterIndependentAna
lysisPeriodStart

Specify the starting date/time for the
period to analyze the independent time
series data, to determine the best-fit
line.

Blank (analyze full period).

XYScatterIntercept The value of A in the best-fit equation A
+ bX. If specified, the value of B is
adjusted accordingly. This property
cannot be used with transformed data
and if specified must be 0.

Blank (do not force the
intercept).

XYScatterMethod Curve fit method used when analyzing
data for the XY Scatter graph
(OLSRegression or MOVE2).

OLSRegression

XYScatterMonth One or more month numbers used when
analyzing data for the XY Scatter graph,
separated by commas or spaces (1=Jan).

Blank (analyze all)

XYScatterNumberOfEquations Number of equations used when
analyzing data for the XY Scatter graph
(OneEquation or
MonthlyEquations).

OneEquation

XYScatterTransformation Data transformation used when
analyzing data for the XY Scatter graph
(None or Log). This property is not
enabled.

None

ZoomEnabled Indicates whether the graph can be
zoomed (true) or not (false).

Graph types are evaluated and
the property is automatically
set. XY-Scatter and Duration
graphs can't zoom.

ZoomGroup Indicate a group identifier that is used to
associate graphs for zooming purposes.
For example, there may be more than
one distinct group of graphs, each with
its own overall period or data limits.
The graph types may also be
incompatible for zooming. This is an
experimental feature and should
currently not be specified in product
files.

All graphs are assigned to
zoom group 1.

 Appendix - TSView - 53 657

TSView Time Series Viewing Tools

Report Subproduct Properties

The following table describes the subproduct (report) properties. Limited support for report products are
currently enabled. Reports are defined as any format other than graphical output, including raw data
formats like delimited and DateValue files. The number of properties for reports will continue to be
expanded as additional features are enabled. An example of a report product file is as follows (in this
case for NWSRFS FS5Files input type time series):

[Product]

ProductType = Report
Enabled = true

[SubProduct 1]

OutputFile = C:\Report_6_Hour
ReportType = DateValue

[Data 1.1]
TSID = FZRDR.NWSRFS.SPEL.6HOUR~NWSRFS_FS5Files

[SubProduct 2]

OutputFile = C:\Report_24_Hour
ReportType = DateValue

[Data 2.1]
TSID = FZRDR.NWSRFS.PELV.24HOUR~NWSRFS_FS5Files

Subproduct (Report) Properties

Subproduct (Report)
Property Description Default
OutputFile Output file when report product is

generated in batch mode. If a relative
path is given, the file will be written
relative to the working directory for the
software. This property is often set at
run time by the application.

C:\TEMP\tmp_report_
N on windows,
/tmp/tmp_report_N on
UNIX

Enabled Indicates whether the sub-product
should be processed. Specify as true
or false.

true

Appendix - TSView - 54 658

 TSView Time Series Viewing Tools

Time Series Properties

Each subproduct (graph) includes time series data, and the presentation of each time series can be
configured using data (time series) properties. In some cases, properties are layered, allowing a property
to be defined for the subproduct (graph) for use by all time series (e.g., legend text).

The following tables list data (time series) properties.

Data (Time Series) Properties

Data (Time Series)
Property Description Default
Color Color to use when drawing the data.

Examples are named colors (e.g.,
red), RGB triplets (e.g.,
255,0,128), and hexadecimal RGB
(e.g., 0xFF0088).

Repeating, using
common colors.

DataLabelFormat Data label format specifiers. See the
graph DataLabelFormat property.
If the graph property is specified and
the time series property is not, the
graph property will be used.

Blank (no labels).

DataLabelPosition Data label position. See the graph
DataLabelPosition property. If
the graph property is specified and the
time series property is not, the graph
property will be used.

Right

Enabled Indicates whether the data should be
processed. Specify as true or false.

true

GraphType Indicates the graph type for the data in
a graph product. Available options are:
Bar, Duration, Line,
PeriodOfRecord, Point, XY-
Scatter. Currently the sub-
product property is used for all data.
It is envisioned that this propery will
be enabled in the future to allow
different data representations to be
plotted together (e.g., monthly as
bars, daily as line).

Property not enabled.

LegendFormat The legend for the data can be
specified and will override the
SubProduct LegendFormat property
(see that property for details).

Auto

LineStyle Line style. Currently only None (e.g.,
for symbols only) and Solid are
allowed.

Solid

LineWidth Line width, pixels. Currently a line
width of 1 pixel is always used.

1

 Appendix - TSView - 55 659

TSView Time Series Viewing Tools

Data (Time Series) Properties (continued)

Data (Time Series)
Property Description Default
PeriodEnd Ending date for time series data in the

data item. The date should be formatted
according to common conventions (e.g.,
YYYY-MM-DD HH:mm), and should
ideally be of appropriate precision for the
data being queried. This property is
often set at run time.

Full period is read.

PeriodStart Starting date for time series data in the
data item. The date should be formatted
according to common conventions (e.g.,
YYYY-MM-DD HH:mm), and should
ideally be of appropriate precision for the
data being queried. This property is
often set at run time.

Full period is read.

RegressionLineEnabled Indicates whether the regression line
should be shown (currently only used
with the XY-Scatter graph type). The line
is drawn in black (there is currently not a
property to set the line color).

true

SymbolSize Symbol size in pixels. 0 (no symbol)
SymbolStyle Symbol style. Recognized styles are:

• None
• Arrow-Down, Arrow-Left,

Arrow-Right, Arrow-Up
• Asterisk
• Circle-Hollow, Circle-

Filled
• Diamond-Hollow, Diamond-

Filled
• Plus, Plus-Square
• Square-Hollow, Square-

Filled
• Triangle-Down-Hollow,

Triangle-Down-Filled,
Triangle-Left-Hollow,
Triangle-Left-Filled,
Triangle-Right-Hollow,
Triangle-Right-Filled,
Triangle-Up-Hollow,
Triangle-Up-Filled

• X, X-Cap, X-Diamond, X-
Edge, X-Square

None

Appendix - TSView - 56 660

 TSView Time Series Viewing Tools

Data (Time Series) Properties (continued)

Data (Time Series) Property Description Default
TSID Time series identifier. Must specify.
XAxis X-axis to use (Bottom or Top). This

currently always defaults to bottom.
Bottom

XYScatterConfidenceInterval This property is only used with XY
scatter plots. If not blank, the value
indicates that confidence level lines
should be drawn on the XY Scatter
plot for the given confidence interval,
percent. Currently only 99 and 95
percent confidence intervals are
supported. The lines will only be
drawn if the curve fit line is drawn (see
RegressionLineEnabled).

Blank (do not draw).

YAxis Y-axis to use (Left or Right). This
currently always defaults to left.

Left

Annotation Properties

Annotations are associated with subproducts (graphs) and are implemented as simple shapes that are
drawn on normal graphs. It is envisioned that all shapes supported by the drawing package will
eventually be supported but currently only text labels and lines can be specified as annotations.

To allow flexibility, annotations can be placed using two coordinate systems. For example, if a product is
generated using real-time data, the date/time axis will have a different range over time. Therefore,
placing an annotation using a fixed coordinate would cause the annotation to scroll off the graph as time
passes. To resolve this issue and still allow absolute positioning of annotations, as appropriate, the
following coordinate systems are supported, as specified by the XAxisSystem and YAxisSystem
properties:

Data When using the data coordinate system, it is expected that the coordinates used
to define the annotation will agree with the data units being drawn. For
example, for a normal time series graph, the x-axis coordinate would be
specified as a date/time to the necessary precision and the y-axis coordinate
would be specified using data values.

It is envisioned that a notation +NNN and –NNN will be implemented in the
future to allow offsets from the edges of the graph, in data units.

Percent When using the percent coordinate system, it is expected that the coordinates

used to define the annotation are specified as a percent of the graph width or
height, with 0 being the lower/left and 100 being the upper/right.

Each axis can have a different coordinate system (e.g., the y-axis value can be set using data units and the
x-axis value can be set using percent).

 Appendix - TSView - 57 661

TSView Time Series Viewing Tools

The following tables list annotation properties.

Annotation Properties (All Shapes)

Annotation
Property Description Default
AnnotationID A string that identifies the annotation,

to be used in software displays. If
there are many annotations, this helps
identify them when editing.

Annotation +
annotation number
(1+) (e.g.,
Annotation1).

Color Color to use when drawing the
annotation. Examples are named colors
(e.g., red), RGB triplets (e.g.,
255,0,128), and hexadecimal RGB
(e.g., 0xFF0088).

Black

Order The drawing order for the annotation,
either BehindData to draw behind
time series data or OnTopOfData to
draw on top of time series data.

OnTopOfData

ShapeType The type of shape to be drawn for the
annotation. Currently accepted values
are Text and Line.

None – must be
specified.

XAxisSystem Indicates the system for X coordinates:
• If Data, the X coordinates that are

specified will be in data units.
• If Percent, the X coordinates are

percent of the graph (0% is left and
100% is right).

Data

YAxisSystem Indicates the system for Y coordinates:
• If Data, the Y coordinates that are

specified will be in data units.
• If Percent, the Y coordinates are

percent of the graph (0% is bottom
and 100% is top).

Data

Appendix - TSView - 58 662

 TSView Time Series Viewing Tools

Annotation Properties (Line Shape)

Annotation
Property Description Default
LineStyle Line style. Currently only None and

Solid are allowed.
Solid

LineWidth Line width, pixels. Currently a line
width of 1 point (pixel) is always used.

1

Points X and Y coordinates for the line
endpoints, as follows: X1,Y1,X2,Y2
or X1,Y2,X2,Y2.

None – must be
specified.

Annotation Properties (Text Shape)

Annotation
Property Description Default
FontSize Annotation text font size, points. 10
FontStyle Annotation text font style (see Product

MainLabelFontStyle).
Plain

FontName Annotation font name (see Product
MainTitleFontName).

Arial

Point X and Y coordinates for the text
position, as follows: X1,Y1

None – must be
specified.

Text The string to display. Blank
TextPosition Indicates the position of text, relative

to the point: UpperRight, Right,
LowerRight, Below,
LowerLeft, Left, UpperLeft,
Above, Center.

Right

 Appendix - TSView - 59 663

TSView Time Series Viewing Tools

This page is intentionally blank.

Appendix - TSView - 60 664

Appendix: GeoView Mapping Tools
Color, 2004-05-27, Original Maintained with TSTool, Acrobat Distiller

Overview
GeoView Terminology
The GeoView Panel
Interacting with the GeoView Map
Setting GeoView Properties
Viewing a Layer’s Attributes
Using GeoView with a Software Application
Limitations
GeoView Configuration – the GeoView Project File
 Color Specification
 Color Tables
 Symbol Style – Point Data
 Classification
GeoView Project File Examples

Overview

The GeoView package contains integrated software components that can be used with software to enable
map-based interfaces. The main purpose of the GeoView package is to provide simple and flexible map
displays that can be used in a variety of software applications with little or no reconfiguration.

The GeoView package has been developed by Riverside Technology, inc., using Java technology.
GeoView interfaces can be embedded in Java applications (e.g., use GeoView as the main window
interface), can be enabled as a separate floating window (e.g., to support an application's features without
being embedded in the main window), and can be used in web pages either as embedded map applets or
stand-alone map windows. GeoView tools operate similarly on Microsoft Windows and UNIX operating
systems.

This appendix describes general GeoView features and can be used as a reference for how to configure
and use GeoView components. Specific uses of GeoView in a software program are discussed in the
documentation for the specific software. Some of the figures shown in this documentation were
generated using GeoView with the TSTool software and consequently title bars include TSTool in the
wording.

 Appendix - GeoView - 1 665

GeoView Mapping Tools

GeoView Terminology

GeoView terminology is similar to other GIS product terminology. Important terms are shown in the
following table. These terms are used infrequently in most user interfaces and applications but are visible
at times in property dialogs and configuration files.

GeoView Terminology

Term Description
GeoView The visible map window where maps are displayed. Currently there can be only

one main GeoView. A reference GeoView may be used to show the zoom extents
in the main GeoView.

GeoLayer A data layer, in its "raw" form (e.g., an ESRI Shapefile). The more generic term
"layer" is often used.

GeoLayerView A view of a GeoLayer, with symbol properties for visualization. The more generic
term "layer view" is often used. This is equivalent to a "theme" in some software
packages.

Feature A general term describing an item on the map, consisting of shape and attribute
data.

Shape A general term defining the type of feature (e.g., point, polygon). The shape type
defines the ways that a feature can be symbolized and used in analysis. Shape
types can typically be determined automatically from input data.

Attributes A general term defining non-shape data that are associated with a feature. Often,
attributes are stored in a tabular form, such as a relational database table.
Attributes are usually associated with a shape using some type of index number
(shape index).

Symbol The combination of properties used to visualize a layer (e.g., symbol style, color,
labeling, classification). The feature shape type controls how the feature can be
symbolized.

GeoView
Project

A GeoView Project file (.gvp) can be used to define the layers and global viewing
properties for a GeoView. The contents of this file are described in more detail in
the GeoView Configuration – the GeoView Project File section at the end of this
appendix.

Application
Layer Type

Because GeoView is a generic tool, it has no implicit understanding of the types of
data that are important to an application. The AppLayerType is a property that
can be assigned to layers in a GeoView Project file to help an application know
that a layer is important to the application. An application layer type of
"BaseLayer" indicates that a layer should be used for background information and
is not specific to the application. See the Using GeoView with a Software
Application section below for more information.

Appendix - GeoView - 2 666

 GeoView Mapping Tools

The GeoView Panel

An example GeoView interface is shown in the following figure. This example uses a floating GeoView
window. Some programs use a GeoView that is embedded in the main application window, and some
rely on secondary map windows (as shown below). If the map is in the main window, the menus at the
top of the window will be those specific to the software (whereas below the single GeoView File menu is
shown).

GeoView_Frame

Example GeoView Interface (from TSTool)

The GeoView Panel is a self-contained component that offers a standard map-based interface that can be
used in many applications. In the above figure, the GeoView Panel includes everything shown, except for
the top menu bar (with the File menu). The general purpose GeoView Frame includes the menu bar and a
GeoView Panel. The GeoView Panel contains the following components:

Table of Contents
(left edge)

The table of contents displays a list of layer views, showing the top-most
layer at the top of the legend. Layers can be enabled/disabled by toggling the
check box. A layer can be selected/deselected by clicking on the layer in the
table of contents. Layers that are selected can be acted on (e.g., properties
can be viewed). The table of contents also indicates the symbol for the layer.

Main GeoView
(large map)

The main GeoView displays the enabled layers and allows you to interact
with the map using the mouse and keyboard (e.g., zoom, select).

 Appendix - GeoView - 3 667

GeoView Mapping Tools

Reference GeoView
(lower left)

The reference GeoView displays layers that have the property
ReferenceLayer set to true. This view shows the current zoom extent
relative to the maximum extent of the data and can also be used to initiate a
zoom to a region on the main map (the reference map is always in zoom
mode).

Standard controls perform actions on the visible map as follows:

Print Print the visible map. You will be able to pick the

printer and orientation.

 Save
Image

Saves the map as a Portable Network Graphics (PNG),
JPEG, or other supported graphic file format.

 Refresh Refresh the map display by redrawing features in
enabled layers that are in the visible window. This does
not re-read the original data. GeoView normally
refreshes automatically as needed.

Zoom
Out

Zoom to the maximum data extents.

Standard Controls
(top, below menu
bar)

Select
the

Mode as
Zoom,
Info, or
Select

Select the interaction mode. The Zoom mode allows a
rectangle to be drawn on the map to zoom to the
specified region and is the default mode if no layer is
selected. The Info mode allows features to be selected
(by clicking on or drawing a box around), after which
geographic information about the features is displayed.
The Select mode is similar to Info; however, its
purpose is to select features for an additional action
(e.g., exporting data or performing a query). The Info
and Select modes are only enabled if one or more
layers are selected in the table of contents.

See the next section for more information about using
these features.

Message Areas
(bottom)

The message areas are used to display the mouse coordinates and provide
other feedback.

The GeoView Panel components work with each other to provide interaction with the maps, as described
below.

Appendix - GeoView - 4 668

 GeoView Mapping Tools

Interacting with the GeoView Map

The layers shown on the map are initially displayed according to the GeoView Project settings. Once
displayed, you can interact with the map in the following ways:

Disable/Enable
a layer view

Layers can be enabled/disabled to make the map more readable or useful:

1. Use the check boxes in the table of contents to disable and enable

layer views, as appropriate. The map will automatically refresh,
resulting in a slight delay as the map is redrawn.

2. If necessary, use the Refresh tool () to cause the map to be
updated (automatic refresh may be disabled for some applications,
due to performance reasons).

Change layer
view order

Currently the layer view order can only be changed by editing the
GeoView Project file.

Zoom in/out Zooming is useful make symbols and labels more readable. To zoom in:

1. Set the GeoView interaction mode to "Zoom" by selecting the zoom

tool () at the top of the window.
2. Use the mouse to draw a box around an area of interest (left mouse

button down to start, move the mouse, and then release). The main
GeoView map will zoom to the selected region and the reference
map will show the zoom extent.

3. Use the Zoom Out tool () to zoom to the full extent or use the
reference GeoView to zoom to a different region.

Change symbols
for a layer view

To change the symbols and labels for a layer view:

1. Select the layer view in the table of contents
2. Right-click and select the Properties menu. See the Setting

GeoView Properties section below for information about the
properties.

Display geographic
information for
features

The GeoView interface can display information about geographic
features (shape and attribute data) from the original geographic data. To
do so:

1. Select layer views in the table of contents that are to be searched for

information.

2. Set the GeoView interaction mode to Info ().
3. Click near the feature or draw a box around multiple features. The

layers will be searched and the following dialog will be shown.

 Appendix - GeoView - 5 669

GeoView Mapping Tools

GeoView_InfoDialog

The resulting dialog will show information about the selected features,
including basic layer information, and information about the specific
shapes and attributes. The display is for geographic data only.
Attribute names and values are as they appear in the original data.
Additional application-specific data are typically provided by a
separate software interface.

Select features Features can be selected for a number of reasons. Currently, GeoView

has limited select tools, which are mainly used internally when integrated
with an application (e.g., an application can select features internally,
which are then highlighted on the map). In the future, interfaces to select
features from the GeoView interface using query criteria may be added.

Features can be selected () similar to the Info mode described above.
The selected features are highlighted on the map. In the past, yellow, or
cyan have been used to highlight selected features. However, yellow is
not clearly visible when earth-tone colors are used for background layers
and cyan is not clearly visible when water-tone colors are used for
background layers. Therefore, GeoView is phasing in a magenta/pink
selection color, which is rarely used for background layers.

Appendix - GeoView - 6 670

 GeoView Mapping Tools

Setting GeoView Properties

GeoView properties are initially set in a GeoView Project file or are assigned internally by the software.
Most properties control how layers are displayed (colors, labels, etc). To view general GeoView
properties, right click on the GeoView map and select the Properties menu. Some properties are
currently view-only. Refer to the GeoView Configuration – the GeoView Project File section below for
a complete list of properties that can be defined in a GeoView Project file.

GeoView_Props

Main GeoView Properties

GeoView properties, as shown in the above figure, apply to the main GeoView and are shared between
layers. These properties are typically not edited by end users. One important property is the projection
property. If all data layers are projected consistently (e.g., for ESRI shapefiles) then a projection does not
need to be defined. However, if the layers have different projects, a GeoView projection and projections
for each layer can be defined to allow the GeoView to project data consistently for visualization.

If the OK or Apply buttons are pressed, the GeoView properties will be updated in memory (the GeoView
Project file is not updated) and the map will redraw. Pressing OK will additionally close the properties
dialog. The Cancel button causes the dialog to close, without updating the properties.

 Appendix - GeoView - 7 671

GeoView Mapping Tools

To view or change properties for a layer, select a layer view in the table of contents, right-click and select
the Properties menu item. The following tabbed dialog will be displayed for the first selected layer
view. The tabbed panels are discussed below the each figure.

GeoView_Props_Layer

GeoView Layer Properties

GeoView layer properties, as shown in the above figure, apply to the input source. Currently these
properties are used for information purposes and cannot be interactively edited.

Appendix - GeoView - 8 672

 GeoView Mapping Tools

GeoView_Props_Symbol

Layer View Symbol Properties

Symbol properties, as shown in the above figure, indicate how the layer is to be drawn (symbolized) on
the map and in the table of contents. A sample of the symbol is shown in the dialog, although it may
appear slightly different on the map and table of contents.

Symbol terminology corresponds to standard GIS tools.

 Appendix - GeoView - 9 673

GeoView Mapping Tools

GeoView_Props_Label

Layer View Label Properties

Label properties, as shown in the above figure, can be modified to label features with attribute data or
literal strings. Currently, only point features can be labeled. Labels can consist of a combination of
attribute values. To label features, select the attribute fields from the available choices, in the order that
they should appear in the label.

The label format, if not specified, defaults to the use the full field with of the attribute. For example, if an
attribute field is defined as being twenty characters wide, the label may be the full width, including
leading and trailing spaces. More often, it is desirable to omit the spaces. To do so, or to format numbers
using a more appropriate format than the full. width default, use the Label Format information. The
dialog box notes illustrate valid formats. For example, if a string field and an integer field are available,
the following label format would show the labels with only a comma and one space between the values:

%s, %d

Appendix - GeoView - 10 674

 GeoView Mapping Tools

GeoView_Props_Application

Application Layer Type

Layer application properties (above) are used to link a layer's data to an application. This process allows
general GeoView features to be used more specifically by specific software programs. The Using
GeoView with a Software Application section (see below) describes this functionality in more detail.

GeoView_Props_Animation

Layer View Animation Properties

Layer view animation properties are currently under development. Animation properties will define, for
example, the time series data that are used for symbolization during animation.

 Appendix - GeoView - 11 675

GeoView Mapping Tools

Viewing a Layer’s Attributes

Each feature in a layer includes geographic shape information (e.g., the coordinates that define a
polygon). Each feature also can have attribute data, which are typically represented in a tabular fashion.
To view the attributes for a layer, first select the layer in the table of contents, then right-click and press
the View Attribute Table menu choice. A window similar to the following will be shown:

GeoView_Attributes

Attributes Table for a Layer

The attributes are displayed in the order and format determined from the input data. Attribute names in
ESRI shapefiles are limited to ten characters. Information in the table can be selected (use Ctrl-A to select
all) and can be copied to other software.

Using GeoView with a Software Application

Software developers integrate the GeoView components with software applications and typically the
software user does not need to know how GeoView works with the application. However, this section
describes a few important concepts that will help facilitate setting up data for use by an application.

Basic GeoView implementations involve defining a GeoView Project (see the GeoView Configuration –
the GeoView Project File section below for details on project file properties) and then interacting with
the GeoView interface when the map is displayed. In a basic application, a GeoView can be added to
show maps for reference purposes only. For example, the application may be an interface to a database
containing location information. If a GeoView project file is defined with only base layers, then the
zooming and features will allow a user to zoom into a region of interest, but there will be no interaction
between the GeoView and the application.

In a more advanced application, layers in the GeoView Project file are assigned an AppLayerType
property, which is recognized by the application. For example, a layer may be assigned an application
type of "Streamflow" to indicate a streamflow gage. Additionally, the AppJoinField property can be
defined to allow the application to join its data to the geographic data. This assignment in and of itself
causes no effect in the GeoView. However, the application can now interact with the GeoView by asking
for the "Streamflow" layer. This allows features in the GeoView to be selected from the application (e.g.,
in a database query screen) and allows the GeoView to provide information about the layer to the

Appendix - GeoView - 12 676

 GeoView Mapping Tools

application. For this type of implementation, it is important that the application layer types, feature
(shape) type, and the required join fields are documented; consequently, new data layers can be used with
the application with only a few configuration changes.

Some applications may automatically update the map interface by zooming to selected areas, selecting
features, etc. Standard GeoView features are typically still available, as previously described.

Limitations

The GeoView components have been developed not to serve as full-featured GIS components, but to
support many common GIS activities like selection, zooming, and symbolization. The components have
been developed to integrate with existing applications and use other tool sets, including time series
viewing tools. Basic features have been implemented to address important needs for applications;
however, additional features are implemented as requirements change. The GeoView components are not
envisioned as a replacement for pure GIS tools like ESRI's ArcGIS products. In many cases, ESRI or
other tools can be used to develop the data for use with GeoView.

Currently, properties that are changed interactively cannot be saved to the GeoView Project file.

GeoView software currently does not examine projection files optionally distributed with ESRI
shapefiles. Projections must be defined in the project file (or, if omitted, the projection is assumed to be
consistent for data layers). Only a few projections are recognized, as needed by specific GeoView
software implementations.

 Appendix - GeoView - 13 677

GeoView Mapping Tools

GeoView Configuration – the GeoView Project File

A GeoView display is configured mainly by using a GeoView Project (.gvp) file, which is either read at
software startup or when selected by the user. The purpose of the file is to persistently store the
configuration of a map display so that it can be loaded again without redefining the configuration. The
file format is simple text properties and can be read by applications implemented in various technologies
running in various environments. An example of the file is shown below.

Main properties global to the GeoView
The format is:
[Prefix]
Prop=value
[GeoView]
GeoDataHome = .

Properties for each GeoLayerView (data source and
symbols)...
[GeoLayerView 1]
GeoLayer = xxx.shp

[GeoLayerView 2]
GeoLayer = xxx.shp

The GeoLayerViews listed first in the project file are drawn first and are therefore behind other layers on
the map. For all properties, the comma is used as an internal delimiter and the semi-colon is used as a
second layer of separation, as appropriate. Most properties will default to appropriate values if not
specified (see tables below). The most important properties, as shown in the example above, are the
GeoDataHome, which defines where data can be found, and GeoLayer, which defines where the data
file is for each layer. Recognized layer file formats are listed in the following table and are described
further in separate appendices. Support for additional layer types can be added as necessary.

Layer Type Description
ESRI shapefile ESRI shapefiles are commonly used with ESRI software such as

ArcView, ArcMap, and ArcExplorer. GeoView determines the type by
looking for the .shp file extension and checking the internal file format.
No projection is assumed but the Projection property for the
GeoView and individual layers can be used to indicate the projection.

NWSRFS GeoData
files

The National Weather Service River Forecast System (NWSRFS) uses
ASCII and binary files defining various geographic layers. This format
is detected by checking the file names, which are predefined for
NWSRFS. The Projection property is defined as Geographic if
ASCII data and HRAP if binary data.

NWS XMRG Radar
Files

XMRG files are gridded radar files produced by the National Weather
Service. GeoView treats these files as grid files. This format is detected
by looking for an “xmrg” string in the filename. The Projection
property is defined as HRAP.

Appendix - GeoView - 14 678

 GeoView Mapping Tools

The following main GeoView properties can be defined in the project file. Graphical user interfaces to
allow interactive editing of all properties are being implemented.

Main GeoView
Property Description Default Value
Color Background color for map. See the discussion after the properties

tables for a discussion of how to define colors.
White.

FontName Name of font to use for GeoView components (e.g., buttons). This
property currently can only be set internally with software.

System-specific.

FontSize Size of font, in points, to use for GeoView components (e.g.,
buttons). This property currently can only be set internally with
software.

System-specific.

FontStyle Font style to use for GeoView components (e.g., buttons). This
property currently can only be set internally with software.

System-specific.

GeoDataHome Directory where the GIS data exist. This directory will be prepended
to layer files if they are not absolute paths already.

If not specified or if
specified as ".", the
directory will be set as
the home of the
GeoView Project file.

InitialExtent Initial extent of the map display, in data coordinates. The
coordinates should be specified as “XMIN,YMIN XMAX, YMAX”,
where the first pair is the lower-left corner of the extents and the
second pair is the upper right. This property has not been
implemented. See the MaximumExtent property.

No default. The initial
extent will be the
maximum data extent.

MaximumExtent Maximum extent of the map display when zoomed out, in data
coordinates. The coordinates should be specified as “XMIN,YMIN
XMAX,YMAX”, where the first pair is the lower-left corner of the
extents and the second pair is the upper right.

No default. The
maximum extent will be
the maximum data
extent.

Projection Projection for the GeoView. The projection definition varies
depending on the projection (some projections require more
parameters). The following projections are currently supported:

Geographic - no projection (decimal degrees)

HRAP - used by National Weather Service

UTM,Zone[,Datum,FalseEasting]
[,FalseNorthing][,CentralLongitude]
[,OriginLatitude][,Scale] - Universal Transverse Mercator.
The Zone is required (e.g., 13 for Colorado). Datum defaults to
NAD83. The FalseEasting defaults to 500000. The
FalseNorthing defaults to 0. The CentralLongitude is
computed from the Zone. The OriginLatitude defaults to
zero. The Scale defaults to .9996.

No default. All data are
assumed to be the same
projection.

ProjectAtRead Indicates whether layer features are projected at read-time to the
GeoView projection. This slows down the application initially but
increases performance later during map refreshes.

false (it is usually
best to project all data to
a common projection
rather than relying on
GeoView to do
projections)

SelectColor Color to use for selected features. See the discussion after this table
for examples of how to specify colors.

Yellow

A more unique
magenta/pink color with
RGB 255,120,255 is
being considered.

 Appendix - GeoView - 15 679

GeoView Mapping Tools

The following GeoLayerView properties can be defined, corresponding to each data layer/file:

GeoLayer View
Property Description Default Value
AppJoinField Specify the field(s) that should be used by an application to join

the layer data to application data. If multiple fields are
necessary, separate the field names by commas (e.g., “wd,id”).

None.

AppLayerType Indicate a layer type to be handled by an application. For
example, a layer may be tagged as “Streamflow”. The
application can then use this information to treat the layer
differently (e.g., to know how to join the data to application
data). Valid AppLayerType values must be defined and
understood by the application.

None.

Color Color for features when the SymbolClassification is
SingleSymbol. If point data, this is the main color for the
symbol. If line data, this is the line color. If polygon data, this is
the fill color. See the discussion after this table for examples of
how to specify colors.

Random.

ColorTable Used when the SymbolClassification property is
ClassBreaks or UniqueValues and requires more than a
single color. The number of colors should be one more than the
number of class break values if SymbolClassBreaks is used
and equal the number of class values if UniqueValues is used.
Color tables can be defined in three ways:

1. ColorTableName;NumColors

Predefined tables include Gray, BlueToCyan,
BlueToMagenta, BlueToRed, CyanToYellow,
MagentaToCyan, MagentaToRed,
YellowToMagenta, and YellowToRed. These named
tables choose primary colors where necessary to provide
clean color breaks.

2. Ramp;NumColors;Color1;

Color2

3. Custom;NumColors;Color1;

...;ColorN

Only the first option is currently enabled. See the discussion
after this table for examples of how to specify colors.

Named color table
using Gray.

EventLayerView Indicates if the layer view is an event layer (ESRI Map Object
notation). This property is not currently used in the Java tools.

false

GeoLayer Name of file for the data layer, typically with the file extension.
If an ESRI shapefile, specify the .shp file. If a relative path, the
GeoView.GeoDataHome property will be prepended to the
file name. This property is used to detect a break in the
GeoLayerView numbering, indicating the end of layer views.

No default. Should
always be specified.

IgnoreDataOutside Indicate a range of values that should be considererd. Currently
this applies only to grid layer types. Specifying a range can be
used, for example, to draw only cells with positive data values.
The range should be specified as two numbers separated by a
comma (e.g., .00001,100.0).

Not specified. All
cells are considered.

LabelField Specify one or more fields to be used for the label, separated by
commas. If a LabelFormat property is specified, use it to
format the label; otherwise, format each field according to the
field specifications from the attribute data source.

No default. Specify
one or more fields for
the label.

Appendix - GeoView - 16 680

 GeoView Mapping Tools

GeoLayer View Description Default Value
LabelFontName Font to use for labels. This property has not been enabled. Helvetica
LabelFontSize Label font height, points. This property has not been

enabled.
10

LabelFormat Specify a C-style format string to format the fields. The
format specifications must agree with the data types being
formatted. For example, if two floating-point fields are
specified with the LabelField property, the corresponding
format may be "%10.1f, %5.2f".

If not specified, the
label will be formatted
using the field width
and precision
determined from the
data table, with values
separated by commas.

LabelPosition Label position. If point data, the position is relative to the
point coordinates. If line or polygon data, the position is
relative to the centroid coordinates. The position of the text
will be offset to not overwrite a symbol and can be
UpperRight, Right, LowerRight, Below,
LowerLeft, Left, UpperLeft, or Above.

Right

Name The layer view name that should be displayed in the legend. No default. If not
specified, the file name
will be used in the
legend.

OutlineColor Outline color for point or polygon symbols. See the discussion
after this table for examples of how to specify colors.

Default to the same as
main color).

Projection Projection for the layer's data. See the main GeoView
Projection property for available values.

No default. It is
assumed that all data in
a project have a
consistent projection.

ProjectAtRead Indicates whether features are projected at read-time to the
GeoView projection. This slows down the application initially
but increases performance later during map refreshes. This
property can be set once in the GeoView main properties.

false (it is usually
best to project all data to
a common projection
rather than relying on
GeoView to do
projections)

ReadAttributes Indicates whether attributes should be read when the data are
read. If possible, based on the layer data format, attributes will
be read on the fly as needed. Reading the attributes (true)
takes more memory but will result in faster performance.

false

ReferenceLayer Indicates whether the layer should be drawn in the reference
GeoView. Indicate as true or false. Typically only the
most general boundary information should be used in the
reference layer.

false

SelectColor Specify the color to be used when drawing selected features.
This property is useful if the default select color does is not
easily viewed.

Use the GeoView.
SelectColor property.

SkipLayerView Can be set to true to skip the layer altogether when reading
the project file (useful for commenting out layers during
development). If this property is used, the number sequence
for the layer views can be kept the same.

false (the layer view
will be displayed)

SymbolClassBreaks Class breaks that correspond to the ClassBreaks
SymbolClassification property. The number of values
should be one less than the number of values in the
ColorTable property for the classification.

No default, although an
application may suggest
values.

SymbolClassField Attribute data field that is used when the
SymbolClassification property is ClassBreaks or
UniqueValues.

No default, although an
application may suggest
a value based on the
available attributes.

 Appendix - GeoView - 17 681

GeoView Mapping Tools

GeoLayer View Description Default Value
SymbolClassification Indicates how data are to be classified when displaying the

shape symbols. Values can be SingleSymbol (e.g., single
point symbol, line style, or polygon fill color),
UniqueValues (display a unique symbol style for each
value, currently not implemented), or ClassBreaks
(display a unique symbol style for groupings of values -
requires specification of the SymbolClassField and
SymbolClassBreaks properties).

SingleSymbol

SymbolSize For point data, specify the symbol size in pixels. For line data
specify the line width in pixels. Not used for polygon data.
This property may need to be expanded to properly handle
printed output (might need to use points rather than pixels or
allow the units of measure to be set in the property). This
property is currently not enabled.

6 pixels for points, 1
pixel for lines.

SymbolStyle Indicates the symbol style. If point symbols, the style is the
symbol identifier (e.g., CircleFilled). If line data, the
symbol style is the line style (currently only Solid is
supported). If polygon data, the symbol style is the fill patter
(currently only FillSolid is supported). See below for a
full discussion of symbol styles.

None for points,
Solid for lines,
FillSolid for
polygons.

Color Specification

Colors are specified for a number of different properties, including the feature color and outline color. In
order to allow flexibility in specifying colors, a number of formats are supported:

• Named color. Available colors are: None (transparent), Black, Blue, Cyan, DarkGray, Gray,

Green, LightGray, Magenta, Orange, Pink, Red, White, Yellow
• Comma-separated Color Triplets as 0-255 (e.g., 255,0,0) or 0.0 -1.0 (e.g., 1.0,0.0,0.0).
• Hexadecimal: 0xRRGGBB (e.g., 0xFF0000 for red)

Color Tables

Color tables are simply a list of colors. Typically the symbol maintains a color table if the classification
is other than SingleSymbol. The symbol will also keep track of unique values or class breaks and use
this information to determine a color to display for a shape. A number of predefined color tables are
supported but and user-defined tables is supported in the property format.

Symbol Style - Point Data

Symbol styles for point data are the same as for time series viewing tools. The following styles are
available:

• None
• Arrow-Down, Arrow-Left
• Asterisk
• Circle-Hollow, Circle-Filled
• Diamond-Hollow, Diamond-Filled
• Plus, Plus-Square
• Square-Hollow, Square-Filled

Appendix - GeoView - 18 682

 GeoView Mapping Tools

• Triangle-Down-Hollow, Triangle-Down-Filled, Triangle-Left-Hollow,
Triangle-Left-Filled, Triangle-Right-Hollow, Triangle-Right-Filled,
Triangle-Up-Hollow, Triangle-Up-Filled

• X-Cap, X-Diamond, X-Edge, X-Square

Classification

Classification is used to symbolize data. The following classifications are supported:

Classification Type Description
SingleSymbol This is the default for all layers if not specified. For point data, a

single symbol is used, centered on the . For line data, a single line
width and color is used. For polygon data, single fill and outline
colors are used.

UniqueValues The data values for the field specified with the
SymbolClassField property is sorted and checked for unique
values. Each value is then assigned a color in the color table.

ClassBreaks The number of class breaks should be one less than number of colors
in the color table for the symbol. Breaks are defined by using a
groupings of features based on the values of the field specified with
the SymbolClassField property:

< first value
>= first value < second value
...
> last value

 Appendix - GeoView - 19 683

GeoView Mapping Tools

GeoView Project File Examples

This section provides several examples, extracted from GeoView Project files.

The following example illustrates how to configure base layers in a GeoView Project file:

GeoView project file for Rio Grande basin.

Main GeoView properties.

[GeoView]

Main home for data
If a directory is not specified, the directory will be determined when the
GeoView project file is selected.
#GeoDataHome = "C:\cdss\statemod\data\rgtwday\gis"
ArcView/ArcExplorer Default...
#SelectColor = Yellow
Arc 8...
#SelectColor = Cyan
All-purpose (magenta/pink)
SelectColor = "255,120,255"
MaximumExtent = "266400,4090475 503060,4260700"

Now list the layer views. A layer view consists of specifying a data layer
(e.g., shapefile) and view information (e.g., symbol). This is equivalent to
the ESRI "theme" concept. The layers specified first are drawn on the bottom.
Start with number 1 and increase the layer number sequentially as layers are
added on top.

[GeoLayerView 1]
GeoLayer = div3_districts.shp
Name = "Water Districts"
RGB 153 204 50 - green-yellow
#Color = "0x99CC32"
tan
Color = "255,240,190"
OutlineColor = black
ReferenceLayer = true
AppLayerType = "BaseLayer"

[GeoLayerView 2]
GeoLayer = div3_lakes.shp
#GeoLayer = div3_lakes.shp
Name = "Lakes"
- blue
Color = "165,250,254"
OutlineColor = "0,130,254"
AppLayerType = "BaseLayer"

[GeoLayerView 3]
Name = "Rivers"
GeoLayer = div3_rivers.shp
#GeoLayer = div3_rivers.shp
RGB - blue
Color = "0,188,253"
AppLayerType = "BaseLayer"

[GeoLayerView 4]
GeoLayer = div3_highways.shp
Name = "Roads and Highways"
Color = "255,0,0"
AppLayerType = "BaseLayer"

[GeoLayerView 5]
GeoLayer = div3_cities.shp
Name = "Cities and Towns"
SymbolStyle = "Square-Filled"
SymbolSize = 6
Color = "red"
LabelField = "Name"
LabelPosition = RightCenter
AppLayerType = "BaseLayer"

Appendix - GeoView - 20 684

 GeoView Mapping Tools

The following example illustrates how to display point data layers. These properties should be inserted at
the appropriate location in a GeoView Project file.

[GeoLayerView 15]
#SkipLayerView = true
GeoLayer = div3_flowstations_2001-10-24.shp
Name = "Stream Gages"
orange
Color = "254,167,0"
SymbolStyle = "Circle-Filled"
SymbolSize = 6
AppLayerType = "Streamflow"
AppJoinField = "STATION_ID"
#LabelField = "STATION_NA, STATION_NA"
#LabelFormat = "%s, %s"

[GeoLayerView 18]
#SkipLayerView = true
GeoLayer = div3_reservoirs_2001-10-24.shp
Name = "Reservoirs (WDID)"
black
Color = "black"
SymbolStyle = "Triangle-Up-Filled"
SymbolSize = 6
AppLayerType = "Reservoir"
AppJoinField = "ID_LABEL_6"

 Appendix - GeoView - 21 685

GeoView Mapping Tools

This page is intentionally blank.

Appendix - GeoView - 22 686

Appendix: Spatial Data Format – ESRI Shapefile
2004-05-24, Acrobat Distiller

Overview

ESRI Shapefiles are a relatively simple format for spatial data, consisting of a file containing shape
information (.shp), a file containing attribute data (.dbf), and an index file (.shx). The GeoView package
currently supports the following shapefile shape types:

• Point (shape type 1)
• Multi-point (shape type 8)
• Arc/Line (shape type 3)
• Polygon type (shape type 5)
• Null shape (shape type 0)

Support for additional shape types may be added in the future, consistent with the shapefile specifications.

 Appendix – ESRI Shapefile Spatial Data Format - 1 687

ESRI Shapefile Spatial Data Format

This page is intentionally blank.

Appendix – ESRI Shapefile Spatial Data Format - 2 688

Documentation Binder Spine Labels

This page, when printed, can be used for a spine in a binder.

Colorado's Decision Support Systems (CDSS)
TSTool - Time Series Tool

689

690

	01_Cover_CDSS.pdf
	DISCLAIMER for CDSS Products
	1 Acknowledgements
	2 Introduction
	2.1 Time Series Objects and Identifiers
	2.2 Date/Time Conventions
	 2.3 Time Scale for Time Series Data
	2.4 Time Series Commands and Processing Sequence
	2.5 Using Time Series Aliases
	2.6 Time Series Ensembles
	3 Getting Started
	4 Commands
	 4.1 Create Time Series
	 4.2 Converting Time Series Identifier to Read Command
	 4.3 Read Time Series
	 4.4 Fill Time Series Data
	4.5 Set Time Series Data
	4.6 Manipulate Time Series
	 4.7 Analyze Time Series
	4.8 Models
	 4.9 Output Time Series
	4.10 Commands for Specific Input Types
	 4.11 Commands for Ensemble Processing
	4.12 Commands for Table Processing
	4.13 General Commands – Comments
	4.13.1 Inserting # Comments
	4.13.2 Start /* */ Comments
	4.13.3 End /* */ Comments

	 4.14 General Commands – File Handling
	4.15 General Commands – Logging
	4.16 General Commands – Running Commands and External Software
	 4.17 General Commands – Test Processing
	5 Tools
	6 Examples of Use
	7 Using the Map
	7.1 Time Series and Map Layer Relationships
	7.2 Opening a Map
	7.3 Using Time Series to Select Locations on the Map
	7.4 Using Locations on the Map to Select Time Series
	7.5 Spatial Analysis Commands

	8 Troubleshooting
	 8.1 Obsolete Commands
	9 Quality Control
	9.1 Quality Control for TSTool Software
	9.1.1 Writing a Single Test Case
	9.1.2 Creating and Running a Test Suite
	9.1.3 Controlling Tests with Special Comments
	9.1.4 Verifying TSTool Software Using a Full Dataset

	9.2 Using TSTool to Quality Control Data
	Command Glossary
	Command Reference: #
	Command Reference: /*
	Command Reference: */
	Command Reference: Time Series Identifier (TSID)
	Command Reference: Add()
	Command Reference: AddConstant()
	Command Reference: AdjustExtremes()
	Command Reference: AnalyzePattern()
	Command Reference: ARMA()
	Command Reference: Blend()
	Command Reference: CalculateTimeSeriesStatistic()
	Command Reference: TS Alias = ChangeInterval()
	Irregular Time Series to Regular Time Series
	Small Interval ACCM to Large Interval ACCM
	 Large Interval ACCM to Small Interval ACCM
	Small Interval MEAN or INST to Large Interval MEAN
	Large Interval MEAN or INST to Small Interval MEAN
	Small Interval INST to Large Interval INST
	Large Interval INST to Small Interval INST

	Regular Time Series to Regular Time Series
	ACCM (Accumulation) to ACCM (Accumulation)
	Small Interval ACCM (Accumulation) to Large Interval ACCM (Accumulation)
	Large Interval ACCM (Accumulation) to Small Interval ACCM (Accumulation)

	ACCM (Accumulation) to INST (Instantaneous)
	ACCM (Accumulation) to MEAN
	Small Interval ACCM to Large Interval MEAN
	Interval ACCM to Same Interval MEAN
	Large Interval ACCM to Small Interval MEAN

	INST (Instantaneous) to INST (Instantaneous)
	Small Interval INST (Instantaneous) to Large Interval INST (Instantaneous)
	Large Interval INST (Instantaneous) to Small Interval INST (Instantaneous)

	INST (Instantaneous) to ACCM (Accumulation)
	INST (Instantaneous) to MEAN
	Small Interval INST (Instantaneous) to Large Interval MEAN
	Interval INST (Instantaneous) to Same Interval MEAN
	Large Interval INST (Instantaneous) to Small Interval MEAN

	 MEAN to MEAN
	Small Interval MEAN to Large Interval MEAN
	Large Interval MEAN to Small Interval MEAN

	MEAN to ACCM (Accumulation)
	Small Interval MEAN to Large Interval ACCM (Accumulation)
	Interval MEAN to Same Interval ACCM (Accumulation)
	Large Interval MEAN to Small Interval ACCM (Accumulation)

	MEAN to INST (Instantaneous)
	Small Interval MEAN to Large Interval INST (Instantaneous)
	Interval MEAN to Same Interval INST (Instantaneous)
	Large Interval MEAN to Small Interval INST (Instantaneous)

	Command Reference: ChangePeriod()
	Command Reference: CheckTimeSeries()
	Command Reference: CompareFiles()
	Command Reference: CompareTimeSeries()
	Command Reference: ComputeErrorTimeSeries()
	Command Reference: ConvertDataUnits()
	Command Reference: TS Alias = Copy()
	Command Reference: CopyEnsemble()
	Command Reference: CopyTable()
	Command Reference: CreateEnsembleFromOneTimeSeries()
	Command Reference: CreateFromList()
	Command Reference: CreateRegressionTestCommandFile()
	Command Reference: Cumulate()
	Command Reference: Delta()
	Command Reference: DeselectTimeSeries()
	Command Reference: TS Alias = Disaggregate()
	Command Reference: Divide()
	Command Reference: Exit()
	Command Reference: ExpandTemplateFile()
	Command Reference: FillConstant()
	Command Reference: FillDayTSFrom2MonthTSAnd1DayTS()
	Command Reference: FillFromTS()
	Command Reference: FillHistMonthAverage()
	Command Reference: FillHistYearAverage()
	Command Reference: FillInterpolate()
	Command Reference: FillMixedStation()
	Best Fit Indicators
	 Mixed Station Analysis Tool
	Command Editing
	Command Reference: fillMOVE1()
	Command Reference: FillMOVE2()
	Command Reference: FillPattern()
	60_Command_FillPrincipalComponentAnalysis.pdf
	Command Reference: FillProrate()
	Command Reference: FillRegression()
	Command Reference: FillRepeat()
	Command Reference: FillUsingDiversionComments()
	Diversion Comment Not Used Flag
	Structure Currently in Use Flag
	Command Reference: Free()
	Command Reference: FTPGet()
	Command Reference: InsertTimeSeriesIntoEnsemble ()
	Command Reference: LagK()
	Command Reference: ManipulateTableString()
	Command Reference: Multiply()
	Command Reference: TS Alias = NewDayTSFromMonthAndDayTS()
	Command Reference: TS Alias = NewEndOfMonthTSFromDayTS()
	Command Reference: NewEnsemble ()
	Command Reference: TS Alias = NewPatternTimeSeries()
	 Examples
	 Examples
	Command Reference: TS Alias = NewStatisticYearTS()
	Example
	Command Reference: NewTable ()
	Command Reference: TS Alias = NewTimeSeries()
	Command Reference: NewTreeView()
	Command Reference: TS Alias = Normalize()
	Command Reference: OpenCheckFile()
	Command Reference: OpenHydroBase()
	Command Reference: ProcessTSProduct()
	Command Reference: ReadDateValue()
	Command Reference: TS Alias = ReadDateValue()
	Command Reference: ReadDelimitedFile()
	Command Reference: ReadHecDss()
	Command Reference: ReadHydroBase()
	Command Reference: TS Alias = ReadHydroBase()
	Command Reference: ReadMODSIM()
	Command Reference: TS Alias = ReadMODSIM()
	Command Reference: ReadPatternFile()
	Command Reference: TS Alias = ReadRiverWare()
	Command Reference: ReadStateCU()
	Command Reference: ReadStateCUB()
	Command Reference: ReadStateMod()
	Command Reference: ReadStateModB()
	Command Reference: ReadTableFromDBF()
	Command Reference: ReadTableFromDelimitedFile()
	Command Reference: TS Alias = ReadTimeSeries()
	Command Reference: TS Alias = ReadUsgsNwis()
	Command Reference: TS Alias = RelativeDiff()
	Command Reference: RemoveFile()
	Command Reference: ReplaceValue()
	Command Reference: ResequenceTimeSeriesData()
	Command Reference: RunCommands()
	Command Reference: RunningAverage()
	Command Reference: RunDSSUTL()
	Command Reference: RunProgram()
	Command Reference: RunPython()
	Command Reference: Scale()
	Command Reference: SelectTimeSeries()
	Command Reference: SetAutoExtendPeriod()
	Command Reference: SetAveragePeriod()
	Command Reference: SetConstant()
	Command Reference: SetDataValue()
	Command Reference: SetDebugLevel()
	Command Reference: SetFromTS()
	Command Reference: SetIgnoreLEZero()
	Command Reference: SetIncludeMissingTS()
	Command Reference: SetInputPeriod()
	Command Reference: SetOutputPeriod()
	Command Reference: SetOutputYearType()
	Command Reference: SetPatternFile()
	Command Reference: SetProperty()
	Command Reference: SetTimeSeriesPropertiesFromTable()
	Command Reference: SetTimeSeriesProperty()
	Command Reference: SetToMax()
	Command Reference: SetToMin()
	Command Reference: SetWarningLevel()
	Command Reference: SetWorkingDir()
	Command Reference: ShiftTimeByInterval()
	Command Reference: SortTimeSeries()
	Command Reference: StartLog()
	Command Reference: StartRegressionTestResultsReport()
	Command Reference: StateModMax()
	Command Reference: Subtract()
	Command Reference: TableMath()
	Command Reference: TableTimeSeriesMath()
	Command Reference: TimeSeriesToTable()
	Command Reference: VariableLagK()
	Command Reference: WebGet()
	Command Reference: TS Alias = WeightTraces()
	Command Reference: WriteCheckFile()
	Command Reference: WriteDateValue()
	Command Reference: WriteHecDss()
	Command Reference: WriteProperty()
	Command Reference: WriteRiverWare()
	Command Reference: WriteStateCU()
	Command Reference: WriteStateMod()
	Command Reference: WriteSummary()
	Command Reference: WriteTableToDelimitedFile()
	Command Reference: WriteTimeSeriesProperty()
	Appendix: TSTool Installation and Configuration for CDSS
	1. Overview
	2. File Locations
	3. Installing TSTool
	3.1 Installing TSTool from the “HydroBase data set Analysis Query Tools CD/DVD”
	3.2 Installing TSTool from the TSTool Setup File
	3.3 Installing TSTool on a File Server

	 4. Uninstalling TSTool Software
	5. Running TSTool
	5.1 CDSS Menu
	5.2 Command Line Executable
	5.3 TSTool Batch File – Windows

	6. TSTool Configuration
	6.1 TSTool Configuration File
	 6.2 Data Units File
	6.3 HydroBase Configuration
	6.4 CDSS Configuration File
	 6.4 Map Configuration

	1. TSTool Version History
	Changes in Version 9.09.00
	Changes in Versions 9.08.00 – 9.08.01
	Changes in Versions 9.07.00 – 9.07.02
	Changes in Versions 9.06.00 – 9.06.05
	Changes in Versions 9.05.00 – 9.05.03
	Changes in Versions 9.04.00 – 9.04.03
	Changes in Versions 9.01.00 – 9.03.04
	Changes in Versions 9.00.00 – 9.00.05
	Changes in Versions 8.18.00 – 8.18.02
	Changes in Versions 8.17.01 – 8.17.02
	Changes in Versions 8.16.03 – 8.17.00
	Changes in Versions 8.16.00 – 8.16.02
	Changes in Versions 8.15.00 – 8.15.03
	Changes in Versions 8.13.00 – 08.14.02
	Changes in Versions 8.03.00 – 08.12.06
	Changes in Versions 8.00.00 – 08.02.00
	Changes in Versions 7.02.00 – 07.04.00
	Changes in Version 7.01.00
	Changes in Version 7.00.00
	Changes in Version 6.19.00
	Changes in Version 6.18.00
	Changes in Version 6.17.00
	Changes in Version 6.16.02
	Changes in Version 6.16.01
	Changes in Version 6.16.00
	Changes in Version 6.15.00
	Changes in Version 6.14.00
	Changes in Version 6.12.00
	Changes in Version 6.11.00
	Changes in Version 6.10.09
	Changes in Version 6.10.08
	Changes in Version 6.10.07
	Changes in Version 6.10.06
	Changes in Version 6.10.05
	Changes in Version 6.10.04
	Changes in Version 6.10.03 BETA
	Changes in Version 6.10.02 BETA
	Changes in Version 6.10.01 BETA
	Changes in Version 6.10.00 BETA
	Changes in Version 6.09.03
	Changes in Version 6.09.02
	Changes in Version 6.09.01
	Changes in Version 6.09.00
	Changes in Version 6.08.02
	Changes in Version 6.08.01
	Changes in Version 6.08.00

	Appendix: ColoradoIPP Input Type
	Overview
	ColoradoIPP and Standard Time Series Properties
	Limitations
	Appendix: Colorado Satellite Monitoring System (SMS) Input Type
	Overview
	Appendix: Colorado Water HydroBase Guest (ColoradoWaterHBGuest) Input Type
	Overview
	ColoradoWaterHBGuest Web Service and Standard Time Series Properties
	Limitations
	Appendix: Colorado Water Satellite Monitoring System (ColoradoWaterSMS) Input Type
	Overview
	ColoradoWaterSMS Web Services and Standard Time Series Properties
	Limitations
	Appendix: DateValue Input Type
	Appendix: HEC-DSS Input Type
	Overview
	HEC-DSS Files and Standard Time Series Properties
	Limitations
	Appendix: HydroBase Input Type
	Appendix: RiverWare Input Type
	Appendix: StateCU Input Type
	Overview
	 StateCU Files and Standard Time Series Properties
	 Limitations

	Appendix: StateCUB Input Type
	Appendix: StateMod Input Type
	Overview
	 StateMod Files and Standard Time Series Properties
	Limitations

	Appendix: StateModB Input Type
	Overview
	 StateMod B43 Files and Standard Time Series Properties
	Limitations

	Appendix: USGSNWIS Input Type
	Overview
	 USGSNWIS Files and Standard Time Series Properties
	Limitations

	Appendix: TSView - Time Series Viewing Tools
	 Overview
	Time Series Terminology
	 Time Series Properties Interface
	 Time Series Properties - General
	 Time Series Properties – Comments
	 Time Series Properties – Period
	 Time Series Properties – Limits
	 Time Series Properties – History
	 Time Series Properties – Data Flags

	 Time Series Traces
	Time Series Views
	 Time Series Graph View
	 Line Graph
	 Line Graph - Log Y Axis
	 Bar Graph
	 Double Mass Curve
	Duration Graph
	Period of Record Graph
	 XY-Scatter Graph

	Time Series Product Properties
	Product Properties - General
	 Product Properties - Titles
	Product Properties - Layout
	 Graph Properties - General
	Graph Properties - Graph Type
	 Graph Properties - Titles
	Graph Properties - X Axis
	 Graph Properties - Y Axis
	 Graph Properties - Label
	Graph Properties - Legend
	 Graph Properties - Zoom
	Graph Properties - Analysis
	 Graph Properties - Annotations
	 Time Series Properties - General
	Time Series Properties - Graph Type
	Time Series Properties - Axes
	 Time Series Properties - Symbol
	Time Series Properties - Label
	Time Series Properties - Legend
	Time Series Properties - Analysis

	Changing a Graph Page Layout
	 Time Series Summary View
	 Time Series Table View

	 Time Series Product Reference
	Time Series Product File Format
	Report Subproduct Properties
	 Time Series Properties
	Annotation Properties

	Appendix: GeoView Mapping Tools
	Overview
	 GeoView Terminology
	 The GeoView Panel
	 Interacting with the GeoView Map
	 Setting GeoView Properties
	Viewing a Layer’s Attributes
	Using GeoView with a Software Application
	Limitations
	 GeoView Configuration – the GeoView Project File
	Color Specification
	Color Tables
	Symbol Style - Point Data
	Classification

	 GeoView Project File Examples

	Appendix: Spatial Data Format – ESRI Shapefile
	Overview

	Documentation Binder Spine Labels

