

Technical Memorandum – Final

To: Ray Alvarado (CWCB), Blaine Dwyer (AECOM)

From: Kelly Close (Leonard Rice Engineers, Inc.)

Subject: CRWAS Phase I – Task 2.9 Public Data Posting – Documentation of
Subtask 1 (Binary File Reader) and Subtask 2 (Metadata)

Date: February 28, 2012

Introduction
CRWAS Phase I included scope (Task 2.9) to develop an online Data Viewer to allow user-friendly
public access to CRWAS results. Subtasks 1 and 2 of the Data Viewer scope included a deliverable
that documents a binary file reader and metadata associated with development of the Data Viewer.

A dedicated database and web server has been configured to house the CRWAS Data Viewer system.
This server has its own fixed IP address, where users of the system can interact with the web site via a
domain name dedicated for the project. The illustration below shows a conceptual layout of the server
and the flow of data through the system.

The CRWAS Data Viewer has been developed in Drupal on a standard “LAMP” stack Linux server
(also supported by a PostgreSQL database server, a number of custom Javascript, PHP, and HTML
files) and calls to Google API and visualization libraries (for Data Viewer maps and graphs). The
Drupal software provides a secure web site framework supporting user accounts and convenient built-in
page layouts. The PostgreSQL database includes custom scripting to process user requests, store
user selections, and contain model metadata that can be used in the Drupal site. PHP scripts read the
StateMod output files and display data in graphs using Google visualization libraries with custom Jscript
code. HTML code combines the individual components with embedded Javascripting and calls to the
PHP scripts and the Google API and visualization libraries to display map pages and graph displays.

This memo describes the technical specifications of the server machine and the server contents. It
outlines the contents the PostgreSQL database and describes each custom script and code file.

PostgreSQL

CRWAS Web Data Viewer
for CRWAS
Systems Architecture
and Data Flow

LINUX
(Ubuntu)

PHP

Apache MySQL

DRUPAL

.b43, .b44, …

Jscript/
JSON Google

Visualization
Libraries

“LAMP”
stack

Web
Site

Direct File
Access
with Login
Credentials

Google
Maps API

v.3

TM - Final - CRWAS Phase I - Task 2.9 Public Data Posting - Subtasks 1 and 2 Documentation

 Page 2

Server Specifications
IP Address: 64.25.233.142

Dedicated Domain Name: www.dataviewer.info

Google Apps account: USER NAME: crwas@dataviewer
 PASSWORD: Crw@s_google

Storage Locations of Data, Code, and Scripts
Model output files are stored on the server are located in /data/CRWAS/ModelData.

Custom code and scripts used in the web interface are located in /var/www/CRWAS and include:

• gmap_api.html: Displays a Google Map with KML overlays showing selectable model nodes for
a specific (user selected) basin.

• statemod_reader_graph.html: Displays final report graphs.

• cdss_reader.php: Called by the statemod_reader_graph file to pull user specified content into
report graphs.

• gvds_pgtable.php: Called by Jscript embedded in the drupal site that displays a complete list
of model nodes from all basins. This file converts the data pulled from PostgreSQL into JSON
formatted data for use by the google API libraries.

Additional custom content not part of the Drupal site:

• statemod_param_descrips.htm (and associated folder): Displays in the parameter
descriptions popup.

• traces_disclaimer.htm (and associated folder): Displays in the traces disclaimer popup.

• climate_model_descrips.htm (and associated folder): Displays in the climate model
descriptions popup.

Backup scripts run each night to back up the server contents and are located under
home/administrator/bin/backup_*. Backup files are stored on the server as well as on an external
device connected to the server:

• /data/backups/… (on the server)

• /media/lre250raid1/backups/… (on a connected external device)

PostgreSQL Database Contents and Organization
Users:
The PostgreSQL Database is named WVToolCRWAS, and in addition to the standard “postgres” user
login, includes two login users and two group roles. These additional logins keep the database
contents more secure, allowing non-super user access by the external processes (Drupal, Javascript,
and PHP). Login credentials for the three PostgreSQL users include:

User: postgres Password: Crw@s_pgsql
User: crwas_admin Password: crwasadmins
User: crwas_drupal Password: crwasdrupal

http://www.dataviewer.info/

TM - Final - CRWAS Phase I - Task 2.9 Public Data Posting - Subtasks 1 and 2 Documentation

 Page 3

All external processes connecting to the database use the crwas_drupal login, which belongs to the
crwas_web group. The crwas_web group has connect and usage privileges only on the database and
schemas and only specific permissions on tables, views, and functions needed to support the external
processes.

The crwas_admin user belongs to the crwas_admins group and owns the database and all contents.
This is a non-super user with full rights throughout the database so it can be used to administer the
database without allowing super user database configuration rights. The postgres user has super user
privileges to the database server.

Schemas
The database is organized into four schemas. The standard
“public” schema is not used.

The “b43data” schema contains the model file metadata read in
from the header of each type of model file (currently b43, b44, and
xdd). If the model output file formats change, these tables
should be rebuilt. Also included in this schema are several
metadata tables (see next section) and the view used by the PHP
reader code to display selected series for the report graphs.

The “gis_nodes” schema includes a metadata table that associates
model nodes with districts and basins and provides alternate
names for nodes that do not have adequate naming in the model
files themselves (see next section).
The “wvtool” schema includes remaining data and logic supporting the Data Viewer web site, including
several metadata tables (see next section), user selection tables, views, and functions. An entity
relationships diagram of the database is included in Appendix A detailing more of this schema’s
contents and how it relates to the other schemas and to the overall Data Viewer processing.

Metadata Tables
The PostgreSQL database stores information about the models and model nodes beyond information
stored in the model output files themselves. These data make it possible to display more information
for the user in the web site so users that are less familiar with the models can still use the site with
ease. The metadata tables are listed here by database schema name and table name (schema.table):

• b43data.basin_models: Lists the five basins by name and includes the model file name
abbreviation used in the mode output file naming conventions.

• b43data.climate_models: Includes the list of all climate models (11) by scientific name and
common description and the name of the folder on the server where model files for those
climate models are located. The table also includes a sorting field for ordering the climate
models in lists in the web interface.

• b43data.statemod_output_filetypes: Lists the filetypes that can be processed by the PHP
reader code and describes them. It also includes filename convention information needed to
find specific files based on user selections.

• b43data.statemod_runs: Comprehensive table that displays all available combinations of
basins and climate models. Though currently, all basins include the same set of climate
models, this table will support a different set of climate models in different basins.

TM - Final - CRWAS Phase I - Task 2.9 Public Data Posting - Subtasks 1 and 2 Documentation

 Page 4

• gis_nodes.districts_lookup: Comprehensive list of all node ID’s from all model files that
associates them with a district number and a basin. It also includes an alternate name for the
node that will override the name in the model file when the node is displayed in the web
interface.

• wvtool.climate_models_to_basins: Associates each climate model listed in the
climate_models table with a basin listed in the basin_models table.

• wvtool.list_district_names: List of districts represented in the models and a name for each
district, for display in the district drop-down box in the web interface.

• wvtool.list_parameter: List of all parameters available in any of the .b43, .b44, or .xdd files and
which parameter should be displayed in the web interface for which node type. An alternate
name for the parameter may also be specified. This table should only be edited through the
drupal web interface (with an administrator login).

Appendix A includes more detailed documentation of database tables, views, and functions.

Drupal Site Administration
The Data Viewer user interface was developed in Drupal 6.22. Drupal is a popular, open source content
management framework. The Drupal site may be administered by logging into the site with admin login:

User Name: admin
Password: Crw@s_drupal

This login provides access to all administration menus, pages, and settings familiar to a Drupal
programmer. Most of the Drupal site has been built with either core functionality or with the addition of
some very popular add-in modules available and documented on the drupal.org website. Add-in
modules installed on the Data Viewer Drupal site include:

• admin_menu
• cck
• date
• block_edit
• better_perms
• permission_select
• front (front page)
• iquery_ui
• node_clone
• nodeaccess
• quicktabs
• google_analytics

In addition, two custom modules have been added to the site to support the unique PostgreSQL
interaction functionality of the CRWAS Data Viewer. These include a utilities module (wvtool_utils)
which contains custom functions that are called from code in Drupal pages to interact with the
PostgreSQL database; and Fetchit2, a custom module developed by Leonard Rice Engineers, Inc. to
provide integrated support in Drupal for connecting to an external database (in this case PostgreSQL).

Please see Appendix B for details about wvtool_util and Appendix C for details about Fetchit2.

TM - Final - CRWAS Phase I - Task 2.9 Public Data Posting - Subtasks 1 and 2 Documentation

 Page 5

APPENDIX A

PostgreSQL Database Annotated Entity Relationships Diagram (ERD)
The CRWAS Data Viewer system includes a PostgreSQL database that houses data needed to
support the Data Viewer that cannot be pulled from the StateMod binary files. This includes metadata
about the models and a host of functions and views which support the Drupal site and PHP scripts.
This document includes Entity Relationship Diagrams for the database objects plus explanation and
annotation to help fully document the Data Viewer database and is organized as follows:

1. Binary File Metadata ([b43data] schema)
2. Node Lists ([gis_nodes] schema and portions of the [wvtool] schema)
3. Parameter Lists (portions of [wvtool] the schema)
4. Basin, District, and Climate Model Lists (portions of the [wvtool] schema)
5. User Selections (objects and code in [wvtool] schema that store and process user selections)

• Map Selections
• Adding and Modifying Selections
• Removing Selections

The following page includes a key for symbols used throughout the ERDs. Table A1 includes a list of
all database objects cross-referenced with the corresponding Figure number for the ERD containing
each object.

TM - Final - CRWAS Phase I - Task 2.9 Public Data Posting - Subtasks 1 and 2 Documentation

 Page 6

ERD SYMBOL KEY

view

Function()

The database is organized into three schemas. While these schemas are largely
self-contained, there are some relationships that cross schemas. The help the
reader understand the cross-schema relationships, the three database schemas
are color coded:

• GREEN background for the [b43data] schema,
• BLUE background for the [wv_tool] schema and
• PURPLE background for the [gis_nodes] schema.

Database TABLES within each schema are shown as boxes with the same color
coding.

 (pk) Primary Key fields in tables are noted with this symbol.

PostgreSQL Views in all schemas are represented as 3D light orange boxes.

table

table

table

PostgreSQL Functions are dark blue.

Red circles identify database objects which are either used by or modified by the
Drupal interface or PHP scripts.

Flow of data is shown with thin blue arrows

Processes that modify database contents with code (either internal to the
database by PostgreSQL functions or external by PHP scripts) are noted with
heavy red arrows.

The External code in Drupal and PHP scripts directly using or affecting the database
objects are shown as light blue flags.

CODE

redundant

redundan

Some tables and views are repeated on multiple ERD’s. These are shown in detail
only the first time they appear. On subsequent diagrams they are shown without the
fields listed and with a blue glow.

TM - Final - CRWAS Phase I - Task 2.9 Public Data Posting - Subtasks 1 and 2 Documentation

 Page 7

TABLE A1. DATABASE TABLES, VIEWS AND FUNCTIONS CROSS-REFERENCED WITH ERD FIGURES
Database Object Object Type ERD Figure(s)
append_selections(integer) function A7
append_selections_quick_builder(integer) function A7
delete_selections(integer) function A8
district_filter_post_submit(integer) function A7
modify_selections(integer) function A7 (A8)
param_admin_submit() function A4
rebuild(integer) function A7
climate_models_to_basins table A5
climate_models_to_groups table A5
list_climate_group table A5 (A7)
list_districts_names table A3 (A5)
list_parameter table A4 (A7, A8)
list_parameter_drupaledit_b43 table A4
list_parameter_drupaledit_b44 table A4
return_paths table A6
selected_basin table A3 (A3, A5, A7, A8)
selected_call_page table A6
selected_climate_group table A7
selected_climate_model table A7
selected_district table A3 (A5, A7)
selected_node table A6 (A7)
selected_parameter table A7 (A8)
selected_to_delete table A8
selected_trace table A7
selected_ts table A7 (A8)
selected_ts_edit table A7 (A8)
filtered_list_* view A3
list_all_nodes_for_gviz view A3
list_baseflows view A3
list_basin view A5
list_climate_models_by_basin view A5 (A8)
list_district view A5
list_diversions view A3
list_flowstations view A3
list_isfreaches view A3
list_nodes_advanced_builder view A3
list_parameters_* view A4
list_reservoirs view A4
master_list_base view A3 (A6)
master_list_final view A3 (A7, A8)
node_type_returnpath view A6
quick_builder_selections view A7
selected_nodes_info view A8

TM - Final - CRWAS Phase I - Task 2.9 Public Data Posting - Subtasks 1 and 2 Documentation

 Page 8

1. Binary File Metadata
The database stores information extracted from the header of the .b43 and .b44 files. This information
provides the foundation for all node and parameter related information and logic. These header data
are stored in the schema [b43data], in the table [b43metadata_record6x_rivernodes]. There are many
other [b43metadata_...] tables in this schema that also store data from the binary file headers but they
are redundant and not used by any other functions or views in the database (and not listed in this
ERD).

Five additional tables in the [b43data] schema store information about the model runs that have been
loaded into the CRWAS Data Viewer to date. When new model runs are to be incorporated, these
tables must be modified to reflect the new data.

• [b43files] lists the binary files used to for header data reference. The process of loading the
header data from the files listed in this table into [b43metadata-record6x_rivernodes] must be done
manually.

• [basin_models] lists the basin model included in the Data Viewer.

• [climate_models] lists the climate models included in the Data Viewer (the table that associates
climate models to basin models is in the [wvtool] schema and discussed below).

• [statemod_runs] is a comprehensive list of every model run available through the Data Viewer,
which basin and climate model it is from and the path to where the model output files live on the
server.

• [statemod_output_filetypes] provides additional critical naming convention strings for the different
types of model files so that the full path to each file can be built in code at the time a user selects it.

The [b43data] schema also includes three views which are fundamental to the operations of the Data
Viewer.

• [metadata_nodes_info] pulls the information from the header data (in the record6x table) and
prepares it for use by subsequent views and functions.

• [metadata_nodes_info_excluded] lists the nodes that are present in the model file metadata but
are not being exposed through the Data Viewer (these are generally nodes that do not represent
physical locations on the ground are not baseflow nodes).

• [statemod_reader_metadata_final_with_traces] builds from information in the b43data schema
AND information in the [wvtool] schema (see the next section) to provide a list of all model data sets
chosen by all users for display in the Data Viewer graph reports. This list is used by the external
graphing PHP scripts.

Figure A1 on the following page includes a complete Entity Relationships diagram for the [b43data]
schema.

TM - Final - CRWAS Phase I - Task 2.9 Public Data Posting - Subtasks 1 and 2 Documentation

 Page 9

FIGURE A1. ENTITY RELATIONSHIPS DIAGRAM FOR THE [B43DATA] SCHEMA

TM - Final - CRWAS Phase I - Task 2.9 Public Data Posting - Subtasks 1 and 2 Documentation

 Page 10

2. Node Lists
Information about model nodes starts in the [b43data] schema (see previous section) and then
is passed to the [wv_tool] schema for processing in views and functions to prepare the data for
the variety of ways the lists are used by the Data Viewer. Information is also stored in the
[gis_nodes] schema describing the which nodes fall into which districts. It’s important to note
that controlling the node information in the [b43data] and [gis_nodes] schemas is a
manual process. Once these data sets are edited correctly, the node information in wv_tool
updates automatically by virtue of the functions and views.

Figure A2 below shows the [gis_nodes] schema entity relationships diagram. This schema has
one table with foreign keys to tables in the [b43data] schema.

FIGURE A2. ENTITY RELATIONSHIPS DIAGRAM GIS DERIVED NODE INFORMATION

The Data Viewer requires the user to first select a model basin. Optionally, the user may also filter
nodes by district. The database stores selected basin and district filters for each user and the Data
Viewer displays the appropriate set of nodes to the user. Please see Figure A3 on the following
page for a diagram of the database objects related to processing and displaying lists of nodes.

Schema: gis_nodes
districts_lookup
node_id (pk)
basin (pk)
district
node_name

Schema: b43data

basin_models

…record6x_rivernodes

TM - Final - CRWAS Phase I - Task 2.9 Public Data Posting - Subtasks 1 and 2 Documentation

 Page 11

FIGURE A3. ENTITY RELATIONSHIPS DIAGRAM FOR DATABASE OBJECTS RELATED TO NODE LISTS

TM - Final - CRWAS Phase I - Task 2.9 Public Data Posting - Subtasks 1 and 2 Documentation

 Page 12

3. Parameter Lists
The main database table storing model parameters, [list_parameter], contains the master list of
parameters available to the Data Viewer interface. New parameters added to StateMod should
be added to this table by hand, and also to the appropriate temporary table:

• [list_parameter_drupaledit_b43] or
• [list_parameter_drupaledit_b44].

The custom Drupal module “Fetchit2” makes it possible to edit the master parameter list (except
for adding new records), in coordination with a stored PostgreSQL function
[param_admin_submit()], which is called by the Drupal code to write changes made by the user
to the master parameter list.

The view [list_parameters_lookup] provides a sorted list of parameters helpful as a reference to
database administrators (it is not used by the Data Viewer interface). The rest of the views
shown in Figure A4 are used to support the drop-down selections boxes in the data Viewer
interface. Please see Figure A4 for a diagram of the database objects related to processing and
displaying lists of nodes.

4. Basin, District and Climate Model Lists
Database tables also store lists of

• The five model basins associated with the CRWAS models
• The districts contained in these basins, and
• The Climate Model runs included in the CRWAS Phase I project.

The association of nodes to basins is inherent in the b43data metadata view
[metadata_nodes_info] and passed to the [wvtool] schema in the view [master_list_base] (see
Figure A3). Figure A5 includes an ERD showing the PostgreSQL database objects associated
with display and processing these lists.

Please note that the Figure A3 (Nodes Lists) includes the original table illustrations for the
tables [list_district_names], [selected_district] and [selected_basin] showing the table fields.

TM - Final - CRWAS Phase I - Task 2.9 Public Data Posting - Subtasks 1 and 2 Documentation

 Page 13

FIGURE A4. ENTITY RELATIONSHIPS DIAGRAM FOR DATABASE OBJECTS RELATED TO PARAMETER LISTS

TM - Final - CRWAS Phase I - Task 2.9 Public Data Posting - Subtasks 1 and 2 Documentation

 Page 14

FIGURE A5. ENTITY RELATIONSHIPS DIAGRAM FOR DATABASE OBJECTS RELATED TO BASIN, DISTRICT, AND CLIMATE MODEL LISTS

TM - Final - CRWAS Phase I - Task 2.9 Public Data Posting - Subtasks 1 and 2 Documentation

 Page 15

5. User Selections
From the Data Viewer Drupal interface, the user is able to make a variety of selections. When
submitted, custom PHP scripts call PostgreSQL scripts to write the user selections to tables in
database tables. The following selections are stored in the following tables:

• Basin – [selected_basin]
• District – [selected_district]
• APPLY SELECTIONS – The combination of node, parameter, climate model, and trace

making up one time series selection are stored in [selected_ts] and each individual
selection is also stored:

o Node – [selected_node]
o Parameter – [selected_parameter]
o Planning Horizon (Quick Builder Only) – [selected_climate model group]
o Climate Model (Advanced Builder Only) – [selected_climate_model]
o Trace – [selected_trace]

• MODIFY SELECTIONS – [selected_ts_edit] modified first and then code writes changes
to [selected_ts]

• REMOVE SELECTIONS – the record numbers selected for removal are written to the
table [selected_to_delete]. The table [selected_ts_edit] is modified first and then code
writes changes to [selected_ts]

See Figures A6, A7, and A8 for details on the database organization supporting user selections.

Map Selections

When the user clicks PICK FROM MAP,
PHP code writes a flag to database table
[selected_call_page] to store whether the
users clicked from the Quick Builder or
the Advanced Builder. The code then
returns the user to the flagged page after
leaving the map. The table
[return_paths] stores the Drupal page
addresses for each time series selection
tab by node type. After selecting a node
from the map, the type of the selected
node is used by the code to determine
which tab to make active for the user.

FIGURE A6. ENTITY RELATIONSHIPS
DIAGRAM FOR DATABASE OBJECTS
SUPPORTING USER MAP SELECTIONS

TM - Final - CRWAS Phase I - Task 2.9 Public Data Posting - Subtasks 1 and 2 Documentation

 Page 16

FIGURE A7. ENTITY RELATIONSHIPS DIAGRAM FOR DATABASE OBJECTS SUPPORTING ADDING AND MODIFYING SELECTIONS

TM - Final - CRWAS Phase I - Task 2.9 Public Data Posting - Subtasks 1 and 2 Documentation

 Page 17

FIGURE A8. ENTITY RELATIONSHIPS DIAGRAM FOR DATABASE OBJECTS SUPPORTING REMOVING SELECTION

TM - Final - CRWAS Phase I - Task 2.9 Public Data Posting - Subtasks 1 and 2 Documentation

 Page 18

APPENDIX B: wvtool_utils Module

This module contains custom functions for the CRWAS Data Viewer Project. These functions can be
called from code in a drupal page, a web page, or from another drupal module. The module resides in
the following location on the server: /var/www/CRWAS/site/all/modules/custom/wvtool_utils

The functions in this module include:

function wvtool_rebuild($user_id): Populates default set of selections in the database for a specified
user (used during testing).

function wvtool_check_district_filter($user_id): Runs postgresql code after user filters by district to
filter available nodes by selected district.

function wvtool_get_basin($user_id): Runs postgresql code after user selects a basin to update
other selection lists for the selected basin.

function wvtool_set_node($node_arg, $call_page_arg): Runs SQL and Postgresql code after user
selects a node from either the Quick Builder or Advanced Builder page and stores the selection in the
form. Returns user to the Builder page they started from.

function wvtool_quickbuilder_submit($user_id): Runs postgresql after user submits the Quick
Builder form to store selections and display selections on the page.

function wvtool_advancedbuilder_submit($user_id): Runs postgresql after user submits the
Advanced Builder form to store selections and display selections on the page.

function wvtool_advancedbuilder_delete($user_id): Runs postgresql after user submits a DELETE
request on the Advanced Builder form to store selections and display selections on the page.

function wvtool_advancedbuilder_modify($user_id): Runs postgresql after user submits a MODIFY
request on the Advanced Builder form to store and display modified values.

TM - Final - CRWAS Phase I - Task 2.9 Public Data Posting - Subtasks 1 and 2 Documentation

 Page 19

APPENDIX C: Fetchit2 Module

The Fetchit2 module was developed by Leonard Rice Engineers, Inc. to provide an interactive
connection between Drupal and a remote server database and tools for Drupal programmers to create
interactive web site content live-linked to the remote database. Please see the fetchit2.module PHP
code for more detailed documentation of the code itself.

Fetchit2 functions create custom drupal forms that allow the creation of:

• HTML tables linked to tables in the remote database,
• Google Visualization (GViz) tables and charts linked to data in the remote database,
• Editable grids of data that when modified will change content in the remote database,
• Parameter Selection controls, including check boxes, option buttons, select buttons, and drop-

down lists that push user specified selections into tables in the remote database.

Most of the user interaction takes place through either the editable grid objects or parameter selection
objects. When a user submits information through either of these controls, that information is stored in
the remote database and the web page is refreshed. Any web page content linked to the database
(HTML or GViz Tables and Charts) and dependent on the user specified selections will change to
reflect the new information.

	Introduction
	Server Specifications
	Storage Locations of Data, Code, and Scripts
	PostgreSQL Database Contents and Organization
	Users:
	Schemas
	Metadata Tables

	Drupal Site Administration
	APPENDIX A
	PostgreSQL Database Annotated Entity Relationships Diagram (ERD)
	ERD SYMBOL KEY
	1. Binary File Metadata
	2. Node Lists
	3. Parameter Lists
	4. Basin, District and Climate Model Lists
	5. User Selections
	Map Selections

	APPENDIX B: wvtool_utils Module
	APPENDIX C: Fetchit2 Module

