South Platte River Basin Water Resources Planning Model User's Manual



## August, 2017







## Table of Contents

| TABLE OF CONTENTS                                                              | II   |
|--------------------------------------------------------------------------------|------|
| TABLE OF FIGURES                                                               | V    |
| TABLE OF TABLES                                                                | VIII |
| 1. INTRODUCTION                                                                | 1-1  |
| 1.1 Background                                                                 |      |
| 1.2 DEVELOPMENT OF THE SOUTH PLATTE RIVER BASIN WATER RESOURCES PLANNING MODEL | 1-1  |
| 1.3 Results                                                                    | 1-3  |
| 1.4 ACKNOWLEDGEMENTS                                                           | 1-3  |
| 2. WHAT'S IN THIS DOCUMENT?                                                    |      |
| 2.1 Scope of this Manual                                                       | 2-1  |
| 2.2 Manual Contents                                                            | 2-1  |
| 2.3 What's in other CDSS documentation                                         | 2-2  |
| 3. THE SOUTH PLATTE RIVER BASIN                                                |      |
| 3.1 Physical Geography                                                         |      |
| 3.2 Human and Economic Factors                                                 |      |
| 3.3 Water Resources Development                                                |      |
| 3.4 WATER RIGHTS ADMINISTRATION AND OPERATIONS                                 |      |
| 3.4.1 Ground Water Management – Legal Development                              | 3-4  |
| 3.4.2 Municipal Operations and Transmountain Imports                           | 3-5  |
| 3.4.3 Platte River Recovery Implementation Program                             | 3-6  |
| 3.4.4 South Platte Compact                                                     | 3-6  |
| 3.5 Section References                                                         | 3-6  |
| 4. MODELING APPROACH                                                           |      |
| 4.1 Modeling Objectives                                                        | 4-1  |
| 4.2 Model Coverage and Extent                                                  | 4-1  |
| 4.2.1 Network Diagram                                                          | 4-1  |
| 4.2.2 Reservoirs                                                               | 4-4  |
| 4.2.3 Instream Flow Structures                                                 | 4-5  |
| 4.3 Modeling Period                                                            | 4-6  |
| 4.4 Data Filling                                                               | 4-6  |
| 4.4.1 Stream Gage Filling                                                      | 4-6  |
| 4.4.2 Historical Diversions for Irrigation                                     | 4-7  |
| 4.4.3 Historical Municipal Demand                                              |      |
| 4.4.4 Historical Transmountain Diversions                                      |      |
| 4.4.5 Historical Reservoir Contents                                            |      |
| 4.5 Consumptive Use and Return Flow Amounts                                    | 4-9  |
| 4.5.1 Variable Efficiency of Irrigation Use                                    |      |
| 4.5.2 Constant Efficiency for Other Uses and Special Cases                     |      |
| 4.6 RETURN FLOW TIMING AND LOCATIONS                                           | 4-14 |
| 4.7 BASEFLOW ESTIMATION                                                        | 4-15 |
| 4.7.1 Baseflow Computations at Gages                                           | 4-15 |
| 4.7.2 Baseflow Filling                                                         |      |
| 4.7.3 Distribution of Baseflow to Ungaged Points                               | 4-16 |
| 4.8 IMPORTS                                                                    | 4-19 |
| 4.9 Changed Water Rights                                                       |      |
| 4.10 OFF-CHANNEL RESERVOIRS AND IRRIGATION STRUCTURES                          | 4-24 |
| 4.10.1 Off-Channel Reservoir River Network Setup                               | 4-24 |

| 4.10.2    | Off-Channel Reservoir Baseflow Calculations      |         |
|-----------|--------------------------------------------------|---------|
| 4.10.3    | Off-Channel Reservoir Simulation Scenarios       |         |
| 4.11 V    | Vell Use                                         | 4-28    |
| 4.11.1    | Augmentation Plans and Recharge                  |         |
| 4.12 C    | ALIBRATION APPROACH                              | 4-30    |
|           |                                                  | г 1     |
| 5. HISTOR | (ICAL DA I ASE I                                 |         |
| 5.1 KESP  | UNSE FILE (*.RSP)                                |         |
| 5.1.1     | For Historical Simulation                        |         |
| 5.1.2     | For Generating Baseflow                          |         |
| 5.2 CON   | TROL FILE (*.CTL)                                | 5-4     |
| 5.3 RIVE  | R SYSTEM FILES                                   |         |
| 5.3.1     | River Network File (*.rin)                       | 5-4<br> |
| 5.3.2     | River Station File (*.ris)                       |         |
| 5.3.3     | Baseflow Parameter File (*.rib)                  |         |
| 5.3.4     | Historical Streamflow File (*.rin)               |         |
| 5.3.5     | Baseflow File (*.xbm)                            |         |
| 5.4 DIVE  | RSION FILES                                      |         |
| 5.4.1     | Direct Diversion Station File (*.dds)            |         |
| 5.4.2     | Return Flow Delay Tables (*.dly)                 |         |
| 5.4.3     | Historical Diversion File (*.ddh)                | 5-14    |
| 5.4.4     | Direct Diversion Demand File (*.ddm)             |         |
| 5.4.5     | Direct Diversion Right File (*.ddr)              |         |
| 5.5 Irrig | GATION FILES                                     | 5-17    |
| 5.5.1     | StateCU Structure File (*.str)                   |         |
| 5.5.2     | Irrigation Parameter Yearly (*.ipy)              | 5-17    |
| 5.5.3     | Consumptive Use Water Requirement File (*.ddc)   | 5-17    |
| 5.6 Rese  | RVOIR FILES                                      | 5-18    |
| 5.6.1     | Reservoir Station File (*.res)                   | 5-18    |
| 5.6.2     | Net Evaporation File (*.eva)                     | 5-30    |
| 5.6.3     | End-Of-Month Content File (*.eom)                | 5-31    |
| 5.6.4     | Reservoir Target File (*.tar)                    | 5-34    |
| 5.6.5     | Reservoir Right File (*.rer)                     | 5-35    |
| 5.7 Inst  | ream Flow Files                                  | 5-38    |
| 5.7.1     | Instream Station File (*.ifs)                    | 5-38    |
| 5.7.2     | Instream Flow Annual File (*.ifa)                | 5-39    |
| 5.7.3     | Instream Right File (*.ifr)                      | 5-39    |
| 5.8 Plan  | I FILES                                          | 5-41    |
| 5.8.1     | Plan Data File (*.pln)                           | 5-41    |
| 5.8.2     | Augmentation Plan to Well Data File (*.plw)      | 5-44    |
| 5.8.3     | Plan to Reservoir Recharge Data File (*.plr)     | 5-46    |
| 5.8.4     | Reservoir Return File (*.rrf)                    | 5-48    |
| 5.8.5     | Plan Return Flow File (*.prf)                    | 5-50    |
| 5.8.6     | Terms and Conditions                             | 5-55    |
| 5.9 Wel   | L FILES                                          | 5-83    |
| 5.9.1     | Well Station File (*.wes)                        | 5-83    |
| 5.9.2     | Historical Pumping and Well Demand File (*.weh)  | 5-85    |
| 5.9.3     | Well Rights File (*.wer)                         | 5-85    |
| 5.10 C    | DPERATING RIGHTS FILE (*.OPR)                    | 5-86    |
| 5.10.1    | Soil Moisture                                    | 5-89    |
| 5.10.2    | Colorado-Big Thompson Project Overview           | 5-89    |
| 5.10.3    | Colorado-Big Thompson Project Operations         | 5-93    |
| 5.10.4    | Water District 4 (Big Thompson Basin) Operations | 5-97    |

| 5.   | 10.5 Water District 5 (St. Vrain) Operations                                   | 5-115 |
|------|--------------------------------------------------------------------------------|-------|
| 5.   | 10.6 Water District 6 (Boulder Creek) Operations                               | 5-142 |
| 5.   | 10.7 Moffat Tunnel Project                                                     | 5-190 |
| 5.   | 10.8 Upper South Platte System (Water Districts 80, 23, 9, 8, and 2)           | 5-191 |
| 5.   | 10.9 Water Districts 1 and 64 (Lower South Platte) Operations                  | 5-332 |
| 5.   | 10.10 Augmentation Plan Operations                                             | 5-339 |
| 5.   | 10.11 South Platte Compact                                                     | 5-375 |
| 6. C | ALIBRATION                                                                     |       |
| 6.1  | Calibration Process                                                            | 6-1   |
| 6.   | 1.1 Sub-basin Calibration                                                      |       |
| 6.   | 1.2 Full Model Calibration Approach                                            |       |
| 6.2  | CALIBRATION RESULTS                                                            | 6-10  |
| 6.   | 2.1 Water Balance                                                              | 6-10  |
| 6.   | 2.2 Water Districts 80, 23, 9, 8, and 2 (Upper South Platte River) Calibration | 6-12  |
| 6.   | 2.3 Water District 4 (Big Thompson River) Calibration                          | 6-34  |
| 6.   | 2.4 Water District 5 (St. Vrain Creek) Calibration                             | 6-43  |
| 6.   | 2.5 Water District 6 (Boulder Creek) Calibration                               | 6-54  |
| 6.   | 2.6 Water District 7 (Clear Creek) Calibration                                 | 6-66  |
| 6.   | 2.7 Water Districts 1 and 64 (Lower South Platte River) Calibration            | 6-74  |
| 6.3  | FUTURE ENHANCEMENTS                                                            | 6-86  |
| 6.4  | Future Scenarios                                                               | 6-89  |
| 7. A | PPENDICES                                                                      |       |
| 7.1  | Direct Diversion Station File Summary                                          | 7-2   |
| 7.2  | Diversion Systems                                                              | 7-26  |
| 7.3  | Aggregated Irrigation Structures                                               | 7-33  |
| 7.4  | Plan Structures                                                                | 7-39  |
| 7.5  | Aggregate Well Structures                                                      | 7-59  |
| 7.6  | CALIBRATION STRUCTURE SUMMARY                                                  | 7-69  |
| 7.7  | SPDSS Task Memorandum Links                                                    | 7-89  |
| 7.8  | REPRESENTATION OF CENTRAL WAS AND GMS QUOTAS                                   | 7-107 |
| 7.9  | DEVELOPMENT OF AUGMENTATION PLAN TO WELL DATA FILE (*PLW)                      | 7-134 |
| 7.10 | Workshop Materials                                                             | 7-140 |

# Table of Figures

| Figure 3-1: South Platte River Basin (Source: Colorado Geological Survey)          | 3-2   |
|------------------------------------------------------------------------------------|-------|
| Figure 4-1: Hypothetical Basin Illustration                                        |       |
| Figure 4-2: Illustration of changed water rights approach using Fisher Ditch       |       |
| Figure 4-3: Off-Channel Reservoir System Schematic                                 |       |
| Figure 4-4: Illustration of augmentation and recharge operations at Low Line Ditch |       |
| Figure 5-1: Colorado-Big Thompson East Slope Distribution System                   | 5-92  |
| Figure 5-2: Denver Water South Platte River Water Supply System                    | 5-194 |
| Figure 5-3: City of Aurora South Platte Water Supply Systems                       | 5-203 |
| Figure 5-4: Clear Creek Basin Operations                                           | 5-229 |
| Figure 5-5: Denver Region Municipalities (Source: DRCOG)                           | 5-230 |
| Figure 5-6: Burlington Ditch System                                                | 5-308 |
| Figure 6-1: Simulated Moffat Tunnel Releases to Demand                             | 6-7   |
| Figure 6-2: South Boulder Diversion Conduit Diversion                              | 6-7   |
| Figure 6-3: Gross Reservoir End-of-Month Contents                                  | 6-8   |
| Figure 6-4: Streamflow at South Boulder Creek near Eldorado Springs                | 6-8   |
| Figure 6-5: South Platte River below Antero Reservoir (District 23)                | 6-13  |
| Figure 6-6: South Platte River above Eleven Mile Reservoir (District 23)           | 6-14  |
| Figure 6-7: South Platte River near Lake George (District 23)                      | 6-15  |
| Figure 6-8: South Platte River below Cheesman Reservoir (District 8/80)            | 6-16  |
| Figure 6-9: South Platte River at South Platte (District 8/80)                     | 6-17  |
| Figure 6-10: South Platte River at Waterton                                        | 6-18  |
| Figure 6-11: South Platte River at Englewood                                       | 6-19  |
| Figure 6-12: Cherry Creek at Denver                                                | 6-20  |
| Figure 6-13: South Platte River at Denver                                          | 6-21  |
| Figure 6-14: South Platte River at Henderson                                       | 6-22  |
| Figure 6-15: South Platte River at Fort Lupton                                     | 6-23  |
| Figure 6-16: Antero Reservoir                                                      | 6-24  |
| Figure 6-17: Spinney Mountain Reservoir                                            | 6-24  |
| Figure 6-18: Eleven Mile Reservoir                                                 | 6-25  |
| Figure 6-19: Cheesman Reservoir                                                    | 6-25  |
| Figure 6-20: Strontia Springs Reservoir                                            | 6-26  |
| Figure 6-21: Chatfield Reservoir                                                   | 6-26  |
| Figure 6-22: Marston Reservoir                                                     | 6-27  |
| Figure 6-23: McLellan Reservoir                                                    | 6-27  |
| Figure 6-24: Cherry Creek Reservoir                                                | 6-28  |
| Figure 6-25: Aurora Reservoir                                                      | 6-28  |
| Figure 6-26: West Gravel Lakes                                                     | 6-29  |
| Figure 6-27: Standley Lake                                                         | 6-29  |
| Figure 6-28: Con Mutual Agg Reservoirs                                             | 6-30  |
| Figure 6-29: Lower Latham Reservoir                                                | 6-30  |
| Figure 6-30: Barr Lake                                                             | 6-31  |

| Figure 6-31: | Milton Reservoir                              | 6-31 |
|--------------|-----------------------------------------------|------|
| Figure 6-33: | Big Thompson River near Estes Park Streamflow | 6-36 |
| Figure 6-34: | Big Thompson River at Canyon Mouth Streamflow | 6-37 |
| Figure 6-35: | Big Thompson River at Loveland                | 6-38 |
| Figure 6-36: | Big Thompson River at Mouth                   | 6-39 |
| Figure 6-37: | Boyd Lake                                     | 6-40 |
| Figure 6-38: | Carter Lake                                   | 6-40 |
| Figure 6-39: | Lone Tree Reservoir System                    | 6-41 |
| Figure 6-40: | Olympus Tunnel Calibration                    | 6-42 |
| Figure 6-42: | St Vrain at Lyons                             | 6-45 |
| Figure 6-43: | Lefthand Creek near Boulder                   | 6-46 |
| Figure 6-44: | St Vrain River at Mouth                       | 6-47 |
| Figure 6-45: | Beaver Park Reservoir                         | 6-48 |
| Figure 6-46: | Highland Reservoir No. 3                      | 6-48 |
| Figure 6-47: | Highland Reservoir No. 2                      | 6-49 |
| Figure 6-48: | Highland Reservoir No. 1                      | 6-49 |
| Figure 6-49: | Button Rock Reservoir                         | 6-50 |
| Figure 6-50: | Union Reservoir                               | 6-50 |
| Figure 6-51: | Boulder Reservoir                             | 6-51 |
| Figure 6-52: | Longmont North Pipeline Calibration           | 6-54 |
| Figure 6-53: | Boulder Creek near Orodell                    | 6-56 |
| Figure 6-54: | Boulder Creek near Eldorado Springs           | 6-57 |
| Figure 6-55: | Boulder Creek at 75th Street                  | 6-58 |
| Figure 6-56: | Boulder Creek at Mouth                        | 6-59 |
| Figure 6-57: | Gross Reservoir                               | 6-60 |
| Figure 6-58: | Baseline Reservoir System                     | 6-60 |
| Figure 6-59: | Marshall Lake Reservoir                       | 6-61 |
| Figure 6-60: | Valmont Reservoir                             | 6-61 |
| Figure 6-61: | Combined Watershed Reservoirs                 | 6-62 |
| Figure 6-62: | City of Boulder Pipeline Calibration          | 6-65 |
| Figure 6-63: | Boulder Pipeline No. 3 Calibration            | 6-65 |
| Figure 6-64: | Clear Creek at Golden                         | 6-68 |
| Figure 6-65: | Clear Creek at Derby                          | 6-69 |
| Figure 6-66: | Ralston Reservoir                             | 6-70 |
| Figure 6-67: | Coors North Lakes                             | 6-70 |
| Figure 6-68: | Coors South Lakes                             | 6-71 |
| Figure 6-69: | Arvada Reservoir                              | 6-71 |
| Figure 6-70: | Farmers Highline Canal Calibration            | 6-72 |
| Figure 6-71: | Farmers Highline Canal Irrigation Calibration | 6-73 |
| Figure 6-72: | South Platte River near Kersey                | 6-76 |
| Figure 6-73: | South Platte River near Weldona               | 6-77 |
| Figure 6-74: | South Platte River at Balzac                  | 6-78 |
| Figure 6-75: | South Platte River at Julesburg Streamflow    | 6-79 |

| Figure 6-76: Jackson Lake Reservoir                | 6-80 |
|----------------------------------------------------|------|
| Figure 6-77: Empire Reservoir                      | 6-80 |
| Figure 6-78: Bijou Reservoir No. 2                 | 6-81 |
| Figure 6-79: Riverside Reservoir                   | 6-81 |
| Figure 6-80: Prewitt Reservoir                     | 6-82 |
| Figure 6-81: North Sterling Reservoir              | 6-82 |
| Figure 6-82: Julesburg Reservoir                   | 6-83 |
| Figure 6-83: Riverside Ditch System Calibration    | 6-84 |
| Figure 7-1: Aggregate boundaries (Western portion) | 7-34 |
| Figure 7-2: Aggregate boundaries (Eastern portion) | 7-35 |

## Table of Tables

| Table 4-1: Pattern Gage Assignment                                                 | 4-7  |
|------------------------------------------------------------------------------------|------|
| Table 4-2: Irrigation Structures Assigned Constant Efficiency                      |      |
| Table 5-1: River Network Elements                                                  | 5-5  |
| Table 5-2: Baseflow Nodes with Set Proration Factors                               | 5-6  |
| Table 5-3: Historical Average Annual Flows for Key South Platte River Stream Gages | 5-6  |
| Table 5-4: Stream gages filled with regression                                     | 5-8  |
| Table 5-5: Average Baseflow Comparison from 1993-2012 (Af/Year)                    | 5-10 |
| Table 5-6 Modeled Reservoirs                                                       | 5-18 |
| Table 5-7 Monthly Distribution of Evaporation as a Function of Elevation (percent) | 5-30 |
| Table 5-8. Average Monthly Gross Evaporation Distribution (inches)                 | 5-30 |
| Table 5-9. Reservoir On-line Dates and EOM Contents Data Source                    | 5-32 |
| Table 5-10. Instream Flow Summary                                                  | 5-39 |
| Table 5-11: Plan Structure Summary                                                 | 5-42 |
| Table 5-12: Augmentation Plan to Well Data Summary                                 | 5-44 |
| Table 5-13: Plan to Reservoir Recharge Plan Summary                                | 5-46 |
| Table 5-14: Reservoir Recharge Plan Return Flow Summary                            | 5-48 |
| Table 5-15: Canal Recharge Plan Return Flow Summary                                | 5-50 |
| Table 5-16: Terms and Conditions Plan Return Flow Summary                          | 5-52 |
| Table 6-1: Sub-basin Import/Export Interactions                                    | 6-5  |
| Table 6-2: Model Water Balance                                                     | 6-11 |
| Table 7-1: Direct Diversion Station Summary (Average 1993 - 2012)                  | 7-2  |
| Table 7-2: Diversion Systems                                                       | 7-26 |
| Table 7-3: Surface Water Aggregate Structures                                      | 7-36 |
| Table 7-4: Plan Structures                                                         | 7-39 |
| Table 7-5: Well Station File Summary                                               | 7-59 |
| Table 7-6: Calibration Structure Summary                                           | 7-69 |
|                                                                                    |      |

## 1. Introduction

## 1.1 Background

The Colorado's Decision Support System (CDSS) consists of a database of hydrologic and administrative information related to water use in the State of Colorado, and a variety of tools and models for reviewing, reporting, and analyzing the data. The CDSS water resources planning models, of which the South Platte River Basin Water Resources Planning Model (South Platte Model) is one, are water allocation models, which determine availability of water to individual users and projects, based on hydrology, water rights, and operating rules and practices. They are implementations of "StateMod," a code developed by the State of Colorado for application in the CDSS project. The South Platte Model Historical dataset, which this document describes, extends from calendar year 2012 back to 1950. It simulates demands changing through time, current infrastructure and projects coming on-line, and the current administrative environment.

The South Platte Model was developed as a tool to test the impacts of proposed diversions, reservoirs, water rights and/or changes in operations and management strategies. The model can simulate proposed changes using a highly variable physical water supply constrained by administrative water rights. The Historical dataset can serve as the starting point, demonstrating condition of the stream absent the proposed change. It is recommended the user compare the Historical simulation results to results from a model to which they have added the proposed features, to determine the performance and effects of the proposed changes.

Information used in this model dataset is based on available data collected and developed through the CDSS, including information recorded by the State Engineer's Office. The model dataset and results are intended for basin-wide planning purposes. Individuals seeking to use the model dataset or results in any legal proceeding are responsible for verifying the accuracy of information included in the model.

## 1.2 Development of the South Platte River Basin Water Resources Planning Model

The South Platte Decision Support System (SPDSS) Feasibility Study, completed in 2001, outlined the data collection and model enhancements that would be necessary to develop the consumptive use, surface water allocation, and ground water models in the South Platte River basin. In subsequent years, data that would ultimately be included in the SPDSS models were developed, collected, reviewed, and formatted for use in the modeling effort. These data collection efforts were summarized in a series of task memos, as listed in Section 7.7. Data included, but is not limited to:

• Development of seven historical irrigated acreage coverages, including mapping surface and ground water supplies and crop type information.

- Collection and review of daily and monthly climate data to support the development of calibrated crop coefficients.
- Collection and review of historical call records to characterize the historical call regime.
- Interviews with Water Commissioners from each basin and numerous water providers in order to document system operations, develop initial modeling approaches, and collect user-supplied data.
- Collection and review of transmountain diversions and streamflow gage data.
- Development of modeling approaches for operations not previously used in CDSS models, including off-channel reservoir systems, augmentation plans, and changed water rights.
- Alluvial and bedrock well construction and testing for development and calibration of aquifer parameters.

In addition, several enhancements were made to the StateCU and StateMod modeling platforms, including, but not limited to:

- Enhancement of StateCU to allow four land use types (sprinkler/flood/surface water/ground water) to better represent conjunctive use and changes in application efficiency over time.
- Development of the StateCU GUI and Wizard interfaces, and inclusion of binary output.
- Addition of significant functionality to StateMod in order to handle more complex municipal and ground water operations. This included implementing a new structure type (plan structures), which required several new model input files and operations.
- Addition of new operations to account for the South Platte Compact.

Much of this data and information was used to develop the basin-wide consumptive use analysis and ground water models, which were completed in 2010 and 2013 respectively. While technical consultants were developing the consumptive use and ground water models, DWR staff was developing an initial Lower South Platte StateMod Model. This model was critical to testing and developing modeling approaches that would be used throughout the overall South Platte Model. This model was ultimately completed by consultants in 2013 and served as the template for the remaining modeling in the upper basin, which kicked off in the same year. Individual models were first developed at the sub-basin level, and then integrated into an overall basin-wide model. Shortly after sub-basin model development began, it was determined that additional StateMod enhancements were desired to better account for transmountain diversions and changed water rights operations, and to add functionality to instream flow operations. The subbasin models were integrated into a full model by the end of 2016. The South Platte Model was developed to an initial calibration level, and, like other CDSS models, will be updated and further enhanced in the future.

### 1.3 Results

The key results of the South Platte Model efforts are as follows:

- A water resources planning model was developed that can make comparative analyses of historical and future water management policies in the South Platte Basin. The model includes 100 percent of the irrigation consumptive use, a large majority of the municipal and industrial uses, and all transmountain imports.
- Input data for the South Platte Model using a monthly time-step for the period 1950 through 2012 were developed.
- The model was calibrated for a study period extending from year 1993 through 2012. This calibration period is appropriate for the South Platte to represent the changes that have occurred in the basin in recent years due to complex municipal and augmentation/recharge operations.
- A complete dataset of natural flows from 1950 through 2012 at key stream gage locations throughout the basin has been developed (excluding the Cache la Poudre). Natural flows remove the impacts of transmountain diversions, reservoir operations, and consumptive use from the stream flow record.
- The calibration of the Historical simulation is considered good, based on a comparison of historical to simulated streamflows, reservoir contents, and diversions.

#### 1.4 Acknowledgements

CDSS is a project of the Colorado Water Conservation Board (CWCB), with support from the Colorado Division of Water Resources. The South Platte Model was developed as individual subbasin models by the following consultants and was integrated by Wilson Water Group.

- Water District 4 Riverside Technology, inc., ParsonsWater Consulting, LLC, and Wilson Water Group
- Water District 5 Brown and Caldwell and DiNatale Water Consultants
- Water District 6 Amec Foster Wheeler and Lynker Technologies, LLC
- Water Districts 2, 7, 8, 9, 23, and 80 ParsonsWater Consulting, LLC, Ecological Resource Consultants, Inc., Williams and Weiss Consulting, LLC, and Leonard Rice Engineers

• Water Districts 1 and 64 – preliminary development by Colorado Division of Water Resources staff and completed by Wilson Water Group

## 2. What's in this Document?

## 2.1 Scope of this Manual

This reference manual describes the CDSS South Platte River Water Resources Planning Model, an application of the generic water allocation model StateMod and one component of the Colorado's Decision Support System. It is intended for the reader who:

- Wants to understand basin operations and issues through review of the model,
- Needs to evaluate the model's applicability to a particular planning or management issue,
- Intends to use the model to analyze a particular South Platte River Basin development or management scenario,
- Is interested in estimated conditions in the South Platte River Basin under historical development over a range of hydrologic conditions, as simulated by this model, and in understanding the modeling estimates.

For this manual to be most effective, the reader should have access to a complete set of data files for the South Platte Model, as well as other CDSS documentation as needed (see below).

The manual describes content and estimates in the model, implementation issues encountered, approaches used to estimate parameters, and results of calibration. Limited general information is provided on the mechanics of assembling datasets and using various CDSS tools.

#### 2.2 Manual Contents

This manual is divided into the following sections:

Section 3: The South Platte River Basin – describes the physical setting for the model, provides general review of water resources development and issues in the basin.

**Section 4: Modeling Approach** – provides and overview of methods and techniques used in the South Platte Model, addressing an array of typical modeling issues, such as:

- Physical extent and spatial detail
- Study period
- Aggregation of small structures
- Data filling methods

- Simulation of processes related to irrigation use, such as delivery loss, soil moisture storage, crop consumptive use, and returns flows
- Development of baseflows
- Calibration techniques

Section 5: Historical Dataset - refers to the Monthly Historical dataset input files for simulating demands changing through time, current infrastructure and projects coming on-line, and the current administrative environment as if it were in place throughout the modeled period. The dataset is generic with respect to future projects, and could be used as the basis against which to compare a simulation that includes a new use or operation. The user is advised, before appropriating the dataset, to become fully aware of how demands and operations are represented. Elements of these are subject to interpretation, and could legitimately be represented differently.

This section is organized by input file. The first is the response file, which lists the other files and therefore serves as a table of contents within the section. The content, source of data, and particular implementation issues are described for each file in specific detail.

**Section 6: Historical Calibration and Results** – describes the calibration process and demonstrates the model's ability to replicate historical conditions. Comparisons of streamflow, diversions, and reservoir levels are presented generally by basin and include discussion on calibration efforts.

Section 7: Appendices – detailed information on model and data development.

#### 2.3 What's in other CDSS documentation

There is some overlap of topics both within this manual and between this and other CDSS documentation. To help the user take advantage of all sources, pointers are included as applicable under the heading "Where to Find More Information," throughout the manual.

The user may need to supplement this manual with information from other CDSS documentation. This is particularly true for the reader who wants to:

- Make significant changes to the South Platte Model to implement specific future operations,
- Introduce changes that require regenerating the baseflow data file,
- Regenerate input files using the Data Management Interface (DMI) tools and HydroBase,
- Develop a StateMod model for a different basin.

An ample body of documentation exists for CDSS, and is still growing. A user's biggest challenge may be in efficiently finding the information they need. This list of descriptions is intended to help in selecting the most relevant data source:

**Consumptive Use Report** – the report "Historic Crop Consumptive Use Analysis: South Platte Decision Support System" from March 2010 provided the basis for information on the consumptive use analysis. The StateCU analysis was updated to incorporate the most recent irrigated acreage data in order to develop the inputs required for the variable efficiency method.

**Basin Information** – in order to develop the South Platte Model, interviews were conducted with water commissioners and water users throughout the South Platte Basin. These interviews served as the basis for understanding and implementing operations in the model. They are documented as Task 3 and Task 5 Technical Memorandum and are available on the CWCB website.

DMI user documentation – user documentation for StateDMI and TSTool is currently available, and covers aspects of executing these codes against the HydroBase database (Creating datasets for StateMod is only one aspect of their capabilities). The DMIs preprocess some of the StateMod input data. For example, StateDMI computed coefficients for distributing baseflow gains throughout the model and aggregated water rights for numerous small structures. TSTool filled missing time series data and computed headgate demands for irrigation structures. Thus the documentation, which explains algorithms for these processes, is helpful in understanding the planning model estimates. In addition, the documentation is essential for the user who is modifying and regenerating input files using the DMIs.

**StateCU documentation** – StateCU is the CDSS irrigation consumptive use analysis tool. It is used to generate structure-specific time series of irrigation water requirement, an input to StateMod. A model change that involves modified irrigated acreage or crop-type would require re-execution of StateCU.

**StateMod documentation** – the StateMod user manual describes the model in generic terms and specific detail. Section 3 - Model Description and Section 7 - Technical Notes offer the best descriptions of StateMod functionality, and would enhance the South Platte Model user's understanding of results. If the user is modifying input files, they should consult Section 4 - Input Description to determine how to format files. To analyze model results in detail, they should review Section 5 - Output Description, which describes the wide variety of reports available to the user.

**Self-documented input files** – an important aspect of the StateMod input files is that their genesis was documented in the files themselves. Command files that directed the DMIs creation of the files were echoed in the file header. Generally, the model developers have incorporated comments in the command file that explain use of options, sources of data, etc.

**Technical Memoranda** – many aspects of the modeling methods adopted in CDSS were explored in feasibility or pilot studies before being implemented. Historical technical memoranda and reports for these activities are listed in Section 7.7 and are publically available on the CDSS website.

## 3. The South Platte River Basin

The South Platte River Basin is one of seven major rivers that have their headwaters in the State of Colorado. In terms of area, it covers about one quarter of the State. It includes the largest municipal area in Colorado and a significant portion of the State's irrigated farmland. Meeting the needs of these two large water users, in addition to wildlife and recreational users, has been the theme of water development through time.

## 3.1 Physical Geography

The South Platte River Basin begins in the South Park area of the Rocky Mountains in central Colorado and flows southeast toward Elevenmile Reservoir (see Figure 3-1). From the reservoir, the river turns sharply northeast and flows to the Front Range via Waterton Canyon, where it emerges onto the plains southwest of Denver. From Denver the river continues its northeastern course towards Greeley, Colorado, where it bends eastward to Sterling, Colorado and North Platte, Nebraska. It covers approximately 19,300 square miles in the northeast portion of Colorado. Major tributaries include Bear Creek, Boulder Creek, Cherry Creek, Clear Creek, St. Vrain Creek, Big Thompson River, and the Cache la Poudre River (CWCB, 2006).

In general, most of the precipitation falls as rain in the late spring and as snow during winter, with dry conditions in between. The average October-April precipitation in the basin varies from 3 inches in the lower plains to 22 inches in the mountains, and 6 and 15 inches, respectively, for the plains and mountains during May-September (CWRRI, 1990).

The hydrology of the South Platte Basin is highly variable, with an approximate average annual native flow volume of 1.4 million acre-feet (af). About 70 percent of the annual streamflow occurs during spring runoff. From 1993 – 2012, native water supply in the current model domain<sup>1</sup> was supplemented by approximately 390,000 af of transmountain diversions from the Colorado River Basin and non-tributary groundwater pumping. Currently, the South Platte Basin has approximately 8,000 decreed points of diversion and 54,000 decreed wells (CDSS Basin Fact Sheet). From 1993-2012, the surface water diversions averaged approximately 3.5 million af annually. The amount of diversion in excess of native flow highlights the return flow-dependent nature of the basin's hydrology. On average (1993-2012) approximately 370,000 af leaves the basin, flowing past the Julesburg gage into Nebraska (CWCB, 2015).

<sup>&</sup>lt;sup>1</sup> Current model domain reflects the South Platte River Basin excluding the Cache La Poudre River Basin.



Figure 3-1: South Platte River Basin (Source: Colorado Geological Survey)

The subsurface hyrogeology of the South Platte Basin consists predominantly of a relatively shallow unconfined alluvial aquifer along the mainstem and tributaries and the deeper Denver Basin confined aquifers below some areas of the basin. The alluvial aquifer system is generally in hydrologic connection with the surface water system.

## 3.2 Human and Economic Factors

The South Platte River Basin is the most populous basin in the State. A majority of the population in the basin is located in the Front Range corridor. In 2008, the South Platte River Basin was home to a population of 3.5 million people. By 2050 the population is expected to grow to six million people (CWCB, 2015). Denver is the capital city and most populous municipality in the state of Colorado with an estimated population of 600,000 in 2010 (US Census, HydroBase census).

The South Platte is fully appropriated, and these appropriations are diverted for to meet many uses. The principal water uses are municipal, irrigation, and industrial. Urban business and industry within the Basin drive the majority of the State's overall economy. In 2010, the irrigated acres totaled approximately 700,000, accounting for approximately 72% of Colorado's agricultural outputs (CWCB, 2016).

### 3.3 Water Resources Development

A majority of Colorado's population and agricultural production exist on the eastern slope, and a majority of the water supply originates on the western slope. Early water leaders recognized the need for transmountain diversion projects to supplement the native eastern slope supplies.

The largest transmountain project is the Colorado-Big Thompson (C-BT). Project water is diverted from the Colorado Basin and delivered through Adams Tunnel to the Big Thompson River. From there, water is delivered through a system of tunnels, channels, and reservoirs to municipal and agricultural water users throughout the South Platte Basin. The C-BT project is owned by the U.S. Bureau of Reclamation and managed by Northern Colorado Water Conservancy District (Northern).

The next largest transmountain diverter is Denver Water, which also has numerous South Platte diversions. Transmountain and South Platte water is supplied by a 4,000 square mile collection system extending across eight counties – Park, Grand, Jefferson, Summit, Teller, Douglas, Clear Creek, and Gilpin. Main water sources are the South Platte, Blue River, Williams Fork, and Fraser River watersheds, but Denver Water also diverts from South Boulder Creek, Ralston Creek and Bear Creek watersheds (Denver Water, 2013). Water collected on the West Slope is transported to the East Slope primarily through Moffat Tunnel and Roberts Tunnel.

In addition to transmountain diversions, a number of large reservoirs are located in the South Platte Basin. Major municipal water supply reservoirs on the main stem of the South Platte River include Antero, Spinney Mountain, Eleven Mile Canyon, and Cheeseman.

The plains are dominated by irrigation use and have experienced their own increase in water resources development over the years. Many of the off-channel reservoirs in the lower basin were constructed in the early 1900s to provide late season irrigation supplies. Most of the well development in the South Platte ocurred in the mid 1950s in response to drought and the new availabilility of power from the Federal Rural Electrification Act. As well pumping became more prevalent however, its impacts to surface water and senior direct flow rights on the South Platte lead to the Water Rights Determination Act of 1969. Early well augmentation plans such as Bijou, Ft. Morgan, and the Poudre Plan began to take shape in the mid 1970s, however the outcome of the *Empire Lodge* case and subsequent legislation in the early 2000s significantly increased the number of rechange plans and brought about the administration and enforcement of these plans.

Irrigators in the lower basin have also experienced changes as municipalities purchased senior irrigation water rights, changed them over to municipal uses in water court, and dried up this irrigated acreage. The "buy and dry" process continues today, with municipalities reaching out to irrigators farther and farther downstream.

## 3.4 Water Rights Administration and Operations

The South Platte River is over-appropriated; water management and administration in the basin has always been challenging with more demand than supply in most years. Adding to this challenge are the following relatively recent factors:

- Increased demand for municipal and industrial water supply along the Front Range corridor has emphasized the need for efficient and effective management and administration.
- Transfers of water from agriculture to municipal uses, along with other water right transfers, are becoming increasingly complex in order to fulfill the demand for growing urban areas and industry while maintaining historical return flow patterns for existing users.
- Augmentation plan accounting that allows out of priority pumping depletions to be offset from a variety of sources including recharge pits, augmentation wells, reservoirs, etc.
- Recent years of below average streamflow in the South Platte River have increased the competition for water supplies for both direct use and for augmentation purposes.

The Water Commissioners in the South Platte River Basin work hard to administer the many different users in their basins, including administering the various aspects of water court decrees and water provider agreements part of decrees. A majority of the tributaries are managed by "internal" calls in that mainstem river calls do not generally call out tributary structures.

There are water rights administration issues and operations in the South Platte River Basin that have not been encountered in previous CDSS modeling efforts. These include primarily well pumping, extensive municipal uses with imported supplies and changed water rights, and the South Platte Compact. These unique modeling challenges are discussed in more detail below.

## 3.4.1 Ground Water Management – Legal Development

Ground water management and administration in the South Platte essentially began in 1957; prior to 1957, no permit was required to construct a well, and ground water was not managed or allocated by the State. The Colorado Ground Water Law of 1957 required a permit from the State Engineer as a prerequisite to drilling a new well and required the registration of existing wells, with the exception of certain stock watering, domestic and artesian wells. The Colorado Ground Water Management Act of 1965 created the Ground Water Commission and designated ground water basins. This allowed for management districts that regulated the spacing of wells and set limits on production rates. In response to the Supreme Court's findings regarding tributary wells and surface water, the Water Rights Determination Act of 1969 was enacted. The act required that surface water and tributary ground water be administered conjunctively.

There are four main types of ground water: 1) Tributary ground water, 2) Designated Basin ground water, 3) Non-tributary ground water outside of Designated Basins and 4) Denver Basin ground water of the Dawson, Denver, Arapahoe, and Laramie-Fox Hills aquifers.

Tributary ground water rights were required to be adjudicated in order to protect their priority and their depletions must be augmented to prevent injury to senior water rights holders. Designated Basin ground water was the first statutory departure from the "all ground water is tributary to stream" rule recognized by the Colorado Supreme Court to protect surface water appropriators. Unlike tributary ground water, designated ground water is administered as "hydrologically disconnected" from the alluvial aquifer. Designated ground water is regulated by the Ground Water Commission and is subject to a modified prior appropriation system within the basin. The Commission balances the full economic development of designated ground water resources while protecting prior appropriators in the basin and allowing for reasonable depletion of the aquifers.

Use of non-tributary ground water outside of designated basins and Denver Basin ground water is subject to the 1965 Ground Water Management Act, but not to the jurisdiction of the Colorado Ground Water Commission. Non-tributary ground water is defined as pumping that, in 100 years, will not deplete the flow of a natural stream at an annual rate greater than  $1/10^{th}$  of one percent of the annual rate of withdrawal from the well. Senate Bill 5 analyses determine the total volume of non-tributary ground water associated with a parcel of overlying land. Additionally, not all the water withdrawn from the non-tributary Denver Basin aquifers can be consumed; 2 percent must be replaced, often met by return flows from outdoor watering or other sources.

## 3.4.2 Municipal Operations and Transmountain Imports

Municipal operations in the South Platte River basin are extremely complex. Municipalities generally have a diverse water rights portfolio, including imported supplies, changed water rights, storage, and ground water supplies. Municipalities are able to make operational decisions with these various supplies on a day-to-day basis in order to provide a reliable supply to their customers. The administration of their in-basin supplies is based on strict prior appropriation: they are entitled to divert their supplies when water is physically and legally available. Transmountain supplies are subject to strict administration in their source basins and often also by operational agreements, however once they are imported to the South Platte Basin they are not subject to additional administration. These imports are sheparded to their place of beneficial use, but are still subject to transit losses when delivered via stream and administered in exchanges or augmentation plans when it is a source of substitute supply, replacement, or rediverted for another use.

#### 3.4.3 Platte River Recovery Implementation Program

In 1994, the U.S. Secretary of the Interior and the Governors of Colorado, Nebraska and Wyoming entered into a Platte River Memorandum of Agreement (MOA). An outgrowth of this effort was the development and signing of a Cooperative Agreement (CA) in 1997. Under the CA, the three States and the Federal government agreed to develop a program to implement certain aspects of the United States Fish and Wildlife Service's (Service) recovery plans for the whooping crane, interior least tern, piping plover, and pallid sturgeon. Specifically, the program would seek to secure defined benefits for the subject species and to serve as a reasonable and prudent alternative to offset the effects of existing and new water related activities within the Platte River Basin. The program would also try to help prevent the need to list, under the Endangered Species Act, any additional Platte River Basin associated species.

Pursuant to the CA, a Water Action Plan has been developed to improve the Platte River flows. The Service has developed species target flows and the Water Action Plan is focused on reducing shortages to the target flows by an average of 130,000 to 150,000 acre-feet per year. The first 70,000 acre-feet of water will be provided in part by (1) restoring the storage capacity of Pathfinder Reservoir in Wyoming, (2) establishing an environmental water account in Nebraska's Lake McConaughy, and (3) utilizing a groundwater recharge and river re-regulation project on the Tamarack State Wildlife Area in Colorado. The plan identifies other water conservation or water supply means for further enhancing flow conditions by an additional 60,000 to 80,000 acre-feet per year from water conservation or new water supply sources within the three States (Governance Committee of the Cooperative Agreement for Platte River Research 2000).

#### 3.4.4 South Platte Compact

The South Platte River Compact of 1923 establishes Colorado and Nebraska's rights to use water from the South Platte River. From April 1 to October 15<sup>th</sup> of each year, if the mean daily flow of the South Platte River at Julesburg, Colorado drops below 120 cubic feet per second (cfs) and water is needed for beneficial use in Nebraska, diversion by water rights in Colorado between the western boundary of Washington County and the Stateline with priorities junior to June 14, 1897 shall be curtailed (Colorado Revised Statutes 1990). Between October 15<sup>th</sup> and April 1<sup>st</sup> Colorado has the right to fully use water from the South Platte River under Compact rules. Refer to Section 5.10.11 for more information on how the South Platte Compact was implemented in the model.

## 3.5 Section References

- Census and Population Estimate Data, HydroBase Data.
- South Platte Basin Implementation Plan, South Platte and Metro Basin, CWCB, 2016.
- SWSI Fact Sheet for South Platte Basin, CWCB, 2006.

- South Platte River System, Colorado Water Resources Research Institute, 1990
- A Decade of Colorado Supreme Court Water Decisions, Justice Greg Hobbs, CFWE, 2006.
- History of Denver Water. 2016. Retrieved from <u>http://www.denverwater.org</u>
- Colorado-Big Thompson Project. 2016. Retrieved from <u>http://www.northernwater.org</u>
- Ground Water Administration and Well Permitting. Colorado Division of Water Resources. 2016. Retrieved from <a href="http://water.state.co.us/">http://water.state.co.us/</a>

## 4. Modeling Approach

This section describes the approach taken in modeling the South Platte River Basin, from a general perspective. It addresses scope and level of detail of this model in both the space and time domains, and describes how certain hydrologic processes are parameterized.

## 4.1 Modeling Objectives

The objective of the South Platte modeling effort was to develop a water allocation and accounting model that water resources professionals can apply to evaluations of planning issues or management alternatives. The resulting input dataset represents water use changing through time, current infrastructure and projects coming on-line, and current administrative conditions, which can serve as the base in paired runs comparing river conditions with and without proposed future changes. By modifying the dataset to incorporate the proposed features to be analyzed, the user can create the second input dataset of the pair.

The model estimates the basin's current consumptive use by simulating 100 percent of irrigation demands and the majority of municipal and industrial uses in the basin. This objective was accomplished by representing large or administratively significant structures at model nodes identified with individual structures, and representing many small structures at "aggregated" nodes. The model was developed from 1950 to 2012 and calibrated for the period from 1993 forward. This long-term dataset reflects a wide variety of hydrologic conditions.

Another objective of the CDSS modeling effort was to achieve good calibration, demonstrated by agreement between historical and simulated streamflows, reservoir contents, and diversions. This objective was achieved, as demonstrated in Section 6.

## 4.2 Model Coverage and Extent

The South Platte Model represents the South Platte Basin located within the State of Colorado, with the notable exception of Water Districts 3, 48, and 76. These Water Districts cover the Cache la Poudre River Basin, which is currently being studied as part of several EIS processes. The State determined it was in the best interest of the water users to have the EIS processes completed before additional modeling effort focused on this area was undertaken.

#### 4.2.1 Network Diagram

The network diagram for the South Platte Model can be viewed in StateDMI. It includes more than 1,000 nodes, beginning near the headwaters of the South Platte River and ends at the Colorado-Nebraska Border.

#### 4.2.1.1 Key and Non-Key Structures

Early in the SPDSS process it was decided that, while all consumptive use should be represented in the model, it was not practical to model every single water right or diversion structure individually. Therefore, while a majority of uses in the basin is represented at correct river locations with correct priorities relative to other users (i.e. key structures), there are several structures that are modeled in aggregate. Aggregate structures, or non-key structures, are included in aggregates if they generally exhibited one or more of the following characteristics:

- Active structures (CIU indicates active) that currently (in the period since 2001) divert for irrigation
- Sparse or no diversion records during the 1950 to current digitized (2006) year SPDSS study period
- Diversion source is a small tributary that will not be included in the water resources planning model
- Relatively small acreage, generally less than 100 acres

The South Platte Model includes approximately 360 key diversion structures, with approximately 100 non-key diversion structures modeled in aggregate. Over half of the non-key diversion structures are located in South Park, and are administered in aggregate at specific gaged locations (refer to Section 5.10.8.2). The remainder of the non-key diversion structures and all irrigated acreage that is supplied only by ground water supplies are aggregated using a spatial process.

In GIS, a single coverage for diversion and ground water aggregates was created by dividing water districts into subsets based on the location of non-key irrigated lands, confluences, designated basins, stream gage locations, and the alluvial ground water boundary. Areas were subdivided until less than 5,000 acres of irrigated lands were assigned to each aggregate node. Each subarea was assigned a unique nine character identifier that included the Water District, ADP (Aggregate Diversion Platte) or AWP (Aggregate Well Platte), and a unique number. For example, 01\_AWP001 indicates an aggregated ground water only structure located in Water District 1.

Aggregated structures were assigned all the water rights associated with their constituent structures. Their historical diversions were developed by summing the historical diversions of the individual structures, and their irrigation water requirement is based on the total acreage associated with the aggregation.

Key structures located on the same tributary that operate in a similar fashion to satisfy a common demand are sometimes modeled as a "diversion system." In a diversion system, the acreage, demands, and water rights of the associated structures are combined and modeled as one explicit key structure.

#### Where to find more information

- SPDSS Task Memorandum 3, "Key Diversion Structure," available on the CDSS website
- SPDSS Task Memorandum 3, "Aggregate Non-Key Agricultural Diversion Structure," available on the CDSS website.

#### 4.2.1.2 Municipal and Industrial Uses

Key municipal and industrial uses were identified using the Key Diversion Structure criteria above. Additional municipal uses were included as key structures in order to represent changed water rights and because of their importance to administration in the basin. Water use is based on information from HydroBase and data collected from the key municipality.

Domestic use that is not supplied by a key municipal water provider is represented in an aggregated fashion. Non-key municipalities are aggregated by water districts and county. The aggregated nodes are assigned a nine character identifier that includes the Water District, AMP (Aggregated Municipal Platte), and a unique number. For example, 06\_AMP002 indicates the second group of non-key municipal structures in Water District 6. Water use from populations living in un-incorporated areas is generally assumed to be met by well water. The un-incorporated aggregates are assigned a nine character identifier that includes the Water District, AUP (Aggregated Unincorporated Platte), and a unique number.

For both key and aggregated structures, municipal demand is divided between indoor and outdoor demands, because of the differences in return flow percentages and timing. Indoor demand structures are represented with the water district, a shortened version of the municipal name and \_I. Outdoor demand structures are represented with the water district, a shortened version municipal name and \_O. For example, Lafayette outdoor demand is at node 06LAFFYT\_O.

For large, self-supplied industrial water users, information was collected from the water users through interviews. See the DDS section below for details on self-supplied industrial water users.

#### Where to find more information

• SPDSS Task Memorandum 66.2, "Collect and Develop Municipal and Industrial Consumptive Use Estimates," available on the CDSS website.

#### 4.2.2 Reservoirs

In StateMod, reservoir structures are used to represent reservoir storage, aggregated reservoir storage, and recharge areas. For details on the reservoirs that are represented in the South Platte Model, see Section 5.6.

#### 4.2.2.1 Key Reservoirs

Under Task 5, reservoirs with decreed capacities greater than or equal to 10,000 af were considered key reservoirs. Additional smaller reservoirs were identified as key reservoirs due to their impact on administration and operations in the basin during interviews with water commissioners and water users and as part of model development. Similar to diversion systems, reservoir systems were also defined. A single reservoir node represented a group of reservoirs either on the same tributary, filled by the same diversion structures, or operated in a similar fashion to satisfy a common demand. Section 5.6 lists the constituent reservoirs in a reservoir system. Key reservoirs and reservoir systems are explicitly modeled.

There are 67 key reservoirs with a combined total capacity of approximately 1,556,000 af, or 67 percent of the total modeled storage capacity of the basin. The physical parameters of the key reservoirs were collected from HydroBase or from the reservoir owner.

## Where to find more information

- SPDSS Task 5 Memorandum, "Summary Key Reservoirs," available on the CDSS website.
- SPDSS Task 5 Memorandum on individual systems, available on the CDSS website

## 4.2.2.2 Aggregation of Reservoirs

In keeping with CDSS's objective of representing all consumptive use in the basin, the evaporation losses associated with small reservoirs and stock ponds were incorporated using 15 aggregate reservoir structures and 9 aggregate stock pond structure. Each aggregate reservoir and stock pond was assigned one account and an initial storage equal to its capacity. A GIS process was used to find all of the reservoir surface area in each water district that was not associated with key reservoirs. HydroBase was queried and non-key reservoirs larger than 30 acres were grouped as aggregated reservoirs. Non-key reservoirs smaller than 30 acres were grouped as aggregated stock ponds. The elevation of the non-key reservoirs was also considered. Water Districts were split into upper and lower aggregated stock ponds were assumed to be 17 feet deep. Aggregated stock ponds were assumed to be 10 feet deep. For details on the physical parameters of aggregated reservoir and stock ponds, please see Section 5.6.

Aggregate reservoirs and aggregated stock pond do not release to the river in the model. However, they evaporate and fill to replace the evaporated amount. The effects of small reservoirs filling and releasing are left "in the gage" in the model, and are reflected in CDSS baseflow computations. The aggregate reservoirs and stock ponds are assigned storage rights with a priority of 1.0 (very senior) so that the evaporation use is not constrained by water rights.

#### Where to find more information

- SPDSS Task 69 Memorandum, "Estimate Reservoir and Stock Pond Evaporation," available on the CDSS website.
- SPDSS Task 89.10 Memorandum, "Mapping of Water Features," available on the CDSS website

#### 4.2.2.3 Recharge Areas

Numerous individual recharge areas exist in the South Platte River Basin, all with different return flow timings to better mimic the variable depletion timing generated from the wells included in the plan. The modeling approach for the South Platte Model was to aggregate the individual recharge areas by ditch and by augmentation plan, as they are generally served by the same water rights and operated similarly under the augmentation plan. The primary recharge pits under a ditch were identified using HydroBase diversion coding. The recharge area sizes were based on the physical properties stored in HydroBase.

From conversations with recharge area operators, the design goal of a recharge pit is to have all of the water seep into the ground within 10 days. In StateMod, the seepage patterns for recharge areas were developed to empty the recharge area three times in a month. Note that the majority of recharge pits do not have a physical mechanism for releasing water to the river directly. The only way for water to leave the pit is through seepage or evaporation. The exception is Bijou No. 2 Reservoir, which was originally designed to be a storage reservoir. However, the reservoir has a large amount of natural seepage and is now used for recharge. The seepage pattern was developed using a mass balance approach, considering diversions to the reservoir, releases, evaporation and end-of-month contents.

#### 4.2.3 Instream Flow Structures

The model includes instream flow reaches representing instream flow rights held by CWCB, minimum reservoir release agreements, filings by the U.S. Department of the Interior, and recreational instream channel diversions. These are a subset of the total CWCB tabulation of rights because many instream flow decrees are for stream reaches very high in the basin, above the model network.

## 4.3 Modeling Period

The South Platte Model dataset extends from January 1950 through December 2012 and operates on a calendar year. The calibration period was 1993 through 2012; selected because this period is after most of the large water infrastructure development and is after a large number of changed water right cases were settled. This 20 year period includes both drought (2000-2007) and wet periods (1996-1998, 2011).

## 4.4 Data Filling

Data filling efforts were completed early in the South Platte modeling effort. Data was primarily collected from HydroBase. Water users were asked to provide any missing data, which was incorporated into the model input. When no values were available from HydroBase or the water user, the data filling techniques summarized in this documented and described in detail in the relevant Task Memos were employed. A brief summary is provided in the section below. For details on data filling, please refer to the Task Memos listed in the box.

#### Where to find more information

- SPDSS Task 2 Memorandum, "Identify Key Streamflow Gages," available on the CDSS website.
- SPDSS Task 3 Memorandum, "Key Diversion Structures," available on the CDSS website
- SPDSS Task 4 Memorandum, "Identify and Fill/Resolve Conflicting Records for Key Transmountain Diversion Structures", available on the CDSS website
- SPDSS Task 5 Memorandum, "Key Reservoirs", available on the CDSS website
- SPDSS Task 66 Memorandum, "Collect and Develop Municipal and Industrial Consumptive Use Estimates", available on the CDSS website

## 4.4.1 Stream Gage Filling

It is essential that steam gages have complete data for the model run. The model calibration will be compared to streamflow and baseflow estimates at ungaged location primarily depend on gaged records. Key stream gages were picked based on the completeness of their records, but some missing data cannot be avoided completely. Regression equations were developed using upstream, downstream, or nearby gages. TSTool was used to fill missing streamflow data using either monthly equations or a single linear equation, depending on the goodness of fit. For details on the filling by regression, see the Section 5.3.4.

Stream gages records were combined if a gage had been relocated. Some additional steps were required if the relocation significantly changed what the gage was reading. In some instances, stream gages had poor periods of record, but were at critical locations in the model. These gages required special techniques to fill this data. For details on these stream gages, see the Section 5.3.4.

#### 4.4.2 Historical Diversions for Irrigation

For Key diversion structures that divert primarily for irrigation, the total diversions at the headgate from HydroBase were the primary source of information. For key structures, missing values were first filled with infrequent data, if available. Next, diversion structures were filled using a Wet/Dry/Average pattern. In this approach, an index stream gage is assigned to each water district. Monthly stream flow volumes from January 1950 through December 2012 are categorized as Wet, Average, or Dry, with Wet representing the top 25% of a particular month and Dry representing the bottom 25% of a particular month. When a month is missing from the diversion data, the corresponding index gage category is assigned to the missing value. For example, March 1993 is missing from the diversion records and the index gage for March 1993 is categorized as Wet. The average of all other Wet Marches from the diversion record is used to fill March 1993. The Wet/Dry/Average pattern filling approach only works if enough other data is present in the diversion record.

For structures that diverted to both irrigation and off-channel reservoir storage, please refer to the "Off-Channel Reservoir and Irrigation Structures" section below for details on how total diversions and demand at irrigation structures were developed.

For aggregated structures, the time series from the constituent structures were filled using the same approach as key structures before being combined.

Care was taken to identify structures that originally diverted surface water, but then switched to ground water only sources. These structures were removed from the automated filling process and had their recent missing values set to zero.

Water District 2 required a special approach for 2011 and 2012. Structures frequently did not have a "Diversion Total" tabulated in HydroBase, but did have diversions recorded under various "Diversion Classes". Each structure was examined individually and a total diversion was created from the representative diversion classes.

| Water District | Index Gage ID | Index Gage Name                |
|----------------|---------------|--------------------------------|
| 1              | 06754000      | SOUTH PLATTE RIVER NEAR KERSEY |

| Table | 4-1: | Pattern | Gage | Assignment |
|-------|------|---------|------|------------|
|       |      |         | 0000 | ,          |

Modeling Approach

| Water District | Index Gage ID | Index Gage Name                                |
|----------------|---------------|------------------------------------------------|
| 2              | 06720500      | SOUTH PLATTE RIVER AT HENDERSON                |
| 4              | 06695000      | SOUTH PLATTE RIVER ABOVE ELEVEN MILE RESERVOIR |
| 5              | 06724000      | ST. VRAIN CREEK AT LYONS                       |
| 6              | 06727000      | BOULDER CREEK NEAR ORODELL                     |
| 7              | 06719505      | CLEAR CREEK AT GOLDEN                          |
| 8              | 06714000      | SOUTH PLATTE AT DENVER                         |
| 9              | 06710500      | BEAR CREEK AT MORRISON                         |
| 23             | 06695000      | SOUTH PLATTE RIVER ABOVE ELEVEN MILE RESERVOIR |
| 64             | 06764000      | SOUTH PLATTE RIVER AT JULESBURG                |
| 80             | 06695000      | SOUTH PLATTE RIVER ABOVE ELEVEN MILE RESERVOIR |

#### 4.4.3 Historical Municipal Demand

Whenever available, municipal demand was collected from the municipality. Frequently, water treatment plant data from the municipality needed to be supplemented with headgate diversion data that recorded raw water diversions and deliveries to parks, golf courses, cemeteries, etc. Many of the municipalities explicitly included in the model did not have monthly volumetric water use information for more than the past ten to fifteen years. To extend the record back in time, diversion data from HydroBase and from Northern Water's accounting of CBT/Windy Gap deliveries was considered. Finally, if this information was not available for a particular municipality (and for all of the aggregated municipal demand nodes), diversion information was developed based on population and water use per capita estimates. For details on this approach, refer to the SPDSS Task 66 Memo.

For population based estimates, US Census Bureau data was the primary source, but is only available ever 10 years. If appropriate, the annual estimates from the State of Colorado were incorporated. For municipalities, the population for the municipality was used. For aggregated municipalities, the population for the constituent municipalities was used. For aggregated unincorporated areas, population was considered on a county level (with the municipal population subtracted out) and then pro-rated based on the area of the county located inside each water district. Per capita water estimates were developed in the Task 66 Memo for different areas in the South Platte Basin.

Both Key and Aggregated municipal demand is divided into indoor and outdoor components. This is necessary due to the difference in timing, amount, and return flows. Indoor demand is modeled as near-constant throughout the year. For key municipals, the minimum monthly demand for each year is used as the indoor demand. For aggregated municipals, an annual ratio of 44% indoor use and 56% outdoor use is used. Outdoor demand is distributed based on representative average monthly bluegrass crop irrigation water requirement.

### 4.4.4 Historical Transmountain Imports

For the South Platte documentation, transmountain refers to water that was diverted from the Colorado, Arkansas or North Platte River basins and imported to the South Platte River. Water that is transferred from one sub-basin in the South Platte to another sub-basin is not considered transmountain.

Many of the transmountain imports had incomplete periods of records in HydroBase. As detailed in the Task 4 Memo, data was collected from the Colorado Division of Water Resources (DWR), the United States Geologic Survey (USGS), and from the transmountain import owners and operators. Data sources were compared and conflicts were resolved. For information on each individual transmountain import, refer to the Task 4 Memo.

### 4.4.5 Historical Reservoir Contents

Reservoir end-of-month storage contents are primarily from HydroBase. As part of Task 5, any missing values were first filled with data from Water Commissioner field books and annual reports. These values have been incorporated into HydroBase. Next, information was requested from water users.

Remaining missing values were then filled with data filling techniques. Missing data for a twomonth period or less were filled using linear interpolation between recorded values. Remaining missing data were filled using the Wet/Dry/Average pattern approach (see description under Historical Diversions to Irrigation Section above). Finally, if any values were still remaining, they were filled with historical monthly averages. During model calibration, filled end of month contents were revisited and some values were individually set based on a water balance approach, using diversion records and stream gage records.

## 4.5 Consumptive Use and Return Flow Amounts

Consumptive use and return flow are key components of both baseflow estimation and simulation in water resources modeling. StateMod's baseflow estimating equation includes a term for return flows. Imports and reservoir releases aside, water that was in the gage historically is either natural runoff or delayed return flow. To estimate the natural runoff, or more generally, the baseflow, one must estimate return flow. During simulation, return flows affect availability of water in the stream in both the month of the diversion and subsequent months.

For non-irrigation uses, consumptive use is the depletive portion of a diversion, the amount that is taken from the stream and removed from the hydrologic system by virtue of the beneficial use. The difference between the diversion and the consumptive use constitutes the return flow to the stream.

For irrigation uses, the relationship between crop consumptive use and return flow is complicated by interactions with the water supply stored in the soil, i.e., the soil moisture reservoir, and losses not attributable to crop use. This is explained in greater detail below.

#### 4.5.1 Variable Efficiency of Irrigation Use

Generally, the "on-farm" or field application efficiency of irrigation structures in the South Platte Model is allowed to vary through time, up to a specified maximum efficiency. Setting aside soil moisture dynamics for the moment, the predetermined crop irrigation water requirement is met out of the simulated headgate diversion that is delivered to the field, and efficiency (the ratio of consumed water to diverted water) falls where it may – up to the specified maximum efficiency. If the diversion is too small to meet the irrigation requirement at the maximum efficiency, maximum efficiency becomes the controlling parameter. Crop consumption is limited to the diverted amount, times the ditch conveyance loss, times maximum efficiency, and the balance of the diversion returns to the stream.

The model is supplied with the time series of irrigation water requirements for each structure based on its crop type and irrigated acreage. This information is generated using the CDSS StateCU model. Two types of delivery efficiency are modeled: conveyance or ditch transit efficiency and on-farm or field application efficiency. Conveyance efficiency is assigned to each ditch, based on the ditch characteristics and is a fixed parameter throughout the simulation. Maximum application efficiency is also input to the model, but StateMod determines the actual application efficiency for every time step. Maximum flood irrigation system efficiencies for the South Platte Basin are estimated to be 60 percent and sprinkler irrigation is estimated at 80 percent.

Headgate diversion is determined by the model, and is calculated in each time step as the minimum of 1) the water right, 2) available supply, 3) diversion capacity, and 4) headgate demand. Headgate demand is input as a time series for each structure. In the Historical dataset, headgate demand for each structure is simply its historical diversion time series. Historical efficiency is defined as the smaller of 1) average historical diversion for the month, divided by average irrigation water requirement, and 2) maximum efficiency. In other words, if water supply is generally plentiful, the headgate demand reflects the water supply that has been typical in the past; and if water supply is generally limiting, it reflects the supply the crop needs in order to satisfy full crop irrigation requirement at the maximum efficiency.

StateMod also accounts for water supply available to the crop from the soil. Soil moisture capacity acts as a small reservoir, re-timing physical consumption of the water, and affecting the amount of return flow in any given month. Soil moisture capacity is input to the model for each irrigation structure, based on NRCS mapping. Formally, StateMod accounts for water supply to the crop as follows:

Let **DIV** be defined as the river diversion,  $\eta_{ditch}$  be defined as the conveyance efficiency,  $\eta_{max}$  be defined as the maximum application efficiency, and let  $CU_i$  be defined as the crop irrigation water requirement.

| Then, | SW = DIV * $\eta_{ditch}$ * $\eta_{max}$ ;                            | (Max available water to crop)                                                   |
|-------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------|
| when  | $SW \ge CU_i$ :                                                       | (Available water to crop is sufficient to meet crop demand)                     |
|       | $CU_w = CU_i$                                                         | (Water supply-limited CU = Crop irrigation water requirement)                   |
|       | $SS_f = SS_i + min[(SS_m-SS_i),(SW-CU_w)]$                            | (Excess available water fills soil reservoir)                                   |
|       | $SR = DIV - CU_w - (SS_f - SS_i)$                                     | (Remaining diversion is "non-consumed")                                         |
|       | TR = SR                                                               | (Non-consumed is total return flow)                                             |
| when  | SW < CU <sub>i</sub> :                                                | (Available water to Crop is not sufficient to meet crop demand)                 |
|       | CU <sub>w</sub> = SW + min [(CU <sub>i</sub> - SW), SS <sub>i</sub> ] | (Water supply-limited CU = available water to crop<br>+ available soil storage) |
|       | $SS_f = SS_i - min[(CU_i - SW), SS_i]$                                | (Soil storage used to meet unsatisfied crop demand)                             |
|       | SR = DIV - SW                                                         | (Remaining diversion is "non-consumed")                                         |
|       | TR = SR                                                               | (Non-consumed is total return flow)                                             |

where SW is maximum water available to meet crop demand

CU<sub>w</sub> is water supply limited consumptive use;

**SS<sub>m</sub>** is the maximum soil moisture reservoir storage;

SS<sub>i</sub> is the initial soil moisture reservoir storage;

SS<sub>f</sub> is the final soil moisture reservoir storage;

SR is the diverted water in excess of crop requirement (non-consumed water);

TR is the total return to the stream attributable to this month's diversion.

For the following example, assume the ditch efficiency is 75 percent and the field is flood irrigated with a maximum efficiency of 60 percent, resulting in a maximum system efficiency of 45 percent; therefore a maximum of 45 percent of the diverted amount can be delivered and

available to the crop. When this amount exceeds the irrigation water requirement, the balance goes to the soil moisture reservoir, up to its capacity. Additional non-consumed water returns to the stream. In this case, the crop needs are completely satisfied, and the water supply-limited consumptive use equals the irrigation water requirement.

When 45 percent of the diverted amount (the water delivered and available to meet crop demands) is less than the irrigation water requirement, the crop pulls water out of soil moisture storage, limited by the available soil moisture and the unsatisfied irrigation water requirement. Water supply-limited consumptive use is the sum of diverted water available to the crop and supply taken from soil moisture, and may be less than the crop water requirement. Total return flow is the 55 percent of the diversion unable to reach the crops (non-consumed).

With respect to consumptive use and return flow, aggregated irrigation structures are treated as described above, where the irrigation water requirement is based on total acreage for the aggregate.

#### 4.5.2 Constant Efficiency for Other Uses and Special Cases

For non-irrigation diversion structures, a specified annual or monthly efficiency was assigned to the diversion structure in order to determine consumptive use and return flows. Although the efficiency may vary by month, the monthly pattern is the same in each simulation year. This approach was also applied to irrigation diversions structures for which the irrigation water requirement is not representative. For more details on these structures, see Section Irrigation Structures Assigned Constant Efficiency below.

#### Where to find more information

- StateCU documentation describes different methods for estimating irrigation water requirement for structures, for input to the StateMod model.
- Section 7 of the StateMod documentation has subsections that describe "Variable Efficiency Considerations" and "Soil Moisture Accounting"
- Section 5 of this manual describes the input files where the parameters for computing consumptive use and return flow amounts are specified:
  - Irrigation water requirement in the Irrigation Water Requirement file (Section 5.5.3)
  - Headgate demand in the Direct Diversion Demand file (Section 5.4.4)
  - Historical efficiency in the Direct Diversion Station file (Section 5.4.1)
  - Maximum efficiency in the CU Irrigation Parameter Yearly file (Section 5.5.2)
  - Soil moisture capacity in the StateCU Structure file (Section 5.5.1)
- Loss to the hydrologic system in the Return Flow Delay Table file (Section 5.4.2)

#### 4.5.2.1 Irrigation Structures Assigned Constant Efficiency

Several irrigation diversion structures were assigned acreage that is not representative. This generally occurred for diversion structures that serve acreage located within municipal boundaries. Because the acreage assigned to the structure is too small, the irrigated water requirement is too small and the efficiencies are too low. These structures were removed from the irrigated water requirement file (\*.ddc) and their monthly efficiencies were set in the diversion station file (\*.dds). These structures are listed in the table below.

Monthly efficiencies for the Water District 7 structures were based on the average variable efficiency for the Reno Juchem Ditch (0700647), which is considered representative. For 0600554, the annual efficiency is set to 50 percent, which assumes a ditch efficiency of 84 percent and a flood irrigation efficiency of 60 percent. For 05\_ADP002, the annual efficiency is set to 48 percent, which assumes a ditch efficiency of 80 percent and a flood irrigation efficiency of 60 percent (0801009\_D) efficiency was set based on the decreed amount in Case 90CW172. Last Chance Ditch 2 and City Ditch Pipeline were set as the same as Nevada Ditch. Highline Canal was set based on a report from Denver Water.

#### Table 4-2: Irrigation Structures Assigned Constant Efficiency

| WDID      | Name                                              | Annual Efficiency (%) |
|-----------|---------------------------------------------------|-----------------------|
| 05_ADP002 | Water District 5 Aggregated Diversion Structure 2 | 48                    |
| 0600554   | Smith Goss Ditch                                  | 50                    |

| WDID      | Name                                      | Annual Efficiency (%) |
|-----------|-------------------------------------------|-----------------------|
| 0700502_1 | Agricultural Ditch Irrigation Demand      | 43                    |
| 0700527_D | Slough Ditch Diversion System             | 43                    |
| 0700540_1 | Church Ditch Irrigation Demand            | 43                    |
| 0700549_1 | Colorado Agricultural Ditch               | 43                    |
| 0700551   | Cort Graves Hughes Ditch                  | 43                    |
| 0700570_1 | Fisher Ditch Irrigation Demand            | 43                    |
| 0700597_1 | Kershaw Ditch Irrigation Demand           | 43                    |
| 0700601_I | Lee Stewart Eskin Ditch Irrigation Demand | 43                    |
| 0700614   | Manhart Ditch                             | 43                    |
| 0700632   | Ouelette Ditch                            | 43                    |
| 0700652_1 | Rocky Mountain Ditch Irrigation Demand    | 43                    |
| 0801004   | Highline Canal                            | 40                    |
| 0801007   | Last Chance Ditch 2                       | 47                    |
| 0801008   | City Ditch Pipeline                       | 47                    |
| 0801009_D | Nevada Ditch Diversion System             | 47                    |

## 4.6 Return Flow Timing and Locations

There were two main approaches taken to develop return flow timing for the South Platte Model depending on the aquifer information available in each sub-basin. For sub-basins that have significant pumping from the alluvial aquifer, Glover analyses were performed to develop a set of return flow patterns that varied based on the distance of irrigated acreage from the river. For sub-basins with limited aquifer data, return flow patterns were gleaned from water court decrees or other user-supplied or anecdotal information. In general, the return flow patterns reflect the sub-surface returns; overland return portions are not included in these delay patterns. The return flow patterns reflect 100 percent of the return flow; no losses to phreatophytes (i.e. incidental losses) are included. Overland flows, ranging from 5 to 40 percent, were included based on user-supplied information, proximity of irrigated land to drainages or tributaries, information from water court decrees, or adjusted during calibration.

Return flow timing for municipal and industrial uses varied based on the use type. Municipal indoor uses and the majority of the industrial uses returned in the same time step, municipal outdoor uses were generally lagged based on their general distance from the river.

For irrigation structures, return flow locations were generally determined based on visual review of irrigated acreage and topographical maps in GIS. As several of the irrigation structures have undergone a reduction in irrigated acreage over time, in some cases affecting return flow locations, more recent irrigated acreage coverage was used to develop these locations. Some return flow locations were adjusted during calibration. For non-irrigation structures, the point of discharge into the river was used as the return flow location.
# 4.7 Baseflow Estimation

In order to simulate river basin operations, the model starts with the amount of water that would have been in the stream if none of the operations being modeled had taken place. These undepleted flows are called "baseflows". The term is used in favor of "virgin flow" or "naturalized flow" because it recognizes that some historical operations can be left "in the gage", with the assumption that those operations and impacts will not change in the hypothetical situation being simulated.

Given data on historical depletions, basin imports/exports, and reservoir operations, StateMod can estimate baseflow time series at specified discrete inflow nodes. This process was executed prior to executing any simulations, and the resulting baseflow file became part of the input dataset for simulations. Baseflow estimation requires two steps in StateMod and one step in TSTool: 1) StateMod adjusts USGS stream gage flows using historical records of operations to get baseflow time series at gaged points, for the gage period of record; 2) TSTool fills remaining baseflow by regression; 3) StateMod distributes baseflow gains above and between gages to user-specified, ungaged inflow nodes. These three steps are described below.

Note that modeling the full Cache la Poudre River Basin was not included in this phase of the modeling effort. The Cache la Poudre River inflow is currently reflected in the model by the historical streamflow from the Cache la Poudre River near Greeley gage, and an estimate of historical return flows that accrue to the South Platte River downstream of the Greeley gage. As such, these gages do not represent baseflow at these locations.

# 4.7.1 Baseflow Computations at Gages

Baseflow at a site where historical gage data is available is computed by adding historical values of all upstream depletive effects to the gaged value, and subtracting historical values of all upstream augmenting effects from the gaged value:

# $Q_{baseflow} = Q_{gage} + Diversions - Returns - Imports + - \Delta Storage + Evap$

Historical diversions, imports, and reservoir contents are provided directly to StateMod to make this computation. Evaporation is computed by StateMod based on historical evaporation rates and reservoir contents. Return flows are similarly computed based on diversions, crop water requirements, and/or efficiencies as described in Section 4.5, and return flow parameters as described in Section 4.6.

# Where to find more information

• When StateMod is executed to estimate baseflows at gages, it creates a Baseflow Information file (\*.xbi) that shows this computation for each gage and each month of the time step.

# 4.7.2 Baseflow Filling

For the South Platte Model, the preferred approach was to fill historical stream gage data before creating baseflows in StateMod. However, there were three gage locations in Water District 6 that could not be filled prior to baseflow generation. Therefore, these locations had their baseflows filled using regression equations.

- 06727500 Fourmile Creek at Orodell. This gage was operational from 1947 through 1953, then from 1983 through 1995, and restarted in 2011. Currently, the gage is only operated seasonally from April through October. In TSTool, monthly regression equations against baseflow at 06725500 (Middle Boulder Creek at Nederland), 06730300 (Coal Creek at Orodell), or 06729500 (South Boulder Creek near Eldorado Springs).
- 06730200 Boulder Creek at North 75<sup>th</sup> St, Near Boulder. This gage became operational in 1986, but is at a critical location in relation to City of Boulder waste water discharge and City of Lafayette diversions. To extend the record back to 1950, monthly regression equations against baseflow at 06729500 (South Boulder Creek near Eldorado Springs), 06730500 (Boulder Creek at Mouth near Longmont), or 06\_BC\_N (BEAR CREEK NATURAL FLOW).
- 06730500 Boulder Creek at Mouth near Longmont. This gage is missing values from 1956 through 1977. To fill this large gap, monthly regression equations against baseflow at 06730200 (Boulder Creek at North 75<sup>th</sup> St, Near Boulder), 06729500 (South Boulder Creek near Eldorado Springs), 06727000 (Boulder Creek near Orodell), or 06727500 (Fourmile Creek at Orodell).

# 4.7.3 Distribution of Baseflow to Ungaged Points

In order for StateMod to have flow on tributary headwaters, baseflow must be estimated at all ungaged headwater nodes. In addition, gains between gages are modeled as entering the system at locations to reflect increased flow due to unmodeled tributaries. During calibration, ungaged baseflow nodes were added to better simulate the water supply that supported historical operations.

StateMod operating mode "9" distributes a portion of baseflows at gaged locations to ungaged locations based on drainage area and average annual precipitation. The default method is the "gain approach". In this approach, StateMod pro-rates baseflow gains above or between gages to ungaged locations using the product of drainage area and average annual precipitation.

Figure 4-1 illustrates a hypothetical basin and the areas associated with three gages and three ungaged baseflow nodes.



Figure 4-1: Hypothetical Basin Illustration

The area associated with gages is the total upstream area. The area associated with ungaged nodes only includes the incremental area from the ungaged location to the next upstream gage or gages. For example, Gage 3 area includes the entire basin. Ungaged Baseflow Node 3 area (light green) includes the upstream area between the Ungaged Baseflow Node 3 and Gage 2 and Gage 1.

In Figure 4-1, there are three ungaged baseflow nodes; the StateMod "gain approach" computes the total baseflow at each ungaged node based on the following:

The baseflow gain distributed to Ungaged Baseflow Node 1 is the baseflow gain above Gage 1 pro-rated on the A\*P terms.

$$Gain_{ungaged,1} = \left(\frac{(A * P)_{ungaged,1}}{(A * P)_{gage,1}}\right) \left(BF_{gage,1}\right)$$

Total baseflow at Ungaged Node 1 is equal to the Gain<sub>ungaged,1</sub> term.

The baseflow gain distributed to Ungaged Baseflow Node 2 is the baseflow gain between Gage 1, 2, and 3 pro-rated on the A\*P terms.

$$Gain_{ungaged,2} = \left(\frac{(A*P)_{ungaged,2}}{(A*P)_{gage,3} - (A*P)_{gage,2} - (A*P)_{gage,1}}\right) \left(BF_{gage,3} - BF_{gage,2} - BF_{gage,1}\right)$$

Total baseflow at Ungaged Node 2 is equal to the Gain<sub>ungaged,2</sub> term plus the baseflow at Gage 1.

### $BF_{ungaged,2} = Gain_{ungaged,2} + BF_{gage,1}$

Ungaged Baseflow Node 3 calculations are very similar. The baseflow gain distributed to Ungaged Baseflow Node 3 is the baseflow gain between Gage 1, 2, and 3 pro-rated on the A\*P term.

$$Gain_{ungaged,3} = \left(\frac{(A*P)_{ungaged,3}}{(A*P)_{gage,3} - (A*P)_{gage,2} - (A*P)_{gage,1}}\right) \left(BF_{gage,3} - BF_{gage,2} - BF_{gage,1}\right)$$

Total baseflow at Ungaged Node 3 is equal to the Gain<sub>ungaged,3</sub> term plus baseflow at Gage 1 and Gage 2.

$$BF_{ungaged,3} = Gain_{ungaged,3} + BF_{gage,1} + BF_{gage,2}$$

A second option for estimating headwater baseflows can be used if the default "gain approach" method created results that do not seem credible. This method, referred to as the "neighboring gage approach", creates a baseflow time series by multiplying the baseflows at a specified gage by the ratio  $(A*P)_{headwater}/(A*P)_{gage}$ . This approach is effective when the runoff at an ungaged location does not follow the same pattern as the gains along the main stem. For example, a small ungaged tributary that peaks much earlier or later than the main stem should use the neighboring gage approach with a streamgage in a similar watershed. The user is responsible for ensuring that the overall reach water balance is maintained when using the neighboring gage approach.

### Where to find more information

• The **StateDMI** documentation in section 5.10 "Stream Estimate Data" for describes computation of baseflow distribution parameters based on A\*P, incremental A\*P, and the network configuration.

# 4.8 Imports

Imported supplies serve as a significant portion of the supplies used to meet in-basin demands, primarily those imported by C-BT, Denver Water Board, and the City of Aurora. Special consideration of imported water in StateMod is recommended to make sure it is not reflected as natural flow or distributed as natural flow gains; it can be distributed to various users in the basin based on a specified order; and it can be tracked as a reusable supply as appropriate. In general, the imported water is brought into the system and stored in a plan structure at a very senior priority, and then released from the plan structure to specific users generally at a priority that is junior to users other supplies. Note that for many municipalities, this may be the most senior priority and represent the "first" supply used to meet their demands. Any unused imported supplies are released to the river in their destination basins.

If imported water is allowed to be reused, additional operations are used to "transfer" the imported water into a plan structure type that can be used with reusable operations. The nonconsumed portion of the imported water released from these plan structures is tracked as a reusable supply, which can then be released to meet additional demands in the same time-step. Refer to Section 5.8 for more information on import and reusable plans.

# 4.9 Changed Water Rights

In general, StateMod allows owners of changed water rights to temporarily divert the changed water right in priority, but use the water right at a more junior priority within the same timestep. This allows the changed water right to be used in conjunction with other supplies in their water rights portfolio, in order to represent actual operations.

Operations with changed water rights are represented in the StateMod model based on the flow that is legally available to the changed water right priority at the original ditch location on the river system. The changed water rights are constrained by the pro rata percentage of the water right that has been changed and user-input monthly and annual diversion limits. The divertible yield of the changed water right stored in an accounting plan can be released to meet various demands. The unconsumed portion of the changed water can be assigned to a reuse plan, which is available for other uses (e.g., to meet return flow obligations or stored in a reservoir). Ditch losses and augmentation station delivery locations, along with return flow obligations can be calculated on the diversion and/or use of the changed rights.

Note the StateMod operating rules typically allow only one Demand (e.g., ditch demand, offchannel municipal demand, reservoir storage) when the Source of supply is a water right. In order to use a single water right to meet multiple demands, the water right must first be "stored" in an accounting plan. The "stored" water is released from the accounting plan to meet multiple demands with operating rules. In general, any time a single source water right is used to meet multiple demands, the approach described below must be used. The general approach developed for the representation of changed water rights is summarized below and illustrated in Figure 4-2. The example below uses the Fisher Ditch (0700570) changed water rights. More detail regarding operating rules can be found in Section 4.13 of the StateMod documentation. More details on the representation of Fisher Ditch in the South Platte Model, specifically the changed water rights operations found in the SP2016.opr file, can be found in Section 5.10 below.

Fisher Ditch originally was an irrigation structure located on Clear Creek. Over time, shares in the ditch have been purchased by Xcel Energy (formerly known as Public Service Company) and the City of Thornton. These shares have been converted to other uses through the water court process. Xcel Energy uses the water to meet demands at the Cherokee Power Plant. The City of Thornton uses the water to meet municipal demands, return flow obligations, and for storage in Standley Lake. The senior water right is now being split between the remaining irrigators under Fisher Ditch, Xcel Energy, and the City of Thornton.

Modeling changed water rights is a four step process. Each step will be explained in detail below:

- 1. Take water rights off river to Changed Water Right Plan
- 2. Split Changed Water Right Plan to User Plans
- 3. Release from User Plans to demands
- 4. Release remaining plan contents.

For **Step 1 "Take water rights off river to Changed Water Right Plan"**, divert the legally available pro rata water right to a Changed Water Right Accounting Plan when in priority. For Fisher Ditch, this is the *FishSplPln*. In the SPDSS Model, Changed Water Right Accounting Plans typical have "Pln" in the model ID. When plans are used to represent the water rights for multiple users, the model IDs typically include "Split" or "Spl" (e.g., FishSplPln).

Usually under the water court decree, volumetric limitations on the amount of the changed water rights have been imposed. These limits are represented as monthly and annual volumes and are a required input. The volumetric limits consist of 13 values (12 months and an annual value). These 13 values are used for each year of the simulation period, and therefore do not explicitly represent multi-year volumetric limits or maximum monthly/annual limits. It is important to consider at what location volumetric limits have been imposed. StateMod "sees" everything at the river. Many changed water rights include limitations on the augmentation station deliveries. This limit is after the ditch loss that occurs between the river headgate and the augmentation. Therefore, the ditch loss is added back into a volumetric assigned at the headgate. For example, if the decreed April augmentation station delivery limit is 100 af and a 10% ditch loss occurs below the river headgate, the StateMod operating rule has 111 af as the monthly volumetric in April (111 minus 10% = 100) in order to accurately represent the volumetric limits on the use of the changed water rights.

For cases where there is only one owner of the pro rata water right to be used for multiple purposes, the limits in the operating rules are generally derived from long-term average volumetric limits in the change decree (e.g., 20-year annual total af) that are distributed monthly based on long-term average historical diversions to irrigation. Seasonal limitations on the use of the changed water rights are effected by setting the monthly limits to zero outside of the season of use (e.g., November through March).

For cases where there are multiple owners of the prorate water right, the limits in the operating rules are generally set to sufficiently large values to allow 100 percent of the Source water right to be "stored" in the Changed Water Right Accounting Plan. In order to represent decreed limitations on the uses of the changed water rights, the releases of water from the plan (see Step 3 below) are limited by Release Limit Plans. For the Fisher Ditch, there are three owners of the senior water right. The volumetric limitations are a required input, so they have been set large enough to allow 100% of the Source water right to be "stored" in the *FishSplPln* (a Changed Water Right Accounting Plan).

**Step 2 "Split Changed Water Rights Plan to User Plans"** only applies if there are multiple owners of the changed water right. Operating rules divide the "stored" water in the Changed Water Right Accounting Plan into individual users' accounting plans according to ditch share percentages. Note each operating rule can be turned on and off for any number of years. Therefore, rules that start and stop in different years and have different split percentages are used to track very closely with different water right change decrees.

For Fisher Ditch, the Changed Water Right Accounting Plan is only sent to the irrigators prior to 1989. Starting in 1989, the Changed Water Right Accounting Plan is sent to three Account Plans that represent ownership of the City of Thornton, Xcel Energy, and ditch irrigators. The year 1989 is selected because it is generally consistent with the adjudication dates of the change decrees.

Under **Step 3 "Release from User Plans to demands"**, water is delivered from the individual Accounting Plans to user demands. Releases of changed water rights from the plans are typically carried through the Source ditch (e.g., 0700570) so as to simulate a portion of the conveyance capacity being used by the water right. This approach also allows representation of ditch losses that must remain in the ditch as a consequence of the change of use. For example, Fisher Ditch has a 10% ditch loss that must remain in the ditch and is not available for the changed use.

Carrying water through the Source ditch also allows for augmentation stations to be simulated. Augmentation station operations can be represented by then turning water out of the ditch to a downstream location on the river. For the Fisher Ditch example, this enables Thornton to use their changed water rights to meet other return flow obligations. As discussed under Step 1, when there are multiple owners of a source water right, the preferred approach is to divert 100 percent of the source water right into the Changed Water Rights Accounting Plan and then impose the decreed limits on the releases to each user, based on their individual decrees. This is the approach taken for the Fisher Ditch. Xcel Energy and Thornton have separate Accounting Plan Limit rules. Their Accounting Plan Limit rules are referred in other operating rules that release water to their demands.

For the Fisher Ditch example, the City of Thornton uses their portion of the changed water right to meet return flow obligations and to store water in Standley Lake by exchange. Xcel Energy uses their portion of the changed water right to meet the Cherokee Power Plant demand. Note that the use of these changed shares also creates return flow obligations; refer to the Fisher Ditch plan operations in Section 5 to more discussion on the terms and conditions associated with these changed water rights.

**Step 4 "Release remaining plan contents"** is a requirement in StateMod. Any supply from the changed water rights that remain in the changed water rights plans must be returned to the river since this water cannot be carried over between subsequent time steps. This is done with a Type 29 operating rule.

# Example Model Representation of Fisher Ditch Changed Water Rights



Figure 4-2: Illustration of changed water rights approach using Fisher Ditch

# 4.10 Off-Channel Reservoirs and Irrigation Structures

In the South Platte Basin, diversions from the river at a single headgate often meet multiple demands, such as irrigation, off-channel reservoir storage, augmentation, and municipal. To address the complexity of structures that carry water to more than one destination, the following general approach was developed. It is specific for structures that divert to both irrigation and off-channel storage, but can be applied to any number or type of end use.

The key aspects of this approach allow:

- Baseflows are calculated correctly without special considerations of baseflow gage locations,
- Total historical diversion from the river to remain at the river location,
- End-Of-Month (EOM) contents in the reservoir to be represented by historical values,
- Return flows to be accounted for at the correct locations and operated either by variable efficiency (for irrigation structures) or by a constant efficiency (for carrier structures),
- This approach requires the SPDSS dataset to have two diversion station files (\*.dds). The SP2016\_N.dds file is used to generate baseflows and the SP2016.dds is used in simulation.



------

- River Diversion
  Carrier Return Flow
- 3. Off-Channel Reservoir
- 4. Off-Channel Demand
- 5. Demand Return Flow

# Figure 4-3: Off-Channel Reservoir System Schematic

# 4.10.1 Off-Channel Reservoir River Network Setup

The off-channel system is represented as a "mock" tributary in the network diagram and connected to the network at the furthest downstream location of return flows from the off-channel demand(s). It is recommended that the off-channel demands use their primary source WDID as an identifier if appropriate, or an appropriate suffix attached to the river diversion WDID (e.g. 0100503\_I for irrigation demands served by 0100503).

# 4.10.2 Off-Channel Reservoir Baseflow Calculations

The baseflow (or natural flow) calculations on the main stem of the river network will be calculated correctly because of the following considerations:

- The river sees the entire historical diversion at Location 1
- Return flows from carrier losses are accounted for in their correct location
- Returns from the river diversion to the off-channel tributary are balanced by increases in storage and diversion at off-channel demand structure(s)
- Reservoir releases are balanced by diversions at off-channel demand structure(s),
- Return flows from off channel demands are accounted for in their correct location.

The following approach was implemented at off-channel reservoir system in natural flow calculations. The return flow location(s), percentage(s), and delay pattern(s) are found in SP2016\_N.dds.

# River Diversion (Location 1)

- Historical diversions are equal to total river diversions, including all water diverted to storage and to other demands from this location. Note that in some cases total diversions may need to be calculated, especially winter diversions, due to lack of diversion records and changes in diversion coding over time. Winter diversions to storage can be estimated based on the change in reservoir end-of-month content from one month to the next and accounting for evaporation.
- The structure is 0% efficient, as set in the direct diversion station (SP2016\_N.dds) file, which results in 100% of the water diverted at this structure to be returned as follows:
  - Use the return flow location(s), percentage(s), and delay pattern(s) in the direct diversion station (SP2016\_N.dds) file to route the conveyance loss back to the correct location. *This is represented by Location 2 in the figure above*.
  - Use the return flow location(s), percentage(s), and delay pattern(s) in the direct diversion station (SP2016\_N.dds) file to return the total diversions less ditch loss to the upstream most node in the off-channel system in the same time step. *This is represented by Location 3 in the figure above.*
  - Continuing with WDID 0100503 as an example, Location 1 is the diversion structure (0100503\_D) and is 75 percent efficient, meaning that 75 percent of the total diversions arrive at the intended destination. Therefore, 25 percent of the diversions lag back to the river at Location 2. For 0100503\_D, 20 percent returns above structure 0100507\_D with delay pattern 1100 and 5 percent returns above structure 0100513 with delay pattern 1100. 75 percent returns in the same time step to Location 3. For 0100503\_D, Location 3 is off-channel reservoir 0103651.

- Additional information needs to be set in the direct diversion station (\*.dds) file so that the basin wide summary tables do not double account diversions for these systems:
  - o demsrc(1) set to 7 carrier structure.

# *Off-Channel Reservoir (Location 3)*

• Values in the end-of-month (\*.eom) file are based on historical end-of-month reservoir content.

# *Off-Channel Demand (Location 4)*

- Historical diversions are equal to water delivered from the river diversion (Location 1) minus conveyance losses plus releases from the off-channel reservoir (Location 3), if applicable. Note that reservoir releases are calculated based on change in reservoir end-of-month content from one month to the next and accounting for evaporation.
- For this example, Location 4 is 0100503\_I. The demand was calculated as described above and set in SP2016.ddh file.
- Return flow location(s), percentage(s), and delay pattern(s) in the direct diversion station (SP2016\_N.dds) file for this structure are based on locations of returns from irrigation. *This is represented by Location 5.*
- For this example, Location 5 is three different structures along the South Platte River, because the irrigated acreage covers a large geographical area.

# 4.10.3 Off-Channel Reservoir Simulation Scenarios

The Simulation scenario uses the simulation version of the direct diversion station file: SP2016.dds. Simulation scenarios operate the system correctly because all demands (reservoir, irrigation, etc.) in the off-channel system will be satisfied by carried water from the river diversion via operating rules. This ensures that water is delivered only in amounts up to what is needed for the off-channel system. There is no excess water returning from the off-channel system via the physical network connection (via the river). The following approach was implemented at off-channel reservoir system in simulation scenarios.

# River Diversion (Location 1)

- Historical demands are set to zero in the diversion demand (SP2016\_H.ddm) file.
- The structure is 0% efficient, as set in the direct diversion station (SP2016.dds) file, which results in 100% of the water diverted at this structure to be returned as follows:

- Use the return flow location(s), percentage(s), and delay pattern(s) in the direct diversion station (SP0216.dds) file to route the conveyance loss back to the correct location. *This is represented by Location 2 in the figure above*.
- Operating rules simulate the diversions from this structure carrying water to Location 3 and Location 4. Therefore, the return flows at this structure reflect only the conveyance loss routing.
- Continuing with the example, SP2016.dds for 0100503\_D only contains return flow locations 0100507\_D and 0100513. These are the Location 2 structures.
  70 percent of the return flows arrive at location 0100507\_D following delay pattern 1100 and 30 percent of the return flows arrive at location 0100513 following delay pattern 1100.
- Note that the same relative split of water returning to structures 0100507\_D and 0100513 is maintained in both the natural flow mode and simulation mode \*.dds files.
- Also note that the same delay pattern is used in both \*.dds files. This is done to maintain consistency between the natural flow mode and simulation mode.
- Operating rules in the operating rule (SP2016.opr) file divert water to storage (*Location 3*) and/or to the off-channel demand (*Location 4*) via the river diversion structure (*Location 1*).
  - Reservoir water rights are located at the reservoir and operating rules carry water to the reservoir via the river diversion structure using the reservoir right as the source water right.
  - Diversion rights are located at the river headgate and operating rules will carry water to the off-channel demand via the river diversion structure using the diversion right as the source water right.

# *Off-Channel Reservoir (Location 3)*

- The demand in the historical reservoir target (\*.tar) file is to the historical end-ofmonth reservoir content.
- Operating rules in the operating rule (\*.opr) file release water from storage to the offchannel demand (*Location 4*).

# *Off-Channel Demand (Location 4)*

• Historical demands in the historical diversion demand (\*.ddm) file are set to the historical diversions calculated for natural flow calculations; i.e. water delivered from the river diversion (*Location 1*) minus conveyance losses plus releases from the off-channel reservoir (*Location 3*), if applicable.

# 4.11 Well Use

This South Platte Model is the first CDSS model to incorporate significant well usage, primarily for irrigation use and, to a lesser extent, for municipal and industrial uses throughout the basin. There are limited records available in HydroBase for historical pumping in the basin; therefore well pumping is estimated based on crop irrigation requirements or municipal and industrial demands.

Well use in the South Platte Model can be divided into two categories, supplemental supply for co-mingled structures and ground water only structures. Although co-mingled structures receive both surface and ground water supplies, they are input into the model as separate demands (\*.ddm and \*.weh). Well pumping can only be used to meet a well demand; likewise, surface water supplies can only be used to meet a diversion demand. Due to this approach, it is necessary to pre-determine the separate demands. For irrigation structures, this determination is made in StateCU whereby co-mingled structures first receive available surface water supplies and then pumping is estimated to meet remaining crop demands. For ground water only aggregate structures, the well demand is estimated based on the full crop irrigation water requirement. This estimated pumping becomes the basis for the irrigation well demand.

Non-irrigation well demands are developed based on either historical pumping records, when available, or more often, on estimated municipal and industrial demands. StateMod then simulates pumping, and associated depletions, to meet these demands limited by well capacity and well rights available to the structure.

# 4.11.1 Augmentation Plans and Recharge

Pumping generally occurs under very junior water rights; therefore, to ensure senior water rights are not injured, the wells must be included in augmentation plans which augment the lagged well depletions. There are many augmentation plans in the South Platte River Basin; the largest 25 augmentation plans were selected to be explicitly modeled based on the amount of depletions associated with the plans and input from DWR staff. Once wells are associated with an augmentation plan, StateMod internally accounts for the lagged well depletions as they accrue to the river (see Section 5.10.10). Augmentation supplies, generally in the form of recharge areas, in-ditch recharge, changed water rights, and reservoir releases, are then applied to augment these depletions. Note that StateMod will not limit well pumping if augmentation supplies are not sufficient to meet the depletions; it is the user's responsibility to provide sufficient supplies.

Well pumping in some areas is not required to be augmented because it has been determinted to be hydraulically disconnected from the river system; this includes pumping in Designated Basins and from the Denver Basin aquifers. Depletion patterns for these wells have been adjusted so they do not deplete the river system. Figure 4-4 provides a schematic of the Low Line Augmentation Plan operations, focusing on the recharge plan supplies associated with the plan. Refer to Section 5.10.10.18 for more information on these operations.



#### Example Representation of Augmentation Plan and Recharge Operations at Low Line Ditch

- 1. Co-mingled pumping under Low Line Ditch and ground water pumping at 64\_AWP007 for irrigation generates depletions, which are tracked in Low Line Augmentation Plan (6402540).
- 2. A Type 43 rule establishes the volume of depletions in the current time step occur in-priority; the remaining out-of-priority depletions are tracked in the Low Line Augmentation Plan (6402540).
- 3. Water is diverted at Low Line Ditch (6400524) under a junior recharge water right (6400524.02) and carried to an aggregated recharge area (\_RL) using a Type 45 rule.
- 4. Canal seepage is tracked by the canal recharge plan (\_PIC) and reservoir seepage is tracked by the reservoir recharge plan (\_PIR). Water from the recharge plans are applied to the augmentation demand at 6402540 using Type 48 rules.
- 5. Any remaining unmet augmentation demand is satisfied by pumping the augmentation well (\_AuW) using a Type 37 rule.

### Figure 4-4: Illustration of augmentation and recharge operations at Low Line Ditch

# 4.12 Calibration Approach

Calibration is the process of simulating the river basin under historical conditions, and adjusting parameters to achieve agreement between observed and simulated values of stream gages, reservoir levels, and diversions. The South Platte Model was developed first at the sub-basin level, and then integrated into an overall model, separate calibration efforts were made at each of these points during the model development.

- Calibration of the sub-basin models focused on baseflows, particularly to ensure imports were removed from baseflow estimates; to ensure the baseflow in the river was gaining as it moved downstream; to limit excessive baseflow issues from off-channel systems; and determine amount of baseflow distributed to ungaged locations was correct. To facilitate this effort, calibration gages were added to off-channel reservoir systems to review data inconsistencies that may impact baseflow. After calibration of baseflows through adjustment of return flows, diversions, and reservoir contents, the model was simulated and the results were compared to historical values. Remaining calibration issues were generally caused by individual users' order of operations. These were adjusted to better reflect current operations.
- Once the sub-basin models were calibrated, they were integrated into the overall model and a similar calibration effort was performed. Baseflows were reviewed and simulated model results were compared to historical values. Additional adjustments to operating rules, return flow locations, and efficiencies were made to address remaining calibration issues.

Refer to Section 6 for more details on calibration efforts and results, summarized by each subbasin.

# 5. Historical Dataset

This section describes each StateMod input file in the Historical Dataset. The approach to creating the dataset is described in more general terms in Section 4. The Historical Dataset represents the historical diversions and demands as they have come on-line through time, imposed with current administration and operations. As such, the surface water demands are set equal historical diversions, reservoirs demands are set equal to historical contents, transmountain supplies are set equal to historical imports, and well demands are set equal historical pumping. Current operations, such as current share ownership in a ditch or operation of reusable supplies, are generally used for the entire study period. This provides a dataset with a complete historical demand for the South Platte River Basin while allowing for the analysis of current operations over a longer hydrologic period.

This section is organized by input file type (e.g. diversion files, well files); the following detailed, fileby-file descriptions are intended to provide enough detail for the user to understand what historical and current operations have been captured in the model.

In order to maintain consistency in the dataset that was produced, the following versions were used:

- HydroBase 2016.04.07
- StateMod 15.0001

### Where to find more information

• For generic information on every input file listed below, see the **StateMod** documentation. It describes how input parameters are used as well as format of the files.

# 5.1 Response File (\*.rsp)

The response file lists names of the rest of the data files. StateMod reads the response file first, and then "knows" what files to open to retrieve the remainder of the input data. The list of input files was slightly different depending on whether StateMod was being run to generate baseflows or to simulate the historical scenario. The response file was created by hand using a text editor.

### 5.1.1 For Historical Simulation

The listing below shows the file names in *SP2016\_H.rsp*, describes contents of each file, and shows the subsection of this chapter where the file is described in more detail.

| File Name                 | Description                                                                                                                                                                                                                          | Reference     |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| SP2016.ctl                | Control file – specifies execution parameters, such as run title, modeling period, options switches                                                                                                                                  | Section 5.2   |
| SP2016.rin                | River Network file – lists every model node and specifies connectivity of network                                                                                                                                                    | Section 5.3.1 |
| SP2016.ris                | River Station file – lists model nodes, both gaged and ungaged, where hydrologic inflow enters the system                                                                                                                            | Section 5.3.1 |
| SP2016.rib                | Baseflow Parameter file – gives coefficients and related gage<br>ID's for each baseflow node, with which StateMod computes<br>baseflow gain at the node                                                                              | Section 5.3.3 |
| SP2016.rih                | Historical Streamflow file – Monthly time series of streamflows at modeled gages                                                                                                                                                     | Section 5.3.4 |
| SP2016_BFx.xbm            | Baseflow Data file – time series of undepleted flows at nodes<br>listed in SP2016.ris                                                                                                                                                | Section 5.3.5 |
| SP2016.dds                | Direct Diversion Station file – contains parameters for each diversion structure in the model, such as diversion capacity, return flow characteristics, and irrigated acreage served                                                 | Section 5.4.1 |
| SP2016.dly                | Delay Table file – contains several return flow patterns that<br>express how much of the return flow accruing from<br>diversions in one month reach the stream in each of the<br>subsequent months, until the return is extinguished | Section 5.4.2 |
| SP2016.ddh                | Historical Diversions file – Monthly time series of historical diversions                                                                                                                                                            | Section 5.4.3 |
| SP2015_H.ddm              | Monthly Demand file – monthly time series of headgate demands for each direct diversion structure                                                                                                                                    | Section 5.4.4 |
| SP2016.ddr                | Direct Diversion Rights file – lists water rights for direct<br>diversion                                                                                                                                                            | Section 5.4.5 |
| SP2016_crop.str           | StateCU Structure file – soil moisture capacity by structure, for variable efficiency structures                                                                                                                                     | Section 5.5.1 |
| SP2016.ipy                | CU Irrigation Parameter Yearly file – maximum efficiency and irrigated acreage by year and by structure, for variable efficiency structures                                                                                          | Section 5.5.2 |
| SP2016_<br>Restricted.ddc | Consumptive Water Requirement file – monthly time series of consumptive water requirement for direct diversion and well only structures                                                                                              | Section 5.5.3 |
| SP2016.res                | Reservoir Station file – lists physical reservoir characteristics such as volume, area-capacity table, and some administration parameters                                                                                            | Section 5.6.1 |
| SP2016.eva                | Evaporation file – gives monthly rates for net evaporation from free water surface                                                                                                                                                   | Section 5.6.2 |
| SP2016.eom                | Reservoir End-of-Month Contents file – Monthly time series of historical reservoir contents                                                                                                                                          | Section 5.6.3 |

| File Name                   | Description                                                                                                                                                                                                                 | Reference     |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| SP2015_H.tar                | Reservoir Target file – monthly time series of maximum and<br>minimum targets for each reservoir. A reservoir may not<br>store above its maximum target, and may not release below<br>the minimum target                    | Section 5.6.4 |
| SP2016.rer                  | Reservoir Rights file – lists storage rights for reservoirs                                                                                                                                                                 | Section 5.6.5 |
| SP2016.ifs                  | Instream Flow Station file – lists instream flow reaches                                                                                                                                                                    | Section 5.7.1 |
| SP2016.ifa                  | Instream Flow Annual Demand file – gives the decreed monthly instream flow demand rates                                                                                                                                     | Section 5.7.2 |
| SP2016.ifr                  | Instream Flow Right file – gives decreed amount and administration number of instream flow rights associated with instream flow reaches                                                                                     | Section 5.7.3 |
| SP2016.pln                  | Plan Data file – contains parameters for plan structures                                                                                                                                                                    | Section 5.8   |
| SP2016.plw                  | Well Augmentation Plan Data file – ties an augmentation plan to a well water right ID and the structures served by the well                                                                                                 | Section 5.8.2 |
| SP2016.plr                  | Plan to Reservoir Recharge Data file – links a recharge area<br>(modeled as reservoirs) to an augmentation plan.                                                                                                            | Section 5.8.3 |
| SP2016.rrf                  | Reservoir Return Flow file – routes reservoir seepage back to the river over time                                                                                                                                           | Section 5.8.4 |
| SP2016.prf                  | Plan Return Flow file – contains plan return flow data. For<br>recharge plans, it is used to route canal seepage back to the<br>river over time. For terms and conditions plans, it provides<br>plan efficiency information | Section 5.8.5 |
| SP016.wes                   | Well Station file – describes the physical properties of each well structure, such as depletion characteristics, return flow characteristics, and irrigated acreage                                                         | Section 5.9.1 |
| SP2016.weh                  | Historical Well Pumping – time series of well pumping<br>through time                                                                                                                                                       | Section 5.9.2 |
| SP2016_<br>NoDuplicates.wer | Well Right file – lists the unique well rights associated with well structures.                                                                                                                                             | Section 5.9.3 |
| SP2015.opr                  | Operational Rights file – specifies many different kinds of operations that were more complex than a direct diversion or an on-stream storage right.                                                                        | Section 5.10  |

### 5.1.2 For Generating Baseflow

The baseflow file (\*.xbm) that was part of the Baseline dataset was created by StateMod and TSTool in three steps described in Section 4.7. In the first step, StateMod estimated baseflows at gaged locations, using the files listed in the SP2016\_BF.rsp response file. The table below lists the differences between the simulation SP2016\_H.rsp and the baseflow SP2016\_BF.rsp.

The baseflow time series created in the first run were partial series, because gage data was missing from three gages in Water District 6. TSTool was used to fill the baseflow time series, creating a complete series of baseflows at gages in a file named SP2016\_BF.xbf. The response file for the second step, in which StateMod distributed baseflow to ungaged points, was named SP2016\_BFx.rsp. The difference between the first-step response file (SP2016\_BF.rsp) and second-step response file (SP2016\_BFx.rsp) was that the SP2016.xbf file replaced the historical gage file SP2016.rih.

| File Name    | Description                                                                                                                                        |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| SP2016_N.dds | Baseflow Direct Diversion Station file. Contains return flow pattern<br>and locations for off-channel demands specific for Baseflow<br>generation. |
| SP2016.dre   | Diversion to Recharge file. Time series of historical diversions for recharge diverted at each ditch.                                              |
| SP2016.rre   | Reservoir to Recharge file. Time series of historical diversions for recharge at each recharge area.                                               |

# 5.2 Control File (\*.ctl)

The control file was hand-created using a text editor. It contains execution parameters for the model run, including the starting and ending year for the simulation, the number of entries in certain files, conversion factors, and operational switches. Many of the switches relate to either debugging output, or to integrated simulation of ground water and surface water supply sources. The latter was developed for the Rio Grande Basin and is not yet a feature of the South Platte Model. Control file switches are specifically described in the StateMod documentation. The simulation period parameters (starting and ending year) are the ones that users most typically adjust.

# 5.3 River System Files

This section includes files that together specify the river system. These files express the model network and baseflow hydrology.

# 5.3.1 River Network File (\*.rin)

The river network file was created by StateDMI from the graphical network representation file created within StateDMI – StateMod Network interface (SP2016.net). The river network file describes the location and connectivity of each node in the model. Specifically, it is a list of each structure ID and name, along with the ID of the next structure downstream. It is an inherent characteristic of the network that, with the exception of the downstream terminal node, each node had exactly one downstream node.

River gage nodes are labeled with United States Geological Survey (USGS) stream gaging station numbers (i.e., 06744000). In general, diversion and reservoir structure identification numbers are composed of Water District number followed by the State Engineer's four-digit structure ID. Instream flow water rights are also identified by the Water District number followed by the assigned State Engineer's four-digit identifier. Table 5.1 shows how many nodes of each type are in the South Platte Model.

| Туре                         | Number |  |  |
|------------------------------|--------|--|--|
| Diversion and Well           | 123    |  |  |
| Diversion                    | 452    |  |  |
| Stream Gages                 | 49     |  |  |
| Instream Flow                | 31     |  |  |
| Other                        | 71     |  |  |
| Plan Structures <sup>2</sup> | 458    |  |  |
| Reservoirs                   | 143    |  |  |
| Well                         | 117    |  |  |
| Total                        | 1444   |  |  |

Table 5-1: River Network Elements

# 5.3.2 River Station File (\*.ris)

The river station file was created by StateDMI. It lists the model's baseflow nodes, both gaged and ungaged. These are the discrete locations where streamflow is added to the modeled system.

There are 49 gages in the model and 46 ungaged baseflow locations, for a total of 95 hydrologic inflows to the South Platte Model. Ungaged baseflow nodes include ungaged headwater nodes and other nodes where calibration revealed a need for additional baseflows. In the last case, a portion of the water that is simulated as entering the system further down (e.g., at the next gage) is moved up the system to the ungaged baseflow location. For more details on baseflow development, refer to Section 4.7.

# 5.3.3 Baseflow Parameter File (\*.rib)

The baseflow parameter file contains an entry for each ungaged baseflow node in the model, specifying coefficients, or "proration factors," used to calculate the baseflow gain at that point. StateDMI computed proration factors based on the network structure and area multiplied by precipitation values supplied for both gages and ungaged baseflow nodes. This information is in the network file, which was input to StateDMI. Under the default "gain approach," described in Section 4.7.3, the factors reflect the ratio of the product of incremental area and local average precipitation

<sup>&</sup>lt;sup>2</sup> Due to the extensive number of plan structures in the model, only those plan structures required to be in the network diagram are included. Refer to Section 5.8.1 for more information on Plan Structures.

above the ungaged point to the product of incremental area and local average precipitation for the entire gage-to-gage reach.

If a structures' drainage basin has unique characteristics, a straight proration was used and a percent of a downstream gage's baseflow was set in StateDMI to the specific structure. This approach was used for the following structures:

|                     | Table 5-2. Dasenow Nodes with Set Frontion Tactors |          |            |  |  |
|---------------------|----------------------------------------------------|----------|------------|--|--|
| Tributany Namo      | Baseflow                                           | Baseflow | Downstream |  |  |
|                     | WDID                                               | Percent  | Gage       |  |  |
| South Platte River  | 8003550                                            | 100 %    | 06701500   |  |  |
| Boulder Creek       | 0600527                                            | 90 %     | 06730500   |  |  |
| North Boulder Creek | 06_WSHED                                           | 32 %     | 06727000   |  |  |
| North Boulder Creek | 0600599                                            | 35 %     | 06727000   |  |  |
|                     |                                                    |          |            |  |  |

# Table 5-2: Baseflow Nodes with Set Proration Factors

#### Where to find more information

• Section 4.7.3 describes how baseflows were distributed spatially

#### 5.3.4 Historical Streamflow File (\*.rih)

Created by TSTool, the historical streamflow file contains historical gage records from 1950 through 2012, for modeled gages. This file is used in the stream baseflow generation and to create comparison output that is useful during model calibration. Records were taken primarily from HydroBase. Missing values were filled with user provided data, regression, combining gages, or with special handling. A description of the filling techniques used is described in Section 4.4.1. The application of filling techniques is detailed below. Table 5-3 lists the key gages, their periods of record, and their average annual flows over the period of record.

| Gage ID  | Gage Name                                          | Period of<br>Record | Historical Flow<br>(af/year) |
|----------|----------------------------------------------------|---------------------|------------------------------|
| 06695000 | S PLATTE RIV AB 11-MILE CANYON RES, NR HARTSEL, CO | 1939-2015           | 69,118                       |
| 06696000 | SOUTH PLATTE RIVER NEAR LAKE GEORGE, CO.           | 1929-2015           | 64,204                       |
| 06701500 | SOUTH PLATTE RIVER BELOW CHEESMAN RESERVOIR        | 1924-2015           | 129,502                      |
| 06707500 | SOUTH PLATTE RIVER AT SOUTH PLATTE                 | 1896-2015           | 291,001                      |
| 06708000 | SOUTH PLATTE RIVER AT WATERTON, CO.                | 1926-2015           | 119,478                      |
| 06709530 | PLUM CREEK AT TITAN ROAD NEAR LOUVIERS, CO         | 1984-2016           | 22,208                       |
| 06710500 | BEAR CREEK AT MORRISON                             | 1900-2015           | 36,857                       |
| 06711500 | BEAR CREEK AT SHERIDAN                             | 1927-2015           | 32,725                       |
| 06711565 | SOUTH PLATTE RIVER AT ENGLEWOOD, CO.               | 1983-2016           | 191,935                      |
| 06713500 | CHERRY CREEK AT DENVER, CO.                        | 1942-2016           | 19,340                       |
| 06714000 | SOUTH PLATTE RIVER AT DENVER                       | 1895-2015           | 249,401                      |

Table 5-3: Historical Average Annual Flows for Key South Platte River Stream Gages

| Gage ID                                                                                                                                                                                                            | Gage Name                                              | Period of | Historical Flow |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------|-----------------|
| 06716500                                                                                                                                                                                                           |                                                        | Record    | (af/year)       |
| 06716500                                                                                                                                                                                                           |                                                        | 1946-2016 | 103,001         |
| 06719505                                                                                                                                                                                                           | CLEAR CREEK AT GOLDEN, CO                              | 1909-2016 | 139,253         |
| 06720000                                                                                                                                                                                                           |                                                        | 1914-2015 | 70,634          |
| 06720500                                                                                                                                                                                                           |                                                        | 1926-2015 | 318,289         |
| 06720820                                                                                                                                                                                                           |                                                        | 1987-2016 | 10,832          |
| 06721000                                                                                                                                                                                                           | SOUTH PLATE RIVER AT FORT LUPTON, CO.                  | 1929-2016 | 341,136         |
| 06722500                                                                                                                                                                                                           | SOUTH ST. VRAIN CREEK NEAR WARD, CO.                   | 1925-2015 | 19,051          |
| 06724000                                                                                                                                                                                                           | ST. VRAIN CREEK AT LYONS, CO.                          | 1895-2015 | 90,963          |
| 06/24500                                                                                                                                                                                                           | LEFT HAND CREEK NEAR BOULDER, CO.                      | 1929-1980 | 25,185          |
| 06725500                                                                                                                                                                                                           | MIDDLE BOULDER CREEK AT NEDERLAND, CO.                 | 1907-2010 | 39,568          |
| 06727000                                                                                                                                                                                                           | BOULDER CREEK NEAR ORODELL, CO.                        | 1906-2015 | 60,432          |
| 06727500                                                                                                                                                                                                           | FOURMILE CREEK AT ORODELL, CO                          | 1947-2016 | 4,517           |
| 06729500                                                                                                                                                                                                           | SOUTH BOULDER CREEK NEAR ELDORADO SPRINGS, CO.         | 1896-2015 | 48,276          |
| 06730200                                                                                                                                                                                                           | BOULDER CREEK AT NORTH 75TH ST. NEAR BOULDER, CO       | 1986-2016 | 70,950          |
| 06730300                                                                                                                                                                                                           | COAL CREEK NEAR PLAINVIEW, CO.                         | 1959-2015 | 3,056           |
| 06730500                                                                                                                                                                                                           | BOULDER CREEK AT MOUTH NEAR LONGMONT, CO               | 1927-2016 | 53,985          |
| 06731000                                                                                                                                                                                                           | ST. VRAIN CREEK AT MOUTH, NEAR PLATTEVILLE, CO.        | 1927-2015 | 158,270         |
| 06733000                                                                                                                                                                                                           | BIG THOMPSON RIVER AT ESTES PARK, CO.                  | 1946-2015 | 91,241          |
| 06734500                                                                                                                                                                                                           | FISH CREEK NEAR ESTES PARK, CO.                        | 1947-2012 | 1,513           |
| 06735500                                                                                                                                                                                                           | BIG THOMPSON RIVER NEAR ESTES PARK, CO.                | 1930-2015 | 74,315          |
| 06736000                                                                                                                                                                                                           | NORTH FORK BIG THOMPSON RIVER AT DRAKE, CO.            | 1947-2015 | 23,665          |
| 06738000                                                                                                                                                                                                           | BIG THOMPSON RIVER AT MOUTH OF CANYON NR               | 1927-2013 | 77,476          |
| 00720500                                                                                                                                                                                                           |                                                        | 1047 2012 | 10.700          |
| 06739500                                                                                                                                                                                                           |                                                        | 1947-2012 | 10,768          |
| 06741510                                                                                                                                                                                                           | BIG THOMPSON RIVER AT LOVELAND, CO.                    | 1979-2016 | 53,065          |
| 06744000                                                                                                                                                                                                           | BIG THOMPSON RIVER AT MOUTH, NEAR LA SALLE, CO.        | 1914-2015 | 62,059          |
| 06752500                                                                                                                                                                                                           | CACHE LA POUDRE RIVER NEAR GREELEY, CO.                | 1903-2015 | 102,871         |
| 06754000                                                                                                                                                                                                           |                                                        | 1901-2015 | 649,139         |
| 06758500                                                                                                                                                                                                           | SOUTH PLATTE RIVER NEAR WELDONA, CO                    | 1952-2015 | 512,027         |
| 06759910                                                                                                                                                                                                           | SOUTH PLATTE RIVER AT COOPER BRIDGE, NR BALZAC,        | 1980-2015 | 478,832         |
| 06764000                                                                                                                                                                                                           | SOUTH PLATTE RIVER AT JULESBURG, CO                    | 1902-2015 | 388,991         |
| 06_BC_N <sup>2</sup>                                                                                                                                                                                               | BEAR CREEK NATURAL FLOW                                | 1950-2012 | 426             |
| CLPRF <sup>1, 4</sup>                                                                                                                                                                                              | POUDRE RIVER RF BLW GAGE                               | 1950-2012 | 45,142          |
| LTCANYCO                                                                                                                                                                                                           | LITTLE THOMPSON RIVER AT CANYON MOUTH NEAR<br>BERTHOUD | 1961-2012 | 3,491           |
| MIDSTECO                                                                                                                                                                                                           | MIDDLE SAINT VRAIN AT PEACEFUL VALLEY                  | 1997-2015 | 14,819          |
| PLAANTCO                                                                                                                                                                                                           | SOUTH PLATTE RIVER BELOW ANTERO RESERVOIR              | 1975-2012 | 18,838          |
| PLAGRACO                                                                                                                                                                                                           | NORTH FORK SOUTH PLATTE RIVER AT GRANT                 | 1990-2015 | 116,849         |
| RalstonIN <sup>1, 3</sup>                                                                                                                                                                                          | RALSTON CREEK INFLOW                                   | 1950-2012 | 3,777           |
| <sup>1)</sup> Structure was modeled as a streamflow gage in order to represent a sub-basin import<br><sup>2)</sup> Bear Creek Natural Flow was treated as a gaged location                                         |                                                        |           |                 |
| <sup>3)</sup> Historic average annual flows obtained from RIH, reflects natural flow estimate on Ralston Creek<br><sup>4)</sup> Ungaged return flows entering the Cache la Poudre River below stream gage 06752500 |                                                        |           |                 |

While most of the streamflow gages selected as key gages have nearly complete periods of record, some missing data is unavoidable. The table below lists the gages that were filled in TSTool using regression. The table shows the filled gage, the gage used in the regression, and the type of regression used. For details on TSTool regression techniques, please refer to the TSTool User's Manual.

| Filled Gage<br>ID | Filled Gage Name       | Gage Used in<br>Regression ID | Gage Used in Regression<br>Name | Type of<br>Regression |
|-------------------|------------------------|-------------------------------|---------------------------------|-----------------------|
|                   |                        | _                             |                                 | _                     |
| 06725500          | MIDDLE BOULDER CREEK   | 06729500                      | SOUTH BOULDER CREEK             | Monthly               |
|                   | AT NEDERLAND           |                               | NEAR ELDORADO SPRINGS           |                       |
| 06730300          |                        | 06_BC_N                       | BEAR CREEK NATURAL FLOW         | Monthly               |
| 06736000          |                        | 06733000                      |                                 | Monthly               |
| 00730000          | THOMPSON RIVER AT      | 00755000                      | ESTES PARK                      | WORthy                |
|                   | DRAKE                  |                               |                                 |                       |
| 06738000          | BIG THOMPSON RIVER AT  | 06735500                      | BIG THOMPSON RIVER NEAR         | Monthly               |
|                   | MOUTH OF CANYON NR     |                               | ESTES PARK                      | ,                     |
|                   | DRAKE                  |                               |                                 |                       |
| 06734500          | FISH CREEK NEAR ESTES  | 06736000                      | NORTH FORK BIG                  | Monthly               |
|                   | PARK                   |                               | THOMPSON RIVER AT DRAKE         |                       |
| 06739500          | BUCKHORN CREEK NEAR    | 06736000                      | NORTH FORK BIG                  | Monthly               |
|                   | MASONVILLE             |                               | THOMPSON RIVER AT DRAKE         |                       |
| 06741510          | BIG THOMPSON RIVER AT  | 06744000                      | BIG THOMPSON RIVER AT           | Monthly               |
|                   | LOVELAND               |                               | MOUTH, NEAR LA SALLE            |                       |
| LTCANYCO          | LITTLE THOMPSON RIVER  | 06739500                      | BUCKHORN CREEK NEAR             | Monthly               |
|                   | AT CANYON MOUTH NEAR   |                               | MASONVILLE                      |                       |
|                   | BERTHOUD               |                               |                                 |                       |
| 06722500          | SOUTH ST. VRAIN CREEK  | 06733000                      | BIG THOMPSON RIVER AT           | Linear                |
|                   | NEAR WARD              |                               | ESTES PARK                      |                       |
| MIDSTECO          | MIDDLE SAINT VRAIN AT  | 06733000                      | BIG THOMPSON RIVER AT           | Linear                |
|                   | PEACEFUL VALLEY        |                               | ESTES PARK                      |                       |
| 06724500          | LEFT HAND CREEK NEAR   | 06733000                      | BIG THOMPSON RIVER AT           | Linear                |
|                   | BOULDER                |                               | ESTES PARK                      |                       |
| 06713500          | CHERRY CREEK AT DENVER | 06713000                      | CHERRY CREEK BELOW              | Monthly               |
|                   |                        |                               | CHERRY CREEK LAKE               |                       |
| 06716500          | CLEAR CREEK NEAR       | 06719505                      | CLEAR CREEK AT GOLDEN           | Monthly               |
|                   | LAWSON                 |                               |                                 |                       |
| 06721000          | SOUTH PLATTE RIVER AT  | 06720500                      | SOUTH PLATTE RIVER AT           | Monthly               |
|                   | FORT LUPTON            |                               | HENDERSON                       |                       |
| 06758500          | SOUTH PLATTTE RIVER    | 06760000                      | SOUTH PLATTE RIVER AT           | Monthly               |
|                   | NEAR WELDONA           |                               | BALZAC                          |                       |

#### Table 5-4: Stream gages filled with regression

Some streamflow gages have been relocated, creating two streamflow records at almost the same location. The following gages were combined:

- PLAGRACO North Fork South Platte River at Grant was combined with USGS gage 06706000 - North Fork South Platte River below Geneva Creek, At Grant.
- 06709530 Plum Creek at Titan Road near Louviers was combined with USGS gage 06709500 Plum Creek near Louviers.

The following streamflow gages had poor periods of records, but were considered important in the South Platte modeling effort. Therefore, they were filled using a combination of methods described below, based on the individual gage situation.

- PLAANTCO South Platte River below Antero Reservoir. Record begins in 1975. To extend record back to 1950. Individual monthly values were set based on change in reservoir content and remaining months were filled with historical month average.
- 06711565 South Platte at Englewood. Record begins in 1983. The next nearest gage was 06710000 South Platte at Littleton, which has records from 1942 through 1986. In order to combine the gages, the Englewood Pipeline diversions are subtracted from 06710000 and inflow from Bear Creek as measured by 06711500 Bear Creek at Sheridan is added.
- 06719505 Clear Creek at Golden. Record begins in 1974. Streamflow was originally measured by 06719500 Clear Creek near Golden, but the gage was moved. To combine the gages, diversions at WDID 0700540 Church Ditch were subtracted from 06719500.
- RalstonIN Ralston Creek above Ralston Creek Reservoir. Daily inflow records from 1938 to 2012 were provided by Denver Water. To fill daily missing data during the winter, the last valid streamflow reading was repeated. To fill monthly data throughout the year, the historical month average was used.
- 06720820 Big Dry Creek at Westminster. Missing monthly values were filled using a Wet/Dry/Average pattern, or historical month average.
- CLPRF Cache la Poudre Return Flows that accrue to the river below 06752500 Cache la Poudre near Greeley. This time series was developed externally to the model.
- 06759910 South Platte River at Cooper Bridge, near Balzac. This gage was moved from its original position at 06760000 South Platte River at Balzac. To combine the records, the diversions at Prewitt Reservoir Inlet, 0100525- Tetsel Ditch, and 0100526 Johnson & Edwards Ditch were added to 06760000.

### 5.3.5 Baseflow File (\*.xbm)

The baseflow file contains estimates of naturalized streamflows throughout the modeling period, at the locations listed in the river station file. Baseflows represent the conditions the river would have experienced without the influence of man. Baseflows are the starting point of the historical dataset. Simulated transmountain imports, diversion demands, reservoir operations, well pumping and augmentation, and minimum streamflow demands are superimposed onto baseflows. StateMod estimates baseflows at stream gages during the gage's period of record from historical streamflows, transmountain imports, diversions, end-of-month contents of modeled reservoirs, and estimated consumption and return flow patterns. It then distributes baseflow at gage sites to ungaged locations using proration factors representing the fraction of the reach gain estimated to be tributary to a baseflow point. For details on baseflow generation, refer to Section 4.7.

Table 5.5 compares historical gage flows with simulated baseflows for the stream gages that are not located at the top of the network, meaning that they show impacts from human operations. When the historical gaged flow is larger than the baseflow, this represents stream reaches that are enlarged due to imports. When the historical gaged flow is smaller than the baseflow, the stream reach is more impacted by consumptive use.

Note that modeling the full Cache la Poudre River Basin was not included in this phase of the modeling effort. The Cache la Poudre River inflow is currently reflected in the model by the historical streamflow from the Cache la Poudre River near Greeley gage (06752500), and an estimate of historical return flows that accrue to the South Platte River downstream of the Greeley gage. As such, these gages do not represent baseflow at these locations and have been excluded from the table below.

| Gage ID  | Gage Name                                          | Baseflow | Historical |  |  |
|----------|----------------------------------------------------|----------|------------|--|--|
| 06695000 | S PLATTE RIV AB 11-MILE CANYON RES, NR HARTSEL, CO | 67,240   | 89,320     |  |  |
| 06696000 | SOUTH PLATTE RIVER NEAR LAKE GEORGE, CO.           | 73,240   | 84,960     |  |  |
| 06701500 | SOUTH PLATTE RIVER BELOW CHEESMAN RESERVOIR        | 146,090  | 152,215    |  |  |
| 06707500 | SOUTH PLATTE RIVER AT SOUTH PLATTE                 | 259,460  | 340,285    |  |  |
| 06708000 | SOUTH PLATTE RIVER AT WATERTON, CO.                | 269,475  | 92,245     |  |  |
| 06709530 | PLUM CREEK AT TITAN ROAD NEAR LOUVIERS, CO         | 23,640   | 22,000     |  |  |
| 06710500 | BEAR CREEK AT MORRISON                             | 30,320   | 30,165     |  |  |
| 06711500 | BEAR CREEK AT SHERIDAN                             | 41,230   | 35,000     |  |  |
| 06711565 | SOUTH PLATTE RIVER AT ENGLEWOOD, CO.               | 349,640  | 162,875    |  |  |
| 06713500 | CHERRY CREEK AT DENVER, CO.                        | 19,140   | 27,220     |  |  |
| 06714000 | SOUTH PLATTE RIVER AT DENVER                       | 407,900  | 232,070    |  |  |
| 06716500 | CLEAR CREEK NEAR LAWSON, CO                        | 101,010  | 102,680    |  |  |
| 06719505 | CLEAR CREEK AT GOLDEN, CO                          | 154,130  | 137,875    |  |  |

#### Table 5-5: Average Baseflow Comparison from 1993-2012 (Af/Year)

| Gage ID  | Gage Name                                          | Baseflow  | Historical |
|----------|----------------------------------------------------|-----------|------------|
| 06720000 | CLEAR CREEK AT DERBY                               | 179,100   | 73,930     |
| 06720500 | SOUTH PLATTE RIVER AT HENDERSON, CO                | 620,490   | 363,285    |
| 06720820 | BIG DRY CREEK AT WESTMINSTER, CO                   | 7,760     | 11,155     |
| 06721000 | SOUTH PLATTE RIVER AT FORT LUPTON, CO.             | 644,650   | 374,875    |
| 06724000 | ST. VRAIN CREEK AT LYONS, CO.                      | 116,690   | 86,250     |
| 06724500 | LEFT HAND CREEK NEAR BOULDER, CO.                  | 8,600     | 23,770     |
| 06727000 | BOULDER CREEK NEAR ORODELL, CO.                    | 69,560    | 52,990     |
| 06729500 | SOUTH BOULDER CREEK NEAR ELDORADO SPRINGS, CO.     | 46,030    | 40,120     |
| 06730200 | BOULDER CREEK AT NORTH 75TH ST. NEAR BOULDER, CO   | 128,790   | 66,960     |
| 06730500 | BOULDER CREEK AT MOUTH NEAR LONGMONT, CO           | 121,375   | 53,310     |
| 06731000 | ST. VRAIN CREEK AT MOUTH, NEAR PLATTEVILLE, CO.    | 264,750   | 162,835    |
| 06733000 | BIG THOMPSON RIVER AT ESTES PARK, CO.              | 88,400    | 88,400     |
| 06735500 | BIG THOMPSON RIVER NEAR ESTES PARK, CO.            | 98,150    | 74,610     |
| 06738000 | BIG THOMPSON RIVER AT MOUTH OF CANYON NR DRAKE, CO | 121,175   | 63,890     |
| 06739500 | BUCKHORN CREEK NEAR MASONVILLE, CO                 | 9,490     | 9,200      |
| 06741510 | BIG THOMPSON RIVER AT LOVELAND, CO.                | 108,820   | 40,175     |
| 06744000 | BIG THOMPSON RIVER AT MOUTH, NEAR LA SALLE, CO.    | 122,630   | 58,650     |
| 06754000 | SOUTH PLATTE RIVER NEAR KERSEY, CO                 | 1,216,620 | 709,810    |
| 06758500 | SOUTH PLATTE RIVER NEAR WELDONA, CO                | 1,264,550 | 485,220    |
| 06759910 | SOUTH PLATTE RIVER AT COOPER BRIDGE, NR BALZAC, CO | 1,282,820 | 388,810    |
| 06764000 | SOUTH PLATTE RIVER AT JULESBURG, CO                | 1,366,570 | 371,110    |
| PLAANTCO | SOUTH PLATTE RIVER BELOW ANTERO RESERVOIR          | 18,505    | 17,976     |
| PLAGRACO | NORTH FORK SOUTH PLATTE RIVER AT GRANT             | 43,515    | 118,950    |

# 5.4 Diversion Files

This section includes files that define characteristics of the diversion structures in the model: physical characteristics, irrigation parameters, historical diversions, demand, and water rights.

### 5.4.1 Direct Diversion Station File (\*.dds)

The direct diversion station file describes the physical properties of each diversion simulated in the South Platte Model. This file is created using StateDMI. Structures included in the direct diversion station file are nodes that are designated as "Diversion" or as "Diversion and Well". In the network, these are displayed as "D" or "D&W" node types. Structures that are supplied with only surface water ("D") and structures that are supplied by co-mingled surface water and ground water

("D&W") are included. Structures with ground water only supplies ("W") are found in the Well files (see Section 5.9).

Table 7-1 is a summary of the South Platte Model's diversion station file contents, including each structure's diversion capacity, 2010 irrigated acreage served, average annual system efficiency, and average annual surface water demand. The average annual headgate demand parameter was summarized from data in the diversion demand file rather than the diversion station file, but it was included here as an important characteristic of each diversion station. In addition to the tabulated parameters, the \*.dds file also specifies return flow nodes and average monthly efficiencies.

Generally, the diversion station ID, name, and diversion capacity were gathered from HydroBase, by StateDMI. Irrigates acreage in the \*.dds is from the 2010 irrigated acreage assessment. It is read into StateDMI from a \*.csv file. Return flow locations were specified to StateDMI in a hand-edited file SP2016\_SW.rtn. The return flow locations and distribution were based on physical location of irrigated lands, discussions with Division 1 personnel, as well as calibration efforts. For more information on the development of return flow delay patterns and locations, refer to Section 4.6. StateCU computes monthly system efficiency for irrigation structures from historical diversions and historical crop irrigation requirements, and StateDMI writes the average monthly efficiencies into the \*.dds file. While the average monthly efficiencies appear for all structures in the \*.dds file, StateMod operates in the "variable efficiency" mode for the irrigation structures that appear in the \*.ddc file. Therefore, the average monthly efficiency values from the \*.dds are not used during simulation. Efficiency in a given month of the simulation is a function of the amount diverted that month, and the consumptive use, as limited by the water supply. For more details on variable efficiency in StateDMI. For non-irrigation structures, monthly efficiency is specified by the user as input to StateDMI.

Diversion capacity is stored in HydroBase for most structures and was generally taken directly from the database. Capacities and irrigated acreage were accumulated by StateDMI for defined diversion systems and aggregates. In preparing the direct diversion station file, however, StateDMI determined whether historical diversion records indicated diversions greater than the database capacity. If so, the diversion capacity was modified to reflect the recorded maximum diversion. Unknown capacities were set to 999. This number is intentionally large so diversions are not limited.

The majority of the diversion structures in the South Platte River Basin are used for irrigation. Structures diverting for non-irrigation use were noted in Table 7-1 and include structures that carry water to reservoirs or other structure's irrigation demands, municipal and industrial structures, and transmountain export structures.

For additional details on the development and approach to the \*.dds file, see the following sections in the report:

- Key structure selection refer to Section 4.2.1.1.
- Diversion system creation refer to Section 4.2.1.1 and Appendix 7.1.

- Aggregate node development refer to section 4.2.1.2 and Appendix 7.3.
- Municipal and industrial demand refer to Section 4.2.1.3.
- Operations of complex structures refer to Section 5.10.

### 5.4.1.1 Baseflow DDS

In order to generate baseflows (\*.xbm), StateMod is run in "Natural Flow" mode. For more details on baseflow generation, refer to Section 4.7. The most significant different between the simulation SP2016.dds file and the baseflow SP2016\_N.dds file is the treatment of off-channel reservoir systems. In natural flow mode, carriers are not operated. Therefore, water that is delivered to offchannel reservoir systems must be routed there using the return flow options in the \*.dds file. In SP2016\_N.dds, carriers have return flow locations and timing that represent ditch seepage returning to the river and the delivery of water to the off-channel reservoir structure. In contrast, the SP2016.dds file used in simulation mode only contains return flow locations and timing that represent ditch seepage. For more details on the approach to off-channel reservoir systems (or any headgate that carries water to multiple uses), refer to Section 4.10.

### Where to find more information

- SPDSS Task Memorandum 3, "Key Diversion Structure," available on the CDSS website.
- When StateMod is executed in the "data check" mode, it generates an \*.xtb file which contains summary tables of input. One of these tables provides the return flow locations and percent of return flow to each location, for every diversion structure in the model. Another table provides the information shown in Table 7-1.

# 5.4.2 Return Flow Delay Tables (\*.dly)

The SP2016.dly file, which was hand-built with a text editor, is used in the model to determine the timing of return flows accruing to the river and the timing of lagged depletions as they deplete the river. Each entry reflects the monthly percent of the return flow or depletion that occurs each month. The patterns are used in the diversion station file (\*.dds), well station file (\*.wes), and plan and reservoir return flow files (\*.prf and \*.rrf) to inform the model the timing associated with canal seepage, irrigation return flows, reservoir and recharge area seepage, and well pumping. Patterns range from 100 percent occurring in the first time step (i.e. "immediate") to lagging patterns of up to 120 months. The return flow patterns reflect 100 percent of the return flow; no losses to phreatophytes (i.e. incidental losses) are included. For more information on how the patterns were developed and implemented in the model, refer to Section 4.6.

A portion of the patterns included in the delay file are not used to route irrigation and canal recharge or pumping, rather they are used to estimate the lagged return flow obligations for terms and conditions plans. These 12-month patterns reflect the return flow obligations required by some changed water rights operations. See Section 5.8.6 for more information on terms and conditions plans.

As part of the integration effort, the delay tables developed by the sub-basin modelers were combined; overlapping delay table IDs were made unique by assigning the Water District number to them. There are a total of 98 delay patterns available in the \*.dly file.

# 5.4.3 Historical Diversion File (\*.ddh)

The historical diversion file contains time series of diversions for each structure. The file is created in a two-step process. In Step 1, StateDMI reads historical diversions from HydroBase, fills missing records as described in Section 4.4, and sets structures with externally created time series. In Step 2, TSTool reads in the Step 1 output and individual diversion classes for specified structures. TSTool generates new total diversion time series and over-writes the Step 1 output. Details are provided below. The final SP2016.ddh file is used for baseflow estimations at stream gage locations; developing headgate demand time series for the diversion demand file; developing average efficiency values for the diversion station file, and for comparison output that is useful during calibration.

As introduced above, the SP2016.ddh is created in a two-step process. In the first step, StateDMI is accessing the diversion total time series stored in HydroBase for diversion structures in the network. Missing data is filled. Diversion systems and aggregate structures are assigned the sum of the constituent structures total diversions. Augmentation station diversions are set to zero. Of critical importance in the South Platte Model is the setting of external time series. A large number of time series were created outside of StateDMI in order to correctly represent the complex systems in the South Platte. The following is a list of the type of structures that have external time series:

- Total diversions at the headgate of an off-channel reservoir systems or any system where the headgate carries to multiple demands,
- Diversions at off-channel irrigation structures
- Transmountain import structures, for example, Adams Tunnel and Moffat Tunnel. Imports are set as negative diversions.
- Transmountain import structures, for example, the St. Vrain Supply Canal and the Boulder Creek Supply Canal. Imports are set as negative diversions.
- Municipal diversion structures. Generally, a large amount of user provided data is processed and multiple water sources were considered in order to create the total demand. Total demand is split to represent indoor and outdoor demands.

- Industrial diversion structures. Several large, self-supplied industrial demands are located in the South Platte Basin and required special handling.
- Diversion structures that only have infrequently recorded diversion data in HydroBase. External time series were created from the infrequent data.
- Correct automated filling process for structures that either started at a set point in time, or stopped diverting surface water at a set point in time.

Step 2 of generating the \*.ddh was necessary because of a diversion coding problem in HydroBase for Water District 2 in 2011 and 2012. The State is aware of the issue and is working to correct it. Structures in Water District 2 have specific diversion classes stored in HydroBase, but total diversion is not being correctly calculated. In TSTool, the individual diversion classes are pulled from HydroBase, combined to create the total diversion time series, and used to fill the missing 2011 and 2012 data. It is anticipated that Step 2 will not be required in future modeling efforts.

# 5.4.4 Direct Diversion Demand File (\*.ddm)

This file contains time series of surface water demand for each diversion structure in the model. Demand is the amount of water the structure "wants" to divert during simulation. In the South Platte Model, it is generally set to the historical diversions (SP2016.ddh). Special cases are discussed below. Table 7-1 lists average annual demand for each diversion structure.

The file is created in TSTool. The \*.ddh file is read in, modifications are made, as described in the Special Structures section below, and the \*.ddm is written out.

### 5.4.4.1 Special Structures

In Lower South Platte (Water Districts 1 and 64), the \*.ddh time series for off-channel irrigation structures includes water that was diverted for recharge. This water is not used for irrigation, but was sent to the off-channel irrigation structure to develop the correct baseflows. The \*.dre file contains time series of diversions to recharge and is also an input to baseflow generation. The \*.dre file is read in and subtracted from the relevant irrigation demand structures.

Carrier structures are set to zero. In simulation mode, carrier structures do not have demand at the headgate. Water is moved through carrier structures to meet other demands, as specified in the operating rule file.

# 5.4.5 Direct Diversion Right File (\*.ddr)

The direct diversion right file contains water rights information for each diversion structure in the model. StateDMI creates the diversion right file, based on the structure list in the diversion station file. The information in this file is used during simulation to allocate water in the right sequence or priority and to limit the allocation by decreed amount.

Water rights for explicitly modeled structures were taken from the HydroBase and match the State Engineer's official water rights tabulation, except for special cases discussed below. Aggregated irrigation structures and diversion systems were assigned all the water rights belonging to their constituent structures. Aggregated M&I water rights were assigned an amount equal to their depletion and assigned an administration number of 1.00000.

### 5.4.5.1 Special Diversion Rights

For structures that divert water to off-channel reservoir systems, water rights in HydroBase may reflect flow rate limitations for diversions to storage, or may reflect water rights that can only be used for storage. Both of these types of rights are turned off in the \*.ddr. For flow rate limitations, these are not real water rights and cannot be used to meet demands. For storage rights, these are already reflected in the Reservoir Rights (\*.rer) file and should not be double counted.

As part of calibration, additional rights may be added to structures. StateDMI only retrieves absolute water rights, so conditional water rights that are actively being made absolute are not accounted for. These have been assigned to the relevant structures. Although free river is not a very common occurrence on the South Platte, there are structures that historically have taken more than their absolute water rights under free river conditions. To represent this, water rights with administration number 99999.99999 are assigned to select structures.

The approach taken in the South Platte Model to capture changed water rights involves diverting the original amount of the changed water right into a plan located just upstream of the original ditch. Frequently, HydroBase water rights tabulation reflects only the remaining, unchanged portion of the water right. The full amount of the water right must be set at the ditch in the SP2016.ddr. Operating rules are used to move the water right to a plan and divide the water right into the changed and unchanged portions. For more details on the approach to changed water rights, refer to Section 0. For details on a specific changed water right, refer to Section 5.10.

The general approach taken in the South Platte Model to capture transmountain and transbasin imports requires that the diversion structure receiving the import be assigned the most senior water right of administration number 1.00000. For more details on the approach to imports, refer to Section 4.8.

District 23 had a large amount of water rights changed to the City of Aurora. To administer the water rights, gage locations were established by decree. In the \*.ddr file, the water rights of the various ditches are assigned to the decreed administration point. Until 1989, the full amounts of the original water rights are assigned to the administration gages. That allows the historical irrigation demand to be met. Under a separate water right ID, the administration gages are also assigned the changed portion of the water rights. Starting in 1989, rules in the \*.opr file move the changed water to meet Aurora's demands.

COSMIC operations on Clear Creek involve the City of Golden, Coors Industrial Demand, and Croke Canal. The City of Golden is assigned a very slightly senior administration number to Coors, which is assigned a very slightly senior administration number to Croke Canal.

# 5.5 Irrigation Files

This section includes files that further define irrigation parameters for diversion structures. The parameters are used during simulation to compute on-farm consumptive use, and return flow volumes related to a given month's diversion.

# 5.5.1 StateCU Structure File (\*.str)

This file contains the soil moisture capacity of each irrigation structure in inches per inch of soil depth. It is required for StateMod's soil moisture accounting in both baseflow and simulation modes. Soil moisture capacity values were gathered from Natural Resources Conservation Service (NRCS) mapping. The file is assembled by StateDMI from hand-built list files.

# 5.5.2 Irrigation Parameter Yearly (\*.ipy)

This file is created by StateDMI, and contains maximum efficiency parameters and irrigated acreage for each irrigation structure and each year of the study period.

In the South Platte Model, maximum application efficiency has been assumed to be constant over the study period, at 60 percent for flood irrigated acreage and 80 percent for sprinkler irrigated acreage. Maximum delivery efficiency is the conveyance efficiency of the ditch. Consistency between the conveyance efficiency assigned in the \*.ipy file, the \*.dds file, and the \*.opr file is essential. Carrier structures do not appear in the \*.ipy file, as all of the irrigated acreage is assigned to the offchannel irrigation demand structure. In the \*.ipy conveyance efficiency of off-channel irrigation demand structures (\*\_I) must be set to zero, because the conveyance efficiency is already accounted for at the carrier structure. The carrier structure must have consistency conveyance efficiency in the \*.dds file and \*.opr file. The value in the SP2016\_N.dds file is used to generate natural flows, but the value assigned in the \*.opr file will be used in simulation.

The irrigated acreage is categorized by deliver method (flood or sprinkler) and by water source (surface or ground water). Irrigated acreage is based on 1956, 1976, 1987, 1997, 2001, 2005, and 2010 irrigated acreage assessments. Acreage is linearly interpolated between the years with acreage assessments.

# 5.5.3 Consumptive Use Water Requirement File (\*.ddc)

This file contains the time series of monthly irrigation water requirements for structures whose efficiency varies through the simulation. Irrigation water requirements are generated by StateCU.

In the South Platte Model, the some irrigation structures were included in the StateCU analysis, but removed from the \*.ddc for the StateMod analysis. These structures do not have representative acreage assigned to them, therefore, do not have representative efficiency. By removing them from the \*.ddc file, the efficiency values set in the \*.dds will be used in StateMod. Generally, this occurs for structures that are located in municipal areas and supply golf course, parks, cemeteries, etc. For a list of structures and further explanation, refer to Section 4.5.2.1.

# 5.6 Reservoir Files

This section includes files that define characteristics of the reservoir structures in the model: physical characteristics, evaporation parameters, historical contents, operational targets, and water rights.

### 5.6.1 Reservoir Station File (\*.res)

This file describes physical properties and some administrative characteristics of each reservoir simulated in the South Platte River Basin. It was assembled by StateDMI, using considerable amount of information provided in the commands file. Sixty-seven reservoirs are modeled explicitly, in addition to forty-nine aggregate recharge areas, sixteen aggregate stock ponds, and eleven aggregate reservoirs.

The modeled reservoirs are listed below in Table 5-6 with their capacity, their number of accounts or pools, and the evaporation station used to calculate evaporation (See Section 5.6.2).

Details on reservoirs that have more than two active accounts are provided in the subsections below. Details on water rights that are used to fill specific accounts, or are being set are described in Section 5.6.5.

| WDID      | Reservoir Name             | Capacity (AF) | # of<br>Accounts | Evaporation<br>Station |
|-----------|----------------------------|---------------|------------------|------------------------|
| 0203351   | Bull Reservoir             | 4,500         | 1                | 2                      |
| 0203379   | Aurora Reservoir           | 32,247        | 1                | 8-Lower                |
| 0203699   | West Gravel Lakes          | 3,400         | 4                | 7-Lower                |
| 0203700   | Thornton East Gravel Lakes | 17,500        | 2                | 2                      |
| 0203837   | Barr Lake                  | 32,000        | 2                | 2                      |
| 0203858   | Lower Latham Reservoir     | 6,212         | 1                | 2                      |
| 0203876   | Milton Reservoir           | 23,295        | 1                | 2                      |
| 0203903   | Standley Lake              | 42,734        | 6                | 7-Lower                |
| 02_ARP002 | WD 2 Aggregate Reservoir   | 71,259        | 1                | 2                      |

#### Table 5-6 Modeled Reservoirs

| WDID                       | Reservoir Name                               | Capacity (AF) | # of<br>Accounts | Evaporation<br>Station |
|----------------------------|----------------------------------------------|---------------|------------------|------------------------|
| 02_ASP002                  | WD 2 Aggregate Stock Pond                    | 1,251         | 1                | 2                      |
| 0200808_RB                 | Fulton WR Recharge Area                      | 4,164         | 1                | 2                      |
| 0200808_RC                 | Fulton Central WR Recharge Area              | 531           | 1                | 2                      |
| 0200808_RS                 | Fulton WR Recharge Area                      | 1,630         | 1                | 2                      |
| 0200810_RC                 | Brighton Central WR Recharge Area            | 43            | 1                | 2                      |
| 0200810_RS                 | Brighton WR Recharge Area                    | 491           | 1                | 2                      |
| 0200812_RC                 | Lupton Bottom Central WR Recharge<br>Area    | 1,501         | 1                | 2                      |
| 0200812_RS                 | Lupton Bottom WR Recharge Area               | 1,672         | 1                | 2                      |
| 0200813_RC                 | Platteville Central WR Recharge Area         | 242           | 1                | 2                      |
| 0200821_RS                 | Meadow Island No. 1 WR Recharge<br>Area      | 340           | 1                | 2                      |
| 0200824_R                  | Farmers Independent Recharge Area            | 1,000         | 1                | 2                      |
| 0200824_RC                 | Farmers Independent Central<br>Recharge Area | 587           | 1                | 2                      |
| 0200825_R                  | Hewes Cook Recharge Area                     | 1,000         | 1                | 2                      |
| 0200830_RC                 | Section No. 3 WR RA                          | 199           | 1                | 2                      |
| 0200837_RC                 | Highland WR RA                               | 1,846         | 1                | 2                      |
| 0202003_R                  | Ford Recharge Pit                            | 1,000         | 1                | 2                      |
| Phantom Standley<br>Lake   | Phantom Standley Lake                        | 427,34        | 5                | 7-Lower                |
| 0703010                    | Coors South Lakes                            | 9,911         | 1                | 7-Lower                |
| 0703308                    | Arvada Reservoir                             | 6,373         | 2                | 7-Lower                |
| 0703324                    | Ralston Reservoir                            | 11,820        | 1                | 7-Lower                |
| 0703336                    | Jim Baker Reservoir                          | 955           | 2                | 7-Lower                |
| 0703389                    | Coors North Lakes                            | 1,322         | 1                | 7-Lower                |
| 0704030                    | Guanella Reservoir                           | 2,325         | 1                | 8-Upper                |
| 0704354                    | Copeland Reservoir                           | 70            | 1                | 7-Lower                |
| ConMutualAGG <sup>A)</sup> | Consolidated Mutual Aggregate<br>Reservoir   | 12,475        | 1                | 7-Lower                |
| 07_ARP011                  | Upper WD 7 Aggregate Reservoir               | 8,143         | 1                | 7-Upper                |
| 07_ARP012                  | Lower WD 7 Aggregate Reservoir               | 35,768        | 1                | 7-Lower                |
| 07_ASP007                  | WD 7 Aggregate Stock Pond                    | 450           | 1                | 7-Lower                |
| 0803514                    | Chatfield Reservoir                          | 53,697        | 3                | 8-Lower                |
| 0803532                    | Cherry Creek Reservoir                       | 265,770       | 1                | 8-Lower                |
| 0803832                    | McLellan Reservoir                           | 5,959         | 2                | 8-Lower                |

| WDID                   | Reservoir Name                 | Capacity (AF) | # of<br>Accounts | Evaporation<br>Station |
|------------------------|--------------------------------|---------------|------------------|------------------------|
| 0803983                | Strontia Springs Reservoir     | 8,074         | 2                | 8-Lower                |
| 0804097                | South Platte Lake              | 6,389         | 1                | 8-Lower                |
| 08_ARP013              | WD 8 Aggregate Reservoir       | 32,402        | 1                | 8-Upper                |
| 08_ASP008              | WD 8 Aggregate Stock Pond      | 22,537        | 1                | 8-Lower                |
| 0903501                | Marston Reservoir              | 20,103        | 2                | 8-Lower                |
| 0903999                | Bear Lake                      | 8,992         | 1                | 9-Lower                |
| 2303904                | Antero Reservoir               | 23,746        | 3                | 23                     |
| 2303965                | Eleven Mile Reservoir          | 106,558       | 1                | 23                     |
| 2303981                | Jefferson Lake Reservoir       | 2,200         | 1                | 23                     |
| 2304013                | Spinney Mountain Reservoir     | 53,900        | 3                | 23                     |
| 23_ARP016              | WD 23 Aggregate Reservoir      | 16,898        | 1                | 23                     |
| 23_ASP010              | WD 23 Aggregate Stock Pond     | 3,258         | 1                | 23                     |
| 8003550                | Cheesman Reservoir             | 79,064        | 1                | 80                     |
| 80_ARP019              | WD 80 Aggregate Reservoir      | 6,749         | 1                | 80                     |
| 80_ASP012              | WD 80 Aggregate Stock Pond     | 133           | 1                | 80                     |
| 0604172                | Barker Reservoir               | 12,125        | 2                | 6-Upper                |
| 0604173                | Baseline Reservoir             | 5,380         | 2                | 6-Lower                |
| 0604185                | Panama Reservoir               | 4,989         | 1                | 6-Lower                |
| 0604187                | Six Mile Reservoir             | 1,550         | 1                | 6-Lower                |
| 0604199                | Gross Reservoir                | 43,591        | 1                | 6-Upper                |
| 0604212                | Marshall Lake                  | 9,952         | 2                | 6-Lower                |
| 0604214                | McKay Lake                     | 1,245         | 1                | 6-Lower                |
| 06_VALMT <sup>B)</sup> | Valmont Reservoir System       | 11,234        | 1                | -                      |
| 06_WSHED <sup>C)</sup> | Combined Watershed Reservoir   | 7,259         | 2                | 6-Upper                |
| 06_ARP009              | WD 6 Upper Aggregate Reservoir | 1,245         | 1                | 6-Upper                |
| 06_ARP010              | WD 6 Lower Aggregate Reservoir | 7,327         | 1                | 6-Lower                |
| 06_ASP006              | WD 6 Aggregate Stock Pond      | 1,548         | 1                | 6-Lower                |
| 0503905                | Union Reservoir                | 13,089        | 2                | 5-Lower                |
| 0504010                | Button Rock Reservoir          | 16,400        | 1                | 5-Lower                |
| 0504015                | Gold Lake                      | 454           | 1                | 5-Upper                |
| 0504020                | Beaver Park Reservoir          | 2,400         | 2                | 5-Upper                |
| 0504032                | Highland Reservoir No. 2       | 3,713         | 1                | 5-Lower                |
| 0504037                | Highland Reservoir No. 1       | 1,033         | 2                | 5-Lower                |
| WDID                    | Reservoir Name                     | Capacity (AF) | # of<br>Accounts | Evaporation<br>Station |
|-------------------------|------------------------------------|---------------|------------------|------------------------|
| 0504038                 | Highland Reservoir No. 3           | 1,430         | 2                | 5-Lower                |
| 0504071                 | Foothills Reservoir                | 4,350         | 2                | 5-Lower                |
| 0504073                 | McIntosh Reservoir                 | 2,550         | 2                | 5-Lower                |
| 0504077                 | Allen Lake Reservoir               | 704           | 1                | 5-Lower                |
| 0504488                 | Left Hand Valley Reservoir         | 1,626         | 1                | 5-Lower                |
| 0504515                 | Boulder Reservoir                  | 13,100        | 2                | 5-Lower                |
| 05_ARP007               | Upper WD 5 Aggregate Reservoir     | 4,947         | 1                | 5-Upper                |
| 05_ARP008               | Lower WD 5 Aggregate Reservoir     | 65,790        | 1                | 5-Lower                |
| 05_ASP005               | WD 5 Aggregate Stock Pond          | 730           | 1                | 5-Lower                |
| 0403659                 | Loveland Municipal Reservoir       | 8,696         | 3                | 4-Lower                |
| 0404110RS <sup>D)</sup> | Greeley Loveland Reservoir System  | 70,496        | 2                | 4-Lower                |
| 0404128                 | Lake Estes                         | 3,007         | 2                | 4-Upper                |
| 0404137RS <sup>E)</sup> | Home Supply Ditch Reservoir System | 2,0427        | 4                | 4-Lower                |
| 0404138RS <sup>F)</sup> | Rist Benson Reservoir System       | 3,033         | 1                | 4-Lower                |
| 0404146RS <sup>G)</sup> | Handy Ditch Reservoir System       | 15,014        | 1                | 4-Lower                |
| 0404156                 | Ish Reservoir                      | 7,319         | 1                | 4-Lower                |
| 0404171RS <sup>H)</sup> | South Side Reservoir System        | 1,656         | 1                | 4-Lower                |
| 0404513                 | Carter Lake                        | 112,356       | 2                | 4-Lower                |
| 04_ARP005               | Upper WD 4 Aggregate Reservoir     | 11,169        | 2                | 4-Upper                |
| 04_ARP006               | Lower WD 4 Aggregate Reservoir     | 73,083        | 1                | 4-Lower                |
| 04_ASP004               | WD 4 Aggregate Stock Pond          | 11,71         | 1                | 4-Lower                |
| 0103570                 | Bijou Reservoir No. 2              | 7,600         | 1                | 1-Lower                |
| 0103592                 | Horse Creek Reservoir              | 22,555        | 1                | 2                      |
| 0103651 <sup>I)</sup>   | Riverside Reservoir                | 74,000        | 2                | 1-Lower                |
| 0103816                 | Empire Reservoir                   | 37,800        | 1                | 1-Lower                |
| 0103817                 | Jackson Lake Reservoir             | 36,195        | 8                | 1-Lower                |
| 01_ARP001               | WD 1 Aggregate Reservoir           | 89,743        | 1                | 1-Lower                |
| 01_ASP001               | WD 1 Aggregate Stock Pond          | 52,514        | 1                | 1-Lower                |
| 0102513_Rn              | N Rothe Recharge Res               | 93            | 1                | 1-Lower                |
| 0102513_Rs              | S Rothe Recharge Res               | 272           | 1                | 1-Lower                |
| 0102518_R               | Pioneer Recharge Res               | 684           | 1                | 1-Lower                |
| 0102522_R               | Riverside Recharge Res             | 31,409        | 1                | 1-Lower                |
| 0102528_R               | Ft Morgan Canal Recharge Res       | 16,500        | 1                | 1-Lower                |

| WDID       | Reservoir Name                   | Capacity (AF) | # of<br>Accounts | Evaporation<br>Station |
|------------|----------------------------------|---------------|------------------|------------------------|
| 0102529_R  | Upper PB Recharge Res            | 14,400        | 1                | 1-Lower                |
| 0102535_R  | Lower PB Recharge Res            | 19,800        | 1                | 1-Lower                |
| 0103339_R  | Bijou Aug Recharge Res           | 50,700        | 1                | 1-Lower                |
| 6403551    | North Sterling Reservoir         | 74,590        | 3                | 64                     |
| 6403552    | Prewitt Reservoir                | 32,164        | 20               | 64                     |
| 6403906    | Julesburg Reservoir              | 28,200        | 1                | 64                     |
| 64_ARP001  | WD 64 Aggregate Reservoir        | 17,952        | 1                | 64                     |
| 64_ASP001  | WD 64 Aggregate Stock Pond       | 6,195         | 1                | 64                     |
| 6402515    | Sterling Recharge Area           | 1,434         | 1                | 64                     |
| 6402517_R  | Sedgwick JID Seep Recharge Area  | 240           | 1                | 64                     |
| 6402517_RP | Sedgwick Peterson Recharge Area  | 136           | 1                | 64                     |
| 6402517_RS | Sedgwick S Res Recharge Area     | 18            | 1                | 64                     |
| 6402518_R  | Harmony Recharge Res             | 3,100         | 1                | 64                     |
| 6402519_R  | Dinsdale Recharge Res            | 2,000         | 1                | 64                     |
| 6402525_R  | Condon Recharge Res              | 7,800         | 1                | 64                     |
| 6402526_R  | Sterling Recharge Res            | 15,500        | 1                | 64                     |
| 6402536_R  | LLWUA Recharge Res               | 860           | 1                | 64                     |
| 6402536_RB | LL Bravo Recharge Res            | 2,850         | 1                | 64                     |
| 6402536_RH | LL UHD Recharge Res              | 610           | 1                | 64                     |
| 6402536_RI | LL IPV Recharge Res              | 3,000         | 1                | 64                     |
| 6402539_R  | LWU Recharge Res                 | 550           | 1                | 64                     |
| 6402539_RC | LWU Schneider Recharge           | 880           | 1                | 64                     |
| 6402539_RF | LWU Farmers Recharge Res         | 6,150         | 1                | 64                     |
| 6402539_RP | LWU South Platte Recharge Res    | 5,000         | 1                | 64                     |
| 6402539_RS | LWU Springdale Recharge Res      | 3,450         | 1                | 64                     |
| 6402539_RT | LWU Sterling Recharge Res        | 1,350         | 1                | 64                     |
| 6402540_R  | Lowline Recharge Res             | 2,450         | 1                | 64                     |
| 6402542_R  | LSP Recharge Res                 | 300           | 1                | 64                     |
| 6402542_RH | LSP Heyborne Recharge Res        | 430           | 1                | 64                     |
| 6402542_RL | LSP Liddle Recharge Res          | 420           | 1                | 64                     |
| 6402542_RP | LSP Peterson Recharge Res        | 2,100         | 1                | 64                     |
| 6403392_R  | N. Sterling Recharge Res         | 7,800         | 1                | 64                     |
| 6400525_A  | Henderson Smith WR Recharge Area | 3,381         | 1                | 64                     |

| WDID                                                                                                                                                                                                                                                                                                                                                                                         | Reservoir Name                                                                                                                                                                                                                                                                                                                                                  | Capacity (AF)                                                                                                           | # of<br>Accounts | Evaporation<br>Station |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------|------------------------|
| 6400528_A                                                                                                                                                                                                                                                                                                                                                                                    | Sterling No1 WR Recharge Area                                                                                                                                                                                                                                                                                                                                   | WR Recharge Area 2,990 1 64                                                                                             |                  | 64                     |
| <ul> <li><sup>A)</sup> Includes Maple Gr</li> <li><sup>B)</sup> Includes Valmont</li> <li><sup>C)</sup> Includes Green La</li> <li><sup>D)</sup> Includes Lake Lov</li> <li><sup>E)</sup> Includes Lone Tre</li> <li><sup>F)</sup> Includes Rist Bens</li> <li><sup>G)</sup> Includes Hertha R</li> <li><sup>H)</sup> Includes Ryan Gul</li> <li><sup>I)</sup> Includes Vancil Re</li> </ul> | ove Reservoir, Fairmount Reservoir, and<br>Lake Reservoir, Legett Reservoir, and Hill<br>ke Reservoirs 1 – 3, Albion Lake, Goose La<br>eland, Horseshoe Lake, and Boyd Lake<br>e Reservoir, Lone Hagler Reservoir, and N<br>on Reservoir, Donath Reservoir, and Fairp<br>eservoir, Coleman Reservoir, Welch Rese<br>ch Lake and South Side Reservoir<br>servoir | Welton Reservoir<br>crest Reservoir<br>ake, Island Lake, a<br>fariano Reservoir<br>port Reservoir<br>rvoir, and Lovelar | nd Silver Lak    | e                      |

Note Phantom Standley Lake is not a real reservoir; it is included in the model for operational purposes. See Section 5.6.1.4.2 for more information.

## 5.6.1.1 Key Reservoirs

Parameters related to the physical attributes of key reservoirs include inactive storage, where applicable, total storage, area-capacity data, applicable evaporation/precipitation stations, and initial reservoir contents. For explicitly modeled reservoirs, storage and area-capacity information were obtained from either the Division Engineer or the reservoir owners. Initial contents for all reservoirs were set to the December 1949 end-of-month contents. If the end-of-month content for December 1949 data was filled, the initial content was set to 75 percent of the filled value. If the December 1949 end-of month content was set to 75 percent of the January 1950 end-of-month contents. The initial contents were prorated to reservoir accounts based on account size.

Administrative information includes reservoir account ownership, administrative fill date, and evaporation charge specifications. This information was obtained from interviews with the Division Engineer, local water commissioners, and the owner/operator of the individual reservoirs.

# 5.6.1.2 Aggregate Reservoirs and Stock Ponds

The amount of storage for aggregate reservoirs and stock ponds is based on storage decrees and SPDSS Task 69 Memorandum. For more details on the approach to creating aggregate reservoirs and stock ponds, refer to Section 4.2.2.2 Initial contents were set to capacity.

## 5.6.1.3 Aggregate Recharge Areas

The amount of storage for the aggregate recharge areas is based on the sum of the individual recharge pit capacities provided for in the decrees. The model ID's contain the associated augmentation structure followed by \_\_R\*. All of the modeled recharge areas are located in Water Districts 1, 2, and 64.

#### *5.6.1.4 Reservoir Account Descriptions*

Account descriptions are provided below for reservoirs that have two or more active accounts. Reservoirs that have an active account and a dead pool account are not included.

## 5.6.1.4.1 West Gravel Lakes

West Gravel Lakes is located along the Lower Clear Creek Ditch system and is represented in the SPDSS model in aggregate with the smaller Brannan Lakes (560 af capacity). The City stores water under its storage rights along with supply associated with some its changed water rights in various Clear Creek ditch companies. Additional uses of the reservoir include the storage of Bypass Water attributed to diversions by Coors and Golden for inside uses during the Croke season (see Section 5.10.8.10.79).

| Account          | Storage Amount<br>(AF) |
|------------------|------------------------|
| Coors Bypass     | 2,758                  |
| Golden Bypass    | 1,113                  |
| Thornton One Use | 3,400                  |
| Thornton Reuse   | 3,400                  |

The reservoir is modeled with the following four accounts:

## 5.6.1.4.2 Standley Lake

Standley Lake is an agricultural reservoir filled with water rights from Clear Creek and other smaller tributary creeks. Standley Lake water historically supplied agricultural users in the Big Dry Creek Basin as part of the Farmers Reservoir Irrigation Company (FRICO) Standley Lake division.

Standley Lake is primarily filled from Clear Creek via the Croke Canal, located downstream of the City of Golden. Water from Clear Creek can also be conveyed into the reservoir via the Church Ditch and the Farmers' Highline Canal.

FRICO Standley shares have been purchased and changed by three major municipalities – the Cities of Northglenn, Westminster, and Thornton. The three municipalities (see SPDSS Task 5 memo on the "Standley Lake Cities") and FRICO irrigators use their respective accounts in Standley Lake. Northglenn and Westminster store all their water in Standley Lake and then make releases to municipal pipelines out of the reservoir. Thornton uses water from Standley Lake as its primary supply during the winter but may store its FRICO share water in West Gravel Lakes and Standley Lake.

The reservoir is modeled with the following four accounts based on the user's pro rata share ownership:

Account Storage Amount

|             | (AF)   |
|-------------|--------|
| Westminster | 21,985 |
| Northglenn  | 6,532  |
| FRICO       | 2,288  |
| Thornton    | 12,929 |

Clear Creek operations are fairly complex with multiple M&I interests competing for water supply with irrigation users. The feeder canals to Standley Lake are also used by other water users to convey changed share water to their respective facilities. To maximize the use of storage space in Standley Lake, the four account holders have operated under a 4-Way Agreement since the late-1970s. The 4-Way Agreement allows a user to temporarily store water in others' accounts subject to the account owners' need of its account capacity. A dummy reservoir (ID PhantomStand) is modeled with the follow five accounts to represent the shared use of Standley Lake storage:

| Account    | Storage Amount<br>(AF) |
|------------|------------------------|
| WestyNgIn  | 21,985                 |
| WestyFRICO | 21,985                 |
| ThornWesty | 12,929                 |
| ThornNglen | 12,929                 |
| ThornFRICO | 12,929                 |

The account names (e.g., WestyNgln) represent the account owner (Westy) and entity (Ngln) temporarily using space in that account. Water is booked into and out of the Standley Lake and Phantom Reservoir accounts during each time step to operate the 4-Way Agreement (see Section 5.10.8.10).

## 5.6.1.4.3 Chatfield Reservoir

Chatfield Reservoir was completed in 1973 and inundated ditches that diverted from the South Platte River and Plum Creek. The disposition of the water rights in these ditches (City Ditch, Last Chance Ditch, and Nevada Ditch – aka the Manifold Ditches) is a bit confusing since the rights and ditches were moved over time, transferred back and forth, portions changed, portions abandoned, etc. The Manifold Ditch water ditches are owned primarily by Denver Water and the Cities of Aurora and Englewood. Denver Water actively uses its account in Chatfield Reservoir for storage of changed rights and reusable effluent and as a native source of Denver Water's South Platte River in its integrated Front Range / western slope water supply.

| Account  |
|----------|
| ish Pool |

The reservoir is modeled with the following three accounts:

| Denver Water | 11,134 |
|--------------|--------|
| USCOE        | 26,269 |

#### 5.6.1.4.4 Antero Reservoir

Antero Reservoir is the highest elevation storage unit in Denver Water Board's infrastructure. The lake is relatively shallow and is subject to reasonably high evaporation losses from its exposed surface area. Denver Water typically operates Antero Reservoir as a drought supply.

The reservoir is modeled with the following three accounts:

| Account      | Storage Amount<br>(AF) |
|--------------|------------------------|
| Dead Pool    | 55                     |
| Denver Water | 19,826                 |
| Flood Pool   | 3,865                  |
|              |                        |

#### 5.6.1.4.5 Spinney Mountain Reservoir

Spinney Mountain is an on-channel reservoir on the South Platte River. Spinney Mountain Reservoir (completed in 1981) provides the City of Aurora with high basin storage to manage its transmountain supplies. The reservoir is modeled with the following three accounts:

| Account      | Storage Amount<br>(AF) |
|--------------|------------------------|
| Dead Pool    | 5,000                  |
| One Time Use | 48,900                 |
| Reuse        | 48,900                 |

#### 5.6.1.4.6 Barker Reservoir (0604172)

The City of Boulder owns and operates Barker Reservoir. Barker Reservoir provides municipal supply to the City of Boulder as well as water to a downstream hydroelectric power generation facility. The reservoir is modeled with the following two accounts:

| Account    | Storage Amount<br>(AF) |
|------------|------------------------|
| Municipal  | 8,125                  |
| Hydropower | 4,000                  |

### 5.6.1.4.7 Baseline Reservoir (0604173)

Baseline Reservoir provides water primarily for two municipalities – the City of Boulder and the City of Lafayette. Lafayette owns a large portion of Baseline Reservoir. While some water is leased from Baseline Reservoir to irrigators in District 6, those leases are inconsistent and were not modeled. The reservoir is modeled with the following two accounts:

| Account             | Storage Amount<br>(AF) |
|---------------------|------------------------|
| Lafayette Municipal | 4,849                  |
| Boulder Municipal   | 531                    |

## 5.6.1.4.8 Combined Watershed Reservoir (06\_WSHED)

The Watershed Reservoirs consist of 7 individual reservoirs: Silver Lake, Island Lake, Lake Albion, Goose Lake and Green Lakes 1, 2 and 3. They are owned by the City of Boulder. These reservoirs are operated together and are treated as one in this model. Some of the storage is dedicated to meeting minimum streamflows with the remainder used for direct municipal use.

| Account        | Storage Amount<br>(AF) |
|----------------|------------------------|
| Municipal      | 3,917                  |
| Min Streamflow | 3,342                  |

## 5.6.1.4.9 Beaver Park Reservoir (0504020)

Beaver Park Reservoir has two owners. Supply Ditch holds 51 percent ownership and Highland Ditch owns the remaining 49 percent. The owners are modeled with separate accounts. Water to each owner is only available from their account.

| Account         | Storage Amount<br>(AF) |
|-----------------|------------------------|
| Highland System | 1,176                  |
| Supply Ditch    | 1,224                  |

## 5.6.1.4.10 Union Reservoir (0503905)

Union Reservoir serves multiple users. The Operational Pool is available to the City of Longmont, to meet demands via exchange. The RFO's account is available to Central Well Augmentation Plan, located downstream of the confluence of the St. Vrain and the South Platte River.

| Account          | Storage Amount<br>(AF) |
|------------------|------------------------|
| Operational Pool | 6,544                  |

## 5.6.1.4.11 Loveland Municipal Reservoir (0403659)

Loveland Municipal Reservoir stores municipal supply for the City of Loveland. Currently, the City of Loveland indoor and outdoor municipal demands are the only users of the reservoir. The Loveland and Reuse account is a placeholder for future modeling operations. The reservoir is modeled with the following accounts:

| Account            | Storage Amount<br>(AF) |
|--------------------|------------------------|
| Loveland           | 8,646                  |
| Dead Pool          | 50                     |
| Loveland and Reuse | 8,646                  |

## 5.6.1.4.12 Home Supply Ditch Reservoir System (0404173RS)

The Home Supply Ditch Reservoir System combines the storage capacity of three reservoirs: Lon Hagler, Lone Tree, and Mariano. Separate accounts are maintained because different water rights are used to fill different reservoirs and the reservoirs release to some separate demands. The reservoir is modeled with the following accounts:

| Account |            | Storage Amount |
|---------|------------|----------------|
| Account |            | (AF)           |
|         | Dead Pool  | 735            |
|         | Lon Hagler | 5148           |
|         | Lone Tree  | 9068           |
|         | Mariano    | 5476           |

#### 5.6.1.4.13 Jackson Lake Reservoir

Jackson Lake Reservoir is an off-channel reservoir which receives water from the Lower South Platte River and stores it for primarily for irrigation. Fort Morgan has majority ownership in the reservoir and utilizes its storage supply to supplement direct flow diversions. The reservoir is modeled with the following accounts:

| Account                 | Storage Amount<br>(AF) |
|-------------------------|------------------------|
| Ft. Morgan              | 22,912                 |
| Lower Platte and Beaver | 5,829                  |
| Upper Platte and Beaver | 2,123                  |
| Misc.                   | 1,820                  |

| Riverside    | 640   |
|--------------|-------|
| Deuel Snyder | 236   |
| Bijou        | 135   |
| Dead Pool    | 2,500 |

#### 5.6.1.4.14 North Sterling Reservoir

North Sterling Reservoir is an off-channel reservoir in Water District 64 that diverts water from the South Platte River by the North Sterling Canal, which originates in Water District 1. Storage water is either released to the North Sterling Outlet Canal for irrigation of lands within the district or for recharge/augmentation. The reservoir is modeled with the following accounts:

| Account                      | Storage Amount<br>(AF) |
|------------------------------|------------------------|
| Irrigation                   | 55,590                 |
| Recharge, Aug,<br>Irrigation | 15,000                 |
| Dead Pool                    | 4,000                  |

## 5.6.1.4.15 Prewitt Reservoir

Prewitt Reservoir is an off-channel reservoir located on the south side of the lower South Platte River. Water is conveyed to the reservoir for storage through the Prewitt Inlet Canal, which originates in Water District 1. Water from the reservoir is released into the Prewitt Outlet Canal for delivery to multiple downstream ditch accounts. The reservoir is modeled with the following accounts:

| Account             | Storage Amount |
|---------------------|----------------|
| Account             | (AF)           |
| South Platte Ditch  | 1,133          |
| Pawnee Canal        | 7,859          |
| Davis Bros. Ditch   | 1,380          |
| Springdale Ditch    | 3,869          |
| Schneider Ditch     | 290            |
| Unattached W        | 50             |
| Bravo Farmer        | 1,399          |
| Iliff Platte        | 3,977          |
| Lone Tree Ditch     | 524            |
| Powell Ditch        | 1,682          |
| Harmony No. 1       | 4,077          |
| Ramsey Ditch        | 119            |
| Sterling No. 2      | 411            |
| Bijou Canal         | 150            |
| Upper Platte Beaver | 1,761          |
| Lower Platte Beaver | 1,826          |
| Johnson Edwards     | 249            |

| Deuel Snyder | 100 |
|--------------|-----|
| Augmentation | 666 |
| Unknown WD1  | 642 |

#### 5.6.2 Net Evaporation File (\*.eva)

The evaporation file contains monthly average evaporation data (12 values that are applied in every year). The annual net reservoir evaporation was estimated by subtracting the weighted average effective monthly precipitation from the estimated gross monthly free water surface evaporation. Annual estimates of gross free water surface evaporation were taken from the National Oceanic and Atmospheric Administration (NOAA) Technical Report NWS 33. The annual estimates of evaporation were distributed to monthly values based on elevation through the distributions listed in Table 5-7. These monthly distributions are used by the State Engineer's Office.

| Month | Greater than<br>6,500 feet | Less than<br>6,500 feet |  |  |
|-------|----------------------------|-------------------------|--|--|
| Jan   | 3.0                        | 1.0                     |  |  |
| Feb   | 3.5                        | 3.0                     |  |  |
| Mar   | 5.5                        | 6.0                     |  |  |
| Apr   | Apr 9.0                    |                         |  |  |
| May   | 12.0                       | 12.5                    |  |  |
| Jun   | 14.5                       | 15.5                    |  |  |
| Jul   | 15.0                       | 16.0                    |  |  |
| Aug   | 13.5                       | 13.0                    |  |  |
| Sep   | 10.0                       | 11.0                    |  |  |
| Oct   | 7.0                        | 7.5                     |  |  |
| Nov   | 4.0                        | 4.0                     |  |  |
| Dec   | 3.0                        | 1.5                     |  |  |

Table 5-7Monthly Distribution of Evaporation as a Function of Elevation (percent)

The less than 6,500 feet distribution was used for Water Districts 2, 64, and the lower portions of Water Districts 1, 3, 4, 5, 6, 7, 8, and 9. The greater than 6,500 feet distribution was used for the upper portions of Water Districts 1, 3, 4, 5, 6, 7, 8, 9 and all of Water Districts 23, 47, 76, and 80. The resulting average monthly gross reservoir evaporation estimates, in inches, are shown in Table 2.

| Station | Jan   | Feb  | Mar  | Apr  | May  | Jun  | Jul  | Aug  | Sep  | Oct  | Nov  | Dec   | Total |
|---------|-------|------|------|------|------|------|------|------|------|------|------|-------|-------|
| 1-Upper | 0.07  | 0.93 | 1.52 | 2.25 | 3.17 | 4.81 | 4.46 | 3.11 | 3.59 | 2.40 | 1.09 | 0.26  | 27.67 |
| 1-Lower | 1.18  | 1.47 | 1.86 | 3.12 | 3.56 | 4.73 | 4.75 | 4.54 | 3.48 | 2.61 | 1.50 | 1.17  | 33.96 |
| 2       | 0.90  | 1.19 | 1.44 | 2.37 | 2.81 | 4.57 | 5.12 | 4.73 | 3.23 | 2.19 | 1.07 | 0.94  | 30.55 |
| 3-Upper | -0.31 | 0.30 | 0.44 | 1.00 | 1.95 | 3.68 | 3.35 | 2.69 | 2.44 | 1.65 | 0.36 | -0.10 | 17.46 |
| 3-Lower | 0.75  | 1.04 | 1.16 | 1.92 | 2.18 | 3.89 | 4.44 | 4.12 | 2.76 | 1.86 | 0.87 | 0.79  | 25.78 |

Table 5-8. Average Monthly Gross Evaporation Distribution (inches)

| Station | Jan   | Feb   | Mar   | Apr  | May  | Jun   | Jul  | Aug  | Sep  | Oct  | Nov   | Dec   | Total |
|---------|-------|-------|-------|------|------|-------|------|------|------|------|-------|-------|-------|
| 4-Upper | -0.19 | 0.33  | 0.64  | 1.09 | 1.30 | 3.01  | 2.38 | 1.66 | 2.03 | 1.46 | 0.46  | -0.15 | 14.02 |
| 4-Lower | 0.73  | 0.93  | 0.90  | 1.62 | 2.00 | 3.83  | 4.61 | 3.85 | 2.50 | 1.80 | 0.79  | 0.66  | 24.22 |
| 5-Upper | -0.96 | -0.18 | -0.25 | 0.34 | 1.25 | 3.28  | 2.97 | 1.99 | 1.95 | 1.31 | -0.18 | -0.70 | 10.79 |
| 5-Lower | 0.72  | 0.92  | 0.87  | 1.58 | 1.94 | 3.79  | 4.58 | 3.82 | 2.47 | 1.78 | 0.77  | 0.65  | 23.89 |
| 6-Upper | -0.54 | 0.11  | 0.16  | 0.65 | 1.71 | 3.39  | 2.54 | 1.12 | 1.89 | 1.25 | 0.16  | -0.59 | 11.85 |
| 6-Lower | 0.60  | 0.68  | 0.59  | 1.39 | 1.94 | 3.385 | 4.22 | 3.77 | 2.44 | 1.63 | 0.50  | 0.56  | 22.17 |
| 7-Upper | -0.48 | 0.18  | 0.31  | 0.85 | 1.92 | 3.57  | 2.79 | 1.39 | 2.06 | 1.37 | 0.25  | -0.50 | 13.72 |
| 7-Lower | 0.70  | 0.84  | 0.86  | 1.71 | 2.20 | 3.88  | 4.25 | 3.78 | 2.66 | 1.83 | 0.67  | 0.68  | 24.06 |
| 8-Upper | -0.02 | 0.57  | 1.03  | 1.90 | 2.87 | 4.35  | 3.71 | 2.49 | 3.06 | 1.88 | 0.78  | 0.03  | 22.63 |
| 8-Lower | 0.75  | 0.86  | 0.93  | 2.14 | 2.75 | 4.28  | 4.15 | 3.73 | 3.02 | 1.96 | 0.87  | 0.69  | 26.13 |
| 9-Upper | -0.23 | 0.19  | 0.35  | 0.89 | 1.52 | 3.35  | 3.33 | 2.19 | 2.40 | 1.40 | 0.39  | -0.20 | 15.57 |
| 9-Lower | 0.71  | 0.85  | 0.86  | 1.72 | 2.21 | 3.91  | 4.29 | 3.82 | 2.68 | 1.85 | 0.68  | 0.69  | 24.27 |
| 23      | 0.11  | 0.77  | 1.55  | 2.46 | 3.32 | 4.33  | 3.22 | 1.67 | 2.80 | 1.90 | 1.04  | 0.16  | 23.33 |
| 47      | -0.64 | 0.17  | 1.06  | 1.80 | 2.41 | 3.95  | 3.69 | 2.67 | 2.13 | 1.37 | 0.21  | -0.47 | 18.35 |
| 48      | -0.41 | 0.18  | 0.17  | 0.65 | 1.54 | 3.38  | 2.97 | 2.37 | 2.19 | 1.49 | 0.19  | -0.20 | 14.51 |
| 64      | 1.16  | 1.43  | 1.88  | 3.17 | 3.14 | 4.50  | 4.82 | 4.87 | 3.79 | 2.54 | 1.47  | 1.17  | 33.93 |
| 76      | -0.24 | 0.43  | 0.70  | 1.37 | 2.42 | 4.19  | 3.91 | 3.14 | 2.81 | 1.91 | 0.53  | -0.02 | 21.15 |
| 80      | -0.09 | 0.42  | 0.68  | 1.11 | 1.99 | 3.61  | 2.66 | 1.63 | 2.35 | 1.37 | 0.55  | -0.09 | 16.19 |

Note, Water Districts 3, 47, 48, and 76 are not included in the South Platte Model.

# Where to find more information

• SPDSS Task Memorandum 53.3, "Assign Key Climate Information to Irrigated Acreage and Reservoirs," available on the CDSS website.

# 5.6.3 End-Of-Month Content File (\*.eom)

The end-of-month content file contains historical end-of-month storage contents for reservoirs in the reservoir station file. The historical EOM reservoir contents in this file are used by StateMod when estimating baseflow to reverse the effects of reservoir storage and evaporation on gaged streamflows, and to produce comparison output useful for calibration. The file was created by TSTool, which reads data from HydroBase and filled missing data with a variety of user-specified algorithms.

## 5.6.3.1 Key Reservoirs

Data for the South Platte Model key reservoirs was primarily generated by converting daily observations stored in HydroBase to month-end data, supplemented by user-provided data. Missing end-of-month contents were filled by interpolation, the average of available values for months with the same hydrologic condition, and remaining missing values were filled with historical average monthly values. For reservoirs with little or no historical data, available end-of-month contents were set to reservoir capacity. Table 5-9 presents the on-line date for each reservoir and the primary data source for end-of-month contents. Historical contents in the \*.eom file were set to zero prior to the on-line date.

| WDID                       | Reservoir Name                             | On-Line Date | Primary Data<br>Source            |
|----------------------------|--------------------------------------------|--------------|-----------------------------------|
| 0203351                    | Bull Reservoir                             | 1984         | HydroBase Daily                   |
| 0203379                    | Aurora Reservoir                           | 1990         | Aurora Water                      |
| 0203699                    | West Gravel Lakes                          | 1982         | HydroBase Daily                   |
| 0203700                    | Thornton East Gravel Lakes                 | 1994         | HydroBase Daily                   |
| 0203837                    | Barr Lake                                  | Pre-1950     | FRICO                             |
| 0203858                    | Lower Latham Reservoir                     | Pre-1950     | Lower Latham<br>Reservoir Company |
| 0203876                    | Milton Reservoir                           | Pre-1950     | FRICO                             |
| 0203903                    | Standley Lake                              | Pre-1950     | HydroBase Daily                   |
| 0703010                    | Coors South Lakes                          | 1978         | HydroBase Daily                   |
| 0703308                    | Arvada Reservoir                           | 1982         | HydroBase Daily                   |
| 0703324                    | Ralston Reservoir                          | Pre-1950     | HydroBase Daily                   |
| 0703336                    | Jim Baker Reservoir                        | 1994         | HydroBase Daily                   |
| 0703389                    | Coors North Lakes                          | 1978         | HydroBase Daily                   |
| 0704030                    | Guanella Reservoir                         | 2003         | HydroBase Daily                   |
| 0704354                    | Copeland Reservoir                         | Pre-1950     | Set to capacity                   |
| ConMutualAGG <sup>A)</sup> | Consolidated Mutual<br>Aggregate Reservoir | 1953         | HydroBase Daily                   |
| 0803514                    | Chatfield Reservoir                        | 1975         | Army Corps of<br>Engineers        |
| 0803532                    | Cherry Creek Reservoir                     | 1957         | HydroBase Daily                   |
| 0803832                    | McLellan Reservoir                         | 1964         | HydroBase Daily                   |
| 0803983                    | Strontia Springs Reservoir                 | 1982         | HydroBase Daily                   |
| 0804097                    | South Platte Lake                          | 2008         | HydroBase Daily                   |
| 0903501                    | Marston Reservoir                          | Pre-1950     | Denver Water                      |
| 0903999                    | Bear Lake                                  | 1977         | Army Corps of<br>Engineers        |
| 2303904                    | Antero Reservoir                           | Pre-1950     | Denver Water                      |
| 2303965                    | Eleven Mile Reservoir                      | Pre-1950     | Denver Water                      |
| 2303981                    | Jefferson Lake Reservoir                   | Pre-1950     | HydroBase Daily                   |
| 2304013                    | Spinney Mountain Reservoir                 | 1981         | HydroBase Daily                   |

Table 5-9. Reservoir On-line Dates and EOM Contents Data Source

| WDID                    | Reservoir Name                        | On-Line Date | Primary Data<br>Source                    |
|-------------------------|---------------------------------------|--------------|-------------------------------------------|
| 8003550                 | Cheesman Reservoir                    | Pre-1950     | Denver Water                              |
| 0604172                 | Barker Reservoir                      | Pre-1950     | HydroBase Daily                           |
| 0604173                 | Baseline Reservoir                    | Pre-1950     | HydroBase Daily                           |
| 0604185                 | Panama Reservoir                      | Pre-1950     | HydroBase Daily                           |
| 0604187                 | Six Mile Reservoir                    | Pre-1950     | HydroBase Daily                           |
| 0604199                 | Gross Reservoir                       | 1957         | HydroBase Daily                           |
| 0604212                 | Marshall Lake                         | Pre-1950     | HydroBase Daily                           |
| 0604214                 | McKay Lake                            | Pre-1950     | HydroBase Daily                           |
| 06_VALMT <sup>B)</sup>  | Valmont Reservoir System              | Pre-1950     | HydroBase Daily                           |
| 06_WSHED <sup>C)</sup>  | Combined Watershed<br>Reservoir       | Pre-1950     | HydroBase Daily                           |
| 0503905                 | Union Reservoir                       | Pre-1950     | HydroBase Daily                           |
| 0504010                 | Button Rock Reservoir                 | 1969         | HydroBase Daily                           |
| 0504015                 | Gold Lake                             | Pre-1950     | HydroBase Daily                           |
| 0504020                 | Beaver Park Reservoir                 | Pre-1950     | HydroBase Daily                           |
| 0504032                 | Highland Reservoir No. 2              | Pre-1950     | HydroBase Daily                           |
| 0504037                 | Highland Reservoir No. 1              | Pre-1950     | HydroBase Daily                           |
| 0504038                 | Highland Reservoir No. 3              | Pre-1950     | HydroBase Daily                           |
| 0504071                 | Foothills Reservoir                   | 1950         | HydroBase Daily                           |
| 0504073                 | McIntosh Reservoir                    | Pre-1950     | HydroBase Daily                           |
| 0504077                 | Allen Lake Reservoir                  | Pre-1950     | HydroBase Daily                           |
| 0504488                 | Left Hand Valley Reservoir            | Pre-1950     | HydroBase Daily                           |
| 0504515                 | Boulder Reservoir                     | 1955         | Northern Water<br>Conservancy<br>District |
| 0403659                 | Loveland Municipal<br>Reservoir       | 1978 (check) | HydroBase Daily                           |
| 0404110RS <sup>D)</sup> | Greeley Loveland Reservoir<br>System  | Pre-1950     | HydroBase Daily                           |
| 0404128                 | Lake Esters                           | Pre-1950     | Northern Water<br>Conservancy<br>District |
| 0404137RS <sup>E)</sup> | Home Supply Ditch<br>Reservoir System | Pre-1950     | HydroBase Daily                           |
| 0404138RS <sup>F)</sup> | Rist Benson Reservoir<br>System       | Pre-1950     | HydroBase Daily                           |
| 0404146RS <sup>G)</sup> | Handy Ditch Reservoir<br>System       | Pre-1950     | HydroBase Daily                           |

| WDID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Reservoir Name              | On-Line Date | Primary Data<br>Source                    |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------|-------------------------------------------|--|
| 0404156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ish Reservoir               | Pre-1950     | HydroBase Daily                           |  |
| 0404171RS <sup>H)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | South Side Reservoir System | Pre-1950     | HydroBase Daily                           |  |
| 0404513                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Carter Lake                 | 1952         | Northern Water<br>Conservancy<br>District |  |
| 0103570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bijou Reservoir No. 2       | Pre-1950     | HydroBase Daily                           |  |
| 0103592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Horse Creek Reservoir       | Pre-1950     | HydroBase Daily                           |  |
| 0103651 <sup>I)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Riverside Reservoir         | Pre-1950     | HydroBase Daily                           |  |
| 0103816                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Empire Reservoir            | Pre-1950     | HydroBase Daily                           |  |
| 0103817                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Jackson Lake Reservoir      | Pre-1950     | HydroBase Daily                           |  |
| 6403551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | North Sterling Reservoir    | Pre-1950     | HydroBase Daily                           |  |
| 6403552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Prewitt Reservoir           | Pre-1950     | HydroBase Daily                           |  |
| 6403906                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Julesburg Reservoir         | Pre-1950     | HydroBase Daily                           |  |
| <ul> <li><sup>A)</sup> Includes Maple Grove Reservoir, Fairmount Reservoir, and Welton Reservoir</li> <li><sup>B)</sup> Includes Valmont Lake Reservoir, Legett Reservoir, and Hillcrest Reservoir</li> <li><sup>C)</sup> Includes Green Lake Reservoirs 1 – 3, Albion Lake, Goose Lake, Island Lake, and Silver Lake</li> <li><sup>D)</sup> Includes Lake Loveland, Horseshoe Lake, and Boyd Lake</li> <li><sup>E)</sup> Includes Lone Tree Reservoir, Lone Hagler Reservoir, and Mariano Reservoir</li> <li><sup>F)</sup> Includes Rist Benson Reservoir, Donath Reservoir, and Fairport Reservoir</li> <li><sup>G)</sup> Includes Hertha Reservoir, Coleman Reservoir, Welch Reservoir, and Loveland Reservoir</li> <li><sup>H)</sup> Includes Ryan Gulch Lake and South Side Reservoir</li> </ul> |                             |              |                                           |  |

#### 5.6.3.2 Aggregate Reservoirs, Stock Ponds, and Recharge Areas

Aggregate reservoirs and stock ponds were assigned contents equal to their capacity, because actual data was not available. Aggregate reservoirs are modeled as though in operation throughout the study period.

The aggregate recharge areas were assigned contents equal to zero, and fill based on operating rules.

## 5.6.4 Reservoir Target File (\*.tar)

The reservoir target file contains minimum and maximum target storage limits for reservoirs in the reservoir station file. The reservoir may not store more than the maximum target, or release to the extent that storage falls below the minimum target. For the SP2016.tar, the minimum targets were set to zero and the maximum targets were set to the end-of-month contents. This represents an initial step of calibration. It is recommended that future modeling efforts set the maximum targets

to capacity for water supply reservoirs. Flood control reservoirs will need special treatment in the future. This file was created by TSTool.

## 5.6.5 Reservoir Right File (\*.rer)

The reservoir right file contains water rights associated with each reservoir in the reservoir station file. Specifically, the parameters for each storage right include the reservoir, administration number, decreed amount, the account(s) to which exercise of the right accrues, and whether the right was used as a first or second fill. It is recommended for future updates that the StateDMI commands be run initially without the "set" commands. This allows the modeler to view any changes to water rights (transfers, conditional to absolute, abandonment, etc.) reflected in updated versions of HydroBase and modify the "set" commands as necessary.

Note that in order for off-channel reservoirs to be filled with their water rights, the water must be carried to the reservoir using operating rules. In StateMod, the account that the operation rule delivers the water to takes priority over what is set up in the \*.rer file. To gain a complete understanding of how reservoir rights are used to fill off-channel reservoirs, refer to the Operating Rule File (\*.opr) Section 5.10.

## 5.6.5.1 Key Reservoirs

In general, water rights for explicitly modeled reservoirs were taken from HydroBase and correspond to the State Engineer's official water rights tabulation. In addition, a few key reservoirs were assigned a "free water right", with an extremely junior administration number to allow storage under free river conditions.

#### 5.6.5.2 Aggregate Reservoirs

Aggregate reservoirs and stock ponds were assigned a decreed amount equal to their capacity, and an administration number 1.00000.

## 5.6.5.3 Special Reservoir Rights

The following section describes reservoirs that have water rights going to specific accounts (as opposed to all of the water rights filling all of the accounts). Details are also provided for water rights that are being set. Note that operating rules that have reservoir storage water rights as the source will take priority over the account settings in the \*.rer file. Refer to the Operating Rule File Section 5.10 below for a complete description of how reservoir accounts are filled, especially for off-channel reservoirs.

#### 5.6.5.3.1 Antero Reservoir

The reservoir is modeled with the following three water rights:

| Storage Right Name      | Storage Amount (AF) | Admin. Number | Account No.  |
|-------------------------|---------------------|---------------|--------------|
| Antero Res (2303904.01) | 85,564              | 21099.00000   | Accounts 1-2 |
| Antero Res (2303904.02) | 20,046              | 29219.00000   | Accounts 1-2 |
| Antero Res (2303904.03) | 3,865               | 29219.00000   | Account 3    |

According to Attachment A of the recently-completed Colorado River Cooperative Agreement (CRCA), Antero Reservoir has a first fill decree for 85,564 af (1907 priority) and a refill decree for 20,046 af (1929 priority). Denver Water generally does not divert under the 1907 priority, occasionally stores under the 1929 priority and more likely stores under its 1929 exchange right. Therefore, the senior right is turned off.

#### 5.6.5.3.2 Spinney Mountain Reservoir

The reservoir is modeled with the following water right:

| Storage Right Name | Acct. No.) | Storage Amount (AF) | Admin. Number |
|--------------------|------------|---------------------|---------------|
| Spinney Mountain   | (1 and 2)  | 86,000              | 45010.00000   |

The original right is for 86,000 af and 52,589 af of that is absolute. The maximum end-of-month contents recorded for the reservoir is 53,873 af. Therefore, the conditional portion of the original storage right is included in the model to provide legal right to water during simulation. Note also there is a 4,000 af Fill and Refill junior right that is conditional that is not included in the model.

#### 5.6.5.3.3 Eleven Mile Reservoir

The reservoir is modeled with the following four water rights for the one account represented in Eleven Mile Reservoir:

| Storage Right Name                     | Storage Amount (AF) | Admin. Number |
|----------------------------------------|---------------------|---------------|
| 11 Mile Reservoir                      | 81,917              | 27949.00000   |
| 11 Mile Reservoir Refill               | 81,917              | 29219.00000   |
| 11 Mile Reservoir 1 <sup>st</sup> Enl. | 15,862              | 39361.00000   |
| 11 Mile Reservoir 2 <sup>nd</sup> Enl. | 17,810              | 39424.00000   |

The junior right is a Refill right. The Eleven Mile Reservoir 2nd Enlargement right is conditional. The original and first enlargement rights total 97,779 af but the maximum end-of-month contents recorded for the reservoir is 106,558 af. Therefore, the conditional portion of the original storage right is included in the model to provide legal right to water during simulation.

#### 5.6.5.3.4 East Gravel Lakes

The reservoir is composed of multiple storage units and is modeled with the following three water rights:

| Storage Right Name | Storage Amount (AF) | Admin. Number |
|--------------------|---------------------|---------------|
| Tani Lake          | 3,928               | 47116.46368   |
| South Dahlia       | 1,230               | 51864.50687   |
| EGL Conditional    | 12,242              | 51864.50687   |

The first two rights are the absolute portions of the storage decrees for Tani and South Dahlia (5,158 af, total). There are also conditional storage rights for the interconnected gravel pits that make up the East Gravel Lakes. The following conditional rights total 12,342 af: East Gravel Lakes 4,072 af - 47116.46368; North Dahlia 3,500 af - 51864.00000; South Dahlia 3,270 af - 51864.00000; East Sprat Platte – 1,500 af, 51864.00000.

The maximum end-of-month contents recorded for the reservoir is 14,772 af. Therefore, the conditional storage rights are included in the model, in aggregate, to provide legal right to water during simulation. Note the administration number for the conditional right is set equal to the priority for the South Dahlia absolute storage so the absolute right would trigger first during model simulation.

#### 5.6.5.3.5 Bull Reservoir

The reservoir is modeled with the following two water rights:

| Storage Right Name | Storage Amount (AF) | Admin. Number |
|--------------------|---------------------|---------------|
| Bull Reservoir     | 8,232               | 46147.00000   |
| Bull Reservoir     | 761                 | 53482.00000   |

The senior right (1976 priority) is partially absolute; in the amount of 684 af. The 761 af junior right (1996 priority) is absolute. The maximum end-of-month contents recorded for the reservoir is 4,448 af. Therefore, the conditional portion of the senior storage right is included in the model to provide legal right to water during simulation.

#### 5.6.5.3.6 West Gravel Lakes and Brannan

The reservoir is modeled with the following two water rights:

| Storage Right Name           | Storage Amount (AF) | Admin. Number | Account No. |
|------------------------------|---------------------|---------------|-------------|
| WGL and Brannan (0203699.01) | 3600                | 48198.00000   | Account 3   |
| WGL and Brannan (0203699.02) | 945                 | 50477.00000   | Account 3   |

The storage rights above are assigned to the One Time Use account. Conditional amounts were included (2825A and 62 AF, respectively) so that historical EOM can be simulated.

## 5.6.5.3.7 Barr Lake

The reservoir is modeled with the following three water rights:

| Storage Right Name     | Storage Amount (AF) | Admin. Number | Account No.  |
|------------------------|---------------------|---------------|--------------|
| Barr Lake (0203837.01) | 11,081              | 13108.00000   | Account 1    |
| Barr Lake (0203837.02) | 19,484              | 21562.00000   | Account 2    |
| Barr Lake (0203837.03) | 33,011              | 21562.00000   | Accounts 1-2 |

The 1909 storage rights equal sum of 19,484 acre-feet (measure of 1909 storage right in Case No. 02CW105A) and 33,011.26 acre-feet (refill right).

#### 5.6.5.3.8 Barker Reservoir

The reservoir is modeled with the following two water rights:

| Storage Right Name             | Storage Amount (AF) | Admin. Number | Account No. |
|--------------------------------|---------------------|---------------|-------------|
| Barker Meadow Res (0604172.01) | 11,687              | 20805.00000   | Account 1   |
| Barker Meadow Res (0604172.02) | 3,163               | 29219.00000   | Account 1   |
| Barker Meadow Res (0604172.03) | 4,000               | 40740.38851   | Account 2   |
| Barker Meadow Res (0604172.04) | 2,000               | 44559.42480   | Account 1   |

## 5.7 Instream Flow Files

This section includes files that define characteristics of instream flow structures in the model: location, demand, and water rights.

## 5.7.1 Instream Station File (\*.ifs)

Thirty-one instream flow reaches are defined in this file, which was created in StateDMI. The file specifies an instream flow station and downstream terminus node for each reach, through which instream flow rights can exert a demand in priority. Table 5-10 lists each instream flow station included in the South Platte Model, along with their location and maximum daily demand. These rights represent decrees acquired by CWCB, with the exception of the instream flow stations listed under the following section.

#### 5.7.1.1 Special Instream Flow Stations

Several reservoir bypass agreements and other operations are represented as instream flow reaches as follows:

### *Reservoir Bypass Agreements:*

- Lake Estes Bypass (0404128\_M)
- 1982 Strontia Springs Bypass (1982\_MinFlow)
- Voluntary Barker Reservoir Bypass (06\_BARKMSF)

## Legal Compact:

• South Platte River Compact (6499999)

Recreational Instream Channel Diversion:

• Golden White Water Course (0701000)

## 5.7.2 Instream Flow Annual File (\*.ifa)

Instream flow demands were developed from decreed amounts and comments in the State Engineer's water rights tabulation or from agreements as listed in Section 5.7.1. Thirty-one monthly instream flow demands are used and repeated for each year of the simulation. This file, created in StateDMI, contains monthly demands for each instream flow structure included in the South Platte Model.

#### 5.7.3 Instream Right File (\*.ifr)

Water rights for each instream flow reach modeled in the South Platte Model are contained in the instream flow right file, and shown in Table 5-10. Note that the decree represents the maximum demand, which may vary throughout the year. These data were obtained from HydroBase with the exception of instream flow reaches listed under Section 5.7.3.1. It is recommended for future updates that the StateDMI commands be run initially without the "set" commands. This allows the modeler to view changes to water rights (transfers, conditional to absolute, abandonment, etc.) reflected in updated versions of HydroBase and modify the "set" commands as necessary. Note that there are instream flow demands that can only be met by operations and therefore do not have decreed rights. These instream flow operations are discussed below.

| ID        | Name                                            | Decree<br>(cfs) |
|-----------|-------------------------------------------------|-----------------|
| 0402110   | BIG T OLYMPUS/DRAKE M FLOW                      | 40.00           |
| 0402112   | LOVELAND PWR-DILLE M FLOW                       | 50.00           |
| 0404128_M | MIN BYPASS FOR LAKE ESTES AND OLYMPUS<br>TUNNEL | 125.00          |
| 0502115   | S ST VRAIN CR MIN FLOW                          | 8.0             |

#### Table 5-10. Instream Flow Summary

| ID           | Name                                 | Decree<br>(cfs) |
|--------------|--------------------------------------|-----------------|
| 0502120      | MID ST VRAIN CR MIN FLOW             | 8.00            |
| 0502127      | S ST VRAIN CR MIN FLOW               | 20.00           |
| 0502128      | N ST VRAIN CR MIN FLOW               | 21.00           |
| 0502129      | S ST VRAIN CR MIN FLOW               | 20.00           |
| 0602100      | BOULDER CR MIN FLOW                  | 15.00           |
| 0602107      | MIDDLE BOULDER CR MIN FLOW           | 12.00           |
| 0602110_L    | SO BOULDER CR MIN FLOW SEG 1 (LOWER) | 15.00           |
| 0602110_U    | SO BOULDER CR MIN FLOW SEG 1 (UPPER) | 15.00           |
| 0602124_L    | BOULDER CR MIN FLOW SEG B (LOWER)    | 15.00           |
| 0602124_U    | BOULDER CREEK MIN FLOW SEG B (UPPER) | 5.00            |
| 06_BARKMSF   | BARKER BYPASS                        | 3.00            |
| 0701000      | GOLDEN WHITE WTR COURSE              | 1000.00         |
| 0702109      | CLEAR CREEK MIN FLOW                 | 10.00           |
| 0702113      | LEAVENWORTH CR MIN FLOW              | 1.50            |
| 0702118      | WEST FK CLEAR CR MIN FLOW            | 11.00           |
| 0902115      | BEAR CR MIN FLOW                     | 14.90           |
| 1982_MinFlow | DWB 1982 STRONTIA BYPASS             | 60.00           |
| 2302103      | SO FORK SO PLATTE MIN FLOW           | 7.00            |
| 2302107      | TARRYALL CREEK UPPER MIN             | 14.00           |
| 2302116      | JEFFERSON CK MIN FLOW                | 6.00            |
| 2302118      | MICHIGAN CREEK MIN FLOW              | 7.00            |
| 2302119      | TARRYALL CREEK MIN FLOW              | 7.00            |
| 2302123      | FOURMILE CREEK MIN FLOW              | 8.00            |
| 2302148      | MID FK S PLATTE MIN FLOW             | 16.00           |
| 6499999      | SOUTH PLATTE RIVER COMPACT           | 120.00          |
| 8002110      | DEER CR MIN FLOW                     | 2.00            |
| 8002111      | ELK CR MIN FLOW                      | 5.00            |

#### 5.7.3.1 Special Instream Flow Rights

Several reservoir bypass agreements and other operations are represented as instream flow reaches have water rights set as follows:

Reservoir Bypass Agreements:

- Lake Estes Bypass (0404128\_M) was set to 125 cubic feet per second with an administration number of 99999.00000
- 1982 Strontia Springs Bypass (1982\_MinFlow) was set to 60 cubic feet per second with an administration number of 30571.99999

 Voluntary Barker Reservoir Bypass (06\_BARKMSF) was set to 3 cubic feet per second with an administration number of 99998.99999

Recreational Instream Channel Diversion:

 Golden White Water Course (0701000) was set to 1,000 cubic feet per second with an administration number of 54420.00000

## **Operational Structures**

 Boulder Creek Minimum Flow A (0602125) water rights were turned off as they are associated with changed water rights from multiple ditches. This instream flow demand is satisfied using operating rules that release Boulder's changed water rights to meet the instream flow demands.

## Others:

- The administration number for the Big T Olympus/Drake Min Flow (0402110) was set to 30571.99999—making it just senior to the Olympus Tunnel native rights based on actual operations.
- The administration number for the Loveland Pwr-Dille Min Flow (0402112) was set to 30571.99999—making it just senior to the Olympus Tunnel native rights based on actual operations.

# 5.8 Plan Files

Plan structures are used by in the South Platte Model to represent complex operations, such as reusable supplies, recharge supply and augmentation demands, terms and conditions, changed water rights, and imports. Plan structures work in conjunction with operating rules, and require several types of plan files to represent the operations. This section documents the plan files used in the South Platte Model to simulate the plan structures and their operations. For more information on a specific plan structure, refer to the Operating Rules section.

## 5.8.1 Plan Data File (\*.pln)

The plan data file provides the ID, name, location in the network, and plan type for the plan structures in the model. There are 10 different plan types used in the model, and 783 total plan structures. The file was developed in a text editor and generally grouped by operations. Table 5-11 reflects the count of plan structures by plan type, and Table 7-4 (in the appendix) lists the plan structures included in the model organized by plan type. The plan structures are discussed in more detail in the Operating Rules section, however examples for each plan type are provided below.

| Plan Type | Plan Type                            | No. in<br>Model |
|-----------|--------------------------------------|-----------------|
| 1         | Terms & Conditions Plan              | 82              |
| 2         | Well Augmentation Plan               | 51              |
| 3         | Reservoir Reuse Plan                 | 21              |
| 4         | Diversion (Non-Reservoir) Reuse Plan | 24              |
| 7         | Import Plan                          | 17              |
| 8         | Recharge Plan                        | 49              |
| 10        | Special Well Augmentation Plan       | 5               |
| 11        | Accounting Plan                      | 28              |
| 12        | Release Limit Plan                   | 157             |
| 13        | Changed Water Rights Plan            | 350             |
|           | Total                                | 784             |

### Table 5-11: Plan Structure Summary

Type 1 – Terms and Conditions (T & C) Plan is used to store a future return flow obligation associated with the transfer of water from one structure to another. They generally represent the amount, timing, and location of non-consumed water returned to the river from the historical use of the changed water right. For example, the City of Longmont's use of changed shares in the Rough and Ready Ditch requires historical return flows be maintained as part of the transfer. In order to track these return flow obligations, operating rules that reflect the use of these shares (e.g. 527\_Pln5) include Longmont's terms and conditions plan (Longmont\_TC). StateMod calculates the obligation for the time step it occurs and all associated future time steps.

**Type 2 - Well Augmentation Plan** is used to store a future obligation to return water to the river (augment) when a well depletes the river out-of-priority. When a Well Augmentation Plan is specified, StateMod calculates the current and future obligation for the time step it occurs and all associated future time steps. Well depletions are associated with augmentation plans through the Augmentation Plan to Well Data file (\*.plw). For example, the Lowline Augmentation Plan (6402540) tracks the out-of-priority pumping from several wells that irrigate land under Lowline Ditch and surrounding ground-water only parcels. Well augmentation plan obligations are generally augmented by changed ditch shares, canal and recharge area seepage (see Plan Type 8), or reservoir releases.

**Type 3 – Reservoir Reuse Plan** is used to store a reusable water supply associated with a reservoir. As the reuse plan represents water stored in the reservoir, any unused water can be carried over in the plan to the next time step. For example, the City of Longmont's reusable supplies that are stored in Button Rock Reservoir are tracked through the Longmont reservoir reuse plan (LResReusable).

**Type 4 - Diversion (Non-Reservoir) Reuse Plan** is used to store a reusable water supply associated with a diversion. As the reuse plan is associated with a diversion, any unused water must be released

since it cannot be carried over to the next month. For example, the City of Aurora's reusable effluent is tracked through the Metro WWTP in Aurora's Metro reuse plan (MetroAur).

**Type 7 - Import Plan** is used to account for imported water which, in many cases, may be used to extinction. Import plans are used in conjunction with accounting plans, and allow StateMod to provide multiple users with import supplies in the priority that is appropriate for their system. For example, Adams Tunnel water is imported into the river system first using an import plan (0404634), then the imported water is transferred to an accounting plan (CBT\_AllPln) where it can be divided into other accounting plans (e.g. AdamsTunPln and LoveCBTPln) or released directly to users.

**Type 8 - Recharge Plan** is used to store a water supply that originated from reservoir, recharge area, or canal seepage. The water supply from this plan is typically used to meet a well augmentation demand generated in a Type 2 plan. The return to the river is controlled by a unit response table therefore it accrues to the river as a supply even if it is not assigned to a demand. Using the Lowline Augmentation Plan example from above, the augmentation plan demands are met through the canal and recharge seepage associated with the operation of a junior recharge right on Lowline Ditch. The canal and recharge seepage is tracked in the Lowline recharge plans (6402540\_PlC and 6402540\_PlR).

**Type 10 - Special Well Augmentation Plan** is similar to a Type 2 plan, however is used to store the depletion associated with a well that is *not* required to be augmented. Examples include pumping in a designated basin (e.g. Lost\_Creek plan) or pumping by a well which has been decreed to be non-tributary (e.g. Coffin\_Well plan). A special augmentation plan is typically used to demonstrate that every well in the model is assigned to an augmentation plan even if some wells are not required to augment their depletions as is the case with "Coffin" wells.

**Type 11 - Accounting Plan** is used to "temporarily" divert water in priority which may subsequently be used at a later point in the priority system or by a number of other structures. Note this plan type was historically used for changed water rights, however due to the complexity of those operations; Plan Type 13 was developed exclusively for those operations. The Type 11 plan is still used in special operations such as the South Platte Compact (Compact\_Pln) and import operations (CBT\_AllPln).

**Type 12 - Release Limit Plan** is used to limit the cumulative supply from multiple sources to monthly and annual values. This plan is typically included in a series of other operating rules to limit the total amount of diversions or reservoir releases to a user-specified monthly or annual amount. For example, the City of Boulder's operations with changed shares from Anderson Ditch are limited by three separate limit plans (060501\_CHL1, 060501\_CHL2, 060501\_CHL3) to account for the volumetric limitations associated with three different decrees.

**Type 13 – Changed Water Rights Plan** is a specific type of accounting plan that is used to handle changed water right operations, allowing water to be "temporarily diverted" in priority, split to other Type 13 plans if the changed right has more than one owner, then released at a later priority to meet demands. For example, the City of Louisville's change of the senior McGinn Ditch water right is first diverted into the McGinn Louisville Change Plan (060586\_CH1), and then delivered to Louisville's indoor and outdoor demands via pipeline. As the changed water rights plan is associated

with a diversion, any unused water must be released since it cannot be carried over to the next month.

## 5.8.2 Augmentation Plan to Well Data File (\*.plw)

The augmentation plan to well data file associates well rights and well structures to an augmentation plan, informing the model the amount and pattern of well depletions should be tracked under each augmentation plan. This file contains each unique well right, along with its associated well structure, well ID, and augmentation plan ID. This file is created through TSTool and an external database/spreadsheet; the process for developing the file is documented in Section7.8. In general, the association between augmentation plans and well IDs are based on the Associated Structure Table queried directly from HydroBase.

Key augmentation plans and recharge operations were originally identified under SPDSS Task 7.2; the list of key augmentation plans and operations was refined during model development. Larger augmentation plans are modeled explicitly; well IDs associated with smaller augmentation plans are grouped in aggregate augmentation plans (i.e. AggWell\_01 or GwOnly\_01). Due to pumping quotas imposed for some augmentation plans, wells are often included in multiple augmentation plans. The augmentation plan to well file reflects this multiple plan association; however StateMod currently only accounts for the depletions under one augmentation plan. Table 5-12 summarizes the number of well rights associated with each augmentation plan in the augmentation plan to well file.

| Aug. Plan ID | Aug. Plan Name         | No. of Associated<br>Well Rights | Plan<br>Type |
|--------------|------------------------|----------------------------------|--------------|
| 0102456      | FT MORGAN CITY AUG     | 116                              | 2            |
| 0102513      | ROTHE AUG PLAN         | 33                               | 2            |
| 0102518      | PIONEER AUG PLAN       | 114                              | 2            |
| 0102522      | RIVERSIDE AUG          | 192                              | 2            |
| 0102528      | FT MORGAN AUG PLAN     | 120                              | 2            |
| 0102529      | UPPER PB AUG PLAN      | 128                              | 2            |
| 0102535      | LPB AUG PLAN           | 123                              | 2            |
| 0102662      | BRUSH AUG              | 12                               | 2            |
| 0103339      | BIJOU AUG PLAN         | 473                              | 2            |
| 0703390      | CoorsA_AugPlan         | 16                               | 2            |
| 0802593      | AuroraWellAugPlan      | 2                                | 2            |
| 6402517      | SEDGWICK CTY AUG PLAN  | 187                              | 2            |
| 6402518      | HARMONY AUG PLAN       | 87                               | 2            |
| 6402519      | DINSDALE AUG           | 33                               | 2            |
| 6402525      | CONDON AUG             | 21                               | 2            |
| 6402526      | STERLING AUG           | 7                                | 2            |
| 6402536      | LOWER LOGAN WELL USERS | 219                              | 2            |
| 6402539      | LOGAN WELL USERS AUG   | 502                              | 2            |

Table 5-12: Augmentation Plan to Well Data Summary

| Aug. Plan ID | Aug. Plan Name     | No. of Associated F<br>Well Rights T |    |
|--------------|--------------------|--------------------------------------|----|
| 6402540      | LOWLINE AUG PLAN   | 26                                   | 2  |
| 6402542      | LSPWCD AUG         | 67 2                                 |    |
| 6403392      | NORTH AUG PLAN     | 102 2                                |    |
| 9902502      | SACWSDAugPlan      | 18                                   | 2  |
| 9902541      | BrightonAugPlan    | 32                                   | 2  |
| 9903334_A    | GMSReachAAugPln    | 46                                   | 2  |
|              | GMSReachBAugPIn    | 137                                  | 2  |
| 9903334_C    | GMSReachCAugPln    | 511                                  | 2  |
| 9903334_D    | GMSReachDAugPIn    | 95                                   | 2  |
| 9903334_E    | GMSReachEAugPIn    | 79                                   | 2  |
| 9903334_F    | GMSReachFAugPIn    | 325                                  | 2  |
| 9903394_A    | WASReachAAugPIn    | 12                                   | 2  |
| 9903394_B    | WASReachBAugPIn    | 6                                    | 2  |
| 9903394_C    | WASReachCAugPIn    | 150                                  | 2  |
| 9903394_D    | WASReachDAugPIn    | 24                                   | 2  |
| 9903394_E    | WASReachEAugPIn    | 6                                    | 2  |
| 9903394_F    | WASReachFAugPIn    | 50                                   | 2  |
| AggWell_01   | AggWell_01         | 178                                  | 2  |
| AggWell_02   | AggWell_02         | 681                                  | 2  |
| AggWell_04   | AggWell_04         | 44                                   | 2  |
| AggWell_05   | AggWell_05         | 27                                   | 2  |
| AggWell_06   | AggWell_06         | 11                                   | 2  |
| AggWell_07   | AggWell_07         | 10                                   | 2  |
| AggWell_08   | AggWell_08         | 34                                   | 2  |
| AggWell_64   | AggWell_64         | 66                                   | 2  |
| GwOnly_01    | GwOnly_01          | 475                                  | 2  |
| GwOnly_02    | GwOnly_02          | 93                                   | 2  |
| GwOnly_04    | GwOnly_04          | 9                                    | 2  |
| GwOnly_05    | GwOnly_05          | 1                                    | 2  |
| GwOnly_06    | GwOnly_06          | 2                                    | 2  |
| GwOnly_07    | GwOnly_07          | 2                                    | 2  |
| GwOnly_08    | GwOnly_08          | 285                                  | 2  |
| GwOnly_64    | GwOnly_64          | 88                                   | 2  |
| Camp_Creek   | Camp_Creek         | 21                                   | 10 |
| Coffin_Well  | Coffin_Well        | 7                                    | 10 |
| Kiowa_Bijou  | Kiowa_Bijou        | 846                                  | 10 |
| Lost_Creek   | Lost_Creek         | 150                                  | 10 |
| Upper_Crow   | Upper_Crow         | 82                                   | 10 |
| Tota         | al Key Well Rights | 5,177                                |    |

| Aug. Plan ID                             | Aug. Plan Name | No. of Associated<br>Well Rights | Plan<br>Type |
|------------------------------------------|----------------|----------------------------------|--------------|
| Total Agg. Well Rights                   |                | 2,006                            |              |
| Total Well Rights Assigned to Aug. Plans |                | 7,183                            |              |

#### Where to find more information

• SPDSS Task Memorandum 7.2, "Well Use and Well Augmentation Plans," available on the CDSS website.

## 5.8.3 Plan to Reservoir Recharge Data File (\*.plr)

The plan to reservoir recharge data file links recharge areas to recharge plans, allowing the seepage from a recharge area to be accounted for under a reservoir recharge plan and ultimately to be used as a supply to augment well depletions. This file was created in a text editor and contains the association between modeled recharge areas and reservoir recharge plans. As discussed in the Section 4 Modeling Approach section, recharge areas are modeled in aggregate with one aggregate recharge area per ditch per augmentation plan. For augmentation plans that have recharge areas on multiple ditches (e.g. Lower Logan Well Users, 6402536), the multiple aggregate recharge areas are tied to a single overall reservoir recharge plan (\*\_PIR) in this file. As reflected in Table 5-13, 50 recharge areas are associated with 24 reservoir recharge plans in the plan to reservoir recharge data file.

| Reservoir        | Reservoir    | Reservoir    | Reservoir                |  |  |
|------------------|--------------|--------------|--------------------------|--|--|
| Recharge Plan ID | Right ID     | Structure ID | Structure Name           |  |  |
| 0102513_PIR      | 0102513_Rn.1 | 0102513_Rn   | N Rothe Recharge Res     |  |  |
| 0102513_PIR      | 0102513_Rs.1 | 0102513_Rs   | S Rothe Recharge Res     |  |  |
| 0102518_PIR      | 0102518_R.1  | 0102518_R    | Pioneer Recharge Res     |  |  |
| 0102522_PIR      | 0102522_R.1  | 0102522_R    | Riverside Recharge Res   |  |  |
| 0102528_PIR      | 0102528_R.1  | 0102528_R    | Ft Morgan Canal Recharge |  |  |
| 0102529_PIR      | 0102529_R.1  | 0102529_R    | Upper PB Recharge Res    |  |  |
| 0102535_PIR      | 0102535_R.1  | 0102535_R    | Lower PB Recharge Res    |  |  |
| 0103339_PIR      | 0103339_R.1  | 0103339_R    | Bijou Aug Recharge Res   |  |  |
| 0103570_PIR      | 0103570_R.1  | 0103570      | Bijou Res No. 2          |  |  |
| 0200824_PIR      | 0200824_R.1  | 0200824_R    | Farmers Independent Rech |  |  |
| 0200825_PIR      | 0200825_R.1  | 0200825_R    | Hewes Cook Recharge      |  |  |
| 0202003_PIR      | 0202003_R.1  | 0202003_R    | Ford Recharge            |  |  |
| 6402517_PIR      | 6402517_R.1  | 6402517_R    | Sedgwick JIDSeep RA      |  |  |
| 6402517_PIR      | 6402517_RP.1 | 6402517_RP   | Sedgwick Peterson RA     |  |  |

Table 5-13: Plan to Reservoir Recharge Plan Summary

| Reservoir        | Reservoir    | Reservoir    | Reservoir                |
|------------------|--------------|--------------|--------------------------|
| Recharge Plan ID | Right ID     | Structure ID | Structure Name           |
| 6402517_PIR      | 6402517_RS.1 | 6402517_RS   | Sedgwick SReserv RA      |
| 6402518_PIR      | 6402518_R.1  | 6402518_R    | Harmony Recharge Res     |
| 6402519_PIR      | 6402519_R.1  | 6402519_R    | Dinsdale Recharge Res    |
| 6402525_PIR      | 6402525_R.1  | 6402525_R    | Condon Recharge Res      |
| 6402526_PIR      | 6402526_R.1  | 6402526_R    | Sterling Recharge Res    |
| 6402526_PIR      | 6400525_A.1  | 6400525_A    | HendersonSmith WR RA     |
| 6402526_PIR      | 6400528_A.1  | 6400528_A    | SterlingNo1 WR RA        |
| 6402526_PIR      | 6402515.01   | 6402515      | SterlingRechargeArea     |
| 6402536_PIR      | 6402536_RH.1 | 6402536_RH   | LL UHD Recharge Res      |
| 6402536_PIR      | 6402536_RI.1 | 6402536_RI   | LL IPV Recharge Res      |
| 6402536_PIR      | 6402536_RB.1 | 6402536_RB   | LL Bravo Recharge Res    |
| 6402536_PIR      | 6402536_R.1  | 6402536_R    | LLWUA Recharge Res       |
| 6402539_PIR      | 6402539_RC.1 | 6402539_RC   | LWU Schneider Recharge R |
| 6402539_PIR      | 6402539_RP.1 | 6402539_RP   | LWU South Platte Recharg |
| 6402539_PIR      | 6402539_RS.1 | 6402539_RS   | LWU Springdale Recharge  |
| 6402539_PIR      | 6402539_RT.1 | 6402539_RT   | LWU Sterling Recharge Re |
| 6402539_PIR      | 6402539_RF.1 | 6402539_RF   | LWU Farmers Recharge Res |
| 6402539_PIR      | 6402539_R.1  | 6402539_R    | LWU Recharge Res         |
| 6402540_PIR      | 6402540_R.1  | 6402540_R    | Lowline Recharge Res     |
| 6402542_PIR      | 6402542_RL.1 | 6402542_RL   | LSP Liddle Recharge Res  |
| 6402542_PIR      | 6402542_RP.1 | 6402542_RP   | LSP Peterson Recharge Re |
| 6402542_PIR      | 6402542_RH.1 | 6402542_RH   | LSP Heyborne Recharge Re |
| 6402542_PIR      | 6402542_R.1  | 6402542_R    | LSP Recharge Res         |
| 6403392_PIR      | 6403392_R.1  | 6403392_R    | NSterling Recharge Res   |
| 9902502_PIR      | 0200808_RS.1 | 0200808_RS   | Fulsac WR RA             |
| 9902502_PIR      | 0200810_RS.1 | 0200810_RS   | BriSAC WR RA             |
| 9902502_PIR      | 0200812_RS.1 | 0200812_RS   | LBSAC WR RA              |
| 9902502_PIR      | 0200821_RS.1 | 0200821_RS   | MI1SAC WR RA             |
| 9902541_PIR      | 0200808_RB.1 | 0200808_RB   | FulBri WR RA             |
| 9903394_PIR      | 0200808_RC.1 | 0200808_RC   | FulCen WR RA             |
| 9903394_PIR      | 0200810_RC.1 | 0200810_RC   | BriCen WR RA             |
| 9903394_PIR      | 0200812_RC.1 | 0200812_RC   | LBCen WR RA              |
| 9903394_PIR      | 0200813_RC.1 | 0200813_RC   | PVCen WR RA              |
| 9903394_PIR      | 0200824_RC.1 | 0200824_RC   | FIDCOCen WR RA           |
| 9903394_PIR      | 0200830_RC.1 | 0200830_RC   | SN3 WR RA                |
| 9903394_PIR      | 0200837_RC.1 | 0200837_RC   | HiCen WR RA              |

#### 5.8.4 Reservoir Return File (\*.rrf)

The reservoir return flow contains return flow information that is used to route reservoir seepage back to the river over time. The reservoir return flow file contains the return flow location(s) and associated delay pattern associated primarily with recharge areas, however also includes reservoirs that have seepage represented in the model. Refer to the reservoir station file (\*.res) to determine the amount of seepage that is represented for each reservoir.

Although recharge areas are modeled in aggregate, the location and distance from the stream was reviewed for the individual recharge areas within the aggregate recharge area in order to assign appropriate delay patterns and locations where the reservoir seepage accrues. Exceptions include recharge areas for the City of Sterling; delay patterns were set from augmentation plan accounting data and adjusted for the immediate returns from the city's effluent.

Currently StateMod is not able to use changed water rights as a supply to meet augmentation plan depletions using a standard plan release operating rule (Type 27 or 28). Therefore, changed water rights are "routed" through a recharge area in order to make them available to an augmentation plan. This is achieved by using an "immediate" delay pattern (i.e. Pattern 4; water is returned in the same time-step) for the recharge areas included on the ditches with the changed water rights.

| Reservoir ID | Reservoir Name           | Return Flow<br>Location | Return Flow<br>% | Delay<br>Pattern |
|--------------|--------------------------|-------------------------|------------------|------------------|
| 0102513_Rn   | N Rothe Recharge Res     | 0100511                 | 100              | 1100             |
| 0102513_Rs   | S Rothe Recharge Res     | 0100514                 | 100              | 1100             |
| 0102518_R    | Pioneer Recharge Res     | 0100524                 | 70               | 1500             |
| 0102518_R    | Pioneer Recharge Res     | 0100688                 | 30               | 1500             |
| 0102522_R    | Riverside Recharge Res   | 0100513                 | 60               | 1100             |
| 0102522_R    | Riverside Recharge Res   | 0100507_D               | 40               | 1100             |
| 0102528_R    | Ft Morgan Canal Recharge | 0100518                 | 100              | 1100             |
| 0102529_R    | Upper PB Recharge Res    | 0100520                 | 40               | 1100             |
| 0102529_R    | Upper PB Recharge Res    | 0100524                 | 50               | 1100             |
| 0102529_R    | Upper PB Recharge Res    | 0100687                 | 10               | 1100             |
| 0102535_R    | Lower PB Recharge Res    | 0100524                 | 20               | 1200             |
| 0102535_R    | Lower PB Recharge Res    | 0100687                 | 60               | 1200             |
| 0102535_R    | Lower PB Recharge Res    | 6400535                 | 20               | 1200             |
| 0103339_R    | Bijou Aug Recharge Res   | 0100511                 | 100              | 1100             |
| 0103570      | Bijou Res                | 0100511                 | 100              | 1100             |
| 0103816      | Empire Res               | 0100507_D               | 100              | 1100             |
| 0103817      | Jackson Res              | 0100514                 | 100              | 1300             |
| 0103651      | Riverside Res            | 0100503_D               | 100              | 1100             |
| 6402517_R    | Sedgwick JIDSeep RA      | 6400502                 | 100              | 1200             |

Table 5-14 summarizes the return flow information for the reservoirs.

| Reservoir ID | Reservoir Name           | Return Flow | Return Flow<br>% | Delay<br>Pattern |
|--------------|--------------------------|-------------|------------------|------------------|
| 6402517 RP   | Sedgwick Peterson RA     | 6400502     | 100              | 1200             |
| 6402517_R    | Sedgwick SReserv RA      | 6400502     | 100              | 1600             |
| 6402518 B    | Harmony Becharge Bes     | 6400508     | 60               | 1200             |
| 6402518_R    | Harmony Recharge Res     | 6400507     | 40               | 1200             |
| 6402519_R    | Dinsdale Recharge Res    | 6400504     | 100              | 1700             |
| 6402525_R    | Condon Recharge Res      | 6400508     | 50               | 1700             |
| 6402525_R    | Condon Recharge Res      | 6400511 D   | 50               | 1700             |
| 6402526_R    | Sterling Recharge Res    | 6400522 D   | 100              | 642526           |
| 6400525 A    | HendersonSmith WR RA     | 6400524     | 100              | 4                |
| 6400528 A    | SterlingNo1 WR RA        | 6400526     | 100              | 4                |
| 6402515      | SterlingRechargeArea     | 6400522 D   | 100              | 642515           |
| 6402536 RH   | LL UHD Recharge Res      | 6400508     | 60               | 1200             |
| 6402536 RH   | LL UHD Recharge Res      | 6400507     | 40               | 1200             |
|              | LL IPV Recharge Res      | 6400516     | 100              | 1200             |
|              | LL Bravo Recharge Res    | 6400518     | 100              | 1200             |
|              | LLWUA Recharge Res       | 6400516     | 60               | 1100             |
|              | LLWUA Recharge Res       | 6400514     | 40               | 1100             |
|              | LWU Schneider Recharge R | 6400526     | 100              | 1300             |
|              | LWU South Platte Recharg | 6400532     | 80               | 1300             |
|              | LWU South Platte Recharg | 6400531     | 20               | 1300             |
|              | LWU Springdale Recharge  | 6400526     | 70               | 1200             |
| 6402539_RS   | LWU Springdale Recharge  | 6400522_D   | 30               | 1200             |
| 6402539_RT   | LWU Sterling Recharge Re | 6400522_D   | 56               | 1200             |
| 6402539_RT   | LWU Sterling Recharge Re | 6400519     | 44               | 1200             |
| 6402539_RF   | LWU Farmers Recharge Res | 6400528     | 60               | 1200             |
| 6402539_RF   | LWU Farmers Recharge Res | 6400522_D   | 40               | 1200             |
| 6402539_R    | LWU Recharge Res         | 6400530     | 50               | 1300             |
| 6402539_R    | LWU Recharge Res         | 6400525     | 10               | 1200             |
| 6402539_R    | LWU Recharge Res         | 6400531     | 40               | 1200             |
| 6402540_R    | Lowline Recharge Res     | 6400522_D   | 40               | 1600             |
| 6402540_R    | Lowline Recharge Res     | 6400520     | 60               | 1600             |
| 6402542_RL   | LSP Liddle Recharge Res  | 6499999     | 100              | 1600             |
| 6402542_RP   | LSP Peterson Recharge Re | 6400502     | 60               | 1200             |
| 6402542_RP   | LSP Peterson Recharge Re | 6499999     | 40               | 1200             |
| 6402542_RH   | LSP Heyborne Recharge Re | 6400501     | 100              | 1700             |
| 6402542_R    | LSP Recharge Res         | 6400501     | 50               | 1700             |
| 6402542_R    | LSP Recharge Res         | 6499999     | 50               | 1200             |
| 6403392_R    | NSterling Recharge Res   | 6400525     | 40               | 1100             |
| 6403392_R    | NSterling Recharge Res   | 6400533     | 30               | 1100             |

|              |                          | Return Flow | Return Flow | Delay   |
|--------------|--------------------------|-------------|-------------|---------|
| Reservoir ID | Reservoir Name           | Location    | %           | Pattern |
| 6403552      | Prewitt Res              | 6400533     | 100         | 1300    |
| 0200824_R    | Farmers Independent Rech | 0200828     | 79          | 2       |
| 0200824_R    | Farmers Independent Rech | 0200834     | 21          | 2       |
| 0200825_R    | Hewes Cook Recharge      | 0200828     | 28          | 1       |
| 0200825_R    | Hewes Cook Recharge      | 0200834     | 72          | 1       |
| 0202003_R    | Ford Recharge            | 0200808     | 69.1        | 13      |
| 0202003_R    | Ford Recharge            | 0200808     | 18.6        | 13      |
| 0202003_R    | Ford Recharge            | 0200808     | 12.3        | 13      |
| 0200808_RC   | FulCen WR RA             | 0200809     | 100         | 4       |
| 0200810_RC   | BriCen WR RA             | 0200812     | 100         | 4       |
| 0200812_RC   | LBCen WR RA              | 0200822     | 100         | 4       |
| 0200813_RC   | PVCen WR RA              | 0200821     | 100         | 4       |
| 0200824_RC   | FIDCOCen WR RA           | 0200825     | 100         | 4       |
| 0200830_RC   | SN3 WR RA                | 0200834     | 100         | 4       |
| 0200837_RC   | HiCen WR RA              | 06754000    | 100         | 4       |
| 0200808_RS   | Fulsac WR RA             | 0200809     | 100         | 4       |
| 0200810_RS   | BriSAC WR RA             | 0200812     | 100         | 4       |
| 0200812_RS   | LBSAC WR RA              | 0200822     | 100         | 4       |
| 0200821_RS   | MI1SAC WR RA             | 0200825     | 100         | 4       |
| 0200808_RB   | FulBri WR RA             | 0200809     | 100         | 4       |

## 5.8.5 Plan Return Flow File (\*.prf)

The plan return flow file contains return flow information that is used to route canal seepage back to the river over time (generally used with canal recharge plans) and plan efficiency information (generally used with T & C plans). In general, the plan return flow file contains the return flow location(s) and associated delay patterns associated with each canal recharge plan or T & C plan.

The location and delay patterns assigned to each canal recharge plan are based on the return flow information for the primary diversion structure used to carry the recharge supplies. For example, the return flow information assigned to the canal recharge plan for the Pioneer Augmentation Plan (0102518\_PIC) is based on the return flow information for Tremont Ditch, which is the primary canal used to carry the Pioneer Augmentation Plan supplies. Table 5-15 summarizes the return flow information for the canal recharge plans.

| Canal Recharge<br>Plan ID | Canal Recharge<br>Plan Name | Return Flow<br>Location | Return<br>Flow % | Delay<br>Pattern |
|---------------------------|-----------------------------|-------------------------|------------------|------------------|
| 0102518_PIC               | PIONEER Canal Plan          | 0100524                 | 70               | 1500             |
| 0102518_PIC               | PIONEER Canal Plan          | 0100688                 | 30               | 1500             |

## Table 5-15: Canal Recharge Plan Return Flow Summary

| Canal Recharge<br>Plan ID | Canal Recharge<br>Plan Name | Return Flow<br>Location | Return<br>Flow % | Delay<br>Pattern |
|---------------------------|-----------------------------|-------------------------|------------------|------------------|
| 0102522 PlC               | RIVERSIDE Canal Plan        | 0100507 D               | 40               | 1100             |
| 0102522 PIC               | RIVERSIDE Canal Plan        | 0100513                 | 60               | 1100             |
| 0102528_PIC               | FT MORGAN Canal Plan        | 0100518                 | 100              | 1100             |
| 0102529_PIC               | UPPER PB Canal Plan         | 0100520                 | 40               | 1100             |
| 0102529_PIC               | UPPER PB Canal Plan         | 0100524                 | 50               | 1100             |
| 0102529_PIC               | UPPER PB Canal Plan         | 0100687                 | 10               | 1100             |
| 0102535_PIC               | LPB CANAL PLAN              | 0100524                 | 20               | 1200             |
| 0102535_PIC               | LPB CANAL PLAN              | 0100687                 | 60               | 1200             |
| 0102535_PIC               | LPB CANAL PLAN              | 6400535                 | 20               | 1200             |
| 0103339_PIC               | BIJOU Canal Plan            | 0100511                 | 100              | 1100             |
| 6402517_PCP               | SEDGWICK Peterson Plan      | 6400502                 | 100              | 1200             |
| 6402517_PCS               | SEDGWICK SReserv Plan       | 6400502                 | 100              | 1600             |
| 6402518_PIC               | HARMONY CANAL PLAN          | 6400507                 | 40               | 1200             |
| 6402518_PIC               | HARMONY CANAL PLAN          | 6400508                 | 60               | 1200             |
| 6402526_PIC               | STERLING AUG                | 6400522_D               | 100              | 1700             |
| 6402536_PCB               | LLWUA Bravo D               | 6400518                 | 100              | 1200             |
| 6402536_PCH               | LLWUA Harmony D             | 6400507                 | 40               | 1200             |
| 6402536_PCH               | LLWUA Harmony D             | 6400508                 | 60               | 1200             |
| 6402536_PCI               | LLWUA Iliff Platte D        | 6400516                 | 100              | 1200             |
| 6402536_PCP               | LLWUA Powell Blair D        | 6400513                 | 100              | 1300             |
| 6402539_PCC               | LWU Schneider D             | 6400526                 | 100              | 1300             |
| 6402539_PCF               | LWU Farmers Pawnee D        | 6400522_D               | 40               | 1200             |
| 6402539_PCF               | LWU Farmers Pawnee D        | 6400528                 | 60               | 1200             |
| 6402539_PCP               | LWU South Platte D          | 6400531                 | 20               | 1300             |
| 6402539_PCP               | LWU South Platte D          | 6400532                 | 80               | 1300             |
| 6402539_PCS               | LWU Springdale D            | 6400522_D               | 30               | 1200             |
| 6402539_PCS               | LWU Springdale D            | 6400526                 | 70               | 1200             |
| 6402539_PCT               | LWU Sterling No 1 D         | 6400519                 | 44               | 1200             |
| 6402539_PCT               | LWU Sterling No 1 D         | 6400522_D               | 56               | 1200             |
| 6402540_PIC               | LOWLINE CANAL PLAN          | 6400520                 | 60               | 1600             |
| 6402540_PIC               | LOWLINE CANAL PLAN          | 6400522_D               | 40               | 1600             |
| 6402542_PCL               | LSPWCD Liddle D             | 6499999                 | 100              | 1600             |
| 6402542_PCP               | LSPWCD Peterson D           | 6400502                 | 60               | 1200             |
| 6402542_PCP               | LSPWCD Peterson D           | 6499999                 | 40               | 1200             |
| 6403392_PIC               | NORTH CANAL PLAN            | 6400511_D               | 30               | 1100             |
| 6403392_PIC               | NORTH CANAL PLAN            | 6400525                 | 40               | 1100             |
| 6403392_PIC               | NORTH CANAL PLAN            | 6400533                 | 30               | 1100             |

The efficiency information provided for T & C plans in the plan return flow file informs the model of the location and delay pattern at which the return flow obligations are accounted for in the plans. The efficiency information for these T & C plans is presented in Table 5-16. Efficiency information is only a portion of the input data used by the model to estimate return flow obligations. In order to describe the terms and conditions for each changed water right inclusively, descriptions of the T & C plan operations, including information from the operating rule file (\*.opr), delay file (\*.dly), and plan return flow file (\*.prf), are provided in other sections of this document. Note that a portion of these plans may be included as placeholders for future modeling scenarios.

| T & C Plan ID | T & C Plan Name        | Return Flow<br>Location | Return Flow<br>% <sup>1</sup> | Delay<br>Pattern |
|---------------|------------------------|-------------------------|-------------------------------|------------------|
| 06538_B_RF    | LowBoul Bo RFOblig     | 06BOU_RFO               | 100.00                        | 4                |
| 06538_B_RF    | LowBoul Bo RFOblig     | 06BOU_RFO               | -100.00                       | 6538             |
| 06538_L_RF    | LBLafyt RFOblig        | 06LAF_RFO               | 100.00                        | 4                |
| 06543_B_RF    | NoBoFarm Bo RFOblig    | 06BOU_RFO               | 100.00                        | 4                |
| 06543_B_RF    | NoBoFarm Bo RFOblig    | 06BOU_RFO               | -100.00                       | 6543             |
| 06565_L_RF    | LeynCott LAF RFOblig   | 06LAF_RFO               | 100.00                        | 4                |
| 06565_V_RF    | LeynCott LOU RFOblig   | 06LOU_RFO               | 100.00                        | 4                |
| 06567_L_RF    | Davidson Lafyt RFOb    | 06LAF_RFO               | 100.00                        | 4                |
| 06567_V_RF    | Davidson Louis RFOb    | 06LOU_RFO               | 100.00                        | 4                |
| 06569_L_RF    | DCDavd Lafyt RFOblig   | 06LAF_RFO               | 100.00                        | 4                |
| 06576_L_RF    | Entprs Lafyt RFOblig   | 06LAF_RFO               | 100.00                        | 4                |
| 06650_L_RF    | Goodhue Lafyt RFOblig  | 06LAF_RFO               | 100.00                        | 4                |
| 06650_V_RF    | Goodhue Louis RFOblig  | 06LOU_RFO               | 100.00                        | 4                |
| 6400525_RF    | HendersonSmith TCPlan  | 6400525_RF              | 100.00                        | 4                |
| 6400525_RF    | HendersonSmith TCPlan  | 6400525_RF              | -100.00                       | 640525           |
| 6400528_RF    | SterlingNo1 TCPlan     | 6400528_RF              | 100.00                        | 4                |
| 6400528_RF    | SterlingNo1 TCPlan     | 6400528_RF              | -100.00                       | 640528           |
| AurLastChRF   | AuroraLastChanceD_RFs  | AurLastChRF             | 100.00                        | 4                |
| BriFulRFs     | BrightonFultonRFs      | BriFulRFs               | -100.00                       | 115              |
| CenBriRFs     | CentralBrightonRFs     | CenBriRFs               | -100.00                       | 125              |
| CenFarmRFs    | FarmersCentralRFs      | CenFarmRFs              | -100.00                       | 165              |
| CenFulRFs     | CentalFultonRFs        | CenFulRFs               | -100.00                       | 105              |
| CenHighRFs    | HighlandCentralRFs     | CenHighRFs              | -100.00                       | 200              |
| CenLBRFs      | CentralLBRFs           | CenLBRFs                | -100.00                       | 131              |
| CenPVRFs      | Central PVRFs          | CenPVRFs                | -100.00                       | 130              |
| CenSN3RFs     | SectionNo3CentralRFs   | CenSN3RFs               | -100.00                       | 190              |
| ConM_AgRFs    | ConMutualAgDitchRFs    | ConMClCkRFs             | -25.00                        | 240              |
| ConM_AgRFs    | ConMutualAgDitchRFs    | ConMSPRRFs              | -75.00                        | 240              |
| ConM_WelRFs   | ConMutualWelchDitchRFs | ConMSPRRFs              | -31.00                        | 241              |
| ConM_WelRFs   | ConMutualWelchDitchRFs | ConMClCkRFs             | -69.00                        | 241              |

Table 5-16: Terms and Conditions Plan Return Flow Summary

| T & C Plan ID | T & C Plan Name        | Return Flow     | Return Flow % <sup>1</sup> | Delay<br>Pattern |
|---------------|------------------------|-----------------|----------------------------|------------------|
| CoorsAug12    | CoorsRenoluchemAugStn  | CoorsAug12      | 100.00                     | 4                |
| CoorsAug3     | CoorsAg RkvMtnAugStn   | CoorsAug3       | 100.00                     | 4                |
| CoorsAug7     | CoorsWannamakerAugStn  | CoorsAug7       | 100.00                     | 4                |
| KershRFs      | WestvKershawRFs        | KershRFs        | 100.00                     | 4                |
| Longmont TC   | Longmont RFOs          | 05LONG RFOs     | 100.00                     | 4                |
| Longmont TC   | Longmont RFOs          | 05LONG RFOs     | -100.00                    | 515              |
| NglennLBRFs   | NglennLuptonBottomRFs  | <br>NglennLBRFs | -100.00                    | 145              |
| NgInBDCRFs    | NorthglennBDCRFS       | NgInBDCRFs      | 100.00                     | 4                |
| NgInBDCRFs    | NorthglennBDCRFS       | NgInBDCRFs      | -100.00                    | 112              |
| NgInFulRFs    | NorthglennFultonRFs    | NgInFulRFs      | -100.00                    | 110              |
| PSCoFishApr   | PSCoFisherRFs          | PSCoSPRFs       | 84.00                      | 4                |
| PSCoFishApr   | PSCoFisherRFs          | PSCoClCkRFs     | 16.00                      | 4                |
| PSCoFishApr   | PSCoFisherRFs          | PSCoSPRFs       | -100.00                    | 176              |
| PSCoFishAug   | PSCoFisherRFs          | PSCoSPRFs       | 64.00                      | 4                |
| PSCoFishAug   | PSCoFisherRFs          | PSCoClCkRFs     | 36.00                      | 4                |
| PSCoFishAug   | PSCoFisherRFs          | PSCoSPRFs       | -100.00                    | 176              |
| PSCoFishJul   | PSCoFisherRFs          | PSCoSPRFs       | 68.00                      | 4                |
| PSCoFishJul   | PSCoFisherRFs          | PSCoClCkRFs     | 32.00                      | 4                |
| PSCoFishJul   | PSCoFisherRFs          | PSCoSPRFs       | -100.00                    | 176              |
| PSCoFishJun   | PSCoFisherRFs          | PSCoSPRFs       | 71.00                      | 4                |
| PSCoFishJun   | PSCoFisherRFs          | PSCoClCkRFs     | 29.00                      | 4                |
| PSCoFishJun   | PSCoFisherRFs          | PSCoSPRFs       | -100.00                    | 176              |
| PSCoFishMay   | PSCoFisherRFs          | PSCoSPRFs       | 76.00                      | 4                |
| PSCoFishMay   | PSCoFisherRFs          | PSCoClCkRFs     | 24.00                      | 4                |
| PSCoFishMay   | PSCoFisherRFs          | PSCoSPRFs       | -100.00                    | 176              |
| PSCoFishOct   | PSCoFisherRFs          | PSCoSPRFs       | 72.00                      | 4                |
| PSCoFishOct   | PSCoFisherRFs          | PSCoClCkRFs     | 28.00                      | 4                |
| PSCoFishOct   | PSCoFisherRFs          | PSCoSPRFs       | -100.00                    | 176              |
| PSCoFishSep   | PSCoFisherRFs          | PSCoSPRFs       | 67.00                      | 4                |
| PSCoFishSep   | PSCoFisherRFs          | PSCoClCkRFs     | 33.00                      | 4                |
| PSCoFishSep   | PSCoFisherRFs          | PSCoSPRFs       | -100.00                    | 176              |
| PSCoLBRFs     | PSCoLuptonBottomRFs    | PSCoLBRFs       | 100.00                     | 4                |
| PSCoLBRFs     | PSCoLuptonBottomRFs    | PSCoLBRFs       | -100.00                    | 140              |
| PSCoMISPRFs   | PSCoMeadowIsland2SPRFs | PSCoMISPRFs     | -100.00                    | 160              |
| PSCoSPRFs     | PSCoSPRRFsabvFulton    | PSCoSPRFs       | 100.00                     | 4                |
| PSCoSPRFs     | PSCoSPRRFsabvFulton    | PSCoSPRFs       | -100.00                    | 176              |
| PSCoSPRFs2    | PSCoJTandHCRFs         | PSCoSPRFs2      | 100.00                     | 4                |
| PSCoSPRFs2    | PSCoJTandHCRFs         | PSCoSPRFs2      | -100.00                    | 170              |
| SABurRFsSum   | SASummerBurlRFs        | SABurRFsSum     | 100.00                     | 4                |

| T & C Plan ID | T & C Plan Name          | Return Flow | Return Flow | Delay<br>Pattern |
|---------------|--------------------------|-------------|-------------|------------------|
|               | SAVearBoundBurlBEs       |             | 100.00      | 205              |
| SAC BriBEs    | SACW/SDBrightonBEs       | SADUINISIN  | 100.00      | 120              |
| SAC_BIIRTS    | SACWSDBillgillonREs      |             | -100.00     | 120              |
| SAC_LBRES     | SACWSDI unton Bottom REs | SAC_LARES   | -100.00     | 135              |
| SAC MI1RES    | SACWSDMdwlsland18Es      | SAC_LURITS  | -100.00     | 155              |
| SpinDRE 03    | Shinney/WinterREs 3%     | SAC_MITITS  | -100.00     | 303              |
| SpinDRE_04    | SpinneyWinterRFs_7%      | SpinDRE_04  | -100.00     | 304              |
| SpinDRE_07    | SpinneyWinterRFs_7%      | SpinDRE_07  | -100.00     | 307              |
| SpinDRE 11    | SpinneyWinterRFs_11%     | SpinDRE 11  | -100.00     | 311              |
| SpinDRE 13    | SpinneyWinterRFs_13%     | SpinDRE 13  | -100.00     | 313              |
| SpinDRE 16    | SpinneyWinterRFs 16%     | SpinDRE 16  | -100.00     | 316              |
| SpinDRF 17    | SpinneyWinterRFs 17%     | SpinDRF 17  | -100.00     | 317              |
| SpinDRE 21    | SpinneyWinterRFs 21%     | SpinDRE 21  | -100.00     | 321              |
| SpinMtnDRF    | SpinneyMtnWinterRFs      | SpinMtnDRF  | -100.00     | 300              |
| ThBurRFsSum   | ThornSummerBurlRFs       | ThBurRFsSum | 100.00      | 4                |
| ThBurRFsYR    | ThornYearRoundBurlRFs    | ThBurRFsYR  | -100.00     | 205              |
| ThChurchRFs   | ThorntonChurchReturns    | ThChurchRFs | 100.00      | 4                |
| ThChurchRFs   | ThorntonChurchReturns    | ThChurchRFs | -100.00     | 251              |
| ThCoAg02RFs   | ThorntonCoAg02CW132RFs   | ThornSPRFs2 | 54.00       | 4                |
| ThCoAg02RFs   | ThorntonCoAg02CW132RFs   | ThornSPRFs1 | 46.00       | 4                |
| ThCoAg02RFs   | ThorntonCoAg02CW132RFs   | ThornSPRFs1 | -46.00      | 255              |
| ThCoAg02RFs   | ThorntonCoAg02CW132RFs   | ThornSPRFs2 | -54.00      | 255              |
| ThCoAg89RFs   | ThorntonCoAg89CW132RFs   | ThornSPRFs1 | 100.00      | 4                |
| ThCoAg89RFs   | ThorntonCoAg89CW132RFs   | ThornSPRFs1 | -100.00     | 254              |
| ThFHL_RFs     | ThorntonFHLReturns       | ThornSPRFs1 | 68.00       | 4                |
| ThFHL_RFs     | ThorntonFHLReturns       | ThBDC_RFs   | 19.00       | 4                |
| ThFHL_RFs     | ThorntonFHLReturns       | ThLCC_RFs   | 13.00       | 4                |
| ThFHL_RFs     | ThorntonFHLReturns       | ThLCC_RFs   | -13.00      | 252              |
| ThFHL_RFs     | ThorntonFHLReturns       | ThBDC_RFs   | -19.00      | 252              |
| ThFHL_RFs     | ThorntonFHLReturns       | ThornSPRFs1 | -68.00      | 252              |
| ThFishRFs1    | ThorntonFishApr-AugRFs   | ThornSPRFs1 | 54.00       | 4                |
| ThFishRFs1    | ThorntonFishApr-AugRFs   | ThLCC_RFs   | 46.00       | 4                |
| ThFishRFs1    | ThorntonFishApr-AugRFs   | ThLCC_RFs   | -46.00      | 253              |
| ThFishRFs1    | ThorntonFishApr-AugRFs   | ThornSPRFs1 | -54.00      | 253              |
| ThFishRFs2    | ThorntonFishSep-OctRFs   | ThornSPRFs1 | 54.00       | 4                |
| ThFishRFs2    | ThorntonFishSep-OctRFs   | ThLCC_RFs   | 46.00       | 4                |
| ThLCC02RFs    | ThorntonLCC02CW266RFs    | ThornSPRFs1 | 69.00       | 4                |
| ThLCC02RFs    | ThorntonLCC02CW266RFs    | ThornSPRFs2 | 31.00       | 4                |
| ThLCC02RFs    | ThorntonLCC02CW266RFs    | ThornSPRFs2 | -31.00      | 257              |

|             | T & C Blan Name       | Return Flow | Return Flow | Delay<br>Dattorn |
|-------------|-----------------------|-------------|-------------|------------------|
|             | I & C Pidit Nattie    | LUCATION    | 70          | Pattern          |
| ThLCC02RFs  | ThorntonLCC02CW266RFs | ThornSPRFs1 | -69.00      | 257              |
| ThLCC89RFs  | ThorntonLCC89CW132RFs | ThornSPRFs1 | 100.00      | 4                |
| ThLCC89RFs  | ThorntonLCC89CW132RFs | ThornSPRFs1 | -100.00     | 256              |
| WestyChRFs  | WestyChurchRFs        | WestySPRFs  | 78.00       | 4                |
| WestyChRFs  | WestyChurchRFs        | WestyLCCRFs | 14.00       | 4                |
| WestyChRFs  | WestyChurchRFs        | WestBDCRFs  | 8.00        | 4                |
| WestyChRFs  | WestyChurchRFs        | WestBDCRFs  | -8.00       | 261              |
| WestyChRFs  | WestyChurchRFs        | WestyLCCRFs | -14.00      | 261              |
| WestyChRFs  | WestyChurchRFs        | WestySPRFs  | -78.00      | 261              |
| WestyFHLRFs | WestyFHLRFs           | WestySPRFs  | 82.00       | 4                |
| WestyFHLRFs | WestyFHLRFs           | WestBDCRFs  | 9.00        | 4                |
| WestyFHLRFs | WestyFHLRFs           | WestyLCCRFs | 9.00        | 4                |
| WestyFHLRFs | WestyFHLRFs           | WestBDCRFs  | -9.00       | 262              |
| WestyFHLRFs | WestyFHLRFs           | WestyLCCRFs | -9.00       | 262              |
| WestyFHLRFs | WestyFHLRFs           | WestySPRFs  | -82.00      | 262              |

<sup>1</sup> Negative Return Flow % is used to designate a Fixed (Winter) Return Flow Obligation. See Section 5.8.6 for more information on the representation of different types of return flow obligations.

#### Where to find more information

 "Section 7.11.13: Terms and Conditions Operations" of the StateMod User's Manual Documentation provides information on how terms and conditions plans are developed and implemented in StateMod.

## 5.8.6 Terms and Conditions

"Terms and Conditions" is language used to collectively represent the return flow obligations associated with the transfer or change of water right. They generally represent the amount, timing, and location of non-consumed water returned to the river from the historical use of the changed water right. StateMod generates these return flow obligations during simulation based on:

- simulated diversion of the changed water right (Operating Rule File \*.opr)
- consumptive use (CU) factors (Operating Rule File \*.opr)
- efficiency information (Plan Return Flow File \*.prf)
- delay pattern (Delay File \*.dly)

When included in an operating rule, the T & C plan stores the return flow obligations (plan demand) associated with the simulated diversion for current and future time steps. There are three types of return flow patterns:

- Standard Return Pattern = (Data in the delay file (\*.dly) \* (Simulated Diversion from the Operating Rule) \* (1.0-CU Factor), where the CU Factor is provided in the operating rule that releases water from the Changed Water Rights Plan. This return flow pattern either reflects the "immediate summer" return flow obligations owed to the river in the same time step as the release of water occurs, or reflects return flow obligations strictly based on the original irrigation pattern.
- Fixed Return Pattern = (Data in the delay file (\*.dly) \* (Simulated Diversion from the Operating Rule), whereby a "fixed" percentage of each month's releases becomes the return flow obligation. Generally used to represent "winter return flows" obligated based on the total amount released or "used" during the summer.
- Mixed Return Pattern = Standard Return Pattern + Fixed Return Pattern

The obligations can be "offset" by a number of supplies, including changed water rights, reusable supplies, and/or reservoir releases. Note that StateMod only accounts for the return flow obligation and supplies used to offset this plan demand; it does not limit the use of changed water rights if the supplies are insufficient to meet the full plan demand. The plan demand and supplies are reported in the plan summary (\*.xpl) file and it is up to the user to confirm, if appropriate, that the full return flow obligation is being offset.

This section describes the model input associated with generating the return flow obligation in each T & C Plan. See Section 5.10 for more information, and the specific operations, on supplies used to "offset" the obligations.

Information used in this model dataset is based on available data collected and developed through the CDSS, including information recorded by the State Engineer's Office. The model dataset and results are intended for basin-wide planning purposes. Individuals seeking to use the model dataset or results in any legal proceeding are responsible for verifying the accuracy of information included in the model.

# 5.8.6.1 City of Longmont Terms and Conditions

The City of Longmont has changed water rights in several ditches in the St. Vrain Creek Basin; they were decreed in a series of cases in 1981 and 1987. In contrast to the representation of terms and conditions for other municipalities, Longmont's return flow obligations from these decrees are collectively stored in a single Longmont\_TC plan. This model representation allows for the obligations to be aggregated into a single demand which is then offset collectively using several of the city's supplies. The decreed standard return patterns unique for each ditch are modeled explicitly and presented below.
| Ditch                               | Decree | April | May  | June | July | Aug  | Sep  | Oct  |
|-------------------------------------|--------|-------|------|------|------|------|------|------|
| Longmont Supply Canal               | 1981   | 42.0  | 36.8 | 34.9 | 34.1 | 35.1 | 39.3 | -    |
| (0500545)                           | 1987   | 43.8  | 36.4 | 35.3 | 33.6 | 35.0 | 38.9 | -    |
| Rough and Ready Ditch               | 1981   | -     | 34.3 | 33.4 | 33.9 | 43.4 | 89.5 | -    |
| (0500527)                           | 1987   | -     | 34.2 | 33.6 | 33.9 | 42.4 | 86.7 | -    |
| Oligarchy Ditch                     | 1981   | 61.1  | 36.6 | 36.8 | 34.6 | 38.9 | 58.1 | -    |
| (0500547)                           | 1987   | 61.1  | 36.5 | 36.7 | 34.3 | 39.1 | 58.1 | -    |
| Smede Ditch<br>(0500530)            | 1981   | -     | 72   | 59.1 | 59.8 | 77.4 | -    | -    |
| Palmerton Ditch<br>(0500528)        | 1981   | -     | 41.6 | 37.1 | 40.2 | 57.4 | -    | -    |
| Beckwith Ditch<br>(0500560)         | 1987   | 49.8  | 51   | 50   | 46.1 | 53.9 | 73.1 | -    |
| Clover Ditch<br>(0500552)           | 1987   | 2.8   | 17.7 | 76.2 | 52.5 | 28.6 | 20.6 | -    |
| Niwot Ditch<br>(0500554)            | 1987   | 44.4  | 44.6 | 42.1 | 42.1 | 48.9 | 70   | -    |
| Pella Ditch<br>(0500551)            | 1987   | 58.8  | 22.9 | 21.2 | 19.5 | 20.8 | 24.9 | 39.2 |
| South Flat Ditch<br>(0500558)       | 1987   | 28.2  | 23   | 25.6 | 28.3 | 33.8 | 54.9 | -    |
| Zweck and Turner Ditch<br>(0500601) | 1987   | _     | 36.9 | 35.6 | 35.3 | 45.5 | 73.9 | _    |

Standard Return Pattern Data (%)

Longmont's use of changed water rights in Swede Ditch (0500529) is decreed for year round use and requires an immediate return flow of 40 percent each month.

The fixed return patterns from the decrees showed little variability and were therefore averaged into a single pattern. The single fixed return flow factors applied to simulated diversions are as follows:

| Nov | Dec | Jan | Feb | Mar |
|-----|-----|-----|-----|-----|
| 2.5 | 1.9 | 1.5 | 1.2 | 1.0 |

#### Fixed Return Pattern Data (%)

Longmont's return flows are modeled on St. Vrain Creek upstream of the confluence with Boulder Creek. See Section 5.10.5.5 for more information on how these changed shares are used within the City of Longmont's system and what supplies are used to offset the obligations.

# 5.8.6.2 Lower Boulder Ditch (0600538\_D)

Boulder and Lafayette have both changed shares in Lower Boulder Ditch, as decreed in Case No. 94CW284 for Boulder, and Case Nos. 90CW108 and 97CW195 for Lafayette. Return flow obligations associated with Boulder's and Lafayette's use of its changed shares are assigned to the plan ID 06538\_B\_RF and 06538\_L\_RF, respectively. Year round return flow obligations are modeled using both a standard and a fixed pattern. Return flow obligations are owed to Boulder Creek at the respective municipal outfalls of Boulder and Lafayette.

The decreed monthly return flow factors applied to simulated diversions for Boulder are as follows:

| April | May  | June | July | Aug  | Sep  |
|-------|------|------|------|------|------|
| 79.0  | 61.0 | 52.0 | 47.0 | 52.0 | 66.0 |

#### Standard Return Pattern Data (%)

#### Fixed Return Pattern Data (%)

| Oct | Nov | Dec | Jan | Feb | Mar |
|-----|-----|-----|-----|-----|-----|
| 0   | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 |

With respect to Lafayette, the decrees indicate that Lafayette's consumptive use of the changed shares is less than the historical irrigation consumptive use at the ditch therefore this it is assumed that return flow obligations are met by the returns from the Lafayette WWTP and lagged ground water flow. While there are decreed wintertime return flow obligations, they are small and are not explicitly represented. If the changed shares are stored in Baseline Reservoir, as opposed to being used directly at the municipal demand, monthly return flow factors applied to simulated diversions for Lafayette are as follows:

#### Standard Return Pattern Data (%)

| April | May  | June | July | Aug  | Sep  | Oct  |
|-------|------|------|------|------|------|------|
| 33.0  | 33.0 | 33.0 | 33.0 | 33.0 | 33.0 | 33.0 |

See Section 5.10.6.12 for more information on how these changed shares are used within Boulder and Lafayette's system and what supplies are used to offset the obligations.

#### 5.8.6.3 North Boulder Farmers Ditch (0600543)

Return flow obligations associated with Boulder's use of its North Boulder Farmers Ditch changed shares decreed in Case No. 94CW285 are assigned to the plan ID 06543\_B\_RF. Year round return flow obligations are modeled using both a standard and a fixed pattern. Return flow obligations are owed to Boulder Creek at Boulder's municipal outfall. The decreed monthly return flow factors applied to simulated diversions are as follows:

#### Standard Return Pattern Data (%)

| April | May  | June | July | Aug  | Sep  |
|-------|------|------|------|------|------|
| 79.0  | 61.0 | 52.0 | 47.0 | 52.0 | 66.0 |

#### Fixed Return Pattern Data (%)

| Oct | Nov | Dec | Jan | Feb | Mar |
|-----|-----|-----|-----|-----|-----|
| 3.3 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |

See Section 5.10.6.12 for more information on how these changed shares are used within Boulder's system and what supplies are used to offset the obligations.

# 5.8.6.4 Leyner Cottonwood Ditch (0600565)

Lafayette and Louisville have both changed shares in Leyner Cottonwood Ditch, as decreed in Case Nos. 80CW468 and 85CW119 for Lafayette, and Case No. 87CW327 for Louisville. Return flow obligations associated with Lafayette's and Louisville's use of its changed shares are assigned to the plan ID 06565\_L\_RF and 06565\_V\_RF, respectively. Summertime return flow obligations are modeled using a standard pattern. Return flow obligations are owed to Boulder Creek at the respective municipal outfalls of Lafayette and Louisville, downstream of the Coal Creek confluence.

The decreed monthly return flow factors applied to simulated diversions for Louisville are as follows:

#### Standard Return Pattern Data (%)

| April | May  | June | July | Aug  | Sep  |
|-------|------|------|------|------|------|
| 59.0  | 70.0 | 85.0 | 89.0 | 87.0 | 93.0 |

With respect to Lafayette, the decrees indicate that Lafayette's consumptive use of the changed shares is less than the historical irrigation consumptive use at the ditch therefore this it is assumed that return flow obligations are met by the returns from the Lafayette WWTP and lagged ground water flow. While there are decreed wintertime return flow obligations, they are small and are not explicitly represented. If the changed shares are stored in Baseline Reservoir, as opposed to being used directly at the municipal demand, monthly return flow factors applied to simulated diversions for Lafayette are as follows:

#### Standard Return Pattern Data (%)

| April | May  | June | July | Aug  | Sep  | Oct  |
|-------|------|------|------|------|------|------|
| 33.0  | 33.0 | 33.0 | 33.0 | 33.0 | 33.0 | 33.0 |

See Section 5.10.6.12 for more information on how these changed shares are used within Lafayette's and Louisville's systems and what supplies are used to offset the obligations.

# 5.8.6.5 Davidson Ditch (0600567)

Lafayette and Louisville have both changed shares in Davidson Ditch, as decreed in Case Nos. W8348, 80CW469, and 85CW119 for Lafayette, and Case No. 83CW319 for Louisville. Return flow obligations associated with Lafayette's and Louisville's use of its changed shares are assigned to the plan ID 06567\_L\_RF and 06567\_V\_RF, respectively. Summertime return flow obligations are modeled using a standard pattern. Return flow obligations are owed to Boulder Creek at the respective municipal outfalls of Lafayette and Louisville, downstream of the Coal Creek confluence.

The decreed monthly return flow factors applied to simulated diversions for Louisville are as follows:

|       |      |      | • •  |      |
|-------|------|------|------|------|
| April | May  | June | July | Aug  |
| 34.2  | 34.2 | 34.2 | 34.2 | 34.2 |

#### Standard Return Pattern Data (%)

With respect to Lafayette, the decrees indicate that Lafayette's consumptive use of the changed shares is less than the historical irrigation consumptive use at the ditch therefore this it is assumed that return flow obligations are met by the returns from the Lafayette WWTP and lagged ground water flow. While there are decreed wintertime return flow obligations, they are small and are not explicitly represented. If the changed shares are stored in Baseline Reservoir, as opposed to being used directly at the municipal demand, monthly return flow factors applied to simulated diversions for Lafayette are as follows:

Standard Return Pattern Data (%)

| April | May  | June | July | Aug  |
|-------|------|------|------|------|
| 38.0  | 38.0 | 38.0 | 38.0 | 38.0 |

See Section 5.10.6.12 for more information on how these changed shares are used within Lafayette's and Louisville's systems and what supplies are used to offset the obligations.

# 5.8.6.6 Dry Creek Davidson Ditch (0600569\_D)

Lafayette and Louisville have both changed shares in Dry Creek Davidson Ditch, as decreed in Case Nos. 90CW108 and 80CW468 for Lafayette, and Case No. CA6517 for Louisville. The return flow obligations associated with Louisville's use are not modeled using a T & C plan because they are a fixed percentage each month. Rather, 16.7 percent of the changed water is turned out immediately at the ditch to represent the static return flow obligation, as represented in the model by a separate plan structure (060569\_CS2).

Return flow obligations associated with Lafayette's use of its changed shares are assigned to the plan ID 06569\_L\_RF and owed to Boulder Creek at the municipal outfall, downstream of the Coal Creek confluence. Lafayette's decrees indicate that Lafayette's consumptive use of the changed shares is less than the historical irrigation consumptive use at the ditch therefore this it is assumed that return flow obligations are met by the returns from the Lafayette WWTP and lagged ground

water flow. While there are decreed wintertime return flow obligations, they are small and are not explicitly represented. If the changed shares are stored in Baseline Reservoir, as opposed to being used directly at the municipal demand, monthly standard return flow factors applied to simulated diversions for Lafayette are as follows:

| April | May  | June | July | Aug  | Sep  | Oct  |
|-------|------|------|------|------|------|------|
| 38.0  | 38.0 | 38.0 | 38.0 | 38.0 | 38.0 | 38.0 |

# Standard Return Pattern Data (%)

Coal Ridge Ditch Company (Case No. CA10000) has also changed shares in this ditch and takes deliver of these shares at Lower Boulder Ditch (0600538\_D), however no return flows are required under that decree.

See Section 5.10.6.12 for more information on how these changed shares are used within Lafayette's and Louisville's systems and what supplies are used to offset the obligations.

# 5.8.6.7 Enterprise Ditch (0600576)

Lafayette and Louisville have both changed shares Enterprise Ditch, as decreed in Case Nos. 90CW108 and 80CW468 for Lafayette, and Case No. CA21299 and 82CW305 for Louisville. The return flow obligations associated with Louisville's use are not modeled using a T & C plan because they are a fixed percentage each month. Rather, 16.7 percent of the changed water is turned out immediately at the ditch to represent the static return flow obligation, as represented in the model by a separate plan structures (060576\_CS3 and 060576\_CS4).

Return flow obligations associated with Lafayette's use of its changed shares are assigned to the plan ID 06576\_L\_RF and owed to Boulder Creek at the municipal outfall, downstream of the Coal Creek confluence. Lafayette's decrees indicate that Lafayette's consumptive use of the changed shares is less than the historical irrigation consumptive use at the ditch therefore this it is assumed that return flow obligations are met by the returns from the Lafayette WWTP and lagged ground water flow. While there are decreed wintertime return flow obligations, they are small and are not explicitly represented. If the changed shares are stored in Baseline Reservoir, as opposed to being used directly at the municipal demand, monthly standard return flow factors applied to simulated diversions for Lafayette are as follows:

| April | May  | June | July | Aug  | Sep  | Oct  |
|-------|------|------|------|------|------|------|
| 33.0  | 33.0 | 33.0 | 33.0 | 33.0 | 33.0 | 33.0 |

# Standard Return Pattern Data (%)

Coal Ridge Ditch Company (Case No. CA10000) has also changed shares in this ditch and takes deliver of these shares at Lower Boulder Ditch (0600538\_D), however no return flows are required under that decree.

See Section 5.10.6.12 for more information on how these changed shares are used within Lafayette's and Louisville's systems and what supplies are used to offset the obligations.

# 5.8.6.8 Goodhue Ditch (0600650)

Lafayette and Louisville have both changed shares in Goodhue Ditch, as decreed in Case Nos. W8348, 80CW469, and 85CW119 for Lafayette, and Case No. 83CW319 for Louisville. Return flow obligations associated with Lafayette's and Louisville's use of its changed shares are assigned to the plan ID 06650\_L\_RF and 06567\_V\_RF, respectively. Summertime return flow obligations are modeled using a standard pattern. Return flow obligations are owed to Boulder Creek at the respective municipal outfalls of Lafayette and Louisville, downstream of the Coal Creek confluence.

The decreed monthly return flow factors applied to simulated diversions for Louisville are as follows:

|       |      |      | . ,  |      |
|-------|------|------|------|------|
| April | May  | June | July | Aug  |
| 38.0  | 38.0 | 38.0 | 38.0 | 38.0 |

Standard Return Pattern Data (%)

With respect to Lafayette, the decrees indicate that Lafayette's consumptive use of the changed shares is less than the historical irrigation consumptive use at the ditch therefore this it is assumed that return flow obligations are met by the returns from the Lafayette WWTP and lagged ground water flow. While there are decreed wintertime return flow obligations, they are small and are not explicitly represented. If the changed shares are stored in Baseline Reservoir, as opposed to being used directly at the municipal demand, monthly return flow factors applied to simulated diversions for Lafayette are as follows:

#### Standard Return Pattern Data (%)

| April | May  | June | July | Aug  |
|-------|------|------|------|------|
| 38.0  | 38.0 | 38.0 | 38.0 | 38.0 |

See Section 5.10.6.12 for more information on how these changed shares are used within Lafayette's and Louisville's systems and what supplies are used to offset the obligations.

# 5.8.6.9 Additional Water District 6 Terms and Conditions

Boulder, Louisville and Lafayette have changed shares in various other ditches in the Boulder Creek Basin; however the return flow obligations are not represented using a T & C plan. The following summarizes these diches and the approach used to account for their return flow obligations.

• Boulder changed shares in the several ditches along Boulder Creek and Middle Boulder Creek both for municipal use and to dedicate the changed shares to instream flows, as decreed in Case Nos. CA8407, 10518, 15012, 90CW0193. There are no return flow obligations associated with the water available for direct use by the City of Boulder. For the water used

to satisfy instream flows, Boulder is required to release 36 af of Windy Gap water down the Boulder Supply Canal in each month from October through March. This is represented in the model using a diversion node (06\_BOU\_RF) with a non-consumptive wintertime demand of 36 af per month. These operations apply to the changed shares on the following ditches:

- o Anderson Ditch (0600501)
- o Farmers Ditch (0600525)
- o Smith Goss (0600554)
- o Harden Ditch (0600530) as changed to Boulder Pipeline (0600599)
- o McCarty Ditch (0600542)
- Louisville changed shares in Community Ditch (0600564\_D) as decreed in Case Nos. CA21299 and CA10232. The return flow obligations associated with Louisville's use on this ditch are not modeled using a T & C plan because they are a fixed percentage each month. Rather, 16.7 percent of the changed water is turned out immediately at the ditch to represent the static return flow obligation, as represented in the model by a separate plan structure (060564\_CS1).
- Louisville changed shares in Cottonwood No. 2 Ditch (0600566) as decreed in Case Nos. W9193 and 99CW230. The return flow obligations associated with Louisville's use on this ditch are not modeled using a T & C plan because they are a fixed percentage each month. Rather, 19 percent of the changed water is turned out immediately at the ditch to represent the static return flow obligation, as represented in the model by separate plan structures (060566\_CS1 and 060566\_CS2).
- Louisville and Lafayette have both changed shares in Dry Creek Ditch No. 2 (0600570). The diversion amount associated with the changed shares was reduced in lieu of return flow obligations; therefore no obligations are represented for these shares.
- Lafayette changed shares in South Boulder Bear Creek Ditch (0600588). The diversion amount associated with the changed shares was reduced in lieu of return flow obligations; therefore no obligations are represented for these shares.
- Louisville changed shares in East Boulder Ditch (0600575) as decreed in Case No. 82CW305. The return flow obligations associated with Louisville's use on this ditch are not modeled using a T & C plan because they are a fixed percentage each month. Rather, 17 percent of the changed water is turned out immediately at the ditch to represent the static return flow obligation, as represented in the model by a separate plan structure (060575\_CS1).
- Changed shares in Howard Ditch (0600580) are decreed in cases for Lafayette (CA8960, W8346 and W8348), Louisville (99CW0230, CA12698, CA21299 and W8500) and Eldora Ski Resort (W7786, 02CW400 and 07CW02). The return flow obligations associated with their uses on this ditch are not modeled using a T & C plan because they are a fixed percentage

each month. Rather, 10 percent of Eldora's changed water and 20% of Louisville and Lafayette's changed water is turned out immediately at the ditch to represent the static return flow obligation, as represented in the model by separate plan structured (060580\_CS1 – CS7).

- Louisville changed shares in Marshallville Ditch (0600585) as decreed in Case No. 87CW327. The return flow obligations associated with Louisville's use on this ditch are not modeled using a T & C plan because they are a fixed percentage each month. Rather, 20 percent less of the total changed water amount was put into the changed water right plan (060585\_CH1), essentially leaving 20 percent additional water at the ditch.
- Louisville changed shares in McGinn Ditch (0600586) as decreed in Case No. 87CW327. The return flow obligations associated with Louisville's use on this ditch are not modeled using a T & C plan because they are a fixed percentage each month. Rather, 20 percent less of the total changed water amount was put into the changed water right plan (060586\_CH1), essentially leaving 20 percent additional water at the ditch.

# 5.8.6.10 City of Aurora South Park Water Rights (Water District 23)

The City of Aurora has changed several water rights in the South Park area in Water District 23. These changed water rights are administered in aggregate at 18 administrative stream gages in the SPDSS model (IDs 2302900, 2302901, 2302902, 2302903, 2302904, 2302906, 2302907, 2302908, 2302909, 2302910, 2302911, 2302912, 2302913, 2302914, 2302915, 2302916, 2302917, and 2302918) on the upper South Platte River and Tarryall Creek basins.

The South Platte River water rights are typically stored in Spinney Mountain Reservoir before water is released from Spinney to meet Aurora's demands. The water stored in Spinney Mountain generates return flow obligations that represent a demand for the stored water that is released to the river during the winter months. The delayed return flow obligations generated by these uses vary by ditch, so a simplified approach was used. First, the total delayed return flow owed to the river based on the use each month averaged for all of the ditches represented at each gage. The total delayed return flow values were then averaged amongst all the gages to get the following pattern that is used for all of the South Platte River water rights.

| April | May  | June | July | Aug  |
|-------|------|------|------|------|
| 11.0  | 17.0 | 16.0 | 16.0 | 21.0 |

Total Delayed Return Flow Pattern Data (%)

The total delayed return flow obligation is distributed according to the following lagged pattern:

| Jan | Feb | Mar | Apr | May -<br>July | Aug  | Sep  | Oct  | Nov  | Dec  |
|-----|-----|-----|-----|---------------|------|------|------|------|------|
| 9.0 | 9.0 | 8.0 | 1.0 | 0.0           | 21.0 | 16.0 | 12.0 | 13.0 | 11.0 |

# Standard Return Lagged Pattern (%)

This unique representation was accomplished by using a separate T & C Plan for each month and a specific delay pattern for each T&C Plan, as shown below:

| Plan ID    | Jan | Feb | Mar | Apr | May -<br>July | Aug | Sep | Oct | Nov | Dec | Total |
|------------|-----|-----|-----|-----|---------------|-----|-----|-----|-----|-----|-------|
| SpinDRF_11 | 1.0 | 1.0 | 0.9 | 0.1 | 0.0           | 2.3 | 1.8 | 1.3 | 1.4 | 1.2 | 11.0  |
| SpinDRF_17 | 1.5 | 1.5 | 1.4 | 0.2 | 0.0           | 3.6 | 2.7 | 2.0 | 2.2 | 1.9 | 17.0  |
|            |     |     |     |     |               |     |     |     |     |     |       |
| SpinDRF_16 | 1.4 | 1.4 | 1.3 | 0.2 | 0.0           | 3.4 | 2.6 | 1.9 | 2.1 | 1.8 | 16.0  |
| SpinDRF_21 | 1.9 | 1.9 | 1.7 | 0.2 | 0.0           | 4.4 | 3.4 | 2.5 | 2.7 | 2.3 | 21.0  |

# South Park Ditches T &C Plans and Delay Patterns (%)

The Tarryall Creek water rights are typically used directly to meet Aurora's municipal demands; excess supplies can then be exchanged to Spinney Mountain. The total delayed return flow obligations for the use of Tarryall Creek rights were developed using the same approach as the South Platte River rights. The average delayed return flow obligation values used for all of the Tarryall Creek water rights is as follows:

Total Delayed Return Flow Pattern Data (%)

| April | May  | June | July | Aug | Sep |
|-------|------|------|------|-----|-----|
| 7.0   | 16.0 | 16.0 | 13.0 | 4.0 | 3.0 |

Similar to the South Platte River rights, the total delayed return flow obligation is distributed according to the following lagged pattern:

#### Standard Return Lagged Pattern (%)

| Jan | Feb | Mar | Apr | May -<br>July | Aug  | Sep  | Oct  | Nov  | Dec  |
|-----|-----|-----|-----|---------------|------|------|------|------|------|
| 9.0 | 9.0 | 8.0 | 1.0 | 0.0           | 21.0 | 16.0 | 12.0 | 13.0 | 11.0 |

This unique representation was accomplished by using a separate T & C Plan for each month and a specific delay pattern for each T&C Plan, as shown below:

| Plan ID    | Jan | Feb | Mar | Apr | May -<br>July | Aug | Sep | Oct | Nov | Dec | Total |
|------------|-----|-----|-----|-----|---------------|-----|-----|-----|-----|-----|-------|
| SpinDRF_7  | 0.6 | 0.6 | 0.6 | 0.1 | 0.0           | 1.5 | 1.1 | 0.8 | 0.9 | 0.8 | 7.0   |
| SpinDRF_16 | 1.4 | 1.4 | 1.3 | 0.2 | 0.0           | 3.4 | 2.6 | 1.9 | 2.1 | 1.8 | 16.0  |
| SpinDRF_13 | 1.2 | 1.2 | 1.0 | 0.1 | 0.0           | 2,7 | 2,1 | 1,6 | 1,7 | 1,4 | 13.0  |
| SpinDRF_4  | 0.4 | 0.4 | 0.3 | 0.0 | 0.0           | 0.8 | 0.6 | 0.5 | 0.5 | 0.4 | 4.0   |
| SpinDRF_3  | 0.3 | 0.3 | 0.2 | 0.0 | 0.0           | 0.6 | 0.5 | 0.4 | 0.4 | 0.3 | 3.0   |

Tarryall Creek T &C Plans and Delay Patterns (%)

In addition to the delay return flow obligations for the Tarryall Creek water rights, there are also requirements to bypass a specific percentage of the changed water right (the instantaneous return flows). These bypass requirements were incorporated in the model using carrier structures that "lose" the bypass amount as it carries the changed water right. The bypass requirements vary monthly and by administrative gage, as shown below.

|         |           |             | , ,, | •    | •    |      |      |      |
|---------|-----------|-------------|------|------|------|------|------|------|
| Gage ID | Gage Name | Bypass Str. | Apr  | May  | Jun  | Jul  | Aug  | Sep  |
| 2302906 | TARCOMCO  | 2302906_A   | 90.0 | 38.0 | 9.0  | 13.0 | 21.0 | 20.0 |
| 2302907 | MCHJEFCO  | 2302907_A   | 97.0 | 61.0 | 34.0 | 42.0 | 70.0 | 72.0 |
| 2302908 | JEFJEFCO  | 2302908_A   | 95.0 | 30.0 | 13.0 | 19.0 | 50.0 | 81.0 |
| 2302909 | TARBORCO  | 2302909_A   | -    | 4.0  | 22.0 | 37.0 | -    | -    |
| 2302910 | OHGJEFCO  | 2302910_A   | -    | 31.0 | 0.0  | 48.0 | 44.0 | 67.0 |
| 2302914 | FRNCRKCO  | 2302914_A   | -    | 40.0 | 0.0  | 21.0 | -    | -    |
| 2302915 | RCKTARCO  | 2302915_A   | -    | 19.0 | 36.0 | 63.0 | -    | -    |
| 2302916 | SCHFLMCO  | 2302916_A   | -    | 39.0 | 0.0  | 15.0 | -    | -    |
| 2302917 | JEFSNYCO  | 2302917_A   | -    | 55.0 | 33.0 | 19.0 | -    | -    |
| 2302918 | DIXCOMCO  | 2302918 A   | -    | 50.0 | 27.0 | 31.0 | -    | -    |

# Tarryall Creek Monthly Bypass Requirements (%)

Bypass obligations are owed to the river at the administrative gages. Delayed return flow obligations are owed to the South Platte River below the Spinney Mountain Reservoir. See Section 5.10.8.2.64 for more information on how these changed shares are used within the Aurora's system and what supplies are used to offset the obligations.

# 5.8.6.11 Burlington Canal (0200802)

The City of Thornton and SACWSD have both changed shares in Burlington Canal, as originally decreed in Case No. 87CW107. The City of Brighton has also acquired and changed Burlington and Wellington shares, however those shares are not represented in the model since they were changed near the end of the study period (2007 and later). Return flow obligations vary depending on the priority of the water used for simulated diversions. The following generally summarizes the return flow obligations for these changed shares.

- Return flow obligations associated with the Duggan 10.28 cfs right (ThBur10Pln and SABur10Pln) and the 1885 direct right (Th200\_85Pln and SA200\_85Pln) is set to a constant rate equal to 31 percent of the average annual delivery over the previous 20 years. This obligation equals 2.6 percent each month. Since StateMod calculates return flow obligations using river headgate diversions instead of augmentation station deliveries, this monthly rate was reduced to 2.3 percent each month to account for a 10 percent ditch loss. This delayed return flow obligation is accounted for in plan IDs ThBurRFsYR and SABurRFsYR using a fixed return pattern set to 2.3 percent each month.
- The consumptive use credit associated with the Wellington 7.987 cfs right (ThWell7Pln and SAWell7Pln) is 35 percent, therefore 65 percent must be returned in the same time-step. Since StateMod calculates return flow obligations using river headgate diversions instead of augmentation station deliveries, this monthly return flow was reduced to 58.5 percent each month to account for a 10 percent ditch loss. This return flow obligation is accounted for in plan IDs ThBurRFsSum and SABurRFsSum using a standard return flow pattern set to 58.5 percent each month for April through October.
- The consumptive use credit associated with the Sanstad 6.0 cfs right (ThSanstPln and SASanstPln) is 0 percent, therefore 100 percent must be returned in the same time-step. This return flow obligation is accounted for in plan IDs ThBurRFsSum and SABurRFsSum using a standard return flow pattern set to 0 percent each month.

See Section 5.10.8.17 for more information on how these changed shares are used within Thornton's and SACWSD's systems and what supplies are used to offset the obligations.

# 5.8.6.12 Fulton Ditch (0200808)

Several entities have changed shares in Fulton Ditch, including:

- Brighton (Case Nos. 04CW0174 and 00CW202)
- SACWSD (Case No. 02CW258)
- Northglenn (Case Nos. 79CW233, 79CW234, 79CW236, 82CW056 and 82CW057)
- Central (Case No. 01CW264)

The return flow obligations associated with these changed shares are modeled using a bypass structure and a fixed return flow pattern. The bypass structure is used instead of a standard return pattern because these entities only divert the consumptive use credits of the changed water right; the remaining non-consumptive portion remains in the river. In contrast, when a standard return pattern is used, the full changed water right amount is diverted and the return flow obligation is satisfied using other supplies. The bypass requirements were incorporated in the model using a carrier structure (0200808\_A) that "loses" the non-consumptive portion as it carries the changed water right. The consumptive use credits and the resulting bypass amounts vary monthly for each entity, as shown below.

| Entity Name           | Apr  | May  | Jun  | Jul  | Aug  | Sep  | Oct  |
|-----------------------|------|------|------|------|------|------|------|
| Brighton <sup>1</sup> | 48.0 | 80.0 | 84.0 | 85.0 | 84.0 | 81.0 | 68.0 |
| SACWSD                | 28.0 | 69.0 | 76.0 | 79.0 | 76.0 | 69.0 | 47.0 |
| Northglenn            | 11.0 | 57.0 | 57.0 | 56.0 | 55.0 | 53.0 | 48.0 |
| Central               | 12.0 | 60.0 | 62.0 | 60.0 | 51.0 | 34.0 | -    |

Fulton Ditch Monthly Consumptive Use Credits (%)

<sup>1</sup> Weighted based on farm headgate delivery limits on Case Nos. 04CW0174 and 00CW202

| Entity Name | Apr  | May  | Jun  | Jul  | Aug  | Sep  | Oct  |
|-------------|------|------|------|------|------|------|------|
| Brighton    | 52.0 | 20.0 | 16.0 | 15.0 | 16.0 | 19.0 | 32.0 |
| SACWSD      | 72.0 | 31.0 | 24.0 | 21.0 | 24.0 | 31.0 | 53.0 |
| Northglenn  | 89.0 | 43.0 | 43.0 | 44.0 | 45.0 | 47.0 | 52.0 |
| Central     | 88.0 | 40.0 | 38.0 | 40.0 | 49.0 | 66.0 | -    |

#### Fulton Ditch Monthly Bypass Requirements (%)

Delayed return flow obligations associated with changed water rights are assigned to one plan per entity as shown in the table below. The decreed monthly return flow factors were adjusted for a 20 percent ditch loss resulting in the following return flow factors:

| Fixed Retu | n Pattern | Data | (%) |
|------------|-----------|------|-----|
|------------|-----------|------|-----|

| Entity                | Plan ID    | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|-----------------------|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Brighton <sup>1</sup> | BriFulRFs  | 2.1 | 2.0 | 2.0 | 0.9 | 0.9 | 0.9 | 1.0 | 1.0 | 1.0 | 1.0 | 2.1 | 2.1 |
| SACWSD                | SAC_FulRFs | 1.8 | 1.7 | 1.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | 1.9 |
| Northglenn            | NgInFulRFs | 1.1 | 1.1 | 1.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.1 | 1.1 |
| Central               | CenFulRFs  | 2.3 | 1.8 | 1.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.4 | 2.8 |

<sup>1</sup> Weighted based on farm headgate delivery limits on Case Nos. 04CW0174 and 00CW202

The entities' return flow obligations are owed to the South Platte River generally above the Brighton Ditch. See Sections 5.10.8.15, 5.10.8.16, and 5.10.8.13 for more information on how these changed shares are used within these entities' systems and what supplies are used to offset the obligations.

# 5.8.6.13 Brighton Ditch (0200810)

The following entities have changed shares in Brighton Ditch:

- SACWSD (Case No. 01CW258)
- Central (Case No. 05CW080)

The return flow obligations associated with these changed shares are modeled using a bypass structure and a fixed return flow pattern. The bypass structure is used instead of a standard return pattern because these entities only divert the consumptive use credits of the changed water right; the remaining non-consumptive portion remains in the river. The bypass requirements were

incorporated in the model using a carrier structure (0200810\_A) that "loses" the non-consumptive portion as it carries the changed water right. The consumptive use credits and the resulting bypass amounts vary monthly for each entity, as shown below.

| Entity Name | Apr  | May  | Jun  | Jul  | Aug  | Sep  | Oct  |
|-------------|------|------|------|------|------|------|------|
| SACWSD      | 52.0 | 65.0 | 65.0 | 64.0 | 60.0 | 54.0 | 40.0 |
| Central     | 3.0  | 81.0 | 85.0 | 85.0 | 80.0 | 64.0 | 30.0 |

#### Brighton Ditch Monthly Consumptive Use Credits (%)

|   |             | 0    |      | , ,, | -    |      | ,    |      |
|---|-------------|------|------|------|------|------|------|------|
| E | Entity Name | Apr  | May  | Jun  | Jul  | Aug  | Sep  | Oct  |
|   | SACWSD      | 48.0 | 35.0 | 35.0 | 36.0 | 40.0 | 46.0 | 60.0 |
|   | Central     | 97.0 | 19.0 | 15.0 | 15.0 | 20.0 | 36.0 | 70.0 |

#### Brighton Ditch Monthly Bypass Requirements (%)

Delayed return flow obligations associated with changed water rights are assigned to one plan per entity as shown in the table below. The decreed monthly return flow factors were adjusted for a 25 percent ditch loss resulting in the following return flow factors:

#### Fixed Return Pattern Data (%)

| Entity  | Plan ID    | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|---------|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| SACWSD  | SAC_BriRFs | 0.5 | 0.5 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.1 | 0.8 |
| Central | CenBriRFs  | 3.1 | 2.7 | 2.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.5 | 3.5 |

SACWSD return flow obligations are owed to Big Dry Creek near the confluence with the South Platte River, and Central obligations are owed to the South Platte River below the confluence with Big Dry Creek. See Section 5.10.8.16 for more information on how these changed shares are used within these entities' systems and what supplies are used to offset the obligations.

# 5.8.6.14 Lupton Bottom Ditch (0200812)

Several entities have changed shares in Lupton Bottom Ditch, including:

- SACWSD (Case No. 01CW258)
- Northglenn (Case Nos. 79CW233, 79CW234, 79CW236, 82CW056 and 82CW057)
- Central (Case No. 94CW085 and 02CW265)
- o Includes Lupton Bottom (LB) and Lupton Meadow (LM) changed water rights
- PSCo (Case No. 02CW154A and 02CW154B)
  - o Includes Lupton Bottom and Lupton Meadow changed water rights

The return flow obligations associated with SACWSD, Northglenn and Central changed shares are modeled using a bypass structure and a fixed return flow pattern. PSCo changed portion is small and return flows were not represented in the model. The bypass structure is used instead of a standard return pattern because these entities only divert the consumptive use credits of the changed water

right; the remaining non-consumptive portion remains in the river. In contrast, when a standard return pattern is used, the full changed water right amount is diverted and the return flow obligation is satisfied using other supplies. The bypass requirements were incorporated in the model using a carrier structure (0200812\_A) that "loses" the non-consumptive portion as it carries the changed water right. The consumptive use credits and the resulting bypass amounts vary monthly for each entity, as shown below.

| Entity Name  | Apr  | May  | Jun  | Jul  | Aug  | Sep  | Oct  |
|--------------|------|------|------|------|------|------|------|
| SACWSD       | 48.0 | 66.0 | 67.0 | 67.0 | 61.0 | 48.0 | 18.0 |
| Northglenn   | 11.0 | 34.0 | 47.0 | 61.0 | 58.0 | 41.0 | 25.0 |
| Central (LB) | 48.0 | 66.0 | 67.0 | 67.0 | 61.0 | 48.0 | 18.0 |
| Central (LM) | 48.0 | 48.0 | 48.0 | 48.0 | 48.0 | 48.0 | 48.0 |

Lupton Bottom Ditch Monthly Consumptive Use Credits (%)

| •            |      |      |      | •    |      | • •  |      |
|--------------|------|------|------|------|------|------|------|
| Entity Name  | Apr  | May  | Jun  | Jul  | Aug  | Sep  | Oct  |
| SACWSD       | 52.0 | 34.0 | 33.0 | 33.0 | 39.0 | 52.0 | 82.0 |
| Northglenn   | 89.0 | 66.0 | 53.0 | 39.0 | 42.0 | 59.0 | 75.0 |
| Central (LB) | 52.0 | 34.0 | 33.0 | 33.0 | 39.0 | 52.0 | 82.0 |
| Central (LM) | 52.0 | 52.0 | 52.0 | 52.0 | 52.0 | 52.0 | 52.0 |

#### Lupton Bottom Ditch Monthly Bypass Requirements (%)

Delayed return flow obligations associated with changed water rights are assigned to one plan per entity as shown in the table below. The decreed monthly return flow factors were adjusted for a 35 percent ditch loss resulting in the following return flow factors:

| Entity               | Plan ID     | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|----------------------|-------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| SACWSD               | SAC_LBRFs   | 1.0 | 0.8 | 0.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.9 | 1.4 |
| Northglenn           | NglennLBRFs | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 |
| Central<br>(LM & LB) | CenLBRFs    | 1.1 | 0.8 | 0.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.8 | 1.4 |

Fixed Return Pattern Data (%)

The entities' return flow obligations are owed to the South Platte River generally above the Meadow Island No. 2 Ditch. See Sections 5.10.8.16 and 5.10.8.13 for more information on how these changed shares are used within these entities' systems and what supplies are used to offset the obligations.

# 5.8.6.15 Platteville Ditch (0200813)

Central has changed shares in Platteville Ditch, as decreed in Case No. 05CW069, for use in its GMS and WAS augmentation plans. The return flow obligations associated with these changed shares are modeled using a bypass structure and a fixed return flow pattern. The bypass structure is used instead of a standard return pattern because Central only diverts the consumptive use credits of the changed water right; the remaining non-consumptive portion remains in the river. The bypass

requirements were incorporated in the model using a carrier structure (0200813\_A) that "loses" the non-consumptive portion as it carries the changed water right. The consumptive use credits and the resulting bypass amounts vary monthly, as shown below.

| Entity Name | Apr  | May  | Jun  | Jul  | Aug  |
|-------------|------|------|------|------|------|
| Central     | 57.0 | 82.0 | 84.0 | 74.0 | 50.0 |

#### Platteville Ditch Monthly Consumptive Use Credits (%)

#### Platteville Ditch Monthly Bypass Requirements (%)

| Entity Name | Apr  | May  | Jun  | Jul  | Aug  |
|-------------|------|------|------|------|------|
| Central     | 43.0 | 18.0 | 16.0 | 26.0 | 50.0 |

Delayed return flow obligations associated with changed water rights are assigned to plan ID CenPVRFs. The decreed monthly return flow factors were adjusted for a 15 percent ditch loss resulting in the following return flow factors:

#### Fixed Return Pattern Data (%)

| Plan ID  | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| CenPVRFs | 3.8 | 3.5 | 3.1 | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.4 | 4.9 | 4.3 |

Central's return flow obligations are owed to the South Platte River generally above the Meadow Island No. 1 Ditch. See Section 5.10.10.1 for more information on how these changed shares are used within Central's WAS and GMS Augmentation Plan systems and what supplies are used to offset the obligations.

# 5.8.6.16 Meadow Island No. 1 Ditch (0200821)

SACWSD has changed shares in Meadow Island No. 1 Ditch, as decreed in Case No. 01CW258, for use in its augmentation plan. The return flow obligations associated with these changed shares are modeled using a bypass structure and a fixed return flow pattern. The bypass structure is used instead of a standard return pattern because SACWSD only diverts the consumptive use credits of the changed water right; the remaining non-consumptive portion remains in the river. The bypass requirements were incorporated in the model using a carrier structure (0200821\_A) that "loses" the non-consumptive portion as it carries the changed water right. The consumptive use credits and the resulting bypass amounts vary monthly, as shown below.

| Meadow Island No | o. 1 Ditch Mo | nthly Consumptive | e Use Credits (%) |
|------------------|---------------|-------------------|-------------------|
|------------------|---------------|-------------------|-------------------|

| Entity Name | Apr  | May  | Jun  | Jul  | Aug  | Sep  | Oct  |
|-------------|------|------|------|------|------|------|------|
| SACWSD      | 36.0 | 62.0 | 66.0 | 67.0 | 64.0 | 51.0 | 25.0 |

| Entity Name | Apr  | May  | Jun  | Jul  | Aug  | Sep  | Oct  |
|-------------|------|------|------|------|------|------|------|
| SACWSD      | 64.0 | 38.0 | 34.0 | 33.0 | 36.0 | 49.0 | 75.0 |

| Meadow Island No.      | 1 | Ditch | Monthly | <b>Bypass</b> | Rec | uirements    | (%)    |
|------------------------|---|-------|---------|---------------|-----|--------------|--------|
| incuation iolaria riol | - |       |         | 0,0000        |     | jun en lente | (, , , |

Delayed return flow obligations associated with changed water rights are assigned to plan ID SAC\_MI1RFs. The decreed monthly return flow factors were adjusted for a 25 percent ditch loss resulting in the following return flow factors:

# Fixed Return Pattern Data (%)

| Plan ID    | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| SAC_MI1RFs | 0.6 | 0.5 | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.3 | 0.8 |

SACWSD's return flow obligations are owed to the South Platte River generally above the Hewes Cook Ditch. See Section 5.10.8.16 for more information on how these changed shares are used within the SACWSD system and what supplies are used to offset the obligations.

# 5.8.6.17 Farmers Independent Ditch (0200824)

Central has changed shares in Farmers Independent Ditch, as decreed in Case No. 04CW276, for use in its GMS and WAS augmentation plans. The return flow obligations associated with these changed shares are modeled using a bypass structure and a fixed return flow pattern. The bypass structure is used instead of a standard return pattern because Central only diverts the consumptive use credits of the changed water right; the remaining non-consumptive portion remains in the river. The bypass requirements were incorporated in the model using a carrier structure (0200824\_A) that "loses" the non-consumptive portion as it carries the changed water right. The consumptive use credits and the resulting bypass amounts vary monthly, as shown below.

|             | -    |      | -    | -   |      |      |      |
|-------------|------|------|------|-----|------|------|------|
| Entity Name | Apr  | May  | Jun  | Jul | Aug  | Sep  | Oct  |
| Central     | 80.0 | 60.0 | 16.0 | 9.0 | 12.0 | 22.0 | 84.0 |

#### Farmers Independent Ditch Monthly Consumptive Use Credits (%)

#### Farmers Independent Ditch Monthly Bypass Requirements (%)

| Entity Name | Apr  | May  | Jun  | Jul  | Aug  | Sep  | Oct  |
|-------------|------|------|------|------|------|------|------|
| Central     | 20.0 | 40.0 | 84.0 | 91.0 | 88.0 | 78.0 | 16.0 |

Delayed return flow obligations associated with changed water rights are assigned to plan ID CenFarmRFs. The decreed monthly return flow factors were adjusted for a 15 percent ditch loss resulting in the following return flow factors:

#### Fixed Return Pattern Data (%)

| Plan ID    | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| CenFarmRFs | 2.6 | 2.1 | 2.2 | 1.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.0 | 2.7 |

Central's return flow obligations are owed to the South Platte River generally above the Lower Latham Ditch. See Section 5.10.10.1 for more information on how these changed shares are used within Central's WAS and GMS Augmentation Plan systems and what supplies are used to offset the obligations.

# 5.8.6.18 Section No. 3 Ditch (0200830)

Central has changed shares in Section No. 3 Ditch, as decreed in Case No. 05CW223, for use in its GMS and WAS augmentation plans. The return flow obligations associated with these changed shares are modeled using a bypass structure and a fixed return flow pattern. The bypass structure is used instead of a standard return pattern because Central only diverts the consumptive use credits of the changed water right; the remaining non-consumptive portion remains in the river. The bypass requirements were incorporated in the model using a carrier structure (0200830\_A) that "loses" the non-consumptive portion as it carries the changed water right. The consumptive use credits and the resulting bypass amounts vary monthly, as shown below.

| hu . Na ma a                                            | ٨٠٠٠ | Maria | 1 | L. I | A | Cam | T |  |  |
|---------------------------------------------------------|------|-------|---|------|---|-----|---|--|--|
| Section No. 3 Ditch Monthly Consumptive Use Credits (%) |      |       |   |      |   |     |   |  |  |

| Entity Name | Apr  | May  | Jun  | Jul  | Aug  | Sep  | Oct  |
|-------------|------|------|------|------|------|------|------|
| Central     | 51.0 | 48.0 | 47.0 | 47.0 | 49.0 | 54.0 | 68.0 |

# Section No. 3 Ditch Monthly Bypass Requirements (%)

| Entity Name | Apr  | May  | Jun  | Jul  | Aug  | Sep  | Oct  |
|-------------|------|------|------|------|------|------|------|
| Central     | 49.0 | 52.0 | 53.0 | 53.0 | 51.0 | 46.0 | 32.0 |

Delayed return flow obligations associated with changed water rights are assigned to plan ID CenSN3RFs. The decreed monthly return flow factors were adjusted for a 15 percent ditch loss resulting in the following return flow factors:

# Fixed Return Pattern Data (%)

| Plan ID   | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|-----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| CenSN3RFs | 0.3 | 0.2 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6 | 0.3 |

Central's return flow obligations are owed to the South Platte River generally above the Lower Latham Ditch. See Section 5.10.10.1 for more information on how these changed shares are used within Central's WAS and GMS Augmentation Plan systems and what supplies are used to offset the obligations.

# 5.8.6.19 Highland Ditch (0200837)

Central has changed shares in Highland Ditch, as decreed in Case No. 07CW06, for use in its GMS and WAS augmentation plans. The return flow obligations associated with these changed shares are modeled using a bypass structure and a fixed return flow pattern. The bypass structure is used

instead of a standard return pattern because Central only diverts the consumptive use credits of the changed water right; the remaining non-consumptive portion remains in the river. The bypass requirements were incorporated in the model using a carrier structure (0200837\_A) that "loses" the non-consumptive portion as it carries the changed water right. The consumptive use credits and the resulting bypass amounts vary monthly, as shown below.

| Entity Name | May  | Jun  | Jul  | Aug  | Sep  | Oct  |
|-------------|------|------|------|------|------|------|
| Central     | 47.0 | 45.0 | 48.0 | 47.0 | 39.0 | 11.0 |

# Highland Ditch Monthly Consumptive Use Credits (%)

| Hig | shlai | nd Ditch | Monthly E | Bypass Re | quiremer | nts (%) |  |
|-----|-------|----------|-----------|-----------|----------|---------|--|
|     |       |          |           |           |          |         |  |

| Entity Name | May  | Jun  | Jul  | Aug  | Sep  | Oct  |
|-------------|------|------|------|------|------|------|
| Central     | 53.0 | 55.0 | 52.0 | 53.0 | 61.0 | 89.0 |

Delayed return flow obligations associated with changed water rights are assigned to plan ID CenHighRFs. The decreed monthly return flow factors were adjusted for a 20 percent ditch loss resulting in the following return flow factors:

#### Fixed Return Pattern Data (%)

| Plan ID    | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| CenHighRFs | 0.9 | 0.7 | 0.6 | 1.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.1 | 1.6 | 1.1 |

Central's return flow obligations are owed to the South Platte River generally below the confluence with the Cache la Poudre River. See Section 5.10.10.1 for more information on how these changed shares are used within Central's WAS and GMS Augmentation Plan systems and what supplies are used to offset the obligations.

# 5.8.6.20 Agricultural Ditch (0700502)

Consolidated Mutual has changed shares in Agricultural Ditch, as decreed in Case No. 94CW197, for municipal supply. The return flow obligations associated with these changed shares are modeled using a bypass structure and a fixed return flow pattern. The bypass structure is used instead of a standard return pattern because Consolidated Mutual only diverts the consumptive use credits of the changed water right; the remaining non-consumptive portion remains in the river. The bypass requirements were incorporated in the model using a carrier structure (0700502\_A) that "loses" the non-consumptive portion as it carries the changed water right. The consumptive use credits and the resulting bypass amounts vary monthly, as shown below.

# Agricultural Ditch Monthly Consumptive Use Credits (%)

| Entity Name | Apr  | May  | Jun  | Jul  | Aug  | Sep  | Oct  |
|-------------|------|------|------|------|------|------|------|
| Con. Mutual | 29.0 | 78.0 | 86.0 | 79.0 | 76.0 | 62.0 | 17.0 |

| Entity Name | Apr  | May  | Jun  | Jul  | Aug  | Sep  | Oct  |
|-------------|------|------|------|------|------|------|------|
| Con. Mutual | 71.0 | 22.0 | 14.0 | 21.0 | 24.0 | 38.0 | 83.0 |

#### Agricultural Ditch Monthly Bypass Requirements (%)

Delayed return flow obligations associated with changed water rights are assigned to an overall plan ID ConM AgRFs. As the obligations are owed to two different locations, the overall plan is split into two plans: 75 percent to plan ID ConMSPRRFs located on the South Platte River below the Englewood gage, and 25 percent to plan ID ConMClCkRFs on Clear Creek above the Lena Gulch confluence. The decreed monthly return flow factors were adjusted for a 20 percent ditch loss resulting in the following return flow factors:

| <b>Fixed Return</b> | Pattern | Data | (%) |
|---------------------|---------|------|-----|
|---------------------|---------|------|-----|

| Plan ID                                               | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|-------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| ConM_AgRFs<br>(Split to<br>ConMSPRRFs<br>ConMClCkRFs) | 1.9 | 1.8 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.5 | 2.0 |

See Section 5.10.8.9 for more information on how these changed shares are used within Consolidated Mutual's system and what supplies are used to offset the obligations.

#### 5.8.6.21 Welch Ditch (0700699)

Consolidated Mutual has changed shares in Welch Ditch, as decreed in Case No. 94CW197, for municipal supply. The return flow obligations associated with these changed shares are modeled using a bypass structure and a fixed return flow pattern. The bypass structure is used instead of a standard return pattern because Consolidated Mutual only diverts the consumptive use credits of the changed water right; the remaining non-consumptive portion remains in the river. The bypass requirements were incorporated in the model using a carrier structure (0700699 A) that "loses" the non-consumptive portion as it carries the changed water right. The consumptive use credits and the resulting bypass amounts vary monthly, as shown below.

Welch Ditch Monthly Consumptive Use Credits (%)

| Entity Name | May  | Jun  | Jul  | Aug  | Sep  | Oct  |
|-------------|------|------|------|------|------|------|
| Con. Mutual | 77.0 | 83.0 | 81.0 | 80.0 | 64.0 | 53.0 |

| Entity Nume | inay | 5 di | 5    | So So | 500  | 0    |
|-------------|------|------|------|-------|------|------|
| Con. Mutual | 77.0 | 83.0 | 81.0 | 80.0  | 64.0 | 53.0 |
|             |      |      |      |       |      |      |

Welch Ditch Monthly Bypass Requirements (%)

| Entity Name | May  | Jun  | Jul  | Aug  | Sep  | Oct  |
|-------------|------|------|------|------|------|------|
| Con. Mutual | 23.0 | 17.0 | 19.0 | 20.0 | 36.0 | 47.0 |

Delayed return flow obligations associated with changed water rights are assigned to an overall plan ID ConM WelRFs. As the obligations are owed to two different locations, the overall plan is split into two plans; 31 percent to plan ID ConMSPRRFs located on the South Platte River below the Englewood gage, and 69 percent to plan ID ConMClCkRFs on Clear Creek above the Lena Gulch confluence. The decreed monthly return flow factors were adjusted for a 33 percent ditch loss resulting in the following return flow factors:

| Plan ID                                                | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|--------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| ConM_WelRFs<br>(Split to<br>ConMSPRRFs<br>ConMClCkRFs) | 1.9 | 1.8 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.5 | 2.0 |

# Fixed Return Pattern Data (%)

See Section 5.10.8.9 for more information on how these changed shares are used within Consolidated Mutual's system and what supplies are used to offset the obligations.

# 5.8.6.22 PSCo Terms and Conditions

Xcel Energy (Public Service Company, PSCo) has changed water rights in a number of ditches in the Clear Creek and South Platte River basins.

PSCo owns shares in the following ditches:

- Fisher Ditch (0700570)
- Lupton Bottoms Ditch and Lupton Meadows Ditch (0200812)
- Meadows Island No. 2 Ditch (0200822)
- Hewes Cook Ditch (0200825)
- Jay Thomas Ditch (0200826)

Only the use of PSCO's changed Fisher Ditch shares is represented in the model, as a supply to meet the Cherokee Power Plant demands. PSCo's use of the CU credits in water district 2 is used to coordinate return flows and some exchanges between the Fort St. Vrain and Cherokee plants. The use of these CU credits has historically been pretty small and, therefore, the operations between the two plants are not explicitly represented in the SPDSS model. Note there are some placeholders in the <SP2016.opr> operating rules file for the use of the water district 2 shares by future modelers.

#### Fisher Ditch

Return flow obligations from PSCo's use of its Fisher Ditch shares is based on augmentation station deliveries (i.e., at the Cherokee plant). The monthly obligations from the PSCo decrees are split between a Clear Creek bypass (if Lower Clear Creek Ditch is calling) and the South Platte River below Metro WWTP. The return flows from Fisher Ditch operations are split to two locations (plan IDs PSCoClCkRFs and PSCoSPRFs).

The combination of a) variable return flow amounts, and b) variable split of those returns between the two T&C Plan locations, by month, is addressed using variable losses in the Fisher Ditch carrier (to meet Clear Creek return flow obligations), and multiple T&C Plans, with splits by month shown in the \*.prf file.

The decreed monthly return flow factors applied to simulated diversions are as follows:

# Standard Return Pattern Data (%)

| April | May | June | July | Aug | Sep  | Oct  |
|-------|-----|------|------|-----|------|------|
| 8.3   | 7.1 | 5.4  | 6.3  | 7.7 | 11.2 | 17.1 |

# Fixed Return Pattern Data (%)

| Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 3.7 | 3.5 | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.9 | 3.9 |

See Section 5.10.8.4 for more information on how these changed shares are used within PSCo's system and what supplies are used to offset the obligations.

# 5.8.6.23 City of Thornton Terms and Conditions

The City of Thornton has changed water rights in several ditches along Clear Creek and the South Platte River; they were decreed in three primary cases, Case Nos. 87CW334, 89CW132, and 02CW266. Thornton owns shares in the following ditches:

- Church Ditch (0700540)
- Farmers Highline Canal (0700569)
- Fisher Ditch (0700570)
- Colorado Agricultural Ditch (0700549)
- Lower Clear Creek Ditch (0700547)
- Burlington Canal (0200802)

The following sections discuss how the terms and conditions were developed to represent the return flow obligations for each ditch.

#### Church Ditch

Return flow obligations associated with Thornton's use of its changed shares on Church Ditch are assigned to the plan ID ThChurchRFs. Year round return flow obligations are modeled using both a standard and a fixed pattern. Return flow obligations are owed to the Clear Creek River below the Church Ditch headgate. The decreed monthly return flow factors applied to simulated diversions are as follows:

# Standard Return Pattern Data (%)

| April | May | June | July | Aug  | Sep  | Oct  |
|-------|-----|------|------|------|------|------|
| 42.0  | 7.5 | 6.0  | 7.5  | 14.2 | 39.7 | 42.0 |

#### Fixed Return Pattern Data (%)

| Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 2.4 | 2.4 | 2.1 | 2.1 | 3.1 | 4.5 | 4.7 | 4.5 | 3.7 | 2.4 | 2.4 | 2.4 |

#### Farmers Highline Canal

Return flow obligations associated with Thornton's use of its changed shares on Church Ditch are assigned to the overall plan ID ThFHL\_RFs. As the obligations are owed to three different locations, the overall plan is split into three plans: 13 percent to plan ID ThLCC\_RFs located on Clear Creek below Fisher Ditch, 19 percent to plan ID ThBDC\_RFs located on lower Big Dry Creek, and 68 percent to plan ID ThornSPRFs1 located on the South Platte River above Fulton Ditch. Year round return flow obligations are modeled using both a standard and a fixed pattern. The decreed monthly return flow factors were adjusted for a 25 percent ditch loss (i.e. decreed factors are based on augmentation station deliveries, not headgate deliveries) resulting in the following return flow factors:

#### Standard Return Pattern Data (%)

| Mar  | April | May | June | July | Aug  | Sep  | Oct  | Nov  |
|------|-------|-----|------|------|------|------|------|------|
| 39.0 | 24.0  | 9.0 | 6.7  | 9.7  | 17.2 | 24.7 | 30.0 | 33.0 |

#### Fixed Return Pattern Data (%)

| Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0.7 | 0.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7 | 0.7 |

#### Fisher Ditch

Return flow obligations associated with Thornton's use of its changed shares on Fisher Ditch are assigned to two overall plan IDs, ThFishRFs1 and ThFishRFs2. Two overall plans are needed because wintertime delayed return flows are only required for simulated diversions in April through July. Therefore ThFishRFs1 accounts for year round return flow obligations using both a both a standard and a fixed pattern for simulated diversions in April through July. ThFishRFs2 accounts for summertime return flow obligations using a standard pattern in August through September.

As the obligations are owed to two different locations, the overall plans are split into two plans: 46 percent to plan ID ThLCC\_RFs located on Clear Creek below Fisher Ditch, and 54 percent to plan ID ThornSPRFs1 located on the South Platte River above Fulton Ditch. The decreed monthly return flow

factors were adjusted for a 10 percent ditch loss (i.e. decreed factors are based on augmentation station deliveries, not headgate deliveries) resulting in the following return flow factors:

| April | May  | June | July | Aug  | Sep  |
|-------|------|------|------|------|------|
| 58.5  | 46.8 | 37.8 | 36.0 | 45.9 | 65.7 |

#### Standard Return Pattern Data (%)

#### Fixed Return Pattern Data (%)

| Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 4.3 | 3.5 | 2.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.5 | 5.3 |

#### Colorado Agricultural Ditch

Return flow obligations associated with Thornton's use of its changed shares on Colorado Agricultural Ditch are assigned to two overall plan IDs, ThCoAg89RFs and ThCoAg02RFs. Two overall plans in order to represent the terms and conditions associated with separate decrees, Case No. 89CW132 and 02CW266, respectively. Return flow obligations associated with ThCoAg89RFs are owed to the Clear Creek River at the Colorado Agricultural Ditch. Obligations accounted for under are ThCoAg02RFs owed to two different locations, therefore the overall plan is split into two plans: 46 percent to plan ID ThornSPRFs1 located on the South Platte River above Fulton Ditch, and 54 percent to plan ID ThornSPRFs2 located on the South Platte River below Fulton Ditch.

Year round return flow obligations are modeled using both a standard and a fixed pattern. The decreed monthly return flow factors were adjusted for a 15 percent ditch loss (i.e. decreed factors are based on augmentation station deliveries, not headgate deliveries) resulting in the following return flow factors:

| Standard Return Pattern Data (%) |       |      |      |   |  |  |  |
|----------------------------------|-------|------|------|---|--|--|--|
| :1                               | Maria | luma | L. J | A |  |  |  |

| Plan ID     | April | May  | June | July | Aug  | Sep  | Oct  |
|-------------|-------|------|------|------|------|------|------|
| ThCoAg89RFs | 58.6  | 33.1 | 31.4 | 34.0 | 51.8 | 83.3 | -    |
| ThCoAg02RFs | 51.0  | 29.7 | 27.2 | 28.0 | 40.8 | 64.6 | 76.5 |

#### Fixed Return Pattern Data (%)

| Plan ID     | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|-------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| ThCoAg89RFs | 2.7 | 2.0 | 1.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.3 | 3.6 |
| ThCoAg02RFs | 1.9 | 1.4 | 0.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.7 | 2.5 |

#### Lower Clear Creek Ditch

Return flow obligations associated with Thornton's use of its changed shares on Lower Clear Creek Ditch are assigned to two overall plan IDs, ThLCC89RFs and ThLCC02RFs. Two overall plans in order to represent the terms and conditions associated with separate decrees, Case No. 89CW132 and 02CW266, respectively. Return flow obligations associated with ThLCC89RFs are owed to the Clear Creek River at the Lower Clear Creek Ditch. Obligations accounted for under are ThLCC02RFs owed to two different locations, therefore the overall plan is split into two plans: 69 percent to plan ID ThornSPRFs1 located on the South Platte River above Fulton Ditch, and 31 percent to plan ID ThornSPRFs2 located on the South Platte River below Fulton Ditch.

Year round return flow obligations are modeled using both a standard and a fixed pattern. The decreed monthly return flow factors were adjusted for a 10 percent ditch loss (i.e. decreed factors are based on augmentation station deliveries, not headgate deliveries) resulting in the following return flow factors:

| Plan ID    | April | May  | June | July | Aug  | Sep  |
|------------|-------|------|------|------|------|------|
| ThLCC89RFs | 51.0  | 41.6 | 40.8 | 45.0 | 61.2 | 84.1 |
| ThLCC02RFs | 49.3  | 39.1 | 32.3 | 36.5 | 53.5 | 78.2 |

# Standard Return Pattern Data (%)

#### Plan ID Jan Feb Mar May Jun Jul Sep Oct Nov Dec Apr Aug ThLCC89RFs 2.0 1.4 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.0 3.0 ThLCC02RFs 2.6 1.8 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.3 3.9

Fixed Return Pattern Data (%)

# Burlington Canal

Due to the similarities between Thornton and SACWSD return flow obligations associated with their changed uses on Burlington Canal, the obligations for both entities are discussed together under the Burlington Canal section.

See Section 5.10.8.12 for more information on how these changed shares are used within Thornton's system and what supplies are used to offset the obligations.

# 5.8.6.24 City of Westminster Terms and Conditions

The City of Westminster has changed water rights in ditches along Clear Creek; they were decreed in three primary cases, Case Nos. W-8743, 86CW398, 86CW266, 90CW101, and 00CW263. Thornton owns shares in the following ditches:

- Church Ditch (0700540)
- Farmers Highline Canal (0700569)
- Kershaw Ditch (0700597)

The following sections discuss how the terms and conditions were developed to represent the return flow obligations for each ditch.

# Church Ditch

Return flow obligations associated with Westminster's use of its changed shares on Church Ditch are assigned to the overall plan ID WestyChRFs. As the obligations are owed to three different locations, the overall plan is split into three plans: 8 percent to plan ID WestBDCRFs located on the Big Dry Creek below Whipple Ditch, 14 percent to plan ID WestyLCCRFs on Clear Creek below Fisher Ditch, and 78 percent to plan ID WestySPRFs on the South Platte River above Fulton Ditch. Year round return flow obligations are modeled using both a standard and a fixed pattern. The decreed monthly return flow factors applied to simulated diversions are as follows:

# Standard Return Pattern Data (%)

| April | May | June | July | Aug  | Sep  | Oct  |
|-------|-----|------|------|------|------|------|
| 42.0  | 7.5 | 6.0  | 7.5  | 14.2 | 39.7 | 42.0 |

#### Fixed Return Pattern Data (%)

| Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1.3 | 1.1 | 1.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.2 | 1.3 |

# Farmers Highline Canal

Return flow obligations associated with Westminster's use of its changed shares on Farmers Highline Ditch are assigned to the overall plan ID WestyFHLRFs. As the obligations are owed to three different locations, the overall plan is split into three plans: 9 percent to plan ID WestBDCRFs located on the Big Dry Creek below Whipple Ditch, 9 percent to plan ID WestyLCCRFs on Clear Creek below Fisher Ditch, and 82 percent to plan ID WestySPRFs on the South Platte River above Fulton Ditch. Year round return flow obligations are modeled using both a standard and a fixed pattern. The decreed monthly return flow factors applied to simulated diversions are as follows:

#### Standard Return Pattern Data (%)

| Mar  | April | May | June | July | Aug  | Sep  | Oct  | Nov  |
|------|-------|-----|------|------|------|------|------|------|
| 39.0 | 24.0  | 9.0 | 6.7  | 9.7  | 17.2 | 24.7 | 30.0 | 33.0 |

#### Fixed Return Pattern Data (%)

| Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1.0 | 0.9 | 0.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8 | 1.0 |

#### Kershaw Ditch

Return flow obligations associated with Westminster's use of its changed shares in Kershaw Ditch are modeled using a bypass structure. The bypass structure is used instead of a standard return pattern because these entities only divert the consumptive use credits of the changed water right; the remaining non-consumptive portion remains in the river. The bypass requirements were incorporated in the model using a carrier structure (0700597\_A) that "loses" the non-consumptive portion as it carries the changed water right. The consumptive use credits and the resulting bypass amounts vary monthly as shown below. Note, no delayed return flow obligations are required

| Apr  | May  | Jun  | Jul  | Aug  | Sep  | Oct  |
|------|------|------|------|------|------|------|
| 48.0 | 67.0 | 69.0 | 71.0 | 71.0 | 66.0 | 58.0 |

Kershaw Ditch Monthly Consumptive Use Credits (%)

| Apr  | May  | Jun  | Jul  | Aug  | Sep  | Oct  |
|------|------|------|------|------|------|------|
| 52.0 | 33.0 | 31.0 | 29.0 | 29.0 | 34.0 | 42.0 |

Kershaw Ditch Monthly Bypass Requirements (%)

See Section 5.10.8.11 for more information on how these changed shares are used within Westminster's system and what supplies are used to offset the obligations.

# 5.8.6.25 Henderson Smith Ditch (6400525)

Return flow obligations associated with the City of Sterling's use of its Henderson Smith Ditch changed shares decreed in Case No. 00CW253 are assigned to the plan ID 6400525\_RF. Year round return flow obligations are modeled using both a standard and a fixed pattern. Return flow obligations are owed to the South Platte River below the Henderson Smith Ditch headgate. The decreed monthly return flow factors applied to simulated diversions are as follows:

#### Standard Return Pattern Data (%)

| April | May | June | July | Aug  | Sep  |
|-------|-----|------|------|------|------|
| 51.5  | 36  | 46.8 | 31.1 | 40.4 | 62.7 |

# Fixed Return Pattern Data (%)

| Oct | Nov | Dec | Jan | Feb | Mar |
|-----|-----|-----|-----|-----|-----|
| 7.4 | 5.2 | 3.3 | 2.5 | 2.0 | 1.7 |

See Section 5.10.10.15 for more information on how these changed shares are used within the City of Sterling Augmentation Plan system and what supplies are used to offset the obligations.

# 5.8.6.26 Sterling No. 1 Ditch (6400528)

Return flow obligations associated with the City of Sterling's use of its Sterling No. 1 Ditch changed shares decreed in Case No. 00CW253 are assigned to the plan ID 6400528\_RF. Year round return flow obligations are modeled using both a standard and a fixed pattern. Return flow obligations are owed to the South Platte River below the Sterling No. 1 Ditch headgate. The decreed monthly return flow factors applied to simulated diversions are as follows:

#### Standard Return Pattern Data (%)

| April | May  | June | July | Aug  | Sep  | Oct  |
|-------|------|------|------|------|------|------|
| 41.4  | 33.2 | 27.8 | 23.5 | 25.4 | 36.7 | 91.1 |

#### Fixed Return Pattern Data (%)

| Nov | Dec | Jan | Feb | Mar |
|-----|-----|-----|-----|-----|
| 2.5 | 2.3 | 2.0 | 1.7 | 1.5 |

See Section 5.10.10.15 for more information on how these changed shares are used within the City of Sterling Augmentation Plan system and what supplies are used to offset the obligations.

# 5.9 Well Files

This section includes files that describe well characteristics and their interaction with surface water systems.

# 5.9.1 Well Station File (\*.wes)

The well station file describes the physical properties for the co-mingled structures and ground water only aggregate well structures simulated in the South Platte Model. This file must be created with StateDMI Version 04.05.00 or greater to accommodate the recent switch from irrigated parcel-based aggregate list files to well ID-based aggregate list files.

In Section 7, Table 7-5 is a summary of the South Platte Model's well station file contents, including each structure's pumping capacity, irrigated acreage served, average annual system efficiency, and average annual pumping demand. The average annual pumping demand parameter was summarized from data in the well demand file rather than the well station file, but it was included here as an important characteristic of each well station. In addition to the tabulated parameters, the \*.wes file also specifies return flow nodes and depletion nodes. Note that co-mingled structures that have both a surface water and ground water demand are included in both Table 7-5 and the diversion structure summary table (Table 7.1).

Co-mingled structures are designated in the network using a diversion and well (DW) node type, which informs StateDMI that these structures are included in both the diversion files and the well files. For these structures, the well station ID, name, irrigated acreage, and return flow nodes match the diversion structure information in the \*.dds file. Refer to Section 4.11 above for more information on how the co-mingled structure information was developed.

Ground water only aggregates are designated in the network using a well (W) node type, and the information included in the \*wes file is primarily provided to StateDMI using an aggregate well list file (SP\_GWAgg\_10032016.csv). The aggregate list file contains the ground water only aggregate well station ID (e.g. 01\_AWP001), name, and the individual well WDIDs associated with the

aggregate structure. Irrigated acreage values from 2010 were read in using a list file (SP2016\_2010Acreage.csv). Return flow locations for ground water only aggregates were specified to StateDMI in a hand-edited file SP2016\_SW.rtn. Return flow information was based on the physical location of irrigated lands within the aggregate boundary.

For both co-mingled and ground water only aggregate structures, pumping capacity is set based on the well rights associated to the well structure, as read in from the well rights file (\*.wer). Depletion locations were specified to StateDMI in a hand-edited file SP2016\_GW.rtn. The depletion nodes are generally the same as the return flow nodes; however any overland return flows that accrue to the river in the same time-step were revised to be lagged depletion nodes. For structures located in a Designated Basin, their return flow and depletion nodes were disconnected from the river system using a delay pattern with no returns (ID 1002). For structures served by Denver Basin wells, the return flow nodes were set based on the physical location of irrigated lands however the depletion is set to zero.

Irrigation well structures operate based on "variable efficiency", as discussed in the \*.dds file section above. For non-irrigation well structures, annual efficiency was user-supplied. No monthly efficiency information has been included the \*.wes file.

For additional details on key structure selection of co-mingled structures, refer to Section 4.2.1.1. For details on aggregate node development, refer to Section 4.2.1.2. For details on the approach to municipal and industrial demand nodes, refer to Section 4.2.1.3.

# Where to find more information

 SPDSS Task Memorandum 3, "Aggregate Non-Key Agricultural Diversion Structure," available on the CDSS website.

# 5.9.1.1 Augmentation and Recharge Aggregate Well Structures

Augmentation and recharge wells used as supplies for augmentation plans are modeled in aggregate structures, and are included in the well station file. Aggregate augmentation well and recharge well structure IDs consist of the augmentation plan ID they supply and a \_AuW or \_ReW suffix. These aggregates, and their associated well IDs, are included in the ground water only aggregate list file. The capacities for these structures are generally set to the sum of the well rights for the associated wells. Augmentation well structures are represented with lagged depletions, but return flows accrue to the river in the same time-step. Recharge well structures are generally located near the river and pump water to recharge areas; therefore they are represented with depletions and return flows that occur in the same time-step.

# 5.9.2 Historical Pumping and Well Demand File (\*.weh)

The historical pumping file contains time series of pumping for each well structure. For this historical dataset, the historical pumping file also serves as the well pumping demand file. The file was created in TSTool.

Historical pumping for irrigation structures is based on the ground water pumping output file from the StateCU scenario. Pumping is estimated based on crop irrigation water requirement on lands served by ground water and application efficiency. Then pumping estimates for structures served by wells covered under Central Colorado Water Conservancy District's WAS and GMS augmentation plans are reduced based on their annual pumping quotas for 2005 to 2012. See Section 7.8 for more information on this process.

Historical pumping from HydroBase was used when available for non-irrigation structures, including the Aurora Well Field (0805065), PSCO Pawnee Well Field (0100711), and augmentation and recharge well structures. Pumping for Coors A was set to 3.75 cfs year-round to reflect the brewing washing demand. Pumping for the remaining non-irrigation structures, which includes the aggregated municipal and industrial structures, were estimated based on population and per capita usage rates, and user-supplied information, respectively.

For details on the approach to municipal and industrial demand nodes, refer to Section 4.2.1.3.

# Where to find more information

- "Historical Crop Consumptive Use Report for the South Platte River Basin" report documents the process for estimating irrigation pumping.
- SPDSS Task Memorandum 66.2, "Collect and Develop Municipal and Industrial Consumptive Use Estimates," available on the CDSS website.

# 5.9.3 Well Rights File (\*.wer)

The well rights file contains a list of well rights for the co-mingled and ground water only aggregate well structures in the model. StateDMI creates the file by querying for water rights and permits associated with the wells assigned to each structure. Similar to the \*.wes file, this file must be created with StateDMI Version 04.05.00 or greater to accommodate the recent switch from irrigated parcel-based aggregate list files to well ID-based aggregate list files.

The well rights file contains the unique well right ID, well right name, associated co-mingled or ground water only structure, priority date, and decreed right in CFS, and the year associated with the permit or decree. Note there are options in StateDMI to output additional information in the well rights file, however it is not considered by StateMod. There are over 7,000 unique well rights in the \*.wer file, therefore the file contents have not been provided in this documentation.

Irrigation well rights are queried automatically by StateDMI using the new approach based on the co-mingled structures and ground water only aggregate list files. The following are noted:

- Wells can be assigned to more than one well structure. If this occurs, the full well right is assigned to both structures.
- Well rights are numerated based on the associated well structure ID (e.g. 01\_AWP001002)
- A portion of the wells assigned to irrigated parcels are not decreed. If the aggregate part reflects a permit, the permitted information is used in the well rights file.
- If a decreed well no longer has active water rights (e.g. abandoned), no information is included in the well file.
- APEX rights were included for this simulation; this allows wells decreed as an alternate point for surface water rights to pump under their more senior water rights.

Non-irrigation well rights are not queried automatically and must be set in StateDMI. Well rights were set for Aurora Well Field (0805065), PSCO Pawnee Well Field (0100711), Coors' Springs (07\_CoorsA), augmentation and recharge well structures, and aggregated municipal and industrial structures.

Note that the new approach was recently implemented and has not been fully vetted. StateDMI does not yet remove duplicate well right IDs therefore the well rights file was post-processed to remove them.

# Where to find more information

 "Refer to the *ReadWellRightsFromHydroBase ()* section in the StateDMI User's Manual for more information on how well rights and permits were queried from HydroBase.

# 5.10 Operating Rights File (\*.opr)

The operating rights file specifies operations that are more complicated than a direct diversion or direct storage in an on-stream reservoir. The file was created by hand. Each operating right was assigned an administration number consistent with the structures' other rights and operations.

Information used in this model dataset is based on available data collected and developed through the CDSS, including information recorded by the State Engineer's Office. The model dataset and results are intended for basin-wide planning purposes. Individuals seeking to use the model dataset or results in any legal proceeding are responsible for verifying the accuracy of information included in the model.

In the South Platte Model, several different types of operating rights are used. These rules are listed below; refer to the StateMod User's Manual for more information on these operations.

- **Type 1** a release from storage to the stream to satisfy an instream flow demand.
- Type 2 a release from storage to the stream, for shepherded delivery to a downstream diversion or carrier. Typically, the reservoir supply is supplemental, and its release was given an administration number junior to direct flow rights at the destination structure. A release is made only if demand at the diversion structure is not satisfied after direct flow rights have diverted. Releases to irrigation structures are made only if there is remaining crop irrigation requirement.
- Type 3 a release from storage directly to a carrier (a ditch or canal as opposed to the river), for delivery to a diversion station. Typically, the reservoir supply is supplemental, and its release is given an administration number junior to direct flow rights at the destination structure. A release is made only if demand at the diversion structure is not satisfied after direct flow rights have diverted. Releases to irrigation structures are made only if there is remaining crop irrigation requirement.
- Type 4 a release from storage in exchange for a direct diversion elsewhere in the system. The release can occur only to the extent that there is legally available water in the exchange reach. Typically, the storage water is supplemental, and is given an administration number junior to direct flow rights at the diverting structure.
- Type 5 a release from storage in exchange for reservoir storage elsewhere in the system. The release can occur only to the extent that there is legally available water in the exchange reach. Typically, the storage water is supplemental, and is given an administration number junior to storage rights at the storing reservoir.
- Type 6 a reservoir to reservoir transfer (book-over). The book-over is commonly used to transfer water from one reservoir storage account to another in a particular month. It can also transfer water from one storage account to another based on the amount of water diverted by an operating rule.
- Type 7 a release from storage in exchange for diversion by a carrier elsewhere in the system. The release can occur only to the extent that there is legally available water in the exchange reach. Typically, the storage water is supplemental, and is given an administration number junior to carrier's operating right. Releases to irrigation structures are made only if there is remaining crop irrigation requirement.
- Type 9 a release from storage to the river to meet a reservoir target. Targets allow maximum storage control of reservoir levels by storage rights and releases to meet demands. This rule is commonly used during calibration.
- **Type 10** a general replacement release from storage for a diversion by river direct or by exchange elsewhere in the system.

- Type 11 a direct flow diversion to another diversion or reservoir through an intervening carrier. This rule type uses the administration number and decreed amount of the direct flow right associated with the carrier, regardless of the administration number assigned to the operating right itself.
- Type 14 a direct flow diversion to another diversion or reservoir through an intervening carrier limited by the demand at the carrier. This rule type uses the administration number and decreed amount of the direct flow right associated with the carrier, regardless of the administration number assigned to the operating rule itself.
- **Type 22** The type 22 operating rule directs StateMod to consider soil moisture in the variable efficiency accounting. For structures with crop irrigation water requirements, excess diverted water not required by the crops during the month of diversion is stored in the soil reservoir zone, up to the soil reservoir's available capacity. If diversions are not adequate to meet crop irrigation water requirements during the month of diversion, water is withdrawn from the soil reservoir to meet unsatisfied demands. The depth of the soil zone is defined in the control file (\*.ctl). For the South Platte Model, the effective soil depth or root zone was set to 3 feet. As discussed in section 5.5.1, the available water content, in inches per inch, was defined for each irrigating structure in the StateCU structure file (\*.str).
- **Type 26** –The type 26 operating rule allows a changed water right to be diverted from the river and temporarily stored in an accounting plan. Once the changed water right is stored in an accounting plan, it can be released at a junior priority by a direct release, by exchange, or spilled using Type 27, Type 28, or Type 29 operating rule.
- **Type 27** a release from a reservoir, a reuse plan, an out-of-priority plan, an account plan, or a changed water right plan to a diversion, reservoir, instream flow, or carrier directly.
- **Type 28** The type 28 operating rule provides a method to release water from a reservoir, a reuse Plan, an out-of-priority plan, an accounting plan, or changed water right plan to a diversion, reservoir, instream flow, or carrier by exchange.
- **Type 29** The type 29 operating rule provides a method to release (spill) water from a reservoir, a reuse plan, an accounting plan, or a changed water right plan to the system.
- Type 34 a reservoir to reservoir transfer, which could be used to book-over water from one account to another within a reservoir or transfer water from one reservoir to another reservoir via a pipeline or carrier. This rule type can also limit the amount of the book-over or transfer based on another operating rule or amount within a plan structure.
- **Type 37** pumps ground water from an augmentation well in order to satisfy a Terms and Conditions or augmentation plan demand.
- **Type 38** the out-of-priority diversion rule provides a method to divert to a reservoir or diversion based on the upstream storage statute (out-of-priority). This rule works in

coordination with the subordinating water right and a plan structure to track the volume of water diverted and subsequently owed to the subordinating water right.

- **Type 41** reservoir storage with special limits allows a reservoir to store water via a reservoir right up to the volume of water stored in out-of-priority plans. The rule also reduces more than one out-of-priority plans pro rata by the amount stored under this rule.
- **Type 42** the plan demand reset rule provides a method to reset a plan demand at a given time.
- Type 43 determines if depletions from pumping that occurred in a previous time step are impacting the river in priority. When depletions are impacting the river out of priority, the type 43 rule generates Terms and Conditions Requirement or a Well Augmentation Requirement. This rule is used the augmentation plans.
- **Type 45** The type 45 operating rule provides a method to divert water to a carrier with loss. The carrier then delivers water to a diversion or reservoir.
- **Type 46** The type 46 operating rule provides a method to distribute water from one accounting plan to multiple accounting plans at the same priority.
- **Type 47** The type 47 operating rule provides a method to impose monthly and annual limits for one or more operating rules.
- **Type 48** release water from a reservoir, recharge site, or reuse plan to a Terms and Conditions or well augmentation plan via a direct release to the river.
- **Type 49** release water from a reservoir, recharge site, or reuse plan to a Terms and Conditions or well augmentation plan by exchange.

# 5.10.1 Soil Moisture

A type 22 operating rule is used. This operating rule directs StateMod to consider soil moisture in the variable efficiency accounting. For structures with crop irrigation water requirements, excess diverted water not required by the crops during the month of diversion will be stored in the soil reservoir zone, up to the soil reservoir's available capacity. If diversions are not adequate to meet crop irrigation water requirements during the month of diversion, water can be withdrawn from the soil reservoir to meet unsatisfied demands. The depth of the soil zone is defined in the control file (\*.ctl). The available water content, in inches per inch, is defined for each irrigating structure in the structure parameter file (\*.str).

# 5.10.2 Colorado-Big Thompson Project Overview

The Colorado-Big Thompson (C-BT) Project is the largest transmountain diversion project in Colorado. This section provides an overview of the C-BT Project. A map of the East Slope distribution

system is shown in Figure 5-1 below. C-BT is owned by the U.S. Bureau of Reclamation (USBR). Northern Colorado Water Conservancy District (Northern) is the contract beneficiary. Northern operates and maintains the project's water collection and distribution facilities. The C-BT Project collects water on the West Slope in a system of reservoirs (Willow Creek, Granby, Shadow Mountain, and Grand Lake) on tributaries to the Colorado River. Green Mountain Reservoir on the West Slope serves as a replacement reservoir for the C-BT Project.

Water is transported from the West Slope to the East Slope via the Alva B. Adams Tunnel (560 cubic feet per second capacity) for power generation, and irrigation and municipal use in the South Platte River Basin. Water delivered by Adams Tunnel enters the Big Thompson River upstream of Estes Park through a series of pipelines and regulating reservoirs. C-BT water can either be diverted at Olympus Dam in Estes Park into Olympus Tunnel or it can flow down the Big Thompson River. In addition to transmountain water from Adams Tunnel, native Big Thompson water in excess of the minimum outflow requirements can also be diverted into Olympus Tunnel. Native Big Thompson water picked up for power generation is referred to as "skim" water.

Water that is diverted into Olympus Tunnel flows through a series of pipelines, regulating reservoirs, and hydropower plants. Below Pinewood Reservoir, water from the tunnel reaches the trifurcation structure. From this point, it can be gravity-delivered to the Charles Hansen Feeder Canal or Carter Lake. Charles Hansen Feeder Canal can deliver water back to the Big Thompson River or to Horsetooth Reservoir, which primarily supplies the northern portions of Northern's service area. Carter Lake primarily supplies water to the St. Vrain Supply Canal (SVSC) and to the Southern Water Supply Project Pipeline. It is possible for Northern to pump water out of Carter Lake back to the trifurcation structure, but this operation is very energy-intensive and avoided whenever possible. The Southern Water Supply Pipeline delivers water to 12 water providers, including Longmont, Broomfield, Lafayette, Louisville, Superior, Fort Lupton, and Fort Morgan. The SVSC delivers water to the Little Thompson River, St. Vrain Creek, and the Boulder Feeder Canal. The Boulder Feeder Canal continues south and delivers water to the third major East Slope reservoir, Boulder Reservoir. Boulder Reservoir supplies water to Boulder Creek and eventually to the South Platte Supply Canal (SPSC). SPSC is an extention of the Lower Boulder Ditch (0600538 D), which then flows into Coal Ridge Ditch and delivers water to Sand Hill Lake. Sand Hill Lake is a regulating reservoir and releases water to the South Platte River for use by the Platte Valley Irrigation Company.

Water that flows down the Big Thompson River can be diverted into Dille Tunnel in the Big Thompson Canyon to generate electricity. Both transmountain water and native water in excess of minimum flow requirements can be diverted. Dille Tunnel can deliver water to the Hansen Feeder Canal or return water back to the Big Thompson River via the Big Thompson Power Plant or the Hansen Feeder Waste Way at the mouth of the Big Thompson Canyon. Transmountain water that continues down the Big Thompson River is available for delivery to C-BT project participants.

On average, C-BT imports approximately 232,000 acre-feet via Adams Tunnel annually. The following summary table provides information on the average annual C-BT distribution within the South Platte Model. Note that these values are specific to the operations of the model and may not specifically reflect C-BT shareholder deliveries.

|              | Sub-basin<br>Destination          | Sub-basin<br>Delivery                                              | Avg. Annual<br>Distribution (AF) |
|--------------|-----------------------------------|--------------------------------------------------------------------|----------------------------------|
|              | Cache la Poudre                   | Hansen Feeder Canal                                                | 112,000                          |
|              | Cache la Poudre                   | Greeley Filters Plant                                              | 8,300                            |
|              | Big Thompson                      | Big Thompson (in-basin users) and Lower South<br>Platte deliveries | 39,500                           |
| Adama Tunnal | St. Vrain Creek/<br>Boulder Creek | Boulder Reservoir (releases to in-basin users in<br>Boulder Creek) | 18,000                           |
| Adams Tunnel | St. Vrain Creek                   | St. Vrain Supply Canal (in-basin users)                            | 17,600                           |
|              | St. Vrain Creek                   | City of Longmont (directly delivered)                              | 5,500                            |
|              | St. Vrain Creek                   | Left Hand Ditch users                                              | 5,600                            |
|              | Boulder Creek                     | Southern Water Supply Pipeline (in-basin users)                    | 17,000                           |
|              | South Platte                      | South Platte Mainstem users                                        | 8,500                            |
|              | Total                             |                                                                    | 232,000                          |

Northern Water also operates the Windy Gap Project. Water is collected from the West Slope in Windy Gap Reservoir and pumped via pipeline to Lake Grandby. When there is excess capacity in the C-BT infrastructure, Windy Gap water is transported to the South Platte Basin and delivered to project participants.

#### Where to find more information

- SPDSS Task Memorandum 3, "Identify Key Diversion Structures Notes from Water District 4 Meeting," available on the CDSS website.
- SPDSS Task Memorandum 3, "Identify Key Diversion Structures Notes from Water District 5 Meeting," available on the CDSS website.
- SPDSS Task Memorandum 3, "Identify Key Diversion Structures Notes from Water District 6 Meeting," available on the CDSS website.
- SPDSS Task Memorandum 5, "Key Structure, Alva B. Adams Tunnel," available on the CDSS website.
- SPDSS Task Memorandum 5, "Key Structure, City of Boulder," available on the CDSS website.
- SPDSS Task Memorandum 5, "Key Structure, Northern Colorado Water Conservancy District and Colorado-Big Thompson Project," available on the CDSS website.
- Northern Colorado Water Conservancy District website http://www.northernwater.org/



# Figure 5-1: Colorado-Big Thompson East Slope Distribution System
# 5.10.3 Colorado-Big Thompson Project Operations

C-BT water is a large supplement supply for the South Platte Basin. This section explains how water is brought into the South Platte Basin via the Adams Tunnel and how it is distributed to the water districts and then to individual diversion structures. Several simplifying assumptions have been made in the modeling approach:

- The same infrastructure for Colorado-Big Thompson water is also used to distribute Windy Gap Project water. Windy Gap water is not accounted for separately from C-BT water in StateMod.
- Horsetooth Reservoir is not explicitly modeled in StateMod because all of Water District 3 is currently excluded from the model.
- Mary's Lake, Pinewood Reservoir, and Flatiron Reservoirs are not explicitly modeled because they serve as short term regulating reservoirs.

# 5.10.3.1 Alva B. Adams Tunnel (0404634), Olympus Tunnel (0401000), Dille Tunnel (0400540), Big Thompson Power Plant (0401001), Hansen Feeder Waste Way (0401002)

The Adams Tunnel is represented as an import node (0404634). The observed historical water deliveries are set as the import time series. Operating rules move all of the imported water immediately into an accounting plan "CBT AllPIn". From this accounting plan, C-BT water is distributed to two accounting plans. Ninety percent of the imports are moved to the Adams Tunnel Imports Plan "AdamsTunPln" and 10% to the City of Loveland C-BT Plan "LoveCBTPln". From the "AdamsTunPln", water is sent throughout Northern's East Slope distribution system. The modeling decision was made to maintain the historical distribution of C-BT deliveries by Water District. From Water District 4, C-BT water is delivered to the Hansen Feeder Canal (0400691) and the St. Vrain Supply Canal (0400692). Adams Tunnel water is first delivered to Hansen Feeder Canal, then to storage in Carter Lake, and then to the St. Vrain Supply Canal. C-BT users inside of Water District 4 have operating rules to access water in the "AdamsTunPln" after they have used their direct diversion rights. The City of Loveland has relatively junior direct diversion rights, which made them the last users in Water District 4 to attempt to access the Adams Tunnel water and frequently, there was no water left for the City of Loveland. Therefore, 10% of Adams Tunnel water is reserved for the City of Loveland in the "LoveCBTPIn". The City of Loveland attempts to access that plan after its direct rights. C-BT exports to users outside of Water District 4 and C-BT users inside Water District 4 have operating rules to deliver remaining water from "LoveCBTPIn" after the City of Loveland. Deliveries to users in the lower South Platte are also made via the Big Thompson River, as shown in the operating rule table below.

Olympus Tunnel (0401000) and Dille Tunnel (0400540) are both modeled as carriers. No demand sits at either structure. Olympus Tunnel and Dille Tunnel both have native water rights. These water rights are used to conduct the native diversion (skim) operation (discussed in C-BT overview above). These rights are relatively junior in the basin and generally are only in priority during high flow

events. Native water is diverted at either Olympus Tunnel or Dille Tunnel to meet demands at the Big Thompson Power Plant (0401001) and the Hansen Feeder Waste Way (0401002). The Big Thompson Power Plant and the Hansen Feeder Waste Way have historical gaged records and return 100% of their diversions to the Big Thompson River. They are included to maintain the correct C-BT delivery volume to Water District 4. The Power Plant and Waste Way first have operating rules to use the C-BT native Big Thompson water rights at Olympus Tunnel and Dille Tunnel. One of the last operations in the Water District 4 is for the Power Plant and Waste Way to access C-BT transmountain water held in the "AdamsTunPln" accounting plan. Additionally, native water can be diverted at either Olympus Tunnel or Dille Tunnel to supplement the Hansen Feeder Canal demand. Olympus Tunnel can transport native water to Carter Lake.

| Right ID    | Admin #     | Destination                                               | Account, Carrier, Return<br>Location (R), or % Split                       | Source      | Right<br>Type |
|-------------|-------------|-----------------------------------------------------------|----------------------------------------------------------------------------|-------------|---------------|
| Xbasin.01   | 1.00000     | CBT_AllPIn                                                |                                                                            | 0404634     | 35            |
| CBTSplit.01 | 1.00001     | Adams Tun Pln<br>Love CBTPln                              | 90<br>10                                                                   | CBT_AllPIn  | 46            |
| AdamsTun.08 | 1.00007     | C-BT Delivery to District 2<br>via the Big Thompson River | Olympus Tunnel<br>(0401000), Olympus<br>Tunnel Return Point<br>(0401000_R) | AdamsTunPIn | 27            |
| AdamsTun.12 | 90000.00007 | Big Thompson Power Plant<br>(0401001)                     | Olympus Tunnel<br>(0401000),                                               | AdamsTunPIn | 27            |
| AdamsTun.13 | 90000.00007 | Hansen Feeder Waste Way<br>(0401002)                      | Olympus Tunnel<br>(0401000),                                               | AdamsTunPIn | 27            |
| OlyTun.01   | 30572.00004 | Big Thompson Power Plant<br>(0401001)                     |                                                                            | 0401000.01  | 11            |
| DilTun.01   | 30572.00004 | Big Thompson Power Plant<br>(0401001)                     |                                                                            | 0400540.01  | 11            |
| OlyTun.02   | 30572.00004 | Hansen Feeder Waste Way<br>(0401002)                      |                                                                            | 0401000.01  | 11            |
| DilTun.02   | 30572.00004 | Hansen Feeder Waste Way<br>(0401002)                      |                                                                            | 0400540.01  | 11            |
| OlyTun.03   | 30572.00002 | Hansen Feeder Canal<br>Export to Water District 3         | Hansen Feeder Canal<br>(0400691)                                           | 0401000.01  | 11            |
| DilTun.03   | 30572.00000 | Hansen Feeder Canal<br>Export to Water District 3         | Hansen Feeder Canal<br>(0400691)                                           | 0400540.01  | 11            |
| OlyTun.05   | 30572.00001 | Carter Lake (0404513)                                     |                                                                            | 0401000.01  | 11            |

### 5.10.3.2 Hansen Feeder Canal System (0400691, 0400691\_I, 0400691\_L, 0400961\_X)

The Hansen Feeder Canal primarily diverts C-BT water to Horsetooth Reservoir is Water District 3. Minor diversions off the Canal are made for a small amount of irrigation in Water District 4. A turnout from the Canal can supply water to the City of Loveland's Green Ridge Glade Reservoir (0403659). More details on the City of Loveland operations can be found in the City of Loveland section below. To model the Hansen Feeder Canal System, node 0400691 is located on the mock tributary that also hosts Carter Lake (0404513), Big Thompson Power Plant (0401001), Hansen Feeder Waste Way (0401002), St. Vrain Canal headgate (0400692), and the Olympus Tunnel return point (0401000\_R).

The Hansen Feeder Canal headgate node (0400691) serves as a carrier. Water is diverted at this location to meet the Hansen Feeder Canal System demands. The irrigation demand in Water District 4 satisfied directly from the Canal, represented at node 0400691\_I. The historical exports from Water District 4 to Water District 3 via Hansen Feeder Canal are represented at 0400691\_X. The turn-out to the City of Loveland's Green Ridge Glade Reservoir is modeled as a carrier and does not have its own demand.

The following operating rules are used to meet the demands at 0400691\_I and 0400691\_X. C-BT water is the preferred source of water. Using the native Big Thompson water rights at Olympus Tunnel and Dille Tunnel, water can be diverted through either structure to meet the Hansen Feeder Canal Export Demand with operating rules. These rules fire late in the C-BT delivery sequence because that is not the preferred operations.

| Right ID    | Admin #     | Destination                | Account, Carrier, Return<br>Location (R), or % Split | Source      | Right<br>Type |
|-------------|-------------|----------------------------|------------------------------------------------------|-------------|---------------|
| AdamsTun.01 | 1.00001     | Hansen Feeder Canal        | Olympus Tunnel                                       | AdamsTunPln | 27            |
|             |             | Export to Water District 3 | (0401000), Hansen                                    |             |               |
|             |             |                            | Feeder Canal (0400691)                               |             |               |
| AdamsTun.02 | 1.00002     | Irrigation directly off    | Olympus Tunnel                                       | AdamsTunPIn | 27            |
|             |             | Hansen Feeder Canal in     | (0401000), Hansen                                    |             |               |
|             |             | Water District 4           | Feeder Canal (0400691)                               |             |               |
| Carter.04   | 30572.00003 | Hansen Feeder Canal        | Hansen Feeder Canal                                  | Carter Lake | 3             |
|             |             | Export to Water District 3 | (0400691)                                            | (0404513),  |               |
|             |             | (0400691_X)                |                                                      | Account 1   |               |
| OlyTun.03   | 30572.00002 | Hansen Feeder Canal        | Hansen Feeder Canal                                  | 0401000.01  | 11            |
|             |             | Export to Water District 3 | (0400691)                                            |             |               |
| DilTun.03   | 30572.00000 | Hansen Feeder Canal        | Hansen Feeder Canal                                  | 0400540.01  | 11            |
|             |             | Export to Water District 3 | (0400691)                                            |             |               |
| LCBTSetA.01 | 58000.00001 | Hansen Feeder Canal        | Olympus Tunnel                                       | LoveCBTPIn  | 27            |
|             |             | Export to Water District 3 | (0401000), Hansen                                    |             |               |
|             |             |                            | Feeder Canal (0400691)                               |             |               |
| LCBTSetA.02 | 58000.00001 | Irrigation directly off    | Olympus Tunnel                                       | LoveCBTPIn  | 27            |
|             |             | Hansen Feeder Canal in     | (0401000), Hansen                                    |             |               |
|             |             | Water District 4           | Feeder Canal (0400691)                               |             |               |

### 5.10.3.3 Estes Lake (0404128) and Estes Park (0400518\_I and 0400518\_O)

Estes Lake is operated as a regulating reservoir. It does not have a large storage capacity. It is filled with C-BT water with operating rules and native Big Thompson water under a free river right. It releases to meet the Town of Estes Park indoor and outdoor demands. The Estes Park indoor and outdoor demands are first met with transmountain C-BT water from the AdamsTunPIn.

| Right ID    | Admin # | Destination                       | Account, Carrier, Return<br>Location (R), or % Split | Source      | Right<br>Type |
|-------------|---------|-----------------------------------|------------------------------------------------------|-------------|---------------|
| AdamsTun.09 | 1.00008 | Estes Park Indoor<br>(0400518_I)  |                                                      | AdamsTunPIn | 27            |
| AdamsTun.10 | 1.00009 | Estes Park Outdoor<br>(0400518_0) |                                                      | AdamsTunPln | 27            |
| AdamsTun.11 | 1.00010 | Lake Estes (0404128)              |                                                      | AdamsTunPIn | 27            |
| 04041280.01 | 5.00001 | Estes Park Indoor<br>(0400518_I)  |                                                      | Lake Estes  | 3             |
| 04041280.02 | 5.00001 | Estes Park Outdoor<br>(0400518_0) |                                                      | Lake Estes  | 3             |

### 5.10.3.4 Carter Lake (0404513) and the St. Vrain Supply Canal System (0400692)

Carter Lake is a large storage reservoir for C-BT water. It is filled with C-BT water from Adams Tunnel. It releases to the St. Vrain Supply Canal and to irrigation directly off the St. Vrain Canal in Water District 4. Carter Lake also releases to the Handy Ditch Reservoir System (0404146RS). This operation replaces the small amount of water that is intercepted by Carter Lake from Dry Creek, which historically was available to the Handy Ditch. The operation only occurs during the winter (November through March). Water is carried through the St. Vrain Supply Canal and tracked at node 0400692\_L2. Lastly, Carter Lake can release to the Hansen Feeder Canal export demand. This operation does not happen frequently because it is expensive to pump water back out of Carter Lake.

The St. Vrain Supply Canal System primarily delivers C-BT water from Water District 4 to Water District 5. Additionally, there are turnouts to deliver C-BT water to the Little Thompson River and to irrigation directly off the Canal. C-BT deliveries to the Little Thompson River are tracked through node 0400692\_L1, which does not have a demand, but serves as a carrier. Irrigation demand off St. Vrain Supply Canal in Water District 4 is represented at node 0400692\_I.

| Right ID    | Admin #     | Destination                                                                          | Account, Carrier, Return<br>Location (R), or % Split                            | Source                   | Right<br>Type |
|-------------|-------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------|---------------|
| AdamsTun.03 | 3.00003     | Carter Lake (0404513)                                                                | Olympus Tunnel<br>(0401000)                                                     | AdamsTunPIn              | 27            |
| Carter.01   | 2.00001     | St. Vrain Supply Canal<br>Export to Water District 5<br>(040692_X)                   | St. Vrain Supply Canal<br>(0400692)                                             | Carter Lake<br>(0404513) | 3             |
| Carter.02   | 2.00002     | Irrigation directly off St.<br>Vrain Supply Canal in Water<br>District 4 (0400692_I) | St. Vrain Supply Canal<br>(0400692)                                             | Carter Lake<br>(0404513) | 3             |
| Carter.03   | 2.00003     | Handy Ditch Reservoir<br>System (0400521)                                            | St. Vrain Supply Canal<br>(0400692)<br>St. Vrain/Hertha<br>Turnout (0400692_L2) | Carter Lake<br>(0404513) | 27            |
| Carter.04   | 30572.00003 | Hansen Feeder Canal Export<br>to Water District 3<br>(0400691_X)                     | Hansen Feeder Canal<br>(0400691)                                                | Carter Lake<br>(0404513) | 3             |

| AdamsTun.05 | 3.00004 | St. Vrain Supply Canal      | Olympus Tunnel         | AdamsTunPIn | 27 |
|-------------|---------|-----------------------------|------------------------|-------------|----|
|             |         | Export to Water District 5  | (0401000), St. Vrain   |             |    |
|             |         | (0400692_X)                 | Supply Canal (0400692) |             |    |
| AdamsTun.06 | 3.00005 | Irrigation directly off St. | Olympus Tunnel         | AdamsTunPln | 27 |
|             |         | Vrain Supply Canal in Water | (0401000), St. Vrain   |             |    |
|             |         | District 4 (0400692_I)      | Supply Canal (0400692) |             |    |

#### 5.10.3.5 Supplemental C-BT Deliveries in Water District 4

Northern Water provided a list of C-BT allottees, which were assigned to irrigation systems in Water District 4. In general, StateMod simulates the irrigation systems to divert their direct diversion and off-channel storage rights in priority. Releases from off-channel storage to meet irrigation demand occur after the most junior direct diversion right. If the irrigation demand is not met, then the irrigation system can request C-BT water from the Adams Tunnel Plan. Finally, if the off-channel storage has been drawn-down farther than it was historically, the storage can be refilled with C-BT water. This is a modeling concept to correct for real-time decisions made by irrigators to use their C-BT water instead of their reservoir storage. The operating rules that model supplemental C-BT deliveries are included in the irrigation systems described below. Irrigation systems are presented from upstream to downstream.

#### 5.10.4 Water District 4 (Big Thompson Basin) Operations

This section describes the operations for diversion structures located in the Big Thompson Basin.

#### Where to find more information

- SPDSS Task Memorandum 3, "Identify Key Diversion Structures Notes from Water District 4 Meeting," available on the CDSS website.
- SPDSS Task Memorandum 5, "Key Structure, Boulder Larimer Ditch," available on the CDSS website.
- SPDSS Task Memorandum 5, "Key Structure, City of Loveland," available on the CDSS website.
- SPDSS Task Memorandum 5, "Key Structure, Greeley Loveland Irrigation Company," available on the CDSS website.
- SPDSS Task Memorandum 5, "Key Structure, Home Supply Ditch," available on the CDSS website.

#### 5.10.4.1 Handy Ditch System (0400521, 0400521\_I, and 0404146RS)

Handy Ditch (0400521) diverts water from the Big Thompson River for irrigation (0400521\_1) and an off-channel reservoir system (0404146RS). The off-channel reservoir system includes four connected reservoirs. Welch Reservoir (0404146), Hertha Reservoir (0404166), Coleman Reservoir (0404113), and Loveland Reservoir (0404133) release water for irrigation in the late season. Additionally, the Town of Berthoud owns a senior water right in the Handy Ditch and takes delivery of this water from Welch Reservoir. However, the Town of Berthoud is not explicitly modeled, so this operation is not captured in StateMod.

In addition to diversions from the Big Thompson, Handy Ditch can receive water from Carter Lake via Dry Creek to Hertha Reservoir. This operation replaces the small amount of water (190 af per year) that is intercepted by Carter Lake from Dry Creek, which historically was available to the Handy Ditch. The operation only occurs during the winter (November through March). Water is carried through the St. Vrain Supply Canal and tracked at node 0400692\_L2.

| Right ID    | Admin #     | Destination                                         | Account, Carrier, Return | Source       | Right<br>Type |
|-------------|-------------|-----------------------------------------------------|--------------------------|--------------|---------------|
| HandyDir.01 | 4839.00000  | Handy Irrigation Demand<br>(0400521_I)              | Handy Ditch (0400521)    | 0400521.01   | 45            |
| HandyDir.02 | 5235.00000  | Handy Irrigation Demand<br>(0400521_I)              | Handy Ditch (0400521)    | 0400521.02   | 45            |
| HandyDir.03 | 5535.00000  | Handy Irrigation Demand<br>(0400521_I)              | Handy Ditch (0400521)    | 0400521.03   | 45            |
| HandyDir.04 | 6269.00000  | Handy Irrigation Demand<br>(0400521_1)              | Handy Ditch (0400521)    | 0400521.04   | 45            |
| HandyDir.05 | 8157.00000  | Handy Irrigation Demand<br>(0400521_1)              | Handy Ditch (0400521)    | 0400521.05   | 45            |
| HandyDir.06 | 10286.00000 | Handy Irrigation Demand<br>(0400521_I)              | Handy Ditch (0400521)    | 0400521.06   | 45            |
| HandyDir.07 | 11307.00000 | Handy Irrigation Demand<br>(0400521_I)              | Handy Ditch (0400521)    | 0400521.07   | 45            |
| HandyDir.08 | 12201.10150 | Handy Irrigation Demand<br>(0400521_1)              | Handy Ditch (0400521)    | 0400521.08   | 45            |
| HandySto.01 | 24286.11597 | Handy Reservoir System<br>(0404146RS), all accounts | Handy Ditch (0400521)    | 0404146RS.01 | 45            |
| HandySto.02 | 24286.12875 | Handy Reservoir System<br>(0404146RS), all accounts | Handy Ditch (0400521)    | 0404146RS.02 | 45            |
| HandySto.03 | 24286.14209 | Handy Reservoir System<br>(0404146RS), all accounts | Handy Ditch (0400521)    | 0404146RS.03 | 45            |
| HandySto.04 | 24286.19099 | Handy Reservoir System<br>(0404146RS), all accounts | Handy Ditch (0400521)    | 0404146RS.04 | 45            |
| HandySto.05 | 24286.19754 | Handy Reservoir System<br>(0404146RS), all accounts | Handy Ditch (0400521)    | 0404146RS.05 | 45            |
| HandySto.06 | 24286.21862 | Handy Reservoir System<br>(0404146RS), all accounts | Handy Ditch (0400521)    | 0404146RS.06 | 45            |
| HandySto.07 | 26084.00000 | Handy Reservoir System<br>(0404146RS), all accounts | Handy Ditch (0400521)    | 0404146RS.07 | 45            |
| HandySto.08 | 27531.00000 | Handy Reservoir System                              | Handy Ditch (0400521)    | 0404146RS.08 | 45            |

|             |             | (0404146RS), all accounts                           |                                                                                                      |                                          |    |
|-------------|-------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------|----|
| HandySto.09 | 29675.17790 | Handy Reservoir System<br>(0404146RS), all accounts | Handy Ditch (0400521)                                                                                | 0404146RS.09                             | 45 |
| HandySto.11 | 29675.20426 | Handy Reservoir System<br>(0404146RS), all accounts | Handy Ditch (0400521)                                                                                | 0404146RS.11                             | 45 |
| HandySto.12 | 29675.26828 | Handy Reservoir System<br>(0404146RS), all accounts | Handy Ditch (0400521)                                                                                | 0404146RS.12                             | 45 |
| HandySto.13 | 29675.26828 | Handy Reservoir System<br>(0404146RS), all accounts | Handy Ditch (0400521)                                                                                | 0404146RS.13                             | 45 |
| HandySto.14 | 29685.20427 | Handy Irrigation Demand<br>(0400521_I)              |                                                                                                      | Handy Reservoir<br>System<br>(0404146RS) | 2  |
| HandyCBT.90 | 29685.20428 | Handy Irrigation Demand<br>(0400521_I)              | Olympus Tunnel<br>(0401000), Olympus<br>Tunnel return point<br>(0401000_R), Handy<br>Ditch (0400521) | AdamsTunPIn                              | 27 |
| HandyCBT.91 | 58000.00000 | Handy Reservoir System<br>(0404146RS), all accounts | Olympus Tunnel<br>(0401000), Olympus<br>Tunnel return point<br>(0401000_R), Handy<br>Ditch (0400521) | AdamsTunPIn                              | 27 |
| HandyCBT.92 | 58000.00001 | Handy Irrigation Demand<br>(0400521_I)              | Olympus Tunnel<br>(0401000), Olympus<br>Tunnel return point<br>(0401000_R), Handy<br>Ditch (0400521) | LoveCBTPIn                               | 27 |
| HandyCBT.93 | 58000.00001 | Handy Reservoir System<br>(0404146RS), all accounts | Olympus Tunnel<br>(0401000), Olympus<br>Tunnel return point<br>(0401000_R), Handy<br>Ditch (0400521) | LoveCBTPIn                               | 27 |

# 5.10.4.2 City of Loveland (0400511, 04\_Lovelnd\_I, 04\_Lovelnd\_O, 0403659)

The City of Loveland is the largest municipality in the Big Thompson Basin. The City has direct rights, storage rights, changed water rights from ditches in the basin, and Colorado-Big Thompson water. It does not have ground water supplies. The main diversion point for Loveland is the Loveland Pipeline (0400511), which carries water to either the raw water treatment plant or to Green Ridge Glade Reservoir (0403659) aka Loveland Municipal Reservoir. The pipeline headgate shares a river dam with the Home Supply Ditch (0400524). The capacity of the pipeline is 72 cfs, but historically, Loveland has not used the full capacity. In addition to the Loveland Pipeline, water can be delivered to Green Ridge Glade Reservoir from the Loveland Turnout (0400691\_L) on the Hansen Feeder Canal (0400691). This is primarily used to receive C-BT water, but Loveland also has an agreement with Reclamation that up to 75 cfs of excess capacity in Hansen Feeder Canal can be used to deliver native Big Thompson water diverted under Loveland's water rights. Water from Green Ridge Glade Reservoir is delivered to the water treatment plant. In StateMod, the Loveland Pipeline is used as the carrier for water and the Hansen Feeder Turnout to Loveland is not used. Indoor demand is

modeled at diversion node 04\_LoveInd\_I and outdoor demand is modeled at diversion node 04\_LoveInd\_O. The wastewater treatment plant is located upstream of Hillsborough Ditch (0400523).

Loveland has a portfolio of water rights. The Loveland Pipeline has two direct diversion rights. Several court cases throughout time have been used to transfer water rights from irrigation use to municipal use. The early cases (CA5279 and CA8445) are referred to as the "Original Transfers". The majority of Loveland's changed water rights were adjudicated in Case No. 82CW202A – referred to as the 202A transfers. One unique aspect of the 202A transfers is that the water rights were fully transferred to the Loveland Pipeline, which means the water can be diverted without consideration for exchange potential.

| Ditch            | Water Right ID | Total Amount | Percent | Admin No.   | Case     |
|------------------|----------------|--------------|---------|-------------|----------|
|                  |                | (cfs)        | Changed |             |          |
| Hillsborough     | 0400511.01     | 3.44         | 100%    | 4332.00000  | CA5279   |
| Big T Mfg.       | 0400511.03     | 1.39         | 100%    | 4839.00000  | CA8445   |
| Big T Mfg.       | 0400511.06     | 1.53         | 100%    | 5235.00000  | CA8445   |
| Big T Mfg.       | 0400511.11     | 2.69         | 100%    | 6269.00000  | CA8445   |
| Big T Mfg.       | 0400511.17     | 0.4          | 100%    | 8157.00000  | CA8445   |
| Barnes           | 0400511.09     | 18.56        | 57%     | 5772.00000  | 82CW202A |
| Barnes           | 0400511.14     | 12.06        | 57%     | 6361.00000  | 82CW202A |
| Barnes           | 0400511.21     | 19.93        | 57%     | 8575.00000  | 82CW202A |
| Big T Mfg.       | 0400511.04     | 15.05        | 12%     | 4839.00000  | 82CW202A |
| Big T Mfg.       | 0400511.07     | 16.31        | 10%     | 5235.00000  | 82CW202A |
| Big T Mfg.       | 0400511.12     | 28.9         | 10%     | 6269.00000  | 82CW202A |
| Big T Mfg.       | 0400511.18     | 4.3          | 10%     | 8157.00000  | 82CW202A |
| Chubbuck         | 0400511.10     | 8.36         | 25%     | 5784.00000  | 82CW202A |
| Chubbuck         | 0400511.15     | 39.04        | 25%     | 7598.00000  | 82CW202A |
| Chubbuck         | 0400511.22     | 35.5         | 25%     | 8699.00000  | 82CW202A |
| Greeley          | 0400511.24     | 11.48        | 32%     | 10532.00000 | 82CW202A |
| Loveland         |                |              |         |             |          |
| Irrigation Canal |                |              |         |             |          |
| George Rist      | 0400511.20     | 73           | 3%      | 8522.00000  | 82CW202A |
| Louden           | 0400511.02     | 7            | 28%     | 4332.00000  | 82CW202A |
| Louden           | 0400511.16     | 40           | 28%     | 7944.00000  | 82CW202A |
| Louden           | 0400511.23     | 89.19        | 38%     | 10167.00000 | 82CW202A |
| South Side       | 0400511.05     | 1.39         | 18.7%   | 4839.00000  | 82CW202A |
| South Side       | 0400511.08     | 1.52         | 18.4%   | 5235.00000  | 82CW202A |
| South Side       | 0400511.13     | 2.68         | 18.3%   | 6269.00000  | 82CW202A |
| South Side       | 0400511.19     | 0.4          | 17.5%   | 8157.00000  | 82CW202A |
| South Side       | 0400511.25     | 40.88        | 22.7%   | 11269.00000 | 82CW202A |

The following table summarizes Loveland's changed water rights:

For all of the 202A water rights, the decree established Terms and Conditions based on how the water rights are used. For direct use, Loveland must leave 15% of its decreed rates in the ditches to replace historic ditch losses. Historic return flow obligations from the direct municipal use of the changed water rights are satisfied with outfall at the waste water treatment plant. For storage use, Loveland must leave the 15% ditch loss, plus additional decreed rates in the river to replace summertime return flows. These are summarized by ditch in the table below. Loveland must also make wintertime replacements. The decree established that 13% of the total amount of water stored during the previous irrigation season must be either released from storage or drawn from Green Ridge Glade Reservoir for municipal use.

| Ditch       | May | June | July | August | September | October |
|-------------|-----|------|------|--------|-----------|---------|
| Barnes      | 56  | 76   | 75   | 68     | 14        | 0       |
| Big T Mfg.  | 66  | 72   | 74   | 72     | 64        | 44      |
| Chubbuck    | 68  | 75   | 75   | 68     | 23        | 0       |
| George Rist | 67  | 76   | 75   | 55     | 0         | 35      |
| Louden      | 65  | 76   | 75   | 62     | 45        | 0       |
| South Side  | 64  | 75   | 74   | 69     | 62        | 36      |

#### Ditch-Specific Consumptive Use Factors (%)

In StateMod, the changed water rights are put into ditch specific plans, subject to monthly and annual volumetric limitations. The Original Transfers Plan does not have return flow obligations. As discussed above, the 202A water rights have Terms and Conditions. To model the T&C, the water rights are split into Loveland Plans and Ditch Loss Plans, with 85% going to the Loveland Plans and 15% going to the Ditch Loss Plans. First, water in the various Loveland Plans is made available to Loveland indoor and outdoor demands. Second, water in the various Loveland Plans is made available to Loveland Storage demand, subject to carrier losses that represent the monthly ditch-specific consumptive use factors. A simplified approach is taken to modeling the wintertime return flow obligations for stored water. Water that is released from storage for use during the wintertime is not available to meet other return flow obligations, while summertime releases from storage are available. For the ditch loss plans, operating rules documented under the individual ditches make the plan water available to the ditch. Finally, if any water is left in the accounting plans, it is released back to the river at the Loveland Pipeline headgate.

| Right ID    | Admin #    | Destination | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|-------------|------------|-------------|------------------------------------------------------|------------|---------------|
| OrigXfer.01 | 4332.00000 | OrigXferPln |                                                      | 0400511.01 | 26            |
| OrigXfer.02 | 4839.00000 | OrigXferPln |                                                      | 0400511.03 | 26            |
| OrigXfer.03 | 5235.00000 | OrigXferPln |                                                      | 0400511.06 | 26            |
| OrigXfer.04 | 6269.00000 | OrigXferPln |                                                      | 0400511.11 | 26            |
| OrigXfer.05 | 8157.00000 | OrigXferPln |                                                      | 0400511.17 | 26            |
| Barnes.01   | 5772.00000 | Barnes_Pln  |                                                      | 0400511.09 | 26            |

| Barnes.02   | 6361.00000  | Barnes_Pln                 |                                | 0400511.14  | 26 |
|-------------|-------------|----------------------------|--------------------------------|-------------|----|
| Barnes.03   | 8575.00000  | Barnes_Pln                 |                                | 0400511.21  | 26 |
| Barnes.04   | 8575.00001  | BarnLV_Pln<br>BarnDL_Pln   | 85%<br>15%                     | Barnes_Pln  | 46 |
| BigTMfg.01  | 4839.00000  | BigTMfg_PIn                |                                | 0400511.04  | 26 |
| BigTMfg.02  | 5235.00000  | BigTMfg_PIn                |                                | 0400511.07  | 26 |
| BigTMfg.03  | 6268.00000  | BigTMfg_PIn                |                                | 0400511.12  | 26 |
| BigTMfg.04  | 8157.00000  | BigTMfg_PIn                |                                | 0400511.18  | 26 |
| BigTMfg.05  | 8157.00001  | BigTLV_PIn<br>BigTDL_PIn   | 85%<br>15%                     | BigTMfg_Pln | 46 |
| Chubbuck.01 | 5784.00000  | ChubbuckPln                |                                | 0400511.10  | 26 |
| Chubbuck.02 | 7598.00000  | ChubbuckPln                |                                | 0400511.15  | 26 |
| Chubbuck.03 | 8699.00000  | ChubbuckPln                |                                | 0400511.22  | 26 |
| Chubbuck.04 | 10532.00000 | ChubbuckPln                |                                | 0400511.24  | 26 |
| Chubbuck.05 | 10532.00001 | ChubLV_Pln<br>ChubDL_Pln   | 85%<br>15%                     | ChubbuckPln | 46 |
| GeoRist.01  | 8522.00000  | GeoRist_Pln                |                                | 0400511.20  | 26 |
| GeoRist.02  | 8522.00001  | GeoRLV_Pln<br>GeoRDL_Pln   | 85%<br>15%                     | GeoRist_Pln | 46 |
| Louden.01   | 4332.00000  | Louden_Pln                 |                                | 0400511.02  | 26 |
| Louden.02   | 7994.00000  | Louden_Pln                 |                                | 0400511.16  | 26 |
| Louden.03   | 10167.00000 | Louden_Pln                 |                                | 0400511.23  | 26 |
| Louden.04   | 10167.00001 | LoudLV_PIn<br>LoudDL_PIn   | 85%<br>15%                     | Louden_Pln  | 46 |
| SouSide.01  | 4839.00000  | SouSide_Pln                |                                | 0400511.05  | 26 |
| SouSide.02  | 5235.00000  | SouSide_Pln                |                                | 0400511.08  | 26 |
| SouSide.03  | 6269.00000  | SouSide_Pln                |                                | 0400511.13  | 26 |
| SouSide.04  | 8157.00000  | SouSide_PIn                |                                | 0400511.19  | 26 |
| SouSide.05  | 11269.00000 | SouSide_Pln                |                                | 0400511.25  | 46 |
| SouSide.06  | 11269.00001 | SouSdLV_Pln<br>SouSdDL_Pln | 85%<br>15%                     | SouSide_PIn | 26 |
| Loveland.01 | 8157.00002  | 04_LoveInd_I               | Loveland Pipeline<br>(0400511) | OrigXferPln | 27 |
| Loveland.02 | 8157.00003  | 04_LoveInd_O               | Loveland Pipeline<br>(0400511) | OrigXferPln | 27 |
| Loveland.03 | 8575.00002  | 04_LoveInd_I               | Loveland Pipeline<br>(0400511) | BarnLV_PIn  | 27 |
| Loveland.04 | 8575.00003  | 04_LoveInd_O               | Loveland Pipeline<br>(0400511) | BarnLV_PIn  | 27 |
| Loveland.05 | 8157.00002  | 04_LoveInd_I               | Loveland Pipeline<br>(0400511) | BigTLV_PIn  | 27 |

| Loveland.06 | 8157.00003  | 04_LoveInd_O                                                  | Loveland Pipeline<br>(0400511)  | BigTLV_PIn  | 27 |
|-------------|-------------|---------------------------------------------------------------|---------------------------------|-------------|----|
| Loveland.07 | 10532.00002 | 04_LoveInd_I                                                  | Loveland Pipeline<br>(0400511)  | ChubLV_Pln  | 27 |
| Loveland.08 | 10532.00003 | 04_LoveInd_O                                                  | Loveland Pipeline<br>(0400511)  | ChubLV_Pln  | 27 |
| Loveland.09 | 8522.00002  | 04_LoveInd_I                                                  | Loveland Pipeline<br>(0400511)  | GeoRLV_Pln  | 27 |
| Loveland.10 | 8522.00003  | 04_LoveInd_O                                                  | Loveland Pipeline<br>(0400511)  | GeoRLV_Pln  | 27 |
| Loveland.11 | 10167.00002 | 04_LoveInd_I                                                  | Loveland Pipeline<br>(0400511)  | LoudLV_Pln  | 27 |
| Loveland.12 | 10167.00003 | 04_LoveInd_O                                                  | Loveland Pipeline<br>(0400511)  | LoudLV_Pln  | 27 |
| Loveland.13 | 11269.00002 | 04_LoveInd_I                                                  | Loveland Pipeline<br>(0400511)  | SouSdLV_PIn | 27 |
| Loveland.14 | 11269.00003 | 04_LoveInd_O                                                  | Loveland Pipeline<br>(0400511)  | SouSdLV_PIn | 27 |
| Loveland.15 | 14691.13563 | 04_LoveInd_I                                                  |                                 | 0400511.26  | 11 |
| Loveland.16 | 14691.13563 | 04_LoveInd_O                                                  |                                 | 0400511.26  | 11 |
| Loveland.17 | 18719.00000 | 04_LoveInd_I                                                  |                                 | 0400511.27  | 11 |
| Loveland.18 | 18719.00000 | 04_LoveInd_O                                                  |                                 | 0400511.27  | 11 |
| Loveland.19 | 56247.53171 | 04_LoveInd_I                                                  |                                 | 0400511.28  | 11 |
| Loveland.20 | 56247.53171 | 04_LoveInd_O                                                  |                                 | 0400511.28  | 11 |
| LoveCBT.01  | 56247.53175 | 04_LoveInd_I                                                  | Loveland Pipeline<br>(0400511)  | LoveCBTPIn  | 27 |
| LoveCBT.02  | 56247.53175 | 04_LoveInd_O                                                  | Loveland Pipeline<br>(0400511)  | LoveCBTPIn  | 27 |
| LoveCBT.03  | 56247.53175 | Green Ridge Glade<br>Reservoir (0403659),<br>account 1        | Loveland Pipeline<br>(0400511)  | LoveCBTPIn  | 27 |
| LoveCBT.04  | 56247.53175 | 04_LoveInd_I                                                  | Loveland Pipeline<br>(0400511)  | AdamsTunPln | 27 |
| LoveCBT.05  | 56247.53175 | 04_LoveInd_O                                                  | Loveland Pipeline<br>(0400511)  | AdamsTunPln | 27 |
| LoveCBT.06  | 56247.53175 | Green Ridge Glade<br>Reservoir (0403659),<br>account 1        | Loveland Pipeline<br>(0400511)  | AdamsTunPln | 27 |
| GrnRdg.01   | 45290.45081 | Green Ridge Glade<br>Reservoir (0403659),<br>accounts 1 and 2 | Loveland Turnout<br>(0400691_L) | 0403659.01  | 11 |
| GrnRdg.02   | 49673.47545 | Green Ridge Glade<br>Reservoir (0403659),<br>accounts 1 and 2 | Loveland Turnout<br>(0400691_L) | 0403659.02  | 11 |
| GrnRdg.03   | 49673.47545 | Green Ridge Glade<br>Reservoir (0403659),<br>accounts 1 and 2 | Loveland Turnout<br>(0400691_L) | 0403659.03  | 11 |

| GrnRdg.03a<br>(May) -     | 8575.00005  | Green Ridge Glade<br>Reservoir (0403659), | Loveland Pipeline<br>(0400511) | BarnLV_PIn      | 27 |
|---------------------------|-------------|-------------------------------------------|--------------------------------|-----------------|----|
| GrnRdg.03e<br>(September) |             | account 3                                 |                                |                 |    |
| GrnRdg.04a                | 8157.00005  | Green Ridge Glade                         | Loveland Pipeline              | BigTLV_PIn      | 27 |
| GrnRdg.04f                |             | account 3                                 |                                |                 |    |
| (Uctober)                 | 10532 00005 | Green Ridge Glade                         | Loveland Pineline              |                 | 27 |
| (Mav) -                   | 10552.00005 | Reservoir (0403659).                      | (0400511)                      |                 | 27 |
| GrnRdg.05e                |             | account 3                                 |                                |                 |    |
| (September)               |             |                                           |                                |                 |    |
| GrnRdg.06a<br>(May) -     | 8522.00005  | Green Ridge Glade<br>Reservoir (0403659), | Loveland Pipeline<br>(0400511) | GeoRLV_Pln      | 27 |
| GrnRdg.06f<br>(October)   |             | account 3                                 |                                |                 |    |
| GrnRdg.07a<br>(May) -     | 10167.00005 | Green Ridge Glade<br>Reservoir (0403659), | Loveland Pipeline<br>(0400511) | LoudLV_Pln      | 27 |
| GrnRdg.07e<br>(September) |             | account 3                                 |                                |                 |    |
| GrnRdg.08a                | 11269.00005 | Green Ridge Glade                         | Loveland Pipeline              | SouSdLV_PIn     | 27 |
| (May) -                   |             | Reservoir (0403659),                      | (0400511)                      |                 |    |
| GrnRdg.08f                |             | account 3                                 |                                |                 |    |
| (October)                 | F0000 00000 |                                           |                                | Curren Didea    | 2  |
| GrnRag.09                 | 58000.00000 | 04_Loveind_I                              |                                | Green Kidge     | 2  |
|                           |             |                                           |                                | (0403659).      |    |
|                           |             |                                           |                                | account 1       |    |
| GrnRdg.10                 | 58000.00001 | 04_LoveInd_O                              |                                | Green Ridge     | 2  |
|                           |             |                                           |                                | Glade Reservoir |    |
|                           |             |                                           |                                | (0403659),      |    |
| CroDdg 11                 | F8000 00000 | 04 Lovalad L                              |                                | account 1       | 27 |
|                           | 58000.00002 | 04_Loveind_I                              |                                | Glade Reservoir | 27 |
| (winter)                  |             |                                           |                                | (0403659).      |    |
|                           |             |                                           |                                | account 3       |    |
| GrnRdg.12                 | 58000.00002 | 04_LoveInd_I                              |                                | Green Ridge     | 27 |
| (summer)                  |             |                                           |                                | Glade Reservoir |    |
|                           |             |                                           |                                | (0403659),      |    |
|                           |             |                                           |                                | account 3       |    |
| OrigXterPIn               | 90000.00000 | 0400511                                   |                                | OrigXterPIn     | 29 |
| Barnes_Pln                | 90000.00000 | 0400511                                   |                                | Barnes_Pln      | 29 |
| BarnLV_PIn                | 90000.00000 | 0400511                                   |                                | BarnLV_PIn      | 29 |
| BarnDL_PIn                | 90000.00000 | 0400511                                   |                                | BarnDL_Pln      | 29 |
| BigTMfg_Pln               | 90000.00000 | 0400511                                   |                                | BigTMfg_Pln     | 29 |

| BigTLV_PIn  | 90000.00000 | 0400511 | BigTLV_PIn  | 29 |
|-------------|-------------|---------|-------------|----|
| BigTDL_PIn  | 90000.00000 | 0400511 | BigTDL_PIn  | 29 |
| ChubbuckPln | 90000.00000 | 0400511 | ChubbuckPln | 29 |
| ChubLV_Pln  | 90000.00000 | 0400511 | ChubLV_PIn  | 29 |
| ChubDL_PIn  | 90000.00000 | 0400511 | ChubDL_PIn  | 29 |
| GeoRist_Pln | 90000.00000 | 0400511 | GeoRist_Pln | 29 |
| GeoRLV_Pln  | 90000.00000 | 0400511 | GeoRLV_Pln  | 29 |
| GeoRDL_Pln  | 90000.00000 | 0400511 | GeoRDL_Pln  | 29 |
| Louden_Pln  | 90000.00000 | 0400511 | Louden_Pln  | 29 |
| LoudLV_PIn  | 90000.00000 | 0400511 | LoudLV_PIn  | 29 |
| LoudDL_Pln  | 90000.00000 | 0400511 | LoudDL_PIn  | 29 |
| SouSide_Pln | 90000.00000 | 0400511 | SouSide_PIn | 29 |
| SouSdLV_PIn | 90000.00000 | 0400511 | SouSdLV_PIn | 29 |
| SouSdDL_PIn | 90000.00000 | 0400511 | SouSdDL_PIn | 29 |

# 5.10.4.3 Home Supply and George Rist Ditch System (0400524, 0400524\_1, 0400520, 0400520\_1, 0404137RS)

Home Supply Ditch (0400524) and George Rist Ditch (0400520) divert water from the Big Thompson River for irrigation (0400524\_I) and off-channel reservoir system (0404137RS). The off-channel reservoir system includes three interconnected reservoirs. Lone Tree Reservoir (0404137) and Lon Hagler Reservoir (0404136) can be filled by Home Supply Ditch. Mariano Reservoir (0404134) can be filled by George Rist Ditch and with releases from Lon Hagler Reservoir. Lone Tree Reservoir releases to Home Supply irrigation demands and to Johnston Municipal Demand. In StateMod, Johnston is not modeled explicitly; therefore releases from Lone Tree are only made to irrigation demand. Home Supply and George Rist irrigators use Lon Hagler and Mariano Reservoirs to make releases back to the Big Thompson River so they can divert at the headgates by exchange. Lon Hagler and Mariano Reservoirs cannot make releases directly to irrigation. The ditch system operations are captured using the operating rules in the table below.

| Right ID    | Admin #    | Destination            | Account, Carrier, Return | Source     | Right |
|-------------|------------|------------------------|--------------------------|------------|-------|
|             |            |                        | Location (R), or % Split |            | Туре  |
| HmSupDir.01 | 4332.00000 | Home Supply Irrigation | Home Supply Ditch        | 0400524.01 | 45    |
|             |            | Demand (0400524_I)     | (0400524)                |            |       |
| HmSupDir.02 | 4839.00000 | Home Supply Irrigation | Home Supply Ditch        | 0400524.02 | 45    |
|             |            | Demand (0400524_I)     | (0400524)                |            |       |
| HmSupDir.03 | 5235.00000 | Home Supply Irrigation | Home Supply Ditch        | 0400524.03 | 45    |
|             |            | Demand (0400524_I)     | (0400524)                |            |       |
| HmSupDir.04 | 6269.00000 | Home Supply Irrigation | Home Supply Ditch        | 0400524.04 | 45    |
|             |            | Demand (0400524_I)     | (0400524)                |            |       |
| HmSupDir.05 | 8157.00000 | Home Supply Irrigation | Home Supply Ditch        | 0400524.05 | 45    |
|             |            | Demand (0400524_I)     | (0400524)                |            |       |

| HmSupDir.07  | 11519.00000 | Home Supply Irrigation<br>Demand (0400524_1)  | Home Supply Ditch<br>(0400524)                                                                             | 0400524.07                                           | 45 |
|--------------|-------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----|
| HmSupDir.08  | 12201.11396 | Home Supply Irrigation<br>Demand (0400524_1)  | Home Supply Ditch<br>(0400524)                                                                             | 0400524.08                                           | 45 |
| HmSupDir.09  | 16902.00000 | Home Supply Irrigation<br>Demand (0400524_I)  | Home Supply Ditch<br>(0400524)                                                                             | 0400524.09                                           | 45 |
| HmSupDir.12  | 50038.11519 | Home Supply Irrigation<br>Demand (0400524_1)  | Home Supply Ditch<br>(0400524)                                                                             | 0400524.12                                           | 45 |
| GRistDir.01  | 8522.00000  | George Rist Irrigation<br>Demand (0400520_1)  | George Rist Ditch<br>(0400520)                                                                             | 0400520.01                                           | 45 |
| GRistDir.01a | 8522.00009  | George Rist Irrigation<br>Demand (0400520_1)  | George Rist Ditch<br>(0400520)                                                                             | George Rist Ditch<br>Loss Plan<br>(GeoRDL_Pln)       | 27 |
| HmSupSto.01  | 11355.00000 | Reservoir System<br>(0404137RS), all accounts | Home Supply Ditch<br>(0400524)                                                                             | 0404137RS.01                                         | 45 |
| HmSupSto.02  | 29675.20984 | Reservoir System<br>(0404137RS), all accounts | Home Supply Ditch<br>(0400524)                                                                             | 0404137RS.03                                         | 45 |
| GRistSto.01  | 14093.00000 | Reservoir System<br>(0404137RS), all accounts | George Rist Ditch<br>(0400520)                                                                             | 0404137RS.02                                         | 45 |
| GRistSto.02  | 29675.20986 | Reservoir System<br>(0404137RS), all accounts | George Rist Ditch<br>(0400520)                                                                             | 0404137RS.04                                         | 45 |
| HmSupSto.03  | 43829.39999 | Reservoir System<br>(0404137RS), all accounts | Home Supply Ditch<br>(0400524)                                                                             | 0404137RS.05                                         | 45 |
| HmSupSto.04  | 47481.47349 | Reservoir System<br>(0404137RS), all accounts | Home Supply Ditch<br>(0400524)                                                                             | 0404137RS.06                                         | 45 |
| HmSupSto.05  | 50038.11520 | Home Supply Irrigation<br>Demand (0400524_1)  |                                                                                                            | Reservoir System<br>(0404137RS),<br>Lone Tree pool   | 3  |
| HmSupSto.06  | 50038.11521 | Home Supply Irrigation<br>Demand (0400524_I)  | Home Supply Ditch<br>(0400524)                                                                             | Reservoir System<br>(0404137RS),<br>Lon Hangler pool | 28 |
| HmSupSto.07  | 50038.11522 | Home Supply Irrigation<br>Demand (0400524_1)  | Home Supply Ditch<br>(0400524)                                                                             | Reservoir System<br>(0404137RS),<br>Mariano pool     | 28 |
| HmSupCBT.90  | 50038.11523 | Home Supply Irrigation<br>Demand (0400524_1)  | Olympus Tunnel<br>(0401000), Olympus<br>Tunnel return point<br>(0401000_R), Home<br>Supply Ditch (0400524) | AdamsTunPIn                                          | 27 |
| GRistCBT.90  | 29586.20988 | George Rist Irrigation<br>Demand (0400520_1)  | Olympus Tunnel<br>(0401000), Olympus<br>Tunnel return point<br>(0401000_R), George<br>Rist Ditch (0400520) | AdamsTunPIn                                          | 27 |
| HmSupCBT.91  | 58000.00000 | Reservoir System<br>(0404137RS), all accounts | Olympus Tunnel<br>(0401000), Olympus<br>Tunnel return point<br>(0401000_R), Home<br>Supply Ditch (0400524) | AdamsTunPIn                                          | 27 |
| HmSupCBT.92  | 58000.00001 | Home Supply Irrigation<br>Demand (0400524_I)  | Olympus Tunnel<br>(0401000), Olympus<br>Tunnel return point                                                | LoveCBTPIn                                           | 27 |

|             |             |                                               | (0401000_R), Home<br>Supply Ditch (0400524)                                                                |            |    |
|-------------|-------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------|------------|----|
| GRistCBT.92 | 58000.00001 | George Rist Irrigation<br>Demand (0400520_1)  | Olympus Tunnel<br>(0401000), Olympus<br>Tunnel return point<br>(0401000_R), George<br>Rist Ditch (0400520) | LoveCBTPIn | 27 |
| HmSupCBT.93 | 58000.00001 | Reservoir System<br>(0404137RS), all accounts | Olympus Tunnel<br>(0401000), Olympus<br>Tunnel return point<br>(0401000_R), Home<br>Supply Ditch (0400524) | LoveCBTPIn | 27 |

# 5.10.4.4 South Side Ditch System (0400543, 0400543\_I, and 0404171RS)

South Side Ditch (0400543) diverts water from the Big Thompson River for irrigation (0400543\_I) and its off-channel reservoir system (0404171RS). The off-channel reservoir system includes two connected reservoirs. South Side Reservoir (0404142) and Ryan Gulch Reservoir (0404171) are filled by South Side Ditch. The reservoir system releases to South Side irrigation demands. In StateMod, the occasional releases from the reservoir system back to the Big Thompson for exchange purposes are not captured because this operation is sporadic. The ditch system also can request C-BT water from the Adams Tunnel Plan and later from the Loveland set-aside plan. Some of the water rights in the ditch have been changed for municipal use by the City of Loveland. As part of the terms and conditions, the City of Loveland must replace ditch losses. This is accomplished with operating rule SSideDir.06. The ditch system operations are captured using the operating rules in the table below.

| Right ID    | Admin #     | Destination                                 | Account, Carrier, Return<br>Location (R), or % Split | Source       | Right<br>Type |
|-------------|-------------|---------------------------------------------|------------------------------------------------------|--------------|---------------|
| SSideDir.01 | 4839.00000  | South Side Irrigation<br>Demand (0400543 I) | South Side Ditch<br>(0400543)                        | 0400524.01   | 45            |
| SSideDir.02 | 5235.00000  | South Side Irrigation<br>Demand (0400543_I) | South Side Ditch<br>(0400543)                        | 0400524.02   | 45            |
| SSideDir.03 | 6269.00000  | South Side Irrigation<br>Demand (0400543_I) | South Side Ditch<br>(0400543)                        | 0400524.03   | 45            |
| SSideDir.04 | 8157.00000  | South Side Irrigation<br>Demand (0400543_I) | South Side Ditch<br>(0400543)                        | 0400524.04   | 45            |
| SSideDir.05 | 11269.00000 | South Side Irrigation<br>Demand (0400543_I) | South Side Ditch<br>(0400543)                        | 0400524.05   | 45            |
| SSideDir.06 | 11269.00009 | South Side Irrigation<br>Demand (0400543_I) | South Side Ditch<br>(0400543)                        | SouSdDL_PIn  | 27            |
| SSideSto.01 | 19825.00000 | South Side Reservoir<br>System (0404171RS)  | South Side Ditch<br>(0400543)                        | 0404171RS.01 | 45            |
| SSideSto.02 | 19826.00000 | South Side Reservoir<br>System (0404171RS)  | South Side Ditch<br>(0400543)                        | 0404171RS.02 | 45            |
| SSideSto.03 | 29675.20987 | South Side Reservoir<br>System (0404171RS)  | South Side Ditch<br>(0400543)                        | 0404171RS.03 | 45            |
| SSideSto.04 | 29675.20988 | South Side Reservoir<br>System (0404171RS)  | South Side Ditch<br>(0400543)                        | 0404171RS.04 | 45            |
| SSideSto.05 | 29675.26152 | South Side Reservoir                        | South Side Ditch                                     | 0404171RS.05 | 45            |

|             |             | System (0404171RS)                          | (0400543)                                                                                                 |                                               |    |
|-------------|-------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------|----|
| SSideSto.06 | 29675.26828 | South Side Reservoir<br>System (0404171RS)  | South Side Ditch<br>(0400543)                                                                             | 0404171RS.06                                  | 45 |
| SSideSto.07 | 29675.26829 | South Side Irrigation<br>Demand (0400543_1) |                                                                                                           | South Side<br>Reservoir System<br>(0404171RS) | 2  |
| SSideCBT.90 | 29675.26830 | South Side Irrigation<br>Demand (0400543_1) | Olympus Tunnel<br>(0401000), Olympus<br>Tunnel return point<br>(0401000_R), South<br>Side Ditch (0400534) | AdamsTunPln                                   | 27 |
| SSideCBT.91 | 58000.00000 | South Side Reservoir<br>System (0404171RS)  | Olympus Tunnel<br>(0401000), Olympus<br>Tunnel return point<br>(0401000_R), South<br>Side Ditch (0400534) | AdamsTunPln                                   | 27 |
| SSideCBT.92 | 58000.00001 | South Side Irrigation<br>Demand (0400543_1) | Olympus Tunnel<br>(0401000), Olympus<br>Tunnel return point<br>(0401000_R), South<br>Side Ditch (0400534) | LoveCBTPIn                                    | 27 |
| SSideCBT.94 | 58000.00001 | South Side Reservoir<br>System (0404171RS)  | Olympus Tunnel<br>(0401000), Olympus<br>Tunnel return point<br>(0401000_R), South<br>Side Ditch (0400534) | LoveCBTPIn                                    | 27 |

### 5.10.4.5 Louden Ditch System (0400530, 0400530\_1, and 0404138RS)

Louden Ditch (0400530) aka Rist Benson Ditch diverts water from the Big Thompson River for irrigation (0400530\_I) and its off-channel reservoir system (0404138RS). The off-channel reservoir system includes a series of three reservoirs. Rist Benson Reservoir (0404138), Donath Reservoir (0404116) and Fairport Reservoir (0404118) are filled by Louden Ditch. The reservoir system releases to Louden Ditch irrigation demands. In StateMod, the occasional releases from Rist Benson Reservoir directly to Big Barnes Ditch for exchange purposes are not captured because this operation is sporadic. Similarly, the occasion exchanges operated by the City of Loveland through the ditch are not captured. The ditch system can request C-BT water from the Adams Tunnel Plan and later from the Loveland set-aside plan. Some of the water rights in the ditch have been changed for municipal use by the City of Loveland. As part of the terms and conditions, the City of Loveland must replace ditch losses. This is accomplished with operating rule RistDir.04. The ditch system operations are captured using the operating rules in the table below.

| Right ID   | Admin #    | Destination                             | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|------------|------------|-----------------------------------------|------------------------------------------------------|------------|---------------|
| RistDir.01 | 4332.00000 | Louden Irrigation Demand<br>(0400530_I) | Louden Ditch (0400530)                               | 0400530.01 | 45            |
| RistDir.02 | 7944.00000 | Louden Irrigation Demand<br>(0400530_I) | Louden Ditch (0400530)                               | 0400530.02 | 45            |

| RistDir.03  | 10167.00000 | Louden Irrigation Demand<br>(0400530_I) | Louden Ditch (0400530)                                                                                | 0400530.03                                   | 45 |
|-------------|-------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------|----|
| RistDir.04  | 10167.00009 | Louden Irrigation Demand<br>(0400530_1) | Louden Ditch (0400530)                                                                                | LoudDL_Pln                                   | 27 |
| RistSto.01  | 12108.00000 | Louden Reservoir System<br>(0404138RS)  | Louden Ditch (0400530)                                                                                | 0404138RS.01                                 | 45 |
| RistSto.02  | 19473.00000 | Louden Reservoir System<br>(0404138RS)  | Louden Ditch (0400530)                                                                                | 0404138RS.02                                 | 45 |
| RistSto.03  | 24286.11879 | Louden Reservoir System<br>(0404138RS)  | Louden Ditch (0400530)                                                                                | 0404138RS.03                                 | 45 |
| RistSto.04  | 29675.19473 | Louden Reservoir System<br>(0404138RS)  | Louden Ditch (0400530)                                                                                | 0404138RS.04                                 | 45 |
| RistSto.05  | 29675.20985 | Louden Reservoir System<br>(0404138RS)  | Louden Ditch (0400530)                                                                                | 0404138RS.05                                 | 45 |
| RistSto.06  | 29675.29584 | Louden Reservoir System<br>(0404138RS)  | Louden Ditch (0400530)                                                                                | 0404138RS.06                                 | 45 |
| RistSto.07  | 29675.25985 | Louden Reservoir System<br>(0404138RS)  |                                                                                                       | Louden<br>Reservoir<br>System<br>(0404138RS) | 2  |
| LoudnCBT.90 | 29675.25986 | Louden Irrigation Demand<br>(0400530_I) | Olympus Tunnel<br>(0401000), Olympus<br>Tunnel return point<br>(0401000_R), Louden<br>Ditch (0400530) | AdamsTunPIn                                  | 27 |
| LoudnCBT.91 | 58000.00000 | Louden Reservoir System<br>(0404138RS)  | Olympus Tunnel<br>(0401000), Olympus<br>Tunnel return point<br>(0401000_R), Louden<br>Ditch (0400530) | AdamsTunPIn                                  | 27 |
| LoudnCBT.92 | 58000.00001 | Louden Irrigation Demand<br>(0400530_I) | Olympus Tunnel<br>(0401000), Olympus<br>Tunnel return point<br>(0401000_R), Louden<br>Ditch (0400530) | LoveCBTPIn                                   | 27 |
| LoudnCBT.93 | 58000.00001 | Louden Reservoir System<br>(0404138RS)  | Olympus Tunnel<br>(0401000), Olympus<br>Tunnel return point<br>(0401000_R), Louden<br>Ditch (0400530) | LoveCBTPIn                                   | 27 |

# 5.10.4.6 Greeley Loveland Irrigation Canal (GLIC) System (0400501, 0400532, 0400532\_1, 0400702, 0404110RS)

Barnes Ditch aka Big Barnes Ditch aka Chubbuck Ditch (0400501) and Greeley Loveland Irrigation Canal (0400532), aka the Loveland Greeley Canal, divert water from the Big Thompson River for irrigation (0400532\_I), off-channel reservoir system (0404110RS) and City of Greeley municipal supply (0400702). The off-channel reservoir system includes three connected reservoirs. Loveland Greeley Reservoir aka Lake Loveland (0404131), Horseshoe Reservoir No. 2 aka seven Lakes Reservoir (0404155), and Boyd Lake (0404110) can be filled by Barnes Ditch. Water can be

transferred from Lake Loveland through Horseshoe Reservoir down to Boyd Lake. The reservoir system releases to GLIC irrigation demands (0400532\_I) and to City of Greeley municipal demand. In StateMod, City of Greeley is not fully represented because its main water supply is the Poudre River (Water District 3 is not included in this model). Only the historical diversions at the Greeley Filter Plant (0400702) are included. The Greeley Filter Plant is used to meet peak summer demand and pulls water directly from Boyd Lake. The ditch system can request C-BT water from the Adams Tunnel Plan and later from the Loveland set-aside plan. Additionally, the City of Evans has an agreement to take their C-BT water through the GLIC system and have it treated at the Greeley Filter Plant. Some of the water rights that were originally under the Chubbuck Ditch and Barnes Ditch water rights have been changed for municipal use by the City of Loveland. As part of the terms and conditions, the City of Loveland must replace ditch losses. This is accomplished with operating rules GLIC\_Dir.04 and GLIC\_Dir.09. The ditch system operations are captured using the operating rules in the table below.

| Right ID    | Admin #     | Destination                                        | Account, Carrier, Return<br>Location (R). or % Split | Source       | Right<br>Type |
|-------------|-------------|----------------------------------------------------|------------------------------------------------------|--------------|---------------|
| GLIC_Dir.01 | 5772.00000  | GLIC Irrigation Demand<br>(0400532_I)              | Barnes Ditch (0400501)                               | 0400501.01   | 45            |
| GLIC_Dir.02 | 6361.00000  | GLIC Irrigation Demand<br>(0400532_I)              | Barnes Ditch (0400501)                               | 0400501.02   | 45            |
| GLIC_Dir.03 | 8575.00000  | GLIC Irrigation Demand<br>(0400532_I)              | Barnes Ditch (0400501)                               | 0400501.03   | 45            |
| GLIC_Dir.04 | 8575.00009  | GLIC Irrigation Demand<br>(0400532_I)              | Barnes Ditch (0400501)                               | BarnDL_PIn   | 27            |
| GLIC_Dir.05 | 5784.00000  | GLIC Irrigation Demand (0400532_1)                 | GLIC (0400532)                                       | 0400532.01   | 45            |
| GLIC_Dir.06 | 7598.00000  | GLIC Irrigation Demand<br>(0400532_1)              | GLIC (0400532)                                       | 0400532.02   | 45            |
| GLIC_Dir.07 | 10532.00000 | GLIC Irrigation Demand<br>(0400532_1)              | GLIC (0400532)                                       | 0400532.03   | 45            |
| GLIC_Dir.08 | 11414.00000 | GLIC Irrigation Demand<br>(0400532_1)              | GLIC (0400532)                                       | 0400532.04   | 45            |
| GLIC_Dir.09 | 10532.00009 | GLIC Irrigation Demand<br>(0400532_1)              | GLIC (0400532)                                       | ChubDL_Pln   | 27            |
| GrlyFilt.01 | 5784.00000  | Greeley Filter Plant<br>(0400702)                  | GLIC (0400532)                                       | 0400532.01   | 45            |
| GrlyFilt.02 | 7598.00000  | Greeley Filter Plant<br>(0400702)                  | GLIC (0400532)                                       | 0400532.02   | 45            |
| GrlyFilt.03 | 10532.00000 | Greeley Filter Plant<br>(0400702)                  | GLIC (0400532)                                       | 0400532.03   | 45            |
| GrlyFilt.04 | 11414.00000 | Greeley Filter Plant<br>(0400702)                  | GLIC (0400532)                                       | 0400532.04   | 45            |
| GLIC_Sto.01 | 15720.00000 | GLIC Reservoir System<br>(0404110RS), all accounts | Barnes Ditch (0400501)                               | 0404110RS.01 | 45            |
| GLIC_Sto.02 | 19110.00000 | GLIC Reservoir System<br>(0404110RS), all accounts | Barnes Ditch (0400501)                               | 0404110RS.02 | 45            |
| GLIC_Sto.03 | 19110.00000 | GLIC Reservoir System<br>(0404110RS), all accounts | Barnes Ditch (0400501)                               | 0404110RS.03 | 45            |
| GLIC_Sto.04 | 46386.15720 | GLIC Reservoir System                              | Barnes Ditch (0400501)                               | 0404110RS.04 | 45            |

|             |             | (0404110RS), all accounts                          |                                                                                               |                                                                  |    |
|-------------|-------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------|----|
| GLIC_Sto.05 | 46386.19110 | GLIC Reservoir System (0404110RS), all accounts    | GLIC (0400532)                                                                                | 0404110RS.05                                                     | 45 |
| GLIC_Sto.06 | 46386.19110 | GLIC Reservoir System (0404110RS), all accounts    | Barnes Ditch (0400501)                                                                        | 0404110RS.06                                                     | 45 |
| GLIC_Sto.07 | 46836.19111 | GLIC Irrigation Demand<br>(0400532_I)              |                                                                                               | GLIC Reservoir<br>System<br>(0404110RS),<br>Irrigator<br>account | 2  |
| GLIC_Sto.08 | 29675.14732 | Greeley Filter Plant<br>(0400702)                  |                                                                                               | GLIC Reservoir<br>System<br>(0404110RS),<br>Irrigator<br>account | 2  |
| EvansCBT.90 | 57000.00003 | Greeley Filter Plant<br>(0400702)                  | Olympus Tunnel<br>(0401000), Olympus<br>Tunnel return point<br>(0401000_R), GLIC<br>(0400532) | AdamsTunPIn                                                      | 27 |
| GLIC_CBT.90 | 46836.19112 | GLIC Irrigation Demand<br>(0400532_I)              | Olympus Tunnel<br>(0401000), Olympus<br>Tunnel return point<br>(0401000_R), GLIC<br>(0400532) | AdamsTunPIn                                                      | 27 |
| GLIC_CBT.92 | 58000.00000 | GLIC Reservoir System<br>(0404110RS), all accounts | Olympus Tunnel<br>(0401000), Olympus<br>Tunnel return point<br>(0401000_R), GLIC<br>(0400532) | AdamsTunPIn                                                      | 27 |
| EvansCBT.92 | 58000.00001 | Greeley Filter Plant<br>(0400702)                  | Olympus Tunnel<br>(0401000), Olympus<br>Tunnel return point<br>(0401000_R), GLIC<br>(0400532) | LoveCBTPIn                                                       | 27 |
| GLIC_CBT.93 | 58000.00001 | GLIC Irrigation Demand<br>(0400532_I)              | Olympus Tunnel<br>(0401000), Olympus<br>Tunnel return point<br>(0401000_R), GLIC<br>(0400532) | LoveCBTPIn                                                       | 27 |
| GLIC_CBT.95 | 58000.00001 | GLIC Reservoir System<br>(0404110RS), all accounts | Olympus Tunnel<br>(0401000), Olympus<br>Tunnel return point<br>(0401000_R), GLIC<br>(0400532) | LoveCBTPIn                                                       | 27 |

# 5.10.4.7 Big Thompson Ditch and Manufacturing Company (0400503)

The City of Loveland has changed some water under the Big Thompson Ditch and Manufacturing Company to municipal use. As part of the terms and conditions, the City must replace ditch lose. This

is accomplished with operating rule BigTMDir.01. The ditch system can request C-BT water from the Adams Tunnel Plan and later from the Loveland set-aside plan. The ditch system operations are captured using the operating rules in the table below.

| Right ID    | Admin #     | Destination                                                  | Account, Carrier, Return<br>Location (R), or % Split                       | Source      | Right<br>Type |
|-------------|-------------|--------------------------------------------------------------|----------------------------------------------------------------------------|-------------|---------------|
| BigTMDir.01 | 8157.00002  | Big Thompson Ditch and<br>Manufacturing Company<br>(0400503) |                                                                            | BigTDL_PIn  | 27            |
| BigTMCBT.90 | 8157.00003  | Big Thompson Ditch and<br>Manufacturing Company<br>(0400503) | Olympus Tunnel<br>(0401000), Olympus<br>Tunnel return point<br>(0401000_R) | AdamsTunPIn | 27            |
| BigTMCBT.92 | 58000.00001 | Big Thompson Ditch and<br>Manufacturing Company<br>(0400503) | Olympus Tunnel<br>(0401000), Olympus<br>Tunnel return point<br>(0401000_R) | LoveCBTPIn  | 27            |

### 5.10.4.8 Hillsborough Ditch (0400523)

Hillsborough Ditch (0400523) diverts water from the Big Thompson River for irrigation. The ditch system can request C-BT water from the Adams Tunnel Plan and later from the Loveland set-aside plan. The ditch system operations are captured using the operating rules in the table below.

| Right ID    | Admin #     | Destination Account, Carrier, Return Source |                     | Source      | Right |
|-------------|-------------|---------------------------------------------|---------------------|-------------|-------|
|             |             |                                             |                     |             | туре  |
| HillBCBT.90 | 29586.20988 | Hillsborough Ditch                          | Olympus Tunnel      | AdamsTunPln | 27    |
|             |             | (0400523)                                   | (0401000), Olympus  |             |       |
|             |             |                                             | Tunnel return point |             |       |
|             |             |                                             | (0401000_R)         |             |       |
| HillBCBT.92 | 58000.00001 | Hillsborough Ditch                          | Olympus Tunnel      | LoveCBTPIn  | 27    |
|             |             | (0400523)                                   | (0401000), Olympus  |             |       |
|             |             |                                             | Tunnel return point |             |       |
|             |             |                                             | (0401000_R)         |             |       |

### 5.10.4.9 Boulder Larimer Ditch System (0400588, 0400588\_1, 0404156)

Boulder Larimer Ditch (0400588) aka Ish Ditch diverts water from the Little Thompson River for irrigation (0400588\_I) and the off-channel Ish Reservoir (0404156) aka Boulder Larimer Reservoir. Ish Reservoir releases to Boulder Larimer Ditch irrigation demands. In StateMod, the connection between the Highland Ditch System (0500526) and the Boulder Larimer Ditch is represented as a delivery from Foothills Reservoir. Physically, the water would come via Highland Reservoir No. 2 (0504032), but the operations are simplified in StateMod. For more details on the Highland Ditch System, see the Highland Ditch (0500526) section.

The Boulder Larimer Ditch system can request C-BT water from the Adams Tunnel Plan and later from the Loveland set-aside plan. C-BT water is delivered through Olympus Tunnel (0401000) to the

St. Vrain Canal (0400692) and then turned out to the Little Thompson through 0400692\_L1. The ditch system operations are captured using the operating rules in the table below.

| Right ID    | Admin #      | Destination                                      | Account, Carrier, Return           | Source        | Right |
|-------------|--------------|--------------------------------------------------|------------------------------------|---------------|-------|
|             |              |                                                  | Location (R), or % Split           |               | Туре  |
| IshDir.01   | 9312.00000   | Boulder Larimer Irrigation<br>Demand (0400588 I) | Boulder Larimer Ditch<br>(0400588) | 0400588.01    | 45    |
| lshDir.01   | 10002.00000  | Boulder Larimer Irrigation                       | Boulder Larimer Ditch              | 0400588.02    | 45    |
|             |              | Demand (0400588_I)                               | (0400588)                          |               |       |
| lshSto.01   | 14691.09312  | Ish Reservoir (0404156),                         | Boulder Larimer Ditch              | 0404156.01    | 45    |
|             |              | irrigator account                                | (0400588)                          |               |       |
| IshSto.02   | 14691.10002  | Ish Reservoir (0404156),                         | Boulder Larimer Ditch<br>(0400588) | 0404156.02    | 45    |
| IshSto 03   | 1/1869 00000 | Ish Reservoir (0404156)                          | Boulder Larimer Ditch              | 0404156.03    | 15    |
| 1311310.03  | 14009.00000  | irrigator account                                | (0400588)                          | 0404130.03    |       |
| IshSto.04   | 19726.00000  | Ish Reservoir (0404156),                         | Boulder Larimer Ditch              | 0404156.04    | 45    |
|             |              | irrigator account                                | (0400588)                          |               |       |
| IshSto.05   | 53691.50198  | Ish Reservoir (0404156),                         | Boulder Larimer Ditch              | 0404156.05    | 45    |
|             |              | irrigator account                                | (0400588)                          |               |       |
| IshSto.06   | 53691.50199  | Boulder Larimer Irrigation                       |                                    | Ish Reservoir | 2     |
|             |              | Demand (0400588_I)                               |                                    | (0404156),    |       |
|             |              |                                                  |                                    | irrigator     |       |
|             |              |                                                  |                                    | account       |       |
| FH_BoLarlsh | 53691.50200  | 0400588_I                                        |                                    | 0504071       | 3     |
| IshCBT.90   | 53691.50200  | Boulder Larimer Irrigation                       | Olympus Tunnel                     | AdamsTunPln   | 27    |
|             |              | Demand (0400588 I)                               | (0401000). St. Vrain               |               |       |
|             |              | /                                                | Canal (0400692). St.               |               |       |
|             |              |                                                  | Vrain/Little Thompson              |               |       |
|             |              |                                                  | Turnout (R)                        |               |       |
|             |              |                                                  | $(0.400692 \pm 1)$ Larimer         |               |       |
|             |              |                                                  | Boulder (0400588)                  |               |       |
| IshCBT.91   | 57500.00000  | Ish Reservoir (0404156),                         | Olympus Tunnel                     | AdamsTunPln   | 27    |
|             |              | irrigator account                                | (0401000), St. Vrain               |               |       |
|             |              |                                                  | Canal (0400692), St.               |               |       |
|             |              |                                                  | Vrain/Little Thompson              |               |       |
|             |              |                                                  | Turnout (R)                        |               |       |
|             |              |                                                  | (0400692 L1), Larimer              |               |       |
|             |              |                                                  | Boulder (0400588)                  |               |       |
| 04AUP2 1.01 | 5.00002      | 04 AUP002 I                                      | Olympus Tunnel                     | AdamsTunPln   | 27    |
| _           |              |                                                  | (0401000), Olympus                 |               |       |
|             |              |                                                  | Tunnel return point                |               |       |
|             |              |                                                  | (0401000_R)                        |               |       |
| 04AUP2 0.01 | 5.00002      | 04 AUP002 O                                      | Olympus Tunnel                     | AdamsTunPln   | 27    |
| _           |              |                                                  | (0401000), Olympus                 |               |       |
|             |              |                                                  | Tunnel return point                |               |       |
|             |              |                                                  | (0401000_R)                        |               |       |
| IshCBT.92   | 58000.00001  | Boulder Larimer Irrigation                       | Olympus Tunnel                     | LoveCBTPIn    | 27    |
|             |              | Demand (0400588 I)                               | , (0401000), St. Vrain             |               |       |
|             |              | /                                                | Canal (0400692). St.               |               |       |
|             |              |                                                  | Vrain/Little Thompson              |               |       |
|             |              |                                                  | Turnout (R)                        |               |       |

|           |             |                                               | (0400692_L1), Larimer<br>Boulder (0400588)                                                                                                           |            |    |
|-----------|-------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----|
| lshCBT.91 | 58000.00001 | Ish Reservoir (0404156),<br>irrigator account | Olympus Tunnel<br>(0401000), St. Vrain<br>Canal (0400692), St.<br>Vrain/Little Thompson<br>Turnout (R)<br>(0400692_L1), Larimer<br>Boulder (0400588) | LoveCBTPIn | 27 |

### 5.10.4.10 Eagle Ditch (0400592)

Eagle Ditch (0400592) diverts water from the Little Thompson River for irrigation. The ditch system can request C-BT water from the Adams Tunnel Plan and later from the Loveland set-aside plan. The ditch system operations are captured using the operating rules in the table below.

| Right ID    | Admin #     | Destination           | Account, Carrier, Return<br>Location (R), or % Split                                                                   | Source      | Right<br>Type |
|-------------|-------------|-----------------------|------------------------------------------------------------------------------------------------------------------------|-------------|---------------|
| EagleCBT.90 | 9922.00001  | Eagle Ditch (0400592) | Olympus Tunnel<br>(0401000), St. Vrain<br>Canal (0400692), St.<br>Vrain/Little Thompson<br>Turnout (R)<br>(0400692_L1) | AdamsTunPIn | 27            |
| EagleCBT.91 | 58000.00001 | Eagle Ditch (0400592) | Olympus Tunnel<br>(0401000), St. Vrain<br>Canal (0400692), St.<br>Vrain/Little Thompson<br>Turnout (R)<br>(0400692_L1) | LoveCBTPIn  | 27            |

#### 5.10.4.11 Osborne Caywood Ditch (0400600)

Osborne Caywood Ditch (0400600) diverts water from the Little Thompson River for irrigation. The ditch system can request C-BT water from the Adams Tunnel Plan and later from the Loveland setaside plan. The ditch system operations are captured using the operating rules in the table below.

| Right ID    | Admin #     | Destination Account, Carrier, Return Source |                             | Source      | Right<br>— |
|-------------|-------------|---------------------------------------------|-----------------------------|-------------|------------|
|             |             |                                             | Location (R), or % Split    |             | Туре       |
| OsCayCBT.90 | 9922.00001  | Osborne Caywood Ditch                       | Olympus Tunnel              | AdamsTunPln | 27         |
|             |             | (0400600)                                   | (0401000), St. Vrain Canal  |             |            |
|             |             |                                             | (0400692), St. Vrain/Little |             |            |
|             |             |                                             | Thompson Turnout (R)        |             |            |
|             |             |                                             | (0400692_L1)                |             |            |
| OsCayCBT.91 | 58000.00001 | Osborne Caywood Ditch                       | Olympus Tunnel              | LoveCBTPIn  | 27         |
|             |             | (0400600)                                   | (0401000), St. Vrain Canal  |             |            |
|             |             |                                             | (0400692), St. Vrain/Little |             |            |
|             |             |                                             | Thompson Turnout (R)        |             |            |
|             |             |                                             | (0400692_L1)                |             |            |

### 5.10.4.12 Rockwell Ditch (0400601)

Rockwell Ditch (0400601) diverts water from the Little Thompson River for irrigation. The ditch system can request C-BT water from the Adams Tunnel Plan and later from the Loveland set-aside plan. The ditch system operations are captured using the operating rules in the table below.

| Right ID     | Admin #     | Destination              | Account, Carrier, Return    | Source      | Right |
|--------------|-------------|--------------------------|-----------------------------|-------------|-------|
|              |             |                          | Location (R), or % Split    |             | Туре  |
| RkwllCBT.90  | 14691.11659 | Rockwell Ditch (0400601) | Olympus Tunnel              | AdamsTunPln | 27    |
|              |             |                          | (0401000), St. Vrain Canal  |             |       |
|              |             |                          | (0400692), St. Vrain/Little |             |       |
|              |             |                          | Thompson Turnout (R)        |             |       |
|              |             |                          | (0400692_L1)                |             |       |
| RkwellCBT.91 | 58000.00001 | Rockwell Ditch (0400601) | Olympus Tunnel              | LoveCBTPIn  | 27    |
|              |             |                          | (0401000), St. Vrain Canal  |             |       |
|              |             |                          | (0400692), St. Vrain/Little |             |       |
|              |             |                          | Thompson Turnout (R)        |             |       |
|              |             |                          | (0400692_L1)                |             |       |

# 5.10.4.13 Miner Longan Ditch (0400599)

Minter Longan Ditch (0400599) diverts water from the Little Thompson River for irrigation. The ditch system can request C-BT water from the Adams Tunnel Plan and later from the Loveland set-aside plan. The ditch system operations are captured using the operating rules in the table below.

| Right ID    | Admin #     | Destination                     | Account, Carrier, Return<br>Location (R), or % Split                                                                   | Source        | Right<br>Type |
|-------------|-------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------|---------------|
| MinLnCBT.90 | 15941.00001 | Miner Longan Ditch<br>(0400599) | Olympus Tunnel<br>(0401000), St. Vrain<br>Canal (0400692), St.<br>Vrain/Little Thompson<br>Turnout (R)<br>(0400692_L1) | Adams Tun Pln | 27            |
| MinLnCBT.91 | 58000.00001 | Miner Longan Ditch<br>(0400599) | Olympus Tunnel<br>(0401000), St. Vrain<br>Canal (0400692), St.<br>Vrain/Little Thompson<br>Turnout (R)<br>(0400692_L1) | LoveCBTPIn    | 27            |

# 5.10.5 Water District 5 (St. Vrain) Operations

This section explains how the irrigation, reservoirs, and municipal systems of the St. Vrain Creek are modeled.

#### Where to find more information

- SPDSS Task Memorandum 3, "Identify Key Diversion Structures Notes from Water District 5 Meeting," available on the CDSS website.
- SPDSS Task Memorandum 5, "Key Structure, City of Longmont," available on the CDSS website.
- SPDSS Task Memorandum 5, "Key Structure, Highland Ditch," available on the CDSS website.
- SPDSS Task Memorandum 5, "Key Structure, Left Hand Ditch," available on the CDSS website.

# 5.10.5.1 C-BT Imports and Exports through the St. Vrain Basin

C-BT water is delivered to the St. Vrain Basin either by the St. Vrain Supply Canal (SVSC) or by the Southern Water Supply Pipeline (SWSP). The SVSC starts at Carter Lake and terminates at St. Vrain Creek, just downstream of Lyons. The Boulder Feeder Canal, which carries water to Boulder Reservoir, begins at the terminus of the St. Vrain Supply Canal. Boulder Reservoir operations are included in this section of the document. SWSP also starts at Carter Lake, but its water never appears in the river. It provides raw water to municipal water treatment plants that have direct connections to the pipeline. After delivering water to Longmont, SWSP bifurcates and continues east toward Fort Morgan and south toward Louisville and Lafayette.

C-BT imports are split between four locations in the St. Vrain Basin. C-BT water is accounted for separately at the following locations:

- Deliveries to Longmont from SWSP and the SVSC (05\_LongCBT). This total volume was provided by Northern Water. Water is available to meet Longmont Indoor and Outdoor demand, as shown in the table below.
- Deliveries to St. Vrain Creek from the St. Vrain Supply Canal (05\_SVCBT). This volume is calculated as the total supply in the St. Vrain Supply Canal minus deliveries to Longmont and minus the total supply in the Boulder Feeder Canal, as measured at the BFCLYCOC gage. Water is available to C-BT participates in Water District 5 that divert from the St. Vrain Creek. The full list is documented in the table below.
- Deliveries to Left Hand Creek via a turnout from the Boulder Feeder Canal (05\_LHCBT). This was calculated as the total supply in the Boulder Feeder Canal minus deliveries to Boulder Reservoir. Water is available to diversion structures on Left Hand Ditch, as documented in the table below.

• Deliveries to Boulder Reservoir (05\_BRCBT). This was calculated from change in Boulder Reservoir storage and releases to the Boulder Creek Supply Canal when gaged inflow to Boulder Reservoir is not available.

C-BT water released from Boulder Reservoir to the Boulder Supply Canal is modeled as an export.

In the table below, rules to release water from the LongCBT\_Pln are shown. The plan holds Longmont's municipal C-BT supply from the Southern Water Supply Project Pipeline. It is used to meet 05LONG\_OUT and 05LONG\_IN demands.

| Right ID     | Admin # | Destination                          | Account, Carrier, Return<br>Location (R), or % Split | Source      | Right<br>Type |
|--------------|---------|--------------------------------------|------------------------------------------------------|-------------|---------------|
| 05LngCBT     | 2.00000 | LongCBT_PIn                          |                                                      | 05_LongC-BT | 35            |
| 05LngCBTPln1 | 2.00001 | Longmont Indoor Use<br>(05LONG_IN )  |                                                      | LongCBT_PIn | 27            |
| 05LngCBTPln2 | 2.00002 | Longmont Outdoor Use<br>(05LONG_OUT) |                                                      | LongCBT_PIn | 27            |
| 05LngCBTSpl  | 2.00003 | Longmont Outdoor Use<br>(05LONG_OUT) |                                                      | LongCBT_PIn | 29            |

| In the table below, | rules to release v | water from the 0 | 5_STVCBT     | _PIn are shown.  | The plan holds C-BT |
|---------------------|--------------------|------------------|--------------|------------------|---------------------|
| water from the St.  | Vrain Supply Can   | al and delivered | to users via | a the St. Vrain. |                     |

| Right ID     | Admin #     | Destination                                      | Account, Carrier, Return<br>Location (R), or % Split | Source       | Right<br>Type |
|--------------|-------------|--------------------------------------------------|------------------------------------------------------|--------------|---------------|
| 05SVCBT      | 1.00000     | 05_SVCBT_PIn                                     |                                                      | 05_SVCBT     | 35            |
| 05SVCBTPIn1  | 19861.00001 | LEFT HAND DITCH<br>DIVERSION (0500603)           |                                                      | 05_SVCBT_PIn | 28            |
| 05SVCBTPIn2  | 12677.00001 | SOUTH LEDGE DITCH<br>(0500520)                   |                                                      | 05_SVCBT_PIn | 28            |
| 05SVCBTPIn3  | 11841.04110 | REESE STILES DITCH<br>(0500519)                  |                                                      | 05_SVCBT_PIn | 28            |
| 05SVCBTPIn4  | 42907.00001 | LYONS PIPELINE (0500512)                         |                                                      | 05_SVCBT_PIn | 28            |
| 05SVCBTPIn5  | 21702.00001 | LONGMONT NORTH<br>PIPELINE (0500511)             |                                                      | 05_SVCBT_PIn | 28            |
| 05SVCBTPIn6  | 41785.00002 | BUTTON ROCK RES<br>(0504010), Account 1          |                                                      | 05_SVCBT_PIn | 28            |
| 05SVCBTPIn7  | 52960.48364 | SUPPLY DITCH (0500523)                           |                                                      | 05_SVCBT_PIn | 27            |
| 05SVCBTPIn8  | 35184.00006 | HIGHLAND IRRIGATION<br>(0500526_I)               | HIGHLAND DITCH<br>(0500526)                          | 05_SVCBT     | 35            |
| 05SVCBTPIn9  | 35184.00007 | HIGHLAND RESERVOIR NO.<br>2 (0504032), Account 1 | HIGHLAND DITCH<br>(0500526)                          | 05_SVCBT_PIn | 27            |
| 05SVCBTPIn10 | 35184.00008 | HIGHLAND RESERVOIR NO.<br>1 (0504037), Account 1 | HIGHLAND DITCH<br>(0500526)                          | 05_SVCBT_PIn | 27            |
| 05SVCBTPIn11 | 35184.00009 | HIGHLAND RESERVOIR NO.<br>3 (0504038), Account 1 | HIGHLAND DITCH<br>(0500526)                          | 05_SVCBT_PIn | 27            |

| Right ID     | Admin #     | Destination                                 | Account, Carrier, Return<br>Location (R), or % Split | Source       | Right<br>Type |
|--------------|-------------|---------------------------------------------|------------------------------------------------------|--------------|---------------|
| 05SVCBTPIn12 | 40609.00001 | ROUGH READY DITCH<br>(0500527)              |                                                      | 05_SVCBT_PIn | 27            |
| 05SVCBTPIn13 | 29219.00001 | ST VRAIN PALMERTON<br>DITCH (0500528)       |                                                      | 05_SVCBT_PIn | 27            |
| 05SVCBTPIn14 | 49673.49490 | SWEDE DITCH (0500529)                       |                                                      | 05_SVCBT_PIn | 27            |
| 05SVCBTPIn15 | 50000.00002 | FOOTHILLS RESERVOIR<br>(0504071), Account 1 | FOOTHILLS INLET<br>(0500532)                         | 05_SVCBT_PIn | 27            |
| 05SVCBTPIn16 | 5600.00001  | LONGMONT SUPPLY DITCH<br>(0500545)          |                                                      | 05_SVCBT_PIn | 27            |
| 05SVCBTPIn17 | 29219.00002 | OLIGARCHY IRRIGATION<br>(0500547_I)         | OLIGARCHY DITCH<br>(0500547)                         | 05_SVCBT_PIn | 27            |
| 05SVCBTPIn18 | 11841.08690 | DENIO TAYLOR DITCH<br>(0500548)             |                                                      | 05_SVCBT_PIn | 27            |
| 05SVCBTPIn19 | 4488.00001  | Clough & True Ditch<br>(0500535)            | South Branch Diversion<br>Structure<br>(05_SBRANCH)  | 05_SVCBT_PIn | 27            |
| 05SVCBTPIn20 | 5665.00001  | Webster & McCaslin Ditch<br>(0500537)       | South Branch Diversion<br>Structure<br>(05_SBRANCH)  | 05_SVCBT_PIn | 27            |
| 05SVCBTPIn21 | 29219.00001 | James Ditch (0500539)                       | South Branch Diversion<br>Structure<br>(05 SBRANCH)  | 05_SVCBT_PIn | 27            |
| 05SVCBTPIn22 | 9771.00001  | Davis & Downing Ditch<br>(0500542)          | South Branch Diversion<br>Structure<br>(05 SBRANCH)  | 05_SVCBT_PIn | 27            |
| 05SVCBTPIn23 | 10745.00001 | Clover Basin Ditch<br>(0500552)             | South Branch Diversion<br>Structure<br>(05_SBRANCH)  | 05_SVCBT_PIn | 27            |
| 05SVCBTPIn24 | 6339.00001  | Peck Ditch (0500550)                        | South Branch Diversion<br>Structure<br>(05_SBRANCH)  | 05_SVCBT_PIn | 27            |
| 05SVCBTPIn25 | 4462.00001  | Pella Ditch (0500551)                       |                                                      | 05_SVCBT_PIn | 27            |
| 05SVCBTPIn26 | 14549.00001 | NIWOT DITCH (0500554)                       | South Branch Diversion<br>Structure<br>(05_SBRANCH)  | 05_SVCBT_PIn | 27            |
| 05SVCBTPIn27 | 29219.00003 | MCINTOSH RESERVOIR<br>(0504073), Account 1  | OLIGARCHY DITCH<br>(0500547)                         | 05_SVCBT_PIn | 27            |
| 05SVCBTPIn28 | 46386.46001 | UNION RESERVOIR<br>(0503905), Account 1     | South Branch Diversion<br>Structure<br>(05_SBRANCH)  | 05_SVCBT_PIn | 27            |
| 05SVCBTSpl   | 52960.48365 | SUPPLY DITCH (0500523)                      |                                                      | 05_SVCBT_PIn | 29            |

The table below shows the rules that release water from 05\_LHCBT\_Pln. This plan holds the C-BT delivery into Lefthand Creek and is used for diversions listed in the table below. Other diversions from Lefthand Creek receive C-BT water, but it is through the Left Hand Ditch and originates from the St. Vrain C-BT delivery.

| Right ID    | Admin #     | Destination                                | Account, Carrier, Return<br>Location (R), or % Split | Source       | Right<br>Type |
|-------------|-------------|--------------------------------------------|------------------------------------------------------|--------------|---------------|
| 05LHCBT     | 4.00000     | 05_LHCBT_PIn                               |                                                      | 05_LHCBT     | 35            |
| 05LHCBTPIn1 | 36798.00001 | TABLE MOUNTAIN DITCH<br>(0500569)          |                                                      | 05_LHCBT_PIn | 27            |
| 05LHCBTPIn2 | 7761.00001  | STAR DITCH (0500572)                       |                                                      | 05_LHCBT_PIn | 27            |
| 05LHCBTPIn3 | 7761.00001  | HINMAN DITCH (0500573)                     |                                                      | 05_LHCBT_PIn | 27            |
| 05LHCBTPIn4 | 8695.00001  | HOLLAND DITCH (0500574)                    |                                                      | 05_LHCBT_PIn | 27            |
| 05LHCBTPIn5 | 7760.00001  | DODD TREATMENT PLANT<br>DEMAND (0500619_b) |                                                      | 05_LHCBT_PIn | 27            |
| 05LHCBTSpl  | 36798.00002 | LAKE DITCH (0500564)                       |                                                      | 05_LHCBT_PIn | 29            |

In the table below, rules to release water from the O5\_BRCBT\_PIn are shown. The plan holds the Boulder Reservoir's C-BT supply from the Boulder Feeder Canal. Deliveries to BCSC and O600800 can be thought of as a Boulder Reservoir pass-through.

| Right ID    | Admin #     | Destination                  | Account, Carrier, Return<br>Location (R), or % Split | Source         | Right<br>Type |
|-------------|-------------|------------------------------|------------------------------------------------------|----------------|---------------|
| 05BRCBT     | 3.00000     | 05_BRCBT_PIn                 |                                                      | C-BT inflow to | 35            |
|             |             |                              |                                                      | Boulder        |               |
|             |             |                              |                                                      | Reservoir      |               |
|             |             |                              |                                                      | (05_BRCBT)     |               |
| 05BRCBTPIn1 | 3.00001     | BOULDER CREEK SUPPLY         |                                                      | 05_BRCBT_PIn   | 27            |
|             |             | CANAL OUT (BCSC)             |                                                      |                |               |
| 05BRCBTPIn2 | 3.00002     | BOULDER RES MUNICIPAL        |                                                      | 05_BRCBT_PIn   | 27            |
|             |             | DEMAND (0600800_SV)          |                                                      |                |               |
| 05BRCBTPIn3 | 3.00005     | BOULDER RESERVOIR            |                                                      | 05_BRCBT_PIn   | 27            |
|             |             | (0504515) <i>,</i> Account 1 |                                                      |                |               |
| 05BRCBTSpl  | 51134.47666 | BOULDER RESERVOIR            |                                                      | 05_BRCBT_PIn   | 29            |
|             |             | (0504515)                    |                                                      |                |               |

#### 5.10.5.2 Highland Irrigation System – Highland Ditch (0500526), Highland Reservoir No. 1, Highland Reservoir No. 2, Highland Reservoir No. 3, Foothills Reservoir, McIntosh Lake, Beaver Park Reservoir, and Highland Irrigation Demand (0500526\_I)

Highland Ditch diverts water from the St. Vrain Creek for irrigation and off-channel reservoir storage. From 1990 to 2007, municipal water for the City of Longmont was diverted through Highland ditch and delivered to Burch Lake water treatment plant. This operation does not represent current practices and is not included in the model. The municipal water has been removed from the total diversions at the headgate and are modeled at the City of Longmont's other diversion points. See the section on the City of Longmont below for more information.

The Highland System consists of three off-channel reservoirs located on the Highland Ditch and access to stored water in three off-channel reservoirs. The three reservoirs on Highland Ditch are Highland Reservoir No. 1, Highland Reservoir No.2, and Highland Reservoir No. 3. These reservoirs

are filled with diversions through the Highland Ditch headgate and release to meet Highland Irrigation Demand. The other off-channel reservoirs are Foothills Reservoir, McIntosh Lake, and Beaver Park Reservoir. Foothills Reservoir is owned entirely be Highland Ditch Company. It is filled by the Foothills Inlet Ditch (0500532). Water is released back to the St. Vrain Creek from Foothills for diversions by exchange. McIntosh Lake is also owned by the Highland Ditch Company, but is located on the Oligarchy Ditch. It makes releases to Oligarchy Ditch in exchange for diversions at the Highlands Ditch. The ditch company has 49% ownership in Beaver Park Reservoir. As described in Section 5.6, Beaver Park Reservoir is modeled with two accounts, one for Highland and one for the majority owner Supply Ditch (0500523). It is located upstream of the Highlands Ditch headgate and water is released for direct diversion at the headgate. These operations are further documented under the Beaver Park Reservoir (0504071) section below.

Although the primary use of water is in Water District 5, there are some Highland Ditch shareholders located in Water District 4 on the Boulder Larimer Ish Irrigation System (0400588) and water can be delivered from the Highland system to Ish Reservoir (0404156). To simplify this operation in StateMod, water is released from Foothills Reservoir directly to the Boulder Larimer Ish irrigation demand (0400588\_I).

The McIntosh Reservoir exchange with Oligarchy Ditch is not modeled because the Highland Irrigation Demand is satisfied with the operations captured in the table below.

The Highlands Irrigation System receives C-BT water from the St. Vrain Supply Canal. It takes C-BT junior to the Highlands Res 1, 2, and 3, McIntosh, Foothills, and Beaver Park releases to irrigation demand.

| Right ID   | Admin #     | Destination               | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|------------|-------------|---------------------------|------------------------------------------------------|------------|---------------|
| 0504032_C1 | 11642.00000 | HIGHLAND RESERVOIR NO.    | HIGHLAND DITCH                                       | 0504032.01 | 45            |
|            |             | 2 (0504032), Account 1    | (0500526)                                            |            |               |
| 0504032_C2 | 11841.09967 | HIGHLAND RESERVOIR NO.    | HIGHLAND DITCH                                       | 0504032.02 | 45            |
|            |             | 2 (0504032), Account 1    | (0500526)                                            |            |               |
| 0504032_C3 | 14424.00000 | HIGHLAND RESERVOIR NO.    | HIGHLAND DITCH                                       | 0504032.03 | 45            |
|            |             | 2 (0504032), Account 1    | (0500526)                                            |            |               |
| 0504032_C4 | 20067.00000 | HIGHLAND RESERVOIR NO.    | HIGHLAND DITCH                                       | 0504032.04 | 45            |
|            |             | 2 (0504032), Account 1    | (0500526)                                            |            |               |
| 0504032_C5 | 28031.00000 | HIGHLAND RESERVOIR NO.    | HIGHLAND DITCH                                       | 0504032.05 | 45            |
|            |             | 2 (0504032), Account 1    | (0500526)                                            |            |               |
| 0504032_C6 | 29219.00000 | HIGHLAND RESERVOIR NO.    | HIGHLAND DITCH                                       | 0504032.06 | 45            |
|            |             | 2 (0504032), Account 1    | (0500526)                                            |            |               |
| 0504037_C1 | 10911.00000 | HIGHLAND RESERVOIR NO.    | HIGHLAND DITCH                                       | 0504037.01 | 45            |
|            |             | 1 (0504037), Accounts 1-2 | (0500526)                                            |            |               |
| 0504037_C2 | 27910.26588 | HIGHLAND RESERVOIR NO.    | HIGHLAND DITCH                                       | 0504037.02 | 45            |
|            |             | 1 (0504037), Accounts 1-2 | (0500526)                                            |            |               |
| 0504037_C3 | 29219.00000 | HIGHLAND RESERVOIR NO.    | HIGHLAND DITCH                                       | 0504037.03 | 45            |
|            |             | 1 (0504037), Accounts 1-2 | (0500526)                                            |            |               |
| 0504038_C1 | 11642.00000 | HIGHLAND RESERVOIR NO.    | HIGHLAND DITCH                                       | 0504038.01 | 45            |
|            |             | 3 (0504038), Accounts 1-2 | (0500526)                                            |            |               |

| 0504038_C2  | 19265.00000 | HIGHLAND RESERVOIR NO.    | HIGHLAND DITCH  | 0504038.02      | 45 |
|-------------|-------------|---------------------------|-----------------|-----------------|----|
|             |             | 3 (0504038), Accounts 1-2 | (0500526)       |                 |    |
| 0504038_C3  | 29219.00000 | HIGHLAND RESERVOIR NO.    | HIGHLAND DITCH  | 0504038.03      | 45 |
|             |             | 3 (0504038), Accounts 1-2 | (0500526)       |                 |    |
| 0504071_C1  | 22108.00000 | FOOTHILLS RESERVOIR       | FOOTHILLS INLET | 0504071.01      | 45 |
|             |             | (0504071), Accounts 1-2   | (0500532)       |                 |    |
| 0504071_C2  | 29219.00000 | FOOTHILLS RESERVOIR       | FOOTHILLS INLET | 0504071.02      | 45 |
|             |             | (0504071), Accounts 1-2   | (0500532)       |                 |    |
| 0500526_C1  | 8004.00000  | HIGHLAND IRRIGATION       | HIGHLAND DITCH  | 0500526.01      | 45 |
|             |             | (0500526_1)               | (0500526)       |                 |    |
| 0500526_C2  | 10379.00000 | HIGHLAND IRRIGATION       | HIGHLAND DITCH  | 0500526.03      | 45 |
|             |             | (0500526_1)               | (0500526)       |                 |    |
| 0500526_C3  | 11841.10546 | HIGHLAND IRRIGATION       | HIGHLAND DITCH  | 0500526.05      | 45 |
|             |             | (0500526_1)               | (0500526)       |                 |    |
| 0504032_i1  | 35184.00001 | HIGHLAND IRRIGATION       | Account 1       | HIGHLAND        | 2  |
|             |             | (0500526_1)               |                 | RESERVOIR NO. 2 |    |
|             |             |                           |                 | (0504032)       |    |
| 0504037_i1  | 35184.00002 | HIGHLAND IRRIGATION       | Account 1       | HIGHLAND        | 2  |
|             |             | (0500526_1)               |                 | RESERVOIR NO. 1 |    |
|             |             |                           |                 | (0504037)       |    |
| 0504038_i1  | 35184.00003 | HIGHLAND IRRIGATION       | Account 1       | HIGHLAND        | 2  |
|             |             | (0500526_1)               |                 | RESERVOIR NO. 3 |    |
|             |             |                           |                 | (0504038)       |    |
| FH_BoLarIsh | 53691.50200 | 0400588_1                 |                 | 0504071         | 3  |
| BP_Highland | 35184.00004 | HIGHLAND IRRIGATION       | Account 1       | Beaver Park Res | 2  |
|             |             | (0500526_1)               |                 | (0504020)       |    |

### 5.10.5.3 Beaver Park Reservoir (0504020)

Beaver Park Reservoir is located above Lyons on Beaver Creek, a tributary to South Fork St. Vrain Creek. Beaver Park Reservoir has two owners. The Highland ditch company has 49% ownership and Supply Ditch has 51% ownership. As described in Section 5.6, Beaver Park Reservoir is modeled with two accounts, one for Highland (0500526) and one for the Supply Ditch (0500523). It is located upstream of both headgates and water is released for direct diversion at the headgates. These operations are documented in the table below.

| Right ID    | Admin #     | Destination                        | Account, Carrier, Return<br>Location (R), or % Split | Source                                | Right<br>Type |
|-------------|-------------|------------------------------------|------------------------------------------------------|---------------------------------------|---------------|
| BP_Highland | 35184.00004 | HIGHLAND IRRIGATION<br>(0500526_1) | Account 1                                            | BEAVER PARK<br>RESERVOIR<br>(0504020) | 2             |
| BP_Supply   | 52960.48364 | SUPPLY DITCH (0500523)             | Account 2                                            | BEAVER PARK<br>RESERVOIR<br>(0504020) | 2             |

# 5.10.5.4 Oligarchy Ditch System

Oligarchy Ditch (0500547) diverts water from the St. Vrain Creek for irrigation (0500547\_I) and offchannel reservoirs. Two reservoirs are located on the Oligarchy ditch system: McIntosh Reservoir (0504073) which is owned by Highland Ditch Company, and Union Reservoir (0503905) which is operated for the City of Longmont and to meet augmentation demands. Neither reservoir releases directly to meet Oligarchy Irrigation Demand. McIntosh Reservoir is documented under the Highland Ditch (0500526) section and Union Reservoir (0503905) is documented in its own section.

The City of Longmont has changed water rights under Oligarchy Ditch. See the City of Longmont section for details on changed water rights. The senior irrigation water right is placed into a type 13 accounting plan and then split between the City of Longmont and the Oligarchy ditch so that any shortages are shared.

| Right ID   | Admin #     | Destination             | Account, Carrier, Return | Source     | Right |
|------------|-------------|-------------------------|--------------------------|------------|-------|
|            |             |                         | Location (R), or % Split |            | туре  |
| 0504073_C1 | 19273.00000 | MCINTOSH RESERVOIR      | OLIGARCHY DITCH          | 0504073.01 | 45    |
|            |             | (0504073), Accounts 1-2 | (0500547)                |            |       |
| 0504073_C2 | 29219.00000 | MCINTOSH RESERVOIR      | OLIGARCHY DITCH          | 0504073.02 | 45    |
|            |             | (0504073), Accounts 1-2 | (0500547)                |            |       |
| 0500547_C1 | 5996.00002  | OLIGARCHY IRRIGATION    | OLIGARCHY DITCH          | 547_PlnI   | 27    |
|            |             | (0500547_I)             | (0500547)                |            |       |
| 0500547_C2 | 7640.00000  | OLIGARCHY IRRIGATION    | OLIGARCHY DITCH          | 0500547.02 | 45    |
|            |             | (0500547_I)             | (0500547)                |            |       |
| 0500547_C3 | 8096.00000  | OLIGARCHY IRRIGATION    | OLIGARCHY DITCH          | 0500547.03 | 45    |
|            |             | (0500547_I)             | (0500547)                |            |       |
| 0500547_C4 | 8857.00000  | OLIGARCHY IRRIGATION    | OLIGARCHY DITCH          | 0500547.04 | 45    |
|            |             | (0500547_I)             | (0500547)                |            |       |

The ditch system operations are captured using the operating rules in the table below.

5.10.5.5 City of Longmont - Longmont Indoor Demand (05LONG\_IN) and Longmont Outdoor Demand (05LONG\_OUT) – North Pipeline (0500511), South Pipeline (0500522), Lyons Pipeline (0500212), Union Reservoir (0503905), and Button Rock Reservoir (0504010)

Longmont's demand was split up between indoor and outdoor use. Longmont provided annual water treatment plant production values from 1970 through 2001 and monthly water treatment production values from 2002 through 2012. Prior to 1970, demand was estimated using population data and per capita use. Total demand was divided between indoor and outdoor use based on the pattern of monthly use from 2002 through 2012. A winter use baseline (Nov-Mar) was established for year-round indoor use and the surplus from April through October (total use minus winter average) was designated outdoor use.

The City of Longmont is the largest municipality in the St. Vrain Basin. The City has direct rights, storage rights, change water rights from ditches in the basin, and Colorado-Big Thompson water. It does not have ground water supplies. Longmont has three pipelines that can divert surface water. The primary pipeline is 0500511 – North Pipeline, which is located on the North Fork St. Vrain,

downstream of Button Reservoir aka Ralph Price Reservoir. The secondary pipeline is 0500522 – South Pipeline, which is located on the South Fork St. Vrain, just upstream of Lyons. Finally, a small pipeline 0500512 – Lyons Pipeline is located downstream of the North Pipeline on the North Fork St. Vrain.

In addition to native St. Vrain water, C-BT water can be delivered to Longmont using a several different mechanisms. C-BT water can be diverted from the St. Vrain Supply Canal via a pipeline directly to Longmont's Wade Gaddis Treatment Plant. Longmont also has a connection to the Southern Water Supply Pipeline (SWSP), and can accept delivery of C-BT water directly from SWSP. Lastly, C-BT water from the St. Vrain Supply Canal can be delivered to the St. Vrain Creek and exchanged up to one of Longmont's pipelines, depending on exchange potential.

Note that in HydroBase, it appears that C-BT diversions are being recorded at the North Pipeline for water that is received via SWSP and/or the St. Vrain Supply Canal pipeline connection. However, a record of C-BT deliveries to Longmont is also maintained by Northern. Therefore, C-BT was being double accounted for. To account for this, the C-BT water was subtracted from the North Pipeline total diversions for calibration purposes. In StateMod, the diversions simulated at the North Pipeline are smaller than the recorded historical diversions, but the historical demand is still being satisfied. C-BT water is only represented once in the StateMod simulation.

Longmont has access to several storage reservoirs, including Button Rock (aka Ralph Price Reservoir), Pleasant Valley Reservoir (aka Terry Lake), McCall Lake, Oligarchy Reservoir No. 1 (aka Burch Lake), Clover Basin Reservoir, and Union Reservoir. Of these reservoirs, Button Rock and Union reservoirs are modeled in StateMod.

Longmont has a portfolio of water rights. The North and South Pipelines have original water rights and early water rights that were transferred to the pipelines. Longmont has changed irrigation water rights from several ditches throughout the basin in two waves. The first round of transfers occurred in 1981 and the second round was in 1987, under the following Case Numbers: 81CW355, 81CW356, 81CW357, 81CW360, 81CW361, 81CW362, 87CW212, 87CW213, 87CW214, 87CW215, 87CW216, 87CW218, 87CW219, 87CW220, 87CW221, 87CW222, 87CW231, and 87CW253.

In StateMod, Longmont indoor and outdoor demand first tries to be met with the historical C-BT water delivery. Next, the direct rights are taken at the Pipelines and then the changed water rights are taken. Finally, reservoir storage in Button Rock is used. The table below captures the C-BT and direct water right operations. Changed water rights and reservoir storage are presented in detail in the next section.

| Right ID   | Admin #     | Destination | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|------------|-------------|-------------|------------------------------------------------------|------------|---------------|
| 0500511_C1 | 5600.00000  | 05LONG_IN   |                                                      | 0500511.01 | 11            |
| 0500511_C2 | 5630.00000  | 05LONG_IN   |                                                      | 0500511.02 | 11            |
| 0500511_C3 | 21623.00000 | 05LONG_IN   |                                                      | 0500511.03 | 11            |
| 0500511_C4 | 21702.00000 | 05LONG_IN   |                                                      | 0500511.04 | 11            |

| 0500512_C1 | 15528.00000 | 05LONG_IN  | 0500512.01 | 11 |
|------------|-------------|------------|------------|----|
| 0500512_C2 | 37093.15528 | 05LONG_IN  | 0500512.02 | 11 |
| 0500512_C3 | 37093.21953 | 05LONG_IN  | 0500512.03 | 11 |
| 0500512_C4 | 42907.00000 | 05LONG_IN  | 0500512.04 | 11 |
| 0500522_C1 | 11748.00000 | 05LONG_IN  | 0500522.01 | 11 |
| 0500522_C2 | 18762.00000 | 05LONG_IN  | 0500522.02 | 11 |
| 0500511_C6 | 5600.00000  | 05LONG_OUT | 0500511.01 | 11 |
| 0500511_C7 | 5630.00000  | 05LONG_OUT | 0500511.02 | 11 |
| 0500511_C8 | 21623.00000 | 05LONG_OUT | 0500511.03 | 11 |
| 0500511_C9 | 21702.00000 | 05LONG_OUT | 0500511.04 | 11 |
| 0500512_C6 | 15528.00000 | 05LONG_OUT | 0500512.01 | 11 |
| 0500512_C7 | 37093.15528 | 05LONG_OUT | 0500512.02 | 11 |
| 0500512_C8 | 37093.21953 | 05LONG_OUT | 0500512.03 | 11 |
| 0500512_C9 | 42907.00000 | 05LONG_OUT | 0500512.04 | 11 |
| 0500522_C4 | 11748.00000 | 05LONG_OUT | 0500522.01 | 11 |
| 0500522_C5 | 18762.00000 | 05LONG_OUT | 0500522.02 | 11 |

### 5.10.5.5.1 Longmont Supply Ditch (0500545) 1981 and 1987 Changed Rights

The City of Longmont changed water right shares under the Longmont Supply Ditch in 1981 and 1987. A total of 73.4 percent portion of the senior water right is stored in the 545\_Pln accounting plan, limited to the April through October season. The monthly and annual limits are based on the flow limits for the average hydrology conditions set in the decrees. The 545\_Pln is split between the 1981 and 1987 change cases because they have different terms and conditions, volumetric limitations, ditch losses, return flow obligations (RFOs), and reusable factors.

Uses of changed water rights include: Longmont Indoor Demand, Longmont Outdoor Demand, and storage in Button Rock and Union Reservoirs. Water is released to meet the Longmont Indoor and Outdoor demand via the Longmont North and South pipelines junior to the pipeline rights. The Lyons pipeline capacity is significantly smaller than the North and South Pipelines and is not used in StateMod to divert changed water rights. Water is released from the accounting plans to storage in Button Rock Reservoir by exchange junior to Button Rock's storage rights. Water is also released from the accounting plans to storage in Union Reservoir via Oligarchy Ditch junior to Union's absolute storage rights. Remaining plan supplies are released to the river.

Return flow obligations are tracked by the Longmont\_TC plan. Indoor reusable supplies are generated at the WWTP effluent and are tracked in the LInReuse plan. Outdoor reusable supplies are generated from outdoor return flows and are tracked in the LOutReusable plan. For details, see Section 5.8 on Plan Files.

| Right ID  | Admin #     | Destination                             | Account, Carrier, Return<br>Location (R), or % Split | Source      | Right<br>Type |
|-----------|-------------|-----------------------------------------|------------------------------------------------------|-------------|---------------|
| 545_Pln1  | 1.00000     | NA                                      |                                                      | 545_Pln81DF | 47            |
| 545_Pln2  | 1.00000     | NA                                      |                                                      | 545_Pln87DF | 47            |
| 545_Pln3  | 5600.00000  | 545_Pln                                 | 73.4%                                                | 0500545.01  | 26            |
| 545_Pln4  | 5600.00001  | 545_Pln81<br>545_Pln87                  | 83%<br>17%                                           | 545_Pln     | 43            |
| 545_Pln5  | 21702.00001 | Longmont Indoor Demand<br>(05LONG_IN)   | LONGMONT NORTH<br>PIPELINE (0500511)                 | 545_Pln81   | 28            |
| 545_Pln6  | 21702.00001 | Longmont Indoor Demand<br>(05LONG_IN)   | LONGMONT NORTH<br>PIPELINE (0500511)                 | 545_Pln87   | 28            |
| 545_Pln7  | 18762.00001 | Longmont Indoor Demand<br>(05LONG_IN)   | LONGMONT SOUTH<br>PIPELINE (0500522)                 | 545_Pln81   | 28            |
| 545_Pln8  | 18762.00001 | Longmont Indoor Demand<br>(05LONG_IN)   | LONGMONT SOUTH<br>PIPELINE (0500522)                 | 545_Pln87   | 28            |
| 545_Pln11 | 21702.00001 | Longmont Outdoor Demand<br>(05LONG_OUT) | LONGMONT NORTH<br>PIPELINE (0500511)                 | 545_Pln81   | 28            |
| 545_Pln12 | 21702.00001 | Longmont Outdoor Demand<br>(05LONG_OUT) | LONGMONT NORTH<br>PIPELINE (0500511)                 | 545_Pln87   | 28            |
| 545_Pln13 | 18762.00001 | Longmont Outdoor Demand<br>(05LONG_OUT) | LONGMONT SOUTH<br>PIPELINE (0500522)                 | 545_Pln81   | 28            |
| 545_Pln14 | 18762.00001 | Longmont Outdoor Demand<br>(05LONG_OUT) | LONGMONT SOUTH<br>PIPELINE (0500522)                 | 545_Pln87   | 28            |
| 545_Pln17 | 41785.00001 | BUTTON ROCK RES<br>(0504010), Account 1 |                                                      | 545_Pln81   | 28            |
| 545_Pln18 | 41785.00001 | BUTTON ROCK RES<br>(0504010), Account 1 |                                                      | 545_Pln87   | 28            |
| 545_Pln19 | 46386.46001 | UNION RES (0503905),<br>Account 1       | OLIGARCHY DITCH<br>(0500547)                         | 545_Pln81   | 27            |
| 545_Pln20 | 46386.46001 | UNION RES (0503905),<br>Account 1       | OLIGARCHY DITCH<br>(0500547)                         | 545_Pln87   | 27            |
| 545_Pln21 | 46386.46002 | LONGMONT SUPPLY DITCH<br>(0500545)      |                                                      | 545_Pln81   | 29            |
| 545_Pln22 | 46386.46002 | LONGMONT SUPPLY DITCH<br>(0500545)      |                                                      | 545_Pln87   | 29            |
| 545_Pln23 | 46386.46002 | LONGMONT SUPPLY DITCH<br>(0500545)      |                                                      | 545_Pln     | 29            |

### 5.10.5.5.2 Rough and Ready (0500527) 1981 and 1987 Changed Water Rights

The City of Longmont changed water right shares under the Rough and Ready Ditch in 1981 and 1987. A total of 37.4 percent of the senior water right is stored in the 527\_Pln accounting plan, limited to the April through October season. The monthly and annual limits are based on the flow limits for the average hydrology conditions set in the decrees. The 527\_Pln is then split into 81 and 87 plans because the change cases each have different terms and conditions, volumetric limitations, ditch losses, RFOs, and reusable factors. Changed uses associated with the one junior right are not represented because the senior rights satisfy the volumetric limitations or the demand was already met.

Uses of changed water rights include: Longmont Indoor Demand, Longmont Outdoor Demand, and storage in Button Rock and Union Reservoirs. Water is released to meet the Longmont Indoor and Outdoor demand via the Longmont North and South pipelines junior to the pipeline rights. The Lyons pipeline capacity is significantly smaller than the North and South Pipelines and is not used in StateMod to divert changed water rights. Water is released from the accounting plans to storage in Button Rock Reservoir by exchange junior to Button Rock's storage rights. Water is also released from the accounting plans to storage in Union Reservoir via Oligarchy Ditch junior to Union's absolute storage rights. Remaining plan supplies are released to the river.

Return flow obligations are tracked by the Longmont\_TC accounting plan. Indoor reusable supplies are generated at the WWTP effluent and are tracked in the LInReuse PLN accounting plan. Outdoor reusable supplies are generated from outdoor return flows and are tracked in the LOutReusable accounting plan. For details, see Section 5.8 on Plan Files.

| Right ID  | Admin #     | Destination                             | Account, Carrier, Return             | Source      | Right |
|-----------|-------------|-----------------------------------------|--------------------------------------|-------------|-------|
|           |             |                                         | Location (R), or % Split             |             | Туре  |
| 527_Pln1  | 1.00000     | NA                                      |                                      | 527_Pln81DF | 47    |
| 527_Pln2  | 1.00000     | NA                                      |                                      | 527_Pln87DF | 47    |
| 527_Pln3  | 7012.00000  | 527_Pln                                 | 37.4%                                | 0500527.01  | 26    |
| 527_Pln4  | 7012.00001  | 527_Pln81                               | 56%                                  | 527_Pln     | 46    |
| 527_PIn5  | 21702.00001 | Longmont Indoor Demand<br>(05LONG_IN)   | LONGMONT NORTH<br>PIPELINE (0500511) | 527_Pln81   | 28    |
| 527_Pln6  | 21702.00001 | Longmont Indoor Demand<br>(05LONG_IN)   | LONGMONT NORTH<br>PIPELINE (0500511) | 527_Pln87   | 28    |
| 527_Pln7  | 18762.00001 | Longmont Indoor Demand<br>(05LONG_IN)   | LONGMONT SOUTH<br>PIPELINE (0500522) | 527_Pln81   | 28    |
| 527_Pln8  | 18762.00001 | Longmont Indoor Demand<br>(05LONG_IN)   | LONGMONT SOUTH<br>PIPELINE (0500522) | 527_Pln87   | 28    |
| 527_Pln11 | 21702.00001 | Longmont Outdoor Demand<br>(05LONG_OUT) | LONGMONT NORTH<br>PIPELINE (0500511) | 527_Pln81   | 28    |
| 527_Pln12 | 21702.00001 | Longmont Outdoor Demand<br>(05LONG_OUT) | LONGMONT NORTH<br>PIPELINE (0500511) | 527_Pln87   | 28    |
| 527_Pln13 | 18762.00001 | Longmont Outdoor Demand<br>(05LONG_OUT) | LONGMONT SOUTH<br>PIPELINE (0500522) | 527_Pln81   | 28    |
| 527_Pln14 | 18762.00001 | Longmont Outdoor Demand<br>(05LONG_OUT) | LONGMONT SOUTH<br>PIPELINE (0500522) | 527_Pln87   | 28    |
| 527_Pln17 | 41785.00001 | BUTTON ROCK RES<br>(0504010), Account 1 |                                      | 527_Pln81   | 28    |
| 527_Pln18 | 41785.00001 | BUTTON ROCK RES<br>(0504010), Account 1 |                                      | 527_Pln87   | 28    |
| 527_Pln19 | 46386.46001 | UNION RES (0503905),<br>Account 1       | OLIGARCHY DITCH<br>(0500547)         | 527_Pln81   | 27    |
| 527_Pln20 | 46386.46001 | UNION RES (0503905),<br>Account 1       | OLIGARCHY DITCH<br>(0500547)         | 527_Pln87   | 27    |
| 527_Pln21 | 46386.46002 | ROUGH READY DITCH<br>(0500527)          |                                      | 527_Pln81   | 29    |
| 527_Pln22 | 46386.46002 | ROUGH READY DITCH                       |                                      | 527_Pln87   | 29    |

|           |             | (0500527)                      |                                      |         |    |
|-----------|-------------|--------------------------------|--------------------------------------|---------|----|
| 527_Pln23 | 46386.46002 | ROUGH READY DITCH<br>(0500527) | LONGMONT SOUTH<br>PIPELINE (0500522) | 527_Pln | 29 |

### 5.10.5.5.3 Oligarchy Ditch (0500547) 1981 and 1987 Changed Water Rights

The City of Longmont changed water right shares under the Oligarchy Ditch in 1981 and 1987. One hundred percent of the senior water right priority is stored in the 547\_Pln accounting plan limited to the April through October season. The monthly and annual limits are based on the flow limits for the average hydrology conditions set in the decrees. The 547\_Pln is split between the 81 and 87 plans, because the change cases each have different terms and conditions, volumetric limits, ditch losses, RFOs, and reusable factors. The 547\_Plan is also split to an irrigation plan. The irrigation split of the water right (61%) is sent to the irrigation demand through a carrier. Changed uses associated with the three junior water rights are not represented because the senior rights satisfy the volumetric limitations or the demand was already met.

Uses of changed water rights include: Longmont Indoor Demand, Longmont Outdoor Demand, and storage in Button Rock and Union Reservoirs. Water is released to meet the Longmont Indoor and Outdoor demand via the Longmont North and South pipelines junior to the pipeline rights. The Lyons pipeline capacity is significantly smaller than the North and South Pipelines and is not used in StateMod to divert changed water rights. Water is released from the accounting plans to storage in Button Rock Reservoir by exchange junior to Button Rock's storage rights. Water is also released from the accounting plans to storage in Union Reservoir via Oligarchy Ditch junior to Union's absolute storage rights. Remaining plan supplies are released to the river.

Return flow obligations are tracked by the Longmont\_TC accounting plan. Indoor reusable supplies are generated at the WWTP effluent and are tracked in the LinReuse PLN accounting plan. Outdoor reusable supplies are generated from outdoor return flows and are tracked in the LOutReusable accounting plan. For details, see Section 5.8 on Plan Files.

| Right ID   | Admin #     | Destination                           | Account, Carrier, Return<br>Location (R), or % Split | Source      | Right<br>Type |
|------------|-------------|---------------------------------------|------------------------------------------------------|-------------|---------------|
| 547_Pln1   | 1.00000     | NA                                    |                                                      | 547_Pln81DF | 47            |
| 547_Pln2   | 1.00000     | NA                                    |                                                      | 547_Pln87DF | 47            |
| 547_Pln3   | 5996.00000  | 547_Pln                               | 100%                                                 | 0500547.01  | 26            |
| 547_Pln4   | 5996.00001  | 547_Pln81<br>547_Pln87<br>547_Pln1    | 26.1%<br>12.8%<br>61.1%                              | 547_Pln     | 46            |
| 0500547_C1 | 5996.00002  | OLIGARCHY IRRIGATION<br>(0500547_I)   | OLIGARCHY DITCH<br>(0500547)                         | 547_PlnI    | 27            |
| 547_Pln5   | 21702.00001 | Longmont Indoor Demand<br>(05LONG_IN) | LONGMONT NORTH<br>PIPELINE (0500511)                 | 547_Pln81   | 28            |
| 547_Pln6   | 21702.00001 | Longmont Indoor Demand<br>(05LONG_IN) | LONGMONT NORTH<br>PIPELINE (0500511)                 | 547_Pln87   | 28            |
| 547_Pln7   | 18762.00001 | Longmont Indoor Demand                | LONGMONT SOUTH                                       | 547_Pln81   | 28            |

|           |             | (05LONG_IN)             | PIPELINE (0500522) |           |    |
|-----------|-------------|-------------------------|--------------------|-----------|----|
| 547_Pln8  | 18762.00001 | Longmont Indoor Demand  | LONGMONT SOUTH     | 547_Pln87 | 28 |
|           |             | (05LONG_IN)             | PIPELINE (0500522) |           |    |
| 547_Pln11 | 21702.00001 | Longmont Outdoor Demand | LONGMONT NORTH     | 547_Pln81 | 28 |
|           |             | (05LONG_OUT)            | PIPELINE (0500511) |           |    |
| 547_Pln12 | 21702.00001 | Longmont Outdoor Demand | LONGMONT NORTH     | 547_Pln87 | 28 |
|           |             | (05LONG_OUT)            | PIPELINE (0500511) |           |    |
| 547_Pln13 | 18762.00001 | Longmont Outdoor Demand | LONGMONT SOUTH     | 547_Pln81 | 28 |
|           |             | (05LONG_OUT)            | PIPELINE (0500522) |           |    |
| 547_Pln14 | 18762.00001 | Longmont Outdoor Demand | LONGMONT SOUTH     | 547_Pln87 | 28 |
|           |             | (05LONG_OUT)            | PIPELINE (0500522) |           |    |
| 547_Pln21 | 21702.00002 | OLIGARCHY DITCH         |                    | 547_Pln81 | 29 |
|           |             | (0500547)               |                    |           |    |
| 547_Pln22 | 21702.00002 | OLIGARCHY DITCH         |                    | 547_Pln87 | 29 |
|           |             | (0500547)               |                    |           |    |
| 547_Pln23 | 5996.00003  | OLIGARCHY DITCH         |                    | 547_PlnI  | 29 |
|           |             | (0500547)               |                    |           |    |
| 547_Pln24 | 21702.00002 | OLIGARCHY DITCH         |                    | 547_Pln   | 29 |
|           |             | (0500547)               |                    |           |    |

### 5.10.5.5.4 Smead Ditch (0500530) 1981 Changed Water Rights

The City of Longmont changed water right shares under the Smead Ditch in 1981. The 25 percent portion of the senior water right priority is stored in the 530\_Pln accounting plan limited to the April through October season. The monthly and annual limits are based on the flow limits for the average hydrology conditions set in the decrees.

Uses of changed water rights include: Longmont Indoor Demand, Longmont Outdoor Demand, and storage in Button Rock and Union Reservoirs. Water is released to meet the Longmont Indoor and Outdoor demand via the Longmont North and South pipelines junior to the pipeline rights. The Lyons pipeline capacity is significantly smaller than the North and South Pipelines and is not used in StateMod to divert changed water rights. Water is released from the accounting plans to storage in Button Rock Reservoir by exchange junior to Button Rock's storage rights. Water is also released from the accounting plans to storage in Union Reservoir via Oligarchy Ditch junior to Union's absolute storage rights. Remaining plan supplies are released to the river.

Return flow obligations are tracked by the Longmont\_TC accounting plan. Indoor reusable supplies are generated at the WWTP effluent and are tracked in the LinReuse PLN accounting plan. Outdoor reusable supplies are generated from outdoor return flows and are tracked in the LOutReusable accounting plan. For details, see Section 5.8 on Plan Files.

| Right ID | Admin #     | Destination                           | Account, Carrier, Return<br>Location (R), or % Split | Source      | Right<br>Type |
|----------|-------------|---------------------------------------|------------------------------------------------------|-------------|---------------|
| 530_Pln1 | 1.00000     | NA                                    |                                                      | 530_Pln81DF | 47            |
| 530_Pln2 | 4657.00000  | 530_Pln81                             | 25%                                                  | 0500530.01  | 26            |
| 530_Pln3 | 21702.00001 | Longmont Indoor Demand<br>(05LONG_IN) | LONGMONT NORTH<br>PIPELINE (0500511)                 | 530_Pln81   | 28            |
| 530_Pln4  | 18762.00001 | Longmont Indoor Demand<br>(05LONG_IN)   | LONGMONT SOUTH<br>PIPELINE (0500522) | 530_Pln81 | 28 |
|-----------|-------------|-----------------------------------------|--------------------------------------|-----------|----|
| 530_Pln6  | 21702.00001 | Longmont Outdoor Demand<br>(05LONG_OUT) | LONGMONT NORTH<br>PIPELINE (0500511) | 530_Pln81 | 28 |
| 530_Pln7  | 18762.00001 | Longmont Outdoor Demand<br>(05LONG_OUT) | LONGMONT SOUTH<br>PIPELINE (0500522) | 530_Pln81 | 28 |
| 530_Pln9  | 41785.00001 | BUTTON ROCK RES<br>(0504010), Account 1 |                                      | 530_Pln81 | 28 |
| 530_Pln10 | 46386.46001 | UNION RESERVOIR<br>(0503905), Account 1 | OLIGARCHY DITCH<br>(0500547)         | 530_Pln81 | 27 |
| 530_Pln11 | 46386.46002 | SMEAD DITCH (0500530)                   |                                      | 530_Pln81 | 29 |

## 5.10.5.5.5 Palmerton Ditch (0500528) 1981 Changed Water Rights

The City of Longmont changed water right shares under the Palmerton Ditch in 1981. The 6.5 percent portion of the senior water right priority is stored in the 528\_Pln accounting plan limited to the April through October season. The monthly and annual limits are based on the flow limits for the average hydrology conditions set in the decrees. Changed uses associated with the two junior water rights are not represented because the senior rights satisfy the volumetric limitations or the demand was already met.

Uses of changed water rights include: Longmont Indoor Demand, Longmont Outdoor Demand, and storage in Button Rock and Union Reservoirs. Water is released to meet the Longmont Indoor and Outdoor demand via the Longmont North and South pipelines junior to the pipeline rights. The Lyons pipeline capacity is significantly smaller than the North and South Pipelines and is not used in StateMod to divert changed water rights. Water is released from the accounting plans to storage in Button Rock Reservoir by exchange junior to Button Rock's storage rights. Water is also released from the accounting plans to storage in Union Reservoir via Oligarchy Ditch junior to Union's absolute storage rights. Remaining plan supplies are released to the river.

Return flow obligations are tracked by the Longmont\_TC accounting plan. Indoor reusable supplies are generated at the WWTP effluent and are tracked in the LinReuse PLN accounting plan. Outdoor reusable supplies are generated from outdoor return flows and are tracked in the LOutReusable accounting plan. For details, Section 5.8 on Plan Files.

| Right ID | Admin #     | Destination                             | Account, Carrier, Return<br>Location (R), or % Split | Source      | Right<br>Type |
|----------|-------------|-----------------------------------------|------------------------------------------------------|-------------|---------------|
| 528_Pln1 | 1.00000     | NA                                      |                                                      | 530_Pln81DF | 47            |
| 528_Pln2 | 5630.00000  | 528_Pln81                               | 6.5%                                                 | 0500528.01  | 26            |
| 528_Pln3 | 21702.00001 | Longmont Indoor Demand<br>(05LONG_IN)   | LONGMONT NORTH<br>PIPELINE (0500511)                 | 528_Pln81   | 28            |
| 528_Pln4 | 18762.00001 | Longmont Indoor Demand<br>(05LONG_IN)   | LONGMONT SOUTH<br>PIPELINE (0500522)                 | 528_Pln81   | 28            |
| 528_Pln6 | 21702.00001 | Longmont Outdoor Demand<br>(05LONG_OUT) | LONGMONT NORTH<br>PIPELINE (0500511)                 | 528_Pln81   | 28            |
| 528_Pln7 | 18762.00001 | Longmont Outdoor Demand                 | LONGMONT SOUTH                                       | 528_Pln81   | 28            |

|           |             | (05LONG_OUT)                          | PIPELINE (0500522)           |           |    |
|-----------|-------------|---------------------------------------|------------------------------|-----------|----|
| 528_Pln9  | 41785.00001 | BUTTON ROCK RES<br>(0504010)          |                              | 528_Pln81 | 28 |
| 528_Pln10 | 46386.46001 | UNION RESERVOIR<br>(0503905)          | OLIGARCHY DITCH<br>(0500547) | 528_Pln81 | 27 |
| 528_Pln11 | 46386.46002 | ST VRAIN PALMERTON<br>DITCH (0500528) |                              | 528_Pln81 | 29 |

## 5.10.5.5.6 Swede Ditch (0500529) 1981 Changed Water Rights

The City of Longmont changed water right shares under the Swede Ditch in 1981. A 5.6 percent portion of each of the three senior water rights is stored in the 529\_Pln accounting plan limited to the April through October season. The monthly and annual limits are based on the flow limits for the average hydrology conditions set in the decrees. Changed uses associated with the junior water right are not represented because the senior rights satisfy the volumetric limitations or the demand was already met.

Uses of changed water rights include: Longmont Indoor Demand, Longmont Outdoor Demand, and storage in Button Rock and Union Reservoirs. Water is released to meet the Longmont Indoor and Outdoor demand via the Longmont North and South pipelines junior to the pipeline rights. The Lyons pipeline capacity is significantly smaller than the North and South Pipelines and is not used in StateMod to divert changed water rights. Water is released from the accounting plans to storage in Button Rock Reservoir by exchange junior to Button Rock's storage rights. Water is also released from the accounting plans to storage in Union Reservoir via Oligarchy Ditch junior to Union's absolute storage rights. Remaining plan supplies are released to the river.

Return flow obligations are tracked by the Longmont\_TC accounting plan. Indoor reusable supplies are generated at the WWTP effluent and are tracked in the LinReuse PLN accounting plan. Outdoor reusable supplies are generated from outdoor return flows and are tracked in the LOutReusable accounting plan. For details, see Section 5.8 on Plan Files.

| Right ID | Admin #     | Destination                             | Account, Carrier, Return<br>Location (R), or % Split | Source      | Right<br>Type |
|----------|-------------|-----------------------------------------|------------------------------------------------------|-------------|---------------|
| 529_Pln1 | 1.00000     | NA                                      |                                                      | 529_Pln81DF | 47            |
| 529_Pln2 | 7791.00000  | 529_Pln81                               | 5.6%                                                 | 0500529.01  | 26            |
| 529_Pln3 | 8461.00000  | 529_Pln81                               | 5.6%                                                 | 0500529.02  | 26            |
| 529_Pln4 | 13454.00000 | 529_Pln81                               | 5.6%                                                 | 0500529.03  | 26            |
| 529_Pln5 | 21702.00001 | Longmont Indoor Demand<br>(05LONG_IN)   | LONGMONT NORTH<br>PIPELINE (0500511)                 | 529_Pln81   | 28            |
| 529_Pln6 | 18762.00001 | Longmont Indoor Demand<br>(05LONG_IN)   | LONGMONT SOUTH<br>PIPELINE (0500522)                 | 529_Pln81   | 28            |
| 529_Pln8 | 21702.00001 | Longmont Outdoor Demand<br>(05LONG_OUT) | LONGMONT NORTH<br>PIPELINE (0500511)                 | 529_Pln81   | 28            |
| 529_Pln9 | 18762.00001 | LONGMONT SOUTH<br>PIPELINE (0500522)    | LONGMONT SOUTH<br>PIPELINE (0500522)                 | 529_Pln81   | 28            |

| 529_Pln11 | 41785.00001 | BUTTON ROCK RES<br>(0504010) | 529_Pln81 | 28 |
|-----------|-------------|------------------------------|-----------|----|
| 529_Pln12 | 46386.46001 | UNION RES (0503905)          | 529_Pln81 | 27 |
| 529_Pln13 | 46386.46002 | SWEDE DITCH (0500529)        | 529_Pln81 | 29 |

## 5.10.5.5.7 Beckwith (0500560) 1987 Changed Water Rights

The City of Longmont changed water right shares under the Beckwith Ditch in 1987. A 43.9 percent portion of the senior water right priority is stored in the 560\_Pln accounting plan limited to the April through October season. The monthly and annual limits are based on the flow limits for the average hydrology conditions set in the decrees.

Uses of changed water rights include: Longmont Indoor Demand, Longmont Outdoor Demand, and storage in Button Rock and Union Reservoirs. Water is released to meet the Longmont Indoor and Outdoor demand via the Longmont North and South pipelines junior to the pipeline rights. The Lyons pipeline capacity is significantly smaller than the North and South Pipelines and is not used in StateMod to divert changed water rights. Water is released from the accounting plans to storage in Button Rock Reservoir by exchange junior to Button Rock's storage rights. Water is also released from the accounting plans to storage in Union Reservoir via Oligarchy Ditch junior to Union's absolute storage rights. Remaining plan supplies are released to the river.

Return flow obligations are tracked by the Longmont\_TC accounting plan. Indoor reusable supplies are generated at the WWTP effluent and are tracked in the LinReuse PLN accounting plan. Outdoor reusable supplies are generated from outdoor return flows and are tracked in the LOutReusable accounting plan. For details, see Section 5.8 on Plan Files.

| Right ID  | Admin #     | Destination                             | Account, Carrier, Return<br>Location (R), or % Split | Source      | Right<br>Type |
|-----------|-------------|-----------------------------------------|------------------------------------------------------|-------------|---------------|
| 560_Pln1  | 1.00000     | NA                                      |                                                      | 560_PIn87DF | 47            |
| 560_Pln2  | 4085.00000  | 560_Pln87                               | 43.9%                                                | 0500560.01  | 26            |
| 560_Pln3  | 21702.00001 | Longmont Indoor Demand<br>(05LONG_IN)   | LONGMONT NORTH<br>PIPELINE (0500511)                 | 560_Pln87   | 28            |
| 560_Pln4  | 18762.00001 | Longmont Indoor Demand<br>(05LONG_IN)   | LONGMONT SOUTH<br>PIPELINE (0500522)                 | 560_Pln87   | 28            |
| 560_Pln6  | 21702.00001 | Longmont Outdoor Demand<br>(05LONG_OUT) | LONGMONT NORTH<br>PIPELINE (0500511)                 | 560_Pln87   | 28            |
| 560_Pln7  | 18762.00001 | Longmont Outdoor Demand<br>(05LONG_OUT) | LONGMONT SOUTH<br>PIPELINE (0500522)                 | 560_Pln87   | 28            |
| 560_Pln9  | 41785.00001 | BUTTON ROCK RES<br>(0504010)            |                                                      | 560_Pln87   | 28            |
| 560_Pln10 | 46386.46001 | UNION RES (0503905)                     | OLIGARCHY DITCH<br>(0500547)                         | 560_Pln87   | 28            |
| 560_Pln11 | 46386.46002 | BECKWITH DITCH (0500560)                |                                                      | 560_PIn87   | 29            |

## 5.10.5.5.8 Clover Basin Ditch (0500552) 1987 Changed Water Rights

The City of Longmont changed water right shares under the Clover Basin Ditch in 1987. The 75.5 percent portion of the senior water right priority is stored in the 552\_Pln accounting.

Uses of changed water rights include: Longmont Indoor Demand, Longmont Outdoor Demand, and storage in Button Rock and Union Reservoirs. Water is released to meet the Longmont Indoor and Outdoor demand via the Longmont North and South pipelines junior to the pipeline rights. The Lyons pipeline capacity is significantly smaller than the North and South Pipelines and is not used in StateMod to divert changed water rights. Water is released from the accounting plans to storage in Button Rock Reservoir by exchange junior to Button Rock's storage rights. Water is also released from the accounting plans to storage in Union Reservoir via Oligarchy Ditch junior to Union's absolute storage rights. Remaining plan supplies are released to the river.

Return flow obligations are tracked by the Longmont\_TC accounting plan. Indoor reusable supplies are generated at the WWTP effluent and are tracked in the LinReuse PLN accounting plan. Outdoor reusable supplies are generated from outdoor return flows and are tracked in the LOutReusable accounting plan. For details, see Section 5.8 on Plan Files.

| Right ID  | Admin #     | Destination                             | Account, Carrier, Return<br>Location (R), or % Split | Source      | Right<br>Type |
|-----------|-------------|-----------------------------------------|------------------------------------------------------|-------------|---------------|
| 552_Pln1  | 1.00000     | NA                                      |                                                      | 552_PIn87DF | 47            |
| 552_Pln2  | 8553.00000  | 552_Pln87                               | 75.5%                                                | 0500552.01  | 26            |
| 552_Pln4  | 21702.00001 | Longmont Indoor Demand<br>(05LONG_IN)   | LONGMONT NORTH<br>PIPELINE (0500511)                 | 552_Pln87   | 28            |
| 552_Pln5  | 18762.00001 | Longmont Indoor Demand<br>(05LONG_IN)   | LONGMONT SOUTH<br>PIPELINE (0500522)                 | 552_Pln87   | 28            |
| 552_Pln7  | 21702.00001 | Longmont Outdoor Demand<br>(05LONG_OUT) | LONGMONT NORTH<br>PIPELINE (0500511)                 | 552_Pln87   | 28            |
| 552_Pln8  | 18762.00001 | Longmont Outdoor Demand<br>(05LONG_OUT) | LONGMONT SOUTH<br>PIPELINE (0500522)                 | 552_Pln87   | 28            |
| 552_Pln10 | 41785.00001 | BUTTON ROCK RES<br>(0504010)            |                                                      | 552_Pln87   | 28            |
| 552_Pln11 | 46386.46001 | UNION RES (0503905)                     | OLIGARCHY DITCH<br>(0500547)                         | 552_Pln87   | 28            |
| 552_Pln12 | 46386.46002 | Clover Basin Ditch<br>(0500552)         |                                                      | 552_Pln87   | 29            |

# 5.10.5.5.9 Niwot Ditch (0500554) 1987 Changed Water Rights

The City of Longmont changed water right shares under the Niwot Ditch in 1987. The 48.5 percent portion of each of the two senior water right priorities is stored in the 554\_Pln accounting plan limited to the April through October season. The monthly and annual limits are based on the flow limits for the average hydrology conditions set in the decrees.

Uses of changed water rights include: Longmont Indoor Demand, Longmont Outdoor Demand, and storage in Button Rock and Union Reservoirs. Water is released to meet the Longmont Indoor and Outdoor demand via the Longmont North and South pipelines junior to the pipeline rights. The Lyons pipeline capacity is significantly smaller than the North and South Pipelines and is not used in StateMod to divert changed water rights. Water is released from the accounting plans to storage in Button Rock Reservoir by exchange junior to Button Rock's storage rights. Water is also released from the accounting plans to storage in Union Reservoir via Oligarchy Ditch junior to Union's absolute storage rights. Remaining plan supplies are released to the river.

Return flow obligations are tracked by the Longmont\_TC accounting plan. Indoor reusable supplies are generated at the WWTP effluent and are tracked in the LinReuse PLN accounting plan. Outdoor reusable supplies are generated from outdoor return flows and are tracked in the LOutReusable accounting plan. For details, see Section 5.8 on Plan Files.

| Right ID  | Admin #     | Destination                             | Account, Carrier, Return<br>Location (R), or % Split | Source      | Right<br>Type |
|-----------|-------------|-----------------------------------------|------------------------------------------------------|-------------|---------------|
| 554_Pln1  | 1.00000     | NA                                      |                                                      | 554_Pln87DF | 47            |
| 554_Pln2  | 4883.00000  | 554_Pln87                               | 45.8%                                                | 0500554.01  | 26            |
| 554_Pln3  | 5631.00000  | 554_Pln87                               | 45.8%                                                | 0500554.02  | 26            |
| 554_Pln4  | 21702.00001 | Longmont Indoor Demand<br>(05LONG_IN)   | LONGMONT NORTH<br>PIPELINE (0500511)                 | 554_Pln87   | 28            |
| 554_Pln5  | 18762.00001 | Longmont Indoor Demand<br>(05LONG_IN)   | LONGMONT SOUTH<br>PIPELINE (0500522)                 | 554_Pln87   | 28            |
| 554_Pln7  | 21702.00001 | Longmont Outdoor Demand<br>(05LONG_OUT) | LONGMONT NORTH<br>PIPELINE (0500511)                 | 554_Pln87   | 28            |
| 554_Pln8  | 18762.00001 | Longmont Outdoor Demand<br>(05LONG_OUT) | LONGMONT SOUTH<br>PIPELINE (0500522)                 | 554_Pln87   | 28            |
| 554_Pln10 | 41785.00001 | BUTTON ROCK RES<br>(0504010)            |                                                      | 554_Pln87   | 28            |
| 554_Pln11 | 46386.46001 | UNION RES (0503905)                     | OLIGARCHY DITCH<br>(0500547)                         | 554_Pln87   | 28            |
| 554_Pln12 | 46386.46002 | NIWOT DITCH (0500554)                   |                                                      | 554_Pln87   | 29            |

# 5.10.5.5.10 Pella Ditch (0500551) 1987 Changed Water Rights

The City of Longmont changed water right shares under the Pella Ditch in 1987. The 34.0 percent portion of the senior water right priority is stored in the 551\_Pln accounting plan limited to the April through October season. The monthly and annual limits are based on the flow limits for the average hydrology conditions set in the decrees.

Uses of changed water rights include: Longmont Indoor Demand, Longmont Outdoor Demand, and storage in Button Rock and Union Reservoirs. Water is released to meet the Longmont Indoor and Outdoor demand via the Longmont North and South pipelines junior to the pipeline rights. The Lyons pipeline capacity is significantly smaller than the North and South Pipelines and is not used in StateMod to divert changed water rights. Water is released from the accounting plans to storage in Button Rock Reservoir by exchange junior to Button Rock's storage rights. Water is also released from the accounting plans to storage in Union Reservoir via Oligarchy Ditch junior to Union's absolute storage rights. Remaining plan supplies are released to the river.

Return flow obligations are tracked by the Longmont\_TC accounting plan. Indoor reusable supplies are generated at the WWTP effluent and are tracked in the LinReuse PLN accounting plan. Outdoor reusable supplies are generated from outdoor return flows and are tracked in the LOutReusable accounting plan. For details, see Section 5.8 on Plan Files.

| Right ID  | Admin #     | Destination                             | Account, Carrier, Return<br>Location (R), or % Split | Source      | Right<br>Type |
|-----------|-------------|-----------------------------------------|------------------------------------------------------|-------------|---------------|
| 551_Pln1  | 1.00000     | NA                                      |                                                      | 551_PIn87DF | 47            |
| 551_Pln2  | 4462.00000  | 551_Pln87                               | 34.0%                                                | 0500551.01  | 26            |
| 551_Pln4  | 21702.00001 | Longmont Indoor Demand<br>(05LONG_IN)   | LONGMONT NORTH<br>PIPELINE (0500511)                 | 551_Pln87   | 28            |
| 551_Pln5  | 18762.00001 | Longmont Indoor Demand<br>(05LONG_IN)   | LONGMONT SOUTH<br>PIPELINE (0500522)                 | 551_Pln87   | 28            |
| 551_Pln7  | 21702.00001 | Longmont Outdoor Demand<br>(05LONG_OUT) | LONGMONT NORTH<br>PIPELINE (0500511)                 | 551_Pln87   | 28            |
| 551_Pln8  | 18762.00001 | Longmont Outdoor Demand<br>(05LONG_OUT) | LONGMONT SOUTH<br>PIPELINE (0500522)                 | 551_Pln87   | 28            |
| 551_Pln10 | 41785.00001 | BUTTON ROCK RES<br>(0504010)            |                                                      | 551_Pln87   | 28            |
| 551_Pln11 | 46386.46001 | UNION RES (0503905)                     | OLIGARCHY DITCH<br>(0500547)                         | 551_Pln87   | 28            |
| 551_Pln12 | 46386.46002 | Pella Ditch (0500551)                   |                                                      | 551_Pln87   | 29            |

## 5.10.5.5.11 South Flat Ditch (0500558) 1987 Changed Water Rights

The City of Longmont changed water right shares under the South Flat Ditch in 1987. The 37.5 percent portion of the senior water right priority is stored in the 558\_Pln accounting plan limited to the April through October season. The monthly and annual limits are based on the flow limits for the average hydrology conditions set in the decrees.

Uses of changed water rights include: Longmont Indoor Demand, Longmont Outdoor Demand, and storage in Button Rock and Union Reservoirs. Water is released to meet the Longmont Indoor and Outdoor demand via the Longmont North and South pipelines junior to the pipeline rights. The Lyons pipeline capacity is significantly smaller than the North and South Pipelines and is not used in StateMod to divert changed water rights. Water is released from the accounting plans to storage in Button Rock Reservoir by exchange junior to Button Rock's storage rights. Water is also released from the accounting plans to storage in Union Reservoir via Oligarchy Ditch junior to Union's absolute storage rights. Remaining plan supplies are released to the river.

Return flow obligations are tracked by the Longmont\_TC accounting plan. Indoor reusable supplies are generated at the WWTP effluent and are tracked in the LinReuse PLN accounting plan. Outdoor

reusable supplies are generated from outdoor return flows and are tracked in the LOutReusable accounting plan. For details, see Section 5.8 on Plan Files.

| Right ID  | Admin #     | Destination                             | Account, Carrier, Return<br>Location (R), or % Split | Source      | Right<br>Type |
|-----------|-------------|-----------------------------------------|------------------------------------------------------|-------------|---------------|
| 558_Pln1  | 1.00000     | NA                                      |                                                      | 558_PIn87DF | 47            |
| 558_Pln2  | 4883.00000  | 558_Pln87                               | 37.5%                                                | 0500558.01  | 26            |
| 558_Pln3  | 21702.00001 | Longmont Indoor Demand<br>(05LONG_IN)   | LONGMONT NORTH<br>PIPELINE (0500511)                 | 558_Pln87   | 28            |
| 558_Pln4  | 18762.00001 | Longmont Indoor Demand<br>(05LONG_IN)   | LONGMONT SOUTH<br>PIPELINE (0500522)                 | 558_Pln87   | 28            |
| 558_Pln6  | 21702.00001 | Longmont Outdoor Demand<br>(05LONG_OUT) | LONGMONT NORTH<br>PIPELINE (0500511)                 | 558_Pln87   | 28            |
| 558_Pln7  | 18762.00001 | Longmont Outdoor Demand<br>(05LONG_OUT) | LONGMONT SOUTH<br>PIPELINE (0500522)                 | 558_Pln87   | 28            |
| 558_Pln9  | 41785.00001 | BUTTON ROCK RES<br>(0504010)            |                                                      | 558_Pln87   | 28            |
| 558_Pln10 | 46386.46001 | UNION RES (0503905)                     | OLIGARCHY DITCH<br>(0500547)                         | 558_Pln87   | 28            |
| 558_Pln11 | 46386.46002 | SOUTH FLAT DITCH<br>(0500558)           |                                                      | 558_Pln87   | 29            |

# 5.10.5.5.12 Zweck and Turner (0500601) 1987 Changed Water Rights

The City of Longmont changed water right shares under the Zweck Turner Ditch in 1987. The 23.0 percent portion of the senior water right priority is stored in the 601\_Pln accounting plan limited to the April through October season. The monthly and annual limits are based on the flow limits for the average hydrology conditions set in the decrees.

Uses of changed water rights include: Longmont Indoor Demand, Longmont Outdoor Demand, and storage in Button Rock and Union Reservoirs. Water is released to meet the Longmont Indoor and Outdoor demand via the Longmont North and South pipelines junior to the pipeline rights. The Lyons pipeline capacity is significantly smaller than the North and South Pipelines and is not used in StateMod to divert changed water rights. Water is released from the accounting plans to storage in Button Rock Reservoir by exchange junior to Button Rock's storage rights. Water is also released from the accounting plans to storage in Union Reservoir via Oligarchy Ditch junior to Union's absolute storage rights. Remaining plan supplies are released to the river.

Return flow obligations are tracked by the Longmont\_TC accounting plan. Indoor reusable supplies are generated at the WWTP effluent and are tracked in the LinReuse PLN accounting plan. Outdoor reusable supplies are generated from outdoor return flows and are tracked in the LOutReusable accounting plan. For details, see Section 5.8 on Plan Files.

| Right ID | Admin # | Destination | Account, Carrier, Return | Source | Right |
|----------|---------|-------------|--------------------------|--------|-------|
|          |         |             | Location (R), or % Split |        | Туре  |

| 601_Pln1  | 1.00000     | NA                                      |                                      | 601_Pln87DF | 47 |
|-----------|-------------|-----------------------------------------|--------------------------------------|-------------|----|
| 601_Pln2  | 5295.00000  | 601_Pln87                               | 23%                                  | 0500601.01  | 26 |
| 601_Pln3  | 21702.00001 | Longmont Indoor Demand<br>(05LONG_IN)   | LONGMONT NORTH<br>PIPELINE (0500511) | 601_Pln87   | 28 |
| 601_Pln4  | 18762.00001 | Longmont Indoor Demand<br>(05LONG_IN)   | LONGMONT SOUTH<br>PIPELINE (0500522) | 601_Pln87   | 28 |
| 601_Pln6  | 21702.00001 | Longmont Outdoor Demand<br>(05LONG_OUT) | LONGMONT NORTH<br>PIPELINE (0500511) | 601_Pln87   | 28 |
| 601_Pln7  | 18762.00001 | Longmont Outdoor Demand<br>(05LONG_OUT) | LONGMONT SOUTH<br>PIPELINE (0500522) | 601_Pln87   | 28 |
| 601_Pln9  | 41785.00001 | BUTTON ROCK RES<br>(0504010)            |                                      | 601_Pln87   | 28 |
| 601_Pln10 | 46386.46001 | UNION RES (0503905)                     | OLIGARCHY DITCH<br>(0500547)         | 601_Pln87   | 28 |
| 601_Pln11 | 46386.46002 | ZWECK TURNER DITCH<br>(0500601)         |                                      | 601_Pln87   | 29 |

## 5.10.5.5.13 Longmont Changed Water Rights Reuse to Meet RFOs

To meet the return flow obligations generated by the use of changed water rights, Longmont can use their reusable supply from indoor or from outdoor use. The table below shows the rules sending reusable water to meet the terms and conditions obligations. Any water remaining in the reusable plan is then released to the river at the Longmont Waste Water Treatment Plant outfall.

| Right ID    | Admin #     | Destination                    | Account, Carrier, Return<br>Location (R), or % Split | Source       | Right<br>Type |
|-------------|-------------|--------------------------------|------------------------------------------------------|--------------|---------------|
| InReRFOs    | 49673.49498 | Longmont_TC                    |                                                      | LInReusable  | 48            |
| OutReRFOs   | 49673.49499 | Longmont_TC                    |                                                      | LOutReusable | 48            |
| ResReRFOs   | 49673.49500 | Longmont_TC                    |                                                      | LResReusable | 48            |
| IReuseSpill | 49673.49501 | LAST CHANCE DITCH<br>(0500589) |                                                      | LInReusable  | 29            |
| OReuseSpill | 49673.49502 | LAST CHANCE DITCH<br>(0500589) |                                                      | LOutReusable | 29            |

## 5.10.5.6 Union Reservoir (0503905)

Union Reservoir is located off-channel, under the Oligarchy Ditch. However, it is not used to provide irrigation water. It is used by the City of Longmont to meet return flow obligation and by Central to meet well augmentation plan obligations. Water is stored under the reservoir's storage rights and under water rights changed by the City of Longmont (see sections above) Stored water is evenly divided between the two accounts. Account 1 releases for Longmont and account 2 releases for Central.

Storage water is released from reservoirs for municipal Longmont demand (junior to the most junior changed rights Union admin number 46386.0000) Note that these operating rules do not fire.

Longmont demand is satisfied from other sources and Union Reservoir is primarily used to meet return flow obligations and contract deliveries.

| Right ID    | Admin #     | Destination                             | Account, Carrier, Return | Source                       | Right |
|-------------|-------------|-----------------------------------------|--------------------------|------------------------------|-------|
| 0503905 C1  | 19271 00000 |                                         |                          | 0503905.01                   |       |
| 0505505_01  | 15271.00000 | $\Delta ccounts 1-2$                    | (0500547)                | 0505505.01                   | 45    |
| 0503905 C3  | 46386 45046 | LINION RES (0503905)                    |                          | 0503905 02                   | 45    |
| 000000_00   | 10300.13010 | Accounts 1-2                            | (0500547)                | 0303303.02                   | 15    |
| Union_S_IN  | 46386.46001 | 0500522_C1                              | Account 1                | UNION RESERVOIR              | 7     |
| Union_S_OUT | 46386.46002 | 0500522_C4                              | Account 1                | UNION RESERVOIR<br>(0503905) | 7     |
| Union_N_IN  | 46386.46003 | 0500511_C1                              | Account 1                | UNION RESERVOIR<br>(0503905) | 7     |
| Union_N_OUT | 46386.46004 | 0500511_C6                              | Account 1                | UNION RESERVOIR<br>(0503905) | 7     |
| Union_L_IN  | 46386.46005 | 0500512_C1                              | Account 1                | UNION RESERVOIR<br>(0503905) | 7     |
| Union_L_OUT | 46386.46006 | 0500512_C6                              | Account 1                | UNION RESERVOIR<br>(0503905) | 7     |
| 0503905_C6  | 46386.46013 | BUTTON ROCK RES<br>(0504010), Account 1 | Account 1                | UNION RES<br>(0503905)       | 5     |
| 0503905_C7  | 46386.46014 | Longmont_TC                             | Account 1                | UNION RES<br>(0503905)       | 48    |
| 0503905_C8  | 82000.00013 | GMS Impact Reach A<br>(9903334_A)       | Account 2                | UNION RES<br>(0503905)       | 48    |
| 0503905_C9  | 82000.00013 | GMS Impact Reach B<br>(9903334_B)       | Account 2                | UNION RES<br>(0503905)       | 48    |
| 0503905_C10 | 82000.00013 | GMS Impact Reach C<br>(9903334_C)       | Account 2                | UNION RES<br>(0503905)       | 48    |
| 0503905_C11 | 82000.00013 | WAS Impact Reach A<br>(9903394 A)       | Account 2                | UNION RES<br>(0503905)       | 48    |
| 0503905_C12 | 82000.00013 | WAS Impact Reach B<br>(9903394_B)       | Account 2                | UNION RES<br>(0503905)       | 48    |
| 0503905_C13 | 82000.00013 | WAS Impact Reach C<br>(9903394_C)       | Account 2                | UNION RES<br>(0503905)       | 48    |

## 5.10.5.7 Button Rock Reservoir (0504010)

Button Rock Reservoir (aka Ralph Price Reservoir) provides supplemental Longmont municipal water supply. The table below presents the operating rules associated with the reservoir.

| Right ID     | Admin #     | Destination            | Account, Carrier, Return<br>Location (R), or % Split | Source             | Right<br>Type |
|--------------|-------------|------------------------|------------------------------------------------------|--------------------|---------------|
| Button_N_IN  | 46386.46007 | Longmont Indoor Demand | Account 1                                            | BUTTON ROCK        | 2             |
|              |             | (05LONG_IN)            |                                                      | RES (0504010)      |               |
| Button_N_OUT | 46386.46008 | Longmont Outdoor       | Account 1                                            | <b>BUTTON ROCK</b> | 2             |
|              |             | Demand (05LONG_OUT)    |                                                      | RES (0504010)      |               |
| Button_L_IN  | 46386.46009 | Longmont Indoor Demand | Account 1                                            | BUTTON ROCK        | 2             |

|              |             | (05LONG_IN)         |           | RES (0504010) |    |
|--------------|-------------|---------------------|-----------|---------------|----|
| Button_L_OUT | 46386.46010 | Longmont Outdoor    | Account 1 | BUTTON ROCK   | 2  |
|              |             | Demand (05LONG_OUT) |           | RES (0504010) |    |
| Button_S_IN  | 46386.46011 | 0500522_C1          | Account 1 | BUTTON ROCK   | 7  |
|              |             |                     |           | RES (0504010) |    |
| Button_S_OUT | 46386.46012 | 0500522_C4          | Account 1 | BUTTON ROCK   | 7  |
|              |             |                     |           | RES (0504010) |    |
| 0504010_C1   | 46386.46016 | Longmont_TC         | Account 1 | BUTTON ROCK   | 48 |
|              |             |                     |           | RES (0504010) |    |

# 5.10.5.8 Left Hand Ditch System (0500603)

Left Hand Ditch System diverts water from South St. Vrain Creek and delivers the water to Left Hand Creek and the diversion structures located on Left Hand Creek. These include Gold Lake (0504015), Left Hand Valley Reservoir (0504488), Allen Lake Reservoir (0504077), Lake Ditch (0500564), Lake Ditch Irrigation Demand (0500564\_I), Haldi Ditch (0500565), Spurgeon WTP (0500619\_a), Dodd WTP (0500619\_b), Crocker Ditch (0500568), Table Mountain Ditch (0500570), Bader Ditch (0500570), Toll Gate (0500648), Johnson Ditch (0500571), Star Ditch (0500572), Hinman Ditch (0500573), Holland (0500574), and Williamson Ditch (0500575). The majority of the water rights on Left Hand Creek are owned by the Left Hand Ditch Company, which provides irrigation water to the shareholders. Left Hand Creek is managed as a ditch company delivering share water to the water users. The Left Hand Water District is a shareholder in the Left Hand Ditch Company and provides domestic water supply to the rural area. Water is treated at the Spurgeon Water Treatment Plant or the Water Dodd Treatment Plant. C-BT water is delivered to Left Hand Creek from the Boulder Feeder Canal.

The Left Hand Ditch Company and Left Hand Water District own several reservoirs. In StateMod, the following reservoirs are modeled: Left Hand Valley Reservoir (0504488), Gold Lake (0504015) and Allen Lake Reservoir (0504077).

Left Hand Valley Reservoir releases to Spurgeon and Dodd water treatment plants and to the Left Hand Ditches. These releases are junior to the C-BT delivery to the WTPs and the ditches' most junior direct flow water right. Gold Lake releases to Left Hand Ditches junior to the ditches' most junior direct flow water right.

Lake Ditch (0500564) serves as the feeder canal for Allen Lake and also delivers water for irrigation under Lake Ditch and Toll Gate Ditch (0500648). Allen Lake cannot physically supply Lake Ditch irrigation demand; releases feed Toll Gate Ditch (0500648).

The irrigation system operations are captured using the operating rules in the table below.

| Right ID   | Admin #     | Destination          | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|------------|-------------|----------------------|------------------------------------------------------|------------|---------------|
| 0504488_C1 | 34833.00000 | LEFT HAND VALLEY     | Left Hand Valley                                     | 0504488.01 | 45            |
|            |             | RESERVOIR (0504488), | Reservoir Intake                                     |            |               |
|            |             | Account 1            | (05_LHVRIN)                                          |            |               |

| 0504015_C1  | 11841.10836 | GOLD LAKE (0504015),<br>Account 1                 | Gold Lake Reservoir<br>Intake (05 GLRIN) | 0504015.01                                    | 45 |
|-------------|-------------|---------------------------------------------------|------------------------------------------|-----------------------------------------------|----|
| 0504015_C2  | 19861.00000 | GOLD LAKE (0504015),                              | Gold Lake Reservoir                      | 0504015.02                                    | 45 |
| 0504015_C3  | 29219.00000 | GOLD LAKE (0504015),                              | Gold Lake Reservoir                      | 0504015.03                                    | 45 |
| LHV_Spurg   | 36799.00001 | SPURGEON TREATMENT<br>PLANT DEMAND                | Account 1                                | LEFT HAND<br>VALLEY                           | 4  |
|             |             | (0500619_a)                                       |                                          | (0504488)                                     |    |
| LHV_Dodd    | 36799.00002 | DODD TREATMENT PLANT<br>DEMAND (0500619_b)        | Account 1                                | LEFT HAND<br>VALLEY<br>RESERVOIR<br>(0504488) | 2  |
| GL_0500564  | 29219.00001 | LAKE DITCH (0500564)                              | Account 1                                | GOLD LAKE<br>(0504015)                        | 2  |
| GL_0500565  | 10715.00001 | HALDI DITCH (0500565)                             | Account 1                                | GOLD LAKE<br>(0504015)                        | 2  |
| GL_0500619a | 99999.99999 | SPURGEON TREATMENT<br>PLANT DEMAND<br>(0500619_a) | Account 1                                | GOLD LAKE<br>(0504015)                        | 2  |
| GL_0500568  | 8157.00001  | CROCKER DITCH (0500568)                           | Account 1                                | GOLD LAKE<br>(0504015)                        | 2  |
| GL_0500569  | 36798.00001 | TABLE MOUNTAIN DITCH<br>(0500569)                 | Account 1                                | GOLD LAKE<br>(0504015)                        | 2  |
| GL_0500570  | 7379.00001  | BADER DITCH 1 & 2<br>(0500570)                    | Account 1                                | GOLD LAKE<br>(0504015)                        | 2  |
| GL_0500571  | 8492.00001  | JOHNSON DITCH (0500571)                           | Account 1                                | GOLD LAKE<br>(0504015)                        | 2  |
| GL_0500572  | 7761.00001  | STAR DITCH (0500572)                              | Account 1                                | GOLD LAKE<br>(0504015)                        | 2  |
| GL_0500573  | 99999.99999 | HINMAN DITCH (0500573)                            | Account 1                                | GOLD LAKE<br>(0504015)                        | 2  |
| GL_0500574  | 8695.00001  | HOLLAND DITCH (0500574)                           | Account 1                                | GOLD LAKE<br>(0504015)                        | 2  |
| GL_0500575  | 99999.99999 | WILLIAMSON DITCH<br>(0500575)                     | Account 1                                | GOLD LAKE<br>(0504015)                        | 2  |
| LH_0500564  | 29219.00002 | LAKE DITCH (0500564)                              | Account 1                                | LEFT HAND<br>VALLEY<br>RESERVOIR<br>(0504488) | 4  |
| LH_0500565  | 10715.00002 | HALDI DITCH (0500565)                             | Account 1                                | LEFT HAND<br>VALLEY<br>RESERVOIR<br>(0504488) | 4  |
| LH_0500619a | 99999.99999 | SPURGEON TREATMENT<br>PLANT DEMAND<br>(0500619_a) | Account 1                                | LEFT HAND<br>VALLEY<br>RESERVOIR<br>(0504488) | 4  |
| LH_0500568  | 8157.00002  | CROCKER DITCH (0500568)                           | Account 1                                | LEFT HAND<br>VALLEY<br>RESERVOIR              | 4  |

|            |             |                         |                      | (0504488)   |          |
|------------|-------------|-------------------------|----------------------|-------------|----------|
| LH_0500569 | 36798.00002 | TABLE MOUNTAIN DITCH    | Account 1            | LEFT HAND   | 4        |
|            |             | (0500569)               |                      | VALLEY      |          |
|            |             |                         |                      | RESERVOIR   |          |
|            | 7070.00000  |                         |                      | (0504488)   | <u> </u> |
| LH_0500570 | /3/9.00002  | BADER DITCH 1 & 2       | Account 1            |             | 4        |
|            |             | (0500570)               |                      | VALLEY      |          |
|            |             |                         |                      | KESERVUIK   |          |
|            | 8402.00002  |                         | Account 1            |             | 1        |
|            | 8492.00002  | JOHNSON DITCH (0300371) |                      |             | 4        |
|            |             |                         |                      |             |          |
|            |             |                         |                      | (0504488)   |          |
| LH 0500572 | 7761 00002  | STAR DITCH (0500572)    | Account 1            | LEET HAND   | 4        |
|            | ,,,01.00002 |                         |                      | VALLEY      |          |
|            |             |                         |                      | RESERVOIR   |          |
|            |             |                         |                      | (0504488)   |          |
| LH 0500573 | 99999.99999 | HINMAN DITCH (0500573)  | Account 1            | LEFT HAND   | 4        |
|            |             |                         |                      | VALLEY      |          |
|            |             |                         |                      | RESERVOIR   |          |
|            |             |                         |                      | (0504488)   |          |
| LH_0500574 | 8695.00002  | HOLLAND DITCH (0500574) | Account 1            | LEFT HAND   | 4        |
|            |             |                         |                      | VALLEY      |          |
|            |             |                         |                      | RESERVOIR   |          |
|            |             |                         |                      | (0504488)   |          |
| LH_0500575 | 99999.99999 | WILLIAMSON DITCH        | Account 1            | LEFT HAND   | 4        |
|            |             | (0500575)               |                      | VALLEY      |          |
|            |             |                         |                      | RESERVOIR   |          |
| 0504077.04 | 07040 05470 |                         |                      | (0504488)   | 45       |
| 0504077_C1 | 27910.25172 | ALLEN LAKE (0504077)    | LAKE DITCH (0500564) | 0504077.01  | 45       |
| 0504077_C2 | 28260.00000 | ALLEN LAKE (0504077)    | LAKE DITCH (0500564) | 0504077.02  | 45       |
| 0504077_C3 | 29219.00000 | ALLEN LAKE (0504077)    | LAKE DITCH (0500564) | 0504077.03  | 45       |
| 0500564_C1 | 8871.00000  | LAKE DITCH IRRIGATION   | LAKE DITCH (0500564) | 0500564.01  | 45       |
| 0500564 C2 | 10697 00000 | LAKE DITCH IRRIGATION   | LAKE DITCH (0500564) | 0500564 02  | 45       |
|            | 10007.00000 | (0500564_1)             | L                    | 555555 1.02 |          |
| 0500564_C3 | 8871.00000  | TOLL GATE (0500648)     | LAKE DITCH (0500564) | 0500564.01  | 45       |
| 0500564_C4 | 10697.00000 | TOLL GATE (0500648)     | LAKE DITCH (0500564) | 0500564.02  | 45       |
| 0504077_i1 | 29219.00002 | TOLL GATE (0500648)     | Account 1            | ALLEN LAKE  | 2        |
|            |             |                         |                      | (0504077)   |          |

## 5.10.5.9 South Branch St. Vrain Diversions

The South Branch St. Vrain is a bifurcation in the river with diversion structures located along the branch, including Goss Private Ditch (0500534), Clough Private Ditch (0500536), Clough & True Ditch (0500535), Webster & McCaslin Ditch (0500537), True & Webster Ditch (0500538), James Ditch (0500539), and Davis & Downing Ditch (0500542). These ditches operated off an internal priority

system. To model this system, the South Branch diversion (05\_SBRANCH) is used as a carrier to each diversion on the South Branch. Each operating rule refers to a direct flow right, essentially moving the location of the direct flow right to the carrier structure. The operations are captured using the operating rules in the table below.

| Right ID   | Admin #     | Destination                           | Account, Carrier, Return                            | Source     | Right |
|------------|-------------|---------------------------------------|-----------------------------------------------------|------------|-------|
| 0500534_01 | 5660.00000  | Goss Private Ditch<br>(0500534)       | South Branch Diversion<br>Structure                 | 0500534.01 | 11    |
|            |             | · · · · ·                             | (05_SBRANCH)                                        |            |       |
| 0500536_01 | 4853.00000  | Clough Private Ditch<br>(0500536)     | South Branch Diversion<br>Structure<br>(05 SBRANCH) | 0500536.01 | 11    |
| 0500535_01 | 4488.00000  | Clough & True Ditch<br>(0500535)      | South Branch Diversion<br>Structure<br>(05_SBRANCH) | 0500535.01 | 11    |
| 0500537_01 | 5665.00000  | Webster & McCaslin Ditch<br>(0500537) | South Branch Diversion<br>Structure<br>(05_SBRANCH) | 0500537.01 | 11    |
| 0500538_01 | 4474.00000  | True & Webster Ditch<br>(0500538)     | South Branch Diversion<br>Structure<br>(05_SBRANCH) | 0500538.01 | 11    |
| 0500539_01 | 6756.00000  | James Ditch (0500539)                 | South Branch Diversion<br>Structure<br>(05_SBRANCH) | 0500539.01 | 11    |
| 0500539_02 | 8034.00000  | James Ditch (0500539)                 | South Branch Diversion<br>Structure<br>(05_SBRANCH) | 0500539.02 | 11    |
| 0500539_03 | 9953.00000  | James Ditch (0500539)                 | South Branch Diversion<br>Structure<br>(05 SBRANCH) | 0500539.03 | 11    |
| 0500539_04 | 22155.00000 | James Ditch (0500539)                 | South Branch Diversion<br>Structure<br>(05 SBRANCH) | 0500539.04 | 11    |
| 0500539_05 | 29219.00000 | James Ditch (0500539)                 | South Branch Diversion<br>Structure<br>(05_SBRANCH) | 0500539.05 | 11    |
| 0500542_01 | 6149.00000  | Davis & Downing Ditch<br>(0500542)    | South Branch Diversion<br>Structure<br>(05_SBRANCH) | 0500542.01 | 11    |
| 0500542_02 | 6330.00000  | Davis & Downing Ditch<br>(0500542)    | South Branch Diversion<br>Structure<br>(05_SBRANCH) | 0500542.02 | 11    |
| 0500542_03 | 7379.00000  | Davis & Downing Ditch<br>(0500542)    | South Branch Diversion<br>Structure<br>(05_SBRANCH) | 0500542.03 | 11    |
| 0500542_04 | 8887.00000  | Davis & Downing Ditch<br>(0500542)    | South Branch Diversion<br>Structure<br>(05_SBRANCH) | 0500542.04 | 11    |
| 0500542_05 | 9771.00000  | Davis & Downing Ditch<br>(0500542)    | South Branch Diversion<br>Structure                 | 0500542.05 | 11    |

| 1 | r |              |   |
|---|---|--------------|---|
|   |   | (05_SBRANCH) |   |
|   |   |              | - |

## 5.10.6 Water District 6 (Boulder Creek) Operations

This section describes the operations for diversion structures located in the Boulder Creek Basin. The section first presents operations related to imports and exports of C-BT water into and out of the basin. A description of the City of Boulder, Lafayette, and Louisville then follows, with a description of relevant reservoir operations. Next is a description of the complex irrigation systems. Finally, a description of changed water rights organized by ditch is presented.

#### Where to find more information

- SPDSS Task Memorandum 3, "Identify Key Diversion Structures Notes from Water District 6 Meeting," available on the CDSS website.
- SPDSS Task Memorandum 5, "Key Structure, City of Boulder," available on the CDSS website.

## 5.10.6.1 Colorado-Big Thompson Imports – Boulder Creek Supply Canal and Southern Water Supply Pipeline

Imports from the C-BT project enter Water District 6 either by the Boulder Creek Supply Canal (BCSC), by the Southern Water Supply Pipeline (SWSP) or by direct release from Boulder Reservoir to Boulder's municipal demands. Despite the name "Boulder Reservoir", the Boulder Reservoir is included in the St. Vrain Basin in the SPDSS StateMod model network. The BCSC carries water from Boulder Reservoir. It makes deliveries via turnout directly to the Boulder White Rock Ditch (0600516) and then discharges to Boulder Creek. SWSP delivers to Windy Gap Cities, represented by aggregated municipal structures, via direct connections from the pipeline to their water treatment plants.

The City of Boulder's direct diversions from Boulder Reservoir supply the Boulder Reservoir Water Treatment Plant. This is represented at diversion node 0600800. More details on this operation are described in the Boulder Municipal Operations section below. For the C-BT water delivered via the BCSC, a historical analysis was done to identify the volume of water typically sent to different users. Based on this analysis of demands, C-BT imports delivered by the BCSC were split into two demand categories, with 80 percent of imports used for Boulder municipal demands (stored in 06\_CBT\_SP1) and 20 percent used for other in-basin users and downstream demands (stored in 06\_CBT\_SP2). The 80 percent reserved for the City of Boulder is separate from the direct diversions from Boulder Reservoir. The use of this water is also detailed in the Boulder Municipal Operations section below. Use of the 20 percent is detailed in the BCSC section immediately below. C-BT water delivered via SWSP is detailed in the SWSP section below.

| Right ID    | Admin #     | Destination                                | Account, Carrier, Return | Source     | Right<br>Type |
|-------------|-------------|--------------------------------------------|--------------------------|------------|---------------|
| 06CBTPLN.01 | 1.00001     | 06_CBT_ACC                                 |                          | 06_CBT_IMP | 35            |
| 06CBTPLN.02 | 1.00002     | O6_CBT_SP1<br>O6_CBT_SP2                   | 20%<br>80%               | 06_CBT_ACC | 46            |
| 06CBTLIM.01 | 1.00000     |                                            |                          | 06_CBT_LIM | 47            |
| 06CBTPLN.05 | 1.00003     | Boulder Constant Winter<br>RFO (06_BOU_RF) |                          | 06_CBT_SP1 | 27            |
| 06CBTPLN.35 | 38350.00034 | 06538_B_RF                                 |                          | 06_CBT_SP1 | 48            |
| 06CBTPLN.36 | 38350.00035 | 06543_B_RF                                 |                          | 06_CBT_SP1 | 48            |

## 5.10.6.1.1 Boulder Creek Supply Canal

C-BT water released from Boulder Reservoir is carried down the Boulder Creek Supply Canal and is delivered to its users by the river, either directly or by exchange. The City of Lafayette takes C-BT water into Baseline Reservoir by exchange. The only exception to this is that the Boulder White Rock Ditch diverts some water directly off the Boulder Creek Supply Canal via a turnout. Rules documented in the table below release water down the Boulder Creek Supply Canal to meet various municipal demands, generally return flow obligations generated by the use of changed water rights. Water is also released from the Accounting Plan to various irrigators directly, by exchange or by carrier. Final, C-BT water is exported from the Boulder Basin to the South Platte Demand via the South Platte Supply Canal, which is an extension of the Lower Boulder Ditch (0600538\_D). The table below outlines the operating rules that deliver water to the various C-BT users.

| Right ID    | Admin #     | Destination                                          | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|-------------|-------------|------------------------------------------------------|------------------------------------------------------|------------|---------------|
| 06CBTPLN.37 | 49330.00011 | Lower Boulder Irrigation<br>(0600538_1)              | Lower Boulder Ditch<br>(0600538_D)                   | 06_CBT_SP1 | 27            |
| 06CBTPLN.12 | 2.00020     | CBT export to South Platte<br>(SPDMSPSC)             | Lower Boulder Ditch<br>(0600538_D)                   | 06_CBT_SP2 | 27            |
| 06CBTPLN.13 | 8706.00060  | BOULDER WHITEROCK<br>DITCH IRRIGATION<br>(0600516_I) | C-BTBWR Turnout<br>(06_BWRCBT)                       | 06_CBT_SP2 | 27            |
| 06CBTPLN.14 | 35731.00010 | BOULDER LEFT HAND<br>DITCH (0600513)                 | C-BTBWR Turnout<br>(06_BWRCBT)                       | 06_CBT_SP2 | 27            |
| 06CBTPLN.15 | 7791.00010  | Boulder and Weld Co Ditch<br>(0600515_D)             |                                                      | 06_CBT_SP2 | 27            |
| 06CBTPLN.16 | 5266.00010  | CARR TYLER DITCH<br>(0600520_D)                      | Idaho Creek<br>Ditch(0600663)                        | 06_CBT_SP2 | 27            |
| 06CBTPLN.17 | 5570.00010  | Gooding Daily and Plumb<br>Ditch (0600527)           |                                                      | 06_CBT_SP2 | 27            |
| 06CBTPLN.18 | 5600.00010  | DELEHANT DITCH<br>(0600523)                          | Idaho Creek Ditch<br>(0600663)                       | 06_CBT_SP2 | 27            |
| 06CBTPLN.19 | 40740.40317 | FARMERS DITCH (0600525)                              |                                                      | 06_CBT_SP2 | 28            |
| 06CBTPLN.20 | 4109.00010  | HOUCK 2 DITCH (0600534)                              | Idaho Creek Ditch<br>(0600663)                       | 06_CBT_SP2 | 27            |

| Right ID    | Admin #     | Destination                                       | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|-------------|-------------|---------------------------------------------------|------------------------------------------------------|------------|---------------|
| 06CBTPLN.24 | 20890.19884 | LEGGETT DITCH<br>IRRIGATION (0600537_I)           | Leggett Carrier<br>(0600537)                         | 06_CBT_SP2 | 27            |
| 06CBTPLN.25 | 49330.00010 | Lower Boulder Irrigation<br>(0600538_1)           | Lower Boulder Ditch<br>(0600538_D)                   | 06_CBT_SP2 | 27            |
| 06CBTPLN.26 | 22265.00010 | N BOULD FARMER DITCH<br>(0600543)                 |                                                      | 06_CBT_SP2 | 28            |
| 06CBTPLN.27 | 4817.00010  | Rural Ditch (0600551)                             |                                                      | 06_CBT_SP2 | 28            |
| 06CBTPLN.28 | 4900.00010  | SMITH EMMONS DITCH<br>(0600553)                   | Idaho Creek<br>Ditch(0600663)                        | 06_CBT_SP2 | 27            |
| 06CBTPLN.29 | 49330.00020 | Louisville Return Flow<br>Obligation (06565_V_RF) |                                                      | 06_CBT_SP2 | 48            |
| 06CBTPLN.30 | 49330.00020 | Louisville Return Flow<br>Obligation (06650_V_RF) |                                                      | 06_CBT_SP2 | 48            |
| 06CBTPLN.31 | 49330.00020 | Louisville Return Flow<br>Obligation (06567_V_RF) |                                                      | 06_CBT_SP2 | 48            |
| 06CBTPLN.32 | 99999.99999 | BCSC Outfall (06_ARP009)                          |                                                      | 06_CBT_ACC | 29            |
| 06CBTPLN.33 | 99999.99999 | BCSC Outfall (06_ARP009)                          |                                                      | 06_CBT_SP1 | 29            |
| 06CBTPLN.34 | 99999.99999 | BCSC Outfall (06_ARP009)                          |                                                      | 06_CBT_SP2 | 29            |

## 5.10.6.1.2 Southern Water Supply Pipeline (SWSP)

The Southern Water Supply Pipeline (SWSP) delivers water to "Windy Gap" Cities is represented as a single node (O6\_SWSP\_IMP) that imports water into the lower District 6 system. Water is carried from the import by SWSP\_C carrier node to Louisville demands. The bulk of the imported water is released to the river upstream of aggregated municipal demands (O6\_AMP001 and O6\_AUP001) representing the smaller Windy Gap cities, whereby they are diverted in priority. The rules that deliver water from the SWSP are below.

| Right ID    | Admin #    | Destination                           | Account, Carrier, Return<br>Location (R), or % Split | Source      | Right<br>Type |
|-------------|------------|---------------------------------------|------------------------------------------------------|-------------|---------------|
| 06SWSPPL.01 | 1.00001    | 06_SWSP_PL                            |                                                      | 06_SWSP_IMP | 35            |
| 06SWSPPL.02 | 8812.00050 | Louisville Indoor Use<br>(06LOUIS_I)  | C-BTSWSP Carrier<br>(SWSP_C)                         | 06_SWSP_PL  | 27            |
| 06SWSPPL.03 | 8812.00060 | Louisville Outdoor Use<br>(06LOUIS_O) | C-BTSWSP Carrier<br>(SWSP_C)                         | 06_SWSP_PL  | 27            |
| 06SWSPPL.04 | 8812.00100 | C-BTSWSP Carrier<br>(SWSP_C)          |                                                      | 06_SWSP_PL  | 29            |

## 5.10.6.2 City of Boulder

The City of Boulder has multiple supply sources and diversion locations that are supplied by both rights originally decreed to those locations as well as irrigation rights that were changed to municipal use with multiple allowable points of diversion.

Boulder owns Barker Reservoir and the North Boulder Creek Watershed Reservoirs (Watershed Reservoirs). It uses most of the capacity in each, as well as direct flow diversions and direct exchanges, to meet its municipal demands. Tables outlining the accounts in each of Barker and the Watershed Reservoirs are in Section 5.6.1. Boulder meets a portion of its demands by exchanging C-BT water and storage water from Baseline Reservoir up to it points of diversion on Middle and North Boulder Creeks including Barker and the Watershed Reservoirs. The details for Baseline Reservoir are covered in the Lafayette Municipal section below.

Boulder owns several storage rights, exchange rights and changed irrigation rights that are decreed for storage in Barker Reservoir for municipal, hydropower, augmentation, and instream flow uses. Boulder also has an irrigation delivery obligation to the Silver Lake Ditch that Boulder sometimes meets with releases from Barker Reservoir. In the model, Barker Reservoir has a municipal account used to help meet Boulder's municipal demands and irrigation delivery obligations and a hydroelectric account that is used for power generation.

In addition to Boulder's municipal use, Barker Reservoir water is delivered to the Silver Lake Ditch for irrigation use using operating rules in the table below.

The Watershed Reservoirs consist of 7 individual reservoirs: Silver Lake, Island Lake, Lake Albion, Goose Lake and Green Lakes 1, 2 and 3. These reservoirs are operated together and are treated as one in this model. Boulder owns several storage rights, exchange rights and changed irrigation rights that are decreed for storage in the Watershed Reservoirs for municipal, hydropower, augmentation and instream flow uses. Some of Boulder's storage rights for Silver Lake were changed to include minimum streamflow as an allowable use. The model's accounts in the Watershed Reservoirs are shown in Section 5.6.1.

The CWCB owns decreed instream flow rights on North Boulder Creek and Boulder Creek. The City of Boulder has entered into agreements with the CWCB to provide water rights that support the CWCB's decreed instream flow rights in three defined stream reaches on Middle and North Boulder Creek, which are referred to as Segments A, B and C. Case 90CW0193 changed several direct flow rights and storage rights in Barker and the Watershed Reservoirs to alternate municipal and instream flow uses. Some of the direct flow rights (the 90CW193 Anderson, Farmers, McCarty, Harden, Smith & Goss and Boulder City Pipeline rights) were conveyed or assigned to the CWCB for instream flow use as a first priority. To the degree that instream flow requirements are met or during extraordinary drought or system emergency, the City reserves the ability to use the rights for municipal supply or to lease the historically consumed portion of the instream flow water to downstream users after it has passed through the City. There are no return flow obligations except that Boulder must deliver a total of 36 AF of return flow during October-March of each year, which they usually do with reusable return flow. Details are described in the following section.

Generally, Boulder takes its water supply in this order:

1. All direct flow and changed irrigation rights for direct use according to their relative priorities and terms and conditions. These rights are generally taken at the Boulder City Pipeline on North Boulder Creek and the Pipeline at Barker Reservoir on Middle Boulder

Creek. Some rights have been changed to be available to meet minimum streamflows as well as municipal demands.

- 2. At their decreed priorities, fill Barker Reservoir and the Watershed Reservoirs.
- 3. Fill Barker Reservoir and the Watershed Reservoirs via exchanges on Middle and North Boulder Creeks.
- 4. Fill Barker Reservoir and the Watershed Reservoirs by exchange from Boulder's municipal account in Baseline Reservoir. This exchange is limited to 50cfs.
- 5. Use C-BT water supplied by the Water Treatment Plant at Boulder Reservoir. This is represented by an import at 0600800.
- 6. Use Minimum Stream Flow (MSF) accounts in Barker and Watershed storage to supply minimum streamflow demands on North/Middle Boulder Creek segments A, B and C. Many of the rights available for MSF usage are decreed for municipal use as well.
- 7. Use accounts in both Barker Reservoir and the Watershed Reservoirs to supply the remaining municipal demand.
- 8. Meet return Boulder's monthly 36 AF return flow obligation as required using direct C-BT water or releases from Barker Reservoir. Boulder leases water from its account in Baseline reservoir to Lower Boulder Ditch Irrigators. Pre-1990, Boulder leased its shares in Baseline Reservoir to a number of different irrigators; these operations are represented in operating rules as well.

As presented in the tables below and the changed water rights section below, the following operating rules were used to simulate City of Boulder municipal and minimum instream flow demands.

| Right ID    | Admin #     | Destination                                     | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|-------------|-------------|-------------------------------------------------|------------------------------------------------------|------------|---------------|
| 06800PLN.01 | 1.00001     | 060800_ACC                                      |                                                      | 060800_IMP | 35            |
| 06800PLN.02 | 1.00002     | Boulder Indoor Use<br>(06BOULDER_I)             | Boulder Res Intake<br>(0600800)                      | 060800_ACC | 27            |
| 06800PLN.03 | 1.00003     | Boulder Outdoor Use<br>(06BOULDER_0)            | Boulder Res Intake<br>(0600800)                      | 060800_ACC | 27            |
| 06800PLN.04 | 06800PLN.04 | Boulder Outdoor Use<br>(06BOULDER_0)            |                                                      | 060800_ACC | 29            |
| 06CBTPLN.06 | 38350.00020 | Watershed reservoir<br>(06_WSHED), Accounts 1-2 |                                                      | 06_CBT_SP1 | 28            |
| 06CBTPLN.07 | 38350.00028 | Barker Reservoir<br>(0604172), Accounts 1-2     |                                                      | 06_CBT_SP1 | 28            |
| 06CBTPLN.08 | 38350.00030 | Boulder Indoor Use<br>(06BOULDER_I)             | BOULDER PL 3 AT<br>BARKER R (0600943)                | 06_CBT_SP1 | 28            |
| 06CBTPLN.09 | 38350.00031 | Boulder Outdoor Use<br>(06BOULDER_O)            | BOULDER PL 3 AT<br>BARKER R (0600943)                | 06_CBT_SP1 | 28            |
| 06CBTPLN.10 | 38350.00032 | Boulder Indoor Use<br>(06BOULDER_I)             | BOULDER CITY PL<br>(0600599)                         | 06_CBT_SP1 | 28            |

## Boulder Reservoir deliveries to Boulder WTP

| Right ID    | Admin #     | Destination                          | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|-------------|-------------|--------------------------------------|------------------------------------------------------|------------|---------------|
| 06800PLN.01 | 1.00001     | 060800_ACC                           |                                                      | 060800_IMP | 35            |
| 06CBTPLN.11 | 38350.00033 | Boulder Outdoor Use<br>(06BOULDER_0) | BOULDER CITY PL<br>(0600599)                         | 06_CBT_SP1 | 28            |

# City of Boulder Direct Right Deliveries - Boulder Pipeline and Barker Pipeline

| Right ID    | Admin #     | Destination                                   | Account, Carrier, Return<br>Location (R), or % Split | Source                                             | Right<br>Type |
|-------------|-------------|-----------------------------------------------|------------------------------------------------------|----------------------------------------------------|---------------|
| 06005990.01 | 9299.00000  | Boulder Indoor Use<br>(06BOULDER_I )          |                                                      | 0600599.05                                         | 11            |
| 06005990.02 | 9299.00000  | Boulder Outdoor Use<br>(06BOULDER_O)          |                                                      | 0600599.05                                         | 11            |
| 06005990.03 | 35793.00000 | Boulder Indoor Use<br>(06BOULDER_I )          |                                                      | 0600599.07                                         | 11            |
| 06005990.04 | 35793.00000 | Boulder Outdoor Use<br>(06BOULDER_O)          |                                                      | 0600599.07                                         | 11            |
| 06009430.01 | 40740.38851 | Boulder Indoor Use<br>(06BOULDER_I )          |                                                      | 0600943.01                                         | 11            |
| 06009430.02 | 40740.38851 | Boulder Outdoor Use<br>(06BOULDER_O)          |                                                      | 0600943.01                                         | 11            |
| 06_WSHED.01 | 52597.00001 | Boulder Indoor Use<br>(06BOULDER_I )          | BOULDER CITY PL<br>(0600599)                         | Watershed<br>reservoir<br>(06_WSHED),<br>Account 1 | 27            |
| 06_WSHED.02 | 52597.00004 | Boulder Outdoor Use<br>(06BOULDER_O)          | BOULDER CITY PL<br>(0600599)                         | Watershed<br>reservoir<br>(06_WSHED),<br>Account 1 | 27            |
| 06_WSHED.03 | 52597.00005 | Boulder Indoor Use<br>(06BOULDER_I )          | BOULDER CITY PL<br>(0600599)                         | Watershed<br>reservoir<br>(06_WSHED),<br>Account 2 | 27            |
| 06_WSHED.04 | 52597.00005 | Boulder Outdoor Use<br>(06BOULDER_O)          | BOULDER CITY PL<br>(0600599)                         | Watershed<br>reservoir<br>(06_WSHED),<br>Account 2 | 27            |
| 06CBTPLN.05 | 1.00003     | Boulder Constant<br>Winter RFO<br>(06_BOU_RF) | Account 1                                            | Barker Reservoir<br>(0604172)                      | 27            |
| 06041720.01 | 52597.00002 | Boulder Indoor Use<br>(06BOULDER_I )          | BOULDER PL 3 AT<br>BARKER R (0600943)                | Barker Res<br>(0604172),<br>Account 1              | 27            |
| 06041720.02 | 52597.00002 | Boulder Outdoor Use<br>(06BOULDER_O)          | BOULDER PL 3 AT<br>BARKER R (0600943)                | Barker Res<br>(0604172),<br>Account 1              | 27            |
| 06041720.03 | 52597.00003 | Boulder Indoor Use<br>(06BOULDER_I )          | BOULDER PL 3 AT<br>BARKER R (0600943)                | Barker Res<br>(0604172),<br>Account 2              | 27            |

| Right ID    | Admin #     | Destination         | Account, Carrier, Return<br>Location (R), or % Split | Source           | Right<br>Type |
|-------------|-------------|---------------------|------------------------------------------------------|------------------|---------------|
| 06041720.04 | 52597.00003 | Boulder Outdoor Use | BOULDER PL 3 AT                                      | Barker Res       | 27            |
|             |             | (06BOULDER_O)       | BARKER R (0600943)                                   | (0604172),       |               |
|             |             |                     |                                                      | Account 2        |               |
| 06041720.13 | 20188.13948 | SILVER LAKE DITCH   |                                                      | Barker Res       | 2             |
|             |             | (0600603)           |                                                      | (0604172),       |               |
|             |             |                     |                                                      | Account 1        |               |
| 06041720.14 | 20188.16054 | SILVER LAKE DITCH   |                                                      | Barker Res       | 2             |
|             |             | (0600603)           |                                                      | (0604172),       |               |
|             |             |                     |                                                      | Account 1        |               |
| 06041720.07 | 38350.00036 | 06538_B_RF          |                                                      | Barker Reservoir | 48            |
|             |             |                     |                                                      | (0604172),       |               |
|             |             |                     |                                                      | Account 1        |               |
| 06041720.08 | 38350.00037 | 06543_B_RF          |                                                      | Barker Reservoir | 48            |
|             |             |                     |                                                      | (0604172),       |               |
|             |             |                     |                                                      | Account 1        |               |

# 5.10.6.3 Instream Flow Rules (0602124\_U, 0602124\_L, and 0602100)

There are several minimum streamflow reaches from the headwaters of Boulder Creek to the 75th Avenue gage. Instream flows are typically met into July by several transfers and donations of senior rights (Farmers Ditch, Anderson, Harden Ditch, and Smith & Goss Ditch and McCarty). The rights usually fall out of priority by the end of July, reducing flows below minimum standards. The City of Boulder has agreements with CWCB to provide water rights that support the CWCB's decreed instream flow rights in three defined stream reaches on Middle and North Boulder Creek, which are referred to as Segments A, B and C. Case 90CW0193 changed several direct flow rights and storage rights in Barker and the Watershed Reservoirs to alternate municipal and instream flow uses. Some of the direct flow rights (the 90CW193 Anderson, Farmers, McCarty, Harden, Smith & Goss and Boulder City Pipeline rights) were conveyed or assigned to the CWCB for instream flow use as a first priority.

Although the City of Boulder uses Barker Reservoir primarily for municipal water supply, Boulder also uses its Barker hydropower account for power generation in a manner that does not diminish the reliability of its municipal water supply. The Barker Reservoir MSF reflects a minimum bypass for Barker Reservoir on Middle Boulder Creek. Hydropower operations were not explicitly modeled because a 3 cfs releases to the 0602100 ISF mimic the operation. Typically, Boulder stores water in Barker under its hydropower rights during the fall and winter under the following conditions: 1. There is storage in Barker Reservoir, 2. Boulder's municipal rights at Barker are out of priority but Boulder's hydropower storage rights are in priority, and 3. The inflow to Barker in excess of the 3 cfs bypass is insufficient to effectively spin the turbine at Boulder Canyon Hydropelectric Plant, or Boulder Canyon Plant is temporarily not operating. On these occasions, Boulder stores inflow in excess of 3 cfs in Barker and subsequently releases that stored water for hydropower production at Boulder Canyon Plant, typically in late winter. Operating rules benefiting instream flow segments are presented in the table below, in the City of Boulder section above, and the changed water rights section below.

| Right ID     | Admin #     | Destination        | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|--------------|-------------|--------------------|------------------------------------------------------|------------|---------------|
| 06BARKMSF.01 | 99999.99999 | BARKER 3CFS BYPASS |                                                      | Barker Res | 1             |
|              |             | (06_BARKMSF)       |                                                      | (0604172), |               |
|              |             |                    |                                                      | Account 2  |               |
| 064172MSF.02 | 52597.00099 | BOULDER CREEK MSF  |                                                      | Barker Res | 1             |
|              |             | SEGMENT C UPPER    |                                                      | (0604172), |               |
|              |             | (0602100)          |                                                      | Account 2  |               |

## 5.10.6.4 City of Lafayette

The City of Lafayette has multiple supply sources and diversion locations that are supplied by both rights originally decreed to those locations as well as irrigation rights that were changed with multiple allowable points of diversion. Due to the lack of operational data on the Lafayette system, operations have been simplified significantly.

Lafayette generally takes its water supply in this order:

- 1. Take all Direct Flow and Changed Rights according to their priorities and terms and conditions. Most of these rights are either diverted for direct use via the Lafayette Pipeline on South Boulder Creek, diverted for direct use at the Baseline Pipeline via the Dry Creek Headgate, diverted for storage at Baseline Reservoir via Dry Creek Carrier, diverted for direct use via Leyner Cottonwood Ditch on the Dry Creek Carrier or diverted for direct use via the Lower Boulder Ditch.
- 2. Fill Baseline Reservoir from South Boulder Creek and by Carrier from Boulder Creek via water carried along the Anderson Ditch.
- 3. Fill Baseline Reservoir with C-BT water exchanged from the Boulder Supply canal to the Dry Creek Carrier headgate.
- 4. Use Lafayette's municipal account in Baseline Reservoir to supply Lafayette directly by the Baseline Pipeline.
- 5. Release from Baseline reservoir to meet return flow obligations for changed water rights.
- 6. Exchange Lafayette's reusable municipal supply to Baseline Reservoir, Baseline Pipeline and Lafayette Boulder Creek Pipelines.

Per CA12111, Lafayette can also store water in Baseline Reservoir from Boulder Creek (via Anderson Ditch), Bear Creek (via Anderson Ext. Ditch), South Boulder Creek (via Dry Creek Carrier), and Dry Creek (on-channel). All storage diversions (with the exception of on-channel storage) are carried by Dry Creek Carrier (0600902\_C). Though Lafayette has many points of diversion, most of its water is either diverted at the Dry Creek Carrier headgate to be delivered to Lafayette's demands directly or to be stored in Baseline Reservoir. The notable exception is when C-BT water is either diverted at the Lafayette Boulder Creek Pipeline or exchanged up to the Dry Creek Carrier headgate to be delivered to Baseline reservoir.

Lafayette owns a large portion of Baseline Reservoir. While some water is leased from Baseline Reservoir to irrigators in District 6, those leases are inconsistent and difficult to model. The only other major user of Baseline Reservoir is the City of Boulder. The accounts modeled in Baseline Reservoir are detailed in Section 5.6.1. As presented in the table below, Lafayette meets its municipal and reuse demands with the following operating rules.

| Right ID     | Admin #     | Destination                                | Account, Carrier, Return<br>Location (R), or % Split                      | Source                                      | Right<br>Type |
|--------------|-------------|--------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------|---------------|
| 06CBTPLN.21  | 8141.00010  | Lafayette Indoor Use<br>(06LAFFYT_I)       | LAFAYETTE BOULDER<br>CREEK PL 1 (0600878)                                 | 06_CBT_SP2                                  | 27            |
| 06CBTPLN.22  | 8141.00010  | Lafayette Indoor Use<br>(06LAFFYT_I)       | LAFAYETTE BOULDER<br>CREEK PL 1 (0600878)                                 | 06_CBT_SP2                                  | 27            |
| 06CBTPLN.23  | 31379.00050 | Baseline Reservoir<br>(0604173), Account 1 | Dry Creek Carrier<br>(0600902_C)                                          | 06_CBT_SP2                                  | 28            |
| 0604173_C.01 | 8553.00015  | Lafayette Indoor Use<br>(06LAFFYT_I)       | Baseline Res C to<br>Lafayette (0604173_C)                                | Barker Res<br>(0604173),<br>Account 1       | 27            |
| 0604173_C.02 | 8553.00015  | Lafayette Outdoor Use<br>(06LAFFYT_O)      | Baseline Res C to<br>Lafayette (0604173_C)                                | Barker Res<br>(0604173),<br>Account 1       | 27            |
| 06LAFLIM.01  | 1.00000     |                                            |                                                                           | Lafayette<br>Release Limit -<br>06LAF_RELIM | 47            |
| 06LAF_RE.01  | 51269.00020 | Lafayette Indoor Use<br>(06LAFFYT_I)       | Lafayette Boulder Creek<br>(0600878)                                      | 06LAF_DIVRE                                 | 28            |
| 06LAF_RE.02  | 51269.00021 | Lafayette Outdoor Use<br>(06LAFFYT_O)      | Lafayette Boulder Creek<br>(0600878)                                      | 06LAF_DIVRE                                 | 28            |
| 06LAF_RE.03  | 51269.00022 | Lafayette Indoor Use<br>(06LAFFYT_I)       | DRY CR CARRIER<br>(0600902_C)<br>Baseline Res to Lafayette<br>(0604173_C) | 06LAF_DIVRE                                 | 28            |
| 06LAF_RE.04  | 51269.00023 | Lafayette Outdoor Use<br>(06LAFFYT_O)      | DRY CR CARRIER<br>(0600902_C)<br>Baseline Res to Lafayette<br>(0604173_C) | 06LAF_DIVRE                                 | 28            |
| 06LAF_RE.05  | 51269.00022 | Baseline Res (0604173),<br>Account 1       | DRY CR CARRIER<br>(0600902_C)                                             | 06LAF_DIVRE                                 | 28            |
| 06LAF_RE.11  | 51269.00030 | 06_AWP003                                  |                                                                           | 06LAF_DIVRE                                 | 29            |

## 5.10.6.5 Baseline Reservoir

Currently, Baseline Reservoir is primarily owned by the City of Lafayette and the City of Boulder. Historically, the reservoir was used for supplemental irrigation supply. The reservoir is located offchannel and is filled via the Dry Creek Carrier (0600902\_C). Deliveries are made at the direction of the City of Lafayette or the City of Boulder, as documented in the table below.

| Right ID     | Admin #     | Destination                                         | Account, Carrier, Return                                                  | Source                                           | Right<br>Type |
|--------------|-------------|-----------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------|---------------|
| 06041730.01  | 20890.20031 | Baseline Res (0604173),<br>Accounts 1-2             | Anderson Carrier<br>(0600501)<br>Dry Creek Carrier<br>(0600902_C)         | 0604173.01                                       | 45            |
| 6041730.02   | 26630.00000 | Baseline Res (0604173),<br>Accounts 1-2             | Anderson Carrier<br>(0600501)<br>Dry Creek Carrier<br>(0600902_C)         | 0604173.02                                       | 45            |
| 06041730.03  | 29219.00000 | Baseline Res (0604173),<br>Accounts 1-2             | Anderson Carrier<br>(0600501)<br>Dry Creek Carrier<br>(0600902_C)         | 0604173.03                                       | 45            |
| 06041730.04  | 29219.00000 | Baseline Res (0604173),<br>Accounts 1-2             | Anderson Carrier<br>(0600501)<br>Dry Creek Carrier<br>(0600902_C)         | 0604173.04                                       | 45            |
| 06041730.05  | 20890.20031 | Baseline Res (0604173),<br>Accounts 1-2             | Dry Creek Carrier<br>(0600902_C)                                          | 0604173.01                                       | 45            |
| 06041730.06  | 26630.00000 | Baseline Res (0604173),<br>Accounts 1-2             | Dry Creek Carrier<br>(0600902_C)                                          | 0604173.02                                       | 45            |
| 06041730.07  | 29219.00000 | Baseline Res (0604173),<br>Accounts 1-2             | Dry Creek Carrier<br>(0600902_C)                                          | 0604173.03                                       | 45            |
| 06041730.08  | 31379.00000 | Baseline Res (0604173),<br>Accounts 1-2             | Dry Creek Carrier<br>(0600902_C)                                          | 0604173.04                                       | 45            |
| 06041730.09  | 20890.20031 | Baseline Res (0604173),<br>Accounts 1-2             | ANDERSON EXTENSION<br>DITCH (0600753)<br>Dry Creek Carrier<br>(0600902 C) | 0604173.01                                       | 45            |
| 06041730.10  | 26630.00000 | Baseline Res (0604173),<br>Accounts 1-2             | ANDERSON EXTENSION<br>DITCH (0600753)<br>Dry Creek Carrier<br>(0600902 C) | 0604173.02                                       | 45            |
| 06041730.11  | 29219.00000 | Baseline Res (0604173),<br>Accounts 1-2             | ANDERSON EXTENSION<br>DITCH (0600753)<br>Dry Creek Carrier<br>(0600902_C) | 0604173.03                                       | 45            |
| 06041730.12  | 29219.00000 | Baseline Res (0604173),<br>Accounts 1-2             | ANDERSON EXTENSION<br>DITCH (0600753)<br>Dry Creek Carrier<br>(0600902_C) | 0604173.04                                       | 45            |
| 0604173_X.01 | 1.00000     |                                                     |                                                                           | 064173_CH                                        | 47            |
| 0604173_X.02 | 38350.00000 | Watershed reservoir<br>(06_WSHED), Accounts 1-<br>2 |                                                                           | Baseline<br>Reservoir<br>(0604173),<br>Account 2 | 28            |
| 0604173_X.03 | 38350.00000 | Barker Reservoir<br>(0604172), Accounts 1-2         |                                                                           | Baseline<br>Reservoir<br>(0604173),<br>Account 2 | 28            |

| Right ID     | Admin #     | Destination | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|--------------|-------------|-------------|------------------------------------------------------|------------|---------------|
| 0604173RF.01 | 38350.00050 | 06538 L RF  |                                                      | Baseline   | 48            |
|              |             |             |                                                      | Reservoir  |               |
|              |             |             |                                                      | (0604173), |               |
|              |             |             |                                                      | Account 1  |               |
| 0604173RF.02 | 38350.00050 | 06565_L_RF  |                                                      | Baseline   | 48            |
|              |             |             |                                                      | Reservoir  |               |
|              |             |             |                                                      | (0604173), |               |
|              |             |             |                                                      | Account 1  |               |
| 0604173RF.03 | 38350.00050 | 06650_L_RF  |                                                      | Baseline   | 48            |
|              |             |             |                                                      | Reservoir  |               |
|              |             |             |                                                      | (0604173), |               |
|              |             |             |                                                      | Account 1  |               |
| 0604173RF.04 | 38350.00050 | 06576_L_RF  |                                                      | Baseline   | 48            |
|              |             |             |                                                      | Reservoir  |               |
|              |             |             |                                                      | (0604173), |               |
|              |             |             |                                                      | Account 1  |               |
| 0604173RF.05 | 38350.00050 | 06569_L_RF  |                                                      | Baseline   | 48            |
|              |             |             |                                                      | Reservoir  |               |
|              |             |             |                                                      | (0604173), |               |
|              |             |             |                                                      | Account 1  |               |
| 0604173RF.06 | 38350.00050 | 06567_L_RF  |                                                      | Baseline   | 48            |
|              |             |             |                                                      | Reservoir  |               |
|              |             |             |                                                      | (0604173), |               |
|              |             |             |                                                      | Account 1  |               |

## 5.10.6.5.3 Direct Deliveries from Baseline Reservoir via Pipeline

Boulder leases their shares back to Lower Boulder Ditch irrigators. Pre-1990 Baseline released to Lower Boulder Ditch and other Dry Creek Carrier Ditches (primarily 0600565, 0600566, and 0600569 as noted in HydroBase).

| Right ID    | Admin #     | Destination       | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|-------------|-------------|-------------------|------------------------------------------------------|------------|---------------|
| 06041730.13 | 38350.00010 | Lower Boulder     |                                                      | Baseline   | 27            |
|             |             | Irrigation        |                                                      | Reservoir  |               |
|             |             | (0600538_1)       |                                                      | (0604173), |               |
|             |             |                   |                                                      | Account 2  |               |
| 06041730.14 | 38350.00020 | Lower Boulder     |                                                      | Baseline   | 27            |
|             |             | Irrigation        |                                                      | Reservoir  |               |
|             |             | (0600538_1)       |                                                      | (0604173), |               |
|             |             |                   |                                                      | Account 1  |               |
| 06041730.15 | 38350.00030 | DRY CREEK         |                                                      | Baseline   | 27            |
|             |             | DAVIDSON DITCH    |                                                      | Reservoir  |               |
|             |             | SYSTEM            |                                                      | (0604173), |               |
|             |             | (0600569_D)       |                                                      | Account 1  |               |
| 06041730.16 | 38350.00040 | COTTONWOOD        |                                                      | Baseline   | 27            |
|             |             | DITCH 2 (0600566) |                                                      | Reservoir  |               |

| Right ID    | Admin #     | Destination      | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|-------------|-------------|------------------|------------------------------------------------------|------------|---------------|
|             |             |                  |                                                      | (0604173), |               |
|             |             |                  |                                                      | Account 1  |               |
| 06041730.17 | 38350.00041 | LEYNER           | LEYNER COTTONWOOD                                    | Baseline   | 27            |
|             |             | COTTONWOOD       | DITCH (0600565)                                      | Reservoir  |               |
|             |             | DITCH IRRIGATION |                                                      | (0604173), |               |
|             |             | (0600565_I)      |                                                      | Account 1  |               |

## 5.10.6.6 Dry Creek Carrier System

The Dry Creek Carrier headgate is the diversion point for Baseline Reservoir and the City of Lafayette, as well as several irrigation diversions. These irrigation diversions all account for use of their water rights at the Dry Creek Carrier headgate. These diversions include Leyner Cottonwood, Howard, Dry Creek Davidson, Enterprise, and Cottonwood Ditch (detailed in the Changed Water Rights sections) and Andrews Farwell Ditch as presented below.

| Right ID    | Admin #    | Destination                        | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|-------------|------------|------------------------------------|------------------------------------------------------|------------|---------------|
| 06005600.01 | 5266.00000 | ANDREWS FARWELL<br>DITCH (0600560) | Dry Creek Carrier<br>(0600902_C)                     | 0600560.01 | 45            |
| 06005600.02 | 7761.00000 | ANDREWS FARWELL<br>DITCH (0600560) | Dry Creek Carrier<br>(0600902_C)                     | 0600560.02 | 45            |

## 5.10.6.7 City of Louisville

The City of Louisville's municipal supply is maintained by a number of changed water rights (see the Changed Water Rights Section 5.10.6.12 below), one major point of diversion, and supply from a single reservoir system, Marshall Reservoir. In general, the order Louisville uses its supply:

- 1. Take all Direct Flow and Changed Rights according to their priorities and terms and conditions. Most of these rights are diverted for direct use via the Louisville Pipeline on South Boulder Creek. Some rights are changed for storage in Marshall Lake, diverted via the Community Ditch.
- 2. Release water from Marshall Reservoir to meet Louisville's Municipal Demands.
- 3. Use imported C-BT water from the Southern Water Supply Pipeline.

The table below outlines the rules used to deliver water to the City of Louisville:

| Right ID    | Admin #    | Destination        | Account, Carrier, Return   | Source        | Right |
|-------------|------------|--------------------|----------------------------|---------------|-------|
|             |            |                    | Location (R), or % Split   |               | Туре  |
| 06042120.05 | 8812.00010 | Louisville Indoor  | Marshall Res to Louisville | Marshall Lake | 3     |
|             |            | Demand (06LOUIS_I) | (0604212_C)                | (0604212),    |       |
|             |            |                    |                            | Account 1     |       |
|             |            |                    |                            |               |       |
| 06042120.06 | 8812.00011 | Louisville Outdoor | Marshall Res to Louisville | Marshall Lake | 3     |
|             |            | Demand (06LOUIS_O) | (0604212_C)                | (0604212),    |       |

|             |            |                        |                  | Account1   |    |
|-------------|------------|------------------------|------------------|------------|----|
| 06SWSPPL.02 | 8812.00050 | Louisville Indoor Use  | C-BTSWSP Carrier | 06_SWSP_PL | 27 |
|             |            | (06LOUIS_I)            | (SWSP_C)         |            |    |
| 06SWSPPL.03 | 8812.00060 | Louisville Outdoor Use | C-BTSWSP Carrier | 06_SWSP_PL | 27 |
|             |            | (06LOUIS_O)            | (SWSP_C)         |            |    |

# 5.10.6.8 Marshall Reservoir (0604212), McKay Lake (0604214), and Community Ditch (0600564\_D)

Marshall Reservoir is modeled as a single account used to supply both Louisville Municipal Demands and irrigators on the Community Ditch system. McKay Lake uses the same headgate, but is only modeled as irrigation supply. As presented in the tables below, the operations of Community Ditch, Marshall Reservoir and McKay Lake are modeled with the following operating rules.

| Right ID    | Admin #     | Destination                                          | Account, Carrier, Return<br>Location (R), or % Split | Source       | Right<br>Type |
|-------------|-------------|------------------------------------------------------|------------------------------------------------------|--------------|---------------|
| 060564_D.01 | 3744.00000  | Community Ditch<br>Irrigation Demands<br>(0600564_1) | Community Ditch<br>(0600564_D)                       | 0600564_D.01 | 45            |
| 060564_D.02 | 4853.00000  | Community Ditch<br>Irrigation Demands<br>(0600564_1) | Community Ditch<br>(0600564_D)                       | 0600564_D.02 | 45            |
| 060564_D.03 | 4869.00000  | Community Ditch<br>Irrigation Demands<br>(0600564_1) | Community Ditch<br>(0600564_D)                       | 0600564_D.03 | 45            |
| 060564_D.04 | 5235.00000  | Community Ditch<br>Irrigation Demands<br>(0600564_1) | Community Ditch<br>(0600564_D)                       | 0600564_D.04 | 45            |
| 060564_D.06 | 12941.00000 | Community Ditch<br>Irrigation Demands<br>(0600564_1) | Community Ditch<br>(0600564_D)                       | 0600564_D.06 | 45            |
| 060564_D.12 | 18699.00000 | Community Ditch<br>Irrigation Demands<br>(0600564_1) | Community Ditch<br>(0600564_D)                       | 0600564_D.12 | 45            |
| 060564_D.18 | 20890.19595 | Community Ditch<br>Irrigation Demands<br>(0600564_1) | Community Ditch<br>(0600564_D)                       | 0600564_D.18 | 45            |

## Direct deliveries to Community Ditch Irrigation Demands (0600564\_I)

## Marshall and McKay Reservoirs

| Right ID    | Admin #     | Destination                | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|-------------|-------------|----------------------------|------------------------------------------------------|------------|---------------|
| 06042120.01 | 12941.00000 | Marshall Lake              | Community Ditch                                      | 0604212.01 | 45            |
|             |             | (0604212), Accounts<br>1-2 | (0600564_D)                                          |            |               |

| Right ID    | Admin #     | Destination                                          | Account, Carrier, Return<br>Location (R), or % Split | Source                                  | Right<br>Type |
|-------------|-------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------|---------------|
| 06042120.02 | 20890.19055 | Marshall Lake<br>(0604212), Accounts<br>1-2          | Community Ditch<br>(0600564_D)                       | 0604212.02                              | 45            |
| 06042120.03 | 22561.00000 | Marshall Lake<br>(0604212), Accounts<br>1-2          | Community Ditch<br>(0600564_D)                       | 0604212.03                              | 45            |
| 06042120.04 | 29219.00000 | Marshall Lake<br>(0604212), Accounts<br>1-2          | Community Ditch<br>(0600564_D)                       | 0604212.04                              | 45            |
| 06042140.01 | 14001.00000 | McKay Lake<br>(0604214), Account 1                   | Community Ditch<br>(0600564_D)                       | 0604214.01                              | 45            |
| 06042140.02 | 18615.18319 | McKay Lake<br>(0604214), Account 1                   | Community Ditch<br>(0600564_D)                       | 0604214.02                              | 45            |
| 06042140.03 | 99999.00000 | McKay Lake<br>(0604214), Account 1                   | Community Ditch<br>(0600564_D)                       | 0604214.03                              | 45            |
| 06042120.07 | 20890.19695 | Community Ditch<br>Irrigation Demands<br>(0600564_1) |                                                      | Marshall Lake<br>(0604212),<br>Account1 | 2             |
| 06042140.04 | 20890.19695 | Community Ditch<br>Irrigation Demands<br>(0600564_1) |                                                      | McKay Lake<br>(0604214),<br>Account 1   | 2             |

## 5.10.6.9 Boulder White Rock Ditch System (0600516) - Six Mile (0604187) and Panama (0604185) Reservoirs

The Boulder White Rock Ditch system supplies irrigated land by several sources. Boulder White Rock owns an 1873 priority direct flow right and an exchange right supplied by Panama Reservoir releases. Boulder White Rock is a majority shareholder in the storage rights for Six Mile and Panama Reservoir. Boulder White Rock Ditch is modeled with a headgate diverting off Boulder Creek, a turnout headgate on the Boulder Creek Supply Canal, and storage in Panama and Six Mile Reservoirs. Some of the irrigated lands for the Boulder White Rock Ditch are upstream of both reservoirs. Panama Reservoir releases can be delivered by exchange to the Boulder White Rock headgate. Other source structures have been used infrequently in the past. The inconsistency is no modeled. Six Mile Reservoir can be filled with diversions from Boulder White Rock Ditch. Leggett Ditch also deliveries to irrigation demand. As presented in the table below, the Boulder White Rock System is modeled with the following operating rules.

| Right ID    | Admin #     | Destination             | Account, Carrier, Return | Source     | Right |
|-------------|-------------|-------------------------|--------------------------|------------|-------|
|             |             |                         | Location (R), or % Split |            | Туре  |
| 06041870.01 | 16303.00000 | SIX MILE RES (0604187), | Boulder White Rock       | 0604187.01 | 45    |
|             |             | Account 1               | Carrier (0600516)        |            |       |
| 06041870.02 | 29219.00000 | SIX MILE RES (0604187), | Boulder White Rock       | 0604187.02 | 45    |
|             |             | Account 1               | Carrier (0600516)        |            |       |
| 06041850.01 | 20890.19874 | Panama Reservoir        | Boulder White Rock       | 0604185.01 | 45    |
|             |             | (0604185), Account 1    | Carrier (0600516)        |            |       |

| Right ID    | Admin #     | Destination                                          | Account, Carrier, Return<br>Location (R), or % Split | Source                                         | Right<br>Type |
|-------------|-------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------|---------------|
| 06041850.02 | 29219.00000 | Panama Reservoir<br>(0604185), Account 1             | Boulder White Rock<br>Carrier (0600516)              | 0604185.02                                     | 45            |
| 06041850.09 | 20890.19874 | Panama Reservoir<br>(0604185), Account 1             | LEGGETT DITCH<br>(0600537)                           | 0604185.01                                     | 45            |
| 06041850.10 | 29219.00000 | Panama Reservoir<br>(0604185), Account 1             | LEGGETT DITCH<br>(0600537)                           | 0604185.02                                     | 45            |
| 06CBTPLN.13 | 8706.00060  | BOULDER WHITEROCK<br>DITCH IRRIGATION<br>(0600516_I) | C-BTBWR Turnout<br>(06_BWRCBT)                       | 06_CBT_SP2                                     | 27            |
| 06516_XL.01 | 1.00000     |                                                      |                                                      | 06_BWR_XLIM                                    | 47            |
| 06005160.02 | 20890.19884 | BOULDER WHITEROCK<br>DITCH IRRIGATION<br>(0600516_I) | Boulder White Rock<br>Ditch (0600516)                | Panama<br>Reservoir<br>(0604185),<br>Account 1 | 28            |
| 06005160.03 | 20890.19894 | BOULDER WHITEROCK<br>DITCH IRRIGATION<br>(0600516_I) |                                                      | SIX MILE RES<br>(0604187),<br>Account 1        | 2             |
| 06005370.01 | 6696.00000  | LEGGETT DITCH -<br>IRRIGATION (0600537_I)            | Leggett Ditch (0600537)                              | 0600537.01                                     | 45            |
| 06005370.02 | 20890.19894 | LEGGETT DITCH -<br>IRRIGATION (0600537_I)            |                                                      | Panama<br>Reservoir<br>(0604185),<br>Account 1 | 3             |

## 5.10.6.10 Idaho Creek Ditches (0600663)

Idaho Creek Ditches (also known as Idaho Slough) diverts from Boulder Creek and is the common supply for Idaho Creek. The complex includes several irrigation ditches - Houck #2 Ditch (0600534), Carr Tyler Ditch (0600520\_D), Smith Emmons (0600553), Delehant Ditch (0600523), and Highland South Side Ditch (0600532) - that divert from Idaho Creek. Some of these ditches also receive C-BT water from the Boulder Creek Supply Canal (as documented in the Boulder Creek Supply Canal Section) and from Panama Reservoir (not captured in the model). The operating rules that deliver water to irrigation diversions off Idaho Creek are below:

| Right ID     | Admin #    | Destination                     | Account, Carrier, Return<br>Location (R), or % Split | Source       | Right<br>Type |
|--------------|------------|---------------------------------|------------------------------------------------------|--------------|---------------|
| 06005340.01  | 4109.00000 | Houck No. 2 Ditch<br>(0600534)  | IDAHO CREEK (0600663)                                | 0600534.01   | 45            |
| 0600520_D.01 | 4170.00000 | Carr Tyler Ditch<br>(0600520_D) | IDAHO CREEK (0600663)                                | 0600520_D.01 | 45            |
| 0600520_D.02 | 5266.00000 | Carr Tyler Ditch<br>(0600520_D) | IDAHO CREEK (0600663)                                | 0600520_D.02 | 45            |
| 06005530.01  | 4900.00000 | Smith Emmons<br>(0600553)       | IDAHO CREEK (0600663)                                | 0600553.01   | 45            |
| 06005230.01  | 5600.00000 | Delehant (0600523)              | IDAHO CREEK (0600663)                                | 0600523.01   | 45            |

| Right ID    | Admin #    | Destination                            | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|-------------|------------|----------------------------------------|------------------------------------------------------|------------|---------------|
| 06005320.01 | 5631.00000 | Highland South Side<br>Ditch (0600532) | IDAHO CREEK (0600663)                                | 0600532.01 | 45            |
| 06005320.02 | 6727.00000 | Highland South Side<br>Ditch (0600532) | IDAHO CREEK (0600663)                                | 0600532.02 | 45            |
| 06CBTPLN.28 | 4900.00010 | SMITH EMMONS<br>DITCH (0600553)        | Idaho Creek<br>Ditch(0600663)                        | 06_CBT_SP2 | 27            |

## 5.10.6.11 Valmont Reservoir Complex

The Valmont Reservoir Complex is owned by Xcel Energy, formerly known as Public Service Company of Colorado (PSCO) and consists of three hydraulically interconnected reservoirs, Valmont, Leggett and Hillcrest. These reservoirs share a common water surface elevation and are treated as one reservoir. The Valmont system diverts its storage rights and some changed rights primarily from South Boulder Creek. Operating rules deliver water from the reservoir system to the cooling demands of the power plant. While there have been intermittent historical releases from the reservoir system to irrigators in District 6, those operations are infrequent and were not modeled. Until 2000, releases were regularly made from the Valmont Reservoir complex to the Leggett Ditch to satisfy PSCO's contractual delivery obligations related to their acquisition of Leggett Reservoir. Starting in 2001, those delivery obligations were met via C-BT deliveries. As presented in the table below, components of the Valmont Reservoir System were modeled with the following operating rules.

| Right ID     | Admin #     | Destination                                            | Account, Carrier, Return<br>Location (R), or % Split | Source      | Right<br>Type |
|--------------|-------------|--------------------------------------------------------|------------------------------------------------------|-------------|---------------|
| 06_VALMT_D.2 | 20890.05113 | Valmont Combined<br>Reservoir (06_VALMT),<br>Account 1 | Combined Valmont Res<br>Inlet (06_VALMT_C)           | 06_VALMT.02 | 45            |
| 06_VALMT_D.3 | 22302.00000 | Valmont Combined<br>Reservoir (06_VALMT),<br>Account 1 | Combined Valmont Res<br>Inlet (06_VALMT_C)           | 06_VALMT.03 | 45            |
| 06_VALMT_D.4 | 24538.00000 | Valmont Combined<br>Reservoir (06_VALMT),<br>Account 1 | Combined Valmont Res<br>Inlet (06_VALMT_C)           | 06_VALMT.04 | 45            |
| 06_VALMT_D.5 | 27930.26611 | Valmont Combined<br>Reservoir (06_VALMT),<br>Account 1 | Combined Valmont Res<br>Inlet (06_VALMT_C)           | 06_VALMT.05 | 45            |
| 06_VALMT_D.6 | 29219.00000 | Valmont Combined<br>Reservoir (06_VALMT),<br>Account 1 | Combined Valmont Res<br>Inlet (06_VALMT_C)           | 06_VALMT.06 | 45            |
| 06_VALMT_D.7 | 40740.38101 | Valmont Combined<br>Reservoir (06_VALMT),<br>Account 1 | Combined Valmont Res<br>Inlet (06_VALMT_C)           | 06_VALMT.07 | 45            |
| 06_VALMPP.01 | 1.00000     | Valmont Power Plant<br>(06 VALMPP)                     |                                                      | 06_VALMT    | 2             |

# 5.10.6.12 Changed Water Rights

Numerous changed water rights in the Boulder Creek drainage are included in the following section. Because of the prevalence of shared interest by the Boulder county municipalities, these changed irrigation rights as listed below by ditch. Many of the changed rights were left with a remaining irrigation component and rules exist to release water to those irrigation demands.

# 5.10.6.12.1 Lower Boulder Ditch (0600538\_D) Changed Rights

There are multiple changes for each of the rights that sit on the Lower Boulder Ditch. They are laid out by water right ID below.

The 0600538\_D.01 water right is stored in the (060538\_CHT1) accounting plan. Monthly and annual limits are set based on changes for individual users, see below. The sum of monthly limits is greater than to the annual limit, so the users can take what they need until they hit their limit. Lower Boulder Ditch 0600538\_D.01 operations are presented in the table below. The changed water rights represented with these rules are decreed in cases for the City of Lafayette (90CW108 and 97CW195) and the City of Boulder (94CW284).

Water right yield is split between City of Boulder Exchange (0.875 cfs, 3.3%) and City of Lafayette Direct Use (1.624 cfs, 6.5%). By decree, new uses are required to leave a portion of the water right at the ditch. This water is modeled as not being moved to the split plans for new users, but remaining in the ditch plan.

Uses of the changed water rights include:

- City of Boulder exchange to the Barker Pipeline
  - Available April 15<sup>th</sup> to Oct 31<sup>st</sup>, subject to limits, Sept 56.9 AF, Oct 51.2 AF, Annual 419.7 AF
- City of Lafayette direct use, carried by 0600538\_D
  - Available April 15<sup>th</sup> to Oct 31<sup>st</sup>, subject to limits, Sept 105.6 AF, Oct 95 AF, Annual 778.8 AF

The 0600538\_D.02, 0600538\_D.03, and 0600538\_D.04 water rights are stored in the (060538\_CH2) accounting plan, limited to April through October. The changed water rights represented with these rules are decreed in cases for the City of Lafayette (90CW108).

Water right yield is used by the City of Lafayette Direct Use (0.043 cfs, 0.064 cfs, and 0.044 cfs, for a total of 1.6% of the water rights).

Uses of the changed water rights include:

• City of Lafayette direct use, carried by 0600538\_D with 20% carrier loss.

The **0600538\_D.05** water right is stored in the (060538\_CH7) accounting plan, available from May 1<sup>st</sup>, through Sept 15th. The changed water rights represented with these rules are decreed in cases for the City of Lafayette (90CW108).

Water right yield is used by the City of Lafayette through storage in Baseline Reservoir (0.044 cfs, 11.5%).

Uses of the changed water rights include:

• City of Lafayette through storage in Baseline Reservoir, carried by 0600902 and 06\_BASE\_C with 0% carrier loss.

The **0600538\_D.06** water right is stored in the (060538\_CH5) accounting plan, available from May 1<sup>st</sup>, through Sept 15th. The changed water rights represented with these rules are decreed in cases for the City of Lafayette (90CW108)

Water right yield is used by the City of Lafayette Direct Use (0.017 cfs, 0.6%).

Uses of the changed water rights include:

• City of Lafayette direct use, carried by 0600538\_D with 20% carrier loss.

The 0600538\_D.08 water right priority is stored in the (060538\_CHT8). Monthly and annual limits are set based on changes for individual users, see below. The changed water rights represented with these rules are decreed in cases for the City of Lafayette (90CW108 and 97CW195) and the City of Boulder (94CW284).

Water right yield is split between three City of Boulder Exchanges, each with a different monthly/annual limit (1.26 cfs, 1.3%; 1.22 cfs, 1.2%; 1.83 cfs, 1.9%) and City of Lafayette Direct Use (2.96 cfs, 3.0%).

Uses of the changed water rights include:

- City of Boulder Exchange 2
  - Available April 15<sup>th</sup> to Oct 31<sup>st</sup>, subject to limits, Sept 56.9 AF, Oct 51.2 AF, Annual 419.7 AF
- City of Boulder Exchange 3
  - o Available April 15<sup>th</sup> to Oct 31<sup>st</sup>, subject to limits, Annual 198 AF
- City of Boulder Exchange 4
  - o Available May 1<sup>st</sup> to July 31<sup>st</sup>, subject to limits, Annual 198 AF
- City of Lafayette direct use, carried by 0600538\_D
  - o Available April 15<sup>th</sup> to Oct 31<sup>st</sup>, subject to limits, Sept 105.6 AF, Oct 95 AF, Annual 778.8 AF

Remaining plan supplies are released to Lower Boulder Ditch headgate.

| Right ID     | Admin #    | Destination                              | Account, Carrier, Return<br>Location (R), or % Split | Source                           | Right<br>Type |
|--------------|------------|------------------------------------------|------------------------------------------------------|----------------------------------|---------------|
| 060538_CH.11 | 3561.00000 | 060538_CHT1                              | 100%                                                 | 0600538_D.01                     | 26            |
| 060538_CL.01 | 1.00000    |                                          |                                                      | Release Limit 1 -<br>060538_CHL1 | 47            |
| 060538_XL.01 | 1.00000    |                                          |                                                      | Release Limit 2 -<br>060538_CXL1 | 47            |
| 060538_CH.12 | 3561.00001 | 060538_CHI1<br>060538_CX1<br>060538_CH1  | 90.2%<br>3.3%<br>6.5%                                | 060538_CHT1                      | 46            |
| 060538_CH.13 | 3561.00002 | Lower Boulder Irrigation<br>(0600538_I)  | Lower Boulder Ditch<br>(0600538_D)                   | 060538_CHI1                      | 27            |
| 060538_CX.01 | 3561.00003 | Barker Reservoir<br>(0604172), Account 1 |                                                      | 060538_CX1                       | 28            |
| 060538_CX.02 | 3561.00004 | Boulder Indoor Use<br>(06BOULDER I)      | BOULDER PL 3 AT<br>BARKER R (0600943)                | 060538_CX1                       | 28            |
| 060538_CX.03 | 3561.00004 | Boulder Outdoor Use<br>(06BOULDER O)     | BOULDER PL 3 AT<br>BARKER R (0600943)                | 060538_CX1                       | 28            |
| 060538_CH.14 | 3561.00004 | Lafayette Indoor<br>Demand (06LAFFYT I)  | Lower Boulder Ditch<br>(0600538 D)                   | 060538_CH1                       | 27            |
| 060538_CH.15 | 3561.00005 | Lafayette Outdoor<br>Demand (06LAFFYT O) | Lower Boulder Ditch<br>(0600538 D)                   | 060538_CH1                       | 27            |
| 060538_C.100 | 3561.00020 | Lower Boulder Ditch<br>(0600538 D)       |                                                      | 060538_CHT1                      | 29            |
| 060538_C.101 | 3561.00020 | Lower Boulder Ditch<br>(0600538 D)       |                                                      | 060538_CHI1                      | 29            |
| 060538_C.102 | 3561.00020 | Lower Boulder Ditch<br>(0600538 D)       |                                                      | 060538_CH1                       | 29            |
| 060538_C.103 | 3561.00020 | Lower Boulder Ditch<br>(0600538_D)       |                                                      | 060538_CX1                       | 29            |
| 060538_CH.21 | 4869.00000 | 060538_CHT2                              | 100%                                                 | 0600538_D.02                     | 26            |
| 060538_CH.22 | 5511.00000 | 060538_CHT2                              | 100%                                                 | 0600538_D.03                     | 26            |
| 060538_CH.23 | 5979.00000 | 060538_CHT2                              | 100%                                                 | 0600538_D.04                     | 26            |
| 060538_CH.24 | 5979.00001 | 060538_CHI2<br>060538_CH2                | 98.4%<br>1.6%                                        | 060538_CHT2                      | 46            |
| 060538_CH.25 | 5979.00002 | Lower Boulder Irrigation<br>(0600538_I)  | Lower Boulder Ditch<br>(0600538_D)                   | 060538_CHI2                      | 27            |
| 060538_CH.26 | 5979.00003 | Lafayette Indoor<br>Demand (06LAFFYT_I)  | Lower Boulder Ditch<br>(0600538_D)                   | 060538_CHI2                      | 27            |
| 060538_CH.27 | 5979.00004 | Lafayette Outdoor<br>Demand (06LAFFYT_O) | Lower Boulder Ditch<br>(0600538_D)                   | 060538_CHI2                      | 27            |
| 060538_C.104 | 5979.00020 | Lower Boulder Ditch<br>(0600538_D)       |                                                      | 060538_CHT2                      | 29            |
| 060538_C.105 | 5979.00020 | Lower Boulder Ditch<br>(0600538_D)       |                                                      | 060538_CHI2                      | 29            |
| 060538_C.106 | 5979.00020 | Lower Boulder Ditch<br>(0600538 D)       |                                                      | 060538_CH2                       | 29            |

| Right ID     | Admin #    | Destination                                                        | Account, Carrier, Return<br>Location (R), or % Split | Source                           | Right<br>Type |
|--------------|------------|--------------------------------------------------------------------|------------------------------------------------------|----------------------------------|---------------|
| 060538_CH.51 | 5979.00000 | 060538_CHT5                                                        | 100%                                                 | 0600538_D.05                     | 26            |
| 060538_CH.52 | 5979.00001 | 060538_CHI5<br>060538_CH5                                          | 88.5%<br>11.5%                                       | 060538_CHT5                      | 46            |
| 060538_CH.53 | 5979.00002 | Lower Boulder Irrigation<br>(0600538 I)                            | Lower Boulder Ditch<br>(0600538 D)                   | 060538_CHI5                      | 27            |
| 060538_CH.54 | 5979.00003 | Baseline Reservoir<br>(0604173), Account 1                         | Dry Creek Carrier<br>(0600902_C)                     | 060538_CH5                       | 28            |
| 060538_C.107 | 5979.00020 | Lower Boulder Ditch<br>(0600538_D)                                 |                                                      | 060538_CHT5                      | 29            |
| 060538_C.108 | 5979.00020 | Lower Boulder Ditch<br>(0600538_D)                                 |                                                      | 060538_CHI5                      | 29            |
| 060538_C.109 | 5979.00020 | Lower Boulder Ditch<br>(0600538_D)                                 |                                                      | 060538_CH5                       | 29            |
| 060538_CH.61 | 5996.00000 | 060538_CHT6                                                        | 100%                                                 | 0600538_D.06                     | 26            |
| 060538_CH.62 | 5996.00001 | 060538_CHI6<br>060538_CH6                                          | 99.4%<br>0.6%                                        | 060538_CHT6                      | 46            |
| 060538_CH.63 | 5996.00002 | Lower Boulder Irrigation<br>(0600538_I)                            | Lower Boulder Ditch<br>(0600538_D)                   | 060538_CHI6                      | 27            |
| 060538_CH.64 | 5996.00003 | Lafayette Indoor<br>Demand (06LAFFYT_I)                            | Lower Boulder Ditch<br>(0600538_D)                   | 060538_CH6                       | 27            |
| 060538_CH.65 | 5996.00004 | Lafayette Outdoor<br>Demand (06LAFFYT_O)                           | Lower Boulder Ditch<br>(0600538_D)                   | 060538_CH6                       | 27            |
| 060538_C.110 | 5996.00020 | Lower Boulder Ditch<br>(0600538_D)                                 |                                                      | 060538_CHT6                      | 29            |
| 060538_C.111 | 5996.00020 | Lower Boulder Ditch<br>(0600538_D)                                 |                                                      | 060538_CHI6                      | 29            |
| 060538_C.112 | 5996.00020 | Lower Boulder Ditch<br>(0600538_D)                                 |                                                      | 060538_CH6                       | 29            |
| 060538_D.71  | 5996.00000 | Lower Boulder Irrigation<br>(0600538_I)                            | Lower Boulder Ditch<br>(0600538_D)                   | 0600538_D.07                     | 45            |
| 060538_CH.81 | 7457.00000 | 060538_CHT8                                                        | 100%                                                 | 0600538_D.08                     | 26            |
| 060538_CL.82 | 1.00000    |                                                                    |                                                      | Release Limit 1 -<br>060538_CHL8 | 47            |
| 060538_CL.83 | 1.00000    |                                                                    |                                                      | Release Limit 2<br>060538_CXL2   | 47            |
| 060538_XL.84 | 1.00000    |                                                                    |                                                      | Release Limit 3<br>060538_CXL3   | 47            |
| 060538_XL.85 | 1.00000    |                                                                    |                                                      | Release Limit 4<br>060538_CXL4   | 47            |
| 060538_CH.86 | 7457.00001 | 060538_CX2<br>060538_CX3<br>060538_CX4<br>060538_CH8<br>060538_CH8 | 1.3%<br>1.2%<br>1.9%<br>3.0%<br>92.6%                | 060538_CHT8                      | 46            |
| 060538_CH.87 | 7457.00002 | Lower Boulder Irrigation<br>(0600538_I)                            | Lower Boulder Ditch<br>(0600538_D)                   | 060538_CHI8                      | 27            |
| 060538_CX.71 | 7457.00003 | Baseline Res (0604172),<br>Accounts 1-2                            |                                                      | 060538_CX2                       | 28            |

| Right ID     | Admin #    | Destination                                  | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|--------------|------------|----------------------------------------------|------------------------------------------------------|------------|---------------|
| 060538_CX.72 | 7457.00002 | Watershed Res<br>(06_WSHED), Accounts<br>1-2 |                                                      | 060538_CX2 | 28            |
| 060538_CX.73 | 7457.00004 | Boulder Indoor Use<br>(06BOULDER_I)          | BOULDER PL 3 AT<br>BARKER R (0600943)                | 060538_CX2 | 28            |
| 060538_CX.74 | 7457.00004 | Boulder Outdoor Use<br>(06BOULDER_O)         | BOULDER PL 3 AT<br>BARKER R (0600943)                | 060538_CX2 | 28            |
| 060538_CX.75 | 7457.00005 | Boulder Indoor Use<br>(06BOULDER_I)          | BOULDER CITY PL<br>(0600599)                         | 060538_CX2 | 28            |
| 060538_CX.76 | 7457.00005 | Boulder Outdoor Use<br>(06BOULDER_O)         | BOULDER CITY PL<br>(0600599)                         | 060538_CX2 | 28            |
| 060538_CX.77 | 7457.00003 | Baseline Res (0604172),<br>Accounts 1-2      |                                                      | 060538_CX3 | 3             |
| 060538_CX.78 | 7457.00002 | Watershed Res<br>(06_WSHED), Accounts<br>1-2 |                                                      | 060538_CX3 | 3             |
| 060538_CX.79 | 7457.00004 | Boulder Indoor Use<br>(06BOULDER_I)          | BOULDER PL 3 AT<br>BARKER R (0600943)                | 060538_CX3 | 3             |
| 060538_CX.80 | 7457.00004 | Boulder Outdoor Use<br>(06BOULDER_O)         | BOULDER PL 3 AT<br>BARKER R (0600943)                | 060538_CX3 | 3             |
| 060538_CX.81 | 7457.00005 | Boulder Indoor Use<br>(06BOULDER_I)          | BOULDER CITY PL<br>(0600599)                         | 060538_CX3 | 3             |
| 060538_CX.82 | 7457.00005 | Boulder Outdoor Use<br>(06BOULDER_O)         | BOULDER CITY PL<br>(0600599)                         | 060538_CX3 | 3             |
| 060538_CX.83 | 7457.00003 | Baseline Res (0604172),<br>Accounts 1-2      |                                                      | 060538_CX4 | 28            |
| 060538_CX.84 | 7457.00002 | Watershed Res<br>(06_WSHED), Accounts<br>1-2 |                                                      | 060538_CX4 | 28            |
| 060538_CX.85 | 7457.00004 | Boulder Indoor Use<br>(06BOULDER_I)          | BOULDER PL 3 AT<br>BARKER R (0600943)                | 060538_CX4 | 28            |
| 060538_CX.86 | 7457.00004 | Boulder Outdoor Use<br>(06BOULDER_O)         | BOULDER PL 3 AT<br>BARKER R (0600943)                | 060538_CX4 | 28            |
| 060538_CX.87 | 7457.00005 | Boulder Indoor Use<br>(06BOULDER_I)          | BOULDER CITY PL<br>(0600599)                         | 060538_CX4 | 28            |
| 060538_CX.88 | 7457.00005 | Boulder Outdoor Use<br>(06BOULDER O)         | BOULDER CITY PL<br>(0600599)                         | 060538_CX4 | 28            |

# Lower Boulder Ditch Split Changed Water delivered to Lafayette demands

| Right ID     | Admin #    | Destination         | Account, Carrier, Return | Source     | Right |
|--------------|------------|---------------------|--------------------------|------------|-------|
|              |            |                     | Location (R), or % Split |            | туре  |
| 060538_CH.89 | 7457.00005 | Lafayette Indoor    | LAFAYETTE BOULDER        | 060538_CH8 | 28    |
|              |            | Demand (06LAFFYT_I) | CREEK PL 1 (0600878)     |            |       |
| 060538_CH.90 | 7457.00006 | Lafayette Outdoor   | LAFAYETTE BOULDER        | 060538_CH8 | 28    |
|              |            | Demand (06LAFFYT_O) | CREEK PL 1 (0600878)     |            |       |
| 060538_CH.91 | 7457.00007 | Lafayette Indoor    | Lower Boulder Ditch      | 060538_CH8 | 28    |
|              |            | Demand (06LAFFYT_I) | (0600538_D)              |            |       |

| Right ID     | Admin #    | Destination         | Account, Carrier, Return<br>Location (R), or % Split | Source      | Right<br>Type |
|--------------|------------|---------------------|------------------------------------------------------|-------------|---------------|
| 060538_CH.92 | 7457.00008 | Lafayette Outdoor   | Lower Boulder Ditch                                  | 060538_CH8  | 28            |
|              |            | Demand (06LAFFYT_O) | (0600538_D)                                          |             |               |
| 060538_C.113 | 7457.00020 | Lower Boulder Ditch |                                                      | 060538_CHT8 | 29            |
|              |            | (0600538_D)         |                                                      |             |               |
| 060538_C.114 | 7457.00020 | Lower Boulder Ditch |                                                      | 060538_CH8  | 29            |
|              |            | (0600538_D)         |                                                      |             |               |
| 060538_C.115 | 7457.00020 | Lower Boulder Ditch |                                                      | 060538_CX2  | 29            |
|              |            | (0600538_D)         |                                                      |             |               |
| 060538_C.116 | 7457.00020 | Lower Boulder Ditch |                                                      | 060538_CX3  | 29            |
|              |            | (0600538_D)         |                                                      |             |               |
| 060538_C.117 | 7457.00020 | Lower Boulder Ditch |                                                      | 060538_CX4  | 29            |
|              |            | (0600538_D)         |                                                      |             |               |
| 060538_C.118 | 7457.00020 | Lower Boulder Ditch |                                                      | 060538_CHI8 | 29            |
|              |            | (0600538_D)         |                                                      |             |               |

## 5.10.6.12.2 Leyner Cottonwood Ditch (0600565) Changed Rights

The 0600565.01 water right priority is stored in the (060565\_CHT1) accounting plan. Monthly and annual limits are set based on changes for individual users, see below. All Leyner Cottonwood Ditch 0600565.01 operations are represented in the table below. The changed water rights represented with these rules are decreed in cases for the City of Lafayette (80CW468 and 85CW119) and the City of Louisville (87CW327).

Water right yield is split between City of Lafayette (3.76 cfs, 11.7%) and City of Louisville Direct Use (2.26 cfs, 7.1%). Both cities are required to leave a portion of the water right at the ditch. Therefore, some of their water right yield is put into plans which be released back to the ditch. All water for this water right is diverted into the changed water rights plan since the water not changed to municipalities needs to be delivered to off-channel irrigation at 0600565\_I.

Uses of the changed water rights include:

- City of Lafayette deliveries to Baseline reservoir or direct use via Leyner Cottonwood Carrier Ditch
  - o Available April 15<sup>th</sup> to Sep 15<sup>st</sup>, subject to limits, Annual 656 AF
- City of Louisville direct use, exchanged to Louisville Pipeline
  - o Available April 15<sup>th</sup> to Sep 15<sup>st</sup>, subject to limits, Annual 430 AF

Remaining plan supplies are released to the Leyner Cottonwood Ditch headgate.

The junior water rights have not been changed and are available to the irrigation demand.

| Right ID     | Admin #    | Destination | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|--------------|------------|-------------|------------------------------------------------------|------------|---------------|
| 060565_CH.01 | 5570.00000 | 060565_CHT1 | 100%                                                 | 0600565.01 | 26            |

| Right ID     | Admin #    | Destination                                                         | Account, Carrier, Return<br>Location (R), or % Split                                                                 | Source                           | Right<br>Type |
|--------------|------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------|
| 060565_CL.01 | 1.00000    |                                                                     |                                                                                                                      | Release Limit 1 -<br>060565_CHL1 | 47            |
| 060565_CL.02 | 1.00000    |                                                                     |                                                                                                                      | Release Limit 2 -<br>060565_CHL2 | 47            |
| 060565_CH.02 | 5570.00001 | 060565_CHI1<br>060565_CH1<br>060565_CS1<br>060565_CH2<br>060565_CS2 | 81.2%<br>10.5%<br>1.2%<br>5.7%<br>1.4%                                                                               | 060565_CHT1                      | 46            |
| 060565_CH.03 | 5570.00002 | LEYNER COTTONWOOD<br>DITCH IRRIGATION<br>(0600565_I)                | Dry Creek Carrier<br>(0600902_C)<br>Leyner Cottonwood<br>Ditch (0600565)                                             | 060565_CHI1                      | 27            |
| 060565_CH.04 | 5570.00002 | Baseline Reservoir<br>(0604173), Account 1                          | Dry Creek Carrier<br>(0600902_C)                                                                                     | 060565_CH1                       | 27            |
| 060565_CH.05 | 5570.00002 | Lafayette Indoor<br>Demand (06LAFFYT_I)                             | Dry Creek Carrier<br>(0600902_C)<br>Leyner Cottonwood<br>Ditch (0600565)<br>Leyner Cottonwood<br>Carrier (0600565_C) | 060565_CH1                       | 27            |
| 060565_CH.06 | 5570.00003 | Lafayette Outdoor<br>Demand (06LAFFYT_O)                            | Dry Creek Carrier<br>(0600902_C)<br>Leyner Cottonwood<br>Ditch (0600565)<br>Leyner Cottonwood<br>Carrier (0600565 C) | 060565_CH1                       | 27            |
| 060565_CH.07 | 5570.00002 | Louisville Indoor<br>Demand (06LOUIS_I)                             | Louisville PL (0600598)                                                                                              | 060565_CH2                       | 28            |
| 060565_CH.08 | 5570.00003 | Louisville Outdoor<br>Demand (06LOUIS_O)                            | Louisville PL (0600598)                                                                                              | 060565_CH2                       | 28            |
| 060565_CH.10 | 5570.00020 | Leyner Cottonwood<br>Ditch (0600565)                                |                                                                                                                      | 060565_CHT1                      | 29            |
| 060565_CH.11 | 5570.00020 | Leyner Cottonwood<br>Ditch (0600565)                                |                                                                                                                      | 060565_CHI1                      | 29            |
| 060565_CH.12 | 5570.00020 | Leyner Cottonwood<br>Ditch (0600565)                                |                                                                                                                      | 060565_CH1                       | 29            |
| 060565_CH.13 | 5570.00020 | Leyner Cottonwood<br>Ditch (0600565)                                |                                                                                                                      | 060565_CS1                       | 29            |
| 060565_CH.14 | 5570.00020 | Leyner Cottonwood<br>Ditch (0600565)                                |                                                                                                                      | 060565_CH2                       | 29            |
| 060565_CH.15 | 5570.00020 | Leyner Cottonwood<br>Ditch (0600565)                                |                                                                                                                      | 060565_CS2                       | 29            |
| 06005650.02  | 5935.00000 | LEYNER COTTONWOOD<br>DITCH IRRIGATION<br>(0600565_I)                | Dry Creek Carrier<br>(0600902_C)<br>Leyner Cottonwood<br>Ditch (0600565)                                             | 0600565.02                       | 45            |
| 06005650.03  | 7579.00000 | LEYNER COTTONWOOD<br>DITCH IRRIGATION                               | Dry Creek Carrier<br>(0600902_C)                                                                                     | 0600565.03                       | 45            |
| Right ID    | Admin #     | Destination                                          | Account, Carrier, Return<br>Location (R), or % Split                     | Source     | Right<br>Type |
|-------------|-------------|------------------------------------------------------|--------------------------------------------------------------------------|------------|---------------|
|             |             | (0600565_I)                                          | Leyner Cottonwood<br>Ditch (0600565)                                     |            |               |
| 06005650.04 | 49330.00000 | LEYNER COTTONWOOD<br>DITCH IRRIGATION<br>(0600565_I) | Dry Creek Carrier<br>(0600902_C)<br>Leyner Cottonwood<br>Ditch (0600565) | 0600565.04 | 45            |
| 06005650.05 | 53691.53631 | LEYNER COTTONWOOD<br>DITCH IRRIGATION<br>(0600565_I) | Dry Creek Carrier<br>(0600902_C)<br>Leyner Cottonwood<br>Ditch (0600565) | 0600565.05 | 45            |

# 5.10.6.12.3 Howard Ditch (0600580) Changed Rights

The pro rata portion of 0600580.01 water right priority is stored in the (060580\_CHT1) accounting plan. Monthly and annual limits are set based on multiple changes for each individual user, see below. All Howard Ditch 0600580.01 operations are represented in the table below. The changed water rights represented with these rules are decreed in cases for the City of Lafayette (CA8960, W8346 and W8348), the City of Louisville (99CW0230, CA12698, CA21299 and W8500) and Eldora Ski Resort (W7786, 02CW400 and 07CW02).

Water right yield is split between City of Lafayette (3.76 cfs, 17.5% and 3.28 cfs, 24.6%), City of Louisville (0.36 cfs, 2.7%; 4.5 cfs, 33.8%; 0.841 cfs, 6.3%; 1.55 cfs, 11.6%) and Eldora Ski Resort (0.4914 cfs, 3.7%). Under the decrees, new uses are required to leave a portion of the water right at the ditch. Therefore, some of their water right yields are put into plans which release back to the ditch.

Uses of the changed water rights include:

- City of Lafayette exchange to the Lafayette Pipeline on South Boulder Creek
  - o Change of 3.76 cfs available April 15<sup>th</sup> to Oct 31<sup>st</sup>, subject to limits, Annual 260 AF
  - Change of 3.28 cfs available April 15<sup>th</sup> to Oct 31<sup>st</sup>, subject to limits, Apr 19.6 AF, May 36.3 AF, Jun 73.3 AF, Jul 95.3 AF, Aug 86.2 AF, Sep 42.2 AF, Oct 25.1 AF, Annual 290.8 AF
- City of Louisville direct use, exchanged to Louisville Pipeline
  - Change of 0.36 cfs available April 1<sup>st</sup> to Oct 31<sup>st</sup>, subject to limits, Apr 0.68 AF, May 2.04 AF, Jun 3.66 AF, Jul 4.92 AF, Aug 4.24 AF, Sep 2.09 AF, Oct 1.1 AF, Ann 18.74 AF
  - Change of 4.5 cfs available April 1<sup>st</sup> to Oct 31<sup>st</sup>, subject to limits, Jun 123 AF, Jul 123 AF, Ann 500 AF
  - o Change of 0.841cfs available April 1<sup>st</sup> to Oct 31<sup>st</sup>, subject to limits, Ann 133 AF
  - Change of 1.55 cfs available April 1<sup>st</sup> to Oct 31<sup>st</sup>, subject to limits, Apr 13 AF, May 39 AF, Jun 70 AF, Jul 94 AF, Aug 81 AF, Sep 40 AF, Oct 21 AF, Annual 358 AF
- Eldora Ski Resort direct use

Change of 0.4914 cfs available April 1<sup>st</sup> to Oct 31<sup>st</sup>, subject to limits, Apr 24.5 AF, May 25.3 AF, Jun 29.2 AF, Jul 30.2 AF, Aug 30.2 AF, Sep 24.5 AF, Oct 24.5 AF, Annual 60.41 AF

Remaining plan supplies are released back to the river at the Howard Ditch headgate. 100% of this ditch has been changed, so there is no irrigation structure to receive the remaining water.

| Right ID     | Admin #    | Destination                                                                                                                                                                                                    | Account, Carrier, Return<br>Location (R), or % Split                                                            | Source                           | Right<br>Type |
|--------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------|---------------|
| 060580_CH.01 | 3744.00000 | 060580_CHT1                                                                                                                                                                                                    | 52.1%                                                                                                           | 0600580.01                       | 26            |
| 060580_CL.01 | 1.00000    |                                                                                                                                                                                                                |                                                                                                                 | Release Limit 1 -<br>060580_CHL1 | 47            |
| 060580_CL.02 | 1.00000    |                                                                                                                                                                                                                |                                                                                                                 | Release Limit 2 -<br>060580_CHL1 | 47            |
| 060580_CL.03 | 1.00000    |                                                                                                                                                                                                                |                                                                                                                 | Release Limit 3 -<br>060580_CHL1 | 47            |
| 060580_CL.04 | 1.00000    |                                                                                                                                                                                                                |                                                                                                                 | Release Limit 4 -<br>060580_CHL1 | 47            |
| 060580_CL.05 | 1.00000    |                                                                                                                                                                                                                |                                                                                                                 | Release Limit 5 -<br>060580_CHL1 | 47            |
| 060580_CL.06 | 1.00000    |                                                                                                                                                                                                                |                                                                                                                 | Release Limit 6 -<br>060580_CHL1 | 47            |
| 060580_CL.07 | 1.00000    |                                                                                                                                                                                                                |                                                                                                                 | Release Limit 7 -<br>060580_CHL1 | 47            |
| 060580_CH.02 | 3744.00001 | 060580_CH1<br>060580_CS1<br>060580_CS2<br>060580_CS2<br>060580_CS3<br>060580_CS3<br>060580_CH4<br>060580_CS4<br>060580_CS4<br>060580_CS5<br>060580_CS5<br>060580_CH6<br>060580_CS6<br>060580_CS6<br>060580_CS7 | 14.0%<br>3.5%<br>19.7%<br>4.9%<br>2.4%<br>0.3%<br>30.4%<br>3.4%<br>5.0%<br>1.2%<br>9.9%<br>1.7%<br>3.4%<br>0.2% | 060580_CHT1                      | 46            |
| 060580_CH.04 | 3744.00002 | Lafayette Indoor<br>Demand (06LAFFYT_I)                                                                                                                                                                        | Dry Creek Carrier<br>(0600902_C)<br>Baseline Res to Lafayette<br>(0604173_C)                                    | 060580_CH1                       | 28            |
| 060580_CH.05 | 3744.00003 | Lafayette Outdoor<br>Demand (06LAFFYT_O)                                                                                                                                                                       | Dry Creek Carrier<br>(0600902_C)<br>Baseline Res to Lafayette<br>(0604173_C)                                    | 060580_CH1                       | 28            |
| 060580_CH.06 | 3744.00002 | Lafayette Indoor<br>Demand (06LAFFYT_I)                                                                                                                                                                        | Dry Creek Carrier<br>(0600902_C)<br>Baseline Res to Lafayette<br>(0604173_C)                                    | 060580_CH2                       | 28            |

| Right ID       | Admin #    | Destination          | Account, Carrier, Return                 | Source      | Right |
|----------------|------------|----------------------|------------------------------------------|-------------|-------|
|                | 2744 00002 | Lafavatta Ovtolaan   |                                          |             |       |
| 060580_CH.07   | 3744.00003 | Domand (OCLATEVT O)  |                                          | 060580_CH2  | 28    |
|                |            |                      | (0600902_C)<br>Receline Res to Lafavette |             |       |
|                |            |                      | (060/173 C)                              |             |       |
|                | 2744 00002 | Lafavotto Indoor     |                                          |             | 20    |
| 000360_CH.06   | 3744.00002 | Demand (OGLAEEVT I)  | (0600598)                                | 000380_CH3  | 20    |
|                | 3744 00003 | Lafavette Outdoor    |                                          | 060580 CH3  | 28    |
| 000380_01.03   | 3744.00003 | Demand (OGLAEEVT O)  | (0600598)                                | 000380_CH3  | 20    |
| 060580 CH 10   | 3744 00002 | Lafavette Indoor     |                                          | 060580 CH4  | 28    |
| 000000_011.10  | 5744.00002 | Demand (06LAFEYT I)  | (0600598)                                | 000500_0114 | 20    |
| 060580 CH 11   | 3744 00003 | Lafavette Outdoor    |                                          | 060580 CH4  | 28    |
| 000000_011.11  | 5744.00005 | Demand (06LAFEYT_0)  | (0600598)                                | 000500_0114 | 20    |
| 060580 CH 12   | 3744 00002 | Louisville Indoor    |                                          | 060580 CH5  | 28    |
| 000000_011.12  | 3711.00002 | Demand (061 OLUS II) | (0600598)                                | 000000_0110 | 20    |
| 060580 CH 13   | 3744 00003 |                      |                                          | 060580 CH5  | 28    |
| 000000_011.10  | 5744.00005 | Demand (06LOLUS_O)   | (0600598)                                | 000000_0110 | 20    |
| 060580 CH 14   | 3744 00002 | Louisville Indoor    |                                          | 060580 CH6  | 28    |
| 000000_000111  | 5711.00002 | Demand (06LOUIS_I)   | (0600598)                                | 000000_0110 | 20    |
| 060580 CH 15   | 3744 00003 |                      |                                          | 060580 CH6  | 28    |
| 000000_01110   | 3711.00003 | Demand (06  OUIS_O)  | (0600598)                                | 000000_0110 | 20    |
| 060580 CH.16   | 3744.00002 | Eldora Ski Resort    |                                          | 060580 CH7  | 28    |
|                | 0, 1100002 | (06 ELDORA)          |                                          |             | 20    |
| 060580 CH.21   | 3744.00020 | HOWARD DITCH         |                                          | 060580 CHT1 | 29    |
| _              |            | (0600580)            |                                          | _           |       |
| 060580 CH.23   | 3744.00020 | HOWARD DITCH         |                                          | 060580 CH1  | 29    |
|                |            | (0600580)            |                                          |             |       |
| 060580 CH.24   | 3744.00020 | HOWARD DITCH         |                                          | 060580 CH2  | 29    |
| _              |            | (0600580)            |                                          | —           |       |
| 060580_CH.25   | 3744.00020 | HOWARD DITCH         |                                          | 060580_CH3  | 29    |
|                |            | (0600580)            |                                          |             |       |
| 060580_CH.26   | 3744.00020 | HOWARD DITCH         |                                          | 060580_CH4  | 29    |
|                |            | (0600580)            |                                          |             |       |
| 060580_CH.27   | 3744.00020 | HOWARD DITCH         |                                          | 060580_CH5  | 29    |
|                |            | (0600580)            |                                          |             |       |
| 060580_CH.28   | 3744.00020 | HOWARD DITCH         |                                          | 060580_CH6  | 29    |
|                |            | (0600580)            |                                          |             |       |
| 060580_CH.29   | 3744.00020 | HOWARD DITCH         |                                          | 060580_CH7  | 29    |
|                |            | (0600580)            |                                          |             |       |
| 060580_CS.30   | 3744.00020 | HOWARD DITCH         |                                          | 060580_CS1  | 29    |
|                |            | (0600580)            |                                          |             |       |
| 060580_CS.31   | 3744.00020 | HOWARD DITCH         |                                          | 060580_CS2  | 29    |
|                |            | (0600580)            |                                          |             | _     |
| 060580_CS.32   | 3744.00020 | HOWARD DITCH         |                                          | 060580_CS3  | 29    |
| 000500 00 00   | 0744 0000  | (0600580)            |                                          |             |       |
| 060580_CS.33   | 3/44.00020 | HOWARD DITCH         |                                          | 060580_CS4  | 29    |
|                |            | (0600580)            |                                          |             |       |
| 060580_CS.34   | 3/44.00020 | HOWARD DITCH         |                                          | 060580_CS5  | 29    |
| 0.005.00 00.05 | 0744 00000 | (0600580)            |                                          | 0.00500 000 |       |
| 060580_CS.35   | 3/44.00020 | HOWARD DITCH         |                                          | 060580_CS6  | 29    |
|                |            | (0600580)            |                                          |             |       |

| Right ID     | Admin #    | Destination               | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|--------------|------------|---------------------------|------------------------------------------------------|------------|---------------|
| 060580_CS.36 | 3744.00020 | HOWARD DITCH<br>(0600580) |                                                      | 060580_CS7 | 29            |

### 5.10.6.12.4 Dry Creek No 2 Ditch (0600570) Changed Rights

The pro rata portion of 0600570.01 water right priority is stored in the (060570\_CHT1) accounting plan. Monthly and annual limits are set based on multiple changes for each individual user, see below. All Dry Creek No 2 Ditch 0600570.01 operations are presented in the table below. The changed water rights represented with these rules are decreed in cases for the City of Lafayette (W8346 and W8348) and the City of Louisville (CA12698, CA21299 and W8500).

Water right yield is split between City of Lafayette (0.9cfs, 11.5%, 3.0 cfs, 38.3% and 1.34 cfs, 17.1%) and the City of Louisville (0.38 cfs, 4.9%; 1.19 cfs, 15.2% and 1.02 cfs, 13%). The 1.34cfs for Lafayette is also known as their Winter Season Rights since it can be diverted during the non-irrigation season. Under the decrees, new uses are required to leave a portion of the water right at the ditch. Therefore, some of their water right yields are put into plans which release back to the ditch.

Uses of the changed water rights include:

- City of Lafayette exchange to the Lafayette Pipeline or Baseline Reservoir on South Boulder Creek
  - o Change of 0.9 cfs available April 15<sup>th</sup> to Oct 1<sup>st</sup>, not subject to limits
  - o Change of 3.0 cfs available April 15<sup>th</sup> to Oct 31<sup>st</sup>, subject to annual 263AF limit.
- City of Lafayette exchange to the Lafayette Pipeline only on South Boulder Creek
  - Change of 1.34 cfs available November 1<sup>st</sup> to April 30th, subject to annual 514.9AF limit.
- City of Louisville direct use, exchanged to Louisville Pipeline
  - Change of 0.36 cfs available April 1<sup>st</sup> to Oct 31<sup>st</sup>, subject to limits, Apr 0.68 AF, May 2.04 AF, Jun 3.66 AF, Jul 4.92 AF, Aug 4.24 AF, Sep 2.09 AF, Oct 1.1 AF, Ann 18.74 AF
  - Change of 4.5 cfs available April 1<sup>st</sup> to Oct 31<sup>st</sup>, subject to limits, Jun 123 AF, Jul 123 AF, Ann 500 AF
  - o Change of 0.841cfs available April 1<sup>st</sup> to Oct 31<sup>st</sup>, subject to limits, Ann 133 AF
  - Change of 1.55 cfs available April 1<sup>st</sup> to Oct 31<sup>st</sup>, subject to limits, Apr 13 AF, May 39 AF, Jun 70 AF, Jul 94 AF, Aug 81 AF, Sep 40 AF, Oct 21 AF, Annual 358 AF

Remaining plan supplies are released back to the river at the Dry Creek No. 2 headgate.

| Right ID        | Admin #    | Destination | Account, Carrier, Return<br>Location (R), or % Split | Source                             | Right<br>Type |
|-----------------|------------|-------------|------------------------------------------------------|------------------------------------|---------------|
| 060570_CH.01    | 5235.00000 | 060570_CHT1 | 28.6%                                                | 0600570.01                         | 26            |
| 060570_CL.01-06 | 1.00000    |             |                                                      | Release Limit 1-6<br>(060570_CHL1- | 47            |

| Right ID     | Admin #    | Destination                                                        | Account, Carrier, Return<br>Location (R), or % Split                           | Source      | Right<br>Type |
|--------------|------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------|---------------|
|              |            | -                                                                  |                                                                                | 6)          |               |
| 060570_CH.02 | 5235.00001 | 060570_CH1<br>060570_CH2<br>060570_CH3<br>060570_CH4               | 11.5%<br>38.3%<br>17.1%<br>4.4%                                                | 060570_CHT1 | 46            |
|              |            | 060570_CS4<br>060570_CH5<br>060570_CS5<br>060570_CH6<br>060570_CS6 | 0.5%<br>12.6%<br>2.6%<br>6.5%<br>6.5%                                          |             |               |
| 060570_CH.03 | 5235.00002 | Baseline Reservoir<br>(0604173), Account 1                         | Dry Creek Carrier<br>(0600902 C)                                               | 060570_CH1  | 27            |
| 060570_CH.04 | 5235.00003 | Lafayette Indoor<br>Demand (06LAFFYT_I)                            | Dry Creek Carrier<br>(0600902_C)<br>Baseline Res C to<br>Lafayette (0604173 C) | 060570_CH1  | 27            |
| 060570_CH.05 | 5235.00004 | Lafayette Outdoor<br>Demand (06LAFFYT_O)                           | Dry Creek Carrier<br>(0600902_C)<br>Baseline Res C to<br>Lafayette (0604173 C) | 060570_CH1  | 27            |
| 060570_CH.06 | 5235.00002 | Baseline Reservoir<br>(0604173), Account 1                         | Dry Creek Carrier<br>(0600902_C)<br>Baseline Res C to<br>Lafayette (0604173 C) | 060570_CH2  | 27            |
| 060570_CH.07 | 5235.00003 | Lafayette Indoor<br>Demand (06LAFFYT_I)                            | Dry Creek Carrier<br>(0600902_C)<br>Baseline Res C to<br>Lafayette (0604173_C) | 060570_CH2  | 27            |
| 060570_CH.08 | 5235.00004 | Lafayette Outdoor<br>Demand (06LAFFYT_O)                           | Dry Creek Carrier<br>(0600902_C)<br>Baseline Res C to<br>Lafayette (0604173 C) | 060570_CH2  | 27            |
| 060570_CH.09 | 5235.00002 | Lafayette Indoor<br>Demand (06LAFFYT_I)                            | Dry Creek Carrier<br>(0600902_C)<br>Baseline Res C to<br>Lafayette (0604173_C) | 060570_CH3  | 27            |
| 060570_CH.10 | 5235.00003 | Lafayette Outdoor<br>Demand (06LAFFYT_O)                           | Dry Creek Carrier<br>(0600902_C)<br>Baseline Res C to<br>Lafayette (0604173_C) | 060570_CH3  | 27            |
| 060570_CH.11 | 5235.00002 | Louisville Indoor<br>Demand (06LOUIS_I)                            | LOUISVILLE PL<br>(0600598)                                                     | 060570_CH4  | 27            |
| 060570_CH.12 | 5235.00003 | Louisville Outdoor<br>Demand (06LOUIS_O)                           | LOUISVILLE PL<br>(0600598)                                                     | 060570_CH4  | 27            |
| 060570_CH.13 | 5235.00002 | Louisville Indoor<br>Demand (06LOUIS_I)                            | LOUISVILLE PL<br>(0600598)                                                     | 060570_CH5  | 27            |

| Right ID     | Admin #    | Destination                              | Account, Carrier, Return<br>Location (R), or % Split | Source      | Right<br>Type |
|--------------|------------|------------------------------------------|------------------------------------------------------|-------------|---------------|
| 060570_CH.14 | 5235.00003 | Louisville Outdoor<br>Demand (06LOUIS_O) | LOUISVILLE PL<br>(0600598)                           | 060570_CH5  | 27            |
| 060570_CH.15 | 5235.00002 | Louisville Indoor<br>Demand (06LOUIS_I)  | LOUISVILLE PL<br>(0600598)                           | 060570_CH6  | 27            |
| 060570_CH.16 | 5235.00003 | Louisville Outdoor<br>Demand (06LOUIS_O) | LOUISVILLE PL<br>(0600598)                           | 060570_CH6  | 27            |
| 060570_CH.21 | 5235.00020 | DRY CREEK NO 2 DITCH<br>(0600570)        |                                                      | 060570_CHT1 | 29            |
| 060570_CH.23 | 5235.00020 | DRY CREEK NO 2 DITCH<br>(0600570)        |                                                      | 060570_CH1  | 29            |
| 060570_CH.24 | 5235.00020 | DRY CREEK NO 2 DITCH<br>(0600570)        |                                                      | 060570_CH2  | 29            |
| 060570_CH.25 | 5235.00020 | DRY CREEK NO 2 DITCH<br>(0600570)        |                                                      | 060570_CH3  | 29            |
| 060570_CH.26 | 5235.00020 | DRY CREEK NO 2 DITCH<br>(0600570)        |                                                      | 060570_CH4  | 29            |
| 060570_CH.27 | 5235.00020 | DRY CREEK NO 2 DITCH<br>(0600570)        |                                                      | 060570_CH5  | 29            |
| 060570_CH.28 | 5235.00020 | DRY CREEK NO 2 DITCH<br>(0600570)        |                                                      | 060570_CH6  | 29            |
| 060570_CH.29 | 5235.00020 | DRY CREEK NO 2 DITCH<br>(0600570)        |                                                      | 060570_CS4  | 29            |
| 060570_CH.30 | 5235.00020 | DRY CREEK NO 2 DITCH<br>(0600570)        |                                                      | 060570_CS5  | 29            |
| 060570_CH.31 | 5235.00020 | DRY CREEK NO 2 DITCH<br>(0600570)        |                                                      | 060570_CS6  | 29            |

### 5.10.6.12.5 Goodhue Ditch (0600650) Changed Rights

The pro rata portion of 0600650.01 water right priority is stored in the (060650\_CHT1) accounting plan. Monthly and annual limits are set based on changes for individual users, see below. Goodhue Ditch 0600650.01 operations are presented in the table below. The changed water rights represented with these rules are decreed in cases for the City of Lafayette (W8348, 80CW469, 85CW119) and the City of Louisville (83CW319).

Water right yield is split between City of Lafayette (4.5 cfs, 14.9%; 0.86 cfs, 2.8%; 5.37 cfs, 17.8%) and City of Louisville Direct Use (19.46 cfs, 64.5%). Under the decrees, new uses are required to leave a portion of the water right at the ditch. Therefore, some of their water right yields are put into plans which release back to the ditch.

Uses of the changed water rights include:

City of Lafayette deliveries to Baseline reservoir or direct use via the Lafayette Pipeline
 o 4.5 cfs, Available April 25<sup>th</sup> to August 31st, not subject to limits

- City of Louisville direct use, exchanged to Louisville Pipeline
  - o Available April 15<sup>th</sup> to Sep 15<sup>st</sup>, subject to limits, Annual 430 AF

Remaining plan supplies are released to the Goodhue Ditch headgate.

| Right ID        | Admin #    | Destination                                                        | Account, Carrier, Return<br>Location (R), or % Split | Source                                   | Right<br>Type |
|-----------------|------------|--------------------------------------------------------------------|------------------------------------------------------|------------------------------------------|---------------|
| 060650_CH.01    | 8553.00000 | 060650_CHT1                                                        | 31.4%                                                | 0600650.01                               | 26            |
| 060650_CL.01-04 | 1.00000    |                                                                    |                                                      | Release Limit 1-4<br>(060650_CHL1-<br>4) | 47            |
| 060650_CH.02    | 8553.00001 | 060650_CH1<br>060650_CH2<br>060650_CH3<br>060650_CH4<br>060650_CS4 | 14.9%<br>2.8%<br>17.8%<br>58.1%<br>6.4%              | 060650_CHT1                              | 46            |
| 060650_CH.04    | 8553.00002 | Baseline Res (0604173),<br>Account 1                               | Dry Creek Carrier<br>(0600902_C)                     | 060650_CH1                               | 27            |
| 060650_CH.05    | 8553.00002 | Baseline Res (0604173),<br>Account 1                               | Dry Creek Carrier<br>(0600902_C)                     | 060650_CH2                               | 27            |
| 060650_CH.06    | 8553.00002 | Baseline Res (0604173),<br>Account 1                               | Dry Creek Carrier<br>(0600902_C)                     | 060650_CH3                               | 27            |
| 060650_CH.07    | 8553.00002 | Louisville Indoor<br>Demand (06LOUIS_I)                            | LOUISVILLE PL<br>(0600598)                           | 060650_CH4                               | 28            |
| 060650_CH.08    | 8553.00002 | Louisville Outdoor<br>Demand (06LOUIS_O)                           | LOUISVILLE PL<br>(0600598)                           | 060650_CH4                               | 28            |
| 060650_CH.21    | 8553.00020 | GOODHUE DITCH<br>(0600650)                                         |                                                      | 060650_CHT1                              | 29            |
| 060650_CH.23    | 8553.00020 | GOODHUE DITCH<br>(0600650)                                         |                                                      | 060650_CH1                               | 29            |
| 060650_CH.24    | 8553.00020 | GOODHUE DITCH<br>(0600650)                                         |                                                      | 060650_CH2                               | 29            |
| 060650_CH.25    | 8553.00020 | GOODHUE DITCH<br>(0600650)                                         |                                                      | 060650_CH3                               | 29            |
| 060650_CH.26    | 8553.00020 | GOODHUE DITCH<br>(0600650)                                         |                                                      | 060650_CH4                               | 29            |
| 060650_CH.27    | 8553.00020 | GOODHUE DITCH<br>(0600650)                                         |                                                      | 060650_CS4                               | 29            |

# 5.10.6.12.6 Davidson Ditch (0600567) Changed Rights

The pro rata portion of 0600567.01 water right priority is stored in the (060567\_CHT1) accounting plan. Monthly and annual limits are set based on changes for individual users, see below. Davidson Ditch 0600567.01 operations are presented in the table below. The changed water rights represented with these rules are decreed in cases for the City of Lafayette (W8348, 80CW469, 85CW119) and the City of Louisville (83CW319).

Water right yield for the 20.1% changed is split between the City of Lafayette (3.3 cfs, 14.1%; 0.86cfs, 3.7%; 1.23, 5.3%) and the City of Louisville (18.03 cfs, 77%). Under the decrees, new uses are required to leave a portion of the water right at the ditch. Therefore, some of their water right yields are put into plans which release back to the ditch. The 79.9% remaining of the water right is available to the Davidson Ditch headgate on South Boulder Creek.

Uses of the changed water rights include:

- City of Lafayette deliveries to Baseline reservoir or direct use via the Lafayette Pipeline
  - o 3.3 + 0.86 cfs, Available April 25<sup>th</sup> to August 31<sup>st</sup>, 263 AF annual limit
- City of Lafayette deliveries to direct use via the Lafayette Pipeline
  - 0.317 cfs, Available April 25<sup>th</sup> to August 31<sup>st</sup>, limited to Apr 3AF, May 33AF, June 46AF, July 42AF, Aug 3AF, Annual 79 AF
- City of Louisville direct use, exchanged to Louisville Pipeline
  - o 5.208 cfs, Available April 25<sup>th</sup> to August 31<sup>st</sup>, limits of Apr 45, May 437 AF, Jun 598 AF, July 547, Aug 36, Annual 1039 AF

| Right ID        | Admin #    | Destination             | Account, Carrier, Return | Source        | Right |
|-----------------|------------|-------------------------|--------------------------|---------------|-------|
| 000507 01101    | 0141 00000 |                         |                          | 00005 07 01   | Туре  |
| 060567_CH.01    | 8141.00000 | 060567_CHT1             | 20.1%                    | 0600567.01    | 26    |
| 060567_CL.01-03 | 1.00000    |                         |                          | 060567_CHL1-3 | 47    |
| 060567_CH.02    | 8141.00001 | 060567_CH1              | 17.7%                    | 060567_CHT1   | 46    |
|                 |            | 060567_CH2              | 4.8%                     |               |       |
|                 |            | 060567_CS2              | 0.5%                     |               |       |
|                 |            | 060567_CH3              | 69.3%                    |               |       |
|                 |            | 060567_CS3              | 7.7%                     |               |       |
| 060567_CH.04    | 8141.00002 | Baseline Res (0604173), | Dry Creek Carrier        | 060567_CH1    | 27    |
|                 |            | Account 1               | (0600902_C)              |               |       |
| 060567_CH.05    | 8141.00003 | Lafayette Indoor        | Dry Creek Carrier        | 060567_CH1    | 27    |
|                 |            | Demand (06LAFFYT_I)     | (0600902_C)              |               |       |
|                 |            |                         | Baseline Res C to        |               |       |
|                 |            |                         | Lafayette (0604173_C)    |               |       |
| 060567_CH.06    | 8141.00004 | Lafayette Outdoor       | Dry Creek Carrier        | 060567_CH1    | 27    |
|                 |            | Demand (06LAFFYT_O)     | (0600902_C)              |               |       |
|                 |            |                         | Baseline Res C to        |               |       |
|                 |            |                         | Lafayette (0604173_C)    |               |       |
| 060567_CH.10    | 8141.00002 | Baseline Res (0604173), | Dry Creek Carrier        | 060567_CH2    | 27    |
|                 |            | Account 1               | (0600902_C)              |               |       |
| 060567_CH.11    | 8141.00003 | Lafayette Indoor        | Dry Creek Carrier        | 060567_CH2    | 27    |
|                 |            | Demand (06LAFFYT_I)     | (0600902_C)              |               |       |
|                 |            |                         | Baseline Res C to        |               |       |
|                 |            |                         | Lafayette (0604173_C)    |               |       |
| 060567_CH.12    | 8141.00004 | Lafayette Outdoor       | Dry Creek Carrier        | 060567_CH2    | 27    |
|                 |            | Demand (06LAFFYT_O)     | (0600902_C)              |               |       |
|                 |            |                         | Baseline Res C to        |               |       |
|                 |            |                         | Lafayette (0604173_C)    |               |       |

Remaining plan supplies are released to the Davidson Ditch headgate.

| Right ID     | Admin #    | Destination                              | Account, Carrier, Return<br>Location (R), or % Split | Source      | Right<br>Type |
|--------------|------------|------------------------------------------|------------------------------------------------------|-------------|---------------|
| 060567_CH.13 | 8141.00002 | Louisville Indoor<br>Demand (06LOUIS_I)  | LOUISVILLE PL<br>(0600598)                           | 060567_CH3  | 28            |
| 060567_CH.14 | 8141.00003 | Louisville Outdoor<br>Demand (06LOUIS_O) | LOUISVILLE PL<br>(0600598)                           | 060567_CH3  | 28            |
| 060567_CH.21 | 8141.00020 | DAVIDSON DITCH<br>(0600567)              |                                                      | 060567_CHT1 | 29            |
| 060567_CH.23 | 8141.00020 | DAVIDSON DITCH<br>(0600567)              |                                                      | 060567_CH1  | 29            |
| 060567_CH.24 | 8141.00020 | DAVIDSON DITCH<br>(0600567)              |                                                      | 060567_CH2  | 29            |
| 060567_CH.25 | 8141.00020 | DAVIDSON DITCH<br>(0600567)              |                                                      | 060567_CS2  | 29            |
| 060567_CH.26 | 8141.00020 | DAVIDSON DITCH<br>(0600567)              |                                                      | 060567_CH3  | 29            |
| 060567_CH.27 | 8141.00020 | DAVIDSON DITCH<br>(0600567)              |                                                      | 060567_CS3  | 29            |

### 5.10.6.12.7 South Boulder Bear Creek Ditch (0600588) Changed Rights

The pro rata portion of 0600588.01 water right priority is stored in the (060588\_CH1) accounting plan. Monthly and annual limits are set based on changes for individual users, see below. South Boulder Bear Creek Ditch 0600588.01 operations are presented in the table below. The changed water right represented with these rules is decreed in cases for the City of Lafayette (W8347).

Water right yield is available for diversion by the City of Lafayette. 7.09 cfs is allowable for diversion equal to the 8.75 cfs total change minus a 1.66 cfs flow to remain on the ditch. All remaining water is released to the South Boulder Bear Creek Ditch.

Uses of the changed water rights include:

- City of Lafayette deliveries to Baseline reservoir or direct use via the Lafayette Pipeline
  - o 8.75 cfs, Available April 1<sup>st</sup> to October 31<sup>st</sup>, subject to the following limits:
  - o April 136 AF, May 387 AF, June 525 AF, July 543 AF, August 416 AF, September 216 AF, October 151 AF, and 954 AF annually.

Remaining plan supplies are released to South Boulder Bear Creek headgate.

| Right ID     | Admin #    | Destination                             | Account, Carrier, Return<br>Location (R), or % Split  | Source     | Right<br>Type |
|--------------|------------|-----------------------------------------|-------------------------------------------------------|------------|---------------|
| 060588_CH.01 | 4528.00000 | 060588_CH1                              | 61.0%                                                 | 0600588.01 | 26            |
| 060588_CH.04 | 4528.00002 | Baseline Res (0604173),<br>Account 1    | Dry Creek Carrier<br>(0600902_C)                      | 060588_CH1 | 27            |
| 060588_CH.05 | 4528.00003 | Lafayette Indoor<br>Demand (06LAFFYT_I) | Dry Creek Carrier<br>(0600902_C)<br>Baseline Res C to | 060588_CH1 | 27            |

| Right ID     | Admin #    | Destination                              | Account, Carrier, Return<br>Location (R), or % Split                           | Source     | Right<br>Type |
|--------------|------------|------------------------------------------|--------------------------------------------------------------------------------|------------|---------------|
|              |            |                                          | Lafayette (0604173_C)                                                          |            |               |
| 060588_CH.06 | 4528.00004 | Lafayette Outdoor<br>Demand (06LAFFYT_O) | Dry Creek Carrier<br>(0600902_C)<br>Baseline Res C to<br>Lafayette (0604173_C) | 060588_CH1 | 27            |
| 060588_CH.23 | 4528.00020 | S BOULDER BEAR CR<br>DITCH (0600588)     |                                                                                | 060588_CH1 | 29            |

### 5.10.6.12.8 Dry Creek Davidson Ditch (0600569\_D) Changed Rights

The 0600569\_D.01 water right priority is stored in the (060569\_CHT1) accounting plan. Monthly and annual limits are set based on changes for individual users, see below. Dry Creek Davidson Ditch 0600569.01 operations are presented in the table below. The changed water rights represented with these rules are decreed in cases for the City of Lafayette (90CW108, 80CW468), the City of Louisville (CA6517) and the Coal Ridge Ditch Company (CA10000)

Water right yield is split between the City of Lafayette (0.317 cfs, 1.2%), the City of Louisville (5.208 cfs, 20.9%) and the Coal Ridge Ditch Company (2.64 cfs, 10.6%). Under the decrees, new uses are required to leave a portion of the water right at the ditch. Therefore, some of their water right yields are put into plans which release back to the ditch. The remaining 67.3% is used for Dry Creek Davidson Ditch irrigation demand.

Uses of the changed water rights include:

- City of Lafayette deliveries to Baseline reservoir or direct use via the Lafayette Pipeline
  0.317 cfs, Available May 1<sup>st</sup> to September 15<sup>th</sup>, limited to 65.9AF annually
- City of Louisville direct use, exchanged to Louisville Pipeline
  5.208 cfs, Available April 1<sup>st</sup> to September 15<sup>th</sup>, limited to 57.0 AF annually
- Coal Ridge Ditch Company Diversion At the Lower Boulder Ditch Headgate
  o 3.872 cfs, Available May 1<sup>st</sup> to September 15<sup>th</sup>, no limits

Remaining plan supplies are released to South Boulder Creek at the Dry Creek Headgate.

| Right ID        | Admin #    | Destination                                                                       | Account, Carrier, Return<br>Location (R), or % Split | Source        | Right<br>Type |
|-----------------|------------|-----------------------------------------------------------------------------------|------------------------------------------------------|---------------|---------------|
| 060569_CH.01    | 4869.00000 | 060569_CHT1                                                                       | 100%                                                 | 0600569_D.01  | 26            |
| 060569_CL.01-03 | 1.00000    |                                                                                   |                                                      | 060569_CHL1-3 | 47            |
| 060569_CH.02    | 4869.00001 | 060569_CHI1<br>060569_CH1<br>060569_CS1<br>060569_CH2<br>060569_CS2<br>060569_CH3 | 67.3%<br>1.1%<br>0.1%<br>17.2%<br>3.7%<br>10.6%      | 060569_CHT1   | 46            |
| 060569_CH.03    | 4869.00002 | DRY CREEK DAVIDSON<br>DITCH SYSTEM                                                | Dry Creek Carrier<br>(0600902_C)                     | 060569_CHI1   | 27            |

| Right ID     | Admin #    | Destination                              | Account, Carrier, Return<br>Location (R), or % Split                           | Source      | Right<br>Type |
|--------------|------------|------------------------------------------|--------------------------------------------------------------------------------|-------------|---------------|
|              |            | (0600569_D)                              |                                                                                |             |               |
| 060569_CH.04 | 4869.00002 | Baseline Res (0604173),<br>Account 1     | Dry Creek Carrier<br>(0600902_C)                                               | 060569_CH1  | 27            |
| 060569_CH.05 | 4869.00002 | Lafayette Indoor<br>Demand (06LAFFYT_I)  | Dry Creek Carrier<br>(0600902_C)<br>Baseline Res C to<br>Lafayette (0604173_C) | 060569_CH1  | 27            |
| 060569_CH.06 | 4869.00003 | Lafayette Outdoor<br>Demand (06LAFFYT_O) | Dry Creek Carrier<br>(0600902_C)<br>Baseline Res C to<br>Lafayette (0604173_C) | 060569_CH1  | 27            |
| 060569_CH.07 | 4869.00002 | Louisville Indoor<br>Demand (06LOUIS_I)  | LOUISVILLE PL<br>(0600598)                                                     | 060569_CH1  | 27            |
| 060569_CH.08 | 4869.00003 | Louisville Outdoor<br>Demand (06LOUIS_O) | LOUISVILLE PL<br>(0600598)                                                     | 060569_CH1  | 27            |
| 060569_CH.09 | 4869.00002 | Lower Boulder Ditch<br>(0600538_D)       |                                                                                | 060569_CH3  | 27            |
| 060569_CH.21 | 4869.00020 | Dry Creek Carrier<br>(0600902_C)         |                                                                                | 060569_CHT1 | 29            |
| 060569_CH.22 | 4869.00020 | Dry Creek Carrier<br>(0600902_C)         |                                                                                | 060569_CHI1 | 29            |
| 060569_CH.23 | 4869.00020 | Dry Creek Carrier<br>(0600902_C)         |                                                                                | 060569_CH1  | 29            |
| 060569_CH.24 | 4869.00020 | Dry Creek Carrier<br>(0600902_C)         |                                                                                | 060569_CS1  | 29            |
| 060569_CH.25 | 4869.00020 | Dry Creek Carrier<br>(0600902_C)         |                                                                                | 060569_CH2  | 29            |
| 060569_CH.26 | 4869.00020 | Dry Creek Carrier<br>(0600902_C)         |                                                                                | 060569_CS2  | 29            |
| 060569_CH.27 | 4869.00020 | Dry Creek Carrier<br>(0600902_C)         |                                                                                | 060569_CH3  | 29            |

# 5.10.6.12.9 Enterprise Ditch (0600576) Changed Rights

The 0600576.01 water right priority is stored in the (060576\_CHT1) accounting plan. Monthly and annual limits are set based on changes for individual users, see below. Enterprise Ditch 0600576.01 operations are presented in the table below. The changed water rights represented with these rules are decreed in cases for the City of Lafayette (80CW468, 90CW108), the City of Louisville (CA21299, 82CW305) and the Coal Ridge Ditch Company (CA10000)

Water right yield is split between City of Lafayette (0.41 cfs, 1.6%; 0.064 cfs, 0.3%), the City of Louisville (1.19 cfs, 4.7%; 1.294 cfs, 5.2%) and the Coal Ridge Ditch Company (3.872 cfs, 15.5%). Under the decrees, new uses are required to leave a portion of the water right at the ditch. Therefore, some of their water right yields are put into plans which release back to the ditch. All remaining water is released to the Enterprise Ditch off-channel irrigation system.

Uses of the changed water rights include:

- City of Lafayette deliveries to Baseline reservoir or direct use via the Lafayette Pipeline
  - o 0.41 cfs, Available May 1<sup>st</sup> to September 15<sup>th</sup>, limited to 84AF annually
  - o 0.064 cfs, Available May 1<sup>st</sup> to September 15<sup>th</sup>, limited to 13.2AF annually
- City of Louisville direct use, exchanged to Louisville Pipeline
  - o 1.19 cfs, Available April 1<sup>st</sup> to October 31st, limited to 56AF annually
  - o 1.294 cfs, Available April 1<sup>st</sup> to September 15<sup>th</sup>, limited to Apr 3AF, May 14AF, June 18AF, July 26AF, Aug 4AF, Sep 2AF, Annual: 45 AF
- Coal Ridge Ditch Company Diversion At the Lower Boulder Ditch Headgate
  - o 3.872 cfs, Available May 1<sup>st</sup> to September 15<sup>th</sup>, no limits

Remaining plan supplies are released to South Boulder Creek at the Dry Creek headgate.

| Right ID        | Admin #    | Destination                                                         | Account, Carrier, Return<br>Location (R), or % Split | Source        | Right<br>Type |
|-----------------|------------|---------------------------------------------------------------------|------------------------------------------------------|---------------|---------------|
| 060576_CH.01    | 5511.00000 | 060576_CHT1                                                         | 100%                                                 | 0600576.01    | 26            |
| 060576_CL.01-05 | 1.00000    |                                                                     |                                                      | 060576_CHL1-5 | 47            |
| 060576_CH.02    | 5511.00001 | 060576_CHI1<br>060576_CH1<br>060576_CH2<br>060576_CH3<br>060576_CS3 | 72.7%<br>1.6%<br>0.3%<br>3.9%<br>0.8%                | 060576_CHT1   | 46            |
|                 |            | 060576_CH4<br>060576_CS4<br>060576_CH5                              | 4.3%<br>0.9%<br>15.5%                                |               |               |
| 060576_CH.03    | 5511.00002 | ENTERPRISE DITCH<br>(0600576)                                       | Dry Creek Carrier<br>(0600902_C)                     | 060576_CHI1   | 27            |
| 060576_CH.04    | 5511.00002 | Baseline Res<br>(0604173), Account 1                                | Dry Creek Carrier<br>(0600902_C)                     | 060576_CHI1   | 27            |
| 060576_CH.05    | 5511.00002 | Baseline Res<br>(0604173), Account 1                                | Dry Creek Carrier<br>(0600902_C)                     | 060576_CHI2   | 27            |
| 060576_CH.06    | 5511.00002 | Louisville Indoor<br>Demand (06LOUIS_I)                             | LOUISVILLE PL<br>(0600598)                           | 060576_CH3    | 28            |
| 060576_CH.07    | 5511.00003 | Louisville Outdoor<br>Demand (06LOUIS_O)                            | LOUISVILLE PL<br>(0600598)                           | 060576_CH3    | 28            |
| 060576_CH.08    | 5511.00002 | Louisville Indoor<br>Demand (06LOUIS_I)                             | LOUISVILLE PL<br>(0600598)                           | 060576_CH4    | 28            |
| 060576_CH.09    | 5511.00003 | Louisville Outdoor<br>Demand (06LOUIS_O)                            | LOUISVILLE PL<br>(0600598)                           | 060576_CH4    | 28            |
| 060576_CH.10    | 5511.00002 | Lower Boulder Ditch<br>(0600538_D)                                  |                                                      | 060576_CH5    | 27            |
| 060576_CH.21    | 5511.00020 | Dry Creek Carrier<br>(0600902_C)                                    |                                                      | 060576_CHT1   | 29            |

| Right ID     | Admin #    | Destination                      | Account, Carrier, Return<br>Location (R), or % Split | Source      | Right<br>Type |
|--------------|------------|----------------------------------|------------------------------------------------------|-------------|---------------|
| 060576_CH.22 | 5511.00020 | Dry Creek Carrier<br>(0600902_C) |                                                      | 060576_CHI1 | 29            |
| 060576_CH.23 | 5511.00020 | Dry Creek Carrier<br>(0600902_C) |                                                      | 060576_CH1  | 29            |
| 060576_CH.24 | 5511.00020 | Dry Creek Carrier<br>(0600902_C) |                                                      | 060576_CH2  | 29            |
| 060576_CH.26 | 5511.00020 | Dry Creek Carrier<br>(0600902_C) |                                                      | 060576_CH3  | 29            |
| 060576_CH.27 | 5511.00020 | Dry Creek Carrier<br>(0600902_C) |                                                      | 060576_CS3  | 29            |
| 060576_CH.28 | 5511.00020 | Dry Creek Carrier<br>(0600902_C) |                                                      | 060576_CH4  | 29            |
| 060576_CH.29 | 5511.00020 | Dry Creek Carrier<br>(0600902_C) |                                                      | 060576_CS4  | 29            |
| 060576_CH.30 | 5511.00020 | Dry Creek Carrier<br>(0600902_C) |                                                      | 060576_CH5  | 29            |

### 5.10.6.12.10 Cottonwood No 2 Ditch (0600566) Changed Rights

The 0600566.01 water right priority is stored in the (060566\_CH1) accounting plan. Monthly and annual limits are set based on changes for individual users, see below. Cottonwood No. 2 Ditch 0600566.01 operations are presented in the table below. The changed water rights represented with these rules are decreed in cases for the City of Louisville (W9193, 99CW230).

Water right yield for the 4.8% changed is delivered to the City of Louisville. Under the decrees, new uses are required to leave a portion of the water right at the ditch. Therefore, some of their water right yields are put into plans which release back to the ditch. The 95.2% remaining water is released to the Cottonwood No. 2 Ditch headgate on South Boulder Creek.

Uses of the changed water rights include:

- City of Louisville direct use, exchanged to Louisville Pipeline
  - o 1.163 cfs, Available May 1<sup>st</sup> to October 31<sup>st</sup>, subject to annual limit of 43.4AF
  - o 0.4 cfs, Available May 1<sup>st</sup> to October 31<sup>st</sup>, subject to annual limit of 36.9 AF

Remaining plan supplies are released to South Boulder Creek at the Dry Creek headgate.

| Right ID        | Admin #    | Destination | Account, Carrier, Return | Source            | Right |
|-----------------|------------|-------------|--------------------------|-------------------|-------|
|                 |            |             | Location (R), or % Split |                   | Туре  |
| 060566_CH.01    | 4853.00000 | 060566_CHT1 | 100%                     | 0600566.01        | 26    |
| 060566_CL.01-02 | 1.00000    |             |                          | Release Limit 1-2 | 47    |
|                 |            |             |                          | (060566_CHL1-     |       |
|                 |            |             |                          | 2)                |       |
| 060566_CH.02    | 4853.00001 | 060566_CHI1 | 95.2%                    | 060566_CHT1       | 46    |
|                 |            | 060566_CH1  | 2.9%                     |                   |       |
|                 |            | 060566_CS1  | 0.7%                     |                   |       |
|                 |            | 060566_CH2  | 1.0%                     |                   |       |

| Right ID     | Admin #    | Destination                              | Account, Carrier, Return<br>Location (R), or % Split | Source      | Right<br>Type |
|--------------|------------|------------------------------------------|------------------------------------------------------|-------------|---------------|
|              |            | 060566_CS2                               | 0.2%                                                 |             |               |
| 060566_CH.03 | 4853.00002 | COTTONWOOD DITCH 2<br>(0600566)          | Dry Creek Carrier<br>(0600902_C)                     | 060566_CHI1 | 27            |
| 060566_CH.04 | 4853.00002 | Louisville Indoor<br>Demand (06LOUIS_I)  | LOUISVILLE PL<br>(0600598)                           | 060566_CH1  | 28            |
| 060566_CH.05 | 4853.00003 | Louisville Outdoor<br>Demand (06LOUIS_O) | LOUISVILLE PL<br>(0600598)                           | 060566_CH1  | 28            |
| 060566_CH.06 | 4853.00002 | Louisville Indoor<br>Demand (06LOUIS_I)  | LOUISVILLE PL<br>(0600598)                           | 060566_CH2  | 28            |
| 060566_CH.07 | 4853.00003 | Louisville Outdoor<br>Demand (06LOUIS_O) | LOUISVILLE PL<br>(0600598)                           | 060566_CH2  | 28            |
| 060566_CH.21 | 4853.00020 | Dry Creek Carrier<br>(0600902_C)         |                                                      | 060566_CHT1 | 29            |
| 060566_CH.22 | 4853.00020 | Dry Creek Carrier<br>(0600902_C)         |                                                      | 060566_CHI1 | 29            |
| 060566_CH.23 | 4853.00020 | Dry Creek Carrier<br>(0600902_C)         |                                                      | 060566_CH1  | 29            |
| 060566_CH.24 | 4853.00020 | Dry Creek Carrier<br>(0600902_C)         |                                                      | 060566_CS1  | 29            |
| 060566_CH.25 | 4853.00020 | Dry Creek Carrier<br>(0600902_C)         |                                                      | 060566_CH2  | 29            |
| 060566_CH.26 | 4853.00020 | Dry Creek Carrier<br>(0600902_C)         |                                                      | 060566_CS2  | 29            |

### 5.10.6.12.11 McGinn Ditch (0600586) Changed Rights

The pro rata portion of 0600586.01 water right priority is stored in the (060586\_CH1) accounting plan. Monthly and annual limits are set based on changes for individual users, see below. McGinn Ditch 0600586.01 operations are presented in the table below. The changed water rights represented with these rules are decreed in cases for the City of Louisville (87CW327).

Water right yield is delivered to the City of Louisville.

Uses of the changed water rights include:

- City of Louisville direct use, exchanged to Louisville Pipeline
  - o 1.163 cfs, Available April 1<sup>st</sup> to October 31<sup>st</sup>, subject to annual limit of 199.4AF

| Remaining plan supplies released to the McGinn Ditch headgate | 2. |
|---------------------------------------------------------------|----|
|---------------------------------------------------------------|----|

| Right ID     | Admin #    | Destination                             | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|--------------|------------|-----------------------------------------|------------------------------------------------------|------------|---------------|
| 060586_CH.01 | 3774.00000 | 060586_CH1                              | 13.4%                                                | 0600586.01 | 26            |
| 060586_CH.02 | 3774.00001 | Louisville Indoor<br>Demand (06LOUIS_I) | LOUISVILLE PL<br>(0600598)                           | 060586_CH1 | 28            |

| Right ID     | Admin #    | Destination                              | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|--------------|------------|------------------------------------------|------------------------------------------------------|------------|---------------|
| 060586_CH.03 | 3774.00002 | Louisville Outdoor<br>Demand (06LOUIS_O) | LOUISVILLE PL<br>(0600598)                           | 060586_CH1 | 28            |
| 060586_CH.06 | 3774.00020 | MCGINN DITCH<br>(0600586)                |                                                      | 060586_CH1 | 29            |

### 5.10.6.12.12 Marshalville Ditch (0600585) Changed Rights

The pro rata portion of 0600585.01 water right priority is stored in the (060585\_CH1) accounting plan. Monthly and annual limits are set based on changes for individual users, see below. Marshalville Ditch 0600585.01 operations are presented in the table below. The changed water rights represented with these rules are decreed in cases for the City of Louisville (87CW327).

Water right yield is delivered to the City of Louisville.

Uses of the changed water rights include:

- City of Louisville direct use, exchanged to Louisville Pipeline
  - o 1.163 cfs, Available April 1<sup>st</sup> to October 31<sup>st</sup>, subject to annual limit of 91.4 AF

| Right ID     | Admin #    | Destination                              | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|--------------|------------|------------------------------------------|------------------------------------------------------|------------|---------------|
| 060585_CH.01 | 5631.00000 | 060585_CH1                               | 6.4%                                                 | 0600585.01 | 26            |
| 060585_CH.02 | 5631.00001 | Louisville Indoor<br>Demand (06LOUIS_I)  | LOUISVILLE PL<br>(0600598)                           | 060585_CH1 | 28            |
| 060585_CH.03 | 5631.00002 | Louisville Outdoor<br>Demand (06LOUIS_O) | LOUISVILLE PL<br>(0600598)                           | 060585_CH1 | 28            |
| 060585_CH.04 | 5631.00020 | MARSHALVILLE DITCH<br>(0600585)          |                                                      | 060585_CH1 | 29            |

Remaining plan supplies are released to the Marshalville Ditch headgate.

### 5.10.6.12.13 East Boulder Ditch (0600575) Changed Rights

The pro rata portion of 0600575.01 water right priority is stored in the (060575\_CH1) accounting plan. Monthly and annual limits are set based on changes for individual users, see below. East Boulder Ditch 0600575.01 operations are presented in the table below. The changed water rights represented with these rules are decreed in cases for the City of Louisville (82CW305).

Water right yield for the 1.7% changed is delivered to the City of Louisville. Under the decree, new uses are required to leave a portion of the water right at the ditch. Therefore, some of the water right yield is put into a plan which release back to the ditch.

Uses of the changed water rights include:

• City of Louisville direct use, exchanged to Louisville Pipeline

1.163 cfs, Available April 1<sup>st</sup> to October 31<sup>st</sup>, subject to limits of Apr 2 AF, May 8AF, June 11AF, July 11AF, Aug 8AF, Sep 3AF, Oct 1, Annual 41 AF

| Right ID        | Admin #     | Destination                                            | Account, Carrier, Return<br>Location (R), or % Split    | Source                                   | Right<br>Type |
|-----------------|-------------|--------------------------------------------------------|---------------------------------------------------------|------------------------------------------|---------------|
| 060575_CH.01    | 4474.00000  | 060575_CHT1                                            | 89.7%                                                   | 0600575.01                               | 26            |
| 060575_CL.01-02 | 1.00000     |                                                        |                                                         | Release Limit 1-2<br>(060575_CHL1-<br>2) | 47            |
| 060575_CH.02    | 4474.00001  | 060575_CH1<br>060575_CS1<br>060575_CH2                 | 1.6%<br>0.3%<br>98.1%                                   | 060575_CHT1                              | 46            |
| 060575_CH.03    | 4474.00002  | Louisville Indoor<br>Demand (06LOUIS_I)                | LOUISVILLE PL<br>(0600598)                              | 060575_CH1                               | 28            |
| 060575_CH.04    | 4474.00003  | Louisville Outdoor<br>Demand (06LOUIS_O)               | LOUISVILLE PL<br>(0600598)                              | 060575_CH1                               | 28            |
| 060575_CH.05    | 4474.00002  | Valmont Combined<br>Reservoir (06_VALMT),<br>Account 1 | COMBINED VALMONT<br>RESERVOIR DIVERSION<br>(06_VALMT_C) | 060575_CH2                               | 27            |
| 060575_CH.06    | 4474.00020  | EAST BOULDER DITCH<br>(0600575)                        |                                                         | 060575_CHT1                              | 29            |
| 060575_CH.07    | 4474.00020  | EAST BOULDER DITCH<br>(0600575)                        |                                                         | 060575_CH1                               | 29            |
| 060575_CH.08    | 4474.00020  | EAST BOULDER DITCH<br>(0600575)                        |                                                         | 060575_CS1                               | 29            |
| 060575_CH.09    | 40740.38103 | EAST BOULDER DITCH<br>(0600575)                        |                                                         | 060575_CH2                               | 29            |

Remaining plan supplies released to the East Boulder Ditch headgate.

### 5.10.6.12.14 Community Ditch (0600564\_D) Changed Rights

The 0600564\_D.01 water right priority is stored in the (060564\_CHT1) accounting plan. This right is for South Boulder Coal Creek Ditch, though it is part of the Community Ditch diversion system. Monthly and annual limits are set based on changes for individual users, see below. South Boulder Coal Creek Ditch 0600564\_D.05 operations are presented in the table below. The changed water rights represented with these rules are decreed in cases for the City of Louisville (CA21299, CA10232).

Water right yield for this ditch is changed for the City of Louisville (6.78 cfs, 12.6%). Under the decree, new uses are required to leave a portion of the water right at the ditch. Therefore, some of the water right yield is put into a plan which release back to the ditch. All remaining water is released to the Community Ditch irrigation demands.

Uses of the changed water rights include:

- City of Louisville direct use, exchanged to Louisville Pipeline
  - o 6.78 cfs, Available April 1<sup>st</sup> to October 31<sup>st</sup>, subject to 283 AF annually

| Right ID     | Admin #    | Destination                                          | Account, Carrier, Return<br>Location (R), or % Split | Source       | Right<br>Type |
|--------------|------------|------------------------------------------------------|------------------------------------------------------|--------------|---------------|
| 060564_CH.01 | 8188.00000 | 060564_CHT1                                          | 100%                                                 | 0600564_D.05 | 26            |
| 060564_CL.01 | 1.00000    |                                                      |                                                      | 060564_CHL1  | 47            |
| 060564_CH.02 | 8188.00001 | 060564_CHI1<br>060564_CH1<br>060564_CS1              | 87.4%<br>10.5%<br>2.1%                               | 060564_CHT1  | 46            |
| 060564_CH.03 | 8188.00002 | Community Ditch<br>Irrigation Demands<br>(0600564_1) | Community Ditch<br>Headgate (0600564_D)              | 060564_CHI1  | 27            |
| 060564_CH.04 | 8188.00002 | Louisville Indoor<br>Demand (06LOUIS_I)              | LOUISVILLE PL<br>(0600598)                           | 060564_CH1   | 28            |
| 060564_CH.05 | 8188.00003 | Louisville Outdoor<br>Demand (06LOUIS_O)             | LOUISVILLE PL<br>(0600598)                           | 060564_CH1   | 28            |
| 060564_CH.21 | 8188.00020 | South Boulder Coal<br>Creek Ditch (0600564)          |                                                      | 060564_CHT1  | 29            |
| 060564_CH.22 | 8188.00020 | South Boulder Coal<br>Creek Ditch (0600564)          |                                                      | 060564_CHI1  | 29            |
| 060564_CH.23 | 8188.00020 | South Boulder Coal<br>Creek Ditch (0600564)          |                                                      | 060564_CH1   | 29            |
| 060564_CH.24 | 8188.00020 | South Boulder Coal<br>Creek Ditch (0600564)          |                                                      | 060564_CS1   | 29            |

Remaining plan supplies are released to the Community Ditch headgate.

# 5.10.6.12.15 Anderson Ditch (0600501) Changed Rights

The 0600501.01 water right priority is stored in the (060501\_CHT1) accounting plan. Monthly and annual limits are set based on changes for individual users, see below. Anderson Ditch 0600501.01 operations are presented in the table below. The changed water rights represented with these rules are decreed in cases for the City of Boulder and Middle Boulder Creek Instream Flows (Case Nos. CA8407, 10518, 15012, 90CW0193).

Water right yield for the 59% changed is delivered to the City of Boulder and the minimum streamflow segments A, B and C. Under the decree, new uses are required to leave a portion of the water right at the ditch. Therefore, some of the water right yield is put into a plan which release back to the ditch. 44% of the water right is released to irrigation demand.

Uses of the changed water rights include:

- City of Boulder direct use, exchanged to Boulder City Pipeline or Barker Pipeline
  - 1.81 cfs, available May 1 to Sep 30<sup>th</sup>, subject to volumetric limits of May 49.8 AF, June 100 AF, July 100.2 AF, Aug 75 AF, Sep 55.3 AF, Annual 380 AF.
  - o 12.328 cfs, available May 1 to Sep 30<sup>th</sup>, not subject to volumetric limits
- City of Boulder direct use, exchanged to Boulder City Pipeline or Barker Pipeline but available at minimum streamflow segments A, B and C on Middle Boulder Creek

0.62 cfs, available May 1 to Sep 30<sup>th</sup>, subject to volumetric limits of May 16 AF, Jun 32.7 AF, Jul 32.6 AF, Aug 24.6 AF, Sep 17.9 AF, Ann 124 AF

Remaining plan supplies are released to the Anderson Ditch headgate.

| Right ID        | Admin #    | Destination                                           | Account, Carrier, Return<br>Location (R), or % Split | Source                                   | Right<br>Type |
|-----------------|------------|-------------------------------------------------------|------------------------------------------------------|------------------------------------------|---------------|
| 060501_CH.01    | 3927.00000 | 060501_CHT1                                           | 100%                                                 | 0600501.01                               | 26            |
| 060501_CL.01-03 | 1.00000    |                                                       |                                                      | Release Limit 1-3<br>(060501_CHL1-<br>3) | 47            |
| 060501_CH.02    | 3927.00001 | 060501_CHI1<br>060501_CH1<br>060501_CH2<br>060501_CH3 | 44.0%<br>6.8%<br>46.8%<br>2.4%                       | 060501_CHT1                              | 46            |
| 060501_CH.03    | 3927.00002 | ANDERSON DITCH – IRR<br>(0600501_I)                   | ANDERSON DITCH<br>(0600501)                          | 060501_CHI1                              | 27            |
| 060501_CH.04    | 3927.00002 | Boulder Indoor Use<br>(06BOULDER_I)                   | BOULDER CITY PL<br>(0600599)                         | 060501_CH1                               | 28            |
| 060501_CH.05    | 3927.00002 | Boulder Outdoor Use<br>(06BOULDER_O)                  | BOULDER CITY PL<br>(0600599)                         | 060501_CH1                               | 28            |
| 060501_CH.06    | 3927.00002 | Boulder Indoor Use<br>(06BOULDER_I)                   | BOULDER CITY PL<br>(0600599)                         | 060501_CH2                               | 28            |
| 060501_CH.07    | 3927.00002 | Boulder Outdoor Use<br>(06BOULDER_O)                  | BOULDER CITY PL<br>(0600599)                         | 060501_CH2                               | 28            |
| 060501_CH.08    | 3927.00003 | ISF North Boulder Creek<br>(0602125)                  |                                                      | 060501_CH3                               | 28            |
| 060501_CH.09    | 3927.00004 | BOULDER CREEK MSF<br>SEGMENT B UP<br>(0602124 U)      |                                                      | 060501_CH3                               | 28            |
| 060501_CH.10    | 3927.00005 | BOULDER CREEK MSF<br>SEGMENT B LOW<br>(0602124_L)     |                                                      | 060501_CH3                               | 28            |
| 060501_CH.11    | 3927.00006 | BOULDER CREEK MSF<br>SEGMENT C UPPER<br>(0602100)     |                                                      | 060501_CH3                               | 28            |
| 060501_CH.12    | 3927.00010 | Boulder Indoor Use<br>(06BOULDER_I)                   | BOULDER PL 3 AT<br>BARKER R (0600943)                | 060501_CH3                               | 28            |
| 060501_CH.13    | 3927.00010 | Boulder Outdoor Use<br>(06BOULDER_O)                  | BOULDER PL 3 AT<br>BARKER R (0600943)                | 060501_CH3                               | 28            |
| 060501_CH.14    | 3927.00011 | Boulder Indoor Use<br>(06BOULDER_I)                   | BOULDER CITY PL<br>(0600599)                         | 060501_CH3                               | 28            |
| 060501_CH.15    | 3927.00011 | Boulder Outdoor Use<br>(06BOULDER_O)                  | BOULDER CITY PL<br>(0600599)                         | 060501_CH3                               | 28            |
| 060501_CH.21    | 3927.00020 | ANDERSON DITCH<br>(0600501)                           |                                                      | 060501_CHT1                              | 29            |
| 060501_CH.22    | 3927.00020 | ANDERSON DITCH<br>(0600501)                           |                                                      | 060501_CHI1                              | 29            |
| 060501_CH.23    | 3927.00020 | ANDERSON DITCH<br>(0600501)                           |                                                      | 060501_CH1                               | 29            |

| Right ID     | Admin #    | Destination    | Account, Carrier, Return<br>Location (R), or % Split | Source      | Right<br>Type |
|--------------|------------|----------------|------------------------------------------------------|-------------|---------------|
| 060501_CH.24 | 3927.00020 | ANDERSON DITCH |                                                      | 060501_CH2  | 29            |
|              |            | (0600501)      |                                                      |             |               |
| 060501_CH.25 | 3927.00020 | ANDERSON DITCH |                                                      | 060501_CH3  | 29            |
|              |            | (0600501)      |                                                      |             |               |
| 060501_CH.21 | 3927.00020 | ANDERSON DITCH |                                                      | 060501_CHT1 | 29            |
|              |            | (0600501)      |                                                      |             |               |

### 5.10.6.12.16 Farmers Ditch (0600525) Changed Rights

The pro rata portion of 0600525.01 water right priority is stored in the (060525\_CHT1) accounting plan. Monthly and annual limits are set based on changes for individual users, see below. All Farmers Ditch 0600525.01 operations are represented using 17 operating rules. The changed water rights represented with these rules are decreed in cases for the City of Boulder, the Middle Boulder Creek Minimum Streamflow (MSF) Segment C and the City of Nederland (Case Nos. W7569, W7570, W8520-77, CA10518, W8407, W8485, CA15012, and 90CW0193).

Water right yield is split between the Middle Boulder Creek minimum streamflow segment C (13.52, 46.8%), the City of Boulder (15.13, 52.4%), and the City of Nederland (0.229 cfs, 0.8%). The water available to the MSF Segment C is also available for diversion by the City of Boulder in the cases where there is a minimum flow of 15cfs in MSF Segment C. Under the decrees, new uses are required to leave a portion of the water right at the ditch. Therefore, some of the water right yields are put into a plan which release back to the ditch.

Uses of the changed water rights include:

- MSF Segment C on Middle Boulder Creek but also available for City of Boulder direct use, exchanged to Boulder City Pipeline or Barker Pipeline.
  - o 13.52cfs, available May 1<sup>st</sup> to September 30<sup>th</sup>, subject to limits of: May 396 AF, June 725 AF, July 748 AF, Aug 655 AF, Sep 284 AF, Annual 2165 AF.
- City of Boulder direct use, exchanged to Boulder City Pipeline or Barker Pipeline
  - o 15.13cfs, available May 1<sup>st</sup> to September 30<sup>th</sup>, not subject to any volumetric limits.
- City of Nederland direct use, exchanged to Nederland's Municipal Diversion.
  - 0.229cfs, available April 10<sup>th</sup> to Oct 31<sup>st</sup>, subject to limits of: Apr 3.51 AF, May 6.94 AF, June 12.25, July 14.09, Aug 13.22, Sep 9.74, Oct 2.54, Annual 39.6 AF

| Right ID        | Admin #    | Destination              | Account, Carrier, Return<br>Location (R), or % Split | Source                                     | Right<br>Type |
|-----------------|------------|--------------------------|------------------------------------------------------|--------------------------------------------|---------------|
| 060525_CH.01    | 4657.00000 | 060525_CHT1              | 42.5%                                                | 0600525.01                                 | 26            |
| 060525_CL.01-02 | 1.00000    |                          |                                                      | Release Limit 1-2<br>(060525_CL.01-<br>02) | 47            |
| 060525_CH.02    | 4657.00001 | 060525_CH1<br>060525_CS1 | 42.1%<br>4.7%                                        | 060525_CHT1                                | 46            |

Remaining plan supplies are released to the Farmers Ditch headgate.

| Right ID      | Admin #    | Destination         | Account, Carrier, Return | Source      | Right |
|---------------|------------|---------------------|--------------------------|-------------|-------|
|               |            | 060525 CH2          |                          |             | Type  |
|               |            |                     | 2 7%                     |             |       |
| 060525 CH 04  | 4657 00002 | BOULDER CREEK MSE   | 2.770                    | 060525 CH1  | 28    |
| 000525_01.04  | 4037.00002 | SEGMENT C LIPPER    |                          | 000525_0111 | 20    |
|               |            | (0602100)           |                          |             |       |
| 060525 CH 05  | 4657.00004 | Boulder Indoor Lise | EARMERS DITCH            | 060525 CH1  | 27    |
| 000525_01.05  | 4037.00004 |                     | (0600525)                | 000525_0111 | 27    |
| 060525 CH 06  | 4657 00004 | Boulder Outdoor Use |                          | 060525 CH1  | 27    |
| 000323_011.00 | 4037.00004 |                     | (0600525)                | 000525_CIT  | 27    |
| 060525 CH 07  | 4657 00002 | Boulder Indoor Lise |                          | 060525 CH2  | 28    |
| 000020_011.07 | 4037.00002 |                     | BARKER R (0600943)       | 000323_0112 | 20    |
| 060525 CH 08  | 4657 00002 | Boulder Outdoor Use |                          | 060525 CH2  | 28    |
| 000020_011.00 | 1037.00002 | (06BOULDER O)       | BARKER R (0600943)       | 000323_0112 | 20    |
| 060525 CH.09  | 4657.00003 | Boulder Indoor Use  | BOULDER CITY PL          | 060525 CH2  | 28    |
|               |            | (06BOULDER I)       | (0600599)                |             |       |
| 060525 CH.10  | 4657.00003 | Boulder Outdoor Use | BOULDER CITY PL          | 060525 CH2  | 28    |
| _             |            | (06BOULDER O)       | (0600599)                | _           |       |
| 060525 CH.21  | 4657.00020 | FARMERS DITCH       |                          | 060525 CHT1 | 29    |
| _             |            | (0600525)           |                          | _           |       |
| 060525_CH.22  | 4657.00020 | FARMERS DITCH       |                          | 060525_CH1  | 29    |
|               |            | (0600525)           |                          | _           |       |
| 060525_CH.23  | 4657.00020 | FARMERS DITCH       |                          | 060525_CS1  | 29    |
|               |            | (0600525)           |                          |             |       |
| 060525_CH.24  | 4657.00020 | FARMERS DITCH       |                          | 060525_CH2  | 29    |
|               |            | (0600525)           |                          |             |       |
| 060525_CH.25  | 4657.00020 | FARMERS DITCH       |                          | 060525_CS2  | 29    |
|               |            | (0600525)           |                          |             |       |

# 5.10.6.12.17 Smith Goss Ditch (0600554) Changed Rights

The pro rata portion of 0600554.01 water right priority is stored in the (060554\_CHT1) accounting plan. Monthly and annual limits are set based on changes for individual users, see below. All Smith Goss Ditch 0600554.01 operations are represented using 18 operating rules. The changed water rights represented with these rules are decreed in cases for the City of Boulder and the Middle Boulder Creek Minimum Streamflow (MSF) Segments A, B and C (Cases: W7569, W7570, W8520-77, 90CW193.).

Water right yield is available to the Middle Boulder Creek minimum streamflow segments A, B and C and the City of Boulder. The water available to the MSF Segments is also available for diversion by the City of Boulder in the cases where the streamflow requirements for each MSF are met. Under the decrees, new uses are required to leave a portion of the water right at the ditch. Therefore, some of the water right yields are put into a plan which release back to the ditch.

Uses of the changed water rights include:

• MSF Segments A, B and C on Middle Boulder Creek but also available for City of Boulder direct use, exchanged to Boulder City Pipeline or Barker Pipeline.

o 0.45 cfs available May 1 to Oct 15th, not subject to additional volumetric limits.

| Remaining plan | Remaining plan supplies are released to the Smith Goss Ditch headgate. |             |                          |        |  |  |  |  |
|----------------|------------------------------------------------------------------------|-------------|--------------------------|--------|--|--|--|--|
| Right ID       | Admin #                                                                | Destination | Account, Carrier, Return | Source |  |  |  |  |

maining plan supplies are released to the Smith Case Ditch headget п

| Right ID     | Admin #    | Destination                                             | Account, Carrier, Return<br>Location (R), or % Split | Source                         | Right<br>Type |
|--------------|------------|---------------------------------------------------------|------------------------------------------------------|--------------------------------|---------------|
| 060554_CH.01 | 3606.00000 | 060554_CHT1                                             | 1.5%                                                 | 0600554.01                     | 26            |
| 060554_CL.01 | 1.00000    |                                                         |                                                      | Release Limit<br>(060554_CHL1) | 47            |
| 060554_CH.02 | 3606.00001 | 060554_CH1<br>060554_CS1<br>060554_CH2<br>060554_CS2    | 80%<br>8.9%<br>10.5%<br>0.6%                         | 060554_CHT1                    | 46            |
| 060554_CH.04 | 3606.00004 | Boulder Indoor Use<br>(06BOULDER_I)                     | BOULDER PL 3 AT<br>BARKER R (0600943)                | 060554_CH1                     | 28            |
| 060554_CH.05 | 3606.00004 | Boulder Outdoor Use<br>(06BOULDER_O)                    | BOULDER PL 3 AT<br>BARKER R (0600943)                | 060554_CH1                     | 28            |
| 060554_CH.06 | 3606.00005 | Boulder Indoor Use<br>(06BOULDER_I)                     | BOULDER CITY PL<br>(0600599)                         | 060554_CH1                     | 28            |
| 060554_CH.07 | 3606.00005 | Boulder Outdoor Use<br>(06BOULDER_O)                    | BOULDER CITY PL<br>(0600599)                         | 060554_CH1                     | 28            |
| 060554_CH.08 | 3606.00005 | North Boulder Creek<br>ISF (0602125)                    |                                                      | 060554_CH2                     | 28            |
| 060554_CH.09 | 3606.00004 | BOULDER CREEK MSF<br>SEGMENT B UP<br>(0602124_U)        |                                                      | 060554_CH2                     | 28            |
| 060554_CH.10 | 3606.00003 | BOULDER CREEK MSF<br>SEGMENT B LOWER<br>MID (0602124_L) |                                                      | 060554_CH2                     | 28            |
| 060554_CH.11 | 3606.00002 | BOULDER CREEK MSF<br>SEGMENT C UPPER<br>(0602100)       |                                                      | 060554_CH2                     | 28            |
| 060554_CH.12 | 3606.00004 | Boulder Indoor Use<br>(06BOULDER_I)                     | BOULDER PL 3 AT<br>BARKER R (0600943)                | 060554_CH2                     | 28            |
| 060554_CH.13 | 3606.00004 | Boulder Outdoor Use<br>(06BOULDER_O)                    | BOULDER PL 3 AT<br>BARKER R (0600943)                | 060554_CH2                     | 28            |
| 060554_CH.14 | 3606.00005 | Boulder Indoor Use<br>(06BOULDER_I)                     | BOULDER CITY PL<br>(0600599)                         | 060554_CH2                     | 28            |
| 060554_CH.15 | 3606.00005 | Boulder Outdoor Use<br>(06BOULDER_O)                    | BOULDER CITY PL<br>(0600599)                         | 060554_CH2                     | 28            |
| 060554_CH.21 | 3606.00020 | SMITH GOSS DITCH<br>(0600554)                           |                                                      | 060554_CHT1                    | 29            |
| 060554_CH.23 | 3606.00020 | SMITH GOSS DITCH<br>(0600554)                           |                                                      | 060554_CH1                     | 29            |
| 060554_CH.24 | 3606.00020 | SMITH GOSS DITCH<br>(0600554)                           |                                                      | 060554_CS1                     | 29            |
| 060554_CH.25 | 3606.00020 | SMITH GOSS DITCH<br>(0600554)                           |                                                      | 060554_CH2                     | 29            |

| Right ID     | Admin #    | Destination                   | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|--------------|------------|-------------------------------|------------------------------------------------------|------------|---------------|
| 060554_CH.26 | 3606.00020 | SMITH GOSS DITCH<br>(0600554) |                                                      | 060554_CS2 | 29            |

#### 5.10.6.12.18 McCarty Ditch (0600542) Changed Rights

The pro rata portion of 0600542.01 water right priority is stored in the (060542\_CH1) accounting plan. Monthly and annual limits are set based on changes for individual users, see below. McCarty Ditch 0600542.01 operations are presented in the table below. The changed water rights represented with these rules are decreed in cases for the City of Boulder and the Middle Boulder Creek Minimum Streamflow (MSF) Segments A, B and C (Cases: W7569, W7570, W8520-77, 90CW193.).

Water right yield is available to the Middle Boulder Creek minimum streamflow segments A, B and C and the City of Boulder. The water available to the MSF Segments is also available for diversion by the City of Boulder in the cases where the streamflow requirements for each MSF are met.

Uses of the changed water rights include:

- MSF Segments A, B and C on Middle Boulder Creek but also available for City of Boulder direct use, exchanged to Boulder City Pipeline or Barker Pipeline.
  - o 0.64 cfs available May 1 to Sep 30th, subject to 194.2 AF annual limits

| Right ID     | Admin #    | Destination                                             | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|--------------|------------|---------------------------------------------------------|------------------------------------------------------|------------|---------------|
| 060542_CH.01 | 4535.00000 | 060542_CH1                                              | 39.2%                                                | 0600542.01 | 26            |
| 060542_CH.06 | 4535.00005 | North Boulder Creek<br>ISF (0602125)                    |                                                      | 060542_CH1 | 28            |
| 060542_CH.07 | 4535.00004 | BOULDER CREEK MSF<br>SEGMENT B UP<br>(0602124_U)        |                                                      | 060542_CH1 | 28            |
| 060542_CH.08 | 4535.00003 | BOULDER CREEK MSF<br>SEGMENT B LOWER<br>MID (0602124_L) |                                                      | 060542_CH1 | 28            |
| 060542_CH.09 | 4535.00002 | BOULDER CREEK MSF<br>SEGMENT C UPPER<br>(0602100)       |                                                      | 060542_CH1 | 28            |
| 060542_CH.10 | 4535.00004 | Boulder Indoor Use<br>(06BOULDER_I)                     | BOULDER PL 3 AT<br>BARKER R (0600943)                | 060542_CH1 | 28            |
| 060542_CH.11 | 4535.00004 | Boulder Outdoor Use<br>(06BOULDER_O)                    | BOULDER PL 3 AT<br>BARKER R (0600943)                | 060542_CH1 | 28            |
| 060542_CH.12 | 4535.00005 | Boulder Indoor Use                                      | BOULDER CITY PL                                      | 060542_CH1 | 28            |

Remaining plan supplies are released to the McCarty Ditch headgate.

| Right ID     | Admin #    | Destination                          | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|--------------|------------|--------------------------------------|------------------------------------------------------|------------|---------------|
|              |            | (06BOULDER_I)                        | (0600599)                                            |            |               |
| 060542_CH.13 | 4535.00005 | Boulder Outdoor Use<br>(06BOULDER_O) | BOULDER CITY PL<br>(0600599)                         | 060542_CH1 | 28            |
| 060542_CH.23 | 4535.00020 | MC CARTY DITCH<br>(0600542)          |                                                      | 060542_CH1 | 29            |

# 5.10.6.12.19 Harden Ditch (0600530\_D) Changed Rights

The 0600599.03 water right is entirely water from the Harden Ditch (0600530) that is not being modeled and has been fully moved to the Boulder City Pipeline. The pro rata portion of 0600599.03 water right priority is stored in the (060530\_CH1) accounting plan. Monthly and annual limits are set based on changes for individual users, see below. Harden Ditch 0600599.03 operations are presented in the table below. The changed water rights represented with these rules are decreed in cases for the City of Boulder and the Middle Boulder Creek Minimum Streamflow (MSF) Segments A, B and C (Case No. 90CW0193).

Water right yield is available to the Middle Boulder Creek minimum streamflow segments A, B and C and the City of Boulder. The water available to the MSF Segments is also available for diversion by the City of Boulder in the cases where the streamflow requirements for each MSF are met.

Uses of the changed water rights include:

• MSF Segments A, B and C on Middle Boulder Creek but also available for City of Boulder direct use at the Boulder City Pipeline.

o 1.8 cfs available May 1 to Sep 30th, not subject to additional volumetric limits. Remaining plan supplies are released to the Dry Creek Carrier headgate.

The **0600599.06** water right is stored in the (060599\_CHT1) accounting plan. Monthly and annual limits are set based on changes for individual users, see below. Harden Ditch 0600599.06 operations are presented in the table below. The changed water rights represented with these rules are decreed in cases for the City of Boulder and the Middle Boulder Creek Minimum Streamflow (MSF) Segments B and C (Case No. 90CW0193).

Water right yield is available to the Middle Boulder Creek minimum streamflow segments B and C and the City of Boulder. The water available to the MSF Segments is also available for diversion by the City of Boulder in the cases where the streamflow requirements for each MSF are met.

Uses of the changed water rights include:

• MSF Segments B and C on Middle Boulder Creek but also available for City of Boulder direct use at the Boulder City Pipeline.

o 1.5 cfs available November 1 to April 30th, not subject to additional volumetric limits. Plan supplies are delivered to the Boulder City Indoor and Outdoor demands by the Boulder City Pipeline.

| Right ID     | Admin #     | Destination                                             | Account, Carrier, Return     | Source      | Right<br>Type |
|--------------|-------------|---------------------------------------------------------|------------------------------|-------------|---------------|
| 060530_CH.01 | 4535.00000  | 060530_CH1                                              | 95%                          | 0600599.03  | 26            |
| 060530_CH.06 | 4535.00005  | North Boulder Creek<br>ISF (0602125)                    |                              | 060530_CH1  | 28            |
| 060530_CH.07 | 4535.00004  | BOULDER CREEK MSF<br>SEGMENT B UP<br>(0602124_U)        |                              | 060530_CH1  | 27            |
| 060530_CH.08 | 4535.00003  | BOULDER CREEK MSF<br>SEGMENT B LOWER<br>MID (0602124_L) |                              | 060530_CH1  | 27            |
| 060530_CH.09 | 4535.00002  | BOULDER CREEK MSF<br>SEGMENT C UPPER<br>(0602100)       |                              | 060530_CH1  | 27            |
| 060530_CH.10 | 4535.00004  | Boulder Indoor Use<br>(06BOULDER_I)                     | BOULDER CITY PL<br>(0600599) | 060530_CH1  | 27            |
| 060530_CH.11 | 4535.00004  | Boulder Outdoor Use<br>(06BOULDER_O)                    | BOULDER CITY PL<br>(0600599) | 060530_CH1  | 27            |
| 060530_CH.23 | 4535.00020  | Dry Creek Carrier<br>(0600902_C)                        |                              | 060530_CH1  | 29            |
| 060599_CH.01 | 19762.00000 | 060599_CHT1                                             | 100%                         | 0600599.06  | 26            |
| 060599_CL.01 | 1.00000     |                                                         |                              | 060599_CHL1 | 47            |
| 060599_CH.02 | 19762.00001 | 060599_CH1<br>060599_CH2                                | 92.5%<br>7.5%                | 060599_CHT1 | 46            |
| 060599_CH.03 | 19762.00007 | Boulder Indoor Use<br>(06BOULDER_I)                     | BOULDER CITY PL<br>(0600599) | 060599_CH1  | 27            |
| 060599_CH.04 | 19762.00008 | Boulder Outdoor Use<br>(06BOULDER_O)                    | BOULDER CITY PL<br>(0600599) | 060599_CH1  | 27            |
| 060599_CH.05 | 19762.00004 | BOULDER CREEK MSF<br>SEGMENT B UP<br>(0602124_U)        |                              | 060599_CH2  | 27            |
| 060599_CH.06 | 19762.00005 | BOULDER CREEK MSF<br>SEGMENT B LOWER<br>MID (0602124 L) |                              | 060599_CH2  | 27            |
| 060599_CH.07 | 19762.00006 | BOULDER CREEK MSF<br>SEGMENT C UPPER<br>(0602100)       |                              | 060599_CH2  | 27            |
| 060599_CH.08 | 19762.00009 | Boulder Indoor Use<br>(06BOULDER_I)                     | BOULDER CITY PL<br>(0600599) | 060599_CH2  | 27            |
| 060599_CH.09 | 19762.00010 | Boulder Outdoor Use<br>(06BOULDER_O)                    | BOULDER CITY PL<br>(0600599) | 060599_CH2  | 27            |
| 060599_CH.21 | 19762.00020 | BOULDER CITY PL<br>(0600599)                            |                              | 060599_CHT1 | 29            |
| 060599_CH.22 | 19762.00020 | BOULDER CITY PL<br>(0600599)                            |                              | 060599_CH1  | 29            |

| Right ID     | Admin #     | Destination                  | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|--------------|-------------|------------------------------|------------------------------------------------------|------------|---------------|
| 060599_CH.23 | 19762.00020 | BOULDER CITY PL<br>(0600599) |                                                      | 060599_CH2 | 29            |

#### 5.10.6.12.20 North Boulder Farmer Ditch (0600543) Changed Rights

There are multiple changes for each of the rights that sit on the North Boulder Farmers Ditch. They are laid out by water right ID below.

The pro rata portion of 0600543.01 water right priority is stored in the (060538\_CHT1) accounting plan. Monthly and annual limits as follows; April 21AF, May 76AF, June 73AF, July 75AF, August 75AF, Sep 73AF, Annual 390 AF. North Boulder Farmers Ditch 0600543.01 operations are presented in the table below. The changed water rights represented with these rules are decreed in cases for the City of Boulder (94CW285).

Water right yield is entirely available for the City of Boulder at these methods and locations at a rate of 1.23 cfs:

- Exchange to the Watershed Reservoirs
- Exchange to Barker Reservoir
- Exchange to the Barker Pipeline for Direct Use by the City of Boulder
- Exchange to the North Boulder Creek Pipeline (0600599) for Direct Use by the City of Boulder

The pro rata portion of 0600543.02 water right priority is stored in the (060543\_CH2) accounting plan. Monthly and annual limits as follows; April 8AF, May 123AF, June 146AF, July 148AF, August 73AF, Sep 25AF, Annual 353 AF. North Boulder Farmers Ditch 0600543.02 operations are presented in the table below. The changed water rights represented with these rules are decreed in cases for the City of Boulder (94CW285).

Water right yield is entirely available for the City of Boulder at these methods and locations at a rate of 4.26 cfs:

- Exchange to the Watershed Reservoirs
- Exchange to Barker Reservoir
- Exchange to the Barker Pipeline for Direct Use by the City of Boulder
- Exchange to the North Boulder Creek Pipeline (0600599) for Direct Use by the City of Boulder

| Right ID     | Admin #    | Destination                     | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|--------------|------------|---------------------------------|------------------------------------------------------|------------|---------------|
| 060543_CH.01 | 4535.00000 | 060530_CH1                      | 9.2%                                                 | 0600543.01 | 26            |
| 060543_CH.07 | 4535.00004 | Watershed reservoir (06_WSHED), |                                                      | 060543_CH1 | 28            |

Remaining plan supplies are released to the North Boulder Farmers Ditch headgate.

| Right ID     | Admin #    | Destination                                        | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|--------------|------------|----------------------------------------------------|------------------------------------------------------|------------|---------------|
|              |            | Accounts 1-2                                       |                                                      |            |               |
| 060543_CH.08 | 4535.00004 | Barker Reservoir<br>(0604172)                      |                                                      | 060543_CH1 | 28            |
| 060543_CH.09 | 4535.00005 | Boulder Indoor Use<br>(06BOULDER_I)                | BOULDER PL 3 AT<br>BARKER R (0600943)                | 060543_CH1 | 28            |
| 060543_CH.10 | 4535.00005 | Boulder Outdoor Use<br>(06BOULDER_O)               | BOULDER PL 3 AT<br>BARKER R (0600943)                | 060543_CH1 | 28            |
| 060543_CH.11 | 4535.00006 | Boulder Indoor Use<br>(06BOULDER_I)                | BOULDER CITY PL<br>(0600599)                         | 060543_CH1 | 28            |
| 060543_CH.12 | 4535.00006 | Boulder Outdoor Use<br>(06BOULDER_O)               | BOULDER CITY PL<br>(0600599)                         | 060543_CH1 | 28            |
| 060543_CH.25 | 4535.00020 | N BOULD FARMER<br>DITCH (0600543)                  |                                                      | 060543_CH1 | 29            |
| 060543_CH.02 | 4900.00000 | 060543_CH2                                         | 3.9%                                                 | 0600543.02 | 26            |
| 060543_CH.13 | 4900.00004 | Watershed reservoir<br>(06_WSHED),<br>Accounts 1-2 |                                                      | 060543_CH2 | 28            |
| 060543_CH.14 | 4900.00004 | Barker Reservoir<br>(0604172), Account 1           |                                                      | 060543_CH2 | 28            |
| 060543_CH.15 | 4900.00005 | Boulder Indoor Use<br>(06BOULDER_I)                | BOULDER CITY PL<br>(0600599)                         | 060543_CH2 | 28            |
| 060543_CH.16 | 4900.00005 | Boulder Outdoor Use<br>(06BOULDER_O)               | BOULDER CITY PL<br>(0600599)                         | 060543_CH2 | 28            |
| 060543_CH.17 | 4900.00006 | Boulder Indoor Use<br>(06BOULDER_I)                | BOULDER CITY PL<br>(0600599)                         | 060543_CH2 | 28            |
| 060543_CH.18 | 4900.00006 | Boulder Outdoor Use<br>(06BOULDER_O)               | BOULDER CITY PL<br>(0600599)                         | 060543_CH2 | 28            |
| 060543_CH.26 | 4900.00020 | N BOULD FARMER<br>DITCH (0600543)                  |                                                      | 060543_CH2 | 29            |

### 5.10.7 Moffat Tunnel Project

Water is brought into District 6 via the Moffat Tunnel and is released to South Boulder Creek at the East Portal. The transmountain water released into District 6 is measured at the East Portal USGS Gage (09022500). As discussed in Section 6.1.2.1, Moffat Tunnel operations were originally developed based on sub-basin demands and revised during model calibration to reflect end-user demands. Under this representation, Moffat Tunnel imports transmountain water into South Boulder Creek where they are stored in Gross Reservoir and/or carried directly to Ralston Reservoir and downstream demands via the South Boulder Diversion Conduit. The transmountain imports are ultimately used at Denver Water's Moffat Water Treatment Plant and delivered to other municipal contracts, including Arvada and Consolidated Mutual. Any unused supplies are released to the Moffat Treatment Plant, located on a small tributary in the Clear Creek basin.

| Right ID  | Admin # | Destination | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|-----------|---------|-------------|------------------------------------------------------|------------|---------------|
| Xbasin.08 | 0.99997 | 06_MOF_ACC  |                                                      | 06_MOF_IMP | 35            |

| Right ID    | Admin # | Destination                               | Account, Carrier, Return<br>Location (R), or % Split | Source                                     | Right<br>Type |
|-------------|---------|-------------------------------------------|------------------------------------------------------|--------------------------------------------|---------------|
| Xbasin.08   | 0.99997 | 06_MOF_ACC                                |                                                      | 06_MOF_IMP                                 | 35            |
| 06MOFPLN.01 | 1.00001 | 060800_ACC                                |                                                      | 060800_IMP                                 | 35            |
| 06MOFPLN.02 | 1.00003 | Arvada Inside Use<br>(07_Arvada_I)        | S BOULDER DIVR<br>CONDUIT (0600590)                  | 06_MOF_ACC                                 | 27            |
| 06MOFPLN.03 | 1.00004 | Arvada Outside Use<br>(07_Arvada_O)       | S BOULDER DIVR<br>CONDUIT (0600590)                  | 06_MOF_ACC                                 | 27            |
| 06MOFPLN.04 | 1.00005 | Ralston Reservoir<br>(0703324), Account 1 | S BOULDER DIVR<br>CONDUIT (0600590)                  | 06_MOF_ACC                                 | 27            |
| 06MOFPLN.05 | 1.00006 | Gross Reservoir (0604199),<br>Account 1   | S BOULDER DIVR<br>CONDUIT (0600590)                  | 06_MOF_ACC                                 | 27            |
| GrossRes.01 | 1.00009 | Ralston Reservoir<br>(0703324), Account 1 | S BOULDER DIVR<br>CONDUIT (0600590)                  | Gross Reservoir<br>(0604199),<br>Account 1 | 2             |
| PlnSpill.78 | 1.00009 | MoffatWTP                                 |                                                      | 06_MOF_ACC                                 | 29            |

# 5.10.8 Upper South Platte System (Water Districts 80, 23, 9, 8, and 2)

The Upper South Platte system is dominated by reservoir operations and irrigation return flows.

### Where to find more information

- General
  - o SPDSS Task Memorandum 3, "Identify Key Diversion Structures Notes from Water District 8 Meeting," available on the CDSS website.
  - SPDSS Task Memorandum 3, "Identify Key Diversion Structures Notes from Water District 9 Meeting," available on the CDSS website.
  - SPDSS Task Memorandum 3, "Identify Key Diversion Structures Notes from Water District 23 Meeting," available on the CDSS website.
  - SPDSS Task Memorandum 3, "Identify Key Diversion Structures Notes from Water District 80 Meeting," available on the CDSS website.
  - SPDSS Task Memorandum 3, "Identify Key Diversion Structures Notes from Water District 2 Meeting," available on the CDSS website.
- Denver Water
  - o SPDSS Task Memorandum 5, "Key Structure, Moffat Tunnel," available on the CDSS website.
  - o SPDSS Task Memorandum 5, "Key Structure, Roberts Tunnel," available on the CDSS website.
  - o SPDSS Task Memorandum 5, "Key Municipal User, Denver Water Board," available on the CDSS website.
- Aurora
  - o SPDSS Task Memorandum 5, "Key Structure, Homestake Tunnel," available on the CDSS website.
  - o SPDSS Task Memorandum 5, "Key Municipal User, City of Aurora," available on the CDSS website.
- Other Operations/Municipalities
  - o SPDSS Task Memorandum 5, "Key Structure, Boreas Pass Ditch," available on the CDSS website.
  - o SPDSS Task Memorandum 5, "Key Structure, Straight Creek Tunnel," available on the CDSS website.
  - o SPDSS Task Memorandum 5, "Key Structure, FRICO-Marshall Lake Division," available on the CDSS website.
  - o SPDSS Task Memorandum 5, "Key Structure, FRICO-Milton Lake Division," available on the CDSS website.
  - o SPDSS Task Memorandum 5, "Key Structure, FRICO-Standley Lake Cities," available on the CDSS website.
  - o SPDSS Task Memorandum 5, "Key Structure, Burlington, FRICO-Barr and Henrylyn Systems," available on the CDSS website.

### 5.10.8.1 Denver Water Board

Denver Water is the largest municipal water provider in Colorado. Denver Water has established an extensive water rights portfolio and related infrastructure on the South Platte River main stem and various tributaries to the South Platte River Basin and Colorado River Basin, as shown in Figure 5-2 below. Denver Water supplies municipal water through its North and South System. Some of the major features of the associated infrastructure and water supplies are presented in the operations below.

The North System is focused in the Boulder Creek and Ralston Creek basins. The Boulder Creek supplies include Moffat Tunnel (06\_MOF\_IMP) deliveries from the Fraser River Basin that are stored in Gross Reservoir (0604199). The reservoir regulates the Moffat Tunnel water and stores native flows. Storage deliveries are released to the South Boulder Conduit (0600590), which conveys water to Ralston Creek, tributary to Clear Creek. Ralston Reservoir (0703324) is the terminal storage for the Conduit, from which Denver Water supplies its potable system via the Moffat Water Treatment Plant (MoffatWTP). Contract water is also supplied to multiple entities from the South Boulder Conduit – Ralston Reservoir system, with the City of Arvada the largest contractee (approximately 17,000 acre-feet per year).

The South system consists of upper South Platte River Basin storage units (Antero Reservoir – 2303904 and Eleven Mile Canyon Reservoir - 2303965), and reservoirs located near and within the Denver metropolitan area (Strontia Springs Reservoir - 0803983, Cheesman Reservoir - 8003550, and Marston Reservoir - 0903501). Denver Water has storage space in Chatfield Reservoir (0803514), which also serves as a flood control reservoir operated by the Army Corps of Engineers. Strontia Springs Reservoir feeds the Foothills Water Treatment Plant (FoothillsWTP) via Conduit 26 (0801002\_D). Conduit 20 (0801017) conveys water to the Marston Water Treatment Plant (0901700).



Figure 5-2: Denver Water South Platte River Water Supply System

# 5.10.8.1.1 Transmountain Supplies

The Denver Water system is complex and its operations vary annually based on the available water in storage and water supply forecasts for the Front Range and the western slope. Representation of the Denver Water system has been simplified in the SPDSS model since it operates independently of the Colorado DSS model and StateMod is a deterministic (not optimization) model.

Until the SPDSS model and western slope models are integrated, the transmountain supplies are set equal to historical deliveries. These supplies are operated in the model as the primary supply, which results in the use of all the imports to meet the Denver Water demand or stored in reservoirs. The following six rules are used to supply Roberts Tunnel imports directly to Denver Water demands (4) and storage (2):

| Right ID   | Admin #     | Destination                                              | Account, Carrier, Return<br>Location (R), or % Split                                                                                            | Source                                  | Right<br>Type |
|------------|-------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------|
| Roberts.01 | 1.00010     | Denver Water<br>Inside Use<br>(08_Denver_I)              | Robt Tun Aug Stn<br>(8000653_A)<br>NF SPR at Grant<br>(PLAGRACO, R)<br>Denver Conduit 26<br>(0801017)<br>Denver Foothills WTP<br>(FoothillsWTP) | Roberts Tunnel<br>Carrier<br>(RobTun_C) | 27            |
| Roberts.02 | 1.00010     | Denver Water<br>Outside Use<br>(08_Denver_O)             | Robt Tun Aug Stn<br>(8000653_A)<br>NF SPR at Grant<br>(PLAGRACO, R)<br>Denver Conduit 26<br>(0801017)<br>Denver Foothills WTP<br>(FoothillsWTP) | Roberts Tunnel<br>Carrier<br>(RobTun_C) | 27            |
| Roberts.03 | 1.00010     | Denver Water<br>Inside Use<br>(08_Denver_I)              | Robt Tun Aug Stn<br>(8000653_A)<br>NF SPR at Grant<br>(PLAGRACO, R)<br>Denver Conduit 20<br>(0801002_D)<br>Marston WTP (0901700)                | Roberts Tunnel<br>Carrier<br>(RobTun_C) | 27            |
| Roberts.04 | 1.00010     | Denver Water<br>Outside Use<br>(08_Denver_O)             | Robt Tun Aug Stn<br>(8000653_A)<br>NF SPR at Grant<br>(PLAGRACO, R)<br>Denver Conduit 20<br>(0801002_D)<br>Marston WTP (0901700)                | Roberts Tunnel<br>Carrier<br>(RobTun_C) | 27            |
| Roberts.05 | 26000.00004 | Marston<br>Reservoir<br>(0903501),<br>Accounts 1-2       | Robt Tun Aug Stn<br>(8000653_A)<br>NF SPR at Grant<br>(PLAGRACO, R)<br>Denver Conduit 20<br>(0801002_D)<br>Marston WTP (0901700)                | Roberts Tunnel<br>Carrier<br>(RobTun_C) | 27            |
| Roberts.06 | 26000.00005 | Strontia Springs<br>Reservoir<br>(0803983),<br>Account 1 | Robt Tun Aug Stn<br>(8000653_A)<br>NF SPR at Grant<br>(PLAGRACO, R)                                                                             | Roberts Tunnel<br>Carrier<br>(RobTun_C) | 27            |

Denver Water has rights to water from Bear Creek but these supplies are rarely used due to concerns with water quality in Bear Creek. The following three rules are used in order to mimic the historical deliveries of Bear Creek water to the Marston Reservoir and Marston water treatment plant:

| Right ID  | Admin # | Destination                                     | Account, Carrier, Return<br>Location (R), or % Split | Source       | Right<br>Type |
|-----------|---------|-------------------------------------------------|------------------------------------------------------|--------------|---------------|
| Cond15.01 | 1.00000 | Denver Conduit 15<br>(Conduit15)                |                                                      | Conduit15.01 | 31            |
| Cond15.02 | 1.00001 | Marston Reservoir<br>(0903501), Accounts<br>1-2 |                                                      | BearCkPln    | 27            |
| Cond15.03 | 1.00002 | Denver Water Inside<br>Use (08_Denver_I)        | Marston WTP (0901700)                                | BearCkPln    | 27            |
| Cond15.04 | 1.00003 | Denver Water Outside<br>Use (08_Denver_O)       | Marston WTP (0901700)                                | BearCkPln    | 27            |

Just as its operations change between years based on variability of supply, Denver Water's operations in the South Platte River Basin vary based on the amount of water in storage and relative supply between tributary basins. Simulation of the Northern system deliveries are focused on meeting historical Moffat Water Treatment Plant deliveries. The following rules are used to supply the Moffat WTP demand:

| Right ID    | Admin # | Destination                               | Account, Carrier, Return<br>Location (R), or % Split | Source                                     | Right<br>Type |
|-------------|---------|-------------------------------------------|------------------------------------------------------|--------------------------------------------|---------------|
| 06800PLN.01 | 1.00001 | 060800_ACC                                |                                                      | 060800_IMP                                 | 35            |
| 06MOFPLN.02 | 1.00003 | Arvada Inside Use<br>(07_Arvada_I)        | S BOULDER DIVR<br>CONDUIT (0600590)                  | 06_MOF_ACC                                 | 27            |
| 06MOFPLN.03 | 1.00004 | Arvada Outside Use<br>(07_Arvada_O)       | S BOULDER DIVR<br>CONDUIT (0600590)                  | 06_MOF_ACC                                 | 27            |
| 06MOFPLN.04 | 1.00005 | Ralston Reservoir<br>(0703324), Account 1 | S BOULDER DIVR<br>CONDUIT (0600590)                  | 06_MOF_ACC                                 | 27            |
| 06MOFPLN.05 | 1.00006 | Gross Reservoir<br>(0604199), Account 1   | S BOULDER DIVR<br>CONDUIT (0600590)                  | 06_MOF_ACC                                 | 27            |
| Moffat.01   | 1.00003 | MoffatWTP                                 | S BOULDER DIVR<br>CONDUIT (0600590)                  | Gross Reservoir<br>(0604199),<br>Account 1 | 2             |
| Moffat.02   | 1.0004  | MoffatWTP                                 |                                                      | Ralston Res<br>(0703324),<br>Account 1     | 3             |

### 5.10.8.1.2 In-basin Supplies

Denver Water's remaining municipal demand is satisfied by river diversions and storage diversions via Conduit 20 and Conduit 26 to the Foothills and Marston treatment plants, respectively. Direct flow rights are first stored in Changed Water Rights Plan structures (Cond20Pln and Cond20DirPln) based on the standard approach used to represent Changed Water Rights, as outlined in Section 4.9. Monthly limits on use of these rights are based on decretal terms and conditions. Some of the water rights can be used both directly and for storage.

Changed Water Rights

The first five rules listed below are used to store those rights in the Cond20Pln structure; the following four rules are used to meet the Denver Water demand; and the last five rules are used for storage:

| Right ID     | Admin #     | Destination                                              | Account, Carrier, Return<br>Location (R), or % Split         | Source       | Right<br>Type |
|--------------|-------------|----------------------------------------------------------|--------------------------------------------------------------|--------------|---------------|
| Cond20Sto.01 | 4260.00000  | Cond20PIn                                                | 100%                                                         | 0801002_D.02 | 26            |
| Cond20Sto.02 | 4717.00000  | Cond20PIn                                                | 100%                                                         | 0801002_D.25 | 26            |
| Cond20Sto.03 | 5112.00000  | Cond20PIn                                                | 100%                                                         | 0801002_D.03 | 26            |
| Cond20Sto.04 | 5478.00000  | Cond20PIn                                                | 100%                                                         | 0801002_D.05 | 26            |
| Cond20Sto.06 | 5843.00000  | Cond20Pln                                                | 100%                                                         | 0801002_D.07 | 26            |
| Cond20Sto.08 | 22254.00002 | Denver Water<br>Inside Use<br>(08_Denver_I)              | Denver Conduit 20<br>(0801002_D)<br>Martson WTP<br>(0901700) | Cnd20Pln     | 27            |
| Cond20Sto.09 | 22254.00003 | Denver Water<br>Outside Use<br>(08_Denver_O)             | Denver Conduit 20<br>(0801002_D)<br>Martson WTP<br>(0901700) | Cnd20Pln     | 27            |
| Cond20Sto.10 | 22254.00002 | Denver Water<br>Inside Use<br>(08_Denver_I)              | Denver Conduit 26<br>(0801017)<br>FoothillsWTP               | Cnd20Pln     | 27            |
| Cond20Sto.11 | 22254.00003 | Denver Water<br>Outside Use<br>(08_Denver_O)             | Denver Conduit 26<br>(0801017)<br>FoothillsWTP               | Cond20Pln    | 27            |
| Cond20Sto.12 | 22254.00003 | Marston Reservoir<br>(0903501), Account<br>2             | Denver Conduit 20<br>(0801002_D)<br>Martson WTP<br>(0901700) | Cond20Pln    | 27            |
| Cond20Sto.13 | 57000.00000 | Strontia Springs<br>Reservoir<br>(0803983), Account<br>1 |                                                              | Cond20PIn    | 28            |
| Cond20Sto.14 | 57000.00001 | Eleven Mile<br>Reservoir<br>(2303965), Account<br>1      |                                                              | Cond20Pln    | 28            |
| Cond20Sto.15 | 57000.00002 | Antero Reservoir<br>(2303904), Account<br>2              |                                                              | Cond20Pln    | 28            |
| Cond20Sto.16 | 57000.00003 | Cheesman Lake<br>(8003550), Account<br>1                 |                                                              | Cond20Pln    | 28            |

Operations with these rights are differentiated from other Denver Water rights that can only be used directly (Borden, City, Island, Little Channel, Love and Raynor, and Weed Ditches). The first

fifteen rules listed below are used to store the water rights in the Cond20DirPln structure; the subsequent four rules are used to meet the Denver Water demand:

| Right ID     | Admin #     | Destination                                  | Account, Carrier, Return<br>Location (R), or % Split         | Source       | Right<br>Type |
|--------------|-------------|----------------------------------------------|--------------------------------------------------------------|--------------|---------------|
| Cond20Dir.01 | 4229.00000  | Cnd20DirPln                                  | 100%                                                         | 0801002_D.01 | 26            |
| Cond20Dir.02 | 5112.00000  | Cnd20DirPln                                  | 100%                                                         | 0801002_D.04 | 26            |
| Cond20Dir.04 | 7659.00000  | Cnd20DirPln                                  | 100%                                                         | 0801002_D.10 | 26            |
| Cond20Dir.05 | 9131.00000  | Cnd20DirPln                                  | 100%                                                         | 0801002_D.11 | 26            |
| Cond20Dir.06 | 9252.00000  | Cnd20DirPln                                  | 100%                                                         | 0801002_D.12 | 26            |
| Cond20Dir.07 | 10480.00000 | Cnd20DirPln                                  | 100%                                                         | 0801002_D.13 | 26            |
| Cond20Dir.08 | 10744.00000 | Cnd20DirPln                                  | 100%                                                         | 0801002_D.14 | 26            |
| Cond20Dir.09 | 11139.00000 | Cnd20DirPln                                  | 100%                                                         | 0801002_D.15 | 26            |
| Cond20Dir.10 | 11451.00000 | Cnd20DirPln                                  | 100%                                                         | 0801002_D.16 | 26            |
| Cond20Dir.11 | 11809.00000 | Cnd20DirPln                                  | 100%                                                         | 0801002_D.17 | 26            |
| Cond20Dir.12 | 12924.00000 | Cnd20DirPln                                  | 100%                                                         | 0801002_D.18 | 26            |
| Cond20Dir.13 | 14519.00000 | Cnd20DirPln                                  | 100%                                                         | 0801002_D.19 | 26            |
| Cond20Dir.14 | 15585.00000 | Cnd20DirPln                                  | 100%                                                         | 0801002_D.20 | 26            |
| Cond20Dir.15 | 18018.00000 | Cnd20DirPln                                  | 100%                                                         | 0801002_D.21 | 26            |
| Cond20Dir.16 | 22254.00000 | Cnd20DirPln                                  | 100%                                                         | 0801002_D.23 | 26            |
| Cond20Dir.17 | 22254.00002 | Denver Water<br>Inside Use<br>(08_Denver_I)  | Denver Conduit 20<br>(0801002_D)<br>Martson WTP<br>(0901700) | Cnd20DirPln  | 27            |
| Cond20Dir.18 | 22254.00003 | Denver Water<br>Outside Use<br>(08_Denver_O) | Denver Conduit 20<br>(0801002_D)<br>Martson WTP<br>(0901700) | Cnd20DirPln  | 27            |
| Cond20Dir.19 | 22254.00002 | Denver Water<br>Inside Use<br>(08_Denver_I)  | Denver Conduit 26<br>(0801017)<br>FoothillsWTP               | Cnd20DirPln  | 27            |
| Cond20Dir.20 | 22254.00003 | Denver Water<br>Outside Use<br>(08_Denver_O) | Denver Conduit 26<br>(0801017)<br>FoothillsWTP               | Cnd20DirPln  | 27            |

One other Plan release rule is included for the Cond20Pln to meet demands at the Arapahoe Power Plant:

| Right ID    | Admin #     | Destination                        | Account, Carrier, Return<br>Location (R), or % Split | Source      | Right<br>Type |
|-------------|-------------|------------------------------------|------------------------------------------------------|-------------|---------------|
| ArapahPP.01 | 22254.00001 | Arapahoe Power<br>Plant (0801014), |                                                      | Cnd20DirPln | 27            |

| Right ID | Admin # | Destination | Account, Carrier, Return<br>Location (R), or % Split | Source | Right<br>Type |
|----------|---------|-------------|------------------------------------------------------|--------|---------------|
|          |         | Account 1   |                                                      |        |               |

The Upper South Platte (Dist 23) Four Mile changed rights to Antero Reservoir includes Beery Ditch to indoor, outdoor upper basin storage (by water right priority). The majority of Beery D DivClass appears to have this water being stored in Eleven Mile Reservoir so we are including that as the sole use for this water, as shown in the operating rules below.

| Beery.01 | 4184.00000 | Beery D Transfer Gage (2302201) | 100% | 2302905.01       | 26 |
|----------|------------|---------------------------------|------|------------------|----|
| Beery.02 | 4184.00001 | Eleven Mile Reservoir           |      | Beery D Transfer | 27 |
|          |            | (2303965), Account 1            |      | Gage (2302201)   |    |

#### Reusable Effluent

Effluent exchanges and storage releases provide supplemental supplies to meet the Denver Water demand. The following six rules exchange reusable effluent to supply the Denver Water demands (4) and storage (2):

| Right ID   | Admin #     | Destination                                    | Account, Carrier, Return<br>Location (R), or % Split         | Source  | Right<br>Type |
|------------|-------------|------------------------------------------------|--------------------------------------------------------------|---------|---------------|
| MetroDW.01 | 29386.26137 | Denver Water<br>Inside Use<br>(08_Denver_I)    | Denver Conduit 26<br>(0801017)<br>FoothillsWTP               | MetroDW | 28            |
| MetroDW.02 | 29386.26137 | Denver Water<br>Inside Use<br>(08_Denver_I)    | Denver Conduit 20<br>(0801002_D)<br>Martson WTP<br>(0901700) | MetroDW | 28            |
| MetroDW.03 | 29386.26138 | Denver Water<br>Outside Use<br>(08_Denver_O)   | Denver Conduit 26<br>(0801017)<br>FoothillsWTP               | MetroDW | 28            |
| MetroDW.04 | 29386.26138 | Denver Water<br>Outside Use<br>(08_Denver_O)   | Denver Conduit 20<br>(0801002_D)<br>Martson WTP<br>(0901700) | MetroDW | 28            |
| MetroDW.05 | 29386.26139 | Cheesman Lake<br>(8003550), Account<br>1       |                                                              | MetroDW | 28            |
| MetroDW.06 | 29386.26140 | Chatfield Reservoir<br>(0803514), Account<br>2 |                                                              | MetroDW | 28            |

One other Plan release rule is included for the MetroDW to meet demands at the Cherokee Power Plant, starting in 2004:

| Right ID    | Admin # | Destination       | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|-------------|---------|-------------------|------------------------------------------------------|------------|---------------|
| Cherokee.01 | 1.00001 | Cherokee Power    | Reuse PL to Cherokee                                 | DWB Metro  | 27            |
|             |         | Plant (02_ChrkPP) | (DW_ReusePL)                                         | Reuse Plan |               |
|             |         |                   |                                                      | (MetroDW)  |               |

#### Storage Releases

The following 22 rules are used to supply the Denver Water demand with releases from storage. Note Chatfield Res has an operating rule to release for flood control.

| Right ID     | Admin #     | Destination                                  | Account, Carrier, Return                                     | Source                                            | Right<br>Type |
|--------------|-------------|----------------------------------------------|--------------------------------------------------------------|---------------------------------------------------|---------------|
| Cheesman.01  | 29999.00001 | Denver Water<br>Inside Use<br>(08_Denver_I)  | Denver Conduit 26<br>(0801017)<br>Foothills WTP              | Cheesman Lake<br>(8003550),<br>Account 1          | 2             |
| Cheesman.02  | 29999.00002 | Denver Water<br>Inside Use<br>(08_Denver_I)  | Denver Conduit 20<br>(0801002_D)<br>Martson WTP<br>(0901700) | Cheesman Lake<br>(8003550),<br>Account 1          | 2             |
| Chatfield.01 | 30000.00000 | Denver Water<br>Inside Use<br>(08_Denver_I)  | Denver Conduit 20<br>(0801002_D)<br>Martson WTP<br>(0901700) | Chatfield<br>Reservoir<br>(0803514),<br>Account 2 | 4             |
| Chatfield.02 | 30000.00001 | Denver Water<br>Inside Use<br>(08_Denver_I)  | Denver Conduit 26<br>(0801017)<br>FoothillsWTP               | Chatfield<br>Reservoir<br>(0803514),<br>Account 2 | 4             |
| Chatfield.03 | 30000.00002 | Denver Water<br>Inside Use<br>(08_Denver_I)  | Martson WTP<br>(0901700)                                     | Chatfield<br>Reservoir<br>(0803514),<br>Account 2 | 3             |
| Chatfield.04 | 30000.00003 | Denver Water<br>Outside Use<br>(08_Denver_O) | Denver Conduit 20<br>(0801002_D)<br>Martson WTP<br>(0901700) | Chatfield<br>Reservoir<br>(0803514),<br>Account 2 | 4             |
| Chatfield.05 | 30000.00004 | Denver Water<br>Outside Use<br>(08_Denver_O) | Denver Conduit 26<br>(0801017)<br>FoothillsWTP               | Chatfield<br>Reservoir<br>(0803514),<br>Account 2 | 4             |
| Chatfield.06 | 30000.00005 | Denver Water<br>Outside Use<br>(08_Denver_O) | Martson WTP<br>(0901700)                                     | Chatfield<br>Reservoir<br>(0803514),<br>Account 2 | 3             |
| ChatFld.01   | 46748.00001 | NA                                           |                                                              | Chatfield<br>Reservoir<br>(0803514), Acct         | 3             |
|             |             |                                              |                                                              | 3                                                        |   |
|-------------|-------------|----------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------|---|
| Marston.01  | 31000.00003 | Denver Water<br>Inside Use<br>(08_Denver_I)  | Martson WTP<br>(0901700)                                     | Marston<br>Reservoir<br>(0903501),<br>Account 2          | 3 |
| Strontia.01 | 31000.00004 | Denver Water<br>Inside Use<br>(08_Denver_I)  | FoothillsWTP                                                 | Strontia Springs<br>Reservoir<br>(0803983),<br>Account 1 | 3 |
| Antero.01   | 31000.00005 | Denver Water<br>Inside Use<br>(08_Denver_I)  | Denver Conduit 20<br>(0801002_D)<br>Martson WTP<br>(0901700) | Antero Reservoir<br>(2303904),<br>Account 2              | 2 |
| Antero.02   | 31000.00006 | Denver Water<br>Inside Use<br>(08_Denver_I)  | Denver Conduit 26<br>(0801017)<br>Foothills WTP              | Antero Reservoir<br>(2303904),<br>Account 2              | 2 |
| 11_Mile.01  | 31000.00007 | Denver Water<br>Inside Use<br>(08_Denver_I)  | Denver Conduit 20<br>(0801002_D)<br>Martson WTP<br>(0901700) | Eleven Mile<br>Reservoir<br>(2303965),<br>Account 1      | 2 |
| 11_Mile.02  | 31000.00008 | Denver Water<br>Inside Use<br>(08_Denver_I)  | Denver Conduit 26<br>(0801017)<br>Foothills WTP              | Eleven Mile<br>Reservoir<br>(2303965),<br>Account 1      | 2 |
| Cheesman.03 | 31000.00009 | Denver Water<br>Outside Use<br>(08_Denver_O) | Foothills WTP                                                | Cheesman Lake<br>(8003550),<br>Account 1                 | 2 |
| Cheesman.04 | 31000.00010 | Denver Water<br>Outside Use<br>(08_Denver_O) | Denver Conduit 20<br>(0801002_D)<br>Martson WTP<br>(0901700) | Cheesman Lake<br>(8003550),<br>Account 1                 | 2 |
| Marston.02  | 31000.00011 | Denver Water<br>Outside Use<br>(08_Denver_O) | Martson WTP<br>(0901700)                                     | Marston<br>Reservoir<br>(0903501),<br>Account 2          | 3 |
| Strontia.02 | 31000.00012 | Denver Water<br>Outside Use<br>(08_Denver_O) | FoothillsWTP                                                 | Strontia Springs<br>Reservoir<br>(0803983),<br>Account 1 | 3 |
| Antero.03   | 31000.00013 | Denver Water<br>Outside Use<br>(08_Denver_O) | Denver Conduit 20<br>(0801002_D)<br>Martson WTP<br>(0901700) | Antero Reservoir<br>(2303904),<br>Account 2              | 2 |
| Antero.04   | 31000.00014 | Denver Water<br>Outside Use<br>(08_Denver_O) | Denver Conduit 26<br>(0801017)<br>Foothills WTP              | Antero Reservoir<br>(2303904),<br>Account 2              | 2 |
| 11_Mile.03  | 31000.00015 | Denver Water<br>Outside Use<br>(08_Denver_O) | Denver Conduit 20<br>(0801002_D)<br>Martson WTP<br>(0901700) | Eleven Mile<br>Reservoir<br>(2303965),<br>Account 1      | 2 |

| 11_Mile.04 | 31000.00016 | Denver Water  | Denver Conduit 26 | Eleven Mile | 2 |
|------------|-------------|---------------|-------------------|-------------|---|
|            |             | Outside Use   | (0801017)         | Reservoir   |   |
|            |             | (08_Denver_O) | Foothills WTP     | (2303965),  |   |
|            |             |               |                   | Account 1   |   |

Antero Reservoir and Eleven Mile Canyon Reservoir are typically used as drought supply. Simulated use of these storage units for only infrequent releases was difficult. Therefore, the following rules are used to supply the Denver Water demand with storage releases from the reservoirs in South Park:

| Right ID                                | Admin #             | Destination                                 | Account, Carrier, Return<br>Location (R), or % Split         | Source                                              | Right<br>Type |
|-----------------------------------------|---------------------|---------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------|---------------|
| AnterDry.1a-6b, 7a-<br>9b, 10a-b, 11a-b | 0.99996-<br>0.99997 | Denver Water<br>Inside Use<br>(08_Denver_I) | Denver Conduit 20<br>(0801002_D)<br>Martson WTP<br>(0901700) | Antero Reservoir<br>(2303904),<br>Account 2         | 2             |
| AnterDry.6c-d and<br>9c-d, 10c-d, 11c-d | 0.99996-<br>0.99997 | Denver Water<br>Inside Use<br>(08_Denver_I) | Denver Conduit 20<br>(0801002_D)<br>Martson WTP<br>(0901700) | Antero Reservoir<br>(2303904),<br>Account 3         | 2             |
| 11MilDry.1a-7b                          | 0.99998-<br>0.99999 | Denver Water<br>Inside Use<br>(08_Denver_I) | Denver Conduit 20<br>(0801002_D)<br>Martson WTP<br>(0901700) | Eleven Mile<br>Reservoir<br>(2303965),<br>Account 1 | 2             |

# 5.10.8.2 City of Aurora

The City of Aurora is the second largest municipal water provider in Colorado. Aurora relied on ground water from the Cherry Creek Basin and contract deliveries from Denver Water until the 1960s. The city started purchasing ranches in South Park during that period and completed the development of the transmountain Homestake Project in 1967. Completion of Spinney Mountain Reservoir (2304013) in 1981 provided Aurora with high basin storage to manage the transmountain supplies. Aurora continued its ranch purchases in the upper South Platte River and Tarryall Creek basins. The city expanded its acquisition of transmountain supplies through purchases of water rights in the Arkansas River Basin, starting in the mid-1980s. Note that Aurora also diverts reusable effluent at the Prairie Waters Project, however this operation is more recent (post-2012) and was not included in the model.

The components of Aurora's water supply system in the South Platte River Basin are shown in Figure 5-3 below. Other major infrastructure associated with Aurora's system in the South Platte River Basin includes the Aurora Intake (0801001), located at Strontia Springs Reservoir (0203893), and terminal storage in Aurora Reservoir (0203379). The Aurora Intake node is used as a carrier for all municipal water supplies, except for storage releases of water from Aurora Reservoir.



Figure 5-3: City of Aurora South Platte Water Supply Systems

# 5.10.8.2.1 Transmountain Supplies

Until the SPDSS model, the Colorado model, and the future ArkDSS model are integrated, the transmountain supplies are set equal to historical deliveries. These supplies are operated in the model as the primary supply so the use of all the supplies is simulated to meet the Aurora demand or stored in reservoirs. The following rules are used to supply Homestake Tunnel (HOMSPICO) directly to Aurora demands (2) and storage (1).

| Right ID   | Admin # | Destination        | Account, Carrier, Return<br>Location (R), or % Split | Source    | Right<br>Type |
|------------|---------|--------------------|------------------------------------------------------|-----------|---------------|
| Homestk.01 | 1.00004 | Aurora Inside Use  | AURORA INTAKE                                        | Homestk_C | 27            |
|            |         | (08_Aurora_l)      | (0801001)                                            |           |               |
| Homestk.02 | 1.00005 | Aurora Outdoor Use | AURORA INTAKE                                        | Homestk_C | 27            |
|            |         | (08_Aurora_O)      | (0801001)                                            |           |               |
| Homestk.03 | 1.00006 | Spinney Mountain   |                                                      | Homestk_C | 27            |

| Right ID | Admin # | Destination          | Account, Carrier, Return<br>Location (R), or % Split | Source | Right<br>Type |
|----------|---------|----------------------|------------------------------------------------------|--------|---------------|
|          |         | Reservoir (2304013), |                                                      |        |               |
|          |         | Account 3            |                                                      |        |               |

#### 5.10.8.2.2 In-basin Supplies

Aurora's remaining municipal demand is satisfied by river diversions and storage releases. Direct flow rights include the senior changed water rights in the Last Chance Ditch (0801007), the South Park rights, and the 1964 direct flow right at Strontia Springs Reservoir.

#### Groundwater Supplies

Aurora has rights to ground water in Cherry Creek and operates these wells (0805065) on an inconsistent basis. Well demands are set equal to historical pumping records in order to mimic the historical deliveries of groundwater to meet Aurora's demands. Note that these operations are not simulated by operating rules. Rather the wells pump and return to the Aurora municipal demands where they "divert" the pumped supplies in-priority. Lagged depletions from use of the wells is accounted for in an Aurora Aug Plan (0802593).

### Changed Water Rights

The Last Chance Ditch rights were changed in Case Nos. W2083 and 91CW1117. The use of the changed rights are simulated based on the year the change cases were signed (1970 and 1995 for the Last Chance Ditch). The former rights is not reusable and cannot be stored. The latter rights are reusable but are typically not used as the city is required to make one-to-one replacements at the Metro WWTP for the use of the 91CW1117 water. The Last Chance Ditch rights are stored in Changed Water Rights Plan structures coincident with the water court case (AurIntPln1 – W2083 and AurIntPln2 – 91CW1117) based on the approach used to represent Changed Water Rights, as outlined in Section 4.9. Note however that due to replacement requirements, the 91CW1117 Last Chance operations with AurIntPln2 (operating rule IDs – AurIntk.02 and AurIntk.05) and associated Plan releases (operating rule IDs – AurIntk.08 and AurIntk.10) are turned off and included in the operating rules file as placeholders for future modeling efforts. Monthly limits on use of these rights are based on decretal terms and conditions. Although not a changed water right, the 1964 priority water right is located at the Aurora Intake and stored in a Changed Water Right Plan (AurIntPln3) so that the water can be released to multiple demands. The following rules are used to store the water rights into the three Plan nodes.

| Right ID   | Admin #    | Destination | Account, Carrier, Return<br>Location (R), or % Split | Source          | Right<br>Type |
|------------|------------|-------------|------------------------------------------------------|-----------------|---------------|
| AurIntk.98 | 1.00000    |             |                                                      | Release Limit - | 47            |
|            |            |             |                                                      | AurInt_RL1      |               |
| AurIntk.99 | 1.00000    |             |                                                      | Release Limit - | 47            |
|            |            |             |                                                      | AurInt_RL2      |               |
| AurIntk.01 | 5112.00000 | AurIntPln1  |                                                      | 0801001.01      | 26            |

| AurIntk.03 | 5843.00000  | AurIntPln1 | 0801001.03 | 26 |
|------------|-------------|------------|------------|----|
| AurIntk.04 | 6637.00000  | AurIntPln1 | 0801001.04 | 26 |
| AurIntk.06 | 41776.00000 | AurIntPln3 | 0801001.06 | 26 |

The following two rules release water from the W2083 Plan node to Aurora's demand:

| Right ID   | Admin #    | Destination                         | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|------------|------------|-------------------------------------|------------------------------------------------------|------------|---------------|
| AurIntk.07 | 6637.00001 | Aurora Inside Use<br>(08_Aurora_I)  | AURORA INTAKE<br>(0801001)                           | AurIntPln1 | 26            |
| AurIntk.09 | 6637.00003 | Aurora Outdoor Use<br>(08_Aurora_O) | AURORA INTAKE<br>(0801001)                           | AurIntPln1 | 26            |

The following three rules release water from the 1964 Plan (AurIntPln3) to the Aurora demand (2) and to storage (1).

| Right ID   | Admin #     | Destination                | Account, Carrier, Return | Source     | Right |
|------------|-------------|----------------------------|--------------------------|------------|-------|
|            |             |                            | Location (R), or % Split |            | Туре  |
| AurIntk.11 | 50029.00002 | Aurora Inside Use          | AURORA INTAKE            | AurIntPln3 | 27    |
|            |             | (08_Aurora_I)              | (0801001)                |            |       |
| AurIntk.12 | 50029.00003 | Aurora Outdoor Use         | AURORA INTAKE            | AurIntPln3 | 27    |
|            |             | (08_Aurora_O)              | (0801001)                |            |       |
| AurIntk.13 | 50029.00004 | Strontia Springs Reservoir |                          | AurIntPln3 | 28    |
|            |             | (0803983)                  |                          |            |       |

### 5.10.8.2.3 Representation of South Park Water Rights

The South Park rights are administered in aggregate at 18 administrative stream gages (IDs 2302900, 2302901, 2302902, 2302903, 2302904, 2302906, 2302907, 2302908, 2302909, 2302910, 2302911, 2302912, 2302913, 2302914, 2302915, 2302916, 2302917, and 2302918) on the South Platte River and Tarryall Creek. Note the water commissioner computes flows at the Hartsel gage (2302922) and it is not represented in the model. The Diversion Classes in HydroBase for the changed uses of the water rights typically begin in the late-1980s/early-1990s time frame; therefore, a start date of 1990 was chosen for simulation with the changed rights.

### South Platte River Water Rights

The consumptive use amounts for the 69 water rights on the Upper South Platte River Basin are stored, in priority, in the following Changed Water Rights Plan structures.

| <u>Plan ID</u> | Abbreviation | Gage Name         | <u> # Rights</u> |
|----------------|--------------|-------------------|------------------|
| 2302900_Pln    | SFKANTCO     | SOUTH FORK GAGE   | 22               |
| 2302901_Pln    | FOUHIGCO     | BADGER BASIN GAGE | 5                |
| 2302902_Pln    | MFKSTMCO     | SANTA MARIA GAGE  | 8                |

| 2302903_Pln | PLASPICO | SPINNEY GAGE       | 13 |
|-------------|----------|--------------------|----|
| 2302904_Pln | FOUHARCO | HIGH CREEK GAGE    | 2  |
| 2302911_Pln | TROGARCO | TROUT CREEK GAGE   | 1  |
| 2302912_Pln | SPRBRNCO | SPRING BRANCH GAGE | 1  |
| 2302913_Pln | MFKPRICO | PRINCE GAGE        | 17 |

| Right ID    | Admin #     | Destination | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|-------------|-------------|-------------|------------------------------------------------------|------------|---------------|
| SFKANTCO.01 | 8577.00000  | 2302900_Pln |                                                      | 2302900.01 | 26            |
| SFKANTCO.02 | 8645.00000  | 2302900_Pln |                                                      | 2302900.02 | 26            |
| SFKANTCO.03 | 8918.00000  | 2302900_Pln |                                                      | 2302900.03 | 26            |
| SFKANTCO.04 | 9271.00000  | 2302900_Pln |                                                      | 2302900.04 | 26            |
| SFKANTCO.05 | 9639.00000  | 2302900_Pln |                                                      | 2302900.05 | 26            |
| SFKANTCO.06 | 9663.00000  | 2302900_Pln |                                                      | 2302900.06 | 26            |
| SFKANTCO.07 | 9678.00000  | 2302900_Pln |                                                      | 2302900.07 | 26            |
| SFKANTCO.08 | 9679.00000  | 2302900_Pln |                                                      | 2302900.08 | 26            |
| SFKANTCO.09 | 10014.00000 | 2302900_Pln |                                                      | 2302900.09 | 26            |
| SFKANTCO.10 | 10028.00000 | 2302900_Pln |                                                      | 2302900.10 | 26            |
| SFKANTCO.11 | 10440.00000 | 2302900_Pln |                                                      | 2302900.11 | 26            |
| SFKANTCO.12 | 10449.00000 | 2302900_Pln |                                                      | 2302900.12 | 26            |
| SFKANTCO.13 | 10836.00000 | 2302900_Pln |                                                      | 2302900.13 | 26            |
| SFKANTCO.14 | 11088.00000 | 2302900_Pln |                                                      | 2302900.14 | 26            |
| SFKANTCO.15 | 13635.00000 | 2302900_Pln |                                                      | 2302900.15 | 26            |
| SFKANTCO.16 | 13659.00000 | 2302900_Pln |                                                      | 2302900.16 | 26            |
| SFKANTCO.17 | 13707.00000 | 2302900_Pln |                                                      | 2302900.17 | 26            |
| SFKANTCO.18 | 14041.00000 | 2302900_Pln |                                                      | 2302900.18 | 26            |
| SFKANTCO.19 | 14536.10744 | 2302900_Pln |                                                      | 2302900.19 | 26            |
| SFKANTCO.20 | 14536.12571 | 2302900_Pln |                                                      | 2302900.20 | 26            |
| SFKANTCO.21 | 14536.12936 | 2302900_Pln |                                                      | 2302900.22 | 26            |
| SFKANTCO.22 | 18774.00000 | 2302900_Pln |                                                      | 2302900.23 | 26            |
| FOUHARCO.01 | 8918.00000  | 2302901_Pln |                                                      | 2302901.01 | 26            |
| FOUHARCO.02 | 10362.00000 | 2302901_Pln |                                                      | 2302901.02 | 26            |
| FOUHARCO.03 | 11444.00000 | 2302901_Pln |                                                      | 2302901.03 | 26            |
| FOUHARCO.04 | 12943.00000 | 2302901_Pln |                                                      | 2302901.04 | 26            |
| FOUHARCO.05 | 14536.11110 | 2302901_Pln |                                                      | 2302901.05 | 26            |
| MFKSTMCO.01 | 6391.00000  | 2302902_Pln |                                                      | 2302902.01 | 26            |

| Right ID    | Admin #     | Destination | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|-------------|-------------|-------------|------------------------------------------------------|------------|---------------|
| MFKSTMCO.02 | 6405.00000  | 2302902_Pln |                                                      | 2302902.02 | 26            |
| MFKSTMCO.03 | 9241.00000  | 2302902_Pln |                                                      | 2302902.03 | 26            |
| MFKSTMCO.04 | 10337.00000 | 2302902_Pln |                                                      | 2302902.04 | 26            |
| MFKSTMCO.05 | 11415.00000 | 2302902_Pln |                                                      | 2302902.05 | 26            |
| MFKSTMCO.06 | 23152.15493 | 2302902_Pln |                                                      | 2302902.06 | 26            |
| MFKSTMCO.07 | 23152.15585 | 2302902_Pln |                                                      | 2302902.07 | 26            |
| MFKSTMCO.08 | 23152.15645 | 2302902_Pln |                                                      | 2302902.08 | 26            |
| PLASPICO.01 | 8932.00000  | 2302903_Pln |                                                      | 2302903.01 | 26            |
| PLASPICO.02 | 9282.00000  | 2302903_Pln |                                                      | 302903.02  | 26            |
| PLASPICO.03 | 9693.00000  | 2302903_Pln |                                                      | 2302903.03 | 26            |
| PLASPICO.04 | 9709.00000  | 2302903_Pln |                                                      | 2302903.04 | 26            |
| PLASPICO.05 | 9997.00000  | 2302903_Pln |                                                      | 2302903.05 | 26            |
| PLASPICO.06 | 10014.00000 | 2302903_Pln |                                                      | 2302903.06 | 26            |
| PLASPICO.07 | 10044.00000 | 2302903_Pln |                                                      | 2302903.07 | 26            |
| PLASPICO.08 | 10727.00000 | 2302903_Pln |                                                      | 2302903.08 | 26            |
| PLASPICO.09 | 11110.00000 | 2302903_Pln |                                                      | 2302903.09 | 26            |
| PLASPICO.10 | 11597.00000 | 2302903_Pln |                                                      | 2302903.10 | 26            |
| PLASPICO.11 | 11839.00000 | 2302903_Pln |                                                      | 2302903.11 | 26            |
| PLASPICO.12 | 11946.00000 | 2302903_Pln |                                                      | 2302903.12 | 26            |
| PLASPICO.13 | 12707.00000 | 2302903_Pln |                                                      | 2302903.13 | 26            |
| FOUHIGCO.01 | 8644.00000  | 2302904_Pln |                                                      | 2302904.01 | 26            |
| FOUHIGCO.02 | 9983.00000  | 2302904_Pln |                                                      | 2302904.02 | 26            |
| TROGARCO.01 | 4565.00000  | 2302911_Pln |                                                      | 2302911.01 | 26            |
| SPRBRNCO.01 | 10774.00000 | 2302912_Pln |                                                      | 2302912.01 | 26            |
| MFKPRICO.01 | 6788.00000  | 2302913_Pln |                                                      | 2302913.01 | 26            |
| MFKPRICO.02 | 8544.00000  | 2302913_Pln |                                                      | 2302913.02 | 26            |
| MFKPRICO.03 | 8546.00000  | 2302913_Pln |                                                      | 2302913.03 | 26            |
| MFKPRICO.04 | 8583.00000  | 2302913_Pln |                                                      | 2302913.04 | 26            |
| MFKPRICO.05 | 9252.00000  | 2302913_Pln |                                                      | 2302913.05 | 26            |
| MFKPRICO.06 | 9276.00000  | 2302913_Pln |                                                      | 2302913.06 | 26            |
| MFKPRICO.07 | 9627.00000  | 2302913_Pln |                                                      | 2302913.07 | 26            |
| MFKPRICO.08 | 10398.00000 | 2302913_Pln |                                                      | 2302913.08 | 26            |
| MFKPRICO.09 | 10733.00000 | 2302913_Pln |                                                      | 2302913.09 | 26            |

| Right ID    | Admin #     | Destination | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|-------------|-------------|-------------|------------------------------------------------------|------------|---------------|
| MFKPRICO.10 | 10788.00000 | 2302913_Pln |                                                      | 2302913.10 | 26            |
| MFKPRICO.11 | 11433.00000 | 2302913_Pln |                                                      | 2302913.11 | 26            |
| MFKPRICO.12 | 11453.00000 | 2302913_Pln |                                                      | 2302913.12 | 26            |
| MFKPRICO.13 | 11816.00000 | 2302913_Pln |                                                      | 2302913.13 | 26            |
| MFKPRICO.14 | 11849.00000 | 2302913_Pln |                                                      | 2302913.14 | 26            |
| MFKPRICO.15 | 11853.00000 | 2302913_Pln |                                                      | 2302913.15 | 26            |
| MFKPRICO.16 | 11854.00000 | 2302913_Pln |                                                      | 2302913.16 | 26            |
| MFKPRICO.17 | 11867.00000 | 2302913_Pln |                                                      | 2302913.17 | 26            |

The South Platte water rights are typically stored in Spinney Mountain Reservoir before water is released from Spinney to meet Aurora's demands. The water stored in Spinney Mountain is reusable and creates return flow obligations that represent a demand for the stored water below Spinney Mountain Reservoir.

In addition to the decreed Consumptive Use factors, the South Platte water rights have Delayed Return Factors (DRF). Limits on the use of these rights in the model are based on monthly CU cfs amounts plus DRF cfs amounts, which may be less than the total amount of a particular water right assigned to the gage. The total amount of water available, subject to the monthly limits, can be used to simulate releases to demands and/or storage. The DRFs generated by these uses vary by ditch and by month, so a simplified approach was used for simulating DRFs. First, monthly average DRF values were developed for all of the ditches represented at each gage. The DRF values, by gage, were then averaged amongst all the gages to get the following monthly DRF percentages that are used for all of the South Park water rights.

The DRF is assigned to a Term and Conditions Plan and distributed monthly based on a generalized return flow pattern used by the Aurora's water rights engineers. (Section 5.8.6.10)

As noted above, the South Platte water rights are typically stored before being used to meet demands. The rules for the South Platte rights tabulated below are first stored in Spinney Mountain Reservoir with any excess supply being released directly to the Aurora demand.

Note these rules are represented by a suite of rules (e.g., SFKANTCO.23a, SFKANTCO.23b, SFKANTCO.23c, SFKANTCO.23d, SFKANTCO.23e) – one for each month so as to represent the variable monthly CU factors).

| Right ID       | Admin #     | Destination                                              | Account, Carrier, Return<br>Location (R), or % Split                              | Source      | Right<br>Type |
|----------------|-------------|----------------------------------------------------------|-----------------------------------------------------------------------------------|-------------|---------------|
| SFKANTCO.23a-e | 18774.00001 | Spinney Mountain<br>Reservoir<br>(2304013), Account<br>3 | SF SPR abv Antero<br>ADMIN GAGE (2302900)<br>SF SPR Aug Station<br>(2302900_A, R) | 2302900_Pln | 27            |

| Right ID       | Admin #     | Destination                                              | Account, Carrier, Return<br>Location (R), or % Split                                                                              | Source      | Right<br>Type |
|----------------|-------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|
| SFKANTCO.24a-e | 18774.00002 | Aurora Inside Use<br>(08_Aurora_I)                       | SF SPR abv Antero<br>ADMIN GAGE (2302900)<br>SF SPR Aug Station<br>(2302900_A, R)<br>AURORA INTAKE<br>(0801001)                   | 2302900_Pln | 27            |
| SFKANTCO.25a-e | 18774.00003 | Aurora Outside Use<br>(08_Aurora_O)                      | SF SPR abv Antero<br>ADMIN GAGE (2302900)<br>SF SPR Aug Station<br>(2302900_A, R)<br>AURORA INTAKE<br>(0801001)                   | 2302900_Pln | 27            |
| FOUHARCO.06a-e | 14536.11111 | Spinney Mountain<br>Reservoir<br>(2304013), Account<br>3 | Fourmile Ck nr Harstel<br>ADMIN GAGE (2302901)<br>Fourmile nr Harstel Aug<br>Station (2302901_A, R)                               | 2302901_Pln | 27            |
| FOUHARCO.07a-e | 14536.11112 | Aurora Inside Use<br>(08_Aurora_I)                       | Fourmile Ck nr Harstel<br>ADMIN GAGE (2302901)<br>Fourmile nr Harstel Aug<br>Station (2302901_A, R)<br>AURORA INTAKE<br>(0801001) | 2302901_Pln | 27            |
| FOUHARCO.08a-e | 14536.11113 | Aurora Outside Use<br>(08_Aurora_O)                      | Fourmile Ck nr Harstel<br>ADMIN GAGE (2302901)<br>Fourmile nr Harstel Aug<br>Station (2302901_A, R)<br>AURORA INTAKE<br>(0801001) | 2302901_Pln | 27            |
| MFKSTMCO.09a-e | 23152.15646 | Spinney Mountain<br>Reservoir<br>(2304013), Account<br>3 | Mid Fk SPR at<br>SantaMaria ADMIN<br>GAGE (2302902)<br>Mid Fk SPR Aug Station<br>(2302902_A, R)                                   | 2302902_Pln | 27            |
| MFKSTMCO.10a-e | 23152.15647 | Aurora Inside Use<br>(08_Aurora_I)                       | Mid Fk SPR at<br>SantaMaria ADMIN<br>GAGE (2302902)<br>Mid Fk SPR Aug Station<br>(2302902_A, R)<br>AURORA INTAKE<br>(0801001)     | 2302902_Pln | 27            |
| MFKSTMCO.11a-e | 23152.15648 | Aurora Outside Use<br>(08_Aurora_O)                      | Mid Fk SPR at<br>SantaMaria ADMIN<br>GAGE (2302902)<br>Mid Fk SPR Aug Station<br>(2302902_A, R)<br>AURORA INTAKE<br>(0801001)     | 2302902_Pln | 27            |
| PLASPICO.14a-e | 12707.00001 | Spinney Mountain<br>Reservoir<br>(2304013), Account      | SPR abv Spinney Mtn<br>ADMIN GAGE (2302903)<br>SPR abv Spinney Aug                                                                | 2302903_Pln | 27            |

| Right ID       | Admin #     | Destination                                              | Account, Carrier, Return<br>Location (R), or % Split                                                                           | Source      | Right<br>Type |
|----------------|-------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|
|                |             | 3                                                        | Station (2302903_A)                                                                                                            |             |               |
| PLASPICO.15a-e | 12707.00002 | Aurora Inside Use<br>(08_Aurora_I)                       | SPR abv Spinney Mtn<br>ADMIN GAGE (2302903)<br>SPR abv Spinney Aug<br>Station (2302903_A)<br>AURORA INTAKE<br>(0801001)        | 2302903_Pln | 27            |
| PLASPICO.16a-e | 12707.00003 | Aurora Outside Use<br>(08_Aurora_O)                      | SPR abv Spinney Mtn<br>ADMIN GAGE (2302903)<br>SPR abv Spinney Aug<br>Station (2302903_A)<br>AURORA INTAKE<br>(0801001)        | 2302903_Pln | 27            |
| FOUHIGCO.03a-e | 9983.00001  | Spinney Mountain<br>Reservoir<br>(2304013), Account<br>3 | Fourmile Ck at High Ck<br>ADMIN GAGE (2302904)<br>Fourmile at High Ck Aug<br>Station (2302904_A)                               | 2302904_PIn | 27            |
| FOUHIGCO.04a-e | 9983.00002  | Aurora Inside Use<br>(08_Aurora_I)                       | Fourmile Ck at High Ck<br>ADMIN GAGE (2302904)<br>Fourmile at High Ck Aug<br>Station (2302904_A)<br>AURORA INTAKE<br>(0801001) | 2302904_Pln | 27            |
| FOUHIGCO.05a   | 9983.00003  | Aurora Outside Use<br>(08_Aurora_O)                      | Fourmile Ck at High Ck<br>ADMIN GAGE (2302904)<br>Fourmile at High Ck Aug<br>Station (2302904_A)<br>AURORA INTAKE<br>(0801001) | 2302904_Pln | 27            |
| TROGARCO.02a-e | 4565.00001  | Spinney Mountain<br>Reservoir<br>(2304013), Account<br>3 | Trout Ck nr Garo ADMIN<br>GAGE (2302911)<br>Trout nr Garo Aug<br>Station (2302911_A)                                           | 2302911_Pln | 27            |
| TROGARCO.03a-e | 4565.00002  | Aurora Inside Use<br>(08_Aurora_I)                       | Trout Ck nr Garo ADMIN<br>GAGE (2302911)<br>Trout nr Garo Aug<br>Station (2302911_A)<br>AURORA INTAKE<br>(0801001)             | 2302911_Pln | 27            |
| TROGARCO.04a-e | 4565.00003  | Aurora Outside Use<br>(08_Aurora_O)                      | Trout Ck nr Garo ADMIN<br>GAGE (2302911)<br>Trout nr Garo Aug<br>Station (2302911_A)<br>AURORA INTAKE<br>(0801001)             | 2302911_Pln | 27            |
| SPRBRNCO.02a-e | 10774.00001 | Spinney Mountain<br>Reservoir<br>(2304013), Account<br>3 | Spring Branch abv MF<br>SPR ADMIN GAGE<br>(2302912)<br>Spring Branch Aug<br>Station (2302912_A)                                | 2302912_Pln | 26            |

| Right ID       | Admin #     | Destination                                              | Account, Carrier, Return<br>Location (R), or % Split                                                                          | Source      | Right<br>Type |
|----------------|-------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|
| SPRBRNCO.03a-e | 10774.00002 | Aurora Inside Use<br>(08_Aurora_I)                       | Spring Branch abv MF<br>SPR ADMIN GAGE<br>(2302912)<br>Spring Branch Aug<br>Station (2302912_A)<br>AURORA INTAKE<br>(0801001) | 2302912_Pln | 27            |
| SPRBRNCO.04a-e | 10774.00003 | Aurora Outside Use<br>(08_Aurora_O)                      | Spring Branch abv MF<br>SPR ADMIN GAGE<br>(2302912)<br>Spring Branch Aug<br>Station (2302912_A)<br>AURORA INTAKE<br>(0801001) | 2302912_Pln | 27            |
| MFKPRICO.13a-e | 11867.00001 | Spinney Mountain<br>Reservoir<br>(2304013), Account<br>3 | Mid Fk SPR Prince<br>ADMIN GAGE (2302913)<br>Mid Fk SPR Prince Aug<br>Station (2302913_A)                                     | 2302913_Pln | 27            |
| MFKPRICO.14a-e | 11867.00002 | Aurora Inside Use<br>(08_Aurora_I)                       | Mid Fk SPR Prince<br>ADMIN GAGE (2302913)<br>Mid Fk SPR Prince Aug<br>Station (2302913_A)<br>AURORA INTAKE<br>(0801001)       | 2302913_Pln | 27            |
| MFKPRICO.15a-e | 11867.00003 | Aurora Outside Use<br>(08_Aurora_O)                      | Mid Fk SPR Prince<br>ADMIN GAGE (2302913)<br>Mid Fk SPR Prince Aug<br>Station (2302913_A)<br>AURORA INTAKE<br>(0801001)       | 2302913_Pln | 27            |

### 5.10.8.2.4 Representation of Terryall Creek Water Rights

The consumptive use amounts for the 57 water rights in the Tarryall Creek Basin are stored, in priority, in the following Changed Water Rights Plan structures.

| <u>Plan ID</u> | Abbreviation | Gage Name            | # Rights |
|----------------|--------------|----------------------|----------|
| 2302906_Pln    | TARCOMCO     | UPPER TARRYALL GAGE  | 10       |
| 2302907_Pln    | MCHJEFCO     | MICHIGAN CREEK GAGE  | 9        |
| 2302908_Pln    | JEFJEFCO     | JEFFERSON CREEK GAGE | 9        |
| 2302909_Pln    | TARBORCO     | LOWER TARRYALL GAGE  | 7        |
| 2302910_Pln    | OHGJEFCO     | OHLER GULCH GAGE     | 1        |
| 2302914_Pln    | FRNCRKCO     | FRENCH CREEK GAGE    | 1        |
| 2302915_Pln    | RCKTARCO     | ROCK CREEK GAGE      | 13       |
| 2302916_Pln    | SCHFLMCO     | SCHATTINGER GAGE     | 3        |
| 2302917_Pln    | JEFSNYCO     | ROCKER 7 GAGE        | 3        |

| 23029       | 18_Pln      | DIXCOMCO    | JOHNSTON GAGE                                        | 2          |               |
|-------------|-------------|-------------|------------------------------------------------------|------------|---------------|
| Right ID    | Admin #     | Destination | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
| TARCOMCO.01 | 9592.00000  | 2302906_Pln |                                                      | 2302906.01 | 26            |
| TARCOMCO.02 | 10367.00000 | 2302906_Pln |                                                      | 2302906.02 | 26            |
| TARCOMCO.03 | 10722.00000 | 2302906_Pln |                                                      | 2302906.03 | 26            |
| TARCOMCO.04 | 11068.00000 | 2302906_Pln |                                                      | 2302906.04 | 26            |
| TARCOMCO.05 | 11098.00000 | 2302906_Pln |                                                      | 2302906.05 | 26            |
| TARCOMCO.06 | 11129.00000 | 2302906_Pln |                                                      | 2302906.06 | 26            |
| TARCOMCO.07 | 11453.00000 | 2302906_Pln |                                                      | 2302906.07 | 26            |
| TARCOMCO.08 | 11550.00000 | 2302906_Pln |                                                      | 2302906.08 | 26            |
| TARCOMCO.09 | 12924.00000 | 2302906_Pln |                                                      | 2302906.09 | 26            |
| TARCOMCO.10 | 14536.14427 | 2302906_Pln |                                                      | 2302906.10 | 26            |
| MCHJEFCO.01 | 9053.00000  | 2302907_Pln |                                                      | 2302907.01 | 26            |
| MCHJEFCO.02 | 9233.00000  | 2302907_Pln |                                                      | 2302907.02 | 26            |
| MCHJEFCO.03 | 11032.00000 | 2302907_Pln |                                                      | 2302907.03 | 26            |
| MCHJEFCO.04 | 11170.00000 | 2302907_Pln |                                                      | 2302907.04 | 26            |
| MCHJEFCO.05 | 11263.00000 | 2302907_Pln |                                                      | 2302907.05 | 26            |
| MCHJEFCO.06 | 11748.00000 | 2302907_Pln |                                                      | 2302907.06 | 26            |
| MCHJEFCO.07 | 11809.00000 | 2302907_Pln |                                                      | 2302907.07 | 26            |
| MCHJEFCO.08 | 12205.00000 | 2302907_Pln |                                                      | 2302907.08 | 26            |
| JEFJEFCO.01 | 9040.00000  | 2302908_Pln |                                                      | 2302908.01 | 26            |
| JEFJEFCO.02 | 9266.00000  | 2302908_Pln |                                                      | 2302908.02 | 26            |
| JEFJEFCO.03 | 9612.00000  | 2302908_Pln |                                                      | 2302908.03 | 26            |
| JEFJEFCO.04 | 10732.00000 | 2302908_Pln |                                                      | 2302908.04 | 26            |
| JEFJEFCO.05 | 10836.00000 | 2302908_Pln |                                                      | 2302908.05 | 26            |
| JEFJEFCO.06 | 11453.00000 | 2302908_Pln |                                                      | 2302908.06 | 26            |
| JEFJEFCO.07 | 11813.00000 | 2302908_Pln |                                                      | 2302908.07 | 26            |
| JEFJEFCO.08 | 11854.00000 | 2302908_Pln |                                                      | 2302908.08 | 26            |
| TARBORCO.01 | 7805.00000  | 2302909_Pln |                                                      | 2302909.01 | 26            |
| TARBORCO.02 | 9071.00000  | 2302909_Pln |                                                      | 2302909.02 | 26            |
| TARBORCO.03 | 9100.00000  | 2302909_Pln |                                                      | 2302909.03 | 26            |
| TARBORCO.04 | 9618.00000  | 2302909_Pln |                                                      | 2302909.04 | 26            |
| TARBORCO.05 | 10957.00000 | 2302909_Pln |                                                      | 2302909.05 | 26            |
| TARBORCO.06 | 11108.00000 | 2302909_Pln |                                                      | 2302909.06 | 26            |

| Right ID    | Admin #     | Destination | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|-------------|-------------|-------------|------------------------------------------------------|------------|---------------|
| TARBORCO.07 | 11171.00000 | 2302909_Pln |                                                      | 2302909.07 | 26            |
| OHGJEFCO.01 | 10318.00000 | 2302910_Pln |                                                      | 2302910.01 | 26            |
| FRNCRKCO.01 | 10763.00000 | 2302914_Pln |                                                      | 2302914.01 | 26            |
| RCKTARCO.01 | 8157.00000  | 2302915_Pln |                                                      | 2302915.01 | 26            |
| RCKTARCO.02 | 8202.00000  | 2302915_Pln |                                                      | 2302915.02 | 26            |
| RCKTARCO.03 | 8541.00000  | 2302915_Pln |                                                      | 2302915.03 | 26            |
| RCKTARCO.04 | 9252.00000  | 2302915_Pln |                                                      | 2302915.04 | 26            |
| RCKTARCO.05 | 9649.00000  | 2302915_Pln |                                                      | 2302915.05 | 26            |
| RCKTARCO.06 | 9983.00000  | 2302915_Pln |                                                      | 2302915.06 | 26            |
| RCKTARCO.07 | 10043.00000 | 2302915_Pln |                                                      | 2302915.07 | 26            |
| RCKTARCO.08 | 11110.00000 | 2302915_Pln |                                                      | 2302915.08 | 26            |
| RCKTARCO.09 | 11118.00000 | 2302915_Pln |                                                      | 2302915.09 | 26            |
| RCKTARCO.10 | 11809.00000 | 2302915_Pln |                                                      | 2302915.10 | 26            |
| RCKTARCO.11 | 11829.00000 | 2302915_Pln |                                                      | 2302915.11 | 26            |
| RCKTARCO.12 | 12554.00000 | 2302915_Pln |                                                      | 2302915.12 | 26            |
| RCKTARCO.13 | 12560.00000 | 2302915_Pln |                                                      | 2302915.13 | 26            |
| SCHFLMCO.01 | 10044.00000 | 2302916_Pln |                                                      | 2302916.02 | 26            |
| SCHFLMCO.02 | 10798.00000 | 2302916_Pln |                                                      | 2302916.04 | 26            |
| SCHFLMCO.03 | 16718.00000 | 2302916_Pln |                                                      | 2302916.05 | 26            |
| JEFSNYCO.01 | 9246.00000  | 2302917_Pln |                                                      | 2302917.01 | 26            |
| JEFSNYCO.02 | 11458.00000 | 2302917_Pln |                                                      | 2302917.02 | 26            |
| JEFSNYCO.03 | 23152.12608 | 2302917_Pln |                                                      | 2302917.03 | 26            |
| DIXCOMCO.01 | 8171.00000  | 2302918_Pln |                                                      | 2302918.01 | 26            |
| DIXCOMCO.02 | 9313.00000  | 2302918_Pln |                                                      | 2302918.02 | 26            |

The Tarryall rights are typically released first to meet Aurora's demands and excess supplies can then be exchanged to Spinney Mountain Reservoir. The Tarryall Creek changed water rights have Delayed (winter) Return Factors (DRF) and Instantaneous Return Factors (IRF). Limits on the use of these rights are based on the monthly CU cfs amounts plus DRF cfs plus IRF cfs amounts. The average monthly DRF values were developed using the same approach as described above for the South Platte water rights (see Section 5.8.6.10). The monthly DRF is distributed based on the same monthly pattern used for the South Platte water rights.

As noted above, the decretal limitations on a changed water right may be less than the water right assigned to the administrative gage. In addition, the CU factors, DRFs, and IRFs as percentages of

each water right at an administrative gage are not consistent among the water rights assigned to that gage. Detailed analysis of the different moving parts with the administrative gages is fairly complex. The IRF values essentially represent the portion of the changed water right that must be bypassed and cannot be used by the owner. Therefore, the IRF values developed for the model are based on the cfs-weighted average monthly CU factor as a percentage of the total amount of changed water rights at a particular gage. The average monthly IRF values used in the model for the Tarryall rights are summarized in the Plan Section.

The rules for the Tarryall rights tabulated below are first used to meet Aurora demands with any excess supply stored in Spinney Mountain Reservoir, Aurora Reservoir, or Strontia Springs Reservoir.

| Right ID       | Admin #     | Destination                                           | Account, Carrier, Return<br>Location (R), or % Split                                                         | Source      | Right<br>Type |
|----------------|-------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------|---------------|
| TARCOMCO.11a-f | 23152.15646 | Aurora Inside Use<br>(08_Aurora_I)                    | Tarryall at Como Aug<br>Station (2302906_A)<br>Petrie Ditch (2300902, R)<br>Aurora Intake (0801001)          | 2302906_PI  | 27            |
| TARCOMCO.12a-f | 23152.15647 | Aurora Outside Use<br>(08_Aurora_O)                   | Tarryall at Como Aug<br>Station (2302906_A)<br>Petrie Ditch (2300902, R)<br>Aurora Intake (0801001)          | 2302906_PI  | 27            |
| TARCOMCO.13a-f | 23152.15648 | Spinney Mountain<br>Reservoir (2304013),<br>Account 3 | Tarryall at Como Aug<br>Station (2302906_A)<br>Petrie Ditch (2300902, R)<br>Aurora Intake (0801001)          | 2302906_Pln | 27            |
| TARCOMCO.14a-f | 23152.15649 | Aurora Reservoir<br>System (0203379),<br>Account 1    | Tarryall at Como Aug<br>Station (2302906_A)<br>Petrie Ditch (2300902, R)<br>Aurora Intake (0801001)          | 2302906_Pln | 27            |
| TARCOMCO.15a-f | 23152.15649 | Strontia Springs<br>Reservoir (0803983),<br>Account 2 | Tarryall at Como Aug<br>Station (2302906_A)<br>Petrie Ditch (2300902, R)<br>Aurora Intake (0801001)          | 2302906_Pln | 27            |
| MCHJEFCO.09a-f | 23152.15646 | Aurora Inside Use<br>(08_Aurora_I)                    | Michigan abv Jefferson<br>Aug Station (2302907_A)<br>Taylor Ditch (2300991,<br>R)<br>Aurora Intake (0801001) | 2302907_Pln | 27            |
| MCHJEFCO.10a-f | 23152.15647 | Aurora Outside Use<br>(08_Aurora_O)                   | Michigan abv Jefferson<br>Aug Station (2302907_A)<br>Taylor Ditch (2300991,<br>R)<br>Aurora Intake (0801001) | 2302907_Pln | 27            |
| MCHJEFCO.11a-f | 23152.15648 | Spinney Mountain<br>Reservoir (2304013),<br>Account 3 | Michigan abv Jefferson<br>Aug Station (2302907_A)<br>Taylor Ditch (2300991,<br>R)<br>Aurora Intake (0801001) | 2302907_Pln | 27            |
| MCHJEFCO.12a-f | 23152.15649 | Aurora Reservoir<br>System (0203379),                 | Michigan abv Jefferson<br>Aug Station (2302907_A)                                                            | 2302907_Pln | 27            |

| Right ID       | Admin #     | Destination                                           | Account, Carrier, Return<br>Location (R), or % Split                                                                            | Source      | Right<br>Type |
|----------------|-------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|
|                |             | Account 1                                             | Taylor Ditch (2300991,<br>R)<br>Aurora Intake (0801001)                                                                         |             |               |
| MCHJEFCO.13a-f | 23152.15649 | Strontia Springs<br>Reservoir (0803983),<br>Account 2 | Michigan abv Jefferson<br>Aug Station (2302907_A)<br>Taylor Ditch (2300991,<br>R)<br>Aurora Intake (0801001)                    | 2302907_PIn | 27            |
| JEFJEFCO.10a-f | 23152.15646 | Aurora Inside Use<br>(08_Aurora_I)                    | Jefferson Ck nr Jefferson<br>(2302908_A)<br>Jefferson Ck blw Snyder<br>ADMIN GAGE (2302917,<br>R)<br>AURORA INTAKE<br>(0801001) | 2302908_PIn | 27            |
| JEFJEFCO.11a-f | 23152.15647 | Aurora Outside Use<br>(08_Aurora_O)                   | Jefferson Ck nr Jefferson<br>(2302908_A)<br>Jefferson Ck blw Snyder<br>ADMIN GAGE (2302917,<br>R)<br>AURORA INTAKE<br>(0801001) | 2302908_PIn | 27            |
| JEFJEFCO.12a-f | 23152.15648 | Spinney Mountain<br>Reservoir (2304013),<br>Account 3 | Jefferson Ck nr Jefferson<br>(2302908_A)<br>Jefferson Ck blw Snyder<br>ADMIN GAGE (2302917,<br>R)<br>AURORA INTAKE<br>(0801001) | 2302908_PIn | 27            |
| JEFJEFCO.13a-f | 23152.15649 | Aurora Reservoir<br>System (0203379),<br>Account 1    | Jefferson Ck nr Jefferson<br>(2302908_A)<br>Jefferson Ck blw Snyder<br>ADMIN GAGE (2302917,<br>R)<br>AURORA INTAKE<br>(0801001) | 2302908_PIn | 27            |
| JEFJEFCO.14a-f | 23152.15649 | Strontia Springs<br>Reservoir (0803983),<br>Account 2 | Jefferson Ck nr Jefferson<br>(2302908_A)<br>Jefferson Ck blw Snyder<br>ADMIN GAGE (2302917,<br>R)<br>AURORA INTAKE<br>(0801001) | 2302908_Pln | 27            |
| TARBORCO.08a-c | 23152.15646 | Aurora Inside Use<br>(08_Aurora_I)                    | Tarryall at Bordon Ditch<br>Aug Station (2302909_A)<br>Holst Ditch 2 (2300922,<br>R)<br>AURORA INTAKE<br>(0801001)              | 2302909_PIn | 27            |
| TARBORCO.09a-c | 23152.15647 | Aurora Outside Use                                    | Tarryall at Bordon Ditch                                                                                                        | 2302909_Pln | 27            |

| Right ID       | Admin #     | Destination                                           | Account, Carrier, Return<br>Location (R), or % Split                                                                | Source      | Right<br>Type |
|----------------|-------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------|---------------|
|                |             | (08_Aurora_O)                                         | Aug Station (2302909_A)<br>Holst Ditch 2 (2300922,<br>R)<br>AURORA INTAKE<br>(0801001)                              |             |               |
| TARBORCO.10a-c | 23152.15648 | Spinney Mountain<br>Reservoir (2304013),<br>Account 3 | Tarryall at Bordon Ditch<br>Aug Station (2302909_A)<br>Holst Ditch 2 (2300922,<br>R)<br>AURORA INTAKE<br>(0801001)  | 2302909_PIn | 27            |
| TARBORCO.14a-c | 23152.15649 | Aurora Reservoir<br>System (0203379),<br>Account 1    | Tarryall at Bordon Ditch<br>Aug Station (2302909_A)<br>Holst Ditch 2 (2300922,<br>R)<br>AURORA INTAKE<br>(0801001)  | 2302909_PIn | 27            |
| TARBORCO.12a-c | 23152.15649 | Strontia Springs<br>Reservoir (0803983),<br>Account 2 | Tarryall at Bordon Ditch<br>Aug Station (2302909_A)<br>Holst Ditch 2 (2300922,<br>R)<br>AURORA INTAKE<br>(0801001)  | 2302909_PIn | 27            |
| OHGJEFCO.02a-e | 23152.15646 | Aurora Inside Use<br>(08_Aurora_I)                    | Ohler Aug Stn<br>(2302910_A)<br>Jefferson Ck blw Snyder<br>ADMIN GAGE (2302917,<br>R)<br>AURORA INTAKE<br>(0801001) | 2302910_Pln | 27            |
| OHGJEFCO.03a-e | 23152.15647 | Aurora Outside Use<br>(08_Aurora_O)                   | Ohler Aug Stn<br>(2302910_A)<br>Jefferson Ck blw Snyder<br>ADMIN GAGE (2302917,<br>R)<br>AURORA INTAKE<br>(0801001) | 2302910_Pln | 27            |
| OHGJEFCO.04a-e | 23152.15648 | Spinney Mountain<br>Reservoir (2304013),<br>Account 3 | Ohler Aug Stn<br>(2302910_A)<br>Jefferson Ck blw Snyder<br>ADMIN GAGE (2302917,<br>R)<br>AURORA INTAKE<br>(0801001) | 2302910_Pln | 27            |
| OHGJEFCO.05a-e | 23152.15649 | Aurora Reservoir<br>System (0203379),<br>Account 1    | Ohler Aug Stn<br>(2302910_A)<br>Jefferson Ck blw Snyder<br>ADMIN GAGE (2302917,<br>R)<br>AURORA INTAKE              | 2302910_Pln | 27            |

| Right ID       | Admin #     | Destination                                           | Account, Carrier, Return<br>Location (R), or % Split                                                                                    | Source      | Right<br>Type |
|----------------|-------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|
|                |             |                                                       | (0801001)                                                                                                                               |             |               |
| OHGJEFCO.06a-e | 23152.15649 | Strontia Springs<br>Reservoir (0803983),<br>Account 2 | Ohler Aug Stn<br>(2302910_A)<br>Jefferson Ck blw Snyder<br>ADMIN GAGE (2302917,<br>R)<br>AURORA INTAKE<br>(0801001)                     | 2302910_Pln | 27            |
| FRNCRKCO.02a-c | 23152.15646 | Aurora Inside Use<br>(08_Aurora_I)                    | French Ck abv Michigan<br>Aug Station (2302914_A)<br>Michigan abv Jefferson<br>ADMIN GAGE (2302907,<br>R)<br>AURORA INTAKE<br>(0801001) | 2302914_Pln | 27            |
| FRNCRKCO.03a-c | 23152.15647 | Aurora Outside Use<br>(08_Aurora_O)                   | French Ck abv Michigan<br>Aug Station (2302914_A)<br>Michigan abv Jefferson<br>ADMIN GAGE (2302907,<br>R)<br>AURORA INTAKE<br>(0801001) | 2302914_Pln | 27            |
| FRNCRKCO.04a-c | 23152.15648 | Spinney Mountain<br>Reservoir (2304013),<br>Account 3 | French Ck abv Michigan<br>Aug Station (2302914_A)<br>Michigan abv Jefferson<br>ADMIN GAGE (2302907,<br>R)<br>AURORA INTAKE<br>(0801001) | 2302914_Pln | 27            |
| FRNCRKCO.05a   | 23152.15649 | Aurora Reservoir<br>System (0203379),<br>Account 1    | French Ck abv Michigan<br>Aug Station (2302914_A)<br>Michigan abv Jefferson<br>ADMIN GAGE (2302907,<br>R)<br>AURORA INTAKE<br>(0801001) | 2302914_Pln | 27            |
| FRNCRKCO.06a   | 23152.15649 | Strontia Springs<br>Reservoir (0803983),<br>Account 2 | French Ck abv Michigan<br>Aug Station (2302914_A)<br>Michigan abv Jefferson<br>ADMIN GAGE (2302907,<br>R)<br>AURORA INTAKE<br>(0801001) | 2302914_PIn | 27            |
| RCKTARCO.14a-c | 23152.15646 | Aurora Inside Use<br>(08_Aurora_I)                    | Rock Ck abv Tarryall Aug<br>Station (2302915_A)<br>Tarryall at Borden Ditch<br>ADMIN GAGE (2302909,<br>R)<br>AURORA INTAKE<br>(0801001) | 2302915_PIn | 27            |

| Right ID       | Admin #     | Destination                                           | Account, Carrier, Return<br>Location (R), or % Split                                                                                      | Source      | Right<br>Type |
|----------------|-------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|
| RCKTARCO.15a-c | 23152.15647 | Aurora Outside Use<br>(08_Aurora_O)                   | Rock Ck abv Tarryall Aug<br>Station (2302915_A)<br>Tarryall at Borden Ditch<br>ADMIN GAGE (2302909,<br>R)<br>AURORA INTAKE<br>(0801001)   | 2302915_Pln | 27            |
| RCKTARCO.16a-c | 23152.15648 | Spinney Mountain<br>Reservoir (2304013),<br>Account 3 | Rock Ck abv Tarryall Aug<br>Station (2302915_A)<br>Tarryall at Borden Ditch<br>ADMIN GAGE (2302909,<br>R)<br>AURORA INTAKE<br>(0801001)   | 2302915_Pln | 27            |
| RCKTARCO.17a-c | 23152.15649 | Aurora Reservoir<br>System (0203379),<br>Account 1    | Rock Ck abv Tarryall Aug<br>Station (2302915_A)<br>Tarryall at Borden Ditch<br>ADMIN GAGE (2302909,<br>R)<br>AURORA INTAKE<br>(0801001)   | 2302915_Pln | 27            |
| RCKTARCO.18a-c | 23152.15649 | Strontia Springs<br>Reservoir (0803983),<br>Account 2 | Rock Ck abv Tarryall Aug<br>Station (2302915_A)<br>Tarryall at Borden Ditch<br>ADMIN GAGE (2302909,<br>R)<br>AURORA INTAKE<br>(0801001)   | 2302915_Pln | 27            |
| SCHFLMCO.04a-c | 23152.15646 | Aurora Inside Use<br>(08_Aurora_I)                    | Schattinger abv Michigan<br>Aug Station (2302916_A)<br>Michigan abv Jefferson<br>ADMIN GAGE (2302907,<br>R)<br>AURORA INTAKE<br>(0801001) | 2302916_Pln | 27            |
| SCHFLMCO.05a-c | 23152.15647 | Aurora Outside Use<br>(08_Aurora_O)                   | Schattinger abv Michigan<br>Aug Station (2302916_A)<br>Michigan abv Jefferson<br>ADMIN GAGE (2302907,<br>R)<br>AURORA INTAKE<br>(0801001) | 2302916_Pln | 27            |
| SCHFLMCO.06a-c | 23152.15648 | Spinney Mountain<br>Reservoir (2304013),<br>Account 3 | Schattinger abv Michigan<br>Aug Station (2302916_A)<br>Michigan abv Jefferson<br>ADMIN GAGE (2302907,<br>R)<br>AURORA INTAKE<br>(0801001) | 2302916_Pln | 27            |
| SCHFLMCO.07a-c | 23152.15649 | Aurora Reservoir                                      | Schattinger abv Michigan                                                                                                                  | 2302916_Pln | 27            |

| Right ID       | Admin #     | Destination                                           | Account, Carrier, Return                                                                                                                  | Source      | Right<br>Type                           |
|----------------|-------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------|
|                |             | System (0203379),<br>Account 1                        | Aug Station (2302916_A)<br>Michigan abv Jefferson<br>ADMIN GAGE (2302907,<br>R)<br>AURORA INTAKE<br>(0801001)                             |             | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| SCHFLMCO.08a-c | 23152.15649 | Strontia Springs<br>Reservoir (0803983),<br>Account 2 | Schattinger abv Michigan<br>Aug Station (2302916_A)<br>Michigan abv Jefferson<br>ADMIN GAGE (2302907,<br>R)<br>AURORA INTAKE<br>(0801001) | 2302916_Pln | 27                                      |
| JEFSNYCO.04a-c | 23152.15646 | Aurora Inside Use<br>(08_Aurora_I)                    | Jefferson Ck blw Synder<br>Aug Station (2302917_A)<br>Jefferson Ck ISF<br>(2302116_Dwn, R)<br>AURORA INTAKE<br>(0801001)                  | 2302917_Pln | 27                                      |
| JEFSNYCO.05a-c | 23152.15647 | Aurora Outside Use<br>(08_Aurora_O)                   | Jefferson Ck blw Synder<br>Aug Station (2302917_A)<br>Jefferson Ck ISF<br>(2302116_Dwn, R)<br>AURORA INTAKE<br>(0801001)                  | 2302917_Pln | 27                                      |
| JEFSNYCO.06a-c | 23152.15648 | Spinney Mountain<br>Reservoir (2304013),<br>Account 3 | Jefferson Ck blw Synder<br>Aug Station (2302917_A)<br>Jefferson Ck ISF<br>(2302116_Dwn, R)<br>AURORA INTAKE<br>(0801001)                  | 2302917_Pln | 27                                      |
| JEFSNYCO.07a-c | 23152.15649 | Aurora Reservoir<br>System (0203379),<br>Account 1    | Jefferson Ck blw Synder<br>Aug Station (2302917_A)<br>Jefferson Ck ISF<br>(2302116_Dwn, R)<br>AURORA INTAKE<br>(0801001)                  | 2302917_Pln | 27                                      |
| JEFSNYCO.08a-c | 23152.15649 | Strontia Springs<br>Reservoir (0803983),<br>Account 2 | Jefferson Ck blw Synder<br>Aug Station (2302917_A)<br>Jefferson Ck ISF<br>(2302116_Dwn, R)<br>AURORA INTAKE<br>(0801001)                  | 2302917_Pln | 27                                      |
| DIXCOMCO.03a-c | 23152.15646 | Aurora Inside Use<br>(08_Aurora_I)                    | Dixon Flume Holthusen<br>Aug Stn (2302918_A)<br>Petrie Ditch (2300902, R)<br>AURORA INTAKE<br>(0801001)                                   | 2302918_Pln | 27                                      |
| DIXCOMCO.04a-c | 23152.15647 | Aurora Outside Use<br>(08 Aurora O)                   | Dixon Flume Holthusen<br>Aug Stn (2302918_A)                                                                                              | 2302918_Pln | 27                                      |

| Right ID       | Admin #     | Destination          | Account, Carrier, Return<br>Location (R), or % Split | Source      | Right<br>Type |
|----------------|-------------|----------------------|------------------------------------------------------|-------------|---------------|
|                |             |                      | Petrie Ditch (2300902, R)                            |             |               |
|                |             |                      | AURORA INTAKE                                        |             |               |
|                |             |                      | (0801001)                                            |             |               |
| DIXCOMCO.05a-c | 23152.15648 | Spinney Mountain     | Dixon Flume Holthusen                                | 2302918_Pln | 27            |
|                |             | Reservoir (2304013), | Aug Stn (2302918_A)                                  |             |               |
|                |             | Account 3            | Petrie Ditch (2300902, R)                            |             |               |
|                |             |                      | AURORA INTAKE                                        |             |               |
|                |             |                      | (0801001)                                            |             |               |
| DIXCOMCO.06a-c | 23152.15649 | Aurora Reservoir     | Dixon Flume Holthusen                                | 2302918_Pln | 27            |
|                |             | System (0203379),    | Aug Stn (2302918_A)                                  |             |               |
|                |             | Account 1            | Petrie Ditch (2300902, R)                            |             |               |
|                |             |                      | AURORA INTAKE                                        |             |               |
|                |             |                      | (0801001)                                            |             |               |
| DIXCOMCO.15a-c | 23152.15649 | Strontia Springs     | Dixon Flume Holthusen                                | 2302918_Pln | 27            |
|                |             | Reservoir (0803983), | Aug Stn (2302918_A)                                  |             |               |
|                |             | Account 2            | Petrie Ditch (2300902, R)                            |             |               |
|                |             |                      | AURORA INTAKE                                        |             |               |
|                |             |                      | (0801001)                                            |             |               |

#### Reusable Effluent

Effluent exchanges and storage releases provide supplemental supplies to meet the Aurora demand. The following three rules exchange reusable effluent to supply the aurora demands (2) and storage in Aurora Reservoir (1):

| Right ID    | Admin #     | Destination                         | Account, Carrier, Return<br>Location (R), or % Split | Source   | Right<br>Type |
|-------------|-------------|-------------------------------------|------------------------------------------------------|----------|---------------|
| MetroAur.02 | 50029.00000 | Aurora Inside Use<br>(08_Aurora_I)  | AURORA INTAKE<br>(0801001)                           | MetroAur | 28            |
| MetroAur.03 | 50029.00001 | Aurora Outdoor Use<br>(08_Aurora_O) | AURORA INTAKE<br>(0801001)                           | MetroAur | 28            |
| MetroAur.04 | 53291.00001 | Aurora Well Aug Plan<br>(0802593)   |                                                      | MetroAur | 49            |

Three other Plan release rules are included for the use of reusable effluent to meet. Note the latter two rules only simulate releases when the well depletions and the return flows are not satisfied in priority using operating rule IDs 0802593.01 and AuroraRF.01, respectively.

| Right ID    | Admin #     | Destination                          | Account, Carrier, Return<br>Location (R), or % Split | Source                        | Right<br>Type |
|-------------|-------------|--------------------------------------|------------------------------------------------------|-------------------------------|---------------|
| MetAurRL.01 | 1.00000     |                                      |                                                      | Release Limit -<br>MetroAurRL | 47            |
| MetroAur.05 | 53291.00002 | Aurora Reservoir System<br>(0203379) | AURORA INTAKE<br>(0801001)                           | MetroAur                      | 28            |
| MetroAur.06 | 51864.00006 | AurLastChRF                          |                                                      | MetroAur                      | 48            |

## Storage Releases

The following six rules are used to supply the Aurora demand with releases from storage.

| Right ID    | Admin #     | Destination                         | Account, Carrier, Return<br>Location (R), or % Split | Source                                                      | Right<br>Type |
|-------------|-------------|-------------------------------------|------------------------------------------------------|-------------------------------------------------------------|---------------|
| Spinney.01  | 50029.00005 | Aurora Inside Use<br>(08_Aurora_I)  | AURORA INTAKE<br>(0801001)                           | Spinney<br>Mountain<br>Reservoir<br>(2304013),<br>Account 3 | 32            |
| Spinney.02  | 50029.00006 | Aurora Inside Use<br>(08_Aurora_I)  | AURORA INTAKE<br>(0801001)                           | Spinney<br>Mountain<br>Reservoir<br>(2304013),<br>Account 2 | 2             |
| Spinney.03  | 50029.00007 | Aurora Outdoor Use<br>(08_Aurora_O) | AURORA INTAKE<br>(0801001)                           | Spinney<br>Mountain<br>Reservoir<br>(2304013),<br>Account 3 | 32            |
| Spinney.04  | 50029.00008 | Aurora Outdoor Use<br>(08_Aurora_O) | AURORA INTAKE<br>(0801001)                           | Spinney<br>Mountain<br>Reservoir<br>(2304013),<br>Account 2 | 2             |
| AurorRes.01 | 50029.00009 | Aurora Inside Use<br>(08_Aurora_I)  |                                                      | Aurora Reservoir<br>System<br>(0203379),<br>Account 1       | 32            |
| AurorRes.02 | 50029.00010 | Aurora Outdoor Use<br>(08_Aurora_O) |                                                      | Aurora Reservoir<br>System<br>(0203379),<br>Account 1       | 32            |

The following nine rules are used to meet the South Park DRFs with releases from storage.

| Right ID   | Admin # | Destination | Account, Carrier, Return<br>Location (R), or % Split | Source                                                      | Right<br>Type |
|------------|---------|-------------|------------------------------------------------------|-------------------------------------------------------------|---------------|
| Spinney.05 | 1.00010 | SpinMtnDRF  |                                                      | Spinney<br>Mountain<br>Reservoir                            | 48            |
|            |         |             |                                                      | (2304013),<br>Account 3                                     |               |
| Spinney.06 | 1.00010 | SpinDRF_03  |                                                      | Spinney<br>Mountain<br>Reservoir<br>(2304013),<br>Account 3 | 48            |
| Spinney.07 | 1.00010 | SpinDRF_04  |                                                      | Spinney                                                     | 48            |

|            |         |            | Mountain   |    |
|------------|---------|------------|------------|----|
|            |         |            | Reservoir  |    |
|            |         |            | (2304013), |    |
|            |         |            | Account 3  |    |
| Spinney.08 | 1.00010 | SpinDRF_07 | Spinney    | 48 |
|            |         |            | Mountain   |    |
|            |         |            | Reservoir  |    |
|            |         |            | (2304013), |    |
|            |         |            | Account 3  |    |
| Spinney.09 | 1.00010 | SpinDRF_11 | Spinney    | 48 |
|            |         |            | Mountain   |    |
|            |         |            | Reservoir  |    |
|            |         |            | (2304013), |    |
|            |         |            | Account 3  |    |
| Spinney.10 | 1.00010 | SpinDRF_13 | Spinney    | 48 |
|            |         |            | Mountain   |    |
|            |         |            | Reservoir  |    |
|            |         |            | (2304013), |    |
|            |         |            | Account 3  |    |
| Spinney.11 | 1.00010 | SpinDRF_16 | Spinney    | 48 |
|            |         |            | Mountain   |    |
|            |         |            | Reservoir  |    |
|            |         |            | (2304013), |    |
|            |         |            | Account 3  |    |
| Spinney.12 | 1.00010 | SpinDRF_17 | Spinney    | 48 |
|            |         |            | Mountain   |    |
|            |         |            | Reservoir  |    |
|            |         |            | (2304013), |    |
|            |         |            | Account 3  |    |
| Spinney.13 | 1.00010 | SpinDRF_21 | Spinney    | 48 |
|            |         |            | Mountain   |    |
|            |         |            | Reservoir  |    |
|            |         |            | (2304013), |    |
|            |         |            | Account 3  |    |

The following rule releases stored water from Strontia Springs to the Aurora Reservoir system.

| Right ID    | Admin #     | Destination                                     | Account, Carrier, Return<br>Location (R), or % Split | Source                                                   | Right<br>Type |
|-------------|-------------|-------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|---------------|
| Strontia.03 | 50029.00011 | Aurora Reservoir System<br>(0203379), Account 1 | AURORA INTAKE<br>(0801001)                           | Strontia Springs<br>Reservoir<br>(0803983),<br>Account 2 | 3             |

One other storage release rule is included to meet augmentation requirements for the Cherry Creek wellfield.

| Right ID | Admin # | Destination | Account, Carrier, Return | Source | Right |
|----------|---------|-------------|--------------------------|--------|-------|
|          |         |             | Location (R), or % Split |        | Туре  |

| 0802593.01  | 53291.00000 | Aurora Well Aug Plan<br>(0802593) |                                                       | 43 |
|-------------|-------------|-----------------------------------|-------------------------------------------------------|----|
| AuroraRF.01 | 51864.00000 | AurLastChRF                       |                                                       | 43 |
| AurorRes.03 | 53291.00003 | Aurora Well Aug Plan<br>(0802593) | Aurora Reservoir<br>System<br>(0203379),<br>Account 1 | 49 |

### 5.10.8.3 City of Englewood

The City of Englewood is located in the southwest Denver metropolitan area. The community was served by the Denver Water Board until 1952, during a period when Englewood started purchasing water rights in the South Platte River and Bear Creek basins. Englewood built its primary water treatment plant near Union Avenue using an intake structure located at the site of the Petersburg Ditch headgate. In 1965, the City constructed McLellan Reservoir on the east side of the South Platte River near County Line Road and Santa Fe Drive.

The Englewood Intake (0801013) is the major component of Englewood's water supply system. It forms the basis of how supplies are represented to meet the Englewood demands in the SPDSS model, along with Englewood's ownership in the Boreas Pass Ditch and McLellan Reservoir. Note the Englewood Intake node is used as a carrier for all municipal water supplies, except for storage releases of water from McLellan Reservoir.

### 5.10.8.3.1 Transmountain Supplies

Until the SPDSS model and western slope models are integrated, the transmountain supplies from the Boreas Pass Ditch (2304611) are set equal to historical deliveries. These supplies are operated in the model as the primary supply, which results in the use of all the imports to meet the Englewood demand or stored in McLellan Reservoir (0803832). The following three rules are used to supply Boreas Pass Ditch imports directly to Englewood's demands (2) and storage (1).

| Right ID  | Admin # | Destination        | Account, Carrier, Return<br>Location (R), or % Split | Source        | Right<br>Type |
|-----------|---------|--------------------|------------------------------------------------------|---------------|---------------|
| Boreas.01 | 1.00001 | Englewood Inside   | Englewood Intake                                     | Boreas Tunnel | 27            |
|           |         | Use (08_Englwd_I)  | (0801013)                                            | Carrier       |               |
|           |         |                    |                                                      | (Boreas_C)    |               |
| Boreas.02 | 1.00002 | Englewood Outside  | Englewood Intake                                     | Boreas Tunnel | 27            |
|           |         | Use                | (0801013)                                            | Carrier       |               |
|           |         | (08_Englwd_O)      |                                                      | (Boreas_C)    |               |
| Boreas.03 | 1.00003 | McLellan Reservoir | CITY DITCH PL                                        | Boreas Tunnel | 27            |
|           |         | (0803832), Account | (0801008)                                            | Carrier       |               |
|           |         | 2                  |                                                      | (Boreas_C)    |               |

### 5.10.8.3.2 Changed Water Rights

The following three rules are used to meet Englewood's demand from the water rights previously adjudicated to the Brown Ditch (1) and the Platte Canyon Ditch (2) that have been transferred to the Englewood Intake. Monthly volumetrics input for these rules are based on the decretal terms and conditions in Case Nos. 86CW14 (Brown Ditch) and 80CW35 (Platte Canyon Ditch).

| Right ID       | Admin #    | Destination                           | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|----------------|------------|---------------------------------------|------------------------------------------------------|------------|---------------|
| EngBrown.01    | 4717.00000 | Englewood Outside<br>Use (08_Englwd_O | Englewood Intake<br>(0801013)                        | 0801013.06 | 45            |
| EnglwdPL.02-03 | 5112.00000 | Englewood Inside<br>Use (08_Englwd_I) | Englewood Intake<br>(0801013)                        | 0801013.03 | 45            |

The following three rules are used to store the credits from the Petersburg Ditch (1) and Nevada Ditch (2) water rights in the EngIntPIn structure; the subsequent three rules are used to meet the Englewood demand (2) and for storage in McLellan Reservoir (1) with water released from the EngIntPIn. The last rule is used to release any unused credits back to the river. Monthly volumetrics input for these rules are based on the decretal terms and conditions in Case No. 80CW35.

| Right ID    | Admin #    | Destination                                   | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|-------------|------------|-----------------------------------------------|------------------------------------------------------|------------|---------------|
| EnglwdPL.01 | 4352.00000 | EngIntPIn                                     | 100%                                                 | 0801013.02 | 26            |
| EnglwdPL.04 | 4260.00000 | EngIntPIn                                     | 100%                                                 | 0801013.01 | 26            |
| EnglwdPL.05 | 5843.00000 | EngIntPIn                                     | 100%                                                 | 0801013.04 | 26            |
| EnglwdPL.06 | 5843.00001 | Englewood Inside<br>Use (08_Englwd_I)         | Englewood Intake<br>(0801013)                        | EngIntPln  | 27            |
| EnglwdPL.07 | 5843.00002 | Englewood Outside<br>Use (08_Englwd_O         | Englewood Intake<br>(0801013)                        | EngIntPln  | 27            |
| EnglwdPL.08 | 5843.00003 | McLellan Reservoir<br>(0803832), Account<br>2 | CITY DITCH PL<br>(0801008)                           | EngIntPIn  | 28            |
| EngPlnSp.72 | 5843.00009 | Englewood Intake<br>(0801013)                 |                                                      | EngIntPln  | 29            |

The volumetrics used in the above rules represent one time use limits. Therefore, no return flow obligations are created from Englewood's use of these rights. In addition, the reusable supplies associated with Englewood's operations are not currently represented in the model.

Englewood also owns the majority of the McBroom Ditch (0900816). These rights are used primarily to irrigate a golf course near the confluence of the South Platte River and Bear Creek. The rights are used less often for diversion at the Englewood Intake. The golf course demand is assumed to be part of Englewood's outside use and the use of the changed right is therefore not modeled through other operating rules.

# 5.10.8.3.3 Storage Releases

The following two rules are used to supply the Englewood demand with releases from storage. The subsequent two rules are used to carry the McLellan Reservoir storage rights into the reservoir via the City Ditch (0801008).

| Right ID    | Admin #     | Destination        | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|-------------|-------------|--------------------|------------------------------------------------------|------------|---------------|
| McLellan.01 | 5884.00000  | Englewood Inside   |                                                      | McLellan   | 2             |
|             |             | Use (08_Englwd_I)  |                                                      | Reservoir  |               |
|             |             |                    |                                                      | (0803832), |               |
|             |             |                    |                                                      | Account 2  |               |
| McLellan.02 | 5884.00001  | Englewood Outside  |                                                      | McLellan   | 2             |
|             |             | Use (08_Englwd_O   |                                                      | Reservoir  |               |
|             |             |                    |                                                      | (0803832), |               |
|             |             |                    |                                                      | Account 2  |               |
| McLellan.03 | 36060.00000 | McLellan Reservoir | CITY DITCH PL                                        | 0803832.01 | 45            |
|             |             | (0803832),         | (0801008)                                            |            |               |
|             |             | Accounts 1-2       |                                                      |            |               |
| McLellan.04 | 50759.00000 | McLellan Reservoir | CITY DITCH PL                                        | 0803832.02 | 45            |
|             |             | (0803832),         | (0801008)                                            |            |               |
|             |             | Accounts 1-2       |                                                      |            |               |

# 5.10.8.4 Public Service Company

Xcel Energy has power plants at various locations in the upper South Platte River Basin. These facilities include the Cherokee Plant (02\_ChrkPP), located near the confluence of Clear Creek and the South Platte River; the Fort St. Vrain Plant (02\_VRNPP), located near the confluence of St. Vrain Creek and the South Platte River; and the Arapahoe Plant (0801014, decommissioned in 2013), located on the South Platte River below the Bear Creek confluence. Two other plants in the basin managed by Xcel Energy are not included in the model. The Zuni Plant is a once-through plant to generate steam for downtown Denver buildings. Xcel Energy has a 50 acre-feet per year take-of-pay lease with Denver Water, of which only about 5 to 10 acre-feet per year is used. Xcel Energy got ownership of the Calpine Plant in 2010. The plant is located below the Henrylyn Irrigation District service area. It is served by wellfield north of Fort Lupton from where water is piped 15 miles to plant. It is a zero-discharge plant (100% CU rate) and the replacement supply is Aurora effluent via a long-term lease.

# 5.10.8.4.1 Cherokee Power Plant (02\_ChrkPP) and Fisher Ditch (0700570)

The Cherokee Power plant is located near the terminus of the Fisher Ditch (0700570) and uses changed Fisher Ditch water as its primary supply during the summer. Xcel Energy acquired and changed a total of about 49 percent of the Fisher Ditch Company starting in the early-1990s. A 1991 priority water right from Clear Creek was also adjudicated (the Cherokee Pipeline water right). The

Cherokee plant was supplied prior to that time with contract water from DW through their ownership of water rights in the Farmers Gardners Ditch (0200800). Winter supplies for the power plant have been supplied by a contract for reusable effluent from DW, starting in 2004. There is also a small reservoir located adjacent to the plant (Copeland Reservoir, 0704354) that provides some cooling water. As presented below, the following operating rules are used to supply water to the Cherokee Power Plant.

| Right ID    | Admin #     | Destination                          | Account, Carrier, Return<br>Location (R), or % Split      | Source                                  | Right<br>Type |
|-------------|-------------|--------------------------------------|-----------------------------------------------------------|-----------------------------------------|---------------|
| Cherokee.01 | 1.00001     | Cherokee Power<br>Plant (02_ChrkPP)  | Reuse PL to Cherokee<br>(DW_ReusePL)                      | DWB Metro<br>Reuse Plan<br>(MetroDW)    | 27            |
| Cherokee.99 | 1.00000     |                                      |                                                           | Release Limit<br>(DWB_PSCo_RL)          | 47            |
| Fish.99     | 1.00000     |                                      |                                                           | Fisher Release<br>Limit<br>(FishPSC_RL) | 47            |
| Fish.08a-g  | 4198.00002  | Cherokee Power<br>Plant (02_ChrkPP)  | Fisher Ditch (0700570)<br>Fisher D to PSCO<br>(0700570_C) | PSCoFishPln                             | 27            |
| FandG.01    | 4822.00000  | FandGSplPIn                          | 100%                                                      | 0200800.01                              | 26            |
| FandG.02    | 8857.00000  | FandGSplPIn                          | 100%                                                      | 0200800.02                              | 26            |
| FandG.03a-b | 8857.00001  | FandGIndPIn                          | 100%                                                      | Fand GSplPIn                            | 46            |
| FandG.04    | 8857.00002  | Farmers Gardeners<br>Ditch (0200800) |                                                           | FandGIrrPln                             | 27            |
| Cherokee.02 | 8857.00002  | Cherokee Power<br>Plant (02_ChrkPP)  | Farmers Gardeners Ditch<br>(0200800)                      | FandGIndPIn                             | 27            |
| Cherokee.04 | 8857.00004  | Farmers Gardeners<br>Ditch (0200800) |                                                           | FandGIndPln                             | 27            |
| Fish.10     | 51711.00000 | Cherokee Power<br>Plant (02_ChrkPP)  | Fisher Ditch (0700570)                                    | 0700570.03                              | 45            |

#### Storage Releases

| Right ID     | Admin #     | Destination        | Account, Carrier, Return<br>Location (R), or % Split | Source      | Right<br>Type |
|--------------|-------------|--------------------|------------------------------------------------------|-------------|---------------|
| Copeland.01  | 51711.00001 | Cherokee Power     |                                                      | Copeland    | 3             |
|              |             | Plant (02_ChrkPP)  |                                                      | Reservoir   |               |
|              |             |                    |                                                      | (0704354),  |               |
|              |             |                    |                                                      | Account 1   |               |
| Cherokee.03  | 8857.00003  | Copeland Reservoir | Farmers Gardeners Ditch                              | FandGIndPln | 27            |
|              |             | (0704354), Account | (0200800)                                            |             |               |
|              |             | 1                  |                                                      |             |               |
| Fish.09      | 4198.00003  | Copeland Reservoir | Fisher Ditch (0700570)                               | PSCoFishPln | 27            |
|              |             | (0704354), Account | Fisher D to PSCO                                     |             |               |
|              |             | 1                  | (0700570_C)                                          |             |               |
| PSCoRF.01-07 | 43099.00000 | PSCoFishApr-Oct    |                                                      |             | 43            |

Exchanges of reusable water from locations downstream of Clear Creek are also available for use to meet demands at the Cherokee Plant or make replacements of out-of-priority diversions through the Fisher Ditch. The exchanges up Clear Creek are only sporadically available due to the intervening water rights in the Colorado Agricultural Ditch (0700547 and 0700549) that are frequently placing calls. These additional uses of water and associated operations are not currently included in the SPDSS model. Plan IDs are included in the model representing PSCo's prorata ownership in the changed water rights in District 2 (PSCoLMPIn, PSCoLBPIn, PsCoMI2Plan1, PSCoMI2Pln2, and PSCoHewsPIn). No operations with these changed rights are represented in the model; the plan supplies are currently included as placeholders for future modeling efforts.

# 5.10.8.4.2 Fort St. Vrain Power Plant (02\_VRNPP)

The Fort St. Vrain Power Plant is located off of St. Vrain Creek near the terminus of the Jay Thomas Ditch (0200826) and uses the Goosequill Pump (0500939) out of St. Vrain Creek for approximately 90 percent of its physical supply. Industrial wells on site are also used for supply and, on occasion, its changed water rights in the Jay Thomas Ditch via the Jay Thomas Pump Station.

Xcel Energy's junior water right at Goosequill Pump Station is often in priority and it can divert under the changed Goosequill Ditch right or divert water out-of-priority under its augmentation plan its junior rights are not in priority. Conversations with Xcel Energy personnel, the water commissioner, and review of HydroBase DivClass records indicate the use of its South Platte ditch rights for the augmentation plan are small enough that representation in the model was not warranted. To simplify the representation of the Ft. St. Vrain plant, all of the supply is diverted at the Goosequill Pump Station under the senior changed Goosequill Ditch right for 20 cfs. Since diversions under the changed Goosequill Ditch right are limited to 315 acre-feet per year, on average, this approach overestimates the amount that can be diverted in priority. Nonetheless, this simplification was determined to be reasonable since Xcel Energy's junior rights at the pump station and its industrial wells are typically in priority.

| Right ID   | Admin #     | Destination    | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|------------|-------------|----------------|------------------------------------------------------|------------|---------------|
| FtStVrn.01 | 11841.04474 | Fort St. Vrain |                                                      | 0500939.01 | 11            |
|            |             | Power Plant    |                                                      |            |               |
|            |             | (02_VRNPP)     |                                                      |            |               |

### 5.10.8.4.3 Arapahoe Power Plant

Prior to it being decommissioned in 2013, the demand at the Arapahoe plant was supplied from a river pump and two wells with replacements provided via a Raw Water Contract from Denver Water. Review of the DivClass in HydroBase for the Arapahoe plant identified various sources over time, including Chatfield Reservoir, Cheesman Reservoir, Strontia Springs Reservoir, Metro Reuse, Bi-City Reuse, Conduit 20 and Denver Bear Ck Transfer. To simplify the representation of the Arapahoe plant, Denver Water's Conduit 20 is used as a source throughout the study period.

| Right ID    | Admin #     | Destination                       | Account, Carrier, Return<br>Location (R), or % Split | Source      | Right<br>Type |
|-------------|-------------|-----------------------------------|------------------------------------------------------|-------------|---------------|
| ArapahPP.01 | 22254.00001 | Arapahoe Power<br>Plant (0801014) |                                                      | Cnd20DirPln | 27            |

### 5.10.8.5 Clear Creek (Water District 7) Operations

The Clear Creek Basin originates along the eastern edge of the Continental Divide, stretching north and south of Interstate 70 and the Eisenhower Tunnel. In addition to high quality hiking, rafting, and other outdoor opportunities, the Clear Creek Basin supplies numerous municipalities in the Denver metropolitan area and the Coors Brewery and other industrial interests. The Denver Water Board also conveys its Moffat Tunnel imports down South Boulder Creek and into the Ralston Creek tributary through the South Boulder Diversion Conduit (see Figure 5-4).

The Clear Creek Basin is typically controlled, in particular by the senior water rights under the Colorado Agricultural Ditch and Lower Clear Creek Ditch, located above the Derby gage and the Clear Creek confluence with the South Platte River. Some of the major irrigation ditches and reservoirs pivotal to the administration of the Clear Creek Basin (water district 7) are highlighted in Figure 5-4

The major operations of components critical to Clear Creek operations, particularly the water supplies to the major M&I users in the basin are summarized below. M&I supplies are provided, in large part, from changed uses of shares in the senior irrigation ditch and reservoir companies. The discussions include details of modeling decisions and operating rules to represent these systems in the SPDSS model. Note the prorata share ownership over time varies as has the operations of different cooperative agreements. The approach in the SPDSS Historical dataset was to settle on a "representative" characterization of water rights ownership and operations in place over the latter part of the 1975 – 2012 calibration period. The operational rules can be further refined by future modelers but the approach herein is considered reasonable for use in large-scale basin model intended for water resources planning and management.

Additional descriptions of Clear Creek operations, major and minor water users, et cetera can be found in the documents listed at the beginning of Section 5.10.8.



Figure 5-4: Clear Creek Basin Operations

# 5.10.8.6 City of Golden

There are six major municipal providers that rely in part, or in whole, on Clear Creek for its water supply –Golden, Arvada, Westminster, Thornton, Northglenn, and Consolidated Mutual Water Company, serving Lakewood. Golden is the uppermost of the six major municipal providers in the Clear Creek Basin (see Figure 5-5). The City of Golden is located on Clear Creek near the mouth of the canyon, below the Church Ditch (0700540) and above the Agricultural Ditch (0700502) and Farmers' Highline Canal (0700569). The Molson-Coors Brewery is located in Golden and the two entities have a certain amount of overlapping operations due to their proximity to one another. Both entities, and their respective water supplies, are located upstream from the Croke Canal (0700553), which fills Standley Lake (0203903). The locations of the Golden and Coors WWTPs discharging upstream of the Croke Canal was a contentious issue for many years until settled in the Cosmic Agreement, as discussed in Section 5.10.8.10.79. This affects the winter operations of the two entities.

Golden owns senior direct flow rights on Clear Creek along with irrigation ditch rights that have been changed in water court. Golden's major delivery canal is the Golden City Ditch (0700542), which diverts water from Clear Creek north of Lookout Mountain and then runs alongside the Church Ditch. In addition, Golden owns the majority of the transmountain water delivered via the Berthoud Pass diversion to the headwaters of West Fork Clear Creek. It is understood the Berthoud Pass water is delivered to a portion of outside use at City of Golden (believed to be on south side of town and considered to be part of 07\_Golden\_O demand)

In the early-2000s, the City of Golden integrated a number of gravel pits at the bottom of West Fork Clear Creek to construct Guanella Reservoir (0704030, 2325 ac-ft). Golden also owns some smaller, drought protection reservoirs in the West Fork Clear Creek Basin (Lower Urad Reservoir – 0703393, 250 ac-ft and Upper Urad Reservoir- 0703394, 332 ac-ft). These smaller reservoirs are not included in the SPDSS model.



Figure 5-5: Denver Region Municipalities (Source: DRCOG)

### 5.10.8.6.1 Transmountain Supplies

Golden shares the yield of the Berthoud Pass diversion (0704625) with the City of Northglenn. Golden gets the first 2 cfs between May through July and the first 4 cfs starting in August thorough the end of season. Northglenn gets the remaining water from the Berthoud Pass diversion.

Until the SPDSS model and western slope models are integrated, the transmountain supplies are set equal to historical deliveries. These supplies are operated in the model as the primary supply, which results in the use of all the imports to meet the Golden demand or stored in Standley Lake. The following two rules are used to supply Berthoud Pass imports directly to the Golden inside demands.

| Right ID    | Admin # | Destination                        | Account, Carrier, Return<br>Location (R), or % Split                                                                   | Source                                     | Right<br>Type |
|-------------|---------|------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------|
| Berthoud.01 | 1.00001 | Golden Indoor Use<br>(07_Golden_I) | GoldSpringBerthoudDivn<br>(BerthGold1)<br>GoldSummerBerthoudDi<br>vn (BerthGold2, R)<br>Golden City Ditch<br>(0700542) | Berthoud Tunnel<br>Carrier<br>(Berthoud_C) | 27            |
| Berthoud.03 | 1.00001 | Golden Indoor Use<br>(07_Golden_l) | GoldSummerBerthoudDi<br>vn (BerthGold2)<br>Nglenn Berthoud Divn<br>(BerthNglenn, R)<br>Golden City Ditch<br>(0700542)  | Berthoud Tunnel<br>Carrier<br>(Berthoud_C) | 27            |

The following two rules are used to supply Berthoud Pass imports direct to the Golden outside demands, although this supply is represented as junior to most of the City of Golden's other supplies.

| Right ID    | Admin # | Destination                         | Account, Carrier, Return<br>Location (R), or % Split                                                                   | Source                                     | Right<br>Type |
|-------------|---------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------|
| Berthoud.02 | 1.00002 | Golden Outdoor Use<br>(07_Golden_O) | GoldSpringBerthoudDivn<br>(BerthGold1)<br>GoldSummerBerthoudDi<br>vn (BerthGold2, R)<br>Golden City Ditch<br>(0700542) | Berthoud Tunnel<br>Carrier<br>(Berthoud_C) | 27            |
| Berthoud.04 | 1.00002 | Golden Outdoor Use<br>(07_Golden_O) | GoldSummerBerthoudDi<br>vn (BerthGold2)<br>Nglenn Berthoud Divn<br>(BerthNglenn, R)<br>Golden City Ditch<br>(0700542)  | Berthoud Tunnel<br>Carrier<br>(Berthoud_C) | 27            |

The City of Golden purchased the Vidler Tunnel (0704626) in 2001. The following rule stores the Vidler Tunnel imports into Guanella Reservoir (0704030), corresponding with the City's typical operations:.

| Right ID  | Admin #     | Destination                                   | Account, Carrier, Return<br>Location (R), or % Split | Source                              | Right<br>Type |
|-----------|-------------|-----------------------------------------------|------------------------------------------------------|-------------------------------------|---------------|
| Vidler.01 | 48212.46546 | Guanella Reservoir<br>(0704030), Account<br>1 |                                                      | Vidler Tunnel<br>Carrier (Vidler_C) | 28            |

One cfs of the Henderson Mine water (0700715) is owned by Coors and Golden may take credit for this water in drought years via an IGA. This supply is not included in the SPDSS model since it is not characteristic of the City's standard operations.

## 5.10.8.6.2 In-basin Supplies

Golden's remaining municipal demand is satisfied primarily by river diversions through the Golden City Ditch. A number of senior rights (1860 to 1862 priority) were transferred to the Golden City Ditch (Ouelette – 0700632; Cort, Graves, Hughes - 0700551; Lee, Stewart & Eskins 0700601; and Swadley D and Enl. – 0700677). The Golden City Ditch also has a year-round 1879 priority that was originally adjudicated at the Golden Water Works (0700576).

The City of Golden also has changed water rights in the Lee Stewart & Eskins (LSE) Ditch. The City does not typically use the Priority 12 LSE water right (1861 priority) due to decretal limitations on its uses for changed purposes. It does use the 1863 to 1871 priority water rights in the ditch. The City also has prorata ownership (1.13%) in the Church Ditch (0700540) that was changed in Case No. 83CW361 but this water supply is not typically used.

#### Changed Water Rights

The senior direct flow rights are first stored in a changed water rights plan structure (GldnCtyDPln) using the following five rules, based on the standard approach used to represent changed water rights, as outlined in 4.9. The City of Golden is the sole owner of the water rights and the monthly limits on use of these rights are based on decretal terms and conditions.

| Right ID    | Admin #     | Destination | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|-------------|-------------|-------------|------------------------------------------------------|------------|---------------|
| GldnCtyD.01 | 3804.00000  | GldnCtyDPIn | 100%                                                 | 0700542.01 | 26            |
| GldnCtyD.02 | 4138.00000  | GldnCtyDPIn | 100%                                                 | 0700542.02 | 26            |
| GldnCtyD.03 | 4152.00000  | GldnCtyDPIn | 100%                                                 | 0700542.04 | 26            |
| GldnCtyD.04 | 4535.00000  | GldnCtyDPIn | 100%                                                 | 0700542.05 | 26            |
| GldnCtyD.07 | 16718.10652 | GldnCtyDPIn | 100%                                                 | 0700542.06 | 26            |

Consolidated Mutual Water Company (Con Mutual) also owns a portion of the LSE water rights. Direct flow rights in the LSE Ditch are first stored in a changed water rights split plan structure (LSE\_SplPIn). The following two rules are used to put the 1863 and 1868 priority LSE water rights into the LSE\_SplPIn with monthly limits based on decretal terms and conditions. The last two rules are used to split the Plan yield, prorata, to the sub-plans of the various owners of the ditch shares (irrigators, Golden, and Con Mutual). There are two rules to represent use of the water rights exclusively for irrigators and post-1991, when the changed rights starting to be used for other purposes. 1982 was chosen to represent this change since it is an approximate average of the first two LSE change cases - 91CW62 Consolidated Mutual; 94CW87 Golden.

| Right ID | Admin #    | Destination                                | Account, Carrier, Return<br>Location (R), or % Split | Source                         | Right<br>Type |
|----------|------------|--------------------------------------------|------------------------------------------------------|--------------------------------|---------------|
| LSE.04   | 4855.00000 | LSE Split Plan (LSE_SplPln)                | 100%, 35,000 AF limit                                | 0700601.02                     | 26            |
| LSE.05   | 6628.00000 | LSE Split Plan (LSE_SplPln)                | 100%, 35,000 AF limit                                | 0700601.03                     | 26            |
| LSE.09b  | 7773.00001 | Con Mutual LSE Ditch Plan<br>(ConM_LSEPIn) | 38.1%                                                | LSE Split Plan<br>(LSE_SplPln) | 46            |
|          |            | Golden LSE Plan<br>(Gold_LSEPln)           | 13.6%                                                |                                |               |
|          |            | LSE_Irrigation Plan<br>(LSE_IrrPln)        | 48.3%                                                |                                |               |

The representation of the volumetrics is such that there would be no remaining volumetrics that would allow changed use of the 1869 and 1870 priority LSE water rights. Therefore, the yield for those two rights is stored in the LSE\_IrrPIn for use by the irrigators using the following two rules.

| Right ID | Admin #    | Destination                         | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|----------|------------|-------------------------------------|------------------------------------------------------|------------|---------------|
| LSE.06   | 7030.00000 | LSE_Irrigation Plan<br>(LSE_IrrPln) | 100%, 35,000 AF limit                                | 0700601.04 | 26            |
| LSE.07   | 7773.00000 | LSE_Irrigation Plan<br>(LSE_IrrPln) | 100%, 35,000 AF limit                                | 0700601.05 | 26            |

Golden is required to keep 15 percent of its changed water rights in the LSE Ditch. The following rule splits the Gold\_LSEPIn with 85 percent assigned to the GoldLSE2PIn and 15 percent to the LSE\_IrrPIn.

| Right ID | Admin #    | Destination                                                                              | Account, Carrier, Return<br>Location (R), or % Split | Source                           | Right<br>Type |
|----------|------------|------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------|---------------|
| LSE.10   | 7773.00002 | Golden LSE Plan after ditch<br>loss (GoldLSE2Pln)<br>LSE Irrigation Plan<br>(LSE IrrPln) | 85%<br>15%                                           | Golden LSE Plan<br>(Gold_LSEPln) | 46            |

The following five rules release water to Golden's demand from its changed rights in the Golden City Ditch (2) and LSE Ditch (3). The last rule below establishes limits on Golden's use of its changed LSE Ditch water based on the volumetric limits from Case No. 94CW87.

| Right ID    | Admin #    | Destination                         | Account, Carrier, Return<br>Location (R), or % Split | Source      | Right<br>Type |
|-------------|------------|-------------------------------------|------------------------------------------------------|-------------|---------------|
| GldnCtyD.05 | 4535.00001 | Golden Indoor Use<br>(07_Golden_I)  | Golden City Ditch<br>(0700542)                       | GldnCtyDPln | 27            |
| GldnCtyD.06 | 4535.00002 | Golden Outdoor Use<br>(07_Golden_0) | Golden City Ditch<br>(0700542)                       | GldnCtyDPln | 27            |
| LSE.15a-b   | 7773.00004 | Golden Indoor Use<br>(07_Golden_I)  | Golden City Ditch<br>(0700542)                       | GoldLSE2PIn | 28            |
| LSE.16      | 7773.00005 | Golden Outdoor Use<br>(07_Golden_0) | Golden City Ditch<br>(0700542)                       | GoldLSE2PIn | 28            |
| LSE.98      | 1.00000    |                                     |                                                      | LSEGol1_RL  | 47            |
| LSE.99      | 1.00000    |                                     |                                                      | LSEGol2_RL  | 47            |

The following three rules release water to the LSE irrigation demand from its prorata water rights ownership (plan ID LSE\_IrrPIn) and unused credits in Golden's and Consolidated Mutual's plans. The last five rules release any remaining unused credits in various plans back to Clear Creek.

| Right ID    | Admin #    | Destination                         | Account, Carrier, Return<br>Location (R), or % Split | Source                                               | Right<br>Type |
|-------------|------------|-------------------------------------|------------------------------------------------------|------------------------------------------------------|---------------|
| LSE.17      | 7773.00003 | LSE Ditch Irrigators<br>(0700601_1) | LSE Ditch (0700601)                                  | LSE Irrigation<br>Plan (LSE_IrrPIn)                  | 27            |
| LSE.19      | 7773.00007 | LSE Ditch Irrigators<br>(0700601_1) | LSE Ditch (0700601)                                  | Golden LSE Plan<br>after ditch loss<br>(GoldLSE2Pln) | 27            |
| LSE.20      | 7773.00007 | LSE Ditch Irrigators<br>(0700601_1) | LSE Ditch (0700601)                                  | Con Mutual LSE<br>Ditch Plan<br>(ConM_LSEPIn)        | 27            |
| LSESpill.71 | 7773.00009 | LSE Ditch (0700601)                 |                                                      | LSE_SplPIn                                           | 29            |
| LSESpill.72 | 7773.00009 | LSE Ditch (0700601)                 |                                                      | LSE_IrrPIn                                           | 29            |
| LSESpill.73 | 7773.00009 | LSE Ditch (0700601)                 |                                                      | Gold_LSEPIn                                          | 29            |
| LSESpill.74 | 7773.00009 | LSE Ditch (0700601)                 |                                                      | GoldLSE2PIn                                          | 29            |
| LSESpill.75 | 7773.00009 | LSE Ditch (0700601)                 |                                                      | GldPri12Pln                                          | 29            |

Return flows from Golden's winter use are considered Bypass Water and stored in West Gravel Lakes after a 2.75% transit loss. In order for the StateMod model to color winter diversions into the WWTP and then be shepherded down the creek to off-channel storage, subject to a transit loss, the winter diversions must be isolated from other water supplies. Therefore, a water right just senior to the Croke 1902 storage right was assigned to the Golden City Ditch. The following two rules are used to first store that water right into a changed water rights plan structure (CosmicPln1) and then release the water from the plan to meet the Golden demand.

| Right ID  | Admin #     | Destination                        | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|-----------|-------------|------------------------------------|------------------------------------------------------|------------|---------------|
| Cosmic.04 | 19054.99989 | CosmcPln1                          | 100%                                                 | 0700542.07 | 26            |
| Cosmic.06 | 19054.99991 | Golden Inside Use<br>(07_Golden_I) | Golden City Ditch<br>(0700542)                       | CosmcPln1  | 27            |

The following rule then releases the winter effluent at plan ID Gold\_WWTP down Clear Creek into the Lower Clear Creek Ditch (0700547) and into storage in the West Gravel Lakes (Acct 2). The stored water is then released during the non-Croke season, as discussed in Section 5.10.8.10.77.

| Right ID  | Admin #     | Destination                                | Account, Carrier, Return<br>Location (R), or % Split | Source                     | Right<br>Type |
|-----------|-------------|--------------------------------------------|------------------------------------------------------|----------------------------|---------------|
| Cosmic.08 | 19054.99993 | WGravelLks&Brannan<br>(0203699), Account 2 | Lower Clear Ck Ditch<br>(0700547)                    | Golden WWTP<br>(Gold_WWTP) | 27            |

#### Storage Releases

The following two rules are used to release water from Guanella Reservoir to meet Golden's demand:

| Right ID    | Admin #     | Destination                         | Account, Carrier, Return<br>Location (R), or % Split | Source                                           | Right<br>Type |
|-------------|-------------|-------------------------------------|------------------------------------------------------|--------------------------------------------------|---------------|
| Guanella.01 | 48212.46547 | Golden Indoor Use<br>(07_Golden_I)  | Golden City Ditch<br>(0700542)                       | Guanella<br>Reservoir<br>(0704030),<br>Account 1 | 3             |
| Guanella.02 | 48212.46548 | Golden Outdoor Use<br>(07_Golden_O) | Golden City Ditch<br>(0700542)                       | Guanella<br>Reservoir<br>(0704030),<br>Account 1 | 3             |

The following two rules are used to release the contents of all the plan structures back to the river:

| Right ID    | Admin #     | Destination                    | Account, Carrier, Return<br>Location (R), or % Split | Source      | Right<br>Type |
|-------------|-------------|--------------------------------|------------------------------------------------------|-------------|---------------|
| GldnCtyD.71 | 4535.00009  | Golden City Ditch<br>(0700542) |                                                      | GldnCtyDPln | 29            |
| CosmcSpl.71 | 19054.99999 | Golden City Ditch<br>(0700542) |                                                      | CosmcPln1   | 29            |

### 5.10.8.7 Molson Coors aka Coors Brewery

Coors Brewery has been operating its malting and brewing facilities on Clear Creek for over 100 years. The brewery and its various water supplies and infrastructure are located amongst a number of the senior irrigation ditches and the Croke Canal. Coors was one of the first water users to adjudicate changes of use and augmentation plans on Clear Creek (Coors Aug I, II, and III). Coors also has the ability to use transmountain water from Straight Creek Tunnel.

The Coors Brewery has three primary water demands—brewing and malting ("A" water), commercial/municipal use within the Coors Industrial Complex ("B" water), and industrial cooling ("C" water). In general, the "A" water comes from underground springs distributed above and below the Croke Canal (07\_CoorsA) and pipeline deliveries (07\_CoorsB) from Coors's B Lakes (0703389). In the model, the B Lakes represent the portion of the Jefferson Storage system located on the north side of Clear Creek and are referred to as the "North Lakes" (0703389), while the A Lakes represent the portion of the Jefferson Storage System located on the south side of Clear Creek and are referred to as the "North Lakes" (0703389), while the A Lakes represent the portion of the Jefferson Storage System located on the south side of Clear Creek and are referred to as the "Or03010). The "B" water is used for general brewery needs within the Coors Industrial Complex and, prior to use, is stored in the A and B Lakes. The "C" water, diverted from Clear Creek via the Coors Industrial Ditch (0700725), is used to meet the cooling demand (07\_CoorsC) and returned to Clear Creek less evaporative losses. For model simplification, the cooling demand (07\_CoorsC ) only represents the evaporative losses that result from the increased temperature of the water used for cooling purposes. Note, this approach is also used by Coors' water resources engineers in their operational modeling.

The operating rules used to represent Coors's operations are summarized below.

### 5.10.8.7.1 Coors A Water (07\_CoorsA)

The Coors "A" Water demand is represented as a well structure associated with the various spring rights. Depletions associated with the spring diversions are assigned to the CoorsA\_AugPln (0703390). The following two rules are used to shepherd reusable imports from Straight Creek Tunnel (0700903) and releases from the A Lakes :

| Right ID  | Admin #     | Destination                   | Account, Carrier, Return<br>Location (R), or % Split | Source    | Right<br>Type |
|-----------|-------------|-------------------------------|------------------------------------------------------|-----------|---------------|
| CoorsA.01 | 46171.00001 | Coors A Aug Plan<br>(0703390) |                                                      | StratCk_C | 48            |
| CoorsA.02 | 46171.00002 | Coors A Aug Plan              |                                                      | 0703010   | 48            |
| (0703390) |  |           |  |  |
|-----------|--|-----------|--|--|
|           |  | (0703390) |  |  |

#### 5.10.8.7.2 Coors B Water (07\_CoorsB)

Releases from the B Lakes are typically used to satisfy the Coors "B" water demand. Prior to the construction of the B Lakes in the early-1970s and adjudication of Coors Aug I, this demand was satisfied with the Golden Milling Company (0700578) water right. The following three rules are used to meet the B Water demand from the Coors B Lakes (2) and Milling Right (1):

| Right ID  | Admin #     | Destination   | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|-----------|-------------|---------------|------------------------------------------------------|------------|---------------|
| CoorsB.01 | 43829.41262 | Coors Potable |                                                      | 0703389    | 3             |
|           |             | Demand        |                                                      |            |               |
|           |             | (07_CoorsB)   |                                                      |            |               |
| CoorsB.02 | 43829.41263 | Coors Potable |                                                      | 0703010    | 3             |
|           |             | Demand        |                                                      |            |               |
|           |             | (07_CoorsB)   |                                                      |            |               |
| CoorsB.03 | 5844.00000  | Coors Potable |                                                      | 0700725.04 | 11            |
|           |             | Demand        |                                                      |            |               |
|           |             | (07_CoorsB)   |                                                      |            |               |

Return flows from Coors's winter use are considered Bypass Water and stored in West Gravel Lakes after a 2.75 percent transit loss. In order for StateMod to color winter diversions into the WWTP and then shepherd down the creek to off-channel storage, the winter diversions must be isolated from other water supplies. Therefore, a water right just senior to the Croke 1902 storage right was assigned to the Coors Industries Ditch. The following two rules are used to first store that water right into a changed water rights plan structure (CosmicPln2) and then release the water from the plan to meet the B Water demand:

| Right ID  | Admin #     | Destination                                    | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|-----------|-------------|------------------------------------------------|------------------------------------------------------|------------|---------------|
| Cosmic.05 | 19054.99990 | CosmcPln2                                      | 100%                                                 | 0700725.03 | 26            |
| Cosmic.07 | 19054.99992 | Coors Malting<br>Potable Demand<br>(07_CoorsB) | Coors Ind Ditch<br>(0700725)                         | CosmcPln2  | 27            |

The following rule then shepherd the winter effluent at plan ID 0702318 down Clear Creek into the Lower Clear Creek Ditch and into storage in the West Gravel Lakes (Acct 1). The stored water is then released during the non-Croke season, as discussed in Section 5.10.8.10.77.

| Right ID  | Admin #     | Destination                       | Account, Carrier, Return<br>Location (R), or % Split | Source                  | Right<br>Type |
|-----------|-------------|-----------------------------------|------------------------------------------------------|-------------------------|---------------|
| Cosmic.09 | 19054.99994 | WGravelLks&Branna<br>n (0203699), | Lower Clear Ck Ditch<br>(0700547)                    | Coors WWTP<br>(0702318) | 27            |
|           |             | Account 1                         |                                                      | · · · · ·               |               |

| Cosmic.97 | 1.00000 |  | LCC Exchange | 47 |
|-----------|---------|--|--------------|----|
|           |         |  | Limit        |    |
|           |         |  | (Cosmic_RL3) |    |

## 5.10.8.7.3 *Coors C Water (07\_CoorsC)*

As noted above, the Coors "C" water demand represents the consumptive use of water associated with the cooling demand. This demand is met with the he following two rules:

| Right ID  | Admin #     | Destination                            | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|-----------|-------------|----------------------------------------|------------------------------------------------------|------------|---------------|
| CoorsC.01 | 5844.00000  | Coors Cooling<br>Demand<br>(07_CoorsC) |                                                      | 0700725.01 | 11            |
| CoorsC.02 | 43829.41261 | Coors Cooling<br>Demand<br>(07_CoorsC) |                                                      | 0700725.02 | 11            |

## 5.10.8.7.4 Changed Water Rights

Coors Brewery has senior direct flow rights in a number of ditches on Clear Creek, including the Church Ditch, Agricultural Ditch, Farmers High Line Canal, Wannamaker Ditch, Rocky Mountain Ditch, Reno Juchem Ditch, the Slough Ditches, and the South Side Ditch. The water rights were mostly changed in the Coors Aug Plan decrees (Case No. W-8036, 89CW234and 99CW236). The Coors Aug Plan operations are not explicitly represented in the SPDSS Model. However, representation of Coors' prorata ownership in many of these ditches is included in the model for either current or future use as a placeholder.

In the model, the consumptive use credits associated with some of Coors' changed water rights are used to maintain storage levels in the North (0703389) and South (0703010) Lakes to meet the respective demands from those structures. Therefore, the use of the changed water rights in the Farmers' Highline Canal, Wannamaker Ditch, and Rocky Mountain Ditch are summarized below.

The water rights for the Farmers' Highline Canal are first stored in a changed water rights plan structure (FHLSpIPIn) using the following eight rules based on the standard approach used to represent changed water rights, as outlined in Section 4.9. Note, monthly limits are imposed on individual owners when water is released from the sub-plan structure holding the individual's associated prorata ownership. The final rule is active starting in 1982 and is used to split the Plan yield, prorata, to the sub-plans of the various owners of the ditch shares (irrigators, Arvada, Coors, Thornton, and Westminster). Coors' prorata ownership (3.9%) is stored in model ID CoorsFHLPIn. The second-to-last rule is active through 1981, when the first significant change case was adjudicated (Coors I, W-8036). All of the yield is assigned to the irrigators prior to 1981.

CU credits associated with some of Coors' changed water rights, though, are used to maintain storage levels in the North Lakes and South Lakes to meet the respective demands from those

structures. Therefore, the use of the changed water rights in the Farmers' Highline Canal, Wannamaker Ditch, and Rocky Mountain Ditch are summarized below.

The water rights for the Farmers' Highline Canal are first stored in a changed water rights plan structure (FHLSpIPIn) using the following rules based on the standard approach used to represent changed water rights, as outlined in Section 4.9. Monthly limits input on the storage of these rights is not limiting since there are multiple owners. The limits are imposed on the particular owners when water is released from the sub-plan structure holding that particular user's prorata ownership. The final rule is active starting in 1982 and is used to split the Plan yield, prorata, to the sub-plans of the various owners of the ditch shares (irrigators, Arvada, Coors, Thornton, and Westminster). Coors' prorata ownership (3.9%) is stored in model ID CoorsFHLPIn. The second-to-last rule is active through 1981, when the first significant change case was adjudicated (Coors I, W-8036). All of the yield is assigned to the irrigators prior to 1981.

| Right ID | Admin #    | Destination                                      | Account, Carrier, Return<br>Location (R), or % Split | Source                                         | Right<br>Type |
|----------|------------|--------------------------------------------------|------------------------------------------------------|------------------------------------------------|---------------|
| FHL.02   | 3789.00000 | Farmers Highline Split Plan<br>(FHL_SplPln)      | 100%, 45,000AF limit                                 | 0700569.02                                     | 26            |
| FHL.03   | 3804.00000 | Farmers Highline Split Plan<br>(FHL_SplPln)      | 100%, 45,000AF limit                                 | 0700569.03                                     | 26            |
| FHL.04   | 3835.00000 | Farmers Highline Split Plan<br>(FHL_SplPln)      | 100%, 45,000AF limit                                 | 0700569.04                                     | 26            |
| FHL.05   | 4896.00000 | Farmers Highline Split Plan<br>(FHL_SplPln)      | 100%, 45,000AF limit                                 | 0700569.05                                     | 26            |
| FHL.06   | 4919.00000 | Farmers Highline Split Plan<br>(FHL_SplPln)      | 100%, 45,000AF limit                                 | 0700569.06                                     | 26            |
| FHL.07   | 5592.00000 | Farmers Highline Split Plan<br>(FHL_SplPln)      | 100%, 45,000AF limit                                 | 0700569.07                                     | 26            |
| FHL.09   | 7449.00000 | Farmers Highline Split Plan<br>(FHL_SplPln)      | 100%, 45,000AF limit                                 | 0700569.09                                     | 26            |
| FHL.10   | 8127.00000 | Farmers Highline Split Plan<br>(FHL_SplPln)      | 100%, 90,000AF limit                                 | 0700569.10                                     | 26            |
| FHL.11a  | 8127.00001 | Farmers Highline Irrigation<br>Plan (FHL_IrrPln) | 100%                                                 | Farmers Highline<br>Split Plan<br>(FHL_SplPln) | 46            |
| FHL.11b  | 8127.00001 | Thornton FHL Plan<br>(ThFHLPIn)                  | 16.6%                                                | Farmers Highline<br>Split Plan                 | 46            |
|          |            | Westminster FHL Plan<br>(WestyFHLPIn)            | 50.8%                                                | (FHL_SplPln)                                   |               |
|          |            | Arvada FHL Plan<br>(ArvFHLPln)                   | 10.9%                                                |                                                |               |
|          |            | Coors FHL Plan<br>(CoorsFHLPln)                  | 3.9%                                                 |                                                |               |
|          |            | Farmers Highline Irrigation<br>Plan (FHL_IrrPln) | 17.8%                                                |                                                |               |

The water rights for the Wannamaker Ditch are first stored in the WannSplPln using the following two rules. The final rule is active starting in 1975 and is used to split the Plan yield, prorata, to the sub-plans of Coors and the Wannamaker irrigators. Coors' prorata ownership (73.7%) is stored in model ID CoorsWanPln. Although the rights were first changed by in Coors Aug I, which was signed in 1981, the records of use for storage begin the in mid-1970s and coincide with the construction of the North Lakes (0703389). Therefore, a mid-1970 start date was chosen for use of the changed ditch shares. The second-to-last rule is active through 1974. All the yield is assigned to the irrigators prior to 1975.

| Right ID | Admin #    | Destination                                                                          | Account, Carrier, Return<br>Location (R), or % Split | Source                                   | Right<br>Type |
|----------|------------|--------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------|---------------|
| Wann.01  | 3805.00000 | Wannamaker Split Plan<br>(WannSplPln)                                                | 100%, 35,000AF limit                                 | 0700698.01                               | 26            |
| Wann.02  | 6884.00000 | Wannamaker Split Plan<br>(WannSplPln)                                                | 100%, 35,000AF limit                                 | 0700698.02                               | 26            |
| Wann.03a | 6884.00001 | Wannamaker Irrigation<br>Plan (WannIrrPln)                                           | 100%                                                 | Wannamaker<br>Split Plan<br>(WannSplPln) | 46            |
| Wann.03b | 6884.00001 | Coors Wannamaker Plan<br>(CoorsWanPln)<br>Wannamaker Irrigation<br>Plan (WannIrrPln) | 73.7%<br>26.3%                                       | Wannamaker<br>Split Plan<br>(WannSplPln) | 46            |

The following rules are included as changed ditch shares for Reno Juchem and Slough Ditches.

| Right ID    | Admin #     | Destination                           | Account, Carrier, Return<br>Location (R), or % Split | Source                                   | Right<br>Type |
|-------------|-------------|---------------------------------------|------------------------------------------------------|------------------------------------------|---------------|
| RenoJuch.10 | 4152.00000  | Coors Ren Juchem Plan<br>(CoorsRJPIn) | 12.5%, 3.6 AF Limit                                  | 0700647.01                               | 26            |
| RenoJuch.11 | 4535.00000  | Coors Ren Juchem Plan<br>(CoorsRJPIn) | 8.9%, 29.2 AF Limit                                  | 0700647.02                               | 26            |
| RenoJuch.12 | 5592.00000  | Coors Ren Juchem Plan<br>(CoorsRJPIn) | 84.5%, 737.2 AF Limit                                | 0700647.03                               | 26            |
| RenoJuch.13 | 5615.00000  | Coors Ren Juchem Plan<br>(CoorsRJPIn) | 6.1%, 54.6 AF Limit                                  | 0700647.04                               | 26            |
| RenoJuch.14 | 7449.00000  | Coors Ren Juchem Plan<br>(CoorsRJPIn) | 5.5%, 69.4 AF Limit                                  | 0700647.05                               | 26            |
| RenoJuch.15 | 10288.00000 | Coors Ren Juchem Plan<br>(CoorsRJPIn) | 3.2%, 211.8 AF Limit                                 | 0700647.06                               | 26            |
| RenoJuch.20 | 10288.00002 | Reno Juchem Ditch<br>(0700647)        |                                                      | Coors Ren<br>Juchem Plan<br>(CoorsRJPln) | 27            |

| Right ID   | Admin #    | Destination                        | Account, Carrier, Return<br>Location (R), or % Split | Source                                | Right<br>Type |
|------------|------------|------------------------------------|------------------------------------------------------|---------------------------------------|---------------|
| SloughD.01 | 3708.00000 | Coors Slough Plan<br>(CoorsSluPln) | 32.47%, 265.5 AF limit                               | 0700527_D.01                          | 26            |
| SloughD.02 | 3788.00000 | Coors Slough Plan<br>(CoorsSluPln) | 44.51%, 263.5 AF limit                               | 0700527_D.02                          | 26            |
| SloughD.03 | 4548.00000 | Coors Slough Plan<br>(CoorsSluPln) | 46.18%                                               | 0700527_D.07                          | 26            |
| SloughD.04 | 4569.00000 | Coors Slough Plan<br>(CoorsSluPln) | 8.98%                                                | 0700527_D.10                          | 26            |
| SloughD.05 | 4574.00000 | Coors Slough Plan<br>(CoorsSluPln) | 12.00%                                               | 0700527_D.11                          | 26            |
| SloughD.06 | 4894.00000 | Coors Slough Plan<br>(CoorsSluPln) | 10.14%                                               | 0700527_D.13                          | 26            |
| SloughD.07 | 4919.00000 | Coors Slough Plan<br>(CoorsSluPln) | 21.6%                                                | 0700527_D.15                          | 26            |
| SloughD.08 | 5261.00000 | Coors Slough Plan<br>(CoorsSluPln) | 10.24%                                               | 0700527_D.18                          | 26            |
| SloughD.09 | 5279.00000 | Coors Slough Plan<br>(CoorsSluPln) | 6.57%                                                | 0700527_D.19                          | 26            |
| SloughD.10 | 5285.00000 | Coors Slough Plan<br>(CoorsSluPln) | 36.86%                                               | 0700527_D.20                          | 26            |
| SloughD.11 | 5605.00000 | Coors Slough Plan<br>(CoorsSluPln) | 6.76%                                                | 0700527_D.21                          | 26            |
| SloughD.12 | 5625.00000 | Coors Slough Plan<br>(CoorsSluPln) | 49.58%                                               | 0700527_D.23                          | 26            |
| SloughD.13 | 5785.00000 | Coors Slough Plan<br>(CoorsSluPln) | 32.30%                                               | 0700527_D.26                          | 26            |
| SloughD.14 | 8891.00000 | Coors Slough Plan<br>(CoorsSluPln) | 10.99%                                               | 0700527_D.28                          | 26            |
| SloughD.15 | 8891.00005 | Slough Ditches<br>(0700527_D)      |                                                      | Coors Slough<br>Plan<br>(CoorsSluPln) | 27            |

The water rights for the Rocky Mountain Ditch are first stored in the RM\_SplPIn using the following five rules. Monthly limits input on the storage of these rights is not limiting since there are multiple owners. The final rule is active starting in 1975 and is used to split the Plan yield, prorata, to the sub-plans of Coors and the Rocky Mountain Ditch irrigators. Coors' prorata ownership (71.4%) is stored in model ID CoorsRM\_Pln. Although the rights were first changed by in Coors Aug I, which was signed in 1981, the records of use for storage begin the in mid-1970s and coincide with the construction of the North Lakes (0703389). Therefore, a mid-1970 start date was chosen for use of the changed ditch shares. The second-to-last rule is active through 1974. All the yield is assigned to the irrigators prior to 1975.

| Right ID  | Admin #    | Destination                              | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|-----------|------------|------------------------------------------|------------------------------------------------------|------------|---------------|
| RkyMtn.02 | 4504.00000 | Rocky Mountain Split Plan<br>(RM_SplPln) | 100%, 45,000 AF Limit                                | 0700652.02 | 26            |

| RkyMtn.03    | 5265.00000  | Rocky Mountain Split Plan<br>(RM_SplPln)                                | 100%, 45,000 AF Limit | 0700652.03                                  | 26 |
|--------------|-------------|-------------------------------------------------------------------------|-----------------------|---------------------------------------------|----|
| RkyMtn.04    | 5569.00000  | Rocky Mountain Split Plan<br>(RM_SplPln)                                | 100%, 45,000 AF Limit | 0700652.04                                  | 26 |
| RkyMtn.05    | 8475.00000  | Rocky Mountain Split Plan<br>(RM_SplPln)                                | 100%, 45,000 AF Limit | 0700652.05                                  | 26 |
| RkyMtn.06    | 10302.00000 | Rocky Mountain Split Plan<br>(RM_SplPln)                                | 100%, 45,000 AF Limit | 0700652.06                                  | 26 |
| RkyMtn.07a-b | 10302.00001 | Coors Rocky Mountain Plan<br>(CoorsRM_Pln)<br>Rocky Mountain Irrigation | 71.4%<br>28.6%        | Rocky Mountain<br>Split Plan<br>(RM_SplPln) | 46 |
|              |             | Plan (RM_IrrPln)                                                        |                       |                                             |    |

The changed rights in the three ditch systems are included in the SPDSS model to store the associated CU credits. The following rules release water to the North Lakes (0703389) via the Wannamaker Ditch from Coors' changed rights in the Wannamaker Ditch (7) and Farmers' High Line Canal (9). The last two rules establish limits on the use of the changed ditch water based on decretal terms and conditions.

| Right ID   | Admin #     | Destination                                  | Account, Carrier, Return<br>Location (R), or % Split                                             | Source                                      | Right<br>Type |
|------------|-------------|----------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------|---------------|
| Wann.04a-g | 43829.42308 | Coors North Lakes                            | Wannamaker Ditch                                                                                 | CoorsWanPIn                                 | 27            |
|            |             | 1                                            | Wannamaker Aug Stn                                                                               |                                             |               |
|            |             |                                              | (0700698_A)                                                                                      |                                             |               |
| FHL.22a-i  | 43829.43183 | Coors North Lakes<br>(0703389), Account<br>1 | FARMERS HIGHLINE CNL<br>(0700569)<br>FHL Aug Stn<br>(0700569_A)<br>Wannamaker Ditch<br>(0700698) | CoorsFHLPIn                                 | 27            |
| CoorsLk.01 | 43829.33370 | Coors North Lakes<br>(0703389, Acct 1)       | Wannamaker Ditch<br>(0700698)                                                                    | 0703389.01                                  | 45            |
| Wann.99    | 1.00000     |                                              |                                                                                                  | Coors Wann<br>Release Limit<br>(WannCoo_RL) | 47            |
| FHL.97     | 1.00000     |                                              |                                                                                                  | Coors FHL<br>Release Limit<br>(FHL_Coo_RL)  | 47            |

The following rules release water to the South Lakes (0703010) from Coors' changed rights in the Rocky Mountain Ditch (5) and Wannamaker Ditch (6). The last two rules establish limits on the use of the changed ditch water based on decretal terms and conditions.

| Right ID   | Admin #     | Destination                             | Account, Carrier, Return<br>Location (R), or % Split | Source      | Right<br>Type |
|------------|-------------|-----------------------------------------|------------------------------------------------------|-------------|---------------|
| Wann.05a-g | 43829.43182 | Coors South Lakes<br>(0703010), Account | Wannamaker Ditch<br>(0700698)                        | CoorsWanPIn | 27            |

|              |             | 1                                            | Wannamaker Aug Stn<br>(0700698_A)                               |                                             |    |
|--------------|-------------|----------------------------------------------|-----------------------------------------------------------------|---------------------------------------------|----|
| RkyMtn.08a-e | 43829.43181 | Coors South Lakes<br>(0703010), Account<br>1 | ROCKY MOUNTAIN<br>DITCH (0700652)<br>RMD Aug Stn<br>(0700652_A) | CoorsRM_PIn                                 | 27 |
| Wann.99      | 1.00000     |                                              |                                                                 | Coors Wann<br>Release Limit<br>(WannCoo_RL) | 47 |
| RkyMtn.99    | 1.00000     |                                              |                                                                 | Coors Rocky<br>Mountain RL<br>(CoorsRM_RL)  | 47 |

The first three following rules are used to release any unused ditch credits back to the ditch irrigators. The next six following rules are used to release the contents of all the Split Plan and Coors plan structures back to the river:

| Right ID    | Admin #     | Destination                                   | Account, Carrier, Return<br>Location (R), or % Split | Source                                        | Right<br>Type |
|-------------|-------------|-----------------------------------------------|------------------------------------------------------|-----------------------------------------------|---------------|
| FHL.26      | 43829.43184 | FHL Irrigators<br>(0700569_1)                 | Farmers Highline Canal<br>(0700569)                  | Coors FHL Plan<br>(CoorsFHLPIn)               | 27            |
| Wann.07     | 43829.43183 | Wannamaker Ditch<br>Irrigators<br>(0700698_1) | Wannamaker Ditch<br>(0700698)                        | Coors<br>Wannamaker<br>Plan<br>(CoorsWanPln)  | 27            |
| RkyMtn.10   | 43829.43182 | Rocky Mountain<br>Irrigators<br>(0700652_I)   | Rocky Mountain Ditch<br>(0700652)                    | Coors Rocky<br>Mountain Plan<br>(CoorsRM_Pln) | 27            |
| FHLSpill.71 | 8127.00009  | FHL Canal (0700569)                           |                                                      | FHL_SplPln                                    | 29            |
| FHLSpill.74 | 43829.43185 | FHL Canal (0700569)                           |                                                      | CoorsFHLPIn                                   | 29            |
| WannSpil.71 | 6884.00009  | Wannamaker Ditch<br>(0700698)                 |                                                      | WannSplPIn                                    | 29            |
| WannSpil.72 | 43829.43189 | Wannamaker Ditch<br>(0700698)                 |                                                      | CoorsWanPIn                                   | 29            |
| RkySpill.71 | 10302.00009 | Rocky Mountain<br>Ditch (0700652)             |                                                      | RM_SplPIn                                     | 29            |
| RkySpill.74 | 43829.43189 | LSE Ditch (0700601)                           |                                                      | CoorsRM_PIn                                   | 29            |

## 5.10.8.8 City of Arvada

The City of Arvada operates two water treatment plants that are coordinated with its variable supplies. Inside uses are provided by a contract with Denver Water, in which water from Ralston Reservoir is supplied via pipeline from Ralston Reservoir to Arvada's Ralston Reservoir treatment plant. The Denver Water contract supplies approximately 17,000 acre-feet per year. The contract water meets 100 percent of Arvada's inside use deliveries and supplements its outside uses. Arvada

has changed water rights from Clear Creek and Ralston Creek that are stored and treated at Arvada Reservoir treatment plant.

All of Arvada's wastewater returns at the Metro WWTP. The reusable portion of Arvada's changed water rights is not represented in the model since the vast majority of indoor supply comes from contract deliveries. Similarly, any return flow obligations associated with Arvada's use of changed ditch credits are not represented in the model since the winter replacements are provided by a lease with the City of Thornton and the reusable supplies from Arvada Reservoir in the summer is not significant.

The operating rules used in the SPDSS model for representing Arvada's operations are summarized below.

#### Inside Use

The contract deliveries for Arvada's use come from Denver Water Moffat Tunnel / Gross Reservoir / South Boulder Diversion Conduit / Ralston Reservoir system. The following two rules are used to supply water from the South Boulder Diversion Conduit and Ralston Reservoir (0703324) storage deliveries to meet Arvada's inside use demand.

| Right ID    | Admin # | Destination                        | Account, Carrier, Return<br>Location (R), or % Split | Source                                 | Right<br>Type |
|-------------|---------|------------------------------------|------------------------------------------------------|----------------------------------------|---------------|
| 06MOFPLN.01 | 1.00002 | MoffatWTP                          | S BOULDER DIVR<br>CONDUIT (0600590)                  | 06_MOF_ACC                             | 27            |
| Ralston.01  | 1.00009 | Arvada Inside Use<br>(07_Arvada_I) |                                                      | Ralston Res<br>(0703324),<br>Account 1 | 3             |

#### Outside Use

Arvada's outside use is satisfied by changed water rights that are typically conveyed from Clear Creek down the Croke Canal (0700553). Deliveries from the Croke Canal are turned out to Ralston Creek downstream of a pipeline that conveys the water rights to storage in Arvada Reservoir (0703308). The yield of the changed water rights is supplemented by the Denver Water contract deliveries.

## Changed Water Rights

A number of the City's changed rights, particularly in the Reno Juchem Ditch (0700647) and Slough Ditches (0700527\_D) were transferred to the Croke Canal and are diverted directed through the Croke Canal. The City's other major changed ditch holdings are in the Farmers' High Line Canal (0700569) and Church Ditch (0700540). Those rights are diverted through either the Croke Canal or, by exchange, to its pipeline on Ralston Creek (0700553\_Arv). The City of Arvada's changed rights and outside use demands are represented as discussed below.

No records of flows in Ralston Creek were identified and estimates of inflows were considered unsatisfactory. Due to concerns with physical inflows above the ditch, exchange operations on Ralston Creek were excluded from the SPDSS model.

The first nine rules listed below are used to store Arvada's changed water rights at the Croke Canal in the ArvRJPIn. The tenth rule is used to release the plan water to Arvada's outside use demand. The following rule is used to release to the plan water to storage before the plan water is released in the last rule.

| Right ID    | Admin #    | Destination                              | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|-------------|------------|------------------------------------------|------------------------------------------------------|------------|---------------|
| RenoJuch.01 | 4138.00000 | Arvada Reno Juchem Plan<br>(ArvRJPln)    | 100%, 1001 AF Limit                                  | 0700553.01 | 26            |
| RenoJuch.02 | 4535.00000 | Arvada Reno Juchem Plan<br>(ArvRJPln)    | 100%, 3.6 AF Limit                                   | 0700553.02 | 26            |
| RenoJuch.03 | 4569.00000 | Arvada Reno Juchem Plan<br>(ArvRJPln)    | 100%, 121.8 AF Limit                                 | 0700553.03 | 26            |
| RenoJuch.04 | 5235.00000 | Arvada Reno Juchem Plan<br>(ArvRJPln)    | 100%, 114.6 AF Limit                                 | 0700553.04 | 26            |
| RenoJuch.05 | 5285.00000 | Arvada Reno Juchem Plan<br>(ArvRJPln)    | 100%, 225 AF Limit                                   | 0700553.05 | 26            |
| RenoJuch.06 | 5592.00000 | Arvada Reno Juchem Plan<br>(ArvRJPln)    | 100%, 6.7 AF Limit                                   | 0700553.06 | 26            |
| RenoJuch.07 | 5615.00000 | Arvada Reno Juchem Plan<br>(ArvRJPln)    | 100%, 15.3 AF Limit                                  | 0700553.07 | 26            |
| RenoJuch.08 | 5665.00000 | Arvada Reno Juchem Plan<br>(ArvRJPln)    | 100%, 132.6 AF Limit                                 | 0700553.08 | 26            |
| RenoJuch.09 | 7449.00000 | Arvada Reno Juchem Plan<br>(ArvRJPln)    | 100%, 35.7 AF Limit                                  | 0700553.09 | 26            |
| RenoJuch.16 | 7449.00002 | Arvada Outside Use<br>(07_Arvada_O)      | Croke Canal (0700553)                                | ArvRJPIn   | 27            |
| RenoJuch.17 | 7449.00003 | Arvada Reservoir<br>(0703308), Account 2 | Croke Canal (0700553)                                | ArvRJPIn   | 27            |
| RJSpill.74  | 7449.00009 | Croke Canal (0700553)                    |                                                      | ArvRJPIn   | 29            |

As outlined in Section 5.10.8.7 (Molson Coors), the changed water rights in the Farmers' High Line Canal are stored in the plan ID FHL\_SplPIn and then distributed to the various owners of the water rights. Arvada's prorata ownership (10.9%) from the Farmers' Highline Canal is stored in the ArvFHLPIn. The first rule establishes limits on the use of the changed ditch water based on decretal terms and conditions (Case Nos. W-8083, W-8762, 82CW359, 85CW409, 85CW410, 88CW105, and 96CW148). Rules FHL.15a-i are used to deliver Arvada's changed water rights to meet the outside use demands. Rules FHL.16a-i are used to store excess plan contents in Arvada Reservoir. The next rule is used to release unused credits back to the ditch prior to plan contents being released back to Clear Creek. The groups of rules for each destination are used to distinguish the monthly CU factors for March through November.

| Right ID    | Admin #     | Destination                              | Account, Carrier, Return<br>Location (R), or % Split                | Source                         | Right<br>Type |
|-------------|-------------|------------------------------------------|---------------------------------------------------------------------|--------------------------------|---------------|
| FHL.15a-i   | 8127.00003  | Arvada Outside Use<br>(07_Arvada_O)      | FARMERS HIGHLINE CNL<br>(0700569)<br>FHL CNL Aug Stn<br>(0700569_A) | ArvFHLPIn                      | 27            |
| FHL.16a-i   | 54055.00001 | Arvada Reservoir<br>(0703308), Account 2 | FARMERS HIGHLINE CNL<br>(0700569)<br>FHL CNL Aug Stn<br>(0700569_A) | ArvFHLPIn                      | 27            |
| FHL.25      | 54055.00002 | FHL Irrigators (0700569_I)               | Farmers Highline Canal<br>(0700569)                                 | Arvada FHL Plan<br>(ArvFHLPln) | 27            |
| FHLSpill.73 | 54055.00009 | FHL Canal (0700569)                      |                                                                     | ArvFHLPIn                      | 29            |

As outlined in Section 5.10.8.11 (City of Westminister), the changed water rights in the Church Ditch are stored in the plan ID s ChrchSplPl1 and ChrchSplPln and then distributed to the various owners of the water rights. Arvada's prorata ownership (5.8%) from the Church Ditch is stored in the ArvChPln. The first rule establishes limits on the use of the changed ditch water based on decretal terms and conditions (Case Nos. W-8083, W-8762, 82CW359, 85CW409, 85CW410, 88CW105, and 96CW148). The next seven rules listed below are used to deliver Arvada's changed water rights to meet the outside use demands. The next seven rules are used to store excess plan contents in Arvada Reservoir. The next rule is used to release unused credits back to the ditch prior to plan contents being released back to Clear Creek. The groups of seven rules for each destination are used to distinguish the monthly CU factors for April through October.

| Right ID     | Admin #     | Destination                              | Account, Carrier, Return<br>Location (R), or % Split             | Source                           | Right<br>Type |
|--------------|-------------|------------------------------------------|------------------------------------------------------------------|----------------------------------|---------------|
| Church.11a-g | 10546.00002 | Arvada Outside Use<br>(07_Arvada_O)      | CHURCH DITCH<br>(0700540)<br>CHURCH DITCH Aug Stn<br>(0700540_A) | ArvChPln                         | 27            |
| Church.12a-g | 54055.00002 | Arvada Reservoir<br>(0703308), Account 2 | CHURCH DITCH<br>(0700540)<br>CHURCH DITCH Aug Stn<br>(0700540_A) | ArvChPln                         | 27            |
| Church.27    | 54055.00003 | Church Ditch Irrigators<br>(0700540_1)   | Church Ditch (0700540)                                           | Arvada Church<br>Plan (ArvChPln) | 27            |
| ChSpill.74   | 54055.00009 | Church Ditch (0700540)                   |                                                                  | ArvChPIn                         | 29            |

#### Storage Use

In addition to releases from Denver Water's Ralston Reservoir, Arvada has use of its own Arvada Reservoir. Arvada Reservoir is filled with excess changed ditch credits, as noted above. The two Arvada Reservoir storage rights are carried from Ralston Creek using the following two rules. The subsequent two rules release from Arvada Reservoir and Ralston Reservoir to meet Arvada outside demand. The last rule releases excess water from the South Boulder Diversion Conduit to storage in Arvada Reservoir and ultimately to Arvada's outside demand.

| Right ID    | Admin #     | Destination         | Account, Carrier, Return | Source           | Right |
|-------------|-------------|---------------------|--------------------------|------------------|-------|
|             |             |                     | Location (R), or % Split |                  | туре  |
| ArvRes.01   | 44925.40107 | Arvada Reservoir    | Arvada Release From Cro  | 0703308.01       | 45    |
|             |             | (0703308), Accounts | ke (0700553_Arv)         |                  |       |
|             |             | 1-2                 |                          |                  |       |
| ArvRes.02   | 54055.00000 | Arvada Reservoir    | Arvada Release From Cro  | 0703308.02       | 45    |
|             |             | (0703308), Accounts | ke (0700553_Arv)         |                  |       |
|             |             | 1-2                 |                          |                  |       |
| ArvRes.03   | 54055.00003 | Arvada Outside Use  |                          | Arvada Reservoir | 3     |
|             |             | (07_Arvada_O)       |                          | (0703308),       |       |
|             |             |                     |                          | Account 2        |       |
| Ralston.02  | 54055.00009 | Arvada Outside Use  |                          | Ralston Res      | 3     |
|             |             | (07_Arvada_O)       |                          | (0703324),       |       |
|             |             |                     |                          | Account 1        |       |
| 06MOFPLN.06 | 54055.00001 | Arvada Reservoir    | S BOULDER DIVR           | 06_MOF_ACC       | 27    |
|             |             | (0703308), Accounts | CONDUIT (0600590)        |                  |       |
|             |             | 1-2                 | Arvada Release From Cro  |                  |       |
|             |             |                     | ke (0700553_Arv)         |                  |       |

## 5.10.8.9 Consolidated Mutual Water Company

Consolidated Mutual's (Con Mutual) operations are focused on Maple Grove Reservoir, located on Lena Gulch tributary to Clear Creek. Maple Grove Reservoir is interconnected with Con Mutual's Fairmont Reservoir and Welton Reservoir, with all three filled by the Agricultural Ditch (Ag Ditch). Con Mutual has acquired and changed the uses of shares in the Ag Ditch, Welch Ditch, and Lee Stewart Eskins Ditch to support its municipal demands.

All of Con Mutual's wastewater returns at the Metro WWTP. Con Mutual's changed water rights in the Welch Ditch and Agricultural Ditch are reusable and WWTP return flows from their use is accounted for in plan ID MetroConM. Representation of the use of changed water rights is consistent with standard approach outlined in Section 4.9. Most uses of the changed water rights generate return flow obligations, as discussed in Section 4.9. Return flow obligations that are out of priority are met with reusable supplies at the Metro WWTP.

The operating rules used in the SPDSS model for representing Con Mutual's operations are summarized below.

#### Changed Water Rights

The water rights for the Ag Ditch are first stored in a changed water rights plan structure (AgSplPIn) using the following 11 rules. The final two rules are used to split the Plan yield, prorata, to the subplans of the various owners of the ditch shares (irrigators, Con Mutual, and Coors). The last rule splits the yield to the three users and is active starting in 1981 when the first significant change case was adjudicated (Coors I, W-8036). All of the yield is assigned to the irrigators prior to 1981 using the second-to-last rule.

| Right ID    | Admin #     | Destination                                      | Account, Carrier, Return<br>Location (R), or % Split | Source                                         | Right<br>Type |
|-------------|-------------|--------------------------------------------------|------------------------------------------------------|------------------------------------------------|---------------|
| AgDitch.01  | 3788.00000  | Agricultural Ditch Split Plan<br>(AgSplPln)      | 100%, 35,000AF limit                                 | 0700502.01                                     | 26            |
| AgDitch.02  | 3792.00000  | Agricultural Ditch Split Plan<br>(AgSplPln)      | 100%, 35,000AF limit                                 | 0700502.02                                     | 26            |
| AgDitch.03  | 3804.00000  | Agricultural Ditch Split Plan<br>(AgSplPln)      | 100%, 35,000AF limit                                 | 0700502.03                                     | 26            |
| AgDitch.04  | 3818.00000  | Agricultural Ditch Split Plan<br>(AgSplPln)      | 100%, 35,000AF limit                                 | 0700502.04                                     | 26            |
| AgDitch.05  | 4152.00000  | Agricultural Ditch Split Plan<br>(AgSplPln)      | 100%, 35,000AF limit                                 | 0700502.05                                     | 26            |
| AgDitch.06  | 4171.00000  | Agricultural Ditch Split Plan<br>(AgSplPln)      | 100%, 35,000AF limit                                 | 0700502.06                                     | 26            |
| AgDitch.07  | 4180.00000  | Agricultural Ditch Split Plan<br>(AgSplPln)      | 100%, 35,000AF limit                                 | 0700502.07                                     | 26            |
| AgDitch.08  | 4535.00000  | Agricultural Ditch Split Plan<br>(AgSplPln)      | 100%, 35,000AF limit                                 | 0700502.08                                     | 26            |
| AgDitch.09  | 5615.00000  | Agricultural Ditch Split Plan<br>(AgSplPln)      | 100%, 35,000AF limit                                 | 0700502.09                                     | 26            |
| AgDitch.10  | 9121.00000  | Agricultural Ditch Split Plan<br>(AgSplPln)      | 100%, 49,000AF limit                                 | 0700502.10                                     | 26            |
| AgDitch.11  | 12136.00000 | Agricultural Ditch Irrigation<br>Plan (AgIrrPln) | 100%, 45,000AF limit                                 | 0700502.11                                     | 26            |
| AgDitch.12a | 9121.00001  | Agricultural Ditch Irrigation<br>Plan (AgIrrPln) | 100%                                                 | Agricultural Ditch<br>Split Plan<br>(AgSplPln) | 46            |
| AgDitch.12b | 9121.00001  | Con Mutual Ag Ditch Plan<br>(ConM_Ag_Pln)        | 37.1%                                                | Agricultural Ditch<br>Split Plan               | 46            |
|             |             | Coors Ditch Ag Plan<br>(CoorsAgPln)              | 15./%                                                | (AgSpIPIn)                                     |               |
|             |             | Agricultural Ditch Irrigation<br>Plan (AgIrrPln) | 47.2%                                                |                                                |               |

Con Mutual's prorata share (37.1%) is stored in plan ID ConM\_Ag\_Pln. The first rule below establishes the volumetric limits based on decretal terms and conditions (Case No. 94CW1297). Con Mutual's recent decree in Case No. 09CW107 is not included in the SPDSS model since it was adjudicated after the end of the model study period. The subsequent set of seven rules are used to release water from the plan to Con Mutual's indoor demand. The next set of seven rules are used to release water from the plan to Con Mutual's outdoor demand. The sets of seven rules for each destination are used to distinguish the monthly CU factors for April through October.

| Right ID      | Admin #     | Destination                                            | Account, Carrier, Return<br>Location (R), or % Split               | Source                              | Right<br>Type |
|---------------|-------------|--------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------|---------------|
| AgDitch.98    | 1.00000     |                                                        |                                                                    | ConM Ag Ditch<br>RL<br>(Ag_ConM_RL) | 47            |
| AgDitch.15a-g | 12136.00002 | Con Mutual Inside Use<br>(07_ConMut_I)                 | AGRICULTURAL DITCH<br>(0700502)<br>Ag Ditch Aug Stn<br>(0700502_A) | ConM_Ag_PIn                         | 27            |
| AgDitch.16a-g | 12136.00003 | Con Mutual Outside Use<br>(07_ConMut_O)                | AGRICULTURAL DITCH<br>(0700502)<br>Ag Ditch Aug Stn<br>(0700502_A) | ConM_Ag_PIn                         | 27            |
| AgDitch.17a-g | 12136.00004 | ConMutualAgg Reservoir<br>(ConMutualAGG), Account<br>1 | AGRICULTURAL DITCH<br>(0700502)<br>Ag Ditch Aug Stn<br>(0700502 A) | ConM_Ag_PIn                         | 27            |

The next rule is used to release the irrigators' prorata ownership in the ditch to their demands. The following two rules are used to release Con Mutual's and Coors' unused credits back to the irrigators prior to plan contents being released back to Clear Creek. The last four rules are used to release contents from the split plan and various users' plans.

| Right ID   | Admin #     | Destination                                  | Account, Carrier, Return<br>Location (R), or % Split | Source                                              | Right<br>Type |
|------------|-------------|----------------------------------------------|------------------------------------------------------|-----------------------------------------------------|---------------|
| AgDitch.18 | 12136.00002 | Agricultural Ditch irrigators<br>(0700502_1) | Agricultural Ditch<br>(0700502)                      | Agricultural Ditch<br>Irrigation Plan<br>(AgIrrPln) | 27            |
| AgDitch.19 | 12136.00007 | Agricultural Ditch irrigators<br>(0700502_1) | Agricultural Ditch<br>(0700502)                      | Con Mutual Ag<br>Ditch Plan<br>(ConM_Ag_Pln)        | 27            |
| AgDitch.20 | 12136.00003 | Agricultural Ditch irrigators<br>(0700502_1) | Agricultural Ditch<br>(0700502)                      | Coors Ditch Ag<br>Plan<br>(CoorsAgPln)              | 27            |
| AgSpill.71 | 9121.00009  | Agricultural Ditch<br>(0700502)              |                                                      | AgSplPln                                            | 29            |

| AgSpill.72 | 12136.00009 | Agricultural Ditch<br>(0700502) | AgIrrPln    | 29 |
|------------|-------------|---------------------------------|-------------|----|
| AgSpill.73 | 12136.00009 | Agricultural Ditch<br>(0700502) | ConM_Ag_PIn | 29 |
| AgSpill.74 | 12136.00009 | Agricultural Ditch<br>(0700502) | CoorsAgPIn  | 29 |

The water rights for the Welch Ditch are first stored in a changed water rights plan structure (WelchPln) using the following three rules. The final two rules are used to split the Plan yield, prorata, to the sub-plans of the various owners of the ditch shares (irrigators and Con Mutual). The last rule splits the yield to the two users and is active starting in 1995 corresponding with the adjudication of the first of Con Mutual's four change cases (Case Nos. 94CW197, 01CW56, 02CW226, and 09CW197). All of the yield is assigned to the irrigators prior to 1995 using the second-to-last rule.

| Right ID  | Admin #    | Destination                 | Account, Carrier, Return | Source           | Right |
|-----------|------------|-----------------------------|--------------------------|------------------|-------|
|           |            |                             | Location (R), or % Split |                  | Туре  |
| Welch.01  | 3792.00000 | Welch Split Plan (WelchPln) | 100%, 35,000AF limit     | 0700699.01       | 26    |
| Welch.02  | 4151.00000 | Welch Split Plan (WelchPln) | 100%, 35,000AF limit     | 0700699.02       | 26    |
| Welch.03  | 7712.00000 | Welch Split Plan (WelchPln) | 100%, 35,000AF limit     | 0700699.03       | 26    |
| Welch.04a | 7712.00001 | Welch Ditch Irrigation Plan | 100%                     | Welch Split Plan | 46    |
|           |            | (WelchIrrPln, 100%)         |                          | (WelchPln)       |       |
| Welch.04b | 7712.00001 | Welch Ditch Con Mutual      | 47.6%                    | Welch Split Plan | 46    |
|           |            | Plan (WelcConMPln)          |                          | (WelchPln)       |       |
|           |            | Welch Ditch Irrigation Plan | 52.4%                    |                  |       |
|           |            | (WelchIrrPln)               |                          |                  |       |

Con Mutual's prorata share (47.6%) is stored in plan ID WelcConMPIn. The first rule establishes the volumetric limits on Con Mutual's use of its Welch Ditch water limits based on decretal terms and conditions. The following set of six rules are used to release water from the plan to Con Mutual's indoor demand. The subsequent set of six rules are used to release water from the plan to Con Mutual's outdoor demand. The sets of six rules for each destination are used to distinguish the monthly CU factors for May through October.

| Right ID    | Admin #    | Destination                             | Account, Carrier, Return<br>Location (R), or % Split                                     | Source                                     | Right<br>Type |
|-------------|------------|-----------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------|---------------|
| Welch.99    | 1.00000    |                                         |                                                                                          | Welch Release<br>Limit - Welch_RL          | 47            |
| Welch.05a-f | 7712.00002 | Con Mutual Inside Use<br>(07_ConMut_I)  | Welch Ditch (0700699)<br>Welch Aug Stn<br>(0700699_A)<br>Agricultural Ditch<br>(0700502) | Con Mutual<br>Welch D RFs<br>(ConM_WelRFs) | 27            |
| Welch.06a-f | 7712.00003 | Con Mutual Outside Use<br>(07_ConMut_O) | Welch Ditch (0700699)<br>Welch Aug Stn                                                   | Con Mutual<br>Welch D RFs                  | 27            |

|             |            |                                                        | (0700699_A)<br>Agricultural Ditch<br>(0700502)                                           | (ConM_WelRFs)                              |    |
|-------------|------------|--------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------|----|
| Welch.07a-f | 7712.00004 | ConMutualAgg Reservoir<br>(ConMutualAGG), Account<br>1 | Welch Ditch (0700699)<br>Welch Aug Stn<br>(0700699_A)<br>Agricultural Ditch<br>(0700502) | Con Mutual<br>Welch D RFs<br>(ConM_WelRFs) | 27 |

The next rule is used to release the irrigators' prorata ownership in the ditch from its Plan ID WelchIrrPln to their demands. The subsequent two rules are used to release Con Mutual's unused credits back to the irrigators under the Welch Ditch and the Ag Ditch, respectively, prior to the plan contents being released back to Clear Creek. The last three rules are used to release contents from the split plan and the various users' plans.

| Right ID    | Admin #     | Destination                                  | Account, Carrier, Return<br>Location (R), or % Split     | Source                                          | Right<br>Type |
|-------------|-------------|----------------------------------------------|----------------------------------------------------------|-------------------------------------------------|---------------|
| Welch.08    | 7712.00002  | Welch Ditch (0700699)                        | Welch Ditch (0700699)                                    | Welch Ditch<br>Irrigation Plan<br>(WelchIrrPln) | 27            |
| Welch.09    | 7712.00008  | Welch Ditch (0700699)                        | Welch Ditch (0700699)                                    | Welch Ditch Con<br>Mutual Plan<br>(WelcConMPln) | 27            |
| Welch.10    | 12136.00003 | Agricultural Ditch irrigators<br>(0700502_1) | Welch Ditch (0700699)<br>Agricultural Ditch<br>(0700502) | Welch Ditch<br>Irrigation Plan<br>(WelchIrrPln) | 27            |
| WelchSpi.71 | 7712.00009  | Welch Ditch (0700699)                        |                                                          | WelchPln                                        | 29            |
| WelchSpi.72 | 7712.00009  | Welch Ditch (0700699)                        |                                                          | WelcConMPIn                                     | 29            |
| WelchSpi.73 | 7712.00009  | Welch Ditch (0700699)                        |                                                          | WelchIrrPln                                     | 29            |

As outlined in Section 5.10.8.6 (City of Golden), the changed water rights in the Lee Stewart are stored in the plan ID LSE\_SplPIn and then distributed to the various owners of the water rights. Con Mutual's prorata ownership from the LSE is stored in the ConM\_LSEPIn. The Priority 12 senior right is also stored in the ConM\_LSEPIn and not assigned to Golden (since they City does not typically use that particular water right). Con Mutual also has a junior 1988 priority in the LSE. This water is stored in plan ID ConM\_LS2PIn to distinguish Con Mutual as the sole owner of this water. Releases with the 1988 water are not currently modeled and the only active rule in the model with the 1988 water is a plan release.

The first rule below establishes the volumetric limits on Con Mutual's use of the senior LSE water based on decretal terms and conditions (Case No. 91CW62). The following two rules listed below are used to deliver the Priority 12 and 1988 water rights into the two Con Mutual plans. Arvada's

changed water rights to meet the outside use demands. The next three rules are used to deliver ConM\_LSEPIn water to Con Mutual's demands (2) and into storage (1).

| Right ID | Admin #     | Destination                                            | Account, Carrier, Return<br>Location (R), or % Split | Source                      | Right<br>Type |
|----------|-------------|--------------------------------------------------------|------------------------------------------------------|-----------------------------|---------------|
| LSE.97   | 1.00000     |                                                        |                                                      | ConM LSE RL<br>(LSEConM_RL) | 47            |
| LSE.01a  | 4151.00000  | Con Mutual LSE Ditch Plan<br>(ConM_LSEPIn)             | 100%, 35,000 AF limit                                | 0700601.01                  | 26            |
| LSE.08   | 50711.00000 | Con Mutual LSE 1988 Plan<br>(ConM_LS2Pln)              | 100%, 6,240 AF limit                                 | 0700601.06                  | 26            |
| LSE.11   | 7773.00004  | Con Mutual Inside Use<br>(07_ConMut_I)                 | Lee Stewart Eskins Ditch<br>(0700601)                | ConM_LSEPIn                 | 27            |
| LSE.12   | 7773.00005  | Con Mutual Outside Use<br>(07_ConMut_O)                | Lee Stewart Eskins Ditch<br>(0700601)                | ConM_LSEPIn                 | 27            |
| LSE.13   | 7773.00006  | ConMutualAgg Reservoir<br>(ConMutualAGG), Account<br>1 | Lee Stewart Eskins Ditch<br>(0700601)                | ConM_LSEPIn                 | 27            |

The next rule is used to release unused credits back to the ditch prior to plan contents being released back to Clear Creek, using the last rule.

| Right ID    | Admin #    | Destination                         | Account, Carrier, Return<br>Location (R), or % Split | Source                                        | Right<br>Type |
|-------------|------------|-------------------------------------|------------------------------------------------------|-----------------------------------------------|---------------|
| LSE.20      | 7773.00007 | LSE Ditch Irrigators<br>(0700601_1) | LSE Ditch (0700601)                                  | Con Mutual LSE<br>Ditch Plan<br>(ConM_LSEPIn) | 27            |
| LSESpill.76 | 7773.00009 | LSE Ditch (0700601)                 |                                                      | ConM_LSEPIn                                   | 29            |

Use of the Ag Ditch and Welch Ditch credits generates return flow obligations accounted for in Plan IDs ConM\_AgRFs and ConM\_WelRFs. Return flow obligations are not created through the use of LSE Ditch credits. WWTP return flows from the Ag Ditch and Welch Ditch are reusable whereas those from the LSE Ditch are not reusable. The following four rules are used to meet the return flow obligations, either in priority via the Type 43 rules (2) or with reusable effluent via the following two rules. The last rule is used to release unused reusable effluent back to the river.

| Right ID    | Admin #         | Destination | Account, Carrier, Return<br>Location (R), or % Split | Source | Right<br>Type |
|-------------|-----------------|-------------|------------------------------------------------------|--------|---------------|
| ConMutRF.01 | 52826.000<br>00 | ConM_AgRFs  |                                                      |        | 43            |
| ConMutRF.02 | 52826.000<br>00 | ConM_WelRFs |                                                      |        | 43            |

| ConMutRF.03 | 53508.000<br>03 | Con Mutual Ag D RFs<br>(ConM_AgRFs) | Con Mutual<br>Metro Reuse | 49 |
|-------------|-----------------|-------------------------------------|---------------------------|----|
|             |                 |                                     | Plan                      |    |
|             |                 |                                     | (MetroConM)               |    |
| ConMutRF.04 | 53508.000       | Con Mutual Welch D RFs              | Con Mutual                | 49 |
|             | 04              | (ConM_WelRFs)                       | Metro Reuse               |    |
|             |                 |                                     | Plan                      |    |
|             |                 |                                     | (MetroConM)               |    |
| MetSpill.77 | 90000.000       | Metro WWTP                          | MetroConM                 | 29 |
|             | 00              | (Metro_WWTP)                        |                           |    |

#### Storage Use

Con Mutual operates three reservoirs – Maple Grove Reservoir (0704411), Fairmont Reservoir (0703702), and Welton Reservoir (0203083). Maple Grove Reservoir is located on Lena Gulch and can be filled primarily from the Ag Ditch using CU credits from the Ag Ditch and Welch Ditch water rights. The reservoirs are interconnected and represented as an aggregate reservoir on Lena Gulch (ID ConMutualAGG).

The reservoir storage rights are carried to storage from Clear Creek via the Ag Ditch using the following seven rules. The last two rules release storage water to Con Mutual's demand.

| Right ID    | Admin #     | Destination                                        | Account, Carrier, Return<br>Location (R), or % Split | Source                                      | Right<br>Type |
|-------------|-------------|----------------------------------------------------|------------------------------------------------------|---------------------------------------------|---------------|
| CMAggRes.01 | 16718.04932 | Con Mutual Agg Reservoir<br>(ConMutualAGG, Acct 1) | Agricultural Ditch<br>(0700502)                      | ConMutR.01                                  | 45            |
| CMAggRes.02 | 16718.14107 | Con Mutual Agg Reservoir<br>(ConMutualAGG, Acct 1) | Agricultural Ditch<br>(0700502)                      | ConMutR.02                                  | 45            |
| CMAggRes.03 | 43829.37963 | Con Mutual Agg Reservoir<br>(ConMutualAGG, Acct 1) | Agricultural Ditch<br>(0700502)                      | ConMutR.03                                  | 45            |
| CMAggRes.04 | 43829.38280 | Con Mutual Agg Reservoir<br>(ConMutualAGG, Acct 1) | Agricultural Ditch<br>(0700502)                      | ConMutR.04                                  | 45            |
| CMAggRes.05 | 49308.47135 | Con Mutual Agg Reservoir<br>(ConMutualAGG, Acct 1) | Agricultural Ditch<br>(0700502)                      | ConMutR.05                                  | 45            |
| CMAggRes.06 | 51969.00000 | Con Mutual Agg Reservoir<br>(ConMutualAGG, Acct 1) | Agricultural Ditch<br>(0700502)                      | ConMutR.06                                  | 45            |
| CMAggRes.07 | 53508.00000 | Con Mutual Agg Reservoir<br>(ConMutualAGG, Acct 1) | Agricultural Ditch<br>(0700502)                      | ConMutR.07                                  | 45            |
| CMAggRes.08 | 53508.00001 | Con Mutual Inside Use<br>(07_ConMut_I)             |                                                      | ConMutualAgg<br>Reservoir<br>(ConMutualAGG) | 3             |

|             |             |                                         | , Account 1                                                |   |
|-------------|-------------|-----------------------------------------|------------------------------------------------------------|---|
| CMAggRes.09 | 53508.00002 | Con Mutual Outside Use<br>(07_ConMut_O) | ConMutualAgg<br>Reservoir<br>(ConMutualAGG)<br>, Account 1 | З |

## 5.10.8.10 Standley Lake – FRICO, Northglenn, Westminister, and Thonton

The FRICO-Standley Lake Division diverts, stores, and delivers water to both irrigation users and municipalities in the area north of Denver and west of the South Platte River. Operation of Standley Lake in the Clear Creek Basin is a complex system that has changed over time as ditch and reservoir shares have been changed to municipal and other uses. The Standley Lake Division essentially diverted water to storage for both direct and supplemental irrigation water use in the Big Dry Creek Basin prior to the early-1970s. The FRICO-Standley Lake Division currently supplies both irrigators (approximately one-third of system yield) and water to three municipal water providers (Cities of Westminster, Northglenn, and Thornton- the Standley Lake Cities). Through multiple irrigation ditch change of use cases, the municipalities are also able to store CU credits from their ownership of a number of Clear Creek ditch companies. In an effort to simplify the representation of changed water rights in the Standley Lake system, the uses of the changed rights are set to start in 1979 in the SPDSS model historical dataset.

As municipal use of the system increased over the last 40-plus years, a number of agreements have been reached between FRICO, the Standley Lake Cities, and other Clear Creek water users that determine operations of the reservoir. The general current operating procedures of the reservoir and associated ditch systems are discussed below along with information related to how the Standley Lake system is integrated with the municipal water supplies of the Standley Lake Cities.

Northglenn, Westminster, and FRICO get all of their water from Standley Lake. Thornton uses Standley Lake for supply during the winter, only. All of the water in Standley Lake owned by the municipalities is fully reusable. The operating rules used in the SPDSS model for representing Standley Lake operations are summarized below.

## 5.10.8.10.1 Croke 1902

The Croke 1902 is the primary storage water right for Standley Lake with a 1902 priority that was originally delivered down the Croke Canal. The yield of the water right is distributed between FRICO and the three Standley Lake Cities. Therefore, the water right is first stored in the StanLimPln using the following rule. The last rule is used to split the Plan yield, prorata, to the sub-plans of the various owners of the reservoir shares (irrigators, Northglenn, Thornton, and Westminster). Note the distribution of storage space in the reservoir is based on information provided by FRICO and included in the SPDSS Task 5 FRICO-Standley Lake Cities memorandum.

| Right ID | Admin # | Destination | Account, Carrier, Return | Source | Right |
|----------|---------|-------------|--------------------------|--------|-------|
|          |         |             | Location (R), or % Split |        | Туре  |

| Right ID | Admin #     | Destination                                  | Account, Carrier, Return<br>Location (R), or % Split | Source                         | Right<br>Type |
|----------|-------------|----------------------------------------------|------------------------------------------------------|--------------------------------|---------------|
| Stan.99  | 1.00000     |                                              |                                                      | Release Limit<br>(Standley RL) | 47            |
| Stan.30  | 19055.00000 | StanLimPln                                   | 100%                                                 | 0700553.10                     | 26            |
| Stan.31  | 19055.00001 | StanPlnW<br>StanPlnT<br>StanPlnN<br>StanPlnF | 40.26%<br>14.71%<br>28.45%<br>16.58%                 | StanLimPln                     | 46            |

The Croke 1902 Water from the four sub-plans (StanPlnW, StanPlnN, StanPlnF, and StanPlnT) is stored in the users' accounts in Standley Lake 0203903 Accts 1, 2, 3, and 4, respectively). Note all Croke 1902 water is first stored and separately released to the demands (i.e., Croke water is not sent directly to demands). If a particular user's account if full of water, any water remaining in the Croke 1902 sub-Plans can be stored in others' storage space pursuant to the 4 Way Agreement. Any remaining water in the plans must then be released.

The following four rules are used to move the 1902 Croke water into the users' accounts. The last six rules release the plan contents back to the Clear Creek.

| Right ID | Admin #     | Destination                              | Account, Carrier, Return<br>Location (R), or % Split | Source      | Right<br>Type |
|----------|-------------|------------------------------------------|------------------------------------------------------|-------------|---------------|
| Stan.32  | 19055.00001 | Standley Lake<br>(0203903), Account<br>1 | Croke Canal (0700553)                                | StanPlnW    | 27            |
| Stan.33  | 19055.00001 | Standley Lake<br>(0203903), Account<br>2 | Croke Canal (0700553)                                | StanPlnN    | 27            |
| Stan.34  | 19055.00001 | Standley Lake<br>(0203903), Account<br>3 | Croke Canal (0700553)                                | StanPlnF    | 27            |
| Stan.35  | 19055.00001 | Standley Lake<br>(0203903), Account<br>4 | Croke Canal (0700553)                                | StanPInT    | 27            |
| Stan.49  | 19055.00009 | Croke Canal<br>(0700553)                 |                                                      | StanLimPln  | 29            |
| Stan.50  | 19055.00009 | Croke Canal<br>(0700553)                 |                                                      | Stan1902Pln | 29            |
| Stan.51  | 19055.00009 | Croke Canal<br>(0700553)                 |                                                      | StanPInT    | 29            |
| Stan.52  | 50403.00019 | Croke Canal<br>(0700553)                 |                                                      | StanPlnN    | 29            |
| Stan.53  | 50403.00019 | Croke Canal<br>(0700553)                 |                                                      | StanPInF    | 29            |
| Stan.54  | 50403.00019 | Croke Canal<br>(0700553)                 |                                                      | StanPlnW    | 29            |

## 5.10.8.10.2 Four-Way Agreement

The Four-Way Agreement, dated June 27, 1979, is an agreement between FRICO, Westminster, Thornton, and Northglenn that describes the operations and maintenance of the FRICO storage space within Standley Lake Reservoir. The fraction of the FRICO storage space allocated to each party is determined by dividing the number of shares held by each party by the total number of FRICO shares. The agreement also describes the process of storage space sharing between parties. If one entity stores in excess of its own storage entitlement and another entity has storage space, then a paper exchange is used to "bookover" water from the account that is in excess to the account that can legally fill. If the reservoir fills and spills, the booked over water is subject to getting bumped out.

The following scenario illustrates the operations within Standley Lake. Following the example is a list of the operating rules included in the SPDSS model to represent the system.

For instance, suppose Westminster has 15,000 acre-feet of FRICO water in its storage account (21,985 acre-foot capacity) at the beginning of the time step. After meeting their respective demands in the current time step, Northglenn and Westminster have 5,000 acre-feet of water stored in various plans (FRICO water, Church water, etc.). Northglenn stores its water via oprID Stan.31 (see previous table), which fills the account to 20,000 acre-feet capacity. This water is colored as reusable as part of the operating rule by assigning the 5,000 acre-feet (along with the initial 15,000 acre-feet) to the StanReuseW reservoir reuse plan.

Northglenn tries to store its water via the 4 Way Agreement oprID Stan.37. Only 1,985 acre-feet of Northglenn's water can be stored since the Westminster account is now full. Northglenn's 4 Way water in Westminster's account if colored as reusable in the StanNglPln1 reservoir reuse plan. Note the remainder of Northglenn's water in this example (3,015 acre-feet) is unused and must be released back to Clear Creek via oprID Stan.52. The two reservoir reuse plans allow multiple owners of water to be represented in the same storage account.

At the beginning of the next time step, Northglenn's demand is met first with its water in Westminster's account since that water is subject to be booked out once Westminster tries to store water in its own account. Whether or not the shared water is used, the model must "know" that even though the Westminster account is full there is 1,985 acre-feet of space available to Westminster. A "phantom" reservoir (ID PhantomStand) is used in the SPDSS model to allow the shared water to be booked out of Standley Lake at the beginning of the time step and then, if the booked out water is not used and there is still space available in other accounts, the booked out water is booked back into Standley Lake.

The general order of rules in the SPDSS model to represent operations of the Standley Lake storage accounts and the 4 Way Agreement is as follows. Note all of these rules start operations in 1979, coincident with execution of the 4 Way Agreement.

The first eight rules store excess water from the Croke 1902 right into other users' account.

| Right ID | Admin #     | Destination                           | Account, Carrier,<br>Return Location<br>(R), or % Split | Source   | Right<br>Type |
|----------|-------------|---------------------------------------|---------------------------------------------------------|----------|---------------|
| Stan.36  | 19055.00002 | Standley Lake<br>(0203903), Account 1 | Croke Canal<br>(0700553)                                | StanPlnN | 27            |
| Stan.37  | 50325.00012 | Standley Lake<br>(0203903), Account 1 | Croke Canal<br>(0700553)                                | StanPlnN | 27            |
| Stan.38  | 50325.00012 | Standley Lake<br>(0203903), Account 1 | Croke Canal<br>(0700553)                                | StanPInF | 27            |
| Stan.39  | 19055.00002 | Standley Lake<br>(0203903), Account 4 | Croke Canal<br>(0700553)                                | StanPlnW | 27            |
| Stan.40  | 50403.00013 | Standley Lake<br>(0203903), Account 4 | Croke Canal<br>(0700553)                                | StanPlnW | 27            |
| Stan.41  | 19055.00002 | Standley Lake<br>(0203903), Account 4 | Croke Canal<br>(0700553)                                | StanPlnN | 27            |
| Stan.42  | 50403.00015 | Standley Lake<br>(0203903), Account 4 | Croke Canal<br>(0700553)                                | StanPlnN | 27            |
| Stan.43  | 50403.00015 | Standley Lake<br>(0203903), Account 4 | Croke Canal<br>(0700553)                                | StanPInF | 27            |

The following rules book water stored in others' account out of Standley and into PhantomStand to make room for the others' water (occurs at beginning of time step).

| Right ID | Admin # | Destination                | Account, Carrier, Return<br>Location (R), or % Split | Source                      | Right<br>Type |
|----------|---------|----------------------------|------------------------------------------------------|-----------------------------|---------------|
| Stan.01  | 1.00000 | PhantomStand,<br>Account 1 |                                                      | Standley Lake<br>(0203903), | 32            |
|          |         |                            |                                                      | Account 1                   |               |
| Stan.02  | 1.00000 | PhantomStand,              |                                                      | Standley Lake               | 32            |
|          |         | Account 2                  |                                                      | (0203903),                  |               |
|          |         |                            |                                                      | Account 1                   |               |
| Stan.03  | 1.00000 | PhantomStand,              |                                                      | Standley Lake               | 32            |
|          |         | Account 3                  |                                                      | (0203903),                  |               |
|          |         |                            |                                                      | Account 4                   |               |
| Stan.04  | 1.00000 | PhantomStand,              |                                                      | Standley Lake               | 32            |
|          |         | Account 4                  |                                                      | (0203903),                  |               |
|          |         |                            |                                                      | Account 4                   |               |
| Stan.05  | 1.00000 | PhantomStand,              |                                                      | Standley Lake               | 32            |
|          |         | Account 5                  |                                                      | (0203903),                  |               |
|          |         |                            |                                                      | Account 4                   |               |

The next 14 rules are used to release the water stored under the 4 Way Agreement (now stored in PhantomStand) to meet demands prior to operations with the Croke 1902 right, to reduce the likelihood the 4 Way stored water will be released.

| Right ID | Admin # | Destination | Account, Carrier, Return | Source | Right |
|----------|---------|-------------|--------------------------|--------|-------|
|          |         |             | Location (R), or % Split |        | Туре  |

| Stan.06 | 19054.99998 | Northglenn Indoor  | Northglenn Standley PL | PhantomStand, | 3 |
|---------|-------------|--------------------|------------------------|---------------|---|
|         |             | Use (02_Nglenn_I)  | (0200993)              | Account 1     |   |
| Stan.07 | 19054.99998 | Northglenn Indoor  | Northglenn Standley PL | PhantomStand, | 3 |
|         |             | Use (02_Nglenn_I)  | (0200993)              | Account 4     |   |
| Stan.08 | 19054.99998 | Northglenn Outdoor | Northglenn Standley PL | PhantomStand, | 3 |
|         |             | Use (02_Nglenn_O)  | (0200993)              | Account 1     |   |
| Stan.09 | 19054.99998 | Northglenn Outdoor | Northglenn Standley PL | PhantomStand, | 3 |
|         |             | Use (02_Nglenn_O)  | (0200993)              | Account 4     |   |
| Stan.10 | 19054.99998 | Westminster Inside | Northglenn Standley PL | PhantomStand, | 3 |
|         |             | Use (02_Westy_I)   | (0200993)              | Account 3     |   |
| Stan.11 | 19054.99998 | Westminster        | Northglenn Standley PL | PhantomStand, | 3 |
|         |             | Outside Use        | (0200993)              | Account 3     |   |
|         |             | (02_Westy_O)       |                        |               |   |
| Stan.12 | 19054.99998 | Whipple D (Bull    |                        | PhantomStand, | 3 |
|         |             | Canal) (0200871)   |                        | Account 2     |   |
| Stan.13 | 19054.99998 | German Ditch       |                        | PhantomStand, | 3 |
|         |             | (0200872)          |                        | Account 2     |   |
| Stan.14 | 19054.99998 | Big Dry Ck Ditch   |                        | PhantomStand, | 3 |
|         |             | (0200873)          |                        | Account 2     |   |
| Stan.15 | 19054.99998 | Yoxall Ditch       |                        | PhantomStand, | 3 |
|         |             | (0200874)          |                        | Account 2     |   |
| Stan.16 | 19054.99998 | Whipple D (Bull    |                        | PhantomStand, | 3 |
|         |             | Canal) (0200871)   |                        | Account 5     |   |
| Stan.17 | 19054.99998 | German Ditch       |                        | PhantomStand, | 3 |
|         |             | (0200872)          |                        | Account 5     |   |
| Stan.18 | 19054.99998 | Big Dry Ck Ditch   |                        | PhantomStand, | 3 |
|         |             | (0200873)          |                        | Account 5     |   |
| Stan.19 | 19054.99998 | Yoxall Ditch       |                        | PhantomStand, | 3 |
|         |             | (0200874)          |                        | Account 5     |   |

The next seven rules are used to release the water already stored in Standley Lake to meet demands prior to operations with the Croke 1902 right, to vacate space to be filled with the 1902 right.

| Right ID | Admin #     | Destination                             | Account, Carrier, Return<br>Location (R), or % Split | Source                                   | Right<br>Type |
|----------|-------------|-----------------------------------------|------------------------------------------------------|------------------------------------------|---------------|
| Stan.20  | 19054.99999 | Northglenn Indoor<br>Use (02_Nglenn_I)  | Northglenn Standley PL<br>(0200993)                  | Standley Lake<br>(0203903),<br>Account 2 | 32            |
| Stan.21  | 19054.99999 | Northglenn Outdoor<br>Use (02_Nglenn_O) | Northglenn Standley PL<br>(0200993)                  | Standley Lake<br>(0203903),<br>Account 2 | 32            |
| Stan.20N | 19054.99999 | Northglenn Indoor<br>Use (02_Nglenn_I)  | Northglenn Standley PL<br>(0200993)                  | Standley Lake<br>(0203903),<br>Account 3 | 27            |
| Stan.21N | 19054.99999 | Northglenn Outdoor<br>Use (02_Nglenn_O) | Northglenn Standley PL<br>(0200993)                  | Standley Lake<br>(0203903),<br>Account 3 | 27            |
| Stan.22  | 19054.99999 | Westminster Inside<br>Use (02_Westy_I)  | Westminster Standley<br>PL2 (0200992)                | Standley Lake<br>(0203903),<br>Account 1 | 32            |

| Stan.23  | 19054.99999 | Westminster<br>Outside Use<br>(02_Westy_0) | Westminster Standley<br>PL2 (0200992) | Standley Lake<br>(0203903),<br>Account 1 | 32 |
|----------|-------------|--------------------------------------------|---------------------------------------|------------------------------------------|----|
| Stan.24a | 19054.99999 | Thornton Inside Use<br>(02_Thorn_I)        | Thornton Standley PL<br>(0200994)     | Standley Lake<br>(0203903),<br>Account 4 | 32 |

The 1902 Croke storage right is the next part of the Standley Lake operations to simulate, as described in the section above this 4 Way Agreement section. At this point in the model simulation, any 4 Way water that was stored in Standley Lake has been booked over to PhantomStand and used to meet demands, to the extent possible. The 1902 Croke operations allow storage of 1902 Croke water from the current time step to be stored in others' account pursuant to the 4 Way Agreement (oprIDs Stan.36 – Stan.43). At the end of the time step, the following five rules are used to try to book the remaining 4 Way water from the previous time step (that is currently in PhantomStand) back into shared space in Standley Lake.

| Right ID | Admin #     | Destination                              | Account, Carrier, Return<br>Location (R), or % Split | Source                     | Right<br>Type |
|----------|-------------|------------------------------------------|------------------------------------------------------|----------------------------|---------------|
| Stan.44  | 99999.00000 | Standley Lake<br>(0203903), Account<br>1 |                                                      | PhantomStand,<br>Account 1 | 34            |
| Stan.45  | 99999.00000 | Standley Lake<br>(0203903), Account<br>1 |                                                      | PhantomStand,<br>Account 2 | 34            |
| Stan.46  | 99999.00000 | Standley Lake<br>(0203903), Account<br>4 |                                                      | PhantomStand,<br>Account 3 | 34            |
| Stan.47  | 99999.00000 | Standley Lake<br>(0203903), Account<br>4 |                                                      | PhantomStand,<br>Account 4 | 34            |
| Stan.48  | 99999.00000 | Standley Lake<br>(0203903), Account<br>4 |                                                      | PhantomStand,<br>Account 5 | 34            |

## 5.10.8.10.3 COSMIC Agreement

The Croke Canal headgate is located downstream of the pre-1988 Golden and Coors effluent return point. This caused Clear Creek water diverted at the Croke Canal headgate to be of poor quality during winter months. During the late 1970s and early 1980s, Coors and Golden considered diverting additional water from Clear Creek that belonged to downstream water users Westminster and Thornton and replacing it with treated effluent. Westminster and Thornton fought this concept through a number of forums including the Water Quality Control Commission and the Water Court. The parties negotiated an innovative settlement that involved the joint funding of a solution that gave Coors and Golden additional water supplies from Clear Creek, while preserving the quality of the Standley Lake water supply. The agreement committed all parties to operate water rights to avoid the introduction of Coors and Golden effluent into Standley Lake. The Clear Creek Water Quality Settlement has been nicknamed the "COSMIC Agreement".

The main result of the COSMIC Agreement is that Coors and Golden now discharge their wastewater effluent to Clear Creek below the diversion point of the Croke Canal during the winter storage season. This water, previously available to the Croke Canal, is stored in West Gravel Lakes and Jim Baker Reservoir until it can be exchanged back upstream.

During the winter operation season (Croke Season: Nov 1- Mar 30) when the Croke Canal is diverting under its 1902 priority, Coors and Golden effluent is discharged below the Croke Canal and stored in West Gravel Lakes and Jim Baker Reservoir.

During the irrigation season (Non-Croke Season: April 1- Oct 31), the stored effluent is exchanged upstream for distribution to FRICO shareholders.

The general order of rules in the SPDSS model to represent operations of the Standley Lake and West Gravel Lake storage accounts and the Cosmic Agreement is as follows. Note the location of the Coors/Golden WWTP is fixed at its current location throughout the study period.

## Croke Season

Return flows from Coors' and Golden's winter use are considered Bypass Water and stored in West Gravel Lakes. In order for the StateMod model to color effluent from winter diversions and then be shepherded down the creek to off-channel storage, subject to a transit loss, the winter diversions must be isolated from other water supplies. Therefore, water rights just senior to the Croke 1902 storage right are assigned to the Golden City Ditch and Coors Industries Ditch. The first two rules below are used to store the two COSMIC rights into plan IDs CosmPln1 and CosmPln2. The next two rules set the volumetric Croke season limits on the use of the rights, as outlined in the Cosmic Agreement. The last two rules are used to release the plan contents to the Golden and Coors demands, with the effluent colored as reusable. Although the Coors/Golden WWTP is essentially a single structure, two separate WWTPs are included in the SPDSS model (IDs 0702318 and Gold\_WWTP) to account for the bypass water for the two entities separately.

| Right ID               | Admin #     | Destination                        | Account, Carrier, Return<br>Location (R), or % Split | Source                                                   | Right<br>Type |
|------------------------|-------------|------------------------------------|------------------------------------------------------|----------------------------------------------------------|---------------|
| Cosmic.04              | 19054.99989 | CosmcPln1                          | 100%                                                 | 0700542.07                                               | 26            |
| Cosmic.05              | 19054.99990 | CosmcPln2                          | 100%                                                 | 0700725.03                                               | 26            |
| Cosmic.98<br>Cosmic.99 | 1.00000     |                                    |                                                      | Coors Release<br>Limit<br>(Cosmic_RL1)<br>Golden Release | 47            |
|                        | 1.00000     |                                    |                                                      | Limit<br>(Cosmic_RL2)                                    |               |
| Cosmic.06              | 19054.99991 | Golden Inside Use<br>(07_Golden_I) | Golden City Ditch<br>(0700542)                       | CosmcPln1                                                | 27            |
| Cosmic.07              | 19054.99992 | Coors Malting                      | Coors Ind Ditch                                      | CosmcPln2                                                | 27            |

|  | Potable Demand | (0700725) |  |
|--|----------------|-----------|--|
|  | (07_CoorsB)    |           |  |

West Gravel Lakes is set up with four accounts – Coors Bypass, Golden Bypass, Thornton 1 Time Use, and Thornton Reuse. The Bypass accounts are sized to hold the maximum delivery outlined in the Cosmic Agreement (Coors – 2,758 acre-feet; Golden – 1,113 acre-feet). The two Thornton accounts are equal to the maximum reservoir capacity of 3,400 acre-feet. The following two rules are used to convey the reusable effluent to the West Gravel Lakes, subject to the 2.75% transit loss.

| Right ID  | Admin #     | Destination                                    | Account, Carrier, Return<br>Location (R), or % Split | Source                     | Right<br>Type |
|-----------|-------------|------------------------------------------------|------------------------------------------------------|----------------------------|---------------|
| Cosmic.08 | 19054.99993 | WGravelLks&Branna<br>n (0203699),<br>Account 2 | Lower Clear Ck Ditch<br>(0700547)                    | Golden WWTP<br>(Gold_WWTP) | 27            |
| Cosmic.09 | 19054.99994 | WGravelLks&Branna<br>n (0203699),<br>Account 1 | Lower Clear Ck Ditch<br>(0700547)                    | Coors WWTP<br>(0702318)    | 27            |

An additional wrinkle noticed during model simulation is the West Gravel Lakes storage right simulated in-priority diversions during the Croke Season, which limited the available space to store the Bypass water. Therefore, the following rule is used to keep the One Time Use account in West Gravel Lakes empty during the Croke season:

| Right ID  | Admin # | Destination      | Account, Carrier, Return<br>Location (R), or % Split | Source          | Right<br>Type |
|-----------|---------|------------------|------------------------------------------------------|-----------------|---------------|
| Cosmic.03 | 1.00001 | WGL Nov1 Release |                                                      | WGravelLks&Bra  | 3             |
|           |         | (CosmicRel)      |                                                      | nnan (0203699), |               |
|           |         |                  |                                                      | Account 3       |               |

#### Non-Croke Season

The Bypass water is now exchanged up to Standley, junior to the Croke 1902 right. The first two rules exchange the Coors Bypass and Golden Bypass water from the West Gravel Lakes up to plan IDs CosCoExPln and CosGoExPln. The following two rules split the plan contents to sub-plans for the Standley Lake shareholders.

| Right ID  | Admin #     | Destination | Account, Carrier, Return<br>Location (R), or % Split | Source                                         | Right<br>Type |
|-----------|-------------|-------------|------------------------------------------------------|------------------------------------------------|---------------|
| Cosmic.10 | 19055.00004 | CosCoExcPln |                                                      | WGravelLks&Bra<br>nnan (0203699),<br>Account 1 | 47            |
| Cosmic.23 | 19055.00004 | CosGoExcPIn |                                                      | WGravelLks&Bra<br>nnan (0203699),<br>Account 2 | 28            |

| Cosmic.11 | 19055.00004 | CosCoExcWe | 47.20% | CosCoExcPln | 46 |
|-----------|-------------|------------|--------|-------------|----|
|           |             | CosCoExcNg | 33.36% |             |    |
|           |             | CosCoExcFR | 19.44% |             |    |
| Cosmic.24 | 19055.00004 | CosGoExcWe | 91%    | CosGoExcPln | 46 |
|           |             | CosGoExcNg | 9%     |             |    |

The plan IDs are all located upstream of the Croke Canal headgate so that the exchange potential is sure to be available prior to the water being used by the recipients.

Note Thornton does not exchange its portion of the Bypass water upstream. Instead, the following two rules are used to take the water remaining in the Bypass accounts at the end of the Non-Croke season and book that water over to Thornton's Reuse account in West Gravel Lakes:

| Right ID  | Admin # | Destination       | Account, Carrier, Return<br>Location (R), or % Split | Source          | Right<br>Type |
|-----------|---------|-------------------|------------------------------------------------------|-----------------|---------------|
| Cosmic.01 | 1.00000 | WGravelLks&Branna |                                                      | WGravelLks&Bra  | 34            |
|           |         | n (0203699),      |                                                      | nnan (0203699), |               |
|           |         | Account 4         |                                                      | Account 1       |               |
| Cosmic.02 | 1.00000 | WGravelLks&Branna |                                                      | WGravelLks&Bra  | 34            |
|           |         | n (0203699),      |                                                      | nnan (0203699), |               |
|           |         | Account 4         |                                                      | Account 2       |               |

The following 12 rules are used to release the contents of the sub-plans with the Coors Bypass water (8) and Golden Bypass water (4) to the recipients' demands.

| Right ID  | Admin #     | Destination                                | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|-----------|-------------|--------------------------------------------|------------------------------------------------------|------------|---------------|
| Cosmic.12 | 19055.00004 | Westminster Inside<br>Use (02_Westy_I)     | Croke Canal (0700553)                                | CosCoExcWe | 27            |
| Cosmic.13 | 19055.00004 | Westminster<br>Outside Use<br>(02_Westy_O) | Croke Canal (0700553)                                | CosCoExcWe | 27            |
| Cosmic.14 | 19055.00004 | Northglenn Indoor<br>Use (02_Nglenn_I)     | Croke Canal (0700553)                                | CosCoExcNg | 27            |
| Cosmic.15 | 19055.00004 | Northglenn Outdoor<br>Use (02_Nglenn_O)    | Croke Canal (0700553)                                | CosCoExcNg | 27            |
| Cosmic.16 | 19055.00004 | Whipple D (Bull<br>Canal) (0200871)        | Croke Canal (0700553)                                | CosCoExcFR | 27            |
| Cosmic.17 | 19055.00004 | German Ditch<br>(0200872)                  | Croke Canal (0700553)                                | CosCoExcFR | 27            |
| Cosmic.18 | 19055.00004 | Big Dry Ck Ditch<br>(0200873)              | Croke Canal (0700553)                                | CosCoExcFR | 27            |
| Cosmic.19 | 19055.00004 | Yoxall Ditch<br>(0200874)                  | Croke Canal (0700553)                                | CosCoExcFR | 27            |
| Cosmic.25 | 19055.00004 | Westminster Inside<br>Use (02_Westy_I)     | Croke Canal (0700553)                                | CosGoExcWe | 27            |
| Cosmic.26 | 19055.00004 | Westminster<br>Outside Use                 | Croke Canal (0700553)                                | CosGoExcWe | 27            |

|           |             | (02_Westy_O)                            |                       |            |    |
|-----------|-------------|-----------------------------------------|-----------------------|------------|----|
| Cosmic.27 | 19055.00004 | Northglenn Indoor<br>Use (02_Nglenn_I)  | Croke Canal (0700553) | CosGoExcNg | 27 |
| Cosmic.28 | 19055.00004 | Northglenn Outdoor<br>Use (02_Nglenn_O) | Croke Canal (0700553) | CosGoExcNg | 27 |

The following five rules are used to release the contents of the sub-plans with the Coors Bypass water (3) and Golden Bypass water (2) to the recipients' demands.

| Right ID    | Admin #     | Destination                                    | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|-------------|-------------|------------------------------------------------|------------------------------------------------------|------------|---------------|
| Cosmic.20   | 19055.00004 | Standley Lake<br>(0203903), Account<br>1       | Croke Canal (0700553)                                | CosCoExcWe | 27            |
| Cosmic.21   | 19055.00004 | Standley Lake<br>(0203903), Account<br>3       | Croke Canal (0700553)                                | CosCoExcNg | 27            |
| Cosmic.22   | 19055.00004 | Standley Lake<br>(0203903), Account<br>4       | Croke Canal (0700553)                                | CosCoExcFR | 27            |
| Cosmic.29   | 19055.00004 | Standley Lake<br>(0203903), Account<br>1       | Croke Canal (0700553)                                | CosGoExcWe | 27            |
| Cosmic.30   | 19055.00004 | Standley Lake<br>(0203903), Account<br>3       | Croke Canal (0700553)                                | CosGoExcNg | 27            |
| CosmcWGL.01 | 50403.00019 | WGravelLks&<br>Brannan (0203699),<br>Account 1 |                                                      | CosCoExcNg | 27            |
| CosmcWGL.02 | 50403.00020 | WGravelLks&<br>Brannan (0203699),<br>Account 1 |                                                      | CosCoExcFR | 27            |
| CosmcWGL.03 | 50403.00018 | WGravelLks&<br>Brannan (0203699),<br>Account 1 |                                                      | CosCoExcWe | 27            |
| CosmcWGL.04 | 50403.00021 | WGravelLks&<br>Brannan (0203699),<br>Account 2 |                                                      | CosCoExcWe | 27            |
| CosmcWGL.05 | 50403.00022 | WGravelLks&<br>Brannan (0203699),<br>Account 2 |                                                      | CosCoExcNg | 27            |

## Northglenn-FRICO Exchanged

Bull Reservoir is modeled as an off-channel reservoir on the Northglenn WWTP outfall tributary. It stores effluent under the reservoir rights. Storage of native flow is not simulated (i.e no carriers) so all water in the reservoir is Northglenn effluent (mostly reusable). Releases from Northglenn effluent

in Bull Lake are used to meet FRICO demands. Releases from FRICO account to remaining demand. Operating rules are shown below.

| Right ID    | Admin #     | Destination                         | Account, Carrier, Return<br>Location (R), or % Split | Source                                                | Right<br>Type |
|-------------|-------------|-------------------------------------|------------------------------------------------------|-------------------------------------------------------|---------------|
| NgIFRICO.02 | 19055.00006 | Whipple D (Bull<br>Canal) (0200871) |                                                      | BullReservoir<br>(0203351),                           | 3             |
| NgIFRICO.03 | 19055.00006 | German Ditch<br>(0200872)           |                                                      | Account 1<br>BullReservoir<br>(0203351),<br>Account 1 | 3             |
| NgIFRICO.04 | 19055.00006 | Big Dry Ck Ditch<br>(0200873)       |                                                      | BullReservoir<br>(0203351),<br>Account 1              | 3             |
| NgIFRICO.05 | 19055.00006 | Yoxall Ditch<br>(0200874)           |                                                      | BullReservoir<br>(0203351),<br>Account 1              | 3             |
| NglFul.02   | 48275.00000 | NgInFulRFs                          |                                                      | NglennReuse                                           | 49            |

# 5.10.8.11 City of Westminister

The City of Westminster is physically located in the Big Dry Creek Basin and the majority of its raw water supply originates from Clear Creek and flows to Standley Lake. The City owns shares or inches in each of the Farmers' High Line Canal, the Croke Canal, and the Church Ditch canal companies. The Farmers' High Line Canal and Reservoir Company has been a part of Westminster's water supply since the 1950s. Westminster presently owns or controls a majority of the shares in the Company. The Church Ditch inches were acquired by Westminster beginning in about 1960. The City also owns shares in the Standley Division of FRICO. The City owns the majority of shares in the Kershaw Ditch that diverts from the north side of Clear Creek at Tennyson Street and the Manhart Ditch that diverts water from the north bank of Ralston Creek about one mile upstream of its confluence with Clear Creek. Water derived from the Kershaw and Manhart ditches is used for water rights exchanges. Westminster owns Jim Baker Reservoir (aka Happe Ponds).

Prior to accumulating shares in the Church Ditch, Farmers' High Line, Kershaw Ditch, and Standley Lake Division on Clear Creek and in the Manhart Ditch on Ralston Creek, Westminster used non-tributary wells, contract water from Denver Water Board, and direct flow from the Kershaw Ditch for its municipal water supply.

The Manhart Ditch is the sole key ditch represented on Ralston Creek identified as key by the water commissioner. No records of flows in Ralston Creek were identified and estimates of inflows were considered unsatisfactory. Due to concerns with physical inflows above the ditch, operations with the changed Manhart Ditch water rights were excluded from the SPDSS model. There are some preliminary rules related to the Manhart Ditch that are kept in the operating rules file as placeholders for future modelers (Manhart.99).

Westminster's wastewater returns at its WWTP on Big Dry Creek (Westy\_WWTP, approx. two-thirds) and the Metro WWTP (approx. one-thirds). Westminster's changed water rights are reusable and WWTP return flows from their use is accounted for in plan ID WestyReuse. The StateMod algorithm is not current able to color the effluent as reusable at two locations (i.e., Westy\_WWTP and MetroWWTP); therefore, all of the WWTP returns are input as occurring at the Westy\_WWTP. All of Westminster's water in Standley Lake is reusable and accounted for in plan ID StanReuseW. Representation of the use of changed water rights is consistent with standard approach outlined in Section 4.9. Most uses of the changed water rights also generate return flow obligations. Return flow obligations that are out of priority are met with reusable supplies at the Westy\_WWTP.

The operating rules used in the SPDSS model for representing Westminster's operations are summarized below.

## Changed Water Rights

As outlined in Section 5.10.8.7 (Molson Coors), the changed water rights in the Farmers' High Line Canal are stored in the plan ID FHL\_SplPIn and then distributed to the various owners of the water rights. Westminster's prorata ownership (50.8%) from the Farmers' High Line Canal is stored in the WestyFHLPIn. The Priority 1 and Priority 8 water rights in what was previously the Wadsworth Ditch are owned exclusively by Westminster. These two rights are also stored in the WestyFHLPIn. Monthly volumetrics are not assigned to the storage of those rights since volumetrics are assigned to the use of all of Westminster's changed rights in the Farmers' Highline Canal.

The first rule below establishes the volumetric limits on Westminster's use water rights based on decretal terms and conditions (Case Nos. W-8743, 86CW398, 86CW266, 90CW101, and 00CW263). The following two rules are used to deliver the Priority 1 and Priority 8 water rights into the Westminster plan. The next nine rules are used to release water from the plan to Westminster's indoor demand. The next nine rules are used to release water from the plan to Westminster's outdoor demand. The third set of nine rules is used to release water to Westminster's account in Standley Lake. The groups of nine rules for each destination are used to distinguish the monthly CU factors for March through November.

| Right ID  | Admin #    | Destination                            | Account, Carrier,<br>Return Location<br>(R), or % Split | Source                     | Right<br>Type |
|-----------|------------|----------------------------------------|---------------------------------------------------------|----------------------------|---------------|
| FHL.99    | 1.00000    |                                        |                                                         | FHL Wes RL<br>(FHL_Wes_RL) | 47            |
| FHL.01    | 3708.00000 | Westminster FHL Plan<br>(WestyFHLPln)  | 100%, 45,000AF<br>limit                                 | 0700569.01                 | 26            |
| FHL.08    | 5785.00000 | Westminster FHL Plan<br>(WestyFHLPIn)  | 100%, 45,000AF<br>limit                                 | 0700569.08                 | 26            |
| FHL.17a-i | 8127.00002 | Westminster Inside<br>Use (02_Westy_I) | FARMERS<br>HIGHLINE CNL<br>(0700569)                    | WestyFHLPIn                | 27            |
| FHL.18a-i | 8127.00003 | Westminster Outside                    | FARMERS                                                 | WestyFHLPIn                | 27            |

|           |            | Use (02_Westy_O)     | HIGHLINE CNL<br>(0700569) |             |    |
|-----------|------------|----------------------|---------------------------|-------------|----|
| FHL.19a-i | 8127.00004 | Standley Lake        | FARMERS                   | WestyFHLPIn | 27 |
|           |            | (0203903), Account 1 | HIGHLINE CNL              |             |    |
|           |            |                      | (0700569)                 |             |    |

As outlined in Section 5.10.8.11 (City of Westminister), the changed water rights in the Church Ditch are stored in the plan ID ChrchSplPln and then distributed to the 7 users – Arvada, Coors, Golden, Northglenn, Thornton, Westminister, and Irrigators. Westminster's prorata ownership (52.1%) from the Church Ditch is stored in the WestyChPln.

The first rule below establishes the volumetric limits on Westminster's use water rights based on decretal terms and conditions (Case Nos. W-8743, 86CW398, 86CW266, 90CW101, and 00CW263). The next two split the changed ditch shares. Ther following set of seven rules are used to release water from the plan to Westminster's indoor demand. The next set of seven rules are used to release water from the plan to Westminster's outdoor demand. The third set of seven rules is used to release water to Westminster's account in Standley Lake. The set of seven rules for each destination are used to distinguish the monthly CU factors for April through October.

| Right ID     | Admin #     | Destination                                                           | Account, Carrier,<br>Return Location<br>(R), or % Split | Source                                     | Right<br>Type |
|--------------|-------------|-----------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------|
| Church.99    | 1.00000     |                                                                       |                                                         | Church Wes RL<br>(ChrchWe_RL)              | 47            |
| Church.01    | 4535.00000  | Church Ditch Split Plan<br>1 (ChrchSplPl1)                            | 100%, 35,000AF<br>limit                                 | 0700540.01                                 | 26            |
| Church.02    | 4535.00001  | Arvada Church Plan<br>(ArvChPln)<br>Coors Church Plan<br>(CoorsChPln) | 15.8%<br>8.7%                                           | Church Ditch Split Plan<br>1 (ChrchSplPl1) | 46            |
|              |             | Golden Church Plan<br>(GoldChPln)                                     | 1.1%                                                    |                                            |               |
|              |             | Northglenn Church<br>Plan (NglennChPln)                               | 7.4%                                                    |                                            |               |
|              |             | (ThChurchPln)                                                         | 0.8%                                                    |                                            |               |
|              |             | Westminster Church<br>Plan (WestyChPln)                               | 47.4%                                                   |                                            |               |
|              |             | Church Ditch Irrigation<br>Plan (ChrchIrrPln)                         | 12.8%                                                   |                                            |               |
| Church.13a-g | 10546.00002 | Westminster Inside<br>Use (02_Westy_I)                                | CHURCH DITCH<br>(0700540)                               | WestyChPIn                                 | 27            |
| Church.14a-g | 10546.00003 | Westminster Outside<br>Use (02_Westy_O)                               | CHURCH DITCH<br>(0700540)                               | WestyChPIn                                 | 27            |
| Church.15a-g | 10546.00004 | Standley Lake<br>(0203903), Account 1                                 | CHURCH DITCH<br>(0700540)                               | WestyChPIn                                 | 27            |

The 1861 water right for the Kershaw Ditch is first stored in a changed water rights plan structure (KerSplPln). The City of Westminster has adjudicated two change cases for its shares of the Kershaw Ditch – Case Nos. 86CW398 and 02CW266. The cases have different priority dates adjudicated for exchanges to Standley Lake. Therefore, Westminster's prorata ownership of the shares is represented separately in plan IDs WestKer1Pln (38.1%) and WestKer1Pln (38.2%). The final three rules are used to split the Plan yield, prorata, to the sub-plans of the various owners of the ditch shares (irrigators and Westminster). The first of the three rules is active between 1986 through 1993, corresponding with Westminster's prorata ownership in Case No. 86CW398. The last rule is active starting in 1994, corresponding with Westminster's original change case and Case No. 93CW176. All of the yield is assigned to the irrigators prior to 1986 in the first of the last three rules.

| Right ID    | Admin #    | Destination                                                                                                                          | Account, Carrier,<br>Return Location<br>(R), or % Split | Source                            | Right<br>Type |
|-------------|------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------|---------------|
| Kershaw.01  | 4140.00000 | Kershaw Split Plan<br>(KerSplPln)                                                                                                    | 100%, 35,000 AF<br>Limit                                | 0700597.01                        | 26            |
| Kershaw.02a | 4140.00001 | Kershaw Irrigation<br>Plan (KerIrrPln)                                                                                               | 100%                                                    | Kershaw Split Plan<br>(KerSplPln) | 46            |
| Kershaw.02b | 4140.00001 | Westminster 86cw398<br>exchange plan<br>(WestKer1Pln)<br>Kershaw Irrigation                                                          | 38.1%<br>61.9%                                          | Kershaw Split Plan<br>(KerSplPln) | 46            |
| Kershaw.02c | 4140.00001 | Westminster 86cw398<br>exchange plan<br>(WestKer1Pln)<br>Westminster 93cw176<br>exchange plan<br>(WestKer2Pln)<br>Kershaw Irrigation | 38.1%<br>38.2%<br>23.7%                                 | Kershaw Split Plan<br>(KerSplPln) | 46            |
|             |            | Plan (KerIrrPln)                                                                                                                     | 23.770                                                  |                                   |               |

The first two rules below establish the volumetric limits on Westminster's use of water rights based on terms and conditions in the two change decrees. The two rules distinguish the supply available to the exchange priority dates from the respective decrees. There next 14 rules used to release water from the 86CW398 plan (7) and 93CW176 (7) plan to Westminster's indoor demand by exchange to the Farmers' Highline Canal. The next 14 rules are used to do similar exchanges to Westminster's outside demand. The third set of 14 rules is used to do similar exchanges to Westminster's storage count in Standley Lake. The last set of 14 rules is used to release water directly to Jim Baker Reservoir. The groups of seven rules for each supply and destination are used to distinguish the monthly CU factors for April through October.

| Right ID | Admin # | Destination | Account, Carrier,<br>Return Location<br>(R), or % Split | Source | Right<br>Type |
|----------|---------|-------------|---------------------------------------------------------|--------|---------------|
|          |         |             |                                                         |        |               |

| Kershaw.98    | 1.00000     |                                         |                                                                                                                                               | Kershaw 86 Wes RL<br>(WesKer86 RL) | 47 |
|---------------|-------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----|
| Kershaw.99    | 1.00000     |                                         |                                                                                                                                               | Kershaw 93 Wes RL<br>(WesKer93 RL) | 47 |
| Kershaw.03a-g | 50038.00000 | Westminster Inside<br>Use (02_Westy_I)  | KERSHAW DITCH<br>(0700597)<br>KERSHAW DITCH<br>Aug Stn<br>(0700597_A)<br>Fisher Ditch<br>(0700570, R)<br>FARMERS<br>HIGHLINE CNL<br>(0700569) | WestKer1PIn                        | 27 |
| Kershaw.04a-g | 52586.00000 | Westminster Inside<br>Use (02_Westy_I)  | KERSHAW DITCH<br>(0700597)<br>KERSHAW DITCH<br>Aug Stn<br>(0700597_A)<br>Fisher Ditch<br>(0700570, R)<br>FARMERS<br>HIGHLINE CNL<br>(0700569) | WestKer2Pln                        | 27 |
| Kershaw.05a-g | 50038.00001 | Westminster Outside<br>Use (02_Westy_O) | KERSHAW DITCH<br>(0700597)<br>KERSHAW DITCH<br>Aug Stn<br>(0700597_A)<br>Fisher Ditch<br>(0700570, R)<br>FARMERS<br>HIGHLINE CNL<br>(0700569) | WestKer1Pln                        | 27 |
| Kershaw.06a-g | 52586.00001 | Westminster Outside<br>Use (02_Westy_O) | KERSHAW DITCH<br>(0700597)<br>KERSHAW DITCH<br>Aug Stn<br>(0700597_A)<br>Fisher Ditch<br>(0700570, R)<br>FARMERS<br>HIGHLINE CNL<br>(0700569) | WestKer2Pln                        | 27 |
| Kershaw.07a-g | 50038.00002 | Standley Lake<br>(0203903), Account 1   | KERSHAW DITCH<br>(0700597)<br>KERSHAW DITCH<br>Aug Stn<br>(0700597_A)<br>Fisher Ditch<br>(0700570, R)<br>FARMERS                              | WestKer1PIn                        | 27 |

|               |             |                      | HIGHLINE CNL  |             |    |
|---------------|-------------|----------------------|---------------|-------------|----|
|               |             |                      | (0700569)     |             |    |
| Kershaw.08a-g | 52586.00002 | Standley Lake        | KERSHAW DITCH | WestKer2Pln | 27 |
|               |             | (0203903), Account 1 | (0700597)     |             |    |
|               |             |                      | KERSHAW DITCH |             |    |
|               |             |                      | Aug Stn       |             |    |
|               |             |                      | (0700597_A)   |             |    |
|               |             |                      | Fisher Ditch  |             |    |
|               |             |                      | (0700570, R)  |             |    |
|               |             |                      | FARMERS       |             |    |
|               |             |                      | HIGHLINE CNL  |             |    |
|               |             |                      | (0700569)     |             |    |
| Kershaw.09a-g | 50038.00003 | Jim Baker Reservooir | KERSHAW DITCH | WestKer1Pln | 27 |
|               |             | (0703336), Account 1 | (0700597)     |             |    |
|               |             |                      | KERSHAW DITCH |             |    |
|               |             |                      | Aug Stn       |             |    |
|               |             |                      | (0700597_A)   |             |    |
|               |             |                      |               |             |    |
| Kershaw.10a-g | 52586.00003 | Jim Baker Reservooir | KERSHAW DITCH | WestKer2Pln | 27 |
|               |             | (0703336), Account 1 | (0700597)     |             |    |
|               |             |                      | KERSHAW DITCH |             |    |
|               |             |                      | Aug Stn       |             |    |
|               |             |                      | (0700597_A)   |             |    |
|               |             |                      |               |             |    |

The following three rules release water to the Kershaw irrigation demand from its prorata water rights ownership (plan ID KerIrrPln) and unused credits in the Westminster's two changed water rights plans. The next five rules release any remaining unused Kershaw Ditch credits in various plans back to Clear Creek. The last two rules are used to release any unused credits in the Church Ditch and the Farmers' Highline Canal back to irrigators under the respective ditches.

| Right ID    | Admin #     | Destination                               | Account, Carrier,<br>Return Location<br>(R), or % Split | Source                                                | Right<br>Type |
|-------------|-------------|-------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|---------------|
| Kershaw.11  | 4140.00002  | Kershaw Ditch<br>Irrigators (0700597_I)   | Kershaw Ditch<br>(0700597)                              | Kershaw Irrigation Plan<br>(KerIrrPln)                | 27            |
| Kershaw.12  | 50038.00008 | Kershaw Ditch<br>Irrigators (0700597_I)   | Kershaw Ditch<br>(0700597)                              | Kershaw Ditch<br>Irrigators (0700597_I)               | 27            |
| Kershaw.13  | 52586.00008 | 0 Kershaw Ditch<br>Irrigators (0700597_1) | Kershaw Ditch<br>(0700597)                              | Westminster 93cw176<br>exchange plan<br>(WestKer2Pln) | 27            |
| KerSpill.71 | 4140.00009  | Kershaw Ditch<br>(0700597)                |                                                         | KerSplPln                                             | 29            |
| KerSpill.72 | 4140.00009  | Kershaw Ditch<br>(0700597)                |                                                         | WestyKerPln                                           | 29            |
| KerSpill.73 | 50038.00009 | Kershaw Ditch<br>(0700597)                |                                                         | WestKer1Pln                                           | 29            |

| KerSpill.74 | 52586.00009 | Kershaw Ditch           |                  | WestKer2Pln          | 29 |
|-------------|-------------|-------------------------|------------------|----------------------|----|
|             |             | (0700597)               |                  |                      |    |
| KerSpill.75 | 4140.00009  | Kershaw Ditch           |                  | KerlrrPln            | 29 |
|             |             | (0700597)               |                  |                      |    |
| FHL.24      | 16549.00002 | FHL Irrigators          | Farmers Highline | Westminster FHL Plan | 27 |
|             |             | (0700569_1)             | Canal (0700569)  | (WestyFHLPIn)        |    |
|             |             |                         |                  |                      |    |
| Church.24   | 16718.13227 | Church Ditch Irrigators | Church Ditch     | Westminster Church   | 27 |
|             |             | (0700540_1)             | (0700540)        | Plan (WestyChPln)    |    |
|             |             |                         |                  |                      |    |

The following four rules are used to meet the return flow obligations associated with the various changes of use, either in priority via the Type 43 rules (2) or with reusable effluent (2). The next rule is used to release reusable effluent to meet Northglenn's wintertime return flow obligations accounted for in plan ID NgInBDCRFs. The final rule is used to release unused reusable effluent back to the river.

| Right ID     | Admin #     | Destination                      | Account, Carrier,<br>Return Location<br>(R), or % Split | Source     | Right<br>Type |
|--------------|-------------|----------------------------------|---------------------------------------------------------|------------|---------------|
| WestyRF.01   | 55150.00000 | WestyChRFs                       |                                                         |            | 43            |
| WestyRF.02   | 55150.00000 | WestyFHLRFs                      |                                                         |            | 43            |
| WestyRF.03   | 5150.10000  | WestyChRFs                       |                                                         | WestyReuse | 48            |
| WestyRF.04   | 5150.10000  | WestyFHLRFs                      |                                                         | WestyReuse | 48            |
| NglWest.01   | 55150.10001 | NgInBDCRFs                       |                                                         | WestyReuse | 48            |
| WestWWSpl.71 | 90000.00000 | Westminster WWTP<br>(Westy_WWTP) |                                                         | WestyReuse | 29            |

#### Storage Use

Westminster stores and delivers its water supplies from Standley Lake and Jim Baker Reservoir. Westminster's ownership in the FRICO system is represented with a single account in Standley Lake (Acct 1). Pursuant to the 4 Way Agreement, Westminster also can store water in the account owned by Thornton (Acct 4) (see Section 5.10.8.10.78). The following six rules are used to release water from Standley Lake to meet Westminster's demand from either the 4 Way accounts in PhantomStand (2) or from Westminster's account in Standley Lake (2).

| Right ID | Admin #     | Destination                            | Account, Carrier,<br>Return Location<br>(R), or % Split | Source                     | Right<br>Type |
|----------|-------------|----------------------------------------|---------------------------------------------------------|----------------------------|---------------|
| Stan.10  | 19054.99998 | Westminster Inside<br>Use (02_Westy_I) | Northglenn<br>Standley PL<br>(0200993)                  | PhantomStand,<br>Account 3 | 3             |

| Stan.11 | 19054.99998 | Westminster Outside<br>Use (02_Westy_O) | Northglenn<br>Standley PL<br>(0200993)   | PhantomStand,<br>Account 3            | 3  |
|---------|-------------|-----------------------------------------|------------------------------------------|---------------------------------------|----|
| Stan.22 | 19054.99999 | Westminster Inside<br>Use (02_Westy_I)  | Westminster<br>Standley PL2<br>(0200992) | Standley Lake<br>(0203903), Account 1 | 32 |
| Stan.23 | 19054.99999 | Westminster Outside<br>Use (02_Westy_O) | Westminster<br>Standley PL2<br>(0200992) | Standley Lake<br>(0203903), Account 1 | 32 |

The Jim Baker Reservoir storage right is carried to storage from Clear Creek via the Kershaw Ditch using the following rule. The next two rules release storage water to Westminster's demand by exchange via the Croke Canal. The last rule is used to release storage water to Westminster's account in Standley Lake by exchange via the Croke Canal.

| Right ID    | Admin #     | Destination                              | Account, Carrier,<br>Return Location<br>(R), or % Split | Source                                       | Right<br>Type |
|-------------|-------------|------------------------------------------|---------------------------------------------------------|----------------------------------------------|---------------|
| JimBaker.01 | 50565.00000 | Jim Baker Reservoir<br>(0703336, Acct 1) | Kershaw Ditch<br>(0700597)                              | 0703336.01                                   | 45            |
| JimBaker.02 | 50565.00001 | Westminster Inside<br>Use (02_Westy_I)   | Croke Canal<br>(0700553)                                | Jim Baker Reservooir<br>(0703336), Account 1 | 33            |
| JimBaker.03 | 50565.00001 | Westminster Outside<br>Use (02_Westy_O)  | Croke Canal<br>(0700553)                                | Jim Baker Reservoir<br>(0703336), Account 1  | 33            |
| JimBaker.04 | 50565.00001 | Standley Lake<br>(0203903), Account 1    | Croke Canal<br>(0700553)                                | Jim Baker Reservoir<br>(0703336), Account 1  | 33            |

## Additional Supplies

Water released from the Coors and Golden WWTPs during the winter (the Croke season) is typically stored in West Gravel Lakes (0203699). Westminster is entitled to a portion of the stored water (Golden Bypass and Coors Bypass), as discussed in Section 5.10.8.10.79. Westminster's Bypass water is accounted for in plan IDs CosCoExcWe and CosGoExcWe. The four rules listed below are used to release the Bypass Water to the Westminster demand via the Croke Canal. The next two rules are used to release the Bypass Water to storage in Westminster's account in Standley Lake from Coors and Golden, respectively. The last two rules release any unused Bypass Water back to Clear Creek.

| Right ID  | Admin #     | Destination                            | Account, Carrier,<br>Return Location<br>(R), or % Split | Source     | Right<br>Type |
|-----------|-------------|----------------------------------------|---------------------------------------------------------|------------|---------------|
| Cosmic.12 | 19055.00004 | Westminster Inside<br>Use (02_Westy_I) | Croke Canal<br>(0700553)                                | CosCoExcWe | 27            |
| Cosmic.13 | 19055.00004 | Westminster Outside                    | Croke Canal                                             | CosCoExcWe | 27            |

|             |             | $  _{SP} (\Omega_2 )   _{PSTV}   _{\Omega}$ | (0700553)   |            |    |
|-------------|-------------|---------------------------------------------|-------------|------------|----|
|             |             | 03e (02_westy_0)                            | (0700555)   |            |    |
| Cosmic.25   | 19055.00004 | Westminster Inside                          | Croke Canal | CosGoExcWe | 27 |
|             |             | Use (02_Westy_I)                            | (0700553)   |            |    |
| Cosmic.26   | 19055.00004 | Westminster Outside                         | Croke Canal | CosGoExcWe | 27 |
|             |             | Use (02 Westy O)                            | (0700553)   |            |    |
|             |             |                                             | . ,         |            |    |
| Cosmic.20   | 19055.00004 | Standley Lake                               | Croke Canal | CosCoExcWe | 27 |
|             |             | (0203903), Account 1                        | (0700553)   |            |    |
| Cosmic.29   | 19055.00004 | Standley Lake                               | Croke Canal | CosGoExcWe | 27 |
|             |             | (0203903), Account 1                        | (0700553)   |            |    |
|             |             |                                             | . ,         |            |    |
| CosmcSpl.77 | 50404.00009 | Croke Canal (0700553)                       |             | CosCoExcWe | 29 |
|             |             |                                             |             |            |    |
| CosmcSpl.81 | 50404.00009 | Croke Canal (0700553)                       |             | CosGoExcWe | 29 |

# 5.10.8.12 City of Thornton

The City of Thornton uses a water rights portfolio that contains supplies in both the Clear Creek Basin and Water District 2 on the South Platte River. Thornton has changed water rights in the FRICO-Standley Lake system and the ditch systems that convey water to the lake (Church Ditch and Farmers' Highline Canal). The City's other water supply come primarily from its majority ownership in the calling rights at the bottom of Clear Creek (Lower Clear Creek Ditch / Colorado Agricultural Ditch system) and its approximately one half ownership of the shares in the Little Burlington Ditch.

The West Gravel Lakes and Brannan Lakes are located at the end of the Lower Clear Creek Ditch (0700547), adjacent to the west side of the South Platte River. The lakes are represented in aggregate (0203699) and are used to both supply water to the City and store and release Bypass Water as part of the Cosmic Agreement (see Section 5.10.8.10.79.). Across the river to the east, Thornton owns a set of interconnected, lined gravel pits (East Gravel Lakes, 0203700). The East Gravel Lakes are located off the Burlington Ditch and used to store the City's credits from the Burlington Ditch system (0200915). The lakes feed into the Wes Brown water treatment plant (WesBrownWTP), which supplies potable water predominantly in the summer to meet Thornton's demand. The Thornton Water Treatment plant processes water from Standley Lake and is used predominantly during the winter.

All of Thornton's wastewater returns at the Metro WWTP. Thornton's changed water rights are reusable and WWTP return flows from their use is accounted for in plan ID MetroTh. All of Thornton's water in Standley Lake is reusable and accounted for in plan ID StanReuseT. Other than water stored in priority in the East Gravel Lakes and West Gravel Lakes, the reusable supplies in those reservoirs are accounted for in plan IDs EGLks\_Pln and WGLks\_Pln. Representation of the use of changed water rights is consistent with standard approach outlined in Section 4.9. Most uses of the changed water rights also generate return flow obligations. Return flow obligations that are out of priority are met with reusable supplies at the Metro WWTP.

The operating rules used in the SPDSS model for representing Thornton's operations are summarized below.
### Changed Water Rights

As outlined in Section 5.10.8.17, the changed water rights in the Burlington Ditch are stored in four plan IDs and then distributed to the various owners of the water rights. The first rule establishes limits on the use of the Thornton's changed Burlington Ditch water based on decretal terms and conditions (Case Nos. 87CW107, 90CW229, and 05CW010). The next four rules are used to release water from Thornton's plans (10.28, 7.987, 6.0 and 200 cfs rights) to meet its indoor demand. The following four rules are used to release water from the plans to Thornton's outdoor demand. The third set of four rules is used to release water to East Gravel Lakes. The final set of four rules is used to exchange water to the West Gravel Lakes via the Lower Clear Creek Ditch. The storage of changed Burlington Ditch shares are assigned priorities junior to the respective storage rights.

| Right ID  | Admin #     | Destination                          | Account, Carrier,<br>Return Location<br>(R), or % Split                          | Source                                     | Right<br>Type |
|-----------|-------------|--------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------|---------------|
| ThBurl.99 | 1.00000     |                                      |                                                                                  | Thornton Plan Release<br>Limit - ThBurl_RL | 47            |
| ThBurl.01 | 5205.00001  | Thornton Inside Use<br>(02_Thorn_I)  | Burlington Canal<br>(0200802)<br>East Gravel Lakes<br>Divn (3700)<br>WesBrownWTP | ThBur10Pln                                 | 27            |
| ThBurl.02 | 5205.00002  | Thornton Inside Use<br>(02_Thorn_I)  | Burlington Canal<br>(0200802)<br>East Gravel Lakes<br>Divn (3700)<br>WesBrownWTP | ThWell7Pln                                 | 27            |
| ThBurl.03 | 5205.00003  | Thornton Inside Use<br>(02_Thorn_I)  | Burlington Canal<br>(0200802)<br>East Gravel Lakes<br>Divn (3700)<br>WesBrownWTP | ThSanstPln                                 | 27            |
| ThBurl.04 | 13108.00001 | Thornton Inside Use<br>(02_Thorn_I)  | Burlington Canal<br>(0200802)<br>East Gravel Lakes<br>Divn (3700)<br>WesBrownWTP | Th200_85Pln                                | 27            |
| ThBurl.05 | 5205.00001  | Thornton Outdoor Use<br>(02_Thorn_O) | Burlington Canal<br>(0200802)<br>East Gravel Lakes<br>Divn (3700)<br>WesBrownWTP | ThBur10Pln                                 | 27            |
| ThBurl.06 | 5205.00002  | Thornton Outdoor Use<br>(02_Thorn_O) | Burlington Canal<br>(0200802)<br>East Gravel Lakes<br>Divn (3700)<br>WesBrownWTP | ThWell7Pln                                 | 27            |
| ThBurl.07 | 5205.00003  | Thornton Outdoor Use<br>(02_Thorn_0) | Burlington Canal<br>(0200802)                                                    | ThSanstPln                                 | 27            |

|           |             |                                            | East Gravel Lakes<br>Divn (3700)<br>WesBrownWTP                                                        |             |    |
|-----------|-------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------|----|
| ThBurl.08 | 13108.00001 | Thornton Outdoor Use<br>(02_Thorn_O)       | Burlington Canal<br>(0200802)<br>East Gravel Lakes<br>Divn (3700)<br>WesBrownWTP                       | Th200_85Pln | 27 |
| ThBurl.09 | 51864.50688 | East Gravel Lakes<br>(0203700), Account 2  | Burlington Canal<br>(0200802)<br>East Gravel Lakes<br>Divn (3700)                                      | ThBur10Pln  | 27 |
| ThBurl.10 | 51864.50688 | East Gravel Lakes<br>(0203700), Account 2  | Burlington Canal<br>(0200802)<br>East Gravel Lakes<br>Divn (3700)                                      | ThWell7Pln  | 27 |
| ThBurl.11 | 51864.50688 | East Gravel Lakes<br>(0203700), Account 2  | Burlington Canal<br>(0200802)<br>East Gravel Lakes<br>Divn (3700)                                      | ThSanstPIn  | 27 |
| ThBurl.12 | 51864.50688 | East Gravel Lakes<br>(0203700), Account 2  | Burlington Canal<br>(0200802)<br>East Gravel Lakes<br>Divn (3700)                                      | Th200_85Pln | 27 |
| ThBurl.13 | 51864.50689 | WGravelLks&Brannan<br>(0203699), Account 4 | Burlington Canal<br>(0200802)<br>Burlington Canal<br>(0200802, R)<br>Lower Clear Ck<br>Ditch (0700547) | ThBur10Pln  | 27 |
| ThBurl.14 | 51864.50689 | WGravelLks&Brannan<br>(0203699), Account 4 | Burlington Canal<br>(0200802)<br>Burlington Canal<br>(0200802, R)<br>Lower Clear Ck<br>Ditch (0700547) | ThWell7Pln  | 27 |
| ThBurl.15 | 51864.50689 | WGravelLks&Brannan<br>(0203699), Account 4 | Burlington Canal<br>(0200802)<br>Burlington Canal<br>(0200802, R)<br>Lower Clear Ck<br>Ditch (0700547) | ThSanstPln  | 27 |
| ThBurl.16 | 51864.50689 | WGravelLks&Brannan<br>(0203699), Account 4 | Burlington Canal<br>(0200802)<br>Burlington Canal                                                      | Th200_85Pln | 27 |

|  | (0200802. R)    |  |
|--|-----------------|--|
|  | Lower Clear Ck  |  |
|  | Ditch (0700547) |  |
|  |                 |  |

Thornton has not yet exercised its exchange of its Burlington share water to West Gravel Lakes; however, the rules for this operation were included.

As outlined in Section 5.10.8.11 (City of Westminister), the changed water rights in the Church Ditch are stored in plan IDs ChrchSplPIn and ChrchSplPI1 and then distributed to the various owners of the water rights. Thornton's prorata ownership (7.8%) is stored in model ID ThChurchPIn. The first rule establishes limits on the use of the Thornton's changed Church water based on decretal terms and conditions (Case No. 89CW132). The next three rules are used to release water to meet Thornton's municipal demand (2) and to storage in Thornton's account in Standley Lake.

| Right ID  | Admin #     | Destination                          | Account, Carrier, Return<br>Location (R), or % Split | Source                                         | Right<br>Type |
|-----------|-------------|--------------------------------------|------------------------------------------------------|------------------------------------------------|---------------|
| Church.98 | 1.00000     | NA                                   | Limit 1,064.1 AF                                     | ChrchTh_RL                                     | 47            |
| Church.17 | 10546.00002 | Thornton Inside Use<br>(02_Thorn_I)  | 100%, Church Ditch<br>(0700540)                      | Thornton Church<br>Ditch Plan<br>(ThChurchPln) | 27            |
| Church.18 | 10546.00003 | Thornton Outside Use<br>(02_Thorn_O) | 100%, Church Ditch<br>(0700540)                      | Thornton Church<br>Ditch Plan<br>(ThChurchPln) | 27            |
| Church.19 | 10546.00004 | Standley Lake (0203903)              | 100%, Church Ditch<br>(0700540)<br>Acct 4            | Thornton Church<br>Ditch Plan<br>(ThChurchPln) | 27            |

As outlined in Section 5.10.8.7 (Molson Coors), the changed water rights in the Farmers' High Line Canal are stored in plan ID FHL\_SplPIn and then distributed to the various owners of the water rights. Thornton's prorata ownership (16.6%) is stored in model ID ThFHLPIn. The first rule establishes limits on the use of the Thornton's changed Farmers' High Line Canal water based on decretal terms and conditions (Case Nos. 87CW334 and 02CW266). The next three rules are used to release water to meet Thornton's municipal demand (2) and to storage in Thornton's account in Standley Lake. The last rule is used to release unused credits back to the irrigators.

| Right ID | Admin #    | Destination                          | Account, Carrier,<br>Return Location<br>(R), or % Split | Source                                | Right<br>Type |
|----------|------------|--------------------------------------|---------------------------------------------------------|---------------------------------------|---------------|
| FHL.98   | 1.00000    | NA                                   | Limit 8,152.1 AF                                        | FHL_Thn_RL                            | 47            |
| FHL.20   | 8127.00002 | Thornton Inside Use<br>(02_Thorn_I)  | 100%, FHL Canal<br>(0700569)                            | Thornton FHL Canal<br>Plan (ThFHLPIn) | 27            |
| FHL.21   | 8127.00003 | Thornton Outside Use<br>(02_Thorn_O) | 100%, FHL Canal<br>(0700569)                            | Thornton FHL Canal                    | 27            |

|        |             |                               |                                     | Plan (ThFHLPIn)                 |    |
|--------|-------------|-------------------------------|-------------------------------------|---------------------------------|----|
| FHL.23 | 16549.00002 | FHL Irrigators<br>(0700569_1) | Farmers Highline<br>Canal (0700569) | Thornton FHL Plan<br>(ThFHLPln) | 27 |

The 1861 water right for the Fisher Ditch is first stored in a changed water rights plan structure (FishSplPln) and limited based on decretal terms and conditions. The final two rules are used to split the Plan yield, prorata, to the sub-plans of the various owners of the ditch shares (irrigators, Thornton, and Public Service Company). Thornton's prorata ownership (14.4%) is stored in plan ID ThFishPln. The last rule splits the yield to the three users and is active starting in 1991 when the first significant change case was adjudicated (Thornton's Case No. 89CW132). All of the yield is assigned to the irrigators prior to 1991 using the second-to-last rule. Note Western Mobile and the City of Arvada changed 4.0% and 0.74% of the ditch shares, respectively. These changes are not represented in the USR Model since Western Mobile is not explicitly represented and the Arvada pro-rata ownership is pretty minor.

| Right ID | Admin #    | Destination                                                               | Account, Carrier,<br>Return Location<br>(R), or % Split | Source                            | Right<br>Type |
|----------|------------|---------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------|---------------|
| Fish.98  | 1.00000    | NA                                                                        | Limit 994.5 AF                                          | FishTh_RL                         | 47            |
| Fish.01  | 4198.00000 | Fisher Split plan<br>(FishSplPln)                                         | 100%, 45,000 AF<br>Limit                                | 0700570.01                        | 26            |
| Fish.02a | 4198.00001 | Fisher Irrigation Plan<br>(FishIrrPln)                                    | 100%                                                    | Fisher Split plan<br>(FishSplPln) | 46            |
| Fish.02b | 4198.00001 | Thornton Fisherr plan<br>(ThFishPln)<br>PSCo Fisher Plan<br>(PSCoEisbPln) | 14.4%<br>49%                                            | Fisher Split plan<br>(FishSplPln) | 46            |
|          |            | Fisher Irrigation Plan<br>(FishIrrPln)                                    | 36.6%                                                   |                                   |               |

Thornton's operations with its Fisher Ditch shares are represented with two sets of rules since only April – July deliveries trigger winter return flow obligations. The first four rules are used to release water to meet South Platte River return flow obligations associated with changed uses of its various Clear Creek changed water rights. The next four rules exchange the Fisher Ditch water to Thornton's account in Standley Lake via the Farmers' High Line Canal (2) and Croke Canal. The last two rules release the plan water to storage in West Gravel Lakes via the Lower Clear Creek Ditch.

| Right ID | Admin # | Destination | Account, Carrier,<br>Return Location<br>(R), or % Split | Source | Right<br>Type |
|----------|---------|-------------|---------------------------------------------------------|--------|---------------|
|          |         |             | •••                                                     |        |               |

| Fish.03a | 55835.00001 | Thornton SPR RFs abv<br>Brantner<br>(ThornSPRFs2) | 100%, Fisher<br>Ditch (0700570)<br>Thornton Lower<br>Clear Ck RFs<br>(ThLCC_RFs, R)                                        | Thornton Fisher Ditch<br>Plan (ThFishPln) | 27 |
|----------|-------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----|
| Fish.03b | 55835.00001 | Thornton SPR RFs abv<br>Brantner<br>(ThornSPRFs2) | 100%, Fisher<br>Ditch (0700570)<br>Thornton Lower<br>Clear Ck RFs<br>(ThLCC_RFs, R)                                        | Thornton Fisher Ditch<br>Plan (ThFishPln) | 27 |
| Fish.04a | 55835.00002 | Standley Lake<br>(0203903)                        | 100%, Fisher<br>Ditch (0700570)<br>Thornton Lower<br>Clear Ck RFs<br>(ThLCC_RFs, R)<br>Church Ditch<br>(0700540)<br>Acct 4 | Thornton Fisher Ditch<br>Plan (ThFishPln) | 27 |
| Fish.04b | 55835.00003 | Standley Lake<br>(0203903)                        | 100%, Fisher<br>Ditch (0700570)<br>Thornton Lower<br>Clear Ck RFs<br>(ThLCC_RFs, R)<br>Church Ditch<br>(0700540)<br>Acct 4 | Thornton Fisher Ditch<br>Plan (ThFishPln) | 27 |
| Fish.05a | 55835.00004 | Standley Lake<br>(0203903)                        | 100%, Fisher<br>Ditch (0700570)<br>Thornton Lower<br>Clear Ck RFs<br>(ThLCC_RFs, R)<br>FHL Canal<br>(0700569)<br>Acct 4    | Thornton Fisher Ditch<br>Plan (ThFishPln) | 27 |
| Fish.05b | 55835.00005 | Standley Lake<br>(0203903)                        | 100%, Fisher<br>Ditch (0700570)<br>Thornton Lower<br>Clear Ck RFs<br>(ThLCC_RFs, R)<br>FHL Canal<br>(0700569)<br>Acct 4    | Thornton Fisher Ditch<br>Plan (ThFishPln) | 27 |
| Fish.06a | 55835.00006 | Standley Lake<br>(0203903)                        | 100%,<br>Thornton Lower<br>Clear Ck RFs<br>(ThLCC_RFs, R)<br>Croke Canal<br>(0700553)<br>Acct 4                            | Thornton Fisher Ditch<br>Plan (ThFishPln) | 27 |
| Fish.06b | 55835.00007 | Standley Lake<br>(0203903)                        | 100%,<br>Thornton Lower<br>Clear Ck RFs                                                                                    | Thornton Fisher Ditch<br>Plan (ThFishPln) | 27 |

|          |             |                                           | (ThLCC_RFs, R)<br>Croke Canal<br>(0700553)<br>Acct 4                                                            |                                           |    |
|----------|-------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------|----|
| Fish.07a | 55835.00008 | WGravelLks&Brannan<br>Reservoir (0203699) | 100%,<br>Fisher Ditch<br>(0700570)<br>CoAg Ditch<br>(0700549, R)<br>Lower Clear Ck<br>Ditch (0700547)<br>Acct 4 | Thornton Fisher Ditch<br>Plan (ThFishPln) | 27 |
| Fish.07b | 55835.00009 | WGravelLks&Brannan<br>Reservoir (0203699) | 100%,<br>Fisher Ditch<br>(0700570)<br>CoAg Ditch<br>(0700549, R)<br>Lower Clear Ck<br>Ditch (0700547)<br>Acct 4 | Thornton Fisher Ditch<br>Plan (ThFishPln) | 27 |

The water rights for the Colorado Agricultural (Colorado Ag) Ditch are first stored in a changed water rights plan structure (CoAgSplPIn). The City of Thornton has adjudicated two change cases for its shares of the Colorado Ag Ditch – Case Nos. 89CW132 and 02CW266. The 1989 case de-mutualized the ditch shares, which makes the unused credits not available to irrigators under the ditch. The 2002 shares were not de-mutualized and therefore do not have the same limit. Therefore, Thornton's prorata ownership of the shares is represented separately in plan IDs ThCoAg89Pln (32.5%) and ThCoAg02Pln (23.4%).

| Right ID | Admin #    | Destination                     | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|----------|------------|---------------------------------|------------------------------------------------------|------------|---------------|
| CoAg.01  | 5057.00000 | CoAg Split Plan<br>(CoAgSplPln) | 100%, 35,000 AF Limit                                | 0700549.01 | 26            |
| CoAg.02  | 6273.00000 | CoAg Split Plan<br>(CoAgSplPln) | 100%, 35,000 AF Limit                                | 0700549.02 | 26            |

Although use of the 1874 priority water right in the Colorado Ag Ditch was included in Thornton's change cases, the yield of the senior 1863 and 1874 rights surpass the volumetrics placed on Thornton's changed shares in the SPDSS model. Therefore, the following rule provides the yield of the 1874 right to the Colorado Ag irrigators, accounted for in its plan ID CoAgIrrPln. The last rule splits the yield to the irrigators and the two Thornton plans.

| Right ID | Admin #    | Destination          | Account, Carrier,<br>Return Location<br>(R), or % Split | Source     | Right<br>Type |
|----------|------------|----------------------|---------------------------------------------------------|------------|---------------|
| CoAg.03  | 8861.00000 | CoAg Irrigation Plan | 100%, 13,720 AF                                         | 0700549.03 | 26            |

|            |            | (CoAgIrrPln)                                                                                                                            | Limit                   |                                 |    |
|------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------|----|
| CoAg.04a-b | 8861.00001 | Thornton CoAg<br>89cw132Plan<br>(ThCoAg89Pln)<br>Thornton CoAg<br>02cw266 Plan<br>(ThCoAg02Pln)<br>CoAg Irrigation Plan<br>(CoAgIrrPln) | 32.5%<br>23.4%<br>44.1% | CoAg Split Plan<br>(CoAgSplPln) | 46 |

The first two rules below are used to establish volumetrics on the plan IDs based on the terms and conditions within the 89CW132 and 02CW266 decrees. The next four rules below are used to release water from both plan IDs to meet Thornton's inside use (2) and outside use (2) demands. The last set of rules (2) are used to store the water in Thornton's reuse account in West Gravel Lakes.

| Right ID | Admin #    | Destination                          | Account, Carrier,<br>Return Location<br>(R), or % Split                                                                         | Source                                         | Right<br>Type |
|----------|------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------|
| CoAg.98  | 1.00000    | NA                                   | Limit 2,123.5 AF                                                                                                                | ThCoAg89_RL                                    | 47            |
| CoAg.99  | 1.00000    | NA                                   | Limit 1,541.3 AF                                                                                                                | ThCoAg89_RL                                    | 47            |
| CoAg.05a | 8861.00002 | Thornton Inside Use<br>(02_Thorn_I)  | 100%,<br>CoAg Ditch<br>(0700549)<br>Lower Clear Ck<br>Ditch (0700547)<br>Wes Brown<br>Water Treatment<br>Plant<br>(WesBrownWTP) | Thornton CoAg<br>89CW132 Plan<br>(ThCoAg89Pln) | 27            |
| CoAg.05b | 8861.00002 | Thornton Inside Use<br>(02_Thorn_I)  | 100%,<br>CoAg Ditch<br>(0700549)<br>Lower Clear Ck<br>Ditch (0700547)<br>Wes Brown<br>Water Treatment<br>Plant<br>(WesBrownWTP) | Thornton CoAg<br>02CW266 Plan<br>(ThCoAg02Pln) | 27            |
| CoAg.06a | 8861.00003 | Thornton Outside Use<br>(02_Thorn_O) | 100%,<br>CoAg Ditch<br>(0700549)<br>Lower Clear Ck<br>Ditch (0700547)<br>Wes Brown<br>Water Treatment<br>Plant<br>(WesBrownWTP) | Thornton CoAg<br>89CW132 Plan<br>(ThCoAg89Pln) | 27            |

| CoAg.06b | 8861.00003 | Thornton Outside Use<br>(02_Thorn_O)      | 100%,<br>CoAg Ditch<br>(0700549)<br>Lower Clear Ck<br>Ditch (0700547)<br>Wes Brown<br>Water Treatment<br>Plant<br>(WesBrownWTP) | Thornton CoAg<br>02CW266 Plan<br>(ThCoAg02Pln) | 27 |
|----------|------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----|
| CoAg.07a | 8861.00004 | WGravelLks&Brannan<br>Reservoir (0203699) | 100%,<br>CoAg Ditch<br>(0700549)<br>Lower Clear Ck<br>Ditch (0700547)<br>Acct 4                                                 | Thornton CoAg<br>89CW132 Plan<br>(ThCoAg89Pln) | 27 |
| CoAg.07b | 8861.00004 | WGravelLks&Brannan<br>Reservoir (0203699) | 100%,<br>CoAg Ditch<br>(0700549)<br>Lower Clear Ck<br>Ditch (0700547)<br>Acct 4                                                 | Thornton CoAg<br>02CW266 Plan<br>(ThCoAg02Pln) | 27 |

The first rule below is used to release water from the irrigator's plan ID CoAgIrrPln to meet their demands. The subsequent rule releases any unused ditch credits from the ThCoAg02Pln back to the ditch irrigators. The last four rules are used to release the contents of all associated plan structures back to the river.

| Right ID     | Admin #    | Destination                    | Account, Carrier,<br>Return Location<br>(R), or % Split | Source                                         | Right<br>Type |
|--------------|------------|--------------------------------|---------------------------------------------------------|------------------------------------------------|---------------|
| CoAg.11      | 8861.00002 | CoAg Irrigators<br>(0700549_I) | CoAg Ditch<br>(0700549)                                 | CoAg Irrigation Plan<br>(CoAgIrrPln)           | 27            |
| CoAg.12      | 8861.00008 | CoAg Irrigators<br>(0700549_1) | CoAg Ditch<br>(0700549)                                 | Thornton CoAg<br>02cw266 Plan<br>(ThCoAg02Pln) | 27            |
| CoAgSpill.71 | 8861.00009 | Colorado Ag Ditch<br>(0700549) |                                                         | CoAgSplPIn                                     | 29            |
| CoAgSpill.72 | 8861.00009 | Colorado Ag Ditch<br>(0700549) |                                                         | CoAgIrrPIn                                     | 29            |
| CoAgSpill.73 | 8861.00009 | Colorado Ag Ditch<br>(0700549) |                                                         | ThCoAg89PIn                                    | 29            |
| CoAgSpill.74 | 8861.00009 | Colorado Ag Ditch<br>(0700549) |                                                         | ThCoAg02PIn                                    | 29            |

The 1861 water right for the Lower Clear Creek Ditch is first stored in a changed water rights plan structure (LCC\_SplPln). Similar to its Colorado Ag Ditch shares, the Lower Clear Creek shares changed in Case No. 89CW132 is not available to the ditch irrigators whereas the 02CW266 yield is available

to the irrigators. Thornton's prorata ownership is stored in plan IDs ThLCC89Pln (47.1%) and ThLCC02Pln (17.2%). The final three rules are used to split the Plan yield, prorata, to the sub-plans of the various owners of the ditch shares (irrigators and Thornton). The last rule is active starting in 2007, after both of the change cases were completed. The second-to-last rule is active between 1991 and 2006, corresponding with Thornton's first change case. All of the yield is assigned to the irrigators prior to 1991 using the third to-last rule.

| Right ID | Admin #    | Destination                                                                                                                    | Account, Carrier, Return<br>Location (R), or % Split | Source                         | Right<br>Type |
|----------|------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------|---------------|
| LCC.01   | 4323.00000 | LCC Split Plan (LCC_SplPIn)                                                                                                    | 100%, 35,000 AF Limit                                | 0700547.01                     | 26            |
| LCC.02a  | 4323.00001 | LCC Irrigation Plan<br>(LCC_IrrPln)                                                                                            | 100%                                                 | LCC Split Plan<br>(LCC_SplPln) | 46            |
| LCC.02b  | 4323.00001 | Thornton LCC 89CW132<br>Plan (ThLCC89Pln)<br>LCC Irrigation Plan<br>(LCC_IrrPln)                                               | 47.1%<br>52.9%                                       | LCC Split Plan<br>(LCC_SplPln) | 46            |
| LCC.02c  | 4323.00001 | Thornton LCC 89CW132<br>Plan (ThLCC89Pln)<br>Thornton LCC 02CW266<br>Plan (ThLCC02Pln)<br>LCC Irrigation Plan<br>(LCC IrriPln) | 47.1%<br>17.2%<br>35.7%                              | LCC Split Plan<br>(LCC_SplPln) | 46            |

The first two rules below are used to establish volumetrics on the plan IDs based on the terms and conditions within the 89CW132 and 02CW266 decrees. The next four rules below are used to release water from both plan IDs to meet Thornton's inside use (2) and outside use (2) demands. The next set of rules is used to store the water in Thornton's reuse account in West Gravel Lakes. The last six rules are used to store the plan yields in Thornton's account in Standley Lake, by exchange, via the Church Ditch (2), Farmers' High Line Canal (2), and Croke Canal (2).

| Right ID | Admin #    | Destination                         | Account, Carrier, Return<br>Location (R), or % Split                                              | Source                                       | Right<br>Type |
|----------|------------|-------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------|---------------|
| LCC.98   | 1.00000    | NA                                  | Limit 3,715.3 AF                                                                                  | ThLCC_89_RL                                  | 47            |
| LCC.99   | 1.00000    | NA                                  | Limit 1,358.9 AF                                                                                  | ThLCC_02_RL                                  | 47            |
| LCC.03a  | 4323.00002 | Thornton Inside Use<br>(02_Thorn_I) | 100%,<br>Lower Clear Ck Ditch<br>(0700547)<br>Wes Brown Water<br>Treatment Plant<br>(WesBrownWTP) | Thornton LCC<br>89CW132 Plan<br>(ThLCC89Pln) | 27            |
| LCC.03b  | 4323.00002 | Thornton Inside Use<br>(02_Thorn_I) | 100%,<br>Lower Clear Ck Ditch<br>(0700547)<br>Wes Brown Water<br>Treatment Plant<br>(WesBrownWTP) | Thornton LCC<br>02CW266 Plan<br>(ThLCC02Pln) | 27            |

| LCC.04a | 4323.00003  | Thornton Outside Use<br>(02_Thorn_O)      | 100%,<br>Lower Clear Ck Ditch<br>(0700547)<br>Wes Brown Water<br>Treatment Plant<br>(WesBrownWTP)                          | Thornton LCC<br>89CW132 Plan<br>(ThLCC89Pln) | 27 |
|---------|-------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----|
| LCC.04b | 4323.00003  | Thornton Outside Use<br>(02_Thorn_O)      | 100%,<br>Lower Clear Ck Ditch<br>(0700547)<br>Wes Brown Water<br>Treatment Plant<br>(WesBrownWTP)                          | Thornton LCC<br>02CW266 Plan<br>(ThLCC02Pln) | 27 |
| LCC.05a | 4323.00004  | WGravelLks&Brannan<br>Reservoir (0203699) | 100%,<br>Lower Clear Ck Ditch<br>(0700547)<br>CoAg Ditch (0700549)<br>Acct 4                                               | Thornton LCC<br>89CW132 Plan<br>(ThLCC89Pln) | 27 |
| LCC.05b | 4323.00004  | WGravelLks&Brannan<br>Reservoir (0203699) | 100%,<br>Lower Clear Ck Ditch<br>(0700547)<br>CoAg Ditch (0700549)<br>Acct 4                                               | Thornton LCC<br>02CW266 Plan<br>(ThLCC02Pln) | 27 |
| LCC.06a | 50350.00001 | Standley Lake<br>(0203903)                | 100%,<br>Lower Clear Ck Ditch<br>(0700547)<br>LCCStoRelLimitToDitExch<br>(LCCLimitPln)<br>Church Ditch (0700540)<br>Acct 4 | Thornton LCC<br>89CW132 Plan<br>(ThLCC89Pln) | 27 |
| LCC.06b | 50350.00001 | Standley Lake<br>(0203903)                | 100%,<br>Lower Clear Ck Ditch<br>(0700547)<br>LCCStoRelLimitToDitExch<br>(LCCLimitPln)<br>Church Ditch (0700540)<br>Acct 4 | Thornton LCC<br>02CW266 Plan<br>(ThLCC02Pln) | 27 |
| LCC.07a | 50350.00002 | Standley Lake<br>(0203903)                | 100%,<br>Lower Clear Ck Ditch<br>(0700547)<br>LCCStoRelLimitToDitExch<br>(LCCLimitPln)<br>FHL Canal (0700569)<br>Acct 4    | Thornton LCC<br>89CW132 Plan<br>(ThLCC89Pln) | 27 |
| LCC.07b | 50350.00002 | Standley Lake<br>(0203903)                | 100%,<br>Lower Clear Ck Ditch<br>(0700547)<br>LCCStoRelLimitToDitExch<br>(LCCLimitPln)<br>FHL Canal (0700569)<br>Acct 4    | Thornton LCC<br>02CW266 Plan<br>(ThLCC02Pln) | 27 |
| LCC.08a | 50350.0000  | Standley Lake<br>(0203903)                | 100%,<br>Lower Clear Ck Ditch                                                                                              | Thornton LCC<br>89CW132 Plan                 | 27 |

|         |             |                            | (0700547)<br>LCCStoRelLimitToDitExch<br>(LCCLimitPln)<br>Croke Canal (0700553)<br>Acct 4                                  | (ThLCC89PIn)                                 |    |
|---------|-------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----|
| LCC.08b | 50350.00003 | Standley Lake<br>(0203903) | 100%,<br>Lower Clear Ck Ditch<br>(0700547)<br>LCCStoRelLimitToDitExch<br>(LCCLimitPln)<br>Croke Canal (0700553)<br>Acct 4 | Thornton LCC<br>02CW266 Plan<br>(ThLCC02Pln) | 27 |

The first rule below is used to release water from the irrigator's plan ID LCC\_IrrPln to meet their demands. The subsequent rule releases any unused ditch credits from the ThLCC02Pln back to the ditch irrigators. The last four rules are used to release the contents of all associated plan structures back to the river.

| Right ID    | Admin #     | Destination                       | Account, Carrier, Return<br>Location (R), or % Split | Source                                       | Right<br>Type |
|-------------|-------------|-----------------------------------|------------------------------------------------------|----------------------------------------------|---------------|
| LCC.09      | 4323.00002  | LCC Irrigators (0700547_I)        | LCC Ditch (0700547)                                  | LCC Irrigation<br>Plan (LCC_IrrPln)          | 27            |
| LCC.10      | 50350.00004 | LCC Irrigators (0700547_I)        | LCC Ditch (0700547)                                  | Thornton LCC<br>02CW266 Plan<br>(ThLCC02Pln) | 27            |
| LCCSpill.71 | 4323.00009  | Lower Clear Ck Ditch<br>(0700547) |                                                      | LCC_SplPIn                                   | 29            |
| LCCSpill.72 | 4323.00009  | Lower Clear Ck Ditch<br>(0700547) |                                                      | LCC_IrrPln                                   | 29            |
| LCCSpill.73 | 50350.00009 | Lower Clear Ck Ditch<br>(0700547) |                                                      | ThLCC89PIn                                   | 29            |
| LCCSpill.74 | 50350.00009 | Lower Clear Ck Ditch<br>(0700547) |                                                      | ThLCC02PIn                                   | 29            |

The following 10 rules are used to meet the return flow obligations associated with the various changes of use, either in priority via the Type 43 rules (6) or with reusable effluent (4). The final rule is used to release unused reusable effluent back to the river.

| Right ID   | Admin #     | Destination | Account, Carrier, Return<br>Location (R), or % Split | Source | Right<br>Type |
|------------|-------------|-------------|------------------------------------------------------|--------|---------------|
| ThornRF.01 | 55835.00000 | ThChurchRFs |                                                      |        | 43            |
| ThornRF.02 | 55835.00000 | ThFHL_RFs   |                                                      |        | 43            |
| ThornRF.03 | 55835.00000 | ThCoAg89RFs |                                                      |        | 43            |
| ThornRF.04 | 55835.00000 | ThCoAg02RFs |                                                      |        | 43            |

| ThornRF.05  | 55835.00000 | ThBurRFsYR                 |         | 43 |
|-------------|-------------|----------------------------|---------|----|
| ThornRF.06  | 55835.00000 | ThBurRFsSum                |         | 43 |
| ThMetro.01  | 60000.00001 | ThBurRFsSum                | MetroTh | 48 |
| ThMetro.02  | 60000.00002 | ThBurRFsYR                 | MetroTh | 48 |
| ThMetro.03  | 60000.00003 | ThornSPRFs1                | MetroTh | 48 |
| ThMetro.04  | 60000.00004 | ThornSPRFs2                | MetroTh | 48 |
| MetSpill.74 | 90000.00000 | Metro WWTP<br>(Metro_WWTP) | MetroTh | 29 |

### Storage Use

Thornton uses storage water from Standley Lake primarily in the winter with the interconnected West Gravel Lakes and East Gravel Lakes providing the majority of its summertime supply. The storage units are connected to two water treatment plants and are intertwined with the City's various direct flow rights. The City's supplies for Standley Lake are outlined in both Section 5.10.8.10 and Section 5.10.8.14 and the use of changed water rights, discussed above. The East Gravel Lakes (0203700) is composed of various lined mining cells (East Gravel Lakes #4, South Tani, North Dahlia, South Dahlia, and East Sprat Platte). East Gravel Lakes is represented at 17,500 acre-feet capacity with two accounts – one-time use and reuse. West Gravel Lakes (0203699) is aggregated with Brannan Lakes and is represented with a capacity of 3,400 acre-feet with four accounts – one-time use, reuse, and two Cosmic Bypass accounts (see Section 5.10.8.10.79). The following three rules divert the East Gravel Lakes water rights to storage through the Burlington Ditch. The next two rules divert the West Gravel Lakes water rights to storage through the Lower Clear Creek Ditch.

| Right ID | Admin #     | Destination                            | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|----------|-------------|----------------------------------------|------------------------------------------------------|------------|---------------|
| EGL.01   | 47116.46368 | East Gravel Lakes<br>(0203700, Acct 1) | Burlington Canal<br>(0200802)                        | 0203700.01 | 45            |
| EGL.02   | 51864.50687 | East Gravel Lakes<br>(0203700, Acct 1) | Burlington Canal<br>(0200802)                        | 0203700.02 | 45            |
| EGL.03   | 51864.50687 | East Gravel Lakes<br>(0203700, Acct 1) | Burlington Canal<br>(0200802)                        | 0203700.03 | 45            |
| WGL.01   | 48198.00000 | (0203699, Acct 3)                      | Lower Clear Ck Ditch<br>(0700547)                    | 0203699.01 | 11            |
| WGL.02   | 50477.00000 | (0203699, Acct 3)                      | Lower Clear Ck Ditch<br>(0700547)                    | 0203699.02 | 11            |

The following four rules release water from the East Gravel Lakes to meet Thornton's demand from the one-time use account (2) and the reuse account (2). The next four rules release water from the

West Gravel Lakes to meet Thornton's demand from the one-time use account (2) and the reuse account (2). The priorities assigned to these rules are junior to the storage rights and the direct flow rights used to meet the municipal demands.

| Right ID | Admin #     | Destination                          | Account, Carrier, Return<br>Location (R), or % Split | Source                                         | Right<br>Type |
|----------|-------------|--------------------------------------|------------------------------------------------------|------------------------------------------------|---------------|
| EGL.04   | 51864.50688 | Thornton Inside Use<br>(02_Thorn_I)  | Acct 1                                               | East Gravel Lakes<br>(0203700)                 | 3             |
| EGL.05   | 51864.50689 | Thornton Outside Use<br>(02_Thorn_O) | Acct 1                                               | East Gravel Lakes<br>(0203700)                 | 3             |
| EGL.06   | 51864.50688 | Thornton Inside Use<br>(02_Thorn_I)  | Acct 2                                               | East Gravel Lakes<br>(0203700)                 | 3             |
| EGL.07   | 51864.50689 | Thornton Outside Use<br>(02_Thorn_O) | Acct 2                                               | East Gravel Lakes<br>(0203700)                 | 3             |
| WGL.06   | 19055.00003 | Thornton Inside Use<br>(02_Thorn_I)  | WesBrownWTP                                          | WGravelLks&Bra<br>nnan (0203699),<br>Account 4 | 3             |
| WGL.07   | 19055.00003 | Thornton Outside Use<br>(02_Thorn_O) | WesBrownWTP                                          | WGravelLks&Bra<br>nnan (0203699),<br>Account 4 | 3             |
| WGL.08   | 19055.00003 | Thornton Inside Use<br>(02_Thorn_I)  | WesBrownWTP                                          | WGravelLks&Bra<br>nnan (0203699),<br>Account 3 | 3             |
| WGL.09   | 19055.00003 | Thornton Outside Use<br>(02_Thorn_O) | WesBrownWTP                                          | WGravelLks&Bra<br>nnan (0203699),<br>Account 3 | 3             |

Thornton's ownership in the FRICO system is represented with a single account in Standley Lake (Acct 4). The following first rule is used to store the Croke 1902 storage right into Thornton's account. The subsequent rules are used to release Standley Lake water to Thornton's inside use demand during the winter and summer, respectively. As a backup to ensure the water is available if the East Gravel Lakes and West Gravel Lakes supplies are insufficient, the Stan.25 is used to release the Standley Lake water to the outside use.

| Right ID | Admin #     | Destination                                  | Account, Carrier, Return<br>Location (R), or % Split | Source                                   | Right<br>Type |
|----------|-------------|----------------------------------------------|------------------------------------------------------|------------------------------------------|---------------|
| Stan.31  | 19055.00001 | StanPlnW<br>StanPlnT<br>StanPlnN<br>StanPlnF | 40.26%<br>14.71%<br>28.45%<br>16.58%                 | StanLimPln                               | 46            |
| Stan.24a | 19054.99999 | Thornton Inside Use<br>(02_Thorn_I)          | Thornton Standley PL<br>(0200994)                    | Standley Lake<br>(0203903),<br>Account 4 | 32            |

| Stan.24b | 60000.00000 | Thornton Inside Use<br>(02_Thorn_I)   | Thornton Standley PL<br>(0200994) | Standley Lake<br>(0203903),<br>Account 4 | 32 |
|----------|-------------|---------------------------------------|-----------------------------------|------------------------------------------|----|
| Stan.25  | 60000.00000 | Thornton Outside Use<br>(02_Thorn_O)  | Thornton Standley PL<br>(0200994) | Standley Lake<br>(0203903),<br>Account 4 | 32 |
| Stan.99  | 1.00000     |                                       |                                   | Release Limit<br>(Standley_RL)           | 47 |
| Stan.33  | 19055.00001 | Standley Lake (0203903),<br>Account 2 | Croke Canal (0700553)             | StanPlnN                                 | 27 |

Other rules involving Thornton's account in Standley Lake include the storage of water by others pursuant to the 4 Way Agreement and the interplay of Cosmic Bypass water and West Gravel Lakes, as discussed in 5.10.8.10.78.

## Additional Supplies

Water released from the Coors and Golden WWTPs during the winter (the Croke season) is typically stored in West Gravel Lakes (0203699). Thornton is entitled to a portion of the stored water (Golden Bypass and Coors Bypass), as discussed in Section 5.10.8.10.79.

### 5.10.8.13 City of Northglenn

The City of Northglenn is one of a number of municipalities that primarily use water from Clear Creek for its water supply. Northglenn currently receives about 70 percent of its water from FRICO-Standley supplies, part of which comes from an exchange of Northglenn WWTP effluent (stored in Bull Reservoir - 0203351) for water in Standley Lake owned by FRICO irrigators. The remainder of the supply comes from the Berthoud Pass Ditch and Church Ditch. The water district 2 supplies (Lupton Bottom Ditch, New Brantner Ditch, and Fulton Ditch) are used exclusively for replacement of return flow obligations. Replacements of Northglenn's winter return flow obligations are provided by Westminster reusable effluent.

Laramie Fox Hills water under the City limits was used to meet demands prior to the City expanding its supplies to include Standley Lake and various other ditch rights. The non-tributary well supplies are not represented in the model, which results in significant shortages simulated meet to Northglenn's demand prior to 1979.

All of Northglenn's wastewater returns at the Northglenn WWTP (Nglenn\_WWTP) on Big Dry Creek. Northglenn's changed water rights are reusable and WWTP return flows from their use is accounted for in plan ID NglennReuse. Since the early-1980, Northglenn and FRICO have operated an exchange whereby Northglenn's effluent is stored in Bull Reservoir (0203551) for subsequent release to the FRICO irrigators in exchange for FRICO irrigators' water in Standley. There are a number of complexities related to this exchange regarding other return flow and replacement obligations. Attempts to develop a robust approach to simulating the exchange with the available StateMod operating rules was not successful. Therefore, the Northglenn-FRICO exchange is not represented in the SPDSS model.

All of Northglenn's water in Standley Lake is reusable and accounted for in plan ID StanReuseN. Representation of the use of changed water rights is consistent with standard approach outlined in Section 4.9. Most uses of the changed water rights generate return flow obligations, as discussed in Section 1.1.2. Return flow obligations that are out of priority are met with reusable supplies at the Northglenn WWTP or through a lease with the City of Westminster.

The operating rules used in the SPDSS model for representing Northglenn's operations are summarized below.

### Transmountain Supplies

Northglenn shares the yield of the Berthoud Pass diversion (0704625) with the City of Golden. Golden gets the first 2 cfs between May through July and the first 4 cfs starting in August through the end of season. Northglenn gets the remainder of the water from the diversion.

Until the SPDSS model and western slope models are integrated, the transmountain supplies are set equal to historical deliveries. These supplies are operated in the model as the primary supply, which results in the use of all the imports to meet the Northglenn demand or stored in Standley Lake. The following three rules are used to supply Berthoud Pass imports directly to the Northglenn demands (2) and storage (1).

| Right ID    | Admin # | Destination        | Account, Carrier, Return | Source          | Right |
|-------------|---------|--------------------|--------------------------|-----------------|-------|
|             |         |                    | Location (R), or % Split |                 | Туре  |
| Berthoud.05 | 1.00001 | Northglenn Inside  | NglennBerthoudDivn       | Berthoud Tunnel | 27    |
|             |         | Demand             | (BerthNglenn)            | Carrier         |       |
|             |         | (02_Nglenn_I)      | West Fk Clear Ck ISF     | (Berthoud_C)    |       |
|             |         |                    | (0702118_Dwn, R)         |                 |       |
|             |         |                    | CHURCH DITCH             |                 |       |
|             |         |                    | (0700540)                |                 |       |
| Berthoud.06 | 1.00002 | Northglenn Outside | NglennBerthoudDivn       | Berthoud Tunnel | 27    |
|             |         | Demand             | (BerthNglenn)            | Carrier         |       |
|             |         | (02_Nglenn_0)      | West Fk Clear Ck ISF     | (Berthoud_C)    |       |
|             |         |                    | (0702118_Dwn, R)         |                 |       |
|             |         |                    | CHURCH DITCH             |                 |       |
|             |         |                    | (0700540)                |                 |       |
| Berthoud.07 | 1.00003 | Standley Lake      | NglennBerthoudDivn       | Berthoud Tunnel | 27    |
|             |         | (0203903), Account | (BerthNglenn)            | Carrier         |       |
|             |         | 2                  | West Fk Clear Ck ISF     | (Berthoud_C)    |       |
|             |         |                    | (0702118_Dwn, R)         |                 |       |
|             |         |                    | CHURCH DITCH             |                 |       |
|             |         |                    | (0700540)                |                 |       |

Changed Water Rights

The first four rules listed below are used to store the Church Ditch (0700540) rights in the ChrchSplPln. The fifth rule is used to split the Plan yield, prorata, to the sub-plans of the various owners of the ditch shares (irrigators, Arvada, Golden, Northglenn, Thornton, and Westminster).

| Right ID  | Admin #     | Destination          | Account, Carrier, Return | Source        | Right |
|-----------|-------------|----------------------|--------------------------|---------------|-------|
|           |             |                      | Location (R), or % Split |               | Туре  |
| Church.03 | 5538.00000  | Church Ditch Split   | 100%, 35,000AF limit     | 0700540.02    | 26    |
|           |             | Plan 2 (ChrchSplPln) |                          |               |       |
| Church.04 | 5615.00000  | Church Ditch Split   | 100%, 35,000AF limit     | 0700540.03    | 26    |
|           |             | Plan 2 (ChrchSplPln) |                          |               |       |
|           |             |                      |                          |               |       |
| Church.05 | 10184.00000 | Church Ditch Split   | 100%, 35,000AF limit     | 0700540.04    | 26    |
|           |             | Plan 2 (ChrchSplPln) | , ,                      |               |       |
|           |             |                      |                          |               |       |
| Church.06 | 10546.00000 | Church Ditch Split   | 100%. 35.000AF limit     | 0700540.05    | 26    |
|           |             | Plan 2 (ChrchSplPln) |                          |               |       |
|           |             |                      |                          |               |       |
| Church.07 | 10546.00001 | Arvada Church Plan   | 17.9%                    | Church Ditch  | 46    |
|           |             | (ArvChPln)           |                          | Split Plan 2  |       |
|           |             | Golden Church Plan   | 1 3%                     | (ChrchSplPln) |       |
|           |             | (GoldChPln)          | 1.570                    | (emenopii m)  |       |
|           |             | Northglenn Church    | 8.1%                     |               |       |
|           |             | Plan (NglennChPln)   | 0.170                    |               |       |
|           |             | Thornton Church      | 7 8%                     |               |       |
|           |             | Dian (ThChurchDin)   | 7.870                    |               |       |
|           |             | Plan (InchurchPln)   | 52.10/                   |               |       |
|           |             | Westminster Church   | 52.1%                    |               |       |
|           |             | Plan (WestyChPln)    |                          |               |       |
|           |             | Church Ditch         | 12.8%                    |               |       |
|           |             | Irrigation Plan      |                          |               |       |
|           |             | (ChrchIrrPln)        |                          |               |       |

Northglenn's prorata ownership (8.1%) is stored in model ID NglennChPln. The first three rules listed below are used to release the plan yield and convey the water via the Church Ditch to the Northglenn demand (2) and its account in Standley Lake (1). The fourth rule listed below establishes limits on Northglenn's use of its changed Church Ditch shares based on decretal terms and conditions (Case Nos. W8445-76, 79CW234, 79CW235, 79CW236, 82CW056 and 82CW057).

| Right ID  | Admin #     | Destination                                   | Account, Carrier, Return<br>Location (R), or % Split | Source       | Right<br>Type |
|-----------|-------------|-----------------------------------------------|------------------------------------------------------|--------------|---------------|
| Church.08 | 10546.00002 | Northglenn Inside<br>Demand<br>(02_Nglenn_I)  | Church Ditch (0700540)                               | NglennChPln  | 27            |
| Church.09 | 10546.00003 | Northglenn Outside<br>Demand<br>(02_Nglenn_0) | Church Ditch (0700540)                               | NglennChPln  | 27            |
| Church.10 | 10546.00004 | Standley Lake<br>(0203903), Account<br>2      | Church Ditch (0700540)                               | NglennChPln  | 27            |
| Church.97 | 1.00000     |                                               |                                                      | Church NG RL | 47            |

| (ChrchNg_RL) |  |  |              |  |
|--------------|--|--|--------------|--|
|              |  |  | (ChrchNg_RL) |  |

The representation of the volumetrics in the SPDSS model is such that there would be no remaining volumetrics that would allow changed use of the 1881 and 1886 priority Church water rights. Therefore, the yield for those two rights is stored in the ChrchIrrPIn for use by the irrigators using the following two rules.

| Right ID  | Admin #     | Destination                                      | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|-----------|-------------|--------------------------------------------------|------------------------------------------------------|------------|---------------|
| Church.20 | 11647.00000 | Church Ditch<br>Irrigation Plan<br>(ChrchIrrPln) | 100%, 35,000AF limit                                 | 0700540.06 | 26            |
| Church.21 | 16718.13224 | Church Ditch<br>Irrigation Plan<br>(ChrchIrrPln) | 100%, 49,000AF limit                                 | 0700540.09 | 26            |

The following seven rules release water to the Church irrigation demand from its prorata water rights ownership (plan ID ChrchIrrPln) and unused credits in the municipal changed water rights plans. The last nine rules release any remaining unused credits in various plans back to Clear Creek.

| Right ID  | Admin #     | Destination                               | Account, Carrier, Return<br>Location (R), or % Split | Source                                           | Right<br>Type |
|-----------|-------------|-------------------------------------------|------------------------------------------------------|--------------------------------------------------|---------------|
| Church.22 | 16718.13225 | Church Ditch<br>Irrigators<br>(0700540_1) | Church Ditch (0700540)                               | Church Ditch<br>Irrigation Plan<br>(ChrchIrrPln) | 27            |
| Church.23 | 16718.13227 | Church Ditch<br>Irrigators<br>(0700540_1) | Church Ditch (0700540)                               | Thornton Church<br>Plan<br>(ThChurchPln)         | 27            |
| Church.24 | 16718.13227 | Church Ditch<br>Irrigators<br>(0700540_1) | Church Ditch (0700540)                               | Westminster<br>Church Plan<br>(WestyChPln)       | 27            |
| Church.25 | 16718.13227 | Church Ditch<br>Irrigators<br>(0700540_1) | Church Ditch (0700540)                               | Northglenn<br>Church Plan<br>(NglennChPln)       | 27            |
| Church.26 | 16718.13227 | Church Ditch<br>Irrigators<br>(0700540_1) | Church Ditch (0700540)                               | Golden Church<br>Plan (GoldChPln)                | 27            |
| Church.27 | 54055.00003 | Church Ditch<br>Irrigators<br>(0700540_1) | Church Ditch (0700540)                               | Arvada Church<br>Plan (ArvChPln)                 | 27            |
| Church.28 | 16718.13227 | Church Ditch<br>Irrigators                | Church Ditch (0700540)                               | Coors Church<br>Plan                             | 27            |

|            |             | (0700540_1)               | (CoorsChPln)   |
|------------|-------------|---------------------------|----------------|
| ChSpill.71 | 4535.00009  | Church Ditch<br>(0700540) | ChrchSplPl1 29 |
| ChSpill.72 | 10546.00009 | Church Ditch<br>(0700540) | ChrchSplPIn 29 |
| ChSpill.73 | 16718.13229 | Church Ditch<br>(0700540) | ChrchIrrPln 29 |
| ChSpill.74 | 54055.00009 | Church Ditch<br>(0700540) | ArvChPln 29    |
| ChSpill.75 | 16718.13229 | Church Ditch<br>(0700540) | CoorsChPln 29  |
| ChSpill.76 | 16718.13229 | Church Ditch<br>(0700540) | GoldChPIn 29   |
| ChSpill.77 | 16718.13229 | Church Ditch<br>(0700540) | NglennChPln 29 |
| ChSpill.78 | 16718.13229 | Church Ditch<br>(0700540) | ThChurchPln 29 |
| ChSpill.79 | 16718.13229 | Church Ditch<br>(0700540) | WestyChPln 29  |

Use of the Church Ditch credits generates return flow obligations accounted for in Plan ID NglnBDCRFs. The following Type 43 rules are used to meet the return flow obligations, in priority, based on terms and conditions identified in the change of use decree. The last rule is used to make winter replacements with reusable effluent from the City of Westminster.

| Right ID    | Admin #     | Destination                           | Account, Carrier,<br>Return Location<br>(R), or % Split | Source                                 | Right<br>Type |
|-------------|-------------|---------------------------------------|---------------------------------------------------------|----------------------------------------|---------------|
| NglennRF.01 | 48274.00000 | NgInBDCRFs                            |                                                         |                                        | 43            |
| NglennRF.02 | 48274.10000 | NgInFulRFs                            |                                                         |                                        | 43            |
| NglWest.01  | 55150.10001 | Nglenn Big Dry Ck RFs<br>(NglnBDCRFs) |                                                         | Westminster Reuse<br>Plan (WestyReuse) | 48            |

CU credits from Northglenn's share ownership in the Fulton Ditch (0200808) and Lupton Bottom Ditch (0200812) are used to meet summertime return flow obligations. Direct flow rights in the Fulton Ditch are first stored in a changed water rights split plan structure (FulSplPln). The following three rules are used to put the Fulton water rights into the FulSplPln based on the standard approach used to represent changed water rights, as outlined in Section 4.9. The fourth rule is used to split the Plan yield, prorata, to the sub-plans of the various owners of the ditch shares (irrigators, SACWSD, Brighton, Northglenn, and Central Colorado WCD). Northglenn's prorata ownership (2%) is stored in model ID NgInFulPln. The last four rules release irrigation ditch credits or unused credits back to the ditch irrigators.

| Right ID    | Admin #     | Destination                      | Account, Carrier,<br>Return Location<br>(R), or % Split | Source     | Right<br>Type |
|-------------|-------------|----------------------------------|---------------------------------------------------------|------------|---------------|
| Fulton.01   | 5600.00000  | FulSplPIn                        | 100%                                                    | 0200808.01 | 26            |
| Fulton.02   | 9686.00000  | FulSplPln                        | 100%                                                    | 0200808.02 | 26            |
| Fulton.03   | 10901.00000 | FulSplPln                        | 100%                                                    | 0200808.03 | 26            |
| Fulton.04   | 10901.00002 | FullrrPln                        | 73.5%                                                   | FulSplPln  | 46            |
|             |             | SAC_FulPIn                       | 6.2%                                                    |            |               |
|             |             | BriFulPIn                        | 16.2%                                                   |            |               |
|             |             | NgInFulPIn                       | 2.0%                                                    |            |               |
|             |             | CenFulPln                        | 2.1%                                                    |            |               |
| Fulton.05   | 10901.00003 | Fulton Irrigation<br>(0200808_1) | Fulton Ditch<br>(0200808)                               | FullrrPln  | 27            |
| SACFul.01   | 55498.90000 | Fulton Irrigation<br>(0200808_I) | Fulton Ditch<br>(0200808)                               | SAC_FulPIn | 27            |
| BriFul.01   | 45655.70002 | Fulton Irrigation<br>(0200808_1) | Fulton Ditch<br>(0200808)                               | BriFulPln  | 27            |
| CCWCDFul.01 | 66000.99999 | Fulton Irrigation<br>(0200808_1) | Fulton Ditch<br>(0200808)                               | CenFulPIn  | 27            |

Direct flow rights in the Lupton Bottoms Ditch are first stored in a changed water rights split plan structure (LB\_SplPIn). The following rules are used to put the LB water rights into the LB\_SplPIn. The last is used to split the Plan yield, prorata, to the sub-plans of the various owners of the ditch shares (irrigators, SACWSD, Central Colorado WCD, PBSCo, and Northglenn). Northglenn's prorata ownership (8.3%) is stored in model ID NglennLBPIn.

| Right ID | Admin #    | Destination                                     | Account, Carrier,<br>Return Location<br>(R), or % Split | Source     | Right<br>Type |
|----------|------------|-------------------------------------------------|---------------------------------------------------------|------------|---------------|
| LB.01    | 4883.00000 | LB_SplPln                                       | 100%                                                    | 0200812.01 | 26            |
| LB.02    | 8659.00000 | LB_SplPln                                       | 100%                                                    | 0200812.03 | 26            |
| LB.03    | 8659.00002 | LB_IrrPln<br>SAC_LBPln<br>CenLBPln<br>PSCoLBPln | 75.2%<br>8.6%<br>6.9%<br>1.0%                           | LB_SplPIn  | 46            |

|     | NglennLBPln | 8.3% |  |
|-----|-------------|------|--|
| L I |             |      |  |

The following rules are used to make replacements for the return flow obligations from the changed water rights in the Fulton Ditch (7) and Lupton Bottoms Ditch (7). Rules are included for each of the summer months so that variable CU factors with the changed rights are represented. The release limit rules listed below establish limits on Northglenn's use of its changed Fulton Ditch and Lupton Bottoms Ditch shares, respectively, based on volumetric limits from the change of use decrees.

| Right ID     | Admin #     | Destination                           | Account, Carrier,<br>Return Location<br>(R), or % Split                                             | Source                           | Right<br>Type |
|--------------|-------------|---------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------|---------------|
| NglFul.99    | 1.00000     |                                       |                                                                                                     | NGlenn Fulton RL<br>(NglnFul_RL) | 47            |
| NglFul.01a-g | 48274.00002 | Nglenn Big Dry Ck RFs<br>(NglnBDCRFs) | Fulton Ditch<br>(0200808)<br>Fulton Aug<br>Station<br>(0200808_A)<br>Brantner Ditch<br>(0200809, R) | NgInFulPIn                       | 27            |
| NgILB.99     | 1.00000     |                                       |                                                                                                     | NGlenn LB RL<br>(NglennLB_RL)    | 47            |
| NgILB.01a-g  | 48274.30000 | Nglenn Big Dry Ck RFs<br>(NglnBDCRFs) | Lupton Bottom<br>Ditch (0200812)<br>Lupt Btm Aug Stn<br>(0200812_A)                                 | NglennLBPIn                      | 27            |

Use of credits in the Fulton Ditch and Lupton Bottoms Ditch also generates return flow obligations accounted for in Plan IDs NgInFulRFs and NgIennLBRFs. The following rules are used to meet the return flow obligations, either in priority via the Type 43 rules (2) or with reusable effluent via the latter two rules.

| Right ID  | Admin #     | Destination                             | Account, Carrier,<br>Return Location<br>(R), or % Split | Source      | Right<br>Type |
|-----------|-------------|-----------------------------------------|---------------------------------------------------------|-------------|---------------|
| NglFul.01 | 48274.20000 | Fulton Irrigation<br>(0200808_I)        | Fulton Ditch<br>(0200808)                               | NgInFulPIn  | 27            |
| NgILB.01  | 48274.40000 | Lupton Button<br>Irrigation (0200812_I) | Lupton Bottom<br>Ditch                                  | NglennLBPIn | 27            |

|              |             |                                  | (0200812) |             |    |
|--------------|-------------|----------------------------------|-----------|-------------|----|
| ChSpill.77   | 16718.13229 | Church Ditch<br>(0700540)        |           | NglennChPln | 29 |
| FulSpill.75  | 48274.20009 | Fulton Ditch<br>(0200808)        |           | NgInFulPIn  | 29 |
| LB_Spill.73  | 48274.40009 | Lupton Bottom Ditch<br>(0200812) |           | NglennLBPIn | 29 |
| NglnWWSpl.71 | 90000.00000 | Northglenn WWTP<br>(Nglenn_WWTP) |           | NglennReuse | 29 |
| NgILB.02     | 48275.00000 | NglennLBRFs                      |           | NglennReuse | 48 |

Any remaining return flow obligations on Big Dry Creek are met during the winter via Westminster's reusable effluent pursuant to an agreement between the two cities.

| Right ID   | Admin #     | Destination                           | Account, Carrier,<br>Return Location<br>(R), or % Split | Source                                 | Right<br>Type |
|------------|-------------|---------------------------------------|---------------------------------------------------------|----------------------------------------|---------------|
| NglWest.01 | 55150.10001 | Nglenn Big Dry Ck RFs<br>(NglnBDCRFs) |                                                         | Westminster Reuse<br>Plan (WestyReuse) | 48            |

The following six rules are used to release any remaining ditch credits back to the ditch irrigators (3), and then released back to the river (3). The seventh rule below releases any unused reusable effluent back to the river.

| Right ID     | Admin #     | Destination                             | Account, Carrier,<br>Return Location<br>(R), or % Split | Source                                  | Right<br>Type |
|--------------|-------------|-----------------------------------------|---------------------------------------------------------|-----------------------------------------|---------------|
| Church.25    | 16718.13227 | Church Ditch Irrigators<br>(0700540_I)  | Church Ditch<br>(0700540)                               | Northglenn Church<br>Plan (NglennChPln) | 27            |
| NglFul.01    | 48274.20000 | Fulton Irrigation<br>(0200808_I)        | Fulton Ditch<br>(0200808)                               | NgInFulPIn                              | 27            |
| NgILB.01     | 48274.40000 | Lupton Button<br>Irrigation (0200812_I) | Lupton Bottom<br>Ditch<br>(0200812)                     | NglennLBPln                             | 27            |
| ChSpill.77   | 16718.13229 | Church Ditch<br>(0700540)               |                                                         | NglennChPln                             | 29            |
| FulSpill.75  | 48274.20009 | Fulton Ditch<br>(0200808)               |                                                         | NgInFulPIn                              | 29            |
| LB_Spill.73  | 48274.40009 | Lupton Bottom Ditch<br>(0200812)        |                                                         | NglennLBPln                             | 29            |
| NglnWWSpl.71 | 90000.00000 | Northglenn WWTP<br>(Nglenn_WWTP)        |                                                         | NglennReuse                             | 29            |

### Storage Releases

Northglenn's ownership in the FRICO system is represented with a single account in Standley Lake (Acct 2). Pursuant to the 4 Way Agreement, Northglenn also can store water in the accounts owned by Westminster (Acct 1) and Thornton (Acct 4) (see Section 5.10.8.10.78). The following six rules are used to release water from Standley Lake to meet Northglenn's demand from either the 4 Way accounts in PhantomStand (4) or from Northglenn's account in Standley Lake (2).

| Right ID | Admin #     | Destination                             | Account, Carrier,<br>Return Location<br>(R), or % Split | Source                                | Right<br>Type |
|----------|-------------|-----------------------------------------|---------------------------------------------------------|---------------------------------------|---------------|
| Stan.06  | 19054.99998 | Northglenn Indoor Use<br>(02_Nglenn_I)  | Northglenn<br>Standley PL<br>(0200993)                  | PhantomStand,<br>Account 1            | 3             |
| Stan.07  | 19054.99998 | Northglenn Indoor Use<br>(02_Nglenn_I)  | Northglenn<br>Standley PL<br>(0200993)                  | PhantomStand,<br>Account 4            | 3             |
| Stan.08  | 19054.99998 | Northglenn Outdoor<br>Use (02_Nglenn_O) | Northglenn<br>Standley PL<br>(0200993)                  | PhantomStand,<br>Account 1            | 3             |
| Stan.09  | 19054.99998 | Northglenn Outdoor<br>Use (02_Nglenn_O) | Northglenn<br>Standley PL<br>(0200993)                  | PhantomStand,<br>Account 4            | 3             |
| Stan.20  | 19054.99999 | Northglenn Indoor Use<br>(02_Nglenn_I)  | Northglenn<br>Standley PL<br>(0200993)                  | Standley Lake<br>(0203903), Account 2 | 32            |
| Stan.21  | 19054.99999 | Northglenn Outdoor<br>Use (02_Nglenn_O) | Northglenn<br>Standley PL<br>(0200993)                  | Standley Lake<br>(0203903), Account 2 | 32            |

### Additional Supplies

Water released from the Coors and Golden WWTPs during the winter (the Croke season) is typically stored in West Gravel Lakes (0203699). Northglenn is entitled to a portion of the stored water (Golden Bypass and Coors Bypass), as discussed in Section 5.10.8.10.79. Northglenn's Bypass water is accounted for in plan IDs CosCoExcNg and CosGoExcNg. The four rules listed below are used to release the Bypass Water to the Northglenn demand via the Croke Canal. The next two rules are used to release the Bypass Water to storage in Northglenn's account in Standley Lake. The last two rules release any unused Bypass Water back to Clear Creek.

| Right ID  | Admin #     | Destination           | Account, Carrier,<br>Return Location<br>(R), or % Split | Source     | Right<br>Type |
|-----------|-------------|-----------------------|---------------------------------------------------------|------------|---------------|
| Cosmic.14 | 19055.00004 | Northglenn Indoor Use | Croke Canal                                             | CosCoExcNg | 27            |

|             |             | (02_Nglenn_I)                           | (0700553)                |            |    |
|-------------|-------------|-----------------------------------------|--------------------------|------------|----|
| Cosmic.15   | 19055.00004 | Northglenn Outdoor<br>Use (02_Nglenn_O) | Croke Canal<br>(0700553) | CosCoExcNg | 27 |
| Cosmic.27   | 19055.00004 | Northglenn Indoor Use<br>(02_Nglenn_I)  | Croke Canal<br>(0700553) | CosGoExcNg | 27 |
| Cosmic.28   | 19055.00004 | Northglenn Outdoor<br>Use (02_Nglenn_O) | Croke Canal<br>(0700553) | CosGoExcNg | 27 |
| Cosmic.21   | 19055.00004 | Standley Lake<br>(0203903), Account 3   | Croke Canal<br>(0700553) | CosCoExcNg | 27 |
| Cosmic.30   | 19055.00004 | Standley Lake<br>(0203903), Account 3   | Croke Canal<br>(0700553) | CosGoExcNg | 27 |
| CosmcSpl.79 | 50404.00009 | Croke Canal (0700553)                   |                          | CosCoExcNg | 29 |
| CosmcSpl.82 | 50404.00009 | Croke Canal (0700553)                   |                          | CosGoExcNg | 29 |

## 5.10.8.14 FRICO-Standley Lake Irrigators

The FRICO-Standley Lake Division has provided water to a variety of ditches along Big Dry Creek for irrigation. These structures include the Whipple Ditch (aka Bull Canal, 0200871), German Ditch (0200872), Big Dry Creek Ditch (0200873), and Yoxall Ditch (0200874). The Whipple Ditch has been the primary beneficiary of water from Standley Lake, according to records in HydroBase and an August 1990 Tipton & Kalmbach engineering report developed to support City of Westminster water court Case Nos. 86CW397, 88CW267, and 89CW129

The irrigators' ownership in the FRICO system is represented with a single account in Standley Lake (Acct 3). The following four rules are used to release water from the FRICO storage account to the irrigation demands.

| Right ID | Admin #     | Destination      | Account, Carrier, Return<br>Location (R), or % Split | Source        | Right<br>Type |
|----------|-------------|------------------|------------------------------------------------------|---------------|---------------|
| Stan.26  | 19055.00008 | Whipple D (Bull  |                                                      | Standley Lake | 2             |
|          |             | Canal) (0200871) |                                                      | (0203903),    |               |
|          |             |                  |                                                      | Account 3     |               |
| Stan.27  | 19055.00008 | German Ditch     |                                                      | Standley Lake | 2             |
|          |             | (0200872)        |                                                      | (0203903),    |               |
|          |             |                  |                                                      | Account 3     |               |
| Stan.28  | 19055.00008 | Big Dry Ck Ditch |                                                      | Standley Lake | 2             |
|          |             | (0200873)        |                                                      | (0203903),    |               |
|          |             |                  |                                                      | Account 3     |               |
| Stan.29  | 19055.00008 | Yoxall Ditch     |                                                      | Standley Lake | 2             |
|          |             | (0200874)        |                                                      | (0203903),    |               |
|          |             |                  |                                                      | Account 3     |               |

The size of storage accounts is fixed. Therefore, even though the lake was essentially used exclusively by irrigators through the 1960s and most of the 1970s, the FRICO account of 2,228 acrefeet, is representative of more current conditions. To provide sufficient water to meet the irrigation demands in the earlier part of the 1950-2012 study period, the following 12 rules are used to supply irrigation demands. These rules cease in 1978.

| Right ID | Admin #     | Destination                         | Account, Carrier, Return<br>Location (R), or % Split | Source                                   | Right<br>Type |
|----------|-------------|-------------------------------------|------------------------------------------------------|------------------------------------------|---------------|
| Stan.20a | 19056.00000 | Whipple D (Bull<br>Canal) (0200871) |                                                      | Standley Lake<br>(0203903),<br>Account 2 | 32            |
| Stan.20b | 19056.00000 | German Ditch<br>(0200872)           |                                                      | Standley Lake<br>(0203903),<br>Account 2 | 32            |
| Stan.20c | 19056.00000 | Big Dry Ck Ditch<br>(0200873)       |                                                      | Standley Lake<br>(0203903),<br>Account 2 | 32            |
| Stan.20d | 19056.00000 | Yoxall Ditch<br>(0200874)           |                                                      | Standley Lake<br>(0203903),<br>Account 2 | 32            |
| Stan.22a | 19056.00000 | Whipple D (Bull<br>Canal) (0200871) |                                                      | Standley Lake<br>(0203903),<br>Account 1 | 32            |
| Stan.22b | 19056.00000 | German Ditch<br>(0200872)           |                                                      | Standley Lake<br>(0203903),<br>Account 1 | 32            |
| Stan.22c | 19056.00000 | Big Dry Ck Ditch<br>(0200873)       |                                                      | Standley Lake<br>(0203903),<br>Account 1 | 32            |
| Stan.22d | 19056.00000 | Yoxall Ditch<br>(0200874)           |                                                      | Standley Lake<br>(0203903),<br>Account 1 | 32            |
| Stan.24b | 19056.00000 | Whipple D (Bull<br>Canal) (0200871) |                                                      | Standley Lake<br>(0203903),<br>Account 4 | 32            |
| Stan.24c | 19056.00000 | German Ditch<br>(0200872)           |                                                      | Standley Lake<br>(0203903),<br>Account 4 | 32            |
| Stan.24d | 19056.00000 | Big Dry Ck Ditch<br>(0200873)       |                                                      | Standley Lake<br>(0203903),<br>Account 4 | 32            |
| Stan.24e | 19056.00000 | Yoxall Ditch<br>(0200874)           |                                                      | Standley Lake<br>(0203903),<br>Account 4 | 32            |

Pursuant to the 4 Way Agreement, FRICO irrigators also have the ability to store water in the accounts owned by Westminster (Acct 1) and Thornton (Acct 4) (see Section 5.10.8.10.78). The following six rules are used to release water from Standley Lake to meet the FRICO irrigation demand from the 4 Way accounts in PhantomStand.

| Right ID | Admin #     | Destination      | Account, Carrier, Return<br>Location (R), or % Split | Source        | Right<br>Type |
|----------|-------------|------------------|------------------------------------------------------|---------------|---------------|
| Stan.12  | 19054.99998 | Whipple D (Bull  |                                                      | PhantomStand, | 3             |
|          |             | Canal) (0200871) |                                                      | Account 2     |               |
| Stan.13  | 19054.99998 | German Ditch     |                                                      | PhantomStand, | 3             |
|          |             | (0200872)        |                                                      | Account 2     |               |
| Stan.14  | 19054.99998 | Big Dry Ck Ditch |                                                      | PhantomStand, | 3             |
|          |             | (0200873)        |                                                      | Account 2     |               |
| Stan.15  | 19054.99998 | Yoxall Ditch     |                                                      | PhantomStand, | 3             |
|          |             | (0200874)        |                                                      | Account 2     |               |
| Stan.16  | 19054.99998 | Whipple D (Bull  |                                                      | PhantomStand, | 3             |
|          |             | Canal) (0200871) |                                                      | Account 5     |               |
| Stan.17  | 19054.99998 | German Ditch     |                                                      | PhantomStand, | 3             |
|          |             | (0200872)        |                                                      | Account 5     |               |
| Stan.18  | 19054.99998 | Big Dry Ck Ditch |                                                      | PhantomStand, | 3             |
|          |             | (0200873)        |                                                      | Account 5     |               |
| Stan.19  | 19054.99998 | Yoxall Ditch     |                                                      | PhantomStand, | 3             |
|          |             | (0200874)        |                                                      | Account 5     | 1             |

# Additional Supplies

Water released from the Coors and Golden WWTPs during the winter (the Croke season) is typically stored in West Gravel Lakes (0203699). The FRICO irrigators are entitled to a portion of the stored water (Coors Bypass only), as discussed in Section 5.10.8.10.79. FRICO irrigators' Bypass water is accounted for in plan ID CosCoExcFR. The four rules listed below are used to release the Bypass Water to the FRICO demand via the Croke Canal. The last rule is used to release any unused Bypass Water back to Clear Creek.

| Right ID    | Admin #     | Destination                         | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|-------------|-------------|-------------------------------------|------------------------------------------------------|------------|---------------|
| Cosmic.16   | 19055.00004 | Whipple D (Bull<br>Canal) (0200871) | Croke Canal (0700553)                                | CosCoExcFR | 27            |
| Cosmic.17   | 19055.00004 | German Ditch<br>(0200872)           | Croke Canal (0700553)                                | CosCoExcFR | 27            |
| Cosmic.18   | 19055.00004 | Big Dry Ck Ditch<br>(0200873)       | Croke Canal (0700553)                                | CosCoExcFR | 27            |
| Cosmic.19   | 19055.00004 | Yoxall Ditch<br>(0200874)           | Croke Canal (0700553)                                | CosCoExcFR | 27            |
| CosmcSpl.78 | 50404.00009 | Croke Canal<br>(0700553)            |                                                      | CosCoExcFR | 29            |

## 5.10.8.15 City of Brighton

The City of Brighton uses tributary wells to supply its municipal demands. Lagged depletions from well pumping impact the river and are accounted at the Brighton well augmentation plan (9902541) during model simulation. The following Type 43 rule is used to meet the replacement requirements, in priority, based on the most junior water right assigned to the City of Brighton's wells:

| Right ID   | Admin #     | Destination                    | Account, Carrier,<br>Return Location<br>(R), or % Split | Source | Right<br>Type |
|------------|-------------|--------------------------------|---------------------------------------------------------|--------|---------------|
| 9902541.01 | 43947.00001 | Brighton Aug Plan<br>(9902541) |                                                         |        | 43            |

Out-of-priority well depletions are replaced with reusable credits from the City of Brighton's changed Fulton Ditch shares. Currently, StateMod is not able to simulate changed water rights as a supply to meet augmentation plan depletions using the standard plan release operating rules (Type 27 or 28). Therefore, changed water rights are "routed" through a recharge area in order to make them available for to an augmentation plan. This is achieved by using an "immediate" delay pattern (i.e., Pattern 4; water is returned in the same time-step) for the recharge areas included on the ditches with the changed water rights.

Direct flow rights in the Fulton Ditch are first stored in a changed water rights split plan structure (FulSplPIn). The following three rules are used to put the Fulton water rights into the FulSplPIn based on the standard approach used to represent changed water rights, as outlined in Section 4.9. The fourth rule is used to split the Plan yield, prorata, to the sub-plans of the various owners of the ditch shares (irrigators, SACWSD, Brighton, Northglenn, and Central Colorado WCD).

| Right ID  | Admin #     | Destination                                                     | Account, Carrier,<br>Return Location<br>(R), or % Split | Source     | Right<br>Type |
|-----------|-------------|-----------------------------------------------------------------|---------------------------------------------------------|------------|---------------|
| Fulton.01 | 5600.00000  | FulSplPln                                                       | 100%                                                    | 0200808.01 | 26            |
| Fulton.02 | 9686.00000  | FulSplPln                                                       | 100%                                                    | 0200808.02 | 26            |
| Fulton.03 | 10901.00000 | FulSplPln                                                       | 100%                                                    | 0200808.03 | 26            |
| Fulton.04 | 10901.00002 | FullrrPln<br>SAC_FulPln<br>BriFulPln<br>NgInFulPln<br>CenFulPln | 73.5%<br>6.2%<br>16.2%<br>2.0%<br>2.1%                  | FulSplPln  | 46            |

Brighton's prorata ownership (16.2%) is stored in model ID BriFulPln. The following rules are used to route the plan yield to the recharge area ID 0200808\_RB. Rules are included for each of the summer months so that variable CU factors with the changed rights are represented. The administration numbers are junior to the Type 43 rule 9902541.01 so the changed rights are only used if out-of-priority well depletions exist. The first rule listed below establishes limits on Brighton's use of its changed Fulton Ditch shares based on the monthly and annual average farm headgate delivery volumetric limits from Case Nos. 04CW0174 and 00CW202.

| Right ID | Admin # | Destination | Account, Carrier,<br>Return Location | Source | Right<br>Type |
|----------|---------|-------------|--------------------------------------|--------|---------------|
|----------|---------|-------------|--------------------------------------|--------|---------------|

|               |             |                                       | (R), or % Split                                                   |                                   |    |
|---------------|-------------|---------------------------------------|-------------------------------------------------------------------|-----------------------------------|----|
| BriFul.99     | 1.00000     |                                       |                                                                   | Brighton Fulton RL<br>(BriFul_RL) | 47 |
| BriRepl.01a-g | 45655.60000 | Bright Fulton HCU Sto<br>(0200808_RB) | Fulton Ditch<br>(0200808)<br>Fulton Aug<br>Station<br>(0200808_A) | BriFulPIn                         | 27 |

The 0200808\_RB recharge area is associated with the reservoir plan ID 9902541\_PIR in the <SP2016.plr> file. The recharge accretions from 9902541\_PIR (used to represent the Fulton CU credits) are released to meet out-of-priority well depletions in the following rule:

| Right ID   | Admin #     | Destination                    | Account, Carrier,<br>Return Location<br>(R), or % Split | Source                                            | Right Type |
|------------|-------------|--------------------------------|---------------------------------------------------------|---------------------------------------------------|------------|
| BriRepl.02 | 45655.70000 | Brighton Aug Plan<br>(9902541) |                                                         | Brighton Aug Plan RA<br>Recharge<br>(9902541_PIR) | 48         |

Use of the Fulton Ditch credits for replacements generates terms and conditions accounted for in Plan ID BriFulRFs. Any remaining recharge accretions from 9902541\_RIR are released to meet the Fulton Ditch return flows in the following rule.

| Right ID   | Admin #      | Destination | Account, Carrier,<br>Return Location<br>(R), or % Split | Source                                            | Right<br>Type |
|------------|--------------|-------------|---------------------------------------------------------|---------------------------------------------------|---------------|
| BriRepl.03 | 45655.700001 | BriFulRFs   |                                                         | Brighton Aug Plan RA<br>Recharge<br>(9902541_PIR) | 49            |

Any unused Fulton credits are released back to the ditch irrigators, and ultimately released back to the river using the following rules.

| Right ID Admin # | Destination | Account, Carrier,<br>Return Location | Source | Right<br>Type |
|------------------|-------------|--------------------------------------|--------|---------------|
|------------------|-------------|--------------------------------------|--------|---------------|

|             |             |                                  | (R), or % Split           |           |    |
|-------------|-------------|----------------------------------|---------------------------|-----------|----|
| BriFul.01   | 45655.70002 | Fulton Irrigation<br>(0200808_I) | Fulton Ditch<br>(0200808) | BriFulPIn | 27 |
| FulSpill.74 | 45655.70009 | Fulton Ditch<br>(0200808)        |                           | BriFulPln | 29 |

### 5.10.8.16 South Adam County Water Sanitation District

The South Adams County Water and Sanitation District (SACWSD) uses tributary wells to supply its municipal demands. Currently, StateMod is not able to simulate surface water deliveries to well demands. Therefore, Denver Water contract deliveries to SACWSD (2,000 acre-feet per year) are not represented.

Lagged depletions from well pumping impact the river and are accounted at the SACWSD well augmentation plan (9902502) during model simulation. The following Type 43 rule is used to meet the replacement requirements, in priority, based on the most junior water right assigned to the City of SACWSD's wells.

| Right ID   | Admin #     | Destination                  | Account, Carrier,<br>Return Location<br>(R), or % Split | Source | Right<br>Type |
|------------|-------------|------------------------------|---------------------------------------------------------|--------|---------------|
| 9902502.01 | 53853.00001 | SACWSD Aug Plan<br>(9902502) |                                                         |        | 43            |

Out-of-priority well depletions are replaced with recharge accretions from the Ford Recharge Facility (02002003\_R), located off of the Burlington Ditch (0200802). The recharge facility is filled, in priority, using the following Type 45 rule. Deliveries are limited to 400 acre-feet per month using the Type 47 rule.

| Right ID    | Admin #     | Destination                         | Account, Carrier,<br>Return Location (R), or<br>% Split     | Source                      | Right<br>Type |
|-------------|-------------|-------------------------------------|-------------------------------------------------------------|-----------------------------|---------------|
| 02020030.01 | 1.00000     |                                     |                                                             | Ford Res RL<br>(0202003_RL) | 47            |
| 02020030.02 | 49673.49271 | SACWSD Ford Recharge<br>(0202003_R) | Burlington Canal<br>(0200802)<br>FordRechargeDivn<br>(2003) | 0200802.19                  | 45            |

Accretions from the recharge facility are used to make replacements to out-of-priority well depletions via the following rule.

| Right ID    | Admin #     | Destination                  | Account, Carrier,<br>Return Location (R), or<br>% Split | Source                            | Right<br>Type |
|-------------|-------------|------------------------------|---------------------------------------------------------|-----------------------------------|---------------|
| 02020030.03 | 55498.10000 | SACWSD Aug Plan<br>(9902502) |                                                         | Ford RA Recharge<br>(0202003_PIR) | 48            |

As outlined in Section 5.10.8.17, the changed water rights in the Burlington Ditch are stored in four plan IDs and then distributed to the various owners of the water rights. The first rule establishes limits on the use of SACWSD's changed Burlington Ditch water based on decretal terms and conditions (W-8440-76, 2001CW258, and 10CW304). The Ford Recharge facility is also filled with SACWSD's changed Burlington Ditch shares, which are stored in the Plans IDs SABur10Pln, SASanstPln, and SA200\_85Pln. The last four rules are used to store the Burlington yield in the Ford Recharge Facility.

| Right ID    | Admin #     | Destination                         | Account, Carrier, Return<br>Location (R), or % Split               | Source                                       | Right<br>Type |
|-------------|-------------|-------------------------------------|--------------------------------------------------------------------|----------------------------------------------|---------------|
| SACBurl.99  | 1.00000     |                                     |                                                                    | SACWSD Plan<br>Release Limit -<br>SACBurl_RL | 47            |
| SAC_Burl.02 | 5205.00001  | SACWSD Ford Recharge<br>(0202003_R) | Burlington Canal<br>(0200802)<br>Ford Recharge Diversion<br>(2003) | SABur10Pln                                   | 27            |
| SAC_Burl.03 | 5205.00002  | SACWSD Ford Recharge<br>(0202003_R) | Burlington Canal<br>(0200802)<br>Ford Recharge Diversion<br>(2003) | SAWell7Pln                                   | 27            |
| SAC_Burl.04 | 5205.00003  | SACWSD Ford Recharge<br>(0202003_R) | Burlington Canal<br>(0200802)<br>Ford Recharge Diversion<br>(2003) | SASanstPln                                   | 27            |
| SAC_Burl.05 | 13108.00001 | SACWSD Ford Recharge<br>(0202003_R) | Burlington Canal<br>(0200802)<br>Ford Recharge Diversion<br>(2003) | SA200_85Pln                                  | 27            |

The rules that release to the Ford Recharge pit are carried through the Burlington Ditch (0200802) and the turnout from the Burlington Ditch to the Ford Recharge pit (2003). A ditch loss of 10 percent is included for water carried in the Burlington Canal to SACWSD (2003). Return flows are calculated consistent with SACWSD's change decrees and depend on the direct flow right diverted. For the 10.28 cfs and 200 cfs rights, the return flow obligation is a constant rate throughout the year equal to a total of 31% of the average annual delivery over the previous 20 years. This annual obligation of 31% equates to 2.6% per month, however, since return flow obligations in the SPDSS model are

calculated based on river headgate diversions, the return flow obligation was reduced to 2.3% per month to account for the 10% ditch loss from the headgate to SACWSD's turnout. The return flow obligation for the 7.987 cfs right is 65% of the farm headgate delivery. This return flow obligation was reduced to 58.5% (consumptive use of 41.5%) per month to account for the 10% ditch loss to SACWSD's turnout. The return flow obligation for the 6.0 cfs right is 100% of the farm headgate delivery. For the 103.045 Burlington and 134.545 Wellington shares that SACWSD changed in Case No. W-8440-76, the return flow obligations average 21.5 ac-ft/month regardless of which water right is diverted. To simplify the SPDSS model, the return flow obligations for those shares are calculated in a similar manner to SACWSD's later change cases.

Reusable credits from changed shares in other ditch companies (Fulton, Brighton, Lupton Bottoms, Lupton Meadows, and Meadow Island No. 1) are also used for replacement. Currently, StateMod is not able to simulate changed water rights as a supply to meet augmentation plan depletions using the standard plan release operating rules (Type 27 or 28). Therefore, changed water rights are "routed" through a recharge area in order to make them available for to an augmentation plan. This is achieved by using an "immediate" delay pattern (i.e., Pattern 4; water is returned in the same time-step) for the recharge areas included on the ditches with the changed water rights.

Direct flow rights in the various ditch systems are first stored in changed water rights split plan structures (FulSpIPIn, BriSpIPIn, LB\_SpIPIn, LM\_SpIPIn, and MI1SpIPIn). The following rules are used to put the water rights into the split plans based on the standard approach used to represent changed water rights, as outlined in Section 4.9. The rule names correspond with the particular ditches and the last rule for each ditch is used to split the Plan yields, prorata, to the sub-plans of the various owners of the ditch shares. SACWSD's prorata ownership in the various ditch plans is included in the table below:

| Right ID  | Admin #     | Destination                                                     | Account, Carrier,<br>Return Location<br>(R), or % Split | Source     | Right<br>Type |
|-----------|-------------|-----------------------------------------------------------------|---------------------------------------------------------|------------|---------------|
| Fulton.01 | 5600.00000  | FulSplPIn                                                       | 100%                                                    | 0200808.01 | 26            |
| Fulton.02 | 9686.00000  | FulSplPIn                                                       | 100%                                                    | 0200808.02 | 26            |
| Fulton.03 | 10901.00000 | FulSplPIn                                                       | 100%                                                    | 0200808.03 | 26            |
| Fulton.04 | 10901.00002 | FullrrPln<br>SAC_FulPln<br>BriFulPln<br>NgInFulPln<br>CenFulPln | 73.5%<br>6.2%<br>16.2%<br>2.0%<br>2.1%                  | FulSplPln  | 46            |
| LB.01     | 4883.00000  | LB_SplPln                                                       | 100%                                                    | 0200812.01 | 26            |
| LB.02     | 8659.00000  | LB_SplPln                                                       | 100%                                                    | 0200812.03 | 26            |
| LB.03     | 8659.00002  | LB_IrrPIn<br>SAC_LBPIn<br>CenLBPIn<br>PSCoLBPIn<br>NglennLBPIn  | 75.2%<br>8.6%<br>6.9%<br>1.0%<br>8.3%                   | LB_SplPIn  | 46            |

| LM.01      | 7739.00000  | LM_SplPln                                       | 100%                           | 0200812.02 | 26 |
|------------|-------------|-------------------------------------------------|--------------------------------|------------|----|
| LM.02      | 7739.00002  | LB_IrrPln<br>SAC_LMPln<br>CenLMPln<br>PSCoLMPln | 79.8%<br>16.6%<br>1.7%<br>1.9% | LM_SplPln  | 46 |
| MdwIsl1.01 | 5965.00000  | MI1SplPIn                                       | 100%                           | 0200821.01 | 26 |
| MdwIsl1.02 | 11807.00000 | MI1SplPIn                                       | 100%                           | 0200821.02 | 26 |
| MdwIsl1.03 | 11807.00002 | MI1IrrPln<br>SAC_MI1Pln                         | 93.5%<br>6.5%                  | MI1SplPln  | 46 |

The following seven rules are used to route the plan yield to the recharge area IDs 0200808\_RS, 0200810\_RS, 0200812\_RS, and 0200821\_RS. Rules are included for each of the summer months so that variable CU factors with the changed rights are represented. The administration numbers are junior to the Type 43 rule 9902502.01 so the changed rights are only used if out-of-priority well depletions exist. The last rule listed for each ditch establishes limits on SACWSD's use of its changed ditch shares based on the monthly and annual average farm headgate delivery volumetric limits from the appurtenant change cases.

### Fulton Ditch

| Right ID      | Admin #     | Destination                           | Account, Carrier,<br>Return Location (R), or<br>% Split     | Source                       | Right<br>Type |
|---------------|-------------|---------------------------------------|-------------------------------------------------------------|------------------------------|---------------|
| SACFul.99     | 1.0000      |                                       |                                                             | SAC Fulton RL<br>(SACFul_RL) | 47            |
| SACRepl.01a-g | 55498.20000 | SACWSD Fulton HCU<br>Sto (0200808_RS) | Fulton Ditch (0200808)<br>Fulton Aug Station<br>(0200808_A) | SACFulPIn                    | 27            |

### Brighton Ditch

| Right ID      | Admin #     | Destination                             | Account, Carrier,<br>Return Location (R), or<br>% Split        | Source                         | Right<br>Type |
|---------------|-------------|-----------------------------------------|----------------------------------------------------------------|--------------------------------|---------------|
| SACBri.99     | 1.00000     |                                         |                                                                | SAC Brighton RL<br>(SACBri_RL) | 47            |
| SACRepl.02a-g | 55498.30006 | SACWSD Brighton HCU<br>Sto (0200810_RS) | Brighton Ditch<br>(0200810)<br>Brighton Aug Stn<br>(0200810_A) | SAC_BriPln                     | 27            |

### Lupton Bottoms Ditch

| Right ID | Admin # | Destination | Account, Carrier,       | Source | Right |
|----------|---------|-------------|-------------------------|--------|-------|
|          |         |             | Return Location (R), or |        | Туре  |

|               |             |                                        | % Split                                                             |                      |    |
|---------------|-------------|----------------------------------------|---------------------------------------------------------------------|----------------------|----|
| SACLB.99      | 1.00000     |                                        |                                                                     | SAC LB RL (SACLB_RL) | 47 |
| SACRepl.03a-g | 55498.40005 | SACWSD LuptBtm HCU<br>Sto (0200812_RS) | Lupton Bottom Ditch<br>(0200812)<br>Lupt Btm Aug Stn<br>(0200812_A) | SAC_LBRFs            | 27 |

### Lupton Meadows Ditch

| Right ID      | Admin #     | Destination                            | Account, Carrier,<br>Return Location (R), or<br>% Split             | Source               | Right<br>Type |
|---------------|-------------|----------------------------------------|---------------------------------------------------------------------|----------------------|---------------|
| SACLM.99      | 1.00000     |                                        |                                                                     | SAC PV RL (SACLM_RL) | 47            |
| SACRepl.04a-g | 55498.50000 | SACWSD LuptBtm HCU<br>Sto (0200812_RS) | Lupton Bottom Ditch<br>(0200812)<br>Lupt Btm Aug Stn<br>(0200812_A) | SAC_LMPIn            | 27            |

### Meadow Island Ditch No. 1

| Right ID      | Admin #     | Destination                         | Account, Carrier,<br>Return Location (R), or<br>% Split                    | Source                            | Right<br>Type |
|---------------|-------------|-------------------------------------|----------------------------------------------------------------------------|-----------------------------------|---------------|
| SACMI1.99     | 1.00000     |                                     |                                                                            | Meadow Island 1 RL<br>(SACMI1_RL) | 47            |
| SACRepl.05a-g | 55498.60006 | SACWSD MI 1 HCU Sto<br>(0200821_RS) | Meadow Island No. 1<br>Ditch (0200821)<br>Mdw Isl 1 Aug Stn<br>(0200821_A) | SAC_MI1PIn                        | 27            |

The four 0200808\_RS, 0200810\_RS, 0200812\_RS, and 0200821\_RS recharge areas are associated with the reservoir plan ID 9902502\_PIR in the <SP2016.plr> file. The recharge accretions from 9902502\_PIR (used to represent the changed ditch credits, in aggregate) are released to meet out-of-priority well depletions in the following rule:

| Right ID   | Admin #     | Destination     | Account, Carrier, Return | Source             | Right<br>– |
|------------|-------------|-----------------|--------------------------|--------------------|------------|
|            |             |                 | Location (R), or % Split |                    | Type       |
| SACRepl.06 | 55498.20000 | SACWSD Aug Plan |                          | SACWSC RA Recharge | 48         |
|            |             | (9902502)       |                          | (9902502_PIR)      |            |
| SACRepl.07 | 55498.20001 | SAC_FulRFs      |                          | SACWSC RA Recharge | 49         |
|            |             |                 |                          | (9902502_PIR)      |            |
| SACRepl.08 | 55498.20002 | SAC_BriRFs      |                          | SACWSC RA Recharge | 49         |
|            |             |                 |                          | (9902502_PIR)      |            |
| SACRepl.09 | 55498.20003 | SAC_LBRFs       |                          | SACWSC RA Recharge | 48         |
|            |             |                 |                          | (9902502_PIR)      |            |

| SACRepl.10 | 55498.20004 | SAC_MI1RFs | SACWSC RA Recharge | 48 |
|------------|-------------|------------|--------------------|----|
|            |             |            | (9902502_PIR)      |    |

Use of the ditch credits for replacements generates terms and conditions accounted for in Plan IDs SABurRFsSum, SABurRFsYR, SAC\_FuIRFs, SAC\_BriRFs, SAC\_LBRFs, and SAC\_MI1RFs. Any Ford Recharge credits not used to meet well depletions are used to meet the various return flow obligations using the following rules:

| Right ID    | Admin #     | Dstination  | Account, Carrier, Return<br>Location (R), or % Split | Source                            | Right<br>Type |
|-------------|-------------|-------------|------------------------------------------------------|-----------------------------------|---------------|
| 02020030.04 | 55498.10001 | SAC_FulRFs  |                                                      | Ford RA Recharge<br>(0202003_PIR) | 48            |
| 02020030.05 | 55498.10002 | SAC_BriRFs  |                                                      | Ford RA Recharge<br>(0202003_PIR) | 48            |
| 02020030.06 | 55498.10003 | SAC_LBRFs   |                                                      | Ford RA Recharge<br>(0202003_PIR) | 48            |
| 02020030.07 | 55498.10004 | SAC_MI1RFs  |                                                      | Ford RA Recharge<br>(0202003_PIR) | 48            |
| 02020030.08 | 55498.10005 | SABurRFsYR  |                                                      | Ford RA Recharge<br>(0202003_PIR) | 48            |
| 02020030.09 | 55498.10006 | SABurRFsSum |                                                      | Ford RA Recharge<br>(0202003_PIR) | 48            |

The following 20 rules are used to release any remaining ditch credits back to the ditch irrigators (11), and then released back to the river (9):

| Right ID    | Admin #     | Destination                          | Account, Carrier, Return<br>Location (R), or % Split              | Source      | Right<br>Type |
|-------------|-------------|--------------------------------------|-------------------------------------------------------------------|-------------|---------------|
| SAC_Burl.06 | 5205.00002  | Little Burlington Ditch<br>(0200915) | Burlington Canal<br>(0200802)                                     | SABur10Pln  | 27            |
| SAC_Burl.07 | 5205.00003  | Little Burlington Ditch<br>(0200915) | Burlington Canal<br>(0200802)                                     | SAWell7PIn  | 27            |
| SAC_Burl.08 | 5205.00004  | Little Burlington Ditch<br>(0200915) | Burlington Canal<br>(0200802)                                     | SASanstPln  | 27            |
| SAC_Burl.09 | 13108.00002 | Little Burlington Ditch<br>(0200915) | Burlington Canal<br>(0200802)                                     | SA200_85Pln | 27            |
| SAC_Burl.10 | 13108.00003 | Barr Irrigators (0203837_I)          | Burlington Canal<br>(0200802)                                     | SA200_85Pln | 27            |
| SAC_Burl.11 | 13108.00004 | Barr Irrigators (0203837_I)          | Burlington Canal<br>(0200802)<br>Denver Hudson Canal<br>(0200805) | SA200_85Pln | 27            |

| SACFul.01   | 55498.90000 | Fulton Irrigation<br>(0200808_I)        | Fulton Ditch<br>(0200808)        | SAC_FulPIn  | 27 |
|-------------|-------------|-----------------------------------------|----------------------------------|-------------|----|
| SACBri.01   | 55498.90001 | Brighton Irrigation<br>(0200810_I)      | Brighton Ditch<br>(0200810)      | SAC_BriPln  | 27 |
| SACLB.01    | 55498.90002 | Lupton Button Irrigation<br>(0200812_I) | Lupton Bottom Ditch<br>(0200812) | SAC_LBPIn   | 27 |
| SACLM.01    | 55498.90003 | Lupton Button Irrigation<br>(0200812_I) | Lupton Bottom Ditch<br>(0200812) | SAC_LMPIn   | 27 |
| SACMI1.01   | 55498.90005 | Meadow Island No. 1<br>(0200821)        |                                  | SAC_MI1PIn  | 27 |
| BurSpill.72 | 5205.00009  | Burlington Canal (0200802)              |                                  | SABur10Pln  | 29 |
| BurSpill.76 | 5205.00009  | Burlington Canal (0200802)              |                                  | SASanstPln  | 29 |
| BurSpill.80 | 5205.00009  | Burlington Canal (0200802)              |                                  | SAWell7Pln  | 29 |
| BurSpill.84 | 13108.00009 | Burlington Canal (0200802)              |                                  | SA200_85Pln | 29 |
| FulSpill.73 | 55498.90009 | Fulton Ditch (0200808)                  |                                  | SAC_FulPIn  | 29 |
| BriSpill.73 | 55498.90009 | Brighton Ditch (0200810)                |                                  | SAC_BriPln  | 29 |
| LB_Spill.75 | 55498.90009 | Lupton Bottom Ditch<br>(0200812)        |                                  | SAC_LBPIn   | 29 |
| LM_Spill.72 | 55498.90009 | Lupton Bottom Ditch<br>(0200812)        |                                  | SAC_LMPIn   | 29 |
| MI1Spill.73 | 55498.90009 | Meadow Island No. 1<br>(0200821)        |                                  | SAC_MI1PIn  | 29 |

## 5.10.8.17 Burlington Ditch System

The primary entities in the Burlington Ditch system are the Burlington Ditch, Reservoir, and Land Company (BDRLC); the Farmers Reservoir and Irrigation Company (FRICO); and the Henrylyn Irrigation District (HID). These companies have direct flow and storage water rights for water diverted at the Burlington Ditch. These rights were originally designed to serve irrigators; however, municipal suppliers have acquired shares in the BDRLC and FRICO. Water is diverted through the Burlington Ditch (0200802) for irrigation of lands located east of the South Platte River and for storage primarily in Barr Lake (02003837) and Horse Creek and Prospect Reservoirs (aggregated at 0103592).

The first primary entity in the Burlington Ditch system is BDRLC. Because some of the company's shareholders do not have access to storage in Barr Lake, there are two divisions. The Little Burlington Division's shareholders are served only by direct flow water, and the O'Brian Division shareholders are served by storage and direct flow water. To provide storage for the Little Burlington Division, the Wellington Reservoir Company was associated with the BDRLC. The Wellington Reservoir Company owns Wellington Reservoir, which is located upstream on Buffalo Creek. In addition, Duck (Altura) Lake, became a BDRLC asset for the Little Burlington Division. Both reservoirs are in the North Fork of the South Platte River Basin and are not explicitly represented in the SPDSS model.

The second primary entity in the Burlington Ditch system is FRICO. FRICO has four divisions, each centered on a reservoir. In addition to Barr Lake, the other divisions are Milton Lake, Standley Lake, and Marshall Lake

The third primary entity in the Burlington Ditch system is HID. The primary water supply of the HID is carried by the Denver-Hudson Canal, which is an extension of the Burlington Ditch. HID's main storage facilities include Horse Creek and Prospect reservoirs.

Some of the shares in BDRLC and FRICO have been purchased by municipal suppliers. Those with significant ownership in these companies include Thornton, South Adams County Water and Sanitation District (SACWSD), Brighton, and East Cherry Creek Valley Water and Sanitation District (ECCV). The Burlington Ditch headgate is an exchange point for Denver Water's reusable effluent from the Metro Denver Wastewater Reclamation Plant. The Burlington Ditch is also a decreed alternate point of diversion and carriage ditch for several of Thornton's water rights. Thornton has a decree for 8,000 ac-ft for the East Gravel Pit and a decree for 4,500 ac-ft for the South Dahlia Gravel Pit both diverted through the Burlington Ditch. These pits are known as East Gravel Lakes (aggregated at 0203700). SACWSD has a decree for recharge at the Ford Recharge Pit (0202003\_R) diverted through the Burlington Ditch, which has a volumetric limit of 400 ac-ft.

Figure 5-6: Burlington Ditch System shows the major features of the Burlington Ditch System.



## Figure 5-6: Burlington Ditch System
The Burlington Ditch diverts from the South Platte River near Riverside Cemetery on the east side of the river. The Burlington Ditch also receives water from the Metro Denver Wastewater Treatment Plant (Metro\_WWTP), which is located on the east side of the South Platte River 1.5 miles downstream from the Burlington Ditch headgate. Metro WWTP effluent is delivered to the Burlington Ditch via the Metro Pumps and pipeline (Metro\_Pumps and MetPump\_PL). Water pumped at the Metro Pumps is either water that is fully consumable by Denver Water or water that would otherwise be available to FRICO under the exercise of its decrees.

The present-day Burlington Ditch results from the enlargement of 5.4 miles of the original Burlington Ditch and the construction of a 12.3-mile long O'Brian Canal (0203837\_C) to connect the enlarged Burlington Ditch to Barr Lake. The Little Burlington Ditch (0200915) diverts from the Burlington-O'Brian Canal and extends about six miles to the northeast. The Little Burlington Ditch is used to supply Burlington Company stockholders along that canal and the Brighton Lateral. On the west side of Barr Lake, the Brighton Lateral extends from the end of the Little Burlington Ditch approximately 10 miles. The Burlington Ditch, Little Burlington Ditch and Brighton Lateral are all situated in the South Platte mainstem drainage area; therefore, return flows drain to the South Platte River.

The Burlington-O'Brian Canal extends from the headgate to a bifurcation immediately upstream of Barr Lake. The west branch flows into Barr Lake, and the east branch becomes the Denver-Hudson Canal (0200805). Barr Lake is an off-channel reservoir located in the Beebe Draw, a drainage basin east of the South Platte River and west of the Box Elder Creek Basin. Water stored in Barr Lake is released to the Speer Canal, East Burlington Extension Ditch, West Burlington Extension Ditch, Neres Canal and Beebe Canal. Water can also be released to the Bowles Seep Canal and East Neres Canals, both of which divert from the Beebe Canal.

The Denver-Hudson Canal extends northeast into the Box Elder and Lost Creek drainage basins. Water is delivered via the Denver-Hudson Canal to Horse Creek Reservoir. From Horse Creek Reservoir, the Denver-Hudson Canal then traverses into the Lost Creek drainage basin where is fills Prospect Reservoir, an off-stream reservoir.

# Burlington Ditch Direct Rights

The BDRLC and Wellington Company have a direct flow water right for 27.4 cfs that was historically delivered to the Little Burlington Division above Barr Lake. This right was split into the following amounts to correctly model return flow obligations associated with Thornton's and SACWSD's change cases: 10.28 cfs, 7.987 cfs, 6.0 cfs and 3.133 cfs. The 3.133 cfs, which is currently owned by SACWSD, is not represented in the model because that portion of the right was changed in Case No. W-8440-76 and is left in the river as a source of replacement for SACWSD's augmentation plan.

There is also a 350 cfs, direct flow water right that was historically delivered both upstream and downstream of Barr Lake and to HID. Of the 350 cfs right, a maximum of 200 cfs is delivered above Barr Lake and the remaining 150 cfs was delivered below Barr Lake and to HID. In Case No. 02CW403, the Water Court ruled that this right can no longer be delivered below Barr Lake and to

HID. To represent the portions of this water right that were historically delivered to different locations, the water right was split into two rights, one for 200 cfs and another for 150 cfs.

| based on the standard approach used to represent changed water rights, as outlined in Section 4.9. |            |                                            |                                                      |            |               |  |  |
|----------------------------------------------------------------------------------------------------|------------|--------------------------------------------|------------------------------------------------------|------------|---------------|--|--|
| Right ID                                                                                           | Admin #    | Destination                                | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |  |  |
| Burl.01                                                                                            | 5205.00000 | Burlington10.28 Split Plan<br>(Bur10Split) |                                                      | 0200802.03 | 26            |  |  |

0200802.04

0200802.05

0200802.06

0200802.07

26

26

26

26

The direct flow rights noted above are first stored in changed water rights plan structures ( (Burl10Split, Well7Split, SanstSplit, 200\_85Split, and 150\_85Split) using the following five rules, based on the standard approach used to represent changed water rights, as outlined in Section 4.9.

| Diversions under the 350 cfs direct flow right are split into two rules. The rule, Burl.04, diverts under |
|-----------------------------------------------------------------------------------------------------------|
| the 200 cfs portion of this right, and Burl.05 diverts under the 150 cfs portion of the right. Rule       |
| Burl.05 is only active through 2009, to reflect the Water Court's ruling in Case No. 02CW403 that it      |
| can no longer be delivered below Barr Lake and to HID.                                                    |

The following for rules are used to split the Plan yields, prorata, to the sub-plans of the various owners of the paired Burlington and Wellington shares - Thornton (ThBurl10Pln, ThWell7Pln, ThSanstPln, and Th200\_85Pln), SACWSD (SABurl10Pln, SAWell7Pln, SASanstPln, and SA200\_85Pln), and the remaining shareholders under the Little Burlington Ditch (LBBurl10Pln, LBWell7Pln, LBSanstPln, and LB200\_85Pln).

A paired share consists of one Burlington and one Wellington share. There are 1,848.327 Burlington shares and 1,838.66 Wellington shares, which equates to a total of 1,843.5 paired shares. Thornton owns 837.5 Burlington shares and 825.7 Wellington shares, equal to 831.6 paired shares, which were changed in Case Nos. 87CW107, 90CW229, and 05CW010. Therefore, Thornton owns 45.1% of the paired shares. SACWSD owns 267.75 Burlington shares and 273.34 Wellington shares, equal to 270.54 paired shares, which were changed in Case Nos. W-8440-76, 2001CW258, and 10CW304. Therefore, SACWSD owns 14.7% of the paired shares. The remaining 743.08 Burlington shares and 739.62 Wellington shares, equal to 741.35 paired shares, are delivered to the Little Burlington Ditch. Brighton has also acquired and changed Burlington and Wellington shares, however those shares are not represented in the model since they were changed near the end of the study period (2007 and later).

| Right ID | Admin #    | Destination              | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|----------|------------|--------------------------|------------------------------------------------------|------------|---------------|
| Burl.06  | 5205.00001 | ThBur10Pln<br>LBBur10Pln | 45.1%<br>40.2%                                       | Bur10Split | 46            |

Burl.02

Burl.03

Burl.04

Burl.05

5205.00000

5205.00000

13108.00000

13108.00000

Wellington7Divn

Sanstad6Divn (SanstSplit)

(Well7Split)

Barr 1885 divn

(200 85Split)

(150\_85Split)

Burlington1885Divn

| Right ID | Admin #     | Destination | Account, Carrier, Return | Source      | Right<br>Type                           |
|----------|-------------|-------------|--------------------------|-------------|-----------------------------------------|
|          |             | SABur10Pln  | 14.7%                    |             | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| Burl.07  | 5205.00002  | ThWell7PIn  | 45.1%                    | Well7Split  | 46                                      |
|          |             | LBWell7Pln  | 40.2%                    |             |                                         |
|          |             | SAWell7Pln  | 14.7%                    |             |                                         |
| Burl.08  | 5205.00003  | ThSanstPln  | 45.1%                    | SanstSplit  | 46                                      |
|          |             | LBSanstPln  | 40.2%                    |             |                                         |
|          |             | SASanstPln  | 14.7%                    |             |                                         |
| Burl.09  | 13108.00001 | Th200_85PIn | 45.1%                    | 200_85Split | 46                                      |
|          |             | LB200_85PIn | 40.2%                    |             |                                         |
|          |             | SA200_85Pln | 14.7%                    |             |                                         |

The following rule splits the 150 cfs portion of the 350 cfs right among FRICO (FB150\_85Pln) and HID (HID15085Pln) since that right was delivered below Barr Lake and to HID prior to 2009.

| Right ID | Admin #     | Destination | Account, Carrier, Return<br>Location (R), or % Split | Source      | Right<br>Type |
|----------|-------------|-------------|------------------------------------------------------|-------------|---------------|
| Burl.10  | 13108.00002 | FB150_85Pln | 50%                                                  | 150_85Split | 46            |
|          |             | HID15085Pln | 50%                                                  |             |               |

The following rules release any unused yield from the split plans back to the river:

| Right ID    | Admin #     | Destination                | Account, Carrier, Return<br>Location (R), or % Split | Source      | Right<br>Type |
|-------------|-------------|----------------------------|------------------------------------------------------|-------------|---------------|
| BurSpill.71 | 5205.00009  | Burlington Canal (0200802) |                                                      | Bur10Split  | 29            |
| BurSpill.75 | 5205.00009  | Burlington Canal (0200802) |                                                      | SanstSplit  | 29            |
| BurSpill.79 | 5205.00009  | Burlington Canal (0200802) |                                                      | Well7Split  | 29            |
| BurSpill.83 | 13108.00009 | Burlington Canal (0200802) |                                                      | 200_85Split | 29            |
| BurSpill.89 | 13108.00009 | Burlington Canal (0200802) |                                                      | 150_85Split | 29            |

### Thornton Burlington Operations

Thornton's operations with its changed Burlington Ditch shares is discussed in Section 5.10.8.12.

#### SACWSD Burlington Operations

SACWSD's operations with its changed Burlington Ditch shares is discussed in Section 5.10.8.16.

# 5.10.8.17.1 Little Burlington Operations

The following four rules are used to release water from Little Burlington's plans (10.28, 7.987, 6.0 and 200 cfs rights) to meet the irrigation demand under the Little Burlington Ditch. Losses are not included for the deliveries through the Burlington Ditch since the structure efficiency for the Little Burlington includes both ditch loss and farm loss.

| Right ID    | Admin #     | Destination                          | Account, Carrier,<br>Return Location<br>(R), or % Split | Source      | Right<br>Type |
|-------------|-------------|--------------------------------------|---------------------------------------------------------|-------------|---------------|
| LittBurl.01 | 5205.00001  | Little Burlington Ditch<br>(0200915) | Burlington Canal<br>(0200802)                           | LBBur10Pln  | 27            |
| LittBurl.02 | 5205.00002  | Little Burlington Ditch<br>(0200915) | Burlington Canal<br>(0200802)                           | LBWell7Pln  | 27            |
| LittBurl.03 | 5205.00003  | Little Burlington Ditch<br>(0200915) | Burlington Canal<br>(0200802)                           | LBSanstPln  | 27            |
| LittBurl.04 | 13108.00001 | Little Burlington Ditch<br>(0200915) | Burlington Canal<br>(0200802)                           | LB200_85Pln | 27            |

The following eight rules release any unused credits in Thornton's and SACWSD's Burlington Ditch plans back to the Little Burlington irrigators. The next two rules release Little Burlington's excess water to FRICO and HID for delivery below Barr Lake and HID's aggregated reservoir. Only excess water diverted under the 200 cfs and 150 cfs rights can be delivered to FRICO and HID, therefore, rules were not included for the 10.28, 7.987 and 6 cfs rights. The last for rules are used to release any unused Little Burlington irrigators' yield back to the South Platte River.

| Right ID    | Admin #     | Destination                          | Account, Carrier,<br>Return Location<br>(R), or % Split | Source      | Right<br>Type |
|-------------|-------------|--------------------------------------|---------------------------------------------------------|-------------|---------------|
| ThBurl.17   | 51864.50690 | Little Burlington Ditch<br>(0200915) | Burlington Canal<br>(0200802)                           | ThBur10Pln  | 27            |
| ThBurl.18   | 51864.50690 | Little Burlington Ditch<br>(0200915) | Burlington Canal<br>(0200802)                           | ThWell7Pln  | 27            |
| ThBurl.19   | 51864.50690 | Little Burlington Ditch<br>(0200915) | Burlington Canal<br>(0200802)                           | ThSanstPln  | 27            |
| ThBurl.20   | 51864.50690 | Little Burlington Ditch<br>(0200915) | Burlington Canal<br>(0200802)                           | Th200_85Pln | 27            |
| SAC_Burl.06 | 5205.00002  | Little Burlington Ditch<br>(0200915) | Burlington Canal<br>(0200802)                           | SABur10Pln  | 27            |

| SAC_Burl.07 | 5205.00003  | Little Burlington Ditch<br>(0200915) | Burlington Canal<br>(0200802) | SAWell7Pln  | 27 |
|-------------|-------------|--------------------------------------|-------------------------------|-------------|----|
| SAC_Burl.08 | 5205.00004  | Little Burlington Ditch<br>(0200915) | Burlington Canal<br>(0200802) | SASanstPln  | 27 |
| SAC_Burl.09 | 13108.00002 | Little Burlington Ditch<br>(0200915) | Burlington Canal<br>(0200802) | SA200_85Pln | 27 |
| LittBurl.05 | 13108.20000 | Barr Irrigators<br>(0203837_I)       | Burlington Canal<br>(0200802) | LB200_85Pln | 27 |
| LittBurl.06 | 13108.20001 | Henrylyn Irrigators<br>(0200805_1)   | Burlington Canal<br>(0200802) | LB200_85Pln | 27 |
| BurSpill.74 | 5205.00009  | Burlington Canal<br>(0200802)        |                               | LBBur10Pln  | 29 |
| BurSpill.78 | 5205.00009  | Burlington Canal<br>(0200802)        |                               | LBSanstPIn  | 29 |
| BurSpill.82 | 5205.00009  | Burlington Canal<br>(0200802)        |                               | LBWell7Pln  | 29 |
| BurSpill.86 | 13108.20009 | Burlington Canal<br>(0200802)        |                               | LB200_85Pln | 29 |

# 5.10.8.17.2 FRICO Operations

Prior to 2009 and the Water Court's decision in Case No. 02CW403, a portion of the 350 cfs direct flow right (the 150 cfs right plus any portion of the 200 cfs right that was not used above Barr Lake) was delivered below Barr Lake. In addition, FRICO owns a 600 cfs direct flow right that can be delivered to meet FRICO's irrigation demand below Barr Lake. FRICO and HID split these direct flow rights 50-50 pursuant to a 1921 Agreement. To simplify the model, the 600 cfs right is only delivered below Barr Lake. The following rules release water from the FB150\_85Pln for the 150 cfs right to meet FRICO's irrigation demand below Barr Lake (0203837\_I) and HID's irrigation demand below its aggregated reservoir (0200805\_I).

| Right ID    | Admin #     | Destination                 | Account, Carrier, Return<br>Location (R), or % Split              | Source      | Right<br>Type |
|-------------|-------------|-----------------------------|-------------------------------------------------------------------|-------------|---------------|
| FRI_Burl.01 | 13108.00001 | Barr Irrigators (0203837_I) | Burlington Canal<br>(0200802)                                     | FB150_85Pln | 27            |
| FRI_Burl.02 | 13108.30000 | Barr Irrigators (0203837_I) | Burlington Canal<br>(0200802)<br>Denver Hudson Canal<br>(0200805) | FB150_85Pln | 27            |

The following rule diverts water attributable to the FRICO direct right for the 600 cfs right to meet FRICO's irrigation demand below Barr Lake.

| Right ID    | Admin #     | Destination                    | Account, Carrier,<br>Return Location<br>(R), or % Split | Source     | Right<br>Type |
|-------------|-------------|--------------------------------|---------------------------------------------------------|------------|---------------|
| FRI_Burl.03 | 21252.00000 | Barr Irrigators<br>(0203837_I) | Burlington Canal<br>(0200802)                           | 0200802.09 | 27            |

These rules are operated before water is released from Barr Lake or HID's aggregated reservoir.

The following rule release Thornton and SACWSD's excess water to FRICO for delivery below Barr Lake. Only excess water diverted under the 200 cfs and 150 cfs rights can be delivered to FRICO and HID, therefore, rules were not included for the 10.28, 7.987 and 6 cfs rights. This rule is only active through 2009, since these water rights can no longer be delivered below Barr Lake pursuant to the Water Court's ruling in Case No. 02CW403. A 20% ditch loss was included for losses between the headgate and Barr Lake. Losses associated with FRICO's irrigation demands do not include ditch losses from the headgate to Barr Lake.

| Right ID    | Admin #     | Destination                 | Account, Carrier, Return<br>Location (R), or % Split | Source      | Right<br>Type |
|-------------|-------------|-----------------------------|------------------------------------------------------|-------------|---------------|
| ThBurl.25   | 51864.50692 | Barr Irrigators (0203837_I) | Burlington Canal<br>(0200802)                        | Th200_85Pln | 27            |
| SAC_Burl.10 | 13108.00003 | Barr Irrigators (0203837_I) | Burlington Canal<br>(0200802)                        | SA200_85Pln | 27            |

The following rules release any unused yield in the FRICO plans back to the river:

| Right ID    | Admin #     | Destination                | Account, Carrier, Return<br>Location (R), or % Split | Source      | Right<br>Type |
|-------------|-------------|----------------------------|------------------------------------------------------|-------------|---------------|
| BurSpill.87 | 13108.00009 | Burlington Canal (0200802) |                                                      | FB200_85PIn | 29            |
| BurSpill.90 | 13108.30009 | Burlington Canal (0200802) |                                                      | FB150_85Pln | 29            |

# 5.10.8.17.3 Henrylyn Irrigation District (HID) Operations

Prior to 2009 and the Water Court's decision in Case No. 02CW403, a portion of the 350 cfs direct flow right (the 150 cfs right plus any portion of the 200 cfs right that was not used above Barr Lake) was delivered to HID. In addition, HID owns a 300 cfs direct flow right that can be delivered below HID's aggregated reservoir for irrigation. FRICO and HID split these direct flow rights 50-50 pursuant to a 1921 Agreement. To simplify the model, the 300 cfs right is only delivered to meet HID's irrigation demand. The following rules release water from the HID150\_85Pln for the 150 cfs right to meet HID's irrigation demand below its aggregated reservoir (0200805\_I) and FRICO's irrigation demand below Barr Lake (0203837\_I).

| Right ID   | Admin #     | Destination                        | Account, Carrier, Return<br>Location (R), or % Split | Source      | Right<br>Type |
|------------|-------------|------------------------------------|------------------------------------------------------|-------------|---------------|
| HIDBurl.01 | 13108.00002 | Henrylyn Irrigators<br>(0200805_I) | Burlington Canal<br>(0200802)                        | HID15085Pln | 27            |
| HIDBurl.02 | 13108.30000 | Barr Irrigators (0203837_I)        | Burlington Canal<br>(0200802)                        | HID15085Pln | 27            |

The following rule diverts water attributable to the HID direct right for 300 cfs right to meet HID's irrigation demand below its aggregated reservoir.

| Right ID   | Admin #     | Destination                 | Account, Carrier, Return<br>Location (R), or % Split              | Source     | Right<br>Type |
|------------|-------------|-----------------------------|-------------------------------------------------------------------|------------|---------------|
| HIDBurl.03 | 21150.00000 | Barr Irrigators (0203837_I) | Burlington Canal<br>(0200802)<br>Denver Hudson Canal<br>(0200805) | 0200802.08 | 27            |

These rules are operated before water is released from Barr Lake or HID's aggregated reservoir.

The following two rules release Thornton and SACWSD's excess water to HID for delivery below HID's aggregated reservoir. Only excess water diverted under the 200 cfs and 150 cfs rights can be delivered to HID, therefore, rules were not included for the 10.28, 7.987 and 6 cfs rights. These rules are only active through 2009, since these water rights can no longer be delivered below Barr Lake pursuant to the Water Court's ruling in Case No. 02CW403. A 20% ditch loss was included for losses between the headgate and Barr Lake and an additional 30% ditch loss was included for the Denver-Hudson Canal from the bifurcation to HID's aggregated reservoir. Losses associated with HID's irrigation demands do not include ditch losses from the headgate to Barr Lake or HID's aggregated reservoir.

| Right ID    | Admin #     | Destination                 | Account, Carrier, Return<br>Location (R), or % Split              | Source      | Right<br>Type |
|-------------|-------------|-----------------------------|-------------------------------------------------------------------|-------------|---------------|
| ThBurl.26   | 51864.50692 | Barr Irrigators (0203837_I) | Burlington Canal<br>(0200802)<br>Denver Hudson Canal<br>(0200805) | Th200_85Pln | 27            |
| SAC_Burl.11 | 13108.00004 | Barr Irrigators (0203837_I) | Burlington Canal<br>(0200802)<br>Denver Hudson Canal<br>(0200805) | SA200_85Pln | 27            |

The following rules release any unused yield in the HID plans back to the river:

| Right ID    | Admin #     | Destination                | Account, Carrier, Return<br>Location (R), or % Split | Source      | Right<br>Type |
|-------------|-------------|----------------------------|------------------------------------------------------|-------------|---------------|
| BurSpill.88 | 13108.00009 | Burlington Canal (0200802) |                                                      | HID20085PIn | 29            |
| BurSpill.91 | 13108.30009 | Burlington Canal (0200802) |                                                      | HID15085Pln | 29            |

### 5.10.8.17.4 Barr Lake Operations

Burlington and FRICO own 1885 and 1909 storage water rights for Barr Lake. Water stored in Barr Lake is used to supplement diversions under the direct flow water rights. In addition, FRICO owns a 1909 refill water right, which is typically used to refill Barr Lake during the fall when it's in priority. The following rules divert water under the 1885 storage, 1909 storage and 1909 refill rights to fill Barr Lake. Water is carried to Barr Lake via the Burlington Ditch.

| Right ID | Admin #     | Destination                          | Account, Carrier,<br>Return Location (R), or<br>% Split | Source     | Right<br>Type |
|----------|-------------|--------------------------------------|---------------------------------------------------------|------------|---------------|
| Barr.01  | 13108.00000 | Barr Lake (0203837, Acct<br>1)       | Burlington Canal<br>(0200802)                           | 0203837.01 | 45            |
| Barr.02  | 21562.00000 | Barr Lake (0203837, Acct<br>2)       | Burlington Canal<br>(0200802)                           | 0203837.02 | 45            |
| Barr.03  | 21562.00001 | Barr Lake (0203837, Acct<br>1 and 2) | Burlington Canal<br>(0200802)                           | 0203837.03 | 45            |

Separate accounts were included in Barr Lake for the senior 1885 storage right and the more junior 1909 storage right. Therefore, the following rule is used to book any water remaining in the 1885 account to the 1909 account at the end of the irrigation season on October 31<sup>st</sup>. This rule is necessary to maximize diversions under the 1885 storage water right.

| Right ID | Admin #     | Destination                    | Account, Carrier,<br>Return Location (R), or<br>% Split | Source                            | Right<br>Type |
|----------|-------------|--------------------------------|---------------------------------------------------------|-----------------------------------|---------------|
| Barr.04  | 99999.00000 | Barr Lake (0203837, Acct<br>2) |                                                         | Barr Lake<br>(0203837, Acct<br>1) | 6             |

Releases from Barr Lake are made to meet irrigation demands below Barr Lake after the storage water rights and direct flow water rights are operated. The following rules release water from the 1885 and 1909 storage account in Barr Lake to meet the irrigation demand below Barr Lake.

| Right ID   | Admin #     | Destination                 | Account, Carrier, Return<br>Location (R), or % Split | Source                       | Right<br>Type |
|------------|-------------|-----------------------------|------------------------------------------------------|------------------------------|---------------|
| BarrRel.03 | 21562.00001 | Barr Irrigators (0203837_I) |                                                      | Barr Lake<br>(0203837), Acct | 3             |

| Right ID   | Admin #     | Destination                 | Account, Carrier, Return<br>Location (R), or % Split | Source                            | Right<br>Type |
|------------|-------------|-----------------------------|------------------------------------------------------|-----------------------------------|---------------|
|            |             |                             |                                                      | 1                                 |               |
| BarrRel.04 | 21562.00001 | Barr Irrigators (0203837_I) |                                                      | Barr Lake<br>(0203837), Acct<br>2 | 3             |

### 5.10.8.17.5 HID Aggregated Reservoir Operations

HID owns four storage water rights that are used to fill Horse Creek and Prospect Reservoirs. Water stored in HID's aggregated reservoir is used to supplement diversions under the direct flow water rights. The following rules divert water under the four storage water rights to fill HID's aggregated reservoir. Water is carried via the Burlington Ditch to the bifurcation and then via the Denver-Hudson to the aggregated reservoir.

| Right ID  | Admin #     | Destination                                    | Account, Carrier, Return<br>Location (R), or % Split              | Source     | Right<br>Type |
|-----------|-------------|------------------------------------------------|-------------------------------------------------------------------|------------|---------------|
| HenLyn.01 | 22239.00000 | Henrylyn Reservoir System<br>(0103592, Acct 1) | Burlington Canal<br>(0200802)<br>Denver Hudson Canal<br>(0200805) | 0103592.01 | 45            |
| HenLyn.02 | 22355.00000 | Henrylyn Reservoir System<br>(0103592, Acct 1) | Burlington Canal<br>(0200802)<br>Denver Hudson Canal<br>(0200805) | 0103592.02 | 45            |
| HenLyn.03 | 26498.00000 | Henrylyn Reservoir System<br>(0103592, Acct 1) | Burlington Canal<br>(0200802)<br>Denver Hudson Canal<br>(0200805) | 0103592.03 | 45            |
| HenLyn.04 | 26498.00000 | Henrylyn Reservoir System<br>(0103592, Acct 1) | Burlington Canal<br>(0200802)<br>Denver Hudson Canal<br>(0200805) | 0103592.04 | 45            |

The following rule releases water from HID's aggregated reservoir to meet the irrigation demand below the reservoir after HID's storage rights and direct flow rights are operate.

| Right ID  | Admin #     | Destination                        | Account, Carrier, Return<br>Location (R), or % Split | Source                                               | Right<br>Type |
|-----------|-------------|------------------------------------|------------------------------------------------------|------------------------------------------------------|---------------|
| HIDRel.05 | 26498.00001 | Henrylyn Irrigators<br>(0200805_1) |                                                      | Henrylyn<br>Reservoir System<br>(0103592), Acct<br>1 | 3             |

# 5.10.8.17.6 Metro Pumps Operations

The Metro Pumps (Metro\_Pumps) were historically used to provide additional supplies to fill Barr Lake, Horse Creek and Prospect Reservoirs during the non-irrigation season. Water from the Metro WWTP was pumped into the Burlington Canal and delivered to storage. Pursuant to the 1921 Agreement, water delivered to the Burlington Canal from the Metro Pumps was split 50-50 between FRICO/Burlington and HID. The following rule diverts effluent from the Metro WWTP at the Metro Pumps and tracks those diversions in the Metro Pumps plan, MetPumpsPln.

| Right ID | Admin # | Destination                                  | Account, Carrier, Return<br>Location (R), or % Split | Source      | Right<br>Type |
|----------|---------|----------------------------------------------|------------------------------------------------------|-------------|---------------|
| Metro.01 | 1.00000 | Metro Pumps Hist<br>Diversions (Metro_Pumps) |                                                      | MetPumps.01 | 25            |

The following two rules release water from the Metro Pumps plan, MetPumpsPln, to the Burlington Ditch where it is delivered either to Barr Lake or HID's aggregated reservoir

| Right ID | Admin # | Destination                            | Account, Carrier, Return<br>Location (R), or % Split                                                      | Source      | Right<br>Type |
|----------|---------|----------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------|---------------|
| Metro.02 | 1.00001 | Barr Lake (0203837)                    | Metro Pumps Pipeline<br>(MetPump_PL)<br>Burlington Canal<br>(0200802)                                     | MetPumpsPln | 27            |
| Metro.03 | 1.00002 | Henrylyn Reservoir System<br>(0103592) | Metro Pumps Pipeline<br>(MetPump_PL)<br>Burlington Canal<br>(0200802)<br>Denver Hudson Canal<br>(0200805) | MetPumpsPln | 27            |

### 5.10.8.18 Milton Lake System

All of the components in the FRICO–Milton Lake Division except for the Evans No. 2 Ditch are owned and operated by FRICO. Milton Lake is filled via the Platte Valley Canal (0200817), which diverts from the east side of the South Platte River, northwest of the Town of Hudson. The Platte Valley Canal shares this headgate with the Evans No. 2 Ditch (see Figure 5-6). Platte Valley Canal water is carried through the Evans No. 2 Ditch from the headgate for about 10 miles at which point the ditch bifurcates to produce the Platte Valley Canal and the remainder of the Evans No. 2 Ditch. After the bifurcation, the Platte Valley Canal continues for approximately 10 miles, running parallel to Evan's Ditch No. 2, and feeds Milton Lake. Aside from the shared headgate, the Evans No. 2 system is operated completely independent from the FRICO system.

Milton Lake (0203876) is an off-channel reservoir located south of the Town of Hudson. Milton Lake and the irrigated lands within the FRICO–Milton Division are located in Beebe Draw and the Box Elder Creek drainage basins. Water is conveyed to Milton Lake through the Platte Valley Canal and from the Beebe Canal. The Beebe Canal extends from Barr Lake to Milton Lake. Most of the return flows in that area are collected in the Beebe Canal. Water from Beebe Canal consists of seepage collected from Barr Lake, return flows intercepted by the canal from irrigation in the Beebe Draw Basin, and South Platte River water diverted at the Burlington Ditch headgate and conveyed through Barr to the Beebe Canal. This operation is not included in the SPDSS model since it is infrequent. Water is released from Milton Lake to the Gilmore Ditch. All of the FRICO – Milton irrigation demands are located below Milton Lake. FRICO–Milton irrigation demands (0203876\_I) are met with direct flow diversions and releases from Milton Lake.

FRICO owns a 1909 direct flow water right for 510 cfs that is used to meet irrigation demands below Milton Lake. This right is relatively junior, therefore, releases from Milton Lake are frequently used to supplement this right. FRICO owns a 1909 storage right for 26,773 ac-ft to fill Milton Lake. The following rule diverts water to storage in Milton Lake via the Platte Valley Canal. Water is carried via the Platte Valley Canal and a 20% ditch loss is assessed from the headgate to Milton Lake.

| Right ID  | Admin #     | Destination                           | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|-----------|-------------|---------------------------------------|------------------------------------------------------|------------|---------------|
| Milton.01 | 21698.00000 | Milton Reservoir<br>(0203876, Acct 1) | Platte Valley/Evans No2<br>(0200817)                 | 0203876.01 | 45            |

The following rule diverts water from the South Platte River under the direct flow right to meet irrigation demands below Milton Lake. This rule is operated before water is released from the lake.

| Right ID  | Admin #     | Destination                      | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|-----------|-------------|----------------------------------|------------------------------------------------------|------------|---------------|
| MilDir.01 | 21698.00001 | Milton Irrigators<br>(0203876_1) | Platte Valley/Evans No2<br>(0200817)                 | 0200817.02 | 27            |

The following rule releases water from storage in Milton Lake to meet irrigation demands below the lake.

| Right ID  | Admin #     | Destination                      | Account, Carrier, Return<br>Location (R), or % Split | Source                                   | Right<br>Type |
|-----------|-------------|----------------------------------|------------------------------------------------------|------------------------------------------|---------------|
| Milton.02 | 21698.00002 | Milton Irrigators<br>(0203876_1) |                                                      | Milton Reservoir<br>(0203876), Acct<br>1 | 3             |

### 5.10.8.19 Lower Latham System

The Lower Latham Ditch and Lower Latham Reservoir are owned by the Lower Latham Ditch Company and Lower Latham Reservoir Company. These companies provide irrigation supplies to lands located south of the South Platte River near Kersey and east of LaSalle in Weld County, Colorado. Lower Latham Reservoir (0203858) is located 2.5 miles east of LaSalle. Water is conveyed to the reservoir for storage through the Union Ditch (0200828) under a contract agreement with the Union Ditch Company. Water is also conveyed to the reservoir through the Morrison Seepage Ditch. The Morrison Seepage Ditch is not included in the SPDSS model. Storage water is released from the reservoir to the Lower Latham Ditch (0200834) for irrigation. The headgate for Lower Latham Ditch is on the east side of the South Platte River, between the headgates of Godfrey Ditch and Patterson Ditch.

### Lower Latham System Operations

The Lower Latham Ditch Company owns several direct flow water rights that are used to meet irrigation demands under the Lower Latham Ditch (0200834\_I). Releases from Lower Latham Reservoir are used to supplement these rights. The Lower Latham Reservoir Company owns three storage rights for Lower Latham Reservoir that are used to fill the reservoir. The following rules divert water to storage in Lower Latham Reservoir via the Union Ditch. One rule is included for each storage right. Water is carried via the Union Ditch and a 30% ditch loss is assessed from the headgate to Lower Latham Reservoir.

| Right ID  | Admin #     | Destination                                 | Account, Carrier,<br>Return Location (R), or<br>% Split | Source     | Right<br>Type |
|-----------|-------------|---------------------------------------------|---------------------------------------------------------|------------|---------------|
| Latham.01 | 17706.00000 | Lower Latham Reservoir<br>(0203858, Acct 1) | Union Ditch (0200828)                                   | 0203858.01 | 45            |
| Latham.02 | 18437.00000 | Lower Latham Reservoir<br>(0203858, Acct 1) | Union Ditch (0200828)                                   | 0203858.02 | 45            |
| Latham.03 | 25050.23959 | Lower Latham Reservoir<br>(0203858, Acct 1) | Union Ditch (0200828)                                   | 0203858.03 | 45            |

The following rules divert water from the South Platte River at the Lower Latham Ditch under the direct flow rights to meet irrigation demands under the Lower Latham Ditch. One rule is included for each direct flow right. These rules operate before water is released from the reservoir.

| Right ID  | Admin #     | Destination                            | Account, Carrier,<br>Return Location (R), or<br>% Split | Source     | Right<br>Type |
|-----------|-------------|----------------------------------------|---------------------------------------------------------|------------|---------------|
| Latham.04 | 7072.00000  | Lower Latham Irrigators<br>(0200834_1) | Lower Latham Ditch<br>(0200834)                         | 0200834.01 | 45            |
| Latham.05 | 9112.00000  | Lower Latham Irrigators (0200834_1)    | Lower Latham Ditch<br>(0200834)                         | 0200834.02 | 45            |
| Latham.06 | 10180.00000 | Lower Latham Irrigators (0200834_1)    | Lower Latham Ditch<br>(0200834)                         | 0200834.03 | 45            |
| Latham.07 | 11620.00000 | Lower Latham Irrigators<br>(0200834_1) | Lower Latham Ditch<br>(0200834)                         | 0200834.04 | 45            |

The following rule releases water from storage in Lower Latham Reservoir to meet irrigation demands under the Lower Latham Ditch.

| Right ID  | Admin #     | Destination                            | Account, Carrier,<br>Return Location (R), or<br>% Split | Source                                            | Right<br>Type |
|-----------|-------------|----------------------------------------|---------------------------------------------------------|---------------------------------------------------|---------------|
| Latham.08 | 25050.23960 | Lower Latham Irrigators<br>(0200834_I) |                                                         | Lower Latham<br>Reservoir<br>(0203858, Acct<br>1) | 3             |

# 5.10.8.20 Remaining Ditch Credits to Irrigators

The following rules are used to release any unused ditch credits back to the ditch irrigators.

# Farmer's Highline Canal

| Right ID | Admin #     | Destination                                      | Account, Carrier, Return<br>Location (R), or % Split | Source                                              | Right<br>Type |
|----------|-------------|--------------------------------------------------|------------------------------------------------------|-----------------------------------------------------|---------------|
| FHL.12   | 13240.00000 | Farmers Highline Irrigation<br>Plan (FHL_IrrPln) | 100%, 105,000AF limit                                | 0700569.11                                          | 26            |
| FHL.13   | 16549.00000 | Farmers Highline Irrigation<br>Plan (FHL_IrrPln) | 100%, 198,000AF limit                                | 0700569.12                                          | 26            |
| FHL.14   | 16549.00001 | FHL Irrigators (0700569_I)                       | Farmers Highline Canal<br>(0700569)                  | Farmers Highline<br>Irrigation Plan<br>(FHL_IrrPln) | 27            |

#### Wannamaker Ditch

| Wann.06 | 6884.00002 | Wannamaker Ditch       | Wannamaker Ditch | Wannamaker      | 27 |
|---------|------------|------------------------|------------------|-----------------|----|
|         |            | Irrigators (0700698_I) | (0700698)        | Irrigation Plan |    |
|         |            |                        |                  | (WannIrrPln)    |    |

### Lee, Stewart and Eskins (LSE) Ditch

| Right ID | Admin #    | Destination                         | Account, Carrier, Return<br>Location (R), or % Split | Source                         | Right<br>Type |
|----------|------------|-------------------------------------|------------------------------------------------------|--------------------------------|---------------|
| LSE.09a  | 7773.00001 | LSE Irrigation Plan<br>(LSE_IrrPln) | 100%                                                 | LSE Split Plan<br>(LSE_SplPln) | 46            |

### Rocky Mountain Ditch

| Right ID  | Admin #     | Destination               | Account, Carrier, Return | Source          | Right |
|-----------|-------------|---------------------------|--------------------------|-----------------|-------|
|           |             |                           | Location (R), or % Split |                 | Туре  |
| RkyMtn.01 | 4180.00000  | Rocky Mountain Irrigators | 100%, Rocky Mountain     | 0700652.01      | 45    |
|           |             | (0700652_1)               | Ditch (0700652)          |                 |       |
| RkyMtn.09 | 10302.00002 | Rocky Mountain Irrigators | Rocky Mountain Ditch     | Rocky Mountain  | 27    |
|           |             | (0700652_1)               | (0700652)                | Irrigation Plan |       |
|           |             |                           |                          | (RM_IrrPln)     |       |

### Fisher Ditch

| Right ID | Admin #    | Destination                            | Account, Carrier, Return<br>Location (R), or % Split | Source                                 | Right<br>Type |
|----------|------------|----------------------------------------|------------------------------------------------------|----------------------------------------|---------------|
| Fish.11  | 4198.00002 | Fisher Ditch Irrigators<br>(0700570_I) | Fisher Ditch (0700570)                               | Fisher Irrigation<br>Plan (FishIrrPln) | 27            |

# Plt Valley and Union Ditch

| Right ID     | Admin #     | Destination                           | Account, Carrier,<br>Return Location (R), or<br>% Split | Source     | Right<br>Type |
|--------------|-------------|---------------------------------------|---------------------------------------------------------|------------|---------------|
| PltValley.01 | 7948.00000  | Evans No. 2 Irrigators<br>(0200817_1) | Platte Valley/Evans<br>No. 2 (0200817)                  | 0200817.01 | 45            |
| PltValley.02 | 21698.00000 | Evans No. 2 Irrigators<br>(0200817_1) | Platte Valley/Evans<br>No. 2 (0200817)                  | 0200817.02 | 45            |
| PltValley.03 | 25050.00000 | Evans No. 2 Irrigators<br>(0200817_1) | Platte Valley/Evans<br>No. 2 (0200817)                  | 0200817.03 | 45            |
| Union.01     | 8670.00000  | Union Ditch Irrigators<br>(0200828_1) | Union Ditch (0200828)                                   | 0200828.01 | 45            |
| Union.02     | 9075.00000  | Union Ditch Irrigators<br>(0200828_1) | Union Ditch (0200828)                                   | 0200828.02 | 45            |
| Union.03     | 11629.00000 | Union Ditch Irrigators<br>(0200828_1) | Union Ditch (0200828)                                   | 0200828.03 | 45            |

#### Brighton Ditch

| Right ID    | Admin #     | Destination         | Account, Carrier, Return | Source     | Right |
|-------------|-------------|---------------------|--------------------------|------------|-------|
|             |             |                     | Location (R), or % Split |            | Туре  |
| BrightD.01  | 5083.00000  | BriSplPln           | 100%                     | 0200810.01 | 26    |
| BrightD.02  | 7975.00000  | BriSplPln           | 100%                     | 0200810.02 | 26    |
| BrightD.03  | 7975.00002  | BrilrrPln           | 93.97%                   | BriSplPln  | 46    |
|             |             | SAC_BriPln          | 5.53%                    |            |       |
|             |             | CenBriPln           | 0.50%                    |            |       |
| BrightD.04  | 7975.00003  | Brighton Irrigation | Brighton Ditch           | BrilrrPln  | 27    |
|             |             | (0200810_I)         | (0200810)                |            |       |
| SACBri.01   | 55498.90001 | Brighton Irrigation | Brighton Ditch           | SAC_BriPln | 27    |
|             |             | (0200810_I)         | (0200810)                |            |       |
| CCWCDBri.01 | 62000.99999 | Brighton Irrigation | Brighton Ditch           | CenBriPln  | 27    |
|             |             | (0200810_I)         | (0200810)                |            |       |

Luptom Bottom and Lupton Meadows

| Right ID   | Admin #      | Destination                                | Account, Carrier, Return<br>Location (R), or % Split | Source    | Right<br>Type |
|------------|--------------|--------------------------------------------|------------------------------------------------------|-----------|---------------|
| OpLBIrr.01 | 8659.00003   | Lupton Bottom<br>Irrigation<br>(0200812_I) | Lupton Bottom Ditch<br>(0200812)                     | LB_IrrPIn | 27            |
| SACLB.01   | 55498.90002  | Lupton Bottom<br>Irrigation<br>(0200812_I) | Lupton Bottom Ditch<br>(0200812)                     | SAC_LBPIn | 27            |
| SACLM.01   | 55498.90003  | Lupton Bottom<br>Irrigation<br>(0200812_I) | Lupton Bottom Ditch<br>(0200812)                     | SAC_LMPIn | 27            |
| CCWCDLB.01 | 64000.999999 | Lupton Bottom<br>Irrigation<br>(0200812_I) | Lupton Bottom Ditch<br>(0200812)                     | CenLBPIn  | 27            |
| CCWCDLM.01 | 61000.99999  | Lupton Bottom<br>Irrigation<br>(0200812_1) | Lupton Bottom Ditch<br>(0200812)                     | CenLMPIn  | 27            |
| PSCoLB.11  | 8659.00008   | Lupton Bottom<br>Irrigation<br>(0200812_I) | Lupton Bottom Ditch<br>(0200812)                     | PSCoLBPIn | 27            |
| PSCoLM.11  | 7739.00008   | Lupton Bottom<br>Irrigation<br>(0200812_1) | Lupton Bottom Ditch<br>(0200812)                     | PSCoLMPIn | 27            |

# Platteville Ditch

| Right ID   | Admin #     | Destination                           | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|------------|-------------|---------------------------------------|------------------------------------------------------|------------|---------------|
| Platvl.01  | 4565.00000  | PVSplPIn                              | 100%                                                 | 0200813.01 | 26            |
| Platvl.02  | 7671.00000  | PVSplPIn                              | 100%                                                 | 0200813.02 | 26            |
| Platvl.03  | 8689.00000  | PVSplPIn                              | 100%                                                 | 0200813.03 | 26            |
| Platvl.04  | 8589.00002  | PV_IrrPIn<br>CenPVPIn                 | 97.8%<br>2.2%                                        | PVSplPIn   | 46            |
| Platvl.05  | 8589.00003  | Platteville Irrigation<br>(0200813_I) | Platteville Ditch<br>(0200813)                       | PV_IrrPln  | 27            |
| CCWCDPV.01 | 63000.99999 | Platteville Irrigation<br>(0200813_I) | Platteville Ditch<br>(0200813)                       | CenPVPIn   | 27            |

# Meadow Island No. 1 and No. 2 Ditch

| Right ID   | Admin #     | Destination             | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|------------|-------------|-------------------------|------------------------------------------------------|------------|---------------|
| MdwIsl1.01 | 5965.00000  | MI1SplPIn               | 100%                                                 | 0200821.01 | 26            |
| MdwIsl1.02 | 11807.00000 | MI1SplPIn               | 100%                                                 | 0200821.02 | 26            |
| Mdwlsl1.03 | 11807.00002 | MI1IrrPln<br>SAC_MI1Pln | 93.5%<br>6.5%                                        | MI1SplPln  | 46            |

| MdwIsl1.04 | 11807.00003 | Meadow Island No.<br>1 (0200821) |               | MI1IrrPIn   | 27 |
|------------|-------------|----------------------------------|---------------|-------------|----|
| SACMI1.01  | 55498.90005 | Meadow Island No.<br>1 (0200821) |               | SAC_MI1PIn  | 27 |
| Mdwlsl2.01 | 5967.00000  | M2SenSplPIn                      | 100%          | 0200822.01  | 26 |
| MdwIsl2.02 | 9597.00000  | M2SenSplPIn                      | 100%          | 0200822.02  | 26 |
| MdwIsl2.03 | 10215.00000 | M2JunSplPIn                      | 100%          | 0200822.03  | 26 |
| MdwIsl2.04 | 9597.00002  | MI2IrrPln<br>PSCoMI2Pln1         | 93.8%<br>6.2% | M2SenSplPIn | 46 |
| MdwIsl2.05 | 10215.00002 | MI2IrrPln<br>PSCoMI2Pln2         | 53.7<br>46.3  | M2JunSplPIn | 46 |
| MdwIsl2.06 | 10215.00003 | Meadow Island<br>No. 2 (0200822) |               | MI2IrrPIn   | 27 |
| PSCoMI2.01 | 9597.00008  | Meadow Island<br>No. 2 (0200822) |               | PSCoMI2PIn1 | 27 |
| PSCoMI2.02 | 10215.00008 | Meadow Island<br>No. 2 (0200822) |               | PSCoMI2PIn2 | 27 |

# Farmer's Independent Ditch

| Right ID   | Admin #     | Destination                                         | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|------------|-------------|-----------------------------------------------------|------------------------------------------------------|------------|---------------|
| FarmInd.01 | 5803.00000  | FarmSplPIn                                          | 100%                                                 | 0200824.01 | 26            |
| FarmInd.02 | 9821.00000  | FarmSplPIn                                          | 100%                                                 | 0200824.02 | 26            |
| FarmInd.03 | 9821.00002  | FarmIrrPln<br>CenFarmPln                            | 95.3%<br>4.7%                                        | FarmSplPIn | 46            |
| FarmInd.04 | 9821.00003  | Farmers<br>Independent<br>Irrigation<br>(0200824_1) | Farmers Indep Ditch<br>(0200824)                     | FarmIrrPln | 27            |
| CCWCDFI.02 | 65000.99999 | Farmers<br>Independent<br>Irrigation<br>(0200824_1) | Farmers Indep Ditch<br>(0200824)                     | CenFarmPln | 27            |

### Hewes Cook Ditch

| Right ID | Admin #    | Destination                             | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|----------|------------|-----------------------------------------|------------------------------------------------------|------------|---------------|
| Hewes.01 | 5969.00000 | Hewes Cook<br>Irrigation<br>(0200825_I) |                                                      | 0200825.01 | 11            |
| Hewes.02 | 7892.00000 | Hewes Cook<br>Irrigation<br>(0200825_I) |                                                      | 0200825.02 | 11            |

| Hewes.03 | 16097.00000 | Hewes Cook<br>Irrigation<br>(0200825_I) | 0200825.03 | 11 |
|----------|-------------|-----------------------------------------|------------|----|
| Hewes.04 | 5969.00000  | Hewes Cook<br>Irrigation<br>(0200825_I) | 0200825.05 | 11 |
| Hewes.05 | 7892.00000  | Hewes Cook<br>Irrigation<br>(0200825_I) | 0200825.06 | 11 |

# Highland Ditch

| Right ID    | Admin #     | Destination                       | Account, Carrier, Return<br>Location (R), or % Split | Source     | Right<br>Type |
|-------------|-------------|-----------------------------------|------------------------------------------------------|------------|---------------|
| Highland.01 | 7944.00000  | HighSplPIn                        | 100%                                                 | 0200837.01 | 26            |
| Highland.02 | 7944.00001  | HighIrrPln<br>CenHighPln          | 47.8%<br>52.2%                                       | HighSplPIn | 46            |
| Highland.03 | 7944.00002  | Highland Irrigatin<br>(0200837_I) | Highland Ditch<br>(0200837)                          | HighIrrPIn | 27            |
| CCWCDHi.01  | 80000.99999 | Highland Irrigatin<br>(0200837_I) | Highland Ditch<br>(0200837)                          | CenHighPln | 27            |
| Highland.04 | 99999.00000 | Highland Irrigatin<br>(0200837_I) | Highland Ditch<br>(0200837)                          | 0200837.02 | 11            |

# 5.10.8.21 Remaining Releases

The following rules are to release any remaining, unallocated plan water back to the river.

| Right ID    | Admin # | Destination                          | Account, Carrier,<br>Return Location (R), or<br>% Split | Source      | Right<br>Type |
|-------------|---------|--------------------------------------|---------------------------------------------------------|-------------|---------------|
| PlnSpill.71 | 0.99998 | Boreas Pass Ditch<br>(2304611)       |                                                         | Boreas Pln  | 29            |
| PlnSpill.71 | 1.00009 | Boreas Pass Ditch<br>(2304611)       |                                                         | Boreas_C    | 29            |
| PlnSpill.72 | 0.99998 | Berthoud Pass<br>Diversion (0704625) |                                                         | BerthoudPln | 29            |
| PlnSpill.72 | 1.00009 | Berthoud Pass<br>Diversion (0704625) |                                                         | Berthoud_C  | 29            |
| PlnSpill.73 | 0.99998 | Homestake Pipeline<br>(HOMSPICO)     |                                                         | HomestkPln  | 29            |
| PlnSpill.73 | 1.00009 | Homestake Pipeline<br>(HOMSPICO)     |                                                         | Homestk_C   | 29            |
| PlnSpill.74 | 0.99998 | Gumlick Tunnel<br>(0704650)          |                                                         | GumlickPln  | 29            |
| PlnSpill.74 | 1.00009 | Gumlick Tunnel<br>(0704650)          |                                                         | Gumlick_C   | 29            |

| Right ID    | Admin #     | Destination                                               | Account, Carrier,<br>Return Location (R), or<br>% Split | Source      | Right<br>Type |
|-------------|-------------|-----------------------------------------------------------|---------------------------------------------------------|-------------|---------------|
| PlnSpill.75 | 0.99998     | Roberts Tunnel<br>(8000653)                               |                                                         | RobTunPIn   | 29            |
| PlnSpill.75 | 26000.00009 | Roberts Tunnel<br>(8000653)                               |                                                         | RobTun_C    | 29            |
| PlnSpill.76 | 0.99998     | Straight Creek Tunnel<br>(0700903)                        |                                                         | StratCkPIn  | 29            |
| PlnSpill.76 | 46171.00005 | Straight Creek Tunnel<br>(0700903)                        |                                                         | StratCk_C   | 29            |
| PlnSpill.77 | 0.99998     | Vidler Tunnel<br>(0704626)                                |                                                         | VidlerPln   | 29            |
| PlnSpill.77 | 48213.00009 | Vidler Tunnel<br>(0704626)                                |                                                         | Vidler_C    | 29            |
| PlnSpill.78 | 54055.00002 | Moffat Import<br>(06_MOF_IMP)                             |                                                         | 06_MOF_ACC  | 29            |
| PlnSpill.79 | 1.00009     | Martson WTP<br>(0901700)                                  |                                                         | BearCkPln   | 29            |
| PlnSpill.90 | 1.00009     | (WD2 Agg Wells 4)<br>02_AWP004                            |                                                         | SandHillPIn | 29            |
| SPRAurSp.71 | 18774.00009 | Antero Reservoir<br>(2303904)                             |                                                         | 2302900_Pln | 29            |
| SPRAurSp.72 | 14537.00009 | Harstel Computed<br>ADMIN Gage<br>(2302922)               |                                                         | 2302901_Pln | 29            |
| SPRAurSp.73 | 23153.00009 | South Platte above<br>Spinney Mtn Admin<br>Gage (2302903) |                                                         | 2302902_Pln | 29            |
| SPRAurSp.74 | 12707.00009 | WD23 Upper Agg<br>Muni Inside Use<br>(23 AMP001 I)        |                                                         | 2302903_Pln | 29            |
| SPRAurSp.75 | 9983.00009  | Fourmile Ck nr Harstel<br>Admin Gage<br>(2302901)         |                                                         | 2302904_Pln | 29            |
| SPRAurSp.76 | 4565.00009  | Middle Fork SPR at<br>Santa Maria Admin<br>Gage (2302902) |                                                         | 2302911_Pln | 29            |
| SPRAurSp.77 | 10774.00009 | Middle Fork SPR ISF<br>(2302148 Dwn)                      |                                                         | 2302912_Pln | 29            |
| SPRAurSp.78 | 11867.00009 | Middle Fork SPR at<br>Santa Maria Admin<br>Gage (2302902) |                                                         | 2302913_Pln | 29            |
| TarAurSp.71 | 23153.00009 | Petrie Ditch (2300902)                                    |                                                         | 2302906_PIn | 29            |
| TarAurSp.72 | 23153.00009 | Taylor Ditch (2300991)                                    |                                                         | 2302907_Pln | 29            |
| TarAurSp.73 | 23153.00009 | Jefferson Ck blw<br>Snyder Admin Gage<br>(2302917)        |                                                         | 2302908_Pln | 29            |
| TarAurSp.74 | 23153.00009 | Holst Ditch 2<br>(2300922)                                |                                                         | 2302909_Pln | 29            |

| Right ID    | Admin #     | Destination                                         | Account, Carrier,<br>Return Location (R), or<br>% Split | Source      | Right<br>Type |
|-------------|-------------|-----------------------------------------------------|---------------------------------------------------------|-------------|---------------|
| TarAurSp.75 | 23153.00009 | Jefferson Ck blw<br>Snyder Admin Gage<br>(2302917)  |                                                         | 2302910_Pln | 29            |
| TarAurSp.76 | 23153.00009 | Michigan abv Jefferson<br>Admin Gage<br>(2302907)   |                                                         | 2302914_Pln | 29            |
| TarAurSp.77 | 23153.00009 | Tarryall at Borden<br>Ditch Admin Gage<br>(2302909) |                                                         | 2302915_Pln | 29            |
| TarAurSp.78 | 23153.00009 | Michigan abv Jefferson<br>Admin Gage<br>(2302907)   |                                                         | 2302916_Pln | 29            |
| TarAurSp.79 | 23153.00009 | Jefferson Ck ISF<br>(2302116_Dwn)                   |                                                         | 2302917_Pln | 29            |
| TarAurSp.80 | 23153.00009 | Petrie Ditch (2300902)                              |                                                         | 2302918_Pln | 29            |
| TarySpil.71 | 90000.00000 | Holst Packerr Ditch<br>(2300923)                    |                                                         | TaryTempPIn | 29            |
| AurPlnSp.71 | 6637.00009  | Aurora Intake<br>(0801001)                          |                                                         | AurIntPln1  | 29            |
| AurPlnSp.72 | 6637.00009  | Aurora Intake<br>(0801001)                          |                                                         | AurIntPln2  | 29            |
| AurPlnSp.73 | 50029.00005 | Aurora Intake<br>(0801001)                          |                                                         | AurIntPln3  | 29            |
| DenPlnSp.71 | 4184.00009  | Beery Ditch (2302905)                               |                                                         | 2302201     | 29            |
| DenPlnSp.73 | 22254.00009 | Denver Conduit 20<br>(0801002_D)                    |                                                         | Cnd20DirPln | 29            |
| DenPlnSp.72 | 57000.00009 | Denver Conduit 20<br>(0801002_D)                    |                                                         | Cond20Pln   | 29            |
| FHLSpill.72 | 16549.00009 | FHL Canal (0700569)                                 |                                                         | FHL_IrrPln  | 29            |
| FHLSpill.75 | 16549.00009 | FHL Canal (0700569)                                 |                                                         | ThFHLPIn    | 29            |
| FHLSpill.76 | 16549.00009 | FHL Canal (0700569)                                 |                                                         | WestyFHLPIn | 29            |
| FshSpill.71 | 4198.00009  | Fisher Ditch (0700570)                              |                                                         | FishSplPln  | 29            |
| FshSpill.72 | 4198.00009  | Fisher Ditch (0700570)                              |                                                         | FishIrrPln  | 29            |
| FshSpill.73 | 4198.00009  | Fisher Ditch (0700570)                              |                                                         | PSCoFishPln | 29            |
| FshSpill.74 | 55835.00009 | Kershaw Ditch<br>(0700597)                          |                                                         | ThFishPln   | 29            |
| KerSpill.76 | 50350.00009 | Kershaw Ditch<br>(0700597)                          |                                                         | ThKerPln    | 29            |
| LSESpill.77 | 50711.00009 | LSE Ditch (0700601)                                 |                                                         | ConM_LS2PIn | 29            |
| RkySpill.72 | 10302.00009 | LSE Ditch (0700601)                                 |                                                         | RM_IrrPln   | 29            |
| RkySpill.73 | 10302.00009 | LSE Ditch (0700601)                                 |                                                         | ConM_RM_PIn | 29            |
| RJSpill.71  | 10288.00009 | Reno Juchem Ditch<br>(0700647)                      |                                                         | RJ_SplPIn   | 29            |

| Right ID    | Admin #     | Destination                            | Account, Carrier,<br>Return Location (R), or<br>% Split | Source       | Right<br>Type |
|-------------|-------------|----------------------------------------|---------------------------------------------------------|--------------|---------------|
| RJSpill.72  | 10288.00009 | Reno Juchem Ditch<br>(0700647)         |                                                         | RJ_IrrPln    | 29            |
| RJSpill.73  | 10288.00009 | Reno Juchem Ditch<br>(0700647)         |                                                         | CoorsRJPIn   | 29            |
| SluSpill.71 | 8891.00009  | Slough Ditches<br>(0700527 D)          |                                                         | SluSplit1    | 29            |
| SluSpill.72 | 5625.00009  | Slough Ditches<br>(0700527 D)          |                                                         | SluSplit2    | 29            |
| SluSpill.73 | 5261.00009  | Slough Ditches<br>(0700527 D)          |                                                         | SluSplit3    | 29            |
| SluSpill.74 | 3788.00009  | Slough Ditches<br>(0700527 D)          |                                                         | SluSplit4    | 29            |
| SluSpill.75 | 5785.00009  | Slough Ditches<br>(0700527 D)          |                                                         | SluSplit5    | 29            |
| SluSpill.76 | 8891.00009  | Slough Ditches<br>(0700527 D)          |                                                         | ArvSluPln    | 29            |
| SluSpill.77 | 8891.00009  | Slough Ditches<br>(0700527_D)          |                                                         | CoorsSluPIn  | 29            |
| SluSpill.78 | 8891.00009  | Slough Ditches<br>(0700527 D)          |                                                         | GoldSluPIn   | 29            |
| SouthSid.71 | 8891.00009  | South Side Ditch<br>(0700669)          |                                                         | SouthSidPln  | 29            |
| WannSpil.73 | 6884.00009  | Wannamaker Ditch<br>(0700698)          |                                                         | WannIrrPln   | 29            |
| Stan.57     | 99999.00009 | Croke Canal (0700553)                  |                                                         | PhantomStand | 29            |
| Stan.58     | 99999.00009 | Croke Canal (0700553)                  |                                                         | PhantomStand | 29            |
| Stan.59     | 99999.00009 | Croke Canal (0700553)                  |                                                         | PhantomStand | 29            |
| Stan.60     | 99999.00009 | Croke Canal (0700553)                  |                                                         | PhantomStand | 29            |
| Stan.61     | 99999.00009 | Croke Canal (0700553)                  |                                                         | PhantomStand | 29            |
|             |             |                                        |                                                         |              |               |
| CosmcSpl.72 | 19054.99999 | (0700725)                              |                                                         | CosmcPIn2    | 29            |
| CosmcSpl.73 | 19055.00009 | Reno Juchem Ditch<br>(07006470         |                                                         | 0702318      | 29            |
| CosmcSpl.74 | 19055.00009 | Coors Guarantee<br>Water (CoorsGuaPln) |                                                         | Gold_WWTP    | 29            |
| CosmcSpl.75 | 19055.00009 | Croke Canal (0700553)                  |                                                         | CosCoExcPln  | 29            |
| CosmcSpl.80 | 19055.00009 | Croke Canal (0700553)                  |                                                         | CosGoExcPln  | 29            |
| BriSpill.71 | 7975.00009  | Brighton Ditch<br>(0200810)            |                                                         | BriSplPln    | 29            |
| BriSpill.72 | 7975.00009  | Brighton Ditch<br>(0200810)            |                                                         | BrilrrPln    | 29            |
| BriSpill.73 | 55498.90009 | Brighton Ditch<br>(0200810)            |                                                         | SAC_BriPln   | 29            |

| Right ID     | Admin #     | Destination                                       | Account, Carrier,<br>Return Location (R), or<br>% Split | Source      | Right<br>Type |
|--------------|-------------|---------------------------------------------------|---------------------------------------------------------|-------------|---------------|
| BriSpill.74  | 62001.00009 | Brighton Ditch<br>(0200810)                       |                                                         | CenBriPln   | 29            |
| BurSpill.72  | 5205.00009  | Burlington Canal<br>(0200802)                     |                                                         | SABur10Pln  | 29            |
| BurSpill.73  | 51864.50699 | Burlington Canal<br>(0200802)                     |                                                         | ThBur10Pln  | 29            |
| BurSpill.76  | 5205.00009  | Burlington Canal<br>(0200802)                     |                                                         | SASanstPln  | 29            |
| BurSpill.77  | 51864.50699 | Burlington Canal<br>(0200802)                     |                                                         | ThSanstPln  | 29            |
| BurSpill.80  | 5205.00009  | Burlington Canal<br>(0200802)                     |                                                         | SAWell7Pln  | 29            |
| BurSpill.81  | 51864.50699 | Burlington Canal<br>(0200802)                     |                                                         | ThWell7Pln  | 29            |
| BurSpill.84  | 13108.00009 | Burlington Canal<br>(0200802)                     |                                                         | SA200_85Pln | 29            |
| BurSpill.85  | 51864.50699 | Burlington Canal<br>(0200802)                     |                                                         | Th200_85Pln | 29            |
| FarmSpill.71 | 9821.00009  | Farmers Independent<br>Ditch (0200824)            |                                                         | FarmSplPIn  | 29            |
| FarmSpill.72 | 9821.00009  | Farmers Independent<br>Ditch (0200824)            |                                                         | FarmIrrPln  | 29            |
| FarmSpill.73 | 65001.00000 | Farmers Independent<br>Ditch (0200824)            |                                                         | CenFarmPln  | 29            |
| FGSpill.71   | 8857.00009  | Farmers & Gardeners<br>Ditch (0200800)            |                                                         | FandGSplPIn | 29            |
| FGSpill.72   | 8857.00009  | Farmers & Gardeners<br>Ditch (0200800)            |                                                         | FandGIrrPIn | 29            |
| FGSpill.73   | 8857.00009  | 0200800 Farmers &<br>Gardeners Ditch<br>(0200800) |                                                         | FandGIndPIn | 29            |
| FulSpill.71  | 10901.00009 | Fulton Ditch (0200808)                            |                                                         | FulSplPln   | 29            |
| FulSpill.72  | 10901.00009 | Fulton Ditch (0200808)                            |                                                         | FullrrPln   | 29            |
| FulSpill.73  | 55498.90009 | Fulton Ditch (0200808)                            |                                                         | SAC_FulPIn  | 29            |
| FulSpill.74  | 45655.70009 | Fulton Ditch (0200808)                            |                                                         | BriFulPIn   | 29            |
| FulSpill.76  | 66001.00009 | Fulton Ditch (0200808)                            |                                                         | CenFulPIn   | 29            |
| HewsSpill.71 | 90000.00009 | Hewes Cook<br>(0200825)                           |                                                         | HewesSplPIn | 29            |
| HewsSpill.72 | 90000.00009 | Hewes Cook<br>(0200825)                           |                                                         | HewesIrrPln | 29            |
| HewsSpill.73 | 90000.00009 | Hewes Cook<br>(0200825)                           |                                                         | PSCoHewsPln | 29            |
| HighSpill.71 | 7944.00009  | Highland Ditch<br>(0200837)                       |                                                         | HighSplPIn  | 29            |
| HighSpill.72 | 7944.00009  | Highland Ditch<br>(0200837)                       |                                                         | HighIrrPln  | 29            |

| Right ID     | Admin #     | Destination                      | Account, Carrier,<br>Return Location (R), or<br>% Split | Source      | Right<br>Type |
|--------------|-------------|----------------------------------|---------------------------------------------------------|-------------|---------------|
| HighSpill.73 | 80001.00000 | Highland Ditch<br>(0200837)      |                                                         | CenHighPln  | 29            |
| LB_Spill.71  | 8659.00009  | Lupton Bottom Ditch<br>(0200812) |                                                         | LB_SplPIn   | 29            |
| LB_Spill.72  | 8659.00009  | Lupton Bottom Ditch<br>(0200812) |                                                         | LB_IrrPln   | 29            |
| LB_Spill.74  | 8659.00009  | Lupton Bottom Ditch<br>(0200812) |                                                         | PSCoLBPIn   | 29            |
| LB_Spill.75  | 55498.90009 | Lupton Bottom Ditch<br>(0200812) |                                                         | SAC_LBPIn   | 29            |
| LB_Spill.76  | 64001.00000 | Lupton Bottom Ditch<br>(0200812) |                                                         | CenLBPIn    | 29            |
| LM_Spill.71  | 7739.00009  | Lupton Bottom Ditch<br>(0200812) |                                                         | LM_SplPln   | 29            |
| LM_Spill.72  | 55498.90009 | Lupton Bottom Ditch<br>(0200812) |                                                         | SAC_LMPIn   | 29            |
| LM_Spill.73  | 7739.00009  | Lupton Bottom Ditch<br>(0200812) |                                                         | PSCoLMPIn   | 29            |
| LM_Spill.74  | 61001.00000 | Lupton Bottom Ditch<br>(0200812) |                                                         | CenLMPIn    | 29            |
| MI1Spill.71  | 11807.00009 | Meadow Island No. 1<br>(0200821) |                                                         | MI1SplPIn   | 29            |
| MI1Spill.72  | 11807.00009 | Meadow Island No. 1<br>(0200821) |                                                         | MI1IrrPIn   | 29            |
| MI1Spill.73  | 55498.90009 | Meadow Island No. 1<br>(0200821) |                                                         | SAC_MI1PIn  | 29            |
| MI2Spill.71  | 9597.00009  | Meadow Island No. 2<br>(0200822) |                                                         | M2SenSplPln | 29            |
| MI2Spill.72  | 10215.00009 | Meadow Island No. 2<br>(0200822) |                                                         | M2JunSplPln | 29            |
| MI2Spill.73  | 10215.00009 | Meadow Island No. 2<br>(0200822) |                                                         | MI2IrrPln   | 29            |
| MI2Spill.74  | 9597.00009  | Meadow Island No. 2<br>(0200822) |                                                         | PSCoMI2PIn1 | 29            |
| MI2Spill.75  | 10215.00009 | Meadow Island No. 2<br>(0200822) |                                                         | PSCoMI2PIn2 | 29            |
| PVSpill.71   | 8589.00009  | Platteville Ditch<br>(0200813)   |                                                         | PVSplPIn    | 29            |
| PVSpill.72   | 8589.00009  | Platteville Ditch<br>(0200813)   |                                                         | PV_IrrPln   | 29            |
| PVSpill.73   | 63001.00000 | Platteville Ditch<br>(0200813)   |                                                         | CenPVPIn    | 29            |
| SN3Spill.71  | 8475.00009  | Section No. 3 Ditch<br>(0200830) |                                                         | SN3SplPIn   | 29            |
| SN3Spill.72  | 8475.00009  | Section No. 3 Ditch<br>(0200830) |                                                         | SN3IrrPln   | 29            |
| SN3Spill.73  | 70001.00000 | Section No. 3 Ditch<br>(0200830) |                                                         | CenSN3PIn   | 29            |

| Right ID    | Admin #     | Destination                          | Account, Carrier,<br>Return Location (R), or<br>% Split | Source      | Right<br>Type |
|-------------|-------------|--------------------------------------|---------------------------------------------------------|-------------|---------------|
| BiCitSpl.71 | 90000.00000 | Bi-City WWTP<br>(0802300)            |                                                         | 0802300DW   | 29            |
| MetPumps.71 | 1.00009     | Metro Pumps Pipeline<br>(MetPump_PL) |                                                         | MetPumpsPln | 29            |
| MetSpill.71 | 30000.00009 | Metro WWTP<br>(Metro_WWTP)           |                                                         | MetroDW     | 29            |
| MetSpill.72 | 90000.00000 | Metro WWTP<br>(Metro_WWTP)           |                                                         | MetroArv    | 29            |
| MetSpill.73 | 90000.00000 | Metro WWTP<br>(Metro_WWTP)           |                                                         | MetroAur    | 29            |
| MetSpill.75 | 90000.00000 | Metro WWTP<br>(Metro_WWTP)           |                                                         | MetroWesty  | 29            |
| MetSpill.76 | 90000.00000 | Metro WWTP<br>(Metro_WWTP)           |                                                         | MetroGold   | 29            |
| SndCkSpl.71 | 90000.00000 | Aurora Sand Ck WWTP<br>(SandCk_WWTP) |                                                         | AurSC_Reuse | 29            |

# 5.10.8.22 Transmountain Imports

The following rules are used to import transmountain supplies into the appropriate plan type for distribution and use throughout the model. A Type 35 rule is designed to import the water into a plan, however if the imported supplies are reusable, it was necessary to release them from the import plan and re-divert them into a changed water rights plan type using a Type 26 rule. From there, the imported supplies can be released to meet various demands. See specific user sections for more information on the uses of the supplies (e.g. City of Englewood for Boreas Pass uses).

| Right ID   | Admin # | Destination                             | Account, Carrier,<br>Return Location (R), or<br>% Split | Source                                   | Right<br>Type |
|------------|---------|-----------------------------------------|---------------------------------------------------------|------------------------------------------|---------------|
| Xbasin.01a | 0.99997 | Boreas Pass D Plan<br>(BoreasPln)       |                                                         | Boreas Pass<br>Ditch (2304611)           | 35            |
| Xbasin.01b | 0.99999 | Boreas Pass Carrier<br>(Boreas_C)       |                                                         | 2304611_C.01                             | 26            |
| Xbasin.02a | 0.99997 | Berthoud Pass Plan<br>(BerthoudPln)     |                                                         | Berthoud Pass<br>Diverrsion<br>(0704625) | 35            |
| Xbasin.02b | 0.99999 | Berthoud Pass Carrier<br>(Berthoud_C)   |                                                         | 0704625_C.01                             | 26            |
| Xbasin.03a | 0.99997 | Homestake Pipeline<br>Plan (HomestkPln) |                                                         | Homestake<br>Pipeline<br>(HOMSPICO)      | 35            |
| Xbasin.03b | 0.99999 | Homestake Carrier<br>(Homestk_C)        |                                                         | HOMSPICOC.01                             | 26            |
| Xbasin.04a | 0.99997 | Gumlick Tunnel Plan<br>(GumlickPln)     |                                                         | Berthoud Pass<br>Imports<br>(0704650)    | 35            |

| Right ID   | Admin # | Destination                                | Account, Carrier,<br>Return Location (R), or<br>% Split | Source                             | Right<br>Type |
|------------|---------|--------------------------------------------|---------------------------------------------------------|------------------------------------|---------------|
| Xbasin.04b | 0.99999 | Gumlick Carrier<br>(Gumlick_C)             |                                                         | 0704650_C.01                       | 26            |
| Xbasin.05a | 0.99997 | Roberts Tunnel Plan<br>(RobTunPln)         |                                                         | Roberts Tunnel<br>(8000653)        | 35            |
| Xbasin.05b | 0.99999 | Roberts Tunnel Carrier<br>(RobTun_C)       |                                                         | 8000653_C.01                       | 26            |
| Xbasin.06a | 0.99997 | Straight Creek Tunnel<br>Plan (StratCkPln) |                                                         | Straight Ck<br>Tunnel<br>(0700903) | 35            |
| Xbasin.06b | 0.99999 | Straight Creek Carrier<br>(StratCk_C)      |                                                         | 0700903_C.01                       | 26            |
| Xbasin.07a | 0.99997 | Vidler Tunnel Plan<br>(VidlerPln)          |                                                         | Vidler Tunnel<br>(0704626)         | 35            |
| Xbasin.07b | 0.99999 | Vidler Tunnel Carrier<br>(Vidler_C)        |                                                         | 0704626_C.01                       | 26            |
| Xbasin.08  | 0.99997 | Moffat Import<br>(06_MOF_ACC)              |                                                         | 06_MOF_IMP                         | 35            |
| Xbasin.10  | 1.00000 | Sand Hill Plan<br>(SandHillPln)            |                                                         | SandHill_C                         | 35            |

### 5.10.8.23 Flood Control

The following rules operate Cherry Creek Reservoir and Bear Creek Reservoir for flood control purposes. These two reservoirs are soley Army Corps of Engineer Projects and are operated for flood control to mimic historic releases to target. Chatfield Reservoir is another flood control reservoir in which Denver Water owns supply (see Section 5.10.8.1).

| Right ID    | Admin #     | Destination | Account, Carrier, Return<br>Location (R), or % Split | Source                              | Right<br>Type |
|-------------|-------------|-------------|------------------------------------------------------|-------------------------------------|---------------|
| CherryCk.01 | 40258.00001 | NA          |                                                      | Cherry Ck<br>Reservoir<br>(0803532) | 9             |
| BearCk.01   | 47116.44105 | NA          |                                                      | Bear Ck Lake<br>(0903999)           | 9             |

# 5.10.9 Water Districts 1 and 64 (Lower South Platte) Operations

The Lower South Platte encompasses Water Districts 1 and 64, and the predominant operations in the basin are large off-channel irrigation and reservoir systems, augmentation and recharge operations, and the South Platte Compact. The following sections discuss the operations used to represent these complex systems.

# Where to find more information

- SPDSS Task Memorandum 3, "Identify Key Diversion Structures Notes from Water District 64 Meeting," available on the CDSS website.
- SPDSS Task Memorandum 3, "Identify Key Diversion Structures Notes from Water District 1 Meeting," available on the CDSS website.
- SPDSS Task Memorandum 5, "Key Structure, Bijou Irrigation System," available on the CDSS website.
- SPDSS Task Memorandum 5, "Key Structure, Riverside Irrigation System," available on the CDSS website.
- SPDSS Task Memorandum 5, "Key Structure, Jackson Lake & Fort Morgan Canal System," available on the CDSS website.
- SPDSS Task Memorandum 5, "Key Structure, North Sterling Irrigation District," available on the CDSS website.
- SPDSS Task Memorandum 5, "Key Structure, Prewitt Reservoir System," available on the CDSS website.
- SPDSS Task Memorandum 5, "Key Structure, Julesburg Irrigation System," available on the CDSS website.

# 5.10.9.1 Bijou Irrigation System

The Bijou Irrigation System is comprised of two entities, the Bijou Irrigation Company and the Bijou Irrigation District. The system is operated to meet the irrigation demand first with direct diversion water rights and then water from storage. Ground water can also be used to meet irrigation demand. Well users are primarily included in the Bijou Augmentation Plan (0103339 - see Augmentation Plan section). The system includes Empire Inlet Canal (0100501), Bijou Canal (0100507\_D), Bijou Irrigation Demand (0100507\_I), Empire Reservoir (0103816), and Bijou No. 2 Reservoir (0103507). Empire Reservoir is an off-channel reservoir. It is filled with diversions from the South Platte River at the Empire Inlet Canal. Bijou Reservoir is an off-channel reservoir that receives South Platte River water from the Bijou Canal. The Empire Reservoir storage water is released to the Empire Outlet Canal, which discharges to the Bijou Canal and is used to meet the irrigation demand. Irrigators under Bijou Canal also own C-BT shares and are entitled to Adams Tunnel imports. Note that Empire Inlet Canal also has water rights for direct irrigation, but discussions with the Water Commission indicate these are rarely used and are therefore excluded from the model. Bijou Reservoir releases water to the Bijou Canal directly for irrigation use and also to meet augmentation plan demands. Bijou No.2 historically released for irrigation, but due to its high seepage losses, was

converted over to a recharge reservoir. These recharge operations are included with the Bijou Augmentation Plan (0103339) operations below. As presented in **Section 5.6** both reservoirs have one account. Empire Reservoir has a total capacity of 37,800 af while Bijou No. 2 has a total capacity of 7,600 af. The system is also responsible for diverting the direct flow rights for the Corona Ranch and the Putnam Ditch Company via the Bijou Canal. The ditch system operations are captured using the operating rules in the table below.

| Right ID    | Admin #     | Destination                        | Account, Carrier, Return<br>Location (R), or % Split                                                   | Source                  | Right<br>Type |
|-------------|-------------|------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------|---------------|
| 01038160.01 | 20226.00000 | Empire Res (0103816),<br>Account 1 | Empire Ditch (0100501)                                                                                 | 0103816.01              | 45            |
| 01038160.02 | 26302.20226 | Empire Res (0103816),<br>Account 1 | Empire Ditch (0100501)                                                                                 | 0103816.02              | 45            |
| 01038160.03 | 31423.29219 | Empire Res (0103816),<br>Account 1 | Empire Ditch (0100501)                                                                                 | 0103816.03              | 45            |
| 01038160.06 | 18353.20000 | Bijou Irrigation (0100507_I)       | Account 1                                                                                              | Empire Res<br>(0103816) | 2             |
| 01005070.01 | 7944.00000  | Bijou Irrigation (0100507_I)       | Bijou Div Sys<br>(0100507_D)                                                                           | 0100507_D.01            | 45            |
| 01005070.02 | 8511.00000  | Bijou Irrigation (0100507_I)       | Bijou Div Sys<br>(0100507_D)                                                                           | 0100507_D.02            | 45            |
| 01005070.03 | 9283.00000  | Bijou Irrigation (0100507_I)       | Bijou Div Sys<br>(0100507_D)                                                                           | 0100507_D.03            | 45            |
| 01005070.04 | 11049.00000 | Bijou Irrigation (0100507_I)       | Bijou Div Sys<br>(0100507_D)                                                                           | 0100507_D.04            | 45            |
| 01005070.05 | 11804.00000 | Bijou Irrigation (0100507_I)       | Bijou Div Sys<br>(0100507_D)                                                                           | 0100507_D.05            | 45            |
| 01005070.06 | 13468.00000 | Bijou Irrigation (0100507_I)       | Bijou Div Sys<br>(0100507_D)                                                                           | 0100507_D.06            | 45            |
| 01005070.07 | 14154.00000 | Bijou Irrigation (0100507_I)       | Bijou Div Sys<br>(0100507_D)                                                                           | 0100507_D.07            | 45            |
| 01005070.08 | 18353.00000 | Bijou Irrigation (0100507_I)       | Bijou Div Sys<br>(0100507_D)                                                                           | 0100507_D.08            | 45            |
| AdamsTun.21 | 59169.56618 | Bijou Irrigation (0100507_I)       | Olympus Tunnel<br>(040100), Olympus<br>Tunnel Return Point<br>(040100_R), Bijou Div Sys<br>(0100507_D) | AdamsTunPIn             | 27            |

# 5.10.9.2 Meadow Rights

Water rights decreed as meadow rights are limited to irrigate during the meadow season (April 10 – July 10). Meadow rights were identified by querying action comments in HydroBase containing "Meadow" or "4/10". Diversions decreed as meadow rights were limited by monthly switches and are listed below. Corona Ranch Meadow Right is included in Bijou Irrigation Diversion System, and diversions under this right were limited by monthly switches in 01005070.03 (above).

| Right ID | Admin # | Destination | Account, Carrier, Return | Source | Right |
|----------|---------|-------------|--------------------------|--------|-------|
|          |         |             | Location (R), or % Split |        | Туре  |

| Opr_Mead.01 | 7762.00000 | Deuel Snyder Canal<br>(0100517) | 0100517.01 | 36 |
|-------------|------------|---------------------------------|------------|----|
| Opr_Mead.02 | 8948.00000 | Deuel Snyder Canal<br>(0100517) | 0100517.02 | 36 |
| Opr_Mead.04 | 8501.00000 | Schneider Ditch (6400531)       | 6400531.01 | 36 |
| Opr_Mead.05 | 8866.00000 | Davis Bros Ditch (6400532)      | 6400532.01 | 36 |

### 5.10.9.3 Riverside Irrigation System

The Riverside Irrigation System is comprised of two entities, the Riverside Reservoir and Land Company and the Riverside Irrigation District. Riverside Diversion System (0100503\_D) diverts water from the South Platte River for irrigation under the Riverside Irrigation Demand (0100503\_I); storage in the Riverside Reservoir system (0103651); and recharge operations associated with Riverside Augmentation Plan (0102522 - see Augmentation Plan section). The reservoir system includes both Riverside Reservoir (0103651) and Vancil Reservoir (0103400). Vancil Reservoir was constructed on lower Riverside Canal to mitigate fluctuations in flow throughout the irrigation season and to make supplemental irrigation releases to the lower portion of the Riverside system. As presented in **Section 5.6,** the reservoir has two accounts; a 66,500 af active pool for irrigation and a 7,400 af inactive pool. The ditch system operations are captured using the operating rules in the table below.

| Right ID    | Admin #     | Destination                                  | Account, Carrier, Return            | Source                     | Right<br>Type |
|-------------|-------------|----------------------------------------------|-------------------------------------|----------------------------|---------------|
| 01036510.01 | 19083.00000 | Riverside Res (0103651),<br>Accounts 1 and 2 | Riverside Div System<br>(0100503 D) | 0103651.01                 | 45            |
| 01036510.02 | 21031.00000 | Riverside Res (0103651),<br>Accounts 1 and 2 | Riverside Div System<br>(0100503_D) | 0103651.02                 | 45            |
| 01036510.03 | 22212.00000 | Riverside Res (0103651),<br>Accounts 1 and 2 | Riverside Div System<br>(0100503_D) | 0103651.03                 | 45            |
| 01036510.04 | 31423.29219 | Riverside Res (0103651),<br>Accounts 1 and 2 | Riverside Div System<br>(0100503_D) | 0103651.04                 | 45            |
| 01036510.05 | 50466.00000 | Riverside Res (0103651),<br>Accounts 1 and 2 | Riverside Div System<br>(0100503_D) | 0103651.05                 | 45            |
| 01036510.06 | 50769.49378 | Riverside Res (0103651),<br>Accounts 1 and 2 | Riverside Div System<br>(0100503_D) | 0103651.06                 | 45            |
| 01036510.07 | 51356.00000 | Riverside Res (0103651),<br>Accounts 1 and 2 | Riverside Div System<br>(0100503_D) | 0103651.07                 | 45            |
| 01036510.08 | 49841.00000 | Riverside Res (0103651),<br>Accounts 1 and 2 | Riverside Div System<br>(0100503_D) | 0103651.08                 | 45            |
| 01036510.09 | 50403.49841 | Riverside Res (0103651),<br>Accounts 1 and 2 | Riverside Div System<br>(0100503_D) | 0103651.09                 | 45            |
| 01036510.10 | 20969.20000 | Riverside Irrigation System<br>(0100503_I)   | Account 1                           | Riverside Res<br>(0103651) | 2             |
| 01036510.11 | 9497.00000  | Riverside Irrigation System<br>(0100503_I)   | Riverside Div System<br>(0100503_D) | 0100503_D.01               | 45            |
| 01036510.12 | 13482.00000 | Riverside Irrigation System<br>(0100503_I)   | Riverside Div System<br>(0100503_D) | 0100503_D.02               | 45            |

| 01036510.13 | 20969.00000 | Riverside Irrigation System | Riverside Div System | 0100503_D.04 | 45 |
|-------------|-------------|-----------------------------|----------------------|--------------|----|
|             |             | (0100303_1)                 | (0100303_D)          |              |    |
| 01036510.14 | 59901.00000 | Riverside Irrigation System | Riverside Div System | 0100503_D.14 | 45 |
|             |             | (0100503_I)                 | (0100503_D)          |              |    |

### 5.10.9.4 Jackson Lake Reservoir System

Jackson Lake provides supplemental irrigation supplies to several ditches along the South Platte River, as well as releases for augmentation demands. Water is conveyed to the off-channel reservoir via the Jackson Lake Inlet Canal (0100513), and released back to the South Platte River via the Jackson Lake Outlet Canal. Storage releases are either exchanged upstream or delivered downstream to irrigation water providers that have ownership in the reservoir. The reservoir also releases directly to meet a small irrigation demand (0103817\_1) located off of the outlet canal. As presented in **Section 5.6**, the reservoir has 8 accounts, including 7 user accounts and a 2,500 af inactive pool, and a total capacity of 36,200 af. Fort Morgan Ditch (0100514) owners have majority ownership in the reservoir and utilize its storage supply to supplement direct flow diversions via the Fort Morgan Canal. The ditch system operations are captured using the operating rules in the table below.

| Right ID    | Admin #     | Destination                                                 | Account, Carrier, Return                                                                                  | Source            | Right |
|-------------|-------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------|-------|
| 01038170.01 | 18765.00000 | Jackson (0103817),<br>Accounts 1-8                          | Jackson Lake Inlet<br>(0100513)                                                                           | 0103817.01        | 45    |
| 01038170.02 | 31423.29219 | Jackson (0103817),<br>Accounts 1-8                          | Jackson Lake Inlet<br>(0100513)                                                                           | 0103817.02        | 45    |
| AdamsTun.22 | 59169.56619 | Jackson (0103817),<br>Accounts 1-8                          | Olympus Tunnel<br>(040100), Olympus<br>Tunnel Return Point<br>(040100_R), Jackson<br>Lake Inlet (0100513) | AdamsTunPIn       | 27    |
| 01038170.04 | 11979.00001 | Ft Morgan Div System<br>(0100514)                           | Account 1                                                                                                 | Jackson (0103817) | 2     |
| 01038170.04 | 13985.00001 | Lower Platte Beaver Ditch<br>(0100518)                      | Account 2                                                                                                 | Jackson (0103817) | 2     |
| 01038170.05 | 13985.00001 | Upper Platte Beaver Canal<br>(0100515)                      | Account 3                                                                                                 | Jackson (0103817) | 2     |
| 01038170.06 | 31423.29220 | Jackson Lake Irrigation<br>Demand (0103817_I)               | Account 4                                                                                                 | Jackson (0103817) | 2     |
| 01038170.07 | 20969.30000 | Riverside Irrigation<br>Demand via carrier<br>(01036510.13) | Account 5                                                                                                 | Jackson (0103817) | 7     |
| 01038170.08 | 14185.00001 | Deuel Snyder Canal<br>(0100517)                             | Account 6                                                                                                 | Jackson (0103817) | 2     |
| 01038170.09 | 18353.30000 | Bijou Irrigation Demand via carrier (01005070.08)           | Account 7                                                                                                 | Jackson (0103817) | 7     |

# 5.10.9.5 North Sterling Irrigation System

The North Sterling Irrigation System diverts water from the South Platte River for irrigation under the North Sterling Irrigation Demand (0100687\_I); storage in North Sterling Reservoir (6403551, aka Point of Rocks); and recharge operations associated with North Sterling Augmentation Plan (6403392). North Sterling Reservoir is an off-channel reservoir in Water District 64 that diverts water from the South Platte River via the North Sterling Canal, which originates in Water District 1. Storage water is released to the North Sterling Outlet Canal for irrigation of lands within the irrigation district. As presented in **Section 5.6**, the reservoir has three accounts; a 55,590 af account for irrigation releases, a15,000 af account for recharge and augmentation operations, and a 4,000 af inactive account, for a total capacity of 74,590 af. The ditch system operations are captured using the operating rules in the table below. Recharge operations are documented under the North Sterling Augmentation Plan (6403392) section below.

| Right ID    | Admin #     | Destination                  | Account, Carrier,       | Source         | Right |
|-------------|-------------|------------------------------|-------------------------|----------------|-------|
|             |             |                              | Return Location (R), or |                | Туре  |
|             |             |                              | % Split                 |                |       |
| 64035510.01 | 21350.00000 | North Sterling Res           | North Sterling Div Sys  | 6403551.01     | 45    |
|             |             | (6403551), Accounts 1-3      | (0100687)               |                |       |
| 64035510.02 | 26298.23953 | North Sterling Res           | North Sterling Div Sys  | 6403551.02     | 45    |
|             |             | (6403551), Accounts 1-3      | (0100687)               |                |       |
| 64035510.03 | 23172.21350 | North Sterling Res           | Pawnee to Sterling      | 6403551.03     | 45    |
|             |             | (6403551), Accounts 1-3      | (6403551_Paw)           |                |       |
| 64035510.04 | 23172.21350 | North Sterling Res           | Cedar to Sterling       | 6403551.04     | 45    |
|             |             | (6403551), Accounts 1-3      | (6403551_Ced)           |                |       |
| 64035510.05 | 26302.23524 | N Sterling Irrig (0100687_I) | Account 1               | North Sterling | 2     |
|             |             |                              |                         | Res (6403551)  |       |
| 64035510.06 | 26302.23525 | N Sterling Irrig (0100687_I) | Account 2               | North Sterling | 2     |
|             |             |                              |                         | Res (6403551)  |       |
| 64035510.07 | 26302.23522 | N Sterling Irrig (0100687_I) | North Sterling Div Sys  | 0100687.02     | 45    |
|             |             |                              | (0100687)               |                |       |

# 5.10.9.6 Prewitt Reservoir System

Prewitt Reservoir (6403552) is an off-channel reservoir located on the south side of the Lower South Platte River. Water is conveyed to the reservoir for storage through the Prewitt Inlet Canal (0100829), which originates in Water District 1. Water from the reservoir is released into the Prewitt Outlet Canal for either delivery to downstream ditches via the South Platte River or delivery to the South Platte Ditch via the Highline Canal. As presented in **Section 5.6**, the reservoir has 20 total accounts, including 19 user accounts and one account for augmentation releases, and a total capacity of 32,164 af. User accounts were based on share ownership under the Logan Irrigation District, Iliff Irrigation District, and Morgan-Prewitt Reservoir Company, as provided by Prewitt Reservoir staff. Releases for augmentation are described in the Augmentation Plan section below. The ditch system operations are captured using the operating rules in the table below.

| Right ID | Admin # | Destination | Account, Carrier,       | Source | Right |
|----------|---------|-------------|-------------------------|--------|-------|
|          |         |             | Return Location (R), or |        | Туре  |

|             |             |                                             | % Split                                           |                          |    |
|-------------|-------------|---------------------------------------------|---------------------------------------------------|--------------------------|----|
| 64035520.01 | 22059.00000 | Prewitt Res (6403552),<br>Accounts 1-20     | Prewitt Res Inlet<br>(0100829)                    | 0103552.01               | 45 |
| 64035520.02 | 31423.29219 | Prewitt Res (6403552),<br>Accounts 1-20     | Prewitt Res Inlet<br>(0100829)                    | 0103552.02               | 45 |
| 64035520.11 | 16893.10000 | South Platte Ditch<br>(6400535)             | Account 1                                         | Prewitt Res<br>(6403552) | 3  |
| 64035520.12 | 55995.10000 | Pawnee Ditch (6400533)                      | Account 2                                         | Prewitt Res<br>(6403552) | 2  |
| 64035520.13 | 54296.10000 | Davis Bros Ditch (6400532)                  | Account 3                                         | Prewitt Res<br>(6403552) | 2  |
| 64035520.14 | 55882.65745 | Springdale Ditch (6400530)                  | Account 4                                         | Prewitt Res<br>(6403552) | 2  |
| 64035520.15 | 55941.10000 | Schneider Ditch (6400531)                   | Account 5                                         | Prewitt Res<br>(6403552) | 2  |
| 64035520.21 | 53558.10000 | Bravo Div Sys (6400522_D)                   | Account 7                                         | Prewitt Res<br>(6403552) | 2  |
| 64035520.22 | 55882.65874 | lliff Platte Valley Ditch<br>(6400520)      | Account 8                                         | Prewitt Res<br>(6403552) | 2  |
| 64035520.23 | 47918.10000 | Lone Tree Ditch (6400518)                   | Account 9                                         | Prewitt Res<br>(6403552) | 2  |
| 64035520.25 | 45289.10000 | Powell Blair Ditch (6400516)                | Account 10                                        | Prewitt Res<br>(6403552) | 2  |
| 64035520.27 | 56088.10000 | Harmony Irrigation<br>(6400511_I)           | Account 11, via<br>Harmony Div Sys<br>(6400511_D) | Prewitt Res<br>(6403552) | 2  |
| 64035520.26 | 42034.10000 | Ramsey Ditch (6400514)                      | Account 12                                        | Prewitt Res<br>(6403552) | 2  |
| 64035520.31 | 44628.10000 | Sterling Irrigation Ditch No 2<br>(6400526) | Account 13                                        | Prewitt Res<br>(6403552) | 2  |
| 64035520.32 | 47572.48465 | Bijou Irrigation (0100507_I)                | Account 14, via Bijou<br>Div Sys (0100507_D)      | Prewitt Res<br>(6403552) | 2  |
| 64035520.33 | 51488.00000 | Upper Platte Beaver Canal<br>(0100515)      | Account 15                                        | Prewitt Res<br>(6403552) | 2  |
| 64035520.34 | 56613.48471 | Lower Platte Beaver Ditch<br>(0100518)      | Account 16                                        | Prewitt Res<br>(6403552) | 2  |
| 64035520.35 | 41515.10000 | Johnson Edwards Ditch<br>(0100526)          | Account 17                                        | Prewitt Res<br>(6403552) | 2  |
| 64035520.36 | 42079.10000 | Deuel Snyder Canal<br>(0100517)             | Account 18                                        | Prewitt Res<br>(6403552) | 2  |

# 5.10.9.7 Julesburg Irrigation System – Harmony Ditch System (6400511\_D), Julesburg Reservoir (6403906), Harmony Irrigation Demand (6400511\_I), Harmony recharge area (6402518\_R), and Lower Logan Upper Harmony Ditch recharge area (6402536\_RH)

Julesburg Irrigation District is an irrigation provider that includes Julesburg Reservoir storage water and direct flow diversions from the Harmony Ditch No. 1, Settlers Ditch, and Petersen Ditch. Stockholders that own land within the district boundary have shared ownership, and are equally entitled, to the irrigation water under the direct irrigation rights and Julesburg Reservoir water (6403906). The District

was formed in 1904 as an extension of the irrigation system under the Harmony Ditch No. 1. Julesburg Reservoir and the Highline Canal were completed in 1906. In the same year, the District purchased water rights in Settlers Ditch and approximately 80% of the rights in the Petersen Ditch, and expanded its boundary to include the ditches' service areas.

Harmony Ditch System (6400511\_D) diverts water from the lower South Platte River for irrigation, storage in Julesburg Reservoir, and recharge areas. Julesburg Reservoir, also known as Jumbo Reservoir, is an off-channel reservoir located on the north side of the lower South Platte River. Water is conveyed to the reservoir for storage through Harmony Ditch No. 1. Irrigation water is then released from the reservoir via the Highline Canal. The Highline Canal directly serves irrigated land within the Julesburg Irrigation District, represented by the Harmony Irrigation Demand (6400511\_I) and also conveys water to both Settlers Ditch and Petersen Ditch. As presented in **Section 5.6**, the reservoir has 1 account and a total capacity of 28,200 af. The irrigation system operations are captured using the operating rules in the table below.

| Right ID    | Admin #     | Destination              | Account, Carrier,       | Source        | Right<br>- |
|-------------|-------------|--------------------------|-------------------------|---------------|------------|
|             |             |                          | Return Location (R), or |               | Туре       |
|             |             |                          | % Split                 |               |            |
| 64039060.01 | 19765.00000 | Julesburg Res (6403906), | Harmony Div System      | 6403906.01    | 45         |
|             |             | Account 1                | (6400511_D)             |               |            |
| 64039060.03 | 19765.10000 | Harmony Irrigation       | Account 1               | Julesburg Res | 2          |
|             |             | (6400511_I)              |                         | (6403906)     |            |
| 64039060.04 | 17846.27846 | Settlers Ditch (6400508) | Account 1               | Julesburg Res | 3          |
|             |             |                          |                         | (6403906)     |            |
| 64039060.05 | 17846.27496 | Peterson Ditch (6400504) | Account 1               | Julesburg Res | 3          |
|             |             |                          |                         | (6403906)     |            |
| 64039060.06 | 16554.00000 | Harmony Irrigation       | Harmony Div System      | 6400511_D.01  | 45         |
|             |             | (6400511_I)              | (6400511_D)             |               |            |
| 64039060.07 | 17290.00000 | Harmony Irrigation       | Harmony Div System      | 6400511_D.02  | 45         |
|             |             | (6400511_I)              | (6400511_D)             |               |            |
| 64039060.08 | 19490.00000 | Harmony Irrigation       | Harmony Div System      | 6400511_D.03  | 45         |
|             |             | (6400511_I)              | (6400511_D)             |               |            |
| 64039060.09 | 19765.00000 | Harmony Irrigation       | Harmony Div System      | 6400511_D.04  | 45         |
|             |             | (6400511_I)              | (6400511_D)             |               |            |

### 5.10.10Augmentation Plan Operations

The State of Colorado defines augmentation plans as "a court-approved document which is designed to protect existing water rights by replacing water depleted under a new project" (DWR website). In general, augmentation plans describe how out-of-priority well pumping depletions are going to be "augmented" in order to protect senior water rights. Augmentation plans use various sources to replace depletions, either through direct releases or lagged accretions to the river. In StateMod, the simulation of augmentation plan demand and supplies requires several operations. First, StateMod internally determines if any depletions occurred in-priority in the same time-step based on the priority in the well rights file. A Type 43 rule is generally included to determine if any lagged depletions occur in-priority based on the administration number of the rule. The priority of the Type

43 is based on either the decreed augmentation plan priority, or based on the most junior well right included in the plan. Once the depletion is determined to be out-of-priority, an augmentation plan demand is generated. Each augmentation plan has supplies unique to their plan, however many augmentation plans in the South Platte Basin rely on in-ditch and recharge area seepage, then supplement those supplies as needed by changed water rights, reservoir releases, and augmentation/recharge well pumping. Example operations include:

- A type 45 rule makes surface water diversions to a recharge area under a user-specified recharge/augmentation water right.
- A type 47 rule limits the amount of water that can be supplied to a recharge area based on monthly or annual volumes.
- A type 48 rule applies canal seepage, reservoir seepage, or a reservoir release to meet the augmentation plan demand.
- A type 49 rule applies water by exchange from a canal seepage plan, a reservoir seepage plan, or a reservoir to meet the augmentation plan demand.
- A type 44 rule pumps ground water from a recharge well to the recharge area and a type 37 rule pumps ground water from an augmentation well to directly meet the augmentation plan demand in the river.

StateMod does not currently support the release of historical consumptive use credits in a changed water rights plan directly to meet an augmentation demand using a Type 48 or 49 operating rule. Therefore, the changed water rights were stored in recharge areas with an "immediate" seepage pattern in order for the credits to be applied to the augmentation demand.

As discussed in the calibration section, the model does not curtail pumping if supplies are not sufficient to meet the augmentation plan demand. It is the user's responsibility to ensure sufficient supplies are provided.

# 5.10.10.1 Central Colorado Water Conservancy District Augmentation Plans (GMS/WAS)

Central Colorado Water Conservancy District (Central) is an umbrella organization that covers well users under multiple ditch systems and ground water-only wells in Adams, Weld, and Morgan Counties. Central is composed of the following two subdistricts that extend from about the City of Brighton down to the City of Fort Morgan, including significant portions of the Beebe Draw and Boxelder Creek drainages:

- Groundwater Management Subdistrict (GMS)
- Well Augmentation Subdistrict (WAS)

The GMS subdistrict operated since 1973 under an SWSP until its augmentation plan (Case No. 02CW335) was decreed in May 2005. The Groundwater Appropriators of the South Platte (GASP), formed in 1973, was dissolved in 2004 because of subsequent years of full-time river calls and insufficient replacement supplies to replace its member wells' depletions. A number of GASP wells developed the WAS subdistrict along with other augmentation plans in the lower basin. The WAS augmentation plan (Case No. 03CW99) was decreed in May 2008.

Well Depletions for GMS and WAS are defined in the 02CW335 and 03CW99 decrees, respectively. Replacement operations for both GMS and WAS are broken into six administrative reaches with WAS being further divided into 10 administrative sub-reaches. The GMS reaches are defined as follows:

- Reach F The headgate of the Fulton Ditch to the headgate of the Jay Thomas Ditch
- Reach C From the headgate of the Jay Thomas to the headgate of the Lower Latham Ditch
- Reach B From the headgate of the Lower Latham Ditch to the headgate of the Riverside Inlet Canal
- Reach A From the headgate of the Riverside Inlet Canal to the headgate of the Upper Platte and Beaver Canal.
- Reach D Confluence of Beebe Draw and the South Platte River
- Reach E Confluence of Box Elder Creek and the South Platte River

In GMS, replacements are owed above the calling right located either within or below a specific Reach. To simplify the representation of the GMS Well Aug Plans, the following Plan nodes are included in the model network above the ditches that historically place calls within the specific reaches:

- Reach F Above Hewes Cook Ditch (Western Mutual)
- Reach C Above Lower Latham Ditch
- Reach B Confluence of Cache la Poudre River and the South Platte River (consistent with location of replacements for WAS Reach B, as discussed below)
- Reach A Above Bijou Canal
- Reach D Confluence of the Beebe Draw and South Platte River
- Reach E Confluence of Box Elder Creek and the South Platte River

WAS Replacements are modeled at the same locations as GMS listed above with the following reaches further divided to address the wells that impact those sub-reaches. To maintain consistency between representation of the GMS and WAS plans, the WAS sub-reaches are not incorporated into the SPDDS model.

- Reach F sub-reaches
  - o F2 9% above the headgate of the Platteville Irrigating and Milling Ditch

- F3 91% to the Western Mutual Ditch ==>> We are simplifying by representing 100% replacements owed above Western Mutual Ditch.
- Reach C sub-reaches
  - o C1 49% to mid-point of Reach C generally defined as the Union Ditch
  - o C2 51% to end of Reach C (Lower Latham Ditch)
- Reach A sub-reaches
  - o A1 50% is owed to immediately above the headgate of the Fort Morgan Canal
  - A2 50% is owed to the end of the reach considered to be the headgate of the Upper Platte and Beaver Canal

The Well Augmentation Plans are assigned Plan IDs 9903394\_A, \_B, \_C, \_D, \_E, and \_F for GMS and 9903334\_A, \_B, \_C, \_D, \_E, and \_F for WAS based on information from the augmentation plan decrees. Wells are assigned to each plan in the well to plan file (\*plw) based first on their association with either the WAS or GMS well in HydroBase, then assigned to reaches based on the location of the irrigated acreage with respect to the defined reaches (see Section 5.8.2 and Section 7.9)

Central uses numerous gravel pit storage units, recharge projects, ditch company and reservoir company shares, augmentation wells, and leased reusable supplies in its plan. The storage, recharge, and changed shares are the primary replacements that are included in the SPDSS model. The augmentation wells and leased water is less frequently used and are not included in the model. Administratively, the Central out-of-priority depletions are replaced above the calling water right. For example, depletions in Reach F and Reach C are owed, in aggregate, to the Lower Latham Ditch when the Lower Latham Ditch has placed a call on the river. The StateMod algorithm is unable to make this kind of determination during simulation; therefore, the well depletions assigned to the well augmentation plan nodes are replaced based on their respective locations in the model network.

The first set of rules to meet the well depletions are the Type 43 In Priority rules based on the most junior water right assigned to the well augmentation plans. Lagged depletions not met by these rules indicate the depletions are out-of-priority to downstream senior water rights.

| Right ID | Admin       | Destination                        | Account, Carrier,<br>Return Location<br>(R), or % Split | Source | Right<br>Type |
|----------|-------------|------------------------------------|---------------------------------------------------------|--------|---------------|
| GMS_A.01 | 50661.00000 | GMS Reach A Aug<br>Pln (9903334_A) |                                                         |        | 43            |
| GMS_B.01 | 43955.00000 | GMS Reach B AugPln<br>(9903334_B)  |                                                         |        | 43            |
| GMS_C.01 | 46751.35990 | GMS Reach C Aug<br>Pln (9903334_C) |                                                         |        | 43            |

GMS and WAS Aug Plan In-Priority Replacements

| GMS_D.01 | 54126.00000 | GMS Reach D Aug<br>Pln (9903334_D) |  | 43 |
|----------|-------------|------------------------------------|--|----|
| GMS_E.01 | 45655.39523 | GMS Reach E Aug<br>Pln (9903334_E) |  | 43 |
| GMS_F.01 | 49308.45580 | GMS Reach F Aug<br>Pln (9903334_F) |  | 43 |
| WAS_A.01 | 42519.00000 | 9903394_A                          |  | 43 |
| WAS_B.01 | 38948.00000 | 9903394_B                          |  | 43 |
| WAS_C.01 | 47481.38551 | 9903394_C                          |  | 43 |
| WAS_D.01 | 47481.38551 | 9903394_D                          |  | 43 |
| WAS_E.01 | 47847.40293 | 9903394_E                          |  | 43 |
| WAS_F.01 | 46386.30194 | 9903394_F                          |  | 43 |

Three recharge plans for the Hewes Cook recharge (0200824\_PIC, 0200824\_R, and 0200824\_PIR) and three recharge plans for the Farmers Independent recharge (0200825\_PIC, 0200825\_R, and 0200825\_PIR) are used to track the in-ditch, reservoir, and recharge area seepage, which is used to meet the augmentation plan demand. Plan limitations are used to limit diversions to recharge to historical diversions. Multiple recharge sites are aggregated, by ditch, to simplify representation of the recharge projects. As presented in the table below, the following operating rules were used to simulate the recharge projects.

### Recharge Projects

| Right ID    | Admin       | Destination                                        | Account, Carrier, Return<br>Location (R), or % Split | Source                                      | Right<br>Type |
|-------------|-------------|----------------------------------------------------|------------------------------------------------------|---------------------------------------------|---------------|
| 02008250.99 | 1.00000     |                                                    |                                                      | Hewes Cook<br>Release Limit<br>(0200825_RL) | 47            |
| 02008240.99 | 1.00000     |                                                    |                                                      | Farmers<br>Independent RL<br>(0200824_RL)   | 47            |
| 02008250.01 | 50114.00000 | Hewes Cook Recharge Area<br>(0200825_R)            | Hewes Cook Ditch<br>(0200825)                        | 0200825.04                                  | 45            |
| 02008240.01 | 49631.00000 | Farmer Independent<br>Recharge Area<br>(0200824_R) | Farmers Independent<br>Ditch (0200824)               | 0200824.03                                  | 45            |

The table below includes the various operating rules used to meet WAS and GMS depletions from the Hewes Cook and Farmers Independent recharge projects.

| Right ID | Admin | Destination | Account, Carrier,       | Source | Right |
|----------|-------|-------------|-------------------------|--------|-------|
|          |       |             | Return Location         |        | Туре  |
|          |       |             | (R) <i>,</i> or % Split |        |       |

| 02008250.08 | 60000.50000 | 9903394_F | Hewes Cook RA Recharge 49<br>(0200825 PIR)                |
|-------------|-------------|-----------|-----------------------------------------------------------|
| 02008250.09 | 60000.50001 | 9903394_C | Hewes Cook RA Recharge 48<br>(0200825 PIR)                |
| 02008250.11 | 60000.50003 | 9903394_B | Hewes Cook RA Recharge 48<br>(0200825 PIR)                |
| 02008250.12 | 60000.50004 | 9903394_D | Hewes Cook RA Recharge 48<br>(0200825 PIR)                |
| 02008250.13 | 60000.50005 | 9903394_E | Hewes Cook RA Recharge 48<br>(0200825 PIR)                |
| 02008250.14 | 60000.50006 | 9903394_A | Hewes Cook RA Recharge 48<br>(0200825 PIR)                |
| 02008250.21 | 60000.50007 | 9903394_F | Hewes Cook Canal 49<br>Recharge (0200825 PIC)             |
| 02008250.22 | 60000.50008 | 9903394_C | Hewes Cook Canal 48<br>Recharge (0200825_PIC)             |
| 02008250.24 | 60000.50010 | 9903394_B | Hewes Cook Canal 48<br>Becharge (0200825_PIC)             |
| 02008250.25 | 60000.50011 | 9903394_D | Hewes Cook Canal 48<br>Becharge (0200825_PIC)             |
| 02008250.26 | 60000.50012 | 9903394_E | Hewes Cook Canal 48<br>Recharge (0200825_PIC)             |
| 02008250.27 | 60000.50013 | 9903394_A | Hewes Cook Canal 48<br>Recharge (0200825_PIC)             |
| 02008240.08 | 60000.50014 | 9903394_F | Farmers Independent RA 48<br>Recharge (0200824 PIR)       |
| 02008240.09 | 60000.50015 | 9903394_C | Farmers Independent RA 48<br>Recharge (0200824_PIR)       |
| 02008240.11 | 60000.50017 | 9903394_B | Farmers Independent RA 48<br>Recharge (0200824_PIR)       |
| 02008240.12 | 60000.50018 | 9903394_D | Farmers Independent RA 48<br>Recharge (0200824 PIR)       |
| 02008240.13 | 60000.50019 | 9903394_E | Farmers Independent RA 48<br>Recharge (0200824 PIR)       |
| 02008240.14 | 60000.50019 | 9903394_A | Farmers Independent RA 48<br>Recharge (0200824 PIR)       |
| 02008240.21 | 60000.50020 | 9903394_F | Farmers Independent 48<br>Canal Recharge<br>(0200824 PIC) |
| 02008240.22 | 60000.50021 | 9903394_C | Farmers Independent 48<br>Canal Recharge<br>(0200824 PIC) |
| 02008240.24 | 60000.50023 | 9903394_B | Farmers Independent 48<br>Canal Recharge<br>(0200824 PIC) |
| 02008240.25 | 60000.50024 | 9903394_D | Farmers Independent 48<br>Canal Recharge<br>(0200824 PIC) |
| 02008240.26 | 60000.50025 | 9903394_E | Farmers Independent 48<br>Canal Recharge<br>(0200824_PIC) |
| 02008240.27 | 60000.50026 | 9903394_A | Farmers Independent<br>Canal Recharge | 48 |
|-------------|-------------|-----------|---------------------------------------|----|
|             |             |           | (0200824_PIC)                         |    |

#### Consumptive Use Credits

Consumptive use credit from changed water rights are used to replace well pumping depletions The use of changed water rights to meet demands is discussed in Section 4.9. StateMod algorithm is currently not set up to use changed water rights to meet well depletions. Therefore, an approach was developed where ditch credits in Central's various sub-plan IDs (IDs CenFulPln, CenBriPln, CenLMPln, CenLBPln, CenPVPln, CenFarmPln, CenSN3Pln, CenHighPln) are released to recharge reservoirs (IDs 0200808\_RS, 0200810\_RS, 0200812\_RS, and 0200821\_RS) and canal recharge plans (IDs 0200808\_RC, 0200810\_RC, 0200812\_RC, 0200813\_RC, 0200824\_RC, 0200830\_RC, and 0200837\_RC) that create immediate accretions to Plan recharge nodes (IDs 9903394\_PIR and 9903344\_PIR).

As presented in the table below, the following operating rules were used to simulate the use limits on Central's ownership in the Fulton Ditch, Brighton Ditch, Lupton Bottom Ditch, Lupton Meadows Ditch, Platteville Ditch, Farmers Independent Ditch, Section No. 3 Ditch, and Highland Ditch.

| Right ID      | Admin       | Destination                            | Account, Carrier,<br>Return Location (R), or<br>% Split             | Source                             | Right<br>Type |
|---------------|-------------|----------------------------------------|---------------------------------------------------------------------|------------------------------------|---------------|
| CCWCDFul.99   | 1.0000      |                                        |                                                                     | Central Fulton RL<br>(CenFul_RL)   | 47            |
| GMS_Ful.01a-f | 66000.00000 | CCWCD Fulton HCU Sto<br>(0200808_RC)   | Fulton Ditch (0200808)<br>Fulton Aug Station<br>(0200808_A)         | CenFulPln                          | 27            |
| CCWCDBri.99   | 1.00000     |                                        |                                                                     | Central Brighton RL<br>(CenBri_RL) | 47            |
| GMS_Bri.01a-g | 62000.00000 | CCWCD Brighton HCU<br>Sto (0200810_RC) | Brighton Ditch<br>(0200810)<br>Brighton Aug Stn<br>(0200810_A)      | CenBriPln                          | 27            |
| CCWCDLB.99    | 1.00000     |                                        |                                                                     | Central LB RL<br>(CenLB_RL)        | 47            |
| GMS_LB.01a-g  | 64000.00000 | CCWCD LuptBtm HCU<br>Sto (0200812_RC)  | Lupton Bottom Ditch<br>(0200812)<br>Lupt Btm Aug Stn<br>(0200812_A) | CenLBPIn                           | 27            |
| CCWCDLM.99    | 1.00000     |                                        |                                                                     | Central LM RL<br>(CenLM_RL)        | 47            |
| WAS_LM.01a-g  | 61000.50000 | CCWCD LuptBtm HCU<br>Sto (0200812_RC)  | Lupton Bottom Ditch<br>(0200812)<br>Lupt Btm Aug Stn<br>(0200812_A) | CenLMPIn                           | 27            |
| CCWCDFI.99    | 1.00000     |                                        |                                                                     | Central FI RL (CenFI_RL)           | 47            |

| GMS_FI.01a-g  | 65000.00000 | CCWCD FIDCo HCU Sto<br>(0200824_RC)     | Farmers Independent<br>Ditch (0200834)<br>Farm Ind Aug Stn<br>(0200834_A) | CenFarmPIn                          | 27 |
|---------------|-------------|-----------------------------------------|---------------------------------------------------------------------------|-------------------------------------|----|
| CCWCDSN3.99   | 1.00000     |                                         |                                                                           | Central Sec No. 3 RL<br>(CenSN3_RL) | 47 |
| GMS_SN3.01a-g | 70000.00000 | CCWCD Sec No. 3 HCU<br>Sto (0200830_RC) | Section No. 3 Ditch<br>(0200830)<br>Sec No 3 Aug Stn<br>(0200830_A)       | CenSN3RFs                           | 27 |
| CCWCDHi.99    | 1.00000     |                                         |                                                                           | Central Highland RL<br>(CenHigh_RL) | 47 |
| GMS_Hi.01a-e  | 80000.00000 | CCWCD Highland HCU<br>Sto (0200837_RC)  | Highland Ditch<br>(0200837)<br>Highland Aug Stn<br>(0200837_A)            | CenHighPln                          | 27 |

Consumptive use credits from the various ditch systems in which Central owns shares are discussed in the documentation related to the various other owners. Central is the only user with shares in the Section No. 3 Ditch that have been changed. The rules in the following table are used to represent the changed water rights in the Section No. 3 Ditch, consistent with the approach discussed in Section 4.9. Although Central's prorata share ownership is represented in the model, the use of those credits to meet well depletions is not represented since the credits have not yet been used for that purpose.

Section No. 3 Ditch

| Right ID    | Admin       | Destination                      | Account, Carrier, Return | Source     | Right<br>Type |
|-------------|-------------|----------------------------------|--------------------------|------------|---------------|
| SectNo3.01  | 7374.00000  | SN3SplPIn                        | 100%                     | 0200830.01 | 26            |
| SectNo3.02  | 8475.00000  | SN3SplPIn                        | 100%                     | 0200830.02 | 26            |
| SectNo3.03  | 8475.00002  | SN3IrrPln<br>CenSN3Pln           | 96.9%<br>3.1%            | SN3SplPIn  | 46            |
| SectNo3.04  | 8475.00003  | Section No. 3 Ditch<br>(0200830) |                          | SN3IrrPln  | 27            |
| CCWCDSN3.01 | 70000.99999 | Section No. 3 Ditch<br>(0200830) |                          | CenSN3PIn  | 27            |

The consumptive use credits from the various ditches accounted in the Plan recharge nodes are then used to meet WAS and GMS well depletions via the rules in the following table.

| Right ID   | Admin #     | Destination | Account, Carrier,<br>Return Location (R), or<br>% Split | Source      | Right<br>Type |
|------------|-------------|-------------|---------------------------------------------------------|-------------|---------------|
| CenRepl.01 | 82000.00000 | 9903394_F   |                                                         | 9903394_PIR | 48            |

| CenRepl.02 | 82000.00001 | 9903334_F | 9903394_PIR | 48 |
|------------|-------------|-----------|-------------|----|
| CenRepl.03 | 82000.00002 | 9903394_C | 9903394_PIR | 48 |
| CenRepl.05 | 82000.00004 | 9903334_C | 9903394_PIR | 48 |
| CenRepl.06 | 82000.00005 | 9903394_B | 9903394_PIR | 48 |
| CenRepl.07 | 82000.00006 | 9903334_B | 9903394_PIR | 48 |
| CenRepl.08 | 82000.00007 | 9903394_D | 9903394_PIR | 48 |
| CenRepl.09 | 82000.00008 | 9903334_D | 9903394_PIR | 48 |
| CenRepl.10 | 82000.00009 | 9903394_E | 9903394_PIR | 48 |
| CenRepl.11 | 82000.00010 | 9903334_E | 9903394_PIR | 48 |
| CenRepl.12 | 82000.00011 | 9903394_A | 9903394_PIR | 48 |
| CenRepl.13 | 82000.00012 | 9903334_A | 9903394_PIR | 48 |
| CenRepl.01 | 82000.00000 | 9903394_F | 9903394_PIR | 48 |

#### Gravel Pit Storage Units

Recharge accretions from the Bijou Augmentation Plan are used to meet WAS and GMS well depletions via the rules in the following table.

| Right ID    | Admin       | Destination | Account, Carrier,<br>Return Location (R), or | Source                                            | Right<br>Type |
|-------------|-------------|-------------|----------------------------------------------|---------------------------------------------------|---------------|
| 01033390.15 | 82000.00014 | 9903334_F   | % Spiit                                      | Bijou Aug Plan Canal<br>Recharge<br>(0103339_PlC) | 49            |
| 01033390.16 | 82000.00014 | 9903334_C   |                                              | Bijou Aug Plan Canal<br>Recharge<br>(0103339_PIC) | 49            |
| 01033390.17 | 82000.00014 | 9903334_B   |                                              | Bijou Aug Plan Canal<br>Recharge<br>(0103339_PIC) | 49            |
| 01033390.18 | 82000.00014 | 9903334_D   |                                              | Bijou Aug Plan Canal<br>Recharge<br>(0103339_PIC) | 49            |
| 01033390.19 | 82000.00014 | 9903334_E   |                                              | Bijou Aug Plan Canal<br>Recharge<br>(0103339 PlC) | 49            |
| 01033390.20 | 82000.00014 | 9903334_A   |                                              | Bijou Aug Plan Canal<br>Recharge<br>(0103339_PIC) | 49            |
| 01033390.28 | 82000.00014 | 9903334_F   |                                              | Bijou Aug Plan RA<br>Recharge<br>(0103339_PIR)    | 49            |
| 01033390.29 | 82000.00014 | 9903334_C   |                                              | Bijou Aug Plan RA<br>Recharge<br>(0103339_PIR)    | 49            |

| 4901033390.30 | 82000.00014 | 9903334_B | Bijou Aug Plan RA                | 49 |
|---------------|-------------|-----------|----------------------------------|----|
|               |             |           | Recharge                         |    |
|               |             |           | (0103339_PIR)                    |    |
| 01033390.31   | 82000.00014 | 9903334_D | Bijou Aug Plan RA                | 49 |
|               |             |           | Recharge                         |    |
|               |             |           | (0103339 PIR)                    |    |
| 01033390.32   | 82000.00014 | 9903334 E | Bijou Aug Plan RA                | 49 |
|               |             | -         | Recharge                         |    |
|               |             |           | (0103339 PIR)                    |    |
| 01033390.33   | 82000.00014 | 9903334 A | Bijou Aug Plan RA                | 49 |
|               |             |           | Recharge                         |    |
|               |             |           | (0103339 PIR)                    |    |
| 01033390 21   | 82000 00014 | 9903334 F | Bijou Aug Plan Canal             | 49 |
| 01055550.21   | 02000.00014 | 5565554_1 | Becharge                         | 75 |
|               |             |           |                                  |    |
| 01022200 22   | 82000 00014 | 0002224 C | Rijou Aug Dan Canal              | 10 |
| 01033390.22   | 82000.00014 | 9903334_C | Bijou Aug Flan Canal<br>Rochargo | 45 |
|               |             |           |                                  |    |
| 01022200 24   | 82000 00014 | 0002224 D | (UIUSSS9_PIC)                    | 40 |
| 01033390.24   | 82000.00014 | 9903334_B | Bijou Aug Plan Canal             | 49 |
|               |             |           | Recharge                         |    |
| 0100000005    |             |           | (0103339_PIC)                    | 10 |
| 01033390.25   | 82000.00014 | 9903334_D | Bijou Aug Plan Canal             | 49 |
|               |             |           | Recharge                         |    |
|               |             |           | (0103339_PIC)                    |    |
| 01033390.34   | 82000.00014 | 9903334_E | Bijou Aug Plan Canal             | 49 |
|               |             |           | Recharge                         |    |
|               |             |           | (0103339_PIC)                    |    |
| 01033390.35   | 82000.00014 | 9903334_F | Bijou Aug Plan RA                | 49 |
|               |             |           | Recharge                         |    |
|               |             |           | (0103339_PIR)                    |    |
| 01033390.36   | 82000.00014 | 9903334_C | Bijou Aug Plan RA                | 49 |
|               |             |           | Recharge                         |    |
|               |             |           | (0103339_PIR)                    |    |
| 01033390.37   | 82000.00014 | 9903334_B | Bijou Aug Plan RA                | 49 |
|               |             |           | Recharge                         |    |
|               |             |           | (0103339_PIR)                    |    |
| 01033390.38   | 82000.00014 | 9903334 D | Bijou Aug Plan RA                | 49 |
|               |             | _         | Recharge                         |    |
|               |             |           | (0103339 PIR)                    |    |
| 01033390.39   | 82000.00014 | 9903334 F | Bijou Aug Plan RA                | 49 |
| 01000000000   | 020000001   |           | Recharge                         |    |
|               |             |           | (0103339 PIR)                    |    |
| 01033390 34   | 82000 00014 | 9903334 A | Riiou Aug Plan RA                | 49 |
| 01033330.34   | 52000.00014 |           | Recharge                         |    |
|               |             |           |                                  |    |
| 1             |             |           | (OTO3232_LIV)                    |    |

## Storage Releases

Releases from Union Reservoir are used to meet WAS and GMS depletions via the rules in the following table.

| Right ID    | Admin       | Destination | Account, Carrier,<br>Return Location (R), or<br>% Split | Source                            | Right<br>Type |
|-------------|-------------|-------------|---------------------------------------------------------|-----------------------------------|---------------|
| 0503905_C8  | 82000.00013 | 9903334_A   |                                                         | Union Res (0503905),<br>Account 2 | 2             |
| 0503905_C9  | 82000.00013 | 9903334_B   |                                                         | Union Res (0503905),<br>Account 2 | 2             |
| 0503905_C10 | 82000.00013 | 9903334_C   |                                                         | Union Res (0503905),<br>Account 2 | 2             |
| 0503905_C11 | 82000.00013 | 9903394_A   |                                                         | Union Res (0503905),<br>Account 2 | 2             |
| 0503905_C12 | 82000.00013 | 9903394_B   |                                                         | Union Res (0503905),<br>Account 2 | 2             |
| 0503905_C13 | 82000.00013 | 9903394_C   |                                                         | Union Res (0503905),<br>Account 2 | 2             |

#### Return Flow Obligations

Use of the changed water rights creates return flow obligations. The following rules are used to meet those return flow obligations with excess recharge credits from the Hewes Cook and Farmers Independent recharge projects.

| Right ID    | Admin       | Destination | Account, Carrier,<br>Return Location (R), or<br>% Split | Source                                        | Right<br>Type |
|-------------|-------------|-------------|---------------------------------------------------------|-----------------------------------------------|---------------|
| 02008250.28 | 81000.00001 | CenFulRFs   |                                                         | Hewes Cook RA<br>Recharge<br>(0200825_PIR)    | 49            |
| 02008250.29 | 81000.00002 | CenFulRFs   |                                                         | Hewes Cook Canal<br>Recharge<br>(0200825_PIC) | 49            |
| 02008250.30 | 81000.00003 | CenBriRFs   |                                                         | Hewes Cook RA<br>Recharge<br>(0200825_PIR)    | 49            |
| 02008250.31 | 81000.00004 | CenBriRFs   |                                                         | Hewes Cook Canal<br>Recharge<br>(0200825_PIC) | 49            |
| 02008250.32 | 81000.00005 | CenLBRFs    |                                                         | Hewes Cook RA<br>Recharge<br>(0200825 PIR)    | 49            |
| 02008250.33 | 81000.00006 | CenLBRFs    |                                                         | Hewes Cook Canal<br>Recharge<br>(0200825_PIC) | 49            |
| 02008250.34 | 81000.00007 | CenPVRFs    |                                                         | Hewes Cook RA<br>Recharge<br>(0200825_PIR)    | 49            |
| 02008250.35 | 81000.00008 | CenPVRFs    |                                                         | Hewes Cook Canal<br>Recharge<br>(0200825_PIC) | 49            |
| 02008250.36 | 81000.00009 | CenFarmRFs  |                                                         | Hewes Cook RA                                 | 48            |

|             |             |            | Recharge<br>(0200825 PIR)                     |    |
|-------------|-------------|------------|-----------------------------------------------|----|
| 02008250.37 | 81000.00010 | CenFarmRFs | Hewes Cook Canal<br>Recharge<br>(0200825 PIC) | 48 |
| 02008250.38 | 81000.00011 | CenSN3RFs  | Hewes Cook RA<br>Recharge<br>(0200825_PIR)    | 48 |
| 02008250.39 | 81000.00012 | CenSN3RFs  | Hewes Cook Canal<br>Recharge<br>(0200825_PIC) | 48 |
| 02008250.40 | 81000.00013 | CenHighRFs | Hewes Cook RA<br>Recharge<br>(0200825_PIR)    | 48 |
| 02008250.41 | 81000.00014 | CenHighRFs | Hewes Cook Canal<br>Recharge<br>(0200825_PIC) | 48 |

Excess consumptive use credits in the Plan recharge nodes are then used to meet return flow obligations via the rules in the following table.

| Right ID   | Admin       | Destination | Account, Carrier,<br>Return Location (R), or<br>% Split | Source      | Right<br>Type |
|------------|-------------|-------------|---------------------------------------------------------|-------------|---------------|
| CenRepl.22 | 83000.00013 | CenFulRFs   |                                                         | 9903394_PIR | 49            |
| CenRepl.23 | 83000.00014 | CenBriRFs   |                                                         | 9903394_PIR | 49            |
| CenRepl.24 | 83000.00015 | CenLBRFs    |                                                         | 9903394_PIR | 49            |
| CenRepl.25 | 83000.00016 | CenPVRFs    |                                                         | 9903394_PIR | 49            |
| CenRepl.26 | 83000.00017 | CenFarmRFs  |                                                         | 9903394_PIR | 48            |
| CenRepl.27 | 83000.00018 | CenSN3RFs   |                                                         | 9903394_PIR | 48            |
| CenRepl.28 | 83000.00019 | CenHighRFs  |                                                         | 9903394_PIR | 48            |

| Right ID     | Admin       | Destination                             | Account, Carrier,<br>Return Location (R), or<br>% Split             | Source   | Right<br>Type |
|--------------|-------------|-----------------------------------------|---------------------------------------------------------------------|----------|---------------|
| WAS_LM.01a-g | 61000.50000 | Central LuptBtm HCU<br>Sto (0200812_RC) | Lupton Bottom Ditch<br>(0200812)<br>Lupt Btm Aug Stn<br>(0200812_A) | CenLMPIn | 27            |

5.10.10.2 City of Fort Morgan Augmentation Plan (0102456)

The City of Fort Morgan municipal demand was represented in the model by the aggregated Water District 1 municipal demand (01\_AMP001\_I and 01\_AMP001\_O). The City receives direct C-BT

supplies and pumps ground water to meet municipal demands; however these municipal demands in the model are represented only as a ground water demand. Out-of-priority depletions are included in the City of Fort Morgan Augmentation Plan (0102456). Supplies to offset the depletions include deliveries from CBT, excess augmentation supplies from the Fort Morgan Augmentation Plan (0102528), and direct releases from Jackson Reservoir. Note that the augmentation plan can use the City's sewer return flows and lawn irrigation return flows as a supply for the plan as well. These supplies are inherently represented in the model because the augmentation plan demand is based on the total well pumping less the return flows from the indoor and outdoor municipal demands. As presented in the table below, the following operating rules were used to simulate this augmentation plan.

| Right ID    | Admin #     | Destination                           | Account, Carrier,<br>Return Location (R),<br>or % Split | Source                                                         | Right<br>Type |
|-------------|-------------|---------------------------------------|---------------------------------------------------------|----------------------------------------------------------------|---------------|
| 01024560.01 | 59169.56615 | City Ft. Morgan Aug<br>Plan - 0102456 |                                                         |                                                                | 43            |
| AdamsTun.20 | 59169.56616 | City Ft. Morgan Aug<br>Plan - 0102456 |                                                         | AdamsTunPIn                                                    | 48            |
| 01024560.02 | 59169.56616 | City Ft. Morgan Aug<br>Plan - 0102456 |                                                         | City Ft. Morgan Aug Plan<br>Canal Seepage -<br>0102528_PIC     | 48            |
| 01024560.03 | 59169.56617 | City Ft. Morgan Aug<br>Plan - 0102456 |                                                         | City Ft. Morgan Aug Plan<br>Reservoir Seepage -<br>0102528_PIR | 48            |
| 01024560.04 | 59169.56618 | City Ft. Morgan Aug<br>Plan - 0102456 | Account 1                                               | Jackson Reservoir -<br>0103817                                 | 48            |

# 5.10.10.3 Rothe Augmentation Plan (0102513)

The Rothe Augmentation Plan is generally operated based on recharge wells that fill numerous recharge areas located off of Bijou Canal and Riverside Canal. Recharge areas can also be filled by and shared with Bijou Augmentation Plan and Riverside Augmentation Plan, but these are measured and modeled separately (see descriptions below). Case No. 09CW7 was primarily used to support the representation of this plan in the model. Recharge area accretions primarily offset augmentation requirements, and are supplemented with excess recharge supplies from Fort Morgan Augmentation Plan, Riverside Augmentation Plan, and Bijou Augmentation Plan. A decreed pump station to divert surface water to the recharge areas has not been constructed yet. As presented in the table below, the following operating rules were used to simulate this augmentation plan.

| Right ID    | Admin #     | Destination                                     | Account, Carrier,<br>Return Location (R),<br>or % Split | Source     | Right<br>Type |
|-------------|-------------|-------------------------------------------------|---------------------------------------------------------|------------|---------------|
| 01025130.01 | 58925.00001 | Rothe Aug Plan -<br>0102513                     |                                                         |            | 43            |
| 01025130.02 | 58074.56110 | Rothe Southern<br>Recharge Area –<br>0102513_Rs |                                                         | 0102513Re1 | 44            |

| 01025130.03 | 58074.56095 | Rothe Northern   | 0102513Re2                   | 44 |
|-------------|-------------|------------------|------------------------------|----|
|             |             | Recharge Area -  |                              |    |
|             |             | 0102513_Rn       |                              |    |
| 01025130.04 | 58074.56095 | Rothe Southern   | 0102513Re3                   | 44 |
|             |             | Recharge Area -  |                              |    |
|             |             | 0102513_Rs       |                              |    |
| 01025130.05 | 58074.56095 | Rothe Southern   | 0102513Re4                   | 44 |
|             |             | Recharge Area -  |                              |    |
|             |             | 0102513_Rs       |                              |    |
| 01025130.06 | 58925.00002 | Rothe Aug Plan - | Rothe Aug Plan Reservoir     | 48 |
|             |             | 0102513          | Seepage - 0102513_PIR        |    |
| 01025130.06 | 58925.00003 | Rothe Aug Plan – | Ft. Morgan Aug Plan Canal    | 49 |
|             |             | 0102513          | Seepage - 0102528_PIC        |    |
| 01025130.08 | 58925.00004 | Rothe Aug Plan – | Ft. Morgan Aug Plan          | 49 |
|             |             | 0102513          | Reservoir Seepage -          |    |
|             |             |                  | 0102528_PIR                  |    |
| 01025130.09 | 58925.00003 | Rothe Aug Plan – | Riverside Aug Plan Canal     | 48 |
|             |             | 0102513          | Seepage - 0102522_PIC        |    |
| 01025130.10 | 58925.00004 | Rothe Aug Plan – | Riverside Aug Plan Reservoir | 48 |
|             |             | 0102513          | Seepage - 0102522_PIR        |    |
| 01025130.11 | 58925.00003 | Rothe Aug Plan – | Bijou Aug Plan Canal Seepage | 48 |
|             |             | 0102513          | - 0103339_PIC                |    |
| 01025130.12 | 58925.00004 | Rothe Aug Plan - | Bijou Aug Plan Reservoir     | 48 |
|             |             | 0102513          | Seepage - 0103339_PIR        |    |

## 5.10.10.4 Pioneer Augmentation Plan (0102518)

The Pioneer Augmentation Plan is generally operated based on junior water rights that fill numerous recharge areas located off Tremont Ditch. Based on information from 03CW96, the model includes operations to divert a junior Tremont Ditch water right to an aggregated recharge area, tracking the in-ditch and recharge area seepage as an augmentation supply. A plan limitation was used to limit diversions to recharge to historical diversions. As presented in the table below, the following operating rules were used to simulate this augmentation plan.

| Right ID    | Admin #     | Destination                          | Account, Carrier,<br>Return Location (R),<br>or % Split | Source                                              | Right<br>Type |
|-------------|-------------|--------------------------------------|---------------------------------------------------------|-----------------------------------------------------|---------------|
| 01025180.01 | 42093.00001 | Pioneer Aug Plan -<br>0102518        |                                                         |                                                     | 43            |
| 01025180.02 | 1.00000     |                                      |                                                         | Pioneer Aug Plan Release<br>Limit - 0102518_RL      | 47            |
| 01025180.03 | 47847.46567 | Pioneer Recharge<br>Area - 0102518_R | Tremont Ditch -<br>0100519_D                            | 0102518_D.05                                        | 45            |
| 01025180.04 | 47847.46568 | Pioneer Aug Plan -<br>0102518        |                                                         | Pioneer Aug Plan Canal<br>Seepage - 0102518_PlC     | 48            |
| 01025180.05 | 47847.46569 | Pioneer Aug Plan -<br>0102518        |                                                         | Pioneer Aug Plan Reservoir<br>Seepage - 0102518_PlR | 48            |
| 01025180.06 | 59169.56620 | Pioneer Aug Plan -<br>0102518        | Account 4                                               | Jackson Reservoir - 0103817                         | 48            |

## 5.10.10.5 Riverside Augmentation Plan (0102522)

The Riverside Augmentation plan represents an aggregated augmentation plan including Headley (0102525), Goodrich Farms (0102536), Equus (0102581), and Sublette (0102725) plans. The Riverside Augmentation Plan is generally operated based on direct water rights off Riverside Canal that fill numerous recharge areas. Based on information from 02CW86, the model includes operations to divert junior Riverside Canal water rights to an aggregated recharge area, tracking the in-ditch and recharge area seepage as an augmentation supply. A plan limitation was used to limit diversions to recharge to historical diversions. This supply is supplemented with releases from Riverside Reservoir directly to the river. The decree allows Riverside Reservoir releases to be stored in recharge areas; however a simplified approach was taken in the model in order to limit the releases from the reservoir to only meet remaining augmentation demand. Note that the decree also allows excess recharge credits to be exchanged back up to Riverside Canal, however these operations are not currently supported by StateMod and therefore excluded. As presented in the table below, the following operating rules were used to simulate this augmentation plan.

| Right ID    | Admin #     | Destination                                             | Account, Carrier,<br>Return Location (R), | Source                                                | Right<br>Type |
|-------------|-------------|---------------------------------------------------------|-------------------------------------------|-------------------------------------------------------|---------------|
|             |             |                                                         | or % Split                                |                                                       |               |
| 01025220.01 | 53691.45807 | Riverside Aug Plan<br>– 0102522                         |                                           |                                                       | 43            |
| 01025220.02 | 1.00000     |                                                         |                                           | Riverside Aug Plan Release<br>Limit - 0102522_RL      | 47            |
| 01025220.03 | 46751.45836 | Riverside Aug Plan<br>Recharge Reservoir<br>- 0102522_R | Riverside Div System<br>- 0100503_D       | 0100503_D.08                                          | 45            |
| 01025220.04 | 50466.00000 | Riverside Aug Plan<br>Recharge Area -<br>0102522_R      | Riverside Div System<br>- 0100503_D       | 0100503_D.10                                          | 45            |
| 01025220.05 | 50712.00000 | Riverside Aug Plan<br>Recharge Area -<br>0102522_R      | Riverside Div System<br>- 0100503_D       | 0100503_D.11                                          | 45            |
| 01025220.06 | 50769.49378 | Riverside Aug Plan<br>Recharge Reservoir<br>- 0102522_R | Riverside Div System<br>- 0100503_D       | 0100503_D.12                                          | 45            |
| 01025220.07 | 51356.00000 | Riverside Aug Plan<br>Recharge Area -<br>0102522_R      | Riverside Div System<br>- 0100503_D       | 0100503_D.13                                          | 45            |
| 01025220.08 | 53691.45808 | Riverside Aug Plan<br>– 0102522                         |                                           | Riverside Aug Plan Canal<br>Seepage - 0102522_PlC     | 48            |
| 01025220.09 | 53691.45809 | Riverside Aug Plan<br>– 0102522                         |                                           | Riverside Aug Plan Reservoir<br>Seepage - 0102522_PlR | 48            |
| 01025220.10 | 53691.45810 | Riverside Aug Plan<br>– 0102522                         | Account 1                                 | Riverside Reservoir -0103651                          | 49            |

## 5.10.10.6 Ft. Morgan Canal Aug Plan (012528)

The Ft. Morgan Canal Augmentation Plan is generally operated based on junior water rights that fill numerous recharge areas located off of Fort Morgan Canal. Based on information from 02CW345, the model includes operations to divert junior Fort Morgan Canal water rights to an aggregated recharge area, tracking the in-ditch and recharge area seepage as an augmentation supply. A plan limitation was used to limit diversions to recharge to historical diversions. This supply is supplemented with releases from Jackson Reservoir directly to the river. The decree allows Jackson Reservoir releases to be stored in recharge areas; however a simplified approach was taken in the model in order to limit the releases from the reservoir to only meet remaining augmentation demand. Additionally the decree indicates only 42 percent of the Jackson Reservoir releases should be applied to the augmentation supply as they reflect changed water rights. These limitations are not supported using the Type 48 or 49 rules, therefore releases to the river are applied to the augmentation demand in full. As presented in the table below, the following operating rules were used to simulate this augmentation plan.

| Right ID    | Admin #     | Destination                                               | Account, Carrier,<br>Return Location (R),<br>or % Split | Source                                                          | Right<br>Type |
|-------------|-------------|-----------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|---------------|
| 01025280.01 | 55595.51864 | Ft. Morgan Canal<br>Aug Plan -<br>0102528                 |                                                         |                                                                 | 43            |
| 01025280.02 | 1.00000     |                                                           |                                                         | Ft. Morgan Canal Aug Plan<br>Release Limit - 0102528_RL         | 47            |
| 01025280.03 | 44699.00000 | Ft. Morgan Canal<br>Aug Plan Recharge<br>Area - 0102528_R | Ft. Morgan Div Sys -<br>0100514                         | 0100514.02                                                      | 45            |
| 01025280.04 | 55150.00000 | Ft. Morgan Canal<br>Aug Plan Recharge<br>Area - 0102528_R | Ft. Morgan Div Sys -<br>0100514                         | 0100514.03                                                      | 45            |
| 01025280.05 | 52595.51866 | Ft. Morgan Canal<br>Aug Plan -<br>0102528                 |                                                         | Ft. Morgan Canal Aug Plan<br>Canal Seepage - 0102528_PlC        | 48            |
| 01025280.06 | 52595.51867 | Ft. Morgan Canal<br>Aug Plan -<br>0102528                 |                                                         | Ft. Morgan Canal Aug Plan<br>Reservoir Seepage -<br>0102528_PIR | 48            |
| 01025280.07 | 52595.51868 | Ft. Morgan Canal<br>Aug Plan -<br>0102528                 | Account 1                                               | Jackson Reservoir - 0103817                                     | 48            |

## 5.10.10.7 Upper Platte and Beaver Augmentation Plan (0102529)

The Upper Platte and Beaver Augmentation Plan is generally operated based on junior water rights that fill numerous recharge areas located off of Upper Platte and Beaver Canal. Based on information from 02CW401, the model includes operations to divert junior Upper Platte and Beaver Canal water rights to an aggregated recharge area, tracking the in-ditch and recharge area seepage as an augmentation supply. A plan limitation was used to limit diversions to recharge to historical

diversions. This supply is supplemented with releases from Jackson Reservoir, Prewitt Reservoir, and Riverside Reservoir directly to the river, and excess recharge credits from Riverside Augmentation Plan. The decree allows reservoir releases to be stored in recharge areas; however a simplified approach was taken in the model in order to limit the releases from the reservoir to only meet remaining augmentation demand. Additionally the decree indicates only 54 percent of the reservoir releases should be applied to the augmentation supply. These limitations are not supported using the Type 48 or 49 rules, therefore releases to the river are applied to the augmentation demand in full. Note that the decree also allows excess recharge credits to be exchanged back up to Upper Platte and Beaver Canal, however these operations are not currently supported by StateMod and therefore excluded. As presented in the table below, the following operating rules were used to simulate this augmentation plan.

| Right ID    | Admin #     | Destination                                  | Account, Carrier,<br>Return Location (R),<br>or % Split | Source                                                | Right<br>Type |
|-------------|-------------|----------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|---------------|
| 01025290.01 | 56613.38472 | UPB Aug Plan -<br>0102529                    |                                                         |                                                       | 43            |
| 01025290.02 | 1.00000     |                                              |                                                         | UPB Aug Plan Release Limit -<br>0102529_RL            | 47            |
| 01025290.03 | 44723.00000 | UPB Aug Plan<br>Recharge Area -<br>0102529_R | Upper Platte Beaver<br>Canal - 0100515                  | 0100515.05                                            | 45            |
| 01025290.04 | 56613.38473 | UPB Aug Plan -<br>0102529                    |                                                         | UPB Aug Plan Canal Seepage<br>- 0102529_PlC           | 48            |
| 01025290.05 | 56613.38474 | UPB Aug Plan -<br>0102529                    |                                                         | UPB Aug Plan Reservoir<br>Seepage - 0102529_PlR       | 48            |
| 01025290.06 | 56613.38475 | UPB Aug Plan -<br>0102529                    | Account 3                                               | Jackson Reservoir - 0103817                           | 48            |
| 01025290.07 | 56613.38476 | UPB Aug Plan –<br>0102529                    | Account 15                                              | Prewitt Reservoir - 6403552                           | 49            |
| 01025290.08 | 56613.52828 | UPB Aug Plan –<br>0102529                    |                                                         | Riverside Aug Plan Canal<br>Seepage - 0102522_PlC     | 48            |
| 01025290.09 | 56613.52829 | UPB Aug Plan –<br>0102529                    |                                                         | Riverside Aug Plan Reservoir<br>Seepage - 0102522_PlR | 48            |
| 01025290.10 | 56613.52830 | UPB Aug Plan –<br>0102529                    | Account 1                                               | Riverside Reservoir - 0103651                         | 49            |

## 5.10.10.8 Lower Platte and Beaver Augmentation Plan (0102535)

The Lower Platte and Beaver Augmentation Plan is generally operated based on junior water rights that fill numerous recharge areas located off of Lower Platte and Beaver Canal. Based on information from 03CW443, the model includes operations to divert junior Lower Platte and Beaver Canal water rights to an aggregated recharge area, tracking the in-ditch and recharge area seepage as an augmentation supply. A plan limitation was used to limit diversions to recharge to historical diversions. The aggregate recharge area can also be filled using a recharge well, based on historical pumping data in HydroBase. This supply is supplemented with releases from Jackson Reservoir, Prewitt Reservoir, and Riverside Reservoir directly to the river, and excess recharge credits from

Riverside Augmentation Plan. The decree allows reservoir releases to be stored in recharge areas; however a simplified approach was taken in the model in order to limit the releases from the reservoir to only meet remaining augmentation demand. Due to the limited reservoir releases that are simulated in the model, the return flow obligations associated with the releases were not explicitly modeled. Note that the decree also allows excess recharge credits to be exchanged back up to Lower Platte and Beaver Canal, however these operations are not currently supported by StateMod and therefore excluded. As presented in the table below, the following operating rules were used to simulate this augmentation plan.

| Right ID    | Admin #     | Destination                                  | Account, Carrier,<br>Return Location (R), | Source                                                | Right<br>Type |
|-------------|-------------|----------------------------------------------|-------------------------------------------|-------------------------------------------------------|---------------|
| 01025350.01 | 55890.00001 | LPB Aug Plan –<br>0102535                    |                                           |                                                       | 43            |
| 01025350.02 | 1.00000     |                                              |                                           | LPB Aug Plan Release Limit -<br>0102535_RL            | 47            |
| 01025350.03 | 44723.00000 | LPB Aug Plan<br>Recharge Area -<br>0102535_R | Lower Platte Beaver<br>Ditch - 0100518    | 0100518.03                                            | 45            |
| 01025350.04 | 47224.00000 | LPB Aug Plan<br>Recharge Area -<br>0102535_R | Lower Platte Beaver<br>Ditch - 0100518    | 0100518.06                                            | 45            |
| 01025350.06 | 55890.00002 | LPB Aug Plan –<br>0102535                    |                                           | LPB Aug Plan Canal Seepage -<br>0102535_PlC           | 48            |
| 01025350.07 | 55890.00003 | LPB Aug Plan –<br>0102535                    |                                           | LPB Aug Plan Reservoir<br>Seepage - 0102535_PIR       | 48            |
| 01025350.08 | 55890.00000 | LPB Aug Plan<br>Recharge Area -<br>0102535_R |                                           | 0102535Re1                                            | 44            |
| 01025350.09 | 55890.00004 | LPB Aug Plan –<br>0102535                    | Account 2                                 | Jackson Reservoir - 0103817                           | 48            |
| 01025350.10 | 55890.00005 | LPB Aug Plan –<br>0102535                    | Account 16                                | Prewitt Reservoir - 6403552                           | 49            |
| 01025350.11 | 56613.52828 | LPB Aug Plan –<br>0102535                    |                                           | Riverside Aug Plan Canal<br>Seepage - 0102522_PlC     | 48            |
| 01025350.12 | 56613.52829 | LPB Aug Plan –<br>0102535                    |                                           | Riverside Aug Plan Reservoir<br>Seepage - 0102522_PlR | 48            |
| 01025350.13 | 56613.52830 | LPB Aug Plan –<br>0102535                    | Account 1                                 | Riverside Reservoir - 0103651                         | 49            |

## 5.10.10.9 Brush Augmentation Plan (0102662)

The Brush Augmentation Plan is generally operated based on junior water rights that fill Bollinger Recharge Areas located off of Fort Morgan Canal, Town of Brush Sewer, lawn irrigation return flows, and augmentation credits from Ft. Morgan Canal and Riverside Augmentation Plans. The Town of Brush municipal demands were not explicitly modeled; they are included in the aggregated municipal demand in Water District 1 (01\_AMP001\_I and 01\_AMP001\_O). As this is the primary demand under the City of Fort Morgan Augmentation Plan (0102456), the augmentation plan supplies for the Brush plan are modeled similar to the City of Fort Morgan Augmentation Plan supplies. This includes excess recharge supplies from the Fort Morgan Augmentation Plan (0102528) and Riverside Augmentation Plan (0102522), and releases from Jackson Reservoir. As presented in the table below, the following operating rules were used to simulate this augmentation plan.

| Right ID    | Admin #     | Destination                 | Account, Carrier,<br>Return Location (R),<br>or % Split | Source                                                          | Right<br>Type |
|-------------|-------------|-----------------------------|---------------------------------------------------------|-----------------------------------------------------------------|---------------|
| 01025350.01 | 59169.56615 | Brush Aug Plan –<br>0102662 |                                                         |                                                                 | 43            |
| 01026620.02 | 59169.56616 | Brush Aug Plan –<br>0102662 |                                                         | Ft. Morgan Canal Aug Plan<br>Canal Seepage - 0102528_PlC        | 48            |
| 01026620.03 | 59169.56617 | Brush Aug Plan –<br>0102662 |                                                         | Ft. Morgan Reservoir Aug<br>Plan Canal Seepage -<br>0102528_PIR | 48            |
| 01026620.04 | 59169.56618 | Brush Aug Plan –<br>0102662 |                                                         | Riverside Aug Plan Canal<br>Seepage - 0102522_PlC               | 48            |
| 01026620.05 | 59169.56619 | Brush Aug Plan –<br>0102662 |                                                         | Riverside Aug Plan Reservoir<br>Seepage - 0102522_PlR           | 48            |
| 01026620.06 | 59169.56620 | Brush Aug Plan –<br>0102662 | Account 1                                               | Jackson Reservoir – 0103817                                     | 48            |

#### 5.10.10.10 Bijou Augmentation Plan (0103339)

The Bijou Augmentation Plan is generally operated based on junior water rights that fill numerous recharge areas located off of Bijou Canal and seepage from Bijou No. 2 Reservoir. Bijou No. 2 Reservoir was originally built for irrigation, but due to excessive seepage, it was changed over to recharge operations. The reservoir stores under its own storage rights; the junior recharge rights are carried to an aggregate recharge area (0103339\_R) located on Bijou Canal. Note that Godert Recharge Area did not have sufficient reservoir content records to be modeled explicitly and is included in the aggregate recharge area. Three recharge plans (0103339\_PIC, 0103570\_PIR, and 0103339\_PIR) are used to track the in-ditch, reservoir, and recharge area seepage, which is used to meet the augmentation plan demand. A plan limitation was used to limit diversions to recharge to historical diversions. As presented in the table below, the following operating rules were used to simulate this augmentation plan.

| Right ID    | Admin #     | Destination                        | Account, Carrier,<br>Return Location (R),<br>or % Split | Source                         | Right<br>Type |
|-------------|-------------|------------------------------------|---------------------------------------------------------|--------------------------------|---------------|
| 01033390.19 | 47847.42073 | Bijou Aug Plan –<br>0103339        |                                                         |                                | 43            |
| 01033390.01 | 21564.00000 | Bijou Reservoir No.<br>2 – 0103570 | Bijou Div System -<br>0100507_D                         | 0103570.01                     | 45            |
| 01033390.02 | 31423.29219 | Bijou Reservoir No.<br>2 – 0103570 | Bijou Div System -<br>0100507_D                         | 0103570.02                     | 45            |
| 01033390.03 | 44706.00000 | Bijou Reservoir No.<br>2 – 0103570 | Bijou Div System -<br>0100507_D                         | 0100507_D.11                   | 45            |
| 01033390.04 | 1.00000     |                                    |                                                         | Bijou Aug Plan Release Limit - | 47            |

|             |             |                                                |                                 | 0103339_RL                                        |    |
|-------------|-------------|------------------------------------------------|---------------------------------|---------------------------------------------------|----|
| 01033390.05 | 44706.10000 | Bijou Aug Plan<br>Recharge Area -<br>0103339_R | Bijou Div System -<br>0100507_D | 0100507_D.11                                      | 45 |
| 01033390.06 | 49733.00000 | Bijou Aug Plan<br>Recharge Area -<br>0103339_R | Bijou Div System -<br>0100507_D | 0100507_D.12                                      | 45 |
| 01033390.07 | 49826.00000 | Bijou Aug Plan<br>Recharge Area -<br>0103339_R | Bijou Div System -<br>0100507_D | 0100507_D.13                                      | 45 |
| 01033390.08 | 52633.00000 | Bijou Aug Plan<br>Recharge Area -<br>0103339_R | Bijou Div System -<br>0100507_D | 0100507_D.14                                      | 45 |
| 01033390.09 | 53300.00000 | Bijou Aug Plan<br>Recharge Area -<br>0103339_R | Bijou Div System -<br>0100507_D | 0100507_D.15                                      | 45 |
| 01033390.10 | 53300.00000 | Bijou Aug Plan<br>Recharge Area -<br>0103339_R | Bijou Div System -<br>0100507_D | 0100507_D.16                                      | 45 |
| 01033390.11 | 53300.00000 | Bijou Aug Plan<br>Recharge Area -<br>0103339_R | Bijou Div System -<br>0100507_D | 0100507_D.17                                      | 45 |
| 01033390.12 | 53300.00001 | Bijou Aug Plan –<br>0103339                    |                                 | Bijou Aug Plan Canal Seepage<br>- 0103339_PlC     | 48 |
| 01033390.13 | 53300.00002 | Bijou Aug Plan –<br>0103339                    |                                 | Bijou Aug Plan Reservoir<br>Seepage - 0103339_PlR | 48 |
| 01033390.14 | 53300.00003 | Bijou Aug Plan –<br>0103339                    |                                 | Bijou No. 2 Reservoir<br>Seepage - 0103570_PIR    | 49 |

# 5.10.10.11 Sedgwick County Aug Plan (6402517)

The Sedgwick County Augmentation Plan consists of five recharge projects; two of which generally operate based on augmentation and recharge wells that pump to aggregated recharge areas (Fender Recharge Project, Glenn Toyne Platteview Ranch Recharge Project) and three which include junior water rights carried to aggregated recharge areas on Cottonwood Creek, Peterson Ditch, and South Reservation Ditch (Cottonwood Creek Recharge Project, Sedgwick Julesburg Irrigation District Recharge Project, and South Reservation Ditch Recharge Project). Based on information from 03CW209, the model includes operations to divert junior Cottonwood Creek, Peterson Ditch, and South Reservation Ditch water rights to aggregated recharge areas located on each ditch or creek, tracking the in-ditch and recharge area seepage as an augmentation supply. Historical diversions indicate that Cottonwood Creek pump is only operated from December to May; therefore diversions were limited with monthly switches. Note that the conditional junior right on Settlers Ditch was excluded as its supply consists of irrigation return flows that accrued to the Highline Canal downstream of Julesburg Reservoir. A plan limitation was used to limit diversions to recharge to historical diversions. Note that the decree also allows excess recharge credits to be exchanged back up to Peterson Ditch, South Reservation Ditch and the recharge wells at a maximum of 30 cfs, however these operations are not currently supported by StateMod and therefore excluded. This

supply is supplemented by pumping under two recharge well rights and ten augmentation well rights. As presented in the table below, the following operating rules were used to simulate this augmentation plan.

| Right ID    | Admin #     | Destination                                       | Account, Carrier,<br>Return Location (R), | Source                                                                | Right<br>Type |
|-------------|-------------|---------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------|---------------|
|             |             |                                                   | or % Split                                |                                                                       |               |
| 64025170.01 | 56002.00001 | Sedgwick City Aug<br>Plan - 6402517               |                                           |                                                                       | 43            |
| 64025170.02 | 55882.55834 | Sedgwick Aug Plan<br>Recharge Area -<br>6402517_R | Cottonwood Crk<br>Pump - 6400801          | 6400801.01                                                            | 45            |
| 64025170.03 | 1.00000     |                                                   |                                           | Sedgwick City Aug Plan<br>Release Limit 1- 6402517_R1                 | 47            |
| 64025170.04 | 56002.00000 | Sedgwick Peterson<br>RA - 6402517_RP              | Peterson Ditch -<br>6400504               | 6400504.04                                                            | 45            |
| 64025170.05 | 1.00000     |                                                   |                                           | Sedgwick City Aug Plan<br>Release Limit 2 - 6402517_R2                | 47            |
| 64025170.06 | 56002.00000 | Sedgwick South<br>Recharge Area -<br>6402517_RS   | South Reservation<br>Ditch - 6400503      | 6400503.02                                                            | 45            |
| 64025170.07 | 56002.00002 | Sedgwick City Aug<br>Plan - 6402517               |                                           | Sedgwick Aug Plan Peterson<br>Canal Seepage -<br>6402517_PCP          | 48            |
| 64025170.08 | 56002.00003 | Sedgwick City Aug<br>Plan - 6402517               |                                           | Sedgwick Aug Plan South<br>Reservation Canal Seepage -<br>6402517_PCS | 48            |
| 64025170.09 | 56002.00004 | Sedgwick City Aug<br>Plan - 6402517               |                                           | Sedgwick Aug Plan Reservoir<br>Seepage - 6402517_PlR                  | 48            |
| 64025170.10 | 38061.00000 | Sedgwick Aug Plan<br>Recharge Area -<br>6402517_R |                                           | 6402517Re2                                                            | 44            |
| 64025170.11 | 55971.00000 | Sedgwick Aug Plan<br>Recharge Area -<br>6402517_R |                                           | 6402517Re3                                                            | 44            |
| 64025170.12 | 99996.00000 | Sedgwick City Aug<br>Plan – 6402517               |                                           | 6402517Au2                                                            | 37            |
| 64025170.13 | 99996.00000 | Sedgwick City Aug<br>Plan – 6402517               |                                           | 6402517Au4                                                            | 37            |
| 64025170.14 | 99996.00000 | Sedgwick City Aug<br>Plan – 6402517               |                                           | 6402517Au6                                                            | 37            |
| 64025170.15 | 99996.00000 | Sedgwick City Aug<br>Plan – 6402517               |                                           | 6402517Au8                                                            | 37            |
| 64025170.16 | 99996.00000 | Sedgwick City Aug<br>Plan – 6402517               |                                           | 6402517Au10                                                           | 37            |
| 64025170.17 | 99996.00000 | Sedgwick City Aug<br>Plan – 6402517               |                                           | 6402517Au12                                                           | 37            |
| 64025170.18 | 99996.00000 | Sedgwick City Aug<br>Plan – 6402517               |                                           | 6402517Au14                                                           | 37            |
| 64025170.19 | 99996.00000 | Sedgwick City Aug<br>Plan – 6402517               |                                           | 6402517Au15                                                           | 37            |

| 64025170.20 | 99996.00000 | Sedgwick City Aug<br>Plan – 6402517 | 6402517Au16 | 37 |
|-------------|-------------|-------------------------------------|-------------|----|
| 64025170.21 | 99996.00000 | Sedgwick City Aug<br>Plan – 6402517 | 6402517Au17 | 37 |

## 5.10.10.12 Harmony Ditch Company Augmentation Plan (6402518)

The Harmony Ditch Company Augmentation Plan is generally operated based on junior water rights that fill numerous recharge areas located off of Harmony Ditch No. 1. Based on information from 03CW363, the model includes operations to divert junior Harmony Ditch water rights to an aggregated recharge area, tracking the in-ditch and recharge area seepage as an augmentation supply. A plan limitation was used to limit diversions to recharge to historical diversions. This supply is supplemented with releases from Prewitt Reservoir directly to the river. The decree allows reservoir releases to be stored in recharge areas; however a simplified approach was taken in the model in order to limit the releases from the reservoir to only meet remaining augmentation demand. Additionally the decree indicates only 50 percent of the reservoir releases should be applied to the augmentation supply. These limitations are not supported using the Type 48 or 49 rules, therefore releases to the river are applied to the augmentation demand in full. Note that the decree also allows excess recharge credits to be exchanged back up to Harmony Ditch, however these operations are not currently supported by StateMod and therefore excluded. As presented in the table below, the following operating rules were used to simulate this augmentation plan.

| Right ID    | Admin #     | Destination                                            | Account, Carrier,<br>Return Location (R),<br>or % Split | Source                                                       | Right<br>Type |
|-------------|-------------|--------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------|---------------|
| 64025180.01 | 44663.00001 | Harmony Ditch<br>Aug Plan -<br>6402518                 |                                                         |                                                              | 43            |
| 64025180.02 | 1.00000     |                                                        |                                                         | Harmony Ditch Aug Plan<br>Release Limit – GMS_AL             | 47            |
| 64025180.03 | 55882.00000 | Harmony Ditch<br>Aug Plan Recharge<br>Area - 6402518_R | Harmony Div System<br>- 6400511_D                       | 6400511_D.06                                                 | 45            |
| 64025180.04 | 55882.00001 | Harmony Ditch<br>Aug Plan –<br>6402518                 |                                                         | Harmony Ditch Aug Plan<br>Canal Seepage - 6402518_PlC        | 48            |
| 64025180.05 | 55882.00002 | Harmony Ditch<br>Aug Plan –<br>6402518                 |                                                         | Harmony Ditch Aug Plan<br>Reservoir Seepage -<br>6402518_PIR | 48            |
| 64025180.06 | 55882.00003 | Harmony Ditch<br>Aug Plan –<br>6402518                 | Account 8                                               | Prewitt Reservoir - 6403552                                  | 48            |

## 5.10.10.13 Dinsdale Augmentation Plan (6402519)

The Dinsdale Augmentation Plan is generally reliant on augmentation wells and recharge wells. Case No. 01CW61 was primarily used to support the representation of the plan in the model. Lagged

recharge area accretions and direct pumping from augmentation wells are applied to meet the augmentation plan demand. As presented in the table below, the following operating rules were used to simulate this augmentation plan.

| Right ID    | Admin #     | Destination                                      | Account, Carrier,<br>Return Location (R),<br>or % Split | Source                                               | Right<br>Type |
|-------------|-------------|--------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|---------------|
| 64025180.01 | 55967.00001 | Dinsdale Aug Plan<br>– 6402519                   |                                                         |                                                      | 43            |
| 64025190.02 | 55967.00002 | Dinsdale Aug Plan<br>– 6402519                   |                                                         | Dinsdale Aug Plan Reservoir<br>Seepage - 6402519_PlR | 48            |
| 64025190.03 | 55152.54174 | Dinsdale Aug Plan<br>Recharge Area-<br>6402519_R |                                                         | 6402519Re2                                           | 44            |
| 64025190.04 | 55882.55878 | Dinsdale Aug Plan<br>Recharge Area-<br>6402519_R |                                                         | 6402519Re3                                           | 44            |
| 64025190.05 | 55882.55878 | Dinsdale Aug Plan<br>Recharge Area-<br>6402519_R |                                                         | 6402519Re4                                           | 44            |
| 64025190.06 | 55152.54174 | Dinsdale Aug Plan<br>Recharge Area-<br>6402519_R |                                                         | 6402519Re5                                           | 44            |
| 64025190.07 | 99996.00000 | Dinsdale Aug Plan<br>– 6402519                   |                                                         | 6402519Au2                                           | 37            |
| 64025190.08 | 99996.00000 | Dinsdale Aug Plan<br>– 6402519                   |                                                         | 6402519Au4                                           | 37            |
| 64025190.09 | 99996.00000 | Dinsdale Aug Plan<br>– 6402519                   |                                                         | 6402519Au5                                           | 37            |

# 5.10.10.14 Condon Augmentation Plan (6402525)

The Condon Augmentation Plan is generally reliant on augmentation and recharge wells that were decreed as alternate point of diversions to Chambers Ditch irrigation rights. Case No. 95CW053 was primarily used to support the representation of these operations in the model. Lagged recharge area accretions and direct pumping from augmentation wells are applied to meet the augmentation plan demand. As presented in the table below, the following operating rules were used to simulate this augmentation plan.

| Right ID    | Admin #     | Destination                                     | Account, Carrier,<br>Return Location (R),<br>or % Split | Source                                             | Right<br>Type |
|-------------|-------------|-------------------------------------------------|---------------------------------------------------------|----------------------------------------------------|---------------|
| 64025250.01 | 47116.45215 | Condon Aug Plan -<br>6402525                    |                                                         |                                                    | 43            |
| 64025250.02 | 47116.45215 | Condon Aug Plan -<br>6402525                    |                                                         | Condon Aug Plan Reservoir<br>Seepage - 6402525_PlR | 48            |
| 64025250.03 | 46114.00000 | Condon Aug Plan<br>Recharge Area -<br>6402525_R |                                                         | 6402525Re1                                         | 44            |

| 64025250.04 | 16560.00000 | Condon Aug Plan   | 6402525Re2 | 44 |
|-------------|-------------|-------------------|------------|----|
|             |             | Recharge Area -   |            |    |
|             |             | 6402525_R         |            |    |
| 64025250.05 | 46114.00000 | Condon Aug Plan   | 6402525Re3 | 44 |
|             |             | Recharge Area -   |            |    |
|             |             | 6402525_R         |            |    |
| 64025250.07 | 99996.00000 | Condon Aug Plan - | 6402525Au1 | 37 |
|             |             | 6402525           |            |    |

## 5.10.10.15 City of Sterling Augmentation Plan (6402526)

The City of Sterling Augmentation Plan is generally operated based on changed water rights, junior recharge rights, ownership of shares in Prewitt Reservoir, and recharge and release of Sterling WWTP effluent. The primary demand for this augmentation plan is City of Sterling's municipal well pumping, represented in the model as the aggregated municipal well demand in Water District 64 (64\_AMP001\_I and 64\_AMP001\_O). Case No. 98CW450 and 00CW253 was used to support the representation of these operations in the model. The following summarizes the operations for each component:

- The City of Sterling owns 100 percent of the two senior Henderson-Smith Ditch water rights, which it uses as a supply to meet augmentation demands. Based on recent accounting, only 35 percent of the irrigated acreage has been dried up by the City, therefore 35 percent of the two senior water rights were included in the augmentation plan operations. StateMod is unable to directly apply changed water rights to meet an augmentation plan via a Type 48 or 49 rules; therefore the changed water rights were stored in a recharge area (6400525\_A) with "immediate" return pattern. These accretions were then used to meet the augmentation plan demands. The changed water rights are limited to 115 af annually based on the 2008 to 2015 average annual diversions under these rights in the accounting, distributed evenly across April through September. The changed water rights generate return flow obligations, as discussed in the Plan File section. The return flow obligations are satisfied using excess recharge credits and releases from Prewitt Reservoir.
- The junior Henderson-Smith recharge right is carried to an aggregated recharge area (6402526\_R); the in-ditch and recharge area seepage are tracked as an augmentation supply. A plan limitation was used to limit diversions to recharge to historical average 2013 2014 diversions.
- The City of Sterling owns 9 percent of the senior Sterling No. 2 Ditch water right, which it uses as a supply to meet augmentation demands. StateMod is unable to directly apply changed water rights to meet an augmentation plan via Type 48 or 49 rules; therefore the changed water rights were stored in a recharge area (6400528\_A) with "immediate" return pattern. These accretions were then used to meet the augmentation plan demands. The changed water rights are limited to 1,480 af annually and can be diverted April through September. The annual limit is based on the 2003 to 2015 average annual diversions under these rights in the accounting. The changed water rights generate return flow obligations, as

discussed in the Plan File section. The return flow obligations are satisfied using excess recharge credits and releases from Prewitt Reservoir.

- The City of Sterling is able to use WWTP effluent to offset the augmentation plan demand; it generally releases half of the effluent directly to the river and stores the remaining half in Sterling Recharge Area (6402515). The Sterling Recharge Area is located directly downstream of the aggregated municipal demand and stores the effluent. The seepage pattern for the recharge area then seeps half of the effluent in the same time-step and lags the remaining half based on the decreed lagging pattern. The immediate and lagged accretions are tracked in a recharge plan and applied to the augmentation plan demand.
- These supplies can be supplemented by releases from Prewitt Reservoir to the river and pumping augmentation wells directly to the river.
- The City of Sterling also owns a small portion of senior water rights in Sterling No. 1 Ditch, Farmers Pawnee Ditch, and Springdale Ditch; however the supplies discussed above were sufficient to meet the augmentation plan demand.

As presented in the table below, the following operating rules were used to simulate this augmentation plan.

| Right ID    | Admin #     | Destination                                                          | Account, Carrier,<br>Return Location (R),<br>or % Split | Source                                           | Right<br>Type |
|-------------|-------------|----------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------|---------------|
| 64025260.01 | 55150.00000 | Sterling Aug Plan -<br>6402526                                       |                                                         |                                                  | 43            |
| 64025260.02 | 55150.00000 | Henderson-Smith<br>Ditch Lagged<br>Return Flows -<br>6400525_RF      |                                                         |                                                  | 43            |
| 64025260.03 | 55150.00000 | Sterling No. 1 Ditch<br>Lagged Return<br>Flows -<br>6400528_RF       |                                                         |                                                  | 43            |
| 525_PLN.01  | 11292.00000 | Henderson-Smith<br>Changed WR -<br>6400525_PL                        |                                                         | 6400525.01                                       | 26            |
| 525_PLN.02  | 23172.19040 | Henderson-Smith<br>Changed WR -<br>6400525_PL                        |                                                         | 6400525.02                                       | 26            |
| 525_PLN.03  | 23172.19041 | Henderson-Smith<br>Plan to Immediate<br>Recharge Area -<br>6400525_A | Henderson-Smith<br>Ditch - 6400525                      | 6400525_PL                                       | 27            |
| 525_PLN.04  | 23172.19042 | Henderson-Smith<br>Plan Spill -<br>6400525                           |                                                         | 6400525_PL                                       | 29            |
| 64025260.04 | 1.00000     |                                                                      |                                                         | Sterling Aug Plan -Release<br>Limit - 6402526_RL | 47            |

| 64025260.05 | 54237.00000 | Sterling Aug Plan<br>Recharge Area -<br>6402526_R                   | Henderson-Smith<br>Ditch - 6400525 | 6400525.03                                            | 45 |
|-------------|-------------|---------------------------------------------------------------------|------------------------------------|-------------------------------------------------------|----|
| 528_PLN.01  | 8597.00000  | Sterling. No. 2<br>Changed WR -<br>6400528_PL                       |                                    | 6400528.01                                            | 26 |
| 528_PLN.02  | 8597.00001  | Sterling No. 2 Plan<br>to Immediate<br>Recharge Area -<br>6400528_A | Sterling No. 2 Ditch -<br>6400528  | 6400528_PL                                            | 27 |
| 528_PLN.03  | 8597.00002  | Sterling No. 2 Plan<br>Spill – 6400528                              |                                    | 6400528_PL                                            | 29 |
| 64025260.06 | 55150.00002 | Sterling Aug Plan -<br>6402526                                      |                                    | Sterling Aug Plan Canal<br>Recharge - 6402526_PlC     | 48 |
| 64025260.07 | 55150.00003 | Sterling Aug Plan -<br>6402526                                      |                                    | Sterling Aug Plan Reservoir<br>Recharge - 6402526_PlR | 48 |
| 64025260.08 | 55150.00004 | Henderson-Smith<br>Ditch Lagged<br>Return Flows -<br>6400525_RF     |                                    | Sterling Aug Plan Reservoir<br>Recharge - 6402526_PlR | 49 |
| 64025260.09 | 55150.00005 | Sterling No. 1 Ditch<br>Lagged Return<br>Flows -<br>6400528_RF      |                                    | Sterling Aug Plan Reservoir<br>Recharge - 6402526_PlR | 49 |
| 64025260.10 | 55150.00006 | Sterling Aug Plan –<br>6402526                                      | Account 8                          | Prewitt Reservoir - 6403552                           | 48 |
| 64025260.11 | 55150.00007 | Henderson-Smith<br>Ditch Lagged<br>Return Flows -<br>6400525_RF     | Account 8                          | Prewitt Reservoir - 6403552                           | 48 |
| 64025260.12 | 55150.00008 | Sterling No. 1 Ditch<br>Lagged Return<br>Flows -<br>6400528_RF      | Account 8                          | Prewitt Reservoir - 6403552                           | 48 |
| 64025260.13 | 99996.00000 | Sterling Aug Plan –<br>6402526                                      |                                    | 6402526Au2                                            | 37 |
| 64025260.14 | 99996.00000 | Sterling Aug Plan –<br>6402526                                      |                                    | 6402526Au3                                            | 37 |

## 5.10.10.16 Lower Logan Well Users Augmentation Plan (6402536)

The Lower Logan Well Users Augmentation Plan is generally operated based on junior recharge rights associated with several recharge projects. Case No. 03CW208 and 04CW236 were primarily used to support the representation of the following projects:

• *Iliff Platte Valley (IPV) Recharge Project*. The junior 48.66 cfs water right on Iliff Platte Valley Canal (6400520) is carried to the on-ditch aggregated recharge area (6402536\_RI). In-ditch and recharge area seepage are tracked and applied to meet the augmentation plan demand. A plan limitation was used to limit diversions to recharge to historical diversions.

- Upper Harmony Ditch (UHD) Recharge Project. The junior 9.89 cfs water right on Harmony Ditch (6400511) is carried to the on-ditch aggregated recharge area (6402536\_RH). In-ditch and recharge area seepage are tracked and applied to meet the augmentation plan demand. A plan limitation was used to limit diversions to recharge to historical diversions.
- *Powell Blair Canal (PBC) Recharge Project*. The junior 10.10 cfs water right on Powell Blair Ditch (6400516) is carried to the aggregated recharge area on Harmony Ditch (6402536\_RH). Note the full conditional recharge right is 90 cfs; it was reduced to 10.10 based on daily historical records. In-ditch and recharge area seepage are tracked and applied to meet the augmentation plan demand. A plan limitation was used to limit diversions to recharge to historical diversions.
- *Bravo Ditch Recharge Project*. The junior 46.4 cfs water right on Bravo Ditch (6400522\_D) is carried to the on-ditch aggregated recharge area (6402536\_RB). In-ditch and recharge area seepage are tracked and applied to meet the augmentation plan demand. A plan limitation was used to limit diversions to recharge to historical diversions.

The decree allows Prewitt Reservoir releases to be stored in recharge areas under any ditch mentioned above (changed Iliff Irrigation District and Morgan Prewitt shares); however this is not a common practice. Rather releases are made directly to the river to meet remaining augmentation demand. The decree indicates only 40 percent of the reservoir releases should be applied to the augmentation supply. These limitations are not supported using the Type 48 or 49 rules, therefore releases to the river are applied to the augmentation demand in full. Several recharge and augmentation wells are also included as a supply to the augmentation plans. Recharge wells do not pump out of priority in StateMod, so operating rules were set to the well right priority for each well. Augmentation wells can pump out of priority in StateMod, so operating rules were set as most junior operation. As presented in the table below, the following operating rules were used to simulate this augmentation plan.

| Right ID    | Admin #     | Destination                                                      | Account, Carrier,<br>Return Location (R),<br>or % Split | Source                                               | Right<br>Type |
|-------------|-------------|------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|---------------|
| 64025360.01 | 56002.00001 | Lower Logan Well<br>Users Aug Plan -<br>6402536                  |                                                         |                                                      | 43            |
| 64025360.02 | 1.00000     |                                                                  |                                                         | Lower Logan Aug Plan<br>Release Limit 1 - 6402536_R1 | 47            |
| 64025360.03 | 55882.55874 | Lower Logan Aug<br>Plan IPV Recharge<br>Area - 6402536_RI        | lliff Platte Valley<br>Ditch - 6400520                  | 6400520.02                                           | 45            |
| 64025360.04 | 1.00000     |                                                                  |                                                         | Lower Logan Aug Plan<br>Release Limit 2 - 6402536_R2 | 47            |
| 64025360.05 | 55996.00000 | Lower Logan Aug<br>Plan Harmony<br>Recharge Area -<br>6402536_RH | Harmony Div System<br>- 6400511_D                       | 6400511_D.07                                         | 45            |
| 64025360.06 | 55996.00000 | Lower Logan Aug                                                  | Powell Blair Ditch -                                    | 6400516.02                                           | 45            |

|             |             | Plan Harmony<br>Recharge Area -<br>6402536 RH                      | 6400516                         |                                                                     |    |
|-------------|-------------|--------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------|----|
| 64025360.07 | 1.00000     |                                                                    |                                 | Lower Logan Aug Plan<br>Release Limit 3 -6402536 R3                 | 47 |
| 64025360.08 | 53558.00000 | Lower Logan Aug<br>Plan Bravo<br>Recharge Area -<br>6402536_RB     | Bravo Div System -<br>6400522_D | 6400522_D.04                                                        | 45 |
| 64025360.09 | 55996.00002 | Lower Logan Well<br>Users Aug Plan -<br>6402536                    |                                 | Lower Logan Aug Plan IPV<br>Canal Seepage - 6402536_PCI             | 48 |
| 64025360.10 | 55996.00002 | Lower Logan Well<br>Users Aug Plan -<br>6402536                    |                                 | Lower Logan Aug Plan<br>Harmony Canal Seepage -<br>6402536_PCH      | 48 |
| 64025360.11 | 55996.00002 | Lower Logan Well<br>Users Aug Plan -<br>6402536                    |                                 | Lower Logan Aug Plan Powell<br>Blair Canal Seepage -<br>6402536_PCP | 48 |
| 64025360.12 | 55996.00002 | Lower Logan Well<br>Users Aug Plan -<br>6402536                    |                                 | Lower Logan Aug Plan Bravo<br>Canal Seepage -<br>6402536_PCB        | 48 |
| 64025360.13 | 55996.00003 | Lower Logan Well<br>Users Aug Plan -<br>6402536                    |                                 | Lower Logan Aug Plan<br>Reservoir Seepage -<br>6402536_PIR          | 48 |
| 64025360.14 | 56088.00004 | Lower Logan Well<br>Users Aug Plan -<br>6402536                    | Account 8                       | Prewitt Reservoir - 6403552                                         | 48 |
| 64025360.15 | 55945.00000 | Lower Logan Well<br>Users Aug Plan<br>Recharge Area -<br>6402536 R |                                 | 6402536Re2                                                          | 44 |
| 64025360.16 | 55882.55878 | Lower Logan Well<br>Users Aug Plan<br>Recharge Area -<br>6402536 R |                                 | 6402536Re4                                                          | 44 |
| 64025360.17 | 55882.55878 | Lower Logan Well<br>Users Aug Plan<br>Recharge Area -<br>6402536_R |                                 | 6402536Re6                                                          | 44 |
| 64025360.18 | 55882.55861 | Lower Logan Well<br>Users Aug Plan<br>Recharge Area -<br>6402536_R |                                 | 6402536Re7                                                          | 44 |
| 64025360.19 | 55944.00000 | Lower Logan Well<br>Users Aug Plan<br>Recharge Area -<br>6402536_R |                                 | 6402536Re8                                                          | 44 |
| 64025360.20 | 55882.55843 | Lower Logan Well<br>Users Aug Plan<br>Recharge Area -<br>6402536 R |                                 | 6402536Re9                                                          | 44 |

| 64025260.21 |             |                   | C10252CD-10 | 4.4 |
|-------------|-------------|-------------------|-------------|-----|
| 64025360.21 | 55882.55843 | Lower Logan Well  | 6402536Re10 | 44  |
|             |             | Users Aug Plan    |             |     |
|             |             | Recharge Area -   |             |     |
|             |             | 6402536_R         |             |     |
| 64025360.22 | 55882.55843 | Lower Logan Well  | 6402536Re11 | 44  |
|             |             | Users Aug Plan    |             |     |
|             |             | Recharge Area -   |             |     |
|             |             | 6402536 R         |             |     |
| 64025360.23 | 55882,45752 | Lower Logan Well  | 6402536Re12 | 44  |
|             |             | Users Aug Plan    |             |     |
|             |             | Recharge Area -   |             |     |
|             |             | 6/02536 B         |             |     |
| 64025260.24 |             |                   | 6402E26Do12 | 11  |
| 04023300.24 | 30779.00000 |                   | 0402550RE15 | 44  |
|             |             | Deels Aug Plan    |             |     |
|             |             | Recharge Area -   |             |     |
|             |             | 6402536_R         |             |     |
| 64025360.25 | 99996.00000 | Lower Logan Well  | 6402536Au2  | 37  |
|             |             | Users Aug Plan -  |             |     |
|             |             | 6402536           |             |     |
| 64025360.26 | 99996.00000 | Lower Logan Well  | 6402536Au4  | 37  |
|             |             | Users Aug Plan -  |             |     |
|             |             | 6402536           |             |     |
| 64025360.27 | 99996.00000 | Lower Logan Well  | 6402536Au6  | 37  |
|             |             | Users Aug Plan -  |             |     |
|             |             | 6402536           |             |     |
| 64025360.28 | 99996.00000 | Lower Logan Well  | 6402536Au8  | 37  |
|             |             | Users Aug Plan -  |             |     |
|             |             | 6402536           |             |     |
| 64025360.29 | 99996 00000 | Lower Logan Well  | 6402536Au10 | 37  |
| 01023300.23 | 33330.00000 | Lisers Aug Plan - | 0102550/010 | 57  |
|             |             | 6/02536           |             |     |
| 64025260.20 | 00006 00000 |                   | 6402E26Au12 | 27  |
| 04025500.50 | 99996.00000 |                   | 0402550AU12 | 57  |
|             |             | Users Aug Plan -  |             |     |
|             |             | 6402536           |             |     |
| 64025360.31 | 99996.00000 | Lower Logan Well  | 6402536Au16 | 37  |
|             |             | Users Aug Plan -  |             |     |
|             |             | 6402536           |             |     |
| 64025360.32 | 99996.00000 | Lower Logan Well  | 6402536Au17 | 37  |
|             |             | Users Aug Plan -  |             |     |
|             |             | 6402536           |             |     |
| 64025360.33 | 99996.00000 | Lower Logan Well  | 6402536Au15 | 37  |
|             |             | Users Aug Plan -  |             |     |
|             |             | 6402536           |             |     |
|             | 1           |                   |             |     |

# 5.10.10.17 Logan Well Users Augmentation Plan (6402539)

The Logan Well Users Augmentation plan represents an aggregate of Logan Well Users Augmentation Plan, Smart Land/Livestock Augmentation (6402537), Pawnee Well Users (6402546), Vandemoer Augmentation (6402548), Accomasso Bros (6402554), and Riverside Pit (6402547). The Logan Well Users Augmentation Plan is generally operated based on junior recharge rights associated with several recharge projects. Case No. 03CW195 was primarily used to support the representation of the following projects:

- Schneider Ditch Recharge Project. The junior 14.3 cfs water right on Schneider Ditch (6400531) is carried to the on-ditch aggregated recharge area (6402539\_RC). In-ditch and recharge area seepage are tracked and applied to meet the augmentation plan demand. A plan limitation was used to limit diversions to recharge to historical diversions. Note that portions of the senior Schneider Ditch rights have also been changed, but are currently still used for irrigation. Consider implementing the changed water rights in future refinements.
- South Platte Ditch Recharge Project. The three junior water rights on South Platte Ditch (6400535) are carried to the on-ditch aggregated recharge area (6402539\_RP). In-ditch and recharge area seepage are tracked and applied to meet the augmentation plan demand. A plan limitation was used to limit diversions to recharge to historical diversions. Note that portions of the senior South Platte Ditch rights have also been changed, but are currently still used for irrigation. Consider implementing the changed water rights in future refinements. There are also decreed junior rights associated with Curlee and Quint Pump Stations (6400631 and 6400632) but there are no diversion records to support their use; they are excluded from the model.
- Springdale Ditch Recharge Project. The two junior water rights on Springdale Ditch (6400530) are carried to the on-ditch aggregated recharge area (6402539\_RS). In-ditch and recharge area seepage are tracked and applied to meet the augmentation plan demand. A plan limitation was used to limit diversions to recharge to historical diversions. Note that portions of the senior Springdale Ditch rights have also been changed, but are currently still used for irrigation. Consider implementing the changed water rights in future refinements.
- Sterling Irrigation Company Recharge Project. The junior 22.3 cfs water right on Sterling No. 1 Ditch (6400528) is carried to the on-ditch aggregated recharge area (6402539\_RT). In-ditch and recharge area seepage are tracked and applied to meet the augmentation plan demand. A plan limitation was used to limit diversions to recharge to historical diversions.
- Farmers Pawnee Canal Recharge Project. The two junior water rights on Farmers Pawnee Canal (6400533) are carried to the on-ditch aggregated recharge area (6402539\_RF). In-ditch and recharge area seepage are tracked and applied to meet the augmentation plan demand. A plan limitation was used to limit diversions to recharge to historical diversions. Note that portions of the senior Farmers Pawnee Ditch rights have also been changed, but are currently still used for irrigation. Consider implementing the changed water rights in future refinements.

The decree allows Prewitt Reservoir releases to be stored in recharge areas under any ditch mentioned above (changed Iliff Irrigation District and Morgan Prewitt shares); however this is not a common practice. Rather releases are made directly to the river to meet remaining augmentation demand. The decree indicates only 40 percent of the reservoir releases should be applied to the augmentation supply. These limitations are not supported using the Type 48 or 49 rules, therefore

releases to the river are applied to the augmentation demand in full. Several recharge and augmentation wells are also included as a supply to the augmentation plans. Recharge wells do not pump out of priority in StateMod, so operating rules were set to the well right priority for each well. Augmentation wells can pump out of priority in StateMod, so operating rules were set as most junior operation. As presented in the table below, the following operating rules were used to simulate this augmentation plan.

| Right ID    | Admin #     | Destination                                                                         | Account, Carrier,<br>Return Location (R),<br>or % Split | Source                                                                  | Right<br>Type |
|-------------|-------------|-------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------|---------------|
| 64025390.01 | 59888.00001 | Logan Well Users<br>Aug Plan -<br>6402539                                           |                                                         |                                                                         | 43            |
| 64025390.02 | 1.00000     |                                                                                     |                                                         | Logan Well Users Aug Plan<br>Schneider Release Limit 1 -<br>6402539_R1  | 47            |
| 64025390.03 | 55895.00000 | Logan Well Users<br>Aug Plan Recharge<br>Area (Schneider) -<br>6402539_RC           | Schneider Ditch -<br>6400531                            | 6400531.04                                                              | 45            |
| 64025390.04 | 1.00000     |                                                                                     |                                                         | Logan Well Users Aug Plan<br>SPD Release Limit 2 -<br>6402539_R2        | 47            |
| 64025390.05 | 45364.00000 | Logan Well Users<br>Aug Plan Recharge<br>Area (SPD) -<br>6402539_RP                 | South Platte Ditch -<br>6400535                         | 6400535.06                                                              | 45            |
| 64025390.06 | 46590.00000 | Logan Well Users<br>Aug Plan Recharge<br>Area (SPD) -<br>6402539_RP                 | South Platte Ditch –<br>6400535                         | 6400535.07                                                              | 45            |
| 64025390.07 | 55882.53771 | Logan Well Users<br>Aug Plan Recharge<br>Area (SPD) -<br>6402539_RP                 | South Platte Ditch –<br>6400535                         | 6400535.08                                                              | 45            |
| 64025390.08 | 1.00000     |                                                                                     |                                                         | Logan Well Users Aug Plan<br>Springdale Release Limit 3 -<br>6402539_R3 | 47            |
| 64025390.09 | 55888.00000 | Logan Well Users<br>Aug Plan Recharge<br>Area (Springdale<br>Ditch) -<br>6402539_RS | Springdale Ditch -<br>6400530                           | 6400530.02                                                              | 45            |
| 64025390.10 | 55888.00000 | Logan Well Users<br>Aug Plan Recharge<br>Area (Springdale<br>Ditch) -<br>6402539_RS | Springdale Ditch -<br>6400530                           | 6400530.03                                                              | 45            |
| 64025390.11 | 1.00000     |                                                                                     |                                                         | Logan Well Users Aug Plan<br>Sterling Release Limit 4 -<br>6402539_R4   | 47            |

| 64025390.12 | 55961.00000 | Logan Well Users<br>Aug Plan Recharge<br>Area (Sterling) -<br>6402539_RT | Sterling No. 1 Ditch<br>– 6400528 | 6400528.02                                                                 | 45 |
|-------------|-------------|--------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------|----|
| 64025390.13 | 1.00000     |                                                                          |                                   | Logan Well Users Aug Plan<br>Farmers Pawnee Release<br>Limit - 6402539_R5  | 47 |
| 64025390.14 | 47239.00000 | Logan Well Users<br>Recharge Area<br>(Farmers Pawnee)<br>- 6402539_RF    | Pawnee Ditch -<br>6400533         | 6400533.03                                                                 | 45 |
| 64025390.15 | 53316.00000 | Logan Well Users<br>Recharge Area<br>(Farmers Pawnee)<br>- 6402539_RF    | Pawnee Ditch -<br>6400533         | 6400533.04                                                                 | 45 |
| 64025390.16 | 59888.00002 | Logan Well Users<br>Aug Plan -<br>6402539                                |                                   | Logan Well Users Aug Plan<br>Schneider Canal Seepage<br>6402539_PCC        | 48 |
| 64025390.17 | 59888.00002 | Logan Well Users<br>Aug Plan -<br>6402539                                |                                   | Logan Well Users Aug Plan<br>South Platte Canal Seepage -<br>6402539_PCP   | 48 |
| 64025390.18 | 59888.00002 | Logan Well Users<br>Aug Plan -<br>6402539                                |                                   | Logan Well Users Aug Plan<br>Springdale Canal Seepage -<br>6402539_PCS     | 48 |
| 64025390.19 | 59888.00002 | Logan Well Users<br>Aug Plan -<br>6402539                                |                                   | Logan Well Users Aug Plan<br>Sterling Canal Seepage -<br>6402539_PCT       | 48 |
| 64025390.20 | 59888.00002 | Logan Well Users<br>Aug Plan -<br>6402539                                |                                   | Logan Well Users Aug Plan<br>Farmers Pawnee Canal<br>Seepage - 6402539_PCF | 48 |
| 64025390.21 | 59888.00003 | Logan Well Users<br>Aug Plan –<br>6402539                                |                                   | Logan Well Users Aug Plan<br>Reservoir Seepage -<br>6402539_PlR            | 48 |
| 64025390.22 | 59888.00004 | Logan Well Users<br>Aug Plan –<br>6402539                                | Account 4                         | Prewitt Reservoir - 6403552                                                | 48 |
| 64025390.23 | 59888.00005 | Logan Well Users<br>Aug Plan –<br>6402539                                | Account 5                         | Prewitt Reservoir - 6403552                                                | 48 |
| 64025390.24 | 55882.55870 | Logan Well Users<br>Recharge Area -<br>6402539_R                         |                                   | 6402539Re3                                                                 | 44 |
| 64025390.25 | 56613.55941 | Logan Well Users<br>Recharge Area -<br>6402539_R                         |                                   | 6402539Re5                                                                 | 44 |
| 64025390.26 | 56613.55966 | Logan Well Users<br>Recharge Area -<br>6402539_R                         |                                   | 6402539Re7                                                                 | 44 |
| 64025390.27 | 56613.55966 | Logan Well Users<br>Recharge Area -<br>6402539_R                         |                                   | 6402539Re8                                                                 | 44 |

|             | 1           |                   |   |              | 1  |
|-------------|-------------|-------------------|---|--------------|----|
| 64025390.28 | 56724.00000 | Logan Well Users  |   | 6402539Re9   | 44 |
|             |             | Recharge Area -   |   |              |    |
|             |             | 6402539 R         |   |              |    |
| 6/025390.29 | 56613 55966 | Logan Well Lisers |   | 6402539Re10  | 11 |
| 04023330.23 | 50015.55500 | Aug Dlan          |   | 040233311010 |    |
|             |             | Aug Plan -        |   |              |    |
|             |             | 6402539           |   |              |    |
| 64025390.30 | 99996.00000 | Logan Well Users  |   | 6402539Au2   | 37 |
|             |             | Aug Plan -        |   |              |    |
|             |             | 6402539           |   |              |    |
| 6/025390 31 | 99996 00000 | Logan Well Lisers |   | 64025394114  | 37 |
| 04023330.31 | 55550.00000 | Lug Dlan          |   | 04023337404  | 57 |
|             |             | Aug Plan -        |   |              |    |
|             |             | 6402539           |   |              |    |
| 64025390.32 | 99996.00000 | Logan Well Users  |   | 6402539Au5   | 37 |
|             |             | Aug Plan -        |   |              |    |
|             |             | 6402539           |   |              |    |
| 64025390 33 | 99996 00000 | Logan Well Users  |   | 6402539406   | 37 |
| 01023330.33 | 55550.00000 |                   |   | 0102000100   | 57 |
|             |             |                   |   |              |    |
|             |             | 6402539           |   |              |    |
| 64025390.34 | 99996.00000 | Logan Well Users  |   | 6402539Au8   | 37 |
|             |             | Aug Plan -        |   |              |    |
|             |             | 6402539           |   |              |    |
| 64025390 35 | 99996 00000 | Logan Well Users  |   | 64025394119  | 37 |
| 01023330.33 | 55550.00000 |                   |   | 0102000100   | 57 |
|             |             |                   |   |              |    |
|             |             | 6402539           |   |              |    |
| 64025390.36 | 99996.00000 | Logan Well Users  |   | 6402539Au11  | 37 |
|             |             | Aug Plan -        |   |              |    |
|             |             | 6402539           |   |              |    |
| 64025390.37 | 99996.00000 | Logan Well Users  |   | 6402539Au12  | 37 |
|             |             | Διισ Plan -       |   |              |    |
|             |             | 6402520           |   |              |    |
| 64025200.20 | 00000 00000 | 0402339           |   | 64025204 20  | 27 |
| 64025390.38 | 99996.00000 | Logan Well Users  |   | 6402539Au30  | 37 |
|             |             | Aug Plan -        |   |              |    |
|             |             | 6402539           |   |              |    |
| 64025390.39 | 99996.00000 | Logan Well Users  |   | 6402539Au16  | 37 |
|             |             | Aug Plan -        |   |              |    |
|             |             | 6402539           |   |              |    |
| 64025200.40 | 00006 00000 | Logan Woll Licorc |   | 64025204119  | 27 |
| 04023390.40 | 99990.00000 |                   |   | 0402339Au18  | 57 |
|             |             | Aug Plan -        |   |              |    |
|             |             | 6402539           |   |              |    |
| 64025390.41 | 99996.00000 | Logan Well Users  |   | 6402539Au20  | 37 |
|             |             | Aug Plan -        |   |              |    |
|             |             | 6402539           |   |              |    |
| 64025390.42 | 99996 00000 | Logan Well Lisers |   | 640253941122 | 37 |
| 04023330.42 | 55550.00000 |                   |   | 040233374022 | 57 |
|             |             | Aug Plan -        |   |              |    |
|             |             | 6402539           |   |              |    |
| 64025390.43 | 99996.00000 | Logan Well Users  |   | 6402539Au25  | 37 |
|             |             | Aug Plan -        |   |              |    |
|             |             | 6402539           |   |              |    |
| 64025390 11 | 99996 00000 | Logan Well Licerc |   | 6402539Au27  | 37 |
| 5-025550.44 | 55550.00000 | Aug Dlan          |   | 5 102333Au27 | 57 |
|             |             | Aug Pidil -       |   |              |    |
|             |             | 6402539           | 1 |              |    |

| 64025390.45 | 99996.00000 | Logan Well Users | 6402539Au29 | 37 |
|-------------|-------------|------------------|-------------|----|
|             |             | Aug Plan -       |             |    |
|             |             | 6402539          |             |    |

## 5.10.10.18 Low Line Ditch Company Augmentation Plan (6402540)

The Low Line Ditch Company Augmentation Plan is generally operated based on junior water rights that fill numerous recharge areas located off of Low Line Ditch. Based on information from 03CW094, the model includes operations to divert a 40 cfs junior Low Line Ditch water right to an aggregated recharge area, tracking the in-ditch and recharge area seepage as an augmentation supply. A plan limitation was used to limit diversions to recharge to historical diversions. Note that the decree also allows excess recharge credits to be exchanged back up to Low Line Ditch, however these operations are not currently supported by StateMod and therefore excluded. Historical diversion records support the use of an augmentation well to provide supplemental supplies; a single augmentation well was included in the operations. As presented in the table below, the following operating rules were used to simulate this augmentation plan.

| Right ID    | Admin #     | Destination                                             | Account, Carrier,<br>Return Location (R),<br>or % Split | Source                                                         | Right<br>Type |
|-------------|-------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------|---------------|
| 64025400.01 | 55940.00001 | Low Line Ditch Aug<br>Plan - 6402540                    |                                                         |                                                                | 43            |
| 64025400.02 | 1.00000     |                                                         |                                                         | Low Line Ditch Aug Plan<br>Release Limit - 6402540_RL          | 47            |
| 64025400.03 | 55882.55786 | Low Line Ditch Aug<br>Plan Recharge Area<br>- 6402540_R | Lowline Ditch -<br>6400524                              | 6400524.02                                                     | 45            |
| 64025400.04 | 55940.00002 | Low Line Ditch Aug<br>Plan - 6402540                    |                                                         | Low Line Ditch Aug Plan<br>Canal Seepage -6402540_PlC          | 48            |
| 64025400.05 | 55940.00003 | Low Line Ditch Aug<br>Plan – 6402540                    |                                                         | Lowe Line Ditch Aug Plan<br>Reservoir Seepage -<br>6402540_PIR | 48            |
| 64025400.06 | 99996.00000 | Low Line Ditch Aug<br>Plan – 6402540                    |                                                         | 6402540Au1                                                     | 37            |

#### 5.10.10.19 Lower South Platte Water Conservancy District (LSPWCD) Augmentation Plan (6402542)

The LSPWCD Augmentation plan is generally operated based on junior water rights that fill numerous recharge areas located off of Liddle Ditch, Peterson Ditch, and the Heyborne Lift Station. Case Nos. 03CW0209 and 08CW024 were primarily used to support the representation of the following operations:

• *Liddle Ditch*. The junior 7 cfs water right on Liddle Ditch (6400502) is carried to the on-ditch aggregated recharge area (6402542\_RL). In-ditch and recharge area seepage are tracked and applied to meet the augmentation plan demand. A plan limitation was used to limit diversions to recharge to historical diversions.

- *Peterson Ditch*. The junior 35 cfs water right on Peterson Ditch (6400504) is carried to the on-ditch aggregated recharge area (6402542\_RP). In-ditch and recharge area seepage are tracked and applied to meet the augmentation plan demand. A plan limitation was used to limit diversions to recharge to historical diversions.
- *Heyborne Lift Station*. The newly constructed Heyborne Lift Station (6400643) pumps water from the river to the Heyborne Recharge Areas (6402542\_RH). Recharge area seepage is tracked and applied to meet the augmentation plan demand.

Several recharge wells are also included as a supply to the augmentation plan; recharge wells do not pump out of priority in StateMod, so operating rules were set to the well right priority for each well. Note that the decree also indicates that the effluent and lawn irrigation return flows from the Towns of Ovid and Julesburg can be used as an augmentation supply, however these towns are not modeled explicitly and the operations are not included. As presented in the table below, the following operating rules were used to simulate this augmentation plan.

| Right ID    | Admin #     | Destination                                                  | Account, Carrier,<br>Return Location (R),<br>or % Split | Source                                                     | Right<br>Type |
|-------------|-------------|--------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------|---------------|
| 64025420.01 | 57708.46551 | LSPWCD Aug Plan -<br>6402542                                 |                                                         |                                                            | 43            |
| 64025420.02 | 1.00000     |                                                              |                                                         | LSPWCD Aug Plan Release<br>Limit 1 - 6402542_R1            | 47            |
| 64025420.03 | 53726.00000 | LSPWCD Aug Plan<br>Liddle Recharge<br>Area - 6402542_RL      | Liddle Ditch -<br>6400502                               | 6400502.02                                                 | 45            |
| 64025420.04 | 1.00000     |                                                              |                                                         | LSPWCD Aug Plan Release<br>Limit 2 -6402542_R2             | 47            |
| 64025420.05 | 51134.50891 | LSPWCD Aug Plan<br>Peterson Recharge<br>Area - 6402542_RP    | Peterson Ditch -<br>6400504                             | 6400504.03                                                 | 45            |
| 64025420.06 | 1.00000     |                                                              |                                                         | LSPWCD Aug Plan Release<br>Limit 3 - 6402542_R3            | 47            |
| 64025420.07 | 57716.00000 | LSPWCD Aug Plan<br>Heyborne<br>Recharge Area -<br>6402542_RH | Heyborne Lift<br>Station - 6400643                      | 6400643.01                                                 | 45            |
| 64025420.08 | 57716.00002 | LSPWCD Aug Plan<br>– 6402542                                 |                                                         | LSPWCD Aug Plan Liddle<br>Canal Seepage -<br>6402542_PCL   | 48            |
| 64025420.09 | 57716.00002 | LSPWCD Aug Plan<br>– 6402542                                 |                                                         | LSPWCD Aug Plan Peterson<br>Canal Seepage -<br>6402542_PCP | 48            |
| 64025420.10 | 57716.00003 | LSPWCD Aug Plan<br>– 6402542                                 |                                                         | LSPWCD Aug Plan Reservoir<br>Seepage - 6402542_PlR         | 48            |
| 64025420.11 | 56605.00000 | LSPWCD Aug Plan<br>Recharge Area -<br>6402542_R              |                                                         | 6402542Re1                                                 | 44            |
| 64025420.12 | 56605.00000 | LSPWCD Aug Plan                                              |                                                         | 6402542Re2                                                 | 44            |

|             |             | Recharge Area -<br>6402542_R |            |    |
|-------------|-------------|------------------------------|------------|----|
| 64025420.13 | 56605.00000 | LSPWCD Aug Plan              | 6402542Re3 | 44 |
|             |             | Recharge Area -              |            |    |
|             |             | 6402542_R                    |            |    |

#### 5.10.10.20 North Sterling Augmentation Plan (6403392)

The North Sterling Augmentation plan is generally operated based on junior water rights that fill numerous recharge areas located off of North Sterling Canal. Based on information from 96CW1034, the model includes operations to divert junior North Sterling Canal water rights to an aggregated recharge area, tracking the in-ditch and recharge area seepage as an augmentation supply. A plan limitation was used to limit diversions to recharge to historical diversions. This supply is supplemented with releases from the augmentation/recharge account in North Sterling Reservoir. The decree allows reservoir releases to be stored in recharge areas; however a simplified approach was taken in the model in order to limit the releases from the reservoir to only meet remaining augmentation demand. Note that the decree also allows excess recharge credits to be exchanged back up to North Sterling Canal, however these operations are not currently supported by StateMod and therefore excluded. Per decree, wintertime depletions from PSCo Pawnee Well Field (0100711) are covered by North Sterling Augmentation Plan. There are no well rights associated with the well field in HydroBase; therefore the wells were modeled with a senior well right. As such, the depletions will be considered "in-priority" by the model and not accounted for under this plan. Future modeling efforts should investigate the appropriate well right and augmentation plan agreement for these depletions. As presented in the table below, the following operating rules were used to simulate this augmentation plan.

| Right ID    | Admin #     | Destination                                                         | Account, Carrier,<br>Return Location (R),<br>or % Split | Source                                                        | Right<br>Type |
|-------------|-------------|---------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------|---------------|
| 64025420.01 | 54237.00001 | North Sterling Aug<br>Plan - 6403392                                |                                                         |                                                               | 43            |
| 64033920.02 | 1.00000     |                                                                     |                                                         | North Sterling Aug Plan<br>Release Limit -6403392_RL          | 47            |
| 64033920.03 | 53454.00000 | North Sterling<br>Augmentation Plan<br>Recharge Area -<br>6403392_R | North Sterling Div<br>Sys – 0100687                     | 0100687.04                                                    | 45            |
| 64033920.04 | 53454.00000 | North Sterling<br>Augmentation Plan<br>Recharge Area -<br>6403392_R | North Sterling Div<br>Sys – 0100687                     | 0100687.05                                                    | 45            |
| 64033920.05 | 54237.00002 | North Sterling Aug<br>Plan – 6403392                                |                                                         | North Sterling Aug Plan Canal<br>Seepage -6403392_PlC         | 48            |
| 64033920.06 | 54237.00003 | North Sterling Aug<br>Plan –6403392                                 |                                                         | North Sterling Aug Plan<br>Reservoir Seepage -<br>6403392_PIR | 48            |
| 64033920.07 | 54237.00004 | North Sterling Aug<br>Plan – 6403392                                | Account Number 2                                        | North Sterling Reservoir -<br>6403551                         | 48            |

#### 5.10.11South Platte Compact

The South Platte Compact requires that Colorado deliver 120 cfs to the Stateline from April 1 to October 15 at an administration date of June 14, 1897, without calling out any diversions located upstream of the Washington County line (i.e. upstream of Water District 64). As StateMod operates water rights from senior to junior over the entire river system, the Washington County limitation was implemented by developing two operating rules specific to the Compact. A Type 50 operating rule is used to temporarily store water available to the South Platte Compact in a plan when in priority and a Type 40 operating rule is used to release water from the plan first to any structure that is water short and outside/upstream of Water District 64 and then to the Compact demand. The Type 40 operating rule is used to determine if exchange potential exist which will allow a junior water right to exchange water from the Compact plan to meet their unmet demand. This check occurs immediately following the priority of a water right that is short.

- If exchange potential exists, water will be exchanged to the diversion limited by the structure's demand, water right and capacity. In addition return flows will be calculated, a re-operation will occur and potentially allow water rights throughout the system to divert more water to meet their demands.
- If exchange potential does not exist, the water stays in the Compact plan.

The Type 40 operating rule determines if the structure is outside/upstream of Water District 64 based on the first two digits of the model ID and does *not* exchange to any diversion structure with a 64\* model ID. Additionally, the Type 40 operating rule only exchanges to diversion structures located on-channel; exchanges to any off-channel demands (i.e. off-channel irrigation demands) in upstream reaches of the river will require a separate operating rule (Type 28).

| Right ID    | Admin #     | Destination                                | Account, Carrier, Return<br>Location (R), or % Split | Source      | Right<br>Type |
|-------------|-------------|--------------------------------------------|------------------------------------------------------|-------------|---------------|
| Compact In  | 17332.00000 | Compact_Pln                                |                                                      | 6499999.01  | 50            |
| Compact_64x | 17332.00000 | 64x                                        |                                                      | Compact_PIn | 40            |
| Compact_lsf | 99999.99999 | Compact (6499999)                          |                                                      | Compact_PIn | 40            |
| CompactEx.1 | 18353.10000 | Bijou Irrigation (0100507_I)               | Empire Ditch (0100501)                               | Compact_PIn | 28            |
| CompactEx.2 | 20969.10000 | Riverside Irrigation System<br>(0100503_I) | Riverside Irrigation<br>System (0100503_D)           | Compact_PIn | 28            |
| CompactEx.3 | 26302.23523 | N Sterling Irrig<br>(0100687_I)            | North Sterling Div Sys<br>(0100687)                  | Compact_PIn | 28            |

# 6. Calibration

# 6.1 Calibration Results Summary

Calibration is the process of simulating the river basin under historical conditions, and adjusting parameters to achieve agreement between observed and simulated values of streamflow gages, reservoir levels, and diversions. In general, the overall calibration of the South Platte River basin model is considered to be good, particularly considering the complexity of the model due to imported transmountain supplies, ground water depletions, complex and flexible municipal operations, and numerous changed water rights.

- Streamflow Calibration. Correlation between observed and simulated streamflow gages is considered to be good to excellent on many of the modeled rivers and tributaries, with R<sup>2</sup> values greater than 0.90 over the 1993 to 2012 period. Lower correlations on specific streams, specifically Big Dry Creek, Big Thompson River, and the headwaters of the South Platte River, can be attributed to missing data or transmountain or municipal operations. Despite a lower correlation, the simulated streamflow generally follows the trends of observed flow across wet and dry year types.
- *Reservoir Calibration.* Reservoir calibration is also considered to be good, particularly for the large off-channel irrigation reservoirs in the lower South Platte River basin. Many of the reservoirs are generally staying fuller than historical conditions reflect; however follow the general seasonal patterns. Reservoir calibration is particularly difficult in this model due to the multiple water supplies available to meet each demand, such as direct diversions, supplemental ground water, and transbasin supply. It is necessary to develop a set order of operations in the model in which supplies can be used to meet each demand; this order of operations varies historically resulting in poorer calibration of the reservoirs.
- Diversions and Demand Calibration. Diversion calibration for structures with single municipal or irrigation demand is considered excellent. Diversion calibration for structures that carry to multiple demands (e.g. ditches that carry water for irrigation and storage in reservoirs and recharge pits) is considered moderately good. This is again due to the fact that the model reflects a set order of operations for the entire period, and these operations varied historically based on year type and water availability. In order to assess the level of calibration of diversion structures, calibration was viewed from the perspective of the amount of irrigation and municipal demand that is met in each basin. This accounts for operational decisions associated with demands that can be met by more than one source of water. In a perfectly calibrated model, the simulated amount of demand met would be 100 percent; the following summarizes the level of demand calibration in each basin.

| Basin               | SW Demand (af) | GW Demand (af) | Total Demand (af) | % Demand Met |
|---------------------|----------------|----------------|-------------------|--------------|
| Upper Basin         | 807,000        | 143,000        | 950,000           | 99%          |
| <b>Big Thompson</b> | 227,000        | 2,000          | 229,000           | 95%          |
| St. Vrain           | 152,000        | 470            | 153,000           | 98%          |
| Boulder             | 154,000        | 260            | 154,000           | 97%          |
| Clear Creek         | 97,000         | 3,000          | 100,000           | 93%          |
| Lower South Platte  | 636,000        | 410,000        | 1,046,000         | 100%         |
| Total               | 2,073,000      | 558,730        | 2,632,000         | 98%          |

Future model enhancements are discussed in detail in Section 6.3, however the following enhancements would specifically improve the overall calibration of the model.

- *Recharge operation refinement*. Refinement of both recharge diversions and accretions could improve the streamflow calibration of the Lower South Platte.
- Lower St. Vrain Creek and Big Dry Creek baseflow gains and losses. Additional calibration efforts are recommended to mitigate remaining baseflow issues on these tributaries.

The following sections and Section 7.6 provide information on how the South Platte Model was developed and calibrated first at the sub-basin level, and then integrated into an overall model, as well as information on the specific calibration efforts in each sub-basin.

## 6.1.1 Sub-basin Calibration

The objective of the sub-basin calibration was to refine baseflow hydrology and operations isolated to the sub-basin level before introducing complexities and interactions associated with the overall model. In this initial calibration scenario, the dataset reflects historical diversions, reservoir contents, and operations, and any diversions or return flows that leave the sub-basin model were treated as an "export". In addition, calibration gages were added to major off-channel reservoir systems to determine if any baseflow was created due to data inconsistencies. In general, off-channel reservoir systems, represented on "mock" tributaries, should not have any baseflow. Data inconsistencies between headgate diversions and reservoir contents can result in baseflow generation. This model scenario was then simulated and the results were reviewed to assess where calibration efforts were needed.

Much of the sub-basin calibration effort was focused on baseflows, particularly to perform the following:

- Remove imports from baseflow estimates
- Check that baseflow was gaining as it moved downstream
- Address excessive amounts of baseflow generated from off-channel systems

• Determine correct amount of baseflow distributed to ungaged locations

Baseflow issues associated with import plans were generally addressed by adjusting diversions and import plan representation. Baseflow issues associated with losing reaches were generally addressed by adjusting return flow locations and, in some cases, adjustment of structure locations in the network. Baseflow issues associated with off-channel reservoir systems were generally addressed by reviewing and setting the reservoir content data or the release demands to better reflect the diversions to storage data, thus reducing the data inconsistency issue. Note that this was a significant effort in some basins, particularly in the Lower South Platte where data inconsistencies can result in the generation of baseflow in the thousands of acre-feet. This was also a significant issue for the Carter Lake system, where data inconsistencies would cause baseflow issues greater than the native flow in the Big Thompson River. Baseflow issues associated with ungaged locations were addressed by adjusting area/precipitation parameters that resulted in more appropriate distributions.

Once the baseflows were better calibrated, the off-channel reservoir system calibration gages were removed and the model was re-simulated. The simulated streamflow, diversions, and reservoir contents from this scenario were compared to historical values to provide an initial level of calibration. Many of the calibration issues that were identified from these results were caused by operational issues, particularly the order of supplies in which demands were met. This largely focused on municipal water users who generally have a diverse water rights portfolio and can use these supplies in different orders to meet their demands. This also occurred for irrigation demands that could be served by several different supplies, including direct rights, C-BT supplies, and reservoir storage. Order of operation issues were generally identified because of poor reservoir calibration, poor diversion calibration, or the under-simulation of transmountain supplies. These issues were generally addressed by adjusting priorities of operating rules over several model runs to narrow in on more representative operations. Other techniques used to address these issues were to limit the operations to specific years and/or seasons, revise capacities to reflect recent and sustained values, or add monthly or annual volumetric limitations.

As discussed in more detail below, StateMod operates based on a set order of operations and will not be able to completely match the dynamic operational decisions made by water users. The goal of calibrating the order of operations was to capture the recent operations that users most often abide by. Additional constraints could be added to the operating rules to better calibrate operations, however it would reduce the flexibility of these rules during future scenarios.

Note that sub-basin models were developed independently and although consistency was stressed throughout the project, there are inconsistencies in how operations were set up, which operations were modeled explicitly, and the level of calibration achieved. In general, these model inconsistencies do not impact the calibration of the overall model; however it should be considered when users review operations across different basins.

# 6.1.2 Full Model Calibration Approach

Once the sub-basin models were completed, they were integrated to develop the overall South Platte Model. During integration, it was necessary to address the interactions that occur between the sub-basins. Interactions were generally in the form of routing return flows across sub-basin boundaries, releasing from a reservoir to a demand in a downstream sub-basin, and transmountain pipelines. The first two interactions were addressed by revising return flow locations and patterns, and creating dynamic reservoir operations. These interactions are particularly prevalent in the Big Thompson River, St. Vrain Creek, and Boulder Creek sub-basins. Transmountain pipelines proved to be more complicated and are discussed in Section 6.1.2.1 below.

The overall model calibration was completed using a similar process to make sure that the integration effort did not result in additional calibration issues. Baseflows were recreated and reviewed; simulated diversions and reservoir contents were compared to historical values; and use of transmountain supplies were reviewed. As discussed above, operating rules were generally revised to reflect better calibration. In addition, augmentation plan supplies vs. demands were reviewed to determine if sufficient supplies were represented in the model. If not, augmentation plan operations were reviewed and additional supplies were modeled as necessary.

Once baseflows, diversions, and reservoirs were addressed, the calibration effort focused on refinement of simulated streamflow. Under-simulation of streamflow results in shortages and dry-up points in the river, over-simulation of streamflow allows more junior uses to be inpriority. In general, the simulated streamflow in the South Platte Model is greater than historical gaged records. This results in reduced augmentation plan demands (i.e. well depletions are simulated as in-priority), reservoirs filling quicker and staying fuller than historically, and over-diversion of junior rights model-wide. Refinement efforts for this issue included adjusting efficiencies for municipal indoor uses, adjusting of well depletion locations, and revising plan release locations.

Basin-specific calibration issues and results are discussed in the sections below.

# 6.1.2.1 Sub-basin Model Integration

The South Platte Model was developed by combining five separate sub-basin models into a single integrated basin-wide model. This basin-wide model includes tributary inflow to the South Platte, with the exception of Cache la Poudre River. During the original sub-basin modeling effort, modelers used historical measured or estimated data to represent water that was moved from one sub-basin to another. These sub-basin interactions include routing return flows across sub-basin boundaries, releasing from a reservoir to a demand in a downstream sub-basin, and pipelines that move transmountain water from one sub-basin to the next. The first two interactions were easily addressed during model integration and are completely demand driven.

The initial goal during model integration was to distribute transmountain water (for example C-BT supplies) between sub-basins based on end-user demands and not historical measured sub-basin supplies. This section discusses these sub-basin interactions, efforts to make the interactions more dynamic, and resulting calibration issues.

As shown in Table 6-1 below, there are two primary transmountain systems that meet demands in more than one sub-basin.

| Transmountain Import<br>Import Sub-basin |                 | Sub-basin Demand<br>Structure Name                                | Sub-basin<br>Demand<br>Structure ID |
|------------------------------------------|-----------------|-------------------------------------------------------------------|-------------------------------------|
|                                          | St. Vrain Creek | Inflow to Boulder Reservoir                                       | 05_BRCBT                            |
|                                          | St. Vrain Creek | St. Vrain Supply Canal Import (WD 5<br>Users)                     | 05_SVCBT                            |
| Adams Tunnel                             | St. Vrain Creek | Longmont C-BT Deliveries                                          | 05_LongCBT                          |
|                                          | St. Vrain Creek | Left Hand Ditch C-BT Deliveries                                   | 05_LHCBT                            |
|                                          | Boulder Creek   | Southern Water Supply Pipeline<br>Deliveries (excluding Longmont) | 06_SWSP_IMP                         |
| Adams Tunnel                             | Boulder Creek   | Boulder Municipal Import                                          | 060800_IMP                          |
| Adams Tunnel                             | Boulder Creek   | Boulder Creek Supply Canal Export                                 | 06_CBT_IMP                          |
| Moffat Tunnel                            | Clear Creek     | South Boulder Diversion Conduit<br>Import                         | SBDC_Pln/<br>0600590                |

Table 6-1: Sub-basin Import/Export Interactions

Colorado Big-Thompson Project (C-BT) transmountain diversions are imported to the Big Thompson River via Adams Tunnel and then distributed to storage and demands on the Poudre River, Big Thompson River, St. Vrain Creek, Boulder Creek, and users on the South Platte. Moffat Tunnel transmountain diversion is delivered to South Boulder Creek for storage in Gross Reservoir and distributed to municipal uses in the Denver Metropolitan area. To provide a perspective of these transmountain diversions, the St. Vrain Supply Canal and South Boulder Conduit systems combined carry approximately 120,000 af of water annually, which is greater than the St. Vrain Creek natural flow.

As the model was integrated, an approach was initially developed to replace the historically measured sub-basin imports and exports with operations that allowed for dynamic diversion of the transmountain supplies to meet end-user demands. In other words, allow the Denver Water or C-BT transmountain supplies be fully end-user demand-driven instead of sending the historical amount to each sub-basin. This approach involved including operating rules for the users to meet demands directly from the original transmountain supplies, carried via the St. Vrain Supply Canal, South Boulder Diversion Conduit, or Boulder Creek Supply Canal, instead of the operating rules pointing to the sub-basin import demand structure as the source of water.

The South Boulder Diversion Conduit was selected as the first sub-basin interaction to be replaced with end-user demand-driven operating rules. Moffat Tunnel imports transmountain
diversions into South Boulder Creek where they are stored in Gross Reservoir and/or carried directly to Ralston Reservoir and downstream demands via the South Boulder Diversion Conduit. The transmountain diversions are ultimately used at Denver Water's Moffat Water Treatment Plant and delivered to other municipal contracts, including Arvada and Consolidated Mutual.

The following general steps were taken to implement this revision:

- 1. *Convert the South Boulder Diversion Conduit from an export to a carrier*. Set the diversion demand to zero and revise the conduit to be a non-consumptive diversion carrier.
- 2. *Remove the South Boulder Diversion Conduit import structure.* Remove the import plan structure from the network, diversion, and plan files.
- 3. *Revise operating rules for the system*. Revise the source for system operating rules from the import plan structure (SBDC\_Pln) to the Moffat Tunnel import plan with the South Boulder Diversion Conduit as a carrier. For example, revise the operating rule to allow Moffat Tunnel to release to Ralston Reservoir via the South Boulder Diversion Conduit based on the reservoir demand.
- 4. *Release remaining supplies to the Clear Creek Basin*. Any remaining imported water in the Moffat Tunnel plan was released to a small tributary in the Clear Creek Basin, as this water did not historically flow down South Boulder Creek.

The model was simulated using the new demand-driven operations and the integrated model results were compared to the sub-basin model results to determine if the implementation was successful. Figure 6-1 through Figure 6-4 reflect the following four comparisons:

- 1. Amount of Moffat Tunnel water released to meet demands
- 2. Amount of water carried by the South Boulder Diversion Conduit
- 3. Reservoir contents in Gross Reservoir
- 4. Streamflow at South Boulder Creek Near Eldorado Springs (06729500) downstream of the South Boulder Diversion Conduit





Figure 6-2: South Boulder Diversion Conduit Diversion



Figure 6-3: Gross Reservoir End-of-Month Contents



## Figure 6-4: Streamflow at South Boulder Creek near Eldorado Springs

As shown in the figures above, the sub-basin demand driven results very closely mimic the historically gaged records at Moffat Tunnel, Gross Reservoir, and South Boulder Diversion Conduit. This is due to the fact that the model exports the full South Boulder Diversion Conduit amount to the Clear Creek Basin regardless of end-user demands, essentially forcing the system

to operate the same way it has historically and resulting in excellent calibration results at the South Boulder Creek gage.

If the model was perfectly calibrated, the imported water would be re-diverted at the Moffat Water Treatment Plant, Ralston Reservoir, or by other municipal contractors in the same timing and magnitude as they have historically. Under less than perfect calibration scenarios, the imported water is not re-diverted by these structures/entities and the remaining water (i.e. plan release) flows down a small Clear Creek tributary and ends up in the South Platte River. When end-user demands drive use of Moffat Tunnel transmountain diversions, the Moffat Tunnel import plan is releasing less water to meet demands; South Boulder Diversion Conduit is carrying less water than it has historically; and Gross Reservoir contents are higher than they have been historically. This is likely due to the fact that the Moffat Tunnel demands (Moffat Water Treatment Plant, Ralston Reservoir, and other municipal contractors) are not completely calibrated, per-capita use or outdoor uses may be potentially underestimated, and/or there are additional contract deliveries that are not modeled explicitly. There are several years when the calibration is very good, and years when operations still need to be refined. Based on these calibration results, the Moffat Tunnel operations are included in the model with dynamic user demand-driven.

The C-BT transmountain sub-basin interactions discussed in Table 6-1 were represented in the South Platte Model by first delivering to the historical sub-basin demand, then allowing that "set" supply to meet end-user demands. This was recommended based on the following:

- Water delivery based on operational decisions. StateMod allocates water based on priority. As such, it is necessary to develop a standard "order of operations" for each water user that has multiple supplies. This is sometimes in contrast to how the water user may actually use their supplies. Although the users provided a general order of operations, there are many operational decisions that cause divergence from the general order. Transmountain diversions in particular do not fit into the normal order of operations because once they are imported to the system; they can be delivered to users without the constraints of the priority system. A general order of operations was identified that included the use of these transmountain supplies; however, even a moderate divergence in the order of operations for a major water users' operations will be required when the sub-basin interactions are revised to be end-user demand-driven.
- Lack of information regarding historical uses. Diversion coding in the South Platte Basin does not consistently differentiate transmountain supplies from diversions taken under direct rights. Likewise, the type and resolution of data made available by Northern (i.e. recent shareholder ownership) provided information into the sub-basin delivery of C-BT water but did not provide sufficient information to understand how much C-BT water was delivered to the end-users over a long period.
- Annual variation in historical uses. C-BT shares owned by users vary year-to-year and the project provides a mechanism to easily lease shares between users. Therefore, even when DWR's revised Diversion Records Standards provide better information about C-BT

deliveries on a ditch or municipal level, if the use and/or lease is not consistent over time, it cannot be accurately modeled using set operating rules.

# 6.2 Calibration Results

This section describes specific areas of the model that required significant calibration efforts, and it presents graphs and summaries comparing modeled results for 1993 through 2012 with historical values for the period grouped by sub-basin. Table 7.6 provides a summary of the average annual (1993 – 2012) surface and ground water demand, the percent of demand met during simulation, and the total irrigation and M&I consumptive use for each structure in the model. With perfect calibration, 100 percent of the demand is met during model simulation. Carrier structures are excluded from the table because they do not have set demands, rather they carry water to meet other structures' demands. A summary of these results is presented at the top of each sub-basin's calibration section below.

# 6.2.1 Water Balance

Table 6-2 summarizes the average monthly water balance for the South Platte Model for the calibration period (1993 - 2013). Following are observations based on the summary table:

- Plan operations account for the large portion of the water simulated in the model each year, over 882,000 af on average, primarily due to imported diversions.
- Annual diversions amount to approximately 3.3 million af on average.
- Approximately 390,000 af of streamflow per year leaves the state.
- Total Inflow and Total Outflow reflect the net result of inflow components (inflow, return flows, and negative change in reservoir and soil moisture contents) less outflow components (diversions, outflow, evaporation, and positive changes in storage) and indicates that the model correctly conserves mass.

Refer to the StateMod documentation for information on how the water balance components are deteremined (\*.xwb). Note that the current StateMod version has an identified reporting error associated with the water balance summary regarding plan structures. This error was accounted for and corrected in the table below.

## Table 6-2: Model Water Balance

|       | Inflow Components (AF) |           |                       |                       |                         |              |  |
|-------|------------------------|-----------|-----------------------|-----------------------|-------------------------|--------------|--|
| Mo.   | Stream<br>Inflow       | Returns   | From/To<br>GW Storage | From Soil<br>Moisture | From Plan<br>Structures | Total Inflow |  |
| Jan   | 42,256                 | 123,466   | 1,128                 | 1                     | 62,860                  | 193,390      |  |
| Feb   | 38,808                 | 113,843   | 1,154                 | 0                     | 54,442                  | 176,317      |  |
| Mar   | 60,270                 | 116,898   | 926                   | 645                   | 55,972                  | 200,618      |  |
| Apr   | 102,541                | 151,042   | 1,319                 | 3,412                 | 52,713                  | 275,438      |  |
| May   | 233,009                | 209,853   | 2,815                 | 10,217                | 86,439                  | 478,996      |  |
| Jun   | 333,859                | 258,839   | 3,231                 | 26,125                | 95,911                  | 642,713      |  |
| Jul   | 195,872                | 282,126   | 6,120                 | 16,951                | 124,069                 | 531,046      |  |
| Aug   | 121,366                | 262,111   | 1,996                 | 10,425                | 114,773                 | 424,555      |  |
| Sep   | 77,058                 | 225,593   | 481                   | 6,232                 | 85,669                  | 334,092      |  |
| Oct   | 73,680                 | 179,345   | -440                  | 2,827                 | 54,999                  | 270,266      |  |
| Nov   | 51,049                 | 143,448   | 1,060                 | 251                   | 38,104                  | 209,377      |  |
| Dec   | 36,801                 | 132,357   | 1,408                 | 6                     | 56,381                  | 194,178      |  |
| Total | 1,366,569              | 2,198,921 | 21,198                | 77,092                | 882,332                 | 4,546,112    |  |

| Outflow Components (AF) |            |                    |               |                 |                   |                     |                     |                            |                  |
|-------------------------|------------|--------------------|---------------|-----------------|-------------------|---------------------|---------------------|----------------------------|------------------|
| Mo.                     | Diversions | Well<br>Depletions | Res.<br>Evap. | Res.<br>Seepage | Stream<br>Outflow | Reservoir<br>Change | To Soil<br>Moisture | Soil<br>Moisture<br>Change | Total<br>Outflow |
| Jan                     | 114,526    | 30,379             | 4,962         | 7,445           | 31,617            | 40,780              | 4,476               | -4,475                     | 229,711          |
| Feb                     | 103,682    | 27,472             | 6,891         | 10,864          | 26,082            | 33,257              | 4,168               | -4,168                     | 208,248          |
| Mar                     | 119,672    | 25,423             | 8,678         | 19,593          | 18,411            | 42,290              | 5,710               | -5,064                     | 234,711          |
| Apr                     | 209,163    | 24,839             | 15,393        | 19,289          | 23,452            | 15,479              | 14,878              | -11,466                    | 311,026          |
| May                     | 405,396    | 27,720             | 18,552        | 18,832          | 42,260            | 19,356              | 10,990              | -773                       | 542,334          |
| Jun                     | 496,420    | 35,278             | 28,674        | 17,253          | 111,654           | 2,561               | 2,725               | 23,400                     | 717,966          |
| Jul                     | 616,416    | 44,183             | 28,573        | 9,184           | 31,362            | -121,530            | 4,850               | 12,101                     | 625,138          |
| Aug                     | 524,712    | 50,245             | 23,158        | 4,927           | 18,503            | -121,301            | 4,127               | 6,299                      | 510,670          |
| Sep                     | 349,159    | 49,830             | 17,296        | 6,458           | 14,549            | -48,490             | 5,323               | 910                        | 395,035          |
| Oct                     | 189,641    | 44,190             | 11,953        | 13,978          | 38,729            | 9,095               | 9,171               | -6,344                     | 310,411          |
| Nov                     | 99,810     | 36,584             | 6,097         | 4,885           | 12,527            | 73,758              | 4,510               | -4,260                     | 233,911          |
| Dec                     | 114,512    | 33,618             | 4,718         | 4,986           | 19,900            | 49,212              | 5,108               | -5,102                     | 226,953          |
| Total                   | 3,343,109  | 429,761            | 174,945       | 137,694         | 389,046           | -5,533              | 76,036              | 1,058                      | 4,546,114        |

# 6.2.2 Water Districts 80, 23, 9, 8, and 2 (Upper South Platte River) Calibration

The Upper South Platte River Basin operations are dominated by municipal uses with their onchannel reservoirs and transmountain imports, and irrigation uses with their off-channel reservoirs. Considering the complexity of the operations in the Upper South Platte River basin, the reservoirs and diversions calibrate very well, and the municipal demands have minimal to no shortages. The streamflow, however, is generally over-simulating compared to historical gage data and, as shown in the graphs below, these excess flows are carried all the way downstream. Specific calibration issues and recommendations are discussed in more detail below; it is recommended model users also refer to the operating rule section for more information on the municipal operations discussed below.

The following table presents the number of each structure type in the sub-basin:

|             | Diversions | Reservoirs | Well Only | Plans |
|-------------|------------|------------|-----------|-------|
| Upper Basin | 228        | 46         | 25        | 233   |

The following tables present the average annual surface and ground water demand (af), the percent of demand that was met, and the associated M&I and irrigation consumptive use over the 1993 to 2012 period. Note that the SW Demand can be met by native flow, reservoir releases, and transmountain supplies. See Table 7-6 for more information on the demand and consumptive use for specific structures. The Upper South Platte sub-basin receives approximately 150,000 af of imported supplies on average annually through Moffat Tunnel, Roberts Tunnel, and the Homestake Project.

|             | SW Demand      | GW Demand | Total Demar | nd Percent      |
|-------------|----------------|-----------|-------------|-----------------|
|             | (AF)           | (AF)      | (AF)        | Demand Met      |
| Upper Basin | 807,000        | 143,000   | 950,000     | 99%             |
|             | Irrigation     | V         | I&I         | Total           |
|             | Consumptive Us | se Consum | ptive Use   | Consumptive Use |
|             | (AF)           | (A        | AF)         | (AF)            |
| Upper Basin | 258,000        | 185       | ,000        | 443,000         |



### USGS Gage PLAANTCO - South Platte River below Antero Gaged and Simulated Flows (1993-2012)

USGS Gage PLAANTCO - South Platte River below Antero Gaged and Simulated Flows (1993-2012)



Figure 6-5: South Platte River below Antero Reservoir (District 23)



#### USGS Gage 06695000 - South Platte River above Eleven Mile Gaged and Simulated Flows (1993-2012)

USGS Gage 06695000 - South Platte River above Eleven Mile Gaged and Simulated Flows (1993-2012)



Figure 6-6: South Platte River above Eleven Mile Reservoir (District 23)



### USGS Gage 06696000 - South Platte River near Lake George Gaged and Simulated Flows (1993-2012)

USGS Gage 06696000 - South Platte River near Lake George Gaged and Simulated Flows (1993-2012)



Figure 6-7: South Platte River near Lake George (District 23)



## USGS Gage 06701500 - South Platte River below Cheesman Gaged and Simulated Flows (1993-2012)

USGS Gage 06701500 - South Platte River below Cheesman Gaged and Simulated Flows (1993-2012)







### USGS Gage 06707500 - South Platte River at South Platte Gaged and Simulated Flows (1993-2012)

USGS Gage 06707500 - South Platte River at South Platte Gaged and Simulated Flows (1993-2012)



Figure 6-9: South Platte River at South Platte (District 8/80)



### USGS Gage 06708000 - South Platte River at Waterton Gaged and Simulated Flows (1993-2012)

USGS Gage 06708000 - South Platte River at Waterton Gaged and Simulated Flows (1993-2012)







USGS Gage 06711565 South Platte River at Englewood Gaged and Simulated Flows (1993-2012)

USGS Gage 06711565 South Platte River at Englewood Gaged and Simulated Flows (1993-2012)







USGS Gage 06713500 - Cherry Creek at Denver Gaged and Simulated Flows (1993-2012)

USGS Gage 06713500 - Cherry Creek at Denver Gaged and Simulated Flows (1993-2012)



Figure 6-12: Cherry Creek at Denver



## USGS Gage 06714000 - South Platte River at Denver Gaged and Simulated Flows (1993-2012)

USGS Gage 06714000 - South Platte River at Denver Gaged and Simulated Flows (1993-2012)







USGS Gage 06720500 - South Platte River at Henderson Gaged and Simulated Flows (1993-2012)

USGS Gage 06720500 - South Platte River at Henderson Gaged and Simulated Flows (1993-2012)



Figure 6-14: South Platte River at Henderson



USGS Gage 06721000 - South Platte River at Fort Lupton Gaged and Simulated Flows (1993-2012)

USGS Gage 06721000 - South Platte River at Fort Lupton Gaged and Simulated Flows (1993-2012)







2303904 - Antero Reservoir Gaged and Simulated EOM Contents (1993-2012)

Figure 6-17: Spinney Mountain Reservoir







Figure 6-19: Cheesman Reservoir



0803983 - Strontia Springs Reservoir Gaged and Simulated EOM Contents (1993-2012)

Figure 6-21: Chatfield Reservoir





Figure 6-22: Marston Reservoir

0803832 - McLellan Reservoir Gaged and Simulated EOM Contents (1993-2012)



Figure 6-23: McLellan Reservoir



0803532 - Cherry Creek Reservoir Gaged and Simulated EOM Contents (1993-2012)

Figure 6-25: Aurora Reservoir



0203699 - West Gravel Lakes Gaged and Simulated EOM Contents (1993-2012)

Figure 6-27: Standley Lake



## ConMutualAGG - Con Mutual Agg Reservoirs Gaged and Simulated EOM Contents (1993-2012)

Figure 6-28: Con Mutual Agg Reservoirs

0203858 - Lower Latham Reservoir Gaged and Simulated EOM Contents (1993-2012)



Figure 6-29: Lower Latham Reservoir



0203837 - Barr Lake Gaged and Simulated EOM Contents (1993-2012)

Figure 6-30: Barr Lake

0203876 - Milton Reservoir Gaged and Simulated EOM Contents (1993-2012)



Figure 6-31: Milton Reservoir

# 6.2.2.1 Big Dry Creek Baseflows and Simulated Streamflows

The native flow to Big Dry Creek is comprised mostly of Standley Lake releases to FRICO irrigators (e.g., Bull Canal system) and irrigation return flows and ditch losses from diversions from Clear Creek through the Church Ditch, Farmers' Highline Canal, and Croke Canal. Baseflow and calibration issues occurred because of the magnitude of the Standley Lake and Clear Creek diversion operations compared to the native flow of Big Dry Creek.

Baseflow calculations on Big Dry Creek are complicated primarily due to missing streamflow gage data, inconsistencies between Standley Lake storage contents, colors of water and locations of diversions records for the above three ditches, and the standard approach of using a fixed ditch loss value year-round for each structure. Nonetheless, the number of months with calculated negative baseflows is not significant during the periods since the early-1990s, when both the Big Dry Creek at Mouth and Big Dry Creek at Westminster gages have been active.

The primary calibration effort used to improve development of baseflows and simulation of streamflows was a detailed review of and disaggregation of water diversion class data and comparing storage diversions to Standley Lake historical storage contents subject to different ditch loss values. Additionally, several filling techniques were investigated to improve the filled streamflow gage data. Input data were revised, as necessary, using improved data and information provided by both FRICO and the City of Westminster.

## 6.2.2.2 Denver Water Board

Denver Water's approach to meeting its demands incorporates complex decision processes based on current and projected supplies from multiple river basins. It is further complicated by a large interconnected infrastructure capable of moving water throughout its Northern system and Southern system demands and facilities (see Task 5 Denver Water Memorandum for further information). In addition, after its direct demands are satisfied, Denver Water conveys water between different storage units for upcoming needs.

Representation of the Denver Water system was simplified in the demand-based StateMod modeling environment. In addition, StateMod has limitations regarding "coloring" effluent as reusable when a demand is input with multiple return flow locations. Therefore, a decision was made to assign single WWTP locations for each of the users (Denver and Aurora at Metro WWTP; Westminster at its Big Dry Creek WWTP). The same approach was used for calculating baseflows so the net impact of this decision on simulation was minimized.

The general approach to meeting Denver Water's demands in the SPDSS model consists of using transbasin supplies first followed by changed water rights, reusable effluent, and storage releases. Transbasin supplies from the western slope are fixed inputs and the modeled order of water supplies to meet demands is consistent every year, regardless of the type of hydrologic conditions (i.e., wet, dry, or average). Operationally, Denver Water uses different reservoirs

depending on certain conditions; for example, the South Park reservoirs (Eleven Mile and Antero) are primarily used during drought conditions.

Denver Water's total demand of approximately 220,000 acre-feet per year is satisfied with the supplies delivered through the Moffat system (Moffat Tunnel, Gross Reservoir, and Ralston Reservoir) then the Foothills system (Conduit 26) and then the Marston system (Conduit 20, Conduit 15, and Marston Reservoir). Sufficient supplies are typically available during simulation to meet Denver Water's demands.

Antero Reservoir and Eleven Mile Reservoir were not being drawn down during model simulation during drought years. This was due, in part, to the high baseflows at the Englewood gage allowing direct flow rights to be in priority more than occurred historically. Keeping the reservoir full resulted in oversimulation of streamflows at the top of system and undersimulation of streamflows during historical fills. The effects on streamflow at the top of the basin were carried to below the Denver metropolitan area. Operating rules for reservoir release to target to meet historical contents were added to improve simulation of upper basin reservoirs and streamflows during drought periods.

The historical demands at the Moffat treatment plant are satisfied during model simulation but the specific supplies used to meet the demand do not match the historical operations. A further discussion on the calibration efforts on Moffat Tunnel, Gross Reservoir, and South Boulder Diversion Conduit is discussed in Section 6.1.2.1.

Based on Denver Water operations, the Marston Reservoir system was input as the third supply, after Moffat and Foothills, to meet Denver Water demands. This resulted in poor calibration of Marston Reservoir.

Modelers met with Denver Water to present initial calibration results and obtain additional data. Information from this meeting was incorporated into the model, and natural flows and calibration were greatly improved. Additional refinement of operations would improve the calibration of the system, as well as the inclusion of additional contract deliveries. Further research into the StateMod algorithm and possible solutions to addressing simulation of WWTP returns to multiple locations may also be appropriate.

# 6.2.2.3 City of Aurora

As discussed in Section 5.10.8.2, the City of Aurora diverts its surface water diversions through the Aurora Intake, located at Strontia Springs Reservoir. Aurora demands are supplemented by well pumping from Cherry Creek at locations near Cherry Creek Reservoir. Sufficient surface water supplies are typically available during simulation to meet Aurora's demands. Therefore, use of the ground water supplies from these wells was under-simulated.

Transbasin supplies are simulated with the most senior priority to meet municipal demands in order to represent full use of water that was brought over from other basins. Until the South Platte, Arkansas, and Colorado DSS models are integrated, the transbasin imports from the

Arkansas River Basin and Colorado River Basin are fixed based on historical deliveries. The general approach to Aurora's operations was to use changed water rights in relative order of priority of the original water rights. This initially led to a model representation that would undersimulate storage releases, because they are typically set as the most junior priorities. Additional calibration was performed to adjust some of these priorities which resulted in better calibration at Spinney Mountain Reservoir and Aurora Reservoir. It is recommended that during future modeling efforts, additional review of model input and output be discussed with Aurora to fine tune the operations used to meet its demands.

## 6.2.2.4 FRICO-Barr-Henrylyn System

The original approach to representing the Burlington Ditch / O'Brian Canal system relied on diversion data and storage data in HydroBase, supplemented with information compiled as part of the engineering reports developed to support the Burlington Ditch change Case No. 87CW107. Ditch loss values through the various ditches within the FRICO-Barr-Henrylyn system included in the reports were also used.

Simulation of the entire system is considered very good. The primary effort in calibrating the system operations involved reviewing and revising much of the historical diversion data and ditch loss values. The major source of those changes was the data used in Case No. 02CW403 and analysis by FRICO's water resources engineer, Ecological Resource Consultants.

# 6.2.2.5 Lower Latham System

The Union Ditch delivers water to irrigation and to Lower Latham Reservoir. In addition, the Union Irrigators are supplied by the Union Feeder Ditch and Lower Latham Reservoir is fed by the Morrison Seep. The Union Feeder Ditch and Morrison Seep structures are not explicitly represented in the Upper South Platte Model network but their inflows to the Lower Latham system are represented via return flows from the Barr and Milton systems.

Specific calibration issues were related to data inconsistencies between diversions to storage and change in storage. These issues were mitigated by changing input data to minimize the data inconsistencies for structures on the off-channel Latham tributary. Diversion class records for the Union Feeder Ditch were subtracted from the Union Ditch headgate diversions. The Union Ditch diversions to irrigation and storage and storage diversion data at Lower Latham Reservoir are not consistent. Since diversions to storage in HydroBase were often estimated, calculated diversions to storage based on EOM contents and evaporation were used to assume mass balance on the system.

# 6.2.3 Water District 4 (Big Thompson River) Calibration

The C-BT transmountain imports and operations, the City of Loveland's municipal operations, and irrigation uses are the primary operations in the Big Thompson Basin. In general, the irrigation operations reflect good calibration with very few shortages. Reservoirs used for

irrigation are generally well calibrated. Similarly, the Loveland municipal operations are fairly well calibrated; however Green Ridge Glade Reservoir is staying fuller than historically. The streamflow calibration of the Big Thompson River is considered poor. The Little Thompson River does not have a good quality streamgage against which to evaluate the calibration. Remaining baseflow and calibration issues are due to the magnitude of the C-BT operations compared to the native flow of the Big Thompson and Little Thompson rivers. Specific calibration issues and recommendations are discussed in more detail below for many of the basin operations.

The following table presents the number of each structure type in the sub-basin:

|              | Diversions | Reservoirs | Well Only | Plans |
|--------------|------------|------------|-----------|-------|
| Big Thompson | 60         | 12         | 4         | 23    |

The following tables present the average annual surface and ground water demand (af), the percent of demand that was met, and the associated M&I and irrigation consumptive use over the 1993 to 2012 period. See Table 7-6 for more information on the demand and consumptive use for specific structures.

|   |              | SW Demand      | GW Demand | Total Deman | d Percent       |
|---|--------------|----------------|-----------|-------------|-----------------|
| _ |              | (AF)           | (AF)      | (AF)        | Demand Met      |
|   | Big Thompson | 227,000        | 2,000     | 229,000     | 95%             |
|   |              |                |           |             |                 |
|   |              | Irrigation     | Μ         | 1&1         | Total           |
|   |              | Consumptive Us | se Consum | ptive Use   | Consumptive Use |
| F |              | (AF)           | (/        | <b>ΥΓ</b> ) | (AF)            |
|   | Big Thompson | 70,000         | 8,0       | 000         | 78,000          |



## USGS Gage 06735500 - Big Thompson River near Estes Park Gaged and Simulated Flows (1993-2012)

USGS Gage 06735500 - Big Thompson River near Estes Park Gaged and Simulated Flows (1993-2012)







### USGS Gage 06738000 - Big Thompson River at Canyon Mouth Gaged and Simulated Flows (1993-2012)

USGS Gage 06738000 - Big Thompson River at Canyon Mouth Gaged and Simulated Flows (1993-2012)



Figure 6-33: Big Thompson River at Canyon Mouth Streamflow



USGS Gage 06741510 - Big Thompson at Loveland Gaged and Simluated Flows (1993-2012)

USGS Gage 06741510 - Big Thompson at Loveland Gaged and Simluated Flows (1993-2012)







#### USGS Gage 06744000 - Big Thompson River at Mouth Gaged and Available Flows (1993-2012)

USGS Gage 06744000 - Big Thompson River at Mouth Gaged and Available Flows (1993-2012)







0404110RS - Boyd Lake Gaged and Simulated EOM Contents (1993-2012)

Figure 6-36: Boyd Lake

0404513 - Carter Lake Gaged and Simulated EOM Contents (1993-2012)



Figure 6-37: Carter Lake





Figure 6-38: Lone Tree Reservoir System

## 6.2.3.1 Big Thompson River from Adams Tunnel to Big Thompson Canyon Mouth

For Water District 4, C-BT allottees are allowed to dynamically request water from the Adams Tunnel import. Historical exports to Water District 3 via the Hansen Feeder Canal and exports to Water District 4 via the St. Vrain Supply Canal are based on historical distributions, as provided by Northern Water. Additionally, the historical flow through the Big Thompson Power Plant (which returns to the Big Thompson River) and the water returned to the Big Thompson River via the Hansen Feeder Waste Way are also modeled. Transmountain and native (skim) water is carried through Olympus Tunnel. Olympus Tunnel serves as a carrier only. It does not have its own demand. The simulated volume of water passing through Olympus Tunnel compared to historical records shows a very good calibration, as shown in Figure 6-40 below. However, when the model does not perfectly replicate Olympus Tunnel historical diversions, there is a large impact on the calibration of the stream flow gage Big Thompson near Estes Park (06735500), which measures streamflow entering the Big Thompson canyon, downstream of the Olympus Tunnel diversion point (Figure 6-33). The magnitude of the streamflow in the canyon compared to the volume of C-BT water is about equal.




The next downstream gage (Big Thompson at Canyon Mouth - 06738000) shows a much poorer calibration. This is caused by problems with the Olympus Tunnel simulation and compounded by any problems with the simulation of Dille Tunnel. While the Dille Tunnel calibration itself is considered fair for a carrier, the magnitude of the diversions is again about equal with the streamflow itself, so small differences in simulation have a large impact on streamflow calibration.

Dille Tunnel is part of the C-BT operations and diverts water in the Big Thompson Canyon and deliveries the water either to the Big Thompson Power Plant, the Hansen Feeder Canal, or the Hansen Feeder Canal Waste Way. The calibration is also complicated by the model representation. In the model, diversion demands in Water District 4 call for C-BT water from the Adams Tunnel Plan and it is carried through Olympus Tunnel, but is not used to satisfy the Big Thompson Power Plant or the Hansen Feeder Waste Way demands. This is a modeling simplification and results in the Big Thompson Power Plant and Hansen Feeder Waste Way demands with native Big Thompson water through either Olympus Tunnel or Dille Tunnel and then C-BT water from the Adams Tunnel. Because of this simplification, Adams Tunnel water is frequently allocated when the Power Plant or Waste Way request that water. Therefore, the total amount of imported C-BT water is correctly allocated to end-users, but the path it takes to arrive at its destination does not match the historical operational decisions. The combination of this model representation with the varying operational decisions to produce hydropower in the C-BT system, it is very difficult for the model to correctly match historical operations.

Note that modelers met with Northern staff to present initial calibration results and obtain additional data. Information from this meeting was incorporated into the model, and natural flows and calibration were greatly improved.

# 6.2.3.2 City of Loveland Municipal Operations

The City of Loveland has a very good calibration. The city is almost never shorted and the Green Ridge Glade Reservoir shows a slight over-simulation in recent years. One simplification to the Loveland system is important to note. No effort was made to distinguish between diversions historically taken at the Loveland Pipeline (0400511) or through the turn-out from the Hansen Feeder Canal in simulation. This simplification was possible because the diversion capacity of the Loveland Pipeline is large enough to accommodate the combined historical diversions at both locations. This may result in an over-simulation of the physical streamflow at the Handy Ditch headgate (0400521).

# 6.2.3.3 Irrigation and Off-Channel Reservoir Operations

The irrigation diversion structures have a very good calibration in the Big Thompson Basin. There are almost no shortages to irrigation demand and the off-channel reservoirs generally have good calibrations. The off-channel system with the poorest calibration is the Ryan Gulch/Southside Reservoir system (0404171RS). This reservoir system generally releases water by exchange with upstream diversion structures, but this behavior is not captured in the model. The exchanges are sporadic and not well coded in HydroBase. The system may also benefit from good neighbor practices common in the basin that are not captured by StateMod.

# 6.2.4 Water District 5 (St. Vrain Creek) Calibration

The City of Longmont's municipal operations, transmountain imports, and irrigation uses, particularly the operation of the Left Hand Ditch system, are the primary operations in the St. Vrain Creek Basin. In general, the irrigation operations reflect good calibration with very few shortages, although in some cases, reservoirs used for irrigation are staying fuller than their historical contents reflect. Shortages are experienced on Left Hand Ditch structures, however as discussed below, the historical diversion data for this system was limited and extensive calibration efforts were undertaken to reduce shortages. Similarly, the municipal operations are fairly well calibrated; however their associated reservoirs are also staying fuller than historically. The streamflow calibration of the mainstem St. Vrain Creek Basin is considered very good; baseflow and calibration issues occurred once Boulder Creek was integrated into the system. Specific calibration issues and recommendations are discussed in more detail below for many of the basin operations.

The following table presents the number of each structure type in the sub-basin:

|           | Diversions | Reservoirs | Well Only | Plans |
|-----------|------------|------------|-----------|-------|
| St. Vrain | 70         | 15         | 2         | 46    |

The following tables present the average annual surface and ground water demand (af), the percent of demand that was met, and the associated M&I and irrigation consumptive use over

the 1993 to 2012 period. See Table 7-6 for more information on the demand and consumptive use for specific structures.

|           | SW Demand      | GW Demand | Total Demar | nd Percent      |
|-----------|----------------|-----------|-------------|-----------------|
|           | (AF)           | (AF)      | (AF)        | Demand Met      |
| St. Vrain | 152,000        | 470       | 153,000     | 98%             |
|           |                |           |             |                 |
|           | Irrigation     | N         | 1&1         | Total           |
|           | Consumptive Us | se Consum | ptive Use   | Consumptive Use |
|           | (AF)           | (7        | AF)         | (AF)            |
| St. Vrain | 51,000         | 9,(       | 000         | 60,000          |



### USGS Gage 06724000 - St Vrain River at Lyons Gaged and Simulated Flows (1993-2012)

USGS Gage 06724000 - St Vrain River at Lyons Gaged and Simulated Flows (1993-2012)



Figure 6-40: St Vrain at Lyons



### USGS Gage 06724500 - Left Hand Creek near Boulder Gaged and Simulated Flows (1993-2012)

USGS Gage 06724500 - Left Hand Creek near Boulder Gaged and Simulated Flows (1993-2012)







USGS Gage 06731000 - St Vrain River at Mouth Gaged and Simulated Flows (1993-2012)

USGS Gage 06731000 - St Vrain River at Mouth Gaged and Simulated Flows (1993-2012)



Figure 6-42: St Vrain River at Mouth





Figure 6-43: Beaver Park Reservoir

0504038 - Highland Reservoir No. 3 Gaged and Simulated EOM Contents (1993-2012)



Figure 6-44: Highland Reservoir No. 3



0504032 - Highland Reservoir No. 2 Gaged and Simulated EOM Contents (1993-2012)

Figure 6-45: Highland Reservoir No. 2

0504037 - Highland Reservoir No. 1 Gaged and Simulated EOM Contents (1993-2012)



Figure 6-46: Highland Reservoir No. 1







2000

200, 002

2000 ,000

2010 2011 2012

2001

Figure 6-48: Union Reservoir

0

~00<sup>0</sup>

1994

,99<sup>5</sup>

,<sup>69</sup>, <sup>69</sup>, <sup>69</sup>, <sup>69</sup>

,9<sup>96</sup>



0504515 - Boulder Reservoir Gaged and Simulated EOM Contents (1993-2012)

Figure 6-49: Boulder Reservoir

# 6.2.4.1 Left Hand Ditch (0500603) System

As outlined in Section 5.10.5.8, the Left Hand Ditch system is comprised of a primary carrier structure (0500603) on the St. Vrain Creek that carries between 10,000 af to 22,000 af of water annually over to the Left Hand Creek drainage basin for re-diversion by over a dozen ditches. The system historically operated as a mutual ditch company with the individual headgates considered more as turnouts than individual structures administered separately. As such, historical diversion records for the Left Hand Ditch system irrigators are not available in HydroBase. Additionally, the streamflow gages on Left Hand Creek have minimal recorded data and the Left Hand Ditch carrier had only 5 years of data within the study period. With all of this missing information, it was necessary to develop historical diversions from the South St. Vrain Creek and for the individual headgates. Ultimately, the calibration of the Left Hand Ditch system is considered good based on the information developed using the following processes.

• Diversion records for the South St. Vrain diversion were compiled from a number of different data types in HydroBase. A portion of the record was based on Streamflow and Administrative Flow records at the LEFTHDCO gage and infrequent diversions (0500603). These sources provide a fairly complete record from 1971 through 2012. 1950 through 1970 values and other missing values were filled with a pattern based on St. Vrain at Lyons gage.

- HydroBase records were available for a limited number of years for the individual Left Hand headgates. The available records were compared to the 0500603 diversion totals to develop a scale factor. In aggregate, individual headgate diversions were approximately 113 percent of 0500603. The extra 13 percent is likely diversions of return flows or native flow in Left Hand Creek. The proportions of total diversions at the individual headgates were also determined (e.g., on average Haldi Ditch diverts 25% of total Left Hand diversions). The diversions at each headgate were calculated by multiplying 0500603 by 1.13 and then multiplying by the individual proportion for the ditch on monthly basis.
- The Left Hand Water District (LHWD) operates two water treatment plants that receive deliveries of Left Hand system water and C-BT. The plants are represented in the model network as 0500619\_a and 0500619\_b. The Spurgeon plant (0500619\_a) is fed by Haldi Ditch (0500565) and receives mostly Left Hand system water. The Dodd plant (0500619\_b) is located east of the Williamson Ditch (0500575) and receives a majority of its water through a pipeline directly from the C-BT Boulder Feeder Canal. HydroBase records were available for the majority of the relevant time period but represented combined diversions at both plants. Missing records were filled using linear interpolation of annual data. Annual values were disaggregated to monthly values based on the distribution of monthly diversions from the available HydroBase data.

## 6.2.4.2 Foothills Reservoir and McIntosh Reservoir

Foothills Reservoir and McIntosh Reservoir are owned and operated by Highlands Irrigation District, and release water for irrigation via exchange to the Highlands Irrigation Demand. In general, both of these reservoirs are over-simulating and stay fuller than their historical contents reflect. This is occurring because the irrigation demand is already satisfied from direct diversions, reservoir releases from Highland Reservoirs 1 through 3, and C-BT supplies. Additional refinement may be needed to limit the amount of C-BT supplies made available to the Highland Ditch System or investigate additional demands that Foothills and McIntosh Reservoirs may serve. It is noteworthy that the historical diversions significantly short the consumptive use demand of the acreage under the Highland Ditch system. Although diversion records were reviewed to determine their accuracy, the ditch system may receive additional supplies that are either not diverted through the Highland Ditch headgate, or not recorded under the Highland Ditch headgate in HydroBase.

# 6.2.4.3 Baseflows with Boulder Creek Integration

As discussed in the Calibration Process section above, the sub-basin models were developed and calibrated independently and then integrated into an overall model. The St. Vrain Creek Basin (which included the historical gaged inflow from Boulder Creek) streamflow calibration at the lower St. Vrain Creek near Platteville (06731000) gage was good. Once the models were integrated, the combined Boulder Creek and St. Vrain Creek resulted in negative baseflow at the lower gage during the winter months, with the negative baseflow occurring more frequently in

the recent years. Return flows that interacted between the basins were reviewed and adjusted, reducing the magnitude of the issue. Issues may remain either due to differences in return flow patterns between the two basins or calibration of off-channel reservoir systems or imports. It is recommended that additional refinement of the baseflow at this gage be performed.

## 6.2.4.4 C-BT Supplies in St. Vrain Basin

Colorado Big Thompson and Windy Gap supply enters the St. Vrain Creek Basin using four imports: deliveries directly to Longmont municipal demands (05\_LongCBT), deliveries to Left Hand Ditch System (05\_LHCBT), Boulder Feeder Canal to Boulder Reservoir (05\_BRCBT), and St. Vrain Supply Canal deliveries to in-basin users. While initially the model was developed using operating rules that allocated C-BT deliveries based on a user's share ownership, only a single percent value could be used for the entire study period, which was known to be an oversimplification considering C-BT and Windy Gap units are frequently transferred.

The modeling approach was then adjusted to separate the demands into the four primary users in the basin, and allowing known recipients of C-BT and Windy Gap access to 100% of the supply of their respective import plan. The City of Longmont takes delivery of its supplies as its first priority, however the remaining users' priorities of C-BT deliveries are typically just junior to the users' most junior water right, assuming that a user would elect to divert in priority before using its C-BT supply.

Using this representation, the Longmont and Boulder Feeder Canal demands and operations use the full imported supply. At times, the model is over-simulating the amount of native and storage supplies to meet the Left Hand Ditch and St. Vrain Canal demands and under-simulating their use of imported supplies. As these demands are being satisified, the model is likely simulating the right amount of water but the "color" of water does not match historical estimates provided by Northern (i.e. direct diversions, storage supplies, C-BT deliveries). As demands in the basin are generally met, and the streamflow gages reflect good correlation, this is likely an issue of operational decisions by the users and does not impact the overall calibration of the basin.

# 6.2.4.5 City of Longmont

The City of Longmont municipal demand is met by four primary sources:

- C-BT (as discussed above),
- Changed water rights,
- Direct flow rights at three primary pipelines: Longmont North Pipeline (0500511) and Lyons Pipeline (0500512) located below Button Rock Reservoir on North St. Vrain Creek and Longmont South Pipeline (0500522) below Beaver Park Reservoir on South St. Vrain Creek,

• Reservoir storage in Button Rock and Union reservoirs.

The municipal demand was developed based on user-provided annual water treatment plant production values from 1970 through 2001 and monthly water treatment production values from 2002 through 2012. Prior to 1970, demand was estimated using population data and per capita use. These values were then compared to the sum of the historical supply data, and inconsistencies between the supply and demand were adjusted.

In general, the calibration of the South Pipeline is considered good, however the Longmont North Pipeline is under-simulating compared to historical diversions, primarily during summertime outdoor demands (Figure 6-52). The under-simulation is because the Longmont municipal demand is first met by C-BT deliveries, which, based on historical records, met the majority of the summer demand. There is likely an issue with either the C-BT delivery records or the HydroBase records, including the potential that the historical HydroBase records for the Longmont North Pipeline include a portion of the C-BT deliveries that are modeled as being directly delivered. This under-simulation at the pipeline is also the cause for the undersimulation of Button Rock releases to meet municipal supply via the North Pipeline. Although this was discussed with Northern and Water Commissioners during calibration efforts, it is recommended additional investigation take place to mitigate these differences.





# 6.2.5 Water District 6 (Boulder Creek) Calibration

The City of Boulder's municipal operations, transmountain imports, and irrigation uses are the primary operations in the Boulder Creek Basin. Adding to the complexity are the municipal operations of Lafayette and Louisville and the prevalence of minimum instream flow reaches in the basin. In general, the irrigation operations and their associated reservoirs reflect good

calibration. Municipal operations are considered to be well calibrated, however significant calibration efforts were undertaken to reach this level of calibration, particularly for reservoir operations. Streamflow is being slightly under-simulated at the lower gages during peak runoff, however generally correlates very well overall with historical gaged streamflow. Specific calibration issues and recommendations are discussed in more detail below for many of the basin operations. Note that the calibration efforts on Moffat Tunnel, Gross Reservoir, and South Boulder Diversion Conduit are discussed in Section 6.1.2.1 and not reiterated here.

The following table presents the number of each structure type in the sub-basin:

|         | Diversions | Reservoirs | Well Only | Plans |
|---------|------------|------------|-----------|-------|
| Boulder | 88         | 12         | 1         | 200   |

The following tables present the average annual surface and ground water demand (af), the percent of demand that was met, and the associated M&I and irrigation consumptive use over the 1993 to 2012 period. See Table 7-6 for more information on the demand and consumptive use for specific structures.

|   |         | SW Demand      | GW Demand | Total Demar | nd Percent      |
|---|---------|----------------|-----------|-------------|-----------------|
|   |         | (AF)           | (AF)      | (AF)        | Demand Met      |
|   | Boulder | 154,000        | 260       | 154,300     | 97%             |
|   |         |                |           |             |                 |
|   |         | Irrigation     | Μ         | &I          | Total           |
|   |         | Consumptive Us | se Consum | ptive Use   | Consumptive Use |
| 1 |         | (AF)           | (A        | NF)         | (AF)            |
|   | Boulder | 44,000         | 20,       | 000         | 64,000          |



USGS Gage 06727000 - Boulder Creek near Orodell Gaged and Simulated Flows (1993-2012)

USGS Gage 06727000 - Boulder Creek near Orodell Gaged and Simulated Flows (1993-2012)







USGS Gage 06729500 - South Boulder Creek near Eldorado Springs Gaged and Simulated Flows (1993-2012)

USGS Gage 06729500 - South Boulder Creek near Eldorado Springs Gaged and Simulated Flows (1993-2012)







### USGS Gage 06730200 - Boulder Creek at 75th Street Gaged and Simulated Flows (1993-2012)

USGS Gage 06730200 - Boulder Creek at 75th Street Gaged and Simulated Flows (1993-2012)







### USGS Gage 06730500 - Boulder Creek at Mouth Gaged and Simulated Flows (1993-2012)

USGS Gage 06730500 - Boulder Creek at Mouth Gaged and Simulated Flows (1993-2012)



Figure 6-54: Boulder Creek at Mouth







Figure 6-56: Baseline Reservoir System



0604212 - Marshall Lake Reservoir Gaged and Simulated EOM Contents (1993-2012)

Figure 6-58: Valmont Reservoir



### 06\_WSHED - District 6 Combined Watershed Reservoirs Gaged and Simulated EOM Contents (1993-2012)

Figure 6-59: Combined Watershed Reservoirs

## 6.2.5.1 Streamflow Gages and Baseflows

As discussed in Section 4.7.2, three streamflow gages in the Boulder Creek Basin are not complete over the full study period (1950 – 2013) and could not be filled using the standard streamflow filling techniques. The preferred approach was to fill historical streamflow data before creating baseflows in StateMod; however regression with nearby gages yielded poor results for these gages. In order to improve the baseflows estimated on Boulder Creek, the streamflow gage data was left missing and baseflows were instead filled through regression with baseflow estimates from nearby gages. This yielded much better regression correlations and resulted in improved baseflow estimates along Boulder Creek.

One of these gages, Boulder Creek at North 75<sup>th</sup> St, Near Boulder (06730200) is impacted by the City of Boulder's WWTP discharge. In early 2003, the WWTP outfall was moved from upstream of the gage location to downstream, effectively moving approximately 12,000 af annually around the gage. In order to mitigate this issue, a demand structure (06BOULD\_RTN) was added to the model to carry the WWTP outfall returns from 1950 to February, 2003 upstream of the gage. This operation improved the calibration of the simulated streamflow at this gage, particularly during the winter months.

### 6.2.5.2 C-BT Supplies

The Boulder Creek Basin receives C-BT using three structures in the South Platte Model; Southern Water Supply Pipeline (06 SWSP IMP), direct deliveries to Boulder's WTP via Boulder Reservoir (060800 IMP) and the Boulder Creek Supply Canal deliveries (BCSC) (06 CBT IMP). The first two supplies are fully used to meet demand (i.e. Windy Gap Cities' municipal demand modeled at aggregated municipal structures, and Boulder's municipal demand) within the basin. The BCSC imported supplies are split as they enter the basin. Twenty percent is allotted for the City of Boulder's uses and the remaining 80 percent is allotted for other users in the basin. This split was based primarily on calibration of Boulder's municipal operations, in order to limit the amount of C-BT supplies simulated as diverted by the city. Boulder's demands are generally met by the import supplies every year; however the model is over-simulating the amount of in-basin users' demands met by native and storage supplies and under-simulating the portion met from imported supplies as compared to historical operations. In general, the right amount of water is being diverted by the in-basin users but the "color" of water is different from historical (i.e. direct diversions, storage supplies, C-BT deliveries). As demands in the basin are generally met, and the streamflow gages reflect good correlation, this is likely an issue of operational decisions by the users and does not impact the overall calibration of the basin.

## 6.2.5.3 Baseline Reservoir and Dry Creek Carrier

Baseline Reservoir is located on Dry Creek, a tributary to Boulder Creek, and serves a variety of uses and users. Per CA12111, Baseline Reservoir can store water from Boulder Creek (via Anderson Ditch), Bear Creek (via Anderson Ext. Ditch), South Boulder Creek (via Dry Creek Carrier), and Dry Creek (on-channel). Dry Creek has very little native streamflow; a large majority of the supply for the Dry Creek irrigation structures are carried through the Dry Creek Carrier (0600902 C). Historical diversion records for Baseline Reservoir and Dry Creek Carrier are limited in HydroBase and initial calibration of the reservoir and Dry Creek were poor. Through discussions with the Water Commissioner, an approach was developed to fill diversions to storage and carried diversions at the Dry Creek Carrier, which include direct supply for the City of Lafayette. In general, HydroBase diversions to storage were used at the Anderson Ditch and Ext. structures. The remainder of the diversions to storage plus the total diversions to the Dry Creek ditches and Lafayette's diversions were used to fill the historical diversions at the Dry Creek Carrier. Note that releases from Baseline Reservoir to Dry Creek irrigation demands were excluded from the carried water. This effort greatly improved the baseflows surrounding this structure, however they may have over-estimated the baseflow on South Boulder Creek, where the Dry Creek Carrier is located, if native flows or diversions from Anderson Ditch and Ext. are greater than represented.

Operations of the reservoir have changed over time, as the reservoir was purchased by Boulder and Lafayette around 1990. Boulder continues to lease some of their shares back to Lower Boulder Ditch irrigators. Several operating rules are used to simulate the municipal uses currently decreed for the reservoir; however the historical irrigation uses were not being simulated. Additional "pre-1990" operating rules to release for irrigation prior to the reservoir's purchase to simulate those operations were added. This reduced the shortages simulated for the Dry Creek irrigators historically and improved the overall calibration.

Note also that the generation of natural flows and representation of Dry Creek Carrier operations also impacts the water availability to the Valmont Power Plant and Reservoir System. Additional calibration of natural flows that results in greater water availability on this tributary may result in better correlation of reservoir levels at Valmont Reservoir System.

## 6.2.5.4 City of Boulder

The City of Boulder takes delivery of its in-basin supplies through two primary pipelines; Boulder Pipeline No. 3 (0600943) located below Barker Reservoir on Middle Boulder Creek and City of Boulder Pipeline (0600599) below the combined Watershed Reservoirs on North Boulder Creek. The operations for these pipelines are managed by Boulder based on several variables, including available storage, projected demands, and streamflow conditions. These operational decisions cannot be completely modeled, however priorities of operating rules were adjusted to best calibrate the diversions at each of the pipelines. As shown in and Figure 6-62 and Figure 6-63 below, the City of Boulder Pipeline diversions are over-simulating compared to historical, and the Boulder Pipeline No. 3 is in turn under-simulating. Although partially caused by operational decisions, this issue is likely a result of estimated natural flow distribution on North and Middle Boulder Creeks and instream flow operations. There are no long term gages on North Boulder Creek; baseflow was calibrated based on limited streamflow gage records from years prior to the construction of the Watershed Reservoirs. Hydropower and minimum bypass operations associated with Barker Reservoir are represented by instream flow demands, however they likely do not capture the complete operations. Note that although the calibration of these pipelines could be improved; the calibration of streamflow below the pipelines at the Boulder Creek near Orodell gage is very good.



Figure 6-60: City of Boulder Pipeline Calibration



Figure 6-61: Boulder Pipeline No. 3 Calibration

# 6.2.5.5 Changed Water Rights and Irrigation Shortages

Municipalities have changed shares in nearly three-quarters of the ditches in the Boulder Creek Basin, and many of those changed water rights are not leased back to the irrigation demands if not used by the municipalities. The South Platte Model represents current operations; therefore, the changed water rights are simulated over the entire model period. In some instances, the minimal shortages experienced by the irrigation demand are caused by the operation of the changed water rights before they historically occurred. As discussed throughout the document, these operational decisions cannot be completely modeled. Therefore, no additional calibration is recommended to mitigate the minimal shortages experienced by the irrigators in Boulder Creek.

# 6.2.6 Water District 7 (Clear Creek) Calibration

The Clear Creek Basin operations are dominated by municipal and industrial operations, including the "Standley Lake Cities" (Thornton, Westminster, and Northglenn), Coors Brewing Company, City of Golden, PSCo Cherokee Power Plant, and imported supplies. The basin has seen many Water Court cases and model representation associated with these operations is complex, requiring several structures and operating rules to accurately reflect the operations in both baseflows and simulation datasets.

The municipal demands are well calibrated, reflecting no shortages over the calibration period. Additionally the streamflow calibration at the Golden and Derby gages is good, however the irrigation demands in the basin are experiencing significant shortages and many of the reservoirs are not staying as full as historical conditions. Note that almost all the ditches in the Clear Creek Basin are represented as carriers with multiple demands. Significant calibration efforts were made to improve the simulated diversions at each of these ditches. Their overall calibration is impacted by their demand-driven operations, considerable changes to irrigated acreage over time, and flexibility the municipal users have with their changed water rights in each of their ditches. In general, the reservoirs in the basin calibrated well considering the complexity of the operations. Specific calibration issues and recommendations are discussed in more detail below for many of the basin operations.

The following table presents the number of each structure type in the sub-basin:

|             | Diversions | Reservoirs | Well Only | Plans |
|-------------|------------|------------|-----------|-------|
| Clear Creek | 71         | 12         | 2         | 171   |

The following tables present the average annual surface and ground water demand (af), the percent of demand that was met, and the associated M&I and irrigation consumptive use over the 1993 to 2012 period. See Table 7-6 for more information on the demand and consumptive use for specific structures. The Clear Creek sub-basin receives approximately 2,000 af of imported supplies on average annually.

|             | SW Demand | GW Demand | Total Demand | Percent<br>Demand Met |
|-------------|-----------|-----------|--------------|-----------------------|
|             |           |           |              |                       |
| Clear Creek | 97,500    | 3,000     | 100,500      | 93%                   |

|             | Irrigation      | M&I             | Total           |
|-------------|-----------------|-----------------|-----------------|
|             | Consumptive Use | Consumptive Use | Consumptive Use |
|             | (AF)            | (AF)            | (AF)            |
| Clear Creek | 18,600          | 18,900          | 37,500          |



### USGS Gage 06719505 - Clear Creek at Golden Gaged and Simulated Flows (1993-2012)

USGS Gage 06719505 - Clear Creek at Golden Gaged and Simulated Flows (1993-2012)



Figure 6-62: Clear Creek at Golden



### USGS Gage 06720000 - Clear Creek at Derby Gaged and Simulated Flows (1993-2012)

USGS Gage 06720000 - Clear Creek at Derby Gaged and Simulated Flows (1993-2012)



Figure 6-63: Clear Creek at Derby



0703324 - Ralston Reservoir Gaged and Simulated EOM Contents (1993-2012)

Figure 6-65: Coors North Lakes



0703010 - Coors South Lakes Gaged and Simulated EOM Contents (1993-2012)

Figure 6-67: Arvada Reservoir

## 6.2.6.1 Carrier Structures (Farmers Highline Example)

A majority of the Clear Creek ditches carry for irrigation and return changed water rights at augmentation stations. Additionally, some structures also carry to storage. These multiple demands can be difficult to calibrate, particularly as the model represents current operations over the entire model period. Farmers Highline Canal serves as a good example of these operations; Figure 6-70 and Figure 6-71 reflect the calibration of the Farmers Highline Canal total diversions and the portion of the diversions used to meet irrigation demands. The ditch carries storage diversions to Standley Lake, serves irrigation demands, and has several changed water rights operations. As indicated in the Calibration Structure Summary (Section 7.6), the irrigation demands (0700569\_I) are shorted. As shown in the graphs, the shortage is not caused by significant under-simulation of diversions at the headgate. The irrigation demand can only be supplied by the remaining un-changed shares on the ditch or excess diversions not used to meet municipal demand, and in certain months the supply is not sufficient.



Figure 6-68: Farmers Highline Canal Calibration



Figure 6-69: Farmers Highline Canal Irrigation Calibration

This example is a reflection of the level of calibration of the ditches in the Clear Creek Basin. The ditches may benefit from refining the split of diversions to irrigation, changed water rights, and storage, which would likely decrease the shortages experienced by the irrigation demand.

# 6.2.6.2 Irrigation Efficiencies

As discussed in Section 4.5.2.1, there are irrigation structures in the Clear Creek Basin that did not have representative irrigated acreae assigned in the CDSS acreage assessments. This issue was identified during initial calibration when the monthly efficiencies were reviewed. The acreage-based irrigation demand was small compared to the irrigation diversions, resulting in monthly system efficiencies between 5 and 15 percent. Those efficiencies are outside the range generally experienced by irrigation structures, therefore higher efficiencies were set and acreage-based demands were not used. This approach resulted in fewer return flows and improved the Clear Creek streamflow calibration.

# 6.2.6.3 Streamflow Calibration and the COSMIC Operations

In general, the streamflow calibration at the Derby gage is relatively good, however there are several months when the calibration is poor. This calibration issue was traced to the representation of the COSMIC agreement, which involves operations to release West Gravel Lake storage from specific accounts during the Croke season. These operations are essentially used to make reservoir capacity available to store the Golden and Coors bypassed flows, and are further complicated by the 4-Way Agreement and storage operations in Standley Reservoir. Actual operations of West Gravel Lakes include bookovers in lieu of these releases; however the modeled approach was taken due to the necessity of "coloring" specific water associated with the COSMIC operations. Significant effort has been spent on calibrating the COSMIC operations and additional calibration is not recommended at this time. Any future enhancements to bookover operations in StateMod should be reviewed for their application to the COSMIC operations.

# 6.2.6.4 Model Representation

As mentioned above, the complex operations in the Clear Creek Basin require an equally complex model representation. The South Platte Model was developed using the most recent StateMod version available, however "work arounds" were required to model the many operations. For example, the changed water right operations in StateMod are designed to divert the full consumptive use amount off of the river and replace the return flow obligations from a separate supply. For municipalities that do not have separate supplies to offset the obligations, they divert only the consumptive use portion. This operation in StateMod requires separate plan and diversion structures to model it accurately. Future enhancements to StateMod that may simplify these operations should be considered during future revisions to the South Platte Model.

# 6.2.7 Water Districts 1 and 64 (Lower South Platte River) Calibration

The Lower South Platte River Basin operations are dominated by irrigation use, off-channel reservoirs, augmentation plans and recharge, and the South Platte Compact. In general, the calibration of the irrigation structures and reservoirs is considered good, however the model is over-simulating streamflow into Water Districts 1 and 64. As shown in the graphs below, the over-simulation of streamflow at the Kersey gage is carried through the system down to the Julesburg gage. Specific calibration issues and recommendations are discussed in more detail below. model refinements that help mitigate streamflow calibration issues upstream will benefit the Lower South Platte calibration.

The following table presents the number of each structure type in the sub-basin:

|                       | Diversions | Reservoirs | Well Only | Plans |
|-----------------------|------------|------------|-----------|-------|
| Lower South<br>Platte | 58         | 46         | 83        | 111   |

The following tables present the average annual surface and ground water demand (af), the percent of demand that was met, and the associated M&I and irrigation consumptive use over the 1993 to 2012 period. See Table 7-6 for more information on the demand and consumptive use for specific structures.

|                       | SW              | GW Demand | Total Demar | nd Percent      |
|-----------------------|-----------------|-----------|-------------|-----------------|
|                       | Demand(AF)      | (AF)      | (AF)        | Demand Met      |
| Lower South<br>Platte | 636,000         | 410,000   | 1,046,000   | 100%            |
|                       |                 |           |             |                 |
|                       | Irrigation      | Μ         | &I          | Total           |
|                       | Consumptive Use | e Consum  | otive Use   | Consumptive Use |
|                       | (AF)            | (A        | νF)         | (AF)            |
| Lower South<br>Platte | 535,000         | 21,       | 000         | 556,000         |



### USGS Gage 06754000 - South Platte River near Kersey Gaged and Available Flows (1993-2012)

USGS Gage 06754000 - South Platte River near Kersey Gaged and Available Flows (1993-2012)



Figure 6-70: South Platte River near Kersey



### USGS Gage 06758500 - South Platte River near Weldona Gaged and Simulated Flows (1993-2012)

USGS Gage 06758500 - South Platte River near Weldona Gaged and Simulated Flows (1993-2012)






#### USGS Gage 06759910 - South Platte River at Balzac Gaged and Simulated Flows (1993-2012)

USGS Gage 06759910 - South Platte River at Balzac Gaged and Simulated Flows (1993-2012)



Figure 6-72: South Platte River at Balzac



#### USGS Gage 06764000- South Platte River at Julesburg Gaged and Simulated Flows (1993-2012)

USGS Gage 06764000- South Platte River at Julesburg Gaged and Simulated Flows (1993-2012)









Figure 6-74: Jackson Lake Reservoir

0103816 - Empire Reservoir Gaged and Simulated EOM Contents (1993-2012)



Figure 6-75: Empire Reservoir



0103570 - Bijou Reservoir No. 2 Gaged and Simulated EOM Contents (1993-2012)

Figure 6-76: Bijou Reservoir No. 2

80,000

0103651 - Riverside Reservoir Gaged and Simulated EOM Contents (1993-2012)



Figure 6-77: Riverside Reservoir



6403552 - Prewitt Reservoir Gaged and Simulated EOM Contents (1993-2012)

Figure 6-78: Prewitt Reservoir



6403551 - North Sterling Reservoir Gaged and Simulated EOM Contents (1993-2012)

Figure 6-79: North Sterling Reservoir



Figure 6-80: Julesburg Reservoir

#### 6.2.7.1 Irrigation Use

There are over 300,000 irrigated acres in Water Districts 1 and 64; therefore irrigation operations were the focus of calibration. The Lower South Platte calibration is considered good, as the major reservoirs are simulating close to their historical contents and irrigation demands are generally met over the entire study period. Calibration issues that were encountered include:

• *Diversions to Multiple Demands.* Many of the structures in the Lower South Platte carry diversions to multiple demands, including irrigation, reservoir storage, and recharge. The diversions are simulated by the model based on the individual water rights decreed for each use according to strict priority, limited by the diversion structure capacity and the demands. The amount of storage water released from off-channel reservoirs to irrigation is not generally measured, therefore the model may over or under predict reservoir storage and releases. As shown in Figure 6-83 below, the result is poorer calibration of the total diversions on a monthly basis; even though irrigation demand is satisfied and calibration of off-channel reservoir contents is good. Additional constraints, including volumetric/seasonality limitations or variable recharge demands, could be added to the operating rules to better calibrate these diversions, however it would reduce the flexibility of these rules during future scenarios.





- *Reservoir Seepage*. SPDSS Task 5 interviews with reservoir operators indicated that Prewitt Reservoir, Bijou No. 2 Reservoir, Riverside Reservoir, Empire Reservoir and Jackson Reservoir incur significant seepage. Reservoir operators provided estimated seepage losses in either percent of volume or rate per day; these estimates were translated to seepage based on reservoir volume for use in StateMod during initial model development. Initial model results using this approach indicated the seepage estimates were greater than what has occurred historically. Therefore, during calibration, the reservoir seepage volumes were reduced in order to more closely calibrate diversions to storage and reservoir contents. In particular, seepage in Bijou No. 2 Reservoir, which is used as a supply for the Bijou Augmentation Plan, required significant calibration. An overestimate of seepage resulted in an overestimate of diversions; an underestimate of seepage resulted in an overestimate of a level that best reflected historical diversions at Bijou Canal and end-of-month contents at the reservoir, however there is still an over-simulation of total diversions at Bijou Canal.
- Alternate Point to Well Operations. There are diversion structures in the Lower South Platte that historically diverted surface water for irrigation, however the diversion structure no longer exists and wells have been decreed as alternate points of diversions for these water rights. Initial model development included a placeholder for a specific operating rule that would simulate the alternate point to well operations, however full implementation of this rule was not completed. Therefore the surface water rights were assigned to the wells for these alternate points so they could pump under the more senior right. While this accurately reflects how these alternate point wells are

administered, future enhancement of StateMod code to handle these operations using specific operating rules is recommended.

- *Ground Water Pumping*. Pumping is estimated by StateCU based on crop irrigation water requirement for lands with either supplemental or ground water only supplies. As pumping records become available in HydroBase, estimated and metered pumping should be compared to determine if calibration of pumping estimates is necessary.
- Intermittent Tributgries. There are several creeks in the Lower South Platte that flow intermittently during large precipitation events or from irrigation return flows. These creeks generally have very limited or no streamflow records that could be used to verify the natural flow estimation. Creeks on the north side of the river, including Cedar, Pawnee, Crow, Cottonwood, Wildcat, Sand, and Lodgepole Creeks, are dry for much of the year and serve as the supply for a limited amount of irrigated acreage. Although these tributaries are included in the model, along with their respective surface water diversions and irrigated acreage, natural flow estimates were not developed for these tributaries and the irrigation demands can only be met by local return flows; therefore are shorted due to this lack of natural supply. Creeks on the south side of the river, including Lost, Kiowa, Bijou, and Camp Creeks, are within Designated Basins and, therefore, are modeled as hydrologically disconnected from the mainstem South Platte River. The acreage in these basins are primarily irrigated by ground water only, however there is a limited amount of acreage served by surface water. Similar to the north side creeks, natural flow was not developed for these tributaries and irrigation demands from surface water in these basins were shorted in the model. If streamflow records become available in the future, or the model is used to review operations on creeks specifically, then it is recommended natural flow estimates be developed for these creeks.

#### 6.2.7.2 Augmentation Plans and Recharge Operations

Augmentation plan operations were specifically added to the StateMod code to support the development of the South Platte Model. The new functionality built on existing canal and reservoir seepage operations, allowing these depletions and accretions to be tracked using two specific plan types; augmentation plans and special augmentation plans. The largest 25 augmentation plans in the basin were modeled explicitly; depletions associated with the remainder of the augmentation plans are tracked in aggregate augmentation plans, however no supplies are included to offset these depletions.

The augmentation plans in the Lower South Platte model generally divert junior water rights to numerous recharge areas, and receive augmentation "credit" for in-ditch and recharge area seepage as it accrues to the river. Analysis of available historical diversion records indicate there is significant variability in the quantity of recharge actually diverted when in priority, and in the recharge areas under each ditch where the water is stored. This variability presented issues when calibrating the augmentation plan operations. During original model development, the full recharge water right was diverted when in-priority to an aggregate recharge area. As the

seepage factor was set to empty the recharge area within the month, the recharge area always had an unmet demand (i.e. end-of-month target) and the model would continue to divert throughout the monthly time-step to meet this demand. This resulted in significant over-simulation of diversions to recharge that did not mimic historical operations. Therefore, the diversions to recharge were limited in order to better represent current operations. Historical records of diversions to recharge are not available over a long period in HydroBase; therefore the monthly averages from 2010 to 2012 were used for the entire model period. These calibration limits should be reviewed and/or revised before developing future scenarios.

In general, the approach discussed above provides sufficient accretions to meet the augmentation plan depletions. Note, however, the model does not "look forward" to curtail pumping if augmentation plan supplies are not sufficient to meet lagged depletions. Review of the plan summary output (\*.xpl) does indicate shortages occur in some months in recent years, however they are not frequent or of significant magnitude. Periods when the recharge supplies are in excess of augmentation plan depletions are far more frequent, which is expected because diversions to recharge occur without future knowledge of streamflow conditions. Future refinement of the augmentation plan operations is recommended, potentially through review of augmentation plan accounting and additional calibration of Lower South Platte operations.

## 6.3 Future Enhancements

This section discusses the recommended future enhancements to the South Platte Model that should be considered during the next extension and/or revision to the model. Some of the enhancements listed below reflect StateMod code enhancements; the model should be revised to reflect the new functionality once implemented in the code. Note that there are some operational or structure-specific recommendations discussed in the Operating Rights File (Section 5.10) and Calibration Results (Section 6.2) that may not be fully captured in this section. They should however be reviewed and potentially addressed during the next model extension or revision if the specific structures or operations are impacted.

- *Cache la Poudre River Basin*. The Cache la Poudre Basin was excluded from the initial modeling effort due to the ongoing planning and permitted efforts in the basin. As the planning and permitting projects are finalized, this basin should be fully modeled during future model revisions
- Irrigated Acreage Assessments in Municipal Areas. It was identified during model
  calibration that the irrigation water requirement for some structures in Water Districts 7
  and 8 was not representative of the diversions to irrigation. The irrigation water
  requirement is based on irrigated acreage assigned in the CDSS irrigated acreage
  coverages. These coverages generally exclude irrigated acreage within municipal
  boundaries, including parks and cemeteries. Water in these Districts irrigate acreage
  within municipal boundaries, it is likely that a portion of the acreage served by these
  ditches has not been identified in the acreage coverages, resulting in low ditch demand
  estimates. This issue was discussed with DWR staff during model calibration efforts; it is

recommended this issue continue to be investigated as new CDSS acreage assessments are developed.

- Create consistency between sub-basins. Individual sub-basin models were developed independently by separate contractors and there are inconsistencies in the detail of modeled operations and the level of calibration achieved. Examples of these inconsistencies include varying approaches on developing return flow patterns; representation of changed water rights and return flow obligations; representation of diversions to recharge and augmentation for baseflows; and use of beginning/ending years for specific operations. It is recommended that during future updates, approaches be reviewed and a consistent approach adopted and implemented throughout the model.
- *Refinement of uses of imported supplies*. As discussed throughout the Calibration section, the operation of imports impacted calibration in every basin that received supplies. These issues stemmed from both operational decisions made by users regarding their imported supplies as well as the ease in which some imports can be transferred or leased among users. Although it is unlikely the model will achieve perfect calibration with these supplies, there are additional refinement efforts that can be taken to improve the use of these supplies. Review of the current model representation and results by major transmountain importers (e.g. Northern Water, Denver Water Board, and Aurora) is recommended in order to further refine the operations.
- *Recharge operation refinement*. The approach to recharge operations was adjusted during the South Platte Model development in order to limit the amount of recharge that was diverted to the aggregate recharge areas. The volumetric limits were based on recent diversion to recharge records available in HydroBase. Additional refinement of these limits could be made to better represent a longer term average of diversions, or StateMod enhancements could be made to provide an alternative method for limiting recharge diversions.
- Inclusion of Prairie Waters Project. Aurora Water's reuse project, Prairie Waters Project, was not included in the South Platte River basin model because it became fully operational after the 1950 2012 study period. This project is critical to both Aurora's municipal operations as well as the representation and administration of the South Platte River in the model and should be included in the next iteration of the model.
- Lower St. Vrain Creek and Big Dry Creek baseflow gains and losses. As discussed in the Calibration section, the baseflows at the St. Vrain Creek near Platteville (06731000) and the Big Dry Creek at Westminster (06720820) were problematic, resulting in significant negative baseflows during the winter months. Additional calibration efforts are recommended to mitigate remaining baseflow issues at these locations.
- Integration with the SPDSS Ground Water Model. The SPDSS consumptive use, surface water, and ground water models are integrated through the transfer of consumptive use,

pumping, and return flow/recharge information. As the different modeling efforts have occurred in phases, there are integration components that have not been update and should be outlined and integrated during future ground water and/or surface water model revisions. These include but are not limited to:

- Return flow patterns and locations currently in the surface water model were developed for each sub-basin using varying approaches. The ground water model should be used to develop return flow patterns and locations (i.e. unit response functions) for integration into the surface water model.
- Revised irrigation return flow recharge, canal seepage, and co-mingled pumping information based on revised diversions reflected in the surface water model. In general, the total diversions were not adjusted, rather the portion of diversions to irrigation were revised to better reflect diversions to recharge and storage. These revisions impact the irrigation return flows, particularly during shoulder months of the irrigation season when these diversions are more frequent.
- Update StateCU Documentation. The SPDSS historical consumptive use analysis was revised during the surface water model development for irrigation structures. Revisions since the last documented dataset (SP2008) include extension from 2006 to 2012; inclusion of the 1997 and 2010 acreage coverages; refined ground water supply information; and refined diversion to irrigation estimates. Scope and budget was not allocated to develop the documentation for the revised dataset. It is recommended documentation be developed for this dataset and included on the CDSS website.
- *StateMod Code and DMI Tool Enhancements.* The StateMod, StateDMI, and TSTool codes were significantly enhanced during the development of the South Platte Model. There are additional recommended enhancements that were not addressed at the time because modelers developed options to "work-around" the code limitations or because of budget limitations. The enhancements that would be most applicable and valuable to the South Platte Model include:
  - Changed water rights operations that allow for only the consumptive use portion to be put into a plan structure. Currently the full changed water right amount is put into a plan and return flow obligations are supplied by other sources. This enhancement would simplify operations in Water District 2 and 7.
  - Water balance reporting to correctly account for water released from plans using a Type 27 rule. An issue with the water balance summary report (\*.xwb) was identified during the Colorado River StateMod Model update and also affects the South Platte Model. This is only a reporting issue and does not impact the internal water balance.
  - Operating rules that allow tracking of reusable supplies associated with imported supplies. Additional plan structures were used in the South Platte Model to

accomplish these operations; however implementation of this functionality would simplify import operations.

- Operating rules that allow the release of changed water rights to meet augmentation requirements. Additional recharge areas were used in the South Platte Model to accomplish these operations; however implementation of this functionality would simplify augmentation operations in Water Districts 1, 2, and 64.
- Correctly handle monthly import values equal to zero; they are currently reset in StateMod with an errant value. Zero values were reset to 1 af to allow simulation. Correction of this issue is recommended to avoid confusion associated with the revised values.
- Enhance the functionality of the recharge and augmentation well operating rules (Type 37 and 44) to allow volumetric limits.
- Complete the implementation of ground water only aggregate processing in StateDMI. Due to the problematic nature of processing ground water only aggregates based on irrigated parcels, a revised approach was developed to use well IDs to process the aggregates. The approach was implemented for the development of the well files (\*.wes and \*wer), but has not been completed for the acreage files (\*.cds and \*ipy) files. This implementation should be completed prior to the revision or extension of the SPDSS StateMod or StateCU models.
- Implement a data-centered approach to developing the plan to well data file (\*plw) in StateDMI. The process for developing this file, which associates well rights to augmentation plans based on information from HydroBase, currently requires external database/spreadsheet processing as documented in Section 7.8.
- *Daily Model*. A daily Model is typically developed to be able to simulate large and small flow events that occur within a monthly time step; investigate demands that vary within a monthly time step; or simulate demands served by junior water rights that may only be in-priority for a portion of the month. Ultimately a daily model will need to be developed for the South Platte River Basin in order to maximize its applicability for future planning efforts in the basin.

## 6.4 Future Scenarios

The South Platte Model is one representation of the historical operations in the basin. Users may choose to take the model and revise the operations or model representation to reflect specific operations or add detail to a specific tributary. For example, a municipal user may add detail to account for specific "color" of water associated with their operations, or alter the order of

operations associated with their supplies. This would result in a modified historical dataset specific to their modeling needs.

Other uses may choose to develop "what-if" scenarios, in which a future operation is added to the model and the simulated results are compared to the original dataset results to determine the impact of the future operation. In these scenarios, generally only one modeling parameter is changed/revised during each simulation to isolate the impact of that specific operation. Some potential "what-if" scenarios include:

- *Revision to C-BT distribution*. The model can be revised to reflect different distribution of C-BT supplies to each sub-basin and/or water user. For example, one scenario may be to model C-BT deliveries based on current share ownership, as opposed to the historical distribution included in the model that reflects change in share ownership over time.
- *Revision to ground water supplies.* The ground water demands can be revised to reflect different scenarios. For example, a scenario may be to reflect current quotas/limitations on ground water pumping demands over the whole period.
- Order of Operations. The operating rules can be revised to reflect a different order of operations to meet municipal supplies. For example, a scenario may reflect the impact of taking a reservoir or water treatment plant out of operation for maintenance issues or dam restrictions. Alternatively, a model scenario can include new supplies and future demands to assist in water supply planning efforts to meet build-out demands.

# 7. Appendices

| 7.1 Direct Diversion Station File Summary                     | 7-2   |
|---------------------------------------------------------------|-------|
| 7.2 Diversion Systems                                         | 7-26  |
| 7.3 Aggregated Irrigation Structures                          | 7-33  |
| 7.4 Plan Structures                                           | 7-39  |
| 7.5 Aggregate Well Structures                                 | 7-59  |
| 7.6 Calibration Structure Summary                             | 7-69  |
| 7.7 SPDSS Task Memorandum Links                               | 7-88  |
| 7.8 Representation of Central WAS and GMS Quotas              | 7-105 |
| 7.9 Development of Augmentation Plan to Well Data File (*plw) | 7-134 |
| 7.10 Workshop Materials                                       | 7-140 |

## 7.1 Direct Diversion Station File Summary

The table below summarizes the structures in the diversion station file (\*.dds); see Section 5.4.1. for discussion regarding this summary table.

| #  | Model ID  | Name                    | Capacity<br>(cfs) | 2010<br>Irrigated<br>Acreage | Avg.<br>System<br>Efficiency<br>(%) | Avg. Annual<br>Demand<br>(AF) | Structure Type<br>(See Footnotes) |
|----|-----------|-------------------------|-------------------|------------------------------|-------------------------------------|-------------------------------|-----------------------------------|
| 1  | 0100501   | Empire Canal            | 450               | 0                            | 0                                   | 0                             | Carrier                           |
| 2  | 0100503_D | Riverside Div System    | 600               | 0                            | 0                                   | 0                             | DivSys, Carrier                   |
| 3  | 0100503_I | Riverside Irrigation    | 456               | 27,943                       | 40                                  | 87,383                        | Irr                               |
| 4  | 0100507_D | Bijou Div System        | 380               | 0                            | 0                                   | 0                             | DivSys, Carrier                   |
| 5  | 0100507_I | Bijou Irrigation        | 506               | 27,877                       | 48                                  | 81,800                        | lrr                               |
| 6  | 0100511   | WELDON VALLEY DITCH     | 168               | 7,844                        | 34                                  | 42,583                        | Irr                               |
| 7  | 0100513   | Jackson Lake Inlet      | 350               | 0                            | 0                                   | 0                             | Carrier                           |
| 8  | 0100514   | Ft Morgan Canal         | 320               | 10,318                       | 31                                  | 58,357                        | lrr                               |
| 9  | 0100515   | UPPER PLATTE BEAVER CNL | 183               | 10,134                       | 48                                  | 32,789                        | Irr                               |
| 10 | 0100517   | DEUEL SNYDER CANAL      | 35                | 1,439                        | 43                                  | 6,784                         | Irr                               |
| 11 | 0100518   | LOWER PLATTE BEAVER D   | 173               | 12,362                       | 51                                  | 27,464                        | lrr                               |
| 12 | 0100519_D | Tremont Div System      | 83                | 3,847                        | 47                                  | 8,874                         | lrr,DivSys                        |
| 13 | 0100520   | GILL STEVENS DITCH      | 1                 | 559                          | 61                                  | 0                             | Irr                               |
| 14 | 0100524   | TROWELL DITCH           | 90                | 514                          | 63                                  | 0                             | Irr                               |
| 15 | 0100525   | TETSEL DITCH            | 30                | 1,127                        | 40                                  | 5,972                         | Irr                               |
| 16 | 0100526   | JOHNSON EDWARDS DITCH   | 34                | 2,175                        | 51                                  | 2,866                         | Irr                               |
| 17 | 0100565   | MAGUIRE DITCH           | 4                 | 88                           | 45                                  | 142                           | Irr                               |
| 18 | 0100570   | EAST GULCH DITCH        | 7                 | 174                          | 48                                  | 0                             | Irr                               |

| Table 7-1: Direct | t Diversion Statio | n Summary | (Average | 1993 - 2012) |
|-------------------|--------------------|-----------|----------|--------------|
|-------------------|--------------------|-----------|----------|--------------|

| #  | Model ID  | Name                     | Capacity<br>(cfs) | 2010<br>Irrigated<br>Acreage | Avg.<br>System<br>Efficiency<br>(%) | Avg. Annual<br>Demand<br>(AF) | Structure Type<br>(See Footnotes) |
|----|-----------|--------------------------|-------------------|------------------------------|-------------------------------------|-------------------------------|-----------------------------------|
| 19 | 0100620   | CONSOLIDATED LARSON D    | 4                 | 284                          | 53                                  | 67                            | lrr                               |
| 20 | 0100687   | N Sterling Div System    | 600               | 0                            | 0                                   | 0                             | Carrier                           |
| 21 | 0100687_I | N Sterling Irrigation    | 800               | 39,009                       | 45                                  | 89,062                        | Irr                               |
| 22 | 0100688   | UNION DITCH              | 36                | 1,105                        | 42                                  | 3,113                         | Irr                               |
| 23 | 0100829   | Prewitt Res Inlet        | 450               | 0                            | 0                                   | 0                             | Carrier                           |
| 24 | 0103576   | BRAMKAMP RES             | 1                 | 0                            | 64                                  | 0                             | lrr                               |
| 25 | 0103817_I | Jackson Irrigation       | 500               | 342                          | 44                                  | 293                           | lrr                               |
| 26 | 01_ADP037 | South Platte River below | 1                 | 806                          | 63                                  | 0                             | Irr,Agg                           |
| 27 | 0200800   | Farmers Gardeners Ditch  | 11                | 0                            | 36                                  | 275                           | Carrier                           |
| 28 | 0200802   | Burlington Canal         | 614               | 0                            | 0                                   | 0                             | Carrier                           |
| 29 | 0200805   | Denver Hudson Canal      | 357               | 0                            | 0                                   | 0                             | Carrier                           |
| 30 | 0200805_I | Henrylyn Irrigators      | 999               | 25,909                       | 62                                  | 26,135                        | lrr                               |
| 31 | 0200806   | Gardeners Ditch          | 11                | 0                            | 36                                  | 0                             | lrr                               |
| 32 | 0200808   | Fulton Ditch             | 162               | 0                            | 0                                   | 0                             | Carrier                           |
| 33 | 0200808_A | Fulton Aug Stn           | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 34 | 0200808_1 | Fulton Irrig Div         | 999               | 6,736                        | 49                                  | 28,147                        | lrr                               |
| 35 | 0200809   | BRANTNER DITCH           | 86                | 3,850                        | 45                                  | 19,816                        | lrr                               |
| 36 | 0200810   | Brighton Ditch           | 50                | 0                            | 0                                   | 0                             | Carrier                           |
| 37 | 0200810_A | Brighton Aug Stn         | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 38 | 0200810_I | Brighton Irrig Div       | 999               | 1,592                        | 41                                  | 9,008                         | lrr                               |
| 39 | 0200812   | Lupton Bottom Ditch      | 111               | 0                            | 0                                   | 0                             | Carrier                           |
| 40 | 0200812_A | Lupt Btm Aug Stn         | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 41 | 0200812_I | Lupton Bottom Irrig Div  | 999               | 3,172                        | 38                                  | 16,375                        | Irr                               |
| 42 | 0200813   | Platteville Ditch        | 120               | 0                            | 0                                   | 0                             | Carrier                           |

| #  | Model ID  | Name                    | Capacity<br>(cfs) | 2010<br>Irrigated<br>Acreage | Avg.<br>System<br>Efficiency<br>(%) | Avg. Annual<br>Demand<br>(AF) | Structure Type<br>(See Footnotes) |
|----|-----------|-------------------------|-------------------|------------------------------|-------------------------------------|-------------------------------|-----------------------------------|
| 43 | 0200813_A | Platteville Aug Stn     | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 44 | 0200813_I | Platteville Irrig Div   | 999               | 3,586                        | 38                                  | 21,705                        | lrr                               |
| 45 | 0200817   | Evans No 2 Ditch        | 264               | 0                            | 0                                   | 0                             | Carrier                           |
| 46 | 0200817_I | Evans No 2 Irrigators   | 999               | 13,568                       | 66                                  | 24,263                        | Irr                               |
| 47 | 0200821   | MEADOW ISLAND 1 DITCH   | 52                | 1,151                        | 32                                  | 6,905                         | Irr,Carrier                       |
| 48 | 0200821_A | Mdw Isl 1 Aug Stn       | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 49 | 0200822   | MEADOW ISLAND DITCH     | 59                | 2,422                        | 50                                  | 11,114                        | lrr                               |
| 50 | 0200822_A | Mdw Isl 2 Aug Stn       | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 51 | 0200824   | Farmers Indep Ditch     | 115               | 0                            | 0                                   | 0                             | Carrier                           |
| 52 | 0200824_A | Farm Ind Aug Stn        | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 53 | 0200824_I | Farmers Indep Irrig Div | 999               | 4,709                        | 47                                  | 16,355                        | Irr                               |
| 54 | 0200825   | Hewes Cook Ditch        | 118               | 0                            | 0                                   | 0                             | Carrier                           |
| 55 | 0200825_A | Hewes Cook Aug Stn      | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 56 | 0200825_1 | Hewes Cook Irrig Div    | 999               | 5,879                        | 54                                  | 19,860                        | lrr                               |
| 57 | 0200826   | JAY THOMAS DITCH        | 18                | 207                          | 26                                  | 1,025                         | lrr                               |
| 58 | 0200828   | Union Ditch             | 159               | 0                            | 0                                   | 0                             | Carrier                           |
| 59 | 0200828_I | Union Ditch Irrigators  | 999               | 4,578                        | 38                                  | 23,472                        | lrr                               |
| 60 | 0200830   | SECTION NO 3 DITCH      | 58                | 1,184                        | 33                                  | 8,613                         | Irr,Carrier                       |
| 61 | 0200830_A | Sec No 3 Aug Stn        | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 62 | 0200834   | Lower Latham Ditch      | 251               | 0                            | 0                                   | 0                             | Carrier                           |
| 63 | 0200834_1 | Lower Latham Irrigators | 999               | 9,470                        | 49                                  | 35,613                        | lrr                               |
| 64 | 0200836   | PATTERSON DITCH         | 28                | 660                          | 30                                  | 5,359                         | Irr                               |
| 65 | 0200837   | Highland Ditch          | 25                | 0                            | 0                                   | 0                             | Carrier                           |
| 66 | 0200837_A | Highland Aug Stn        | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 67 | 0200837_1 | Highland Irrig Div      | 999               | 502                          | 34                                  | 3,686                         | Irr                               |

| #  | Model ID    | Name                     | Capacity<br>(cfs) | 2010<br>Irrigated<br>Acreage | Avg.<br>System<br>Efficiency<br>(%) | Avg. Annual<br>Demand<br>(AF) | Structure Type<br>(See Footnotes) |
|----|-------------|--------------------------|-------------------|------------------------------|-------------------------------------|-------------------------------|-----------------------------------|
| 68 | 0200871     | WHIPPLE DITCH            | 137               | 5,447                        | 46                                  | 16,145                        | Irr                               |
| 69 | 0200872     | GERMAN DITCH             | 18                | 647                          | 48                                  | 1,870                         | Irr                               |
| 70 | 0200873     | BIG DRY CREEK DITCH      | 13                | 678                          | 49                                  | 944                           | Irr                               |
| 71 | 0200874     | YOXALL DITCH             | 10                | 321                          | 51                                  | 498                           | Irr                               |
| 72 | 0200915     | Little Burlington        | 150               | 4,408                        | 49                                  | 12,418                        | Irr                               |
| 73 | 0200992     | Westminster Standley PL2 | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 74 | 0200993     | Northglenn Standley PL   | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 75 | 0200994     | Thornton Standley PL     | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 76 | 0203837_C   | O'Brian Canal            | 319               | 0                            | 0                                   | 0                             | Carrier                           |
| 77 | 0203837_I   | Barr Irrigators          | 999               | 19,795                       | 65                                  | 41,125                        | lrr                               |
| 78 | 0203876_1   | Milton Irrigators        | 999               | 11,350                       | 66                                  | 19,832                        | Irr                               |
| 79 | 02_ADP003   | WD2 Agg SW Divn          | 999               | 373                          | 30                                  | 4,303                         | Irr,Agg                           |
| 80 | 02_ChrkPP   | Cherokee Power Plant     | 17                | 0                            | 75                                  | 9,250                         | M/I                               |
| 81 | 02_Nglenn_I | Northglenn Indoor Dem    | 999               | 0                            | 10                                  | 3,060                         | M/I                               |
| 82 | 02_Nglenn_O | Northglenn Outdoor Dem   | 999               | 0                            | 83                                  | 2,067                         | M/I                               |
| 83 | 02_Thorn_I  | Thornton Indoor Dem      | 999               | 0                            | 10                                  | 11,091                        | M/I                               |
| 84 | 02_Thorn_O  | Thornton Outdoor Dem     | 999               | 0                            | 83                                  | 8,513                         | M/I                               |
| 85 | 02_VRNPP    | Ft St Vrain Power Plant  | 6                 | 0                            | 80                                  | 2,940                         | M/I                               |
| 86 | 02_Westy_I  | Westy Indoor Dem         | 999               | 0                            | 10                                  | 8,887                         | M/I                               |
| 87 | 02_Westy_O  | Westy Outdoor Dem        | 999               | 0                            | 83                                  | 8,605                         | M/I                               |
| 88 | 0400501     | Barnes Ditch             | 735               | 0                            | 0                                   | 0                             | Carrier                           |
| 89 | 0400502     | BIG T PLATTE R DITCH     | 71                | 1,351                        | 36                                  | 10,070                        | Irr                               |
| 90 | 0400503     | BIG THOMPSON DITCH & MAN | 32                | 790                          | 40                                  | 4,329                         | Irr                               |
| 91 | 0400511     | Loveland Pipeline        | 72                | 0                            | 0                                   | 0                             | Carrier                           |
| 92 | 0400517     | EVANSTOWN DITCH          | 32                | 245                          | 26                                  | 8,778                         | Irr                               |

| #   | Model ID  | Name                     | Capacity<br>(cfs) | 2010<br>Irrigated<br>Acreage | Avg.<br>System<br>Efficiency<br>(%) | Avg. Annual<br>Demand<br>(AF) | Structure Type<br>(See Footnotes) |
|-----|-----------|--------------------------|-------------------|------------------------------|-------------------------------------|-------------------------------|-----------------------------------|
| 93  | 0400518_I | Estes Park Indoor Dem    | 999               | 0                            | 10                                  | 1,022                         | M/I                               |
| 94  | 0400518_0 | Estes Park Outdoor Dem   | 999               | 0                            | 83                                  | 568                           | M/I                               |
| 95  | 0400519   | FARMERS IRRIGATION CANAL | 40                | 1,741                        | 48                                  | 5,411                         | lrr                               |
| 96  | 0400520   | George Rist Ditch        | 713               | 0                            | 0                                   | 0                             | Carrier                           |
| 97  | 0400520_I | George Rist Irrigation   | 713               | 291                          | 58                                  | 790                           | lrr                               |
| 98  | 0400521   | Handy Ditch              | 2471              | 0                            | 0                                   | 0                             | Carrier                           |
| 99  | 0400521_I | Handy Irrigation         | 2471              | 8,659                        | 61                                  | 11,113                        | Irr                               |
| 100 | 0400522   | HILL BRUSH DITCH         | 23                | 447                          | 42                                  | 2,038                         | Irr                               |
| 101 | 0400523   | HILLSBOROUGH DITCH       | 109               | 5,897                        | 49                                  | 15,782                        | Irr                               |
| 102 | 0400524   | Home Supply Ditch        | 325               | 0                            | 0                                   | 0                             | Carrier                           |
| 103 | 0400524_I | Home Supply Irrigation   | 325               | 16,013                       | 60                                  | 18,748                        | lrr                               |
| 104 | 0400530   | Louden Ditch             | 940               | 0                            | 0                                   | 0                             | Carrier                           |
| 105 | 0400530_I | Louden Irrigation        | 128               | 2,247                        | 59                                  | 8,568                         | Irr                               |
| 106 | 0400532   | Loveland Greeley Ditch   | 220               | 0                            | 0                                   | 0                             | Carrier                           |
| 107 | 0400532_I | Loveland Greeley Irrigat | 920               | 16,275                       | 63                                  | 31,539                        | lrr                               |
| 108 | 0400534   | MARIANA DITCH            | 3                 | 17                           | 35                                  | 239                           | lrr                               |
| 109 | 0400540   | DILLE TUNNEL             | 365               | 0                            | 0                                   | 0                             | Carrier                           |
| 110 | 0400541   | RIST GOSS DITCH          | 10                | 11                           | 37                                  | 206                           | lrr                               |
| 111 | 0400543   | South Side Ditch         | 196               | 0                            | 0                                   | 0                             | Carrier                           |
| 112 | 0400543_I | South Side Irrigation    | 19                | 1,037                        | 60                                  | 2,159                         | lrr                               |
| 113 | 0400561   | BLACK CANNON DITCH       | 3                 | 91                           | 49                                  | 149                           | lrr                               |
| 114 | 0400574   | BUCKHORN HIGHLINE DITCH  | 6                 | 8                            | 44                                  | 163                           | Irr                               |
| 115 | 0400578   | KIRCHNER DITCH           | 4                 | 25                           | 49                                  | 197                           | Irr                               |
| 116 | 0400580   | PERKINS DITCH            | 8                 | 156                          | 54                                  | 171                           | Irr                               |
| 117 | 0400582   | UNION DITCH              | 15                | 59                           | 38                                  | 145                           | Irr                               |

| #   | Model ID   | Name                            | Capacity<br>(cfs) | 2010<br>Irrigated<br>Acreage | Avg.<br>System<br>Efficiency<br>(%) | Avg. Annual<br>Demand<br>(AF) | Structure Type<br>(See Footnotes) |
|-----|------------|---------------------------------|-------------------|------------------------------|-------------------------------------|-------------------------------|-----------------------------------|
| 118 | 0400583    | VICTORY IRR CNL                 | 11                | 145                          | 47                                  | 136                           | lrr                               |
| 119 | 0400587    | BEELINE DITCH                   | 40                | 0                            | 0                                   | 1,791                         | lrr                               |
| 120 | 0400588    | Boulder Larimer Ditch           | 400               | 0                            | 0                                   | 0                             | Carrier                           |
| 121 | 0400588_I  | Boulder Larimer Irrigati        | 300               | 2,632                        | 56                                  | 5,462                         | lrr                               |
| 122 | 0400592    | EAGLE DITCH                     | 7                 | 70                           | 40                                  | 191                           | lrr                               |
| 123 | 0400596    | JIM EGLIN DITCH                 | 4                 | 201                          | 47                                  | 153                           | lrr                               |
| 124 | 0400599    | MINER LONGAN DITCH              | 12                | 162                          | 44                                  | 563                           | lrr                               |
| 125 | 0400600    | OSBORNE CAYWOOD DITCH           | 7                 | 120                          | 29                                  | 737                           | lrr                               |
| 126 | 0400601    | ROCKWELL D ROCKWELL P P         | 9                 | 177                          | 42                                  | 968                           | lrr                               |
| 127 | 0400602    | SUPPLY LATERAL DITCH            | 15                | 1,006                        | 50                                  | 1,171                         | lrr                               |
| 128 | 0400603    | W R BLOWER DITCH 1              | 7                 | 238                          | 49                                  | 477                           | lrr                               |
| 129 | 0400691    | Hansen Feeder Canal             | 930               | 0                            | 0                                   | 0                             | Carrier                           |
| 130 | 0400691_I  | Hansen Feeder Irrigation        | 999               | 1,834                        | 63                                  | 1,608                         | lrr                               |
| 131 | 0400691_L  | Hansen Fdr to LvInd Res         | 67                | 0                            | 0                                   | 0                             | Carrier                           |
| 132 | 0400691_X  | Hansen Fdr Tto Horse            | 485               | 0                            | 100                                 | 0                             | Export                            |
| 133 | 0400692    | St. Vrain Supply Canal          | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 134 | 0400692_I  | St. Vrain Irrigation            | 999               | 444                          | 60                                  | 1,408                         | lrr                               |
| 135 | 0400692_L1 | StVrTurnoutToLittleT            | 85                | 0                            | 0                                   | 0                             | Return                            |
| 136 | 0400692_L2 | St Vr divn to Hertha Res        | 25                | 0                            | 0                                   | 0                             | Carrier                           |
| 137 | 0400692_X  | ExportToStVr&BldrCk             | 462               | 0                            | 100                                 | 0                             | Export                            |
| 138 | 0400702    | Greeley Boyd Filter Plan        | 999               | 0                            | 100                                 | 0                             | M/I                               |
| 139 | 0401000    | Olympus Tunnel                  | 587               | 0                            | 0                                   | 0                             | Carrier                           |
| 140 | 0401000_R  | Return point for Olympus Tunnel | 1                 | 0                            | 0                                   | 0                             | Return                            |
| 141 | 0401001    | Big T Power Plant               | 500               | 0                            | 0                                   | 63,238                        | Return                            |
| 142 | 0401002    | Hansen Feeder Wasteway          | 900               | 0                            | 0                                   | 9,867                         | Return                            |

| #   | Model ID     | Name                      | Capacity<br>(cfs) | 2010<br>Irrigated<br>Acreage | Avg.<br>System<br>Efficiency<br>(%) | Avg. Annual<br>Demand<br>(AF) | Structure Type<br>(See Footnotes) |
|-----|--------------|---------------------------|-------------------|------------------------------|-------------------------------------|-------------------------------|-----------------------------------|
| 143 | 0404634      | Adams Tunnel              | 550               | 0                            | 0                                   | 0                             | Import                            |
| 144 | 04_AUP002_I  | Little T Wtr Dist In      | 999               | 0                            | 10                                  | 2,091                         | M/I,Agg                           |
| 145 | 04_AUP002_O  | Little T Wtr Dist Out     | 999               | 0                            | 83                                  | 1,648                         | M/I,Agg                           |
| 146 | 04_LoveInd_I | Loveland Indoor Dem       | 999               | 0                            | 10                                  | 6,359                         | M/I                               |
| 147 | 04_LoveInd_O | Loveland Outdoor Dem      | 999               | 0                            | 83                                  | 7,085                         | M/I                               |
| 148 | 0500511      | LONGMONT NORTH PIPELINE   | 50                | 0                            | 0                                   | 0                             | Carrier                           |
| 149 | 0500512      | LYONS PIPELINE            | 3                 | 0                            | 0                                   | 0                             | Carrier                           |
| 150 | 0500513      | DAVE MILLER DITCH         | 3                 | 25                           | 45                                  | 102                           | lrr                               |
| 151 | 0500519      | REESE STILES DITCH        | 4                 | 32                           | 44                                  | 194                           | lrr                               |
| 152 | 0500520      | SOUTH LEDGE DITCH         | 11                | 99                           | 44                                  | 687                           | lrr                               |
| 153 | 0500522      | LONGMONT SOUTH PIPELINE   | 3                 | 0                            | 0                                   | 0                             | Carrier                           |
| 154 | 0500523      | SUPPLY DITCH              | 141               | 4,594                        | 47                                  | 9,686                         | Irr                               |
| 155 | 0500526      | HIGHLAND DITCH            | 335               | 0                            | 0                                   | 0                             | Carrier                           |
| 156 | 0500526_1    | Highland Ditch Irrigation | 335               | 28,843                       | 60                                  | 35,043                        | Irr                               |
| 157 | 0500527      | ROUGH READY DITCH         | 77                | 1,682                        | 48                                  | 5,655                         | Irr                               |
| 158 | 0500528      | ST VRAIN PALMERTON DITCH  | 28                | 874                          | 39                                  | 5,178                         | lrr                               |
| 159 | 0500529      | SWEDE DITCH               | 48                | 1,565                        | 50                                  | 3,463                         | lrr                               |
| 160 | 0500530      | SMEAD DITCH               | 14                | 250                          | 41                                  | 852                           | lrr                               |
| 161 | 0500531      | MONTGOMERY PRIVATE DITCH  | 4                 | 0                            | 31                                  | 14                            | lrr                               |
| 162 | 0500532      | FOOTHILLS INLET           | 85                | 0                            | 0                                   | 0                             | Carrier                           |
| 163 | 0500534      | GOSS PRIVATE DITCH 1      | 5                 | 161                          | 48                                  | 340                           | lrr                               |
| 164 | 0500535      | CLOUGH/TRUE DITCH         | 6                 | 62                           | 29                                  | 268                           | lrr                               |
| 165 | 0500536      | CLOUGH PRIVATE DITCH      | 8                 | 49                           | 36                                  | 560                           | lrr                               |
| 166 | 0500537      | WEBSTER MCCASLIN DITCH    | 5                 | 169                          | 47                                  | 539                           | lrr                               |
| 167 | 0500538      | TRUE WEBSTER DITCH        | 5                 | 52                           | 38                                  | 549                           | Irr                               |

| #   | Model ID  | Name                   | Capacity<br>(cfs) | 2010<br>Irrigated<br>Acreage | Avg.<br>System<br>Efficiency<br>(%) | Avg. Annual<br>Demand<br>(AF) | Structure Type<br>(See Footnotes) |
|-----|-----------|------------------------|-------------------|------------------------------|-------------------------------------|-------------------------------|-----------------------------------|
| 168 | 0500539   | JAMES DITCH            | 19                | 579                          | 49                                  | 2,011                         | lrr                               |
| 169 | 0500542   | DAVIS DOWNING DITCH    | 15                | 496                          | 44                                  | 1,847                         | lrr                               |
| 170 | 0500545   | LONGMONT SUPPLY DITCH  | 37                | 182                          | 39                                  | 2,395                         | lrr                               |
| 171 | 0500546   | CHAPMAN MCCASLIN DITCH | 8                 | 164                          | 43                                  | 761                           | Irr                               |
| 172 | 0500547   | OLIGARCHY DITCH        | 216               | 0                            | 0                                   | 0                             | Carrier                           |
| 173 | 0500547_I | Oligarchy Irrigation   | 665               | 1,408                        | 58                                  | 4,584                         | lrr                               |
| 174 | 0500548   | DENIO TAYLOR DITCH     | 9                 | 83                           | 41                                  | 764                           | lrr                               |
| 175 | 0500549   | RUNYAN DITCH           | 5                 | 36                           | 30                                  | 438                           | Irr                               |
| 176 | 0500550   | PECK DITCH             | 27                | 256                          | 45                                  | 762                           | lrr                               |
| 177 | 0500551   | PELLA DITCH            | 27                | 84                           | 45                                  | 404                           | lrr                               |
| 178 | 0500552   | CLOVER BASIN DITCH     | 15                | 56                           | 48                                  | 245                           | lrr                               |
| 179 | 0500553   | HAGERS MEADOW DITCH    | 6                 | 38                           | 26                                  | 832                           | Irr                               |
| 180 | 0500554   | NIWOT DITCH            | 17                | 235                          | 39                                  | 975                           | lrr                               |
| 181 | 0500557   | NORTHWEST MUT INS CO D | 3                 | 50                           | 36                                  | 480                           | lrr                               |
| 182 | 0500558   | SOUTH FLAT DITCH       | 12                | 169                          | 42                                  | 1,007                         | Irr                               |
| 183 | 0500559   | CUSHMAN DITCH          | 6                 | 31                           | 38                                  | 169                           | lrr                               |
| 184 | 0500560   | BECKWITH DITCH         | 12                | 32                           | 34                                  | 655                           | lrr                               |
| 185 | 0500561   | ISLAND DITCH           | 4                 | 0                            | 36                                  | 254                           | lrr                               |
| 186 | 0500563   | BONUS DITCH            | 21                | 465                          | 34                                  | 1,765                         | lrr                               |
| 187 | 0500564   | LAKE DITCH             | 27                | 0                            | 0                                   | 0                             | Carrier                           |
| 188 | 0500564_1 | Lake Ditch Irrigation  | 23                | 674                          | 59                                  | 1,500                         | lrr                               |
| 189 | 0500565   | HALDI DITCH            | 51                | 339                          | 28                                  | 3,749                         | Irr                               |
| 190 | 0500568   | CROCKER DITCH          | 6                 | 653                          | 42                                  | 304                           | Irr                               |
| 191 | 0500569   | TABLE MOUNTAIN DITCH   | 19                | 760                          | 43                                  | 1,777                         | Irr                               |
| 192 | 0500570   | BADER DITCH 1 & 2      | 3                 | 123                          | 42                                  | 285                           | Irr                               |

| #   | Model ID   | Name                     | Capacity<br>(cfs) | 2010<br>Irrigated<br>Acreage | Avg.<br>System<br>Efficiency<br>(%) | Avg. Annual<br>Demand<br>(AF) | Structure Type<br>(See Footnotes) |
|-----|------------|--------------------------|-------------------|------------------------------|-------------------------------------|-------------------------------|-----------------------------------|
| 193 | 0500571    | JOHNSON DITCH            | 4                 | 162                          | 42                                  | 393                           | Irr                               |
| 194 | 0500572    | STAR DITCH               | 17                | 707                          | 42                                  | 1,599                         | lrr                               |
| 195 | 0500573    | HINMAN DITCH             | 11                | 537                          | 42                                  | 1,092                         | lrr                               |
| 196 | 0500574    | HOLLAND DITCH            | 25                | 1,472                        | 42                                  | 2,289                         | lrr                               |
| 197 | 0500575    | WILLIAMSON DITCH         | 25                | 877                          | 42                                  | 2,298                         | lrr                               |
| 198 | 0500589    | LAST CHANCE DITCH        | 76                | 1,440                        | 38                                  | 11,609                        | Irr                               |
| 199 | 0500601    | ZWECK TURNER DITCH       | 23                | 260                          | 33                                  | 2,251                         | lrr                               |
| 200 | 0500602    | JAMES MASON DITCH        | 3                 | 0                            | 43                                  | 178                           | lrr                               |
| 201 | 0500603    | LEFT HAND DITCH DIVERSIO | 400               | 0                            | 0                                   | 15,272                        | Carrier                           |
| 202 | 0500619_a  | SPURGEON TREATMENT PLANT | 999               | 0                            | 88                                  | 2,194                         | M/I                               |
| 203 | 0500619_b  | DODD TREATMENT PLANT DEM | 999               | 0                            | 88                                  | 1,965                         | M/I                               |
| 204 | 0500648    | TOLL GATE DITCH          | 11                | 294                          | 41                                  | 968                           | lrr                               |
| 205 | 0500939    | Goosequill Pump Station  | 8                 | 0                            | 0                                   | 0                             | M/I                               |
| 206 | 05LONG_IN  | LONGMONT INDOOR DEMAND   | 500               | 0                            | 10                                  | 8,886                         | M/I                               |
| 207 | 05LONG_OUT | LONGMONT OUTDOOR DEMAND  | 500               | 0                            | 83                                  | 5,868                         | lrr,M/l                           |
| 208 | 05_ADP001  | Aggregated Diversion Str | 500               | 416                          | 47                                  | 3,188                         | Irr,Agg                           |
| 209 | 05_ADP002  | Aggregated Diversion Str | 500               | 54                           | 48                                  | 1,068                         | Irr,Agg                           |
| 210 | 05_BRCBT   | BOULDER RESERVOIR C-BT   | 500               | 0                            | 0                                   | 0                             | Import                            |
| 211 | 05_GLRIN   | GOLD LAKE INLET          | 500               | 0                            | 0                                   | 0                             | Carrier                           |
| 212 | 05_LHBR    | Boulder Res Left Hand In | 64                | 0                            | 0                                   | 0                             | Carrier                           |
| 213 | 05_LHCBT   | LEFT HAND C-BT INFLOW    | 500               | 0                            | 0                                   | 0                             | Import                            |
| 214 | 05_LHVRIN  | LEFT HAND VALLEY RES INL | 500               | 0                            | 0                                   | 0                             | Carrier                           |
| 215 | 05_LongCBT | LONGMONT C-BT DELIVERY   | 500               | 0                            | 0                                   | 0                             | Import                            |
| 216 | 05_SBRANCH | South Branch Diversion S | 261               | 0                            | 0                                   | 0                             | Carrier                           |
| 217 | 05_SVCBT   | ST VRAIN C-BT INFLOW     | 500               | 0                            | 0                                   | 0                             | Import                            |

| #   | Model ID  | Name                       | Capacity<br>(cfs) | 2010<br>Irrigated<br>Acreage | Avg.<br>System<br>Efficiency<br>(%) | Avg. Annual<br>Demand<br>(AF) | Structure Type<br>(See Footnotes) |
|-----|-----------|----------------------------|-------------------|------------------------------|-------------------------------------|-------------------------------|-----------------------------------|
| 218 | 0600501   | Anderson Carrier           | 31                | 0                            | 0                                   | 0                             | Carrier                           |
| 219 | 0600501_C | Anderson Carrier           | 27                | 0                            | 0                                   | 0                             | Carrier                           |
| 220 | 0600501_I | Anderson Irrigation        | 17                | 30                           | 25                                  | 1,660                         | lrr                               |
| 221 | 0600513   | BOULDER LEFT HAND DITCH    | 18                | 1,262                        | 47                                  | 1,723                         | lrr                               |
| 222 | 0600515_D | Boulder and Weld Co Ditch  | 35                | 2,079                        | 44                                  | 3,197                         | Irr,DivSys                        |
| 223 | 0600516   | Boulder White Rock Carrier | 100               | 0                            | 0                                   | 0                             | Carrier                           |
| 224 | 0600516_I | Boulder White Rock Irrig   | 113               | 5,699                        | 60                                  | 14,379                        | lrr                               |
| 225 | 0600518   | BUTTE MILL DITCH           | 14                | 316                          | 42                                  | 992                           | lrr                               |
| 226 | 0600520_D | CARR TYLER DITCH           | 6                 | 0                            | 48                                  | 213                           | DivSys                            |
| 227 | 0600523   | DELEHANT DITCH             | 4                 | 95                           | 46                                  | 262                           | lrr                               |
| 228 | 0600525   | FARMERS DITCH              | 56                | 1,464                        | 47                                  | 5,037                         | Irr,Carrier                       |
| 229 | 0600527   | GODDING DAILEY PLUMB D     | 32                | 508                          | 47                                  | 2,810                         | lrr                               |
| 230 | 0600528   | GREEN DITCH                | 16                | 370                          | 40                                  | 2,297                         | lrr                               |
| 231 | 0600532   | HIGHLAND SOUTH SIDE DITC   | 47                | 554                          | 47                                  | 4,490                         | lrr                               |
| 232 | 0600534   | HOUCK 2 DITCH              | 7                 | 10                           | 32                                  | 337                           | lrr                               |
| 233 | 0600536   | HOWELL DITCH               | 6                 | 93                           | 40                                  | 642                           | lrr                               |
| 234 | 0600537   | Leggett Carrier            | 56                | 0                            | 0                                   | 0                             | Carrier                           |
| 235 | 0600537_I | Leggett Irrigation         | 45                | 3,225                        | 63                                  | 6,030                         | lrr                               |
| 236 | 0600538_D | Lower Boulder Ditch        | 211               | 0                            | 0                                   | 0                             | DivSys,Carrier                    |
| 237 | 0600538_I | Lower Boulder Irrigation   | 114               | 5,280                        | 61                                  | 13,273                        | lrr                               |
| 238 | 0600542   | MC CARTY DITCH             | 4                 | 0                            | 30                                  | 118                           | lrr                               |
| 239 | 0600543   | N BOULD FARMER DITCH       | 36                | 501                          | 38                                  | 5,158                         | lrr                               |
| 240 | 0600551   | RURAL DITCH                | 50                | 497                          | 32                                  | 7,002                         | Irr                               |
| 241 | 0600553   | SMITH EMMONS DITCH         | 22                | 300                          | 45                                  | 1,048                         | Irr                               |
| 242 | 0600554   | SMITH GOSS DITCH           | 7                 | 5                            | 50                                  | 723                           | Irr                               |

| #   | Model ID  | Name                      | Capacity<br>(cfs) | 2010<br>Irrigated<br>Acreage | Avg.<br>System<br>Efficiency<br>(%) | Avg. Annual<br>Demand<br>(AF) | Structure Type<br>(See Footnotes) |
|-----|-----------|---------------------------|-------------------|------------------------------|-------------------------------------|-------------------------------|-----------------------------------|
| 243 | 0600560   | ANDREWS FARWELL DITCH     | 6                 | 76                           | 45                                  | 203                           | lrr                               |
| 244 | 0600564_D | Community Ditch           | 189               | 0                            | 0                                   | 0                             | DivSys                            |
| 245 | 0600564_I | Community Ditch           | 97                | 2,845                        | 60                                  | 4,740                         | lrr                               |
| 246 | 0600565   | Leyner Cottonwood Carrier | 49                | 0                            | 0                                   | 0                             | Carrier                           |
| 247 | 0600565_C | Leyner Cottonwood Carrier | 4                 | 0                            | 0                                   | 0                             | Carrier                           |
| 248 | 0600565_I | Leyner Cottonwood Irriga  | 36                | 1,342                        | 60                                  | 1,903                         | lrr                               |
| 249 | 0600566   | COTTONWOOD DITCH 2        | 17                | 571                          | 45                                  | 2,054                         | Irr                               |
| 250 | 0600567   | DAVIDSON DITCH            | 64                | 504                          | 41                                  | 2,278                         | Irr                               |
| 251 | 0600569_D | DRY CREEK DAVIDSON DITCH  | 15                | 677                          | 44                                  | 1,575                         | lrr,DivSys                        |
| 252 | 0600570   | DRY CREEK NO 2 DITCH      | 20                | 341                          | 50                                  | 796                           | lrr                               |
| 253 | 0600575   | EAST BOULDER DITCH        | 22                | 57                           | 42                                  | 275                           | lrr                               |
| 254 | 0600576   | ENTERPRISE DITCH          | 13                | 111                          | 47                                  | 942                           | lrr                               |
| 255 | 0600580   | HOWARD DITCH              | 20                | 190                          | 31                                  | 1,491                         | lrr                               |
| 256 | 0600582   | JONES DONNELLY DITCH      | 10                | 316                          | 43                                  | 1,080                         | lrr                               |
| 257 | 0600585   | MARSHALVILLE DITCH        | 17                | 990                          | 44                                  | 1,316                         | lrr                               |
| 258 | 0600586   | MCGINN DITCH              | 14                | 1,195                        | 45                                  | 1,191                         | lrr                               |
| 259 | 0600588   | S BOULDER BEAR CR DITCH   | 11                | 228                          | 37                                  | 800                           | lrr                               |
| 260 | 0600590   | South Boulder Conduit     | 999               | 0                            | 0                                   | 0                             | Export,Carrier                    |
| 261 | 0600592   | SCHEARER DITCH            | 24                | 382                          | 47                                  | 1,231                         | lrr                               |
| 262 | 0600593   | S BOULDER CANON DITCH     | 34                | 1,229                        | 44                                  | 1,975                         | lrr                               |
| 263 | 0600597   | Lafayette PL              | 2                 | 0                            | 0                                   | 0                             | Carrier                           |
| 264 | 0600598   | Louisville PL             | 5                 | 0                            | 0                                   | 0                             | Carrier                           |
| 265 | 0600599   | BOULDER CITY PL           | 29                | 0                            | 0                                   | 0                             | Carrier                           |
| 266 | 0600603   | SILVER LAKE DITCH         | 10                | 324                          | 59                                  | 770                           | Irr                               |

| #   | Model ID    | Name                       | Capacity<br>(cfs) | 2010<br>Irrigated<br>Acreage | Avg.<br>System<br>Efficiency<br>(%) | Avg. Annual<br>Demand<br>(AF) | Structure Type<br>(See Footnotes) |
|-----|-------------|----------------------------|-------------------|------------------------------|-------------------------------------|-------------------------------|-----------------------------------|
| 267 | 0600606     | CHURCH DITCH(UPPER)        | 12                | 0                            | 48                                  | 58                            | lrr                               |
| 268 | 0600608_D   | EGGLESTON NO 1 DITCH       | 6                 | 91                           | 49                                  | 255                           | Irr,DivSys                        |
| 269 | 0600610     | ERIE COAL CR DITCH         | 14                | 508                          | 44                                  | 483                           | lrr                               |
| 270 | 0600611     | HARRIS DITCH               | 5                 | 30                           | 45                                  | 225                           | lrr                               |
| 271 | 0600612     | KERR DITCH NO 1            | 4                 | 47                           | 42                                  | 389                           | lrr                               |
| 272 | 0600613     | KERR DITCH NO 2            | 3                 | 5                            | 32                                  | 122                           | lrr                               |
| 273 | 0600615     | LAST CHANCE DITCH          | 43                | 0                            | 48                                  | 1,273                         | lrr                               |
| 274 | 0600621     | WILLIAM C HAKE DITCH       | 4                 | 71                           | 38                                  | 366                           | lrr                               |
| 275 | 0600622     | T N WILLIS DITCH           | 4                 | 37                           | 44                                  | 272                           | lrr                               |
| 276 | 0600650     | GOODHUE DITCH              | 51                | 1,550                        | 43                                  | 1,847                         | lrr                               |
| 277 | 0600663     | Idaho Creek                | 72                | 0                            | 0                                   | 0                             | Carrier                           |
| 278 | 0600753     | ANDERSON EXTENSION DITCH   | 5                 | 0                            | 0                                   | 0                             | Carrier                           |
| 279 | 0600800     | Boulder Res Intake         | 20                | 0                            | 0                                   | 0                             | Carrier                           |
| 280 | 0600800_SV  | BOULDER RES MUNICIPAL DE   | 500               | 0                            | 0                                   | 0                             | M/I,Carrier                       |
| 281 | 0600878     | Lafayette Boulder Creek    | 16                | 0                            | 0                                   | 0                             | Carrier                           |
| 282 | 0600902_C   | Dry Creek Carrier          | 96                | 0                            | 0                                   | 0                             | Carrier                           |
| 283 | 0600943     | BOULDER PL 3 AT BARKER R   | 41                | 0                            | 0                                   | 0                             | Carrier                           |
| 284 | 0604173_C   | Baseline Res to Lafayette  | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 285 | 0604212_C   | Marshall Res to Louisville | 9                 | 0                            | 0                                   | 0                             | Carrier                           |
| 286 | 060800_IMP  | Boulder C-BTImport Locat   | 999               | 0                            | 0                                   | 0                             | Import                            |
| 287 | 06BOULDER_I | Boulder Indoor             | 21                | 0                            | 7                                   | 12,451                        | M/I                               |
| 288 | 06BOULDER_O | Boulder Outdoor            | 54                | 0                            | 83                                  | 8,405                         | M/I                               |
| 289 | 06BOULD_RTN | Boulder Return             | 22                | 0                            | 0                                   | 6,515                         | Return                            |
| 290 | 06LAFFYT_I  | Lafayette Indoor           | 3                 | 0                            | 7                                   | 1,927                         | M/I                               |
| 291 | 06LAFFYT_O  | Lafayette Outdoor          | 11                | 0                            | 83                                  | 2,082                         | M/I                               |

| #   | Model ID    | Name                       | Capacity<br>(cfs) | 2010<br>Irrigated<br>Acreage | Avg.<br>System<br>Efficiency<br>(%) | Avg. Annual<br>Demand<br>(AF) | Structure Type<br>(See Footnotes) |
|-----|-------------|----------------------------|-------------------|------------------------------|-------------------------------------|-------------------------------|-----------------------------------|
| 292 | 06LOUIS_I   | Louisville Indoor          | 3                 | 0                            | 7                                   | 2,249                         | M/I                               |
| 293 | 06LOUIS_O   | Louisville Outdoor         | 7                 | 0                            | 83                                  | 2,071                         | M/I                               |
| 294 | 06_AMP001_I | WD 6 Agg Muni Indoor       | 999               | 0                            | 10                                  | 3,183                         | M/I,Agg                           |
| 295 | 06_AMP001_O | WD 6 Agg Muni Outdoor      | 999               | 0                            | 83                                  | 2,501                         | M/I,Agg                           |
| 296 | 06_AUP001_I | WD 6 Unincorp Indoor       | 999               | 0                            | 10                                  | 4,417                         | M/I,Agg                           |
| 297 | 06_AUP001_O | WD 6 Unincorp Outdoor      | 999               | 0                            | 83                                  | 3,470                         | M/I,Agg                           |
| 298 | 06_BOU_RF   | Constant Winter RF         | 999               | 0                            | 0                                   | 216                           | Return                            |
| 299 | 06_BWRCBT   | C-BTBWR Turnout            | 54                | 0                            | 0                                   | 0                             | Carrier                           |
| 300 | 06_CBT_IMP  | C-BTImport Location        | 999               | 0                            | 0                                   | 0                             | Import                            |
| 301 | 06_ELDORA   | Eldora Ski Resort          | 1                 | 0                            | 20                                  | 180                           | M/I                               |
| 302 | 06_MOF_IMP  | Moffat Import Location     | 999               | 0                            | 0                                   | 0                             | Import                            |
| 303 | 06_SWSP_IMP | C-BTSWSP Location          | 999               | 0                            | 0                                   | 0                             | Import                            |
| 304 | 06_VALMPP   | PSCO                       | 10                | 0                            | 100                                 | 3,000                         | M/I                               |
| 305 | 06_VALMT_C  | Combined Valmont Res Inlet | 142               | 0                            | 0                                   | 0                             | Carrier                           |
| 306 | 0700502     | AGRICULTURAL DITCH         | 66                | 0                            | 0                                   | 0                             | Carrier                           |
| 307 | 0700502_A   | Ag Ditch Aug Stn           | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 308 | 0700502_1   | Ag Ditch Irrigators        | 999               | 454                          | 43                                  | 5,401                         | lrr                               |
| 309 | 0700527_D   | Slough Ditches             | 50                | 117                          | 43                                  | 7,515                         | lrr,DivSys                        |
| 310 | 0700527_D_A | Slough Aug Stn             | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 311 | 0700540     | CHURCH DITCH               | 98                | 0                            | 0                                   | 0                             | Carrier                           |
| 312 | 0700540_A   | Church Aug Stn             | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 313 | 0700540_C   | Church D to Standley       | 42                | 0                            | 0                                   | 0                             | Carrier                           |
| 314 | 0700540_I   | Church Ditch Irrigators    | 999               | 372                          | 43                                  | 5,774                         | Irr                               |
| 315 | 0700542     | Golden City Ditch          | 12                | 0                            | 0                                   | 0                             | Carrier                           |
| 316 | 0700547     | Lower Clear Ck D           | 120               | 0                            | 0                                   | 0                             | Carrier                           |

| #   | Model ID    | Name                     | Capacity<br>(cfs) | 2010<br>Irrigated<br>Acreage | Avg.<br>System<br>Efficiency<br>(%) | Avg. Annual<br>Demand<br>(AF) | Structure Type<br>(See Footnotes) |
|-----|-------------|--------------------------|-------------------|------------------------------|-------------------------------------|-------------------------------|-----------------------------------|
| 317 | 0700547_I   | Lower Clear Ck D Irrigat | 999               | 858                          | 41                                  | 5,298                         | lrr                               |
| 318 | 0700549     | Colorado Ag D            | 41                | 0                            | 0                                   | 0                             | Carrier                           |
| 319 | 0700549_1   | Colorado Ag Ditch Irriga | 999               | 66                           | 43                                  | 4,125                         | Irr                               |
| 320 | 0700551     | CORT GRAVES HUGHES DITCH | 7                 | 0                            | 43                                  | 146                           | lrr                               |
| 321 | 0700553     | Croke Canal              | 194               | 0                            | 0                                   | 0                             | Carrier                           |
| 322 | 0700553_Arv | ArvadaReleaseFromCroke   | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 323 | 0700569     | FARMERS HIGHLINE CNL     | 254               | 0                            | 0                                   | 0                             | Carrier                           |
| 324 | 0700569_A   | FHL Aug Stn              | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 325 | 0700569_C   | FHL Canal to Standley    | 154               | 0                            | 0                                   | 0                             | Carrier                           |
| 326 | 0700569_1   | FHL Canal Irrigators     | 999               | 2,262                        | 44                                  | 9,683                         | lrr                               |
| 327 | 0700570     | FISHER DITCH             | 35                | 0                            | 0                                   | 0                             | Carrier                           |
| 328 | 0700570_A   | Fisher Aug Stn           | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 329 | 0700570_C   | Fisher D to PSCO         | 13                | 0                            | 0                                   | 0                             | Carrier                           |
| 330 | 0700570_I   | Fisher Ditch Irrigators  | 999               | 13                           | 43                                  | 3,233                         | lrr                               |
| 331 | 0700597     | KERSHAW DITCH            | 17                | 0                            | 0                                   | 0                             | Carrier                           |
| 332 | 0700597_A   | Kershaw Aug Stn          | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 333 | 0700597_I   | Kershaw Ditch Irrigators | 999               | 13                           | 43                                  | 622                           | lrr                               |
| 334 | 0700601     | Lee Stewart Eskins Ditch | 17                | 0                            | 0                                   | 0                             | Carrier                           |
| 335 | 0700601_I   | Lee Stewart Eskins Irrig | 999               | 41                           | 43                                  | 773                           | Irr                               |
| 336 | 0700614     | MANHART DITCH            | 13                | 13                           | 43                                  | 905                           | lrr                               |
| 337 | 0700632     | OUELETTE DITCH           | 7                 | 0                            | 43                                  | 133                           | Irr                               |
| 338 | 0700647     | RENO JUCHEM DITCH        | 15                | 57                           | 43                                  | 734                           | Irr                               |
| 339 | 0700652     | ROCKY MOUNTAIN DITCH     | 160               | 0                            | 0                                   | 0                             | Carrier                           |
| 340 | 0700652_A   | Rocky Mtn Aug Stn        | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 341 | 0700652_I   | Rocky Mtn Ditch Irrigato | 999               | 12                           | 43                                  | 5,463                         | Irr                               |

| #   | Model ID    | Name                    | Capacity<br>(cfs) | 2010<br>Irrigated<br>Acreage | Avg.<br>System<br>Efficiency<br>(%) | Avg. Annual<br>Demand<br>(AF) | Structure Type<br>(See Footnotes) |
|-----|-------------|-------------------------|-------------------|------------------------------|-------------------------------------|-------------------------------|-----------------------------------|
| 342 | 0700669     | SOUTH SIDE DITCH        | 999               | 0                            | 48                                  | 80                            | lrr                               |
| 343 | 0700681     | Georgetown D            | 999               | 0                            | 100                                 | 201                           | M/I                               |
| 344 | 0700698     | Wannamaker Ditch        | 27                | 0                            | 0                                   | 0                             | Carrier                           |
| 345 | 0700698_A   | Wannamaker Aug Stn      | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 346 | 0700698_1   | Wannamaker Irrigators   | 999               | 254                          | 31                                  | 1,673                         | lrr                               |
| 347 | 0700699     | WELCH DITCH             | 28                | 86                           | 26                                  | 1,046                         | Irr,Carrier                       |
| 348 | 0700699_A   | Welch Aug Stn           | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 349 | 0700725     | Coors Ind Ditch         | 103               | 0                            | 0                                   | 0                             | M/I,Carrier                       |
| 350 | 0700726     | Coors Ind Ditch         | 1                 | 0                            | 0                                   | 0                             | M/I                               |
| 351 | 0700903     | Straight Creek Tunnel   | 999               | 0                            | 0                                   | 0                             | Import                            |
| 352 | 0700903_C   | Straight Ck Tun Divn    | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 353 | 0704625     | Berthoud Pass Divn      | 999               | 0                            | 0                                   | 0                             | Import                            |
| 354 | 0704625_C   | Berthoud Pass Divn      | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 355 | 0704626     | Vidler Tunnel           | 999               | 0                            | 0                                   | 0                             | Import                            |
| 356 | 0704626_C   | Vidler Tunnel Divn      | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 357 | 0704650     | Gumlick Tunnel          | 999               | 0                            | 0                                   | 0                             | Import                            |
| 358 | 0704650_C   | Gumlick Tunnel Divn     | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 359 | 07_ADP001   | WD7 Agg SW Irrig        | 999               | 142                          | 45                                  | 1,062                         | lrr                               |
| 360 | 07_AMP001_I | WD7 Upper Agg Muni In   | 999               | 0                            | 10                                  | 514                           | M/I,Agg                           |
| 361 | 07_AMP001_0 | WD7 Upper Agg Muni Out  | 999               | 0                            | 83                                  | 404                           | M/I,Agg                           |
| 362 | 07_AUP001_I | WD7 Upper Agg Uninc In  | 999               | 0                            | 10                                  | 5,683                         | M/I,Agg                           |
| 363 | 07_AUP001_O | WD7 Upper Agg Uninc Out | 999               | 0                            | 83                                  | 4,465                         | M/I,Agg                           |
| 364 | 07_Arvada_I | Arvada Indoor Dem       | 999               | 0                            | 10                                  | 9,919                         | M/I                               |
| 365 | 07_Arvada_O | Arvada Outdoor Dem      | 999               | 0                            | 83                                  | 9,051                         | M/I                               |

| #   | Model ID    | Name                         | Capacity<br>(cfs) | 2010<br>Irrigated<br>Acreage | Avg.<br>System<br>Efficiency<br>(%) | Avg. Annual<br>Demand<br>(AF) | Structure Type<br>(See Footnotes) |
|-----|-------------|------------------------------|-------------------|------------------------------|-------------------------------------|-------------------------------|-----------------------------------|
| 366 | 07_ConMut_I | ConMutual Indoor Dem         | 999               | 0                            | 10                                  | 2,126                         | M/I                               |
| 367 | 07_ConMut_O | ConMutual Outdoor Dem        | 999               | 0                            | 83                                  | 1,671                         | M/I                               |
| 368 | 07_CoorsB   | Coors Malting Potable Demand | 8                 | 0                            | 30                                  | 5,975                         | M/I                               |
| 369 | 07_CoorsC   | Coors Cooling Demand         | 103               | 0                            | 100                                 | 765                           | M/I                               |
| 370 | 07_Golden_I | Golden Indoor Dem            | 999               | 0                            | 10                                  | 1,634                         | M/I                               |
| 371 | 07_Golden_O | Golden Outdoor Dem           | 999               | 0                            | 85                                  | 1,283                         | M/I                               |
| 372 | 07_LSA      | Loveland Ski Area            | 999               | 0                            | 20                                  | 113                           | M/I                               |
| 373 | 0801001     | Aurora Intake                | 125               | 0                            | 0                                   | 0                             | M/I,Carrier                       |
| 374 | 0801001_A   | 0801001 Aug Stn              | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 375 | 0801002_D   | Denver Conduit 20            | 338               | 0                            | 0                                   | 0                             | DivSys, Carrier                   |
| 376 | 0801004     | HIGHLINE CNL                 | 295               | 501                          | 40                                  | 17,826                        | lrr                               |
| 377 | 0801006     | Last Chance Pump Stn         | 999               | 0                            | 0                                   | 0                             | M/I,Carrier                       |
| 378 | 0801007     | LAST CHANCE DITCH 2          | 39                | 35                           | 47                                  | 1,468                         | lrr                               |
| 379 | 0801008     | CITY DITCH PL                | 50                | 51                           | 47                                  | 5,173                         | Irr,Carrier                       |
| 380 | 0801009_D   | Nevada Ditch                 | 36                | 92                           | 47                                  | 3,351                         | Irr,DivSys                        |
| 381 | 0801013     | Englewood Intake             | 27                | 0                            | 0                                   | 0                             | M/I,Carrier                       |
| 382 | 0801014     | Arapahoe Power Plant         | 6                 | 0                            | 80                                  | 2,047                         | M/I                               |
| 383 | 0801015     | EPPERSON DITCH/PUMP          | 2                 | 0                            | 48                                  | 258                           | Irr                               |
| 384 | 0801017     | Denver Conduit 26            | 396               | 0                            | 0                                   | 0                             | Carrier                           |
| 385 | 0801100     | Chatfield Pumps              | 999               | 0                            | 0                                   | 613                           | M/I                               |
| 386 | 0801124     | HAYLAND DITCH                | 2                 | 15                           | 42                                  | 156                           | Irr                               |
| 387 | 0801125     | FAIRVIEW DITCH               | 10                | 191                          | 46                                  | 357                           | Irr                               |
| 388 | 0801127     | OLD TIME DITCH               | 2                 | 15                           | 40                                  | 101                           | Irr                               |
| 389 | 0801128     | GARDEN DITCH                 | 1                 | 15                           | 44                                  | 49                            | Irr                               |

| #   | Model ID    | Name                     | Capacity<br>(cfs) | 2010<br>Irrigated<br>Acreage | Avg.<br>System<br>Efficiency<br>(%) | Avg. Annual<br>Demand<br>(AF) | Structure Type<br>(See Footnotes) |
|-----|-------------|--------------------------|-------------------|------------------------------|-------------------------------------|-------------------------------|-----------------------------------|
| 390 | 0801235     | RED ROCK DITCH           | 3                 | 25                           | 33                                  | 239                           | Irr                               |
| 391 | 0801237     | SPRING CREEK DITCH       | 4                 | 52                           | 36                                  | 263                           | Irr                               |
| 392 | 0801240     | RATCLIFF DILLON DITCH    | 4                 | 52                           | 45                                  | 77                            | Irr                               |
| 393 | 0801241     | DAKAN DITCH              | 2                 | 52                           | 44                                  | 76                            | Irr                               |
| 394 | 0801362     | JOHN JONES DITCH         | 3                 | 79                           | 42                                  | 376                           | Irr                               |
| 395 | 0801400     | ALDERMAN DITCH           | 5                 | 36                           | 51                                  | 155                           | Irr                               |
| 396 | 0801403     | HEISER DITCH             | 1                 | 77                           | 50                                  | 25                            | Irr                               |
| 397 | 0801404     | MCCRACKEN DITCH          | 3                 | 103                          | 54                                  | 23                            | Irr                               |
| 398 | 0801405     | SMITH DITCH              | 3                 | 33                           | 47                                  | 40                            | Irr                               |
| 399 | 0801406     | SCHREIBER DITCH          | 1                 | 11                           | 34                                  | 8                             | Irr                               |
| 400 | 0801412     | SIXTY SEVEN DITCH        | 7                 | 94                           | 36                                  | 640                           | Irr                               |
| 401 | 0801413     | CRAWFORD DITCH           | 2                 | 27                           | 38                                  | 290                           | Irr                               |
| 402 | 0801414     | BIRMINGHAM DITCH         | 2                 | 101                          | 44                                  | 51                            | Irr                               |
| 403 | 0801416     | GOODRICH DITCH           | 5                 | 47                           | 45                                  | 212                           | Irr                               |
| 404 | 0801417     | ROCKY RIDGE DITCH        | 3                 | 0                            | 48                                  | 22                            | Irr                               |
| 405 | 0801492     | IZZARD DITCH             | 4                 | 24                           | 46                                  | 93                            | Irr                               |
| 406 | 0802300     | Bi-City WWTP             | 999               | 0                            | 100                                 | 0                             | M/I                               |
| 407 | 08_ADP002   | WD8 CherryCk Agg SW Divn | 999               | 496                          | 46                                  | 418                           | Irr,Agg                           |
| 408 | 08_ADP003   | WD8 SPR Agg SW Divn      | 999               | 44                           | 43                                  | 225                           | Irr,Agg                           |
| 409 | 08_ADP004   | WD8 Plum Ck Agg SW Divn  | 999               | 298                          | 38                                  | 2,205                         | Irr,Agg                           |
| 410 | 08_Aurora_I | Aurora Indoor Dem        | 999               | 0                            | 10                                  | 28,402                        | M/I                               |
| 411 | 08_Aurora_O | Aurora Outdoor Dem       | 999               | 0                            | 83                                  | 20,949                        | M/I                               |
| 412 | 08_Denver_I | Denver Indoor Dem        | 999               | 0                            | 13                                  | 129,727                       | M/I                               |
| 413 | 08_Denver_O | Denver Outdoor Dem       | 999               | 0                            | 90                                  | 91,198                        | M/I                               |

| #   | Model ID    | Name                     | Capacity<br>(cfs) | 2010<br>Irrigated<br>Acreage | Avg.<br>System<br>Efficiency<br>(%) | Avg. Annual<br>Demand<br>(AF) | Structure Type<br>(See Footnotes) |
|-----|-------------|--------------------------|-------------------|------------------------------|-------------------------------------|-------------------------------|-----------------------------------|
| 414 | 08_Englwd_I | Englewood Indoor Dem     | 999               | 0                            | 10                                  | 3,687                         | M/I                               |
| 415 | 08_Englwd_O | Englewood Outdoor Dem    | 999               | 0                            | 83                                  | 2,897                         | M/I                               |
| 416 | 0900535     | BERGEN DITCH             | 26                | 22                           | 36                                  | 720                           | lrr                               |
| 417 | 0900731_D   | Arnett/Harriman Ditch    | 67                | 836                          | 46                                  | 2,367                         | Irr,DivSys                        |
| 418 | 0900752     | HODGSON DITCH            | 2                 | 23                           | 28                                  | 455                           | lrr                               |
| 419 | 0900767     | INDEPENDENT HIGHLINE DIT | 6                 | 101                          | 49                                  | 306                           | lrr                               |
| 420 | 0900816     | MCBROOM DITCH            | 3                 | 0                            | 48                                  | 730                           | M/I                               |
| 421 | 0900903     | WARRIOR/HARRIMAN D TK CR | 6                 | 0                            | 48                                  | 121                           | M/I                               |
| 422 | 0900958     | WARD DITCH               | 14                | 619                          | 48                                  | 1,951                         | Irr                               |
| 423 | 0900963_D   | Warrior/Harriman Ditch   | 38                | 0                            | 18                                  | 3,466                         | Irr,DivSys                        |
| 424 | 0901700     | Marston WTP              | 403               | 0                            | 0                                   | 0                             | Irr, M/I, Carrier                 |
| 425 | 09_ADP003   | WD9 Agg SW Divn          | 999               | 23                           | 57                                  | 5                             | Irr,Agg                           |
| 426 | 09_AMP001_I | WD9 Lower Agg Muni In    | 999               | 0                            | 10                                  | 3,418                         | M/I,Agg                           |
| 427 | 09_AMP001_O | WD9 Lower Agg Muni Out   | 999               | 0                            | 83                                  | 2,685                         | M/I,Agg                           |
| 428 | 09_AUP001_I | WD9 Lower Agg Uninc In   | 999               | 0                            | 10                                  | 5,608                         | M/I,Agg                           |
| 429 | 09_AUP001_O | WD9 Lower Agg Uninc Out  | 999               | 0                            | 83                                  | 4,406                         | M/I,Agg                           |
| 430 | 2003        | FordRechargeDivn         | 20                | 0                            | 0                                   | 0                             | Carrier                           |
| 431 | 2300500     | PLATTE STATION DITCH     | 9                 | 42                           | 38                                  | 612                           | lrr                               |
| 432 | 2300760     | SACRAMENTO DITCH         | 21                | 68                           | 42                                  | 910                           | Irr                               |
| 433 | 2300902     | PETRIE DITCH             | 22                | 155                          | 44                                  | 684                           | Irr                               |
| 434 | 2300904     | LINK DITCH               | 19                | 81                           | 45                                  | 323                           | Irr                               |
| 435 | 2300922     | HOLST DITCH 2            | 12                | 62                           | 41                                  | 540                           | Irr                               |
| 436 | 2300923     | HOLST PACKER D           | 12                | 77                           | 41                                  | 611                           | Irr                               |
| 437 | 2300924     | HOLST DITCH 1            | 9                 | 62                           | 42                                  | 495                           | Irr                               |
| 438 | 2300926     | PACKER BONIS DITCH       | 6                 | 27                           | 41                                  | 371                           | lrr                               |
| 439 | 2300991     | TAYLOR DITCH             | 17                | 155                          | 40                                  | 978                           | lrr                               |

| #   | Model ID  | Name                     | Capacity<br>(cfs) | 2010<br>Irrigated<br>Acreage | Avg.<br>System<br>Efficiency<br>(%) | Avg. Annual<br>Demand<br>(AF) | Structure Type<br>(See Footnotes) |
|-----|-----------|--------------------------|-------------------|------------------------------|-------------------------------------|-------------------------------|-----------------------------------|
| 440 | 2300993   | GIBSON DITCH             | 4                 | 158                          | 45                                  | 243                           | lrr                               |
| 441 | 2300994   | CROSIER TAYLOR DITCH     | 12                | 283                          | 52                                  | 485                           | lrr                               |
| 442 | 2302900   | SOUTH FORK OF SOUTH PLAT | 208               | 3                            | 43                                  | 0                             | Irr,DivSys                        |
| 443 | 2302900_A | 2302900 Aug Stn          | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 444 | 2302901   | FOUR MILE CREEK NEAR HAR | 56                | 0                            | 43                                  | 0                             | Irr,DivSys                        |
| 445 | 2302901_A | 2302901 Aug Stn          | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 446 | 2302902   | MIDDLE FORK SOUTH PLATTE | 110               | 0                            | 48                                  | 0                             | Irr,DivSys                        |
| 447 | 2302902_A | 2302902 Aug Stn          | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 448 | 2302903   | SOUTH PLATTE RIVER ABOVE | 190               | 0                            | 46                                  | 0                             | Irr,DivSys                        |
| 449 | 2302903_A | 2302903 Aug Stn          | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 450 | 2302904   | FOUR MILE AT HIGH CREEK  | 68                | 0                            | 39                                  | 0                             | Irr,DivSys                        |
| 451 | 2302904_A | 2302904 Aug Stn          | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 452 | 2302905   | Beery Ditch              | 1                 | 0                            | 0                                   | 0                             | M/I                               |
| 453 | 2302906   | TARRYALL CREEK AT US 285 | 113               | 123                          | 46                                  | 0                             | Irr,DivSys                        |
| 454 | 2302906_A | 2302906 Aug Stn          | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 455 | 2302907   | MICHIGAN CREEK ABOVE JEF | 48                | 156                          | 49                                  | 0                             | Irr,DivSys                        |
| 456 | 2302907_A | 2302907 Aug Stn          | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 457 | 2302908   | JEFFERSON CREEK NEAR JEF | 74                | 549                          | 50                                  | 0                             | Irr,DivSys                        |
| 458 | 2302908_A | 2302908 Aug Stn          | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 459 | 2302909   | TARRYALL CREEK AT BORDEN | 30                | 0                            | 40                                  | 0                             | Irr,DivSys                        |
| 460 | 2302909_A | 2302909 Aug Stn          | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 461 | 2302910   | OHLER GULCH NEAR JEFFERS | 6                 | 0                            | 51                                  | 0                             | Irr,DivSys                        |
| 462 | 2302910_A | Ohler Aug Stn            | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 463 | 2302911   | TROUT CREEK NEAR GARO    | 5                 | 18                           | 48                                  | 0                             | Irr,DivSys                        |
| 464 | 2302911_A | 2302911 Aug Stn          | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 465 | 2302912   | SPRING BRANCH ABOVE CONF | 4                 | 0                            | 31                                  | 0                             | Irr,DivSys                        |

| #   | Model ID    | Name                     | Capacity<br>(cfs) | 2010<br>Irrigated<br>Acreage | Avg.<br>System<br>Efficiency<br>(%) | Avg. Annual<br>Demand<br>(AF) | Structure Type<br>(See Footnotes) |
|-----|-------------|--------------------------|-------------------|------------------------------|-------------------------------------|-------------------------------|-----------------------------------|
| 466 | 2302912_A   | 2302912 Aug Stn          | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 467 | 2302913     | MIDDLE FORK SOUTH PLATTE | 183               | 0                            | 48                                  | 0                             | Irr,DivSys                        |
| 468 | 2302913_A   | 2302913 Aug Stn          | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 469 | 2302914     | FRENCH CREEK ABOVE CONFL | 9                 | 0                            | 24                                  | 0                             | Irr,DivSys                        |
| 470 | 2302914_A   | 2302914 Aug Stn          | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 471 | 2302915     | ROCK CREEK ABOVE CONFLUE | 37                | 0                            | 34                                  | 0                             | Irr,DivSys                        |
| 472 | 2302915_A   | 2302915 Aug Stn          | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 473 | 2302916     | SCHATTINGER FLUME ABOVE  | 20                | 0                            | 50                                  | 0                             | Irr,DivSys                        |
| 474 | 2302916_A   | 2302916 Aug Stn          | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 475 | 2302917     | JEFFERSON CREEK BELOW SY | 12                | 82                           | 51                                  | 0                             | Irr,DivSys                        |
| 476 | 2302917_A   | 2302917 Aug Stn          | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 477 | 2302918     | DIXON FLUME ON HOLLTHUSE | 10                | 0                            | 50                                  | 0                             | Irr,DivSys                        |
| 478 | 2302918_A   | 2302918 Aug Stn          | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 479 | 2304611     | Boreas Pass Ditch        | 999               | 0                            | 0                                   | 0                             | Import                            |
| 480 | 2304611_C   | Boreas Pass Divn         | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 481 | 23_ADP001   | WD23 Tarryall Agg SW Div | 999               | 544                          | 48                                  | 4,065                         | Irr,Agg                           |
| 482 | 23_ADP002   | WD23 SPR Agg SW Divn     | 999               | 1,269                        | 50                                  | 3,910                         | Irr,Agg                           |
| 483 | 23_AMP001_I | WD23 Upper Agg Muni In   | 999               | 0                            | 10                                  | 58                            | M/I,Agg                           |
| 484 | 23_AMP001_O | WD23 Upper Agg Muni Out  | 999               | 0                            | 83                                  | 46                            | M/I,Agg                           |
| 485 | 23_AUP001_I | WD23 Upper Agg Uninc In  | 999               | 0                            | 10                                  | 279                           | M/I,Agg                           |
| 486 | 23_AUP001_O | WD23 Upper Agg Uninc Out | 999               | 0                            | 83                                  | 219                           | M/I,Agg                           |
| 487 | 23_AUP002_I | WD23 Lower Agg Uninc In  | 999               | 0                            | 10                                  | 552                           | M/I,Agg                           |
| 488 | 23_AUP002_O | WD23 Lower Agg Uninc Out | 999               | 0                            | 83                                  | 434                           | M/I,Agg                           |
| 489 | 3700        | EastGravelLakesDivn      | 100               | 0                            | 0                                   | 0                             | Carrier                           |
| 490 | 6400501     | CARLSON DITCH            | 14                | 130                          | 35                                  | 243                           | lrr                               |
| 491 | 6400502     | LIDDLE DITCH             | 17                | 937                          | 46                                  | 1,165                         | Irr                               |

| #   | Model ID  | Name                     | Capacity<br>(cfs) | 2010<br>Irrigated<br>Acreage | Avg.<br>System<br>Efficiency<br>(%) | Avg. Annual<br>Demand<br>(AF) | Structure Type<br>(See Footnotes) |
|-----|-----------|--------------------------|-------------------|------------------------------|-------------------------------------|-------------------------------|-----------------------------------|
| 492 | 6400503   | SOUTH RESERVATION DITCH  | 21                | 840                          | 53                                  | 3,205                         | Irr                               |
| 493 | 6400504   | PETERSON DITCH           | 72                | 6,784                        | 43                                  | 9,905                         | lrr                               |
| 494 | 6400506   | RED LION SUPPLY DITCH    | 19                | 277                          | 35                                  | 0                             | lrr                               |
| 495 | 6400507   | LONG ISLAND DITCH        | 1                 | 2,138                        | 62                                  | 0                             | Irr                               |
| 496 | 6400508   | SETTLERS DITCH           | 60                | 4,821                        | 46                                  | 6,388                         | lrr                               |
| 497 | 6400511_D | Harmony Div System       | 273               | 0                            | 0                                   | 0                             | Carrier                           |
| 498 | 6400511_I | Harmony Irrigation       | 354               | 11,682                       | 47                                  | 38,697                        | Irr                               |
| 499 | 6400513   | CHAMBERS DITCH           | 29                | 397                          | 34                                  | 0                             | lrr                               |
| 500 | 6400514   | RAMSEY DITCH             | 18                | 329                          | 41                                  | 838                           | lrr                               |
| 501 | 6400516   | POWELL BLAIR DITCH       | 33                | 2,054                        | 49                                  | 5,196                         | Irr                               |
| 502 | 6400518   | LONE TREE DITCH          | 35                | 696                          | 38                                  | 316                           | lrr                               |
| 503 | 6400519   | JUD BRUSH DITCH          | 7                 | 0                            | 48                                  | 0                             | Irr                               |
| 504 | 6400520   | ILIFF PLATTE VALLEY D    | 156               | 6,386                        | 45                                  | 24,509                        | Irr                               |
| 505 | 6400522_D | Bravo Div System         | 50                | 1,925                        | 43                                  | 6,325                         | Irr,DivSys                        |
| 506 | 6400524   | LOWLINE DITCH            | 40                | 1,781                        | 46                                  | 6,606                         | lrr                               |
| 507 | 6400525   | HENDERSON SMITH DITCH    | 15                | 330                          | 32                                  | 2,004                         | lrr                               |
| 508 | 6400526   | STERLING IRR CO DITCH 2  | 17                | 0                            | 48                                  | 0                             | lrr                               |
| 509 | 6400528   | STERLING IRR CO DITCH 1  | 159               | 7,685                        | 44                                  | 23,465                        | Irr                               |
| 510 | 6400530   | SPRINGDALE DITCH         | 60                | 3,316                        | 34                                  | 7,852                         | Irr                               |
| 511 | 6400531   | SCHNEIDER DITCH          | 51                | 2,314                        | 42                                  | 10,369                        | Irr                               |
| 512 | 6400532   | DAVIS BROS DITCH         | 27                | 1,965                        | 55                                  | 0                             | lrr                               |
| 513 | 6400533   | PAWNEE DITCH             | 167               | 8,016                        | 49                                  | 27,018                        | Irr                               |
| 514 | 6400535   | SOUTH PLATTE DITCH       | 67                | 4,419                        | 42                                  | 13,763                        | lrr                               |
| 515 | 6400542   | MCWILLIAMS CANAL         | 1                 | 92                           | 49                                  | 0                             | Irr                               |
| 516 | 6400584   | I O JONES DITCH & RESERV | 1                 | 166                          | 51                                  | 122                           | Irr                               |
| 517 | 6400599   | RICE DITCH               | 35                | 507                          | 38                                  | 0                             | Irr                               |

| #   | Model ID    | Name                     | Capacity<br>(cfs) | 2010<br>Irrigated<br>Acreage | Avg.<br>System<br>Efficiency<br>(%) | Avg. Annual<br>Demand<br>(AF) | Structure Type<br>(See Footnotes) |
|-----|-------------|--------------------------|-------------------|------------------------------|-------------------------------------|-------------------------------|-----------------------------------|
| 518 | 6400643     | HEYBORNE LIFT STATION    | 6                 | 0                            | 0                                   | 0                             | Carrier                           |
| 519 | 6400801     | COTTONWOOD CR RCHRG PUMP | 2                 | 0                            | 0                                   | 24                            | Carrier                           |
| 520 | 6403551_Ced | Cedar to Sterling        | 540               | 0                            | 0                                   | 0                             | Carrier                           |
| 521 | 6403551_Paw | Pawnee to Sterling       | 540               | 0                            | 0                                   | 0                             | Carrier                           |
| 522 | 8000650     | WANITA DITCH             | 1                 | 11                           | 42                                  | 98                            | lrr                               |
| 523 | 8000651     | HALL VALLEY DITCH        | 1                 | 4                            | 39                                  | 116                           | lrr                               |
| 524 | 8000653     | Roberts Tunnel           | 999               | 0                            | 0                                   | 0                             | Import                            |
| 525 | 8000653_A   | RobTun Aug Stn           | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 526 | 8000653_C   | Roberts Tunnel Divn      | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 527 | 8000657_D   | Hepburn Ranch            | 2                 | 69                           | 50                                  | 381                           | Irr,DivSys                        |
| 528 | 8000662_D   | Fitzsimmons Ranch        | 9                 | 82                           | 41                                  | 830                           | Irr,DivSys                        |
| 529 | 8000667     | SOUTH SIDE DITCH         | 2                 | 33                           | 44                                  | 222                           | lrr                               |
| 530 | 8000673_D   | Herford Ranch            | 5                 | 76                           | 43                                  | 472                           | Irr,DivSys                        |
| 531 | 8000706     | BEAVER CREEK DITCH       | 7                 | 0                            | 41                                  | 394                           | lrr                               |
| 532 | 8000713     | KENOSHA DITCH            | 1                 | 18                           | 41                                  | 178                           | Irr                               |
| 533 | 8000732_D   | Camp Santa Maria         | 4                 | 34                           | 38                                  | 410                           | Irr,DivSys                        |
| 534 | 8000759     | MCARTHUR DITCH           | 1                 | 26                           | 29                                  | 331                           | Irr                               |
| 535 | 8000760     | WINKLER DITCH 1          | 1                 | 12                           | 31                                  | 188                           | lrr                               |
| 536 | 8000761     | WINKLER DITCH 3          | 1                 | 20                           | 37                                  | 138                           | Irr                               |
| 537 | 8000774_D   | Berger Ranch             | 4                 | 26                           | 43                                  | 241                           | Irr,DivSys                        |
| 538 | 8000784     | JEFFRIES CRAWFORD DITCH  | 3                 | 55                           | 38                                  | 357                           | Irr                               |
| 539 | 8000785     | WONDER DITCH             | 1                 | 9                            | 45                                  | 60                            | lrr                               |
| 540 | 8000792     | PARMALEE DITCH 2 & 3     | 1                 | 65                           | 48                                  | 154                           | Irr                               |
| 541 | 8000794     | FLUME DITCH              | 1                 | 34                           | 43                                  | 76                            | Irr                               |
| 542 | 8000799_D   | Deer Creek Ranch         | 3                 | 21                           | 44                                  | 307                           | Irr,DivSys                        |
| 543 | 8000812     | CLIFFORD GULCH DITCH     | 1                 | 18                           | 43                                  | 100                           | Irr                               |
| #   | Model ID     | Name                    | Capacity<br>(cfs) | 2010<br>Irrigated<br>Acreage | Avg.<br>System<br>Efficiency<br>(%) | Avg. Annual<br>Demand<br>(AF) | Structure Type<br>(See Footnotes) |
|-----|--------------|-------------------------|-------------------|------------------------------|-------------------------------------|-------------------------------|-----------------------------------|
| 544 | 8000829_D    | Magnus Ranch            | 7                 | 113                          | 48                                  | 312                           | Irr,DivSys                        |
| 545 | 8000831_D    | State Parks Ranch       | 4                 | 62                           | 45                                  | 247                           | Irr,DivSys                        |
| 546 | 80_ADP001    | WD80 NF SPR Agg SW Divn | 999               | 90                           | 48                                  | 591                           | Irr                               |
| 547 | AurThEff     | Aur WWTP to Thornton    | 999               | 0                            | 0                                   | 3,946                         | M/I                               |
| 548 | BCSC         | BOULDER CR SUPPLY CANAL | 500               | 0                            | 0                                   | 16,257                        | Return                            |
| 549 | BerthGold1   | GoldSpringBerthoudDivn  | 2                 | 0                            | 0                                   | 0                             | Carrier                           |
| 550 | BerthGold2   | GoldSummerBerthoudDivn  | 4                 | 0                            | 0                                   | 0                             | Carrier                           |
| 551 | BerthNglenn  | NglennBerthoudDivn      | 51                | 0                            | 0                                   | 0                             | Carrier                           |
| 552 | Bri_WWTP     | Brighton WWTP           | 999               | 0                            | 100                                 | 0                             | M/I                               |
| 553 | BypReturn    | UnusedBypExchWtrCarrier | 999               | 0                            | 0                                   | 0                             | Return                            |
| 554 | Cond15_PL    | Denver Conduit 15 water | 999               | 0                            | 0                                   | 0                             | M/I,Carrier                       |
| 555 | Conduit15    | Denver Conduit 15       | 92                | 0                            | 0                                   | 805                           | M/I                               |
| 556 | CosmicRel    | WGL Nov1 Release        | 999               | 0                            | 0                                   | 2,500                         | Return                            |
| 557 | DW_ReusePL   | DW Reuse PL to Cherokee | 999               | 0                            | 0                                   | 0                             | Return                            |
| 558 | FoothillsWTP | Foothills WTP           | 396               | 0                            | 0                                   | 0                             | M/I,Carrier                       |
| 559 | HOMSPICO     | Homestake Pipeline      | 999               | 0                            | 0                                   | 0                             | Import                            |
| 560 | HOMSPICO_C   | Homestake Pipeline Divn | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 561 | Manifold     | Chatfield Manifold      | 999               | 0                            | 0                                   | 0                             | Return                            |
| 562 | MetPump_PL   | MetroPumpsPipeline      | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 563 | Metro_Pumps  | MetroPumpsHistDivns     | 999               | 0                            | 0                                   | 11,150                        | M/I                               |
| 564 | Metro_WWTP   | Metro WWTP              | 999               | 0                            | 100                                 | 0                             | M/I                               |
| 565 | MoffatWTP    | Moffat WTP              | 255               | 0                            | 0                                   | 38,827                        | M/I                               |
| 566 | Nglenn_WWTP  | Northglenn WWTP         | 999               | 0                            | 100                                 | 0                             | M/I                               |
| 567 | PCWA_WWTP    | Plum Ck Wtr Auth WWTP   | 999               | 0                            | 0                                   | 0                             | M/I                               |
| 568 | SAC_WWTP     | SACWSD WWTP             | 999               | 0                            | 100                                 | 0                             | M/I                               |
| 569 | SPDMSPSC     | C-BT                    | 98                | 0                            | 0                                   | 3,081                         | Export                            |

| #   | Model ID    | Name                   | Capacity<br>(cfs) | 2010<br>Irrigated<br>Acreage | Avg.<br>System<br>Efficiency<br>(%) | Avg. Annual<br>Demand<br>(AF) | Structure Type<br>(See Footnotes) |
|-----|-------------|------------------------|-------------------|------------------------------|-------------------------------------|-------------------------------|-----------------------------------|
| 570 | SPLk_Pump   | South Platte Lake Pump | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 571 | SWSP_C      | C-BTSWSP Carrier       | 999               | 0                            | 0                                   | 0                             | Carrier                           |
| 572 | SandCk_WWTP | Aurora WWTP            | 999               | 0                            | 100                                 | 0                             | M/I                               |
| 573 | SandHill_C  | Sand Hill Plan Div     | 999               | 0                            | 0                                   | 0                             | Import                            |
| 574 | WesBrownWTP | Wes Brown WTP          | 78                | 0                            | 0                                   | 0                             | M/I,Carrier                       |
| 575 | Westy_WWTP  | Westy WWTP             | 999               | 0                            | 100                                 | 0                             | M/I                               |

Irr = Irrigation demand

DivSys = Diversion System (multiple headgates that meet a common demand are modeled at a single location)

M/I = Municipal and Industrial Demand

Import = Location were imported water is delivered to the system

Export = Location were exported water is diverted from the system

Agg = Aggregated Structure (non-key diversion structures grouped at a single location)

Return = Location were carried water is returned to the system.

## 7.2 Diversion Systems

Diversion systems represent multiple diversion points that serve a common demand. The diversion points are generally located on the same river without intervening diversion structures. In the South Platte Model, they are generally designated with \*\_D. Many of the diversion systems also have off-channel irrigation demands designated with \*\_I. Inclusion of the off-channel irrigation demand structures in the diversion system list allow information from the primary structure to be transferred to the irrigation demand when input files are created. Note that in District 23, ditches are assigned to administrative gages by decree.

| Diversion System ID        | Diversion System Name      | Associated Structures |
|----------------------------|----------------------------|-----------------------|
| 0100502 D and              |                            | 0100503               |
| 0100503_D and              | RIVERSIDE CANAL DEMAND     | 0100504               |
| 0100303_1                  |                            | 0100710               |
| 0100507 Dand               |                            | 0100506               |
| 0100507_D and<br>0100507_I | BIJOU CANAL DEMAND         | 0100507               |
| 0100307_1                  |                            | 0100509               |
|                            |                            | 0100519               |
| 0100519 D                  |                            | 0100521               |
| 0100313_0                  |                            | 0100522               |
|                            |                            | 0100523               |
| 0100697 and                |                            | 0100687               |
|                            | NORTH STERLING DEMAND      | 6400563               |
| 0100007_1                  | 687_I                      |                       |
| 0103817_I                  | JACKSON RESERVOIR DEMAND   | 0103817               |
| 0200805 and                |                            | 0200805               |
| 0200805_I                  |                            | 0200902               |
| 0200808_I                  | FULTON DEMAND              | 0200808               |
| 0200810_I                  | BRIGHTON DEMAND            | 0200810               |
| 0200812_I                  | LUPTON BOTTOM DEMAND       | 0200812               |
| 0200813_I                  | PLATTEVILLE DEMAND         | 0200813               |
| 0200817_I                  | EVANS NO 2 DEMAND          | 0200817               |
| 0200824_I                  | FARMERS INDEPENDENT DEMAND | 0200824               |
| 0200825_I                  | HEWES COOK DEMAND          | 0200825               |
| 0200828 and                |                            | 0200828               |
| 0200828_I                  | UNION INMOATION DEMAND     | 0200886               |
| 0200834_I                  | LOWER LATHAM DEMAND        | 0200834               |
| 0200837_I                  | HIGHLAND DEMAND            | 0200837               |
| 0203837_I                  | FRICO-BARR LAKE DEMAND     | 0203837               |
| 0203876_I                  | FRICO-MILTON LAKE DEMAND   | 0203876               |
| 0400520_I                  | GEORGE RIST DEMAND         | 0400520               |

Table 7-2: Diversion Systems

| Diversion System ID | Diversion System Name          | Associated Structures |
|---------------------|--------------------------------|-----------------------|
| 0400521_I           | HANDY DITCH DEMAND             | 0400521               |
| 0400524_I           | HOME SUPPLY DEMAND             | 0400524               |
| 0400530_1           | LOUDEN DITCH DEMAND            | 0400530               |
| 0400532 and         |                                | 0400501               |
| 0400532_I           | LOVELAND GREELEY DEMAND        | 0400532               |
| 0400543_I           | SOUTH SIDE DITCH DEMAND        | 0400543               |
| 0400588 and         |                                | 0400588               |
| 0400588_1           | BOULD LARIM CO IRR MIFG DEMAND | 0404156               |
| 0400691_I           | HANSEN FEEDER DEMAND           | 0400691               |
| 0400692_1           | ST VRAIN SUPPLY DEMAND         | 0400692               |
| 0500526_1           | HIGHLAND DITCH DEMAND          | 0500526               |
| 0500547_1           | OLIGARCHY DITCH DEMAND         | 0500547               |
| 0500564_1           | LAKE DITCH DEMAND              | 0500564               |
| 0600501_I           | ANDERSON DITCH DEMAND          | 0600501               |
|                     |                                | 0600515               |
| 0600515_D           | BOULDER WELD CTY DIVSYS        | 0600533               |
|                     |                                | 0600540               |
| 0600516_I           | BOULDER WHITE ROCK DEMAND      | 0600516               |
|                     |                                | 0600520               |
| 0600520_D           | CARR/TYLER DITCH DIVSYS        | 0600545               |
| 0600537_I           | LEGGETT DITCH DEMAND           | 0600537               |
| 0000520 David       |                                | 0200552               |
| 0600538_D and       | LOWER BOULDER DIVSYS           | 0600538               |
| 0000338_1           |                                | 0600562               |
| 0600564_D and       |                                | 0600564               |
| 0600564_I           | COMMONITY DITCH DEMAND         | 0600589               |
| 0600565_1           | LEYNER COTTONWOOD DITCH        | 0600565               |
|                     |                                | 0600569               |
| 0600269_D           | DRY CREEK DAVIDSON DIVSYS      | 0600735               |
|                     |                                | 0600605               |
| 0600608_D           | EGGLESTON 1 DITCH DIVSYS       | 0600608               |
|                     |                                | 0600609               |
| 0700502_1           | AGRICULTURAL DITCH DEMAND      | 0700502               |
|                     |                                | 0700523               |
|                     |                                | 0700527               |
|                     |                                | 0700528               |
|                     |                                | 0700550               |
| 0700527_0           | SLOUGH DIVSYS                  | 0700580               |
|                     |                                | 0700581               |
|                     |                                | 0700595               |
|                     |                                | 0700599               |

| Diversion System ID | Diversion System Name    | Associated Structures |
|---------------------|--------------------------|-----------------------|
|                     |                          | 0700602               |
|                     |                          | 0700628               |
|                     |                          | 0700649               |
|                     |                          | 0700650               |
|                     |                          | 0700654               |
|                     |                          | 0700655               |
|                     |                          | 0700663               |
|                     |                          | 0700664               |
|                     |                          | 0700677               |
|                     |                          | 0700694               |
|                     |                          | 0700695               |
|                     |                          | 0700705               |
|                     |                          | 0700706               |
| 0700540_1           | CHURCH DEMAND            | 0700540               |
| 0700547_I           | LOWER CLEAR CREEK DEMAND | 0700547               |
| 0700549_1           | COLORADO AG DEMAND       | 0700549               |
| 0700569_1           | FHL DEMAND               | 0700569               |
| 0700570_1           | FISHER DEMAND            | 0700570               |
| 0700597_1           | KERSHAW DEMAND           | 0700597               |
| 0700601_I           | LSE DEMAND               | 0700601               |
| 0700652 and         |                          | 0700620               |
| 0700652_I           | ROCKY MOONTAIN DEMAND    | 0700652               |
| 0700698_1           | WANNAMAKER DEMAND        | 0700698               |
| 0801002 0           |                          | 0801002               |
| 0801002_D           | CONDOIT 20               | 0801005               |
|                     |                          | 0801009               |
| 0801009_D           | NEVADA DITCH DIVSYS      | 0801011               |
|                     |                          | 0801462               |
|                     |                          | 0900522               |
| 0000721 D           |                          | 0900731               |
| 0900751_0           | ARINETT/HARRINAN DIVSTS  | 0900862               |
|                     |                          | 0900880               |
|                     |                          | 0900896               |
| 0000063 D           |                          | 0900962               |
| 0900905_D           | WARRION HARRIMAN DITCH   | 0900963               |
|                     |                          | 0900964               |
|                     |                          | 2300507               |
|                     |                          | 2300510               |
| 2202000             |                          | 2300511               |
| 2302900             | SERANTCO DIVSTS          | 2300513               |
|                     |                          | 2300514               |
|                     |                          | 2300515               |

| Diversion System ID | Diversion System Name | Associated Structures |
|---------------------|-----------------------|-----------------------|
|                     |                       | 2300519               |
|                     |                       | 2300520               |
|                     |                       | 2300523               |
|                     |                       | 2300525               |
|                     |                       | 2300529               |
|                     |                       | 2300530               |
|                     |                       | 2300538               |
|                     |                       | 2300542               |
|                     |                       | 2300546               |
|                     |                       | 2300550               |
|                     |                       | 2300551               |
|                     |                       | 2300552               |
|                     |                       | 2300553               |
|                     |                       | 2300566               |
|                     |                       | 2300574               |
|                     |                       | 2300575               |
|                     |                       | 2300580               |
|                     |                       | 2300634               |
|                     |                       | 2300622               |
|                     |                       | 2300623               |
|                     |                       | 2300624               |
| 2302901             | FOUHARCO DIVSYS       | 2300626               |
|                     |                       | 2300627               |
|                     |                       | 2300628               |
|                     |                       | 2300645               |
|                     |                       | 2300686               |
|                     |                       | 2300687               |
|                     |                       | 2300689               |
|                     |                       | 2300691               |
|                     |                       | 2300694               |
| 2302902             | MFKSTMCO DIVSYS       | 2300695               |
|                     |                       | 2300698               |
|                     |                       | 2300699               |
|                     |                       | 2300803               |
|                     |                       | 2300807               |
|                     |                       | 2301078               |
|                     |                       | 2300562               |
|                     |                       | 2300700               |
| 2202002             |                       | 2300702               |
| 2202202             | LASPICO DIVSTS        | 2300703               |
|                     |                       | 2300706               |
|                     |                       | 2300707               |

| Diversion System ID     | Diversion System Name | Associated Structures |
|-------------------------|-----------------------|-----------------------|
|                         |                       | 2300708               |
|                         |                       | 2300709               |
|                         |                       | 2300710               |
|                         |                       | 2300712               |
|                         |                       | 2300714               |
|                         |                       | 2300814               |
|                         |                       | 2300816               |
|                         |                       | 2300827               |
|                         |                       | 2300829               |
|                         |                       | 2300830               |
|                         |                       | 2300541               |
|                         |                       | 2300601               |
|                         |                       | 2300609               |
| 2202004                 |                       | 2300610               |
| 2302904                 | FOUHIGCO DIVSYS       | 2300611               |
|                         | 2300612               |                       |
|                         |                       | 2300616               |
|                         |                       | 2300617               |
|                         |                       | 2300879               |
|                         |                       | 2300882               |
|                         |                       | 2300884               |
|                         |                       | 2300885               |
|                         |                       | 2300886               |
|                         |                       | 2300887               |
|                         |                       | 2300888               |
| 2302906                 | TARCOMCO DIVSYS       | 2300889               |
| 2302906 TARCOMCO DIVSYS | 2300890               |                       |
|                         |                       | 2300892               |
|                         |                       | 2300894               |
|                         |                       | 2300895               |
|                         |                       | 2300903               |
|                         |                       | 2301089               |
|                         |                       | 2300963               |
|                         |                       | 2300966               |
|                         |                       | 2300967               |
| 2222227                 |                       | 2300976               |
| 2302907                 | MCHJEFCO DIVSYS       | 2300977               |
|                         |                       | 2300978               |
|                         |                       | 2300984               |
|                         |                       | 2300986               |
|                         |                       | 2301001               |
| 2302908                 | JEFJEFCO DIVSYS       | 2301003               |

| Diversion System ID | Diversion System Name                                                                                                                         | Associated Structures |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|                     |                                                                                                                                               | 2301004               |
|                     |                                                                                                                                               | 2301006               |
|                     |                                                                                                                                               | 2301008               |
|                     |                                                                                                                                               | 2301009               |
|                     |                                                                                                                                               | 2301011               |
|                     |                                                                                                                                               | 2301013               |
|                     |                                                                                                                                               | 2300909               |
|                     |                                                                                                                                               | 2300910               |
|                     |                                                                                                                                               | 2300911               |
| 2302909             | TARBORCO DIVSYS                                                                                                                               | 2300920               |
|                     |                                                                                                                                               | 2300921               |
|                     |                                                                                                                                               | 2300928               |
|                     |                                                                                                                                               | 2301087               |
| 2202010             |                                                                                                                                               | 2302910               |
| 2302910             | OHGJEFCO DIVSYS                                                                                                                               | 2301024               |
| 2302911             | TROGARCO DIVSYS                                                                                                                               | 2300797               |
| 2302912             | SPRBRNCO DIVSYS                                                                                                                               | 2300667               |
|                     |                                                                                                                                               | 2300620               |
|                     |                                                                                                                                               | 2300654               |
|                     |                                                                                                                                               | 2300659               |
|                     |                                                                                                                                               | 2300661               |
|                     |                                                                                                                                               | 2300663               |
|                     |                                                                                                                                               | 2300664               |
|                     |                                                                                                                                               | 2300665               |
| 2302913             | MFKPRICO DIVSYS                                                                                                                               | 2300672               |
|                     |                                                                                                                                               | 2300673               |
|                     |                                                                                                                                               | 2300675               |
|                     |                                                                                                                                               | 2300676               |
|                     |                                                                                                                                               | 2300677               |
|                     |                                                                                                                                               | 2300678               |
|                     |                                                                                                                                               | 2300680               |
|                     |                                                                                                                                               | 2300683               |
| 2302914             | FRNCRKCO DIVSYS                                                                                                                               | 2300961               |
|                     |                                                                                                                                               | 2301031               |
|                     |                                                                                                                                               | 2301032               |
|                     |                                                                                                                                               | 2301036               |
|                     |                                                                                                                                               | 2301037               |
| 2302915             | TARBORCO DIVSYS   OHGJEFCO DIVSYS   TROGARCO DIVSYS   SPRBRNCO DIVSYS   MFKPRICO DIVSYS   MFKPRICO DIVSYS   FRNCRKCO DIVSYS   RCKTARCO DIVSYS | 2301038               |
|                     |                                                                                                                                               | 2301039               |
|                     |                                                                                                                                               | 2301040               |
|                     |                                                                                                                                               | 2301041               |
|                     |                                                                                                                                               | 2301042               |

| Diversion System ID | Diversion System Name  | Associated Structures |
|---------------------|------------------------|-----------------------|
|                     |                        | 2301043               |
|                     |                        | 2301044               |
|                     |                        | 2301045               |
|                     |                        | 2301046               |
|                     |                        | 2301047               |
|                     |                        | 2301055               |
|                     |                        | 2300802               |
| 2202016             |                        | 2300962               |
| 2302910             |                        | 2300974               |
|                     |                        | 2300983               |
|                     |                        | 2301014               |
| 2202017             |                        | 2301019               |
| 2302917             | JEFSINTCO DIVSTS       | 2301020               |
|                     |                        | 2301029               |
|                     |                        | 2300878               |
| 2202010             |                        | 2300951               |
| 2302918             | DIXCONICO DIVSYS       | 2300952               |
|                     |                        | 2300954               |
|                     |                        | 6400510               |
| 6400511_D and       |                        | 6400511               |
| 6400511_I           | HARMONY DITCH I DEMAND | 6400515               |
|                     |                        | 6403906               |
|                     |                        | 6400521               |
| 0400522_D           | RAVODITCHDIVSYS        | 6400522               |
|                     |                        | 8000657               |
| 8000657_D           | HEPBURN DITCH 2 DIVSYS | 8000739               |
|                     |                        | 8000740               |
|                     |                        | 8000659               |
|                     |                        | 8000660               |
| 8000662 D           |                        | 8000661               |
| 800002_D            | MACK DITCH I DIVSTS    | 8000662               |
|                     |                        | 8000889               |
|                     |                        | 8000893               |
| 2000672 D           |                        | 8000673               |
| 8000075_D           | BOND DITCH 2 DIVSTS    | 8000674               |
|                     |                        | 8000728               |
| 8000732             |                        | 8000729               |
| 8000732_D           |                        | 8000730               |
|                     |                        | 8000732               |
|                     |                        | 8000773               |
| 8000774_D           | BERGER DITCH DIVSYS    | 8000774               |
|                     |                        | 8000776               |

| Diversion System ID | Diversion System Name   | Associated Structures |
|---------------------|-------------------------|-----------------------|
|                     |                         | 8000777               |
|                     |                         | 8000799               |
| 8000799_D           | ALKIRE DITCH DIVSYS     | 8000800               |
| 8000799_D           |                         | 8000801               |
|                     |                         | 8000845               |
|                     |                         | 8000825               |
|                     |                         | 8000826               |
|                     |                         | 8000827               |
| 8000829_D           | ROCKY MTN FUEL 1 DIVSYS | 8000828               |
|                     |                         | 8000829               |
|                     |                         | 8000842               |
|                     |                         | 8000843               |
|                     |                         | 8000831               |
|                     |                         | 8000847               |
| 8000831 D           |                         | 8000848               |
| 0000031_D           |                         | 8000849               |
|                     |                         | 8000854               |
|                     |                         | 8000858               |

## 7.3 Aggregated Irrigation Structures

Irrigation structures were aggregated based on physical location. The figures below show the aggregate boundaries that were developed under Task 3. The map is divided across two figures due to the detailed nature of the aggregate boundaries. The same boundaries are used for both aggregate surface water structures and ground water only aggregate structures. The only modification to these boundaries is in Water District 5; aggregate area 05\_ADP001 was divided into 05\_ADP001 and 05\_ADP002 to better represent the water sources for the aggregated structures.

### Where to find more information

• SPDSS Task Memorandum 3, "Aggregate Non-Key Agricultural Diversion Structures," available on the CDSS website.



### Figure 7-1: Aggregate boundaries (Western portion)



Figure 7-2: Aggregate boundaries (Eastern portion)

| Aggregate ID | Aggregate Name                               | Associated Structures |
|--------------|----------------------------------------------|-----------------------|
|              | C                                            | 0100643               |
| 01 400027    | South Platta Divar balaw Karsov Ca North 2   | 0100644               |
| 01_ADF037    | South Platte River below Kersey to North 2   | 0100835               |
|              |                                              | 0104486               |
|              |                                              | 0200885               |
| 02_ADP003    | South Platte River below Ft Lupton West      | 0200887               |
|              |                                              | 0200888               |
|              |                                              | 0500583               |
|              |                                              | 0500584               |
|              |                                              | 0500587               |
|              | Loft Hand Crock above Saint Virain Group 1   | 0500588               |
| 05_ADF001    |                                              | 0500831               |
|              |                                              | 0500938               |
|              |                                              | 0500942               |
|              |                                              | 0600732               |
|              |                                              | 0500555               |
| 05_ADP002    | Left Hand Creek above Saint Vrain Group 2    | 0500556               |
|              |                                              | 0500829               |
|              | Clear Creek below Golden Co                  | 0700526               |
| 07_ADP001    |                                              | 0700711               |
|              |                                              | 0700720               |
|              | South Platte River above Chatfield Reservoir | 0800909               |
| 08_ADF003    |                                              | 0800910               |
|              |                                              | 0801215               |
|              |                                              | 0801216               |
|              |                                              | 0801217               |
|              |                                              | 0801230               |
|              |                                              | 0801250               |
|              | Rlum Crook above South Platte Confluence     | 0801252               |
| 08_ADF004    | Fight creek above south Flatte confidence    | 0801254               |
|              |                                              | 0801264               |
|              |                                              | 0801266               |
|              |                                              | 0801267               |
|              |                                              | 0801278               |
|              |                                              | 0801279               |
|              |                                              | 0801360               |
|              |                                              | 0801418               |
| 08_ADP002    | Cherry Creek above Franktown Co              | 0801421               |
|              |                                              | 0801426               |
|              |                                              | 0801427               |

Table 7-3: Surface Water Aggregate Structures

| Aggregate ID           | Aggregate Name                                  | Associated Structures                                                                                                                                                                                                                                                                                                                             |
|------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 08_ADP003              | South Platte River above Chatfield Reservoir    | 0001402                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                 | 0801483                                                                                                                                                                                                                                                                                                                                           |
| 00 400000              | Deen Creek also Mannie au Ca                    | 0900739                                                                                                                                                                                                                                                                                                                                           |
| 09_ADP003              | Bear Creek above Morrison Co                    | 0900740                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                 | 0900/41                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                 | 2300502                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                 | 2300503                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                 | 2300504                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                 | 2300505                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                 | 2300506                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                 | 2300516                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                 | 2300564                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                 | 2300568                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                 | 2300569                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                 | 2300573                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                 | 2300579                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                 | 2300583                                                                                                                                                                                                                                                                                                                                           |
|                        | SF South Platte River above Tarryall Confluence | 2300585                                                                                                                                                                                                                                                                                                                                           |
| 23_ADP001              |                                                 | 2300586                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                 | 2300587                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                 | 2300631                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                 | 2300763                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                 | 2300774                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                 | 2300787                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                 | 2300788                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                 | 2300789                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                 | 2300866                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                 | 2300867                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                 | 2300868                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                 | 2300869                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                 | 2301138                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                 | 2301140                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                 | 2300908                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                 | 2300931                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                 | 2300932                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                 | 2300933                                                                                                                                                                                                                                                                                                                                           |
| 23 ADP002              | Tarryall Creek above SF South Platte Confluence | 2300936                                                                                                                                                                                                                                                                                                                                           |
| _                      |                                                 | 2300937                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                 | 2300940                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                 | 2300948                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                 | 2300968                                                                                                                                                                                                                                                                                                                                           |
| 23_ADP001<br>23_ADP002 | SF South Platte River above Tarryall Confluence | 2300573<br>2300579<br>2300583<br>2300585<br>2300586<br>2300587<br>2300631<br>2300763<br>2300763<br>2300774<br>2300787<br>2300788<br>2300789<br>2300789<br>2300866<br>2300866<br>2300867<br>2300868<br>2300869<br>2301138<br>2301140<br>2300908<br>2300931<br>2300931<br>2300932<br>2300933<br>2300933<br>2300937<br>2300940<br>2300948<br>2300948 |

| Aggregate ID | Aggregate Name                          | Associated Structures |
|--------------|-----------------------------------------|-----------------------|
|              |                                         | 2300975               |
|              |                                         | 2300987               |
|              |                                         | 2301002               |
|              |                                         | 2301005               |
|              |                                         | 2301018               |
|              |                                         | 2301022               |
|              |                                         | 2301025               |
|              |                                         | 2301075               |
|              |                                         | 2301083               |
|              |                                         | 2301094               |
|              |                                         | 8000668               |
|              |                                         | 8000708               |
|              |                                         | 8000709               |
|              |                                         | 8000710               |
|              |                                         | 8000763               |
| ۹0 ADD001    | Water District 80 NE South Diatta River | 8000764               |
| 80_ADF001    | Water District 80 NF South Flatte River | 8000867               |
|              |                                         | 8000895               |
|              |                                         | 8000896               |
|              |                                         | 8000897               |
|              |                                         | 8000921               |
|              |                                         | 8001014               |

## 7.4 Plan Structures

Table 7-4 lists the plan structures included in the model organized by plan type. For more details on plan structures, refer to Section 5.8.1.

| Plan ID     | Plan Name              | <b>River Location</b> | Plan Type |
|-------------|------------------------|-----------------------|-----------|
| 06538_B_RF  | LowBoul Bo RFOblig     | 06BOU_RFO             | 1         |
| 06538_L_RF  | LBLafyt RFOblig        | 06LAF_RFO             | 1         |
| 06543_B_RF  | NoBoFarm Bo RFOblig    | 06BOU_RFO             | 1         |
| 06565_L_RF  | LeynCott LAF RFOblig   | 06LAF_RFO             | 1         |
| 06565_V_RF  | LeynCott LOU RFOblig   | 06LOU_RFO             | 1         |
| 06567_L_RF  | Davidson Lafyt RFOb    | 06LAF_RFO             | 1         |
| 06567_V_RF  | Davidson Louis RFOb    | 06LOU_RFO             | 1         |
| 06569_L_RF  | DCDavd Lafyt RFOblig   | 06LAF_RFO             | 1         |
| 06576_L_RF  | Entprs Lafyt RFOblig   | 06LAF_RFO             | 1         |
| 06650_L_RF  | Goodhue Lafyt RFOblig  | 06LAF_RFO             | 1         |
| 06650_V_RF  | Goodhue Louis RFOblig  | 06LOU_RFO             | 1         |
| 07_C_AugPIn | CoorsC_AugPlan         | 07_C_AugPln           | 1         |
| 6400525_RF  | HendersonSmith TCPlan  | 6400525_RF            | 1         |
| 6400528_RF  | SterlingNo1 TCPlan     | 6400528_RF            | 1         |
| AurLastChRF | AuroraLastChanceD_RFs  | AurLastChRF           | 1         |
| BriFulRFs   | BrightonFultonRFs      | BriFulRFs             | 1         |
| CenBriRFs   | Central Brighton RFs   | CenBriRFs             | 1         |
| CenFarmRFs  | FarmersCentralRFs      | CenFarmRFs            | 1         |
| CenFulRFs   | CentalFultonRFs        | CenFulRFs             | 1         |
| CenHighRFs  | HighlandCentralRFs     | CenHighRFs            | 1         |
| CenLBRFs    | CentralLBRFs           | CenLBRFs              | 1         |
| CenPVRFs    | Central PVRFs          | CenPVRFs              | 1         |
| CenSN3RFs   | SectionNo3CentralRFs   | CenSN3RFs             | 1         |
| ConM_AgRFs  | ConMutualAgDitchRFs    | ConM_AgRFs            | 1         |
| ConM_WelRFs | ConMutualWelchDitchRFs | ConM_WelRFs           | 1         |
| ConMClCkRFs | ConMutualClearCkRFs    | ConMClCkRFs           | 1         |
| ConMSPRRFs  | ConMutualSPlatteRFs    | ConMSPRRFs            | 1         |
| CoorsAug12  | CoorsRenoJuchemAugStn  | CoorsAug12            | 1         |
| CoorsAug3   | CoorsAg_RkyMtnAugStn   | CoorsAug3             | 1         |
| CoorsAug7   | CoorsWannamakerAugStn  | CoorsAug7             | 1         |
| JeffLkDRF   | JeffersonLkWinterRFs   | JeffLkDRF             | 1         |
| KershRFs    | WestyKershawRFs        | KershRFs              | 1         |
| Longmont_TC | Longmont_RFOs          | 05LONG_RFOs           | 1         |
| NglennLBRFs | NglennLuptonBottomRFs  | NglennLBRFs           | 1         |

Table 7-4: Plan Structures

| Plan ID     | Plan Name               | <b>River Location</b> | Plan Type |
|-------------|-------------------------|-----------------------|-----------|
| NgInBDCRFs  | NorthglennBDCRFS        | NgInBDCRFs            | 1         |
| NgInFulRFs  | NorthglennFultonRFs     | NgInFulRFs            | 1         |
| PSCoClCkRFs | PSCoClearCreekRFs       | PSCoClCkRFs           | 1         |
| PSCoFishApr | PSCoFisherRFs           | PSCoFishApr           | 1         |
| PSCoFishAug | PSCoFisherRFs           | PSCoFishAug           | 1         |
| PSCoFishJul | PSCoFisherRFs           | PSCoFishJul           | 1         |
| PSCoFishJun | PSCoFisherRFs           | PSCoFishJun           | 1         |
| PSCoFishMay | PSCoFisherRFs           | PSCoFishMay           | 1         |
| PSCoFishOct | PSCoFisherRFs           | PSCoFishOct           | 1         |
| PSCoFishSep | PSCoFisherRFs           | PSCoFishSep           | 1         |
| PSCoLBRFs   | PSCoLuptonBottomRFs     | PSCoLBRFs             | 1         |
| PSCoMISPRFs | PSCoMeadowIsland2SPRFs  | PSCoMISPRFs           | 1         |
| PSCoSPRFs   | PSCoSPRRFsabvFulton     | PSCoSPRFs             | 1         |
| PSCoSPRFs2  | PSCoJTandHCRFs          | PSCoSPRFs2            | 1         |
| SABurRFsSum | SASummerBurlRFs         | SABurRFsSum           | 1         |
| SABurRFsYR  | SAYear Round Burl RFs   | SABurRFsYR            | 1         |
| SAC_BriRFs  | SACWSDBrightonRFs       | SAC_BriRFs            | 1         |
| SAC_FulRFs  | SACWSDFultonRFs         | SAC_FulRFs            | 1         |
| SAC_LBRFs   | SACWSDLuptonBottomRFs   | SAC_LBRFs             | 1         |
| SAC_MI1RFs  | SACWSDMdwlsland1RFs     | SAC_MI1RFs            | 1         |
| SpinDRF_03  | SpinneyWinterRFs_3%     | SpinDRF_03            | 1         |
| SpinDRF_04  | SpinneyWinterRFs_4%     | SpinDRF_04            | 1         |
| SpinDRF_07  | SpinneyWinterRFs_7%     | SpinDRF_07            | 1         |
| SpinDRF_11  | SpinneyWinterRFs_11%    | SpinDRF_11            | 1         |
| SpinDRF_13  | SpinneyWinterRFs_13%    | SpinDRF_13            | 1         |
| SpinDRF_16  | SpinneyWinterRFs_16%    | SpinDRF_16            | 1         |
| SpinDRF_17  | SpinneyWinterRFs_17%    | SpinDRF_17            | 1         |
| SpinDRF_21  | SpinneyWinterRFs_21%    | SpinDRF_21            | 1         |
| SpinMtnDRF  | SpinneyMtnWinterRFs     | SpinMtnDRF            | 1         |
| ThBDC_RFs   | ThorntonBDCReturns      | ThBDC_RFs             | 1         |
| ThBurRFsSum | ThornSummerBurlRFs      | ThBurRFsSum           | 1         |
| ThBurRFsYR  | ThornYearRoundBurlRFs   | ThBurRFsYR            | 1         |
| ThChurchRFs | ThorntonChurchReturns   | ThChurchRFs           | 1         |
| ThCoAg02RFs | ThorntonCoAg02CW132RFs  | ThCoAg02RFs           | 1         |
| ThCoAg89RFs | ThorntonCoAg89CW132RFs  | ThCoAg89RFs           | 1         |
| ThFHL_RFs   | ThorntonFHLReturns      | ThFHL_RFs             | 1         |
| ThFishRFs1  | ThorntonFishApr-AugRFs  | ThFishRFs1            | 1         |
| ThFishRFs2  | ThorntonFishSep-OctRFs  | ThFishRFs2            | 1         |
| ThLCC_RFs   | ThorntonLowerClearCkRFs | ThLCC_RFs             | 1         |
| ThLCC02RFs  | ThorntonLCC02CW266RFs   | ThLCC02RFs            | 1         |

| Plan ID     | Plan Name               | <b>River Location</b> | Plan Type |
|-------------|-------------------------|-----------------------|-----------|
| ThLCC89RFs  | ThorntonLCC89CW132RFs   | ThLCC89RFs            | 1         |
| ThornSPRFs1 | Thornton SPRFsabvFulton | ThornSPRFs1           | 1         |
| ThornSPRFs2 | Thornton SPRFsabvBrntnr | ThornSPRFs2           | 1         |
| WestBDCRFs  | WestyBDC_RFs            | WestBDCRFs            | 1         |
| WestyChRFs  | WestyChurchRFs          | WestyChRFs            | 1         |
| WestyFHLRFs | WestyFHLRFs             | WestyFHLRFs           | 1         |
| WestyLCCRFs | WestyLCC_RFs            | WestyLCCRFs           | 1         |
| WestySPRFs  | WestySPReturns          | WestySPRFs            | 1         |
| 0102456     | FT MORGAN CITY AUG      | 0102456               | 2         |
| 0102513     | ROTHE AUG PLAN          | 0102513               | 2         |
| 0102518     | PIONEER AUG PLAN        | 0102518               | 2         |
| 0102522     | RIVERSIDE AUG           | 0102522               | 2         |
| 0102528     | FT MORGAN AUG PLAN      | 0102528               | 2         |
| 0102529     | UPPER PB AUG PLAN       | 0102529               | 2         |
| 0102535     | LPB AUG PLAN            | 0102535               | 2         |
| 0102662     | BRUSH AUG               | 0102662               | 2         |
| 0103339     | BIJOU AUG PLAN          | 0103339               | 2         |
| 0703390     | CoorsA_AugPlan          | 0703390               | 2         |
| 0802593     | AuroraWellAugPlan       | 0802593               | 2         |
| 6402517     | SEDGWICK CTY AUG PLAN   | 6402517               | 2         |
| 6402518     | HARMONY AUG PLAN        | 6402518               | 2         |
| 6402519     | DINSDALE AUG            | 6402519               | 2         |
| 6402525     | CONDON AUG              | 6402525               | 2         |
| 6402526     | STERLING AUG            | 6402526               | 2         |
| 6402536     | LOWER LOGAN WELL USERS  | 6402536               | 2         |
| 6402539     | LOGAN WELL USERS AUG    | 6402539               | 2         |
| 6402540     | LOWLINE AUG PLAN        | 6402540               | 2         |
| 6402542     | LSPWCD AUG              | 6402542               | 2         |
| 6403392     | NORTH AUG PLAN          | 6403392               | 2         |
| 9902502     | SACWSDAugPlan           | 9902502               | 2         |
| 9902541     | BrightonAugPlan         | 9902541               | 2         |
| 9903334_A   | GMSReachAAugPIn         | 9903334_A             | 2         |
| 9903334_B   | GMSReachBAugPIn         | 9903334_B             | 2         |
| 9903334_C   | GMSReachCAugPIn         | 9903334_C             | 2         |
| 9903334_D   | GMSReachDAugPIn         | 9903334_D             | 2         |
| 9903334_E   | GMSReachEAugPIn         | 9903334_E             | 2         |
| 9903334_F   | GMSReachFAugPIn         | 9903334_F             | 2         |
| 9903394_A   | WASReachAAugPIn         | 9903394_A             | 2         |
| 9903394_B   | WASReachBAugPIn         | 9903394_B             | 2         |
| 9903394_C   | WASReachCAugPIn         | 9903394_C             | 2         |

| Plan ID      | Plan Name               | River Location | Plan Type |
|--------------|-------------------------|----------------|-----------|
| 9903394_D    | WASReachDAugPIn         | 9903394_D      | 2         |
| 9903394_E    | WASReachEAugPIn         | 9903394_E      | 2         |
| 9903394_F    | WASReachFAugPIn         | 9903394_F      | 2         |
| AggWell_01   | AggWell_01              | AggWell_01     | 2         |
| AggWell_02   | AggWell_02              | AggWell_02     | 2         |
| AggWell_04   | AggWell_04              | AggWell_04     | 2         |
| AggWell_05   | AggWell_05              | AggWell_05     | 2         |
| AggWell_06   | AggWell_06              | AggWell_06     | 2         |
| AggWell_07   | AggWell_07              | AggWell_07     | 2         |
| AggWell_08   | AggWell_08              | AggWell_08     | 2         |
| AggWell_64   | AggWell_64              | AggWell_64     | 2         |
| GwOnly_01    | GwOnly_01               | GwOnly_01      | 2         |
| GwOnly_02    | GwOnly_02               | GwOnly_02      | 2         |
| GwOnly_04    | GwOnly_04               | GwOnly_04      | 2         |
| GwOnly_05    | GwOnly_05               | GwOnly_05      | 2         |
| GwOnly_06    | GwOnly_06               | GwOnly_06      | 2         |
| GwOnly_07    | GwOnly_07               | GwOnly_07      | 2         |
| GwOnly_08    | GwOnly_08               | GwOnly_08      | 2         |
| GwOnly_64    | GwOnly_64               | GwOnly_64      | 2         |
| AurResPln    | Aurora Reservoir Plan   | AurResPln      | 3         |
| AurStronPln  | StrontiaSpgsResPlan     | AurStronPln    | 3         |
| EGLks_Pln    | East Gravel Lakes Pln   | EGLks_Pln      | 3         |
| JimBakerPln  | JimBakerResPlan         | JimBakerPln    | 3         |
| LResReusable | LongResReuse            | LONG_RES_Re    | 3         |
| PhanFRIPIn1  | FRICO4WayInWestyAcc     | PhanFRIPIn1    | 3         |
| PhanFRIPIn2  | FRICOn4WayInThornAcc    | PhanFRIPIn2    | 3         |
| PhanNglPln1  | Nglenn4WayInWestyAcc    | PhanNglPln1    | 3         |
| PhanNglPln2  | Nglenn4WayInThornAcc    | PhanNglPln2    | 3         |
| PhanWesPln   | Westy4WayInThorntAcc    | PhanWesPln     | 3         |
| SPLk_PIn     | SouthPlatteLakePlan     | SPLk_PIn       | 3         |
| StanFRIPIn1  | FRICOWaterInWestyAcc    | StanFRIPIn1    | 3         |
| StanFRIPIn2  | FRICOWaterInThornAcc    | StanFRIPIn2    | 3         |
| StanNglPln1  | NglennWaterInWestyAc    | StanNglPln1    | 3         |
| StanNglPln2  | NglennWaterInThornAc    | StanNglPln2    | 3         |
| StanReuseN   | NorthglennStandleyReuse | StanReuseN     | 3         |
| StanReuseT   | ThorntonStandleyReuse   | StanReuseT     | 3         |
| StanReuseW   | WestyStandleyReuse      | StanReuseW     | 3         |
| StanWesPln   | WestyWaterInThornAcc    | StanWesPln     | 3         |
| USR_ResPln   | USR_RightsInSpinney     | USR_ResPln     | 3         |
| WGLks_Pln    | WestGravelLakesPln      | WGLks_Pln      | 3         |

| Plan ID      | Plan Name             | River Location | Plan Type |
|--------------|-----------------------|----------------|-----------|
| 06LAF_DIVRE  | Laf I Non-Res Reuse   | 06LAF_REUSE    | 4         |
| 0702318      | CoorsWWTP             | 0702318        | 4         |
| 0802300DW    | BiCityDWPlan          | 0802300DW      | 4         |
| AurSC_Reuse  | AuroraSCReuse         | AurSC_Reuse    | 4         |
| AurSC_Reuse  | Sand Ck Aurora Plan   | AurSC_Reuse    | 4         |
| AurTotEffl   | AuroraTotalEffluent   | AurTotEffl     | 4         |
| BearCkPln    | BearCkDivnPlan        | BearCkPIn      | 4         |
| BriReuse     | BrightonReuse         | BriReuse       | 4         |
| CoorsGuaPln  | CoorsGuaranteeWater   | CoorsGuaPln    | 4         |
| Gold_WWTP    | GoldenWWTP            | Gold_WWTP      | 4         |
| LInReusable  | LongEffluent          | LONG_IN_Re     | 4         |
| LOutReusable | LongLIRFs             | LONG_OUT_Re    | 4         |
| MetPumpsPln  | MetroPumpsPlan        | MetPumpsPln    | 4         |
| MetroArv     | MetroArvadaPIn        | MetroArv       | 4         |
| MetroAur     | MetroAuroraPlan       | MetroAur       | 4         |
| MetroConM    | MetroConMutPln        | MetroConM      | 4         |
| MetroDW      | MetroDWPlan           | MetroDW        | 4         |
| MetroGold    | MetroGoldenPlan       | MetroGold      | 4         |
| MetroTh      | MetroThnPlan          | MetroTh        | 4         |
| MetroWesty   | MetroWestyPlan        | MetroWesty     | 4         |
| NglennReuse  | NorthglennReuse       | NglennReuse    | 4         |
| PCWA_Reuse   | PlumCklWtrAuthPlan    | PCWA_Reuse     | 4         |
| SAC_Reuse    | SACWSDReusePIn        | SAC_Reuse      | 4         |
| WestyReuse   | WestyReuse            | WestyReuse     | 4         |
| 0404634      | AdamsTunnelDiversion  | 0404634        | 7         |
| 05_BRCBT     | BRCBTImpPlan          | 05_BRCBT       | 7         |
| 05_LHCBT     | LHCBTImpPlan          | 05_LHCBT       | 7         |
| 05_LongCBT   | LongCBTImpPlan        | 05_LongCBT     | 7         |
| 05_SVCBT     | SVCBTImpPlan          | 05_SVCBT       | 7         |
| 06_CBT_IMP   | C-BTImports Plan      | 06_CBT_IMP     | 7         |
| 06_MOF_IMP   | Moffat Import Plan    | 06_MOF_IMP     | 7         |
| 06_SWSP_IMP  | SWSP Import Plan      | 06_SWSP_IMP    | 7         |
| 060800_IMP   | Boulder Import Plan   | 060800_IMP     | 7         |
| 0700903      | StraightCkTunnelPlan  | 0700903        | 7         |
| 0704625      | BerthoudPassDPlan     | 0704625        | 7         |
| 0704626      | VidlerTunnelPlan      | 0704626        | 7         |
| 0704650      | GumlickTunnelPlan     | 0704650        | 7         |
| 2304611      | BoreasPassDPlan       | 2304611        | 7         |
| 8000653      | RobertsTunnelPlan     | 8000653        | 7         |
| HOMSPICO     | HomestakePipelinePlan | HOMSPICO       | 7         |

| Plan ID     | Plan Name              | River Location | Plan Type |
|-------------|------------------------|----------------|-----------|
| SandHill_C  | SandHillPlan           | SandHill_C     | 7         |
| 0102513_PIR | ROTHE RA Plan          | 0102513        | 8         |
| 0102518_PIC | PIONEER Canal Plan     | 0102518        | 8         |
| 0102518_PIR | PIONEER RA Plan        | 0102518        | 8         |
| 0102522_PIC | RIVERSIDE Canal Plan   | 0102522        | 8         |
| 0102522_PIR | RIVERSIDE RA Plan      | 0102522        | 8         |
| 0102528_PIC | FT MORGAN Canal Plan   | 0102528        | 8         |
| 0102528_PIR | FT MORGAN RA Plan      | 0102528        | 8         |
| 0102529_PIC | UPPER PB Canal Plan    | 0102529        | 8         |
| 0102529_PIR | UPPER PB RA Plan       | 0102529        | 8         |
| 0102535_PIC | LPB CANAL PLAN         | 0102535        | 8         |
| 0102535_PIR | LPB RA PLAN            | 0102535        | 8         |
| 0103339_PIC | BIJOU Canal Plan       | 0103339        | 8         |
| 0103339_PIR | BIJOU RA Plan          | 0103339        | 8         |
| 0103570_PIR | BIJOU RA Plan          | 0103570        | 8         |
| 0200824_PIC | FarmersCanalRecharge   | 0200824_PIC    | 8         |
| 0200824_PIR | FarmersPondRecharge    | 0200824_PIR    | 8         |
| 0200825_PIC | HewesCkCanalRecharge   | 0200825_PIC    | 8         |
| 0200825_PIR | HewesCkPondRecharge    | 0200825_PIR    | 8         |
| 0202003_PIR | FordRechargePIn        | 0202003_PIR    | 8         |
| 6402517_PCP | SEDGWICK Peterson Plan | 6402517        | 8         |
| 6402517_PCS | SEDGWICK SReserv Plan  | 6402517        | 8         |
| 6402517_PIR | SEDGWICK CTY RA PLAN   | 6402517        | 8         |
| 6402518_PIC | HARMONY CANAL PLAN     | 6402518        | 8         |
| 6402518_PIR | HARMONY RA PLAN        | 6402518        | 8         |
| 6402519_PIR | DINSDALE AUG           | 6402519        | 8         |
| 6402525_PIR | CONDON AUG             | 6402525        | 8         |
| 6402526_PIC | STERLING AUG           | 6402526        | 8         |
| 6402526_PIR | STERLING AUG           | 6402526        | 8         |
| 6402536_PCB | LLWUA Bravo D          | 6402536        | 8         |
| 6402536_PCH | LLWUA Harmony D        | 6402536        | 8         |
| 6402536_PCI | LLWUA Iliff Platte D   | 6402536        | 8         |
| 6402536_PCP | LLWUA Powell Blair D   | 6402536        | 8         |
| 6402536_PIR | LOWER LOGAN WELL USERS | 6402536        | 8         |
| 6402539_PCC | LWU Schneider D        | 6402539        | 8         |
| 6402539_PCF | LWU Farmers Pawnee D   | 6402539        | 8         |
| 6402539_PCP | LWU South Platte D     | 6402539        | 8         |
| 6402539_PCS | LWU Springdale D       | 6402539        | 8         |
| 6402539_PCT | LWU Sterling No 1 D    | 6402539        | 8         |
| 6402539_PIR | LWU RA PLAN            | 6402539        | 8         |

| Plan ID      | Plan Name              | <b>River Location</b> | Plan Type |
|--------------|------------------------|-----------------------|-----------|
| 6402540_PIC  | LOWLINE CANAL PLAN     | 6402540               | 8         |
| 6402540_PIR  | LOWLINE RA PLAN        | 6402540               | 8         |
| 6402542_PCL  | LSPWCD Liddle D        | 6402542               | 8         |
| 6402542_PCP  | LSPWCD Peterson D      | 6402542               | 8         |
| 6402542_PIR  | LSPWCD AUG             | 6402542               | 8         |
| 6403392_PIC  | NORTH CANAL PLAN       | 6403392               | 8         |
| 6403392_PIR  | NORTH RA PLAN          | 6403392               | 8         |
| 9902502_PIR  | SACWSDAugPIn           | 9902502_PIR           | 8         |
| 9902541_PIR  | BrightonAugPIn         | 9902541_PIR           | 8         |
| 9903394_PIR  | CentralAugPln          | 9903394_PIR           | 8         |
| Camp_Creek   | Camp_Creek             | Camp_Creek            | 10        |
| Coffin_Well  | Coffin_Well            | Coffin_Well           | 10        |
| Kiowa_Bijou  | Kiowa_Bijou            | Kiowa_Bijou           | 10        |
| Lost_Creek   | Lost_Creek             | Lost_Creek            | 10        |
| Upper_Crow   | Upper_Crow             | Upper_Crow            | 10        |
| 05_BRCBT_PIn | BRCBTAcctPlan          | 05_BRCBT_PIn          | 11        |
| 05_LHCBT_PIn | LHCBTAcctPlan          | 05_LHCBT_PIn          | 11        |
| 05_SVCBT_PIn | SVCBTAcctPlan          | 05_SVCBT_PIn          | 11        |
| 06_CBT_ACC   | C-BTAcct Plan          | 06_CBT_ACC            | 11        |
| 06_CBT_SP1   | C-BTSplit Plan 1 60pct | 06_CBT_ACC            | 11        |
| 06_CBT_SP2   | C-BTSplit Plan 2 20pct | 06_CBT_ACC            | 11        |
| 06_MOF_ACC   | Moffat Acct Pln        | 06_MOF_ACC            | 11        |
| 06_SWSP_PL   | SWSP Acct Pln          | 06_SWSP_PL            | 11        |
| 060800_ACC   | Boulder Acct Pln       | 060800_PL             | 11        |
| AdamsTunPln  | AdamsTunnelPlan        | AdamsTunPln           | 11        |
| BerthoudPln  | Berthoud Pass DPlan    | BerthoudPln           | 11        |
| BoreasPln    | Boreas Pass DPlan      | BoreasPln             | 11        |
| CBT_AllPIn   | HoldAllCBTimports      | CBT_AllPIn            | 11        |
| Compact_Pln  | Compact_Plan           | 6499999               | 11        |
| CosCoExcFR   | FRICOCoorsBypExch      | CosCoExcFR            | 11        |
| CosCoExcNg   | NorthglennCoorsByp     | CosCoExcNg            | 11        |
| CosCoExcPln  | CoorsBypassExchFromW   | CosCoExcPln           | 11        |
| CosCoExcWe   | WestyCoorsBypExch      | CosCoExcWe            | 11        |
| CosGoExcNg   | NorthglennGoldenBy     | CosGoExcNg            | 11        |
| CosGoExcPln  | GoldenBypassExchFrom   | CosGoExcPln           | 11        |
| CosGoExcWe   | WestyGoldenBypExc      | CosGoExcWe            | 11        |
| GumlickPln   | GumlickTunnelPlan      | GumlickPln            | 11        |
| HomestkPln   | HomestakePipelinePlan  | HomestkPln            | 11        |
| LongCBT_PIn  | LongCBTAcctPlan        | LongCBT_PIn           | 11        |
| RobTunPln    | RobertsTunnelPlan      | RobTunPln             | 11        |

| Plan ID     | Plan Name              | River Location | Plan Type |
|-------------|------------------------|----------------|-----------|
| SandHillPln | SandHillPlan           | SandHillPln    | 11        |
| StratCkPln  | StraightCkTunnelPlan   | StratCkPln     | 11        |
| VidlerPln   | VidlerTunnelPlan       | VidlerPln      | 11        |
| 0102513_RnL | ROTHE North RA Limit   | 0102513_RnL    | 12        |
| 0102513_RsL | ROTHE South RA Limit   | 0102513_RsL    | 12        |
| 0102518_RL  | PIONEER RA Limit       | 0102518_RL     | 12        |
| 0102522_RL  | RIVERSIDE RA Limit     | 0102522_RL     | 12        |
| 0102528_RL  | FT MORGAN RA Limit     | 0102528_RL     | 12        |
| 0102529_RL  | UPPER PB RA Limit      | 0102529_RL     | 12        |
| 0102535_RL  | LPB RA LIMIT           | 0102535_RL     | 12        |
| 0103339_RL  | BIJOU RA Limit         | 0103339_RL     | 12        |
| 0200824_RL  | FarmIndepRelLim        | USP_RL         | 12        |
| 0200825_RL  | HewesCookRelLim        | USP_RL         | 12        |
| 0202003_RL  | FordRelLim             | USP_RL         | 12        |
| 06_BWR_XLIM | BWR Exchange Limits    | 060516_PL      | 12        |
| 06_CBT_LIM  | Boulder C-BTExch Limit | 06_CBT_ACC     | 12        |
| 060501_CHL1 | Anderson ChgLm Bou 1   | 060501_PL      | 12        |
| 060501_CHL2 | Anderson ChgLm Bou 2   | 060501_PL      | 12        |
| 060501_CHL3 | Anderson ChgLm Bou 3   | 060501_PL      | 12        |
| 060525_CHL1 | Farmers ChgLm Bou 1    | 060525_PL      | 12        |
| 060525_CHL2 | Farmers ChgLm Bou 2    | 060525_PL      | 12        |
| 060538_CHL1 | LowBoul ChgLm LoBo 59  | 060538_PL      | 12        |
| 060538_CHL2 | LowBoul ChgLm DryCkDav | 060538_PL      | 12        |
| 060538_CHL3 | LowBoul ChgLm Enterpri | 060538_PL      | 12        |
| 060538_CHL4 | LowBoul ChgLm Central  | 060538_PL      | 12        |
| 060538_CHL5 | LowBoul ChgLm South    | 060538_PL      | 12        |
| 060538_CHL8 | LowBoul ChgLm LoBo 70  | 060538_PL      | 12        |
| 060538_CXL1 | LowBoul BoMunX ChgLm 1 | 060538_PL      | 12        |
| 060538_CXL2 | LowBoul BoMunX ChgLm 2 | 060538_PL      | 12        |
| 060538_CXL3 | LowBoul BoMunX ChgLm 3 | 060538_PL      | 12        |
| 060538_CXL4 | LowBoul BoMunX ChgLm 4 | 060538_PL      | 12        |
| 060554_CHL1 | SmithGoss ChgLm Bou 1  | 060554_PL      | 12        |
| 060564_CHL1 | SoBoCoal ChgLm Louis 1 | 060564_PL      | 12        |
| 060565_CHL1 | LeynCott ChgLm Lafyt   | 060902_PL      | 12        |
| 060565_CHL2 | LeynCott ChgLm Louis   | 060902_PL      | 12        |
| 060566_CHL1 | Cotton2 ChgLm Louis 1  | 060902_PL      | 12        |
| 060566_CHL2 | Cotton2 ChgLm Louis 2  | 060902_PL      | 12        |
| 060567_CHL1 | Davidsn ChgLm Lafyt 1  | 060567_PL      | 12        |
| 060567_CHL2 | Davidsn ChgLm Lafyt 2  | 060567_PL      | 12        |
| 060567_CHL3 | Davidsn ChgLm Louis 3  | 060567_PL      | 12        |

| Plan ID     | Plan Name              | <b>River Location</b> | Plan Type |
|-------------|------------------------|-----------------------|-----------|
| 060569_CHL1 | DCDavd ChgLm Lafyt 1   | 060902_PL             | 12        |
| 060569_CHL2 | DCDavd ChgLm Louis 2   | 060902_PL             | 12        |
| 060569_CHL3 | DCDavd ChgLm CoRid 3   | 060902_PL             | 12        |
| 060570_CHL1 | DryCk2 ChgLm Lafyt 1   | 060570_PL             | 12        |
| 060570_CHL2 | DryCk2 ChgLm Lafyt 2   | 060570_PL             | 12        |
| 060570_CHL3 | DryCk2 ChgLm Lafyt 3   | 060570_PL             | 12        |
| 060570_CHL4 | DryCk2 ChgLm Louis 4   | 060570_PL             | 12        |
| 060570_CHL5 | DryCk2 ChgLm Louis 5   | 060570_PL             | 12        |
| 060570_CHL6 | DryCk2 ChgLm Louis 6   | 060570_PL             | 12        |
| 060575_CHL1 | East Bould ChgLm Louis | 060575_PL             | 12        |
| 060575_CHL2 | East Bould ChgLm Xcel  | 060575_PL             | 12        |
| 060576_CHL1 | Entprs ChgLm Lafyt 1   | 060902_PL             | 12        |
| 060576_CHL2 | Entprs ChgLm Lafyt 2   | 060902_PL             | 12        |
| 060576_CHL3 | Entprs ChgLm Louis 3   | 060902_PL             | 12        |
| 060576_CHL4 | Entprs ChgLm Louis 4   | 060902_PL             | 12        |
| 060576_CHL5 | Entprs ChgLm CoRid 5   | 060902_PL             | 12        |
| 060580_CHL1 | Howard ChgLm Lafyt 1   | 060580_PL             | 12        |
| 060580_CHL2 | Howard ChgLm Lafyt 2   | 060580_PL             | 12        |
| 060580_CHL3 | Howard ChgLm Louis 3   | 060580_PL             | 12        |
| 060580_CHL4 | Howard ChgLm Louis 4   | 060580_PL             | 12        |
| 060580_CHL5 | Howard ChgLm Louis 5   | 060580_PL             | 12        |
| 060580_CHL6 | Howard ChgLm Louis 6   | 060580_PL             | 12        |
| 060580_CHL7 | Howard ChgLm Eldora 7  | 060580_PL             | 12        |
| 060599_CHL1 | Boulder PL MSF Alt Pt  | 060599_PL             | 12        |
| 060650_CHL1 | Goodhue ChgLm Lafyt 1  | 060650_PL             | 12        |
| 060650_CHL2 | Goodhue ChgLm Lafyt 2  | 060650_PL             | 12        |
| 060650_CHL3 | Goodhue ChgLm Lafyt 3  | 060650_PL             | 12        |
| 060650_CHL4 | Goodhue ChgLm Louis 4  | 060650_PL             | 12        |
| 064173_CH   | Base Rels Limit        | 064173_CH             | 12        |
| 06LAF_RELIM | Laf I Reuse Limits     | 06LAF_REUSE           | 12        |
| 527_Pln81DF | 527DirectFlow81Limit   | 0500527_P             | 12        |
| 527_Pln87DF | 527DirectFlow87Limit   | 0500527_P             | 12        |
| 528_Pln81DF | 528DirectFlow81Limit   | 0500528_P             | 12        |
| 529_Pln81DF | 529DirectFlow81Limit   | 0500529_P             | 12        |
| 530_Pln81DF | 530DirectFlow81Limit   | 0500530_P             | 12        |
| 545_Pln81DF | 545DirectFlow81Limit   | 0500545_P             | 12        |
| 545_Pln87DF | 545DirectFlow87Limit   | 0500545_P             | 12        |
| 547_Pln81DF | 547DirectFlow81Limit   | 0500547_P             | 12        |
| 547_Pln87DF | 547DirectFlow87Limit   | 0500547_P             | 12        |
| 551_Pln87DF | 551DirectFlow87Limit   | 0500551_P             | 12        |

| Plan ID     | Plan Name               | River Location | Plan Type |
|-------------|-------------------------|----------------|-----------|
| 552_Pln87DF | 552DirectFlow87Limit    | 0500552_P      | 12        |
| 554_Pln87DF | 554DirectFlow87Limit    | 0500554_P      | 12        |
| 558_Pln87DF | 558DirectFlow87Limit    | 0500558_P      | 12        |
| 560_Pln87DF | 560DirectFlow87Limit    | 0500560_P      | 12        |
| 601_Pln87DF | 601DirectFlow87Limit    | 0500601_P      | 12        |
| 6402517_R1  | SEDGWICK Peterson Limit | 6402517        | 12        |
| 6402517_R2  | SEDGWICK SReserv Limit  | 6402517        | 12        |
| 6402518_RL  | HARMONY RA LIMIT        | 6402518        | 12        |
| 6402526_RL  | STERLING RA LIMIT       | 6402526        | 12        |
| 6402536_R1  | LLWUA IPV PLAN LIMIT    | 6402536        | 12        |
| 6402536_R2  | LLWUA HARMONY LIMIT     | 6402536        | 12        |
| 6402536_R3  | LLWUA BRAVO PLAN LIMIT  | 6402536        | 12        |
| 6402539_R1  | LWU SCHNEIDER LIMIT     | 6402539        | 12        |
| 6402539_R2  | LWU SOUTH PLATTE LIMIT  | 6402539        | 12        |
| 6402539_R3  | LWU SPRINGDALE LIMIT    | 6402539        | 12        |
| 6402539_R4  | LWU STERLING NO1 LIMIT  | 6402539        | 12        |
| 6402539_R5  | LWU FARMERS LIMIT       | 6402539        | 12        |
| 6402540_RL  | LOWLINE RA LIMIT        | 6402540        | 12        |
| 6402542_R1  | LSPWCD LIDDLE LIMIT     | 6402542        | 12        |
| 6402542_R2  | LSPWCD PETERSON LIMIT   | 6402542        | 12        |
| 6402542_R3  | LSPWCD HEYBORNE LIMIT   | 6402542        | 12        |
| 6403392_RL  | NORTH RA LIMIT          | 6403392        | 12        |
| Ag_ConM_RL  | ConMutualAgDitchLim     | USP_RL         | 12        |
| AgCoors_RL  | CoorsAgDitchLimLim      | USP_RL         | 12        |
| AurInt_RL1  | AuroraW2083_Limit       | USP_RL         | 12        |
| AurInt_RL2  | AuroraW91CW117_Limit    | USP_RL         | 12        |
| BriFul_RL   | BriFultonRelLim         | USP_RL         | 12        |
| CenBri_RL   | CenFultonRelLim         | USP_RL         | 12        |
| CenFI_RL    | CenFIRelLim             | USP_RL         | 12        |
| CenFul_RL   | CenFultonRelLim         | USP_RL         | 12        |
| CenHigh_RL  | CenHighlandRelLim       | USP_RL         | 12        |
| CenLB_RL    | CenLBRelLim             | USP_RL         | 12        |
| CenLM_RL    | CenLMRelLim             | USP_RL         | 12        |
| CenPV_RL    | CenPVRelLim             | USP_RL         | 12        |
| CenSN3_RL   | CenSN3RelLim            | USP_RL         | 12        |
| ChrchCo_RL  | CoorsChurchDitchLim     | USP_RL         | 12        |
| ChrchGo_RL  | GoldenChurchDitchLim    | USP_RL         | 12        |
| ChrchNg_RL  | NglennChurchDitchLim    | USP_RL         | 12        |
| ChrchTh_RL  | ThorntonChurchDitchLim  | USP_RL         | 12        |
| ChrchWe_RL  | WestyChurchDitchLim     | USP_RL         | 12        |

| Plan ID     | Plan Name               | <b>River Location</b> | Plan Type |
|-------------|-------------------------|-----------------------|-----------|
| CoorsRJ_RL  | CoorsRenoJ_Lim          | USP_RL                | 12        |
| CoorsRM_RL  | CoorsRkyMtnLim          | USP_RL                | 12        |
| Cosmic_RL1  | Coors Bypass Limit      | USP_RL                | 12        |
| Cosmic_RL2  | Golden Bypass Limit     | USP_RL                | 12        |
| Cosmic_RL3  | LCCLimitPlanCosmic      | USP_RL                | 12        |
| DWB_PSCo_RL | DWB_ReuseRelLim         | USP_RL                | 12        |
| FHL_Coo_RL  | CoorsFHLLim             | USP_RL                | 12        |
| FHL_Thn_RL  | ThornFHLLim             | USP_RL                | 12        |
| FHL_Wes_RL  | WestyFHLLim             | USP_RL                | 12        |
| FishPSC_RL  | PSCoFisherLim           | USP_RL                | 12        |
| FishTh_RL   | ThorntonFisherLim       | USP_RL                | 12        |
| LSEConM_RL  | ConM_LSE_Lim            | USP_RL                | 12        |
| LSEGol1_RL  | Golden_LSE_Pri12_Lim    | USP_RL                | 12        |
| LSEGol2_RL  | Golden_LSE_Lim          | USP_RL                | 12        |
| MetroAurRL  | MetroAuroraReuseLim     | USP_RL                | 12        |
| NglennLB_RL | NglennLBRelLim          | USP_RL                | 12        |
| NgInFul_RL  | NgInFultonRelLim        | USP_RL                | 12        |
| PSCoHC_RL   | PSCoHCRelLim            | USP_RL                | 12        |
| PSCoJT_RL   | PSCoJTRelLim            | USP_RL                | 12        |
| PSCoLB_RL   | PSCoLBRelLim            | USP_RL                | 12        |
| PSCoLM_RL   | PSCoLMRelLim            | USP_RL                | 12        |
| PSCoMI21_RL | PSCoMI2SenRelLim        | USP_RL                | 12        |
| PSCoMI22_RL | PSCoMI2JunRelLim        | USP_RL                | 12        |
| SACBri_RL   | SACFultonRelLim         | USP_RL                | 12        |
| SACBurl_RL  | SACBurlRelLim           | USP_RL                | 12        |
| SACFul_RL   | SACFultonRelLim         | USP_RL                | 12        |
| SACLB_RL    | SACLBRelLim             | USP_RL                | 12        |
| SACLM_RL    | SACLMRelLim             | USP_RL                | 12        |
| SACMI1_RL   | SACMI1RelLim            | USP_RL                | 12        |
| Standley_RL | Stan1FillPInSourceTo    | Standley_RL           | 12        |
| ThBurl_RL   | ThBurlRelLim            | USP_RL                | 12        |
| ThCoAg02_RL | Thorn02caseCoAgRelLim   | USP_RL                | 12        |
| ThCoAg89_RL | Thorn89caseCoAgRelLim   | USP_RL                | 12        |
| ThLCC_02_RL | Thorn02caseLCC_RelLim   | USP_RL                | 12        |
| ThLCC_89_RL | Thorn89caseLCC_RelLim   | USP_RL                | 12        |
| WannCoo_RL  | CoorsWannLim            | USP_RL                | 12        |
| Welch_RL    | ConMutualWelchLim       | USP_RL                | 12        |
| WesKer86_RL | Westy_86CW398_ExchLim   | USP_RL                | 12        |
| WesKer93_RL | Westy_93CW176_KerExcLim | USP_RL                | 12        |
| WesMan93_RL | Westy_93CW176_ManExcLim | USP_RL                | 12        |

| Plan ID     | Plan Name              | <b>River Location</b> | Plan Type |  |
|-------------|------------------------|-----------------------|-----------|--|
| 060501_CH1  | Anderson D Chg Bou 1   | 060501_PL             | 13        |  |
| 060501_CH2  | Anderson D Chg Bou 2   | 060501_PL             | 13        |  |
| 060501_CH3  | Anderson D Chg Bou 3   | 060501_PL             | 13        |  |
| 060501_CHI1 | Anderson D Irr         | 060501_PL             | 13        |  |
| 060501_CHT1 | Anderson D Chg         | 060501_PL             | 13        |  |
| 060525_CH1  | Farmers D Chg Bou 1    | 060525_PL             | 13        |  |
| 060525_CH2  | Farmers D Chg Bou 2    | 060525_PL             | 13        |  |
| 060525_CHT1 | Farmers D Chg          | 060525_PL             | 13        |  |
| 060525_CS1  | Farmers D 10pct on D   | 060525_PL             | 13        |  |
| 060525_CS2  | Farmers D 5pct on D    | 060525_PL             | 13        |  |
| 060530_CH1  | Harden D Chg Bou 1     | 060599_PL             | 13        |  |
| 060538_CH1  | LBLafyt Chg LoBo 1859  | 060538_PL             | 13        |  |
| 060538_CH2  | LBLafyt Chg DryCkDavid | 060538_PL             | 13        |  |
| 060538_CH5  | LBLafyt Chg South      | 060538_PL             | 13        |  |
| 060538_CH6  | LBLafyt Chg LoBo 1870  | 060538_PL             | 13        |  |
| 060538_CH7  | LBLafyt Chg CentSou    | 060538_PL             | 13        |  |
| 060538_CH8  | LBLafyt Chg CentSou    | 060538_PL             | 13        |  |
| 060538_CHI1 | LowBoul Irrig Chg 1    | 060538_PL             | 13        |  |
| 060538_CHI2 | LowBoul Irrig Chg 2    | 060538_PL             | 13        |  |
| 060538_CHI5 | LowBoul Irrig Chg 5    | 060538_PL             | 13        |  |
| 060538_CHI6 | LowBoul Irrig Chg 6    | 060538_PL             | 13        |  |
| 060538_CHI8 | LowBoul Irrig Chg 8    | 060538_PL             | 13        |  |
| 060538_CHT1 | LowBoul Chg LoBo 1859  | 060538_PL             | 13        |  |
| 060538_CHT2 | LowBoul Chg LoBo 1863  | 060538_PL             | 13        |  |
| 060538_CHT5 | LowBoul Chg LoBo 1870  | 060538_PL             | 13        |  |
| 060538_CHT6 | LowBoul Chg LoBo 1882  | 060538_PL             | 13        |  |
| 060538_CHT8 | LowBoul Chg LoBo 1882  | 060538_PL             | 13        |  |
| 060538_CX1  | LowBoul Bo MunEx Chg 1 | 060538_PL             | 13        |  |
| 060538_CX2  | LowBoul Bo MunEx Chg 2 | 060538_PL             | 13        |  |
| 060538_CX3  | LowBoul Bo MunEx Chg 3 | 060538_PL             | 13        |  |
| 060538_CX4  | LowBoul Bo MunEx Chg 4 | 060538_PL             | 13        |  |
| 060538_CX5  | CentSou Bo MunEx Chg 1 | 060538_PL             | 13        |  |
| 060538_CX6  | CentSou Bo MunEx Chg 2 | 060538_PL             | 13        |  |
| 060542_CH1  | McCarty D Chg          | 060542_PL             | 13        |  |
| 060543_CH1  | NoBoFarm Chg 1         | 060543_PL             | 13        |  |
| 060543_CH2  | NoBoFarm Chg 2         | 060543_PL             | 13        |  |
| 060543_CH3  | NoBoFarm Chg 3         | 060543_PL             | 13        |  |
| 060543_CH4  | NoBoFarm Chg 4         | 060543_PL             | 13        |  |
| 060554_CH1  | SmithGoss Chg Bou 1    | 060554_PL             | 13        |  |
| 060554_CH2  | SmithGoss Chg Bou 2    | 060554_PL             | 13        |  |

| Plan ID     | Plan Name              | <b>River Location</b> | Plan Type |  |
|-------------|------------------------|-----------------------|-----------|--|
| 060554_CHT1 | SmithGoss Chg          | 060554_PL             | 13        |  |
| 060554_CS1  | SmithGoss 10pct on D   | 060554_PL             | 13        |  |
| 060554_CS2  | SmithGoss 5pct on D    | 060554_PL             | 13        |  |
| 060564_CH1  | SoBo Cl Ck Chg Louis 1 | 060564_PL             | 13        |  |
| 060564_CHI1 | SoBo Cl Ck Irr         | 060564_PL             | 13        |  |
| 060564_CHT1 | SoBo Cl Ck Chg         | 060564_PL             | 13        |  |
| 060564_CS1  | SoBo Cl Ck 16.6pct     | 060564_PL             | 13        |  |
| 060565_CH1  | LeynCott Chg Lafyt     | 060902_PL             | 13        |  |
| 060565_CH2  | LeynCott Chg Louis     | 060902_PL             | 13        |  |
| 060565_CHI1 | LeynCott Irr           | 060902_PL             | 13        |  |
| 060565_CHT1 | LeynCott Chg           | 060902_PL             | 13        |  |
| 060565_CS1  | LeynCott 10pct in D    | 060902_PL             | 13        |  |
| 060565_CS2  | LeynCott 20pct in D    | 060902_PL             | 13        |  |
| 060566_CH1  | Cotton No2 Chg Louis 1 | 060902_PL             | 13        |  |
| 060566_CH2  | Cotton No2 Chg Louis 2 | 060902_PL             | 13        |  |
| 060566_CHI1 | Cotton No2 Irr         | 060902_PL             | 13        |  |
| 060566_CHT1 | Cotton No2 Chg         | 060902_PL             | 13        |  |
| 060566_CS1  | Cotton No2 19pct on D  | 060902_PL             | 13        |  |
| 060566_CS2  | Cotton No2 19pct on D  | 060902_PL             | 13        |  |
| 060567_CH1  | Davidson Chg Lafyt 1   | 060567_PL             | 13        |  |
| 060567_CH2  | Davidson Chg Lafyt 2   | 060567_PL             | 13        |  |
| 060567_CH3  | Davidson Chg Louis 3   | 060567_PL             | 13        |  |
| 060567_CHT1 | Davidson Chg           | 060567_PL             | 13        |  |
| 060567_CS2  | Davidson 10pct in D    | 060567_PL             | 13        |  |
| 060567_CS3  | Davidson 10pct in D    | 060567_PL             | 13        |  |
| 060569_CH1  | DCDavd Chg Lafytt 1    | 060902_PL             | 13        |  |
| 060569_CH2  | DCDavd Chg Louis 2     | 060902_PL             | 13        |  |
| 060569_CH3  | DCDavd Chg CoalRidge 3 | 060902_PL             | 13        |  |
| 060569_CHI1 | DCDavd Irr             | 060902_PL             | 13        |  |
| 060569_CHT1 | DCDavd Chg             | 060902_PL             | 13        |  |
| 060569_CS1  | DCDavd 12pct in D      | 060902_PL             | 13        |  |
| 060569_CS2  | DCDavd 17.7pct in D    | 060902_PL             | 13        |  |
| 060570_CH1  | DryCk2 Chg Lafyt 1     | 060570_PL             | 13        |  |
| 060570_CH2  | DryCk2 Chg Lafyt 2     | 060570_PL             | 13        |  |
| 060570_CH3  | DryCk2 Chg Lafyt 3     | 060570_PL             | 13        |  |
| 060570_CH4  | DryCk2 Chg Louis 1     | 060570_PL             | 13        |  |
| 060570_CH5  | DryCk2 Chg Louis 2     | 060570_PL             | 13        |  |
| 060570_CH6  | DryCk2 Chg Louis 3     | 060570_PL             | 13        |  |
| 060570_CHT1 | DryCk2 Chg             | 060570_PL             | 13        |  |
| 060570_CS4  | DryCk2 10pct in D      | 060570_PL             | 13        |  |

| Plan ID     | Plan Name              | <b>River Location</b> | ocation Plan Type |  |
|-------------|------------------------|-----------------------|-------------------|--|
| 060570_CS5  | DryCk2 17pct in D      | 060570_PL             | 13                |  |
| 060570_CS6  | DryCk2 50pct in D      | 060570_PL             | 13                |  |
| 060575_CH1  | East Bould Chg Louis   | 060575_PL             | 13                |  |
| 060575_CH2  | East Bould Chg Xcel    | 060575_PL             | 13                |  |
| 060575_CHT1 | East Bould Chg         | 060575_PL             | 13                |  |
| 060575_CS1  | East Bould 17pct on D  | 060575_PL             | 13                |  |
| 060576_CH1  | Entprs Chg Lafytt 1    | 060902_PL             | 13                |  |
| 060576_CH2  | Entprs Chg Lafytt 2    | 060902_PL             | 13                |  |
| 060576_CH3  | Entprs Chg Louis 3     | 060902_PL             | 13                |  |
| 060576_CH4  | Entprs Chg Louis 4     | 060902_PL             | 13                |  |
| 060576_CH5  | Entprs Chg CoalRidge 5 | 060902_PL             | 13                |  |
| 060576_CHI1 | Entprs Irr             | 060902_PL             | 13                |  |
| 060576_CHT1 | Entprs Chg             | 060902_PL             | 13                |  |
| 060576_CS3  | Entprs 16.6pct on D    | 060902_PL             | 13                |  |
| 060576_CS4  | Entprs 16.6pct on D    | 060902_PL             | 13                |  |
| 060580_CH1  | Howard Chg Lafyt 1     | 060580_PL             | 13                |  |
| 060580_CH2  | Howard Chg Lafyt 2     | 060580_PL             | 13                |  |
| 060580_CH3  | Howard Chg Louis 3     | 060580_PL             | 13                |  |
| 060580_CH4  | Howard Chg Louis 4     | 060580_PL             | 13                |  |
| 060580_CH5  | Howard Chg Louis 5     | 060580_PL             | 13                |  |
| 060580_CH6  | Howard Chg Louis 6     | 060580_PL             | 13                |  |
| 060580_CH7  | Howard Chg Eldora 7    | 060580_PL             | 13                |  |
| 060580_CHT1 | Howard Chg             | 060580_PL             | 13                |  |
| 060580_CS1  | Howard 20pct in D      | 060580_PL             | 13                |  |
| 060580_CS2  | Howard 20pct in D      | 060580_PL             | 13                |  |
| 060580_CS3  | Howard 10pct in D      | 060580_PL             | 13                |  |
| 060580_CS4  | Howard 10pct in D      | 060580_PL             | 13                |  |
| 060580_CS5  | Howard 20pct in D      | 060580_PL             | 13                |  |
| 060580_CS6  | Howard 15pct in D      | 060580_PL             | 13                |  |
| 060580_CS7  | Howard 5pct in D       | 060580_PL             | 13                |  |
| 060585_CH1  | Mrshvl Chg Louis 1     | 060585_PL             | 13                |  |
| 060586_CH1  | McGinn Chg Louis 1     | 060586_PL             | 13                |  |
| 060588_CH1  | SouBouBC Chg Lafyt 1   | 060588_PL             | 13                |  |
| 060599_CH1  | Boulder PL MSF Pln 1   | 060599_PL             | 13                |  |
| 060599_CH2  | Boulder PL MSF Pln 2   | 060599_PL             | 13                |  |
| 060599_CHT1 | Boulder PL MSF Alt Pt  | 060599_PL             | 13                |  |
| 060650_CH1  | Goodhue Chg Lafyt 1    | 060650_PL             | 13                |  |
| 060650_CH2  | Goodhue Chg Lafyt 2    | 060650_PL             | 13                |  |
| 060650_CH3  | Goodhue Chg Lafyt 3    | 060650_PL             | 13                |  |
| 060650_CH4  | Goodhue Chg Lafyt 4    | 060650_PL             | 13                |  |

| Plan ID     | Plan Name               | <b>River Location</b> | Plan Type |
|-------------|-------------------------|-----------------------|-----------|
| 060650_CHT1 | Goodhue Chg             | 060650_PL             | 13        |
| 060650_CS4  | Goodhue 10pct in d      | 060650_PL             | 13        |
| 150_85Split | Burlington1885Divn      | 150_85Split           | 13        |
| 200_85Split | Barr 1885 divn          | 200_85Split           | 13        |
| 2302201     | BeeryDTransferPlan      | 2302201               | 13        |
| 2302900_Pln | SFkSPRAbvAnteroPln      | 2302900_Pln           | 13        |
| 2302901_Pln | 4 Mile Nr Harstel Pln   | 2302901_Pln           | 13        |
| 2302902_Pln | SPR_Santa Maria Pln     | 2302902_Pln           | 13        |
| 2302902_Pln | SPR_Santa Maria Pln     | 2302902_Pln           | 13        |
| 2302903_Pln | SFkSPRAbvSpinneyPln     | 2302903_Pln           | 13        |
| 2302903_Pln | SFkSPRAbvSpinneyPln     | 2302903_Pln           | 13        |
| 2302904_Pln | 4MileAtHighCkPln        | 2302904_Pln           | 13        |
| 2302904_Pln | 4MileAtHighCkPln        | 2302904_Pln           | 13        |
| 2302906_Pln | TroutGaroPIn            | 2302906_Pln           | 13        |
| 2302907_Pln | MichCkAbvJeffersonPIn   | 2302907_Pln           | 13        |
| 2302907_Pln | SprBranch Ab Mid Fk Pln | 2302907_Pln           | 13        |
| 2302908_Pln | JeffCkNrJeffersonPlan   | 2302908_Pln           | 13        |
| 2302908_Pln | MidSPR_PrincePln        | 2302908_Pln           | 13        |
| 2302909_Pln | TroutGaroPIn            | 2302909_Pln           | 13        |
| 2302910_Pln | OhlerGulchGagePlan      | 2302910_Pln           | 13        |
| 2302910_Pln | SprBranchAbMidFkPln     | 2302910_Pln           | 13        |
| 2302911_Pln | MidSPR_PrincePln        | 2302911_Pln           | 13        |
| 2302912_Pln | SPR_Santa Maria Pln     | 2302912_Pln           | 13        |
| 2302913_Pln | SFkSPRAbvSpinneyPln     | 2302913_Pln           | 13        |
| 2302914_Pln | FrenchCkGagePlan        | 2302914_Pln           | 13        |
| 2302914_Pln | 4MileAtHighCkPln        | 2302914_Pln           | 13        |
| 2302915_Pln | TroutGaroPln            | 2302915_Pln           | 13        |
| 2302916_Pln | SchattingerGagePlan     | 2302916_Pln           | 13        |
| 2302916_Pln | SprBranchAbMidFkPln     | 2302916_Pln           | 13        |
| 2302917_Pln | MidSPR_PrincePln        | 2302917_Pln           | 13        |
| 2302918_Pln | MidSPR_PrincePln        | 2302918_Pln           | 13        |
| 527_Pln     | 527ChangePlan           | 0500527_P             | 13        |
| 527_Pln81   | 527ChangeSplit81        | 0500527_P             | 13        |
| 527_Pln87   | 527ChangeSplit87        | 0500527_P             | 13        |
| 528_Pln81   | 528ChangePlan           | 0500528_P             | 13        |
| 529_Pln81   | 529ChangePlan           | 0500529_P             | 13        |
| 530_Pln81   | 530ChangePlan           | 0500530_P             | 13        |
| 545_Pln     | 545ChangePlan           | 0500545_P             | 13        |
| 545_Pln81   | 545ChangeSplit81        | 0500545_P             | 13        |
| 545_Pln87   | 545ChangeSplit87        | 0500545_P             | 13        |

| Plan ID     | Plan Name                | <b>River Location</b> | Location Plan Type |  |
|-------------|--------------------------|-----------------------|--------------------|--|
| 547_Pln     | 547ChangePlan            | 0500547_P             | 13                 |  |
| 547_Pln81   | 547ChangeSplit81         | 0500547_P             | 13                 |  |
| 547_Pln87   | 547ChangeSplit87         | 0500547_P             | 13                 |  |
| 547_PlnI    | 547IrrPlan               | 0500547_P             | 13                 |  |
| 551_Pln87   | 551ChangePlan            | 0500551_P             | 13                 |  |
| 552_Pln87   | 552ChangePlan            | 0500552_P             | 13                 |  |
| 554_Pln87   | 554ChangePlan            | 0500554_P             | 13                 |  |
| 558_Pln87   | 558ChangePlan            | 0500558_P             | 13                 |  |
| 560_Pln87   | 560ChangePlan            | 0500560_P             | 13                 |  |
| 601_Pln87   | 601ChangePlan            | 0500601_P             | 13                 |  |
| 6400525_PL  | HendersonSmith Plan      | 6400525_PL            | 13                 |  |
| 6400528_PL  | SterlingNo1 Plan         | 6400528_PL            | 13                 |  |
| AgIrrPln    | AgDIrrigPlan             | AgIrrPln              | 13                 |  |
| AgSplPln    | AgDitchSplitPlan         | AgSplPln              | 13                 |  |
| ArvChPln    | ArvadaChurchDPlan        | ArvChPln              | 13                 |  |
| ArvFHLPIn   | Arvada FHLPlan           | ArvFHLPIn             | 13                 |  |
| ArvRJPIn    | Arvada Reno Juchem DPlan | ArvRJPln              | 13                 |  |
| ArvSluPln   | ArvadaSloughDPlan        | ArvSluPln             | 13                 |  |
| AurIntPln1  | AuroraIntakePlanW2083    | AurIntPln1            | 13                 |  |
| AurIntPln2  | AuroraIntakePIn91CW117   | AurIntPln2            | 13                 |  |
| AurIntPln3  | AuroraIntakePIn1964      | AurIntPln3            | 13                 |  |
| BarnDL_Pln  | PL_BarnesDitchLoss       | BarnDL_Pln            | 13                 |  |
| Barnes_Pln  | PL_BarnesPlan            | Barnes_Pln            | 13                 |  |
| BarnLV_Pln  | PL_BarnesLvIndPlan       | BarnLV_Pln            | 13                 |  |
| Berthoud_C  | BerthoudPassCarrier      | Berthoud_C            | 13                 |  |
| BigTDL_PIn  | PL_BigTDitchLoss         | BigTDL_PIn            | 13                 |  |
| BigTLV_PIn  | PL_BigTLvIndPlan         | BigTLV_PIn            | 13                 |  |
| BigTMfg_Pln | PL_BigTMfgPlan           | BigTMfg_Pln           | 13                 |  |
| Boreas_C    | BoreasPassCarrier        | Boreas_C              | 13                 |  |
| BriFulPln   | FultonBrightonChange     | BriFulPln             | 13                 |  |
| BrilrrPln   | BrightonIrrigPlan        | BrilrrPln             | 13                 |  |
| BriSplPln   | BrightonSplitPlan        | BriSplPln             | 13                 |  |
| Bur10Split  | Burlington10.28Divn      | Bur10Split            | 13                 |  |
| CenBriPln   | BrightonCentralChangE    | CenBriPln             | 13                 |  |
| CenFarmPln  | CentralFarmersChange     | CenFarmPln            | 13                 |  |
| CenFulPIn   | FultonCentralChange      | CenFulPIn             | 13                 |  |
| CenHighPln  | CentralHighlandChange    | CenHighPln            | 13                 |  |
| CenLBPIn    | LBCentralChange          | CenLBPIn              | 13                 |  |
| CenLMPIn    | CentralLB10cfsChange     | CenLMPIn              | 13                 |  |
| CenPVPIn    | CentralPVChange          | CenPVPIn              | 13                 |  |

| Plan ID     | Plan Name                | River Location | Plan Type |  |
|-------------|--------------------------|----------------|-----------|--|
| CenSN3Pln   | CentralSN3Change         | CenSN3PIn      | 13        |  |
| ChrchIrrPln | ChurchDIrrigPlan         | ChrchIrrPln    | 13        |  |
| ChrchSplPl1 | ChurchDSplitPlan2        | ChrchSplPl1    | 13        |  |
| ChrchSplPln | ChurchDSplitPlan1        | ChrchSplPln    | 13        |  |
| ChubbuckPln | PL_ChubbuckPlan          | ChubbuckPln    | 13        |  |
| ChubDL_Pln  | PL_ChubDitchLoss         | ChubDL_PIn     | 13        |  |
| ChubLV_Pln  | PL_ChubLvIndPlan         | ChubLV_Pln     | 13        |  |
| Cnd20DirPln | Cond20DirectFlowPln      | Cnd20DirPln    | 13        |  |
| CoAgIrrPln  | ColoAgIrrigPlan          | CoAgIrrPIn     | 13        |  |
| CoAgSplPIn  | ColoAgDSplitPlan         | CoAgSplPIn     | 13        |  |
| Cond20Pln   | Cond20ChangedRightsPln   | Cond20Pln      | 13        |  |
| ConM_Ag_PIn | ConMutualAgDPlan         | ConM_Ag_Pln    | 13        |  |
| ConM_LS2PIn | Con Mutual LSE 1988 Plan | ConM_LS2PIn    | 13        |  |
| ConM_LSEPIn | ConMutualLSEPlan         | ConM_LSEPIn    | 13        |  |
| ConM_RM_PIn | ConMutual RkyMtnDPlan    | ConM_RM_PIn    | 13        |  |
| CoorsAgPIn  | CoorsAgDPlan             | CoorsAgPIn     | 13        |  |
| CoorsChPln  | CoorsChurchDPlan         | CoorsChPln     | 13        |  |
| CoorsFHLPIn | CoorsFHLPlan             | CoorsFHLPIn    | 13        |  |
| CoorsRJPIn  | CoorsRenoJuchemDPlan     | CoorsRJPIn     | 13        |  |
| CoorsRM_PIn | Coors Rky Mtn DPlan      | CoorsRM_PIn    | 13        |  |
| CoorsSluPln | CoorsSloughDPlan         | CoorsSluPIn    | 13        |  |
| CoorsWanPIn | CoorsWannamakerDPlan     | CoorsWanPln    | 13        |  |
| CosmcPln1   | Golden Bypass Wtr Source | CosmcPln1      | 13        |  |
| CosmcPln2   | CoorsBypassWtrSource     | CosmcPln2      | 13        |  |
| DenLastDPIn | DenverLastChanceDPIn     | DenLastDPln    | 13        |  |
| EngIntPln   | EnglewoodNevadaDPlan     | EngIntPIn      | 13        |  |
| EngLastDPIn | EnglwdLastChanceDPIn     | EngLastDPIn    | 13        |  |
| FandGIndPIn | FarmGardIndusPlan        | FandGIndPln    | 13        |  |
| FandGIrrPIn | FarmGardIrrigPlan        | FandGIrrPIn    | 13        |  |
| FandGSplPln | FarmGardSplitPlan        | FandGSplPIn    | 13        |  |
| FarmIrrPln  | FarmersIndIrrigPln       | FarmIrrPln     | 13        |  |
| FarmSplPIn  | FarmersIndSplitPlan      | FarmSplPIn     | 13        |  |
| FB150_85Pln | FricoBarr150_1885Divn    | FB150_85Pln    | 13        |  |
| FB200_85Pln | FricoBarr200_1885Divn    | FB200_85Pln    | 13        |  |
| FHL_IrrPIn  | FHLIrrigPlan             | FHL_IrrPln     | 13        |  |
| FHL_SplPln  | FHLSplitPlan             | FHL_SplPIn     | 13        |  |
| FishIrrPln  | FisherIrrigPlan          | FishIrrPln     | 13        |  |
| FishSplPIn  | Fisher DSpli Plan        | FishSplPln     | 13        |  |
| FullrrPln   | FultonIrrigPlan          | FullrrPln      | 13        |  |
| FulSplPln   | FultonSplitPlan          | FulSplPln      | 13        |  |

| Plan ID     | Plan Name                 | River Location | ocation Plan Type |  |
|-------------|---------------------------|----------------|-------------------|--|
| GeoRDL_PIn  | PL_GeorgeRDitchLoss       | GeoRDL_PIn     | 13                |  |
| GeoRist_Pln | PL_GeorgeRistPlan         | GeoRist_Pln    | 13                |  |
| GeoRLV_Pln  | PL_GeorgeRLvIndPlan       | GeoRLV_Pln     | 13                |  |
| GldnCtyDPln | GoldenCityDitchPlan       | GldnCtyDPln    | 13                |  |
| GldPri12Pln | GoldenLSEPriority12Pln    | GldPri12Pln    | 13                |  |
| Gold_LSEPIn | GoldenLSEPlan             | Gold_LSEPIn    | 13                |  |
| GoldChPln   | GoldenChurchDPlan         | GoldChPln      | 13                |  |
| GoldLSE2PIn | Golden LSEPlan After Loss | GoldLSE2PIn    | 13                |  |
| GoldSluPln  | GoldenSloughDPlan         | GoldSluPln     | 13                |  |
| Gumlick_C   | JonePassCarrier           | Gumlick_C      | 13                |  |
| HewesIrrPln | HewesCookIrrigPIn         | HewesIrrPln    | 13                |  |
| HewesSplPIn | HewsCookSplitPlan         | HewesSplPln    | 13                |  |
| HID15085Pln | Henrylyn150_1885Divn      | HID15085Pln    | 13                |  |
| HID20085Pln | Henrylyn200_1885Divn      | HID20085Pln    | 13                |  |
| HighIrrPln  | HighlandIrrigPln          | HighIrrPln     | 13                |  |
| HighSplPln  | HighlandSplitPlan         | HighSplPln     | 13                |  |
| Homestk_C   | HomestakePL_Carrier       | Homestk_C      | 13                |  |
| KerlrrPln   | KershawIrrigPlan          | KerIrrPln      | 13                |  |
| KerSplPln   | KershawDSplitPlan         | KerSplPln      | 13                |  |
| LastDSplPIn | LastChanceDSplPlan        | LastDSplPln    | 13                |  |
| LB_IrrPln   | LuptonBottomIrrigPlan     | LB_IrrPln      | 13                |  |
| LB_SplPln   | LuptonBottomSplitPlan     | LB_SplPln      | 13                |  |
| LB200_85Pln | LittleBurl200_1885Divn    | LB200_85Pln    | 13                |  |
| LBBur10Pln  | LittBurlBurlington10.28   | LBBur10Pln     | 13                |  |
| LBSanstPln  | Little Burl Sanstad 6     | LBSanstPln     | 13                |  |
| LBWell7Pln  | LittleBurlWellington7     | LBWell7Pln     | 13                |  |
| LCC_IrrPln  | LCCDIrrigPlan             | LCC_IrrPln     | 13                |  |
| LCC_SplPIn  | LCCDSplitPlan             | LCC_SplPIn     | 13                |  |
| LM_SplPIn   | Lupton Meadows Split Plan | LM_SplPIn      | 13                |  |
| LoudDL_Pln  | PL_LoudenDitchLoss        | LoudDL_PIn     | 13                |  |
| Louden_Pln  | PL_LoudenPlan             | Louden_Pln     | 13                |  |
| LoudLV_PIn  | PL_LoudenLvIndPlan        | LoudLV_Pln     | 13                |  |
| LSE_IrrPln  | LSEIrrigPlan              | LSE_IrrPln     | 13                |  |
| LSE_SplPIn  | LSEDitchSplitPlan         | LSE_SplPIn     | 13                |  |
| M2JunSplPln | Meadowlsland2JunSplPlan   | M2JunSplPln    | 13                |  |
| M2SenSplPIn | MeadowIsland2SenSplPlan   | M2SenSplPIn    | 13                |  |
| MI1IrrPln   | Meadowlsland1IrrigPln     | MI1IrrPln      | 13                |  |
| MI1SplPIn   | Meadowlsland1SplitPlan    | MI1SplPln      | 13                |  |
| MI2IrrPln   | Meadowlsland1IrrigPln     | MI2IrrPln      | 13                |  |
| Ngl_LCCPIn  | NorthglennLCCDPlan        | Ngl_LCCPIn     | 13                |  |

| Plan ID     | Plan Name              | <b>River Location</b> | Plan Type |  |
|-------------|------------------------|-----------------------|-----------|--|
| NglennChPln | NglennChurchDPlan      | NglennChPln           | 13        |  |
| NglennLBPln | LBNorthglennChange     | NglennLBPIn           | 13        |  |
| NgInFulPIn  | FultonNorthglennChange | NgInFulPIn            | 13        |  |
| OrigXferPln | PL_OrigXferPlan        | OrigXferPln           | 13        |  |
| PSCoFishPln | PSCoFisherDPlan        | PSCoFishPln           | 13        |  |
| PSCoHewsPln | PSCHewesCookChange     | PSCoHewsPln           | 13        |  |
| PSCoLBPIn   | PSCoLuptonBottomChange | PSCoLBPIn             | 13        |  |
| PSCoLMPIn   | PSCoLB10cfsChange      | PSCoLMPIn             | 13        |  |
| PSCoMI2PIn1 | PSCoMI2SenChange       | PSCoMI2PIn1           | 13        |  |
| PSCoMI2PIn2 | PSCoMI2JunChange       | PSCoMI2PIn2           | 13        |  |
| PV_IrrPln   | PlattevilleIrrigPln    | PV_IrrPln             | 13        |  |
| PVSplPIn    | PlattevilleSplPIn      | PVSplPln              | 13        |  |
| RJ_IrrPln   | RenoJuchemDIrrigPIn    | RJ_IrrPln             | 13        |  |
| RJ_SplPIn   | RenoJuchemDSplitPln    | RJ_SplPln             | 13        |  |
| RM_IrrPln   | RkyMtnDIrrigPlan       | RM_IrrPln             | 13        |  |
| RM_SplPIn   | RkyMtnDSplitPlan       | RM_SplPln             | 13        |  |
| RobTun_C    | RobertsTunnelCarrier   | RobTun_C              | 13        |  |
| SA200_85Pln | SA200_1885Divn         | SA200_85Pln           | 13        |  |
| SABur10Pln  | SABurlington10.28      | SABur10Pln            | 13        |  |
| SAC_BriPln  | SACWSDBrightonChange   | SAC_BriPln            | 13        |  |
| SAC_FulPIn  | FultonSACWSDChange     | SAC_FulPIn            | 13        |  |
| SAC_LBPIn   | SACWSDLuptonBtmChange  | SAC_LBPIn             | 13        |  |
| SAC_LMPIn   | SACWSDLB10cfsChange    | SAC_LMPIn             | 13        |  |
| SAC_MI1PIn  | SACWSDMI1Change        | SAC_MI1PIn            | 13        |  |
| SanstSplit  | Sanstad6Divn           | SanstSplit            | 13        |  |
| SASanstPln  | SASanstad6             | SASanstPln            | 13        |  |
| SAWell7Pln  | SAWellington7          | SAWell7Pln            | 13        |  |
| SluSplit1   | SloughDNo1SplPlan      | SluSplit1             | 13        |  |
| SluSplit2   | SloughDNo2SplPlan      | SluSplit2             | 13        |  |
| SluSplit3   | SloughDNo3SplPlan      | SluSplit3             | 13        |  |
| SluSplit4   | SloughDNo4SplPlan      | SluSplit4             | 13        |  |
| SluSplit5   | SloughDNo5SplPlan      | SluSplit5             | 13        |  |
| SN3IrrPln   | SectionNo3IrrigPIn     | SN3IrrPln             | 13        |  |
| SN3SplPln   | SectionNo3SplPIn       | SN3SplPln             | 13        |  |
| SouSdDL_PIn | PL_SSideDitchLoss      | SouSdDL_PIn           | 13        |  |
| SouSdLV_PIn | PL_SSideLvIndPlan      | SouSdLV_PIn           | 13        |  |
| SouSide_Pln | PL_SSidePlan           | SouSide_Pln           | 13        |  |
| SouthSidPln | CoorsSouthSideCredits  | SouthSidPln           | 13        |  |
| Stan1902Pln | CrokeOneFillStoRight   | Stan1902Pln           | 13        |  |
| StanLimPln  | Croke1FillPlnRightSt   | StanLimPln            | 13        |  |

| Plan ID     | Plan Name               | <b>River Location</b> | on Plan Type |  |
|-------------|-------------------------|-----------------------|--------------|--|
| StanPlnF    | FRICO1902Croke          | StanPInF              | 13           |  |
| StanPlnN    | Northglenn1902Croke     | StanPlnN              | 13           |  |
| StanPInT    | Thornton1902Croke       | StanPInT              | 13           |  |
| StanPlnW    | Westy1902Croke          | StanPlnW              | 13           |  |
| StratCk_C   | StraightCkTunnelCarrier | StratCk_C             | 13           |  |
| TaryTempPIn | ChangedRightsForRel     | TaryTempPln           | 13           |  |
| Th200_85Pln | Thornton200_1885Divn    | Th200_85Pln           | 13           |  |
| ThBur10Pln  | ThorntonBurlington10.28 | ThBur10Pln            | 13           |  |
| ThChurchPln | ThorntonChurchDPlan     | ThChurchPln           | 13           |  |
| ThCoAg02Pln | ThorntonCoAg02CW266PIn  | ThCoAg02Pln           | 13           |  |
| ThCoAg89PIn | ThorntonCoAg89CW132PIn  | ThCoAg89Pln           | 13           |  |
| ThFHLPIn    | ThorntonFHLPlan         | ThFHLPIn              | 13           |  |
| ThFishPln   | ThorntonFisherDPlan     | ThFishPln             | 13           |  |
| ThKerPln    | Thornton Kershaw DPlan  | ThKerPln              | 13           |  |
| ThLCC02Pln  | ThorntonLCC02CW132Plan  | ThLCC02PIn            | 13           |  |
| ThLCC89Pln  | ThorntonLCC89CW132Plan  | ThLCC89PIn            | 13           |  |
| ThSanstPln  | Thornton Sanstad 6      | ThSanstPln            | 13           |  |
| ThWell7Pln  | ThorntonWellington7     | ThWell7Pln            | 13           |  |
| Vidler_C    | VidlerTunnelCarrier     | Vidler_C              | 13           |  |
| WannIrrPln  | WannamakerDIrrigPlan    | WannIrrPln            | 13           |  |
| WannSplPIn  | WannamakerDSplPlan      | WannSplPln            | 13           |  |
| WelcConMPIn | WelchConMutPlan         | WelcConMPIn           | 13           |  |
| WelchIrrPln | WelchIrrigPlan          | WelchIrrPln           | 13           |  |
| WelchPln    | WelchPlan               | WelchPln              | 13           |  |
| Well7Split  | Wellington7Divn         | Well7Split            | 13           |  |
| WestKer1Pln | Westy68CW398KershPln    | WestKer1Pln           | 13           |  |
| WestKer2Pln | Westy68CW398KershPln    | WestKer2Pln           | 13           |  |
| WestyChPIn  | WestyChurchDPlan        | WestyChPIn            | 13           |  |
| WestyFHLPIn | WestyFHLPlan            | WestyFHLPIn           | 13           |  |
| WestyKerPln | WestyKershawDPlan       | WestyKerPln           | 13           |  |

# 7.5 Aggregate Well Structures

The table below summarizes the structures in the well station file (\*.wes). The same aggregate boundaries are used for surface water and ground water structures; see Figure 7-1 and Figure 7-2 for the aggregate boundaries.

| #  | Model ID    | Name                                           | Capacity<br>(cfs) | 2010<br>Irrigated<br>Acreage | Average<br>System<br>Efficiency<br>(%) | Average<br>Annual<br>Demand<br>(AF) | Structure Type<br>(See Footnotes) |
|----|-------------|------------------------------------------------|-------------------|------------------------------|----------------------------------------|-------------------------------------|-----------------------------------|
| 1  | 01_ADP037   | South Platte River below Kersey Co North 2     | 3                 | 806                          | 60                                     | 28                                  | Irr                               |
| 2  | 01_AMP001_I | WD 1 Muni Ind                                  | 92                | N/A                          | 10                                     | 3,809                               | M/I                               |
| 3  | 01_AMP001_O | WD 1 Muni Out                                  | 92                | N/A                          | 83                                     | 2,992                               | M/I                               |
| 4  | 01_AUP001_I | WD 1 Unincorp Ind                              | 999               | N/A                          | 10                                     | 13,669                              | M/I                               |
| 5  | 01_AUP001_O | WD 1 Unincorp Out                              | 999               | N/A                          | 83                                     | 10,740                              | M/I                               |
| 6  | 01_AUP002_I | WD 1 Unincorp Ind                              | 999               | N/A                          | 10                                     | 1,831                               | M/I                               |
| 7  | 01_AUP002_O | WD 1 Unincorp Out                              | 999               | N/A                          | 83                                     | 1,439                               | M/I                               |
| 8  | 01_AWP001   | Camp Creek Designated Basin                    | 31                | 2,025                        | 60                                     | 4,131                               | Irr                               |
| 9  | 01_AWP002   | South Platte River below Weldona CO North      | 269               | 1,590                        | 60                                     | 4,429                               | Irr                               |
| 10 | 01_AWP003   | WD 1 Upper Beaver Creek                        | 133               | 2,147                        | 60                                     | 7,954                               | lrr                               |
| 11 | 01_AWP004   | WD 1 Main Stem Beaver Creek                    | 108               | 757                          | 60                                     | 4,663                               | Irr                               |
| 12 | 01_AWP005   | WD 1 Washington County                         | 62                | 193                          | 60                                     | 1,881                               | Irr                               |
| 13 | 01_AWP006   | South Platte River below Weldona CO South<br>1 | 28                | 197                          | 60                                     | 1,624                               | Irr                               |
| 14 | 01_AWP007   | South Platte River below Weldona CO South<br>2 | 188               | 1,484                        | 60                                     | 5,301                               | Irr                               |
| 15 | 01_AWP008   | Upper Kiowa Bijou Designated Basin             | 21                | 916                          | 60                                     | 1,704                               | Irr                               |
| 16 | 01_AWP009   | Upper Kiowa Bijou Designated Basin             | 46                | 1,638                        | 60                                     | 3,066                               | Irr                               |
| 17 | 01_AWP010   | Lower Kiowa Bijou Designated Basin East 1      | 37                | 1,375                        | 60                                     | 2,311                               | Irr                               |

#### Table 7-5: Well Station File Summary
| #  | Model ID  | Name                                           | Capacity<br>(cfs) | 2010<br>Irrigated<br>Acreage | Average<br>System<br>Efficiency<br>(%) | Average<br>Annual<br>Demand<br>(AF) | Structure Type<br>(See Footnotes) |
|----|-----------|------------------------------------------------|-------------------|------------------------------|----------------------------------------|-------------------------------------|-----------------------------------|
| 18 | 01_AWP011 | Lower Kiowa Bijou Designated Basin East 2      | 78                | 2,830                        | 60                                     | 5,948                               | Irr                               |
| 19 | 01_AWP012 | Lower Kiowa Bijou Designated Basin East 4      | 223               | 5,519                        | 60                                     | 8,642                               | Irr                               |
| 20 | 01_AWP013 | Lower Kiowa Bijou Designated Basin East 5      | 61                | 2,950                        | 60                                     | 5,102                               | Irr                               |
| 21 | 01_AWP014 | Lower Kiowa Bijou Designated Basin East 6      | 175               | 4,726                        | 60                                     | 7,497                               | Irr                               |
| 22 | 01_AWP015 | Lower Kiowa Bijou Designated Basin East 7      | 126               | 3,921                        | 60                                     | 5,745                               | Irr                               |
| 23 | 01_AWP016 | Lower Kiowa Bijou Designated Basin East 8      | 111               | 3,176                        | 60                                     | 6,492                               | Irr                               |
| 24 | 01_AWP017 | Lower Kiowa Bijou Designated Basin East 9      | 79                | 2,646                        | 60                                     | 5,069                               | Irr                               |
| 25 | 01_AWP018 | Lower Kiowa Bijou Designated Basin East 10     | 123               | 6,042                        | 60                                     | 9,747                               | Irr                               |
| 26 | 01_AWP019 | Lower Kiowa Bijou Designated Basin West 1      | 147               | 4,301                        | 60                                     | 7,085                               | Irr                               |
| 27 | 01_AWP020 | Lower Kiowa Bijou Designated Basin West 2      | 50                | 2,562                        | 60                                     | 4,644                               | Irr                               |
| 28 | 01_AWP021 | Lower Kiowa Bijou Designated Basin West 3      | 60                | 1,935                        | 60                                     | 3,838                               | Irr                               |
| 29 | 01_AWP022 | Lower Lost Creek Designated Basin 1            | 46                | 2,875                        | 60                                     | 4,776                               | Irr                               |
| 30 | 01_AWP023 | Lower Lost Creek Designated Basin 2            | 107               | 4,605                        | 60                                     | 10,363                              | Irr                               |
| 31 | 01_AWP024 | Lower Lost Creek Designated Basin 3            | 111               | 2,909                        | 60                                     | 4,177                               | Irr                               |
| 32 | 01_AWP025 | Upper Lost Creek Designated Basin              | 30                | 2,013                        | 60                                     | 3,668                               | Irr                               |
| 33 | 01_AWP026 | South Platte River Above Weldona Co South<br>1 | 70                | 786                          | 60                                     | 2,951                               | Irr                               |
| 34 | 01_AWP027 | South Platte River Above Weldona Co South 2    | 88                | 2,266                        | 60                                     | 4,566                               | Irr                               |
| 35 | 01_AWP028 | South Platte River Above Weldona Co South 3    | 114               | 2,000                        | 60                                     | 6,528                               | Irr                               |
| 36 | 01_AWP029 | South Platte River Above Weldona Co South<br>4 | 65                | 1,407                        | 60                                     | 4,205                               | Irr                               |
| 37 | 01_AWP030 | South Platte River Above Weldona Co South 5    | 118               | 1,803                        | 60                                     | 4,851                               | Irr                               |

| #  | Model ID  | Name                                              | Capacity<br>(cfs) | 2010<br>Irrigated<br>Acreage | Average<br>System<br>Efficiency<br>(%) | Average<br>Annual<br>Demand<br>(AF) | Structure Type<br>(See Footnotes) |
|----|-----------|---------------------------------------------------|-------------------|------------------------------|----------------------------------------|-------------------------------------|-----------------------------------|
| 38 | 01_AWP031 | South Platte River below Riverside Canal<br>South | 123               | 3,516                        | 60                                     | 7,145                               | lrr                               |
| 39 | 01_AWP032 | WD 1 Lower Boxelder Creek                         | 150               | 3,976                        | 60                                     | 5,405                               | Irr                               |
| 40 | 01_AWP033 | South Platte River Above Weldona Co North         | 71                | 1,197                        | 60                                     | 4,534                               | Irr                               |
| 41 | 01_AWP035 | WD 1 Upper Boxelder Creek                         | 57                | 875                          | 60                                     | 2,551                               | Irr                               |
| 42 | 01_AWP037 | South Platte River below Kersey Co North 2        | 28                | 600                          | 60                                     | 533                                 | Irr                               |
| 43 | 01_AWP038 | Upper Crow Creek Designated Basin                 | 119               | 4,997                        | 60                                     | 7,798                               | Irr                               |
| 44 | 01_AWP039 | Upper Kiowa Bijou Designated Basin                | 42                | 1,860                        | 60                                     | 3,895                               | Irr                               |
| 45 | 01_AWP040 | Upper Kiowa Bijou Designated Basin                | 27                | 1,661                        | 60                                     | 2,175                               | Irr                               |
| 46 | 01_AWP042 | South Platte River below Kersey Co South          | 159               | 3,914                        | 60                                     | 8,068                               | Irr                               |
| 47 | 01_AWP043 | WD 1 Upper Boxelder Creek                         | 30                | 843                          | 60                                     | 1,601                               | Irr                               |
| 48 | 01_AWP044 | WD 1 Lower Boxelder Creek                         | 1                 | 53                           | 60                                     | 3                                   | Irr                               |
| 49 | 0100503_I | RIVERSIDE CANAL DEMAND                            | 248               | 27,943                       | 60                                     | 4,636                               | Irr                               |
| 50 | 0100507_I | BIJOU CANAL DEMAND                                | 1,072             | 27,877                       | 60                                     | 4,512                               | Irr                               |
| 51 | 0100511   | Weldon Valley Ditch                               | 77                | 7,844                        | 60                                     | 0                                   | Irr                               |
| 52 | 0100514   | Ft Morgan Div System                              | 253               | 10,318                       | 60                                     | 476                                 | Irr                               |
| 53 | 0100515   | Upper Platte Beaver Cana                          | 299               | 10,134                       | 60                                     | 1,173                               | Irr                               |
| 54 | 0100517   | Deuel Snyder Canal                                | 152               | 1,439                        | 60                                     | 262                                 | Irr                               |
| 55 | 0100518   | Lower Platte Beaver Ditc                          | 393               | 12,362                       | 60                                     | 8,086                               | lrr                               |
| 56 | 0100519_D | TREMONT DITCH DIVSYS                              | 298               | 3,847                        | 60                                     | 2,012                               | Irr                               |
| 57 | 0100520   | Gill Stevens Ditch                                | 28                | 559                          | 60                                     | 1,527                               | Irr                               |
| 58 | 0100524   | Trowell Ditch                                     | 17                | 514                          | 60                                     | 582                                 | Irr                               |
| 59 | 0100526   | Johnson Edwards Ditch                             | 162               | 2,175                        | 60                                     | 2,343                               | Irr                               |
| 60 | 0100570   | East Gulch Ditch                                  | 2                 | 174                          | 60                                     | 351                                 | Irr                               |
| 61 | 0100620   | Consolidated Larson D                             | 1                 | 284                          | 60                                     | 184                                 | Irr                               |

| #  | Model ID    | Name                     | Capacity<br>(cfs) | 2010<br>Irrigated<br>Acreage | Average<br>System<br>Efficiency<br>(%) | Average<br>Annual<br>Demand<br>(AF) | Structure Type<br>(See Footnotes) |
|----|-------------|--------------------------|-------------------|------------------------------|----------------------------------------|-------------------------------------|-----------------------------------|
| 62 | 0100687_I   | NORTH STERLING DEMAND    | 50                | 39,009                       | 60                                     | 3,209                               | Irr                               |
| 63 | 0100688     | Union Ditch              | 71                | 1,105                        | 60                                     | 648                                 | Irr                               |
| 64 | 0100711     | PSCo Well Field          | 15                | N/A                          | 100                                    | 3,008                               | M/I                               |
| 65 | 0102513_ReW | Rothe Recharge Well      | 11                | N/A                          | 0                                      | 466                                 | Recharge/Aug Well                 |
| 66 | 0102535_ReW | LPB Recharge Well        | 9                 | N/A                          | 0                                      | 365                                 | Recharge/Aug Well                 |
| 67 | 0103817_I   | JACKSON RESERVOIR DEMAND | 9                 | 342                          | 60                                     | 90                                  | Irr                               |
| 68 | 02_ADP003   | South Platte River below | 21                | 373                          | 60                                     | 4                                   | Irr                               |
| 69 | 02_AUP001_I | WD 2 Agg Uninc In        | 999               | N/A                          | 10                                     | 2,860                               | M/I                               |
| 70 | 02_AUP001_O | WD 2 Agg Uninc Out       | 999               | N/A                          | 83                                     | 2,247                               | M/I                               |
| 71 | 02_AWP001   | WD2 Agg Wells1 blw Barr  | 221               | 3,388                        | 60                                     | 7,216                               | Irr                               |
| 72 | 02_AWP002   | WD2 Agg Wellsw abv Barr  | 129               | 3,647                        | 60                                     | 8,846                               | Irr                               |
| 73 | 02_AWP003   | WD2 Agg Wells 3          | 291               | 3,419                        | 60                                     | 2,431                               | Irr                               |
| 74 | 02_AWP004   | WD2 Agg Wells 4          | 197               | 4,824                        | 60                                     | 7,900                               | Irr                               |
| 75 | 02_AWP005   | WD2 Agg Wells 5          | 22                | 261                          | 60                                     | 628                                 | Irr                               |
| 76 | 02_Bright_I | Brighton Indoor          | 999               | N/A                          | 10                                     | 6,327                               | M/I                               |
| 77 | 02_Bright_O | Brighton Outdoor         | 999               | N/A                          | 83                                     | 4,971                               | M/I                               |
| 78 | 02_SACWSD_I | SACWSD Indoor            | 999               | N/A                          | 10                                     | 3,462                               | M/I                               |
| 79 | 02_SACWSD_O | SACWSD Outdoor           | 999               | N/A                          | 83                                     | 2,720                               | M/I                               |
| 80 | 0200805_I   | DENVER-HUDSON CNL        | 484               | 25,909                       | 60                                     | 23,486                              | Irr                               |
| 81 | 0200808_1   | FULTON DEMAND            | 190               | 6,736                        | 60                                     | 535                                 | Irr                               |
| 82 | 0200809     | Brantner Ditch           | 9                 | 3,850                        | 60                                     | 2                                   | Irr                               |
| 83 | 0200810_I   | BRIGHTON DEMAND          | 27                | 1,592                        | 60                                     | 0                                   | Irr                               |
| 84 | 0200812_I   | LUPTON BOTTOM DEMAND     | 79                | 3,172                        | 60                                     | 71                                  | Irr                               |
| 85 | 0200813_I   | PLATTEVILLE DEMAND       | 82                | 3,586                        | 60                                     | 0                                   | Irr                               |
| 86 | 0200817_1   | EVANS NO 2 DEMAND        | 335               | 13,568                       | 60                                     | 7,027                               | Irr                               |

| #   | Model ID  | Name                                     | Capacity<br>(cfs) | 2010<br>Irrigated<br>Acreage | Average<br>System<br>Efficiency<br>(%) | Average<br>Annual<br>Demand<br>(AF) | Structure Type<br>(See Footnotes) |
|-----|-----------|------------------------------------------|-------------------|------------------------------|----------------------------------------|-------------------------------------|-----------------------------------|
| 87  | 0200821   | Meadow Island No. 1                      | 58                | 1,151                        | 60                                     | 0                                   | Irr                               |
| 88  | 0200822   | Meadow Island No. 2                      | 87                | 2,422                        | 60                                     | 75                                  | Irr                               |
| 89  | 0200824_1 | FARMERS INDEPENDENT DEMA                 | 381               | 4,709                        | 60                                     | 3,504                               | Irr                               |
| 90  | 0200825_1 | HEWES COOK DEMAND                        | 370               | 5,879                        | 60                                     | 1,488                               | Irr                               |
| 91  | 0200826   | Jay Thomas Ditch                         | 0                 | 207                          | 60                                     | 0                                   | Irr                               |
| 92  | 0200828_1 | UNION IRRIGATION DEMAND                  | 188               | 4,578                        | 60                                     | 0                                   | Irr                               |
| 93  | 0200830   | Section No. 3 Ditch                      | 8                 | 1,184                        | 60                                     | 3                                   | Irr                               |
| 94  | 0200834_1 | LOWER LATHAM DEMAND                      | 239               | 9,470                        | 60                                     | 236                                 | Irr                               |
| 95  | 0200836   | Patterson Ditch                          | 1                 | 660                          | 60                                     | 0                                   | Irr                               |
| 96  | 0200837_1 | HIGHLAND DEMAND                          | 3                 | 502                          | 60                                     | 1                                   | Irr                               |
| 97  | 0200871   | Whipple D (Bull Canal)                   | 1                 | 5,447                        | 60                                     | 36                                  | Irr                               |
| 98  | 0200915   | Little Burlington Ditch                  | 66                | 4,408                        | 60                                     | 1,012                               | lrr                               |
| 99  | 0203837_I | FRICO-BARR LAKE DEMAND                   | 211               | 19,795                       | 60                                     | 3,359                               | Irr                               |
| 100 | 0203876_I | FRICO-MILTON LAKE DEMAND                 | 145               | 11,350                       | 60                                     | 4,298                               | Irr                               |
| 101 | 04_AWP001 | Big Thompson below Loveland, CO          | 5                 | 162                          | 60                                     | 82                                  | Irr                               |
| 102 | 04_AWP002 | Little Thompson above Berthoud, CO       | 2                 | 0                            | 60                                     | 105                                 | Irr                               |
| 103 | 04_AWP004 | Big Thompson above Loveland, CO          | 0                 | 0                            | 60                                     | 52                                  | Irr                               |
| 104 | 04_AWP005 | Little Thompson above Big Thompson confl | 2                 | 0                            | 60                                     | 204                                 | Irr                               |
| 105 | 0400502   | Big T & Platte R Ditch                   | 76                | 1,351                        | 60                                     | 29                                  | Irr                               |
| 106 | 0400517   | Evanstown Ditch                          | 5                 | 245                          | 60                                     | 0                                   | Irr                               |
| 107 | 0400519   | Farmers Irrigation Canal                 | 4                 | 1,741                        | 60                                     | 88                                  | Irr                               |
| 108 | 0400521_I | HANDY DITCH DEMAND                       | 5                 | 8,659                        | 60                                     | 131                                 | Irr                               |
| 109 | 0400522   | Hill Brush Ditch                         | 3                 | 447                          | 60                                     | 30                                  | Irr                               |
| 110 | 0400523   | Hillsborough Ditch                       | 32                | 5,897                        | 60                                     | 573                                 | Irr                               |
| 111 | 0400524_1 | HOME SUPPLY DEMAND                       | 9                 | 16,013                       | 60                                     | 547                                 | Irr                               |

| #   | Model ID  | Name                                     | Capacity<br>(cfs) | 2010<br>Irrigated<br>Acreage | Average<br>System<br>Efficiency<br>(%) | Average<br>Annual<br>Demand<br>(AF) | Structure Type<br>(See Footnotes) |
|-----|-----------|------------------------------------------|-------------------|------------------------------|----------------------------------------|-------------------------------------|-----------------------------------|
| 112 | 0400530_1 | LOUDEN DITCH DEMAND                      | 1                 | 2,247                        | 60                                     | 10                                  | lrr                               |
| 113 | 0400532_1 | LOVELAND GREELEY DEMAND                  | 2                 | 16,275                       | 60                                     | 48                                  | lrr                               |
| 114 | 0400583   | Victory Irrig Cnl                        | 0                 | 145                          | 60                                     | 5                                   | lrr                               |
| 115 | 0400588_1 | BOULD LARIM CO IRR MFG D                 | 8                 | 2,632                        | 60                                     | 247                                 | lrr                               |
| 116 | 0400601   | Rockwell Ditch                           | 4                 | 177                          | 60                                     | 5                                   | lrr                               |
| 117 | 0400691_I | HANSEN FEEDER DEMAND                     | 0                 | 1,834                        | 60                                     | 14                                  | lrr                               |
| 118 | 05_ADP001 | Left Hand Creek above St Vrain Group 1   | 0                 | 416                          | 60                                     | 0                                   | lrr                               |
| 119 | 05_AWP001 | Left Hand Creek above St Vrain Group 1   | 0                 | 23                           | 60                                     | 0                                   | lrr                               |
| 120 | 05_AWP004 | St Vrain below Lyons North               | 1                 | 11                           | 60                                     | 0                                   | lrr                               |
| 121 | 0500523   | SUPPLY DITCH                             | 3                 | 4,594                        | 60                                     | 51                                  | Irr                               |
| 122 | 0500526_1 | HIGHLAND DITCH DEMAND                    | 4                 | 28,843                       | 60                                     | 215                                 | lrr                               |
| 123 | 0500527   | ROUGH READY DITCH                        | 0                 | 1,682                        | 60                                     | 0                                   | lrr                               |
| 124 | 0500529   | SWEDE DITCH                              | 0                 | 1,565                        | 60                                     | 5                                   | Irr                               |
| 125 | 0500547_I | OLIGARCHY DITCH DEMAND                   | 0                 | 1,408                        | 60                                     | 0                                   | lrr                               |
| 126 | 0500548   | DENIO TAYLOR DITCH                       | 0                 | 83                           | 60                                     | 0                                   | Irr                               |
| 127 | 0500569   | TABLE MOUNTAIN DITCH                     | 0                 | 760                          | 60                                     | 17                                  | lrr                               |
| 128 | 0500571   | JOHNSON DITCH                            | 18                | 162                          | 60                                     | 65                                  | lrr                               |
| 129 | 0500572   | STAR DITCH                               | 18                | 707                          | 60                                     | 113                                 | lrr                               |
| 130 | 0500573   | HINMAN DITCH                             | 18                | 537                          | 60                                     | 2                                   | lrr                               |
| 131 | 0500575   | WILLIAMSON DITCH                         | 0                 | 877                          | 60                                     | 0                                   | lrr                               |
| 132 | 0500589   | LAST CHANCE DITCH                        | 12                | 1,440                        | 60                                     | 0                                   | lrr                               |
| 133 | 0500601   | ZWECK TURNER DITCH                       | 1                 | 260                          | 60                                     | 0                                   | Irr                               |
| 134 | 0500648   | TOLL GATE DITCH                          | 0                 | 294                          | 60                                     | 4                                   | lrr                               |
| 135 | 06_AWP001 | Boulder Creek to South Platte Confluence | 1                 | 0                            | 60                                     | 1                                   | Irr                               |

| #   | Model ID  | Name                        | Capacity<br>(cfs) | 2010<br>Irrigated<br>Acreage | Average<br>System<br>Efficiency<br>(%) | Average<br>Annual<br>Demand<br>(AF) | Structure Type<br>(See Footnotes) |
|-----|-----------|-----------------------------|-------------------|------------------------------|----------------------------------------|-------------------------------------|-----------------------------------|
| 136 | 0600513   | BOULDER LEFT HAND DITCH     | 0                 | 1,262                        | 60                                     | 0                                   | Irr                               |
| 137 | 0600515_D | BOULDERWELDCTYDIVSYS        | 4                 | 2,079                        | 60                                     | 107                                 | Irr                               |
| 138 | 0600527   | Godding Dailey Plumb Dit    | 0                 | 508                          | 60                                     | 0                                   | Irr                               |
| 139 | 0600528   | GREEN DITCH                 | 0                 | 370                          | 60                                     | 0                                   | Irr                               |
| 140 | 0600532   | Highland Southside Ditch    | 2                 | 554                          | 60                                     | 10                                  | Irr                               |
| 141 | 0600537_I | LEGGETT DITCH DEMAND        | 0                 | 3,225                        | 60                                     | 4                                   | Irr                               |
| 142 | 0600538_I | LOWERBOULDERDIVSYS          | 2                 | 5,280                        | 60                                     | 61                                  | Irr                               |
| 143 | 0600553   | SMITH EMMONS DITCH          | 0                 | 300                          | 60                                     | 0                                   | Irr                               |
| 144 | 0600564_1 | COMMUNITY DITCH DEMAND      | 1                 | 2,845                        | 60                                     | 63                                  | Irr                               |
| 145 | 0600565_1 | LEYNER COTTONWOOD DITCH     | 0                 | 1,342                        | 60                                     | 0                                   | Irr                               |
| 146 | 0600566   | COTTONWOOD DITCH 2          | 0                 | 571                          | 60                                     | 4                                   | Irr                               |
| 147 | 0600569_D | DRYCREEKDAVIDSONDIVSYS      | 0                 | 677                          | 60                                     | 0                                   | Irr                               |
| 148 | 0600580   | HOWARD DITCH                | 0                 | 190                          | 60                                     | 0                                   | Irr                               |
| 149 | 0600586   | MCGINN DITCH                | 0                 | 1,195                        | 60                                     | 0                                   | Irr                               |
| 150 | 0600613   | KERR DITCH NO 2             | 0                 | 5                            | 60                                     | 5                                   | Irr                               |
| 151 | 0600650   | GOODHUE DITCH               | 3                 | 1,550                        | 60                                     | 11                                  | Irr                               |
| 152 | 07_AWP001 | Clear Creek below Golden Co | 1                 | 0                            | 60                                     | 55                                  | Irr                               |
| 153 | 07_CoorsA | Coors Springs               | 4                 | N/A                          | 10                                     | 2,719                               | M/I                               |
| 154 | 0700527_D | SLOUGH DIVSYS               | 0                 | 117                          | 60                                     | 0                                   | Irr                               |
| 155 | 0700547_I | LOWER CLEAR CREEK DEMAND    | 2                 | 858                          | 60                                     | 6                                   | Irr                               |
| 156 | 0700549_1 | COLORADO AG DEMAND          | 1                 | 66                           | 60                                     | 0                                   | Irr                               |
| 157 | 0700569_1 | FHL DEMAND                  | 8                 | 2,262                        | 60                                     | 211                                 | Irr                               |
| 158 | 0700597_1 | KERSHAW DEMAND              | 0                 | 13                           | 60                                     | 0                                   | Irr                               |
| 159 | 0700647   | Reno Juchem Ditch           | 0                 | 57                           | 60                                     | 0                                   | Irr                               |
| 160 | 08_ADP002 | Cherry Creek above Frank    | 14                | 496                          | 60                                     | 539                                 | Irr                               |

| #   | Model ID    | Name                     | Capacity<br>(cfs) | 2010<br>Irrigated<br>Acreage | Average<br>System<br>Efficiency<br>(%) | Average<br>Annual<br>Demand<br>(AF) | Structure Type<br>(See Footnotes) |
|-----|-------------|--------------------------|-------------------|------------------------------|----------------------------------------|-------------------------------------|-----------------------------------|
| 161 | 08_ADP004   | Plum Creek above South P | 4                 | 298                          | 60                                     | 33                                  | Irr                               |
| 162 | 08_AMP001_I | Plum Ck Agg Muni In      | 999               | N/A                          | 10                                     | 3,463                               | M/I                               |
| 163 | 08_AMP001_0 | Plum Ck Agg Muni Out     | 999               | N/A                          | 83                                     | 2,721                               | M/I                               |
| 164 | 08_AMP002_I | Cherry Ck Agg Muni Out   | 999               | N/A                          | 10                                     | 5,792                               | M/I                               |
| 165 | 08_AMP002_O | Cherry Ck Agg Muni Out   | 999               | N/A                          | 83                                     | 4,551                               | M/I                               |
| 166 | 08_AUP001_I | Plum Ck Agg Uninc In     | 999               | N/A                          | 10                                     | 6,528                               | M/I                               |
| 167 | 08_AUP001_O | Plum Ck Agg Uninc Out    | 999               | N/A                          | 83                                     | 5,129                               | M/I                               |
| 168 | 08_AUP002_I | Cherry Ck Agg Uninc In   | 999               | N/A                          | 10                                     | 6,962                               | M/I                               |
| 169 | 08_AUP002_O | Cherry Ck Agg Uninc Out  | 999               | N/A                          | 83                                     | 5,470                               | M/I                               |
| 170 | 08_AWP001   | WD8 Agg Well 1           | 29                | 316                          | 60                                     | 350                                 | Irr                               |
| 171 | 08_AWP002   | WD8 Cherry Ck Agg GW Div | 39                | 494                          | 60                                     | 1,206                               | Irr                               |
| 172 | 08_AWP003   | WD8 SPR Agg GW Divn      | 1                 | 137                          | 60                                     | 72                                  | lrr                               |
| 173 | 08_AWP004   | WD8 Plum Ck Agg GW Divn  | 9                 | 106                          | 60                                     | 262                                 | Irr                               |
| 174 | 08_AWP005   | WD8 Agg Well 5           | 490               | 1,379                        | 60                                     | 2,352                               | Irr                               |
| 175 | 0801004     | Highline Canal           | 3                 | 501                          | 60                                     | 54                                  | Irr                               |
| 176 | 0801009_D   | NEVADADITCHDIVSYS        | 1                 | 92                           | 60                                     | 0                                   | Irr                               |
| 177 | 0801124     | Hayland Ditch            | 1                 | 15                           | 60                                     | 2                                   | Irr                               |
| 178 | 0801125     | Fairview Ditch           | 1                 | 191                          | 60                                     | 80                                  | Irr                               |
| 179 | 0801237     | Spring Creek Ditch       | 0                 | 52                           | 60                                     | 1                                   | Irr                               |
| 180 | 0801240     | Ratcliff Ditch           | 0                 | 52                           | 60                                     | 4                                   | Irr                               |
| 181 | 0801241     | Dakan Ditch              | 0                 | 52                           | 60                                     | 5                                   | Irr                               |
| 182 | 0801403     | Heiser Ditch             | 0                 | 77                           | 60                                     | 0                                   | Irr                               |
| 183 | 0801404     | McCracken Ditch          | 5                 | 103                          | 60                                     | 49                                  | Irr                               |
| 184 | 0801405     | Smith Ditch              | 5                 | 33                           | 60                                     | 46                                  | Irr                               |
| 185 | 0801412     | Sixty Seven Ditch        | 2                 | 94                           | 60                                     | 15                                  | Irr                               |

| #   | Model ID    | Name                                            | Capacity<br>(cfs) | 2010<br>Irrigated<br>Acreage | Average<br>System<br>Efficiency<br>(%) | Average<br>Annual<br>Demand<br>(AF) | Structure Type<br>(See Footnotes) |
|-----|-------------|-------------------------------------------------|-------------------|------------------------------|----------------------------------------|-------------------------------------|-----------------------------------|
| 186 | 0805065     | Aurora Cherry Ck Wells                          | 999               | N/A                          | 0                                      | 2,305                               | M/I                               |
| 187 | 64_AMP001_I | WD 64 Muni Ind                                  | 35                | N/A                          | 10                                     | 3,114                               | M/I                               |
| 188 | 64_AMP001_O | WD 64 Muni Out                                  | 35                | N/A                          | 83                                     | 2,446                               | M/I                               |
| 189 | 64_AUP001_I | WD 64 Unincorp Ind                              | 999               | N/A                          | 10                                     | 2,073                               | M/I                               |
| 190 | 64_AUP001_O | WD 64 Unincorp Out                              | 999               | N/A                          | 83                                     | 1,629                               | M/I                               |
| 191 | 64_AWP001   | Water District 64 Sedgwick County North         | 7                 | 132                          | 60                                     | 313                                 | Irr                               |
| 192 | 64_AWP002   | Water District 64 Sedgwick County South         | 1                 | 122                          | 60                                     | 322                                 | Irr                               |
| 193 | 64_AWP003   | Water District 64 Sedgwick County South         | 27                | 1,744                        | 60                                     | 3,550                               | Irr                               |
| 194 | 64_AWP004   | Water District 64 Sedgwick County GW 1          | 213               | 3,041                        | 60                                     | 7,962                               | Irr                               |
| 195 | 64_AWP005   | Water District 64 Sedgwick County GW 2          | 96                | 2,421                        | 60                                     | 6,463                               | Irr                               |
| 196 | 64_AWP006   | Water District 64 Lower Logan County North      | 27                | 1,131                        | 60                                     | 1,408                               | Irr                               |
| 197 | 64_AWP007   | Water District 64 Lower Logan County South<br>1 | 95                | 1,996                        | 60                                     | 4,917                               | Irr                               |
| 198 | 64_AWP008   | Water District 64 Lower Logan County South 2    | 324               | 5,119                        | 60                                     | 11,552                              | Irr                               |
| 199 | 64_AWP009   | Water District 64 Lower Logan County South 3    | 167               | 3,947                        | 60                                     | 10,213                              | Irr                               |
| 200 | 64_AWP010   | WD 64 Logan County North Blw Tetsel             | 14                | 846                          | 60                                     | 2,186                               | Irr                               |
| 201 | 64_AWP011   | Water District 64 Logan County North<br>Central | 45                | 1,840                        | 60                                     | 4,085                               | Irr                               |
| 202 | 64_AWP012   | WD 64 Logan County S of Pawnee Canal            | 189               | 2,165                        | 60                                     | 6,709                               | Irr                               |
| 203 | 64_AWP013   | WD 64 Logan County N of Pawnee Canal            | 100               | 4,387                        | 60                                     | 10,356                              | Irr                               |
| 204 | 64_AWP014   | WD 64 Logan County North Blw Sterling No<br>1   | 161               | 4,694                        | 60                                     | 9,642                               | Irr                               |
| 205 | 64_AWP015   | Water District 64 Logan County South            | 2                 | 44                           | 60                                     | 352                                 | Irr                               |
| 206 | 64_AWP016   | Water District 64 Weld County                   | 31                | 1,180                        | 60                                     | 1,539                               | Irr                               |

| #   | Model ID    | Name                                | Capacity<br>(cfs) | 2010<br>Irrigated<br>Acreage | Average<br>System<br>Efficiency<br>(%) | Average<br>Annual<br>Demand<br>(AF) | Structure Type<br>(See Footnotes) |
|-----|-------------|-------------------------------------|-------------------|------------------------------|----------------------------------------|-------------------------------------|-----------------------------------|
| 207 | 64_AWP017   | WD 64 Logan County North Blw Tetsel | 66                | 1,037                        | 60                                     | 2,485                               | Irr                               |
| 208 | 6400502     | Liddle Ditch                        | 13                | 937                          | 60                                     | 1,097                               | Irr                               |
| 209 | 6400503     | South Reservation Ditch             | 16                | 840                          | 60                                     | 26                                  | Irr                               |
| 210 | 6400504     | Peterson Ditch                      | 149               | 6,784                        | 60                                     | 8,741                               | Irr                               |
| 211 | 6400506     | Red Lion Supply Ditch               | 9                 | 277                          | 60                                     | 384                                 | Irr                               |
| 212 | 6400507     | Long Island Ditch                   | 103               | 2,138                        | 60                                     | 3,365                               | Irr                               |
| 213 | 6400508     | Settlers Ditch                      | 75                | 4,821                        | 60                                     | 4,238                               | Irr                               |
| 214 | 6400511_I   | HARMONY DITCH 1 DEMAND              | 138               | 11,682                       | 60                                     | 842                                 | Irr                               |
| 215 | 6400513     | Chambers Ditch                      | 6                 | 397                          | 60                                     | 702                                 | Irr                               |
| 216 | 6400514     | Ramsey Ditch                        | 7                 | 329                          | 60                                     | 385                                 | Irr                               |
| 217 | 6400516     | Powell Blair Ditch                  | 26                | 2,054                        | 60                                     | 707                                 | Irr                               |
| 218 | 6400518     | Lone Tree Ditch                     | 215               | 696                          | 60                                     | 1,488                               | Irr                               |
| 219 | 6400520     | Iliff Platte Valley Ditc            | 190               | 6,386                        | 60                                     | 931                                 | Irr                               |
| 220 | 6400522_D   | BRAVODITCHDIVSYS                    | 121               | 1,925                        | 60                                     | 996                                 | Irr                               |
| 221 | 6400524     | Lowline Ditch                       | 54                | 1,781                        | 60                                     | 300                                 | Irr                               |
| 222 | 6400528     | Sterling No. 1 Irrigation           | 78                | 7,685                        | 60                                     | 1,203                               | Irr                               |
| 223 | 6400530     | Springdale Ditch                    | 166               | 3,316                        | 60                                     | 4,416                               | Irr                               |
| 224 | 6400531     | Schneider Ditch                     | 63                | 2,314                        | 60                                     | 426                                 | Irr                               |
| 225 | 6400532     | DAVIS BROS DITCH                    | 218               | 1,965                        | 60                                     | 4,778                               | Irr                               |
| 226 | 6400533     | Pawnee Ditch                        | 318               | 8,016                        | 60                                     | 1,265                               | Irr                               |
| 227 | 6400535     | South Platte Ditch                  | 165               | 4,419                        | 60                                     | 2,273                               | Irr                               |
| 228 | 6400599     | Rice Ditch                          | 28                | 507                          | 60                                     | 1,118                               | Irr                               |
| 229 | 6402517_AuW | Sedgwick Cty Aug Well               | 999               | N/A                          | 0                                      | 792                                 | Recharge/Aug Well                 |
| 230 | 6402517_ReW | Sedgwick Cty Recharge We            | 7                 | N/A                          | 0                                      | 414                                 | Recharge/Aug Well                 |
| 231 | 6402519_AuW | Dinsdale Aug Well                   | 999               | N/A                          | 0                                      | 319                                 | Recharge/Aug Well                 |

| #   | Model ID    | Name                     | Capacity<br>(cfs) | 2010<br>Irrigated<br>Acreage | Average<br>System<br>Efficiency<br>(%) | Average<br>Annual<br>Demand<br>(AF) | Structure Type<br>(See Footnotes) |
|-----|-------------|--------------------------|-------------------|------------------------------|----------------------------------------|-------------------------------------|-----------------------------------|
| 232 | 6402519_ReW | Dinsdale Recharge Well   | 23                | N/A                          | 0                                      | 1,485                               | Recharge/Aug Well                 |
| 233 | 6402525_AuW | Condon Aug Well          | 999               | N/A                          | 0                                      | 38                                  | Recharge/Aug Well                 |
| 234 | 6402525_ReW | Condon Recharge Well     | 64                | N/A                          | 0                                      | 1,276                               | Recharge/Aug Well                 |
| 235 | 6402526_AuW | Sterling Aug Well        | 999               | N/A                          | 0                                      | 9                                   | Recharge/Aug Well                 |
| 236 | 6402536_AuW | Lower Logan Aug Well     | 999               | N/A                          | 0                                      | 444                                 | Recharge/Aug Well                 |
| 237 | 6402536_ReW | Lower Logan Recharge Wel | 80                | N/A                          | 0                                      | 4,212                               | Recharge/Aug Well                 |
| 238 | 6402539_AuW | Logan Aug Well           | 999               | N/A                          | 0                                      | 360                                 | Recharge/Aug Well                 |
| 239 | 6402539_ReW | Logan Recharge Well      | 58                | N/A                          | 0                                      | 2,115                               | Recharge/Aug Well                 |
| 240 | 6402540_AuW | Low Line Aug Well        | 999               | N/A                          | 0                                      | 32                                  | Recharge/Aug Well                 |
| 241 | 6402542_ReW | LSPWCD Recharge Well     | 13                | N/A                          | 0                                      | 541                                 | Recharge/Aug Well                 |

## 7.6 Calibration Structure Summary

As discussed in Section 6.2, the following table provides a summary of the average annual (1993 – 2012) surface and ground water demand, the percent of demand met during simulation, and the total irrigation and M&I consumptive use for each structure in the model. Carrier structures are excluded from the table because they do not have set demands, rather they carry water to meet other structures' demands.

## Table 7-6: Calibration Structure Summary

| # | Model ID  | Name                 | Avg. Annual<br>SW Demand<br>(AF) | Avg. Annual<br>GW Demand<br>(AF) | Avg. Annual<br>Total<br>Demand<br>(AF) | Percent<br>Demand<br>Simulated | Avg. Annual<br>Irrig. CU (AF) | Avg. Annual<br>M & I CU<br>(AF) | Avg. Annual<br>Total CU<br>(AF) |
|---|-----------|----------------------|----------------------------------|----------------------------------|----------------------------------------|--------------------------------|-------------------------------|---------------------------------|---------------------------------|
| 1 | 0100503_I | Riverside Irrigation | 87,383                           | 4,636                            | 92,019                                 | 100                            | 40,755                        | -                               | 40,755                          |
| 2 | 0100507_I | Bijou Irrigation     | 81,800                           | 4,512                            | 86,311                                 | 100                            | 43,758                        | -                               | 43,758                          |

| #  | Model ID  | Name                     | Avg. Annual<br>SW Demand<br>(AF) | Avg. Annual<br>GW Demand<br>(AF) | Avg. Annual<br>Total<br>Demand<br>(AF) | Percent<br>Demand<br>Simulated | Avg. Annual<br>Irrig. CU (AF) | Avg. Annual<br>M & I CU<br>(AF) | Avg. Annual<br>Total CU<br>(AF) |
|----|-----------|--------------------------|----------------------------------|----------------------------------|----------------------------------------|--------------------------------|-------------------------------|---------------------------------|---------------------------------|
| 3  | 0100511   | WELDON VALLEY DITCH      | 42,583                           | -                                | 42,583                                 | 100                            | 12,692                        | -                               | 12,692                          |
| 4  | 0100514   | Ft Morgan Canal          | 58,357                           | 476                              | 58,834                                 | 100                            | 16,308                        | -                               | 16,308                          |
| 5  | 0100515   | UPPER PLATTE BEAVER CNL  | 32,789                           | 1,173                            | 33,962                                 | 100                            | 16,774                        | -                               | 16,774                          |
| 6  | 0100517   | DEUEL SNYDER CANAL       | 6,784                            | 262                              | 7,045                                  | 100                            | 2,536                         | -                               | 2,536                           |
| 7  | 0100518   | LOWER PLATTE BEAVER D    | 27,464                           | 8,086                            | 35,549                                 | 100                            | 20,174                        | -                               | 20,174                          |
| 8  | 0100519_D | Tremont Div System       | 8,874                            | 2,012                            | 10,886                                 | 100                            | 5,768                         | -                               | 5,768                           |
| 9  | 0100520   | GILL STEVENS DITCH       | -                                | 1,527                            | 1,527                                  | 100                            | 956                           | -                               | 956                             |
| 10 | 0100524   | TROWELL DITCH            | -                                | 582                              | 582                                    | 100                            | 392                           | _                               | 392                             |
| 11 | 0100525   | TETSEL DITCH             | 5,972                            | -                                | 5,972                                  | 100                            | 2,149                         | -                               | 2,149                           |
| 12 | 0100526   | JOHNSON EDWARDS DITCH    | 2,866                            | 2,343                            | 5,209                                  | 100                            | 3,025                         | -                               | 3,025                           |
| 13 | 0100565   | MAGUIRE DITCH            | 142                              | -                                | 142                                    | -                              | -                             | -                               | -                               |
| 14 | 0100570   | EAST GULCH DITCH         | -                                | 351                              | 351                                    | 100                            | 211                           | -                               | 211                             |
| 15 | 0100620   | CONSOLIDATED LARSON D    | 67                               | 184                              | 251                                    | 73                             | 129                           | -                               | 129                             |
| 16 | 0100687_l | N Sterling Irrigation    | 89,062                           | 3,209                            | 92,271                                 | 100                            | 44,479                        | _                               | 44,479                          |
| 17 | 0100688   | UNION DITCH              | 3,113                            | 648                              | 3,761                                  | 100                            | 1,265                         | -                               | 1,265                           |
| 18 | 0103817_l | Jackson Irrigation       | 293                              | 90                               | 383                                    | 100                            | 207                           | -                               | 207                             |
| 19 | 01_ADP037 | South Platte River below | -                                | 28                               | 28                                     | 100                            | 17                            | _                               | 17                              |
| 20 | 0200800   | Farmers Gardeners Ditch  | 275                              | -                                | 275                                    | 76                             | 69                            | -                               | 69                              |
| 21 | 0200805_I | Henrylyn Irrigators      | 26,135                           | 23,486                           | 49,621                                 | 100                            | 35,453                        | -                               | 35,453                          |
| 22 | 0200808_I | Fulton Irrig Div         | 28,147                           | 535                              | 28,682                                 | 99                             | 13,783                        | _                               | 13,783                          |
| 23 | 0200809   | BRANTNER DITCH           | 19,816                           | 2                                | 19,818                                 | 100                            | 7,874                         | -                               | 7,874                           |
| 24 | 0200810_l | Brighton Irrig Div       | 9,008                            | 0                                | 9,009                                  | 100                            | 3,081                         | -                               | 3,081                           |
| 25 | 0200812_l | Lupton Bottom Irrig Div  | 16,375                           | 71                               | 16,447                                 | 100                            | 6,596                         | _                               | 6,596                           |
| 26 | 0200813_l | Platteville Irrig Div    | 21,705                           | -                                | 21,705                                 | 100                            | 7,158                         | -                               | 7,158                           |
| 27 | 0200817_I | Evans No 2 Irrigators    | 24,263                           | 7,027                            | 31,291                                 | 100                            | 21,972                        | -                               | 21,972                          |
| 28 | 0200821   | MEADOW ISLAND 1 DITCH    | 6,905                            | -                                | 6,905                                  | 98                             | 1,913                         | -                               | 1,913                           |

| #  | Model ID    | Name                    | Avg. Annual<br>SW Demand<br>(AF) | Avg. Annual<br>GW Demand<br>(AF) | Avg. Annual<br>Total<br>Demand<br>(AF) | Percent<br>Demand<br>Simulated | Avg. Annual<br>Irrig. CU (AF) | Avg. Annual<br>M & I CU<br>(AF) | Avg. Annual<br>Total CU<br>(AF) |
|----|-------------|-------------------------|----------------------------------|----------------------------------|----------------------------------------|--------------------------------|-------------------------------|---------------------------------|---------------------------------|
| 29 | 0200822     | MEADOW ISLAND DITCH     | 11,114                           | 75                               | 11,189                                 | 98                             | 4,919                         | -                               | 4,919                           |
| 30 | 0200824_I   | Farmers Indep Irrig Div | 16,355                           | 3,504                            | 19,859                                 | 99                             | 10,302                        | -                               | 10,302                          |
| 31 | 0200825_I   | Hewes Cook Irrig Div    | 19,860                           | 1,488                            | 21,348                                 | 100                            | 12,110                        | -                               | 12,110                          |
| 32 | 0200826     | JAY THOMAS DITCH        | 1,025                            | -                                | 1,025                                  | 100                            | 211                           | -                               | 211                             |
| 33 | 0200828_I   | Union Ditch Irrigators  | 23,472                           | -                                | 23,472                                 | 100                            | 8,183                         | -                               | 8,183                           |
| 34 | 0200830     | SECTION NO 3 DITCH      | 8,613                            | 3                                | 8,617                                  | 99                             | 2,281                         | -                               | 2,281                           |
| 35 | 0200834_I   | Lower Latham Irrigators | 35,613                           | 236                              | 35,849                                 | 100                            | 16,831                        | -                               | 16,831                          |
| 36 | 0200836     | PATTERSON DITCH         | 5,359                            | -                                | 5,359                                  | 100                            | 1,257                         | -                               | 1,257                           |
| 37 | 0200837_I   | Highland Irrig Div      | 3,686                            | 1                                | 3,687                                  | 100                            | 868                           | -                               | 868                             |
| 38 | 0200871     | WHIPPLE DITCH           | 16,145                           | 36                               | 16,181                                 | 52                             | 3,842                         | -                               | 3,842                           |
| 39 | 0200872     | GERMAN DITCH            | 1,870                            | -                                | 1,870                                  | 100                            | 829                           | -                               | 829                             |
| 40 | 0200873     | BIG DRY CREEK DITCH     | 944                              | -                                | 944                                    | 100                            | 469                           | -                               | 469                             |
| 41 | 0200874     | YOXALL DITCH            | 498                              | -                                | 498                                    | 99                             | 243                           | -                               | 243                             |
| 42 | 0200915     | Little Burlington       | 12,418                           | 1,012                            | 13,430                                 | 84                             | 5,777                         | -                               | 5,777                           |
| 43 | 0203837_l   | Barr Irrigators         | 41,125                           | 3,359                            | 44,484                                 | 100                            | 30,831                        | -                               | 30,831                          |
| 44 | 0203876_I   | Milton Irrigators       | 19,832                           | 4,298                            | 24,131                                 | 100                            | 17,038                        | _                               | 17,038                          |
| 45 | 02_ADP003   | WD2 Agg SW Divn         | 4,303                            | 4                                | 4,307                                  | 100                            | 907                           | -                               | 907                             |
| 46 | 02_ChrkPP   | Cherokee Power Plant    | 9,250                            | -                                | 9,250                                  | 97                             | -                             | 6,719                           | 6,719                           |
| 47 | 02_Nglenn_I | Northglenn Indoor Dem   | 3,060                            | -                                | 3,060                                  | 99                             | -                             | 302                             | 302                             |
| 48 | 02_Nglenn_O | Northglenn Outdoor Dem  | 2,067                            | -                                | 2,067                                  | 99                             | -                             | 1,701                           | 1,701                           |
| 49 | 02_Thorn_I  | Thornton Indoor Dem     | 11,091                           | -                                | 11,091                                 | 100                            | -                             | 1,109                           | 1,109                           |
| 50 | 02_Thorn_O  | Thornton Outdoor Dem    | 8,513                            | -                                | 8,513                                  | 100                            | -                             | 7,066                           | 7,066                           |
| 51 | 02_VRNPP    | Ft St Vrain Power Plant | 2,940                            | -                                | 2,940                                  | 100                            | -                             | 2,352                           | 2,352                           |
| 52 | 02_Westy_I  | Westy Indoor Dem        | 8,887                            | -                                | 8,887                                  | 100                            | -                             | 889                             | 889                             |
| 53 | 02_Westy_O  | Westy Outdoor Dem       | 8,605                            | -                                | 8,605                                  | 100                            | -                             | 7,142                           | 7,142                           |
| 54 | 0400502     | BIG T PLATTE R DITCH    | 10,070                           | 29                               | 10,099                                 | 100                            | 2,892                         | -                               | 2,892                           |

| #  | Model ID  | Name                     | Avg. Annual<br>SW Demand<br>(AF) | Avg. Annual<br>GW Demand<br>(AF) | Avg. Annual<br>Total<br>Demand<br>(AF) | Percent<br>Demand<br>Simulated | Avg. Annual<br>Irrig. CU (AF) | Avg. Annual<br>M & I CU<br>(AF) | Avg. Annual<br>Total CU<br>(AF) |
|----|-----------|--------------------------|----------------------------------|----------------------------------|----------------------------------------|--------------------------------|-------------------------------|---------------------------------|---------------------------------|
| 55 | 0400503   | BIG THOMPSON DITCH & MAN | 4,329                            | -                                | 4,329                                  | 100                            | 1,329                         | -                               | 1,329                           |
| 56 | 0400517   | EVANSTOWN DITCH          | 8,778                            | -                                | 8,778                                  | 99                             | 489                           | -                               | 489                             |
| 57 | 0400518_I | Estes Park Indoor Dem    | 1,022                            | -                                | 1,022                                  | 100                            | -                             | 102                             | 102                             |
| 58 | 0400518_0 | Estes Park Outdoor Dem   | 568                              | -                                | 568                                    | 100                            | -                             | 472                             | 472                             |
| 59 | 0400519   | FARMERS IRRIGATION CANAL | 5,411                            | 88                               | 5,499                                  | 99                             | 2,637                         | -                               | 2,637                           |
| 60 | 0400520_l | George Rist Irrigation   | 790                              | -                                | 790                                    | 100                            | 342                           | -                               | 342                             |
| 61 | 0400521_l | Handy Irrigation         | 11,113                           | 131                              | 11,244                                 | 100                            | 6,899                         | _                               | 6,899                           |
| 62 | 0400522   | HILL BRUSH DITCH         | 2,038                            | 30                               | 2,069                                  | 100                            | 715                           | _                               | 715                             |
| 63 | 0400523   | HILLSBOROUGH DITCH       | 15,782                           | 573                              | 16,355                                 | 100                            | 8,367                         | -                               | 8,367                           |
| 64 | 0400524_I | Home Supply Irrigation   | 18,748                           | 547                              | 19,296                                 | 100                            | 11,946                        | -                               | 11,946                          |
| 65 | 0400530_l | Louden Irrigation        | 8,568                            | 10                               | 8,578                                  | 100                            | 4,682                         | -                               | 4,682                           |
| 66 | 0400532_I | Loveland Greeley Irrigat | 31,539                           | 48                               | 31,587                                 | 100                            | 21,078                        | -                               | 21,078                          |
| 67 | 0400534   | MARIANA DITCH            | 239                              | -                                | 239                                    | 100                            | 30                            | -                               | 30                              |
| 68 | 0400541   | RIST GOSS DITCH          | 206                              | -                                | 206                                    | 99                             | 25                            | -                               | 25                              |
| 69 | 0400543_I | South Side Irrigation    | 2,159                            | -                                | 2,159                                  | 100                            | 1,274                         | -                               | 1,274                           |
| 70 | 0400561   | BLACK CANNON DITCH       | 149                              | -                                | 149                                    | 100                            | 69                            | -                               | 69                              |
| 71 | 0400574   | BUCKHORN HIGHLINE DITCH  | 163                              | -                                | 163                                    | 99                             | 20                            | -                               | 20                              |
| 72 | 0400578   | KIRCHNER DITCH           | 197                              | -                                | 197                                    | 99                             | 36                            | -                               | 36                              |
| 73 | 0400580   | PERKINS DITCH            | 171                              | -                                | 171                                    | 100                            | 89                            | -                               | 89                              |
| 74 | 0400582   | UNION DITCH              | 145                              | -                                | 145                                    | 100                            | 10                            | -                               | 10                              |
| 75 | 0400583   | VICTORY IRR CNL          | 136                              | 5                                | 141                                    | 97                             | 65                            | -                               | 65                              |
| 76 | 0400587   | BEELINE DITCH            | 1,791                            | -                                | 1,791                                  | 98                             | -                             | -                               | -                               |
| 77 | 0400588_I | Boulder Larimer Irrigati | 5,462                            | 247                              | 5,709                                  | 100                            | 2,998                         | -                               | 2,998                           |
| 78 | 0400592   | EAGLE DITCH              | 191                              | -                                | 191                                    | 98                             | 57                            | -                               | 57                              |
| 79 | 0400596   | JIM EGLIN DITCH          | 153                              | -                                | 153                                    | 99                             | 76                            | -                               | 76                              |
| 80 | 0400599   | MINER LONGAN DITCH       | 563                              | -                                | 563                                    | 100                            | 234                           | -                               | 234                             |

| #   | Model ID     | Name                      | Avg. Annual<br>SW Demand<br>(AF) | Avg. Annual<br>GW Demand<br>(AF) | Avg. Annual<br>Total<br>Demand<br>(AF) | Percent<br>Demand<br>Simulated | Avg. Annual<br>Irrig. CU (AF) | Avg. Annual<br>M & I CU<br>(AF) | Avg. Annual<br>Total CU<br>(AF) |
|-----|--------------|---------------------------|----------------------------------|----------------------------------|----------------------------------------|--------------------------------|-------------------------------|---------------------------------|---------------------------------|
| 81  | 0400600      | OSBORNE CAYWOOD DITCH     | 737                              | -                                | 737                                    | 100                            | 172                           | -                               | 172                             |
| 82  | 0400601      | ROCKWELL D ROCKWELL P P   | 968                              | 5                                | 974                                    | 100                            | 306                           | -                               | 306                             |
| 83  | 0400602      | SUPPLY LATERAL DITCH      | 1,171                            | -                                | 1,171                                  | 99                             | 579                           | -                               | 579                             |
| 84  | 0400603      | W R BLOWER DITCH 1        | 477                              | -                                | 477                                    | 99                             | 222                           | -                               | 222                             |
| 85  | 0400691_l    | Hansen Feeder Irrigation  | 1,608                            | 14                               | 1,622                                  | 98                             | 1,012                         | -                               | 1,012                           |
| 86  | 0400692_I    | St. Vrain Irrigation      | 1,408                            | -                                | 1,408                                  | 100                            | 847                           | -                               | 847                             |
| 87  | 0401001      | Big T Power Plant         | 63,238                           | -                                | 63,238                                 | 89                             | -                             | -                               | -                               |
| 88  | 0401002      | Hansen Feeder Wasteway    | 9,867                            | -                                | 9,867                                  | 71                             | _                             | -                               | -                               |
| 89  | 04_AUP002_I  | Little T Wtr Dist In      | 2,091                            | -                                | 2,091                                  | 61                             | -                             | 127                             | 127                             |
| 90  | 04_AUP002_O  | Little T Wtr Dist Out     | 1,648                            | -                                | 1,648                                  | 76                             | -                             | 1,035                           | 1,035                           |
| 91  | 04_LoveInd_I | Loveland Indoor Dem       | 6,359                            | -                                | 6,359                                  | 100                            | _                             | 633                             | 633                             |
| 92  | 04_LoveInd_O | Loveland Outdoor Dem      | 7,085                            | -                                | 7,085                                  | 100                            | -                             | 5,872                           | 5,872                           |
| 93  | 0500513      | DAVE MILLER DITCH         | 102                              | -                                | 102                                    | 71                             | 23                            | -                               | 23                              |
| 94  | 0500519      | REESE STILES DITCH        | 194                              | -                                | 194                                    | 96                             | 21                            | -                               | 21                              |
| 95  | 0500520      | SOUTH LEDGE DITCH         | 687                              | -                                | 687                                    | 97                             | 132                           | -                               | 132                             |
| 96  | 0500523      | SUPPLY DITCH              | 9,686                            | 51                               | 9,736                                  | 81                             | 3,693                         | -                               | 3,693                           |
| 97  | 0500526_I    | Highland Ditch Irrigation | 35,043                           | 215                              | 35,258                                 | 100                            | 21,917                        | -                               | 21,917                          |
| 98  | 0500527      | ROUGH READY DITCH         | 5,655                            | -                                | 5,655                                  | 99                             | 2,570                         | -                               | 2,570                           |
| 99  | 0500528      | ST VRAIN PALMERTON DITCH  | 5,178                            | -                                | 5,178                                  | 100                            | 1,747                         | -                               | 1,747                           |
| 100 | 0500529      | SWEDE DITCH               | 3,463                            | 5                                | 3,467                                  | 94                             | 1,660                         | -                               | 1,660                           |
| 101 | 0500530      | SMEAD DITCH               | 852                              | -                                | 852                                    | 100                            | 356                           | -                               | 356                             |
| 102 | 0500531      | MONTGOMERY PRIVATE DITCH  | 14                               | -                                | 14                                     | 100                            | 4                             | -                               | 4                               |
| 103 | 0500534      | GOSS PRIVATE DITCH 1      | 340                              | -                                | 340                                    | 100                            | 172                           | -                               | 172                             |
| 104 | 0500535      | CLOUGH/TRUE DITCH         | 268                              | -                                | 268                                    | 100                            | 45                            | -                               | 45                              |
| 105 | 0500536      | CLOUGH PRIVATE DITCH      | 560                              | -                                | 560                                    | 100                            | 102                           | -                               | 102                             |
| 106 | 0500537      | WEBSTER MCCASLIN DITCH    | 539                              | -                                | 539                                    | 100                            | 230                           | -                               | 230                             |

| #   | Model ID  | Name                   | Avg. Annual<br>SW Demand<br>(AF) | Avg. Annual<br>GW Demand<br>(AF) | Avg. Annual<br>Total<br>Demand<br>(AF) | Percent<br>Demand<br>Simulated | Avg. Annual<br>Irrig. CU (AF) | Avg. Annual<br>M & I CU<br>(AF) | Avg. Annual<br>Total CU<br>(AF) |
|-----|-----------|------------------------|----------------------------------|----------------------------------|----------------------------------------|--------------------------------|-------------------------------|---------------------------------|---------------------------------|
| 107 | 0500538   | TRUE WEBSTER DITCH     | 549                              | -                                | 549                                    | 100                            | 138                           | -                               | 138                             |
| 108 | 0500539   | JAMES DITCH            | 2,011                            | -                                | 2,011                                  | 100                            | 942                           | -                               | 942                             |
| 109 | 0500542   | DAVIS DOWNING DITCH    | 1,847                            | -                                | 1,847                                  | 100                            | 740                           | -                               | 740                             |
| 110 | 0500545   | LONGMONT SUPPLY DITCH  | 2,395                            | -                                | 2,395                                  | 100                            | 389                           | -                               | 389                             |
| 111 | 0500546   | CHAPMAN MCCASLIN DITCH | 761                              | -                                | 761                                    | 100                            | 286                           | -                               | 286                             |
| 112 | 0500547_I | Oligarchy Irrigation   | 4,584                            | -                                | 4,584                                  | 100                            | 2,459                         | -                               | 2,459                           |
| 113 | 0500548   | DENIO TAYLOR DITCH     | 764                              | -                                | 764                                    | 100                            | 179                           | -                               | 179                             |
| 114 | 0500549   | RUNYAN DITCH           | 438                              | -                                | 438                                    | 100                            | 74                            | -                               | 74                              |
| 115 | 0500550   | PECK DITCH             | 762                              | -                                | 762                                    | 100                            | 299                           | -                               | 299                             |
| 116 | 0500551   | PELLA DITCH            | 404                              | -                                | 404                                    | 99                             | 171                           | -                               | 171                             |
| 117 | 0500552   | CLOVER BASIN DITCH     | 245                              | -                                | 245                                    | 100                            | 88                            | -                               | 88                              |
| 118 | 0500553   | HAGERS MEADOW DITCH    | 832                              | -                                | 832                                    | 99                             | 90                            | -                               | 90                              |
| 119 | 0500554   | NIWOT DITCH            | 975                              | -                                | 975                                    | 100                            | 383                           | -                               | 383                             |
| 120 | 0500557   | NORTHWEST MUT INS CO D | 480                              | -                                | 480                                    | 100                            | 105                           | -                               | 105                             |
| 121 | 0500558   | SOUTH FLAT DITCH       | 1,007                            | -                                | 1,007                                  | 100                            | 332                           | -                               | 332                             |
| 122 | 0500559   | CUSHMAN DITCH          | 169                              | -                                | 169                                    | 100                            | 52                            | -                               | 52                              |
| 123 | 0500560   | BECKWITH DITCH         | 655                              | -                                | 655                                    | 100                            | 135                           | -                               | 135                             |
| 124 | 0500561   | ISLAND DITCH           | 254                              | -                                | 254                                    | 100                            | 30                            | -                               | 30                              |
| 125 | 0500563   | BONUS DITCH            | 1,765                            | -                                | 1,765                                  | 100                            | 664                           | -                               | 664                             |
| 126 | 0500564_1 | Lake Ditch Irrigation  | 1,500                            | -                                | 1,500                                  | 90                             | 809                           | -                               | 809                             |
| 127 | 0500565   | HALDI DITCH            | 3,749                            | -                                | 3,749                                  | 100                            | 701                           | -                               | 701                             |
| 128 | 0500568   | CROCKER DITCH          | 304                              | -                                | 304                                    | 100                            | 127                           | -                               | 127                             |
| 129 | 0500569   | TABLE MOUNTAIN DITCH   | 1,777                            | 17                               | 1,794                                  | 100                            | 781                           | -                               | 781                             |
| 130 | 0500570   | BADER DITCH 1 & 2      | 285                              | -                                | 285                                    | 100                            | 120                           | -                               | 120                             |
| 131 | 0500571   | JOHNSON DITCH          | 393                              | 65                               | 458                                    | 100                            | 202                           | -                               | 202                             |
| 132 | 0500572   | STAR DITCH             | 1,599                            | 113                              | 1,712                                  | 100                            | 739                           | -                               | 739                             |

| #   | Model ID   | Name                      | Avg. Annual<br>SW Demand<br>(AF) | Avg. Annual<br>GW Demand<br>(AF) | Avg. Annual<br>Total<br>Demand<br>(AF) | Percent<br>Demand<br>Simulated | Avg. Annual<br>Irrig. CU (AF) | Avg. Annual<br>M & I CU<br>(AF) | Avg. Annual<br>Total CU<br>(AF) |
|-----|------------|---------------------------|----------------------------------|----------------------------------|----------------------------------------|--------------------------------|-------------------------------|---------------------------------|---------------------------------|
| 133 | 0500573    | HINMAN DITCH              | 1,092                            | 2                                | 1,094                                  | 100                            | 458                           | -                               | 458                             |
| 134 | 0500574    | HOLLAND DITCH             | 2,289                            | -                                | 2,289                                  | 100                            | 961                           | -                               | 961                             |
| 135 | 0500575    | WILLIAMSON DITCH          | 2,298                            | -                                | 2,298                                  | 99                             | 932                           | -                               | 932                             |
| 136 | 0500589    | LAST CHANCE DITCH         | 11,609                           | -                                | 11,609                                 | 100                            | 3,047                         | -                               | 3,047                           |
| 137 | 0500601    | ZWECK TURNER DITCH        | 2,251                            | -                                | 2,251                                  | 100                            | 488                           | -                               | 488                             |
| 138 | 0500602    | JAMES MASON DITCH         | 178                              | -                                | 178                                    | 100                            | 23                            | -                               | 23                              |
| 139 | 0500603    | LEFT HAND DITCH DIVERSION | 15,272                           | -                                | 15,272                                 | 99                             | -                             | -                               | -                               |
| 140 | 0500619_a  | SPURGEON TREATMENT PLANT  | 2,194                            | -                                | 2,194                                  | 92                             | -                             | 1,772                           | 1,772                           |
| 141 | 0500619_b  | DODD TREATMENT PLANT DEM  | 1,965                            | -                                | 1,965                                  | 99                             | -                             | 1,617                           | 1,617                           |
| 142 | 0500648    | TOLL GATE DITCH           | 968                              | 4                                | 972                                    | 100                            | 395                           | -                               | 395                             |
| 143 | 05LONG_IN  | LONGMONT INDOOR DEMAND    | 8,886                            | -                                | 8,886                                  | 100                            | -                             | 889                             | 889                             |
| 144 | 05LONG_OUT | LONGMONT OUTDOOR DEMAND   | 5,868                            | -                                | 5,868                                  | 100                            | -                             | 4,871                           | 4,871                           |
| 145 | 05_ADP001  | Aggregated Diversion Str  | 3,188                            | -                                | 3,188                                  | 100                            | 915                           | -                               | 915                             |
| 146 | 05_ADP002  | Aggregated Diversion Str  | 1,068                            | -                                | 1,068                                  | 100                            | 512                           | -                               | 512                             |
| 147 | 0600501_l  | Anderson Irrigation       | 1,660                            | -                                | 1,660                                  | 91                             | 87                            | -                               | 87                              |
| 148 | 0600513    | BOULDER LEFT HAND DITCH   | 1,723                            | -                                | 1,723                                  | 98                             | 802                           | -                               | 802                             |
| 149 | 0600515_D  | Boulder and Weld Co Ditch | 3,197                            | 107                              | 3,304                                  | 100                            | 1,464                         | -                               | 1,464                           |
| 150 | 0600516_I  | Boulder White Rock Irrig  | 14,379                           | -                                | 14,379                                 | 98                             | 8,491                         | -                               | 8,491                           |
| 151 | 0600518    | BUTTE MILL DITCH          | 992                              | -                                | 992                                    | 100                            | 411                           | -                               | 411                             |
| 152 | 0600520_D  | CARR TYLER DITCH          | 213                              | -                                | 213                                    | 100                            | 102                           | -                               | 102                             |
| 153 | 0600523    | DELEHANT DITCH            | 262                              | -                                | 262                                    | 100                            | 97                            | -                               | 97                              |
| 154 | 0600525    | FARMERS DITCH             | 5,037                            | -                                | 5,037                                  | 94                             | 2,089                         | -                               | 2,089                           |
| 155 | 0600527    | GODDING DAILEY PLUMB D    | 2,810                            | -                                | 2,810                                  | 100                            | 995                           | -                               | 995                             |
| 156 | 0600528    | GREEN DITCH               | 2,297                            | -                                | 2,297                                  | 100                            | 655                           | -                               | 655                             |
| 157 | 0600532    | HIGHLAND SOUTH SIDE DITC  | 4,490                            | 10                               | 4,500                                  | 100                            | 1,573                         | -                               | 1,573                           |
| 158 | 0600534    | HOUCK 2 DITCH             | 337                              | -                                | 337                                    | 100                            | 83                            | -                               | 83                              |

| #   | Model ID  | Name                     | Avg. Annual<br>SW Demand<br>(AF) | Avg. Annual<br>GW Demand<br>(AF) | Avg. Annual<br>Total<br>Demand<br>(AF) | Percent<br>Demand<br>Simulated | Avg. Annual<br>Irrig. CU (AF) | Avg. Annual<br>M & I CU<br>(AF) | Avg. Annual<br>Total CU<br>(AF) |
|-----|-----------|--------------------------|----------------------------------|----------------------------------|----------------------------------------|--------------------------------|-------------------------------|---------------------------------|---------------------------------|
| 159 | 0600536   | HOWELL DITCH             | 642                              | -                                | 642                                    | 100                            | 204                           | -                               | 204                             |
| 160 | 0600537_I | Leggett Irrigation       | 6,030                            | 4                                | 6,034                                  | 100                            | 3,827                         | -                               | 3,827                           |
| 161 | 0600538_I | Lower Boulder Irrigation | 13,273                           | 61                               | 13,334                                 | 89                             | 7,360                         | -                               | 7,360                           |
| 162 | 0600542   | MC CARTY DITCH           | 118                              | -                                | 118                                    | 87                             | 4                             | -                               | 4                               |
| 163 | 0600543   | N BOULD FARMER DITCH     | 5,158                            | -                                | 5,158                                  | 86                             | 854                           | -                               | 854                             |
| 164 | 0600551   | RURAL DITCH              | 7,002                            | -                                | 7,002                                  | 100                            | 1,301                         | -                               | 1,301                           |
| 165 | 0600553   | SMITH EMMONS DITCH       | 1,048                            | -                                | 1,048                                  | 100                            | 428                           | -                               | 428                             |
| 166 | 0600554   | SMITH GOSS DITCH         | 723                              | -                                | 723                                    | 99                             | 359                           | -                               | 359                             |
| 167 | 0600560   | ANDREWS FARWELL DITCH    | 203                              | -                                | 203                                    | 99                             | 85                            | -                               | 85                              |
| 168 | 0600564_I | Community Ditch          | 4,740                            | 63                               | 4,802                                  | 100                            | 2,909                         | -                               | 2,909                           |
| 169 | 0600565_I | Leyner Cottonwood Irriga | 1,903                            | -                                | 1,903                                  | 98                             | 1,130                         | _                               | 1,130                           |
| 170 | 0600566   | COTTONWOOD DITCH 2       | 2,054                            | 4                                | 2,058                                  | 94                             | 798                           | -                               | 798                             |
| 171 | 0600567   | DAVIDSON DITCH           | 2,278                            | -                                | 2,278                                  | 98                             | 658                           | -                               | 658                             |
| 172 | 0600569_D | DRY CREEK DAVIDSON DITCH | 1,575                            | -                                | 1,575                                  | 95                             | 656                           | -                               | 656                             |
| 173 | 0600570   | DRY CREEK NO 2 DITCH     | 796                              | -                                | 796                                    | 95                             | 364                           | -                               | 364                             |
| 174 | 0600575   | EAST BOULDER DITCH       | 275                              | -                                | 275                                    | 96                             | 106                           | -                               | 106                             |
| 175 | 0600576   | ENTERPRISE DITCH         | 942                              | -                                | 942                                    | 93                             | 178                           | -                               | 178                             |
| 176 | 0600580   | HOWARD DITCH             | 1,491                            | -                                | 1,491                                  | 96                             | 399                           | -                               | 399                             |
| 177 | 0600582   | JONES DONNELLY DITCH     | 1,080                            | -                                | 1,080                                  | 100                            | 464                           | -                               | 464                             |
| 178 | 0600585   | MARSHALVILLE DITCH       | 1,316                            | -                                | 1,316                                  | 95                             | 555                           | -                               | 555                             |
| 179 | 0600586   | MCGINN DITCH             | 1,191                            | -                                | 1,191                                  | 98                             | 523                           | -                               | 523                             |
| 180 | 0600588   | S BOULDER BEAR CR DITCH  | 800                              | -                                | 800                                    | 99                             | 344                           | -                               | 344                             |
| 181 | 0600592   | SCHEARER DITCH           | 1,231                            | -                                | 1,231                                  | 99                             | 551                           | -                               | 551                             |
| 182 | 0600593   | S BOULDER CANON DITCH    | 1,975                            | -                                | 1,975                                  | 99                             | 870                           | -                               | 870                             |
| 183 | 0600603   | SILVER LAKE DITCH        | 770                              | -                                | 770                                    | 100                            | 462                           | -                               | 462                             |
| 184 | 0600606   | CHURCH DITCH(UPPER)      | 58                               | -                                | 58                                     | 98                             | 27                            | -                               | 27                              |

| #   | Model ID    | Name                    | Avg. Annual<br>SW Demand<br>(AF) | Avg. Annual<br>GW Demand<br>(AF) | Avg. Annual<br>Total<br>Demand<br>(AF) | Percent<br>Demand<br>Simulated | Avg. Annual<br>Irrig. CU (AF) | Avg. Annual<br>M & I CU<br>(AF) | Avg. Annual<br>Total CU<br>(AF) |
|-----|-------------|-------------------------|----------------------------------|----------------------------------|----------------------------------------|--------------------------------|-------------------------------|---------------------------------|---------------------------------|
| 185 | 0600608_D   | EGGLESTON NO 1 DITCH    | 255                              | -                                | 255                                    | 97                             | 83                            | -                               | 83                              |
| 186 | 0600610     | ERIE COAL CR DITCH      | 483                              | -                                | 483                                    | 100                            | 208                           | -                               | 208                             |
| 187 | 0600611     | HARRIS DITCH            | 225                              | -                                | 225                                    | 96                             | 65                            | -                               | 65                              |
| 188 | 0600612     | KERR DITCH NO 1         | 389                              | -                                | 389                                    | 97                             | 115                           | -                               | 115                             |
| 189 | 0600613     | KERR DITCH NO 2         | 122                              | 5                                | 127                                    | 95                             | 12                            | -                               | 12                              |
| 190 | 0600615     | LAST CHANCE DITCH       | 1,273                            | -                                | 1,273                                  | 97                             | 595                           | -                               | 595                             |
| 191 | 0600621     | WILLIAM C HAKE DITCH    | 366                              | -                                | 366                                    | 99                             | 59                            | -                               | 59                              |
| 192 | 0600622     | T N WILLIS DITCH        | 272                              | -                                | 272                                    | 95                             | 69                            | -                               | 69                              |
| 193 | 0600650     | GOODHUE DITCH           | 1,847                            | 11                               | 1,858                                  | 93                             | 751                           | -                               | 751                             |
| 194 | 06BOULDER_I | Boulder Indoor          | 12,451                           | -                                | 12,451                                 | 100                            | -                             | 891                             | 891                             |
| 195 | 06BOULDER_O | Boulder Outdoor         | 8,405                            | -                                | 8,405                                  | 100                            | -                             | 6,977                           | 6,977                           |
| 196 | 06BOULD_RTN | Boulder Return          | 6,515                            | -                                | 6,515                                  | 100                            | -                             | -                               | -                               |
| 197 | 06LAFFYT_I  | Lafayette Indoor        | 1,927                            | -                                | 1,927                                  | 99                             | -                             | 132                             | 132                             |
| 198 | 06LAFFYT_O  | Lafayette Outdoor       | 2,082                            | -                                | 2,082                                  | 100                            | -                             | 1,726                           | 1,726                           |
| 199 | 06LOUIS_I   | Louisville Indoor       | 2,249                            | -                                | 2,249                                  | 100                            | -                             | 155                             | 155                             |
| 200 | 06LOUIS_O   | Louisville Outdoor      | 2,071                            | -                                | 2,071                                  | 100                            | -                             | 1,719                           | 1,719                           |
| 201 | 06_AMP001_I | WD 6 Agg Muni Indoor    | 3,183                            | -                                | 3,183                                  | 100                            | -                             | 319                             | 319                             |
| 202 | 06_AMP001_O | WD 6 Agg Muni Outdoor   | 2,501                            | -                                | 2,501                                  | 100                            | -                             | 2,076                           | 2,076                           |
| 203 | 06_AUP001_I | WD 6 Unincorp Indoor    | 4,417                            | -                                | 4,417                                  | 100                            | -                             | 441                             | 441                             |
| 204 | 06_AUP001_O | WD 6 Unincorp Outdoor   | 3,470                            | -                                | 3,470                                  | 100                            | -                             | 2,880                           | 2,880                           |
| 205 | 06_BOU_RF   | Constant Winter RF      | 216                              | -                                | 216                                    | 100                            | -                             | -                               | -                               |
| 206 | 06_ELDORA   | Eldora Ski Resort       | 180                              | -                                | 180                                    | 2                              | 1                             | -                               | 1                               |
| 207 | 06_VALMPP   | PSCO                    | 3,000                            | -                                | 3,000                                  | 100                            | -                             | 3,000                           | 3,000                           |
| 208 | 0700502_I   | Ag Ditch Irrigators     | 5,401                            | -                                | 5,401                                  | 79                             | 1,823                         | -                               | 1,823                           |
| 209 | 0700527_D   | Slough Ditches          | 7,515                            | -                                | 7,515                                  | 100                            | 2,826                         | -                               | 2,826                           |
| 210 | 0700540_I   | Church Ditch Irrigators | 5,774                            | -                                | 5,774                                  | 81                             | 1,879                         | -                               | 1,879                           |

| #   | Model ID    | Name                         | Avg. Annual<br>SW Demand<br>(AF) | Avg. Annual<br>GW Demand<br>(AF) | Avg. Annual<br>Total<br>Demand<br>(AF) | Percent<br>Demand<br>Simulated | Avg. Annual<br>Irrig. CU (AF) | Avg. Annual<br>M & I CU<br>(AF) | Avg. Annual<br>Total CU<br>(AF) |
|-----|-------------|------------------------------|----------------------------------|----------------------------------|----------------------------------------|--------------------------------|-------------------------------|---------------------------------|---------------------------------|
| 211 | 0700547_I   | Lower Clear Ck D Irrigat     | 5,298                            | 6                                | 5,305                                  | 89                             | 1,710                         | -                               | 1,710                           |
| 212 | 0700549_1   | Colorado Ag Ditch Irriga     | 4,125                            | 0                                | 4,125                                  | 82                             | 1,298                         | -                               | 1,298                           |
| 213 | 0700551     | CORT GRAVES HUGHES DITCH     | 146                              | -                                | 146                                    | 54                             | 41                            | -                               | 41                              |
| 214 | 0700569_1   | FHL Canal Irrigators         | 9,683                            | 211                              | 9,894                                  | 82                             | 3,637                         | -                               | 3,637                           |
| 215 | 0700570_I   | Fisher Ditch Irrigators      | 3,233                            | -                                | 3,233                                  | 83                             | 1,083                         | -                               | 1,083                           |
| 216 | 0700597_l   | Kershaw Ditch Irrigators     | 622                              | 0                                | 622                                    | 100                            | 235                           | -                               | 235                             |
| 217 | 0700601_l   | Lee Stewart Eskins Irrig     | 773                              | -                                | 773                                    | 96                             | 294                           | -                               | 294                             |
| 218 | 0700614     | MANHART DITCH                | 905                              | -                                | 905                                    | 90                             | 324                           | -                               | 324                             |
| 219 | 0700632     | OUELETTE DITCH               | 133                              | -                                | 133                                    | 94                             | 48                            | -                               | 48                              |
| 220 | 0700647     | RENO JUCHEM DITCH            | 734                              | -                                | 734                                    | 100                            | 222                           | -                               | 222                             |
| 221 | 0700652_l   | Rocky Mtn Ditch Irrigato     | 5,463                            | -                                | 5,463                                  | 96                             | 1,977                         | -                               | 1,977                           |
| 222 | 0700669     | SOUTH SIDE DITCH             | 80                               | -                                | 80                                     | 76                             | 29                            | -                               | 29                              |
| 223 | 0700681     | Georgetown D                 | 201                              | -                                | 201                                    | 100                            | 201                           | -                               | 201                             |
| 224 | 0700698_I   | Wannamaker Irrigators        | 1,673                            | -                                | 1,673                                  | 85                             | 504                           | -                               | 504                             |
| 225 | 0700699     | WELCH DITCH                  | 1,046                            | -                                | 1,046                                  | 78                             | 122                           | -                               | 122                             |
| 226 | 07_ADP001   | WD7 Agg SW Irrig             | 1,062                            | -                                | 1,062                                  | 100                            | 279                           | -                               | 279                             |
| 227 | 07_AMP001_I | WD7 Upper Agg Muni In        | 514                              | -                                | 514                                    | 100                            | _                             | 49                              | 49                              |
| 228 | 07_AMP001_O | WD7 Upper Agg Muni Out       | 404                              | -                                | 404                                    | 100                            | -                             | 336                             | 336                             |
| 229 | 07_AUP001_I | WD7 Upper Agg Uninc In       | 5,683                            | -                                | 5,683                                  | 100                            | -                             | 569                             | 569                             |
| 230 | 07_AUP001_O | WD7 Upper Agg Uninc Out      | 4,465                            | -                                | 4,465                                  | 100                            | _                             | 3,706                           | 3,706                           |
| 231 | 07_Arvada_I | Arvada Indoor Dem            | 9,919                            | -                                | 9,919                                  | 100                            | -                             | 992                             | 992                             |
| 232 | 07_Arvada_O | Arvada Outdoor Dem           | 9,051                            | -                                | 9,051                                  | 100                            | -                             | 7,513                           | 7,513                           |
| 233 | 07_ConMut_l | ConMutual Indoor Dem         | 2,126                            | -                                | 2,126                                  | 100                            | -                             | 212                             | 212                             |
| 234 | 07_ConMut_O | ConMutual Outdoor Dem        | 1,671                            | -                                | 1,671                                  | 100                            | -                             | 1,387                           | 1,387                           |
| 235 | 07_CoorsB   | Coors Malting Potable Demand | 5,975                            | -                                | 5,975                                  | 100                            | -                             | 1,789                           | 1,789                           |
| 236 | 07_CoorsC   | Coors Cooling Demand         | 765                              | -                                | 765                                    | 100                            | -                             | 765                             | 765                             |

| #   | Model ID    | Name                  | Avg. Annual<br>SW Demand<br>(AF) | Avg. Annual<br>GW Demand<br>(AF) | Avg. Annual<br>Total<br>Demand<br>(AF) | Percent<br>Demand<br>Simulated | Avg. Annual<br>Irrig. CU (AF) | Avg. Annual<br>M & I CU<br>(AF) | Avg. Annual<br>Total CU<br>(AF) |
|-----|-------------|-----------------------|----------------------------------|----------------------------------|----------------------------------------|--------------------------------|-------------------------------|---------------------------------|---------------------------------|
| 237 | 07_Golden_I | Golden Indoor Dem     | 1,634                            | -                                | 1,634                                  | 99                             | -                             | 162                             | 162                             |
| 238 | 07_Golden_O | Golden Outdoor Dem    | 1,283                            | -                                | 1,283                                  | 99                             | -                             | 1,082                           | 1,082                           |
| 239 | 07_LSA      | Loveland Ski Area     | 113                              | -                                | 113                                    | 100                            | -                             | 23                              | 23                              |
| 240 | 0801004     | HIGHLINE CNL          | 17,826                           | 54                               | 17,880                                 | 100                            | 7,131                         | -                               | 7,131                           |
| 241 | 0801007     | LAST CHANCE DITCH 2   | 1,468                            | -                                | 1,468                                  | 98                             | 592                           | -                               | 592                             |
| 242 | 0801008     | CITY DITCH PL         | 5,173                            | -                                | 5,173                                  | 100                            | 2,006                         | -                               | 2,006                           |
| 243 | 0801009_D   | Nevada Ditch          | 3,351                            | -                                | 3,351                                  | 97                             | 1,475                         | -                               | 1,475                           |
| 244 | 0801014     | Arapahoe Power Plant  | 2,047                            | -                                | 2,047                                  | 98                             | -                             | 1,610                           | 1,610                           |
| 245 | 0801015     | EPPERSON DITCH/PUMP   | 258                              | -                                | 258                                    | 85                             | -                             | 105                             | 105                             |
| 246 | 0801100     | Chatfield Pumps       | 613                              | -                                | 613                                    | 82                             | -                             | -                               | -                               |
| 247 | 0801124     | HAYLAND DITCH         | 156                              | 2                                | 159                                    | 92                             | 25                            | -                               | 25                              |
| 248 | 0801125     | FAIRVIEW DITCH        | 357                              | 80                               | 437                                    | 91                             | 144                           | -                               | 144                             |
| 249 | 0801127     | OLD TIME DITCH        | 101                              | -                                | 101                                    | 92                             | 5                             | -                               | 5                               |
| 250 | 0801128     | GARDEN DITCH          | 49                               | -                                | 49                                     | 95                             | 4                             | -                               | 4                               |
| 251 | 0801235     | RED ROCK DITCH        | 239                              | -                                | 239                                    | 90                             | 38                            | -                               | 38                              |
| 252 | 0801237     | SPRING CREEK DITCH    | 263                              | 1                                | 263                                    | 100                            | 72                            | -                               | 72                              |
| 253 | 0801240     | RATCLIFF DILLON DITCH | 77                               | 4                                | 81                                     | 100                            | 28                            | -                               | 28                              |
| 254 | 0801241     | DAKAN DITCH           | 76                               | 5                                | 80                                     | 100                            | 34                            | -                               | 34                              |
| 255 | 0801362     | JOHN JONES DITCH      | 376                              | -                                | 376                                    | 90                             | 95                            | -                               | 95                              |
| 256 | 0801400     | ALDERMAN DITCH        | 155                              | -                                | 155                                    | 91                             | 25                            | -                               | 25                              |
| 257 | 0801403     | HEISER DITCH          | 25                               | -                                | 25                                     | 88                             | 11                            | -                               | 11                              |
| 258 | 0801404     | MCCRACKEN DITCH       | 23                               | 49                               | 72                                     | 100                            | 33                            | -                               | 33                              |
| 259 | 0801405     | SMITH DITCH           | 40                               | 46                               | 86                                     | 92                             | 40                            | -                               | 40                              |
| 260 | 0801406     | SCHREIBER DITCH       | 8                                | -                                | 8                                      | 84                             | 1                             | -                               | 1                               |
| 261 | 0801412     | SIXTY SEVEN DITCH     | 640                              | 15                               | 656                                    | 90                             | 96                            | -                               | 96                              |
| 262 | 0801413     | CRAWFORD DITCH        | 290                              | -                                | 290                                    | 70                             | 18                            | _                               | 18                              |

| #   | Model ID    | Name                     | Avg. Annual<br>SW Demand<br>(AF) | Avg. Annual<br>GW Demand<br>(AF) | Avg. Annual<br>Total<br>Demand<br>(AF) | Percent<br>Demand<br>Simulated | Avg. Annual<br>Irrig. CU (AF) | Avg. Annual<br>M & I CU<br>(AF) | Avg. Annual<br>Total CU<br>(AF) |
|-----|-------------|--------------------------|----------------------------------|----------------------------------|----------------------------------------|--------------------------------|-------------------------------|---------------------------------|---------------------------------|
| 263 | 0801414     | BIRMINGHAM DITCH         | 51                               | -                                | 51                                     | 85                             | 8                             | -                               | 8                               |
| 264 | 0801416     | GOODRICH DITCH           | 212                              | -                                | 212                                    | 75                             | 38                            | -                               | 38                              |
| 265 | 0801417     | ROCKY RIDGE DITCH        | 22                               | -                                | 22                                     | 53                             | 6                             | -                               | 6                               |
| 266 | 0801492     | IZZARD DITCH             | 93                               | -                                | 93                                     | 28                             | 2                             | -                               | 2                               |
| 267 | 08_ADP002   | WD8 CherryCk Agg SW Divn | 418                              | 539                              | 957                                    | 89                             | 488                           | -                               | 488                             |
| 268 | 08_ADP003   | WD8 SPR Agg SW Divn      | 225                              | -                                | 225                                    | 85                             | 34                            | -                               | 34                              |
| 269 | 08_ADP004   | WD8 Plum Ck Agg SW Divn  | 2,205                            | 33                               | 2,238                                  | 100                            | 397                           | -                               | 397                             |
| 270 | 08_Aurora_I | Aurora Indoor Dem        | 28,402                           | -                                | 28,402                                 | 100                            | -                             | 2,840                           | 2,840                           |
| 271 | 08_Aurora_O | Aurora Outdoor Dem       | 20,949                           | -                                | 20,949                                 | 100                            | -                             | 17,388                          | 17,388                          |
| 272 | 08_Denver_l | Denver Indoor Dem        | 129,727                          | -                                | 129,727                                | 100                            | -                             | 16,866                          | 16,866                          |
| 273 | 08_Denver_O | Denver Outdoor Dem       | 91,198                           | -                                | 91,198                                 | 100                            | -                             | 82,078                          | 82,078                          |
| 274 | 08_Englwd_I | Englewood Indoor Dem     | 3,687                            | -                                | 3,687                                  | 100                            | -                             | 368                             | 368                             |
| 275 | 08_Englwd_O | Englewood Outdoor Dem    | 2,897                            | -                                | 2,897                                  | 100                            | -                             | 2,404                           | 2,404                           |
| 276 | 0900535     | BERGEN DITCH             | 720                              | -                                | 720                                    | 88                             | 21                            | -                               | 21                              |
| 277 | 0900731_D   | Arnett/Harriman Ditch    | 2,367                            | -                                | 2,367                                  | 100                            | 1,115                         | -                               | 1,115                           |
| 278 | 0900752     | HODGSON DITCH            | 455                              | -                                | 455                                    | 98                             | 45                            | -                               | 45                              |
| 279 | 0900767     | INDEPENDENT HIGHLINE DIT | 306                              | -                                | 306                                    | 93                             | 116                           | -                               | 116                             |
| 280 | 0900816     | MCBROOM DITCH            | 730                              | -                                | 730                                    | 97                             | 341                           | -                               | 341                             |
| 281 | 0900903     | WARRIOR/HARRIMAN D TK CR | 121                              | -                                | 121                                    | 98                             | 56                            | -                               | 56                              |
| 282 | 0900958     | WARD DITCH               | 1,951                            | -                                | 1,951                                  | 100                            | 912                           | -                               | 912                             |
| 283 | 0900963_D   | Warrior/Harriman Ditch   | 3,466                            | -                                | 3,466                                  | 100                            | -                             | -                               | _                               |
| 284 | 09_ADP003   | WD9 Agg SW Divn          | 5                                | -                                | 5                                      | 100                            | 3                             | -                               | 3                               |
| 285 | 09_AMP001_I | WD9 Lower Agg Muni In    | 3,418                            | -                                | 3,418                                  | 100                            | -                             | 343                             | 343                             |
| 286 | 09_AMP001_0 | WD9 Lower Agg Muni Out   | 2,685                            | -                                | 2,685                                  | 100                            | -                             | 2,229                           | 2,229                           |
| 287 | 09_AUP001_I | WD9 Lower Agg Uninc In   | 5,608                            | -                                | 5,608                                  | 100                            | -                             | 560                             | 560                             |
| 288 | 09_AUP001_O | WD9 Lower Agg Uninc Out  | 4,406                            | -                                | 4,406                                  | 100                            | _                             | 3,657                           | 3,657                           |

| #   | Model ID    | Name                     | Avg. Annual<br>SW Demand<br>(AF) | Avg. Annual<br>GW Demand<br>(AF) | Avg. Annual<br>Total<br>Demand<br>(AF) | Percent<br>Demand<br>Simulated | Avg. Annual<br>Irrig. CU (AF) | Avg. Annual<br>M & I CU<br>(AF) | Avg. Annual<br>Total CU<br>(AF) |
|-----|-------------|--------------------------|----------------------------------|----------------------------------|----------------------------------------|--------------------------------|-------------------------------|---------------------------------|---------------------------------|
| 289 | 2300500     | PLATTE STATION DITCH     | 612                              | -                                | 612                                    | 99                             | 107                           | -                               | 107                             |
| 290 | 2300760     | SACRAMENTO DITCH         | 910                              | -                                | 910                                    | 97                             | 189                           | -                               | 189                             |
| 291 | 2300902     | PETRIE DITCH             | 684                              | -                                | 684                                    | 98                             | 247                           | -                               | 247                             |
| 292 | 2300904     | LINK DITCH               | 323                              | -                                | 323                                    | 86                             | 118                           | -                               | 118                             |
| 293 | 2300922     | HOLST DITCH 2            | 540                              | -                                | 540                                    | 100                            | 70                            | -                               | 70                              |
| 294 | 2300923     | HOLST PACKER D           | 611                              | -                                | 611                                    | 100                            | 94                            | -                               | 94                              |
| 295 | 2300924     | HOLST DITCH 1            | 495                              | -                                | 495                                    | 100                            | 63                            | -                               | 63                              |
| 296 | 2300926     | PACKER BONIS DITCH       | 371                              | -                                | 371                                    | 98                             | 41                            | -                               | 41                              |
| 297 | 2300991     | TAYLOR DITCH             | 978                              | -                                | 978                                    | 54                             | 130                           | -                               | 130                             |
| 298 | 2300993     | GIBSON DITCH             | 243                              | -                                | 243                                    | 28                             | 28                            | -                               | 28                              |
| 299 | 2300994     | CROSIER TAYLOR DITCH     | 485                              | -                                | 485                                    | 96                             | 232                           | -                               | 232                             |
| 300 | 23_ADP001   | WD23 Tarryall Agg SW Div | 4,065                            | -                                | 4,065                                  | 100                            | 1,211                         | -                               | 1,211                           |
| 301 | 23_ADP002   | WD23 SPR Agg SW Divn     | 3,910                            | -                                | 3,910                                  | 100                            | 1,649                         | -                               | 1,649                           |
| 302 | 23_AMP001_I | WD23 Upper Agg Muni In   | 58                               | -                                | 58                                     | 99                             | -                             | 6                               | 6                               |
| 303 | 23_AMP001_O | WD23 Upper Agg Muni Out  | 46                               | -                                | 46                                     | 97                             | -                             | 36                              | 36                              |
| 304 | 23_AUP001_I | WD23 Upper Agg Uninc In  | 279                              | -                                | 279                                    | 99                             | -                             | 29                              | 29                              |
| 305 | 23_AUP001_O | WD23 Upper Agg Uninc Out | 219                              | -                                | 219                                    | 97                             | -                             | 177                             | 177                             |
| 306 | 23_AUP002_I | WD23 Lower Agg Uninc In  | 552                              | -                                | 552                                    | 99                             | -                             | 54                              | 54                              |
| 307 | 23_AUP002_O | WD23 Lower Agg Uninc Out | 434                              | -                                | 434                                    | 97                             | -                             | 351                             | 351                             |
| 308 | 6400501     | CARLSON DITCH            | 243                              | -                                | 243                                    | 100                            | 88                            | -                               | 88                              |
| 309 | 6400502     | LIDDLE DITCH             | 1,165                            | 1,097                            | 2,262                                  | 100                            | 1,287                         | -                               | 1,287                           |
| 310 | 6400503     | SOUTH RESERVATION DITCH  | 3,205                            | 26                               | 3,231                                  | 100                            | 1,685                         | -                               | 1,685                           |
| 311 | 6400504     | PETERSON DITCH           | 9,905                            | 8,741                            | 18,646                                 | 100                            | 10,579                        | -                               | 10,579                          |
| 312 | 6400506     | RED LION SUPPLY DITCH    | -                                | 384                              | 384                                    | 100                            | 293                           | -                               | 293                             |
| 313 | 6400507     | LONG ISLAND DITCH        | -                                | 3,365                            | 3,365                                  | 100                            | 2,233                         | -                               | 2,233                           |
| 314 | 6400508     | SETTLERS DITCH           | 6,388                            | 4,238                            | 10,626                                 | 100                            | 5,818                         | -                               | 5,818                           |

| #   | Model ID  | Name                     | Avg. Annual<br>SW Demand<br>(AF) | Avg. Annual<br>GW Demand<br>(AF) | Avg. Annual<br>Total<br>Demand<br>(AF) | Percent<br>Demand<br>Simulated | Avg. Annual<br>Irrig. CU (AF) | Avg. Annual<br>M & I CU<br>(AF) | Avg. Annual<br>Total CU<br>(AF) |
|-----|-----------|--------------------------|----------------------------------|----------------------------------|----------------------------------------|--------------------------------|-------------------------------|---------------------------------|---------------------------------|
| 315 | 6400511_I | Harmony Irrigation       | 38,697                           | 842                              | 39,539                                 | 100                            | 18,939                        | -                               | 18,939                          |
| 316 | 6400513   | CHAMBERS DITCH           | -                                | 702                              | 702                                    | 100                            | 558                           | -                               | 558                             |
| 317 | 6400514   | RAMSEY DITCH             | 838                              | 385                              | 1,223                                  | 99                             | 588                           | -                               | 588                             |
| 318 | 6400516   | POWELL BLAIR DITCH       | 5,196                            | 707                              | 5,903                                  | 100                            | 3,032                         | -                               | 3,032                           |
| 319 | 6400518   | LONE TREE DITCH          | 316                              | 1,488                            | 1,804                                  | 100                            | 1,084                         | -                               | 1,084                           |
| 320 | 6400520   | ILIFF PLATTE VALLEY D    | 24,509                           | 931                              | 25,439                                 | 100                            | 11,594                        | -                               | 11,594                          |
| 321 | 6400522_D | Bravo Div System         | 6,325                            | 996                              | 7,321                                  | 100                            | 3,544                         | -                               | 3,544                           |
| 322 | 6400524   | LOWLINE DITCH            | 6,606                            | 300                              | 6,907                                  | 100                            | 3,221                         | -                               | 3,221                           |
| 323 | 6400525   | HENDERSON SMITH DITCH    | 2,004                            | -                                | 2,004                                  | 90                             | 616                           | -                               | 616                             |
| 324 | 6400528   | STERLING IRR CO DITCH 1  | 23,465                           | 1,203                            | 24,669                                 | 99                             | 11,596                        | -                               | 11,596                          |
| 325 | 6400530   | SPRINGDALE DITCH         | 7,852                            | 4,416                            | 12,268                                 | 100                            | 5,737                         | -                               | 5,737                           |
| 326 | 6400531   | SCHNEIDER DITCH          | 10,369                           | 426                              | 10,795                                 | 100                            | 4,521                         | -                               | 4,521                           |
| 327 | 6400532   | DAVIS BROS DITCH         | _                                | 4,778                            | 4,778                                  | 100                            | 3,457                         | -                               | 3,457                           |
| 328 | 6400533   | PAWNEE DITCH             | 27,018                           | 1,265                            | 28,283                                 | 100                            | 14,160                        | -                               | 14,160                          |
| 329 | 6400535   | SOUTH PLATTE DITCH       | 13,763                           | 2,273                            | 16,036                                 | 100                            | 7,640                         | -                               | 7,640                           |
| 330 | 6400584   | I O JONES DITCH & RESERV | 122                              | -                                | 122                                    | -                              | _                             | -                               | -                               |
| 331 | 6400599   | RICE DITCH               | _                                | 1,118                            | 1,118                                  | 100                            | 783                           | -                               | 783                             |
| 332 | 6400643   | HEYBORNE LIFT STATION    | 0                                | -                                | 0                                      | -                              | -                             | -                               | -                               |
| 333 | 6400801   | COTTONWOOD CR RCHRG PUMP | 24                               | -                                | 24                                     | -                              | -                             | -                               | -                               |
| 334 | 8000650   | WANITA DITCH             | 98                               | -                                | 98                                     | 100                            | 9                             | -                               | 9                               |
| 335 | 8000651   | HALL VALLEY DITCH        | 116                              | -                                | 116                                    | 100                            | 5                             | -                               | 5                               |
| 336 | 8000657_D | Hepburn Ranch            | 381                              | -                                | 381                                    | 91                             | 92                            | -                               | 92                              |
| 337 | 8000662_D | Fitzsimmons Ranch        | 830                              | -                                | 830                                    | 97                             | 127                           | -                               | 127                             |
| 338 | 8000667   | SOUTH SIDE DITCH         | 222                              | -                                | 222                                    | 99                             | 38                            | -                               | 38                              |
| 339 | 8000673_D | Herford Ranch            | 472                              | -                                | 472                                    | 100                            | 61                            | -                               | 61                              |
| 340 | 8000706   | BEAVER CREEK DITCH       | 394                              | -                                | 394                                    | 94                             | 56                            | -                               | 56                              |

| #   | Model ID    | Name                    | Avg. Annual<br>SW Demand<br>(AF) | Avg. Annual<br>GW Demand<br>(AF) | Avg. Annual<br>Total<br>Demand<br>(AF) | Percent<br>Demand<br>Simulated | Avg. Annual<br>Irrig. CU (AF) | Avg. Annual<br>M & I CU<br>(AF) | Avg. Annual<br>Total CU<br>(AF) |
|-----|-------------|-------------------------|----------------------------------|----------------------------------|----------------------------------------|--------------------------------|-------------------------------|---------------------------------|---------------------------------|
| 341 | 8000713     | KENOSHA DITCH           | 178                              | -                                | 178                                    | 99                             | 22                            | -                               | 22                              |
| 342 | 8000732_D   | Camp Santa Maria        | 410                              | -                                | 410                                    | 100                            | 35                            | -                               | 35                              |
| 343 | 8000759     | MCARTHUR DITCH          | 331                              | -                                | 331                                    | 100                            | 38                            | -                               | 38                              |
| 344 | 8000760     | WINKLER DITCH 1         | 188                              | -                                | 188                                    | 100                            | 14                            | -                               | 14                              |
| 345 | 8000761     | WINKLER DITCH 3         | 138                              | -                                | 138                                    | 99                             | 17                            | -                               | 17                              |
| 346 | 8000774_D   | Berger Ranch            | 241                              | -                                | 241                                    | 99                             | 25                            | -                               | 25                              |
| 347 | 8000784     | JEFFRIES CRAWFORD DITCH | 357                              | -                                | 357                                    | 96                             | 53                            | -                               | 53                              |
| 348 | 8000785     | WONDER DITCH            | 60                               | -                                | 60                                     | 95                             | 9                             | -                               | 9                               |
| 349 | 8000792     | PARMALEE DITCH 2 & 3    | 154                              | -                                | 154                                    | 36                             | 21                            | -                               | 21                              |
| 350 | 8000794     | FLUME DITCH             | 76                               | -                                | 76                                     | 58                             | 21                            | -                               | 21                              |
| 351 | 8000799_D   | Deer Creek Ranch        | 307                              | -                                | 307                                    | 89                             | 24                            | -                               | 24                              |
| 352 | 8000812     | CLIFFORD GULCH DITCH    | 100                              | -                                | 100                                    | 94                             | 12                            | -                               | 12                              |
| 353 | 8000829_D   | Magnus Ranch            | 312                              | -                                | 312                                    | 98                             | 71                            | -                               | 71                              |
| 354 | 8000831_D   | State Parks Ranch       | 247                              | -                                | 247                                    | 93                             | 48                            | -                               | 48                              |
| 355 | 80_ADP001   | WD80 NF SPR Agg SW Divn | 591                              | -                                | 591                                    | 99                             | 131                           | -                               | 131                             |
| 356 | AurThEff    | Aur WWTP to Thornton    | 3,946                            | -                                | 3,946                                  | 97                             | -                             | -                               | -                               |
| 357 | Conduit15   | Denver Conduit 15       | 805                              | -                                | 805                                    | 100                            | -                             | -                               | -                               |
| 358 | Metro_Pumps | MetroPumpsHistDivns     | 11,150                           | -                                | 11,150                                 | 100                            | -                             | -                               | _                               |
| 359 | 0100711     | PSCo Well Field         | -                                | 3,008                            | 3,008                                  | 99                             | -                             | 2,979                           | 2,979                           |
| 360 | 0102513_ReW | Rothe Recharge Well     | -                                | 466                              | 466                                    | 100                            | -                             | -                               | _                               |
| 361 | 0102535_ReW | LPB Recharge Well       | -                                | 365                              | 365                                    | 100                            | -                             | -                               | -                               |
| 362 | 01_AMP001_I | WD 1 Muni Ind           | -                                | 3,809                            | 3,809                                  | 100                            | -                             | 382                             | 382                             |
| 363 | 01_AMP001_O | WD 1 Muni Out           | -                                | 2,992                            | 2,992                                  | 100                            | -                             | 2,484                           | 2,484                           |
| 364 | 01_AUP001_I | WD 1 Unincorp Ind       | -                                | 13,669                           | 13,669                                 | 100                            | -                             | 1,366                           | 1,366                           |
| 365 | 01_AUP001_O | WD 1 Unincorp Out       | -                                | 10,740                           | 10,740                                 | 100                            | -                             | 8,914                           | 8,914                           |
| 366 | 01_AUP002_I | WD 1 Unincorp Ind       | -                                | 1,831                            | 1,831                                  | 100                            | -                             | 182                             | 182                             |

| #   | Model ID    | Name                                           | Avg. Annual<br>SW Demand<br>(AF) | Avg. Annual<br>GW Demand<br>(AF) | Avg. Annual<br>Total<br>Demand<br>(AF) | Percent<br>Demand<br>Simulated | Avg. Annual<br>Irrig. CU (AF) | Avg. Annual<br>M & I CU<br>(AF) | Avg. Annual<br>Total CU<br>(AF) |
|-----|-------------|------------------------------------------------|----------------------------------|----------------------------------|----------------------------------------|--------------------------------|-------------------------------|---------------------------------|---------------------------------|
| 367 | 01_AUP002_O | WD 1 Unincorp Out                              | -                                | 1,439                            | 1,439                                  | 100                            | -                             | 1,194                           | 1,194                           |
| 368 | 01_AWP001   | Camp Creek Designated Basin                    | -                                | 4,131                            | 4,131                                  | 100                            | 3,280                         | -                               | 3,280                           |
| 369 | 01_AWP002   | South Platte River below Weldona CO<br>North   | _                                | 4,429                            | 4,429                                  | 100                            | 3,249                         | _                               | 3,249                           |
| 370 | 01_AWP003   | WD 1 Upper Beaver Creek                        | -                                | 7,954                            | 7,954                                  | 100                            | 5,470                         | -                               | 5,470                           |
| 371 | 01_AWP004   | WD 1 Main Stem Beaver Creek                    | -                                | 4,663                            | 4,663                                  | 100                            | 3,136                         | -                               | 3,136                           |
| 372 | 01_AWP005   | WD 1 Washington County                         | -                                | 1,881                            | 1,881                                  | 100                            | 1,360                         | -                               | 1,360                           |
| 373 | 01_AWP006   | South Platte River below Weldona CO<br>South 1 | -                                | 1,624                            | 1,624                                  | 100                            | 1,225                         | _                               | 1,225                           |
| 374 | 01_AWP007   | South Platte River below Weldona CO<br>South 2 | -                                | 5,301                            | 5,301                                  | 100                            | 3,976                         | -                               | 3,976                           |
| 375 | 01_AWP008   | Upper Kiowa Bijou Designated Basin             | -                                | 1,704                            | 1,704                                  | 100                            | 1,300                         | -                               | 1,300                           |
| 376 | 01_AWP009   | Upper Kiowa Bijou Designated Basin             | -                                | 3,066                            | 3,066                                  | 100                            | 2,336                         | -                               | 2,336                           |
| 377 | 01_AWP010   | Lower Kiowa Bijou Designated Basin<br>East 1   | -                                | 2,311                            | 2,311                                  | 100                            | 1,837                         | -                               | 1,837                           |
| 378 | 01_AWP011   | Lower Kiowa Bijou Designated Basin<br>East 2   | -                                | 5,948                            | 5,948                                  | 100                            | 4,624                         | _                               | 4,624                           |
| 379 | 01_AWP012   | Lower Kiowa Bijou Designated Basin<br>East 4   | _                                | 8,642                            | 8,642                                  | 100                            | 6,638                         | _                               | 6,638                           |
| 380 | 01_AWP013   | Lower Kiowa Bijou Designated Basin<br>East 5   | -                                | 5,102                            | 5,102                                  | 100                            | 3,898                         | -                               | 3,898                           |
| 381 | 01_AWP014   | Lower Kiowa Bijou Designated Basin<br>East 6   | -                                | 7,497                            | 7,497                                  | 100                            | 5,692                         | -                               | 5,692                           |
| 382 | 01_AWP015   | Lower Kiowa Bijou Designated Basin<br>East 7   | -                                | 5,745                            | 5,745                                  | 100                            | 4,373                         | _                               | 4,373                           |
| 383 | 01_AWP016   | Lower Kiowa Bijou Designated Basin<br>East 8   | _                                | 6,492                            | 6,492                                  | 100                            | 4,921                         | -                               | 4,921                           |
| 384 | 01_AWP017   | Lower Kiowa Bijou Designated Basin<br>East 9   | _                                | 5,069                            | 5,069                                  | 100                            | 3,914                         | -                               | 3,914                           |
| 385 | 01_AWP018   | Lower Kiowa Bijou Designated Basin<br>East 10  | -                                | 9,747                            | 9,747                                  | 100                            | 7,209                         | _                               | 7,209                           |

| #   | Model ID  | Name                                              | Avg. Annual<br>SW Demand<br>(AF) | Avg. Annual<br>GW Demand<br>(AF) | Avg. Annual<br>Total<br>Demand<br>(AF) | Percent<br>Demand<br>Simulated | Avg. Annual<br>Irrig. CU (AF) | Avg. Annual<br>M & I CU<br>(AF) | Avg. Annual<br>Total CU<br>(AF) |
|-----|-----------|---------------------------------------------------|----------------------------------|----------------------------------|----------------------------------------|--------------------------------|-------------------------------|---------------------------------|---------------------------------|
| 386 | 01_AWP019 | Lower Kiowa Bijou Designated Basin<br>West 1      | -                                | 7,085                            | 7,085                                  | 100                            | 5,280                         | -                               | 5,280                           |
| 387 | 01_AWP020 | Lower Kiowa Bijou Designated Basin<br>West 2      | -                                | 4,644                            | 4,644                                  | 100                            | 3,491                         | -                               | 3,491                           |
| 388 | 01_AWP021 | Lower Kiowa Bijou Designated Basin<br>West 3      | -                                | 3,838                            | 3,838                                  | 100                            | 2,485                         | -                               | 2,485                           |
| 389 | 01_AWP022 | Lower Lost Creek Designated Basin 1               | -                                | 4,776                            | 4,776                                  | 100                            | 3,820                         | -                               | 3,820                           |
| 390 | 01_AWP023 | Lower Lost Creek Designated Basin 2               | -                                | 10,363                           | 10,363                                 | 100                            | 8,050                         | -                               | 8,050                           |
| 391 | 01_AWP024 | Lower Lost Creek Designated Basin 3               | -                                | 4,177                            | 4,177                                  | 100                            | 2,967                         | -                               | 2,967                           |
| 392 | 01_AWP025 | Upper Lost Creek Designated Basin                 | -                                | 3,668                            | 3,668                                  | 100                            | 2,921                         | -                               | 2,921                           |
| 393 | 01_AWP026 | South Platte River Above Weldona Co<br>South 1    | -                                | 2,951                            | 2,951                                  | 100                            | 2,360                         | _                               | 2,360                           |
| 394 | 01_AWP027 | South Platte River Above Weldona Co<br>South 2    | _                                | 4,566                            | 4,566                                  | 100                            | 3,630                         | _                               | 3,630                           |
| 395 | 01_AWP028 | South Platte River Above Weldona Co<br>South 3    | _                                | 6,528                            | 6,528                                  | 100                            | 5,045                         | _                               | 5,045                           |
| 396 | 01_AWP029 | South Platte River Above Weldona Co<br>South 4    | -                                | 4,205                            | 4,205                                  | 100                            | 3,273                         | -                               | 3,273                           |
| 397 | 01_AWP030 | South Platte River Above Weldona Co<br>South 5    | -                                | 4,851                            | 4,851                                  | 100                            | 3,758                         | _                               | 3,758                           |
| 398 | 01_AWP031 | South Platte River below Riverside Canal<br>South | -                                | 7,145                            | 7,145                                  | 100                            | 5,651                         | _                               | 5,651                           |
| 399 | 01_AWP032 | WD 1 Lower Boxelder Creek                         | -                                | 5,405                            | 5,405                                  | 100                            | 3,864                         | -                               | 3,864                           |
| 400 | 01_AWP033 | South Platte River Above Weldona Co<br>North      | -                                | 4,534                            | 4,534                                  | 100                            | 3,458                         | _                               | 3,458                           |
| 401 | 01_AWP035 | WD 1 Upper Boxelder Creek                         | -                                | 2,551                            | 2,551                                  | 100                            | 1,767                         | -                               | 1,767                           |
| 402 | 01_AWP037 | South Platte River below Kersey Co<br>North 2     | -                                | 533                              | 533                                    | 100                            | 384                           | -                               | 384                             |
| 403 | 01_AWP038 | Upper Crow Creek Designated Basin                 | -                                | 7,798                            | 7,798                                  | 100                            | 6,031                         | -                               | 6,031                           |
| 404 | 01_AWP039 | Upper Kiowa Bijou Designated Basin                | -                                | 3,895                            | 3,895                                  | 100                            | 2,569                         | -                               | 2,569                           |
| 405 | 01_AWP040 | Upper Kiowa Bijou Designated Basin                | -                                | 2,175                            | 2,175                                  | 100                            | 1,509                         | -                               | 1,509                           |

| #   | Model ID    | Name                                        | Avg. Annual<br>SW Demand<br>(AF) | Avg. Annual<br>GW Demand<br>(AF) | Avg. Annual<br>Total<br>Demand<br>(AF) | Percent<br>Demand<br>Simulated | Avg. Annual<br>Irrig. CU (AF) | Avg. Annual<br>M & I CU<br>(AF) | Avg. Annual<br>Total CU<br>(AF) |
|-----|-------------|---------------------------------------------|----------------------------------|----------------------------------|----------------------------------------|--------------------------------|-------------------------------|---------------------------------|---------------------------------|
| 406 | 01_AWP042   | South Platte River below Kersey Co<br>South | _                                | 8,068                            | 8,068                                  | 100                            | 6,103                         | _                               | 6,103                           |
| 407 | 01_AWP043   | WD 1 Upper Boxelder Creek                   | -                                | 1,601                            | 1,601                                  | 100                            | 1,025                         | -                               | 1,025                           |
| 408 | 01_AWP044   | WD 1 Lower Boxelder Creek                   | -                                | 3                                | 3                                      | 100                            | 2                             | -                               | 2                               |
| 409 | 02_AUP001_I | WD 2 Agg Uninc In                           | -                                | 2,860                            | 2,860                                  | 100                            | -                             | 286                             | 286                             |
| 410 | 02_AUP001_O | WD 2 Agg Uninc Out                          | -                                | 2,247                            | 2,247                                  | 100                            | -                             | 1,865                           | 1,865                           |
| 411 | 02_AWP001   | WD2 Agg Wells1 blw Barr                     | -                                | 7,216                            | 7,216                                  | 100                            | 5,492                         | -                               | 5,492                           |
| 412 | 02_AWP002   | WD2 Agg Wellsw abv Barr                     | -                                | 8,846                            | 8,846                                  | 100                            | 7,031                         | -                               | 7,031                           |
| 413 | 02_AWP003   | WD2 Agg Wells 3                             | -                                | 2,431                            | 2,431                                  | 100                            | 1,676                         | -                               | 1,676                           |
| 414 | 02_AWP004   | WD2 Agg Wells 4                             | -                                | 7,900                            | 7,900                                  | 100                            | 5,840                         | -                               | 5,840                           |
| 415 | 02_AWP005   | WD2 Agg Wells 5                             | -                                | 628                              | 628                                    | 100                            | 381                           | -                               | 381                             |
| 416 | 02_Bright_I | Brighton Indoor                             | -                                | 6,327                            | 6,327                                  | 100                            | -                             | 634                             | 634                             |
| 417 | 02_Bright_O | Brighton Outdoor                            | -                                | 4,971                            | 4,971                                  | 100                            | -                             | 4,126                           | 4,126                           |
| 418 | 02_SACWSD_I | SACWSD Indoor                               | -                                | 3,462                            | 3,462                                  | 100                            | -                             | 346                             | 346                             |
| 419 | 02_SACWSD_O | SACWSD Outdoor                              | -                                | 2,720                            | 2,720                                  | 100                            | -                             | 2,258                           | 2,258                           |
| 420 | 04_AWP001   | Big Thompson below Loveland, CO             | -                                | 82                               | 82                                     | 100                            | 61                            | -                               | 61                              |
| 421 | 04_AWP002   | Little Thompson above Berthoud, CO          | -                                | 105                              | 105                                    | 100                            | 62                            | -                               | 62                              |
| 422 | 04_AWP004   | Big Thompson above Loveland, CO             | -                                | 52                               | 52                                     | 99                             | 31                            | -                               | 31                              |
| 423 | 04_AWP005   | Little Thompson above Big Thompson confl    | -                                | 204                              | 204                                    | 100                            | 122                           | -                               | 122                             |
| 424 | 05_AWP001   | Left Hand Creek above St Vrain Group 1      | -                                | -                                | -                                      | 100                            | -                             | -                               | -                               |
| 425 | 05_AWP004   | St Vrain below Lyons North                  | -                                | -                                | -                                      | 100                            | -                             | -                               | -                               |
| 426 | 06_AWP001   | Boulder Creek to South Platte<br>Confluence | -                                | 1                                | 1                                      | 100                            | 1                             | -                               | 1                               |
| 427 | 07_AWP001   | Clear Creek below Golden Co                 | -                                | 55                               | 55                                     | 100                            | 33                            | -                               | 33                              |
| 428 | 07_CoorsA   | Coors Springs                               | -                                | 2,719                            | 2,719                                  | 100                            | -                             | 270                             | 270                             |
| 429 | 0805065     | Aurora Cherry Ck Wells                      | -                                | 2,305                            | 2,305                                  | 100                            | -                             | -                               | -                               |

| #   | Model ID    | Name                     | Avg. Annual<br>SW Demand<br>(AF) | Avg. Annual<br>GW Demand<br>(AF) | Avg. Annual<br>Total<br>Demand<br>(AF) | Percent<br>Demand<br>Simulated | Avg. Annual<br>Irrig. CU (AF) | Avg. Annual<br>M & I CU<br>(AF) | Avg. Annual<br>Total CU<br>(AF) |
|-----|-------------|--------------------------|----------------------------------|----------------------------------|----------------------------------------|--------------------------------|-------------------------------|---------------------------------|---------------------------------|
| 430 | 08_AMP001_I | Plum Ck Agg Muni In      | -                                | 3,463                            | 3,463                                  | 100                            | -                             | 349                             | 349                             |
| 431 | 08_AMP001_0 | Plum Ck Agg Muni Out     | -                                | 2,721                            | 2,721                                  | 100                            | -                             | 2,258                           | 2,258                           |
| 432 | 08_AMP002_I | Cherry Ck Agg Muni Out   | -                                | 5,792                            | 5,792                                  | 100                            | -                             | 579                             | 579                             |
| 433 | 08_AMP002_O | Cherry Ck Agg Muni Out   | -                                | 4,551                            | 4,551                                  | 100                            | -                             | 3,777                           | 3,777                           |
| 434 | 08_AUP001_I | Plum Ck Agg Uninc In     | -                                | 6,528                            | 6,528                                  | 100                            | -                             | 652                             | 652                             |
| 435 | 08_AUP001_O | Plum Ck Agg Uninc Out    | -                                | 5,129                            | 5,129                                  | 100                            | -                             | 4,257                           | 4,257                           |
| 436 | 08_AUP002_I | Cherry Ck Agg Uninc In   | -                                | 6,962                            | 6,962                                  | 100                            | -                             | 697                             | 697                             |
| 437 | 08_AUP002_O | Cherry Ck Agg Uninc Out  | -                                | 5,470                            | 5,470                                  | 100                            | -                             | 4,540                           | 4,540                           |
| 438 | 08_AWP001   | WD8 Agg Well 1           | -                                | 350                              | 350                                    | 100                            | 229                           | -                               | 229                             |
| 439 | 08_AWP002   | WD8 Cherry Ck Agg GW Div | -                                | 1,206                            | 1,206                                  | 100                            | 723                           | -                               | 723                             |
| 440 | 08_AWP003   | WD8 SPR Agg GW Divn      | -                                | 72                               | 72                                     | 99                             | 43                            | -                               | 43                              |
| 441 | 08_AWP004   | WD8 Plum Ck Agg GW Divn  | -                                | 262                              | 262                                    | 100                            | 157                           | -                               | 157                             |
| 442 | 08_AWP005   | WD8 Agg Well 5           | -                                | 2,352                            | 2,352                                  | 100                            | 1,520                         | -                               | 1,520                           |
| 443 | 6402517_AuW | Sedgwick Cty Aug Well    | -                                | 792                              | 792                                    | 100                            | -                             | -                               | -                               |
| 444 | 6402517_ReW | Sedgwick Cty Recharge We | -                                | 414                              | 414                                    | 98                             | -                             | -                               | -                               |
| 445 | 6402519_AuW | Dinsdale Aug Well        | -                                | 319                              | 319                                    | 100                            | -                             | -                               | -                               |
| 446 | 6402519_ReW | Dinsdale Recharge Well   | -                                | 1,485                            | 1,485                                  | 100                            | _                             | -                               | -                               |
| 447 | 6402525_AuW | Condon Aug Well          | -                                | 38                               | 38                                     | 100                            | -                             | -                               | -                               |
| 448 | 6402525_ReW | Condon Recharge Well     | -                                | 1,276                            | 1,276                                  | 100                            | -                             | -                               | -                               |
| 449 | 6402526_AuW | Sterling Aug Well        | -                                | 9                                | 9                                      | 100                            | _                             | -                               | -                               |
| 450 | 6402536_AuW | Lower Logan Aug Well     | -                                | 444                              | 444                                    | 100                            | -                             | -                               | -                               |
| 451 | 6402536_ReW | Lower Logan Recharge Wel | -                                | 4,212                            | 4,212                                  | 99                             | -                             | -                               | -                               |
| 452 | 6402539_AuW | Logan Aug Well           | -                                | 360                              | 360                                    | 100                            | -                             | -                               | -                               |
| 453 | 6402539_ReW | Logan Recharge Well      | -                                | 2,115                            | 2,115                                  | 100                            | -                             | -                               | -                               |
| 454 | 6402540_AuW | Low Line Aug Well        | -                                | 32                               | 32                                     | 100                            | -                             | -                               | -                               |
| 455 | 6402542_ReW | LSPWCD Recharge Well     | -                                | 541                              | 541                                    | 100                            | -                             | -                               | -                               |

| #   | Model ID    | Name                                            | Avg. Annual<br>SW Demand<br>(AF) | Avg. Annual<br>GW Demand<br>(AF) | Avg. Annual<br>Total<br>Demand<br>(AF) | Percent<br>Demand<br>Simulated | Avg. Annual<br>Irrig. CU (AF) | Avg. Annual<br>M & I CU<br>(AF) | Avg. Annual<br>Total CU<br>(AF) |
|-----|-------------|-------------------------------------------------|----------------------------------|----------------------------------|----------------------------------------|--------------------------------|-------------------------------|---------------------------------|---------------------------------|
| 456 | 64_AMP001_I | WD 64 Muni Ind                                  | -                                | 3,114                            | 3,114                                  | 100                            | -                             | 312                             | 312                             |
| 457 | 64_AMP001_0 | WD 64 Muni Out                                  | -                                | 2,446                            | 2,446                                  | 100                            | -                             | 2,031                           | 2,031                           |
| 458 | 64_AUP001_I | WD 64 Unincorp Ind                              | -                                | 2,073                            | 2,073                                  | 100                            | -                             | 207                             | 207                             |
| 459 | 64_AUP001_O | WD 64 Unincorp Out                              | -                                | 1,629                            | 1,629                                  | 100                            | -                             | 1,351                           | 1,351                           |
| 460 | 64_AWP001   | Water District 64 Sedgwick County<br>North      | -                                | 313                              | 313                                    | 100                            | 233                           | -                               | 233                             |
| 461 | 64_AWP002   | Water District 64 Sedgwick County<br>South      | -                                | 322                              | 322                                    | 100                            | 232                           | -                               | 232                             |
| 462 | 64_AWP003   | Water District 64 Sedgwick County<br>South      | -                                | 3,550                            | 3,550                                  | 100                            | 2,719                         | -                               | 2,719                           |
| 463 | 64_AWP004   | Water District 64 Sedgwick County GW<br>1       | -                                | 7,962                            | 7,962                                  | 100                            | 5,358                         | -                               | 5,358                           |
| 464 | 64_AWP005   | Water District 64 Sedgwick County GW 2          | -                                | 6,463                            | 6,463                                  | 100                            | 4,503                         | -                               | 4,503                           |
| 465 | 64_AWP006   | Water District 64 Lower Logan County<br>North   | -                                | 1,408                            | 1,408                                  | 100                            | 1,058                         | -                               | 1,058                           |
| 466 | 64_AWP007   | Water District 64 Lower Logan County<br>South 1 | -                                | 4,917                            | 4,917                                  | 100                            | 3,818                         | -                               | 3,818                           |
| 467 | 64_AWP008   | Water District 64 Lower Logan County<br>South 2 | -                                | 11,552                           | 11,552                                 | 100                            | 9,131                         | -                               | 9,131                           |
| 468 | 64_AWP009   | Water District 64 Lower Logan County<br>South 3 | -                                | 10,213                           | 10,213                                 | 100                            | 7,545                         | -                               | 7,545                           |
| 469 | 64_AWP010   | WD 64 Logan County North Blw Tetsel             | _                                | 2,186                            | 2,186                                  | 100                            | 1,748                         | -                               | 1,748                           |
| 470 | 64_AWP011   | Water District 64 Logan County North<br>Central | -                                | 4,085                            | 4,085                                  | 100                            | 2,952                         | -                               | 2,952                           |
| 471 | 64_AWP012   | WD 64 Logan County S of Pawnee Canal            | -                                | 6,709                            | 6,709                                  | 100                            | 4,828                         | -                               | 4,828                           |
| 472 | 64_AWP013   | WD 64 Logan County N of Pawnee<br>Canal         | -                                | 10,356                           | 10,356                                 | 100                            | 7,766                         | -                               | 7,766                           |
| 473 | 64_AWP014   | WD 64 Logan County North Blw Sterling<br>No 1   | -                                | 9,642                            | 9,642                                  | 100                            | 7,170                         | -                               | 7,170                           |
| 474 | 64_AWP015   | Water District 64 Logan County South            | -                                | 352                              | 352                                    | 100                            | 259                           | -                               | 259                             |

| #   | Model ID  | Name                                | Avg. Annual<br>SW Demand<br>(AF) | Avg. Annual<br>GW Demand<br>(AF) | Avg. Annual<br>Total<br>Demand<br>(AF) | Percent<br>Demand<br>Simulated | Avg. Annual<br>Irrig. CU (AF) | Avg. Annual<br>M & I CU<br>(AF) | Avg. Annual<br>Total CU<br>(AF) |
|-----|-----------|-------------------------------------|----------------------------------|----------------------------------|----------------------------------------|--------------------------------|-------------------------------|---------------------------------|---------------------------------|
| 475 | 64_AWP016 | Water District 64 Weld County       | -                                | 1,539                            | 1,539                                  | 100                            | 1,202                         | -                               | 1,202                           |
| 476 | 64_AWP017 | WD 64 Logan County North Blw Tetsel | -                                | 2,485                            | 2,485                                  | 100                            | 1,791                         | _                               | 1,791                           |

## 7.7 SPDSS Task Memorandum Links

The table below contains hyperlinks to the CDSS website with all of the previously completed task memos.

| Link                                                       | Title                                                                                            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SPDSS_Task<br>69_EstimateReservoirStockPondEvaporatio<br>n | SPDSS Task 69 - Estimate<br>Reservoir and Stock<br>Evaporation                                   | The purpose of Task 69 is to estimate the capacity of smaller, non-key reservoirs and stock ponds, combine them by Water District into "aggregated" reservoirs, and estimate their evaporative losses.                                                                                                                                                                                                                                                                                       |
| SPDSS_Task 7-1_IdentifyReviewCallRecords                   | SPDSS Task 7.1 - Identify and Review Call Records                                                | The Task 7.1 objectives are to: Collect, review and characterize historical call regime over time. Determine an appropriate methodology with Division 1 personnel to develop consistent coding standards for the 1950 to present study period.                                                                                                                                                                                                                                               |
| SPDSS Task1 Research-ID-StudyPeriod                        | SPDSS Task 1 - Research and<br>Identify Appropriate Study<br>Period                              | The objective of this task was to verify or refine the recommended study<br>period as follows: 1. Review the availability and reliability of digitized data<br>required for the development of DSS components; 2. Determine that the<br>period includes wet, dry, and average periods; represents the long-term<br>average hydrology of the basin; and allows for cost-effective modeling<br>efforts; 3. Document study periods used in other modeling efforts in the<br>South Platte Basin. |
| <u>SPDSS_Task104_MappingIrrigatedLands199</u><br><u>Z</u>  | Tasks 104 & 105 - SPDSS<br>Spatial Systems Integration:<br>Mapping Historic Land Use<br>for 1997 | This memorandum provides details on the methods used to map the SPDSS irrigated lands that existed in 1997.                                                                                                                                                                                                                                                                                                                                                                                  |

| Link                                                                    | Title                                                                                                                               | Description                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SPDSS Task2 IDKeyStreamflowGages                                        | SPDSS Task 2 - Identify Key<br>Streamflow Gages and<br>Estimate Streamflows for<br>Missing Records                                  | The objective of this task is to identify key streamflow gages to use in the SPDSS modeling efforts and to develop a method for filling missing data. Revised memo to account for new information regarding the Balzac Gage. Revised February 2007. |
| SPDSS Task3 AggregateNonKeyAgDiversio<br><u>nStructures</u>             | Task 3 - Aggregate Non-Key<br>Agricultural Diversion<br>Structures                                                                  | This memo describes the approach and results for grouping (aggregating)<br>non-key surface water and ground water only structures for the SPDSS<br>Historical Consumptive Use analysis and for future modeling efforts.                             |
| <u>SPDSS_Task3_IDKeyDiversionStructures_Di</u><br><u>stMeetingNotes</u> | SPDSS Task 3 - Identify Key<br>Diversion Structures                                                                                 | Notes from Water District Meetings: Includes Water Districts 1-9, 23, 47, 48, 64, 76 and 80                                                                                                                                                         |
| SPDSS Task3 KeyDiversionSTructures Sum<br>mary                          | SPDSS Task 3 - Summary of<br>Key Diversion Structures                                                                               | This memo provides the key surface water structures for the SPDSS<br>Historical Consumptive Use analysis and for future modeling efforts.                                                                                                           |
| SPDSS Task33 2 Phase2 FieldStudyWorkP<br>lan                            | Task 33.2 Phase 2 Field Study<br>Work Plan for Alluvial and<br>Bedrock Well Installation,<br>Testing, and Water Level<br>Monitoring | This document presents the Field Study Work Plan for Alluvial and Bedrock<br>Well Installation, Testing, and Water Level Monitoring. This document<br>includes the memo and figures. Appendices are included in a separate<br>document.             |
| <u>SPDSS Task33 2 Phase2 FieldStudyWorkP</u><br>lanAppendices           | 33.2 - Phase 2 Field Study<br>Work Plan for Streambed<br>Conductance Testing and<br>Water Level Measurement -<br>Appendices Only    | Appendices only.                                                                                                                                                                                                                                    |
| SPDSS_Task33-<br>2_Phase3_StreambedConductanceTesting<br>WorkPlan       | 33.2 - Phase 3 Field Study<br>Work Plan for Streambed<br>Conductance Testing and<br>Water Level Measurment                          | This document presents the Field Study Work Plan design, Task 33.2 of Phase 3 of the South Platte Decision Support System (SPDSS).                                                                                                                  |
| SPDSS Task34-3 Phase<br>3 StreambedConductanceTesting                   | 34.3 - Streambed<br>Conductance Testing - Phase<br>3                                                                                | The objective of this Task 34 is to collect data needed to quantify the ground water flux across the streambed in the South Platte River and significant tributaries.                                                                               |
| SPDSS Task35 Phase2 AlluvialWellConstru                                 | 35 - Phase 2 - Alluvial Well<br>Construction & Testing                                                                              | This Task Memo documents field data collection activities in Phase 2.                                                                                                                                                                               |

| Link                                                                   | Title                                                                                                               | Description                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ctionTesting                                                           |                                                                                                                     |                                                                                                                                                                                                                                                                |
| <u>SPDSS_Task35-</u><br><u>3_LowerSPlatteRegionAlluvialWellTesting</u> | 35.3 Lower S. Platte Region -<br>Alluvial Well Construction and<br>Testing                                          | This self-extracting zip file contains pdfs of the memo, figures and all appendices, which document field data collection activities.                                                                                                                          |
| SPDSS Task36-2 BedrockWellConstTesting                                 | 36.2 - Bedrock Well<br>Construction and Testing                                                                     | The purpose of this task is to construct, test, and instrument with a water<br>level data logger one bedrock monitoring well. This self-extracting zip file<br>contains pdfs of all related documents.                                                         |
| <u>SPDSS_Task37-</u><br>2_Phase2_AquiferPumpingTests_                  | 37.2 - Aquifer Pumping Tests -<br>Phase 2                                                                           | The overall goal of SPDSS Task 37 is to collect aquifer test data to better define the hydraulic properties of the Denver Basin aquifers.                                                                                                                      |
| SPDSS Task39 Phase4 FinalWaterLevelMe<br>asurement                     | 39 - Final Water<br>Measurement - Phase 4                                                                           | This technical memorandum documents the methods and results of Task 39, and focuses on field data collection with limited analysis provided.                                                                                                                   |
| SPDSS_Task39-<br>2_Phase2_DenverBasinRegionWaterLvIMea<br>surement     | 39.2 - Denver Basin Region<br>Water Level Measurement -<br>Phase 2                                                  | The objective of this task memo is to provide hydrogeologic data for the<br>bedrock ground water system in the Denver Basin Region to supplement<br>existing information that is collected by the State Engineer's Office (SEO) in<br>the spring of each year. |
| <u>SPDSS Task39-</u><br><u>4 Phase3 FinalWaterLvlMeasurement</u>       | 39.4 - Final Water Level<br>Measurement - Phase 3                                                                   | This technical memorandum documents the methods and results of Tasks 39.1-39.3, and focuses on field data collection with limited analysis provided.                                                                                                           |
| SPDSS_Task4_IDKeyTransmountainDiversions                               | SPDSS Task 4 - Identify and<br>Fill/Resolve Conflicting<br>Records for Key<br>Transmountain Diversion<br>Structures | The objective of this task is to select the most reliable transmountain diversion data.                                                                                                                                                                        |
| SPDSS Task40-<br>2 Phase2 ConversionofAbandonedWells                   | 40.2 - Conversion<br>Abandonded Wells - Phase 2                                                                     | This task memo summarizes the process used to identify wells scheduled<br>for abandonment and evaluate identified wells for conversion to<br>monitoring wells in the Denver Basin Region.                                                                      |
| SPDSS_Task41-<br>3_EstMunicpalIndustrialPumpingSPAlluviu<br>mRegion    | 41.3 - Estimation of Municipal<br>and Industrial Pumping in the<br>South Platte Alluvium Region                     | This Technical Memorandum was undertaken under 41.3 of Phase 3 of the SPDSS, and summarizes the methodology and analysis used to estimate pumping values for periods in which no data were available.                                                          |

| Link                                                                                  | Title                                                                           | Description                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SPDSS_Task42-<br>2_Phase2_DenverBasinAquiferConfiguration<br>n                        | 42.2 - Denver Basin Region<br>Aquifer Configuratioin - Phase<br>2               | This Technical Memorandum was undertaken under Task 42.2, and<br>summarizes the compilation, analysis and mapping of existing published<br>aquifer configuration data for the Denver Basin Region.                                                                                                                                |
| SPDSS Task42-<br>3 Phase3 LowerSPlatteAlluviumRegionAqu<br>iferConfiguration          | 42.3 - Lower South Platte<br>Alluvium Region Aquifer<br>Configuration - Phase 3 | This Technical Memorandum was undertaken under Task 42.3, and<br>summarizes the compilation, analysis and mapping of existing published<br>aquifer configuration data for the Lower South Platte Alluvium Region.                                                                                                                 |
| SPDSS_Task43-<br>2_Phase2_DenverBasinRegionAquiferPrope<br>rty                        | 43.2 - Denver Basin Region<br>Aquifer Property - Phase 2                        | This Technical Memorandum was undertaken under Task 43.2, and<br>summarizes the compilation, analysis and mapping of existing published<br>aquifer property data for the Denver Basin Region.                                                                                                                                     |
| <u>SPDSS_Task43-</u><br><u>3_Phase3_LowerSPlatteAlluviumRegionAqu</u><br>iferProperty | 43.3 - Lower South Platte<br>Alluvium Region Aquifer<br>Property - Phase 3      | This Technical Memorandum was undertaken under Task 43.3, and<br>summarizes the compilation, analysis and mapping of existing published<br>aquifer property data for the Lower South Platte Alluvium Region.                                                                                                                      |
| SPDSS Task44-<br>2 Phase3 DenverBasinBedrockWaterLevel                                | 44.2 - Denver Basin Bedrock<br>Water Level - Phase 3                            | This Technical Memorandum (TM) was undertaken under Task 44.2 of<br>Phase 2 of the SPDSS, and summarizes the compilation, analysis, and<br>mapping of water level data of the Denver Basin bedrock aquifers.                                                                                                                      |
| SPDSS Task44-<br>3 LowerSPlatteAlluviumRegionAquiferWat<br>erLevels                   | 44.3 - Lower South Platte<br>Alluvium Region Aquifer<br>Levels - Phase 3        | This Technical Memorandum was undertaken under Task 44.3 of Phase 2<br>of the SPDSS, and summarizes the compilation, analysis and mapping of<br>water level data of the South Platte Alluvial Aquifer.                                                                                                                            |
| SPDSS_Task46-2_StreamGainLossEstimates                                                | 46.2 - Stream Gain/Loss<br>Estimates - Phase 4                                  | This Technical Memorandum summarizes the compilation and analysis of<br>data for the computation of monthly gains and losses for the main stem of<br>the South Platte River and selected tributaries for the study period of<br>1950-2005.                                                                                        |
| SPDSS Task48-<br>2 AlluvialGroundwaterModelingCalibration                             | 48.2 - Development of<br>Calibration Targets and<br>Criteria - Phase 4          | This Technical Memorandum was undertaken under Task 48.2 of Phase 4<br>of the SPDSS, to develop calibration criteria, including selection of field<br>data (targets) to be used during the model calibration. This TM<br>summarizes the methodology and data that are anticipated to be used in<br>the model calibration process. |

| Link                                   | Title                                                      | Description                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SPDSS Task5 KeyMuniUser Aurora         | SPDSS Task 5 - Key Municipal<br>User, City of Aurora       | The City of Aurora has been identified as a key municipal user for the<br>South Platte Decision Support System (SPDSS) consumptive use and<br>surface water modeling efforts. The purpose of this Task 5 memorandum<br>is to document physical, legal, and operational aspects of those key<br>structures identified.       |
| SPDSS Task5 KeyMuniUser DenverWater    | SPDSS Task 5 - Key Municipal<br>User, Denver Water Board   | Denver Water has been identified as a key municipal user for the South<br>Platte Decision Support System (SPDSS) consumptive use and surface<br>water modeling efforts. The purpose of this Task 5 memorandum is to<br>document physical, legal, and operational aspects of those key structures<br>identified.             |
| SPDSS_Task5_KeyMuniUser_FtCollins      | SPDSS Task 5 - Key Municipal<br>User, City of Fort Collins | The City of Fort Collins has been identified as a key municipal user for the<br>South Platte Decision Support System (SPDSS) consumptive use and<br>surface water modeling efforts. The purpose of this Task 5 memorandum<br>is to document physical, legal, and operational aspects of those key<br>structures identified. |
| <u>SPDSS_Task5_KeyMuniUser_Greeley</u> | SPDSS Task 5 - Key Municipal<br>User, City of Greeley      | The City of Greeley has been identified as a key municipal user for the<br>South Platte Decision Support System (SPDSS) consumptive use and<br>surface water modeling efforts. The purpose of this Task 5 memorandum<br>is to document physical, legal, and operational aspects of those key<br>structures identified.      |
| SPDSS Task5 KeyMuniUser Longmont       | SPDSS Task 5 - Key Structure,<br>City of Longmont          | The City of Longmont has been identified as a key municipal user for the<br>South Platte Decision Support System (SPDSS) consumptive use and<br>surface water modeling efforts. The purpose of this Task 5 memorandum<br>is to document physical, legal, and operational aspects of those key<br>structures identified.     |
| SPDSS_Task5_KeyMuniUser_Loveland       | SPDSS Task 5 - Key Structure,<br>City of Loveland          | The City of Loveland has been identified as a key municipal user for the<br>South Platte Decision Support System (SPDSS) consumptive use and<br>surface water modeling efforts. The purpose of this Task 5 memorandum<br>is to document physical, legal, and operational aspects of those key<br>structures identified.     |
| SPDSS Task5 KeyReservoirs Summary      | SPDSS Task 5 - Summary - Key<br>Reservoirs                 | This memo summarizes the work done to identify key reservoirs for consumptive use modeling.                                                                                                                                                                                                                                 |

| Link                                                | Title                                                          | Description                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SPDSS_Task5_KeyStructure_AlvaBAdamsTu<br>nnel       | SPDSS Task 5 - Key Structure,<br>Alva B. Adams Tunnel          | The Alva B. Adams Tunnel has been identified as a key structure for the<br>South Platte Decision Support System (SPDSS) consumptive use and<br>surface water modeling efforts. The purpose of this Task 5 memorandum<br>is to document physical, legal, and operational aspects of those key<br>structures identified.         |
| SPDSS Task5 KeyStructure BerthoudPassD<br>itch      | SPDSS Task 5 - Key Structure,<br>Berthoud Pass Ditch           | The Berthoud Pass Ditch has been identified as a key structure for the<br>South Platte Decision Support System (SPDSS) consumptive use and<br>surface water modeling efforts. The purpose of this Task 5 memorandum<br>is to document physical, legal, and operational aspects of those key<br>structures identified.          |
| SPDSS Task5 KeyStructure BijouIrrigationS<br>ystem  | SPDSS Task 5 - Key Structure,<br>Bijou Irrigation System       | The Bijou Irrigation System has been identified as a key structure for the<br>South Platte Decision Support System (SPDSS) consumptive use and<br>surface water modeling efforts. The purpose of this Task 5 memorandum<br>is to document physical, legal, and operational aspects of those key<br>structures identified.      |
| SPDSS Task5 KeyStructure BobCreekDitch              | SPDSS Task 5 - Key Structure,<br>Bob Creek Ditch               | The Bob Creek Ditch has been identified as a key structure for the South<br>Platte Decision Support System (SPDSS) consumptive use and surface<br>water modeling efforts. The purpose of this Task 5 memorandum is to<br>document physical, legal, and operational aspects of those key structures<br>identified.              |
| SPDSS Task5 KeyStructure BoreasPassDitc<br><u>h</u> | SPDSS Task 5 - Key Structure,<br>Boreas Pass Ditch             | The Boreas Pass Ditch has been identified as a key structure for the South<br>Platte Decision Support System (SPDSS) consumptive use and surface<br>water modeling efforts. The purpose of this Task 5 memorandum is to<br>document physical, legal, and operational aspects of those key structures<br>identified.            |
| SPDSS_Task5_KeyStructure_BoulderLarime<br>rDitch    | SPDSS Task 5 - Key Structures,<br>Boulder Larimer Ditch System | The Boulder Larimer Ditch System has been identified as a key structure<br>for the South Platte Decision Support System (SPDSS) consumptive use and<br>surface water modeling efforts. The purpose of this Task 5 memorandum<br>is to document physical, legal, and operational aspects of those key<br>structures identified. |

| Link                                                               | Title                                                                           | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>SPDSS_Task5_KeyStructure_BurlingtonFRIC</u><br><u>OHenrylyn</u> | SPDSS Task 5 - Key Structure,<br>Burlington, FRICO-Barr and<br>Henrylyn Systems | The Burlington, FRICO–Barr, and Henrylyn Systems have been identified as<br>key structures for the South Platte Decision Support System (SPDSS)<br>consumptive use and surface water modeling efforts. The purpose of this<br>Task 5 memorandum is to document physical, legal, and operational<br>aspects of those key structures identified. This memo was revised to<br>expand on information regarding conveyance efficiencies and municipal<br>ownership. Revised January 17, 2007. |
| SPDSS Task5 KeyStructure CameronPassD<br>itch                      | SPDSS Task 5 - Key Structure,<br>Cameron Pass Ditch                             | The Cameron Pass Ditch has been identified as a key structure for the<br>South Platte Decision Support System (SPDSS) consumptive use and<br>surface water modeling efforts. The purpose of this Task 5 memorandum<br>is to document physical, legal, and operational aspects of those key<br>structures identified.                                                                                                                                                                     |
| SPDSS Task5 KeyStructure FRICO-<br>Marshall                        | SPDSS Task 5 - Key Structure,<br>FRICO-Marshall Lake Division                   | The FRICO–Marshall Lake Division has been identified as a key structure<br>for the South Platte Decision Support System (SPDSS) consumptive use and<br>surface water modeling efforts. The purpose of this Task 5 memorandum<br>is to document physical, legal, and operational aspects of those key<br>structures identified.                                                                                                                                                           |
| SPDSS_Task5_KeyStructure_FRICO-Milton                              | SPDSS Task 5 - Key Structure,<br>FRICO-Milton Lake Division                     | The FRICO–Milton Lake Division has been identified as a key structure for<br>the South Platte Decision Support System (SPDSS) consumptive use and<br>surface water modeling efforts. The purpose of this Task 5 memorandum<br>is to document physical, legal, and operational aspects of those key<br>structures identified.                                                                                                                                                             |
| SPDSS_Task5_KeyStructure_FRICO-Standley                            | SPDSS Task 5 - Key Structure,<br>FRICO-Standley Lake Cities                     | FRICO–Standley Lake Cities has been identified as a key structure for the<br>South Platte Decision Support System (SPDSS) consumptive use and<br>surface water modeling efforts. The purpose of this Task 5 memorandum<br>is to document physical, legal, and operational aspects of those key<br>structures identified.                                                                                                                                                                 |
| SPDSS Task5 KeyStructure GrandRiverDitc<br>h                       | SPDSS Task 5 - Key Structure,<br>Grand River Ditch                              | The Grand River Ditch has been identified as a key structure for the South<br>Platte Decision Support System (SPDSS) consumptive use and surface<br>water modeling efforts. The purpose of this Task 5 memorandum is to<br>document physical, legal, and operational aspects of those key structures<br>identified.                                                                                                                                                                      |
| Link                                                    | Title                                                                                    | Description                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|---------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| SPDSS Task5 KeyStructure GreeleyLovela<br>ndlrrigCo     | SPDSS Task 5 - Key Structure,<br>Greeley Loveland Irrigation<br>Company                  | The Greeley Loveland Irrigation Company has been identified as a key<br>structure for the South Platte Decision Support System (SPDSS)<br>consumptive use and surface water modeling efforts. The purpose of this<br>Task 5 memorandum is to document physical, legal, and operational<br>aspects of those key structures identified.                                                                                                    |  |  |  |
| SPDSS Task5 KeyStructure HighlandDitch                  | SPDSS Task 5 - Key Structure,<br>Highland Ditch Company                                  | The Highland Ditch Company has been identified as a key structure for the<br>South Platte Decision Support System (SPDSS) consumptive use and<br>surface water modeling efforts. The purpose of this Task 5 memorandun<br>is to document physical, legal, and operational aspects of those key<br>structures identified.                                                                                                                 |  |  |  |
| SPDSS Task5 KeyStructure HomestakePip<br>eline          | SPDSS Task 5 - Key Structure,<br>Homestake Pipeline                                      | The Homestake Pipeline has been identified as a key structure for the<br>South Platte Decision Support System (SPDSS) consumptive use and<br>surface water modeling efforts. The purpose of this Task 5 memorandum<br>is to document physical, legal, and operational aspects of those key<br>structures identified.                                                                                                                     |  |  |  |
| SPDSS Task5 KeyStructure HomeSupplyDi<br>tchReservoirCo | SPDSS Task 5 - Key Structure,<br>Concolidated Home Supply<br>Ditch and Reservoir Company | The Consolidated Home Supply Ditch and Reservoir Company has been<br>identified as a key structure for the South Platte Decision Support System<br>(SPDSS) consumptive use and surface water modeling efforts. The purpose<br>of this Task 5 memorandum is to document physical, legal, and operational<br>aspects of those key structures identified.                                                                                   |  |  |  |
| SPDSS Task5 KeyStructure JacksonLake                    | SPDSS Task 5 - Key Structure,<br>Jackson Lake & Fort Morgan<br>Canal System              | The Jackson Lake & Fort Morgan Canal System has been identified as a key<br>structure for the South Platte Decision Support System (SPDSS)<br>consumptive use and surface water modeling efforts. The purpose of this<br>Task 5 memorandum is to document physical, legal, and operational<br>aspects of those key structures identified. This memo was revised to<br>incorporate additional storage information. Revised March 15, 2007 |  |  |  |
| SPDSS Task5 KeyStructure Julesburg                      | SPDSS Task 5 - Key Structure,<br>Julesburg Irrigation District                           | The Julesburg Irrigation District has been identified as a key structure for<br>the South Platte Decision Support System (SPDSS) consumptive use and<br>surface water modeling efforts. The purpose of this Task 5 memorandum<br>is to document physical, legal, and operational aspects of those key<br>structures identified.                                                                                                          |  |  |  |

| Link                                             | Title                                                                       | Description                                                                                                                                                                                                                                                                                                                               |  |  |  |
|--------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| SPDSS_Task5_KeyStructure_LaramiePoudre<br>Tunnel | SPDSS Task 5 - Key Structure,<br>Laramie Poudre Tunnel                      | The Laramie Poudre Tunnel has been identified as a key structure for the<br>South Platte Decision Support System (SPDSS) consumptive use and<br>surface water modeling efforts. The purpose of this Task 5 memorandum<br>is to document physical, legal, and operational aspects of those key<br>structures identified.                   |  |  |  |
| SPDSS Task5 KeyStructure LarimerWeldIrr<br>igCo  | SPDSS Task 5 - Key Structure,<br>Larimer and Weld Irrigation<br>Company     | The Larimer and Weld Irrigation Company has been identified as a key<br>structure for the South Platte Decision Support System (SPDSS)<br>consumptive use and surface water modeling efforts. The purpose of this<br>Task 5 memorandum is to document physical, legal, and operational<br>aspects of those key structures identified.     |  |  |  |
| SPDSS_Task5_KeyStructure_LeftHandDitch           | SPDSS Task 5 - Key Structure,<br>Left Hand Ditch System                     | The Left Hand Ditch System has been identified as a key structure for the<br>South Platte Decision Support System (SPDSS) consumptive use and<br>surface water modeling efforts. The purpose of this Task 5 memorandum<br>is to document physical, legal, and operational aspects of those key<br>structures identified.                  |  |  |  |
| SPDSS Task5 KeyStructure LowerLathamD<br>itch    | SPDSS Task 5 - Key Structure,<br>Lower Latham Ditch and<br>Reservoir System | The Lower Latham Ditch and Reservoir System has been identified as a key<br>structure for the South Platte Decision Support System (SPDSS)<br>consumptive use and surface water modeling efforts. The purpose of this<br>Task 5 memorandum is to document physical, legal, and operational<br>aspects of those key structures identified. |  |  |  |
| SPDSS Task5 KeyStructure MichiganDitch           | SPDSS Task 5 - Key Structure,<br>Michigan Ditch                             | The Michigan Ditch has been identified as a key structure for the South<br>Platte Decision Support System (SPDSS) consumptive use and surface<br>water modeling efforts. The purpose of this Task 5 memorandum is to<br>document physical, legal, and operational aspects of those key structures<br>identified.                          |  |  |  |
| SPDSS Task5 KeyStructure MoffatTunnel            | SPDSS Task 5 - Key Structure,<br>Moffat Water Tunnel                        | The Moffat Water Tunnel has been identified as a key structure for the<br>South Platte Decision Support System (SPDSS) consumptive use and<br>surface water modeling efforts. The purpose of this Task 5 memorandum<br>is to document physical, legal, and operational aspects of those key<br>structures identified.                     |  |  |  |

| Link                                             | Title                                                                                                                    | Description                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| SPDSS_Task5_KeyStructure_NCWCD_CBT               | SPDSS Task 5 - Key Structure,<br>Northern Colorado Water<br>Conservancy District and<br>Colorado-Big Thompson<br>Project | The Northern Colorado Water Conservancy District and Colorado-Big<br>Thompson Project has been identified as a key structure for the South<br>Platte Decision Support System (SPDSS) consumptive use and surface<br>water modeling efforts. The purpose of this Task 5 memorandum is to<br>document physical, legal, and operational aspects of those key structures<br>identified. |  |  |  |
| SPDSS_Task5_KeyStructure_NewCacheLaP<br>oudre    | SPDSS Task 5 - Key Structure,<br>New Cache la Poudre<br>Irrigating Company and Cache<br>la Poudre Reservoir Company      | The New Cache la Poudre Irrigating Company and Cache la Poudre<br>Reservoir Company has been identified as a key structure for the South<br>Platte Decision Support System (SPDSS) consumptive use and surface<br>water modeling efforts. The purpose of this Task 5 memorandum is to<br>document physical, legal, and operational aspects of those key structures<br>identified.   |  |  |  |
| SPDSS_Task5_KeyStructure_NorthPoudre             | SPDSS Task 5 - Key Structure,<br>North Poudre Irrigation<br>Company                                                      | The North Poudre Irrigation Company has been identified as a key<br>structure for the South Platte Decision Support System (SPDSS)<br>consumptive use and surface water modeling efforts. The purpose of this<br>Task 5 memorandum is to document physical, legal, and operational<br>aspects of those key structures identified.                                                   |  |  |  |
| SPDSS_Task5_KeyStructure_NorthSterling           | SPDSS Task 5 - Key Structure,<br>North Sterling Irrigation<br>District                                                   | The North Sterling Irrigation District has been identified as a key structure<br>for the South Platte Decision Support System (SPDSS) consumptive use and<br>surface water modeling efforts. The purpose of this Task 5 memorandum<br>is to document physical, legal, and operational aspects of those key<br>structures identified.                                                |  |  |  |
| SPDSS Task5 KeyStructure PrewittReservo<br>ir    | SPDSS Task 5 - Key Structure,<br>Prewitt Reservoir                                                                       | The Prewitt Reservoir has been identified as a key structure for the South<br>Platte Decision Support System (SPDSS) consumptive use and surface<br>water modeling efforts. The purpose of this Task 5 memorandum is to<br>document physical, legal, and operational aspects of those key structures<br>identified.                                                                 |  |  |  |
| SPDSS Task5 KeyStructure RiversideIrrigat<br>ion | SPDSS Task 5 - Key Structure,<br>Riverside Irrigation System                                                             | The Riverside Irrigation System has been identified as a key structure for<br>the South Platte Decision Support System (SPDSS) consumptive use and<br>surface water modeling efforts. The purpose of this Task 5 memorandum<br>is to document physical, legal, and operational aspects of those key<br>structures identified.                                                       |  |  |  |

| Link                                              | Title                                                                | Description                                                                                                                                                                                                                                                                                                                        |  |  |  |
|---------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| SPDSS Task5 KeyStructure RobertsTunnel            | SPDSS Task 5 - Key Structure,<br>Harold D. Roberts Tunnel            | The Harold D. Roberts Tunnel has been identified as a key structure for the<br>South Platte Decision Support System (SPDSS) consumptive use and<br>surface water modeling efforts. The purpose of this Task 5 memorandum<br>is to document physical, legal, and operational aspects of those key<br>structures identified.         |  |  |  |
| SPDSS Task5 KeyStructure SkylineDitch             | SPDSS Task 5 - Key Structure,<br>Skyline Ditch                       | The Skyline Ditch has been identified as a key structure for the South<br>Platte Decision Support System (SPDSS) consumptive use and surface<br>water modeling efforts. The purpose of this Task 5 memorandum is to<br>document physical, legal, and operational aspects of those key structures<br>identified.                    |  |  |  |
| SPDSS_Task5_KeyStructure_StraightCreekT<br>unnel  | SPDSS Task 5 - Key Structure,<br>Straight Creek Tunnel               | The Straight Creek Tunnel Tunnel has been identified as a key structure for<br>the South Platte Decision Support System (SPDSS) consumptive use and<br>surface water modeling efforts. The purpose of this Task 5 memorandum<br>is to document physical, legal, and operational aspects of those key<br>structures identified.     |  |  |  |
| SPDSS Task5 KeyStructure VidlerTunnel             | SPDSS Task 5 - Key Structure,<br>Vidler Tunnel                       | The Vidler Tunnel has been identified as a key structure for the South<br>Platte Decision Support System (SPDSS) consumptive use and surface<br>water modeling efforts. The purpose of this Task 5 memorandum is to<br>document physical, legal, and operational aspects of those key structures<br>identified.                    |  |  |  |
| SPDSS Task5 KeyStructure WaterSupplySt<br>orageCo | SPDSS Task 5 - Key Structure,<br>Water Supply and Storage<br>Company | The Water Supply and Storage Company has been identified as a key<br>structure for the South Platte Decision Support System (SPDSS)<br>consumptive use and surface water modeling efforts. The purpose of this<br>Task 5 memorandum is to document physical, legal, and operational<br>aspects of those key structures identified. |  |  |  |
| SPDSS_Task5_KeyStructure_WilsonSupplyD<br>itch    | SPDSS Task 5 - Key Structure,<br>Wilson Supply Ditch                 | The Wilson Supply Ditch has been identified as a key structure for the<br>South Platte Decision Support System (SPDSS) consumptive use and<br>surface water modeling efforts. The purpose of this Task 5 memorandum<br>is to document physical, legal, and operational aspects of those key<br>structures identified.              |  |  |  |

| Link                                                                        | Title                                                                                                                                           | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| SPDSS_Task50-<br>1_Phase2_ReviewExistingDataCenteredApp<br>roachforGW       | 50.1 - Review of Existing<br>Approaches to Development<br>of a Data Centered Approach<br>for the SPDSS Groundwater<br>Component - Phase 2       | This Technical Memorandum summarizes the existing data centered<br>modeling process that has been implemented by the State for the Rio<br>Grande Decision Support System (RGDSS) and identifies candidate<br>graphical user interface (GUI) tools for screening and selection in<br>subsequent tasks.                                                                                                                                                                                  |  |  |  |
| SPDSS Task50-<br>2 Phase2 DefinitionsofRequirementsDataC<br>enteredModeling | 50.3 - Definition of<br>Requirements for an<br>Enhanced Data Centered<br>Modeling Process for the<br>SPDSS Groundwater<br>Component - Phase 2   | This Task Memo defines and prioritizes potential ground water modeling enhancements.                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| SPDSS Task50-<br>3 ScopeofWorkDataModelingProcess                           | 50.3 - Implementation Scope<br>of Work for an Enhanced<br>Data Centered Modeling<br>Process for the SPDSS<br>Groundwater Component -<br>Phase 2 | This memorandum provides a scope of work for implementing high priority enhancements to the model during Phase 3.                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| SPDSS_Task50-4_20070330                                                     | SPDSS Phase 3 Task 50.4<br>Technical Memorandum Data<br>Centered Groundwater<br>Modeling Enhancements                                           | Data Centered Groundwater Modeling Enhancements                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| SPDSS_Task52_ReviewIrrigatedAcreageDiv1<br>Dist47                           | Task 52 - Review of Irrigation<br>Acreage in Division 1 and<br>Water District 47                                                                | The purpose of this memorandum is to document the review of irrigated acreage assigned to surface water diversion structures located in the SPDSS study area.                                                                                                                                                                                                                                                                                                                          |  |  |  |
| SPDSS Task53-1 Daily Climate Data<br>Collection for HydroBase               | Task 53.1 - Daily Climate Data<br>Collection for HydroBase                                                                                      | This memorandum presents the general approach and results for the following Task 53 subtask: Collect/digitize daily data for temperature, precipitation, wind speed, solar radiation, and vapor pressure from approximately 20 existing data sources including CoAgMet and NCWCD climate stations. This memo was revised to correct the equation provided to convert NCWCD dew point data to vapor pressure for use in StateCU with the ASCE Standardized Evapotranspiration Equation. |  |  |  |

| Link                                                                                    | Title                                                                                                   | Description                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| SPDSS Task53-2 Collect and Fill Missing<br>Monthly Climate Data                         | Task 53.2 - Collect and Fill<br>Missing Monthly Climate Data                                            | SPDSS Task 53.2 –Collect and Fill Missing Monthly Climate Data memo<br>discusses the identification of and filling techniques for the key climate<br>stations selected to represent climatic conditions throughout the South<br>Platte, North Platte and Laramie River basins (SPDSS study area).                                                                                               |  |  |  |
| SPDSS Task53-3 Assign Key Climate<br>Information to Irrigated Acreage and<br>Reservoirs | Task 53.3 - Assign Key Climate<br>Information to Irrifated<br>Acreage and Reservoirs                    | This memorandum presents the general approach for the following Task<br>53 subtasks: 1. Assign key climate stations to geographic areas for the<br>SPDSS modeling efforts. 2. Estimate average monthly reservoir<br>evaporation rates for geographic areas.                                                                                                                                     |  |  |  |
| SPDSS_Task54-2_Agricultural Statistics Data<br>Summary                                  | Task 54.2 - Agricultural<br>Statistics Data Summary                                                     | This memo provides a summary of information obtained through the data collection process and recommendations to combine crops based on growing season and irrigation water requirements.                                                                                                                                                                                                        |  |  |  |
| SPDSS Task56 ConveyanceandApplication<br>Efficiencies                                   | Task 56 - Conveyance and<br>Application Efficiencies                                                    | This memorandum describes the approach and results obtained under<br>Task 56 - Conveyance and Application Efficiencies. This task includes an<br>estimation of both ditch system conveyance and maximum application<br>(on-farm) efficiencies likely to be experienced in the South Platte Basin,<br>plus a recommendation on efficiencies to use for the historic consumptive<br>use analyses. |  |  |  |
| SPDSS Task58 Review Previous Estimates<br>of Potential CU                               | Task 58 - Review Previous<br>Estimates of Potential CU                                                  | This memo reviews the methods used in the past to determine potential consumptive use.                                                                                                                                                                                                                                                                                                          |  |  |  |
| SPDSS Task59-1 Develop Locally<br>Calibrated Blaney-Criddle Crop Coefficients           | Task 59.1 - Develop Locally<br>Calibrated Blaney-Criddle<br>Crop Coefficients                           | This memorandum presents the recommended regional Blaney-Criddle<br>crop coefficients for use in the SPDSS CU analysis. Revised January 11,<br>2008                                                                                                                                                                                                                                             |  |  |  |
| SPDSS Task59-2 Irrigation Water<br>Requirements at Climate Stations                     | Task 59.2 - Irrigation Water<br>Requirements at Climate<br>Stations                                     | SPDSS Task 59.2 – This memorandum presents the approach and results<br>from the completion of the following Task 59 subtask: Using calibrated<br>crop coefficients, estimate the irrigation water requirement for common<br>crops grown at the key climate stations identified in Task 53.                                                                                                      |  |  |  |
| SPDSS Task61 Effective Precipitation<br>Estimates for Determining Crop Irrigation       | Task 61 - Effective<br>Precipitation Estimates for<br>Determining Crop Irrigation<br>Water Requirements | SPDSS Task 61 was designed to investigate the consumptive use<br>methodology for potential application in SPDSS. The purpose of this<br>memorandum is to convey results of these investigations and provide<br>recommendations for effective precipitation determination in estimating<br>the consumptive use of irrigation water in the SPDSS study area.                                      |  |  |  |

| Link                                                                                                    | Title                                                                                                   | Description                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| SPDSS Task61 Effective Precipitation<br>Estimates for Determining Crop Irrigation<br>Water Requirements | Task 61 – Effective<br>Precipitation Estimates for<br>Determining Crop Irrigation<br>Water Requirements | SPDSS Task 61 was designed to investigate the consumptive use<br>methodology for potential application in SPDSS. The purpose of this<br>memorandum is to convey results of these investigations and provide<br>recommendations for effective precipitation determination in estimating<br>the consumptive use of irrigation water in the SPDSS study area.                                                         |  |  |  |
| SPDSS Task62 Review IDSCU                                                                               | Task 62 - Review IDSCU<br>(formerly SPMAP)                                                              | This memorandum provides a review of the IDSCU documentation and functionality.                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| SPDSS Task64 ReviewDevelopPrecipitation<br>RechargeEstimates                                            | 64 - Review and Develop<br>Precipitation Recharge<br>Estimates                                          | This memorandum presents the general approach used to develop<br>monthly precipitation recharge estimates for both the Denver Basin and<br>South Platte alluvial ground water models.                                                                                                                                                                                                                              |  |  |  |
| SPDSS Task65 EstimateSouthPlattePhreat<br>ophyteGroundwaterEvapotranspiration                           | Task 65 - Estimate South<br>Platte Phreatophyte<br>Groundwater<br>Evapotranspiration                    | Estimate South Platte Phreatophyte Groundwater Evapotranspiration                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| SPDSS_Task66-<br>2_CollectDevelopMunicipalIndustrialConsu<br>mptiveUseEstimates                         | Task 66.2 - Collect and<br>Develop Municipal and<br>Industrial Consumptive Use<br>Estimates             | This memorandum presents the general approach used to develop<br>municipal and industrial consumptive use for the CU and Losses Summary<br>Report and estimate indoor and outdoor water demands, consumptive<br>use, and return flows for SPDSS modeling efforts.                                                                                                                                                  |  |  |  |
| SPDSS_Task70_Collect Data and Estimate<br>Wildlife Area Use                                             | Task 70 - Collect Data and<br>Estimate Wildlife Area Use                                                | The objective of Task 70 is to: Collect and review published reports and<br>estimates of water use associated with the creation and maintenance of<br>wildlife and wetland areas in the South Platte and North Platte River<br>Basins. Quantify consumptive use of created and maintained wildlife and<br>wetland areas for the Consumptive Use and Losses Summary Report and<br>Water Budget Model.               |  |  |  |
| SPDSS_Task71_EstimateHistoricalAcreage                                                                  | Task 71 - Estimate Historical<br>Acreage                                                                | This memorandum presents the general approach and results from the completion of the following: Determine an appropriate method for using agricultural statistics, water rights, water availability, and other data to estimate historic irrigated acreage and crop types by ditch or other water source for the entire SPDSS study period (e.g. time periods before and between GIS irrigated acreage coverages). |  |  |  |

| Link                                                                            | Title                           | Description                                                                  |  |  |  |
|---------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------|--|--|--|
|                                                                                 | 7.2 - Well Use and Well         | This memorandum and associated appendices characterizes the 20 largest       |  |  |  |
| 2 WellUseWellAugmentationPlans                                                  | Augmentation Plans              | well use and augmentation in SPDSS modeling efforts.                         |  |  |  |
|                                                                                 | South Platte Historic           | This memorandum presents the general approach to fill missing irrigated      |  |  |  |
| SPDSS Task74 EstimateGroundwaterSprin                                           | Consumption Use - Annual        | acreage data for the SPDSS.                                                  |  |  |  |
| klerIrrigatedAcreage                                                            | Series (Ground Water            |                                                                              |  |  |  |
|                                                                                 | Acreage and Sprinkler           |                                                                              |  |  |  |
|                                                                                 | Acreage)                        |                                                                              |  |  |  |
|                                                                                 | Taask 76.8-1 - Create Unfilled  | This memorandum presents the general approach and results for the            |  |  |  |
| SPDSS Task76-8-1 Create Unfilled Blaney-                                        | Blaney-Criddle Statewide        | following portion of this Task 76.8 subtask: Create Statewide monthly        |  |  |  |
| Criddle Statewide Climate Scenario                                              | Climate Scenario                | unfilled Blaney-Criddle climate scenarios for the period 1950 through 2004.  |  |  |  |
|                                                                                 | Task 76.8-2 - Create Filled     | This memorandum presents the general approach and results for the            |  |  |  |
| SPDSS_Task76-8-2_Create Filled Climate                                          | Climate Station Scenario for    | following portion of this Task 76.8 subtask: Create Statewide monthly filled |  |  |  |
| Station Scenario for the Arkansas and                                           | the Arkansas and Republican     | Blaney-Criddle climate scenarios for the period 1950 through 2004.           |  |  |  |
| Republican River Basins                                                         | River Basins                    |                                                                              |  |  |  |
|                                                                                 | Task 77 - Perform Analysis of   | This memorandum presents the general approach for Task 77: Perform an        |  |  |  |
| <u>SPDSS Task77 PerformAnalysisofDeficitIrri</u>                                | Deficit Irrigation              | analysis to determine whether estimating the use of supplemental             |  |  |  |
| gation                                                                          |                                 | supplies (i. e. ground water and reservoir releases) to meet full or partial |  |  |  |
|                                                                                 |                                 | potential use is appropriate for regions within the South Platte.            |  |  |  |
| Consumptive Use and                                                             | SPDSS Task 81.2 -               | investigations conducted in response to questions and suggestions            |  |  |  |
| <u>SFDSS_Tasko1-2_COnsumptive Ose and</u><br>Water Budget Technical Peer Review | Rudget Technical Peer Review    | provided during the reviews, and to keep others informed of subsequent       |  |  |  |
| Meeting Follow-Up                                                               | Meeting Follow-Un               | findings                                                                     |  |  |  |
|                                                                                 | SPDSS Task 82 - Review          | This memorandum summarizes the results of Task 82 of the Consumptive         |  |  |  |
| SPDSS Task82 ReviewPublishedReports W                                           | Published Reports on Water      | Use and Water Budget portion of the South Platte Decision Support            |  |  |  |
| aterBudgets                                                                     | Budgets                         | System (SPDSS) effort.                                                       |  |  |  |
|                                                                                 | SPDSS Task 83 - Prepare Initial | This memorandum summarizes the results of Task 83 of the Consumptive         |  |  |  |
|                                                                                 | Water Budgets                   | Use and Water Budget portion of the South Platte Decision Support            |  |  |  |
| SPDSS_Task83_PrepareInitialWaterBudgets                                         |                                 | System (SPDSS) effort.                                                       |  |  |  |

| Link                                                            | Title                                                                                               | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| <u>SPDSS_Task84_LaramieRiverBasinWaterBu</u><br>dget            | SPDSS Task 84 - Laramie River<br>Basin Water Budget -<br>Procedures and Results                     | This memorandum summarizes the results of Task 84 of the Consumptive<br>Use and Water Budget portion of the South Platte Decision Support<br>System (SPDSS) effort. The objective of this task is as follows: Update the<br>initial average annual basin-wide water budget reports with information<br>developed during Phase 3. Develop annual and monthly water budgets for<br>the two basins in the SPDSS Study Area – South Platte and Laramie – and<br>the areas represented by the South Platte Alluvial ground water model. |  |  |  |
| <u>SPDSS_Task84_SouthPlatteRiverBasinWate</u><br><u>rBudget</u> | SPDSS Task 84 - South Platte<br>Alluvial Ground Water Budget                                        | This memorandum summarizes the results of Task 84 of the Consumptive<br>Use and Water Budget portion of the South Platte Decision Support<br>System (SPDSS) effort. The objective of this task is as follows: Update the<br>initial average annual basin-wide water budget reports with information<br>developed during Phase 3. Develop annual and monthly water budgets for<br>the two basins in the SPDSS Study Area – South Platte and Laramie – and<br>the areas represented by the South Platte Alluvial ground water model. |  |  |  |
| <u>SPDSS_Task84_SPAlluvialGroundWaterBud</u><br>get             | SPDSS Task 84 - South Platte<br>Alluvial Ground Water Budget                                        | This memorandum summarizes the results of Task 84 of the Consumptive<br>Use and Water Budget portion of the South Platte Decision Support<br>System (SPDSS) effort. The objective of this task is as follows: Update the<br>initial average annual basin-wide water budget reports with information<br>developed during Phase 3. Develop annual and monthly water budgets for<br>the two basins in the SPDSS Study Area – South Platte and Laramie – and<br>the areas represented by the South Platte Alluvial ground water model. |  |  |  |
| SPDSSTask5 CBoulder 20050309                                    | SPDSS Task 5 - Key Structure,<br>City of Boulder                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| SPDSSTask89_Exec_Sum20071201                                    | Task 89 - SPDSS Spatial<br>Systems Integration: Irrigated<br>Lands Assesment, Executive<br>Summary  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| SPDSSTask89 Exec Sum20100927                                    | Task 89 - SPDSS Spatial<br>Systems Integration: Irrigated<br>Lands Assessment, Executive<br>Summary | Executive Summary describing the South Platte Irrigated Lands<br>Assessment, Task 89                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |

| Link                    | Title                                                                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|-------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| SPDSSTask89-1_20030708  | Task 89.1 - Finalize Methods<br>and Order Imagery                           | The purpose of this memo is to review relevant literature, including<br>reports of researchers and previous State contractors engaged in mappin<br>land use and crop types for water resources applications, and<br>consequently describe the recommended technical approach for mappin<br>current land use.                                                                                                                                                                                                                                                                                                                           |  |  |  |
| SPDSSTask89-10 20051005 | Task 89.10 - Mapping of<br>Water Features                                   | This memorandum summarizes activities performed under Task 89 –<br>Mapping of Current Land Use and Irrigated Field Boundaries, Subtask<br>89.10 – Mapping of Water Features.                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| SPDSSTask89-2 20060929  | Task 89.2 - Crop and Land Use<br>Classification Procedures for<br>Year 2001 | This memorandum describes the activities conducted under Task 89:<br>'Mapping of Irrigated Land Use and Irrigated Parcel Boundaries' for year<br>2001 and complements the SPDSS Memoranda for Task 89.1 and Task<br>90.2. This memorandum also provides details on the methods used to<br>conduct a number of Task 89 activities, including Task 89.3: Determine<br>Irrigated Vs. Non-irrigated Lands, Task 89.4: Identify Crop Types In Each<br>Polygon, Task 89.5: Review, Revision and Final Classification, and Task<br>89.6: Conduct Accuracy Assessment, as well as the results obtained from<br>these activities for year 2001. |  |  |  |
| SPDSSTask90-1_20040209  | Task 90.1 - Obtain and<br>Process Data (Image Base<br>Map)                  | This memorandum summarizes the procedures and results of the Image<br>Base Map prepared under Task 90Image Base Map and Irrigated Field<br>Boundaries, Subtask 90.1—Obtain and Process Data.                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| SPDSSTask90-2_20040209  | Task 90.2 - Determine Field<br>Polygon Boundries                            | This memorandum summarizes the first draft delivery of the irrigated parcel mapping prepared under Task 90 Image Base Map and Irrigated Field Boundaries, Subtask 90.2 – Determine Field Polygon Boundaries.                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| SPDSSTask91_20070109    | Task 91 - Map Wells,<br>Irrigations Systems and<br>Irrigation Service Areas | This memorandum summarizes the procedures for the 2001 irrigated parcel mapping prepared under Task 91 – Map Wells, Irrigation Systems, and Irrigation Service Areas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| SPDSSTask93 20070109    | Task 93.2, 93.3, 93.4, 93.5 -<br>Mapping Historic Land Use                  | This memorandum provides details on the methods used to conduct a<br>number of activities conducted under Task 93: Mapping Historic Land Use,<br>including: Task 93.2: Mapping of Historic Land Use for the 1980s; Task<br>93.3: Mapping of Historic Land Use for the 1970s; Task 93.4: Mapping of<br>Historic Land Use for the 1950s; and, Task 93.5: Assignment of Water<br>Supply for Three Dates Historic Land Use.                                                                                                                                                                                                                |  |  |  |

| Link                     | Title                                                                       | Description                                                                                                                                                                                                                                                                                                                              |  |  |  |
|--------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| SPDSSTask93-1_20060711   | Task 93.1 - Historic Aerial<br>Photography and Satellite<br>Imagery Search  | This memorandum summarizes Task 93 – Mapping of Historic Land Use,<br>Subtask 93.1 Historic Aerial Photography and Satellite Imagery Search.                                                                                                                                                                                             |  |  |  |
| SPDSSTask94_20040209     | Task 94 - GIS Database<br>Development                                       | This memo accompanies the GIS database prepared under Task 94 of the SPDSS.                                                                                                                                                                                                                                                              |  |  |  |
| SPDSSTask95-1_20050105   | Task 95.1 - Evaluate Spatial<br>Data                                        | This memo discusses the evaluation of spatial data that could be created<br>from HydroBase, considering their potential use in StateView, TSTool, and<br>other CDSS applications, including: climate stations, precipitation stations,<br>etc.                                                                                           |  |  |  |
| SPDSSTask96-1_20051028   | Task 96.1 - Approach for<br>Linking NHD and HydroBase<br>Spatial Data       | This memorandum recommends procedures for the use of the National<br>Hydrography Dataset (NHD) with key structures in HydroBase and is a<br>deliverable for the SPDSS Spatial System Integration Task 96.                                                                                                                                |  |  |  |
| SPDSSTask96-2-3_20050310 | Task 96.2 & 96.3 - River<br>Network and Key Structures<br>Location Products | This subtask includes the following: Create a linked river network layer<br>using the procedure proposed in Deliverable 96.1. Locate and integrate<br>into the network SPDSS key diversion structures. Deliverable 96.2 is the<br>river network and deliverable 96.3 is the location of the key structures<br>along the network reaches. |  |  |  |
| SPDSSTask98-1 20060711   | Task 98 - Mapping,<br>Visualization, and<br>Presentation Tools              | This memorandum summarizes activities performed under Task 98 –<br>Mapping, Visualization, and Presentation Tools                                                                                                                                                                                                                        |  |  |  |
| SPDSSTask99-2_20060928   | Task 99.2 - CDSS Map Viewer<br>Requirements                                 | This memorandum addresses Task 99 – GIS Support and Data<br>Maintenance, Subtask 99.2 - Modify and Maintain GIS Tools. Specifically,<br>this memo defines a list of possible upgrades and enhancements for the<br>CDSS Map Viewer.                                                                                                       |  |  |  |

## 7.8 Representation of Central WAS and GMS Quotas

The historical pumping file was developed using a two-step process to represent historical and more recent pumping estimates limited by Central Colorado Water Conservancy District (CCWCD) quota restrictions. To represent historical pumping estimates, StateCU estimates ground water pumping required to satisfy crop consumptive demands on ground water supplied lands not already met by surface water. These pumping estimates include water pumped to offset the inefficiencies associated with ground water application (i.e. flood or sprinkler application). Also, the amount of ground water pumped is limited by the acres served by ground water supplies and the well pumping capacity.

To represent the full extent of CCWCD wells with associated irrigated acreage, a review of original applications and amendments as part of Case 03CW99 was performed and procurement of a complete list of original CCWCD wells was produced. The result mimics the 2005 list of decreed wells as part of the Central GMS and WAS augmentation plans. Once identified, the Central well lists were compared to the wells assigned to each co-mingled and ground water only structure in order to identify the percent of acreage that is served by WAS, GMS, and non-CCWCD wells for each structure.

To represent post-2004 pumping estimates associated with the two CCWCD augmentation plans, quotas (i.e. restricted pumping) were applied to the StateCU estimated historical pumping from 2005 to 2012. A total of 54 well structures have at least a portion of their irrigated acreage served by wells covered under CCWCD augmentation plans. Using TSTool, pumping for these structures was restricted based on the CCWCD augmentation plan quota amount and the portion of acreage served by these wells. **Table 1** shows the total acreage and percentage of acreage served by wells covered under CCWCD augmentation plans by structure. **Table 2** reflects the annual quotas for 2005 through 2014 for both CCWCD augmentation plans. **Table 3** and **Table 4** reflect the list of wells used to estimate the percentage of acreage served by CCWCD WAS and GMS wells, respectively.

| WDID       | 2005 Irrigated<br>Acreage | WAS   | GMS   | Non – CCWCD |
|------------|---------------------------|-------|-------|-------------|
| 01_AWP002  | 1,576                     | 6.8%  | 0%    | 93.2%       |
| 01_AWP004  | 1,701                     | 1.8%  | 0%    | 98.2%       |
| 01_AWP010  | 1,720                     | 14.6% | 7.7%  | 77.7%       |
| 01_AWP0260 | 1,434                     | 47.2% | 0%    | 52.8%       |
| 01_AWP027  | 2,617                     | 34.5% | 12.6% | 52.9%       |
| 01_AWP028  | 3,633                     | 11.6% | 37.1% | 51.2%       |
| 01_AWP029  | 2,169                     | 12.8% | 33.5% | 53.7%       |

## Table 1 CCWCD WAS and GMS Acreage Assignments

| WDID      | 2005 Irrigated<br>Acreage | WAS   | GMS   | Non – CCWCD |
|-----------|---------------------------|-------|-------|-------------|
| 01_AWP030 | 2,045                     | 23.4% | 56.2% | 20.4%       |
| 01_AWP031 | 3,725                     | 0%    | 2.2%  | 97.8%       |
| 01_AWP032 | 2,492                     | 29.6% | 56.3% | 14.1%       |
| 01_AWP033 | 1,824                     | 10.3% | 0%    | 89.7%       |
| 01_AWP034 | 8                         | 0%    | 100%  | 0%          |
| 01_AWP035 | 754                       | 0%    | 73.8% | 26.2%       |
| 01_AWP037 | 73                        | 0%    | 100%  | 0%          |
| 01_AWP041 | 184                       | 0%    | 100%  | 0%          |
| 01_AWP042 | 4,474                     | 31.3% | 60.7% | 8.0%        |
| 01_AWP044 | 90                        | 65.4% | 34.6% | 0%          |
| 02_AWP001 | 3,544                     | 27.5% | 53.0% | 19.5%       |
| 02_AWP002 | 4,681                     | 14.6% | 74.8% | 10.7%       |
| 02_AWP003 | 888                       | 48.6% | 42.8% | 8.6%        |
| 02_AWP004 | 3,175                     | 9.4%  | 67.2% | 23.4%       |
| 02_AWP005 | 139                       | 0%    | 100%  | 0%          |
| 03_AWP001 | 2,431                     | 0.3%  | 0%    | 99.7%       |
| 05_AWP004 | 135                       | 100%  | 0%    | 0%          |
| 0100507   | 22,067                    | 1.7%  | 0%    | 98.3%       |
| 02_ADP003 | 189                       | 0.0%  | 100%  | 0%          |
| 0200805   | 13,939                    | 0%    | 26.2% | 73.8%       |
| 0200808   | 2,928                     | 11.6% | 86.7% | 1.7%        |
| 0200809   | 295                       | 0%    | 100%  | 0%          |
| 0200810   | 429                       | 0%    | 62.5% | 37.5%       |
| 0200812   | 1,088                     | 48.9% | 51.1% | 0%          |
| 0200813   | 1,496                     | 73.4% | 21.7% | 4.9%        |
| 0200817   | 7,826                     | 42.8% | 56.7% | 0.6%        |
| 0200821   | 455                       | 58.2% | 41.8% | 0%          |
| 0200822   | 1,539                     | 41.5% | 58.5% | 0%          |
| 0200824   | 6,094                     | 41.5% | 57.4% | 1.1%        |
| 0200825   | 4,772                     | 41.2% | 43.3% | 15.6%       |
| 0200828   | 3,525                     | 11.7% | 25.4% | 62.8%       |
| 0200830   | 99                        | 0%    | 100%  | 0%          |
| 0200834   | 7,221                     | 0%    | 50.7% | 49.3%       |
| 0200915   | 527                       | 0%    | 91.7% | 8.3%        |
| 0203837   | 4,377                     | 8.7%  | 85.0% | 6.4%        |
| 0203876   | 3,768                     | 29.8% | 66.4% | 3.9%        |
| 0300911   | 15,176                    | 0.3%  | 0%    | 99.7%       |
| 0300929   | 15,380                    | 2.8%  | 0%    | 97.2%       |
| 0300934   | 205                       | 0%    | 13.7% | 86.3%       |

| WDID    | 2005 Irrigated<br>Acreage | WAS   | GMS   | Non – CCWCD |
|---------|---------------------------|-------|-------|-------------|
| 0400502 | 872                       | 3.0%  | 97.0% | 0%          |
| 0400522 | 137                       | 0%    | 100%  | 0%          |
| 0400523 | 774                       | 56.4% | 28.4% | 15.2%       |
| 0400524 | 32                        | 38.5% | 0%    | 61.5%       |
| 0500523 | 44                        | 0%    | 100%  | 0%          |
| 0700569 | 419                       | 0%    | 100%  | 0%          |

| Table 2                                    |
|--------------------------------------------|
| CCWCD Pumping Quotas for 2005 through 2014 |

| Year | WAS | GMS |
|------|-----|-----|
| 2005 | 40% | 50% |
| 2006 | 0%  | 50% |
| 2007 | 0%  | 30% |
| 2008 | 0%  | 35% |
| 2009 | 0%  | 35% |
| 2010 | 0%  | 45% |
| 2011 | 0%  | 40% |
| 2012 | 0%  | 35% |
| 2013 | 5%  | 35% |
| 2014 | 20% | 45% |

## Table 3CCWCD WAS Wells Assigned in 2005

| WDID    | Exhibit /<br>Amendment | WDID    | Exhibit /<br>Amendment | WDID    | Exhibit /<br>Amendment |
|---------|------------------------|---------|------------------------|---------|------------------------|
| 0100565 | Exhibit 3              | 0105750 | Exhibit 3              | 0106141 | 3rd Amend              |
| 0200779 | Exhibit 3              | 0105751 | Exhibit 3              | 0106460 | Exhibit 1              |
| 0105039 | 2nd Amend              | 0105752 | Exhibit 1              | 0106574 | Exhibit 1              |
| 0105196 | Exhibit 1              | 0105781 | Exhibit 1              | 0106576 | Exhibit 3              |
| 0105277 | Exhibit 3              | 0105782 | Exhibit 3              | 0106579 | Exhibit 1              |
| 0105390 | 2nd Amend              | 0105946 | Exhibit 3              | 0106609 | Exhibit 3              |
| 0105391 | 2nd Amend              | 0105947 | Exhibit 3              | 0106616 | Exhibit 3              |
| 0105511 | 3rd Amend              | 0105948 | Exhibit 3              | 0106719 | Exhibit 3              |
| 0105515 | Exhibit 1              | 0106063 | Exhibit 3              | 0106720 | Exhibit 1              |
| 0105536 | Exhibit 1              | 0106069 | Exhibit 3              | 0106721 | Exhibit 3              |
| 0105658 | Exhibit 1              | 0106137 | 2nd Amend              | 0106729 | 3rd Amend              |
| 0105707 | Exhibit 1              | 0106137 | 3rd Amend              | 0106797 | Exhibit 3              |
| 0105748 | Exhibit 1              | 0106141 | 2nd Amend              | 0106798 | Exhibit 1              |

| WDID    | Exhibit /<br>Amendment |
|---------|------------------------|
| 0106949 | 2rd Amond              |
| 0106848 | Exhibit 1              |
| 0100900 | Exhibit 3              |
| 0107017 | Exhibit 3              |
| 0107010 | Exhibit 3              |
| 0107026 | Exhibit 3              |
| 0107027 | Exhibit 3              |
| 0107043 | Exhibit 1              |
| 0107044 | Exhibit 3              |
| 0107069 | Exhibit 1              |
| 0107106 | Exhibit 3              |
| 0107108 | Exhibit 3              |
| 0107109 | Exhibit 3              |
| 0107126 | Exhibit 1              |
| 0107128 | Exhibit 3              |
| 0107131 | Exhibit 3              |
| 0107132 | Exhibit 3              |
| 0107193 | Exhibit 1              |
| 0107221 | Exhibit 1              |
| 0107222 | Exhibit 1              |
| 0107412 | Exhibit 3              |
| 0107413 | Exhibit 3              |
| 0107414 | Exhibit 3              |
| 0107540 | 2nd Amend              |
| 0107619 | 2nd Amend              |
| 0107631 | Exhibit 1              |
| 0107654 | Exhibit 3              |
| 0107655 | Exhibit 1              |
| 0107660 | Exhibit 3              |
| 0107666 | Exhibit 1              |
| 0107674 | Exhibit 3              |
| 0107687 | Exhibit 3              |
| 0107688 | Exhibit 1              |
| 0107689 | Exhibit 1              |
| 0107731 | Exhibit 1              |
| 0107839 | Exhibit 1              |
| 0107881 | Exhibit 1              |
| 0107882 | 2nd Amend              |
| 0107882 | 3rd Amend              |
| 0107932 | Exhibit 1              |
| 0108135 | Exhibit 1              |
| 0108148 | Exhibit 1              |
| 0108150 | Exhibit 1              |
| 0108151 | Exhibit 1              |
| 0108152 | Exhibit 1              |

| WDID    | Exhibit / |
|---------|-----------|
|         | Amendment |
| 0108153 | Exhibit 1 |
| 0108157 | Exhibit 1 |
| 0108213 | Exhibit 1 |
| 0108266 | Exhibit 3 |
| 0108312 | Exhibit 1 |
| 0108313 | Exhibit 3 |
| 0108314 | Exhibit 1 |
| 0108315 | Exhibit 3 |
| 0108410 | Exhibit 1 |
| 0108677 | Exhibit 3 |
| 0108678 | Exhibit 1 |
| 0108679 | Exhibit 3 |
| 0108680 | Exhibit 3 |
| 0108681 | Exhibit 3 |
| 0108683 | Exhibit 1 |
| 0108684 | Exhibit 3 |
| 0108685 | Exhibit 3 |
| 0108687 | Exhibit 1 |
| 0108688 | Exhibit 3 |
| 0108689 | Exhibit 1 |
| 0108690 | Exhibit 1 |
| 0108691 | Exhibit 3 |
| 0108692 | 3rd Amend |
| 0108693 | Exhibit 1 |
| 0108694 | Exhibit 3 |
| 0108695 | Exhibit 3 |
| 0108697 | Exhibit 1 |
| 0108698 | Exhibit 3 |
| 0108699 | Exhibit 3 |
| 0108700 | Exhibit 3 |
| 0108778 | Exhibit 3 |
| 0108782 | Exhibit 1 |
| 0108813 | 2nd Amend |
| 0108813 | 3rd Amend |
| 0108814 | 2nd Amend |
| 0108814 | 3rd Amend |
| 0108815 | 2nd Amend |
| 0108815 | 3rd Amend |
| 0108816 | 2nd Amend |
| 0108816 | 3rd Amend |
| 0108817 | 2nd Amend |
| 0108817 | 3rd Amend |
| 0108828 | Exhibit 1 |
| 0108829 | Exhibit 3 |
| 0108837 | Exhibit 3 |
| ητηρα31 | Exhibit 3 |

|         | Exhibit / |
|---------|-----------|
| WDID    | Amendment |
| 0109920 | Evhibit 1 |
| 0108839 | Exhibit 3 |
| 0108840 | Exhibit 3 |
| 0108841 | 2nd Amond |
| 0100042 | Evhibit 2 |
| 0100057 | Exhibit 2 |
| 0108858 | Exhibit 2 |
| 0108855 | Exhibit 3 |
| 0108800 | Exhibit 3 |
| 0108905 | Exhibit 3 |
| 0108900 | Exhibit 3 |
| 0100907 | Exhibit 3 |
| 0109095 | Exhibit 2 |
| 0109011 | Exhibit 3 |
| 0109012 | Exhibit 1 |
| 0109015 | Exhibit 1 |
| 0109055 |           |
| 0205000 | Exhibit 1 |
| 0205000 | Exhibit 1 |
| 0205000 | Exhibit 1 |
| 0205000 | EXHIDIL 1 |
| 0205051 | Exhibit 1 |
| 0203038 | Exhibit 2 |
| 0203048 | Exhibit 2 |
| 0205048 | Exhibit 3 |
| 0205049 | Exhibit 3 |
| 0205050 | Exhibit 3 |
| 0205075 | Exhibit 1 |
| 0205084 | Exhibit 1 |
| 0205087 | Exhibit 1 |
| 0205171 | Exhibit 1 |
| 0205171 | Exhibit 1 |
| 0205217 | Exhibit 1 |
| 0205233 | 2nd Amend |
| 0205240 | Exhibit 3 |
| 0205245 | Exhibit 3 |
| 0205252 | Exhibit 1 |
| 0205257 | Exhibit 1 |
| 0205283 | Exhibit 2 |
| 0205284 | Exhibit 1 |
| 0205204 | Exhibit 1 |
| 0205205 | Exhibit 3 |
| 0205255 | Exhibit 1 |
| 0205314 | 3rd Amond |
| 0203313 | Evhibit 2 |
| 0203310 | EXHIDIU 3 |

7-110

|         | Exhibit / |  |  |
|---------|-----------|--|--|
|         | Amendment |  |  |
| 0205327 | Exhibit 1 |  |  |
| 0205377 | Exhibit 1 |  |  |
| 0205382 | Exhibit 3 |  |  |
| 0205385 | Exhibit 3 |  |  |
| 0205392 | Exhibit 1 |  |  |
| 0205412 | Exhibit 1 |  |  |
| 0205415 | Exhibit 1 |  |  |
| 0205416 | Exhibit 3 |  |  |
| 0205417 | Exhibit 3 |  |  |
| 0205421 | Exhibit 1 |  |  |
| 0205422 | Exhibit 3 |  |  |
| 0205435 | Exhibit 1 |  |  |
| 0205436 | Exhibit 1 |  |  |
| 0205443 | Exhibit 2 |  |  |
| 0205446 | Exhibit 3 |  |  |
| 0205448 | Exhibit 1 |  |  |
| 0205448 | Exhibit 1 |  |  |
| 0205449 | Exhibit 3 |  |  |
| 0205450 | Exhibit 3 |  |  |
| 0205452 | Exhibit 1 |  |  |
| 0205518 | 2nd Amend |  |  |
| 0205519 | 2nd Amend |  |  |
| 0205520 | 2nd Amend |  |  |
| 0205521 | Exhibit 1 |  |  |
| 0205522 | Exhibit 3 |  |  |
| 0205524 | Exhibit 3 |  |  |
| 0205528 | Exhibit 3 |  |  |
| 0205529 | Exhibit 3 |  |  |
| 0205580 | Exhibit 1 |  |  |
| 0205587 | Exhibit 1 |  |  |
| 0205591 | Exhibit 1 |  |  |
| 0205615 | Exhibit 3 |  |  |
| 0205616 | Exhibit 1 |  |  |
| 0205618 | Exhibit 3 |  |  |
| 0205620 | Exhibit 1 |  |  |
| 0205723 | 2nd Amend |  |  |
| 0205758 | Exhibit 1 |  |  |
| 0205759 | Exhibit 3 |  |  |
| 0205760 | Exhibit 3 |  |  |
| 0205815 | Exhibit 1 |  |  |
| 0205816 | Exhibit 1 |  |  |
| 0205818 | 3rd Amend |  |  |
| 0205820 | Exhibit 1 |  |  |
| 0205821 | Exhibit 1 |  |  |
| 0205822 | Exhibit 3 |  |  |

| WDID    | Exhibit /<br>Amendment |
|---------|------------------------|
| 0205825 | Exhibit 1              |
| 0205826 | 2nd Amend              |
| 0205827 | Exhibit 1              |
| 0205828 | Exhibit 3              |
| 0205864 | Exhibit 1              |
| 0205869 | 2nd Amend              |
| 0205869 | 3rd Amend              |
| 0205899 | Exhibit 3              |
| 0205900 | Exhibit 1              |
| 0205901 | Exhibit 1              |
| 0205902 | Exhibit 3              |
| 0205909 | Exhibit 3              |
| 0205910 | Exhibit 1              |
| 0205954 | Exhibit 1              |
| 0205997 | Exhibit 1              |
| 0206014 | 2nd Amend              |
| 0206016 | Exhibit 3              |
| 0206017 | Exhibit 3              |
| 0206018 | Exhibit 3              |
| 0206019 | Exhibit 3              |
| 0206021 | Exhibit 1              |
| 0206022 | Exhibit 1              |
| 0206024 | Exhibit 1              |
| 0206027 | Exhibit 3              |
| 0206104 | Exhibit 2              |
| 0206105 | Exhibit 2              |
| 0206106 | Exhibit 3              |
| 0206107 | Exhibit 1              |
| 0206108 | Exhibit 2              |
| 0206110 | EXHIDIL I              |
| 0200122 | Exhibit 1              |
| 0206152 | Exhibit 2              |
| 0200134 | Exhibit 3              |
| 0200155 | Exhibit 2              |
| 0200150 | Exhibit 3              |
| 0200158 | 2nd Amend              |
| 0206155 | 3rd Amend              |
| 0206164 | Fxhihit 1              |
| 0206206 | Exhibit 1              |
| 0206207 | Exhibit 3              |
| 0206246 | Exhibit 1              |
| 0206348 | Exhibit 1              |
| 0206376 | Exhibit 2              |
| 0206379 | Exhibit 3              |
|         |                        |

|         | Evhibit /               |
|---------|-------------------------|
| WDID    | Amendment               |
| 0206280 | Evhibit 2               |
| 0200300 | EXIIIDIL S<br>Evhibit 1 |
| 0200301 | EXIIIDIL 1              |
| 0200303 | EXIIIDIL S              |
| 0200400 |                         |
| 0206407 | EXILIDIT 3              |
| 0206407 |                         |
| 0200497 |                         |
| 0206498 |                         |
| 0200499 | EXILIDIT 3              |
| 0200518 |                         |
| 0206519 |                         |
| 0206531 |                         |
| 0206532 |                         |
| 0206534 |                         |
| 0206540 | 2nd Amena               |
| 0206540 | 3rd Amena               |
| 0206541 |                         |
| 0206554 |                         |
| 0206556 |                         |
| 0206558 | Exhibit 1               |
| 0206562 |                         |
| 0206575 | Exhibit 3               |
| 0206576 | Exhibit 1               |
| 0206612 |                         |
| 0206613 | Exhibit 3               |
| 0206666 | Exhibit 1               |
| 0206667 | Exhibit 3               |
| 0206687 |                         |
| 0206688 | Exhibit 2               |
| 0206690 | Exhibit 2               |
| 0206702 |                         |
| 0206/13 | Exhibit 2               |
| 0206749 | Exhibit 1               |
| 0206769 | Exhibit 1               |
| 0206770 | Exhibit 3               |
| 0206785 | Exhibit 1               |
| 0206788 | Exhibit 1               |
| 0206789 | Exhibit 3               |
| 0206790 |                         |
| 0206800 | Exhibit 1               |
| 0206801 | Exhibit 3               |
| 0206810 | Exhibit 1               |
| 0206811 | Exhibit 1               |
| 0206848 | Exhibit 1               |
| 0206856 | Exhibit 1               |

| WDID    | Exhibit / |
|---------|-----------|
|         | Amendment |
| 0206857 | Exhibit 3 |
| 0206860 | Exhibit 3 |
| 0206861 | Exhibit 3 |
| 0206862 | Exhibit 1 |
| 0206867 | 2nd Amend |
| 0206868 | 2nd Amend |
| 0206886 | 2nd Amend |
| 0206908 | Exhibit 1 |
| 0207023 | Exhibit 3 |
| 0207025 | Exhibit 3 |
| 0207026 | Exhibit 1 |
| 0207032 | Exhibit 3 |
| 0207036 | Exhibit 3 |
| 0207037 | Exhibit 1 |
| 0207040 | Exhibit 3 |
| 0207041 | Exhibit 3 |
| 0207044 | Exhibit 3 |
| 0207056 | Exhibit 1 |
| 0207057 | Exhibit 3 |
| 0207058 | Exhibit 3 |
| 0207059 | Exhibit 3 |
| 0207096 | Exhibit 3 |
| 0207096 | Exhibit 3 |
| 0207097 | Exhibit 1 |
| 0207097 | Exhibit 2 |
| 0207098 | Exhibit 1 |
| 0207098 | Exhibit 2 |
| 0207104 | Exhibit 1 |
| 0207105 | Exhibit 1 |
| 0207106 | Exhibit 3 |
| 0207107 | Exhibit 3 |
| 0207108 | Exhibit 3 |
| 0207139 | Exhibit 1 |
| 0207139 | Exhibit 2 |
| 0207140 | Exhibit 3 |
| 0207147 | Exhibit 3 |
| 0207148 | Exhibit 3 |
| 0207149 | Exhibit 1 |
| 0207150 | Exhibit 3 |
| 0207151 | Exhibit 1 |
| 0207153 | Exhibit 1 |
| 0207164 | Exhibit 2 |
| 0207165 | Exhibit 2 |
| 0207192 | Exhibit 3 |
| 0207193 | Exhibit 3 |

| WDID    | Exhibit / |
|---------|-----------|
| WDID    | Amendment |
| 0207194 | Exhibit 1 |
| 0207195 | Exhibit 3 |
| 0207205 | Exhibit 3 |
| 0207206 | Exhibit 1 |
| 0207207 | Exhibit 3 |
| 0207209 | Exhibit 3 |
| 0207242 | Exhibit 1 |
| 0207245 | Exhibit 1 |
| 0207248 | Exhibit 1 |
| 0207250 | Exhibit 1 |
| 0207251 | Exhibit 3 |
| 0207256 | Exhibit 3 |
| 0207268 | Exhibit 3 |
| 0207269 | Exhibit 1 |
| 0207352 | Exhibit 1 |
| 0207354 | Exhibit 3 |
| 0207354 | Exhibit 3 |
| 0207355 | Exhibit 1 |
| 0207357 | Exhibit 1 |
| 0207365 | Exhibit 3 |
| 0207375 | Exhibit 3 |
| 0207378 | Exhibit 1 |
| 0207379 | Exhibit 1 |
| 0207380 | Exhibit 1 |
| 0207381 | Exhibit 1 |
| 0207382 | Exhibit 1 |
| 0207383 | Exhibit 3 |
| 0207444 | Exhibit 1 |
| 0207455 | Exhibit 3 |
| 0207457 | Exhibit 3 |
| 0207458 | Exhibit 1 |
| 0207459 | Exhibit 1 |
| 0207460 | Exhibit 3 |
| 0207464 | Exhibit 1 |
| 0207465 | Exhibit 1 |
| 0207472 | Exhibit 3 |
| 0207473 | Exhibit 3 |
| 0207524 | Exhibit 1 |
| 0207525 | Exhibit 1 |
| 0207526 | Exhibit 3 |
| 0207542 | Exhibit 1 |
| 0207543 | 2nd Amend |
| 0207544 | 2nd Amend |
| 0207545 | Exhibit 1 |
| 0207546 | Exhibit 2 |

| WDID    | Exhibit / |
|---------|-----------|
|         | Amendment |
| 0207546 | Exhibit 3 |
| 0207561 | Exhibit 1 |
| 0207561 | Exhibit 3 |
| 0207593 | Exhibit 3 |
| 0207596 | Exhibit 3 |
| 0207599 | Exhibit 1 |
| 0207617 | Exhibit 1 |
| 0207618 | Exhibit 1 |
| 0207634 | Exhibit 1 |
| 0207635 | Exhibit 1 |
| 0207636 | Exhibit 1 |
| 0207637 | Exhibit 1 |
| 0207713 | Exhibit 1 |
| 0207726 | Exhibit 2 |
| 0207786 | Exhibit 1 |
| 0207787 | Exhibit 1 |
| 0207788 | Exhibit 3 |
| 0207793 | 2nd Amend |
| 0207793 | 3rd Amend |
| 0207794 | 2nd Amend |
| 0207794 | 3rd Amend |
| 0207805 | Exhibit 1 |
| 0207806 | Exhibit 3 |
| 0207807 | Exhibit 3 |
| 0207808 | Exhibit 3 |
| 0207809 | Exhibit 3 |
| 0207851 | 2nd Amend |
| 0207853 | Exhibit 1 |
| 0207853 | Exhibit 2 |
| 0207855 | Exhibit 2 |
| 0207855 | Exhibit 3 |
| 0207933 | Exhibit 1 |
| 0207934 | Exhibit 3 |
| 0207935 | Exhibit 3 |
| 0207968 | Exhibit 2 |
| 0207976 | Exhibit 2 |
| 0207977 | Exhibit 2 |
| 0207979 | Exhibit 2 |
| 0207986 | Exhibit 3 |
| 0207992 | Exhibit 3 |
| 0207994 | Exhibit 3 |
| 0208001 | Exhibit 1 |
| 0208002 | Exhibit 1 |
| 0208013 | Exhibit 1 |
| 0208014 | Exhibit 1 |

| WDID    | Exhibit / |  |  |
|---------|-----------|--|--|
|         | Amendment |  |  |
| 0208015 | Exhibit 1 |  |  |
| 0208016 | Exhibit 1 |  |  |
| 0208017 | Exhibit 3 |  |  |
| 0208034 | Exhibit 1 |  |  |
| 0208036 | Exhibit 3 |  |  |
| 0208098 | Exhibit 1 |  |  |
| 0208109 | Exhibit 3 |  |  |
| 0208110 | Exhibit 3 |  |  |
| 0208127 | Exhibit 3 |  |  |
| 0208128 | Exhibit 1 |  |  |
| 0208129 | Exhibit 3 |  |  |
| 0208130 | Exhibit 3 |  |  |
| 0208131 | Exhibit 1 |  |  |
| 0208222 | Exhibit 1 |  |  |
| 0208223 | 2nd Amend |  |  |
| 0208223 | 3rd Amend |  |  |
| 0208255 | Exhibit 1 |  |  |
| 0208256 | Exhibit 1 |  |  |
| 0208257 | Exhibit 3 |  |  |
| 0208259 | Exhibit 1 |  |  |
| 0208260 | Exhibit 3 |  |  |
| 0208261 | Exhibit 1 |  |  |
| 0208261 | Exhibit 3 |  |  |
| 0208262 | Exhibit 3 |  |  |
| 0208263 | Exhibit 3 |  |  |
| 0208265 | Exhibit 3 |  |  |
| 0208275 | Exhibit 3 |  |  |
| 0208314 | 4th Amend |  |  |
| 0208336 | Exhibit 1 |  |  |
| 0208367 | Exhibit 1 |  |  |
| 0208403 | Exhibit 3 |  |  |
| 0208404 | Exhibit 1 |  |  |
| 0208405 | Exhibit 3 |  |  |
| 0208408 | Exhibit 1 |  |  |
| 0208410 | Exhibit 3 |  |  |
| 0208414 | Exhibit 3 |  |  |
| 0208415 | Exhibit 3 |  |  |
| 0208416 | Exhibit 3 |  |  |
| 0208417 | Exhibit 1 |  |  |
| 0208418 | Exhibit 1 |  |  |
| 0208419 | Exhibit 3 |  |  |
| 0208449 | Exhibit 2 |  |  |
| 0208475 | Exhibit 1 |  |  |
| 0208505 | Exhibit 2 |  |  |
| 0208517 | Exhibit 1 |  |  |

| WDID    | Exhibit /<br>Amendment |
|---------|------------------------|
| 0208531 | Exhibit 3              |
| 0208532 | Exhibit 2              |
| 0208532 | Exhibit 3              |
| 0208533 | Exhibit 2              |
| 0208533 | Exhibit 3              |
| 0208534 | Exhibit 2              |
| 0208534 | Exhibit 3              |
| 0208535 | Exhibit 2              |
| 0208535 | Exhibit 3              |
| 0208536 | Exhibit 2              |
| 0208536 | Exhibit 3              |
| 0208577 | Exhibit 2              |
| 0208577 | Exhibit 3              |
| 0208578 | Exhibit 3              |
| 0208579 | Exhibit 1              |
| 0208579 | Exhibit 2              |
| 0208595 | Exhibit 1              |
| 0208596 | Exhibit 3              |
| 0208597 | Exhibit 3              |
| 0208629 | Exhibit 3              |
| 0208630 | Exhibit 1              |
| 0208631 | Exhibit 1              |
| 0209084 | Exhibit 3              |
| 0209383 | Exhibit 1              |
| 0209578 | Exhibit 1              |
| 0305210 | Exhibit 1              |
| 0307285 | Exhibit 1              |
| 0307286 | 2nd Amend              |
| 0307286 | 3rd Amend              |
| 0405102 | Exhibit 1              |

| #   | Name                                         | Permit   | WDID    | Case      | Approp. Date |
|-----|----------------------------------------------|----------|---------|-----------|--------------|
| 484 | J & M Partnership                            | 19741    | 0105012 | W-7840    | 19-03-75     |
| 485 | J & M Partnership                            | 19741    | 0105012 | W-7840    | 02-06-75     |
| 184 | Wenger, Linda S.                             | 22231F   | 0105018 | W-8299-77 | 23-07-76     |
| 313 | Meisner Farms, LTD                           | 18107    | 0105019 | W-7455    | 17-08-73     |
| 636 | Geisick Brothers,                            | 12741R   | 0105118 | W-1931    | 30-07-44     |
| 28  | Higashi Nihon House Company Ltd/Empire Dairy | 12180    | 0105434 | W-4085    | 31-05-56     |
| 28  | Higashi Nihon House Company Ltd/Empire Dairy | 15083    | 0105435 | W-4085    | 31-12-53     |
| 341 | Millage Brothers, Inc.                       | 7099     | 0105610 | W-6312    | 30-09-35     |
| 341 | Millage Brothers, Inc.                       | 7100     | 0105611 | W-6312    | 22-06-56     |
| 162 | Walker, Patrick W.                           | 013412F  | 0105702 | W-441     | 31-05-43     |
| 41  | Bernhardt, Albert W.                         | 14603    | 0105703 | W-4371    | 30-06-45     |
| 655 | Alan E. Mazzotti                             | 7115     | 0105704 | W-441     | 08-05-41     |
| 655 | Alan E. Mazzotti                             | 7116     | 0105706 | W-441     | 30-05-55     |
| 47  | Bihain, Connie                               | 1-20389  | 0105729 | W-543     | 01-08-53     |
| 47  | Bihain, Connie                               | 2-20389  | 0105730 | W-543     | 01-06-54     |
| 462 | Stinar, Carl                                 | 10671    | 0105763 | W-1033    | 31-07-39     |
| 462 | Stinar, Carl                                 | 10672    | 0105765 | W-1033    | 30-09-52     |
| 462 | Stinar, Carl                                 | 10673    | 0105766 | W-1033    | 31-12-53     |
| 462 | Stinar, Carl                                 | 10674    | 0105767 | W-1033    | 30-11-54     |
| 462 | Stinar, Carl                                 | 6560F    | 0105768 | W-1033    | 23-12-64     |
| 654 | Box Elder Ranch                              | APD#4    | 0105794 | 82-CW-053 | 31-08-53     |
| 656 | Nursery Acres Limited Partnership            | 19548R   | 0105797 | W-16704   | 25-06-60     |
| 656 | Nursery Acres Limited Partnership            | 19548S   | 0105798 | W-16704   | 25-12-31     |
| 656 | Nursery Acres Limited Partnership            | 19548T   | 0105799 | W-16704   | 25-05-45     |
| 94  | Cockroft, Loren R.                           | R12495RF | 0105981 | W-1932    | 31-12-38     |
| 95  | Cockroft, Loren R.                           | R12495RF | 0105981 | W-1932    | 31-12-38     |
| 96  | Cockroft, Loren R.                           | R12495RF | 0105981 | W-1932    | 31-12-38     |
| 94  | Cockroft, Loren R.                           | 12494R   | 0105985 | W-1932    | 21-09-37     |
| 95  | Cockroft, Loren R.                           | 12494R   | 0105985 | W-1932    | 21-09-37     |
| 96  | Cockroft, Loren R.                           | 12494R   | 0105985 | W-1932    | 21-09-37     |
| 100 | Corsentino, Joan                             | 425      | 0106121 | W-2571    | 20-06-42     |
| 573 | Reinick, Richard/Debus                       |          | 0106204 | W-4476    | 30-07-45     |
| 288 | Lockman, Steven J.                           | 4484     | 0106311 | W-4211    | 30-11-55     |
| 123 | Dinner, Albert et. al.                       | 11831    | 0106346 | W-3686    | 31-03-41     |
| 560 | Wolfe, Vernon E.                             | 12613    | 0106385 | W-887     | 31-05-34     |
| 560 | Wolfe, Vernon E.                             | 12614    | 0106386 | W-887     | 30-04-47     |
| 560 | Wolfe, Vernon E.                             | 6359-F   | 0106387 | W-887     | 30-11-64     |
| 560 | Wolfe, Vernon E.                             | 12915    | 0106388 | W-886     | 31-03-54     |
| 560 | Wolfe, Vernon E.                             | 12916    | 0106389 | W-886     | 31-03-55     |
| 560 | Wolfe, Vernon E.                             | 6360-F   | 0106390 | W-886     | 30-11-64     |
| 588 | Danks, William C.                            | 7168     | 0106452 | W-2596    | 31-05-46     |
| 10  | Centennial Valley Ranch, LLC,                | 7169     | 0106453 | W-2596    | 30-06-54     |

Table 4CCWCD GMS Wells Assigned in 2005

| #   | Name                                | Permit   | WDID    | Case      | Approp. Date |
|-----|-------------------------------------|----------|---------|-----------|--------------|
| 647 | Loose, Robert R. and Loose, Dale E. | 426      | 0106549 | W-5698    | 20-05-52     |
| 155 | Foley, Oren                         | 5004F    | 0106550 | W-1476    | 30-01-64     |
| 155 | Foley, Oren                         | 6043     | 0106552 | W-1476    | 30-04-42     |
| 658 | The Edward Foos Family Trust        | 1961     | 0106553 | W-2950    | 04-01-42     |
| 658 | The Edward Foos Family Trust        | 1962     | 0106554 | W-2950    | 31-05-43     |
| 658 | The Edward Foos Family Trust        | 1963     | 0106555 | W-2950    | 31-07-52     |
| 658 | The Edward Foos Family Trust        | 1964     | 0106556 | W-2950    | 31-05-54     |
| 163 | Frank, Robert et.al.                | 5886     | 0106575 | W-465     | 31-12-43     |
| 163 | Frank, Robert et.al.                | 5885     | 0106578 | W-465     | 10-06-58     |
| 163 | Frank, Robert et.al.                | 6835     | 0106580 | W-465     | 23-03-65     |
| 97  | Coleman, Ivan                       | 5914     | 0106639 | W-1215    | 30-06-37     |
| 97  | Coleman, Ivan                       | 5915     | 0106640 | W-1215    | 31-07-55     |
| 188 | Gurtler, Russell                    | 10472    | 0106773 | W-1063    | 31-05-54     |
| 188 | Gurtler, Russell                    | 10471    | 0106774 | W-1063    | 31-05-51     |
| 728 | Mary Vesper Frenzel                 | 21013F   | 0106811 | W-6264    | 31-12-33     |
| 191 | Wenger, Linda S.                    | 427      | 0106831 | W-6801    | 26-02-53     |
| 116 | Dechant, Alvin                      | R06427   | 0106840 | W-635     | 30-10-47     |
| 192 | Hanson, Irwin                       | 7601     | 0106841 | W-584     | 30-06-57     |
| 603 | Dinis, Jack                         | 044925-F | 0106866 | 94-CW-117 | 06-11-63     |
| 210 | Hendricks, Gladys                   | 04030F   | 0106887 | W-1166    | 22-06-55     |
| 726 | Baker, Leroy J.                     | 11320    | 0106895 | W-4463    | 20-06-57     |
| 727 | Burough, David                      | 10676    | 0106897 | W-1840    | 31-07-47     |
| 212 | Vrooman, D. Anthony                 | 10677    | 0106898 | W-1840    | 31-03-57     |
| 120 | Dinnel Family Limited Liability     | 11689    | 0106899 | W-987     | 31-12-38     |
| 113 | Dechant, Alvin                      | 5282F    | 0106903 | W-4463    | 30-03-64     |
| 113 | Dechant, Alvin                      | 5281F    | 0106903 | W-4463    | 20-06-64     |
| 113 | Dechant, Alvin                      | 1531     | 0106905 | W-4463    | 28-03-60     |
| 113 | Dechant, Alvin                      | 5283F    | 0106907 | W-4463    | 16-03-64     |
| 743 | Borys, Richard M.                   | 8409     | 0106908 | W-1840    | 30-06-35     |
| 215 | Hergenreder, Carl                   | 1787     | 0106911 | W-695     | 31-12-35     |
| 220 | McWilliams, Carolyn E.              | 5972     | 0106913 | W-1964    | 31-07-51     |
| 220 | McWilliams, Carolyn E.              | 5973     | 0106914 | W-1964    | 08-03-55     |
| 220 | McWilliams, Carolyn E.              | 9131F    | 0106915 | W-1964    | 14-04-65     |
| 172 | Geisick Brothers,                   | 6428     | 0106966 | W-2070    | 03-05-56     |
| 172 | Geisick Brothers,                   | 7177     | 0106967 | W-2070    | 17-06-49     |
| 172 | Geisick Brothers,                   | 5947     | 0106968 | W-2070    | 24-06-53     |
| 172 | Geisick Brothers,                   | 6058     | 0106969 | W-2070    | 05-06-46     |
| 178 | Kobobel, Larry A.                   | 2461F    | 0107033 | W-2226    | 25-01-60     |
| 48  | Bockius, Walter                     | 13451    | 0107084 | W-4971    | 30-05-51     |
| 48  | Bockius, Walter                     | 10798    | 0107085 | W-4971    | 01-05-66     |
| 97  | Coleman, Ivan                       | 12500    | 0107111 | W-1726    | 30-06-34     |
| 97  | Coleman, Ivan                       | 8914RF   | 0107112 | W-1726    | 30-05-58     |
| 519 | Watkins, Carol (Trust)              | 10518    | 0107119 | W-8158-76 | 31-05-40     |
| 519 | Watkins, Carol (Trust)              | 12913    | 0107120 | W-8158-76 | 31-05-39     |
| 519 | Watkins, Carol (Trust)              | 32       | 0107121 | W-8158-76 | 30-06-46     |
| 519 | Watkins, Carol (Trust)              | RF798    | 0107122 | W-8158-76 | 31-07-55     |

| #   | Name                            | Permit   | WDID    | Case      | Approp. Date |
|-----|---------------------------------|----------|---------|-----------|--------------|
| 519 | Watkins, Carol (Trust)          | 10519    | 0107123 | W-8158-76 | 31-08-55     |
| 519 | Watkins, Carol (Trust)          | 4064F    | 0107124 | W-8158-76 | 25-04-63     |
| 519 | Watkins, Carol (Trust)          | 6361F    | 0107125 | W-8158-76 | 04-11-64     |
| 519 | Watkins, Carol (Trust)          | 9269F    | 0107127 | W-8158-76 | 08-05-65     |
| 519 | Watkins, Carol (Trust)          | 9271F    | 0107129 | W-8158-76 | 10-08-65     |
| 519 | Watkins, Carol (Trust)          | 6601F    | 0107130 | W-8158-76 | 30-12-64     |
| 519 | Watkins, Carol (Trust)          | 12912    | 0107133 | W-8158-76 | 12-04-37     |
| 519 | Watkins, Carol (Trust)          | 12914    | 0107134 | W-8158-76 | 20-07-51     |
| 374 | Booth Bros. Land & Livestock    | 9400F    | 0107162 | W-657     | 01-05-38     |
| 374 | Booth Bros. Land & Livestock    | 9401F    | 0107164 | W-657     | 27-06-54     |
| 325 | Platte Valley School District   | 15049-RR | 0107203 | W-1489    | 24-07-53     |
| 270 | Lang, Kenneth                   | 12191    | 0107378 | W-2312    | 07-06-54     |
| 622 | Vern Johnson Farms, LLC/Duarte  | P-04574F | 0107521 | W-371     | 23-08-63     |
| 181 | Greenwalt, David L.             | 11521    | 0107524 | W-363     | 01-05-45     |
| 182 | Greenwalt, David L.             | 11521    | 0107524 | W-363     | 01-05-45     |
| 640 | Greenwalt, David L.             | 11521    | 0107524 | W-363     | 20-11-71     |
| 746 | HHR Family Farms, LLC           | 6331     | 0107576 | W-1950    | 26-08-52     |
| 614 | EMR Family Farms, L.P.          | RF89     | 0107577 | W-1950    | 05-05-37     |
| 615 | Emanuel W. Rothe Family Farms   | 13035    | 0107578 | W-1950    | 04-02-45     |
| 612 | Empire Dairy LLC                | 1397     | 0107579 | W-3687    | 30-06-46     |
| 121 | Dinnel Family Limited Liability | 5847     | 0107611 | W-354     | 30-06-34     |
| 121 | Dinnel Family Limited Liability | 5848     | 0107612 | W-354     | 31-07-55     |
| 688 | Anacapa Land Company, LLC       | 10599F   | 0107617 | W-2705    | 17-05-49     |
| 688 | Anacapa Land Company, LLC       | 12317F   | 0107618 | W-2705    | 25-06-53     |
| 745 | James E. Smith Trust            | 1693     | 0107622 | W-1678    | 30-04-44     |
| 608 | Boos, Donald C.                 | 14539    | 0107626 | W-2200    | 15-06-34     |
| 612 | Empire Dairy LLC                | 1396     | 0107627 | W-3687    | 31-07-38     |
| 216 | Hergenreder, Carl L.            | 10104    | 0107765 | W-564     | 24-04-54     |
| 584 | Dinis, Jack                     | 036535-F | 0107837 | 89-CW-042 | 15-12-89     |
| 362 | Park, James                     | RF418    | 0107896 | W-468     | 31-12-41     |
| 362 | Park, James                     | 12316    | 0107897 | W-468     | 30-09-34     |
| 365 | Peggram, B. J.                  |          | 0107930 | W-1457-79 | 17-04-74     |
| 366 | Peggram, B.J.                   |          | 0107930 | W-1457-79 | 17-04-74     |
| 365 | Peggram, B. J.                  |          | 0107931 | W-1457-79 | 17-04-74     |
| 366 | Peggram, B.J.                   |          | 0107931 | W-1457-79 | 17-04-74     |
| 653 | Centennial Valley Ranch, LLC,   | 13949    | 0107942 | W-3933    | 26-05-46     |
| 323 | Monfort Feedlot                 | 6531     | 0107943 | W-3933    | 30-05-49     |
| 630 | Butler, Michael A.              |          | 0108071 | 84-CW-205 | 14-02-56     |
| 758 | Rein, Shirley May               | 13958    | 0108072 | W-4532    | 31-12-38     |
| 619 | Curd, Beverly/Axton             | 11695-RR | 0108073 | W-4533    | 15-04-48     |
| 629 | Sandau, Bruce D.                | R129     | 0108073 | W-4787    | 25-06-20     |
| 389 | Bender, David A.                | 11241    | 0108113 | W-3260    | 11-05-52     |
| 394 | Roskop, Peter                   | 1133     | 0108136 | W-2746    | 30-06-55     |
| 396 | Rothe, Roy                      | 13071    | 0108160 | W-2609    | 30-12-40     |
| 396 | Rothe, Roy                      | 13073    | 0108163 | W-2609    | 31-05-54     |
| 395 | Rothe, Roy                      | 11057    | 0108164 | W-2609    | 31-05-54     |

| #   | Name                         | Permit   | WDID    | Case      | Approp. Date |
|-----|------------------------------|----------|---------|-----------|--------------|
| 398 | Rothe, Roy W.                | 10836    | 0108166 | W-3559    | 20-06-53     |
| 322 | Monfort Feedlot              | 8571     | 0108168 | W-3705    | 26-06-54     |
| 226 | Hoshiko, Dennis              | RF806    | 0108169 | W-1218    | 15-06-54     |
| 574 | Danks, William C.            | 13960    | 0108172 | W-3705    | 01-07-36     |
| 400 | Aigaki T.                    | 5911     | 0108178 | W-371     | 25-06-01     |
| 400 | Aigaki T.                    | 4533     | 0108179 | W-371     | 16-06-46     |
| 32  | Beauprez, Ralph              | 2498F    | 0108204 | W-4253    | 11-04-60     |
| 158 | Ford, Jeffrey                | C-14466  | 0108207 | W-3223    | 30-06-42     |
| 158 | Ford, Jeffrey                | D-13929  | 0108208 | W-3223    | 20-07-50     |
| 674 | SLW Ranch Company            | 10480    | 0108216 | W-3595    | 31-12-35     |
| 675 | Winpeglar, Lorraine          | 10480    | 0108216 | 80-CW-341 | 31-12-35     |
| 487 | Ochsner Kevin Kenneth        |          | 0108219 | W-3595    | 31-07-50     |
| 185 | Lockman, Steven J.           | 13072    | 0108245 | W-182     | 30-06-50     |
| 397 | Rothe, Roy                   | 15931    | 0108253 | W-2181    | 30-06-48     |
| 397 | Rothe, Roy                   | 04137F   | 0108254 | W-2181    | 21-05-63     |
| 395 | Rothe, Roy                   | 16392    | 0108255 | W-2181    | 31-07-54     |
| 652 | Centennial Valley Ranch LLC, | 15930    | 0108259 | W-2181    | 30-06-36     |
| 652 | Centennial Valley Ranch LLC, | RF763    | 0108260 | W-2181    | 29-08-55     |
| 429 | Hoshiko Farms                | 8672     | 0108279 | W-1571    | 09-06-54     |
| 280 | Lehfeldt, Richard            | 9386F    | 0108296 | W-5030    | 31-10-44     |
| 280 | Lehfeldt, Richard            | 11999    | 0108297 | W-5030    | 28-07-55     |
| 452 | Siebring, Neeland B. (Trust) | 11526    | 0108352 | W-2017    | 31-12-61     |
| 451 | Siebring, Neeland (Trust)    | 12019    | 0108353 | W-1632    | 01-05-54     |
| 455 | Smith, LeRoy                 | 10591    | 0108405 | W-4706    | 26-06-47     |
| 364 | Peggram, B. J.               | RF991    | 0108407 | W-3296    | 31-12-50     |
| 693 | Foiles, Larry B.             | 6203F    | 0108465 | W-3618    | 30-09-64     |
| 693 | Foiles, Larry B.             | 1429     | 0108466 | W-3618    | 27-05-44     |
| 693 | Foiles, Larry B.             | 1428     | 0108467 | W-3618    | 28-07-55     |
| 147 | Foos, Steven P.              | 15879    | 0108665 | W-1450    | 13-07-54     |
| 453 | Siebring, Norma              | 12021    | 0108733 | W-2019    | 01-06-51     |
| 499 | Van Wyke, Norma J.           | D4303F   | 0108734 | W-2018    | 01-07-63     |
| 86  | Millage Brothers, Inc.       | 1512     | 0108775 | W-5185    | 30-04-55     |
| 514 | Walker, Robert W.            | 1369     | 0108779 | W-1477    | 30-03-54     |
| 514 | Walker, Robert W.            | 6864F    | 0108784 | W-1477    | 20-06-65     |
| 513 | Walker, Robert W.            | 1368     | 0108786 | W-1477    | 20-06-36     |
| 32  | Beauprez, Ralph              | 24685F   | 0108788 | W-4263    | 11-04-60     |
| 457 | Gurtler, Russell             | P6288F   | 0108794 | W-363     | 31-10-64     |
| 457 | Gurtler, Russell             | 13829    | 0108796 | W-363     | 31-12-44     |
| 522 | Weimer, Elizabeth            | 7291     | 0108846 | W-2224    | 01-01-37     |
| 522 | Weimer, Elizabeth            | 7292     | 0108851 | W-2224    | 27-06-50     |
| 538 | Dinis, Jack                  | 044924-F | 0109026 | 94-CW-117 | 26-05-64     |
| 16  | A5 Farms, LLC,               | 13502    | 0205005 | W-2727    | 31-07-34     |
| 44  | Beskas Trust                 | 6371     | 0205007 | W-6261-79 | 13-06-41     |
| 44  | Beskas Trust                 | 6372     | 0205008 | W-6261-79 | 30-06-54     |
| 119 | Robbins, James E.            | 6400F    | 0205017 | W-2784    | 10-11-64     |
| 677 | L.G. Everist, Inc.           | 11082-F  | 0205018 | W-2784-77 | 07-08-66     |

| #   | Name                                        | Permit     | WDID    | Case      | Approp. Date |
|-----|---------------------------------------------|------------|---------|-----------|--------------|
| 119 | Robbins, James E.                           | 13320F     | 0205019 | W-2784    | 31-12-32     |
| 637 | Luevano, Maria D.                           | 16218      | 0205022 | W-709     | 04-02-53     |
| 222 | Holton, Tom                                 | 13697      | 0205023 | W-959     | 20-12-31     |
| 463 | Fritzler, Edward                            | 15862      | 0205032 | W-1925    | 30-05-35     |
| 463 | Fritzler, Edward                            | 624        | 0205033 | W-1925    | 30-06-54     |
| 696 | Magnum Land Ventures, LLC d/b/a Cherry      | 20454F     | 0205034 | W-4552    | 12-06-54     |
| 203 | Anderson, Anne E.                           | 1920       | 0205035 | W-478     | 31-12-34     |
| 204 | Hattendorf, Robert                          | 1905       | 0205036 | W-479     | 31-05-55     |
| 763 | Herbster Family Trust                       | 11990      | 0205040 | W-1448    | 07-03-43     |
| 739 | Klein, James D.                             | R5964RF    | 0205044 | W-2718-79 | 31-10-01     |
| 465 | Strear Farms Company                        |            | 0205053 | W-175     | 01-05-18     |
| 465 | Strear Farms Company                        |            | 0205054 | W-175     | 01-05-18     |
| 465 | Strear Farms Company                        |            | 0205055 | W-175     | 18-05-01     |
| 465 | Strear Farms Company                        |            | 0205056 | W-175     | 18-05-01     |
| 465 | Strear Farms Company                        |            | 0205057 | W-175     | 18-05-01     |
| 506 | Greiman, Grant                              | R-318      | 0205060 | W-1873    | 29-04-65     |
| 339 | Nichols, Everett                            | 11584      | 0205062 | W-1712    | 01-06-64     |
| 345 | Ocker, William                              | 13914      | 0205063 | W-2235    | 31-12-46     |
| 420 | Sasaki, Joe                                 | 18769A     | 0205071 | W-666     | 11-09-52     |
| 700 | Sharp, William Jr. (Trust)                  | 20318      | 0205073 | W-909     | 15-08-54     |
| 459 | Kawata, Wayne/Western Equip                 | 786        | 0205077 | W-6449    | 25-05-55     |
| 509 | Kremer, Marvin D.                           | 13183      | 0205083 | W-3640-78 | 31-05-55     |
| 509 | Kremer, Marvin D.                           | 17884      | 0205085 | W-3640-78 | 30-11-47     |
| 516 | Villano, Robert P.                          | 19490-1    | 0205086 | W-572     | 04-12-65     |
| 682 | Blue Ribbon Nursery, Inc.                   | 6639       | 0205155 | W-4910    | 31-08-46     |
| 579 | Abbett, Clyde L.                            | R07231     | 0205168 | W-317     | 01-06-42     |
| 579 | Abbett, Clyde L.                            | R10364     | 0205169 | W-317     | 01-07-55     |
| 706 | Adams, Gerald A., James L., & Gray, Shirley | 19944      | 0205187 | W-690     | 25-12-31     |
| 558 | Hop, Andrew J.                              | 2932-F     | 0205188 | W-300     | 01-07-36     |
| 207 | Kirby, Kirk S.                              | 15119      | 0205189 | W-2434    | 15-12-31     |
| 706 | Adams, Gerald A., James L., & Gray, Shirley | 20583      | 0205190 | W-690     | 28-06-04     |
| 706 | Adams, Gerald A., James L., & Gray, Shirley | 12800      | 0205191 | W-690     | 31-12-42     |
| 373 | Pralle, Dale                                | 15503F     | 0205198 | W-8597-77 | 30-12-31     |
| 8   | Alexander, Roger                            | 11117      | 0205207 | W-399     | 31-08-54     |
| 8   | Alexander, Roger                            | 11118      | 0205208 | W-399     | 30-04-57     |
| 225 | Hoshiko Farms                               | 11651      | 0205226 | W-879     | 31-12-33     |
| 606 | Weld County School Dist. RE-1               | 14969      | 0205229 | W-2245    | 30-06-44     |
| 607 | Amend Partners, A General                   | 11111      | 0205230 | W-1907    | 12-04-46     |
| 15  | Anderson, Ron                               | 12259F     | 0205241 | W-5231    | 03-12-69     |
| 114 | Dechant, Alvin                              | 8319       | 0205242 | W-389     | 05-12-57     |
| 114 | Dechant, Alvin                              | 5187F      | 0205246 | W-389     | 24-04-64     |
| 114 | Dechant, Alvin                              | 8318       | 0205247 | W-389     | 24-04-47     |
| 701 | Willard, Kevin D., Willard, Heather M.      | 10655RF    | 0205250 | W-2163    | 31-12-35     |
| 16  | A5 Farms, LLC,                              | 13503      | 0205251 | W-2727    | 31-03-51     |
| 676 | Willard, Kevin D.                           | 2R10656    | 0205253 | W-2163    | 19-02-55     |
| 701 | Willard, Kevin D., Willard, Heather M.      | WELL NO. 3 | 0205254 | W-2163    | 11-01-55     |

| #   | Name                                         | Permit  | WDID    | Case      | Approp. Date |
|-----|----------------------------------------------|---------|---------|-----------|--------------|
| 16  | A5 Farms, LLC,                               | 13504   | 0205255 | W-2727    | 30-04-55     |
| 705 | English Farms, Inc.                          | 14823   | 0205261 | W-4585    | 12-09-55     |
| 705 | English Farms, Inc.                          | 28896-F | 0205271 | W-4585    | 31-12-37     |
| 705 | English Farms, Inc.                          | 14826   | 0205272 | W-4585    | 31-12-38     |
| 705 | English Farms, Inc.                          | 5944F   | 0205273 | W-4585    | 28-07-64     |
| 705 | English Farms, Inc.                          | 5998F   | 0205274 | W-4585    | 28-07-64     |
| 705 | English Farms, Inc.                          | 2337F   | 0205275 | W-4585    | 25-09-59     |
| 705 | English Farms, Inc.                          | 14824   | 0205276 | W-4585    | 14-05-51     |
| 22  | Arens, Fred/Arens Trust                      | 12041   | 0205287 | W-3301    | 30-04-54     |
| 24  | Arens, Grant                                 | 12042   | 0205288 | W-3300    | 21-06-51     |
| 24  | Arens, Grant                                 | 12043   | 0205290 | W-3300    | 21-06-43     |
| 24  | Arens, Grant                                 | 12045   | 0205291 | W-3302    | 31-03-55     |
| 208 | Hemple, Edward                               | 6179    | 0205302 | W-675     | 31-03-51     |
| 208 | Hemple, Edward                               | 6288    | 0205303 | W-675     | 31-08-39     |
| 671 | C.P. Cooper Family Trust, d/b/a Consolidated | 12093F  | 0205306 | W-5029    | 27-03-68     |
| 29  | McBride, Will                                | 13203   | 0205313 | 94-CW-080 | 01-01-46     |
| 30  | Bangert, W. Jean                             | 12596   | 0205317 | W-366     | 03-03-56     |
| 99  | Tucson Water Company                         | 420     | 0205318 | W-5205    | 01-08-46     |
| 99  | Tucson Water Company                         | 421     | 0205319 | W-5205    | 01-08-51     |
| 380 | Reinoehl, Dale/Ready Mixed                   | 10500   | 0205329 | W-1990    | 01-04-54     |
| 399 | Cranmer, Scott                               | 3427F   | 0205338 | W-1821    | 17-04-47     |
| 413 | Sandau, Robert                               | AD2551  | 0205339 | W-1336    | 12-09-56     |
| 413 | Sandau, Robert                               | AD2550  | 0205340 | W-1336    | 30-11-53     |
| 413 | Sandau, Robert                               | AD2549  | 0205341 | W-1336    | 19-07-52     |
| 35  | Bell, James                                  | 13517   | 0205347 | W-4453    | 15-04-34     |
| 35  | Bell, James                                  | 3614P   | 0205348 | W-4453    | 28-05-62     |
| 556 | Weigandt, Steven G.                          | 7164    | 0205354 | W-3050    | 01-05-47     |
| 556 | Weigandt, Steven G.                          | 7165    | 0205355 | W-3050    | 01-05-40     |
| 660 | The Conservation Fund/Colorado State Parks   | 109143  | 0205359 | W-5353    | 30-06-55     |
| 38  | Bergstrom, Ray                               | 10432   | 0205374 | W-2607    | 30-04-33     |
| 38  | Bergstrom, Ray                               | 10433   | 0205375 | W-2607    | 30-04-55     |
| 40  | Berig, William                               | 11095F  | 0205376 | W-700     | 13-06-66     |
| 42  | Bernhardt, Edward                            | 7117    | 0205379 | W-3177    | 30-06-32     |
| 42  | Bernhardt, Edward                            | 7118    | 0205384 | W-3177    | 30-09-50     |
| 43  | Bernhardt, Lydia/Schneider                   | 13940   | 0205386 | W-486     | 30-04-56     |
| 43  | Bernhardt, Lydia/Schneider                   | 23881F  | 0205394 | 82-CW-345 | 21-06-33     |
| 44  | Beskas Trust                                 | 6373    | 0205401 | W-6261-79 | 16-06-30     |
| 45  | Betz, Fred                                   | 6904    | 0205404 | W-351     | 20-03-65     |
| 33  | Beddo, Dearal                                | 12595   | 0205418 | W-3330    | 31-08-35     |
| 33  | Beddo, Dearal                                | 04109F  | 0205419 | W-3330    | 10-05-63     |
| 49  | Bockius, Walter                              | 12609   | 0205423 | W-1843    | 31-12-38     |
| 49  | Bockius, Walter                              | 12610   | 0205424 | W-1843    | 31-03-55     |
| 52  | Frazier, Janet                               | 11495   | 0205427 | W-2730    | 06-01-55     |
| 628 | Ferrell, Timothy R.                          | 15038   | 0205427 | W-1190    | 01-04-34     |
| 759 | Anderson, Norman N.                          | 1955    | 0205428 | W-6453    | 10-05-53     |
| 51  | Anderson Farms, L.L.C.                       | 4494    | 0205429 | W-536     | 05-07-44     |

| #   | Name                                       | Permit   | WDID    | Case      | Approp. Date |
|-----|--------------------------------------------|----------|---------|-----------|--------------|
| 559 | Andersen, Robert L.                        | 8597-R   | 0205432 | W-310     | 31-07-54     |
| 557 | Longmont Foods Company, Inc.               | 4565     | 0205433 | W-310     | 23-10-45     |
| 563 | Longmont Foods                             | 4565     | 0205433 | 90-CW-50  | 23-10-45     |
| 54  | Hoff, Bradley G./Bernard, Kevin            | 12066    | 0205437 | W-3338    | 28-04-01     |
| 721 | Bollers, Kenneth Dean                      | R10159   | 0205439 | W-2548    | 30-04-52     |
| 721 | Bollers, Kenneth Dean                      | R10160   | 0205440 | W-2548    | 30-08-55     |
| 607 | Amend Partners, A General                  | 11112    | 0205457 | W-1907    | 07-05-54     |
| 703 | Boos, Donald C.                            | 14540    | 0205459 | W-2200    | 31-07-40     |
| 239 | Ptasnik, Michael                           | 14541    | 0205460 | W-2200    | 31-03-36     |
| 239 | Ptasnik, Michael                           | 14542    | 0205461 | W-2200    | 31-03-51     |
| 471 | Dreiling, Michael                          | 13599    | 0205511 | W-2926    | 31-05-32     |
| 471 | Dreiling, Michael                          | 03227-F  | 0205512 | W-2926    | 01-07-61     |
| 297 | Aigaki, Dale                               | 4864F    | 0205513 | W-2926    | 26-11-63     |
| 1   | ALE Partnership                            | 6124     | 0205523 | W-4526    | 01-10-39     |
| 64  | Brantner, Louis                            | 1523     | 0205526 | W-234     | 31-05-55     |
| 64  | Brantner, Louis                            | 1522     | 0205527 | W-234     | 31-03-34     |
| 733 | Eppinger, Linda Kay                        | 3-19924  | 0205531 | W-359     | 09-12-31     |
| 733 | Eppinger, Linda Kay                        | 4-19924  | 0205532 | W-359     | 31-12-51     |
| 733 | Eppinger, Linda Kay                        | 5-19924  | 0205533 | W-359     | 31-12-39     |
| 733 | Eppinger, Linda Kay                        | 6-19924  | 0205534 | W-359     | 04-09-54     |
| 65  | Brethauer, Jerrold                         | 8673     | 0205536 | W-598     | 31-08-50     |
| 65  | Brethauer, Jerrold                         | 8674     | 0205537 | W-598     | 30-09-56     |
| 619 | Curd, Beverly/Axton                        | RF1018   | 0205538 | W-4533    | 20-04-46     |
| 626 | Murray, Roy W. Jr.                         | 13039-R  | 0205538 | W-598     | 31-05-54     |
| 620 | Smith, Richard A.                          | 11699-RF | 0205539 | W-4533    | 15-04-48     |
| 197 | Harkis, Richard                            | 4901     | 0205541 | W-2057    | 30-04-64     |
| 66  | Briggs, John G.                            | RF342    | 0205543 | W-387     | 29-04-10     |
| 66  | Briggs, John G.                            | 7026     | 0205544 | W-387     | 04-05-53     |
| 69  | Brown, Bill/Trust                          | 169      | 0205577 | W-1602    | 31-07-55     |
| 70  | Brown, Jean                                | 883      | 0205578 | W-1666    | 23-07-40     |
| 70  | Brown, Jean                                | 884      | 0205579 | W-1666    | 10-07-53     |
| 25  | Ells, Benjamin                             | 12838    | 0205581 | W-2049    | 05-02-54     |
| 695 | The Thomas and Marjorie Brown Family Trust | 12971    | 0205582 | W-196     | 30-04-34     |
| 737 | Weinmeister, David L.                      | 12973    | 0205584 | W-196     | 18-05-56     |
| 71  | Brown, Jean                                | 11150F   | 0205585 | W-1665    | 15-03-44     |
| 11  | Southgate, Inc.                            | 2526F    | 0205598 | W-471     | 01-06-60     |
| 717 | Cottonwood Lanes Homeowners Association    | A        | 0205601 | 83-CW-120 | 31-03-54     |
| 717 | Cottonwood Lanes Homeowners Association    | В        | 0205602 | 83-CW-120 | 31-03-54     |
| 717 | Cottonwood Lanes Homeowners Association    | С        | 0205603 | 83-CW-130 | 31-03-54     |
| 717 | Cottonwood Lanes Homeowners Association    | D        | 0205604 | 83-CW-120 | 31-03-54     |
| 717 | Cottonwood Lanes Homeowners Association    | E        | 0205605 | 83-CW-120 | 31-03-54     |
| 717 | Cottonwood Lanes Homeowners Association    | F        | 0205606 | 83-CW-120 | 31-03-54     |
| 717 | Cottonwood Lanes Homeowners Association    | G        | 0205607 | 83-CW-120 | 31-03-54     |
| 717 | Cottonwood Lanes Homeowners Association    | Н        | 0205608 | 83-CW-120 | 31-03-54     |
| 717 | Cottonwood Lanes Homeowners Association    | I        | 0205609 | 83-CW-120 | 31-03-54     |
| 84  | Campbell, Dean W.                          | 8717     | 0205629 | W-1239    | 31-08-52     |

| #   | Name                                       | Permit   | WDID    | Case      | Approp. Date |
|-----|--------------------------------------------|----------|---------|-----------|--------------|
| 657 | Wes Moser & Sons                           | 3421F    | 0205645 | W4963     | 17-03-64     |
| 657 | Wes Moser & Sons                           | 3525F    | 0205648 | W4963     | 19-09-62     |
| 89  | Carlson, Clarence                          | 4404     | 0205654 | W-874     | 31-07-48     |
| 89  | Carlson, Clarence                          | 4405     | 0205657 | W-874     | 31-07-54     |
| 90  | Carlson, Janet                             | 13157    | 0205659 | W-4372    | 14-06-51     |
| 89  | Carlson, Clarence                          | 4403     | 0205660 | W-874     | 25-09-30     |
| 89  | Carlson, Clarence                          | 04262F   | 0205661 | W-874     | 30-06-63     |
| 24  | Arens, Grant                               | 31779    | 0205696 | 91-CW-086 | 31-03-55     |
| 92  | Chesnut, Byron                             | 12045    | 0205696 | W-3302    | 31-03-55     |
| 319 | Chikuma, Josephine                         | 13205    | 0205697 | W-3634    | 31-07-54     |
| 298 | Axelson, Howard N.                         | 1361     | 0205730 | W-5773    | 01-10-54     |
| 604 | Mathisen, George W.                        | 5851     | 0205753 | W-7945-75 | 18-03-58     |
| 259 | Kingman-Parker Farm                        | 11871    | 0205780 | W-965     | 17-06-54     |
| 346 | Oden, Weldon                               | 4694F    | 0205836 | W-2823    | 16-10-63     |
| 486 | Gulliksen, Vern J.                         | 013391F  | 0205840 | W-4098    | 23-03-41     |
| 732 | Anders Partnership                         | 2-13822  | 0205842 | W-3767    | 13-06-30     |
| 106 | Rittenhouse, Donald L.                     | 013699F  | 0205844 | W-4940    | 30-06-20     |
| 107 | Davis, John                                | 5890     | 0205857 | W-847     | 29-06-22     |
| 107 | Davis, John                                | 5889     | 0205865 | W-847     | 25-06-22     |
| 109 | DeCrescentis, Louis                        | 1628     | 0205877 | W-844     | 22-09-38     |
| 430 | Desperado Dairy                            | 8640     | 0205878 | W-4271    | 20-04-50     |
| 118 | Deines, Glen                               | 15285    | 0205879 | W-846     | 09-05-49     |
| 700 | Sharp, William Jr. (Trust)                 | RF212    | 0205888 | W-910     | 07-12-31     |
| 305 | Mayer, Glen                                | 15358    | 0205903 | W-769     | 31-07-50     |
| 305 | Mayer, Glen                                | 15357    | 0205904 | W-769     | 30-04-48     |
| 14  | Stauffer, Charles/Rodarte                  | 587      | 0205911 | W-1014    | 30-04-32     |
| 26  | Marvin J. Dinner Family Trust              | 1587     | 0205921 | W-6405    | 30-04-40     |
| 26  | Marvin J. Dinner Family Trust              | 1588     | 0205925 | W-6405    | 30-04-55     |
| 123 | Dinner, Albert et. al.                     | 11832    | 0205926 | W-3686    | 31-12-45     |
| 123 | Dinner, Albert et. al.                     | 11833    | 0205927 | W-3686    | 31-01-50     |
| 122 | Dinner, Albert et. al.                     | 11834    | 0205929 | W-3686    | 30-04-50     |
| 122 | Dinner, Albert et. al.                     | 11830    | 0205930 | W-3686    | 20-04-30     |
| 124 | Dittmer, Walter                            | RF97     | 0205933 | W-1316    | 31-07-32     |
| 125 | Doll, Ronald J.                            | 1200     | 0205951 | W-316     | 31-07-54     |
| 98  | Cook, Dennis                               | 1R70     | 0205956 | 83-CW-39  | 31-05-32     |
| 186 | Guest, Raymond                             | 12172    | 0205957 | W-673     | 30-06-51     |
| 186 | Guest, Raymond                             | 12173    | 0205959 | W-673     | 30-04-55     |
| 200 | Harkis, Richard                            | 1305     | 0205960 | W-672     | 14-11-56     |
| 200 | Harkis, Richard                            | 10671F   | 0205961 | W-672     | 30-04-66     |
| 127 | Dreiling, Michael                          | 10743    | 0205963 | W-592     | 31-12-55     |
| 498 | Delamont, Rick A.                          | 016643F  | 0205986 | W-7669-74 | 21-04-65     |
| 129 | Dunn, Rose/Cecil Farms                     | 12735    | 0205991 | W-487     | 31-08-35     |
| 130 | Dupper, Calvin                             | 6334F    | 0205996 | W-6454    | 30-06-50     |
| 670 | Eckhardt, Frank Jr., David F., & Steven A. | 12736    | 0206023 | W-5931    | 31-07-01     |
| 670 | Eckhardt, Frank Jr., David F., & Steven A. | 12737    | 0206025 | W-5931    | 01-07-44     |
| 618 | Shoemaker, Larry D., Candace M., Wade E.,  | 11699-RF | 0206026 | W-4533    | 15-04-48     |

| #   | Name                                            | Permit   | WDID    | Case      | Approp. Date |
|-----|-------------------------------------------------|----------|---------|-----------|--------------|
| 623 | Fritzler, Edward J.                             | 12740    | 0206026 | W-5930    | 01-06-35     |
| 132 | Elledge, Joseph et. al.                         | 013670F  | 0206040 | W-3016    | 21-09-46     |
| 133 | Ells, Ben                                       | 11158    | 0206047 | W-1399    | 30-04-47     |
| 290 | Loeffler, Elmer                                 | 13857    | 0206049 | W-3217    | 31-07-38     |
| 290 | Loeffler, Elmer                                 | 13858    | 0206050 | W-3217    | 30-09-46     |
| 290 | Loeffler, Elmer                                 | 4538F    | 0206051 | W-3217    | 05-08-63     |
| 646 | Schmidt, Kevin W.                               | 13859    | 0206052 | W-3217    | 31-08-39     |
| 646 | Schmidt, Kevin W.                               | 13860    | 0206053 | W-3217    | 14-07-55     |
| 76  | Buckley Acres Homeowners Association            | NO. 0    | 0206065 | W-8255-76 | 23-03-05     |
| 76  | Buckley Acres Homeowners Association            | NO. E    | 0206066 | W-8255-76 | 23-03-05     |
| 76  | Buckley Acres Homeowners Association            | NO. F    | 0206067 | W-8255-76 | 23-03-05     |
| 76  | Buckley Acres Homeowners Association            | NO. G    | 0206068 | W-8255-76 | 23-03-05     |
| 76  | Buckley Acres Homeowners Association            | NO. H    | 0206069 | W-8255-76 | 23-03-05     |
| 76  | Buckley Acres Homeowners Association            | NO. I    | 0206070 | W-8255-76 | 23-03-05     |
| 76  | Buckley Acres Homeowners Association            | NO. J    | 0206071 | W-8255-76 | 23-03-05     |
| 76  | Buckley Acres Homeowners Association            | NO. K    | 0206072 | W-8255-76 | 23-03-05     |
| 76  | Buckley Acres Homeowners Association            | NO. L    | 0206073 | W-8255-76 | 23-03-05     |
| 76  | Buckley Acres Homeowners Association            | NO. M    | 0206074 | W-8255-76 | 23-03-05     |
| 76  | Buckley Acres Homeowners Association            | NO. N    | 0206075 | W-8255-76 | 23-03-05     |
| 76  | Buckley Acres Homeowners Association            | NO. P    | 0206076 | W-8255-76 | 23-03-05     |
| 76  | Buckley Acres Homeowners Association            | NO. Q    | 0206077 | W-8255-76 | 23-03-05     |
| 139 | Evanoff, Iris/Evanoff, Joe                      | R12672RF | 0206094 | W-1688    | 03-05-26     |
| 757 | Peterson, Andrew S.                             | EWING #1 | 0206100 | W-6141    | 06-05-40     |
| 142 | Ewing, Lloyd                                    | 1-19923  | 0206104 | W-557     | 29-12-31     |
| 93  | Clement, Margaret                               | 8946     | 0206105 | W-6281    | 25-06-58     |
| 142 | Ewing, Lloyd                                    | 2-19923  | 0206108 | W-557     | 09-12-31     |
| 93  | Clement, Margaret                               | 19926    | 0206109 | W-6281    | 28-10-31     |
| 526 | Younger, Howard                                 | 455      | 0206111 | 86-CW-237 | 10-08-48     |
| 23  | Arens, Fred/Arens Trust/Shelton Land and Cattle | 12044    | 0206113 | W-3303    | 28-02-57     |
| 548 | Wolf, Richard                                   | R-13417  | 0206115 | 92-CW-029 | 27-06-30     |
| 145 | Wilhelm Andrew J., Brian A.                     | 013669F  | 0206116 | W-5305    | 31-12-40     |
| 548 | Wolf, Richard                                   | R-13416  | 0206124 | 92-CW-029 | 31-03-46     |
| 548 | Wolf, Richard                                   | R-13420  | 0206125 | 92-CW-029 | 30-12-31     |
| 548 | Wolf, Richard                                   | R-13418  | 0206126 | 92-CW-029 | 07-06-47     |
| 548 | Wolf, Richard                                   | R-13419  | 0206127 | 92-CW-029 | 02-04-48     |
| 548 | Wolf, Richard                                   | R-13421  | 0206128 | 92-CW-029 | 22-11-52     |
| 644 | Johnie Vaughn                                   | 13752    | 0206131 | W-5198    | 23-03-15     |
| 644 | Johnie Vaughn                                   |          | 0206132 | W-5198    | 23-03-15     |
| 222 | Holton, Tom                                     | 13698    | 0206177 | W-959     | 25-12-31     |
| 27  | B & M Land Company                              | RF620    | 0206180 | W-4668    | 25-03-64     |
| 27  | B & M Land Company                              | RF619    | 0206181 | W-4668    | 30-06-52     |
| 734 | Winden, Thomas E./Basset Properties/Ricks Farms | 5817     | 0206182 | W-4668    | 31-03-52     |
| 656 | Nursery Acres Limited Partnership               | 8357     | 0206187 | W-2950    | 25-05-45     |
| 656 | Nursery Acres Limited Partnership               | 8359     | 0206188 | W-2950    | 25-12-31     |
| 656 | Nursery Acres Limited Partnership               | 2629F    | 0206189 | W2950     | 25-06-60     |
| 161 | Fort Lupton Greens                              | 11828    | 0206214 | W-862     | 30-06-50     |

| #   | Name                                   | Permit  | WDID    | Case     | Approp. Date |
|-----|----------------------------------------|---------|---------|----------|--------------|
| 161 | Fort Lupton Greens                     | 11829   | 0206215 | W-862    | 25-05-55     |
| 463 | Fritzler, Edward                       | 619     | 0206219 | W-1925   | 30-06-60     |
| 463 | Fritzler, Edward                       | 623     | 0206220 | W-1925   | 30-06-54     |
| 463 | Fritzler, Edward                       | 620     | 0206221 | W-1925   | 10-07-64     |
| 166 | Front Range Land & Livestock, LLC      | 10476   | 0206222 | W-7481   | 17-07-51     |
| 166 | Front Range Land & Livestock, LLC      | 10475   | 0206223 | W-7481   | 13-06-46     |
| 642 | Off, Don and Jeanne Partnership        | 12993   | 0206228 | W-5311   | 31-12-54     |
| 642 | Off, Don and Jeanne Partnership        | 12992   | 0206229 | W-5311   | 05-12-31     |
| 169 | Funakoshi, Sam                         | 6229    | 0206345 | W-752    | 30-04-55     |
| 111 | DeSanti, Kathleen                      | 12426   | 0206347 | W-5880   | 04-08-47     |
| 170 | Gabel, Philip                          | 13473   | 0206353 | W-625    | 31-12-54     |
| 170 | Gabel, Philip                          | 13474   | 0206355 | W-625    | 31-12-55     |
| 683 | Sparboe Horizon Corporation            | 7289    | 0206369 | 85-CW-50 | 19-03-46     |
| 217 | Hergert, Richard                       | 10711   | 0206372 | W-1286   | 31-05-57     |
| 217 | Hergert, Richard                       | 10712   | 0206373 | W-1286   | 31-07-38     |
| 102 | Bogner, Susan G.                       | 5746F   | 0206374 | W-5487   | 01-07-64     |
| 716 | Gee, William E.                        |         | 0206375 | W-5487   | 01-04-54     |
| 173 | Nursery Acres Limited Partnership      | 4360F   | 0206390 | W-2220   | 31-12-34     |
| 601 | Springer, Gerald W.                    | 4361-F  | 0206391 | W-2220   | 31-03-55     |
| 174 | Gilmore, Susanna K.                    | 13458   | 0206401 | W-1721   | 30-06-38     |
| 237 | James Nursery                          | 13459   | 0206402 | W-1721   | 30-04-54     |
| 550 | James Nursery                          | 16239   | 0206403 | W-1721   | 10-08-38     |
| 549 | Kuettel, Theodore                      | 6903    | 0206404 | W-1721   | 31-03-65     |
| 175 | Gittlein, Frank                        | 2628F   | 0206411 | W-3723   | 23-06-60     |
| 175 | Gittlein, Frank                        | 471     | 0206412 | W-3723   | 29-07-59     |
| 175 | Gittlein, Frank                        | 472     | 0206413 | W-3723   | 23-06-66     |
| 175 | Gittlein, Frank                        | 3500F   | 0206414 | W-3723   | 27-03-62     |
| 569 | Goodner, Emma U.                       | 10651   | 0206418 | W-258    | 01-01-38     |
| 569 | Goodner, Emma U.                       | 652     | 0206419 | W-258    | 01-01-38     |
| 176 | Green Valley Turf                      | 13710   | 0206423 | W-1902   | 30-04-33     |
| 176 | Green Valley Turf                      | 13711   | 0206424 | W-1902   | 31-05-55     |
| 176 | Green Valley Turf                      | 13712   | 0206425 | W-1902   | 31-05-45     |
| 176 | Green Valley Turf                      | 13713   | 0206426 | W-1902   | 30-06-56     |
| 176 | Green Valley Turf                      | 13714   | 0206427 | W-1902   | 30-04-53     |
| 176 | Green Valley Turf                      | 13515   | 0206428 | W-1902   | 31-05-44     |
| 176 | Green Valley Turf                      | 13516   | 0206429 | W-1902   | 31-05-46     |
| 176 | Green Valley Turf                      | 13517   | 0206430 | W-1902   | 30-04-50     |
| 602 | Serbousek, Christopher J.              | 20455F  | 0206433 | W-4552   | 14-06-54     |
| 696 | Magnum Land Ventures, LLC d/b/a Cherry | 20456F  | 0206436 | W-4552   | 10-05-44     |
| 179 | Green, Kenneth/Chavez, Blas            | 9004F   | 0206440 | W-274    | 25-04-65     |
| 180 | Greenleat Wholesale Florist            | RF542   | 0206444 | W-488    | 18-03-68     |
| 187 | Gunzner Investment Company             | 15457   | 0206453 | W-2490   | 30-05-32     |
| 187 | Gunzner Investment Company             | 15458RF | 0206454 | W-2490   | 30-04-56     |
| 187 | Gunzner Investment Company             | 15458   | 0206454 | W-2490   | 30-05-52     |
| 478 | Tappan, Dr. Major W.                   | 17884   | 0206471 | W-2816   | 17-11-47     |
| 567 | Hoecher, Charles                       | 04093-F | 0206473 | W-2022   | 31-05-63     |

| #   | Name                                  | Permit  | WDID    | Case      | Approp. Date |
|-----|---------------------------------------|---------|---------|-----------|--------------|
| 152 | Kerbel, Laura Lee                     | 16144   | 0206474 | W-2022    | 01-04-31     |
| 12  | Amen, Joe                             | RF1031  | 0206475 | W-1813    | 31-03-38     |
| 12  | Amen, Joe                             | 11876F  | 0206476 | W-1813    | 31-03-44     |
| 12  | Amen, Joe                             | 11877F  | 0206477 | W-1813    | 24-04-57     |
| 12  | Amen, Joe                             | 5896F   | 0206478 | W-1813    | 23-07-64     |
| 679 | Western Equipment & Truck, Inc.       | #2      | 0206480 | W-6217    | 30-09-50     |
| 679 | Western Equipment & Truck, Inc.       | #3      | 0206481 | W-6217    | 31-05-54     |
| 668 | Bischoff, Blake C.                    | 10045   | 0206482 | W-6217    | 31-12-37     |
| 668 | Bischoff, Blake C.                    | 10044   | 0206483 | W-6217    | 31-12-37     |
| 679 | Western Equipment & Truck, Inc.       | 6794    | 0206485 | W-6217    | 02-03-65     |
| 189 | Haller, Andrew                        | RF487   | 0206487 | W-3494    | 09-06-68     |
| 190 | Beman, Scott                          | 12791   | 0206491 | W-6061    | 25-08-10     |
| 372 | Platteville, Town of                  | 13125   | 0206501 | W-1848    | 27-09-20     |
| 198 | Harkis, Richard                       | 6611F   | 0206505 | 91-CW-120 | 23-12-64     |
| 198 | Harkis, Richard                       | 2044F   | 0206506 | 91-CW-120 | 11-06-54     |
| 195 | Harkis, Richard                       | 2380    | 0206507 | 91-CW-120 | 11-12-59     |
| 198 | Harkis, Richard                       | 6391    | 0206508 | 91-CW-120 | 21-11-58     |
| 287 | Little Valley Wholesale               | 20960   | 0206510 | W-3974    | 31-08-45     |
| 202 | Hattendorf, Robert H.                 | 1901    | 0206517 | W-479     | 26-12-31     |
| 205 | Hause, Laurance/Hunt Brothers         | 20138F  | 0206522 | W-138     | 31-05-33     |
| 572 | Kline, Brady A.                       | 13032-R | 0206523 | W-4307    | 01-05-46     |
| 209 | Henad Company/120th Estate            | 10898   | 0206544 | W-2924    | 28-11-38     |
| 209 | Henad Company/120th Estate            | 10899   | 0206545 | W-2924    | 01-06-40     |
| 292 | Lucky Four Ranch/Lochbuie Land        | 335     | 0206549 | W-362     | 04-05-41     |
| 213 | Bacon, Lyman C/Bunting                | 12726   | 0206553 | W-1448    | 29-07-29     |
| 583 | Ptasnik, Michael J.                   | 10747   | 0206573 | W-1818    | 01-09-53     |
| 583 | Ptasnik, Michael J.                   | 10746   | 0206574 | W-1818    | 01-06-42     |
| 595 | Taylor, Anna Maria                    | 10902   | 0206585 | W-2030    | 31-03-47     |
| 595 | Taylor, Anna Maria                    | 10903   | 0206586 | W-2030    | 31-03-47     |
| 222 | Holton, Tom                           | 2216F   | 0206598 | W-959     | 31-12-59     |
| 222 | Holton, Tom                           | 13699   | 0206599 | W-959     | 25-12-31     |
| 222 | Holton, Tom                           | 13700   | 0206600 | W-959     | 20-12-31     |
| 222 | Holton, Tom                           | 20098   | 0206601 | W-1325    | 31-12-50     |
| 222 | Holton, Tom                           | 5923F   | 0206602 | W-1325    | 24-07-64     |
| 223 | Hood, Bessie B.                       | 10949   | 0206608 | W-3720    | 31-08-54     |
| 641 | Beaman, Charles J.                    | 1-7016R | 0206614 | W-2617    | 30-04-47     |
| 227 | Howard, Cecil                         | 11611   | 0206622 | W-2236    | 31-12-39     |
| 232 | lanelli, Joseph                       | 23226F  | 0206635 | W-4909    | 20-09-43     |
| 230 | Walker, Harold et.al.                 | 13159F  | 0206636 | W-490     | 01-06-54     |
| 692 | James L. Oster Revocable Living Trust | 6824    | 0206637 | W-490     | 31-12-50     |
| 231 | Huwa, Jake                            | 15261   | 0206643 | W-2048    | 31-12-39     |
| 501 | Vargo, Isabell                        | 11855   | 0206648 | W-613     | 15-12-31     |
| 236 | Smith, Jerry L.                       | 15017   | 0206669 | W-4817    | 15-03-54     |
| 229 | Hungenberg Farms                      | 1138    | 0206688 | W-385     | 15-05-53     |
| 672 | Reisbeck Subdivision, LLC             | 20547-1 | 0206692 | W-4330    | 15-03-50     |
| 672 | Reisbeck Subdivision, LLC             | 20547-2 | 0206693 | W-4330    | 04-04-53     |

| #   | Name                                        | Permit  | WDID    | Case      | Approp. Date |
|-----|---------------------------------------------|---------|---------|-----------|--------------|
| 427 | Schaumberg, Patricia                        | 10990   | 0206696 | W-4801    | 21-09-35     |
| 243 | Sandau, Bruce                               | 208     | 0206704 | W-4714    | 10-05-55     |
| 627 | South Adams County Water & Sanitation Dist. | 11785   | 0206705 | W-1899    | 30-07-33     |
| 243 | Sandau, Bruce                               | 207     | 0206713 | W-4714    | 20-06-40     |
| 218 | Huwa, Kevin et. al.                         | 12248F  | 0206715 | W-4787    | 20-06-34     |
| 17  | Anjo Construction Company, Inc              | 211     | 0206718 | W-4787    | 20-06-37     |
| 665 | Clarkson, David G.                          | 8942F   | 0206721 | W-4787    | 19-06-58     |
| 268 | Sakata Farms Inc.                           | 12389   | 0206740 | W-4800    | 30-05-56     |
| 268 | Sakata Farms Inc.                           | 12388   | 0206741 | W-4800    | 30-05-54     |
| 268 | Sakata Farms Inc.                           | 12387   | 0206742 | W-4800    | 31-05-56     |
| 268 | Sakata Farms Inc.                           | 12386   | 0206743 | W-4800    | 30-06-55     |
| 477 | Taoka Brothers/Kornman                      | 12529   | 0206744 | W-4800    | 30-04-49     |
| 477 | Taoka Brothers/Kornman                      | 12530   | 0206745 | W-4800    | 31-05-54     |
| 248 | Dechant Farms Partnership,                  | 6379    | 0206750 | W-5322    | 27-06-55     |
| 248 | Dechant Farms Partnership,                  | 15982   | 0206751 | W-5322    | 30-06-55     |
| 253 | Kammerzell, Vern                            | 11407   | 0206753 | W-571     | 23-02-27     |
| 249 | Kammerzell, Albert                          | 249     | 0206754 | W-357     | 15-11-41     |
| 249 | Kammerzell, Albert                          | 250     | 0206755 | W-357     | 20-05-54     |
| 694 | RML Property Investors LLC, a Colorado      | 10777   | 0206756 | W-382     | 31-12-34     |
| 21  | Arborland Farm                              | 8302    | 0206757 | W-158     | 20-05-31     |
| 694 | RML Property Investors LLC, a Colorado      | 10778   | 0206758 | W-382     | 31-12-40     |
| 82  | Camenisch, Phillip                          | 8303    | 0206759 | W-158     | 31-07-50     |
| 82  | Camenisch, Phillip                          | 8304    | 0206760 | W-158     | 30-06-52     |
| 401 | Rusch, Rosalie                              | RF795   | 0206761 | W-571     | 31-05-54     |
| 401 | Rusch, Rosalie                              | 14134   | 0206762 | W-571     | 30-05-40     |
| 255 | Kawata, Byron H.                            | 14716   | 0206775 | W-765     | 30-06-56     |
| 255 | Kawata, Byron H.                            | 14717   | 0206776 | W-765     | 31-03-50     |
| 255 | Kawata, Byron H.                            | 14718   | 0206777 | W-765     | 30-06-44     |
| 703 | Boos, Donald C.                             | 22306R  | 0206778 | W-8330-76 | 22-12-31     |
| 256 | Nelson, Thyra                               | 630     | 0206779 | W-2388    | 30-05-42     |
| 256 | Nelson, Thyra                               | 631     | 0206781 | W-2388    | 30-05-54     |
| 256 | Nelson, Thyra                               | 632     | 0206782 | W-2388    | 30-05-53     |
| 256 | Nelson, Thyra                               | 6132    | 0206783 | W-2388    | 31-12-42     |
| 256 | Nelson, Thyra                               | CWCB644 | 0206784 | W-2388    | 12-05-55     |
| 50  | Spayd Hay Company                           | 12683   | 0206791 | W-190     | 30-06-35     |
| 257 | Kern, Robert N.                             | 04218F  | 0206793 | W-1956    | 01-06-63     |
| 258 | Kern, William F/Hunt                        | 12053   | 0206794 | W-1955    | 30-05-34     |
| 258 | Kern, William F/Hunt                        | 12054   | 0206795 | W-1955    | 31-07-54     |
| 258 | Kern, William F/Hunt                        | 12055   | 0206796 | W-1955    | 31-07-55     |
| 308 | Newton/Bishop Bromley Park                  | 20095   | 0206802 | W-3426    | 30-04-53     |
| 308 | Newton/Bishop Bromley Park                  | 1068    | 0206803 | W-3426    | 30-09-55     |
| 308 | Newton/Bishop Bromley Park                  | 23958F  | 0206804 | 80-CW-113 | 30-04-53     |
| 262 | Kissler, Mildred R.                         | 11687   | 0206813 | W-657     | 24-12-31     |
| 262 | Kissler, Mildred R.                         | 11688   | 0206814 | W-657     | 31-12-52     |
| 261 | Kissler, James                              | 13959   | 0206815 | W-657     | 31-12-31     |
| 263 | Kiyota, John                                | 752     | 0206817 | W-519     | 31-05-50     |

| #   | Name                                       | Permit   | WDID    | Case         | Approp. Date |
|-----|--------------------------------------------|----------|---------|--------------|--------------|
| 263 | Kiyota, John                               | 753      | 0206820 | W-519        | 31-10-56     |
| 414 | Sandin, Milton                             | 4482     | 0206832 | W-3036       | 29-04-54     |
| 68  | Broberg, Gale L.                           | 13626    | 0206833 | W-253        | 30-12-31     |
| 46  | Doperalski, Matthew J.                     | 8736     | 0206847 | W-577        | 31-07-32     |
| 46  | Doperalski, Matthew J.                     | 8737     | 0206851 | W-577        | 31-07-54     |
| 749 | Highland Properties/Hein                   | 1050     | 0206864 | W-2213       | 30-06-55     |
| 246 | Lookhart, Dick                             | 4281     | 0206874 | 83-CW-152    | 10-07-63     |
| 633 | PRR Groundwater, LLC                       | 14018    | 0206886 | W-5791       | 31-07-39     |
| 633 | PRR Groundwater, LLC                       | 14019    | 0206887 | W-5791       | 30-04-33     |
| 633 | PRR Groundwater, LLC                       | 14021    | 0206889 | W-5791       | 31-05-37     |
| 599 | Ready Mixed Concrete Company               | 15424    | 0206891 | W-5791       | 31-07-46     |
| 632 | City of Brighton                           | 14023    | 0206893 | W-5791       | 31-12-60     |
| 581 | Morton, Margaret V.                        | 1-12790R | 0206920 | W-550        | 18-08-54     |
| 736 | Nursery Acres Limited Partnership          | 8905F    | 0206929 | W-992        | 28-05-58     |
| 736 | Nursery Acres Limited Partnership          | 8358     | 0206930 | W-992        | 30-04-50     |
| 273 | Leadbetter, Lynn/Linda                     | 6037F    | 0206958 | W-3224       | 15-09-64     |
| 735 | Leaming, Olga R.                           | R13565   | 0206962 | W-401        | 14-12-31     |
| 279 | Di Lorenzo, Janet M.                       | 183      | 0206964 | W-6079       | 30-11-72     |
| 667 | D. Schlup LTD.                             | 047468F  | 0206967 | APD TO 3783F |              |
| 281 | Lehl, Marguerite                           | 132      | 0206968 | W-679        | 07-07-36     |
| 266 | Johnson, Stephen R.                        | 20492    | 0206969 | W-2582       | 5/12/1936    |
| 282 | Shelton, Ray                               | 13487-RF | 0206970 | W-1054       | 30-06-38     |
| 697 | Kplatteville, LLC                          | RF197    | 0206976 | W-1829       | 15-06-41     |
| 13  | An-Land Partnership/Robinson NW LLC        | 1364     | 0206977 | W-2694       | 31-07-53     |
| 580 | Kremer, Marvin D. & Diane                  | RF480    | 0206980 | W-6013       | 30-09-45     |
| 580 | Kremer, Marvin D. & Diane                  | RF774    | 0206982 | W-6013       | 31-08-32     |
| 580 | Kremer, Marvin D. & Diane                  | RF481    | 0206984 | W-6013       | 20-11-37     |
| 580 | Kremer, Marvin D. & Diane                  | 13181    | 0206988 | W-6013       | 5/1/1955     |
| 580 | Kremer, Marvin D. & Diane                  | 16138    | 0206989 | W-6013       | 10-08-55     |
| 507 | Waddle, Randall Scott                      | 1746     | 0206992 | W-651        | 31-03-32     |
| 722 | Aschenbrenner, William                     | 2-1747   | 0206993 | W-651        | 31-05-29     |
| 286 | Lindgren, Ron                              | AD8635   | 0206997 | 79-CW-053    | 19-03-79     |
| 689 | Wiedeman, Terry                            | 952      | 0207013 | W-6450       | 30-06-33     |
| 689 | Wiedeman, Terry                            | 953      | 0207014 | W-6450       | 24-05-52     |
| 433 | Hickman, Maxwell Kent                      | 787      | 0207033 | W-544        | 31-07-36     |
| 659 | Lorenz, Virgil N.                          | 13056    | 0207046 | W-1826       | 31-08-25     |
| 659 | Lorenz, Virgil N.                          | 13058    | 0207047 | W-1826       | 31-08-55     |
| 659 | Lorenz, Virgil N.                          | 13057    | 0207048 | W-1826       | 31-07-40     |
| 659 | Lorenz, Virgil N.                          | 4838F    | 0207049 | W-1826       | 12-05-64     |
| 616 | Joule Inc, a Colorado Corporation          | 11039    | 0207066 | W-2114       | 30-09-52     |
| 617 | Scotch Pine Estates Homeowners Association | 15095-R  | 0207066 | W-1563       | 31-07-55     |
| 271 | Cohill, Elizabeth                          | 10894    | 0207067 | W-4826       | 31-12-33     |
| 592 | Finley, Tony et. al.                       | 11620    | 0207072 | 92-CW-031    | 31-12-22     |
| 117 | Dechant, David                             | 7122     | 0207090 | W-3499       | 30-06-39     |
| 296 | Martin, Amelia                             | 267      | 0207100 | W-384        | 5/31/1957    |
| 296 | Martin, Amelia                             | 268      | 0207103 | W-384        | 30-06-37     |

| #   | Name                              | Permit  | WDID    | Case      | Approp. Date |
|-----|-----------------------------------|---------|---------|-----------|--------------|
| 729 | TeSodCo, Ltd.                     | 1383    | 0207118 | W-2854    | 31-10-51     |
| 729 | TeSodCo, Ltd.                     | 1384    | 0207119 | W-2854    | 31-08-54     |
| 729 | TeSodCo, Ltd.                     | 13067   | 0207120 | W-2854    | 30-04-60     |
| 729 | TeSodCo, Ltd.                     | 3499    | 0207121 | W-2854    | 30-04-62     |
| 729 | TeSodCo, Ltd.                     | 1385    | 0207122 | W-2854    | 31-08-55     |
| 729 | TeSodCo, Ltd.                     | 5730    | 0207123 | W-2854    | 30-06-64     |
| 425 | Schafer, Richard C.               | 14969   | 0207127 | W-2245    | 30-06-44     |
| 718 | Matsushima, Lillian Y.            | 11859   | 0207131 | W-3409    | 20-07-50     |
| 302 | Wetco Farms, Inc. a Colorado      | 11903   | 0207132 | W-3410    | 31-12-34     |
| 719 | Matsushima, Ronald L.             | 11344   | 0207133 | W-3409    | 16-10-56     |
| 302 | Wetco Farms, Inc. a Colorado      | 11904   | 0207134 | W-3410    | 30-04-41     |
| 719 | Matsushima, Ronald L.             | 11860   | 0207135 | W-3409    | 12-08-54     |
| 302 | Wetco Farms, Inc. a Colorado      | 11905   | 0207136 | W-3410    | 30-04-41     |
| 302 | Wetco Farms, Inc. a Colorado      | 11906   | 0207137 | W-3410    | 31-03-42     |
| 302 | Wetco Farms, Inc. a Colorado      | 11907   | 0207138 | W-3410    | 31-05-55     |
| 144 | Reifschneider, Darrel E.          | 13979   | 0207168 | W-597     | 31-12-28     |
| 144 | Reifschneider, Darrel E.          | 13980   | 0207169 | W-597     | 31-08-46     |
| 307 | Rossi, Raymond Lee                | 6843F   | 0207174 | W-436     | 22-03-65     |
| 688 | Anacapa Land Company, LLC         | 12318F  | 0207210 | W-2705    | 25-06-53     |
| 685 | Parker, John B.                   | 11201   | 0207212 | W-619     | 01-06-55     |
| 685 | Parker, John B.                   | 5289F   | 0207213 | W-619     | 15-04-64     |
| 310 | Meguire, William                  | R12069  | 0207214 | W-1140    | 23-03-48     |
| 315 | Melbon Ranch                      | 923     | 0207215 | W-524     | 01-08-46     |
| 593 | Ewing, James L.                   | 21749-F | 0207223 | W-694     | 20-08-30     |
| 167 | Front Range Land & Livestock, LLC | 0738R   | 0207227 | W-2342    | 31-12-29     |
| 167 | Front Range Land & Livestock, LLC | 0739RR  | 0207229 | W-2342    | 30-09-56     |
| 167 | Front Range Land & Livestock, LLC | 15094R  | 0207229 | W-2342    | 03-07-57     |
| 347 | McCormick, G. Todd                | 14131   | 0207243 | W-1055    | 31-12-54     |
| 316 | Miller, Jack                      | 6066R   | 0207247 | W-5196    | 31-10-39     |
| 317 | Ogg, Paul Joe                     | 12481R  | 0207254 | W-5196    | 31-12-35     |
| 347 | McCormick, G. Todd                | 14132   | 0207255 | W-1055    | 31-12-53     |
| 318 | Cushman, Danny W.                 | 269     | 0207259 | W-2714    | 30-06-41     |
| 662 | Vetting, James E.                 | 12705   | 0207271 | 79-CW-250 | 01-04-43     |
| 321 | Monaghan Farms                    | 11673F  | 0207302 | W-6045    | 31-12-50     |
| 321 | Monaghan Farms                    |         | 0207303 | W-6045    | 15-05-67     |
| 562 | Ochsner, Daniel Lee               |         | 0207347 | W-4513    | 03-03-52     |
| 562 | Ochsner, Daniel Lee               |         | 0207349 | W-4513    | 03-03-52     |
| 377 | Reichardt, Carl                   |         | 0207351 | W-6768    | 30-08-55     |
| 506 | Greiman, Grant                    | 11226   | 0207362 | W-1873    | 23-07-54     |
| 506 | Greiman, Grant                    | 11224   | 0207363 | W-1873    | 01-08-43     |
| 326 | Morimitsu, Henry                  | 7374    | 0207366 | W-957     | 31-08-34     |
| 326 | Morimitsu, Henry                  | 7375    | 0207367 | W-957     | 14-04-55     |
| 327 | Moser & Sons                      | CP10198 | 0207368 | W-1814    | 05-11-65     |
| 328 | Moser & Sons                      | 14748   | 0207369 | W-1814    | 31-03-35     |
| 328 | Moser & Sons                      | 3741F   | 0207371 | W-1814    | 01-10-62     |
| 328 | Moser & Sons                      | 5177F   | 0207371 | W-1814    | 11-03-64     |

| #   | Name                                   | Permit  | WDID    | Case      | Approp. Date |
|-----|----------------------------------------|---------|---------|-----------|--------------|
| 328 | Moser & Sons                           | 14749   | 0207373 | W-1814    | 25-03-57     |
| 577 | Moser, Vernon L.                       | 11867   | 0207376 | W-5184    | 25-09-50     |
| 576 | Moser, Vernon L.                       | 14509   | 0207377 | W-3289    | 31-08-49     |
| 332 | Mowery, Irma                           |         | 0207387 | W-4282    | 30-03-57     |
| 333 | Warinner, Mark                         | 13736   | 0207388 | W-2144    | 21-12-22     |
| 343 | Oakland Ranchettes, Inc.               | 8800R   | 0207391 | 79-CW-046 | 31-12-40     |
| 335 | Murata, Steven T.                      | 1365    | 0207394 | W-1207    | 21-11-16     |
| 626 | Murray, Roy W. Jr.                     | 13040-R | 0207395 | W-598     | 31-05-54     |
| 724 | Murray, Glen P., Murray, Louise M. and | 8593    | 0207398 | W-653     | 22-09-54     |
| 724 | Murray, Glen P., Murray, Louise M. and | 17844RF | 0207399 | W-653     | 22-09-34     |
| 724 | Murray, Glen P., Murray, Louise M. and | 178442A | 0207401 | W-653     | 22-09-35     |
| 724 | Murray, Glen P., Murray, Louise M. and | 178442B | 0207402 | W-653     | 22-09-38     |
| 724 | Murray, Glen P., Murray, Louise M. and | 17844-3 | 0207403 | W-653     | 22-09-44     |
| 56  | Ptasnik, Michael J.                    | 11493   | 0207413 | W-2126    | 30-08-38     |
| 56  | Ptasnik, Michael J.                    | 11494   | 0207414 | W-2126    | 30-09-48     |
| 418 | Sasaki, Joe                            | 20317   | 0207417 | W-1142    | 01-04-27     |
| 684 | Nelson, Ralph Carl                     | RF354   | 0207445 | W-332     | 18-10-37     |
| 684 | Nelson, Ralph Carl                     | 20025   | 0207446 | W-332     | 06-07-54     |
| 527 | Werning, Glenn                         | 1282    | 0207448 | W-4347    | 10-09-48     |
| 615 | Emanuel W. Rothe Family Farms          | R35     | 0207452 | W-1950    | 21-04-44     |
| 359 | Palombo, Sam                           |         | 0207483 | W-5228    | 02-05-55     |
| 201 | Hatheway, James                        | CP10066 | 0207484 | W-1742    | 21-06-65     |
| 712 | Sakata Land Company                    | R11383  | 0207485 | W-1741    | 31-12-51     |
| 360 | Palombo, Silvia                        | 13396   | 0207486 | W-4945    | 20-02-32     |
| 361 | Palombo, Silvia (Trust)                | 13397   | 0207487 | W-4945    | 5/15/1935    |
| 361 | Palombo, Silvia (Trust)                | 13398   | 0207488 | W-4945    | 31-12-42     |
| 344 | McWilliams, Steven                     | 1147    | 0207517 | W-827     | 31-12-53     |
| 345 | Ocker, William                         |         | 0207518 | W-2235    | 31-12-48     |
| 344 | McWilliams, Steven                     | 1146    | 0207520 | W-827     | 31-12-50     |
| 344 | McWilliams, Steven                     | 1145    | 0207522 | W-827     | 31-12-17     |
| 348 | Clyncke, Joyce                         | 11649   | 0207525 | W-547     | 30-06-55     |
| 348 | Clyncke, Joyce                         | 11650   | 0207527 | W-547     | 31-05-34     |
| 497 | Valdez, Jesse                          | 12271   | 0207529 | W-4833    | 30-04-30     |
| 283 | Lengel, Richard                        | 12946   | 0207548 | W-2080    | 01-04-47     |
| 352 | Opdyke Agency Inc.                     | 12884   | 0207574 | W-3077    | 30-04-47     |
| 367 | Flynn, James T.                        | 13987   | 0207591 | W-537     | 31-05-53     |
| 368 | Asphalt Paving Company                 | #1      | 0207607 | W-6314    | 08-10-09     |
| 368 | Asphalt Paving Company                 | #2      | 0207608 | W-6314    | 30-04-55     |
| 368 | Asphalt Paving Company                 | #3      | 0207609 | W-6314    | 30-04-26     |
| 368 | Asphalt Paving Company                 | SUMP #1 | 0207610 | W-6314    | 31-05-55     |
| 368 | Asphalt Paving Company                 | SUMP #2 | 0207611 | W-6314    | 31-05-55     |
| 193 | Cress, Frank L.                        | 14269   | 0207620 | W-1844    | 30-06-49     |
| 194 | Harding, Marlene                       | RF1172  | 0207620 | W-1844    | 30-06-49     |
| 370 | Pettinger, Len                         | 13007   | 0207621 | W-912     | 27-07-55     |
| 260 | Kissler, James                         | 476     | 0207626 | W-1319    | 29-07-37     |
| 112 | Dean, Joe E.                           |         | 0207707 | W-745     | 22-06-27     |

| #   | Name                                    | Permit     | WDID    | Case      | Approp. Date |
|-----|-----------------------------------------|------------|---------|-----------|--------------|
| 196 | Harkis, Richard                         | 2281F      | 0207716 | W-1998    | 03-09-59     |
| 199 | Harkis, Richard                         | 03150F     | 0207717 | W-1998    | 08-05-61     |
| 199 | Harkis, Richard                         | 11038      | 0207718 | W-1998    | 30-06-38     |
| 375 | Ray, William                            |            | 0207726 | W-1957    | 31-07-46     |
| 575 | Backus, Robert E.                       | 11529      | 0207757 | W-2418    | 01-05-54     |
| 575 | Backus, Robert E.                       | 11530      | 0207758 | W-2418    | 30-07-12     |
| 651 | Willard, Kevin D.                       | 11725F     | 0207760 | W-6062    | 5/9/1967     |
| 651 | Willard, Kevin D.                       | 10729      | 0207763 | W-6062    | 12-07-52     |
| 19  | Appelhanz, John                         | 6286       | 0207764 | W-4777    | 01-07-54     |
| 381 | Reynolds, Frank                         | 6860       | 0207766 | W-3326    | 30-06-55     |
| 402 | Sable Estates                           | 26033F     | 0207767 | 80-CW-339 | 01-06-46     |
| 402 | Sable Estates                           | 26034F     | 0207768 | 80-CW-339 | 01-06-46     |
| 402 | Sable Estates                           | 26035F     | 0207769 | 80-CW-339 | 01-06-46     |
| 402 | Sable Estates                           | 26036F     | 0207770 | 80-CW-339 | 01-06-46     |
| 402 | Sable Estates                           | 26037F     | 0207771 | 80-CW-339 | 01-06-46     |
| 402 | Sable Estates                           | 26038F     | 0207772 | 80-CW-339 | 01-06-46     |
| 664 | Cook, Ronald A.                         | RF1188     | 0207773 | W-4947    | 17-06-50     |
| 664 | Cook, Ronald A.                         | 2285F      | 0207774 | W-4947    | 11-09-59     |
| 643 | Martindale, Delores O.                  | 11024      | 0207776 | W-1634    | 31-12-21     |
| 383 | McCormick, Gary                         | 11025      | 0207777 | W-1634    | 31-12-35     |
| 678 | P. & H. Joint Venture, a Colorado       | 11534      | 0207778 | W-1634    | 31-05-30     |
| 678 | P. & H. Joint Venture, a Colorado       | 11538      | 0207779 | W-1634    | 31-12-30     |
| 385 | Rickers, Henry                          |            | 0207792 | W-9220-78 | 15-07-48     |
| 510 | Wagner, Sam                             | 20308      | 0207796 | W-4774    | 01-04-40     |
| 510 | Wagner, Sam                             | 20948      | 0207797 | W-4774    | 04-06-56     |
| 386 | Riley, Margaret H.                      | 13627      | 0207798 | W-755     | 22-06-55     |
| 386 | Riley, Margaret H.                      | 11193      | 0207800 | W-755     | 30-06-45     |
| 591 | Ritchey, Eugene                         | R-20306-RF | 0207810 | 88-CW-174 | 29-03-55     |
| 391 | Romero, Leo F.                          | 6257       | 0207825 | W-260-77  | 30-05-54     |
| 393 | Roskop, George                          | 013606F    | 0207837 | W-3785    | 15-05-50     |
| 553 | Ruhge, Margaret                         |            | 0207844 | W-2889    | 31-07-40     |
| 707 | Sakata Farms, a partnership             | 4271F      | 0207848 | W-5854    | 03-06-63     |
| 648 | Sakata Farms, Inc.                      | 1248       | 0207852 | W-602     | 5/31/1948    |
| 648 | Sakata Farms, Inc.                      | 1249       | 0207854 | W-602     | 31-05-54     |
| 358 | Palombo, Pete                           | 8356       | 0207904 | W-1685    | 20-06-31     |
| 673 | Sakaguchi, Katherine, Sakaguchi, Robert | 91         | 0207905 | W-2143    | 28-05-54     |
| 673 | Sakaguchi, Katherine, Sakaguchi, Robert | 92         | 0207906 | W-2143    | 25-03-55     |
| 673 | Sakaguchi, Katherine, Sakaguchi, Robert | 93         | 0207907 | W-2143    | 5/9/1956     |
| 709 | Sakata Land Company                     | 13741      | 0207908 | W-5854    | 01-06-40     |
| 708 | Sakata Farms, a partnership             | 13744      | 0207909 | W-5853    | 31-12-38     |
| 710 | Sakata Land Company                     | 12221F     | 0207911 | W-5854    | 20-04-64     |
| 710 | Sakata Land Company                     | 6818       | 0207912 | W-5854    | 30-05-35     |
| 404 | Sakata Farms, a partnership             | 5998       | 0207920 | W-5854    | 06-07-55     |
| 405 | Sakata Farms, a partnership             | 19986      | 0207924 | W-5854    | 01-06-43     |
| 707 | Sakata Farms, a partnership             | R318R      | 0207927 | W-6109    | 27-10-54     |
| 709 | Sakata Land Company                     | 13742      | 0207929 | W-5854    | 01-06-50     |

| #   | Name                                           | Permit       | WDID    | Case    | Approp. Date |
|-----|------------------------------------------------|--------------|---------|---------|--------------|
| 709 | Sakata Land Company                            | 1211         | 0207930 | W-5854  | 30-08-40     |
| 765 | Broomfield, City and County                    | 12192        | 0207938 | W-3772  | 30-07-54     |
| 354 | Oster, James L. Revocable Living Trust         | 949          | 0207939 | W-845   | 31-12-44     |
| 63  | Brannan Sand & Gravel Co.                      | 13842        | 0207941 | W-1204  | 31-12-38     |
| 63  | Brannan Sand & Gravel Co.                      | 13844        | 0207942 | W-1204  | 31-12-46     |
| 416 | Sarchet, William                               | 812          | 0207944 | W-523   | 31-05-55     |
| 416 | Sarchet, William                               | 811          | 0207948 | W-523   | 31-05-52     |
| 422 | Sasaki, Tom                                    | 1408         | 0207949 | W-666   | 15-04-37     |
| 420 | Sasaki, Joe                                    | 18769B       | 0207950 | W-666   | 19-06-50     |
| 753 | Sasaki Family Trust                            | 20959        | 0207951 | W-3583  | 30-04-35     |
| 419 | Sasaki, Joe                                    | 570          | 0207952 | W-666   | 31-12-46     |
| 752 | Yoshiko Sasaki, Amy Tokunaga, Sam Sasaki, Jr., | 11020        | 0207953 | W-3583  | 31-12-40     |
| 419 | Sasaki, Joe                                    | 571          | 0207954 | W-666   | 31-12-42     |
| 419 | Sasaki, Joe                                    | 9090F        | 0207955 | W-666   | 30-05-65     |
| 419 | Sasaki, Joe                                    | 572          | 0207956 | W-666   | 31-12-51     |
| 753 | Sasaki Family Trust                            | 3343F        | 0207957 | W-3583  | 10-03-62     |
| 713 | Schaefer, William L.                           | 11575        | 0207968 | W-636   | 31-12-37     |
| 423 | Schaefer, Elaine                               | 19802        | 0207969 | W-2259  | 25-07-34     |
| 254 | Kanzler, Donald                                | 15861        | 0207971 | W-226   | 31-12-30     |
| 426 | Schafer, Carl                                  | 209          | 0207976 | W-3971  | 20-06-30     |
| 426 | Schafer, Carl                                  | 1960         | 0207977 | W-2246  | 30-04-36     |
| 426 | Schafer, Carl                                  | 12043        | 0207978 | W-2246  | 01-05-53     |
| 426 | Schafer, Carl                                  | 13044        | 0207979 | W-2246  | 31-12-27     |
| 219 | Howard, Cecil                                  | 12017        | 0207984 | W-2334  | 30-08-36     |
| 645 | Schmidt, Kevin W.                              | 14499        | 0207989 | W-3760  | 5/31/1949    |
| 731 | Schmidt, Paul                                  | 1-15504-F    | 0207990 | W-1000  | 15-05-44     |
| 649 | Roy A. Schmidt Family Trust                    | 3587F        | 0207991 | W-1919  | 25-10-55     |
| 680 | Maxey, Jeffrey A.                              | 6324         | 0207993 | W-2713  | 21-04-48     |
| 431 | Schmidt, Edith                                 | 12013        | 0207995 | W-766   | 30-04-55     |
| 502 | Villano Brothers Farms                         | 12014        | 0207996 | W-767   | 03-11-64     |
| 645 | Schmidt, Kevin W.                              | 14498        | 0207999 | W-3760  | 30-06-57     |
| 650 | Roy A. Schmidt Family Trust                    | 8588         | 0208003 | W-1919  | 31-03-45     |
| 650 | Roy A. Schmidt Family Trust                    | 8589         | 0208006 | W-1919  | 31-03-53     |
| 177 | Green Valley Turf                              | 557          | 0208007 | W-707   | 03-05-55     |
| 681 | Schmier, Wilbert H.                            | 6718F        | 0208008 | W-2557  | 18-02-65     |
| 681 | Schmier, Wilbert H.                            | 15500F       | 0208009 | W-2557  | 21-07-55     |
| 440 | Schroder, Duane                                | 12743F       | 0208018 | W-4885  | 31-12-37     |
| 439 | Superior Turf Farms, Inc.                      | 20539        | 0208019 | W-4886  | 15-11-50     |
| 91  | Mistler, Candace L.                            | 11178        | 0208021 | W-6039  | 30-06-57     |
| 635 | City of Brighton                               | SCHWARTZ WEL | 0208023 | L NO. 1 | 31-12-32     |
| 87  | Cannon, Brown                                  | 3423F        | 0208024 | W-4967  | 24-05-62     |
| 711 | Sakata Land Company                            | 1-19491      | 0208029 | W-3846  | 31-05-11     |
| 711 | Sakata Land Company                            | 2-19491      | 0208031 | W-3846  | 30-04-13     |
| 699 | Star Promotions LLC, a Colorado limited        | 10194        | 0208034 | W-1536  | 30-04-57     |
| 87  | Cannon, Brown                                  | 15036        | 0208042 | W-4967  | 01-05-40     |
| 442 | Seader, Alvin                                  | RF522        | 0208044 | W-259   | 01-06-37     |

| #   | Name                                   | Permit    | WDID    | Case      | Approp. Date |
|-----|----------------------------------------|-----------|---------|-----------|--------------|
| 443 | Segal, Ethel                           | 11835     | 0208054 | W-3684    | 31-05-46     |
| 443 | Segal, Ethel                           | 11836     | 0208055 | W-3684    | 31-07-45     |
| 443 | Segal, Ethel                           | 11837     | 0208056 | W-3684    | 30-04-50     |
| 443 | Segal, Ethel                           | 11838     | 0208057 | W-3684    | 31-03-55     |
| 443 | Segal, Ethel                           | 2666F     | 0208058 | W-3684    | 31-12-38     |
| 444 | Seltzer Farms, Inc.                    | 20989     | 0208062 | W-579     | 28-01-63     |
| 445 | Shable, Donna                          | 14691     | 0208064 | W-2337    | 20-05-40     |
| 445 | Shable, Donna                          | 270       | 0208065 | W-1511    | 20-06-55     |
| 445 | Shable, Donna                          | 271       | 0208066 | W-1511    | 20-06-55     |
| 446 | Keller, Robert B                       | RF210     | 0208067 | W-2337    | 12-06-41     |
| 747 | Zelda H. Shaklee Living Trust          | 6795      | 0208073 | W-938     | 01-07-43     |
| 748 | C C Open A, LLC                        | 6796      | 0208074 | W-938     | 20-03-57     |
| 748 | C C Open A, LLC                        | 2470F     | 0208075 | W-938     | 01-07-60     |
| 747 | Zelda H. Shaklee Living Trust          | 03275F    | 0208076 | W-938     | 01-07-61     |
| 747 | Zelda H. Shaklee Living Trust          | 013659F   | 0208077 | W-938     | 31-08-64     |
| 568 | Sharp, Ernest J.                       | 14211     | 0208079 | W-1312    | 21-07-55     |
| 221 | Hoffman, John                          | 15360     | 0208080 | W-634     | 31-05-56     |
| 568 | Sharp, Ernest J.                       | 14212     | 0208081 | W-1312    | 31-03-49     |
| 700 | Sharp, William Jr. (Trust)             | 33312     | 0208082 | W-910     | 31-12-07     |
| 284 | Lewis, William M.                      |           | 0208090 | W-2861    | 15-08-44     |
| 450 | Sholdt, Bertha/Scholdt Sub Water Users | 13258     | 0208095 | W-1029    | 30-04-47     |
| 127 | Dreiling, Michael                      | 10744     | 0208132 | W-592     | 31-12-38     |
| 127 | Dreiling, Michael                      | ALTERNATE | 0208133 | W-7322    | 31-10-78     |
| 582 | Walker, Virginia M/Western Equip       | 8577      | 0208191 | W-1003    | 31-07-34     |
| 582 | Walker, Virginia M/Western Equip       | 8578      | 0208192 | W-1003    | 31-05-55     |
| 458 | Steinmetz, Sam                         | 11291     | 0208193 | W-181     | 31-12-49     |
| 115 | Dechant, Alvin                         | 1770      | 0208194 | W-1125    | 27-03-47     |
| 459 | Kawata, Wayne/Western Equip            | 788       | 0208198 | W-6449    | 30-06-53     |
| 686 | Olando Ltd. Liability Co.              | 10222     | 0208200 | W-3510    | 27-11-48     |
| 686 | Olando Ltd. Liability Co.              | 10223     | 0208201 | W-3510    | 28-04-56     |
| 464 | Hunt, David                            | RF371     | 0208219 | W-5324    | 31-05-50     |
| 464 | Hunt, David                            | 665       | 0208220 | W-5324    | 30-04-55     |
| 464 | Hunt, David                            | 666       | 0208221 | W-5324    | 30-04-55     |
| 31  | Streed, Rodger S.                      | 11167     | 0208224 | W-736     | 30-06-54     |
| 466 | Street, Edwin                          | 13894     | 0208225 | W-2929    | 31-03-51     |
| 467 | Stroh, Robert                          | 014477F   | 0208226 | W-1788    | 18-06-18     |
| 720 | Advanta USA, Inc.                      | 2834F     | 0208228 | W-872     | 05-03-42     |
| 720 | Advanta USA, Inc.                      | 2835F     | 0208229 | W-872     | 12-06-54     |
| 469 | Stromberger, Carl                      | 1345      | 0208230 | W-872     | 31-12-29     |
| 469 | Stromberger, Carl                      | 11700     | 0208231 | W-872     | 31-12-34     |
| 331 | Moser, John                            | 041426-F  | 0208249 | 92-CW-012 | 29-04-60     |
| 331 | Moser, John                            | 041425-F  | 0208250 | 92-CW-012 | 12-09-67     |
| 330 | Arndt, Mary                            | 5451      | 0208251 | W-1037    | 23-03-64     |
| 330 | Arndt, Mary                            | 3422F     | 0208252 | W-1037    | 03-05-62     |
| 470 | Schmidt, Paul                          | 8772      | 0208253 | W-861     | 30-04-15     |
| 473 | Tagawa Greenhouses, Inc.               | 195       | 0208278 | W-917     | 16-06-44     |
| #   | Name                            | Permit      | WDID    | Case      | Approp. Date |
|-----|---------------------------------|-------------|---------|-----------|--------------|
| 474 | Tagawa Greenhouses, Inc.        | 014531F     | 0208279 | W-917     | 23-01-70     |
| 476 | Taoka Brothers/Taoka Family     | 10039       | 0208295 | W-833     | 31-05-44     |
| 476 | Taoka Brothers/Taoka Family     | 10040       | 0208296 | W-833     | 31-07-55     |
| 476 | Taoka Brothers/Taoka Family     | 11709       | 0208297 | W-833     | 30-11-37     |
| 476 | Taoka Brothers/Taoka Family     | 11710       | 0208298 | W-833     | 31-07-55     |
| 390 | Romero, Joe A.                  | 8690        | 0208299 | W-3596    | 07-06-55     |
| 67  | Brighton Industrial North       | 11214       | 0208306 | W-826     | 31-05-40     |
| 596 | Villano Brothers Farms          | 11214       | 0208306 | W-826     | 31-05-40     |
| 67  | Brighton Industrial North       | 11215       | 0208307 | W-826     | 31-08-55     |
| 596 | Villano Brothers Farms          | 11215       | 0208307 | W-826     | 31-08-55     |
| 67  | Brighton Industrial North       | 11384       | 0208308 | W-826     | 31-12-40     |
| 596 | Villano Brothers Farms          | 11384       | 0208308 | W-826     | 31-12-40     |
| 482 | Thomason, Orville               | 11585       | 0208335 | W-1710    | 15-03-54     |
| 687 | Collier, Warren J.              | THOMPSON #1 | 0208337 | W-3816    | 15-04-52     |
| 81  | Villano Brothers Farms          | 6418F       | 0208366 | W-2784    | 22-05-44     |
| 81  | Villano Brothers Farms          | 20582       | 0208366 | W-2784    | 30-04-53     |
| 80  | Villano Brothers Farms          | R-962       | 0208369 | W-3982    | 20-09-19     |
| 39  | Berig, William                  | 8997F       | 0208387 | W-1660    | 25-08-58     |
| 39  | Berig, William                  | 43325-F     | 0208388 | 93-CW-108 | 02-02-65     |
| 489 | Two Bar C Dairy                 |             | 0208421 | W-4702    | 31-12-48     |
| 491 | Ulrich Farms, Inc.              |             | 0208424 | 85-CW-174 | 31-07-36     |
| 493 | Ulrich, Max                     | 8492        | 0208425 | W-3157    | 10-08-40     |
| 494 | Ulrich, Rodnick                 | 410         | 0208426 | W-1722    | 31-08-47     |
| 494 | Ulrich, Rodnick                 | R412RF      | 0208427 | W-1722    | 30-08-49     |
| 494 | Ulrich, Rodnick                 | 411         | 0208428 | W-1722    | 30-08-49     |
| 490 | Ulrich Farms                    | 133         | 0208430 | W-304     | 31-12-36     |
| 491 | Ulrich Farms, Inc.              |             | 0208430 | W-3356    |              |
| 744 | Ulrich, Rodnick E. and Elsie J. | 6555        | 0208431 | W-1723    | 31-12-45     |
| 490 | Ulrich Farms                    | 134         | 0208433 | W-304     | 31-07-55     |
| 491 | Ulrich Farms, Inc.              |             | 0208433 | W-3356    | 28-02-54     |
| 744 | Ulrich, Rodnick E. and Elsie J. | 6556        | 0208434 | W-1723    | 30-06-53     |
| 744 | Ulrich, Rodnick E. and Elsie J. | 6557        | 0208435 | W-1723    | 31-08-54     |
| 415 | Unruh, Aelard M.                | R6532       | 0208442 | W-4623    | 30-04-55     |
| 415 | Unruh, Aelard M.                | R6533       | 0208443 | W-4623    | 30-04-57     |
| 500 | Hungenberg, David L.            | 12721       | 0208449 | W-963     | 31-05-07     |
| 505 | VonFeldt, Daniel L.             | 829         | 0208453 | W-6132    | 31-07-54     |
| 505 | VonFeldt, Daniel L.             | 830         | 0208456 | W-6132    | 30-09-56     |
| 669 | Wittemyer, Nancy J., as Trustee | 832         | 0208457 | W-4025    | 15-08-56     |
| 669 | Wittemyer, Nancy J., as Trustee | 831         | 0208460 | W-4025    | 15-10-54     |
| 666 | Katharin Vincent                | 833         | 0208461 | W-4025    | 10-08-56     |
| 36  | Berger, Jack Jr.                | 5739-F      | 0208470 | W-569     | 20-06-64     |
| 272 | Lauridson, William              | 2372F       | 0208473 | W-2384    | 04-12-59     |
| 691 | The Bernard Wagner Trust        | 6905        | 0208474 | W-717     | 31-08-34     |
| 272 | Lauridson, William              | 2074F       | 0208477 | W-2384    | 31-01-59     |
| 691 | The Bernard Wagner Trust        | 6906        | 0208478 | W-717     | 31-08-39     |
| 512 | Walker, Clifford                |             | 0208480 | W-1224    | 30-06-23     |

| #   | Name                                 | Permit         | WDID    | Case      | Approp. Date |
|-----|--------------------------------------|----------------|---------|-----------|--------------|
| 512 | Walker, Clifford                     | 14364          | 0208481 | W-1224    | 04-06-57     |
| 295 | Market Place - 85                    | 1250           | 0208484 | W-1047    | 22-09-34     |
| 515 | Decker, Beth K.                      | 12948          | 0208486 | W-297     | 31-12-44     |
| 738 | Moser, John R.                       | 14101R         | 0208487 | W-3801    | 15-04-35     |
| 738 | Moser, John R.                       | 6137F          | 0208488 | W-3801    | 01-09-64     |
| 356 | Petrocco, David                      |                | 0208492 | W-4082    | 20-06-44     |
| 518 | Watada Brothers                      | 1657           | 0208500 | W-572     | 22-09-45     |
| 517 | Villano Brothers Farms               | 19490-2        | 0208501 | W-572     | 31-05-20     |
| 517 | Villano Brothers Farms               | 7280           | 0208502 | W-572     | 30-06-55     |
| 521 | Weber, Wayne                         | 13042          | 0208505 | W-6449    | 01-04-44     |
| 449 | Shelton Land and Cattle, LTD         | 015776F        | 0208528 | W-6177    | 20-07-55     |
| 523 | Wellington Reservoir Company         | Wellington Res | 0208542 |           |              |
| 525 | Wenzel, Samuel/WEN37 Holdings        | 14307          | 0208544 | W-2229    | 21-06-37     |
| 600 | Wenzel, William                      | 10451          | 0208545 | W-998     | 31-05-55     |
| 730 | Mathis, Betty H.                     | 10451          | 0208545 | W-998     | 5/31/1955    |
| 525 | Wenzel, Samuel/WEN37 Holdings        | 14308          | 0208546 | W-2229    | 10-02-45     |
| 528 | Bledsoe, Thomas                      | 1450           | 0208547 | W-3706    | 01-07-54     |
| 528 | Bledsoe, Thomas                      | 9631F          | 0208548 | W-3706    | 06-06-65     |
| 531 | Wethington, Elizabeth                | 019458RF       | 0208560 | W-4637    | 04-03-55     |
| 533 | Consolidated Nursery                 | 7257           | 0208567 | W-1237    | 28-06-57     |
| 534 | Southwick, Ruth                      | 20134          | 0208568 | W-526     | 31-05-11     |
| 454 | Dechant Farms Partnership            | 20148          | 0208569 | W-671     | 01-04-54     |
| 454 | Dechant Farms Partnership            | 2328F          | 0208570 | W-671     | 28-10-59     |
| 363 | Parker, John B/Sanchez               | 11653          | 0208573 | W-5661    | 27-04-46     |
| 387 | Rock, John                           | 12741F         | 0208575 | W-5661    | 21-06-54     |
| 388 | Rock, Pete                           | 12741F         | 0208575 | W-5661    | 21-06-54     |
| 387 | Rock, John                           | 5              | 0208576 | W-5661    | 20-06-35     |
| 388 | Rock, Pete                           | 5              | 0208576 | W-5661    | 20-06-35     |
| 535 | Wilch, Douglas                       | 6825F          | 0208583 | W-975     | 20-02-65     |
| 740 | Lane, Elton Keith/Diehl              | WILTFANG #1    | 0208587 | W-1561    | 01-03-48     |
| 541 | Wuertz, Katherine                    | 10508          | 0208613 | W-576     | 01-06-54     |
| 539 | Wuertz, Joe                          | 10502          | 0208614 | W-575     | 30-04-41     |
| 539 | Wuertz, Joe                          | 10503          | 0208615 | W-575     | 31-05-38     |
| 541 | Wuertz, Katherine                    | 10501          | 0208616 | W-576     | 30-04-41     |
| 539 | Wuertz, Joe                          | 10504          | 0208617 | W-575     | 5/31/1955    |
| 540 | Wuertz, Katherine                    | 9591F          | 0208618 | W-576     | 24-05-65     |
| 539 | Wuertz, Joe                          | 10505          | 0208619 | W-575     | 30-04-54     |
| 539 | Wuertz, Joe                          | 10506          | 0208620 | W-575     | 30-04-34     |
| 539 | Wuertz, Joe                          | 10507          | 0208621 | W-575     | 31-05-54     |
| 539 | Wuertz, Joe                          | 10509          | 0208622 | W-575     | 31-08-54     |
| 539 | Wuertz, Joe                          | 10510          | 0208623 | W-575     | 30-04-34     |
| 76  | Buckley Acres Homeowners Association | 2-11411-F      | 0208625 | W-8255-76 | 05-03-23     |
| 143 | Ewing, Lloyd                         | 11373          | 0208626 | W-2682    | 31-12-31     |
| 143 | Ewing, Lloyd                         | 4819F          | 0208627 | W-2682    | 31-12-37     |
| 143 | Ewing, Lloyd                         | 11375          | 0208628 | W-2682    | 27-11-54     |
| 543 | Yokooji, Frank                       | RF1151         | 0208638 | W-4257    | 30-05-28     |

| #   | Name                                        | Permit     | WDID    | Case         | Approp. Date |
|-----|---------------------------------------------|------------|---------|--------------|--------------|
| 543 | Yokooji, Frank                              | P02820F    | 0208639 | W-4257       | 30-05-35     |
| 545 | Ziemer, Eugene                              | 6710F      | 0208649 | W-885        | 31-12-64     |
| 546 | Magnuson, Larry                             | 6170       | 0208655 | W-288        | 01-01-40     |
| 627 | South Adams County Water & Sanitation Dist. | 11786      | 0208669 | W-1899       | 30-06-45     |
| 725 | Victor, Bruce M.                            | 035173F    | 0208670 | W-4668       | 31-03-52     |
| 2   | Adams County Board of Commissioners         | 49856F     | 0208731 | 85CW082      | 17-10-74     |
| 272 | Lauridson, William                          | 17884      | 0208829 | W-2384       | 31-12-47     |
| 691 | The Bernard Wagner Trust                    | 6907       | 0208830 | W-717        | 31-08-55     |
| 705 | English Farms, Inc.                         | 8865F      | 0208837 | W-4585       | 04-03-58     |
| 392 | Root Farms, LLC                             | 41963-F    | 0209242 | 92-CW-127    | 16-11-66     |
| 571 | Mt. Calvary Lutheran Church                 |            | 0209297 | 91-CW-013    | 01-01-91     |
| 741 | Edmundson Land, LLC                         | 6285       | 0209991 | 80-CW-339    | 01-06-46     |
| 355 | Oster, Richard                              | 226        | 0306736 | W-1799       | 24-05-55     |
| 224 | Thomson, Paul D.                            | JORDAN #1  | 0405006 | W-8140-76    | 02-07-55     |
| 73  | Binder, Floyd et. al.                       | CROWLEY #1 | 0405145 | W-1920       | 31-12-38     |
| 252 | Kammerzell, Vern                            | R12065     | 0405264 | W-1009       | 31-12-37     |
| 714 | Nelson, Paul A.                             | 12891      | 0405383 | W-1407       | 30-06-37     |
| 714 | Nelson, Paul A.                             | 12892      | 0405384 | W-1407       | 13-07-46     |
| 445 | Shable, Donna                               | 272        | 0405467 | W-1511       | 20-06-55     |
| 251 | Kammerzell, Doug et. al.                    | 14692      | 0405468 | W-2337       | 20-05-40     |
| 211 | Hepp, Donald R.                             | 10745-F    | 0505255 | W-4958       | 05-05-66     |
| 128 | Duell, Lucille                              | 12972      | NA      | W-196        | 29-07-55     |
| 566 | Adams County Board of Comm.                 |            | NA      |              |              |
| 589 | J Bar B, Inc.                               |            | NA      |              |              |
| 638 | Thaine J. Michie                            | 5519F      | NA      | W-681        | 30-04-64     |
| 667 | D. Schlup LTD.                              | 3783-F     | NA      | W-6076       | 02-10-62     |
| 667 | D. Schlup LTD.                              | 047467F    | NA      | APD TO 3783F |              |
| 690 | Clark, C.H.                                 | 12429      | NA      | W-265        | 31-12-47     |
| 698 | Bakes, Robert A.                            | 019889-F   | NA      | W-554        | 22-06-20     |

## 7.9 Development of Augmentation Plan to Well Data File (\*plw)

The following describes the process of creating a PLW from the WER file and HydroBase Associated Structure List. The PLW file requires three fields: Aug Plan ID, Well Right ID, and Well Structure Model ID. Additionally, the Well WDID, Well Name, and Well Right Administration number have been included for informational purpuses. In order to generate the PLW file, the WER file and Structure List were processed within a relational database with according to the following methods.

1) The table named StructureAssocWDID within the HydroBase database (Aug 16, 2011 version) contains a list of Augmentation (Aug) Plans associated with wells (see below for TSTool commands). In this table, the field called WDID identifies the wells, and the field WDID\_Assoc

lists the associated Aug Plan ID. From this table, a list of wells and associated Aug Plans was extracted for all Water Districts in the South Platte River Basin.

# ReadTableFromDataStore(DataStore="HydroBase-HBGuest",DataStoreTable="vw\_HBGuest\_StructureAssocWDID", OrderBy="div,WDID",TableID="HBStructureAssoc\_20160407")

#

WriteTableToDelimitedFile(TableID="HBStructureAssoc\_20160407",OutputFile="HBStructureAssoc\_20160407.csv")

2) Certain individual Aug Plans were grouped (aggregated) together according to the recommendations of Task 7.2 – Well Use and Well Augmentation Plans. As prescribed in the Task 7.2 documentation, individual plans were aggregated "to represent the localized geographic extent of well depletions and augmentation due to the integrated nature of operations." The table of explicitly modeled Aug Plans below shows which Plans were aggregated.

3) All unique combinations of Well Right ID and Model ID in the WER were maintained as unique records in the PLW. Duplicate combinations of Well Right ID and Model ID were aggregated and assigned a single PLW Aug Plan ID. The Aug Plan ID for each unique WER WDID-Model ID combination was defined as follows:

a) The following Aug Plans were modeled explicitly or in aggregate; the Aggregated Aug Plan ID should be used in the PLW file association.

| Original<br>Aug Plan<br>ID | Aggregated<br>Aug Plan ID | Original assoc_str_name      | Aggregated assoc_str_name |
|----------------------------|---------------------------|------------------------------|---------------------------|
| 0102456                    | 0102456                   | FT MORGAN CITY AUG           | FT MORGAN CITY AUG        |
| 0102513                    | 0102513                   | ROTHE AUG                    | ROTHE AUG                 |
| 0102518                    | 0102518                   | PIONEER AUG PLAN             | PIONEER AUG PLAN          |
| 0102522                    | 0102522                   | RIVERSIDE AUG                | RIVERSIDE AUG             |
| 0102525                    | 0102522                   | RIVERSIDE AUG-HEADLEY        | RIVERSIDE AUG             |
| 0102536                    | 0102522                   | RIVERSIDE AUG-GOODRICH FARMS | RIVERSIDE AUG             |
| 0102581                    | 0102522                   | RIVERSIDE AUG-EQUUS          | RIVERSIDE AUG             |
| 0102725                    | 0102522                   | SUBLETTE AUG                 | RIVERSIDE AUG             |
| 0102528                    | 0102528                   | FT MORGAN CNL AUG PLAN       | FT MORGAN CNL AUG PLAN    |
| 0102574                    | 0102528                   | FT MORGAN FARMS AUG          | FT MORGAN CNL AUG PLAN    |
| 0102529                    | 0102529                   | UPPER PLATTE & BEAVER AUG    | UPPER PLATTE & BEAVER AUG |
| 0102535                    | 0102535                   | LOWER PLATTE BEAVER AUG      | LOWER PLATTE BEAVER AUG   |
| 0102662                    | 0102662                   | BRUSH AUG                    | BRUSH AUG                 |
| 9903334*                   | 0103334                   | CENTRAL GMS AUG              | CENTRAL GMS AUG           |

| Original<br>Aug Plan<br>ID | Aggregated<br>Aug Plan ID | Original assoc_str_name      | Aggregated assoc_str_name  |
|----------------------------|---------------------------|------------------------------|----------------------------|
| 0103339                    | 0103339                   | BIJOU AUG PLAN               | BIJOU AUG PLAN             |
| 9903394*                   | 0103394                   | CENTRAL WAS AUG              | CENTRAL WAS AUG            |
| 6402517                    | 6402517                   | SEDGWICK CTY WL USERS AUG    | SEDGWICK CTY WL USERS AUG  |
| 6402518                    | 6402518                   | HARMONY DITCH CO AUG         | HARMONY DITCH CO AUG       |
| 6402519                    | 6402519                   | DINSDALE AUG                 | DINSDALE AUG               |
| 6402525                    | 6402525                   | CONDON AUG                   | CONDON AUG                 |
| 6402526                    | 6402526                   | STERLING AUG                 | STERLING AUG               |
| 6402536                    | 6402536                   | LOWER LOGAN WELL USERS AUG   | LOWER LOGAN WELL USERS AUG |
| 6402537                    | 6402539                   | SMART LAND/LIVESTOCK AUG     | LOGAN WELL USERS AUG       |
| 6402539                    | 6402539                   | LOGAN WELL USERS AUG         | LOGAN WELL USERS AUG       |
| 6402546                    | 6402539                   | PAWNEE WELL USERS AUG        | LOGAN WELL USERS AUG       |
| 6402547                    | 6402539                   | RIVERSIDE PIT M-1976-056 AUG | LOGAN WELL USERS AUG       |
| 6402548                    | 6402539                   | VANDEMOER AUG                | LOGAN WELL USERS AUG       |
| 6402554                    | 6402539                   | ACCOMASSO BROS AUG           | LOGAN WELL USERS AUG       |
| 6402540                    | 6402540                   | LOWLINE DITCH CO AUG         | LOWLINE DITCH CO AUG       |
| 6402542                    | 6402542                   | LSPWCD AUG                   | LSPWCD AUG                 |
| 6403392                    | 6403392                   | NORTH STERLING AUG           | NORTH STERLING AUG         |

\* WAS and GMS plans were divided up into reaches A-F, see b) below and the table at the end of the memo

b) Well Right IDs associated with WAS (9903394) and GMS (9903334) Aug Plans are further divided up into augmentation plans represented as reaches A-F based on Central Colorado WCD's recent accounting database. To assign wells to the impact reaches, the HydoBase Associated Structure List was queried for all structures associate with a Central Augmentation Plan. These plans are stored under ID \*03394 (WAS) or \*03334 (GMS). The irrigation service area for each of the 50 structures associate with a Central Plan was compared to the impact reaches on a map. The closest impact reach was selected and the wells associated with the structure were assigned the same impact reach. This assignment was made in "Central\_ImpactReach\_Assignment.xlsx". A description of the impact reaches listed from

upstream to downstream is below:

- Reach F = Fulton (0200808) to Jay Thomas (0200826)
- Reach C = Jay Thomas (0200826) to Lower Latham (0200834)
- Reach B = Lower Latham (0200834) to Riverside (0100503)
- Reach A = Riverside (0100503) to Upper Platte Beaver Canal (0100515)

- Reach D = Beebe Draw
- Reach E = Boxelder Creek

c) The following WER Model IDs were identified as being within the designated basins in the SPDSS Study Area. These were aggregated separately from other ground water-only aggregates, and assigned a PLW Plan ID as indicated in the following table.

| Model ID                                      | Designated Basin     | PLW Plan ID |
|-----------------------------------------------|----------------------|-------------|
| 01_AWP038                                     | Upper Crow Creek     | Upper_Crow  |
| 01_AWP001                                     | Camp Creek           | Camp_Creek  |
| 01_AWP022, 023, 024, 025                      | Lost Creek           | Lost_Creek  |
| 01_AWP008, 009, 010, 011, 012, 013, 014, 015, | Upper or Lower Kiowa | Kiowa_Bijou |
| 016, 017, 018, 019, 020, 021, 039, 040        | Bijou                |             |

d) Augmentation or recharge wells are associated with an augmentation or recharge well structure in the well rights file based on the AugRch\_Wells.csv file. Augmentation wells are assigned to an augmentation plan ID + "\_AuW" suffix structure ID; recharge wells are assigned to an augmentation plan ID + "\_ReW" suffix structure ID. These augmentation and recharge wells were assigned to their respective augmentation plan based on their structure ID.

e) Several wells are associated with Coors operations and are set specifically in the PLW. The well rights from the following wells need to be associated with the "0703390" augmentation plan.

| Well Right ID | Model ID  | PLW Plan ID |
|---------------|-----------|-------------|
| 0705014.1     | 07_CoorsA | 0703390     |
| 0705026.1     | 07_CoorsA | 0703390     |
| 0705028.1     | 07_CoorsA | 0703390     |
| 0705188.1     | 07_CoorsA | 0703390     |
| 0705189.1     | 07_CoorsA | 0703390     |
| 0705190.1     | 07_CoorsA | 0703390     |
| 0705191.1     | 07_CoorsA | 0703390     |
| 0705192.1     | 07_CoorsA | 0703390     |
| 0705193.1     | 07_CoorsA | 0703390     |
| 0705194.1     | 07_CoorsA | 0703390     |
| 0705195.1     | 07_CoorsA | 0703390     |
| 0705196.1     | 07_CoorsA | 0703390     |
| 0705200.1     | 07_CoorsA | 0703390     |
| 0705201.1     | 07_CoorsA | 0703390     |
| 0705202.1     | 07_CoorsA | 0703390     |
| 0705213.1     | 07_CoorsA | 0703390     |

f) One well ID is modeled that is associated with the Aurora Augmentation Plan; associate the well rights for Aurora Cherry Creek Well (0805065.1 and 0805065.2) with the Aurora Augmentation Plan (0802593) PLW Plan ID.

g) Several wells are associated with South Adams County WSD operations and are set specifically in the PLW. The well rights from wells associated with Model IDs "02\_SACWSD\_I" and "02\_SACWSD\_I" need to be associated with the "9902502" augmentation plan.

h) Several wells are associated with City of Brighton operations and are set specifically in the PLW. The well rights from wells associated with Model IDs "02\_Bright\_I" and "02\_Bright\_O" need to be associated with the "9902541" augmentation plan.

h1) Well rights associated with 01\_AMP001\_I/\_O should be tied all to 0102456 (FT\_MORGAN\_CITY\_AUG)

h2) Well rights associated with 64\_AMP001\_I/\_O should be tied all to 6403392 (NORTH\_AUG\_PLAN)

i) Wells in the HydroBase with a Water Supply equal to "GRNDWTR-1953 ADJ" were recognized as Coffin wells, decreed non-tributary in Civil Action 11217. The designation is included in HydroBase version 20150304, but not in version 20160407. The list of wells Coffin wells was collected from the 20150304 HydroBase version These wells were assigned a PLW Plan ID of "Coffin\_Well".

j) Decree language (96CW1034) indicates wintertime depletions from PSCo Pawnee Well Field (0100711) are covered by the North Sterling Augmentation Plan (6403392). There are no well rights associated with the well field in HydroBase, therefore the wells were modeled with a senior well right. As such, the depletions will be considered "in-priority" by the model and not accounted for under this plan. Future modeling efforts should investigate the appropriate well right and augmentation plan agreement for these depletions.

k) Where none of the prior criteria applied to an Aug Plan, the following "buckets" were used to group remaining wells into a PLW Plan ID. The asterisk (\*) below is a wildcard, indicating that any characters could follow the specific ones listed.

| Model_ID Criteria                 | PLW Plan ID |
|-----------------------------------|-------------|
| Starting with "010*" or "01_ADP*" | AggWell_01  |
| Starting with "020*" or "01_ADP*" | AggWell_02  |
| Starting with "030*" or "01_ADP*" | AggWell_03  |
| Starting with "040*" or "01_ADP*" | AggWell_04  |
| Starting with "050*" or "01_ADP*" | AggWell_05  |
| Starting with "060*" or "01_ADP*" | AggWell_06  |
| Starting with "070*" or "01_ADP*" | AggWell_07  |
| Starting with "080*" or "01_ADP*" | AggWell_08  |

| Starting with "640*" or "64_ADP*" | AggWell_64 |
|-----------------------------------|------------|
| Starting with "01_AWP*"           | GwOnly_01  |
| Starting with "02_AWP*"           | GwOnly_02  |
| Starting with "03_AWP*"           | GwOnly_03  |
| Starting with "04_AWP*"           | GwOnly_04  |
| Starting with "05_AWP*"           | GwOnly_05  |
| Starting with "06_AWP*"           | GwOnly_06  |
| Starting with "07_AWP*"           | GwOnly_07  |
| Starting with "07_AWP*"           | GwOnly_08  |
| Starting with "64_AWP*"           | GwOnly_64  |

4) Note that \*AUP\* structures represent unincorporated municipal demands. Any ground water use should be associated with exempt wells, and therefore, should not be included in any augmentation plans. The final PLW should be checked to make sure that no \*AUP\* structures are represented.

5) Note that StateMod will only assign a well to one augmentation plan. Therefore, the different sets of well augmentation classes are ordered as follows (the most important being at the bottom):

- Catch-All (AggWell\_\* or GwOnly\_\*)
- Central Augmentation Plans
- Recharge and Augmentation wells
- Individual or Aggregated Plans
- Designated Basins
- Municipal Plans
- Coffin Wells
- Coors

6) All of the above methods were implemented within an MS Access database, yielding a dataset with the following fields: AugPlan\_ID, WellRight\_ID, WellWDID, Model\_ID, Well Name, Well Right Admin Number. This dataset was then exported into a text editor and saved as the PLW.

#### 7.10 Workshop Materials

The following materials were developed by the South Platte Modeling Integrator and presented in a series of workshops to the modeling contractors during sub-basin model development. They provide information on CDSS standard modeling procedures used during model development and calibration.

## SPDSS Surface Water Model – Workshop 1 August 29, 2013

#### Agenda

- 1. Model Team Update and Questions/Concerns (15 minutes)
- 2. Data Centered Approach and Documenting Commands (45 minutes)
- 3. Baseflow Parameter Development (1 hour)
- 4. Interaction between Basins (45 minutes)
- 5. Diversion Coding and Off-channel Demands (1 hour)



## **Data Centered Approach and Documenting Commands**

Information flows from HydroBase to StateCU and StateMod through the Data Management Interfaces (DMIs).

**StateDMI** – generally extracts physical properties associated with structures and stations, including water rights information.

**TSTool** – generally extracts time-series data associated with structures and stations, including streamflow measurements, acreage, and diversion records.

**StateMOD GUI** – only use for "viewing". DO NOT use for editing or creating commands.

Data-centered = Command Driven. Command files are developed to create and format the input files required for StateCU and StateMod.

- Input files can be easily revised or updated to include additional periods
- Input files can be reproduced
- Input files are transparent and self-documenting because each command use to create an input file is stamped in the header

\* Data Centered Doesn't Always Mean Data Comes from HydroBase – It Does Mean the Process is Well Documented and Reproducible

Data-centered command files use the following general approach to create each StateCU and StateMod input file:

- 1. "Read" information from HydroBase or another external database source
- 2. "Set" missing information or overwrite incorrect data
- 3. "Fill" missing time-series data using monthly averages, regression relationships, etc.
- 4. "Write" information to create the input file

#### **Modeling considerations:**

- Do you want to include "set data" in your filling process?
- General filling methods, past investigations:
  - Filling missing diversion records based on regression was investigated for the CRDSS and RGDSS efforts and determined to be "not appropriate". Instead, a standard wet, dry, and average year monthly average approach has been adopted.
  - Filling missing reservoir contents is problematic best bet is to keep searching for available records form operators/commissioners. Take advantage of other available data (i.e. diversion records with reservoir as a "from" location). Can interpolate between data points, but use caution with the "number of months" to interpolate. Don't interpolate across general storing versus releasing seasons.

- Filling missing stream flow data fill regression with other gages generally works well. (linear or log, monthly or annual)
- If conflicting data, which is best to use?
  - If administrative data, need really good reason <u>not</u> to rely on HydroBase
  - It is our responsibility as modelers to review data extracted from HydroBase and, if we believe there is an issue, bring it to the Division Engineer's attention for further review and correction (Question for Division Office – would you like one contact on the modeling team for questions/corrections regarding data? Do you expect field-book verification from us?)
  - If suggested corrections sent to Division for review, use "set" command for now, with clear documentation that should be fixed in next HydroBase release. If command option allows, turn on "If found" Warn option so when the command is run in the future, it flags the user to review.
  - If operational data, or data based on "after-diversion use", review carefully and make modeling decision on which data to use.
     Remember that water administration is based on water rights and the ability to put to beneficial use. For example, off-channel EOM content data or off-channel reservoir releases directly to irrigation may be recorded by operators and provided to administrators.
- If data is provided from a source other than HydroBase, need to clearly document in header of \*.stm (if time-series data) or in DMI commands, including source entity, person providing, and phone number so additional data can be obtained in the future.
- Know where you data is measured! (more later off-channel discussions)

#### **Documenting Command Files:**

- Adopt the "Step Approach"
- Too much documentation is better than not enough documentation

#### Example NP2008.ddr command file

# ddr.commands.StateDMI

# StateDMI command file to create the direct diversion rights file for the North Park model

#

# Step 1 - read structures from preliminary direct diversion station file

#

```
ReadDiversionStationsFromStateMod(InputFile="..\StateMod\NP2008.dds")
```

#

# Step 2 - Read aggregate, diversion system and multi-structure system assignments. Note that

- # want to combine water rights for aggs and diversion systems, but
- # water rights are assigned to primary and secondary components of multi-structures

#

```
SetDiversionAggregateFromList(...
```

```
SetDiversionSystemFromList(...
```

#

# Step 3 - read diversion rights from HydroBase

#

```
ReadDiversionRightsFromHydroBase(ID="*",OnOffDefault=1)
```

#

# Step 4 - set water rights for structure IDs different from or not included in HydroBase,

# set water rights for alternate points, etc

#

# Ute Pass Ditch water right is for 2 tribs

# 4700929 is primary node on Sand Creek (27.98 CFS FROM SAND CK)

# 4700929\_C is secondary node on St. Francis Creek (14.43 CFS FROM ST FRANCES CK)

SetDiversionRight(ID="4700929.01"...

SetDiversionRight(ID="4700929\_C.01"...

#

```
# 4700984 - Mace Bull Pasture D - has irrigated acreage and recent diversions,
# no water rights in HB, set junior water right and capacity
#
SetDiversionRight(ID="4700984.01"...
#
# 4700893 C - Secondary Squibob carrier node to take storage diversions to Meadow Creek Res,
# create a water right just junior to 4700893 right
SetDiversionRight(ID="4700893 C.01"...
#
# Damfino DS (583 D) includes Damfino D (583), Koping D (712) and Seymour D (870).
# Damfino lands above the Seymour D headgate are served by 8/25th of Damfino water rights
# The remaining lands are served by Koping, Seymour and the remaining Damfino rights.
# Assign partial Damfino rights to 583 and remaining DS water rights to 583 D
SetDiversionRight(ID="4700583.01"...
SetDiversionRight(ID="4700583.02"...
SetDiversionRight(ID="4700583.03"...
#
SetDiversionRight(ID="4700583 D.01"...
SetDiversionRight(ID="4700583 D.02"...
SetDiversionRight(ID="4700583 D.03"..
#
# The following commands set alt point or exchange water rights
# StateDMI only pulls direct flow rights!
SetDiversionRight(ID="4700542.02"...
SetDiversionRight(ID="4700558.02"...
SetDiversionRight(ID="4700560.02"...
SetDiversionRight(ID="4700678.02"...
SetDiversionRight(ID="4701199.01"...
#
```

# The following set the water rights for the primary structure in Multi-Systems # StateDMI cannot pull water rights if ID does not match WDID in HydroBase!

```
SetDiversionRight(ID="4700528_M.01"...
SetDiversionRight(ID="4700530_M.01"...
SetDiversionRight(ID="4700530_M.02"...
SetDiversionRight(ID="4700559_M.01"...
SetDiversionRight(ID="4700593_M.01"...
SetDiversionRight(ID="4700595_M.03"...
SetDiversionRight(ID="4700996_M.01"...
```

```
#
```

# Cochrane D (1024) can not be called out by Eureka D (614) b/c they are owned by the same rancher (per rancher comments)# Set first Cochrane D right one senior to Eureka D right

SetDiversionRight(ID="4701024\_M.01"...

SetDiversionRight(ID="4701024\_M.02"...

#### #

# Set Free River Rights

SetDiversionRight(ID="4700501.99"...

SetDiversionRight(ID="4700504\_D.99"...

SetDiversionRight(ID="4700506.99"...

SetDiversionRight(ID="4700508.99"...

#### #

#### # Step 5 - create direct diverison rights file

#

WriteDiversionRightsToStateMod(OutputFile=...

#### #> FRICO-Standley.stm

#### #> These data are from FRICO hard copy records, provided by City of Thornton (Greg Johnson)

#>

| #> Yr  | ID          | Jan       | Feb     | Mar   | Apr   | May   | Jun   | Jul   | Aug  | Sep  | Oct  | Nov  | Dec  |
|--------|-------------|-----------|---------|-------|-------|-------|-------|-------|------|------|------|------|------|
| Total  |             |           |         |       |       |       |       |       |      |      |      |      |      |
| #>-e-] | beb         | eb-       | eb-     | eb-   | eb-   | eb-   | eb-   | eb-   | eb-  | eb-  | eb-  | eb-  | eb   |
| е      |             |           |         |       |       |       |       |       |      |      |      |      |      |
| 1      | /1950 -     | 12/1965 A | CFT CYR | _     |       |       |       |       |      |      |      |      |      |
| 1950   | FRICO-Stand | 6830      | 9593    | 10870 | 11014 | 10841 | 9072  | 6430  | 2864 | 1289 | 1128 | 1487 | -999 |
| 1951 1 | FRICO-Stand | -999      | -999    | -999  | -999  | -999  | -999  | -999  | -999 | -999 | -999 | -999 | -999 |
| 1952   | FRICO-Stand | -999      | -999    | -999  | -999  | -999  | -999  | -999  | -999 | -999 | -999 | -999 | -999 |
| 1953   | FRICO-Stand | 7950      | 9825    | 11100 | 12740 | 12804 | 7490  | 4230  | 1714 | 0    | 0    | 357  | -999 |
| 1954   | FRICO-Stand | -999      | -999    | -999  | -999  | -999  | -999  | -999  | -999 | -999 | -999 | -999 | -999 |
| 1955   | FRICO-Stand | -999      | -999    | -999  | -999  | -999  | -999  | -999  | -999 | -999 | -999 | -999 | -999 |
| 1956   | FRICO-Stand | -999      | -999    | -999  | -999  | -999  | -999  | -999  | -999 | -999 | -999 | -999 | -999 |
| 1957 1 | FRICO-Stand | -999      | -999    | -999  | -999  | -999  | -999  | -999  | -999 | -999 | -999 | -999 | -999 |
| 1958   | FRICO-Stand | 12770     | 15845   | 16360 | 16560 | 17487 | 16101 | 10425 | 4797 | 2045 | -999 | -999 | -999 |
| 1959   | FRICO-Stand | -999      | -999    | -999  | -999  | -999  | -999  | -999  | -999 | -999 | -999 | -999 | -999 |
| 1960 1 | FRICO-Stand | -999      | -999    | -999  | -999  | -999  | -999  | -999  | -999 | -999 | -999 | -999 | -999 |
| 1961 1 | FRICO-Stand | -999      | -999    | -999  | -999  | -999  | -999  | -999  | -999 | -999 | -999 | -999 | -999 |
| 1962 1 | FRICO-Stand | 13123     | 14246   | 15141 | 17116 | 13464 | 16633 | 12816 | 5308 | 2411 | 2332 | 2576 | 3110 |
| 1963 1 | FRICO-Stand | 5091      | 7331    | 9282  | 9296  | 6420  | 7874  | 3870  | 2146 | 638  | -999 | -999 | -999 |
| 1964   | FRICO-Stand | -999      | -999    | -999  | -999  | -999  | -999  | -999  | -999 | -999 | -999 | -999 | -999 |
| 1965 i | FRICO-Stand | -999      | -999    | -999  | 9504  | 9451  | 16545 | 12643 | 6863 | 6727 | -999 | -999 | -999 |

# mim 06/17/2009 # File name - <Julesburg.commands.TSTool> # Output file name - <Julesburg.stm> includes 6400511 DDH (total river diversions), 6400511\_IRR (total irrigation supply - direct plus on-channel reservoir releases), # 6400511 DRA (ditch loss from total river diversions) # Modeling Information: # a) Harmony Ditch Diversion System is a diversion system that serves irrigated acreage and conveys water rights from Julesburg Reservoir (6403906), Harmony Ditch No. 1 (6400511), Harmony Ditch No. 2 (6400515), Harmony Ditch No. 3 # (6400510) Harmony Ditch No. 3 (6400510) is not included here because there are no diversion records in HB # b) Julesburg Reservoir is a key reservoir # WDID for the key reservoir and associated filler ditch is as follows: # RSVR ID RESERVOIR FILLER DITCH FILLER DITCH WDID 6403906 Julesburg Reservoir # Harmony No. 1 Ditch 6400511 # c) The measurement point for Harmony No. 1 Ditch is at the river headqate. # d) Conveyance losses included herein represent losses from the headgate to the reservoir. StateCU calculates additional losses from the reservoir to irrigated lands. # # This commands file: # ~ Calculates diversions to storage and releases from off-channel Riverside Reservoir System based on EOM contents and evaporation losses # ~ Develops total headgate diversions (6400511\_DDH) based on: # Calculated diversions to storage (based on EOM contents) + DivTotal at Harmony No. 1 for 1950 - 1973 and 1979 -# # 1988 # DivTotal at Reservoir (6403906) + DivTotal at Harmony No. 1 for 1974 to 1978 DivTotal for Harmony No. 1 for 1988 to present and then adds Harmony No. 2 Ditch irrigation diversions to each of these ~ Calculates conveyance losses for input to the drain file (WDID 6400511\_DRA) {=negative of (ddh - ditch loss)} # # ~ Calculates the irrigation diversion and any recharge water (WDID 6400511 IRR) associated with the off-channel reservoir system # # {IRR = DivTotal - DivtoStorage + Reservoir Release - Conveyance Losses} # Values that are copied to "ColX" variables are done so to write these out to a temporary .dv file that should provide # the input data for modelers to import into Excel to check the calculations herein # Step 1: Set input period # Set input period to include additional year so that last data point from <spdss.eom> (e.g., Dec 2006) # is shifted forward one month (e.g., January 2007) to allow for release/storage calculation in December 2006

SetInputPeriod(InputStart="01/1950",InputEnd="12/2007")

null\_value...MONTH~StateMod~zero.stm

```
# Step 2: Calculate change in storage for the reservoir, (positive data is storage, negative data is releases)
# Analysis of reservoir releases is calculated based on
     Release(i) = EOM(i) - [EOM(i-1) - EVAP(i)]
# or Change in Storage = Col1 - [ Max(Col2 - Col3, 0)]
# Julesburg Reservoir
# Read EOM(i-1)
                   This value (e.g., May 1950) was shifted forward one month (e.g., June 1950) in
# <SPDSS2.shift.eom.commands.TSTool>
6403906...MONTH~StateMod~spdssSHIFT.eom
TS Col2 = Copy(TSID="6403906...MONTH", NewTSID="Col2...MONTH")
# Read EVAP(i)
                      This value, calculated in <SPDSS_Storage_Evaporation_Calculations.xls> based on <spdss.eom>,
# was output to <SPDSSstoEvap.stm>
3906_EVA...MONTH~StateMod~SPDSSstoEvap.stm
TS Col3 = Copy(TSID="3906_EVA...MONTH", NewTSID="Col3...MONTH")
# Calculate EOM(i-1) - EVAP(i), and then set this calculation (copied to WDID 6403906_k) to zero just in case EVAP(i) >
#
    EOM(i-1)
Subtract(TSID="6403906...MONTH",SubtractTSList=SpecifiedTSID,SubtractTSID="3906 EVA...MONTH")
TS 6403906_k = Copy(TSID="6403906...MONTH", NewTSID="6403906_k...MONTH")
SetToMax(TSID="6403906_k",IndependentTSList=LastMatchingTSID,IndependentTSID="null_value...MONTH")
# Read EOM(i)
6403906...MONTH~StateMod~spdss.eom
TS Coll = Copy(TSID="6403906...MONTH", NewTSID="Col1...MONTH")
TS 6403906_i = Copy(TSID="6403906...MONTH", NewTSID="6403906_i...MONTH")
# The resulting calculation has positive storage values and negative release values
Subtract(TSID="6403906_i",SubtractTSList=SpecifiedTSID,SubtractTSID="6403906_k",HandleMissingHow="IgnoreMissing")
TS Col4 = Copy(TSID="6403906_i",NewTSID="Col4...MONTH")
# Free Julesburg Reservoir parts
Free(TSList=LastMatchingTSID,TSID="6403906...MONTH")
Free(TSList=LastMatchingTSID,TSID="6403906...MONTH")
Free(TSList=LastMatchingTSID,TSID="6403906 k")
Free(TSList=LastMatchingTSID,TSID="3906 EVA...MONTH")
#-----
# Step 3: Develop the DDH (diversions at the headgate) by parts/time periods - add in all parts of diversion system
# DDH - 1950 thru 1973 is equal to calculated diversions to storage + total diversions at 511 - diversions to storage
    at 511
#
# Create 511 DDH file using 3906 i storage, zero out months with releases and set first month to zero
TS 6400511_DDH = Copy(TSID="6403906_i",NewTSID="6400511_DDH...MONTH")
SetToMax(TSID="6400511 DDH", IndependentTSList=LastMatchingTSID, IndependentTSID="null value...MONTH")
# Calculated diversions to storage are based on EOM contents measured at the reservoir, therefore scale (1/77%) to
# account for conveyance efficiencies and 'move' the diversions back to the river headgate
```

#-----

Scale(TSList=LastMatchingTSID,TSID="6400511\_DDH",ScaleValue=1.2987) # Without actual initial contents data (Dec 1949 EOM) for the reservoirs, storage amounts in January 1950 are very high, since the model sees the initial storage as 0 ac-ft. Absent other data, and to avoid this discontinuity at the # beginning of the SPDSS study period, the Jan 1950 calculated storage amounts are set to zero prior to be written to the output file. # SetConstant(TSList=LastMatchingTSID,TSID="6400511\_DDH",ConstantValue=0,SetStart="01/1950",SetEnd="01/1950") TS Col5 = Copy(TSID="6400511\_DDH", NewTSID="Col5...MONTH") # Create 511\_DivTot minus diversions to storage # There is minimal diversions to storage data (2 non-consecutive years) under 511 that are not included in these commands. # There are upstream reservoir release data (2:1) for irrigation in the DivTotal included in these commands b/c we assume it represents releases from reservoirs other than Julesburg and was diverted through the headgate. Reservoir release coded from other reservoirs are included as well. TS 6400511 DivTot = ReadHydroBase(TSID="6400511.DWR.DivTotal.Month~HydroBase") 6400511.DWR.DivClass-S:1 F: U:0 T: G:.Month~HydroBase 6400511.DWR.DivClass-S:1 F: U:0 T:3 G:.Month~HydroBase Subtract(TSID="6400511\_DivTot",SubtractTSList=SpecifiedTSID,SubtractTSID="6400511.DWR.DivClass... Subtract(TSID="6400511\_DivTot",SubtractTSList=SpecifiedTSID,SubtractTSID="6400511.DWR.DivClass... Free(TSList=LastMatchingTSID,TSID="6400511.DWR.DivClass-S:1 F: U:0 T: G:.Month") Free(TSList=LastMatchingTSID,TSID="6400511.DWR.DivClass-S:1 F: U:0 T:3 G:.Month") # Fill last couple of months in 2006 of 511\_DivTot with pattern file ReadPatternFile(PatternFile="WetDryAverage.pat") # South Platte River at Julesburg (USGS ID 06764000) FillPattern(TSList=AllMatchingTSID,TSID="6400511\_DivTot",PatternID="06764000") TS Col6 = Copy(TSID="6400511\_DivTot", NewTSID="Col6...MONTH") # Add(TSID="6400511 DDH",AddTSList=SpecifiedTSID,AddTSID="6400511 DivTot",HandleMissingHow="IgnoreMissing") SetConstant(TSList=LastMatchingTSID,TSID="6400511 DDH",ConstantValue=-999,SetStart="11/1973",SetEnd="10/1978") TS Col7 = Copy(TSID="6400511\_DDH", NewTSID="Col7...MONTH") # DDH - 1974 thru 1978 is equal to Reservoir DivTotal + 511 DivTot # There is reservoir release data (2:1) in the 6403906 DivTotal from 1988 forward however this data is not used # because calculated reservoir releases are incorporated in the IRR structure below. TS 6403906\_DivTot = ReadHydroBase(TSID="6403906.DWR.DivTotal.Month~HydroBase") TS Col8 = Copy(TSID="6403906 DivTot", NewTSID="Col8...MONTH") Add(TSID="6403906 DivTot", AddTSList=SpecifiedTSID, AddTSID="6400511 DivTot", HandleMissingHow="IgnoreMissing") SetConstant(TSList=LastMatchingTSID,TSID="6403906\_DivTot",ConstantValue=-999,SetStart="11/1978",SetEnd="12/2006") TS Col9 = Copy(TSID="6403906 DivTot", NewTSID="Col9...MONTH") # DDH - 1988 thru present is equal to 511\_DivTot

```
SetConstant(TSList=LastMatchingTSID,TSID="6400511_DivTot",ConstantValue=-999,SetStart="01/1950",SetEnd="10/1987")
#
# Combine all parts into the 511 DDH
FillFromTS(TSList=LastMatchingTSID,TSID="6400511_DDH",IndependentTSList=LastMatchingTSID,...
FillFromTS(TSList=LastMatchingTSID,TSID="6400511 DDH",IndependentTSList=LastMatchingTSID,...)
TS Coll0 = Copy(TSID="6400511_DDH", NewTSID="Coll0...MONTH")
Free(TSList=LastMatchingTSID,TSID="6400511_DivTot")
Free(TSList=LastMatchingTSID,TSID="6403906 DivTot")
#-----
# Step 4: Add in Harmony No. 2 diversions to DDH
#
# Add Harmony No. 2 Ditch to 511_DDH
TS 6400515_DivIrr = ReadHydroBase(TSID="6400515.DWR.DivTotal.Month~HydroBase")
# Fill 515_DivIrr using pattern file and hist. mo. ave. and then set data to zeroes based on Water Commissioner
# Comments of "no water used" or "no water wanted". Future review may want to check field books for data prior to 1960.
SetConstant(TSList=LastMatchingTSID,TSID="6400515_DivIrr",ConstantValue=0,SetStart="11/1960",SetEnd="10/1967")
FillPattern(TSList=AllMatchingTSID,TSID="6400515_DivIrr",PatternID="06764000")
TS Coll1 = Copy(TSID="6400515_DivIrr", NewTSID="Coll1...MONTH")
Add(TSID="6400511_DDH",AddTSList=SpecifiedTSID,AddTSID="6400515_DivIrr",HandleMissingHow="IgnoreMissing")
TS Coll2 = Copy(TSID="6400511 DDH", NewTSID="Coll2...MONTH")
# 6400510 - HARMONY DITCH 3 - This is excluded due to no data in HydroBase
# Step 5: Develop the drain file
# Drain values = - (ddh1 - conveyance loss)
# Multiply the river diversions by the negative conveyance efficiency to get the drain values
TS 6400511_DRA = Copy(TSID="6400511_DDH", NewTSID="6400511_DRA...MONTH")
Scale(TSList=LastMatchingTSID,TSID="6400511 DRA",ScaleValue=-0.77)
TS Coll3 = Copy(TSID="6400511_DRA", NewTSID="Coll3...MONTH")
#-----
# Step 6: Develop diversions to irrigation for the Irrigation Demand (IRR) structure
#_____
# Step 7: Write all raw input to dv file for use in Check spreadsheet files and write out STM file with resulting files
# Write raw input data to .dv file
SelectTimeSeries(TSList=AllMatchingTSID,TSID="Col*",DeselectAllFirst=True)
WriteDateValue(OutputFile="TSFiles2008\Julesburg.dv",TSList=SelectedTS)
#
# Write output file
SortTimeSeries()
```

```
WriteStateMod(TSList=AllTS,OutputFile="TSFiles2008\Julesburg.stm",OutputStart="01/1950",OutputEnd="12/2006"...
```

#### **Documenting Command Warnings:**

Command files can run with warnings that DO NOT need to be "fixed", but do need to be understood and documented.

Print all warnings to a document file. Review and either "fix", or document warnings and why they are okay for the modeling effort. Save the documented warnings with the same name as the command file (for example: ddh.commands.StateDMI.warnings). This will allow modelers who update the command files in the future to avoid duplicating the review.

## **Baseflow Parameter Development**

StateMod generates baseflow parameters used to generate Natural Flows (Baseflows) from area and precipitation factors defined in the Network Diagram.

Important points when setting up a network

- Include structures where you know or need to know information
- Include, at a minimum, structures included in the StateCU consumptive use model and SPDSS memorandum; additional structures will likely be required
- Include "significant" tributaries (e.g. those with diversions, streamflow gages, large drainage areas); may not need to include tributaries with instream flow reaches if no consumptive diversions
- Although not required in the network file, include plan structures in the network so that the network reflects a complete list of structures note that plan structures can be added later if model is developed in steps
- The Network is used to define structures other model files in StateDMI command files (e.g. *ReadDiversionStationsFromNetwork(*)
- Add annotations and "links" in the diagram while developing, including structure and reservoir names



#### **Structure Naming Conventions**

Refer to the SPDSS Historical Crop Consumptive Use Analysis Report and SPDSS Task memoranda for the naming conventions for specific structures. In general:

- When available, use the DWR 7-digit WDID or the USGS Stream Gage ID as the structure ID, including decreed plan structures
- For non-decreed plan structures, include abbreviated entity (e.g. Westminster = Westy) and a plan type; for example "\_Aug" (augmentation plans), "\_RF" (return flow plans), "\_Spl" (split plans), "\_Lim" (limit plan), or "\_Reu" (reuse plans).
- Use "\_C" suffix to designate carrier structures
- Use "\_I" suffix to designate irrigation demands
- Use "\_D" suffix to designate diversion systems
- Use "\_AP" suffix to designate alternate point structures

- Use the decreed plan structure WDID and "\_R" suffix to designate an aggregate recharge reservoir
- Use the WD, abbreviated municipality name or "AUP" (Aggregate Unincorporated Platte) or "AMP" (Aggregated Municipal Platte), and "\_I" and "\_O" suffices to designate indoor and outdoor municipal demands
- Use the WD, "ADP" (Aggregate Diversion Platte) or" AWP" (Aggregate Well Platte), and a unique aggregation ID to designate aggregated diversion and well structures
- Use the WD, "ASP" (Aggregate Stock Platte) or "ARP" (Aggregate Reservoir Platte), and a unique aggregation ID to designate aggregated stock ponds and reservoirs

### Natural Flows at Gaged Locations

StateMod starts with the amount of water that would have been in the stream absent the effects of man. This amount of water is referred to as "natural flow" or "baseflow". Natural flow has historically been estimated in a data-centered fashion using tools built into StateMod in two steps; natural flows at gaged locations and distribution of gains to estimate natural flow at ungaged locations.

## Natural Flow at Gaged Locations =

## Gaged Flow + Diversions – Return Flows +/- Change in Storage

- In general, there is sufficient measured data available in the SPDSS model area to provide a good estimate of natural flows at gaged locations.
- Due to the use of *measured* data, StateMod's method is believed to result in better estimates of natural flow at gaged locations compared to those estimated from other methods (e.g. rainfall/runoff models).
- The uncertainty for natural flows lies in the distribution to ungaged locations (see below).

If an alternative method is used to create Natural Flows, it must be datacentered and the modeler must show that it matches StateMod monthly estimates at gaged locations.

### Natural Flows at Ungaged Locations

- Natural flow must be estimated at ungaged headwater nodes.
- Natural flow gains between gages are modeled as entering the system at ungaged points, to better simulate the river's growth due to local runoff and unmodeled tributaries.
- StateMod has several ways to automate the distribution of gains (or losses) seen between or upstream of gages – Gain Approach, Neighboring Gage Approach, or Set Proration Approach.
- Two of the approaches rely on Area/Precipitation factors.

## **Area/Precipitation Factors**

The drainage area and precipitation factors are entered into the network diagram for each gaged and ungaged location.

- The drainage area for gaged natural flow locations is the total drainage area contributing to the gaged location.
- The drainage area for *ungaged* locations is the *incremental* drainage area upstream of the natural flow location and downstream of a gaged location (if any).
- Basin drainage areas are included in the natural flow properties in the network file in units of square miles. They can be delineated using GIS spatial analyses or through the USGS StreamStats program (<u>http://water.usgs.gov/osw/streamstats/index.html</u>).
- Be sure to review the basin delineations from the StreamStats program, and compare basin area delineations at gaged locations to published USGS drainage areas.
- Precipitation factors are input in units of inches and represent the average annual precipitation over the delineated drainage area. Precipitation factors can be estimated from CDSS Isohyetal coverages or through the USGS StreamStats program.

Note that the precipitation factors do not capture basin characteristics such as aspect, elevation, or slope. These characteristics should be considered during calibration efforts, guiding adjustment of the precipitation factor up or down during calibration.

Document the initial area and precipitation factors in a GIS shapefile prior to adjusting during calibration

### **Gain Approach**

The Gain Approach is the default method for assigning natural flow to ungaged locations. The Gain Approach pro-rates natural flow gain above or between gages according to the product of drainage area and average annual precipitation. That is, each gage is assigned an "Area\*Precipitation" (A\*P) term, equal to the product of total area above the gage, and average annual precipitation over the gage's entire drainage area. Ungaged natural flow points are assigned an incremental "A\*P", the product of the incremental drainage area above the ungaged natural flow point and below any upstream gages, and the average annual precipitation over that area.

In the example below:

• The portion of the natural flow gain below Gages 1 and 2 and above Gage 3 (at the Ungaged location between the gages) is the gage-to-gage natural flow gain

 $(BF_3 - (BF_2 + BF_1)) \times (A^*P)_{ungaged}/[(A^*P)_{downstream gage} - \Sigma (A^*P)_{upstream gage(s)}]$ 

 Total natural flow at the ungaged location is equal to this term, plus the sum of natural flows at upstream gages. In the example there is only one upstream gage, having natural flow BF<sub>1</sub>.



#### **Neighboring Gage Approach**

- The neighboring gage approach is used if smaller tributaries do not have the same general runoff pattern as the mainstem downstream gage.
- This method creates a natural flow time series by multiplying the natural flow series at a specified gage by the ratio  $(A^*P)_{ungaged}/(A^*P)_{gage}$ .
- This approach may be effective if there is a nearby gaged tributary with similar drainage characteristics (area, aspect, elevation)

#### **Proration Approach**

The proration approach is similar to the neighboring gage approach, but allows the modeler to "set" the proration factor directly (eg. Natural Flow<sub>ungaged</sub> =  $0.8 \times \text{Natural Flow}_{gaged}$ ).

#### Natural Flow Parameter File (\*.rib)

Proration factors are calculated based on the area/precipitation factors in the network diagram and commands in StateDMI, and provided to StateMod in the Natural Flow Parameter File (\*.rib).

| #×                          |        |       |        |          |        |          |          |
|-----------------------------|--------|-------|--------|----------|--------|----------|----------|
| #> FlowX                    |        | mbase | coefB1 | FlowB1   | coefB2 | FlowB2   | coefB3 F |
| #>exx                       | xxxxxb | eb    | ex     | (b       | ebex   | xb       | ebexb    |
| #>                          | pf     | nbase | coefG1 | FlowG1   | coefG2 | FlowG2   | coefG3   |
| <pre>#&gt;xxxxxxxxxb-</pre> | eb     | eb    | ex     | (bd)     | ebe    | xb       | ebexb    |
| #>                          |        |       |        |          |        |          |          |
| <pre>#&gt;EndHeader</pre>   |        |       |        |          |        |          |          |
| #>                          |        |       |        |          |        |          |          |
| 4701070                     |        | 0     |        |          |        |          |          |
|                             | 0.266  | 2     | 1.000  | 06611800 | -1.000 | 06611700 |          |
| 4700552                     |        | 1     | 1.000  | 06611700 |        |          |          |
|                             | 0.313  | 2     | 1.000  | 06611800 | -1.000 | 06611700 |          |
| 4700624                     |        | 0     |        |          |        |          |          |
|                             | 0.008  | 2     | 1.000  | 06611300 | -1.000 | 06611200 |          |
| 4700638_D                   |        | 0     |        |          |        |          |          |
| _                           | 0.316  | 2     | 1.000  | 06611800 | -1.000 | 06611700 |          |

#### North Platte Model \*.RIB File Excerpt

For example:

- Natural Flow for **4701070** = 26.6% \* (natural flow at downstream gage 06611800 minus natural flow at the upstream gage 06611700)
- Natural Flow for 4700552 = 31.3% \*(natural flow at downstream gage 06611800 minus natural flow at the upstream gage 06611700) + the natural flow at the upstream gage 06611700

Proration factors (pf) in the \*.rib file should never be greater than 1.0 if developed using the Gain Approach.

#### "Negative" Natural Flows

The gain approach can results in estimates of negative natural flows. These occur when the gaged flow is less than the other parameter used in the natural flow calculation.

Gaged Flow + Diversions – Return Flows +/- Change in Storage

- StateMod automatically sets any natural flow estimated to be negative at a gaged location to zero prior to distributing gains to ungaged locations, essentially "creating" water in the system.
- A negative flow summary, including a count of the number of months with negative flow and the average and total amount of negative flow, is provided in the StateMod log file (\*.log) when StateMod is run in the Baseflow Mode.

| Vir      | out: Negativ                                           | e Flows at GAGE Summary ACE  | T/mon      |             |        |         |       |  |  |  |  |  |
|----------|--------------------------------------------------------|------------------------------|------------|-------------|--------|---------|-------|--|--|--|--|--|
| VII<br>N | Note: Count is the # of months for a monthly model and |                              |            |             |        |         |       |  |  |  |  |  |
|          | the t of days for a daily model and                    |                              |            |             |        |         |       |  |  |  |  |  |
|          | Est is                                                 | the average negative flow e  | stimate    |             |        |         |       |  |  |  |  |  |
|          | on a                                                   | monthly basis (af/mo) or a   | dailv basi | is (af/dav) |        |         |       |  |  |  |  |  |
|          | Adj is                                                 | the adjusted value printed   | to results | 3           |        |         |       |  |  |  |  |  |
|          | Total                                                  | is the total adjustment (abs | s(# * Est) |             |        |         |       |  |  |  |  |  |
|          |                                                        | 2 .                          |            | Est         | Adj    | Total   | River |  |  |  |  |  |
| #        | ID                                                     | Name                         | Count      | af/mon      | af/mon | acft    | ID    |  |  |  |  |  |
|          |                                                        |                              |            |             |        |         |       |  |  |  |  |  |
| 1        | 06611200                                               | BUFFALO CREEK NEAR HEBRO     | 5          | -171.17     | 0.00   | 855.87  | 289   |  |  |  |  |  |
| 2        | 06611300                                               | GRIZZLY CREEK NEAR HEBRO     | 8          | -220.10     | 0.00   | 1760.77 | 295   |  |  |  |  |  |
| 3        | 06611700                                               | LITTLE GRIZZLY CREEK NEA     | 0          | 0.00        | 0.00   | 0.00    | 191   |  |  |  |  |  |
| 4        | 06611800                                               | LITTLE GRIZZLY CREEK ABO     | 0          | 0.00        | 0.00   | 0.00    | 206   |  |  |  |  |  |
| 5        | 06611900                                               | LITTLE GRIZZLY CREEK ABO     | 0          | 0.00        | 0.00   | 0.00    | 209   |  |  |  |  |  |
| 6        | 06614800                                               | MICHIGAN RIVER NEAR CAME     | 0          | 0.00        | 0.00   | 0.00    | 486   |  |  |  |  |  |
| 7        | 06615000                                               | SOUTH FORK MICHIGAN RIVE     | 0          | 0.00        | 0.00   | 0.00    | 475   |  |  |  |  |  |
| 8        | 06616000                                               | NORTH FORK MICHIGAN RIVE     | 0          | 0.00        | 0.00   | 0.00    | 498   |  |  |  |  |  |
| 9        | 06617500                                               | ILLINOIS CREEK NEAR RAND     | 1          | -2.80       | 0.00   | 2.80    | 415   |  |  |  |  |  |
| 10       | 06619400                                               | CANADIAN RIVER NEAR LIND     | 0          | 0.00        | 0.00   | 0.00    | 101   |  |  |  |  |  |
| 11       | 06619450                                               | CANADIAN RIVER NEAR BROW     | 0          | 0.00        | 0.00   | 0.00    | 120   |  |  |  |  |  |
| 12       | 06620000                                               | NORTH PLATTE RIVER NEAR      | 2          | -1720.07    | 0.00   | 3440.14 | 555   |  |  |  |  |  |
| 13       | Line_BF                                                | FLO                          | 0          | 0.00        | 0.00   | 0.00    | 1     |  |  |  |  |  |
| 14       | Beav_BF                                                | Beaver Creek BFFLO           | 0          | 0.00        | 0.00   | 0.00    | 6     |  |  |  |  |  |
| 15       | SFBig_BF                                               | _FLO                         | 0          | 0.00        | 0.00   | 0.00    | 14    |  |  |  |  |  |
| 16       | Wheel_BF                                               | Wheeler Creek BF _FLO        | 0          | 0.00        | 0.00   | 0.00    | 20    |  |  |  |  |  |
| 17       | Camp_BF                                                | FLO                          | 0          | 0.00        | 0.00   | 0.00    | 29    |  |  |  |  |  |
| 18       | 3mile_BF                                               | Threemile Creek BF FLO       | 0          | 0.00        | 0.00   | 0.00    | 27    |  |  |  |  |  |
|          | Total Ave                                              |                              | 16         | 378.72      | 0.00   | 6059.59 |       |  |  |  |  |  |

| North | Platte | Model | *.LOG | File  | Fxcer | nt |
|-------|--------|-------|-------|-------|-------|----|
| 10101 | induce | mouci |       | 1.110 | LACCI | ρι |

- As natural flows represent the flow as if "man wasn't there", negative natural flows are not "physically-based" and likely caused by data inconsistencies.
- Use the \*.xbi file to trouble shoot issues with negative flows likely they are caused by bad "data points", often EOM reservoir contents.

| Naturalized Flow Information ACFT |     |     |          |        |        |        |        |         |         |         |           |           |
|-----------------------------------|-----|-----|----------|--------|--------|--------|--------|---------|---------|---------|-----------|-----------|
|                                   |     |     |          | Gauged | Import | Divert | Return | Well    | Delta   | Net     | Total     | w/o (-)   |
| Year                              | Mon | Day | River ID | Flow   | ( - )  | (+)    | ( - )  | Dep (+) | Sto (+) | Evp (+) | Base Flow | Base Flow |
|                                   |     |     |          | ( 1)   | (2)    | (3)    | ( 4)   | (5)     | (6)     | (7)     | (8)       | (9)       |
| 1982                              | OCT | 31  | 09238900 | 1702.  | 0.     | 118.   | 0.     | 0.      | -769.   | 24.     | 1074.     | 1074.     |
| 1982                              | NOV | 30  | 09238900 | 1160.  | 0.     | 83.    | 0.     | 0.      | 1359.   | -2.     | 2600.     | 2600.     |
| 1982                              | DEC | 31  | 09238900 | 547.   | 0.     | 84.    | 0.     | 0.      | -731.   | -23.    | -123.     | 0.        |
| 1983                              | JAN | 31  | 09238900 | 413.   | 0.     | 90.    | 0.     | 0.      | 533.    | -25.    | 1010.     | 1010.     |
| 1983                              | FEB | 28  | 09238900 | 359.   | 0.     | 76.    | 0.     | 0.      | -50.    | -7.     | 379.      | 379.      |
| 1983                              | MAR | 31  | 09238900 | 422.   | 0.     | 165.   | 0.     | 0.      | -825.   | 12.     | -226.     | 0.        |
| 1983                              | APR | 30  | 09238900 | 489.   | 0.     | 155.   | 0.     | 0.      | 187.    | 28.     | 858.      | 858.      |
| 1983                              | MAY | 31  | 09238900 | 5256.  | 0.     | 163.   | 0.     | 0.      | 209.    | 55.     | 5683.     | 5683.     |
| 1983                              | JUN | 30  | 09238900 | 28428. | 0.     | 187.   | 0.     | 0.      | -222.   | 78.     | 28471.    | 28471.    |
| 1983                              | JUL | 31  | 09238900 | 16160. | 0.     | 243.   | 0.     | 0.      | 0.      | 74.     | 16477.    | 16477.    |
| 1983                              | AUG | 31  | 09238900 | 1201.  | 0.     | 247.   | 0.     | 0.      | 1576.   | 64.     | 3088.     | 3088.     |
| 1983                              | SEP | 30  | 09238900 | 156.   | 0.     | 205.   | 0.     | 0.      | -1268.  | 57.     | -850.     | 0.        |

#### Yampa River Model \*.XBI File Excerpt

Recommended actions to correct negative natural flows:

- Determine which gages have instances of negative flows using the Log file
- Query the Natural Flow Output file (\*.xbi) for each gage with negative flow to determine the month and year (Column 8 does not equal 9)
- Use TSTool to graph the monthly diversions, reservoir content, and streamgage data to check for obvious data errors
- More detailed/specific calibration efforts will be discussed next time

#### **General Checks for Gains and Losses**

- Before man's influence, "losing" reaches are not expected
- Check that natural flows increase from upstream to downstream
  - Use TSTool to quickly add natural flows in the \*.xbm file above each gage to assure they are equal or greater to the natural flow estimated at the gage.

#### **Estimating Natural Flows Using Other Methods**

**Incorporate externally developed natural flows.** Data inconsistencies or lack of measured data can lead to inaccurate natural flow estimates at gaged or ungaged locations. Natural flows estimated from an alternative method can be used to over-ride estimates from StateMod using a data-centered approach. An example of this occurs in the San Juan/Dolores Model, whereby estimates of natural flows on McElmo Creek are replaced with estimates generated from the VIC model using TSTool.

```
# xbg_replace.commands.TSTool
# Replaces StateMod estimated baseflows on McElmo Creek with baseflows
#
       generated by the VIC model. Replace after StateMod baseflow generation at
#
       gages, before Mixed Station Model
#
SetOutputYearType(OutputYearType=Water)
09339900...MONTH~StateMod~C:\CDSS\Data\sj2009\StateMod\sj2009_CRWAS.xbg
09341500...MONTH~StateMod~C:\CDSS\Data\sj2009\StateMod\sj2009_CRWAS.xbg
09342000...MONTH~StateMod~C:\CDSS\Data\sj2009\StateMod\sj2009 CRWAS.xbg
09371400...MONTH~StateMod~C:\CDSS\Data\sj2009\StateMod\sj2009_CRWAS.xbg
09371420...MONTH~StateMod~C:\CDSS\Data\sj2009\streamSW\McElmo VIC.stm
09371500...MONTH~StateMod~C:\CDSS\Data\sj2009\streamSW\McElmo VIC.stm
09372000...MONTH~StateMod~C:\CDSS\Data\sj2009\streamSW\McElmo VIC.stm
09379500...MONTH~StateMod~C:\CDSS\Data\sj2009\StateMod\sj2009_CRWAS.xbg
09179500...MONTH~StateMod~C:\CDSS\Data\sj2009\StateMod\sj2009 CRWAS.xbg
WriteStateMod(TSList=AllTS,OutputFile="sj2009_CRWAS2.xbg",Precision=0)
```

#### **Additional Tips**

- Can use short-term or Administrative gages to review/revise natural flows
- Previous CDSS models used the Mixed Station Model (MSM) to fill missing natural flows; complete datasets (i.e. diversions, reservoir contents, streamflow) will be developed for the SPDSS models therefore MSM will not be needed
- With complete datasets, StateMod simulation option **Baseflow** will create natural flows at gaged locations and distribute to ungaged locations in a single simulation step
- Call your Water Commissioner he/she will likely have a good idea of contributing flow from different tributaries

# Interaction Between Basins – For Natural Flow Generation and Simulation

#### **Transbasin Imports and "Imports" from other South Platte Tributaries**

- Imports from other South Platte Tributaries can include portion of Transbasin Imports (e.g. C-BT water delivered via St. Vrain Supply Canal for use in the St. Vrain basin) or direct diversion or storage water delivered from another basin (e.g. releases from Highland Reservoir #2 in the St. Vrain to irrigate in the Big Thompson)
- Historical Imports will be treated as a streamgage (i.e. will be include in the \*.rih file) on a mock "tributary"
- A Type 11 Plan Structure needs to be included on the tributary to temporarily "store" the water for the uses
- A Carrier Structure needs to be included on the tributary above the Plan Structure to act as a "carrier" to the Plan Structure, and to provide the water rights for diversion into the plan.
  - The Carrier Structure water right amount should be "set" in the \*.ddr file to be greater than the maximum amount of the import. The priority should be set to 1.0000.
  - The capacity for the Carrier Structure should be set in the \*.dds file to be greater than the maximum amount of the import. The efficiency should be set to 0% efficient, with 100 percent returning to the plan structure.
  - The monthly demand for the Carrier Structure should be set to "0" for the entire period.
- A Type 24 Operating Rule should be used to "store" the imported water into the plan, based on the Carrier Structure water right.
- Type 27 or 28 Operating Rules should be used to "release" the import water to the demands in the basin, including demands to export the water to another basin. The priorities should be set based on other water rights

used to satisfy the demands (e.g. junior to direct flow rights or reservoir releases).

• Type 29 Operating Rule needs to be included to "spill" the plan each time step with a very junior "priority". Note that this will be a calibration point eventually to determine if you have the correct uses identified for the imported water.

#### "Exports" to other South Platte Tributaries

- Exports to other basins can include Transbasin Imports delivered to another basin (e.g. Denver Moffatt Diversions delivered via South Boulder Diversion Canal to Ralston Reservoir) or direct diversion or storage water released from another basin (e.g. City of Greeley demands for Big Thompson water)
- Exports to other basins will be represented as demand structures on the river
  - The Export Structure water right amount should be "set" in the \*.ddr file to be "0". The priority can be very senior (but junior to an associated Import, if applicable).
  - The capacity for the Export Structure should be set in the \*.dds file to be greater than the maximum amount of the export. The efficiency should be set to 100% efficient.
  - The monthly demand for the Export Structure should be set to the desired amount of export.
- Type 27 or 28 Operating Rules should be used to "release" water from the associated plan or Type 2, 3, or 4 Operating Rules should be used to "release" water from a reservoir to the Export Structure demand based on the Export Structure water right priority set above.

Inflow Gages (St. Vrain and Model Representing WD 2, 7, 8, 9, 23, 80)

• Inflows are represented as historical streamflow in the \*.rih file

#### **Outflow Gages**

- The use of Outflow Gages as a "demand" attempts to represent the effect downstream senior water rights that may place a call up the tributaries.
- Historical downstream uses can be represented by historical gaged streamflows as an instream flow node.
  - The gage needs to be added as an "instream flow" node in the network, allowing it to be included in the \*.ifs file.
  - An instream flow water right should be set to "senior" to the typical downstream (WD 1 and 64) calling rights in the \*.ifr file.
  - Annual instream flow demands should be set to historical streamflow in the \*.ifa file.

#### **Irrigation Return Flows between South Platte Tributaries**

- During model development, identify location of irrigation return flows and determine if significant return flows contribute water to another South Platte Tributary.
- The team will determine on a case-by-case basis if those return flows need to be "imported" into the other tributary, or if it only needs to be handled during Model Integration.

## **Big Thompson CBT** Import from West -00 Slope Lake Estes Carter Lake CBT Export to Horsetooth Reservoir CBT Export to St. Vrain/Boulder Creek Import: Historical Release from Highland **X** Reservoir #2 to Boulder **Irrigation Ditch** Outflow Gage: Big Thompson 🚫 Greeley Demand @ Mouth near La Salle (Historical Demand from Big T. and CBT) Ft. Morgan Demand from CBT








## **Diversion Coding and Off-channel Demands**

## **Diversion Coding**

River diversions and reservoir releases are coded by source, location of source, use, type, and augmentation plan – known as Diversion Class, DivClass, or SFUTG. In addition, there are standard codes used in Water Commissioner Comments that provide information in lieu of diversion records.

The Diversion Records Standard (formerly called Water Commissioner Handbook) describes standard diversion and use codes and provides examples of how to code specific diversions. Important notes between pre- and post- November, 2010 coding include:

- Current SQL Server versions of HydroBase available to the public do not quite reflect all of the new coding information; specifically the newly added Accounts and TO portions of the water class
- Source codes 6, 7, and R were removed from the new coding
- Defined rules for the use of the FROM portion of the water class
- Changed Use code of Q; previously designated "Other", now means "Quantified"
- Added Use code of Z designating "Other"
- Added Type codes of D, J, F, L, Q, U, V, W, and R; removed Type code 3 and revised meaning of Type code 7
- Added several examples, contact DWR for your copy of the Diversion Records Standard

The Diversions Records Standard and associated diagrams are available on-line:

http://water.state.co.us/DWRIPub/DWR%20General%20Documents/Diversion\_Records\_Stand ard\_Ver\_1\_6.pdf

http://water.state.co.us/DWRIPub/DWR%20General%20Documents/Diversion%20Water%20Cl ass%20Coding%20Diagrams.pdf

#### **Diversion Record Standard Coding, Post- November, 2010**



#### Appendix A: Diversion Record Logic Diagram

| SO             | URCE Code <sup>1</sup> |   |
|----------------|------------------------|---|
| 1              | Natural Stream Flow    | _ |
| 2              | Reservoir Storage      |   |
| 3              | Ground Water           |   |
| 4              | Transbasin Water       |   |
| 5              | Non-Stream Flow        |   |
| 8              | Re-usable Water        |   |
| X <sup>2</sup> | Unspecified            |   |

|       | Blank is acceptable                |
|-------|------------------------------------|
| Тур   | es of diversions                   |
| 1     | Exchange                           |
| 2     | Trade                              |
| 4     | Alternate Point of Diversion       |
| А     | Authorized/Augmented               |
| U     | Unauthorized Diversion             |
| D     | Out-of-priority Depletion          |
| J     | In-priority Depletion              |
| Тур   | es of releases                     |
| 7     | Released to Stream                 |
| 8     | Released Off-stream                |
| L     | Release of Dominion and<br>Control |
| Е     | Release of Excess Diversion        |
| Q     | Release of Quantified Amount       |
| $v^3$ | Release to Alluvial Aquifer        |
| W     | Released Underground               |
| Тур   | es of data                         |
| 0     | Administrative Record Only         |
| R     | USE Only Volume Data               |

#### Appendix B: Quick Guide to Diversion Record Codes

. 1

LIOFO

| 0 | Storage                        |
|---|--------------------------------|
| 1 | Irrigation                     |
| 2 | Municipal                      |
| 3 | Commercial                     |
| 4 | Industrial                     |
| 5 | Recreation                     |
| 6 | Fishery                        |
| 7 | Fire                           |
| 8 | Domestic                       |
| 9 | Stock                          |
| А | Augmentation                   |
| В | Sub-basin export               |
| С | Change of Use Return Flows     |
| Е | Evaporation                    |
| F | Federal reserved               |
| G | Geothermal                     |
| н | Household use only             |
| К | Snow making                    |
| М | Minimum stream flow/lake level |
| Ρ | Power generation               |
| Q | Quantification of amount       |
| R | Recharge                       |
| S | Export from State              |
| Т | Transbasin export              |
| W | Wildlife                       |
| Z | Other                          |

| Not<br>(NU | Used/Not Released Code<br>C/NRC)   |
|------------|------------------------------------|
| 8          | Blank is acceptable                |
| А          | Structure not usable               |
| В          | No water available                 |
| С          | Water available, but not taken     |
| D          | Water taken in another structure   |
| Е          | Water taken, but no data available |
| F          | No information available           |

| 1  | Ditch                   | N |
|----|-------------------------|---|
| 2  | Well                    | N |
| WG | Well Group              | N |
| 4  | Spring                  | N |
| 5  | Seep                    | N |
| 6  | Mine                    | N |
| 7  | Pipeline                | N |
| 8  | Pump                    | N |
| 9  | Power Plant             | N |
| 0  | Other                   | N |
| М  | Measuring Point         | N |
| MF | Minimum Flow            | N |
| R  | Reach (Non-Aggregating) | N |
| WF | Well Field              | A |
| 3  | Reservoir               | A |
| RS | Reservoir System        | A |
| RA | Recharge Area           | A |
| AR | Aggregating Reach       | A |

| OBSERVATION | Code |
|-------------|------|
|             |      |

| * | Observed                            |
|---|-------------------------------------|
| U | User Supplied - Unknown Reliability |
| К | User Supplied - Known Reliability   |
| Е | Estimated                           |
| С | Calculated                          |

| Stru<br>have | cture Type <b>NOT</b> Allowed to<br>a Diversion Record |
|--------------|--------------------------------------------------------|
| AQ           | Aquifer NNT/NT Reservation                             |
| DS           | Ditch System                                           |
| EP           | Exchange Plan                                          |
| Р            | Augmentation/Replacement Plan                          |

For more complete definitions see Table 5-8, Table 5-9 and Table 5-10.
 SOURCE "X" should not be used as the only record for a structure as it provides no understanding regarding the SOURCE of water diverted.
 TYPE "V" releases are associated with water that will accrete to the natural stream.
 Structure Types are divided into "Aggregating" (A) and "Non-Aggregating" (N); see Section 9.2.

#### Water Commissioner Handbook Coding, Pre - November, 2010

# SUMMARY OF DIVERSION CODING ..... SOURCES

| SOURCE                       | CODE | COMMENTS                                                                                                                                                                                                                                                                                                                                           |
|------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Natural Stream flow          | , 1  | Water available for Diversion in priority to satisfy water rights.                                                                                                                                                                                                                                                                                 |
| Reservoir Storage            | 2    | Water that is actually stored in a Reservoir. Not flow through water.                                                                                                                                                                                                                                                                              |
| Ground Water<br>(Wells)      | 3    | Both tributary and non-tributary waters. (The stream # in the structure file will identify the actual source in the diversion reports)                                                                                                                                                                                                             |
| Transbasin                   | 4    | The same as transmountain; water imported from another basin                                                                                                                                                                                                                                                                                       |
| Non-Stream<br>Sources        | 5    | Springs and seepage                                                                                                                                                                                                                                                                                                                                |
| Combined                     | *6   | A non-additive source code generally used when<br>water is measured beyond the headgate where<br>sources have been mixed. This code is used to<br>keep from double accounting. At the intake the<br>different sources are identified and the uses are<br>not, while at the delivery points the source equals<br>combined and the use is identified |
| Transdistrict                | 7    | Water imported from one sub-basin into another,<br>both sub-basins being part of the same river<br>basin.                                                                                                                                                                                                                                          |
| Re-Used                      | 8    | Water used once and put back in stream to be<br>re-used generally by exchange or for<br>augmentation. Usually sewage effluent water<br>from sources which may be fully consumed                                                                                                                                                                    |
| Multiple                     | 9    | Water with numerous sources that aren't<br>separable. Differs from Combined in that each<br>use is identified and Multiple source water totals<br>in structure and district summaries. Another<br>difference is that Multiple source water is only<br>measured once whereas Combined water is<br>measured twice.                                   |
| Remeasured and<br>Rediverted | R    | Water that has been measured, diverted, and used later downstream.                                                                                                                                                                                                                                                                                 |

## SUMMARY OF DIVERSION CODING...... USES

| USAGE                   | CODE     | COMMENTS                                                                                                                 |
|-------------------------|----------|--------------------------------------------------------------------------------------------------------------------------|
| Storage                 | 0 (Zero) | An intermediate use before the final beneficia use.                                                                      |
| Irrigation              | . 1      | Water applied to crops                                                                                                   |
| Municipal               | 2        | Urban use                                                                                                                |
| Commercial              | 3        | Ordinary non-manufacturing: retail,<br>stockyards, campgrounds, etc.                                                     |
| Industrial              | 4        | Manufacturing, mining, steam power, etc.                                                                                 |
| Recreation              | 5        | Non-consumptive (except evaporation)                                                                                     |
| Fishery                 | 6        | Non-consumptive (except evaporation)                                                                                     |
| Fire                    | 7        | emergency and intermittent use                                                                                           |
| Domestic                | 8        | household, lawn & garden                                                                                                 |
| Stock                   | 9        | livestock watering                                                                                                       |
| Augmentation            | A ,      | augmentation water, maybe used with type=6<br>(replacement to river)                                                     |
| Export from Basin       | В        | Water being diverted from one sub-basin to<br>another in the same basin and or remeasured<br>and coded as to actual use. |
| Evaporation             | E        | Non-beneficial use                                                                                                       |
| Geothermal              | G        | Non-consumptive (except evaporation)                                                                                     |
| In House                | Н        | Household use only                                                                                                       |
| Snow making             | K        | Non-consumptive                                                                                                          |
| Min. Stream flow        | M        | As defined in statute and used in decrees.                                                                               |
| Power Generation        | Р        | Non-consumptive                                                                                                          |
| Other                   | Q        | Used with a type code; when the use is recorded elsewhere or there is no actual beneficial use.                          |
| Recharge                | R        | Water used for ground water recharge                                                                                     |
| Export from State       | S        | Water being diverted out of state                                                                                        |
| Transmountain<br>Export | T        | Water diverted from one basin to another                                                                                 |
| Wildlife                | W        | Non-consumptive                                                                                                          |

# SUMMARY OF DIVERSION CODING ...... TYPES

| TYPES                               | CODE          | COMMENTS                                                                                                                                                                        |
|-------------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                     |               | Blank is acceptable                                                                                                                                                             |
| Administrative<br>Record Only       | * 0<br>(Zero) | Water that is recorded for administrative purposes.                                                                                                                             |
| Exchange                            | 1             | Where water is diverted out-of-priority at one<br>structure and replaced at another.                                                                                            |
| Trade                               | 2             | A particular part of an exchange where the<br>release is not back to the stream but directly into<br>the effected structures                                                    |
| Carrier                             | 3             | Water diverted into a "carrier" ditch or canal<br>within a district and remeasured for diversion and<br>actual use in the same district. Used to avoid<br>duplication of "Uses" |
| Alternative Point of .<br>Diversion | 4.            | Decreed water rights taken in another structure                                                                                                                                 |
| Re-Used                             | 5             | (this code was replaced by Source equals reused<br>and is no longer used as a type code).                                                                                       |
| Replacement<br>to River             | *6            | Water replaced as exchange for upstream diversions. Water released for augmentation plans also fall in this category.                                                           |
| Released to River                   | *7            | River being used as a carrier for water to be<br>picked up downstream or water released for no<br>beneficial use.                                                               |
| Released to<br>System               | *8            | Water released so that it can be picked up and measured in another structure.                                                                                                   |
| User-supplied<br>Information        | +9            | Diversion information supplied by the user that<br>has not been verified. After 1992, not used as a<br>type code.                                                               |
| Augmented                           | A             | Used only for augmented water. The use of<br>augmented water would be the beneficial use it<br>was being put to.                                                                |
| Geothermal                          | G             | Geothermal                                                                                                                                                                      |
| Reservoir<br>Substitution           | S             | Release made by upstream reservoir in lieu of a release by a downstream reservoir when no exchange between reservoir exist                                                      |

\* water does not add into structure totals

+ After 1992, user supplied data is notated in a special field tied to each daily amount field.

|                                                     | CURRENT IN USE CODES                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| А                                                   | Active structure with contemporary diversion records                                                                                                                                                                                                                                                                                                  |
| В                                                   | Structure Abandoned by the court                                                                                                                                                                                                                                                                                                                      |
| С                                                   | Conditional structure                                                                                                                                                                                                                                                                                                                                 |
| D                                                   | Duplicate, ID is no longer used                                                                                                                                                                                                                                                                                                                       |
| F                                                   | Structure used as FROM number-located in another District                                                                                                                                                                                                                                                                                             |
| H                                                   | Historical structure only-no longer exists or has records,<br>but has historical data                                                                                                                                                                                                                                                                 |
| I                                                   | Inactive structures which physically exist but no diversion records are kept                                                                                                                                                                                                                                                                          |
| N                                                   | Non-existent structure with no contemporary or historical records                                                                                                                                                                                                                                                                                     |
| U                                                   | Active Structures but diversion records are not maintained                                                                                                                                                                                                                                                                                            |
| When a str                                          | ucture with a CIU of A (Active structure with contemporary Diversion Records)                                                                                                                                                                                                                                                                         |
| has no dive<br>recorded re                          | rsion records for the current year, the Not-Used-Codes (NUC) and in the case of<br>leases from Reservoirs, the Not-Released-Codes (NRC), are used:<br>NOT-USED AND NOT-RELEASED CODES                                                                                                                                                                 |
| has no dive<br>recorded re                          | rsion records for the current year, the Not-Used-Codes (NUC) and in the case of<br>leases from Reservoirs, the Not-Released-Codes (NRC), are used:<br>NOT-USED AND NOT-RELEASED CODES                                                                                                                                                                 |
| has no dive<br>recorded re<br>A                     | ersion records for the current year, the Not-Used-Codes (NUC) and in the case of<br>leases from Reservoirs, the Not-Released-Codes (NRC), are used:<br>NOT-USED AND NOT-RELEASED CODES<br>Structure is not usable                                                                                                                                     |
| has no dive<br>recorded re<br>A<br>B                | ersion records for the current year, the Not-Used-Codes (NUC) and in the case of<br>leases from Reservoirs, the Not-Released-Codes (NRC), are used:<br>NOT-USED AND NOT-RELEASED CODES<br>Structure is not usable<br>No water is available                                                                                                            |
| has no dive<br>recorded re<br>A<br>B<br>C           | rsion records for the current year, the Not-Used-Codes (NUC) and in the case of<br>leases from Reservoirs, the Not-Released-Codes (NRC), are used:<br>NOT-USED AND NOT-RELEASED CODES<br>Structure is not usable<br>No water is available<br>Water available, but not taken                                                                           |
| has no dive<br>recorded re<br>A<br>B<br>C<br>D      | ersion records for the current year, the Not-Used-Codes (NUC) and in the case of<br>leases from Reservoirs, the Not-Released-Codes (NRC), are used:<br>NOT-USED AND NOT-RELEASED CODES<br>Structure is not usable<br>No water is available<br>Water available, but not taken<br>Water taken in another structure                                      |
| has no dive<br>recorded re<br>A<br>B<br>C<br>D<br>E | ersion records for the current year, the Not-Used-Codes (NUC) and in the case of<br>leases from Reservoirs, the Not-Released-Codes (NRC), are used:<br>NOT-USED AND NOT-RELEASED CODES<br>Structure is not usable<br>No water is available<br>Water available, but not taken<br>Water taken in another structure<br>Water taken but no data available |

#### Diversion Coding Trends in the South Platte Basin

- Diversions to off-channel storage were not commonly recorded during 1950 to the mid-1970s, primarily because water commissioners were seasonal workers. Prior to that time, diversions to storage can be calculated using the change in EOM contents from one month to the next (i.e. if the EOM contents are greater in the following month, the reservoir stored).
- Diversions to storage were commonly recorded under the reservoir ID from the mid-1970s to the late 1980s in Water Districts 1, 2, 5, 6, and 64.
- Diversions to storage were commonly recorded at the carrier headgate (using S:1 U:0 coding) from the late 1980s thru present.

- Diversions to irrigation were commonly coded at the headgate for the entire period (using S:1 U:1); releases from storage for *down-ditch* irrigation are generally not recorded and must be calculated using the change in EOM contents from one month to the next (i.e. if the EOM contents are less in the following month, the reservoir released).
- "Carried" water was commonly coded as S:1 U:Q T:3 and was considered water that was carried through the headgate for many different uses. Coding for the structures that received the carried water was supposed to indicate the destination of this water, but is often not recorded. This carried water may include diversions for recharge, diversions turned out at an augmentation station or other uses, but it is difficult to quantify. Discuss the use of this diversion coding with the Water Commissioner.

### **Off-Channel Demands**

Diversions to both off-channel reservoirs and irrigation demands are more common in the South Platte than in other basins. Therefore, it was necessary to develop a methodology to model them in both the StateCU and StateMod analyses. This approach allows:

- 1. Natural flows to be calculated correctly without special considerations of natural flow gage locations,
- 2. Total historical diversion from the river remain at the river location,
- 3. End-Of-Month (EOM) contents in the reservoir are represented by historical values (if a reservoir is part of the system),
- 4. Return flows are accounted for at the correct locations and are operated either by variable efficiency (for irrigation structures) or by a constant efficiency (for carrier structures).



Simple Off-Channel Demand Schematic

- 1. River Diversion (WDID\_C)
- 2. Carrier Return Flow
- 3. Off Channel Reservoir
- 4. Off Channel Demand (WDID\_I)
- 5. Demand Return Flow

#### River Diversion (Location 1)

- Historical Diversions are equal to all water diverted to storage and to other demands from this location (i.e. DivTotal)
  - As discussed above in Diversion Coding trends, some diversions to storage are calculated, not measured.
- The structure is set is 0% efficient in the Baseflow Direct Diversion File (\*\_N.dds), with locations set as follows:
  - The conveyance loss portion will be returned based on the location(s) and percentage(s) to each location designated in the Direct Diversion Station (\*.dds) file in StateMod. *This is represented by Location 2.*
  - Total diversions less ditch loss will be returned to the upstream most node in the off channel system based on location and percentage in the \*.dds file. *This is represented by Location 3.*
- In the \*.dds file additional information needs to be set so that the basin wide summary tables do not double account diversions for these systems:
  - o irturn(1) set to 3 carrier,
  - demsrc(1) set to 7 carrier structure.

## Off Channel Reservoir (Location 3)

- End-of-month values in the \*.eom file are based on historic end-of-month measured or calculated values.
- Operating rules diverting water to storage via Location 1 are included in the \*.opr file.

## Off Channel Demand (Location 4)

- Historical Diversions are equal to water delivered from River Diversion (Location 1) minus transit losses plus releases from Reservoir (Location 3)
  - Reservoir releases are calculated based on changes in end-of-month values, after evaporation is accounted for.
- Return flow location(s) and percentage(s) are based on locations of returns from the use at Location 4 and are located in the \*.dds file for this structure. *This is represented by Location 5*.

 Operating rules diverting water to the off channel demand via Location 1 are included in the \*.opr file. Operating rules releasing water from Location 3 to the off channel demand are included in the \*.opr file.

The off channel "tributary" will be connected to the network at the furthest downstream location of return flows from the off channel demand(s). Natural Flow calculations on the mainstem of the river network will be calculated correctly in all instances because:

- The river sees the entire historic diversion at Structure 1,
- Return flows from carrier losses are accounted for in their correct location,
- Returns from the river diversion to the off channel "tributary" are balanced by:
  - o Increases in storage,
  - o Diversion at off channel demand structure(s),
- Reservoir releases are balanced by diversions at off channel demand structure(s),
- And return flows from off channel demands are accounted for in their correct location.

Simulations (forward mode) will model the system correctly because all demands (reservoir, irrigation, etc.) on the off channel system will be satisfied by carried water from River Diversion (Location 1) by operating rules. This will ensure that water is delivered only in amounts up to what is needed on the off channel system. If setup correctly, there will not be excess water returning from the off channel system via the physical network connection (via the river).

Demands in the \*.ddm will be simulated as:

- Set to zero for River Diversion (Location 1),
- Targets at Reservoir (Location 3)
  - Historical historical end-of-month content
  - (Calculated and Baseline capacity)
- Demands at Off-Channel Demand (Location 4)
  - Historical same values as in the \*.ddh estimated for this structure

• (Calculated and Baseline – irrigation water requirement based)

Reservoir water rights will be located at the reservoir and operating rules will carry water to the reservoir from the river through River Diversion (Location 1) using the reservoir right as the source water right. Diversion rights will be located at the river headgate and operating rules will carry water to the off channel demand from the river through River Diversion (Location 1) using the diversion right as the source water right.

# Big Thompson River Example – Consolidated Home Supply Ditch and Reservoir Company

The Consolidated Home Supply Ditch and Reservoir Company was identified as a "key water use facility" therefore the Company manager and Water Commissioner were interviewed to understand the operations of this system. The results of this interview were documented in the SPDSS Task 5 - Key Structure, Consolidated Home Supply Ditch and Reservoir Company memorandum. This memorandum laid the framework for how the off-channel demands were implemented in the StateCU analysis; and in this example, how the off-channel demand would be implemented in StateMod.

#### SYSTEM OVERVIEW

The Consolidated Home Supply Ditch and Reservoir Company (the Company) provides direct flow water and storage water to irrigators located south of the Big Thompson River and the City of Loveland. The Company was incorporated in the late-1800s and consists of 2,001 outstanding shares of stock. Municipal water supplies for the Town of Johnstown are provided through the Company's facilities and Johnstown owns approximately 10 percent of company stock. Johnstown is the major shareholder in the Company and is the only municipal interest in the Company. The remaining shares of Company stock are used for irrigation purposes within the service area. Shareholders are entitled to equal portions of water supplies available pursuant to the ditch company's rights holdings.

Direct flow water is conveyed for direct irrigation uses and storage in company reservoirs through the Home Supply Ditch headgate. Storage units owned by the Home Supply Ditch include Lone Tree Reservoir, Lon Hagler Reservoir, and Mariano Reservoir (aka Boedecker Reservoir). The ditch company also uses transbasin water from the Colorado Big Thompson (C-BT) Project.

Key structures identified in the Home Supply Ditch System are as follows

- 1) Home Supply Ditch
- 2) Lone Tree Reservoir
- 3) Home Supply Ditch Exchange Reservoir System
  - Mariano Reservoir
  - Lon Hagler Reservoir



#### **Development of Off-Channel Demand Information**

River Diversion (Location 1) = Home Supply Ditch (0400524)

- Historical Diversions are currently calculated as:
  - For 1950 1964 and 1966: There are no



recorded diversions to storage, therefore total diversions under 0400524 + calculated diversions to storage in Lon Hagler Reservoir (0404136) and Lone Tree Reservoir (0404137).

- Calculated diversions to storage are based on the difference in monthly EOM contents, plus net monthly evaporation, plus conveyance loss. This "moves" the diversions back to the headgate.
- For 1965, 1967 1993: Total diversions under 0400524; includes diversions to irrigation and to storage.
- For 1994 2006: Additional diversions are stored under the reservoirs, therefore total diversions under 0400524 + total diversions under reservoirs (0404136 and 0404137).

Review diversion coding and know where your diversions to storage are measured for the entire study period - make adjustments as necessary and remember to contact your Water Commissioner.

- Conveyance efficiency and return flow information was discussed in the Task 5 memorandum; review information prior to implementing in the model.
  - Develop Natural Flow Direct Diversion Station (\*\_N.dds) and Simulation Direct Diversion Station (\*.dds) reflecting correct return flow locations/timing (*Location 2*) during each mode of model execution.

• The difference between the two \*.dds files is the location and percentages of return flows at the carrier structure.

**Conveyance Efficiency**: The Home Supply Ditch is considered a losing ditch but only experiences about 8 percent to 10 percent shrink down the ditch between the river headgate and Lone Tree Reservoir. The Home Supply Ditch has not historically benefited from significant amounts of return flows from and runoff from up-gradient lands.

**Return Flow Locations**: Return flows from lands irrigated by the Company water supplies typically accrue based on their location:

- Return flows from irrigated parcels located above Lone Tree Reservoir accrue to South Side Ditch system.
- Return flows from irrigated parcels located north of the Home Supply Ditch below Lone Tree Reservoir accrue to the Big Thompson River, and
- Return flows from irrigated parcels located south of the Home Supply Ditch below Lone Tree Reservoir accrue to the Little Thompson River.

*Off Channel Reservoir (Location 3) = Lon Hagler Reservoir (0404136) and Lone Tree Reservoir (0404137)* 

- Historical End-of-month contents are stored as daily records. The nearest daily value to the end of the month is used to create a monthly time series, and then if necessary, missing data is filled using interpolation (maximum of 2 missing months), pattern gages, and then historical month average.
- Operating rules need to be developed to divert water to storage via Home Supply Ditch to Lon Hagler Reservoir (0404136) and Lone Tree Reservoir (0404137) under the storage rights.

# *Off Channel Demand (Location 4) = Home Supply Ditch Irrigation Demand (0400524\_I)*

- Historical Supply to irrigation are currently calculated as the total diversions under Home Supply Ditch (0400524), minus specific diversion classes for diversions to storage, scaled by 90 percent conveyance efficiency, plus releases from Lone Tree Reservoir (0404137).
- Develop Direct Diversion Station (\*.dds) reflecting correct return flow locations/timing (*Location 5*) for the irrigated acreage.

 Operating rules need to be developed to divert water to irrigation via Home Supply Ditch to the Home Supply Irrigation Demand (0400524\_I), and operating rules to release from Lone Tree Reservoir (0404137) to the Home Supply Irrigation Demand (0400524\_I).

## SPDSS Surface Water Model – Workshop 2 October 16, 2013

# Agenda

- 1. Model Team Update on Basin Progress (60 minutes)
  - CBT Update
  - Schedule Review, including Workshop #3
  - General Issues and Questions
- 2. Return Flow Delay Pattern Guidelines (20 minutes)
- 3. Plan Structures Definition and Types (15 minutes)
- 4. Changed Water Right Representation
  - Accounting Plans (45 minutes)

#### Break (10 minutes)

- Terms and Condition Plans (30 minutes)
- Reuse Plans (20 minutes)
- 5. Augmentation Plan Representation (45 minutes)

## **CBT Update**

WWG will send the following by 10/25.

Based on discussions with Northern, CBT and Windy Gap supply will NOT be split for the planning model efforts.

- Monthly CBT/Windy Gap deliveries **TO** your basin in standard StateMod format (\*.stm)
- 2. Monthly CBT/Windy Gap deliveries **FROM** your basin in standard StateMod format
- 3. Historical EOM contents for Lake Estes, Carter Lake, and Boulder Reservoir in standard StateMod format
- 4. List of ditches and municipalities who receive CBT shares in your basin; current share distribution
  - Do not plan to split CBT into "share accounts" for modeling
  - Recent share percentage/deliveries will be used to help with calibration only

# **Project Schedule**

|                                                                                                                                                          | Aug | Sep | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Jan | Feb | Mar |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Review Basin Information, Develop Preliminary Model Network and Baseflow<br>Area/Precipitation Parameters (may not include plan structures, gravel pits) |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Modeling Workshop 1 (Data-Centered Approach, Interaction between Basins,<br>Baseflow Parameters, Diversion Coding and Off-channel Demands)               | x   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Finalize Streamflows, Historical Diversions (SW and GW) and Reservoir EOM Content Data                                                                   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Modeling Workshop 2 (Plan Structures, Operating Rules)                                                                                                   |     |     | x   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Finalize Demands                                                                                                                                         |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Model Workshop 3 (Calibration)                                                                                                                           |     |     |     |     |     | x   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Finalize Step 1 Calibration (Baseflows, Physical Calibration of Structure Locations and Return Flows)                                                    |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Incorporate Changed Ditch Shares/Augmentation Plans/Recharge                                                                                             |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Complete Operating Rules                                                                                                                                 |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Finalize Step 2 Calibration (Current Operations)                                                                                                         |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Complete Model Documentation                                                                                                                             |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Final Input Files and Documentation to Model Integrator Team                                                                                             |     |     |     |     |     |     |     |     |     |     |     |     |     |     | x   |     |     |     |     |     |
| Assist Model Integrator Team                                                                                                                             |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Complete Integrated Model                                                                                                                                |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Calibrate Integrated Model                                                                                                                               |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Finalize Integrated Model Documentation                                                                                                                  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | x   |

## **Return Flow Monthly Delay Pattern Guidelines**

- 1. Develop using Glover analytical solution (can use AWAS Model or other)
  - AWAS GIS tool and layer download
    <u>http://www.ids.colostate.edu/projects.php?project=spgis&breadcrumb=SPGIS</u>
  - Latest Version of IDS AWAS <u>http://www.ids.colostate.edu/projects.php?project=awas</u>



- 2. AWAS Model Centroid of area of interest within AWAS Boundary
  - Provide AWAS with UTM location of interest from GIS
  - AWAS will use Effective Transmissivity and Specific Yield at that location
  - AWAS will calculate Distance to Boundary and Distance to Stream based on UTM location
- 3. AWAS Model Centroid of area of interest outside AWAS Boundary
  - Estimate parameters and enter into AWAS Model
  - CDM recommended T=1000 ft<sup>2</sup>/day for Western Tribs and T=200 ft<sup>2</sup>/day for areas east of South Platte; Sy = 0.17

- More extensive Transmissivity and Specific Yield raster grids are available at <a href="http://cdss.state.co.us/GIS/Pages/Division1SouthPlatte.aspx">http://cdss.state.co.us/GIS/Pages/Division1SouthPlatte.aspx</a>
- SPDSS Task Memo 43.3 discusses the alluvial properties
- 4. Patterns per Tributary?
  - Based on general location of irrigated lands and variation in ground water parameters
  - ~ 7 adequately represent surface water diversions in WD 1 and 64
  - In general, unique patterns for each GW-only aggregate



- 5. Delay Pattern Normalization
  - Recommend maximum of 3-years of monthly lag or lag pattern cut off of 2 percent (whichever is less)
  - Normalize remaining lag percentages proportionally using the ratio of each month return to total return

#### **Return Flow Location Guidelines**

- 1. Based on location of ditch irrigated acreage and local drainages
- 2. Can be revised during calibration

## **Plan Structures**

StateMod includes "Plan" structures that allow specific types of administrative activities to be simulated and tracked (e.g. augmentation plans, terms and conditions associated with changed water rights, reusable supplies, etc.).

Refer to Section 3.9 and 7.23 in the StateMod Documentation (Version 13) for information on specific plan types.

Twelve plan types are currently available:

- 1. Terms and Conditions (T&C)
- 2. Well Augmentation
- 3. Reservoir Reuse
- 4. Non-Reservoir Reuse
- 5. Reuse to a Reservoir from Transmountain Import
- 6. Reuse to a Diversion from Transmountain Import
- 7. Transmountain Import
- 8. Recharge Plan from a Reservoir or Canal
- 9. Out-of-Priority Diversion or Storage
- 10. Special Well Augmentation (e.g. Designated Basin, Coffin Wells, etc.)
- 11. Accounting Plan
- 12. Release Limit Plan

As discussed in previous training sessions, the preferred modeling approach to representing and simulating transmountain imports does not use Plan Types 5, 6, and 7; these plan types will not be discussed herein.

Out-of-Priority Plans are generally used to represent out-of-priority diversions for direct use or to storage pursuant to specific agreements (e.g. Blue River decree diversions by Denver and Colorado Springs); these plans will not be discussed herein.

#### **Plan Structure Model Input Files**

# Plan (PLN) File

- Lists Model ID and Name of All Modeled Plans
- Assigns Plan Type (1 thru 12)
- Created in Text Editor

## Plan Return Flow (PRF) File

- Distribution/Timing to Route Canal Seepage (Recharge Plans)
- Return Flow Obligations (Terms and Condition Plans)
- Created in Text Editor

## Reservoir Return Flow (RRF) File

- Distribution/Timing to Route Reservoir Seepage (Recharge Plans)
- Created in Text Editor

## Plan Recharge (PLR) File

- Assigns Recharge Areas and Reservoir Rights to Augmentation Plans
- Created in Text Editor

## Plan to Well (PLW) File

- Assigns Well IDs to Augmentation Plans, wells may be assigned to more than one plan
- Created using database/spreadsheets and Well IDs from the WER file (see further discussion below)

## Operating Rule (OPR) File

- Directs StateMod to move water in and out of plans
- Created in Text Editor

# **Changed Water Rights Representation-Accounting Plans (Type 11)**

Changed water rights, or water transfers, are represented in StateMod by "temporarily" diverting the water right into an Accounting Plan (Type 11) when in priority, then releasing the water from the plan in a "priority" defined by the user to meet a demand. Water is diverted into an Accounting Plan to "temporarily store" the associated water right when it is in priority. By placing the right in a plan, the order of its use can be set by the user; and the right can be used to meet multiple demands.



- 1. Divert water associated with one or more water rights into the Full Water Right Accounting Plan.
  - a. Type 24 and 25 operating rules are used to "store" water in a Full Water Right Accounting Plan, and can include monthly and annual limitations, a portion or all of the water right, and intervening structures with/without a loss. Priorities of these operating rules are set to the same priority as the water right(s).
  - b. Accounting Plans are used to ensure that any shortages are "shared" by all users

- c. Include plan IDs in the PLN file and include on the network file.
- 2. Split changed water in the Full Water Right Accounting Plan to multiple users.
  - a. Type 46 operating rules are used to split water in the Accounting Plan to individual users' Accounting Plans; a maximum of 10 split plans is allowed.
  - b. Include plan IDs in the PLN file and include on the network file.
  - c. Priorities of these operating rules are set just junior to the priority of the most junior water right in the Full Water Right Accounting Plan.
- 3. Release water in Accounting Plans to meet individual demands, including storage in reservoirs. If the demands are upstream, the model checks to assure exchange potential.
  - a. Type 27 and Type 28 operating rules are used to "release" water in the Accounting Plans to meet specific demands in a "later" priority relative to the Users' other supplies.
  - b. Operating rules can include intervening structures (to limit capacity), delivery losses, designation of return flow obligations (Terms and Conditions Plan, see further discussion below), and designation of reusable supplies (Reuse Plan, see further discussion below).
- 4. Release unused supplies from the Users' Accounting Plans back to the ditch.
  - a. "Release" water from the Users Accounting Plans back to the ditch demand, if applicable, using Type 27 and 28 operating rules and priorities junior to all other plan demands.
- 5. Spill unused supplies from the Full Water Right Accounting Plan and Users' Accounting Plans back to the river.
  - a. Accounting plans must "spill" each time step since water is not physically stored; use Type 29 operating rules with a priority junior to all other operations to spill each plan.

# Changed Water Rights Representation – Terms and Condition Plans (Type 1)

Terms and Conditions (T&C) Plans (Type 1) are used to calculate and store future return flow (RF) obligations associated with the transfer of water rights. When a T&C Plan is specified, StateMod calculates the obligation "on-the-fly" for the month it occurs and all associated future months. Refer to Sections 3.9; 4.13.27; 4.13.28; and 7.23 in the StateMod Documentation (Version 13) for specific information on T&C Plans and how to incorporate the plans into operating rules.

RF obligations are not associated with operating rules that "store" water in an Accounting Plan; rather they are created when changed water is released from an Accounting Plan (i.e. "used" by a demand).

T&C Obligations are calculated based on the amount of water released from an Accounting Plan and the Return Flow Obligation Pattern.

- Standard Return Pattern is similar to return flows generated through irrigation use, they are based on the "efficiency" during the time step of diversion = (Data in the return flow file (e.g. URM/DLY file)) \* (Released Water) \* (1.0-CU Factor), where the CU Factor is provided in Row 5 of the operating rule that releases water from an Accounting Plan.
  - CU Factor is the monthly percentage of diverted water "consumed" as defined in the change decree.
  - Associate the T&C Plan ID with Return Flow Location, Percent, and Return Table ID in the Plan Return File (PRF).
- Fixed Return Pattern is used when a decree "fixes" the percent of nonconsumed water to be returned in a specific month, regardless of the month of diversion = (Data in the return flow file (e.g. URM/DLY file)) \* ((Released Water).
  - Associate the T&C Plan ID with Return Flow Location, Percent, and Return Table ID in the Plan Return File (PRF).

- Generally used to represent "winter return flows" obligations based on the total amount released or "used" during the summer.
- May require a return table ID in the URM/DLY to reflect the specific T&C for each plan.
- **Mixed Return Pattern** = Standard Return Pattern + Fixed Return Pattern
  - Standard generally used to represent diversion season (immediate or summer) obligations; Fixed used to represent winter obligations
  - "Coors Factors" are one example

Once RF obligations are stored in a T&C plan, the obligations become a demand that can be met either in-priority (e.g. the lagged RF accrue to the river during free river conditions and the demand is "met" using a Type 43 operating rule), or met by other supplies including reusable supplies, reservoir releases, other changed shares.



**Standard Return Pattern** 

**Fixed Return Pattern** 

| Month     | CU Factor | 1-CU Factor | Month    | URM/DLY Factor |
|-----------|-----------|-------------|----------|----------------|
| April     | 35%       | 65%         | November | 7.2%           |
| May       | 48%       | 52%         | December | 5.9%           |
| June      | 58%       | 42%         | January  | 4.8%           |
| July      | 60%       | 40%         | February | 3.9%           |
| August    | 49%       | 51%         | March    | 2.7%           |
| September | 27%       | 73%         |          |                |
| October   | 0%        | 100%        |          |                |

#### **Example Input Files**

#### Plan File (PLN)

| # ID        | Name                | RiverLoc    | ON/Off | iPtype | Peff | iPrf i | Pfail | Pstol Psource | IPAcc |
|-------------|---------------------|-------------|--------|--------|------|--------|-------|---------------|-------|
| #           | eb                  | ebeb        | eb-    | eb     | eb   | eb     | eb    | exb           | ebe   |
| Fish RFs    | Fisher Total RFs    | Fish RFs    | 1      | 1      | -1   | 1      | 0     | 0 0700570     | 0     |
| Fish CCkRFs | Fisher RFsAbvCoAg   | Fish CCkRFs | 1      | 1      | -1   | 0      | 0     | 0 Fish RFs    | 0     |
| Fish SPRRFs | Fisher RFsAbvFulton | Fish SPRRFs | 1      | 1      | -1   | 0      | 0     | 0 Fish RFs    | 0     |

#### Plan Return File (PRF)

| # Plan ID NA | Ret ID      | Ret % I | able # |
|--------------|-------------|---------|--------|
| #eb          | ebeb-       | eb-     | е      |
| Fish_RFs     | Fish_CCkRFs | 46.00   | 4      |
| Fish RFs     | Fish SPRRFs | 54.00   | 4      |
| Fish RFs     | Fish CCkRFs | -46.00  | 110    |
| Fish RFs     | Fish SPRRFs | -54.00  | 110    |

#### **Return Flow File (URM/DLY)**

| # ID<br># | No. I  | Ret 1 | Ret 2<br>eb | Ret 3<br>eb | Ret 4 | Ret 5<br>eb | Ret 6 I | Ret 7 | Ret 8<br>eb | Ret 9<br>-eb | Ret 10 I | Ret 11<br>6 | Ret 12<br>ebe |        |                            |
|-----------|--------|-------|-------------|-------------|-------|-------------|---------|-------|-------------|--------------|----------|-------------|---------------|--------|----------------------------|
| #         | 110 12 | 7.2   | 5.9         | 4.8         | 3.9   | 2.7         | 0       | 0     | 0           | 0            | 0        | 0           | 0             | 24.5 ' | Fisher winter return flows |

#### **Operating Rule File (OPR)**

| #<br># ID | Name                | NA                      |         | Admin#        | # Str   | On/Off Dest Id | Dest Ac Soul Id | Soul Ac Sou2 Id | Sou2 Ac | Type |
|-----------|---------------------|-------------------------|---------|---------------|---------|----------------|-----------------|-----------------|---------|------|
| #         | eb                  | eb                      | exxxxb- | eb            | eb      | e-b            | ebe-b           | -ebe-b          | ebeb    | ex   |
| # Kel     | ease changed water. | rights down Lower Clear | Creek   | Ditch to west | : Grave | 1 Lakes        |                 |                 |         |      |
| Fish.     | 05 Opr ThFish       | To WGravelLks           | 5       | 55835.00003   | з.      | 1 0203699      | 4 ThFishPln     | 100 Fish RFs    | 3       | 27   |
|           |                     | 0700570                 | 10      | Carrier       |         |                |                 | -               |         |      |
|           |                     | 0700549                 | 0       | Return        |         |                |                 |                 |         |      |
|           |                     | 0700547                 | 0       | Carrier       |         |                |                 |                 |         |      |
|           |                     | Fish.01                 |         |               |         |                |                 |                 |         |      |
| 0. 0      | . 0. 0. 0. 35.      | 48. 58. 60. 49. 27. 0.  |         |               |         |                |                 |                 |         |      |

## **Changed Water Rights Representation – Reuse Plans (Type 3 and 4)**

Reuse Plans are used to track (color) the quantity and location of fully-consumable return flows associated with the transfer of water rights. When fully-consumable water is used to meet a demand associated with a Reuse Plan, StateMod "places" the non-consumed water in the Reuse Plan based on the lagged RF pattern associated with the demand.

Refer to Sections 3.9; 4.13.27; 4.13.28; and 7.23 in the StateMod Documentation (Version 13) for specific information on Reuse Plans and how to incorporate the plans into operating rules. The following example uses reusable changed shares; the approach for using reusable transbasin diversions is similar.



#### Non-Reservoir Reuse Plans

- 1. Type 27/28 operating rules release water from LLC Accounting Plan to Thornton Indoor Demand (Note that Type 32/33 can also be used in lieu of Type 27/28)
  - a. Return flow obligations are accounted for a T&C Plan.
  - Efficiency and associated physical return flow location of diverted water (Metro WWTP) is defined in the \*.dds file under the Thornton Indoor Demand structure (THIN\_DMD).
  - c. Associated reusable return flows are accounted from in Reuse Plan (MetroTH)
- 2. Type 48/49 operating rules "release" reusable effluent from Reuse Plan to meet return flow T&C plan demands, to meet reservoir demands, etc.
- 3. Type 29 operating rule "spills" unused water from Reuse Plan after associated demands have been met.
- 4. Water can be stored in Reuse plan for multiple time-steps (i.e. Lawn Irrigation Return Flows or LIRFS). Type 29 operating rule will only spill reusable water for the current time step.

**Example Input Files** 

Plan File (PLN)

| #<br># ID<br># | Name<br>eb   | RiverLoc | ON/Off i | Ptype<br>eb | Peff<br>eb | iPrf i<br>eb | .Pfail<br>eb- | Pstol Psource | IPAcc<br>-ebe |
|----------------|--------------|----------|----------|-------------|------------|--------------|---------------|---------------|---------------|
| #<br>MetroTh   | MetroThnPlan | MetroTh  | 1        | 4           | 0          | 0            | 0             | 0 Metro_WWTP  | 0             |

#### **Direct Diversion Station File (DDS)**

| #><br>#> ID               | Name      | Riv ID         | On/Off C | apacity | RepTy    | npe Da | ily ID  |     |
|---------------------------|-----------|----------------|----------|---------|----------|--------|---------|-----|
| #>                        | User Name | 606            | DemType  | #-Ret E | ff % Are | a UseT | ype Dem | Src |
| <pre>#&gt;xxxxxxxx</pre>  | xxb       | exxxxxxxxxxxxx | xbeb     | eb      | eb       | eb     | eb      | е   |
| #>                        |           | Ret ID         | Ret % T  | able #  |          |        |         |     |
| #>xxxxxxxx                | ******    | xxxxxbe        | ebeb     | е       |          |        |         |     |
| <pre>#&gt;EndHeade:</pre> | r         |                |          |         |          |        |         |     |
| THIN DMD                  | THIN DMD  | THIN DMD       | 1        | 999.00  | 1        | 0 0    |         |     |
| _                         | THIN DMD  | -              | 1        | 1       | 5999     | .00    | 2       | 7   |
|                           | -         | Metro_WWTP     | 100.00   | 4       |          |        |         |     |

#### **Operating Rule File (OPR)**

| #      |                      |                        |                      |         |                     |                       |                      |                 |                |
|--------|----------------------|------------------------|----------------------|---------|---------------------|-----------------------|----------------------|-----------------|----------------|
| # ID   | Name                 | NA                     | Admin#               | # Str   | On/Off Dest Id      | Dest Ac Soul Id       | Soul Ac Sou2 Id      | Sou2 Ac         | Type ReusePlan |
| #      | eb                   | eb                     | exxxxbeb             | eb-     | e-b                 | -ebe-b                | -ebe-b               | ebeb            | exb            |
| #      |                      |                        |                      |         |                     |                       |                      |                 |                |
| # Rema | ining uses for Thorn | ton's LCC shares not 1 | used as part of Cosm | ic Book | ing Over Exchange   |                       |                      |                 |                |
| #      | Release changed wat  | ter rights to Inside a | and Outside uses thr | ough We | es Brown WTP, just  | junior to uses of wa  | ter for Booking Over | Exchange        |                |
| #      | 0% ditch loss assi   | gned for use of change | ed LCC shares (based | on Tho  | ornton recommendat: | ion). No losses throu | igh WTP.             |                 |                |
| LCC.03 | Opr_ChangedLCC       | To_Inside_Uses         | 50404.00005          | 2.      | 1 THIN_DMD          | 1 ThLCCPln            | 100 LCC_RFs          | 3               | 27 MetroTh     |
|        |                      | 0700547                | 0 Carrier            |         |                     |                       |                      |                 |                |
|        |                      | WesBrownWTP            | 0 Carrier            |         |                     |                       |                      |                 |                |
|        |                      | LCC.01                 |                      |         |                     |                       |                      |                 |                |
| 0.0    | . 0. 0. 0. 44. 54    | 4. 55. 51. 33. 7. 0    |                      |         |                     |                       |                      |                 |                |
|        |                      |                        |                      |         |                     |                       |                      |                 |                |
| # Use  | reusable effluent to | meet return flow obl:  | igations after Clear | Creek   | water rights used   | to meet return flows  | (Fisher, FHL) have e | exhausted all ( | of their uses  |
| Metro. | 01 OprMetroThFHL_(   | CCkRFs                 | 55835.00006          | 0.      | 1 FHL_CCkRFs        | 0 MetroTh             | 0 NA                 | 0               | 49 NA          |
| Metro. | 02 OprMetroThFish    | CCkRFs                 | 55835.00007          | Ο.      | 1 Fish_CCkRF:       | s 0 MetroTh           | 0 NA                 | 0               | 49 NA          |
| Metro. | 03 OprMetroThFHL_I   | BDC_RFs                | 55835.00008          | Ο.      | 1 FHL_BDC_RF:       | s 0 MetroTh           | 0 NA                 | 0               | 49 NA          |
| Metro. | 04 OprMetroThStand   | d_SWRFs                | 55835.00009          | 0.      | 1 Stand_SWRF:       | s 0 MetroTh           | 0 NA                 | 0               | 48 NA          |

#### **Reservoir Reuse Plans**

A Reservoir Reuse Plan tracks reusable water stored and released from a physical reservoir; allowing both one-time use and fully-consumable water to be stored in the same reservoir account.

- The Reservoir Reuse Plan is associated with the reservoir as water is stored.
- Type 27/28 operating rules release water from the associated reservoir and the Reservoir Reuse Plan.
- A Type 29 operating rule to "spill" is not used for a Reservoir Reuse Plan.

# Augmentation Plan Representation – Well Augmentation Plans (Type 2 and 10)

StateMod calculates the depletion at a river associated with well pumping in the current time step and all future time steps based on the amount pumped, the efficiency of its use, and its associated depletion pattern (e.g. unit response function). If a well water right is tied to an Augmentation Plan (Type 2), any depletion associated with out-of-priority pumping (i.e. augmentation requirement) is stored in a Well Augmentation Plan in the current and all future time steps. The augmentation requirement is the difference between the well's depletion on the river and the accretions from any associated return flows. These augmentation requirements may be "offset" by a number of supplies including:

- In-priority depletions that accrue to the river in the current time step; accounted for automatically by StateMod
- In-priority depletions that accrue to the river from pumping in prior time steps.
- Accretions from decreed recharge areas or canal seepage
- Reusable effluent from a Reuse Plan
- Releases from a reservoir
- Augmentation Wells

A Special Augmentation Plan (Type 10) is used to account for depletions associated with a well or group of wells that are not required to be augmented. Examples include pumping in Designated Basins or pumping by wells decreed to be non-tributary (e.g. Coffin Wells). A Special Augmentation Plan can track these depletions, however does not generate an "augmentation requirement" and therefore does not have associated supplies. Refer to Section 7.30 in the StateMod Documentation (Version 13) for information on Augmentation Plans.

Augmentation Plans were researched, reviewed, and recommended for inclusion in future SPDSS modeling efforts in Task 7.2. Individual augmentation plans with similar supplies, and augmentation plans that are accounted for in multiple Water Districts

were grouped. The final list of recommended Augmentation Plans is provided in Table 4 of SPDSS Task 7.2 memorandum (available on the CDSS website).

| No           | Plan Name                                         | Plan ID | Plan Wells* | Plan Acreage |
|--------------|---------------------------------------------------|---------|-------------|--------------|
| 1            | CENTRAL REPL                                      | 0203334 | 857         | 54,415       |
| 2            | CENTRAL WAS AUG                                   | 0203394 | 401         | 29,382       |
| 3            | LOGAN WELL USERS AUG                              | 6402539 | 307         | 28,176       |
| 4            | BIJOU AUG PLAN                                    | 0103339 | 196         | 24,859       |
| 5            | POUDRE PLAN                                       | 0303336 | 709         | 23,584       |
| 6            | LOWER LOGAN WELL USERS A                          | 6402536 | 129         | 12.841       |
| 7            | LOWER PLATTE BEAVER AUG                           | 0102535 | 95          | 12,816       |
| 8            | SEDGWICK CTY WL USERS A                           | 6402517 | 121         | 11,235       |
| 9            | UPPER PLATTE BEAVER AUG                           | 0102529 | 88          | 10,263       |
| 10           | FT MORGAN CNL AUG PLAN                            | 0102528 | 85          | 10,208       |
| 11           | LOWER LATHAM RES CO AUG                           | 0103332 | 89          | 9,073        |
| 12           | RIVERSIDE AUG                                     | 0102522 | 88          | 6,299        |
| 13           | ORPHAN WELLS OF WIGGINS AUG                       | 0102557 | 37          | 5,189        |
| 14           | HARMONY DITCH CO AUG                              | 6402518 | 44          | 4,266        |
| 15           | ROTHE AUG                                         | 0102513 | 17          | 4.232        |
| 16           | NEW CACHE AUG                                     | 0103397 | 116         | 4,085        |
| 17           | LSPWCD AUG                                        | 6402542 | 45          | 3,584        |
| 18           | UNION DITCH AUG                                   | 0202539 | 46          | 3.130        |
| 19           | PIONEER ALIG PLAN                                 | 0102518 | 32          | 2,596        |
| 20           | LOW LINE DITCH CO AUG                             | 6402540 | 14          | 2,480        |
| 21           | NORTH STERLING AUG                                | 6403392 | 20          | 2.317        |
| 22           | DINSDALE AUG                                      | 6402519 | 15          | 2,289        |
| 23           | CONDON AUG                                        | 6402525 | 13          | 2,242        |
| 24           | NATIONAL HOG FARMS AUG                            | 0102624 | 5           | 2,216        |
| 25           | WATER SUPPLY STRG AUG                             | 0303399 | 70          | 1,931        |
|              |                                                   | TOTALS* | 3,639       | 273,708      |
| 26 to<br>125 | SMALLER PLANS ASSOCIATED TO<br>WELLS IN HYDROBASE | Various | 201         | 25,240       |
|              |                                                   | TOTALS* | 3.840       | 298.948      |

Source: SPDSS 2001 GJS Irrigated Acreage Assessment (June 19, 2007) and HydroBase (V20060816). Notes: Well use and replacements for 25 major plans discussed in Appendix A.

\*Well counts included only those wells tied to land in 2001 Irrigated Acreage Assessment. Acreage and wells included in Plan IDs are not unique since multiple wells may be tied to the same lands in the GIS coverage and wells may be associated with multiple plans in HydroBase.

Refer to row number for the following notes:

- Includes Plan IDs 0103334, 0203334, 0303334, 0403334, and 0503334 since Central Repl. (i.e., Ground Water Management Subdistrict – GMS) wells assigned to different Plan IDs based on Water District where well is located (see Appendix A-1).
- Includes Plan IDs 0103394, 0203394, 0303394, and 0403394 since Central WAS (i.e., Well Augmentation Subdistrict) wells assigned to different Plan IDs based on Water District where well is located (see Appendix A-2).
- Includes Plan IDs 6402537, 6402539, 6402546, 6402547, 6502548, and 6402554 to account for Logan Well Users and other well users included in original Logan Well Users decree that subsequently split off to form their own plans, which commonly use the same augmentation sources (see Appendix A-3).
- Includes Plan IDs 0103339 and 0102574 to account for Bijou Canal wells and five wells in Fort Morgan Farms augmentation plan that irrigate the same lands as those irrigated by Bijou Canal wells (see Appendix A-4).
   Includes Plan IDs 0103336, 0203336, and 0303336 (see Appendix A-5).
- Includes Plans IDs 0102522, 0102525, 0102536, 0102581, and 0102725 to account for well users under Riverside Canal that receive surface water deliveries from Riverside Canal and share the same augmentation sources (see Appendix A-12).
Note – It is important to discuss the recommended Augmentation Plans with the Water Commissioner to make sure the "large" augmentation plans are included.

### Augmentation Plan "Demand"

- 1. Define the list of "large" Augmentation Plans, "grouped" Augmentation Plans, and Special Augmentation Plans.
  - a. List User Accounting Plans in the PLN File with Type 2 or Type 10 designations and include on the network file.
- 2. Associate the wells in the model to each augmentation plan to define the "demand" of the Augmentation Plans.
  - a. StateMod internally tracks the "demand" or augmentation requirement of an Augmentation Plan based on the wells associated with the Augmentation Plan. This association is input into the model using the Plan to Well (PLW) File.



Note – There is no current method to create the PLW File using DMIs; currently created using HydroBase Association Table, WER File, and MS Access.

### Augmentation Plan "Supplies"

Augmentation supplies can come in the form of "lagged" accretions or "controlled" releases (e.g. changed shares via augmentation station, reservoir releases, and reusable effluent). In general, augmentation supplies should be prioritized in the operating rule file in the following order:

- 1. In-priority depletions that accrue to the river in the current time step; accounted for automatically by StateMod based on the individual well water right.
- 2. In-priority depletions that accrue to the river from pumping in prior time steps.
  - a. Use a Type 43 operating rule in the OPR File using an "in-priority" date that generally corresponds to the Augmentation Plan decree or a common well right date.
- 3. Accretions from decreed recharge areas or canal seepage.
  - a. Accretions from each recharge area and each canal are tracked using individual Recharge Plans (Type 8); include in PLN file and network file.
  - b. Diversions to recharge areas are simulated using Type 45 operating rules in the OPR File, and the Canal Recharge Plan is designated in this operating rule file if applicable.
  - c. The Canal Recharge Plan accretes to the river based on the Return Flow Location, Percent, and Return Table ID in the Plan Return File (PRF).
  - d. The Canal Recharge Plan "credits" the augmentation plan based on a Type 48 operating rule in the OPR File.

Canal Recharge Plans

e. Define the Recharge Areas (RA) and their associated Augmentation Plans in the Plan Recharge (PLR) File, as a recharge area can be associated with more than one augmentation plan.

| # Deservoir | Deservoir   | Pagaruoir |       |         |          |    |     |      |
|-------------|-------------|-----------|-------|---------|----------|----|-----|------|
| # RESELVOIL | REBELVOIL   | Reservoir |       | -       |          |    |     |      |
| # Plan ID   | Right ID    | Str ID    | Owner | Comment | 3        |    |     |      |
| ‡e:         | xbe         | xbexb-    | ex    | b       |          |    |     | e    |
| 0102522_P1R | 0102522_R.1 | 0102522_R | 1     | Res     | Recharge | to | Aug | Plan |
| 0102528_P1R | 0102528_R.1 | 0102528_R | 1     | Res     | Recharge | to | Aug | Plan |
| 0102529_P1R | 0102529_R.1 | 0102529_R | 1     | Res     | Recharge | to | Aug | Plan |
| 0102535_P1R | 0102535_R.1 | 0102535_R | 1     | Res     | Recharge | to | Aug | Plan |
| 0103334_P1R | 0103339_R.1 | 0103334_R | 1     | Res     | Recharge | to | Aug | Plan |
| 0103339_P1R | 0103339_R.1 | 0103339_R | 1     | Res     | Recharge | to | Aug | Plan |
| 0103570_P1R | 0103570_R.1 | 0103570   | 1     | Res     | Recharge | to | Aug | Plan |
| ±           |             |           |       |         |          |    |     |      |

Plan Recharge (PLR) File

f. The RA Recharge Plan accretes to the river based on the seepage rate defined in the Reservoir Station (RES) file, and the Return Flow Location, Percent, and Return Table ID in the Reservoir Return File (RRF).

Reservoir Recharge (RRF) File

| # ID      | Ret ID  | Ret % 1 | Table  | Com | nent | (e.g.return | type, | Name, | etc.) |
|-----------|---------|---------|--------|-----|------|-------------|-------|-------|-------|
| #         | -exb    | -exbexk | >      | exb |      |             |       |       | -e    |
| 0102522_R | 0100513 | 100.    | 100503 | Res | Rech | L           |       |       |       |
| 0102528 R | 0100518 | 100.    | 100514 | Res | Rech | L           |       |       |       |
| 0102529_R | 0100518 | 100.    | 100515 | Res | Rech | L           |       |       |       |

- g. The RA Recharge Plan "credits" the augmentation plan based on a Type 48 operating rule in the OPR File.
- Limit the amount diverted to recharge areas based on a Release Limit Plan (Type 12) and include the Limit Plan in the operating rule that diverts to each recharge area.
  - i. A Release Limit Plan limits the amount of releases made from a reservoir based on monthly or annual limitations as defined by a Type 47 operating rule in the OPR file.
  - ii. Include Release Limit Plans in the PLN file and in the network.

| -                                              |                                     |                                 |                        |         |            |                            |                         |              |                                     |         |                                       |         |                      |             |                         |                                     |                      |                      |
|------------------------------------------------|-------------------------------------|---------------------------------|------------------------|---------|------------|----------------------------|-------------------------|--------------|-------------------------------------|---------|---------------------------------------|---------|----------------------|-------------|-------------------------|-------------------------------------|----------------------|----------------------|
| *<br># ID                                      | Name                                |                                 |                        | NA      |            | A                          | dmin#                   | # Str O      | n/Off Dest Id                       | Dest Ac | Soul Id                               | Soul Ac | Sou2 Id              | Sou2 Ac     | Type Plan               | Div Type                            | OprLoss              | Limit                |
| *<br>01025220.02                               | RIVERSIDE                           | Carrier                         |                        | 0100500 | D 07       | 46751.<br>25 Carri         | 45836<br>er             | 1            | 1 0102522_R                         | 1       | 0100503_D.0                           | 8 :     | 1 0100503_D          | 100         | 4 0102522_P1C           | Diversion                           | 0.00                 | 4.00                 |
| 01025220.03                                    | RIVERSIDE                           | Carrier                         |                        | 0100503 | <br>       | 50466.<br>25 Carri         | 00000<br>er             | 1            | 1 0102522_R                         | 1       | 0100503_D.1                           | .0 :    | 1 0100503_D          | 100         | 45 0102522_P1C          | Diversion                           | 0.00                 | 4.00                 |
| 01025220.04                                    | RIVERSIDE                           | Carrier                         |                        | 0100503 | _D         | 50712.<br>25 Carri         | 00000<br>er             | 1            | 1 0102522_R                         | 1       | 0100503_D.1                           | 1 :     | 1 0100503_D          | 100         | 45 0102522_P1C          | Diversion                           | 0.00                 | 4.00                 |
| 01025220.05                                    | RIVERSIDE                           | Carrier                         |                        | 0100503 | _D         | 50769.<br>25 Carri         | 49378<br>er             | 1            | 1 0102522_R                         | 1       | 0100503_D.1                           | 2 :     | 1 0100503_D          | 100         | 45 0102522_P1C          | Diversion                           | 0.00                 | 4.00                 |
| 01025220.06                                    | RIVERSIDE                           | Carrier                         |                        | 0100503 | _D<br>0.07 | 51356.<br>25 Carri         | 00000<br>er             | 1            | 1 0102522_R                         | 1       | 0100503_D.1                           | .3 :    | 1 0100503_D          | 100         | 45 0102522_P1C          | Diversion                           | 0.00                 | 4.00                 |
| #<br>01025180.07<br>1995. 19                   | RIVERSIDE<br>95. 1995.              | Res Lim:<br>1995.               | it<br>1995.            | 1995.   | 1995.      | 1.<br>1995. 1              | 00000<br>995. 19        | 0<br>95. 199 | 1 NA<br>5. 1995. 24000.             | •       | 0102522 RL                            | >       | 1 NA                 | 0           | 47 NA                   | Diversion                           | 0                    | 1                    |
| *<br>01025220.08<br>01025220.09<br>01025220.10 | RIVERSIDE<br>RIVERSIDE<br>RIVERSIDE | Canal Re<br>Res Rec<br>Reservo: | echarge<br>harge<br>ir |         |            | 55637.<br>55637.<br>55637. | 10000<br>10000<br>20000 | 0<br>0<br>0  | 1 0102522<br>1 0102522<br>1 0102522 | 1       | 0102522_P10<br>0102522_P1B<br>0103031 |         | 0 NA<br>0 NA<br>1 NA | 0<br>0<br>0 | 48 NA<br>48 NA<br>49 NA | Diversion<br>Diversion<br>Diversion | 0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00 |

# Operating Rule (OPR) File

- Reusable Effluent based on recent diversion coding or basin knowledge; use Type 48 or Type 49 operating rules in the OPR file to "release" water from a Reuse Plan directly to an Augmentation Plan.
- 5. Releases from a reservoir directly to the augmentation plan based on decree, recent diversion coding, or basin knowledge; use Type 48 or Type 49 operating rules in the OPR file.
- 6. Augmentation or Recharge Wells
  - a. Per SEO, use recent (2011) diversion coding to identify augmentation and recharge wells for inclusion with each augmentation plan.
  - b. Augmentation and Recharge Well "structures" need to be included in the appropriate well and network files.
  - c. Include any augmentation and recharge wells in the PLW file to ensure their depletions are included in the augmentation plan "demand".
  - d. Use a Type 44 operating rule in the OPR file to pump recharge wells directly to the recharge areas.
  - e. Use a Type 37 operating rule in the OPR file to pump augmentation wells directly to the augmentation plan.
- 7. Excess Accretions
  - a. Use a Type 48 or 49 operating rules in the OPR file to associate excess credits from other RA and Canal Recharge Plans at a priority junior to other users of the plan based on decrees or recent diversion coding.

#### **Additional Augmentation Plan Notes**

- Include the Augmentation Plan in the model even if the sources are not included in the model (e.g. Central GMS or WAS Augmentation Plans).
- Note that StateMod does not limit the depletions if supplies are not sufficient to meet the augmentation demand, however it will track the depletions for accounting purposes. See the Plan Output File (XPL) file for more information.

#### SPDSS Surface Water Model

#### Calibration Workshop Materials

Information Included:

- 1. Diversions to Augmentation Representation in Natural Flow
- 2. Non-Gaged Natural Flow Locations
- 3. Calibration of Natural Flow
- 4. Natural Flow for Off-Channel Reservoir Systems
- 5. Calibration of Historical Simulation

# Augmentation Diversion Representation in Natural Flow

Some Augmentation Plans rely on changed senior water rights as a supply, and these supplies are measured at augmentation stations located at different points along a ditch.

- Diversions to augmentation must be considered differently when creating natural flows because:
  - o diversions are returned without being consumptively used,
  - diversions need to be removed from the supply used to meet irrigation or other demands, and
  - diversions return immediately back to the river (i.e. a different return pattern than irrigation returns)
- Augmentation stations may or may not be included in the total diversions (if located upstream of the measuring device) – ASK the Water Commissioner
- Location of augmentation station impacts where it returns (i.e. above a calling right) and the amount of ditch loss that should be applied to the augmentation diversions.
- Forward mode use plan structures and operating rules not an issue
- If augmentation is a minor amount, can ignore in both natural flow calculations and simulations

### **Representation Options:**

- Create two structures on the river; one main headgate structure with only the U:A diversions that returns immediately and one irrigation structure (\_I) with the remaining diversions to irrigation and potentially recharge as well.
  - Downfall is the fake headgate, but could be used in forward mode with operating rules to represent augmentation station capacity
- 2. Create an entire off-channel system that includes the headgate structure, an irrigation structure, and an augmentation demand structure.

- Downfall is the added complexity and that we have a demand structure that isn't used during simulation.
- May make more sense if already have an off-channel reservoir system

### Augmentation Station Representation when only diverts for augmentation station and irrigation demand (i.e. no "off-channel" system)

- 1. Understand the operation and location of the augmentation station on a specific ditch.
  - a. Determine if the diversions to augmentation are included in DivTotal
  - b. Determine if conveyance loss should be applied to diversions to augmentation
  - c. Determine node(s) where the augmentation station will "return".
- 2. Use the main "headgate" WDID for diversions to augmentation, and include additional off-channel "demand" structures for other uses on the ditch (e.g. irrigation, carrier to municipal).



- Historical diversions for the WDID reflect only diversions to augmentation (U:A) and return immediately (\*\_N.DDS) to the river based on the augmentation station location, generally to the calling right.
  - a. If the augmentation station is down-ditch, include conveyance losses as appropriate in the \*\_N.DDS file. (DDS file used only for natural flow calculation)
- 4. Historical diversions for the irrigation demand (WDID\_I) reflect only diversions to irrigation (U:1) and have lagged returns in the \*\_N.DDS to

multiple downstream structures based on the location of the irrigated land. (note that the WDID\_I is the same in both the \*\_N.DDS and the \*.DDS for simulation)

- 5. Historical diversions, if applicable, for the carrier demand (WDID\_C) reflect only carried diversions (e.g. municipal supplies) and return immediately to the municipal demand.
- 6. Confirm that the sum of the diversions to augmentation, irrigation, and carrier equal DivTotal so water is not "created" on this system.
- 7. In "forward mode", operating rules, plan structures, and a separate simulation DDS files will simulate the augmentation station, irrigation and carried demands.

# **Non-gaged Natural Flow Locations**

Natural flow gains between gages are modeled as entering the system at ungaged points, to better simulate the river's growth due to generalized groundwater contributions and unmodeled tributaries.

- See the Modeling Workshop No. 1 materials for more discussion on StateMod's automated approaches to distributing gains and the use of area/precipitation factors.
- Use GIS to identify smaller tributaries that are not explicitly modeled and represent that natural flow contribution at an ungaged node in the model.
- Natural flow must be estimated at ungaged headwater nodes (except for the "mock" off-channel tributary systems supplied by a carrier structure.
- During calibration, other ungaged nodes may be made into natural flow nodes to better simulate a water supply that would support historical operations.

The drainage area for gaged natural flow locations is the **total** drainage area contributing to the gaged location.

The drainage area for ungaged locations is the **incremental** drainage area upstream of the natural flow location and downstream of a gaged location.

#### Natural Flow Parameter File (\*.rib)

**Proration factors** are calculated based on the area/precipitation factors in the network diagram and commands in StateDMI, and provided to StateMod in the Natural Flow Parameter File (\*.rib).



For example:

- Natural Flow for 4701070 = 26.6% \* (natural flow at downstream gage 06611800 minus natural flow at the upstream gage 06611700)
- Natural Flow for 4700552 = 31.3% \*(natural flow at downstream gage 06611800 minus natural flow at the upstream gage 06611700) + the natural flow at the upstream gage 06611700

| π.~                       |        |       |        |          |        |          |        |
|---------------------------|--------|-------|--------|----------|--------|----------|--------|
| <pre>#&gt; FlowX</pre>    |        | mbase | coefB1 | FlowB1   | coefB2 | FlowB2   | coefB3 |
| #>exx                     | xxxxxb | eb    | ex     | b        | -ebex  | (b       | ebexi  |
| <b>#</b> >                | pf     | nbase | coefG1 | FlowG1   | coefG2 | FlowG2   | coefG3 |
| #>xxxxxxxxxb-             | eb     | eb    | ex     | b        | -ebex  | (b       | ebexl  |
| #>                        |        |       |        |          |        |          |        |
| <pre>#&gt;EndHeader</pre> |        |       |        |          |        |          |        |
| #>                        |        |       |        |          |        |          |        |
| 4701070                   |        | 0     |        |          |        |          |        |
|                           | 0.266  | 2     | 1.000  | 06611800 | -1.000 | 06611700 |        |
| 4700552                   |        | 1     | 1.000  | 06611700 |        |          |        |
|                           | 0.313  | 2     | 1.000  | 06611800 | -1.000 | 06611700 |        |
| 4700624                   |        | 0     |        |          |        |          |        |
|                           | 0.008  | 2     | 1.000  | 06611300 | -1.000 | 06611200 |        |
| 4700638_D                 |        | 0     |        |          |        |          |        |
| _                         | 0.316  | 2     | 1.000  | 06611800 | -1.000 | 06611700 |        |

Proration factors (pf) in the \*.rib file should never be greater than 1.0 if developed using the Gain Approach. If neighboring gage approach, can be greater than 1.0.

#### StateMod Simulation of Natural Flow

Previous CDSS models used the Mixed Station Model (MSM) to fill missing natural flows; complete datasets (i.e. diversions, reservoir contents, streamflow) will be developed for the SPDSS models therefore MSM will not be needed.

With complete datasets, StateMod simulation option Baseflow will create natural flows at gaged locations and distribute to ungaged locations in a single simulation

```
step.
```



# **Calibration of Natural Flow**

### Natural flow is estimated by the model by:

### Natural Flow at Gaged Locations =

Gaged Flow + Diversions – Return Flows +/- Change in Storage

### Natural Flow at Ungaged Locations =

Distribution of Gaged Natural Flow Based on the Pro-Rata Share of Area\*Precipitation

or

Neighboring Gage Approach Based on the Pro-Rata Share of Area\*Precipitation

### "Negative" Natural Flows

The gain approach can result in estimates of negative natural flows. These occur when the gaged flow is less than the other parameter used in the natural flow calculation.

Gaged Flow + Diversions – Return Flows +/- Change in Storage

- StateMod automatically sets any natural flow estimated to be negative at a gaged location to zero prior to distributing gains to ungaged locations, essentially "creating" water in the system.
- A negative flow summary, including a count of the number of months with negative flow and the average and total amount of negative flow, is provided in the StateMod log file (\*.log) when StateMod is run in the Baseflow Mode.

| North Platte | Model | *.LOG | File | Excer | рt |
|--------------|-------|-------|------|-------|----|
|--------------|-------|-------|------|-------|----|

|    | the<br>Est is<br>on a<br>Adj is<br>Total | # of days for a daily model<br>the average negative flow e<br>monthly basis (af/mo) or a<br>the adjusted value printed<br>is the total adjustment (abs | and<br>stimate<br>daily bas:<br>to result:<br>(# * Est) | is (af/day)<br>s |             |         |       |
|----|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------|-------------|---------|-------|
|    | TD                                       | Name                                                                                                                                                   | Count                                                   | Est              | Adj         | Total   | River |
|    |                                          |                                                                                                                                                        | www.u.v                                                 | way more         | san y mouth |         |       |
| 1  | 06611200                                 | BUFFALO CREEK NEAR HEBRO                                                                                                                               | 5                                                       | -171.17          | 0.00        | 855.87  | 285   |
| 2  | 06611300                                 | GRIZZLY CREEK NEAR HEBRO                                                                                                                               | 8                                                       | -220.10          | 0.00        | 1760.77 | 29    |
| 3  | 06611700                                 | LITTLE GRIZZLY CREEK NEA                                                                                                                               | 0                                                       | 0.00             | 0.00        | 0.00    | 19:   |
| 4  | 06611800                                 | LITTLE GRIZZLY CREEK ABO                                                                                                                               | 0                                                       | 0.00             | 0.00        | 0.00    | 20    |
| 5  | 06611900                                 | LITTLE GRIZZLY CREEK ABO                                                                                                                               | 0                                                       | 0.00             | 0.00        | 0.00    | 205   |
| 6  | 06614800                                 | MICHIGAN RIVER NEAR CAME                                                                                                                               | 0                                                       | 0.00             | 0.00        | 0.00    | 484   |
| 7  | 06615000                                 | SOUTH FORK MICHIGAN RIVE                                                                                                                               | 0                                                       | 0.00             | 0.00        | 0.00    | 475   |
| 8  | 06616000                                 | NORTH FORK MICHIGAN RIVE                                                                                                                               | 0                                                       | 0.00             | 0.00        | 0.00    | 49    |
| .9 | 06617500                                 | ILLINOIS CREEK NEAR RAND                                                                                                                               | 1                                                       | -2.80            | 0.00        | 2.80    | 41    |
| 10 | 06619400                                 | CANADIAN RIVER NEAR LIND                                                                                                                               | 0                                                       | 0.00             | 0.00        | 0.00    | 10:   |
| 11 | 06619450                                 | CANADIAN RIVER NEAR BROW                                                                                                                               | 0                                                       | 0.00             | 0.00        | 0.00    | 12    |
| 12 | 06620000                                 | NORTH PLATTE RIVER NEAR                                                                                                                                | 2                                                       | -1720.07         | 0.00        | 3440.14 | 555   |
| 13 | Line BF                                  | _FLO                                                                                                                                                   | 0                                                       | 0.00             | 0.00        | 0.00    | 1     |
| 14 | Beav_BF                                  | Beaver Creek BFFLO                                                                                                                                     | 0                                                       | 0.00             | 0.00        | 0.00    |       |
| 15 | SFBig_BF                                 | FLO                                                                                                                                                    | 0                                                       | 0.00             | 0.00        | 0.00    | 1     |
| 16 | Wheel_BF                                 | Wheeler Creek BFFLO                                                                                                                                    | 0                                                       | 0.00             | 0.00        | 0.00    | 20    |
| 17 | Camp_BF                                  | FLO                                                                                                                                                    | 0                                                       | 0.00             | 0.00        | 0.00    | 21    |
| 18 | 3mile_BF                                 | Threemile Creek BF _FLO                                                                                                                                | 0                                                       | 0.00             | 0.00        | 0.00    | 2'    |
| _  |                                          |                                                                                                                                                        | 10                                                      | 970.75           | 0.00        | 2050.50 |       |

- As natural flows represent the flow as if "man wasn't there", negative natural flows are not "physically-based" and likely caused by data inconsistencies.
- Use the Baseflow Output (\*.xbi) file to trouble shoot issues with negative flows – likely they are caused by bad "data points", often EOM reservoir contents.

|          |              | Gauged | Import | Divert | Return | Well    | Delta   | Net     | Total     | w/o (=)   |
|----------|--------------|--------|--------|--------|--------|---------|---------|---------|-----------|-----------|
| Year Mon | Day River ID | Flow   | (=)    | (*)    | (=)    | Dep (*) | Sto (+) | Evp (*) | Base Flow | Base Flow |
|          |              | (1)    | (2)    | ( 3)   | (4)    | (5)     | ( 6)    | (7)     | (8)       | (9)       |
| 1982 OCT | 21 00228000  | 1/04.  | 0.     | 115.   | 0.     | 0.      | -769.   | 47.     |           | 1074      |
| 1982 NOV | 30 09238900  | 1160.  | ο.     | 83.    | 0.     | 0.      | 1359.   | -2.     | 2600.     | 2600.     |
| 1982 DEC | 31 09238900  | 547.   | ο.     | 84.    | ο.     | 0.      | -731.   | -23.    | -123.     | ο.        |
| 1983 JAN | 31 09400900  | 41.0   | 0.     | 90.    | 0.     | 0.      | 522.    | -25     | 1010.     | 1010.     |
| 1983 FEB | 28 09238900  | 359.   | ο.     | 76.    | ο.     | ο.      | -50.    | -7.     | 379.      | 379.      |
| 1983 MAR | 31 09238900  | 422.   | ο.     | 165.   | ο.     | 0.      | -825.   | 12.     | -226.     | ο.        |
| 1983 AFR | 30 09238900  | 489.   | ο.     | 155.   | Ο.     | Ο.      | 187.    | 28.     | 858.      | 858.      |
| 1983 MAY | 31 09238900  | 5256.  | ο.     | 163.   | ο.     | ο.      | 209.    | 55.     | 5683.     | 5683.     |
| 1983 JUN | 30 09238900  | 28428. | ο.     | 187.   | Ο.     | ο.      | -222.   | 78.     | 28471.    | 28471.    |
| 1983 JUL | 31 09238900  | 16160. | ο.     | 243.   | ο.     | Ο.      | ٥.      | 74.     | 16477.    | 16477.    |
| 1983 AUG | 31 09238900  | 1201.  | ο.     | 247.   | ο.     | 0.      | 1576.   | 64.     | 3088.     | 3088.     |
| 1983 SEP | 30 09238900  | 156.   | ο.     | 205.   | ο.     | ο.      | -1268.  | 57.     | -850.     | ο.        |

Yampa River Model \*.XBI File Excerpt

Recommended actions to check/correct negative natural flows include:

- Determine which gages have instances of negative flows using the Log file
- Query the Natural Flow Output file (\*.xbi) for each gage with negative flow to determine the month and year (Column 8 does not equal 9)
- Use TSTool to graph the monthly diversions, reservoir content, and streamgage data to check for obvious data errors.

#### **Upstream to Downstream Gains**

Before man's influence, the stream gained as it moved downstream and a "losing" reach is not expected. If StateMod estimates that natural flow at a downstream gage is less than the sum of natural flow upstream, StateMod will consider that a "losing" reach. Note that is simulation, water will be delivered to a "losing" reach before distributed to senior uses. Check that natural flows increase from upstream to downstream.

• Use TSTool to quickly graph and add natural flows in the \*.xbm file above each gage to assure they are equal or greater to the natural flow estimated at the gage.





- 1) In TSTool, graphically compare the natural flow at gaged locations to ensure that natural flow at 44\_ADY016 is greater than the natural flow for combined for upstream locations.
- 2) Add the total natural flow above the 44\_ADY016 location and compare to the natural flow at the 44\_ADY016 location.

#### 44\_ADY016 > 440572 + 440716 + 440644 + 440611 + 09249200 + 440652

| The Series List (25 time series, 1 selected)           Detailed of the Series List (25 time series, 1 selected)           Data type:         Sequence (1 a)           Data type:         Sequence (1 a)         Sequence (1 a)         Sequence (1 a) <t< th=""><th>ile Edit View</th><th>Commands Run Results Tools Help</th><th></th><th></th><th></th><th></th><th></th><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ile Edit View                                                                               | Commands Run Results Tools Help                                                                                                                                           |                                               |                                              |                                                |                |                  |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------|------------------------------------------------|----------------|------------------|-----|
| Datasetine         Provide State         Time         Sequence           Datasetine         Import three State         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nout/Query Ontic                                                                            | ons-                                                                                                                                                                      | Time Seri                                     | ies List (95 time s                          | eries 1 selected)                              |                |                  |     |
| Datastance         Prescription         The stepender           Datastance         Tradition         Tradition         Tradition         Tradition           Datastance         Tradition         Tradition         Tradition         Tradition         Tradition           Datastance         Tradition         Tradition </th <th>ipad gaci y opa</th> <th></th> <th>Time ben</th> <th>Co cise (so cine s</th> <th>laterne)</th> <th>Income</th> <th>le</th> <th>-</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ipad gaci y opa                                                                             |                                                                                                                                                                           | Time ben                                      | Co cise (so cine s                           | laterne)                                       | Income         | le               | -   |
| Datastree         Prest type         Description         Description <thdescription< th=""> <thdescription< th=""> <t< th=""><th></th><th></th><th></th><th>in</th><th>Name/</th><th>Stop</th><th>Sequence</th><th></th></t<></thdescription<></thdescription<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |                                                                                                                                                                           |                                               | in                                           | Name/                                          | Stop           | Sequence         |     |
| December         22         40010           32         40014         40017           Three steps         Month -         Cet Time Series List         32           34         40024         400027         400027           34         40027         400027         400027           36         40027         400027         4000171           36         40027         400027         4000171           36         40027         4000171         Time steps         Copy Selected to Commands         Copy All to Commands           2         44072         MONTH-State 40004-E1 (vd rive (CDS) (data 1 vm2009) State 4001 va2009x. xbm         440044         440447         440020x. xbm           2         44057         MONTH-State 4004-E1 (vd rive (CDS) (data 1 vm2009) State 4001 va2009x. xbm         440044         440447         440041         440041         440041         440041         440041         440041         440041         440041         440041         440041         440041         440041         440041         440041         440041         440041         440041         440041         440041         440041         440041         440041         440041         440041         440041         4400411         440041         440041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Datactore Inn                                                                               | ut type                                                                                                                                                                   | 24                                            | 440611                                       | d40611                                         | NONTH          | ID               | -   |
| Input type:         33         44044         40047         worth           Ime type:         Add Add Add Add Add Add Add Add Add Ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Datastore                                                                                   |                                                                                                                                                                           | 31                                            | 440614                                       | 440614                                         | MONTH          |                  | -   |
| Math         Math <th< td=""><td>Input type: Stat</td><td>æMod 👻</td><td>33</td><td>440644</td><td>440644</td><td>MONTH</td><td>-</td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Input type: Stat                                                                            | æMod 👻                                                                                                                                                                    | 33                                            | 440644                                       | 440644                                         | MONTH          | -                |     |
| Imme telspi, Marth         Imme te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Data type: Auto                                                                             | -                                                                                                                                                                         | 34                                            | 440647                                       | 440647                                         | MONTH          |                  | 1   |
| Cet Time Series List         36         440667         MONTTH           Corpy Selected to Commands         Copy All to Commands         Copy All to Commands           2         #4.9772WONTH-StateHold-E: (doi '104/CDSS'(data')ya2009/StateHold'ya2009x, xbm         ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Time step: Month                                                                            | 1 -                                                                                                                                                                       | 35                                            | 440652                                       | 440652                                         | MONTH          |                  | 1   |
| Image: Construction         Image: Copy Selected to Commands         Copy All to Commands           1         44, 40/0016+001TH-StateVold-E1 (odri vel/CDSS) (data lym2009) StateVold vel/2009x.xbm         4400716+001TH-StateVold-E1 (odri vel/CDSS) (data lym2009) StateVold vel/2009x.xbm           2         4400716+001TH-StateVold-E1 (odri vel/CDSS) (data lym2009) StateVold vel/2009x.xbm         440011+001TH-StateVold-E1 (odri vel/CDSS) (data lym2009) StateVold vel/2009x.xbm           3         440011+001TH-StateVold-E1 (odri vel/CDSS) (data lym2009) StateVold vel/2009x.xbm         440041+001TH-StateVold-E1 (odri vel/CDSS) (data lym2009) StateVold vel/2009x.xbm           4         440425+001TH-StateVold-E1 (odri vel/CDSS) (data lym2009) StateVold vel/2009x.xbm         440611+001TH+,440611+001TH+,440611+001TH+,440611+001TH+,440611+001TH+,440611+001TH+,440611+001TH+,440611+001TH+,440611+001TH+,440611+001TH+,440611+001TH+,440611+001TH+,440572+001TH+,440611+001TH+,440611+001TH+,440611+001TH+,440611+001TH+,440611+001TH+,440611+001TH+,440611+001TH+,440611+001TH+,440611+001TH+,440611+001TH+,440611+001TH+,440611+001TH+,44072+001TH+,440611+001TH+,440611+001TH+,440511+001TH+,440511+001TH+,440511+001TH+,44072+001TH+,44072+001TH+,440511+001TH+,440511+001TH+,440511+001TH+,440511+001TH+,440511+001TH+,440511+001TH+,440511+001TH+,440511+001TH+,440511+001TH+,440511+001TH+,440511+001TH+,440511+001TH+,440511+001TH+,440511+001TH+,440511+001TH+,440511+001TH+,440511+001TH+,440511+001TH+,440511+001TH+,440511+001TH+,440511+001TH+,440511+001TH+,440511+001TH+,440511+001TH+,440511+001TH+,440511+001TH+,440511+001TH+,440511+001T                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                             | Cet Time Series Lis                                                                                                                                                       | st 36                                         | 440687                                       | 440687                                         | MONTH          | 1                | 1   |
| Copy Selected to Commands         Copy All to Commands           Commands (8 commands, 0 selected, 0 with failures, 0 with warrings)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                             | det fine denes en                                                                                                                                                         |                                               | *                                            | 10                                             |                |                  | 1   |
| Dammands (8 commands, 0 selected, 0 with failures, 0 with warmsp3           1         44_ADV016WONTH-StateVod-E:\odrive(CDSS\data\ym2009\StateVod\ym2009x.xbm           3         440716WONTH-StateVod-E:\odrive(CDSS\data\ym2009\StateVod\ym2009x.xbm           3         440716WONTH-StateVod-E:\odrive(CDSS\data\ym2009\StateVod\ym2009x.xbm           4400E1WONTH-StateVod-E:\odrive(CDSS\data\ym2009\StateVod\ym2009x.xbm           5         440611WONTH-StateVod-E:\odrive(CDSS\data\ym2009\StateVod\ym2009x.xbm           6         09249200WONTH-StateVod-E:\odrive(CDSS\data\ym2009\StateVod\ym2009x.xbm           7         440622WONTH-StateVod-E:\odrive(CDSS\data\ym2009\StateVod\ym2009x.xbm           4         40644WONTH-StateVod-E:\odrive(CDS\data\ym2009\StateVod\ym2009x.xbm           4         40622WONTH-StateVod-E:\odrive(CDS\data\ym2009\StateVod\ym2009x.xbm           6         40652WONTH-StateVod-E:\odrive(CDS\data\ym2009\StateVod\ym2009x.xbm           7         440652WONTH-StateVod-E:\odrive(CDS\data\ym2009\StateVod\ym2009x.xbm           8         40052WONTH-StateVod-E:\odrive(CDS\data\ym2009\StateVod\ym2009x.xbm           9         40052WONTH-StateVod-E:\odrive(CDS\data\ym2009\StateVod\ym2009x.xbm           9         40052WONTH-StateVod-E:\odrive(CDS\data\ym2009\StateVod\ym2009\StateVod\ym2009\StateVod\ym2009\StateVod\ym2009\StateVod\ym2009\StateVod\ym2009\StateVod\ym2009\StateVod\ym200\ym200\ym200\ym200\ym200\ym200\ym200\ym200\ym200\ym200\ym200\ym200\ym200\ym200\ym200\ym200\ym200\ym200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                             |                                                                                                                                                                           | Copy                                          | Selected to Comm                             | nands                                          |                | Copy All to Comm | and |
| 1         44_07026MONTH-StateMod-E: (odri ve/CDSS/data/ym2009/StateMod/ym2009x.xbm           2         440572MONTH-StateMod-E: (odri ve/CDSS/data/ym2009/StateMod/ym2009x.xbm           4         440544MONTH-StateMod-E: (odri ve/CDSS/data/ym2009/StateMod/ym2009x.xbm           4         440544MONTH-StateMod-E: (odri ve/CDSS/data/ym2009/StateMod/ym2009x.xbm           5         09249200MONTH-StateMod-E: (odri ve/CDSS/data/ym2009/StateMod/ym2009x.xbm           6         09249200MONTH-StateMod-E: (odri ve/CDSS/data/ym2009/StateMod/ym2009x.xbm           7         440572MONTH-StateMod-E: (odri ve/CDSS/data/ym209/StateMod/ym2009x.xbm           8         Add(TSID="440572MONTH",AddTsList=SpecifiedTSID,AddTSID="440572MONTH,440644MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,440641MONTH,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ommands (8 com                                                                              | mands 0 selected 0 with failures 0 with warr                                                                                                                              | ainas)                                        |                                              |                                                |                |                  | _   |
| 4 44072WONTH-StateWod-E: \doi'rve(LOSS\data\ym2009\StateWod\ym2009x.xbm     44076WONTH-StateWod-E: \doi'rve(LOSS\data\ym2009\StateWod\ym2009x.xbm     44076WONTH-StateWod-E: \doi'rve(LOSS\data\ym2009\StateWod\ym2009x.xbm     44051WONTH-StateWod-E: \doi'rve(LOSS\data\ym2009\StateWod\ym2009x.xbm     90249200WONTH-StateWod-E: \doi'rve(LOSS\data\ym2009\StateWod\ym2009x.xbm     44051WONTH-StateWod-E: \doi'rve(LOSS\data\ym2009\StateWod\ym2009x.xbm     44051WONTH-StateWod-E: \doi'rve(LOSS\data\ym2009\StateWod\ym2009x.xbm     44052WONTH-StateWod-E: \doi'rve(LOSS\data\ym2009\StateWod\ym2009x.xbm     44051WONTH-StateWod-E: \doi'rve(LOSS\data\ym2009\StateWod\ym2009x.xbm     44051WONTH-StateWod-E: \doi'rve(LOSS\data\ym2009\StateWod\ym2009x.xbm     44051WONTH, 44051WONTH, 44051WONTH, 440611                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |                                                                                                                                                                           |                                               |                                              | N 2222                                         |                |                  | _   |
| Run Selected Commends         Run Al Commands         Clear Command           tesults         Ensembles         Output Files         Problems         Properties         Tables         Time Series, 2 selected         If 41_ADV015 + 44_D0415 + 440644 + 440511 + 0209200 + 440552 + 440572MONTH (1908-10 to 2005-09)         2) 440572 + 440715 - 440715 + 440044 + 440511 + 0209200 + 440552 + 440572MONTH (1908-10 to 2005-09)         2) 440512 + 440644MONTH (1908-10 to 2005-09)         2) 440512 + 440644MONTH (1908-10 to 2005-09)         2) 440512 + 440652MONTH (1908-10 to 2005-09)         2) 440512 + 440652MONTH (1908-10 to 2005-09)         2) 44052 - 440652MONTH (1908-10 to 2005-09)         2) 440652 - 440652MONTH (1908-10 to 2005-09)         2) 440652 - 440652MONTH (1908-10 to 2005-09)         2) 440512 - 440652MONTH (1908-10 to 2005-09)         2) 440512 - 440652MONTH (1908-10 to 2005-09)         2) 440652 - 4                                                                                                                                                                                                                                                                                                                                                                                                                         | 6 0924920<br>7 440652<br>8 Add(TS<br>9<br>10<br>11                                          | MONTH-StateMod-E:\odrive\CDS<br>MONTH-StateMod-E:\odrive\CDS<br>JD="440572MONTH",AddTSList=Spi                                                                            | SS\data\ym200<br>\data\ym2009<br>ecifiedTSID, | 09\StateMod\yn<br>\StateMod\<br>AddTSID="440 | ym2009x.xbm<br>12009x.xbm<br>1572MONTH,440716M | IONTH,440644MO | NTH,440611       |     |
| Tool - Time Series - Graph           140000.0           120000.0           130000.0           120000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Run Selected (                                                                              | Commands Run All Commands                                                                                                                                                 |                                               |                                              |                                                |                | Clear Comm       | and |
| Exercises           Ensembles         Output Files         Problems         Properties         Tables         Time Series         Views           1) 44_ADY016         -44_ADY016         -440746         +440746         +440746         +440746         +440746         +440746         +440746         +440641         +400641         +400640         +400640         +400640         +400640         +400640         +400641         +400641         +400640         +400640         +400640         +400640         +400640         +400641         +400641         +400641         +400641         +400641         +400641         +400641         +400641         +400641         +400641         +400641         +400641         +400641         +400641         +400641         +400641         +400641         +400641         +400641         +400641         +400641         +400641         +400641         +400641         +400641         +400641         +400641         +400641         +400641         +400641         +400641         +400641         +400641         +400641         +400641         +400641         +400642         +400652         +400652         +400652         +400652         +400652         +400652         +400652         +400652         +400641         +400641         +400641         +400641 <td< td=""><td>Deculto</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>_</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Deculto                                                                                     |                                                                                                                                                                           |                                               |                                              |                                                |                | -                | _   |
| ACFT         Image: Control of Con | 3) 440716 - 440<br>4) 440644 - 440<br>5) 440611 - 440<br>6) 09249200 - 0<br>7) 440652 - 440 | 716MONTH (1908-10 to 2005-09)<br>1644MONTH (1908-10 to 2005-09)<br>1611MONTH (1908-10 to 2005-09)<br>19249200MONTH (1908-10 to 2005-09)<br>1652MONTH (1908-10 to 2005-09) |                                               |                                              |                                                |                |                  |     |
| 1400000<br>130000.0<br>120000.0<br>110000.0<br>90000.0<br>80000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Tool - Time                                                                                 | : Series - Graph                                                                                                                                                          |                                               |                                              | 1.00                                           |                | -                | 3   |
| 130000.0<br>120000.0<br>110000.0<br>100000.0<br>90000.0<br>80000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 140000.0                                                                                    |                                                                                                                                                                           |                                               |                                              |                                                |                |                  | _   |
| 12000.0<br>110000.0<br>90000.0<br>80000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 130000.0                                                                                    |                                                                                                                                                                           |                                               |                                              |                                                |                |                  | -   |
| 110000.0<br>100000.0<br>90000.0<br>80000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120000.0                                                                                    |                                                                                                                                                                           |                                               |                                              |                                                |                | _                | _   |
| 100000.0<br>90000.0<br>80000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 110000.0                                                                                    |                                                                                                                                                                           |                                               |                                              |                                                |                |                  | -   |
| 80000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100000.0                                                                                    |                                                                                                                                                                           |                                               | 1                                            |                                                |                |                  | -   |
| 80000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 90000.0                                                                                     |                                                                                                                                                                           |                                               |                                              |                                                |                |                  | -   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80000.0                                                                                     |                                                                                                                                                                           |                                               | 1                                            |                                                |                |                  | _   |

è



# **Natural Flow for Off-Channel Reservoir Systems**

Diversions to both off-channel reservoirs and irrigation demands are more common in the South Platte than in other basins. Therefore, it was necessary to develop a methodology to model them in both the StateCU and StateMod analyses. This approach allows:

- Natural flows to be calculated correctly without special considerations of natural flow gage locations,
- Total historical diversion from the river remain at the river location,
- End-Of-Month (EOM) contents in the reservoir are represented by historical values (if a reservoir is part of the system),
- Direct diversions for irrigation plus releases from the reservoir for irrigation can be combined and applied to the irrigation demand,
- Return flows are accounted for at the correct locations and are operated either by variable efficiency (for irrigation structures) or by a constant efficiency (for carrier structures).



Simple Off-Channel Demand Schematic

- 1. River Diversion (WDID\_C)
- 2. Carrier Return Flow
- 3. Off Channel Reservoir
- 4. Off Channel Demand (WDID\_I)
- 5. Demand Return Flow

It is important to correctly set up the off-channel reservoir systems in the model input files so that the off-channel reservoir systems can be simulated in both natural flow and "forward" modes. This representation was introduced in the Modeling Workshop No. 1; additional discussion herein pertains to representation in the natural flow mode and calibration of the off-channel reservoir systems.

#### **Off-Channel Mass Balance**

These reservoir systems, modeled off-channel on "fake" tributaries, represent a closed system in terms of a water balance. In other words, no natural flow should be created on the "fake" tributary and the total amount diverted should be accounted elsewhere in the reservoir system - at either the reservoir, off-channel demand, or as return flows.

A natural flow node is added at the downstream end of the off-channel reservoir system so that any natural flow gains or losses can be isolated and analyzed.



- The natural flow node is included in the model:
  - As a natural flow streamflow gage in the Network (NET and RIN) files
  - o In the Streamflow Gage Station (RIS) file
  - With zero flow in the Historical Streamflow Gage (RIH) file
- Off-channel natural flow nodes must be removed prior to calibrating the mainstem, as any negative flows at this gage will automatically be set to zero.
- For reservoirs that release directly to the river for re-diversion at downstream headgates, natural flow on the tributary is expected.
- Mainstem structures should be used as return flow locations for canal and irrigation losses; not the natural flow node.

#### **Mass Balance Example**



- Headgate node historical diversions (DDH) equals 200 af
- Headgate node immediately returns 75% to the reservoir in the natural flow Direct Diversion Station (DDS) file, and lags 25% (equal to 50 af) to locations along the river
- Change in Reservoir EOM contents equals 150 af (evaporation is ignored in this example)
- Irrigation node historical diversions (DDH) equals 0 af.



- Headgate node historical diversions (DDH) equals 500 af.
- Headgate node immediately returns 75% to the reservoir in the natural flow Direct Diversion Station (\_N.DDS) file, and lags 25% (equal to 125 af) to locations along the river.
  - o Note that in simulation or "forward" mode 100% of the return
- Change in Reservoir EOM contents equals 100 af (evaporation is ignored in this example).
- Irrigation node historical diversions (DDH) equals the direct irrigation amount less conveyance loss (375 af) plus releases from the reservoir due to change in storage (100 af) for a total of 475 af.
- Irrigation node consumptive use is based on information in the Crop Irrigation Requirement (DDC) file and efficiency information in the Irrigation Practices (IPY) file.
- Irrigation node lags 100% of the return flow (175 af) to locations along the river based on information in the Direct Diversion Station (DDS) file.

### **Mass Balance Trouble-Shooting**

Data inconsistencies, irrigation practices, and varying efficiencies can cause a mass "imbalance" for the off-channel system.

- If diversions to storage are less than change in storage, StateMod will estimate natural flow to "fill" the reservoir.
  - In the TSTool command file used to create the irrigation demand diversions, confirm that diversions to storage less conveyance loss are greater than the change in storage based on the EOM.
- If diversions to storage are greater than change in storage, these diversions are "pushed" to the irrigation demand in the TSTool command file so no natural flow is estimated for the off-channel system.
  - Review the diversions for the irrigation demand for outliers and winter values, likely created by diversions to storage that were not reflected by the reservoir EOM.
  - Determine if this water is being used for other off-channel demands (e.g. non-key storage, stock, recharge) and either include in the model or note during calibration.
- In many Water Districts, DivTotal is the most reliable value. Consider setting reservoir EOM content values to better agree with diversions to storage.
  - If EOM content values are adjusted, carry those values through the TSTool command files and the external spreadsheet used to estimate evaporation for the TSTool command files.
- Confirm that conveyance efficiency values used in the \*\_N.DDS, TSTool command files, IPY and the OPR file are consistent.

# **Calibration of Historical Simulation**

Calibration is the process of simulating the river basin under historical conditions and adjusting parameters to achieve agreement between observed and simulated records of streamflow gages, reservoir storage, and diversions. CDSS models are generally calibrated in a two-step process.

### **First Step Calibration**

In the first calibration run, the model is executed with relatively little freedom with respect to operating rules. Headgate demand is set to historical diversions, and historical reservoir EOM contents serve as operational targets. Operating rules simulate reservoir releases to satisfy demands, but if simulated reservoir content was higher than historical after all demand was satisfied, Release to Target operating rules caused the reservoir to release water to the river to achieve the historical EOM content.

The objective of the first calibration run is to refine natural flow hydrology and return flow locations before introducing uncertainties related to rulebased operations. Diversion shortages, that is, the inability of a water right to divert what it diverted historically, indicate possible problems with the way natural flows were represented or with the location assigned to return flows back to the river. Natural flow issues were also evidenced by poor calibration of the historical gages. Generally, the parameters that can be adjusted relate to the distribution of baseflows (i.e., A\*P parameters or the method for distributing baseflows to ungaged locations), and locations of return flows.

### **Second Step Calibration**

In the second calibration run, constraints on reservoir operations are relaxed. The Release to Target rules are no longer used and reservoir storage is now limited by water right and availability, and generally, reservoir releases are controlled by demands.

The objective of the second calibration step is to refine operational parameters. For example, poor calibration at a reservoir might indicate poor representation of administration or operating objectives. Calibration

was evaluated by comparing simulated gage flows, reservoir contents, and diversions with historical observations of these parameters.

#### Simulated Values vs. Observed Records

- 1) Run the Historical Scenario. This simulates the system using the natural flow estimates, historical diversions as the demand, historical operations, and the reservoir targets are generally set to capacity as discussed in First Step Calibration above.
- 2) **Review the results of the Historical Simulation**. The results of the historical scenario are generally reviewed to determine if the natural flows are large enough to meet the historical diversions, and to determine if the simulated streamflows correlate with historical streamflows.
  - a. Using TSTool, query for historical gaged streamflow (\*.RIH file) and the simulated streamflow (River Outflow in the \*.b43 StateMod Binary file) at all streamflow gages in the model (including off-channel reservoir system calibration nodes).
  - b. Visually review the individual results of the simulated vs. historical
  - streamflow by right-clicking on each time series result and selecting the **Graph-Line** option.
  - c. To understand the correlation between the simulated vs. historical streamflow, right-click on each time series result and select the Graph-XY-Scatter option. Right-click on the scatter graph and select the Analysis Details option to view the R<sup>2</sup> value.



- d. Using TSTool, query for historical diversions (\*.DDH file) and the simulated diversions (\*.b43 StateMod Binary file) at all diversion structures in the model. Note that simulated diversions may be recorded under the From River by Priority or From River by Other. Review the diversion output file (\*.XDD) to understand how the total diversions can be calculated for structures that divert for more than one demand.
- e. Visually review the individual results of the simulated vs. historical diversions by right-clicking on each time series result and selecting the **Graph-Line** option.
- f. To understand the correlation between the simulated vs. historical streamflow, right-click on each time series result and select the Graph-XY-Scatter option. Right-click on the scatter graph and select the Analysis Details option to view the R<sup>2</sup> value.
- g. Consider reviewing the sum of diversions by tributary to understand the shortages on a tributary, and consider adding the natural flow estimate to the graphs to determine if the calibration issue is more related to magnitude or timing.

#### **SPDSS Surface Water Model**

#### Workshop No. 4 – StateMod Revisions and Calibration Review

- 1. StateMod Revisions
  - a. Documentation
  - b. Model Connectivity
  - c. Imports
  - d. Changed Water Rights
  - e. Multiple Instream Flow Rights
  - f. Bookover Operations
- 2. Status of Natural Flow Calibration
- 3. Calibration of Historical Simulation
- 4. Basin-Specific Operational Discussion

# **StateMod Revisions**

All SPDSS modeling should be performed using the StateMod Version 15.00.01 executable and the StateMod Version 15 Documentation; these were provided via email on November 1<sup>st</sup>, 2015. This version includes several enhancements and revisions critical to the SPDSS modeling effort. The following summarizes the primary enhancements and revisions; however the user should refer to the documentation for more information on these topics.

#### **Documentation**

- Sections 7 and 8 in Version 13 documentation, which included information on operations and FAQ, have been replaced by the Standard Modeling Procedures in Version 15 documentation.
- Additional notes have been added to alert the user of operations that may not be fully tested and require additional review if implemented.



### 7.0 Standard Modeling Procedures

This chapter provides technical notes on selected operations, guidance for frequently asked questions regarding the operation of StateMod, and standard and accepted StateMod modeling procedures for implementing the various operations. It is recommended the user follow these approaches, however if the approaches are adapted for more specific operations, it is the user's responsibility to test and verify the results. The following sections are available within this chapter:

- 7.1 Running the Model
- 7.2 Creating Natural Flows at Gages and Ungaged Locations
- 7.3 How to Simulate Soil Moisture Accounting and Variable Efficiency
- 7.4 How to Add or Change Modeled Input Data
- 7.5 How to Model Reservoir Operations
- 7.6 How to Model Off-Channel Reservoir Systems
- 7.7 <u>How to Model Well Operations</u>
- 7.8 How to Model Plan Structures and Operations
- 7.9 How to Model a Release Limit Plan
- 7.10 How to Model Augmentation Plans
- 7.11 How to Model Changed Water Rights and Return Flow Obligations
- 7.12 How to Model Augmentation Plans
- 7.13 How to Model Imported Water
- 7.14 How to Model Reusable Supplies
- 7.15 How to Implement a Futile Call
- 7.16 Basin-Specific Operations and Compacts
- 7.17 How to Add Daily Capability
- Examples of each operating rule type are now included in Section 4.13.51.

| *******    |                                     |                      |            |              |                            |                    |
|------------|-------------------------------------|----------------------|------------|--------------|----------------------------|--------------------|
| # Type 2   | Reservoir to a Direct Flow or Reser | voir or Carrier      |            |              |                            |                    |
| #          | Williams Fork Reservoir (ID 513709) | release from GMR1 Po | ol (Accoun | t 4) to meet | Farmers Irrigation Company | (ID 952011) demand |
| #          | carried through Silt Pump Canal (ID | 390663 on second lin | e)         |              |                            |                    |
| #          |                                     |                      |            |              |                            |                    |
| 5137090.30 | Opr WFR-Silt Project                | 39041.00002          | 1.         | 1 950011     | 1 513709                   | 4 0                |
|            | 390663                              |                      |            |              |                            |                    |

# **Model Connectivity**

StateMod produces errors during Natural Flow (Baseflow) development if tributaries are modeled without confluence nodes (e.g. a tributary was connected to the model at a diversion node). It is important for the user to model each tributary (including "mock tributaries") using confluence nodes to ensure correct natural flow estimates.

## Imports

The import functionality during simulations was enhanced in StateMod Version 15; the functionality of imported water during natural flow mode remained the same as in previous versions. Refer to Section 7.13 for more information on import functionality.

- Special consideration of imported water in StateMod is recommended to make sure it is not reflected as natural flow or distributed as natural flow gains; it can be distributed to various users in the basin based on a specified order; and it can be tracked as a reusable supply as appropriate.
- In general, the imported water is brought into the system, stored in a plan structure, and then released from the plan structure to specific users.

### **River Network Setup**

- A diversion structure, import plan, and accounting plan are all required to model imported water.
  - The import plan *does not* need to be in the network; the model knows it is import plan because it has the same model ID as the import diversion structure (TestImp) in the plan file.



• If desired, check the "Is Import?" box for the import diversion structure. This will include a box around the diversion structure in the network diagram, but it is used for visual representation only, and is not used by StateDMI when creating files or by StateMod.

- The accounting plan must be included *directly downstream* of the import diversion structure that will serve as the import plan.
- In the plan file (\*.pln), include the import diversion structure as a Type 7 Import Plan (must be same model identifier) and the accounting plan as a Type 11 Accounting Plan.

## Example Plan (\*.pln) File

| #<br># ID<br># | Name         | RiverLoc | ON/Off i | .Ptype  | Peff | iPrf | iPfail | Pstol P | source   | IPAcc |
|----------------|--------------|----------|----------|---------|------|------|--------|---------|----------|-------|
| #<br>TestImp   | TestImpPlan  | TestImp  | 1        | ED<br>7 | 999  | 999  | 0<br>0 | 0.0 I   | mportPln | 0     |
| TestPln        | TestAcctPlan | TestPln  | 1        | 11      | 999  | 999  | 0      | 0.0 I   | mportPln | 0     |
|                |              |          |          |         |      |      |        |         |          |       |

- In the diversion station (\*.dds) file, include the import diversion structure with the following parameters:
  - Set the capacity of the structure to be greater than the maximum import amount
  - Set the efficiency to be zero (i.e. 100 percent returns)
  - Set the return flow pattern and location to return the full amount in the same time step to the import plan structure.

## Natural Flow Scenario

- The imported amount is reflected as a negative value under the import diversion structure ID in the historical diversion (\*.ddh) file.
- After running the natural flow scenario, review the baseflow result information summary (\*.xbi) file to ensure that the imported amount is reflected in the Import (Col 2) and accounted for in the natural flow calculations.

## Simulation Scenario

 In the diversion demand (\*.ddm) file, include the time series of the imported amount as a negative value under the import diversion structure ID.

- In the operating rule (\*.opr) file, include the following rules at a minimum to operate the import plan:
  - Type 35 rule with the source as the import diversion structure and the destination as the accounting plan structure. This rule is generally set as the most senior priority in the model.
  - Type 27 and/or 28 rules with the source as the import plan structure and the destination as any structures that are to receive imported supplies.
    - Note that if the import water that is carried to a specific diversion structure using these rules is a reusable supply, then include a reusable supply plan in the Type 27 or 28 rule. See the "How to Model Reusable Supplies" section for more information.
  - Type 29 with the source as the import plan structure and the destination as the next downstream node. Note that a destination node is required for any Type 29 plan spill rules with an accounting plan source.
- Review the plan summary (\*.xpl) file and operating rule summary (\*.xop) file for the portion of the imported water that was carried to meet each diversion demand and the portion, if any, that was unused and spilled back to the stream.

## **Changed Water Rights**

The approach to simulating changed water rights was significantly enhanced in StateMod Version 15; additional plan types and operating rules were added to the model. The following discussion supersedes the changed water right information presented in SPDSS Modeling Workshop 2. Refer to Section 7.11 for more information on changed water rights operations.



Type 29 Rule

Type 27/28 Rules

1. As the changed water right plan operations are all accounted for at the source

water right headgate (administrative) location, all the plans must be modeled offchannel on a "mock" tributary so they do not affect exchange potential or other operations on the mainstem.



- 2. Divert water associated with one more water rights into the Full Changed Water Right Plan.
  - a. The Type 26 operating rule is specifically used to "temporarily store" water in a Changed Water Right Plan (Plan Type 13) and must include monthly and annual limitations. The priority of this operating rule is set to the same priority as the water right.
  - b. If more than one water right is changed at the same source location, they can be put into the same overall plan *only if* all the water rights can be split to individual user plans using the same percentages and if the terms and conditions applied when the plans release the water to the end uses are the same.

- c. The full amount or only a portion can be put into the plan. StateMod does ensure shortages are shared between the portion that is put into the changed water rights plan and the portion that remains to meet the headgate demand.
- d. The water that remains at the headgate is limited by the source structures capacity, but the changed amount is *not* limited by the source structure's capacity. Capacity limitations are imposed when water is released from the changed water rights plan using a Type 27/ 28 rule.
- e. The Type 26 operating rule only operates only once per time step (i.e. does not re-operate).
- 3. Changed water in the Full Changed Water Right Plan is then split to multiple users.
  - a. Type 46 operating rules are used to split water in the Changed Water Rights Plan to individual users' plans; a maximum of 10 split plans is allowed.
  - b. Priorities of these operating rules are set just junior to the priority of the most junior water right in the Full Changed Water Rights Plan.
- 4. User Changed Water Right Plans release to meet individual demands using Type 27/28 rules.
  - a. List User Changed Water Right Plans in the PLN file and include on the network file.
  - b. Type 27/28 operating rules are used to "release" water in the users' plans to meet specific demands in a later priority relative to the users' other supplies.
  - c. When a Changed Water Right Plan is the source for the Type 27/28 rule, the original Type 26 operating rule must be included in the Type 27/28 rule as an additional row. This signals StateMod to run the released water from the plan through the original source headgate so capacity can be reduced by the released amount.

d. Operating rules can include intervening structures with/without losses, designation of return flow obligations (Terms and Conditions Plan, see further discussion below), and designation of reusable supplies (Reuse Plan, see further discussion below).

# SPDSS Modeling Workshop 2 summarizes the approach to modeling T&C Plans; this approach did not change and is therefore not reiterated here.

- e. Releases can be limited by amounts simulated or specified in other operations using the OprLimit flag.
  - OprLimit = 5 ties the release from the plan (or sub-plan if it has been split using a Type 46 operating rule) to the source water right diversion structure and allows the model to limit the release based on available capacity at the source structure. Include the Type 26 operating rule ID that diverted the water into the changed water right plan.
  - ii. OprLimit = 7 limits the release from the changed water rights plan to the release limit plan. Include the Type 47 operating rule ID that defined the monthly and annual release limitations. If more than one release operating rule refers to the release limit plan, the total released from those rules will be limited to the release limit plan.
  - OprLimit = 8 limits the release from the changed water rights plan to the amount diverted and/or carried via another operating rule. Include the operating rule ID of the diversion or carrier operating rule; generally a Type 11 carrier rule. If more than one release operating rule refers to the carrier rule, each individual release rule will be limited by the amount carried (i.e. cumulative releases will *not* be limited).
  - iv. OprLimit = 9 incorporates the limitations from all the limits above.Include the Type 26 operating rule ID, the Type 47 operating ruleID, and the carrier rule ID to apply all three limits.

- 5. Release unused supplies from the Users' Changed Water Rights Plans back to the ditch.
  - a. "Release" water from the users plans back to the ditch demand, if applicable, using Type 27/28 operating rules and priorities junior to all other "releases".
- 6. Spill unused supplies from the Full Changed Water Rights Plan and Users' Plans back to the river.
  - a. All plans must "spill" each time step; use Type 29 operating rules with a priority junior to all other operations to spill each plan.
  - b. The Type 29 plan spill destination must be the source water right headgate.
- 7. Review the plan summary (\*.xpl) file, the operating rule summary (\*.xop) file, and the diversion structure summary (\*.xdd) file for information on the amount of changed water stored in the plan and the amount of water diverted to meet the headgate demand.
  - a. When a changed water right temporarily stores water in a plan, the available flow in the system and the water physically located at the source structure is reduced. This makes the water temporarily stored by this operating rule unavailable for any junior water rights to divert. Because the amount diverted is considered temporary, no diversions are reported in the diversion structure summary (\*.xdd) file at the source structure or destination plan unless water is released from the plan. Note, the total amount diverted, including any that may have been released for use or spilled, is reported in the operating rule summary (\*.xop) file and the plan summary (\*.xpl) file.

| # ID        | Name                     | NA               | Admin# #                         | Str On   | /Off_Dest Id    | _Dest Ac Soul Id     | Sou1 Ac Sou2 Id         | Sou2 Ac        | Type ReusePlan    | _Div Type | OprLos s | Limit | ioBeg | ioEnd |
|-------------|--------------------------|------------------|----------------------------------|----------|-----------------|----------------------|-------------------------|----------------|-------------------|-----------|----------|-------|-------|-------|
| #           | eb                       | -ebexx           | xxbeb                            | eb       | e-b             | -ebe-b               | ebe-b                   | -ebeb          | exb               | exb       | exbeb    | eb    | eb-   | ex    |
| #'Plan' str | ucture operating rules   |                  |                                  |          |                 |                      |                         |                |                   |           |          |       |       |       |
| #           |                          |                  |                                  |          |                 |                      |                         |                |                   |           |          |       |       |       |
| # Eureka Ir | rigation_Demand (614_60  | _I and 614_40_I) | is split 60/40 du                | e to sup | plemental reser | voir water per rancl | her comments            |                |                   |           |          |       |       |       |
| # 1) Fill   | full plan (614_PLN) w/ 6 | 614 water right, | <ol><li>Split plan int</li></ol> | 0 60/40  | plan IDs (614_6 | 0PLN, 614_40PLN) 3)  | Meet demands (614_60_I, | , 614_40_I) 4) | ) Spill back to 6 | 14        |          |       |       |       |
| 614_PLN.01  | Eureka_Full_Plan         |                  | 1.00000                          | 0.       | 1 614_PLN       | 1 4700614.0          | 01 50 NA                | 0              | 26 NA             | Diversion | 0        | 0     | 0     | 9999  |
| 4300. 430   | 0. 4300. 4300. 4300.     | 4300. 4300.      | 4300. 4300. 4300                 | . 4300.  | 4300. 48000.    | 0                    |                         |                |                   |           |          |       |       |       |
| #           |                          |                  |                                  |          |                 |                      |                         |                |                   |           |          |       |       |       |
| 614_PLN.02  | Split_Eureka_Full_Plan   | _60_40           | 1.00002                          | 0.       | 1 614_60PLN     | 60 614_PLN           | 1 NA                    | 0              | 46 NA             | Diversion | 0        | 2     | 0     | 9999  |
|             |                          |                  |                                  |          | 614_40PLN       | 40                   |                         |                |                   |           |          |       |       |       |
| #           |                          |                  |                                  |          |                 |                      |                         |                |                   |           |          |       |       |       |
| # Releases  | from Seymour RS are rele | eased to the 60  | plan, as only the                | 60% plan | receives suppl  | emental reservoir wa | ater                    |                |                   |           |          |       |       |       |
| 614_PLN.03  | 614_60PLN_to_614_60_I    |                  | 1.00003                          | 1.       | 1 614_60_I      | 1 614_60PL           | N 100 NA                | 0              | 27 NA             | Diversion | -1       | 5     | 0     | 9999  |
|             |                          | 4700614          | 30 Carrier                       |          |                 |                      |                         |                |                   |           |          |       |       |       |
|             | 614_PL                   | N.01             |                                  |          |                 |                      |                         |                |                   |           |          |       |       |       |
| 614_PLN.04  | 614_40PLN_to_614_40_I    |                  | 1.00004                          | 1.       | 1 614_40_I      | 1 614_40PL           | N 100 NA                | 0              | 27 ReusePln       | Diversion | -1       | 5     | 0     | 9999  |
|             |                          | 4700614          | 0 Carrier                        |          |                 |                      |                         |                |                   |           |          |       |       |       |
|             |                          | 614_PLN.01       |                                  |          |                 |                      |                         |                |                   |           |          |       |       |       |
| #           |                          |                  |                                  |          |                 |                      |                         |                |                   |           |          |       |       |       |
| 614_PLN.08  | 614_60PLN_Spill          |                  | 2.00000                          | 0.       | 1 4700614       | 0 614_60PL           | N Ø NA                  | 0              | 29 NA             | NA        | 0        | 0     | 0     | 9999  |
| 614_PLN.09  | 614_40PLN_Spill          |                  | 2.00000                          | 0.       | 1 4700614       | 0 614_40PL           | N Ø NA                  | 0              | 29 NA             | NA        | 0        | 0     | 0     | 9999  |
| 614_PLN.10  | 614_PLN_Spill            |                  | 2.00000                          | 0.       | 1 4700614       | 0 614_PLN            | Ø NA                    | 0              | 29 NA             | NA        | 0        | 0     | 0     | 9999  |
| 614_PLN.11  | 614_PLN_Spill            |                  | 2.00000                          | 0.       | 1 NA            | 0 ReusePln           | Ø NA                    | 0              | 29 NA             | NA        | 0        | 0     | 0     | 9999  |
|             |                          |                  |                                  |          |                 |                      |                         |                |                   |           |          |       |       |       |

# Changed Water Rights Operations - Example Plan (\*.pln) File

| #<br># ID | Name           | RiverLoc  | ON/Off | iPtype | Peff | iPrf | iPfail | Pstol Psource | IPAcc |
|-----------|----------------|-----------|--------|--------|------|------|--------|---------------|-------|
| #         | -eb            | ebe       | beb    | eb-    | eb   | eb   | eb-    | exb           | ebe   |
| 614 PLN   | EurekaFullPlan | 614 PLN   | 1      | 13     | 0    | 0    | 0      | 0 4700614     | 0     |
| 614 60PLN | Eureka60Plan   | 614 60PLN | 1      | 13     | 0    | 0    | 0      | 0 4700614     | 0     |
| 614 40PLN | Eureka40Plan   | 614 40PLN | 1      | 13     | 0    | 0    | 0      | 0 4700614     | 0     |
| ReusePln  | ReusePlan      | ReusePln  | 1      | 4      | 0    | 0    | 0      | 0 4700614     | 0     |
|           |                |           |        |        |      |      |        |               |       |

## **Multiple Instream Flow Rights**

The functionality associated with instream flow reaches and rights was enhanced in StateMod Version 15. StateMod is now able to simulate multiple water rights at a single instream flow reach/point and can release from a changed water rights plan to an instream flow right.

- For an instream flow reach with multiple rights, include the multiple instream flow rights in the instream flow rights (\*.ifr) file using numeric suffixes (.01, .02, etc.). This numeric suffix approach is the same approach used in the diversion and reservoir rights files.
- For a plan releases to the instream flow, the instream flow must be downstream of the changed water rights plan. A Type 27 operating rule can be used to release from either an import plan or a changed water rights plan to meet the instream flow demand.

## **Bookover Operations**

The functionality associated with bookover operations was enhanced in StateMod Version 15 to improve the reporting of these operations. In specific operational scenarios in which the full reservoir volume is redistributed among several different accounts (i.e. Vallecito and Lemon Reservoirs), re-operation of bookover operating rules resulted in bookover amounts that far exceeded the reservoir account capacities. The Type 6 operating rule was enhanced to allow the user control over when the operating rule re-operated. The user can include another operating rule ID in the Type 6 operating rule, which signals to StateMod to stop re-operating the Type 6 rule after it simulates the included operating rule. See Section 7.5.4 for more information on these operations.

# **Status of Natural Flow Calibration**

• Discuss the status of any outstanding issues identified in the Natural Flow Review.

# **Calibration of Historical Simulation**

Calibration is the process of simulating the river basin under historical conditions and adjusting parameters to achieve agreement between observed and simulated records of streamflow gages, reservoir storage, and diversions. CDSS models are generally calibrated in a two-step process.

### First Step Calibration

In the first calibration run, the model is executed with relatively little freedom with respect to operating rules. Headgate demand is set to historical diversions, and historical reservoir EOM contents serve as operational targets. Operating rules simulate reservoir releases to satisfy demands, but if simulated reservoir content was higher than historical after all demand was satisfied, Release to Target operating rules caused the reservoir to release water to the river to achieve the historical EOM content.

The objective of the first calibration run is to refine natural flow hydrology and return flow locations before introducing uncertainties related to rule-based operations. Diversion shortages, that is, the inability of a water right to divert what it diverted historically, indicate possible problems with the way natural flows were represented or with the location assigned to return flows back to the river. Natural flow issues were also evidenced by poor calibration of the historical gages. Generally, the parameters that can be adjusted relate to the distribution of baseflows (i.e., A\*P parameters or the method for distributing baseflows to ungaged locations), and locations of return flows.

### Second Step Calibration

In the second calibration run, constraints on reservoir operations are relaxed. The Release to Target rules are no longer used and reservoir storage is now limited by water right and availability, and generally, reservoir releases are controlled by demands.
The objective of the second calibration step is to refine operational parameters. For example, poor calibration at a reservoir might indicate poor representation of administration or operating objectives. Calibration was evaluated by comparing simulated gage flows, reservoir contents, and diversions with historical observations of these parameters.

Simulated Values vs. Observed Records

- Run the Historical Scenario. This simulates the system using the natural flow estimates, historical diversions as the demand, historical operations, and the reservoir targets are generally set to capacity as discussed in First Step Calibration above.
- 2) Review the results of the Historical Simulation. The results of the historical scenario are generally reviewed to determine if the natural flows are large enough to meet the historical diversions, and to determine if the simulated streamflows correlate with historical streamflows.
  - a. Using TSTool, query for historical gaged streamflow (\*.rih file) and the simulated streamflow (River Outflow in the \*.b43 StateMod Binary file) at all streamflow gages in the model (including off-channel reservoir system calibration nodes).
  - b. Visually review the individual results of the simulated vs. historical streamflow by rightclicking on each time series result and selecting the Graph-Line option.
  - c. To understand the correlation between the simulated vs. historical streamflow, right-click on each time series result and select the Graph-XY-Scatter option. Right-click on the scatter



graph and select the Analysis Details option to view the R<sup>2</sup> value.

- d. Using TSTool, query for historical diversions (\*.DDH file) and the simulated diversions (\*.b43 StateMod Binary file) at all diversion structures in the model. Note that simulated diversions may be recorded under the From River by Priority or From River by Other. Review the diversion output file (\*.XDD) to understand how the total diversions can be calculated for structures that divert for more than one demand.
- e. Visually review the individual results of the simulated vs. historical diversions by right-clicking on each time series result and selecting the Graph-Line option.
- f. To understand the correlation between the simulated vs. historical streamflow, right-click on each time series result and select the Graph-XY-Scatter option. Right-click on the scatter graph and select the Analysis Details option to view the R<sup>2</sup> value.
- g. Consider reviewing the sum of diversions by tributary to understand the shortages on a tributary, and consider adding the natural flow estimate to the graphs to determine if the calibration issue is more related to magnitude or timing.

## **Basin-Specific Operational Discussion**

• Discuss any basin-specific operations modelers may be having difficulty representing in the models.