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Background
NOAA’s reference ET (ET,) project motivation

Produce first consistently modeled, accurate CONUS-wide ET, dataset:

» up-to-date and temporally extensive, dynamic, physically based

» hosted by Integrated Water Resources Science and Services (IWRSS) at National
Water Center (Tuscaloosa, AL).

> free to all.

SECURE Water Act, 20009:

Provide a consistent input to
Provide stakeholders technical information and tools

» National Water Census (NWC)  to answer two primary questions:

» climatology for the new NWS . pges the Nation have enough freshwater for

' ?
> drought-related uses: human and ecological needs:

- stand-alone drought indd Will this water be present for future needs?

- input to US Drought Mormormurces
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ET = actual evapotranspiration
E, = evaporative demand

Background

E, / ET constraints and in evaporation under radiative,
meteorologic limits only;
unlimited moisture

Tem@&ma.nd fE]rEZ- Lt ET drives Ejina . . Temperature
: iSsu f surfacg E m eric .
Wind speed OMPLEMENTARY 0 Wind speed
Net Hdiz SRbRf& &0 atmosphegieection. demand for ET Net radiation
Humidity Humidity
Moisture
availability E, is easy to estimate:

* Reference ET, ET,,
* Potential ET, PET

ET not easy to estimate:
* Pan evaporation

* Moisture availability . land
unknown on useful K3
scales. g\/ surface evaporation and

transpiration under
prevailing conditions

* Generally modeled or
remotely sensed. /

supply of water from

ET energy-limited: surface to atmosphere

E,drivesETina
PARALLEL direction.

at surface
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Background

Variety of metrics for E,
ESTIMATED: from WX obs,
R/S data, or reanalyses

e potential evaporation (PET)

“ complete physics: temperature-based:
. o SW radiation o air temperature
P o LW radiation O T\ux
5«%&&7 O air temperature O Toin
T - >. o humidity
* reference crop ET, ET, o wind speed

o atmospheric pressure

iy

e pan evaporation OBSERVED: physically
— L integrates all above drivers

Cooperative Institute for Research in Environmental Sciences

UNIVERSITY OF COLORADO BOULDER and NOAA %



Background
Uses of £,

Estimating crop ET:
e scheduling irrigation (FAO-56)
e short-term forecasting (FRET)
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Eagle Fire, Temecula, CA, May, 2004
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A = latent heat of vaporization
R, = net radiation (SW + LW) at crop surface

NOAA's reference ET (ET,) reanalysis G = ground heat flux

Estimating E, from ET,

Penman-Monteith reference ET equation:

ASCE Standardized reference ET / FAO-56

C,
0408D . 186400 9. o (- €)

°‘=D+g(1+CdUZ)( T HD+g(1+CdU2) *10°

|
Radiative forcing Advective forcing
(sunshine, T) (wind, humidity, 7)

“Reference” crop is specified:
* 0.12-m grass or 0.50-m alfalfa
* well-watered, actively growing
* completely shading the ground
e albedo of 0.23

U, = 2-m wind speed

e../ e,= saturated / actual vapor pressure
A =de_,,/dT at air temperature T

Y = psychrometric constant

» C4 = constants for crop type and time-step

Drivers from NLDAS-2: Driving data can also come from  1981-2010

* temperature at surface (2 m)
 specific humidity at surface

* downward SW at surface

* wind speed (10 m)

-
station observations - present
remote sensing /ide
reanalyses

Numerical Weather Predictors
Global Climate Models
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NOAA's ET, reanalysis

Verification across western US
All stations, all year, daily ET,

NOAA ET, (mm)

* |migated stations (671) v
* Non-irrigated stations (319) {J

‘ ' . .

Station-based ET, (mm)

Summary of verification results:
* growing-season daily r* ~ 0.64
* July-Sept daily r’< 0.6
* warm-season +ve bias
* cool-season —ve bias
e year-round, over-predicts station-based ET, by ~11%
* lowest biases in non-irrigated areas
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NOAA's ET, reanalysis

Data uncertainty across western US

Bias Reference ET (ET,)

‘ -
® L S

.

Solar Radiat Alr T rature R Squared § Bias )
Value o . Vilum Vnue'.'m Rk ( :al-ue High - 2.08e-3 in (0.052 mm) ?
10 | 250 Ly (350 ow2) M T2FTAOC
S PG (gt o = Low: 00 Low : <0.280-3 In {-0.007 mm)
Uiw oh Ly ) C 20 | I
y
- Pretty good in CO;
. - » but not yet good
» \
R - enough for
. . RMSE am v o . . .
Wind Speed Relative Hurmidity o irrigation scheduling
Value ) ) & Value e s Migh -4 7323 in (0120 mm) .
w—4h =388 woh (1.7 o) - Oy 405 Low : 2.228-3 in (0.056 mm)
—ow : 326 mgh {1 5 mE) . ow- 208 -

[Lewis et al., J.Hydrology 2014]
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NOAA's ET, reanalysis

Multi-generational ET, product

1 ETo reanalysis Gen-0:
FRET | " ] e ET,reanalysis biased wrt
10 . t obs
1 e QObserved ETo AR
: . B *  FRET biased wrt ET,
| | reanalysis

.
. T . T T T

b Jar Feb Mar Apr My e Jul Aug Sep oct Nov Dex v
14 ETo DA-reanalysis \/ .

|

: Gen-1:

Bias-corrected FRET | e ET,obs assimilated into
| | .
10 ® (Observed ETo v, IR N L ‘ | reanalySIS
A | 1t : e FRET bias-corrected
IR | Tyt o against ET, DA-reanalysis
¢ i
| - " ) l
1 b 4 " . . i |
. 5 - I
‘ : v
. Gen-X:
o L . . A hu g S Ot Now  De * finer-scale NLDAS-3 forcing
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NOAA's ET, reanalysis

Ideal features

» Accuracy quantified, QA/QC

» Institutional support for drivers

» Consistency of assimilation of observations

» Large spatio-temporal extents, high resolutions
» Capture long-term climatology

» Provide probabilistic context for events

> Forecastable at various time-scales
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Decomposition and attribution
Uncertainty analysis of ET,

0.408D 86400 QT (e e )
R = G U sat a = T* ) U j R
D+g(1+CdU2)( n ) 10° +D+g(1+CdU2) T g(T,q,Us0,Ry)

ET, =

(1) Variability analysis

\
OT R4
; - Oq.Rq
UETG=FT+F(]+FUIQ+FRJ=< &7 W T >
0
aann Rg
Tq
~ Or4U4,
sin (1) and
_ _ ions in (2)
(2) Change attribution om dataset
(mm/day)*2 _—
0ET, OET,;  wwm High : 16.295 3
AET, = ——AT + .
aT dqg d (2) derived

—— :
Low::0162 ey o e ~Jel formulation
[Hobb/ns etal., Trans. ASABE 2016]

Cooperative Institute for Research in Environmental Sciences

UNIVERSITY OF COLORADO BOULDER and NOAA % w




Decomposition and attribution
MJJASO variability contributions, daily ET,, by driver

Li \ ‘ ) 7 '
: v i‘fa—z_: ,i
: 4 “1%/
. .} 51 X
o ‘17‘/, | j. 27
N :"-L’I =3
% contribution — L 7
B <-80 '
)
. B -80 to -60 . b o e
2-m air —l Specific PRalE, W\
temperature B 40- 20 humidity
|-20-0
3 10-20 X
. {5 ~120-40 - J
(Y I 40 - 60 ‘ =) Ay
| ; )M"' B 60 - 80 ) ).f“
| '\ B 20 - 100 ‘ ’ "\}
Vi I > 100 LY 3
1; ' Y : d {
ot ‘A‘.’."‘-\‘/“ }{ : [ (
SW e T 10-m PmE TN
downwards { - wind speed {

[Hobbins et al., Trans. ASABE 2016]
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Decomposition and attribution
Top driver of daily variability, by month

December

Driver

2-m air temperature

- 10-m wind speed
- Specific humidity
- SW downwards

[Hobbins et al., Trans. ASABE 2016]
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Decomposition and attribution

Attribution of drought dy~~i~=
We can know which drivers

are most affecting changes in
—and therefore in drought.

DR, + %oy, P INIYY STEPITRTIFFF S FEER
W@R 'Dq "

anomalies

Ey=f(T,R,,q,U,), s0

cerv derived :5-
reroqgjw? intensifabatialy £ AE,
Hobb/né 6016]
(inckeasing Eg) forced by ~ —— —
 first, below-normal q & ~AT_ §
(while T falling)
* then, mcreasmg T and, 2 ,.7Ag - = =
to 3 lesser de g‘?‘ rdmento River % o -
%a’ in? Feb-Jul, 2014 L™ e —
* U, plays little role Eow S o §
: = <= (AP
T = air temperature
g = specific humidity o . at
R, = downwelling SW % © KD,

U, = wind speed K

[Hobbins et al., JHM 2016]
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Dangers of T-based E, parameterizations
Regional long-term trends in drought

IPCC has concluded that warming results in:

PDSI hydrology model forced

* globally, di acted to grow,

ore extensive.

« droughts ¢ by E, based on T alone.

BUT, comparing physically based E, vs. T-based E,;:

* E, trends (30-year, observed) driven by wind, not T
— Australia [Roderick et al., GRL 2007]

*PD
Causal link in T-based drought analyses is often reversed:  pg;

"UY " increased T often results from drought doesn tforce |t S
C

dlmmlng, stllllng, VPD changes
o differences in signs of PDSI trend signs (T-based +ve over 7x physical-based area)
— global [Sheffield et al., Nature 2012]
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Debunking the T-driven E, paradigm Although widely

available, T is an
How do T and R, co-vary? :
unnecessarily poor

proxy for radiative

forcing
-125' 120" -115" 110’ —105" —100° -95° —90' -85° —80" -75' -70°

January covariance July covariance

-125° -120° -115" -110" -105" -100° -95" -90° -85 -80" -75° -70° -120° -115" =110 -105" -100° -95° -90° -85 -80" -75° -70°

Annual covariance, oz, ;

=\
50° i*

45

40°

36"

30°

25°

[Hobbins et al., JHM 2012]
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i T e

Scenario planning with E, e BN, =il
Meeting SLC’s freshwater needs g ) s
=
SLC Dept. of Public Utilities water- N f :“ 0 e v
supply scenario planning: o e o
* Aclimate gk 'Lp.w" ol e ‘J.] —
 drought scenarios f";.w e &\ '
* operational scenarios g 72 e
ing: lytical | Y A
Runoff modeling: — analytical expression 3 N ST _‘
: o OF '
ﬂ“mh%'DT%%ﬁtmmlﬁo TNImnrRm T
N 1‘ * Runoff reduction —-3.8% / °F
AE@ AT =1-6 F by 2035-64 * seasonal reductions — largest in May-Sept
calibrated to sub-basin * earlier, reduced volume
/ * greatest threat — meeting late-summer
water demands
SACSMA AET ARunoff
model
APPepp AT,
dynamic Prcp, T [Bardsley et al., Earth Interactions 2013]
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ET, reanalysis in drought monitoring
Evaporative Demand Drought Index (EDDI)

rank in CDF

matching

i (B,)- 0.3
n+ 0.33

EW2: -1.282, or < 10%ile ) !
# vears in climo

o T] EW1:-0.841, or < 20%ile QGO-Q{DW-parameteric

< T

N(0,1) .
ED4: 2.054, or > 98%ile

EW4: -2.054, or < 2%ile

EW3: -1.645, or < 5%ile ED3: 1.645, or > 95%ile

ED2: 1.282, or > 90%ile
I 1

ED1: 0.841, or > 80%ile
Ty

Recomm¢ EW0:-0.524, <30%ile Kring drought in| EP% 0'524'>70%i":“hmako chpk, 2014)
. * ts periog

is observed.

during which

7

wetter than normal O drier than normal

< EDDI >0 [Hobbins et al., JHM 2016]
HoPI<0 [McEvoy et al., JHM 2016]
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What does EDDI| offer? USDM = United States Drought Monitor
A multi-scalar drought estimator

12-month EDDI

9-month EDDI/

/ 6-month EDDI

3-month EDDI

A1063180 INAQSN ueaw-uiseg

&)
a
L
c
©
)
S
=
‘B
(3]
m

Signals of different drying
dynamics are evident at

1-month EDF)/‘* -w | different time-scales

EDDI temporal resolution

2-week EDDI

USDM (grey) and EDDI (red)
across Apalachicola River basin
at Chattahoochee, FL.

1-week EDDI
[Hobbins et al., JHM 2016]
_ [McEvoy et al., JHM 2016]
Time: Jan 2004 — Dec 2009 [McEvoy et al., GRL 2016]
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What does EDDI offer?

Leading indication of drought 2-week EDDI
. :’ ‘\.'- At I‘i:",', /.
5 A e ]
3 N e =
- -
Drought developing in entire
g No drought in MO, AR, OK, NE region
Yoo L HAS V [ ASs  #9on
g n :,7 &,’:}»’JPJ: ~7.‘1.:__‘L—z ﬁf:f;‘g_’
2-week EDDI captures o 2\ Y S % ¢
5 2 ha > — Wanvy b’ \‘. T8 ‘_r f'
severe drought conditions £ ki ™ WY
E Drought expands in the region Flash drought (including ED3, ED4
~2 months before USDM g but not in intensity conditions) in MO, AR, KS, and IL
g >
= 3
=
[
3
2
(]
~
%
&
“Flash drought” in the 72

o 9-,
D4 and D3 emerged over much the Intense drought persists in the
region two months after EDDI region

US Midwest, 2012
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What does EDDI offer?

Monitoring across sectors

VIC = Variable Infiltration Capacity model
ESI = Evaporative Stress Index

1800
°
’E\ 1750 |- o ° rr=0.74 i
] ® o)
= o
o o °
E’ 1700 | ¢ & ® il
C L4 ®
- ° S o
™ 1650} o0 X d
= '.oo
o °
u 1600 : ® . E
f )
C
e 1550
6 °*
N .
s __Agricultural drought -lJuly 31, 2002
3
. /
f/ (b) i
! § / EDDI, SM, and EST USDM drougv
-..),“"‘v . 3-month EDD| percentiles categories
J 0% D0, Abnormally dry
3 h 1 o *‘ R '|| > $U‘. i [)I, Moderute drought
& i o a8 e > 90 D2, Severe drought
e i e uy.f_;,v L A 08% - D3, Extreme drought
= ‘ ;s g ? : i: o n".‘f';}} K% - 4, Exceptionn] drougst
(€) g AN (d) "
iy ool {
VIC-modeled $M 1 12-week ESI { )
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What does EDDI offer?

Near-real-time monitoring

Western Water Assessment’s
Intermountain West Climate Dashboard

s Syegy: Mesta Mam Sreagnt Haavers ¢ Proca
— w
2-week EDDI categories for October 7, 2016
et .
&,
N
A &
— N ™ 4 -
F ]
. ¥ T 7| e st
- » o™~ '
i N !
" " 1 4 1w "W "w orw 106"W 10w noew
. I Pruts Cesoen
- Drought categarnes Welness catagones
T ¥ » « a ~
hade - i p Ny e foaut O
» v
. e | :
Sl A sl B
ke
AR TSR —

Live EDDI maps available:
e http://wwa.colorado.edu/climate/dashboard.html
e ftp://ftp.cdc.noaa.gov/Public/mhobbins/EDDI/IMW DEWS/
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Short-term forecasting of ET,
NOAA’s motivations

Stakeholder-led demand

No widely available public- or private-sector ET, forecasts

Permit more-informed water management, conservation decisions

Potential users and uses:

>
>

Agricultural users, especially irrigators — plan daily to weekly irrigation
Academic / agricultural outreach community

Water resource managers of sophisticated supply systems — forecast demand

at weekly or longer time-scales
USBR — plan reservoir releases, especially a week or two out
USFS — nation’s water supply

NIDIS — support near-future analysis in drought conditions
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Short-term forecasting of ET, RH = relative humidity

NWS 1- to 7- day forecast ET, (FRET) product

Forecast estimate of ET, for 24-hour period:

Deterministic forecast: 1ET weather o . ET
V7" parameters \» Y
— no ensemble forecasts < ’—T % \
; <wy?  Crop ‘.._. ET
o )l characteristics ¢
- = "'-\ \‘-,

Time-and space specs:

— 1- to 7-day lead time N
— 24-hour periods run 6z to 6z {kgnwfra%r;ggnfl_\é ETe adj
) el i |
/ I

— HRAP grid (~2.5 kms) S\ o /)

management \ \

Penman-Monteith (ASCE):

— 12-cm grass reference crop
drivers forecasted by loading data from a model (or

blend of models), expertly tweaked for consistency

Drivers:
— sensible weather elements from coupled NWPs with neighboring WFOs / specific local conditions,
_— - e.g., for wind: may load local WRF data and
ol then increase areas in the Delta for Delta breeze.

10-m wind speed
*  Sky (cloud cover %)
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Short-term forecasting of ET,
FRET product

Forecast surface,

NLDAS climatology, specific

generated from NW

to 2-wk period

/
.,.;."‘ g(-_
—— ' Vol G
e ‘ #"/ :
USA.aov " | )k A
B> oA
V4 Tolte specific FRET values are available by clicking on the y “, ' /
2 Bl Ll /7 / Please fill out the surfey at: http:f'www.weather.gov/survey/nws-survey.php?c /7 2 v ,’“_
Penman it A Y, e
é aI Neighbors kK Map > / A
Y 4 Lt of
Forecast grids; N LEXAD ri:dﬁérture from Normal Climatology Information 07 ;
* Temperature port: = 2-m temperature vl 3
—SKkyTover * Down
eterministic forecast; 10-m
. i idi * Atmo > -
o efsiMiBLEdity P :
*  Specific humidity
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Short-term forecasting of ET,
Example forecasts, 1-day FRET

Aug 24, 2013 - hot Aug 29, 2013 - cool

Forecast:
1-day FRET

Anomaly:
FRET,y— ET,
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Short-term forecasting of ET,
FRET verification

Water year (WY) and summer FRET ET, vs. CIMIS observations

WY, 1-day ' WY, 7-day Summer, ljday Summer, 7-day

> 80% of FRET values within
0.05 in/day of observed ET,

/’ : for all forecast periods.
FRET — CIMIS observation for 48 stations
1-day 3-day 5-day 7-day
8 B | FRET has slight +ve bias wrt
| l | observed ET,, increased
\ bias in summer.
2012 Water Year | 2012 Summer
FRET BIAS MBE MAE BIAS MBE MAE
forecast period (in/day) (-) (in/day) (in/day) (-) (in/day)
1-day 0.006 0.18 0.029 | 0.015 0.07 0.036
3-day 0.006 0.18 0028 | 0015 0.08 0.034
5-day 0.006 0.18 0028 | 0013 0.08 0.032
7-day 0.004 0.17 0028 | 0012 0.07 0.032
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Seasonal forecasting of ET,

AC difference (ENSO - All)
04 03 -02 01 0 01 02 03 04

; r V4 , —_—1 £
45°N 1 s 45°N
40°N < ‘ ' 40°N ]
35°N : ' 35°N
ET, forecast .
30°N \ @[ 30N ®)
seasonally S —, _ = - -
. 120°W 108°w  96°W  84°w  72°W 120°W 108°W  96°W  84°w  72°W
with greater 08 o 8
. I All Forecasts
Skl” than PGC 0.7 ENSO Conditional Forecasts
_ 06
(o]
= 05
®
& 04 ‘
(&)
203
E 0.2
<
| n | |
(c) (d)
01 WW We SW So WNCENC Ce SE NE NW We SW So WNCENC Ce SE NE

[McEvoy et al., GRL 2016]
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Climate-scale projections of E,
Model uncertainty: physically based vs. T-based E,

20-model mean results for RCP85 E,, 2070-2099 minus 1950-2005
A Thornthwaite (mm/year)

A Penman-Monteith (mm/year)

el
—Z| AT,
aT |;
- - - - iE
‘ S N s Ll ASW,
\3 L Loe : o | 35W [
AE (T.SW.SH.U)=f .
ol i
T-based AE,: c| ASH,
. . K
e overestimated in hotter E| .
regions; v, )
* underestimated in colder
regions.
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Climate-scale projections of E,
How to estimate regional drought risk under climate change ?

Projected evaporative demand — Northern Great Plains Projected drought in NGP — EDDI and SPEI
> i ::W \ Wettest
S 60 - —Penman Monteith FAO56 - a = 100%
g —FPriestley Taylor . s R w | = = |
S 40 —Hargreaves = Saw N 3 — 98%
M > 20X E N =
© ‘{ lﬁ 2010 . 95%
9\‘) 2.0 — !?. 2 2000 wn o e
O .vlv\ ;rr [\fuﬁ‘\};‘[ﬂﬂj l | ' U 1600 LI.'I Ef/ - 5 ===| 88 90%
§ f’m Drought projections are greatly E= | so%
3 20 affected by choices of E, E -
: J - parameterization and GCM forcmg -
1950 1980 2010 2040 | 8 — ; ;
Year (amongst others). 3, e S = |
% 3 . - ‘ : = : = _» . 10%
For drought-risk projections, users often "'é' = : g = =™
i i i M - ::‘:_: v—_—..b;_-‘_' ".'_".,_ ‘A_':— - ._<
use what is available (and easiest to use). O =P —2rer—xa IZ%
%‘ -?;—_. "'_ ,_ SE e =™
~ _— - . = - - 88 -
- v T v - “<~\_Driest
Penman- Hargreayés Priestley-
Montieth Taylor
1 30 60 90 120150180210240270300330360
[Dewes et al., submitted to PLoS ONE, 2016] Day of year

Cooperative Institute for Research in Environmental Sciences

UNIVERSITY OF COLORADO BOULDER and NOAA % w




Short-term: NWS 1- to 7- day lorecast £7,, (FRET) product

Forecasting ET,,
Across time-scales

Short-term:

- 1- to 7-day forecasts
- Drivers: Numerical Weather Prediction

- CONUS
Forecasting of irrigation demands: now B ET0 oo (CF567) -
Seasonal scale: Seasonal forecasting of drought drivers: soon
- 90-day forecasts Projections of drought: work in progress S X
- Drivers: NMME-2 - : oy

- CONUS

Climate scale:

- Multi-decadal climate projections
- Drivers: CMIP5 GCM runs

- Global
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Take-home thoughts on E,

* Must be physically based

* Often more readily available than ET (than Prcp, often)
o latency can be significant.

* Many uses:

o crop water requirements — original conceit

o conversion via R/S to ET — various space-scales
o land-surface modeling for ET
o

drought monitoring — e.g., EDDI

= driverin high-res. ET estimation

= drought metric in itself

= near-real-time monitoring

= early warning of drought

= tracks fast-moving droughts

= attribution of evaporative drought drivers

* ET, reanalysis provides probabilistic context for droughts

* Forecastable at various time-scales
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