

California State University MONTEREY BAY Extraordinary Opportunity

Satellite Mapping of Crop Coefficients and Crop Water Requirements in California

Tom Trout, USDA-ARS

Forrest Melton, Lee Johnson, Kirk Post, Alberto Guzman, Carolyn Rosevelt, Rachel Spellenberg, Isabel Zaragoza

NASA ARC-CREST / California State University Monterey Bay forrest.s.melton@nasa.gov

> Bekele Temesgen, Kent Frame, Simon Eching CA Dept. of Water Resources

U.S. Council on Irrigation and Drainage Colorado ET Workshop 2016 *Ft. Collins, CA* 13 October 2016

Crop Coefficients: FAO-56

Annual Crops

Ground Cover: LIRF Corn 7/31/2008

Irrig Sci (2009) 28:17-34 DOI 10.1007/s00271-009-0182-z

ORIGINAL PAPER

Estimating crop coefficients from fraction of ground cover and height

Richard G. Allen · Luis S. Pereira

Received: 13 May 2009/Accepted: 15 July 2009/Published online: 16 September 2009 © Springer-Verlag 2009

Abstract The FAO-56 procedure for estimating the crop coefficient K_c as a function of fraction of ground cover and crop height has been formalized in this study using a density coefficient K_d . The density coefficient is multiplied by a basal K_c representing full cover conditions, K_{cb} full, to produce a basal crop coefficient that represents actual conditions of ET and vegetation coverage when the soil surface is dry. K_{cb} full is estimated primarily as a function of crop height. K_{cb} full can be adjusted for tree crops by multiplying by a reduction factor (F_x) estimated using a mean leaf stomatal resistance term. The estimate for basal

Introduction

The two-step crop coefficient $(K_c) \times$ reference evapotranspiration (ET_{ref}) method has been a successful and dependable means to estimate evapotranspiration (ET) and crop water requirements. The method utilizes weather data to estimate ET for a reference condition and multiplies that estimate by a crop coefficient that represents the relative rate of ET from a specific crop and condition to that of the reference. The reference condition is generally ET from a clipped_cool season_well-watered_grass (ET_) or from a

Development of Reflectance-Based Crop Coefficients for Corn

Christopher M. U. Neale, Walter C. Bausch, Dale F. Heermann

ASSOC. MEMBER ASAE ASSOC. MEMBER ASAE MEMBE ASAE

ABSTRACT

noncurrent measurements of reflected canopy radia-Ution and the basal crop coefficient (K_{cb}) for corn were conducted throughout a season in order to develop a reflectance-based crop coefficient model. Reflectance was measured in Landsat Thematic Mapper bands TM3 (0.63 - 0.69 um) and TM4 (0.76 - 0.90 um) and used in the calculation of a vegetation index called the normalized difference (ND). A linear transformation of the ND was used as the reflectance-based crop coefficient (K_{cr}). The transformation equates the ND for dry bare soil and the ND at effective cover, to the basal crop coefficient for dry soil evaporation and at effective cover, respectively. Basal crop coefficient values for corn were obtained from daily evapotranspiration measurements of corn and alfalfa, using hydraulic weighing lysimeters. The Richards growth curve function was fitted to both sets of data. The K_{cb} values were determined to be within -2.6% and 4.7% of the K_{er} values. The date of effective cover obtained from the K_{cb} data was within four days of the date on which the ND curve reached its maxima according to the Richards function. A comparison of the K_{er} with basal crop curves from the literature for several years of data indicated good agreement. Reflectancebased crop coefficients are sensitive to periods of slow and fast growth induced by weather conditions, resulting in a real time coefficient, independent from the traditional time base parameters based on the day of planting and effective cover.

INTRODUCTION

Crop coefficients and calculated reference crop

soil conditions from those under which they were developed. However, these coefficients provide an inexpensive and practical method for estimating actual crop ET throughout a growing season with reasonable accuracy for scheduling irrigations.

The use of reflected canopy radiation to obtain a real time reflectance-based basal crop coefficient for corn has previously been studied by Neale and Bausch (1983) and Bausch and Neale (1987). Those studies compared Wright's (1982) basal crop coefficient for corn with a transformation of the normalized difference (Deering et al., 1975), calculated using remotely sensed reflected canopy radiation data obtained throughout a growing season. One hypothesis in those comparisons was that the normalized difference curve reached its maxima close to the date of effective cover on the basal crop coefficient curve. However, no evapotranspiration data were available at that time to estimate basal crop coefficients.

The objective of this paper is to show the feasibility of using remote sensing methodology to estimate crop coefficients for corn by comparing simultaneous field estimates of corn basal crop coefficients and reflectancebased crop coefficients. A comparison of the reflectancebased crop coefficients with coefficients from the literature will also be made for several years of data.

BACKGROUND

Agronomic Variables and Evapotranspiration

Specific factors that influence evapotranspiration of plants include plant species, percent canopy cover, plant population, row spacing and orientation, rooting depth and extent, stage of growth, light reflection, and soil moisture availability (Gates and Hanks, 1967). Penman

Satellite Irrigation Management Support Project: TOPS - SIMS

Processing Steps

- At sensor radiance
- LEDAPS
- Surface reflectance
- NDVI
- Fractional ground cover
- K_{cb}
- $ET_{cb} = K_{cb} * ET_{ref}$

Landsat (TM / ETM+ / OLI) 30m / 0.25 acres Overpass every 8-16 days Sentinel-2A 20m / 0.1 acres Sentinel 2B launch in 2017

Satellite Irrigation Management Support Project: TOPS - SIMS

Processing Steps

- At sensor radiance
- LEDAPS
- Surface reflectance
- NDVI
- Fractional ground cover
- K_{cb}
- $ET_{cb} = K_{cb} * ET_{ref}$

ET_{ref}: CIMIS / Spatial CIMIS

CIMS Station Data, 1982 to present

Spatial CIMIS, 2003 to present

Satellite Irrigation Management Support Project: TOPS - SIMS

Processing Steps

- At sensor radiance
- LEDAPS
- Surface reflectance
- NDVI
- Fractional ground cover
- K_{cb}
- $ET_{cb} = K_{cb} * ET_{ref}$

Satellite Irrigation Management Support (SIMS) Web Services

TOPS Satellite Irrigation Management Support

Disclaimer: This data is for research and evaluation purposes only. Curator: Forrest Melton

Password:

Login

Username:

Satellite Irrigation Management Support (SIMS) Web Services

Accuracy Assessment Field Campaign

Inflow

Soil Water

Deep Perc

Water Balance and SEB 15 crops 30 sites

Eddy Covariance

SIMS Accuracy Assessment

- Field validation campaign completed in partnership with partner growers, CA DWR, CSU Fresno, USDA ARS and UC Davis.
- Data collected for 15 crops at 30 sites using eddy covariance, surface energy balance residual, soil moisture sensor networks.
- Results highly encouraging for seasonal and daily comparisons.
 - 11% mean absolute error for seasonal ETcb vs measured ETa (via eddy covariance / surface energy balance residual; n = 12)
 - 14.2% mean absolute error for seasonal ETcb vs measure ETa (via soil water balance; n = 23) → reduced to 8.7% for well-irrigated crops only (n = 16)

Average Observed ET_{rf} by Crop Type for CA Delta

- SIMS close to median of model ensemble for most crop types
- SIMS close to mid-point between two versions of METRIC run by two different expert groups (ITRC and UC Davis)

Monitoring Crop Development

NASA Official: Ramakrishna R.Nemani

Curator: Forrest Melton

Privacy Statement

Southern San Joaquin Valley, CA, Field Boundary Polygons

Application Program Interface (API) for Integration with Other Irrigation Management Software

CropM	lanage					
Planting Home	Ranch Home	Edit Ranch	Ranch List	Site Administration -	Help	
Planting: romai	CCE Ranch 3, Lot ne 2, 10.0 acres 2 row, 40 inch bec					

Irrigation Summary

Show / H	lide Columns				Reset Column O	rder	Show Previ	ous Columns	Show Next Columns
Water Date	Irrigation Method	Recommended Irrigation Interval (days)	Recommended Irrigation Amount (Inches)	Recommended Irrigation Time (hours)	Irrigation Water Applied (inches)	Ke	Canopy Cover (%)	Average Reference ET (inches/day)	Total Crop ET (inches)
6/4/15	Germination Sprinkler	N/A.	NA	NGA	0.75 m	0.00	0	0.00	0.00
6/5/13	Germination Sprinkler	1.6	0.22 in	0.72 hrs	0.45 in	1.00	0	0.14	0.14
6/7/13	Germination Sprinkler	1.9	0.36 in	1.18 hrs	0.30 in	0.70	0	0.17	0.23
6/9/13	Germination Sprinkler	1.7	0.39 in	1.29 hrs	0.45 in	0.70	0	0.18	0.25
6/12/13	Sprinkler	3.1	0,28 in	0.95 hrs	0.30 in	0.48	t.	0.15	0.21
6/16/13	Sprinkter	2.9	0.40 in	1.33 hrs	0.45 in	0.37	t	0.20	0.30
Totals			1.64 in	5.47 hrs	2.70 in				1.13 in

SIMS Earth Engine Implementation

Advantages:

- Leverage satellite image archives and data services on Google Earth Engine
- Reduce operational costs
- Increase scalability to other regions

Limitations of the SIMS / Reflectance Approach

- Requires local ET_{ref} (Weather station network)
- Provides ET_{cb} must add in soil evaporation to get ET_p
- Must estimate crop stress to get ET_a (e.g., via soil water balance)

Advantages of the SIMS / Reflectance Approach

- Reflectance data freely available from multiple satellites (e.g., Landsat 7/8, Sentinel-2A) → <u>operational reliability & data continuity</u>
- Reflectance data available at field scales (30 m)
- Relatively simple calculations fully automated computations
- NDVI/Fc/K_{cb} interpolates well between point measurements
- Extensible framework for satellite data processing
- ET_{cb} represents biological demand for water by the plant

Combination of energy balance (e.g., METRIC) and reflectance (e.g., SIMS) approaches provides robust, long-term strategy for sustaining operational use.

TOPS Satellite Irrigation Management Support

Disclaimer: This data is for research and evaluation purposes only. Curator: Forrest Melton

Privacy Statement

Password

Login

Username:

NASA Official: Ramakrishna R.Nemani