Adapting Crop Coefficients for Local Conditions

Richard G. Allen Professor of Water Resources Engineering Univ. Idaho – Kimberly, Idaho, USA

Ayse Kilic Associate Professor University of Nebraska-Lincoln, USA

collaborators/acknowlegements – L.S. Pereira, J.L. Wright, W.O. Pruitt, M.E. Jensen, D. Raes, M. Smith, Andy Suyker

10/24/2016

USCID / Colorado ET Workshop, Oct. 13, 2016, Fort Collins, CO

Discussion Points

- Transferability and Standardization of Reference ET
- Transferability of Crop Coefficients
- Impact of crop density and architecture
- Review of the Dual Crop Coefficient Reference ET approach of FAO56
- Application at Mead, Nebraska with comparisons against Ameriflux Eddy Covariance
- Sensitivites of ET estimates to settings for Dual K_c parameters

The Dual K_c Approach $ET_c = K_c ET_{ref}$ $K_c = K_s K_{cb} + K_e$

- $K_s = stress coefficient (0 1)$
- K_{cb} = 'basal' coefficient representing ET with dry surface soil layer (primarily transpiration)

• $K_e = evaporation$ from wet soil surface

 $= K_e = K_r \left(K_{c \max r} - K_s K_{cb} \right)$ (Transpiration (K_{cb}) has priority over E)

•
$$K_{c \max r} = \max[K_{c \max bare}, (K_{cb} + 0.05)]$$

USCID / Colorado ET Workshop, Oct. 13, 2016, Fort Collins, CO

Reference ET

USCID / Colorado ET Workshop, Oct. 13, 2016, Fort Collins, CO

FAO and ASCE Penman-Monteith are traceable to the Davis, California and Kimberly, Idaho (USDA) Lysimeters

22 OCT 87

Kimberly Lysimeters -September 7, 1990

ASCE/FAO PM -- Daily vs. Hourly Timesteps -- Both are good

The FAO-56 hourly PM was applied using 50 s/m surface resistance as recommended in Allen et al. 2005

QAQC of Weather Data -- Correct biases before use

- FAO-56 and ASCE (2005) standardizations and guidelines encourage the use of a graphical assessment of hourly or daily weather data
- Graphical views of data and contrasts benefit from
 - Relatively quick and automated assessments
 - Scans of entire data series
 - Enables the use of the human brain's integrating and conclusion-drawing capabilities
- Recommended to complement Weather Network QAQC programs

REF-ET Reference Evapotranspiration Calculator

For Support of ASCE Manual 70 (1990,2016) and 2005 ASCE Standardization and FAO Irrigation and Drainage Paper No. 56: CROP EVAPOTRANSPIRATION

Dr. Richard G. Allen

University of Idaho Research and Extension Center Kimberly, Idaho 83341

COPYRIGHT 1990, 1994, 1999, 2000, 2004, 2008, 2015, 2016

Version 6.0.9.22.2016

This is not an Official, Registered Copy. If not the original registrant, Please consider supporting our Development Costs by Obtaining a Registration Form from http://extension.uidaho.edu/kimberly/tag/reference-evapotranspiration/ and submitting \$49, payment plus costs for shipping and handling.

About Ref-ET

ET

ET REF-ET Definition File Setup (The upper lefthand form defines the parameter order and units in the data file)

)efiniti	on File	Name:	A	vondale_daily.def		Paran (Doubl	e Click on Item below to Insert	File Item		
Data 1	ypes,	Units a	ind Rea	ading Order from Data File		into the	the Left)			
Para beg er		end	The following lists of items	1	 Ignore numeric entry (skip) Ignore string (text) entry (skip) 					
No. ID col col A		col	Are to be read from the Data File:	-	2	2: Line Feed (go to next line)				
1	1			Ignore string (text) entry (skip)		3:	Month, 1-12			
2	2 10 7 10 Year, 0000-2099		Year, 0000-2099		4:	Day, 1-31	4.6.4			
3	3	12	13	Month, 1-12		6	6: Hour, 0-24 (do not use with daily di 6: Hour, 0000-2400 (do not use with (7: Hour and Minute, 0000-2359 (do n			
4	4	15	16	Day, 1-31		7:				
5	0			Ignore numeric entry (skip)		8:	Minute, 0-59 (do not use wit	h daily		
6	0			Ignore numeric entry (skip)		10:	Year, 0000-2099			
7	18			Max Air Temp, C (daily or hourly)		11:	Day of Year, 1-366	~		
8 0 Ignore numeric entry (skip)						<		>		
· °	8 0 Ignore numeric entry (skip) 0 0 Ignore numeric entry (skip)					In the ta Howeve	ble above, units of '/hr' are always fo r, timesteps can be shorter than one	r 'per hour.' hour.		

Note

You can leave column numbers in the above blank or use """ (default) when the data are separated by blanks, commas or tabs

The window below displays several lines of the data file for your reference. It there are Tab separators in the data file, values displayed may not correspond to column numbers shown across the top of the window.

1 2	3 4	5 6	7 8	
12345678981234567898	12345678901234567890	12345678901234567890	12345678901234567890	12345678-
avn01,1993-01-02,4.6	15,13.95,12:57:00,-2	.409,06:16:00,0.529,	0.947,00:06:00,0.346	,14:13:0
avn01,1993-01-03,1.1	87,8.7,11:18:00,-12.	99,23:56:00,0.424,0.	928,23:11:00,0.396,1	1:17:00,
avn01,1993-01-04,-8.	79,-1.734,14:58:00,-	16.21,05:12:00,0.278	,0.925,00:17:00,0.60	9,14:46:
avn01,1993-01-05,-5.	273,1.963,13:26:00,-	10.82,02:08:00,0.29,	0.898,02:18:00,0.331	,12:54:0
avn01,1993-01-06,-6.	566,-0.055,14:40:00,	-11.23,06:52:00,0.29	4,0.909,23:58:00,0.5	28,14:10
1 - 04 4000 04 07 F	FLF 4 707 41.41.00	a at ara. a a. a	001 81.10.88 8 1.80	41-40-00

Data Delimiters Select the c	haracters (besides a	space) used to	delimit data columr	s (i.e., tabs, commas, sla	shes, etc.):	(the first two delimiters are recommanised)
🗹 Tab	🗹 Comma (,)	Decimal ((.) 🗌 Slash (/) Vert.Slash () Color	n(:)
Treat two ba	ck-to-back delimeter	s as one?]Yes 🗹 No	(usually only tab and comn (multiple spaces are alway	na are needed besides s treated as a single d	i spacë) lelimeterj
Are data in	the European syst	em where the	comma is the de	cimal? 🗌 Yes 🗹 No)	
Insert New	ID Line Del	ete ID Line	Back	Exit	Cancel	Continue

)ataFile:	CoAgMet Raw Data_n	ew_Avondale.txt	t				
DefinitionFile:	Avondale_daily.def				Ŀ	4 IT	
The anemon	neter height is:	2 m	neters	(65)ft	1	Charles .	All A
The tempera The weather	ture/RH height is: station elevation is:	2 m 1396 m	neters neters	(6.5) ft (4580.0) ft	64		
The weather	station latitude is:	38.2166 d	legrees (- to	r Southern)			
The weather Center of tim – Eastern Tim (The time zone The weather	station longitude is: e zone longitude is: e Zone = 75 deg. Central e longitude must be in mu site vegetation height	104.341 de 105 de = 90; Mountain = hibtes of 15 deor :	egrees** egrees** = 105, Padfic rees for North m (0 if sa	W (E or W**) W (E or W**) = 120 deg America) **Reg. o ame as ref. or as	< (Hint : nlv for ~hourly d s ht. specified	105 W) ata in the data file)	
Initial Lines o Description of Avondale daily v	f the Data file to be set the station and data veather data for period of	(ipped: 0 a (No more that frecord, from C(an 1000 ch: OAGMET Rat	Code for missir aracters) w Data - 'new dat	ng data (e.g{ abase'	999) -999]
Initial Lines o Description of Avondale daily v How "hourly" tir	f the Data file to be set the station and data veather data for period of me stamps are defined**	(ipped: 0 a (No more that record, from CO	an 1000 ch: OAGMET Rat	Code for missir aracters) w Data - 'new dat	ng data (e.g{ abase'	999) -999]
Initial Lines o Description of Avondale daily v How "hourly" tin Time repres (•) of the perio the default)	f the Data file to be set the station and data veather data for period of me stamps are defined** ents time at the end d (most common and	(Internet internet in	an 1000 ch: OAGMET Ray represents tim of the period mmon)	Code for missir aracters) w Data - 'new dat ne at the	ng data (e.g{ abase' Time repr o at the cer period (u	999) -999	
Initial Lines o Description of Avondale daily v How "hourly" tin Time repres (*) of the perio the default) For "hourly"	f the Data file to be set the station and data weather data for period of me stamps are defined** ents time at the end d (most common and data in U.S.A., Daylight	(ipped: 0 (No more that record, from Co Time n Start o (uncor t Savings Time	an 1000 ch: OAGMET Ray represents tin of the period mmon) is Observed	Code for missir aracters) w Data - 'new dat ne at the in Data Set (che	ng data (e.g{ abase' ⊖ at the cer period (u ck if true)**	999) -999	
Initial Lines o Description of Avondale daily v How "hourly" tin Time repres (e) of the perio the default) For "hourly" Note: For daily The "Hou	f the Data file to be set the station and data veather data for period of me stamps are defined** ents time at the end d (most common and data in U.S.A., Daylight time steps, REF-ET pr rly" data term applies to	A (No more that record, from CO Time n start o (uncor t Savings Time esumes that the any timestep s	an 1000 ch: OAGMET Ray of the period mmon) is Observed e data repres shorter than 2	Code for missir aracters) w Data - 'new dat me at the in Data Set (che sent the period fro 24 hours.	ng data (e.g{ abase' O at the cer period (u ck if true)**	999) -999	
Initial Lines o Description of Avondale daily v How "hourly" tir Time repres (•) of the perio the default) D For "hourly" Note: For daily The "Hou The followir	f the Data file to be set the station and data weather data for period of me stamps are defined** ents time at the end d (most common and data in U.S.A., Daylight time steps, REF-ET pr rly" data term applies to ag Data are required	A (No more that record, from CO Time n Start o (uncor t Savings Time esumes that the o any timestep s d only for FA	an 1000 ch: OAGMET Rate Tepresents time of the period mmon) is Observed e data repres shorter than 2 AO-24 Eqn	Code for missir aracters) w Data - 'new dat me at the in Data Set (che sent the period fro 24 hours.	ng data (e.g{ abase' O at the cer period (u ck if true)**	999) -999	
Initial Lines o Description of Avondale daily v How "hourly" tin Time repres (*) of the perio the default) For "hourly" Note: For daily The "Hou The followin The default D	f the Data file to be set the station and data weather data for period of me stamps are defined** ents time at the end d (most common and data in U.S.A., Daylight time steps, REF-ET pr rly" data term applies to ag Data are required ay/Night wind ratio is :	(ipped: 0 (No more that record, from Co Time n Start o (uncor t Savings Time esumes that the any timestep s d only for FA	an 1000 ch: OAGMET Ray OAGMET Ray represents tim of the period mmon) is Observed e data repres shorter than 2 AO-24 Eqn (2 If unkn	Code for missir aracters) w Data - 'new dat me at the in Data Set (che sent the period fro 24 hours. IS. nown*)	ng data (e.g{ abase' O at the cer period (u ck if true)**	999) -999	
Initial Lines o Description of Avondale daily v How "hourly" tin Time repres (a) of the perio the default) D For "hourly" Note: For daily The 'Hou The followin The default D The green fet	f the Data file to be set the station and data weather data for period of me stamps are defined** ents time at the end d (most common and data in U.S.A., Daylight v time steps, REF-ET pr rly" data term applies to ag Data are required ay/Night wind ratio is ch on the Class A Pan	(ipped: 0 a (No more that record, from CO Time r Start o (uncor t Savings Time esumes that the any timestep s d only for F/ 2 1000	an 1000 ch: OAGMET Ray OAGMET Ray of the period mmon) is Observed e data repres shorter than 2 AO-24 Eqn (2 If unkn m (1000 i	Code for missir aracters) w Data - 'new dat w Data - 'new dat ne at the in Data Set (che sent the period fro 24 hours. ns. nown*) if unknown*)	ng data (e.g{ abase' 	999) -999 resents time ncommon) midnight.	

ET OUTPUT MODES and REFERENCE EQUATIONS

			Tmax C	Tmin C						FAO 56PM ETo mm/d	Precip mm
1	2	1993	13.95	-2.41	5.28	2.99	-1.96	3.02	1.88	1.93	
1	3	1993	8.7	-13.0	5.00	4.46	-4.91	2.13	1.34	1.37	.0
1	4	1993	-1.7	-16.2	6.12	1.07	-10.3	.48	.37	.40	.76
1	5	1993	2.0	-10.8	6.62	1.48	-9.81	1.03	.70	.73	.0
1	6	1993	1	-11.2	7.61	1.13	-9.64	.72	.52	.55	.0
1	7	1993	1.80	-9.84	7.04	1.95	-8.96	1.12	.75	.78	
1	8	1993	-4.38	-9.48	1.22	3.05	-7.75	.24	.16	.16	.0
1	9	1993	-8.6	-15.7	8.20	2.21	-14.8	.51	.37	.38	.0
1	10	1993	-9.9	-16.1	5.29	1.23	-16.4	.43	.33	.34	
1	11	1993	1.8	-17.7	8.74	2.38	-13.7	1.47	.95	.97	.76
1	12	1993	-2.7	-17.4	9.38	2.97	-13.5	.96	.64	.66	.0
1	13	1993	-5.6	-18.7	6.27	1.13	-15.4	.53	.40	.41	.0
1	14	1993	.0	-16.4	8.94	1.06	-12.6	.80	.57	.60	.0
1	15	1993	12.6	-12.7	9.48	1.19	-7.23	1.82	1.18	1.24	.25
4	40	4000	40.74	C.40	0.70	0.00	5.05	2.04	1.0.4	4.00	0

Run Ref-ET again (manually)	Run QAQC (in background)	End
-----------------------------	-----------------------------	-----

Recommended Operation Sequence: 1) Open 'out' and 'in2' files from REF-ET run; 2) Create charts to view data; 3) Modify Solar radiation data by applying multipliers to data; 4) Save File and Rerun REF-ET. Currently no modifications are possible to humidity, temperature or wind data.

Note: If a button becomes 'light grey' in color, That means that that step is completed and can not be repeated for the current data session. If the text color of the button becomes 'green', that means that the process has completed, but can be run again.

×

CIGR, Bari, Italy, Sept. 10, 2013

Observed R_s (top) and Auto-Adjusted R_s (bottom) Avondale CoagMet for years 1997 - 2001

🔐 Rs Adjustment

×

?

Period	Rs_m/Rs_adj to use	Initial Rs_m/Rso	1
1993.002~1993.060	0.94	0.94	
1993.061~1993.121	0.96	0.96	
1993.122~1993.181	0.95	0.95	
1993.182~1993.266	0.99	0.99	
1993.267~1993.329	1	1	
1993.330~1994.061	0.99	0.99	
1994.062~1994.121	0.99	0.99	
Press to change			
Please enter new 'Rs_m/Rs_adj to use' multiplies:	1.00		
Press to change Please enter new 'Rs_m/Rs_adj to use' multiplies: "Rs_m/Rs_adj to use" v Step one: Enter new Adj to change a single value, the same value that is sh Ps. m is measured Ps. and	alues Change Instruction: factor. Step two: click on "F or drag mouse along multiple ro own in the small box above.	Rs_m/Rs_adj to use " column ows in the column to assign	Ú.
Press to change Please enter new 'Rs_m/Rs_adj to use' multiplies: "Rs_m/Rs_adj to use" v Step one: Enter new Adj to change a single value the same value that is sh Rs_m is measured Rs and Save choice	alues Change Instruction: factor. Step two: click on "F or drag mouse along multiple ro own in the small box above. d Rs_adj is adjusted Rs	Rs_m/Rs_adj to use " column ows in the column to assign	0
Press to change Please enter new 'Rs_m/Rs_adj to use' multiplies: "Rs_m/Rs_adj to use" v Step one: Enter new Adj to change a single value the same value that is sh Rs_m is measured Rs and Save choice Save the Adjustment	alues Change Instruction: factor. Step two: click on "F or drag mouse along multiple ro own in the small box above. d Rs_adj is adjusted Rs Keep the "Rs_m/Rs_adj to	Rs_m/Rs_adj to use " column ows in the column to assign use" Save	

Avondale CoagMet - Period of Record 1993 - 2015 Adjustment of Solar Radiation, only

Avondale CoagMet - Period of Record 1998 Adjustment of Solar Radiation, only

Crop Coefficients

USCID / Colorado ET Workshop, Oct. 13, 2016, Fort Collins, CO

Crop Coefficient = ET/ET_{ref}

Crop Coefficient Curve Types

Single or Dual K_c

Which should we use? ---- (Dual)

USCID / Colorado ET Workshop, Oct. 13, 2016, Fort Collins, CO

For highest accuracy fieldby-field and year-to-year:

- It is best to account for impacts of increased ET caused by evaporation from soil
 - During the initial and development periods when ground cover is low
 - To account for the impacts of frequency of wetting
 - Precipitation (year to year variation)
 - Irrigation system type and management
 - To account for the degree of surface wetting by the irrigation system

K_c measured by Lysimeter <u>each dot is one day</u>

data courtesy of Dr. J.L. Wright, USDA-ARS

Allen 2011 Ag.Wat.Man

Impact of TimeStep length and Behavior of the Skin Evaporation Enhancement (2011) with FAO-56 K_e

FAO-56 K_e model vs. Kimberly Lysimeter

– Bare Soil Conditions

Conclusion: Skin Enhancement is Important for Precip. Events < 10 mm. Model can be applied on daily or hourly timestep

Partial Surface Wetting/Drying in FAO-56 Dual K_c model

Why Apply the Dual K_c method for estimating water depletion?

Advantages

 Capture variation in daily K_c value according to wetting frequency from rainfall and irrigation

 K_c estimates can be made during wintertime to estimate water lost as evaporation from soil Mead, Nebraska – Comparison with Eddy Covariance —Illustrate Low Sensitivity to K_{cb mid}

Mead, NE Ameriflux Site

Eddy Covariance data by Andy Suyker and S. Verma, UNL, et al.

USCID / Colorado ET Workshop, Oct. 13, 2016, Fort Collins, CO

Mead Eddy Covariance Closure

- 2003 Corn
 - Rainfed = 91%
 - Irrigation 1 = 88%
 - Irrigation 2 = 84%
- 2005 Corn
 - Rainfed = 89%
 - Irrigation 1 = 85%
 - Irrigation 2 = 85%

 $ET_{cor.} = ET \times (R_n-G)/(H+1E)$

-- preserves the Bowen Ratio = H/1E

The Dual K_c Approach

- $K_{c} = K_{s} K_{cb} + K_{e}$
- $K_e = K_r (K_c \max r K_s K_{cb})$
- $K_{c \max r} = \max[K_{c \max bare}, (K_{cb} + 0.05)]$

subscript 'r' for alfalfa reference so that $K_{c max bare} \sim 1.0$ to 1.2

 K_e can take up the "slack" or remaining 'energy' represented by the difference between $K_{c\,max\,r}$ and K_{cb}

USCID / Colorado ET Workshop, Oct. 13, 2016, Fort Collins, CO

Irrigated Field – Dual K_c Calculation

USCID / Colorado ET Workshop, Oct. 13, 2016, Fort Collins, CO

FAO-56 Dual Kc Example Spreadsheet -- Annex 8 of FAO-56 -- available at: http://extension.uidaho.edu/kimberly/2013/04/guideli nes-for-computing-crop-water-requirements/

Modified here to use Alfalfa Reference

USCID / Colorado ET Workshop, Oct. 13, 2016, Fort Collins, CO

FAO-56 Dual Kc Spreadsheet

D

В

v	eadshei	et for C	alcula	ting ET	. = (K .	, +K, JL	T, for	rainfed a	conditions	(perhaps a	singl						
							For a	New Cro	p, Change	e Values in l	the Bo						
	Rainfed	Corn,	Mead	2005	Table II:		Table	17: Follow	ing Adjustm	ent for weathe	r (not u						
				Lai	35	К.,	0.15	01	5	K 0.1	5		Mod	ified h	ere	tous	ie.
	Month	5		1	.25	K	1.00	10	-	Max HI 2	m					10 00	
-	Dau	2		1	35	κ.	0 15	0	-	Kemay 11			<u>Alfali</u>	<u>a Ref</u>	<u>erer</u>	<u>1Ce</u>	
	209	-		1	15	··	0.10	0.7	•	NUMBA I.I							
				- 1000	45 of pariod	Mide		Wind So	80	mir .							
1	adadia	ad Calu		L-ICTLA	rra Haar E	Mida	cas. At.	тпарр	561	1117S 7G	epeled selees.						
11	dadiaa	d Calu	ן צווווו	ueruwj a ca Cama	re user-c utad hu K	<i>mere</i> mius	Eds. Av.			Z. (egelek selens.						
. v.	Uenne		nns a	ie comp	UIEU Dy II	νε <u>ομ</u> ιά Αροπ	00U										
						ASCE	PM <	-used for adju	sting K 🚙 🕂 ·····	,)							
!						ET				P-RO							
	Day	Year	J			mm	d			mm							
	10	2005	130			6	.07										
i	11	2005	131				7.8										
	12	2005	132				1.51										
-	13	2005	133				11.7			10.16							
i i		1 w 1	X	ΙΥ			AB				۵F	AG	ΔH	ΔI	A.1	ΔΚ	
72	ie recalo	ulated a	 UND7733	Rootmir	n = 0.20 m,	Rootmax = 3	2.0 m, AV	Mead Dry	land Site, 2	2007, Kcb =		Mead Dry	land Site, 200)7, КсБ = 1.00)	RMSE = 1.	43 mmłd
'=	10 mm,	REW =_	4 mm	Root gro	owth = 60 c	d, Root start :	= 165 Do'i	, MADini	= 60, MAD	Stress allow		1 (0 no, 1 ye	es)			Evap = 19.	8%
	f., (irri	ig.):	1		fw is fract	ion of grour	d wetted	by irrigatio	n	Root_in	0.20	m	MAD durir	ng Initial St	age	60	%
	REW:		- 4	mm	REW = re	adily evapo	able wate	er in top lay	ver	Root	2.00	m	MAD for A	LL other St	tages b	60	%
	TEW:		10	mm	TEW = to	ital evaporab	le water i	n top layer		Avail.Wate	170	mmim		MAD is man	agemer	nt allowed de	epletion
	initial	D.:	5	mm	Initial dep	letion				L_root_grow	60) days	(modified C	Ret 22, 2014]	L_max_	_Root is the	length, in days
	Initial	f _u :	1							DoY_Root_9	165	5	(modified C	Tet 22, 2014]	DoY_R	oot_Start is	the Day of Year
													(Irrigation that is	s needed is presu	umed to be	e applied at the	beginning of the ne
in	n Calculi	ation			, I			Total ETp	Total ETa	<		/m <u>iq</u>	ation Schedu	/// <u>//</u>		x	<u> </u>
				470	10.0	.		647.06	625.19	NEW			Net	(From Precip.)		(KsKcb+Ke)	Corrected
	D.,i		sum	1/2	19.8	D _{e,i}			FT .	Hoot	B 444	Ending	Irrigation	Drainage	Γ.	Adjusted	Ending
	start			E	DP.	end	.,	El.	E I_act	Depth	HAW	Deplet.	Actual	(DP)	К,	K.	Depletion
-	mm E 0	К,	K.		mmid	mm	<u>K</u>	mm/d	mm/d	m	mm	10.7	mm	mm	1.00	[K _{e edj}]	MM
	9.9	0.83	0.79	4.81		5.85 10.04	0.94	1.35	5.72	0.20	20.4	10.7			1.00	0.94	10.7
	10.0					10.04	0.15	1.28	1.28	0.20	20.4	13.3			1.00	0.15	13.3
	10.0	1.00	0.05	10.02	0.12	10.04	0.15	1.76	1.76	0.20	20.4	15.1			1.00	0.15	15.1
	6.4	0.61	0.95	2.67	0.12	9.06	0.73	3.36	3.36	0.20	20.4	17.5			1.00	0.73	16.3

Sensitivity

Impact of K_{cb mid}

Finding: With Dual K_c method, estimated ET is relatively insensitive to K_{cb mid} and more sensitive to K_{c max}

Irrigated Field – Impact of $K_{c mid}$

USCID / Colorado ET Workshop, Oct. 13, 2016, Fort Collins, CO

Irrigated Field – Impact of K_{c mid}

Conclusion: It is difficult to determine correct separation in T and E and correct $K_{c mid}$ using measured ET only

Irrigated Field – Impact of K_{c max}

USCID / Colorado ET Workshop, Oct. 13, 2016, Fort Collins, CO

Irrigated Field – Impact of K_{c max}

Sensitivity - Conclusion

With dual K_c method, worry less about K_{cb mid} and more about K_{c max}.

With alfalfa reference, K_{c max r} is expected to be ~ 1.0 to 1.1

With grass reference, K_{c max o} is ~ 1.2 to 1.4, depending on wind speed and Relative Humidity.

Sensitivity to Rooting Depth

Impact of Rooting depth under Stressed Conditions

Finding: Estimation of ET under stress conditions is quite sensitive to the estimate for Total Available Water (TAW) where TAW = MAD x WHC x R₇.

Therefore, ET is sensitive to MAD and R₇ estimates.

USCID / Colorado ET Workshop, Oct. 13, 2016, Fort Collins, CO

Rainfed Field – Impact of Rooting Depth

INOVAGRI, Fortaleza, Brazil, Aug. 31, 2015

Rainfed Field – Impact of Rooting Depth

INOVAGRI, Fortaleza, Brazil, Aug. 31, 2015

Improving the Estimation of the Time Basis of K_c

USCID / Colorado ET Workshop, Oct. 13, 2016, Fort Collins, CO

Normalized (ratio of) **Cumulative Growing Degree Days** (GDD) from Planting to Effective Full Cover (Wright, 1998; Allen and Wright, 2003)

Cumulative GDD for Wright (1982) K_{cb}'s as used in Idaho – Allen and Robison (2007)

	Spr. Wht	Wint Wht	Peas seed	Peas frsh	Sug. Beet	Pota to bake	to proc ess.	Bea ns	Field Corn
GDD Base, °C	0	0	0	0	5	5	5	5	10- corn
CGDD Planting to EFC	840	1080	635	635	970	740	700	670	540
CGDD Planting	2160	2600	1620	1000	2600	1780	1500	950	1400
to Terminate (wint	er whe	eat is p	olanted	d Oct.	15 an	d accu	mulate	es all	winter)

http://www.kimberly.uidaho.edu/ETIdaho/

CIGR, Bari, Italy, Sept. 10, 2013

Starting and Ending the K_{cb}

How to Start Planting or Greenup:

Use 30 day (running average) mean daily air temperature

2004 - Kimberly

1969-2005 - Kimberly

--similar to SCS method, except it is better to use T30 that <u>ENDS</u> on the predicted planting/greenup date

CIGR, Bari, Italy, Sept. 10, 2013

T₃₀ for Idaho Crops – Allen and Robison (2007)

	Spr. Wht	Peas seed	Sug. Beet	Potato bake	Field Corn	Beans
Year of Wright	1979	1977	1975	1972	1976	1973
Plant Date of Wright	Apr 1	Apr 10	Apr 15	Apr 25	May 5	May 22
T30 used in ETIdaho, °C	4	5	8	6 to 7	10	14

http://www.kimberly.uidaho.edu/ETIdaho/

CIGR, Bari, Italy, Sept. 10, 2013

	W	hen	to	End	: Ki	lling	Fro	osts					
	Killing Frosts as used in Idaho – Allen and Robison (2007) (°C)												
	Spr. Wht	Peas seed	Sug. Beet	Pot. bake	Field Corn	Bean	Alf alfa	Past.	Hops				
		-4	-4	-2	-4 to -5	-2	-7	-5	-2				
	Cattai	Popla	Cotto	Willo	Sun								
/	/ IS	r	n wood	WS	flowr								
/	-2	-5	-4	-6	-4								
	Note:	Thes (no	e are t <i>t on th</i>	emper e grou	ratures <i>Ind)</i>	inside	a We	eather S	Shelter				

cigrhttp://www.kimberly.uidaho.edu/ETIdaho/

Alfalfa Season Lengths vs. Elevation across Idaho Thermal-estimated Start and Frost Ended

Season Length, Alfalfa Hay

Defined **Dry Bean** Season Lengths vs. Elevation Thermal-estimated Start and Thermal-estimated End

Season Length, Dry Beans - seed

Ashton, 1990 calendar year -- Potatoes

Annual ET estimates vs. Precipitation - Desert Sage Brush

Why K_{cb} should transfer among regions and climates

- Full-cover Alfalfa Reference (ET_r)
 - Dense stand with no cutting effects
 - 30 to 70 cm height
 - Extensive cover (~ 50 m or more)
- Field crop
 - Variable ground cover and leaf area
- If crop 'stomates' are 'programmed' to maximize photosynthesis and biomass production then
 - Relationship between ET_r and ET_c should be constant with climate and location
 - Both systems behave like passive resistors
 - Both systems use solar radiation capture, aerodynamic roughness and near surface boundary layer characteristics to drive ET

Overall Conclusions

- With dual K_c method, worry less about K_{cb mid} and more about K_{c max}.
- Alfalfa reference provides more certainty than a grass reference since K_{c max r} is ~ 1.0
- Under stressed conditions, accurate estimation of rooting depth (or MAD) and rooting growth rate is important.
- Starting and Stopping the Crop Growing Period and the Evolution of K_{cb} over time can be important for localized accuracy

USCID / Colorado ET Workshop, Oct. 13, 2016, Fort Collins, CO