Recommended Blaney-Criddle TR-21 Procedures: crop coefficients, elevation adjustment, calibration

COLORADO Division of Water Resources

Department of Natural Resources

Dean Santistevan, P.E. Assistant Division Engineer, Water Division 1

Colorado ET Conference - October 13, 2016

Blaney-Criddle TR-21

- 1. SCS modified the monthly B-C Equation from TB 1275
 - Introduced Crop Growth Stage Coefficient (k_c)
 - Not a "crop coefficient"
- 2. Provided k_c for 24 different crops in western U.S.
- 3. Source of coefficients was likely TB 1275 (Woodward 1963)

Tech. Bull. 1275

- 1. Blaney & Criddle (1962)
- 2. Second revision to B-C Equation
- 3. Summarized studies of monthly consumptive use
 - SCS needed monthly estimates
 - Introduced monthly time step
 - Provided monthly consumptive-use coefficients (k)

Timeline:

1945 - B-C Equation First Published

Blaney, H.F. and Criddle, W.D. (1945). "A method of estimating water requirements in irrigated areas from climatological data: Washington." U.S. Soil Cons. Service

1950 - First Revision to B-C Equation (SCS-TP-96) Blaney, H.F. and Criddle, W.D. (1950). "Determining Water Requirements in Irrigated Areas from Climatological and Irrigation Data." SCS-TP-96

1959 - Provisional Supplement to SCS-TP-96 Blaney, H.F., Haise, H.R. and Jensen, M.E. (1959). "Monthly Consumptive Use by Irrigated Crops in Western United States, Provisional Supplement to SCS-TP-96

1962 - Second Revision to B-C Equation (TB-1275) Blaney, H.F. and Criddle, W.D. (1962). "Determining Consumptive Use and Irrigation Water Requirements." Tech. Bull. 1275, USDA-ARS

1963 - Woodward "A Modification of the Blaney-Criddle Method for Computing Consumptive Use." ASAE annual meeting of Pacific NW Section in October 1963

1967 - SCS Modified B-C Equation USDA - Soil. Cons. Service. (1967). "Irrigation Water Requirements." Tech. Release No. 21

1970 - Revision to TR-21

Woodward 1963

- 1. Hyrum Woodward, Assistant Irrigation Engineer for SCS in Portland, OR
 - The SCS is using a modification of the Blaney-Criddle method, need for monthly estimates
 - Suggest values of k for a number of crops are listed in TB 1275
 - A procedure was developed to determine k where data were not available per Phelan (1954)
 - Tentative curves were developed for ~20 types of crops applicable to the western U.S.
 - There is a critical need for additional measurements
 - There is a significant lack of reliable measurements on most crops
 - Much of the data appears to be affected by drainage or by inadequate soil moisture during critical stages of growth

Fast Forward 50 Years...

Santistevan, Coeff. Memo, unpublished, 2013

- 1. What happened between 1962 and 1970?
 - Development of k_c
 - Monthly crop curves
- 2. Objective: Evaluate TB 1275
 - Identify crop type in TR-21 (e.g., pasture grasses?)
 - Determine elevation at which TR-21 coefficients were developed at for elevation adjustment (Pochop et al. 1984)
 - Regression analysis

Pasture grasses:

Pasture grasses:

Pasture grasses:

Pasture or Lawn?

"Data for similar crops was used to guide the estimator" - Woodward 1963

Pasture or Lawn?

Pasture or Lawn?

Sugar Beets:

Sugar Beets:

Sugar Beets:

"Orchards without cover" appear to represent "deciduous fruit" and walnuts at or near sea level (in California)...

Orchards with cover:

Orchards with cover:

Orchards with cover: May include Orchards without cover

Dry beans:

Dry beans:

"values for some crops were estimated as no measured values of consumptive use were available" - Woodward 1963

"adjustments were made . . . so that . . . the sum of the computed monthly values . . . would approximate [the annual values] developed from the original Blaney-Criddle equation"

- Woodward 1963

Elevation Adjustment

- 1. Pochop, L.O., Borrelli, J. and Burman, R. (1984). "A Bias Error in SCS Blaney Criddle ET Estimates." Transactions of the ASAE, Amer. Soc. of Agr. Eng.
- 2. Research indicated a trend: adjustment of 10% per 1,000m
- 3. Pochop et al. 1984 set out to verify if trend was true
 - Evaluated alfalfa & Kentucky Bluegrass
- 4. Findings:
 - An adjustment is appropriate from the elevation at which the coefficients were developed

Santistevan, coefficient memo, unpublished, 2013

Crop	Elevation that k_c may represent (meters above MSL)
Bromegrass Irrigated Pasture	502 134
Lawn / KY Bluegrass	263
Sugar Beets	1382
Corn, grain	-
Alfalfa Clover Alfalfa-Grass	440 464 724
Small Vegetables	4
Small White Beans	15
Sorghum	733
Wheat	-
Barley	942
Orchard, with cover Orchard, no cover	- 134

Calibration (CDSS Task Memo 59.1)

- 1. Before calibrating, consider:
 - a. Reconstructing climate data needed for ASCE Stnd. Ref. ET Equation
 - b. Hargreaves Equation
- 2. When calibrating, consider:
 - a. CDSS Task Memo 81.2 cautions about potential temp. bias: local climate data for calibration and NOAA source for analysis
 - b. What ASCE coefficient will be used? ETrs or ETos?
- 3. After calibrating, consider:
 - a. Checking or verifying results

Year

Next, crop water requirement using ASCE (ET_{rs})

B-C Calibrated to ASCE:

Year

Verify calibrated values do not exceed ASCE:

Calibration Verification:

- 1. Jensen and Allen (2016):
 - ASCE Penman-Montieth method provided values that were around 12 to 18 percent higher than SCS Blaney-Criddle (in arid conditions)
- 2. Hill 1994 (*citing*: *Hill et al. 1983*):
 - Reported a difference of 2 to 19 percent
- 3. Task Memo 59.1
- 4. Walter 1995 and Bausch 1995 (seasonal)

Crop Type	ASCE	BC	Difference	% Difference
		Fort Collin	15	
	(19	93-2003 Av	erage)	
Alfalfa	2.27	2.26	0.01	0%
Corn Grain	1.57	1.66	-0.09	-6%
Dry Beans	1.20	1.48	-0.28	-23%
Grass Pasture	2.50	2.10	0.40	16%
Small Grains	1.59	1.56	0.03	2%
Sugar Beets	1.69	2.00	-0.31	-18%
		Fort Lupte	m	
	(19)	93-2003 Av	erage)	
Alfalfa	2.66	2.58	0.08	3%
Corn Grain	1.86	1.86	0.00	0%
Dry Beans	1.39	1.65	-0.26	-19%
Grass Pasture	2.88	2.32	0.56	19%
Small Grains	1.74	1.64	0.10	6%
Sugar Beets	2.17	2.32	-0.15	-7%
		Greeley		
	(19	93-2003 Av	erage)	
Alfalfa	2.67	2.53	0.14	5%
Corn Grain	1.83	1.84	-0.01	-1%
Dry Beans	1.35	1.65	-0.30	-22%
Grass Pasture	2.85	2.27	0.58	20%
Small Grains	1.80	1.66	0.14	8%
Sugar Beets	2.10	2.27	-0.17	-8%

Crop	SCS TR-21		Calibrated	% Increase
Alfalfa	2.84		3.50	<u>// Increase</u>
Grass Pasture	2.53		3.59	42 %
Sugar Beets	2.51		2.54	
Corn Grain	2.10		2.35	
Beans	1.64		1.55	
Small Vegetables	1.56		2.44	56 %
Wheat (winter)	1.58		1.49	
Сгор	SCS TR-21	TR-21 w/ Elev Adjustment	Calibrated	
Small Grains	1.15	1.23	2.07	80%
Alfalfa	1.99	2.23	2.67	34%
Small Vegetables	1.04	1.23	2.27	118 %
Pasture Grass	1.68	n/a	2.62	56 %

Calibration Verification:

Compared to Published Data...

Сгор	SCS TR-21	TR-21 w/ Elevation Adjustment	Calibrated	Published Data:	
				Schneekloth & Andales, 2009 (Greeley, CO)	Ames Irrigation Handbook
Small Grains	1.15	1.23	2.07	1.37	1.17
Alfalfa	1.99	2.23	2.67	2.63	2.50
Small Vegetables	1.04	1.23	2.27	1.48	0.75
Pasture Grass	1.68	n/a	2.62	2.22	2.34

All values in acre-ft per acre