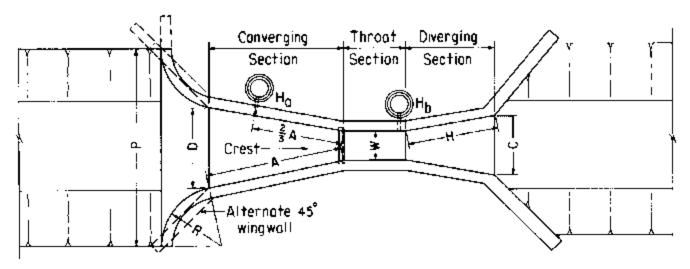
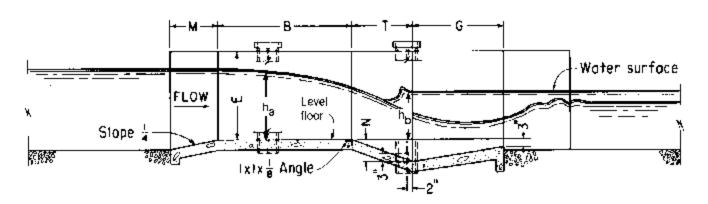

Introduction to Long-Throated Flumes (Ramp Flumes), Broad-Crested Weirs and WinFlume

The term *long-throated flume* describes a broad class of critical-flow flumes and broad-crested weir devices used to measure flow in open channels.


Traditional Critical-Flow Devices

- Traditional critical-flow devices have curved, three-dimensional flow fields in the control section
- All such devices require laboratory calibration
- Parshall flumes, cutthroat flumes, H-flumes, etc.
- V-notch weirs, Cipoletti weirs, rectangular weirs

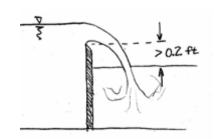


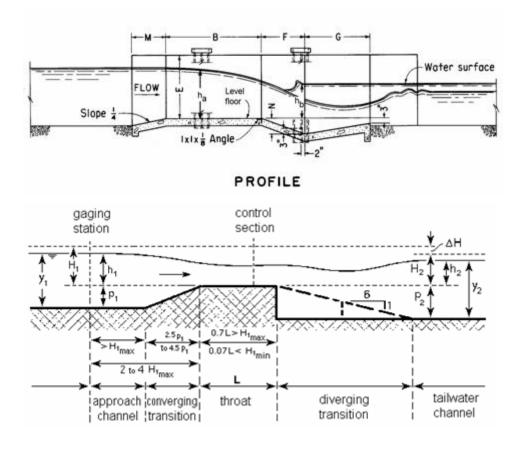
Parshall Flume

PLAN

PROFILE

Long-Throated Flumes and Broad-Crested Weirs

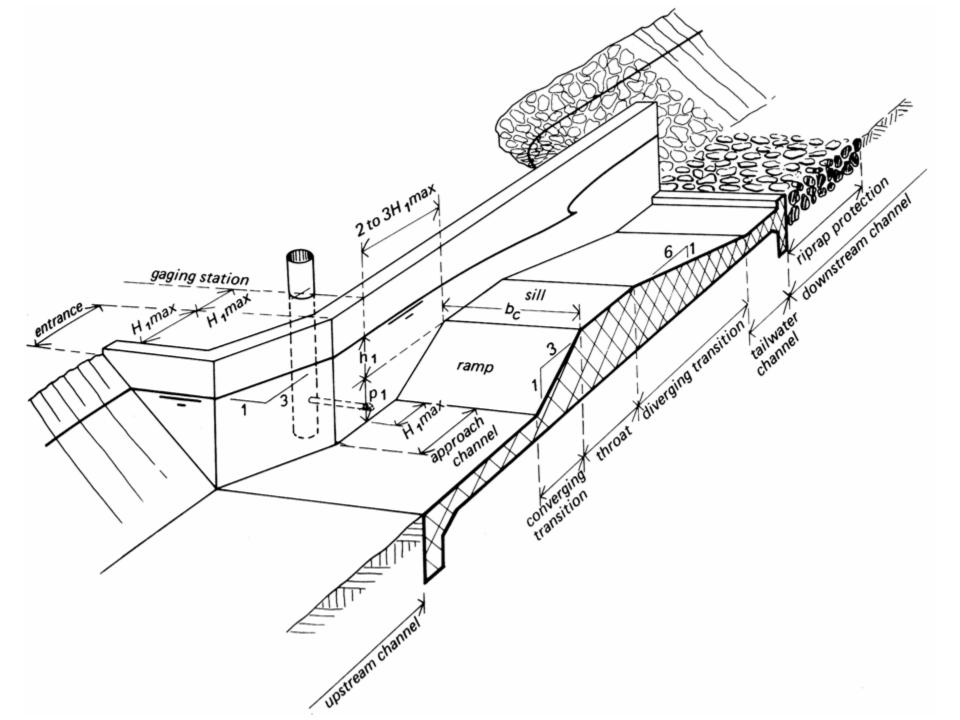

- Long-throated flumes have one-dimensional flow in the control section -- Long-throated means long enough to eliminate lateral and vertical contraction of the flow at the control section...streamlines are essentially parallel
 - Can be calibrated using well-established hydraulic theory
 - No laboratory testing needed
 - Calculations are iterative and tedious, so computer models that do the calculations have made long-throated flumes <u>practical</u> in recent years


<u>Advantages of Analytical Calibration</u>

- Allows design of flumes customized to your site and needs
- Easy to calibrate using as-built dimensions
- Better measurement accuracy
 ± 2% uncertainty vs. ± 3-5% uncertainty
- Can accurately predict tolerance for submergence

<u>Submergence of Flumes and Weirs</u>

- h_2/h_1 or h_b/h_a is the submergence ratio
- Sharp-crested weirs
 - NO SUBMERGENCE ALLOWED
- Parshall flume
 - Some submergence allowed, 50-80%
- Long-throated flume and broad-crested weir
 - Most submergence allowed, 80-95%




<u>Throat Section Shape Selection</u>

- Constructability
- Range of Flows to be Measured

	$Q_{ m max}/Q_{ m min}$	$Q_{ m max}/Q_{ m min}$
Shape	±2% uncertainty	±4% uncertainty
Rectangular	35	100
Triangular	350	1970
Trapezoidal – wide at top	55	180
Trapezoidal – narrow at top	210	1080
Parabolic	105	440
Complex – wide at top	> 100	> 200
Complex – narrow at top	> 250	> 2000

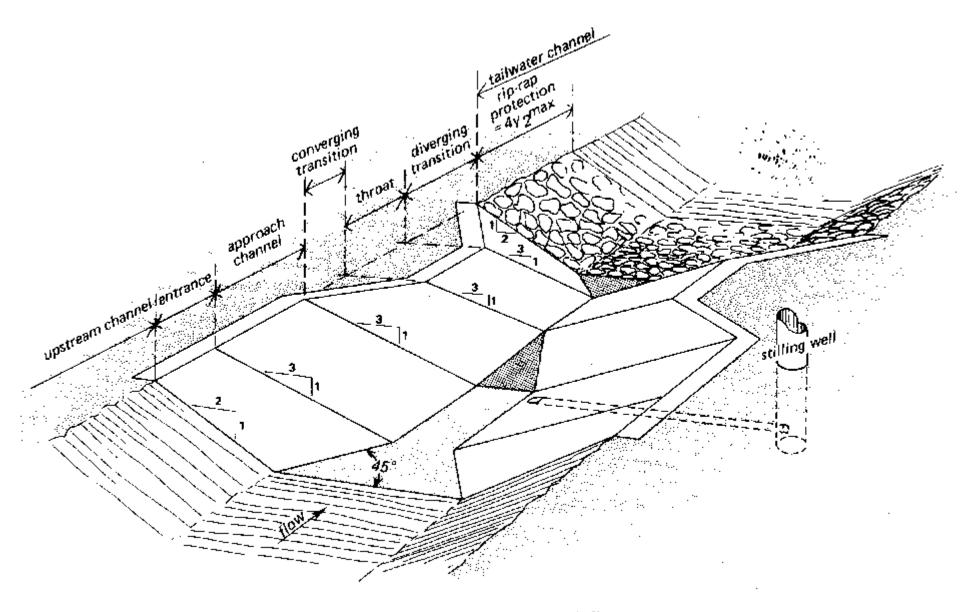


Figure 4.12. Triangular-throated flume.

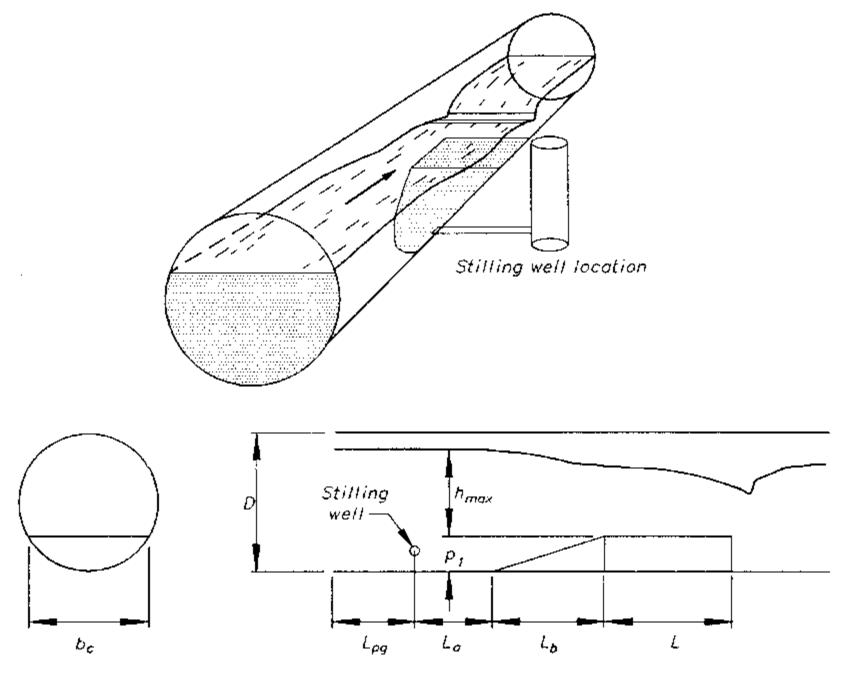


Figure 8-7.—Long-throated flume in a partially filled circular conduit.

Flume Design & Selection

- Pre-computed flume designs can be chosen using tables in the Water Measurement Manual
- Designs can be developed using the WinFlume computer program
 - Allows for customization
 - Provides best rating table accuracy
 - Simplifies checking of design

WinFlume

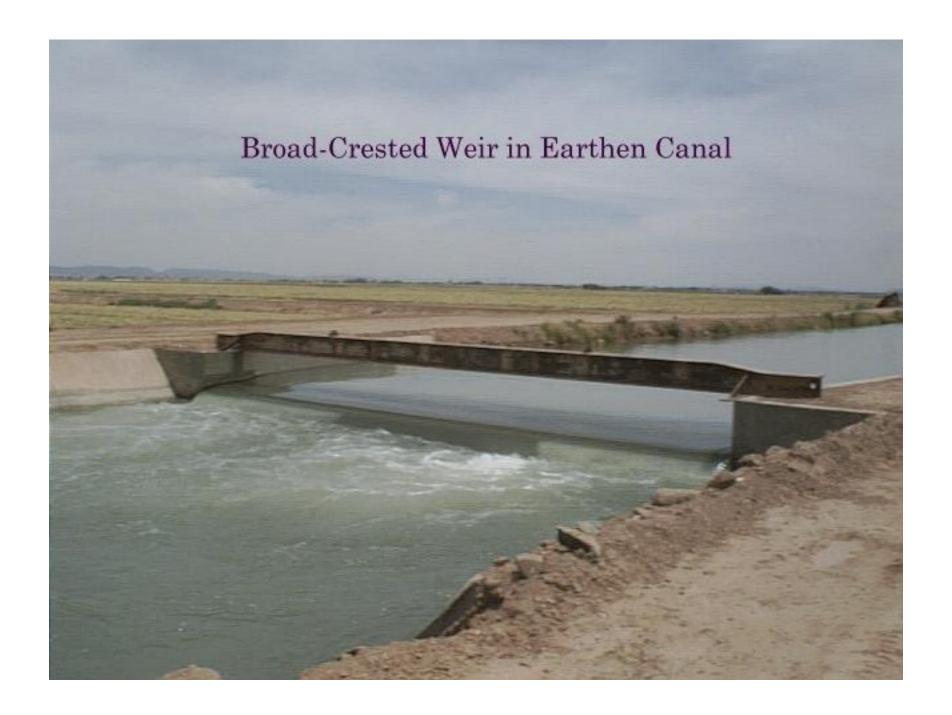
SOFTWARE FOR THE DESIGN AND CALIBRATION OF LONG-THROATED FLUMES AND BROAD-CRESTED WEIRS

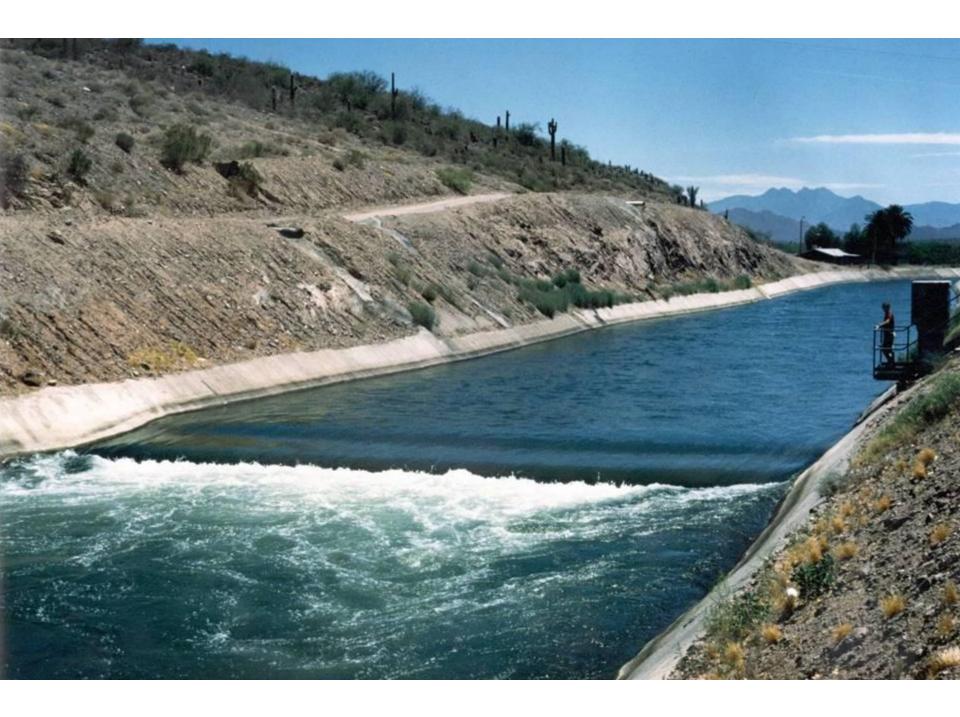
U.S. Water Conservation Laboratory Phoenix, Arizona

International Institute for Land Reclamation & Improvement

Wageningen, The Netherlands

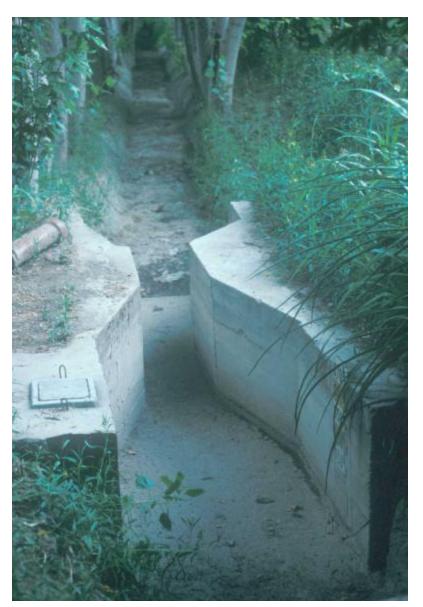

HOW TO OBTAIN WINFLUME


• The WinFlume program is available on the World Wide Web at:


http://www.usbr.gov/pmts/hydraulics_lab/winflume


• There are 16-bit and 32-bit versions available that are appropriate for Windows 3.1x, Windows 95, Windows 98, and Windows NT systems.

This work has been funded by the U.S. Bureau of Reclamation's Water Conservation Field Services Program.



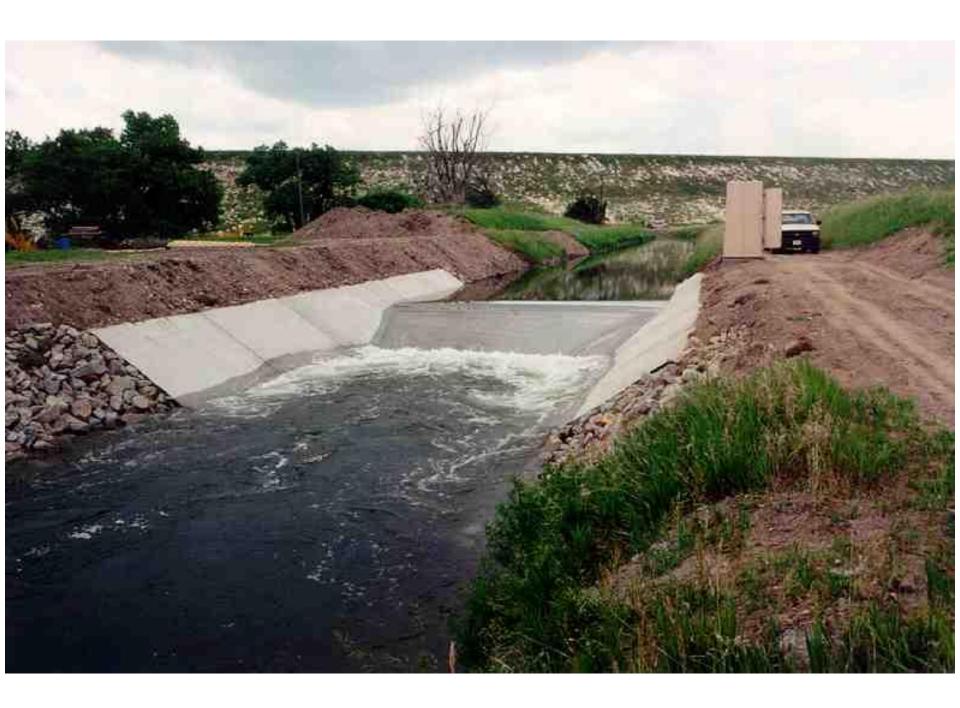
Portable rectangular-throated flumes of fiberglass and metal

Portable plywood flumes for temporary measurements in larger ditches

12-inch Adjust-A-Flume in USBR lab

Large Adjust-A-Flume...portable if you have enough people

Temporary plywood flume in concrete-lined ditch



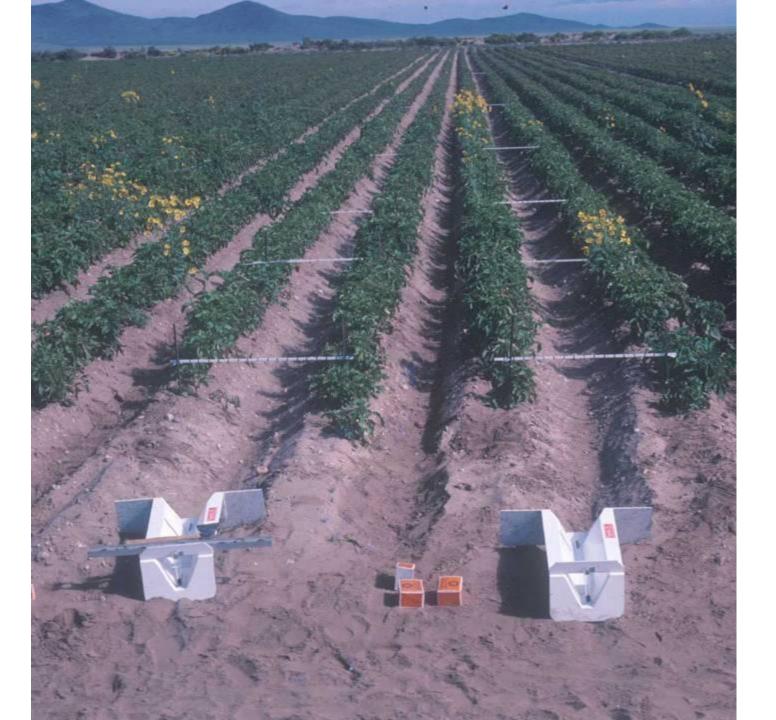
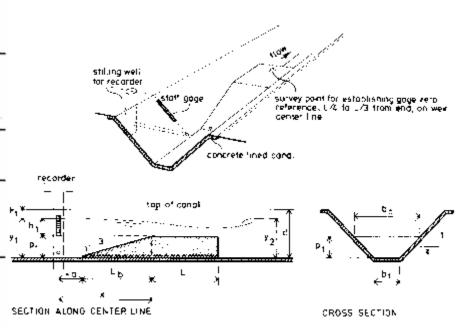



Table 8-2. — Long-throated flume sizes and discharge ranges for lined trapezoidal canals (English units)^{ac}

Cana	Shape			of Canal cities		Weir Dir	Weir Dimensions			
Side slope Z ₁	Bottom width, b ₁ (ft)	Maximum canal depth ^b , d (ft)	Q _{min} °	Q _{max} (ft³/s)	Weir selection (table 8-3)	Crest width, b _c (ft)	Sill height, p ₁ (ft)	Minimum head loss, ΔH * (ft)		
(1)	(2)	(3)	(4)	. (5)	(6)	(7)	(8)	(9)		
1.0	1.0	2.5	1.9 4.2 4.8 5.6 6.2	8 ^d 16 ^d 19 15	A, B, C, D,	2.0 2.5 3.0 3.5 4.0	0.50 0.75 1.00 1.25 1.50	0.06 0.08 0.10 0.12 0.13		
1.0	2.0	3.0	5.6 6.2 6.8 7.4 8.2	27 ^d 40 33 27 22	D. E. F. G. H.	3.5 4.0 4.5 5.0 5.5	0.75 1.00 1.25 1.50 1.75	0.10 0.12 0.14 0.15 0.16		
1.25	1.0	3.0	5.0 6.4 7.6	19 ^d 35 26	l. J. K.	3.0 4.0 5.0	0.8 1.2 1.6	0.08 0.11 0.14		
1.25	2.0	4.0	6.4 7.6 8.9 10.1 11.4	31 ^d 64 ^d 78 62 46	J. K. L. M.	4.0 5.0 6.0 7.0 8.0	0.8 1.2 1.6 2.0 2.4	0.10 0.13 0.16 0.18 0.20		
1.5	2.0	4.0	8. 9. 11. 12.	49 ^d 82 ^d 86 72 60	P. Q. R. S. T.	5.0 6.0 7.0 8.0 9.0	1.00 1.33 1.67 2.00 2.33	0.11 0.13 0.16 0.18 0.20		
1.5	3.0	5.0	9. 11. 12. 13. 14. 17.	66 ^d 108 ^d 140 ^d 160 140 98	Q. R. S. T. U.	6.0 7.0 8.0 9.0 10.0 12.0	1.00 1.33 1.67 2.00 2.33 3.00	0.12 0.14 0.17 0.20 0.22 0.25		
NOTES	:				\ . *	· / 19	of born	ener!		

 $L_{a} \ge \Delta H_{1max}$; $L_{b} = 2$ to $3p_{1}$; $x = L_{a} + L_{b} > 2$ to $3H_{1max}$ L>1.5 H_{1max}

d>1.2 h_{1max}+p₁

 $[\]Delta H > 0.1 H_1$ ^b Maximum recommended canal depth

^c Limited by sensitivity ^d Limited by Froude number; otherwise limited by canal depth

^{*} Calibrations developed with WinFlume and the preceding computer models.

Table 8-3. — Rating equation parameters and ranges of application for flat-crested, long-throated flumes in lined trapezoidal canals a

Parameters	Weir A,	Weir B.	Weir C.	Weir D.	Weir E.	Weir F.	Weir G _e
K ₁	9.29	10.53	11.99	13.73	14.51	16.18	17.83
K ₂	0.03	0.04	0.033	0.035	0.053	0.035	0.026
Ū	1.878	1.883	1.822	1.824	. 1.855	1.784	1.725
h_1 , min.	0.12	0.14	0.125	0.13	0.19	0.175	0.16
h_1 , max.	0.92	1.22	1.25	1.4	1.69	1.45	1.24
Q, min.	0.26	0.42	0.42	0.51	1.05	1.00	0.98
Q, max.	8.44	16.3	18.9	26.5	40.7	32.8	26.8

Parameters	Weir H _e	Weir I _e	Weir J.	Weir K _e	Weir L,	Weir M _e	Weir N.
K ₁	19.44	12.81	15.34	17.13	20.17	23.62	27.17
K ₂	0.017	0.034	0.055	0.075	0.06	0.044	0.026
Ū	1.674	1.868	1.897	1.907	1.845	1.766	1.692
h_1 , min.	0.15	0.125	0.185	0.254	0.228	0.205	0.19
h ₁ , max.	1.05	1.19	1.485	1.904	2.007	1.675	1.34
Q, min.	0.97	0.41	1.02	2.06	2.03	2.05	2.01
Q, max.	21.7	18.7	34.8	63.60	77.0	61.5	46.0

Parameters	Weir P.	Weir Q _e	Weir R _e	Weir S _e	Weir T _e	Weir U.	Weir V₀
K ₁	18.95	20.96	23.94	25.61	28.13	31.29	38.44
K ₂	0.05	0.07	0.056	0.072	0.072	0.062	0.034
Ū	1.874	1.906	1.856	1.866	1.841	1.8	1.709
h_1 , min.	0.162	0.225	0.21	0.25	0.275	0.3	0.3
h_1 , max.	1.6	2.0	2.2	2.5	2.5	2.25	1.7
Q, min.	1.0	2.0	2.1	3.1	4.0	5.0	5.9
Q, max.	48.4	83.9	108	149	160	141	98.5

Calibrations developed with WinFlume and preceding computer models.

$$Q = K_1(h_1 + K_2)^U$$

$$= K_1$$

Table 8-4. — Rating equation parameters and ranges of application for flat-crested, long-throated flumes with rectangular throat sections (see Figure 8-6).

 $q = K_1(h_1 + K_2)^U$ where q is the unit discharge in cubic feet per second per foot of width of the throat.

:	0.25	$b_c \le 0.65 \text{ft}, L =$	0.75 ft	$0.65 \le b_c \le 1.0$			1.0 ft		$1.0 \le b_0 \le 1.5$ ft, $L = 1.5$ ft			
Parameters	$p_1 = 0.125 \text{ ft}$	$p_1 = 0.25 \text{ ft}$	$p_1 = \infty$	$p_1 = 0.25 \text{ ft}$	$p_1 = 0$		$p_1 = \infty$	7	$p_1 = 0.25 \text{ ft}$			
K ₁ K ₂ U h ₁ , range q, range ΔH	3.996 0 1.612 0.06 - 0.46 0.04 - 1.15 0.04	3.610 0 1.581 0.06 - 0.48 0.04 - 1.14 0.06	3.126 0 1.526 0.05 - 0.5 0.03 - 1.08 0.19	3.696 0.004 1.617 0.08 - 0.7 0.07 - 2.1	3.385 0 1.562 0.8 - 0 0.07 - 0.10	0.7	3.089 0 1.518 0.08 - 0.8 0.07 - 1.8 0.26		3.686 0 1.598 0.1 - 0.9 0.09 - 3.1	3.400 0 1.569 0.1 – 1.0 0.09 – 3.4 0.11	3.059 0 1.515 0.1 – 1.0 0.09 – 3.1 0.67	
		1.5 ≤ b _c ≤	3.0 ft, L = 2.25 f	t				$3.0 \le b_c \le 6.0$	ft, L = 3.0 ft			
Parameters	$p_1 = 0.25 \text{ ft}$	$p_1 = 0.5 \text{ ft}$	$p_1 = 1.0 \text{ ft}$			$p_1 = 0$.5 ft /	p ₁ =	1.0 ft	$\rho_1 = 1.5 \text{ ft}$	ρ ₁ = ∞	
K ₁ K ₂ U h ₁ , range q, range ΔH	3.662 0.008 1.643 0.15 - 1.0 0.18 - 3.2 0.07	3.375 0.011 1.625 0.15 - 1.5 0.17 - 6.6 0.13	3.19 0.009 1.587 0.15 - 1.5 0.17 - 6.1 0.2	3.036 0 1.514 0.15 - 1.5 0.17 - 5.6		3.362 0.013 1.636 0.21 - 0.29 - 0.13	- 1.84 - 9.24		3 5 - 1.93 - 9.28	3.167 0 1.557 0.21 – 1.98 0.29 – 9.26 0.29	3.027 0 1.519 0.2 - 2.04 0.26 - 9.24 0.63	
			.0 ft, L = 4.0 ft				-		·		4	
Parameters	$\rho_1 = 1.0 \text{ ft}$	$p_1 = 1.5 \text{ ft}$	$p_1 = 2.0 \text{ ft}$	ρ ₁ = ∞			That				<u>Ah∞∆</u> H	
K ₁ K ₂ U h ₁ , range q, range	3.125 0.017 1.621 0.3 – 3.0 0.48 – 19 0.25	3.150 0.016 1.575 0.3 - 2.6 0.48 - 14.2 0.33	3.105 0 1.563 0.3 - 2.64 0.48 - 14.0				× × ×	- ¥	4e]	P2 .	Nonconstitution of the Control of th	

 $L_a = h_{1\text{max}}$ and $L_b = 2$ to 3 times p_1 and $L_a + L_b = 2$ to 3 times $h_{1\text{max}}$

 $[\]Delta H = 0.1 H_1$, or value listed, whichever is greater, for flumes discharging into a rectangular tailwater channel of the same width as the crest, b_c $\Delta H = 0.4 H_1$, or value listed, whichever is greater, for flumes with an abrupt expansion into a tailwater channel wider than the crest width, b_c

Table 8-5. — Equation and flow range parameters for flat-crested, long-throated flumes in partially full circular conduits (K_1 and K_2 values are valid for units of feet and ft³/s only).

p ₁ /D	L _a /D	L√D	LID	<i>K</i> ₁	K ₂	U	range of h₁/D	range of Q/D ^{5/2}	b _o /D
0.20	0.50	0.60	0.700	4.176	0.007	1.750	0.080 - 0.43	0.056 - 0.980	0.800
0.25 0.30	0.60 0.55	0.75 0.90	1.125 1.050	3.970 3.780	0.004 0	1.689 1.625	0.070 - 0.60 0.070 - 0.55	0.048 - 1.689 0.050 - 1.434	0.866 0.917
0.35	0.50	1.05	0.975	3.641	Ŏ	1.597	0.065 - 0.50	0.046 - 1.202	0.954
0.40	0.45	1.20	0.900	3.507	0	1.573	0.060 - 0.45	0.042 - 0.991	0.980
0.45 0.50	0.40 0.35	1.35 1.50	0.825 0.750	3.378 3.251	0	1.554 1.540	0.055 - 0.40 0.050 - 0.35	0.037 - 0.807 0.032 - 0.640	0.995 1.000

Pregage distance, $L_{pg} \ge h_{mex}$ Approach, $L_a \ge h_{max}$ Converging, $L_{cv} = 3 p_1$ Control, $L_c \ge 1.5 D - p_1$

Sill height = p_1 Dimensionless sill height = p_1/D h_{min} = 0.07D h_{max} = [0.85 D - p_1]

 $Q = D^{2.5} K_1 \left(\frac{h_1}{D} + K_2\right)^{\circ}$

 $\Delta H = 0.1 H_1$ for flumes with a 6:1 downstream transition

 $\Delta H = 0.2 H_1$ for flumes with a vertical drop downstream from the crest

Note: The length values shown are minimum lengths in direction of flow, and may be increased 30 percent with only a slight change in calibration.

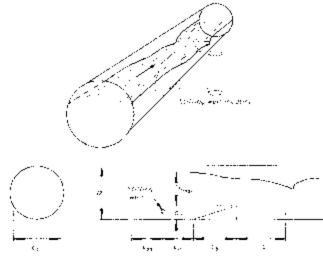


Figure 8-7.—Long-throated flume in a partially filled circular conduit