

FW: CDRMS - Cresson Review COCDRMS101

Dan Overton <DOverton@enganalytics.com> To: "Cazier, Tim" <Tim.Cazier@state.co.us>, Chris Lidstone <CDL@lidstone.com> Cc: "Kaldenbach, Tom" <Tom.Kaldenbach@state.co.us>

Tue, Oct 9, 2012 at 4:01 PM

Tim,

The following documents were listed as the references for our review.

AMEC (2011). "Cripple Creek & Victor Gold Mining Company, Squaw Gulch Valley Leach Facility Design" Prepared for Cripple Creek and Victor Gold Mining Company, September 1.

This is appendix 9 of the application and I assume you have this.

AMEC (2012a). "Cripple Creek & Victor Gold Mining Company Squaw Gulch Overburden Storage Area Including Mill Platform Stability Evaluation" Prepared for Cripple Creek and Victor Gold Mining Company, January 5.

This is appendix 7 of the application and I assume you have this.

AMEC (2012b). "Mill Foundation Recommendations – Cripple Creek & Victor Gold Mine, Teller County, Colorado"; letter to Ron Roberts (CC&V) from David Weidinger, P.E. and Kimberly Morrison P.E., R.G (AMEC). February 29.

This is attached.

AMEC (2012c). "Overburden/Structural Fill – Test Fill Summary," memorandum to Ron Roberts and Jim Smith (CC&V) from Joseph D. Hickey and Jay Janney-Moore, P.E. (AMEC), April, 11.

This is attached.

AMEC (2012d). "Mill Platform Machine Vibration Effects"; letter to Timm Comer (CC&V) from David Weidinger, P.E. and Jay N. Janney-Moore, P.E. (AMEC), September 20.

This is attached.

Cripple Creek & Victor Gold Mining Company (2012). "Cresson Project Permit M-1980-244 Mine Life Extension 2 Application, Exhibit U, Designated Mining Operation Environmental Protection Plan". February 28.

This is Volume 1 of the application and I assume you have this.

FLSMIDTH (2012). "Mill Mat Foundation Design" July 16.

This is attached

Let me know if you need anything else.

Dan Overton

Main 970-488-3111 | Fax 970-488-3112 | Cell 970-481-0578

doverton@enganalytics.com

From: Cazier, Tim [mailto:Tim.Cazier@state.co.us] Sent: Wednesday, October 03, 2012 10:10 AM To: Chris Lidstone; Dan Overton Cc: Kaldenbach, Tom Subject: RE: CDRMS - Cresson Review COCDRMS101

Chris, Dan:

Please accept the Division's gratitude for your prompt and diligent review of the submittal from AMEC, we

appreciate your efforts.

As Tom alludes to in his email below, I need to get all documents pertinent to your review scanned/transferred to our electronic document storage system. I only need those documents that were considered final or perhaps supplemental. Documents that were considered "draft" or "preliminary" don't need to be in our system.

Based on the emails I saw going back and forth late last month, I believe there were at least 3 versions of the submittal from AMEC that you used for your review. We only need the final version, and any supplemental information they sent before or after their final submittal. Also, any documents submitted from FLSmidth and/or CC&V directly to you that may have factored into your review, but that you did not receive from us.

If you have these documents in pdf format, that would be preferred, but we can also obviously scan hard copies into our system as well.

In order to reduce the possibility of these documents falling through the proverbial "crack", I would appreciate it if you could get them to me by this Friday (10/5/2012) if possible, but by next Friday (10/12/2012) at the latest. If you have any questions as to what should or should not be included, please give me a call or send me an email.

Thanks again for your efforts.

Tim Cazier, P.E.

Environmental Protection Specialist

Colorado Division of Reclamation, Mining and Safety

1313 Sherman Street, Room 215

Denver, CO 80203

ph: 303-866-3567 x8169

fax: 303-832-8106

tim.cazier@state.co.us

From: Kaldenbach, Tom Sent: Monday, October 01, 2012 1:12 PM To: Chris Lidstone; Dan Overton Cc: Cazier, Tim Subject: RE: CDRMS - Cresson Review COCDRMS101

[Quoted text hidden]

Email Note

2943 - C +6640998++ (D (294) (0)

- 4 attachments
- 1125G_Mill Complex S&F Rev1.pdf 2694K
- Testfill Memo.pdf 625K
- Mill Platform Machine Vibrations _3_.pdf 318K
- C-005b Rev. 0 Mill Mat Foundation Design CC&V 11021 (Reduced).pdf 14976K

44

Memorandum

To:	Ron Roberts –	CC&V
		0001

Jim Smith – CC&V

From: Joseph D. Hickey - AMEC

Jay Janney-Moore, P.E. - AMEC

Date: April 11, 2012

Re: Overburden/Structural Fill – Test Fill Summary

Introduction

This memo summarizes the test fill performed on overburden/structural fill materials intended for use in the construction of the Mill Site foundation. The test fill was performed in accordance with the Mill Site Earthworks project specifications, section 2205 on March 26 and 27, 2012. Overburden/Structural fill material was delivered by CC&V Mine Operations and placed in three lifts in a test area encompassing 100 feet by 80 feet located within the Mill Site Earthworks footprint. The fill placed is considered to be a rock fill consisting of primarily "shot rock" delivered by the Mine Operations. The purpose of the test fill was to determine a workable compacted lift thickness and to record settlement characteristics of the overburden/structural fill as the fill was being compacted and placed. Foresight West Surveying provided the necessary survey data needed to determine the settlement characteristics for each lift.

Test Fill Performance

Overburden/Structural fill material was placed in three 3.3-foot loose lifts in an area designated by Joseph Hickey (AMEC-Project Resident). The material for the test fill was hauled from the Dump #4 area which is the intended borrow source for the Mill Site foundation earthworks. The test area was located on previously placed and compacted fill. The fill was loaded, hauled, placed and compacted in the same manner as expected for the Mill Site Earthworks project.

The overburden/structural fill material was hauled using CAT 777 haul trucks loaded by a CAT 993 front-end loader. Each 3.3-foot loose lift was placed using a CAT D-8T dozer to spread the hauled material for each lift. During fill placement, the test area received compaction effort from the haul truck and dozer traffic. After each loose lift was established, a CAT 563 vibratory smooth drum compactor (10-ton) static rolled the entire lift surface with one pass. A "pass" is defined as a single pass by the compactor over a specified area travelling either forward or backward. Five control points were then marked by Foresight West Surveying and surveyed using a surveyor's level to establish a "start" elevation. The entire lift was then rolled using the

AMEC Environmental & Infrastructure, Inc. 2000 S. Colorado Blvd, Suite 2-1000 Denver, Colorado 80222 Tel: (303) 935-6505 Fax: (303) 935-6575

www.amec.com

vibratory method with the CAT 563 compactor in two-pass intervals to a maximum of 10 passes. Survey level readings were performed after each two-pass interval. A summary of the survey data is included with this memo.

The average settlement after 4 passes was 0.1 feet and after 10 passes was 0.15 feet. The completed height of the compacted fill assuming the lift thicknesses were 3.3 feet thick would be approximately 9.6 feet assuming that 4 passes would be performed on each lift.

Once the test fill was completed, a visual observation of the fill was performed noting any "rock pockets", "depressions", or "segregation". Our observations indicate the completed fill was found to be firm and un-yielding and exhibited a uniform, smooth, dense appearance. A trench was excavated in the middle of the pad and a sample was collected for laboratory testing. Laboratory testing included testing for the material index properties to determine the soil classification. The overburden/structural fill was classified as a "poorly graded gravel" (GP) with less than 1% minus #200 sieve and the sample was non-plastic (Sample # OVTF-1-R). The laboratory test report is included with this memo.

Conclusions and Recommendations

Based on our field observations and survey data provided by Foresight West Surveying, a compacted lift thickness of 3 feet is adequate for the overburden/structural fill placement. While most of the settlement is expected to occur due to equipment trafficking the surface during fill placement, approximately 55% of the final settlement can be achieved by routing heavy equipment traffic evenly throughout the fill area and a minimum of 4 passes with a 10-ton vibratory smooth drum compactor for each lift. The final lift thickness may need to be adjusted slightly to achieve the desired final elevation. If the final lift thickness is greater than 3.3 feet loose lift then additional passes with the vibratory compactor should be performed. AMEC should provide periodic observation of the overburden/structural fill for project compliance.

Sincerely,

AMEC Earth and Environmental, Inc.

Joseph D. Hickey

Resident CQA Supervisor

Jay Janney-Moore, P.E.

Certifying Engineer / Project Manager

Cripple Creek & Victor Gold Mining Company Mill Site Earthworks Test Fill Survey Data

Te	est Fill #1	Recorded Settlement (ft.)						
Lift Number	Number of Passes	Control Point #1	Control Point #2	Control Point #3	Control Point #4	Control Point #5		
1	Start	-	-	-	-	-		
1	2	-0.10	-0.08	-0.10	0.00	-0.03		
1	4	-0.01	-0.09	-0.04	-0.08	-0.09		
1	6	-0.05	-0.01	-0.05	-0.05	-0.04		
1	8	-0.02	-0.01	-0.01	-0.07	-0.01		
1	10	-0.01	-0.01	-0.02	-0.02	0.00		
2	Start	-	-	-	-	-		
2	2	-0.08	-0.04	-0.04	-0.05	-0.02		
2	4	0.00	-0.07	-0.04	-0.03	-0.06		
2	6	0.00	-0.02	-0.02	-0.03	-0.02		
2	8	-0.04	-0.02	-0.01	-0.02	-0.02		
2	10	-0.01	-0.02	-0.04	0.00	-0.03		
3	Start	-	-	-	-	-		
3	2	-0.04	-0.06	-0.04	-0.06	-0.08		
3	4	-0.06	-0.06	-0.04	-0.02	-0.05		
3	6	-0.06	-0.06	-0.07	-0.05	-0.07		
3	8	-0.04	-0.06	-0.03	-0.01	-0.04		
3	10	-0.04	-0.02	-0.02	-0.02	-0.02		

Tested By: BM/AR

Checked By: JDH

TEST FILL PHOTOGRAPHS

Photo #1: JDH: Placing a lift of Overburden Fill material

Photo #2: JDH: Test fill compaction

Photo #3: JDH: Surveying of the test fill

Photo #4: JDH: Excavation of the test trench

February 29, 2012

Mr. Ron Roberts CC&V Projects Cripple Creek & Victor Gold Mining Co. P.O. Box 191 Victor, CO 80860

Re: Mill Foundation Recommendations Cripple Creek & Victor Gold Mine, Teller County, Colorado

Dear Ron:

AMEC Environment and Infrastructure, Inc. (AMEC) has prepared this letter report presenting foundation recommendations for the proposed Mill to be located adjacent to the Load-Out Bin (LOB). It is AMEC's understanding that the mill site will be constructed using mine waste provided by the mine. Construction of the mill site pad is ongoing, with an anticipated completion date of Q4 2012. The foundation recommendations presented herein are provided to support engineering design for the Mill foundations, and are based on our on-site experience with similar fills. The assumptions presented herein should be verified during construction of the mill site.

1.0 BACKGROUND

A portion of the currently permitted and approved Squaw Gulch OSA (SGOSA) will be constructed as the platform of the proposed milling facility as part of the Mine Life Extension 2 (MLE2) Project. The new Mill Platform, referred herein as the Mill Platform Overburden Storage Area (MPOSA) will be constructed out of overburden from the Cresson Project and within an area currently permitted and approved for overburden placement as part of the SGOSA approved under Amendment No. 9 to Permit M-1980 (Amendment No. 9). The current configuration of the MPOSA consists of a lined mill platform area. The engineered fill underlying the mill platform area will consist of the following, from bottom (native ground) to top (finished grade): overburden fill; a liner system consisting of soil liner fill, 80-mil low linear density polyethylene (LLDPE) geomembrane liner, and drain cover fill; select overburden material; and a low volume solution collection fill. The overburden fill underlying the liner system will have a maximum thickness of 175 feet with a maximum thickness overlying the liner system of 150 feet. Final configuration of the MPOSA is shown on Figure 1 and consists of 2H:1V side slopes along the north, west and south sides of the Mill Platform and buttress along the northeast and east by the existing SGOSA and LOB, respectively. Overburden fill placement within the MPOSA shall be compacted and monitored by a method specification technique as outlined in USACE (1994) and summarized in the technical specification attached to this letter (Attachment 1).

AMEC Environment and Infrastructure, Inc. 2000 S Colorado Blvd, Suite 2-1000 Denver, Colorado 80222 Tel: (303) 935-6505 Fax: (303) 935-6575

www.amec.com

S:\PROJECTS\1125G SQUAW GULCH valley leach facility design\h2 - design\mill complex s&f report\1125g_mill complex s&f rev1.docx

2.0 GEOTECHNICAL FIELD EXPLORATION

Several field explorations have been conducted in the vicinity of the MPOSA, as shown by Figure 2. Field programs with exploration locations within in the limits of the MPOSA include test pits excavated as part of Golder Associates' 2004 exploration, Smith Williams Consultants' (SWC) June 2007 exploration, and AMEC's June/July 2010 exploration. From the field explorations conducted, the subsurface consists of a thin (0-15 feet) veneer of granular soil consisting of sandy gravels and silts overlying competent bedrock. Bedrock is predominately the Cripple Creek Lapilli breccia, which generally consists of a massive, structureless, matrix-supported breccia that is poorly sorted, typical of diatremal crater fill breccia.

3.0 LABORATORY TESTING PROGRAM

Additional laboratory testing was conducted as part of this soil and foundation exploration, including index and chemical testing was performed on the Cresson Project ore to be used as structural fill for the MPOSA. Index testing included sieve analysis (ASTM D422) and Atterberg limits (ASTM D4318), while the chemical testing included water soluble sulfates, chloride content, pH, and resistivity testing (ASA 10-3). Shear strength testing of the Cresson Ore and interface shear testing of the liner were previously conducted by Golder Associates (2004).

3.1 Index Testing

In order to identify soils and classify them into categories of similar engineering properties, the Unified Soil Classification System (USCS - ASTM D2487) is used. This system is based on index property tests, including the determination of liquid limits, plastic limits, and grain size distribution. Table 1 contains a summary of index testing results for the soils. Laboratory data results are referenced in Attachment 2.

			G	radatior	n		tterbei Limits	•	Chemical Analysis						
Sample	USCS	Material Description	Gravel	Sand	Fines	PL	LL	PI	Water Soluble Sulfates		Electric Resistivity	Chlo Con		рН	
										ppm	%	ohm-cm	ppm	%	
Structural Fill	GP- GC	Poorly Graded Gravel with Silty Clay and Sand	63	28	9	17	24	7	115	0.57	700	65	0.33	4.1	

Table 1: Summary of Laboratory Testing

UCSC – Uniform Soil Classification System

PL – Plasticity Limit

LL – Liquid Limit

PI – Plasticity Index

Laboratory gradations were completed on one (1) sample of soil and resulted in 9 percent passing the No. 200 sieve, with sand and gravel consisting of 28 and 63 percent, respectively. Atterberg limits testing on the portion of material passing the No. 40 sieve indicated a plasticity index of 7 with a liquid limit of 24. The soil classified as a poorly graded gravel with silty clay and sand (GP-GC).

3.2 Chemical Characterization

Water-soluble sulfate tests were conducted on a sample of Cresson Project overburden structural fill to assess the potential for deterioration of concrete elements including footings, foundation walls, retaining walls, culverts, pipes, and surface slabs. The concentration of water-soluble sulfates measured in the soil sample was 115 parts per million (ppm) or 0.57%. This concentration of water-soluble sulfates represents a severe degree of sulfate attack on concrete exposed to these materials. The degree of attack is based on a range of negligible, positive, considerable, and severe as presented in the U.S. Bureau of Reclamation Concrete Manual (1988).

Resistivity tests measure the relative rate of movement of ions through the soil, which reflects the corrosiveness of the soil. The results from the resistivity tests indicate that the spent ore has a resistivity value of 665 ohm-cm. Based on correlations presented in Roberge (2000), these materials are considered to have resistivity values that are indicative of extreme corrosion potential.

Paste pH values taken from the same bulk sample showed that the material has a pH value of 4.1 standard units (SU). Based on these results and correlations presented in the FHWA document Durability/Corrosion of Soil Reinforced Structures (1990), the on-site materials have slightly akaline pH values indicating negligible to mildly aggressive corrosivity.

Based on the above testing, summarized in Table 1 and referenced in Attachment 2, a corrosion specialist should be contacted for associated protective design parameters.

4.0 SUBSURFACE CONDITIONS

4.1 General

The MPOSA is adjacent to the SGOSA and is believed to exhibit similar subsurface characteristics. A literature review of previous field explorations within the SGOSA was conducted in order to verify material properties used in previous stability analysis within the gulch. For the stability evaluation summarized in this report, material properties consistent with previous amendments were used for similar materials. The literature review is discussed and laboratory results are given to provide validation that the material properties used in the stability analysis are reliable values.

An initial site exploration for the Squaw Gulch Valley Leach Facility (SGVLF) area was conducted by Golder (2007). This exploration focused on the general subsurface conditions within the footprint of the proposed SGVLF. In addition, the report presents the results of a clay borrow investigation completed in Squaw Gulch, Vindicator Valley, Globe Hill, and Bull Hill areas.

SWC completed an extensive geotechnical field exploration to characterize the subsurface materials within the Squaw Gulch area for design of the proposed SGVLF. The geotechnical exploration included test pit excavation and geotechnical boring advancement in critical areas of the SGVLF. Test pits totaling 123 were excavated from May 25 through June 6, 2007 within the Squaw Gulch and Bull Hill areas. A summary of the results of the geotechnical laboratory tests completed by SWC are presented in Attachment 2.

AMEC completed an additional geotechnical field exploration to further characterize the area of the proposed SGVLF foundation. The geotechnical exploration included the excavation of 65 test pits. These test pits were excavated from June 15 through 26, 2010 within the SGVLF footprint. The test pits were excavated by Conley Construction using a Case 9040B track hoe. AMEC personnel supervised and logged each test pit and collected soil samples for subsequent geotechnical laboratory testing. The results of the AMEC geotechnical laboratory tests are presented in Attachment 2.

The subsurface conditions underlying the MPOSA consists of granular soils consisting of gravelly sand and silts overlying competent bedrock. The depth to bedrock varies across the site, but is expected to be between 0 and 15 feet. Groundwater was not encountered within the project location.

4.2 Underground Mine Workings

Portions of the area beneath the proposed MPOSA and SGVLF were previously mined by historic underground means. Historic underground mine development was generally undertaken from shafts and occurred at various elevations. The historic underground working levels generally followed veins that were typically less than 12 feet wide (cross-sectional dimension of drifts and laterals). In some workings, open stope mining methods were used that followed ore veins upward from the working level excavations.

Surface disturbances from caving of the historic underground workings are visually evident in some areas within Squaw Gulch. These surface disturbances are primarily evident in the central gulch area. In many areas, the historic underground structures may have remained open. There is no evidence that any of the excavations were backfilled with mine development material, although some of the excavations were indicated on the historical mining plans as having collapsed and caved.

Remediation of historic underground workings is required to ensure the stability of the foundation of the MPOSA. Remediation measures are detailed in the Mill Platform Earthworks construction drawing set (AMEC, 2012) issued for construction January 24, 2012 and are the responsibility of the earthworks contractor. Remediation involves backfilling the historic mine workings with a coarse backfill and, in some cases, capping with a cemented fill or geogrid. These measures, combined with the overburden structural fill placed as part of the MPOSA grading, should provide adequate bridging of existing historic mine workings by the stress influence of the mill platform foundations.

4.3 Seismicity

Based on the seismic evaluation approved as part of Amendment No. 9, a peak ground acceleration (PGA) of 0.14g was selected for the OSA/VLF during operations, and a PGA of 0.08g was selected for the OSA/VLF at closure. No change to these values was warranted for this design.

5.0 FOUNDATION RECOMMENDATIONS

The following sections present the recommendations for design of the foundations for the MPOSA project elements.

5.1 General Foundation Design Recommendations

AMEC makes the following general design recommendations:

Structural fill materials with less than 30 percent rock materials above 3/4-inch size shall be placed in maximum 12-inch loose lifts, and compacted to 98 percent of the maximum dry density as defined by a standard Proctor (ASTM D698) within +/- 2 percent of the optimum moisture content. Structural fill materials containing more than 30 percent rock materials above 3/4-inch size (rock fill) shall be compacted and monitored by a method specification technique as outlined in USACE (1994) and summarized in the attached technical specification (Attachment 1). Low Volume Solution Collection Fill is required to be placed a minimum of 8 feet from final grade and shall be placed in maximum 12-inch loose lifts and compacted to 98 percent of the maximum dry density as defined by a standard Proctor

(ASTM D698) within +/- 2 percent of the optimum moisture content. A gradation specification for the Low Volume Solution Collection Fill is provided in Section 6. The compaction equipment shall consist of a minimum 10-ton (static drum weight) vibratory smooth-drum compactor. Maximum rock size for rock fill shall be two-thirds of the compacted lift thickness, unless otherwise approved.

- General construction considerations are summarized in Section 6.0 of this letter.
- If used, column and strip footings should have minimum widths of 36 and 16 inches, respectively.
- For frost protection, the minimum footing depth is 4 feet below exterior grade (IBC, 2009) considering that frost heave resistant soils will be utilized in the founding fill.
- Foundations should be designed for seismic loading according to the International Building Code (IBC, 2009), with the following parameters:
 - Site Class D (stiff soil profile);
 - S_s = 0.200 (spectral response acceleration at short periods, Site Class B);
 - $S_1 = 0.065$ (spectral response acceleration at 1 second period, Site Class B);
 - SM_s = 0.321 (maximum considered spectral response acceleration at short periods, Site Class D);
 - SM₁ = 0.156 (maximum considered spectral response acceleration at 1 second period, Site Class D);
 - $SD_s = 0.213$ (design spectral response acceleration at short periods, Site Class D); and
 - $SD_1 = 0.104$ (design spectral response acceleration at 1 second period, Site Class D).
- Sulfate resistant concrete may be required, as the results of chemical characterization testing indicate a positive corrosion potential (i.e. ASTM C150 Type II modified Portland Cement). A corrosion specialist should be consulted to determine the most suitable type of concrete.
- Sliding friction at the bottom of the footings founded on compacted native materials or structural fill can be taken as 0.35 times the vertical dead load.
- Anticipated foundation conditions and construction activities described herein should be verified in the field by an engineer or project resident. If conditions vary significantly from those presented herein, modifications to the foundation design parameters may be required.
- Fill placed adjacent to structures or the primary containment system shall be graded to allow drainage away from the structure.

5.2 Specific Foundation Recommendations

Specific recommendations for the design of foundations are presented in this section. The allowable bearing capacities were estimated based on typical performance of compacted structural fill with a high rock content. In general, mill foundations are sensitive to differential settlement; therefore, these

foundations should be sited in areas where the likelihood of differential settlements can be minimized (e.g. on dense to very dense materials).

Ultimate (gross), net, and allowable bearing capacities were developed for the foundation materials. The bearing capacity values are determined to satisfy two basic criteria: 1) prevent shear failure of the supporting soils; and 2) prevent excessive settlements that could damage the structure.

The bearing capacities and estimated settlements were developed based on experience at the site with similar fills. As indicated previously, field verification of compaction will be required to confirm the structural fill is being compacted sufficiently. Ultimate bearing capacities were developed using the Meyerhof (1951) equations and the general relationships presented in Bowles (1996). Net bearing capacities were calculated from the ultimate bearing capacities by subtracting the overburden pressure at the foundation depth. The net bearing capacity values presented herein do not include the weight of the foundation. Allowable bearing capacities (ultimate and net allowable) were calculated by applying a factor of safety of 3.0 to the ultimate and net bearing capacity values. For this report, the gross allowable bearing capacity is equal to the gross bearing capacity divided by a factor of safety of 3.0, and was used as the basis to size foundations that prevent shear failure of the supporting soil. The net allowable bearing capacity is equal to the net bearing capacity divided by a factor of safety of 3.0, and was used as the basis to size foundations to prevent excessive settlements. The foundation settlements were calculated using the elastic equations presented in Bowles (1996) and were limited to 1 inch or less based on the net allowable bearing capacity. The allowable bearing capacities are presented in Figure 3.

The allowable bearing capacity is based on a 1-inch maximum total settlement. Differential settlements are not anticipated to exceed two thirds of the total settlement. Negligible settlements of lightly loaded floor slabs are anticipated. As such, differential settlements between floor slabs and adjacent foundations will be approximately equal to the total foundation settlements presented.

To avoid overlapping stresses from adjacent footings that are placed at different elevations, any footing which is at a higher elevation should be positioned so its base is at or below a plane drawn upward at 1H:1V (horizontal to vertical) from the base of the lower footing.

The recommended allowable static bearing pressures provided in the following sections for foundations may be increased by one third for use with short-term loads such as those from wind or earthquakes.

6.0 CONSTRUCTION CONSIDERATIONS

6.1 Site Grading – General

Site grading, as described in this section, includes major excavations and fills necessary to bring the site to the proposed elevations, including fill to support buildings, foundations, floor slabs, backfill of foundations, and access roads.

Some of the on-site soils contain a significant percentage of silt, clay, and fine sand that make them particularly sensitive to moisture with regard to fill placement. These soils may also degrade to slurrylike consistency when subjected to construction traffic or otherwise disturbed in wet conditions. Therefore, fine grading should be suspended during periods of wet weather at the discretion of the on-site engineer.

Site grading of the MPOSA is outlined in greater detail in the AMEC Construction Drawings titled Mill Site Earthworks which were issued for construction on January 24, 2012. The construction drawings detail the liner configuration and limits of various construction materials within the OSA.

6.2 Site Preparation

Any existing uncontrolled or unconsolidated fills should be removed to expose the natural undisturbed native soils and replaced with Structural Fill to the limits of the Overburden Material as detailed in the Mill Site Earthworks Construction Drawings.

After stripping or over-excavation, exposed soil surfaces under slabs, tanks, and foundations should be moisture conditioned and compacted prior to fill placement. Care should be taken to avoid disturbing subgrade soils and supporting soils that will remain in place. Areas that become softened or loosened during construction should be moisture conditioned and recompacted or removed and replaced with compacted Structural Fill. The final (i.e. upper) 8 feet of the MSOSA grading consists of Low Volume Solution Collection Fill as detailed in the Mill Site Earthworks Construction Drawings (AMEC, 2012) and is the bearing material for the Mill foundations.

Structural Fill shall conform to the following (per Section 2200.0 of the Project Specifications):

U.S. Standard Sieve Size	Percent Passing by Dry Weight
24 – inch	100
No. 200	0 – 25
Diantiaity Indayy	20 maximum

Plasticity Index:

30 maximum

Low Volume Solution Collection Fill shall conform to the following (per Section 2200.0 of the Project Specifications):

U.S. Standard Sieve Size	Percent Passing by Dry Weight
1 – inch	100
3/8 — inch	40 – 70
No. 4	5 – 55
No. 200	0-10
Plasticity Index:	0

Plasticity Index:

6.3 Temporary Excavations

Construction may require temporary excavations into native soil and in existing fills. Safe, stable construction slopes are the responsibility of the contractor and depend on the ground and site conditions encountered at the time of construction.

6.4 Control of Surface and Groundwater

The contractor is responsible for control of all surface water runoff during construction, so that foundation excavations and subgrade remain essentially dry and protected against damage from water.

7.0 Stability Analysis

Slope stability of the Mill Platform was conducted to check the global slope stability with respect to the foundation loads recommended in this report. For each potential failure mode considered, slope stability was evaluated according to Spencer's Method of Analysis (Spencer's Method). Spencer's Method considers potential failure masses as rigid bodies divided into adjacent regions or "slices" separated by vertical boundary planes and is based on limit equilibrium, i.e., the method calculates the shear strengths that would be required to just maintain equilibrium, and then calculates a Factor of Safety (FOS) by dividing the available shear strength by the required shear strength. Consequently, the FOS calculated by Spencer's Method indicates the percentage by which the available shear strength exceeds, or falls short of, that required to maintain equilibrium. Therefore, an FOS equal to or in excess of 1.0 indicates stability and those less than 1.0 indicate instability. The greater the mathematical difference between the FOS and 1.0, the larger the "margin of safety" (for an FOS in excess of 1.0), or the more extreme the likelihood of failure (for an FOS less than 1.0).

The stability analyses were conducted using SLIDE V5.0 (RocScience, 2007), a commercially available computer program, with the input parameters presented in this section. For both the deep and shallow circular or block failure modes, the SLIDE critical surface search routine was initially used to evaluate the least stable failure surface. The program automatically iterates through a variety of potential failure surfaces, calculates the safety factor for static and pseudo-static conditions for each surface according to Spencer's Method, and selects the surface with the minimum FOS, commonly referred to as the critical surface. Static analyses were conducted with no applied horizontal forces, while pseudo-static analyses modeled design seismic conditions by incorporating a constant horizontal force. For the pseudo-static analyses, a conservative design coefficient of 0.14g (which is equal to the currently approved PGA for the Cresson Project) was used in the slope stability models, which is consistent with that used for Amendment Nos. 6, 7, 8 and 9 (CC&V 1993, 1998, 2000, 2008). For the postclosure configuration, AMEC used the PGA of 0.08g, which is also consistent with Amendment Nos. 6, 7, 8, and 9 (CC&V 1993, 1998, 2000, 2008).

7.1 Input Parameters

7.1.1 Conceptual Model

Stability analyses were performed on two critical cross-sections. The locations of the cross-sections under consideration are shown on Figure 1. Each cross-section was evaluated with a distributed load equal to the maximum allowable bearing capacity, 7000 psf, as shown on Figure 3, to simulate the presence of the mill foundations. The setback distance of the foundation load to the slope crest was evaluated with respect to slope stability and the required minimum distance was found to be 100 feet.

At the time of the site explorations, groundwater was not encountered in the test pits that overlap the proposed MPOSA area. Therefore a water surface was not modeled in the stability evaluation.

The following material properties were used in the models and are summarized in Table 2 below:

Low Volume Solution Collection Fill Material – The low volume solution collection fill material is modeled as a well graded sandy gravel, with an average bulk unit weight of 120 pounds per cubic foot (pcf). The gravelly sand is assumed to have a shear strength defined by a linear Mohr-Coulomb envelope, with an internal angle of friction of 36 degrees and zero cohesion. These values are consistent with published values for similar material (Bowles, 1996).

Overburden Material – The overburden material is modeled as a coarse rockfill, with an average bulk unit weight of 125 pcf. The rockfill is assumed to have a shear strength defined by a linear Mohr-Coulomb envelope, with an internal angle of friction of 39 degrees and zero cohesion. These values are consistent with that used in previous amendments.

Drain Cover Material – The drain cover material is modeled as a coarse, poorly graded gravel, with an average bulk unit weight of 120 pcf. The gravel is assumed to have a shear strength defined by a linear Mohr-Coulomb envelope, with an internal angle of friction of 40 degrees and zero cohesion. These values are consistent with published values for similar material (Bowles, 1996).

Composite Liner – The composite liner is located beneath the Low Volume Solution Fill Material and is used in the collection and diversion of effluent. Shear strength testing on representative clay/geomembrane linersrface shows conducted for CC&V resulted in friction angles ranging between 15 and 27 degrees. The liner material was modeled with a friction angle of 18 degrees, cohesion of zero, and density of 100 pcf. These values are consistent with those used in previous amendments.

Unconsolidated Foundation Material – The upper 10 ft of the native ground underlying the rockfill was conservatively modeled as soil, eventhough some areas will have bedrock at or near the ground surface. In areas where the previous geotechnical explorations encountered unconsolidated materials within or near the footprint of the proposed SGOSA or MPOSA, the material consisted mostly of sands and gravels with minor amounts of clay. The unconsolidated foundation material for both the MPOSA and the SGOSA was conservatively modeled with a bulk unit weight of 115 pcf, friction angle of 32 degrees, and zero cohesion.

Native Bedrock – According to the available subsurface information, the native bedrock within the area of the SGOSA consists predominately of unweathered, competent granodiorite. The bedrock was modeled with a bulk unit weight of 140 pcf, cohesion of 5,000 pounds per square foot (psf), and a friction angle of 45 degrees.

	Material Properties Used in SLIDE 5.0					
Material Description	Unit Weight (pcf)	Friction Angle (deg)	Cohesion (psf)			
Low Volume Solution Collection Fill	120	36	0			
Overburden Material	125	39	0			
Drain Cover Material	120	40	0			
Composite Liner	100	18	0			
Unconsolidated Foundation Material	115	32	0			
Native Bedrock	140	45	5,000			

7.2 Stability Results

The stability analysis results are shown on Figures 4 and 5 and summarized in Table 3, while locations of the cross-sections can be viewed on Figure 1.

Table 3. Stability Evaluation Results

Continue (Longtion)	Turne of Failure Medalad	Static Factor of	Pseudo-static Factor of Safety			
Section (Location)	Type of Failure Modeled	Safety	0.08g	0.14g		
	Circular (shallow)	2.8	2.2	1.8		
Α	Circular (deep)	1.7	1.2	1.3		
	Block	1.5	1.0	1.2		
	Circular (shallow)	2.2	1.8	1.6		
В	Circular (deep)	1.7	1.4	1.2		
	Block	1.7	1.4	1.2		

As evidenced above, the stability analyses indicate that each of the surfaces evaluated are stable under both static and seismic loading conditions as the computed factors of safety meet or exceed the prescriptive values of 1.5 and 1.0, respectively, under static and psuedostatic conditions. Although minimal deformation is anticipated due to seismic events, some minor maintenance and repair may be necessary due to localized zones of sloughing material. The minimum required setback distance for mill foundations from the crest of slopes is 100 feet. Slope stability should be reevaluated once mill foundation locations and anticipated loads are finalized.

8.0 USE OF THIS REPORT

This letter report has been prepared in accordance with generally accepted soil and foundation engineering practices in this area for use by the client for design purposes. If during construction, soil, rock, and groundwater conditions appear to be different from those described herein, this office should be promptly advised so that re-evaluation of the recommendations may be made. We recommend on-site observation of excavations and foundation bearing strata by a soils engineer.

AMEC appreciates the opportunity to provide continued engineering and construction support to CC&V. If you have any questions or comments, please contact the undersigned at (303) 935-6505.

Sincerely,

AMEC Environment & Infrastructure, Inc.

Dad Wedge

David Weidinger, P.E. Project Engineer

Jey Mone

Jay Janney-Moore, P.E. Project Manager

JWH:kfm

Attachments: Figures Attachment 1 – Compaction Specification Attachment 2 – Laboratory Testing Results Reviewed by:

Kimberly f. Wpm

Kimberly Morrison, P.E., R.G. Associate, Project Sponsor

9.0 References

- Barton, N.R., R. Lien, J. Lunde, 1974. Engineering classification of rock masses for the design of tunnel support, *Rock Mech*. 6(4), 189-239.
- Bowles, J.E., 1996. *Foundation Analysis and Design*. Third Edition. New York: McGraw-Hill Book Company. 816 pp.
- Cripple Creek & Victor Gold Mining Company, 2008, Amendment 9 to Office of Mined Land Reclamation Permit M-1980-244.
- Cripple Creek & Victor Gold Mining Company, 2000, Amendment 8 to Office of Mined Land Reclamation Permit M-1980-244.
- Cripple Creek & Victor Gold Mining Company, 1998, Amendment 7 to Office of Mined Land Reclamation Permit M-1980-244.
- Cripple Creek & Victor Gold Mining Company, 1993a, Amendment 6 to Office of Mined Land Reclamation Permit M-1980-244.
- Golder Associates Inc., 2007, Geotechnical Foundation and Clay Borrow Source Investigation for the Phase 5 Squaw Gulch Mine Extension.

Golder Associates Inc., 2004, Cresson Valley Leach Facility Technical Report (TR) 45.

International Building Code (IBC). 2009. International Code Council, Inc.

- Naval Facilities Engineering Command (NAVFAC). 1986. Design Manual 7.01 Soil Mechanics. Design Manual 7.02 Foundations & Earth Structures. Design Manual 7.3 Soil Dynamics and Special Design Aspects.
- Roberge, P.R., 2000. Handbook of corrosion engineering, McGraw-Hill.
- Rocscience. 2007. Slide Version 5.0 Users Manual. Toronto, Ontario, Canada.
- Spencer, E. 1967. A method of analysis of the stability of embankments assuming parallel inter-slice forces. Geotechnique. Vol. 68, No.1, pp. 190-198.
- U.S. Army Corps of Engineers (USACE). 1994. Test quarries and test fills, USACE EM 1110-2-2301.
- U.S. Bureau of Reclamation, 1988. Concrete Manual: A Manual for the Control of Concrete Structures. Department of the Interior.

Figures

74201125G_F4 4

FILENAME IGURE No 74201125G_F5 5

Α

Attachment 1

Technical Specification for Placement and Compaction of Overburden Fill

MPOSA TELLER PROJEC		2KS O 5G <u>EET IS THE I</u> DESIGN	FIRST PA	TE P . <u>GE OF THE</u> PROVALS ROJECT		FICATIONS F COMPACTIO ANULAR FILI	FOR DN L	PAGE 1 OF 9 DOC. NO.: TEST FILL TECH SPECS.DOC DATE: (ORIGINAL) 2/29/12 REVISION: 0 DATE: 2/29/12 HISSUE OR REVISION.
0	DATE 2/29/12	JJM	<u>R M</u>	JJM	ORIGINATOR DMW	PAGES 9	Issued for C	REMARKS
				APPROVI APPROVI	MENT APPI ED WITHOUT ED AS NOTED ROVED – RES	COMMEN	rs	
_	ITIRE DOCUI				REVI	NT ISSUED I EW AND CO NT APPROV IIRY/BID	MMENT	 DESIGN PURCHASE CONSTRUCTION

CRIPPLE CREEK & VICTOR GOLD MINE
MPOSA EARTHWORKS

TELLER COUNTY, CO

SPECIFICATION

TECHNICAL SPECIFICATIONS FOR PLACEMENT AND COMPACTION OF COARSE GRANULAR FILL PAGE 2 OF 9

DOC. NO.: TEST FILL TECH SPECS.DOC

DATE: (ORIGINAL) 2/29/12

REVISION: 0 **DATE:** 2/29/12

PROJECT NO .: 1125G

TABLE OF CONTENTS

1.0 LOCATION & TEST FILL PREPARATION	. 3
2.0 MATERIAL HANDLING	. 3
3.0 CONSTRUCTION METHODOLOGY	. 3
4.0 MEASUREMENTS	. 4
5.0 VISUAL OBSERVATIONS	. 5
6.0 INSPECTION OF TRENCHES AND PITS	. 5
7.0 EVALUATION	. 5
8.0 ATTACHMENT A	.7
9.0 ATTACHMENT B	. 8
10.0 REFERENCES	. 9

CRIPPLE CREEK & VICTOR GOLD MINE MPOSA EARTHWORKS

TELLER COUNTY, CO

SPECIFICATION

TECHNICAL SPECIFICATIONS FOR PLACEMENT AND COMPACTION OF COARSE GRANULAR FILL PAGE 3 OF 9 DOC. NO.: TEST FILL TECH SPECS.DOC DATE: (ORIGINAL) 2/29/12 REVISION: 0 DATE: 2/29/12

PROJECT NO.: 1125G

1.0 LOCATION & TEST FILL PREPARATION

Material containing more than 30-percent rock materials above ³/₄ inch size (rock fill) shall be, spread, placed, and compacted using procedures based on the results of a test fill. The type of compaction equipment, number of passes, and maximum rock size and loose lift thickness will be approved by the Engineer in writing based on the acceptable test fill performance. The Contractor shall outline his proposed procedures for moisture conditioning and fill placement and submit them to the Engineer for review and approval.

If the location of the test fill overlies a soil or weathered rock foundation, it must be thoroughly stripped of organics and compacted prior to fill placement until no further settlement is observed. A rockfill base pad (or leveling course), 2 to 3 ft thick, should be placed on the foundation (whether soil or rock) prior to placing the first test lift in order to ensure that all foundation depressions and undulations are filled and a level surface is obtained. Placement of the rockfill base pad should be in at least two lifts, where permissible, with compactive effort applied until negligible settlements are observed from level readings made on its surface. Where a base pad is not required, a minimum 10 passes of the vibratory roller that will be used in the test fill, shall be completed.

An important consideration for any test fill program requires a close simulation of actual construction procedures and equipment to be used in the project fill.

2.0 MATERIAL HANDLING

Test fill materials may be delivered directly to the site from the borrow pit or stockpiled for future use in the test fill. However, stockpiling may produce changes in the gradation of the rock reaching the fill because of double-handling (loading and hauling). For this reason, stockpiling should be avoided unless it is anticipated in the project construction.

3.0 CONSTRUCTION METHODOLOGY

Individual test sections shall be of sufficient size so the compactive effort does not induce lateral bulging of the fill. The recommended dimensions to avoid this occurrence require a width of 30 to 50 ft with a length of 50 to 80 ft, if feasible. Maximum particle sizes equal to 2/3 of the lift thickness are acceptable.

For material, which does not degrade through compaction to the extent that it must be considered as soil, vibratory rollers are the most commonly used piece of equipment. It has been determined

CRIPPLE CREEK & VICTOR GOLD MINE MPOSA EARTHWORKS

TELLER COUNTY, CO

SPECIFICATION

TECHNICAL SPECIFICATIONS FOR PLACEMENT AND COMPACTION OF COARSE GRANULAR FILL

PAGE 4 OF 9
DOC. NO.:
test FILL TECH
SPECS.DOC
DATE: (ORIGINAL)
2/29/12
REVISION: 0
DATE: 2/29/12

PROJECT NO .: 1125G

that for sound rock, four passes of a 10 ton vibratory roller upon layer thicknesses averaging about 3.3 ft, have become standard practice. Loose lift thicknesses for gravels have ranged between 1 to 3 ft depending on particle size and percentage of material passing the U.S. Standard No. 200 sieve sizes. Fill comprised of soft, weaker rocks and fines require thinner lifts on the order of 18 in. to 2 ft and increased compactive effort. Again, site-specific equipment shall be used to perform the test fill construction.

Compactive equipment shall be operated at a speed which will result in a minimum of 6 to 8 impacts per lineal foot of roller travel. Follow manufacturer's recommendations for operations speed versus frequency of impacts to obtain the most efficient compaction. Adjust these variables to provide the optimum rolling procedures for the material. Maintain the same amplitude and frequency during compaction of the test fill.

Four or five layers (lifts) are usually sufficient to provide enough data to establish the compaction specification for any one type of rock fill. An individual test section or lane of a test fill shall contain one type of material, consistent lift thicknesses, compaction by similar equipment and the same number of passes. The data from the constructed lifts shall then be used to obtain a settlement curve for each test section.

4.0 MEASUREMENTS

Prior to establishing control points for settlement measurements, a leveling pass shall be completed on the un-compacted lift surface with the vibratory roller, with the vibratory unit turned off. This will provide a smooth surface upon which to clearly establish control points and confirm the lift thickness. Clearly mark the control points with a cross of contrasting spray paint to determine subsequent level readings. Record the amount of settlement after every two passes of the compactor, to a maximum of 25 passes. In general, the minimum number of passes will be that number required to achieve 80-percent of the total settlement obtained after ten complete passes of the compaction equipment. A minimum of five control points is required for each lift, as shown by the example in Attachment A. The grid pattern will be chosen to provide a good representative assessment of the overall settlement of the lift surface. There shall be no less than three points on any one line of the grid and the edges of the grid shall be no closer than 10 ft from any outside edge of the test section. Avoid access ramps when making settlement readings.

Upon cessation of compactive effort and the final lift survey, the surface of the lift shall be covered with a sacrificial marker so that individual lifts can be identified in subsequent test excavations.

CRIPPLE CREEK & VICTOR GOLD MINE MPOSA EARTHWORKS

TELLER COUNTY, CO

SPECIFICATION

TECHNICAL SPECIFICATIONS FOR PLACEMENT AND COMPACTION OF COARSE GRANULAR FILL PAGE 5 OF 9 DOC. NO.: TEST FILL TECH SPECS.DOC DATE: (ORIGINAL) 2/29/12 REVISION: 0 DATE: 2/29/12

PROJECT NO.: 1125G

5.0 VISUAL OBSERVATIONS

The representative of the Engineer will carry out visual observations of the construction procedures and material behaviour. Index testing shall be completed subsequent to the test fill completion.

6.0 INSPECTION OF TRENCHES AND PITS

Excavate observation pits or inspection trenches to expose a cross section of each test section or lane in order that the in-situ characteristics of the compacted fill can be observed by the representative of the Engineer. Information recorded from these excavations will include:

- The compacted lift thickness,
- The distribution of fines within the lift,
- The overall appearance of each lift (segregation, voids, stability, etc).

7.0 EVALUATION

The Engineer will keep complete records of test fill construction, measurements and observations. After completion of the test fill program, an as-built report will be completed, consisting of the following:

- Locations of borrow sources and description of borrow materials,
- Description of foundation preparation and treatment before leveling pad construction,
- Materials used in, and construction of the leveling pad,
- Description of each test fill, including: materials, layout and compaction equipment,
- Thickness of loose and compacted lifts,
- Locations of tests including control point layout,
- Description of tests and measurements performed,
- Laboratory test results,
- Description of inspection pits or trenches and their locations, and
- Results of visual observations in inspection pits or trenches.

Settlement data will be used to determine the best combination of loose-lift thickness, number of passes and roller type (compaction effort) to achieve the specified densities. The settlement readings will be expressed as a percentage of the loose-lift thickness. For each lift thickness, the Engineer will plot settlement on the y-axis and number of passes on the x-axis, as shown by the example on Attachment B. The most effective compaction procedure will be determined by the

PAGE 6 OF 9

CRIPPLE CREEK & VICTOR GOLD MINE	
MPOSA EARTHWORKS	

TELLER COUNTY, CO

SPECIFICATION

PLACEMENT AND COMPACTION

OF COARSE GRANULAR FILL

DOC. NO.: TEST FILL TECH SPECS.DOC TECHNICAL SPECIFICATIONS FOR DATE: (ORIGINAL) 2/29/12 **REVISION:** 0 DATE: 2/29/12

PROJECT NO .: 1125G

Engineer and the Contractor. Acceptance of the compaction procedure by the Engineer does not release the Contractor from his obligation to achieve specified densities.

The report will conclude with an analysis of the field measurements and observations, and the preparation of performance specifications for compaction including:

- Type and size of compaction equipment, -
- Number of passes required, and _
- Maximum loose lift thickness. _

PAGE 9 OF 9

TEST FILL TECH

SPECS.DOC

2/29/12

DATE: (ORIGINAL)

REVISION: 0 **DATE**: 2/29/12

DOC. NO.:

CRIPPLE CREEK & VICTOR GOLD MINE	
MPOSA EARTHWORKS	

TELLER COUNTY, CO

SPECIFICATION

TECHNICAL SPECIFICATIONS FOR PLACEMENT AND COMPACTION OF COARSE GRANULAR FILL

PROJECT NO.: 1125G

10.0 REFERENCES

U.S. Army Corps of Engineers (USACE) EM1110-2-2301 Engineering and Design – Test Quarries and Test Fills

Attachment 2

Laboratory Testing Results

Attachment 2.1 – AMEC Laboratory Test Data

Attachment 2.2 – SWC Laboratory Test Data

Attachment 2.1 – AMEC Laboratory Test Data

						Specific	ation (%)	passing)				Atterberg	q	Moisture	e Density		Permeability
			Natural								Pla	sticity In	dex:	Maximum		Permeability @ OMC	1.5% Above OMC
Sample	Date	Elev. (ft)	Moisture		Graii	n Size D	istributior	n (% pas	sina)					Dry	Optimum	Permeability	Permeability
No.	Tested	- ()	(%)						0/		Liquid	Plastic	Plastic	Density	Moisture	k (cm/sec)	k (cm/sec)
			()	6	2	1	0.375	#4	#40	#200	Limit	Limit	Index	(pcf)	(%)	5 PSI 20PSI	5 PSI 20PSI
TP-2	6/15/2010	8'	N/T	100.0	92.8	81.8	69.8	67.9	57.0	44.9	55	20	35	N/T	N/T	N/T	N/T
TP-5	6/15/2010	8.5'	N/T	100.0	100.0	81.4	73.3	69.9	51.6	30.9	37	17	20	N/T	N/T	N/T	N/T
TP-7	6/15/2010	15'	N/T	100.0	98.6	77.1	66.4	63.4	49.5	33.5	39	16	23	N/T	N/T	N/T	N/T
TP-11	6/16/2010	10'	N/T	100.0	100.0	90.2	81.9	75.5	56.0	39.3	39	16	23	N/T	N/T	N/T	N/T
TP-12	6/16/2010	11'	N/T	100.0	100.0	92.1	65.3	59.1	40.9	28.7	44	17	27	N/T	N/T	N/T	N/T
TP-13	6/16/2010	10.5'	12.5	100.0	81.8	50.7	35.1	29.9	21.5	17.1	55	21	34	N/T	N/T	N/T	N/T
TP-18	6/16/2010	10.5	12.0	100.0	92.5	83.7	72.8	66.2	45.2	32.6	38	14	24	122.6	10.2	5.6E-05 3.0E-06	8.0E-07 N/T
TP-19	6/17/2010	11'	15.0	100.0	88.2	74.8	63.4	57.8	42.5	32.6	38	13	25	N/T	N/T	N/T	N/T
TP-21	6/17/2010	7'	16.0	100.0	92.5	82.4	70.1	63.8	46.1	32.9	38	16	22	N/T	N/T	N/T	N/T
TP-23	6/17/2010	19'	14.3	100.0	92.1	82.6	71.3	64.6	47.7	36.5	36	14	22	121.2	10.8	5.5E-05 2.3E-06	N/T
TP-24	6/17/2010	3'	13.0	100.0	95.7	84.8	74.2	68.0	47.8	34.6	40	14	26	N/T	N/T	N/T	N/T
TP-25	6/17/2010	8'	13.9	100.0	94.8	81.7	71.0	63.9	42.8	30.7	37	16	21	N/T	N/T	N/T	N/T
TP-26	6/17/2010	6.5'	N/T	100.0	96.1	86.0	73.6	67.0	46.3	30.6	41	16	25	N/T	N/T	N/T	N/T
TP-27	6/17/2010	17'	16.3	100.0	91.8	80.4	70.2	64.9	44.1	31.3	44	17	27	N/T	N/T	N/T	N/T
TP-30	6/21/2010	6.5'	14.4	100.0	88.8	75.2	60.4	54.8	39.4	30.0	38	15	23	N/T	N/T	N/T	N/T
TP-30	6/21/2010	13.5'	16.1	100.0	85.5	73.5	62.3	57.8	42.4	32.2	39	18	21	121.3	10.1	N/T	N/T
TP-31	6/21/2010	22.5'	13.3	100.0	96.6	83.3	70.5	62.9	45.9	36.3	36	15	21	N/T	N/T	N/T	N/T
TP-32	6/21/2010	8.5'	12.0	100.0	92.5	80.7	66.1	58.4	36.2	25.5	37	17	20	N/T	N/T	N/T	N/T
TP-33	6/21/2010	11'	15.1	100.0	84.0	71.0	56.3	50.4	30.3	22.7	46	21	25	122.4	9.9	N/T	N/T
TP-34	6/21/2010	8'	15.9	100.0	94.3	84.1	74.0	67.8	48.8	36.2	40	16	24	N/T	N/T	N/T	N/T
TP-35	6/21/2010	12'	17.7	100.0	86.8	79.3	72.8	68.1	53.1	43.0	45	13	32	118.8	10.9	N/T	N/T
TP-36	6/21/2010	7'	13.4	100.0	92.8	79.2	65.5	59.8	43.0	31.6	38	19	19	120.8	10.4	N/T	N/T
TP-37	6/21/2010	16'	13.4	100.0	95.2	76.7	64.2	58.7	44.3	34.6	39	16	23	N/T	N/T	N/T	N/T
TP-38	6/21/2010	19'	11.9	100.0	96.0	80.0	67.8	63.0	44.4	32.0	33	19	14	123.9	9.9	2.2E-04 6.0E-05	N/T
TP-39	6/21/2010	9.5'	13.8	100.0	95.9	84.1	75.7	71.5	56.6	43.7	37	16	21	N/T	N/T	4.6E-05 5.1E-08	N/T
TP-39	6/21/2010	14'	20.8	100.0	100.0	97.6	93.8	91.1	82.9	69.4	37	14	23	112.5	13.6	N/T	N/T
TP-41	6/22/2010	9'	17.0	100.0	94.3	89.8	78.6	73.7	57.7	42.1	28	17	11	N/T	N/T	N/T	N/T
TP-42	6/22/2010	8.5'	16.2	100.0	90.5	76.2	68.7	63.5	50.3	39.0	34	14	20	N/T	N/T	N/T	N/T
TP-43	6/22/2010	10'	14.9	100.0	93.7	79.8	68.0	62.3	46.1	34.4	35	15	20	N/T	N/T	N/T	N/T
TP-44	6/22/2010	14'	15.5	100.0	97.7	89.1	76.0	68.8	48.6	35.5	32	20	12	121.5	9.8	2.1E-04 1.3E-04	N/T
TP-45	6/22/2010	14'	12.4	100.0	86.8	73.1	61.5	56.2	38.8	29.2	40	14	26	N/T	N/T	N/T	N/T
TP-48	6/22/2010	10'	15.3	100.0	96.4	85.5	66.4	58.7	34.7	23.4	44	16	28	N/T	N/T	N/T	N/T
TP-49	6/22/2010	14'	10.2	100.0	93.9	82.0	69.0	61.8	40.6	28.6	36	15	21	122.2	9.7	2.7E-04 8.6E-05	N/T
TP-57	6/23/2010	15'	12.7	100.0	90.2	80.2	68.9	61.4	35.2	23.7	30	16	14	122.7	10.1	N/T	N/T
TP-60	6/23/2010	16'	N/T	100.0	100.0	93.6	74.4	64.4	37.8	25.0	30	16	14	N/T	N/T	N/T	N/T
TP-64	6/24/2010	10'	16.1	100.0	91.2	82.7	72.1	66.1	42.3	27.2	40	14	26	120.5	10.0	N/T	N/T
TP-65	6/24/2010	9.5'	18.4	100.0	100.0	98.6	92.2	85.3	62.7	49.7	40	15	25	114.8	13.2	N/T	N/T
PCS-1-R	4/15/2010	-	7.8	100.0	73.5	66.8	59.2	55.1	39.7	28.2	39	14	25	N/T	N/T	N/T	N/T
PCS-2-R	5/4/2010	-	12.3	100.0	93.3	84.4	73.6	67.4	49.2	37	37	13	24	121.2	9.8	N/T	6.9E-06 8.8E-07
PCS-3-R	5/20/2010	-	11.5	100.0	89.4	83.3	71.6	63.0	40.5	26	33	15	18	123.4	10.1	N/T	N/T

AMEC Laboratory Test Data Summary

Kumar & Associates, Inc. Geotechnical and Materials Engineers and Environmental Scientists

2390 South Lipan Street Denver, CO 80223 phone: (303) 742-9700 fax: (303) 742-9666 e-mail: kadenver@kumarusa.com www.kumarusa.com

Other Office Locations: Colorado Springs, Fort Collins, Pueblo and Winter Park/Fraser, Colorado

TABLE 1 SUMMARY OF LABORATORY TEST RESULTS

PROJECT NO.: 12-1-158 (DV108-00130/12-900) PROJECT NAME: Knight Piesold/CC & V (AMEC) P.O.#10194 DATE RECEIVED: 02-03-12

		GRAD	ATION	PERCENT		BERG LIMITS	WATER SOLUE	BLE SULFATES		CHLORIDE CO	NTENT OF SOIL		
SAMPLE LOCATION	DATE TESTED	GRAVEL (%)	SAND (%)	PASSING No. 200 SIEVE		PLASTICITY INDEX (%)	ppm	%	ELECTRICAL RESISTIVITY ohm-cm	ppm	%	рН	SOIL OR BEDROCK TYPE
CC & V	02-08-12	63	28	9	24	7	115	0.57	700	65	0.33	4.1	POORLY GRADED GRAVEL WITH SILTY CLAY AND SAND (GP-GC)

Mar 31, 11Y - 9:40am Z:\From External Drive\NEWWB\LAB\Resistivity.dwg

Attachment 2.2 – SWC Laboratory Test Data

SWC LABORATORY TEST DATA SUMMARY

Image: bit is the image:		Permeability (cm			rd Proctor	Standard																						
Image Image <t< th=""><th>Confining Pressure</th><th></th><th>Remold D</th><th></th><th></th><th>otunidur</th><th>Network</th><th>imits</th><th>Atterberg L</th><th></th><th></th><th></th><th></th><th></th><th></th><th>ıg</th><th>cent Passin</th><th>ysis - Perc</th><th>ain Size Anal</th><th>Gra</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	Confining Pressure		Remold D			otunidur	Network	imits	Atterberg L							ıg	cent Passin	ysis - Perc	ain Size Anal	Gra								
	5 psi 20 psi 40 psi	Compaction (%)	ty Cont (%)	Densit			Density	Plasticity Index	Liquid Limit			.002mm	#200	#100	#50	#30	#20	#10	#4	1/2" 3/8"	3/4" 1/:	1.5" 1" 3	3" 2"	6"	Material Description	Depth	Lab #	Sample Name
Image Appe Appe Appe Appe Appe Appe App App App App A)	(pci)								ples	nical San	Geotechi	v Gulch	Squaw								I				
bit bit< bit< bit< bit< bit<			-	-	-	-						-										- 100.0 9		-				
Date Discl Description operation of part of p			-	-	-	-		-				-										· ·		-				
Process of the second				-	-			-				-												-				
Dest dest <th< td=""><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>13</td><td>33</td><td>20</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>100.0 90.2</td><td>-</td><td></td><td></td><td></td><td></td></th<>		-	-	-	-	-	-	13	33	20	-	-											100.0 90.2	-				
body 1000 1000 1000 1000 100				-	-		-				-	-											100.0 87.1	-	· · ·			
Image: A loss:			-	-	-	-	-			-	-	-												-				
matrix matrix<	<u> </u>			-	-			-				-											100.0 89.9					
			-	-	-	-		10	30	20		-										100.0 96.8 9		-				
Image Image <th< td=""><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>25.0</td><td>28.5</td><td>31.6</td><td></td><td>37.3</td><td></td><td></td><td></td><td></td><td></td><td></td><td>100.0</td><td>Brown Clayey gravel with sand</td><td>8.0'</td><td>7-125-2</td><td>SWTP-6</td></th<>				-	-							-	25.0	28.5	31.6		37.3							100.0	Brown Clayey gravel with sand	8.0'	7-125-2	SWTP-6
Other Other Descriptions processors O O No. No. No. No. No.	<u> </u>		-	-	-	-	-			_	-	-												-				
matrix	<u> </u>		-	-	-	-	-			_	-	-												-				
bit bit <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>59.5</td> <td>NP</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>							59.5	NP				-						-										
Altis Altis <th< td=""><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td></th<>			-	-	-	-						-												-				
Norm 16:07 16:07 16:07 16:07 16:07 16:0 16:0 16:0 <					-	-	-			_	-	-												-				
Since Since <th< td=""><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td></th<>				-	-	-						-												-				
State 1 0 0 0 0				-	-	-									-									-				
Math Math Math Math Ma		-	-	-	-	-	-	8		18	-	-																
other 1100 1100 1200 1000 1000 1000 1			-	-	-	-	-			-	-	-	23.1	27.0	31.7	37.9	41.3	51.3	63.1	75.9 74.8			100.0 86.3	-		6.0'	7-125-39	SWTP-25
Norw Norw Norw Norw No				-	-							-												-				
10140 4.00 4.00 4.00 4	<u> </u>		-	-	-		-				-	-												-				
Norm State					-		-			_	-	-																
Style 1/2 9/2 </td <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td>NP</td> <td>NP</td> <td>NP</td> <td></td> <td>-</td> <td></td> <td>- 100.0</td> <td></td> <td></td> <td></td> <td></td> <td></td>			-	-	-	-		NP	NP	NP		-											- 100.0					
bit 2 3 9 9 9 9 9 9 9 9 9 9 0	<u> </u>	-		-	-					_		-	25.0	29.9	34.6	39.8		50.4						-	Brown Clayey gravel with sand	3.5'	7-125-44	SWTP-35
NUMB 100 <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>			-	-	-	-	-				-	-												-				
Support 2.342 6.7 Deen Component grand 1 1 </td <td><u> </u></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>100.0</td> <td></td> <td></td> <td></td> <td></td>	<u> </u>			-	-							-												100.0				
Strip A DemoChargestrating and space 1 1 1 2 1 1 <th< td=""><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td></th<>		-	-	-	-	-	-				-	-												-				
NPM 2 0 Deep Copy and subgrad 1 0			-	-	-	-	-				-	-	27.1	32.1	35.7	40.0	42.4	48.8	55.7	64.7 62.2	73.8 64	3 88.0 83.1 7	- 100.0	-	Brown Clayey gravel with sand	6.0'	7-125-47	SWTP-56
BMTP Dispane Class standard D	<u> </u>		-	-	-	-		-			-	-											- 100.0	-				
Strip 1 <td></td> <td><u> </u></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td>17</td> <td>35</td> <td>10</td> <td></td> <td>nles</td> <td></td> <td></td> <td></td> <td>1 1</td> <td>57.3</td> <td>63.9</td> <td>71.5</td> <td>33.6 79.2</td> <td>87.7 83</td> <td>100.0 94.9 87</td> <td></td> <td>-</td> <td>Brown Clayey sand with gravel</td> <td>8.0'</td> <td>7-125-49</td> <td>SWTP-68</td>		<u> </u>		-	-			17	35	10		nles				1 1	57.3	63.9	71.5	33.6 79.2	87.7 83	100.0 94.9 87		-	Brown Clayey sand with gravel	8.0'	7-125-49	SWTP-68
No. No. <td>1.9E-06 4.0E-07 -</td> <td>95</td> <td>7 18.3</td> <td>104.7</td> <td>17.9</td> <td>110.2</td> <td></td> <td>13</td> <td>36</td> <td>23</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>T T</td> <td>54.6</td> <td>62.2</td> <td>75.4</td> <td>94.5 93.1</td> <td>95.9 94</td> <td>98.5 96.3 9</td> <td>100.0 98.5</td> <td></td> <td>Brown Clayey sand with gravel</td> <td>5.0'</td> <td>7-125-9</td> <td>SWTP-70</td>	1.9E-06 4.0E-07 -	95	7 18.3	104.7	17.9	110.2		13	36	23		-				T T	54.6	62.2	75.4	94.5 93.1	95.9 94	98.5 96.3 9	100.0 98.5		Brown Clayey sand with gravel	5.0'	7-125-9	SWTP-70
NMTP2 7.12510 4.9 DemomSandy latidation 1.00 97.5 8.1 9.0 9.5 8.0 0.0 7.0 7.0 7.0 7.0	2.2E-07	95	5 14.5	115.5	-	-		6	24	18	-	-	37.3	43.2	46.9	52.3	55.9	67.0	81.2	92.4 88.5	95.4 92	100.0 96.6 9		-		2.0'	7-125-50	SWTP-71
SMUPP 3 1.1552 8.0 Been Chayr granel whand 1 100 40 1 100 40 1 100 40 1 100 40 1 100 40 100 40 100 40 100 40 100 40 100 40 100 40 100 40 100 40	1.5E-07	95	2 14.6	114.2	-	-	-	-			-	-												-				
SWTP8 71251 92 Bown Clayey grant whindmad 1 100 85 84 80 64 10 84 100 84 1 100 84 1 100 85 118.8 118.8 118.8 118.8 112.9 14.7 96 SWTP8 7.1254 70 Bown Clayey grant whindmad 1 100 85 81 78 72 <td><u> </u></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>	<u> </u>		-	-	-		-				-	-												-				
SNTP-86 7.1255 9.10 Brown Chary granet with and 1.0 9.0 9.0 0.0 <t< td=""><td>7.2E-07</td><td>- 95</td><td>9 14.7</td><td>112.9</td><td>- 13.7</td><td>- 118.8</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	7.2E-07	- 95	9 14.7	112.9	- 13.7	- 118.8						-																
SMTPA 7.1255 1.00 Born May make margines 1.00 0.02 0.01 <th0< td=""><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td>14</td><td></td><td>18</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td></th0<>			-	-	-	-		14		18	-													-				
OHINE OHINE OU OU OU OU <th< td=""><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>· ·</td><td>-</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>100.0 96.3</td><td> - <u> </u></td><td></td><td></td><td></td><td></td></th<>				-	-	-	· ·	-				-											100.0 96.3	- <u> </u>				
Ortical First Ord Diministry and with grand I	1.6E-06 6.4E-07 -	95	6 16	105.6	-	-	-				-	-												-				
SWTP-90 7-125-15 6.0 Brown Laan clay . <th< td=""><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td></td><td></td><td></td><td>_</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>1.0</td><td></td><td></td></th<>				-	-	-				_	-	-												-		1.0		
SMTP-9 7.1251 5.0° Brow Shlyand withgrade 1 100 9.1 9.0 9.0 9.0 <					-	-						-						-	-		- 04			-				
SWTP-9 7-125-15 3.0' Brown Clayey sand with gravel - 1000 91.7 91.7 70.7 70.7 70.3 63.1 60.0' 60.0' 61.0'' 61.0''''''''''''''''''''''''''''''''''''			-	-	-	-	-				-	-				37.1			_					-		5.0'		
SWTP-8 7.1251 3.0' Brown Cakyey sand with gravel 1.0 9.0 9.0 9.0 <	2.4E-07	95	9 13.9	113.5	13.9	119						24.6												-				
SWTP:9 7.125-6 12.0' Brown Sardy lean day with gravel 100 92.7 91.0 89.6 84.8 76.8 76.8 76.2 66.0 69.5 55.8 51.6 74.0 26.65 26.1 26.65 26.1 <td> 1.0E-05 3.3E-06 -</td> <td>-</td> <td>-</td> <td>- 110 *</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>- 0.7</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>	 1.0E-05 3.3E-06 -	-	-	- 110 *	-	-	-					- 0.7												-				
SWTP-103 7.125.7 14.0 Brown Clayey Sand 1.0 1.0 9.0 <	1.0E-05 3.3E-06 - 1.2E-05 2.4E-07 -																							- 100.0				
SMTP-10 7.12559 9.0 Brown Calvey sand with gravel 1.0 9.0 9.0 9.0 9.0 Brown Calvey sand with gravel 1.0 9.0	3.7E-06 2.3E-06 -						-	15																-				
SWTP-11 7.125-18 8.0' Brown Clayey sand with gravel 1 90 92.5 8.1 8.0 7.4 6.6 5.0 5.0 5.0 5.0 17.0 3.0 19.0 12.1 13.6 11.5.2 13.6 1			-	-	-	-	-					-	22.3	27.3	33.6	42.1	46.6	61.1	74.3	85.5 81.3	90.6 85	0 98.3 94.1 90		-	Brown Clayey sand with gravel	9.0'	7-125-59	SWTP-107
SWTP-118 7.125-19 0.0°1.00° Brown Chayey gravel with sand - - 9.7 9.4 8.8 8.0 7.6 9.2 5.8.5 4.5.5 36.3 33.1 26.9 2.1 1.8.5 - 1.8 2.9 1.1 1.8 2.9 1.1 1.8 2.9 1.1 1.8 2.9 1.1 1.8 2.9 1.1 1.8 2.9 1.1 1.8 2.9 1.1 1.8 2.9 1.1 1.8 2.9 1.1 1.8 2.9 1.1 1.8 2.9 1.1 1.8 2.9 1.1 1.8 2.9 1.1 1.9 1.9 1.2 1.3 1.9 1.1 1.9 1.9 1.2 1.3 1.9 1.2 1.3 1.9 1.2 1.3 1.9 1.2 1.3 1.9 1.2 1.3 1.9 1.2 1.3 1.9 1.2 1.3 1.9 1.2 1.3 1.3 1.3 1.3 1.3 1.3<				-	-	-	-					-												100.0				
SWTP-10 7-125-20 0.0·10.0' Brown Clayey gravel with sand - 100 94.7 95.7	2.1E-08 1.1E-08 -	95	2 13.6	115.4	13.6	121.1	· ·				-	17.8												-				
SWTP-120 7-125-21 0.0'-1.0.0' Brown Clayey gravel with sand - 100. 98.1 95.1 89.2 82.6 72.3 64.7 44.7 35.6 28.1 25.2 20.7 17.4 14.6 - 1.8 34 16 - 1.8					-	-					-	-																
		-	-	-	-	-		16	34			-												-				
					-	-		16	35	19			10.3	12.0	14.3	17.5	19.7	26.7	35.5					-	Brown Poorly graded sand/ silt & gravel	0.0'-6.0'	7-125-22	SWTP-121
SWTP-122 7.125-23 0.0 ¹ /10 ¹ Brown Silty gravel with sand - 100 97.4 90.8 84.6 74.5 66.9 44.6 36.3 28.3 25.6 20.6 16.9 14.2 - 20 13 33 -				-	-	-	-				-	-												-				
SWTP-123 7.125-24 0.0' 10.0' Brown Poorty graded sand/ sit & gravel - 100.0 96.9 90.3 80.0 72.4 62.2 55.2 36.3 27.3 20.0 17.8 14.2 11.5 9.5 - - 20 40 20 - <th< td=""><td>2.7E-06 1.9E-07 -</td><td>- 95</td><td></td><td>100 4</td><td>- 10.5</td><td>129.8</td><td>-</td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td></th<>	2.7E-06 1.9E-07 -	- 95		100 4	- 10.5	129.8	-				-	-												-				
Number Spil 7/125-25 N/A Brown Clayey grave with sand - 100.0 96.9 80.4 78.7 76.3 66.7 59.1 50.8 47.7 41.9 37.2 33.6 - - 17 30 13 - 12.6 10.5 11.2 95	6.9E-05 3.9E-05 2.8E-05											-							_					-				

F		MIDTH			LATION SHEET	
JOB NU		CLIENT	PROJECT		CALC. NUMBER	R
TITLE/SU	11021	CC&V	High Grade Ore		C-005b	
	I Mat Foundation D	esign				
STATEM	ENT OF PROBLEM	A:		P.E. SEA	L	
		n for Ball and Rod Mill and Primary Sump.		PAU	45828 45828 7-16-12 CONAL ENGINEER	
Au Dy IB Ac	utodesk Robot Strue yna6 Simulation C 2009 Cl 318-08 SCE 7-05	MULA & REFERENCES: ctural Analysis 2012 In Recommendations letter dated February 2	29, 2012			
	JSIONS & RECOM					
	l			wc		1
A 0	6/5/2012 7/16/2012	Ready for Check Issued for Permit	ECS ECS	WC		
REV	DATE	DESCRIPTION/STATUS	CALC BY	СНКОВҮ	DWG./SPECS REVISED	QA

 PROJECT	CC&V High Grade Ore	PRC	DJ NO.	1	1021
		CAL	.C NO.	С	-005
SCOPE	Rod Mill Foundation	BY .	ECS	DATE	16-Jul-12
		CHM	(DATE	
		SHE	ET	OF	REV

ROD MILL Foundation Center of Gravity

Using CL Main Gear & CL Rod Mill as Axis Origin

 $\gamma = 150$ pcf

	Pede	stal Dime	nsions	Weight	Center o	f Gravity		
Pedestal	L _x (ft)	L _y (ft)	H (ft)	F (kip)	X (ft)	Y (ft)	F*X (k*ft)	F*Y (k*ft)
А	4.0	9.5	19.7	112.4	0.8	0.0	84.3	0.0
В	4.0	9.5	19.7	112.4	-29.3	0.0	-3289.4	0.0
(C/D) ₁	4.0	2.7	19.7	31.6	0.8	6.1	23.7	191.9
(C/D)2	1.2	1.3	19.7	4.5	-2.4	6.5	-10.7	28.9
(C/D) ₃	5.2	6.1	19.7	92.9	0.2	10.5	15.6	971.6
(C/D) ₄	3.3	1.6	19.7	15.6	-4.1	12.5	-63.7	195.8
(C/D) ₅	1.5	6.1	19.7	27.0	-6.5	10.5	-175.4	282.3
(C/D) ₆	3.3	4.5	16.6	37.2	-4.1	9.7	-152.1	360.0
E1	3.9	6.1	18.1	64.3	-9.2	10.3	-591.3	664.3
E ₂	3.6	6.9	19.1	71.1	-12.9	10.7	-919.4	763.9
F	9.1	5.0	18.8	128.2	-19.3	11.8	-2472.6	1517.5
G	4.5	5.0	19.4	65.5	-26.1	11.8	-1707.4	774.6
Н	2.5	2.5	19.9	18.7	-4.1	-11.9	-76.2	-222.6
J	3.0	4.0	13.8	24.9	-9.1	0.0	-227.0	0.0
К	5.5	9.5	13.8	108.3	-25.3	0.0	-2735.1	0.0
			Resultants	914.4	-13.4	6.0	-12296.7	5528.3

Equipment Center of Gravity

Using CL Main Gear & CL Rod Mill as Axis Origin

	Weight	Center o	f Gravity		
Location	F (kip)	X (ft)	Y (ft)	F*X (k*ft)	F*Y (k*ft)
Α	493.0	0.0	0.0	0.0	0.0
В	462.0	-28.5	0.0	-13174.2	0.0
С	3.4	-1.7	10.3	-5.8	34.9
D	6.1	-6.4	10.3	-39.3	62.7
E	6.4	-12.9	10.7	-83.2	69.1
F	17.0	-19.3	11.8	-327.8	201.2
G	2.2	-26.0	11.8	-55.9	25.4
H₁	8.8	-3.9	12.5	-34.5	110.0
H ₂	8.8	-3.9	-11.9	-34.5	-105.0
Resultants	1007.7	-13.7	0.4	-13755.2	398.3

 PROJECT	CC&V High Grade Ore	PROJ NO.	11021
		CALC NO.	C-005
SCOPE	Ball Mill Foundation	BY ECS	DATE 16-Jul-12
		СНК	DATE
		SHEET	OF REV

BALL MILL Foundation Center of Gravity

Using CL Main Gear & CL Ball Mill as Axis Origin

 $\gamma = 150$ pcf

	Pede	stal Dime	nsions	Weight	Center o	f Gravity		
Pedestal	L _x (ft)	L _y (ft)	H (ft)	F (kip)	X (ft)	Y (ft)	F*X (k*ft)	F*Y (k*ft)
Α	4.5	9.5	19.7	126.5	1.0	0.0	126.5	0.0
В	4.5	9.5	19.7	126.4	-34.8	0.0	-4396.0	0.0
(C/D) ₁	4.5	10.2	19.7	135.2	1.0	-9.8	135.2	-1328.6
(C/D)2	1.5	3.7	19.7	17.1	-1.8	-7.2	-30.1	-123.6
(C/D) ₃	1.5	6.4	19.7	29.3	-2.0	-11.7	-59.2	-342.5
(C/D)₄	2.7	1.8	19.7	14.5	-4.1	-14.0	-59.4	-202.3
(C/D)₅	1.7	6.4	19.7	31.6	-6.3	-11.7	-198.5	-370.0
(C/D) ₆	2.7	4.6	16.6	30.3	-4.1	-10.8	-124.7	-327.2
E1	4.9	6.4	18.1	84.7	-9.5	-11.7	-807.9	-990.5
E ₂	3.0	6.9	19.1	59.2	-13.5	-12.1	-797.4	-713.4
E_3	1.8	5.0	19.1	26.3	-15.9	-13.6	-417.6	-357.0
F/G	15.6	5.0	18.8	219.5	-24.6	-13.6	-5399.6	-2981.6
н	2.5	2.5	19.9	18.7	-4.1	13.3	-76.6	247.1
J	3.0	4.0	13.8	24.9	-9.0	0.0	-224.2	0.0
к	5.5	9.5	13.8	108.3	-30.8	0.0	-3330.6	0.0
			Resultants	1052.3	-14.9	-7.1	-15660.2	-7489.5

Equipment Center of Gravity

Using CL Main Gear & CL Rod Mill as Axis Origin

	Weight	Center o	f Gravity		
Location	F (kip)	X (ft)	Y (ft)	F*X (k*ft)	F*Y (k*ft)
А	537.0	0.0	0.0	0.0	0.0
В	497.0	-33.8	0.0	-16781.6	0.0
С	4.5	-2.0	-11.7	-9.1	-52.6
D	8.6	-6.3	-11.7	-54.0	-100.6
E	13.0	-13.5	-12.1	-175.2	-156.7
F	31.0	-20.9	-13.6	-646.5	-421.1
G	3.0	-29.4	-13.6	-88.3	-40.8
H₁	8.8	-4.1	13.3	-36.2	116.6
H₂	8.8	-4.1	-14.0	-36.2	-123.1
Resultants	1111.7	-16.0	-0.7	-17826.9	-778.3

· · · · · · · · · · · · · · · · · · ·	PROJECT	CC&V High Grade Ore	PRC	DJ NO.	2000-0-1	1021
	And the second s		CAL	C NO.	C	-005
	SCOPE	-Ball-Mill Foundation	ΒY	ECS	DATE	16-Jul-12
	n in de Maria		CH		DATE	
			SHE	ETada	OF	REV

Somp Foundation Center of Gravity

Using CL Sump & CL Sump as Axis Origin

γ = 150 pcf

	Dimensions				Center o	of Gravity		
Item	L _x (ft)	L _v (ft)	H (ft)	F (kip)	X (ft)	Y (ft)	F*X (k*ft)	F*Y (k*ft)
Wall 1	19.0	1.0	12.75	36.3	0.0	8.0	0.0	290.7
Wall 2	19.0	1.0	12.75	36.3	0.0	-8.0	0.0	-290.7
Wall 3	1.0	16.0	12.00	28.8	9.5	0.0	273.6	0.0
Wall 4	1.0	16.0	12.75	30.6	-9.5	0.0	-290.7	0.0
Foundation	13.5	18.0	3.25	118.5	-3.8	0.0	-444.2	0.0
			Resultants	250.5	-1.8	0.0	-461.3	0.0

 PROJECT	CC&V High Grade Ore	PROJ NO.	11	1021
	n an	CALC NO.	C.	-005
SCOPE	Mill Foundation	BY ECS	DATE	16-Jul-12
		CHK	DATE	
		SHEET	OF	REV

Translation Vector

COMBINED CENTRIC OF GRAVITY

	X (ft)	Y (ft)
Rod Mill	-11.0	-16.0
Ball Mill	-18.8	16.0
Sump	-27.0	3.3

Foundation Center of Gravity

Using CL Mat & CL Mat as Axis Origin

 $\gamma = 150$ pcf

	Weight	Center o	f Gravity		
	F (kip)	X (ft)	Y (ft)	F*X (k*ft)	F*Y (k*ft)
Rod Mill	914.4	2.4	-22.0	2238.6	-20158.2
Ball Mill	1052.3	14.9	7.1	15660.2	7489.5
Mat	1900.8	0.0	0.0	0.0	0.0
Sump	250.5	-25.2	3.3	-6303.2	814.2
Resultants	4118.0	2.8	-2.9	11595.6	-11854.5

Equipment Center of Gravity

Using CL Mat & CL Mat as Axis Origin

	Weight	Center o	f Gravity		
Location	F (kip)	X (ft)	Y (ft)	F*X (k*ft)	F*Y (k*ft)
Rod Mill	1007.7	2.7	-16.4	2670.8	-16521.2
Ball Mill	1111.7	-2.7	16.7	-3039.7	18565.5
Resultants	2119.4	-0.2	1.0	-368.9	2044.3

Foundation Mass/ Rod Mill Mass Ratio =	4.09
Foundation Mass/ Ball Mill Mass Ratio =	3.70

	PROJECT CC&V High Grade Ore	PROJ NO.	11021
		CALC NO.	C-005
	SCOPE Mill Foundation	BY ECS	DATE 16-Jul-12
		СНК	DATE
		SHEET	OF REV

DYNA 6.0 INPUT DATA

Using Corner Mat as Axis Origin

Translation Vector

	X (ft)	Y (ft)
Rod Mill	-35.0	-49.0
Ball Mill	-42.8	-17.0
Sump	49.5	21.25

	ltem	(ft)	Corner Y (ft)	(ft)	Length X (ft)	Width Y (ft)	Height Z (ft)	Density (Slug/ft ³)
	А	33.75	44.25	4.00	4.00	9.50	19.72	4.66
	В	3.73	44.25	4.00	4.00	9.50	19.72	4.66
	(C/D)1	33.75	53.75	4.00	4.00	2.67	19.72	4.66
	(C/D)2	32.03	54.83	4.00	1.17	1.29	19.72	4.66
	(C/D)3	32.59	56.42	4.00	5.16	6.08	19.72	4.66
_	(C/D)4	29.25	60.75	4.00	3.33	1.58	19.72	4.66
Rod Mill	(C/D)5	27.75	56.42	4.00	1.50	6.08	19.72	4.66
	(C/D)6	29.25	56.42	4.00	3.33	4.50	16.55	4.66
õ	E1	23.85	56.29	4.00	3.90	6.08	18.08	4.66
	E2	20.27	56.29	4.00	3.58	6.92	19.11	4.66
	F	11.17	58.33	4.00	9.10	5.00	18.78	4.66
	G	6.67	58.33	4.00	4.50	5.00	19.40	4.66
	Н	29.67	35.82	4.00	2.50	2.50	19.90	4.66
	J	24.37	47.00	4.00	3.00	4.00	13.81	4.66
	K	6.98	44.25	4.00	5.50	9.50	13.81	4.66
	A	41.52	12.25	4.00	4.50	9.50	19.72	4.66
	В	5.75	12.25	4.00	4.50	9.50	19.72	4.66
	(C/D)1	41.52	2.09	4.00	4.50	10.16	19.72	4.66
	(C/D)2	40.23	7.89	4.00	1.54	3.74	19.72	4.66
	(C/D)3	39.98	2.09	4.00	1.54	6.42	19.72	4.66
	(C/D)4	37.33	2.09	4.00	2.67	1.83	19.72	4.66
Ball Mill	(C/D)5	35.66	2.09	4.00	1.67	6.42	19.72	4.66
	(C/D)6	37.33	3.93	4.00	2.67	4.58	16.55	4.66
Sal	E1	30.80	2.09	4.00	4.86	6.42	18.08	4.66
ш	E2	27.80	1.51	4.00	3.00	6.88	19.11	4.66
100	E3	25.96	0.92	4.00	1.83	5.00	19.11	4.66
	F/G	10.38	0.92	4.00	15.58	5.00	18.78	4.66
	Н	37.41	29.00	4.00	2.50	2.50	19.90	4.66
	J	32.25	15.00	4.00	3.00	4.00	13.81	4.66
	K	9.25	12.25	4.00	5.50	9.50	13.81	4.66
	Wall 1	40.50	36.75	3.25	19.00	1.00	12.75	4.66
٩	Wall 2	40.50	21.75	3.25	19.00	1.00	12.75	4.66
Sump	Wall 3	59.50	21.75	3.25	1.00	16.00	12.75	4.66
S	Wall 4	40.50	21.75	4.00	1.00	16.00	2.00	4.66
	Foundation	48.00	20.75	0.00	13.50	18.00	3.25	4.66
	Mat	0.00	0.00	0.00	48.00	66.00	4.00	4.66

	ltem	X (ft)	Y (ft)	Z (ft)	Fx (slug)	Fy (slug)	Fz (slug)
	A	35.0	49.0	23.7	234.7	984.5	-785.7
	В	6.5	49.0	23.7	0.0	1382.0	1031.1
Mill	С	33.3	59.3	23.7	0.0	-857.1	962.7
Contraction of the Party of the State of the	D	28.6	59.3	23.7	-234.7	-798.1	-962.7
Rod	E	22.1	59.7	23.1	0.0	0.0	0.0
LE LE	F	15.7	60.8	22.8	0.0	0.0	0.0
	G	9.0	60.8	23.4	0.0	0.0	0.0
	A	42.8	17.0	23.7	493.1	1031.1	-1077.6
<u> </u>	В	9.0	17.0	23.7	0.0	1826.1	1397.5
Mil	С	40.7	5.3	23.7	0.0	-944.1	-1267.1
2010/02/2010/02/2010/02/2012/2012/2012	D	36.5	5.3	23.7	-493.1	-1102.5	-1229.8
Ball	E	29.3	4.9	23.1	0.0	0.0	0.0
Ш	F	21.9	3.4	22.8	0.0	0.0	0.0
	G	13.3	3.4	22.8	0.0	0.0	0.0

Equipment Dynamic Forces - Case 1 (Mill Frequency)

Equipment Dynamic Forces - Case 2 (Motor Frequency)

	Item	X (ft)	Y (ft)	Z (ft)	Fx (slug)	Fy (slug)	Fz (slug)
	A	35.0	49.0	23.7	0.0	0.0	0.0
_	В	6.5	49.0	23.7	0.0	0.0	0.0
Mill	С	33.3	59.3	23.7	0.0	0.0	0.0
	D	28.6	59.3	23.7	0.0	0.0	0.0
Rod	E	22.1	59.7	23.1	0.0	0.0	0.0
Ľ.	F	15.7	60.8	22.8	0.0	0.0	109.5
	G	9.0	60.8	23.4	0.0	0.0	40.4
	A	42.8	17.0	23.7	0.0	0.0	0.0
	В	9.0	17.0	23.7	0.0	0.0	0.0
Mill	С	40.7	5.3	23.7	0.0	0.0	0.0
	D	36.5	5.3	23.7	0.0	0.0	0.0
Ball	E	29.3	4.9	23.1	0.0	0.0	1054.3
ш	F	21.9	3.4	22.8	0.0	0.0	486.0
	G	13.3	3.4	22.8	0.0	0.0	0.0

Equipment Masses

	ltem	X (ft)	Y (ft)	Z (ft)	Fx (slug)	Fy (slug)	Fz (slug)
	A	35.0	49.0	23.72	0	0	15311
	В	6.5	49.0	23.72	0	0	14348
N.	С	33.3	59.3	23.72	0	0	106
	D	28.6	59.3	23.72	0	0	189
Rod	E	22.1	59.7	23.11	0	0	200
<u>r</u>	F	15.7	60.8	22.78	0	0	528
	G	9.0	60.8	23.40	0	0	67
	A	42.8	17.0	23.72	0	0	16677
	В	9.0	17.0	23.72	0	0	15435
Mil	С	40.7	5.3	23.72	0	0	140
	D	36.5	5.3	23.72	0	0	267
Ball	Е	29.3	4.9	23.11	0	0	404
ш	F	21.9	3.4	22.78	0	0	963
	G	13.3	3.4	22.78	0	0	93

DYNA5000.txt

(MILL VIBILATION

UTPUT - CASE 1 1 ***** * * * * DYNA6 SIMULATION * * k * Copyright (c) Western - 2011 RUN DATE - 2012/ 7/10 TIME - 15: 2:40 * * * * $\dot{\mathbf{x}}$ REVISION -Jan.21/201 * * **

Mill Mat Foundation

DATA ECHO

GRAVITATIONAL CONSTANT SET TO 32.20 ft/s**2

FREQUENCY UNITS : RPM

LENGTH UNITS : ft

FORCE UNITS : lb

MASS UNITS : slug

RESPONSE TO BE PLOTTED

STIFFNESS AND DAMPING CONSTANTS TO BE PRINTED

DAMPING SAFETY FACTOR - 2.00

FOUNDATION TYPE - HALF-SPACE

RECTANGULAR FOUNDATION - 48.000 ft BY 66.000 ft

MASS CONSTANTS

 TOTAL MASS OF FOOTING
 1.9265E+05
 slug

 MASS MOMENT ABOUT X-AXIS
 9.0643E+07
 slug.ft**2

 MASS MOMENT ABOUT Y-AXIS
 6.0555E+07
 slug.ft**2

 MASS MOMENT ABOUT Z-AXIS
 1.1716E+08
 slug.ft**2

 CROSS PRODUCT X-Y
 -7.8857E+06
 slug.ft**2

 CROSS PRODUCT X-Z
 -1.3754E+06
 slug.ft**2

 CROSS PRODUCT Y-Z
 -5.4366E+05
 slug.ft**2

COORDINATES OF BASE CENTRE

Page 1

DYNA5000.txt

********* -1.448ft X-COORD. OF BASE CENTRE REL. TO C.G. . . Y-COORD. OF BASE CENTRE REL. TO C.G. 1.134 ft . . Z-COORD. OF BASE CENTRE REL. TO C.G. 11,007 ft - -SOIL **** SOIL CONSTANTS NUMBER OF SIDE LAYERS -1 ****** SHEAR WAVE POISSON'S LAYER LAYER UNIT MATERIAL DEPTH VELOCITY WEIGHT RATIO DAMPING NO. 1b/ft**3 ft ft/s 1200.00 120.00 0.250 0.100 1 6.000 HALF-SPACE SOIL ****** POISSON'S SHEAR WAVE UNIT MATERIAL VELOCITY RATIO DAMPING WEIGHT ft/s 1b/ft**3 120.00 0.250 0.1001.20E+03HARMONIC LOAD (QUADRATIC) **** 20.000 RPM MAXIMUM FREQUENCY MINIMUM FREQUENCY 10.000 RPM 1.000 RPM STEP FREQUENCY 0.00E+00 slug.ft FORCE IN X-DIRECTION FORCE IN Y-DIRECTION 1.52E+03 slug.ft -1.93E+03 slug.ft FORCE IN Z-DIRECTION 4.95E+04 slug.ft**2 MOMENT ABOUT X-AXIS MOMENT ABOUT Y-AXIS MOMENT ABOUT Z-AXIS 9.71E+04 slug.ft**2 -6.81E+04 slug.ft**2 Ŷ * 4 * * DYNA6 SIMULATION * * * Copyright (c) Western - 2011 * 2012/ 7/10 15: 2:40 * ÷ RUN DATE -* * TIME * * Jan.21/201 REVISION -* * Mill Mat Foundation RESULTS ******

FREQUENCY - 10.000 RPM

Page 2

STIFFNESS CONSTANTS (K)

HORIZONTAL TRANSLATION (X)8.806E+08HORIZONTAL TRANSLATION (Y)8.806E+08VERTICAL TRANSLATION (Z)9.580E+08ROTATION ABOUT (X)1.027E+12ROTATION ABOUT (Y)6.900E+11TORSION ABOUT (Z)1.415E+12CROSS-STIFFNESS (YZ PLANE)9.386E+09CROSS-STIFFNESS (XZ PLANE)9.386E+09	lb/ft lb/ft lb/ft lb.ft/rad lb.ft/rad lb.ft/rad lb/rad lb/rad
DAMPING CONSTANTS (C) *****	
HORIZONTAL TRANSLATION (X) 5.358E+07 HORIZONTAL TRANSLATION (Y) 5.358E+07 VERTICAL TRANSLATION (Z) 5.997E+07 ROTATION ABOUT (X) 5.032E+10 ROTATION ABOUT (Y) 3.417E+10 TORSION ABOUT (Z) 6.777E+10 CROSS-DAMPING (YZ PLANE) 5.607E+08 CROSS-DAMPING (XZ PLANE) -5.607E+08	lb/ft/s lb/ft/s lb/ft/s lb.ft/rad/s lb.ft/rad/s lb.ft/rad/s lb/rad/s lb/rad/s
FREQUENCY - 11.000 RPM	
STIFFNESS CONSTANTS (K) ******	
HORIZONTAL TRANSLATION (X)8.805E+08HORIZONTAL TRANSLATION (Y)8.805E+08VERTICAL TRANSLATION (Z)9.579E+08ROTATION ABOUT (X)1.027E+12ROTATION ABOUT (Y)6.899E+11TORSION ABOUT (Z)1.415E+12CROSS-STIFFNESS (YZ PLANE)9.385E+09CROSS-STIFFNESS (XZ PLANE)-9.385E+09	lb/ft lb/ft lb.ft/rad lb.ft/rad lb.ft/rad lb.ft/rad lb/rad lb/rad
DAMPING CONSTANTS (C) *******************	
HORIZONTAL TRANSLATION (X) 4.976E+07 HORIZONTAL TRANSLATION (Y) 4.976E+07 VERTICAL TRANSLATION (Z) 5.580E+07 ROTATION ABOUT (X) 4.587E+10 ROTATION ABOUT (Y) 3.118E+10 TORSION ABOUT (Z) 6.164E+10 CROSS-DAMPING (YZ PLANE) 5.199E+08 CROSS-DAMPING (XZ PLANE)5.199E+08	lb/ft/s lb/ft/s lb/ft/s lb.ft/rad/s lb.ft/rad/s lb.ft/rad/s lb/rad/s lb/rad/s
FREQUENCY - 12.000 RPM	

STIFFNESS CONSTANTS (K)

DYNA5000.txt HORIZONTAL TRANSLATION (X) 8.805E+08 lb/ft HORIZONTAL TRANSLATION (Y) 8.805E+08 lb/ft VERTICAL TRANSLATION (Z) 9.577E+08 lb/ft ROTATION ABOUT (X) 1.027E+12 lb.ft/rad ROTATION ABOUT (Y) 6.898E+11 lb.ft/rad TORSION ABOUT (Z) 1.415E+12 lb.ft/rad CROSS-STIFFNESS (YZ PLANE) 9.384E+09 lb/rad CROSS-STIFFNESS (XZ PLANE)9.384E+09 lb/rad DAMPING CONSTANTS (C)
HORIZONTAL TRANSLATION (X) 4.657E+07 lb/ft/s HORIZONTAL TRANSLATION (Y) 4.657E+07 lb/ft/s VERTICAL TRANSLATION (Z) 5.234E+07 lb/ft/s ROTATION ABOUT (X) 4.216E+10 lb.ft/rad/s ROTATION ABOUT (Y) 2.869E+10 lb.ft/rad/s TORSION ABOUT (Z) 5.653E+10 lb.ft/rad/s CROSS-DAMPING (YZ PLANE) 4.860E+08 lb/rad/s CROSS-DAMPING (XZ PLANE)4.860E+08 lb/rad/s
FREQUENCY - 13.000 RPM
STIFFNESS CONSTANTS (K)
HORIZONTAL TRANSLATION(X)8.804E+081b/ftHORIZONTAL TRANSLATION(Y)8.804E+081b/ftVERTICAL TRANSLATION(Z)9.576E+081b/ftROTATION ABOUT(X)1.027E+121b.ft/radROTATION ABOUT(Y)6.898E+111b.ft/radTORSION ABOUT(Z)1.415E+121b.ft/radCROSS-STIFFNESS(YZ PLANE)9.383E+091b/radCROSS-STIFFNESS(XZ PLANE)-9.383E+091b/rad
DAMPING CONSTANTS (C)
HORIZONTAL TRANSLATION(X)4.387E+07lb/ft/sHORIZONTAL TRANSLATION(Y)4.387E+07lb/ft/sVERTICAL TRANSLATION(Z)4.940E+07lb/ft/sROTATION ABOUT(X)3.902E+10lb.ft/rad/sROTATION ABOUT(Y)2.658E+10lb.ft/rad/sTORSION ABOUT(Z)5.221E+10lb.ft/rad/sCROSS-DAMPING(YZ PLANE)4.572E+08lb/rad/sCROSS-DAMPING(XZ PLANE)-4.572E+08lb/rad/s
FREQUENCY - 14.000 RPM
STIFFNESS CONSTANTS (K) ********
HORIZONTAL TRANSLATION (X) 8.803E+08 lb/ft HORIZONTAL TRANSLATION (Y) 8.803E+08 lb/ft VERTICAL TRANSLATION (Z) 9.575E+08 lb/ft ROTATION ABOUT (X) 1.027E+12 lb.ft/rad ROTATION ABOUT (Y) 6.897E+11 lb.ft/rad Page 4

DYNA5000.txt TORSION ABOUT (Z)1.415E+12CROSS-STIFFNESS (YZ PLANE)9.383E+09CROSS-STIFFNESS (XZ PLANE)-9.383E+09 lb.ft/rad lb/rad 1b/rad DAMPING CONSTANTS (C) ******* (X) ... 4.156E+07 lb/ft/s HORIZONTAL TRANSLATION lb/ft/s 4.156E+07 HORIZONTAL TRANSLATION (Y) ... VERTICAL TRANSLATION (Z) 4.688E+07 lb/ft/s (X) (Y) ROTATION ABOUT 3.633E+10 lb.ft/rad/s 2.477E+10 lb.ft/rad/s ROTATION ABOUT 4.851E+10 lb.ft/rad/s TORSION ABOUT (Z) CROSS-DAMPING (YZ PLANE) 4.326E+08 lb/rad/s CROSS-DAMPING (XZ PLANE) -4.326E+08 lb/rad/s 15.000 RPM FREQUENCY **** STIFFNESS CONSTANTS (K) ******** HORIZONTAL TRANSLATION (X) ... 1b/ft 8.803E+08 8.803E+08 HORIZONTAL TRANSLATION (Y) ... lb/ft VERTICAL TRANSLATION (Z) 9.573E+08 lb/ft lb.ft/rad ROTATION ABOUT (X) 1.027E+12 (Y) ROTATION ABOUT 6.896E+11 lb.ft/rad TORSION ABOUT (Z) 1.414E+12 CROSS-STIFFNESS (YZ PLANE) 9.382E+09 CROSS-STIFFNESS (XZ PLANE) -9.382E+09 lb.ft/rad 1b/rad 1b/rad DAMPING CONSTANTS (C) ****** HORIZONTAL TRANSLATION (X) ... HORIZONTAL TRANSLATION (Y) ... 3.955E+07 lb/ft/s lb/ft/s 3.955E+07 1b/ft/s 4.470E+07 VERTICAL TRANSLATION (Z) ROTATION ABOUT lb.ft/rad/s 3.400E+10 (X) lb.ft/rad/s (Y) 2.321E+10 ROTATION ABOUT (Z) TORSION ABOUT 4.530E+10 lb.ft/rad/s CROSS-DAMPING (YZ PLANE) 4.112E+08 lb/rad/s CROSS-DAMPING (XZ PLANE) -4.112E+08 lb/rad/s 16.000 **RPM** FREQUENCY _ **** STIFFNESS CONSTANTS (K) ********************* HORIZONTAL TRANSLATION (X) ... HORIZONTAL TRANSLATION (Y) ... 8.802E+08 1b/ft 1b/ft 8.802E+08 VERTICAL TRANSLATION (Z) 1b∕ft 9.572E+08 ROTATION ABOUT (X) 1.026E+12 lb.ft/rad 6.895E+11 lb.ft/rad ROTATION ABOUT (Y) (Z) lb.ft/rad TORSION ABOUT 1.414E+12. CROSS-STIFFNESS (YZ PLANE) 9.381E+09 CROSS-STIFFNESS (XZ PLANE) -9.381E+09 lb/rad lb/rad DAMPING CONSTANTS (C) Page 5

DYNA5000.txt

HORIZONTAL TRANSLATION (X) HORIZONTAL TRANSLATION (Y) VERTICAL TRANSLATION (Z) ROTATION ABOUT (X) ROTATION ABOUT (Y) TORSION ABOUT (Z) CROSS-DAMPING (YZ PLANE) CROSS-DAMPING (XZ PLANE)	3.780E+07 3.780E+07 4.280E+07 3.197E+10 2.184E+10 4.250E+10 3.925E+08 -3.925E+08	lb/ft/s lb/ft/s lb/ft/s lb.ft/rad/s lb.ft/rad/s lb.ft/rad/s lb/rad/s lb/rad/s
FREQUENCY - 17.000 RPM		
STIFFNESS CONSTANTS (K) ******		
HORIZONTAL TRANSLATION (X) HORIZONTAL TRANSLATION (Y) VERTICAL TRANSLATION (Z) ROTATION ABOUT (X) ROTATION ABOUT (Y) TORSION ABOUT (Z) CROSS-STIFFNESS (YZ PLANE) CROSS-STIFFNESS (XZ PLANE)	8.801E+08 8.801E+08 9.570E+08 1.026E+12 6.894E+11 1.414E+12 9.380E+09 -9.380E+09	lb/ft lb/ft lb/ft lb.ft/rad lb.ft/rad lb.ft/rad lb/rad lb/rad
DAMPING CONSTANTS (C)		
HORIZONTAL TRANSLATION (X) HORIZONTAL TRANSLATION (Y) VERTICAL TRANSLATION (Z) ROTATION ABOUT (X) ROTATION ABOUT (Y) TORSION ABOUT (Z) CROSS-DAMPING (YZ PLANE) CROSS-DAMPING (XZ PLANE)	3.625E+07 3.625E+07 4.111E+07 3.017E+10 2.063E+10 4.002E+10 3.760E+08 -3.760E+08	lb/ft/s lb/ft/s lb/ft/s lb.ft/rad/s lb.ft/rad/s lb.ft/rad/s lb/rad/s lb/rad/s
FREQUENCY - 18.000 RPM		
STIFFNESS CONSTANTS (K)		
HORIZONTAL TRANSLATION (X) HORIZONTAL TRANSLATION (Y) VERTICAL TRANSLATION (Z) ROTATION ABOUT (X) ROTATION ABOUT (Y) TORSION ABOUT (Z) CROSS-STIFFNESS (YZ PLANE) CROSS-STIFFNESS (XZ PLANE)	8.801E+08 8.801E+08 9.569E+08 1.026E+12 6.893E+11 1.414E+12 9.380E+09 -9.380E+09	lb/ft lb/ft lb/ft lb.ft/rad lb.ft/rad lb.ft/rad lb/rad lb/rad
DAMPING CONSTANTS (C)		
HORIZONTAL TRANSLATION (X) HORIZONTAL TRANSLATION (Y) VERTICAL TRANSLATION (Z)	3.488E+07 3.488E+07 3.962E+07 Page	lb/ft/s lb/ft/s lb/ft/s 6

ROTATION ABOUT (X) ROTATION ABOUT (Y) TORSION ABOUT (Z) CROSS-DAMPING (YZ PLANE) CROSS-DAMPING (XZ PLANE) FREQUENCY - 19.000 RPM	DYNA5000.txt 2.858E+10 lb.ft/rad/s 1.956E+10 lb.ft/rad/s 3.783E+10 lb.ft/rad/s 3.614E+08 lb/rad/s -3.614E+08 lb/rad/s
STIFFNESS CONSTANTS (K)	
HORIZONTAL TRANSLATION (X) HORIZONTAL TRANSLATION (Y) VERTICAL TRANSLATION (Z) ROTATION ABOUT (X) ROTATION ABOUT (Y) TORSION ABOUT (Z) CROSS-STIFFNESS (YZ PLANE) CROSS-STIFFNESS (XZ PLANE)	8.800E+08 lb/ft 8.800E+08 lb/ft 9.572E+08 lb/ft 1.026E+12 lb.ft/rad 6.892E+11 lb.ft/rad 1.414E+12 lb.ft/rad 9.379E+09 lb/rad -9.379E+09 lb/rad
DAMPING CONSTANTS (C)	
HORIZONTAL TRANSLATION (X) HORIZONTAL TRANSLATION (Y) VERTICAL TRANSLATION (Z) ROTATION ABOUT (X) ROTATION ABOUT (Y) TORSION ABOUT (Z) CROSS-DAMPING (YZ PLANE) CROSS-DAMPING (XZ PLANE)	3.365E+07 lb/ft/s 3.365E+07 lb/ft/s 3.828E+07 lb/ft/s 2.715E+10 lb.ft/rad/s 1.860E+10 lb.ft/rad/s 3.586E+10 lb.ft/rad/s 3.483E+08 lb/rad/s -3.483E+08 lb/rad/s
FREQUENCY - 20.000 RPM	
STIFFNESS CONSTANTS (K) ******	
HORIZONTAL TRANSLATION (X) HORIZONTAL TRANSLATION (Y) VERTICAL TRANSLATION (Z) ROTATION ABOUT (X) ROTATION ABOUT (Y) TORSION ABOUT (Z) CROSS-STIFFNESS (YZ PLANE) CROSS-STIFFNESS (XZ PLANE)	8.799E+08 lb/ft 8.799E+08 lb/ft 9.576E+08 lb/ft 1.026E+12 lb.ft/rad 6.891E+11 lb.ft/rad 1.413E+12 lb.ft/rad 9.378E+09 lb/rad -9.378E+09 lb/rad
DAMPING CONSTANTS (C)	
HORIZONTAL TRANSLATION (X) HORIZONTAL TRANSLATION (Y) VERTICAL TRANSLATION (Z) ROTATION ABOUT (X) ROTATION ABOUT (Y) TORSION ABOUT (Z) CROSS-DAMPING (YZ PLANE) CROSS-DAMPING (XZ PLANE)	3.254E+07 lb/ft/s 3.254E+07 lb/ft/s 3.707E+07 lb/ft/s 2.587E+10 lb.ft/rad/s 1.774E+10 lb.ft/rad/s 3.410E+10 lb.ft/rad/s 3.365E+08 lb/rad/s -3.365E+08 lb/rad/s Page 7

******** × * * × DYNA6 SIMULATION * * Copyright (c) Western - 2011 RUN DATE - 2012/ 7/10 TIME - 15: 2:40 REVISION - Jan.21/201 * * * × * * $\dot{\mathbf{x}}$ * * * *************************************

Mill Mat Foundation

RESULTS

FOOTING RESPONSE AMPLITUDES

FREQ. RPM	TRANS. X DIRECTION (ft)	TRANS. Y DIRECTION (ft)	VERTICAL DIRECTION (ft)	ROT ABOUT X AXIS (rad)	ROT ABOUT Y AXIS (rad)	TORSIONAL Z AXIS (rad)
$10.00 \\ 11.00 \\ 12.00 \\ 13.00 \\ 14.00 \\ 15.00 \\ 16.00 \\ 17.00 \\ 18.00 \\ 19.00 \\ 20.00$	1.94E-06 2.34E-06 3.27E-06 3.27E-06 4.36E-06 4.96E-06 5.60E-06 6.28E-06 7.00E-06 7.76E-06	1.58E-06 1.91E-06 2.27E-06 2.67E-06 3.09E-06 3.55E-06 4.04E-06 4.56E-06 5.12E-06 5.70E-06 6.32E-06	1.91E-06 2.31E-06 2.75E-06 3.23E-06 3.75E-06 4.30E-06 4.89E-06 5.52E-06 6.19E-06 6.90E-06 7.64E-06	3.68E-08 4.45E-08 5.30E-08 6.22E-08 7.21E-08 8.28E-08 9.43E-08 1.06E-07 1.19E-07 1.33E-07 1.47E-07	1.76E-07 2.13E-07 2.53E-07 2.97E-07 3.45E-07 3.96E-07 4.50E-07 5.70E-07 6.35E-07 7.04E-07	5.45E-08 6.60E-08 7.86E-08 9.22E-08 1.07E-07 1.23E-07 1.40E-07 1.58E-07 1.77E-07 1.97E-07 2.19E-07

MAXIMA OF FOOTING RESPONSE AMPLITUDES

					FREQ. RPM
MAX. MAX. MAX. MAX.	TRANS. IN X-DIRECTION TRANS. IN Y-DIRECTION TRANS. IN Z-DIRECTION ROT. ABOUT X AXIS ROT. ABOUT Y AXIS ROT. ABOUT Z AXIS		7.759E-06 6.316E-06 7.639E-06 1.474E-07 7.042E-07 2.185E-07	ft ft rad rad rad	20.00 20.00 20.00 20.00 20.00 20.00 20.00
우 우					
	FOOT	ING RE	SPONSE CURV	E	
FRE			CURVE-Y		5 Y-DIRECTION

RPM		DIS	PLACEMENT	(ft)		
	1.00E-06	2.40E-06	3.80E-06	5.20E-06	6.60E-06	8.00E-06
10.0	+YZ	+	+	+	+	+
11.0	I Y	ZX				

የ

Frequency (rpm)	Horizontal Stiffness X (Ib/ft)		Horizontal Stiffness Y (lb/ft)	Horizontal Damping Y (lb/ft/S)		Vertical Damping Z (lb/ft/S)
10	8.81E+08	5.36E+07	8.81E+08	5.36E+07	9.58E+08	6.00E+07
11	8.81E+08	4.98E+07	8.81E+08	4.98E+07	9.58E+08	5.58E+07
12	8.81E+08	4.66E+07	8.81E+08	4.66E+07	9.58E+08	5.23E+07
13	8.80E+08	4.39E+07	8.80E+08	4.39E+07	9.58E+08	4.94E+07
14	8.80E+08	4.16E+07	8.80E+08	4.16E+07	9.58E+08	4.69E+07
15	8.80E+08	3.96E+07	8.80E+08	3.96E+07	9.57E+08	4.47E+07
16	8.80E+08	3.78E+07	8.80E+08	3.78E+07	9.57E+08	4.28E+07
17	8.80E+08	3.63E+07	8.80E+08	3.63E+07	9.57E+08	4.11E+07
18	8.80E+08	3.49E+07	8.80E+08	3.49E+07	9.57E+08	3.96E+07
19	8.80E+08	3.37E+07	8.80E+08	3.37E+07	9.57E+08	3.83E+07
20	8.80E+08	3.25E+07	8.80E+08	3.25E+07	9.58E+08	3.71E+07

Frequency (Rocking Stiffness X (Ib/ft/Rad)	Rocking Damping X (lb.ft/Rad/S)	Rocking Stiffness Y (lb/ft/Rad)	Rocking Damping Y (lb.ft/Rad/S)	Torsional Stiffness Z (lb/ft/Rad)	Torsional Damping Z (lb.ft/Rad/S)
10	1.03E+12	5.03E+10	6.90E+11	3.42E+10	1.42E+12	6.78E+10
11	1.03E+12	4.59E+10	6.90E+11	3.12E+10	1.42E+12	6.16E+10
12	1.03E+12	4.22E+10	6.90E+11	2.87E+10	1.42E+12	5.65E+10
13	1.03E+12	3.90E+10	6.90E+11	2.66E+10	1.42E+12	5.22E+10
14	1.03E+12	3.63E+10	6.90E+11	2.48E+10	1.42E+12	4.85E+10
15	1.03E+12	3.40E+10	6.90E+11	2.32E+10	1.41E+12	4.53E+10
16	1.03E+12	3.20E+10	6.90E+11	2.18E+10	1.41E+12	4.25E+10
17	1.03E+12	3.02E+10	6.89E+11	2.06E+10	1.41E+12	4.00E+10
18	1.03E+12	2.86E+10	6.89E+11	1.96E+10	1.41E+12	3.78E+10
19	1.03E+12	2.72E+10	6.89E+11	1.86E+10	1.41E+12	3.59E+10
20	1.03E+12	2.59E+10	6.89E+11	1.77E+10	1.41E+12	3.41E+10

	Translational	Translational	Translational	Rotational	Rotational	Rotational
Frequency(Response at	Response at	Response at	Response at	Response at	Response at
rpm)	CG - X (in)	CG - Y (in)	CG - Z (in)	CG - X (Rad)	CG - Y (Rad)	CG - Z (Rad)
10	2.33E-05	1.90E-05	2.29E-05	3.68E-08	1.76E-07	5.45E-08
11	2.81E-05	2.29E-05	2.77E-05	4.45E-08	2.13E-07	6.60E-08
12	3.35E-05	2.72E-05	3.30E-05	5.30E-08	2.53E-07	7.86E-08
13	3.92E-05	3.20E-05	3.88E-05	6.22E-08	2.97E-07	9.22E-08
14	4.56E-05	3.72E-05	4.50E-05	7.21E-08	3.45E-07	1.07E-07
15	5.23E-05	4.26E-05	5.16E-05	8.28E-08	3.96E-07	1.23E-07
16	5.95E-05	4.85E-05	5.87E-05	9.43E-08	4.50E-07	1.40E-07
17	6.72E-05	5.47E-05	6.64E-05	1.06E-07	5.09E-07	1.58E-07
18	7.54E-05	6.14E-05	7.43E-05	1.19E-07	5.70E-07	1.77E-07
19	8.40E-05	6.84E-05	8.28E-05	1.33E-07	6.35E-07	1.97E-07
20	9.31E-05	7.58E-05	9.17E-05	1.47E-07	7.04E-07	2.19E-07

Mill Mat Foundation_out.txt

* *

*

*

*

20

* *

***************** * * DYNA6 SIMULATION * * Copyright (c) Western - 2011 RUN DATE - 2012/ 7/10 TIME - 15: 7:17 * * * REVISION - Jan.21/201 * ************************* CASE -MOTOR VIBRATION

Mill Mat Foundation

DATA ECHO *****

GRAVITATIONAL CONSTANT SET TO 32.20 ft/s**2

FREQUENCY UNITS : Hertz ***********

LENGTH UNITS : ft *******

FORCE UNITS : 1b *******

MASS UNITS : slug *******

RESPONSE TO BE PLOTTED ***************

STIFFNESS AND DAMPING CONSTANTS TO BE PRINTED

2.00 DAMPING SAFETY FACTOR -********

FOUNDATION TYPE - HALF-SPACE ******

RECTANGULAR FOUNDATION - 48,000 ft BY 66,000 ft ****************

MASS CONSTANTS ******

TOTAL MASS OF FOOTING 1.9265E+05 s]ug s]ug.ft**2 slug.ft**2 slug.ft**2 slug.ft**2 s]ug.ft**2 slug.ft**2 CROSS PRODUCT Y-Z-5.4366E+05

COORDINATES OF BASE CENTRE

Mill Mat Foundation_out.txt ***** X-COORD. OF BASE CENTRE REL. TO C.G. -1.448 ft . . ft Y-COORD. OF BASE CENTRE REL. TO C.G. 1.134 . . Z-COORD, OF BASE CENTRE REL. TO C.G. 11.007 ft - -SOIL **** NUMBER OF SIDE LAYERS -1 SOIL CONSTANTS **** POISSON'S MATERIAL LAYER SHEAR WAVE UNIT LAYER DEPTH VELOCITY WEIGHT RATIO DAMPING NO. ft 1b/ft**3 ft/s 6.000 1200.00 120.00 0.250 0.100 1 HALF-SPACE SOIL ******* POISSON'S SHEAR WAVE UNIT MATERIAL VELOCITY RATIO DAMPING WEIGHT 1b/ft**3 ft/s 0.250 0.1001.20E+03 120.00 HARMONIC LOAD (QUADRATIC) ****** 69.000 Hertz MAXIMUM FREQUENCY MINIMUM FREQUENCY 51.000 Hertz 1.000 Hertz STEP FREQUENCY 0.00E+00 slug.ft FORCE IN X-DIRECTION FORCE IN Y-DIRECTION FORCE IN Z-DIRECTION 0.00E+00 slug.ft 1.69E+03 slug.ft -3.79E+04 slug.ft**2 MOMENT ABOUT X-AXIS MOMENT ABOUT Y-AXIS-6.04E+02 slug.ft**2 MOMENT ABOUT Z-AXIS 0.00E+00 slug.ft**2 q ************************************** * ** * × DYNA6 SIMULATION * * * * Copyright (c) Western - 2011 2012/ 7/10 15: 7:17 × RUN DATE -÷ * * TIME * * Jan.21/201 **REVISION** -* ☆ ************* Mill Mat Foundation RESULTS ******

FREQUENCY - 51.000 Hertz

Page 2

STIFFNESS CONSTANTS (K)

HORIZONTAL TRANSLATION (X) HORIZONTAL TRANSLATION (Y) VERTICAL TRANSLATION (Z) ROTATION ABOUT (X) ROTATION ABOUT (Y) TORSION ABOUT (Z) CROSS-STIFFNESS (YZ PLANE) CROSS-STIFFNESS (XZ PLANE)	5.920E+08 5.920E+08 2.227E+08 3.435E+11 2.630E+11 6.955E+11 6.434E+09 -6.434E+09	lb/ft lb/ft lb/ft lb.ft/rad lb.ft/rad lb.ft/rad lb/rad lb/rad
DAMPING CONSTANTS (C)		
HORIZONTAL TRANSLATION (X) HORIZONTAL TRANSLATION (Y) VERTICAL TRANSLATION (Z) ROTATION ABOUT (X) ROTATION ABOUT (Y) TORSION ABOUT (Z) CROSS-DAMPING (YZ PLANE) CROSS-DAMPING (XZ PLANE)	1.053E+07 1.053E+07 1.513E+07 7.518E+09 4.657E+09 6.864E+09 1.048E+08 -1.048E+08	lb/ft/s lb/ft/s lb/ft/s lb.ft/rad/s lb.ft/rad/s lb.ft/rad/s lb/rad/s lb/rad/s
FREQUENCY - 52.000 Hertz		
STIFFNESS CONSTANTS (K)		
HORIZONTAL TRANSLATION (X) HORIZONTAL TRANSLATION (Y) VERTICAL TRANSLATION (Z) ROTATION ABOUT (X) ROTATION ABOUT (Y) TORSION ABOUT (Z) CROSS-STIFFNESS (YZ PLANE) CROSS-STIFFNESS (XZ PLANE)	5.855E+08 5.855E+08 2.127E+08 3.383E+11 2.597E+11 6.906E+11 6.369E+09 -6.369E+09	lb/ft lb/ft lb/ft lb.ft/rad lb.ft/rad lb.ft/rad lb/rad lb/rad
DAMPING CONSTANTS (C) *****		
HORIZONTAL TRANSLATION (X) HORIZONTAL TRANSLATION (Y) VERTICAL TRANSLATION (Z) ROTATION ABOUT (X) ROTATION ABOUT (Y) TORSION ABOUT (Z) CROSS-DAMPING (YZ PLANE) CROSS-DAMPING (XZ PLANE)	1.052E+07 1.052E+07 1.513E+07 7.519E+09 4.658E+09 6.866E+09 1.047E+08 -1.047E+08	lb/ft/s lb/ft/s lb/ft/s lb.ft/rad/s lb.ft/rad/s lb.ft/rad/s lb/rad/s lb/rad/s
FREQUENCY - 53.000 Hertz		

STIFFNESS CONSTANTS (K)

HORIZONTAL TRANSLATION (X)5.7HORIZONTAL TRANSLATION (Y)5.7VERTICAL TRANSLATION (Z)2.0ROTATION ABOUT (X)3.3ROTATION ABOUT (Y)2.5TORSION ABOUT (Z)6.8CROSS-STIFFNESS (YZ PLANE)6.3	Foundation_out.txt 92E+08 lb/ft 92E+08 lb/ft 30E+08 lb/ft 32E+11 lb.ft/rad 65E+11 lb.ft/rad 53E+11 lb.ft/rad 06E+09 lb/rad 06E+09 lb/rad
DAMPING CONSTANTS (C) *****	
HORIZONTAL TRANSLATION (Y)1.0VERTICAL TRANSLATION (Z)1.5ROTATION ABOUT (X)7.5ROTATION ABOUT (Y)4.6TORSION ABOUT (Z)6.8CROSS-DAMPING (YZ PLANE)1.0	52E+07 lb/ft/s 52E+07 lb/ft/s 13E+07 lb/ft/s 21E+09 lb.ft/rad/s 59E+09 lb.ft/rad/s 67E+09 lb.ft/rad/s 47E+08 lb/rad/s 47E+08 lb/rad/s
FREQUENCY - 54.000 Hertz ******	
STIFFNESS CONSTANTS (K)	
HORIZONTAL TRANSLATION(Y)5.7VERTICAL TRANSLATION(Z)1.9ROTATION ABOUT(X)3.2ROTATION ABOUT(Y)2.5TORSION ABOUT(Z)6.8CROSS-STIFFNESS(YZ PLANE)6.2	28E+08 lb/ft 28E+08 lb/ft 33E+08 lb/ft 81E+11 lb.ft/rad 32E+11 lb.ft/rad 04E+11 lb.ft/rad 42E+09 lb/rad 42E+09 lb/rad
DAMPING CONSTANTS (C)	
HORIZONTAL TRANSLATION (Y) 1.0 VERTICAL TRANSLATION (Z) 1.5 ROTATION ABOUT (X) 7.5 ROTATION ABOUT (Y) 4.6 TORSION ABOUT (Z) 6.8 CROSS-DAMPING (YZ PLANE) 1.0	52E+07 lb/ft/s 52E+07 lb/ft/s 13E+07 lb/ft/s 22E+09 lb.ft/rad/s 60E+09 lb.ft/rad/s 69E+09 lb.ft/rad/s 47E+08 lb/rad/s 47E+08 lb/rad/s
FREQUENCY - 55.000 Hertz *****	
STIFFNESS CONSTANTS (K) *****	
HORIZONTAL TRANSLATION (Y) 5.6 VERTICAL TRANSLATION (Z) 1.8 ROTATION ABOUT (X) 3.2	65E+08 lb/ft 65E+08 lb/ft 38E+08 lb/ft 30E+11 lb.ft/rad 00E+11 lb.ft/rad Page 4

Mill Mat Foundation_out.txt TORSION ABOUT(Z)6.756E+11CROSS-STIFFNESS(YZ PLANE)6.179E+09CROSS-STIFFNESS(XZ PLANE)-6.179E+09 lb.ft/rad lb/rad lb/rad DAMPING CONSTANTS (C) ********* HORIZONTAL TRANSLATION (X) ... lb/ft/s 1.051E+07 HORIZONTAL TRANSLATION (Y) ... 1.051E+07 lb/ft/s VERTICAL TRANSLATION (Z) 1.513E+07 lb/ft/s lb ft/rad/s 7.523E+09 ROTATION ABOUT (X) (Y) lb.ft/rad/s 4.661E+09 ROTATION ABOUT (Z) lb.ft/rad/s TORSION ABOUT 6.870E+09 CROSS-DAMPING (YZ PLANE) 1.046E+08lb/rad/s CROSS-DAMPING (XZ PLANE) -1.046E+08 lb/rad/s 56.000 Hertz FREQUENCY _ ******* STIFFNESS CONSTANTS (K) ****** HORIZONTAL TRANSLATION (X) ... 5.601E+08 lb/ft 5.601E+08 HORIZONTAL TRANSLATION lb/ft (Y) ... VERTICAL TRANSLATION (Z) 1.741E+08 lb/ft ROTATION ABOUT (X) 3.180E+11 lb.ft/rad lb.ft/rad (Y) 2.468E+11 ROTATION ABOUT TORSION ABOUT(Z)6.708E+11CROSS-STIFFNESS(YZ PLANE)6.115E+09CROSS-STIFFNESS(XZ PLANE)-6.115E+09 lb.ft/rad 1b/rad lb/rad DAMPING CONSTANTS (C) ************* HORIZONTAL TRANSLATION (X) ... VERTICAL TRANSLATION (Y) ... 1.051E+07 lb/ft/s lb/ft/s 1.051E+07 lb/ft/s 1.513E+07 lb.ft/rad/s ROTATION ABOUT 7.524E+09 (X) lb.ft/rad/s ROTATION ABOUT (Y) 4.661E+09 (Z) lb.ft/rad/s TORSION ABOUT 6.871E+09 CROSS-DAMPING (YZ PLANE) 1.046E+08 lb/rad/s CROSS-DAMPING (XZ PLANE) -1.046E+08 lb/rad/s FREQUENCY 57.000 Hertz **** STIFFNESS CONSTANTS (K) *************** (X) ... HORIZONTAL TRANSLATION 5.537E+08 lb/ft HORIZONTAL TRANSLATION lb/ft (Y) ... 5.537E+08 lb/ft VERTICAL TRANSLATION (Z) 1.643E+08 3.129E+11 ROTATION ABOUT (X) lb.ft/rad (Y) lb.ft/rad ROTATION ABOUT 2.437E+11 (Ž) 6.660E+11 lb.ft/rad TORSION ABOUT CROSS-STIFFNESS (YZ PLANE) 6.051E+09 CROSS-STIFFNESS (XZ PLANE) -6.051E+09 lb/rad lb/rad DAMPING CONSTANTS (C) Page 5

Mill Mat Foundation_out.txt

HORIZONTAL TRANSLATION (X) HORIZONTAL TRANSLATION (Y) VERTICAL TRANSLATION (Z) ROTATION ABOUT (X) ROTATION ABOUT (Y) TORSION ABOUT (Z) CROSS-DAMPING (YZ PLANE) CROSS-DAMPING (XZ PLANE)	1.051E+07 1.051E+07 1.513E+07 7.525E+09 4.662E+09 6.872E+09 1.046E+08 -1.046E+08	lb/ft/s lb/ft/s lb/ft/s lb.ft/rad/s lb.ft/rad/s lb.ft/rad/s lb/rad/s lb/rad/s
FREQUENCY - 58.000 Hertz *****		
STIFFNESS CONSTANTS (K)		
HORIZONTAL TRANSLATION (X) HORIZONTAL TRANSLATION (Y) VERTICAL TRANSLATION (Z) ROTATION ABOUT (X) ROTATION ABOUT (Y) TORSION ABOUT (Z) CROSS-STIFFNESS (YZ PLANE) CROSS-STIFFNESS (XZ PLANE)	5.473E+08 5.473E+08 1.546E+08 3.079E+11 2.405E+11 6.612E+11 5.987E+09 -5.987E+09	lb/ft lb/ft lb/ft lb.ft/rad lb.ft/rad lb.ft/rad lb/rad lb/rad
DAMPING CONSTANTS (C)		
HORIZONTAL TRANSLATION (X) HORIZONTAL TRANSLATION (Y) VERTICAL TRANSLATION (Z) ROTATION ABOUT (X) ROTATION ABOUT (Y) TORSION ABOUT (Z) CROSS-DAMPING (YZ PLANE) CROSS-DAMPING (XZ PLANE)	1.051E+07 1.051E+07 1.513E+07 7.526E+09 4.663E+09 6.873E+09 1.046E+08 -1.046E+08	lb/ft/s lb/ft/s lb/ft/s lb.ft/rad/s lb.ft/rad/s lb.ft/rad/s lb/rad/s lb/rad/s
FREQUENCY - 59.000 Hertz		
STIFFNESS CONSTANTS (K)		
HORIZONTAL TRANSLATION (X) HORIZONTAL TRANSLATION (Y) VERTICAL TRANSLATION (Z) ROTATION ABOUT (X) ROTATION ABOUT (Y) TORSION ABOUT (Z) CROSS-STIFFNESS (YZ PLANE) CROSS-STIFFNESS (XZ PLANE)	5.408E+08 5.408E+08 1.449E+08 3.029E+11 2.371E+11 6.564E+11 5.923E+09 -5.923E+09	lb/ft lb/ft lb/ft lb.ft/rad lb.ft/rad lb.ft/rad lb/rad lb/rad
DAMPING CONSTANTS (C) *********		
HORIZONTAL TRANSLATION (X) HORIZONTAL TRANSLATION (Y) VERTICAL TRANSLATION (Z)	1.050E+07 1.050E+07 1.513E+07 Page	lb/ft/s lb/ft/s lb/ft/s 6
Mill ROTATION ABOUT (X) ROTATION ABOUT (Y)	Mat Foundat 7.527E+09 4.664E+09	ion_out.txt lb.ft/rad/s lb.ft/rad/s
---	---	---
TORSION ABOUT (Z) CROSS-DAMPING (YZ PLANE) CROSS-DAMPING (XZ PLANE)	6.874E+09 1.045E+08 -1.045E+08	lb.ft/rad/s lb/rad/s lb/rad/s
FREQUENCY - 60.000 Hertz ******		
STIFFNESS CONSTANTS (K) ******		
HORIZONTAL TRANSLATION (X) HORIZONTAL TRANSLATION (Y) VERTICAL TRANSLATION (Z) ROTATION ABOUT (X) TORSION ABOUT (Y) CROSS-STIFFNESS (YZ PLANE) CROSS-STIFFNESS (XZ PLANE)	5.344E+08 5.344E+08 1.352E+08 2.979E+11 2.340E+11 6.517E+11 5.859E+09 -5.859E+09	lb/ft lb/ft lb.ft/rad lb.ft/rad lb.ft/rad lb/rad lb/rad
DAMPING CONSTANTS (C) ********************		
HORIZONTAL TRANSLATION (X) HORIZONTAL TRANSLATION (Y) VERTICAL TRANSLATION (Z) ROTATION ABOUT (X) ROTATION ABOUT (Y) TORSION ABOUT (Z) CROSS-DAMPING (YZ PLANE) CROSS-DAMPING (XZ PLANE)	1.050E+07 1.050E+07 1.513E+07 7.528E+09 4.664E+09 6.875E+09 1.045E+08 -1.045E+08	lb/ft/s lb/ft/s lb/ft/s lb.ft/rad/s lb.ft/rad/s lb.ft/rad/s lb/rad/s lb/rad/s
FREQUENCY - 61.000 Hertz *****		
STIFFNESS CONSTANTS (K) ******		
HORIZONTAL TRANSLATION (X) HORIZONTAL TRANSLATION (Y) VERTICAL TRANSLATION (Z) ROTATION ABOUT (X) ROTATION ABOUT (Y) TORSION ABOUT (Z) CROSS-STIFFNESS (YZ PLANE) CROSS-STIFFNESS (XZ PLANE)	5.280E+08 5.280E+08 1.255E+08 2.929E+11 2.308E+11 6.470E+11 5.795E+09 -5.795E+09	lb/ft lb/ft lb.ft/rad lb.ft/rad lb.ft/rad lb.ft/rad lb/rad
DAMPING CONSTANTS (C)		
HORIZONTAL TRANSLATION (X) HORIZONTAL TRANSLATION (Y) VERTICAL TRANSLATION (Z) ROTATION ABOUT (X) ROTATION ABOUT (Y) TORSION ABOUT (Z) CROSS-DAMPING (YZ PLANE) CROSS-DAMPING (XZ PLANE)	1.050E+07 1.050E+07 1.513E+07 7.529E+09 4.665E+09 6.875E+09 1.045E+08 -1.045E+08 Page	lb/ft/s lb/ft/s lb/ft/s lb.ft/rad/s lb.ft/rad/s lb.ft/rad/s lb/rad/s lb/rad/s 7

FREQUENCY - 62.000 Hertz

STIFFNESS CONSTANTS (K)

HORIZONTAL TRANSLATION (X)	5.215E+08	lb/ft
HORIZONTAL TRANSLATION (Y)	5.215E+08	lb/ft
VERTICAL TRANSLATION (Z)	1.158E+08	lb/ft
ROTATION ABOUT (X)	2.879E+11	lb.ft/rad
ROTATION ABOUT (Y)	2.277E+11	lb.ft/rad
TORSION ABOUT (Z)	6.423E+11	lb.ft/rad
CROSS-STIFFNESS (YZ PLANE)	5.731E+09	lb/rad
CROSS-STIFFNESS (XZ PLANE)	-5.731E+09	lb/rad

DAMPING CONSTANTS (C)

HORIZONTAL TRANSLATION (X)	1.050E+07	lb/ft/s
HORIZONTAL TRANSLATION (Y)	1.050E+07	lb/ft/s
VERTICAL TRANSLATION (Z)	1.513E+07	lb/ft/s
ROTATION ABOUT (X)	7.530E+09	lb.ft/rad/s
ROTATION ABOUT (Y)	4.665E+09	lb.ft/rad/s
TORSION ABOUT (Z)		lb.ft/rad/s
CROSS-DAMPING (YZ PLANE)		lb/rad/s
CROSS-DAMPING (XZ PLANE)	-1.045E+08	lb/rad/s

FREQUENCY - 63.000 Hertz

STIFFNESS CONSTANTS (K)

HORIZONTAL TRANSLATION (X) HORIZONTAL TRANSLATION (Y) VERTICAL TRANSLATION (Z) ROTATION ABOUT (X) ROTATION ABOUT (Y) TORSION ABOUT (Z)	5.151E+08 5.151E+08 1.061E+08 2.829E+11 2.246E+11 6.376E+11 5.667E+09	lb/ft lb/ft lb/ft lb.ft/rad lb.ft/rad lb.ft/rad lb/rad
CROSS-STIFFNESS (YZ PLANE) CROSS-STIFFNESS (XZ PLANE)	5.667E+09	lb/rad lb/rad lb/rad

DAMPING CONSTANTS (C)

HORIZONTAL TRANSLATION (X) HORIZONTAL TRANSLATION (Y) VERTICAL TRANSLATION (Z) ROTATION ABOUT (X) ROTATION ABOUT (Y) TORSION ABOUT (Z) CROSS-DAMPING (YZ PLANE)	1.050E+07 1.513E+07 7.530E+09 4.666E+09 6.877E+09 1.044E+08	lb/ft/s lb/ft/s lb/ft/s lb.ft/rad/s lb.ft/rad/s lb.ft/rad/s lb/rad/s
CROSS-DAMPING (YZ PLANE)	1.044E+08	lb/rad/s
CROSS-DAMPING (XZ PLANE)	-1.044E+08	lb/rad/s

FREQUENCY - 64.000 Hertz

STIFFNESS CONSTANTS (K)

HORIZONTAL TRANSLATION (X) HORIZONTAL TRANSLATION (Y) VERTICAL TRANSLATION (Z) ROTATION ABOUT (X) ROTATION ABOUT (Y) TORSION ABOUT (Z) CROSS-STIFFNESS (YZ PLANE) CROSS-STIFFNESS (XZ PLANE) DAMPING CONSTANTS (C)	5.087E+08 5.087E+08 9.645E+07 2.780E+11 2.215E+11 6.329E+11 5.602E+09 -5.602E+09	lb/ft lb/ft lb/ft lb.ft/rad lb.ft/rad lb.ft/rad lb/rad lb/rad
HORIZONTAL TRANSLATION (X) HORIZONTAL TRANSLATION (Y) VERTICAL TRANSLATION (Z) ROTATION ABOUT (X) ROTATION ABOUT (Y) TORSION ABOUT (Z) CROSS-DAMPING (YZ PLANE) CROSS-DAMPING (XZ PLANE)	1.049E+07 1.049E+07 1.513E+07 7.531E+09 4.666E+09 6.877E+09 1.044E+08 -1.044E+08	lb/ft/s lb/ft/s lb/ft/s lb.ft/rad/s lb.ft/rad/s lb.ft/rad/s lb/rad/s lb/rad/s
FREQUENCY - 65.000 Hertz		
STIFFNESS CONSTANTS (K)		
HORIZONTAL TRANSLATION (X) HORIZONTAL TRANSLATION (Y) VERTICAL TRANSLATION (Z) ROTATION ABOUT (X) ROTATION ABOUT (Y) TORSION ABOUT (Z) CROSS-STIFFNESS (YZ PLANE) CROSS-STIFFNESS (XZ PLANE)	5.022E+08 5.022E+08 8.679E+07 2.730E+11 2.183E+11 6.283E+11 5.538E+09 -5.538E+09	lb/ft lb/ft lb/ft lb.ft/rad lb.ft/rad lb.ft/rad lb/rad lb/rad
DAMPING CONSTANTS (C)		
HORIZONTAL TRANSLATION (X) HORIZONTAL TRANSLATION (Y) VERTICAL TRANSLATION (Z) ROTATION ABOUT (X) TORSION ABOUT (Y) CROSS-DAMPING (YZ PLANE) CROSS-DAMPING (XZ PLANE)	1.049E+07 1.049E+07 1.513E+07 7.531E+09 4.667E+09 6.878E+09 1.044E+08 -1.044E+08	lb/ft/s lb/ft/s lb/ft/s lb.ft/rad/s lb.ft/rad/s lb.ft/rad/s lb/rad/s lb/rad/s
FREQUENCY - 66.000 Hertz *****		
STIFFNESS CONSTANTS (K)		
HORIZONTAL TRANSLATION (X)	4.958E+08 Page	lb/ft 9

M-11	Mat Foundation out tyt
Mill HORIZONTAL TRANSLATION (Y) VERTICAL TRANSLATION (Z) ROTATION ABOUT (X) ROTATION ABOUT (Y) TORSION ABOUT (Z) CROSS-STIFFNESS (YZ PLANE) CROSS-STIFFNESS (XZ PLANE)	Mat Foundation_out.txt 4.958E+08 lb/ft 7.714E+07 lb/ft 2.681E+11 lb.ft/rad 2.152E+11 lb.ft/rad 6.237E+11 lb.ft/rad 5.474E+09 lb/rad -5.474E+09 lb/rad
DAMPING CONSTANTS (C) *******************	
HORIZONTAL TRANSLATION (X) HORIZONTAL TRANSLATION (Y) VERTICAL TRANSLATION (Z) ROTATION ABOUT (X) ROTATION ABOUT (Y) TORSION ABOUT (Z) CROSS-DAMPING (YZ PLANE) CROSS-DAMPING (XZ PLANE)	1.049E+07 lb/ft/s 1.049E+07 lb/ft/s 1.513E+07 lb/ft/s 7.532E+09 lb.ft/rad/s 4.667E+09 lb.ft/rad/s 6.878E+09 lb.ft/rad/s 1.044E+08 lb/rad/s -1.044E+08 lb/rad/s
FREQUENCY - 67.000 Hertz ******	
STIFFNESS CONSTANTS (K) ******	
HORIZONTAL TRANSLATION (X) HORIZONTAL TRANSLATION (Y) VERTICAL TRANSLATION (Z) ROTATION ABOUT (X) ROTATION ABOUT (Y) TORSION ABOUT (Z) CROSS-STIFFNESS (YZ PLANE) CROSS-STIFFNESS (XZ PLANE)	4.893E+08 lb/ft 4.893E+08 lb/ft 6.749E+07 lb/ft 2.631E+11 lb.ft/rad 2.121E+11 lb.ft/rad 6.190E+11 lb.ft/rad 5.409E+09 lb/rad -5.409E+09 lb/rad
DAMPING CONSTANTS (C)	
HORIZONTAL TRANSLATION (X)HORIZONTAL TRANSLATION (Y)VERTICAL TRANSLATION (Z)VERTICAL TRANSLATION (Z)ROTATION ABOUT (X)ROTATION ABOUT (Y)TORSION ABOUT (Z)CROSS-DAMPING (YZ PLANE)CROSS-DAMPING (XZ PLANE)	1.049E+07 lb/ft/s 1.049E+07 lb/ft/s 1.513E+07 lb/ft/s 7.533E+09 lb.ft/rad/s 4.668E+09 lb.ft/rad/s 6.879E+09 lb.ft/rad/s 1.044E+08 lb/rad/s -1.044E+08 lb/rad/s
FREQUENCY - 68.000 Hertz *****	
STIFFNESS CONSTANTS (K)	
HORIZONTAL TRANSLATION (X) HORIZONTAL TRANSLATION (Y) VERTICAL TRANSLATION (Z) ROTATION ABOUT (X) ROTATION ABOUT (Y) TORSION ABOUT (Z)	4.829E+08 lb/ft 4.829E+08 lb/ft 5.785E+07 lb/ft 2.582E+11 lb.ft/rad 2.091E+11 lb.ft/rad 6.144E+11 lb.ft/rad Page 10

Mill Mat Foundation_out.txt CROSS-STIFFNESS (YZ PLANE) 5.345E+09 CROSS-STIFFNESS (XZ PLANE) -5.345E+09 lb/rad lb/rad DAMPING CONSTANTS (C) 1.049E+07 lb/ft/s HORIZONTAL TRANSLATION (X) ... lb/ft/s HORIZONTAL TRANSLATION 1.049E+07 (Y) ... VERTICAL TRANSLATION (Z) lb/ft/s 1.513E+07 lb.ft/rad/s (X) (Y) 7.533E+09 ROTATION ABOUT lb.ft/rad/s ROTATION ABOUT 4.668E+09 (Z) 6.879E+09 lb.ft/rad/s TORSION ABOUT CROSS-DAMPING (YZ PLANE) 1.044E+08lb/rad/s CROSS-DAMPING (XZ PLANE) -1.044E+08 lb/rad/s 69.000 Hertz FREQUENCY ----**** STIFFNESS CONSTANTS (K) HORIZONTAL TRANSLATION (X) ... 4.764E+08 lb/ft 4.764E+08 lb/ft HORIZONTAL TRANSLATION (Y) ... VERTICAL TRANSLATION (Z) 4.822E+07 lb/ft 2.533E+11 lb.ft/rad ROTATION ABOUT (X) <u>()</u> 2.060E+11 lb.ft/rad ROTATION ABOUT (Ż) lb.ft/rad 6.098E+11 TORSION ABOUT CROSS-STIFFNESS (YZ PLANE) 5.281E+09 1b/rad CROSS-STIFFNESS (XZ PLANE) -5.281E+09 lb/rad DAMPING CONSTANTS (C) *********** HORIZONTAL TRANSLATION (X) ... HORIZONTAL TRANSLATION (Y) ... 1.048E+07 lb/ft/s lb/ft/s (Y) ... 1.048E+07 lb/ft/s VERTICAL TRANSLATION (Z) 1.513E+07 ROTATION ABOUT lb.ft/rad/s (X) 7.533E+09 lb.ft/rad/s ROTATION ABOUT (Y) 4.668E+09 (Z) TORSION ABOUT 6.880E+09 lb.ft/rad/s CROSS-DAMPING (YZ PLANE) 1.043E+08 lb/rad/s 1b/rad/s CROSS-DAMPING (XZ PLANE) -1.043E+08 f **************************** \star * * 4 DYNA6 SIMULATION * * * * Copyright (c) Western - 2011 2012/ 7/10 15: 7:17 * $_{\star}$ RUN DATE - $_{\star}$ * TIME * * **REVISION** -Jan.21/201 * * Mill Mat Foundation RESULTS *****

FOOTING RESPONSE AMPLITUDES Page 11

Mill Mat Foundation_out.txt

FREQ. Hertz	TRANS. X DIRECTION (ft)	TRANS. Y DIRECTION (ft)	VERTICAL DIRECTION (ft)	ROT ABOUT X AXIS (rad)	ROT ABOUT Y AXIS (rad)	TORSIONAL Z AXIS (rad)
$\begin{array}{c} 51.00\\ 52.00\\ 53.00\\ 54.00\\ 55.00\\ 56.00\\ 57.00\\ 58.00\\ 59.00\\ 60.00\\ 61.00\\ 62.00\\ 63.00\\ 64.00\\ 65.00\\ 65.00\\ 66.00\\ 65.00\\ 66.00\\ 67.00\\ 68.00\\ 69.00\\ \end{array}$	7.81E-05 7.63E-05 7.47E-05 7.31E-05 7.16E-05 7.02E-05 6.88E-05 6.75E-05 6.63E-05 6.39E-05 6.39E-05 6.27E-05 6.17E-05 5.96E-05 5.96E-05 5.77E-05 5.68E-05 5.59E-05	7.35E-04 7.19E-04 7.04E-04 6.89E-04 6.75E-04 6.49E-04 6.37E-04 6.37E-04 6.25E-04 6.14E-04 6.03E-04 5.93E-04 5.82E-04 5.82E-04 5.45E-04 5.37E-04 5.37E-04 5.28E-04	8.59E-03 8.59E-03 8.60E-03 8.60E-03 8.60E-03 8.61E-03 8.61E-03 8.61E-03 8.61E-03 8.61E-03 8.61E-03 8.62E-03 8.62E-03 8.62E-03 8.62E-03 8.62E-03 8.63E-03 8.63E-03 8.63E-03 8.63E-03 8.63E-03 8.63E-03	4.20E-04 4.20E-04 4.19E-04 4.19E-04 4.19E-04 4.19E-04 4.19E-04 4.19E-04 4.19E-04 4.19E-04 4.19E-04 4.19E-04 4.19E-04 4.19E-04 4.19E-04 4.19E-04 4.19E-04 4.19E-04 4.19E-04 4.19E-04	4.51E-05 4.50E-05 4.50E-05 4.50E-05 4.50E-05 4.49E-05 4.49E-05 4.49E-05 4.49E-05 4.49E-05 4.49E-05 4.48E-05 4.48E-05 4.48E-05 4.48E-05 4.48E-05 4.48E-05 4.48E-05 4.48E-05 4.48E-05	5.29E-06 5.26E-06 5.24E-06 5.22E-06 5.20E-06 5.18E-06 5.16E-06 5.15E-06 5.13E-06 5.12E-06 5.12E-06 5.09E-06 5.09E-06 5.07E-06 5.05E-06 5.03E-06 5.02E-06 5.02E-06

MAXIMA OF FOOTING RESPONSE AMPLITUDES

			FREQ. Hertz
MAX. TRANS. IN X-DIRECTION MAX. TRANS. IN Y-DIRECTION MAX. TRANS. IN Z-DIRECTION MAX. ROT. ABOUT X AXIS MAX. ROT. ABOUT Y AXIS MAX. ROT. ABOUT Z AXIS	 7.806E-05 7.349E-04 8.631E-03 4.197E-04 4.507E-05 5.288E-06	ft ft rad rad rad	51.00 51.00 69.00 51.00 51.00 51.00
	 DECRONAE CURV	-	

FOOTING RESPONSE CURVE

CURVE-X= TRANS X-DIRECTION CURVE-Y= TRANS Y-DIRECTION CURVE-Z= TRANS Z-DIRECTION

FREQ.	
Hertz	DISPLACEMENT (ft)
	0.00E+00 1.80E-03 3.60E-03 5.40E-03 7.20E-03 9.00E-03
51.0	XY+Z-+
52.0	X Y Z
53.0	ХҮΖ
54.0	ХҮΖ
55.0	X Y Z
56.0	ХҮΖ
57.0	ХҮΖ
58.0	X Y Z
59.0	X Y Z
60.0	X Y Z
61.0	X Y Z
62.0	X Y Z
63.0	X Y Z
64.0	X Y Z
0,10	Page 12

			Mill	Mat Fou	ndation_ou	ut.txt	
65.0	ХҮ						Z
66.0	XY						Z Z
67.0 68.0	X Y X Y						Z
69.0	XY						Z
			FOOTING R	ESPONSE	CURVE		
CU	RVE-X= R	λΟΤ Α	ABOUT X AXIS CURVE-Z= RO			ΑΒΟυΤ Υ Α	XIS
FREQ.							
Hertz	0.00-	00		TION (ra	ld)	4 005 04	
51.0	U.UUE ±7	2+00 V	1.00E-04 2.0	UUE-U4 	3.00E-04	4.00E-04	5.00E-04
52.0		Ý	i i		,	X	ı
53.0	IZ					Х	
54.0	IZ					Х	
55.0	IZ					X X	
56.0 57.0	IZ IZ					×	
58.0	IZ					x	
59.0	IZ					X	
60.0	IZ	Y				Х	
61.0	+Z					Х	
62.0	IZ					X	
63.0 64.0	IZ IZ	Y				X X	
65.0	IZ					x	
66.0		Ý				x	
67.0	IZ					Х	
68.0	IZ					X	
69.0	IZ	Y				х	

4

Frequency (Hz)	Horizontal Stiffness X (Ib/ft)	Horizontal Damping X (lb/ft/S)	Horizontal Stiffness Y (lb/ft)	Horizontal Damping Y (Ib/ft/S)	Vertical Stiffness Z (lb/ft)	Vertical Damping Z (lb/ft/S)
51	5.92E+08	1.05E+07	5.92E+08	1.05E+07	2.23E+08	1.51E+07
52	5.86E+08	1.05E+07	5.86E+08	1.05E+07	2.13E+08	1.51E+07
53	5.79E+08	1.05E+07	5.79E+08	1.05E+07	2.03E+08	1.51E+07
54	5.73E+08	1.05E+07	5.73E+08	1.05E+07	1.93E+08	1.51E+07
55	5.67E+08	1.05E+07	5.67E+08	1.05E+07	1.84E+08	1.51E+07
56	5.60E+08	1.05E+07	5.60E+08	1.05E+07	1.74E+08	1.51E+07
57	5.54E+08	1.05E+07	5.54E+08	1.05E+07	1.64E+08	1.51E+07
58	5.47E+08	1.05E+07	5.47E+08	1.05E+07	1.55E+08	1.51E+07
59	5.41E+08	1.05E+07	5.41E+08	1.05E+07	1.45E+08	1.51E+07
60	5.34E+08	1.05E+07	5.34E+08	1.05E+07	1.35E+08	1.51E+07
61	5.28E+08	1.05E+07	5.28E+08	1.05E+07	1.26E+08	1.51E+07
62	5.22E+08	1.05E+07	5.22E+08	1.05E+07	1.16E+08	1.51E+07
63	5.15E+08	1.05E+07	5.15E+08	1.05E+07	1.06E+08	1.51E+07
64	5.09E+08	1.05E+07	5.09E+08	1.05E+07	9.65E+07	1.51E+07
65	5.02E+08	1.05E+07	5.02E+08	1.05E+07	8.68E+07	1.51E+07
66	4.96E+08	1.05E+07	4.96E+08	1.05E+07	7.71E+07	1.51E+07
67	4.89E+08	1.05E+07	4.89E+08	1.05E+07	6.75E+07	1.51E+07
68			4.83E+08	1.05E+07	5.79E+07	1.51E+07
69	4.76E+08	1.05E+07	4.76E+08	1.05E+07	4.82E+07	1.51E+07

Frequency (Hz)	Rocking Stiffness X (Ib/ft/Rad)	Rocking Damping X (lb.ft/Rad/S)	Rocking Stiffness Y (lb/ft/Rad)	Rocking Damping Y (lb.ft/Rad/S)	Torsional Stiffness Z (lb/ft/Rad)	Torsional Damping Z (Ib.ft/Rad/S)	
51	3.33E+11	7.35E+09	2.53E+11	4.49E+09	6.95E+11	6.86E+09	
52	3.28E+11	7.35E+09	2.50E+11	4.49E+09	6.90E+11	6.86E+09	
53	3.23E+11	7.35E+09	2.47E+11	4.49E+09	6.85E+11	6.86E+09	
54	3.18E+11	7.36E+09	2.44E+11	4.50E+09	6.80E+11	6.86E+09	
55	3.13E+11	7.36E+09	2.40E+11	4.50E+09	6.75E+11	6.87E+09	
56	3.08E+11	7.36E+09	2.37E+11	4.50E+09	6.71E+11	6.87E+09	
57	3.03E+11	7.36E+09	2.34E+11	4.50E+09	6.66E+11	6.87E+09	
58	2.99E+11	7.36E+09	2.31E+11	4.50E+09	6.61E+11	6.87E+09	
59	2.94E+11	7.36E+09	2.28E+11	4.50E+09	6.56E+11	6.87E+09	
60	2.89E+11	7.36E+09	2.25E+11	4.50E+09	6.52E+11	6.87E+09	
61	2.84E+11	7.36E+09	2.22E+11	4.50E+09	6.47E+11	6.87E+09	
62	2.79E+11	7.36E+09	2.19E+11	4.50E+09	6.42E+11	6.87E+09	
63	2.74E+11	7.36E+09	2.16E+11	4.50E+09	6.37E+11	6.87E+09	
64	2.69E+11	7.36E+09	2.13E+11	4.50E+09	6.33E+11	6.87E+09	
65	2.64E+11	7.37E+09	2.10E+11	4.50E+09	6.28E+11	6.87E+09	
66	2.60E+11	7.37E+09	2.07E+11	4.50E+09	6.23E+11	6.87E+09	
67	2.55E+11	7.37E+09	2.04E+11	4.50E+09	6.19E+11	6.87E+09	
68	2.50E+11	7.37E+09	2.01E+11	4.50E+09	6.14E+11	6.88E+09	
69	2.45E+11	7.37E+09	1.98E+11	4.50E+09	6.10E+11	6.88E+09	

Frequency(Hz)	Translational Response at CG - X (in)	Translational Response at CG - Y (in)	Translational Response at CG - Z (in)	Rotational Response at CG - X (Rad)	Rotational Response at CG - Y (Rad)	Rotational Response at CG - Z (Rad)	
51		6.20E-03	8.95E-02	3.72E-04	3.37E-05	3.60E-06	
52		6.06E-03	8.95E-02	3.72E-04	3.37E-05	3.58E-06	
53	5.32E-04	5.94E-03	8.96E-02	3.72E-04	3.36E-05	3.57E-06	
54	5.21E-04	5.81E-03	8.96E-02	3.72E-04	3.36E-05	3.56E-06	
55	5.10E-04	5.70E-03	8.96E-02	3.72E-04	3.36E-05	3.54E-06	
56	4.99E-04	5.58E-03	8.96E-02	3.71E-04	3.36E-05	3.53E-06	
57	4.90E-04	5.47E-03	8.96E-02	3.71E-04	3.35E-05	3.52E-06	
58	4.80E-04	5.36E-03	8.96E-02	3.71E-04	3.35E-05	3.51E-06	
59	4.70E-04	5.27E-03	8.96E-02	3.71E-04	3.35E-05	3.50E-06	
60	4.62E-04	5.17E-03	8.96E-02	3.71E-04	3.35E-05	3.49E-06	
61	4.54E-04	5.08E-03	8.96E-02	3.71E-04	3.34E-05	3.48E-06	
62	4.45E-04	4.99E-03	8.96E-02	3.71E-04	3.34E-05	3.48E-06	

Engineer: Ed Summers Calc No..: C-005 Job.:11021 Project: Mill Mat rev.1 Client: CC&V

Engineer: Ed Summers Calc No..: C-005 Job.:11021 Project: Mill Mat rev.1 Client: CC&V

View - pNorm. (kip/ft2) Cases: 13 (D+L)

BEARING PRESSURE

1	1 1 1 1 1 1	+ + +	1 1 1 1	11111	111	· · · · ·
0,0 10.0	20.0	30.0	40.0	50.0		1.1
1. A.					· · ·	-
						-
	1					
			· · · ·			N -
						0.0
		3				-
Banning of Read Min Wollowin	ReducerCLMEG	Bearing 2	91 2.78 2.00			-
and the second second second		3.12 3.05 2.94	2.80 2.65			
2 38 2 44 2 51 2 59 2 3	72 2 80 2.95 3.03 3.	06 (2 CL Motor	78 2.03 2.49			1
2.42 2.48 2.00 21	64 2.70 2.86 2.94 2.98	£.00	and the second second			.8 -
2.35 2.39 2.46 2.3	56 2.78 2.85	2.81 2.68	Contraction of the			
2.29 2.33 2.38 2	2.46 2.66 2.73	2 72 2.71 2.59				-
2.22 2.25 2.30		2 62 2.02 2.49				- 1
213 215 219	2.25 2.41 2.48	2 50 2.39	and the second se			
	2.13 2.28 2.35	2.39 2.28				6
2.00 2.01 1.94 1.94 1.94 1.97	2.02 2.13 2.15 2.22	2.26 2.17				-
Balteria 1 1 1 84 1 84 1 86	Charles 14 46 1 8 8 6 8 1 1	2.13 2.06				-
1.77 1.75 1.75 1.77	1.80 1.85 1.91 1.96	1.99 1.95				-
1.70 1.68 1.67 1.68	1.71 1.75 1.80 1.85	1.87 1.86				1
1.64 1.62 1.60 1.60 1	1.62 1.65 1.69 1.75	1.78 1.78			* * *	0.0
1.59 1.57 1.55 1.54 1.54	1.56 1.59 1.63 1.67	1.70 1.73	1.0)		-
1.56 1.54 1.52 1.50 1	1.51 1.53 1.56 1.60 1	.64	1 71			-
1.51 1.49 1.48 1	1.48 1.49 1.52 1.56 1	.60	11/P			
1.57 1.56 1.53	40 1.48 1.50 1.54	1.69 1.69	1,81			2. 1
		1.73	1,90		*	20.0
		1.78	2,00			-
		1.86	2,13			-
and the second		1.94	2,20			-
		2.03	ALC: NO			2
1.83 1.65 1.61 1.75 1.69 1.65 1	1.03 1.04 1.08 1.74	2.13	2.5			0.0
1.85	1.09 1.70 1.74 1.81 1	2.21	2.02	Aill_)		
		2.30	2 70			-
1.65 1.67 1.60 1.64 1.62 .1.6		2.37	2 77			. –
	2.01	2.44 2	2 62			-
	2.07	2.25 2.36				10.0
	2.11 2.18 2.20	2.35 2.44 2.59 2	69 2.79 2.90			. –
1.00 1.00 1.00 1.00 2.03	2.15 2.18 2.27 2.33	2.42 2.51 2.63 2	73 2.83 2.93	and the second s		-
1.78 1.87 1.94 2.01 2.07 2.14	2.20 2.26 2.33 2.40	2.49 2.67 2	77-2.86 2.98			-
1.96 2.05 2.13 2.2	21 2.29 2.37 2.45 2	54 263 272 2	82 2 90 D Bro 23.02	2		5
	IT WULCE WIT KOO	CVCL MUCHER	al gigzery.			50.0
* * * * * * * * *						1
				1.1	2.19	
					2.04	
					1.88	ъ T
				A CONTRACTOR OF	1.72	-60.0
				the second second	1.46	1
						1
				Cases: 13 (D+L)		1
0,0 10.0	20.0	30.0	40.0	50.0		
					1 1	
				auc.	-	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.32 2.38 2.44 2.81 2.89 2.72 2.80 2.86 2.44 2.98 2.98 2.44 2.98 2.98 2.44 2.98 2.98 2.44 2.98 2.44 2.98 2.44 2.98 2.46 2.66 2.70 2.86 2.44 2.98 2.46 2.66 2.70 2.86 2.44 2.98 2.46 2.66 2.61 2.66 2.64 2.60 2.64 2.66 2.64 2.60 2.64 2.66 2.64 2.60 2.64 2.60 2.64 2.60 2.64 2.60 2.64 2.60 2.64 2.60 2.64 2.60 2.61 2.72 2.28 2.35 2.41 2.48 2.62 2.63 2.00 1.94 1.92 1.94 1.94 1.97 1.60 1.85 1.91 1.96 1.62 1.68 1.67 1.68 1.71 1.75 1.60 1.65 1.65 1.65 1.65 1.65 1.	2.34 2.40 2.47 2.80 2.48 2.48 2.49 2.49 2.40	2.31 2.40 2.47 2.80 2.42 2.81 2.42 2.81 2.42 2.81 2.42 2.81 2.42 2.81 2.42 2.81 2.42 2.81 2.42 2.81 2.41 2.81 2.42 2.82 2.42 2.48 2.61 1.61 1.61 1.61 1.61 1.61 1.61 1.61 1.61 1.61 1.61	240 240 240 241 241 242 242 242 242 242 242 242 242 242 242 244	2.44 2.44 2.47 2.50 2.51 2.50 2.1 2.40 2.5 2.50 2.5 2.50 2.5 2.50 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5

Engineer: Ed Summers Calc No..: C-005 Job.:11021 Project: Mill Mat rev.1 Client: CC&V

50.0

20.0

10.0

0.0

Engineer: Ed Summers Calc No..: C-005 Job.:11021 Project: Mill Mat rev.1 Client: CC&V

Engineer: Ed Summers Calc No..: C-005 Job.:11021 Project: Mill Mat rev.1 Client: CC&V

Engineer: Ed Summers Calc No..: C-005 Job.:11021 Project: Mill Mat rev.1 Client: CC&V

View - pNorm. (kip/ft2) Cases: 17 (D+0.7E-y)

Engineer: Ed Summers Calc No..: C-005 Job.:11021 Project: Mill Mat rev.1 Client: CC&V

View - [-]Ax Main (in2/ft)

Engineer: Ed Summers Calc No..: C-005 Job.:11021 Project: Mill Mat rev.1 Client: CC&V

View - [-]Ay Perpendicular (in2/ft)

Engineer: Ed Summers Calc No..: C-005 Job.:11021 Project: Mill Mat rev.1 Client: CC&V

View - [+]Ax Main (in2/ft)

Engineer: Ed Summers Calc No..: C-005 Job.:11021 Project: Mill Mat rev.1 Client: CC&V

20.0

10.0

0,0

-20.0

30.0

2

0.57 0.47 0.38 0.28 0.19 0.09 0.00

Robot 2012 © AutoDesk

[+]Ay Perpendicular, (in2/ft)

40.0

Page : **1**

File: Mill Mat rev.1.rtd

Date : 16/07/12

21 22 23 24 25 26	
2 15/16"	A
	В
2'-1 1/2"	с
¹¹⁻⁰ 3/4 [*]	D
	E
	F
Project: High grade mill project P0 number: PR-11-100	G
Equipment: Rod mill Equipment No.: 1720–647–003	н
CERTIFIED FOR CONSTRUCTION SIGNATURE tale the fund DATE 23 Apr 12	
(14) 4 x ø 1 1/8" holes, 1 3/16" grip.	J
 20 x Ø 1 1/4" holes equally spaced and straddle centerlines, 1 1/4" grip. This section of the gear guard is to be in place before assembling the main gear or pinion shaft. 	ĸ
(1) 4" NPT pipe drain. (10) Clean out port (farside). (9) Gear spray system.	L
 8 Main gear 266 teeth 2'-0" face. 7 Main pinion 18 teeth 2'-1/2" face. 6 Finish machined surface for pillow blocks. 	м
$\begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	N
2 Use only "Certified print" for final setting. 1 All dimensions are in inches. Scale: Drawn Appr. Appr. Date Zone/Descr.: General revision	0
correction of f straightening, or grinding and ugh the use of 321 Rod mill Rod mill 4.3m Dia. x 6.4m	 Ρ
Plan and elevation Outline and Load Drawing The information transmitted by this document is the proprietary and confidential property of FLSmidth, and may not be duplicated, disclosed, or utilized without written consent from FLSmidth. FLSmIDTH No.: 10269298 Ver.: 2.0	Q

23 24

21	1	22	1	23		24		25	1	26		_
Anchor bo	olts	ore to	be loo	cated v	within	1/8"	of t	he indic	cated			
position. Direction	of d	ynamic						start-u	р			A
and shut Dynamic Foundatio forces eq	loads n de ual t	s are b sign sh to moto	nall co or pull	onsider I out t	start	ing ar	nd ov	t torque erload	э.			В
less than Operating WR ² inclu	WR ²	of mil	I refe	rred to	mot	or she	oft is	4800	lb/ft ²	here		-
pinion, clu Red head w flatness. Lo	utch, wedge ocatio	reduce anchor n to be	er, an Cat. N establi	d coup No. WS3 Ished us	ling. 470 (t ing th	oy othe e solep	rs). L plates	lse to ac as temp	chieve lates.	solepla		с
Red head								•		note 1	00	-
4 foundat												D
4 foundat												L
6 foundat									rojecti	ion.		
4 foundat												E
4 foundat									lion.			
2 foundat												
4 foundat												F
Main bear	ring	and pir	nion b	earing	lubrio	cation	syste	em.				
Foundatio assembly. Jacking p	See	signer jackin	must g cra	provide dle ass	e ade sembl	quate y 102	supp 7154	oort for 1 for k	jacki ocatio	ng cro n.	ıdle	G
Top of ro	bugh	concre	te.									L
Finish mo	chin	ed surf	ace o	f solep	olate.							
It is sugg piers toge foundation integral re	ether n. All einfo	as sh found rced si	own u ations ub sur	ising a should face c	n inte d be oncre	egral i tied t te mo	reinfo ogeth nt. Th	orced co ner usin ne mat	oncret g an is to	be		H
structural												1
The locat using the at field in and statio	gua nstall onary	rds an ation. objec	d gea The ts is	r guar maximi 1/2" (d sup um cl ancho	port l earan ors su	prack ce be ppliee	ets as etween d by ot	templ guard hers).	ates s		Ļ
Grout sho properties A pourabl	s sui	table fo	or the	static	and	dynar	nic lo	oads sp	echani ecifie	cal 1.		J
Allow for	grou	it on t	op of	mill b	earing	g and	drive	e piers	as			F
shown (a The found frequencie to ensure	dation es fo e tha	n is to III in th t no s	be d ne ran ignifice	ige of ant res	53 H	z – c	72 H: curs	z. This with the	is e			к
girth gea Foundatio									arina			F
plates are Anchor be adjustmer	not s olts	supplied	by FLS	smidth r	nill gro	oup, ur	less :	specifical		ered.		L
Depth of		ndation	deper	nds on	natu	re of	soil.					F
Reference	e line											м
Use only	"Cer	tified p	orint"	for fin	al set	ting.						
All dimen	sions	are in	n inch	es.								F
mportant :	Equi	pment	found	ations	are tl	ne res	ponsi	bility of	the			N
urchaser a												
onditions o shown by F										0115		-
ind battery	limi	ts for	the ec	uipmer	nt sup	plied	and	are not	inten	ded		0
o imply or		resent		-	-			r : Coporal r	avision			
e correction of		6"=1'	Drawn IBA	Appr. SPN	23-A	or-12		r.: General ri				-
of straightening, or grinding and bugh the use of rrected by the jor changes in	321	Rod mi mill 4.3	U		•	ng Co	– Cri	pple Cree	ek, CO,	USA		P
oorted ector, to the misfil or	Four	idation c ne and	and loa	ds				(4 L				-
onomic method	The in	formation t	ransmitter	t by this c	locument	is the p	roprietar	y and config	dential pr	operty of	FLSmidth,	Q
	und n		Contra and			No		269		Ver.:	2.0	
	1 ·				1	1	10	200	_ 00		2.0	1

FLSmidth	PROJECT CC&V HIGH LORADIE ORIE	PROJ NO. 1102-1 CALC NO. 6-005			
	SUBJECT ROD MILL FOUNDATION	BY ICCS CHK	DATE DATE	10-25-4	
		SHEET	OF	REV	

USE ASQ 12" EACH WAY FOR TOP MAY

Project: CC&V High Grade Ore

Subject: Rod Mill Foundation Design

 Proj. No.
 11021

 Calc No.
 C-005

 By:
 ECS
 Date:10/25/2011

 Chk:
 Date:

 Sheet 1 of 1
 Rev: 0

Concrete Pedestal Natural Period of Vibration Pedestal A/B

Pedestal Dimensions:

 $L_x := 4ft + 0in = 48 in$ $L_y := 9ft + 6in = 114 in$ H := 19ft + 3.375in = 231.375 in

Concrete Properties:

f_c := 4000psi

$$E := 57000 \text{psi} \cdot \sqrt{\frac{f_c}{\text{psi}}} = 3.605 \times 10^3 \text{ ksi}$$

Loads and Masses:

Pedestal Length X Direction

Pedestal Length Y Direction

Pedestal Height

Concrete Unit Weight

Concrete Compressive Strength

Concrete Modulus of Elasticity

$$\begin{split} m &\coloneqq L_x \cdot L_y \cdot H \cdot \frac{\gamma_c}{g} = 1.062 \times 10^5 \, \text{lb} \\ F_x &\coloneqq 7557 \text{lb} \\ m_x &\coloneqq F_x + 0.23m = 3.199 \times 10^4 \, \text{lb} \\ m_y &\coloneqq F_y + 0.23m = 6.894 \times 10^4 \, \text{lb} \\ \end{split}$$

Dynamic Properties:

 $I_{x} := \frac{L_{x}^{3} \cdot L_{y}}{12} = 1.051 \times 10^{6} \text{ in}^{4} \qquad I_{y} := \frac{L_{x} \cdot L_{y}^{3}}{12} = 5.926 \times 10^{6} \text{ in}^{4} \qquad \text{Moment of Inertia}$ $k_{x} := \frac{(3 \cdot E \cdot I_{x})}{H^{3}} = 1.101 \times 10^{4} \frac{\text{kip}}{\text{ft}} \qquad k_{y} := \frac{(3 \cdot E \cdot I_{y})}{H^{3}} = 6.209 \times 10^{4} \frac{\text{kip}}{\text{ft}} \qquad \text{Stiffness Factor}$ $\omega_{x} := \sqrt{\frac{k_{x}}{0.23m}} = 120.392 \text{ Hz} \qquad \omega_{y} := \sqrt{\frac{k_{y}}{0.23m}} = 285.931 \text{ Hz} \qquad \text{Natural Frequency without added Mass}$ $\omega_{x} := \sqrt{\frac{k_{x}}{m_{x}}} = 105.217 \text{ Hz} \qquad \omega_{y} := \sqrt{\frac{k_{y}}{m_{y}}} = 170.235 \text{ Hz} \qquad \text{Natural Frequency with added Mass}$

Natural Frequency Pedestal A-B.xmcd

10/25/2011, 3:38 PM

000000	00	000	00	000	00	000	00	000	000	00	
00	00	00	00	00	00	00	00	00	00	00	
00	00	00	00	00	00	00	00	00	00	00	
00	00	00		00	00	00		00	00	00	
00	00	00		0000	000	00		00	00	00	
000000	00	00	00	00	00	00	00	00	00	00	
00		00	00	00	00	00	00	00	00	00	
00		000	00	00	00	000	000	000	00	00000	(TM)

Computer program for the Strength Design of Reinforced Concrete Sections

Licensee stated above acknowledges that Portland Cement Association (PCA) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the pcaColumn(tm) computer program. Furthermore, PCA neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the pcaColumn(tm) program.Although PCA has endeavored to produce pcaColumn(tm) error free, the program is not and can't be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensees. Accordingly, PCA disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the pcaColumn(tm) program.

10/25/11 pcaColumn V3.63 - PORTLAND CEMENT ASSOCIATION -Page 2 15:31:41 Licensed to: FLSmidth Column A-B General Information: _____ File Name: P:\11021\116 - Calculations\116.d - Arch_Civil_Struc\C-005 Grinding Area Concrete Project: CC&V High Grade Ore Column: A/B Engineer: ECS Code: ACI 318-02 Units: English Run Option: Investigation Slenderness: Not considered Run Axis: Biaxial Column Type: Architectural Material Properties: _____ f'c = 4 ksify = 60 ksiEc = 3605 ksi Es = 29000 ksi Ultimate strain = 0.003 in/in Beta1 = 0.85Section: _____ Rectangular: Width = 48 in Depth = 114 in Gross section area, $Ag = 5472 \text{ in}^2$ $Ix = 5.92618e + 006 in^4$ $Iy = 1.05062e + 006 in^4$ Xo = 0 in Yo = 0 in Reinforcement: ______ Rebar Database: ASTM A615 Size Diam (in) Area (in²) Size Diam (in) Area (in²) Size Diam (in) Area (in²) ----____ _____ ____ _____ 0.11 # 4 0.50 0.20 0.44 # 7 0.88 0.60 # 5 0.63 # 8 1.00 # 3 0.38 0.31 # 6 0.75 0.79 # 9 1.00 # 10 # 11 1.411.13 1.27 1.27 1.56 # 14 1.69 2.25 # 18 2.26 4.00 Confinement: Tied; #3 ties with #7 bars, #4 with larger bars. phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.65Layout: Rectangular Pattern: Equal Bar Spacing (Cover to transverse reinforcement) Total steel area, $As = 55.88 \text{ in}^2$ at 1.02% Cover = 2 in 44 #10 Load Combinations: _____ U1 = 1.400*Dead + 0.000*Live + 0.000*Wind + 0.000*EarthQuake U2 = 1.200*Dead + 1.600*Live + 0.000*Wind + 0.000*EarthOuake $U_3 = 1.200 \text{*}Dead + 1.000 \text{*}Live + 0.000 \text{*}Wind + 0.000 \text{*}EarthOuake$ U4 = 1.200*Dead + 0.000*Live + 0.800*Wind + 0.000*EarthQuake U5 = 1.200*Dead + 1.000*Live + 1.600*Wind + 0.000*EarthQuake U6 = 0.900*Dead + 0.000*Live + 1.600*Wind + 0.000*EarthQuake U7 = 1.200*Dead + 0.000*Live - 0.800*Wind + 0.000*EarthQuake U8 = 1.200*Dead + 1.000*Live - 1.600*Wind + 0.000*EarthQuake U9 = 0.900*Dead + 0.000*Live - 1.600*Wind + 0.000*EarthQuake U10 = 1.200*Dead + 1.000*Live + 0.000*Wind + 1.000*EarthQuake U11 = 0.900*Dead + 0.000*Live + 0.000*Wind + 1.000*EarthQuake U12 = 1.200*Dead + 1.000*Live + 0.000*Wind - 1.000*EarthQuake U13 = 0.900*Dead + 0.000*Live + 0.000*Wind - 1.000*EarthQuake

•

Service 1	Loads:
-----------	--------

26

 _	_	_	_	_	_	_	_	_	_	_	_	_	_

Loa No. Cas		Mx @ Top k-ft	Mx @ Bot k-ft		My @ Bot k-ft
1 Dea	d 493.0	369.8	369.8	0.0	0.0
Liv		0.0	856.6	0.0	145.5
Win	d 0.0	0.0	0.0	0.0	0.0
E.Q	. 0.0	0.0	1538.5	0.0	2926.0

Factored Loads and Moments with Corresponding Capacities: (see user's manual for notation)

NOTE: Each loading combination includes the following cases: First line - at column top Second line - at column bottom Pu fMnx fMny Load Mux Muy No. Combo k-ft k-ft kip k-ft k-ft fMn/Mu ______ 0.0 15274.1 0.0 29.507 0.0 -15274.1 -0.0 29.507 1 1 U1 517.6 690.2 690.2 -517.6 2 0.0 443.7 3 1 U2 551.1 14812.7 0.0 33.384 -14126.1 -1812.2 4 551.1 -1814.3 -232.8 7.786 0.0 33.502 1 U3 14864.8 5 566.3 443.7 0.0 -1600.2 11.000 -14303.5 -1300.3 -145.5 6 566.3 0.0 33.693 0.0 14949.5 7 1 U4 591.6 443.7 -0.0 33.693 -14949.5 -443.7 0.0 8 591.6 0.0 0.0 33.502 9 1 US 566.3 443.7 14864.8 -1600.2 11.000 -14303.5 10 566.3 -1300.3 -145.5 0.0 43.397 1 U6 332.8 14441.411 443.7 0.0 12 443.7 -332.8 -14441.4 -0.0 43.397 0.0 13 1 U7 443.7 0.0 14949.5 0.0 33.693 591.6 -0.0 33.693 14591.6 -443.7 0.0 -14949.5 0.0 L400... 1455 -14303.5 0.0 33.502 443.7 15 1 U8 566.3 -1600.2 11.000 -1300.3 -145.5 16 566.3 0.0 43.397 14441.4 17 1 U9 443.7 332.8 0.0 -14441.4 -0.0 43.397 443.7 -332.8 0.0 18
 14864.8
 0.0

 -5442.0
 -5888.0
 19 1 U10 566.3 443.7 0.0 0.0 33.502 -2838.8 -3071.5 566.3 20 1.917 443.7 332.8 14441.4 0.0 43.397 21 1 U11 0.0 22 443.7 -2926.0 -3731.7 -5835.1 -1871.3 1.994 1 U12 14864.8 0.0 33.502 23 566.3 443.7 0.0 2780.5 24 566.3 238.2 538.4 6285.1 2.260 332.8 14441.4 0.0 43.397 25 1 U13 443.7 0.0

2926.0

2445.8

5935.5

2.029

*** Program completed as requested! ***

443.7

1205.7

ELSMIDTH	PROJECT CC / HIGH GRAINE ORT	PROJ NO CALC NO	
	SUBJECT ROD MILL FOUNDATION		DATE /0-26-4 DATE
		SHEET	OF REV

FLSmidth	PROJECT	HIGH	PROJ NO. 11021 CALC NO. 6-005				
	SUBJECT ROP	MIL	L Fou	MDATEURI	BY ECS CHK	DATE DATE	10-26-11
					SHEET	OF	REV

PEDESTAL LA DESILAN:

	PROJECT	CC&V Hig	jh Grade C	Dre	PRO	J NO.	1	1021	
					CAL	C NO.	C	-005	
LESMIDTH	SCOPE	Rod Mill	Foundatio	n	ΒY	ECS	DATE	26-0	Dct-11
				· · · ·	CHK		DATE		
		•		14 A. A. A.	SHE	ET	OF	REV	

Pedestal C/D Loading

Pedestal Height (ft): 19.25

Load Locations:

Using CL Main Gear & CL Pinnion as Axis Origin

· · ·	X (ft)	Y (ft)
Pedestal Center of Gravity	1.83	0.13

	Coord	linates	Eccen	tricity
Location	X (ft)	Y (ft)	e _x (ft)	e _y (ft)
С	2.36	0.00	0.53	-0.13
D	-2.36	0.00	-4.20	-0.13
Н	0.00	2.23	-1.83	2.10

Dead Load:

Location	F _x (kip)	F _v (kip)	E (kin)	M _x (k*ft)	M _y (k*ft)		
LOCATION	1 × (mb)	i y (kip)	F _z (kip)	Тор	Bot	Тор	Bot	
С	0.0	0.0	3.4	-0.4	-0.4	1.8	1.8	
D	0.0	0.0	6,1	-0.8	-0.8	-25.6	-25.6	
Н	0.0	0.0	8.8	18.5	18.5	-16.1	-16.1	
Result	0.0	0.0	18.3	17.3	17.3	-39.9	-39.9/	

Live Load:

Loodion	E (kin)	M_{X}		(k*ft)	M _y (k*ft)		
Location	F _x (kip)	F _y (kip)	F _z (kip)	Тор	Bot	Тор	Bot
С	0.0	27.6	31.0	-3.9	527.4	16.5	16.5
D	-7.6	25.7	-31.0	3.9	498.6	130.1	-15.3
Н	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Result	-7.6	53.3	0.0	0.0	1026.0	146.6	1.1

Project: CC&V High Grade Ore

Subject: Rod Mill Foundation Design

 Proj. No.
 11021

 Calc No.
 C-005

 By:
 ECS
 Date: 10/26/2011

 Chk:
 Date:

 Sheet 1 of 1
 Rev: 0

Concrete Pedestal Natural Period of Vibration Pedestal C/D

Pedestal Dimensions:

 $L_x := 10ft + 0in = 120 in$ $L_y := 6ft + 1in = 73 in$ H := 19ft + 3.375in = 231.375 in

Concrete Properties:

$$\gamma_c := 145 \, \text{pcf}$$

$$f_c := 4000 \text{psi}$$

$$E := 57000 \text{psi} \cdot \sqrt{\frac{f_c}{\text{psi}}} = 3.605 \times 10^3 \text{ksi}$$

Loads and Masses:

Pedestal Length X Direction

Pedestal Length Y Direction

Pedestal Height

Concrete Unit Weight

Concrete Compressive Strength

Concrete Modulus of Elasticity

$$\begin{split} \mathbf{m} &\coloneqq \mathbf{L}_{\mathbf{X}} \cdot \mathbf{L}_{\mathbf{y}} \cdot \mathbf{H} \cdot \frac{\gamma_{\mathbf{c}}}{g} = 1.701 \times 10^{5} \, \text{lb} & \text{Pedestal Mass} \\ \mathbf{F}_{\mathbf{X}} &\coloneqq 7557 \text{lb} & \mathbf{F}_{\mathbf{y}} \coloneqq 53300 \text{lb} & \text{Applied Mass} \\ \mathbf{m}_{\mathbf{X}} &\coloneqq \mathbf{F}_{\mathbf{X}} + 0.23 \, \mathbf{m} = 4.667 \times 10^{4} \, \text{lb} & \mathbf{m}_{\mathbf{y}} \coloneqq \mathbf{F}_{\mathbf{y}} + 0.23 \, \mathbf{m} = 9.242 \times 10^{4} \, \text{lb} & \text{Equivalent Mass} \end{split}$$

Dynamic Properties:

 $I_{x} := \frac{L_{x}^{3} \cdot L_{y}}{12} = 1.051 \times 10^{7} \text{ in}^{4} \qquad I_{y} := \frac{L_{x} \cdot L_{y}^{3}}{12} = 3.89 \times 10^{6} \text{ in}^{4} \qquad \text{Moment of Inertia}$ $k_{x} := \frac{(3 \cdot \text{E} \cdot I_{x})}{\text{H}^{3}} = 1.101 \times 10^{5} \frac{\text{kip}}{\text{ft}} \qquad k_{y} := \frac{(3 \cdot \text{E} \cdot I_{y})}{\text{H}^{3}} = 4.076 \times 10^{4} \frac{\text{kip}}{\text{ft}} \qquad \text{Stiffness Factor}$ $\omega_{x} := \sqrt{\frac{k_{x}}{0.23m}} = 300.98 \text{ Hz} \qquad \omega_{y} := \sqrt{\frac{k_{y}}{0.23m}} = 183.096 \text{ Hz} \qquad \text{Natural Frequency without added Mass}$ $\omega_{x} := \sqrt{\frac{k_{x}}{m_{x}}} = 275.54 \text{ Hz} \qquad \omega_{y} := \sqrt{\frac{k_{y}}{m_{y}}} = 119.121 \text{ Hz} \qquad \text{Natural Frequency with added Mass}$

Natural Frequency Pedestal C-D.xmcd

10/26/2011, 12:31 PM

00000	000	000	000	000	. 000	000	000	000	000	00	
00	00	00	00	00	00	00	00	00	00	00	
00	00	00	00	00	00	00	00	00	00	00	
00	00	00		00	00	00		00	00	00	
00	00	00		0000	0000	00		00	00	00	
00000	000	00	00	00	00	00	00	00	00	00	
00		00	00	00	00	00	00	00	00	00	
00		000	000	00	00	000	000	000	000	00000	(TM)

Computer program for the Strength Design of Reinforced Concrete Sections

Licensee stated above acknowledges that Portland Cement Association (PCA) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the pcaColumn(tm) computer program. Furthermore, PCA neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the pcaColumn(tm) program.Although PCA has endeavored to produce pcaColumn(tm) error free, the program is not and can't be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensees. Accordingly, PCA disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the pcaColumn(tm) program.

10/26/11 pcaColumn V3.63 - PORTLAND CEMENT ASSOCIATION -Page 2 12:30:15 Licensed to: FLSmidth Column C-D General Information: _____ File Name: P:\11021\116 - Calculations\116.d - Arch_Civil_Struc\C-005 Grinding Area Concrete Project: CC&V High Grade Ore Column: A/B Engineer: ECS Code: ACI 318-02 Units: English Run Option: Investigation Slenderness: Not considered Run Axis: Biaxial Column Type: Architectural Material Properties: ================================= f'c = 4 ksify = 60 ksiEc = 3605 ksi Es = 29000 ksi Ultimate strain = 0.003 in/in Beta1 = 0.85Section: ======= Rectangular: Width = 120 in Depth = 73 in Gross section area, $Ag = 8760 \text{ in}^2$ $Iy = 1.0512e + 007 in^4$ $Ix = 3.89017e + 006 in^{4}$ Xo = 0 in Yo = 0 in Reinforcement: _____ Rebar Database: ASTM A615 Size Diam (in) Area (in²) Size Diam (in) Area (in²) Size Diam (in) Area (in²) ---- ------____ _____

 # 3
 0.38
 0.11
 # 4
 0.50
 0.20
 # 5
 0.63
 0.31

 # 6
 0.75
 0.44
 # 7
 0.88
 0.60
 # 8
 1.00
 0.79

 # 9
 1.13
 1.00
 # 10
 1.27
 1.27
 # 11
 1.41
 1.56

 # 11 # 9 1.00 # 10 1.13 1.27 1.27 1.411.56 # 14 1.69 2.25 # 18 2.26 4.00 Confinement: Tied; #3 ties with #7 bars, #4 with larger bars. phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.65Layout: Rectangular Pattern: Equal Bar Spacing (Cover to transverse reinforcement) Total steel area, As = 55.88 in^2 at 0.64% 44 #10 Cover = 2 in Load Combinations: ______ U1 = 1.400*Dead + 0.000*Live + 0.000*Wind + 0.000*EarthQuake U2 = 1.200*Dead + 1.600*Live + 0.000*Wind + 0.000*EarthQuake U3 = 1.200*Dead + 1.000*Live + 0.000*Wind + 0.000*EarthQuake U4 = 1.200*Dead + 0.000*Live + 0.800*Wind + 0.000*EarthQuake U5 = 1.200*Dead + 1.000*Live + 1.600*Wind + 0.000*EarthQuake U6 = 0.900*Dead + 0.000*Live + 1.600*Wind + 0.000*EarthQuake U7 = 1.200*Dead + 0.000*Live - 0.800*Wind + 0.000*EarthQuake U8 = 1.200*Dead + 1.000*Live - 1.600*Wind + 0.000*EarthQuake U9 = 0.900*Dead + 0.000*Live - 1.600*Wind + 0.000*EarthQuake U10 = 1.200*Dead + 1.000*Live + 0.000*Wind + 1.000*EarthQuake U11 = 0.900*Dead + 0.000*Live + 0.000*Wind + 1.000*EarthQuake U12 = 1.200*Dead + 1.000*Live + 0.000*Wind - 1.000*EarthQuake U13 = 0.900*Dead + 0.000*Live + 0.000*Wind - 1.000*EarthQuake

10/26/11 pcaColumn V3.63 - PORTLAND CEMENT ASSOCIATION -12:30:15 Licensed to: FLSmidth

Service	Loads:
DCIVICC	Houdb.

Load No. Case	Axial Load kip	Mx @ Top k-ft	Mx @ Bot k-ft	My @ Top k-ft	My @ Bot k-ft
1 Dead Live	18.3	17.3	17.3 1026.0	-39.9 146.6	-39.9
Wind E.Q.	0.0	0.0	0.0	0.0	0.0

Factored Loads and Moments with Corresponding Capacities: (see user's manual for notation)

NOTE: Each loading combination includes the following cases:

NOIL	First	line - at o	column top column bottom	.b chie forfie	wing cases.	~	
		Pu			fMnx		
No.	Combo	kip	k-ft	k-ft	k-ft	k-ft	fMn/Mu
1	1 U1	25.6	24.2	-55.9	5135.3	-11843.8	212.027
2		25.6	-24.2	55.9	-5135.3	11843.8	212.027
3	1 U2	22.0	20.8	186.7	1515.9	13631.4	73.020
4		22.0	-1662.4	46.1		235.1	5.097
5	1 U3	22.0	20.8	98.7	2777.7	13209.0	133.803
6		22.0	-1046.8	46.8	-8459.9	378.1	8.082
7	1 U4	22.0	20.8	-47.9	5130.6	-11833.1	247.140
8		22.0	-20.8	47.9	-5130.6	11833.1	247.140
9	1 U5	22.0	20.8	98.7	2777.7	13209.0	133.803
10		22.0	-1046.8	46.8	-8459.9	378.1	8.082
11	1 U6	16.5		-35.9	5123.6	-11816.9	329.069
12		16.5	-15.6	35.9	-5123.6	11816.9	329.069
13	1 U7	22.0	20.8		5130.6	-11833.1	247.140
14		22.0	-20.8	47.9		11833.1	247.140
15	1 U8	22.0	20.8	· 98.7	2777.7	13209.0	133.803
16		22.0	-1046.8	46.8	-8459.9	378.1	8.082
17	1 U9	16.5	15.6	-35.9	5123.6	-11816.9	329.069
18		16.5	-15.6	35.9			329.069
19	1 U10	22.0	20.8	98.7	2777.7	13209.0	133.803
20		22.0	-1046.8	46.8	-8459.9	378.1	8.082
21	1 U11	16.5	15.6	-35.9	5123.6	-11816.9	329.069
22		16.5		35.9			329.069
23	1 U12	22.0	20.8		2777.7		133.803
24		22.0	-1046.8	46.8			8.082
25	1 U13		15.6		5123.6		329.069
26		16.5	-15.6	35.9	-5123.6	11816.9	329.069

*** Program completed as requested! ***

	PROJECT CCEV HIGH WICADE ORE	PROJ NO. CALC NO.	((
ELSMIDTH	SUBJECT ROD MILL FOURIDATION	BY ECS CHK SHEET	DATE 10-26-4/ DATE OF REV

PEDESTAL E DESIGN

 Project:
 CC&V High Grade Ore

 Subject:
 Rod Mill Foundation Design

 Proj. No.
 11021

 Calc No.
 C-005

 By:
 ECS
 Date:10/26/2011

 Chk:
 Date:

 Sheet 1 of 1
 Rev: 0

Concrete Pedestal Natural Period of Vibration Pedestal E

Pedestal Dimensions:

 $L_x := 3ft + 7in = 43in$

 $L_y := 6ft + 11in = 83 in$ H := 19ft + 1.375in = 229.375 in

Concrete Properties:

$$\gamma_c := 145 \text{pcf}$$

$$f_c := 4000 psi$$

$$E := 57000 \text{ psi} \cdot \sqrt{\frac{f_c}{\text{ psi}}} = 3.605 \times 10^3 \text{ ksi}$$

Pedestal Length X Direction

Pedestal Length Y Direction

Pedestal Height

Concrete Unit Weight

Concrete Compressive Strength

Concrete Modulus of Elasticity

$$\begin{split} m &:= L_{x} \cdot L_{y} \cdot H \cdot \frac{\gamma_{c}}{g} = 6.869 \times 10^{4} \, \text{lb} \\ F_{x} &:= 0 \, \text{lb} \\ m_{x} &:= F_{x} + 0.23m = 1.58 \times 10^{4} \, \text{lb} \\ \end{split} \qquad \begin{array}{l} \text{Pedestal Mass} \\ \text{Applied Mass} \\ \text{Equivalent Mass} \\ \end{array}$$

Dynamic Properties:

 $I_{\mathbf{x}} := \frac{L_{\mathbf{x}}^{3} \cdot L_{\mathbf{y}}}{12} = 5.499 \times 10^{5} \text{ in}^{4} \qquad I_{\mathbf{y}} := \frac{L_{\mathbf{x}} \cdot L_{\mathbf{y}}^{3}}{12} = 2.049 \times 10^{6} \text{ in}^{4} \qquad \text{Moment of Inertia}$ $k_{\mathbf{x}} := \frac{(3 \cdot \mathbf{E} \cdot \mathbf{I}_{\mathbf{x}})}{\mathbf{H}^{3}} = 5.914 \times 10^{3} \frac{\mathrm{kip}}{\mathrm{ft}} \qquad k_{\mathbf{y}} := \frac{(3 \cdot \mathbf{E} \cdot \mathbf{I}_{\mathbf{y}})}{\mathbf{H}^{3}} = 2.203 \times 10^{4} \frac{\mathrm{kip}}{\mathrm{ft}} \qquad \text{Stiffness Factor}$ $\omega_{\mathbf{x}} := \sqrt{\frac{k_{\mathbf{x}}}{0.23m}} = 109.74 \, \text{Hz} \qquad \omega_{\mathbf{y}} := \sqrt{\frac{k_{\mathbf{y}}}{0.23m}} = 211.824 \, \text{Hz} \qquad \text{Natural Frequency without added Mass}$ $\omega_{\mathbf{x}} := \sqrt{\frac{k_{\mathbf{x}}}{m_{\mathbf{x}}}} = 109.74 \, \text{Hz} \qquad \omega_{\mathbf{y}} := \sqrt{\frac{k_{\mathbf{y}}}{m_{\mathbf{y}}}} = 211.824 \, \text{Hz} \qquad \text{Natural Frequency with added Mass}$

Natural Frequency Pedestal E.xmcd

10/26/2011, 1:41 PM

(TM)

Computer program for the Strength Design of Reinforced Concrete Sections

Licensee stated above acknowledges that Portland Cement Association (PCA) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the pcaColumn(tm) computer program. Furthermore, PCA neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the pcaColumn(tm) program.Although PCA has endeavored to produce pcaColumn(tm) error free, the program is not and can't be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensees. Accordingly, PCA disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the pcaColumn(tm) program.

10/26/11 pcaColumn V3.63 - PORTLAND CEMENT ASSOCIATION -Page 2 14:15:19 Licensed to: FLSmidth Column E General Information: File Name: P:\11021\116 - Calculations\116.d - Arch Civil Struc\C-005 Grinding Area Concrete Project: CC&V High Grade Ore Column: A/B Engineer: ECS ACI 318-02 Code: Units: English Run Option: Investigation Slenderness: Not considered Run Axis: Biaxial Column Type: Architectural Material Properties: -----f'C = 4 ksify = 60 ksiEs = 29000 ksi EC = 3605 ksiUltimate strain = 0.003 in/in Beta1 = 0.85Section: _____ Rectangular: Width = 43 in Depth = 83 in Gross section area, $Ag = 3569 \text{ in}^2$ $Ix = 2.0489e+006 in^4$ $Iy = 549923 in^{4}$ Xo = 0 in Yo = 0 in Reinforcement: _____ Rebar Database: ASTM A615 Size Diam (in) Area (in²) Size Diam (in) Area (in²) Size Diam (in) Area (in²) ____ ____ # 5 # 8 # З # 4 0.38 0.11 0.50 0.20 0.63 0.31 # 6 # 7 0.79 0.75 0.44 0.88 0.60 1.00 # 9 1.56 # 10 # 11 1.13 1.00 1.27 1.27 1.41# 14 1.69 2.25 # 18 2.26 4.00 Confinement: Tied; #3 ties with #7 bars, #4 with larger bars. phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.65Layout: Rectangular Pattern: Equal Bar Spacing (Cover to transverse reinforcement) Total steel area, As = 25.40 in^2 at 0.71%20 #10 Cover = 2 in Load Combinations: _________ U1 = 1.400*Dead + 0.000*Live + 0.000*Wind + 0.000*EarthQuake U2 = 1.200*Dead + 1.600*Live + 0.000*Wind + 0.000*EarthQuake U3 = 1.200*Dead + 1.000*Live + 0.000*Wind + 0.000*EarthQuake U4 = 1.200*Dead + 0.000*Live + 0.800*Wind + 0.000*EarthQuake U5 = 1.200*Dead + 1.000*Live + 1.600*Wind + 0.000*EarthQuake U6 = 0.900*Dead + 0.000*Live + 1.600*Wind + 0.000*EarthQuake U7 = 1.200*Dead + 0.000*Live - 0.800*Wind + 0.000*EarthQuake U8 = 1.200*Dead + 1.000*Live - 1.600*Wind + 0.000*EarthQuake U9 = 0.900*Dead + 0.000*Live - 1.600*Wind + 0.000*EarthQuake U10 = 1.200*Dead + 1.000*Live + 0.000*Wind + 1.000*EarthQuake U11 = 0.900*Dead + 0.000*Live + 0.000*Wind + 1.000*EarthQuake U12 = 1.200*Dead + 1.000*Live + 0.000*Wind - 1.000*EarthQuake U13 = 0.900*Dead + 0.000*Live + 0.000*Wind - 1.000*EarthQuake

Service Loads:

===============================

No.	Load Case	Axial Load kip	Mx @ Top k-ft	Mx @ Bot k-ft	My @ Top k-ft	My @ Bot k-ft
1	Dead	6.4	0.0	0.0	0.0	0.0
	Live	10.9	0.0	0.0	0.0	· 0.0
	Wind	0.0	0.0	0.0	0.0	0.0
	E.Q.	0.0	0.0	0.0	0.0	0.0
2	Dead	6.4	0.0	0.0	0.0	0.0
	Live	-10.9	0.0	0.0	0.0	0.0.
	Wind	0.0	0.0	0.0	0.0	0.0
	E.Q.	0.0	0.0	0.0	0.0	0.0

Factored Loads and Moments with Corresponding Capacities: (see user's manual for notation)

NOTE: Each loading combination includes the following cases:

11011	First 1	ine - at col		5 CHE 10110	willy cases.		
		line - at col					
	Load	Pu	Mux	Muy	fMnx	fMny	
No.	Combo	kip	k-ft	k-ft	k-ft	k-ft	fMn/Mu
1	1 U1	9.0	0.0	0.0	4292.9	0.0	999.999
2	•	9.0	0.0	0.0	4292.9	0.0	999.999
3	1 U2	25.1	0.0	0.0	4336.0	0.0	999.999
4		25.1	0.0	0.0	4336.0	0.0	999.999
5	1 U3	18.6	0.0	0.0	4318.5	0.0	999.999
6		18.6	0.0	0.0	4318.5	0.0	999.999
7	1 U4	7.7	0.0	0.0	4289.4	0.0	999.999
8		7.7	0.0	0.0	4289.4	0.0	999.999
9	1 U5	18.6	0.0	0.0	4318.5	0.0	999.999
10		18.6	0.0	0.0	4318.5	0.0	999.999
11	1 U6	5.8	0.0	0.0	4284.2	0.0	999.999
12		5.8	0.0	0.0	4284.2	0.0	999.999
13	1 U7	7.7	0.0	、0.0	4289.4	0.0	999.999
14		7.7	0.0	0.0	4289.4	0.0	999.999
15	1 U8	18.6	0.0	0.0	4318.5	0.0	999.999
16		18.6	0.0	0.0	4318.5	0.0	999.999
17	1 U9	5.8	0.0	0.0	4284.2	0.0	999.999
18	1 111 0	5.8	0.0	0.0	4284.2	0.0	999.999
19	1 U10	18.6	0.0	0.0	4318.5	0.0	999.999
20 21	1 TT 1	18.6 5.8	0.0	0.0	4318.5	0.0	999.999
21	1 U11		0.0	0.0	4284.2	0.0	999.999
22	1 U12	5.8 18.6	0.0 0.0	0.0	4284.2	0.0	999.999
23	I UIZ	18.6	0.0	0.0 0.0	4318.5 4318.5	0.0 0.0	999.999
25	1 U13	5.8	0.0	0.0	4284.2	0.0	999.999 999.999
26	I UID	5.8	0.0	0.0	4284.2	0.0	999.999
27	2 U1	9.0	0.0	0.0	4292.9	0.0	999.999
28	2 01	9.0	0.0	0.0	4292.9	0.0	999.999
29	2 U2	-9.6	0.0	0.0	4242.7	0.0	999.999
30		-9.6	0.0	0.0	4242.7	0.0	999.999
31	2 U3	-3.1	0.0	0.0	4260.3	0.0	999.999
32		-3.1	0.0	0.0	4260.3	0.0	999.999
33	2 U4	7.7	0.0	0.0	4289.4	0.0	999.999
34		7.7	0.0	0.0	4289.4	0.0	999.999
35	2 U5	-3.1	0.0	0.0	4260.3	0.0	999.999
36		-3.1	0.0	0.0	4260.3	0.0	999.999
37	2 U6	5.8	0.0	0.0	4284.2	0.0	999.999
38		5.8	0.0	0.0	4284.2	0.0	999.999
39	2 U7	7.7	0.0	0.0	4289.4	0.0	999.999
40		7.7	0.0	0.0	4289.4	0.0	999.999
41	2 U8	-3.1	0.0	0.0	4260.3	0.0	999.999
42		-3.1	0.0	0.0	4260.3	0.0	999.999

10/26/11 pcaColumn V3.63 - PORTLAND CEMENT ASSOCIATION - 14:15:19 Licensed to: FLSmidth

Page 4 Column E

43 2 U9	5.8	0.0	0.0	4284.2	0.0	999.999
44	5.8	0.0	0.0	4284.2	0.0	999.999
45 2 U10	-3.1	0.0	0.0	4260.3	0.0	999.999
46	-3.1	0.0	0.0	4260.3	0.0	999.999
47 2 U11	5.8	0.0	0.0	4284.2	0.0	999.999
48	5.8	0.0	0.0	4284.2	0.0	999.999
49 2 U12	-3.1	0.0	0.0	4260.3	0.0	999.999
50	-3.1	0.0	0.0	4260.3	0.0	999.999
51 2 U13	5.8	0.0	0.0	4284.2	0.0	999 . 999 [.]
52	5.8	0.0	0.0	4284.2	0.0	999.999

*** Program completed as requested! ***

	PROJECT CC & HIGH GRADE ORE		11021 C-005
F Smidth	SUBJECT ROD MILL FOUNDATION	BY ECS CHK	DATE 10-27-11 DATE
		SHEET	OF REV

PEDESTAL FIL DEST GAN

REPUBLICAL

Pedestal F/G Loading

Pedestal Height (ft): 18.75

Load Locations:

Using CL Main Motor & CL Pedestal

			X (ft)	Y ((ft)
Pe	edestal Center of	Gravity	-2.03	.0.	00
	an de her stelle da a	19765-000-		100 C	

Location	Coord	linates	Eccer	ntricity
Location	X (ft)	Y (ft)	e _x (ft)	e _y (ft)
G	-5.83	0.00	-3.80	0.00
F	0.00	0.00	2.03	0.00

Dead Load:

Location	E (kin)	E (kin)	E (kin)	M _× (I	<*ft)	M _v (k*ft)		
Location	F _x (kip)	F _y (kip)	F _z (kip)	Тор	Bot	Тор	Bot	
G	0.0	0.0	17.0	0.0	0.0	-64.6	-64.6	
F	0.0	0.0	2.2	0.0	0.0	4.4	4,4	
Result	0.0	0.0	19.2	0.0	0.0	-60.3	-60.3	

Live Load:

Result	0.0	0.0	4.7	0.0	0.0	-11.1	-11.1	
F	0.0	0.0	1.1	0.0	0.0	2.3	2.3	
G	0.0	0.0	3.5	0.0	0.0	-13.4	-13.4	
Location	F _x (kip)	F _y (kip)	F _z (kip)	Тор	Bot	Тор	Bot	
			(kim) E (kim)	M _x (k*ft)	M _v (k*ft)		

Page 1 Column G

(TM)

Computer program for the Strength Design of Reinforced Concrete Sections

Licensee stated above acknowledges that Portland Cement Association (PCA) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the pcaColumn(tm) computer program. Furthermore, PCA neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the pcaColumn(tm) program.Although PCA has endeavored to produce pcaColumn(tm) error free, the program is not and can't be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensees. Accordingly, PCA disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the pcaColumn(tm) program.

========	Information:							
	ct: CC&V Higl n: A/B	h Grade Or		Engine	- Arch_Civi er: ECS English	l_Struc\C-	005 Grind	ing Area Concrete
	ACT 210-1			UNITES:	DUGTION			
	tion: Invest sis: Biaxia				rness: Not Type: Arch			
Material	Properties:		· · · · · · · · · · · · · · · · · · ·					
========				_	a di basa di sana di sa			
Ec	= 4 ksi = 3605 ksi ate strain = (0.003 in/i	n	4	60 ksi 29000 ksi			
	= 0.85							
Section:						in the second		
======== Rectan	ngular: Width	- 163 25	in	Denth	= 60 in	and the second		
	gurar. nrach		ېږې داغې د. اېږو اخپو خکک د ۱۰۰	Depen			$= \frac{1}{2} \left(\frac{1}{2} \sum_{i=1}^{n-1} \frac{1}{2}$	n an
	section area		95 in^2					
Ix = Xo =	2.9385e+006 : 0 in	in^4		Iy = Yo =	2.17535e+00 0 in	7 in^4		
Reinforce								
======== Pobar	Database: AS							
	Database: AS Diam (in) Area		Size Diam	(in) A	rea (in^2)	Size Dia	m (in) Are	-a (in^2)
				· · ·				
4 D	0.38	0.11	# 4	0.50	0.20		0.63	0.31
# 3		0.44	# 7	0.88	0.60	# 8	1.00	0.79
# 6	0.75							
	0.75 1.13 1.69	1.00 2.25		1.27 2.26	1.27 4.00	# 11	1.41	1.56
# 6 # 9 # 14 Confin phi(a) Layout Patter Total	1.13 1.69 mement: Tied; = 0.8, phi a: Rectangular cn: Equal Bar steel area, b	1.00 2.25 #3 ties w (b) = 0.9, r Spacing As = 50.80	<pre># 10 # 18 ith #7 bar phi(c) = (Cover to</pre>	1.27 2.26 s, #4 0.65 transve	1.27 4.00 with larger	# 11 bars.		
# 6 # 9 # 14 Confin phi(a) Layout Patter	1.13 1.69 mement: Tied; = 0.8, phi a: Rectangular cn: Equal Bar steel area, b	1.00 2.25 #3 ties w (b) = 0.9, r Spacing As = 50.80	<pre># 10 # 18 ith #7 bar phi(c) = (Cover to</pre>	1.27 2.26 s, #4 0.65 transve	1.27 4.00 with larger	# 11 bars.		
# 6 # 9 # 14 Confin phi(a) Layout Patter Total	<pre>1.13 1.69 mement: Tied; = 0.8, phi c: Rectangular cn: Equal Bar steel area, D Cover = 2</pre>	1.00 2.25 #3 ties w (b) = 0.9, r Spacing As = 50.80	<pre># 10 # 18 ith #7 bar phi(c) = (Cover to</pre>	1.27 2.26 s, #4 0.65 transve	1.27 4.00 with larger	# 11 bars.		
<pre># 6 # 9 # 14 Confin phi(a) Layout Patter Total 40 #10 Load Comb ========</pre>	<pre>1.13 1.69 mement: Tied; = 0.8, phi c: Rectangular cn: Equal Bar steel area, n) Cover = 2 pinations: ========</pre>	1.00 2.25 #3 ties w: (b) = 0.9, r Spacing As = 50.80 in	<pre># 10 # 18 ith #7 bar phi(c) = (Cover to in² at 0</pre>	1.27 2.26 s, #4 0.65 transve .52%	1.27 4.00 with larger rse reinfor	<pre># 11 bars. cement)</pre>		
<pre># 6 # 9 # 14 Confin phi(a) Layout Patter Total 40 #10 Load Comb ======== U1 =</pre>	<pre>1.13 1.69 mement: Tied; = 0.8, phi c: Rectangular cn: Equal Bar steel area, r cover = 2 pinations: ======= 1.400*Dead -</pre>	1.00 2.25 #3 ties w: (b) = 0.9, r Spacing As = 50.80 in + 0.000*Li	<pre># 10 # 18 ith #7 bar phi(c) = (Cover to in² at 0 ve + 0.000</pre>	1.27 2.26 s, #4 0.65 transve .52% *Wind +	1.27 4.00 with larger rse reinfor 0.000*Eart	<pre># 11 bars. cement) hQuake</pre>		
<pre># 6 # 9 # 14 Confin phi(a) Layout Patter Total 40 #10 Load Comb ======== U1 =</pre>	<pre>1.13 1.69 mement: Tied; = 0.8, phi c: Rectangular rn: Equal Bar steel area, r cover = 2 pinations: ======= 1.400*Dead - 1.200*Dead -</pre>	1.00 2.25 #3 ties w: (b) = 0.9, r Spacing As = 50.80 in + 0.000*Li + 1.600*Li	<pre># 10 # 18 ith #7 bar phi(c) = (Cover to in² at 0 ve + 0.000 ve + 0.000</pre>	1.27 2.26 s, #4 0.65 transve .52% *Wind + *Wind +	1.27 4.00 with larger rse reinfor 0.000*Eart 0.000*Eart	<pre># 11 bars. cement) hQuake hQuake</pre>		
<pre># 6 # 9 # 14 Confin phi(a) Layout Patter Total 40 #10 Load Comb ======= U1 = U2 =</pre>	<pre>1.13 1.69 mement: Tied; = 0.8, phi c: Rectangular cn: Equal Bar steel area, r cover = 2 pinations: ======= 1.400*Dead -</pre>	1.00 2.25 #3 ties w: (b) = 0.9, r Spacing As = 50.80 in + 0.000*Li + 1.600*Li + 1.000*Li	<pre># 10 # 18 ith #7 bar phi(c) = (Cover to in² at 0 ve + 0.000 ve + 0.000 ve + 0.000 ve + 0.000</pre>	1.27 2.26 s, #4 0.65 transve .52% *Wind + *Wind + *Wind +	1.27 4.00 with larger rse reinfor 0.000*Eart 0.000*Eart 0.000*Eart	<pre># 11 bars. cement) hQuake hQuake hQuake</pre>		
<pre># 6 # 9 # 14 Confin phi(a) Layout Patter Total 40 #10 Load Comb ======== U1 = U2 = U2 = U3 = U4 = U5 =</pre>	<pre>1.13 1.69 mement: Tied; = 0.8, phi c: Rectangular steel area, r cover = 2 pinations: ====== 1.400*Dead - 1.200*Dead - 1.200*Dead - 1.200*Dead - 1.200*Dead - 1.200*Dead -</pre>	1.00 2.25 #3 ties w: (b) = 0.9, r Spacing As = 50.80 in + 0.000*Li; + 1.600*Li; + 1.000*Li; + 1.000*Li;	<pre># 10 # 18 ith #7 bar phi(c) = (Cover to in^2 at 0 ve + 0.000 ve + 0.000 ve + 0.000 ve + 0.800 ve + 1.600</pre>	1.27 2.26 s, #4 0.65 transve .52% *Wind + *Wind + *Wind + *Wind +	1.27 4.00 with larger rse reinfor 0.000*Eart 0.000*Eart 0.000*Eart 0.000*Eart 0.000*Eart	<pre># 11 bars. cement) hQuake hQuake hQuake hQuake hQuake hQuake</pre>		
<pre># 6 # 9 # 14 Confin phi(a) Layout Patter Total 40 #10 Load Comb ======== U1 = U2 = U3 = U4 = U4 = U5 = U6 =</pre>	<pre>1.13 1.69 mement: Tied; = 0.8, phi a: Rectangular steel area, r b) Cover = 2 pinations: ====================================</pre>	1.00 2.25 #3 ties w: (b) = 0.9, r Spacing As = 50.80 in + 0.000*Li + 1.600*Li + 1.000*Li + 1.000*Li + 0.000*Li	<pre># 10 # 18 ith #7 bar phi(c) = (Cover to in^2 at 0 ve + 0.000 ve + 0.000 ve + 0.000 ve + 0.800 ve + 1.600 ve + 1.600</pre>	1.27 2.26 s, #4 0.65 transve .52% *Wind + *Wind + *Wind + *Wind + *Wind +	1.27 4.00 with larger rse reinfor 0.000*Eart 0.000*Eart 0.000*Eart 0.000*Eart 0.000*Eart	<pre># 11 bars. cement) hQuake hQuake hQuake hQuake hQuake hQuake hQuake</pre>		
<pre># 6 # 9 # 14 Confin phi(a) Layout Patter Total 40 #10 Load Comb ======== U1 = U1 = U2 = U3 = U4 = U5 = U6 = U7 =</pre>	<pre>1.13 1.69 mement: Tied; = 0.8, phi c: Rectangular steel area, r cover = 2 pinations: ====== 1.400*Dead - 1.200*Dead - 1.200*Dead - 1.200*Dead - 0.900*Dead - 0.900*Dead - 1.200*Dead - 0.900*Dead - 1.200*Dead -</pre>	1.00 2.25 #3 ties w: (b) = 0.9, r Spacing As = 50.80 in + 0.000*Li + 1.600*Li + 1.000*Li + 1.000*Li + 0.000*Li + 0.000*Li	<pre># 10 # 18 ith #7 bar phi(c) = (Cover to in^2 at 0 ve + 0.000 ve + 0.000 ve + 0.000 ve + 0.800 ve + 1.600 ve + 1.600 ve - 0.800</pre>	<pre>1.27 2.26 s, #4 0.65 transve .52% *Wind + *Wind +</pre>	1.27 4.00 with larger rse reinfor 0.000*Eart 0.000*Eart 0.000*Eart 0.000*Eart 0.000*Eart 0.000*Eart	<pre># 11 bars. cement) hQuake hQuake hQuake hQuake hQuake hQuake hQuake hQuake</pre>		
<pre># 6 # 9 # 14 Confin phi(a) Layout Patter Total 40 #10 Load Comb ======== U1 = U1 = U2 = U3 = U4 = U5 = U4 = U5 = U6 = U7 = U8 =</pre>	<pre>1.13 1.69 mement: Tied; = 0.8, phi a: Rectangular cm: Equal Bar steel area, r b Cover = 2 pinations: ====================================</pre>	1.00 2.25 #3 ties w: (b) = 0.9, r Spacing As = 50.80 in + 1.600*Li + 1.000*Li + 1.000*Li + 0.000*Li + 0.000*Li + 0.000*Li + 1.000*Li	<pre># 10 # 18 ith #7 bar phi(c) = (Cover to in^2 at 0 ve + 0.000 ve + 0.000 ve + 0.000 ve + 0.800 ve + 1.600 ve + 1.600 ve - 0.800 ve - 1.600</pre>	1.27 2.26 s, #4 0.65 transve .52% *Wind + *Wind + *Wind + *Wind + *Wind + *Wind + *Wind + *Wind +	1.27 4.00 with larger rse reinfor 0.000*Eart 0.000*Eart 0.000*Eart 0.000*Eart 0.000*Eart 0.000*Eart 0.000*Eart	<pre># 11 bars. cement) hQuake hQuake</pre>		
<pre># 6 # 9 # 14 Confin phi(a) Layout Patter Total 40 #10 Load Comb ======== U1 = U1 = U2 = U3 = U4 = U5 = U6 = U7 =</pre>	<pre>1.13 1.69 mement: Tied; = 0.8, phi c: Rectangular steel area, r cover = 2 pinations: ======= 1.400*Dead - 1.200*Dead - 1.200*Dead - 1.200*Dead - 1.200*Dead - 1.200*Dead - 1.200*Dead - 1.200*Dead - 1.200*Dead - 0.900*Dead - 0.900*Dead - 0.900*Dead -</pre>	<pre>1.00 2.25 #3 ties w: (b) = 0.9, r Spacing As = 50.80 in + 0.000*Li; + 1.600*Li; + 1.000*Li; + 0.000*Li; + 0.000*Li; + 0.000*Li; + 0.000*Li; + 0.000*Li; + 0.000*Li; + 0.000*Li;</pre>	<pre># 10 # 18 ith #7 bar phi(c) = (Cover to in^2 at 0 ve + 0.000 ve + 0.000 ve + 0.000 ve + 0.800 ve + 1.600 ve + 1.600 ve - 0.800 ve - 1.600 ve - 1.600</pre>	1.27 2.26 s, #4 0.65 transve .52% *Wind + *Wind + *Wind + *Wind + *Wind + *Wind + *Wind + *Wind + *Wind +	1.27 4.00 with larger rse reinfor 0.000*Eart 0.000*Eart 0.000*Eart 0.000*Eart 0.000*Eart 0.000*Eart 0.000*Eart 0.000*Eart 0.000*Eart	<pre># 11 bars. cement) hQuake hQuake</pre>		
<pre># 6 # 9 # 14 Confin phi(a) Layout Patter Total 40 #10 Load Comb ======== U1 = U2 = U3 = U4 = U5 = U4 = U5 = U6 = U7 = U8 = U9 =</pre>	<pre>1.13 1.69 mement: Tied; = 0.8, phi : Rectangular steel area, r o Cover = 2 pinations: ====================================</pre>	<pre>1.00 2.25 #3 ties w: (b) = 0.9, r Spacing As = 50.80 in + 0.000*Li; + 1.600*Li; + 1.000*Li; + 0.000*Li; + 0.000*Li; + 0.000*Li; + 1.000*Li; + 1.000*Li; + 1.000*Li; + 0.000*Li; + 0.0</pre>	<pre># 10 # 18 ith #7 bar phi(c) = (Cover to in^2 at 0 ve + 0.000 ve + 0.000 ve + 0.000 ve + 0.800 ve + 1.600 ve + 1.600 ve - 1.600 ve - 1.600 ve - 1.600 ve + 0.000 ve + 0.000 ve + 0.000</pre>	<pre>1.27 2.26 s, #4 0.65 transve .52% *Wind + *Wind +</pre>	1.27 4.00 with larger rse reinfor 0.000*Eart 0.000*Eart 0.000*Eart 0.000*Eart 0.000*Eart 0.000*Eart 0.000*Eart 0.000*Eart 1.000*Eart 1.000*Eart	<pre># 11 bars. cement) hQuake hQuake</pre>		

10/27/11 pcaColumn V3.63 - PORTLAND CEMENT ASSOCIATION - 09:02:48 Licensed to: FLSmidth

Service Loads:

No.	Load Case	Axial Load kip	Mx @ Top k-ft	Mx @ Bot k-ft	My @ Top k-ft	My @ Bot k-ft
1	Dead Live	19.2 4.7	0.0	0.0	-60.3 -11.1	-60.3
	Wind E.Q.	0.0 0.0	0.0	0.0	0.0	0.0

Factored Loads and Moments with Corresponding Capacities: (see user's manual for notation)

Page

Column G

3

First li Second l		cond line - at column bottom						
No.	Load Combo	Pu kip	Mux k-ft	Muy k-ft	fMnx k-ft	fMny k-ft	fMn/Mu	
1	1 U1	26.9	0.0	-84.4		-16996.6	201.334	
2		26.9	0.0	84.4	-0.0	16996.6	201.334	
3	1 U2	30.6	0.0	-90.1	0.0	-17015.4	188.808	
4		30.6	0.0	90.1	-0.0	17015.4	188.808	
5	1 U3	27.7	0.0	-83.5	0.0	-17001.0	203.702	
6		27.7	0.0	83.5	-0.0	17001.0	203.702	
7	1 U4	23.0	0.0	-72.4	0.0	-16976.4	234.610	
8		23.0	0.0	72.4	-0.0	16976.4	234.610	
9	1 U5	27.7	0.0	-83.5	0.0	-17001.0	203.702	
10		27.7	0.0	83.5	-0.0	17001.0	203.702	
11	1 U6	17.3	0.0	-54.3	0.0	-16946.4	312.260	
12		17.3	0.0	54.3	-0.0	16946.4	312.260	
13	1 U7	23.0	0.0	-72.4	0.0	-16976.4	234.610	
14		23.0	0.0	72.4	-0.0	16976.4	234.610	
15	1 U8	27.7	0.0	-83.5	0.0	-17001.0	203.702	
16		27.7	0.0	83.5	-0.0	17001.0	203.702	
17	1 U9	17.3	0.0	-54.3	0.0	-16946.4	312.260	
18		17.3	0.0	54.3	-0.0	16946.4	312.260	
19	1 U10	27.7	0.0	-83.5	0.0	-17001.0	203.702	
20		27.7	0.0	83.5	-0.0	17001.0	203.702	
21	1 U11	17.3	0.0	-54.3	0.0	-16946.4	312.260	
22		17.3	0.0	54.3	-0.0	16946.4	312.260	
23	1 U12	27.7	0.0	-83.5	0.0	-17001.0	203.702	
24		27.7	0.0	83.5	-0.0	17001.0	203.702	
25	1 U13	17.3	0.0	-54.3	0.0	-16946.4	312.260	
26		17.3	0.0	54.3	-0.0	16946.4	312.260	

*** Program completed as requested! ***

 Project:
 CC&V High Grade Ore

 Subject:
 Rod Mill Foundation Design

Proj. No. 11021 Calc No. C-005 By: ECS Date:10/27/2011 Chk: Date: Sheet 1 of 1 Rev: 0

Pedestal Length X Direction

Pedestal Length Y Direction

Pedestal Height

Concrete Unit Weight

Concrete Compressive Strength

Concrete Modulus of Elasticity

Concrete Pedestal Natural Period of Vibration Pedestal F/G

Pedestal Dimensions:

 $L_x := 13ft + 7.25in = 163.25in/$

 $L_{y} := 5ft + 0in = 60in$

H := 18ft + 9.375in = 225.375 in /

Concrete Properties:

 $\gamma_c := 145 \text{pcf}$

Loads and Masses:

f_c := 4000psi

$$E := 57000 \text{psi} \cdot \sqrt{\frac{f_c}{\text{psi}}} = 3.605 \times 10^3 \text{ksi}$$

$$\begin{split} m &\coloneqq L_{x} \cdot L_{y} \cdot H \cdot \frac{\gamma_{c}}{g} = 1.852 \times 10^{5} \, \text{lb} \\ \hline F_{x} &\coloneqq 0 \, \text{lb} \\ m_{x} &\coloneqq F_{x} + 0.23m = 4.261 \times 10^{4} \, \text{lb} \\ \hline m_{y} &\coloneqq F_{y} + 0.23m = 4.261 \times 10^{4} \, \text{lb} \\ \hline \end{array}$$

Dynamic Properties:

 $I_{x} := \frac{L_{x}^{3} \cdot L_{y}}{12} = 2.175 \times 10^{7} \text{ in}^{4} \qquad I_{y} := \frac{L_{x} \cdot L_{y}^{3}}{12} = 2.939 \times 10^{6} \text{ in}^{4} \qquad \text{Moment of Inertia}$ $k_{x} := \frac{(3 \cdot E \cdot I_{x})}{H^{3}} = 2.466 \times 10^{5} \frac{\text{kip}}{\text{ft}} \qquad k_{y} := \frac{(3 \cdot E \cdot I_{y})}{H^{3}} = 3.331 \times 10^{4} \frac{\text{kip}}{\text{ft}} \qquad \text{Stiffness Factor}$ $\omega_{x} := \sqrt{\frac{k_{x}}{0.23m}} = 431.55 \text{ Hz} \qquad \omega_{y} := \sqrt{\frac{k_{y}}{0.23m}} = 158.61 \text{ Hz} \qquad \text{Natural Frequency with out added Mass}$ $\omega_{x} := \sqrt{\frac{k_{x}}{m_{x}}} = 431.55 \text{ Hz} \qquad \omega_{y} := \sqrt{\frac{k_{y}}{m_{y}}} = 158.61 \text{ Hz} \qquad \text{Natural Frequency with added Mass}$

Natural Frequency Pedestal G.xmcd

· · · · · · · · · · · · · · · · · · ·	PROJECT					PROJ NO	. 1102	,
	CCEV H	IGH	LORAD	>TE_	ORE	CALC NO	C-00	S
		1.0		T		BY Res	DATE	10-27-11
	KOD	M	tic	POC	MIDATTON	СНК	DATE	
						SHEET	OF	REV

PEPESTAL J/K DESJON

Project: CC&V High Grade Ore
Subject: Rod Mill Foundation Design

 Proj. No.
 11021

 Calc No.
 C-005

 By:
 ECS
 Date:10/27/2011

 Chk:
 Date:

 Sheet 1 of 1
 Rev: 0

Concrete Pedestal Natural Period of Vibration Pedestal J

Pedestal Dimensions:

 $L_x := 3 ft + 0 in = 36 in$ $L_y := 2 ft + 0 in = 24 in$ H := 13 ft + 9.75 in = 165.75 in

Concrete Properties:

$$\gamma_c := 145 \text{pcf}$$

$$f_c := 4000 psi$$

$$E := 57000 \text{psi} \cdot \sqrt{\frac{f_c}{\text{psi}}} = 3.605 \times 10^3 \text{ksi}$$

$$\begin{split} m &\coloneqq L_x \cdot L_y \cdot H \cdot \frac{\gamma_c}{g} = 1.202 \times 10^4 \, \text{lb} \\ F_x &\coloneqq 0 \, \text{lb} \\ m_x &\coloneqq F_x + 0.23m = 2.764 \times 10^3 \, \text{lb} \\ \end{split} \qquad \begin{array}{l} \text{Pedestal Mass} \\ \text{Applied Mass} \\ m_y &\coloneqq F_y + 0.23m = 2.764 \times 10^3 \, \text{lb} \\ \end{array} \qquad \begin{array}{l} \text{Equivalent Mass} \\ \text{Equivalent Mass} \\ \end{array}$$

Dynamic Properties:

$$\begin{split} \mathbf{I_x} &\coloneqq \frac{\mathbf{L_x}^3 \cdot \mathbf{L_y}}{12} = 9.331 \times 10^4 \text{ in}^4 \qquad \mathbf{I_y} \coloneqq \frac{\mathbf{L_x} \cdot \mathbf{L_y}^3}{12} = 4.147 \times 10^4 \text{ in}^4 \qquad \text{Moment of Inertia} \\ \mathbf{k_x} &\coloneqq \frac{\left(3 \cdot \mathbf{E} \cdot \mathbf{I_x}\right)}{\mathbf{H}^3} = 2.659 \times 10^3 \frac{\text{kip}}{\text{ft}} \qquad \mathbf{k_y} \coloneqq \frac{\left(3 \cdot \mathbf{E} \cdot \mathbf{I_y}\right)}{\mathbf{H}^3} = 1.182 \times 10^3 \frac{\text{kip}}{\text{ft}} \qquad \text{Stiffness Factor} \\ \boldsymbol{\omega_x} &\coloneqq \sqrt{\frac{\mathbf{k_x}}{0.23m}} = 175.948 \text{ Hz} \qquad \boldsymbol{\omega_y} \coloneqq \sqrt{\frac{\mathbf{k_y}}{0.23m}} = 117.299 \text{ Hz} \qquad \text{Natural Frequency without added Mass} \\ \boldsymbol{\omega_x} &\coloneqq \sqrt{\frac{\mathbf{k_x}}{\mathbf{m_x}}} = 175.948 \text{ Hz} \qquad \boldsymbol{\omega_y} \coloneqq \sqrt{\frac{\mathbf{k_y}}{\mathbf{m_y}}} = 117.299 \text{ Hz} \qquad \text{Natural Frequency with added Mass} \end{split}$$

Natural Frequency Pedestal J.xmcd

10/27/2011, 9:12 AM

Pedestal Height

Pedestal Length X Direction

Pedestal Length Y Direction

Concrete Unit Weight

Concrete Compressive Strength

Concrete Modulus of Elasticity

0000000		00000		00000		00000		00000		00	
00	00	00	00	00	00	00	00	00	00	00	
00	00	00	00	00	00	00	00	00	00	00	
00	00	00		00	00	00		00	00	00	
00	00	00		0000	0000	00		00	00	00	
00000	00	00	00	00	00	00	00	00	00	00	
00		00	00	00	00	00	00	00	00	00	
00		000	000	00	00	000	000	000	000	00000	(TM)

Computer program for the Strength Design of Reinforced Concrete Sections

Licensee stated above acknowledges that Portland Cement Association (PCA) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the pcaColumn(tm) computer program. Furthermore, PCA neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the pcaColumn(tm) program. Although PCA has endeavored to produce pcaColumn(tm) error free, the program is not and can't be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensees. Accordingly, PCA disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the pcaColumn(tm) program.

10/27/11 pcaColumn V3.63 - PORTLAND CEMENT ASSOCIATION -Page 2 09:16:56 Licensed to: FLSmidth Column J General Information: File Name: P:\11021\116 - Calculations\116.d - Arch Civil Struc\C-005 Grinding Area Concrete Project: CC&V High Grade Ore Column: A/B Engineer: ECS Code: ACI 318-02 Units: English Run Option: Investigation Slenderness: Not considered Run Axis: Biaxial Column Type: Architectural Material Properties: _____ f'c = 4 ksify = 60 ksi = 3605 ksi = 29000 ksi EC Es Ultimate strain = 0.003 in/in Beta1 = 0.85Section: ======= Rectangular: Width = 36 in Depth = 24 in Gross section area, $Ag = 864 \text{ in}^2$ Ix = 41472 in⁴ Xo = 0 in $Iy = 93312 in^{4}$ Yo = 0 in Reinforcement: ______ Rebar Database: ASTM A615 Size Diam (in) Area (in²) Size Diam (in) Area (in²) Size Diam (in) Area (in²) ____ ______ _____ # 4 0.50 0.20 # З

 #
 5
 0.63

 #
 8
 1.00

 0.38 0.11 0.31 0.79 # 6 # 7 0.75 0.88 0.440.60 # 9 1.56 1.13 1.00 # 10 1.27 1.27 # 11 1.41 # 14 1.69 2.25 # 18 2.26 4.00 Confinement: Tied; #3 ties with #7 bars, #4 with larger bars. phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.65Layout: Rectangular Pattern: Equal Bar Spacing (Cover to transverse reinforcement) Total steel area, As = 15.24 in² at 1.76% 12 #10 Cover = 2 in Load Combinations: ================== U1 = 1.400*Dead + 0.000*Live + 0.000*Wind + 0.000*EarthQuake = 1.200*Dead + 1.600*Live + 0.000*Wind + 0.000*EarthQuake U2 U3 = 1.200*Dead + 1.000*Live + 0.000*Wind + 0.000*EarthQuake U4 = 1.200*Dead + 0.000*Live + 0.800*Wind + 0.000*EarthQuake U5 = 1.200*Dead + 1.000*Live + 1.600*Wind + 0.000*EarthQuake U6 = 0.900*Dead + 0.000*Live + 1.600*Wind + 0.000*EarthQuake U7 = 1.200*Dead + 0.000*Live - 0.800*Wind + 0.000*EarthQuake U8 = 1.200*Dead + 1.000*Live - 1.600*Wind + 0.000*EarthQuake U9 = 0.900*Dead + 0.000*Live - 1.600*Wind + 0.000*EarthQuake U10 = 1.200*Dead + 1.000*Live + 0.000*Wind + 1.000*EarthQuake U11 = 0.900*Dead + 0.000*Live + 0.000*Wind + 1.000*EarthQuake U12 = 1.200*Dead + 1.000*Live + 0.000*Wind - 1.000*EarthQuake U13 = 0.900*Dead + 0.000*Live + 0.000*Wind - 1.000*EarthQuake

Service Loads:

=	=====	=====	==				
· · · ·	No.	Load Case	Axial Load kip	Mx @ Top k-ft	Mx @ Bot k-ft	My @ Top k-ft	My @ Bot k-ft
		Dead	147.0	0.0	0.0	73.5	73.5 -
		Live	143.0	0.0	0.0	71.5	71.5
		Wind	0.0	0.0	0.0	0.0	0.0
		E.Q.	0.0	0.0	0.0	0.0	0.0

Factored Loads and Moments with Corresponding Capacities: (see user's manual for notation)

NOTE:	Each	loading	combination	includes	the	following	cases:
	Firet	- line -	- at column t	on			

NOTE		-	anation includes	the IOL	lowing cases:		
	Secon Load Combo	Pu kip	column bottom Mux k-ft	k-ft		k-ft	
			0.0				11.546
2					0.0		11.546 11.546
∠ 3	1 U2	205.8 405.2	0.0	-102.9	-0.0	-1100.1	
4	1 02	405.2	0.0	202.6	0.0	1220 6	6.012
4 5	1 U3				-0.0		
6	1 03	319.4	0.0	159.7	0.0	-1282.1	
7	1 U4			88.2		1162.8	13.184
8	1 04			-88.2		-1162.8	13.184 13.184
9	1 U5		0.0	-88.2 159.7			8.028
10	I 05	319.4			-0.0		8.028
11	1 U6	132.3				11282.1	
12	I 06	132.3		-66.2			16.997
13	1 U7			88.2		-1124.4 1162.8	13.184
14	1 07	176.4		-88.2		-1162.8	13.184 13.184
15	1 U8			-88.2 159.7			8.028
16	I U8		0.0		0.0		8.028
17	1 U9					1124.4	
18	1 09	132.3		-66.2		-1124.4	16.997
19	1 U10	319.4		-00.2 159.7		-1124.4 1282.1	8.028
	1 010		0.0		-0.0		
20	1 U11	319.4				-1282.1 1124.4	8.028
21	I UII	132.3	0.0	66.2			16.997
22	1 1110				0.0		16.997
23	1 U12	319.4					8.028
24	1 1110	319.4		-159.7			
25	1 U13	132.3		66.2		1124.4	16.997
26		132.3	0.0	-66.2	0.0	-1124.4	16.997

*** Program completed as requested! ***

	PROJECT	PROJ NO	. 11021
ELSMIDTH	SUBJECT ROD MELL FOUNDATION	CALC NO. BY BCS	DATE 10-27-11
		CHK SHEET	DATE OF REV

PEDESTAL H DESECUT

 Project:
 CC&V High Grade Ore

 Subject:
 Rod Mill Foundation Design

 Proj. No.
 11021

 Calc No.
 C-005

 By:
 ECS
 Date:10/27/2011

 Chk:
 Date:

 Sheet 1 of 1
 Rev: 0

Concrete Pedestal Natural Period of Vibration Pedestal H

Pedestal Dimensions:

 $L_x := 2ft + 6in = 30 in$ $L_y := 2ft + 6in = 30 in$ H := 19ft + 10.75in = 238.75 in

Concrete Properties:

$$E := 57000 \text{psi} \cdot \sqrt{\frac{f_c}{\text{psi}}} = 3.605 \times 10^3 \text{ksi}$$

Pedestal Length X Direction

Pedestal Length Y Direction

Pedestal Height

Concrete Unit Weight

Concrete Compressive Strength

Concrete Modulus of Elasticity

$$\begin{split} m &\coloneqq L_{X} \cdot L_{y} \cdot H \cdot \frac{\gamma_{c}}{g} = 1.803 \times 10^{4} \, \text{lb} \\ F_{x} &\coloneqq 0 \, \text{lb} \\ m_{x} &\coloneqq F_{x} + 0.23m = 4.147 \times 10^{3} \, \text{lb} \\ \end{split} \qquad \begin{array}{l} \text{Pedestal Mass} \\ \text{Applied Mass} \\ m_{y} &\coloneqq F_{y} + 0.23m = 4.147 \times 10^{3} \, \text{lb} \\ \end{array}$$

Dynamic Properties:

$$I_{x} := \frac{L_{x}^{3} \cdot L_{y}}{12} = 6.75 \times 10^{4} \text{ in}^{4} \qquad I_{y} := \frac{L_{x} \cdot L_{y}^{3}}{12} = 6.75 \times 10^{4} \text{ in}^{4} \qquad \text{Moment of Inertia}$$

$$k_{x} := \frac{(3 \cdot E \cdot I_{x})}{H^{3}} = 643.696 \frac{\text{kip}}{\text{ft}} \qquad k_{y} := \frac{(3 \cdot E \cdot I_{y})}{H^{3}} = 643.696 \frac{\text{kip}}{\text{ft}} \qquad \text{Stiffness Factor}$$

$$\omega_{x} := \sqrt{\frac{k_{x}}{0.23m}} = 70.668 \text{ Hz} \qquad \omega_{y} := \sqrt{\frac{k_{y}}{0.23m}} = 70.668 \text{ Hz} \qquad \omega_{y} := \sqrt{\frac{k_{y}}{m_{y}}} = 70.668 \text{ Hz} \qquad \omega_{y} := \sqrt{\frac{k_{y}}{m_{y}}} = 70.668 \text{ Hz} \qquad \text{Natural Frequency without added Mass}$$

$$\omega_{x} := \sqrt{\frac{k_{x}}{m_{x}}} = 70.668 \text{ Hz} \qquad \omega_{y} := \sqrt{\frac{k_{y}}{m_{y}}} = 70.668 \text{ Hz} \qquad \text{Natural Frequency with added Mass}$$

Natural Frequency Pedestal H.xmcd

10/27/2011, 10:07 AM

00000

00000	500	000	000	000	000	000	000	000	000	00		
00	00	00	00	00	00	00	00	00	00	00		
00	00	00	00	00	00	00	00	00	00	00		
00	00	00		00	00	00		00	00	00		
00	00	00		0000	0000	00		00	00	00		
00000	00C	00	00	00	00	00	00	00	00	00		
00		00	00	00	00	00	00	00	00	00		
00		000	000	00	00	000	000	000	000	00000	(TM)	

00000

Computer program for the Strength Design of Reinforced Concrete Sections

Licensee stated above acknowledges that Portland Cement Association (PCA) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the pcaColumn(tm) computer program. Furthermore, PCA neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the pcaColumn(tm) program.Although PCA has endeavored to produce pcaColumn(tm) error free, the program is not and can't be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensees. Accordingly, PCA disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the pcaColumn(tm) program.

10/27/11 pcaColumn V3.63 - PORTLAND CEMENT ASSOCIATION -Page 2 10:07:09 Licensed to: FLSmidth Column H General Information: _____ File Name: P:\11021\116 - Calculations\116.d - Arch Civil Struc\C-005 Grinding Area Concrete Project: CC&V High Grade Ore Column: A/B Engineer: ECS Code : ACI 318-02 Units: English Run Option: Investigation Slenderness: Not considered Run Axis: Biaxial Column Type: Architectural Material Properties: _____ f'c = 4 ksify = 60 ksiEc = 3605 ksi Es = 29000 ksi Ultimate strain = 0.003 in/in Beta1 = 0.85Section: _____ Rectangular: Width = 30 in Depth = 30 in Gross section area, $Ag = 900 \text{ in}^2$ $Ix = 67500 in^{4}$ $Iy = 67500 in^{4}$ Xo = 0 in Yo = 0 in Reinforcement: _____ Rebar Database: ASTM A615 Size Diam (in) Area (in^2) Size Diam (in) Area (in^2) Size Diam (in) Area (in²) ____ _____ ____ ______ **#** 4 0.50 0.20 **#** 5 0.63 0.31 # З 0.38 0.11 0.88 0.60 # 8 0.79 # 6 0.75 0.44 # 7 1.00 # 9 1.00 # 10 1.27 1.27 # 11 1.41 1.56 1.13 2.26 4.00 # 14 1.69 2.25 # 18 Confinement: Tied; #3 ties with #7 bars, #4 with larger bars. phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.65Layout: Rectangular Pattern: Equal Bar Spacing (Cover to transverse reinforcement) Total steel area, As = 10.16 in^2 at 1.13%8 #10 Cover = 2 in Load Combinations: 1.400*Dead + 0.000*Live + 0.000*Wind + 0.000*EarthQuake U1 = U2 = 1.200*Dead + 1.600*Live + 0.000*Wind + 0.000*EarthQuake U3 = 1.200*Dead + 1.000*Live + 0.000*Wind + 0.000*EarthQuake U4 = 1.200*Dead + 0.000*Live + 0.800*Wind + 0.000*EarthQuake U5 = 1.200*Dead + 1.000*Live + 1.600*Wind + 0.000*EarthQuake U6 = 0.900*Dead + 0.000*Live + 1.600*Wind + 0.000*EarthQuake U7 = 1.200*Dead + 0.000*Live - 0.800*Wind + 0.000*EarthQuake = 1.200*Dead + 1.000*Live - 1.600*Wind + 0.000*EarthQuake U8 U9 = 0.900*Dead + 0.000*Live - 1.600*Wind + 0.000*EarthQuake U10 = 1.200*Dead + 1.000*Live + 0.000*Wind + 1.000*EarthQuake Ull = 0.900*Dead + 0.000*Live + 0.000*Wind + 1.000*EarthQuake U12 = 1.200*Dead + 1.000*Live + 0.000*Wind - 1.000*EarthQuake U13 = 0.900*Dead + 0.000*Live + 0.000*Wind - 1.000*EarthQuake

Service	Loads:

-	=	-	=	=	=	-	=			

No.	Load Case	Axial Load kip	Mx @ Top k-ft	Mx @ Bot k-ft	My @ Top k-ft	My @ Bot k-ft
1	Dead	8.8	0.0	0.0	0.0	0.0
	Live	0.0	0.0	0.0	0.0	0.0
	Wind	0.0	0.0	0.0	0.0	0.0
	E.Q.	0.0	0.0	0.0	0.0	0.0

Factored Loads and Moments with Corresponding Capacities: (see user's manual for notation)

NOTE		ading combina		s the follow	ving cases:		
		ine - at col	-				
	Load	line - at col Pu	Mux	Maaar	fMnx	fMny	
No.	Combo				k-ft	k-ft	fMn/Mu
NO.		_	K-IC	R-IC	K-IC		
1	1 U1	12.3	0.0	0.0	592.1	0.0	999.999
2		12.3	0.0	0.0	592.1	0.0	999.999
3	1 U2	10.6	0.0	0.0	590.4	0.0	999.999
4		10.6	0.0	0.0	590.4	0.0	999.999
5	1 U3	10.6	0.0	0.0	590.4	0.0	999.999
6		10.6	0.0	0.0	590.4	0.0	999.999
7	1 U4	10.6	0.0	0.0	590.4	0.0	999.999
8		10.6	0.0	0.0	590.4	0.0	999.999
9	1 U5	10.6	0.0	0.0	590.4	0.0	999.999
10		10.6	0.0	0.0	590.4	0.0	999.999
11	1 U6	7.9	0.0	0.0	587.8	0.0	999.999
12		7.9	0.0	0.0	587.8	0.0	999.999
13	1 U7	10.6	0.0	0.0	590.4	0.0	999.999
14		10.6	0.0	0.0	590.4	0.0	999.999
15	1 U8	10.6	0.0	0.0	590.4	0.0	999.999
16		10.6	0.0	0.0	590.4	0.0	999.999
17	1 U9	7.9	0.0	0.0	587.8	0.0	999.999
18		7.9	0.0	0.0	587.8	0.0	999.999
19	1 U10	10.6	0.0	0.0	590.4	0.0	999.999
20		10.6	0.0	0.0	590.4	0.0	999.999
21	1 U11	7.9	0.0	0.0	587.8	0.0	999.999
22		7.9	0.0	0.0	587.8	0.0	999.999
23	1 U 1 2	10.6	0.0	0.0	590.4	0.0	999.999
24		10.6	0.0	0.0	590.4	0.0	999.999
25	1 U13	7.9	0.0	0.0	587.8	0.0	
26		7.9	0.0	0.0	587.8	0.0	999.999

*** Program completed as requested! ***

C-005b Rev. 0 / Page 87 of 142

- É

1

1	21	1	22		23	_	24		25		26	1	-1
29)	Four	ndatior es equ	oads a desig Jal to 200%	n shal motor	l cons	ider out to	starting	g and	over				A
28)	WR ²	include	R ² of r s 35% ch, redu	total ch	arge in	cludin							В
27)	Found	dation	bolt car	n not e	xtend a	bove	soleplat	e.					-
26)	Red	head we	edge and	chor Cat	. No. W	\$3470	(by oth	ners). l	Jse to	achieve	solepla	ite	° C
			cation t redge ar								0		
24)			n bolts								. •		
23)	6 for	undatio	n bolts	ø1 3/4	" x 2"	grip,	8 1/2"	projec	ction.				.D
22)	4 for	undatio	n bolts	ø2" x	1 1/2"	grip,	7 3/4"	proje	etion.				
21)	4 fou	undatio	n bolts	ø3/4"	x 5/8"	grip,	5" proj	ection.					E
20)	4 for	undatio	n bolts	ø3/4"	x 1/2"	grip,	4 1/2"	·proje	ction.				
19	2 for	undatio	n bolts	ø1 1/2	" x 1"	grip,	4 1/4"	proje	ction.			t	-
18)	2 for	undatio	n bolts	ø2" x :	3" grip,	8 1/	′4" proj	ection.					Ė
17)	4 for	undatio	n bolts	ø2" x ·	4 3/4"	grip,	10" pro	ojection	ı.				
16)			g and p										-
	See	jacking	designer cradle	must assemb	provide ly 1027	adeq 71539	uate su for loc	pport f ation.	or jac	king cr	adle as	sembly	G.
14 13 12 11		ng pad											-
			ih conci ined su		f soleni	ate			•				
11)			ted to				nd beau	ring an	d drive	e			Н
	piers found integ	togeth lation. ral rein	er as s All foun forced	hown u dations sub sur	sing an should face co	be ti be ti	ral rein ed toge e mat.	forced ther us The mo	concre sing ar at is t	ete n o be			-
2			capable for th					1.00					1
10)	using at fie	the g	uards a allation. ary obje	nd gear The r	r guard maximu	supp m cle	ort brac arance	ckets a betwee	s tem n guar	plates ds			-
9	Grout	shall erties s	be high uitable epoxy r	quality for the	, non s static	shrinki and d	ng and ynamic	have loads	mechar	nical			J
8)	Allow	for gr	out on	top of	mill be	aring	and dri	ve pier	s (exc	ept mo	in mote	or)	
$\overline{7}$			roximote ion is t		esianed	so th	not no i	natural					к
9	frequ to er	encies nsure t	fall in hat no / pinion	the ran significa	ge of 5 ont resc	onance	- 69 occurs	Hz. Thi with	the				-
6)	Found	dation	bolts, n	uts, wa	shers, o	anchor	sleeve	s and	bearing	9			L
5			not supp s to be							cifically	ordere	:d.	
2	odjus	tment.	undatior										-
1		ence li		i ucpen	03 011	nuturo	01 501	•					м
6 5 4 3 2 1			ertified	print" f	or fina	setti	no.						
			ns are										F
9													N
•	purcha conditio	ser and	quipmer d shall d the s	be desipecified	gned to operat	mee ing lo	t the di ads. Fo	uty ser undatio	vice, s n dime	lioi			-
	shown and bo	by FLS attery li	Smidth I mits fo	nc. are r the e	intende quipmer	ed to nt sup	define plied ar	the int nd are	erface not in	itended			0
-		Scale:		Drawn	Appr.	Appr.	Date Zone	/Descr.:	General r	evision			
straig	ction of ghtering,	1/4' Cripple	'=1' e Creek	IBA & Vict	SPN or Gold		r-12 Refe g Co -		-				-
ugh th	ding and ie use of by the		Ball mill			-							Р
or cha orted	inges in	Ball n	nill 4.3n ation ar	n Dia. >	(8.0m		••						
ctor, t ne mis nomic		Outline	e and L	oad Dro	awing by this do	cument	is the nm	prietary a	ind confir	tential on	operty of 1	FLSmidth.	_
		and may	y not be c	luplicated,	disclosed,	or utiliz	ed without	written	consent f	TOM FLST	Ner.:	12 2	Q.
-	21		22	USm	23		24	102	25	1	26	2.0	
1	21		22		20	1	L T	1	20				

C-005b Rev. 0 / Page 89 of 142

	1
21 22 23 24 25 26	_
Dynamic loads are based on 100% motor output torque. Foundation design shall consider starting and overload forces equal to motor pull out torque and not	A
less than 200% of rated torque.	
Operating WR^2 of mill referred to motor shaft is 5600 lb/ft ² WR^2 includes 35% total charge including 35% balls, rubber liners, pinion, clutch, reducer and coupling.	В
Foundation bolt can not extend above soleplate.	-
Red head wedge anchor Cat. No. WS3470 (by others). Use to achieve soleplate flatness. Location to be established using the soleplates as templates. Red head wedge anchor Cat. No. HN3424 (by others). See note	с
"Later"	
"Later"	D
"Later"	
4 foundation bolts $\emptyset 3/4" \times 5/8"$ grip, 5" projection.	E
4 foundation bolts Ø3/4" x 1/2" grip, 4 1/2" projection.	
2 foundation bolts Ø1 1/2" x 1" grip, 4 1/4" projection.	
2 foundation bolts $\emptyset 2^* \times 3^*$ grip, 8 1/4" projection.	F
4 foundation bolts $\emptyset 2^* \times 4 3/4^*$ grip, 10 [*] projection.	1
Main bearing and pinion bearing lubrication system.	
Foundation designer must provide adequate support for jacking cradle assembly. See jacking cradle assembly "Later" for location.	G
Jacking pads.	<u> </u>
Top of rough concrete.	
Finish machined surface of soleplate.	н
It is suggested to tie the main drive end bearing and drive piers together as shown using an integral reinforced concrete foundation. All foundations should be tied together using an integral reinforced sub surface concrete mat. The mat is to be structurally capable of carrying all static and dynamic loads.	
The location for the sleeve type anchors must be established using the guards and gear guard support brackets as templates at field installation. The maximum clearance between guards and stationary objects is $1/2^{"}$ (anchors supplied by others).	
Grout shall be high quality, non shrinking and have mechanical properties suitable for the static and dynamic loads specified. A pourable epoxy resin compound is recommended.	
Allow for grout on top of mill bearing and drive piers (except main motor) shown (approximately 2"). The foundation is to be designed so that no natural	K
frequencies fall in the range of 74 Hz $-$ 100 Hz. This is to ensure that no significant resonance occurs with the girth gear / pinion meshing frequency of 86.7 Hz.	
Foundation bolts, nuts, washers, anchor sleeves and bearing plates are not furnished by FLSmidth unless specifically ordered.	
Anchor bolts to be set in anchor sleeve to allow for adjustment.	
Depth of foundation depends on nature of soil.	
Reference line.	M
Jse only "Certified print" for final setting.	CONSTRUCTION OF A DESCRIPTION OF A DESCR
All dimensions are in inches.	Contraction of the
	N
<u>portant</u> : Equipment foundations are the responsibility of the chaser and shall be designed to meet the duty service, soil ditions and the specified operating loads. Foundation dimensions	
wn by FLSmidth Inc. are intended to define the interface battery limits for the equipment supplied and are not intended	B E-H
Scole: Drown Appr. Appr. Date Zone/Descr.:	n t illi
of 1/4"=1' IBA MH 14-Oct-11 ng, Cripple Creek & Victor Gold Mining Co - Cripple Creek, CO, USA e of	
ne 331 Ball mill (wet/dry) In Bali mill 4.3rn Dia. x 8.0m	5
Foundation and loads Outline and Load Drawing	-
The information transmitted by this document is the proprietary and confidential property of FLSmidth, and may not be duplicated, disclosed, or utilized without written consent from FLSmidth.)
Талирти №: 10269296 Ver.: 1.0	
1 22 23 24 25 26	REC'D 10-19-11
	10-19-11

 Project:
 CC&V High Grade Ore

 Subject:
 Ball Mill Foundation Design

Concrete Pedestal Natural Period of Vibration Pedestal A/B

Pedestal Dimensions:

 $L_x := 4ft + 6in = 54in$ $L_y := 9ft + 6in = 114in$ H := 19ft + 8.675in = 236.675in

Concrete Properties:

$$\gamma_c := 145 \text{pcf}$$

$$f_c := 4000 \text{psi}$$

$$E := 57000 \text{psi} \cdot \sqrt{\frac{f_c}{\text{psi}}} = 3.605 \times 10^3 \cdot \text{ksi}$$

Loads and Masses:

Pedestal Length X Direction

Pedestal Length Y Direction

Pedestal Height

Concrete Unit Weight

Concrete Compressive Strength

Concrete Modulus of Elasticity

$$\begin{split} m &\coloneqq L_x \cdot L_y \cdot H \cdot \frac{\gamma_c}{g} = 1.223 \times 10^5 \cdot lb \\ F_x &\coloneqq 158781b \end{pmatrix} \qquad & \text{Pedestal Mass} \\ m_x &\coloneqq F_x + 0.23m = 4.4 \times 10^4 \, lb \\ m_y &\coloneqq F_y + 0.23m = 8.692 \times 10^4 \, lb \end{split} \qquad & \text{Equivalent Mass} \end{split}$$

Dynamic Properties:

 $I_{x} := \frac{L_{x}^{3} \cdot L_{y}}{12} = 1.496 \times 10^{6} \text{ in}^{4} \qquad I_{y} := \frac{L_{x} \cdot L_{y}^{3}}{12} = 6.667 \times 10^{6} \cdot \text{in}^{4} \qquad \text{Moment of Inertia}$ $k_{x} := \frac{(3 \cdot E \cdot I_{x})}{H^{3}} = 1.464 \times 10^{4} \cdot \frac{\text{kip}}{\text{ft}} \qquad k_{y} := \frac{(3 \cdot E \cdot I_{y})}{H^{3}} = 6.526 \times 10^{4} \cdot \frac{\text{kip}}{\text{ft}} \qquad \text{Stiffness Factor}$ $\omega_{x} := \sqrt{\frac{k_{x}}{0.23m}} = 129.443 \cdot \text{Hz} \qquad \omega_{y} := \sqrt{\frac{k_{y}}{0.23m}} = 273.269 \cdot \text{Hz} \qquad \text{Natural Frequency without added Mass}$ $\omega_{x} := \sqrt{\frac{k_{x}}{m_{x}}} = 103.483 \cdot \text{Hz} \qquad \omega_{y} := \sqrt{\frac{k_{y}}{m_{y}}} = 155.43 \cdot \text{Hz} \qquad \text{Natural Frequency with added Mass}$

Natural Frequency Pedestal A-B.xmcd

00000	00	000	000	000	000	000	000	000	000	00	
00	00	00	00	00	00	00	00	00	00	00	
00	00	00	00	00	00	00	00	00	00	00	
00	00	00		00	00	00		00	00	00	
00	00	00		0000	0000	00		00	00	00	
00000	00	00	00	00	00	00	00	00	00	00	
00		00	00	00	00	00	00	00	00	00	
00		000	000	00	00	000	000	000	000	00000	(TM)

Computer program for the Strength Design of Reinforced Concrete Sections

Licensee stated above acknowledges that Portland Cement Association (PCA) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the pcaColumn(tm) computer program. Furthermore, PCA neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the pcaColumn(tm) program.Although PCA has endeavored to produce pcaColumn(tm) error free, the program is not and can't be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensees. Accordingly, PCA disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the pcaColumn(tm) program.

10/28/11 pcaColumn V3.63 - PORTLAND CEMENT ASSOCIATION -Page 2 10:08:26 Licensed to: FLSmidth Column A-B General Information: ______ File Name: C:\Users\esum-us\Desktop\Pedestal Design\Column A-B.col Project: CC&V High Grade Ore Column: A/B Engineer: ECS Code: ACI 318-02 Units: English Run Option: Investigation Slenderness: Not considered Run Axis: Biaxial Column Type: Architectural Material Properties: f'c = 4 ksify = 60 ksiEc = 3605 ksi Es = 29000 ksi Ultimate strain = 0.003 in/in Beta1 = 0.85Section: _____ Rectangular: Width = 54 in Depth = 114 in Gross section area, $Ag = 6156 \text{ in}^2$ $Ix = 6.66695e + 006 in^{4}$ $Iy = 1.49591e+006 in^{4}$ Xo = 0 in Yo = 0 in Reinforcement: _____ Rebar Database: ASTM A615 Size Diam (in) Area (in^2) Size Diam (in) Area (in^2) Size Diam (in) Area (in²) ____ ______ # 4 0.50 0.20 # 5 0.63 # 3 0.38 0.11 0.31 0.79 0.75 0.44 # 7 0.88 0.60 # 8 1.00 # 6 # 9 1.00 # 10 1.27 1.27 # 11 1.411.56 1.13 2.25 # 18 # 14 1.69 2.26 4.00 Confinement: Tied; #3 ties with #7 bars, #4 with larger bars. phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.65Layout: Rectangular Pattern: Equal Bar Spacing (Cover to transverse reinforcement) Total steel area, $As = 60.96 \text{ in}^2$ at 0.99% 48 # 10 Cover = 2 in Load Combinations: ______ U1 = 1.400*Dead + 0.000*Live + 0.000*Wind + 0.000*EarthQuake U2 = 1.200*Dead + 1.600*Live + 0.000*Wind + 0.000*EarthQuake U3 = 1.200*Dead + 1.000*Live + 0.000*Wind + 0.000*EarthQuake U4 = 1.200*Dead + 0.000*Live + 0.800*Wind + 0.000*EarthQuake = 1.200*Dead + 1.000*Live + 1.600*Wind + 0.000*EarthQuake U5 = 0.900*Dead + 0.000*Live + 1.600*Wind + 0.000*EarthQuake U6 = 1.200*Dead + 0.000*Live - 0.800*Wind + 0.000*EarthQuake U7 = 1.200*Dead + 1.000*Live - 1.600*Wind + 0.000*EarthQuake U8 U9 = 0.900*Dead + 0.000*Live - 1.600*Wind + 0.000*EarthQuake U10 = 1.200*Dead + 1.000*Live + 0.000*Wind + 1.000*EarthQuake U11 = 0.900*Dead + 0.000*Live + 0.000*Wind + 1.000*EarthQuake U12 = 1.200*Dead + 1.000*Live + 0.000*Wind - 1.000*EarthQuake U13 = 0.900*Dead + 0.000*Live + 0.000*Wind - 1.000*EarthQuake

10/28/11 pcaColumn V3.63 - PORTLAND CEMENT ASSOCIATION -10:08:26 Licensed to: FLSmidth

Service Loads:

Page 3 Column A-B

04

7365.2

.

-0.0

2.867

1.4

Load Axial Load Mx @ Top Mx @ Bot My @ Top My @ Bo)t
No. Case kip k-ft k-ft k-ft k-ft	t
	· - /
1 Dead 497.0 0.0 0.0 497.0 497.	0
Live 45.0 0.0 0.0 45.0 930.	0
Wind 0.0 0.0 0.0 0.0 0.	0
E.Q. 85.30 0.0 0.0 85.30 3016.	0 3263

for notation) Fa ==

							111		
a	ctore	d :	Loads	and Moments wi				er's manua	al for no
=	NOTE			loading combina	tion include	es the follo			
				line - at col d line - at col	-				
			oad	Pu	Mux	Muy	fMnx	fMny	
	No.		ombo	kip	k-ft	k-ft	k-ft	k-ft	fMn/Mu
	1	1	U1	695.8	0.0	695.8	-0.0	7979.6	11.468
	2			695.8	0.0	-695.8	0.0	-7979.6	11.468
	2 3	1	U2	668.4	0.0	668.4	-0.0	7929.9	11.864
	4			668.4	0.0	-2084.4	0.0	-7929.9	3.804
	5	1	U3	641.4	0.0	641.4	-0.0	7880.8	12.287
	6			641.4	0.0	-1526.4	0.0	-7880.8	5.163
	7	1	U4	596.4	0.0	596.4	-0.0	7798.9	13.077
	8			596.4	0.0	-596.4	0.0	-7798.9	13.077
	9	1	U5	641.4	0.0	641.4	-0.0	7880.8	12.287
	10			641.4	0.0	-1526.4	0.0	-7880.8	5.163
	11	1	U6	447.3	0.0	447.3	-0.0	7526.1	16.826
	12			447.3	0.0	-447.3	0.0	-7526.1	16.826
	13	1	U7	596.4	0.0	596.4	-0.0	7798.9	13.077
	14			596.4	0.0	-596.4	0.0	-7798.9	13.077
	15	1	U8	641.4	0.0	641.4	-0.0	7880.8	12.287
	16			641.4	0.0	-1526.4	0.0	-7880.8	5.163
	17	1	U9	447.3	0.0	447.3	-0.0	7526.1	16.826
	18			447.3	0.0	-447.3	0.0	-7526.1	16.826
	19	1	U10	726.7	0.0	726.7	-0.0	8035.7	11.058
	20			726.7	0.0	-4542.4	0.0	-8035.7	1.769
	21	1	U11	532.6	0.0	532.6	-0.0	7682.4	14.424
	22			532.6	0.0	-3463.3	0.0	-7682.4	2.218
	23	1	U12	556.1	0.0	556.1	-0.0	7725.4	13.892
	24			556.1	0.0	1489.6	-0.0	7725.4	5.186
	25	1	U1 3	362.0	0.0	362.0	-0.0	7365.2	20.346
	0.0			0.00 0		0560 5	0.0	DOCE O	0 0 6 7

0.0

2568.7

***	Program	completed	as	requested!	***
-----	---------	-----------	----	------------	-----

362.0

26

	PROJECT CC & V HOLA GRADE ORE	PROJ NO. 11021 CALC NO. C-005		
Smidth	PALL FILL FOUNDATEON		DATE 10-2 DATE	
		SHEET	OF RE'	V

Pedestal Length X Direction

Pedestal Length Y Direction

Pedestal Height

Concrete Unit Weight

Concrete Compressive Strength

Concrete Modulus of Elasticity

Concrete Pedestal Natural Period of Vibration Pedestal C/D

Pedestal Dimensions:

 $L_x := 10ft + 5in = 125 in$ $L_y := 6ft + 5in = 77 in$ H := 19ft + 8.875in = 236.875 in

Concrete Properties:

$$\gamma_c := 145 pcf$$

$$E := 57000 \text{psi} \cdot \sqrt{\frac{f_c}{\text{psi}}} = 3.605 \times 10^3 \cdot \text{ksi}$$

Loads and Masses:

$$\begin{split} \mathbf{m} &\coloneqq \mathbf{L}_{\mathbf{x}} \cdot \mathbf{L}_{\mathbf{y}} \cdot \mathbf{H} \cdot \frac{\gamma_{\mathbf{c}}}{\mathbf{g}} = 1.913 \times 10^{5} \cdot \mathbf{lb} \\ \mathbf{F}_{\mathbf{x}} &\coloneqq 15900 \mathbf{lb} \\ \mathbf{m}_{\mathbf{x}} &\coloneqq \mathbf{F}_{\mathbf{x}} + 0.23 \mathbf{m} = 5.99 \times 10^{4} \mathbf{lb} \\ \mathbf{m}_{\mathbf{y}} &\coloneqq \mathbf{F}_{\mathbf{y}} + 0.23 \mathbf{m} = 1.099 \times 10^{5} \mathbf{lb} \\ \end{split}$$

Dynamic Properties:

 $I_{x} := \frac{L_{x}^{3} \cdot L_{y}}{12} = 1.253 \times 10^{7} \text{ in}^{4} \qquad I_{y} := \frac{L_{x} \cdot L_{y}^{3}}{12} = 4.756 \times 10^{6} \cdot \text{in}^{4} \qquad \text{Moment of Inertia}$ $k_{x} := \frac{(3 \cdot E \cdot I_{x})}{H^{3}} = 1.224 \times 10^{5} \cdot \frac{\text{kip}}{\text{ft}} \qquad k_{y} := \frac{(3 \cdot E \cdot I_{y})}{H^{3}} = 4.644 \times 10^{4} \cdot \frac{\text{kip}}{\text{ft}} \qquad \text{Stiffness Factor}$ $\omega_{x} := \sqrt{\frac{k_{x}}{0.23m}} = 299.131 \cdot \text{Hz} \qquad \omega_{y} := \sqrt{\frac{k_{y}}{0.23m}} = 184.265 \cdot \text{Hz} \qquad \text{Natural Frequency without added Mass}$ $\omega_{x} := \sqrt{\frac{k_{x}}{m_{x}}} = 256.376 \cdot \text{Hz} \qquad \omega_{y} := \sqrt{\frac{k_{y}}{m_{y}}} = 116.594 \cdot \text{Hz} \qquad \text{Natural Frequency with added Mass}$

Natural Frequency Pedestal C-D.xmcd

	PROJECT	CC&V High Grade Ore	PROJ NO. 11021				
ESMIDTH		-	CALC NO.	C-005			
	SCOPE Ball Mill Foundation		BY ECS	DATE 28-Oct-11			
			СНК	DATE			
			SHEET	OF REV			

Pedestal C/D Loading

Pedestal Height (ft): 19.67

Load Locations:

Using CL Main Gear & CL Pinnion as Axis Origin

	X (ft)	Y (ft)
Pedestal Center of Gravity	1.15	0.12

1.2	Coord	inates	Eccentricity			
Location	X (ft)	Y (ft)	e _x (ft)	e _y (ft)		
С	2.20	0.00	1.05	-0.12		
D	-2.20	0.00	-3.35	-0.12		
Н	0.00	2.50	-1.15	2.38		

Dead Load:

Location	F _x (kip)	F _v (kip)	F _z (kip)	M _×	(k*ft)	M _v (k*ft)		
LUCALION		ry (kip)		Тор	Bot	Тор	Bot	
С	0.0	0.0	4.5	-0.5	-0.5	4.7	4.7	
D	0.0	0.0	8.6	-1.0	-1.0	-28.8	-28.8	
Н	0.0	0.0	8.8	20.9	20.9	-10.1	-10.1	
Result	0.0	0.0	21.9	19.4	19.4	-34.2	-34.2	

Live Load:

Location	F _x (kip)	E (kin)	F _z (kip)	M _x	(k*ft)	M _v (k*ft)		
	1 X (MP)	F _y (kip)		Тор	Bot	Тор	Bot	
С	0.0	-30.4	-40.8	4.9	-593.1	-42.8	-42.8	
D	-15.9	-35.5	-39.6	,4.8	-693.5	132.7	-179.7	
Н	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Result	-15.9	-65.9	-80.4	9.6	-1286.6	89.8	-222.5	

00000	000	000	000	00000		00000		00000		00	
00	00	00	00	00	00	00	00	00	00	00	
00	00	00	00	00	00	00	00	00	00	00	
00	00	00		00	00	00		00	00	00	
00	00	00		0000	0000	00		00	00	00	
00000	00	00	00	00	00	00	00	00	00	00	
00		00	00	00	00	00	00	00	00	00	
00		000	000	00	00	000	000	000	000	00000	(TM)

Computer program for the Strength Design of Reinforced Concrete Sections

10/28/11 pcaColumn V3.63 - PORTLAND CEMENT ASSOCIATION -Page 2 12:22:58 Licensed to: FLSmidth Column C-D General Information: File Name: C:\Users\esum-us\Desktop\Pedestal Design\Column C-D.col Project: CC&V High Grade Ore Column: A/B Engineer: ECS ACI 318-02 Code: Units: English Run Option: Investigation Slenderness: Not considered Run Axis: Biaxial Column Type: Structural Material Properties: f'c = 4 ksify = 60 ksiEc = 3605 ksi Es = 29000 ksi Ultimate strain = 0.003 in/in Beta1 = 0.85Section: ======== Rectangular: Width = 125 in Depth = 77 inGross section area, $Ag = 9625 \text{ in}^2$ $Ix = 4.75555e+006 in^{4}$ $Iy = 1.25326e+007 in^{4}$ Xo = 0 in Yo = 0 in Reinforcement: ================= Rebar Database: ASTM A615 Size Diam (in) Area (in²) Size Diam (in) Area (in²) Size Diam (in) Area (in²) # 3 0.11 # 4 # 5 # 8

 # 5
 0.63

 # 8
 1.00

 # 11
 1.41

 0.38 0.50 0.88 0.20 0.31 # 6 0.75 0.44 # 7 0.60 0.79 1.00 1.27 # 9 1.13 # 10 1.27 1.56 # 14 2.25 # 18 1.69 2.26 4.00 Confinement: Tied; #3 ties with #7 bars, #4 with larger bars. phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.65 Layout: Rectangular Pattern: Equal Bar Spacing (Cover to transverse reinforcement) Total steel area, As = 55.88 in^2 at 0.58% 44 #10 Cover = 2 in Load Combinations: U1 = 1.400*Dead + 0.000*Live + 0.000*Wind + 0.000*EarthQuake U2 = 1.200*Dead + 1.600*Live + 0.000*Wind + 0.000*EarthQuake U3 = 1.200*Dead + 1.000*Live + 0.000*Wind + 0.000*EarthQuake U4 = 1.200*Dead + 0.000*Live + 0.800*Wind + 0.000*EarthQuake U5 = 1.200*Dead + 1.000*Live + 1.600*Wind + 0.000*EarthQuake U6 = 0.900*Dead + 0.000*Live + 1.600*Wind + 0.000*EarthQuake U7 = 1.200*Dead + 0.000*Live - 0.800*Wind + 0.000*EarthQuake U8 = 1.200*Dead + 1.000*Live - 1.600*Wind + 0.000*EarthQuake U9 = 0.900*Dead + 0.000*Live - 1.600*Wind + 0.000*EarthQuake U10 = 1.200*Dead + 1.000*Live + 0.000*Wind + 1.000*EarthQuake U11 = 0.900*Dead + 0.000*Live + 0.000*Wind + 1.000*EarthQuake U12 = 1.200*Dead + 1.000*Live + 0.000*Wind - 1.000*EarthQuake U13 = 0.900*Dead + 0.000*Live + 0.000*Wind - 1.000*EarthQuake

=	=	=	=		=	=		=	

=====						
No.	Load	Axial Load	Mx @ Top	Mx @ Bot	My @ Top	My @ Bot
	Case	kip	k-ft	k-ft	k-ft	k-ft
1	Dead	21.9	19.4	19.4	-34.2	-34.2
	Live	-80.4	9.6	-1286.6	89.8	-222.5
	Wind	0.0	0.0	0.0	0.0	0.0
	E.Q.	0.0	0.0	0.0	0.0	0.0

Factored Loads and Moments with Corresponding Capacities: (see user's manual for notation)

NOTE: Each loading combination includes the following cases:

	First	line - at c	olumn top olumn bottom		eubes.		
No.	Load	Pu		Muy k-ft	fMnx k-ft	fMny k-ft	fMn/Mu
1	1 U1		27.2	-47.9	6940.1	-12234.7	255.528
2 3		30.7	-27.2	47.9	-6940.1	12234.7	
3	1 U2	-102.4	38.6	102.6	4950.3	13149.7	128.114
4		-102.4	2035.3	397.0	8633.3	1684.2	4.242
5	1 U3	-54.1	32.9	48.8	7396.6	10968.9	224.957
6		-54.1	1263.3	263.5	8762.6	1828.0	6.936
7	1 U4	26.3	23.3	-41.0	6932.0	-12220.4	297.768
8		26.3	-23.3	41.0	-6932.0	12220.4	297.768
9	1 U5	-54.1	32.9	48.8		10968.9	
10		-54.1	1263.3	263.5	8762.6	1828.0	6.936
11	1 U6	19.7	17.5	-30.8	6919.9		
12		19.7	-17.5	30.8	-6919.9		
13	1 U7	26.3	23.3	-41.0	6932.0	-12220.4	297.768
14		26.3	-23.3	41.0	-6932.0	12220.4	297.768
15	1 U8	-54.1	32.9	48.8		10968.9	
16		-54.1	1263.3	263.5	8762.6	1828.0	6.936
17	1 U9	19.7	17.5	-30.8	6919.9	-12198.9	
18		19.7	-17.5	30.8	-6919.9	12198.9	396.327
19	1 U10	-54.1	32.9		7396.6	10968.9	224.957
20		-54.1	1263.3	263.5	8762.6	1828.0	6.936
21	1 U11	19.7	17.5	-30.8	6919.9		
22				30.8	-6919.9	12198.9	
23			32.9	48.8	7396.6	10968.9	224.957
24		-54.1	1263.3	263.5	8762.6	1828.0	6.936
25	1 U13	19.7	17.5	-30.8	6919.9	-12198.9	
26		19.7	-17.5	30.8	-6919.9	12198.9	

*** Program completed as requested! ***

na n	PROJECT	PROJ NO.	11021
	UEV HELH GRADE ORE	CALC NO.	C-005 .
	SUBJECT	BYECS	DATE 10-28-11
	BALL MELL FOUNDATION	CHK	DATE
		SHEET	OF REV

PROJECT <i>CC </i>	HIGH	GRADE	ORR	PROJ NO CALC NO		
SUBJECT	MAIL	FOUND	ATTON	BY GCS CHK SHEET	DATE / DATE	0.2.8.11 REV

 Project:
 CC&V High Grade Ore

 Subject:
 Rod Mill Foundation Design

Proj. No. 11021 Calc No. C-005 By: ECS Date:10/28/2011 Chk: Date: Sheet 1 of 1 Rev: 0

Concrete Pedestal Natural Period of Vibration Pedestal E

Pedestal Dimensions:

 $L_x := 9ft + 6.3125in = 114.313 in$

 $L_v := 6ft + 5in = 77in$

H := 18ft + 5.125in = 221.125 in

Pedestal Length X Direction

Pedestal Length Y Direction

Pedestal Height

Concrete Unit Weight

Concrete Compressive Strength

Concrete Modulus of Elasticity

Concrete Properties:

$$\gamma_c := 145 \text{pcf}$$

$$f_c := 4000 psi$$

$$E := 57000 \text{psi} \cdot \sqrt{\frac{f_c}{\text{psi}}} = 3.605 \times 10^3 \cdot \text{ksi}$$

Loads and Masses:
$$m := L_x \cdot L_y \cdot H \cdot \frac{\gamma_c}{g} = 1.633 \times 10^5 \cdot lb$$
Pedestal Mass $F_x := 0lb$ $F_y := 0lb$ Applied Mass $m_x := F_x + 0.23m = 3.756 \times 10^4 \, lb$ $m_y := F_y + 0.23m = 3.756 \times 10^4 \, lb$ Equivalent Mass

Dynamic Properties:

$$\begin{split} \mathbf{I}_{\mathbf{x}} &:= \frac{\mathbf{L}_{\mathbf{x}}^{3} \cdot \mathbf{L}_{\mathbf{y}}}{12} = 9.585 \times 10^{6} \, \mathrm{in}^{4} \qquad \mathbf{I}_{\mathbf{y}} := \frac{\mathbf{L}_{\mathbf{x}} \cdot \mathbf{L}_{\mathbf{y}}^{3}}{12} = 4.349 \times 10^{6} \cdot \mathrm{in}^{4} \qquad \text{Moment of Inertia} \\ \mathbf{k}_{\mathbf{x}} &:= \frac{\left(3 \cdot \mathbf{E} \cdot \mathbf{I}_{\mathbf{x}}\right)}{\mathbf{H}^{3}} = 1.15 \times 10^{5} \cdot \frac{\mathrm{kip}}{\mathrm{ft}} \qquad \mathbf{k}_{\mathbf{y}} := \frac{\left(3 \cdot \mathbf{E} \cdot \mathbf{I}_{\mathbf{y}}\right)}{\mathbf{H}^{3}} = 5.22 \times 10^{4} \cdot \frac{\mathrm{kip}}{\mathrm{ft}} \qquad \text{Stiffness Factor} \\ \boldsymbol{\omega}_{\mathbf{x}} &:= \sqrt{\frac{\mathbf{k}_{\mathbf{x}}}{0.23m}} = 313.912 \cdot \mathrm{Hz} \qquad \boldsymbol{\omega}_{\mathbf{y}} := \sqrt{\frac{\mathbf{k}_{\mathbf{y}}}{\mathbf{0}.23m}} = 211.449 \cdot \mathrm{Hz} \qquad \text{Natural Frequency without added Mass} \\ \boldsymbol{\omega}_{\mathbf{x}} &:= \sqrt{\frac{\mathbf{k}_{\mathbf{x}}}{\mathbf{m}_{\mathbf{x}}}} = 313.912 \cdot \mathrm{Hz} \qquad \boldsymbol{\omega}_{\mathbf{y}} := \sqrt{\frac{\mathbf{k}_{\mathbf{y}}}{\mathbf{m}_{\mathbf{y}}}} = 211.449 \cdot \mathrm{Hz} \qquad \text{Natural Frequency with added Mass} \end{split}$$

Natural Frequency Pedestal E.xmcd

00000	00	000	000	000	000	000	000	000	000	00	
00	00	00	00	00	00	00	00	00	00	00	
00	00	00	00	00	00	00	00	00	00	00	
00	00	00		00	00	00		00	00	00	
00	00	00		0000	0000	00		00	00	00	
00000	00	00	00	00	00	00	00	00	00	00	
00		00	00	00	00	00	00	00	00	00	
00		000	000	00	00	000	000	000	000	00000	(TM)

Computer program for the Strength Design of Reinforced Concrete Sections

10/28/11 pcaColumn V3.63 - PORTLAND CEMENT ASSOCIATION -Page 2 12:59:05 Licensed to: FLSmidth Column E General Information: _____ File Name: C:\Users\esum-us\Desktop\Pedestal Design\Column E.col Project: CC&V High Grade Ore Column: A/B Code: ACI 318-02 Engineer: ECS Units: English Run Option: Investigation Slenderness: Not considered Run Axis: Biaxial Column Type: Architectural Material Properties: _____ f'C = 4 ksify = 60 ksiEs = 29000 ksi Ec = 3605 ksi Ultimate strain = 0.003 in/in Beta1 = 0.85Section: ======= Depth = 77 in Rectangular: Width = 114.313 in Gross section area, $Ag = 8802.1 \text{ in}^2$ Iy = 9.58509e+006 in⁴ Yo = 0 in $Ix = 4.34897e + 006 in^{4}$ Xo = 0 in Reinforcement: ______ Rebar Database: ASTM A615 Size Diam (in) Area (in²) Size Diam (in) Area (in²) Size Diam (in) Area (in²) ____ ____ _____ ____ _____ 0.38 0.75 # З # 6 # 9 1.13 # 14 1.69 Confinement: Tied; #3 ties with #7 bars, #4 with larger bars. phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.65Layout: Rectangular Pattern: Equal Bar Spacing (Cover to transverse reinforcement) Total steel area, As = 45.72 in² at 0.52% 36 #10 Cover = 2 in Load Combinations: _____ U1 = 1.400*Dead + 0.000*Live + 0.000*Wind + 0.000*EarthQuake U2 = 1.200*Dead + 1.600*Live + 0.000*Wind + 0.000*EarthQuake U3 = 1.200*Dead + 1.000*Live + 0.000*Wind + 0.000*EarthQuake U4 = 1.200*Dead + 0.000*Live + 0.800*Wind + 0.000*EarthQuake U5 = 1.200*Dead + 1.000*Live + 1.600*Wind + 0.000*EarthQuake U6 = 0.900*Dead + 0.000*Live + 1.600*Wind + 0.000*EarthQuake = 1.200*Dead + 0.000*Live - 0.800*Wind + 0.000*EarthQuake U7 U8 = 1.200*Dead + 1.000*Live - 1.600*Wind + 0.000*EarthQuake U9 = 0.900*Dead + 0.000*Live - 1.600*Wind + 0.000*EarthQuake U10 = 1.200*Dead + 1.000*Live + 0.000*Wind + 1.000*EarthQuake U11 = 0.900*Dead + 0.000*Live + 0.000*Wind + 1.000*EarthQuake U12 = 1.200*Dead + 1.000*Live + 0.000*Wind - 1.000*EarthQuake U13 = 0.900*Dead + 0.000*Live + 0.000*Wind - 1.000*EarthQuake

Service	Loads:
========	======

	======	==				
No.	Load Case	Axial Load kip	Mx @ Top k-ft	Mx @ Bot k-ft	My @ Top k-ft	My @ Bot k-ft
1	Dead	13.0 /	0.0	0.0	0.0	0.0
	Live	33.9	0.0	0.0	0.0	0.0
	Wind	0.0	0.0	0.0	0.0	0.0
	E.Q.	0.0	0.0	0.0	0.0	0.0
2	Dead	13.0	0.0	0.0	0.0	0.0
	Live	-33.9 📝	0.0	0.0	0.0	0.0
	Wind	0.0	0.0	0.0	0.0	0.0
	E.Q.	0.0	0.0	0.0	0.0	0.0

Factored Loads and Moments with Corresponding Capacities: (see user's manual for notation)

	==:	=====					-	
NOLE			loading com	pination inclu	ides the iol	llowing case	es:	
				column top	_			
				column bottom		514	514	
37		oad	Pu	Mux	Muy	fMnx		c., /.,
No.	Co	ombo	kip	k-ft	k-ft	k-ft	k-ft	fMn/Mu
1		U1	18.2	0.0	0.0	7351.9	0.0	999.999
2	-	01	18.2	0.0	0.0	7351.9		999.999
3	1	U2	69.9	0.0	0.0	7496.5		999.999
4	-	02	69.9	0.0	0.0	7496.5		999.999
5	1	U 3	49.5	0.0	0.0	7439.6		999.999
6	т	05	49.5	0.0	0.0	7439.6		999.999
7	1	U4	15.6	0.0	0.0	7344.6		999.999
, 8	т	04	15.6	0.0	0.0	7344.6		999.999
9	1	U5	49.5	0.0	0.0	7439.6		999.999
10	т	0.5	49.5	0.0	0.0	7439.6		999.999
11	1	U6	11.7	0.0	0.0	7333.6		999.999
$\frac{11}{12}$	Т	00	11.7	0.0	0.0	7333.6		999.999
13	1	U7	15.6		0.0			999.999
14	Т	07	15.6	0.0 0.0	0.0	7344.6 7344.6		999.999
$14 \\ 15$	1	U8	49.5	0.0	0.0			
16	Т	08			0.0	7439.6		999.999
	1	U9	49.5	0.0		7439.6		999.999
17	Т	09	11.7	0.0	0.0	7333.6		999.999
18	1	U10	11.7	0.0		7333.6		999.999
19 20	Т	010	49.5	0.0	0.0	7439.6		999.999
	-	TT1 1	49.5	0.0	0.0	7439.6		999.999
21	Т	U11	11.7	0.0	0.0	7333.6		999.999
22	-	1110	11.7	0.0	0.0	7333.6		999.999
23	1	U12	49.5	0.0	0.0	7439.6		999.999
24	-	TT1 0	49.5	0.0	0.0	7439.6		999.999
25	Ŧ	U13	11.7	0.0	0.0	7333.6		999.999
26	~		11.7	0.0	0.0	7333.6		999.999
27	2	U1	18.2	0.0	0.0	7351.9		999.999
28	~	110	18.2	0.0	0.0	7351.9		999.999
29	2	U2	-38.7	0.0	0.0	7192.0		999.999
30	~		-38.7	0.0	0.0	7192.0		999.999
31	2	U3	-18.3	0.0	0.0	7249.4		999.999
32			-18.3	0.0	0.0	7249.4		999.999
33	2	U4	15.6	0.0	0.0	7344.6		999.999
34	_		15.6	0.0	0.0	7344.6		999.999
35	2	U5	-18.3	0.0	0.0	7249.4		999.999
36			-18.3	0.0	0.0	7249.4		999.999
37	2	U6	11.7	0.0	0.0	7333.6		999.999
38			11.7	0.0	0.0	7333.6		999.999
39	2	U7	15.6	0.0	0.0	7344.6		999.999
40			15.6	0.0	0.0	7344.6		999.999
41	2	U8	-18.3	0.0	0.0	7249.4		999.999
42			-18.3	0.0	0.0	7249.4	.0	999.999

10/28/11 pcaColumn V3.63 - PORTLAND CEMENT ASSOCIATION - 12:59:05 Licensed to: FLSmidth

Page 4 Column E

	· · ·						
43	2 U9	11.7	0.0	0.0	7333.6	0.0	999.999
44		11.7	0.0	0.0	7333.6	0.0	999.999
45	2 U10	-18.3	0.0	0.0	7249.4	0.0	999.999
46		-18.3	0.0	0.0	7249.4	0.0	999.999
47	2 U11	11.7	0.0	0.0	7333.6	0.0	999.999
48		11.7	0.0	0.0	7333.6	0.0	999.999
49	2 U12	-18.3	0.0	0.0	7249.4	0.0	999.999
50		-18.3	0.0	0.0	7249.4	0.0	999.999
51	2 U13	11.7	0.0	0.0	7333.6	0.0	999.999
52		11.7	0.0	0.0	7333.6	0.0	999.999

*** Program completed as requested! ***

<u>ي</u> بر	PROJECT	PROJ NO.	11021
	UEV HELDH GRADE ORR	CALC NO.	C-eegs .
ESmidth	SUBJECT	BYECS	DATE / O-25-11
	BALL MELL FEURITATEORI	СНК	DATE
		SHEET	OF REV

CC & V HIGH GRADE ORE	PROJ NC CALC NC		
SUBJECT MELL FOUNDATEON	BY <i>BCS</i> CHK	DATE / DATE	0-2-8-11
	SHEET	OF	REV

Concrete Pedestal Natural Period of Vibration Pedestal E

Pedestal Dimensions:

 $L_x := 9ft + 6.3125in = 114.313 in$

 $L_y := 6ft + 5in = 77in$

H := 18ft + 5.125in = 221.125in

Concrete Properties:

$$\gamma_c := 145 pcf$$

$$E := 57000 \text{psi} \cdot \sqrt{\frac{f_c}{\text{psi}}} = 3.605 \times 10^3 \cdot \text{ksi}$$

Loads and Masses:

$$m := L_x \cdot L_y \cdot H \cdot \frac{\gamma_c}{g} = 1.633 \times 10^5 \cdot lb$$
Pedestal Mass
$$F_x := 0 lb$$

$$F_y := 0 lb$$

Dynamic Properties:

 $I_{x} := \frac{L_{x}^{3} \cdot L_{y}}{12} = 9.585 \times 10^{6} \text{ in}^{4} \qquad I_{y} := \frac{L_{x} \cdot L_{y}^{3}}{12} = 4.349 \times 10^{6} \cdot \text{in}^{4} \qquad \text{Moment of Inertia}$ $k_{x} := \frac{(3 \cdot \text{E-I}_{x})}{\text{H}^{3}} = 1.15 \times 10^{5} \cdot \frac{\text{kip}}{\text{ft}} \qquad k_{y} := \frac{(3 \cdot \text{E-I}_{y})}{\text{H}^{3}} = 5.22 \times 10^{4} \cdot \frac{\text{kip}}{\text{ft}} \qquad \text{Stiffness Factor}$ $\omega_{x} := \sqrt{\frac{k_{x}}{0.23m}} = 313.912 \cdot \text{Hz} \qquad \omega_{y} := \sqrt{\frac{k_{y}}{0.23m}} = 211.449 \cdot \text{Hz} \qquad \text{Natural Frequency without added Mass}$ $\omega_{x} := \sqrt{\frac{k_{x}}{m_{x}}} = 313.912 \cdot \text{Hz} \qquad \omega_{y} := \sqrt{\frac{k_{y}}{m_{y}}} = 211.449 \cdot \text{Hz} \qquad \text{Natural Frequency with added Mass}$

Natural Frequency Pedestal E.xmcd

Concrete Unit Weight

Pedestal Height

Pedestal Length X Direction

Pedestal Length Y Direction

Concrete Compressive Strength

Concrete Modulus of Elasticity

00000	000	000	000	000	000	000	000	000	000	00	
00	00	00	00	00	00	00	00	00	00	00	
00	00	00	00	00	00	00	00	00	00	00	
00	00	00		00	00	00		00	00	00	
00	00	00		0000	0000	00		00	00	00	
00000	000	00	00	00	00	00	00	00	00	00	
00		00	00	00	00	00	00	00	00	00	
00		000	000	00	00	000	000	000	000	00000	(TM)

Computer program for the Strength Design of Reinforced Concrete Sections

```
Page 2
10/28/11 pcaColumn V3.63 - PORTLAND CEMENT ASSOCIATION -
                                                                                Column E
12:59:05 Licensed to: FLSmidth
 General Information:
  _____
    File Name: C:\Users\esum-us\Desktop\Pedestal Design\Column E.col
    Project: CC&V High Grade Ore
    Column: A/B
                                          Engineer: ECS
    Code: ACI 318-02
                                          Units: English
                                          Slenderness: Not considered
    Run Option: Investigation
                                          Column Type: Architectural
    Run Axis: Biaxial
 Material Properties:
  _____
    f'c = 4 ksi
                                          fy = 60 \text{ ksi}
                                          Es = 29000 ksi
    Ec = 3605 ksi
    Ultimate strain = 0.003 in/in
    Beta1 = 0.85
 Section:
  ______
    Rectangular: Width = 114.313 in
                                         Depth = 77 in
    Gross section area, Ag = 8802.1 in^2
                                          Iy = 9.58509e+006 in^{4}
    Ix = 4.34897e + 006 in^{4}
    Xo = 0 in
                                          Yo = 0 in
 Reinforcement:
  ================
    Rebar Database: ASTM A615
    Size Diam (in) Area (in<sup>2</sup>) Size Diam (in) Area (in<sup>2</sup>) Size Diam (in) Area (in<sup>2</sup>)
    # 30.380.11# 40.500.20# 50.630.31# 60.750.44# 70.880.60# 81.000.79# 91.131.00# 101.271.27# 111.411.56# 141.692.25# 182.264.001.001.27
    Confinement: Tied; #3 ties with #7 bars, #4 with larger bars.
    phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.65
    Layout: Rectangular
    Pattern: Equal Bar Spacing (Cover to transverse reinforcement)
    Total steel area, As = 45.72 \text{ in}^2 at 0.52\%
    36 #10 Cover = 2 in
 Load Combinations:
  _____
    U1 = 1.400*Dead + 0.000*Live + 0.000*Wind + 0.000*EarthQuake
    U2 = 1.200*Dead + 1.600*Live + 0.000*Wind + 0.000*EarthQuake
    U3 = 1.200*Dead + 1.000*Live + 0.000*Wind + 0.000*EarthQuake
    U4 = 1.200*Dead + 0.000*Live + 0.800*Wind + 0.000*EarthQuake
    U5 = 1.200*Dead + 1.000*Live + 1.600*Wind + 0.000*EarthQuake
    U6 = 0.900*Dead + 0.000*Live + 1.600*Wind + 0.000*EarthQuake
    U7 = 1.200*Dead + 0.000*Live - 0.800*Wind + 0.000*EarthQuake
    U8 = 1.200*Dead + 1.000*Live - 1.600*Wind + 0.000*EarthQuake
    U9 = 0.900*Dead + 0.000*Live - 1.600*Wind + 0.000*EarthQuake
    U10 = 1.200*Dead + 1.000*Live + 0.000*Wind + 1.000*EarthQuake
    U11 = 0.900*Dead + 0.000*Live + 0.000*Wind + 1.000*EarthQuake
    U12 = 1.200*Dead + 1.000*Live + 0.000*Wind - 1.000*EarthQuake
    U13 = 0.900*Dead + 0.000*Live + 0.000*Wind - 1.000*EarthQuake
```

Service Loads:

=	=	=	=	=	=	=	=	=	=	=	=	=	=

I.

No.	Load Case	Axial Load kip	Mx @ Top k-ft	Mx @ Bot k-ft	My @ Top k-ft	My @ Bot k-ft
1	Dead	13.0	0.0	0.0	0.0	0.0
	Live	33.9	0.0	0.0	0.0	0.0
	Wind	0.0	. 0.0	0.0	0.0	0.0
	E.Q.	0.0	0.0	0.0	0.0	0.0
2	Dead	13.0	0.0	0.0	0.0	0.0
	Live	-33.9	0.0	0.0	0.0	0.0
	Wind	0.0	0.0	0.0	0.0	0.0
	E.Q.	0.0	0.0	0.0	0.0	0.0

Factored Loads and Moments with Corresponding Capacities: (see user's manual for notation)

NOTE: Each loading combination includes the following cases:

	First	line - at co	lumn top				
		line - at co					
	Load	Pu	Mux	Muy	fMnx	fMny	
No.	Combo	kip	k-ft	k-ft	k-ft	k-Ít	fMn/Mu
1	1 U1	18.2	0.0	0.0	7351.9	0.0	999.999
2		18.2	0.0	0.0	7351.9	0.0	999.999
3	1 U2	69.9	0.0	0.0	7496.5	0.0	999.999
4		69.9	0.0	0.0	7496.5	0.0	999.999
5	1 U3	49.5	0.0	0.0	7439.6	0.0	999.999
6		49.5	0.0	0.0	7439.6	0.0	999.999
7	1 U4	15.6	0.0	0.0	7344.6	0.0	999.999
8		15.6	0.0	0.0	7344.6	0.0	999.999
9	1 U5	49.5	0.0	0.0	7439.6	0.0	999.999
10		49.5	0.0	0.0	7439.6	0.0	999.999
11	1 U6	11.7	0.0	0.0	7333.6	0.0	999.999
12		11.7	0.0	0.0	7333.6	0.0	999.999
13	1 U7	15.6	0.0	0.0	7344.6	0.0	999.999
14		15.6	0.0	0.0	7344.6	0.0	999.999
15	1 U8	49.5	0.0	0.0	7439.6	0.0	999.999
16		49.5	0.0	0.0	7439.6	0.0	999.999
17	1 U9	11.7	0.0	0.0	7333.6	0.0	999.999
18		11.7	0.0	0.0	7333.6	0.0	999.999
19	1 U10	49.5	0.0	0.0	7439.6	0.0	999.999
20		49.5	0.0	0.0	7439.6	0.0	999.999
21	1 U11	11.7	0.0	0.0	7333.6	0.0	999.999
22		11.7	0.0	0.0	7333.6	0.0	999.999
23	1 U12	49.5	0.0	0.0	7439.6	0.0	999.999
24		49.5	0.0	0.0	7439.6	0.0	999.999
25	1 U13	11.7	0.0	0.0	7333.6	0.0	999.999
26		11.7	0.0	0.0	7333.6	0.0	999.999
27	2 U1	18.2	0.0	0.0	7351.9	0.0	999.999
28		18.2	0.0	0.0	7351.9	0.0	999.999
29	2 U2	-38.7	0.0	0.0	7192.0	0.0	999.999
30		-38.7	0.0	0.0	7192.0	0.0	999.999
31	2 U3	-18.3	0.0	0.0	7249.4	0.0	999.999
32		-18.3	0.0	0.0	7249.4	0.0	999.999
33	2 U4	15.6	0.0	0.0	7344.6	0.0	999.999
34		15.6	0.0	0.0	7344.6	0.0	999.999
35	2 U5	-18.3	0.0	0.0	7249.4	0.0	999.999
36		-18.3	0.0	0.0	7249.4	0.0	999.999
37	2 U6	11.7	0.0	0.0	7333.6	0.0	999.999
38		11.7	0.0	0.0	7333.6	0.0	999.999
39	2 U7	15.6	0.0	0.0	7344.6	0.0	999.999
40		15.6	0.0	0.0	7344.6	0.0	999.999
41	2 U8	-18.3	0.0	0.0	7249.4	0.0	999.999
42		-18.3	0.0	0.0	7249.4	0.0	999.999

10/28/11 pcaColumn V3.63 - PORTLAND CEMENT ASSOCIATION - 12:59:05 Licensed to: FLSmidth

Page 4 Column E

43	2	<u>U9</u>	11.7	0.0	0.0	7333.6	0.0	999.999
44	_		11.7	0.0	0.0	7333.6	0.0	999.999
45	2	U10	-18.3	0.0	0.0	7249.4	0.0	999.999
46			-18.3	0.0	0.0	7249.4	0.0	999.999
47	2	U11	11.7	0.0	0.0	7333.6	0.0	999.999
48			11.7	0.0	0.0	7333.6	0.0	999.999
49	2	U12	-18.3	0.0	0.0	7249.4	0.0	999.999
50			-18.3	0.0	0.0	7249.4	0.0	999.999
51	2	U13	11.7	0.0	0.0	7333.6	0.0	999.999
52			11.7	0.0	0.0	7333.6	0.0	999.999

*** Program completed as requested! ***

÷

د	PROJECT	PROJ NO	.11021	
	CCEV HECH GRADE ORE	CALC NO	. (-005	
	SUBJECT	BY ELS	DATE / c	2-31-11
	BALL MELL FOURIDATION	СНК	DATE	
		SHEET	OF	REV

PEDESTAL F/6 DESEGN:

Project: CC&V High Grade Ore Subject: Ball Mill Foundation Design

Pedestal Length X Direction

Pedestal Length Y Direction

Pedestal Height

Concrete Unit Weight

Concrete Compressive Strength

Concrete Modulus of Elasticity

Concrete Pedestal Natural Period of Vibration Pedestal F/G

Pedestal Dimensions:

 $L_x := 15ft + 9.375in = 189.375 in$

 $L_v := 5 ft + 0 in = 60 in$

H := 18ft + 11.625in = 227.625in

Concrete Properties:

$$\gamma_c := 145 \, \text{pcf}$$

$$E := 57000 \text{psi} \cdot \sqrt{\frac{f_c}{\text{psi}}} = 3.605 \times 10^3 \cdot \text{ksi}$$

Loads and Masses:

 $m := L_x \cdot L_y \cdot H \cdot \frac{\gamma_c}{\alpha} = 2.17 \times 10^5 \cdot lb$ Pedestal Mass $F_x := 0lb$ Applied Mass

$$m_x := F_x + 0.23m = 4.992 \times 10^4 lb$$
 $m_y := F_y + 0.23m = 4.992 \times 10^4 lb$ Equivalent

 $F_v := 0lb$

Dynamic Properties:

 $I_x := \frac{L_x^3 \cdot L_y}{12} = 3.396 \times 10^7 \text{ in}^4$ $I_y := \frac{L_x \cdot L_y^3}{12} = 3.409 \times 10^6 \cdot \text{ in}^4$ Moment of Inertia $k_{x} := \frac{\left(3 \cdot E \cdot I_{x}\right)}{4 \cdot E^{3}} = 3.737 \times 10^{5} \cdot \frac{kip}{ft} \qquad k_{y} := \frac{\left(3 \cdot E \cdot I_{y}\right)}{4 \cdot E^{3}} = 3.751 \times 10^{4} \cdot \frac{kip}{ft}$ Stiffness Factor $\omega_{x} := \sqrt{\frac{k_{x}}{0.23m}} = 490.764 \cdot Hz$ $\omega_{y} := \sqrt{\frac{k_{y}}{0.23m}} = 155.49 \cdot Hz$ Natural Frequency without added Mass $\omega_{\mathbf{x}} := \sqrt{\frac{\mathbf{k}_{\mathbf{x}}}{\mathbf{m}_{\mathbf{y}}}} = 490.764 \cdot \mathrm{Hz} \qquad \qquad \omega_{\mathbf{y}} := \sqrt{\frac{\mathbf{k}_{\mathbf{y}}}{\mathbf{m}_{\mathbf{y}}}} = 155.49 \cdot \mathrm{Hz}$ Natural Frequency with added Mass

Natural Frequency Pedestal F-G.xmcd

Mass

PROJECT	CC&V High Grade Ore	PROJ NO.	11(021
		CALC NO.		005
SCOPE	Ball Mill Foundation	BY ECS	DATE	28-Oct-11
		СНК	DATE	
		SHEET	OF	REV

Pedestal F/G Loading

Pedestal Height (ft): 18.75

Load Locations:

Using CL Main Motor & CL Motor as Axis Origin

	X (ft)	Y (ft)
Pedestal Center of Gravity	-3.70	0.00

	Coord	inates	Eccer	itricity
Location	X (ft)	Y (ft)	e _x (ft)	e _y (ft)
G	-8.50	0.00	-4.80	0.00
11/22/2018/02 - 01/2018/02/02/02	0.00	0.00	3 70	0.00

Dead Load:

	E (kin)	E (kim)	F ₋ (kip)	M _x (k*ft)	Μ, (k*ft)
Location	F _x (kip)	ry (KIP)		Тор	Bot	Тор	Bot
G	0.0	0.0	31.0	0.0	0.0	-148.9	-148.9
F	0.0	0.0	3.0	0.0	0.0	11.1	11.1
Result	0.0	0.0	34.0	0.0	0.0	-137.8	-137.8

Live Load:

Location	F _x (kip)	E (kin)	E (kin)	М _х (k*ft)	M _y (k*ft)
Location	1 X (MP)	i y (NIP)		Тор	Bot	Тор	Bot
G	0.0	0.0	33.9	0.0	0.0	-163.0	-163.0
F	0.0	0.0	15.7	0.0	0.0	57.9	57.9
Result	0.0	0.0	49.6	0.0	0.0	-105.1	-105.1

.

.

00000	00	000	000	000	000	000	000	000	000	00	
00	00	00	00	00	00	00	00	00	00	00	
00	00	00	00	00	00	00	00	00	00	00	
00	00	00		00	00	00		00	00	00	
00	00	00		0000	0000	00		00	00	00	
00000	00	00	00	00	00	00	00	00	00	00	
00		00	00	00	00	00	00	00	00	00	
00		000	000	00	00	000	000	000	000	00000	(TM)

.

.

.

Computer program for the Strength Design of Reinforced Concrete Sections

10/28/11 pcaColumn V3.63 - PORTLAND CEMENT ASSOCIATION -Page 2 Column F-G 13:39:25 Licensed to: FLSmidth General Information: _____ File Name: C:\Users\esum-us\Desktop\Pedestal Design\Column F-G.col Project: CC&V High Grade Ore Column: A/B Code: ACI 318-02 Engineer: ECS Units: English Run Option: Investigation Slenderness: Not considered Column Type: Architectural Run Axis: Biaxial Material Properties: _____ fy = 60 ksi f'c = 4 ksi= 29000 ksi = 3605 ksi EC Es Ultimate strain = 0.003 in/in Beta1 = 0.85Section: ======= Rectangular: Width = 189.375 in Depth = 60 inGross section area, $Ag = 11362.5 \text{ in}^2$ Ix = 3.40875e+006 in⁴ Xo = 0 in $Iy = 3.39577e+007 in^{4}$ $\dot{Yo} = 0$ in Reinforcement: ================= Rebar Database: ASTM A615 Size Diam (in) Area (in²) Size Diam (in) Area (in²) Size Diam (in) Area (in²) ---- ------____ ~~~~~~ ____ _____

 #
 4
 0.50

 #
 7
 0.88

 #
 10
 1.27

 #
 18
 2.26

 0.20 # 5 0.63 0.60 # 8 1.00 1.27 # 11 1.41 0.38 0.31 0.79 1 56 # 3 0.11 # 6 0.75 0.44 # 9 1.56 1.13 1.00 # 14 1.69 2.25 4.00 Confinement: Tied; #3 ties with #7 bars, #4 with larger bars. phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.65Layout: Rectangular Pattern: Equal Bar Spacing (Cover to transverse reinforcement) Total steel area, $As = 60.96 \text{ in}^2$ at 0.54% 48 #10 Cover = 2 in Load Combinations: _____ U1 = 1.400*Dead + 0.000*Live + 0.000*Wind + 0.000*EarthQuake = 1.200*Dead + 1.600*Live + 0.000*Wind + 0.000*EarthQuake U2 U3 = 1.200*Dead + 1.000*Live + 0.000*Wind + 0.000*EarthQuake U4 = 1.200*Dead + 0.000*Live + 0.800*Wind + 0.000*EarthQuake U5 = 1.200*Dead + 1.000*Live + 1.600*Wind + 0.000*EarthQuake U6 = 0.900*Dead + 0.000*Live + 1.600*Wind + 0.000*EarthQuake U7 = 1.200*Dead + 0.000*Live - 0.800*Wind + 0.000*EarthQuake U8 = 1.200*Dead + 1.000*Live - 1.600*Wind + 0.000*EarthQuake U9 = 0.900*Dead + 0.000*Live - 1.600*Wind + 0.000*EarthQuake U10 = 1.200*Dead + 1.000*Live + 0.000*Wind + 1.000*EarthQuake U11 = 0.900*Dead + 0.000*Live + 0.000*Wind + 1.000*EarthQuake U12 = 1.200*Dead + 1.000*Live + 0.000*Wind - 1.000*EarthQuake U13 = 0.900*Dead + 0.000*Live + 0.000*Wind - 1.000*EarthQuake

Service	Loads:

No.	Load Case	Axial Load kip	Mx @ Top k-ft	Mx @ Bot k-ft	My @ Top k-ft		My @ Bot k-ft
1	Dead	34.0	0.0	0.0	-137.8	7	-137.8
	Live	49.6	0.0	0.0	-105.1		-105.1
	Wind	0.0	0.0	0.0	0.0		0.0
	E.Q.	0.0	0.0	0.0	0.0		0.0

Factored Loads and Moments with Corresponding Capacities: (see user's manual for notation)

NOTE: Each loading combination includes the following cases:

	First Second	line - at co l line - at co	lumn bottom		-		
No.	Load Combo	Pu kip			fMnx k-ft		fMn/Mu
1	1 U1	47.6	0.0	-192.9	0.0	-23589.0	122.273
2 3		47.6	0.0	192.9	-0.0	23589.0	122.273
3	1 U2	120.2	0.0	-333.5	0.0	-24014.9	72.004
4		120.2	0.0	333.5	-0.0	24014.9	72.004
5	1 U3	90.4	0.0	-270.5	0.0	-23840.4	88.148
6		90.4	0.0	270.5	-0.0	23840.4	88.148
7	1 U4	40.8	0.0	-165.4	0.0	-23548.7	142.409
8		40.8	0.0	165.4	-0.0	23548.7	142.409
9	1 U5	90.4	0.0	-270.5	0.0	-23840.4	88.148
10		90.4	0.0	270.5	-0.0	23840.4	88.148
11	1 U6	30.6	0.0	-124.0		-23487.0	189.380
12		30.6	0.0	124.0	-0.0	23487.0	189.380
13	1 U7	40.8	0.0	-165.4	0.0	-23548.7	142.409
14		40.8	0.0	165.4	-0.0	23548.7	142.409
15	1 U8	90.4	0.0	-270.5	0.0	-23840.4	88.148
16		90.4	0.0	270.5	-0.0	23840.4	88.148
17	1 U9	30.6	0.0	-124.0	0.0	-23487.0	189.380
18		30.6	0.0	124.0	-0.0	23487.0	189.380
19	1 U10	90.4	0.0	-270.5	0.0	-23840.4	88.148
20		90.4	0.0	270.5	-0.0	23840.4	88.148
21	1 U11	30.6	0.0	-124.0	0.0	-23487.0	189.380
22		30.6	0.0	124.0	-0.0	23487.0	189.380
23	1 U12	90.4	0.0	-270.5	0.0	-23840.4	88.148
24		90.4	0.0	270.5	-0.0	23840.4	88.148
25	1 U13	30.6	0.0	-124.0			189.380
26		30.6	0.0	124.0	-0.0	23487.0	189.380

*** Program completed as requested! ***

PROJECT CCIV HIGH GRADE ORE	PROJ NO. 11021 CALC NO. Cross		
SUBJECT BALL MAILL FOUNDATION	BY Ecs CHK SHEET	DATE / <i>0-3(-1)</i> DATE OF REV	

٩

PEDESTAL H DESEGN:

Pedestal Length X Direction

Pedestal Length Y Direction

Pedestal Height

Concrete Unit Weight

Concrete Compressive Strength

Concrete Modulus of Elasticity

Concrete Pedestal Natural Period of Vibration Pedestal H

Pedestal Dimensions:

 $L_x := 2ft + 6in = 30in$ $L_v := 2ft + 6in = 30in$ $H := 19ft + 10.75in = 238.75 in^{-1}$

Concrete Properties:

$$E := 57000 \text{psi} \cdot \sqrt{\frac{f_c}{\text{psi}}} = 3.605 \times 10^3 \cdot \text{ksi}$$

Loads and Masses:

 $m := L_x \cdot L_y \cdot H \cdot \frac{\gamma_c}{r} = 1.803 \times 10^4 \cdot lb$ Pedestal Mass $F_v := 0lb$ Applied Mass

Dynamic Properties:

 $I_x := \frac{L_x^3 \cdot L_y}{12} = 6.75 \times 10^4 \text{ in}^4$ $I_y := \frac{L_x \cdot L_y^3}{12} = 6.75 \times 10^4 \cdot \text{in}^4$ Moment of Inertia $k_{x} := \frac{(3 \cdot E \cdot I_{x})}{r^{3}} = 643.696 \cdot \frac{kip}{ft} \qquad \qquad k_{y} := \frac{(3 \cdot E \cdot I_{y})}{r^{3}} = 643.696 \cdot \frac{kip}{ft}$ Stiffness Factor $\omega_{\rm X} := \sqrt{\frac{k_{\rm X}}{0.23 {\rm m}}} = 70.668 \cdot {\rm Hz}$ $\omega_{\rm y} := \sqrt{\frac{k_{\rm y}}{0.23 {\rm m}}} = 70.668 \cdot {\rm Hz}$ Natural Frequency without added Mass $\omega_{x.} := \sqrt{\frac{k_x}{m_{-1}}} = 70.668 \cdot Hz$ $\omega_{y.} := \sqrt{\frac{k_y}{m_{-1}}} = 70.668 \cdot Hz$ Natural Frequency with added Mass

Natural Frequency Pedestal H.xmcd

10/31/2011, 8:41 AM

$F_x := 0lb$

$m_x := F_x + 0.23m = 4.147 \times 10^3 lb$ $m_y := F_y + 0.23m = 4.147 \times 10^3 lb$

Equivalent Mass

00000	000	000	000	000	000	000	000	000	000	00	
00	00	00	00	00	00	00	00	00	00	00	
00	00	00	00	00	00	00	00	00	00	00	
00	00	00		00	00	00		00	00	00	
00	00	00		0000	0000	00		00	00	00	
00000	00	00	00	00	00	00	00	00	00	00	
00		00	00	00	00	00	00	00	00	00	
00		000	000	00	00	000	000	000	000	00000	(TM)

Computer program for the Strength Design of Reinforced Concrete Sections

10/31/11 pcaColumn V3.63 - PORTLAND CEMENT ASSOCIATION -Page 2 08:42:45 Licensed to: FLSmidth Column H General Information: File Name: C:\Users\esum-us\Desktop\Pedestal Design\Column H.col Project: CC&V High Grade Ore Column: A/B Engineer: ECS Code: ACI 318-02 Units: English Run Option: Investigation Slenderness: Not considered Run Axis: Biaxial Column Type: Structural Material Properties: =================== f'c = 4 ksify = 60 ksiEc = 3605 ksi Es = 29000 ksi Ultimate strain = 0.003 in/in ţ Beta1 = 0.85Section: ======= Rectangular: Width = 30 in Depth = 30 inGross section area, $Ag = 900 \text{ in}^2$ $Iy = 67500 in^{4}$ $Ix = 67500 in^{4}$ Xo = 0 in Yo = 0 in Reinforcement: ============= Rebar Database: ASTM A615 Size Diam (in) Area (in²) Size Diam (in) Area (in²) Size Diam (in) Area (in²)

 # 3
 0.38
 0.11
 # 4
 0.50
 0.20
 # 5
 0.63
 0.31

 # 6
 0.75
 0.44
 # 7
 0.88
 0.60
 # 8
 1.00
 0.79

 # 9
 1.13
 1.00
 # 10
 1.27
 1.27
 # 11
 1.41
 1.56

 # 14
 1.69
 2.25
 # 18
 2.26
 4.00
 4.00

 # 14 2.26 1.69 2.25 # 18 4.00 Confinement: Tied; #3 ties with #7 bars, #4 with larger bars. phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.65Layout: Rectangular Pattern: Equal Bar Spacing (Cover to transverse reinforcement) Total steel area, As = 10.16 in^2 at 1.13% 8 #10 Cover = 2 in Load Combinations: _____ U1 = 1.400*Dead + 0.000*Live + 0.000*Wind + 0.000*EarthQuake U2 = 1.200*Dead + 1.600*Live + 0.000*Wind + 0.000*EarthQuake U3 = 1.200*Dead + 1.000*Live + 0.000*Wind + 0.000*EarthQuake U4 = 1.200*Dead + 0.000*Live + 0.800*Wind + 0.000*EarthQuake U5 = 1.200*Dead + 1.000*Live + 1.600*Wind + 0.000*EarthQuake U6 = 0.900*Dead + 0.000*Live + 1.600*Wind + 0.000*EarthQuake U7 = 1.200*Dead + 0.000*Live - 0.800*Wind + 0.000*EarthQuake U8 = 1.200*Dead + 1.000*Live - 1.600*Wind + 0.000*EarthQuake U9 = 0.900*Dead + 0.000*Live - 1.600*Wind + 0.000*EarthQuake U10 = 1.200*Dead + 1.000*Live + 0.000*Wind + 1.000*EarthQuake U11 = 0.900*Dead + 0.000*Live + 0.000*Wind + 1.000*EarthQuake U12 = 1.200*Dead + 1.000*Live + 0.000*Wind - 1.000*EarthQuake U13 = 0.900*Dead + 0.000*Live + 0.000*Wind - 1.000*EarthQuake

Service	Loads:
=======	======

======	=======	;					
No.	Load Case	Axial	Load kip	Mx @ Top k-ft	Mx @ Bot k-ft	My @ Top k-ft	My @ Bot k-ft
1	Dead Live Wind E.Q.		8.8 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0

Factored Loads and Moments with Corresponding Capacities: (see user's manual for notation)

NOTE: Each loading combination includes the following cases:

No.	Second Load	line - at co line - at co Pu kip	lumn bottom Mux	Muy k-ft	fMnx k-ft	fMny k-ft	fMn/Mu
1	1 U1	12.3	0.0	0.0	592.1	0.0	999.999
2		12.3	0.0	0.0	592.1	0.0	999.999
3	1 U2	10.6	0.0	0.0	590.4	0.0	999.999
4		10.6	0.0	0.0	590.4	0.0	999.999
5	1 U3	10.6	0.0	0.0	590.4	0.0	999.999
6		10.6	0.0	0.0	590.4	0.0	999.999
7	1 U4	10.6	0.0	0.0	590.4	0.0	999.999
8		10.6	0.0	0.0	590.4	0.0	999.999
9	1 U5	10.6	0.0	0.0	590.4	0.0	999.999
10		10.6	0.0	0.0	590.4	0.0	999.999
11	1 U6	7.9	0.0	0.0	587.8	0.0	999.999
12		7.9	0.0	0.0	587.8	0.0	999.999
13	1 U7	10.6	0.0	0.0	590.4	0.0	999.999
14		10.6	0.0	0.0	590.4	0.0	999.999
15	1 U8	10.6	0.0	0.0	590.4	0.0	999.999
16		10.6	0.0	0.0	590.4	0.0	999.999
17	1 U9	7.9	0.0	0.0	587.8	0.0	999.999
18		7.9	0.0	0.0	587.8	0.0	999.999
19	1 U10	10.6	0.0	0.0	590.4	0.0	999.999
20		10.6	0.0	0.0	590.4	0.0	999.999
21	1 U11	7.9	0.0	0.0	587.8	0.0	999.999
22		7.9	0.0	0.0	587.8	0.0	999.999
23	1 U12	10.6	0.0	0.0	590.4	0.0	999.999
24		10.6	0.0	0.0	590.4	0.0	999.999
25	1 U13	7.9	0.0	0.0	587.8	0.0	999.999
26		7.9	0.0	0.0	587.8	0.0	

*** Program completed as requested! ***

	PROJECT CC & V HILDI	Y LIRAIDE	Oiziz	PROJ NO. CALC NO.		
ESMIDTH	SUBJECT BALL	Marc	FOUNDASEDON	BY <u>SCS</u> CHK SHEET	DATE / DATE OF	REV

PEDESTAL J/H DESIGNS

Project: CC&V High Grade Ore
Subject: Ball Mill Foundation Design

 Proj. No.
 11021

 Calc No.
 C-005

 By:
 ECS
 Date:10/31/2011

 Chk:
 Date:

 Sheet 1 of
 Rev: 0

Pedestal Length X Direction

Pedestal Length Y Direction

Pedestal Height

Concrete Unit Weight

Concrete Compressive Strength

Concrete Modulus of Elasticity

Concrete Pedestal Natural Period of Vibration Pedestal J

Pedestal Dimensions:

 $L_x := 3ft + 0in = 36 in$ $L_y := 2ft + 0in = 24 in$ H := 13ft + 9.75in = 165.75 in

Concrete Properties:

$$E := 57000 \text{psi} \cdot \sqrt{\frac{f_c}{\text{psi}}} = 3.605 \times 10^3 \cdot \text{ksi}$$

Loads and Masses:

$$\begin{split} \mathbf{m} &\coloneqq \mathbf{L}_{\mathbf{x}} \cdot \mathbf{L}_{\mathbf{y}} \cdot \mathbf{H} \cdot \frac{\gamma_{\mathbf{c}}}{g} = 1.202 \times 10^{4} \cdot \mathbf{lb} \\ \mathbf{F}_{\mathbf{x}} &\coloneqq 01b \\ \mathbf{m}_{\mathbf{x}} &\coloneqq \mathbf{F}_{\mathbf{x}} + 0.23m = 2.764 \times 10^{3} \mathbf{lb} \\ \end{split} \qquad \begin{array}{l} \mathsf{F}_{\mathbf{y}} &\coloneqq 01b \\ \mathsf{F}_{\mathbf{y}} &\coloneqq 01b$$

Dynamic Properties:

 $I_{x} := \frac{L_{x}^{3} \cdot L_{y}}{12} = 9.331 \times 10^{4} \text{ in}^{4} \qquad I_{y} := \frac{L_{x} \cdot L_{y}^{3}}{12} = 4.147 \times 10^{4} \cdot \text{in}^{4} \qquad \text{Moment of Inertia}$ $k_{x} := \frac{(3 \cdot \text{E-I}_{x})}{\text{H}^{3}} = 2.659 \times 10^{3} \cdot \frac{\text{kip}}{\text{ft}} \qquad k_{y} := \frac{(3 \cdot \text{E-I}_{y})}{\text{H}^{3}} = 1.182 \times 10^{3} \cdot \frac{\text{kip}}{\text{ft}} \qquad \text{Stiffness Factor}$ $\omega_{x} := \sqrt{\frac{k_{x}}{0.23m}} = 175.948 \cdot \text{Hz} \qquad \omega_{y} := \sqrt{\frac{k_{y}}{0.23m}} = 117.299 \cdot \text{Hz} \qquad \text{Natural Frequency without added Mass}$ $\omega_{x} := \sqrt{\frac{k_{x}}{m_{x}}} = 175.948 \cdot \text{Hz} \qquad \omega_{y} := \sqrt{\frac{k_{y}}{m_{y}}} = 117.299 \cdot \text{Hz} \qquad \text{Natural Frequency with added Mass}$

Natural Frequency Pedestal J.xmcd

10/31/2011, 10:07 AM

C-005b Rev. 0 / Page 134 of 142

00000	00	000	000	00000		000	000	00000		00	
00	00	00	00	00	00	00	00	00	00	00	
00	00	00	00	00	00	00	00	00	00	00	
00	00	00		00	00	00		00	00	00	
00	00	00		0000	0000	00		00	00	00	
00000	00	00	00	00	00	00	00	00	00	00	
00		00	00	00	00	00	00	00	00	00	
00		000	000	00	00	000	000	000	000	00000	(TM)

Computer program for the Strength Design of Reinforced Concrete Sections

Licensee stated above acknowledges that Portland Cement Association (PCA) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the pcaColumn(tm) computer program. Furthermore, PCA neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the pcaColumn(tm) program.Although PCA has endeavored to produce pcaColumn(tm) error free, the program is not and can't be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensees. Accordingly, PCA disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the pcaColumn(tm) program.

10/31/11 pcaColumn V3.63 - PORTLAND CEMENT ASSOCIATION -Page 2 10:06:27 Licensed to: FLSmidth Column J General Information: File Name: C:\Users\esum-us\Desktop\Pedestal Design\Column J.col Project: CC&V High Grade Ore Column: A/B Engineer: ECS ACI 318-02 Code: Units: English Run Option: Investigation Slenderness: Not considered Run Axis: Biaxial Column Type: Structural Material Properties: ______ f'C = 4 ksify = 60 ksiEc = 3605 ksi Es = 29000 ksi Ultimate strain = 0.003 in/in Beta1 = 0.85Section: ======= Rectangular: Width = 36 in Depth = 24 in Gross section area, $Ag = 864 \text{ in}^2$ $Ix = 41472 in^{4}$ $Iy = 93312 in^{4}$ Xo = 0 in Yo = 0 in Reinforcement: Rebar Database: ASTM A615 Size Diam (in) Area (in²) Size Diam (in) Area (in²) Size Diam (in) Area (in²)

 0.20
 # 5
 0.63
 0.31

 0.60
 # 8
 1.00
 0.79

 1.27
 # 11
 1.41

 4 00
 0
 1

 # 3
 0.38
 0.11
 # 4
 0.50
 0.20
 # 5

 # 6
 0.75
 0.44
 # 7
 0.88
 0.60
 # 8

 # 10 # 9 1.00 1.13 1.27 # 14 1.69 2.25 # 18 2.26 4.00 Confinement: Tied; #3 ties with #7 bars, #4 with larger bars. phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.65Layout: Rectangular Pattern: Equal Bar Spacing (Cover to transverse reinforcement) Total steel area, As = 15.24 in^2 at 1.76% 12 #10 Cover = 2 inLoad Combinations: U1 = 1.400*Dead + 0.000*Live + 0.000*Wind + 0.000*EarthQuake U2 = 1.200*Dead + 1.600*Live + 0.000*Wind + 0.000*EarthQuake U3 = 1.200*Dead + 1.000*Live + 0.000*Wind + 0.000*EarthQuake U4 = 1.200*Dead + 0.000*Live + 0.800*Wind + 0.000*EarthQuake U5 = 1.200*Dead + 1.000*Live + 1.600*Wind + 0.000*EarthQuake U6 = 0.900*Dead + 0.000*Live + 1.600*Wind + 0.000*EarthQuake U7 = 1.200*Dead + 0.000*Live - 0.800*Wind + 0.000*EarthQuake U8 = 1.200*Dead + 1.000*Live - 1.600*Wind + 0.000*EarthQuake U9 = 0.900*Dead + 0.000*Live - 1.600*Wind + 0.000*EarthQuake U10 = 1.200*Dead + 1.000*Live + 0.000*Wind + 1.000*EarthQuake U11 = 0.900*Dead + 0.000*Live + 0.000*Wind + 1.000*EarthQuake U12 = 1.200*Dead + 1.000*Live + 0.000*Wind - 1.000*EarthQuake U13 = 0.900*Dead + 0.000*Live + 0.000*Wind - 1.000*EarthQuake

=	=	=	=	=	 =	=	=	=	=	=	=	=	

Load No. Case	Axial Load kip	Mx @ Top k-ft	Mx @ Bot k-ft	My @ Top k-ft	My @ Bot k-ft
1 Deed	147 0 /				
1 Dead	147.0	0.0	0.0	73.5	73.5
Live	143.0 🧹	0.0	0.0	71.5 🧹	71.5
Wind	0.0	0.0	0.0	0.0	0.0
E.Q.	0.0	0.0	0.0	0.0	0.0

Factored Loads and Moments with Corresponding Capacities: (see user's manual for notation)

NOTE	S: Each	loading combina line - at col	tion include	s the follo	erees:		
		nd line - at col					
	Load		Mux	Musz	fMnx	fMny	
No.	Combo		k-ft			k-ft	fMn/Mu
1	1 U1	205.8	0.0	102.9	-0.0	1188.1	11.546
2		205.8	0.0	-102.9	0.0	-1188.1	11.546
3	1 U2	405.2	0.0	202.6	-0.0	1339.6	6.612
4		405.2	0.0	-202.6			6.612
5	1 U3	319.4		159.7		1282.1	8.028
6		319.4		-159.7	0.0	-1282.1	8.028
7	1 U4	176.4		88.2	-0.0	1162.8	13.184
8		176.4	0.0	-88.2	0.0	-1162.8	13.184
9	1 U5	319.4	0.0	159.7	-0.0	1282.1	8.028
10		319.4	0.0	-159.7	0.0	-1282.1	8.028
11	1 U6	132.3	0.0	66.2	-0.0	1124.4	16.997
12		132.3	0.0	-66.2	0.0	-1124.4	16.997
13	1 U7	176.4		88.2	-0.0	1162.8	13.184
14		176.4		-88.2	0.0	-1162.8	13.184
15	1 U8	319.4	0.0	159.7	-0.0	1282.1	8.028
16		319.4	0.0	-159.7		-1282.1	8.028
17	1 U9	132.3	0.0	66.2	-0.0	1124.4	16.997
18		132.3	0.0	-66.2	0.0	-1124.4	16.997
19	1 U10	319.4		159.7	-0.0	1282.1	8.028
20		319.4	0.0	-159.7	0.0	-1282.1	
21	1 U11	132.3		66.2	-0.0	1124.4	16.997
22		132.3	0.0	-66.2	0.0	-1124.4	16.997
23	1 U12	319.4		159.7	-0.0	1282.1	8.028
24		319.4	0.0		0.0		
25	1 U13	132.3		66.2		1124.4	16.997
26		132.3		-66.2		-1124.4	

```
*** Program completed as requested! ***
```


	PROJECT	CC&\	/	PRO.	I NO.	ा ⁻	1021
FLSmidth		HIGH GRADE ORE		CALC	NO.	C	-004
	SCOPE	BALL M	ILL	BY E	CS	DATE	16-Jul-12
		NCHOR BOLT DESI	GN	CHK		DATE	
				SHEE	T	OF	REV

Anchor Bolt Design - Pedestal

per ACI 318-08 Appendix D, Wind Loads and Anchor Bol Design for Petrochemical Facilities (ASCE Anchor Bolt Task Committee)

Assumptions: Cast-in-place Anchor Bolts, Cracked Concrete Intermediate to High Seismic, No eccentric loading

Loads:

N =	34.700	kip	Factored Tensile Load
V _x =	165.440	kip	Factored Shear Load - X Dir.
M _y =	0.000	kip*ft	Factored Moment - About Y Axis
V _y =	0.000	kip	Factored Shear Load - Y Dir.
M _× =	0.000	kip*ft	Factored Moment - about X Axis

Anchor Geometry:

Anchor Loads: (check bolts that resist shear)

(Sh	near	Tension
	Bolt #	X Dir.	Y Dir.	X Dir.
	1	✓ 41.4	☑ 0.0	8.7
Update Loads	2	✓ 41.4	✓ 0.0	8.7
	3	✓ 41.4	✓ 0.0	8.7
Annual and a second	4	☑ 41.4	☑ 0.0	8.7
	5	0.0	0.0	0.0
	6	0.0	0.0	0.0
	7	0.0	0.0	0.0
	8	0.0	0.0	0.0
	9	0.0	0.0	0.0
	10	0.0	0.0	0.0
	11	0.0	0.0	0.0
	12	0.0	0.0	0.0
	Sum	165.4	0.00 Page	34.70 1 of 4

 PROJECT		CC&V	57-05-159/46-59	PR	OJ NO		1021
	HIGH GRAD	DE ORE		CAI	_C NO	. C	-004
SCOPE		BALL MIL	Lassadousi	ΒY	ECS	DATE	16-Jul-12
and the state of t	ANCHOR BOL	T DESIG	iN	CHI	K	DATE	
		N	A CARLES POLICIES	SH	EET	OF	REV

Bolt Properties:

D =	2 F1554 36	in	Anchor Bolt Diameter Anchor Bolt Material
. F		- .	
h _{ef} =	42	in	Embedment Depth
h' _{ef} =	32.00	in	Effective Embedment Depth (D.5.2.3)
۱ _e =	16	in	Load bearing length of anchor for shear (D.6.2.2)
n _t =	4		Number of Bolts in Tension
n _{vx} =	4		Number of Bolts in Shear X Dir.
n _{vy} =	4		Number of Bolts in Shear Y Dir.
$A_{se} =$	2.498	in ²	Effective Tension Bolt Area
$A_{se,v} =$	2.498	in ²	Effective Shear Bolt Area
A _{brg} =	5.316	in ²	Bolt Bearing Area
f _{ya} =	36	ksi	Anchor Yield Strength
f _{uta} =	58	ksi	Ultimate Tensile Anchor Strength

Concrete Properties:

Grout Pad [<u>、</u>	Tensile Re	einforcement 🗹	Shear Reinforcement 🗹
f' _c =	4000	psi		
H =	120]in	Pedestal Height	
В =	54	Jin	Pedestal Width	
L =[114	∫in	Pedestal Length	
c _{at,1} =	8	in	Tension Edge Distance	e 1
c _{at,2} =	32	in	Tension Edge Distance	e 2
c _{at,3} =	9	in	Tension Edge Distance	e 3
c _{at,4} =	9	in	Tension Edge Distance	e 4
C _{av,1} =	22	in	Shear Edge Distance	1
c _{av,2} =	105	in	Shear Edge Distance 2	2
c _{a,min} =	8	in	Minimum Clear Cover	
A _{nc} ' =	6156.0	in ²	Projected Tension Cor	ncrete Failure Area (D.5.2.1)
A _{nco} ' =	9216.0	in ²	Projected Concrete Fa	ilure Area of a Single Bolt (D-6)
A _{vc,x} =	3762.0	in ²	Projected Shear Conci	rete Failure Area X Dir. (RD.6.2.1b)
A _{vc,y} =	4260.0	in ³	Projected Shear Conci	rete Failure Area Y Dir. (RD.6.2.1b)
A _{vco,x} =	2178.0	in ²	Maximum Projected A	rea for a Single Anchor X Dir. (D-23)
A _{vco,y} =	49612.5	in ³	Maximum Projected A	rea for a Single Anchor Y Dir. (D-23)

PROJECT		CC&V		PRC	J NO.		1021	
	HIGH GI	RADE ORE		CAL	C NO.	C	C-004	
SCOPE	144-00.00	BALL MIL	<u>.L</u>	ΒY	ECS	DATE	16	S-Jul-12
	ANCHOR E	BOLT DESIC	SN	СНИ	(DATE		
			- Victoria de la compañía	SHE	ET	OF	RE	V

Pedestal Reinforcement:

-		-	
fy =	60	ksi	Reinforcement Yield Strength
Reinforcement =	# 10		Pedestal Reinforcement Size
N =	48		Total Number of Longitudinal Bars
s =	8	in	Horizontal Clear Distance Between Bolts and Reinforcement
c =	2	lin	Concrete Cover (Top of Pedestal to Top of Reinforcement)
ρ=	0.99%		Pedestal Reinforcement Ratio
A _{s,bar Req'd} =	0.26	in ²	Required Reinforcement per Tension Bolt (D.3.3.3)
A _{s,bar} =	15.24	in ²	Provided Reinforcement per Tension Bolt
L _d =	60.2	in	Reinforcement Development Length (ACI 318 - 12.2.3)
Reduction Ratio =	0.02		Development Length Reduction Ratio (ACI 318 - 12.2.5)
$L_{dev} =$	1	in	Reduced Development Length
h _{ef, Req'd} =	12	in	Minimum Required Anchor Bolt Embedment

Use (48) # 10 Bars, 12 in. Minimum Anchor Embedment Depth

Factors/ Coefficients:

Tension Factors:

$\psi_{\text{ed,N}}$ =	0.750	Factor for insufficient side cover (D-10,D-11)
ψ _{c,N} =	1	Factor for uncracked concrete (D.5.2.6)

Shear Factors:

$\psi_{\text{ed,Vx}}$ =	1.000	Factor for insufficient side cover (D-27,D-28)
$\psi_{\text{ed,Vy}}$ =	0.742	Factor for insufficient side cover (D-27,D-28)
$\psi_{c,V} =$	1	Factor for uncracked concrete (D.6.&.&)

Reduction Factors: (D.4.4)

ф., =	0.75	Steel Reduction Factor for Tension
		Steel Reduction Factor for Shear
φ _{cp} =	0.70	Tensile Pullout and Shear Pryout Reduction Factor
$\phi_{cn} =$	0.75	Concrete Reduction Factor for Tension
$\phi_{cv} =$	0.75	Concrete Reduction Factor for Shear

ELSMIDTH	PROJECT	CC&V	PROJ NO	. · · · · · · · · · · · · · · · · · · ·	1021
		HIGH GRADE ORE	CALC NO.	C	-004
	SCOPE	BALL MILL	BY ECS	DATE	16-Jul-12
	A	NCHOR BOLT DESIGN	CHK	DATE	
			SHEET	OF	REV

Results:

Note: Pedestal reinforcement is designed to prevent all failure modes with a check mark

0.14

Tension Results:

	$\phi N_{sa} =$	434.7	kip
	N _b =	326.4	kip
\checkmark	$\phi N_{cb} =$	NA	kip
	$N_p =$	170.1	kip
	φN _{Pn} =	476.3	kip
	$N_{sb} =$	99.159	kip
	ϕN_{sbg} =	244.798	kip

Nominal Strength of Anchor (Group) in Tension (D-3)
Basic Concrete Breakout Strength of a Single Anchor (D-7, D-8)
Concrete Breakout Strength in Tension (Group) (D-5)
Pullout strength for single headed stud
The Nominal pullout Strength in Tension (Group) (D-14)
Side-face blowout strength of a single bolt (D-17)
Side-face blowout strength of a bolt group (D-18)

DESIGN OK

φN_n = 244.8 kip

Shear Results:

	φV _{sa, x} =	180.8	kip
	φV _{sa, y} =	180.8	kip
	$V_{b,x} =$	97.9	kip
	V _{b,y} =	1021.0	kip
\checkmark	$\phi V_{cbg,x} =$	NA	kip
\checkmark	$\phi V_{cbg,y} =$	NA	kip
	φV _{cpg,x} =	228.9	kip
	φV _{cpg,y} =	228.9	kip

Nominal Steel Shear Strength X Dir. (D-20)
Nominal Steel Shear Strength Y Dir. (D-20)
Basic Concrete Breakout Strength, X Dir. (D-24)
Basic Concrete Breakout Strength, Y Dir. (D-24)
Concrete breakout Strength (Group), X Dir. (D-22)
Concrete breakout Strength (Group), Y Dir. (D-22)
Nominal Pryout Strength for a group of anchors X Dir. (D-31)
Nominal Pryout Strength for a group of anchors Y Dir. (D-31)

φV _{nx} =	180.8	kip	
φV _{ny} =	180.8	kip	

0.91 0.00

DESIGN OK DESIGN OK

interaction Ratio:

DESIGN OK

September, 20, 2012

Timm Comer Cripple Creek & Victor Gold Mining Co. P.O. Box 191 Victor, CO 80860

Re: Mill Platform Machine Vibration Effects

Dear Mr. Comer:

Machine vibrations associated with the ball mill and rod mill at the proposed plant site will impart stresses to the underlying soil strata. Concern has arisen that these stresses could (1) densify granular foundation fills, (2) produce strains on the geomembrane liner located beneath the foundations, and (3) contribute to instability in nearby slopes. This letter addresses these concerns through analysis and literature review and presents our opinion.

Subgrade Response to Machine Vibrations

The settlement of granular soils from repeated vertical loading on foundations from machine vibrations have been investigated by several laboratory studies (Raymond and Komos, Brumund and Leonards). The studies show that settlement is a function of machine vibration amplitude and number of load cycles. Brumund and Leonards (1972) showed that settlement is a function of energy transmitted to the soil from the machine vibrations. Each of the aforementioned studies were conducted in laboratory settings with scale foundations and idealized sand. Techniques of extrapolation of settlement of prototype foundation from the laboratory model tests are not currently available.

Methods for predicting settlement in dry sands due to cyclic shear stress have been published by Silver and Seed (1971) and state that the controlling parameters for settlement include (1) relative density, (2) maximum shear strain induced, and (3) number of shear cycles imparted on the soil. This method utilizes a dynamic analysis of the cyclic motions (typically ground accelerations from the design earthquake) to construct a profile of average shear strain due to cyclic loading with depth. Once the shear strain profile has been constructed, laboratory simple shear tests on representative soil specimens are conducted to evaluate the vertical strain resulting from cyclic strain at corresponding vertical stresses. The total settlement is calculated as the sum vertical strains times the corresponding layer thicknesses. This method involves extensive laboratory testing and can be implemented only with materials that can be tested with traditional laboratory equipment therefore is not suitable for our application.

For our evaluation, the computer software QUAKE/W by Geo-Slope (2008) was used to conduct finite element analyses of the cyclic foundation vibrations with an equivalent-linear elastic model. The equivalent-linear elastic model modifies the soil stiffness in response to computed strains. This model accurately estimates elastic strains from the dynamic stress imparted by the foundation vibrations but

AMEC Environment and Infrastructure 2000 South Colorado Blvd. Suite 2-1000 Denver, Colorado 80222 Tel: (303) 935-6505 Fax: (303) 935-6575

www.amec.com

cannot predict permanent plastic deformations (i.e. settlement due to densification). The results are the elastic response due to the dynamic foundation load. Non-linear models capture large strains and permanent displacements, but the parameters that describe such models are not as well established as those of the equivalent-linear elastic model. A substantial field and laboratory testing program to obtain model parameters is required for non-linear models.

To simplify the analysis, only structural fill was evaluated for dynamic response. The other materials beneath the mill platform include bedrock, drain cover fill and low volume solution collection fill and are not of concern due to either thickness or density. The structural fill is of concern due to depth of the fill, over 100 feet of fill in some areas, and because it makes up the majority of the foundation soils. The structural fill consisting of minus 24" well graded gravel placed beneath the liner system and the select structural fill consisting of minus 3" well graded gravel placed between the liner system and the low volume solution collection fill were model as homogeneous soil. The dynamic properties were conservatively selected for a sandy gravel with medium density. This is a conservative assumption because the structural fill and select structural fill have larger grain size and higher density compared to the modeled fill. Larger grain size and increased density generally result in higher shear moduli and stiffer dynamic properties in cohesionless fills as indicated by studies conducted by Seed and Idriss (1984).

The structural fill is approximately 75 feet thick beneath the center of the mill foundation so a block of material 100 feet thick was conservatively modeled. A thicker layer is considered conservative as there is more compressible material to contribute to the elastic strains. The structural fill was modeled with a unit weight of 130 pounds per cubic foot (pcf), and a Possion's Ratio of 0.35. The shear modulus was defined as a function of vertical effective stress based on correlations by Seed and Idris (1970). The shear modulus is shown graphically in Figure 1. Equivalent-linear elastic modeling estimates strain softening by a shear modulus reduction function which relates shear modulus to cyclic shear strain. For this analysis the shear modulus reduction function was estimated from the confining stress and plastic limit of the soil based on methods developed by Ishibashi and Zhang (1993) and is shown graphically in Figure 2. The damping ratio is also described as a function of cyclic shear strain and can be estimated similarly to the shear modulus reduction function using the confining stress and plastic limit of the soil by the methods developed by Ishibashi and Zhang (1993). These functions compare well with the dynamic functions suggested by the research of Seed et. al. (1984) for rock fill material. The damping ratio function is shown graphically in Figure 3.

Figure 1: Shear Modulus Function

Figure 2: Shear Modulus Reduction Function

Figure 3: Damping Ratio Function

The machine foundation vibrations were applied to a beam modeled in QUAKE/W. The beam was given material properties to simulate a 3 foot thick concrete mat foundation. Initial stress conditions were calculated with a static stress boundary condition applied to the foundation equal to one half of the maximum allowable bearing capacity given in the geotechnical report, i.e. 3,500 pounds per square foot (psf). The material was modeled as a dry fill without pore water pressures. Generation of pore water pressure is not expected to occur due to the granular nature of the fill and because water infiltration is limited by the geomembrane liner. To simulate the machine vibrations a boundary condition was defined along the foundation as a stress function with time. A sinusoidal function was used to model the vertical oscillation of the stresses. The assumption was made that stresses induced from dynamic loads would not exceed the maximum allowable bearing capacity given in the geotechnical report, i.e. 7,000 psf. The sine waves representing the vibrations had a maximum stress of 7,000 psf, a minimum stress equal to the initial foundation load of 3,500 psf. The wave lengths of the sine functions were equal to the operating angular velocity (rotations per minute, rpm) of the ball and rod mills which were 15.58 rpm and 14.12 rpm, respectively. The sine waves representing the machine vibrations are shown in Figure 4. The vibrations were applied to the foundation independent from one another.

Figure 4: Machine Vibrations

The model was subjected to the foundation vibrations for 1 year and the soil response was recorded. The vertical displacements immediately beneath the mill foundation are plotted in Figure 5 for a period of 60 seconds. The results show that under the stress levels imparted by the foundation vibrations, the structural fill deflects linearly according to the relationships defined by the shear modulus used in the linear-equivalent elastic model. After an initial peak strain, a deflection pattern is established and is consistent with time. This indicates no significant degradation of shear strength in the structural fill which could lead to larger displacements over time.

Figure 5: Soil Response to Dynamic Loading

The maximum vertical deflection for the ball and rod mill vibrations was estimated as 0.24 inches by the model. The magnitude of the maximum deflection is the same for both machine vibrations because the magnitude of the stresses were the same (7,000 psf). Only the frequency is different between the two loads. This deflection represents elastic deflection and not permanent settlement from static foundation loads which have already been addressed in the soils and foundation recommendation report.

Densification of the compacted structural fill from the foundation vibrations is not expected to occur as the structural fill is comprised of minus 24" waste rock and minus 3" waste rock that was systematically compacted using a method developed by the U.S. Army Corp of Engineers (EM1110-2-2301). Based on review of this method specification, it is reasonable to assume the material is adequately compacted to approximately 80% relative density. Deformations of the subgrade material resulting from the dynamic loading of the foundations are estimated to be minor (less than 1/4th of an inch).

Geomembrane Liner Response to Machine Vibration

Effects on the liner from the machine vibrations can be assessed by examining the vertical stresses and horizontal and vertical strains at the level of the geomembrane liner. The geomembrane liner is approximately 15 feet below the foundation bottom. A point 15 feet below the applied dynamic stress was examined within the equivalent-linear elastic model to estimate the stress and strain levels resulting from the machine vibrations. Figures 6, 7 and 8 show vertical stress, vertical strain and horizontal strain, respectively, occurring at the level of the geomembrane.

Figure 6: Verical Stress on geomembrane liner

Figure 7: Vertical Strain on geomembrane liner

Figure 8: Horizontal Strain on geomembrane liner

The compatibility of a liner to the material in contact with it is commonly investigated in the laboratory with a puncture resistance test. The puncture resistance test places a 12" diameter sample of the liner between material representative of the overliner and underliner soils used in the field and subjects the system to normal stresses greater than or equal to the maximum normal stress expected from the overburden. A puncture resistance test was conducted on a sample of 80 mil high density polyethylene (HDPE) liner with an overliner material having a similar gradation to the material in contact with the liner under the mill platform foundations. Additionally, 10 to 12 rocks were hand placed directly on the liner to simulate worst-case conditions. A vertical stress of 122,400 psf was applied to the test specimen for 28 hours. Visual inspection and vacuum testing of the liner at the end of the test indicated that the liner did not have any defects (Golder, 2005).

The maximum repeated vertical stress on the liner resulting from the model was 3,300 psf, which is about 3% of the load applied during the puncture tests indicating that stress induced puncture will not occur. The liner used for the puncture resistance test was an 80 mil HDPE liner while the liner proposed for the design is an 80 mil linear low density polyethylene (LLDPE) liner. LLDPE liners have a lower elastic modulus and a larger allowable maximum strain making LLDPE liner more ductile compared to HDPE liners. The higher ductility of the LLDPE liner proposed will further enhance the compatibility with the soil in contact with the liner by deforming around the particles reducing the susceptibility of puncture.

The maximum repeated vertical and horizontal strains occurring on the liner was estimated from the model to be approximately 0.033% and -0.0065%, respectively. Negative strain values indicate elongation while positive strain values indicate compression. At strains this small, it can be assumed that the material would not be sliding along the liner causing wearing to occur, but rather be straining with the liner. This can be assumed because the stiffness (modulus) of the soil under the confining pressure associated with 15 feet of overburden combined with the additional vertical stress from the foundation is much greater than the stiffness (modulus) of the LLDPE geomembrane liner. The softer geomembrane liner would deform with the straining soil and the movement of soil particles relative to the liner would be zero.

Slope Stability Response to Machine Vibration

Slope stability in regards to the machine vibrations from the dynamic loads was evaluated qualitatively. The machine vibrations, while large, are typically smaller than the design earthquake of 0.14 times the force of gravity (g). Pseudostatic slope stability analyses were conducted as part of the design of the mill platform and resulted in acceptable factors of safety of 1.0 or greater. The acceleration imparted on the foundation soil from the machine vibrations was evaluated from the vertical displacements beneath the foundation estimated from the model (Figure 5). The vertical acceleration of the soil directly beneath the machine foundations was calculated as 0.003g. The pseudostatic evaluation subjects the slopes to a horizontal acceleration of 0.14g, several orders of magnitude greater than the ground acceleration produced from the mill vibrations, indicating that the machine vibrations will not affect slope stability.

The propagation of surface waves along the mill platform could cause shallow surface failures, or sloughing, to occur in the top 2 feet on the slopes surround the mill platform. Sloughing occurs because the dynamic forces from the machine vibration could be larger than the low confining stresses at shallow depths. Slope maintenance of the cosmetic sloughing failures may be required from time to time during

Timm Comer Mill Platform Machine Vibration Effects Project 74201125G September, 20, 2012

operation of the mill. Deep failure surfaces are not expect to be an issue as the confining stresses increase with depth and therefore would require greater mobilization forces than expected from the machine vibrations.

AMEC appreciates the opportunity to provide continued engineering and construction support to Cripple Creek & Victor Gold Mining Company. If you have any questions or comments, please contact the undersigned at (303) 630-0784.

Sincerely,

AMEC Environment and Infrastructure

Dan Wendy >

David M. Weidinger, PE. Geotechnical Project Engineer

JNM:dmw

More

Jay. N. Janney-Moore, P.E. Senior Project Engineer

References

Brumund, W. F., and Leonards, G. A., (1972). "Subsidence of Sand Due to Surface Vibration," *Journal of the Soil Mechanics and Foundations,* ASCE, Vol. 98, No. SM1, pp. 27-42.

Raymond, G. P., and Komos, F. E. (1978). "Repeated Load Testing of a Model Plane Strain Footing," *Canadian Geotechnical Journal*, Vol. 15, No.2, pp. 190-201.

Geo-Slope. (2008). "Dynamic Modeling with QUAKE/W 2007 An Engineering Methodology," *Geo-Slope International Ltd,* Third Edition.

Ishibashi, I., and Zhang, X., 1993, Unified Dynamic Shear Moduli and Damping Ratios of Sand and Clay, Soils and Foundations, Vol.33, No.1, pp. 182-191.

Seed, H. B. and Idriss, I. M. (1970). "Soil Moduli and Damping Factors for Dynamic Response Anlaysis," *Report EERC 70-10*, Earthquake Engineering Research Center, University of California, Berkely.

Seed, H. B., and Silver, M. L., (1972). "Settlement of Dry Sands During Earthquakes," *Journal of the Soil Mechanics and Foundations Division*, ASCE, Vol. 98, No. SM4, pp. 381-397.

Seed, H. B., Wong, R. T., Idriss, I. M., and Tokimatsu, K. (1984). "Moduli and Damping Factors for Dynamic Analyses of Cohesionless Soils," *Journal of Geotechnical Engineering*, ASCE, Vol. 112, No. 12, pp. 1425-1445.

Silver, M. L., and Seed, H. B. (1971). "Volume Changes in Sand During Cyclic Loading," *Journal of the Soil Mechanics and Foundation Division*, ASCE, Vol. 97, No. SM9, pp. 1171-1182.

U.S. Army Corps of Engineers (USACE) EM1110-2-2301 Engineering and Design – Test Quarries and Test Fills