

April 4, 2025

Nikie Gagnon Colorado Division of Reclamation, Mining, and Safety 1313 Sherman St, Rm. 215 Denver, CO 80203

Delivered Via Email RE: Evans Mining Resource, DRMS File M-2024-056 112 Construction Materials Permit Application - Adequacy #3-5 Response

Nikie Gagnon,

The attached letter addresses each adequacy item in your February 25, 2025, March 13, 2025, and March 19 letters regarding the Evans Mining Resource 112 Permit Application. Feel free to contact me with any questions.

Additionally, we request an extension of the decision date by 30 days to accommodate the public comment period.

Regards,

Sydney Connor, (719)323-9867 sydney@lewicki.biz

Ben Langenfeld, P.E. Lewicki & Associates, PLLC (303) 960-5613 benl@lewicki.biz

February 25, 2025 Adequacy Letter

1. The Public Notice affidavit from Prairie Mountain Media lists incorrect information for the location of the site. The section should be 36 not 6. Additionally, the Division contacted the consultant, Lewicki and Associates, and determined the notice letter sent to adjacent landowners within 200 feet also lists the incorrect section. Therefore, the Per Rule 1.6.6, if the notice is in error, the Applicant shall be required to publish and mail a new notice of the application. Please rerun the newspaper notice for four consecutive weeks and send corrected notices to all owners of the surface and mineral rights of the affected land, and the owners of record of all land surface within 200 feet of the boundary of the affected land. All applicable deadlines shall begin to run anew based on the new newspaper publication date.

A new public notice has been issued in the newspaper and to neighbors within 200 feet. Proof of mailing and the affidavit of publishing are provided. Additionally, the corrected notice is provided for the DRMS's records.

 The Public notice states, "comment must be in writing and must be received by the Division of Reclamation, Mining, and Safety by 4:00 p.m., 20 days after the final publication of this notice." For clarity, please insert the due date for comments, rather than just stating 20 days after final publication.

The corrected public notice, which is attached, includes the requested language.

3. Maps C-2, C-3, F-1, and G-1 depict the inlet/outlet structure in the northeast corner extending outside the permit boundary. Please redraw the permit boundary to show the entire structure within the affected acres and permit boundary and list the acres. If this changes the permitted acres, Per Rule 1.8.1, you will need to submit an amendment application to the Division and place a copy with the County Clerk and Recorder, prior to re-noticing the public for item #1 above. This will set a new decision date for the consideration of the application.

The inlet/outlet structure location has been revised to stay entirely within the permit boundary. New maps showing the adjusted location are provided. The structure still maintains the same flood protection capacities.

March 13, 2025 Adequacy Letter

In the context of Rule 3.1.6 and our Floodplain Standards, a detailed analysis of the inflow/outflow structure is required. This requirement is described in the Division's Floodplain Protection Standards for Sand and Gravel Pits Adjacent to Rivers and Perennial Streams. The operator has included a detailed design drawing (F-2 Flow Structures), but additional information is needed. Is the design based on a standard methodology from a drainage criteria manual or other source? This must be discussed in Exhibit G. Also, Exhibit G requires a description of how the velocity on the F-2 figure (7.09 feet/second) was determined.

a. The Applicant needs to provide more information on the HEC-RAS model. It appears that this was a 1D model. Explain why a 1D model, rather than a 2D model, is sufficient to estimate flow velocity through the proposed structure.

A 2D HEC-RAS model has been run, as the Division has required.

b. The text on page G-3 discusses the design velocity of 7 feet/second and mentions previous designs that use this value for velocity. The Applicant should provide detailed references for example designs and/or studies that are applicable to this reach of the river. In particular, it would be useful to provide a reference to a related report from the Colorado Water Conservation Board. As an alternative to referencing other designs and reports, the Applicant can provide a detailed report that presents the inputs and assumptions to their HEC-RAS analysis, including cross-sections, the design flow for the 100-year storm, and other important inputs to the model.

A 2D HEC-RAS model for the Evans Mining Resource has been run to confirm the velocity used in the design of the flow structures. A memo on this model and its results can be found in Appendix G-4. Exhibit G has been revised to incorporate this new appendix.

c. On the Flow Structures figure (Exhibit F-2), within the detail for the Pit Side Concrete Cutoff Wall, the label for pitside armoring states that "D50 = 48". The Applicant should indicate if this is correct. If it is correct, why are boulder-sized rocks proposed for this structure, rather than 6-inch riprap, as indicated in the notes of this figure?

The pitside armoring has been corrected. See the attached revised Map F-2.

March 19, 2025 Letter

Exhibit S – Permanent Man-Made Structures (Rule 6.4.19): In accordance with Rule 6.4.19, when mining operations will adversely affect the stability of any significant, valuable and permanent man-made structure located within 200 feet of the affected area the applicant shall provide a notarized agreement between the applicant and the person(s) having an interest in the structure, that the applicant is to provide compensation for any damage to the structure. Please submit the signed/notarized structure agreements to the Division for each structure listed on Table S-1.

Applicant Response: No structure agreements were signed by the owners listed in Table S-1. If any agreements are received in the future, they will be provided to the Division.

Additional Comment: The Division reviewed Table S-1, the C-1 Baseline map, and the mailing receipts submitted to the Division in the adequacy response. Based on the Weld County Property Portal map, there are several residences, outbuildings, fences, utility structures, and groundwater wells located on the parcels listed below for which no evidence was submitted demonstrating an attempt was made to obtain a notarized structure agreement. Please revise Table S-1 to include all structures within 200 feet of the affected area and submit either a signed and notarized structure agreement for each or provide sufficient evidence that an attempt was made to obtain and agreement with the structure owners. Parcels: R2747286, R2753286, R4378986, R8952790, R2751386, R2751486, R8962584, and R2747186

Map C-1 and Exhibit S have been revised to include all structures within 200-ft of the affected area. The revised components and the appropriate structure agreement notices are attached.

The applicant states, "In the event that a structure agreement is unobtainable, defer to the Geotechnical Stability Exhibit which indicates that all structures will be protected." A Geotechnical Evans Mining Resource 5th Adequacy Review Page 2 of 3 Stability Exhibit was not included in the application package. Pursuant to Rule 6.4.19, the Division requires the Applicant to demonstrate that they attempted to obtain notarized structure agreements with all owners of the structures within 200 feet of the affected area of the proposed mine site. This attempt must be made prior to the Division's consideration of a stability analysis. Please provide this demonstration; this can be in the form of certified mailing receipts or similar documentation.

Applicant Response: The geotechnical stability exhibit and structure agreement mailing receipts are provided with this letter.

Additional Comment: Per Rule 6.5, the applicant submitted a Geotechnical Stability Exhibit which states that slurry walls will be 30-ft. away from the edge of mining. Map C-2 shows a minimum 20- foot setback from the edge of the slurry wall to mining and Map F-1 shows a minimum 10-foot setback from the slurry wall to the reclaimed pond. Additionally, the cross sections in C-3 show both, a 10-foot and a 20-foot setback. Please revise the maps and the cross sections to show minimum 30-foot setback from the slurry wall to the edge of mining consistent with the Geotech Stability Exhibit text. Additionally, the Division is particularly concerned with the stability of the slopes on the east side of the Phase 6 area, adjacent to the Conover Property. Based on the Weld County Property Portal map, the adjacent property contains a residence, outbuildings, a driveway, and a groundwater well, within 200 feet of the affected area. Per Rule 6.5(2), please submit a slope stability analysis for the east side of Phase 6 and which addresses structures or facilities that could be adversely affected by slope failure in this area.

The geotechnical stability exhibit has been revised to state the minimum setback is 10-ft from the slurry wall to the crest of the reclaimed pond slope. The analysis in the geotechnical stability exhibit is unchanged by this revision.

An additional analysis has been incorporated into the geotechnical stability exhibit. It addresses the Conover Property.

It should be noted by the Division that the slope stability analysis in the geotechnical stability exhibit shows that there is no risk to any structure outside the mining slope, including structures outside the Evans property.

Attachments

- Newspaper Publishing Affidavit •
- Proof of Neighbor Notice •
- Corrected Public Notice
- Maps C-2, C-3, F-1, F-2 and G-1
- Revised Exhibit G and Appendix G-4 •
- **Revised Exhibit S** •
- Revised Geotechnical Stability Exhibit •

PUBLIC NOTICE Asphalt Specialties: 345 W 62nd Avenue, Denver, Colorado 80216, (303) 289-8555, has filed an application for a Regular (112) Construction Materials Operation Reclamation Permit with the Colorado Land Reclamation Board under provisions of the Colorado Land Reclamation Act for the Extraction of Construc-tion Materials. The proposed mine is known as the Evans Mining Resource, and is located at or near Section 36, Township 5N, Aange 66W, 6th Prime Meridian. The proposed date of commencement is April 2025, and the pro-posed date of completion is April 2046. The proposed future use of the land is Rangeland and Water Storage Ponds, Additional in-formation and tentative decision date may be obtained from the Division of Reclamation, Mining and Safety, 1313 Sherman St, Room 215, Denver, Colorado 80203, (303) 866-3567, or at the Weld County Clerk and Recorder's Office, 1250 H Street, Greeley. Colorado 80631, or the above-named applicant. Comments must be in writing and must be received by the Div-sion of Reclamation, Mining, and Safety by April 11, 2025, at 4;000,m., 20 days after the final publication of this notice. Please note that under the provisions of C.R.S. 34-32.5-101 et seq. Comments related to noise, truck traffic, hours of opera-tion, visual impacts, effects on property values and other social or economic concerns are issue not subject to this Office's ju-risdiction. These subjects, and similar ones, are typically ad-dressed by your local governments, rather than the Division of Beclamation, Mining, and Safety or the Mined Land Reclamation Board. Published: Greeley Tribune March 1, 8, 15, 22, 2025-2101782

Prairie Mountain Media, LLC

PUBLISHER'S AFFIDAVIT **County of Weld** State of Colorado

The undersigned, <u>Agent</u>, being first duly sworn under oath, states and affirms as follows:

- 1. He/she is the legal Advertising Reviewer of Prairie Mountain Media LLC, publisher of the Greeley Tribune.
- 2. The Greeley Tribune is a newspaper of general circulation that has been published continuously and without interruption for at least fifty-two weeks in Weld County and meets the legal requisites for a legal newspaper under Colo. Rev. Stat. 24-70-103.
- 3. The notice that is attached hereto is a true copy, published in the Greeley Tribune in Weld County on the following date(s):

Mar 1, 8, 15, 22, 2025

Signature

Subscribed and sworn to me before me this

Notary Public

SHAYLA NAJERA NOTARY PUBLIC STATE OF COLORADO NOTARY ID 20174031965 (SEAL) MY COMMISSION EXPIRES July 31, 2025

Account:	1064948
Ad Number:	2101782
Fee:	\$197.20

3.4

PUBLIC NOTICE

Asphalt Specialties; 345 W 62nd Avenue, Denver, Colorado 80216, (303) 289-8555, has filed an application for a Regular (112) Construction Materials Operation Reclamation Permit with the Colorado Mined Land Reclamation Board under provisions of the Colorado Land Reclamation Act for the Extraction of Construction Materials. The proposed mine is known as the Evans Mining Resource, and is located at or near Section 36, Township 5N, Range 66W, 6th Prime Meridian.

The proposed date of commencement is April 2025, and the proposed date of completion is April 2046. The proposed future use of the land is Rangeland and Water Storage Ponds. Additional information and tentative decision date may be obtained from the Division of Reclamation, Mining and Safety, 1313 Sherman St, Room 215, Denver, Colorado 80203, (303) 866-3567, or at the Weld County Clerk and Recorder's Office, 1250 H Street, Greeley, Colorado 80631, or the above-named applicant.

Comments must be in writing and must be received by the Division of Reclamation, Mining, and Safety by April 11, 2025, at 4:00p.m., 20 days after the final publication of this notice.

Please note that under the provisions of C.R.S. 34-32.5-101 et seq. Comments related to noise, truck traffic, hours of operation, visual impacts, effects on property values and other social or economic concerns are issues not subject to this Office's jurisdiction. These subjects, and similar ones, are typically addressed by your local governments, rather than the Division of Reclamation, Mining, and Safety or the Mined Land Reclamation Board.

) LEGEND -			
		BUILDINGS AND RE	LATED STRUCTURE	S	
		Building			Ň
		Fence			
		Mining claim or property	boundary		
		City Boundary			
		ROADS AND RELAT	ED FEATURES		
		Highway			
		Light duty road, gravel			
••••		RIVERS, LAKES, SH	ORELINES, AND CAI	NALS	
		Perennial stream/ditch			
•		Perennial river			
		Perennial lake/pond			-
		Waterwell	C	Well Permit N Owner	0.
		Floodplain & Floodway			ta sector
		VEGETATION			/
		Agricultural Fields			
<i>ک</i> ر \$		NWI Wetlands		• • • • •	•••••
		Existing Trees			-
		Soils (NRCS)		Soil ID	
T SPECIALTIES GERAS, GREG)	R2761786		ES AND PIPELINES		
RING WELL		Power transmission line	; pole; tower \bigcirc	0	Θ
		MINING FEATURES			
		DRMS Permit Boundary 200' Offset of DRMS Pe	ermit Boundary		
		600' Offset of DRMS Pe Affected Area Boundary	ermit Boundary • • • • •		— —
• •		Mining Disturbance Bou			
· · · · ·				5280 '	
		Approximate of indefin	ite	5281'	
		Supplementary		5281'	
664'-	the second secon				
AVID					
•	R2751886				
•					
•					
•					
	PROPERTY	OWNERS			
PARCEL NUMBER	NAME	ADDRESS	CITY	STATE	ZIP
095935000005	HUNT BROTHERS PROPERTIES INC	10100 DALLAS ST	HENDERSON	со	80640
095936300040	"	н 	11	"	11
095936300042	CONOVER JENNA & DAVID JR	" 17509 COUNTY RD 394		" CO	" 806457
00503600000	MENDOZA DIANA & VILLALOBOS			60	900457
095936300008	LUIS	" "	LA SALLE	"	00457 "
095936300037	DREAM FAMILY REVOCABLE	17043 COUNTY RD 394	LA SALI F	со	806457
095936000032	MCCURY TEAGUE LIAM	17011 COUNTY RD 394	EVANS	со	806457
095935000006	FOLLEY WILLIAM ERIC	16957 COUNTY RD 394	LA SALLE	CO	80645
105702000051	MILES JODI & DAVID	23981 COUNTY RD 35	LA SALLE	со	806457
105702000056		15151 E ALAMEDA PKWY #3200		0	800121
095935000004		II	"	"	"
095935105014	SCHANK ESTHER M	4020 54TH STREET RD	GREELEY	СО	806349
095935105013	BRODBECK CADE & SAGNER			"	"
095936201002	GEORGE	14054 W 84TH PL	ARVADA	со	800055
095936000017	CITY OF EVANS	1100 371H SI	EVANS	0	806202

PIEL ROGER & BONNIE 17645 COUNTY RD 394

LOEFFLER JERRY L 23896 COUNTY RD 35

BURKGREN PHYLLIS

LA SALLE

LA SALLE

1890 S MARSHALL CIR LAKEWOOD

CO

CO

806457

806457

CO 802327

095936000012

095936000013

095936000010

095936000009

LEGEND ——						
ROADS AND RELATED FEATURES	VEGETATION					
Highway Light duty road, gravel	Agricultural Field NWI Wetlands					
RIVERS, LAKES, SHORELINES, AND CANALS						
Perennial stream/ditch	TRANSMISSION LINES AND PIPELINES					
Perennial river	Power transmission line; pole; tower O					
Perennial lake/pond	Index Intermediate					
	POST-MINING CONTOURS					
MINING FEATURES	Index					
DRMS Permit/Affected Boundary	Intermediate					
Slurry Wall	POST-RECLAMATION CONTOURS					
	Index Intermediate					

CROSS SECTION LEGEND
MINING FEATURES
DRMS Permit Boundary
Disturbance Limit
CROSS SECTIONS

Baseline Topography	
Mining	
Reclamation	
Anticipated Lake Level	
Slurry Wall	

			22+00'
 	+	 +	_ <u>+</u> 4725'
			4700'
~	~		4675'
			4650'
			4625'
			4600'
 		 	+ + _4575' 22+00'

LEGEND ——					
ROADS AND RELATED FEATURES	VEGETATION				
Highway Light duty road, gravel	Woodland NWI Wetlands				
Perennial stream/ditch	TRANSMISSION LINES AND PIPELINES				
Perennial river	Power transmission line; pole; tower o				
	BASELINE CONTOURS				
Drainage Basin Floodhlain & Floodway	Index Intermediate				
Drainage Direction	POST-MINING CONTOURS				
MINING FEATURES	Index Intermediate				
DRMS Permit Boundary	POST-RECLAMATION CONTOURS				
Siurry Wali Affected Area Stormwater Berm	Index Intermediate				

	Draina	age Basin Ru	unoff & Destination		
Drainage Basin	Phase of Operation	Area (ac)	Runoff Coefficient	100-YR 24-HR Runoff (ac-ft)	Detention Capacity (ac-ft)
	Baseline		0.23	3.09	N/A
	Mining		0.37	5.79	500+
1	Reclamation	39.8	0.59	9.24	43
	Reclamation Alternative		0.23	3.09	N/A
	Baseline		0.22	9.69	N/A
	Mining		0.4	18.87	2000+
2	Reclamation	120	0.7	36.74	156
	Reclamation Alternative		0.21	9.25	N/A

EXHIBIT G

WATER INFORMATION

1. General

The Evans Mining Resource is within the floodplain and floodway of the South Platte River. Mining within the floodway will be conducted with no filling or stockpiling above the natural ground grade. Groundwater is located roughly five feet below the natural grade. All groundwater onsite is part of the South Platte River alluvial aquifer. Prior to mining, slurry walls will be installed around the perimeter, as shown on Map C-3. These slurry walls will be for the development of water storage reservoirs following reclamation. Asphalt Specialties is committed to protecting the hydrological balance and water quality at the site.

2. Water Quality Protection

The primary concerns surrounding water quality protection at the Evans Mining Resource site are the potential impacts to the surface and groundwater from sediment, hydraulic fluids, and diesel fuel. Sediment will be controlled through the use of stormwater retention within the disturbance area through the life of the mine. The site will be graded in a manner that maintains all surficial flows within the disturbed area, in turn containing all sediment and unwanted discharges from leaving the site. Hydraulic fluids and diesel fuels will be contained within vehicles that follow best practices of maintenance; these practices include regular inspections of vehicles, hydraulic lines, and any other potential spill sources. Diesel fuel or other oils will not be stored on-site.

Any surface water discharges from the site will be sampled in accordance with the existing NPDES discharge permit. All discharge will be via the approved Outfall under the existing permit number COG502204.

Table G-1. Surface Water Discharge Monitoring Requirements from Existing NPDESDischarge Permit

Parameter	Monitoring Frequency	Sample Type
Flow	Instantaneous, Monthly	In-situ
рН	2x/month	Grab
Total Suspended Solids	2x/month	Grab
Oil and Grease Visual	2x/month	Visual
Oil and Grease	Contingent on visibility of oil and grease	Grab
Total Flow	Instantaneous, Monthly	Calculated
Electrical Conductivity	Quarterly	Grab
Arsenic, Total Recoverable	2x/month	Grab

3. Floodplain

The majority of the site is within the 100-year floodplain and floodway as reported by the Federal Emergency Management Agency. These boundaries are shown in the Exhibit C and F maps. The minimum distance maintained from the South Platte River to excavation activities is 150 feet where river and pit-side armoring will occur. This can be seen on Map C-2 and F-1 in the easternmost pit. All other mining activities will maintain a minimum 400 foot setback from the river which is the minimum setback for no armoring. Additionally, no stockpiling or filling above the natural grade will occur in the floodway. Overall, the downstream flood impacts should remain the same or be reduced from activity at the site as the removal of material results in more storage space for flood water below the existing grade. A no-rise certification will be provided to Weld County as part of its floodplain development permit.

In accordance with the Mile High Flood Control District technical guidelines, an inflow/outflow structure will be installed along the riverbank where mining reaches its closest point to the South Platte River to prevent erosion of the bank. Details of these designs can be seen on Map F-2.

The inflow/outflow structure design included is from the Mile High Flood Control District's *Technical Review Guidelines For Gravel Mining & Water Storage Activities Within Or Adjacent To 100-Year Floodplains* dated January 2013, specifically *Section 2.4.5 Side Channel Spillway.* Using the design guidelines in this section, the design shown on Map F-2 Flow Structures was developed. It should be noted that, in accordance with advice and insight from Division engineers regarding these types of structures, the river side was designed for installation into ground between the pit slope and the riverbank for cases where disturbing the riparian habitats along the river bank was inadvisable. The flow structures will provide an armored channel for flood waters to enter the pit during mining or the lakes following reclamation, preventing erosion that might lead to pit capture.

The velocity used in the design for sizing riprap is based on previous approved designs along the South Platte River in this region with flood water velocity within the river of ~7 feet/second (ex: Ewing Pit, Markovich Mining Resource, etc.). In order to confirm that this velocity is still sufficient for riprap sizing, a HEC-RAS model was run for the Evans Mining Resource with the pits mined out and empty. The HEC-RAS model uses publicly available data from the Colorado Water Conservancy Board for floodplain and floodway modeling along the South Platte River from Denver to Nebraska. LIDAR digital elevation models (DEMs) for this area were modified to include the presence of the mining pits proposed. Appendix G-4 details the HEC-RAS analysis. The results of the analysis show that a 7 feet/second design velocity will be sufficient for the flow structure design at Evans Mining Resource. The location of the flow structure should be as noted on Map F-1: somewhere along the north side of Mining Pod 3.

In the event of flooding at the site, equipment from the active mining floor will be removed and the pit will be allowed to fill with water. The flooded pit will be pumped only after the flood has subsided. All fuel will be stored at least one foot above the base flood elevation and in sufficient secondary containment with 110% carrying capacity.

4. Wetlands

No wetlands exist on the site.

5. Aquifers

The only identified aquifer located at the site is the shallow alluvial aquifer of the South Platte River. The depth to this aquifer varies throughout the year but is typically five feet below surface. According to the U.S. Geological Survey's Ground Water Atlas of the United States¹, the underlying bedrock aquifer is the Laramie Fox Hills Aquifer of the Denver Basin system. The entirety of the Evans Mining Resource operation will take place in the overlaying alluvium above a shale/siltstone layer; the Laramie Fox Hills Aquifer will not be mined.

6. Surface Water

The mining operation will impact surface water in the area through the stormwater runoff that enters the site. Map G-1 shows the drainage patterns and how they are affected throughout the life of the mine. The maps include information on the drainage basins currently, during mining, and post reclamation as well as the drainage directions throughout these stages. The primary concern for surface water protection at the site is preventing the discharge of sediment, oil, and/or hydraulic fluids from the operation areas. Oils and hydraulic fluids are stored on site following the standard best management practices. These practices include the use of secondary containment at fluid storage and transfer points, spill kits, and employee training regarding safe handling practices. Sediment is trapped onsite using controls and best

¹ https://pubs.usgs.gov/ha/ha730/ch_c/

management practices by directing and controlling surface water runoff that enters the disturbed areas. More information on sediment and surface water control is provided below.

6.1. Surface Water Handling

One drainage basin collects all stormwater runoff on and around the Evans site. This is shown on the Drainage Map.

6.1.1. Mining

During all phases of mining, surface water runoff will drain to the active pit or reclaimed reservoir. Water collected in the active mining pod will be allowed to evaporate or will be discharge via the approved CDPHE outfall once sediment has settled out.

6.1.2. Post Reclamation

The drainage patterns during mining will be retained following reclamation of the site. Any surface water runoff will collect in the reclaimed reservoir. There is enough storage capacity above the anticipated reservoir level and the top of the shore to store the 100-year storm events.

6.1.3. Flood Protection

Mining will extend to within 150 feet from the South Platte River as shown on the Drainage Map. Due to this proximity to the river, measures will be taken to protect the riverbank from erosion during a flood event. An inflow and outflow structure will be constructed between the River and the mining pod once mining is within 300 feet of the river. These structures will allow for the safe exchange of flood waters between the pit and river which prevents erosion of the riverbank and pitside slope during flood events. These structures are of a design approved for use by the Mile High Flood District. Details of the inflow/outflow structure are shown on Map F-2.

6.2. Disturbed Area Runoff

During all stages of mining, there is enough water storage capacity to contain the 5-year and 100-year 24-hour storm events and prevent erosion from surface water discharge. The expected rainfall from these events at the Evans Site is provided in Table G-2 below.

Table G-2. Area Storn	Events (from	NOAA ²)
-----------------------	--------------	---------------------

Event Probability	Event Rainfall (inches)
100-YR 24-HR	4.74

The peak runoff was generated from these values for the three drainage basins during all stages of mining. Pre-mine, mining, and reclamation conditions are delineated on the Drainage Map. The discharge volumes from these storm events are calculated in Appendix G-1 at the end of this exhibit. Table G-3 summarizes the runoff volumes and storage volumes for each

² National Oceanic and Atmospheric Administration

drainage. All drainage calculations were made using the Rational Method identified in the Mile High Flood Control District.

Drainage Basin Runoff & Destination						
Drainage Basin	Phase of Operation	Area (ac)	Runoff Coefficient	100-YR 24- HR Runoff (ac-ft)	Detention Capacity (ac- ft)***	Discharge Flow Rate (gpm)*
1	Baseline	39.8	0.23	3.09	N/A	0
	Mining		0.37	5.79	500+	1000-3000**
	Reclamation		0.59	9.24	43	0
	Reclamation Alternative		0.23	3.09	N/A	0
2	Baseline	120	0.22	9.69	N/A	0
	Mining		0.4	18.87	2000+	1000-3000**
	Reclamation		0.7	36.74	156	0
	Reclamation Alternative		0.21	9.25	N/A	0

Table G-3. Drainage Calculations

* The discharge flow rate is calculated from the peak discharge of the 100-Yr 24-Hr storm event.

Discharge flow rate is variable and controlled during mining as all discharges are pumped from the pit *Detention Capacity calculated in CAD as volume in pit or volume above water storage.

7. Groundwater

Groundwater is located approximately five feet below the surface at the Evans site. This was determined from wells installed onsite. Table G-4 outlines all wells within 600' of the permit area. These well locations are also shown on Map C-2. Groundwater quality data was gathered in advance of mining. This data and discussion of it can be seen in the Groundwater Monitoring Plan in Appendix G-2.

Applicant/Well ID	Permit ID	Total Depth (feet)	Purpose	Distance from nearest mining area (ft)
ASPHALT SPECIALTIES CO INC	332478-	38	MONITORING &	<100 FT
			SAMPLING	
ASPHALT SPECIALTIES CO INC	332479-	41	MONITORING &	<100 FT
			SAMPLING	
ASPHALT SPECIALTIES CO INC	332484-	42	MONITORING &	<100 FT
			SAMPLING	
ASPHALT SPECIALTIES CO INC	332483-	40	MONITORING &	<100 FT
			SAMPLING	
ASPHALT SPECIALTIES CO INC	332482-	37	MONITORING &	<100 FT
			SAMPLING	

Table	G-4.	Wells	Within	600'	of	Permit Area
	•				•••	

ASPHALT SPECIALTIES CO INC	332481-	34	MONITORING &	<100 FT
			SAMPLING	
ASPHALT SPECIALTIES CO IN	332480-	43	MONITORING &	<100 FT
			SAMPLING	
SORIN NATURAL RESOURCES	55499-MH	12	MONITORING &	<400 FT
PARTNERS LLC			SAMPLING	
SORIN NATURAL RESOURCES	55498-MH	12	MONITORING &	<100 FT
PARTNERS LLC			SAMPLING	
GURNEY, NORMAN	103102-	30	DOMESTIC	>600 FT
HERNANDEZ, MARTIN	299707-	40	DOMESTIC	>600 FT
CONOVER JR, DAVID	283674-	21	IRRIGATION STOCK	~150 FT

7.1. Groundwater - Mining

Prior to mining, slurry walls will be installed around the perimeter of the pit to prevent groundwater flow into the mining area. Following slurry wall installation, the operator will mine out the pod by dewatering it via the approved CDPHE discharge point. Pumping to conduct this dewatering will take place during the initial mining and then pumping will cease. Stormwater runoff that is collected may be pumped out to protect local water rights, once sediment has settled. For this reason, the CDPHE discharge point will be maintained over the life of the mine. The pump will be located at least two feet below the active mining floor at the lowest point of the pit. It will be surrounded by a gravel filter. This configuration minimizes the risk of sediment being pumped out of the pit.

7.2. Groundwater – Reclamation

Permanent water storage reservoirs will be left behind, as can be seen on Map F-1. There will be no groundwater consumptive use in reclamation.

7.3. Groundwater - Slurry Wall Impact

The installation of a slurry wall within the alluvial aquifer of the South Platte River creates two main potential impacts to the aquifer: the creation of local groundwater shadows or mounding that damage neighboring structures or property and the potential exacerbation of regional groundwater impacts. These impacts however are anticipated to be very localized and not impact nearby wells. Additionally, a french drain will be constructed up-gradient of the slurry walls to control groundwater mounding. The drain will direct abnormally high water to an infiltration gallery in the permit area that will return the water to the groundwater aquifer and river.

8. Water Related Permits

The operator is applying for all necessary permits that have not already been acquired for water handling at the Evans Mining Resource. This includes a discharge permit with the Colorado Department of Public Health and Environment and a gravel well permit with the Colorado Division of Water Resources.

9. Water Consumption and Source

Water for dust control will be the primary consumptive use at the Evans Mining Resource site. Water will be sourced from ponds in the processing area for processing and aggregate washing purposes. Additional water may be sourced from a groundwater well. The proper permits (gravel well permit, groundwater well permit, augmentation plan) will be acquired prior to construction and use of water from these sources. Water may also be bought from a local source and transported to the site.

No ongoing water consumptive use exists in reclamation, since the water storage pod is lined. Table G-5 summarizes the estimated water consumption for the operation throughout the year.

Month	Dust Control (ac-ft)	Evaporative Depletions (ac-ft)	Water Removed from Mining (ac-ft)	Total (ac-ft)
Jan	0.11	0.00	0.00	0.1
Feb	0.12	0.00	0.00	0.1
Mar	0.19	0.00	0.00	0.2
Apr	0.32	0.00	0.00	0.3
May	0.42	0.00	0.00	0.4
Jun	0.51	0.00	0.00	0.5
Jul	0.53	0.00	0.00	0.5
Aug	0.47	0.00	0.00	0.5
Sep	0.35	0.00	0.00	0.4
Oct	0.25	0.00	0.00	0.3
Nov	0.14	0.00	0.00	0.1
Dec	0.11	0.00	0.00	0.1
Total	3.50	0.00	0.00	3.5

Table G-5. Water Consumption

The Evans Mining Resource sources water for operations via water contract. Any groundwater exposure will be covered by a gravel well permit with the Colorado Division of Water Resources.

Appendix G-4 2D Floodplain Analysis

March 25, 2025

MEMO: Evans Mining Resource – Flood Analysis for Flow Structure Design

The Evans Mining Resource is located along the South Platte River and will be mining within 400feet of said river. In accordance with the Colo. Division of Reclamation, Mining, and Safety requirements for flood analysis and protection, Lewicki and Associates has evaluated the 100-YR flood event for this section of river and designed a flow structure to protect the riverside and pitside slopes from erosion.

An analysis of baseline flood conditions (Existing Conditions) was conducted using the current floodplain mapping along the South Platte River as published by the Federal Emergency Management Administration (FEMA) and the Colorado Water Conservancy Board (CWCB)¹. The Existing Condition was then modified to incorporate the presence of the mined-out gravel mining pods of the Evans Mining Resource and the HEC-RAS model was reran as a Proposed Condition. The results of the two models were then compared to determine the water velocity that should be used in the design of the flow structure the will be installed between Evans Mining Resource and the South Platte River.

1. Background

The Evans Mining Resource is located roughly 1.0 miles south of Evans, CO along Highway 384. The South Platte River borders the proposed operation to the north; the highway borders it to the south; agricultural fields border it to the west and east. A general location map is shown in Exhibit B. Asphalt Specialties proposes to mine sand and gravel from the site to produce construction material products. Mining will consist of extraction from three mining pods. The top of the mining pods have an average elevation of 4665' and a bottom elevation of 4632'. The mining pods are within the currently approved FEMA floodplain for the site and partially within the FEMA floodway. All stockpiling and processing above natural grade will take place outside of the floodway.

Floodplain and floodway mapping for the site is listed by FEMA as being current as of 2023. The currently available flood insurance rate maps (FIRMs) reflect this. Figure 2 shows the extents of this mapping for the Evans site. The floodplain (Zone A) extends beyond the southern edge of the site. Given the recency of the publication of the floodplain in this area, the data from the FEMA maps was used to calibrate the CWCB HEC-RAS. This calibrated model serves as the Corrected Effective Model in HEC-RAS. Cross sections of the Corrected Effective Model in the mining pods are attached for reference.

¹ CWCB South Platte HEC-RAS data downloaded from the Colorado Hazard Mapping Program on March 10, 2025

Figure 1. Published Floodplain and Floodway Map - FEMA

<u>2.</u> <u>Analysis</u>

2.1. Corrected Effective Model

The CWCB HEC-RAS model was run as 1D model for the stretch of the South Platte River along the Evans Mining Resource. The Water Surface Elevation (WSE) of this model was then applied to LIDAR digital elevation model (DEM) of the area to determine flood extents. The flood extents from this HEC-RAS output were then compared to the FEMA floodplain that is published for the area. Since the HEC-RAS output floodplain extents and the published floodplain extents were very similar, the CWCB HEC-RAS model applied to the LIDAR DEM is considered calibrated and thus can be used as the Corrected Effective model for the site.

2.2. Existing Conditions

The Corrected Effective model steady flow of 36,624 cubic feet per second (CFS) (1% or 100-YR event) was used as the peak flow for the 2D model. The Existing Conditions model constrains the Corrected Effective model extents on the river reach to 1.1 miles upstream and ¼ mile downstream of the Evans site. The Corrected Effective model 100-YR event flow was used as the basis for a flow hydrograph which was used as the upstream boundary condition. The Normal Depth was used as the downstream boundary condition. The upstream flow hydrograph begins at a flow of 1000 CFS, sustains that for several hours, and then increases linearly over several hours to the 100-YR event flow of 36,624 CFS. Table 1 summarizes the flows and timestamps of the hydrograph. The 100-YR event flow is maintained in the hydrograph through the end of the model (36 hours).

Simulation Time	Flow (CFS)
1-HR to 10-HR	1000
11-HR to 20-HR	Increasing from 4000 to 36,624
20-HR to 36-HR	36,624

Table 1. Upstream Boundary Condition – Flow Hydrograph

Maps of the WSE across the mining pods over the course of the Proposed Condition model run are used to evaluate where water flows into and out of the mining pods. The time stamps correspond to flood flow rates from the hydrograph. For example, at 10 hours (1000 CFS; Figure 2) into the model, the WSE map shows flood waters entering the pods from the west and north during flooding conditions.

Figure 2. Existing Conditions WSE Map of 1000 CFS at 10-HR with Flow Direction Lines

The goal of the 2D model is to determine the flood water velocities along the river near the mining pods at different river flows, up to the 100-YR event flow. The maximum velocity identified at the location of the flow structure is then used as a basis for designing the flow structure. Since the flow structure is lateral to the river flow, the 2D model was used to estimate the flow velocities in the vicinity of flow structure.

The Existing Conditions 2D model was run using a simplified flow hydrograph: the river flow was started at a low value (1000 CFS), increased to the 100-YR event flow (36,624 CFS), and then maintains the 100-YR event flow. Model was run over a 36 hour period with the 100-YR flood flow maintained for 16-hours of that time period. The resulting 2D model results can then be viewed as a map to see the extents and velocity of the fluid flow. Figure 3 shows the Existing Conditions 2D

model results at the 36-HR mark as an example. Table 2 shows the highest water velocities at the flow structure location at different flow rates and simulation times.

In the Existing Condition, the velocities are all highest in the river along the north side of Mining Pod 3. The Proposed Conditions show an area of distinctly increased velocities in the northwest corner of Mining Pod 3. The precise location of the flow structure may need to be adjusted as mining in Mining Pod 3 approaches the South Platte River and this report recommends only that the flow structure be placed along the north side of Mining Pod 3.

Figure 3. Existing Condition Velocity Map – 36-HR (36,264 CFS)

Figure 4. Proposed Condition Velocity Map – 36-HR (36,264 CFS)

Simulation Time	Flow (CFS)	Velocity (FPS)				
Existing Conditions						
1-HR to 10-HR	1000	2-3.5				
11-HR to 20-HR	4000 to 36,624	3-3.5				
20-HR to 36-HR	36,624	3-3.5				
Proposed Conditions						
1-HR to 10-HR	1000	5-7				
11-HR to 20-HR	4000 to 36,624	5-7				
20-HR to 36-HR	36,624	6-7				

3. Results & Conclusion

The 2D HEC-RAS model shows velocities of 3 to 3.5 feet per second in the Existing Condition in the flow structure area. The 2D model for the Proposed Conditions shows velocities of 6 to 7 feet per second in that same area. Based on the results the flow structure should be designed for 7 feet per second. The early hours of the Proposed Condition The flood water flow velocity is roughly the same even with different flows leading up to the 100-YR event flow.

4. Certification

All engineering analysis contained herein was prepared under my supervision and in accordance with sound engineering principles.

Benjamin E. Langenfeld CO#: 47151

Attachments

Corrected Effective Model (1D) Cross Sections

Corrective Model (1D) Cross Sections – Evans Mining Resource Mining Pod

EXHIBIT S PERMANENT MAN-MADE STRUCTURES

A list of man-made structures within 200 feet of the affected area can be found on Map C-1. Landowner boundaries can also be found on Map C-1. Proof of the attempt to secure structure agreements is attached to this exhibit. In the event that a structure agreement is unobtainable, defer to the Geotechnical Stability Exhibit which indicates that all structures will be protected.

RULE 6.5: GEOTECHNICAL STABILITY EXHIBIT

There are no known geologic hazards on the proposed site. Based on a slope stability analysis, buildings or other structures within 200' of the Evans Pit affected area will not be affected by mining excavation. Sufficient buffers will be maintained to structures. Maps C-3 and F-1 shows these buffers. Slurry walls installed prior to mining will be a minimum of 10-ft away from the edge of mining. Map C-3 shows the mining and reclamation slopes of the mine. A standard slope was analyzed for stability as it is a good example of the nearest structure, the slurry wall.

The material properties are derived from Table 2.5 in the SME Mining Reference Handbook¹, as there is no site-specific strength data of the material available. Therefore, all materials are matched to a classification from this table that best matches the materials in terms of description. The native alluvial material is best classified as sand and gravel with a mixed grain size. A layer of overburden and sand lies atop the sand and gravel deposit. This material is best described as loose sand, mixed grain size. The bedrock is a soft sedimentary rock (claystone/siltstone) according to the SME Table 2.5. A summary of the material properties can be seen in Table GS-1.

Material	Unit Weight (lbs/ft)	Cohesion	Friction Angle
Sand and gravel, mixed grain	110	0	45
size			
Loose sand, mixed grain size	99	0	34
Bedrock	110	20,000	25.0

Table GS-1. Material Properties

The final mining (1.5H:1V) and final reclamation (3H:1V) slopes were analyzed. Mining will be conducted at a near active highwall angle until the highwall has reached the half-way point of the final mining slope. Then the vertical active highwall slope will be knocked down to the final mining slope of 1.5H:1V. Then it will be backfilled with overburden/sand to the final reclamation slope of 3H:1V. The final mining and reclaimed slope crests will be the closest excavation comes to the slurry wall and any structures.

1. Mining and Reclamation Slopes

Factor of Safety is expressed in terms of strength divided by stress as a ratio. It is arrived at by an iterative computer process where a slope failure is assumed, the strength and stress of that slope failure are calculated, and those values are compared to determine a lowest factor of

¹ Original source: Hoek and Bray 1977

safety. In the case of the Evans Pit slope stability analysis, the Bishop's Method of Slices was the iterative calculation used, and the software GALENA was used to model slopes and calculate the factor of safety. One slope closest to major structures (see Figure GS-1) was analyzed to look at the factor of safety. Table GS-2 lists the analysis conducted and their respective factors of safety.

4+00' 6+00' 8+00' 22+00' 6+00 8+00' 2+00 6+00 00+ +00 00+0 10+05 B' В 12+00 4+00' 16+00' 8+00 0+00 22+00' A'

GALENA data tables and analysis result figures are attached as Appendix GS-1.

Figure GS-1. Locations of Slope Stability Analysis from Map F-1

Figure GS-2. GALENA Cross Sections (Mining and Reclamation)

Table GS-2. Factors of Safety for Slope Stability

Slope Condition	Lowest Factor of Safety (static)	Lowest Factor of Safety (seismic)	Nearest Structure	
Full Mining	1.51	1.34	Slurry wall (min. 10-ft away)	
Final Reclamation	3.03	2.45	Slurry wall (min. 10-ft away)	

2.1. Conover Property Structures

East of the southeast corner of the mining operation is the Conover Property (see Figure GS-3). This property is home to several structures including a residence, outbuildings, a driveway, and a groundwater well. The depth of mining and slopes are the same in the southeast corner as on the west side. Therefore, the same cross sections and Bishop's method of slices analysis in GALENA software used for other locations at the Evans Mining Resource are valid adjacent to the Conover Property.

As shown in the GALENA analysis, the failure circle for the lowest Factor of Safety in both Full Mining and Final Reclamation conditions is located completely within the slope itself. The crests of the Full Mining and Final Reclamation slopes are a minimum of 20-feet from the property boundaries. Therefore, no factor of safety failure circle comes within 20-feet of the property boundaries. Given all of the Conover structures are located at or beyond the property line, all Conover structures are at least as far from the slope crest as the property line, which means they are beyond the reach of the lowest Factor of Safety failure circles. A list of the distances of each Conover structure from the property line and the slope crest is shown below in Table GS-3.

Table GS-3. Conover Structures

Conover structure	Approx. Distance from Property Line (ft)	Distance from Slope Crest (ft)
Fence	0	Min. 20
Driveway	4	Min. 24
Outbuilding	16	Min. 36
Residence	140	Min. 166
Groundwater well*	110	Min. 130

*Distance measured to the recorded location from the Colo. Div. of Water Resource. Actual well is likely within a building, not beneath the driveway.

Figure GS-3 Location of Conover Property and Structures

3. Conclusion

The Final Reclamation slope has a minimum factor of safety (FoS = 3.03) of greater than 1.5 for static conditions. The Final Mining slope also has a minimum FoS greater than 1.5 (1.51) for static conditions. These Factors of Safety are greater than the CDRMS minimum for critical structure of 1.5. The seismic conditions analysis for both scenarios are similarly above the CDRMS minimums for critical structures: 1.34 > 1.3 and 2.45 > 1.3

The slope stability analysis in this permit has been prepared according to appropriate engineering standards and practices.

Ben Langenfeld, P.E.

P.E.# 0047151

Evans March 2025

APPENDIX GS-1

GALENA INFORMATION

Project: Evans Pit File: E:\Work\GLA Dropbox\Ben Langenfeld\Asphalt Specialties\Evans Mining Resource\Slope S...\Evans Slope Stability 250321.gmf Processed: 21 Mar 2025 12:31:22

DATA: Analysis 1 - Mining Condition Material Properties (4 materials) Material: 1 (Mohr-Coulomb Isotropic) - Sand and gravel, mixed grain size Cohesion Phi UnitWeight Ru 0.00 45.0 110.00 Auto Material: 2 (Mohr-Coulomb Isotropic) - OB - loose sand, mixed grain size Cohesion Phi UnitWeight Ru 0.00 34.0 99.00 Auto Material: 3 (Mohr-Coulomb Isotropic) - Bedrock - claystone Cohesion Phi UnitWeight Ru 20000.00 25.0 110.00 Auto Material: 4 (Mohr-Coulomb Isotropic) - Slurry Wall Cohesion Phi UnitWeight Ru 112.00 Auto Unsaturated: 0.00 0.0 Saturated: 0.00 0.0 115.00 Auto Water Properties _____ Unit weight of water: 62.400 Unit weight of water/medium above ground: 0.000 Material Profiles (4 profiles) Profile: 1 (2 points) Material beneath: 2 - OB - loose sand, mixed grain size 0.00 4670.00 300.00 4670.00 Profile: 2 (2 points) Material beneath: 1 - Sand and gravel, mixed grain size 0.00 4667.00 300.00 4667.00 Profile: 3 (2 points) Material beneath: 3 - Bedrock - claystone 0.00 4633.00 300.00 4633.00 Profile: 4 (5 points) Material within: 4 - Slurry Wall 85.00 4670.00 90.00 4670.00 90.00 4630.00 85.00 4630.00 85.00 4670.00 Slope Surface (4 points) 1.00 4670.00 100.00 4670.00 152.00 4635.00 300.00 4635.00 Phreatic Surface (2 points) 0.00 4665.00 85.00 4665.00 Piezometric Surfaces (1 surface) Failure Surface Initial circular surface for critical search defined by: XL,XR,R YL: 4669.39 Intersects: XL: 100.90 YR: 4643.88 XR: 138.80 144.68 Centre: XC: YC: 4693.54 Radius: R: 50.00

Variable Restraints

Parameter descriptor:	XL	XR	R
Range of variation:	25.00	20.00	10.50
Trial positions within range:	10	10	10

RESULTS: Analysis 1 - Mining Condition

Bishop Simplified Method of Analysis - Circular Failure Surface

Critical Failure Surface Search using Multiple Circle Generation Techniques

Factor of Safety for initial failure surface approximation: 1.686

There were: 1001 successful analyses from a total of 1001 trial surfaces

Critical (minimum) Factor of Safety: 1.51

Results Summary - Lowest 99 Factor of Safety circles

Circle	X-Left	Y-Left	X-Right	Y-Right	X-Centre	Y-Centre	Radius	FoS	
1	113.40	4660.98	128.80	4650.62	151.51	4700.98	55.25	1.510	< Critical Surface
2	113.40	4660.98	128.80	4650.62	150.85	4700.00	54.08	1.511	
3	113.40	4660.98	128.80	4650.62	150.19	4699.02	52.92	1.512	
4	113.40	4660.98	128.80	4650.62	149.53	4698.03	51.75	1.513	
5	113.40	4660.98	128.80	4650.62	148.87	4697.05	50.58	1.515	
6	113.40	4660.98	128.80	4650.62	148.20	4696.06	49.42	1.516	
7	113.40	4660.98	131.02	4649.12	152.49	4700.03	55.25	1.518	
8	113.40	4660.98	128.80	4650.62	147.54	4695.08	48.25	1.518	
9	113.40	4660.98	131.02	4649.12	151.82	4699.04	54.08	1.519	
10	113.40	4660.98	128.80	4650.62	146.87	4694.09	47.08	1.519	
11	110.62	4662.85	128.80	4650.62	149.95	4701.66	55.25	1.520	
12	113.40	4660.98	131.02	4649.12	151.16	4698.06	52.92	1.521	
13	113.40	4660.98	128.80	4650.62	146.21	4693.10	45.92	1.521	
14	110.62	4662.85	128.80	4650.62	149.28	4700.67	54.08	1.521	
15	113.40	4660.98	131.02	4649.12	150.49	4697.07	51.75	1.522	
16	110.62	4662.85	128.80	4650.62	148.62	4699.68	52.92	1.523	
17	113.40	4660.98	128.80	4650.62	145.54	4692.11	44.75	1.523	
18	113.40	4660.98	131.02	4649.12	149.83	4696.08	50.58	1.524	
19	110.62	4662.85	128.80	4650.62	147.95	4698.69	51.75	1.525	
20	113.40	4660.98	131.02	4649.12	149.16	4695.09	49.42	1.526	
21	113.40	4660.98	133.24	4647.62	153.44	4699.05	55.25	1.527	
22	110.62	4662.85	128.80	4650.62	147.29	4697.70	50.58	1.527	
23	113.40	4660.98	131.02	4649.12	148.49	4694.10	48.25	1.528	
24	113.40	4660.98	133.24	4647.62	152.77	4698.06	54.08	1.528	
25	110.62	4662.85	128.80	4650.62	146.62	4696.71	49.42	1.529	
26	110.62	4662.85	131.02	4649.12	150.90	4700.67	55.25	1.529	
27	113.40	4660.98	131.02	4649.12	2 147.82	4693.10	47.08	1.530	
28	113.40	4660.98	133.24	4647.62	152.11	4697.07	52.92	1.530	
29	110.62	4662.85	128.80	4650.62	145.95	4695.71	48.25	1.531	
30	110.62	4662.85	131.02	4649.12	150.23	4699.68	54.08	1.531	
31	107.84	4664.72	128.80	4650.62	148.36	4702.29	55.25	1.532	
32	113.40	4660.98	133.24	4647.62	2 151.44	4696.07	51.75	1.533	
33	113.40	4660.98	131.02	4649.12	2 147.15	4692.11	45.92	1.533	
34	110.62	4662.85	131.02	4649.12	149.56	4698.68	52.92	1.533	
35	110.62	4662.85	128.80	4650.62	145.28	4694.72	47.08	1.533	
36	107.84	4664.72	128.80	4650.62	147.69	4701.29	54.08	1.534	
37	113.40	4660.98	133.24	4647.62	150.77	4695.08	50.58	1.535	
38	113.40	4660.98	131.02	4649.12	146.48	4691.11	44.75	1.535	

30	110.62	1662 85	131 02	1610 12	1/8 80	1607 60	51 75	1 535
40	110.02	4662.00	101.02	4650.62	144.64	4602 72	45.00	1.500
40	110.02	4002.00	120.00	4050.02	144.01	4093.72	45.92	1.550
41	107.84	4664.72	128.80	4650.62	147.02	4700.30	52.92	1.536
42	113.40	4660.98	135.47	4646.13	154.38	4698.04	55.25	1.537
43	113.40	4660.98	133.24	4647.62	150.10	4694.08	49.42	1.537
44	110.62	4662.85	131.02	4649.12	148.22	4696.69	50.58	1.538
45	107.84	4664.72	128.80	4650.62	146.34	4699.30	51.75	1.538
46	110.62	4662.85	128.80	4650 62	1/3 0/	1602 73	11 75	1 530
47	112.40	4660.00	125.00	4646 12	152 70	4607.04	54.00	1 520
47	113.40	4000.96	135.47	4040.13	155.70	4097.04	54.06	1.559
48	110.62	4662.85	133.24	4647.62	151.83	4699.65	55.25	1.539
49	113.40	4660.98	133.24	4647.62	149.42	4693.08	48.25	1.540
50	110.62	4662.85	131.02	4649.12	147.55	4695.69	49.42	1.540
51	107.84	4664.72	128.80	4650.62	145.67	4698.30	50.58	1.541
52	113.40	4660.98	135.47	4646.13	153.03	4696.04	52.92	1.542
53	110.62	4662.85	133 24	4647 62	151 16	4698 65	54.08	1 5 4 2
50	107.02	4664 70	121 02	4640.42	140.20	4701.00	55.25	1 5 4 2
54	107.04	4004.72	131.02	4049.12	149.20	4701.27	35.25	1.042
55	113.40	4000.98	133.24	4047.02	148.75	4692.08	47.08	1.543
56	110.62	4662.85	131.02	4649.12	146.87	4694.69	48.25	1.543
57	107.84	4664.72	128.80	4650.62	145.00	4697.30	49.42	1.544
58	113.40	4660.98	135.47	4646.13	152.36	4695.04	51.75	1.544
59	110.62	4662.85	133.24	4647.62	150.48	4697.65	52.92	1.545
60	107 84	4664 72	131 02	4649 12	148 61	4700 26	54 08	1 545
61	105.07	4666 50	120 00	4650.62	146 73	4702.20	55.25	1 545
60	112.07	4000.39	120.00	4030.02	140.75	4702.07	45.00	1.040
62	113.40	4000.98	133.24	4047.02	148.08	4691.08	45.92	1.540
63	110.62	4662.85	131.02	4649.12	146.20	4693.69	47.08	1.546
64	107.84	4664.72	128.80	4650.62	144.32	4696.30	48.25	1.547
65	113.40	4660.98	135.47	4646.13	151.68	4694.04	50.58	1.547
66	110.62	4662.85	133.24	4647.62	149.81	4696.65	51.75	1.547
67	107 84	4664 72	131 02	4649 12	147 93	4699 26	52 92	1 548
68	105.07	4666 59	128.80	4650 62	146.06	1701 87	54.08	1 5/18
60	112 /0	4660.08	127.60	4644 63	155 20	4607.00	55.25	1 5/9
70	113.40	4000.90	137.09	4044.03	133.29	4097.00	33.23	1.040
70	113.40	4000.98	133.24	4047.02	147.40	4690.08	44.75	1.549
/1	110.62	4662.85	131.02	4649.12	145.52	4692.69	45.92	1.549
72	107.84	4664.72	128.80	4650.62	143.65	4695.30	47.08	1.550
73	113.40	4660.98	135.47	4646.13	151.01	4693.04	49.42	1.550
74	110.62	4662.85	133.24	4647.62	149.13	4695.65	50.58	1.550
75	107.84	4664.72	131.02	4649.12	147.26	4698.26	51.75	1.551
76	105.07	4666 59	128 80	4650 62	145.38	4700 87	52 92	1 551
77	113 /0	4660.08	137.60	1600.02	154.62	1696.00	54.08	1 551
70	110.40	4660.30	107.00	4646 42	159.02	4609.64	55.00	1.551
70	110.02	4002.00	135.47	4040.13	152.74	4090.01	55.25	1.551
79	110.62	4662.85	131.02	4649.12	144.85	4691.68	44.75	1.553
80	107.84	4664.72	128.80	4650.62	142.97	4694.29	45.92	1.553
81	113.40	4660.98	135.47	4646.13	150.33	4692.03	48.25	1.553
82	110.62	4662.85	133.24	4647.62	148.46	4694.64	49.42	1.554
83	107.84	4664.72	131.02	4649.12	146.58	4697.25	50.58	1.554
84	105 07	4666 59	128 80	4650 62	144 70	4699 86	51 75	1 554
85	113 /0	4660.08	137.60	1600.02	153.04	1601.00	52.02	1.55/
00	110.70	4662.95	125.47	4646 12	152.06	4607.60	54.00	1.554
00	110.02	4002.00	133.47	4040.13	152.00	4097.00	54.06	1.554
87	107.84	4004.72	133.24	4047.02	150.19	4700.21	55.25	1.554
88	107.84	4664.72	128.80	4650.62	142.29	4693.28	44.75	1.557
89	113.40	4660.98	135.47	4646.13	149.65	4691.02	47.08	1.557
90	110.62	4662.85	133.24	4647.62	147.78	4693.63	48.25	1.557
91	107.84	4664.72	131.02	4649.12	145.90	4696.24	49.42	1.557
92	105.07	4666.59	128.80	4650.62	144.03	4698.85	50.58	1.557
93	113 40	4660.98	137 69	4644 63	153 26	4693 98	51 75	1 557
Q/	110.40	1662.85	135 /7	1616 13	151 28	1606.50	52 02	1 557
34 0E	107.02	4002.00	100.47	4040.13	101.00	4090.09	52.92	1.557
90	107.84	4004.72	133.24	4047.02	149.51	4099.20	54.UX	1.557
96	105.07	4666.59	131.02	4649.12	147.63	4701.81	55.25	1.557
97	102.29	4668.46	128.80	4650.62	145.08	4703.41	55.25	1.558
98	113.40	4660.98	139.91	4643.14	156.19	4695.93	55.25	1.561
99	105.07	4666.59	131.02	4649.12	146.95	4700.80	54.08	1.561

Critical Failure Surface (circle 1)

Intersects:	XL:	113.40	YL:	4660.98	XR:	128	8.80	YR:	4650.62			
Centre:	XC:	151.51	YC:	4700.98		Ra	adius:	R:	55.25			
Generated	failure	surface	: (20 poi	nts)								
113.40	4660.9	8	114.12	4660.31	11	4.85	4659	.65	115.59	4659.01	116.34	4658.38
117.10	4657.7	'6	117.87	4657.15	11	8.66	4656	.56	119.45	4655.98	120.26	4655.42
121.07	4654.8	37	121.89	4654.34	12	2.73	4653	.82	123.57	4653.32	124.42	4652.83
125.28	4652.3	86	126.15	4651.90	12	7.02	4651	.45	127.91	4651.03	128.80	4650.62

Slice Geometry and Properties - Critical Failure Surface (circle 1, 38 slices)

Slice	e	X-S		E	Base			-	PoreWa	ater	Normal .	Test	
	X-Left	Area	Angle	Width	Length	Matl	Cohe	esion	Phi Weig	ght	Force	Stress	Factor
1	113.40	0.02	43.1	0.36	0.49	1	0.00	45.0	1.85	0.00	3.18	0.85	
2	113.76	0.05	43.1	0.36	0.49	1	0.00	45.0	5.56	0.00	9.58	0.85	
3	114.12	0.08	42.1	0.36	0.49	1	0.00	45.0	9.23	0.00	15.87	0.84	
4	114.48	0.11	42.1	0.36	0.49	1	0.00	45.0	12.56	0.00	21.57	0.84	
5	114.85	0.15	41.1	0.37	0.49	1	0.00	45.0	15.96	0.00	27.35	0.84	
6	115.22	0.17	41.1	0.37	0.49	1	0.00	45.0	18.96	0.00	32.48	0.84	
7	115.59	0.20	40.1	0.38	0.49	1	0.00	45.0	22.06	0.00	37.71	0.84	
8	115.96	0.22	40.1	0.38	0.49	1	0.00	45.0	24.66	0.00	42.16	0.84	
9	116.34	0.25	39.0	0.38	0.49	1	0.00	45.0	27.48	0.00	46.90	0.84	
10	116.72	0.27	39.0	0.38	0.49	1	0.00	45.0	29.67	0.00) 50.64	0.84	
11	117.10	0.29	38.0	0.39	0.49	1	0.00	45.0	32.09	0.00	54.68	0.84	
12	117.49	0.31	38.0	0.39	0.49	1	0.00	45.0	33.90	0.00	57.76	6 0.84	
13	117.87	0.33	37.0	0.39	0.49	1	0.00	45.0	35.92	0.00) 61.12	2 0.84	
14	118.26	0.34	37.0	0.39	0.49	1	0.00	45.0	37.31	0.00) 63.49	0.84	
15	118.66	0.35	36.0	0.40	0.49	1	0.00	45.0	38.93	0.00) 66.18	0.83	
16	119.05	0.36	36.0	0.40	0.49	1	0.00	45.0	39.87	0.00) 67.77	0.83	
17	119.45	0.37	35.0	0.40	0.49	1	0.00	45.0	41.07	0.00	69.79	0.83	
18	119.85	0.38	35.0	0.40	0.49	1	0.00	45.0	41.55	0.00	70.59	0.83	
19	120.26	0.38	33.9	0.41	0.49	1	0.00	45.0	42.28	0.00) 71.82	2 0.83	
20	120.66	0.38	33.9	0.41	0.49	1	0.00	45.0	42.30	0.00	71.86	0.83	
21	121.07	0.39	33.0	0.41	0.49	1	0.00	45.0	42.53	0.00) 72.22	0.83	
22	121.48	0.38	5 32.9	0.41	0.49	1	0.00	45.0	42.07	0.00) 71.47	0.83	
23	121.89	0.38	5 31.9	0.42	0.49	1	0.00	45.0	41.83	0.00		0.83	
24	122.31	0.37	31.9	0.42	0.49	1	0.00	45.0	40.84	0.00	0 69.41	0.83	
25	122.73	0.30	30.9	0.42	0.49	1	0.00	45.0	40.09	0.00	08.17	0.83	
20	123.15	0.35	30.9	0.42	0.49	1	0.00	45.0	38.62	0.00	05.67	0.83	
27	123.57	0.34	29.8	0.43	0.49	1	0.00	45.0	37.31	0.00	03.52	2 0.84	
28	124.00	0.32	29.9	0.43	0.49	1	0.00	45.0	35.34	0.00	00.14	0.84	
29	124.42	0.30	20.0	0.43	0.49	1	0.00	45.0	33.43	0.00	50.90	0.84	
3U 24	124.00	0.20	20.0	0.43	0.49	1	0.00	45.0	30.90	0.00) 32.77	0.04	
31 22	120.20	0.20	0 27.9	0.43	0.49	1	0.00	45.0	20.01	0.00) 40.00) 42.54	0.04	
32 22	120.71	0.23	0 21.0	0.43	0.49	1	0.00	45.0	20.00	0.00) 43.04	+ 0.04 0.94	
34	120.13	0.20	20.0	0.44	0.49	1	0.00	45.0	18 02	0.00) 30.44	0.04	
34	120.09	0.17	20.0	0.44	0.49	1	0.00	45.0	10.92	0.00	32.34	0.04	
36	127.02	0.14	25.0	0.44	0.49	1	0.00	45.0	10.20	0.00	10.12	7 0.0 4 7 0.94	
30	127.47	0.10	20.0	0.44	0.49	1	0.00	45.0	6.04	0.00	11 02	0.04	
38	128.35	0.00	24.0 24.8	0.45	0.49	1	0.00	45.0	2.30	0.00	3 95	0.04	
00			- 24.0		0.40				2.00	0.00	0.00	0.04	
Х	-S Area:	9.70	Path	Length:	18.65		X-9	S Weigl	ht: 1067.3	34			

DATA: Analysis 2 - Mining Condition

Material Properties (4 materials)

Material: 1 (Mohr-Coulomb Isotropic) - Sand and gravel, mixed grain size Cohesion Phi UnitWeight Ru 0.00 45.0 110.00 Auto Material: 2 (Mohr-Coulomb Isotropic) - OB - loose sand, mixed grain size Cohesion Phi UnitWeight Ru 0.00 34.0 99.00 Auto Material: 3 (Mohr-Coulomb Isotropic) - Bedrock - claystone Cohesion Phi UnitWeight Ru 20000.00 25.0 110.00 Auto Material: 4 (Mohr-Coulomb Isotropic) - Slurry Wall Cohesion Phi UnitWeight Ru 0.00 0.0 112.00 Auto Unsaturated: Saturated: 0.00 0.0 115.00 Auto Water Properties Unit weight of water: 62.400 Unit weight of water/medium above ground: 0.000 Material Profiles (4 profiles) Profile: 1 (2 points) Material beneath: 2 - OB - loose sand, mixed grain size 300.00 0.00 4670.00 4670.00 Profile: 2 (2 points) Material beneath: 1 - Sand and gravel, mixed grain size 0.00 4667.00 300.00 4667.00 Profile: 3 (2 points) Material beneath: 3 - Bedrock - claystone 0.00 4633.00 300.00 4633.00 Profile: 4 (5 points) Material within: 4 - Slurry Wall 85.00 4670.00 90.00 4670.00 90.00 4630.00 85.00 4630.00 85.00 4670.00 Slope Surface (4 points) -----1.00 4670.00 100.00 4670.00 152.00 300.00 4635.00 4635.00 Phreatic Surface (2 points) 0.00 4665.00 85.00 4665.00 Piezometric Surfaces (1 surface) Failure Surface (Critical, from previous analysis) Initial circular surface for critical search defined by: XL,XR,R Intersects: XL: 113.40 YL: 4660.98 XR: 128.80 YR: 4650.62 Centre: XC: 151.51 YC: 4700.98 Radius: R: 55.25 Earthquake Force Pseudo-static earthquake (seismic) coefficient: 0.050 Variable Restraints Parameter descriptor: XL XR R Range of variation: 25.00 20.00 10.50 Trial positions within range: 10 10 10 - -- -- -- -- -- -- -- ---- -- -- -- -- -- -- -- -- -- -- -- --**RESULTS: Analysis 2 - Mining Condition**

Bishop Simplified Method of Analysis - Circular Failure Surface

Critical Failure Surface Search using Multiple Circle Generation Techniques

Factor of Safety for initial failure surface approximation: 1.359

There were: 881 successful analyses from a total of 1001 trial surfaces 120 analyses terminated due to unacceptable geometry

Critical (minimum) Factor of Safety: 1.34

Results Summary - Lowest 99 Factor of Safety circles

Circle	X-Left	Y-Left	X-Right	Y-Right	X-Centre	Y-Centre	Radius	FoS	
1	120.34	4656.31	123.24	4654.35	153.61	4702.59	57.00	1.336	< Critical Surface
2	120.34	4656.31	123.24	4654.35	154.26	4703.56	58.17	1.336	
3	120.34	4656.31	123.24	4654.35	155.56	4705.50	60.50	1.337	
4	120.34	4656.31	123.24	4654.35	152.96	4701.62	55.83	1.337	
5	120.34	4656.31	123.24	4654.35	154.91	4704.53	59.33	1.337	
6	120.34	4656.31	123.24	4654.35	150.35	4697.75	51.17	1.337	
7	120.34	4656.31	123.24	4654.35	152.31	4700.66	54.67	1.337	
8	117.57	4658.18	121.02	4655.85	153.05	4707.17	60.50	1.337	
9	120.34	4656.31	123.24	4654.35	151.00	4698.72	52.33	1.337	
10	120.34	4656.31	123.24	4654.35	151.65	4699.69	53.50	1.337	
11	117.57	4658.18	121.02	4655.85	152.40	4706.21	59.33	1.337	
12	120.34	4656.31	123.24	4654.35	149.70	4696.78	50.00	1.337	
13	117.57	4658.18	121.02	4655.85	150.45	4703.30	55.83	1.337	
14	117.57	4658.18	121.02	4655.85	149.80	4702.33	54.67	1.337	
15	117.57	4658.18	121.02	4655.85	151.75	4705.24	58.17	1.337	
16	117.57	4658.18	121.02	4655.85	151.10	4704.27	57.00	1.337	
17	117.57	4658.18	121.02	4655.85	149.14	4701.36	53.50	1.337	
18	125.90	4652 57	129.91	4649.87	161.01	4700 40	59.33	1 337	
19	125.00	4652.57	129.91	4649.87	161.66	4701.37	60.50	1 337	
20	117 57	4658 18	121.02	4655.85	147 19	4698.46	50.00	1.337	
21	114 79	4660.05	118.80	4657.35	150.55	4708.85	60.50	1 337	
22	117 57	4658 18	121 02	4655.85	148 49	4700.40	52.33	1.337	
23	114 79	4660.05	118.80	4657 35	149.90	4707.88	59 33	1 337	
20	11/1 70	4660.05	118.80	4657 35	1/0 2/	4706.00	58 17	1 337	
25	125.00	4652 57	120.00	4640.87	160.36	4600.31	58 17	1 337	
20	125.00	1652.57	120.01	4649.87	150.50	4698.46	57.00	1 337	
20	120.00	4660.05	118.80	4657 35	1/8 50	4705.40	57.00	1 337	
28	117.57	4658 18	121.00	4057.55	140.09	4705.94	51 17	1 337	
20	11/.5/	4660.05	110 20	4055.05	147.04	4099.40	54.67	1 227	
29	125.00	4652 57	120.00	4037.33	158.40	4704.00	54.67	1 337	
21	123.30	4660.05	110 00	4049.07	147.04	4090.02	55.92	1 227	
20	114.79	4000.03	120.00	4037.33	147.94	4704.97	55.00	1.007	
১∠ ১১	125.90	4002.07	129.91	4049.07	159.05	4097.49	52.65	1.007	
24	120.90	4052.57	129.91	4049.07	157.75	4095.50	55.50 60.50	1.000	
25	123.12	4004.44	127.09	4031.30	146.64	4703.04	52 50	1.000	
30	114.79	4000.05	110.00	4057.55	140.04	4703.03	50.00	1.000	
30	123.12	4004.44	127.09	4031.30	156.50	4702.07	59.55	1.000	
31	125.90	4052.57	129.91	4049.87	150.44	4093.02	51.17	1.338	
38	125.90	4052.57	129.91	4049.87	157.10	4094.59	52.33	1.338	
39	123.12	4004.44	127.09	4051.30		4701.10	50.17	1.338	
40	114.79	4000.05	118.80	4057.35	145.98	4702.07	52.33	1.338	
41	114.79	4660.05	118.80	4657.35	145.33	4701.10	51.17	1.338	
42	114.79	4660.05	118.80	4657.35	144.68	4700.13	50.00	1.338	
43	123.12	4654.44	127.69	4651.36	157.20	4700.13	57.00	1.338	
44	125.90	4652.57	129.91	4649.87	155.79	4692.65	50.00	1.338	
45	123.12	4654.44	127.69	4651.36	156.54	4699.16	55.83	1.338	
46	123.12	4654.44	127.69	4651.36	155.89	4698.19	54.67	1.338	
47	120.34	4656.31	125.47	4652.86	156.64	4704.71	60.50	1.338	
48	123.12	4654.44	127.69	4651.36	155.24	4697.22	53.50	1.338	

49	120.34	4656.31	125.47	4652.86	155.99	4703.74	59.33	1.338
50	123.12	4654.44	127.69	4651.36	154.59	4696.25	52.33	1.338
51	120.34	4656.31	125.47	4652.86	155.34	4702.77	58.17	1.338
52	123.12	4654.44	127.69	4651.36	153.93	4695.29	51.17	1.338
53	120.34	4656.31	125.47	4652.86	154.69	4701.80	57.00	1.338
54	120.34	4656.31	125.47	4652.86	154.03	4700.83	55.83	1.338
55	123 12	4654 44	127 69	4651.36	153 28	4694 32	50.00	1 338
56	117 57	4658 18	123.24	4654.35	154 13	4706.37	60.50	1.338
57	117.57	4658 18	123.24	4654.35	153 48	4705.40	59.33	1.338
58	120.34	4656.31	125.47	4652.86	152 73	4698.89	53.50	1.338
59	120.01	4656 31	125.17	4652.86	153 38	4699.86	54 67	1 339
60	120.34	4656 31	125 47	4652.86	152.08	4697 92	52.33	1 339
61	117 57	4658 18	123 24	4654.35	152.83	4704 44	58 17	1 339
62	117.57	4658 18	123.24	4654.35	152.00	4703 47	57.00	1 339
63	120.34	4656.31	125.47	4652.86	151 42	4696 95	51 17	1.339
64	117 57	4658 18	123.17	4654 35	151 52	4702 50	55.83	1 339
65	114 79	4660.05	120.24	4655 85	151.62	4708.04	60.50	1.339
66	120.34	4656 31	125.47	4652.86	150 77	4695 98	50.00	1 339
67	125.04	4652 57	132 13	4648 37	162 73	4700 56	60.00	1 339
68	117 57	4658 18	123.24	4654 35	150.87	4700.00	54.67	1 330
69	11/ 70	4660.05	120.24	4655.85	150.07	4707.07	50 33	1 330
70	117.73	4658 18	123.24	4654 35	150.37	4700.56	53.55	1 330
70	125.00	4652 57	120.27	4648 37	162.08	1600.50	50.30	1 330
72	100.00	4660 30	118 80	4657 35	1/13 00	4033.03	60 50	1 330
73	11/ 70	4660.05	121.02	4655.85	150 32	4706 10	58 17	1 330
74	125.90	4652 57	132 13	4648 37	161 43	4698 62	58 17	1 339
75	120.00	4658 18	123.70	4654 35	1/10 57	1600.02	52 33	1 330
76	11/ 70	4660.05	123.24	4655.85	1/0 66	4705 13	57.00	1 330
77	125 00	4652 57	132 13	4648 37	160 78	4697.65	57.00	1 330
78	117 57	4658 18	123.24	4654 35	1/18 01	4698.62	51 17	1 330
79	125.90	4652 57	132 13	4648 37	160 12	4696.68	55.83	1 339
80	123.00	4654 44	129 91	4649 87	160.12	4702 23	60.50	1 340
81	11/ 70	4660.05	121.01	4655 85	1/00.22	4702.20	55.83	1 3/0
82	112.01	4661 92	118 80	4657 35	149.01	4709.10	60.50	1.340
83	117 57	4658 18	123.24	4654 35	148.26	4697.65	50.00	1 340
84	125.90	4652 57	132 13	4648.37	159 47	4695 71	54 67	1.340
85	114 79	4660.05	121 02	4655.85	148 36	4703 19	54 67	1 340
86	112.01	4661 92	118 80	4657 35	148.00	4708.73	59 33	1 340
87	123 12	4654 44	129.91	4649 87	159 57	4701 26	59.33	1.340
88	125.12	4652 57	132 13	4648 37	158.82	4694 74	53 50	1 340
89	112 01	4661 92	118 80	4657 35	147.80	4707 77	58 17	1 340
90	123 12	4654 44	129.91	4649 87	158 91	4700.29	58 17	1.340
91	114 79	4660.05	121.02	4655.85	147 70	4702.22	53 50	1 340
92	112 01	4661 92	118.80	4657.35	147 15	4706.80	57.00	1.340
93	123 12	4654 44	129.91	4649 87	158 26	4699.32	57.00	1.340
94	125.90	4652 57	132 13	4648.37	158 16	4693 77	52.33	1.340
95	114 79	4660.05	121 02	4655 85	147 05	4701 25	52.33	1.340
96	114 79	4660.05	121.02	4655.85	146 40	4700 28	51 17	1 340
97	112 01	4661 92	118 80	4657.35	146.50	4705.83	55.83	1 340
98	123 12	4654 44	129 91	4649 87	157 61	4698 35	55.83	1 340
ga	120.12	4656 31	127.60	4651 36	157 71	4703 80	60.50	1 3/0
33	120.04	1 000.01	121.03	1 001.00	101.11	TI 00.00	00.00	1.040

Critical Failure Surface (circle 1)

Intersects:	XL:	120.34	YL:	4656.31	XR:	123	.24	YR:	4654.35			
Centre:	XC:	153.61	YC:	4702.59		Ra	dius:	R:	57.00			
Generated	failure	surface	: (20 poi	nts)								
120.34	4656.3	31	120.49	4656.20	12	0.64	4656	.09	120.79	4655.99	120.95	4655.88
121.10	4655.	78	121.25	4655.67	12	1.40	4655	.57	121.55	4655.46	121.70	4655.36
121.86	4655.2	26	122.01	4655.15	12	2.16	4655	.05	122.32	4654.95	122.47	4654.85
122.62	4654.	75	122.78	4654.65	12	2.93	4654	.55	123.09	4654.45	123.24	4654.35

Slice	 Э	X-S		B	ase			_		PoreW	ater	Normal	Test	
	X-Left	Area	Angle	Width	Length	Matl	Cohe	esion	Phi	Wei	ight	Force	Stress	Factor
1	120.34	0.00	35.4	0.07	0.09	1	0.00	45.0		0.01	0.00	0.11	0.80	
2	120.42	0.00	35.7	0.07	0.09	1	0.00	45.0		0.04	0.00	0.31	0.80	
3	120.49	0.00	35.4	0.07	0.09	1	0.00	45.0		0.06	0.00	0.56	0.80	
4	120.57	0.00	35.6	0.07	0.09	1	0.00	45.0		0.09	0.00	0.77	0.80	
5	120.64	0.00	35.1	0.08	0.09	1	0.00	45.0		0.11	0.00	0.95	0.80	
6	120.72	0.00	35.3	0.08	0.09	1	0.00	45.0		0.13	0.00	1.16	0.80	
7	120.79	0.00	35.2	0.08	0.09	1	0.00	45.0		0.15	0.00	1.30	0.80	
8	120.87	0.00	35.0	0.08	0.09	1	0.00	45.0		0.17	0.00	1.48	0.80	
9	120.95	0.00	34.9	0.08	0.09	1	0.00	45.0		0.19	0.00	1.62	0.80	
10	121.02	0.00	34.7	0.08	0.09	1	0.00	45.0		0.20	0.00) 1.73	0.80	
11	121.10	0.00	34.6	0.08	0.09	1	0.00	45.0		0.22	0.00) 1.88	0.80	
12	121.17	0.00	34.9	0.08	0.09	1	0.00	45.0		0.23	0.00) 1.98	0.80	
13	121.25	0.00	34.3	0.08	0.09	1	0.00	45.0		0.24	0.00) 2.06	0.80	
14	121.32	0.00	34.6	0.08	0.09	1	0.00	45.0		0.25	0.00) 2.16	0.80	
15	121.40	0.00	34.5	0.08	0.09	1	0.00	45.0		0.25	0.00) 2.20	0.80	
16	121.47	0.00	34.3	0.08	0.09	1	0.00	45.0		0.26	0.00) 2.28	0.80	
17	121.55	0.00	34.2	0.08	0.09	1	0.00	45.0		0.27	0.00) 2.31	0.80	
18	121.63	0.00	33.9	0.08	0.09	1	0.00	45.0		0.27	0.00) 2.32	0.80	
19	121.70	0.00	33.9	0.08	0.09	1	0.00	45.0		0.27	0.00) 2.36	0.80	
20	121.78	0.00	34.1	0.08	0.09	1	0.00	45.0		0.27	0.00) 2.35	0.80	
21	121.86	0.00	33.6	0.08	0.09	1	0.00	45.0		0.27	0.00) 2.37	0.80	
22	121.93	0.00	33.8	0.08	0.09	1	0.00	45.0		0.27	0.00) 2.33	0.80	
23	122.01	0.00	33.5	0.08	0.09	1	0.00	45.0		0.26	0.00) 2.30	0.80	
24	122.09	0.00	33.5	0.08	0.09	1	0.00	45.0		0.26	0.00) 2.23	0.80	
25	122.16	0.00	33.5	0.08	0.09	1	0.00	45.0		0.25	0.00) 2.16	0.80	
26	122.24	0.00	33.5	0.08	0.09	1	0.00	45.0		0.24	0.00) 2.08	0.80	
27	122.32	0.00	33.2	0.08	0.09	1	0.00	45.0		0.23	0.00) 1.98	0.80	
28	122.39	0.00	33.2	0.08	0.09	1	0.00	45.0		0.22	0.00) 1.88	0.80	
29	122.47	0.00	33.1	0.08	0.09	1	0.00	45.0		0.21	0.00) 1.80	0.80	
30	122.55	0.00	33.1	0.08	0.09	1	0.00	45.0		0.19	0.00) 1.66	0.80	
31	122.62	0.00	32.8	0.08	0.09	1	0.00	45.0		0.17	0.00) 1.52	0.80	
32	122.70	0.00	32.8	0.08	0.09	1	0.00	45.0		0.16	0.00) 1.38	0.80	
33	122.78	0.00	32.5	0.08	0.09	1	0.00	45.0		0.14	0.00) 1.20	0.80	
34	122.86	0.00	32.7	0.08	0.09	1	0.00	45.0		0.11	0.00	0.98	0.80	
35	122.93	0.00	32.7	0.08	0.09	1	0.00	45.0		0.09	0.00	0.80	0.80	
36	123.01	0.00	32.4	0.08	0.09	1	0.00	45.0		0.07	0.00	0.58	0.80	
37	123.09	0.00	32.4	0.08	0.09	1	0.00	45.0		0.04	0.00	0.36	0.80	
38	123.17	0.00	32.1	0.08	0.09	1	0.00	45.0		0.02	0.00	0.15	0.80	
X	 (-S Area:	0.06	- Path	Length:	3.50		X-S	S Weig	ht:	6.85				

Slice Geometry and Properties - Critical Failure Surface (circle 1, 38 slices)

DATA: Analysis 3 - Reclaimed Condition

Material: 4 (Mohr-Coulomb Isotropic) - Slurry Wall Cohesion Phi UnitWeight Ru 0.00 0.0 112.00 Auto Unsaturated: Saturated: 0.00 0.0 115.00 Auto Water Properties Unit weight of water: 62.400 Unit weight of water/medium above ground: 0.000 Material Profiles (4 profiles) Profile: 1 (2 points) Material beneath: 2 - OB - loose sand, mixed grain size 0.00 4670.00 300.00 4670.00 Profile: 2 (2 points) Material beneath: 1 - Sand and gravel, mixed grain size 0.00 4667.00 300.00 4667.00 Profile: 3 (2 points) Material beneath: 3 - Bedrock - claystone 0.00 4633.00 300.00 4633.00 Profile: 4 (5 points) Material within: 4 - Slurry Wall 85.00 4670.00 90.00 4670.00 90.00 4630.00 85.00 4630.00 85.00 4670.00 Slope Surface (4 points) 1.00 4670.00 100.00 4670.00 205.00 4635.00 300.00 4635.00 Phreatic Surface (2 points) 0.00 4665.00 85.00 4665.00 Piezometric Surfaces (1 surface) Failure Surface -----Initial circular surface for critical search defined by: XL,XR,R Intersects: XL: 100.10 YL: 4669.97 XR: 149.10 YR: 4653.63 Centre: XC: 146.87 YC: 4728.60 Radius: R: 75.00 Variable Restraints Parameter descriptor: XL XR R 25.00 20.00 Range of variation: 25.00 Trial positions within range: 20 20 10 - -- -- -- -- ---- -- -- -- -- -- -- -- --**RESULTS: Analysis 3 - Reclaimed Condition** Bishop Simplified Method of Analysis - Circular Failure Surface Critical Failure Surface Search using Multiple Circle Generation Techniques Factor of Safety for initial failure surface approximation: 3.163 There were: 4001 successful analyses from a total of 4001 trial surfaces Critical (minimum) Factor of Safety: 3.03 Results Summary - Lowest 99 Factor of Safety circles Circle X-Left Y-Left X-Right Y-Right X-Centre Y-Centre Radius FoS

1 112.60 4665.80 136.60 4657.80 151.18 4741.54 85.00 3.030 <-- Critical Surface

2	112.60	4665.80	136.60	4657.80	150.47	4739.41	82.78	3.032
3	112.60	4665.80	137.92	4657.36	151.80	4741.22	85.00	3.033
4	111 28	4666 24	136 60	4657 80	150 49	4741 66	85.00	3 033
5	112 60	4665.80	136 60	4657.80	149 76	4737 27	80.56	3 033
6	100.76	4669 75	136.60	4657.80	144.89	4742.40	85.00	3 034
7	112 60	4665.80	137 92	4657 36	151.00	4739.08	82 78	3 035
8	112.00	4666 24	136.60	4657.80	1/10 78	4730.50	82 78	3 035
0	112.60	4665.24	136.60	4657.80	140.05	4735 14	79.33	3.035
10	00.44	4670.00	136.60	4057.00	143.00	4733.14	85.00	3.035
10	102.07	4660.21	126 60	4057.00	145.05	4742.43	00.00 95.00	2.000
10	102.07	4009.31	130.00	4057.00	140.09	4742.32	85.00	2 0 2 7
12	109.97	4000.00	130.00	4057.00	149.00	4741.77	00.00 05.00	2 027
13	111.20	4000.24	137.92	4057.50	151.11	4741.33	05.00	3.037
14	112.00	4005.00	139.23	4050.92	1/0 07	4740.09	80.56	3.037
16	112.60	4000.24	130.00	4057.00	149.07	4737.39	00.00 00.50	2 027
10	112.00	4005.00	137.92	4057.50	130.30	4730.93	76 11	3.037
10	112.00	4000.00	130.00	4037.00	140.33	4733.00	/0.11	3.030
10	100.70	4009.75	130.00	4057.00	144.17	4740.23	02.70	3.039
19	112.00	4005.80	139.23	4050.92	151.71	4/38./5	02.70	3.039
20	111.20	4000.24	137.92	4057.30	150.40	4739.19	02.70	3.039
21	109.97	4000.08	136.60	4057.80	149.08	4739.63	82.78	3.039
22	111.28	4000.24	136.60	4657.80	148.35	4735.25	78.33	3.039
23	112.60	4665.80	137.92	4657.36	149.67	4734.81	78.33	3.039
24	112.60	4665.80	136.60	4657.80	147.62	4730.86	73.89	3.040
25	108.65	4667.12	136.60	4657.80	149.10	4741.88	85.00	3.041
26	109.97	4666.68	137.92	4657.36	150.42	4741.44	85.00	3.041
27	111.28	4666.24	139.23	4656.92	151.73	4741.00	85.00	3.041
28	102.07	4669.31	136.60	4657.80	144.87	4740.16	82.78	3.041
29	104.71	4668.43	136.60	4657.80	147.00	4742.16	85.00	3.041
30	112.60	4665.80	140.55	4656.48	153.05	4740.56	85.00	3.041
31	103.39	4668.87	136.60	4657.80	146.30	4742.24	85.00	3.041
32	112.60	4665.80	139.23	4656.92	151.00	4736.61	80.56	3.041
33	111.28	4666.24	137.92	4657.36	149.68	4737.05	80.56	3.041
34	109.97	4666.68	136.60	4657.80	148.37	4/3/.49	80.56	3.041
35	99.44	4670.00	136.60	4657.80	143.11	4740.32	82.78	3.042
36	112.60	4665.80	137.92	4657.36	148.95	4/32.6/	76.11	3.042
31	111.28	4666.24	136.60	4657.80	147.64	4733.11	76.11	3.042
38	106.02	4667.99	136.60	4657.80	147.70	4742.07	85.00	3.042
39	112.60	4665.80	136.60	4657.80	146.91	4728.72	/1.6/	3.042
40	107.34	4667.55	136.60	4657.80	148.40	4741.98	85.00	3.042
41	108.65	4667.12	136.60	4657.80	148.39	4739.73	82.78	3.043
42	111.28	4666.24	139.23	4656.92	151.02	4738.86	82.78	3.043
43	109.97	4666.68	137.92	4657.36	149.70	4739.30	82.78	3.043
44	112.60	4665.80	140.55	4656.48	152.33	4738.42	82.78	3.043
45	100.76	4669.75	137.92	4657.36	145.49	4742.02	85.00	3.043
46	112.60	4665.80	139.23	4656.92	150.29	4/34.4/	78.33	3.044
47	109.97	4666.68	136.60	4657.80	147.66	4735.35	78.33	3.044
48	111.28	4666.24	137.92	4657.36	148.97	4734.91	78.33	3.044
49	103.39	4668.87	136.60	4657.80	145.58	4740.09	82.78	3.044
50	112.60	4665.80	137.92	4657.36	148.24	4730.53	73.89	3.044
51	104.71	4668.43	136.60	4657.80	146.28	4740.01	82.78	3.044
52	111.28	4666.24	136.60	4657.80	146.92	4730.96	73.89	3.044
53	100.76	4669.75	136.60	4657.80	143.44	4738.06	80.56	3.044
54	102.07	4669.31	137.92	4657.36	146.20	4741.96	85.00	3.045
55	108.65	4667.12	137.92	4657.36	149.72	4/41.54	85.00	3.045
56	111.28	4666.24	140.55	4656.48	152.35	4740.66	85.00	3.045
5/	109.97	4666.68	139.23	4656.92	151.03	4/41.10	85.00	3.045
58	112.60	4665.80	141.86	4656.05	153.66	4740.22	85.00	3.045
59	107.34	4667.55	136.60	4657.80	147.69	4739.83	82.78	3.045
60	112.60	4665.80	136.60	4657.80	146.19	4726.58	69.44	3.045
61	106.02	4667.99	136.60	4657.80	146.99	4739.92	82.78	3.045
62	108.65	4667.12	136.60	4657.80	147.67	4737.59	80.56	3.045
63	109.97	4666.68	137.92	4657.36	148.99	4737.15	80.56	3.045

64	111.28	4666.24	139.23	4656.92	150.30	4736.71	80.56	3.046
65	112.60	4665.80	140.55	4656.48	151.62	4736.28	80.56	3.046
66	102.07	4669.31	136.60	4657.80	144.15	4738.00	80.56	3.046
67	103.39	4668.87	137.92	4657.36	146.91	4741.88	85.00	3.046
68	99.44	4670.00	137.92	4657.36	144.44	4742.11	85.00	3.046
69	112.60	4665.80	139.23	4656.92	149.57	4732.33	76.11	3.046
70	111.28	4666.24	137.92	4657.36	148.26	4732.77	76.11	3.046
71	109.97	4666.68	136.60	4657.80	146.94	4733.21	76.11	3.046
72	107.34	4667.55	137.92	4657.36	149.02	4741.63	85.00	3.047
73	104.71	4668.43	137.92	4657.36	147.61	4741.81	85.00	3.047
74	111.28	4666.24	136.60	4657.80	146.21	4728.82	71.67	3.047
75	112.60	4665.80	137.92	4657.36	147.52	4728.38	71.67	3.047
76	108.65	4667.12	137.92	4657.36	149.00	4739.39	82.78	3.047
77	111.28	4666.24	140.55	4656.48	151.63	4738.52	82.78	3.047
78	109.97	4666.68	139.23	4656.92	150.32	4738.96	82.78	3.047
79	112.60	4665.80	141.86	4656.05	152.95	4738.08	82.78	3.047
80	106.02	4667.99	137.92	4657.36	148.32	4741.72	85.00	3.048
81	107.34	4667.55	136.60	4657.80	146.97	4737.69	80.56	3.048
82	103.39	4668.87	136.60	4657.80	144.86	4737.93	80.56	3.048
83	104.71	4668.43	136.60	4657.80	145.57	4737.85	80.56	3.048
84	99.44	4670.00	136.60	4657.80	142.40	4738.15	80.56	3.048
85	108.65	4667.12	136.60	4657.80	146.96	4735.45	78.33	3.048
86	111.28	4666.24	139.23	4656.92	149.59	4734.57	78.33	3.048
87	109.97	4666.68	137.92	4657.36	148.27	4735.01	78.33	3.048
88	112.60	4665.80	140.55	4656.48	150.90	4734.13	78.33	3.048
89	112.60	4665.80	136.60	4657.80	145.48	4724.43	67.22	3.048
90	106.02	4667.99	136.60	4657.80	146.27	4737.77	80.56	3.048
91	100.76	4669.75	137.92	4657.36	144.77	4739.85	82.78	3.049
92	108.65	4667.12	139.23	4656.92	150.33	4741.19	85.00	3.049
93	112.60	4665.80	143.18	4655.61	154.28	4739.88	85.00	3.049
94	109.97	4666.68	140.55	4656.48	151.65	4740.76	85.00	3.049
95	111.28	4666.24	141.86	4656.05	152.97	4740.32	85.00	3.049
96	111.28	4666.24	137.92	4657.36	147.54	4730.62	73.89	3.049
97	109.97	4666.68	136.60	4657.80	146.23	4731.06	73.89	3.049
98	112.60	4665.80	139.23	4656.92	148.86	4730.18	73.89	3.049
99	102.07	4669.31	137.92	4657.36	145.48	4739.79	82.78	3.049

Critical Failure Surface (circle 1)

Intersects:	XL: 11	12.60 YL:	4665.80	XR: 136	6.60 YR:	4657.80			
Centre:	XC: 15	51.18 YC:	4741.54	Ra	adius: R:	85.00			
Generated	failure su	irface: (20 poi	ints)						
112.60	4665.80	113.80	4665.20	115.00	4664.62	116.21	4664.06	117.44	4663.52
118.67	4663.00	119.91	4662.50	121.15	4662.02	122.41	4661.56	123.67	4661.12
124.94	4660.69	126.21	4660.29	127.49	4659.91	128.78	4659.55	130.07	4659.20
131.37	4658.88	132.67	4658.58	133.97	4658.30	135.29	4658.04	136.60	4657.80

Slice Geometry and Properties - Critical Failure Surface (circle 1, 38 slices)

Slice	;	X-S		E	Base			-	PoreW	/ater	Normal	Test	
	X-Left	Area	Angle	Width	Length	Matl	Cohe	sion	Phi We	ight	Force	Stress	Factor
1	112.60	0.03	26.6	0.60	0.67	1	0.00	45.0	3.28	0.00	4.70	0.96	
2	113.20	0.09	26.5	0.60	0.67	1	0.00	45.0	9.79	0.00	14.07	0.96	
3	113.80	0.15	25.6	0.60	0.67	1	0.00	45.0	16.11	0.00	23.09	0.96	
4	114.40	0.20	25.6	0.60	0.67	1	0.00	45.0	21.94	0.00	31.44	0.96	
5	115.00	0.25	24.8	0.61	0.67	1	0.00	45.0	27.67	0.00	39.58	0.96	
6	115.61	0.30	24.8	0.61	0.67	1	0.00	45.0	32.79	0.00	46.90	0.96	
7	116.21	0.34	23.8	0.61	0.67	1	0.00	45.0	37.88	0.00	54.10	0.95	
8	116.83	0.38	23.8	0.61	0.67	1	0.00	45.0	42.32	0.00	60.42	0.95	
9	117.44	0.43	22.9	0.62	0.67	1	0.00	45.0	46.77	0.00	66.69	0.95	
10	118.05	0.46	23.0	0.62	0.67	1	0.00	45.0	50.47	0.0	0 71.9	5 0.95	
11	118.67	0.49	22.1	0.62	0.67	1	0.00	45.0	54.23	0.0) 77.22	2 0.95	

12	119.29	0.52	22.0	0.62	0.67	1	0.00	45.0	57.22	0.00	81.50	0.95
13	119.91	0.55	21.1	0.62	0.67	1	0.00	45.0	60.26	0.00	85.75	0.95
14	120.53	0.57	21.2	0.62	0.67	1	0.00	45.0	62.53	0.00	88.97	0.95
15	121.15	0.59	20.3	0.63	0.67	1	0.00	45.0	64.82	0.00	92.17	0.95
16	121.78	0.60	20.2	0.63	0.67	1	0.00	45.0	66.34	0.00	94.34	0.95
17	122.41	0.62	19.3	0.63	0.67	1	0.00	45.0	67.87	0.00	96.47	0.95
18	123.04	0.62	19.3	0.63	0.67	1	0.00	45.0	68.61	0.00	97.53	0.95
19	123.67	0.63	18.4	0.63	0.67	1	0.00	45.0	69.39	0.00	98.61	0.95
20	124.30	0.63	18.4	0.63	0.67	1	0.00	45.0	69.39	0.00	98.63	0.95
21	124.94	0.63	17.6	0.64	0.67	1	0.00	45.0	69.34	0.00	98.53	0.95
22	125.57	0.62	17.5	0.64	0.67	1	0.00	45.0	68.58	0.00	97.48	0.95
23	126.21	0.62	16.6	0.64	0.67	1	0.00	45.0	67.75	0.00	96.33	0.95
24	126.85	0.60	16.6	0.64	0.67	1	0.00	45.0	66.16	0.00	94.06	0.95
25	127.49	0.59	15.7	0.64	0.67	1	0.00	45.0	64.53	0.00	91.80	0.95
26	128.13	0.57	15.8	0.64	0.67	1	0.00	45.0	62.18	0.00	88.44	0.95
27	128.78	0.54	14.8	0.65	0.67	1	0.00	45.0	59.71	0.00	85.01	0.95
28	129.42	0.51	14.8	0.65	0.67	1	0.00	45.0	56.55	0.00	80.52	0.95
29	130.07	0.48	13.9	0.65	0.67	1	0.00	45.0	53.23	0.00	75.87	0.95
30	130.72	0.45	14.0	0.65	0.67	1	0.00	45.0	49.26	0.00	70.19	0.95
31	131.37	0.41	13.0	0.65	0.67	1	0.00	45.0	45.07	0.00	64.31	0.95
32	132.02	0.37	13.0	0.65	0.67	1	0.00	45.0	40.35	0.00	57.59	0.95
33	132.67	0.32	12.1	0.65	0.67	1	0.00	45.0	35.34	0.00	50.50	0.96
34	133.32	0.27	12.1	0.65	0.67	1	0.00	45.0	29.76	0.00	42.54	0.96
35	133.97	0.22	11.2	0.66	0.67	1	0.00	45.0	23.87	0.00	34.18	0.96
36	134.63	0.16	11.2	0.66	0.67	1	0.00	45.0	17.53	0.00	25.10	0.96
37	135.29	0.10	10.3	0.66	0.67	1	0.00	45.0	10.80	0.00	15.50	0.96
38	135.94	0.03	10.4	0.66	0.67	1	0.00	45.0	3.60	0.00	5.17	0.96
X-9	S Area:	 15.94	 Path	Length:	25.3	9	X-:	- S Weig	ht: 1753.3	30		

DATA: Analysis 4 - Reclaimed Condition

Material Properties (4 materials)

Material: 1 (Mohr-Coulomb Isotropic) - Sand and gravel, mixed grain size Cohesion Phi UnitWeight Ru										
0.0045.0110.00 Auto										
Material: 2 (Mohr-Coulomb Isotronic) - OB - loose sand mixed grain size										
Cohesion Phi UnitWeight Ru										
0.00, 34.0, 99.00 Auto										
Material: 3 (Mohr-Coulomb Isotronic) - Bedrock - claystone										
Cohesion Phi UnitWeight Ru										
20000 00 25 0 110 00 Auto										
Material: 4 (Mohr-Coulomb Isotropic) - Slurry Wall										
Cohesion Phi UnitWeight Ru										
Unsaturated: 0.00 0.0 112.00 Auto										
Saturated: 0.00 0.0 115.00 Auto										
Water Properties										
Unit weight of water: 62.400 Unit weight of water/medium above ground: 0.000										
Material Profiles (4 profiles)										
0 00 4670 00 200 00 4670 00										
Drofile: 2 (2 pointe) Material happath: 1 Sand and group mixed grain size										
0.00 4667.00 300.00 4667.00										

Profile: 3 (2 points) Material beneath: 3 - Bedrock - claystone 0.00 4633.00 300.00 4633.00 Profile: 4 (5 points) Material within: 4 - Slurry Wall 85.00 4670.00 90.00 4670.00 90.00 4630.00 85.00 4630.00 85.00 4670.00 Slope Surface (4 points) 1.00 4670.00 100.00 4670.00 205.00 4635.00 300.00 4635.00 Phreatic Surface (2 points) 0.00 4665.00 85.00 4665.00 Piezometric Surfaces (1 surface) Failure Surface (Critical, from previous analysis) Initial circular surface for critical search defined by: XL,XR,R Intersects: XL: 112.60 YL: 4665.80 136.60 XR: YR: 4657.80 Centre: XC: 151.18 YC: 4741.54 Radius: R: 85.00 Earthquake Force Pseudo-static earthquake (seismic) coefficient: 0.050 Variable Restraints Parameter descriptor: XL XR R 20.00 Range of variation: 25.00 25.00 Trial positions within range: 20 20 10 **RESULTS: Analysis 4 - Reclaimed Condition** Bishop Simplified Method of Analysis - Circular Failure Surface Critical Failure Surface Search using Multiple Circle Generation Techniques Factor of Safety for initial failure surface approximation: 2.592 There were: 3896 successful analyses from a total of 4001 trial surfaces 105 analyses terminated due to unacceptable geometry

Critical (minimum) Factor of Safety: 2.45

Results Summary - Lowest 99 Factor of Safety circles

Circle	X-Left	Y-Left	X-Riaht	Y-Riaht	X-Centre	Y-Centre	Radius	FoS	
1	100.10	4669.97	124.10	4661.97	141.87	4755.29	95.00	2.447	< Critical Surface
2	100.10	4669.97	124.10	4661.97	141.16	4753.16	92.78	2.450	
3	100.10	4669.97	124.10	4661.97	140.46	4751.03	90.56	2.454	
4	100.10	4669.97	124.10	4661.97	139.75	4748.90	88.33	2.457	
5	100.10	4669.97	124.10	4661.97	139.04	4746.77	86.11	2.461	
6	100.10	4669.97	124.10	4661.97	138.32	4744.64	83.89	2.464	
7	101.42	4669.53	124.10	4661.97	142.56	4755.16	95.00	2.468	
8	100.10	4669.97	124.10	4661.97	137.61	4742.51	81.67	2.468	
9	100.10	4669.97	125.42	4661.53	142.50	4754.98	95.00	2.469	
10	101.42	4669.53	124.10	4661.97	′ 141.85	4753.03	92.78	2.471	
11	100.10	4669.97	125.42	4661.53	8 141.79	4752.85	92.78	2.472	

10	100 10	4660.07	104 10	4664 07	126.00	4740.27	70 44	0 470
12	100.10	4009.97	124.10	4001.97	130.90	4740.37	79.44	2.473
13	101.42	4669.53	124.10	4661.97	141.14	4750.90	90.56	2.474
1/	101 / 2	1660 53	12/ 10	1661 97	1/0/3	1718 78	88 33	2 176
17	101.42	+003.00	124.10	+001.37	140.40	+1+0.10	00.00	2.470
15	100.10	4669.97	124.10	4661.97	136.19	4738.24	77.22	2.477
16	100 10	4669 97	125 42	4661 53	141 08	4750 72	90.56	2 4 7 8
47	100.10	1000.07	120.12	4004.50	440.07	4740.00	00.00	2.170
17	100.10	4669.97	125.42	4661.53	140.37	4748.59	88.33	2.479
18	101 42	4669 53	124 10	4661.97	139 72	4746 65	86 11	2 4 7 9
10	100.10	4000.07	101 10	4004.07	105.10	4700 40	75.00	0.400
19	100.10	4009.97	124.10	4001.97	135.48	4730.10	75.00	2.482
20	100.10	4669.97	125.42	4661.53	139.66	4746.45	86.11	2.482
21	101 42	1660 52	10/ 10	4661 07	120.01	1711 50	02 00	2 102
21	101.42	4009.00	124.10	4001.97	139.01	4744.52	05.09	2.403
22	100.10	4669.97	125.42	4661.53	138.95	4744.32	83.89	2.486
23	101 42	4669 53	124 10	4661 97	138 30	4742 39	81 67	2 486
20	101.42	4000.00	124.10	4001.57	100.00	4754.05	01.07	2.400
24	101.42	4669.53	125.42	4661.53	143.19	4754.85	95.00	2.487
25	100.10	4669.97	126.73	4661.09	143.13	4754.66	95.00	2.487
26	101 10	4660 52	105 40	4664 52	140.40	4750 70	00.70	2 400
20	101.42	4009.55	125.42	4001.55	142.40	4/52.72	92.70	2.490
27	101.42	4669.53	124.10	4661.97	137.59	4740.26	79.44	2.490
28	100 10	1660 07	125 /2	1661 53	138 2/	1712 18	81.67	2 /00
20	100.10	4003.37	123.42	4001.00	130.24	4/42.10	01.07	2.430
29	102.73	4669.09	124.10	4661.97	143.24	4755.02	95.00	2.490
30	100 10	4669 97	126 73	4661 09	142 42	4752 53	92 78	2 4 9 0
00	100.10	4000.07	120.10	4004.50	444 77	1702.00	02.10	2.100
31	101.42	4669.53	125.42	4001.53	141.77	4750.59	90.56	2.492
32	102.73	4669.09	124.10	4661.97	142.54	4752.89	92.78	2,492
22	101 10	4660 52	104 10	4664.07	126.00	4720 42	77.00	2 402
33	101.42	4009.55	124.10	4001.97	130.00	4/30.12	11.22	2.495
34	100.10	4669.97	126.73	4661.09	141.71	4750.40	90.56	2.494
35	100 10	1660 07	125 /2	1661 53	137 52	1710 01	70 11	2 101
00	100.10	+003.37	120.42	+001.00	107.02	+7+0.0+	13.44	2.737
36	102.73	4669.09	124.10	4661.97	141.83	4750.77	90.56	2.494
37	101 42	4669 53	125 42	4661 53	141.06	4748 46	88 33	2 4 9 5
20	100.70	4000.00	104.10	4004.07	111.00	4740.05	00.00	2.100
38	102.73	4669.09	124.10	4661.97	141.12	4748.65	88.33	2.497
39	100.10	4669.97	126.73	4661.09	141.00	4748.26	88.33	2.497
10	101 42	1660 53	124 10	4661.07	126 17	1735.00	75.00	2 /07
40	101.42	4009.00	124.10	4001.97	130.17	4755.99	75.00	2.497
41	101.42	4669.53	125.42	4661.53	140.35	4746.33	86.11	2.498
42	100 10	4669 97	125 42	4661 53	136.81	4737 90	77 22	2 4 9 9
40	100.10	1000.01	120.12	1001.00	100.01	17 40 50	00.44	2.100
43	102.73	4669.09	124.10	4061.97	140.41	4746.52	86.11	2.499
44	100.10	4669.97	126.73	4661.09	140.28	4746.13	86.11	2.501
15	101 42	1660 52	105 40	1661 52	120.64	4744.20	02.00	2 501
45	101.42	4009.55	125.42	4001.55	139.04	4744.20	03.09	2.501
46	102.73	4669.09	124.10	4661.97	139.70	4744.39	83.89	2.502
17	101 / 2	1660 53	126 73	4661 00	1/3 82	1751 51	95 00	2 503
	101.42	+003.00	120.75	+001.05	140.02	4754.04	35.00	2.505
48	100.10	4669.97	128.05	4660.65	143.75	4754.34	95.00	2.503
49	100 10	4669 97	125 42	4661 53	136 10	4735 76	75.00	2 504
50	100.10	1000.07	120.12	4004.00	400.77	4740.00	00.00	2.001
50	100.10	4009.97	120.73	4001.09	139.57	4743.99	83.89	2.504
51	102.73	4669.09	124.10	4661.97	138.99	4742.26	81.67	2.505
50	101 12	1660 52	105 10	1661 52	120 02	4742.07	01 67	2 505
52	101.42	4009.55	123.42	4001.55	130.93	4/42.07	01.07	2.505
53	101.42	4669.53	126.73	4661.09	143.11	4752.41	92.78	2.506
54	100 10	4669 97	128.05	4660 65	143 04	4752 21	92 78	2 507
	100.10	4000.07	120.00	4000.00	400.00	4740.40	70.44	2.007
55	102.73	4669.09	124.10	4001.97	138.28	4740.13	79.44	2.508
56	102.73	4669.09	125.42	4661.53	143.88	4754.72	95.00	2.508
57	101 10	4660 52	105 40	4664 52	120.00	4720.02	70.44	2 500
57	101.42	4009.55	125.42	4001.55	130.22	4739.93	79.44	2.506
58	101.42	4669.53	126.73	4661.09	142.40	4750.28	90.56	2.508
50	100 10	1660 07	126 73	4661 00	138.86	1711 85	81.67	2 500
00	100.10	+003.37	120.75	+001.03	100.00	4750.50	01.07	2.505
60	102.73	4669.09	125.42	4661.53	143.17	4752.59	92.78	2.509
61	100 10	4669 97	128 05	4660 65	142 33	4750 07	90.56	2 510
~	400.70	1000.01	405.00	4004 50	4 40.40	4750.40	00.00	0.544
62	102.73	4009.09	125.42	4001.53	142.40	4750.40	90.56	2.511
63	102.73	4669.09	124.10	4661.97	137.57	4738.00	77.22	2.511
64	101 /2	1660 53	126 72	4661 00	1/1 60	1718 15	88 33	2 5 1 2
04	101.42	+003.00	120.73	4001.09	141.09	+1+0.10	00.00	2.012
65	101.42	4669.53	125.42	4661.53	137.51	4737.80	11.22	2.512
66	100 10	4669 97	126 73	4661 09	138 14	4739 71	79 44	2 513
67	104.05	1000.01	104.40	4664.07	142.02	1754 07	05.00	0 540
07	104.05	4000.05	124.10	4001.97	143.93	4104.81	95.00	2.513
68	102.73	4669.09	125.42	4661.53	141.75	4748.34	88.33	2.513
60	100 10	1660 07	128.05	1660 65	1/1 62	1717 01	88 33	2 5 1 2
70	100.10	4000.01	120.00	4001.00	100.02	4705 07	75.00	2.010
70	102.73	4669.09	124.10	4661.97	136.86	4/35.8/	75.00	2.514
71	101.42	4669.53	126.73	4661.09	140.98	4746.01	86.11	2.515
70	104.05	1660 65	10/ 10	1661 07	1/2 00	1750 75	02 70	2 5 1 5
12	104.05	4000.00	124.10	4001.97	143.22	4132.13	92.10	2.010
73	102.73	4669.09	125.42	4661.53	141.04	4746.21	86.11	2.515

74	104.05	4668.65	124.10	4661.97	142.51	4750.63	90.56	2.516
75	101.42	4669.53	125.42	4661.53	136.79	4735.66	75.00	2.516
76	100.10	4669.97	128.05	4660.65	140.90	4745.80	86.11	2.517
77	100.10	4669.97	126.73	4661.09	137.43	4737.57	77.22	2.517
78	101.42	4669.53	126.73	4661.09	140.26	4743.88	83.89	2.518
79	100.10	4669.97	129.36	4660.21	144.37	4754.02	95.00	2.518
80	101.42	4669.53	128.05	4660.65	144.44	4754.23	95.00	2.518
81	102.73	4669.09	125.42	4661.53	140.33	4744.08	83.89	2.518
82	104.05	4668.65	124.10	4661.97	141.81	4748.51	88.33	2.518
83	102.73	4669.09	126.73	4661.09	144.51	4754.41	95.00	2.520
84	101.42	4669.53	128.05	4660.65	143.73	4752.09	92.78	2.520
85	104.05	4668.65	124.10	4661.97	141.10	4746.38	86.11	2.520
86	100.10	4669.97	128.05	4660.65	140.19	4743.66	83.89	2.521
87	102.73	4669.09	125.42	4661.53	139.62	4741.95	81.67	2.521
88	100.10	4669.97	129.36	4660.21	143.66	4751.88	92.78	2.521
89	101.42	4669.53	126.73	4661.09	139.55	4741.74	81.67	2.521
90	102.73	4669.09	126.73	4661.09	143.80	4752.28	92.78	2.522
91	104.05	4668.65	124.10	4661.97	140.39	4744.26	83.89	2.522
92	100.10	4669.97	126.73	4661.09	136.71	4735.42	75.00	2.522
93	101.42	4669.53	128.05	4660.65	143.02	4749.96	90.56	2.523
94	102.73	4669.09	125.42	4661.53	138.91	4739.82	79.44	2.524
95	102.73	4669.09	126.73	4661.09	143.09	4750.16	90.56	2.524
96	100.10	4669.97	129.36	4660.21	142.95	4749.74	90.56	2.524
97	104.05	4668.65	124.10	4661.97	139.68	4742.13	81.67	2.524
98	100.10	4669.97	128.05	4660.65	139.48	4741.51	81.67	2.525
99	101.42	4669.53	126.73	4661.09	138.84	4739.61	79.44	2.525

Critical Failure Surface (circle 1)

Intersects:	XL:	100.10 Y	L: 4669.	97 XR:	124.10	YR:	4661.97				
Centre:	XC:	141.87 Y	C: 4755.	29	Radius	: R:	95.00				
Generated	Generated failure surface: (20 points)										
100.10	4669.9	7 101.3	30 4669.3	39 102	2.51 466	8.83	103.73	4668.28	104.96	4667.75	
106.20	4667.24	4 107.4	44 4666.	75 108	3.68 466	6.28	109.94	4665.82	111.20	4665.38	
112.47	4664.9	6 113.	74 4664.	55 115	5.02 466	4.16	116.30	4663.80	117.59	4663.45	
118.88	4663.1	1 120. ⁻	18 4662.	30 121	1.48 466	2.50	122.79	4662.23	124.10	4661.97	

Slice Geometry and Properties - Critical Failure Surface (circle 1, 39 slices)

Slice	;	X-S		E	Base			-	PoreWa	ater	Normal ⁻	Test	
	X-Left	Area	Angle	Width	Length	Matl	Cohe	sion	Phi Wei	ght	Force	Stress	Factor
1	100.10	0.03	25.7	0.60	0.67	2	0.00	34.0	2.62	0.00	3.84	0.98	
2	100.70	0.08	25.7	0.60	0.67	2	0.00	34.0	7.94	0.00	11.65	0.98	
3	101.30	0.13	24.9	0.61	0.67	2	0.00	34.0	13.00	0.00	19.03	0.98	
4	101.91	0.18	24.9	0.61	0.67	2	0.00	34.0	17.77	0.00	26.02	0.98	
5	102.51	0.23	24.1	0.61	0.67	2	0.00	34.0	22.34	0.00	32.62	0.98	
6	103.12	0.27	24.1	0.61	0.67	2	0.00	34.0	26.52	0.00	38.73	0.98	
7	103.73	0.31	23.3	0.61	0.67	2	0.00	34.0	30.57	0.00	44.56	0.97	
8	104.35	0.35	23.3	0.61	0.67	2	0.00	34.0	34.19	0.00	49.83	0.97	
9	104.96	0.38	22.4	0.62	0.67	2	0.00	34.0	37.70	0.00	54.86	0.97	
10	105.58	0.41	22.5	0.62	0.67	2	0.00	34.0	40.72	0.00) 59.23	0.97	
11	106.20	0.44	21.7	0.61	0.66	2	0.00	34.0	43.16	0.00) 63.44	0.97	
12	106.81	0.47	21.7	0.63	0.68	1	0.00	45.0	47.55	0.00) 65.14	0.93	
13	107.44	0.49	20.9	0.62	0.67	1	0.00	45.0	51.03	0.00) 70.76	0.93	
14	108.06	0.51	20.8	0.62	0.67	1	0.00	45.0	54.50	0.00) 75.60	0.93	
15	108.68	0.26	20.1	0.32	0.34	1	0.00	45.0	28.80	0.00) 79.42	0.93	
16	109.00	0.40	20.1	0.47	0.50	1	0.00	45.0	43.75	0.00	0 81.09	0.93	
17	109.47	0.40	20.1	0.47	0.50	1	0.00	45.0	44.50	0.00) 82.49	0.93	
18	109.94	0.55	19.3	0.63	0.67	1	0.00	45.0	60.65	0.00) 84.18	0.93	
19	110.57	0.56	19.2	0.63	0.67	1	0.00	45.0	61.32	0.00) 85.14	0.93	
20	111.20	0.56	18.4	0.63	0.67	1	0.00	45.0	61.96	0.00	0 86.09	0.93	
21	111.83	0.56	18.5	0.63	0.67	1	0.00	45.0	61.99	0.00) 86.12	0.93	

22	112.47	0.56	17.6	0.64	0.67	1	0.00	45.0	61.90	0.00	86.10	0.93
23	113.10	0.56	17.6	0.64	0.67	1	0.00	45.0	61.22	0.00	85.14	0.93
24	113.74	0.55	16.8	0.64	0.67	1	0.00	45.0	60.42	0.00	84.13	0.93
25	114.38	0.54	16.8	0.64	0.67	1	0.00	45.0	59.04	0.00	82.22	0.93
26	115.02	0.52	16.0	0.64	0.67	1	0.00	45.0	57.53	0.00	80.24	0.93
27	115.66	0.50	16.0	0.64	0.67	1	0.00	45.0	55.46	0.00	77.36	0.93
28	116.30	0.48	15.2	0.64	0.67	1	0.00	45.0	53.22	0.00	74.34	0.93
29	116.95	0.46	15.2	0.64	0.67	1	0.00	45.0	50.39	0.00	70.38	0.93
30	117.59	0.43	14.4	0.65	0.67	1	0.00	45.0	47.42	0.00	66.36	0.93
31	118.24	0.40	14.4	0.65	0.67	1	0.00	45.0	43.94	0.00	61.48	0.93
32	118.88	0.37	13.6	0.65	0.67	1	0.00	45.0	40.19	0.00	56.37	0.94
33	119.53	0.33	13.6	0.65	0.67	1	0.00	45.0	35.94	0.00	50.39	0.94
34	120.18	0.29	12.8	0.65	0.67	1	0.00	45.0	31.51	0.00	44.28	0.94
35	120.83	0.24	12.8	0.65	0.67	1	0.00	45.0	26.51	0.00	37.25	0.94
36	121.48	0.19	12.0	0.65	0.67	1	0.00	45.0	21.29	0.00	30.00	0.94
37	122.14	0.14	12.0	0.65	0.67	1	0.00	45.0	15.61	0.00	21.99	0.94
38	122.79	0.09	11.2	0.66	0.67	1	0.00	45.0	9.57	0.00	13.52	0.94
39	123.44	0.03	11.2	0.66	0.67	1	0.00	45.0	3.20	0.00	4.52	0.94
								-				
X-	S Area:	14.24	Path	Length:	25.3	57	X-:	S Weig	ht: 1526.9	16		

