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ABSTRACT: Mining and wildfires are both landscape disturbances that
pose elevated and substantial hazards to water supplies and ecosystems due
to increased erosion and transport of sediment, metals, and debris to
downstream waters. The risk to water supplies may be amplified when these
disturbances occur in the same watershed. This work describes mechanisms
by which the intersection of mining and wildfire may lead to elevated metal
concentrations in downstream waters: (1) conveyance of metal-rich ash and
soil to surface waters, (2) increased dissolution and transport of dissolved
metals due to direct contact of precipitation with mine waste, (3) increased
erosion and transport of metal-rich sediment from mining waste, (4)
remobilization of previously deposited metal-contaminated floodplain
sediment by higher postfire flood flows, and (5) increased metal transport
from underground mine workings. Predicted increases in wildfire size,
frequency, and burn severity, together with the ongoing need for metal resources, indicate that improved mapping, monitoring,
modeling, and mitigation techniques are needed to manage the geochemical hazard of the intersection of wildfire and mining and
implications for water availability.
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■ INTRODUCTION
Water scarcity is an increasing concern globally.1,2 Impairment
of water for its intended usage has been identified as a type of
water scarcity,3−5 and, thus, water-quality deterioration can
exacerbate water-supply shortages6 and harm ecosystem health.7

Hydroclimatic extremes and climate shifts can be primary
drivers of surface water quality decline.7,8 Climate drivers in
combination with landscape disturbances and other hazards,
termed “compound events,” can be particularly deleterious to
water quality.9,10 Despite synergistic process interactions that
can cause severe effects on water quality in response to
compound events, traditional risk assessments consider single
drivers in isolation, potentially underestimating hazards to water
quality.10 As compound events become increasingly com-
mon11,12 and the subsequent water-quality effects are recog-
nized,13−15 guidance for land, water, and ecosystem manage-
ment will need to include the effects of overlapping climate
extremes and landscape disturbances.

Mining and wildfires are twomajor disturbances that can have
substantial impacts on downstream water quality. Water
discharged from mines can have extreme pH and (or) be rich
in metals (and metalloids, grouped here with metals),16 and

metal-rich mine waste can be transported 10s to 100s km
downstream and stored for extended periods (1,000−100,000
years) in floodplains and lake sediments.17−22 Mining-affected
floodplains are now the primary source of metals to rivers in the
United States (U.S.) and western Europe.22 These metals are
being remobilized by floods,19,22,23 and due to predicted
increases in rainfall intensity, flooding-driven redistribution of
mining-affected floodplain sediment will likely worsen in the
future.18,24,25 Wildfires can lead to enhanced erosion and
sediment transport and subsequent increases in sediment,
nutrients, and metals in downstream waters,26,27 resulting in
stream habitat degradation and inflated water treatment
costs.5,28,29 Downstream effects may extend for 100s of
km30−32 and last more than a decade.29,33−35 Modeled
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Figure 1. (A) Map of the western U.S. showing mines and prospects (excluding gravel, sand, and borrow pits and quarries),131 wildfires (1984−
2022),132 and an index of relative importance to surface drinking water (based on average annual water yield multiplied by a drinking water protection
model that includes population served and intake locations)133 and (B) graph showing cumulative area burned134 and cumulative number of wildfire-
affected mining sites in the western U.S. (intersection of wildfire perimeters134 and point locations of mine sites;131 western U.S. here refers to the
states of Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, Wyoming).

Table 1. Potential Vegetation, Geomorphological, Geochemical, and Hydrological Changes to Landscapes by Mining and
Wildfire, and Mechanisms That May Lead to Elevated Metal Concentrations in Downstream Waters Caused by Their
Intersectiona

type of
change mining wildfire

Vegetation
Removal of vegetation Loss or reduction of vegetation
Deposition of metals on surrounding vegetation and soil (dust and ore processing) Conversion of vegetation and necromass to ash and charred debris
Reduced canopy interception of precipitation Reduced canopy interception of precipitation
Minimal regrowth of vegetation; possibly revegetated with nonnative species Gradual regrowth of vegetation; potential conversion to different

vegetation type
Geomorphological

Decreased particle size, increased surface area Decreased or increased particle size
Reduced soil structure Loss of aggregate stability and soil cohesion
Increased susceptibility to erosion Increased susceptibility to erosion
Unnatural angle of repose

Geochemical
Enriched in metals Potentially enriched in metals
Often extreme pH (very low or very high) Ash can have high pH
Low nutrient status Often enriched in nutrients (depending on burn severity)
Altered solubility and oxidation states of metals Altered solubility and oxidation states of metals

Change in composition and reactivity of organic carbon
Hydrological

Reduced infiltration Reduced infiltration
Shift to surface and near-surface flow during storms Shift to surface and near-surface flow during storms
Reduced evapotranspiration from vegetation removal Reduced evapotranspiration from vegetation mortality

Effects of the intersection of mining and wildfire on metal mobilization and transport

Conveyance of metal-rich ash and soil to surface waters
Increased dissolution and transport of dissolved metals due to direct contact of precipitation with mine waste
Increased erosion and transport of metal-rich sediment from mining waste
Remobilization of previously deposited metal-contaminated floodplain sediment by higher postfire flood flows
Increased metal transport from underground mine workings

aSources: refs 25, 33, 39, 59, 68−78.
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projections suggest that a third of western U.S. watersheds will
have >100% more sedimentation by 2050 because of wildfire.36

Wildfires are now burning in mining-affected watersheds in
many areas of the world, including North America,37−41 South
America,42 Australia,43−46 Europe,47 Asia,48 and Africa.49,50 In
the western U.S., the intersection of these hazards often
coincides with important surface water supply watersheds39,40,46

(Figure 1), with substantial water-quality and land management
implications. For example, wildfire in a legacy mining area in
Colorado led to elevated stream concentrations of arsenic for at
least five years after the fire39 and required removal of a ∼70-
year-old arsenic- and lead-rich tailings deposit to protect
downstream water supplies.51 A postfire debris flow in Montana
mobilized mine waste into a stream, leading to a multimillion-
dollar cleanup effort.38,52 Observed and anticipated increases in
extreme wildfire behavior and severity,53 in concert with
amplification of storm intensity in many parts of the
world,54,55 suggest that the intersection of wildfire and mining
and subsequent risk to water supplies may worsen. Previous
work described potential pathways of metals to surface water in
areas affected by wildfire and legacy mining.39 The objective of
this work is to connect current concepts about remobilization of
legacy mine waste18,22,56−58 with recent advances in under-
standing how wildfire affects landscapes and thus the erosion,
mobilization, and transport of sediment.59−62 We also illustrate
the hazards to water supplies posed by the wildfire-accelerated
mobilization of mining-derived metals in the western U.S. and
identify challenges and opportunities for targeted research.
Finally, we explore the concept that overlapping landscape
disturbances, such as mining and wildfire, may create conditions
in receiving waters that are primed to respond disproportion-

ately to extreme climate events, with substantial implications for
water quality.

■ EFFECTS OF WILDFIRE AND MINING ON
LANDSCAPES AND METAL MOBILIZATION

Both wildfire and mining can substantially alter geomorphology,
vegetation, hydrology, and geochemistry, leaving landscapes at a
greater risk of erosion and transport of sediment and metals
(Table 1). Metal mining often results in the disposal of large
amounts of coarse waste rock and fine-grained tailings on the
landscape or into water bodies.While large-scale modernmining
typically involves reclamation to reduce remobilization of waste,
historical mining commonly entailed little to no remediation.21

Mine waste often has unnatural angles of repose, lacks soil
structure, is enriched in metals, and is depleted of nutrients
(Table 1). As a result, mine waste can remain devoid of
vegetation for many years and is highly vulnerable to erosion by
wind, water, or gravity (e.g., dry ravel and mass move-
ment).63−66 Local surface and subsurface flow paths can be
highly altered due to compaction, artificial stratification, and
discontinuities in permeability.25,67

Wildfires can partially or completely combust vegetation
canopy, surface organic cover, and soil organic matter (Table 1),
leading to the alteration of the chemical and physical properties
of these materials.68,69,73,79−81 For example, wildfire ash can
contain pyrogenic organic matter34 and (or) carbonates,81 and
be enriched in metals such as manganese, lead, and zinc.69

Heating during wildfire can change the oxidation states of metals
(such as arsenic and chromium),82−84 which will affect metal
mobility, bioavailability, and toxicity. Depending on the
temperature and duration of the fire, metals in vegetation,

Figure 2. Conceptual diagram of water-quality hazards from the intersection of wildfire and mining. Number labels identify metal contamination
sources and long-term hazards in diagrams and photographs. Yellow arrows denote pathways of dissolved and particulate metals. (A) Potential
hillslope and headwater metal sources. (B) Mine waste within the 2010 Fourmile Canyon Fire burned area, Colorado, eroded by postwildfire floods.
(C) Mine tailings impoundment in Grand County, Colorado. (D) Mine adit within the 2010 Fourmile Canyon Fire burned area, Colorado. (E)
Conceptual model of downstreammetal contamination sources and long-term hazards showing inset A in the basin headwaters. Photographs by Sheila
Murphy.
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necromass, and soil may be released to the atmosphere or
retained on the landscape,46,68,69 where they are vulnerable to
redistribution by the same geomorphic processes that mobilize
mining waste, i.e., water, wind, or gravity.59,78,85,86 In contrast to
mine waste, erodible material left after wildfire, such as ash, soil,
and partially burned organic matter, can be rich in nutrients such
as nitrogen and phosphorus,68 which can have direct effects on
water quality individually and through complexes with metals
when transported to water bodies.26

Altered hydrologic flow paths brought about by both wildfire
and mining (Table 1) lead to increased overland flow, higher
flood peaks, shorter lag times between rainfall and flood peak,
and higher sediment loads delivered to downstream
waters.74,87−89 The highest risk of mobilization and transport
of dissolved and particle-sorbedmetals after either disturbance is
during episodic, low-frequency, high-magnitude storm
events,26,63,90 particularly in the years immediately after the
disturbance.

■ POTENTIAL PATHWAYS OF METALS FROM MINE
WASTE TO SURFACE WATER AFTER WILDFIRE

Landscape conditions in the western U.S. are primed for
enhanced metal mobilization by wildfires affecting previously
mined lands (Figure 1). Wildfire is a risk for metal
remobilization in mining areas if vegetation on or upstream of
mine waste burns at a severity high enough to change hydrology
or the character of erodible material.13,39 Metals may also be
remobilized by wildfire if burned vegetation and necromass
contained metals related to mining activities (such as
atmospheric deposition from ore processing or bioaccumulation
of metals frommine waste).41 Large mining sites often dominate
public perception of mining, but they are slow to revegetate,
particularly with forest, the land cover with the greatest postfire
erosion hazard.91 In contrast, smaller, dispersed mine waste sites
in areas that have been reforested are more vulnerable to wildfire
and subsequent metal mobilization. Such small-scale prospects
and dispersed mining sites are pervasive in the western U.S.70

(Figure 1).
The intersection of mining and wildfire may lead to elevated

metal concentrations in surface waters via several mechanisms
(Table 1, Figure 2):

• Conveyance of metal-rich ash and soil to surface waters.
Burning of vegetation and necromass enriched in metals
due to atmospheric deposition during historical ore
roasting or smelting41 or to uptake from mineralized
soils92−94 can result in metal-rich ash being readily
available for mobilization and transport to downstream
waters.93,95

• Increased dissolution and transport of dissolved metals due to
direct contact of precipitation with mine waste. Precipitation
falling on mine waste can lead to dissolution of metals
from efflorescent salts.56,96,97 In areas where mine waste
had been sheltered from direct precipitation, either by
revegetation or interception by adjacent trees, the re-
exposure of metal-rich mine waste due to wildfire-induced
vegetation mortality will increase the contact of
precipitation with efflorescent salts, and overland flow
paths can transport the metals to streams.39

• Increased erosion and transport of metal-rich sediment f rom
mining waste. Substantial direct erosion of mine waste has
been observed at many sites during heavy rain-
fall,18,19,23,39,63 and wildfire-induced vegetation mortality

will increase susceptibility to rain-driven erosion (Figure
2). Wildfire typically reduces infiltration, leading to
decreases in the threshold rainfall rate required for
overland flow.90,98 Even in areas where revegetation on
mine waste is minimal, burning of upgradient forest could
increase overland flow moving over or adjacent to the
mine waste, accelerating erosion (Figure 2). Because
legacy tailings piles are often located at the base of
hillslopes and proximal to stream channels, they are
particularly vulnerable to increased remobilization during
high-flow events.18,39 Moderate-intensity postfire rain-
storms have remobilized metal-rich legacy mine tailings in
Colorado39 and Montana.52 However, increased erosion
in burned areas upstream of mining waste could
temporarily dilute metal concentrations by delivering
alkaline ash, metal-poor sediment, and freshly exposed
mineral surfaces, leading to increased pH and precip-
itation or sorption of metals.43,47,99 Failure of tailings
pond dams is a known environmental problem;100

wildfire-accelerated delivery of water and sediment to
such impoundments could increase the risk of breaching.

• Remobilization of previously deposited metal-contaminated
f loodplain sediment due to higher postf ire f lood f lows.
Remobilization of metal-contaminated floodplains is
becoming a greater problem due to increased flooding
related to climate change and is likely to worsen.18,22

Alteration of watershed characteristics by wildfire
typically leads to elevated peak flows,87,101 which can
erode riverbanks and floodplains.102 Postfire flooding will
likely increase the downstream dispersion of metal-
enriched sediment, extending the extent of mining
impacts with potential implications for remediation.

• Increased metal transport f rom underground mine workings.
Increased metal concentrations in waters discharged from
underground mine workings have been observed during
storm events.103,104 Wildfire-induced shifts to overland
flow could mean additional water moving into and
through mine openings during storm events. In addition,
wildfire-induced vegetation loss can reduce transpiration,
resulting in more intrastorm subsurface flow,105 which
could increase the amount or fluctuation of water moving
through underground mine workings.39 Altered water
movement through mine workings can change pH,
oxidation state, and mineral stability, leading to
dissolution of sulfide minerals and precipitation-redis-
solution of efflorescent salts.57,103,106 However, the effects
of water flowing through mine tunnels are complex and
poorly documented, and, while metal concentrations in
mine effluent can increase, studies have also documented
decreases.103,107

■ LONG-TERM RISK TO DOWNSTREAM WATERS
Downstream deposition of metal-rich sediment, together with
wildfire ash, soil, and unburned vegetation, may have long-term
implications for receiving waters. Sediment-laden waters
eventually settle on floodplains or in slower-moving waters
(Figure 2). Rapid accumulation and burial of carbon-rich
sediments left after postfire flooding can lead to strongly
reducing conditions below the sediment-water interface and
subsequent dissolution of metal-bearing iron and manganese
oxides and hydroxides.39,108−110 In addition, there may be
changes to pH, presence of organic and inorganic ligands, and
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microbial activity, which influence metal speciation and
bioavailability.108−111 This redeposited sediment is vulnerable
to later remobilization by high flows, seasonal cycles of exposure
and submergence, bioturbation, and dredging.57 While the
greatest risk of flooding and water-quality impairment is
typically within the first few years, the risk of elevated hydrologic
and erosional responses can persist for longer periods,112,113

especially in response to extreme storms.39 Hyporheic exchange
through mixtures of mining-derived sediments and postwildfire
flood-derived sediments rich in charred material may pose
additional water-quality hazards (Figure 2). Elevated metal
concentrations and loads may have negative effects on
downstream water supplies and ecosystems.5,27,29,72 The
wildfire-mining combination can also increase the dispersion
of mining waste and increase the length of the river channel that
must be evaluated in environmental risk assessments. As these
metal-rich sediments become further distributed in the down-
stream landscape, vulnerability to compound events like
subsequent extreme rainfall may be exacerbated above the
already high risks from legacy mining alone.18 Thus, the long-
term risk to water quality from the deposition of both wildfire
and mining debris in streambeds, floodplains, and reservoirs
could be considered a “chemical time bomb”114 or “delayed
geochemical hazard”.115

■ OPPORTUNITIES
There are many opportunities for improving our understanding
andmanagement of legacy mine waste in wildfire-prone regions:

• Improved mapping of mining waste locations, extent, and
character in forested areas at risk of wildf ire, and relation to
water supply watersheds and intakes116 on a global scale.
Estimates of the amount of Earth’s surface covered by
mining waste range from 31,000 to >1,000,000 km2

globally.117−119 Recent efforts to map mine waste focus
mainly on larger-scale areas; less-obvious mine waste,
such as those undergoing revegetation, are likely under-
estimated,117 yet these are sites most vulnerable to
wildfire. Increasingly accurate mapping of mine sites that
includes targeted commodities, mine feature classifica-
tion, ore body type, and other salient characteristics120,121

will aid in assessment of compound event hazards to water
quality from wildfire and mining.

• Expanded monitoring and conceptual understanding. There
are many gaps in postwildfire water-quality monitor-
ing,29,33,122,123 particularly for metals and during storm
events, that need to be addressed. In addition, very little
research has been directed at understanding metal fluxes
during individual high-flow events in legacy mined
areas.25 Other needs include downstream tracking of
fate and transport of metals in dissolved and particulate
forms; clearer identification of relative contributions of
surface versus subsurface metals mobilization processes,
and links between these two pathways; and understanding
of geochemical processes in deposited sediments in
reservoirs and floodplains.

• Improved modeling. Risk assessments of compound events
of wildfire and mining would benefit from more holistic,
process-based approaches. Combining postwildfire water-
quality models that include sediment erosion, transport,
and deposition from headwaters to critical water
supplies124,125 with models that incorporate geochemical
and biogeochemical processes111,126−128 would more

accurately represent the combined influences of wildfire
and mining.

• Develop compound event mitigation strategies. Blended
landscape mitigation strategies will benefit treatment
approaches for minimizing erosion from the legacy
mining waste21,129 and burned areas.130
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