

March 25, 2025

Patrick Lennberg Environmental Protection Specialist Colorado Department of Natural Resources Division of Reclamation, Mining and Safety Office of Mined Land Reclamation 1313 Sherman Street, Room 215 Denver, Colorado 80203

Re: <u>Permit No. M-1980-244; Cripple Creek & Victor Gold Mining Company; Cresson Project;</u> <u>Technical Revision 147 – Adequacy Review No. 1 Response</u>

Dear Mr. Lennberg,

On March 10, 2025, the Cripple Creek and Victor Gold Mining Company (CC&V) received the Division of Reclamation, Mining and Safety (DRMS) Adequacy Review No. 1 of Technical Revision (TR) 147 to permit M-1980-244, regarding the ECOSA Pumpback System. Below are DRMS comments in **bold** and CC&V's response in *Italics*.

1. Figure 1 of the Aquifer Testing Report incorrectly identifies GVMW-27B as a Point of Compliance. Please update the figure to accurately reflect the Points of Compliance.

Figure 1 within the Aquifer Testing Report has been revised and is included within Attachment 1.

2. In Section 2.3, page 5, the discussion about the installation of GVMW-37A and B is not accurate. CC&V agreed to install these wells, during review of TR141, to address Division concerns about low resistivity areas identified in the Golder report (January 2023) at location PB23-01. Please update for accuracy.

The specified section has been revised to:

"GVMW-37A and GVMW-37B were installed downgradient of GVMW-25 to address Division concerns about low resistivity areas identified in the 2023 Golder report at the PB23-01 location. Additionally, this location provides an observation point to monitor water quality downgradient of GVMW-25."

The revised section is included within Attachment 1.

3. Please explain why GVMW-37A and 37B were not selected for additional pump testing beyond the slug tests.

GVMW-37A and GVMW-37B were not selected for additional pump testing because groundwater quality at these locations remains unaffected. Furthermore, these wells are situated on the opposite side of the thalweg and downgradient from the hypothesized seepage pathway. Given these conditions, the locations are not viable for pumpback operations, and additional aquifer testing would be of minimal value toward the overall objectives of the pumpback system. 4. It is stated that the effectiveness of pumpback system will be evaluated through monitoring of GVMW-25 after the system is brought online and comparing the results to historical data to identify any changes to groundwater level and possible changes to contaminant concentration trends or a reduction in peak concentrations. During the constant rate pumping tests there were no changes detected in any of the observation wells for any of the tests. How will performance of the pumpback system be evaluated when there is no demonstration that any of the proposed pumping wells are interconnected?

The pumpback system is designed to intercept impacted groundwater upgradient of GVMW-25. If the system functions as intended, unimpacted water will be the sole source of water for GVMW-25, thereby leading to a reduction in contaminant concentrations and a potential effect on groundwater levels.

While the constant rate pumping tests did not indicate measurable drawdown in observation wells, this does not preclude the potential for localized hydraulic influence under sustained operational conditions.

The results of aquifer testing do not indicate an absence of hydraulic interconnection between wells. Rather, they suggest that the nature and extent of interconnection require further evaluation. Given its geographic position and existing water quality conditions, GVMW-25 remains the most appropriate location for assessing the effectiveness of the pumpback system in mitigating contaminant migration.

5. If GVMW-25 is used as a pumpback well it would eliminate a long-term monitoring location specifically installed to monitor the impacts of seepage from the ECOSA to Grassy Valley. Please commit to installing a replacement monitoring well adjacent to GVMW-25 prior to bringing GVMW-25 online as a pumping well. The new well would act as an observation well for the pumping of GVMW-25. This new observation well which will replace the GVMW-25 monitoring point would be in addition to the two wells outlined in 17b. of the Stipulated Agreement which have been requested to be installed between GVMW-25 and GVMW-26A/B.

CC&V commits to installing a new observation well downgradient of GVMW-25, if GVMW-25 is converted into a pumpback well. The determination of whether GVMW-25 requires conversion will take time to ensure sufficient data can be collected. If it is decided that GVMW-25 is to be operated as a pumpback well, CC&V requests that the conversion be completed before installing a new observation well. This approach is intended to prevent further contaminant migration.

6. The storage tanks that contain extracted groundwater will be periodically drained as needed using a water truck, which will then be offloaded in the lined Valley Leach Facilities. Please provide details and procedures on how pumping out of the storage tanks will be completed to contain spillage.

The extraction and transfer of groundwater from storage tanks to the lined Valley Leach Facilities will be conducted in accordance with established containment and spill prevention protocols to minimize the risk of spillage.

The following procedures will be implemented to ensure safe and controlled operations:

- 1. Equipment and Containment Measures
 - Water Trucks: Water trucks will be inspected daily to ensure integrity of all components including piping, valves, seals, and connections.
 - Secondary Containment: The storage tanks are situated within secondary containment areas designed to capture any accidental spills or leaks. The secondary containment is designed to hold 110% of the tank capacity and precipitation from a 100-year 24-hour storm event.
 - Connection Points: Transfer hoses will be securely attached using cam-lock fittings or equivalent sealed connections to prevent leaks during loading and unloading operations.
- 2. Transfer Procedures
 - Pre-Extraction Inspection: Prior to extraction, all hoses, fittings, and connection points will be inspected for integrity and secure attachment.

- 3. Spill Prevention and Response Protocols
 - Deployable Secondary Containment: Deployable containment such as a mini-berm or duck pond will be staged at the storage tank area for rapid deployment in the event of a leak.
 - Incident Response Plan: In the unlikely event of a spill, CC&V's spill response procedures will be followed, including, containment, and proper disposal of any contaminated materials.
- 4. Documentation and Compliance
 - Transfer Logs: Each transfer event will be logged, including date, volume transferred, personnel involved, and any observations related to system integrity.
 - Routine Maintenance: Regular maintenance of tanks, hoses, and transfer equipment will be conducted to ensure continued safe operation.

These measures collectively ensure that groundwater transfer operations are performed safely, effectively, and in compliance with regulatory requirements.

7. Please commit to providing an annual pumpback system operations report by the end of the first quarter of each year for the previous year of operations. The report should provide a summary of the amount of groundwater removed, operations and maintenance items, and any other miscellaneous items that occurred or happened to the system.

CC&V will commit to provide an annual Pumpback System Operation Report by March 31st following the reporting year.

8. Please provide the Reclamation Cost Estimate Table that was revised during the stipulated agreement negotiations for the 50-year operation of the system as outlined in Section 18. Of the Stipulated Agreement.

The requested cost estimate table is included as Attachment 2.

Should you require further information, please do not hesitate to contact Antonio Matarrese at 719-851-4185 or <u>Antonio.Matarrese@ccvmining.com</u> or myself at <u>Katie.Blake@ccvmining.com</u>.

Sincerely, p.p. Infonio Matarrisi Katie Blake Sustainability & External Relations

- Sustainability & External Relations Manager Cripple Creek & Victor Gold Mining Co
- Ec: E. Russell DRMS P. Lennberg – DRMS Z. Trujillo - DRMS J. McBryde – Teller County J. Gonzalez – CC&V K. Blake – CC&V N. Townley – CC&V A. Matarrese – CC&V

Attachment 1

FC

ECOSA - Cripple Creek and Victor Gold Mine, Teller County, Colorado

Aquifer Testing Report

East Cresson Overburden Storage Area (ECOSA) Seepage Mitigation Design PO Number: 3002859211

Cripple Creek and Victor Gold Mine Teller County, Colorado

Cripple Creek and Victor Gold Mining Company, LLC (Newmont)

February 19, 2025

This page intentionally left blank

Table of Contents

1. Introduction1
2. Background Information
2.1 Site Description
2.2 Geology and Hydrogeology
2.3 Recent Monitoring Well Installations (2024)4
3. Field Methods
3.1 Slug Testing
3.2 Pump Testing7
3.2.1 Step-Drawdown Test Methodology8
3.2.2 Pump Test (Constant Rate) Methodology8
3.2.3 Pump Test Implementation: GVMW-2710
3.2.4 Pump Test Implementation: GVMW-2810
3.2.5 Pump Test Implementation: GVMW-35A11
3.2.6 Pump Test Implementation: GVMW-3611
4. Aquifer Testing Results
4.1 Slug Testing
4.1.1 Bouwer-Rice Solution (1976)15
4.1.2 KGS Model (Hyder et al., 1994)15
4.2 Pump Testing
4.2.1 Cooper and Jacob (1946) Straight-Line Method16
4.2.2 Theis (1935) Solution
4.2.3 Interpretation of Pump Test Data17
5. Summary and Recommendations
5.1 Slug Testing
5.2 Pump Testing
5.2.1 GVMW-27
5.2.2 GVMW-28
5.2.3 GVMW-35A
5.2.4 GVMW-36
5.3 Recommendations
6. References

List of Tables

Table 1. Monitoring Well Construction Details	6
Table 2. Slug Test Details	13
Table 3. Pump Test Details	14
Table 4. Summary of Slug Test Results	19
Table 5. Summary of Pump Test Results	21

List of Figures

Figure 1. ECOSA	√Grassy Valley	Monitoring Well	Location Map	2
-----------------	----------------	-----------------	--------------	---

List of Appendices

Appendix A.	Boring Logs and Well Construction Diagrams	26
Appendix B.	Drawdown data with straight-line fits and fitted Theis curves	27

Table of Abbreviations and Acronyms

Authentic	Authentic Drilling, Inc.
bgs	below ground surface
btoc	below top of casing
cm/s	centimeters per second
CC&V	Cripple Creek and Victor Gold Mine
DRMS	Division of Reclamation, Mining, and Safety
ECOSA	East Cresson Overburden Storage Area
gpm	gallons per minute
HDR	HDR Engineering, Inc.
К	hydraulic conductivity
Newmont	Cripple Creek and Victor Gold Mining Company, LLC
т	transmissivity
TR	Technical Revision
USCS	Unified Soil Classification System
VLF2	Valley Leach Facility 2

1. Introduction

The purpose of this Aquifer Testing Report is to document slug tests and pump tests of recently installed groundwater monitoring wells at the Cripple Creek and Victor Gold Mine (CC&V) located in Teller County, Colorado. The groundwater monitoring system is intended to support the East Cresson Overburden Storage Area (ECOSA) Seepage Mitigation Design project. The ECOSA is an active overburden storage facility located approximately two miles north of Victor, CO and approximately two miles east of Cripple Creek.

HDR Engineering, Inc. (HDR) was contracted by the Cripple Creek and Victor Gold Mining Company, LCC (Newmont) to conduct slug testing and pump testing of newly installed groundwater monitoring wells at CC&V (HDR, 2024). HDR additionally retained Authentic Drilling, Inc. (Authentic) to provide on-site pump testing activities, while HDR conducted the slug tests, logged data from the pump tests, and oversaw all pump testing activities conducted by Authentic. All on-site personnel completed site-specific safety training and orientation. Additionally, daily safety meetings were conducted by the on-site project team prior to commencing work.

Figure 1. ECOSA/Grassy Valley Monitoring Well Location Map

2. Background Information

2.1 Site Description

The ECOSA is an active overburden storage facility located on the northeast edge of the CC&V mine site. The area known as Grassy Valley is located immediately to the north and east of the ECOSA facility (WSP Golder, 2023). Seepage has been observed at the toe of the facility near Grassy Valley (Collier Geophysics, 2023).

2.2 Geology and Hydrogeology

The Cripple Creek basin is a steep-walled volcanic subsidence basin surrounded by Precambrian granite. The basin is filled with fragmented rocks, of both volcanic and clastic origin, which are Miocene in age, and which are collectively referred to as "breccia" (Hamm, J.C., 1972). The hydrogeology of the Grassy Valley area is characterized in terms of three hydrogeological units: Diatreme, Granodiorite/Phonolite, and the Alluvium/Colluvium (Brown, 2001).

Grassy Valley is underlain by colluvium and granitic bedrock with groundwater present in both the bedrock and the colluvium (WSP Golder, 2023). Groundwater levels for wells screened within the colluvium ranged from 6 to 30 feet below ground surface (bgs), and flow rates ranged from 0.1 to 1.5 gallons per minute (gpm) (Piteau Associates, 2023a and 2023b). Recent water quality results from monitoring well GVMW-25 (**Figure 1**), indicate hydrologic connection between the ECOSA and Grassy Valley, although there have been no observed effects to surface or ground water outside of the CC&V permit boundary (Newmont, 2023).

The colluvium mainly consists of sandy unconsolidated gravel, fill sand, black sandy peat, overburden, and alluvium with a mix of breccia and moderate clay (Ligocki, 1998, White, 1997). A large portion of the subsurface bedrock structures in the ECOSA/Grassy Valley area are known to be the Cripple Creek Diatreme, which consists of igneous brecciated rock (Kelley et al., 1998) and phonolite. Most of the ECOSA and a large portion of Grassy Valley is located within the footprint of the diatreme, however, the northwest portion of Grassy Valley is situated on primarily Precambrian granodiorite.

Groundwater in the ECOSA area infiltrates through the surface mine operations towards and through the diatreme and has the potential to flow towards the historic Carlton Tunnel (Brown, 2001). The diatreme is a highly permeable hydrogeologic unit. Slug test data from ECOSA wells indicates a hydraulic conductivity (K) of 6×10^{-5} to 1×10^{-4} centimeters per second (cm/s). The K of the diatreme is likely dominated by many well-connected fractures (Brown, 2001), and historic mine workings. The granodiorite/phonolite has low K. The upper 30 feet of such rocks usually have slightly higher permeability because of weathering; however, weathering seldom extends below this depth (Brown, 2001). Slug test data from ECOSA wells indicates the K of the shallow, weathered granodiorite/phonolite is in the range of 1×10^{-6} to 1×10^{-5} cm/s. K in the deeper, unweathered granodiorite/phonolite is in the range of 6×10^{-7} to 51×10^{-6} cm/s. The K of this unit is likely to be dominated by fractures (Brown, 2001).

The northwest portion of Grassy Valley consists of sandy, unconsolidated gravel colluvium from 0 to 5 feet bgs, and black sandy peat to 5 to 15 feet bgs (White, 1997). According to geologic logs, bedrock in this area consists of pre-Cambrian biotite schist, which is weakly oxidized and has moderate fractures (White, 1997, Ward et al., 2001). Pump testing during drilling at GVMW-4A

(**Figure 1**) showed groundwater flows from 10 to 70 gpm. From 110 to 245 feet bgs, the groundwater flow ranged from 10 to 25 gpm. From 300 to 440 feet bgs, the groundwater flow ranged from 60 to 70 gpm (White, 1997).

The central portion of Grassy Valley consists of Valley Fill colluvial material from ground surface to 20 to 35 feet bgs (Ligocki, 1998). At GVMW-7A, bedrock consists of granodiorite, with mediumgrained granite. Pump testing during drilling at GVMW-7A showed groundwater flow rates from 1 to 4 gpm. The GVMW-7A geologic log showed groundwater encountered at 205 feet bgs and groundwater flow rates ranging from 35 to 50 gpm. At 220 feet bgs, groundwater flow rates ranged from 45 to 50 gpm, and at 270 feet bgs, groundwater flow ranged from 35 to 40 gpm (Ligocki, 1998).

The southeast portion of Grassy Valley consists of Valley Fill colluvium and overburden material from 0 to 20 feet bgs (Ligocki, 1998). The underlying bedrock consists of porphyritic phonolite. At GVMW-8A (**Figure 1**), there was a medium- grained aphanitic dike from 20 to 30 feet bgs. From 85 to 140 feet bgs, the geologic logs show weak sericite and potassic alteration and 2 to 3% pyrite. From 105 to 110 feet bgs and 150 to 225 feet bgs, trace amounts of fluorite were found. From 205 to 250 feet bgs, the logs indicated groundwater occurring within the fractured bedrock. At 200 feet bgs, groundwater flow was 5 gpm (Ligocki, 1998).

2.3 Recent Monitoring Well Installations (2024)

Recent groundwater quality results from monitoring well GVMW-25, screened in alluvium and bedrock from 69 to 79 feet bgs, indicate a hydrologic connection between ECOSA and Grassy Valley. In August 2021, as part of CC&V's water quality monitoring program, CC&V collected a water sample from GVMW-25. Upon receipt of the analytical results, CC&V provided an exceedance notification to the Division of Reclamation, Mining and Safety (DRMS) specifying exceedances for several parameters in the sample collected. CC&V hypothesized that the seasonally influenced concentrations of constituents observed at monitoring well GVMW-25 were caused by stored porewater within the ECOSA facility being flushed into shallow groundwater towards the Grassy Valley during the monsoon rain events. In 2022 and 2023, CC&V observed increases in parameter concentrations with similar pattern to the increases observed in August 2021, post-monsoon season.

CC&V discussed a seepage mitigation plan with DRMS, which includes a phased approach. Phase I of the seepage mitigation plan included the installation of monitoring wells along the toe of ECOSA within Grassy Valley to increase CC&V's ability to monitor groundwater, characterize groundwater flow paths, and intercept and collect impacted shallow groundwater. CC&V ultimately proposed the installation of thirteen (13) groundwater monitoring wells within Grassy Valley in locations that correspond to low resistivity zones identified during a geophysical survey (Collier Geophysics, 2023).

In July and August 2024, 13 groundwater monitoring wells (GVMW-27, GVMW-28, GVMW-29, GVMW-30, GVMW-31, GVMW-32, GVMW-33, GVMW-34, GVMW-35A, GVMW-35B, GVMW-36, GVMW-37A, and GVMW-37B) were installed as part of Phase I of the ECOSA Seepage Mitigation Design Project (**Table 1** and **Figure 1**) (HDR, 2024). The colluvium encountered during installation of the new monitoring wells was found to be dry in some locations (GVMW-29, GVMW-31, GVMW-32), except where groundwater was identified directly above competent bedrock (GVMW-28, GVMW-30, GVMW-33, GVMW-34, GVMW-35B, GVMW-36). Groundwater was also identified in monitoring wells installed in the weathered bedrock (GVMW-27, GVMW-37B). GVMW-35A and GVMW-37A were installed as deep bedrock wells and were screened in fractured, competent bedrock (HDR, 2024).

FJS

GVMW-27 and GVMW-28 were installed closer to the thalweg of Grassy Valley to better characterize groundwater flow paths for the potential downgradient migration of seepage. GVMW-29, GVMW-30, GVMW-31, GVMW-32, and GVMW-33 were installed in a northwest-southeast trending line within the observed shallow low resistivity zone in the southeastern portion of the ECOSA. GVMW-34, GVMW-35A, and GVMW-35B were installed within the observed shallow low resistivity zone in the northwestern portion of the ECOSA. GVMW-35A and GVMW-35B were installed near one another to intersect both the shallow and deep low resistivity zones observed at that location. GVMW-36 was installed at an additional small, shallow resistivity zone. GVMW-37A and GVMW-37B were installed downgradient of GVMW-25 to address Division concerns about low resistivity areas identified in the 2023 Golder Report at the PB23-01 location. Additionally, this location provides an observation point to monitor water quality downgradient of GVMW-25. The monitoring wells were constructed in a manner that allows for pump installation and conversion to interception wells, if necessary.

Table 1. Monitoring Well Construction Details

Well ID	Well Diameter (inches)	Screen Interval (feet, btoc)	Static Depth to Water (feet, btoc)	Well Depth (feet, btoc)	Water Column (feet)	Screened Lithologic Unit ¹	Notes ²
GVMW-27	4	64.42-74.42	53.45	74.42	20.97	Weathered schist	
GVMW-28	4	61.40-71.40	31.72	71.40	39.68	Lean clay	
GVMW-29	4	27.98-37.98	DRY	37.98	DRY	Lean clay	Dry
GVMW-30	4	40.25-50.25	39.90	50.25	10.35	Lean clay	
GVMW-31	4	42.71-62.71	61.65	62.71	1.06	Lean clay	Functionally dry
GVMW-32	4	56.93-66.93	65.82	66.93	1.11	Lean clay	Functionally dry
GVMW-33	4	74.05-84.05	60.82	84.05	23.23	Fat clay	
GVMW-34	4	75.06-85.06	58.75	85.06	26.31	Fat-to-lean clay	
GVMW-35A	4	322.02-342.02	268.55	342.02	73.47	Unweathered granodiorite	
GVMW-35B	4	62.71-72.71	32.5	72.71	40.21	Lean clay	
GVMW-36	4	27.43-37.43	14.35	37.43	23.08	Lean clay/Lean silt	
GVMW-37A	4	182.10-202.10	31.59	202.10	170.51	Unweathered granite and schist	
GVMW-37B	4	65.13-75.13	31.10	75.13	44.03	Weathered schist	

¹ Boring logs containing properties of screened lithologic units are included as **Appendix A**.

² Functionally dry wells are defined as those with water columns of <2 feet.

3. Field Methods

3.1 Slug Testing

Slug testing was performed for wells to estimate K. Wells that were dry or functionally dry (water column of <2 feet) could not be slug tested. GVMW-35A was not tested because the well had not yet been developed at the time slug tests were being performed. GVMW-35A was developed via air lifting prior to performing pump tests. Slug tests were conducted between September 16 and September 21, 2024, on the following monitoring wells: GVMW-27, GVMW-28, GVMW-30, GVMW-33, GVMW-34, GVMW-35B, GVMW-36, GVMW-37A, and GVMW-37B (**Table 2**).

The tests were conducted by introducing a physical slug into the water column of the tested wells and monitoring the change in water level. For slug testing, a 3-inch diameter watertight slug, varying in length from 2 feet to 5 feet, was utilized. Slug-in tests were completed by dropping the slug into the water column as quickly as possible and measuring the falling water level that followed. Slug-out tests were completed after each slug-in test by removing the slug from the water column as quickly as possible and measuring the rising water level that followed. Water level measurements were recorded at 1-second intervals by a transducer suspended on a communications cable near the bottom of the well. Slug test data were downloaded at the end of each working day and saved locally to a laptop. All non-dedicated down-well equipment used during slug testing was decontaminated between sample locations by rinsing with an Alconox/distilled water solution followed by a potable water rinse and a final rinse with deionized water.

The change in water level in response to each slug-in and slug-out test was analyzed to estimate K. Slug test details are provided in **Table 2**, and slug test results are described in **Section 4.1**.

3.2 Pump Testing

Following a thorough review of wells after completion of slug testing and in consultation with CC&V, four wells were selected for pump testing. Of these four wells, two wells, GVMW-27 and GVMW-35A, were selected for step-drawdown testing and constant rate pump testing; and two wells, GVMW-28 and GVMW-36, were selected for step-drawdown testing only. The determining factors for selecting these wells are as follows:

- **GVMW-27 Constant rate pump test and step-drawdown test.** This well was selected because of its high hydraulic conductivity based on slug test results, it has sufficient saturated thickness for sustained pumping, and it is spatially located southeast of the ECOSA towards the thalweg of Grassy Valley.
- **GVMW-28 Step-drawdown test only.** This well was selected because of its moderately high hydraulic conductivity based on slug test results, it has sufficient saturated thickness for sustained pumping, and it is spatially located near the eastern midpoint of the ECOSA in an area being considered for mitigative measures.
- **GVMW-35A Constant rate pump test and step-drawdown test.** This well was selected to determine the hydraulic properties of deep bedrock groundwater near the northeastern edge of the ECOSA, and it has sufficient saturated thickness for sustained pumping.
- **GVMW-36 Step-drawdown test only.** This well was selected to determine the hydraulic properties of shallow groundwater near in the northeast edge of the ECOSA, and it has sufficient saturated thickness for sustained pumping.

HDR conducted these pump tests using a consistent methodology, incorporating guidance from ASTM D4050-91. The methodologies for the step-drawdown tests and constant rate aquifer pump tests are described in detail in **Section 3.2.1** and **Section 3.2.2**, respectively. The specific details of pump test implementation at GVMW-27, GVMW-28, GVMW-35A, and GVMW-36 are described in **Section 3.2.3**, **Section 3.2.4**, **Section 3.2.5**, and **Section 3.2.6**, respectively, and these details are summarized in **Table 3**.

Step-drawdown tests were completed at GVMW-27, GVMW-28, and GVMW-36. At GVMW-35A, a complete step-drawdown test was attempted but could not be completed because rapid drawdown of the water column was observed at the lowest achievable pumping rate, and it was decided in the field to forego the step-drawdown test and perform the constant rate pump test only.

An 18-hour constant rate pump test was completed at GVMW-27, followed by a full 72-hour constant rate pump test based on the constant rate drawdown capacity of the well. An 11-hour constant rate pump test was completed at GVMW-35A, followed by another 29-hour constant rate pump test based on the constant rate drawdown capacity of the well. Pump test results are described in **Section 4.2**.

3.2.1 Step-Drawdown Test Methodology

Step-drawdown tests were performed on the designated pumping wells to establish a pumping rate for long-term tests. Additional water level measurements were also recorded in the designated observation wells. Each of the designated pumping wells was intended to be pumped at four successively higher rates as determined by field conditions. Selection of the rates considered the depth to static water level, the depth to the top of the screen interval, the depth of pump intake (a safe distance to prevent the pump from cavitating), and the approximate specific capacity of the well from well development records.

Each test step was performed for a duration of approximately one hour (or more, in some cases) until water level stabilization was achieved (approximately four hours total). The hour-long duration of each step was intended to allow sufficient time for drawdown to stabilize or reach asymptotic conditions. Water levels were measured automatically throughout the step drawdown test with a pressure transducer installed in the pumping well and checked periodically with a water level meter. The pressure transducers utilized were capable of sustaining a head equal to the depth of pump intake plus a sufficient distance below the pump to avoid any pump turbulence. Manual water level measurements were made to the nearest 0.01 foot and recorded in a field logbook or log form.

Prior to commencement of the step drawdown test, the static water level was measured. This static water level was used for drawdown calculations. During each step, water level measurements were performed at equal time steps that were short enough to record drawdown during the first few minutes of each step. Rates of discharge were monitored throughout the test with the use of digital totalizing flow meter, and these rates were adjusted by Authentic to maintain the specified discharge rate as head decreased.

3.2.2 Pump Test (Constant Rate) Methodology

The wells that would receive a constant rate pump test, along with the pumping rates for constant rate pump tests, were selected based on the results of the step-drawdown tests. The selected rates were deemed sustainable for the duration of the drawdown phase of the test and attempted to avoid drawing water levels below the tops of well screens or too close to depths of pump intake (which would result in pump cavitation).

The aquifer pumping tests were intended to consist of a 72-hour drawdown pumping phase during which water levels were monitored at select observation wells and the pumping well, while the pumping well was purged at a constant rate for the duration of the test. The drawdown phase was then followed by a recovery phase (non-pumping), during which water levels were monitored after the pump was shut down. At least one observation well was located outside of the anticipated influence of the pumping well to monitor ambient water level fluctuations during the drawdown and recovery phases of the test.

Water levels were monitored with pressure transducers and manually with a water level meter. Pressure transducers were installed in the pumping well and designated observation wells. The pressure transducer installed in the pumping well was capable of sustaining head equal to the depth of the pump intake plus a sufficient distance below the pump to avoid any pump turbulence. The pressure transducers installed in the observation wells were capable of sustaining head greater than the anticipated drawdown. Prior to and after each test, transducers were checked by raising and lowering each transducer a measured distance in the well. Transducer readings were additionally verified with a manual water level meter throughout the drawdown and recovery phases of each test.

Water levels in the pumping wells were measured both manually and with a transducer set to record at linear time intervals. Critical early time drawdown data were obtained manually by frequently measuring the water level in the pumping well during the first 10 minutes of the test, and every minute with the transducer. Following the first 10 minutes of the test, pressure transducers continued to collect data in one-minute intervals. The frequency of manual water level measurements was decreased to one measurement per minute until one hour of pumping had elapsed, followed by one measurement every five minutes until two hours of pumping had elapsed, one measurement every 10 minutes until four hours of pumping had elapsed, and finally one measurement every hour until the test had completed. Water levels in designated observation wells were monitored throughout each test with pressure transducers at one-minute intervals for all phases of testing.

Water was withdrawn from the well at a regulated rate throughout each test. Short-term discharge was measured on an hourly basis and compared to the mean discharge to ensure a variation of no more than 10 percent. Long-term discharge variation (i.e., from the beginning of the test to completion) was attempted to be kept within 5 percent. Discharge was measured and recorded frequently during early stages of the test (approximately every five minutes) and adjusted if necessary. A digital totalizing flow meter and graduated measuring cup were used for measuring discharge flow rates and total volume of water discharged (flow meter does not measure rates <0.5 gpm). When discharge was determined to be stable, the discharge rate was checked at a frequency of once every hour. Care was taken to minimize rate fluctuations to those necessary to maintain a constant rate during the initial 10 to 20 minutes of the drawdown phase of the test, when time-drawdown data are critical to curve-matching methods of data analysis.

The recovery of water levels following the pumping phase was measured and recorded for the same amount of time as the duration of the pumping phase (e.g., a 72-hour pump test was immediately followed by a 72-hour recovery monitoring period). The linear frequency of measuring water levels was similar to the frequency employed during the pumping phase.

Discharge water was piped into a frac tank staged at the test location. Water stored in the frac tank was pumped out by Authentic or a CC&V-provided water truck on a regular basis to enable uninterrupted groundwater pumping of the well for the duration of each test. Pump test discharge water was transported by Authentic or CC&V to the Valley Leach Facility 2 (VLF2) for disposal.

Following the completion of pump testing, the tanks were cleaned out by Authentic and excess sediment was collected for disposal at VLF2.

3.2.3 Pump Test Implementation: GVMW-27

A step drawdown test was performed at GVMW-27 on October 24, 2024. The purpose was to evaluate drawdown in the well to determine a sufficient pumping rate for a 72-hour pump test. The initial pumping rate for the step drawdown test was set to 0.1 gpm and caused minimal drawdown. After 90 minutes of pumping at 0.1 gpm, the pumping rate was increased to 0.2 gpm. The water level in GVMW-27 decreased slightly over the course of this second step. After 60 minutes of pumping at 0.2 gpm, the pumping rate was again increased to approximately 2.5 gpm. The water level in GVMW-27 gradually decreased for after 5 minutes of pumping at 2.5 gpm, and the pumping rate was increased again to 3 gpm. After 60 minutes of pumping at 3 gpm, the pumping rate was increased again to 4.5 gpm. The water level in GVMW-27 experienced minimal drawdown after 5 minutes of pumping at 4.5 gpm. After 60 minutes increased again to 5 gpm. The water level in GVMW-27 decreased significantly after 6 minutes; at that point, the pumping rate was decreased back to 4.5 gpm. One minute later, the water level in GVMW-27 was below the depth of the transducer. A rate of 1.5 gpm was selected for a 72-hour constant rate pump test. The well was allowed to recharge fully prior to initiating the constant rate pump test. Full recovery data were logged following the completion of this pump test.

The first intended 72-hour constant rate pump test at GVMW-27 was performed on October 25, 2024, with a selected pumping rate of 1.5 gpm. The selected observation wells for the constant rate pump test were GVMW-8B-50, GVMW-25, GVMW-28, and GVMW-30. The water level in GVMW-27 dropped approximately 2 feet during the first 10 minutes of the pump test, and then dropped approximately 1.5 feet more during the next 90 minutes of pumping. About 16.5 hours after commencing the pump test, the water level in GVMW-27 had experienced approximately 10 feet of drawdown. 18 hours after commencing the pump test, there was approximately 0.3 feet of head above the pressure transducer, and the pump test was ended. Full recovery data were logged following the completion of this pump test.

A second pump test was conducted for 72 hours at GVMW-27 on October 26, 2024. The selected observation wells were the same as for the 18-hour constant rate pump test. To avoid purging the well dry during this pump test, a pumping rate of 0.75 gpm was selected. The water level in GVMW-27 dropped approximately 1.5 feet during the first 10 minutes of the pump test, and then dropped approximately 0.5 feet more during the next 90 minutes of pumping. After 18 hours of pumping, the water level in GVMW-27 had experienced approximately 4 feet of total drawdown. The pump test ran for a complete 72 hours and at the completion of the pump test, the water level in GVMW-27 had experienced approximately 6.5 feet of total drawdown. Full recovery data were logged following the completion of this pump test.

3.2.4 Pump Test Implementation: GVMW-28

A step drawdown test was performed at GVMW-28 on October 3, 2024. The purpose was to evaluate drawdown in the well to determine a sufficient pumping rate for a 72-hour pump test. The initial pumping rate for the step drawdown test was set to 0.1 gpm; 60 minutes of pumping at 0.1 gpm caused approximately 3 feet of drawdown. After 60 minutes of pumping at 0.1 gpm, the pumping rate was increased to 0.3 gpm. The water level in GVMW-28 decreased another 6 feet over

the course of this second step. After 60 minutes of pumping at 0.3 gpm, the pumping rate was again increased to approximately 0.5 gpm. After 90 minutes of pumping at 0.5 gpm, the water level in GVMW-28 had decreased another 16 feet. The pumping rate was then increased again to 0.7 gpm. After 41 minutes of pumping at 0.7 gpm, the water level in GVMW-28 dropped another 8 feet, at which point it was below the depth of the pressure transducer. Full recovery data were logged following the completion of this pump test.

Ultimately, a constant rate pump test was not performed at GVMW-28.

3.2.5 Pump Test Implementation: GVMW-35A

A step drawdown test was not completed at GVMW-35A (justification provided in Section 3.2).

The first intended 72-hour constant rate pump test was performed at GVMW-35A on October 13, 2024, with a selected pumping rate 0.21 gpm. The selected observation wells for the constant rate pump test were GVMW-34, GVMW-35B, GVMW-7B-50, and OSABH-17. The water level in GVMW-35A dropped approximately 3 feet during the first 10 minutes of the pump test, and then dropped approximately 18 feet more during the next 90 minutes of pumping. After 8.5 hours of pumping, the water level in GVMW-35A had dropped a total of 31 feet. At this point, the pumping rate was adjusted to 0.24 gpm. Over the course of the next 2.5 hours (i.e., a total of 11 hours of pumping), the water level in GVMW-35A had dropped another 19 feet (i.e., a total of approximately 50 feet of drawdown). At this point, the pump test was ended as there was approximately 1 foot of head above the pressure transducer. Full recovery data were logged following the completion of this pump test.

The second intended 72-hour constant rate pump test was performed at GVMW-35A on October 14, 2024, following complete water level recovery. The selected observation wells were the same as for the 11-hour constant rate pump test. The selected pumping rate was 0.20 gpm, but the actual pumping rate during the test varied significantly. The water level in GVMW-35A dropped approximately 3.5 feet during the first 10 minutes of the pump test, and then dropped approximately 9.5 feet more during the next 90 minutes of pumping. After approximately 16.5 hours of pumping, water level had dropped a total of 33 feet. During these first 16.5 hours of pumping, the pumping rate was adjusted several times to account for rate drops, and ultimately ranged from 0.18 to 0.25 gpm. This led to variability in the rate of drawdown throughout the pump test. After 29 total hours of pumping, the water level in GVMW-35A had dropped a total of 43 feet. At this point, the pump test was ended as there was approximately 1 foot of head above the pressure transducer. Full recovery data were logged following the completion of this pump test.

3.2.6 Pump Test Implementation: GVMW-36

A step drawdown test was performed at GVMW-36 on October 2, 2024. The purpose was to evaluate drawdown in the well to determine a sufficient pumping rate for a 72-hour pump test. The initial pumping rate for the step drawdown test was set to 0.1 gpm, but in reality, this rate varied from 0.08 to 0.18 gpm which led to variability in the rate of drawdown. After 60 minutes of pumping at 0.1 gpm, the water level in GVMW-36 had dropped approximately 12 feet, and the pumping rate was then increased to 0.2 gpm. After 28 minutes, the water level in GVMW-36 had dropped approximately 18 feet in total, and the pump was lowered an additional 5 feet to a depth directly above the bottom of the well. After an additional 15 minutes, the water level in GVMW-36 had dropped approximately 22 feet in total, and the well was purged dry. After the well was dry, the pump was shut off and was kept in place for the duration of the recovery period. Full recovery data were logged following the completion of this pump test.

FX

Ultimately, a constant rate pump test was not performed at GVMW-36.

Saturated **Initial Depth To Total Well** Number Well ID **Test Date Slug Used In Test** Test Type Groundwater Depth Thickness **Of Tests** (feet, bgs) (feet, bgs) (feet) Slug #1 - Length 2', Diameter 3" Slug-In & Slug Out **GVMW-27** 9/19/2024 4 51.03 72 20.97 Slug #2 - Length 3.5', Diameter 3" Slug-In & Slug Out 9/18/2024 Slug #1 – Length 2', Diameter 3" Slug-In & Slug Out 4 28.82 68.5 **GVMW-28** 39.68 9/19/2024 Slug #1 – Length 2', Diameter 3" Slug-In & Slug Out **GVMW-30** 4 37.65 48 10.35 9/21/2024 9/19/2024 Slug #1 - Length 2', Diameter 3" Slug-In & Slug Out **GVMW-33** 4 57.77 81 23.23 9/21/2024 9/18/2024 **GVMW-34** Slug #1 – Length 2', Diameter 3" Slug-In & Slug Out 4 55.69 82 26.31 9/20/2024 9/17/2024 Slug #1 - Length 3.5', Diameter 3" Slug-In & Slug Out GVMW-35B 4 29.79 70 40.21 9/18/2024 Slug #2 – Length 2', Diameter 3" 9/16/2024 Slug #1 – Length 2', Diameter 3" Slug-In & Slug Out 4 35 **GVMW-36** 11.92 23.08 9/17/2024 Slug #2 - Length 5', Diameter 3" Slug-In & Slug Out Slug #1 - Length 3.5', Diameter 3" Slug-In & Slug Out GVMW-37A 9/20/2024 4 29.49 200 170.51 Slug #2 – Length 5', Diameter 3" Slug-In & Slug Out Slug #1 – Length 3.5', Diameter 3" Slug-In & Slug Out GVMW-37B 9/20/2024 4 28.97 73 44.03

Table 2. Slug Test Details

Table 3. Pump Test Details

Well ID	Test Date	Test Type	Length of Test (hours)	Pumping Rate (gpm)	Notes
GVMW-27	10/24/2024	Step Drawdown Test	4	0.1, 0.2, 3, 5	
GVMW-27	10/25/2024	Constant Rate	18	1.5	Well nearly dry after 18 hours of pumping (0.3 feet of head above pressure transducer)
GVMW-27	10/26/2024	Constant Rate	72	0.75	
GVMW-28	10/3/2024	Step Drawdown Test	4	0.1, 0.3, 0.5, 0.7	
GVMW-35A	10/13/2024	Constant Rate	11	0.21, 0.24	Well nearly dry after 11 hours of pumping (1 foot of head above pressure transducer)
GVMW-35A	10/14/2024	Constant Rate	29	0.2, 0.22	Well nearly dry after 29 hours of pumping (1 foot of head above pressure transducer)
GVMW-36	10/2/2024	Step Drawdown Test	2	0.1, 0.2	Well dry after 2 hours of pumping

F

4. Aquifer Testing Results

4.1 Slug Testing

The resulting slug test data were analyzed using Aqtesolv® v4.5. Each of the four tests at each well were analyzed using two separate equation solutions, if appropriate: Bouwer and Rice (1976) and KGS (Hyder et al., 1994). Both solutions are appropriate for use in wells that are fully or partially submerged, as well as in confined and unconfined aquifers. The groundwater height in GVMW-30 during testing was below the top of screen and was classified as partially penetrating; therefore, corrections were applied to address vadose zone drainage, and early data representing filter pack drainage were not fitted during the slug test analyses. Additionally, initial spikes in observed displacement are attributed to logistical challenges of physical slug testing, and were filtered out as they do not represent formation response.

The saturated thickness of the aquifer at each location was assumed to extend from the static water table to the bottom of the well, and set to the values provided in **Table 2**. An anisotropy ratio of 1 (unitless) was assigned to the aquifer at each well location. Early 'noisy' data were not fitted during the analysis. The summary of slug test analyses is provided in **Table 4**.

4.1.1 Bouwer-Rice Solution (1976)

Bouwer and Rice (1976) developed a semi-analytical method for the analysis of an overdamped slug test in a fully or partially penetrating well in an unconfined of confined aquifers. The Bouwer-Rice method assumes that the aquifer being tested has an infinite areal extent, and that the aquifer is homogeneous, of uniform thickness, and unconfined. This method also assumes that the tested well is fully or partially penetrating, that groundwater flow to the well is quasi-steady state (i.e., storage is negligible), and that the volume of water being tested is injected into or discharged from the well instantaneously.

Table 4 shows slug test results using the Bouwer-Rice solution. The geometric mean K values for weathered bedrock ranged from 0.0092 to 7.62 feet per day. The geometric mean K for fractured competent bedrock, based on a single well (GVMW-37A), was 1.12 feet per day.

4.1.2 KGS Model (Hyder et al., 1994)

The KGS model is an estimation tool utilized for an overdamped slug test in an unconfined or confined aquifer. The KGS model assumes that the aquifer being tested has an infinite areal extent, is homogeneous and of uniform thickness, has an initially horizontal potentiometric surface, and is unconfined. The model also assumes that the tested well is fully or partially penetrating, that groundwater flow is unsteady, that groundwater is released instantaneously from storage with decline of hydraulic head, and that the volume of water being tested is injected into or discharged from the well instantaneously.

Table 4 shows slug test results using the KGS model. The geometric mean K values for weathered bedrock ranged from 0.0011 to 10.58 feet per day. The geometric mean K for fractured competent bedrock, based on a single well (GVMW-37A), was 0.25 feet per day.

FJ3

The resulting pump test data were analyzed using the Cooper and Jacob (1946) straight-line method and the Theis (1935) solution, if appropriate. The details of these methods are described in **Section 4.2.1** and **Section 4.2.2**, respectively. **Section 4.2.3** discusses data interpretation of the following pump tests:

- GVMW-27 72-hour Constant Rate Pump Test
- GVMW-27 Step-Drawdown Test
- GVMW-28 Step-Drawdown Test
- GVMW-35A 11-hour Constant Rate Pump Test
- GVMW-36 Step-Drawdown Test

The 18-hour constant rate pump test at GVMW-27 is not discussed further in this report as the test was deemed incomplete as a full 72-hour pump test was later completed on the same well, using a lower pumping rate. The dataset obtained from the 72-hour pump test is considered a more useful tool for assessing transmissivity (T) and K at GVMW-27. The 29-hour constant rate pump test at GVMW-35A is not discussed further in this report as the variability of pumping rates and drawdown rates makes it difficult to reach a conclusion regarding T and K values at that monitoring well. There was less variability of pumping rates and drawdown rates during the 11-hour constant rate pump test, and so data from that pump test will instead be used to assess aquifer hydraulic parameters at GVMW-35A.

4.2.1 Cooper and Jacob (1946) Straight-Line Method

The Cooper and Jacob (1946) straight-line method (also referred to as the modified non-equilibrium equation) was applied to drawdown data from pump test wells as well as the observation wells. The Cooper and Jacob method is a widely used graphical technique for the determination of aquifer hydraulic properties. Analysis with the Cooper and Jacob method involves matching a straight line to drawdown data plotted as a function of the logarithm of time since pumping began. The time drawdown curve for data collected during pumping and recovery periods becomes a straight line on a semi-log diagram. The slope of the line on the semi-log diagram is used to calculate T; this is a graphical method used to estimate the hydraulic parameters. The drawdown curves with straight-line fits for early-time, mid-time, and late-time pumping are shown in **Appendix B**.

The assumptions for applying the Cooper and Jacob method include the following:

- All layers are horizontal and extend infinitely in the radial direction
- The aquifer is homogeneous and isotropic
- Groundwater flow can be described by Darcy's Law
- Groundwater density and viscosity are constant
- Groundwater flow is horizontal and directed radially towards the well
- The pumping rate is constant
- The extraction well and observation wells are screened over 80% of the Surficial Aquifer thickness
- Drawdown is small compared to the aquifer saturated thickness (<25%)
- Head losses through the well screen and pump intake are negligible

4.2.2 Theis (1935) Solution

The drawdown curves were also analyzed using Aqtesolv® v4.5, the industry standard program for aquifer test analysis, and tested against multiple solutions. The Theis solution was applied to the drawdown data from the pump tests. The Theis solution involves matching a straight line to drawdown data collected during a pump test. The solution assumes a line source for the pumped well and therefore neglects wellbore storage. To allow for the used of the Theis solution in unconfined aquifers, C.E. Jacob developed a procedure (Jacob, 1944) that corrects drawdown data for the reduction in an unconfined aquifer's saturated thickness. **Appendix B** contains log-log plots of drawdown data versus time, fitted Theis curves, and the resulting T.

Assumptions for applying the Theis solution include the following:

- The aquifer has infinite areal extent
- The aquifer is homogeneous and of uniform thickness
- The control well is fully or partially penetrating
- The aquifer is unconfined
- Flow is unsteady
- Water is released instantaneously from storage with decline of hydraulic head
- The diameter of a pumping well is very small so that storage in the well can be neglected
- There is no delayed gravity response in the aquifer
- Low velocity is proportional to the tangent of the hydraulic gradient, instead of the sine
- Flow is horizontal and uniform in a vertical section through the axis of the well
- Drawdown is small relative to the saturated thickness of the aquifer

4.2.3 Interpretation of Pump Test Data

The resulting T and K for pump test data using both the Cooper and Jacob straight-line method and the Theis solution are shown in **Table 5**. Drawdown data with straight-line fits and fitted Theis curves, along with the resulting T, are shown in **Appendix B**.

GVMW-27 – 72-hour Constant Rate Pump Test

Using the Cooper and Jacob straight-line method to evaluate data from the 72-hour constant rate pump test at GVMW-27, T was determined to 22 feet²/day and K was determined to be 1.15 feet/day for early-time pumping. Due to an increase in drawdown rate following 11.5 hours of pumping during this test, mid- and late-time pumping results using the Cooper and Jacob method are not discussed (see below).

Using the Theis solution for data from the same pump test, T was determined to be 57.64 feet²/day and K was determined to be 3.01 feet/day.

There is an observable increased drawdown rate following the first 11.5 hours of the 72-hour pump test in GVMW-27. This change in rate indicates a lower permeable boundary condition a short distance from the well and this likely exists in multiple directions from the well. The lower permeability boundary condition is likely competent bedrock. Therefore, the measured T values are considered to be representative for a very limited radius around the well. The aquifer pumping appears to be limited more by the horizontal and vertical extent of the saturated weathered bedrock than by the T of the aquifer. Continued pumping in all tested wells, even with the low pumping rates, would likely result in the wells going dry.

GVMW-27 – Step-Drawdown Test

FJS

Using the Theis solution to evaluate data from the step-drawdown test at GVMW-27, T was determined to 29.51 feet²/day and K was determined to be 1.55 feet/day. The Cooper and Jacob straight-line method was not applied to the GVMW-27 step-drawdown test data, as this solution was not developed for a step-drawdown test and does not consider all steps in the test as an aggregate.

GVMW-28 – Step-Drawdown Test

Using the Theis solution to evaluate data from the step-drawdown test at GVMW-28, T was determined to be 4.323 feet²/day and K was determined to be 1.14×10^{-1} feet/day. The Cooper and Jacob straight-line method was not applied to the GVMW-28 step-drawdown test data, as this solution was not developed for a step-drawdown test and does not consider all steps in the test as an aggregate.

GVMW-35A – 11-hour Constant Rate Pump Test

Using the Cooper and Jacob straight-line method to evaluate data from the 11-hour constant rate pump test at GVMW-35A, T was determined to be 0.57 feet²/day for early-time pumping and 0.37 feet²/day for mid-time pumping. K was determined to be 7.41 x 10^{-3} feet/day for early-time pumping and 4.81 x 10^{-3} feet/day for mid-time pumping. As late-time pumping rates for GVMW-35A were around 0.24 gpm (whereas, early- and mid-time pumping rates were 0.21 gpm), the Cooper and Jacob results for late-time pumping are not discussed.

Using the Theis solution for data from the same pump test, T was determined to be $1.036 \text{ feet}^2/\text{day}$ and K was determined to be 1.35×10^{-2} feet/day.

GVMW-36 – Step-Drawdown Test

Using the Theis solution to evaluate data from the step-drawdown test at GVMW-36, T was determined to be 0.5233 feet²/day and K was determined to be 2.33 x 10^{-2} feet/day. The Cooper and Jacob straight-line method was not applied to the GVMW-36 step-drawdown test data, as this solution was not developed for a step-drawdown test and does not consider all steps in the test as an aggregate.

Table 4. Summary of Slug Test Results

			Calculation of K - Solution and K Value					
Well ID	Test ID	Initial Displacement (H₀) (ft)	Bouwer-Rice (1976)	Geometric Mean of K Values (ft/day)	KGS (Hyder et al., 1994)	Geometric Mean of K Values (ft/day)	Screened Lithology	
GVMW-27	Slug In 1	1.45	6.89		11.98			
	Slug In 2	3.49	8.46	7 60	10.85	10 59	Weathered	
	Slug Out 1	1.25	7.27	7.02	9.48	10.56	schist	
	Slug Out 2	2.19	7.88		10.17			
GVMW-28	Slug In 1	1.15	0.73		0.55			
	Slug In 2	1.28	0.83	0.65	0.85	0.77	Leen dev	
	Slug Out 1	1.35	0.52	0.05	0.57	0.77	Lean clay	
	Slug Out 2	1.36	0.57		1.29			
	Slug In 1	1.38	0.13		0.216			
C)/M/M 20	Slug In 2	0.92	0.06	0.000	0.037	0.004	Leen elev	
GVIVIVV-30	Slug Out 1	1.09	0.14	0.089	0.125	0.094	Lean clay	
	Slug Out 2	1.11	0.05		0.080			
	Slug In 1	1.24	0.024		0.026			
C)/M/M/ 22*	Slug In 2	1.28	0.025	0.016	0.027	0.010	Est elsy	
GV1V1VV-33"	Slug Out 1	1.27	0.011	0.010	0.003	0.010	Falciay	
	Slug Out 2	1.29	0.010		0.005			
	Slug In 1	1.20	0.88		3.02			
	Slug In 2	1.16	0.86	0.90	2.23	1 / 2	Fat-to-lean	
G V IVI VV-34	Slug Out 1	1.28	0.66	0.00	0.71	1.43	clay	
	Slug Out 2	1.27	0.80		0.87			
	Slug In 1	2.40	0.16		0.48			
GVMW-35B*	Slug In 2	1.19	0.41	0.25	0.47	0.13	Lean Clay	
	Slug Out 1	2.50	0.16		0.06			

Newmont | Aquifer Testing Report Cripple Creek and Victor Gold Mine, Teller County, Colorado

			Cal					
Well ID	Test ID	Initial Displacement (H₀) (ft)	Bouwer-Rice (1976)	Geometric Mean of K Values (ft/day)	KGS (Hyder et al., 1994)	Geometric Mean of K Values (ft/day)	Screened Lithology	
	Slug Out 2	1.28	0.38		0.02			
C)/M/M/ 2C+	Slug In 1	1.22	0.018		0.021			
	Slug In 2	3.54	0.017	0.0002	0.021	0.0011	Lean clay/lean silt	
G V WI VV-30	Slug Out 1	1.26	0.004	0.0092	0.000			
	Slug Out 2	3.79	0.006		0.000			
	Slug In 1	3.15	1.198		0.108			
C)/M)A/ 37A*	Slug In 2	3.24	0.966	1 1 2	0.532	0.05	Unweathered	
GVINIVV-3/A	Slug Out 1	2.37	1.189	1.12	0.098	0.25	schist	
	Slug Out 2	3.55	1.127		0.686			
	Slug In 1	2.40	1.50		0.16			
CV/MW/ 27R	Slug In 2	3.55	1.28	1 1 1	1.98	1 00	Weathered	
GVIVIVV-3/D	Slug Out 1	2.52	1.59	1.44	2.48	1.22	schist	
	Slug Out 2	3.76	1.40		2.92			

* Full recovery was not achieved between tests

Table 5. Summary of Pump Test Results

Well ID	Test	Pumping Rate (gpm)	Analytical Solution	Saturated Thickness (feet)	T (feet²/day)	K (feet/day)	Approximate Total Drawdown (feet)	Screened Lithology
GVMW-27	72-hour Constant Rate	0.75	Theis with boundary	19.1	57.64	3.01	6.5	Weathered schist
GVMW-27	72-hour Constant Rate	0.75	Cooper Jacob Straight Line (early-time pumping)	19.1	22	1.15	6.5	Weathered schist
GVMW-27	Step Drawdown	0.1, 0.5, 3, 5	Theis Unconfined	19.1	29.51	1.55	15.5	Weathered schist
GVMW-28	Step Drawdown	0.1, 0.3, 0.5, 0.7	Theis Unconfined	37.75	4.323	1.14 x 10 ⁻¹	33.0	Lean clay
GVMW-35A	11-hour Constant Rate	0.21	Theis with boundary	76.93	1.036	1.35 x 10 ⁻²	50.0	Unweathered granodiorite
GVMW-35A	11-hour Constant Rate	0.21	Cooper Jacob Straight Line (early-time pumping)	76.93	0.57	7.41 x 10 ⁻³	50.0	Unweathered granodiorite
GVMW-35A	11-hour Constant Rate	0.21	Cooper Jacob Straight Line (mid-time pumping)	76.93	0.37	4.81 x 10 ⁻³	50.0	Unweathered granodiorite
GVMW-36	Step Drawdown	0.1, 0.2	Theis Unconfined	22.47	0.5233	2.33 x 10 ⁻²	22.0	Lean clay/lean silt

FC

5. Summary and Recommendations

5.1 Slug Testing

- Using the Bouwer-Rice solution equation, the geometric mean K values for weathered bedrock were determined to range from 0.0092 to 7.62 feet per day (3.25 x 10⁻⁶ to 2.54 x 10⁻³ cm/s). These K values are representative of silt and loess (Domenico and Schwartz, 1990). The geometric mean K for fractured competent bedrock, based on a single well (GVMW-37A), was determined to be 1.12 feet per day (3.95 x 10⁻⁴ cm/s). This K value is representative of fractured igneous and metamorphic rock (Domenico and Schwartz, 1990).
- Using the KGS model solution equation, the geometric mean K values for weathered bedrock were determined to range from 0.0011 to 10.58 feet per day (3.88 x 10⁻⁷ to 3.73 x 10⁻³ cm/s). These K values are representative of silt and loess (Domenico and Schwartz, 1990). The geometric mean K for fractured competent bedrock, based on a single well (GVMW-37A), was determined to be 0.25 feet per day (8.82 x 10⁻⁵ cm/s). This K value is representative of fractured igneous and metamorphic rock (Domenico and Schwartz, 1990).

5.2 Pump Testing

5.2.1 GVMW-27

- The saturated thickness of the aquifer is 19.1 feet, and the lithology of the saturated zone is weathered schist.
- Hydraulic communication was not observed between GVMW-27 and the selected observation wells (GVMW-8B-50, GVMW-25, GVMW-28, and GVMW-30) during the 72-hour constant rate pump test.
- The highest pump rate was 1.5 gpm during the 18-hour pump test, but this resulted in the well almost purging dry. A pump rate of 0.75 gpm during the 72-hour pump test resulted in approximately 6.5 feet of total drawdown.
- The T value, based on the step drawdown and constant rate drawdown test results, ranged between 22 and 57.64 feet²/day. This range of T values equates to a range of K values between 1.15 and 3.01 feet per day (4.06 x 10⁻⁴ to 1.06 x 10⁻³ cm/s). This range in K values is representative of weathered granite (Domenico and Schwartz, 1990).
- The change in rate observed after the first 11.5 hours of the 72-hour pump test indicates a lower permeable boundary condition a short distance from the well. This lower permeability boundary condition is likely competent bedrock. The measured T values are therefore representative for a very limited radius around the well. The aquifer pumping appears to be limited more by the horizontal and vertical extent of the saturated weathered bedrock than by the T of the aquifer. Continued pumping in this well, even with the low pumping rates, would likely result in the well going dry.

5.2.2 GVMW-28

- The saturated thickness of the aquifer is 37.75 feet, and the lithology of the saturated zone is lean clay.
- The T value, based on the step drawdown test results, was 4.323 feet²/day which equates to a K value of 1.14 x 10⁻¹ feet/day (4.02 x 10⁻⁵ cm/s). This K value is representative of silt and loess (Domenico and Schwartz, 1990).
- Continued pumping in this well, even with the low pumping rates, would likely result in the well going dry.

5.2.3 GVMW-35A

- The saturated thickness of the aquifer is 76.93 feet, and the lithology of the saturated zone is unweathered granodiorite.
- Hydraulic communication was not observed between GVMW-35A and the selected observation wells (GVMW-34, GVMW-35B, GVMW-7B-50, and OSABH-17) during the 72-hour constant rate pump test.
- The highest average pump rate was 0.24 gpm during the late-time pumping stage of the 11hour pump test. The targeted pumping rate and the rate used for analyses was 0.21 gpm, which was achieve during early- and mid-time pumping. This pumping rate was still too fast to allow for the completion of a 72-hour pump test.
- The T value, based on the step drawdown and constant rate drawdown test results, ranged between 0.37 and 1.036 feet²/day. This range of T values equates to a range of K values between 4.81 x 10⁻³ and 1.34 x 10⁻² feet/day (1.70 x 10⁻⁶ to 4.73 x 10⁻⁶ cm/s). This range in K values is representative of fractured igneous and metamorphic rock (Domenico and Schwartz, 1990).

5.2.4 GVMW-36

- The saturated thickness of the aquifer is 22.47 feet, and the lithology of the saturated zone is lean clay/lean silt.
- The T value, based on the step drawdown test results, was 0.5233 feet²/day which equates to a K value of 2.33 x 10⁻² feet/day (8.22 x 10⁻⁶ cm/s). This K value is representative of silt and loess (Domenico and Schwartz, 1990).

5.3 Recommendations

It is recommended that any pumping associated with the ECOSA groundwater interception and collection system design considers the saturated thicknesses of the wells tested and presented in this report. Wells with greater saturated thicknesses will have larger groundwater volumes available

to remove and will therefore pump the longest. The design should also consider anticipating the pumping wells may need to cycle on and off to allow for the possibility for wells to purge dry (i.e., design should incorporate submersible pumps with float controls and tanks at the wellhead to accumulate low pumping discharge over time).

Based on the results of this report, it is further recommended that monitoring wells GVMW-25, GVMW-27, GVMW-28, GVMW-34, and GVMW-35B be included in groundwater interception and collection system design. GVMW-25 is a pre-existing monitoring well (i.e., installed prior to 2024) and should be included in the design per recommendation of CC&V. GVMW-27 and GVMW-28 both have the sufficient saturated thicknesses and reasonable T and K values, based on slug and pump testing, to be considered for long term pumping as described in the preceding paragraph. GVMW-34 and GVMW-35B were also added to the design per recommendation of CC&V. GVMW-35A, GVMW-37A, and GVMW-37B can also be considered for groundwater interception and collection system design based on their saturated thicknesses, T values, and K values. GVMW-30, GVMW-33, and GVMW-36 should not be considered for system design; although they have sufficient saturated thicknesses, their T and K values determined by slug and pump testing are too low to be appropriate for long term pumping.

F)3

6. References

- ASTM D 4050-91, "Standard Test Method for (Field Procedure) for Withdrawal and Injection Well Testing for Determining Hydraulic Properties of Aquifer Systems"
- Bouwer, H. and R.C. Rice, 1976. A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells, Water Resources Research, vol. 12, no. 3, pp. 423-428.
- Brown, Adrian, 2001, Grassy Valley Mine Closure Hydrogeochemistry Evaluation.
- Collier Geophysics, 2023, Final Geophysical Report: ECOSA Geophysical Survey Cripple Creek Mining District, Cripple Creek, CO.
- Cooper, H.H., Jr. and C.E. Jacob. 1946. A Generalized Graphical Method for Evaluating Formation Constants and Summarizing Well-Field History. Transaction, American Geophysical Union, Vol. 27, No. 4, pp. 526-534.
- Domenico, P.A. and F.W. Schwartz, 1990. Physical and Chemical Hydrogeology, John Wiley & Sons, New York, 824 p.
- Hamm, J.C., 1972, Cripple Creek Hydrology Cameron Mine.
- HDR 2024., Monitoring Well Installation Report East Cresson Overburden Storage Area Seepage Mitigation Design. October 22, 2024.
- Hyder, Z, J.J. Butler, Jr., C.D. McElwee and W. Liu, 1994. Slug tests in partially penetrating wells, Water Resources Research, vol. 30, no. 11, pp. 2945-2957.
- Jacob, C.E., 1944. Notes on determining permeability by pumping tests under water-table conditions, U.S. Geological Survey, 25p.
- Kelley, K.D., Romberger, S.B., Beaty, D.W., Pontius, J.A., Snee, L.W., Stein, H.J., and Thompson, T.B., 1998, Geochemical and geochronological constraints on the genesis of the Au-Te deposits at Cripple Creek, Colorado: Economic Geology, v. 93, p. 981-1012.
- Ligocki, L., 1998, GVMW-7A, GVMW-7B, GVMW-8A, GVMW-8B Monitoring Well Log.
- Newmont, 2023, ECOSA Seepage Mitigation Design Requst for Proposal (RFP). December 21.
- Piteau Associates, 2023a, Technical Memorandum. 2023 Monitoring Wells Grassy Valley Monitoring Well 26A (GVMW-26A).
- Piteau Associates, 2023b, Technical Memorandum. 2023 Monitoring Wells Grassy Valley Monitoring Well 26B (GVMW-26B).
- Theis, C.V., 1935. The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage, Am. Geophys. Union Trans., vol. 16, pp. 519-524.
- White, Davis, 1997, GVMW-4A and GVMW-3B Monitoring Well Log.
- WSP Golder, 2023, Report on East Cresson Overburden Storage Area Acid Rock Drainage Sustainable Solutions Evaluations; Cripple Creek & Victor Mine.

Appendix A

Boring Logs and Well Construction Diagrams

	5	2	HDR Inc 369 Inverness Pl Englewood, CO	wy, Ste 3 80112	325				GVMW-27 PAGE 1 OF 2	
	T Cripp	le Cre	ek and Vict	tor Go	ld Mini	ng Company, LLC	PROJECT NAME Newmont - ECOSA/Grassy Valley Drilling			
PROJE	ECT NUN	IBER	10399263				PROJECT LOCATION _Cripple Creek, CO			
DATE	STARTE	ED _08	<u>3/17/24 17:</u>	<u>15</u> CO	OMPLE	TED 08/22/24 10:00	WELL LOCATION105.1217 N 38.7412 E			
	ING CO		Sonio	art Lor	ngyear		GROUND ELEVATION <u>9894.36 ft ams</u> i HC		TER 10 inches	
		F Da	<u>Sonic</u>	CI	HECKE	DBY G Kelly	GROUND WATER LEVELS:	3 33 ft		
NOTE	S	1.00	við ræy	_ 0				0.00 H		
o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATER	IAL DESCRIPTION	Casin	WELL DIAGRAM g Type: 4 in Sch. 80 PVC	
 	sonic	100		CL		ORGANIC SOIL (OL), subrounded, homogen trace fine to c LEAN CLAY (CL), brow plasticity, dry to moist, toughness, medium dry trace fine gravel, rock f intermittent layers of br bedrock)	black, soft, low plasticity, wet, eous, low toughness, low dry <u>7</u> coarse sand, and roots, no staining wn, medium stiff to very stiff, low subangular, mottled, medium y strength, little fine to coarse sand, iragments, trace oxidation staining, reccia/phonolite (weathered	-		
 <u>15</u> 	SONIC 2	100		CL		gravish brown, soft to v to wet, subangular, mo dry strength, some fine fragments, iron oxide s mineral inclusions (por breccia/phonolite (weat	AY (CL), dark brown to very dark very stiff, medium plasticity, moist ttled, medium toughness, medium e to coarse sand, little cobbles, rock taining, trace sulphur fines, green phyritic), intermittent layers of thered bedrock)	_		
				CL		GRAVELLY LEAN CLA soft to medium stiff, me mottled, medium tough cobbles, and rock frag intermittent layers of br	AY (CL), reddish brown to brown, edium plasticity, wet, angular, iness, medium dry strength, some ments, iron oxide staining, reccia (weathered bedrock)	-		
 	sonic 3	100		CL		GRAVELLY LEAN CLA brown, soft to medium mottled, low toughness and rock fragments, irc clods/clumps, fissile, fr (weathered bedrock) 28.0	GRAVELLY LEAN CLAY (CL), light yellowish brown to brown, soft to medium stiff, low plasticity, dry, subangular, mottled, low toughness, low dry strength, some fine sand, and rock fragments, iron oxide staining, forms in clods/clumps, fissile, friable, intermittent layers of breccia (weathered bedrock)			
⊢ _				CL		GRAVELLY LEAN CLA gray, stiff to verv stiff	AY (CL), yellowish gray to brownish ow plasticity, dry, angular, mottled.		Grout mix (8% bentonite	
30 35	SONIC 4	100		CL		30.0 medium toughness, me sand, and rock fragme intermittent layers of br bedrock) GRAVELLY LEAN CL/ yellowish brown to olive dry to moist, subangula high toughness, high d	edium dry strength, some fine nts, iron oxide staining, fissile, reccia/phonolite (weathered AY WITH SAND (CL), light e, stiff to very stiff, low plasticity, ar, fine to coarse grained, mottled, ry strength, some cobbles, and	-	fines)	
 40	SONIC 5	100				37.5 SILTY SANDSTONE, H yellow to yellowish brow hard to very hard, dry,	tide staining, intermittent layers of athered bedrock) nighly weathered, laminated, pale wn, coarse, quartz and feldspar, iron oxide staining, trace red/green	-		

(Continued Next Page)

CLIENT Capple Creek and Vator Gold Mining Company, LLC PROJECT NUMBER 10339213 PROJECT NUMBER 10339213 PROJECT NUMBER 10339213 Device Company Company, LLC PROJECT NAME Nermont - ECOSA/Crassy Valley Drilling PROJECT NUMBER 10339213 Device Company Company, LLC PROJECT NAME Nermont - ECOSA/Crassy Valley Drilling DRILLING CONTRACTOR Board Longear OB00224 0805 COMPLETED 0800424 13:30 GROUND WATER LEVELS: DRILLING CONTRACTOR Board Longear CHECKED BY G. Kelly Y AFTER DRILLING 2828 // Elev 3979.37 /l NOTS The Stream Stream Company, LLC Y AFTER DRILLING 2828 // Elev 3979.37 /l NOTS COBBLES ORGANIC SOIL (OL), very dark brown (10/YR 202), locae, non plastic, dry to mostly, subandatis material phonolisis, low dry as a primarily valuenciatis material phonolisis, low dry as a printerimite waller from 22.26 feet bgs	┢)	2	HDR Inc 369 Inverness Pl Englewood, CO 8	wy, Ste 3 80112	325				G` P	VMW-28 PAGE 1 OF 2
PROJECT NUMBER 10392233 PROJECT LOCATION Chiple Creek, CO Date STARTED 0800224 08:05 COMPLETED 0800424 13:30 WELL LOCATION -0.65, 123 N 38,7422 E DRILLING METHOD Sonia GROUND ELEVATION 900 81 ams HOLE DAMETER 10 inches OOGED BY M. Banksman CHECKED BY G. Kelly Y AFTER DRILLING 28.02 ft / Elev 9879.37 ft VICTS Y Y Y AFTER DRILLING 28.02 ft / Elev 9879.37 ft COBBLES ORGANIC SOLL (0L), very dask brown (10YR T Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y </td <td>CLIEN</td> <td>T Cripp</td> <td>le Cre</td> <td>ek and Vict</td> <td>tor Go</td> <td>old Minir</td> <td>ng Company, LLC</td> <td>PROJECT NAME Newmont - ECOSA/Gras</td> <td>sy Valley D</td> <td>Drilling</td> <td>9</td>	CLIEN	T Cripp	le Cre	ek and Vict	tor Go	old Minir	ng Company, LLC	PROJECT NAME Newmont - ECOSA/Gras	sy Valley D	Drilling	9
DATE STATED 080/22/08.06 COMPLETED 080/22/13:30 WELL LOCATION105.123 N 38.7422 E DRILLING CONTRACTOR Boat Lenguest GROUND ELEVATION	PROJE	ECT NUN	IBER	10399263				PROJECT LOCATION Cripple Creek, CO			
DRILLING CONTRACTOR Boart Longyver GROUND ELEVATION 9908.19 ft amil HOLE DIAMETER 10 inches DORLING CONTRACTOR Boart Longyver GROUND ELEVATION 1908.19 ft amil HOLE DIAMETER 10 inches LOGGED BY M. Banckman CHECKED BY G. Kelly GROUND WATER LEVELS: Y AFTER DRILLING 28.82 h / Elev 9879.37 ft NOTES The group of the second seco	DATE	STARTE	D 08	3/02/24 08:0	<u>05</u> C	OMPLE	TED08/04/24 13:30	WELL LOCATION105.123 N 38.7422 E			
DRILLING WETHOD Sonc CHECKED BY G. Kelly GROUND WATER LEVELS: LOGGED BY M. Baitchman CHECKED BY G. Kelly Y AFER ORILLING 28.82 fr / Elw 9879.37 ft NOTES Y AFER ORILLING 28.82 fr / Elw 9879.37 ft WELL DIAGRAM Casing Type: 4 in Sci. 90 PV Casing Type: 4 in Sc	DRILL	ING CO	NTRA	CTOR Boa	art Loi	ngyear		GROUND ELEVATION 9908.19 ft amsl H	IOLE DIAM	ETER	10 inches
Loss of the balancial CHEVRED IF G. Nety Y are the value of 2002 (1) for 3012 (1) NOTES Image: State of the balancial of the b				Sonic					70 27 ft		
Hard Hard Hard Hard Hard Hard Hard Hard	NOTE	S	IVI. Da	IIICKIIIAII	_ 0	HECKE		Y AFTER DRILLING 20.02 IT / Elev 90	79.37 IL		
10 20 220 COBELES ORGANIC SOL (CL), very dark brown (10YR 5 30 30 30 COBELES ORGANIC SOL (CL), very dark brown (10YR 5 30 Strength, tance rooks, some cobids, no staining, ince to medium grained, hornogeneous, low loughness, low day brown is velocities. To stain (2006) Cobeles in the top is strength, tance rooks, some cobids, no staining, cobbies are primarily vicaniciater material (phonolite) 10 CL 30 COBELES FAT CLAY (CL), teak gradual, fine to medium grained, motied, neglinary, cobbies are primarily vicaniciater material (phonolite) 10 CH COBELES FAT CLAY (CL), teak gradual, fine to medium grained, motied, high toughness, high dry stength, some sand, some silt, iron oxide staining, cobbies are primarily grandonite and show preferential vealures, high dry stength, some sand, some silt, iron oxide staining, cobbies are primarily grandonite and show preferential vealures, some sand, some silt, iron oxide staining, cobbies are primarily grandonite and show preferential vealures of pisage piece intervential (phonolite) 10 CL	o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATER	IAL DESCRIPTION	Casir	WEL ng Typ	L DIAGRAM e: 4 in Sch. 80 PVC
5 0 5					OL		COBBLES ORGANIC 2/2), loose, non plastic medium grained, homo strength, trace roots, s are primarily volcanicla	SOIL (OL), very dark brown (10YR , dry to moist, subangular, fine to geneous, low toughness, low dry ome cobbles, no staining, cobbles istic material (phonolite)	_		
10 CH Sand. some sitt, iron oxide staining, cobbles are primarity volcanicatisci material (bhonoitite) 10 COBBLES FAT CLAY (CH), reddish brown (5YR 4/4), stiff, high toughness, high dry strength, some sand, some sitt, iron oxide staining, cobbles are primarity granodicrite and show preferential weathering of plag phenocrysts 10 Image: CH Image: CH 15 Image: CH Image: CH 16 Image: CH Image: CH 17 Image: CH Image: CH 18 Image: CH Image: CH 100 Image: CH Image: CH 15 Image: CH Image: CH 16 Image: CH Image: CH 17 Image: CH Image: CH 18 Image: CH Image: CH 19 Image: CH Image: CH 20 Image: CH Image: CH 21 Image: CH Image: CH 220 Image: CH Image: CH 220 Image: CH Image: CH 230 CL Image: CH 230 Image: CH Image: CH 230 Image: CH Image: CH 230	 5 	sonic 1	100		CL		COBBLES GRAVELLY brown to yellowish brown plasticity, moist, suban mottled, medium tough	Y LEAN CLAY (CL), dark yellowish wn (10YR 5/6), medium stiff, low igular, fine to medium grained, nness, medium dry strength, some	-		
15 0 100 15 0 15 0 16 0 17 0 18 0 19 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 11 0 12 0 13 0 14 0 15 0 16 0 17 0 18 0 19 0 19 0 10 0 10 0 11 0 12 0 130 0 14 0 15 0 16 0 17 0 18 0 19 0 19 0 100 0 101 0 102 0 1030 0 104 0 105 0 105 0 100 0	 _ 10				СН		sand, some silt, iron or volcaniclastic material COBBLES FAT CLAY stiff, high plasticity, we grained, mottled, high t sand, some silt, iron or granodiorite and show	(de staining, cobbles are primarily (phonolite) (CH), reddish brown (5YR 4/4), t, subangular, fine to medium toughness, high dry strength, some kide staining, cobbles are primarily preferential weathering of blag			
CL CL CL CL CL CL CL CL CL CL	 - 15 20	SONIC 2	100				13.0 LEAN CLAY (CL), redo brown (10YR 5/6), med subangular, fine to me toughness, medium dr trace cobbles, iron oxid unaltered granodiorite	dish brown (5YR 4/4) to yellowish dium stiff, low plasticity, moist, dium grained, mottled, medium y strength, some sand, some silt, de staining, one extremely massive, boulder from 22-26 feet bgs			
30 100 30 29.0 30 CL CL LEAN CLAY (CL), dark yellowish brown to light olive brown (2.5Y 5/6), loose, low plasticity, moist to dry, subangular, fine to medium grained, mottled, low toughness, low dry strength, some sand, some silt, trace cobbles, iron oxide staining, cobbles of phonolite are (2.5YR 2.5/4), loose, low plasticity, moist to dry, subangular, fine to medium grained, mottled, low toughness, low dry strength, some sand, some silt, trace cobbles, iron oxide staining, cobbles of phonolite are completely weathered and crumble to the touch	 25	3 3 3	100		CL						
30 CL CLAY (CL), dark yellowish brown to light olive brown (2.5Y 5/6), loose, low plasticity, moist to dry, subangular, fine to medium grained, mottled, low toughness, low dry strength, some sand, some silt, trace cobbles, iron oxide staining, cobbles of phonolite are completely weathered and crumble to the touch 35 0 0 100 CL CL CL CL 35 0 0 100 CL CL CL CL 35 0 0 0 CL CL CL CL 35 0 0 0 CL CL CL CL CL CL CL CL CL 0 0 CL CL 0 0 0 CL 0 <		SONIC 4	100				29.0				Grout mix (8% bentonite fines)
35 100 CL CL CL CL LEAN CLAY (CL), dusky red to very dark dusky red (2.5YR 2.5/4), loose, low plasticity, moist to dry, subangular, fine to medium grained, mottled, low toughness, low dry strength, some sand, some silt, trace cobbles, iron oxide staining, cobbles of phonolite are completely weathered and crumble to the touch	<u>30</u> 				CL		LEAN CLAY (CL), dark brown (2.5Y 5/6), loose subangular, fine to mer toughness, low dry stre cobbles, iron oxide stal completely weathered	x yenowish prown to light olive e, low plasticity, moist to dry, dium grained, mottled, low ength, some sand, some silt, trace ining, cobbles of phonolite are and crumble to the touch	—		
	 <u>35</u> 	SONIC 5	100		CL		LEAN CLAY (CL), dusl (2.5YR 2.5/4), loose, lo subangular, fine to mer toughness, low dry stre cobbles, iron oxide stat completely weathered	ky red to very dark dusky red ow plasticity, moist to dry, dium grained, mottled, low ength, some sand, some silt, trace ining, cobbles of phonolite are and crumble to the touch			
	40	Ň						Casting and Marth Dr	\square	K	

┢	0	2	HDR Inc 369 Inverness P Englewood, CO	kwy, Ste 3 80112	325			G F	VMW-29 PAGE 1 OF 2
CLIEN	IT Cri	ple Cre	eek and Vic	tor Go	old Mini	ng Company, LLC	PROJECT NAME Newmont - ECOSA/Grassy	/alley Drilling	g
PROJ	ECT NI	IMBER	10399263	3			PROJECT LOCATION Cripple Creek, CO		
DATE		FED _0	7/10/24 10:	<u>40</u> C	OMPLE	TED 07/10/24 14:40	WELL LOCATION105.1214 N 38.7389 E		
DRILL	LING C	ONTRA	CTOR Boa	art Loi	ngyear		GROUND ELEVATION _9999.59 ft amsl HOLE		R _10 inches
DRILL	LING M	ETHOD	Sonic				GROUND WATER LEVELS:		
LOGO	GED BY	K. Ma	alone	C	HECKE	D BY G. Kelly	AFTER DRILLING Dry		
NOTE	ES		1			Γ			
o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATER	IAL DESCRIPTION	WEL Casing Typ	L DIAGRAM be: 4 in Sch. 80 PVC
				CL		LEAN CLAY (CL), yello plasticity, moist, fine to toughness, medium dry oxide staining, cohesive	wish brown to light brown, stiff, low medium grained, mottled, medium y strength, some silt, and sand, iron e fines		
5		100		CL		5.0 LEAN CLAY (CL), dark	grayish brown to dark yellowish		
 10	SOI	100		CL		brown, stiff, low plastic mottled, medium tough silt, and sand, iron oxid LEAN CLAY (CL), yello low plasticity, saturated medium toughness, me 10.0	Ity, wet, fine to medium grained, iness, medium dry strength, little le staining, cohesive fines wish red to reddish brown, stiff, I, fine to medium grained, mottled, edium dry strength, little silt, and g, cohesive fines		
				GW		WELL GRADED GRAV orange, dense, non pla toughness, high dry str clay, and cobbles, no s (weathered bedrock) 14.0	/EL (GW), pale brown to pale istic, dry, subangular, mottled, high ength, some fine to medium sand, taining, non-cohesive fines		Grout mix (8% bentonite fines)
 	sonic	100	GW	GW	WELL GRADED GRAV brown, dense, non plas toughness, high dry str clay, and cobbles, trace fines (weathered bedro 18.0	/EL (GW), pale brown to yellowish stic, dry, subangular, mottled, high ength, some fine to medium sand, e oxidation staining, non-cohesive ck)			
20			_			LEAN CLAY (CL), light plasticity, moist, fine gr 20.0. high dry strength, trace	olive brown, very stiff, low ained, laminated, high toughness, sand, iron oxide staining, cohesive		
	0			CL	_	LEAN CLAY (CL), pale low plasticity, moist, su high toughness, high di cobbles, and rock fragr - fines (weathered bedro	brown to pale orange, very stiff, bangular, fine grained, laminated, ry strength, some sand, trace nents, iron oxide staining, cohesive ck)		 Bentonite seal (hydrated chips)
 30	Son	2 100		CL		LEAN CLAY (CL), pale plasticity, moist, suban toughness, high dry str and rock fragments, iro some black mottling (w	brown to olive, very stiff, low gular, fine grained, laminated, high ength, some sand, trace cobbles, on oxide staining, cohesive fines, reathered bedrock)		Filter pack
 - 35 	Sovic	r 100		CL		34.0 35.0 GRAVELLY LEAN CLA brown, very stiff, low play grained, laminated, hig some sand, cobbles, and staining, cohesive fines BRECCIA unweathere	AY (CL), yellowish red to light asticity, moist, subangular, fine h toughness, high dry strength, nd rock fragments, iron oxide s (weathered bedrock)		Bentonite
 40						dark yellowish orange, 40.0 (competent bedrock)	fine, very hard, dry, no staining,		(hydrated chips)

┢)	2	HDR Inc 369 Inverness Pl Englewood, CO	kwy, Ste 3 80112	325			GVMW-3 PAGE 1 OF	2 2
CLIEN	T <u>Cripp</u>	ole Cre /IBER	ek and Vic 10399263	tor Go	old Minii	ng Company, LLC	PROJECT NAME <u>Newmont - ECOSA/Grassy</u> PROJECT LOCATION Cripple Creek, CO	Valley Drilling	
DATE	STARTE	ED 07	7/14/24 07:	30 C	OMPLE	TED 07/15/24 09:30	WELL LOCATION -105 1221 N 38 7401 F		
DRILL	ING CO		CTOR Boa	art Lo	ngyear		GROUND ELEVATION 9962.48 ft amsl HO	E DIAMETER 10 inches	
DRILL	ING ME	THOD	Sonic				GROUND WATER LEVELS:		
LOGO	SED BY	K. Ma	alone	_ C	HECKE	DBY _G. Kelly	▼ AFTER DRILLING 58.94 ft / Elev 9903	.54 ft	
NOTE	S	1	1	1	, , ,				
o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATER	IAL DESCRIPTION	WELL DIAGRAM Casing Type: 4 in Sch. 80	I) PVC
				ML		1.0 SANDY SILT (ML), pal	e brown to pale orange (10YR 8/2), st to dry, subangular, fine grained $\overline{}$	- 🕅 🕅	
 <u>5</u>	SONIC	100		CL		LEAN CLAY (CL), pale stiff to very stiff, low pla fine to coarse grained, strength, some sand, s	e brown to pale orange (10YR 8/2), asticity, moist to dry, subangular, mottled, low toughness, low dry some gravel, no staining		
 _ 10				CL		LEAN CLAY (CL), pale stiff to very stiff, mediu to coarse grained, mot dry strength, some san staining 10.0	b brown to pale orange (10YR 8/2), m plasticity, moist, subangular, fine tled, medium toughness, medium nd, some gravel, trace cobbles, no		
 15 20	SONIC 2	100		СН		FAT CLAY (CH), pale I stiff to very stiff, high p fine to coarse grained, dry strength, some sar staining	brown to pale orange (10YR 8/2), lasticity, moist to wet, subangular, mottled, high toughness, medium nd, some gravel, trace cobbles, no	Grout mix (8% bentor fines)	nite
 <u>25</u>	sonic 3	100				26.0 CLAYEY SAND (SC),	dark grayish brown to dark	-	
 30				sc		subangular, coarse gra toughness, low dry stre staining, evaporites 30.0	aned, homogeneous, low ength, some clay, some gravel, no		
 35	SONIC 4	100		CL CH CL		LEAN CLAY (CL), redo 4/4), medium stiff, med 33.0 medium to coarse grain medium dry strength, s staining FAT CLAY (CH), reddi 4/4), medium stiff, high subangular, medium to	dish brown moderate brown (5YR dium plasticity, moist, subangular, ned, mottled, medium toughness, some sand, some gravel, no sh brown moderate brown (5YR n plasticity, moist to wet, o coarse grained, mottled, medium		
 40				sc		toughness, medium dr gravel, no staining LEAN CLAY (CL), redo 4/4), medium stiff, low medium to coarse grain 40.0 medium dry strength, s	y strength, some sand, some dish brown moderate brown (5YR plasticity, moist, subangular, ned, mottled, medium toughness, some sand, some gravel, no	Bentonite seal (hydrated chips)	

(Continued Next Page)

)	2	HDR Inc 369 Inverness Pl Englewood, CO	kwy, Ste 3 80112	325			GVMW-33 PAGE 1 OF 2
CLIEN	T Cripp	le Cre	ek and Vic	tor Go	old Mini	ng Company, LLC	PROJECT NAME Newmont - ECOSA/Grass	y Valley Drilling
PROJE	ECT NUN	IBER	10399263	5			PROJECT LOCATION Cripple Creek, CO	
DATE	STARTE	D 07	7/20/24 14:	<u>10</u> C	OMPLE	TED 08/01/24 14:05	WELL LOCATION 105.123 N 38.7411 E	
DRILL	ING CO	NTRA	CTOR Boa	art Loi	ngyear		GROUND ELEVATION <u>9946.16 ft ams</u> HC	DLE DIAMETER 10 inches
			Sonic					20.4
NOTE	S	IVI. De		_ 0	HECKE			5.59 It
o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATER	IAL DESCRIPTION	WELL DIAGRAM Casing Type: 4 in Sch. 80 PVC
				sw		POORLY GRADED SA brown (10YR 5/4), loos grained, homogeneous some cobbles, trace gr 4.0	AND (SW), yellowish brown to se, non plastic, dry, subangular, fine s, low toughness, low dry strength, avel, no staining	
- <u>5</u> 10	SONIC 1	100		CL		LEAN CLAY (CL), yello medium stiff, medium medium grained, mottl dry strength, some sar staining	owish brown to pink (5YR 7/3), plasticity, moist, subangular, fine to ed, medium toughness, medium nd, some gravel, trace cobbles, no	
 <u>15</u> 20	SONIC 2	100		CI		11.0 GRAVELLY LEAN CL/ (10YR 5/4), very dense mottled, low toughness no staining	AY (CL), yellowish brown to brown e, low plasticity, dry, subangular, s, low dry strength, some cobbles,	
 <u>25</u> 	SONIC 3	100				29.0		
 				сн		FAT CLAY (CH), dark (5YR 3/2), stiff, high pl fine to coarse grained, 32.0 medium dry strength, s staining GRAVELLY LEAN CLA	reddish brown to grayish brown asticity, moist to wet, subangular, mottled, medium toughness, some cobbles, some sand, no	
 	SONIC 4	100		CL		(10YR 5/4), very dense mottled, low toughness no staining	e, low plasticity, dry, subangular, s, low dry strength, some cobbles,	Grout mix (8% bentonite fines)
40	/ M				6/15/1/	40.0	Continued Next Page)	

Bottom of borehole at 84.0 feet.

chips)

┢)	2	HDR Inc 369 Inverness Pl Englewood, CO	kwy, Ste 3 80112	325			GVMW-34 PAGE 1 OF 2
			ek and Vic	tor Go	ld Mini	ng Company, LLC	PROJECT NAME <u>Newmont - ECOSA/Grass</u> PROJECT LOCATION Cripple Creek CO	y Valley Drilling
	STARTE	ים בות : מ	3/05/24 07:	45 C		TED 08/09/24 11:30	WELL LOCATION -105 1292 N 38 7471 E	
	ING CO		CTOR Boa	art Loi	navear		GROUND ELEVATION 10009.52 ft amsl HC	LE DIAMETER 10 inches
DRILL	ING ME	THOD	Sonic				GROUND WATER LEVELS:	
LOGG	ED BY	M. Ba	arickman	_ C	HECKE	D BY <u>G. Kelly</u>	TAFTER DRILLING 55.69 ft / Elev 9953	3.83 ft
NOTE	s	1	1		1	1		
o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATER	RIAL DESCRIPTION	WELL DIAGRAM Casing Type: 4 in Sch. 80 PVC
 - 5 	SONIC	100		CL		LEAN CLAY (CL), dark loose, non plastic, dry, grained, homogeneous with cobbles, some sai LEAN CLAY (CL), brow 4/6), medium stiff, low fine to coarse grained, strength, some cobbles staining, cobbles are g	k yellowish brown (10YR 4/4), subangular, fine to medium s, low toughness, low dry strength, nd, some silt, no staining, fill fill wn to dark yellowish brown (10YR plasticity, moist to dry, subangular, mottled, low toughness, low dry s, trace gravel, trace sand, no rranodiorite and phonolite	
 20	SONIC	100		СН		4/6), stiff, high plasticit grained, mottled, medi some cobbles, trace g cobbles are granodiori	y, moist to wet, subangular, fine um toughness, high dry strength, ravel, trace sand, no staining, te and phonolite	
 <u>25</u> 30	SONIC	100		CL		LEAN CLAY (CL), grea (10YR 6/1), medium st subangular, fine to me toughness, medium dr gravel, iron oxide stain 30.0	enish gray to light brownish gray tiff, medium plasticity, moist, dium grained, mottled, medium y strength, some sand, some ing	
 <u>35</u> 	SONIC	100		CL		SANDY LEAN CLAY (gray (10YR 6/1), loose to coarse grained, mot strength, some gravel, some weathered phen- amphibole 36.0	CL), greenish gray to light brownish e, low plasticity, dry, subangular, fine ttled, low toughness, low dry trace cobbles, iron oxide staining, ocrysts of plagioclase, pyroxene,	Grout mix (8% bentonite fines)
 40				CL				

(Continued Next Page)

GVMW-35A

PAGE 2 OF 8

CLIENT _Cripple Creek and Victor Gold Mining Company, LLC _____ PROJECT NAME _Newmont - ECOSA/Grassy Valley Drilling

HDR Inc 369 Inverness Pkwy, Ste 325 Englewood, CO 80112

PROJECT NUMBER	10399263	PROJECT LOCATION _Cripple Creek, CO				
<pre>bepth (ft) (ft) sample Type Number RECOVERY %</pre>	BLOW COUNTS (N VALUE) U.S.C.S. GRAPHIC	MATERIAL DESCRIPTION	WELL DIAGRAM			
	ML	GRAVELLY SILT (ML), reddish yellow to brownish yellow, soft, low plasticity, dry, subangular, mottled, low toughness, low dry strength, some cobbles, and rock fragments, iron oxide staining, friable, intermittent layers of granodiorite (weathered bedrock)				
		GRAVELLY LEAN CLAY (CL), light brownish gray to light yellowish brown, stiff, low plasticity, dry, subangular, mottled, medium toughness, medium dry strength, little cobbles, and rock fragments, iron oxide staining, friable, intermittent layers of phonolite (weathered bedrock)				
	CL 5					
		70.0 SCHIST, highly weathered to moderately weathered, foliated, light blueish gray to pale brown, finely crystalline, biotite/feldspar/amphibole/ovroxene_medium hard to				
		hard, damp to wet, iron oxide staining, brittle, trace clayey fines, multi-compositional mineral inclusions (porphyritic) - BRECCIA/PHONOLITE				
		(Continued Next Page)				

GVMW-35A HDR Inc PAGE 3 OF 8 369 Inverness Pkwy, Ste 325 Englewood, CO 80112 CLIENT Cripple Creek and Victor Gold Mining Company, LLC PROJECT NAME Newmont - ECOSA/Grassy Valley Drilling PROJECT NUMBER 10399263 PROJECT LOCATION Cripple Creek, CO SAMPLE TYPE NUMBER % BLOW COUNTS (N VALUE) GRAPHIC LOG U.S.C.S. RECOVERY DEPTH (ft) MATERIAL DESCRIPTION WELL DIAGRAM дB 18 m 90 19 19 19 19 any. 95 m 20 20 100 m 2²B 105 m 22 22 23 110 23 23 M 115 115.0 GRANITE, slightly weathered, massive, light blueish gray to pale red, coarsely crystalline, quartz/feldspar/mica/amphibole, hard to very hard, damp 24 GB to wet, iron oxide staining, trace green/yellow mineral inclusions (porphyritic), intermittent layers of phonolite -GRANODIORITE m 120 GB 25 M 125 m GB 26 130 m

GVMW-35A PAGE 4 OF 8 HDR Inc 369 Inverness Pkwy, Ste 325 Englewood, CO 80112 CLIENT Cripple Creek and Victor Gold Mining Company, LLC PROJECT NAME Newmont - ECOSA/Grassy Valley Drilling PROJECT NUMBER 10399263 PROJECT LOCATION Cripple Creek, CO SAMPLE TYPE NUMBER % BLOW COUNTS (N VALUE) GRAPHIC LOG U.S.C.S. RECOVERY DEPTH (ft) MATERIAL DESCRIPTION WELL DIAGRAM GB 27 m <u>135</u> GB 28 M 140 m 29 29 145 m 30 GB 150 Grout mix (6% bentonite fines) ®8£ 155 33 GB m 160 33 GB M 165 m ЗB ЗB 170 m <u>д</u>В 35 175 m

GVMW-35A HDR Inc PAGE 5 OF 8 369 Inverness Pkwy, Ste 325 Englewood, CO 80112 CLIENT Cripple Creek and Victor Gold Mining Company, LLC PROJECT NAME Newmont - ECOSA/Grassy Valley Drilling PROJECT NUMBER 10399263 PROJECT LOCATION Cripple Creek, CO SAMPLE TYPE NUMBER % BLOW COUNTS (N VALUE) GRAPHIC LOG U.S.C.S. RECOVERY DEPTH (ft) MATERIAL DESCRIPTION WELL DIAGRAM <u>38</u> 36 M 180 m GB 37 185 89 BB m 190 39 GB m 195 69 69 69 m 200 9 4 В M 205 205.0 GRANITE, unweathered, massive, light blueish gray to dark gray, coarsely crystalline, quartz/feldspar/mica/amphibole, hard to very hard, damp to wet, no staining, trace white/green/yellow mineral inclusions (porphyritic) - GRANODIORITE 6B 42 km 210 6B 43 km 215 m В4 220 m සුං

GVMW-35A PAGE 6 OF 8 HDR Inc 369 Inverness Pkwy, Ste 325 Englewood, CO 80112 CLIENT Cripple Creek and Victor Gold Mining Company, LLC PROJECT NAME Newmont - ECOSA/Grassy Valley Drilling PROJECT NUMBER 10399263 PROJECT LOCATION Cripple Creek, CO SAMPLE TYPE NUMBER % BLOW COUNTS (N VALUE) GRAPHIC LOG RECOVERY U.S.C.S. DEPTH (ft) MATERIAL DESCRIPTION WELL DIAGRAM m 225 6B 46 m 230 6B 47 B 235 6B 48 m 240 6В 49 m 245 m 50 GB 250 5B M 255 52 GB M 260 53 53 m 265 265.0 5 GB

GVMW-35A

PAGE 7 OF 8

CLIENT Cripple Creek and Victor Gold Mining Company, LLC PROJECT NAME Newmont - ECOSA/Grassy Valley Drilling

HDR Inc 369 Inverness Pkwy, Ste 325 Englewood, CO 80112

PROJECT LOCATION Cripple Creek CO

PROJECT NUMB	ER 10399263	PROJECT LOCATION Cripple Creek, CO	
DEPTH (ft) SAMPLE TYPE NUMBER	RECOVERY % BLOW COUNTS (N VALUE) U.S.C.S. GRAPHIC LOG	MATERIAL DESCRIPTION	WELL DIAGRAM
270 0 5 		DIORITE, unweathered, massive, dark greenish gray to black, coarsely crystalline, quartz/feldspar/mica/amphibole, hard to very hard, damp to wet, no staining, trace green mineral inclusions (porphyritic), hydrothermal alteration veins - GRANODIORITE	
		290.0	
		GRANITE, unweathered, massive, light blueish gray to black, coarsely crystalline, quartz/feldspar/mica/amphibole, hard to very hard, damp to wet, no staining, trace green/yellow mineral inclusions (porphyritic) - GRANODIORITE	
 300			
		(Continued Next Page)	[◄] Bentonite seal

┢)	2	HDR Inc 369 Inverness Pl Englewood, CO	kwy, Ste 3 80112	325			G	BVMW-35B PAGE 1 OF 2
CLIEN	IT _Cripp	le Cre	ek and Vic	tor Go	ld Minii	ng Company, LLC	PROJECT NAME Newmont - ECOSA/Gr	assy Valley D	rilling
PROJ	ECT NUN	IBER	10399263	5			PROJECT LOCATION Cripple Creek, CC)	
DATE	STARTE	ED _08	3/10/24 08:	<u>10</u> C	OMPLE	TED 08/11/24 16:05	WELL LOCATION105.1305 N 38.747	δE	
DRILL	ING CO	NTRA	CTOR Boa	art Loi	ngyear		_ GROUND ELEVATION _10018.51 ft amsl	HOLE DIAME	TER 10 inches
DRILL	ING ME	THOD	Sonic				_ GROUND WATER LEVELS:		
LOGO	GED BY	M. Ba	arickman	_ C	HECKE	DBY G. Kelly	AFTER DRILLING 29.79 ft / Elev 9	988.72 ft	
NOTE	S								
o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATEF	RIAL DESCRIPTION	Casing	VELL DIAGRAM g Type: 4 in Sch. 80 PVC
 5	DNIC	100		CL		LEAN CLAY (CL), dar brown (10YR 5/4), stiff subangular, mottled, n strength, some cobble staining, cobbles are p 5.5	k yellowish brown to yellowish f, medium plasticity, moist, nedium toughness, high dry s, some sand, some silt, no primarily volcaniclastic material		
 _ 10						LEAN CLAY (CL), red medium stiff, medium medium grained, mott strength, some cobble primarily weathered vo	to reddish gray (5YR 6/4), loose to plasticity, moist, subangular, fine to led, low toughness, low dry s, iron oxide staining, cobbles are olcaniclastic material		
 <u>15</u> 20	SONIC 2	100		CL		20.0			
	sonic 3	100		CL		LEAN CLAY (CL), red 6/8), loose to medium subangular, fine to me toughness, low dry str staining, cobbles are p material	dish yellow to brownish red (10YR stiff, medium plasticity, moist, edium grained, mottled, low ength, some cobbles, iron oxide primarily weathered volcaniclastic		
	SONIC 4	100							
 30	SONIC 5	100				FAT CLAY (CH), redd stiff, high plasticity, me medium grained, mott dry strength, some col	ish brown to brown (7.5YR 5/2), bist to wet, subangular, fine to led, medium toughness, medium bbles, iron oxide staining, cobbles d volcaniclastic material, and have		Grout mix (8% bentonite fines)
	SONIC 6	100		СН		slightly oxidized rims	a volcaniciastic matchal, and nave		
35)NIC	100				37.0			
 40	SC			ML					

GVMW-35B PAGE 2 OF 2

CLIENT Cripple Creek and Victor Gold Mining Company, LLC PROJECT NAME Newmont - ECOSA/Grassy Valley Drilling

HDR Inc 369 Inverness Pkwy, Ste 325 Englewood, CO 80112

PROJECT NUMBER		10399263			PROJECT LOCATION Cripple Creek, CO				
6 DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	WELL DIAGRAM		
	SONIC 8	100				SILT (ML), brownish yellow to reddish yellow (7.5YR 7/8), loose, non plastic, dry, subangular, fine to coarse grained, mottled, low toughness, low dry strength, some cobbles, trace sand, some clay, iron oxide staining, cobbles are highly weathered granodiorite and ranges from 3 to 7 cm			
 	80NIC	100		ML		in diameter			
 	SONIC 10	100				54.0			
 60	SONIC 11	100				LEAN CLAY (CL), pale yellowish brown to brownish yellow (10YR 6/8), medium stiff to stiff, medium plasticity, moist, subangular, fine to medium grained, mottled, medium toughness, medium dry strength, some cobbles, iron oxide staining, cobbles are primarily weathered volcaniclastic material, and have slightly oxidized rims	Bentonite seal (hydrated chips)		
 <u>65</u>	SONIC 12	100		CL			Filter pack (silica sand) Slotted		
 70	SONIC 13	100				70.0	in)		
	SONIC 14	100				SCHIST, unweathered, massive, greenish black to dark olive gray, finely crystalline, phenocrysts of garnet, hard to very hard, dry, no staining, slickenlines visible 74.0	Bentonite plug (hvdrated)		
						Bottom of borehole at 74.0 feet.	chips)		

┣)	S	HDR Inc 369 Inverness Pl Englewood, CO	wy, Ste 3 80112	25			G` P	VMW-36 AGE 1 OF 2
CLIEN PROJI	alley Drilling	<u>. </u>							
			3/12/24 11:	<u>15</u> CO		WELL LOCATION -105.1337 N 38.7486 E CROUND ELEVATION 10025 62 ft amel HOLE		10 inchos	
DRILL		THOD	Sonic		igyeai		GROUND WATER LEVELS:		
LOGO	GED BY	F. Da	vis Ray	_ CI	HECKED	BY _G. Kelly	T AFTER DRILLING <u>11.92 ft / Elev 10013.7</u>	'0 ft	
NOTE	S								
o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATER	IAL DESCRIPTION	WEL Casing Typ	L DIAGRAM e: 4 in Sch. 80 PVC
	Ň			OL	1.(ORGANIC SOIL (OL),	very dark brown, soft, low plasticity,		
 - 5 	SONIC	100		CL	7.0	 I ow dry strength, trace I ow dry strength, trace I staining, non-cohesive I breccia/phonolite LEAN CLAY WITH GR dark yellowish brown, r to moist, subangular, n medium dry strength, li trace oxidation staining breccia/phonolite (weat SILT WITH SAND (ML) 	AVEL (CL), yellowish brown to AVEL (CL), yellowish brown to nedium stiff, medium plasticity, dry nottled, medium toughness, ttle sand, trace silt, some cobbles, i, intermittent layers of thered bedrock)		
 15 	SONIC	100		ML		brown, soft, low plastic toughness, low dry stre staining, intermittent la bedrock)	ity, dry, subangular, mottled, low ength, some cobbles, iron oxide yers of granodiorite (weathered प्रु		Grout mix (6% bentonite fines)
 20 	SONIC	100			22	.0			Bentonite seal
 _ 25	SONIC	100		CL	25. 25. 25. 25.	SILTY GRAVELLY LE/ brownish yellow to dark plasticity, dry, subangu low toughness, low dry cobbles, and rock fragr	AN CLAY WITH SAND (CL), x yellowish orange, soft, low lar, fine to coarse grained, mottled, strength, trace mica, some ments, iron oxide staining, trace red		(hydrated chips)
 30	SONIC	100			27 29 29 29 29 29 29 29 29 29 29 29 29 29	GI_granodiorite (weathered GRAVELLY LEAN CLA medium stiff to stiff, lov d. mottled, medium tough fine to coarse sand, so	AY (CL), yellowish brown to brown, v plasticity, dry, subangular, mess, medium dry strength, trace +		Filter pack
	SONIC	100		CL	34	 iron oxide staining, inter (weathered bedrock) SILTY GRAVELLY LE/ yellowish brown to pale to coarse grained, moti strength, some cobbles staining, intermittent la 	AN CLAY WITH SAND (CL), light brown, soft, dry, subangular, fine tled, low toughness, low dry s, and rock fragments, iron oxide		ת (sinca sand) Slotted screen (0.020 in)
 40	SONIC	100		<u><u> </u></u>		GRAVELLY LEAN CLA soft, medium plasticity, low toughness, low dry sand, cobbles, and roc intermittent layers of gr	Y (CL), yellowish brown to brown, moist to wet, subangular, mottled, strength, some fine to coarse k fragments, iron oxide staining, anodiorite (weathered bedrock)		Bentonite plug (hydrated

(Continued Next Page)

FSS	HDR Inc 369 Inverness Pkwy, Ste 325 Englewood, CO 80112			GVMW-37A PAGE 1 OF 5	
CLIENT Cripple Cre	ek and Victor Gold Min	ing Company, LLC	PROJECT NAME Newmont - ECOSA/Grassy \	/alley Drilling	
PROJECT NUMBER	10399263		PROJECT LOCATION _ Cripple Creek, CO		
DATE STARTED 0	8/01/24 08:45 COMPLE	TED 08/04/24 09:30	WELL LOCATION105.1181 N 38.7401 E		
DRILLING CONTRA	CTOR Boart Longyear		GROUND ELEVATION _9842.81 ft ams HOLE	DIAMETER 10 inches	
DRILLING METHOD	Reverse Circulation		_ GROUND WATER LEVELS:		
LOGGED BY F. Da	avis Ray CHECKE	D BY G. Kelly	T AFTER DRILLING 29.49 ft / Elev 9813.3	2 ft	
NOTES Samples p	assed through a #343 s	ieve			
O DEPTH (ft) SAMPLE TYPE NUMBER RECOVERY %	BLOW COUNTS (N VALUE) U.S.C.S. LOG	MATER	IAL DESCRIPTION	WELL DIAGRAM Casing Type: 4 in Sch. 80 PVC	
	CL-	ORGANIC SOIL (CL-N brown, soft, low plastic	IL), dark brown to very dark grayish ity, wet, mottled, low toughness.		
	CL	Low dry strength, trace trace oxidation staining GRAVELLY LEAN CLA soft to medium stiff, low mottled low toughness	Fine sand, and roots, micaceous, T/ AY (CL), yellowish brown to brown, w plasticity, dry, subangular, T		
	CL	GRAVELLY LEAN CLA low plasticity, dry, suba toughness, medium dr iron oxide staining, inte 10.0 breccia/sandstone (we	ots, and rock fragments, iron oxide AY (CL), brown, stiff to very stiff, angular, mottled, medium y strength, some rock fragments, ermittent layers of athered bedrock)		
	CL	GRAVELLY LEAN CLA brown, soft to very stiff subangular, mottled, m strength, little fine to co trace oxidation staining intermittent layers of g	AY (CL), yellowish brown to dark r, medium plasticity, dry to moist, nedium toughness, medium dry parse sand, and rock fragments, g, green mineral inclusions, ranodiorite (weathered bedrock)		
		20.0			
 ლ ლ 		GRAVELLY LEAN CLA light brownish gray, so to wet, subangular, lan medium dry strength, s and rock fragments, irc clods/clumps, fissile, fr breccia/sandstone (we	AY (CL), dark yellowish brown to ft to very stiff, low plasticity, moist ninated, medium toughness, some fine to coarse sand, cobbles, on oxide staining, mottled, forms in riable, intermittent layers of athered bedrock)		
				V	

HDR Inc

PROJECT NUMBER 10399263

PAGE 3 OF 5

369 Inverness Pkwy, Ste 325 Englewood, CO 80112

CLIENT _Cripple Creek and Victor Gold Mining Company, LLC _____ PROJECT NAME _Newmont - ECOSA/Grassy Valley Drilling PROJECT LOCATION Cripple Creek, CO

DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	WELL DIAGRAM
 <u>90</u>	GB 18 18					SCHIST, slightly weathered, foliated, light blueish gray to dark gray, finely crystalline, biotite/feldspar/amphibole/pyroxene, medium hard to medium hard, damp to wet, iron oxide staining, intermittent layers of granodiorite - BRECCIA/PHONOLIT <i>E</i>	
 _ <u>95</u>	GB 19						
 _ <u>100</u>	20 B						
 105	(漫 GB 21						
 110	GB 22						
 	GB 23						
 	රුෂී GB 24						
 125	(建 GB 25						
	26 B						
	₩.						

GVMW-37A

PAGE 4 OF 5

CLIENT Cripple Creek and Victor Gold Mining Company, LLC PROJECT NAME Newmont - ECOSA/Grassy Valley Drilling

HDR Inc 369 Inverness Pkwy, Ste 325 Englewood, CO 80112

PROJECT LOCATION Cripple Creek CO

PROJECT NUMBER	10399263	63 PROJECT LOCATION Cripple Creek, CO					
DEPTH (ft) SAMPLE TYPE NUMBER RECOVERY %	BLOW COUNTS (N VALUE) U.S.C.S. GRAPHIC LOG	MATERIAL DESCRIPTION	WELL DIAGRAM				
135 							
		\ \ \ 140.0					
 145		GRANITE, slightly weathered, massive, light blueish gray to pale red, coarsely crystalline, quartz/feldspar/mica/amphibole, hard to very hard, damp to wet, little oxidation staining, intermittent layers of phonolite					
		150.0					
 155		DIORITE, slightly weathered, massive, dark greenish gray to black, coarsely crystalline, quartz/feldspar/mica/amphibole, hard to very hard, damp to wet, trace oxidation staining - GRANDODIORITE					
		GRANITE, unweathered, massive, light blueish gray to pale red, coarsely crystalline, quartz/feldspar/mica/amphibole, hard to very hard, damp to wet, iron oxide staining, - GRANODIORITE					
 165							
			Bentonite seal (hydrated chips)				
		(Continued Next Page)					

┢)	2	HDR Inc 369 Inverness Pl Englewood, CO	kwy, Ste 3 80112	325			(GVMW-37B PAGE 1 OF 2		
CLIENT Cripple Creek and Victor Gold Mining Company, LLC							PROJECT NAME Newmont - ECOSA/Grassy Valley Drilling				
PROJECT NUMBER 10399263							PROJECT LOCATION Cripple Creek, CO				
DATE STARTED _08/16/24 10:30 COMPLETED _08/17/24 15:30							WELL LOCATION105.1181 N 38.7402 E				
DRILLING CONTRACTOR Boart Longyear							_ GROUND ELEVATION _9842.84 ft amsI HOLE DIAMETER _10 inches				
			Sonic				GROUND WATER LEVELS:				
o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATER	RIAL DESCRIPTION	Casi	WELL DIAGRAM ng Type: 4 in Sch. 80 PVC		
	ž ž			OL		ORGANIC SOIL (OL), 15 brown, soft, low plastic	dark brown to very dark grayish city, wet, mottled, low toughness,				
	0					Low dry strength, trace trace oxidation staining GRAVELLY LEAN CL soft to medium stiff, lo	fine sand, and roots, micaceous, T g (drill added water)/ AY (CL), yellowish brown to brown, w plasticity, dry, subangular,	-			
5 10	SONIC	100		CL		mottled, low toughness medium sand, trace ro staining, micaceous GRAVELLY LEAN CL low plasticity, dry, sub- toughness, medium dr iron oxide staining, inte 10.0 breccia/sandstone (we	s, low dry strength, little fine to bots, and rock fragments, iron oxide AY (CL), brown, stiff to very stiff, angular, mottled, medium ry strength, some rock fragments, ermittent layers of sathered bedrock)				
 - 15 20	SONIC 2	100		CL		GRAVELLY LEAN CL brown, soft to very stiff subangular, mottled, n strength, little fine to c trace oxidation staining intermittent layers of g 20.0	AY (CL), yellowish brown to dark f, medium plasticity, dry to moist, nedium toughness, medium dry oarse sand, and rock fragments, g, green mineral inclusions, ranodiorite (weathered bedrock)				
 25	sonic 3	100				GRAVELLY LEAN CL light brownish gray, so to wet, subangular, lar medium dry strength, s and rock fragments, irr clods/clumps, fissile, fi breccia/sandstone (we	AY (CL), dark yellowish brown to off to very stiff, low plasticity, moist ninated, medium toughness, some fine to coarse sand, cobbles, on oxide staining, mottled, forms in riable, intermittent layers of eathered bedrock)				
 30	SONIC 4	100		CI				₩	Grout mix (%8 bentonite		
 - 35 	sonic 5	100							intes)		

HDR Inc

GVMW-37B

PAGE 2 OF 2

Appendix B

Drawdown data with straightline fits and fitted Theis curves

Aquifer Model: Confined $T = 4.323 \text{ ft}^2/\text{day}$

 $Sw = \overline{0}$. P = 1.528 Solution Method: Theis (Step Test)

$$S = \frac{1}{1}$$

C = 1. min²/ft⁵

0

Attachment 2

2063		2064		2065		2066		2067		2068		2069		2070		2071		2072		2073		2074
109.59%		112.40%		115.21%		118.02%		120.83%		123.64%		126.45%		129.26%		132.07%		134.88%		137.69%		140.50%
33,600					Ş	33,600					Ş	33,600					\$	33,600				
25,600	ş	25,600	ş	25,600	s	25,600	\$	25,600	s	25,600	Ş	25,600	\$	25,600	s	25,600	\$	25,600	s	25,600	ş	25,600
39,771	ş	39,771	ş	39,771	s	39,771	\$	39,771	s	39,771	Ş	39,771	\$	39,771	s	39,771	\$	39,771	s	39,771	ş	39,771
35,000			ş	35,000			\$	35,000			Ş	35,000			s	35,000			s	35,000		
22,976	ş	22,976	ş	22,976	s	22,976	\$	22,976	s	22,976	Ş	22,976	\$	22,976	s	22,976	\$	22,976	s	22,976	ş	22,976
,997.62	\$ 95	0,301.41	ş	142,107.45	ş	143,921.20	Ş	149,039.52	s	109,231.56	s	198,458.79	ş	114,196.63	ş	162,903.66	Ş	164,481.38	s	169,835.73	ş	124,126.77
44,730	s	25,179	\$	35,154	ş	34,755	\$	35,154	s	25,179	ş	44,730	\$	25,179	ş	35,154	\$	34,755	\$	35,154	ş	25,179
01,676	\$	113,525	\$	158,500	\$	156,701	\$	158,500	\$	113,525	\$	201,676	\$	113,525	\$	158,500	\$	156,701	\$	158,500	\$	113,525
122.002	· ·	344.430	1	241.400	^	344.040	1	210.010	~	202.000	^	455.000	1	300.300	^	207.021	1	3/20.000	~	336 330	^	272.020