Revenue-Virginius Mine 2024 Environmental Summary

DRMS Permit No. M-2012-032 February 4, 2024

PO Box 1030, 1900 Main Street, Unit 1, Ouray, Colorado, USA 81427 Tel. 970-316-2294

Table of Contents 2.1 2.2 2.3 2.3.1 Temporary Cessation (TC)......4 2.3.2 2.3.3 2.3.4 Technical Revision 16 (TR-16)......4 WATER MONITORING and REPORTING......5 3.1 3.1.1 3.2 3.2.1 Surface Water Quality......6 3.2.2 3.3 3.3.1 Mine Water Quality......7 3.3.2 4.1 4.2 4.3 DRMS Inspections......8 WASTE ROCK and TAILINGS MANAGEMENT......8 UPCOMING EFFORTS and RECOMMENDATIONS......9

Site Maps

Map 1	Site Map with Current Boundary and Disturbance
Map 2	Surface water and groundwater sampling locations
Map 3	Underground sampling locations

Attachments

Attachment A – 2024 Lab Reports from Monitoring Activities

Attachment B – Summary Statistics for Groundwater and Surface Water from past 5 quarters

Attachment C – Sampling Field Notes and Equipment Calibration

Attachment D – Inspections: Pond #3, SWMP and SPCC

1 INTRODUCTION

This annual Environmental Summary provides a summary of activities associated with the Division of Reclamation, Mining, and Safety (DRMS) Permit No. M-2012-032, and Colorado Water Quality Control Division (WQCD) Colorado Discharge Permit System (CDPS) permits for Industrial Wastewater Discharge (CO-000003) and Stormwater Discharge (COR-040289) for 2024. The summary also includes a discussion of relevant activities that occurred at the Mine throughout the past twelve months. Supporting documentation related to monitoring requirements required by Hardrock Rule 1.15 is provided in the attachments. This summary is being submitted as an attachment to OSMI's annual reclamation report, which is due February 5th of each year on the anniversary of OSMI's permit.

2 ACTIVITIES in 2024

The following sections provide an update of activities in 2024, including operations, permitting activities, and other site activities.

2.1 Operational Update

The Revenue-Virginius Mine (Mine) exited its status in temporary cessation but saw no production or development in 2024. Work was performed on surface infrastructure during the year. The surface infrastructure work includes enclosing the rail yard structure and roofing repairs on the dump wall structure and reagent building caused by snow and ice damage from subsequent winters. The other activities that took place on site include checks and maintenance of existing infrastructure as well as all required environmental compliance activities.

2.2 Incidents

There were no loss of containment incidents in 2024.

2.3 Permitting Activities

A summary of permitting activities that occurred in 2024 is provided in the following section.

2.3.1 Temporary Cessation (TC)

The property applied for a status change to exit temporary cessation on January 4, 2024. The submitted request was presented to the Mined Land Reclamation Board and approved on January 17, 2024.

2.3.2 Technical Revision 14 (TR-14)

No work was done on TR-14 during 2024. TR-14 was submitted in and partially completed in 2021. This TR provided updates to the Environmental Protection Facility (EPF) certification plan for the new Reagent Room portion of the mill filter building extension (permitted under TR-09). These updates included the construction, operation, and reclamation measures associated with the Reagent Room EPF. On July 2, 2021, DRMS conditionally approved TR-14, which allowed construction of the Reagent Room to begin. Construction of the Reagent Room is in progress and is expected to be completed when the mine resumes full-scale operations. Final certification of the new Reagent Room is contingent upon final inspections by DRMS.

2.3.3 Technical Revision 15 (TR-15)

No work has been done on TR-15 during 2024. TR-15 was submitted in June 2021. This revision sought recertification of the mill. Certification of the mill was originally granted by DRMS on January 11, 2016. Updates to the milling process as described in TR-09 were approved in March 2017. Supporting information for the mill recertification included mill design discussion; mill construction, modification, and test operations; water and slurry handling systems and environmental protections; chemical handling and containment systems; tailing chemistry; and water quality at the tailings embankment. TR-15 is currently in progress and will be completed when the mine resumes full-scale operations.

2.3.4 Technical Revision 16 (TR-16)

No work was completed in 2024 in relation to TR-16. TR-16 was submitted and partially constructed in 2021. This revision requested approval to construct two equipment storage warehouses and a security building at the mine entrance, place temporary lineout buildings on the surface, construct a vehicle washdown area near the mechanic shop, and place temporary generators and a 10,000-gallon fuel tank on the surface. TR-16 is approved, and

the infrastructure permitted by TR-16 was partially constructed in 2021. This TR will be completed when the mine resumes full-scale operations.

2.3.5 Technical Revision 17 (TR-17)

Technical Revision 17 was initially submitted June 17, 2024, and was conditionally approved by DRMS on October 30, 2024. This revision requested approval to construct and operate a 75 ton per day gravity circuit within the current permit limits, for the mine to accept imported material from the Camp Bird Mine, and for the Camp Bird Mine to export inert surface material to the Revenue Mine. Conditional approvals included completion of ground water monitoring wells located by the mine entrance gate, excavation and certified as-built of stormwater pond, and completion of a reclamation cost estimate update as well as receipt of increased financial warranty. The only remaining item of conditional approval is receipt of the certified as-built for stormwater pond. Completion of groundwater monitoring wells and stormwater pond are also conditional approval items of Amendment 2 to the mining permit.

2.4 Other site activities included

• DRMS completed an inspection on July 23rd. One issue requiring corrective action was discovered. During the inspection of the Hubb Reed Raise Bore Area, damage from the previous winter was recognized that allowed access to the open hole at the head frame of the raise bore. The issue was quickly mitigated, and photo documentation was sent to DRMS.

3 WATER MONITORING and REPORTING

Water quality samples, field data, flow, and observations were collected in-house throughout 2024.

Sample location maps are shown on Maps 2 and 3 and laboratory data reports are presented in Attachment A. Attachment B presents summary statistics for Groundwater and Surface Water for the past 5 quarters. Sampling notes/observations and equipment calibration records are included in Attachment C.

3.1 Groundwater

Groundwater monitoring continued at six locations, GW-1A, GW-1B, GW-2A, GW-2B, GW-3R, and GW-3B. Groundwater was monitored on a quarterly basis throughout 2024. Sampling was only able to be conducted on GW-3R and GW-3B in Q1 of 2024 due to the location of the sample sites in relation to avalanche paths and elevated avalanche danger throughout the quarter. Sampling was not able to be conducted in Q4 of 2024 due to extreme temperatures causing failure of the bladder pump as well as un-seasonal elevated avalanche danger caused by early snow fall.

3.1.1 Groundwater Quality

2024 groundwater results were within permit limits. Results from 2024 sampling reflect historical results. In general, zinc and cadmium concentrations are higher in shallow wells and concentrations are higher in well GW-2A and GW-2B than in GW-3A and GW-3R (near the passive treatment system). The trend suggests an upgradient source of cadmium and zinc in groundwater with attenuation through sorption or dilution as groundwater moves downgradient.

3.2 Industrial Wastewater/Surface Water

Sampling at OF002A occurred per CDPS permit CO-0000003 through 2024. The mine received no inspections in 2024.

One exceedance was experienced in 2024. The exceedance was for Zinc, Potentially Dissolved in October. This is considered to be an anomaly as there were no changes to the system as well as no development or production that would have caused a change to the quality of water being input into the system.

A report has been received from the consulting firm that initially designed the treatment system that contains options for improvements that will reduce the chances of exceedance during normal operating conditions. These options will be further explored when the company is preparing to go back to underground operations.

There was no discharge at Outfall 001A (OF001A) in 2024.

Discharge monitoring reports under CDPS permit CO-0000003 for Outfall-001A and Outfall-002A were submitted to the WQCD and are available on NetDMR through the EPA Central Data Exchange. Copies of laboratory data from Outfall 002A monitoring are provided in Attachment A. Stormwater DMRs, submitted quarterly under COR-040289, indicate no discharge for 2024. Field notes from outfall sampling may be found in Appendix C.

Surface water is monitored voluntarily at various locations in the drainage upstream and downstream of the mine site. Surface water quality samples are collected at SW-1, SW-2, SW-3, SW-4, SW-15, SW-16, SW-17, SW-21. Map 2 shows the surface water sampling locations. No surface water quality samples were collected in 2024 due to minimal manpower charged with environmental compliance activities as well as overall maintenance of the Mine Site.

3.2.1 Surface Water Quality

No surface water quality samples were collected in 2023 to be compared to the previous years results.

In general, historic sampling has shown that surface water pH is neutral and stable, and hardness fluctuates seasonally, with lows during high flows and highs in the winter months. Likewise, pH, hardness and sulfate fluctuate seasonally. These seasonal fluctuations are the mark of low hardness snowmelt diluting surface water during spring runoff. Mine water, seeps, and groundwater contributions to surface water all have higher hardness and sulfate concentrations than surface water.

Results from surface water samples collected in Sneffels Creek both upstream and downstream of the mine discharge continue to show exceedances of ambient water quality standards for cadmium, lead and zinc.

3.2.2 Surface Water Flow

Although no surface water flow data was collected, the Mine will continue to gather flow data going forward in Sneffels creek during surface water sampling events. Gathering flow in an everchanging channel has its challenges. The Mine will continue to evaluate the benefits of installing a permanent flow and temperature gauge in Sneffels Creek near the main entrance to the mine.

3.3 Mine Water

Mine water is water that is found within the mine as well as the water exiting the mine at the portal that is treated in the five-stage passive mine water treatment system. Mine water is sampled at various locations within the mine (i.e., UG-2, UG-4, UG-5, UG-7, UG-8, UG-9, UG-10). Stations UG-2, UG-5, and UG-8 are sampled quarterly. UG-7, UG-10, UG-4, and UG-9 are optional sampling locations and, if sampled, are sampled annually.

3.3.1 Mine Water Quality

Mine water quality for key constituents is presented in the summary tables provided in Attachment B. Mine pH is consistently near neutral. Hardness and sulfate fluctuate seasonally with minimums occurring during the spring runoff and both generally occur at higher concentrations than surface water. Cadmium, lead, and zinc remained within historic norms in 2024.

3.3.2 Mine Water Flow

Flow at UG-5 (the portal) ranged from 0.67 cubic feet per second (cfs) in March to 2.54 cfs in June. Peak flows occur in the summer months in response to snow melt with low flows occurring in the winter and early spring. Flow from the portal also fluctuates with the seasonal snow melt and is generally an order of magnitude lower than that observed in the creek.

4 INSPECTIONS

Routine inspections are performed in accordance with various operating procedures and plans as summarized below. Inspection notes are recorded in a Fulcrum software database, copies of which are provided in Attachment D.

4.1 Stormwater

Inspections of stormwater collection systems are required on a semi-annual basis under CDPHE permit COR-040289 and quarterly under the DRMS permit M-2012-032, as well as following major storm events. The Stormwater Management Plan (SWMP) was updated in August 2022 to reflect changes in stormwater management because of the construction of the five-stage passive mine water treatment system.

No issues were recorded during inspection events. All stormwater management systems worked appropriately.

4.2 SPCC

SPCC inspections were performed on a monthly basis during 2024. The SPCC Plan was updated in May 2022 to reflect site conditions and submitted with Amendment 2.

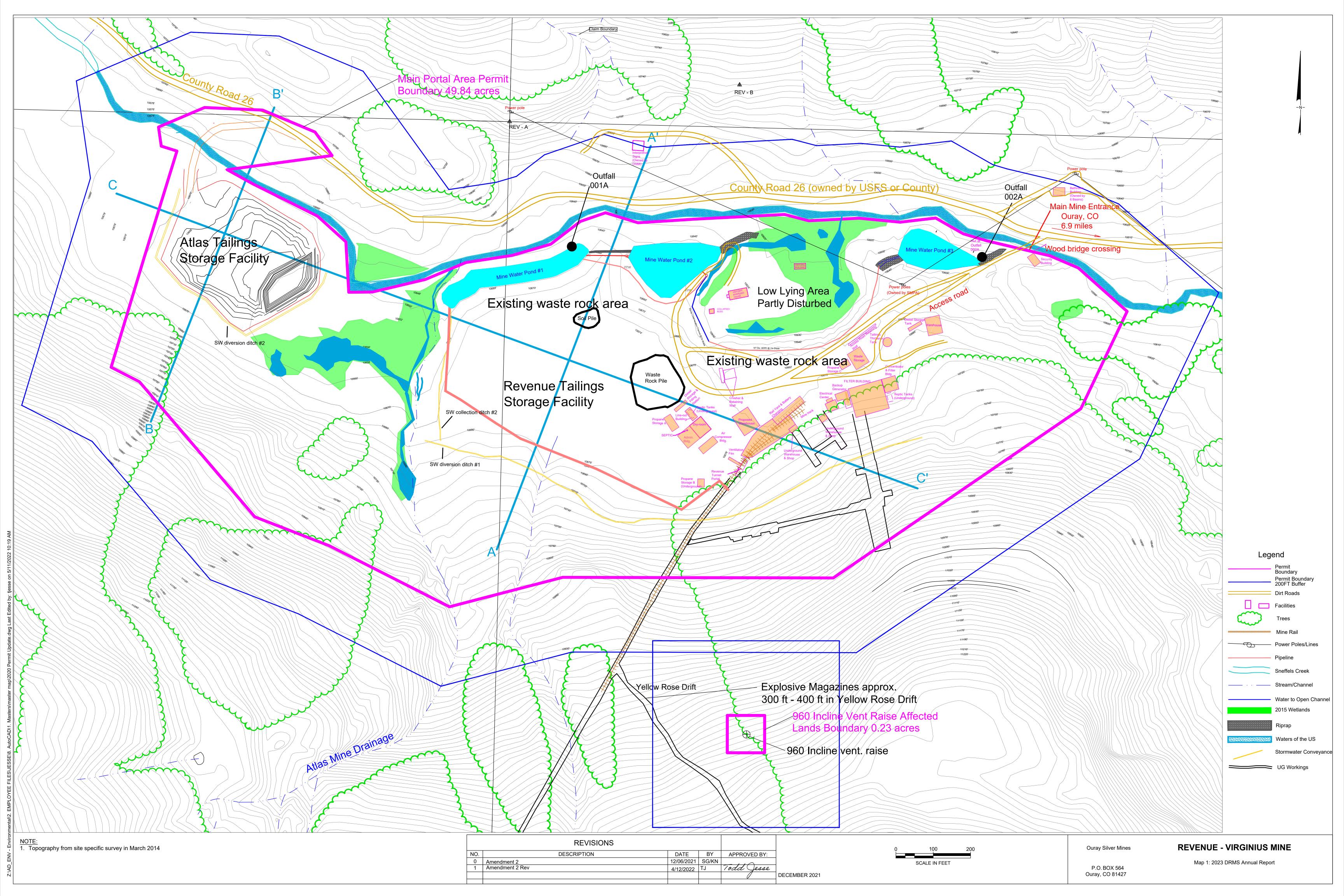
4.3 DRMS Inspections

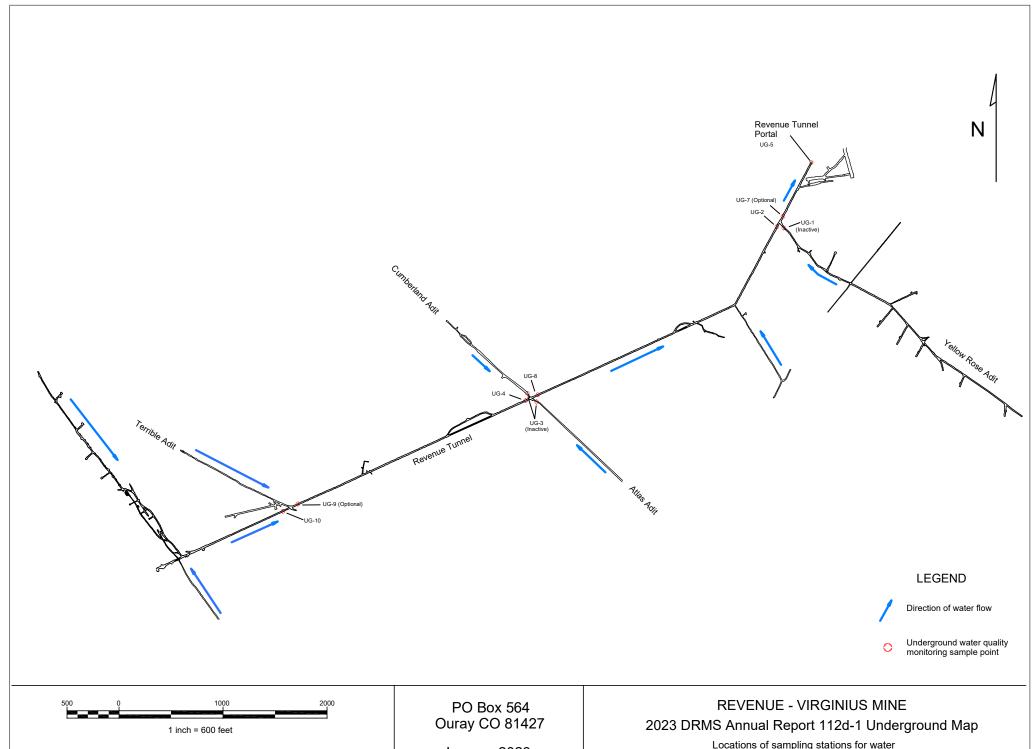
DRMS conducted the following inspections.

- July 23, 2024 – One item requiring corrective action were identified during the inspection. Corrective action was completed with documentation sent to DRMS.

5 WASTE ROCK and TAILINGS MANAGEMENT

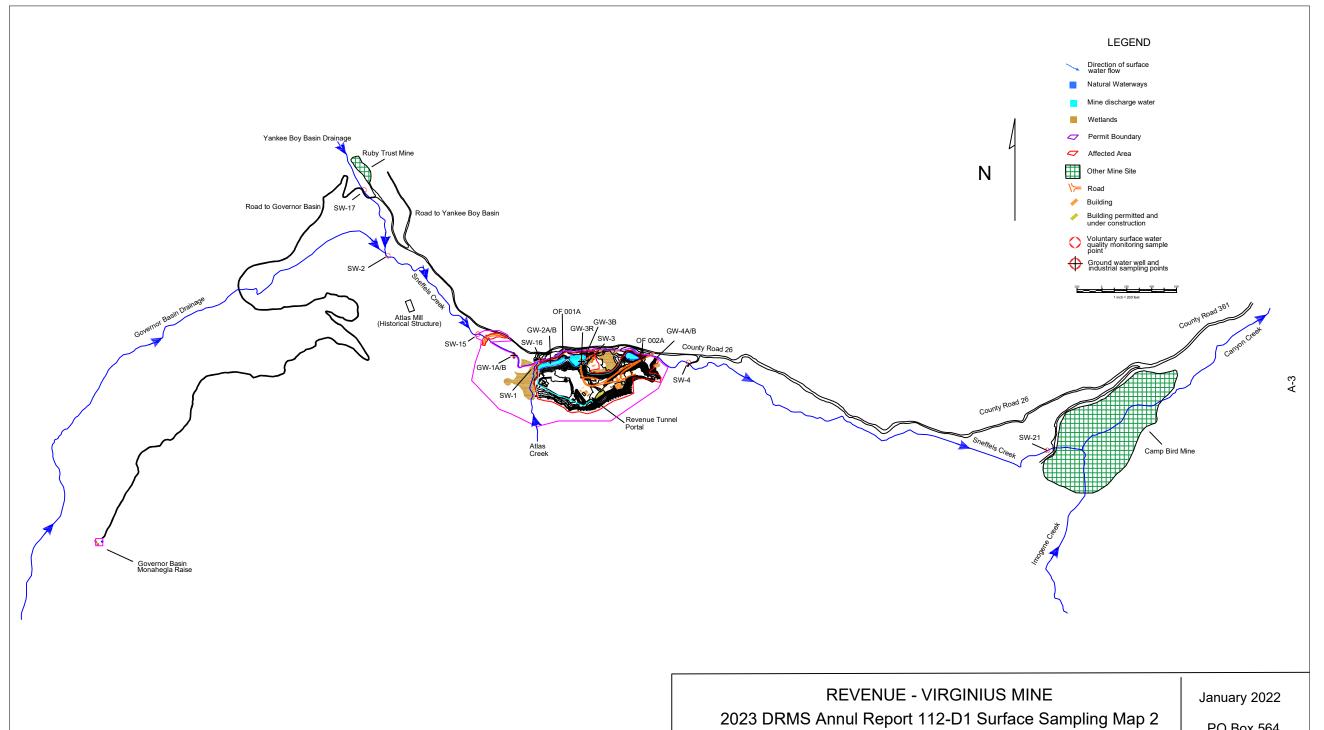
No waste rock was produced in 2024. No waste rock was removed from underground and placed on the surface of the mine within the permitted boundary. All surface stockpiles were created in 2021 while the mine was moving into production. In 2021 the waste rock was subjected to synthetic precipitation leachate procedure (SPLP) with results within historic norms and below regulatory limits. SPLP data collected on current waste rock piles can be found in the 2021 Annual Environmental Summary.


Approximately 480 tons of tailings were produced during milling operations in 2022. SPLP and Acid Based Accounting (ABA) tests were performed on the tailings and all results came back below regulatory limits. Tailings were placed on temporary, lined storage areas in the Atlas Tailings Storage Facility until approval from DRMS was received for final placement. The tails were spread, but no compaction was done as there were not enough tailings to complete an entire lift. No tailings were created in 2024


6 UPCOMING EFFORTS and RECOMMENDATIONS

As of January 17, 2024, the mine and mill exited temporary cessation and went into active status.

- Investigate improvements to the passive water treatment system.
- Certification of stormwater pond near the entrance to the mine site
- Consider installation of continuous flow monitoring device at UG-5 and temperature probe in Sneffels Creek below OF002A.
- Repair and recalibrate continuous monitor device at OF002A.
- Complete construction on second warehouse and equipment wash bay as authorized by TR-16.
- Begin and complete construction of gravity processing circuit once all conditional approvals of TR-17 have been met.
- Begin processing of up to 75 tons per day of material through gravity processing circuit.


Maps

January 2023

Locations of sampling stations for water quality monitoring underground

Locations of sampling stations for surface and ground water quality monitoring

PO Box 564 Ouray CO 81427

Attachment A

Analytical Results

TASK NO: 240111020

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240111020

Client PO:

Client Project: Revenue - Virginius

Date Received: 1/11/24 Date Reported: 1/19/24

Matrix: Wastewater

Customer Sample ID OF002A

Sample Date/Time: 1/10/24 9:23 AM **Lab Number:** 240111020-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Cyanide-Weak Acid Dissociable	ND mg/L	ASTM 2036-09C	0.005	0.0005	1/17/24	QC70684	JCB
рН	7.48 units	SM 4500-H-B	0.01	0.01	1/11/24	-	ARH
Total Suspended Solids	6 mg/L	SM 2540-D	5	2	1/12/24	QC70580	ARH
Potentially Dissolved							
Cadmium	ND mg/L	EPA 200.8	0.0001	0.000006	1/16/24	QC70643	MBN
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	1/16/24	QC70643	MBN
Lead	0.0008 mg/L	EPA 200.8	0.0001	0.000006	1/16/24	QC70643	MBN
Manganese	0.0705 mg/L	EPA 200.8	0.0008	0.00001	1/16/24	QC70643	MBN
Silver	0.0005 mg/L	EPA 200.8	0.0005	0.000003	1/16/24	QC70643	MBN
Zinc	0.078 mg/L	EPA 200.8	0.001	0.00003	1/16/24	QC70643	MBN
<u>Total</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	1/12/24	QC70596	MBN
Lead	0.0008 mg/L	EPA 200.8	0.0001	0.000006	1/16/24	QC70643	MBN
Total Recoverable							
Iron	0.025 mg/L	EPA 200.7	0.005	0.0005	1/16/24	QC70642	MBN

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Analytical QC Summary

TASK NO: 240111020

Report To: CJ Dickerson Receive Date: 1/11/24

Company: Thorin Resources, LLC Project Name: Revenue - Virginius

Test	QC Batch ID	QC Type	Result		Method	Prep Date
Cyanide-Weak Acid Dissociable	QC70684	Blank	ND	AS	TM 2036-09C	1/17/24
Mercury	QC70596	Method Blank	ND		EPA 245.7	1/11/24
Cadmium	QC70643	Method Blank	ND		EPA 200.8	1/11/24
Copper	QC70643	Method Blank	ND		EPA 200.8	1/11/24
Lead	QC70643	Method Blank	ND		EPA 200.8	1/11/24
Manganese	QC70643	Method Blank	ND		EPA 200.8	1/11/24
Silver	QC70643	Method Blank	ND		EPA 200.8	1/11/24
Zinc	QC70643	Method Blank	ND		EPA 200.8	1/11/24
Iron	QC70642	Method Blank	ND		EPA 200.7	1/11/24
Total Suspended Solids	QC70580	Blank	ND	;	SM 2540-D	1/12/24
Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
Cyanide-Weak Acid Dissociable	QC70684	Duplicate	0 - 20	-	0.0	ASTM 2036-09C
		LCS	90 - 110	95.5	-	
		MS	75 - 125	92.5	-	
Mercury	QC70596	Duplicate	0 - 20	-	0.0	EPA 245.7
·		LCS	90 - 110	103.8	-	
		MS	80 - 120	102.0	-	
Cadmium	QC70643	LCS	90 - 110	97.0	-	EPA 200.8
		MS	70 - 130	98.9	-	
		MSD	0 - 10	-	4.7	
Copper	QC70643	LCS	90 - 110	95.9	-	EPA 200.8
		MS	70 - 130	100.6	-	
		MSD	0 - 10	-	3.0	
Lead	QC70643	LCS	90 - 110	98.1	-	EPA 200.8
		MS	70 - 130	96.5	-	
		MSD	0 - 10	-	8.7	
Manganese	QC70643	LCS	90 - 110	98.7	-	EPA 200.8
-		MS	70 - 130	102.0	-	
		MSD	0 - 10	-	0.8	
Silver	QC70643	LCS	90 - 110	95.4	-	EPA 200.8
		MS	70 - 130	92.9	-	
		MSD	0 - 10	-	2.6	
Zinc	QC70643	LCS	90 - 110	98.7	-	EPA 200.8
		MS	70 - 130	99.3	-	
		MSD	0 - 10	-	2.3	
Iron	QC70642	Duplicate	0 - 20	-	1.8	EPA 200.7
		LCS	90 - 110	91.6	-	
		LOO				
		MS	75 - 125	97.7	-	
Total Suspended Solids	QC70580			97.7	- 6.1	SM 2540-D

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

All analyses were performed in accordance with approved methods under the latest revision to 40 CFR Part 136 unless otherwise identified. Based on my inquiry of the person or persons directly responsible for analyzing the wastewater samples and generating the report (s), the analyses, report, and information submitted are, to the best of my knowledge and belief, true, accurate, and complete.

DATA APPROVED FOR RELEASE BY

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Chain of Custody Form

Report To Information	Bill To Information (If different from report to)	Project Name / Number
Company Name: Thorin Recourtes	Company Name: Thark Resources	
Contact Name: CT Dicherson	Contact Name: ETDicheron	
Address: 1900 Main St. Unit 1	Address:	Task Number (Lab Use Only)
City Ouray State Co Zip 81427	City State Zip	
Phone: (970) 316-2294	Phone:	CAL Task
	Email:	240111020
Email: Cjdictersone therir resources. com Sample Collector: CJ Dickerson		RMB
Sample Collector Phone: (602) 753-1321	PO No.:	<u> </u>

Commerce City Lab 10411 Heinz Way Commerce City CO 80640

<u>Lakewood Service Center</u> 610 Garrison Street, Unit E Lakewood CO 80215

Phone: 303-659-2313

www.coloradolab.com

Sample C	ollector Pho	one: (60	2) 793-1321	PO	No.:				·										
													Test	s Requ	ested				
i s Arriga.		Sa	mple Matrix	(Select One On	ly)			<u>S</u>											
Waste V	Water 💢]	Soil		Drinking Water [-, l	ers	Onl						l					
Ground	l Water 🗌]	Sludge [Dilliking water [_	ntain	One											
Surface	Water [)					No. of Containers	Grab or (Check One Only) Composite									!		
Date	Time			Sample II	D		No.	Gra Or (
1/10/24	9:23		C	Fooz4			3												
]]						
	A Pr	liect	Per hi	story e	8 (3														
		, , ,		1	111/24														
		* 1	Jo tes	to indi	cated or	1													
		1	OC. TI	2575 D	cated or ex bottl received	e or	de	2R											
		A	d hot	41ex x	seclived.	,													
Instruction	ons:					Cis inio:			<u></u>		xa	5	eals Pres						
						Deliver Via:	L	P5		C/S	Charge [N 1	_{emp.} 2	°C/Ice	. Y	Sampl	le Pres. Ye	N Des	ا ۵
Relinquis		ı	e/Time:	Received By:	Date/Time						/Time:		Receiv	ed By:			Daté	/Time:	:
CODI	chero	1 3	=30/1/10	1 Aldas	W 1/11	2 Hage &	25 Sf 5												
			ı	-0	0 1 1	- 0													

Bottle Order Test Detail

Order ID: QBO23120014

Date Created: 12/4/23

Cooler: Yes

Ship To: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

CAL Task

240111020

Attention: CJ Dickerson

Qty.

RMB

Chain of Custody

Shipping Options:

UPS

Drinking Water: Standard: 2

Customer Needs By: 12/8/23

Ships From: Commerce City

Project:

Ship Via:

602-793-1321

Verify All Shipping Addresses

' /	ii Miliber	- p230		
) Oilæ	Grease	Water - Gro	1

Bottle / Preservative / Test

notred

500 ml Cylinder - HNO3

Ag - PD - Water - Ground

Cd - PD - Water - Ground

Cu - PD - Water - Ground

Fe - TR - Water - Ground

Hg - Water - Ground

Mn - PD - Water - Ground

Pb - PD - Water - Ground

Pb - Total - Water - Ground

Zn - PD - Water - Ground

2 500 ml Cylinder - NaOH

Cyanide-Weak Acid Dissociable - Water - Ground

2 500 ml Cylinder - Unpreserved

Ph - Water - Ground

TSS - Water - Ground

Samples should be shipped or hand delivered the same day they are collected. Orders that require sub-lab analysis should be delivered to the lab Monday thru Wednesday only.

Internal Shipping Instructions:

Bi-Monthly - Hg-Total

10411 Heinz Way / Commerce City, CO 80640 / 303-659-2313 Mailing Address: P.O. Box 507 / Brighton, CO 80601-0507

Analytical Results

TASK NO: 240201014

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240201014

Client PO:

Client Project: Revenue - Virginius

Date Received: 2/1/24 Date Reported: 2/9/24

Matrix: Wastewater

Customer Sample ID OF002A

Sample Date/Time: 1/30/24 9:39 AM **Lab Number:** 240201014-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Cyanide-Weak Acid Dissociable	ND mg/L	ASTM 2036-09C	0.005	0.0005	2/5/24	QC71063	JCB
рН	7.18 units	SM 4500-H-B	0.01	0.01	2/1/24	-	ARH
Total Suspended Solids	ND mg/L	. SM 2540-D	5	2	2/2/24	QC71010	ARH
Potentially Dissolved							
Cadmium	ND mg/L	EPA 200.8	0.0001	0.000006	2/2/24	QC71040	MBN
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	2/2/24	QC71040	MBN
Lead	0.0004 mg/L	EPA 200.8	0.0001	0.000006	2/2/24	QC71040	MBN
Manganese	0.0998 mg/L	EPA 200.8	0.0008	0.00001	2/2/24	QC71040	MBN
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	2/2/24	QC71040	MBN
Zinc	0.073 mg/L	EPA 200.8	0.001	0.00003	2/2/24	QC71040	MBN
<u>Total</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	2/8/24	QC71183	MBN
Lead	0.0005 mg/L	EPA 200.8	0.0001	0.000006	2/2/24	QC71040	MBN
Total Recoverable							
Iron	0.023 mg/L	EPA 200.7	0.005	0.0005	2/2/24	QC71038	MBN

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations. (s) The accuracy of the spike recovery value is reduced due to the analyte

concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Analytical QC Summary

TASK NO: 240201014

Report To: CJ Dickerson **Receive Date:** 2/1/24

Company: Thorin Resources, LLC Project Name: Revenue - Virginius

Test	QC Batch ID	QC Type	Result		Method	Prep Date
Cyanide-Weak Acid Dissociable	QC71063	Blank	ND	AS	STM 2036-09C	2/5/24
Mercury	QC71183	Method Blank	ND		EPA 245.7	2/8/24
Cadmium	QC71040	Method Blank	ND		EPA 200.8	2/1/24
Copper	QC71040	Method Blank	ND		EPA 200.8	2/1/24
Lead	QC71040	Method Blank	ND		EPA 200.8	2/1/24
Manganese	QC71040	Method Blank	ND		EPA 200.8	2/1/24
Silver	QC71040	Method Blank	ND		EPA 200.8	2/1/24
Zinc	QC71040	Method Blank	ND		EPA 200.8	2/1/24
Iron	QC71038	Method Blank	ND		EPA 200.7	2/1/24
Total Suspended Solids	QC71010	Blank	ND		SM 2540-D	2/1/24
Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
Cyanide-Weak Acid Dissociable	QC71063	Duplicate	0 - 20	-	9.4	ASTM 2036-09C
		LCS	90 - 110	93.0	-	
		MS	75 - 125	96.5	-	
Mercury	QC71183	Duplicate	0 - 20	-	0.0	EPA 245.7
-		LCS	90 - 110	105.4	-	
		MS	80 - 120	98.0	-	
Cadmium	QC71040	LCS	90 - 110	99.5	-	EPA 200.8
		MS	70 - 130	102.1	-	
		MSD	0 - 10	-	5.1	
Copper	QC71040	LCS	90 - 110	100.8	-	EPA 200.8
		MS	70 - 130	104.4	-	
		MSD	0 - 10	-	3.0	
Lead	QC71040	LCS	90 - 110	101.2	-	EPA 200.8
		MS	70 - 130	74.1	-	
		MSD	0 - 10	-	0.8	
Manganese	QC71040	LCS	90 - 110	104.1	-	EPA 200.8
G		MS	70 - 130	108.5	-	
		MSD	0 - 10	-	4.4	
Silver	QC71040	LCS	90 - 110	91.1	-	EPA 200.8
		MS	70 - 130	92.4	-	
		MSD	0 - 10	-	2.6	
Zinc	QC71040	LCS	90 - 110	101.9	-	EPA 200.8
		MS	70 - 130	108.2	-	
		MSD	0 - 10	-	4.4	
Iron	QC71038	Duplicate	0 - 20	-	0.6	EPA 200.7
	20000	LCS	90 - 110	99.2	-	
		MS	75 - 125	93.1	-	
Total Suspended Solids	QC71010	Duplicate	0 - 10	-	8.1	SM 2540-D
Total Gasperiaca Gollas	Q071010	LCS	90 - 110	95.1	-	OIVI 2070 D
		L00	30 - 110	عن. ا 	-	

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

All analyses were performed in accordance with approved methods under the latest revision to 40 CFR Part 136 unless otherwise identified. Based on my inquiry of the person or persons directly responsible for analyzing the wastewater samples and generating the report (s), the analyses, report, and information submitted are, to the best of my knowledge and belief, true, accurate, and complete.

DATA APPROVED FOR RELEASE BY

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Chain of Custody Form

Colorado Analytical

Report To Information	Bill To Information (If different from report to)	Project Name / Number	A HOOLYTICAL LABORATORIES, INC.
Company Name: Thorin Resources	Company Name: Therin Resources	Revenue - Vir	
Contact Name: CJDicherson	Contact Name: CJ Dicherson	Per history	Commerce City Lab 10411 Heinz Way
Address: 1900 Main St Unil-1	Address:	Task Number (Lab Use Only)	Commerce City CO 80640 Lakewood Service Center
City Ource State Co Zip 81427	City State Zip		610 Garrison Street, Unit E Lakewood CO 80215
Phone: (970) 316-2294	Phone:	CAL Task	Phone: 303-659-2313
Email: Cjdichersone Horin resources egmai	Email:	240201014	
Sample Collector: CJ Didecton		JAK	www.coloradolab.com
Sample Collector Phone: (602) 793-1321	PO No.:		

Sample Matrix (Select One Only) Sample Matrix (Select One Only) Soil Drinking Water Soil Sludge Surface Water Sugged as waft water per history Sample ID S	
Waste Water Soil Drinking Water Studge Surface Water Cogged as water water per bushes to Sugged as water Sample ID Drinking Water Studge Surface Water Studge Surface Water Sample ID Soil Drinking Water Surface Su	
1/30 9:39an OF002A 3	
	+++
	++++
Dee Attached NO 0/6. recieled &	
Instructions: Please return empty Bottle Set C/S Info! Seals Present Yes No	
	s. Yes 🗖 No 🗆
Relinquished By: Date/Time: Received By: Date/Time: Relinquished By: Date/Time/ Received By: Date/Time/	ate/Time;
(JDickerson 3:30pm/1/3) V) 11/2 Hage 4 of 5	

JAK

Bottle Order Test Detail

Order ID: QBO23120014

Date Created: 12/4/23

Ship To: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Attention: CJ Dickerson

602-793-1321

Verify All Shipping Addresses

Shipping Options:

Ship Via: UPS

Cooler: Yes

Chain of Custody

Drinking Water:

Standard: 2

Customer Needs By: 12/8/23

Ships From: Commerce City

Project:

Qty.	Bottle / Preservative / Test	
1	1/ Amber - H2SO4 , , ,	
	Oil & Grease - Water - Ground — not received	
2	500 ml Cylinder - HNO3	_
	Ag - PD - Water - Ground	
	Cd - PD - Water - Ground	
	Cu - PD - Water - Ground	
	Fe - TR - Water - Ground	
	Hg - Water - Ground	
	Mn - PD - Water - Ground	
	Pb - PD - Water - Ground	
	Pb - Total - Water - Ground	
	Zn - PD - Water - Ground	
2	500 ml Cylinder - NaOH	-
	Cyanide-Weak Acid Dissociable - Water - Ground	
2	500 ml Cylinder - Unpreserved	-
	Ph - Water - Ground	

Internal Shipping Instructions:

TSS - Water - Ground

Bi-Monthly - Hg-Total

10411 Heinz Way / Commerce City, CO 80640 / 303-659-2313 Mailing Address: P.O. Box 507 / Brighton, CO 80601-0507

^{**}Samples should be shipped or hand delivered the same day they are collected. Orders that require sub-lab analysis should be delivered to the lab Monday thru Wednesday only.**

Analytical Results

TASK NO: 240216004

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240216004

Client PO:

Client Project: Revenue - Virginius

Date Received: 2/16/24 Date Reported: 2/23/24

Matrix: Wastewater

Customer Sample ID OF002A

Sample Date/Time: 2/15/24 9:50 AM **Lab Number:** 240216004-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Cyanide-Weak Acid Dissociable	ND mg/L	ASTM 2036-09C	0.005	0.0005	2/20/24	QC71433	JCB
рН	7.37 units	SM 4500-H-B	0.01	0.01	2/16/24	-	JCB
Total Suspended Solids	ND mg/L	. SM 2540-D	5	2	2/19/24	QC71396	ISG
Potentially Dissolved							
Cadmium	ND mg/L	EPA 200.8	0.0001	0.000006	2/21/24	QC71430	MBN
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	2/21/24	QC71430	MBN
Lead	0.0004 mg/L	EPA 200.8	0.0001	0.000006	2/21/24	QC71430	MBN
Manganese	0.0829 mg/L	EPA 200.8	0.0008	0.00001	2/21/24	QC71430	MBN
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	2/21/24	QC71430	MBN
Zinc	0.065 mg/L	EPA 200.8	0.001	0.00003	2/21/24	QC71430	MBN
<u>Total</u>							
Mercury	ND mg/L	. EPA 245.7	0.0002	0.00002	2/22/24	QC71507	JJA
Lead	0.0006 mg/L	EPA 200.8	0.0001	0.000006	2/21/24	QC71430	MBN
Total Recoverable							
Iron	0.017 mg/L	EPA 200.7	0.005	0.0005	2/21/24	QC71407	MBN

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte

concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Analytical QC Summary

TASK NO: 240216004

Report To: CJ Dickerson **Receive Date:** 2/16/24

Company: Thorin Resources, LLC Project Name: Revenue - Virginius

Test	QC Batch ID	QC Type	Result		Method	Prep Date
Cyanide-Weak Acid Dissociable	QC71433	Blank	ND	AS	TM 2036-09C	2/20/24
Mercury	QC71507	Method Blank	ND		EPA 245.7	2/22/24
Cadmium	QC71430	Method Blank	ND		EPA 200.8	2/15/24
Copper	QC71430	Method Blank	ND		EPA 200.8	2/15/24
Lead	QC71430	Method Blank	ND		EPA 200.8	2/15/24
Manganese	QC71430	Method Blank	ND		EPA 200.8	2/15/24
Silver	QC71430	Method Blank	ND		EPA 200.8	2/15/24
Zinc	QC71430	Method Blank	ND		EPA 200.8	2/15/24
Iron	QC71407	Method Blank	ND		EPA 200.7	2/15/24
Total Suspended Solids	QC71396	Blank	ND		SM 2540-D	2/19/24
Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
Cyanide-Weak Acid Dissociable	QC71433	Duplicate	0 - 20	-	0.0	ASTM 2036-09C
		LCS	90 - 110	100.1	-	
		MS	75 - 125	94.5	-	
Mercury	QC71507	Duplicate	0 - 20	-	0.0	EPA 245.7
·		LCS	90 - 110	109.4	-	
		MS	80 - 120	100.0	-	
Cadmium	QC71430	LCS	90 - 110	101.7	-	EPA 200.8
		MS	70 - 130	96.9	-	
		MSD	0 - 10	-	1.3	
Copper	QC71430	LCS	90 - 110	103.6	=	EPA 200.8
• •		MS	70 - 130	97.5	-	
		MSD	0 - 10	-	0.7	
Lead	QC71430	LCS	90 - 110	98.4	=	EPA 200.8
		MS	70 - 130	100.4	-	
		MSD	0 - 10	-	1.7	
Manganese	QC71430	LCS	90 - 110	108.8		EPA 200.8
S		MS	70 - 130	102.0	-	
		MSD	0 - 10	-	1.3	
Silver	QC71430	LCS	90 - 110	98.5	-	EPA 200.8
	4011100	MS	70 - 130	94.6	_	
		MSD	0 - 10	-	1.7	
Zinc	QC71430	LCS	90 - 110	101.4	-	EPA 200.8
20	Q071100	MS	70 - 130	90.3	_	2177200.0
		MSD	0 - 10	-	3.3	
Iron	QC71407	Duplicate	0 - 20	-	14.9	EPA 200.7
	Q0/140/	LCS	90 - 110	103.0	-	L1 /1 200.1
		MS	75 - 125	97.1	- -	
Total Suspended Solids	QC71396	Duplicate	0 - 10	-	2.5	SM 2540-D
i otai Suspended Solids	QC/ 1390	LCS		94.4	2.5 -	3IVI 2040-D
		LUO	90 - 110	94.4	<u>-</u>	

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

All analyses were performed in accordance with approved methods under the latest revision to 40 CFR Part 136 unless otherwise identified. Based on my inquiry of the person or persons directly responsible for analyzing the wastewater samples and generating the report (s), the analyses, report, and information submitted are, to the best of my knowledge and belief, true, accurate, and complete.

DATA APPROVED FOR RELEASE BY

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

						Chain	of Custo	dy Fo	rm									31	Col	Orac	do
1.11 (1 - 1 - 1 - 1 - 1	Informati				Bill To I	nformation (If different f	rom repo	ort to)			Name / Ni								lytic	
Company	Name:	Thor	in Re:	iou/les	Compan	y Name:	horin.	Desc	ource	>1	Leu	enue	<i>−∪</i> ,,	gin	ius.	_					
Contact N	lame:C	20	ichers	20	Contact	ny Name:	5 Dich	erson	1	_ _	Pe	enue r his	ston	<u> </u>			104	nmerc 11 Hei nmerc	inz W	ay	20640
Address: 1900 Main SL Unit 1			Address:						sk Nu ab Use	mber Only)			7	K_	Lak	kewoo(d Serv	ice Ce	<u>enter</u>		
				81427	City		State	Zip	· · - · · · ·									Garri kewoo		,	Unit E
Phone:	970 3	16 23	294		Phone:						CAL Task					Phone: 303-659-2313					
Email: /	jdide	ersone	thorin.	resources,	⊘∕Email:						240216004										
Sample Co	ollector:	CJC	iche	-507								JAK		! 			ww	w.colo	radol	ab.cor	<u>n</u>
Sample Co	ollector Ph	one: <i>(</i>	12 79	3 1321	PO No.:								,	<i>)</i>							
		•								-		<u>.</u> 3 7 8 3 1		T	ests R	Reque	sted			i desa	
		Sa	mple Mat	rix (Select O	ne Only)				5	-5	2								T		
- Waste V	Vater 🔀	I Per	Soil		, D	rinking Wat	or []	iers	Only	ALLA											
Ground	Water []history	Sludge			Tiliking Wat	е .	ntain	One	, \d											
Surface	Water []	,					No. of Containers	heck	posite	\$										
Date	Time			Sar	nple ID			Š	Grab or (Check One Only)	Compc	5										
2/15	9:50	<u> </u>	0 I	00 z A	<u>P#CS PC -y-1, N-1 _ 1.</u>	Company Service Company	<u> </u>	3	+ -	4								-			
7.0			<u> </u>	00 271			-														
											-										
																-			_		
									+++						-						
	<u>-</u> -		=																		
						-	3)														
) 	_								-			+		
									-									_			
			-		•				+-+												
Instruction	ns:						C/S Info	<u> </u> :						Seals	Present	 Yes □	No 🗔				
							D. P	72	i / Δ ·	<		C/S Char	ا ک کلاء	T	2	°C/Ice	Y	Samul	Dros V	es N	,
Relinquish	ed By:	Date	e/Time:	Received	By:	Date/T	Deliver V	Relinq	uished I	By:	T	Date/Tin	ne:	Red	ceived		-1	Sample	Date	e/Time	:
(JD)	cher	07/2/1	54:1	Son -			Page	4 of 5						1	5 A	la.	M	A	12	116	124
				7							I			7	J' "		· ·				800

JAK

Bottle Order Test Detail

Order ID: QBO23120014

Date Created: 12/4/23

Ship To:	horin Resources,	LLC
----------	------------------	-----

1900 Main St

Unit 1

Ouray CO 81427

Attention: CJ Dickerson

602-793-1321

Verify All Shipping Addresses

Shipping Options:

Ship Via: **UPS** Cooler: Yes

Chain of Custody

Drinking Water:

Standard: 2

Customer Needs By: 12/8/23

Ships From: Commerce City

Prolect:

Bottle / Preservative / Test Qty. 1i Amber - H2SO4

Oil & Grease - Water - Ground

No sample received. 2/16/24 LK

2 500 ml Cylinder - HNO3

Ag - PD - Water - Ground

Cd - PD - Water - Ground

Cu - PD - Water - Ground

Fe - TR - Water - Ground

Hg - Water - Ground

Mn - PD - Water - Ground

Pb - PD - Water - Ground

Pb - Total - Water - Ground

Zn - PD - Water - Ground

2 500 ml Cylinder - NaOH

Cyanide-Weak Acid Dissociable - Water - Ground

2 500 mi Cylinder - Unpreserved

Ph - Water - Ground

TSS - Water - Ground

Samples should be shipped or hand delivered the same day they are collected. Orders that require sub-lab analysis should be delivered to the lab Monday thru Wednesday only.

Internal Shipping Instructions:

Bi-Monthly - Hg-Total

10411 Heinz Way / Commerce City, CO 80640 / 303-659-2313 Mailing Address: P.O. Box 507 / Brighton, CO 80601-0507

Analytical Results

TASK NO: 240227003

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240227003

Client PO:

Client Project: Revenue - Virginius

Date Received: 2/27/24 Date Reported: 3/6/24

Matrix: Wastewater

Customer Sample ID OF002A

Sample Date/Time: 2/26/24 2:00 PM Lab Number: 240227003-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Cyanide-Weak Acid Dissociable	ND mg/L	ASTM 2036-09C	0.005	0.0005	2/29/24	QC71644	JCB
рН	7.39 units	SM 4500-H-B	0.01	0.01	2/27/24	-	ARH
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	2/28/24	QC71607	ARH
Potentially Dissolved							
Cadmium	ND mg/L	EPA 200.8	0.0001	0.000006	2/28/24	QC71617	MBN
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	2/28/24	QC71617	MBN
Lead	0.0005 mg/L	EPA 200.8	0.0001	0.000006	2/28/24	QC71617	MBN
Manganese	0.0790 mg/L	EPA 200.8	0.0008	0.00001	2/28/24	QC71617	MBN
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	2/28/24	QC71617	MBN
Zinc	0.060 mg/L	EPA 200.8	0.001	0.00003	2/28/24	QC71617	MBN
<u>Total</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	2/29/24	QC71646	JJA
Lead	0.0005 mg/L	EPA 200.8	0.0001	0.000006	2/28/24	QC71617	MBN
Total Recoverable							
Iron	0.026 mg/L	EPA 200.7	0.005	0.0005	2/29/24	QC71622	MBN

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations. (s) The accuracy of the spike recovery value is reduced due to the analyte

concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Analytical QC Summary

TASK NO: 240227003

Report To: CJ Dickerson

Company: Thorin Resources, LLC

Receive Date: 2/27/24

Project Name: Revenue - Virginius

Test	QC Batch ID	QC Type	Result		Method	Prep Date
Cyanide-Weak Acid Dissociable	QC71644	Blank	ND	AS	STM 2036-09C	2/29/24
Mercury	QC71646	Method Blank	ND		EPA 245.7	2/29/24
Cadmium	QC71617	Method Blank	ND		EPA 200.8	2/27/24
Copper	QC71617	Method Blank	ND		EPA 200.8	2/27/24
_ead	QC71617	Method Blank	ND		EPA 200.8	2/27/24
Manganese	QC71617	Method Blank	ND		EPA 200.8	2/27/24
Silver	QC71617	Method Blank	ND		EPA 200.8	2/27/24
Zinc	QC71617	Method Blank	ND		EPA 200.8	2/27/24
Iron	QC71622	Method Blank	ND		EPA 200.7	2/26/24
Total Suspended Solids	QC71607	Blank	ND		SM 2540-D	2/28/24
Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
Cyanide-Weak Acid Dissociable	QC71644	Duplicate	0 - 20	-	0.5	ASTM 2036-09C
		LCS	90 - 110	94.1	-	
		MS	75 - 125	86.0	-	
Mercury	QC71646	Duplicate	0 - 20	-	0.0	EPA 245.7
		LCS	90 - 110	106.6	-	
		MS	80 - 120	98.0	-	
Cadmium	QC71617	LCS	90 - 110	93.6	-	EPA 200.8
		MS	70 - 130	104.3	-	
		MSD	0 - 10	-	1.0	
Copper	QC71617	LCS	90 - 110	94.9	-	EPA 200.8
		MS	70 - 130	100.0	-	
		MSD	0 - 10	-	1.6	
Lead	QC71617	LCS	90 - 110	101.9	=	EPA 200.8
		MS	70 - 130	84.9	-	
		MSD	0 - 10	-	3.5	
Manganese	QC71617	LCS	90 - 110	98.0	-	EPA 200.8
J		MS	70 - 130	88.6	-	
		MSD	0 - 10	-	1.5	
Silver	QC71617	LCS	90 - 110	95.1	-	EPA 200.8
		MS	70 - 130	91.2	-	
		MSD	0 - 10	-	0.8	
Zinc	QC71617	LCS	90 - 110	97.8	-	EPA 200.8
		MS	70 - 130	96.9	-	
		MSD	0 - 10	-	1.5	
Iron	QC71622	Duplicate	0 - 20	_	0.0	EPA 200.7
	20, 1022	LCS	90 - 110	99.4	-	2 200
		MS	75 - 125	97.8	-	
Total Suspended Solids	QC71607	Duplicate	0 - 10	-	4.2	SM 2540-D
Total Guoporidos Golius	Q011001	LCS	90 - 110	90.4	7.4	3W 2040 D

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

All analyses were performed in accordance with approved methods under the latest revision to 40 CFR Part 136 unless otherwise identified. Based on my inquiry of the person or persons directly responsible for analyzing the wastewater samples and generating the report (s), the analyses, report, and information submitted are, to the best of my knowledge and belief, true, accurate, and complete.

DATA APPROVED FOR RELEASE BY

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Chain of Custody Form

	Chain o	f Custody	Foi	m							Ç		Colp	rad	Q
Report To Information	Bill To Information (If	different from	n repo	rt to)	P	rojec	t Name	/ Numbe					Analy		
Company Name: Thorin Resources	Company Name: Th	orin Re	500-	ces		Res	venv	18/- V	ivain	W		L	ABOHATO		Ü
Contact Name: CJDickeson	Contact Name: CJ Dickeron				Reverse Vivginia per history 2/27 Task Number			Commerce City L: 10411 Heinz Way							
Address: 1900 Main St. Unit (Address:		· · · · · · · · · · · · · · · · · · ·			Task Number (Lab Use Only)			•	M			City C Service		
City Oway State Co Zip 3142	City St	tate Z	ip								610 G	arris	on Stre CO 80	et, U	
Phone: (970) 316-2284	Phone:	·					CA	L Tas	k 📗		Phone	: 303	-659-2	313	
Email: ciduckeronetherinresources.c	or Email:	<u> </u>					240	22700	3		1 11011		007 -		
Sample Collector: (J): Cherson											www.	color	adolab	.com	
Sample Collector Phone: (602) 793-1321	PO No.:						S	LM						_	
	3				<u> </u>	e ja sir			Ta	to Door	natad	<u>.</u>	41 P. A.		dáis
Sample Matrix (Select (One Only)		Γ						1 63	ts Requ	ested	Τ		T	
Waste Water Soil			srs	only	, \}	0/24/244	:								
Ground Water Sludge Sludge	Drinking Water		ıtaine	One		\$									
Surface Water			of Containers	Grab or (Check One Only)	nposite	- 1									
Date Time Sa	mple ID		S S	Gra or (Con	120TH4									E .
P/26 Z:00 OFOUZA			3	*		X									
									_						
			-						_						-
		<u> </u>							-					-	+
									_	-		<u> </u>			
					-							-			1
												+-		-	+
nstructions: Please send empty set back		C/S Info:							Seals Pr	esent Yes [No 🗌				1
Relinquished By: Date/Time: Receive	d By: Date/Tim	Deliver Via:		V ished l	29			harge N	Temp.	°C/Ice	V Sa	ımple P	res. Yes		<u> </u>

Date/Time:

CAL Task 240227003

Bottle Order Test Detail

Order ID: QBO23120014

SLM

Date Created: 12/4/23

Ship To: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Attention: CJ Dickerson

602-793-1321

Verify All Shipping Addresses

Shipping Options:

Ship Via:

UPS

Cooler: Yes

Chain of Custody

Drinking Water:

Standard: 2

Customer Needs By: 12/8/23

Ships From: Commerce City

Project:

Qty. **Bottle / Preservative / Test** 11 Amber - H2SO4

Oil & Grease - Water - Ground

No Sample revered 2/27/24 Sh

500 ml Cylinder - HNO3

Ag - PD - Water - Ground

Cd - PD - Water - Ground

Cu - PD - Water - Ground

Fe - TR - Water - Ground

Hg - Water - Ground

Mn - PD - Water - Ground

Pb - PD - Water - Ground

Pb - Total - Water - Ground

Zn - PD - Water - Ground

2 500 ml Cylinder - NaOH

Cyanide-Weak Acid Dissociable - Water - Ground

2 500 mi Cylinder - Unpreserved

Ph - Water - Ground

TSS - Water - Ground

Samples should be shipped or hand delivered the same day they are collected. Orders that require sub-lab analysis should be delivered to the lab Monday thru Wednesday only.

	n	terna	l Ship	pina	Instruc	et	ions:
--	---	-------	--------	------	---------	----	-------

Bi-Monthly - Hg-Total

10411 Heinz Way / Commerce City, CO 80640 / 303-659-2313 Mailing Address: P.O. Box 507 / Brighton, CO 80601-0507

Analytical Results

TASK NO: 240308002

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240308002

Client PO:

Client Project: Revenue - Virginius

Date Received: 3/8/24
Date Reported: 3/20/24

Matrix: Wastewater

Customer Sample ID OF002A

Sample Date/Time: 3/6/24 1:00 PM **Lab Number:** 240308002-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Cyanide-Weak Acid Dissociable	ND mg/L	ASTM 2036-09C	0.005	0.0005	3/13/24	QC71916	JCB
рН	7.45 units	SM 4500-H-B	0.01	0.01	3/8/24	-	AKF
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	3/11/24	QC71858	ISG
Potentially Dissolved							
Cadmium	ND mg/L	EPA 200.8	0.0001	0.000006	3/14/24	QC71942	MBN
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	3/14/24	QC71942	MBN
Lead	0.0008 mg/L	EPA 200.8	0.0001	0.000006	3/14/24	QC71942	MBN
Manganese	0.0978 mg/L	EPA 200.8	0.0008	0.00001	3/14/24	QC71942	MBN
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	3/14/24	QC71942	MBN
Zinc	0.058 mg/L	EPA 200.8	0.001	0.00003	3/14/24	QC71942	MBN
<u>Total</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	3/18/24	QC72043	JJA
Lead	0.0008 mg/L	EPA 200.8	0.0001	0.000006	3/14/24	QC71942	MBN
Total Recoverable							
Iron	0.026 mg/L	EPA 200.7	0.005	0.0005	3/13/24	QC71899	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Analytical QC Summary

TASK NO: 240308002

Report To: CJ Dickerson **Receive Date:** 3/8/24

Company: Thorin Resources, LLC Project Name: Revenue - Virginius

Test	QC Batch ID	QC Type	Result		Method	Prep Date
Cyanide-Weak Acid Dissociable	QC71916	Blank	ND	AS	TM 2036-09C	3/11/24
Mercury	QC72043	Method Blank	ND		EPA 245.7	3/18/24
Cadmium	QC71942	Method Blank	ND		EPA 200.8	3/8/24
Copper	QC71942	Method Blank	ND		EPA 200.8	3/8/24
Lead	QC71942	Method Blank	ND		EPA 200.8	3/8/24
Manganese	QC71942	Method Blank	ND		EPA 200.8	3/8/24
Silver	QC71942	Method Blank	ND		EPA 200.8	3/8/24
Zinc	QC71942	Method Blank	ND		EPA 200.8	3/8/24
Iron	QC71899	Method Blank	ND		EPA 200.7	3/8/24
Total Suspended Solids	QC71858	Blank	ND		SM 2540-D	3/11/24
Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
Cyanide-Weak Acid Dissociable	QC71916	Duplicate	0 - 20	-	0.0	ASTM 2036-09C
		LCS	90 - 110	107.3	-	
		MS	75 - 125	98.5	-	
Mercury	QC72043	Duplicate	0 - 20	-	0.0	EPA 245.7
•		LCS	90 - 110	101.4	-	
		MS	80 - 120	94.0	-	
Cadmium	QC71942	LCS	90 - 110	103.5	-	EPA 200.8
		MS	70 - 130	107.2	-	
		MSD	0 - 10	-	0.6	
Copper	QC71942	LCS	90 - 110	106.1	-	EPA 200.8
• •		MS	70 - 130	106.7	-	
		MSD	0 - 10	-	0.5	
Lead	QC71942	LCS	90 - 110	93.8	-	EPA 200.8
		MS	70 - 130	92.6	-	
		MSD	0 - 10	-	2.6	
Manganese	QC71942	LCS	90 - 110	105.8	-	EPA 200.8
S		MS	70 - 130	104.1	-	
		MSD	0 - 10	=	2.6	
Silver	QC71942	LCS	90 - 110	100.2	-	EPA 200.8
		MS	70 - 130	104.3	-	
		MSD	0 - 10	-	1.2	
Zinc	QC71942	LCS	90 - 110	103.9	-	EPA 200.8
20	Q071012	MS	70 - 130	108.2	-	2171200.0
		MSD	0 - 10	-	1.4	
Iron	QC71899	Duplicate	0 - 20		0.0	EPA 200.7
	Q011003	LCS	90 - 110	94.4	-	L1 /1 200.1
		MS	75 - 125	90.5	- -	
Total Suspended Solids	QC71858	Duplicate	0 - 10	-	8.6	SM 2540-D
Total Suspended Solids	QU/ 1000	LCS		92.0	o.o -	31VI 2040-D
		LUO	90 - 110	92.0	-	

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

All analyses were performed in accordance with approved methods under the latest revision to 40 CFR Part 136 unless otherwise identified. Based on my inquiry of the person or persons directly responsible for analyzing the wastewater samples and generating the report (s), the analyses, report, and information submitted are, to the best of my knowledge and belief, true, accurate, and complete.

DATA APPROVED FOR RELEASE BY

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Chain of Custody Form

Report To Information	Bill To Information (If different from report to)	Project Name / Number
Company Name: Thorin Resources Contact Name: CJ Dickerson	Company Name: Thorn Resources Contact Name: CT Dicherson	
Address: 1900 Main St. Lnill	Address:	Task Number (Lab Use Only)
City Ouray State W Zip 8/427	City State Zip	CAL Task
Phone: 970 316 2294	Phone:	240308002
Email: cidicherone thornresources.com	Email:	240300002
Sample Collector: CJ Dickerson		RMB
Sample Collector Phone: (602) 793-1321	PO No.:	

Commerce City Lab 10411 Heinz Way Commerce City CO 80640

Lakewood Service Center 610 Garrison Street, Unit E Lakewood CO 80215

Phone: 303-659-2313

www.coloradolab.com

											Te	sts R	eque	sted	l ýt s			
		Sample Matrix (Select One On	l y)		,	<u>~</u>											- male	
Groun	Water 🔀 d Water 🗀 e Water 🗀	history Sludge []	Drinking Water	No. of Containers	rab	or (Check One Only) Composite	Order attached											
Date	Time	Sample I	D	Z	5	5 O	0											
3/6	1:0000	OFOOZA		3	~		1								_			
+	•																	
				1	†							+				1		
		Project per history. 3/8/24 JK																
			(3)															
Instruction	ons:		C/S Info:	<u>-</u>	-		<u> </u>			5	Seals P		Yes 🔲	No 🗆				
			Deliver Vi	a:	ſλ	ps	<u>`</u>	C/S	Charge		Temp.	2.	C/Ice	Y	Sample	Pres. Yo		√ 0 □
Relinquis	hed By:	Date/Time: Received By:	Date/Time:	Relinqu	ished	By:		Dat	e/Time		Reco	eived		?	Sample	Date	/Time	**
CID	ideesson	3/7/3:50pm	Page	4 of 5							1	Ad	a	M	1	3,	18/	24
												γ ີ		•	<i>,</i> ——			000

Bottle Order Test Detail

Order ID: QBO23120014

Date Created: 12/4/23

Thorin Resources, LLC Ship To:

Unit 1

Attention: CJ Dickerson

1900 Main St

CAL Task

240308002

Ouray CO 81427 RMB Shipping Options:

Ship Via: **UPS** Cooler: Yes

Chain of Custody

Drinking Water:

Standard: 2

Customer Needs By: 12/8/23

Ships From: Commerce City

602-793-1321

Verify All Shipping Addresses

Project:

Bottle / Preservative / Test Qty.

11 Amber - H2SO4

Oil & Grease - Water - Ground

*Sample not received in 318.

2 500 ml Cylinder - HNO3

Ag - PD - Water - Ground

Cd - PD - Water - Ground

Cu - PD - Water - Ground

Fe - TR - Water - Ground

Hg - Water - Ground

Mn - PD - Water - Ground Pb - PD - Water - Ground

Pb - Total - Water - Ground

Zn - PD - Water - Ground

500 ml Cylinder - NaOH

Cyanide-Weak Acid Dissociable - Water - Ground

2 500 ml Cylinder - Unpreserved

Ph - Water - Ground

TSS - Water - Ground

Samples should be shipped or hand delivered the same day they are collected. Orders that require sub-lab analysis should be delivered to the lab Monday thru Wednesday only.

Internal Shipping Instructions:

Bi-Monthly - Hg-Total

2

10411 Heinz Way / Commerce City, CO 80640 / 303-659-2313 Mailing Address: P.O. Box 507 / Brighton, CO 80601-0507

Page 1 of 1

JML

TASK NO: 240321003

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240321003

Client PO:

Client Project: Revenue - Virginius

Date Received: 3/21/24 Date Reported: 3/29/24

Matrix: Wastewater

Customer Sample ID OF002A

Sample Date/Time: 3/19/24 9:00 AM **Lab Number:** 240321003-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Cyanide-Weak Acid Dissociable	ND mg/L	ASTM 2036-09C	0.005	0.0005	3/27/24	QC72213	KRB
рН	7.48 units	SM 4500-H-B	0.01	0.01	3/21/24	-	JCB
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	3/22/24	QC72151	ARH
Potentially Dissolved							
Cadmium	ND mg/L	EPA 200.8	0.0001	0.000006	3/28/24	QC72246	MBN
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	3/28/24	QC72246	MBN
Lead	0.0006 mg/L	EPA 200.8	0.0001	0.000006	3/28/24	QC72246	MBN
Manganese	0.0999 mg/L	EPA 200.8	0.0008	0.00001	3/28/24	QC72246	MBN
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	3/28/24	QC72246	MBN
Zinc	0.058 mg/L	EPA 200.8	0.001	0.00003	3/28/24	QC72246	MBN
<u>Total</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	3/28/24	QC72280	JJA
Lead	0.0006 mg/L	EPA 200.8	0.0001	0.000006	3/28/24	QC72246	MBN
Total Recoverable							
Iron	0.025 mg/L	EPA 200.7	0.005	0.0005	3/25/24	QC72183	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte

concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Analytical QC Summary

TASK NO: 240321003

Report To: CJ Dickerson

Company: Thorin Resources, LLC

Receive Date: 3/21/24

Project Name: Revenue - Virginius

Test	QC Batch ID	QC Type	Result		Method	Prep Date
Cyanide-Weak Acid Dissociable	QC72213	Blank	ND	AS	STM 2036-09C	3/26/24
Mercury	QC72280	Method Blank	ND		EPA 245.7	3/28/24
Cadmium	QC72246	Method Blank	ND		EPA 200.8	3/21/24
Copper	QC72246	Method Blank	ND		EPA 200.8	3/21/24
_ead	QC72246	Method Blank	ND		EPA 200.8	3/21/24
Manganese	QC72246	Method Blank	ND		EPA 200.8	3/21/24
Silver	QC72246	Method Blank	ND		EPA 200.8	3/21/24
Zinc	QC72246	Method Blank	ND		EPA 200.8	3/21/24
ron	QC72183	Method Blank	ND		EPA 200.7	3/21/24
Total Suspended Solids	QC72151	Blank	ND		SM 2540-D	3/22/24
Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
Cyanide-Weak Acid Dissociable	QC72213	Duplicate	0 - 20	-	0.0	ASTM 2036-09C
		LCS	90 - 110	99.9	-	
		MS	75 - 125	88.5	-	
Mercury	QC72280	Duplicate	0 - 20	-	0.0	EPA 245.7
		LCS	90 - 110	101.8	-	
		MS	80 - 120	104.0	-	
Cadmium	QC72246	LCS	90 - 110	100.6	=	EPA 200.8
		MS	70 - 130	97.4	-	
		MSD	0 - 10	-	3.2	
Copper	QC72246	LCS	90 - 110	100.7	=	EPA 200.8
		MS	70 - 130	97.1	-	
		MSD	0 - 10	-	1.7	
Lead	QC72246	LCS	90 - 110	101.3	=	EPA 200.8
		MS	70 - 130	93.2	-	
		MSD	0 - 10	-	3.6	
Manganese	QC72246	LCS	90 - 110	104.0	-	EPA 200.8
· ·		MS	70 - 130	123.0	-	
		MSD	0 - 10	-	0.5	
Silver	QC72246	LCS	90 - 110	92.3	-	EPA 200.8
		MS	70 - 130	72.2	-	
		MSD	0 - 10	-	0.4	
 Zinc	QC72246	LCS	90 - 110	103.4	-	EPA 200.8
		MS	70 - 130	113.0	-	
		MSD	0 - 10	-	2.0	
Iron	QC72183	Duplicate	0 - 20	-	1.2	EPA 200.7
	Q0/2100	LCS	90 - 110	90.7	-	2.7.200.7
		MS	75 - 125	95.0	_	
Total Suspended Solids	QC72151	Duplicate	0 - 10	-	1.4	SM 2540-D
Total Ousperlace Solids	Q012131	LCS	90 - 110	90.2	1.77	OW 2340-D

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

All analyses were performed in accordance with approved methods under the latest revision to 40 CFR Part 136 unless otherwise identified. Based on my inquiry of the person or persons directly responsible for analyzing the wastewater samples and generating the report (s), the analyses, report, and information submitted are, to the best of my knowledge and belief, true, accurate, and complete.

DATA APPROVED FOR RELEASE BY

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

* Ana	orado lytical
LABORA	TORIES, INC

	Chain of Custody I	Fori	n									J.	Z),	Col And	biö	go
Report To Information	Bill To Information (If different from re	eport	to)	The state of	roje	ect Na	me / N	lumbe	r	Ž.				LABORA	_	
Company Name: Thorin Resources	Company Name:		···.	_ _	R	وهو	rue	<u>Y</u>	irgi	<u>n</u> flus	_					
Contact Name: CJ Dickerson	Contact Name:			_ -		Pe	v b	tst	Drie	nius = 3/2	lzy UK	Commerce City Lab 10411 Heinz Way Commerce City CO 80640				
Address: 1900 Man St Unit 1	Address:			7	Γask	Num Use C	ber							e Cny i Serv		
City Oway State CO Zip 8/427	City State Zip										610	Garri	son S	treet,	Unit E	
Phone: 970 316 2294	Phone:				CAL Task					Lakewood CO 80215 Phone: 303-659-2313						
Email: Ejdickerson othering esources. com	Email:				:	2403	3210	03								
Sample Collector: CJ Dicheson						J	AK		 - 			wwv	v.colo	radol	ab.co	m
Sample Collector Phone: (602) 793-1821	PO No.:				_			·								
							\$11.6			Tests F	Regue	sted	401			10 m 76 10 m 10 m
Sample Matrix (Select On	e Only)	T	 S												\Box	
Waste Water Soil S	Drinking Water	ners	e Onl		att.	*										
Ground Water Sludge Sludge		ontai	k On	ع <u>ع</u>	٥	20										
Surface Water OFOOZA Logged	ar Liaskwakr for bistory.	No. of Containers	Grab or (Check One Only)	mposi	BOHTE ander) <u>P</u>										
Date Time Sam	ole ID	ž	G 5	ပြ	200	9										
3/19 9:00 an OFOOZA - B.	-monthly	3	*	د ا	<u> </u>											
3/1 10:00an 46-5		5	~			×										
3/19 10:40 LG-Z		5	*			×										
3119 11:00an 46-8	4	5	X		\perp	*										
		\perp	_	_	_	_		1_		_	<u> </u>		_			
		\bot			_			ļ			<u> </u>					
					\perp											

RIESTING DOSED ON QBO24010976 and WHLES FCD. Instructions: Please return boffles (OFOOZA ONLY) C/S Info: Seals Present Yes No Temp. 2 °C/Ice
Received By: Deliver Via: C/S Charge Date/Time: Sample Pres. Yes No Date/Time: Relinquished By: Date/Time: Relinquished By: Date/Time: Received By: Dickerson Page 4 of 5

JAK

Bottle Order Test Detail

Order ID: QBO23120014

Date Created: 12/4/23

Ship To: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Attention: CJ Dickerson

B:-Month

602-793-1321

Verify All Shipping Addresses

Shipping Options:

Ship Via: **UPS** Cooler: Yes

Chain of Custody

Drinking Water:

Standard: 2

Customer Needs By: 12/8/23

Ships From: Commerce City

Project:

Bottle / Preservative / Test Qty.

11 Amber - H2SO4

Oil & Grease - Water - Ground

- no sample received. 3/21/24 SK

2 500 ml Cylinder - HNO3

Ag - PD - Water - Ground

Cd - PD - Water - Ground

Cu - PD - Water - Ground

Fe - TR - Water - Ground

Hg - Water - Ground

Mn - PD - Water - Ground

Pb - PD - Water - Ground

Pb - Total - Water - Ground Zn - PD - Water - Ground

500 ml Cylinder - NaOH Cvanide-Weak Acid Dissociable - Water - Ground

2 500 ml Cylinder - Unpreserved

Ph - Water - Ground

TSS - Water - Ground

"Samples should be shipped or hand delivered the same day they are collected. Orders that require sub-lab analysis should be delivered to the lab Monday thru Wednesday only.**

Internal Shipping Instructions:

Bi-Monthly - Hg-Total

2

10411 Heinz Way / Commerce City, CO 80640 / 303-659-2313 Mailing Address: P.O. Box 507 / Brighton, CO 80601-0507

JML

TASK NO: 240424001

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240424001

Client PO:

Client Project: CDPS Quart WW

Date Received: 4/24/24 Date Reported: 5/3/24

Matrix: Wastewater

Customer Sample ID OF002A

Sample Date/Time: 4/23/24 11:30 AM

Lab Number: 240424001-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Cyanide-Weak Acid	ND mg/L	ASTM 2036-09C	0.005	0.0005	4/26/24	QC72945	KRB
Dissociable							
рH	7.58 units	SM 4500-H-B	0.01	0.01	4/24/24	=	ARH
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	4/24/24	QC72899	ISG
Potentially Dissolved							
Cadmium	ND mg/L	EPA 200.8	0.0001	0.000006	4/30/24	QC73030	MBN
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	4/30/24	QC73030	MBN
Lead	0.0012 mg/L	EPA 200.8	0.0001	0.000006	4/30/24	QC73030	MBN
Manganese	0.1058 mg/L	EPA 200.8	0.0008	0.00001	4/30/24	QC73030	MBN
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	4/30/24	QC73030	MBN
Zinc	0.040 mg/L	EPA 200.8	0.001	0.00003	4/30/24	QC73030	MBN
<u>Total</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	4/25/24	QC72948	JJA
Lead	0.0014 mg/L	EPA 200.8	0.0001	0.000006	4/30/24	QC73030	MBN
Total Recoverable							
Iron	0.067 mg/L	EPA 200.7	0.005	0.0005	4/26/24	QC72973	MBN

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240424001

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240424001

Client PO:

Client Project: CDPS Quart WW

Date Received: 4/24/24 Date Reported: 5/3/24

Matrix: Wastewater

Customer Sample ID CB- UG01

Sample Date/Time: 4/23/24 12:32 PM

Lab Number: 240424001-02

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
			<u></u>	<u></u>			
Cyanide-Weak Acid	ND mg/L	ASTM 2036-09C	0.005	0.0005	4/26/24	QC72945	KRB
Dissociable							
рН	7.69 units	SM 4500-H-B	0.01	0.01	4/24/24	-	ARH
Total Dissolved Solids	1118 mg/L	SM 2540-C	5	2	4/25/24	QC72916	ISG
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	4/24/24	QC72899	ISG
<u>Dissolved</u>							
Chromium - Hexavalent	ND mg/L	SM 3500-Cr B	0.02	0.01	4/25/24	QC72903	AMJ
Potentially Dissolved							
Cadmium	0.0009 mg/L	EPA 200.8	0.0001	0.000006	4/30/24	QC73030	MBN
Copper	0.0031 mg/L	EPA 200.8	0.0008	0.00001	4/30/24	QC73030	MBN
Lead	0.0032 mg/L	EPA 200.8	0.0001	0.000006	4/30/24	QC73030	MBN
Manganese	0.1365 mg/L	EPA 200.8	0.0008	0.00001	4/30/24	QC73030	MBN
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	4/30/24	QC73030	MBN
Zinc	0.198 mg/L	EPA 200.8	0.001	0.00003	4/30/24	QC73030	MBN
<u>Total</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	4/25/24	QC72948	JJA
Cadmium	0.0009 mg/L	EPA 200.8	0.0001	0.000006	4/30/24	QC73030	MBN
Copper	0.0037 mg/L	EPA 200.8	0.0008	0.00001	4/30/24	QC73030	MBN
Lead	0.0034 mg/L	EPA 200.8	0.0001	0.000006	4/30/24	QC73030	MBN
Zinc	0.199 mg/L	EPA 200.8	0.001	0.00003	4/30/24	QC73030	MBN
Total Recoverable							
Chromium - Trivalent	ND mg/L	Calculation	0.02	0.01	4/26/24	-	MBN
Arsenic	0.0011 mg/L	EPA 200.8	0.0006	0.00006	4/30/24	QC73030	MBN
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	4/30/24	QC73030	MBN

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240424001

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240424001

Client PO:

Client Project: CDPS Quart WW

Date Received: 4/24/24 Date Reported: 5/3/24

Matrix: Wastewater

Customer Sample ID CB- UG01

Sample Date/Time: 4/23/24 12:32 PM

Lab Number: 240424001-02

Test Result / Units Method MDL Date Analyzed QC Batch ID Analyzed By Total Recoverable Iron 0.199 mg/L EPA 200.7 0.005 0.0005 4/26/24 QC72973 MBN

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations. (s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240424001

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240424001

Client PO:

Client Project: CDPS Quart WW

Date Received: 4/24/24 Date Reported: 5/3/24

Matrix: Wastewater

Customer Sample ID CBOF

Sample Date/Time: 4/23/24 1:00 PM

Lab Number: 240424001-03

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Cyanide-Weak Acid Dissociable	ND mg/L	ASTM 2036-09C	0.005	0.0005	4/26/24	QC72945	KRB
рН	7.74 units	SM 4500-H-B	0.01	0.01	4/24/24	-	ARH
Total Dissolved Solids	1139 mg/L	SM 2540-C	5	2	4/25/24	QC72916	ISG
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	4/24/24	QC72899	ISG
<u>Dissolved</u>							
Chromium - Hexavalent	ND mg/L	SM 3500-Cr B	0.02	0.01	4/25/24	QC72903	AMJ
Potentially Dissolved							
Cadmium	0.0022 mg/L	EPA 200.8	0.0001	0.000006	4/30/24	QC73030	MBN
Copper	0.0025 mg/L	EPA 200.8	0.0008	0.00001	4/30/24	QC73030	MBN
Lead	0.0031 mg/L	EPA 200.8	0.0001	0.000006	4/30/24	QC73030	MBN
Manganese	0.0967 mg/L	EPA 200.8	0.0008	0.00001	4/30/24	QC73030	MBN
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	4/30/24	QC73030	MBN
Zinc	0.523 mg/L	EPA 200.8	0.001	0.00003	4/30/24	QC73030	MBN
<u>Total</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	4/25/24	QC72948	JJA
Mercury	ND ug/L	EPA 245.7	0.002	0.0002	5/1/24	QC73081	NRP
Cadmium	0.0023 mg/L	EPA 200.8	0.0001	0.000006	4/30/24	QC73030	MBN
Copper	0.0027 mg/L	EPA 200.8	0.0008	0.00001	4/30/24	QC73030	MBN
Lead	0.0033 mg/L	EPA 200.8	0.0001	0.000006	4/30/24	QC73030	MBN
Zinc	0.530 mg/L	EPA 200.8	0.001	0.00003	4/30/24	QC73030	MBN
Total Recoverable							
Chromium - Trivalent	ND mg/L	Calculation	0.02	0.01	4/26/24	-	MBN
Arsenic	0.0009 mg/L	EPA 200.8	0.0006	0.00006	4/30/24	QC73030	MBN

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240424001

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240424001

Client PO:

Client Project: CDPS Quart WW

Date Received: 4/24/24 Date Reported: 5/3/24

Matrix: Wastewater

Customer Sample ID CBOF

Sample Date/Time: 4/23/24 1:00 PM

Lab Number: 240424001-03

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Total Recoverable							
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	4/30/24	QC73030	MBN
Iron	0.150 mg/L	EPA 200.7	0.005	0.0005	4/26/24	QC72973	MBN

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240424001

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240424001

Client PO:

Client Project: CDPS Quart WW

Date Received: 4/24/24 Date Reported: 5/3/24

Matrix: Wastewater

Customer Sample ID Hg LL Field Blank
Sample Date/Time: 4/23/24 1:00 PM

Lab Number: 240424001-04

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
<u>Total</u>							
Mercury	ND ug/L	EPA 245.7	0.002	0.0002	5/1/24	QC73081	NRP

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Analytical QC Summary

Prep Date

TASK NO: 240424001

Report To: CJ Dickerson

Test

Company: Thorin Resources, LLC

QC Batch ID QC Type

Receive Date: 4/24/24

Project Name: CDPS Quart WW

Test	QC Batch ID	QC Type	Result		Method	Prep Date
Chromium - Hexavalent	QC72903	Blank	ND		SM 3500-Cr B	4/24/24
Cyanide-Weak Acid Dissociable	QC72945	Blank	ND	А	STM 2036-09C	4/25/24
Mercury	QC72948	Method Blank	ND		EPA 245.7	4/25/24
	QC73081	Method Blank	ND		EPA 245.7	5/1/24
Arsenic	QC73030	Method Blank	ND		EPA 200.8	4/24/24
Cadmium	QC73030	Method Blank	ND		EPA 200.8	4/24/24
Chromium	QC73030	Method Blank	ND		EPA 200.8	4/24/24
Copper	QC73030	Method Blank	ND		EPA 200.8	4/24/24
Lead	QC73030	Method Blank	ND		EPA 200.8	4/24/24
Manganese	QC73030	Method Blank	ND		EPA 200.8	4/24/24
Silver	QC73030	Method Blank	ND		EPA 200.8	4/24/24
Zinc	QC73030	Method Blank	ND		EPA 200.8	4/24/24
Iron	QC72973	Method Blank	ND		EPA 200.7	4/24/24
Total Dissolved Solids	QC72916	Blank	ND		SM 2540-C	4/24/24
Total Suspended Solids	QC72899	Blank	ND		SM 2540-D	4/24/24
Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
Chromium - Hexavalent	QC72903	Duplicate -240417083-01	0 - 20	-	0.0	SM 3500-Cr B
		LCS	90 - 110	97.2	-	
Cyanide-Weak Acid Dissociable	QC72945	Duplicate -240424063-01	0 - 20	-	0.0	ASTM 2036-09C
•		LCS	90 - 110	94.6	-	
		MS -240424001-01C	75 - 125	110.5	-	
Mercury	QC72948	Duplicate -240419098-04	0 - 20	-	0.0	EPA 245.7
		LCS	90 - 110	106.8	-	
		MS -240419098-04	80 - 120	92.0	-	
Mercury	QC73081	LCS	76 - 113	106.0	-	EPA 245.7
•		MS -240424001-03F	63 - 111	83.0	-	
		MSD -240424001-03F	0 - 18	_	8.4	
Arsenic	QC73030	LCS	90 - 110	101.7	-	EPA 200.8
		MS -240423127-04	70 - 130	102.3	-	
		MSD -240423127-04	0 - 10	_	1.6	
Cadmium	QC73030	LCS	90 - 110	99.9	-	EPA 200.8
		MS -240423127-04	70 - 130	100.3	-	
		MSD -240423127-04	0 - 10	-	0.1	
Chromium		LCS	90 - 110	106.2	-	EPA 200.8
		MS -240423127-04	70 - 130	102.9	-	
		MSD -240423127-04	0 - 10	-	1.0	
Copper		LCS	90 - 110	100.5	-	EPA 200.8
		MS -240423127-04	70 - 130	99.0	-	
		=		00.0		
		MSD -240423127-04	0 - 10	-	0.1	

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
	•	MS -240423127-04	70 - 130	85.8	-	
		MSD -240423127-04	0 - 10	-	3.1	
Manganese	QC73030	LCS	90 - 110	103.6	-	EPA 200.8
		MS -240423127-04	70 - 130	98.3	-	
		MSD -240423127-04	0 - 10	-	4.3	
Silver	QC73030	LCS	90 - 110	100.0	-	EPA 200.8
		MS -240423127-04	70 - 130	87.7	-	
		MSD -240423127-04	0 - 10	-	2.3	
Zinc	QC73030	LCS	90 - 110	100.6	-	EPA 200.8
		MS -240423127-04	70 - 130	102.9	-	
		MSD -240423127-04	0 - 10	-	1.6	
Iron	QC72973	Duplicate -240424018-01	0 - 20	-	0.0	EPA 200.7
		LCS	90 - 110	104.6	-	
		MS -240423127-04	75 - 125	110.1	-	
Total Dissolved Solids	QC72916	Duplicate -240424001-02	0 - 10	-	1.6	SM 2540-C
		LCS	85 - 115	102.0	-	
Total Suspended Solids	QC72899	Duplicate -240423012-01	0 - 10	-	4.8	SM 2540-D
		LCS	90 - 110	94.8	-	

All analyses were performed in accordance with approved methods under the latest revision to 40 CFR Part 136 unless otherwise identified. Based on my inquiry of the person or persons directly responsible for analyzing the wastewater samples and generating the report (s), the analyses, report, and information submitted are, to the best of my knowledge and belief, true, accurate, and complete.

DATA APPROVED FOR RELEASE BY

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

control sample recovery was acceptable

⁽d) RPD acceptable due to low duplicate and sample concentrations.(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory

Chain of Custody Form

Report To Information	Bill To Information (If different from report to)	Project Name / Number
Company Name: Therin Resources	Company Name:	
Contact Name: CTD ickerson	Contact Name:	
Address: 1900 Main St Unit 1	Address:	Task Number (Lab Use Only)
City Ovran State @ Zip S1927	City State Zip	CAL Task
Phone: 970 316 2294	Phone:	240424001
Email: cjdickerson ether h resources com	Email:	RMB
Sample Collector: CJ Didacion		1
Sample Collector Phone: (6227 793-1321	PO No.:	

Commerce City Lab 10411 Heinz Way Commerce City CO 80640

<u>Lakewood Service Center</u> 610 Garrison Street, Unit E Lakewood CO 80215

Phone: 303-659-2313

Sample Collector:	ample Collector: CJ Didzeson							KWID /			www.co	oloradola	ıb.com
Sample Collector Phon	e: (627) 793-13	21 PO N	0.:							_			
									To	ests Requ	ested		
	Sample Matrix	(Select One Only				\sim		2		1 1			
Waste Water 🗵	Soil	Drinking Water 🗌	king Water	iers	Only	633	8						
Ground Water 🗌	Sludge 🗌		Dimking Water		ntair	One	8						
Surface Water 🗌					of Containers	Grab or (Check One Only) Composite	6802311	QB023116434					
Date Time -		Sample ID		jenerali Jenerali	So.	Gra or (Cor	68	9					
4/23 11:30a	OF	202A		<u> </u>	3	X		W NO 4	2				
4/23 12:320	GB-	002A UGOL		4	8	X	X	×					
U/23 1:00p	CBO	2 F		6		~	X	X					
							1						
	Low Level Hg -	HCI Preserved B	ottle					Ammonium S					
	— Lot#: U-3	- 333 -0	SAB				added upon arrival to laboratory to extend Hex-Cr hold time to 28 days.						
	ー Sample ID: C	BOF		10	. 1	/ 1	-	extend Hex-C	rnola	time to 2	8 uays.		
		Date: 4/2	4/24	12	V.	bonk	‡	Initials: Lb	Da	ate: 412	4		
		Date: //	(107)				<u> </u>				1		
Total													
Instructions:				C/S Info:				5		Present Yes		,	
				Peliver Via:		105		C/S Charge	Temp.	°C/Ice	Y Sam	ple Pres. Ye	:5/2 No 🗆
Relinquished By:	Date/Time:	Received By:	Date/Time:	Re	lingu	ished By:		Date/Time:					
CJDickerson	4/23 3:482			Page 9 o	f 11					KAPLA	MS	141	124/24
		·								U			800

CAL Task 240424001

RMB

Quotation for Analytical Services Quote ID: QBO23110033

Prepared For:

Thorin Resources, LLC

1900 Main St

Unit 1

Ouray, CO 81427

Attn: CJ Dickerson

Turn Around Time: 10 Working Days

Quote Date: Friday, November 10, 2023

Project:

CDPS Bi Monthly WW

Matrix	Description	Method	Qty.	Price - each	Total
Water - Ground	Fe-TR •	EPA 200.7	2	\$13.00	\$26.00
Water - Ground	Ph 🔹	SM 4500-H-B	2	\$13.00	\$26.00
Water - Ground	Ag - PD 🤄	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Cd - PD *	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Cu - PD 4	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Mn - PD 😕	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Pb - PD →	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Pb - Total	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	TSS *	SM 2540-D	2	\$16.00	\$32.00
Water - Ground	Zn - PD ·	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Hg	EPA 245.7	2	\$27.00	\$54.00
Water - Ground	Cyanide-Weak Acid Dissocial	ble LASTM 2036-09C	2	\$40.00	\$80.00
Water - Ground	Oil & Grease - not provid	.સ્તં. EPA 1664 (A)	2	\$65.00	\$130.00
Shipping	Cooler Shipment - UPS	UPS	2	\$30.00	\$60.00

\$632.00

^{**}Samples should be shipped or hand delivered the same day they are collected. Orders that require sub-lab analysis should be delivered to the lab Monday thru Wednesday only.**

CAL Task 240424001

RMB

Quotation for Analytical Services

Quote ID: QBO23110034

Prepared For:

Thorin Resources, LLC

1900 Main St

Unit 1

Ouray, CO 81427

Attn: CJ Dickerson

Project:

CDPS Quart WW

Quote Date: Friday, November 10, 2023 Turn Around Time: 10 Working Days

Matrix	Description	Method	Qty.	Price - each	Total
Water - Ground	Cr - Tri 🍙	Calculation	1	\$0.00	\$0.00
Water - Ground	As - TR 🕠	EPA 200.8	1	\$16.00	\$16.00
Water - Ground	Cd - Total •	EPA 200.8	1	\$16.00	\$16.00
Water - Ground	Cr−TR €	EPA 200.8	1	\$16.00	\$16.00
Water - Ground	Cu - Total *	EPA 200.8	1	\$16.00	\$16.00
Water - Ground	TDS F	SM 2540-C	1	\$16.00	\$16.00
Water - Ground	Zn - Total 🎍	EPA 200.8	1	\$16.00	\$16.00
Water - Ground	Cr - Hex	SM 3500-Cr B	1	\$40.00	\$40.00
Water - Ground	Hg LL & not provided for CB-UGO1 scumple	EPA 245.7	1	\$52.00	\$52.00
Water - Ground	Hg LL Field Blank	цЕРА 245.7	1	\$52.00	\$52.00
Shipping	Cooler Shipment - UPS	UPS	1	\$30.00	\$30.00

\$270.00

Colorado Analytical Laboratory maintains certification by the Colorado Department of Health (CDPHE) and EPA Region 8 for Wyoming and Tribal Public Water Systems to analyze drinking water for organic contaminants (SOC's VOC's), inorganic contaminants (metals), nitrate nitrite, cyanide, fluoride and coliform bacteria.

Sub-Lab analysis pricing subject to change. Sub-Lab radiological analysis turn-around time is 4 to 8 weeks depending on sample matrix. Due to time, distance and other constraints outside of the control of CAL shipments to sub labs are not guaranteed. All shipment charges will be billed to the client regardless of shipment outcome.

Billing terms are Net 30 on approved accounts; all other accounts are COD. Additional charges may apply for accelerated turn around.

We appreciate the opportunity to be of service to you. If you have questions please call us at 303-659-2313 or visit us at www.coloradolab.com

Page 1 of 3

10411 Heinz Way / Commerce City, CO 80640 / 303-659-2313 Mailing Address: P.O. Box 507 / Brighton, CO 80601-0507

JML

^{**}Samples should be shipped or hand delivered the same day they are collected. Orders that require sub-lab analysis should be delivered to the lab Monday thru Wednesday only.**

TASK NO: 240501011

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240501011

Client PO:

Client Project: CDPS Bi Monthly WW

Date Received: 5/1/24
Date Reported: 5/8/24

Matrix: Wastewater

Customer Sample ID OF002A

Sample Date/Time: 4/30/24 12:00 PM

Lab Number: 240501011-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Cyanide-Weak Acid	ND mg/L	ASTM 2036-09C	0.005	0.0005	5/2/24	QC73112	KRB
Dissociable							
pН	7.42 units	SM 4500-H-B	0.01	0.01	5/1/24	-	ARH
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	5/1/24	QC73068	ARH
Potentially Dissolved							
Cadmium	ND mg/L	EPA 200.8	0.0001	0.000006	5/7/24	QC73199	MBN
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	5/7/24	QC73199	MBN
Lead	0.0014 mg/L	EPA 200.8	0.0001	0.000006	5/7/24	QC73199	MBN
Manganese	0.0827 mg/L	EPA 200.8	0.0008	0.00001	5/7/24	QC73199	MBN
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	5/7/24	QC73199	MBN
Zinc	0.031 mg/L	EPA 200.8	0.001	0.00003	5/7/24	QC73199	MBN
<u>Total</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	5/2/24	QC73120	JJA
Lead	0.0015 mg/L	EPA 200.8	0.0001	0.000006	5/7/24	QC73199	MBN
Total Recoverable							
Iron	0.079 mg/L	EPA 200.7	0.005	0.0005	5/3/24	QC73133	MBN

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Analytical QC Summary

TASK NO: 240501011

Report To: CJ Dickerson **Receive Date:** 5/1/24

OC Batch ID OC Type

Company: Thorin Resources, LLC Project Name: CDPS Bi Monthly WW

Test	QC Batch ID	QC Type	Result		Method	Prep Date
Cyanide-Weak Acid Dissociable	QC73112	Blank	ND	A	STM 2036-09C	5/2/24
Mercury	QC73120	Method Blank	ND		EPA 245.7	5/2/24
Cadmium	QC73199	Method Blank	ND		EPA 200.8	5/1/24
Copper	QC73199	Method Blank	ND		EPA 200.8	5/1/24
Lead	QC73199	Method Blank	ND		EPA 200.8	5/1/24
Manganese	QC73199	Method Blank	ND		EPA 200.8	5/1/24
Silver	QC73199	Method Blank	ND		EPA 200.8	5/1/24
Zinc	QC73199	Method Blank	ND		EPA 200.8	5/1/24
Iron	QC73133	Method Blank	ND		EPA 200.7	5/1/24
Total Suspended Solids	QC73068	Blank	ND		SM 2540-D	5/1/24
Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
Cyanide-Weak Acid Dissociable	QC73112 [Duplicate -240501004-01	0 - 20	-	0.0	ASTM 2036-09C
	I	LCS	90 - 110	99.0	-	
	r	MS -240501109-02C	75 - 125	101.5	-	
Mercury	QC73120 [Duplicate -240430044-01	0 - 20	-	0.0	EPA 245.7
		LCS	90 - 110	107.0	-	
	1	MS -240430044-01B	80 - 120	96.0	-	
Cadmium		LCS	90 - 110	97.9	-	EPA 200.8
		MS -240501004-01	70 - 130	97.0	-	
		MSD -240501004-01	0 - 10	-	1.0	
Copper	QC73199 I	LCS	90 - 110	99.5	-	EPA 200.8
	1	MS -240501004-01	70 - 130	96.9	-	
	1	MSD -240501004-01	0 - 10	_	0.4	
Lead	QC73199 I	LCS	90 - 110	101.8	-	EPA 200.8
		MS -240501004-01	70 - 130	97.5	-	
	1	MSD -240501004-01	0 - 10	-	0.4	
Manganese		LCS	90 - 110	102.6	-	EPA 200.8
-		MS -240501004-01	70 - 130	101.4	-	
		MSD -240501004-01	0 - 10	-	1.2	
Silver		LCS	90 - 110	94.7	-	EPA 200.8
		MS -240501004-01	70 - 130	76.3	-	
		MSD -240501004-01	0 - 10	-	4.4	
Zinc		LCS	90 - 110	100.5		EPA 200.8
		MS -240501004-01	70 - 130	101.3	-	
		MSD -240501004-01	0 - 10	-	2.0	
Iron		Duplicate -240501004-01	0 - 20	_	4.1	EPA 200.7
		LCS	90 - 110	95.1	-	217.200.1
		MS -240501004-03B	75 - 125	100.1	<u>-</u>	
Total Suspended Solids		Duplicate -240501033-01	0 - 10	-	5.2	SM 2540-D
Total Gusperiueu Sullus		LCS	90 - 110	94.0		OIVI 2040-D
	<u> </u>		an - 110	94.0	-	

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

All analyses were performed in accordance with approved methods under the latest revision to 40 CFR Part 136 unless otherwise identified. Based on my inquiry of the person or persons directly responsible for analyzing the wastewater samples and generating the report (s), the analyses, report, and information submitted are, to the best of my knowledge and belief, true, accurate, and complete.

DATA APPROVED FOR RELEASE BY

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Chain of Custody Form

Report To Information	Bill To Information (If different from report to)	Project Name / Number
Company Name: Thorin Resources	Company Name:	
Contact Name: CJDickerson	Contact Name:	
Address: 1900 Main St Unit 1	Address:	Task Number (Lab Use Only)
City Ouray State CO Zip 8/927	City State Zip	CAL Task
Phone: (602) 793-1321	Phone:	240501011
Email: Cidickerson other nresources. com	Email:	
Sample Collector:		JAK
Sample Collector Phone:	PO No.:	

Commerce City Lab 10411 Heinz Way Commerce City CO 80640

<u>Lakewood Service Center</u> 610 Garrison Street, Unit E Lakewood CO 80215

Phone: 303-659-2313

www.coloradolab.com

Sample C	Collector Pho	one:	" PO No.:													
								34.75			Tes	ts Requ	ested			
in the		Sample Matrix	(Select One Only)				<u>~</u>									
Waste Water Soil Drinking Wate			inking Water 🔲	ners		e Onl	\$33									
Ground Water ☐ Sludge ☐					No. of Containers Grab or (Check One Only) Composite		<u>Ø</u>									
Surfac	e Water 🗌]			No. of Containers	٩	Chec	G8023116/033								
Date	Time		Sample ID		, Š	25 25) 5 5	83								
4/36	12:00pm	OF	FOOZA		4 4	X		X								
											,					
								_								
				(3)												
		* No oil	+ arease	Rcd.												
			J.													
Instructi	ons: Plea	se send back w	lempty Soffle	C/S Info:						5	l .	esent Yes [r	
<u> </u>	Th	rante You!		Deliver Vi			PS	5	C/S CI	harge	Temp.	^ °C/Ice	X	Sample P	res. Yes Date/Tin	No 🗆
Relinqui	shed By:	se send back whom the You! Date/Time: 4/70/3:40	Received By:	Date/Time:	Reling	uished	By:		Date/	ı ime:	Recei	vea By: KALA	1 100 1		Date/Tin	ne:
CIDA	d2 Cr501	4/16/3:402	<u> </u>	Page	4 of 5						1 4	yould	ANV		5/1/	011
																D , .

Quotation for Analytical Services

Quote ID: QBO23110033

Prepared For:

Thorin Resources, LLC

1900 Main St

Unit 1

Ouray, CO 81427

Attn: CJ Dickerson

Project:

CDPS Bi Monthly WW

Quote Date: Friday, November 10, 2023 Turn Around Time: 10 Working Days

Matrix	Description	Method	Qty.	Price - each	Total
Water - Ground	Fe - TR	EPA 200.7	2	\$13.00	\$26.00
Water - Ground	Ph	SM 4500-H-B	2	\$13.00	\$26.00
Water - Ground	Ag - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Cd - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Cu - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Mn - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Pb - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Pb - Total	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	TSS	SM 2540-D	2	\$16.00	\$32.00
Water - Ground	Zn - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Hg	EPA 245.7	2	\$27.00	\$54.00
Water - Ground	Cyanide-Weak Acid Dissociable	ASTM 2036-09C	2	\$40.00	\$80.00
Water - Ground	Oil & Grease	EPA 1664 (A)	2	\$65.00	\$130.00
Shipping	Cooler Shipment - UPS	UPS	2	\$30.00	\$60.00

\$632.00

^{**}Samples should be shipped or hand delivered the same day they are collected. Orders that require sub-lab analysis should be delivered to the lab Monday thru Wednesday only.**

TASK NO: 240507001

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240507001

Client PO:

Client Project: CDPS Bi Monthly and Quarterly WW

Date Received: 5/7/24

Date Reported: 5/17/24

Matrix: Wastewater

Customer Sample ID OF002A

Sample Date/Time: 5/6/24 10:10 AM

Lab Number: 240507001-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Cyanide-Weak Acid Dissociable	ND mg/L	ASTM 2036-09C	0.005	0.0005	5/10/24	QC73292	KRB
рН	7.76 units	SM 4500-H-B	0.01	0.01	5/7/24	-	KRI
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	5/8/24	QC73212	ISG
Potentially Dissolved							
Cadmium	ND mg/L	EPA 200.8	0.0001	0.000006	5/9/24	QC73273	MBN
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	5/9/24	QC73273	MBN
Lead	0.0018 mg/L	EPA 200.8	0.0001	0.000006	5/9/24	QC73273	MBN
Manganese	0.0520 mg/L	EPA 200.8	0.0008	0.00001	5/9/24	QC73273	MBN
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	5/9/24	QC73273	MBN
Zinc	0.031 mg/L	EPA 200.8	0.001	0.00003	5/9/24	QC73273	MBN
<u>Total</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	5/9/24	QC73280	JJA
Lead	0.0019 mg/L	EPA 200.8	0.0001	0.000006	5/9/24	QC73273	MBN
Total Recoverable							
Iron	0.072 mg/L	EPA 200.7	0.005	0.0005	5/9/24	QC73257	MBN

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240507001

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240507001

Client PO:

Client Project: CDPS Bi Monthly and Quarterly WW

Date Received: 5/7/24 Date Reported: 5/17/24

Matrix: Wastewater

Customer Sample ID OF002A

Sample Date/Time: 5/6/24 10:00 AM

Lab Number: 240507001-02

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Total Biomelius d Collida		014.05.40.0	-	0	5/0/0A	0.070000	100
Total Dissolved Solids	227 mg/L	SM 2540-C	5	2	5/8/24	QC73202	ISG
<u>Dissolved</u>							
Chromium - Hexavalent	ND mg/L	SM 3500-Cr B	0.02	0.01	5/16/24	QC73406	AMJ
<u>Total</u>							
Mercury	ND ug/L	EPA 245.7	0.002	0.0002	5/8/24	QC73249	NRP
Cadmium	ND mg/L	EPA 200.8	0.0001	0.000006	5/9/24	QC73273	MBN
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	5/9/24	QC73273	MBN
Zinc	0.031 mg/L	EPA 200.8	0.001	0.00003	5/9/24	QC73273	MBN
Total Recoverable							
Chromium - Trivalent	ND mg/L	Calculation	0.02	0.01	5/15/24	-	MBN
Arsenic	ND mg/L	EPA 200.8	0.0006	0.00006	5/9/24	QC73273	MBN
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	5/9/24	QC73273	MBN

Ammonium Sulfate buffer solution added upon arrival to laboratory to extend Hex-Cr hold time to 28 days.

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240507001

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240507001

Client PO:

Client Project: CDPS Bi Monthly and Quarterly WW

Date Received: 5/7/24 Date Reported: 5/17/24

Matrix: Wastewater

Customer Sample ID Hg LL Field Blank

Sample Date/Time: 5/6/24 10:00 AM

Lab Number: 240507001-03

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
<u>Total</u>							
Mercury	ND ug/L	EPA 245.7	0.002	0.0002	5/8/24	QC73249	NRP

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations. (s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Analytical QC Summary

TASK NO: 240507001

Report To: CJ Dickerson Receive Date: 5/7/24

Company: Thorin Resources, LLC Project Name: CDPS Bi Monthly and Quarterly WW

QC73406 QC73292 QC73280 QC73249 QC73273 QC73273 QC73273 QC73273	Blank Blank Method Blank Method Blank Method Blank Method Blank Method Blank Method Blank	ND ND ND ND ND		SM 3500-Cr B STM 2036-09C EPA 245.7 EPA 245.7	5/14/24 5/9/24 5/9/24 5/8/24
QC73280 QC73249 QC73273 QC73273 QC73273 QC73273	Method Blank Method Blank Method Blank Method Blank	ND ND ND ND	А	EPA 245.7 EPA 245.7	5/9/24
QC73249 QC73273 QC73273 QC73273 QC73273	Method Blank Method Blank Method Blank	ND ND ND		EPA 245.7	
QC73273 QC73273 QC73273 QC73273	Method Blank Method Blank	ND ND		_	5/8/24
QC73273 QC73273 QC73273	Method Blank	ND		EDA 000 0	
QC73273 QC73273				EPA 200.8	5/7/24
QC73273	Method Blank			EPA 200.8	5/7/24
		ND		EPA 200.8	5/7/24
QC73273	Method Blank	ND		EPA 200.8	5/7/24
Q0.02.0	Method Blank	ND		EPA 200.8	5/7/24
QC73273	Method Blank	ND		EPA 200.8	5/7/24
QC73273	Method Blank	ND		EPA 200.8	5/7/24
QC73273	Method Blank	ND		EPA 200.8	5/7/24
QC73257	Method Blank	ND		EPA 200.7	5/7/24
QC73202	Blank	ND		SM 2540-C	5/7/24
QC73212	Blank	ND		SM 2540-D	5/8/24
C Batch ID	QC Type	Limits	% Rec	RPD	Method
QC73406	Duplicate -240507001-02	0 - 20	-	0.0	SM 3500-Cr B
	LCS	90 - 110	99.5	-	
QC73292	Duplicate -240507129-02	0 - 20	-	16.7	ASTM 2036-09C
	LCS	90 - 110	90.1	-	
	MS -240507001-01D	75 - 125	75.5	-	
QC73280	Duplicate -240503044-23	0 - 20	-	0.0	EPA 245.7
	LCS	90 - 110	106.0	-	
	MS -240503044-23	80 - 120	90.0	-	
QC73249	LCS	76 - 113	89.0	-	EPA 245.7
	MS -240502131-01B	63 - 111	87.0	-	
	MSD -240502131-01B	0 - 18	-	14.4	
QC73273	LCS	90 - 110	94.6	-	EPA 200.8
	MS -240507001-01A	70 - 130	112.1	-	
	MSD -240507001-01A	0 - 10	-	0.8	
QC73273	LCS	90 - 110	95.6	-	EPA 200.8
	MS -240507001-01A	70 - 130	105.6	-	
	MSD -240507001-01A	0 - 10	-	0.7	
QC73273	LCS	90 - 110	104.7	-	EPA 200.8
	MS -240507001-01A	70 - 130	106.3	-	
	MSD -240507001-01A	0 - 10	-	0.7	
QC73273		90 - 110	94.5	=	EPA 200.8
	MS -240507001-01A	70 - 130	101.9	-	
		0 - 10	-	0.9	
QC73273	LCS	90 - 110	106.3	-	EPA 200.8
	QC73273 QC73275 QC73276 QC73202 QC73212 C Batch ID QC73292 QC73280 QC73249 QC73273 QC73273	QC73273 Method Blank QC73273 Method Blank QC73273 Method Blank QC73257 Method Blank QC73202 Blank QC73202 Blank QC73212 Blank C Batch ID QC Type QC73406 Duplicate -240507001-02 LCS QC73292 Duplicate -240507129-02 LCS MS -240507001-01D QC73280 Duplicate -240503044-23 LCS MS -240503044-23 QC73249 LCS MS -240502131-01B MSD -240502131-01B QC73273 LCS MS -240507001-01A MSD -240507001-01A QC73273 LCS MS -240507001-01A	QC73273 Method Blank ND QC73273 Method Blank ND QC73273 Method Blank ND QC73257 Method Blank ND QC73202 Blank ND QC73212 Blank ND QC73406 Duplicate -240507001-02 0 - 20 LCS 90 - 110 MS -240507001-01D 75 - 125 QC73292 Duplicate -240503044-23 0 - 20 LCS 90 - 110 MS -240503044-23 80 - 120 QC73249 LCS 76 - 113 MS -240502131-01B 63 - 111 MSD -240502131-01B 0 - 18 QC73273 LCS 90 - 110 MS -240507001-01A 70 - 130 MSD -240507001-01A 70 - 130 MSD -240507001-01A	QC73273 Method Blank ND QC73273 Method Blank ND QC73273 Method Blank ND QC73257 Method Blank ND QC73202 Blank ND QC73212 Blank ND QC73210 Duplicate -240507001-02 0 - 20 - QC73222 Duplicate -240507129-02 0 - 20 - QC73222 Duplicate -240507001-01D 75 - 125 75.5 QC73280 Duplicate -240503044-23 0 - 20 - QC73249 LCS 90 - 110 106.0 MS -240502131-01B 63 - 111 87.0 MSD -240507001-01A 70 - 130 112.1 MSD -240507001-01A	QC73273 Method Blank ND EPA 200.8 QC73273 Method Blank ND EPA 200.8 QC73273 Method Blank ND EPA 200.8 QC73257 Method Blank ND EPA 200.7 QC73202 Blank ND SM 2540-C QC73212 Blank ND SM 2540-D C Batch ID QC Type Limits % Rec RPD QC73406 Duplicate -240507001-02 0 - 20 - 0.0 QC73292 Duplicate -240507129-02 0 - 20 - 0.0 QC73292 Duplicate -240507019-02 0 - 20 - 16.7 QC73292 Duplicate -240507019-02 0 - 20 - 0.0 QC73292 Duplicate -240503044-23 0 - 20 - 0.0 QC73280 Duplicate -240503044-23 0 - 20 - 0.0 QC73249 LCS 90 - 110 106.0 - QC73249 LCS 76 - 113 89.0 - QC73273

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

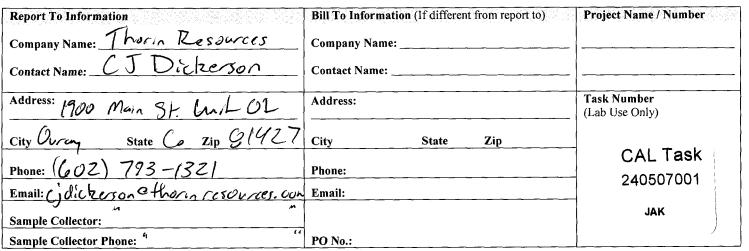
mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
	1	MS -240507001-01A	70 - 130	100.7	-	
		MSD -240507001-01A	0 - 10	-	1.3	
Manganese	QC73273	LCS	90 - 110	99.8	-	EPA 200.8
		MS -240507001-01A	70 - 130	96.0	-	
		MSD -240507001-01A	0 - 10	-	1.0	
Silver	QC73273	LCS	90 - 110	96.5	-	EPA 200.8
		MS -240507001-01A	70 - 130	96.1	-	
		MSD -240507001-01A	0 - 10	-	0.6	
Zinc	QC73273	LCS	90 - 110	99.1	-	EPA 200.8
		MS -240507001-01A	70 - 130	104.1	-	
		MSD -240507001-01A	0 - 10	-	0.6	
Iron	QC73257	Duplicate -240507027-06	0 - 20	-	2.2	EPA 200.7
		LCS	90 - 110	101.2	-	
		MS -240507001-01B	75 - 125	104.6	-	
Total Dissolved Solids	QC73202	Duplicate -240507101-01	0 - 10	-	3.0	SM 2540-C
		LCS	85 - 115	96.6	-	
Total Suspended Solids	QC73212	Duplicate -240507011-02	0 - 10	-	5.7	SM 2540-D
		LCS	90 - 110	96.1	-	


All analyses were performed in accordance with approved methods under the latest revision to 40 CFR Part 136 unless otherwise identified. Based on my inquiry of the person or persons directly responsible for analyzing the wastewater samples and generating the report (s), the analyses, report, and information submitted are, to the best of my knowledge and belief, true, accurate, and complete.

DATA APPROVED FOR RELEASE BY

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
 (s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Chain of Custody Form

Commerce City Lab 10411 Heinz Way Commerce City CO 80640

<u>Lakewood Service Center</u> 610 Garrison Street, Unit E Lakewood CO 80215

Phone: 303-659-2313

www.coloradolab.com

Sample C	Collector Pho	ne:	PO N	o.:					<u>.</u>									
								136				Tes	sts Requ	uested				Egy. St.
1000 (*) 1000 (*)		Sample Matrix	(Select One Only			Ţ ,	 S				TT							
	Water ☐ d Water ☐ e Water ☐	Sludge [Drinking Water	No. of Containers		eck One Only osite	28023110033	23110034									
Surfac	c water	ime Sample ID ° 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		305						į l								
Date	Time		Sample ID		ž	Ğ	ಕರ	aB	8									
5/6	16:000	OFOO	ZA *		6	X		1	X									
5/6	10:104	BF00	ZA		3	+		X										
		Lo	ot#: U - 4 - ample ID: OF (nitials: TA	Preserved Bottle 023-04AB 02A Date: 5/7/24 RCOL, ja not-needed 8+ b DAN C/S Info:			e)	dde xten	d upo id He	m Sulfar	al to la ld tim	aborato e to 28	ory to days.					
Instructio	ons: Bofff,	e Refur Requ	nest ed	Deliver V		110	25			C/S Char						Pres. Ves	X No I	
Relinguis	shed By:	Date/Time:	Received By:		Relinqu	ished	By:			Date/Tir		, Rece	ived By:	1		Pres. Yes	ime:	
CID	chesso	5/6/3:38pm		Page	6 of 8							M	der	MA		5/	7/2	24
		v /										7 "	**				88	17

JAK

Quotation for Analytical Services

Quote ID: QBO23110033

Prepared For:

Thorin Resources, LLC

1900 Main St

Unit 1

Ouray, CO 81427

Attn: CJ Dickerson

Project:

CDPS Bi Monthly WW

Quote Date:	Fr	iday, November	10, 2	2023
Turn Around Time:	10	Working Days		

Matrix	Description	Method	Qty.	Price - each	Total
Water - Ground	Fe - TR	EPA 200.7	2	\$13.00	\$26.00
Water - Ground	Ph	SM 4500-H-B	2	\$13.00	\$26.00
Water - Ground	Ag - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Cd - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Cu - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Mn - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Pb - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Pb - Total	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	TSS	SM 2540-D	2	\$16.00	\$32.00
Water - Ground	Zn - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Hg	EPA 245.7	2	\$27.00	\$54.00
Water - Ground	Cyanide-Weak Acid Dissociable	ASTM 2036-09C	2	\$40.00	\$80.00
Water - Ground	Oil & Grease	EPA 1664 (A)	2	\$65.00	\$130.00
Shipping	Cooler Shipment - UPS	UPS	2	\$30.00	\$60.00

\$632.00

^{**}Samples should be shipped or hand delivered the same day they are collected. Orders that require sub-lab analysis should be delivered to the lab Monday thru Wednesday only.**

CAL Task 240507001

JAK

Quotation for Analytical Services

Quote ID: QBO23110034

Prepared For:

Thorin Resources, LLC

1900 Main St

Unit 1

Ouray, CO 81427

Attn: CJ Dickerson

Quote Date: Friday, November 10, 2023 Turn Around Time: 10 Working Days

Project:

CDPS Quart WW

Matrix	Description	Method	Qty.	Price - each	Total
Water - Ground	Cr-Tri -TR	Calculation	1	\$0.00	\$0.00
Water - Ground	As - TR	EPA 200.8	1	\$16.00	\$16.00
Water - Ground	Cd - Total	EPA 200.8	1	\$16.00	\$16.00
Water - Ground	Cr - TR	EPA 200.8	1	\$16.00	\$16.00
Water - Ground	Cu - Total	EPA 200.8	1	\$16.00	\$16.00
Water - Ground	TDS	SM 2540-C	1	\$16.00	\$16.00
Water - Ground	Zn - Total	EPA 200.8	1	\$16.00	\$16.00
Water - Ground	Cr - Hex	SM 3500-Cr B	1	\$40.00	\$40.00
Water - Ground	Hg LL	EPA 245.7	1	\$52.00	\$52.00
Water - Ground	Hg LL Field Blank	EPA 245.7	1	\$52.00	\$52.00
Shipping	Cooler Shipment - UPS	UPS	1	\$30.00	\$30.00

\$270.00

Colorado Analytical Laboratory maintains certification by the Colorado Department of Health (CDPHE) and EPA Region 8 for Wyoming and Tribal Public Water Systems to analyze drinking water for organic contaminants (SOC's VOC's), inorganic contaminants (metals), nitrate nitrite, cyanide, fluoride and coliform bacteria.

Sub-Lab analysis pricing subject to change. Sub-Lab radiological analysis turn-around time is 4 to 8 weeks depending on sample matrix. Due to time, distance and other constraints outside of the control of CAL shipments to sub labs are not guaranteed. All shipment charges will be billed to the client regardless of shipment outcome.

Billing terms are Net 30 on approved accounts; all other accounts are COD. Additional charges may apply for accelerated turn around.

We appreciate the opportunity to be of service to you. If you have questions please call us at 303-659-2313 or visit us at www.coloradolab.com

Page 1 of 3

10411 Heinz Way / Commerce City, CO 80640 / 303-659-2313 Mailing Address: P.O. Box 507 / Brighton, CO 80601-0507

JML

^{**}Samples should be shipped or hand delivered the same day they are collected. Orders that require sub-lab analysis should be delivered to the lab Monday thru Wednesday only.**

TASK NO: 240523001

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240523001

Client PO:

Client Project: CDPS Quart WW

Date Received: 5/23/24 Date Reported: 6/5/24

Matrix: Wastewater

Customer Sample ID OF002A

Sample Date/Time: 5/22/24 12:30 PM

Lab Number: 240523001-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Cyanide-Weak Acid Dissociable	ND mg/L	ASTM 2036-09C	0.005	0.0005	5/28/24	QC73677	KRB
рН	7.63 units	SM 4500-H-B	0.01	0.01	5/23/24	-	ARH
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	5/24/24	QC73639	ARH
Potentially Dissolved							
Cadmium	ND mg/L	EPA 200.8	0.0001	0.000006	5/24/24	QC73652	MBN
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	5/24/24	QC73652	MBN
Lead	0.0011 mg/L	EPA 200.8	0.0001	0.000006	5/24/24	QC73652	MBN
Manganese	0.0610 mg/L	EPA 200.8	0.0008	0.00001	5/24/24	QC73652	MBN
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	5/24/24	QC73652	MBN
Zinc	0.033 mg/L	EPA 200.8	0.001	0.00003	5/24/24	QC73652	MBN
<u>Total</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	5/29/24	QC73709	MNB
Lead	0.0012 mg/L	EPA 200.8	0.0001	0.000006	5/24/24	QC73652	MBN
Total Recoverable							
Iron	0.055 mg/L	EPA 200.7	0.005	0.0005	5/29/24	QC73688	MBN

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations. (s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240523001

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240523001

Client PO:

Client Project: CDPS Quart WW

Date Received: 5/23/24 Date Reported: 6/5/24

Matrix: Wastewater

Customer Sample ID CB- UG01

Sample Date/Time: 5/22/24 11:00 AM

Lab Number: 240523001-02

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
							_
Cyanide-Weak Acid Dissociable	ND mg/L	ASTM 2036-09C	0.005	0.0005	5/28/24	QC73677	KRB
рН	7.53 units	SM 4500-H-B	0.01	0.01	5/23/24	-	ARH
Total Dissolved Solids	1012 mg/L	SM 2540-C	5	2	5/23/24	QC73628	ISG
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	5/24/24	QC73639	ARH
<u>Dissolved</u>							
Chromium - Hexavalent	ND mg/L	SM 3500-Cr B	0.02	0.01	5/30/24	QC73733	AMJ
Potentially Dissolved							
Cadmium	0.0010 mg/L	EPA 200.8	0.0001	0.000006	5/24/24	QC73652	MBN
Copper	0.0031 mg/L	EPA 200.8	0.0008	0.00001	5/24/24	QC73652	MBN
Lead	0.0037 mg/L	EPA 200.8	0.0001	0.000006	5/24/24	QC73652	MBN
Manganese	0.1261 mg/L	EPA 200.8	0.0008	0.00001	5/24/24	QC73652	MBN
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	5/24/24	QC73652	MBN
Zinc	0.193 mg/L	EPA 200.8	0.001	0.00003	5/24/24	QC73652	MBN
<u>Total</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	5/29/24	QC73709	MNB
Cadmium	0.0010 mg/L	EPA 200.8	0.0001	0.000006	5/24/24	QC73652	MBN
Copper	0.0032 mg/L	EPA 200.8	0.0008	0.00001	5/24/24	QC73652	MBN
Lead	0.0037 mg/L	EPA 200.8	0.0001	0.000006	5/24/24	QC73652	MBN
Zinc	0.200 mg/L	EPA 200.8	0.001	0.00003	5/24/24	QC73652	MBN
Total Recoverable							
Chromium - Trivalent	ND mg/L	Calculation	0.02	0.01	5/25/24	-	MBN
Arsenic	0.0010 mg/L	EPA 200.8	0.0006	0.00006	5/24/24	QC73652	MBN
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	5/24/24	QC73652	MBN

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240523001

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240523001

Client PO:

Client Project: CDPS Quart WW

Date Received: 5/23/24 Date Reported: 6/5/24

Matrix: Wastewater

Customer Sample ID CB- UG01

Sample Date/Time: 5/22/24 11:00 AM

Lab Number: 240523001-02

Test Result / Units Method RL MDL Date Analyzed QC Batch ID Analyzed By

Total Recoverable

Iron **0.253 mg/L** EPA 200.7 0.005 0.0005 5/29/24 QC73688 MBN

Ammonium Sulfate buffer solution added upon arrival to laboratory to extend Hex-Cr hold time to 28 days.

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240523001

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240523001

Client PO:

Client Project: CDPS Quart WW

Date Received: 5/23/24 Date Reported: 6/5/24

Matrix: Wastewater

Customer Sample ID CBOF

Sample Date/Time: 5/22/24 11:30 AM

Lab Number: 240523001-03

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
		<u> </u>	-				
Cyanide-Weak Acid Dissociable	ND mg/L	ASTM 2036-09C	0.005	0.0005	5/28/24	QC73677	KRB
рН	7.62 units	SM 4500-H-B	0.01	0.01	5/23/24	-	ARH
Total Dissolved Solids	997 mg/L	SM 2540-C	5	2	5/23/24	QC73628	ISG
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	5/24/24	QC73639	ARH
Dissolved							
Chromium - Hexavalent	ND mg/L	SM 3500-Cr B	0.02	0.01	5/30/24	QC73733	AMJ
Potentially Dissolved							
Cadmium	0.0012 mg/L	EPA 200.8	0.0001	0.000006	5/24/24	QC73652	MBN
Copper	0.0025 mg/L	EPA 200.8	0.0008	0.00001	5/24/24	QC73652	MBN
Lead	0.0020 mg/L	EPA 200.8	0.0001	0.000006	5/24/24	QC73652	MBN
Manganese	0.0983 mg/L	EPA 200.8	0.0008	0.00001	5/24/24	QC73652	MBN
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	5/24/24	QC73652	MBN
Zinc	0.272 mg/L	EPA 200.8	0.001	0.00003	5/24/24	QC73652	MBN
<u>Total</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	5/29/24	QC73709	MNB
Mercury	ND ug/L	EPA 245.7	0.002	0.0002	6/5/24	QC73829	MBN
Cadmium	0.0012 mg/L	EPA 200.8	0.0001	0.000006	5/24/24	QC73652	MBN
Copper	0.0026 mg/L	EPA 200.8	0.0008	0.00001	5/24/24	QC73652	MBN
Lead	0.0029 mg/L	EPA 200.8	0.0001	0.000006	5/24/24	QC73652	MBN
Zinc	0.276 mg/L	EPA 200.8	0.001	0.00003	5/24/24	QC73652	MBN
<u>Total Recoverable</u>							
Chromium - Trivalent	ND mg/L	Calculation	0.02	0.01	5/25/24	-	MBN
Arsenic	0.0009 mg/L	EPA 200.8	0.0006	0.00006	5/24/24	QC73652	MBN

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

. Date Analyzed = Date Test Completed (d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240523001

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240523001

Client PO:

Client Project: CDPS Quart WW

Date Received: 5/23/24

Date Reported: 6/5/24

Matrix: Wastewater

Customer Sample ID CBOF

Sample Date/Time: 5/22/24 11:30 AM

Lab Number: 240523001-03

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Total Recoverable							
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	5/24/24	QC73652	MBN
Iron	0.178 mg/L	EPA 200.7	0.005	0.0005	5/29/24	QC73688	MBN

Ammonium Sulfate buffer solution added upon arrival to laboratory to extend Hex-Cr hold time to 28 days.

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240523001

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240523001

Client PO:

Client Project: CDPS Quart WW

Date Received: 5/23/24

Date Reported: 6/5/24

Matrix: Wastewater

Customer Sample ID Hg LL Field Blank
Sample Date/Time: 5/22/24 11:3

Lab Number: 240523001-04

Test Result / Units Method MDL Date Analyzed **QC Batch ID Analyzed By** <u>Total</u> ND ug/L EPA 245.7 0.002 0.0002 6/5/24 MBN Mercury QC73829

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Test

Analytical QC Summary

Method

Prep Date

TASK NO: 240523001

Result

Report To: CJ Dickerson Receive Date: 5/23/24

QC Batch ID

Company: Thorin Resources, LLC Project Name: CDPS Quart WW

QC Type

1631	QO Dateil ib	ao Type	Result		Michiod	1 Tep Date
Chromium - Hexavalent	QC73733	Blank	ND	Ş	SM 3500-Cr B	5/30/24
Cyanide-Weak Acid Dissociable	QC73677	Blank	ND	AS	STM 2036-09C	5/28/24
Mercury	QC73709	Method Blank	ND		EPA 245.7	5/29/24
	QC73829	Method Blank	ND		EPA 245.7	6/5/24
Arsenic	QC73652	Method Blank	ND		EPA 200.8	5/23/24
Cadmium	QC73652	Method Blank	ND		EPA 200.8	5/23/24
Chromium	QC73652	Method Blank	ND		EPA 200.8	5/23/24
Copper	QC73652	Method Blank	ND		EPA 200.8	5/23/24
₋ead	QC73652	Method Blank	ND		EPA 200.8	5/23/24
Manganese	QC73652	Method Blank	ND		EPA 200.8	5/23/24
Silver	QC73652	Method Blank	ND		EPA 200.8	5/23/24
Zinc	QC73652	Method Blank	ND		EPA 200.8	5/23/24
ron	QC73688	Method Blank	ND		EPA 200.7	5/23/24
Total Dissolved Solids	QC73628	Blank	ND		SM 2540-C	5/23/24
Total Suspended Solids	QC73639	Blank	ND		SM 2540-D	5/24/24
Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
Chromium - Hexavalent	QC73733	Duplicate -240528144-01	0 - 20	-	0.0	SM 3500-Cr B
		LCS	90 - 110	99.5	-	
Cyanide-Weak Acid Dissociable	QC73677	Duplicate -240521073-01	0 - 20	-	0.0	ASTM 2036-09C
		LCS	90 - 110	95.0	-	
		MS -240523001-03E	75 - 125	91.0	-	
Mercury	QC73709	Duplicate -240516047-02	0 - 20	-	0.0	EPA 245.7
		LCS	90 - 110	96.6	-	
		MS -240516059-01	80 - 120	98.0	-	
Mercury	QC73829	LCS	76 - 113	96.0	-	EPA 245.7
•		MS -240515056-01	63 - 111	92.0	-	
		MSD -240515056-01	0 - 18	-	2.2	
Arsenic	QC73652	LCS	90 - 110	101.2	=	EPA 200.8
		MS -240523001-01A	70 - 130	109.8	-	
		MSD -240523001-01A	0 - 10	-	0.5	
Cadmium	QC73652	LCS	90 - 110	101.7	-	EPA 200.8
		MS -240523001-01A	70 - 130	106.9	_	
		MSD -240523001-01A	0 - 10	-	0.1	
Ch no maissing		LCS	90 - 110	102.0	_	EPA 200.8
Chromium		MS -240523001-01A	70 - 130	100.9	_	
Cnromium						
Cnromium			0 - 10	-	2.1	
Copper		MSD -240523001-01A	0 - 10 90 - 110		2.1	FPA 200 8
Copper	QC73652	MSD -240523001-01A LCS	90 - 110	99.3	2.1 - -	EPA 200.8
	QC73652	MSD -240523001-01A			-	EPA 200.8

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations. (s) The accuracy of the spike recovery value is reduced due to the analyte

concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Test Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
	•	MS -240523001-01A	70 - 130	77.0	-	
		MSD -240523001-01A	0 - 10	-	1.7	
Manganese	QC73652	LCS	90 - 110	104.1	-	EPA 200.8
		MS -240523001-01A	70 - 130	93.2	=	
		MSD -240523001-01A	0 - 10	-	1.4	
Silver	QC73652	LCS	90 - 110	109.4	-	EPA 200.8
		MS -240523001-01A	70 - 130	90.5	=	
		MSD -240523001-01A	0 - 10	-	1.5	
Zinc	QC73652	LCS	90 - 110	102.6	-	EPA 200.8
		MS -240523001-01A	70 - 130	93.4	=	
		MSD -240523001-01A	0 - 10	-	8.0	
Iron	QC73688	Duplicate -240523001-02	0 - 20	-	11.7	EPA 200.7
		LCS	90 - 110	109.9	-	
		MS -240523003-01A	75 - 125	121.0	-	
Total Dissolved Solids	QC73628	Duplicate -240522030-03	0 - 10	-	3.9	SM 2540-C
		LCS	85 - 115	95.3	-	
Total Suspended Solids	QC73639	Duplicate -240523016-05	0 - 10	-	9.2	SM 2540-D
		LCS	90 - 110	97.4	-	

All analyses were performed in accordance with approved methods under the latest revision to 40 CFR Part 136 unless otherwise identified. Based on my inquiry of the person or persons directly responsible for analyzing the wastewater samples and generating the report (s), the analyses, report, and information submitted are, to the best of my knowledge and belief, true, accurate, and complete.

DATA APPROVED FOR RELEASE BY

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Chain of Custody Form

	Chain of Custody	y Fo i	rm									Ž		lora alytic		
Report To Information	Bill To Information (If different from	n repo	rt to)		Pro	ject N	ame / N	umber						IATORIES		
Than Resources	Company Name:															
Contact Name:	Contact Name:										104	11 He	inz V			
Address: 19,000 Man St (MAILO)	Address:					k Nur								y CO <u>vice C</u>		
City Owery State Co Zip 81427	City State Z	ip									610	Garr	ison S	Street, 80215	Unit	
(-07 793-1321	Phone:						. Tas 32300	ļ						9-2313		
Email: C)dicterson of thering esources.com	Email:					2400	2300	•								
Sample Collector:	no v					R	MB				<u>ww</u>	w.colo	<u>orado</u>	lab.co	<u>m</u>	
Sample Collector Phone:	PO No.:			1]						
									T	ests Req	uested					
Sample Matrix (Select One	e Only)	S		niy)	33	58					1			1 1		
Waste Water 🛛 Soil 🗌	Drinking Water 🗌	ainer		e C	231100	23110024										
Ground Water Sludge Sludge		Cont	-	site	123	153										
Surface Water		No. of Containers	qg.	or (Check One Only) Composite	2	0										
Date Time Sam	ple ID	ž	5	5 Ŭ	ØB((QR		-				_	1	1 1		_
6/22 12:30p OFOOZA		3	*		X											
5/22 11:30a CBOF		6	~		x	X										
5/22 11:00a CB-4601	*	4	X		人	~										
1/50 11				 												
* NO Hall bottle provided . RB	6 23						1			·	1		}			
		Low	Leve	el Hg	- HC	I Pres	erved	Bottle			onium					
*no oil lare	ease red	C		~ /		$\sim L$	3 - 0			addec extend	Hey-(ີr ho	ld tin	ne to '	28 Y s	
	2 + blank	Initia	als: \	JA	- L_	Da ∟l	te: 5/	23	124	Initials	s: Rb	<u> </u>	Date	: 5] 2	3	-

C/S Info:

Date/Time:

Deliver Via:

Page 9 of 11

Relinquished By:

Instructions: Boffla Return Requested

Relinquished By:

Date/Time:

Received By:

Seals Present Yes No

C/S Charge D Date/Time:

CAL Task 240523001

Quotation for Analytical Services

Quote ID: QBO23110034

LABORATORIES, INC.

RMB

Prepared For:

Thorin Resources, LLC

1900 Main St

Unit 1

Ouray, CO 81427

Attn: CJ Dickerson

Project:

CDPS Quart WW

Quote Date: Friday, November 10, 2023 Turn Around Time: 10 Working Days

Matrix	Description	Method	Qty.	Price - each	Total
Water - Ground	Cr - Tri	Calculation	1	\$0.00	\$0.00
Water - Ground	As - TR	EPA 200.8	1	\$16.00	\$16.00
Water - Ground	Cd - Total	EPA 200.8	1	\$16.00	\$16.00
Water - Ground	Cr - TR	EPA 200.8	1	\$16.00	\$16.00
Water - Ground	Cu - Total	EPA 200.8	1	\$16.00	\$16.00
Water - Ground	TDS	SM 2540-C	1	\$16.00	\$16.00
Water - Ground	Zn - Total	EPA 200.8	1	\$16.00	\$16.00
Water - Ground	Cr - Hex	SM 3500-Cr B	1	\$40.00	\$40.00
Water - Ground	Hg LL	EPA 245.7	1	\$52.00	\$52.00
Water - Ground	Hg LL Field Blank	EPA 245.7	1	\$52.00	\$52.00
Shipping	Cooler Shipment - UPS	UPS	1	\$30.00	\$30.00

\$270.00

Colorado Analytical Laboratory maintains certification by the Colorado Department of Health (CDPHE) and EPA Region 8 for Wyoming and Tribal Public Water Systems to analyze drinking water for organic contaminants (SOC's VOC's), inorganic contaminants (metals), nitrate nitrite, cyanide, fluoride and coliform bacteria.

Sub-Lab analysis pricing subject to change. Sub-Lab radiological analysis turn-around time is 4 to 8 weeks depending on sample matrix. Due to time, distance and other constraints outside of the control of CAL shipments to sub labs are not guaranteed. All shipment charges will be billed to the client regardless of shipment outcome.

Billing terms are Net 30 on approved accounts; all other accounts are COD. Additional charges may apply for accelerated turn around.

We appreciate the opportunity to be of service to you. If you have questions please call us at 303-659-2313 or visit us at www.coloradolab.com

Page 1 of 3

10411 Heinz Way / Commerce City, CO 80640 / 303-659-2313 Mailing Address: P.O. Box 507 / Brighton, CO 80601-0507

JML

^{**}Samples should be shipped or hand delivered the same day they are collected. Orders that require sub-lab analysis should be delivered to the lab Monday thru Wednesday only.**

CAL Task 240523001

RMB

Quotation for Analytical Services

Quote ID: QBO23110033

Prepared For:

Thorin Resources, LLC

1900 Main St

Unit 1

Ouray, CO 81427

Attn: CJ Dickerson

Quote Date: Friday, November 10, 2023 Turn Around Time: 10 Working Days

CDPS Bi Monthly WW

Matrix	Description	Method	Qty.	Price - each	Total
Water - Ground	Fe - TR	EPA 200.7	2	\$13.00	\$26.00
Water - Ground	Ph	SM 4500-H-B	2	\$13.00	\$26.00
Water - Ground	Ag - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Cd - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Cu - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Mn - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Pb - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Pb - Total	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	TSS	SM 2540-D	2	\$16.00	\$32.00
Water - Ground	Zn - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Hg	EPA 245.7	2	\$27.00	\$54.00
Water - Ground	Cyanide-Weak Acid Dissociable	ASTM 2036-09C	2	\$40.00	\$80.00
Water - Ground	Oil & Grease - not received	EPA 1664 (A)	2	\$65.00	\$130.00
Shipping	Cooler Shipment - UPS	UPS	2	\$30.00	\$60.00

\$632.00

^{**}Samples should be shipped or hand delivered the same day they are collected. Orders that require sub-lab analysis should be delivered to the lab Monday thru Wednesday only.**

TASK NO: 240618001

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240618001

Client PO:

Client Project: CDPS Bi Monthly and Quarterly WW

Date Received: 6/18/24 Date Reported: 6/26/24

Matrix: Wastewater

Customer Sample ID OF002A

Sample Date/Time: 6/17/24 11:00 AM

Lab Number: 240618001-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Cyanide-Weak Acid Dissociable	ND mg/L	ASTM 2036-09C	0.005	0.0005	6/20/24	QC74199	KRB
рН	6.84 units	SM 4500-H-B	0.01	0.01	6/18/24	-	ARH
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	6/19/24	QC74175	ISG
Potentially Dissolved							
Cadmium	0.0001 mg/L	EPA 200.8	0.0001	0.000006	6/19/24	QC74192	MBN
Copper	0.0010 mg/L	EPA 200.8	0.0008	0.00001	6/19/24	QC74192	MBN
Lead	0.0021 mg/L	EPA 200.8	0.0001	0.000006	6/19/24	QC74192	MBN
Manganese	0.1176 mg/L	EPA 200.8	0.0008	0.00001	6/19/24	QC74192	MBN
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	6/19/24	QC74192	MBN
Zinc	0.059 mg/L	EPA 200.8	0.001	0.00003	6/19/24	QC74192	MBN
<u>Total</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	6/20/24	QC74235	JJA
Lead	0.0031 mg/L	EPA 200.8	0.0001	0.000006	6/19/24	QC74192	MBN
Total Recoverable							
Iron	0.038 mg/L	EPA 200.7	0.005	0.0005	6/20/24	QC74204	MBN

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations. (s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240618001

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240618001

Client PO:

Client Project: CDPS Bi Monthly and Quarterly WW

Date Received: 6/18/24 Date Reported: 6/26/24

Matrix: Wastewater

Customer Sample ID CBOF

Sample Date/Time: 6/17/24 12:30 PM

Lab Number: 240618001-02

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Cyanide-Weak Acid Dissociable	ND mg/L	ASTM 2036-09C	0.005	0.0005	6/20/24	QC74199	KRB
рН	7.03 units	SM 4500-H-B	0.01	0.01	6/18/24	-	ARH
Total Dissolved Solids	740 mg/L	SM 2540-C	5	2	6/19/24	QC74150	ISG
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	6/19/24	QC74175	ISG
<u>Dissolved</u>							
Chromium - Hexavalent	ND mg/L	SM 3500-Cr B	0.02	0.01	6/19/24	QC74188	AMJ
Potentially Dissolved							
Cadmium	0.0018 mg/L	EPA 200.8	0.0001	0.000006	6/19/24	QC74192	MBN
Copper	0.0050 mg/L	EPA 200.8	0.0008	0.00001	6/19/24	QC74192	MBN
Lead	0.0023 mg/L	EPA 200.8	0.0001	0.000006	6/19/24	QC74192	MBN
Manganese	0.1055 mg/L	EPA 200.8	0.0008	0.00001	6/19/24	QC74192	MBN
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	6/19/24	QC74192	MBN
Zinc	0.427 mg/L	EPA 200.8	0.001	0.00003	6/19/24	QC74192	MBN
<u>Total</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	6/20/24	QC74235	JJA
Mercury	0.012 ug/L	EPA 245.7	0.002	0.0002	6/24/24	QC74292	NRP
Cadmium	0.0019 mg/L	EPA 200.8	0.0001	0.000006	6/19/24	QC74192	MBN
Copper	0.0050 mg/L	EPA 200.8	0.0008	0.00001	6/19/24	QC74192	MBN
Lead	0.0024 mg/L	EPA 200.8	0.0001	0.000006	6/19/24	QC74192	MBN
Zinc	0.432 mg/L	EPA 200.8	0.001	0.00003	6/19/24	QC74192	MBN
Total Recoverable							
Chromium - Trivalent	ND mg/L	Calculation	0.02	0.01	6/19/24	-	MBN
Arsenic	0.0007 mg/L	EPA 200.8	0.0006	0.00006	6/19/24	QC74192	MBN

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240618001

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240618001

Client PO:

Client Project: CDPS Bi Monthly and Quarterly WW

Date Received: 6/18/24 Date Reported: 6/26/24

Matrice Westernator

Matrix: Wastewater

Customer Sample ID CBOF

Sample Date/Time: 6/17/24 12:30 PM

Lab Number: 240618001-02

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Total Recoverable							
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	6/19/24	QC74192	MBN
Iron	0.171 mg/L	EPA 200.7	0.005	0.0005	6/20/24	QC74204	MBN

Ammonium Sulfate buffer solution added upon arrival to laboratory to extend Hex-Cr hold time to 28 days.

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240618001

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240618001

Client PO:

Client Project: CDPS Bi Monthly and Quarterly WW

Date Received: 6/18/24 Date Reported: 6/26/24

Matrix: Wastewater

Customer Sample ID CB-UG01

Sample Date/Time: 6/17/24 1:00 PM Lab Number: 240618001-03

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
		<u>.</u>					
Cyanide-Weak Acid Dissociable	ND mg/L	ASTM 2036-09C	0.005	0.0005	6/20/24	QC74199	KRB
рН	7.19 units	SM 4500-H-B	0.01	0.01	6/18/24	-	ARH
Total Dissolved Solids	735 mg/L	SM 2540-C	5	2	6/19/24	QC74150	ISG
Total Suspended Solids	5 mg/L	SM 2540-D	5	2	6/19/24	QC74175	ISG
<u>Dissolved</u>							
Chromium - Hexavalent	ND mg/L	SM 3500-Cr B	0.02	0.01	6/19/24	QC74188	AMJ
Potentially Dissolved							
Cadmium	0.0022 mg/L	EPA 200.8	0.0001	0.000006	6/19/24	QC74192	MBN
Copper	0.0062 mg/L	EPA 200.8	0.0008	0.00001	6/19/24	QC74192	MBN
Lead	0.0070 mg/L	EPA 200.8	0.0001	0.000006	6/19/24	QC74192	MBN
Manganese	0.1495 mg/L	EPA 200.8	0.0008	0.00001	6/19/24	QC74192	MBN
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	6/19/24	QC74192	MBN
Zinc	0.477 mg/L	EPA 200.8	0.001	0.00003	6/19/24	QC74192	MBN
<u>Total</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	6/20/24	QC74235	JJA
Cadmium	0.0023 mg/L	EPA 200.8	0.0001	0.000006	6/19/24	QC74192	MBN
Copper	0.0063 mg/L	EPA 200.8	0.0008	0.00001	6/19/24	QC74192	MBN
Lead	0.0072 mg/L	EPA 200.8	0.0001	0.000006	6/19/24	QC74192	MBN
Zinc	0.568 mg/L	EPA 200.8	0.001	0.00003	6/19/24	QC74192	MBN
Total Recoverable							
Chromium - Trivalent	ND mg/L	Calculation	0.02	0.01	6/19/24	-	MBN
Arsenic	0.0007 mg/L	EPA 200.8	0.0006	0.00006	6/19/24	QC74192	MBN
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	6/19/24	QC74192	MBN

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240618001

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240618001

Client PO:

Client Project: CDPS Bi Monthly and Quarterly WW

Date Received: 6/18/24

Date Reported: 6/26/24

Matrix: Wastewater

Customer Sample ID CB-UG01

Sample Date/Time: 6/17/24 1:00 PM

Lab Number: 240618001-03

Test Result / Units Method RL MDL Date Analyzed QC Batch ID Analyzed By

Total Recoverable

Iron **0.182 mg/L** EPA 200.7 0.005 0.0005 6/20/24 QC74204 MBN

Ammonium Sulfate buffer solution added upon arrival to laboratory to extend Hex-Cr hold time to 28 days.

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240618001

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240618001

Client PO:

Client Project: CDPS Bi Monthly and Quarterly WW

Date Received: 6/18/24 Date Reported: 6/26/24

Matrix: Wastewater

Customer Sample ID Hg LL Field Blank

Sample Date/Time: 6/17/24 12:30 PM

Lab Number: 240618001-04

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
<u>Total</u>							
Mercury	ND ug/L	EPA 245.7	0.002	0.0002	6/24/24	QC74292	NRP

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations. (s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Test

Analytical QC Summary

Method

Prep Date

TASK NO: 240618001

Report To: CJ Dickerson Receive Date: 6/18/24

QC Batch ID

Company: Thorin Resources, LLC Project Name: CDPS Bi Monthly and Quarterly WW

Result

QC Type

1631	QO Daton i	ac Type	Result		Wictiloa	1 Tep Date
Chromium - Hexavalent	QC74188	Blank	ND		SM 3500-Cr B	6/19/24
Cyanide-Weak Acid Dissociable	QC74199	Blank	ND	AS	STM 2036-09C	6/19/24
Mercury	QC74235	Method Blank	ND		EPA 245.7	6/20/24
	QC74292	Method Blank	ND		EPA 245.7	6/24/24
Arsenic	QC74192	Method Blank	ND		EPA 200.8	6/18/24
Cadmium	QC74192	Method Blank	ND		EPA 200.8	6/18/24
Chromium	QC74192	Method Blank	ND		EPA 200.8	6/18/24
Copper	QC74192	Method Blank	ND		EPA 200.8	6/18/24
ead	QC74192	Method Blank	ND		EPA 200.8	6/18/24
Manganese	QC74192	Method Blank	ND		EPA 200.8	6/18/24
Silver	QC74192	Method Blank	ND		EPA 200.8	6/18/24
Zinc	QC74192	Method Blank	ND		EPA 200.8	6/18/24
ron	QC74204	Method Blank	ND		EPA 200.7	6/18/24
Total Dissolved Solids	QC74150) Blank	ND		SM 2540-C	6/18/24
Total Suspended Solids	QC74175	5 Blank	ND		SM 2540-D	6/19/24
Fest	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
Chromium - Hexavalent	QC74188	Duplicate -240612072-01	0 - 20	-	0.0	SM 3500-Cr B
		LCS	90 - 110	98.6	-	
Cyanide-Weak Acid Dissociable	QC74199	Duplicate -240613095-02	0 - 20	-	15.4	ASTM 2036-09C
		LCS	90 - 110	103.5	=	
		MS -240613095-02	75 - 125	105.0	=	
Mercury	QC74235	Duplicate -240613049-01	0 - 20	-	0.0	EPA 245.7
		LCS	90 - 110	104.2	-	
		MS -240613049-01B	80 - 120	96.0	-	
Mercury	QC74292	LCS	76 - 113	102.0	-	EPA 245.7
-		MS -240620021-01G	63 - 111	108.0	-	
		MSD -240620021-01G	0 - 18	-	12.7	
Arsenic	QC74192	LCS	90 - 110	101.8	-	EPA 200.8
		MS -240618001-01A	70 - 130	118.9	-	
		MSD -240618001-01A	0 - 10	-	4.5	
Cadmium	QC74192	LCS	90 - 110	100.1	=	EPA 200.8
		MS -240618001-01A	70 - 130	115.6	-	
		MSD -240618001-01A	0 - 10	-	0.5	
Chromium	QC74192	LCS	90 - 110	108.1	-	EPA 200.8
		MS -240618001-01A	70 - 130	112.9	-	
		MSD -240618001-01A	0 - 10	-	0.2	
						EDA 000.0
Copper	QC74192	LCS	90 - 110	100.2	-	EPA 200.8
Copper	QC74192		90 - 110 70 - 130	100.2 110.5	-	EPA 200.8
Copper	QC74192	LCS MS -240618001-01A MSD -240618001-01A	90 - 110 70 - 130 0 - 10	100.2 110.5 -		EPA 200.8

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Test Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
	•	MS -240618001-01A	70 - 130	92.2	-	
		MSD -240618001-01A	0 - 10	-	0.4	
Manganese	QC74192	LCS	90 - 110	106.6	-	EPA 200.8
		MS -240618001-01A	70 - 130	98.0	-	
		MSD -240618001-01A	0 - 10	-	1.6	
Silver	QC74192	LCS	90 - 110	94.1	-	EPA 200.8
		MS -240618001-01A	70 - 130	80.9	-	
		MSD -240618001-01A	0 - 10	-	5.1	
Zinc	QC74192	LCS	90 - 110	106.2	-	EPA 200.8
		MS -240618001-01A	70 - 130	105.2	-	
		MSD -240618001-01A	0 - 10	-	1.1	
Iron	QC74204	Duplicate -240618026-05	0 - 20	-	0.0	EPA 200.7
		LCS	90 - 110	100.6	-	
		MS -240618108-01B	75 - 125	112.4	-	
Total Dissolved Solids	QC74150	Duplicate -240617002-01	0 - 10	-	3.2	SM 2540-C
		LCS	85 - 115	98.0	-	
Total Suspended Solids	QC74175	Duplicate -240618030-02	0 - 10	-	2.7	SM 2540-D
		LCS	90 - 110	98.1	-	

All analyses were performed in accordance with approved methods under the latest revision to 40 CFR Part 136 unless otherwise identified. Based on my inquiry of the person or persons directly responsible for analyzing the wastewater samples and generating the report (s), the analyses, report, and information submitted are, to the best of my knowledge and belief, true, accurate, and complete.

DATA APPROVED FOR RELEASE BY

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

 ⁽d) RPD acceptable due to low duplicate and sample concentrations.
 (s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Chain of Custody Form

Report To Information	Bill To Information (If different from report to)	Project Name / Number				
Company Name: Thorin Resources	Company Name:					
Contact Name: CJ Dictreson	Contact Name:					
Address: 1900 Main St Wit #1	Address:	Task Number (Lab Use Only)				
City Ovay State (0 Zip 8/427	City State Zip					
Phone: 662 793 - 1321	Phone:	CAL Task				
Email: cj dickerson a thrus resources. com	Email:	240618001				
Sample Collector: CJ Dickeron		JAK				
Sample Collector Phone:	PO No.:					

Commerce City Lab 10411 Heinz Way Commerce City CO 80640

<u>Lakewood Service Center</u> 610 Garrison Street, Unit E Lakewood CO 80215

Phone: 303-659-2313

www.coloradolab.com

Sample Collector Phoi	ne:	PO No.	<u> </u>										
									Tests Requested				
	Sample Matrix	(Select One Only)			,	<u>,</u>	$ \sim $	1					
Waste Water 🛛	Soil	_	S	Sis		Only	S	34					
Ground Water	Sludge 🗌	3	Orinking Water 🗌	aine)ue	O	0					
	Siudge [ont		sk C ite	3/1	3					
Surface Water		•		ofC	ا م	Chec	2	20					
Date Time		Sample ID		No. of Containers	Gral	or (Check One Only) Composite	Ø₽0	80					
6/17 11:00	\mathcal{O}	FOOZA		3	×		X						
6/17 12:30	C	BOF		5	X		X	*	w blank				
417 1:00	CB.	LG01 3	×	4	X		X	X					
		LUG UCI Drocom	ad Battla										
	Low Leve	el Hg - HCl Preserve	of Ail										
	ισι π. μ	-4-023-	0970						Ammonium Sulfate buffer solution				
	———— Sample I	D: CBUF		-				added upon arrival to laboratory to					
	Initials: 6	D: CBDF JA Date:	0/18/24		-	1	~ W	/	extend Hex-Cr hold time to 28 days.				
	miciaisi	·	' ' '	4	r 1	pVa			Initials: Date: 6 18 24				
	+ LLHa sami	ples not re	celved for a						Initials: Date: Holder				
Instructions: R	II D I TO	1 1 0	B-4901. "	1					Seals Present Yes No No				
Por	he ketur ke	equestion	Celved for b B-4GOI :: JK 4718124 Deliver via:		<i>i</i> }	109			C/S Charge X Temp. C/Ice Sample Pres. Yes No 🗆				
Relinquished By:	Date/Time:	Received By:	Date/Time: R	elinqu	ished	By:]	C/S Charge A Temp. °C/Ice Sample Pres. Yes No Date/Time: Received By: Date/Time:				
cidicheson	Date/Time:	Ni-							- Adams 4/18/24				
9			Page 9	of 11					OM				
									800				

Quotation for Analytical Services

Quote ID: QBO23110033

Prepared For:

Thorin Resources, LLC

1900 Main St

Unit 1

Ouray, CO 81427

Attn: CJ Dickerson

Project:

CDPS Bi Monthly WW

Quote Date: Friday, November 10, 2023 Turn Around Time: 10 Working Days

Matrix	Description	Method	Qty.	Price - each	Total
Water - Ground	Fe - TR	EPA 200.7	2	\$13.00	\$26.00
Water - Ground	Ph /	SM 4500-H-B	2	\$13.00	\$26.00
Water - Ground	Ag - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Cd - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Cu - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Mn - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Pb - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Pb - Total	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	TSS -	SM 2540-D	2	\$16.00	\$32.00
Water - Ground	Zn - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Hg	EPA 245.7	2	\$27.00	\$54.00
Water - Ground	Cyanide-Weak Acid Dissociable	ASTM 2036-09C	2	\$40.00	\$80.00
Water - Ground	Oil & Grease	EPA 1664 (A)	2	\$65.00	\$130.00
Shipping	Cooler Shipment - UPS	UPS	2	\$30.00	\$60.00

\$632.00

no oillgrease received. JK 6/18/24

Page 1 of 3

10411 Heinz Way / Commerce City, CO 80640 / 303-659-2313 Mailing Address: P.O. Box 507 / Brighton, CO 80601-0507

JML

^{**}Samples should be shipped or hand delivered the same day they are collected. Orders that require sub-lab analysis should be delivered to the lab Monday thru Wednesday only.**

JAK

Bottle Order Test Detail

Order ID: QBO23110034 **Date Created:** 11/10/23

Ship To:	Thorin Resources, LLC	Shipping Options:	S. Vanish A. Val.							
	1900 Main St	Ship Via: UPS	Cooler: Yes							
	Unit 1		D-i-kin - Maton							
	Ouray CO 81427	Chain of Custody	Drinking Water:							
	·		Standard: 1							
Attention:	CJ Dickerson	Customer Needs B	Customer Needs By: 3/15/24							
			n: Commerce City							
		Ships i loi	ii. Commerce Orty							
	602-793-1321	Project:								
	Verify All Shipping Addresses	CDPS Quart WW	and the second s							
		ODI O Quait WW								
1	250 ml Glass - HCl Hg LL - Water - Ground		····							
1	250 ml Glass - HCl Blank									
'	Hg LL Field Blank - Water - Ground									
1	500 ml Cylinder - HNO3 As - TR - Water - Ground									
	Cd - Total - Water - Ground									
	Cr - TR - Water - Ground									
	Cr - Tri - Water - Ground - TP-									
	Cu - Total - Water - Ground									
	Zn - Total - Water - Ground									
1	500 ml Cylinder - Unpreserved									
	Cr - Hex - Water - Ground									

Samples should be shipped or hand delivered the same day they are collected. Orders that require sub-lab analysis should be delivered to the lab Monday thru Wednesday only.

Internal Shipping Instructions:	Shipped By:
Quarterly ***Ship to Thorin Resources Attn CJ Dickerson 1900 Main St Unit 1 Ouray, CO 81427***	Date:
	Checked By:

10411 Heinz Way / Commerce City, CO 80640 / 303-659-2313 Mailing Address: P.O. Box 507 / Brighton, CO 80601-0507

JML

TASK NO: 240625002

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240625002

Client PO:

Client Project: CDPS Bi Monthly WW

Date Received: 6/25/24 Date Reported: 7/2/24

Matrix: Wastewater

Customer Sample ID OF002A

Sample Date/Time: 6/24/24 10:00 AM

Lab Number: 240625002-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Cyanide-Weak Acid Dissociable	ND mg/L	ASTM 2036-09C	0.005	0.0005	6/27/24	QC74393	KRB
рН	7.74 units	SM 4500-H-B	0.01	0.01	6/25/24	-	ARH
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	6/25/24	QC74312	ARH
Potentially Dissolved							
Cadmium	0.0001 mg/L	EPA 200.8	0.0001	0.000006	6/27/24	QC74388	MBN
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	6/27/24	QC74388	MBN
Lead	0.0005 mg/L	EPA 200.8	0.0001	0.000006	6/27/24	QC74388	MBN
Manganese	0.0773 mg/L	EPA 200.8	0.0008	0.00001	6/27/24	QC74388	MBN
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	6/27/24	QC74388	MBN
Zinc	0.024 mg/L	EPA 200.8	0.001	0.00003	6/27/24	QC74388	MBN
<u>Total</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	6/27/24	QC74397	JJA
Lead	0.0017 mg/L	EPA 200.8	0.0001	0.000006	6/27/24	QC74388	MBN
Total Recoverable							
Iron	0.037 mg/L	EPA 200.7	0.005	0.0005	6/27/24	QC74390	MBN

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations. (s) The accuracy of the spike recovery value is reduced due to the analyte

concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Analytical QC Summary

TASK NO: 240625002

Report To: CJ Dickerson Receive Date: 6/25/24

OC Batch ID OC Type

Company: Thorin Resources, LLC Project Name: CDPS Bi Monthly WW

Test	QC Batch ID	D QC Type	Result		Method	Prep Date
Cyanide-Weak Acid Dissociable	QC74393	Blank	ND	A	STM 2036-09C	6/27/24
Mercury	QC74397	Method Blank	ND		EPA 245.7	6/27/24
Cadmium	QC74388	Method Blank	ND		EPA 200.8	6/25/24
Copper	QC74388	Method Blank	ND		EPA 200.8	6/25/24
Lead	QC74388	Method Blank	ND		EPA 200.8	6/25/24
Manganese	QC74388	Method Blank	ND		EPA 200.8	6/25/24
Silver	QC74388	Method Blank	ND		EPA 200.8	6/25/24
Zinc	QC74388	Method Blank	ND		EPA 200.8	6/25/24
Iron	QC74390	Method Blank	ND		EPA 200.7	6/25/24
Total Suspended Solids	QC74312	Blank	ND		SM 2540-D	6/25/24
Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
Cyanide-Weak Acid Dissociable	QC74393	Duplicate -240625002-01	0 - 20	-	0.0	ASTM 2036-09C
		LCS	90 - 110	97.3	-	
		MS -240626053-02	75 - 125	97.0		
Mercury	QC74397	Duplicate -240621087-03	0 - 20	-	0.0	EPA 245.7
		LCS	90 - 110	102.6	-	
		MS -240621087-03	80 - 120	86.0	<u> </u>	
Cadmium	QC74388	LCS	90 - 110	99.2	-	EPA 200.8
		MS -240625001-01	70 - 130	107.0	-	
		MSD -240625001-01	0 - 10	-	1.8	
Copper	QC74388	LCS	90 - 110	99.8	-	EPA 200.8
		MS -240625001-01	70 - 130	110.6	-	
		MSD -240625001-01	0 - 10	-	0.3	
Lead	QC74388	LCS	90 - 110	101.6	-	EPA 200.8
		MS -240625001-01	70 - 130	93.5	-	
		MSD -240625001-01	0 - 10	-	3.8	
Manganese	QC74388	LCS	90 - 110	104.8	-	EPA 200.8
		MS -240625001-01	70 - 130	125.6	-	
		MSD -240625001-01	0 - 10	-	0.9	
Silver	QC74388	LCS	90 - 110	100.0	-	EPA 200.8
		MS -240625001-01	70 - 130	99.9	-	
		MSD -240625001-01	0 - 10	-	2.7	
Zinc	QC74388	LCS	90 - 110	101.3	-	EPA 200.8
		MS -240625001-01	70 - 130	110.9	-	
		MSD -240625001-01	0 - 10	-	1.9	
Iron	QC74390	Duplicate -240625001-01	0 - 20	-	4.9	EPA 200.7
		LCS	90 - 110	100.4	-	
		MS -240625001-01	75 - 125	101.6	-	
			0.40			SM 2540-D
Total Suspended Solids	QC74312	Duplicate -240624009-01	0 - 10	-	2.5	SIVI 2540-D

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

All analyses were performed in accordance with approved methods under the latest revision to 40 CFR Part 136 unless otherwise identified. Based on my inquiry of the person or persons directly responsible for analyzing the wastewater samples and generating the report (s), the analyses, report, and information submitted are, to the best of my knowledge and belief, true, accurate, and complete.

DATA APPROVED FOR RELEASE BY

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Chain of Custody Form

Report To Information	Bill To Information (If different from report to)	Project Name / Number				
Company Name: Therin Desources	Company Name:					
Contact Name: CT Dickerson	Contact Name:					
Address: 1900 Main St Unit1	Address:	Task Number (Lab Use Only)				
City Oway State Co Zip 81427	City State Zip					
Phone: (602) 793-1321	Phone:	CAL Task				
Email: Cidicherson e thoran resources.com	Email:	240625002				
Sample Collector: Sample Collector Phone:	PO No.:	RMB				

Commerce City Lab 10411 Heinz Way **Commerce City CO 80640**

<u>Lakewood Service Center</u> 610 Garrison Street, Unit E Lakewood CO 80215

Phone: 303-659-2313

www.coloradolab.com

Sample Collector Phone: PO No.:							,													
								[Tes	sts Re	eques	ted				
1 m 1 m 2 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m		Sample Matrix	(Select One	Only)			3	,		20										
Waste V	Water 🛚	Soil 🗌		Drinking Water	٦	ers	5	<u> </u>	3	2401097 "DIZNO"										
Ground	l Water 🛴	Sludge 🗌		Distincting water [ntain	2) 	100	80										
Surface	Water 🗌					No. of Containers	da da	Composite	& 8623116433	ĠB0Z										
Date	Time		Sampl	e ID		ž	Gre	် ပိ	S S	<i>.</i> @										
6/24	10:00 am	OF	-002A -5			3	1/-		\times											
6/24	11:00 an	46	-5			5				*										
6/24	11:30 ar	46	- 2			5				*										
6/24	11:30an	46	-8			5				*										
·																				
			,, ,	2																
	- 4	*No olg	60446	e ecd	3															
		/· · · · · · · · · · · · · · · · · · ·	<i>,,</i>																	
	Water	pcp history p	A 10/75																	
1		por ilisia.	W COLLEGE																	
ınsıructio	ons: Retu	en of OFUG	DZA BO	the only please	C/S Info:		.i 1		1			5	Seals Pr				<u></u>			
	V	,			Deliver Via:		UP	5		C/S	Charge	M	Temp.	· •(c/Ice >	/ s	ample Pi	res. Yes	No.	
Relinquis	hed By:	Date/Time: 6/20	Received By	y: Date/Time	: Re	linqu	iished	By:		Date	e/Timé	:	Rece	ived E	By:			Date/1	ime:	
CTD	ockersa	Date/Time: 6/24	<i>-</i> ــــــــــــــــــــــــــــــــــــ		Page 4	of 5							1	AO	la.	N	1	6/2	35	124
													V					7		\

CAL Task 240625002

RMB

Quotation for Analytical Services

Quote ID: QBO23110033

Prepared For:

Thorin Resources, LLC

1900 Main St

Unit 1

Ouray, CO 81427

Attn: CJ Dickerson

Project:

CDPS Bi Monthly WW

Quote Date:	Fri	day, November	10, 2023
Turn Around Time:	10	Working Days	

Matrix	Description	Method	Qty.	Price - each	Total
Water - Ground	Fe - TR	EPA 200.7	2	\$13.00	\$26.00
Water - Ground	Ph	SM 4500-H-B	2	\$13.00	\$26.00
Water - Ground	Ag - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Cd - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Cu - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Mn - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Pb - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Pb - Total	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	TSS	SM 2540-D	2	\$16.00	\$32.00
Water - Ground	Zn - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Hg	EPA 245.7	2	\$27.00	\$54.00
Water - Ground	Cyanide-Weak Acid Dissociable	ASTM 2036-09C	2	\$40.00	\$80.00
Water - Ground	Oil & Grease -not rcd.	EPA 1664 (A)	2	\$65.00	\$130.00
Shipping	Cooler Shipment - UPS RB	UPS	2	\$30.00	\$60.00

\$632.00

^{**}Samples should be shipped or hand delivered the same day they are collected. Orders that require sub-lab analysis should be delivered to the lab Monday thru Wednesday only.**

TASK NO: 240718025

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240718025

Client PO:

Client Project: CDPS Bi Monthly WW

Date Received: 7/18/24

Date Reported: 7/26/24

Matrix: Wastewater

Customer Sample ID OF002A

Sample Date/Time: 7/17/24 7:00 AM **Lab Number:** 240718025-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Cyanide-Weak Acid Dissociable	ND mg/L	ASTM 2036-09C	0.005	0.0005	7/24/24	QC74944	KRB
рН	7.74 units	SM 4500-H-B	0.01	0.01	7/18/24	-	KJP
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	7/18/24	QC74842	ISG
Potentially Dissolved							
Cadmium	0.0003 mg/L	EPA 200.8	0.0001	0.000006	7/23/24	QC74900	MBN
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	7/23/24	QC74900	MBN
Lead	0.0010 mg/L	EPA 200.8	0.0001	0.000006	7/23/24	QC74900	MBN
Manganese	0.2233 mg/L	EPA 200.8	0.0008	0.00001	7/23/24	QC74900	MBN
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	7/23/24	QC74900	MBN
Zinc	0.090 mg/L	EPA 200.8	0.001	0.00003	7/23/24	QC74900	MBN
<u>Total</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	7/25/24	QC75001	JJA
Lead	0.0010 mg/L	EPA 200.8	0.0001	0.000006	7/23/24	QC74900	MBN
Total Recoverable							
Iron	0.068 mg/L	EPA 200.7	0.005	0.0005	7/22/24	QC74874	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Analytical QC Summary

TASK NO: 240718025

Report To: CJ Dickerson Receive Date: 7/18/24

OC Batch ID OC Type

Company: Thorin Resources, LLC Project Name: CDPS Bi Monthly WW

QC Batch II	QC Type	Result		Method	Prep Date
QC74944	Blank	ND	A	STM 2036-09C	7/24/24
QC75001	Method Blank	ND		EPA 245.7	7/25/24
QC74900	Method Blank	ND		EPA 200.8	7/18/24
QC74900	Method Blank	ND		EPA 200.8	7/18/24
QC74900	Method Blank	ND		EPA 200.8	7/18/24
QC74900	Method Blank	ND		EPA 200.8	7/18/24
QC74900	Method Blank	ND		EPA 200.8	7/18/24
QC74900	Method Blank	ND		EPA 200.8	7/18/24
QC74874	Method Blank	ND		EPA 200.7	7/18/24
QC74842	Blank	ND		SM 2540-D	7/18/24
QC Batch ID	QC Type	Limits	% Rec	RPD	Method
QC74944	Duplicate -240722041-01	0 - 20	-	0.0	ASTM 2036-09C
	LCS	90 - 110	92.0	-	
	MS -240717035-02	75 - 125	88.5	<u> </u>	
QC75001	Duplicate -240718005-01	0 - 20	-	0.0	EPA 245.7
	LCS	90 - 110	110.0	-	
	MS -240718005-01	80 - 120	98.0	-	
QC74900	LCS	90 - 110	98.4	-	EPA 200.8
	MS -240718002-01A	70 - 130	106.8	-	
	MSD -240718002-01A	0 - 10	-	0.0	
QC74900	LCS	90 - 110	95.1	-	EPA 200.8
	MS -240718002-01A	70 - 130	86.3	-	
	MSD -240718002-01A	0 - 10	-	1.5	
QC74900	LCS	90 - 110	94.0	-	EPA 200.8
	MS -240718002-01A	70 - 130	93.0	-	
	MSD -240718002-01A	0 - 10	-	1.6	
QC74900	LCS	90 - 110	106.5	-	EPA 200.8
	MS -240718002-01A	70 - 130	111.7	-	
	MSD -240718002-01A	0 - 10	-	0.2	
QC74900	LCS	90 - 110	105.4	-	EPA 200.8
	MS -240718002-01A	70 - 130	87.3	-	
	MSD -240718002-01A	0 - 10	-	2.3	
QC74900	LCS	90 - 110	102.6	-	EPA 200.8
	MS -240718002-01A	70 - 130	103.9	-	
	MSD -240718002-01A	0 - 10	-	0.7	
QC74874	Duplicate -240718048-01	0 - 20	-	0.0	EPA 200.7
	LCS	90 - 110	107.4	-	
	MS -240718005-01	75 - 125	101.2	-	
QC74842	Duplicate -240717011-01	0 - 10	-	3.4	SM 2540-D
	QC74944 QC75001 QC74900 QC74900 QC74900 QC74900 QC74900 QC74874 QC74842 QC Batch ID QC74944 QC74900 QC74900 QC74900 QC74900 QC74900	QC74944 Blank QC75001 Method Blank QC74900 Method Blank QC74874 Method Blank QC74874 Method Blank QC74842 Blank QC Batch ID QC Type	QC74944 Blank ND QC75001 Method Blank ND QC74900 Method Blank ND QC74874 Method Blank ND QC74842 Blank ND QC74842 Blank ND QC74944 Duplicate -240722041-01 0 - 20 LCS 90 - 110 MS - 240717035-02 75 - 125 QC75001 Duplicate -240718005-01 0 - 20 LCS 90 - 110 MS - 240718005-01 80 - 120 QC74900 LCS 90 - 110 MS - 240718002-01A 70 - 130 MSD - 24071800	QC74944 Blank	QC74944 Blank ND

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

All analyses were performed in accordance with approved methods under the latest revision to 40 CFR Part 136 unless otherwise identified. Based on my inquiry of the person or persons directly responsible for analyzing the wastewater samples and generating the report (s), the analyses, report, and information submitted are, to the best of my knowledge and belief, true, accurate, and complete.

DATA APPROVED FOR RELEASE BY

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Chain of Custody Form

Report To Information	Bill To Information (If different from report to)	Project Name / Number
Company Name: Thorn Resources	Company Name:	
Contact Name: CF Dicherron	Contact Name:	
Address: 1900 Main St Unit	Address:	Task Number (Lab Use Only)
City Oway State Co Zip 81427	City State Zip	CAL Task
Phone: (602) 793-1321	Phone:	240718025
Email: C) diche-son ethorn resources.	ČEmail:	
Sample Collector:		RMB
Sample Collector Phone:	PO No.:	

Commerce City Lab 10411 Heinz Way Commerce City CO 80640

<u>Lakewood Service Center</u> 610 Garrison Street, Unit E Lakewood CO 80215

Phone: 303-659-2313

Sample (Collector:		4								RMB	,			<u>w</u>	ww.co	lorad	<u>olab.c</u>	<u>om</u>
Sample (Collector Phone:	<i>G</i> -		PO No.:															
													Te	sts Re	queste	d 🤲			
		Sample Matrix	(Select One	Only)					y)	33									
Waste	Water 🔀	Soil 🗌		Drink	ing Water		ners		e Onl	9									
Groun	d Water 🗌	Sludge [S		ontai		c On te	31(
Surfac	e Water 🗌						No. of Containers	آ م	or (Check One Only) Composite	\$20231100									
Date	Time		Sampl	e ID			No.	Gra	or (Cor	8									
דו/ד	7:00a	01	=UOZA				3	X		X									
'																			
				-															
																		-	
																1			
		*no of	a long	Moe	cat											+ +	_		
		11100 0	J DOI	VU F		(3))									+++		-	
				· .												+	_	-	
Instructi	ons: Place	Reform B	- 11 1 m			C/S Info:						5	Seals P	resent Ye	s 🔲 No l				
						Deliver Via:			100	5	C/S CI	arge 🕽	Temp.	人 _{。c} ,	Ice \	✓ Sam	ple Pres	Ye	No
Relinquis	1 -	Date/Time:	Received By	7:	Date/Tim	e: R	elinqu	iished	B∳:		Date/T	ime:	Reco	eived By	y: "/		Da	te/Tim	ie:
CTI	Jicherson	7/17 12:09	<u> </u>			Page 4	of 5							Ad	an	W	<u></u>	<u> </u>	8109
													-0						80

Quotation for Analytical Services

240718025 CAL Task

RMB

LABORATORIES, INC.

Turn Around Time: 10 Working Days Quote Date: Friday, November 10, 2023

I finU 18 nisM 00e1 Prepared For: Thorin Resources, LLC

Ouray, CO 81427

Attn: CJ Dickerson

CDPS Bi Monthly WW

	00.09\$	00.08\$	7	NPS	Cooler Shipment - UPS	Shipping
	00.081\$	00.39\$	7	EPA 1664 (A)	Oil & Grease	Water - Ground
	00.08\$	00.04\$	7	O60-9E03 MTSA	Cyanide-Weak Acid Dissociable	Water - Ground
	00.43\$	\$27.00	2	EPA 245.7	бн	Water - Ground
	\$35.00	916.00	7	EPA 200.8	Od - UZ	Water - Ground
	\$32.00	00.91\$	7	SM 2540-D	SST	Water - Ground
	\$32.00	00.91\$	7	EPA 200.8	Pb - Total	Water - Ground
1	\$35.00	\$16.00	7	EPA 200.8	Od - 9d	Water - Ground
1	\$35.00	00.91\$	7	EPA 200.8	Dd - uM	Water - Ground
- (\$35.00	00.31\$	7	8.002 A93	Cn - PD	Water - Ground
, (\$35.00	00.91\$	7	8.003 APA	C4 - PD	Water - Ground
(\$32.00	00.91\$	7	EPA 200.8	G9 - gA	Water - Ground
(\$26.00	\$13.00	7	2M 4200-H-B	ча	Water - Ground
(°25°00	\$13.00	7	EPA 200.7	Fe - TR	Water - Ground
1	etoT d	Price - eac	·An	Wethod	Description	
				Postor	Description	xideM

\$632.00

delivered to the lab Monday thru Wednesday only.** **Samples should be shipped or hand delivered the same day they are collected. Orders that require sub-lab analysis should be

Page 1 of 3

TASK NO: 240730006

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240730006

Client PO:

Client Project: CDPS Bi Monthly WW

Date Received: 7/30/24 Date Reported: 8/9/24

Matrix: Wastewater

Customer Sample ID OF002A

Sample Date/Time: 7/29/24 11:00 AM

Lab Number: 240730006-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Cyanide-Weak Acid Dissociable	ND mg/L	ASTM 2036-09C	0.005	0.0005	8/7/24	QC75238	KRB
рН	7.38 units	SM 4500-H-B	0.01	0.01	7/30/24	-	ARH
Total Dissolved Solids	207 mg/L	SM 2540-C	5	2	8/1/24	QC75146	ISG
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	7/31/24	QC75114	ISG
Potentially Dissolved							
Cadmium	0.0002 mg/L	EPA 200.8	0.0001	0.000006	7/31/24	QC75122	MBN
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	7/31/24	QC75122	MBN
Lead	0.0012 mg/L	EPA 200.8	0.0001	0.000006	7/31/24	QC75122	MBN
Manganese	0.1696 mg/L	EPA 200.8	0.0008	0.00001	7/31/24	QC75122	MBN
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	7/31/24	QC75122	MBN
Zinc	0.070 mg/L	EPA 200.8	0.001	0.00003	7/31/24	QC75122	MBN
<u>Total</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	8/1/24	QC75142	JJA
Lead	0.0012 mg/L	EPA 200.8	0.0001	0.000006	7/31/24	QC75122	MBN
Total Recoverable							
Iron	0.029 mg/L	EPA 200.7	0.005	0.0005	7/31/24	QC75118	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations. (s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Test

Analytical QC Summary

Method

Prep Date

TASK NO: 240730006

Result

Report To: CJ Dickerson Receive Date: 7/30/24

QC Batch ID

Project Name: CDPS Bi Monthly WW Company: Thorin Resources, LLC QC Type

	-,		11000111			
Cyanide-Weak Acid Dissociable	QC75238	Blank	ND	Α	STM 2036-09C	8/6/24
Mercury	QC75142	2 Method Blank	ND		EPA 245.7	8/1/24
Cadmium	QC75122	2 Method Blank	ND		EPA 200.8	7/30/24
Copper	QC75122	2 Method Blank	ND		EPA 200.8	7/30/24
_ead	QC75122	2 Method Blank	ND		EPA 200.8	7/30/24
Manganese	QC75122	2 Method Blank	ND		EPA 200.8	7/30/24
Silver	QC75122	2 Method Blank	ND		EPA 200.8	7/30/24
Zinc	QC75122	2 Method Blank	ND		EPA 200.8	7/30/24
ron	QC75118	B Method Blank	ND		EPA 200.7	7/30/24
Total Dissolved Solids	QC75146	Blank	ND		SM 2540-C	8/1/24
Total Suspended Solids	QC75114	1 Blank	ND		SM 2540-D	7/31/24
Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
Cyanide-Weak Acid Dissociable	QC75238	Duplicate -240802021-01	0 - 20	-	9.5	ASTM 2036-09C
		LCS	90 - 110	101.1	-	
		MS -240805162-01D	75 - 125	107.5	-	
Mercury	QC75142	Duplicate -240729039-01	0 - 20	-	0.0	EPA 245.7
		LCS	90 - 110	104.6	-	
		MS -240729039-01C	80 - 120	94.0	-	
Cadmium	QC75122	LCS	90 - 110	97.3	-	EPA 200.8
		MS -240730002-01	70 - 130	111.9	-	
		MSD -240730002-01	0 - 10	-	0.3	
Copper	QC75122	LCS	90 - 110	98.2	-	EPA 200.8
		MS -240730002-01	70 - 130	97.4	-	
		MSD -240730002-01	0 - 10	-	0.0	
Lead	QC75122	LCS	90 - 110	98.3	-	EPA 200.8
		MS -240730002-01	70 - 130	103.3	-	
		MSD -240730002-01	0 - 10	-	1.1	
Manganese	QC75122	LCS	90 - 110	102.9	-	EPA 200.8
3.0		MS -240730002-01	70 - 130	113.2	-	
		MSD -240730002-01	0 - 10	-	0.5	
Silver	QC75122	LCS	90 - 110	97.0	-	EPA 200.8
3 9.	ασ.σ.==	MS -240730002-01	70 - 130	93.1	-	
		MSD -240730002-01	0 - 10	-	2.6	
 Zinc	QC75122	LCS	90 - 110	98.6	-	EPA 200.8
2110	QOTOTEE	MS -240730002-01	70 - 130	108.7	-	L1 /\ 200.0
		MSD -240730002-01	0 - 10	-	2.6	
las -	QC75118	Duplicate -240730110-01	0 - 20	-	0.0	EPA 200.7
Iron	QU/3110				0.0	LI A 200.1
iron		LCS				
Iron		LCS MS -240730006-01B	90 - 110 75 - 125	100.9 103.7	-	

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM

ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
		LCS	85 - 115	101.2	-	
Total Suspended Solids	QC75114	Duplicate -240730012-01	0 - 10	-	3.1	SM 2540-D
		LCS	90 - 110	99.6	-	

All analyses were performed in accordance with approved methods under the latest revision to 40 CFR Part 136 unless otherwise identified. Based on my inquiry of the person or persons directly responsible for analyzing the wastewater samples and generating the report (s), the analyses, report, and information submitted are, to the best of my knowledge and belief, true, accurate, and complete.

DATA APPROVED FOR RELEASE BY

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Chain of Custody Form

Report To Information	Bill To Information (If different from report to)	Project Name / Number
Company Name: Thoran Resources	Company Name:	
Contact Name: C 5 Dieterson	Contact Name:	
Address: 1900 Main St Unit Ol	Address:	Task Number (Lab Use Only)
City Ouray State Co Zip 31427	City State Zip	
Phone: ((00Z) 793-13Z1	Phone:	CAL Task
Email: Cidicherson Pthoringsources.com	Email:	240730006
Sample Collector: CJ Dickerson		RMB
Sample Collector Phone: (602) 793-132/	PO No.:	

Commerce City Lab 10411 Heinz Way Commerce City CO 80640

<u>Lakewood Service Center</u> 610 Garrison Street, Unit E Lakewood CO 80215

Phone: 303-659-2313

www.coloradolab.com

Sample C	onector Phone	e: (3 00) (10) (501.10.	<u> </u>													
											1	ests Re	quested		10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ōΗ.	
		Sample Matrix	(Select One Only)				<u>~</u>	m									
Ground	Water 🔀 I Water 🗌 e Water 🗍	Soil Sludge		Drinking Water	No. of Containers	irab	or (Check One Only) Composite	BB023110033									
Date	Time		Sample ID		4										+-+		
7/29	11:00an	OF ¢	ØZA		3	X		×			 						
			,														
							ł		-						}		-
																	
					1										1		_
					-		 					-			+++	_	-
															+		+
			<u> </u>	11 / 3	}	 			-						++		
L		* NO OI	1 gresse	RCQ (<u></u>		ļ			- 68							\rightarrow
		, ,	·			· _											
Instructi	ions: Please	Retur Bott	les W/ Fx Lin	CDC'S C/S Info:							Seals	Present Y	es 🗌 No 🗀	1		· ·	
{	1 (64) 5	Lect and the	LAGO	Deliver Vi	a:	VA)5		C/S	Charge	Temn	Z _{°C}	/Ice Y	Sample	Pres. Ye	N De	
Rèlinqui	ished By:	Date/Time:	Received By:		Relinqu	iished	By:		Date	/Time:	Re	ceived B	sy:		Date/	Time:	/
C5 7	Dicheson	Date/Time: 7/29 4:30g		_					-		1	SAAL	C/Ice Y By:	4	71	30/	24
				Page	4 of 5							J				71	15
																ı	, ,

Quotation for Analytical Services

Quote ID: QBO23110033

Prepared For:

Thorin Resources, LLC

1900 Main St

Unit 1

Ouray, CO 81427

Attn: CJ Dickerson

Project:

CDPS Bi Monthly WW

Quote Date: Friday, November 10, 2023 Turn Around Time: 10 Working Days

Matrix	Description	Method	Qty.	Price - each	Total
Water - Ground	Fe - TR <	EPA 200.7	2	\$13.00	\$26.00
Water - Ground	Ph -	SM 4500-H-B	2	\$13.00	\$26.00
Water - Ground	Ag - PD 🏺	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Cd - PD "	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Cu - PD ~	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Mn - PD =	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Pb-PD -	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Pb - Total ~	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	TDS -	SM 2540-C	2	\$16.00	\$32.00
Water - Ground	TSS 🗝	SM 2540-D	2	\$16.00	\$32.00
Water - Ground	Zn - PD 🤲	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Hg ~	EPA 245.7	2	\$27.00	\$54.00
Water - Ground	Cyanide-Weak Acid Dissocial	oleASTM 2036-09C	2	\$40.00	\$80.00
Water - Ground	-Oil-&-Grease	EPA 1664 (A)	2	\$65.00	\$130.00
Shipping	Cooler Shipment - UPS	UPS	2	\$30.00	\$60.00

\$664.00

^{**}Samples should be shipped or hand delivered the same day they are collected. Orders that require sub-lab analysis should be delivered to the lab Monday thru Wednesday only.**

TASK NO: 240823002

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240823002

Client PO:

Client Project: CDPS Bi Monthly WW

Date Received: 8/23/24

Date Reported: 8/30/24

Matrix: Water

Customer Sample ID OF002A

Sample Date/Time: 8/22/24 11:00 AM

Lab Number: 240823002-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Cyanide-Weak Acid Dissociable	ND mg/L	ASTM 2036-09C	0.005	0.0005	8/28/24	QC75799	KRB
pH	7.66 units	SM 4500-H-B	0.01	0.01	8/23/24	-	ARH
Total Dissolved Solids	229 mg/L	SM 2540-C	5	2	8/29/24	QC75804	ISG
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	8/26/24	QC75726	RLP
Potentially Dissolved							
Cadmium	0.0001 mg/L	EPA 200.8	0.0001	0.000006	8/27/24	QC75756	MBN
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	8/27/24	QC75756	MBN
Lead	0.0031 mg/L	EPA 200.8	0.0001	0.000006	8/27/24	QC75756	MBN
Manganese	0.1267 mg/L	EPA 200.8	0.0008	0.00001	8/27/24	QC75756	MBN
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	8/27/24	QC75756	MBN
Zinc	0.063 mg/L	EPA 200.8	0.001	0.00003	8/27/24	QC75756	MBN
<u>Total</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	8/29/24	QC75837	JJA
Lead	0.0031 mg/L	EPA 200.8	0.0001	0.000006	8/27/24	QC75756	MBN
Total Recoverable							
Iron	0.048 mg/L	EPA 200.7	0.005	0.0005	8/27/24	QC75740	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte

concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240823002

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240823002

Client PO:

Client Project: CDPS Bi Monthly WW

Date Received: 8/23/24 Date Reported: 8/30/24

Matrix: Water

Customer Sample ID CBOF

Sample Date/Time: 8/22/24 11:30 AM

Lab Number: 240823002-02

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Cyanide-Weak Acid Dissociable	ND mg/L	ASTM 2036-09C	0.005	0.0005	8/28/24	QC75799	KRB
рН	7.61 units	SM 4500-H-B	0.01	0.01	8/23/24	-	ARH
Total Dissolved Solids	886 mg/L	SM 2540-C	5	2	8/29/24	QC75804	ISG
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	8/26/24	QC75726	RLP
Potentially Dissolved							
Cadmium	0.0017 mg/L	EPA 200.8	0.0001	0.000006	8/27/24	QC75756	MBN
Copper	0.0163 mg/L	EPA 200.8	0.0008	0.00001	8/27/24	QC75756	MBN
Lead	0.0153 mg/L	EPA 200.8	0.0001	0.000006	8/27/24	QC75756	MBN
Manganese	0.0978 mg/L	EPA 200.8	0.0008	0.00001	8/27/24	QC75756	MBN
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	8/27/24	QC75756	MBN
Zinc	0.395 mg/L	EPA 200.8	0.001	0.00003	8/27/24	QC75756	MBN
<u>Total</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	8/29/24	QC75837	JJA
Lead	0.0159 mg/L	EPA 200.8	0.0001	0.000006	8/27/24	QC75756	MBN
Total Recoverable							
Iron	0.239 mg/L	EPA 200.7	0.005	0.0005	8/27/24	QC75740	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240823002

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240823002

Client PO:

Client Project: CDPS Bi Monthly WW

Date Received: 8/23/24

Date Reported: 8/30/24

Matrix: Water

Customer Sample ID CB_UG01

Sample Date/Time: 8/22/24 11:45 AM

Lab Number: 240823002-03

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
							_
Cyanide-Weak Acid Dissociable	ND mg/L	ASTM 2036-09C	0.005	0.0005	8/28/24	QC75799	KRB
pH	7.71 units	SM 4500-H-B	0.01	0.01	8/23/24	_	ARH
Total Dissolved Solids	904 mg/L	SM 2540-C	5	2	8/29/24	QC75804	ISG
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	8/26/24	QC75726	RLP
Potentially Dissolved							
Cadmium	0.0014 mg/L	EPA 200.8	0.0001	0.000006	8/27/24	QC75756	MBN
Copper	0.0156 mg/L	EPA 200.8	0.0008	0.00001	8/27/24	QC75756	MBN
Lead	0.0031 mg/L	EPA 200.8	0.0001	0.000006	8/27/24	QC75756	MBN
Manganese	0.1104 mg/L	EPA 200.8	0.0008	0.00001	8/27/24	QC75756	MBN
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	8/27/24	QC75756	MBN
Zinc	0.326 mg/L	EPA 200.8	0.001	0.00003	8/27/24	QC75756	MBN
<u>Total</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	8/29/24	QC75837	JJA
Lead	0.0034 mg/L	EPA 200.8	0.0001	0.000006	8/27/24	QC75756	MBN
Total Recoverable							
Iron	0.231 mg/L	EPA 200.7	0.005	0.0005	8/27/24	QC75740	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations. (s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Analytical QC Summary

Method

Prep Date

TASK NO: 240823002

Report To: CJ Dickerson

Test

Company: Thorin Resources, LLC

QC Batch ID

QC Type

Receive Date: 8/23/24

Result

Project Name: CDPS Bi Monthly WW

Cyanide-Weak Acid Dissociable	QC75799	Blank	ND	AS	STM 2036-09C	8/28/24
Mercury	QC75837	Method Blank	ND		EPA 245.7	8/29/24
Cadmium	QC75756	Method Blank	ND		EPA 200.8	8/23/24
Copper	QC75756	Method Blank	ND		EPA 200.8	8/23/24
₋ead	QC75756	Method Blank	ND		EPA 200.8	8/23/24
Manganese	QC75756	Method Blank	ND		EPA 200.8	8/23/24
Silver	QC75756	Method Blank	ND		EPA 200.8	8/23/24
Zinc	QC75756	Method Blank	ND		EPA 200.8	8/23/24
ron	QC75740	Method Blank	ND		EPA 200.7	8/23/24
Total Dissolved Solids	QC75804	Blank	ND		SM 2540-C	8/28/24
Total Suspended Solids	QC75726	Blank	ND		SM 2540-D	8/26/24
Test Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
Cyanide-Weak Acid Dissociable	QC75799	Duplicate -240823002-03	0 - 20	-	0.0	ASTM 2036-09C
		LCS	90 - 110	94.5	-	
		MS -240822022-02A	75 - 125	96.0	-	
Mercury	QC75837	Duplicate -240822035-01	0 - 20	-	0.0	EPA 245.7
		LCS	90 - 110	107.8	-	
		MS -240822035-01D	80 - 120	100.0	-	
Cadmium	QC75756	LCS	90 - 110	97.8	-	EPA 200.8
		MS -240823002-01B	70 - 130	106.7	-	
		MSD -240823002-01B	0 - 10	-	3.0	
Copper	QC75756	LCS	90 - 110	99.8	-	EPA 200.8
		MS -240823002-01B	70 - 130	106.8	-	
		MSD -240823002-01B	0 - 10	-	2.9	
Lead	QC75756	LCS	90 - 110	93.6	-	EPA 200.8
		MS -240823002-01B	70 - 130	93.1	-	
		MSD -240823002-01B	0 - 10	-	1.9	
Manganese	QC75756	LCS	90 - 110	103.0	-	EPA 200.8
-		MS -240823002-01B	70 - 130	116.9	-	
		MSD -240823002-01B	0 - 10	-	3.0	
Silver	QC75756	LCS	90 - 110	90.3	-	EPA 200.8
		MS -240823002-01B	70 - 130	79.8	-	
		MSD -240823002-01B	0 - 10	-	5.5	
 Zinc	QC75756	LCS	90 - 110	98.1	-	EPA 200.8
		MS -240823002-01B	70 - 130	112.2	-	
		MSD -240823002-01B	0 - 10	_	2.7	
Iron	QC75740	Duplicate -240823019-01	0 - 20	-	4.0	EPA 200.7
		LCS	90 - 110	100.0	-	
				106.3		
		MS -240823085-02A	75 - 125	100.5	-	

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM

ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

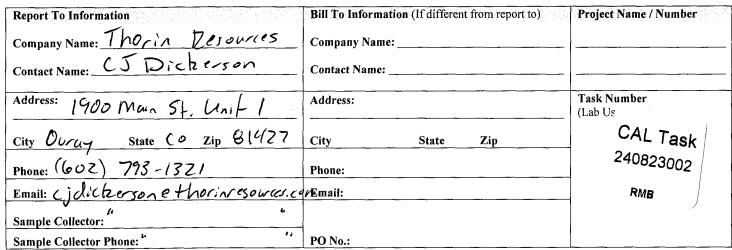
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
	L	.CS	85 - 115	101.7	-	
Total Suspended Solids	QC75726 D	Ouplicate -240823001-01	0 - 10	-	2.6	SM 2540-D
	L	.CS	90 - 110	105.5	-	

All analyses were performed in accordance with approved methods under the latest revision to 40 CFR Part 136 unless otherwise identified. Based on my inquiry of the person or persons directly responsible for analyzing the wastewater samples and generating the report (s), the analyses, report, and information submitted are, to the best of my knowledge and belief, true, accurate, and complete.


DATA APPROVED FOR RELEASE BY

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Chain of Custody Form

Commerce City Lab 10411 Heinz Way Commerce City CO 80640

<u>Lakewood Service Center</u> 610 Garrison Street, Unit E Lakewood CO 80215

Phone: 303-659-2313

www.coloradolab.com

pie C	onector x no																
											Tes	sts Requ	uested				
		Sample Matrix	(Select One Only	7)		,	2	m									
Waste	Water 🗌	Soil 🗌		Drinking Water 🗌	ners		e Oni	203									
Ground	d Water 🔲	Sludge 🗌		-	ntai] (و 5	%									
Surface Water				No. of Containers	No. of Containers Grab or (Check One Only) Composite		\$502311003										
Date	Time		Sample ID		ž	5	င် ဝိ ——	20									
8/22	11:00a	OF	002/7		3	X		K									
8/27	11:309	\mathcal{C}	BOF		3	X		X									
8/22	11:459		B_4601		3	×		L									
]											
					1												
				70													
		*NO oil/	arease A	ed	/												
			J														
Instruction	ons: Da	use Return Bot	Hes	C/S Info	:	,				S	1	esent Yes					
	1 (6)	ase telms of		Deliver			ps		C/S`Cha	rge X	Temp.	િ _{℃/Ic} ived By:	e Y	Sample	Pres. Yes Date/Ti	{ _{No □}	
Relinquis		Date/Time:	Received By:	Date/Time:	Relinqu	ished	By:		Date/Ti	me'	Rece	ived By:	,		Date/Ti	ime:	
CTD	cheson	8/22 4:300		Paç	e 6 of 7						10	Hda	M	4	8/2	3/24	$\frac{1}{2}$
		,1									-0					(20

CAL Task 240823002

RMB

Quotation for Analytical Services

Quote ID: QBO23110033

LABORATORIES, INC.

Prepared For:

Thorin Resources, LLC

1900 Main St

Unit 1

Ouray, CO 81427

Attn:

Quote Date: Friday, November 10, 2023 Turn Around Time: 10 Working Days

CJ Dickerson

Project: **CDPS Bi Monthly WW**

Matrix	Description	Method	Qty.	Price - each	Total
Water - Ground	Fe - TR	EPA 200.7	2	\$13.00	\$26.00
Water - Ground	Ph	SM 4500-H-B	2	\$13.00	\$26.00
Water - Ground	Ag - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Cd - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Cu - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Mn - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Pb - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Pb - Total	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	TDS	SM 2540-C	2	\$16.00	\$32.00
Water - Ground	TSS	SM 2540-D	2	\$16.00	\$32.00
Water - Ground	Zn - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Hg	EPA 245.7	2	\$27.00	\$54.00
Water - Ground	Cyanide-Weak Acid Dissociable	ASTM 2036-09C	2	\$40.00	\$80.00
Water - Ground	Oil & Greaso not red.	EPA 1664 (A)	2	\$65.00	\$130.00
Shipping	Cooler Shipment - UPS	UPS	2	\$30.00	\$60.00

\$664.00

^{**}Samples should be shipped or hand delivered the same day they are collected. Orders that require sub-lab analysis should be delivered to the lab Monday thru Wednesday only.**

TASK NO: 240830022

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240830022

Client PO:

Client Project: CDPS Bi Monthly WW

Date Received: 8/30/24 Date Reported: 9/6/24

Matrix: Water

Customer Sample ID OF002A

Sample Date/Time: 8/29/24 10:00 AM

Lab Number: 240830022-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
							_
Cyanide-Weak Acid Dissociable	ND mg/L	ASTM 2036-09C	0.005	0.0005	9/5/24	QC75983	KRB
рН	7.60 units	SM 4500-H-B	0.01	0.01	8/30/24	-	ARH
Total Dissolved Solids	208 mg/L	SM 2540-C	5	2	9/4/24	QC75917	ISG
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	9/3/24	QC75887	ISG
Potentially Dissolved							
Cadmium	0.0002 mg/L	EPA 200.8	0.0001	0.000006	9/4/24	QC75954	MBN
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	9/4/24	QC75954	MBN
Lead	0.0012 mg/L	EPA 200.8	0.0001	0.000006	9/4/24	QC75954	MBN
Manganese	0.1796 mg/L	EPA 200.8	0.0008	0.00001	9/4/24	QC75954	MBN
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	9/4/24	QC75954	MBN
Zinc	0.091 mg/L	EPA 200.8	0.001	0.00003	9/4/24	QC75954	MBN
<u>Total</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	9/5/24	QC75988	JJA
Lead	0.0013 mg/L	EPA 200.8	0.0001	0.000006	9/4/24	QC75954	MBN
Total Recoverable							
Iron	0.035 mg/L	EPA 200.7	0.005	0.0005	9/3/24	QC75914	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Inde

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Test

Cyanide-Weak Acid Dissociable

Analytical QC Summary

Method

ASTM 2036-09C

Prep Date

9/5/24

TASK NO: 240830022

Result

ND

Report To: CJ Dickerson Receive Date: 8/30/24

QC Batch ID

QC75983

Project Name: CDPS Bi Monthly WW Company: Thorin Resources, LLC QC Type

Blank

	Q010000					3/3/27
Mercury	QC75988	B Method Blank	ND		EPA 245.7	9/5/24
Cadmium	QC75954	Method Blank	ND		EPA 200.8	8/30/24
Copper	QC75954	Method Blank	ND		EPA 200.8	8/30/24
_ead	QC75954	Method Blank	ND		EPA 200.8	8/30/24
Manganese	QC75954	Method Blank	ND		EPA 200.8	8/30/24
Silver	QC75954	Method Blank	ND		EPA 200.8	8/30/24
Zinc	QC75954	Method Blank	ND		EPA 200.8	8/30/24
ron	QC75914	Method Blank	ND		EPA 200.7	8/30/24
Total Dissolved Solids	QC75917	' Blank	ND		SM 2540-C	9/3/24
Total Suspended Solids	QC75887	' Blank	ND		SM 2540-D	9/3/24
Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
Cyanide-Weak Acid Dissociable	QC75983	Duplicate -240828017-02	0 - 20	-	0.0	ASTM 2036-09C
		LCS	90 - 110	101.6	-	
		MS -240903037-03	75 - 125	95.0	-	
Mercury	QC75988	Duplicate -240903054-01	0 - 20	-	0.0	EPA 245.7
•		LCS	90 - 110	101.8	-	
		MS -240903054-01C	80 - 120	86.0	-	
Cadmium	QC75954	LCS	90 - 110	101.6	-	EPA 200.8
		MS -240830002-01	70 - 130	103.6	-	
		MSD -240830002-01	0 - 10	_	2.1	
Copper	QC75954	LCS	90 - 110	104.6	-	EPA 200.8
		MS -240830002-01	70 - 130	115.8	-	
		MSD -240830002-01	0 - 10	-	0.4	
Lead	QC75954	LCS	90 - 110	102.2	=	EPA 200.8
		MS -240830002-01	70 - 130	97.5	-	
		MSD -240830002-01	0 - 10	-	2.2	
Manganese	QC75954	LCS	90 - 110	108.9	-	EPA 200.8
		MS -240830002-01	70 - 130	114.6	-	
		MSD -240830002-01	0 - 10	_	2.2	
Silver	QC75954	LCS	90 - 110	100.2	-	EPA 200.8
		MS -240830002-01	70 - 130	78.1	-	
		MSD -240830002-01	0 - 10	-	0.4	
Zinc	QC75954	LCS	90 - 110	105.9	-	EPA 200.8
		MS -240830002-01	70 - 130	94.2	-	
		MSD -240830002-01	0 - 10	-	0.2	
Iron	QC75914	Duplicate -240830072-01	0 - 20	_	4.4	EPA 200.7
-		LCS	90 - 110	91.0	-	
		MS -240830022-01C	75 - 125	92.9	-	

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM

ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls

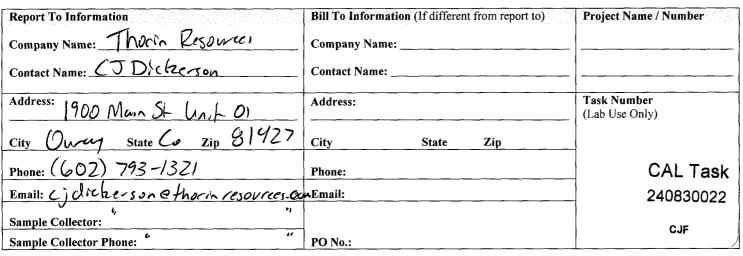
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
		LCS	85 - 115	103.6	-	
Total Suspended Solids	QC75887	Duplicate -240830025-01	0 - 10	-	7.4	SM 2540-D
		LCS	90 - 110	101.0	-	

All analyses were performed in accordance with approved methods under the latest revision to 40 CFR Part 136 unless otherwise identified. Based on my inquiry of the person or persons directly responsible for analyzing the wastewater samples and generating the report (s), the analyses, report, and information submitted are, to the best of my knowledge and belief, true, accurate, and complete.


DATA APPROVED FOR RELEASE BY

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Chain of Custody Form

Commerce City Lab 10411 Heinz Way Commerce City CO 80640

<u>Lakewood Service Center</u> 610 Garrison Street, Unit E Lakewood CO 80215

Phone: 303-659-2313

www.coloradolab.com

ample C	ollector Ph	one:		" PO	No.:							CJF								
														rests I	Reques	ted	4 Mg 1813 US 1813			
		S	ample Matrix	(Select One On	lý)	A SECTION				~							T			
icludes wa	NPDES) stewater, non intended for		raw (untreated)	ed drinking water,	Solid (Sludge) [] (503 Regs / RCRA/ 846)	'SW-	No. of Containers	ab	5 8	QB02311 693										
Date	Time			Sample I	D		Ň	<u>ئ</u> ق	်ပိ	Ø										
8/29	10:00gr		ÜF	=ØØZA			3	X												
	·																			
					:															1
														+-	1 1				+	+
						\	_			-		_			1		1-1		-	+
		2111	TDC CLAO	MINON		<u> </u>								_	1		+-+	-	+	+
		#N0	The call	<u>itainer</u>	$\overline{}$	/								-	++		-			+-
		MON	aca, MII	alique in			_													-
		<u> </u>	<u>wo.</u> c	F 8/31/24																1
		A N	D (11 4)	grease ch	ntainer	,										Ì				
			VecelVe	1. (7 8/2	01/04															
nstructio	ns: Di-	. 17	Leturn Bo	11/2		C/S Info:		·i		L	1	5	Seals	Present	Yes 🔲 l	Vo □				
	Tlea	use K	LEFWII WO	LANC 3		Neliver Via:	UP	ک(C/S	Charge	Tem	2	°C/Ice	Sa	mple Pr	es. Yes	M No	
Relinquis			te/Time:	Received By:	Date/Time:		linqu	ished	By:			Time:		ceived	By:			Date/1	lme:	
CJE	icherso.	~ \ B.	129 4:360			Page 4	of 5				+					WA	$r \mid$	8/	30/	14
			1 / 1	<u> </u>		. <u>~9</u>	<u></u>				·					7	} _ '		-1	

Quotation for Analytical Services

Quote ID: QBO23110033

Prepared For:

Thorin Resources, LLC

1900 Main St

Unit 1

Ouray, CO 81427

Aftn: CJ Dickerson

Quote Date: Friday, November 10, 2023 Turn Around Time: 10 Working Days

CAL Task 240830022

CJF

Project: **CDPS Bi Monthly WW**

Matrix	Description	Method	Qty.	Price - each	Total
Water - Ground	Fe - TR	EPA 200.7	2	\$13.00	\$26.00
Water - Ground	Ph	SM 4500-H-B	2	\$13.00	,
Water - Ground	Ag - PD	EPA 200.8	2	\$16.00	\$26.00
Water - Ground	Cd - PD	EPA 200.8	2	•	\$32.00
Water - Ground	Cu - PD	EPA 200.8		\$16.00	\$32.00
Water - Ground	Mn - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Pb - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Pb - Total	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	TDS	SM 2540-C	2	\$16.00	\$32.00
Water - Ground	TSS		2	\$16.00	\$32.00
Water - Ground	Zn - PD	SM 2540-D	2	\$16.00	\$32.00
Water - Ground		EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Hg	EPA 245.7	2	\$27.00	\$54.00
Water - Ground			2	\$40.00	\$80.00
	Oil & Grease	EPA 1664 (A)	2	\$65.00	\$130.00
Shipping	Cooler Shipment - UPS	UPS	2	\$30.00	\$60.00

\$664.00

Page 1 of 3

10411 Heinz Way / Commerce City, CO 80640 / 303-659-2313 Mailing Address: P.O. Box 507 / Brighton, CO 80601-0507

JML

^{**}Samples should be shipped or hand delivered the same day they are collected. Orders that require sub-lab analysis should be delivered to the lab Monday thru Wednesday only.**

TASK NO: 240917001

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240917001

Client PO:

Client Project: CDPS Bi Monthly and Quarterly WW

Date Received: 9/17/24 Date Reported: 9/24/24

Matrix: Water

Customer Sample ID OF002A

Sample Date/Time: 9/16/24 2:40 PM Lab Number: 240917001-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Cyanide-Weak Acid Dissociable	ND mg/L	ASTM 2036-09C	0.005	0.0005	9/18/24	QC76275	KRB
рН	7.58 units	SM 4500-H-B	0.01	0.01	9/17/24	-	KJP
Total Dissolved Solids	186 mg/L	SM 2540-C	5	2	9/18/24	QC76238	ISG
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	9/18/24	QC76249	ISG
Potentially Dissolved							
Cadmium	0.0002 mg/L	EPA 200.8	0.0001	0.000006	9/23/24	QC76378	JJA
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	9/23/24	QC76378	JJA
Lead	0.0010 mg/L	EPA 200.8	0.0001	0.000006	9/23/24	QC76378	JJA
Manganese	0.1309 mg/L	EPA 200.8	0.0008	0.00001	9/23/24	QC76378	JJA
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	9/23/24	QC76378	JJA
Zinc	0.075 mg/L	EPA 200.8	0.001	0.00003	9/23/24	QC76378	JJA
<u>Total</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	9/19/24	QC76315	JJA
Lead	0.0011 mg/L	EPA 200.8	0.0001	0.000006	9/23/24	QC76378	JJA
Total Recoverable							
Iron	0.056 mg/L	EPA 200.7	0.005	0.0005	9/19/24	QC76292	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations. (s) The accuracy of the spike recovery value is reduced due to the analyte

concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240917001

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240917001

Client PO:

Client Project: CDPS Bi Monthly and Quarterly WW

Date Received: 9/17/24 Date Reported: 9/24/24

Matrix: Water

Customer Sample ID OF002A

Sample Date/Time: 9/16/24 2:40 PM **Lab Number:** 240917001-02

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Total Dissolved Solids	195 mg/L	SM 2540-C	5	2	9/18/24	QC76238	ISG
Dissolved							
Chromium - Hexavalent	ND mg/L	SM 3500-Cr B	0.02	0.01	9/19/24	QC76323	AMJ
Total							
Mercury	ND ug/L	EPA 245.7	0.002	0.0002	9/23/24	QC76366	NRP
Cadmium	0.0002 mg/L	EPA 200.8	0.0001	0.000006	9/23/24	QC76378	JJA
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	9/23/24	QC76378	JJA
Zinc	0.077 mg/L	EPA 200.8	0.001	0.00003	9/23/24	QC76378	JJA
Total Recoverable							
Chromium - Trivalent	ND mg/L	Calculation	0.02	0.01	9/23/24	-	MBN
Arsenic	0.0016 mg/L	EPA 200.8	0.0006	0.00006	9/23/24	QC76378	JJA
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	9/23/24	QC76378	JJA
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	9/23/24	QC76378	JJA

Ammonium Sulfate buffer solution added upon arrival to laboratory to extend Hex-Cr hold time to 28 days.

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240917001

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240917001

Client PO:

Client Project: CDPS Bi Monthly and Quarterly WW

Date Received: 9/17/24 Date Reported: 9/24/24

Matrix: Water

Customer Sample ID CBOF

Sample Date/Time: 9/16/24 2:10 PM Lab Number: 240917001-03

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
							_
Cyanide-Weak Acid Dissociable	ND mg/L	ASTM 2036-09C	0.005	0.0005	9/18/24	QC76275	KRB
рН	7.17 units	SM 4500-H-B	0.01	0.01	9/17/24	-	KJP
Total Dissolved Solids	905 mg/L	SM 2540-C	5	2	9/18/24	QC76238	ISG
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	9/18/24	QC76249	ISG
Potentially Dissolved							
Cadmium	0.0011 mg/L	EPA 200.8	0.0001	0.000006	9/23/24	QC76378	JJA
Copper	0.0118 mg/L	EPA 200.8	0.0008	0.00001	9/23/24	QC76378	JJA
Lead	0.0034 mg/L	EPA 200.8	0.0001	0.000006	9/23/24	QC76378	JJA
Manganese	0.0752 mg/L	EPA 200.8	0.0008	0.00001	9/23/24	QC76378	JJA
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	9/23/24	QC76378	JJA
Zinc	0.232 mg/L	EPA 200.8	0.001	0.00003	9/23/24	QC76378	JJA
<u>Total</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	9/19/24	QC76315	JJA
Lead	0.0035 mg/L	EPA 200.8	0.0001	0.000006	9/23/24	QC76378	JJA
<u>Total Recoverable</u>							
Iron	0.189 mg/L	EPA 200.7	0.005	0.0005	9/19/24	QC76292	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations. (s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240917001

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240917001

Client PO:

Client Project: CDPS Bi Monthly and Quarterly WW

Date Received: 9/17/24 Date Reported: 9/24/24

Matrix: Water

Customer Sample ID CB_UG01

Sample Date/Time: 9/16/24 2:25 PM Lab Number: 240917001-04

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
							_
Cyanide-Weak Acid Dissociable	ND mg/L	ASTM 2036-09C	0.005	0.0005	9/18/24	QC76275	KRB
рН	7.44 units	SM 4500-H-B	0.01	0.01	9/17/24	-	KJP
Total Dissolved Solids	926 mg/L	SM 2540-C	5	2	9/18/24	QC76238	ISG
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	9/18/24	QC76249	ISG
Potentially Dissolved							
Cadmium	0.0010 mg/L	EPA 200.8	0.0001	0.000006	9/23/24	QC76378	JJA
Copper	0.0121 mg/L	EPA 200.8	0.0008	0.00001	9/23/24	QC76378	JJA
Lead	0.0022 mg/L	EPA 200.8	0.0001	0.000006	9/23/24	QC76378	JJA
Manganese	0.0788 mg/L	EPA 200.8	0.0008	0.00001	9/23/24	QC76378	JJA
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	9/23/24	QC76378	JJA
Zinc	0.225 mg/L	EPA 200.8	0.001	0.00003	9/23/24	QC76378	JJA
<u>Total</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	9/19/24	QC76315	JJA
Lead	0.0022 mg/L	EPA 200.8	0.0001	0.000006	9/23/24	QC76378	JJA
Total Recoverable							
Iron	0.198 mg/L	EPA 200.7	0.005	0.0005	9/19/24	QC76292	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240917001

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240917001

Client PO:

Client Project: CDPS Bi Monthly and Quarterly WW

Date Received: 9/17/24

Date Reported: 9/24/24

Matrix: Water

Customer Sample ID Hg LL Field Blank Sample Date/Time: 9/16/24 Lab Number: 240917001-05

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
<u>Total</u>							
Mercury	ND ug/L	EPA 245.7	0.002	0.0002	9/23/24	QC76366	NRP

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations. (s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Test

Analytical QC Summary

Method

Prep Date

TASK NO: 240917001

Report To: CJ Dickerson Receive Date: 9/17/24

QC Batch ID QC Type

Company: Thorin Resources, LLC Project Name: CDPS Bi Monthly and Quarterly WW

Test	QC Batch II	D QC Type	Result		Method	Prep Date
Chromium - Hexavalent	QC76323	Blank	ND	S	M 3500-Cr B	9/19/24
Cyanide-Weak Acid Dissociable	QC76275	Blank	ND	AS	TM 2036-09C	9/18/24
Mercury	QC76315	Method Blank	ND		EPA 245.7	9/19/24
	QC76366	Method Blank	ND		EPA 245.7	9/23/24
Arsenic	QC76378	Method Blank	ND		EPA 200.8	9/17/24
Cadmium	QC76378	Method Blank	ND		EPA 200.8	9/17/24
Chromium	QC76378	Method Blank	ND		EPA 200.8	9/17/24
Copper	QC76378	Method Blank	ND		EPA 200.8	9/17/24
Lead	QC76378	Method Blank	ND		EPA 200.8	9/17/24
Manganese	QC76378	Method Blank	ND		EPA 200.8	9/17/24
Silver	QC76378	Method Blank	ND		EPA 200.8	9/17/24
Zinc	QC76378	Method Blank	ND		EPA 200.8	9/17/24
Iron	QC76292	Method Blank	ND		EPA 200.7	9/17/24
Total Dissolved Solids	QC76238	Blank	ND		SM 2540-C	9/17/24
Total Suspended Solids	QC76249	Blank	ND		SM 2540-D	9/18/24
Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
Chromium - Hexavalent	QC76323	Duplicate -240913036-01	0 - 20	-	0.0	SM 3500-Cr B
		LCS	90 - 110	88.3	-	
Cyanide-Weak Acid Dissociable	QC76275	Duplicate -240912164-01	0 - 20	-	13.3	ASTM 2036-09C
		LCS	90 - 110	100.3	-	
		MS -240917108-01	75 - 125	99.5	-	
Mercury	QC76315	Duplicate -240913036-01	0 - 20	-	0.0	EPA 245.7
		LCS	90 - 110	106.8	-	
		MS -240913036-01F	80 - 120	100.0	-	
Mercury	QC76366	LCS	76 - 113	106.0	-	EPA 245.7
•		MS -240920103-01	63 - 111	67.0	-	
		MSD -240920103-01	0 - 18	-	0.0	
Arsenic	QC76378	LCS	90 - 110	101.6	-	EPA 200.8
		MS -240917001-01B	70 - 130	111.2	-	
		MSD -240917001-01B	0 - 10	-	2.7	
Cadmium	QC76378	LCS	90 - 110	98.3	-	EPA 200.8
		MS -240917001-01B	70 - 130	111.0	-	
		MSD -240917001-01B	0 - 10	-	0.1	
Chromium	QC76378	LCS	90 - 110	101.2	-	EPA 200.8
		MS -240917001-01B	70 - 130	109.3	-	
		MSD -240917001-01B	0 - 10	-	2.5	
				100.1	-	EPA 200.8
Copper	QC76378	LCS	90 - 110	1021	-	
Copper	QC76378	LCS MS -240917001-01B	90 - 110 70 - 130	102.1 107.8	-	LI A 200.0
Copper	QC76378	LCS MS -240917001-01B MSD -240917001-01B	90 - 110 70 - 130 0 - 10	102.1	- 0.9	LI A 200.0

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM

ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Test Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
	•	MS -240917001-01B	70 - 130	106.3	-	
		MSD -240917001-01B	0 - 10	-	1.3	
Manganese	QC76378	LCS	90 - 110	102.7	-	EPA 200.8
		MS -240917001-01B	70 - 130	94.3	-	
		MSD -240917001-01B	0 - 10	-	0.9	
Silver	QC76378	LCS	90 - 110	94.5	-	EPA 200.8
		MS -240917001-01B	70 - 130	93.1	-	
		MSD -240917001-01B	0 - 10	-	1.1	
Zinc	QC76378	LCS	90 - 110	99.7	-	EPA 200.8
		MS -240917001-01B	70 - 130	91.9	-	
		MSD -240917001-01B	0 - 10	-	0.0	
Iron	QC76292	Duplicate -240917020-01	0 - 20	-	4.7	EPA 200.7
		LCS	90 - 110	94.3	-	
		MS -240917001-01C	75 - 125	105.9	-	
Total Dissolved Solids	QC76238	Duplicate -240917077-05	0 - 10	-	0.5	SM 2540-C
		LCS	85 - 115	93.4	-	
Total Suspended Solids	QC76249	Duplicate -240917010-01	0 - 10	-	9.8	SM 2540-D
		LCS	90 - 110	97.4	-	

All analyses were performed in accordance with approved methods under the latest revision to 40 CFR Part 136 unless otherwise identified. Based on my inquiry of the person or persons directly responsible for analyzing the wastewater samples and generating the report (s), the analyses, report, and information submitted are, to the best of my knowledge and belief, true, accurate, and complete.

DATA APPROVED FOR RELEASE BY

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls Date Analyzed = Date Test Completed

concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

⁽d) RPD acceptable due to low duplicate and sample concentrations. (s) The accuracy of the spike recovery value is reduced due to the analyte

Chain of Custody Form

Report To Information	Bill To Information (If different from report to)	Project Name / Number
Company Name: Thorin Resources	Company Name:	
Contact Name: CJ Dickerson	Contact Name:	
Address: 1900 Main St Unit 1	Address:	Task Number (Lab Use Only)
City Ouray State Co zip 81427	City State Zip	
Phone: (602) 793-1321	Phone:	CAL Task
Email: cidicaesonetham/esources. Com	Email:	240917001
Sample Collector:		RMB
Sample Collector Phone:	PO No.:	

Commerce City Lab 10411 Heinz Way Commerce City CO 80640

<u>Lakewood Service Center</u> 610 Garrison Street, Unit E Lakewood CO 80215

Phone: 303-659-2313

www.coloradolab.com

Sample Collector Pho	ne:	PO No.:							
									Tests Requested
	Sample Matrix	(Select One Only)			,	 S		7	
Waste Water 🛛	Soil 🗌	Drin	king Water 🔲	lers		5	733	6034	
Ground Water 🗌	Sludge 🗌	Din	King Water [_]	ntain		e C	1100	110	
Surface Water 🗌				. of Containers	qg (or (Check One Only) Composite	SB023110033	3802311	
Date Time		Sample ID		ģ	5	ဗ်ပိ	Q_{i}	9	
9/16 2:40	OF	6\$ZA		3	X		X		
9/16 2:40		DOZA		5	X			*	
9/16 2:10	CBOF				人		X		added upon arrival to laboratory to
9/16 2:25		L1601		3	*		人		extend Hex-Cr hold time to 28 days. 26 9/17/24
									uays. (8)
	* Oxtra	containers	ecd						Low Level Hg - HCl Preserved Bottle
	PAR	OFA02A	, part			i			Lot #: U-4-076-02AB
	(1100000 000	10 tola v ava	nide)	- -					Sample ID: OFOO2 A
	(Wiffes, M	CONTAINERS OF 002 A etals + cya	+ blank			-			Initials: 074 Date: 9/17/24
Instructions:	ase Return Bo	HIN	C/S Info:	_			لـــــــا		Seals Present Yes \(\square\) No \(\square\)
			Deliver V	ia:	UD	5			C/S Charge Temp. C/Ice Sample Pres. Yes No Date/Time: Received By: Date//Time:
Relinquished By:	Date/Time:	Received By:	Date/Time:	Relingu	ished	By:			1 3 (1
CT Dickeso	n Date/Time:		Page	8 of 10					ARDAMA 9/17/24
									80

CAL Task 240917001

RMB

Quotation for Analytical Services

Quote Date: Friday, November 10, 2023

Quote ID: QBO23110033

Turn Around Time: 10 Working Days

Prepared For:

Thorin Resources, LLC

1900 Main St

Unit 1

Ouray, CO 81427

Attn: CJ Dickerson

Project:

CDPS Bi Monthly WW

Matrix	Description	Method	Qty.	Price - each	Total
Water - Ground	Fe - TR	EPA 200.7	2	\$13.00	\$26.00
Water - Ground	Ph	SM 4500-H-B	2	\$13.00	\$26.00
Water - Ground	Ag - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Cd - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Cu - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Mn - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Pb - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Pb - Total	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	TDS	SM 2540-C	2	\$16.00	\$32.00
Water - Ground	TSS	SM 2540-D	2	\$16.00	\$32.00
Water - Ground	Zn - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Hg	EPA 245.7	2	\$27.00	\$54.00
Water - Ground	Cyanide-Weak Acid Dissociable	ASTM 2036-09C	2	\$40.00	\$80.00
Water - Ground	Oil & Grease +Not red	EPA 1664 (A)	2	\$65.00	\$130.00
Shipping	Cooler Shipment - UPS	PUPS	2	\$30.00	\$60.00

\$664.00

Page 1 of 3

^{**}Samples should be shipped or hand delivered the same day they are collected. Orders that require sub-lab analysis should be delivered to the lab Monday thru Wednesday only.**

CAL Task 240917001

RMB

Quotation for Analytical Services

Quote ID: QBO23110034

Prepared For:

Thorin Resources, LLC

1900 Main St

Unit 1

Ouray, CO 81427

Attn: CJ Dickerson

Quote Date: Friday, November 10, 2023 Turn Around Time: 10 Working Days

Project:

CDPS Quart WW

Matrix	Description	Method	Qty.	Price - each	Total
Water - Ground	Cr - Tri	Calculation	1	\$0.00	\$0.00
Water - Ground	As - TR	EPA 200.8	1	\$16.00	\$16.00
Water - Ground	Cd - Total	EPA 200.8	1	\$16.00	\$16.00
Water - Ground	Cr - TR	EPA 200.8	1	\$16.00	\$16.00
Water - Ground	Cu - Total	EPA 200.8	1	\$16.00	\$16.00
Water - Ground	TDS	SM 2540-C	1	\$16.00	\$16.00
Water - Ground	Zn - Total	EPA 200.8	1	\$16.00	\$16.00
Water - Ground	Cr - Hex	SM 3500-Cr B	1	\$40.00	\$40.00
Water - Ground	Hg LL	EPA 245.7	1	\$52.00	\$52.00
Water - Ground	Hg LL Field Blank	EPA 245.7	1	\$52.00	\$52.00
Shipping	Cooler Shipment - UPS	UPS	1	\$30.00	\$30.00

\$270.00

Colorado Analytical Laboratory maintains certification by the Colorado Department of Health (CDPHE) and EPA Region 8 for Wyoming and Tribal Public Water Systems to analyze drinking water for organic contaminants (SOC's VOC's), inorganic contaminants (metals), nitrate nitrite, cyanide, fluoride and coliform bacteria.

Sub-Lab analysis pricing subject to change. Sub-Lab radiological analysis turn-around time is 4 to 8 weeks depending on sample matrix. Due to time, distance and other constraints outside of the control of CAL shipments to sub labs are not guaranteed. All shipment charges will be billed to the client regardless of shipment outcome.

Billing terms are Net 30 on approved accounts; all other accounts are COD. Additional charges may apply for accelerated turn around.

We appreciate the opportunity to be of service to you. If you have questions please call us at 303-659-2313 or visit us at www.coloradolab.com

Page 1 of 3

10411 Heinz Way / Commerce City, CO 80640 / 303-659-2313 Mailing Address: P.O. Box 507 / Brighton, CO 80601-0507

JML

^{**}Samples should be shipped or hand delivered the same day they are collected. Orders that require sub-lab analysis should be delivered to the lab Monday thru Wednesday only.**

TASK NO: 240926007

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240926007

Client PO:

Client Project: CDPS Bi Monthly WW

Date Received: 9/26/24 Date Reported: 10/4/24

Matrix: Water

Customer Sample ID OF002A

Sample Date/Time: 9/25/24 11:00 AM

Lab Number: 240926007-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
							_
Cyanide-Weak Acid Dissociable	ND mg/L	ASTM 2036-09C	0.005	0.0005	10/2/24	QC76588	KRB
рН	7.61 units	SM 4500-H-B	0.01	0.01	9/26/24	-	ARH
Total Dissolved Solids	261 mg/L	SM 2540-C	5	2	10/1/24	QC76551	ISG
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	9/26/24	QC76493	ISG
Potentially Dissolved							
Cadmium	0.0002 mg/L	EPA 200.8	0.0001	0.000006	10/1/24	QC76562	JJA
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	10/1/24	QC76562	JJA
Lead	0.0011 mg/L	EPA 200.8	0.0001	0.000006	10/1/24	QC76562	JJA
Manganese	0.1249 mg/L	EPA 200.8	0.0008	0.00001	10/1/24	QC76562	JJA
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	10/1/24	QC76562	JJA
Zinc	0.077 mg/L	EPA 200.8	0.001	0.00003	10/1/24	QC76562	JJA
<u>Total</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	10/3/24	QC76644	JJA
Lead	0.0011 mg/L	EPA 200.8	0.0001	0.000006	10/1/24	QC76562	JJA
Total Recoverable							
Iron	0.026 mg/L	EPA 200.7	0.005	0.0005	9/30/24	QC76514	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Test

Analytical QC Summary

Method

Prep Date

TASK NO: 240926007

Result

Report To: CJ Dickerson Receive Date: 9/26/24

QC Batch ID

Company: Thorin Resources, LLC Project Name: CDPS Bi Monthly WW QC Type

		71.				
Cyanide-Weak Acid Dissociable	QC76588	Blank	ND	AS	STM 2036-09C	10/2/24
Mercury	QC76644	Method Blank	ND		EPA 245.7	10/3/24
	QC76644	Method Blank	ND		EPA 245.7	10/3/24
Cadmium	QC76562	Method Blank	ND		EPA 200.8	9/26/24
Copper	QC76562	Method Blank	ND		EPA 200.8	9/26/24
Lead	QC76562	Method Blank	ND		EPA 200.8	9/26/24
Manganese	QC76562	Method Blank	ND		EPA 200.8	9/26/24
Silver	QC76562	Method Blank	ND		EPA 200.8	9/26/24
Zinc	QC76562	Method Blank	ND		EPA 200.8	9/26/24
Iron	QC76514	Method Blank	ND		EPA 200.7	9/26/24
Total Dissolved Solids	QC76551		ND		SM 2540-C	9/30/24
Total Suspended Solids	QC76493		ND		SM 2540-D	9/26/24
Test	QC Batch ID	OC Tyme	Limits	% Rec	RPD	Method
Cyanide-Weak Acid Dissociable	QC76588	QC Type Duplicate -241001082-03	0 - 20	% Rec	0.0	ASTM 2036-09C
Cyanide-Weak Acid Dissociable	QC/0300	•		-	0.0	ASTIVI 2030-09C
		LCS	90 - 110	99.8	-	
	0070044	MS -240926041-02	75 - 125	89.0	-	EDA 045.7
Mercury	QC76644	Duplicate -240926007-01	0 - 20	-	0.0	EPA 245.7
		LCS	90 - 110	106.2	-	
		MS -240926007-01D	80 - 120	98.0	-	
Cadmium	QC76562	LCS	90 - 110	96.3	-	EPA 200.8
		MS -240926007-01B	70 - 130	101.9	-	
		MSD -240926007-01B	0 - 10	-	3.6	
Copper	QC76562	LCS	90 - 110	100.9	-	EPA 200.8
		MS -240926007-01B	70 - 130	102.3	-	
		MSD -240926007-01B	0 - 10	-	1.2	
Lead	QC76562	LCS	90 - 110	99.0	=	EPA 200.8
		MS -240926007-01B	70 - 130	98.9	-	
		MSD -240926007-01B	0 - 10	-	0.3	
Manganese	QC76562	LCS	90 - 110	103.0	-	EPA 200.8
		MS -240926007-01B	70 - 130	76.6	-	
		MSD -240926007-01B	0 - 10	-	0.2	
Silver	QC76562	LCS	90 - 110	104.2	-	EPA 200.8
		MS -240926007-01B	70 - 130	98.6	-	
		MSD -240926007-01B	0 - 10	-	1.0	
Zinc	QC76562	LCS	90 - 110	100.9	-	EPA 200.8
		MS -240926007-01B	70 - 130	78.9	-	
		MSD -240926007-01B	0 - 10	-	1.2	
Iron	QC76514	Duplicate -240926107-01	0 - 20	-	15.4	EPA 200.7
	Q070014	LCS	90 - 110	91.7	-	21 / (200.1

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM

ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
Total Dissolved Solids	QC76551	Duplicate -240926069-01	0 - 10	-	0.9	SM 2540-C
		LCS	85 - 115	99.1	-	
Total Suspended Solids	QC76493	Duplicate -240926010-01	0 - 10	-	6.2	SM 2540-D
		LCS	90 - 110	102.6	-	

All analyses were performed in accordance with approved methods under the latest revision to 40 CFR Part 136 unless otherwise identified. Based on my inquiry of the person or persons directly responsible for analyzing the wastewater samples and generating the report (s), the analyses, report, and information submitted are, to the best of my knowledge and belief, true, accurate, and complete.

DATA APPROVED FOR RELEASE BY

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
 (s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Chain of Custody Form

Sample Collector Phone: 602 793-1321 PO No.:	Sample Collector: CTD/C/28/701	Email: Cidickerone thoris resources. Commil:	Phone: (602) 793-1321 Phone:	City Durens State Co Zip 81427 City State Zip	Address: 1960 Main St Lint 1 Address:	Contact Name: CS Dickerson Contact Name:	Company Name: Thore Resources Company Name:	Report To Information (If different from report to)
	RMB	7,100,000	240026007 240026007		Task Number (Lab Use Only)			report to) Project Name / Number

Commerce City Lab
10411 Heinz Way
Commerce City CO 80640

<u>Lakewood Service Center</u> 610 Garrison Street, Unit E Lakewood CO 80215

Phone: 303-659-2313

www.coloradolab.com

Relinquished By:	Instructions: Please				1/25 11:00	Date Time	Water (CWA / NPDES) Includes wastewater, non-potable samples not intended for drinking water use.
1/24 45:00 Received By:	Please Retur Bother	xNO DIL DAYS			OFØ62A	Sample ID	Sample Matrix (Select One Only Drinking Water
Date/Time: Relinquished By:	C/S Info:	a pottle red.	در		\ \ \	G	oolid (Sludge) 503 Regs / RCRA/ SW- o. of Containers rab (Check One Only)
Date/Time/	1 v	Call Decorat Var			*	+	omposite 80 Z3 \$\varphi \varphi 33
3	Sample Pres. Yes No 🗆						

CAL Task 240926007

RMB

Quotation for Analytical Services

Quote ID: QBO23110033

Prepared For:

Thorin Resources, LLC

1900 Main St

Unit 1

Ouray, CO 81427

Attn: CJ Dickerson

Quote Date: Friday, November 10, 2023 Turn Around Time: 10 Working Days

Project:

CDPS Bi Monthly WW

Matrix	Description	Method	Qty.	Price - each	Total
Water - Ground	Fe - TR	EPA 200.7	2	\$13.00	\$26.00
Water - Ground	Ph	SM 4500-H-B	2	\$13.00	\$26.00
Water - Ground	Ag - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Cd - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Cu - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Mn - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Pb - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Pb - Total	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	TDS	SM 2540-C	2	\$16.00	\$32.00
Water - Ground	TSS	SM 2540-D	2	\$16.00	\$32.00
Water - Ground	Zn - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Hg	EPA 245.7	2	\$27.00	\$54.00
Water - Ground	Cyanide-Weak Acid Dissociable	ASTM 2036-09C	2	\$40.00	\$80.00
Water - Ground	Oil & Grease	EPA 1664 (A)	2	\$65.00	\$130.00
Shipping	Cooler Shipment - UPS	UPS	2	\$30.00	\$60.00

\$664.00

Page 1 of 3

10411 Heinz Way / Commerce City, CO 80640 / 303-659-2313 Mailing Address: P.O. Box 507 / Brighton, CO 80601-0507

JML

^{**}Samples should be shipped or hand delivered the same day they are collected. Orders that require sub-lab analysis should be delivered to the lab Monday thru Wednesday only.**

TASK NO: 241023001

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 241023001

Client PO:

Client Project: CDPS Bi Monthly WW

Date Received: 10/23/24

Date Reported: 10/30/24

Matrix: Water

Customer Sample ID OF002A

Sample Date/Time: 10/22/24 11:00 AM

Lab Number: 241023001-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Cyanide-Weak Acid Dissociable	ND mg/L	ASTM 2036-09C	0.005	0.0005	10/29/24	QC77200	KRB
pH	7.60 units	SM 4500-H-B	0.01	0.01	10/23/24	-	KJP
Total Dissolved Solids	255 mg/L	SM 2540-C	5	2	10/24/24	QC77095	ISG
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	10/24/24	QC77100	ISG
Potentially Dissolved							
Cadmium	0.0002 mg/L	EPA 200.8	0.0001	0.000006	10/24/24	QC77137	JJA
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	10/24/24	QC77137	JJA
Lead	0.0015 mg/L	EPA 200.8	0.0001	0.000006	10/24/24	QC77137	JJA
Manganese	0.1183 mg/L	EPA 200.8	0.0008	0.00001	10/24/24	QC77137	JJA
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	10/24/24	QC77137	JJA
Zinc	0.085 mg/L	EPA 200.8	0.001	0.00003	10/24/24	QC77137	JJA
Total							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	10/24/24	QC77134	JJA
Lead	0.0015 mg/L	EPA 200.8	0.0001	0.000006	10/24/24	QC77137	JJA
Total Recoverable							
Iron	0.029 mg/L	EPA 200.7	0.005	0.0005	10/28/24	QC77169	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number I.

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Test

Analytical QC Summary

Method

Prep Date

TASK NO: 241023001

Result

Report To: CJ Dickerson **Receive Date: 10/23/24**

QC Batch ID

Company: Thorin Resources, LLC Project Name: CDPS Bi Monthly WW QC Type

Cyanide-Weak Acid Dissociable	QC77200) Blank	ND	AS	TM 2036-09C	10/29/24
Mercury	QC77134	Method Blank	ND		EPA 245.7	10/24/24
	QC77134	Method Blank	ND		EPA 245.7	10/24/24
Cadmium	QC77137	Method Blank	ND		EPA 200.8	10/23/24
Copper	QC77137	Method Blank	ND		EPA 200.8	10/23/24
Lead	QC77137	Method Blank	ND		EPA 200.8	10/23/24
Manganese	QC77137	Method Blank	ND		EPA 200.8	10/23/24
Silver	QC77137	Method Blank	ND		EPA 200.8	10/23/24
Zinc	QC77137	Method Blank	ND		EPA 200.8	10/23/24
Iron	QC77169	Method Blank	ND		EPA 200.7	10/23/24
Total Dissolved Solids	QC77095	5 Blank	ND		SM 2540-C	10/23/24
Total Suspended Solids	QC77100) Blank	ND		SM 2540-D	10/24/24
Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
Cyanide-Weak Acid Dissociable	QC77200	Duplicate -241022105-01	0 - 20	-	0.0	ASTM 2036-09C
		LCS	90 - 110	105.0	=	
		MS -241023001-01E	75 - 125	103.5	=	
Mercury	QC77134	Duplicate -241021027-01	0 - 20	-	0.0	EPA 245.7
		LCS	90 - 110	107.4	-	
		MS -241021027-01C	80 - 120	86.0	-	
Cadmium	QC77137	LCS	90 - 110	99.0	-	EPA 200.8
		MS -241023001-01B	70 - 130	101.9	-	
		MSD -241023001-01B	0 - 10	-	1.5	
Copper	QC77137	LCS	90 - 110	108.9	-	EPA 200.8
		MS -241023001-01B	70 - 130	104.9	-	
		MSD -241023001-01B	0 - 10	-	0.5	
Lead	QC77137	LCS	90 - 110	108.6	=	EPA 200.8
		MS -241023001-01B	70 - 130	95.7	-	
		MSD -241023001-01B	0 - 10	-	2.7	
Manganese	QC77137	LCS	90 - 110	108.0	=	EPA 200.8
· ·		MS -241023001-01B	70 - 130	100.1	-	
		MSD -241023001-01B	0 - 10	-	1.8	
Silver	QC77137	LCS	90 - 110	107.2	_	EPA 200.8
	40	MS -241023001-01B	70 - 130	93.0	-	
		MSD -241023001-01B	0 - 10	-	2.3	
Zinc	QC77137	LCS	90 - 110	103.2	-	EPA 200.8
-		MS -241023001-01B	70 - 130	91.2	-	
		MSD -241023001-01B	0 - 10	-	1.2	
Iron	QC77169	Duplicate -241023070-01	0 - 20	-	2.1	EPA 200.7
	Q011100	LCS	90 - 110	94.3		L1 /1 200.7

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
Total Dissolved Solids	QC77095	Duplicate -241023093-01	0 - 10	-	0.6	SM 2540-C
		LCS	85 - 115	101.2	-	
Total Suspended Solids	QC77100	Duplicate -241023010-01	0 - 10	-	2.1	SM 2540-D
		LCS	90 - 110	97.5	-	

All analyses were performed in accordance with approved methods under the latest revision to 40 CFR Part 136 unless otherwise identified. Based on my inquiry of the person or persons directly responsible for analyzing the wastewater samples and generating the report (s), the analyses, report, and information submitted are, to the best of my knowledge and belief, true, accurate, and complete.

DATA APPROVED FOR RELEASE BY

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Chain of Custody Form

						Chain o	f Custod	ly Fo	rm										Ž	Colc	orād	Q
Report 1	To Informatio	on			Bill To l	nformation (If	different fro	om repo	rt to)		Proj	ject N	ame/	Numbe						ABORATO ABORATO		
Compan	y Name: <u> </u>	thoci	n Resour	ces	Compan	y Name:							:						-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	20,	
Contact	Name: C	TI	idesor	<u>) </u>	Contact	Name:												1041	1 Heir	City D	y	
Address	1900 M	un S	t unit a	Ø1!	Address	:						k Nun								City (
City 💋	way	State	Co Zip &	1427	City	Sı	tate	Zip			`		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					610	Garris	on Str CO 80	eet, U	
Phone:	60Z) 79	93 -13	721		Phone:								CA	L Ta	ask					3-659-2		
Email: C	jdickera	onefi	wan resource	es.com	Email:								24	10230	001			2				
	Collector:	nne.	11		PO No.:						1			RMB				wwv	v.colo1	adolal	o.com	
Sumple (Sometto X III	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			TO No.:							3 - 16 (1 m2) 5 - 16 (1 m2)	4		Т	ests R	eanes	sted		25 E		
		S	ample Matrix	(Select On	e Only)						230	(1000 N.C. (200				CSCS TC	que	, teu		T		T
ncludes w	NPDES) vastewater, non- ot intended for o		Drinking W (SDWA) Includes finisher aw (untreated) intended for hu	ed drinking wat water samples	er, (50 840	lid (Sludge) [3 Regs / RCR 6)		. of Containers	de de	or (Check One Only) Composite	B802311003											
Date	Time			Sam	ple ID			Š.	5	င်ဗ	ම											
0/22	\$ 11:00		0	FUDZA				3	人		X		1					ĺ				
				f									!								_	-
																		_		++		1
																		1				1
	XND	COA	tainer.	red	for	TDS-	(3)															
	no	0/0	a conta	FINER	R	Ed.							\top			+				+-		
																						
nstructio	ons: Dia-	. D	tua Boll	les			C/S Info:							5	1	Present \	∕es □	No 🗆		-		
				i			Deliver Via			JP.	ァ 		C/S Ch	arge	Temp	J.,	C/Ice	Y	Sample !	Pres. Yes Date/	No.	
-	shed By:		te/Time: /22 4:45_	Received I	Ву:	Date/Tim	e: I	Relingu	ished e 4 of	•		I	Date/T	ime:`	- 1	ceived I					<i>‡</i>	
.) W	CARE JUV	10/	W 4:45	1 ~				9		<u> </u>						x //x	I On	$-I \cap I$	11/	$\iota \cup \iota$	人ろり	H

CAL Task

RMB

Quotation for Analytical Services

Quote ID: QBO23110033

LABORATORIES, INC.

Prepared For:

Thorin Resources, LLC

1900 Main St

Unit 1

Ouray, CO 81427

Attn: CJ Dickerson

Project:

CDPS Bi Monthly WW

Quote Date: Friday, November 10, 2023 Turn Around Time: 10 Working Days

Matrix	Description	Method	Qty.	Price - each	Total
Water - Ground	Fe - TR	EPA 200.7	2	\$13.00	\$26.00
Water - Ground	Ph	SM 4500-H-B	2	\$13.00	\$26.00
Water - Ground	Ag - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Cd - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Cu - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Mn - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Pb - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Pb - Total	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	TDS ·	SM 2540-C	2	\$16.00	\$32.00
Water - Ground	TSS ·	SM 2540-D	2	\$16.00	\$32.00
Water - Ground	Zn - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Hg	EPA 245.7	2	\$27.00	\$54.00
Water - Ground	Cyanide-Weak Acid Dissociable	ASTM 2036-09C	2	\$40.00	\$80.00
Water - Ground	Oil & Grease	EPA 1664 (B)	2	\$65.00	\$130.00
Shipping	Cooler Shipment - UPS	UPS	2	\$30.00	\$60.00

Bi-Monthly - Hg-Total

\$664.00

Page 1 of 3

10411 Heinz Way / Commerce City, CO 80640 / 303-659-2313 Mailing Address: P.O. Box 507 / Brighton, CO 80601-0507

JML

^{**}Samples should be shipped or hand delivered the same day they are collected. Orders that require sub-lab analysis should be delivered to the lab Monday thru Wednesday only.**

TASK NO: 241101009

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 241101009

Client PO:

Client Project: CDPS Bi Monthly WW

Date Received: 11/1/24 Date Reported: 11/8/24

Matrix: Water

Customer Sample ID CB_UG01

Sample Date/Time: 10/31/24 11:00 AM

Lab Number: 241101009-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
							_
Cyanide-Weak Acid	ND mg/L	ASTM 2036-09C	0.005	0.0005	11/5/24	QC77352	KRB
Dissociable							
рH	7.83 units	SM 4500-H-B	0.01	0.01	11/1/24	-	ARH
Total Dissolved Solids	1072 mg/L	SM 2540-C	5	2	11/6/24	QC77364	ISG
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	11/4/24	QC77311	RLP
Potentially Dissolved							
Cadmium	0.0008 mg/L	EPA 200.8	0.0001	0.000006	11/5/24	QC77346	AMJ
Copper	0.0086 mg/L	EPA 200.8	0.0008	0.00001	11/5/24	QC77346	AMJ
Lead	0.0009 mg/L	EPA 200.8	0.0001	0.000006	11/5/24	QC77346	AMJ
Manganese	0.0858 mg/L	EPA 200.8	0.0008	0.00001	11/5/24	QC77346	AMJ
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	11/5/24	QC77346	AMJ
Zinc	0.199 mg/L	EPA 200.8	0.001	0.00003	11/5/24	QC77346	AMJ
<u>Total</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	11/6/24	QC77384	JJA
Lead	0.0019 mg/L	EPA 200.8	0.0001	0.000006	11/5/24	QC77346	AMJ
Total Recoverable							
Iron	0.179 mg/L	EPA 200.7	0.005	0.0005	11/5/24	QC77347	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations. (s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 241101009

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 241101009

Client PO:

Client Project: CDPS Bi Monthly WW

Date Received: 11/1/24 Date Reported: 11/8/24

Matrix: Water

Customer Sample ID CBOF

Sample Date/Time: 10/31/24 12:00 PM

Lab Number: 241101009-02

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
							_
Cyanide-Weak Acid	ND mg/L	ASTM 2036-09C	0.005	0.0005	11/5/24	QC77352	KRB
Dissociable							
pН	7.81 units	SM 4500-H-B	0.01	0.01	11/1/24	-	ARH
Total Dissolved Solids	1069 mg/L	SM 2540-C	5	2	11/6/24	QC77364	ISG
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	11/4/24	QC77311	RLP
Potentially Dissolved							
Cadmium	0.0009 mg/L	EPA 200.8	0.0001	0.000006	11/5/24	QC77346	AMJ
Copper	0.0081 mg/L	EPA 200.8	0.0008	0.00001	11/5/24	QC77346	AMJ
Lead	0.0009 mg/L	EPA 200.8	0.0001	0.000006	11/5/24	QC77346	AMJ
Manganese	0.0784 mg/L	EPA 200.8	0.0008	0.00001	11/5/24	QC77346	AMJ
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	11/5/24	QC77346	AMJ
Zinc	0.214 mg/L	EPA 200.8	0.001	0.00003	11/5/24	QC77346	AMJ
<u>Total</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	11/6/24	QC77384	JJA
Lead	0.0018 mg/L	EPA 200.8	0.0001	0.000006	11/5/24	QC77346	AMJ
Total Recoverable							
Iron	0.170 mg/L	EPA 200.7	0.005	0.0005	11/5/24	QC77347	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 241101009

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 241101009

Client PO:

Client Project: CDPS Bi Monthly WW

Date Received: 11/1/24

Date Reported: 11/8/24 Matrix: Water

Customer Sample ID OF002A

Sample Date/Time: 10/31/24 1:00 PM Lab Number: 241101009-03

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Cyanide-Weak Acid Dissociable	ND mg/L	ASTM 2036-09C	0.005	0.0005	11/5/24	QC77352	KRB
рН	7.76 units	SM 4500-H-B	0.01	0.01	11/1/24	-	ARH
Total Dissolved Solids	246 mg/L	SM 2540-C	5	2	11/6/24	QC77364	ISG
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	11/4/24	QC77311	RLP
Potentially Dissolved							
Cadmium	0.0002 mg/L	EPA 200.8	0.0001	0.000006	11/5/24	QC77346	AMJ
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	11/5/24	QC77346	AMJ
Lead	0.0005 mg/L	EPA 200.8	0.0001	0.000006	11/5/24	QC77346	AMJ
Manganese	0.1200 mg/L	EPA 200.8	0.0008	0.00001	11/5/24	QC77346	AMJ
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	11/5/24	QC77346	AMJ
Zinc	0.085 mg/L	EPA 200.8	0.001	0.00003	11/5/24	QC77346	AMJ
<u>Total</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	11/6/24	QC77384	JJA
Lead	0.0009 mg/L	EPA 200.8	0.0001	0.000006	11/5/24	QC77346	AMJ
Total Recoverable							
Iron	0.033 mg/L	EPA 200.7	0.005	0.0005	11/5/24	QC77347	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations. (s) The accuracy of the spike recovery value is reduced due to the analyte

concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Test

Analytical QC Summary

Method

Prep Date

TASK NO: 241101009

Result

Report To: CJ Dickerson Receive Date: 11/1/24

QC Batch ID

Company: Thorin Resources, LLC Project Name: CDPS Bi Monthly WW QC Type

Cyanide-Weak Acid Dissociable	QC77352	2 Blank	ND	AS	STM 2036-09C	11/5/24	
Mercury	QC77384	4 Method Blank	ND		EPA 245.7 11/6/24		
Cadmium	QC77346	6 Method Blank	ND		11/1/24		
Copper	QC77346	6 Method Blank	ND		EPA 200.8	11/1/24	
Lead	QC77346	6 Method Blank	ND	EPA 200.8		11/1/24	
Manganese	QC77346	6 Method Blank	ND	EPA 200.8		11/1/24	
Silver	QC77346	6 Method Blank	ND	EPA 200.8		11/1/24	
Zinc	QC77346	6 Method Blank	ND	EPA 200.8		11/1/24	
Iron	QC7734	7 Method Blank	ND	EPA 200.7		11/1/24	
Total Dissolved Solids	QC77364	4 Blank	ND	SM 2540-C		11/5/24	
Total Suspended Solids	QC7731	1 Blank	ND	SM 2540-D		11/4/24	
Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method	
Cyanide-Weak Acid Dissociable	QC77352	Duplicate -241104107-01	0 - 20	-	0.0	ASTM 2036-09C	
,		LCS	90 - 110	99.4	-		
		MS -241029035-02	75 - 125	103.5	-		
Mercury	QC77384	Duplicate -241031063-01	0 - 20	-	0.0	EPA 245.7	
		LCS	90 - 110	96.8	-		
		MS -241031063-01B	80 - 120	88.0	-		
Cadmium	QC77346	LCS	90 - 110	99.5	-	EPA 200.8	
		MS -241101006-05	70 - 130	99.0	-		
		MSD -241101006-05	0 - 10	-	2.4		
Copper	QC77346	LCS	90 - 110	101.5	_	EPA 200.8	
		MS -241101006-05	70 - 130	105.0	-		
		MSD -241101006-05	0 - 10	-	0.3		
Lead	QC77346	LCS	90 - 110	102.7	-	EPA 200.8	
		MS -241101006-05	70 - 130	101.4	-		
		MSD -241101006-05	0 - 10	-	6.4		
Manganese	QC77346	LCS	90 - 110	102.2	_	EPA 200.8	
		MS -241101006-05	70 - 130	106.6	-		
		MSD -241101006-05	0 - 10	-	0.1		
Silver	QC77346	LCS	90 - 110	100.2	-	EPA 200.8	
	4011010	MS -241101006-05	70 - 130	82.9	-		
		MSD -241101006-05	0 - 10	-	4.8		
Zinc	QC77346	LCS	90 - 110	100.8		EPA 200.8	
	40	MS -241101006-05	70 - 130	104.2	-	2. 7. 200.0	
		MSD -241101006-05	0 - 10	-	1.2		
Iron	QC77347	Duplicate -241101009-02	0 - 20	-	3.0	EPA 200.7	
	Q0041	LCS	90 - 110	104.9	-	217.200.1	
		MS -241101008-01B	75 - 125	102.1	-		
Total Dissolved Solids	QC77364	Duplicate -241031117-01	0 - 10	-	6.5	SM 2540-C	
. Sta. Diodolfod Collad	Q011004	Dapilouto 241001111701	0 10	_	0.0	O.W. 2070 O	

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM

ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
	L	CS	85 - 115	102.8	-	
Total Suspended Solids	QC77311 D	Ouplicate -241101010-01	0 - 10	-	6.1	SM 2540-D
	L	CS	90 - 110	92.3	-	

All analyses were performed in accordance with approved methods under the latest revision to 40 CFR Part 136 unless otherwise identified. Based on my inquiry of the person or persons directly responsible for analyzing the wastewater samples and generating the report (s), the analyses, report, and information submitted are, to the best of my knowledge and belief, true, accurate, and complete.

DATA APPROVED FOR RELEASE BY

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Quotation for Analytical Services

Quote ID: QBO23110033

Prepared For:

Thorin Resources, LLC

1900 Main St

Unit 1

Ouray, CO 81427

Project:

Attn: CJ Dickerson

Turn Around Time: 10 Working Days

Quote Date: Friday, November 10, 2023

CAL Task

241101009

RMB

CDPS Bi Monthly WW

Matrix	Description	Method	Qty.	Price - each	Total
Water - Ground	Fe - TR	EPA 200.7	2	\$13.00	\$26.00
Water - Ground	Ph	SM 4500-H-B	2	\$13.00	\$26.00
Water - Ground	Ag - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Cd - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Cu - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Mn - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Pb - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Pb - Total	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	TDS	SM 2540-C	2	\$16.00	\$32.00
Water - Ground	TSS	SM 2540-D	2	\$16.00	\$32.00
Water - Ground	Zn - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Hg	EPA 245.7	2	\$27.00	\$54.00
Water - Ground	Cyanide-Weak Acid Dissociable	ASTM 2036-09C	2	\$40.00	\$80.00
Water - Ground	Oil & Grease	EPA 1664 (B)	2	\$65.00	\$130.00
Shipping	Cooler Shipment - UPS	UPS	2	\$30.00	\$60.00
Bi-Monthly - Ha	Total				

Bi-Monthly - Hg-Total

\$664.00

^{**}Samples should be shipped or hand delivered the same day they are collected. Orders that require sub-lab analysis should be delivered to the lab Monday thru Wednesday only.**

TASK NO: 241119018

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 241119018

Client PO:

Client Project: CDPS Bi Monthly WW

Date Received: 11/19/24 Date Reported: 11/27/24

Matrix: Water

Customer Sample ID OF002A

Sample Date/Time: 11/18/24 11:00 AM

Lab Number: 241119018-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
							_
Cyanide-Weak Acid	ND mg/L	ASTM 2036-09C	0.005	0.0005	11/26/24	QC77873	KRB
Dissociable							
рH	7.48 units	SM 4500-H-B	0.01	0.01	11/19/24	=	KRI
Total Dissolved Solids	242 mg/L	SM 2540-C	5	2	11/21/24	QC77748	ISG
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	11/20/24	QC77721	ISG
Potentially Dissolved							
Cadmium	0.0002 mg/L	EPA 200.8	0.0001	0.000006	11/21/24	QC77781	JJA
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	11/21/24	QC77781	JJA
Lead	0.0009 mg/L	EPA 200.8	0.0001	0.000006	11/21/24	QC77781	JJA
Manganese	0.1382 mg/L	EPA 200.8	0.0008	0.00001	11/21/24	QC77781	JJA
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	11/21/24	QC77781	JJA
Zinc	0.109 mg/L	EPA 200.8	0.001	0.00003	11/21/24	QC77781	JJA
<u>Total</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	11/21/24	QC77789	JJA
Lead	0.0009 mg/L	EPA 200.8	0.0001	0.000006	11/21/24	QC77781	JJA
Total Recoverable							
Iron	0.027 mg/L	EPA 200.7	0.005	0.0005	11/21/24	QC77779	MBN

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations. (s) The accuracy of the spike recovery value is reduced due to the analyte

concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Analytical QC Summary

Method

Prep Date

TASK NO: 241119018

Report To: CJ Dickerson

Test

Company: Thorin Resources, LLC

QC Batch ID

QC Type

Receive Date: 11/19/24

Result

Project Name: CDPS Bi Monthly WW

1000	QO Daton n	ao Type	resuit		menioa	1 Top Date
Cyanide-Weak Acid Dissociable	QC77873	Blank	ND	Α	STM 2036-09C	11/26/24
Mercury	QC77789	Method Blank	ND		EPA 245.7	11/21/24
	QC77789	Method Blank	ND		EPA 245.7	11/21/24
Cadmium	QC77781	Method Blank	ND		EPA 200.8	11/19/24
Copper	QC77781	Method Blank	ND		EPA 200.8	11/19/24
₋ead	QC77781	Method Blank	ND		EPA 200.8	11/19/24
Manganese	QC77781	Method Blank	ND		EPA 200.8	11/19/24
Silver	QC77781	Method Blank	ND		EPA 200.8	11/19/24
Zinc	QC77781	Method Blank	ND		EPA 200.8	11/19/24
ron	QC77779	Method Blank	ND		EPA 200.7	11/19/24
Total Dissolved Solids	QC77748	Blank	ND		SM 2540-C	11/20/24
Total Suspended Solids	QC77721	Blank	ND		SM 2540-D	11/20/24
Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
Cyanide-Weak Acid Dissociable	QC77873	Duplicate -241121118-01	0 - 20	-	18.2	ASTM 2036-09C
		LCS	90 - 110	97.6	-	
		MS -241119018-01E	75 - 125	90.5	-	
Mercury	QC77789	Duplicate -241114017-03	0 - 20	-	0.0	EPA 245.7
		LCS	90 - 110	106.2	-	
		MS -241114017-03B	80 - 120	92.0	-	
Cadmium	QC77781	LCS	90 - 110	108.5	-	EPA 200.8
		MS -241119003-01	70 - 130	97.5	-	
		MSD -241119003-01	0 - 10	-	0.9	
Copper	QC77781	LCS	90 - 110	100.1	-	EPA 200.8
		MS -241119003-01	70 - 130	102.4	-	
		MSD -241119003-01	0 - 10	-	0.6	
 Lead	QC77781	LCS	90 - 110	109.9	-	EPA 200.8
		MS -241119003-01	70 - 130	94.9	-	
		MSD -241119003-01	0 - 10	-	0.7	
Manganese	QC77781	LCS	90 - 110	101.2	-	EPA 200.8
<u> </u>		MS -241119003-01	70 - 130	99.2	-	
		MSD -241119003-01	0 - 10	-	2.0	
Silver	QC77781	LCS	90 - 110	106.1	-	EPA 200.8
		MS -241119003-01	70 - 130	72.0	-	
		MSD -241119003-01	0 - 10	-	6.1	
 Zinc	QC77781	LCS	90 - 110	100.8	-	EPA 200.8
		MS -241119003-01	70 - 130	93.1	-	
		MSD -241119003-01	0 - 10	-	4.6	
 Iron	QC77779	Duplicate -241119005-06	0 - 20	_	1.8	EPA 200.7
	200	LCS	90 - 110	101.4	-	2. 7. 200.7

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

ND = Not Detected at Reporting Limit.

2/3

Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
Total Dissolved Solids	QC77748	Duplicate -241119027-01	0 - 10	-	0.1	SM 2540-C
		LCS	85 - 115	98.0	-	
Total Suspended Solids	QC77721	Duplicate -241119061-01	0 - 10	-	5.1	SM 2540-D
		LCS	90 - 110	90.6	-	

All analyses were performed in accordance with approved methods under the latest revision to 40 CFR Part 136 unless otherwise identified. Based on my inquiry of the person or persons directly responsible for analyzing the wastewater samples and generating the report (s), the analyses, report, and information submitted are, to the best of my knowledge and belief, true, accurate, and complete.

DATA APPROVED FOR RELEASE BY

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

email:	ejdick	e 501	ethorin			Chain of Cı								in a second			3/	Colc Anal	racutic	ot: Jo:
	o Information			100 to	Bill To Infor	mation (If differ	ent from re	oort to		Projec	ct Name / N	umbe	rji	a je				LABORATO	~	
Company	Name:	horin	Resource	<u> </u>	Company Na	ame:								_		Corr	ımerc	e City l	l.ah	
Contact I	Name:	ナカ	Resource	<u>^</u>	Contact Nan	ne:								_		1041	1 Hei	nz Way	<i>y</i>	0640
Address:	1900 W	lain	St Linil	,1	Address:		I			Task Number (Lab Use Only)					Commerce City CO 80640 Lakewood Service Center					
City (way	State	Co Zip &	31427	City	State	Zip											son Str l CO 80		J nit E
Phone: ((60Z)	793	-1321	1	Phone:						\L Tas			}		Pho	ne: 30	3-659-2	2313	
Email: 🎸	id deens	A ZON	स्		Email:					24	1119018	3								
Sample C	Collector: Collector Phor	ne:			PO No.:						RMB					wwv	v.colo	radolal).com	1
Sample	<u>, , , , , , , , , , , , , , , , , , , </u>									No. (18a)	73. g		1 447	Tocte	Reque	hataa				
	<u> </u>	Sa	mple Matrix	(Select One	Only)									10313	Requi				T	
Waste	Water 🔀		Soil	3	Drink	ting Water 🔲			only (933) 								
Groun	d Water 🔲		Sludge 🗌			mig water 🖂	of Contains		c One te	00//	-	<u> </u>								
Surfac	e Water 🗌							e l	or (Check One Only) Composite	\$208D										
Date	Time	i ja		Samp			Ž		ာ်ပိ ဗ	Ø.									\perp	
11/18	11:00 a		01	= 00Z	Α		3	X		*						-	_		\perp	
3		. <u></u>						_	-			3		-				-		
					(} ,		-			<u></u>		-						4-4	+	
				· · · · · · · · · · · · · · · · · · ·) .			-	-							 	_	+++	+	+
)			-				4						+	_	+
	010	0 1	0.310.01	-1- 10-	1	ر بالمعمونين	341,	-	-			-					-		-	+
tno			ainer r			(3)		-		-	_	1				-	_		+	-
-10°	o worth	$\frac{2}{3}$	er not	Mala,	MIII		V- 14											+	-	
<u> </u>	droce of	<u>w</u> 10	Ub. LB	111912	1													+		-
Instructi	ons:		1 2	» 11 1		C/S	info:		l	<u> </u>		5			nt Yes 🗆					
	tlens	se YC	etun B	ottles	1	Del	iver Via:	1	185	•	C/S Cha	1	Tei	<i>Ц</i> пр	°C/Ice	Y	Sample	Pres. Yes Date/1	<u>ZÍ</u> No	
Relinqui			te/Time:	Received By	Å,	Date/Time:		quishe 1e 4 o	d By:		Date/Ti		, R	eceive	d By:			Date/	ime:	
CJD	icheson	11/1	A 4:000	and only of Whitelester Cont.				<u> </u>						de	dar	M	***	11/1	9/3	24

CAL Task 241119018

RMB

Quotation for Analytical Services

Quote ID: QBO23110033

Prepared For:

Thorin Resources, LLC

1900 Main St

Unit 1

Ouray, CO 81427

Attn: CJ Dickerson

CDPS Bi Monthly WW

Quote Date: Friday, November 10, 2023 Turn Around Time: 10 Working Days

Matrix	Description	Method	Qty.	Price - each	Total
	Fe - TR	EPA 200.7	2	\$13.00	\$26.00
Water - Ground	Ph	SM 4500-H-B	2	\$13.00	\$26.00
Water - Ground	Ag - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Cd - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground		EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Cu - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Mn - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Pb - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Pb-Total TDS - not red	SM 2540-C	2	\$16.00	\$32.00
Water - Ground		SM 2540-D	2	\$16.00	\$32.00
Water - Ground	TSS	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Zn - PD	EPA 245.7	2	\$27.00	\$54.00
Water - Ground	Hg		2	\$40.00	\$80.00
Water - Ground	Cyanide-Weak Acid Dissociable	EPA 1664 (B)	2	\$65.00	\$130.00
Water - Ground	Oil & Grease — Not You	UPS	2	\$30.00	\$60.00
Shipping	Cooler Shipment - UPS	0.0			

Bi-Monthly - Hg-Total

\$664.00

Page 1 of 3

^{**}Samples should be shipped or hand delivered the same day they are collected. Orders that require sub-lab analysis should be delivered to the lab Monday thru Wednesday only.**

TASK NO: 241126020

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 241126020

Client PO:

Client Project: CDPS Bi Monthly WW

Date Received: 11/26/24 Date Reported: 12/6/24

Matrix: Water

Customer Sample ID OF002A

Sample Date/Time: 11/25/24 9:21 AM Lab Number: 241126020-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Cyanide-Weak Acid Dissociable	ND mg/L	ASTM 2036-09C	0.005	0.0005	11/27/24	QC77895	KRB
рН	7.56 units	SM 4500-H-B	0.01	0.01	11/26/24	-	ARH
Total Dissolved Solids	224 mg/L	SM 2540-C	5	2	11/26/24	QC77877	ISG
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	11/26/24	QC77866	ISG
Potentially Dissolved							
Cadmium	0.0002 mg/L	EPA 200.8	0.0001	0.000006	12/3/24	QC77959	AMJ
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	12/3/24	QC77959	AMJ
Lead	0.0007 mg/L	EPA 200.8	0.0001	0.000006	12/3/24	QC77959	AMJ
Manganese	0.1176 mg/L	EPA 200.8	0.0008	0.00001	12/3/24	QC77959	AMJ
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	12/3/24	QC77959	AMJ
Zinc	0.097 mg/L	EPA 200.8	0.001	0.00003	12/3/24	QC77959	AMJ
<u>Total</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	12/5/24	QC78039	JJA
Lead	0.0008 mg/L	EPA 200.8	0.0001	0.000006	12/3/24	QC77959	AMJ
Total Recoverable							
Iron	0.028 mg/L	EPA 200.7	0.005	0.0005	12/2/24	QC77921	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

ND = Not Detected at Reporting Limit.

1/3

⁽s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Analytical QC Summary

Method

Prep Date

TASK NO: 241126020

Report To: CJ Dickerson

Test

Company: Thorin Resources, LLC

QC Batch ID

QC Type

Receive Date: 11/26/24

Result

Project Name: CDPS Bi Monthly WW

Cyanide-Weak Acid Dissociable	QC77895	Blank	ND	Α	STM 2036-09C	11/27/24
Mercury	QC78039	Method Blank	ND		EPA 245.7	12/5/24
	QC78039	Method Blank	ND		EPA 245.7	12/5/24
admium	QC77959	Method Blank	ND		EPA 200.8	11/26/24
Copper	QC77959	Method Blank	ND		EPA 200.8	11/26/24
ead	QC77959	Method Blank	ND		EPA 200.8	11/26/24
1anganese	QC77959	Method Blank	ND		EPA 200.8	11/26/24
Silver	QC77959	Method Blank	ND		EPA 200.8	11/26/24
inc	QC77959	Method Blank	ND		EPA 200.8	11/26/24
on	QC77921	Method Blank	ND		EPA 200.7	11/26/24
otal Dissolved Solids	QC77877	Blank	ND		SM 2540-C	11/26/24
otal Suspended Solids	QC77866	Blank	ND		SM 2540-D	11/26/24
est	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
Cyanide-Weak Acid Dissociable	QC77895	Duplicate -241126145-01	0 - 20	-	0.0	ASTM 2036-09C
		LCS	90 - 110	96.9	-	
		MS -241126006-02	75 - 125	94.5	-	
Mercury	QC78039	Duplicate -241126157-02	0 - 20	=	0.0	EPA 245.7
		LCS	90 - 110	108.0	-	
		MS -241126157-02C	80 - 120	102.0	-	
Cadmium	QC77959	LCS	90 - 110	95.3	-	EPA 200.8
		MS -241126002-01	70 - 130	108.2	-	
		MSD -241126002-01	0 - 10	-	1.3	
Copper	QC77959	LCS	90 - 110	90.4	-	EPA 200.8
		MS -241126002-01	70 - 130	96.5	-	
		MSD -241126002-01	0 - 10	-	0.3	
_ead	QC77959	LCS	90 - 110	99.3	-	EPA 200.8
		MS -241126002-01	70 - 130	89.1	-	
		MSD -241126002-01	0 - 10	-	1.0	
Manganese	QC77959	LCS	90 - 110	101.3	=	EPA 200.8
· ·		MS -241126002-01	70 - 130	108.3	-	
		MSD -241126002-01	0 - 10	-	0.1	
Silver	QC77959	LCS	90 - 110	101.3	-	EPA 200.8
		MS -241126002-01	70 - 130	96.4	-	
		MSD -241126002-01	0 - 10	-	1.7	
Zinc		LCS	90 - 110	105.0		EPA 200.8
-		MS -241126002-01	70 - 130	120.8	-	
		MSD -241126002-01	0 - 10	-	0.9	
 Iron		Duplicate -241126024-01	0 - 20	-	2.0	EPA 200.7
	Q011021	- ap.10010 - 11120027 01	0 20		0	L. / (200.)
		LCS	90 - 110	108.1	-	

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

ND = Not Detected at Reporting Limit.

2/3

Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
Total Dissolved Solids	QC77877	Duplicate -241125152-04	0 - 10	-	3.0	SM 2540-C
		LCS	85 - 115	98.5	-	
Total Suspended Solids	QC77866	Duplicate -241126014-01	0 - 10	-	8.9	SM 2540-D
		LCS	90 - 110	95.7	-	

All analyses were performed in accordance with approved methods under the latest revision to 40 CFR Part 136 unless otherwise identified. Based on my inquiry of the person or persons directly responsible for analyzing the wastewater samples and generating the report (s), the analyses, report, and information submitted are, to the best of my knowledge and belief, true, accurate, and complete.

DATA APPROVED FOR RELEASE BY

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Chain of Custody Form

Report To Information	Bill To Information (If different from report to)	Project Name / Number
Company Name: Thorin Resources	Company Name:	; ;
Contact Name: CT Dickeron	Contact Name:	
Address: 1900 Main St Unit 1	Address:	Task Number (Lab Use Only)
City Dury State Co Zip &1401	City State Zip	
Phone: (202) 793-1321	Phone:	CAL Task
Email: Cidickeronethern resources.com	Email:	241126020
Sample Collector:		RMB
Sample Collector Phone:	PO No.:	

Commerce City Lab 10411 Heinz Way Commerce City CO 80640

<u>Lakewood Service Center</u> 610 Garrison Street, Unit E Lakewood CO 80215

Phone: 303-659-2313

www.coloradolab.com

Sample (Collector Ph	for Phone: PO No.:																	
									[Те	sts Requ	ested				
		Sa	mple Matri	x (Select One	Only)		3	2	m		l.							
Waste	Water 🔀	1	Soil []		Drinking Water 🗌	iers	5		83			:						
Ground	d Water 🗌]	Sludge 🗌			Dilliking water [ntair	5		02311(
Surface	e Water 🗌]			: 1		No. of Containers	b Check	So										
Date	Time			Samp	le ID		No.	Gra		Q30		1							
11/25	09:21		OF	O PZA	1		3	~		×		ŧ							
			•	, 	1														
		-																	
					À														
					1		-												
					-														
ÔG	conta	iner	not rec	ceived	i.	(3)													
<u>1</u>				receive	d							i i							
MIM				5 11/2 6/24															
Instructio	ons: Ple	usc R	efun E	Soffes	:	C/S Info:	· (2 I	5		C/S°C	harge X		resent Yes [C/Ice	V	Sample P	res. Yes	No F	7
Relinquis	hed By:	Date	e/Time:	Received B	y:		elinqu	ished	By:		Date/		Rec	eived By:	/	- Inpic I	Date/T	mes	-
CJD	ickerso	14	25 4:30	<u>~</u>		Page 4	of 5						$\Box a$	°C/Ice eived By:	MV.	}	11/21	112	4

Quotation for Analytical Services

Quote ID: QBO23110033

Prepared For:

Thorin Resources, LLC

1900 Main St

Unit 1

Ouray, CO 81427

Attn: CJ Dickerson

delivered to the lab Monday thru Wednesday only.**

Quote Date: Friday, November 10, 2023 Turn Around Time: 10 Working Days

> **CAL Task** 241126020

> > RMB

Project:

CDPS Bi Monthly WW

Matrix	Description	Method	Qty.	Price - each	Total
Water - Ground	Fe - TR	EPA 200.7	2	\$13.00	\$26.00
Water - Ground	Ph	SM 4500-H-B	2	\$13.00	\$26.00
Water - Ground	Ag - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Cd - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Cu - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Mn - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Pb - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Pb - Total	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	TDS - not red	SM 2540-C	2	\$16.00	\$32.00
Water - Ground	TSS	SM 2540-D	2	\$16.00	\$32.00
Water - Ground	Zn - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Hg	EPA 245.7	2	\$27.00	\$54.00
Water - Ground	Cyanide-Weak Acid Dissociable	ASTM 2036-09C	2	\$40.00	\$80.00
Water - Ground	Oil & Grease - hot vcd	EPA 1664 (B)	2	\$65.00	\$130.00
Shipping	Cooler Shipment - UPS	UPS	2	\$30.00	\$60.00
Bi-Monthly - Hg	ı-Total				\$664.0

^{**}Samples should be shipped or hand delivered the same day they are collected. Orders that require sub-lab analysis should be

Page 1 of 3

TASK NO: 241210008

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 241210008

Client PO:

Client Project: CDPS Bi Monthly and Quarterly WW

Date Received: 12/10/24 Date Reported: 12/17/24

Matrix: Water

Customer Sample ID OF002A

Sample Date/Time: 12/9/24 11:45 AM

Lab Number: 241210008-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
							_
Cyanide-Weak Acid Dissociable	ND mg/L	ASTM 2036-09C	0.005	0.0005	12/11/24	QC78183	KRB
рН	7.36 units	SM 4500-H-B	0.01	0.01	12/10/24	-	ARH
Total Dissolved Solids	265 mg/L	SM 2540-C	5	2	12/11/24	QC78158	KRI
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	12/10/24	QC78146	ARH
Potentially Dissolved							
Cadmium	ND mg/L	EPA 200.8	0.0001	0.000006	12/11/24	QC78187	AMJ
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	12/11/24	QC78187	AMJ
Lead	0.0008 mg/L	EPA 200.8	0.0001	0.000006	12/11/24	QC78187	AMJ
Manganese	0.0764 mg/L	EPA 200.8	0.0008	0.00001	12/11/24	QC78187	AMJ
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	12/11/24	QC78187	AMJ
Zinc	0.077 mg/L	EPA 200.8	0.001	0.00003	12/11/24	QC78187	AMJ
<u>Total</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	12/13/24	QC78237	MBN
Lead	0.0013 mg/L	EPA 200.8	0.0001	0.000006	12/11/24	QC78187	AMJ
Total Recoverable							
Iron	0.028 mg/L	EPA 200.7	0.005	0.0005	12/12/24	QC78215	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte

concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

ND = Not Detected at Reporting Limit.

1/5

TASK NO: 241210008

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 241210008

Client PO:

Client Project: CDPS Bi Monthly and Quarterly WW

Date Received: 12/10/24 Date Reported: 12/17/24

Matrix: Water

Customer Sample ID OF002A

Sample Date/Time: 12/9/24 11:45 AM

Lab Number: 241210008-02

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Total Dissolved Solids	256 mg/L	SM 2540-C	5	2	12/11/24	QC78158	KRI
<u>Dissolved</u>							
Chromium - Hexavalent	ND mg/L	SM 3500-Cr B	0.02	0.01	12/11/24	QC78180	NRP
<u>Total</u>							
Mercury	ND ug/L	EPA 245.7	0.002	0.0002	12/16/24	QC78266	NRP
Cadmium	0.0001 mg/L	EPA 200.8	0.0001	0.000006	12/11/24	QC78187	AMJ
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	12/11/24	QC78187	AMJ
Zinc	0.073 mg/L	EPA 200.8	0.001	0.00003	12/11/24	QC78187	AMJ
Total Recoverable							
Chromium - Trivalent	ND mg/L	Calculation	0.02	0.01	12/17/24	-	MBN
Arsenic	0.0014 mg/L	EPA 200.8	0.0006	0.00006	12/11/24	QC78187	AMJ
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	12/11/24	QC78187	AMJ

Ammonium Sulfate buffer solution added upon arrival to laboratory to extend Hex-Cr hold time to 28 days.

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM

ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 241210008

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 241210008

Client PO:

Client Project: CDPS Bi Monthly and Quarterly WW

Date Received: 12/10/24 Date Reported: 12/17/24

Matrix: Water

Customer Sample ID Hg LL Field Blank

Sample Date/Time: 12/9/24 11:45 AM

Lab Number: 241210008-03

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
<u>Total</u>							
Mercury	ND ug/L	EPA 245.7	0.002	0.0002	12/16/24	QC78266	NRP

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations. (s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Company: Thorin Resources, LLC

Report To: CJ Dickerson

Analytical QC Summary

TASK NO: 241210008

Receive Date: 12/10/24

Project Name: CDPS Bi Monthly and Quarterly WW

Test	QC Batch I	D QC Type	Result		Method	Prep Date
Chromium - Hexavalent	QC78180) Blank	ND		SM 3500-Cr B	12/11/24
Cyanide-Weak Acid Dissociable	QC78183	Blank	ND	А	STM 2036-09C	12/11/24
Mercury	QC78237	Method Blank	ND		EPA 245.7	12/13/24
	QC78266	Method Blank	ND		EPA 245.7	12/16/24
Arsenic	QC78187	Method Blank	ND		EPA 200.8	12/10/24
Cadmium	QC78187	Method Blank	ND		EPA 200.8	12/10/24
Chromium	QC78187	Method Blank	ND		EPA 200.8	12/10/24
Copper	QC78187	Method Blank	ND		EPA 200.8	12/10/24
Lead	QC78187	Method Blank	ND		EPA 200.8	12/10/24
Manganese	QC78187	Method Blank	ND		EPA 200.8	12/10/24
Silver	QC78187	Method Blank	ND		EPA 200.8	12/10/24
Zinc	QC78187	Method Blank	ND		EPA 200.8	12/10/24
Iron	QC78215	Method Blank	ND		EPA 200.7	12/10/24
Total Dissolved Solids	QC78158	Blank	ND		SM 2540-C	12/10/24
Total Suspended Solids	QC78146	Blank	ND		SM 2540-D	12/10/24
Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
Chromium - Hexavalent	QC78180	Duplicate -241204066-01	0 - 20	-	0.0	SM 3500-Cr B
		LCS	90 - 110	99.5	-	
Cyanide-Weak Acid Dissociable	QC78183	Duplicate -241204104-02	0 - 20	-	0.0	ASTM 2036-09C
		LCS	90 - 110	104.4	-	
		MS -241205104-04A	75 - 125	95.0	-	
Mercury	QC78237	Duplicate -241205071-01	0 - 20	-	0.0	EPA 245.7
		LCS	90 - 110	101.4	-	
		MS -241205071-01A	80 - 120	100.0	-	
Mercury	QC78266	LCS	76 - 113	99.0	-	EPA 245.7
		MS -241210100-02	63 - 111	86.0	-	
		MSD -241210100-02	0 - 18	-	0.0	
Arsenic	QC78187	LCS	90 - 110	104.9	-	EPA 200.8
		MS -241210006-01	70 - 130	92.7	-	
		MSD -241210006-01	0 - 10	-	8.0	
Cadmium	QC78187	LCS	90 - 110	99.1	-	EPA 200.8
		MS -241210006-01	70 - 130	94.3	-	
		MSD -241210006-01	0 - 10	-	5.0	
Chromium	QC78187	LCS	90 - 110	104.0	-	EPA 200.8
		MS -241210006-01	70 - 130	92.2	-	
		MSD -241210006-01	0 - 10	-	7.1	
Copper	QC78187	LCS	90 - 110	105.3	-	EPA 200.8
• •		MS -241210006-01	70 - 130	98.6	-	
		MSD -241210006-01	0 - 10	-	2.0	
Lead	QC78187	LCS	90 - 110	104.2	-	EPA 200.8
		•	· · ·			

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
	•	MS -241210006-01	70 - 130	93.0	-	
		MSD -241210006-01	0 - 10	-	8.1	
Manganese	QC78187	LCS	90 - 110	105.7	-	EPA 200.8
		MS -241210006-01	70 - 130	113.3	=	
		MSD -241210006-01	0 - 10	-	0.4	
Silver	QC78187	LCS	90 - 110	101.4	-	EPA 200.8
		MS -241210006-01	70 - 130	97.5	=	
		MSD -241210006-01	0 - 10	-	5.4	
Zinc	QC78187	LCS	90 - 110	109.6	-	EPA 200.8
		MS -241210006-01	70 - 130	117.7	=	
		MSD -241210006-01	0 - 10	-	0.1	
Iron	QC78215	Duplicate -241210012-01	0 - 20	-	0.7	EPA 200.7
		LCS	90 - 110	104.0	=	
		MS -241210006-01D	75 - 125	109.1	-	
Total Dissolved Solids	QC78158	Duplicate -241210029-02	0 - 10	-	0.4	SM 2540-C
		LCS	85 - 115	100.1	-	
Total Suspended Solids	QC78146	Duplicate -241210020-01	0 - 10	-	7.0	SM 2540-D
		LCS	90 - 110	91.4	-	

All analyses were performed in accordance with approved methods under the latest revision to 40 CFR Part 136 unless otherwise identified. Based on my inquiry of the person or persons directly responsible for analyzing samples and generating the report (s), the analyses, report, and information submitted are, to the best of my knowledge and belief, true, accurate, and complete.

DATA APPROVED FOR RELEASE BY

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

⁽d) RPD acceptable due to low duplicate and sample concentrations. (s) The accuracy of the spike recovery value is reduced due to the analyte

⁽s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

			Chain of Cust	ody Fo	rm										Ž) (Col	Ora:	oc Oc	
Report To Information	1	Bill To Int	formation (If different	from repo	ort to)		Pro	ject I	Name	/ Num	ber						lytic TORIES,		
Company Name:	horin Resource	es Company	Name:									_		~		~	Y L		
Contact Name:	5 Dickeron	Contact N	ame:									_			merce 1 Heir				
			1				Tas	k Nu	mbe	<u> </u>		_		Com	merce	: City	CO	30640	
1900 W	1ain St Unil	34 VI							Onl					Lake	wood	Serv	ice Co	<u>enter</u>	
City Oway	State C Zip 🖇	1427 City	State	Zip									610 Garrison Street, Uni Lakewood CO 80215						
Phone: (602) 79:		Phone:					CAL Task							Phon	ne: 303	3-659	-2313		
Email: C) dicke	somethoring	SOWCEL comail:					241210008												
Email: C) dicke	and ceuskibo									_	15	ļ		www	.color	adol	ab.cor	<u>m</u>	
Sample Collector Phon		PO No.:							2		JF								
									6	10 10 40		Tests I	ests Requested						
		(Select One Only)				<u></u>	53	34	9										
Water (CWA / NPDES)			d (Sludge) 🔲 Regs / RCRA/ SW-	of Containers		ne On	00	200	1		j							{	
Includes wastewater, non-p	otable Includes finished	d drinking water,	•	Conta		ck O	231	152											
water use.					gp	or (Check One Only) Composite	\$ 30231100	QB0231100	Jh 2 1402 080										
Date Time		Sample ID		ģ		ဗေဒ	-	Ø	ජ				1-1						
12/9 11:45		FUOZA		3		<u> </u>	X						$\downarrow \downarrow \downarrow$			-	\vdash		
12/9 11:45		FOOZA		5	1 ×	<u> </u>	<u> </u>	人					-			-			
12/9 10:28		16-5		5		ļ	 		1				1-1			-			
12/9/0:52		16-2		5	+		<u> </u>		K		-					-			
12/9 11:18		16-8		5	1	 	ļ		74				-	_		+-		_	
					 	 											ion]	
1 1	1 0		Cl Preserved Bottle クフレーの2A				_			00/	Am	moniu led upo	m Sult on arri	ate b ival to	uπer : labo	rato	ry to	L	
P	ta.	Sample ID: OF			 	2	7-	E	10	ME	ext	end He	x-Cr h	old ti	me to	28 (.ays.	-	
		Initials: JA	Date: 12/10/	24	}	 	-				_	_			ate:				
					<u>L</u>	<u> </u>	<u> </u>	L	L		Init S Se	ials: als Presen	Yes 🗆	No []	, i.e.		===	 /	
Plea	Please Return BOHTES Deliver Via:)		L'ie	Charge L	y T.	_{mp.} 2	۰۲/۱۳۵	/	Sample	Pres. Y	es OV	40 🔲	
Relinquished By:	Date/Time:	Received By:	Date/Time:	Relinqu						/Time:	1	Received	By:			Date	e/Pime	e:	
Ct Dickers.	Vater (SWA / NPDES) Shudes wastewater, non-potable inples not intended for drinking ter use. Date Time 2/9 11:45 2/9 10:28 2/9 10:52 2/9 11:18 Wat (SDWA) Includes finished or raw (untreated) was intended for human i		Pa	Page 6 of 8									las	m	·	12	110	124	

CAL Task 241210008

CJF

Quotation for Analytical Services

Quote ID: QBO23110034

LABORATORIES, INC.

Prepared For:

Thorin Resources, LLC

1900 Main St

Unit 1

Ouray, CO 81427

Attn:

CJ Dickerson

Project:

CDPS Quart WW

Quote Date: Friday, November 10, 2023
Turn Around Time: 10 Working Days

Matrix	Description	Method	Qty.	Price - each	Total
Water - Ground	Cr - Tri	Calculation	1	\$0.00	\$0.00
Water - Ground	As - TR	EPA 200.8	1	\$16.00	\$16.00
Water - Ground	Cd - Total	EPA 200.8	1	\$16.00	\$16.00
Water - Ground	Cr - TR	EPA 200.8	1	\$16.00	\$16.00
Water - Ground	Cu - Total	EPA 200.8	1	\$16.00	\$16.00
Water - Ground	TDS	SM 2540-C	1	\$16.00	\$16.00
Water - Ground	Zn - Total	EPA 200.8	1	\$16.00	\$16.00
Water - Ground	Cr - Hex	SM 3500-Cr B	1	\$40.00	\$40.00
Water - Ground	Hg LL	EPA 245.7	1	\$52.00	\$52.00
Water - Ground	Hg LL Field Blank	EPA 245.7	1	\$52.00	\$52.00
Shipping	Cooler Shipment - UPS	UPS	1	\$30.00	\$30.00

\$270.00

Colorado Analytical Laboratory maintains certification by the Colorado Department of Health (CDPHE) and EPA Region 8 for Wyoming and Tribal Public Water Systems to analyze drinking water for organic contaminants (SOC's VOC's), inorganic contaminants (metals), nitrate nitrite, cyanide, fluoride and coliform bacteria.

Sub-Lab analysis pricing subject to change. Sub-Lab radiological analysis turn-around time is 4 to 8 weeks depending on sample matrix. Due to time, distance and other constraints outside of the control of CAL shipments to sub labs are not guaranteed. All shipment charges will be billed to the client regardless of shipment outcome.

Billing terms are Net 30 on approved accounts; all other accounts are COD. Additional charges may apply for accelerated turn around.

We appreciate the opportunity to be of service to you. If you have questions please call us at 303-659-2313 or visit us at www.coloradolab.com

Page 1 of 3

JML

^{**}Samples should be shipped or hand delivered the same day they are collected. Orders that require sub-lab analysis should be delivered to the lab Monday thru Wednesday only.**

CAL Task 241210008

CJF

Quotation for Analytical Services

Quote ID: QBO23110033

LABORATORIES, INC.

Prepared For:

Thorin Resources, LLC

1900 Main St

Unit 1

Ouray, CO 81427

Attn: CJ Dickerson

Project:

CDPS Bi Monthly WW

Bi-Monthly - Hg-Total

Quote Date: Friday, November 10, 2023 Turn Around Time: 10 Working Days

Matrix	Description	Method	Qty.	Price - each	from Total
Water - Ground	Fe - TR	EPA 200.7	2	\$13.00	\$26.00
Water - Ground	Ph	SM 4500-H-B	2	\$13.00	\$26.00
Water - Ground	Ag - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Cd - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Cu - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Mn - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Pb - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Pb - Total	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	TDS	SM 2540-C	2	\$16.00	\$32.00
Water - Ground	TSS	SM 2540-D	2	\$16.00	\$32.00
Water - Ground	Zn - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Hg	EPA 245.7	2	\$27.00	\$54.00
Water - Ground	Cyanide-Weak Acid Dissociable	ASTM 2036-09C	2	\$40.00	\$80.00
Water - Ground	Oil & Grease	EPA 1664 (B)	2	\$65.00	\$130.00
Shipping	Cooler Shipment - UPS	UPS	2	\$30.00	\$60.00

Samples should be shipped or hand delivered the same day they are collected. Orders that require sub-lab analysis should be delivered to the lab Monday thru Wednesday only.

Page 1 of 3

JML

\$664.00

TASK NO: 241220006

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 241220006

Client PO:

Client Project: CDPS Bi Monthly WW

Date Received: 12/20/24 Date Reported: 12/31/24

Matrix: Water

Customer Sample ID OF002A

Sample Date/Time: 12/18/24 12:00 PM

Lab Number: 241220006-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
							_
Cyanide-Weak Acid Dissociable	ND mg/L	ASTM 2036-09C	0.005	0.0005	12/26/24	QC78500	KRB
рН	7.62 units	SM 4500-H-B	0.01	0.01	12/20/24	-	ARH
Total Dissolved Solids	270 mg/L	SM 2540-C	5	2	12/24/24	QC78477	ISG
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	12/23/24	QC78422	ISG
Potentially Dissolved							
Cadmium	ND mg/L	EPA 200.8	0.0001	0.000006	12/27/24	QC78514	AMJ
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	12/27/24	QC78514	AMJ
Lead	0.0007 mg/L	EPA 200.8	0.0001	0.000006	12/27/24	QC78514	AMJ
Manganese	0.0846 mg/L	EPA 200.8	0.0008	0.00001	12/27/24	QC78514	AMJ
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	12/27/24	QC78514	AMJ
Zinc	0.065 mg/L	EPA 200.8	0.001	0.00003	12/27/24	QC78514	AMJ
<u>Total</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	12/24/24	QC78472	JJA
Lead	0.0007 mg/L	EPA 200.8	0.0001	0.000006	12/27/24	QC78514	AMJ
Total Recoverable							
Iron	0.024 mg/L	EPA 200.7	0.005	0.0005	12/27/24	QC78515	MBN

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB mpn/100 Mis = Most Perphala Number

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

ND = Not Detected at Reporting Limit.

1/3

Analytical QC Summary

Method

Prep Date

TASK NO: 241220006

Report To: CJ Dickerson

Test

Company: Thorin Resources, LLC

QC Batch ID

QC Type

Receive Date: 12/20/24

Result

Project Name: CDPS Bi Monthly WW

Cyanide-Weak Acid Dissociable	QC78500	Blank	ND	Α	STM 2036-09C	12/26/24
Mercury	QC78472	Method Blank	ND		EPA 245.7	12/24/24
	QC78472	Method Blank	ND		EPA 245.7	12/24/24
Cadmium	QC78514	Method Blank	ND		EPA 200.8	12/20/24
Copper	QC78514	Method Blank	ND		EPA 200.8	12/20/24
ead	QC78514	Method Blank	ND		EPA 200.8	12/20/24
/langanese	QC78514	Method Blank	ND		EPA 200.8	12/20/24
Silver	QC78514	Method Blank	ND		EPA 200.8	12/20/24
linc	QC78514	Method Blank	ND		EPA 200.8	12/20/24
on	QC78515	Method Blank	ND		EPA 200.7	12/20/24
otal Dissolved Solids	QC78477	Blank	ND		SM 2540-C	12/24/24
otal Suspended Solids	QC78422	Blank	ND		SM 2540-D	12/23/24
est	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
Cyanide-Weak Acid Dissociable	QC78500	Duplicate -241219099-01	0 - 20	-	0.0	ASTM 2036-09C
		LCS	90 - 110	98.9	-	
		MS -241220006-01E	75 - 125	92.5	-	
Mercury	QC78472	Duplicate -241219060-01	0 - 20	=	0.0	EPA 245.7
		LCS	90 - 110	103.4	-	
		MS -241219060-01D	80 - 120	94.0	-	
Cadmium	QC78514	LCS	90 - 110	100.0	-	EPA 200.8
		MS -241220003-05	70 - 130	101.9	-	
		MSD -241220003-05	0 - 10	-	0.3	
Copper	QC78514	LCS	90 - 110	98.3	-	EPA 200.8
		MS -241220003-05	70 - 130	117.0	-	
		MSD -241220003-05	0 - 10	-	1.7	
_ead	QC78514	LCS	90 - 110	102.3	-	EPA 200.8
		MS -241220003-05	70 - 130	105.2	-	
		MSD -241220003-05	0 - 10	-	2.9	
	QC78514	LCS	90 - 110	98.4	=	EPA 200.8
G		MS -241220003-05	70 - 130	121.2	-	
		MSD -241220003-05	0 - 10	-	0.9	
Silver		LCS	90 - 110	109.1	-	EPA 200.8
		MS -241220003-05	70 - 130	96.0	-	
		MSD -241220003-05	0 - 10	-	0.9	
Zinc		LCS	90 - 110	102.6	-	EPA 200.8
-		MS -241220003-05	70 - 130	94.3	-	
		MSD -241220003-05	0 - 10	-	1.3	
 Iron		Duplicate -241220002-02	0 - 20	-	6.5	EPA 200.7
•	20,0010	- upilodio - 11220002 02	0 20		5.0	L. /\ 200./
		LCS	90 - 110	100.1	-	

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
Total Dissolved Solids	QC78477	Duplicate -241224019-01	0 - 10	-	0.8	SM 2540-C
		LCS	85 - 115	95.6	-	
Total Suspended Solids	QC78422	Duplicate -241219107-01	0 - 10	-	6.6	SM 2540-D
		LCS	90 - 110	93.8	-	

All analyses were performed in accordance with approved methods under the latest revision to 40 CFR Part 136 unless otherwise identified. Based on my inquiry of the person or persons directly responsible for analyzing samples and generating the report (s), the analyses, report, and information submitted are, to the best of my knowledge and belief, true, accurate, and complete.

DATA APPROVED FOR RELEASE BY

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Chain of Custody Form

Report To Information	Bill To Information (If different from report to)	Project Name / Number
Company Name: Thora Resources	Company Name:	
Contact Name: LT Dicheson	Contact Name:	
Address: 1900 Main St. Unit 1	Address:	Task Number (Lab Use Only)
City Oway State Co Zip 8/427	City State Zip	
Phone: (602) 793-1321 Email: Cydicherson ethoria resources.co	Phone:	CAL Task
Email: Cidichersone thoringsources. Co	Email:	241220006
Sample Collector:	_	LMG
Sample Collector Phone:	PO No.:	1

Commerce City Lab 10411 Heinz Way Commerce City CO 80640

<u>Lakewood Service Center</u> 610 Garrison Street, Unit E Lakewood CO 80215

Phone: 303-659-2313

www.coloradolab.com

Sample C	ollector Pho	one:		PO) No.:																
	mar no entre la companya de la comp	CONTRACTOR NOT THE STATE OF THE				everities etterriid					. v. 3-3		12.750	Test	s Requ	ested					
Water (CWA / Includes water use. Date		-potable	Drinking W (SDWA) Includes finisheraw (untreated)	d drinking water,	Solid (Sludge) [(503 Regs / RCRA 846)		No. of Containers	Grab	۱ ا	GB@Z5110035											
12/18	1Z:00		발전투하게보다 변화 등록	OFOOZA			3	+		×						_			1		
10110	1000			<u> </u>														\top			
																		\bot			
					/ 7	1														<u> </u>	
		Per	nistory	0/6 not no	eeded)					_					_	1_			_		
		no	1 i ambe	er receiv	ed																
		Will	aliquot	in lab fo	OVTDS													\perp			
					LO 12/20/24											<u> </u>					
Instruction	ons: P	cus e	Refun	Bolfler		C/S Info: Deliver Via:	C	PS	>		C/S ³	5 Charge 🖎		mp.	ent Yes °C/Ic	7	_	ple Pre	s. Yes 🗗	2 20 □	
Relinquis	-	1	te/Time:	Received By:	Date/Time		linqu	ished	Ву:			/Time:			ed By:			D	Date/Vin	ne:	
	Elesor		13 330p			Page 4	of 5						\pm				W	Ш	1/10	124	-0-
• /	Dish.		1/14 2.45	_													, -	• •	ĺ	1	B.C

CAL Task 241220006

LMG

Quotation for Analytical Services

Quote ID: QBO23110033

Quote Date: Friday, November 10, 2023

LABORATORIES, INC.

Prepared For:

Thorin Resources, LLC

1900 Main St

Unit 1

Ouray, CO 81427

Attn:

CJ Dickerson

Project:

CDPS Bi Monthly WW

Turn Around Time: 10 Working Days

		Qty.	Price - each	Total
Fe - TR	EPA 200.7	2	\$13.00	\$26.00
Ph	SM 4500-H-B	2	\$13.00	\$26.00
Ag - PD	EPA 200.8	2	\$16.00	\$32.00
Cd - PD	EPA 200.8	2	\$16.00	\$32.00
Cu - PD	EPA 200.8	2	\$16.00	\$32.00
Mn - PD	EPA 200.8	2	\$16.00	\$32.00
Pb-PD	EPA 200.8	2	\$16.00	\$32.00
Pb - Total	EPA 200.8	2	\$16.00	\$32.00
TDS →	SM 2540-C	2	\$16.00	\$32.00
TSS	SM 2540-D	2	\$16.00	\$32.00
Zn - PD	EPA 200.8	2	\$16.00	\$32.00
Hg	EPA 245.7	2	\$27.00	\$54.00
Cyanide-Weak Acid Dissociable	ASTM 2036-09C	2	\$40.00	\$80.00
Oil & Grease ℴ	EPA 1664 (B)	2	\$65.00	\$130.00
Cooler Shipment - UPS	UPS	2	\$30.00	\$60.00
·				
	Ph Ag - PD Cd - PD Cu - PD Mn - PD Pb - PD Pb - Total TDS TSS Zn - PD Hg Cyanide-Weak Acid Dissociable Oil & Grease &	Ph SM 4500-H-B Ag - PD EPA 200.8 Cd - PD EPA 200.8 Cu - PD EPA 200.8 Mn - PD EPA 200.8 Pb - PD EPA 200.8 Pb - Total EPA 200.8 TDS ♥ SM 2540-C TSS SM 2540-D EPA 200.8 EPA 200.8 Cyanide-Weak Acid Dissociable ASTM 2036-09C Cill & Grease ♥ EPA 1664 (B) Cooler Shipment - UPS UPS	Ph SM 4500-H-B 2 Ag - PD EPA 200.8 2 Cd - PD EPA 200.8 2 Cu - PD EPA 200.8 2 Mn - PD EPA 200.8 2 Pb - PD EPA 200.8 2 Pb - Total EPA 200.8 2 TDS v SM 2540-C 2 TSS SM 2540-D 2 Zn - PD EPA 200.8 2 Cyanide-Weak Acid Dissociable ASTM 2036-09C 2 Cooler Shipment - UPS UPS 2	Ph SM 4500-H-B 2 \$13.00 Ag - PD EPA 200.8 2 \$16.00 Cd - PD EPA 200.8 2 \$16.00 Cu - PD EPA 200.8 2 \$16.00 Mn - PD EPA 200.8 2 \$16.00 Pb - PD EPA 200.8 2 \$16.00 Pb - Total EPA 200.8 2 \$16.00 TDS v SM 2540-C 2 \$16.00 TSS SM 2540-D 2 \$16.00 TSS SM 2540-D 2 \$16.00 TGS SM 2540-D 2

Bi-Monthly - Hg-Total

\$664.00

Page 1 of 3

^{**}Samples should be shipped or hand delivered the same day they are collected. Orders that require sub-lab analysis should be delivered to the lab Monday thru Wednesday only.**

TASK NO: 240319008

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240319008

Client PO:

Client Project: CDPS Quart WW

Date Received: 3/19/24

Date Reported: 3/29/24

Matrix: Wastewater

Customer Sample ID OF002A - CDPS Quart WW Sample Date/Time: 3/18/24 11:00 AM

Lab Number: 240319008-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Chromium - Hexavalent	ND mg/L	SM 3500-Cr B	0.02	0.01	3/27/24	QC72233	AMJ
Total Dissolved Solids	283 mg/L	SM 2540-C	5	2	3/21/24	QC72088	ISG
<u>Total</u>							
Mercury	ND ug/L	EPA 245.7	0.002	0.0002	3/20/24	QC72097	NRP
Cadmium	ND mg/L	EPA 200.8	0.0001	0.000006	3/20/24	QC72096	MBN
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	3/20/24	QC72096	MBN
Zinc	0.057 mg/L	EPA 200.8	0.001	0.00003	3/20/24	QC72096	MBN
Total Recoverable							
Chromium - Trivalent	ND mg/L	Calculation	0.02	0.01	3/29/24	-	MBN
Arsenic	0.0008 mg/L	EPA 200.8	0.0006	0.00006	3/20/24	QC72096	MBN
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	3/20/24	QC72096	MBN

Ammonium Sulfate buffer solution added upon arrival to laboratory to extend Hex-Cr hold time to 28 days.

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240319008

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240319008

Client PO:

Client Project: CDPS Quart WW

Date Received: 3/19/24

Date Reported: 3/29/24

Matrix: Wastewater

Customer Sample ID Hg LL Field Blank

Sample Date/Time: 3/18/24

Lab Number: 240319008-02

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
<u>Total</u>							
Mercury	ND ug/L	EPA 245.7	0.002	0.0002	3/20/24	QC72097	NRP

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations. (s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Analytical QC Summary

SM 2540-C

3/20/24

TASK NO: 240319008

Report To: CJ Dickerson

Total Dissolved Solids

Company: Thorin Resources, LLC

Receive Date: 3/19/24

Project Name: CDPS Quart WW

Test	QC Batch ID	QC Type	Result	Method	Prep Date
Chromium - Hexavalent	QC72233	Blank	ND	SM 3500-Cr B	3/27/24
Mercury	QC72097	Method Blank	ND	EPA 245.7	3/20/24
Arsenic	QC72096	Method Blank	ND	EPA 200.8	3/19/24
Cadmium	QC72096	Method Blank	ND	EPA 200.8	3/19/24
Chromium	QC72096	Method Blank	ND	EPA 200.8	3/19/24
Copper	QC72096	Method Blank	ND	EPA 200.8	3/19/24
Zinc	QC72096	Method Blank	ND	EPA 200.8	3/19/24

ND

QC72088

Blank

Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
Chromium - Hexavalent	QC72233	Duplicate	0 - 20	-	12.8	SM 3500-Cr B
		LCS	90 - 110	98.6	-	
Mercury	QC72097	LCS	76 - 113	107.0	-	EPA 245.7
		MS	63 - 111	67.0	-	
		MSD	0 - 18	-	3.0	
Arsenic	QC72096	LCS	90 - 110	103.8	-	EPA 200.8
		MS	70 - 130	96.7	-	
		MSD	0 - 10	-	5.8	
Cadmium	QC72096	LCS	90 - 110	101.9	-	EPA 200.8
		MS	70 - 130	91.2	-	
		MSD	0 - 10	-	6.6	
Chromium	QC72096	LCS	90 - 110	107.0	-	EPA 200.8
		MS	70 - 130	104.5	-	
		MSD	0 - 10	-	2.5	
Copper	QC72096	LCS	90 - 110	102.9	-	EPA 200.8
		MS	70 - 130	96.9	-	
		MSD	0 - 10	-	4.4	
Zinc	QC72096	LCS	90 - 110	103.7	-	EPA 200.8
		MS	70 - 130	114.3	-	
		MSD	0 - 10	-	7.1	
Total Dissolved Solids	QC72088	Duplicate	0 - 10	-	1.5	SM 2540-C
		LCS	85 - 115	103.6	-	

All analyses were performed in accordance with approved methods under the latest revision to 40 CFR Part 136 unless otherwise identified. Based on my inquiry of the person or persons directly responsible for analyzing the wastewater samples and generating the report (s), the analyses, report, and information submitted are, to the best of my knowledge and belief, true, accurate, and complete.

DATA APPROVED FOR RELEASE BY

Abbreviations/ References:

 $RL = Reporting \ Limit = Minimum \ Level$

MDL = Method Detection Limit

mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Chain of Custody Form

Report To Information	Bill To Information (If different from report to)	Project Name / Number
Company Name: Thorin Resources	Company Name:	
Contact Name: C5 Dicterson	Contact Name:	
Address: 1900 Main St. Unit 1	Address:	Task Number (Lab Use Only)
City Duray State Co zip 81427 Phone: 1970 316 - 2294	City State Zip	
Phone: 970 316 - 2294	Phone:	CAL Task
Email: cjdicterson e thorin resources.com	Email:	240319008
Sample Collector: (J Dickerson		CJF
Sample Collector Phone: (602) 793-132/	PO No.:	

Commerce City Lab 10411 Heinz Way Commerce City CO 80640

<u>Lakewood Service Center</u> 610 Garrison Street, Unit E Lakewood CO 80215

Phone: 303-659-2313

www.coloradolab.com

Sample (Collector Pho	ne: (602) 793 <i>-132</i>	PO No	.:			Ĺ		
									Tests Requested
Groun	Water ⊠ d Water □ e Water □ Time		(Select One Only) Sample ID	Drinking Water	No. of Containers	Grab	site	cops-anot-ma	
3/18	11:00 a	OFOOZA -	CDPS Qu	nat ww	5	X		X	
	Low Lev Lot #: \	vel Hg - HCl Preserver U-3-333- ID: 0F02A-0	d Bottle OSAB	(4+1)					Ammonium Sulfate buffer solution added upon arrival to laboratory to extend Hex-Cr hold time to 28 days. Initials: U.F. Date: 3 19124
Instructi	Initials:	d per Onit Ob	3/17 0ADV 0ADY CF	3 OS Info	96	<u> </u>			Seals Present Yes No Sample Pres. Yes No Sample Pres. Yes No
Relinqui CSDick	shed By:	Date/Time: 3 18 / 3-30p	Received By:	Date/Time:	Relinque	ished	By:		Date/Time: Received By: Date/Time:

TASK NO: 240507001

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240507001

Client PO:

Client Project: CDPS Bi Monthly and Quarterly WW

Date Received: 5/7/24

Date Reported: 5/17/24

Matrix: Wastewater

Customer Sample ID OF002A

Sample Date/Time: 5/6/24 10:10 AM

Lab Number: 240507001-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Cyanide-Weak Acid Dissociable	ND mg/L	ASTM 2036-09C	0.005	0.0005	5/10/24	QC73292	KRB
рН	7.76 units	SM 4500-H-B	0.01	0.01	5/7/24	-	KRI
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	5/8/24	QC73212	ISG
Potentially Dissolved							
Cadmium	ND mg/L	EPA 200.8	0.0001	0.000006	5/9/24	QC73273	MBN
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	5/9/24	QC73273	MBN
Lead	0.0018 mg/L	EPA 200.8	0.0001	0.000006	5/9/24	QC73273	MBN
Manganese	0.0520 mg/L	EPA 200.8	0.0008	0.00001	5/9/24	QC73273	MBN
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	5/9/24	QC73273	MBN
Zinc	0.031 mg/L	EPA 200.8	0.001	0.00003	5/9/24	QC73273	MBN
<u>Total</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	5/9/24	QC73280	JJA
Lead	0.0019 mg/L	EPA 200.8	0.0001	0.000006	5/9/24	QC73273	MBN
Total Recoverable							
Iron	0.072 mg/L	EPA 200.7	0.005	0.0005	5/9/24	QC73257	MBN

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240507001

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240507001

Client PO:

Client Project: CDPS Bi Monthly and Quarterly WW

Date Received: 5/7/24 Date Reported: 5/17/24

Matrix: Wastewater

Customer Sample ID OF002A

Sample Date/Time: 5/6/24 10:00 AM

Lab Number: 240507001-02

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
			_	_			
Total Dissolved Solids	227 mg/L	SM 2540-C	5	2	5/8/24	QC73202	ISG
<u>Dissolved</u>							
Chromium - Hexavalent	ND mg/L	SM 3500-Cr B	0.02	0.01	5/16/24	QC73406	AMJ
<u>Total</u>							
Mercury	ND ug/L	EPA 245.7	0.002	0.0002	5/8/24	QC73249	NRP
Cadmium	ND mg/L	EPA 200.8	0.0001	0.000006	5/9/24	QC73273	MBN
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	5/9/24	QC73273	MBN
Zinc	0.031 mg/L	EPA 200.8	0.001	0.00003	5/9/24	QC73273	MBN
<u>Total Recoverable</u>							
Chromium - Trivalent	ND mg/L	Calculation	0.02	0.01	5/15/24	-	MBN
Arsenic	ND mg/L	EPA 200.8	0.0006	0.00006	5/9/24	QC73273	MBN
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	5/9/24	QC73273	MBN
	_						

Ammonium Sulfate buffer solution added upon arrival to laboratory to extend Hex-Cr hold time to 28 days.

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240507001

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240507001

Client PO:

Client Project: CDPS Bi Monthly and Quarterly WW

Date Received: 5/7/24 Date Reported: 5/17/24

Matrix: Wastewater

Customer Sample ID Hg LL Field Blank

Sample Date/Time: 5/6/24 10:00 AM

Lab Number: 240507001-03

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
<u>Total</u>							
Mercury	ND ug/L	EPA 245.7	0.002	0.0002	5/8/24	QC73249	NRP

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations. (s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Analytical QC Summary

TASK NO: 240507001

Report To: CJ Dickerson Receive Date: 5/7/24

Company: Thorin Resources, LLC Project Name: CDPS Bi Monthly and Quarterly WW

QC73496 QC73292 QC73280 QC73249 QC73273		ND ND ND		SM 3500-Cr B STM 2036-09C	5/14/24 5/9/24
QC73280 QC73249 QC73273 QC73273	Method Blank Method Blank	ND	Д	STM 2036-09C	5/9/24
QC73249 QC73273 QC73273	Method Blank				
QC73273 QC73273				EPA 245.7	5/9/24
QC73273	Method Blank	ND		EPA 245.7	5/8/24
	Motifod Dialik	ND		EPA 200.8	5/7/24
0070070	Method Blank	ND		EPA 200.8	5/7/24
QC73273	Method Blank	ND		EPA 200.8	5/7/24
QC73273	Method Blank	ND		EPA 200.8	5/7/24
QC73273	Method Blank	ND		EPA 200.8	5/7/24
QC73273	Method Blank	ND		EPA 200.8	5/7/24
QC73273	Method Blank	ND		EPA 200.8	5/7/24
QC73273	Method Blank	ND		EPA 200.8	5/7/24
QC73257	Method Blank	ND		EPA 200.7	5/7/24
QC73202	Blank	ND		SM 2540-C	5/7/24
QC73212	Blank	ND		SM 2540-D	5/8/24
C Batch ID	QC Type	Limits	% Rec	RPD	Method
QC73406	Duplicate -240507001-02	0 - 20	-	0.0	SM 3500-Cr B
	LCS	90 - 110	99.5	-	
QC73292	Duplicate -240507129-02	0 - 20	-	16.7	ASTM 2036-09C
	LCS	90 - 110	90.1	-	
	MS -240507001-01D	75 - 125	75.5	-	
QC73280	Duplicate -240503044-23	0 - 20	-	0.0	EPA 245.7
	LCS	90 - 110	106.0	-	
	MS -240503044-23	80 - 120	90.0	-	
QC73249	LCS	76 - 113	89.0	-	EPA 245.7
	MS -240502131-01B	63 - 111	87.0	-	
	MSD -240502131-01B	0 - 18	-	14.4	
QC73273	LCS	90 - 110	94.6	-	EPA 200.8
	MS -240507001-01A	70 - 130	112.1	-	
	MSD -240507001-01A	0 - 10	-	0.8	
QC73273	LCS	90 - 110	95.6	-	EPA 200.8
	MS -240507001-01A	70 - 130	105.6	-	
	MSD -240507001-01A	0 - 10	-	0.7	
QC73273	LCS	90 - 110	104.7	-	EPA 200.8
	MS -240507001-01A	70 - 130	106.3	-	
	MSD -240507001-01A	0 - 10	-	0.7	
QC73273		90 - 110	94.5	-	EPA 200.8
	MS -240507001-01A	70 - 130	101.9	-	
	MSD -240507001-01A	0 - 10	-	0.9	
QC73273	LCS	90 - 110	106.3	-	EPA 200.8
	QC73273 QC73273 QC73273 QC73257 QC73202 QC73212 C Batch ID QC73406 QC73292 QC73280 QC73273 QC73273 QC73273	QC73273 Method Blank QC73273 Method Blank QC73273 Method Blank QC73273 Method Blank QC73257 Method Blank QC73202 Blank QC73212 Blank C Batch ID QC Type QC73406 Duplicate -240507001-02 LCS MS -240507001-01D QC73292 Duplicate -240503044-23 LCS MS -240503044-23 QC7 LCS MS -240503044-23 LCS MS -240502131-01B MSD -240502131-01B QC73273 LCS MS -240507001-01A MSD -240507001-01A MSD -240507001-01A MSD -240507001-01A	QC73273 Method Blank ND QC73273 Method Blank ND QC73273 Method Blank ND QC73273 Method Blank ND QC73257 Method Blank ND QC73202 Blank ND QC73212 Blank ND QC73240 Duplicate -240507001-02 0 - 20 LCS 90 - 110 75 - 125 QC73280 Duplicate -240503044-23 0 - 20 LCS 90 - 110 MS -240503044-23 80 - 120 QC73249 LCS 76 - 113 MS -240502131-01B 63 - 111 MSD -240502131-01B 0 - 18 QC73273 LCS 90 - 110 MS -240507001-01A 70 - 130 MSD -240507001-01A 70 - 130 MSD -2	QC73273 Method Blank ND QC73273 Method Blank ND QC73273 Method Blank ND QC73273 Method Blank ND QC73257 Method Blank ND QC73202 Blank ND QC73212 Blank ND QC73212 Blank ND QC73406 Duplicate -240507001-02 0 - 20 - LCS 90 - 110 99.5 QC73292 Duplicate -240507129-02 0 - 20 - LCS 90 - 110 90.1 MS -240507001-01D 75 - 125 75.5 QC73280 Duplicate -240503044-23 0 - 20 - LCS 90 - 110 106.0 MS -240503044-23 80 - 120 90.0 QC73249 LCS 76 - 113 89.0 MSD -240502131-01B 63 - 111 87.0 MSD -240507001-01A 70 - 130 112.1 MSD -240507001-01A 70 - 130 112.1 MSD -240507001-0	QC73273 Method Blank ND EPA 200.8 QC73257 Method Blank ND EPA 200.7 QC73202 Blank ND SM 2540-C QC73212 Blank ND SM 2540-D C Batch ID QC Type Limits % Rec RPD QC73406 Duplicate -240507001-02 0 - 20 - 0.0 LCS 90 - 110 99.5 - QC73292 Duplicate -240507129-02 0 - 20 - 16.7 QC73280 Duplicate -240500701-01 75 - 125 75.5 - QC73280 Duplicate -240503044-23 0 - 20 - 0.0 LCS 90 - 110 106.0 - MS -240503044-23 80 - 120 90.0 - QC73249 LCS 76 - 113 89.0 -

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

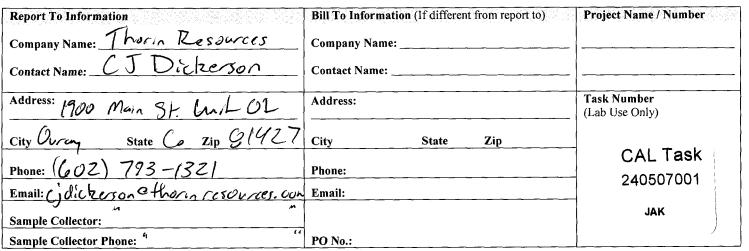
mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
	1	MS -240507001-01A	70 - 130	100.7	-	
		MSD -240507001-01A	0 - 10	-	1.3	
Manganese	QC73273	LCS	90 - 110	99.8	-	EPA 200.8
		MS -240507001-01A	70 - 130	96.0	-	
		MSD -240507001-01A	0 - 10	-	1.0	
Silver	QC73273	LCS	90 - 110	96.5	-	EPA 200.8
		MS -240507001-01A	70 - 130	96.1	-	
		MSD -240507001-01A	0 - 10	-	0.6	
Zinc	QC73273	LCS	90 - 110	99.1	-	EPA 200.8
		MS -240507001-01A	70 - 130	104.1	-	
		MSD -240507001-01A	0 - 10	-	0.6	
Iron	QC73257	Duplicate -240507027-06	0 - 20	-	2.2	EPA 200.7
		LCS	90 - 110	101.2	-	
		MS -240507001-01B	75 - 125	104.6	-	
Total Dissolved Solids	QC73202	Duplicate -240507101-01	0 - 10	-	3.0	SM 2540-C
		LCS	85 - 115	96.6	-	
Total Suspended Solids	QC73212	Duplicate -240507011-02	0 - 10	-	5.7	SM 2540-D
		LCS	90 - 110	96.1	-	


All analyses were performed in accordance with approved methods under the latest revision to 40 CFR Part 136 unless otherwise identified. Based on my inquiry of the person or persons directly responsible for analyzing the wastewater samples and generating the report (s), the analyses, report, and information submitted are, to the best of my knowledge and belief, true, accurate, and complete.

DATA APPROVED FOR RELEASE BY

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
 (s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Chain of Custody Form

Commerce City Lab 10411 Heinz Way Commerce City CO 80640

<u>Lakewood Service Center</u> 610 Garrison Street, Unit E Lakewood CO 80215

Phone: 303-659-2313

www.coloradolab.com

Sample C	Collector Pho	ne:	PO N	o.:					<u>.</u>									
								136				Tes	sts Requ	uested				Sy. 7.
1000 (*) 1000 (*)		Sample Matrix	(Select One Only			Ţ ,	 S				TT							
	Water ☐ d Water ☐ e Water ☐	Sludge [Drinking Water	No. of Containers		or (Check One Only) Composite	28023110033	23110034									
Surface Water [_]		of of	ap	ao (Ch	2	C150 2	}					į l						
Date	Time		Sample ID		ž	Ğ	ಕರ	aB	8									1
5/6	16:000	OFOO	ZA *		6	X		1	X								_	
5/6	10:104	BF00	ZA *		3	+		X										
		Lo	ot#: U - 4 - ample ID: OF (nitials: TA	Date: 5/7/24			e)	dde xten	d upo id He	m Sulfa on arriv ex-Cr ho	al to la ld tim	aborato e to 28	ory to days.					
** ND 01/ ARLOSE RCOL. ja ** Evanide bottle received and not needed ** per quote 51/124 LK 8t b lank Instructions: Bottle Return Requested **Deliver Via:				110	25			C/S Char						Pres. Ves	No I			
			linquished By:		:		C/S Charge Temp. Q				1		Pres. Yes No Date/Time:					
		6 of 8							M	der	MA		5/	7/8	4			
		v /										7 "	**				S &	17

JAK

Quotation for Analytical Services

Quote ID: QBO23110033

Prepared For:

Thorin Resources, LLC

1900 Main St

Unit 1

Ouray, CO 81427

Attn: CJ Dickerson

Project:

CDPS Bi Monthly WW

Quote Date:	Fr	iday, Novembe	r 10,	2023
Turn Around Time:	10	Working Days		

Matrix	Description	Method	Qty.	Price - each	Total
Water - Ground	Fe - TR	EPA 200.7	2	\$13.00	\$26.00
Water - Ground	Ph	SM 4500-H-B	2	\$13.00	\$26.00
Water - Ground	Ag - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Cd - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Cu - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Mn - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Pb - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Pb - Total	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	TSS	SM 2540-D	2	\$16.00	\$32.00
Water - Ground	Zn - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Hg	EPA 245.7	2	\$27.00	\$54.00
Water - Ground	Cyanide-Weak Acid Dissociable	ASTM 2036-09C	2	\$40.00	\$80.00
Water - Ground	Oil & Grease	EPA 1664 (A)	2	\$65.00	\$130.00
Shipping	Cooler Shipment - UPS	UPS	2	\$30.00	\$60.00

\$632.00

^{**}Samples should be shipped or hand delivered the same day they are collected. Orders that require sub-lab analysis should be delivered to the lab Monday thru Wednesday only.**

CAL Task 240507001

JAK

Quotation for Analytical Services

Quote ID: QBO23110034

Prepared For:

Thorin Resources, LLC

1900 Main St

Unit 1

Ouray, CO 81427

Attn: CJ Dickerson

Quote Date: Friday, November 10, 2023 Turn Around Time: 10 Working Days

Project:

CDPS Quart WW

Matrix	Description	Method	Qty.	Price - each	Total
Water - Ground	Cr-Tri -TR	Calculation	1	\$0.00	\$0.00
Water - Ground	As - TR	EPA 200.8	1	\$16.00	\$16.00
Water - Ground	Cd - Total	EPA 200.8	1	\$16.00	\$16.00
Water - Ground	Cr - TR	EPA 200.8	1	\$16.00	\$16.00
Water - Ground	Cu - Total	EPA 200.8	1	\$16.00	\$16.00
Water - Ground	TDS	SM 2540-C	1	\$16.00	\$16.00
Water - Ground	Zn - Total	EPA 200.8	1	\$16.00	\$16.00
Water - Ground	Cr - Hex	SM 3500-Cr B	1	\$40.00	\$40.00
Water - Ground	Hg LL	EPA 245.7	1	\$52.00	\$52.00
Water - Ground	Hg LL Field Blank	EPA 245.7	1	\$52.00	\$52.00
Shipping	Cooler Shipment - UPS	UPS	1	\$30.00	\$30.00

\$270.00

Colorado Analytical Laboratory maintains certification by the Colorado Department of Health (CDPHE) and EPA Region 8 for Wyoming and Tribal Public Water Systems to analyze drinking water for organic contaminants (SOC's VOC's), inorganic contaminants (metals), nitrate nitrite, cyanide, fluoride and coliform bacteria.

Sub-Lab analysis pricing subject to change. Sub-Lab radiological analysis turn-around time is 4 to 8 weeks depending on sample matrix. Due to time, distance and other constraints outside of the control of CAL shipments to sub labs are not guaranteed. All shipment charges will be billed to the client regardless of shipment outcome.

Billing terms are Net 30 on approved accounts; all other accounts are COD. Additional charges may apply for accelerated turn around.

We appreciate the opportunity to be of service to you. If you have questions please call us at 303-659-2313 or visit us at www.coloradolab.com

Page 1 of 3

10411 Heinz Way / Commerce City, CO 80640 / 303-659-2313 Mailing Address: P.O. Box 507 / Brighton, CO 80601-0507

JML

^{**}Samples should be shipped or hand delivered the same day they are collected. Orders that require sub-lab analysis should be delivered to the lab Monday thru Wednesday only.**

TASK NO: 240917001

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240917001

Client PO:

Client Project: CDPS Bi Monthly and Quarterly WW

Date Received: 9/17/24 Date Reported: 9/24/24

Matrix: Water

Customer Sample ID OF002A

Sample Date/Time: 9/16/24 2:40 PM Lab Number: 240917001-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Cyanide-Weak Acid Dissociable	ND mg/L	ASTM 2036-09C	0.005	0.0005	9/18/24	QC76275	KRB
рН	7.58 units	SM 4500-H-B	0.01	0.01	9/17/24	-	KJP
Total Dissolved Solids	186 mg/L	SM 2540-C	5	2	9/18/24	QC76238	ISG
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	9/18/24	QC76249	ISG
Potentially Dissolved							
Cadmium	0.0002 mg/L	EPA 200.8	0.0001	0.000006	9/23/24	QC76378	JJA
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	9/23/24	QC76378	JJA
Lead	0.0010 mg/L	EPA 200.8	0.0001	0.000006	9/23/24	QC76378	JJA
Manganese	0.1309 mg/L	EPA 200.8	0.0008	0.00001	9/23/24	QC76378	JJA
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	9/23/24	QC76378	JJA
Zinc	0.075 mg/L	EPA 200.8	0.001	0.00003	9/23/24	QC76378	JJA
<u>Total</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	9/19/24	QC76315	JJA
Lead	0.0011 mg/L	EPA 200.8	0.0001	0.000006	9/23/24	QC76378	JJA
Total Recoverable							
Iron	0.056 mg/L	EPA 200.7	0.005	0.0005	9/19/24	QC76292	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations. (s) The accuracy of the spike recovery value is reduced due to the analyte

concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240917001

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240917001

Client PO:

Client Project: CDPS Bi Monthly and Quarterly WW

Date Received: 9/17/24 Date Reported: 9/24/24

Matrix: Water

Customer Sample ID OF002A

Sample Date/Time: 9/16/24 2:40 PM **Lab Number:** 240917001-02

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Total Dissolved Solids	195 mg/L	SM 2540-C	5	2	9/18/24	QC76238	ISG
Dissolved							
Chromium - Hexavalent	ND mg/L	SM 3500-Cr B	0.02	0.01	9/19/24	QC76323	AMJ
Total							
Mercury	ND ug/L	EPA 245.7	0.002	0.0002	9/23/24	QC76366	NRP
Cadmium	0.0002 mg/L	EPA 200.8	0.0001	0.000006	9/23/24	QC76378	JJA
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	9/23/24	QC76378	JJA
Zinc	0.077 mg/L	EPA 200.8	0.001	0.00003	9/23/24	QC76378	JJA
Total Recoverable							
Chromium - Trivalent	ND mg/L	Calculation	0.02	0.01	9/23/24	-	MBN
Arsenic	0.0016 mg/L	EPA 200.8	0.0006	0.00006	9/23/24	QC76378	JJA
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	9/23/24	QC76378	JJA
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	9/23/24	QC76378	JJA

Ammonium Sulfate buffer solution added upon arrival to laboratory to extend Hex-Cr hold time to 28 days.

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240917001

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240917001

Client PO:

Client Project: CDPS Bi Monthly and Quarterly WW

Date Received: 9/17/24 Date Reported: 9/24/24

Matrix: Water

Customer Sample ID CBOF

Sample Date/Time: 9/16/24 2:10 PM Lab Number: 240917001-03

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
							_
Cyanide-Weak Acid Dissociable	ND mg/L	ASTM 2036-09C	0.005	0.0005	9/18/24	QC76275	KRB
рН	7.17 units	SM 4500-H-B	0.01	0.01	9/17/24	-	KJP
Total Dissolved Solids	905 mg/L	SM 2540-C	5	2	9/18/24	QC76238	ISG
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	9/18/24	QC76249	ISG
Potentially Dissolved							
Cadmium	0.0011 mg/L	EPA 200.8	0.0001	0.000006	9/23/24	QC76378	JJA
Copper	0.0118 mg/L	EPA 200.8	0.0008	0.00001	9/23/24	QC76378	JJA
Lead	0.0034 mg/L	EPA 200.8	0.0001	0.000006	9/23/24	QC76378	JJA
Manganese	0.0752 mg/L	EPA 200.8	0.0008	0.00001	9/23/24	QC76378	JJA
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	9/23/24	QC76378	JJA
Zinc	0.232 mg/L	EPA 200.8	0.001	0.00003	9/23/24	QC76378	JJA
<u>Total</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	9/19/24	QC76315	JJA
Lead	0.0035 mg/L	EPA 200.8	0.0001	0.000006	9/23/24	QC76378	JJA
<u>Total Recoverable</u>							
Iron	0.189 mg/L	EPA 200.7	0.005	0.0005	9/19/24	QC76292	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations. (s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240917001

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240917001

Client PO:

Client Project: CDPS Bi Monthly and Quarterly WW

Date Received: 9/17/24 Date Reported: 9/24/24

Matrix: Water

Customer Sample ID CB_UG01

Sample Date/Time: 9/16/24 2:25 PM Lab Number: 240917001-04

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
							_
Cyanide-Weak Acid Dissociable	ND mg/L	ASTM 2036-09C	0.005	0.0005	9/18/24	QC76275	KRB
рН	7.44 units	SM 4500-H-B	0.01	0.01	9/17/24	-	KJP
Total Dissolved Solids	926 mg/L	SM 2540-C	5	2	9/18/24	QC76238	ISG
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	9/18/24	QC76249	ISG
Potentially Dissolved							
Cadmium	0.0010 mg/L	EPA 200.8	0.0001	0.000006	9/23/24	QC76378	JJA
Copper	0.0121 mg/L	EPA 200.8	0.0008	0.00001	9/23/24	QC76378	JJA
Lead	0.0022 mg/L	EPA 200.8	0.0001	0.000006	9/23/24	QC76378	JJA
Manganese	0.0788 mg/L	EPA 200.8	0.0008	0.00001	9/23/24	QC76378	JJA
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	9/23/24	QC76378	JJA
Zinc	0.225 mg/L	EPA 200.8	0.001	0.00003	9/23/24	QC76378	JJA
<u>Total</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	9/19/24	QC76315	JJA
Lead	0.0022 mg/L	EPA 200.8	0.0001	0.000006	9/23/24	QC76378	JJA
Total Recoverable							
Iron	0.198 mg/L	EPA 200.7	0.005	0.0005	9/19/24	QC76292	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240917001

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240917001

Client PO:

Client Project: CDPS Bi Monthly and Quarterly WW

Date Received: 9/17/24

Date Reported: 9/24/24

Matrix: Water

Customer Sample ID Hg LL Field Blank Sample Date/Time: 9/16/24 Lab Number: 240917001-05

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
<u>Total</u>							
Mercury	ND ug/L	EPA 245.7	0.002	0.0002	9/23/24	QC76366	NRP

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations. (s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Test

Analytical QC Summary

Method

Prep Date

TASK NO: 240917001

Report To: CJ Dickerson Receive Date: 9/17/24

QC Batch ID QC Type

Company: Thorin Resources, LLC Project Name: CDPS Bi Monthly and Quarterly WW

Test	QC Batch II	D QC Type	Result		Method	Prep Date
Chromium - Hexavalent	QC76323	Blank	ND	S	M 3500-Cr B	9/19/24
Cyanide-Weak Acid Dissociable	QC76275	Blank	ND	AS	TM 2036-09C	9/18/24
Mercury	QC76315	Method Blank	ND		EPA 245.7	9/19/24
	QC76366	Method Blank	ND		EPA 245.7	9/23/24
Arsenic	QC76378	Method Blank	ND		EPA 200.8	9/17/24
Cadmium	QC76378	Method Blank	ND		EPA 200.8	9/17/24
Chromium	QC76378	Method Blank	ND		EPA 200.8	9/17/24
Copper	QC76378	Method Blank	ND		EPA 200.8	9/17/24
Lead	QC76378	Method Blank	ND		EPA 200.8	9/17/24
Manganese	QC76378	Method Blank	ND		EPA 200.8	9/17/24
Silver	QC76378	Method Blank	ND		EPA 200.8	9/17/24
Zinc	QC76378	Method Blank	ND		EPA 200.8	9/17/24
Iron	QC76292	Method Blank	ND		EPA 200.7	9/17/24
Total Dissolved Solids	QC76238	Blank	ND		SM 2540-C	9/17/24
Total Suspended Solids	QC76249	Blank	ND		SM 2540-D	9/18/24
Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
Chromium - Hexavalent	QC76323	Duplicate -240913036-01	0 - 20	-	0.0	SM 3500-Cr B
		LCS	90 - 110	88.3	-	
Cyanide-Weak Acid Dissociable	QC76275	Duplicate -240912164-01	0 - 20	-	13.3	ASTM 2036-09C
		LCS	90 - 110	100.3	-	
		MS -240917108-01	75 - 125	99.5	-	
Mercury	QC76315	Duplicate -240913036-01	0 - 20	-	0.0	EPA 245.7
		LCS	90 - 110	106.8	-	
		MS -240913036-01F	80 - 120	100.0	-	
Mercury	QC76366	LCS	76 - 113	106.0	-	EPA 245.7
•		MS -240920103-01	63 - 111	67.0	-	
		MSD -240920103-01	0 - 18	-	0.0	
Arsenic	QC76378	LCS	90 - 110	101.6	-	EPA 200.8
		MS -240917001-01B	70 - 130	111.2	-	
		MSD -240917001-01B	0 - 10	-	2.7	
Cadmium	QC76378	LCS	90 - 110	98.3	-	EPA 200.8
		MS -240917001-01B	70 - 130	111.0	-	
		MSD -240917001-01B	0 - 10	-	0.1	
Chromium	QC76378	LCS	90 - 110	101.2	-	EPA 200.8
		MS -240917001-01B	70 - 130	109.3	-	
		MSD -240917001-01B	0 - 10	-	2.5	
				100.1	-	EPA 200.8
Copper	QC76378	LCS	90 - 110	1021	-	
Copper	QC76378	LCS MS -240917001-01B	90 - 110 70 - 130	102.1 107.8	-	LI A 200.0
Copper	QC76378	LCS MS -240917001-01B MSD -240917001-01B	90 - 110 70 - 130 0 - 10	102.1	- 0.9	LI A 200.0

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM

ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Test Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
	•	MS -240917001-01B	70 - 130	106.3	-	
		MSD -240917001-01B	0 - 10	-	1.3	
Manganese	QC76378	LCS	90 - 110	102.7	-	EPA 200.8
		MS -240917001-01B	70 - 130	94.3	-	
		MSD -240917001-01B	0 - 10	-	0.9	
Silver	QC76378	LCS	90 - 110	94.5	-	EPA 200.8
		MS -240917001-01B	70 - 130	93.1	-	
		MSD -240917001-01B	0 - 10	-	1.1	
Zinc	QC76378	LCS	90 - 110	99.7	-	EPA 200.8
		MS -240917001-01B	70 - 130	91.9	-	
		MSD -240917001-01B	0 - 10	-	0.0	
Iron	QC76292	Duplicate -240917020-01	0 - 20	-	4.7	EPA 200.7
		LCS	90 - 110	94.3	-	
		MS -240917001-01C	75 - 125	105.9	-	
Total Dissolved Solids	QC76238	Duplicate -240917077-05	0 - 10	-	0.5	SM 2540-C
		LCS	85 - 115	93.4	-	
Total Suspended Solids	QC76249	Duplicate -240917010-01	0 - 10	-	9.8	SM 2540-D
		LCS	90 - 110	97.4	-	

All analyses were performed in accordance with approved methods under the latest revision to 40 CFR Part 136 unless otherwise identified. Based on my inquiry of the person or persons directly responsible for analyzing the wastewater samples and generating the report (s), the analyses, report, and information submitted are, to the best of my knowledge and belief, true, accurate, and complete.

DATA APPROVED FOR RELEASE BY

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls Date Analyzed = Date Test Completed

concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

⁽d) RPD acceptable due to low duplicate and sample concentrations. (s) The accuracy of the spike recovery value is reduced due to the analyte

Chain of Custody Form

Report To Information	Bill To Information (If different from report to)	Project Name / Number
Company Name: Thorin Resources	Company Name:	
Contact Name: CJ Dickerson	Contact Name:	
Address: 1900 Main St Unit 1	Address:	Task Number (Lab Use Only)
City Ouray State Co zip 81427	City State Zip	
Phone: (602) 793-1321	Phone:	CAL Task
Email: cidicaesonetham/esources. Com	Email:	240917001
Sample Collector:		RMB
Sample Collector Phone:	PO No.:	

Commerce City Lab 10411 Heinz Way Commerce City CO 80640

<u>Lakewood Service Center</u> 610 Garrison Street, Unit E Lakewood CO 80215

Phone: 303-659-2313

www.coloradolab.com

Sample Collector Pho	ne:	PO No.:								
									Tests Requested	
	Sample Matrix	(Select One Only)			,	 S		7		
Waste Water 🛛	Soil	Drin	king Water 🔲	lers		5	733	6034		
Ground Water 🗌	Sludge 🗌	Din	King Water [_]	ntain		e C	1100	110		
Surface Water 🗌				. of Containers	qg (or (Check One Only) Composite	SB023110033	3802311		
Date Time		Sample ID		ģ	5	ဗ်ပိ	Q_{i}	9		
9/16 2:40	OF	6\$ZA		3	X		X			
9/16 7:40		DOZA		5	X			*		
9/16 2:10	CBOF						X		added upon arrival to laboratory to extend Hex-Cr hold time to 28	
9/16 2:25	CR_4601				*		days. RB 9/17/24			
									uays. (8)	
	* Oxtra	containers	ecd						Low Level Hg - HCl Preserved Bottle	
	PAR	OFA02 A	, part			i			Lot #: U-4-076-02AB	
	(1100000 000	10 tola v ava	nide)	- -					Sample ID: OFOO2 A	
	(Wiffes, M	CONTAINERS OF 002 A etals + cya	+ blank			-			Initials: 074 Date: 9/17/24	
Instructions:	ase Return Bo	HIN	C/S Info:	_			لـــــــا		Seals Present Yes \(\square\) No \(\square\)	
•			Deliver V	ia:	UD	5			C/S Charge Temp. C/Ice Sample Pres. Yes No Date/Time: Received By: Date//Time:	
Relinquished By:	Date/Time:	Received By:	Date/Time:	Relingu	ished	By:			1 3 (1	
CT Dickeso	n Date/Time:		Page	8 of 10					ARDAMA 9/17/24	
									80	

CAL Task 240917001

RMB

Quotation for Analytical Services

Quote ID: QBO23110033

Prepared For:

Thorin Resources, LLC

1900 Main St

Unit 1

Ouray, CO 81427

Attn: CJ Dickerson

Turn Around Time: 10 Working Days

Quote Date: Friday, November 10, 2023

Project:

CDPS Bi Monthly WW

Matrix	Description	Method	Qty.	Price - each	Total
Water - Ground	Fe - TR	EPA 200.7	2	\$13.00	\$26.00
Water - Ground	Ph	SM 4500-H-B	2	\$13.00	\$26.00
Water - Ground	Ag - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Cd - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Cu - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Mn - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Pb - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Pb - Total	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	TDS	SM 2540-C	2	\$16.00	\$32.00
Water - Ground	TSS	SM 2540-D	2	\$16.00	\$32.00
Water - Ground	Zn - PĐ	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Hg	EPA 245.7	2	\$27.00	\$54.00
Water - Ground	Cyanide-Weak Acid Dissociable	ASTM 2036-09C	2	\$40.00	\$80.00
Water - Ground	Oil & Grease +Not red	EPA 1664 (A)	2	\$65.00	\$130.00
Shipping	Cooler Shipment - UPS	UPS	2	\$30.00	\$60.00

\$664.00

Page 1 of 3

^{**}Samples should be shipped or hand delivered the same day they are collected. Orders that require sub-lab analysis should be delivered to the lab Monday thru Wednesday only.**

CAL Task 240917001

RMB

Quotation for Analytical Services

Quote ID: QBO23110034

Prepared For:

Thorin Resources, LLC

1900 Main St

Unit 1

Ouray, CO 81427

Attn: CJ Dickerson

Quote Date: Friday, November 10, 2023 Turn Around Time: 10 Working Days

Project:

CDPS Quart WW

Matrix	Description	Method	Qty.	Price - each	Total
Water - Ground	Cr - Tri	Calculation	1	\$0.00	\$0.00
Water - Ground	As - TR	EPA 200.8	1	\$16.00	\$16.00
Water - Ground	Cd - Total	EPA 200.8	1	\$16.00	\$16.00
Water - Ground	Cr - TR	EPA 200.8	1	\$16.00	\$16.00
Water - Ground	Cu - Total	EPA 200.8	1	\$16.00	\$16.00
Water - Ground	TDS	SM 2540-C	1	\$16.00	\$16.00
Water - Ground	Zn - Total	EPA 200.8	1	\$16.00	\$16.00
Water - Ground	Cr - Hex	SM 3500-Cr B	1	\$40.00	\$40.00
Water - Ground	Hg LL	EPA 245.7	1	\$52.00	\$52.00
Water - Ground	Hg LL Field Blank	EPA 245.7	1	\$52.00	\$52.00
Shipping	Cooler Shipment - UPS	UPS	1	\$30.00	\$30.00

\$270.00

Colorado Analytical Laboratory maintains certification by the Colorado Department of Health (CDPHE) and EPA Region 8 for Wyoming and Tribal Public Water Systems to analyze drinking water for organic contaminants (SOC's VOC's), inorganic contaminants (metals), nitrate nitrite, cyanide, fluoride and coliform bacteria.

Sub-Lab analysis pricing subject to change. Sub-Lab radiological analysis turn-around time is 4 to 8 weeks depending on sample matrix. Due to time, distance and other constraints outside of the control of CAL shipments to sub labs are not guaranteed. All shipment charges will be billed to the client regardless of shipment outcome.

Billing terms are Net 30 on approved accounts; all other accounts are COD. Additional charges may apply for accelerated turn around.

We appreciate the opportunity to be of service to you. If you have questions please call us at 303-659-2313 or visit us at www.coloradolab.com

Page 1 of 3

10411 Heinz Way / Commerce City, CO 80640 / 303-659-2313 Mailing Address: P.O. Box 507 / Brighton, CO 80601-0507

JML

^{**}Samples should be shipped or hand delivered the same day they are collected. Orders that require sub-lab analysis should be delivered to the lab Monday thru Wednesday only.**

TASK NO: 241210008

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 241210008

Client PO:

Client Project: CDPS Bi Monthly and Quarterly WW

Date Received: 12/10/24 Date Reported: 12/17/24

Matrix: Water

Customer Sample ID OF002A

Sample Date/Time: 12/9/24 11:45 AM

Lab Number: 241210008-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
							_
Cyanide-Weak Acid Dissociable	ND mg/L	ASTM 2036-09C	0.005	0.0005	12/11/24	QC78183	KRB
рН	7.36 units	SM 4500-H-B	0.01	0.01	12/10/24	-	ARH
Total Dissolved Solids	265 mg/L	SM 2540-C	5	2	12/11/24	QC78158	KRI
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	12/10/24	QC78146	ARH
Potentially Dissolved							
Cadmium	ND mg/L	EPA 200.8	0.0001	0.000006	12/11/24	QC78187	AMJ
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	12/11/24	QC78187	AMJ
Lead	0.0008 mg/L	EPA 200.8	0.0001	0.000006	12/11/24	QC78187	AMJ
Manganese	0.0764 mg/L	EPA 200.8	0.0008	0.00001	12/11/24	QC78187	AMJ
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	12/11/24	QC78187	AMJ
Zinc	0.077 mg/L	EPA 200.8	0.001	0.00003	12/11/24	QC78187	AMJ
<u>Total</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	12/13/24	QC78237	MBN
Lead	0.0013 mg/L	EPA 200.8	0.0001	0.000006	12/11/24	QC78187	AMJ
Total Recoverable							
Iron	0.028 mg/L	EPA 200.7	0.005	0.0005	12/12/24	QC78215	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte

concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

ND = Not Detected at Reporting Limit.

1/5

TASK NO: 241210008

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 241210008

Client PO:

Client Project: CDPS Bi Monthly and Quarterly WW

Date Received: 12/10/24 Date Reported: 12/17/24

Matrix: Water

Customer Sample ID OF002A

Sample Date/Time: 12/9/24 11:45 AM

Lab Number: 241210008-02

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Total Dissolved Solids	256 mg/L	SM 2540-C	5	2	12/11/24	QC78158	KRI
<u>Dissolved</u>							
Chromium - Hexavalent	ND mg/L	SM 3500-Cr B	0.02	0.01	12/11/24	QC78180	NRP
<u>Total</u>							
Mercury	ND ug/L	EPA 245.7	0.002	0.0002	12/16/24	QC78266	NRP
Cadmium	0.0001 mg/L	EPA 200.8	0.0001	0.000006	12/11/24	QC78187	AMJ
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	12/11/24	QC78187	AMJ
Zinc	0.073 mg/L	EPA 200.8	0.001	0.00003	12/11/24	QC78187	AMJ
Total Recoverable							
Chromium - Trivalent	ND mg/L	Calculation	0.02	0.01	12/17/24	-	MBN
Arsenic	0.0014 mg/L	EPA 200.8	0.0006	0.00006	12/11/24	QC78187	AMJ
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	12/11/24	QC78187	AMJ

Ammonium Sulfate buffer solution added upon arrival to laboratory to extend Hex-Cr hold time to 28 days.

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM

ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 241210008

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 241210008

Client PO:

Client Project: CDPS Bi Monthly and Quarterly WW

Date Received: 12/10/24 Date Reported: 12/17/24

Matrix: Water

Customer Sample ID Hg LL Field Blank

Sample Date/Time: 12/9/24 11:45 AM

Lab Number: 241210008-03

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
<u>Total</u>							
Mercury	ND ug/L	EPA 245.7	0.002	0.0002	12/16/24	QC78266	NRP

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations. (s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Company: Thorin Resources, LLC

Report To: CJ Dickerson

Analytical QC Summary

TASK NO: 241210008

Receive Date: 12/10/24

Project Name: CDPS Bi Monthly and Quarterly WW

Test	QC Batch I	D QC Type	Result		Method	Prep Date
Chromium - Hexavalent	QC78180) Blank	ND		SM 3500-Cr B	12/11/24
Cyanide-Weak Acid Dissociable	QC78183	Blank	ND	А	STM 2036-09C	12/11/24
Mercury	QC78237	Method Blank	ND		EPA 245.7	12/13/24
	QC78266	Method Blank	ND		EPA 245.7	12/16/24
Arsenic	QC78187	Method Blank	ND		EPA 200.8	12/10/24
Cadmium	QC78187	Method Blank	ND		EPA 200.8	12/10/24
Chromium	QC78187	Method Blank	ND		EPA 200.8	12/10/24
Copper	QC78187	Method Blank	ND		EPA 200.8	12/10/24
Lead	QC78187	Method Blank	ND		EPA 200.8	12/10/24
Manganese	QC78187	Method Blank	ND		EPA 200.8	12/10/24
Silver	QC78187	Method Blank	ND		EPA 200.8	12/10/24
Zinc	QC78187	Method Blank	ND		EPA 200.8	12/10/24
Iron	QC78215	Method Blank	ND		EPA 200.7	12/10/24
Total Dissolved Solids	QC78158	Blank	ND		SM 2540-C	12/10/24
Total Suspended Solids	QC78146	Blank	ND		SM 2540-D	12/10/24
Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
Chromium - Hexavalent	QC78180	Duplicate -241204066-01	0 - 20	-	0.0	SM 3500-Cr B
		LCS	90 - 110	99.5	-	
Cyanide-Weak Acid Dissociable	QC78183	Duplicate -241204104-02	0 - 20	-	0.0	ASTM 2036-09C
		LCS	90 - 110	104.4	-	
		MS -241205104-04A	75 - 125	95.0	-	
Mercury	QC78237	Duplicate -241205071-01	0 - 20	-	0.0	EPA 245.7
		LCS	90 - 110	101.4	-	
		MS -241205071-01A	80 - 120	100.0	-	
Mercury	QC78266	LCS	76 - 113	99.0	-	EPA 245.7
		MS -241210100-02	63 - 111	86.0	-	
		MSD -241210100-02	0 - 18	-	0.0	
Arsenic	QC78187	LCS	90 - 110	104.9	-	EPA 200.8
		MS -241210006-01	70 - 130	92.7	-	
		MSD -241210006-01	0 - 10	-	8.0	
Cadmium	QC78187	LCS	90 - 110	99.1	-	EPA 200.8
		MS -241210006-01	70 - 130	94.3	-	
		MSD -241210006-01	0 - 10	-	5.0	
Chromium	QC78187	LCS	90 - 110	104.0	-	EPA 200.8
		MS -241210006-01	70 - 130	92.2	-	
		MSD -241210006-01	0 - 10	-	7.1	
Copper	QC78187	LCS	90 - 110	105.3	-	EPA 200.8
• •		MS -241210006-01	70 - 130	98.6	-	
		MSD -241210006-01	0 - 10	-	2.0	
Lead	QC78187	LCS	90 - 110	104.2	-	EPA 200.8
		•	· · ·			

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
	•	MS -241210006-01	70 - 130	93.0	-	
		MSD -241210006-01	0 - 10	-	8.1	
Manganese	QC78187	LCS	90 - 110	105.7	-	EPA 200.8
		MS -241210006-01	70 - 130	113.3	=	
		MSD -241210006-01	0 - 10	-	0.4	
Silver	QC78187	LCS	90 - 110	101.4	-	EPA 200.8
		MS -241210006-01	70 - 130	97.5	=	
		MSD -241210006-01	0 - 10	-	5.4	
Zinc	QC78187	LCS	90 - 110	109.6	-	EPA 200.8
		MS -241210006-01	70 - 130	117.7	=	
		MSD -241210006-01	0 - 10	-	0.1	
Iron	QC78215	Duplicate -241210012-01	0 - 20	-	0.7	EPA 200.7
		LCS	90 - 110	104.0	=	
		MS -241210006-01D	75 - 125	109.1	-	
Total Dissolved Solids	QC78158	Duplicate -241210029-02	0 - 10	-	0.4	SM 2540-C
		LCS	85 - 115	100.1	-	
Total Suspended Solids	QC78146	Duplicate -241210020-01	0 - 10	-	7.0	SM 2540-D
		LCS	90 - 110	91.4	-	

All analyses were performed in accordance with approved methods under the latest revision to 40 CFR Part 136 unless otherwise identified. Based on my inquiry of the person or persons directly responsible for analyzing samples and generating the report (s), the analyses, report, and information submitted are, to the best of my knowledge and belief, true, accurate, and complete.

DATA APPROVED FOR RELEASE BY

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

⁽d) RPD acceptable due to low duplicate and sample concentrations. (s) The accuracy of the spike recovery value is reduced due to the analyte

⁽s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

			Chain of Cust	ody Fo	rm										Ž) (Col	Ora:	oc Oc
Report To Information	1	Bill To Int	formation (If different	from repo	ort to)		Pro	ject I	Name	/ Num	ber						lytic TORIES,	
Company Name:	horin Resource	es Company	Name:									_		~		~	Y L	
Contact Name:	5 Dickeron	Contact N	ame:									_			merce 1 Heir			
			1				Tas	k Nu	mbe	<u> </u>		_		Com	merce	: City	CO	30640
1900 W	1ain St Unil	34 VI							Onl					Lake	wood	Serv	ice Co	<u>enter</u>
City Oway	State C Zip 🖇	1427 City	State	Zip											Sarris ewood			Unit E
Phone: (602) 79:		Phone:								CAI	₋ Ta	sk		Phon	ne: 303	3-659	-2313	
Email: C) dicke	somethoring	SOWCEL comail:								241:	2100	80						
Email: C) dicke	and ceuskibo									_	15	ļ		www	.color	adol	ab.cor	<u>m</u>
Sample Collector Phon		PO No.:							2		JF							
									6	10 10 40		Tests I	Reque	sted			,	
		(Select One Only)				<u></u>	53	34	9									
Water (CWA / NPDES)	Drinking War		d (Sludge) 🔲 Regs / RCRA/ SW-	of Containers		ne On	00	200	1		j							{
Includes wastewater, non-p samples not intended for dr	otable Includes finished	d drinking water,	•	Conta		ck O	231	152										
water use.		man consumption.			gp	or (Check One Only) Composite	\$ 30231100	QB0231100	Oh2 700 080									
Date Time		Sample ID		ģ		ဗေဒ	-	ø	ජ				1-1					
12/9 11:45		FUOZA		3		<u> </u>	X						$\downarrow \downarrow \downarrow$			-	\vdash	
12/9 11:45		FOOZA		5	1 ×	<u> </u>	<u> </u>	人					-			-		_
12/9 10:28		16-5		5		ļ	 		1				1-1			-		
12/9/0:52		16-2		5	+		<u> </u>		K		-					-		
12/9 11:18		16-8		5	1	 	ļ		74				-	_		+-		_
					 	 											ion]
* No oil lo	1 0		Cl Preserved Bottle クフレーの2A				_			00/	Am	moniu led upo	m Sult on arri	ate b ival to	uπer : labo	rato	ry to	L
P	ta.	Sample ID: OF			 	2	7-	E	10	ME	ext	end He	x-Cr h	old ti	me to	28 (.ays.	-
		Initials: JA	Date: 12/10/	24	}	 	-				_	_			ate:			
Instructions:	2 1 2		C/S Inf		<u>L</u>	<u> </u>	<u> </u>	L	L		Init S Se	ials: als Present	Yes 🗆	No []	, i.e.		===	 /
Plea	se Retur Bo	PHIES	Deliver	Via	ŀ	103)		L'ie	Charge L	y T.	_{mp.} 2	۰۲/۱۳۵	/	Sample	Pres. Y	es OV	40 🔲
Relinquished By:	Date/Time:	Received By:	Date/Time:	Relinqu						Time:	1	Received	By:			Date	e/Pime	e:
Ct Dickers.	n 4:45p		Pa	ge 6 of	8							SAE	las	m	·	12	110	124

CAL Task 241210008

CJF

Quotation for Analytical Services

Quote ID: QBO23110034

LABORATORIES, INC.

Prepared For:

Thorin Resources, LLC

1900 Main St

Unit 1

Ouray, CO 81427

Attn:

CJ Dickerson

Project:

CDPS Quart WW

Quote Date: Friday, November 10, 2023
Turn Around Time: 10 Working Days

Matrix	Description	Method	Qty.	Price - each	Total
Water - Ground	Cr - Tri	Calculation	1	\$0.00	\$0.00
Water - Ground	As - TR	EPA 200.8	1	\$16.00	\$16.00
Water - Ground	Cd - Total	EPA 200.8	1	\$16.00	\$16.00
Water - Ground	Cr - TR	EPA 200.8	1	\$16.00	\$16.00
Water - Ground	Cu - Total	EPA 200.8	1	\$16.00	\$16.00
Water - Ground	TDS	SM 2540-C	1	\$16.00	\$16.00
Water - Ground	Zn - Total	EPA 200.8	1	\$16.00	\$16.00
Water - Ground	Cr - Hex	SM 3500-Cr B	1	\$40.00	\$40.00
Water - Ground	Hg LL	EPA 245.7	1	\$52.00	\$52.00
Water - Ground	Hg LL Field Blank	EPA 245.7	1	\$52.00	\$52.00
Shipping	Cooler Shipment - UPS	UPS	1	\$30.00	\$30.00

\$270.00

Colorado Analytical Laboratory maintains certification by the Colorado Department of Health (CDPHE) and EPA Region 8 for Wyoming and Tribal Public Water Systems to analyze drinking water for organic contaminants (SOC's VOC's), inorganic contaminants (metals), nitrate nitrite, cyanide, fluoride and coliform bacteria.

Sub-Lab analysis pricing subject to change. Sub-Lab radiological analysis turn-around time is 4 to 8 weeks depending on sample matrix. Due to time, distance and other constraints outside of the control of CAL shipments to sub labs are not guaranteed. All shipment charges will be billed to the client regardless of shipment outcome.

Billing terms are Net 30 on approved accounts; all other accounts are COD. Additional charges may apply for accelerated turn around.

We appreciate the opportunity to be of service to you. If you have questions please call us at 303-659-2313 or visit us at www.coloradolab.com

Page 1 of 3

JML

^{**}Samples should be shipped or hand delivered the same day they are collected. Orders that require sub-lab analysis should be delivered to the lab Monday thru Wednesday only.**

CAL Task 241210008

CJF

Quotation for Analytical Services

Quote ID: QBO23110033

LABORATORIES, INC.

Prepared For:

Thorin Resources, LLC

1900 Main St

Unit 1

Ouray, CO 81427

Attn: CJ Dickerson

Project:

CDPS Bi Monthly WW

Bi-Monthly - Hg-Total

Quote Date: Friday, November 10, 2023 Turn Around Time: 10 Working Days

Matrix	Description	Method	Qty.	Price - each	from Total
Water - Ground	Fe - TR	EPA 200.7	2	\$13.00	\$26.00
Water - Ground	Ph	SM 4500-H-B	2	\$13.00	\$26.00
Water - Ground	Ag - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Cd - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Cu - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Mn - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Pb - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Pb - Total	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	TDS	SM 2540-C	2	\$16.00	\$32.00
Water - Ground	TSS	SM 2540-D	2	\$16.00	\$32.00
Water - Ground	Zn - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Hg	EPA 245.7	2	\$27.00	\$54.00
Water - Ground	Cyanide-Weak Acid Dissociable	ASTM 2036-09C	2	\$40.00	\$80.00
Water - Ground	Oil & Grease	EPA 1664 (B)	2	\$65.00	\$130.00
Shipping	Cooler Shipment - UPS	UPS	2	\$30.00	\$60.00

Samples should be shipped or hand delivered the same day they are collected. Orders that require sub-lab analysis should be delivered to the lab Monday thru Wednesday only.

Page 1 of 3

JML

\$664.00

TASK NO: 240321005

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240321005

Client PO:

Client Project: DRMS

Date Received: 3/21/24 Date Reported: 3/29/24

Matrice Weter Cre

Matrix: Water - Ground

Customer Sample ID UG-5

Sample Date/Time: 3/19/24 10:10 AM

Lab Number: 240321005-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Total Alkalinity	50.9 mg/L as CaCO3	SM 2320-B	4.0	1	3/21/24	QC72136	JCB
Bicarbonate	50.9 mg/L as CaCO3	SM 2320-B	0.2	0.2	3/21/24	-	JCB
Carbonate	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	3/21/24	-	JCB
Hydroxide	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	3/21/24	-	JCB
Chloride	0.68 mg/L	EPA 300.0	0.10	0.007	3/21/24	QC72152	AMJ
Cyanide-Total	ND mg/L	EPA 335.4	0.005	0.0005	3/27/24	QC72214	KRB
Fluoride	0.29 mg/L	EPA 300.0	0.10	0.024	3/21/24	QC72153	AMJ
Nitrate Nitrogen	0.12 mg/L	EPA 300.0	0.05	0.02	3/21/24	QC72154	AMJ
Nitrate/ Nitrite Nitrogen	0.12 mg/L	Calculation	0.05	0.02	3/22/24	-	AMJ
Nitrite Nitrogen	ND mg/L	EPA 300.0	0.03	0.01	3/21/24	QC72155	AMJ
рН	7.52 units	SM 4500-H-B	0.01	0.01	3/21/24	-	JCB
Specific Conductance	457 umhos/cm @ 25c	EPA 120.1	5	5	3/21/24	-	JCB
Sulfate	147 mg/L	EPA 300.0	0.10	0.012	3/21/24	QC72156	AMJ
Total Dissolved Solids	282 mg/L	SM 2540-C	5	2	3/25/24	QC72131	ISG
Phosphorus - Total	ND mg/L	EPA 365.1	0.05	0.006	3/26/24	QC72204	TAB
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	3/22/24	QC72151	ARH
<u>Dissolved</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	3/28/24	QC72280	JJA
Aluminum	0.003 mg/L	EPA 200.8	0.001	0.00003	3/28/24	QC72246	MBN
Antimony	ND mg/L	EPA 200.8	0.0012	0.00012	3/28/24	QC72246	MBN
Arsenic	0.0021 mg/L	EPA 200.8	0.0006	0.00006	3/28/24	QC72246	MBN
Barium	0.0247 mg/L	EPA 200.8	0.0007	0.00007	3/28/24	QC72246	MBN
Beryllium	ND mg/L	EPA 200.8	0.0001	0.000008	3/28/24	QC72246	MBN
Cadmium	0.0009 mg/L	EPA 200.8	0.0001	0.000006	3/28/24	QC72246	MBN
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	3/28/24	QC72246	MBN

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit

mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240321005

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240321005

Client PO:

Client Project: DRMS

Date Received: 3/21/24 Date Reported: 3/29/24

Matrix: Water - Ground

Customer Sample ID UG-5

Sample Date/Time: 3/19/24 10:10 AM

Lab Number: 240321005-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
<u>Dissolved</u>							
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	3/28/24	QC72246	MBN
Lead	ND mg/L	EPA 200.8	0.0001	0.000006	3/28/24	QC72246	MBN
Manganese	1.13 mg/L	EPA 200.8	0.0008	0.00001	3/28/24	QC72246	MBN
Molybdenum	0.0032 mg/L	EPA 200.8	0.0005	0.00005	3/28/24	QC72246	MBN
Nickel	ND mg/L	EPA 200.8	0.0009	0.00005	3/28/24	QC72246	MBN
Selenium	ND mg/L	EPA 200.8	0.0008	0.00008	3/28/24	QC72246	MBN
Silica (as Si)	3.3 mg/L	EPA 200.8	0.3	0.03	3/28/24	QC72246	MBN
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	3/28/24	QC72246	MBN
Thallium	ND mg/L	EPA 200.8	0.0002	0.000003	3/28/24	QC72246	MBN
Uranium	0.0003 mg/L	EPA 200.8	0.0002	0.000002	3/28/24	QC72246	MBN
Vanadium	ND mg/L	EPA 200.8	0.001	0.0001	3/28/24	QC72246	MBN
Zinc	0.348 mg/L	EPA 200.8	0.001	0.00003	3/28/24	QC72246	MBN
Boron	ND mg/L	EPA 200.7	0.05	0.01	3/25/24	QC72183	JJA
Calcium	65.9 mg/L	EPA 200.7	0.1	0.01	3/25/24	QC72183	JJA
Iron	ND mg/L	EPA 200.7	0.005	0.0005	3/25/24	QC72183	JJA
Magnesium	2.37 mg/L	EPA 200.7	0.02	0.002	3/25/24	QC72183	JJA
Potassium	0.3 mg/L	EPA 200.7	0.1	0.01	3/25/24	QC72183	JJA
Sodium	7.4 mg/L	EPA 200.7	0.1	0.01	3/25/24	QC72183	JJA
<u>Total</u>							
Total Hardness	189.2 mg/L as CaCO3	SM 2340-B	0.1	-	3/25/24	-	JJA
Calcium	71.6 mg/L	EPA 200.7	0.1	0.01	3/25/24	QC72183	JJA
Magnesium	2.56 mg/L	EPA 200.7	0.02	0.002	3/25/24	QC72183	JJA
Unable to analyze nitrate/nitrite w	ithin holding time. Per custor	mer-okay to analyze	outside of hole	dina time.			

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240321005

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240321005

Client PO:

Client Project: DRMS

Date Received: 3/21/24 Date Reported: 3/29/24

Matrix: Water - Ground

Customer Sample ID UG-2

Sample Date/Time: 3/19/24 10:40 AM

Lab Number: 240321005-02

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Total Alkalinity	50.1 mg/L as CaCO3	SM 2320-B	4.0	1	3/21/24	QC72136	JCB
Bicarbonate	50.1 mg/L as CaCO3	SM 2320-B	0.2	0.2	3/21/24	=	JCB
Carbonate	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	3/21/24	=	JCB
Hydroxide	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	3/21/24	=	JCB
Chloride	0.74 mg/L	EPA 300.0	0.10	0.007	3/21/24	QC72152	AMJ
Cyanide-Total	ND mg/L	EPA 335.4	0.005	0.0005	3/27/24	QC72214	KRB
Fluoride	0.30 mg/L	EPA 300.0	0.10	0.024	3/21/24	QC72153	AMJ
Nitrate Nitrogen	0.13 mg/L	EPA 300.0	0.05	0.02	3/21/24	QC72154	AMJ
Nitrate/ Nitrite Nitrogen	0.13 mg/L	Calculation	0.05	0.02	3/22/24	-	AMJ
Nitrite Nitrogen	ND mg/L	EPA 300.0	0.03	0.01	3/21/24	QC72155	AMJ
рН	7.53 units	SM 4500-H-B	0.01	0.01	3/21/24	-	JCB
Specific Conductance	448 umhos/cm @ 25c	EPA 120.1	5	5	3/21/24	-	JCB
Sulfate	144 mg/L	EPA 300.0	0.10	0.012	3/21/24	QC72156	AMJ
Total Dissolved Solids	281 mg/L	SM 2540-C	5	2	3/25/24	QC72131	ISG
Phosphorus - Total	ND mg/L	EPA 365.1	0.05	0.006	3/26/24	QC72204	TAB
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	3/22/24	QC72151	ARH
<u>Dissolved</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	3/28/24	QC72280	JJA
Aluminum	0.002 mg/L	EPA 200.8	0.001	0.00003	3/28/24	QC72246	MBN
Antimony	ND mg/L	EPA 200.8	0.0012	0.00012	3/28/24	QC72246	MBN
Arsenic	0.0025 mg/L	EPA 200.8	0.0006	0.00006	3/28/24	QC72246	MBN
Barium	0.0257 mg/L	EPA 200.8	0.0007	0.00007	3/28/24	QC72246	MBN
Beryllium	ND mg/L	EPA 200.8	0.0001	0.000008	3/28/24	QC72246	MBN
Cadmium	0.0011 mg/L	EPA 200.8	0.0001	0.000006	3/28/24	QC72246	MBN
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	3/28/24	QC72246	MBN

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit

mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240321005

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240321005

Client PO:

Client Project: DRMS

Date Received: 3/21/24

Date Reported: 3/29/24

Matrix: Water - Ground

Customer Sample ID UG-2

Sample Date/Time: 3/19/24 10:40 AM

Lab Number: 240321005-02

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
<u>Dissolved</u>							
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	3/28/24	QC72246	MBN
Lead	ND mg/L	EPA 200.8	0.0001	0.000006	3/28/24	QC72246	MBN
Manganese	1.56 mg/L	EPA 200.8	0.0008	0.00001	3/28/24	QC72246	MBN
Molybdenum	0.0019 mg/L	EPA 200.8	0.0005	0.00005	3/28/24	QC72246	MBN
Nickel	ND mg/L	EPA 200.8	0.0009	0.00005	3/28/24	QC72246	MBN
Selenium	ND mg/L	EPA 200.8	0.0008	0.00008	3/28/24	QC72246	MBN
Silica (as Si)	3.3 mg/L	EPA 200.8	0.3	0.03	3/28/24	QC72246	MBN
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	3/28/24	QC72246	MBN
Thallium	ND mg/L	EPA 200.8	0.0002	0.000003	3/28/24	QC72246	MBN
Uranium	0.0003 mg/L	EPA 200.8	0.0002	0.000002	3/28/24	QC72246	MBN
Vanadium	ND mg/L	EPA 200.8	0.001	0.0001	3/28/24	QC72246	MBN
Zinc	0.428 mg/L	EPA 200.8	0.001	0.00003	3/28/24	QC72246	MBN
Boron	ND mg/L	EPA 200.7	0.05	0.01	3/25/24	QC72183	JJA
Calcium	68.8 mg/L	EPA 200.7	0.1	0.01	3/25/24	QC72183	JJA
Iron	ND mg/L	EPA 200.7	0.005	0.0005	3/25/24	QC72183	JJA
Magnesium	2.46 mg/L	EPA 200.7	0.02	0.002	3/25/24	QC72183	JJA
Potassium	0.4 mg/L	EPA 200.7	0.1	0.01	3/25/24	QC72183	JJA
Sodium	8.0 mg/L	EPA 200.7	0.1	0.01	3/25/24	QC72183	JJA
<u>Total</u>							
Total Hardness	183.6 mg/L as CaCO3	SM 2340-B	0.1	-	3/25/24	-	JJA
Calcium	69.4 mg/L	EPA 200.7	0.1	0.01	3/25/24	QC72183	JJA
Magnesium	2.50 mg/L	EPA 200.7	0.02	0.002	3/25/24	QC72183	JJA

 ${\it Unable\ to\ analyze\ nitrate/nitrite\ within\ holding\ time.\ Per\ customer-okay\ to\ analyze\ outside\ of\ holding\ time.}$

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240321005

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240321005

Client PO:

Client Project: DRMS

Date Received: 3/21/24 Date Reported: 3/29/24

Matrix: Water - Ground

Customer Sample ID UG-8

Sample Date/Time: 3/19/24 11:00 AM

Lab Number: 240321005-03

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Total Alkalinity	53.9 mg/L as CaCO3	SM 2320-B	4.0	1	3/21/24	QC72136	JCB
Bicarbonate	53.9 mg/L as CaCO3	SM 2320-B	0.2	0.2	3/21/24	-	JCB
Carbonate	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	3/21/24	-	JCB
Hydroxide	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	3/21/24	-	JCB
Chloride	1.22 mg/L	EPA 300.0	0.10	0.007	3/21/24	QC72152	AMJ
Cyanide-Total	ND mg/L	EPA 335.4	0.005	0.0005	3/27/24	QC72214	KRB
Fluoride	0.40 mg/L	EPA 300.0	0.10	0.024	3/21/24	QC72153	AMJ
Nitrate Nitrogen	0.10 mg/L	EPA 300.0	0.05	0.02	3/21/24	QC72154	AMJ
Nitrate/ Nitrite Nitrogen	0.10 mg/L	Calculation	0.05	0.02	3/22/24	-	AMJ
Nitrite Nitrogen	ND mg/L	EPA 300.0	0.03	0.01	3/21/24	QC72155	AMJ
рН	7.55 units	SM 4500-H-B	0.01	0.01	3/21/24	-	JCB
Specific Conductance	435 umhos/cm @ 25c	EPA 120.1	5	5	3/21/24	-	JCB
Sulfate	135 mg/L	EPA 300.0	0.10	0.012	3/21/24	QC72156	AMJ
Total Dissolved Solids	268 mg/L	SM 2540-C	5	2	3/25/24	QC72131	ISG
Phosphorus - Total	ND mg/L	EPA 365.1	0.05	0.006	3/26/24	QC72204	TAB
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	3/22/24	QC72151	ARH
<u>Dissolved</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	3/28/24	QC72280	JJA
Aluminum	0.005 mg/L	EPA 200.8	0.001	0.00003	3/28/24	QC72246	MBN
Antimony	ND mg/L	EPA 200.8	0.0012	0.00012	3/28/24	QC72246	MBN
Arsenic	0.0020 mg/L	EPA 200.8	0.0006	0.00006	3/28/24	QC72246	MBN
Barium	0.0186 mg/L	EPA 200.8	0.0007	0.00007	3/28/24	QC72246	MBN
Beryllium	ND mg/L	EPA 200.8	0.0001	0.000008	3/28/24	QC72246	MBN
Cadmium	0.0030 mg/L	EPA 200.8	0.0001	0.000006	3/28/24	QC72246	MBN
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	3/28/24	QC72246	MBN

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit

mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240321005

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240321005

Client PO:

Client Project: DRMS

Date Received: 3/21/24 Date Reported: 3/29/24

Matrix: Water - Ground

Customer Sample ID UG-8

Sample Date/Time: 3/19/24 11:00 AM

Lab Number: 240321005-03

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Dissolved							
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	3/28/24	QC72246	MBN
Lead	ND mg/L	EPA 200.8	0.0001	0.000006	3/28/24	QC72246	MBN
Manganese	4.94 mg/L	EPA 200.8	0.0008	0.00001	3/28/24	QC72246	MBN
Molybdenum	0.0029 mg/L	EPA 200.8	0.0005	0.00005	3/28/24	QC72246	MBN
Nickel	ND mg/L	EPA 200.8	0.0009	0.00005	3/28/24	QC72246	MBN
Selenium	ND mg/L	EPA 200.8	0.0008	0.00008	3/28/24	QC72246	MBN
Silica (as Si)	3.7 mg/L	EPA 200.8	0.3	0.03	3/28/24	QC72246	MBN
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	3/28/24	QC72246	MBN
Thallium	ND mg/L	EPA 200.8	0.0002	0.000003	3/28/24	QC72246	MBN
Uranium	0.0004 mg/L	EPA 200.8	0.0002	0.000002	3/28/24	QC72246	MBN
Vanadium	ND mg/L	EPA 200.8	0.001	0.0001	3/28/24	QC72246	MBN
Zinc	1.02 mg/L	EPA 200.8	0.001	0.00003	3/28/24	QC72246	MBN
Boron	ND mg/L	EPA 200.7	0.05	0.01	3/25/24	QC72183	JJA
Calcium	59.4 mg/L	EPA 200.7	0.1	0.01	3/25/24	QC72183	JJA
Iron	ND mg/L	EPA 200.7	0.005	0.0005	3/25/24	QC72183	JJA
Magnesium	3.39 mg/L	EPA 200.7	0.02	0.002	3/25/24	QC72183	JJA
Potassium	0.5 mg/L	EPA 200.7	0.1	0.01	3/25/24	QC72183	JJA
Sodium	11.4 mg/L	EPA 200.7	0.1	0.01	3/25/24	QC72183	JJA
<u>Total</u>							
Total Hardness	172.1 mg/L as CaCO3	SM 2340-B	0.1	-	3/25/24	-	JJA
Calcium	63.1 mg/L	EPA 200.7	0.1	0.01	3/25/24	QC72183	JJA
Magnesium	3.51 mg/L	EPA 200.7	0.02	0.002	3/25/24	QC72183	JJA

 ${\it Unable\ to\ analyze\ nitrate/nitrite\ within\ holding\ time.\ Per\ customer-okay\ to\ analyze\ outside\ of\ holding\ time.}$

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Test

Analytical QC Summary

Method

Prep Date

TASK NO: 240321005

Result

Report To: CJ Dickerson Receive Date: 3/21/24 Company: Thorin Resources, LLC **Project Name: DRMS**

QC Batch ID

QC72152

Duplicate

QC Type

		71				•
Total Alkalinity	QC72136	Blank	ND		SM 2320-B	3/21/24
Chloride	QC72152	Blank	ND		EPA 300.0	3/21/24
Cyanide-Total	QC72214	Blank	ND		EPA 335.4	3/26/24
- Fluoride	QC72153	Blank	ND		EPA 300.0	3/21/24
Mercury	QC72280	Method Blank	ND		EPA 245.7	3/28/24
Aluminum	QC72246	Method Blank	ND		EPA 200.8	3/21/24
Antimony	QC72246	Method Blank	ND		EPA 200.8	3/21/24
Arsenic	QC72246	Method Blank	ND		EPA 200.8	3/21/24
Barium	QC72246	Method Blank	ND		EPA 200.8	3/21/24
Beryllium	QC72246	Method Blank	ND		EPA 200.8	3/21/24
Cadmium	QC72246	Method Blank	ND		EPA 200.8	3/21/24
Chromium	QC72246	Method Blank	ND		EPA 200.8	3/21/24
Copper	QC72246	Method Blank	ND		EPA 200.8	3/21/24
_ead	QC72246	Method Blank	ND		EPA 200.8	3/21/24
Manganese	QC72246	Method Blank	ND		EPA 200.8	3/21/24
Molybdenum	QC72246	Method Blank	ND		EPA 200.8	3/21/24
, Nickel	QC72246	Method Blank	ND		EPA 200.8	3/21/24
Selenium	QC72246	Method Blank	ND		EPA 200.8	3/21/24
Silica (as Si)	QC72246	Method Blank	ND		EPA 200.8	3/21/24
Silver	QC72246	Method Blank	ND		EPA 200.8	3/21/24
Γhallium	QC72246	Method Blank	ND		EPA 200.8	3/21/24
Jranium	QC72246	Method Blank	ND		EPA 200.8	3/21/24
√anadium	QC72246	Method Blank	ND		EPA 200.8	3/21/24
Zinc	QC72246	Method Blank	ND		EPA 200.8	3/21/24
Boron	QC72183	Method Blank	ND		EPA 200.7	3/21/24
Calcium	QC72183	Method Blank	ND		EPA 200.7	3/21/24
ron	QC72183	Method Blank	ND		EPA 200.7	3/21/24
Magnesium	QC72183	Method Blank	ND		EPA 200.7	3/21/24
Potassium	QC72183	Method Blank	ND		EPA 200.7	3/21/24
Sodium	QC72183	Method Blank	ND		EPA 200.7	3/21/24
Nitrate Nitrogen	QC72154	Blank	ND		EPA 300.0	3/21/24
Nitrite Nitrogen	QC72155	Blank	ND		EPA 300.0	3/21/24
Sulfate	QC72156	Blank	ND		EPA 300.0	3/21/24
Total Dissolved Solids	QC72131	Blank	ND		SM 2540-C	3/21/24
Phosphorus - Total	QC72204	Blank	ND		EPA 365.1	3/25/24
Total Suspended Solids	QC72151	Blank	ND		SM 2540-D	3/22/24
Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
Total Alkalinity	QC72136	Duplicate	0 - 20	-	1.6	SM 2320-B
		LCS	90 - 110	103.4	-	
		LCS-2	90 - 110	96.9	-	

Abbreviations/ References:

Chloride

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM

ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

0.4

ND = Not Detected at Reporting Limit.

0 - 20

EPA 300.0

Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
	•	LCS	90 - 110	103.0	-	
		MS	75 - 125	96.9	-	
Cyanide-Total	QC72214	Duplicate	0 - 20	-	0.0	EPA 335.4
		LCS	90 - 110	99.9	-	
		MS	75 - 125	88.5	-	
Fluoride	QC72153	Duplicate	0 - 20	-	1.0	EPA 300.0
		LCS	90 - 110	93.7	-	
		MS	75 - 125	88.2	-	
Mercury	QC72280	Duplicate	0 - 20	-	0.0	EPA 245.7
		LCS	90 - 110	101.8	=	
		MS	80 - 120	104.0	-	
Aluminum	QC72246	LCS	90 - 110	106.0	-	EPA 200.8
		MS	70 - 130	99.1	-	
		MSD	0 - 10	-	6.7	
Antimony	QC72246	LCS	90 - 110	106.4	-	EPA 200.8
		MS	70 - 130	93.3	=	
		MSD	0 - 10	-	4.1	
Arsenic	QC72246	LCS	90 - 110	100.2	-	EPA 200.8
		MS	70 - 130	99.2	-	
		MSD	0 - 10	-	2.6	
Barium	QC72246	LCS	90 - 110	100.7	-	EPA 200.8
		MS	70 - 130	104.6	-	
		MSD	0 - 10	-	1.1	
Beryllium	QC72246	LCS	90 - 110	100.8	-	EPA 200.8
		MS	70 - 130	98.8	-	
		MSD	0 - 10	-	0.4	
Cadmium	QC72246	LCS	90 - 110	100.6	-	EPA 200.8
		MS	70 - 130	97.4	-	
		MSD	0 - 10	-	3.2	
Chromium	QC72246	LCS	90 - 110	105.8	-	EPA 200.8
		MS	70 - 130	105.8	-	
		MSD	0 - 10	-	5.9	
Copper	QC72246	LCS	90 - 110	100.7	-	EPA 200.8
		MS	70 - 130	97.1	=	
		MSD	0 - 10	-	1.7	
Lead	QC72246	LCS	90 - 110	101.3	=	EPA 200.8
		MS	70 - 130	93.2	=	
		MSD	0 - 10	-	3.6	
Manganese	QC72246	LCS	90 - 110	104.0	=	EPA 200.8
		MS	70 - 130	123.0	-	
		MSD	0 - 10	-	0.5	
Molybdenum	QC72246	LCS	90 - 110	98.7	=	EPA 200.8
		MS	70 - 130	101.4	-	
		MSD	0 - 10	-	2.5	
Nickel	QC72246	LCS	90 - 110	107.5	-	EPA 200.8
		MS	70 - 130	104.8	-	
		MSD	0 - 10	-	5.0	
Selenium	QC72246	LCS	90 - 110	100.0	-	EPA 200.8
		MS	70 - 130	102.6	-	
		MSD	0 - 10	-	3.0	
Silica (as Si)	QC72246	LCS	90 - 110	101.3	=	EPA 200.8

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
		MS	70 - 130	97.6	-	
		MSD	0 - 10	-	1.0	
Silver	QC72246	LCS	90 - 110	92.3	-	EPA 200.8
		MS	70 - 130	72.2	-	
		MSD	0 - 10	-	0.4	
Thallium	QC72246	LCS	90 - 110	101.5	-	EPA 200.8
		MS	70 - 130	94.1	-	
		MSD	0 - 10	-	3.9	
Uranium	QC72246	LCS	90 - 110	101.1	-	EPA 200.8
		MS	70 - 130	96.3	-	
		MSD	0 - 10	-	3.1	
Vanadium	QC72246	LCS	90 - 110	105.0	-	EPA 200.8
		MS	70 - 130	108.6	-	
		MSD	0 - 10	-	5.3	
Zinc	QC72246	LCS	90 - 110	103.4	-	EPA 200.8
		MS	70 - 130	113.0	-	
		MSD	0 - 10	-	2.0	
Boron	QC72183	Duplicate	0 - 20	-	6.6	EPA 200.7
		LCS	90 - 110	91.6	-	
		MS	75 - 125	93.3	-	
 Calcium	QC72183	Duplicate	0 - 20	-	1.0	EPA 200.7
		LCS	90 - 110	103.6	-	
		MS	75 - 125	86.9	-	
Iron	QC72183	Duplicate	0 - 20	-	1.2	EPA 200.7
	40.2.00	LCS	90 - 110	90.7	-	
		MS	75 - 125	95.0	-	
 Magnesium	QC72183	Duplicate	0 - 20	-	0.6	EPA 200.7
		LCS	90 - 110	96.4	-	
		MS	75 - 125	102.3	-	
Potassium	QC72183	Duplicate	0 - 20	-	0.8	EPA 200.7
Classiani	Q0/2/00	LCS	90 - 110	93.8	-	217(200.7
		MS	75 - 125	108.0	-	
Sodium	QC72183	Duplicate	0 - 20	-	1.6	EPA 200.7
	Q0/2/00	LCS	90 - 110	93.2	-	217120011
		MS	75 - 125	101.4	_	
Nitrate Nitrogen	QC72154	Duplicate	0 - 20	-	0.0	EPA 300.0
Thirdis Thiregen	Q0/2/01	LCS	90 - 110	95.7	-	2171000.0
		MS	75 - 125	89.9	_	
Nitrite Nitrogen	QC72155	Duplicate	0 - 20	-	0.0	EPA 300.0
1 1111 0 9 0 11	Q012100	LCS	90 - 110	101.6	-	2. 7. 000.0
		MS	75 - 125	96.3	-	
 Sulfate	QC72156	Duplicate	0 - 20	-	0.6	EPA 300.0
- ua.o	Q012100	LCS	90 - 110	103.4	-	21 /1 000.0
		MS	75 - 125	99.6	-	
	QC72131	Duplicate	0 - 10	-	1.0	SM 2540-C
rotal Dissolved Guilds	Q012131	LCS	85 - 115	98.5	-	OW 2040-C
 Phosphorus - Total	QC72204	Duplicate	0 - 20	-	1.9	EPA 365.1
i nospriorus - rotar	QC12204	LCS	90 - 110	- 98.7	1. 3	EFA 303.1
		MS	75 - 125	102.0	- -	
	QC72151		0 - 10	-	1.4	SM 2540-D
rotal Suspended Solids	QC/2131	Duplicate LCS				SIVI ∠34U-D
		LUS	90 - 110	90.2	-	

Abbreviations/ References:

 $RL = Reporting\ Limit = Minimum\ Level$ RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

All analyses were performed in accordance with approved methods under the latest revision to 40 CFR Part 136 unless otherwise identified. Based on my inquiry of the person or persons directly responsible for analyzing the wastewater samples and generating the report (s), the analyses, report, and information submitted are, to the best of my knowledge and belief, true, accurate, and complete.

DATA APPROVED FOR RELEASE BY

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Chain of Custody Form

Report To Information	Bill To Information (If different from report to)	Project Name / Number
Company Name: Thorin Desources	Company Name:	
Contact Name: CT Dickerson	Contact Name:	
Address: 1900 Man St Unit 1	Address:	Task Number (Lab Use Only)
City Oway State CO Zip 81427	City State Zip	
Phone: 970 316 2294	Phone:	CAL Task
Email: Cidicheron ofhoring esources. com	Email:	240321005
Sample Collector: C5 Dickeron		JAK
Sample Collector Phone: (602) 793-1821	PO No.:	

Commerce City Lab 10411 Heinz Way Commerce City CO 80640

<u>Lakewood Service Center</u> 610 Garrison Street, Unit E Lakewood CO 80215

Phone: 303-659-2313

www.coloradolab.com

Sample Collector	L'S Dicheson	_)			JAK			<u> </u>	W W.CUIU	lauoiau	-com	
Sample Collector	Phone:(602) 793-1821	PO No.:	, ,						لــــــــــــــــــــــــــــــــــــــ						
					}				Te	sts Req	uested	 I			
	Sample Matrix (Select Or	ne Only)		(,,	3		1)								
Waste Water	□ Soil □	Drinking Water	ıers	[40]		sH.	X								
Ground Water	Sludge		ontail	Č	te C	20	5								
Surface Water	OFOOZA Logged	us waskwaker fer history.	No. of Containers	ab	mposi	131-morth Bottle ander Att.	DRMS								
Date Time			ž	5 5	5 Ö	80	7							_ _	
3/19 9:00	in OFOOZA-B	i-morthly	3	*		×									
3/19 10:00	DGA 4/5-5	1 groundweeter	5	K			x								
3/19/10:40	146-Z) groundwater) perguste	5	x			×								
3(19 11:0			5	×			*								
							_								
	unable to analyze	_ nitrale nitrite with	in												
	hold time. Per CJ-	nitrale nitrite with okay to run out of hold kings.													
	* Testing base	d ON 3/22/24	1												
	DB024010976	and Juk	オー											11	
	bottles po	d.	1				-								
Instructions: D	lease return boffles (OFOOTA ONLY C/S Info:		L		lJ		5	i	resent Yes		j	-l		
Ţ	east referre Dopples Co	Deliver Vi	a: (/	15				C/S Charge	Temp.	Q .c/16	ce V	Sample	Pres. Yes	≰.No [7	
Relinquished By:	Date/Time: Received		Relingu	ished	By:			ate/Time:	Rece	eived By:	, 1		Date/T	ime:	
(J Dichero.	3/20/8:30 pm	Page 1	1 of 11					The state of the s	1	Ade	LM	A	3/2	21/2	1
	7	ugo .	· · ·						-0	ş•					4

TASK NO: 240625002

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240625002

Client PO:

Client Project: CDPS Bi Monthly WW

Date Received: 6/25/24 Date Reported: 7/2/24

Matrix: Wastewater

Customer Sample ID OF002A

Sample Date/Time: 6/24/24 10:00 AM

Lab Number: 240625002-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Cyanide-Weak Acid Dissociable	ND mg/L	ASTM 2036-09C	0.005	0.0005	6/27/24	QC74393	KRB
рН	7.74 units	SM 4500-H-B	0.01	0.01	6/25/24	-	ARH
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	6/25/24	QC74312	ARH
Potentially Dissolved							
Cadmium	0.0001 mg/L	EPA 200.8	0.0001	0.000006	6/27/24	QC74388	MBN
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	6/27/24	QC74388	MBN
Lead	0.0005 mg/L	EPA 200.8	0.0001	0.000006	6/27/24	QC74388	MBN
Manganese	0.0773 mg/L	EPA 200.8	0.0008	0.00001	6/27/24	QC74388	MBN
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	6/27/24	QC74388	MBN
Zinc	0.024 mg/L	EPA 200.8	0.001	0.00003	6/27/24	QC74388	MBN
<u>Total</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	6/27/24	QC74397	JJA
Lead	0.0017 mg/L	EPA 200.8	0.0001	0.000006	6/27/24	QC74388	MBN
Total Recoverable							
Iron	0.037 mg/L	EPA 200.7	0.005	0.0005	6/27/24	QC74390	MBN

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations. (s) The accuracy of the spike recovery value is reduced due to the analyte

concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Analytical QC Summary

TASK NO: 240625002

Report To: CJ Dickerson Receive Date: 6/25/24

OC Batch ID OC Type

Company: Thorin Resources, LLC Project Name: CDPS Bi Monthly WW

Test	QC Batch ID	D QC Type	Result		Method	Prep Date
Cyanide-Weak Acid Dissociable	QC74393	Blank	ND	A	STM 2036-09C	6/27/24
Mercury	QC74397	Method Blank	ND		EPA 245.7	6/27/24
Cadmium	QC74388	Method Blank	ND		EPA 200.8	6/25/24
Copper	QC74388	Method Blank	ND		EPA 200.8	6/25/24
Lead	QC74388	Method Blank	ND		EPA 200.8	6/25/24
Manganese	QC74388	Method Blank	ND		EPA 200.8	6/25/24
Silver	QC74388	Method Blank	ND		EPA 200.8	6/25/24
Zinc	QC74388	Method Blank	ND		EPA 200.8	6/25/24
Iron	QC74390	Method Blank	ND		EPA 200.7	6/25/24
Total Suspended Solids	QC74312	Blank	ND		SM 2540-D	6/25/24
Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
Cyanide-Weak Acid Dissociable	QC74393	Duplicate -240625002-01	0 - 20	-	0.0	ASTM 2036-09C
		LCS	90 - 110	97.3	-	
		MS -240626053-02	75 - 125	97.0		
Mercury	QC74397	Duplicate -240621087-03	0 - 20	-	0.0	EPA 245.7
		LCS	90 - 110	102.6	-	
		MS -240621087-03	80 - 120	86.0	<u> </u>	
Cadmium	QC74388	LCS	90 - 110	99.2	-	EPA 200.8
		MS -240625001-01	70 - 130	107.0	-	
		MSD -240625001-01	0 - 10	-	1.8	
Copper	QC74388	LCS	90 - 110	99.8	-	EPA 200.8
		MS -240625001-01	70 - 130	110.6	-	
		MSD -240625001-01	0 - 10	-	0.3	
Lead	QC74388	LCS	90 - 110	101.6	-	EPA 200.8
		MS -240625001-01	70 - 130	93.5	-	
		MSD -240625001-01	0 - 10	-	3.8	
Manganese	QC74388	LCS	90 - 110	104.8	-	EPA 200.8
		MS -240625001-01	70 - 130	125.6	-	
		MSD -240625001-01	0 - 10	-	0.9	
Silver	QC74388	LCS	90 - 110	100.0	-	EPA 200.8
		MS -240625001-01	70 - 130	99.9	-	
		MSD -240625001-01	0 - 10	-	2.7	
Zinc	QC74388	LCS	90 - 110	101.3	-	EPA 200.8
		MS -240625001-01	70 - 130	110.9	-	
		MSD -240625001-01	0 - 10	-	1.9	
Iron	QC74390	Duplicate -240625001-01	0 - 20	-	4.9	EPA 200.7
		LCS	90 - 110	100.4	-	
		MS -240625001-01	75 - 125	101.6	-	
			0.40			SM 2540-D
Total Suspended Solids	QC74312	Duplicate -240624009-01	0 - 10	-	2.5	SIVI 2540-D

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

All analyses were performed in accordance with approved methods under the latest revision to 40 CFR Part 136 unless otherwise identified. Based on my inquiry of the person or persons directly responsible for analyzing the wastewater samples and generating the report (s), the analyses, report, and information submitted are, to the best of my knowledge and belief, true, accurate, and complete.

DATA APPROVED FOR RELEASE BY

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Chain of Custody Form

Report To Information	Bill To Information (If different from report to)	Project Name / Number
Company Name: Therin Desources	Company Name:	
Contact Name: CT Dickerson	Contact Name:	
Address: 1900 Main St Unit1	Address:	Task Number (Lab Use Only)
City Oway State Co Zip 81427	City State Zip	
Phone: (602) 793-1321	Phone:	CAL Task
Email: Cidicherson e thoran resources.com	Email:	240625002
Sample Collector: Sample Collector Phone:	PO No.:	RMB

Commerce City Lab 10411 Heinz Way **Commerce City CO 80640**

<u>Lakewood Service Center</u> 610 Garrison Street, Unit E Lakewood CO 80215

Phone: 303-659-2313

www.coloradolab.com

Sample C	ollector Phone	e: ^{'(}	£ (PO No.:						,										
								[Tes	sts Re	eques	ted				
1 m 1 m 2 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m		Sample Matrix	(Select One	Only)			3	,		20										
Waste V	Water 🛚	Soil 🗌		Drinking Water	٦	ers	5	<u> </u>	3	2401097 "DIZNO"										
Ground	l Water 🛴	Sludge 🗌		Distincting water [ntain	2) 	100	80										
Surface	Water 🗌					No. of Containers	da da	Composite	& 8623116433	ĠB0Z										
Date	Time		Sampl	e ID		ž	Gre	် ပိ	S S	<i>.</i> @										
6/24	10:00 am	OF	-002A -5			3	1/-		\times											
6/24	11:00 an	46	-5			5				*										
6/24	11:30 ar	46	- 2			5				*										
6/24	11:30an	46	-8			5				*										
·																				
			,, ,	2																
	- 4	*No olg	60446	e ecd	3															
		/· · · · · · · · · · · · · · · · · · ·	<i>,,</i>																	
<u>ώαs+e</u>	Water	pcp history p	A 10/75																	
1		por ilisia.	W COLLEGE																	
ınsıructio	ons: Retu	en of OFUG	DZA BO	the only please	C/S Info:		.i 1		1			5	Seals Pr				<u></u>			
	V	,			Deliver Via:		UP	5		C/S	Charge	M	Temp.	· •(c/Ice >	/ s	ample Pi	res. Yes	No.	
Relinquis	hed By:	Date/Time: 6/20	Received By	y: Date/Time	: Re	linqu	iished	By:		Date	e/Timé	:	Rece	ived E	By:			Date/1	ime:	
CTD	ockersa	Date/Time: 6/24	<i>-</i> ــــــــــــــــــــــــــــــــــــ		Page 4	of 5							1	AO	la.	N	1	6/2	35	124
													V					7		\

CAL Task 240625002

RMB

Quotation for Analytical Services

Quote ID: QBO23110033

Prepared For:

Thorin Resources, LLC

1900 Main St

Unit 1

Ouray, CO 81427

Attn: CJ Dickerson

Project:

CDPS Bi Monthly WW

Quote Date:	Fri	day, November	10, 2023
Turn Around Time:	10	Working Days	

Matrix	Description	Method	Qty.	Price - each	Total
Water - Ground	Fe - TR	EPA 200.7	2	\$13.00	\$26.00
Water - Ground	Ph	SM 4500-H-B	2	\$13.00	\$26.00
Water - Ground	Ag - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Cd - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Cu - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Mn - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Pb - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Pb - Total	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	TSS	SM 2540-D	2	\$16.00	\$32.00
Water - Ground	Zn - PD	EPA 200.8	2	\$16.00	\$32.00
Water - Ground	Hg	EPA 245.7	2	\$27.00	\$54.00
Water - Ground	Cyanide-Weak Acid Dissociable	ASTM 2036-09C	2	\$40.00	\$80.00
Water - Ground	Oil & Grease -not rcd.	EPA 1664 (A)	2	\$65.00	\$130.00
Shipping	Cooler Shipment - UPS RB	UPS	2	\$30.00	\$60.00

\$632.00

^{**}Samples should be shipped or hand delivered the same day they are collected. Orders that require sub-lab analysis should be delivered to the lab Monday thru Wednesday only.**

TASK NO: 240918003

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240918003

Client PO:

Client Project: DRMS

Date Received: 9/18/24 Date Reported: 10/1/24

Matrix: Water

Customer Sample ID UG-2

Sample Date/Time: 9/17/24 12:00 PM

Lab Number: 240918003-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
							,
Total Alkalinity	51.3 mg/L as CaCO3	SM 2320-B	4.0	1	9/18/24	QC76327	TAB
Bicarbonate	51.3 mg/L as CaCO3	SM 2320-B	0.2	0.2	9/18/24	-	TAB
Carbonate	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	9/18/24	-	TAB
Hydroxide	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	9/18/24	-	TAB
Chloride	ND mg/L	EPA 300.0	1.00	0.007	9/19/24	QC76297	NRP
Cyanide-Total	ND mg/L	EPA 335.4	0.005	0.0005	9/24/24	QC76412	KRB
Fluoride	0.23 mg/L	EPA 300.0	0.10	0.024	9/19/24	QC76298	NRP
Nitrate Nitrogen	0.23 mg/L	EPA 300.0	0.05	0.02	9/19/24	QC76294	NRP
Nitrate/ Nitrite Nitrogen	0.23 mg/L	Calculation	0.05	0.02	9/19/24	-	NRP
Nitrite Nitrogen	ND mg/L	EPA 300.0	0.03	0.01	9/19/24	QC76295	NRP
рН	7.19 units	SM 4500-H-B	0.01	0.01	9/18/24	-	KRB
Specific Conductance	311 umhos/cm @ 25c	EPA 120.1	5	5	9/18/24	-	KRB
Sulfate	95.5 mg/L	EPA 300.0	1.00	0.012	9/19/24	QC76299	NRP
Total Dissolved Solids	187 mg/L	SM 2540-C	5	2	9/19/24	QC76311	ISG
Phosphorus - Total	ND mg/L	EPA 365.1	0.05	0.006	9/19/24	QC76308	TAB
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	9/19/24	QC76290	ISG
<u>Dissolved</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	9/19/24	QC76315	JJA
Aluminum	0.008 mg/L	EPA 200.8	0.001	0.00003	9/23/24	QC76340	JJA
Antimony	ND mg/L	EPA 200.8	0.0012	0.00012	9/23/24	QC76340	JJA
Arsenic	0.0031 mg/L	EPA 200.8	0.0006	0.00006	9/23/24	QC76340	JJA
Barium	0.0324 mg/L	EPA 200.8	0.0007	0.00007	9/23/24	QC76340	JJA
Beryllium	ND mg/L	EPA 200.8	0.0001	0.000008	9/23/24	QC76340	JJA
Cadmium	0.0017 mg/L	EPA 200.8	0.0001	0.000006	9/23/24	QC76340	JJA
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	9/23/24	QC76340	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit

mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240918003

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

OTILL

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240918003

Client PO:

Client Project: DRMS

Date Received: 9/18/24 Date Reported: 10/1/24

Matrix: Water

Customer Sample ID UG-2

Sample Date/Time: 9/17/24 12:00 PM

Lab Number: 240918003-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
<u>Dissolved</u>							
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	9/23/24	QC76340	JJA
Lead	ND mg/L	EPA 200.8	0.0001	0.000006	9/23/24	QC76340	JJA
Manganese	1.90 mg/L	EPA 200.8	0.0008	0.00001	9/23/24	QC76340	JJA
Molybdenum	0.0021 mg/L	EPA 200.8	0.0005	0.00005	9/23/24	QC76340	JJA
Nickel	ND mg/L	EPA 200.8	0.0009	0.00005	9/23/24	QC76340	JJA
Selenium	ND mg/L	EPA 200.8	0.0008	0.00008	9/23/24	QC76340	JJA
Silica (as Si)	3.19 mg/L	EPA 200.8	0.30	0.03	9/23/24	QC76340	JJA
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	9/23/24	QC76340	JJA
Thallium	ND mg/L	EPA 200.8	0.0002	0.000003	9/23/24	QC76340	JJA
Uranium	0.0003 mg/L	EPA 200.8	0.0002	0.000002	9/23/24	QC76340	JJA
Vanadium	ND mg/L	EPA 200.8	0.001	0.0001	9/23/24	QC76340	JJA
Zinc	0.500 mg/L	EPA 200.8	0.001	0.00003	9/23/24	QC76340	JJA
Boron	ND mg/L	EPA 200.7	0.05	0.01	9/23/24	QC76367	JJA
Calcium	51.2 mg/L	EPA 200.7	0.1	0.01	9/23/24	QC76367	JJA
Iron	ND mg/L	EPA 200.7	0.005	0.0005	9/23/24	QC76367	JJA
Magnesium	2.30 mg/L	EPA 200.7	0.02	0.002	9/23/24	QC76367	JJA
Potassium	0.4 mg/L	EPA 200.7	0.1	0.01	9/23/24	QC76367	JJA
Sodium	6.3 mg/L	EPA 200.7	0.1	0.01	9/23/24	QC76367	JJA
<u>Total</u>							
Total Hardness	141.8 mg/L as CaCO3	SM 2340-B	0.1	0.01	9/23/24	-	JJA
Calcium	52.8 mg/L	EPA 200.7	0.1	0.01	9/23/24	QC76367	JJA
Magnesium	2.40 mg/L	EPA 200.7	0.02	0.002	9/23/24	QC76367	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240918003

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240918003

Client PO:

Client Project: DRMS

Date Received: 9/18/24 Date Reported: 10/1/24

Matrix: Water

Customer Sample ID UG-8

Sample Date/Time: 9/17/24 8:55 AM

Lab Number: 240918003-02

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Total Alkalinity	64.5 mg/L as CaCO3	SM 2320-B	4.0	1	9/18/24	QC76327	TAB
Bicarbonate	64.5 mg/L as CaCO3	SM 2320-B	0.2	0.2	9/18/24	=	TAB
Carbonate	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	9/18/24	=	TAB
Hydroxide	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	9/18/24	=	TAB
Chloride	ND mg/L	EPA 300.0	1.00	0.007	9/18/24	QC76297	NRP
Cyanide-Total	ND mg/L	EPA 335.4	0.005	0.0005	9/24/24	QC76412	KRB
Fluoride	0.27 mg/L	EPA 300.0	0.10	0.024	9/18/24	QC76298	NRP
Nitrate Nitrogen	0.37 mg/L	EPA 300.0	0.05	0.02	9/18/24	QC76294	NRP
Nitrate/ Nitrite Nitrogen	0.37 mg/L	Calculation	0.05	0.02	9/19/24	-	NRP
Nitrite Nitrogen	ND mg/L	EPA 300.0	0.03	0.01	9/18/24	QC76295	NRP
рН	7.63 units	SM 4500-H-B	0.01	0.01	9/18/24	-	KRB
Specific Conductance	335 umhos/cm @ 25c	EPA 120.1	5	5	9/18/24	-	KRB
Sulfate	92.1 mg/L	EPA 300.0	1.00	0.012	9/18/24	QC76299	NRP
Total Dissolved Solids	210 mg/L	SM 2540-C	5	2	9/19/24	QC76311	ISG
Phosphorus - Total	ND mg/L	EPA 365.1	0.05	0.006	9/19/24	QC76308	TAB
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	9/19/24	QC76290	ISG
<u>Dissolved</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	9/19/24	QC76315	JJA
Aluminum	0.005 mg/L	EPA 200.8	0.001	0.00003	9/23/24	QC76340	JJA
Antimony	0.0019 mg/L	EPA 200.8	0.0012	0.00012	9/23/24	QC76340	JJA
Arsenic	0.0090 mg/L EPA 200.		0.0006	0.00006	9/23/24	QC76340	JJA
Barium	0.0342 mg/L EPA 200.8		0.0007	0.00007	9/23/24	QC76340	JJA
Beryllium	ND mg/L EPA 20		0.0001	0.000008	9/23/24	QC76340	JJA
Cadmium	ND mg/L EPA		0.0001	0.000006	9/23/24	QC76340	JJA
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	9/23/24	QC76340	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit

mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240918003

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240918003

Client PO:

Client Project: DRMS

Date Received: 9/18/24 Date Reported: 10/1/24

Matrix: Water

Customer Sample ID UG-8

Sample Date/Time: 9/17/24 8:55 AM Lab Number: 240918003-02

Test Result / Units Method RL MDL Date Analyzed QC Batch ID **Analyzed By Dissolved** EPA 200.8 0.0008 0.00001 9/23/24 QC76340 JJA Copper ND mg/L Lead 0.0003 mg/L EPA 200.8 0.0001 0.000006 9/23/24 QC76340 JJA 0.0106 mg/L EPA 200.8 0.0008 0.00001 9/23/24 QC76340 JJA Manganese Molybdenum 0.0048 mg/L EPA 200.8 0.0005 0.00005 9/23/24 QC76340 JJA Nickel ND mg/L EPA 200.8 0.0009 0.00005 9/23/24 QC76340 JJA Selenium ND mg/L EPA 200.8 0.0008 0.00008 9/23/24 QC76340 JJA Silica (as Si) 3.18 mg/L EPA 200.8 0.30 9/23/24 0.03 QC76340 JJA Silver ND mg/L EPA 200.8 0.0005 0.000003 9/23/24 QC76340 JJA **Thallium** ND mg/L EPA 200.8 0.0002 0.000003 9/23/24 QC76340 JJA Uranium 0.0007 mg/L EPA 200.8 0.0002 0.000002 9/23/24 QC76340 JJA Vanadium ND mg/L EPA 200.8 0.001 0.0001 9/23/24 QC76340 JJA Zinc 0.036 mg/L EPA 200.8 0.001 0.00003 9/23/24 QC76340 JJA ND mg/L EPA 200.7 0.05 9/23/24 QC76367 JJA **Boron** 0.01 Calcium 58.8 mg/L EPA 200.7 0.1 0.01 9/23/24 QC76367 JJA ND mg/L 0.005 9/23/24 Iron EPA 200.7 0.0005 QC76367 JJA Magnesium 3.28 mg/L EPA 200.7 0.02 0.002 9/23/24 QC76367 JJA Potassium 0.5 mg/L EPA 200.7 0.1 0.01 9/23/24 QC76367 JJA Sodium 9/23/24 9.1 mg/L EPA 200.7 0.1 0.01 QC76367 JJA **Total Total Hardness** 162.1 mg/L as CaCO3 SM 2340-B 0.1 0.01 9/23/24 JJA Calcium 59.4 mg/L EPA 200.7 0.1 0.01 9/23/24 QC76367 JJA Magnesium 3.32 mg/L EPA 200.7 0.02 0.002 9/23/24 QC76367 JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240918003

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240918003

Client PO:

Client Project: DRMS

Date Received: 9/18/24 Date Reported: 10/1/24

Matrix: Water

Customer Sample ID GW-3R

Sample Date/Time: 9/17/24 12:55 PM

Lab Number: 240918003-03

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Total Alkalinity	29.6 mg/L as CaCO3	SM 2320-B	4.0	1	9/18/24	QC76327	TAB
Bicarbonate	29.6 mg/L as CaCO3	SM 2320-B	0.2	0.2	9/18/24	-	TAB
Carbonate	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	9/18/24	-	TAB
Hydroxide	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	9/18/24	-	TAB
Chloride	ND mg/L	EPA 300.0	1.00	0.007	9/18/24	QC76297	NRP
Cyanide-Total	ND mg/L	EPA 335.4	0.005	0.0005	9/24/24	QC76412	KRB
Fluoride	0.22 mg/L	EPA 300.0	0.10	0.024	9/18/24	QC76298	NRP
Nitrate Nitrogen	0.28 mg/L	EPA 300.0	0.05	0.02	9/18/24	QC76294	NRP
Nitrate/ Nitrite Nitrogen	0.28 mg/L	Calculation	0.05	0.02	9/19/24	-	NRP
Nitrite Nitrogen	ND mg/L	EPA 300.0	0.03	0.01	9/18/24	QC76295	NRP
рН	6.53 units	SM 4500-H-B	0.01	0.01	9/18/24	-	KRB
Specific Conductance	221 umhos/cm @ 25c	EPA 120.1	5	5	9/18/24	-	KRB
Sulfate	68.5 mg/L	EPA 300.0	1.00	0.012	9/18/24	QC76299	NRP
Total Dissolved Solids	135 mg/L	SM 2540-C	5	2	9/19/24	QC76311	ISG
Phosphorus - Total	ND mg/L	EPA 365.1	0.05	0.006	9/19/24	QC76308	TAB
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	9/19/24	QC76290	ISG
<u>Dissolved</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	9/19/24	QC76315	JJA
Aluminum	0.002 mg/L	EPA 200.8	0.001	0.00003	9/23/24	QC76340	JJA
Antimony	ND mg/L	EPA 200.8	0.0012	0.00012	9/23/24	QC76340	JJA
Arsenic	ND mg/L	EPA 200.8	0.0006	0.00006	9/23/24	QC76340	JJA
Barium	0.0364 mg/L	EPA 200.8	0.0007	0.00007	9/23/24	QC76340	JJA
Beryllium	ND mg/L	EPA 200.8	0.0001	0.000008	9/23/24	QC76340	JJA
Cadmium	0.0003 mg/L	EPA 200.8	0.0001	0.000006	9/23/24	QC76340	JJA
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	9/23/24	QC76340	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit

mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240918003

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240918003

Client PO:

Client Project: DRMS

Date Received: 9/18/24

Date Reported: 10/1/24

Matrix: Water

Customer Sample ID GW-3R

Sample Date/Time: 9/17/24 12:55 PM

Lab Number: 240918003-03

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
<u>Dissolved</u>							
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	9/23/24	QC76340	JJA
Lead	ND mg/L	EPA 200.8	0.0001	0.000006	9/23/24	QC76340	JJA
Manganese	ND mg/L	EPA 200.8	0.0008	0.00001	9/23/24	QC76340	JJA
Molybdenum	0.0016 mg/L	EPA 200.8	0.0005	0.00005	9/23/24	QC76340	JJA
Nickel	ND mg/L	EPA 200.8	0.0009	0.00005	9/23/24	QC76340	JJA
Selenium	ND mg/L	EPA 200.8	0.0008	0.00008	9/23/24	QC76340	JJA
Silica (as Si)	2.31 mg/L	EPA 200.8	0.30	0.03	9/23/24	QC76340	JJA
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	9/23/24	QC76340	JJA
Thallium	ND mg/L	EPA 200.8	0.0002	0.000003	9/23/24	QC76340	JJA
Uranium	ND mg/L	EPA 200.8	0.0002	0.000002	9/23/24	QC76340	JJA
Vanadium	ND mg/L	EPA 200.8	0.001	0.0001	9/23/24	QC76340	JJA
Zinc	0.150 mg/L	EPA 200.8	0.001	0.00003	9/23/24	QC76340	JJA
Boron	ND mg/L	EPA 200.7	0.05	0.01	9/23/24	QC76367	JJA
Calcium	37.1 mg/L	EPA 200.7	0.1	0.01	9/23/24	QC76367	JJA
Iron	ND mg/L	EPA 200.7	0.005	0.0005	9/23/24	QC76367	JJA
Magnesium	2.14 mg/L	EPA 200.7	0.02	0.002	9/23/24	QC76367	JJA
Potassium	0.4 mg/L	EPA 200.7	0.1	0.01	9/23/24	QC76367	JJA
Sodium	2.7 mg/L	EPA 200.7	0.1	0.01	9/23/24	QC76367	JJA
<u>Total</u>							
Total Hardness	105.7 mg/L as CaCO3	SM 2340-B	0.1	0.01	9/23/24	-	JJA
Calcium	38.7 mg/L	EPA 200.7	0.1	0.01	9/23/24	QC76367	JJA
Magnesium	2.21 mg/L	EPA 200.7	0.02	0.002	9/23/24	QC76367	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240918003

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240918003

Client PO:

Client Project: DRMS

Date Received: 9/18/24 **Date Reported:** 10/1/24

Matrix: Water

Customer Sample ID GW-99

Sample Date/Time: 9/17/24 1:05 PM **Lab Number:** 240918003-04

Lab Number: 240910005-04											
Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By				
Total Alkalinity	29.7 mg/L as CaCO3	SM 2320-B	4.0	1	9/18/24	QC76327	TAB				
Bicarbonate	29.7 mg/L as CaCO3	SM 2320-B	0.2	0.2	9/18/24	-	TAB				
Carbonate	ND mg/L as CaCO3	•		0.2	9/18/24	-	TAB				
Hydroxide	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	9/18/24	-	TAB				
Chloride	ND mg/L	EPA 300.0	1.00	0.007	9/19/24	QC76297	NRP				
Cyanide-Total	ND mg/L	EPA 335.4	0.005	0.0005	9/24/24	QC76412	KRB				
Fluoride	0.23 mg/L	EPA 300.0	0.10	0.024	9/19/24	QC76298	NRP				
Nitrate Nitrogen	0.30 mg/L	EPA 300.0	0.05	0.02	9/19/24	QC76294	NRP				
Nitrate/ Nitrite Nitrogen	0.30 mg/L	Calculation	0.05	0.02	9/19/24	-	NRP				
Nitrite Nitrogen	ND mg/L	EPA 300.0	0.03	0.01	9/19/24	QC76295	NRP				
рН	6.42 units	SM 4500-H-B	0.01	0.01	9/18/24	-	KRB				
Specific Conductance	223 umhos/cm @ 25c	EPA 120.1	5	5	9/18/24	-	KRB				
Sulfate	70.0 mg/L	EPA 300.0	1.00	0.012	9/19/24	QC76299	NRP				
Total Dissolved Solids	132 mg/L	SM 2540-C	5	2	9/19/24	QC76311	ISG				
Phosphorus - Total	ND mg/L	EPA 365.1	0.05	0.006	9/19/24	QC76308	TAB				
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	9/19/24	QC76290	ISG				
<u>Dissolved</u>											
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	9/19/24	QC76315	JJA				
Aluminum	0.002 mg/L	EPA 200.8	0.001	0.00003	9/23/24	QC76340	JJA				
Antimony	ND mg/L	EPA 200.8	0.0012	0.00012	9/23/24	QC76340	JJA				
Arsenic	0.0006 mg/L	EPA 200.8	0.0006	0.00006	9/23/24	QC76340	JJA				
Barium	0.0374 mg/L	EPA 200.8	0.0007	0.00007	9/23/24	QC76340	JJA				
Beryllium	ND mg/L	EPA 200.8	0.0001	0.000008	9/23/24	QC76340	JJA				
Cadmium	0.0003 mg/L	EPA 200.8	0.0001	0.000006	9/23/24	QC76340	JJA				
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	9/23/24	QC76340	JJA				

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM

ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240918003

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240918003

Client PO:

Client Project: DRMS

Date Received: 9/18/24 Date Reported: 10/1/24

Matrix: Water

Customer Sample ID GW-99

Sample Date/Time: 9/17/24 1:05 PM **Lab Number:** 240918003-04

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Dissolved							
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	9/23/24	QC76340	JJA
Lead	ND mg/L	EPA 200.8	0.0001	0.000006	9/23/24	QC76340	JJA
Manganese	ND mg/L	EPA 200.8	0.0008	0.00001	9/23/24	QC76340	JJA
Molybdenum	0.0018 mg/L	EPA 200.8	0.0005	0.00005	9/23/24	QC76340	JJA
Nickel	ND mg/L	EPA 200.8	0.0009	0.00005	9/23/24	QC76340	JJA
Selenium	ND mg/L	EPA 200.8	0.0008	0.00008	9/23/24	QC76340	JJA
Silica (as Si)	2.31 mg/L	EPA 200.8	0.30	0.03	9/23/24	QC76340	JJA
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	9/23/24	QC76340	JJA
Thallium	ND mg/L	EPA 200.8	0.0002	0.000003	9/23/24	QC76340	JJA
Uranium	ND mg/L	EPA 200.8	0.0002	0.000002	9/23/24	QC76340	JJA
Vanadium	ND mg/L	EPA 200.8	0.001	0.0001	9/23/24	QC76340	JJA
Zinc	0.152 mg/L	EPA 200.8	0.001	0.00003	9/23/24	QC76340	JJA
Boron	ND mg/L	EPA 200.7	0.05	0.01	9/23/24	QC76367	JJA
Calcium	36.9 mg/L	EPA 200.7	0.1	0.01	9/23/24	QC76367	JJA
Iron	ND mg/L	EPA 200.7	0.005	0.0005	9/23/24	QC76367	JJA
Magnesium	2.13 mg/L	EPA 200.7	0.02	0.002	9/23/24	QC76367	JJA
Potassium	0.5 mg/L	EPA 200.7	0.1	0.01	9/23/24	QC76367	JJA
Sodium	2.9 mg/L	EPA 200.7	0.1	0.01	9/23/24	QC76367	JJA
<u>Total</u>							
Total Hardness	104.6 mg/L as CaCO3	3 SM 2340-B	0.1	0.01	9/23/24	-	JJA
Calcium	38.2 mg/L	EPA 200.7	0.1	0.01	9/23/24	QC76367	JJA
Magnesium	2.22 mg/L	EPA 200.7	0.02	0.002	9/23/24	QC76367	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240918003

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240918003

Client PO:

Client Project: DRMS

Date Received: 9/18/24 Date Reported: 10/1/24

Matrix: Water

Customer Sample ID GW-3B

Sample Date/Time: 9/17/24 3:00 PM

Lab Number: 240918003-05

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
1031	Nesult / Ullits	Menion	ILL	MIDL	Date Allalyzeu	QO Datell ID	Allaly26u by
Total Alkalinity	20.9 ma/l as CcCO2	SM 2320-B	4.0	1	9/18/24	QC76327	TAB
Bicarbonate	29.8 mg/L as CaCO3	SM 2320-B		0.2	9/18/24	QC/032/	TAB
	29.8 mg/L as CaCO3		0.2			-	
Carbonate	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	9/18/24	-	TAB
Hydroxide	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	9/18/24	-	TAB
Chloride	ND mg/L	EPA 300.0	1.00	0.007	9/19/24	QC76297	NRP
Cyanide-Total	ND mg/L	EPA 335.4	0.005	0.0005	9/24/24	QC76412	KRB
Fluoride	0.26 mg/L	EPA 300.0	0.10	0.024	9/19/24	QC76298	NRP
Nitrate Nitrogen	0.30 mg/L	EPA 300.0	0.05	0.02	9/19/24	QC76294	NRP
Nitrate/ Nitrite Nitrogen	0.30 mg/L	Calculation	0.05	0.02	9/19/24	-	NRP
Nitrite Nitrogen	ND mg/L EPA 3		0.03	0.01	9/19/24	QC76295	NRP
рН	6.20 units	SM 4500-H-B	0.01	0.01	9/18/24	-	KRB
Specific Conductance	214 umhos/cm @ 25c	EPA 120.1	5	5	9/18/24	-	KRB
Sulfate	66.1 mg/L	EPA 300.0	1.00	0.012	9/19/24	QC76299	NRP
Total Dissolved Solids	137 mg/L	SM 2540-C	5	2	9/19/24	QC76311	ISG
Phosphorus - Total	ND mg/L	EPA 365.1	0.05	0.006	9/19/24	QC76308	TAB
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	9/19/24	QC76290	ISG
<u>Dissolved</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	9/19/24	QC76315	JJA
Aluminum	0.003 mg/L	EPA 200.8	0.001	0.00003	9/23/24	QC76340	JJA
Antimony	ND mg/L	EPA 200.8	0.0012	0.00012	9/23/24	QC76340	JJA
Arsenic	ND mg/L	EPA 200.8	0.0006	0.00006	9/23/24	QC76340	JJA
Barium	0.0527 mg/L EPA 200.8		0.0007	0.00007	9/23/24	QC76340	JJA
Beryllium	ND mg/L EPA 200.		0.0001	0.000008	9/23/24 QC76340		JJA
Cadmium	0.0001 mg/L	EPA 200.8	0.0001	0.000006	9/23/24	QC76340	JJA
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	9/23/24	QC76340	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM

ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240918003

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240918003

Client PO:

Client Project: DRMS

Date Received: 9/18/24 Date Reported: 10/1/24

Matrix: Water

Customer Sample ID GW-3B

Sample Date/Time: 9/17/24 3:00 PM **Lab Number:** 240918003-05

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
<u>Dissolved</u>							
Copper	0.0012 mg/L	EPA 200.8	0.0008	0.00001	9/23/24	QC76340	JJA
Lead	0.0005 mg/L	EPA 200.8	0.0001	0.000006	9/23/24	QC76340	JJA
Manganese	0.0045 mg/L	EPA 200.8	0.0008	0.00001	9/23/24	QC76340	JJA
Molybdenum	0.0008 mg/L	EPA 200.8	0.0005	0.00005	9/23/24	QC76340	JJA
Nickel	ND mg/L	EPA 200.8	0.0009	0.00005	9/23/24	QC76340	JJA
Selenium	ND mg/L	EPA 200.8	0.0008	0.00008	9/23/24	QC76340	JJA
Silica (as Si)	2.60 mg/L	EPA 200.8	0.30	0.03	9/23/24	QC76340	JJA
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	9/23/24	QC76340	JJA
Thallium	ND mg/L	EPA 200.8	0.0002	0.000003	9/23/24	QC76340	JJA
Uranium	ND mg/L	EPA 200.8	0.0002	0.000002	9/23/24	QC76340	JJA
Vanadium	ND mg/L	EPA 200.8	0.001	0.0001	9/23/24	QC76340	JJA
Zinc	0.122 mg/L	EPA 200.8	0.001	0.00003	9/23/24	QC76340	JJA
Boron	ND mg/L	EPA 200.7	0.05	0.01	9/23/24	QC76367	JJA
Calcium	34.7 mg/L	EPA 200.7	0.1	0.01	9/23/24	QC76367	JJA
Iron	ND mg/L	EPA 200.7	0.005	0.0005	9/23/24	QC76367	JJA
Magnesium	2.51 mg/L	EPA 200.7	0.02	0.002	9/23/24	QC76367	JJA
Potassium	0.6 mg/L	EPA 200.7	0.1	0.01	9/23/24	QC76367	JJA
Sodium	2.6 mg/L	EPA 200.7	0.1	0.01	9/23/24	QC76367	JJA
<u>Total</u>							
Total Hardness	102.3 mg/L as CaCO3	SM 2340-B	0.1	0.01	9/23/24	-	JJA
Calcium	36.6 mg/L	EPA 200.7	0.1	0.01	9/23/24	QC76367	JJA
Magnesium	2.66 mg/L	EPA 200.7	0.02	0.002	9/23/24	QC76367	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Analytical QC Summary

TASK NO: 240918003

Receive Date: 9/18/24 Report To: CJ Dickerson Company: Thorin Resources, LLC **Project Name: DRMS**

Test	QC Batch ID	QC Type	Result		Method	Prep Date
Total Alkalinity	QC76327	Blank	ND	•	SM 2320-B	9/18/24
Chloride	QC76297	Blank	ND		EPA 300.0	9/18/24
Cyanide-Total	QC76412	Blank	ND		EPA 335.4	9/24/24
Fluoride	QC76298	Blank	ND		EPA 300.0	9/18/24
Mercury	QC76315	Method Blank	ND		EPA 245.7	9/19/24
Aluminum	QC76340	Method Blank	ND		EPA 200.8	9/18/24
Antimony	QC76340	Method Blank	ND		EPA 200.8	9/18/24
Arsenic	QC76340	Method Blank	ND		EPA 200.8	9/18/24
Barium	QC76340	Method Blank	ND		EPA 200.8	9/18/24
Beryllium	QC76340	Method Blank	ND		EPA 200.8	9/18/24
Cadmium	QC76340	Method Blank	ND		EPA 200.8	9/18/24
Chromium	QC76340	Method Blank	ND		EPA 200.8	9/18/24
Copper	QC76340	Method Blank	ND		EPA 200.8	9/18/24
Lead	QC76340	Method Blank	ND		EPA 200.8	9/18/24
Manganese	QC76340	Method Blank	ND		EPA 200.8	9/18/24
Molybdenum	QC76340	Method Blank	ND		EPA 200.8	9/18/24
Nickel	QC76340	Method Blank	ND		EPA 200.8	9/18/24
Selenium	QC76340	Method Blank	ND		EPA 200.8	9/18/24
Silica (as Si)	QC76340	Method Blank	ND		EPA 200.8	9/18/24
Silver	QC76340	Method Blank	ND		EPA 200.8	9/18/24
Thallium	QC76340	Method Blank	ND		EPA 200.8	9/18/24
Uranium	QC76340	Method Blank	ND		EPA 200.8	9/18/24
Vanadium	QC76340	Method Blank	ND		EPA 200.8	9/18/24
Zinc	QC76340	Method Blank	ND		EPA 200.8	9/18/24
Boron	QC76367	Method Blank	ND		EPA 200.7	9/18/24
Calcium	QC76367	Method Blank	ND		EPA 200.7	9/18/24
ron	QC76367	Method Blank	ND		EPA 200.7	9/18/24
Magnesium	QC76367	Method Blank	ND		EPA 200.7	9/18/24
Potassium	QC76367	Method Blank	ND		EPA 200.7	9/18/24
Sodium	QC76367				EPA 200.7	9/18/24
Nitrate Nitrogen	QC76294	Blank	ND		EPA 300.0	9/18/24
Nitrite Nitrogen	QC76295	Blank	ND		EPA 300.0	9/18/24
Sulfate	QC76299	Blank	ND		EPA 300.0	9/18/24
Total Dissolved Solids	QC76311 Blank ND				SM 2540-C	9/19/24
Phosphorus - Total	QC76308	Blank	ND		EPA 365.1	9/18/24
Total Suspended Solids	QC76290	Blank	ND		SM 2540-D	9/19/24
Test		C Type	Limits	% Rec	RPD	Method
Total Alkalinity	QC76327 Du	plicate -240916003-01	0 - 20	-	5.8	SM 2320-B
	LC	S	90 - 110	93.4	-	

Abbreviations/ References:

Chloride

RL = Reporting Limit = Minimum Level

MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

103.3

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

2.8

ND = Not Detected at Reporting Limit.

90 - 110

0 - 20

LCS-2

Duplicate -240918003-02

QC76297

EPA 300.0

Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
	I	LCS	90 - 110	101.4	-	
	I	MS -240918003-02	75 - 125	98.8	-	
Cyanide-Total	QC76412 I	Duplicate -240917123-01	0 - 20	-	16.7	EPA 335.4
	1	LCS	90 - 110	91.1	-	
	1	MS -240918003-02C	75 - 125	90.5	-	
Fluoride	QC76298 I	Duplicate -240918003-02	0 - 20	-	5.9	EPA 300.0
	ļ	LCS	90 - 110	95.0	-	
	1	MS -240918003-02	75 - 125	89.9	-	
Mercury	QC76315	Duplicate -240913036-01	0 - 20	-	0.0	EPA 245.7
	I	LCS	90 - 110	106.8	-	
	1	MS -240913036-01F	80 - 120	100.0	-	
Aluminum	QC76340 I	LCS	90 - 110	101.0	-	EPA 200.8
	1	MS -240918002-01	70 - 130	95.4	-	
	I	MSD -240918002-01	0 - 10	-	0.5	
Antimony	QC76340 I	LCS	90 - 110	100.2	-	EPA 200.8
·	ı	MS -240918002-01	70 - 130	106.4	-	
	ı	MSD -240918002-01	0 - 10	_	1.2	
Arsenic	QC76340 I	LCS	90 - 110	100.3	=	EPA 200.8
	ı	MS -240918002-01	70 - 130	109.1	-	
	ı	MSD -240918002-01	0 - 10	-	3.0	
Barium	QC76340 I	LCS	90 - 110	101.3	-	EPA 200.8
		MS -240918002-01	70 - 130	108.4	-	
	1	MSD -240918002-01	0 - 10	-	1.6	
 Beryllium		LCS	90 - 110	101.3	-	EPA 200.8
Dorymani		MS -240918002-01	70 - 130	109.3	-	2177200.0
		MSD -240918002-01	0 - 10	-	3.7	
 Cadmium		LCS	90 - 110	96.8	-	EPA 200.8
Cadmium		MS -240918002-01	70 - 130	105.7	_	E1 A 200.0
		MSD -240918002-01	0 - 10	-	1.8	
 Chromium		LCS	90 - 110	108.5	-	EPA 200.8
Cilioilliaili		MS -240918002-01	70 - 130	114.3	_	LI A 200.0
		MSD -240918002-01	0 - 10	-	0.8	
Connor		LCS	90 - 110	108.2	0.0	EPA 200.8
Copper		MS -240918002-01	70 - 130	103.1	-	LFA 200.0
		MSD -240918002-01	0 - 10	103.1	2.4	
Lood		LCS	90 - 110	100.0	2.4	EPA 200.8
Lead		MS -240918002-01	70 - 110	100.9	-	EPA 200.6
		MSD -240918002-01	70 - 130 0 - 10	106.3 -	- 1.8	
Managanaga						EDA 200 0
Manganese		LCS	90 - 110	105.8	-	EPA 200.8
		MS -240918002-01	70 - 130	108.2	0.7	
Malakata a		MSD -240918002-01	0 - 10	-	0.7	EDA 000 0
Molybdenum		LCS	90 - 110	99.4	-	EPA 200.8
		MS -240918002-01	70 - 130	109.4	-	
NP-11		MSD -240918002-01	0 - 10	-	1.1	ED 4 000 0
Nickel		LCS	90 - 110	104.9	-	EPA 200.8
		MS -240918002-01	70 - 130	105.8	-	
		MSD -240918002-01	0 - 10	-	1.5	
Selenium		LCS	90 - 110	98.1	-	EPA 200.8
		MS -240918002-01	70 - 130	109.3	-	
_		MSD -240918002-01	0 - 10	-	1.1	
Silica (as Si)	QC76340 I	LCS	90 - 110	106.4	-	EPA 200.8

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
		MS -240918002-01	70 - 130	86.0	-	
		MSD -240918002-01	0 - 10	-	2.2	
Silver	QC76340	LCS	90 - 110	102.4	-	EPA 200.8
		MS -240918002-01	70 - 130	101.2	-	
		MSD -240918002-01	0 - 10	-	2.0	
Thallium	QC76340	LCS	90 - 110	102.7	-	EPA 200.8
		MS -240918002-01	70 - 130	107.7	-	
		MSD -240918002-01	0 - 10	-	2.4	
Uranium	QC76340	LCS	90 - 110	98.2	-	EPA 200.8
		MS -240918002-01	70 - 130	105.7	-	
		MSD -240918002-01	0 - 10	-	1.2	
√anadium	QC76340	LCS	90 - 110	101.8	-	EPA 200.8
		MS -240918002-01	70 - 130	111.5	-	
		MSD -240918002-01	0 - 10	-	0.5	
Zinc	QC76340	LCS	90 - 110	103.5	-	EPA 200.8
		MS -240918002-01	70 - 130	88.7	-	
		MSD -240918002-01	0 - 10	-	3.3	
Boron	QC76367	Duplicate -240918023-01	0 - 20	_	14.0	EPA 200.7
		LCS	90 - 110	106.2	-	
		MS -240918003-03	75 - 125	108.6	_	
Calcium	QC76367	Duplicate -240918023-01	0 - 20	-	1.9	EPA 200.7
	40.000.	LCS	90 - 110	98.9	-	2.7.200
		MS -240918003-03	75 - 125	93.1	-	
ron	QC76367	Duplicate -240918023-01	0 - 20	-	11.0	EPA 200.7
UII	Q070007	LCS	90 - 110	108.8	-	217(200.1
		MS -240918003-03	75 - 125	109.0	_	
Magnesium	QC76367	Duplicate -240918023-01	0 - 20	-	1.1	EPA 200.7
wagnesiam	Q070307	LCS	90 - 110	105.6		LI A 200.1
		MS -240918003-03	75 - 125	112.4	_	
Potassium	QC76367	Duplicate -240918023-01	0 - 20	-	8.8	EPA 200.7
Otassium	QC70307	LCS	90 - 110	99.2	0.0	LFA 200.7
		MS -240918003-03	75 - 125	121.3	-	
Sodium	QC76367	Duplicate -240918023-01	0 - 20	-	3.3	EPA 200.7
odium	QC70307	LCS	90 - 110	95.6	3.3	LFA 200.7
		MS -240918003-03	75 - 125	115.4	-	
litrata Nitragan	QC76294			113.4	- 11	EPA 300.0
litrate Nitrogen	QC76294	Duplicate -240917065-02 LCS	0 - 20 90 - 110	97.4	1.1	EPA 300.0
		MS -240917065-02	75 - 125		-	
Nitrite Nitrogen	QC76295			93.5	- 0.0	EDA 200.0
Nitrite Nitrogen	QC76295	Duplicate -240917065-02	0 - 20	-	0.0	EPA 300.0
		LCS	90 - 110	98.1	-	
D. 16-4-	0070000	MS -240917065-02	75 - 125	94.9	-	EDA 000 0
Sulfate	QC76299	Duplicate -240918003-02	0 - 20	-	0.5	EPA 300.0
		LCS	90 - 110	99.8	-	
	22-22:	MS -240918003-02	75 - 125	104.0	-	01/ 07/07
Total Dissolved Solids	QC76311	Duplicate -240918117-07	0 - 10	-	3.2	SM 2540-C
		LCS	85 - 115	104.7	<u>-</u>	
Phosphorus - Total	QC76308	Duplicate -240917065-01	0 - 20	-	5.7	EPA 365.1
		LCS	90 - 110	99.5	-	
		MS -240917058-05	75 - 125	92.5	-	
Total Suspended Solids	QC76290	Duplicate -240918046-01	0 - 10	-	7.3	SM 2540-D
		LCS	90 - 110	98.3	-	

Abbreviations/ References:

 $RL = Reporting\ Limit = Minimum\ Level$ RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

All analyses were performed in accordance with approved methods under the latest revision to 40 CFR Part 136 unless otherwise identified. Based on my inquiry of the person or persons directly responsible for analyzing the wastewater samples and generating the report (s), the analyses, report, and information submitted are, to the best of my knowledge and belief, true, accurate, and complete.

DATA APPROVED FOR RELEASE BY

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Chain of Custody Form

Report To Information	Bill To Information (If different from report to)	Project Name / Number
Company Name: Thorin Resources	Company Name:	
Contact Name: CJ Dickeson	Contact Name:	
Address: 1900 Man St Unit L	Address:	Task Number (Lab Use Only)
City Owny State Co Zip &1427	City State Zip	CAL Task
Phone: (602) 793-1321	Phone:	240918003
Email: cidickerson e thorn resources con	Email:	
Sample Collector:		JAK
Sample Collector Phone:	PO No.:	i i

Commerce City Lab 10411 Heinz Way Commerce City CO 80640

<u>Lakewood Service Center</u> 610 Garrison Street, Unit E Lakewood CO 80215

Phone: 303-659-2313

www.coloradolab.com

													Test	s Req	uestec	l ·				
	/	Sa	ample Matrix	(Select One On	ly)			<u> </u>	v											\neg
(CWA / Includes w			/SW-	No. of Containers Grab or (Check One Only) Composite		16010120														
Date	Time Sample ID					ž	င်း ဗင်	080												
2/19				at 3			R	-		•										
9/17	92:00/8	3:25	l	16-2			5		1											
9/17						5		*												
9/17	12:55						5		*											
9/17	13:05			J-W-99			5		X											
9/17	15:00			GW -3B			5		x											
																				
	*	Tim	e of col	lection on	two /21	(S)														
		bottle	S is 12:00	lection on s. Logged	aa 12:00 J															
for latest time of collection.																				
						C/S Info:						5	Seals Pre	sent Yes	□ No [7
						Deliver Via:		VPS	;	C/:	Charge [Cemp.	°C/Id		Sample	Pres. Ye	es M	4o □	
	Relinquished By: Date/Time: Received By: Date/Time:				Re	linqui	shed By:		Dat	e/Time:		Recei	ved By:	: T			/Time			
					Page 15 o	f 17							TAL	ta	MA	19,	1/8	124	1	

LABORATORIES, INC.

Quotation for Analytical Services

Quote ID: QBO24010976

Turn Around Time: 10 Working Days

Quote Date: Wednesday, January 31, 2024

Prepared For:

Thorin Resources, LLC

1900 Main St

Unit 1

Ouray, CO 81427

Attn: CJ Dickerson

Project: **DRMS**

			•		
Matrix	Description	Method	Qty.	Price - eac	h — Total
Water - Ground	Alkalinity - B-C	N/A	12	\$16.00	\$192.00
Water - Ground	Alkalinity	SM 2320-B	12	Incl.	incl.
Water - Ground	Carb/ Bicarb	SM 2320-B	12	Incl.	Incl.
Water - Ground	Hardness - Total	SM 2340-B	12	\$0.00	\$0.00
Water - Ground	Nitrate/ Nitrite Nitrogen	Calculation	12	\$0.00	\$0.00
Water - Ground	B - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Ca - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Ca - Total	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Fe - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	K - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Mg - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Mg - Total	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Na - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Ph	SM 4500-H-B	12	\$13.00	\$156.00
Water - Ground	Specific Conductance	EPA 120.1	12	\$14.00	\$168.00
Water - Ground	Ag - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Al - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	As - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Ba - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Be - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Cd - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Cr - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Cu - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Mn - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Mo - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Ni - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Pb - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Sb - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Se - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Si - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	TDS	SM 2540-C	12	\$16.00	\$192.00

Page 1 of 4

10411 Heinz Way / Commerce City, CO 80640 / 303-659-2313 Mailing Address: P.O. Box 507 / Brighton, CO 80601-0507

CAL Task 240918003

JAK

Quotation for Analytical Services

Quote ID: QBO24010976

1	λ	۳,	~	5	A .	T ~	m	50	INC
1	44	M	()	3~	<i>(</i> 4)	1()	-	- Jan	TIME:

	ma, , , , , , , , , , , , , , , , , , ,				
Water - Ground	TI - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	TSS	SM 2540-D	12	\$16.00	\$192.00
Water - Ground	V - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Zn - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Chloride	EPA 300.0	12	\$18.00	\$216.00
Water - Ground	Fluoride	EPA 300.0	12	\$18.00	\$216.00
Water - Ground	Nitrate Nitrogen	EPA 300.0	12	\$18.00	\$216.00
Water - Ground	Nitrite Nitrogen	EPA 300.0	12	\$18.00	\$216.00
Water - Ground	Sulfate	EPA 300.0	12	\$18.00	\$216.00
Water - Ground	U - Dis	EPA 200.8	12	\$23.00	\$276.00
Water - Ground	Total Phosphorus	EPA 365.1	12	\$26.00	\$312.00
Water - Ground	Hg - D:158010ed	EPA 245.7	12	\$27.00	\$324.00
Water - Ground	Cyanide-Total	EPA 335.4	12	\$40.00	\$480.00

\$8,076.00

Colorado Analytical Laboratory maintains certification by the Colorado Department of Health (CDPHE) and EPA Region 8 for Wyoming and Tribal Public Water Systems to analyze drinking water for organic contaminants (SOC's VOC's), inorganic contaminants (metals), nitrate nitrite, cyanide, fluoride and coliform bacteria.

Sub-Lab analysis pricing subject to change. Sub-Lab radiological analysis turn-around time is 4 to 8 weeks depending on sample matrix. Due to time, distance and other constraints outside of the control of CAL shipments to sub labs are not guaranteed. All shipment charges will be billed to the client regardless of shipment outcome.

Billing terms are Net 30 on approved accounts; all other accounts are COD. Additional charges may apply for accelerated turn around.

We appreciate the opportunity to be of service to you. If you have questions please call us at 303-659-2313 or visit us at www.coloradolab.com

^{**}Samples should be shipped or hand delivered the same day they are collected. Orders that require sub-lab analysis should be delivered to the lab Monday thru Wednesday only.**

TASK NO: 240919021

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240919021

Client PO:

Client Project: DRMS

Date Received: 9/19/24

Date Reported: 9/27/24

Matrix: Water

Customer Sample ID UG-5

Sample Date/Time: 9/18/24 7:40 AM **Lab Number:** 240919021-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
					•		
Total Alkalinity	52.2 mg/L as CaCO3	SM 2320-B	4.0	1	9/23/24	QC76416	KJP
Bicarbonate	52.2 mg/L as CaCO3	SM 2320-B	0.2	0.2	9/23/24	-	KJP
Carbonate	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	9/23/24	-	KJP
Hydroxide	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	9/23/24	-	KJP
Chloride	0.33 mg/L	EPA 300.0	0.10	0.007	9/19/24	QC76353	NRP
Cyanide-Total	ND mg/L	EPA 335.4	0.005	0.0005	9/24/24	QC76412	KRB
Fluoride	0.19 mg/L	EPA 300.0	0.10	0.024	9/19/24	QC76354	NRP
Nitrate Nitrogen	0.25 mg/L	EPA 300.0	0.05	0.02	9/19/24	QC76355	NRP
Nitrate/ Nitrite Nitrogen	0.25 mg/L	Calculation	0.05	0.02	9/23/24	-	NRP
Nitrite Nitrogen	ND mg/L	EPA 300.0	0.03	0.01	9/19/24	QC76356	NRP
рН	7.31 units	SM 4500-H-B	0.01	0.01	9/19/24	-	ARH
Specific Conductance	303 umhos/cm @ 25c	EPA 120.1	5	5	9/19/24	-	ARH
Sulfate	90.6 mg/L	EPA 300.0	0.10	0.012	9/19/24	QC76358	NRP
Total Dissolved Solids	203 mg/L	SM 2540-C	5	2	9/24/24	QC76377	ISG
Phosphorus - Total	ND mg/L	EPA 365.1	0.05	0.006	9/24/24	QC76391	TAB
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	9/20/24	QC76317	ARH
<u>Dissolved</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	9/26/24	QC76494	JJA
Aluminum	0.011 mg/L	EPA 200.8	0.001	0.00003	9/24/24	QC76387	AMJ
Antimony	ND mg/L	EPA 200.8	0.0012	0.00012	9/24/24	QC76387	AMJ
Arsenic	0.0024 mg/L	EPA 200.8	0.0006	0.00006	9/24/24	QC76387	AMJ
Barium	0.0293 mg/L	EPA 200.8	0.0007	0.00007	9/24/24	QC76387	AMJ
Beryllium	ND mg/L	EPA 200.8	0.0001	0.000008	9/24/24	QC76387	AMJ
Cadmium	0.0013 mg/L	EPA 200.8	0.0001	0.000006	9/24/24	QC76387	AMJ
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	9/24/24	QC76387	AMJ

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM

ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240919021

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240919021

Client PO:

Client Project: DRMS

Date Received: 9/19/24 Date Reported: 9/27/24

Matrix: Water

Customer Sample ID UG-5

Sample Date/Time: 9/18/24 7:40 AM

Lab Number: 240919021-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
<u>Dissolved</u>							
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	9/24/24	QC76387	AMJ
Lead	0.0002 mg/L	EPA 200.8	0.0001	0.000006	9/24/24	QC76387	AMJ
Manganese	1.47 mg/L	EPA 200.8	0.0008	0.00001	9/24/24	QC76387	AMJ
Molybdenum	0.0035 mg/L	EPA 200.8	0.0005	0.00005	9/24/24	QC76387	AMJ
Nickel	ND mg/L	EPA 200.8	0.0009	0.00005	9/24/24	QC76387	AMJ
Selenium	ND mg/L	EPA 200.8	0.0008	0.00008	9/24/24	QC76387	AMJ
Silica (as Si)	3.81 mg/L	EPA 200.8	0.30	0.03	9/24/24	QC76387	AMJ
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	9/24/24	QC76387	AMJ
Thallium	ND mg/L	EPA 200.8	0.0002	0.000003	9/24/24	QC76387	AMJ
Uranium	0.0003 mg/L	EPA 200.8	0.0002	0.000002	9/24/24	QC76387	AMJ
Vanadium	ND mg/L	EPA 200.8	0.001	0.0001	9/24/24	QC76387	AMJ
Zinc	0.391 mg/L	EPA 200.8	0.001	0.00003	9/24/24	QC76387	AMJ
Boron	ND mg/L	EPA 200.7	0.05	0.01	9/24/24	QC76389	JJA
Calcium	56.6 mg/L	EPA 200.7	0.1	0.01	9/24/24	QC76389	JJA
Iron	ND mg/L	EPA 200.7	0.005	0.0005	9/24/24	QC76389	JJA
Magnesium	2.38 mg/L	EPA 200.7	0.02	0.002	9/24/24	QC76389	JJA
Potassium	0.3 mg/L	EPA 200.7	0.1	0.01	9/24/24	QC76389	JJA
Sodium	5.9 mg/L	EPA 200.7	0.1	0.01	9/24/24	QC76389	JJA
<u>Total</u>							
Total Hardness	145.7 mg/L as CaCO3	SM 2340-B	0.1	0.01	9/24/24	-	JJA
Calcium	53.6 mg/L	EPA 200.7	0.1	0.01	9/24/24	QC76389	JJA
Magnesium	2.86 mg/L	EPA 200.7	0.02	0.002	9/24/24	QC76389	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240919021

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240919021

Client PO:

Client Project: DRMS

Date Received: 9/19/24 Date Reported: 9/27/24

Matrix: Water

Customer Sample ID GW-2A

Sample Date/Time: 9/18/24 8:55 AM **Lab Number:** 240919021-02

	240313021-02						
Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Total Alkalinity	27.2 mg/L as CaCO3	SM 2320-B	4.0	1	9/23/24	QC76416	KJP
Bicarbonate	27.2 mg/L as CaCO3	SM 2320-B	0.2	0.2	9/23/24	-	KJP
Carbonate	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	9/23/24	=	KJP
Hydroxide	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	9/23/24	-	KJP
Chloride	0.15 mg/L	EPA 300.0	0.10	0.007	9/19/24	QC76353	NRP
Cyanide-Total	ND mg/L	EPA 335.4	0.005	0.0005	9/24/24	QC76412	KRB
Fluoride	0.19 mg/L	EPA 300.0	0.10	0.024	9/19/24	QC76354	NRP
Nitrate Nitrogen	0.19 mg/L	EPA 300.0	0.05	0.02	9/19/24	QC76355	NRP
Nitrate/ Nitrite Nitrogen	0.19 mg/L	Calculation	0.05	0.02	9/23/24	-	NRP
Nitrite Nitrogen	ND mg/L	EPA 300.0	0.03	0.01	9/19/24	QC76356	NRP
рН	6.28 units	SM 4500-H-B	0.01	0.01	9/19/24	-	ARH
Specific Conductance	198 umhos/cm @ 25c	EPA 120.1	5	5	9/19/24	-	ARH
Sulfate	61.9 mg/L	EPA 300.0	0.10	0.012	9/19/24	QC76358	NRP
Total Dissolved Solids	138 mg/L	SM 2540-C	5	2	9/24/24	QC76377	ISG
Phosphorus - Total	ND mg/L	EPA 365.1	0.05	0.006	9/24/24	QC76391	TAB
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	9/20/24	QC76317	ARH
Dissolved							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	9/26/24	QC76494	JJA
Aluminum	0.001 mg/L	EPA 200.8	0.001	0.00003	9/24/24	QC76387	AMJ
Antimony	ND mg/L	EPA 200.8	0.0012	0.00012	9/24/24	QC76387	AMJ
Arsenic	ND mg/L	EPA 200.8	0.0006	0.00006	9/24/24	QC76387	AMJ
Barium	0.0513 mg/L	EPA 200.8	0.0007	0.00007	9/24/24	QC76387	AMJ
Beryllium	ND mg/L	EPA 200.8	0.0001	0.000008	9/24/24	QC76387	AMJ
Cadmium	0.0006 mg/L	EPA 200.8	0.0001	0.000006	9/24/24	QC76387	AMJ
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	9/24/24	QC76387	AMJ

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM

ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240919021

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240919021

Client PO:

Client Project: DRMS

Date Received: 9/19/24

Date Reported: 9/27/24

Matrix: Water

Customer Sample ID GW-2A

Sample Date/Time: 9/18/24 8:55 AM **Lab Number:** 240919021-02

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Dissolved							
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	9/24/24	QC76387	AMJ
Lead	0.0001 mg/L	EPA 200.8	0.0001	0.000006	9/24/24	QC76387	AMJ
Manganese	ND mg/L	EPA 200.8	0.0008	0.00001	9/24/24	QC76387	AMJ
Molybdenum	0.0009 mg/L	EPA 200.8	0.0005	0.00005	9/24/24	QC76387	AMJ
Nickel	ND mg/L	EPA 200.8	0.0009	0.00005	9/24/24	QC76387	AMJ
Selenium	ND mg/L	EPA 200.8	0.0008	0.00008	9/24/24	QC76387	AMJ
Silica (as Si)	3.23 mg/L	EPA 200.8	0.30	0.03	9/24/24	QC76387	AMJ
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	9/24/24	QC76387	AMJ
Thallium	ND mg/L	EPA 200.8	0.0002	0.000003	9/24/24	QC76387	AMJ
Uranium	ND mg/L	EPA 200.8	0.0002	0.000002	9/24/24	QC76387	AMJ
Vanadium	ND mg/L	EPA 200.8	0.001	0.0001	9/24/24	QC76387	AMJ
Zinc	0.465 mg/L	EPA 200.8	0.001	0.00003	9/24/24	QC76387	AMJ
Boron	ND mg/L	EPA 200.7	0.05	0.01	9/24/24	QC76389	JJA
Calcium	33.5 mg/L	EPA 200.7	0.1	0.01	9/24/24	QC76389	JJA
Iron	ND mg/L	EPA 200.7	0.005	0.0005	9/24/24	QC76389	JJA
Magnesium	2.62 mg/L	EPA 200.7	0.02	0.002	9/24/24	QC76389	JJA
Potassium	0.6 mg/L	EPA 200.7	0.1	0.01	9/24/24	QC76389	JJA
Sodium	2.4 mg/L	EPA 200.7	0.1	0.01	9/24/24	QC76389	JJA
<u>Total</u>							
Total Hardness	95.9 mg/L as CaCO3	SM 2340-B	0.1	0.01	9/24/24	-	JJA
Calcium	34.1 mg/L	EPA 200.7	0.1	0.01	9/24/24	QC76389	JJA
Magnesium	2.63 mg/L	EPA 200.7	0.02	0.002	9/24/24	QC76389	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240919021

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240919021

Client PO:

Client Project: DRMS

Date Received: 9/19/24

Date Reported: 9/27/24

Matrix: Water

Customer Sample ID GW-2B

Sample Date/Time: 9/18/24 8:15 AM

Lab Number: 240919021-03

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
1000	result / Office	metriod	112	DL	Date Allaryzea	QO DUIGIT ID	Analyzed by
Total Alkalinity	30.4 mg/L as CaCO3	SM 2320-B	4.0	1	9/23/24	QC76416	KJP
Bicarbonate	30.4 mg/L as CaCO3	SM 2320-B	0.2	0.2	9/23/24	-	KJP
Carbonate	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	9/23/24	_	KJP
Hydroxide	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	9/23/24	_	KJP
Chloride	0.14 mg/L	EPA 300.0	0.10	0.007	9/20/24	QC76353	NRP
Cyanide-Total	ND mg/L	EPA 335.4	0.005	0.0005	9/24/24	QC76412	KRB
Fluoride	0.21 mg/L	EPA 300.0	0.10	0.024	9/20/24	QC76354	NRP
Nitrate Nitrogen	0.15 mg/L	EPA 300.0	0.05	0.02	9/20/24	QC76355	NRP
Nitrate/ Nitrite Nitrogen	0.15 mg/L	Calculation	0.05	0.02	9/23/24	-	NRP
Nitrite Nitrogen	ND mg/L	EPA 300.0	0.03	0.01	9/20/24	QC76356	NRP
pH	6.34 units	SM 4500-H-B	0.01	0.01	9/19/24	-	ARH
Specific Conductance	192 umhos/cm @ 25c	EPA 120.1	5	5	9/19/24	-	ARH
Sulfate	56.1 mg/L	EPA 300.0	0.10	0.012	9/20/24	QC76358	NRP
Total Dissolved Solids	131 mg/L	SM 2540-C	5	2	9/24/24	QC76377	ISG
Phosphorus - Total	ND mg/L	EPA 365.1	0.05	0.006	9/24/24	QC76391	TAB
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	9/20/24	QC76317	ARH
<u>Dissolved</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	9/26/24	QC76494	JJA
Aluminum	0.001 mg/L	EPA 200.8	0.001	0.00003	9/24/24	QC76387	AMJ
Antimony	ND mg/L	EPA 200.8	0.0012	0.00012	9/24/24	QC76387	AMJ
Arsenic	ND mg/L	EPA 200.8	0.0006	0.00006	9/24/24	QC76387	AMJ
Barium	0.0578 mg/L	EPA 200.8	0.0007	0.00007	9/24/24	QC76387	AMJ
Beryllium	ND mg/L	EPA 200.8	0.0001	0.000008	9/24/24	QC76387	AMJ
Cadmium	0.0002 mg/L	EPA 200.8	0.0001	0.000006	9/24/24	QC76387	AMJ
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	9/24/24	QC76387	AMJ

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM

ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240919021

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

011111

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240919021

Client PO:

Client Project: DRMS

Date Received: 9/19/24

Date Reported: 9/27/24

Matrix: Water

Customer Sample ID GW-2B

Sample Date/Time: 9/18/24 8:15 AM **Lab Number:** 240919021-03

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Dissolved							
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	9/24/24	QC76387	AMJ
Lead	ND mg/L	EPA 200.8	0.0001	0.000006	9/24/24	QC76387	AMJ
Manganese	ND mg/L	EPA 200.8	0.0008	0.00001	9/24/24	QC76387	AMJ
Molybdenum	0.0009 mg/L	EPA 200.8	0.0005	0.00005	9/24/24	QC76387	AMJ
Nickel	ND mg/L	EPA 200.8	0.0009	0.00005	9/24/24	QC76387	AMJ
Selenium	ND mg/L	EPA 200.8	0.0008	0.00008	9/24/24	QC76387	AMJ
Silica (as Si)	3.30 mg/L	EPA 200.8	0.30	0.03	9/24/24	QC76387	AMJ
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	9/24/24	QC76387	AMJ
Thallium	ND mg/L	EPA 200.8	0.0002	0.000003	9/24/24	QC76387	AMJ
Uranium	ND mg/L	EPA 200.8	0.0002	0.000002	9/24/24	QC76387	AMJ
Vanadium	ND mg/L	EPA 200.8	0.001	0.0001	9/24/24	QC76387	AMJ
Zinc	0.266 mg/L	EPA 200.8	0.001	0.00003	9/24/24	QC76387	AMJ
Boron	ND mg/L	EPA 200.7	0.05	0.01	9/24/24	QC76389	JJA
Calcium	32.9 mg/L	EPA 200.7	0.1	0.01	9/24/24	QC76389	JJA
Iron	ND mg/L	EPA 200.7	0.005	0.0005	9/24/24	QC76389	JJA
Magnesium	2.71 mg/L	EPA 200.7	0.02	0.002	9/24/24	QC76389	JJA
Potassium	0.5 mg/L	EPA 200.7	0.1	0.01	9/24/24	QC76389	JJA
Sodium	2.0 mg/L	EPA 200.7	0.1	0.01	9/24/24	QC76389	JJA
<u>Total</u>							
Total Hardness	93.9 mg/L as CaCO3	SM 2340-B	0.1	0.01	9/24/24	-	JJA
Calcium	33.1 mg/L	EPA 200.7	0.1	0.01	9/24/24	QC76389	JJA
Magnesium	2.75 mg/L	EPA 200.7	0.02	0.002	9/24/24	QC76389	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240919021

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240919021

Client PO:

Client Project: DRMS

Date Received: 9/19/24 Date Reported: 9/27/24

Matrix: Water

Customer Sample ID GW-1B

Sample Date/Time: 9/18/24 10:20 AM

Lab Number: 240919021-04

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
					•		
Total Alkalinity	31.0 mg/L as CaCO3	SM 2320-B	4.0	1	9/23/24	QC76416	KJP
Bicarbonate	31.0 mg/L as CaCO3	SM 2320-B	0.2	0.2	9/23/24	-	KJP
Carbonate	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	9/23/24	-	KJP
Hydroxide	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	9/23/24	-	KJP
Chloride	0.26 mg/L	EPA 300.0	0.10	0.007	9/20/24	QC76353	NRP
Cyanide-Total	ND mg/L	EPA 335.4	0.005	0.0005	9/24/24	QC76412	KRB
Fluoride	0.17 mg/L	EPA 300.0	0.10	0.024	9/20/24	QC76354	NRP
Nitrate Nitrogen	0.07 mg/L	EPA 300.0	0.05	0.02	9/20/24	QC76355	NRP
Nitrate/ Nitrite Nitrogen	0.07 mg/L	Calculation	0.05	0.02	9/23/24	-	NRP
Nitrite Nitrogen	ND mg/L	EPA 300.0	0.03	0.01	9/20/24	QC76356	NRP
рН	6.69 units	SM 4500-H-B	0.01	0.01	9/19/24	-	ARH
Specific Conductance	188 umhos/cm @ 25c	EPA 120.1	5	5	9/19/24	-	ARH
Sulfate	54.1 mg/L	EPA 300.0	0.10	0.012	9/20/24	QC76358	NRP
Total Dissolved Solids	119 mg/L	SM 2540-C	5	2	9/24/24	QC76377	ISG
Phosphorus - Total	ND mg/L	EPA 365.1	0.05	0.006	9/24/24	QC76391	TAB
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	9/20/24	QC76317	ARH
<u>Dissolved</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	9/26/24	QC76494	JJA
Aluminum	ND mg/L	EPA 200.8	0.001	0.00003	9/24/24	QC76387	AMJ
Antimony	ND mg/L	EPA 200.8	0.0012	0.00012	9/24/24	QC76387	AMJ
Arsenic	ND mg/L	EPA 200.8	0.0006	0.00006	9/24/24	QC76387	AMJ
Barium	0.0494 mg/L	EPA 200.8	0.0007	0.00007	9/24/24	QC76387	AMJ
Beryllium	ND mg/L	EPA 200.8	0.0001	0.000008	9/24/24	QC76387	AMJ
Cadmium	0.0001 mg/L	EPA 200.8	0.0001	0.000006	9/24/24	QC76387	AMJ
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	9/24/24	QC76387	AMJ

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit

mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240919021

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240919021

Client PO:

Client Project: DRMS

Date Received: 9/19/24 Date Reported: 9/27/24

Matrix: Water

Customer Sample ID GW-1B

Sample Date/Time: 9/18/24 10:20 AM

Lab Number: 240919021-04

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
<u>Dissolved</u>							
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	9/24/24	QC76387	AMJ
Lead	0.0001 mg/L	EPA 200.8	0.0001	0.000006	9/24/24	QC76387	AMJ
Manganese	ND mg/L	EPA 200.8	0.0008	0.00001	9/24/24	QC76387	AMJ
Molybdenum	0.0012 mg/L	EPA 200.8	0.0005	0.00005	9/24/24	QC76387	AMJ
Nickel	ND mg/L	EPA 200.8	0.0009	0.00005	9/24/24	QC76387	AMJ
Selenium	ND mg/L	EPA 200.8	0.0008	0.00008	9/24/24	QC76387	AMJ
Silica (as Si)	2.40 mg/L	EPA 200.8	0.30	0.03	9/24/24	QC76387	AMJ
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	9/24/24	QC76387	AMJ
Thallium	ND mg/L	EPA 200.8	0.0002	0.000003	9/24/24	QC76387	AMJ
Uranium	ND mg/L	EPA 200.8	0.0002	0.000002	9/24/24	QC76387	AMJ
Vanadium	ND mg/L	EPA 200.8	0.001	0.0001	9/24/24	QC76387	AMJ
Zinc	0.060 mg/L	EPA 200.8	0.001	0.00003	9/24/24	QC76387	AMJ
Boron	ND mg/L	EPA 200.7	0.05	0.01	9/24/24	QC76389	JJA
Calcium	31.2 mg/L	EPA 200.7	0.1	0.01	9/24/24	QC76389	JJA
Iron	ND mg/L	EPA 200.7	0.005	0.0005	9/24/24	QC76389	JJA
Magnesium	2.72 mg/L	EPA 200.7	0.02	0.002	9/24/24	QC76389	JJA
Potassium	0.5 mg/L	EPA 200.7	0.1	0.01	9/24/24	QC76389	JJA
Sodium	1.9 mg/L	EPA 200.7	0.1	0.01	9/24/24	QC76389	JJA
<u>Total</u>							
Total Hardness	90.0 mg/L as CaCO3	SM 2340-B	0.1	0.01	9/24/24	-	JJA
Calcium	31.6 mg/L	EPA 200.7	0.1	0.01	9/24/24	QC76389	JJA
Magnesium	2.73 mg/L	EPA 200.7	0.02	0.002	9/24/24	QC76389	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Analytical QC Summary

TASK NO: 240919021

Report To: CJ Dickerson Receive Date: 9/19/24 Company: Thorin Resources, LLC **Project Name: DRMS**

Test	QC Batch ID	QC Type	Result		Method	Prep Date
Total Alkalinity	QC76416	Blank	ND		SM 2320-B	9/23/24
Chloride	QC76353	Blank	ND		EPA 300.0	9/19/24
Cyanide-Total	QC76412	Blank	ND		EPA 335.4	9/24/24
Fluoride	QC76354	Blank	ND		EPA 300.0	9/19/24
Mercury	QC76494	Method Blank	ND		EPA 245.7	9/26/24
Aluminum	QC76387	Method Blank	ND		EPA 200.8	9/19/24
Antimony	QC76387	Method Blank	ND		EPA 200.8	9/19/24
Arsenic	QC76387	Method Blank	ND		EPA 200.8	9/19/24
Barium	QC76387	Method Blank	ND		EPA 200.8	9/19/24
Beryllium	QC76387	Method Blank	ND		EPA 200.8	9/19/24
Cadmium	QC76387	Method Blank	ND		EPA 200.8	9/19/24
Chromium	QC76387	Method Blank	ND		EPA 200.8	9/19/24
Copper	QC76387	Method Blank	ND		EPA 200.8	9/19/24
ead	QC76387	Method Blank	ND		EPA 200.8	9/19/24
Manganese	QC76387	Method Blank	ND		EPA 200.8	9/19/24
Molybdenum	QC76387	Method Blank	ND		EPA 200.8	9/19/24
lickel	QC76387	Method Blank	ND		EPA 200.8	9/19/24
Selenium	QC76387	Method Blank	ND		EPA 200.8	9/19/24
Silica (as Si)	QC76387	Method Blank	ND		EPA 200.8	9/19/24
Silver	QC76387	Method Blank	ND		EPA 200.8	9/19/24
hallium	QC76387	Method Blank	ND		EPA 200.8	9/19/24
Jranium	QC76387	Method Blank	ND		EPA 200.8	9/19/24
anadium/	QC76387	Method Blank	ND		EPA 200.8	9/19/24
linc	QC76387	Method Blank	ND		EPA 200.8	9/19/24
Boron	QC76389	Method Blank	ND		EPA 200.7	9/19/24
Calcium	QC76389	Method Blank	ND		EPA 200.7	9/19/24
ron	QC76389	Method Blank	ND		EPA 200.7	9/19/24
//agnesium	QC76389	Method Blank	ND		EPA 200.7	9/19/24
Potassium	QC76389	Method Blank	ND		EPA 200.7	9/19/24
Sodium	QC76389	Method Blank	ND		EPA 200.7	9/19/24
Nitrate Nitrogen	QC76355	Blank	ND		EPA 300.0	9/19/24
litrite Nitrogen	QC76356	Blank	ND		EPA 300.0	9/19/24
Sulfate	QC76358	Blank	ND		EPA 300.0	9/19/24
otal Dissolved Solids	QC76377	Blank	ND		SM 2540-C	9/23/24
Phosphorus - Total	QC76391	Blank	ND		EPA 365.1	9/23/24
otal Suspended Solids	QC76317	Blank	ND		SM 2540-D	9/20/24
est	QC Batch ID Q	С Туре	Limits	% Rec	RPD	Method
Total Alkalinity	QC76416 Du	plicate -240918062-02	0 - 20	-	0.9	SM 2320-B
	LC	S	90 - 110	99.1	-	

Abbreviations/ References:

Chloride

RL = Reporting Limit = Minimum Level

MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

107.7

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

0.6

ND = Not Detected at Reporting Limit.

90 - 110

0 - 20

LCS-2

Duplicate -240919012-07

QC76353

EPA 300.0

Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
		LCS	90 - 110	103.3	-	
		MS -240919012-07	75 - 125	102.4	-	
Cyanide-Total	QC76412	Duplicate -240917123-01	0 - 20	-	16.7	EPA 335.4
		LCS	90 - 110	91.1	-	
		MS -240918003-02C	75 - 125	90.5	-	
Fluoride	QC76354	Duplicate -240919012-07	0 - 20	-	0.4	EPA 300.0
		LCS	90 - 110	92.6	-	
		MS -240919012-07	75 - 125	87.5	-	
Mercury	QC76494	Duplicate -240919091-03	0 - 20	-	0.0	EPA 245.7
		LCS	90 - 110	104.8	-	
		MS -240919091-03	80 - 120	88.0	-	
Aluminum	QC76387	LCS	90 - 110	101.3	-	EPA 200.8
		MS -240919001-01A	70 - 130	89.4	-	
		MSD -240919001-01A	0 - 10	-	5.5	
Antimony	QC76387	LCS	90 - 110	104.1	-	EPA 200.8
·		MS -240919001-01A	70 - 130	104.5	-	
		MSD -240919001-01A	0 - 10	_	1.5	
Arsenic	QC76387	LCS	90 - 110	102.7	-	EPA 200.8
		MS -240919001-01A	70 - 130	125.1	-	
		MSD -240919001-01A	0 - 10	-	0.1	
Barium	QC76387	LCS	90 - 110	100.6	-	EPA 200.8
		MS -240919001-01A	70 - 130	102.9	-	
		MSD -240919001-01A	0 - 10	-	1.5	
 Beryllium	QC76387	LCS	90 - 110	100.4	-	EPA 200.8
	ασ. σσσ.	MS -240919001-01A	70 - 130	75.7	-	
		MSD -240919001-01A	0 - 10	-	1.5	
Cadmium	QC76387	LCS	90 - 110	100.0	-	EPA 200.8
Cadmium	Q070307	MS -240919001-01A	70 - 130	90.6	_	LI A 200.0
		MSD -240919001-01A	0 - 10	-	0.2	
 Chromium	QC76387	LCS	90 - 110	104.2	-	EPA 200.8
Cilioilliuiii	QC10301	MS -240919001-01A	70 - 130	104.2	-	LFA 200.0
		MSD -240919001-01A	0 - 10	-	1.1	
Connor	QC76387	LCS	90 - 110	104.9	1.1	EPA 200.8
Copper	QC10301	MS -240919001-01A	70 - 130	94.6	-	LFA 200.0
		MSD -240919001-01A	0 - 10	94.0	2.7	
Lood	QC76387	LCS		97.9	2.1	EPA 200.8
Lead	QC/036/	MS -240919001-01A	90 - 110 70 - 130		-	EPA 200.6
		MSD -240919001-01A	0 - 10	87.3 -	2.8	
Managanaga	0076207					EDA 200 0
Manganese	QC76387	LCS	90 - 110	106.6	-	EPA 200.8
		MS -240919001-01A	70 - 130	103.0	-	
Malakata a	0.070007	MSD -240919001-01A	0 - 10	-	2.2	EDA 000 0
Molybdenum	QC76387	LCS	90 - 110	101.3	-	EPA 200.8
		MS -240919001-01A	70 - 130	105.3	-	
	20=	MSD -240919001-01A	0 - 10	-	0.1	
Nickel	QC76387	LCS	90 - 110	103.4	-	EPA 200.8
		MS -240919001-01A	70 - 130	91.4	-	
		MSD -240919001-01A	0 - 10	-	0.5	
Selenium	QC76387	LCS	90 - 110	102.3	-	EPA 200.8
		MS -240919001-01A	70 - 130	105.1	-	
		MSD -240919001-01A	0 - 10	-	1.4	
Silica (as Si)	QC76387	LCS	90 - 110	108.0	-	EPA 200.8

Abbreviations/ References:

 $RL = Reporting\ Limit = Minimum\ Level$ RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
		MS -240919001-01A	70 - 130	117.7	-	
		MSD -240919001-01A	0 - 10	-	0.6	
Silver	QC76387	LCS	90 - 110	101.2	-	EPA 200.8
		MS -240919001-01A	70 - 130	77.3	-	
		MSD -240919001-01A	0 - 10	-	0.2	
Гhallium	QC76387	LCS	90 - 110	98.9	=	EPA 200.8
		MS -240919001-01A	70 - 130	89.8	-	
		MSD -240919001-01A	0 - 10	-	2.7	
Jranium	QC76387	LCS	90 - 110	92.6	-	EPA 200.8
		MS -240919001-01A	70 - 130	84.5	-	
		MSD -240919001-01A	0 - 10	-	0.7	
/anadium	QC76387	LCS	90 - 110	99.0	-	EPA 200.8
		MS -240919001-01A	70 - 130	106.6	-	
		MSD -240919001-01A	0 - 10	-	1.8	
Zinc	QC76387	LCS	90 - 110	105.4	-	EPA 200.8
		MS -240919001-01A	70 - 130	106.6	-	
		MSD -240919001-01A	0 - 10	-	0.2	
Boron	QC76389	Duplicate -240919001-01	0 - 20	-	1.0	EPA 200.7
		LCS	90 - 110	98.3	-	
		MS -240919021-02D	75 - 125	114.0	-	
Calcium	QC76389	Duplicate -240919001-01	0 - 20	-	1.8	EPA 200.7
		LCS	90 - 110	104.4	-	
		MS -240919021-02D	75 - 125	96.4	-	
ron	QC76389	Duplicate -240919001-01	0 - 20	-	6.5	EPA 200.7
	40.000	LCS	90 - 110	93.5	-	2.7.200
		MS -240919021-02D	75 - 125	114.0	-	
Magnesium	QC76389	Duplicate -240919001-01	0 - 20	-	0.7	EPA 200.7
nagriosia	Q0 70000	LCS	90 - 110	100.3	-	217(200.7
		MS -240919021-02D	75 - 125	106.4	-	
Potassium	QC76389	Duplicate -240919001-01	0 - 20	-	2.6	EPA 200.7
otassiani	Q0 70000	LCS	90 - 110	97.7	-	217(200.7
		MS -240919021-02D	75 - 125	108.2	_	
Sodium	QC76389	Duplicate -240919001-01	0 - 20	-	0.6	EPA 200.7
Journal	Q010303	LCS	90 - 110	99.2	-	LI A 200.1
		MS -240919021-02D	75 - 125	113.4	_	
litrate Nitrogen	QC76355	Duplicate -240919012-07	0 - 20	-	0.0	EPA 300.0
wittate ivitiogen	Q070333	LCS	90 - 110	97.3	-	LI A 300.0
		MS -240919012-07	75 - 125	91.4	_	
litrite Nitrogen	QC76356	Duplicate -240919012-07	0 - 20	-	0.0	EPA 300.0
withe Millogen	QC70330	LCS	90 - 110	94.0	0.0	LFA 300.0
		MS -240919012-07	75 - 125	89.5	- -	
Sulfate	QC76358	Duplicate -240919012-07	0 - 20			EPA 300.0
ounal o	QC10358	LCS	90 - 110	- 99.9	0.5	EFA 300.0
					-	
otal Diagolyad Calida	007077	MS -240919012-07	75 - 125	101.3	-	CM 0540 C
otal Dissolved Solids	QC76377	Duplicate -240919115-06	0 - 10	-	0.6	SM 2540-C
No and a mark Tark I	007000:	LCS	85 - 115	100.1	-	ED 4 005 1
Phosphorus - Total	QC76391	Duplicate -240919076-01	0 - 20	-	2.8	EPA 365.1
		LCS	90 - 110	95.6	=	
		MS -240919002-05	75 - 125	117.9		
Total Suspended Solids	QC76317	Duplicate -240919031-01	0 - 10	-	2.9	SM 2540-D
		LCS	90 - 110	97.4	=	

Abbreviations/ References:

 $RL = Reporting\ Limit = Minimum\ Level$ RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

All analyses were performed in accordance with approved methods under the latest revision to 40 CFR Part 136 unless otherwise identified. Based on my inquiry of the person or persons directly responsible for analyzing the wastewater samples and generating the report (s), the analyses, report, and information submitted are, to the best of my knowledge and belief, true, accurate, and complete.

DATA APPROVED FOR RELEASE BY

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
 (s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Chain of Custody Form

Report To Information	Bill To Information (If different from report to)	Project Name / Number
Company Name: Thorin Resources	Company Name:	
Contact Name: CT Dickeron	Contact Name:	
Address: 1900 Man 51 Unit 01	Address:	Task Number (Lab Use Only)
City Owny State Co Zip &1927	City State Zip	
Phone: (602) 793-1321	Phone:	CAL Task 240919021
Email: Cidcherone from recovers.com	Email:	240919021
Sample Collector:		JAK
Sample Collector Phone:	PO No.:	

Commerce City Lab 10411 Heinz Way Commerce City CO 80640

<u>Lakewood Service Center</u> 610 Garrison Street, Unit E Lakewood CO 80215

Phone: 303-659-2313

www.coloradolab.com

Sample C	Collector Pho	ne: L		" PC) No.:																	
									. [ly A	T	ests R	Reque	sted			Para Page	ly a	
		Sa	mple Matrix	(Select One O	nly)		÷ĝ	1 5		•												
Includes w	NPDES) astewater, nonet intended for		Drinking Wa (SDWA) Includes finished raw (untreated) vintended for hum	drinking water,	Solid (Sludge) (503 Regs / RCRA 846)		No. of Containers	Grab	omposite	68024010176												
Date	Time			Sample l			Z	<u> </u>	S O	Ø	_					-				\vdash		
1/18	07:40			ug-5			15	×		×												_
4/18	08:55			UG-5 C-W-ZA C-W-ZB C-U-114	L		5	*		٨												
9/18	OB:15			(-W-ZB	•		5	4		1	ŀ											
4/18			-	G-17-114			49	4	-	¥	-											
9/18	10:20			GU-13	?		5	4		X												
								1														
						20)															
								i														
-								1														
Instruction	ons:	1				C/S Info:		;		l		I	5			Yes 🔲	No 🗆					-
						Deliver Via	a:	1/	p<)	C/S	Charge	ν́ Ι	Temp	2	°C/Ice	_	Sample	e Pres. Y		No □	
Relinquis	shed By:	Da	te/Time:	Received By:	Date/Time		Relingu	ished	By:		Dat	e/Time	:			Bv:		,	Date	/Tim	,	
CSD	chero	n 11/1	te/Time:			Page 13	2 of 15							10	SHE	da	M	£_	9	<u> 19</u>	19	4
	***					1-uge-10) () 10							7	<i>)</i>				,		80	TO

Quotation for Analytical Services

Quote ID: QBO24010976

Prepared For:

Thorin Resources, LLC

1900 Main St

Unit 1

Ouray, CO 81427

Attn: CJ Dickerson

Project: **DRMS**

Quote Date: Wednesday, January 31, 2024 Turn Around Time: 10 Working Days

Matrix	Description	Method	on Oty	Price - each	Total
Water - Ground	Alkalinity - B-C	N/A	12	\$16.00	\$192.00
Water - Ground	Alkalinity	SM 2320-B	12	Incl.	Incl.
Water - Ground	Carb/ Bicarb	SM 2320-B	12	Incl.	Incl.
Water - Ground	Hardness - Total	SM 2340-B	12	\$0.00	\$0.00
Water - Ground	Nitrate/ Nitrite Nitrogen	Calculation	12	\$0.00	\$0.00
Water - Ground	B - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Ca - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Ca - Total	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Fe - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	K - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Mg - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Mg - Total	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Na - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Ph	SM 4500-H-B	12	\$13.00	\$156.00
Water - Ground	Specific Conductance	EPA 120.1	12	\$14.00	\$168.00
Water - Ground	Ag - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	AI - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	As - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Ba - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Be - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Cd - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Cr - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Cu - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Mn - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Mo - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Ni - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Pb - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Sb - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Se - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Si - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	TDS	SM 2540-C	12	\$16.00	\$192.00

CAL Task 240919021

JAK

	Colorado
4	Analytical

Quotation for Analytical Services

Quote ID: QBO24010976

	LABORATORIES,	INC.			
Water - Ground	TI - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	TSS	SM 2540-D	12	\$16.00	\$192.00
Water - Ground	V - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Zn - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Chloride	EPA 300.0	12	\$18.00	\$216.00
Water - Ground	Fluoride	EPA 300.0	12	\$18.00	\$216.00
Water - Ground	Nitrate Nitrogen	EPA 300.0	12	\$18.00	\$216.00
Water - Ground	Nitrite Nitrogen	EPA 300.0	12	\$18.00	\$216.00
Water - Ground	Sulfate	EPA 300.0	12	\$18.00	\$216.00
Water - Ground	U - Dis	EPA 200.8	12	\$23.00	\$276.00
Water - Ground	Total Phosphorus	EPA 365.1	12	\$26.00	\$312.00
Water - Ground	Hg-Dissolved	EPA 245.7	12	\$27.00	\$324.00
Water - Ground	Cyanide-Total	EPA 335.4	12	\$40.00	\$480.00

\$8,076.00

Colorado Analytical Laboratory maintains certification by the Colorado Department of Health (CDPHE) and EPA Region 8 for Wyoming and Tribal Public Water Systems to analyze drinking water for organic contaminants (SOC's VOC's), inorganic contaminants (metals), nitrate nitrite, cyanide, fluoride and coliform bacteria.

Sub-Lab analysis pricing subject to change. Sub-Lab radiological analysis turn-around time is 4 to 8 weeks depending on sample matrix. Due to time, distance and other constraints outside of the control of CAL shipments to sub labs are not guaranteed. All shipment charges will be billed to the client regardless of shipment outcome.

Billing terms are Net 30 on approved accounts; all other accounts are COD. Additional charges may apply for accelerated turn around.

We appreciate the opportunity to be of service to you. If you have questions please call us at 303-659-2313 or visit us at www.coloradolab.com

^{**}Samples should be shipped or hand delivered the same day they are collected. Orders that require sub-lab analysis should be delivered to the lab Monday thru Wednesday only.**

TASK NO: 241210006

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 241210006

Client PO:

Client Project: DRMS

Date Received: 12/10/24

Date Reported: 12/17/24

Matrix: Water

Customer Sample ID UG-5

Sample Date/Time: 12/9/24 10:28 AM

Lab Number: 241210006-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
					•		
Total Alkalinity	60.5 mg/L as CaCO3	SM 2320-B	4.0	1	12/12/24	QC78213	KJP
Bicarbonate	60.5 mg/L as CaCO3	SM 2320-B	0.2	0.2	12/12/24	-	KJP
Carbonate	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	12/12/24	-	KJP
Hydroxide	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	12/12/24	-	KJP
Chloride	ND mg/L	EPA 300.0	1.00	0.007	12/10/24	QC78169	NRP
Cyanide-Total	ND mg/L	EPA 335.4	0.005	0.0005	12/11/24	QC78185	KRB
Fluoride	0.31 mg/L	EPA 300.0	0.10	0.024	12/10/24	QC78174	NRP
Nitrate Nitrogen	ND mg/L	EPA 300.0	0.05	0.02	12/10/24	QC78170	NRP
Nitrate/ Nitrite Nitrogen	ND mg/L	Calculation	0.05	0.02	12/11/24	-	AMJ
Nitrite Nitrogen	ND mg/L	EPA 300.0	0.03	0.01	12/10/24	QC78171	NRP
рН	7.23 units	SM 4500-H-B	0.01	0.01	12/10/24	-	ARH
Specific Conductance	442 umhos/cm @ 25c	EPA 120.1	5	5	12/10/24	-	ARH
Sulfate	146 mg/L	EPA 300.0	1.00	0.012	12/10/24	QC78172	NRP
Total Dissolved Solids	261 mg/L	SM 2540-C	5	2	12/11/24	QC78158	KRI
Phosphorus - Total	ND mg/L	EPA 365.1	0.05	0.006	12/12/24	QC78194	TAB
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	12/10/24	QC78146	ARH
<u>Dissolved</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	12/13/24	QC78237	MBN
Aluminum	0.003 mg/L	EPA 200.8	0.001	0.00003	12/11/24	QC78187	AMJ
Antimony	ND mg/L	EPA 200.8	0.0012	0.00012	12/11/24	QC78187	AMJ
Arsenic	0.0023 mg/L	EPA 200.8	0.0006	0.00006	12/11/24	QC78187	AMJ
Barium	0.0241 mg/L	EPA 200.8	0.0007	0.00007	12/11/24	QC78187	AMJ
Beryllium	ND mg/L	EPA 200.8	0.0001	0.000008	12/11/24	QC78187	AMJ
Cadmium	0.0009 mg/L	EPA 200.8	0.0001	0.000006	12/11/24	QC78187	AMJ
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	12/11/24	QC78187	AMJ

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM

ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

ND = Not Detected at Reporting Limit.

1/10

TASK NO: 241210006

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 241210006

Client PO:

Client Project: DRMS

Date Received: 12/10/24

Date Reported: 12/17/24

Matrix: Water

Customer Sample ID UG-5

Sample Date/Time: 12/9/24 10:28 AM

Lab Number: 241210006-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
<u>Dissolved</u>							
Copper	0.0012 mg/L	EPA 200.8	0.0008	0.00001	12/11/24	QC78187	AMJ
Lead	ND mg/L	EPA 200.8	0.0001	0.000006	12/11/24	QC78187	AMJ
Manganese	0.9320 mg/L	EPA 200.8	0.0008	0.00001	12/11/24	QC78187	AMJ
Molybdenum	0.0059 mg/L	EPA 200.8	0.0005	0.00005	12/11/24	QC78187	AMJ
Nickel	ND mg/L	EPA 200.8	0.0009	0.00005	12/11/24	QC78187	AMJ
Selenium	ND mg/L	EPA 200.8	0.0008	0.00008	12/11/24	QC78187	AMJ
Silica (as Si)	4.15 mg/L	EPA 200.8	0.30	0.03	12/11/24	QC78187	AMJ
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	12/11/24	QC78187	AMJ
Thallium	ND mg/L	EPA 200.8	0.0002	0.000003	12/11/24	QC78187	AMJ
Uranium	0.0003 mg/L	EPA 200.8	0.0002	0.000002	12/11/24	QC78187	AMJ
Vanadium	ND mg/L	EPA 200.8	0.001	0.0001	12/11/24	QC78187	AMJ
Zinc	0.275 mg/L	EPA 200.8	0.001	0.00003	12/11/24	QC78187	AMJ
Boron	ND mg/L	EPA 200.7	0.05	0.01	12/12/24	QC78215	JJA
Calcium	71.4 mg/L	EPA 200.7	0.1	0.01	12/12/24	QC78215	JJA
Iron	ND mg/L	EPA 200.7	0.005	0.0005	12/12/24	QC78215	JJA
Magnesium	3.50 mg/L	EPA 200.7	0.02	0.002	12/12/24	QC78215	JJA
Potassium	0.5 mg/L	EPA 200.7	0.1	0.01	12/12/24	QC78215	JJA
Sodium	7.0 mg/L	EPA 200.7	0.1	0.01	12/12/24	QC78215	JJA
<u>Total</u>							
Total Hardness	195.4 mg/L as CaCO3	SM 2340-B	0.1	0.01	12/12/24	-	JJA
Calcium	72.4 mg/L	EPA 200.7	0.1	0.01	12/12/24	QC78215	JJA
Magnesium	3.52 mg/L	EPA 200.7	0.02	0.002	12/12/24	QC78215	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 241210006

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 241210006

Client PO:

Client Project: DRMS

Date Received: 12/10/24 Date Reported: 12/17/24

Matrix: Water

Customer Sample ID UG-2

Sample Date/Time: 12/9/24 10:52 AM

Lab Number: 241210006-02

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Total Alkalinity	48.8 mg/L as CaCO3	SM 2320-B	4.0	1	12/12/24	QC78213	KJP
Bicarbonate	48.8 mg/L as CaCO3	SM 2320-B	0.2	0.2	12/12/24	-	KJP
Carbonate	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	12/12/24	-	KJP
Hydroxide	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	12/12/24	-	KJP
Chloride	ND mg/L	EPA 300.0	1.00	0.007	12/10/24	QC78169	NRP
Cyanide-Total	ND mg/L	EPA 335.4	0.005	0.0005	12/11/24	QC78185	KRB
Fluoride	0.25 mg/L	EPA 300.0	0.10	0.024	12/10/24	QC78174	NRP
Nitrate Nitrogen	0.25 mg/L	EPA 300.0	0.05	0.02	12/10/24	QC78170	NRP
Nitrate/ Nitrite Nitrogen	0.25 mg/L	Calculation	0.05	0.02	12/11/24	-	AMJ
Nitrite Nitrogen	ND mg/L	EPA 300.0	0.03	0.01	12/10/24	QC78171	NRP
рН	7.26 units	SM 4500-H-B	0.01	0.01	12/10/24	-	ARH
Specific Conductance	402 umhos/cm @ 25c	EPA 120.1	5	5	12/10/24	-	ARH
Sulfate	133 mg/L	EPA 300.0	1.00	0.012	12/10/24	QC78172	NRP
Total Dissolved Solids	258 mg/L	SM 2540-C	5	2	12/11/24	QC78158	KRI
Phosphorus - Total	ND mg/L	EPA 365.1	0.05	0.006	12/12/24	QC78194	TAB
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	12/10/24	QC78146	ARH
<u>Dissolved</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	12/13/24	QC78237	MBN
Aluminum	0.004 mg/L	EPA 200.8	0.001	0.00003	12/11/24	QC78187	AMJ
Antimony	ND mg/L	EPA 200.8	0.0012	0.00012	12/11/24	QC78187	AMJ
Arsenic	0.0027 mg/L	EPA 200.8	0.0006	0.00006	12/11/24	QC78187	AMJ
Barium	0.0263 mg/L	EPA 200.8	0.0007	0.00007	12/11/24	QC78187	AMJ
Beryllium	ND mg/L	EPA 200.8	0.0001	0.000008	12/11/24	QC78187	AMJ
Cadmium	0.0012 mg/L	EPA 200.8	0.0001	0.000006	12/11/24	QC78187	AMJ
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	12/11/24	QC78187	AMJ

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit

mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

ND = Not Detected at Reporting Limit.

10411 Heinz Way / Commerce City, CO 80640 / 303-659-2313

241210006

TASK NO: 241210006

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 241210006

Client PO:

Client Project: DRMS

Date Received: 12/10/24

Date Reported: 12/17/24

Matrix: Water

Customer Sample ID UG-2

Sample Date/Time: 12/9/24 10:52 AM

Lab Number: 241210006-02

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Dissolved							_
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	12/11/24	QC78187	AMJ
Lead	ND mg/L	EPA 200.8	0.0001	0.000006	12/11/24	QC78187	AMJ
Manganese	1.84 mg/L	EPA 200.8	0.0008	0.00001	12/11/24	QC78187	AMJ
Molybdenum	0.0022 mg/L	EPA 200.8	0.0005	0.00005	12/11/24	QC78187	AMJ
Nickel	ND mg/L	EPA 200.8	0.0009	0.00005	12/11/24	QC78187	AMJ
Selenium	ND mg/L	EPA 200.8	0.0008	0.00008	12/11/24	QC78187	AMJ
Silica (as Si)	3.19 mg/L	EPA 200.8	0.30	0.03	12/11/24	QC78187	AMJ
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	12/11/24	QC78187	AMJ
Thallium	ND mg/L	EPA 200.8	0.0002	0.000003	12/11/24	QC78187	AMJ
Uranium	0.0002 mg/L	EPA 200.8	0.0002	0.000002	12/11/24	QC78187	AMJ
Vanadium	ND mg/L	EPA 200.8	0.001	0.0001	12/11/24	QC78187	AMJ
Zinc	0.424 mg/L	EPA 200.8	0.001	0.00003	12/11/24	QC78187	AMJ
Boron	ND mg/L	EPA 200.7	0.05	0.01	12/12/24	QC78215	JJA
Calcium	62.4 mg/L	EPA 200.7	0.1	0.01	12/12/24	QC78215	JJA
Iron	ND mg/L	EPA 200.7	0.005	0.0005	12/12/24	QC78215	JJA
Magnesium	2.65 mg/L	EPA 200.7	0.02	0.002	12/12/24	QC78215	JJA
Potassium	0.4 mg/L	EPA 200.7	0.1	0.01	12/12/24	QC78215	JJA
Sodium	7.6 mg/L	EPA 200.7	0.1	0.01	12/12/24	QC78215	JJA
<u>Total</u>							
Total Hardness	167.7 mg/L as CaCO3	SM 2340-B	0.1	0.01	12/12/24	-	JJA
Calcium	62.7 mg/L	EPA 200.7	0.1	0.01	12/12/24	QC78215	JJA
Magnesium	2.70 mg/L	EPA 200.7	0.02	0.002	12/12/24	QC78215	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

ND = Not Detected at Reporting Limit.

4/10

TASK NO: 241210006

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 241210006

Client PO:

Client Project: DRMS

Date Received: 12/10/24 Date Reported: 12/17/24

Matrix: Water

Customer Sample ID UG-8

Sample Date/Time: 12/9/24 11:18 AM

Lab Number: 241210006-03

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Total Alkalinity	54.9 mg/L as CaCO3	SM 2320-B	4.0	1	12/12/24	QC78213	KJP
Bicarbonate	54.9 mg/L as CaCO3	SM 2320-B	0.2	0.2	12/12/24	=	KJP
Carbonate	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	12/12/24	-	KJP
Hydroxide	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	12/12/24	=	KJP
Chloride	ND mg/L	EPA 300.0	1.00	0.007	12/10/24	QC78169	NRP
Cyanide-Total	ND mg/L	EPA 335.4	0.005	0.0005	12/11/24	QC78185	KRB
Fluoride	0.32 mg/L	EPA 300.0	0.10	0.024	12/10/24	QC78174	NRP
Nitrate Nitrogen	0.30 mg/L	EPA 300.0	0.05	0.02	12/10/24	QC78170	NRP
Nitrate/ Nitrite Nitrogen	0.30 mg/L	Calculation	0.05	0.02	12/11/24	-	AMJ
Nitrite Nitrogen	ND mg/L	EPA 300.0	0.03	0.01	12/10/24	QC78171	NRP
рН	7.21 units	SM 4500-H-B	0.01	0.01	12/10/24	-	ARH
Specific Conductance	400 umhos/cm @ 25c	EPA 120.1	5	5	12/10/24	-	ARH
Sulfate	124 mg/L	EPA 300.0	1.00	0.012	12/10/24	QC78172	NRP
Total Dissolved Solids	261 mg/L	SM 2540-C	5	2	12/11/24	QC78158	KRI
Phosphorus - Total	ND mg/L	EPA 365.1	0.05	0.006	12/12/24	QC78194	TAB
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	12/10/24	QC78146	ARH
<u>Dissolved</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	12/13/24	QC78237	MBN
Aluminum	0.010 mg/L	EPA 200.8	0.001	0.00003	12/11/24	QC78187	AMJ
Antimony	ND mg/L	EPA 200.8	0.0012	0.00012	12/11/24	QC78187	AMJ
Arsenic	0.0034 mg/L	EPA 200.8	0.0006	0.00006	12/11/24	QC78187	AMJ
Barium	0.0238 mg/L	EPA 200.8	0.0007	0.00007	12/11/24	QC78187	AMJ
Beryllium	ND mg/L	EPA 200.8	0.0001	0.000008	12/11/24	QC78187	AMJ
Cadmium	0.0029 mg/L	EPA 200.8	0.0001	0.000006	12/11/24	QC78187	AMJ
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	12/11/24	QC78187	AMJ

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit

mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 241210006

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 241210006

Client PO:

Client Project: DRMS

Date Received: 12/10/24

Date Reported: 12/17/24

Matrix: Water

Customer Sample ID UG-8

Sample Date/Time: 12/9/24 11:18 AM

Lab Number: 241210006-03

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
<u>Dissolved</u>							
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	12/11/24	QC78187	AMJ
Lead	ND mg/L	EPA 200.8	0.0001	0.000006	12/11/24	QC78187	AMJ
Manganese	4.85 mg/L	EPA 200.8	0.0008	0.00001	12/11/24	QC78187	AMJ
Molybdenum	0.0031 mg/L	EPA 200.8	0.0005	0.00005	12/11/24	QC78187	AMJ
Nickel	ND mg/L	EPA 200.8	0.0009	0.00005	12/11/24	QC78187	AMJ
Selenium	ND mg/L	EPA 200.8	0.0008	0.00008	12/11/24	QC78187	AMJ
Silica (as Si)	3.54 mg/L	EPA 200.8	0.30	0.03	12/11/24	QC78187	AMJ
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	12/11/24	QC78187	AMJ
Thallium	ND mg/L	EPA 200.8	0.0002	0.000003	12/11/24	QC78187	AMJ
Uranium	0.0004 mg/L	EPA 200.8	0.0002	0.000002	12/11/24	QC78187	AMJ
Vanadium	ND mg/L	EPA 200.8	0.001	0.0001	12/11/24	QC78187	AMJ
Zinc	1.02 mg/L	EPA 200.8	0.001	0.00003	12/11/24	QC78187	AMJ
Boron	ND mg/L	EPA 200.7	0.05	0.01	12/12/24	QC78215	JJA
Calcium	56.6 mg/L	EPA 200.7	0.1	0.01	12/12/24	QC78215	JJA
Iron	ND mg/L	EPA 200.7	0.005	0.0005	12/12/24	QC78215	JJA
Magnesium	3.62 mg/L	EPA 200.7	0.02	0.002	12/12/24	QC78215	JJA
Potassium	0.5 mg/L	EPA 200.7	0.1	0.01	12/12/24	QC78215	JJA
Sodium	10.3 mg/L	EPA 200.7	0.1	0.01	12/12/24	QC78215	JJA
<u>Total</u>							
Total Hardness	156.9 mg/L as CaCO3	SM 2340-B	0.1	0.01	12/12/24	-	JJA
Calcium	56.7 mg/L	EPA 200.7	0.1	0.01	12/12/24	QC78215	JJA
Magnesium	3.74 mg/L	EPA 200.7	0.02	0.002	12/12/24	QC78215	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Analytical QC Summary

TASK NO: 241210006

Report To: CJ Dickerson **Receive Date: 12/10/24** Company: Thorin Resources, LLC **Project Name: DRMS**

Test	QC Batch ID	QC Type	Result		Method	Prep Date
Total Alkalinity	QC78213	Blank	ND		SM 2320-B	12/11/24
Chloride	QC78169	Blank	ND		EPA 300.0	12/10/24
Cyanide-Total	QC78185	Blank	ND		EPA 335.4	12/11/24
Fluoride	QC78174	Blank	ND		EPA 300.0	12/10/24
Mercury	QC78237	Method Blank	ND		EPA 245.7	12/13/24
Aluminum	QC78187	Method Blank	ND		EPA 200.8	12/10/24
Antimony	QC78187	Method Blank	ND		EPA 200.8	12/10/24
Arsenic	QC78187	Method Blank	ND		EPA 200.8	12/10/24
Barium	QC78187	Method Blank	ND		EPA 200.8	12/10/24
Beryllium	QC78187	Method Blank	ND		EPA 200.8	12/10/24
Cadmium	QC78187	Method Blank	ND		EPA 200.8	12/10/24
Chromium	QC78187	Method Blank	ND		EPA 200.8	12/10/24
Copper	QC78187	Method Blank	ND		EPA 200.8	12/10/24
Lead	QC78187	Method Blank	ND		EPA 200.8	12/10/24
Manganese	QC78187	Method Blank	ND		EPA 200.8	12/10/24
Molybdenum	QC78187	Method Blank	ND		EPA 200.8	12/10/24
Nickel	QC78187	Method Blank	ND		EPA 200.8	12/10/24
Selenium	QC78187	Method Blank	ND		EPA 200.8	12/10/24
Silica (as Si)	QC78187	Method Blank	ND		EPA 200.8	12/10/24
Silver	QC78187	Method Blank	ND		EPA 200.8	12/10/24
Thallium	QC78187	Method Blank	ND		EPA 200.8	12/10/24
Uranium	QC78187	Method Blank	ND		EPA 200.8	12/10/24
Vanadium	QC78187	Method Blank	ND		EPA 200.8	12/10/24
Zinc	QC78187	Method Blank	ND		EPA 200.8	12/10/24
Boron	QC78215	Method Blank	ND		EPA 200.7	12/10/24
Calcium	QC78215	Method Blank	ND		EPA 200.7	12/10/24
Iron	QC78215	Method Blank	ND		EPA 200.7	12/10/24
Magnesium	QC78215	Method Blank	ND		EPA 200.7	12/10/24
Potassium	QC78215	Method Blank	ND		EPA 200.7	12/10/24
Sodium	QC78215	Method Blank	ND		EPA 200.7	12/10/24
Nitrate Nitrogen	QC78170	Blank	ND		EPA 300.0	12/10/24
Nitrite Nitrogen	QC78171	Blank	ND		EPA 300.0	12/10/24
Sulfate	QC78172	Blank	ND		EPA 300.0	12/10/24
Total Dissolved Solids	QC78158	Blank	ND		SM 2540-C	12/10/24
Phosphorus - Total	QC78194	Blank	ND		EPA 365.1	12/11/24
Total Suspended Solids	QC78146	Blank	ND		SM 2540-D	12/10/24
Test	QC Batch ID QC	С Туре	Limits	% Rec	RPD	Method
Total Alkalinity	QC78213 Du	plicate -241205090-01	0 - 20	-	3.5	SM 2320-B
	1.0	C	00 110	00.0		

1631	QO Daten ib	QO Type	Lilling	70 IXCC	INI D	Wicthou
Total Alkalinity	QC78213	Duplicate -241205090-01	0 - 20	-	3.5	SM 2320-B
		LCS	90 - 110	98.0	-	
		LCS-2	90 - 110	107.4	-	
Chloride	QC78169	Duplicate -241209128-02	0 - 20	=	0.6	EPA 300.0

Abbreviations/ References:

 $RL = Reporting \ Limit = Minimum \ Level$

MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
		LCS	90 - 110	105.6	-	
		MS -241209128-02A	75 - 125	106.1	-	
Cyanide-Total	QC78185	Duplicate -241210134-02	0 - 20	-	13.6	EPA 335.4
		LCS	90 - 110	90.6	-	
		MS -241206074-02	75 - 125	95.5	-	
Fluoride	QC78174	Duplicate -241210044-01	0 - 20	-	4.7	EPA 300.0
		LCS	90 - 110	99.8	-	
		MS -241210044-01	75 - 125	95.8	-	
Mercury	QC78237	Duplicate -241205071-01	0 - 20	=	0.0	EPA 245.7
•		LCS	90 - 110	101.4	-	
		MS -241205071-01A	80 - 120	100.0	-	
Aluminum	QC78187	LCS	90 - 110	104.3	-	EPA 200.8
		MS -241210006-01	70 - 130	99.1	-	
		MSD -241210006-01	0 - 10	-	5.7	
Antimony	QC78187	LCS	90 - 110	102.3	-	EPA 200.8
· ·········· ,	40.0.0	MS -241210006-01	70 - 130	93.4	-	
		MSD -241210006-01	0 - 10	-	3.8	
Arsenic	QC78187	LCS	90 - 110	104.9	-	EPA 200.8
7 (1001)10	Q070107	MS -241210006-01	70 - 130	92.7	_	L1 77 200.0
		MSD -241210006-01	0 - 10	-	8.0	
Barium	QC78187	LCS	90 - 110	99.7	-	EPA 200.8
Danum	QOTOTOT	MS -241210006-01	70 - 130	88.0	- -	LI A 200.0
		MSD -241210006-01	0 - 10	-	6.7	
Beryllium	QC78187	LCS	90 - 110	98.1	-	EPA 200.8
Derymum	QC/010/	MS -241210006-01	70 - 110	83.6		EFA 200.6
		MSD -241210006-01	0 - 10	-	- 8.6	
 Cadmium	0070407	LCS			-	EDA 200 0
Cadmium	QC78187		90 - 110	99.1	-	EPA 200.8
		MS -241210006-01	70 - 130 0 - 10	94.3	-	
	0070407	MSD -241210006-01			5.0	EDA 000 0
Chromium	QC78187	LCS	90 - 110	104.0	-	EPA 200.8
		MS -241210006-01	70 - 130	92.2	-	
	00=010=	MSD -241210006-01	0 - 10	-	7.1	
Copper	QC78187	LCS	90 - 110	105.3	-	EPA 200.8
		MS -241210006-01	70 - 130	98.6	-	
 		MSD -241210006-01	0 - 10	-	2.0	
Lead	QC78187	LCS	90 - 110	104.2	-	EPA 200.8
		MS -241210006-01	70 - 130	93.0	-	
		MSD -241210006-01	0 - 10	-	8.1	
Manganese	QC78187	LCS	90 - 110	105.7	-	EPA 200.8
		MS -241210006-01	70 - 130	113.3	-	
		MSD -241210006-01	0 - 10	-	0.4	
Molybdenum	QC78187	LCS	90 - 110	100.3	-	EPA 200.8
		MS -241210006-01	70 - 130	84.6	-	
		MSD -241210006-01	0 - 10	-	9.3	
Nickel	QC78187	LCS	90 - 110	107.2	-	EPA 200.8
		MS -241210006-01	70 - 130	92.0	-	
		MSD -241210006-01	0 - 10	-	10.0	
Selenium	QC78187	LCS	90 - 110	101.7	-	EPA 200.8
		MS -241210006-01	70 - 130	86.8	-	
		MSD -241210006-01	0 - 10	-	3.9	
Silica (as Si)	QC78187	LCS	90 - 110	99.1	-	EPA 200.8

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
		MS -241210006-01	70 - 130	87.5	-	
		MSD -241210006-01	0 - 10	-	8.0	
Silver	QC78187	LCS	90 - 110	101.4	-	EPA 200.8
		MS -241210006-01	70 - 130	97.5	-	
		MSD -241210006-01	0 - 10	-	5.4	
Thallium	QC78187	LCS	90 - 110	106.6	-	EPA 200.8
		MS -241210006-01	70 - 130	109.7	-	
		MSD -241210006-01	0 - 10	-	1.6	
Uranium	QC78187	LCS	90 - 110	109.7	-	EPA 200.8
		MS -241210006-01	70 - 130	80.9	-	
		MSD -241210006-01	0 - 10	-	8.5	
Vanadium	QC78187	LCS	90 - 110	106.1	-	EPA 200.8
		MS -241210006-01	70 - 130	93.1	-	
		MSD -241210006-01	0 - 10	-	0.5	
Zinc	QC78187	LCS	90 - 110	109.6	_	EPA 200.8
		MS -241210006-01	70 - 130	117.7	-	
		MSD -241210006-01	0 - 10	_	0.1	
Boron	QC78215	Duplicate -241210012-01	0 - 20	_	5.7	EPA 200.7
		LCS	90 - 110	100.7	-	
		MS -241210006-01D	75 - 125	108.0	-	
Calcium	QC78215	Duplicate -241210012-01	0 - 20	-	1.6	EPA 200.7
Gaisiani	Q070210	LCS	90 - 110	100.9	-	2177.200.7
		MS -241210006-01D	75 - 125	80.7	-	
Iron	QC78215	Duplicate -241210012-01	0 - 20	-	0.7	EPA 200.7
11011	Q070210	LCS	90 - 110	104.0	-	El A 200.7
		MS -241210006-01D	75 - 125	109.1	<u>-</u>	
Magnesium	QC78215	Duplicate -241210012-01	0 - 20	-	0.8	EPA 200.7
Magnesium	QC/0213	LCS	90 - 110	105.1	0.6	LFA 200.7
		MS -241210006-01D	75 - 125	106.6	-	
Detection	0070245		0 - 20	-	0.6	EDA 200.7
Potassium	QC78215	Duplicate -241210012-01 LCS		102.4	0.6	EPA 200.7
			90 - 110 75 - 125		-	
0 - 17	0070045	MS -241210006-01D		107.5	-	EDA 000.7
Sodium	QC78215	Duplicate -241210012-01	0 - 20	-	0.6	EPA 200.7
		LCS	90 - 110	103.2	-	
NPI A NPI A NPI A NA	0070470	MS -241210006-01D	75 - 125	103.6	-	EDA 000 0
Nitrate Nitrogen	QC78170	Duplicate -241209128-02	0 - 20	-	0.6	EPA 300.0
		LCS	90 - 110	105.0	-	
A Pro- transfer of the Pro-	0070474	MS -241209128-02A	75 - 125	93.9	-	ED4 000 0
Nitrite Nitrogen	QC78171	Duplicate -241209128-02	0 - 20	-	4.4	EPA 300.0
		LCS	90 - 110	105.4	-	
	0.070470	MS -241209128-02A	75 - 125	102.3	-	ED4 000 0
Sulfate	QC78172	Duplicate -241209128-02	0 - 20	-	0.1	EPA 300.0
		LCS	90 - 110	99.1	-	
		MS -241209128-02A	75 - 125	101.4	-	0115
Total Dissolved Solids	QC78158	Duplicate -241210029-02	0 - 10	-	0.4	SM 2540-C
		LCS	85 - 115	100.1	-	
Phosphorus - Total	QC78194	Duplicate -241210162-01	0 - 20	-	0.5	EPA 365.1
		LCS	90 - 110	104.6	-	
		MS -241210162-03B	75 - 125	78.6	-	
Total Suspended Solids	QC78146	Duplicate -241210020-01	0 - 10	-	7.0	SM 2540-D
		LCS	90 - 110	91.4	-	

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

All analyses were performed in accordance with approved methods under the latest revision to 40 CFR Part 136 unless otherwise identified. Based on my inquiry of the person or persons directly responsible for analyzing samples and generating the report (s), the analyses, report, and information submitted are, to the best of my knowledge and belief, true, accurate, and complete.

DATA APPROVED FOR RELEASE BY

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Chain of Custody Form

					Chain o	f Custod	y Fo	rm										Ţ.	Ž	Cole Ana	၁က	do
Report To Informati	on	- 100 - 100		Bill To Info	rmation (If	different fro	m repo	rt to)		Pro	ject ľ	Vame	/ Nu	mber						.ABORAT		
Company Name:	hori	n Resource	es	Company N	ame:																	
Contact Name:	JI	ickersor	·	Contact Nai	ne:													1041	merce 1 Heir	nz Wa	y	•
Address: 1900	Main	St Cuil	Q 01	Address:							k Nu o Use						Commerce City CO 8064 Lakewood Service Center					
City Oway			1427	City	St	tate 2	Zip							610 Garrison Street, Unit E Lakewood CO 80215								
Phone: (602) 7				Phone:									CA	L T	ask			Phon	ne: 303	3-659.	231:	3
Email: Cidick	uson	etherin r	esourceed	mail:		·									006	1						
Sample Collector: Sample Collector Pho		es stibo		PO No.:										CJF				www	.color	<u>adola</u>	b.co	<u>m</u>
		10C 100K			(2.1.).							11				/ 		- W W		Marin Stynes		
Spiit		HCS POUY ample Matrix			- pol1019	. પ જાજે જાજ	1			38574-3		0	T		T	ests R	eque	sted				
Water (CWA / NPDES) Includes wastewater, non samples not intended for water use.	ı-potable	Drinking W (SDWA) Includes finisheraw (untreated)	ater d drinking water,	Solid ((503 R 846)	(Sludge) [Regs / RCR		No. of Containers	ab	or (Check One Only) Composite	68023110033	8023110034	Ch2-1080										
Date Time			Sample	e ID			β	S.	င်ဝင်	Q	ර	ඡ										
12/9 11:45		0	FUOZA		790		3	*		X			1									
12/9/11:45			FOOZA				5	X			乂											
12/9 10:28			16-5				5	1				4										
12/9/10:52			16-2				5	*				K							T			
12/9 11:18			16-8				5	1				بمر										
																		}				
* NO oil	arei	15e			Preserved		L															
· · ·	cd	,			774-	02 AB	5		23	₽ ₹	- b	6	NA	_								
			Sample I	D: 0 - 00																		
			Initials:	JA	Date: 12	110/20	1 /															
Instructions: Ple	ase R	letua Bo	Hes			C/S Info:			. ^ -					5		resent		,			(
			Received By		Date/Tim	Deliver Via	: Relingu	-	103			C/S	Charge /Time	ÞΚ	Temp.	$\frac{\mathcal{Q}}{\text{eived}}$	C/Ice		Sample I	Pres. Ye	<u>*</u>	io 🔲
Relinquished By:		te/Time: 4:45 p	Received By	·	Date/11m	Page 1			. Бу:		\dashv	Date	, 1 11316	7.	ł	Ad	,	nnA				124
20000		<i></i>	<u> </u>		L	i age i	- 01 1	-							14	YYLA		I VA	l			100

CAL Task 241210006

CJF

Quotation for Analytical Services

Quote ID: QBO24010976

LABORATORIES, INC.

Prepared For:

Thorin Resources, LLC

1900 Main St

Unit 1

Ouray, CO 81427

Attn: CJ Dickerson

Project:

DRMS

in a second to	Quote Da	te: Wednesday	, January 31, 2024
Turn A	round Tin	ne: 10 Working	Days

Matrix	Description	Method	Qty.	Price - each	Total
Water - Ground	Alkalinity - B-C	N/A	12	\$16.00	\$192.00
Water - Ground	Alkalinity	SM 2320-B	12	Incl.	Incl.
Water - Ground	Carb/ Bicarb	SM 2320-B	12	Incl.	Incl.
Water - Ground	Hardness - Totai	SM 2340-B	12	\$0.00	\$0.00
Water - Ground	Nitrate/ Nitrite Nitrogen	Calculation	12	\$0.00	\$0.00
Water - Ground	B - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Ca - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Ca - Total	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Fe - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	K - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Mg - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Mg - Total	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Na - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Ph	SM 4500-H-B	12	\$13.00	\$156.00
Water - Ground	Specific Conductance	EPA 120.1	12	\$14.00	\$168.00
Water - Ground	Ag - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	AI - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	As - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Ba - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Be - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Cd - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Cr - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Cu - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Mn - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Mo - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Ni - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Pb - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Sb - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Se - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Si - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	TDS	SM 2540-C	12	\$16.00	\$192.00

Page 1 of 4

JML

CJF

Quotation for Analytical Services

Quote ID: QBO24010976

ŧ	A	D	\wedge	m	Λ	***	^	m	ŝ	<u></u>	C	1	K.	0	
3		m5:	{ }	₩	شتر	. 8	١,	3~5	3	\$***	~	- 1	8N		

Water - Ground	TI - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	TSS	SM 2540-D	12	\$16.00	\$192.00
Water - Ground	V - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Zn - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Chloride	EPA 300.0	12	\$18.00	\$216.00
Water - Ground	Fluoride	EPA 300.0	12	\$18.00	\$216.00
Water - Ground	Nitrate Nitrogen	EPA 300.0	12	\$18.00	\$216.00
Water - Ground	Nitrite Nitrogen	EPA 300.0	12	\$18.00	\$216.00
Water - Ground	Sulfate	EPA 300.0	12	\$18.00	\$216.00
Water - Ground	U - Dis	EPA 200.8	12	\$23.00	\$276.00
Water - Ground	Total Phosphorus	EPA 365.1	12	\$26.00	\$312.00
Water - Ground	Hg	EPA 245.7	12	\$27.00	\$324.00
Water - Ground	Cyanide-Total	EPA 335.4	12	\$40.00	\$480.00

\$8,076.00

Colorado Analytical Laboratory maintains certification by the Colorado Department of Health (CDPHE) and EPA Region 8 for Wyoming and Tribal Public Water Systems to analyze drinking water for organic contaminants (SOC's VOC's), inorganic contaminants (metals), nitrate nitrite, cyanide, fluoride and coliform bacteria.

Sub-Lab analysis pricing subject to change. Sub-Lab radiological analysis turn-around time is 4 to 8 weeks depending on sample matrix. Due to time, distance and other constraints outside of the control of CAL shipments to sub labs are not guaranteed. All shipment charges will be billed to the client regardless of shipment outcome.

Billing terms are Net 30 on approved accounts; all other accounts are COD. Additional charges may apply for accelerated turn around.

We appreciate the opportunity to be of service to you. If you have questions please call us at 303-659-2313 or visit us at www.coloradolab.com

Page 2 of 4

^{**}Samples should be shipped or hand delivered the same day they are collected. Orders that require sub-lab analysis should be delivered to the lab Monday thru Wednesday only.**

TASK NO: 240322002

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240322002

Client PO:

Client Project: DRMS

Date Received: 3/22/24
Date Reported: 4/1/24

Matrix: Water - Ground

Customer Sample ID GW-3R

Sample Date/Time: 3/21/24 11:00 AM

Lab Number: 240322002-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Total Alkalinity	33.1 mg/L as CaCO3	SM 2320-B	4.0	1	3/26/24	QC72203	TAB
Bicarbonate	33.1 mg/L as CaCO3	SM 2320-B	0.2	0.2	3/26/24	=	TAB
Carbonate	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	3/26/24	-	TAB
Hydroxide	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	3/26/24	-	TAB
Chloride	0.20 mg/L	EPA 300.0	0.10	0.007	3/22/24	QC72178	NRP
Cyanide-Total	ND mg/L	EPA 335.4	0.005	0.0005	3/27/24	QC72214	KRB
Fluoride	0.14 mg/L	EPA 300.0	0.10	0.024	3/22/24	QC72179	NRP
Nitrate Nitrogen	0.17 mg/L	EPA 300.0	0.05	0.02	3/22/24	QC72180	NRP
Nitrate/ Nitrite Nitrogen	0.17 mg/L	Calculation	0.05	0.02	3/26/24	-	NRP
Nitrite Nitrogen	ND mg/L	EPA 300.0	0.03	0.01	3/22/24	QC72181	NRP
рН	6.69 units	SM 4500-H-B	0.01	0.01	3/22/24	-	AKF
Specific Conductance	253 umhos/cm @ 25c	EPA 120.1	5	5	3/22/24	-	AKF
Sulfate	76.5 mg/L	EPA 300.0	0.10	0.012	3/22/24	QC72182	NRP
Total Dissolved Solids	105 mg/L	SM 2540-C	5	2	3/27/24	QC72209	ISG
Phosphorus - Total	ND mg/L	EPA 365.1	0.05	0.006	3/26/24	QC72204	TAB
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	3/25/24	QC72170	ISG
<u>Dissolved</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	3/28/24	QC72280	JJA
Aluminum	0.002 mg/L	EPA 200.8	0.001	0.00003	3/29/24	QC72284	MBN
Antimony	ND mg/L	EPA 200.8	0.0012	0.00012	3/29/24	QC72284	MBN
Arsenic	ND mg/L	EPA 200.8	0.0006	0.00006	3/29/24	QC72284	MBN
Barium	0.0383 mg/L	EPA 200.8	0.0007	0.00007	3/29/24	QC72284	MBN
Beryllium	ND mg/L	EPA 200.8	0.0001	0.000008	3/29/24	QC72284	MBN
Cadmium	0.0004 mg/L	EPA 200.8	0.0001	0.000006	3/29/24	QC72284	MBN
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	3/29/24	QC72284	MBN

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit

mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240322002

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240322002

Client PO:

Client Project: DRMS

Date Received: 3/22/24
Date Reported: 4/1/24

Matrix: Water - Ground

Customer Sample ID GW-3R

Sample Date/Time: 3/21/24 11:00 AM

Lab Number: 240322002-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
<u>Dissolved</u>							
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	3/29/24	QC72284	MBN
Lead	ND mg/L	EPA 200.8	0.0001	0.000006	3/29/24	QC72284	MBN
Manganese	ND mg/L	EPA 200.8	0.0008	0.00001	3/29/24	QC72284	MBN
Molybdenum	0.0007 mg/L	EPA 200.8	0.0005	0.00005	3/29/24	QC72284	MBN
Nickel	ND mg/L	EPA 200.8	0.0009	0.00005	3/29/24	QC72284	MBN
Selenium	ND mg/L	EPA 200.8	0.0008	80000.0	3/29/24	QC72284	MBN
Silica (as Si)	1.9 mg/L	EPA 200.8	0.3	0.03	3/29/24	QC72284	MBN
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	3/29/24	QC72284	MBN
Thallium	ND mg/L	EPA 200.8	0.0002	0.000003	3/29/24	QC72284	MBN
Uranium	ND mg/L	EPA 200.8	0.0002	0.000002	3/29/24	QC72284	MBN
Vanadium	ND mg/L	EPA 200.8	0.001	0.0001	3/29/24	QC72284	MBN
Zinc	0.225 mg/L	EPA 200.8	0.001	0.00003	3/29/24	QC72284	MBN
Boron	ND mg/L	EPA 200.7	0.05	0.01	3/27/24	QC72191	JJA
Calcium	40.6 mg/L	EPA 200.7	0.1	0.01	3/27/24	QC72191	JJA
Iron	ND mg/L	EPA 200.7	0.005	0.0005	3/27/24	QC72191	JJA
Magnesium	2.24 mg/L	EPA 200.7	0.02	0.002	3/27/24	QC72191	JJA
Potassium	0.4 mg/L	EPA 200.7	0.1	0.01	3/27/24	QC72191	JJA
Sodium	2.3 mg/L	EPA 200.7	0.1	0.01	3/27/24	QC72191	JJA
<u>Total</u>							
Total Hardness	118.6 mg/L as CaCO3	SM 2340-B	0.1	-	3/27/24	-	JJA
Calcium	43.6 mg/L	EPA 200.7	0.1	0.01	3/27/24	QC72191	JJA
Magnesium	2.39 mg/L	EPA 200.7	0.02	0.002	3/27/24	QC72191	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240322002

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240322002

Client PO:

Client Project: DRMS

Date Received: 3/22/24 Date Reported: 4/1/24

Matrix: Water - Ground

Customer Sample ID GW-3B

Sample Date/Time: 3/21/24 11:40 AM

Lab Number: 240322002-02

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Total Alkalinity	32.0 mg/L as CaCO3	SM 2320-B	4.0	1	3/26/24	QC72203	TAB
Bicarbonate	32.0 mg/L as CaCO3	SM 2320-B	0.2	0.2	3/26/24	=	TAB
Carbonate	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	3/26/24	-	TAB
Hydroxide	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	3/26/24	-	TAB
Chloride	0.19 mg/L	EPA 300.0	0.10	0.007	3/22/24	QC72178	NRP
Cyanide-Total	ND mg/L	EPA 335.4	0.005	0.0005	3/27/24	QC72214	KRB
Fluoride	0.21 mg/L	EPA 300.0	0.10	0.024	3/22/24	QC72179	NRP
Nitrate Nitrogen	0.15 mg/L	EPA 300.0	0.05	0.02	3/22/24	QC72180	NRP
Nitrate/ Nitrite Nitrogen	0.15 mg/L	Calculation	0.05	0.02	3/26/24	-	NRP
Nitrite Nitrogen	ND mg/L	EPA 300.0	0.03	0.01	3/22/24	QC72181	NRP
рН	6.57 units	SM 4500-H-B	0.01	0.01	3/22/24	-	AKF
Specific Conductance	247 umhos/cm @ 25c	EPA 120.1	5	5	3/22/24	-	AKF
Sulfate	73.7 mg/L	EPA 300.0	0.10	0.012	3/22/24	QC72182	NRP
Total Dissolved Solids	83 mg/L	SM 2540-C	5	2	3/27/24	QC72209	ISG
Phosphorus - Total	ND mg/L	EPA 365.1	0.05	0.006	3/26/24	QC72204	TAB
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	3/25/24	QC72170	ISG
<u>Dissolved</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	3/28/24	QC72280	JJA
Aluminum	ND mg/L	EPA 200.8	0.001	0.00003	3/29/24	QC72284	MBN
Antimony	ND mg/L	EPA 200.8	0.0012	0.00012	3/29/24	QC72284	MBN
Arsenic	ND mg/L	EPA 200.8	0.0006	0.00006	3/29/24	QC72284	MBN
Barium	0.0533 mg/L	EPA 200.8	0.0007	0.00007	3/29/24	QC72284	MBN
Beryllium	ND mg/L	EPA 200.8	0.0001	0.000008	3/29/24	QC72284	MBN
Cadmium	ND mg/L	EPA 200.8	0.0001	0.000006	3/29/24	QC72284	MBN
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	3/29/24	QC72284	MBN

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM

ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240322002

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240322002

Client PO:

Client Project: DRMS

Date Received: 3/22/24
Date Reported: 4/1/24

Matrix: Water - Ground

Customer Sample ID GW-3B

Sample Date/Time: 3/21/24 11:40 AM

Lab Number: 240322002-02

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
<u>Dissolved</u>							
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	3/29/24	QC72284	MBN
Lead	ND mg/L	EPA 200.8	0.0001	0.000006	3/29/24	QC72284	MBN
Manganese	ND mg/L	EPA 200.8	0.0008	0.00001	3/29/24	QC72284	MBN
Molybdenum	0.0007 mg/L	EPA 200.8	0.0005	0.00005	3/29/24	QC72284	MBN
Nickel	ND mg/L	EPA 200.8	0.0009	0.00005	3/29/24	QC72284	MBN
Selenium	ND mg/L	EPA 200.8	0.0008	0.00008	3/29/24	QC72284	MBN
Silica (as Si)	2.0 mg/L	EPA 200.8	0.3	0.03	3/29/24	QC72284	MBN
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	3/29/24	QC72284	MBN
Thallium	ND mg/L	EPA 200.8	0.0002	0.000003	3/29/24	QC72284	MBN
Uranium	ND mg/L	EPA 200.8	0.0002	0.000002	3/29/24	QC72284	MBN
Vanadium	ND mg/L	EPA 200.8	0.001	0.0001	3/29/24	QC72284	MBN
Zinc	0.121 mg/L	EPA 200.8	0.001	0.00003	3/29/24	QC72284	MBN
Boron	ND mg/L	EPA 200.7	0.05	0.01	3/27/24	QC72191	JJA
Calcium	37.8 mg/L	EPA 200.7	0.1	0.01	3/27/24	QC72191	JJA
Iron	ND mg/L	EPA 200.7	0.005	0.0005	3/27/24	QC72191	JJA
Magnesium	2.57 mg/L	EPA 200.7	0.02	0.002	3/27/24	QC72191	JJA
Potassium	0.5 mg/L	EPA 200.7	0.1	0.01	3/27/24	QC72191	JJA
Sodium	2.2 mg/L	EPA 200.7	0.1	0.01	3/27/24	QC72191	JJA
<u>Total</u>							
Total Hardness	110.3 mg/L as CaCO3	SM 2340-B	0.1	-	3/27/24	-	JJA
Calcium	39.7 mg/L	EPA 200.7	0.1	0.01	3/27/24	QC72191	JJA
Magnesium	2.69 mg/L	EPA 200.7	0.02	0.002	3/27/24	QC72191	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240322002

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240322002

Client PO:

Client Project: DRMS

Date Received: 3/22/24 Date Reported: 4/1/24

Matrix: Water - Ground

Customer Sample ID GW-99

Sample Date/Time: 3/21/24 11:15 AM

Lab Number: 240322002-03

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Total Alkalinity	33.7 mg/L as CaCO3	SM 2320-B	4.0	1	3/26/24	QC72203	TAB
Bicarbonate	33.7 mg/L as CaCO3	SM 2320-B	0.2	0.2	3/26/24	=	TAB
Carbonate	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	3/26/24	-	TAB
Hydroxide	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	3/26/24	-	TAB
Chloride	0.21 mg/L	EPA 300.0	0.10	0.007	3/22/24	QC72178	NRP
Cyanide-Total	ND mg/L	EPA 335.4	0.005	0.0005	3/27/24	QC72214	KRB
Fluoride	0.14 mg/L	EPA 300.0	0.10	0.024	3/22/24	QC72179	NRP
Nitrate Nitrogen	0.17 mg/L	EPA 300.0	0.05	0.02	3/22/24	QC72180	NRP
Nitrate/ Nitrite Nitrogen	0.17 mg/L	Calculation	0.05	0.02	3/26/24	-	NRP
Nitrite Nitrogen	ND mg/L	EPA 300.0	0.03	0.01	3/22/24	QC72181	NRP
рН	6.54 units	SM 4500-H-B	0.01	0.01	3/22/24	-	AKF
Specific Conductance	256 umhos/cm @ 25c	EPA 120.1	5	5	3/22/24	-	AKF
Sulfate	77.8 mg/L	EPA 300.0	0.10	0.012	3/22/24	QC72182	NRP
Total Dissolved Solids	112 mg/L	SM 2540-C	5	2	3/27/24	QC72209	ISG
Phosphorus - Total	ND mg/L	EPA 365.1	0.05	0.006	3/26/24	QC72204	TAB
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	3/25/24	QC72170	ISG
<u>Dissolved</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	3/28/24	QC72280	JJA
Aluminum	ND mg/L	EPA 200.8	0.001	0.00003	3/29/24	QC72284	MBN
Antimony	ND mg/L	EPA 200.8	0.0012	0.00012	3/29/24	QC72284	MBN
Arsenic	ND mg/L	EPA 200.8	0.0006	0.00006	3/29/24	QC72284	MBN
Barium	0.0375 mg/L	EPA 200.8	0.0007	0.00007	3/29/24	QC72284	MBN
Beryllium	ND mg/L	EPA 200.8	0.0001	0.000008	3/29/24	QC72284	MBN
Cadmium	0.0004 mg/L	EPA 200.8	0.0001	0.000006	3/29/24	QC72284	MBN
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	3/29/24	QC72284	MBN

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM

ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240322002

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240322002

Client PO:

Client Project: DRMS

Date Received: 3/22/24 Date Reported: 4/1/24

Matrix: Water - Ground

Customer Sample ID GW-99

Sample Date/Time: 3/21/24 11:15 AM

Lab Number: 240322002-03

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
<u>Dissolved</u>							
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	3/29/24	QC72284	MBN
Lead	ND mg/L	EPA 200.8	0.0001	0.000006	3/29/24	QC72284	MBN
Manganese	ND mg/L	EPA 200.8	0.0008	0.00001	3/29/24	QC72284	MBN
Molybdenum	0.0006 mg/L	EPA 200.8	0.0005	0.00005	3/29/24	QC72284	MBN
Nickel	ND mg/L	EPA 200.8	0.0009	0.00005	3/29/24	QC72284	MBN
Selenium	ND mg/L	EPA 200.8	0.0008	0.00008	3/29/24	QC72284	MBN
Silica (as Si)	2.2 mg/L	EPA 200.8	0.3	0.03	3/29/24	QC72284	MBN
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	3/29/24	QC72284	MBN
Thallium	ND mg/L	EPA 200.8	0.0002	0.000003	3/29/24	QC72284	MBN
Uranium	ND mg/L	EPA 200.8	0.0002	0.000002	3/29/24	QC72284	MBN
Vanadium	ND mg/L	EPA 200.8	0.001	0.0001	3/29/24	QC72284	MBN
Zinc	0.214 mg/L	EPA 200.8	0.001	0.00003	3/29/24	QC72284	MBN
Boron	ND mg/L	EPA 200.7	0.05	0.01	3/27/24	QC72191	JJA
Calcium	40.2 mg/L	EPA 200.7	0.1	0.01	3/27/24	QC72191	JJA
Iron	ND mg/L	EPA 200.7	0.005	0.0005	3/27/24	QC72191	JJA
Magnesium	2.22 mg/L	EPA 200.7	0.02	0.002	3/27/24	QC72191	JJA
Potassium	0.4 mg/L	EPA 200.7	0.1	0.01	3/27/24	QC72191	JJA
Sodium	2.2 mg/L	EPA 200.7	0.1	0.01	3/27/24	QC72191	JJA
<u>Total</u>							
Total Hardness	116.8 mg/L as CaCO3	SM 2340-B	0.1	-	3/27/24	-	JJA
Calcium	42.9 mg/L	EPA 200.7	0.1	0.01	3/27/24	QC72191	JJA
Magnesium	2.36 mg/L	EPA 200.7	0.02	0.002	3/27/24	QC72191	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Test

Analytical QC Summary

Method

Prep Date

TASK NO: 240322002

Report To: CJ Dickerson Receive Date: 3/22/24
Company: Thorin Resources, LLC Project Name: DRMS

QC Batch ID

QC72178

Duplicate

QC Type

Result

Total Alkalinity	QC72203	Duplicate	0 - 20	% Rec	1.6	SM 2320-B
Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
Total Suspended Solids	QC72204 QC72170	Blank	ND		SM 2540-D	3/25/24
Phosphorus - Total	QC72204	Blank	ND		EPA 365.1	3/25/24
Total Dissolved Solids	QC72102 QC72209	Blank	ND		SM 2540-C	3/26/24
Sulfate	QC72181 QC72182	Blank	ND ND		EPA 300.0	3/22/24
Nitrite Nitrogen	QC72181	Blank	ND ND		EPA 300.0	3/22/24
Nitrate Nitrogen	QC72191 QC72180	Blank	ND		EPA 300.0	3/22/24
Sodium	QC72191 QC72191	Method Blank	ND		EPA 200.7	3/22/24
Potassium	QC72191 QC72191	Method Blank	ND ND		EPA 200.7	3/22/24
Magnesium	QC72191 QC72191	Method Blank	ND		EPA 200.7	3/22/24
Iron	QC72191 QC72191	Method Blank	ND ND		EPA 200.7 EPA 200.7	3/22/24
Calcium	QC72191 QC72191	Method Blank	ND ND		EPA 200.7 EPA 200.7	3/22/24
Boron	QC72264 QC72191	Method Blank	ND ND		EPA 200.8 EPA 200.7	3/22/24
Zinc	QC72284	Method Blank	ND ND		EPA 200.8	3/22/24
Vanadium	QC72284	Method Blank	ND ND		EPA 200.8	3/22/24
Triallium Uranium	QC72284	Method Blank	ND ND		EPA 200.8	3/22/24
Thallium	QC72284 QC72284	Method Blank	ND		EPA 200.8	3/22/24
Silver	QC72284 QC72284	Method Blank	ND		EPA 200.8	3/22/24
Silica (as Si)	QC72284 QC72284	Method Blank	ND		EPA 200.8	3/22/24
Selenium	QC72284 QC72284	Method Blank	ND		EPA 200.8	3/22/24
Nickel	QC72284 QC72284	Method Blank	ND		EPA 200.8	3/22/24
Molybdenum	QC72284 QC72284	Method Blank	ND		EPA 200.8	3/22/24
Jeau Manganese	QC72284 QC72284	Method Blank	ND		EPA 200.8	3/22/24
_ead	QC72284	Method Blank	ND		EPA 200.8	3/22/24
Copper	QC72284	Method Blank	ND		EPA 200.8	3/22/24
Chromium	QC72284 QC72284	Method Blank	ND		EPA 200.8	3/22/24
Cadmium	QC72284	Method Blank	ND		EPA 200.8	3/22/24
Beryllium	QC72284 QC72284	Method Blank	ND ND		EPA 200.8	3/22/24
Barium	QC72284 QC72284	Method Blank	ND		EPA 200.8	3/22/24
Arsenic	QC72284 QC72284	Method Blank	ND		EPA 200.8	3/22/24
Antimony	QC72284 QC72284	Method Blank	ND		EPA 200.8	3/22/24
Aluminum	QC72284	Method Blank	ND ND		EPA 200.8	3/22/24
Mercury	QC72179 QC72280	Method Blank	ND		EPA 245.7	3/28/24
Fluoride	QC72214 QC72179	Blank	ND		EPA 300.0	3/22/24
Onlonde Cyanide-Total	QC72178 QC72214	Blank Blank	ND ND		EPA 300.0 EPA 335.4	3/22/24 3/26/24
Total Alkalinity Chloride	QC72203 QC72178	Blank	ND ND		SM 2320-B	3/25/24 3/22/24

Abbreviations/ References:

Chloride

RL = Reporting Limit = Minimum Level

MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM

mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

3.2

ND = Not Detected at Reporting Limit.

0 - 20

EPA 300.0

Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
		LCS	90 - 110	101.0	-	
		MS	75 - 125	95.8	-	
Cyanide-Total	QC72214	Duplicate	0 - 20	-	0.0	EPA 335.4
		LCS	90 - 110	99.9	-	
		MS	75 - 125	88.5	-	
Fluoride	QC72179	Duplicate	0 - 20	-	0.2	EPA 300.0
		LCS	90 - 110	101.6	-	
		MS	75 - 125	98.9	-	
Mercury	QC72280	Duplicate	0 - 20	-	0.0	EPA 245.7
		LCS	90 - 110	101.8	-	
		MS	80 - 120	104.0	-	
Aluminum	QC72284	LCS	90 - 110	100.1	-	EPA 200.8
		MS	70 - 130	99.6	-	
		MSD	0 - 10	-	1.1	
Antimony	QC72284	LCS	90 - 110	104.3	-	EPA 200.8
		MS	70 - 130	114.2	-	
		MSD	0 - 10	-	1.2	
Arsenic	QC72284	LCS	90 - 110	99.1	-	EPA 200.8
		MS	70 - 130	120.9	-	
		MSD	0 - 10	-	0.9	
Barium	QC72284	LCS	90 - 110	100.2	-	EPA 200.8
		MS	70 - 130	109.8	-	
		MSD	0 - 10	-	3.8	
Beryllium	QC72284	LCS	90 - 110	100.4	-	EPA 200.8
		MS	70 - 130	99.1	-	
		MSD	0 - 10	-	9.8	
Cadmium	QC72284	LCS	90 - 110	98.8	-	EPA 200.8
		MS	70 - 130	115.1	-	
		MSD	0 - 10	-	0.8	
Chromium	QC72284	LCS	90 - 110	105.2	-	EPA 200.8
		MS	70 - 130	103.0	-	
		MSD	0 - 10	-	0.6	
Copper	QC72284	LCS	90 - 110	100.5	-	EPA 200.8
		MS	70 - 130	121.2	-	
		MSD	0 - 10	-	8.6	
Lead	QC72284	LCS	90 - 110	107.9	-	EPA 200.8
		MS	70 - 130	88.5	-	
		MSD	0 - 10	-	8.9	
	QC72284	LCS	90 - 110	103.9	-	EPA 200.8
•		MS	70 - 130	115.8	-	
		MSD	0 - 10	-	1.9	
 Molybdenum	QC72284	LCS	90 - 110	98.7	-	EPA 200.8
•		MS	70 - 130	107.0	-	
		MSD	0 - 10	-	3.2	
Nickel	QC72284	LCS	90 - 110	107.8	-	EPA 200.8
		MS	70 - 130	97.9	-	
		MSD	0 - 10	-	2.5	
 Selenium	QC72284	LCS	90 - 110	100.0	-	EPA 200.8
		MS	70 - 130	126.4	-	
		MSD	0 - 10	-	1.7	

Abbreviations/ References:

 $RL = Reporting\ Limit = Minimum\ Level$ RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
	•	MS	70 - 130	0.0	S -	
		MSD	0 - 10	-	0.6	
Silver	QC72284	LCS	90 - 110	96.7	-	EPA 200.8
		MS	70 - 130	93.7	-	
		MSD	0 - 10	-	0.4	
Thallium	QC72284	LCS	90 - 110	97.2	-	EPA 200.8
		MS	70 - 130	97.3	-	
		MSD	0 - 10	-	8.2	
Jranium	QC72284	LCS	90 - 110	108.2	-	EPA 200.8
		MS	70 - 130	91.1	-	
		MSD	0 - 10	-	7.2	
/anadium	QC72284	LCS	90 - 110	104.7	-	EPA 200.8
		MS	70 - 130	99.0	-	
		MSD	0 - 10	-	1.7	
Zinc	QC72284	LCS	90 - 110	101.3	-	EPA 200.8
		MS	70 - 130	114.0	-	
		MSD	0 - 10	_	1.6	
Boron	QC72191	Duplicate	0 - 20	-	12.0	EPA 200.7
		LCS	90 - 110	106.6	-	
		MS	75 - 125	87.5	-	
Calcium	QC72191	Duplicate	0 - 20	_	2.5	EPA 200.7
		LCS	90 - 110	98.1	-	
		MS	75 - 125	113.1	-	
ron	QC72191	Duplicate	0 - 20	-	7.4	EPA 200.7
	Q0/2101	LCS	90 - 110	109.1	-	217(200.1
		MS	75 - 125	99.7	-	
Magnesium	QC72191	Duplicate	0 - 20	-	1.2	EPA 200.7
nagnosiam	Q0/2101	LCS	90 - 110	95.1	-	217(200.1
		MS	75 - 125	107.4	-	
Potassium	QC72191	Duplicate	0 - 20	-	3.0	EPA 200.7
otaosiam	QOZZIOI	LCS	90 - 110	93.0	-	217(200.7
		MS	75 - 125	106.6	_	
Sodium	QC72191	Duplicate	0 - 20	-	3.5	EPA 200.7
Socialii	Q072131	LCS	90 - 110	93.5	-	LI A 200.1
		MS	75 - 125	104.9	_	
Nitrate Nitrogen	QC72180	Duplicate	0 - 20	-	0.3	EPA 300.0
witate wittogen	QC/2100	LCS	90 - 110	98.0	-	LI A 300.0
		MS	75 - 125	91.9	_	
Nitrite Nitrogen	QC72181	Duplicate	0 - 20	-	0.0	EPA 300.0
wille Milogen	QC/2101	LCS	90 - 110	94.4	0.0	LFA 300.0
		MS	75 - 125	112.4	-	
Cultata	0070400					EDA 200.0
Sulfate	QC72182	Duplicate	0 - 20	- 00.5	0.1	EPA 300.0
		LCS	90 - 110 75 - 135	99.5	-	
Fatal Disastrad Octivis	0.070000	MS	75 - 125	95.2	-	OM 05 40 0
Total Dissolved Solids	QC72209	Duplicate	0 - 10	-	6.9	SM 2540-C
		LCS	85 - 115	102.0	-	
Phosphorus - Total	QC72204	Duplicate	0 - 20	-	1.9	EPA 365.1
		LCS	90 - 110	98.7	-	
		MS	75 - 125	102.0	<u>-</u>	
Total Suspended Solids	QC72170	Duplicate	0 - 10	-	5.2	SM 2540-D
		LCS	90 - 110	91.1	-	

Abbreviations/ References:

 $RL = Reporting\ Limit = Minimum\ Level$ RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

All analyses were performed in accordance with approved methods under the latest revision to 40 CFR Part 136 unless otherwise identified. Based on my inquiry of the person or persons directly responsible for analyzing the wastewater samples and generating the report (s), the analyses, report, and information submitted are, to the best of my knowledge and belief, true, accurate, and complete.

DATA APPROVED FOR RELEASE BY

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Chain of Custody Form

Report To Information	Bill To Information (If different from report to)	Project Name / Number
Company Name: Thurin Resources	Company Name: Therin Resources	
Contact Name: CJ Dicheson	Contact Name: C5 Dicherson	
Address: 1900 Main St Mill	Address:	Task Number (Lab Use Only)
City Owny State CU Zip 81427	City State Zip	CAL Task
Phone: 970 316 - 2294	Phone:	240322002
Email: C'dicherson ethorin resources com	Email:	240022002
Sample Collector: CFDickerson		RMB
Sample Collector Phone: (602) 713-1321	PO No.:	

Commerce City Lab 10411 Heinz Way **Commerce City CO 80640**

Lakewood Service Center 610 Garrison Street, Unit E Lakewood CO 80215

Phone: 303-659-2313

www.coloradolab.com

												Te	sts Re	queste	d	-(- ₁₋₂ -)-(-)		
		Sample Matrix	(Select One Only)				3	()		1 1								
Waste \	Water 🔲	Soil 🗌		Drinking Water 🗌		ers	ځ											
Ground	i Water 🔀	Sludge 🗌		Drinking water		ıtain	Ç		.					ļ				
Surface	e Water 🗀	. }				No. of Containers	1.00 H	Composite	DRMS									
					12127139	9.0	irab	on (Q							[1 1
Date	Time		Sample ID			_		-		4-4			+-1		4-4		-	_
391	1100	GU	-37			5	*		*									
	1140	GW.	-3B			5	1		*	1								
	1115	GW -	99			5	4		*									
	 - 	* N: . i oo !	hich o	0.6 2 122 126														
		*ALL testing	per nistory	J. RD 0122124						1-1			+-1		1-+	+-		
		- Ka allantin a	date 11	\mathread \tag{\tag{\tag{\tag{\tag{\tag{\tag{				1		-					+-+		-	
		XCULLECTION	Wate / 4	1/1/2		1	14	,			 				+-+			
		*collection token	PRRM	attles				_		\perp					1-1			
			· · · · · · · · · · · · · · · · · · ·															
						}												1 1
Instructio	ons: A/2	Bottle retur 109	nired	C/S	S Info:						V	1	resent Y	es 🗌 No				
,	18 m	DOPPE PETER D		Del	liver Via:_	U	P5			C/S	Charge X	Temp.	J .	C/Ice /	Samj	ole Pres. Y	es 1	No 🗆
Relinquis	hed By:	Date/Time:	Received By:	Date/Time:	Reli	ingu	shed	By:		Date	Timé:	11000	eived B	By:		Date	,	
COD	demon	3/21 3:45 pm		P	age 11 c	of 13						LAR	Mai	MA		3/	02	124
										-					-			815

colorado LABORATORIES, INC.

RMB

Quotation for Analytical Services

Quote ID: QBO24010976

Prepared For:

Thorin Resources, LLC

1900 Main St

Unit 1

Ouray, CO 81427

Attn: CJ Dickerson

Quote Date: Wednesday, January 31, 2024 Turn Around Time: 10 Working Days

Project: DRMS

Matrix	Description	Method	Qty.	Price - each	Total
Water - Ground	Alkalinity - B-C	N/A	12	\$16.00	\$192.00
Water - Ground	Alkalinity	SM 2320-B	12	Incl.	Incl.
Water - Ground	Carb/ Bicarb	SM 2320-B	12	incl.	Incl.
Water - Ground	Hardness - Total	SM 2340-B	12	\$0.00	\$0.00
Water - Ground	Nitrate/ Nitrite Nitrogen	Calculation	12	\$0.00	\$0.00
Water - Ground	B - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Ca - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Ca - Total	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Fe - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	K - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Mg - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Mg - Total	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Na - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Ph	SM 4500-H-B	12	\$13.00	\$156.00
Water - Ground	Specific Conductance	EPA 120.1	12	\$14.00	\$168.00
Water - Ground	Ag - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Al - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	As - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Ba - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Be - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Cd - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Cr - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Cu - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Mn - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Mo - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Ni - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Pb - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Sb - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Se - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Si - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	TDS	SM 2540-C	12	\$16.00	\$192.00

Page 1 of 4

10411 Heinz Way / Commerce City, CO 80640 / 303-659-2313 Mailing Address: P.O. Box 507 / Brighton, CO 80601-0507

JML

CAL Task 240322002

RMB

Quotation for Analytical Services

Quote ID: QBO24010976

\$ A	\Box	1	\Box	٨	ngn	^	0	£	0	IN	1

Water - Ground TI - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground TSS	SM 2540-D	12	\$16.00	\$192.00
Water - Ground V - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground Zn - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground Chloride	EPA 300.0	12	\$18.00	\$216.00
Water - Ground Fluoride	EPA 300.0	12	\$18.00	\$216.00
Water - Ground Nitrate Nitrogen	EPA 300.0	12	\$18.00	\$216.00
Water - Ground Nitrite Nitrogen	EPA 300.0	12	\$18.00	\$216.00
Water - Ground Sulfate	EPA 300.0	12	\$18.00	\$216.00
Water - Ground U - Dis	EPA 200.8	12	\$23.00	\$276.00
Water - Ground Total Phosphorus	EPA 365.1	12	\$26.00	\$312.00
Water - Ground Hg - Dis.	EPA 245.7	12	\$27.00	\$324.00
Water - Ground Cyanide-Total	EPA 335.4	12	\$40.00	\$480.00

\$8,076.00

Colorado Analytical Laboratory maintains certification by the Colorado Department of Health (CDPHE) and EPA Region 8 for Wyoming and Tribal Public Water Systems to analyze drinking water for organic contaminants (SOC's VOC's), inorganic contaminants (metals), nitrate nitrite, cyanide, fluoride and coliform bacteria.

Sub-Lab analysis pricing subject to change. Sub-Lab radiological analysis turn-around time is 4 to 8 weeks depending on sample matrix. Due to time, distance and other constraints outside of the control of CAL shipments to sub labs are not guaranteed. All shipment charges will be billed to the client regardless of shipment outcome.

Billing terms are Net 30 on approved accounts; all other accounts are COD. Additional charges may apply for accelerated turn around.

We appreciate the opportunity to be of service to you. If you have questions please call us at 303-659-2313 or visit us at www.coloradolab.com

^{**}Samples should be shipped or hand delivered the same day they are collected. Orders that require sub-lab analysis should be delivered to the lab Monday thru Wednesday only.**

TASK NO: 240628033

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240628033

Client PO:

Client PO:

Client Project: DRMS

Date Received: 6/28/24 Date Reported: 7/5/24

Matrix: Water - Ground

Customer Sample ID GW-3R

Sample Date/Time: 6/27/24 12:21 PM

Lab Number: 240628033-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Total Alkalinity	32.1 mg/L as CaCO3	SM 2320-B	4.0	1	7/1/24	QC74496	TAB
Bicarbonate	32.1 mg/L as CaCO3	SM 2320-B	0.2	0.2	7/1/24	-	TAB
Carbonate	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	7/1/24	-	TAB
Hydroxide	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	7/1/24	-	TAB
Chloride	ND mg/L	EPA 300.0	1.00	0.007	6/28/24	QC74447	AMJ
Cyanide-Total	ND mg/L	EPA 335.4	0.005	0.0005	7/2/24	QC74485	KRB
Fluoride	0.25 mg/L	EPA 300.0	0.10	0.024	6/28/24	QC74448	AMJ
Nitrate Nitrogen	0.46 mg/L	EPA 300.0	0.05	0.02	6/28/24	QC74449	AMJ
Nitrate/ Nitrite Nitrogen	0.46 mg/L	Calculation	0.05	0.02	7/2/24	-	AMJ
Nitrite Nitrogen	ND mg/L	EPA 300.0	0.03	0.01	6/28/24	QC74452	AMJ
рН	6.57 units	SM 4500-H-B	0.01	0.01	6/28/24	-	ARH
Specific Conductance	221 umhos/cm @ 25c	EPA 120.1	5	5	6/28/24	-	ARH
Sulfate	64.8 mg/L	EPA 300.0	1.00	0.012	6/28/24	QC74451	AMJ
Total Dissolved Solids	131 mg/L	SM 2540-C	5	2	7/3/24	QC74464	ISG
Phosphorus - Total	0.07 mg/L	EPA 365.1	0.05	0.006	7/2/24	QC74480	TAB
Total Suspended Solids	8 mg/L	SM 2540-D	5	2	7/1/24	QC74421	ISG
<u>Dissolved</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	7/3/24	QC74515	JJA
Aluminum	0.037 mg/L	EPA 200.8	0.001	0.00003	7/2/24	QC74492	MBN
Antimony	ND mg/L	EPA 200.8	0.0012	0.00012	7/2/24	QC74492	MBN
Arsenic	ND mg/L	EPA 200.8	0.0006	0.00006	7/2/24	QC74492	MBN
Barium	0.0311 mg/L	EPA 200.8	0.0007	0.00007	7/2/24	QC74492	MBN
Beryllium	ND mg/L	EPA 200.8	0.0001	0.000008	7/2/24	QC74492	MBN
Cadmium	0.0003 mg/L	EPA 200.8	0.0001	0.000006	7/2/24	QC74492	MBN
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	7/2/24	QC74492	MBN

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit

mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240628033

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240628033

Client PO:

Client Project: DRMS

Date Received: 6/28/24 Date Reported: 7/5/24

Matrix: Water - Ground

Customer Sample ID GW-3R

Sample Date/Time: 6/27/24 12:21 PM

Lab Number: 240628033-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
<u>Dissolved</u>							
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	7/2/24	QC74492	MBN
Lead	0.0002 mg/L	EPA 200.8	0.0001	0.000006	7/2/24	QC74492	MBN
Manganese	ND mg/L	EPA 200.8	0.0008	0.00001	7/2/24	QC74492	MBN
Molybdenum	0.0008 mg/L	EPA 200.8	0.0005	0.00005	7/2/24	QC74492	MBN
Nickel	ND mg/L	EPA 200.8	0.0009	0.00005	7/2/24	QC74492	MBN
Selenium	ND mg/L	EPA 200.8	0.0008	0.00008	7/2/24	QC74492	MBN
Silica (as Si)	2.3 mg/L	EPA 200.8	0.3	0.03	7/2/24	QC74492	MBN
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	7/2/24	QC74492	MBN
Thallium	ND mg/L	EPA 200.8	0.0002	0.000003	7/2/24	QC74492	MBN
Uranium	ND mg/L	EPA 200.8	0.0002	0.000002	7/2/24	QC74492	MBN
Vanadium	ND mg/L	EPA 200.8	0.001	0.0001	7/2/24	QC74492	MBN
Zinc	0.165 mg/L	EPA 200.8	0.001	0.00003	7/2/24	QC74492	MBN
Boron	ND mg/L	EPA 200.7	0.05	0.01	7/3/24	QC74504	MBN
Calcium	35.3 mg/L	EPA 200.7	0.1	0.01	7/3/24	QC74504	MBN
Iron	ND mg/L	EPA 200.7	0.005	0.0005	7/3/24	QC74504	MBN
Magnesium	1.98 mg/L	EPA 200.7	0.02	0.002	7/3/24	QC74504	MBN
Potassium	0.4 mg/L	EPA 200.7	0.1	0.01	7/3/24	QC74504	MBN
Sodium	2.8 mg/L	EPA 200.7	0.1	0.01	7/3/24	QC74504	MBN
<u>Total</u>							
Total Hardness	96.1 mg/L as CaCO3	SM 2340-B	0.1	-	7/3/24	-	MBN
Calcium	35.3 mg/L	EPA 200.7	0.1	0.01	7/3/24	QC74504	MBN
Magnesium	1.96 mg/L	EPA 200.7	0.02	0.002	7/3/24	QC74504	MBN

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240628033

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240628033

Client PO:

Client Project: DRMS

Date Received: 6/28/24 Date Reported: 7/5/24

Matrix: Water - Ground

Customer Sample ID GW-99

Sample Date/Time: 6/27/24 12:30 PM

Lab Number: 240628033-02

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Total Alkalinity	31.9 mg/L as CaCO3	SM 2320-B	4.0	1	7/1/24	QC74496	TAB
Bicarbonate	31.9 mg/L as CaCO3	SM 2320-B	0.2	0.2	7/1/24	-	TAB
Carbonate	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	7/1/24	-	TAB
Hydroxide	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	7/1/24	-	TAB
Chloride	ND mg/L	EPA 300.0	1.00	0.007	6/28/24	QC74447	AMJ
Cyanide-Total	ND mg/L	EPA 335.4	0.005	0.0005	7/2/24	QC74485	KRB
Fluoride	0.25 mg/L	EPA 300.0	0.10	0.024	6/28/24	QC74448	AMJ
Nitrate Nitrogen	0.46 mg/L	EPA 300.0	0.05	0.02	6/28/24	QC74449	AMJ
Nitrate/ Nitrite Nitrogen	0.46 mg/L	Calculation	0.05	0.02	7/2/24	-	AMJ
Nitrite Nitrogen	ND mg/L	EPA 300.0	0.03	0.01	6/28/24	QC74452	AMJ
рН	6.37 units	SM 4500-H-B	0.01	0.01	6/28/24	-	ARH
Specific Conductance	218 umhos/cm @ 25c	EPA 120.1	5	5	6/28/24	-	ARH
Sulfate	64.1 mg/L	EPA 300.0	1.00	0.012	6/28/24	QC74451	AMJ
Total Dissolved Solids	128 mg/L	SM 2540-C	5	2	7/3/24	QC74464	ISG
Phosphorus - Total	ND mg/L	EPA 365.1	0.05	0.006	7/2/24	QC74480	TAB
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	7/1/24	QC74421	ISG
<u>Dissolved</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	7/3/24	QC74515	JJA
Aluminum	0.036 mg/L	EPA 200.8	0.001	0.00003	7/2/24	QC74492	MBN
Antimony	ND mg/L	EPA 200.8	0.0012	0.00012	7/2/24	QC74492	MBN
Arsenic	ND mg/L	EPA 200.8	0.0006	0.00006	7/2/24	QC74492	MBN
Barium	0.0318 mg/L	EPA 200.8	0.0007	0.00007	7/2/24	QC74492	MBN
Beryllium	ND mg/L	EPA 200.8	0.0001	0.000008	7/2/24	QC74492	MBN
Cadmium	0.0003 mg/L	EPA 200.8	0.0001	0.000006	7/2/24	QC74492	MBN
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	7/2/24	QC74492	MBN

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM

ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240628033

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240628033

Client PO:

Client Project: DRMS

Date Received: 6/28/24 Date Reported: 7/5/24

Matrix: Water - Ground

Customer Sample ID GW-99

Sample Date/Time: 6/27/24 12:30 PM

Lab Number: 240628033-02

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
<u>Dissolved</u>							
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	7/2/24	QC74492	MBN
Lead	0.0001 mg/L	EPA 200.8	0.0001	0.000006	7/2/24	QC74492	MBN
Manganese	ND mg/L	EPA 200.8	0.0008	0.00001	7/2/24	QC74492	MBN
Molybdenum	0.0007 mg/L	EPA 200.8	0.0005	0.00005	7/2/24	QC74492	MBN
Nickel	ND mg/L	EPA 200.8	0.0009	0.00005	7/2/24	QC74492	MBN
Selenium	ND mg/L	EPA 200.8	0.0008	0.00008	7/2/24	QC74492	MBN
Silica (as Si)	2.3 mg/L	EPA 200.8	0.3	0.03	7/2/24	QC74492	MBN
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	7/2/24	QC74492	MBN
Thallium	ND mg/L	EPA 200.8	0.0002	0.000003	7/2/24	QC74492	MBN
Uranium	ND mg/L	EPA 200.8	0.0002	0.000002	7/2/24	QC74492	MBN
Vanadium	ND mg/L	EPA 200.8	0.001	0.0001	7/2/24	QC74492	MBN
Zinc	0.162 mg/L	EPA 200.8	0.001	0.00003	7/2/24	QC74492	MBN
Boron	ND mg/L	EPA 200.7	0.05	0.01	7/3/24	QC74504	MBN
Calcium	34.5 mg/L	EPA 200.7	0.1	0.01	7/3/24	QC74504	MBN
Iron	ND mg/L	EPA 200.7	0.005	0.0005	7/3/24	QC74504	MBN
Magnesium	1.91 mg/L	EPA 200.7	0.02	0.002	7/3/24	QC74504	MBN
Potassium	0.4 mg/L	EPA 200.7	0.1	0.01	7/3/24	QC74504	MBN
Sodium	2.7 mg/L	EPA 200.7	0.1	0.01	7/3/24	QC74504	MBN
<u>Total</u>							
Total Hardness	93.3 mg/L as CaCO3	SM 2340-B	0.1	-	7/3/24	-	MBN
Calcium	34.2 mg/L	EPA 200.7	0.1	0.01	7/3/24	QC74504	MBN
Magnesium	1.93 mg/L	EPA 200.7	0.02	0.002	7/3/24	QC74504	MBN

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Analytical QC Summary

TASK NO: 240628033

Report To: CJ Dickerson Receive Date: 6/28/24
Company: Thorin Resources, LLC Project Name: DRMS

Test	QC Batch ID	QC Type	Result	Method	Prep Date
Total Alkalinity	QC74496	Blank	ND	SM 2320-B	7/1/24
Chloride	QC74447	Blank	ND	EPA 300.0	6/28/24
Cyanide-Total	QC74485	Blank	ND	EPA 335.4	7/2/24
Fluoride	QC74448	Blank	ND	EPA 300.0	6/28/24
Mercury	QC74515	Method Blank	ND	EPA 245.7	7/3/24
Aluminum	QC74492	Method Blank	ND	EPA 200.8	6/28/24
Antimony	QC74492	Method Blank	ND	EPA 200.8	6/28/24
Arsenic	QC74492	Method Blank	ND	EPA 200.8	6/28/24
Barium	QC74492	Method Blank	ND	EPA 200.8	6/28/24
Beryllium	QC74492	Method Blank	ND	EPA 200.8	6/28/24
Cadmium	QC74492	Method Blank	ND	EPA 200.8	6/28/24
Chromium	QC74492	Method Blank	ND	EPA 200.8	6/28/24
Copper	QC74492	Method Blank	ND	EPA 200.8	6/28/24
Lead	QC74492	Method Blank	ND	EPA 200.8	6/28/24
Manganese	QC74492	Method Blank	ND	EPA 200.8	6/28/24
Molybdenum	QC74492	Method Blank	ND	EPA 200.8	6/28/24
Nickel	QC74492	Method Blank	ND	EPA 200.8	6/28/24
Selenium	QC74492	Method Blank	ND	EPA 200.8	6/28/24
Silica (as Si)	QC74492	Method Blank	ND	EPA 200.8	6/28/24
Silver	QC74492	Method Blank	ND	EPA 200.8	6/28/24
Thallium	QC74492	Method Blank	ND	EPA 200.8	6/28/24
Uranium	QC74492	Method Blank	ND	EPA 200.8	6/28/24
Vanadium	QC74492	Method Blank	ND	EPA 200.8	6/28/24
Zinc	QC74492	Method Blank	ND	EPA 200.8	6/28/24
Boron	QC74504	Method Blank	ND	EPA 200.7	6/28/24
Calcium	QC74504	Method Blank	ND	EPA 200.7	6/28/24
Iron	QC74504	Method Blank	ND	EPA 200.7	6/28/24
Magnesium	QC74504	Method Blank	ND	EPA 200.7	6/28/24
Potassium	QC74504	Method Blank	ND	EPA 200.7	6/28/24
Sodium	QC74504	Method Blank	ND	EPA 200.7	6/28/24
Nitrate Nitrogen	QC74449	Blank	ND	EPA 300.0	6/28/24
Nitrite Nitrogen	QC74452	Blank	ND	EPA 300.0	6/28/24
Sulfate	QC74451	Blank	ND	EPA 300.0	6/28/24
Total Dissolved Solids	QC74464	Blank	ND	SM 2540-C	7/2/24
Phosphorus - Total	QC74480	Blank	ND	EPA 365.1	7/1/24
Total Suspended Solids	QC74421	Blank	ND	SM 2540-D	7/1/24
Test		СТуре	Limits	% Rec RPD	Method
Total Alkalinity		plicate -240626039-01		- 0.5	SM 2320-B
	LC	S	90 - 110	-	

Abbreviations/ References:

Chloride

RL = Reporting Limit = Minimum Level

MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

106.3

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

2.5

ND = Not Detected at Reporting Limit.

90 - 110

0 - 20

LCS-2

Duplicate -240627115-01

QC74447

EPA 300.0

Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
		LCS	90 - 110	101.8	-	
		MS -240627115-01	75 - 125	94.9	-	
Cyanide-Total	QC74485	Duplicate -240701102-06	0 - 20	-	0.0	EPA 335.4
		LCS	90 - 110	100.9	-	
		MS -240628023-02	75 - 125	77.5	-	
Fluoride	QC74448	Duplicate -240627115-01	0 - 20	-	1.2	EPA 300.0
		LCS	90 - 110	99.0	-	
		MS -240627115-01	75 - 125	95.1	-	
Mercury	QC74515	Duplicate -240701060-01	0 - 20	=	0.0	EPA 245.7
•		LCS	90 - 110	108.8	-	
		MS -240701060-01B	80 - 120	92.0	-	
Aluminum	QC74492	LCS	90 - 110	99.0	-	EPA 200.8
		MS -240628007-01B	70 - 130	97.4	-	
		MSD -240628007-01B	0 - 10	-	1.0	
Antimony	QC74492	LCS	90 - 110	100.8	-	EPA 200.8
•		MS -240628007-01B	70 - 130	104.2	_	
		MSD -240628007-01B	0 - 10	=	0.9	
Arsenic	QC74492	LCS	90 - 110	98.4	-	EPA 200.8
		MS -240628007-01B	70 - 130	108.6	-	
		MSD -240628007-01B	0 - 10	-	1.6	
Barium	QC74492	LCS	90 - 110	99.7	-	EPA 200.8
Danam	Q014402	MS -240628007-01B	70 - 130	86.4	<u>-</u>	L1 7(200.0
		MSD -240628007-01B	0 - 10	-	1.9	
 Beryllium	QC74492	LCS	90 - 110	95.8	-	EPA 200.8
Derymani	Q014432	MS -240628007-01B	70 - 130	102.2	- -	LI A 200.0
		MSD -240628007-01B	0 - 10	-	1.7	
 Cadmium	QC74492	LCS	90 - 110	96.0	-	EPA 200.8
Caumum	QC/4492	MS -240628007-01B	70 - 110	102.3	-	EPA 200.0
		MSD -240628007-01B	0 - 10	102.3	0.6	
Oh	0074400	LCS				EDA 200 0
Chromium	QC74492		90 - 110	98.9	-	EPA 200.8
		MS -240628007-01B	70 - 130	102.3	- 0.5	
0		MSD -240628007-01B	0 - 10	-	0.5	EDA 000 0
Copper	QC74492	LCS	90 - 110	97.6	-	EPA 200.8
		MS -240628007-01B	70 - 130	100.4	-	
	00=0	MSD -240628007-01B	0 - 10	-	1.0	-D.
Lead	QC74492	LCS	90 - 110	99.8	-	EPA 200.8
		MS -240628007-01B	70 - 130	94.5	-	
		MSD -240628007-01B	0 - 10	-	0.3	
Manganese	QC74492	LCS	90 - 110	100.7	-	EPA 200.8
		MS -240628007-01B	70 - 130	105.1	-	
		MSD -240628007-01B	0 - 10	-	1.6	
Molybdenum	QC74492	LCS	90 - 110	97.9	-	EPA 200.8
		MS -240628007-01B	70 - 130	102.1	-	
		MSD -240628007-01B	0 - 10	-	0.3	
Nickel	QC74492	LCS	90 - 110	98.8	-	EPA 200.8
		MS -240628007-01B	70 - 130	99.7	-	
		MSD -240628007-01B	0 - 10	-	0.3	
Selenium	QC74492	LCS	90 - 110	97.1	-	EPA 200.8
		MS -240628007-01B	70 - 130	115.8	-	
		MSD -240628007-01B	0 - 10	-	5.7	
Silica (as Si)	QC74492	LCS	90 - 110	106.1	-	EPA 200.8

Abbreviations/ References:

RL = Reporting Limit = Minimum Level RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
	•	MS -240628007-01B	70 - 130	86.0	-	
		MSD -240628007-01B	0 - 10	-	0.5	
Silver	QC74492	LCS	90 - 110	101.3	-	EPA 200.8
		MS -240628007-01B	70 - 130	87.3	-	
		MSD -240628007-01B	0 - 10	-	1.1	
rhallium r	QC74492	LCS	90 - 110	98.7	-	EPA 200.8
		MS -240628007-01B	70 - 130	95.9	-	
		MSD -240628007-01B	0 - 10	-	1.8	
Jranium	QC74492	LCS	90 - 110	98.1	-	EPA 200.8
		MS -240628007-01B	70 - 130	94.6	_	
		MSD -240628007-01B	0 - 10	-	0.3	
/anadium	QC74492	LCS	90 - 110	97.3	_	EPA 200.8
		MS -240628007-01B	70 - 130	103.9	-	
		MSD -240628007-01B	0 - 10	-	0.7	
Zinc	QC74492	LCS	90 - 110	99.8	-	EPA 200.8
	Q07 1102	MS -240628007-01B	70 - 130	103.5	_	21 / 200.0
		MSD -240628007-01B	0 - 10	-	0.5	
Boron	QC74504	Duplicate -240628007-01	0 - 20	_	10.8	EPA 200.7
501011	Q01+304	LCS	90 - 110	106.2	-	LI A 200.1
		MS -240628007-01B	75 - 125	98.4	_	
Calcium	QC74504	Duplicate -240628007-01	0 - 20	-	6.3	EPA 200.7
Jaicium	QC74504	LCS	90 - 110	98.8	6.3 -	EPA 200.7
		MS -240628007-01B	75 - 125	101.7		
	0074504			101.7	-	EDA 000.7
on	QC74504	Duplicate -240628007-01	0 - 20		0.0	EPA 200.7
		LCS	90 - 110	107.6	-	
	0074504	MS -240628007-01B	75 - 125	110.4	-	ED4 000 7
Magnesium	QC74504	Duplicate -240628007-01	0 - 20	-	6.0	EPA 200.7
		LCS	90 - 110	95.8	-	
		MS -240628007-01B	75 - 125	107.4	-	
Potassium	QC74504	Duplicate -240628007-01	0 - 20	-	9.3	EPA 200.7
		LCS	90 - 110	96.7	-	
		MS -240628007-01B	75 - 125	116.5	-	
Sodium	QC74504	Duplicate -240628007-01	0 - 20	-	3.1	EPA 200.7
		LCS	90 - 110	92.8	-	
		MS -240628007-01B	75 - 125	93.0	-	
litrate Nitrogen	QC74449	Duplicate -240627115-01	0 - 20	-	0.0	EPA 300.0
		LCS	90 - 110	97.4	-	
		MS -240627115-01	75 - 125	95.5	-	
litrite Nitrogen	QC74452	Duplicate -240627115-01	0 - 20	-	0.0	EPA 300.0
		LCS	90 - 110	97.9	-	
		MS -240627115-01	75 - 125	92.8	-	
Sulfate	QC74451	Duplicate -240627115-01	0 - 20	-	3.4	EPA 300.0
		LCS	90 - 110	99.2	-	
		MS -240627115-01	75 - 125	93.4	-	
otal Dissolved Solids	QC74464	Duplicate -240627115-01	0 - 10	-	1.4	SM 2540-C
		LCS	85 - 115	97.7	-	
Phosphorus - Total	QC74480	Duplicate -240628081-02	0 - 20	-	0.0	EPA 365.1
•		LCS	90 - 110	102.9	-	
		MS -240628018-04	75 - 125	109.6	-	
Fotal Suspended Solids	QC74421	Duplicate -240628009-01	0 - 10	-	0.0	SM 2540-D
Jacoponada Condo	Q01 TTZ 1	LCS	90 - 110	103.3	-	5 2040 B
		200	30 - 110	100.0	=	

Abbreviations/ References:

 $RL = Reporting\ Limit = Minimum\ Level$ RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

All analyses were performed in accordance with approved methods under the latest revision to 40 CFR Part 136 unless otherwise identified. Based on my inquiry of the person or persons directly responsible for analyzing the wastewater samples and generating the report (s), the analyses, report, and information submitted are, to the best of my knowledge and belief, true, accurate, and complete.

DATA APPROVED FOR RELEASE BY

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Chain of Custody Form

	PO No.:	Sample Collector Phone:
CJF	· ·	Sample Collector:
240628033	Email:	Email: Cidicherson o thorn (Sources.com Email:
CAL Task	Phone:	Phone: (602) 793-1321
	City State Zip	City Duray State Co Zip 81427
Task Number (Lab Use Only)	Address:	Address: 1900 Main St Unit 1
	Contact Name:	Contact Name: CJ Dickerson
	Company Name:	Company Name: Thorn Resources
Project Name / Number	Bill To Information (If different from report to)	Report To Information

Colorado Analytical

Commerce City Lab
10411 Heinz Way
Commerce City CO 80640

<u>Lakewood Service Center</u> 610 Garrison Street, Unit E Lakewood CO 80215

Phone: 303-659-2313 www.coloradolab.com

CJD, cheron	Relinquished By:	Instructions: No						6/27 17:300	0/01/01/01/01	3	Date Time	Surface Water 🗌	Ground Water	Waste Water K		
6/27/3:50	Date/Time: Received By:	No Bothe Return Requested						(-1 - 1)	90	28-M2	Sample ID	grund mater per aprote a motion application	Sludge [Soil D	Sample Matrix (Select One Only)	
	Date/Time: Relinquished By:	Deliver Via: US	C/STAG.	((01)			>	1	5 ×	Gr or Co	o. of Crab (Checompos	Contai	ie On		To set 2
	Date/Timé:	X 7	Sea						7	9	2	401	109	76		
CAMPANA	Received By:	1	Seals Present Yes No No													Tests Requested
800	V (0/22/2)	e Pres. Yes No 🗆										200	of 1			

CAL Task 240628033 Quotation for Analytical Services

Quote ID: QBO24010976

Turn Around Time: 10 Working Days

Quote Date: Wednesday, January 31, 2024

LABORATORIES, INC.

CJF

Prepared For:

Thorin Resources, LLC

1900 Main St

Unit 1

Ouray, CO 81427

Attn:

CJ Dickerson

Project:
DRMS

Matrix	Description	Method	Oty.	Price - each	Total
Water - Ground	Alkalinity - B-C	N/A	12	\$16.00	\$192.00
Water - Ground	Alkalinity	SM 2320-B	12	Incl.	Incl.
Water - Ground	Carb/ Bicarb	SM 2320-B	12	Incl.	incl.
Water - Ground	Hardness - Total	SM 2340-B	12	\$0.00	\$0.00
Water - Ground	Nitrate/ Nitrite Nitrogen	Calculation	12	\$0.00	\$0.00
Water - Ground	B - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Ca - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Ca - Total	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Fe - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	K - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Mg - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Mg - Total	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Na - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Ph	SM 4500-H-B	12	\$13.00	\$156.00
Water - Ground	Specific Conductance	EPA 120.1	12	\$14.00	\$168.00
Water - Ground	Ag - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Al - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	As - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Ba - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Be - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Cd - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Cr - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Cu - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Mn - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Mo - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Ni - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Pb - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Sb - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Se - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Si - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	TDS	SM 2540-C	12	\$16.00	\$192.00

Page 1 of 4

10411 Heinz Way / Commerce City, CO 80640 / 303-659-2313 Mailing Address: P.O. Box 507 / Brighton, CO 80601-0507

JML

CAL Task 240628033

CJF

Quotation for Analytical Services

Quote ID: QBO24010976

ŧ	A	3	1	373	A	me.	~	373	3	CC	\$	811	·^,
£	٠Ą	\Box	•./	"	М	\$	1	m	ž	ES,	ŧ	141	

Water - Ground	TI - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	TSS	SM 2540-D	12	\$16.00	\$192.00
Water - Ground	V - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Zn - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Chloride	EPA 300.0	12	\$18.00	\$216.00
Water - Ground	Fluoride	EPA 300.0	12	\$18.00	\$216.00
Water - Ground	Nitrate Nitrogen	EPA 300.0	12	\$18.00	\$216.00
Water - Ground	Nitrite Nitrogen	EPA 300.0	12	\$18.00	\$216.00
Water - Ground	Sulfate	EPA 300.0	12	\$18.00	\$216.00
Water - Ground	U - Dis	EPA 200.8	12	\$23.00	\$276.00
Water - Ground	Total Phosphorus	EPA 365.1	12	\$26.00	\$312.00
Water - Ground	Hg	EPA 245.7	12	\$27.00	\$324.00
Water - Ground	Cyanide-Total	EPA 335.4	12	\$40.00	\$480.00

\$8,076.00

Colorado Analytical Laboratory maintains certification by the Colorado Department of Health (CDPHE) and EPA Region 8 for Wyoming and Tribal Public Water Systems to analyze drinking water for organic contaminants (SOC's VOC's), inorganic contaminants (metals), nitrate nitrite, cyanide, fluoride and coliform bacteria.

Sub-Lab analysis pricing subject to change. Sub-Lab radiological analysis turn-around time is 4 to 8 weeks depending on sample matrix. Due to time, distance and other constraints outside of the control of CAL shipments to sub labs are not guaranteed. All shipment charges will be billed to the client regardless of shipment outcome.

Billing terms are Net 30 on approved accounts; all other accounts are COD. Additional charges may apply for accelerated turn around.

We appreciate the opportunity to be of service to you. If you have questions please call us at 303-659-2313 or visit us at www.coloradolab.com

^{**}Samples should be shipped or hand delivered the same day they are collected. Orders that require sub-lab analysis should be delivered to the lab Monday thru Wednesday only.**

TASK NO: 240702001

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240702001

Client PO:

Client Project: DRMS

Date Received: 7/2/24 Date Reported: 7/10/24

Matrix: Water - Ground

Customer Sample ID GW-3B

Sample Date/Time: 6/28/24 8:40 AM Lab Number: 240702001-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
1000	Negult / Office	Metriod	IVE	MDL	Date Allary260	QO Daton ID	Alalyzed by
Total Alkalinity	29.4 mg/L as CaCO3	SM 2320-B	4.0	1	7/9/24	QC74584	KJP
Bicarbonate	29.4 mg/L as CaCO3	SM 2320-B	0.2	0.2	7/9/24	-	KJP
Carbonate	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	7/9/24	_	KJP
Hydroxide	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	7/9/24	_	KJP
Chloride	0.24 mg/L	EPA 300.0	0.10	0.007	7/2/24	QC74536	NRP
Cyanide-Total	ND mg/L	EPA 335.4	0.005	0.0005	7/5/24	QC74561	DPL
Fluoride	0.21 mg/L	EPA 300.0	0.10	0.024	7/2/24	QC74537	NRP
Nitrate Nitrogen	0.27 mg/L	EPA 300.0	0.05	0.02	7/2/24	QC74538	NRP
Nitrate/ Nitrite Nitrogen	0.27 mg/L	Calculation	0.05	0.02	7/5/24	-	AMJ
Nitrite Nitrogen	ND mg/L	EPA 300.0	0.03	0.01	7/2/24	QC74539	NRP
pH	6.50 units	SM 4500-H-B	0.01	0.01	7/2/24	-	ARH
Specific Conductance	199 umhos/cm @ 25c	EPA 120.1	5	5	7/2/24	-	ARH
Sulfate	65.6 mg/L	EPA 300.0	0.10	0.012	7/2/24	QC74540	NRP
Total Dissolved Solids	127 mg/L	SM 2540-C	5	2	7/3/24	QC74495	ISG
Phosphorus - Total	ND mg/L	EPA 365.1	0.05	0.006	7/2/24	QC74480	TAB
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	7/3/24	QC74506	ISG
Dissolved							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	7/3/24	QC74515	JJA
Aluminum	ND mg/L	EPA 200.8	0.001	0.00003	7/9/24	QC74597	MBN
Antimony	ND mg/L	EPA 200.8	0.0012	0.00012	7/9/24	QC74597	MBN
Arsenic	ND mg/L	EPA 200.8	0.0006	0.00006	7/9/24	QC74597	MBN
Barium	0.0445 mg/L	EPA 200.8	0.0007	0.00007	7/9/24	QC74597	MBN
Beryllium	ND mg/L	EPA 200.8	0.0001	0.000008	7/9/24	QC74597	MBN
Cadmium	ND mg/L	EPA 200.8	0.0001	0.000006	7/9/24	QC74597	MBN
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	7/9/24	QC74597	MBN

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM

ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240702001

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240702001

Client PO:

Client Project: DRMS

Date Received: 7/2/24 Date Reported: 7/10/24

Matrix: Water - Ground

Customer Sample ID GW-3B

Sample Date/Time: 6/28/24 8:40 AM Lab Number: 240702001-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By	
Dissolved								
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	7/9/24	QC74597	MBN	
Lead	ND mg/L	EPA 200.8	0.0001	0.000006	7/9/24	QC74597	MBN	
Manganese	ND mg/L	EPA 200.8	0.0008	0.00001	7/9/24	QC74597	MBN	
Molybdenum	0.0007 mg/L	EPA 200.8	0.0005	0.00005	7/9/24	QC74597	MBN	
Nickel	ND mg/L	EPA 200.8	0.0009	0.00005	7/9/24	QC74597	MBN	
Selenium	ND mg/L	EPA 200.8	0.0008	0.00008	7/9/24	QC74597	MBN	
Silica (as Si)	2.4 mg/L	EPA 200.8	0.3	0.03	7/9/24	QC74597	MBN	
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	7/9/24	QC74597	MBN	
Thallium	ND mg/L	EPA 200.8	0.0002	0.000003	7/9/24	QC74597	MBN	
Uranium	ND mg/L	EPA 200.8	0.0002	0.000002	7/9/24	QC74597	MBN	
Vanadium	ND mg/L	EPA 200.8	0.001	0.0001	7/9/24	QC74597	MBN	
Zinc	0.110 mg/L	EPA 200.8	0.001	0.00003	7/9/24	QC74597	MBN	
Boron	ND mg/L	EPA 200.7	0.05	0.01	7/8/24	QC74567	MBN	
Calcium	30.0 mg/L	EPA 200.7	0.1	0.01	7/8/24	QC74567	MBN	
Iron	ND mg/L	EPA 200.7	0.005	0.0005	7/8/24	QC74567	MBN	
Magnesium	2.09 mg/L	EPA 200.7	0.02	0.002	7/8/24	QC74567	MBN	
Potassium	0.5 mg/L	EPA 200.7	0.1	0.01	7/8/24	QC74567	MBN	
Sodium	2.2 mg/L	EPA 200.7	0.1	0.01	7/8/24	QC74567	MBN	
<u>Total</u>								
Total Hardness	84.9 mg/L as CaCO3	SM 2340-B	0.1	-	7/8/24	-	MBN	
Calcium	30.5 mg/L	EPA 200.7	0.1	0.01	7/8/24	QC74567	MBN	
Magnesium	2.14 mg/L	EPA 200.7	0.02	0.002	7/8/24	QC74567	MBN	
Holding time expired for Nitrate/Nitrite Nitrogen. Ok to test outside of hold time per customer.								

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240702001

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240702001

Client PO:

Client Project: DRMS

Date Received: 7/2/24 Date Reported: 7/10/24

Matrix: Water - Ground

Customer Sample ID GW-2A

Sample Date/Time: 6/28/24 10:04 AM

Lab Number: 240702001-02

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Total Alkalinity	25.2 mg/L as CaCO3	SM 2320-B	4.0	1	7/9/24	QC74584	KJP
Bicarbonate	25.2 mg/L as CaCO3	SM 2320-B	0.2	0.2	7/9/24	=	KJP
Carbonate	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	7/9/24	-	KJP
Hydroxide	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	7/9/24	-	KJP
Chloride	0.16 mg/L	EPA 300.0	0.10	0.007	7/2/24	QC74536	NRP
Cyanide-Total	ND mg/L	EPA 335.4	0.005	0.0005	7/5/24	QC74561	DPL
Fluoride	0.25 mg/L	EPA 300.0	0.10	0.024	7/2/24	QC74537	NRP
Nitrate Nitrogen	0.20 mg/L	EPA 300.0	0.05	0.02	7/2/24	QC74538	NRP
Nitrate/ Nitrite Nitrogen	0.20 mg/L	Calculation	0.05	0.02	7/5/24	-	AMJ
Nitrite Nitrogen	ND mg/L	EPA 300.0	0.03	0.01	7/2/24	QC74539	NRP
рН	7.55 units	SM 4500-H-B	0.01	0.01	7/2/24	-	ARH
Specific Conductance	160 umhos/cm @ 25c	EPA 120.1	5	5	7/2/24	-	ARH
Sulfate	50.5 mg/L	EPA 300.0	0.10	0.012	7/2/24	QC74540	NRP
Total Dissolved Solids	98 mg/L	SM 2540-C	5	2	7/3/24	QC74495	ISG
Phosphorus - Total	0.12 mg/L	EPA 365.1	0.05	0.006	7/2/24	QC74480	TAB
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	7/3/24	QC74506	ISG
<u>Dissolved</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	7/3/24	QC74515	JJA
Aluminum	0.001 mg/L	EPA 200.8	0.001	0.00003	7/9/24	QC74597	MBN
Antimony	ND mg/L	EPA 200.8	0.0012	0.00012	7/9/24	QC74597	MBN
Arsenic	ND mg/L	EPA 200.8	0.0006	0.00006	7/9/24	QC74597	MBN
Barium	0.0360 mg/L	EPA 200.8	0.0007	0.00007	7/9/24	QC74597	MBN
Beryllium	ND mg/L	EPA 200.8	0.0001	0.000008	7/9/24	QC74597	MBN
Cadmium	0.0004 mg/L	EPA 200.8	0.0001	0.000006	7/9/24	QC74597	MBN
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	7/9/24	QC74597	MBN

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM

ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240702001

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240702001

Client PO:

Client Project: DRMS

Date Received: 7/2/24

Date Reported: 7/10/24

Matrix: Water - Ground

Customer Sample ID GW-2A

Sample Date/Time: 6/28/24 10:04 AM

Lab Number: 240702001-02

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Dissolved							
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	7/9/24	QC74597	MBN
Lead	0.0003 mg/L	EPA 200.8	0.0001	0.000006	7/9/24	QC74597	MBN
Manganese	ND mg/L	EPA 200.8	0.0008	0.00001	7/9/24	QC74597	MBN
Molybdenum	0.0010 mg/L	EPA 200.8	0.0005	0.00005	7/9/24	QC74597	MBN
Nickel	ND mg/L	EPA 200.8	0.0009	0.00005	7/9/24	QC74597	MBN
Selenium	ND mg/L	EPA 200.8	0.0008	0.00008	7/9/24	QC74597	MBN
Silica (as Si)	2.1 mg/L	EPA 200.8	0.3	0.03	7/9/24	QC74597	MBN
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	7/9/24	QC74597	MBN
Thallium	ND mg/L	EPA 200.8	0.0002	0.000003	7/9/24	QC74597	MBN
Uranium	ND mg/L	EPA 200.8	0.0002	0.000002	7/9/24	QC74597	MBN
Vanadium	ND mg/L	EPA 200.8	0.001	0.0001	7/9/24	QC74597	MBN
Zinc	0.318 mg/L	EPA 200.8	0.001	0.00003	7/9/24	QC74597	MBN
Boron	ND mg/L	EPA 200.7	0.05	0.01	7/8/24	QC74567	MBN
Calcium	25.2 mg/L	EPA 200.7	0.1	0.01	7/8/24	QC74567	MBN
Iron	ND mg/L	EPA 200.7	0.005	0.0005	7/8/24	QC74567	MBN
Magnesium	1.90 mg/L	EPA 200.7	0.02	0.002	7/8/24	QC74567	MBN
Potassium	0.5 mg/L	EPA 200.7	0.1	0.01	7/8/24	QC74567	MBN
Sodium	1.7 mg/L	EPA 200.7	0.1	0.01	7/8/24	QC74567	MBN
<u>Total</u>							
Total Hardness	70.8 mg/L as CaCO3	SM 2340-B	0.1	-	7/8/24	-	MBN
Calcium	25.2 mg/L	EPA 200.7	0.1	0.01	7/8/24	QC74567	MBN
Magnesium	1.92 mg/L	EPA 200.7	0.02	0.002	7/8/24	QC74567	MBN

Holding time expired for Nitrate/Nitrite Nitrogen. Ok to test outside of hold time per customer.

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240702001

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240702001

Client PO:

Client Project: DRMS

Date Received: 7/2/24
Date Reported: 7/10/24

Matrix: Water - Ground

Customer Sample ID GW-2B

Sample Date/Time: 6/28/24 11:11 AM

Lab Number: 240702001-03

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Total Alkalinity	29.8 mg/L as CaCO3	SM 2320-B	4.0	1	7/9/24	QC74584	KJP
Bicarbonate	29.8 mg/L as CaCO3	SM 2320-B	0.2	0.2	7/9/24	=	KJP
Carbonate	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	7/9/24	-	KJP
Hydroxide	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	7/9/24	=	KJP
Chloride	0.31 mg/L	EPA 300.0	0.10	0.007	7/2/24	QC74536	NRP
Cyanide-Total	ND mg/L	EPA 335.4	0.005	0.0005	7/5/24	QC74561	DPL
Fluoride	0.22 mg/L	EPA 300.0	0.10	0.024	7/2/24	QC74537	NRP
Nitrate Nitrogen	0.23 mg/L	EPA 300.0	0.05	0.02	7/2/24	QC74538	NRP
Nitrate/ Nitrite Nitrogen	0.23 mg/L	Calculation	0.05	0.02	7/5/24	-	AMJ
Nitrite Nitrogen	ND mg/L	EPA 300.0	0.03	0.01	7/2/24	QC74539	NRP
рН	6.51 units	SM 4500-H-B	0.01	0.01	7/2/24	-	ARH
Specific Conductance	216 umhos/cm @ 25c	EPA 120.1	5	5	7/2/24	-	ARH
Sulfate	77.0 mg/L	EPA 300.0	0.10	0.012	7/2/24	QC74540	NRP
Total Dissolved Solids	125 mg/L	SM 2540-C	5	2	7/3/24	QC74495	ISG
Phosphorus - Total	ND mg/L	EPA 365.1	0.05	0.006	7/2/24	QC74480	TAB
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	7/3/24	QC74506	ISG
<u>Dissolved</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	7/3/24	QC74515	JJA
Aluminum	ND mg/L	EPA 200.8	0.001	0.00003	7/9/24	QC74597	MBN
Antimony	ND mg/L	EPA 200.8	0.0012	0.00012	7/9/24	QC74597	MBN
Arsenic	ND mg/L	EPA 200.8	0.0006	0.00006	7/9/24	QC74597	MBN
Barium	0.0568 mg/L	EPA 200.8	0.0007	0.00007	7/9/24	QC74597	MBN
Beryllium	ND mg/L	EPA 200.8	0.0001	0.000008	7/9/24	QC74597	MBN
Cadmium	0.0002 mg/L	EPA 200.8	0.0001	0.000006	7/9/24	QC74597	MBN
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	7/9/24	QC74597	MBN

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit

mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240702001

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240702001

Client PO:

Client Project: DRMS

Date Received: 7/2/24
Date Reported: 7/10/24

Matrix: Water - Ground

Customer Sample ID GW-2B

Sample Date/Time: 6/28/24 11:11 AM

Lab Number: 240702001-03

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Dissolved					•		, ,
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	7/9/24	QC74597	MBN
Lead	ND mg/L	EPA 200.8	0.0001	0.000006	7/9/24	QC74597	MBN
Manganese	ND mg/L	EPA 200.8	0.0008	0.00001	7/9/24	QC74597	MBN
Molybdenum	0.0009 mg/L	EPA 200.8	0.0005	0.00005	7/9/24	QC74597	MBN
Nickel	ND mg/L	EPA 200.8	0.0009	0.00005	7/9/24	QC74597	MBN
Selenium	ND mg/L	EPA 200.8	0.0008	0.00008	7/9/24	QC74597	MBN
Silica (as Si)	2.5 mg/L	EPA 200.8	0.3	0.03	7/9/24	QC74597	MBN
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	7/9/24	QC74597	MBN
Thallium	ND mg/L	EPA 200.8	0.0002	0.000003	7/9/24	QC74597	MBN
Uranium	ND mg/L	EPA 200.8	0.0002	0.000002	7/9/24	QC74597	MBN
Vanadium	ND mg/L	EPA 200.8	0.001	0.0001	7/9/24	QC74597	MBN
Zinc	0.285 mg/L	EPA 200.8	0.001	0.00003	7/9/24	QC74597	MBN
Boron	ND mg/L	EPA 200.7	0.05	0.01	7/8/24	QC74567	MBN
Calcium	33.7 mg/L	EPA 200.7	0.1	0.01	7/8/24	QC74567	MBN
Iron	ND mg/L	EPA 200.7	0.005	0.0005	7/8/24	QC74567	MBN
Magnesium	2.66 mg/L	EPA 200.7	0.02	0.002	7/8/24	QC74567	MBN
Potassium	0.5 mg/L	EPA 200.7	0.1	0.01	7/8/24	QC74567	MBN
Sodium	1.9 mg/L	EPA 200.7	0.1	0.01	7/8/24	QC74567	MBN
<u>Total</u>							
Total Hardness	98.7 mg/L as CaCO3	SM 2340-B	0.1	-	7/8/24	-	MBN
Calcium	35.0 mg/L	EPA 200.7	0.1	0.01	7/8/24	QC74567	MBN
Magnesium	2.74 mg/L	EPA 200.7	0.02	0.002	7/8/24	QC74567	MBN
Calcium	35.0 mg/L 2.74 mg/L	EPA 200.7 EPA 200.7	0.1 0.02		7/8/24		MBN

Holding time expired for Nitrate/Nitrite Nitrogen. Ok to test outside of hold time per customer.

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240702001

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240702001

Client PO:

Client Project: DRMS

Date Received: 7/2/24
Date Reported: 7/10/24

Matrix: Water - Ground

Customer Sample ID GW-1A

Sample Date/Time: 6/28/24 12:39 PM

Lab Number: 240702001-04

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Total Alkalinity	37.6 mg/L as CaCO3	SM 2320-B	4.0	1	7/9/24	QC74584	KJP
Bicarbonate	37.6 mg/L as CaCO3	SM 2320-B	0.2	0.2	7/9/24	-	KJP
Carbonate	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	7/9/24	=	KJP
Hydroxide	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	7/9/24	=	KJP
Chloride	0.19 mg/L	EPA 300.0	0.10	0.007	7/2/24	QC74536	NRP
Cyanide-Total	ND mg/L	EPA 335.4	0.005	0.0005	7/5/24	QC74561	DPL
Fluoride	0.19 mg/L	EPA 300.0	0.10	0.024	7/2/24	QC74537	NRP
Nitrate Nitrogen	0.18 mg/L	EPA 300.0	0.05	0.02	7/2/24	QC74538	NRP
Nitrate/ Nitrite Nitrogen	0.18 mg/L	Calculation	0.05	0.02	7/5/24	-	AMJ
Nitrite Nitrogen	ND mg/L	EPA 300.0	0.03	0.01	7/2/24	QC74539	NRP
рН	6.70 units	SM 4500-H-B	0.01	0.01	7/2/24	-	ARH
Specific Conductance	148 umhos/cm @ 25c	EPA 120.1	5	5	7/2/24	-	ARH
Sulfate	36.6 mg/L	EPA 300.0	0.10	0.012	7/2/24	QC74540	NRP
Total Dissolved Solids	84 mg/L	SM 2540-C	5	2	7/3/24	QC74495	ISG
Phosphorus - Total	ND mg/L	EPA 365.1	0.05	0.006	7/2/24	QC74480	TAB
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	7/3/24	QC74506	ISG
<u>Dissolved</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	7/3/24	QC74515	JJA
Aluminum	0.001 mg/L	EPA 200.8	0.001	0.00003	7/9/24	QC74597	MBN
Antimony	ND mg/L	EPA 200.8	0.0012	0.00012	7/9/24	QC74597	MBN
Arsenic	ND mg/L	EPA 200.8	0.0006	0.00006	7/9/24	QC74597	MBN
Barium	0.0341 mg/L	EPA 200.8	0.0007	0.00007	7/9/24	QC74597	MBN
Beryllium	ND mg/L	EPA 200.8	0.0001	0.000008	7/9/24	QC74597	MBN
Cadmium	0.0001 mg/L	EPA 200.8	0.0001	0.000006	7/9/24	QC74597	MBN
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	7/9/24	QC74597	MBN

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM

ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240702001

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240702001

Client PO:

Client Project: DRMS

Date Received: 7/2/24
Date Reported: 7/10/24

Matrix: Water - Ground

Customer Sample ID GW-1A

Sample Date/Time: 6/28/24 12:39 PM

Lab Number: 240702001-04

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
<u>Dissolved</u>							
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	7/9/24	QC74597	MBN
Lead	ND mg/L	EPA 200.8	0.0001	0.000006	7/9/24	QC74597	MBN
Manganese	ND mg/L	EPA 200.8	0.0008	0.00001	7/9/24	QC74597	MBN
Molybdenum	0.0010 mg/L	EPA 200.8	0.0005	0.00005	7/9/24	QC74597	MBN
Nickel	ND mg/L	EPA 200.8	0.0009	0.00005	7/9/24	QC74597	MBN
Selenium	ND mg/L	EPA 200.8	0.0008	0.00008	7/9/24	QC74597	MBN
Silica (as Si)	2.1 mg/L	EPA 200.8	0.3	0.03	7/9/24	QC74597	MBN
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	7/9/24	QC74597	MBN
Thallium	ND mg/L	EPA 200.8	0.0002	0.000003	7/9/24	QC74597	MBN
Uranium	ND mg/L	EPA 200.8	0.0002	0.000002	7/9/24	QC74597	MBN
Vanadium	ND mg/L	EPA 200.8	0.001	0.0001	7/9/24	QC74597	MBN
Zinc	0.058 mg/L	EPA 200.8	0.001	0.00003	7/9/24	QC74597	MBN
Boron	ND mg/L	EPA 200.7	0.05	0.01	7/8/24	QC74567	MBN
Calcium	23.1 mg/L	EPA 200.7	0.1	0.01	7/8/24	QC74567	MBN
Iron	ND mg/L	EPA 200.7	0.005	0.0005	7/8/24	QC74567	MBN
Magnesium	1.82 mg/L	EPA 200.7	0.02	0.002	7/8/24	QC74567	MBN
Potassium	0.4 mg/L	EPA 200.7	0.1	0.01	7/8/24	QC74567	MBN
Sodium	1.7 mg/L	EPA 200.7	0.1	0.01	7/8/24	QC74567	MBN
<u>Total</u>							
Total Hardness	67.7 mg/L as CaCO3	SM 2340-B	0.1	-	7/8/24	-	MBN
Calcium	24.0 mg/L	EPA 200.7	0.1	0.01	7/8/24	QC74567	MBN
Magnesium	1.90 mg/L	EPA 200.7	0.02	0.002	7/8/24	QC74567	MBN

Holding time expired for Nitrate/Nitrite Nitrogen. Ok to test outside of hold time per customer.

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240702001

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240702001

Client PO:

Client PO:

Client Project: DRMS

Date Received: 7/2/24

Date Reported: 7/10/24

Matrix: Water - Ground

Customer Sample ID GW-1B

Sample Date/Time: 6/28/24 1:40 PM **Lab Number:** 240702001-05

Test Result / Units Method MDL Date Analyzed QC Batch ID **Analyzed By Total Alkalinity** 36.0 mg/L as CaCO3 SM 2320-B 4.0 1 7/9/24 QC74584 **KJP** Bicarbonate 36.0 mg/L as CaCO3 SM 2320-B 0.2 0.2 7/9/24 **KJP** KJP Carbonate ND mg/L as CaCO3 SM 2320-B 0.2 0.2 7/9/24 Hydroxide ND mg/L as CaCO3 SM 2320-B 0.2 0.2 7/9/24 **KJP** Chloride 0.19 mg/L EPA 300.0 7/2/24 NRP 0.10 0.007 QC74536 Cyanide-Total ND mg/L EPA 335.4 0.005 0.0005 7/5/24 QC74561 DPI EPA 300.0 Fluoride 0.19 mg/L 7/2/24 QC74537 NRP 0.10 0.024 Nitrate Nitrogen 0.19 mg/L EPA 300.0 0.05 0.02 7/2/24 QC74538 NRP Nitrate/ Nitrite Nitrogen 0.19 mg/L Calculation 0.05 0.02 7/5/24 **AMJ** Nitrite Nitrogen ND mg/L EPA 300.0 0.03 0.01 7/2/24 QC74539 NRP **6.72 units** SM 4500-H-B 0.01 0.01 7/2/24 **ARH** Specific Conductance 149 umhos/cm @ 25c EPA 120.1 5 7/2/24 ARH 5 Sulfate 37.4 mg/L EPA 300.0 0.10 0.012 7/2/24 QC74540 NRP **Total Dissolved Solids** 84 mg/L SM 2540-C 5 2 7/3/24 QC74495 ISG Phosphorus - Total EPA 365.1 0.05 0.006 7/2/24 TAB ND mg/L QC74480 **Total Suspended Solids** ND mg/L SM 2540-D 5 2 7/3/24 QC74506 ISG <u>Dissolved</u> Mercury ND mg/L EPA 245.7 0.0002 0.00002 7/3/24 QC74515 JJA Aluminum EPA 200.8 0.001 0.00003 7/9/24 QC74597 MBN 0.001 mg/L Antimony ND mg/L EPA 200.8 0.0012 0.00012 7/9/24 QC74597 **MBN** Arsenic EPA 200.8 0.0006 0.00006 7/9/24 QC74597 MRN ND mg/L Barium 0.0351 mg/L EPA 200.8 0.0007 0.00007 7/9/24 QC74597 MBN Beryllium 7/9/24 ND mg/L EPA 200.8 0.0001 0.000008 QC74597 **MBN** Cadmium 0.0001 ma/L EPA 200.8 0.0001 0.000006 7/9/24 QC74597 **MBN** Chromium ND mg/L EPA 200.8 0.0015 0.00015 7/9/24 QC74597 MBN

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM

ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240702001

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240702001

Client PO:

Client Project: DRMS

Date Received: 7/2/24

Date Reported: 7/10/24

Matrix: Water - Ground

Customer Sample ID GW-1B

Sample Date/Time: 6/28/24 1:40 PM **Lab Number:** 240702001-05

Test Result / Units Method RL MDL Date Analyzed QC Batch ID **Analyzed By Dissolved** EPA 200.8 0.0008 0.00001 7/9/24 QC74597 MBN Copper ND mg/L Lead 0.0002 mg/L EPA 200.8 0.0001 0.000006 7/9/24 QC74597 MBN ND mg/L EPA 200.8 0.0008 0.00001 7/9/24 QC74597 MRN Manganese Molybdenum 0.0011 mg/L EPA 200.8 0.0005 0.00005 7/9/24 QC74597 MBN Nickel ND mg/L EPA 200.8 0.0009 0.00005 7/9/24 QC74597 MRN Selenium ND mg/L EPA 200.8 0.0008 0.00008 7/9/24 QC74597 MRN Silica (as Si) 2.2 mg/L EPA 200.8 0.3 7/9/24 QC74597 **MBN** 0.03 Silver ND mg/L EPA 200.8 0.0005 0.000003 7/9/24 QC74597 **MBN Thallium** ND mg/L EPA 200.8 0.0002 0.000003 7/9/24 QC74597 **MBN** Uranium ND mg/L EPA 200.8 0.0002 0.000002 7/9/24 QC74597 MBN Vanadium ND mg/L EPA 200.8 0.001 0.0001 7/9/24 QC74597 MBN Zinc 0.052 mg/L MBN EPA 200.8 0.001 0.00003 7/9/24 QC74597 ND mg/L EPA 200.7 0.05 7/8/24 QC74567 **MBN Boron** 0.01 Calcium 23.4 mg/L EPA 200.7 0.1 0.01 7/8/24 QC74567 MRN ND mg/L 0.005 **MBN** Iron EPA 200.7 0.0005 7/8/24 QC74567 Magnesium 1.88 mg/L EPA 200.7 0.02 0.002 7/8/24 QC74567 **MBN** Potassium 0.4 mg/L EPA 200.7 0.1 0.01 7/8/24 QC74567 MRN Sodium 7/8/24 QC74567 MBN 1.7 mg/L EPA 200.7 0.1 0.01 **Total**

SM 2340-B

EPA 200.7

EPA 200.7

Holding time expired for Nitrate/Nitrite Nitrogen. Ok to test outside of hold time per customer.

67.4 mg/L as CaCO3

23.8 mg/L

1.92 mg/L

Abbreviations/ References:

Total Hardness

Calcium

Magnesium

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

7/8/24

7/8/24

7/8/24

QC74567

QC74567

ND = Not Detected at Reporting Limit.

0.01

0.002

0.1

0.1

0.02

MBN

MRN

MBN

Analytical QC Summary

TASK NO: 240702001

Report To: CJ Dickerson Receive Date: 7/2/24 Company: Thorin Resources, LLC **Project Name: DRMS**

Test	QC Batch ID	QC Type	Result		Method	Prep Date
Total Alkalinity	QC74584	Blank	ND	•	SM 2320-B	7/9/24
Chloride	QC74536	Blank	ND		EPA 300.0	7/2/24
Cyanide-Total	QC74561	Blank	ND		EPA 335.4	7/5/24
Fluoride	QC74537	Blank	ND		EPA 300.0	7/2/24
Mercury	QC74515	Method Blank	ND		EPA 245.7	7/3/24
Aluminum	QC74597	Method Blank	ND		EPA 200.8	7/2/24
Antimony	QC74597	Method Blank	ND		EPA 200.8	7/2/24
Arsenic	QC74597	Method Blank	ND		EPA 200.8	7/2/24
Barium	QC74597	Method Blank	ND		EPA 200.8	7/2/24
Beryllium	QC74597	Method Blank	ND		EPA 200.8	7/2/24
Cadmium	QC74597	Method Blank	ND		EPA 200.8	7/2/24
Chromium	QC74597	Method Blank	ND		EPA 200.8	7/2/24
Copper	QC74597	Method Blank	ND		EPA 200.8	7/2/24
Lead	QC74597	Method Blank	ND		EPA 200.8	7/2/24
Manganese	QC74597	Method Blank	ND		EPA 200.8	7/2/24
Molybdenum	QC74597	Method Blank	ND		EPA 200.8	7/2/24
Nickel	QC74597	Method Blank	ND		EPA 200.8	7/2/24
Selenium	QC74597	Method Blank	ND		EPA 200.8	7/2/24
Silica (as Si)	QC74597	Method Blank	ND		EPA 200.8	7/2/24
Silver	QC74597	Method Blank	ND		EPA 200.8	7/2/24
Thallium	QC74597	Method Blank	ND		EPA 200.8	7/2/24
Uranium	QC74597	Method Blank	ND		EPA 200.8	7/2/24
Vanadium	QC74597	Method Blank	ND		EPA 200.8	7/2/24
Zinc	QC74597	Method Blank	ND		EPA 200.8	7/2/24
Boron	QC74567	Method Blank	ND		EPA 200.7	7/2/24
Calcium	QC74567	Method Blank	ND		EPA 200.7	7/2/24
Iron	QC74567	Method Blank	ND		EPA 200.7	7/2/24
Magnesium	QC74567	Method Blank	ND		EPA 200.7	7/2/24
Potassium	QC74567	Method Blank	ND		EPA 200.7	7/2/24
Sodium	QC74567	Method Blank	ND		EPA 200.7	7/2/24
Nitrate Nitrogen	QC74538	Blank	ND		EPA 300.0	7/2/24
Nitrite Nitrogen	QC74539	Blank	ND		EPA 300.0	7/2/24
Sulfate	QC74540	Blank	ND		EPA 300.0	7/2/24
Total Dissolved Solids	QC74495	Blank	ND		SM 2540-C	7/2/24
Phosphorus - Total	QC74480	Blank	ND		EPA 365.1	7/1/24
Total Suspended Solids	QC74506	Blank	ND		SM 2540-D	7/3/24
Test	QC Batch ID QC	Туре	Limits	% Rec	RPD	Method
Total Alkalinity	•	olicate -240702001-01	0 - 20	-	1.9	SM 2320-B
	LCS	3	90 - 110	99.5	=	

Abbreviations/ References:

Chloride

RL = Reporting Limit = Minimum Level

MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM

ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

102.8

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

1.8

ND = Not Detected at Reporting Limit.

90 - 110

0 - 20

LCS-2

Duplicate -240702001-01

QC74536

EPA 300.0

Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
		LCS	90 - 110	107.7	-	
		MS -240702001-01	75 - 125	101.9	-	
Cyanide-Total	QC74561	Duplicate -240702001-01	0 - 20	-	0.0	EPA 335.4
		LCS	90 - 110	97.5	-	
		MS -240702001-05D	75 - 125	89.5	-	
Fluoride	QC74537	Duplicate -240702001-01	0 - 20	_	8.9	EPA 300.0
		LCS	90 - 110	96.4	-	
		MS -240702001-01	75 - 125	95.6	-	
Mercury	QC74515	Duplicate -240701060-01	0 - 20	-	0.0	EPA 245.7
·		LCS	90 - 110	108.8	-	
		MS -240701060-01B	80 - 120	92.0	-	
Aluminum	QC74597	LCS	90 - 110	104.1	-	EPA 200.8
		MS -240702001-01	70 - 130	101.7	-	
		MSD -240702001-01	0 - 10	-	2.4	
Antimony	QC74597	LCS	90 - 110	107.9	-	EPA 200.8
,		MS -240702001-01	70 - 130	104.2	-	
		MSD -240702001-01	0 - 10	_	0.4	
Arsenic	QC74597	LCS	90 - 110	98.7	-	EPA 200.8
		MS -240702001-01	70 - 130	110.9	-	
		MSD -240702001-01	0 - 10	-	1.1	
Barium	QC74597	LCS	90 - 110	101.2	-	EPA 200.8
Danam	Q01-1001	MS -240702001-01	70 - 130	99.5	<u>-</u>	L1 / (200.0
		MSD -240702001-01	0 - 10	-	1.9	
Beryllium	QC74597	LCS	90 - 110	101.9	-	EPA 200.8
Derymum	Q014331	MS -240702001-01	70 - 130	101.9	- -	LI A 200.0
		MSD -240702001-01	0 - 10	-	1.3	
Cadmium	QC74597	LCS	90 - 110	99.2	-	EPA 200.8
Caumum	QC74597	MS -240702001-01	70 - 130	107.3	-	EPA 200.0
		MSD -240702001-01	0 - 10	107.3	0.3	
Oh an and it too	0074507	LCS				EDA 200 0
Chromium	QC74597		90 - 110	101.5	-	EPA 200.8
		MS -240702001-01	70 - 130	108.1 -	- 0.1	
0	0074507	MSD -240702001-01	0 - 10		0.1	EDA 000 0
Copper	QC74597	LCS	90 - 110	101.2	-	EPA 200.8
		MS -240702001-01	70 - 130	108.7	-	
	0074507	MSD -240702001-01	0 - 10	-	0.4	EB4 000 0
Lead	QC74597	LCS	90 - 110	101.0	-	EPA 200.8
		MS -240702001-01	70 - 130	107.1	-	
		MSD -240702001-01	0 - 10	-	0.8	
Manganese	QC74597	LCS	90 - 110	102.9	-	EPA 200.8
		MS -240702001-01	70 - 130	108.6	-	
		MSD -240702001-01	0 - 10	-	0.3	
Molybdenum	QC74597	LCS	90 - 110	99.9	-	EPA 200.8
		MS -240702001-01	70 - 130	106.5	-	
		MSD -240702001-01	0 - 10	-	0.3	
Nickel	QC74597	LCS	90 - 110	104.2	-	EPA 200.8
		MS -240702001-01	70 - 130	108.5	-	
		MSD -240702001-01	0 - 10	-	0.4	
Selenium	QC74597	LCS	90 - 110	98.6	-	EPA 200.8
		MS -240702001-01	70 - 130	113.3	-	
		MSD -240702001-01	0 - 10		4.1	
Silica (as Si)	QC74597	LCS	90 - 110	96.5	-	EPA 200.8

Abbreviations/ References:

RL = Reporting Limit = Minimum Level RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
		MS -240702001-01	70 - 130	76.8	-	
		MSD -240702001-01	0 - 10	-	1.7	
Silver	QC74597	LCS	90 - 110	107.6	-	EPA 200.8
		MS -240702001-01	70 - 130	107.6	-	
		MSD -240702001-01	0 - 10	-	1.0	
Гhallium	QC74597	LCS	90 - 110	102.0	-	EPA 200.8
		MS -240702001-01	70 - 130	106.5	-	
		MSD -240702001-01	0 - 10	-	0.7	
Jranium	QC74597	LCS	90 - 110	95.6	-	EPA 200.8
		MS -240702001-01	70 - 130	106.3	-	
		MSD -240702001-01	0 - 10	-	0.7	
/anadium	QC74597	LCS	90 - 110	100.9	-	EPA 200.8
		MS -240702001-01	70 - 130	109.4	-	
		MSD -240702001-01	0 - 10	-	0.0	
Zinc	QC74597	LCS	90 - 110	101.2	-	EPA 200.8
	Q01.1001	MS -240702001-01	70 - 130	106.9	-	2.7.200.0
		MSD -240702001-01	0 - 10	-	0.3	
Boron	QC74567	Duplicate -240702005-01	0 - 20	-	1.1	EPA 200.7
501011	Q01+301	LCS	90 - 110	95.6	-	LI A 200.1
		MS -240702001-01	75 - 125	104.7	_	
Calcium	QC74567	Duplicate -240702005-01	0 - 20	-	1.1	EPA 200.7
alcium	QC74367	LCS	90 - 110	96.8		EPA 200.7
		MS -240702001-01	75 - 125		-	
	0074507			110.0		EDA 000 7
on	QC74567	Duplicate -240702005-01	0 - 20	-	0.7	EPA 200.7
		LCS	90 - 110	94.7	-	
		MS -240702001-01	75 - 125	110.3	<u> </u>	
Magnesium	QC74567	Duplicate -240702005-01	0 - 20	-	0.5	EPA 200.7
		LCS	90 - 110	94.2	-	
		MS -240702001-01	75 - 125	106.4	-	
otassium	QC74567	Duplicate -240702005-01	0 - 20	-	1.1	EPA 200.7
		LCS	90 - 110	98.5	-	
		MS -240702001-01	75 - 125	118.1	-	
Sodium	QC74567	Duplicate -240702005-01	0 - 20	-	1.0	EPA 200.7
		LCS	90 - 110	93.2	-	
		MS -240702001-01	75 - 125	111.6	-	
litrate Nitrogen	QC74538	Duplicate -240702001-01	0 - 20	-	3.0	EPA 300.0
		LCS	90 - 110	108.5	-	
		MS -240702001-01	75 - 125	101.3	-	
litrite Nitrogen	QC74539	Duplicate -240702001-01	0 - 20	-	0.0	EPA 300.0
		LCS	90 - 110	107.8	-	
		MS -240702001-01	75 - 125	103.0	-	
Sulfate	QC74540	Duplicate -240702001-01	0 - 20	-	2.5	EPA 300.0
		LCS	90 - 110	110.0	-	
		MS -240702001-01	75 - 125	108.6	-	
otal Dissolved Solids	QC74495	Duplicate -240628067-01	0 - 10	-	2.2	SM 2540-C
	421.1.00	LCS	85 - 115	97.7		
Phosphorus - Total	QC74480	Duplicate -240628081-02	0 - 20	-	0.0	EPA 365.1
	Q01 ++00	LCS	90 - 110	102.9	-	2.7.000.1
		MS -240628018-04	75 - 125	102.9	- -	
Total Suspended Solids	QC74506		0 - 10	-	3.2	SM 2540-D
otal Suspended Solids	QC1450b	Duplicate -240702003-01				3W 2040-D
		LCS	90 - 110	103.3	-	

Abbreviations/ References:

 $RL = Reporting\ Limit = Minimum\ Level$ RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

All analyses were performed in accordance with approved methods under the latest revision to 40 CFR Part 136 unless otherwise identified. Based on my inquiry of the person or persons directly responsible for analyzing the wastewater samples and generating the report (s), the analyses, report, and information submitted are, to the best of my knowledge and belief, true, accurate, and complete.

DATA APPROVED FOR RELEASE BY

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Chain of Custody Form

Report To Information	Bill To Information (If different from report to)	Project Name / Number
Company Name: Thorn Resources	Company Name:	
Contact Name: C5 Dicheron	Contact Name:	
Address: 1900 Main St. Lind L	Address:	Task Number (Lab Use Only)
City Ovray State Co Zip 3/427	City State Zip	
Phone: (602) 793-1321	Phone:	CAL Task
Email: ejdickeronethan resources.com	Email:	240702001
Sample Collector:		RMB
Sample Collector Phone:	PO No.:	·

Commerce City Lab 10411 Heinz Way Commerce City CO 80640

<u>Lakewood Service Center</u> 610 Garrison Street, Unit E Lakewood CO 80215

Phone: 303-659-2313

Sample Collector:									RME	3)	Į.	wwv	<u>v.color</u>	adolab.	com	
Sample Collector Phone:	hi		PO No.:		- 							ļ					
								y Exe			Тє	sts Req	uested				
	Sample Matrix	(Select One	Only)		a a		<u>~</u>										
Waste Water	Soil		Drink	ing Water 🔲	iners		or (Check One Only) Composite	376									
Ground Water ∰*	Sludge 🗌				onta		t O	Ø							1 1		
Surface Water 🗌					No. of Containers	q	Checl nposi	160194									
Date Time		Samp			ź	Gra) to Co To	26									
6/28 3:40a	GB .	GW-	3 B		5	X		X									
6/79 10:046		GW-3	ZA		5	X		$ \star $									
6/28 11:11 an		GW-2	28		5	K		*									
6/28 12:39pm		GW-1	A		5	X		x									
6/28 12:39m 6/28 12:39m		GW - 1 GW - 1 GW - 2	RIB		5	*		X									
*Per history qu	10te RB 7/2	<u>- </u>		(25													
J			•														
Instructions: Run [L post hold	time, 1	Vo BoH	le return C/S Info						K	1	resent Yes				_	
				Deliver V		Y	DS.		C/S	Charge	Temp.	<u>ک</u> ∞c/اه	e Y	Sample	Pres. Yes Date/Ti	No 🗆	
Relinquished By:	Date/Time:	Received B	y:	Date/Time:		ishĕ	By:		Date	/Timé:	Rec	eived By:	4		Date/Ti	nte:	. /
CS Dickerson	107/01 4:06			Page	15 of 17						14	40A	M		7/2	-136	1
											U						1/17

CAL Task 240702001

RMB

Quotation for Analytical Services

Quote ID: QBO24010976

LABORATORIES, INC.

Prepared For:

Thorin Resources, LLC

1900 Main St

Unit 1

Ouray, CO 81427

Attn: CJ Dickerson

Quote Date: Wednesday, January 31, 2024 Turn Around Time: 10 Working Days

Project: **DRMS**

Matrix	Description	Method	Qty.	Price - each	Total
Water - Ground	Alkalinity - B-C	N/A	12	\$16.00	\$192.00
Water - Ground	Alkalinity	SM 2320-B	12	Incl.	Incl.
Water - Ground	Carb/ Bicarb	SM 2320-B	12	Incl.	Incl.
Water - Ground	Hardness - Total	SM 2340-B	12	\$0.00	\$0.00
Water - Ground	Nitrate/ Nitrite Nitrogen	Calculation	12	\$0.00	\$0.00
Water - Ground	B - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Ca - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Ca - Total	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Fe - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	K - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Mg - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Mg - Total	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Na - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Ph	SM 4500-H-B	12	\$13.00	\$156.00
Water - Ground	Specific Conductance	EPA 120.1	12	\$14.00	\$168.00
Water - Ground	Ag - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Al - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	As - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Ba - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Be - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Cd - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Cr - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Cu - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Mn - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Mo - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Ni - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Pb - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Sb - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Se - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Si - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	TDS	SM 2540-C	12	\$16.00	\$192.00

Page 1 of 4

10411 Heinz Way / Commerce City, CO 80640 / 303-659-2313 Mailing Address: P.O. Box 507 / Brighton, CO 80601-0507

JML

CAL Task 240702001

RMB

Quotation for Analytical Services

Quote ID: QBO24010976

á	Λ		0		Δ.	$r \sim$	0	5	C	. INC.
3	m	8.3	1 9	373	244	2 5 6	£.3		4.3	. 1345.

Water - Ground	TI - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	TSS	SM 2540-D	12	\$16.00	\$192.00
Water - Ground	V - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Zn - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Chloride	EPA 300.0	12	\$18.00	\$216.00
Water - Ground	Fluoride	EPA 300.0	12	\$18.00	\$216.00
Water - Ground	Nitrate Nitrogen	EPA 300.0	12	\$18.00	\$216.00
Water - Ground	Nitrite Nitrogen	EPA 300.0	12	\$18.00	\$216.00
Water - Ground	Sulfate	EPA 300.0	12	\$18.00	\$216.00
Water - Ground	U - Dis	EPA 200.8	12	\$23.00	\$276.00
Water - Ground	Total Phosphorus	EPA 365.1	12	\$26.00	\$312.00
Water - Ground	Hg	EPA 245.7	12	\$27.00	\$324.00
Water - Ground	Cyanide-Total	EPA 335.4	12	\$40.00	\$480.00

\$8,076.00

Colorado Analytical Laboratory maintains certification by the Colorado Department of Health (CDPHE) and EPA Region 8 for Wyoming and Tribal Public Water Systems to analyze drinking water for organic contaminants (SOC's VOC's), inorganic contaminants (metals), nitrate nitrite, cyanide, fluoride and coliform bacteria.

Sub-Lab analysis pricing subject to change. Sub-Lab radiological analysis turn-around time is 4 to 8 weeks depending on sample matrix. Due to time, distance and other constraints outside of the control of CAL shipments to sub labs are not guaranteed. All shipment charges will be billed to the client regardless of shipment outcome.

Billing terms are Net 30 on approved accounts; all other accounts are COD. Additional charges may apply for accelerated turn around.

We appreciate the opportunity to be of service to you. If you have questions please call us at 303-659-2313 or visit us at www.coloradolab.com

^{**}Samples should be shipped or hand delivered the same day they are collected. Orders that require sub-lab analysis should be delivered to the lab Monday thru Wednesday only.**

TASK NO: 240918003

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240918003

Client PO:

Client Project: DRMS

Date Received: 9/18/24 Date Reported: 10/1/24

Matrix: Water

Customer Sample ID UG-2

Sample Date/Time: 9/17/24 12:00 PM

Lab Number: 240918003-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
							,
Total Alkalinity	51.3 mg/L as CaCO3	SM 2320-B	4.0	1	9/18/24	QC76327	TAB
Bicarbonate	51.3 mg/L as CaCO3	SM 2320-B	0.2	0.2	9/18/24	-	TAB
Carbonate	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	9/18/24	-	TAB
Hydroxide	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	9/18/24	-	TAB
Chloride	ND mg/L	EPA 300.0	1.00	0.007	9/19/24	QC76297	NRP
Cyanide-Total	ND mg/L	EPA 335.4	0.005	0.0005	9/24/24	QC76412	KRB
Fluoride	0.23 mg/L	EPA 300.0	0.10	0.024	9/19/24	QC76298	NRP
Nitrate Nitrogen	0.23 mg/L	EPA 300.0	0.05	0.02	9/19/24	QC76294	NRP
Nitrate/ Nitrite Nitrogen	0.23 mg/L	Calculation	0.05	0.02	9/19/24	-	NRP
Nitrite Nitrogen	ND mg/L	EPA 300.0	0.03	0.01	9/19/24	QC76295	NRP
рН	7.19 units	SM 4500-H-B	0.01	0.01	9/18/24	-	KRB
Specific Conductance	311 umhos/cm @ 25c	EPA 120.1	5	5	9/18/24	-	KRB
Sulfate	95.5 mg/L	EPA 300.0	1.00	0.012	9/19/24	QC76299	NRP
Total Dissolved Solids	187 mg/L	SM 2540-C	5	2	9/19/24	QC76311	ISG
Phosphorus - Total	ND mg/L	EPA 365.1	0.05	0.006	9/19/24	QC76308	TAB
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	9/19/24	QC76290	ISG
<u>Dissolved</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	9/19/24	QC76315	JJA
Aluminum	0.008 mg/L	EPA 200.8	0.001	0.00003	9/23/24	QC76340	JJA
Antimony	ND mg/L	EPA 200.8	0.0012	0.00012	9/23/24	QC76340	JJA
Arsenic	0.0031 mg/L	EPA 200.8	0.0006	0.00006	9/23/24	QC76340	JJA
Barium	0.0324 mg/L	EPA 200.8	0.0007	0.00007	9/23/24	QC76340	JJA
Beryllium	ND mg/L	EPA 200.8	0.0001	0.000008	9/23/24	QC76340	JJA
Cadmium	0.0017 mg/L	EPA 200.8	0.0001	0.000006	9/23/24	QC76340	JJA
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	9/23/24	QC76340	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit

mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240918003

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

OTILL

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240918003

Client PO:

Client Project: DRMS

Date Received: 9/18/24 Date Reported: 10/1/24

Matrix: Water

Customer Sample ID UG-2

Sample Date/Time: 9/17/24 12:00 PM

Lab Number: 240918003-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
<u>Dissolved</u>							
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	9/23/24	QC76340	JJA
Lead	ND mg/L	EPA 200.8	0.0001	0.000006	9/23/24	QC76340	JJA
Manganese	1.90 mg/L	EPA 200.8	0.0008	0.00001	9/23/24	QC76340	JJA
Molybdenum	0.0021 mg/L	EPA 200.8	0.0005	0.00005	9/23/24	QC76340	JJA
Nickel	ND mg/L	EPA 200.8	0.0009	0.00005	9/23/24	QC76340	JJA
Selenium	ND mg/L	EPA 200.8	0.0008	0.00008	9/23/24	QC76340	JJA
Silica (as Si)	3.19 mg/L	EPA 200.8	0.30	0.03	9/23/24	QC76340	JJA
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	9/23/24	QC76340	JJA
Thallium	ND mg/L	EPA 200.8	0.0002	0.000003	9/23/24	QC76340	JJA
Uranium	0.0003 mg/L	EPA 200.8	0.0002	0.000002	9/23/24	QC76340	JJA
Vanadium	ND mg/L	EPA 200.8	0.001	0.0001	9/23/24	QC76340	JJA
Zinc	0.500 mg/L	EPA 200.8	0.001	0.00003	9/23/24	QC76340	JJA
Boron	ND mg/L	EPA 200.7	0.05	0.01	9/23/24	QC76367	JJA
Calcium	51.2 mg/L	EPA 200.7	0.1	0.01	9/23/24	QC76367	JJA
Iron	ND mg/L	EPA 200.7	0.005	0.0005	9/23/24	QC76367	JJA
Magnesium	2.30 mg/L	EPA 200.7	0.02	0.002	9/23/24	QC76367	JJA
Potassium	0.4 mg/L	EPA 200.7	0.1	0.01	9/23/24	QC76367	JJA
Sodium	6.3 mg/L	EPA 200.7	0.1	0.01	9/23/24	QC76367	JJA
<u>Total</u>							
Total Hardness	141.8 mg/L as CaCO3	SM 2340-B	0.1	0.01	9/23/24	-	JJA
Calcium	52.8 mg/L	EPA 200.7	0.1	0.01	9/23/24	QC76367	JJA
Magnesium	2.40 mg/L	EPA 200.7	0.02	0.002	9/23/24	QC76367	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240918003

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240918003

Client PO:

Client Project: DRMS

Date Received: 9/18/24 Date Reported: 10/1/24

Matrix: Water

Customer Sample ID UG-8

Sample Date/Time: 9/17/24 8:55 AM

Lab Number: 240918003-02

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Total Alkalinity	64.5 mg/L as CaCO3	SM 2320-B	4.0	1	9/18/24	QC76327	TAB
Bicarbonate	64.5 mg/L as CaCO3	SM 2320-B	0.2	0.2	9/18/24	=	TAB
Carbonate	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	9/18/24	=	TAB
Hydroxide	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	9/18/24	=	TAB
Chloride	ND mg/L	EPA 300.0	1.00	0.007	9/18/24	QC76297	NRP
Cyanide-Total	ND mg/L	EPA 335.4	0.005	0.0005	9/24/24	QC76412	KRB
Fluoride	0.27 mg/L	EPA 300.0	0.10	0.024	9/18/24	QC76298	NRP
Nitrate Nitrogen	0.37 mg/L	EPA 300.0	0.05	0.02	9/18/24	QC76294	NRP
Nitrate/ Nitrite Nitrogen	0.37 mg/L	Calculation	0.05	0.02	9/19/24	-	NRP
Nitrite Nitrogen	ND mg/L	EPA 300.0	0.03	0.01	9/18/24	QC76295	NRP
рН	7.63 units	SM 4500-H-B	0.01	0.01	9/18/24	-	KRB
Specific Conductance	335 umhos/cm @ 25c	EPA 120.1	5	5	9/18/24	-	KRB
Sulfate	92.1 mg/L	EPA 300.0	1.00	0.012	9/18/24	QC76299	NRP
Total Dissolved Solids	210 mg/L	SM 2540-C	5	2	9/19/24	QC76311	ISG
Phosphorus - Total	ND mg/L	EPA 365.1	0.05	0.006	9/19/24	QC76308	TAB
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	9/19/24	QC76290	ISG
<u>Dissolved</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	9/19/24	QC76315	JJA
Aluminum	0.005 mg/L	EPA 200.8	0.001	0.00003	9/23/24	QC76340	JJA
Antimony	0.0019 mg/L	EPA 200.8	0.0012	0.00012	9/23/24	QC76340	JJA
Arsenic	0.0090 mg/L	EPA 200.8	0.0006	0.00006	9/23/24	QC76340	JJA
Barium	0.0342 mg/L	EPA 200.8	0.0007	0.00007	9/23/24	QC76340	JJA
Beryllium	ND mg/L	EPA 200.8	0.0001	0.000008	9/23/24	QC76340	JJA
Cadmium	ND mg/L	EPA 200.8	0.0001	0.000006	9/23/24	QC76340	JJA
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	9/23/24	QC76340	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit

mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240918003

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240918003

Client PO:

Client Project: DRMS

Date Received: 9/18/24 Date Reported: 10/1/24

Matrix: Water

Customer Sample ID UG-8

Sample Date/Time: 9/17/24 8:55 AM Lab Number: 240918003-02

Test Result / Units Method RL MDL Date Analyzed QC Batch ID **Analyzed By Dissolved** EPA 200.8 0.0008 0.00001 9/23/24 QC76340 JJA Copper ND mg/L Lead 0.0003 mg/L EPA 200.8 0.0001 0.000006 9/23/24 QC76340 JJA 0.0106 mg/L EPA 200.8 0.0008 0.00001 9/23/24 QC76340 JJA Manganese Molybdenum 0.0048 mg/L EPA 200.8 0.0005 0.00005 9/23/24 QC76340 JJA Nickel ND mg/L EPA 200.8 0.0009 0.00005 9/23/24 QC76340 JJA Selenium ND mg/L EPA 200.8 0.0008 0.00008 9/23/24 QC76340 JJA Silica (as Si) 3.18 mg/L EPA 200.8 0.30 9/23/24 0.03 QC76340 JJA Silver ND mg/L EPA 200.8 0.0005 0.000003 9/23/24 QC76340 JJA **Thallium** ND mg/L EPA 200.8 0.0002 0.000003 9/23/24 QC76340 JJA Uranium 0.0007 mg/L EPA 200.8 0.0002 0.000002 9/23/24 QC76340 JJA Vanadium ND mg/L EPA 200.8 0.001 0.0001 9/23/24 QC76340 JJA Zinc 0.036 mg/L EPA 200.8 0.001 0.00003 9/23/24 QC76340 JJA ND mg/L EPA 200.7 0.05 9/23/24 QC76367 JJA **Boron** 0.01 Calcium 58.8 mg/L EPA 200.7 0.1 0.01 9/23/24 QC76367 JJA ND mg/L 0.005 9/23/24 Iron EPA 200.7 0.0005 QC76367 JJA Magnesium 3.28 mg/L EPA 200.7 0.02 0.002 9/23/24 QC76367 JJA Potassium 0.5 mg/L EPA 200.7 0.1 0.01 9/23/24 QC76367 JJA Sodium 9/23/24 9.1 mg/L EPA 200.7 0.1 0.01 QC76367 JJA **Total Total Hardness** 162.1 mg/L as CaCO3 SM 2340-B 0.1 0.01 9/23/24 JJA Calcium 59.4 mg/L EPA 200.7 0.1 0.01 9/23/24 QC76367 JJA Magnesium 3.32 mg/L EPA 200.7 0.02 0.002 9/23/24 QC76367 JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240918003

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240918003

Client PO:

Client Project: DRMS

Date Received: 9/18/24 Date Reported: 10/1/24

Matrix: Water

Customer Sample ID GW-3R

Sample Date/Time: 9/17/24 12:55 PM

Lab Number: 240918003-03

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Total Alkalinity	29.6 mg/L as CaCO3	SM 2320-B	4.0	1	9/18/24	QC76327	TAB
Bicarbonate	29.6 mg/L as CaCO3	SM 2320-B	0.2	0.2	9/18/24	-	TAB
Carbonate	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	9/18/24	-	TAB
Hydroxide	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	9/18/24	-	TAB
Chloride	ND mg/L	EPA 300.0	1.00	0.007	9/18/24	QC76297	NRP
Cyanide-Total	ND mg/L	EPA 335.4	0.005	0.0005	9/24/24	QC76412	KRB
Fluoride	0.22 mg/L	EPA 300.0	0.10	0.024	9/18/24	QC76298	NRP
Nitrate Nitrogen	0.28 mg/L	EPA 300.0	0.05	0.02	9/18/24	QC76294	NRP
Nitrate/ Nitrite Nitrogen	0.28 mg/L	Calculation	0.05	0.02	9/19/24	-	NRP
Nitrite Nitrogen	ND mg/L	EPA 300.0	0.03	0.01	9/18/24	QC76295	NRP
рН	6.53 units	SM 4500-H-B	0.01	0.01	9/18/24	-	KRB
Specific Conductance	221 umhos/cm @ 25c	EPA 120.1	5	5	9/18/24	-	KRB
Sulfate	68.5 mg/L	EPA 300.0	1.00	0.012	9/18/24	QC76299	NRP
Total Dissolved Solids	135 mg/L	SM 2540-C	5	2	9/19/24	QC76311	ISG
Phosphorus - Total	ND mg/L	EPA 365.1	0.05	0.006	9/19/24	QC76308	TAB
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	9/19/24	QC76290	ISG
<u>Dissolved</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	9/19/24	QC76315	JJA
Aluminum	0.002 mg/L	EPA 200.8	0.001	0.00003	9/23/24	QC76340	JJA
Antimony	ND mg/L	EPA 200.8	0.0012	0.00012	9/23/24	QC76340	JJA
Arsenic	ND mg/L	EPA 200.8	0.0006	0.00006	9/23/24	QC76340	JJA
Barium	0.0364 mg/L	EPA 200.8	0.0007	0.00007	9/23/24	QC76340	JJA
Beryllium	ND mg/L	EPA 200.8	0.0001	0.000008	9/23/24	QC76340	JJA
Cadmium	0.0003 mg/L	EPA 200.8	0.0001	0.000006	9/23/24	QC76340	JJA
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	9/23/24	QC76340	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit

mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240918003

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240918003

Client PO:

Client Project: DRMS

Date Received: 9/18/24

Date Reported: 10/1/24

Matrix: Water

Customer Sample ID GW-3R

Sample Date/Time: 9/17/24 12:55 PM

Lab Number: 240918003-03

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
<u>Dissolved</u>							
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	9/23/24	QC76340	JJA
Lead	ND mg/L	EPA 200.8	0.0001	0.000006	9/23/24	QC76340	JJA
Manganese	ND mg/L	EPA 200.8	0.0008	0.00001	9/23/24	QC76340	JJA
Molybdenum	0.0016 mg/L	EPA 200.8	0.0005	0.00005	9/23/24	QC76340	JJA
Nickel	ND mg/L	EPA 200.8	0.0009	0.00005	9/23/24	QC76340	JJA
Selenium	ND mg/L	EPA 200.8	0.0008	0.00008	9/23/24	QC76340	JJA
Silica (as Si)	2.31 mg/L	EPA 200.8	0.30	0.03	9/23/24	QC76340	JJA
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	9/23/24	QC76340	JJA
Thallium	ND mg/L	EPA 200.8	0.0002	0.000003	9/23/24	QC76340	JJA
Uranium	ND mg/L	EPA 200.8	0.0002	0.000002	9/23/24	QC76340	JJA
Vanadium	ND mg/L	EPA 200.8	0.001	0.0001	9/23/24	QC76340	JJA
Zinc	0.150 mg/L	EPA 200.8	0.001	0.00003	9/23/24	QC76340	JJA
Boron	ND mg/L	EPA 200.7	0.05	0.01	9/23/24	QC76367	JJA
Calcium	37.1 mg/L	EPA 200.7	0.1	0.01	9/23/24	QC76367	JJA
Iron	ND mg/L	EPA 200.7	0.005	0.0005	9/23/24	QC76367	JJA
Magnesium	2.14 mg/L	EPA 200.7	0.02	0.002	9/23/24	QC76367	JJA
Potassium	0.4 mg/L	EPA 200.7	0.1	0.01	9/23/24	QC76367	JJA
Sodium	2.7 mg/L	EPA 200.7	0.1	0.01	9/23/24	QC76367	JJA
<u>Total</u>							
Total Hardness	105.7 mg/L as CaCO3	SM 2340-B	0.1	0.01	9/23/24	-	JJA
Calcium	38.7 mg/L	EPA 200.7	0.1	0.01	9/23/24	QC76367	JJA
Magnesium	2.21 mg/L	EPA 200.7	0.02	0.002	9/23/24	QC76367	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240918003

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240918003

Client PO:

Client Project: DRMS

Date Received: 9/18/24 Date Reported: 10/1/24

Matrix: Water

Customer Sample ID GW-99

Sample Date/Time: 9/17/24 1:05 PM

Lab Number: 240918003-04

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Total Alkalinity	29.7 mg/L as CaCO3	SM 2320-B	4.0	1	9/18/24	QC76327	TAB
Bicarbonate	29.7 mg/L as CaCO3	SM 2320-B	0.2	0.2	9/18/24	-	TAB
Carbonate	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	9/18/24	-	TAB
Hydroxide	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	9/18/24	-	TAB
Chloride	ND mg/L	EPA 300.0	1.00	0.007	9/19/24	QC76297	NRP
Cyanide-Total	ND mg/L	EPA 335.4	0.005	0.0005	9/24/24	QC76412	KRB
Fluoride	0.23 mg/L	EPA 300.0	0.10	0.024	9/19/24	QC76298	NRP
Nitrate Nitrogen	0.30 mg/L	EPA 300.0	0.05	0.02	9/19/24	QC76294	NRP
Nitrate/ Nitrite Nitrogen	0.30 mg/L	Calculation	0.05	0.02	9/19/24	-	NRP
Nitrite Nitrogen	ND mg/L	EPA 300.0	0.03	0.01	9/19/24	QC76295	NRP
рН	6.42 units	SM 4500-H-B	0.01	0.01	9/18/24	-	KRB
Specific Conductance	223 umhos/cm @ 25c	EPA 120.1	5	5	9/18/24	-	KRB
Sulfate	70.0 mg/L	EPA 300.0	1.00	0.012	9/19/24	QC76299	NRP
Total Dissolved Solids	132 mg/L	SM 2540-C	5	2	9/19/24	QC76311	ISG
Phosphorus - Total	ND mg/L	EPA 365.1	0.05	0.006	9/19/24	QC76308	TAB
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	9/19/24	QC76290	ISG
<u>Dissolved</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	9/19/24	QC76315	JJA
Aluminum	0.002 mg/L	EPA 200.8	0.001	0.00003	9/23/24	QC76340	JJA
Antimony	ND mg/L	EPA 200.8	0.0012	0.00012	9/23/24	QC76340	JJA
Arsenic	0.0006 mg/L	EPA 200.8	0.0006	0.00006	9/23/24	QC76340	JJA
Barium	0.0374 mg/L	EPA 200.8	0.0007	0.00007	9/23/24	QC76340	JJA
Beryllium	ND mg/L	EPA 200.8	0.0001	0.000008	9/23/24	QC76340	JJA
Cadmium	0.0003 mg/L	EPA 200.8	0.0001	0.000006	9/23/24	QC76340	JJA
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	9/23/24	QC76340	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit

mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240918003

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240918003

Client PO:

Client Project: DRMS

Date Received: 9/18/24 Date Reported: 10/1/24

Matrix: Water

Customer Sample ID GW-99

Sample Date/Time: 9/17/24 1:05 PM **Lab Number:** 240918003-04

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Dissolved							
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	9/23/24	QC76340	JJA
Lead	ND mg/L	EPA 200.8	0.0001	0.000006	9/23/24	QC76340	JJA
Manganese	ND mg/L	EPA 200.8	0.0008	0.00001	9/23/24	QC76340	JJA
Molybdenum	0.0018 mg/L	EPA 200.8	0.0005	0.00005	9/23/24	QC76340	JJA
Nickel	ND mg/L	EPA 200.8	0.0009	0.00005	9/23/24	QC76340	JJA
Selenium	ND mg/L	EPA 200.8	0.0008	0.00008	9/23/24	QC76340	JJA
Silica (as Si)	2.31 mg/L	EPA 200.8	0.30	0.03	9/23/24	QC76340	JJA
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	9/23/24	QC76340	JJA
Thallium	ND mg/L	EPA 200.8	0.0002	0.000003	9/23/24	QC76340	JJA
Uranium	ND mg/L	EPA 200.8	0.0002	0.000002	9/23/24	QC76340	JJA
Vanadium	ND mg/L	EPA 200.8	0.001	0.0001	9/23/24	QC76340	JJA
Zinc	0.152 mg/L	EPA 200.8	0.001	0.00003	9/23/24	QC76340	JJA
Boron	ND mg/L	EPA 200.7	0.05	0.01	9/23/24	QC76367	JJA
Calcium	36.9 mg/L	EPA 200.7	0.1	0.01	9/23/24	QC76367	JJA
Iron	ND mg/L	EPA 200.7	0.005	0.0005	9/23/24	QC76367	JJA
Magnesium	2.13 mg/L	EPA 200.7	0.02	0.002	9/23/24	QC76367	JJA
Potassium	0.5 mg/L	EPA 200.7	0.1	0.01	9/23/24	QC76367	JJA
Sodium	2.9 mg/L	EPA 200.7	0.1	0.01	9/23/24	QC76367	JJA
<u>Total</u>							
Total Hardness	104.6 mg/L as CaCO3	3 SM 2340-B	0.1	0.01	9/23/24	-	JJA
Calcium	38.2 mg/L	EPA 200.7	0.1	0.01	9/23/24	QC76367	JJA
Magnesium	2.22 mg/L	EPA 200.7	0.02	0.002	9/23/24	QC76367	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240918003

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240918003

Client PO:

Client Project: DRMS

Date Received: 9/18/24 Date Reported: 10/1/24

Matrix: Water

Customer Sample ID GW-3B

Sample Date/Time: 9/17/24 3:00 PM

Lab Number: 240918003-05

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
1031	Nesult / Ullits	Menion	ILL	MIDL	Date Allalyzeu	QO Datell ID	Allaly26u by
Total Alkalinity	20.9 ma/l as CcCO2	SM 2320-B	4.0	1	9/18/24	QC76327	TAB
Bicarbonate	29.8 mg/L as CaCO3	SM 2320-B		0.2	9/18/24	QC/032/	TAB
	29.8 mg/L as CaCO3		0.2			-	
Carbonate	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	9/18/24	-	TAB
Hydroxide	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	9/18/24	-	TAB
Chloride	ND mg/L	EPA 300.0	1.00	0.007	9/19/24	QC76297	NRP
Cyanide-Total	ND mg/L	EPA 335.4	0.005	0.0005	9/24/24	QC76412	KRB
Fluoride	0.26 mg/L	EPA 300.0	0.10	0.024	9/19/24	QC76298	NRP
Nitrate Nitrogen	0.30 mg/L	EPA 300.0	0.05	0.02	9/19/24	QC76294	NRP
Nitrate/ Nitrite Nitrogen	0.30 mg/L	Calculation	0.05	0.02	9/19/24	-	NRP
Nitrite Nitrogen	ND mg/L	EPA 300.0	0.03	0.01	9/19/24	QC76295	NRP
рН	6.20 units	SM 4500-H-B	0.01	0.01	9/18/24	-	KRB
Specific Conductance	214 umhos/cm @ 25c	EPA 120.1	5	5	9/18/24	-	KRB
Sulfate	66.1 mg/L	EPA 300.0	1.00	0.012	9/19/24	QC76299	NRP
Total Dissolved Solids	137 mg/L	SM 2540-C	5	2	9/19/24	QC76311	ISG
Phosphorus - Total	ND mg/L	EPA 365.1	0.05	0.006	9/19/24	QC76308	TAB
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	9/19/24	QC76290	ISG
<u>Dissolved</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	9/19/24	QC76315	JJA
Aluminum	0.003 mg/L	EPA 200.8	0.001	0.00003	9/23/24	QC76340	JJA
Antimony	ND mg/L	EPA 200.8	0.0012	0.00012	9/23/24	QC76340	JJA
Arsenic	ND mg/L	EPA 200.8	0.0006	0.00006	9/23/24	QC76340	JJA
Barium	0.0527 mg/L	EPA 200.8	0.0007	0.00007	9/23/24	QC76340	JJA
Beryllium	ND mg/L	EPA 200.8	0.0001	0.000008	9/23/24	QC76340	JJA
Cadmium	0.0001 mg/L	EPA 200.8	0.0001	0.000006	9/23/24	QC76340	JJA
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	9/23/24	QC76340	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM

ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240918003

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240918003

Client PO:

Client Project: DRMS

Date Received: 9/18/24 Date Reported: 10/1/24

Matrix: Water

Customer Sample ID GW-3B

Sample Date/Time: 9/17/24 3:00 PM **Lab Number:** 240918003-05

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
<u>Dissolved</u>							
Copper	0.0012 mg/L	EPA 200.8	0.0008	0.00001	9/23/24	QC76340	JJA
Lead	0.0005 mg/L	EPA 200.8	0.0001	0.000006	9/23/24	QC76340	JJA
Manganese	0.0045 mg/L	EPA 200.8	0.0008	0.00001	9/23/24	QC76340	JJA
Molybdenum	0.0008 mg/L	EPA 200.8	0.0005	0.00005	9/23/24	QC76340	JJA
Nickel	ND mg/L	EPA 200.8	0.0009	0.00005	9/23/24	QC76340	JJA
Selenium	ND mg/L	EPA 200.8	0.0008	0.00008	9/23/24	QC76340	JJA
Silica (as Si)	2.60 mg/L	EPA 200.8	0.30	0.03	9/23/24	QC76340	JJA
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	9/23/24	QC76340	JJA
Thallium	ND mg/L	EPA 200.8	0.0002	0.000003	9/23/24	QC76340	JJA
Uranium	ND mg/L	EPA 200.8	0.0002	0.000002	9/23/24	QC76340	JJA
Vanadium	ND mg/L	EPA 200.8	0.001	0.0001	9/23/24	QC76340	JJA
Zinc	0.122 mg/L	EPA 200.8	0.001	0.00003	9/23/24	QC76340	JJA
Boron	ND mg/L	EPA 200.7	0.05	0.01	9/23/24	QC76367	JJA
Calcium	34.7 mg/L	EPA 200.7	0.1	0.01	9/23/24	QC76367	JJA
Iron	ND mg/L	EPA 200.7	0.005	0.0005	9/23/24	QC76367	JJA
Magnesium	2.51 mg/L	EPA 200.7	0.02	0.002	9/23/24	QC76367	JJA
Potassium	0.6 mg/L	EPA 200.7	0.1	0.01	9/23/24	QC76367	JJA
Sodium	2.6 mg/L	EPA 200.7	0.1	0.01	9/23/24	QC76367	JJA
<u>Total</u>							
Total Hardness	102.3 mg/L as CaCO3	SM 2340-B	0.1	0.01	9/23/24	-	JJA
Calcium	36.6 mg/L	EPA 200.7	0.1	0.01	9/23/24	QC76367	JJA
Magnesium	2.66 mg/L	EPA 200.7	0.02	0.002	9/23/24	QC76367	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Analytical QC Summary

TASK NO: 240918003

Receive Date: 9/18/24 Report To: CJ Dickerson Company: Thorin Resources, LLC **Project Name: DRMS**

Test	QC Batch ID	QC Type	Result		Method	Prep Date
Total Alkalinity	QC76327	Blank	ND	•	SM 2320-B	9/18/24
Chloride	QC76297	Blank	ND		EPA 300.0	9/18/24
Cyanide-Total	QC76412	Blank	ND		EPA 335.4	9/24/24
Fluoride	QC76298	Blank	ND		EPA 300.0	9/18/24
Mercury	QC76315	Method Blank	ND		EPA 245.7	9/19/24
Aluminum	QC76340	Method Blank	ND		EPA 200.8	9/18/24
Antimony	QC76340	Method Blank	ND		EPA 200.8	9/18/24
Arsenic	QC76340	Method Blank	ND		EPA 200.8	9/18/24
Barium	QC76340	Method Blank	ND		EPA 200.8	9/18/24
Beryllium	QC76340	Method Blank	ND		EPA 200.8	9/18/24
Cadmium	QC76340	Method Blank	ND		EPA 200.8	9/18/24
Chromium	QC76340	Method Blank	ND		EPA 200.8	9/18/24
Copper	QC76340	Method Blank	ND		EPA 200.8	9/18/24
Lead	QC76340	Method Blank	ND		EPA 200.8	9/18/24
Manganese	QC76340	Method Blank	ND		EPA 200.8	9/18/24
Molybdenum	QC76340	Method Blank	ND		EPA 200.8	9/18/24
Nickel	QC76340	Method Blank	ND		EPA 200.8	9/18/24
Selenium	QC76340	Method Blank	ND		EPA 200.8	9/18/24
Silica (as Si)	QC76340	Method Blank	ND		EPA 200.8	9/18/24
Silver	QC76340	Method Blank	ND		EPA 200.8	9/18/24
Thallium	QC76340	Method Blank	ND		EPA 200.8	9/18/24
Uranium	QC76340	Method Blank	ND		EPA 200.8	9/18/24
Vanadium	QC76340	Method Blank	ND		EPA 200.8	9/18/24
Zinc	QC76340	Method Blank	ND		EPA 200.8	9/18/24
Boron	QC76367	Method Blank	ND		EPA 200.7	9/18/24
Calcium	QC76367	Method Blank	ND		EPA 200.7	9/18/24
ron	QC76367	Method Blank	ND		EPA 200.7	9/18/24
Magnesium	QC76367	Method Blank	ND		EPA 200.7	9/18/24
Potassium	QC76367	Method Blank	ND		EPA 200.7	9/18/24
Sodium	QC76367	Method Blank	ND		EPA 200.7	9/18/24
Nitrate Nitrogen	QC76294	Blank	ND		EPA 300.0	9/18/24
Nitrite Nitrogen	QC76295	Blank	ND		EPA 300.0	9/18/24
Sulfate	QC76299	Blank	ND		EPA 300.0	9/18/24
Total Dissolved Solids	QC76311	Blank	ND		SM 2540-C	9/19/24
Phosphorus - Total	QC76308	Blank	ND		EPA 365.1	9/18/24
Total Suspended Solids	QC76290	Blank	ND		SM 2540-D	9/19/24
Test		C Type	Limits	% Rec	RPD	Method
Total Alkalinity	QC76327 Du	plicate -240916003-01	0 - 20	-	5.8	SM 2320-B
	LC	S	90 - 110	93.4	-	

Abbreviations/ References:

Chloride

RL = Reporting Limit = Minimum Level

MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

103.3

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

2.8

ND = Not Detected at Reporting Limit.

90 - 110

0 - 20

LCS-2

Duplicate -240918003-02

QC76297

EPA 300.0

Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
	I	LCS	90 - 110	101.4	-	
	I	MS -240918003-02	75 - 125	98.8	-	
Cyanide-Total	QC76412 I	Duplicate -240917123-01	0 - 20	-	16.7	EPA 335.4
	1	LCS	90 - 110	91.1	-	
	1	MS -240918003-02C	75 - 125	90.5	-	
Fluoride	QC76298 I	Duplicate -240918003-02	0 - 20	-	5.9	EPA 300.0
	ļ	LCS	90 - 110	95.0	-	
	1	MS -240918003-02	75 - 125	89.9	-	
Mercury	QC76315	Duplicate -240913036-01	0 - 20	-	0.0	EPA 245.7
	I	LCS	90 - 110	106.8	-	
	1	MS -240913036-01F	80 - 120	100.0	-	
Aluminum	QC76340 I	LCS	90 - 110	101.0	-	EPA 200.8
	1	MS -240918002-01	70 - 130	95.4	-	
	I	MSD -240918002-01	0 - 10	-	0.5	
Antimony	QC76340 I	LCS	90 - 110	100.2	-	EPA 200.8
·	ı	MS -240918002-01	70 - 130	106.4	-	
	ı	MSD -240918002-01	0 - 10	_	1.2	
Arsenic	QC76340 I	LCS	90 - 110	100.3	=	EPA 200.8
	ı	MS -240918002-01	70 - 130	109.1	-	
	ı	MSD -240918002-01	0 - 10	-	3.0	
Barium	QC76340 I	LCS	90 - 110	101.3	-	EPA 200.8
		MS -240918002-01	70 - 130	108.4	-	
	1	MSD -240918002-01	0 - 10	-	1.6	
 Beryllium		LCS	90 - 110	101.3	-	EPA 200.8
Dorymani		MS -240918002-01	70 - 130	109.3	-	2177200.0
		MSD -240918002-01	0 - 10	-	3.7	
 Cadmium		LCS	90 - 110	96.8	-	EPA 200.8
Cadmium		MS -240918002-01	70 - 130	105.7	_	E1 A 200.0
		MSD -240918002-01	0 - 10	-	1.8	
 Chromium		LCS	90 - 110	108.5	-	EPA 200.8
Cilioilliaili		MS -240918002-01	70 - 130	114.3	_	LI A 200.0
		MSD -240918002-01	0 - 10	-	0.8	
Connor		LCS	90 - 110	108.2	0.0	EPA 200.8
Copper		MS -240918002-01	70 - 130	103.1	-	LFA 200.0
		MSD -240918002-01	0 - 10	103.1	2.4	
Lood		LCS	90 - 110	100.0	2.4	EPA 200.8
Lead		MS -240918002-01	70 - 110	100.9	-	EPA 200.6
		MSD -240918002-01	70 - 130 0 - 10	106.3 -	- 1.8	
Managanaga						EDA 200 0
Manganese		LCS	90 - 110	105.8	-	EPA 200.8
		MS -240918002-01	70 - 130	108.2	0.7	
Malakata a		MSD -240918002-01	0 - 10	-	0.7	EDA 000 0
Molybdenum		LCS	90 - 110	99.4	-	EPA 200.8
		MS -240918002-01	70 - 130	109.4	-	
NP-11		MSD -240918002-01	0 - 10	-	1.1	ED 4 000 0
Nickel		LCS	90 - 110	104.9	-	EPA 200.8
		MS -240918002-01	70 - 130	105.8	-	
		MSD -240918002-01	0 - 10	-	1.5	
Selenium		LCS	90 - 110	98.1	-	EPA 200.8
		MS -240918002-01	70 - 130	109.3	-	
_		MSD -240918002-01	0 - 10	-	1.1	
Silica (as Si)	QC76340 I	LCS	90 - 110	106.4	-	EPA 200.8

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
		MS -240918002-01	70 - 130	86.0	-	
		MSD -240918002-01	0 - 10	-	2.2	
Silver	QC76340	LCS	90 - 110	102.4	-	EPA 200.8
		MS -240918002-01	70 - 130	101.2	-	
		MSD -240918002-01	0 - 10	-	2.0	
Thallium	QC76340	LCS	90 - 110	102.7	-	EPA 200.8
		MS -240918002-01	70 - 130	107.7	-	
		MSD -240918002-01	0 - 10	-	2.4	
Uranium	QC76340	LCS	90 - 110	98.2	-	EPA 200.8
		MS -240918002-01	70 - 130	105.7	-	
		MSD -240918002-01	0 - 10	-	1.2	
√anadium	QC76340	LCS	90 - 110	101.8	-	EPA 200.8
		MS -240918002-01	70 - 130	111.5	-	
		MSD -240918002-01	0 - 10	-	0.5	
Zinc	QC76340	LCS	90 - 110	103.5	-	EPA 200.8
		MS -240918002-01	70 - 130	88.7	-	
		MSD -240918002-01	0 - 10	-	3.3	
Boron	QC76367	Duplicate -240918023-01	0 - 20	_	14.0	EPA 200.7
		LCS	90 - 110	106.2	-	
		MS -240918003-03	75 - 125	108.6	_	
Calcium	QC76367	Duplicate -240918023-01	0 - 20	-	1.9	EPA 200.7
	40.000.	LCS	90 - 110	98.9	-	2.7.200
		MS -240918003-03	75 - 125	93.1	-	
ron	QC76367	Duplicate -240918023-01	0 - 20	-	11.0	EPA 200.7
1011	Q070007	LCS	90 - 110	108.8	-	217(200.1
		MS -240918003-03	75 - 125	109.0	_	
Magnesium	QC76367	Duplicate -240918023-01	0 - 20	-	1.1	EPA 200.7
wagnesiam	Q070307	LCS	90 - 110	105.6		LI A 200.1
		MS -240918003-03	75 - 125	112.4	_	
Potassium	QC76367	Duplicate -240918023-01	0 - 20	-	8.8	EPA 200.7
Otassium	QC70307	LCS	90 - 110	99.2	0.0	LFA 200.7
		MS -240918003-03	75 - 125	121.3	-	
Sodium	QC76367	Duplicate -240918023-01	0 - 20	-	3.3	EPA 200.7
odium	QC70307	LCS	90 - 110	95.6	3.3	LFA 200.7
		MS -240918003-03	75 - 125	115.4	-	
litrata Nitragan	QC76294			113.4	- 11	EPA 300.0
litrate Nitrogen	QC76294	Duplicate -240917065-02 LCS	0 - 20 90 - 110	97.4	1.1	EPA 300.0
		MS -240917065-02	75 - 125		-	
Nitrite Nitrogen	QC76295			93.5	- 0.0	EDA 200.0
Nitrite Nitrogen	QC76295	Duplicate -240917065-02	0 - 20	-	0.0	EPA 300.0
		LCS	90 - 110	98.1	-	
D. 16-4-	0070000	MS -240917065-02	75 - 125	94.9	-	EDA 000 0
Sulfate	QC76299	Duplicate -240918003-02	0 - 20	-	0.5	EPA 300.0
		LCS	90 - 110	99.8	-	
	22-22:	MS -240918003-02	75 - 125	104.0	-	01/ 07/07
Total Dissolved Solids	QC76311	Duplicate -240918117-07	0 - 10	-	3.2	SM 2540-C
		LCS	85 - 115	104.7	<u>-</u>	
Phosphorus - Total	QC76308	Duplicate -240917065-01	0 - 20	-	5.7	EPA 365.1
		LCS	90 - 110	99.5	-	
		MS -240917058-05	75 - 125	92.5	-	
Total Suspended Solids	QC76290	Duplicate -240918046-01	0 - 10	-	7.3	SM 2540-D
		LCS	90 - 110	98.3	-	

Abbreviations/ References:

 $RL = Reporting\ Limit = Minimum\ Level$ RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

All analyses were performed in accordance with approved methods under the latest revision to 40 CFR Part 136 unless otherwise identified. Based on my inquiry of the person or persons directly responsible for analyzing the wastewater samples and generating the report (s), the analyses, report, and information submitted are, to the best of my knowledge and belief, true, accurate, and complete.

DATA APPROVED FOR RELEASE BY

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Chain of Custody Form

Report To Information	Bill To Information (If different from report to)	Project Name / Number
Company Name: Thorin Resources	Company Name:	
Contact Name: CJ Dicheson	Contact Name:	
Address: 1900 Man St Unit L	Address:	Task Number (Lab Use Only)
City Owny State Co Zip &1427	City State Zip	CAL Task
Phone: (602) 793-1321	Phone:	240918003
Email: cidickerson e thorn resources con	Email:	
Sample Collector:		JAK
Sample Collector Phone:	PO No.:	i i

Commerce City Lab 10411 Heinz Way Commerce City CO 80640

<u>Lakewood Service Center</u> 610 Garrison Street, Unit E Lakewood CO 80215

Phone: 303-659-2313

www.coloradolab.com

						_						Te	sts Requ	ested				
	/	Sa	ample Matrix	(Select One On	ly)			<u>S</u>	v							•		
Includes w	NPDES) vastewater, nor out intended for	•	raw (untreated)	d drinking water,	Solid (Sludge) (503 Regs / RCRA/ 846)	'SW-	No. of Containers	Grab or (Check One Only) Composite	250101208									
Date	Time			Sample II	D		ž	င်း ခင်	080									
2/18				16			R	-		•								
9/17	92:00/8	3:25	(16-2			5		1									
9/17	8:550			RG-8			5		*									
9/17	12:55			GE1-3/2			5		*									
9/17	13:05	<u> </u>		-W-99			5		X									
9/17	15:00			FW-3B			5		x									
	*	Tim	e of col	lection on	two /26	(
		bottle	S is 12:00	lection on s. Logged	aa 12:00													
				me of colle														
Instructi	ons: ATI	me of	- collection	corrected to	\$ 8;55 4.	C/S Info:					(Seals P	resent Yes	□ No □				
				9/18/24		Deliver_Via:_		VPS		C/S	Charge 🕽		°C/Ic		Sample			
	shed By:		te/Time:	Received By:	Date/Time:	Re	linqui	shed By:		Dat	e/Time:	Rece	ived By:	. 7-			Time:	
CJI	Diches	n 9/1	7 5:00p	diameter ()	F	Page 15 o	f 17						9/10	ar	M	9/	18/	24

LABORATORIES, INC.

Quotation for Analytical Services

Quote ID: QBO24010976

Turn Around Time: 10 Working Days

Quote Date: Wednesday, January 31, 2024

Prepared For:

Thorin Resources, LLC

1900 Main St

Unit 1

Ouray, CO 81427

Attn: CJ Dickerson

Project: **DRMS**

			•		
Matrix	Description	Method	Qty.	Price - eac	h — Total
Water - Ground	Alkalinity - B-C	N/A	12	\$16.00	\$192.00
Water - Ground	Alkalinity	SM 2320-B	12	Incl.	incl.
Water - Ground	Carb/ Bicarb	SM 2320-B	12	Incl.	Incl.
Water - Ground	Hardness - Total	SM 2340-B	12	\$0.00	\$0.00
Water - Ground	Nitrate/ Nitrite Nitrogen	Calculation	12	\$0.00	\$0.00
Water - Ground	B - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Ca - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Ca - Total	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Fe - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	K - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Mg - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Mg - Total	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Na - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Ph	SM 4500-H-B	12	\$13.00	\$156.00
Water - Ground	Specific Conductance	EPA 120.1	12	\$14.00	\$168.00
Water - Ground	Ag - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Al - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	As - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Ba - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Be - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Cd - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Cr - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Cu - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Mn - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Mo - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Ni - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Pb - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Sb - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Se - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Si - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	TDS	SM 2540-C	12	\$16.00	\$192.00
				•	7

Page 1 of 4

10411 Heinz Way / Commerce City, CO 80640 / 303-659-2313 Mailing Address: P.O. Box 507 / Brighton, CO 80601-0507

CAL Task 240918003

JAK

Quotation for Analytical Services

Quote ID: QBO24010976

1	λ	۳,	~	5	A .	T ~	m	50	INC
1	44	M	()	3~	<i>(</i> 4)	1()	-	- Jan	TIME:

	ma, , m - 4. (((m -) () m m +) (, m)				
Water - Ground	TI - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	TSS	SM 2540-D	12	\$16.00	\$192.00
Water - Ground	V - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Zn - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Chloride	EPA 300.0	12	\$18.00	\$216.00
Water - Ground	Fluoride	EPA 300.0	12	\$18.00	\$216.00
Water - Ground	Nitrate Nitrogen	EPA 300.0	12	\$18.00	\$216.00
Water - Ground	Nitrite Nitrogen	EPA 300.0	12	\$18.00	\$216.00
Water - Ground	Sulfate	EPA 300.0	12	\$18.00	\$216.00
Water - Ground	U - Dis	EPA 200.8	12	\$23.00	\$276.00
Water - Ground	Total Phosphorus	EPA 365.1	12	\$26.00	\$312.00
Water - Ground	Hg - D:158010ed	EPA 245.7	12	\$27.00	\$324.00
Water - Ground	Cyanide-Total	EPA 335.4	12	\$40.00	\$480.00

\$8,076.00

Colorado Analytical Laboratory maintains certification by the Colorado Department of Health (CDPHE) and EPA Region 8 for Wyoming and Tribal Public Water Systems to analyze drinking water for organic contaminants (SOC's VOC's), inorganic contaminants (metals), nitrate nitrite, cyanide, fluoride and coliform bacteria.

Sub-Lab analysis pricing subject to change. Sub-Lab radiological analysis turn-around time is 4 to 8 weeks depending on sample matrix. Due to time, distance and other constraints outside of the control of CAL shipments to sub labs are not guaranteed. All shipment charges will be billed to the client regardless of shipment outcome.

Billing terms are Net 30 on approved accounts; all other accounts are COD. Additional charges may apply for accelerated turn around.

We appreciate the opportunity to be of service to you. If you have questions please call us at 303-659-2313 or visit us at www.coloradolab.com

^{**}Samples should be shipped or hand delivered the same day they are collected. Orders that require sub-lab analysis should be delivered to the lab Monday thru Wednesday only.**

TASK NO: 240919021

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240919021

Client PO:

Client Project: DRMS

Date Received: 9/19/24

Date Reported: 9/27/24

Matrix: Water

Customer Sample ID UG-5

Sample Date/Time: 9/18/24 7:40 AM **Lab Number:** 240919021-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
					•		
Total Alkalinity	52.2 mg/L as CaCO3	SM 2320-B	4.0	1	9/23/24	QC76416	KJP
Bicarbonate	52.2 mg/L as CaCO3	SM 2320-B	0.2	0.2	9/23/24	-	KJP
Carbonate	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	9/23/24	-	KJP
Hydroxide	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	9/23/24	-	KJP
Chloride	0.33 mg/L	EPA 300.0	0.10	0.007	9/19/24	QC76353	NRP
Cyanide-Total	ND mg/L	EPA 335.4	0.005	0.0005	9/24/24	QC76412	KRB
Fluoride	0.19 mg/L	EPA 300.0	0.10	0.024	9/19/24	QC76354	NRP
Nitrate Nitrogen	0.25 mg/L	EPA 300.0	0.05	0.02	9/19/24	QC76355	NRP
Nitrate/ Nitrite Nitrogen	0.25 mg/L	Calculation	0.05	0.02	9/23/24	-	NRP
Nitrite Nitrogen	ND mg/L	EPA 300.0	0.03	0.01	9/19/24	QC76356	NRP
рН	7.31 units	SM 4500-H-B	0.01	0.01	9/19/24	-	ARH
Specific Conductance	303 umhos/cm @ 25c	EPA 120.1	5	5	9/19/24	-	ARH
Sulfate	90.6 mg/L	EPA 300.0	0.10	0.012	9/19/24	QC76358	NRP
Total Dissolved Solids	203 mg/L	SM 2540-C	5	2	9/24/24	QC76377	ISG
Phosphorus - Total	ND mg/L	EPA 365.1	0.05	0.006	9/24/24	QC76391	TAB
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	9/20/24	QC76317	ARH
<u>Dissolved</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	9/26/24	QC76494	JJA
Aluminum	0.011 mg/L	EPA 200.8	0.001	0.00003	9/24/24	QC76387	AMJ
Antimony	ND mg/L	EPA 200.8	0.0012	0.00012	9/24/24	QC76387	AMJ
Arsenic	0.0024 mg/L	EPA 200.8	0.0006	0.00006	9/24/24	QC76387	AMJ
Barium	0.0293 mg/L	EPA 200.8	0.0007	0.00007	9/24/24	QC76387	AMJ
Beryllium	ND mg/L	EPA 200.8	0.0001	0.000008	9/24/24	QC76387	AMJ
Cadmium	0.0013 mg/L	EPA 200.8	0.0001	0.000006	9/24/24	QC76387	AMJ
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	9/24/24	QC76387	AMJ

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM

ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240919021

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240919021

Client PO:

Client Project: DRMS

Date Received: 9/19/24 Date Reported: 9/27/24

Matrix: Water

Customer Sample ID UG-5

Sample Date/Time: 9/18/24 7:40 AM

Lab Number: 240919021-01

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
<u>Dissolved</u>							
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	9/24/24	QC76387	AMJ
Lead	0.0002 mg/L	EPA 200.8	0.0001	0.000006	9/24/24	QC76387	AMJ
Manganese	1.47 mg/L	EPA 200.8	0.0008	0.00001	9/24/24	QC76387	AMJ
Molybdenum	0.0035 mg/L	EPA 200.8	0.0005	0.00005	9/24/24	QC76387	AMJ
Nickel	ND mg/L	EPA 200.8	0.0009	0.00005	9/24/24	QC76387	AMJ
Selenium	ND mg/L	EPA 200.8	0.0008	0.00008	9/24/24	QC76387	AMJ
Silica (as Si)	3.81 mg/L	EPA 200.8	0.30	0.03	9/24/24	QC76387	AMJ
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	9/24/24	QC76387	AMJ
Thallium	ND mg/L	EPA 200.8	0.0002	0.000003	9/24/24	QC76387	AMJ
Uranium	0.0003 mg/L	EPA 200.8	0.0002	0.000002	9/24/24	QC76387	AMJ
Vanadium	ND mg/L	EPA 200.8	0.001	0.0001	9/24/24	QC76387	AMJ
Zinc	0.391 mg/L	EPA 200.8	0.001	0.00003	9/24/24	QC76387	AMJ
Boron	ND mg/L	EPA 200.7	0.05	0.01	9/24/24	QC76389	JJA
Calcium	56.6 mg/L	EPA 200.7	0.1	0.01	9/24/24	QC76389	JJA
Iron	ND mg/L	EPA 200.7	0.005	0.0005	9/24/24	QC76389	JJA
Magnesium	2.38 mg/L	EPA 200.7	0.02	0.002	9/24/24	QC76389	JJA
Potassium	0.3 mg/L	EPA 200.7	0.1	0.01	9/24/24	QC76389	JJA
Sodium	5.9 mg/L	EPA 200.7	0.1	0.01	9/24/24	QC76389	JJA
<u>Total</u>							
Total Hardness	145.7 mg/L as CaCO3	SM 2340-B	0.1	0.01	9/24/24	-	JJA
Calcium	53.6 mg/L	EPA 200.7	0.1	0.01	9/24/24	QC76389	JJA
Magnesium	2.86 mg/L	EPA 200.7	0.02	0.002	9/24/24	QC76389	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240919021

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240919021

Client PO:

Client Project: DRMS

Date Received: 9/19/24 Date Reported: 9/27/24

Matrix: Water

Customer Sample ID GW-2A

Sample Date/Time: 9/18/24 8:55 AM **Lab Number:** 240919021-02

Lab Nulliber.							
Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Total Alkalinity	27.2 mg/L as CaCO3	SM 2320-B	4.0	1	9/23/24	QC76416	KJP
Bicarbonate	27.2 mg/L as CaCO3	SM 2320-B	0.2	0.2	9/23/24	-	KJP
Carbonate	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	9/23/24	=	KJP
Hydroxide	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	9/23/24	-	KJP
Chloride	0.15 mg/L	EPA 300.0	0.10	0.007	9/19/24	QC76353	NRP
Cyanide-Total	ND mg/L	EPA 335.4	0.005	0.0005	9/24/24	QC76412	KRB
Fluoride	0.19 mg/L	EPA 300.0	0.10	0.024	9/19/24	QC76354	NRP
Nitrate Nitrogen	0.19 mg/L	EPA 300.0	0.05	0.02	9/19/24	QC76355	NRP
Nitrate/ Nitrite Nitrogen	0.19 mg/L	Calculation	0.05	0.02	9/23/24	-	NRP
Nitrite Nitrogen	ND mg/L	EPA 300.0	0.03	0.01	9/19/24	QC76356	NRP
рН	6.28 units	SM 4500-H-B	0.01	0.01	9/19/24	-	ARH
Specific Conductance	198 umhos/cm @ 25c	EPA 120.1	5	5	9/19/24	-	ARH
Sulfate	61.9 mg/L	EPA 300.0	0.10	0.012	9/19/24	QC76358	NRP
Total Dissolved Solids	138 mg/L	SM 2540-C	5	2	9/24/24	QC76377	ISG
Phosphorus - Total	ND mg/L	EPA 365.1	0.05	0.006	9/24/24	QC76391	TAB
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	9/20/24	QC76317	ARH
Dissolved							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	9/26/24	QC76494	JJA
Aluminum	0.001 mg/L	EPA 200.8	0.001	0.00003	9/24/24	QC76387	AMJ
Antimony	ND mg/L	EPA 200.8	0.0012	0.00012	9/24/24	QC76387	AMJ
Arsenic	ND mg/L	EPA 200.8	0.0006	0.00006	9/24/24	QC76387	AMJ
Barium	0.0513 mg/L	EPA 200.8	0.0007	0.00007	9/24/24	QC76387	AMJ
Beryllium	ND mg/L	EPA 200.8	0.0001	0.000008	9/24/24	QC76387	AMJ
Cadmium	0.0006 mg/L	EPA 200.8	0.0001	0.000006	9/24/24	QC76387	AMJ
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	9/24/24	QC76387	AMJ

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM

ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240919021

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240919021

Client PO:

Client Project: DRMS

Date Received: 9/19/24

Date Reported: 9/27/24

Matrix: Water

Customer Sample ID GW-2A

Sample Date/Time: 9/18/24 8:55 AM **Lab Number:** 240919021-02

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Dissolved							
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	9/24/24	QC76387	AMJ
Lead	0.0001 mg/L	EPA 200.8	0.0001	0.000006	9/24/24	QC76387	AMJ
Manganese	ND mg/L	EPA 200.8	0.0008	0.00001	9/24/24	QC76387	AMJ
Molybdenum	0.0009 mg/L	EPA 200.8	0.0005	0.00005	9/24/24	QC76387	AMJ
Nickel	ND mg/L	EPA 200.8	0.0009	0.00005	9/24/24	QC76387	AMJ
Selenium	ND mg/L	EPA 200.8	0.0008	0.00008	9/24/24	QC76387	AMJ
Silica (as Si)	3.23 mg/L	EPA 200.8	0.30	0.03	9/24/24	QC76387	AMJ
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	9/24/24	QC76387	AMJ
Thallium	ND mg/L	EPA 200.8	0.0002	0.000003	9/24/24	QC76387	AMJ
Uranium	ND mg/L	EPA 200.8	0.0002	0.000002	9/24/24	QC76387	AMJ
Vanadium	ND mg/L	EPA 200.8	0.001	0.0001	9/24/24	QC76387	AMJ
Zinc	0.465 mg/L	EPA 200.8	0.001	0.00003	9/24/24	QC76387	AMJ
Boron	ND mg/L	EPA 200.7	0.05	0.01	9/24/24	QC76389	JJA
Calcium	33.5 mg/L	EPA 200.7	0.1	0.01	9/24/24	QC76389	JJA
Iron	ND mg/L	EPA 200.7	0.005	0.0005	9/24/24	QC76389	JJA
Magnesium	2.62 mg/L	EPA 200.7	0.02	0.002	9/24/24	QC76389	JJA
Potassium	0.6 mg/L	EPA 200.7	0.1	0.01	9/24/24	QC76389	JJA
Sodium	2.4 mg/L	EPA 200.7	0.1	0.01	9/24/24	QC76389	JJA
<u>Total</u>							
Total Hardness	95.9 mg/L as CaCO3	SM 2340-B	0.1	0.01	9/24/24	-	JJA
Calcium	34.1 mg/L	EPA 200.7	0.1	0.01	9/24/24	QC76389	JJA
Magnesium	2.63 mg/L	EPA 200.7	0.02	0.002	9/24/24	QC76389	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240919021

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240919021

Client PO:

Client Project: DRMS

Date Received: 9/19/24

Date Reported: 9/27/24

Matrix: Water

Customer Sample ID GW-2B

Sample Date/Time: 9/18/24 8:15 AM

Lab Number: 240919021-03

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
1000	result / Office	Metriod	IV.	MDL	Date Allary260	QO Daton ID	Analyzed by
Total Alkalinity	30.4 mg/L as CaCO3	SM 2320-B	4.0	1	9/23/24	QC76416	KJP
Bicarbonate	30.4 mg/L as CaCO3	SM 2320-B	0.2	0.2	9/23/24	-	KJP
Carbonate	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	9/23/24	_	KJP
Hydroxide	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	9/23/24	_	KJP
Chloride	0.14 mg/L	EPA 300.0	0.10	0.007	9/20/24	QC76353	NRP
Cyanide-Total	ND mg/L	EPA 335.4	0.005	0.0005	9/24/24	QC76412	KRB
Fluoride	0.21 mg/L	EPA 300.0	0.10	0.024	9/20/24	QC76354	NRP
Nitrate Nitrogen	0.15 mg/L	EPA 300.0	0.05	0.02	9/20/24	QC76355	NRP
Nitrate/ Nitrite Nitrogen	0.15 mg/L	Calculation	0.05	0.02	9/23/24	-	NRP
Nitrite Nitrogen	ND mg/L	EPA 300.0	0.03	0.01	9/20/24	QC76356	NRP
pH	6.34 units	SM 4500-H-B	0.01	0.01	9/19/24	-	ARH
Specific Conductance	192 umhos/cm @ 25c	EPA 120.1	5	5	9/19/24	-	ARH
Sulfate	56.1 mg/L	EPA 300.0	0.10	0.012	9/20/24	QC76358	NRP
Total Dissolved Solids	131 mg/L	SM 2540-C	5	2	9/24/24	QC76377	ISG
Phosphorus - Total	ND mg/L	EPA 365.1	0.05	0.006	9/24/24	QC76391	TAB
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	9/20/24	QC76317	ARH
<u>Dissolved</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	9/26/24	QC76494	JJA
Aluminum	0.001 mg/L	EPA 200.8	0.001	0.00003	9/24/24	QC76387	AMJ
Antimony	ND mg/L	EPA 200.8	0.0012	0.00012	9/24/24	QC76387	AMJ
Arsenic	ND mg/L	EPA 200.8	0.0006	0.00006	9/24/24	QC76387	AMJ
Barium	0.0578 mg/L	EPA 200.8	0.0007	0.00007	9/24/24	QC76387	AMJ
Beryllium	ND mg/L	EPA 200.8	0.0001	0.000008	9/24/24	QC76387	AMJ
Cadmium	0.0002 mg/L	EPA 200.8	0.0001	0.000006	9/24/24	QC76387	AMJ
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	9/24/24	QC76387	AMJ

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM

ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240919021

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

011111

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240919021

Client PO:

Client Project: DRMS

Date Received: 9/19/24

Date Reported: 9/27/24

Matrix: Water

Customer Sample ID GW-2B

Sample Date/Time: 9/18/24 8:15 AM **Lab Number:** 240919021-03

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
Dissolved							
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	9/24/24	QC76387	AMJ
Lead	ND mg/L	EPA 200.8	0.0001	0.000006	9/24/24	QC76387	AMJ
Manganese	ND mg/L	EPA 200.8	0.0008	0.00001	9/24/24	QC76387	AMJ
Molybdenum	0.0009 mg/L	EPA 200.8	0.0005	0.00005	9/24/24	QC76387	AMJ
Nickel	ND mg/L	EPA 200.8	0.0009	0.00005	9/24/24	QC76387	AMJ
Selenium	ND mg/L	EPA 200.8	0.0008	0.00008	9/24/24	QC76387	AMJ
Silica (as Si)	3.30 mg/L	EPA 200.8	0.30	0.03	9/24/24	QC76387	AMJ
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	9/24/24	QC76387	AMJ
Thallium	ND mg/L	EPA 200.8	0.0002	0.000003	9/24/24	QC76387	AMJ
Uranium	ND mg/L	EPA 200.8	0.0002	0.000002	9/24/24	QC76387	AMJ
Vanadium	ND mg/L	EPA 200.8	0.001	0.0001	9/24/24	QC76387	AMJ
Zinc	0.266 mg/L	EPA 200.8	0.001	0.00003	9/24/24	QC76387	AMJ
Boron	ND mg/L	EPA 200.7	0.05	0.01	9/24/24	QC76389	JJA
Calcium	32.9 mg/L	EPA 200.7	0.1	0.01	9/24/24	QC76389	JJA
Iron	ND mg/L	EPA 200.7	0.005	0.0005	9/24/24	QC76389	JJA
Magnesium	2.71 mg/L	EPA 200.7	0.02	0.002	9/24/24	QC76389	JJA
Potassium	0.5 mg/L	EPA 200.7	0.1	0.01	9/24/24	QC76389	JJA
Sodium	2.0 mg/L	EPA 200.7	0.1	0.01	9/24/24	QC76389	JJA
<u>Total</u>							
Total Hardness	93.9 mg/L as CaCO3	SM 2340-B	0.1	0.01	9/24/24	-	JJA
Calcium	33.1 mg/L	EPA 200.7	0.1	0.01	9/24/24	QC76389	JJA
Magnesium	2.75 mg/L	EPA 200.7	0.02	0.002	9/24/24	QC76389	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

TASK NO: 240919021

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240919021

Client PO:

Client Project: DRMS

Date Received: 9/19/24 Date Reported: 9/27/24

Matrix: Water

Customer Sample ID GW-1B

Sample Date/Time: 9/18/24 10:20 AM

Lab Number: 240919021-04

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
					•		
Total Alkalinity	31.0 mg/L as CaCO3	SM 2320-B	4.0	1	9/23/24	QC76416	KJP
Bicarbonate	31.0 mg/L as CaCO3	SM 2320-B	0.2	0.2	9/23/24	-	KJP
Carbonate	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	9/23/24	-	KJP
Hydroxide	ND mg/L as CaCO3	SM 2320-B	0.2	0.2	9/23/24	-	KJP
Chloride	0.26 mg/L	EPA 300.0	0.10	0.007	9/20/24	QC76353	NRP
Cyanide-Total	ND mg/L	EPA 335.4	0.005	0.0005	9/24/24	QC76412	KRB
Fluoride	0.17 mg/L	EPA 300.0	0.10	0.024	9/20/24	QC76354	NRP
Nitrate Nitrogen	0.07 mg/L	EPA 300.0	0.05	0.02	9/20/24	QC76355	NRP
Nitrate/ Nitrite Nitrogen	0.07 mg/L	Calculation	0.05	0.02	9/23/24	-	NRP
Nitrite Nitrogen	ND mg/L	EPA 300.0	0.03	0.01	9/20/24	QC76356	NRP
рН	6.69 units	SM 4500-H-B	0.01	0.01	9/19/24	-	ARH
Specific Conductance	188 umhos/cm @ 25c	EPA 120.1	5	5	9/19/24	-	ARH
Sulfate	54.1 mg/L	EPA 300.0	0.10	0.012	9/20/24	QC76358	NRP
Total Dissolved Solids	119 mg/L	SM 2540-C	5	2	9/24/24	QC76377	ISG
Phosphorus - Total	ND mg/L	EPA 365.1	0.05	0.006	9/24/24	QC76391	TAB
Total Suspended Solids	ND mg/L	SM 2540-D	5	2	9/20/24	QC76317	ARH
<u>Dissolved</u>							
Mercury	ND mg/L	EPA 245.7	0.0002	0.00002	9/26/24	QC76494	JJA
Aluminum	ND mg/L	EPA 200.8	0.001	0.00003	9/24/24	QC76387	AMJ
Antimony	ND mg/L	EPA 200.8	0.0012	0.00012	9/24/24	QC76387	AMJ
Arsenic	ND mg/L	EPA 200.8	0.0006	0.00006	9/24/24	QC76387	AMJ
Barium	0.0494 mg/L	EPA 200.8	0.0007	0.00007	9/24/24	QC76387	AMJ
Beryllium	ND mg/L	EPA 200.8	0.0001	0.000008	9/24/24	QC76387	AMJ
Cadmium	0.0001 mg/L	EPA 200.8	0.0001	0.000006	9/24/24	QC76387	AMJ
Chromium	ND mg/L	EPA 200.8	0.0015	0.00015	9/24/24	QC76387	AMJ

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit

mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Analytical Results

TASK NO: 240919021

Report To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Bill To: CJ Dickerson

Company: Thorin Resources, LLC

1900 Main St

Unit 1

Ouray CO 81427

Task No.: 240919021

Client PO:

Client Project: DRMS

Date Received: 9/19/24 Date Reported: 9/27/24

Matrix: Water

Customer Sample ID GW-1B

Sample Date/Time: 9/18/24 10:20 AM

Lab Number: 240919021-04

Test	Result / Units	Method	RL	MDL	Date Analyzed	QC Batch ID	Analyzed By
<u>Dissolved</u>							
Copper	ND mg/L	EPA 200.8	0.0008	0.00001	9/24/24	QC76387	AMJ
Lead	0.0001 mg/L	EPA 200.8	0.0001	0.000006	9/24/24	QC76387	AMJ
Manganese	ND mg/L	EPA 200.8	0.0008	0.00001	9/24/24	QC76387	AMJ
Molybdenum	0.0012 mg/L	EPA 200.8	0.0005	0.00005	9/24/24	QC76387	AMJ
Nickel	ND mg/L	EPA 200.8	0.0009	0.00005	9/24/24	QC76387	AMJ
Selenium	ND mg/L	EPA 200.8	0.0008	0.00008	9/24/24	QC76387	AMJ
Silica (as Si)	2.40 mg/L	EPA 200.8	0.30	0.03	9/24/24	QC76387	AMJ
Silver	ND mg/L	EPA 200.8	0.0005	0.000003	9/24/24	QC76387	AMJ
Thallium	ND mg/L	EPA 200.8	0.0002	0.000003	9/24/24	QC76387	AMJ
Uranium	ND mg/L	EPA 200.8	0.0002	0.000002	9/24/24	QC76387	AMJ
Vanadium	ND mg/L	EPA 200.8	0.001	0.0001	9/24/24	QC76387	AMJ
Zinc	0.060 mg/L	EPA 200.8	0.001	0.00003	9/24/24	QC76387	AMJ
Boron	ND mg/L	EPA 200.7	0.05	0.01	9/24/24	QC76389	JJA
Calcium	31.2 mg/L	EPA 200.7	0.1	0.01	9/24/24	QC76389	JJA
Iron	ND mg/L	EPA 200.7	0.005	0.0005	9/24/24	QC76389	JJA
Magnesium	2.72 mg/L	EPA 200.7	0.02	0.002	9/24/24	QC76389	JJA
Potassium	0.5 mg/L	EPA 200.7	0.1	0.01	9/24/24	QC76389	JJA
Sodium	1.9 mg/L	EPA 200.7	0.1	0.01	9/24/24	QC76389	JJA
<u>Total</u>							
Total Hardness	90.0 mg/L as CaCO3	SM 2340-B	0.1	0.01	9/24/24	-	JJA
Calcium	31.6 mg/L	EPA 200.7	0.1	0.01	9/24/24	QC76389	JJA
Magnesium	2.73 mg/L	EPA 200.7	0.02	0.002	9/24/24	QC76389	JJA

Abbreviations/ References:

RL = Reporting Limit = Minimum Level MDL = Method Detection Limit mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Analytical QC Summary

TASK NO: 240919021

Report To: CJ Dickerson Receive Date: 9/19/24 Company: Thorin Resources, LLC **Project Name: DRMS**

Test	QC Batch ID	QC Type	Result		Method	Prep Date
Total Alkalinity	QC76416	Blank	ND		SM 2320-B	9/23/24
Chloride	QC76353	Blank	ND		EPA 300.0	9/19/24
Cyanide-Total	QC76412	Blank	ND		EPA 335.4	9/24/24
Fluoride	QC76354	Blank	ND		EPA 300.0	9/19/24
Mercury	QC76494	Method Blank	ND		EPA 245.7	9/26/24
Aluminum	QC76387	Method Blank	ND		EPA 200.8	9/19/24
Antimony	QC76387	Method Blank	ND		EPA 200.8	9/19/24
Arsenic	QC76387	Method Blank	ND		EPA 200.8	9/19/24
Barium	QC76387	Method Blank	ND		EPA 200.8	9/19/24
Beryllium	QC76387	Method Blank	ND		EPA 200.8	9/19/24
Cadmium	QC76387	Method Blank	ND		EPA 200.8	9/19/24
Chromium	QC76387	Method Blank	ND		EPA 200.8	9/19/24
Copper	QC76387	Method Blank	ND		EPA 200.8	9/19/24
ead	QC76387	Method Blank	ND		EPA 200.8	9/19/24
Manganese	QC76387	Method Blank	ND		EPA 200.8	9/19/24
Molybdenum	QC76387	Method Blank	ND		EPA 200.8	9/19/24
lickel	QC76387	Method Blank	ND		EPA 200.8	9/19/24
Selenium	QC76387	Method Blank	ND		EPA 200.8	9/19/24
Silica (as Si)	QC76387	Method Blank	ND		EPA 200.8	9/19/24
Silver	QC76387	Method Blank	ND		EPA 200.8	9/19/24
hallium	QC76387	Method Blank	ND		EPA 200.8	9/19/24
Jranium	QC76387	Method Blank	ND		EPA 200.8	9/19/24
anadium/	QC76387	Method Blank	ND		EPA 200.8	9/19/24
linc	QC76387	Method Blank	ND		EPA 200.8	9/19/24
Boron	QC76389	Method Blank	ND		EPA 200.7	9/19/24
Calcium	QC76389	Method Blank	ND		EPA 200.7	9/19/24
ron	QC76389	Method Blank	ND		EPA 200.7	9/19/24
//agnesium	QC76389	Method Blank	ND		EPA 200.7	9/19/24
Potassium	QC76389	Method Blank	ND		EPA 200.7	9/19/24
Sodium	QC76389	Method Blank	ND		EPA 200.7	9/19/24
Nitrate Nitrogen	QC76355	Blank	ND		EPA 300.0	9/19/24
litrite Nitrogen	QC76356	Blank	ND		EPA 300.0	9/19/24
Sulfate	QC76358	Blank	ND		EPA 300.0	9/19/24
otal Dissolved Solids	QC76377	Blank	ND		SM 2540-C	9/23/24
Phosphorus - Total	QC76391	Blank	ND		EPA 365.1	9/23/24
otal Suspended Solids	QC76317	Blank	ND		SM 2540-D	9/20/24
est	QC Batch ID Q	С Туре	Limits	% Rec	RPD	Method
Total Alkalinity	QC76416 Du	plicate -240918062-02	0 - 20	-	0.9	SM 2320-B
	LC	S	90 - 110	99.1	-	

Abbreviations/ References:

Chloride

RL = Reporting Limit = Minimum Level

MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.

107.7

(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

0.6

ND = Not Detected at Reporting Limit.

90 - 110

0 - 20

LCS-2

Duplicate -240919012-07

QC76353

EPA 300.0

Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
		LCS	90 - 110	103.3	-	
		MS -240919012-07	75 - 125	102.4	-	
Cyanide-Total	QC76412	Duplicate -240917123-01	0 - 20	-	16.7	EPA 335.4
		LCS	90 - 110	91.1	-	
		MS -240918003-02C	75 - 125	90.5	-	
Fluoride	QC76354	Duplicate -240919012-07	0 - 20	-	0.4	EPA 300.0
		LCS	90 - 110	92.6	-	
		MS -240919012-07	75 - 125	87.5	-	
Mercury	QC76494	Duplicate -240919091-03	0 - 20	-	0.0	EPA 245.7
		LCS	90 - 110	104.8	-	
		MS -240919091-03	80 - 120	88.0	-	
Aluminum	QC76387	LCS	90 - 110	101.3	-	EPA 200.8
		MS -240919001-01A	70 - 130	89.4	-	
		MSD -240919001-01A	0 - 10	-	5.5	
Antimony	QC76387	LCS	90 - 110	104.1	-	EPA 200.8
·		MS -240919001-01A	70 - 130	104.5	-	
		MSD -240919001-01A	0 - 10	_	1.5	
Arsenic	QC76387	LCS	90 - 110	102.7	-	EPA 200.8
		MS -240919001-01A	70 - 130	125.1	-	
		MSD -240919001-01A	0 - 10	-	0.1	
Barium	QC76387	LCS	90 - 110	100.6	-	EPA 200.8
		MS -240919001-01A	70 - 130	102.9	-	
		MSD -240919001-01A	0 - 10	-	1.5	
 Beryllium	QC76387	LCS	90 - 110	100.4	-	EPA 200.8
	ασ. σσσ.	MS -240919001-01A	70 - 130	75.7	-	
		MSD -240919001-01A	0 - 10	-	1.5	
Cadmium	QC76387	LCS	90 - 110	100.0	-	EPA 200.8
Cadmium	Q070307	MS -240919001-01A	70 - 130	90.6	_	LI A 200.0
		MSD -240919001-01A	0 - 10	-	0.2	
 Chromium	QC76387	LCS	90 - 110	104.2	-	EPA 200.8
Cilioilliuiii	QC10301	MS -240919001-01A	70 - 130	104.2	-	LFA 200.0
		MSD -240919001-01A	0 - 10	-	1.1	
Connor	QC76387	LCS	90 - 110	104.9	1.1	EPA 200.8
Copper	QC10301	MS -240919001-01A	70 - 130	94.6	-	LFA 200.0
		MSD -240919001-01A	0 - 10	94.0	2.7	
Lood	QC76387	LCS		97.9	2.1	EPA 200.8
Lead	QC/036/	MS -240919001-01A	90 - 110 70 - 130		-	EPA 200.6
		MSD -240919001-01A	0 - 10	87.3 -	2.8	
Managanaga	0076207					EDA 200 0
Manganese	QC76387	LCS	90 - 110	106.6	-	EPA 200.8
		MS -240919001-01A	70 - 130	103.0	-	
Malakata a	0.070007	MSD -240919001-01A	0 - 10	-	2.2	EDA 000 0
Molybdenum	QC76387	LCS	90 - 110	101.3	-	EPA 200.8
		MS -240919001-01A	70 - 130	105.3	-	
	20=	MSD -240919001-01A	0 - 10	-	0.1	
Nickel	QC76387	LCS	90 - 110	103.4	-	EPA 200.8
		MS -240919001-01A	70 - 130	91.4	-	
		MSD -240919001-01A	0 - 10	-	0.5	
Selenium	QC76387	LCS	90 - 110	102.3	-	EPA 200.8
		MS -240919001-01A	70 - 130	105.1	-	
		MSD -240919001-01A	0 - 10	-	1.4	
Silica (as Si)	QC76387	LCS	90 - 110	108.0	-	EPA 200.8

Abbreviations/ References:

 $RL = Reporting\ Limit = Minimum\ Level$ RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Test	QC Batch ID	QC Type	Limits	% Rec	RPD	Method
		MS -240919001-01A	70 - 130	117.7	-	
		MSD -240919001-01A	0 - 10	-	0.6	
Silver	QC76387	LCS	90 - 110	101.2	-	EPA 200.8
		MS -240919001-01A	70 - 130	77.3	-	
		MSD -240919001-01A	0 - 10	-	0.2	
Гhallium	QC76387	LCS	90 - 110	98.9	=	EPA 200.8
		MS -240919001-01A	70 - 130	89.8	-	
		MSD -240919001-01A	0 - 10	-	2.7	
Jranium	QC76387	LCS	90 - 110	92.6	-	EPA 200.8
		MS -240919001-01A	70 - 130	84.5	-	
		MSD -240919001-01A	0 - 10	-	0.7	
/anadium	QC76387	LCS	90 - 110	99.0	-	EPA 200.8
		MS -240919001-01A	70 - 130	106.6	-	
		MSD -240919001-01A	0 - 10	-	1.8	
Zinc	QC76387	LCS	90 - 110	105.4	-	EPA 200.8
		MS -240919001-01A	70 - 130	106.6	-	
		MSD -240919001-01A	0 - 10	-	0.2	
Boron	QC76389	Duplicate -240919001-01	0 - 20	-	1.0	EPA 200.7
		LCS	90 - 110	98.3	-	
		MS -240919021-02D	75 - 125	114.0	-	
Calcium	QC76389	Duplicate -240919001-01	0 - 20	-	1.8	EPA 200.7
		LCS	90 - 110	104.4	-	
		MS -240919021-02D	75 - 125	96.4	-	
ron	QC76389	Duplicate -240919001-01	0 - 20	-	6.5	EPA 200.7
	40.000	LCS	90 - 110	93.5	-	2.7.200
		MS -240919021-02D	75 - 125	114.0	-	
Magnesium	QC76389	Duplicate -240919001-01	0 - 20	-	0.7	EPA 200.7
nagriosia	40,0000	LCS	90 - 110	100.3	-	217(200.7
		MS -240919021-02D	75 - 125	106.4	-	
Potassium	QC76389	Duplicate -240919001-01	0 - 20	-	2.6	EPA 200.7
otassiani	Q0 70000	LCS	90 - 110	97.7	-	217(200.7
		MS -240919021-02D	75 - 125	108.2	_	
Sodium	QC76389	Duplicate -240919001-01	0 - 20	-	0.6	EPA 200.7
Jodiani	Q010303	LCS	90 - 110	99.2	-	LI A 200.1
		MS -240919021-02D	75 - 125	113.4	_	
Nitrate Nitrogen	QC76355	Duplicate -240919012-07	0 - 20	-	0.0	EPA 300.0
wittate ivitiogen	Q070333	LCS	90 - 110	97.3	-	LI A 300.0
		MS -240919012-07	75 - 125	91.4	_	
litrite Nitrogen	QC76356	Duplicate -240919012-07	0 - 20	-	0.0	EPA 300.0
withe Millogen	QC70330	LCS	90 - 110	94.0	0.0	LFA 300.0
		MS -240919012-07	75 - 125	89.5	- -	
Sulfate	QC76358	Duplicate -240919012-07	0 - 20			EPA 300.0
ounal o	QC10358	LCS	90 - 110	- 99.9	0.5	EFA 300.0
					-	
otal Diagolyad Calida	007077	MS -240919012-07	75 - 125	101.3	-	CM 0540 C
otal Dissolved Solids	QC76377	Duplicate -240919115-06	0 - 10	-	0.6	SM 2540-C
No and a mark Tark I	007000:	LCS	85 - 115	100.1	-	ED 4 005 1
Phosphorus - Total	QC76391	Duplicate -240919076-01	0 - 20	-	2.8	EPA 365.1
		LCS	90 - 110	95.6	=	
		MS -240919002-05	75 - 125	117.9		
Total Suspended Solids	QC76317	Duplicate -240919031-01	0 - 10	-	2.9	SM 2540-D
		LCS	90 - 110	97.4	=	

Abbreviations/ References:

 $RL = Reporting\ Limit = Minimum\ Level$ RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
(s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

All analyses were performed in accordance with approved methods under the latest revision to 40 CFR Part 136 unless otherwise identified. Based on my inquiry of the person or persons directly responsible for analyzing the wastewater samples and generating the report (s), the analyses, report, and information submitted are, to the best of my knowledge and belief, true, accurate, and complete.

DATA APPROVED FOR RELEASE BY

Abbreviations/ References:

RL = Reporting Limit = Minimum Level
MDL = Method Detection Limit
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

(d) RPD acceptable due to low duplicate and sample concentrations.
 (s) The accuracy of the spike recovery value is reduced due to the analyte concentration in the sample being disproportionate to the spike level. The laboratory control sample recovery was acceptable

Chain of Custody Form

Report To Information	Bill To Information (If different from report to)	Project Name / Number
Company Name: Thorin Resources	Company Name:	
Contact Name: CT Dickeron	Contact Name:	
Address: 1900 Man 51 Unit 01	Address:	Task Number (Lab Use Only)
City Owny State Co Zip &1927	City State Zip	
Phone: (602) 793-1321	Phone:	CAL Task 240919021
Email: Cidcherone from recovers.com	Email:	240919021
Sample Collector:		JAK
Sample Collector Phone:	PO No.:	

Commerce City Lab 10411 Heinz Way Commerce City CO 80640

<u>Lakewood Service Center</u> 610 Garrison Street, Unit E Lakewood CO 80215

Phone: 303-659-2313

www.coloradolab.com

Sample C	Collector Pho	ne: L		" PC) No.:																	
									. [ly A	T	ests R	Reque	sted			Para Page	ly a	
		Sa	mple Matrix	(Select One O	nly)		÷ĝ	1 5		•												
Includes w	NPDES) astewater, nonet intended for		Drinking Wa (SDWA) Includes finished raw (untreated) vintended for hum	drinking water,	Solid (Sludge) (503 Regs / RCRA 846)		No. of Containers	Grab	omposite	68024010176												
Date	Time			Sample l			Z	<u> </u>	S O	Ø	_					-				\vdash		
1/18	07:40			ug-5			15	×		×												_
4/18	08:55			UG-5 C-W-ZA C-W-ZB C-U-114	L		5	*		٨												
9/18	OB:15			(-W-ZB	•		5	4		1	ŀ											
4/18			-	G-17-114			49	4	-	¥	-											
9/18	10:20			GU-13	?		5	4		X												
								1														
						20)															
								i														
-								1														
Instruction	ons:	1				C/S Info:		;		l		I	5			Yes 🔲	No 🗆					-
						Deliver Via	a:	1/	p<)	C/S	Charge	ν́ Ι	Temp	2	°C/Ice	_	Sample	e Pres. Y		No □	
Relinquis	shed By:	Da	te/Time:	Received By:	Date/Time		Relingu	ished	By:		Dat	e/Time	:			Bv:		,	Date	/Tim	,	
CSD	chero	n 11/1	te/Time:			Page 13	2 of 15							10	SHE	da	M	£_	9	<u> 19</u>	19	4
	***					1-uge-10) () 10							7	<i>)</i>				,		80	TO

Quotation for Analytical Services

Quote ID: QBO24010976

Prepared For:

Thorin Resources, LLC

1900 Main St

Unit 1

Ouray, CO 81427

Attn: CJ Dickerson

Project: **DRMS**

Quote Date: \ Turn Around Time: 1	ednesday, January 31, 2024 Working Days

Matrix	Description	Method	Ory:	Price - each	Total
Water - Ground	Alkalinity - B-C	N/A	12	\$16.00	\$192.00
Water - Ground	Alkalinity	SM 2320-B	12	Incl.	Incl.
Water - Ground	Carb/ Bicarb	SM 2320-B	12	Incl.	Incl.
Water - Ground	Hardness - Total	SM 2340-B	12	\$0.00	\$0.00
Water - Ground	Nitrate/ Nitrite Nitrogen	Calculation	12	\$0.00	\$0.00
Water - Ground	B - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Ca - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Ca - Total	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Fe - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	K - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Mg - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Mg - Total	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Na - Dis	EPA 200.7	12	\$13.00	\$156.00
Water - Ground	Ph	SM 4500-H-B	12	\$13.00	\$156.00
Water - Ground	Specific Conductance	EPA 120.1	12	\$14.00	\$168.00
Water - Ground	Ag - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Al - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	As - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Ba - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Be - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Cd - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Cr - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Cu - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Mn - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Mo - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Ni - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Pb - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Sb - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Se - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Si - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	TDS	SM 2540-C	12	\$16.00	\$192.00

CAL Task 240919021

JAK

	Colorado
4.	Colorado Analytical

Quotation for Analytical Services

Quote ID: QBO24010976

	LABORATORIES,	INC.			
Water - Ground	TI - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	TSS	SM 2540-D	12	\$16.00	\$192.00
Water - Ground	V - Dís	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Zn - Dis	EPA 200.8	12	\$16.00	\$192.00
Water - Ground	Chloride	EPA 300.0	12	\$18.00	\$216.00
Water - Ground	Fluoride	EPA 300.0	12	\$18.00	\$216.00
Water - Ground	Nitrate Nitrogen	EPA 300.0	12	\$18.00	\$216.00
Water - Ground	Nitrite Nitrogen	EPA 300.0	12	\$18.00	\$216.00
Water - Ground	Sulfate	EPA 300.0	12	\$18.00	\$216.00
Water - Ground	U - Dis	EPA 200.8	12	\$23.00	\$276.00
Water - Ground	Total Phosphorus	EPA 365.1	12	\$26.00	\$312.00
Water - Ground	Hg - Oissolved	EPA 245.7	12	\$27.00	\$324.00
Water - Ground	Cyanide-Total	EPA 335.4	12	\$40.00	\$480.00

\$8,076.00

Colorado Analytical Laboratory maintains certification by the Colorado Department of Health (CDPHE) and EPA Region 8 for Wyoming and Tribal Public Water Systems to analyze drinking water for organic contaminants (SOC's VOC's), inorganic contaminants (metals), nitrate nitrite, cyanide, fluoride and coliform bacteria.

Sub-Lab analysis pricing subject to change. Sub-Lab radiological analysis turn-around time is 4 to 8 weeks depending on sample matrix. Due to time, distance and other constraints outside of the control of CAL shipments to sub labs are not guaranteed. All shipment charges will be billed to the client regardless of shipment outcome.

Billing terms are Net 30 on approved accounts; all other accounts are COD. Additional charges may apply for accelerated turn around.

We appreciate the opportunity to be of service to you. If you have questions please call us at 303-659-2313 or visit us at www.coloradolab.com

^{**}Samples should be shipped or hand delivered the same day they are collected. Orders that require sub-lab analysis should be delivered to the lab Monday thru Wednesday only.**

March 28, 2024

CJ Dickerson **Thorin Resources** 6208 County Road 26 Ouray, CO 81427

Dear CJ:

Enclosed is the report for chronic biomonitoring tests performed for Thorin Resources on effluent from the Wastewater Treatment Plant 002A outfall. There was no statistically significant toxicity to either test species at any effluent concentration. The effluent passes WET (Whole Effluent Toxicity) testing requirements for this sampling period.

If you have any questions or concerns, please do not hesitate to contact me at (303) 661-9324.

Best regards,

Catherine McDonald Laboratory Manager Enclosure(s): Invoice

Report

REPORT OF CHRONIC BIOMONITORING TESTS CONDUCTED FOR THORIN RESOURCES ON EFFLUENT FROM THE WWTP 002A OUTFALL

Prepared for:

CJ Dickerson **Thorin Resources** 6208 County Road 26 Ouray, CO 81427

Prepared by:

Catherine McDonald
SeaCrest Group
500 S Arthur Ave. Suite 450
Louisville, Colorado 80027-3065
(303) 661-9324

March 28, 2024

Site: 002A

TABLE OF CONTENTS

SCG Project No.: 524110.B Project: Quarterly WET

CHRONIC TOXICITY TEST SUMMARY	3
ABSTRACT WITH RESULTS	4
INTRODUCTION	5
MATERIALS AND METHODS	5
SAMPLE COLLECTION DILUTION WATER TEST ORGANISMS TEST PROCEDURE DATA ANALYSIS	5 5 6
RESULTS	7
CERIODAPHNIA DUBIA TEST RESULTS FATHEAD MINNOW TEST RESULTS TEST ACCEPTABILITY	8
DISCUSSION	9
REFERENCES	9
APPENDIX 1 – CHAIN OF CUSTODY WITH SAMPLE RECEIPT FORMS	10
APPENDIX 2 – DATA SHEETS FOR THE CERIODAPHNIA DUBIA TEST	17
WET TEST REPORT FORM – CHRONIC	18
APPENDIX 3 – DATA SHEETS FOR THE FATHEAD MINNOW TEST	23
WET TEST REPORT FORM – CHRONIC	24
APPENDIX 4 – QA/QC AND REFERENCE TOXICANT TEST CHARTS	30
LIST OF TABLES	
TABLE 1: STATISTICAL METHODS USED IN TESTING	7
TABLE 2: SUMMARY OF CERIODAPHNIA DUBIA TEST RESULTS	7
TABLE 3: SUMMARY OF FATHEAD MINNOW TEST RESULTS	8
TARLE 4. PMSD FOR CHRONIC TEST PARAMETERS	S

SCG Project No.: 524110.B Project: Quarterly WET CO-0000003 Site: 002A

Chronic Toxicity Test Summary

	7-day static renewal using <i>Ceriodaphnia dubia</i>
Test:	7-day static renewal using fathead minnow (<i>Pimephales promelas</i>)
Client:	Thorin Resources
Test Procedure	Ceriodaphnia dubia: EPA/821/R-02-013. Method 1002.0 (2002)
Followed:	fathead minnow: EPA/821/R-02-013. Method 1000.0 (2002)
Sample Number:	524110.B
Dilution Water:	moderately hard laboratory reconstituted water
Test Organism Source:	SeaCrest Group
Reference Toxicant:	Sodium Chloride

Sample	Time of Collection	Date of Collection	Time of Receipt	Date of Receipt
Effluent 1	0916	03-11-2024	0835	03-12-2024
Effluent 2	1215	03-13-2024	0830	03-14-2024
Effluent 3	1030	03-14-2024	0847	03-15-2024

	Ceriodaphnia dubia	fathead minnow
Test Initiation Time	1100	1100
Test Initiation Date	03-12-2024	03-12-2024
Test Completion Time	1030	1200
Test Completion Date	03-18-2024	03-19-2024

CO-0000003 SCG Project No.: 524110.B **Site: 002A Project: Quarterly WET**

Abstract with Results

Test Concentrations: Control (0%), 23%, 45%, 89%, 95%, 100%

10 for Ceriodaphnia dubia

40 for fathead minnow **Number of Organisms/Concentration:**

10 for Ceriodaphnia dubia

Replicates at each Concentration: 4 for fathead minnow

	Ceriodaphnia dubia	fathead minnow
Test vessel size/Exposure volume	30ml/15ml	500ml/200ml
Sub-lethal NOEL/IC25	100%/>100%	100%/>100%
Pass/Fail Status	PASS	PASS
Temperature Range (°C)	24.1 – 25.4	24.1 - 25.2
Dissolved Oxygen Range (mg/L)	6.8-8.9	4.6 - 8.5
pH Range	7.5 - 8.1	7.3 - 8.2
	Control (Cerio/FHM)	Effluent Sample
Hardness (mg/L as CaCO ₃)	85/83	267/206/167
Alkalinity (mg/L as CaCO ₃)	57/61	68/86/71
Total residual chlorine (mg/L)	< 0.01	<0.01/<0.01/0.02
Total ammonia (mg/L as NH ₃)	< 0.03	< 0.03

INTRODUCTION

Biomonitoring provides an effective means by which the toxicity of discharges from municipal, industrial, and mining operations can be tested. Among the advantages of biomonitoring is the ability to test complex effluents containing a broad range of contaminants. Biomonitoring, when used in conjunction with chemical analyses, can generate data capable of identifying a much wider range of contaminants.

The Colorado Water Quality Control Division requires certain NPDES permittees to perform acute and/or chronic biomonitoring tests. The chronic test measures significant differences in lethality and in reproduction (*Ceriodaphnia dubia*) or growth (fathead minnow – *Pimephales promelas*) between control and effluent-exposed organisms.

The present report discusses the results of chronic biomonitoring tests conducted on effluent from the Thorin Resources WWTP 002A discharge. These tests were conducted in accordance with EPA and State of Colorado procedures in March 2024.

MATERIALS AND METHODS

Sample Collection

Three gallons of the effluent were collected on three separate dates as specified in Permit CO-0000003. Samples were delivered chilled to the SeaCrest lab where they were held at 0-6°C. Chain of custody forms showing sample collection and laboratory arrival times are included (Appendix 1).

Dilution Water

Laboratory reconstituted water was used as both the dilution water source and the control for the tests. Reconstituted water for the *Ceriodaphnia dubia* test was produced by adding sodium bicarbonate, calcium sulfate, magnesium sulfate, potassium chloride, and sodium selenate to deionized water. Reconstituted water for the fathead minnow test was produced by adding sodium bicarbonate, calcium sulfate, magnesium sulfate, and potassium chloride to deionized water.

Test Organisms

The biomonitoring test used *Ceriodaphnia dubia*, cultured in the SeaCrest laboratory. The organisms are cultured in brood culture boards from which individual females are monitored for survival and reproduction for periods of up to two weeks. Neonates less than 24-hours old, released from third or subsequent broods of eight or more within an 8-hour period, are collected from the brood chambers and used in tests. The animals are fed daily with a mixture of Yeast, Cereal Leaves, and Trout Chow (YCT), produced in-house. This is supplemented with cultured green algae (*Selenastrum capricornutum*) provided by Aquatic Biosystems.

Less than one-day-old fathead minnow, cultured in the laboratory, were also used in the test. Adult fish are maintained in 10-gallon aquaria where females deposit their eggs on the under-surface of split PVC pipe sections. The eggs are collected daily and transferred to aerated containers where they hatch after three to four days. The larval fish are fed newly hatched brine shrimp (*Artemia* sp.) at least twice per day.

In-house organisms are tested monthly in a reference toxicant test using sodium chloride to monitor overall health and test reproducibility (Appendix 4).

Test Procedures

Upon receipt at the lab, samples were analyzed for alkalinity, ammonia, chlorine, conductivity, dissolved oxygen, hardness, and pH.

Methods used in chemical analysis

Alkalinity	EPA 310.2	Hach 8203	I-2030-85.2
Ammonia	SM4500-NH ₃ , C-E1997	ASTM D1426-08	
Chlorine	SM4500-Cl D	Hach 10026	
Conductivity	SM2510		
Dissolved Oxygen	SM4500-O	Electrode: G-2001	Winkler (QC): B-F-2001
Hardness	SM2340 B or C	Hach 8213	
pН	SM4500-H+ B-2000		

The test followed procedures in EPA³ and CDPHE⁴ guidelines. Exposure concentrations included control (0%), 23%, 45%, 89%, 95%, and 100% mixtures, diluted with moderately hard laboratory reconstituted water.

Individual *Ceriodaphnia dubia* were placed in 30ml plastic containers containing approximately 15ml of exposure medium. Ten replicates at each concentration were used. The animals were fed daily with the YCT mixture and an equal volume of the green algae (*Selenastrum capricornutum*). The exposure medium was changed daily in each container and the number of young released overnight were counted and recorded. Young were removed from the containers daily and discarded. Routine measurements were made each day of temperature, dissolved oxygen, and pH before and after the water changes.

Fathead minnow were exposed in 500ml plastic cups to which 250ml of media was replaced daily. Four replicates were used at each concentration. Ten fish, less than 24-hours old, were placed in each cup. The fish were monitored daily for survival and fed live brine shrimp at least twice per day. After seven days, the fish were removed from the cups, euthanized with isopropyl alcohol, and then placed in aluminum pans and dried in an oven for a minimum of six hours at 100°C. The pans were then weighed on a five-place analytical balance to determine the average dry weight of the fish from each replicate.

Data Analysis

Data from the tests were analyzed on a personal computer using the CETIS program (developed by Tidepool Scientific Software). Statistical tests used in the analyses are shown in Table 1. Test acceptability was determined using control survival and reproduction/growth criteria, concentration-response relationships, and percent minimum significant differences (USEPA ^{5,6}).

Site: 002A **Project: Quarterly WET**

Table 1. Statistical methods used in testing for significant differences in test parameters.

Va	nriance	Distribution					
Bartlett Equali	ty of Variance Test	Shapiro-Wilk W Normality Test					
Species	Survival	Reproduction	IC ₂₅				
Ceriodaphnia dubia	N/A	N/A	Dunnett Multiple Comparison Test	ICp			
fathead minnow	Steel Many-One Rank Sum Test	Dunnett Multiple Comparison Test	N/A	ICp			

RESULTS

Ceriodaphnia dubia Test Results

Test results for the *Ceriodaphnia dubia* are summarized in Table 2 and provided on the data sheets located in Appendix 2. Survival was 100% in the 100% effluent and was 100% in the remaining effluent concentrations. Control survival was 100%. No statistically significant lethality was measured in any effluent concentration when compared to the control. The NOEL (No Observed Effect Level) for lethality was 100% and the LC₂₅ (Lethal Concentration 25) for lethality was >100%.

Average number of neonates was 28.6 in the 100% effluent concentration and ranged from 26.4 - 28.2 in the remaining effluent concentrations. The average number of neonates in the control was 26.6 for statistical analyses and test acceptability criteria. No statistically significant differences in the number of neonates were found between the control and any effluent concentration. The NOEL for reproduction was 100% and the IC₂₅ (Inhibition Concentration 25) for reproduction was >100%.

Table 2. Summary of *Ceriodaphnia dubia* test results. An asterisk (*) denotes a statistically significant difference from the control.

	D 4	3.4			Significan	t Difference
Concentration	Percent Survival	Mean Neonates	Min.	Max.	Lethality	Reprod.
Control (0%)	100	26.6	15	34		
23%	100	27.5	19	36		
45%	100	26.4	14	34		
89%	100	28.1	20	36		
95%	100	28.2	17	35		
100%	100	28.6	18	34		

Fathead Minnow Test Results

Fathead minnow results are summarized in Table 3 and are provided on data sheets in Appendix 3. Survival was 100% in the 100% effluent concentration and ranged from 93% - 95% in the remaining effluent concentrations. Control survival was 100%. No statistically significant lethality was measured in any effluent concentration when compared to the control. The NOEL for lethality was 100% and the LC_{25} for lethality was >100%.

Average weight in the 100% effluent concentration was 0.253mg and ranged from 0.248mg - 0.259mg per individual in the remaining effluent concentrations. The average weight for the control fish was 0.253mg for statistical analyses and test acceptability criteria. No statistically significant differences for growth were measured in any effluent concentration when compared to the control. The NOEL for growth was 100% and the IC_{25} for growth was >100%.

Table 3. Summary of fathead minnow test results. An asterisk (*) denotes a statistically significant difference from the control.

significant unic	ence mom	the control				
	Percent	Average			Significant	Difference
Concentration	Survival	Weight (mg)	Min.	Max.	Lethality	Growth
Control (0%)	100	0.253	0.234	0.268		
23%	93	0.248	0.202	0.309		
45%	95	0.251	0.210	0.283		
89%	95	0.259	0.210	0.294		
95%	95	0.255	0.184	0.302		
100%	100	0.253	0.220	0.305		

Test Acceptability

Acceptable control survival (80%) was achieved in both tests. Similarly, *Ceriodaphnia dubia* reproduction (average 15 neonates/organism) and fathead minnow growth (average 0.250mg/test container) in control organisms met required levels. PMSD was within the required limits for an acceptable test (Table 4).

Table 4. PMSD for chronic test parameters.

Table 4. I MISD for	chi onic test paran	iicteis.		
	fathead min	now growth	C. dubia rep	oroduction
	Lower bound	Upper bound	Lower bound	Upper bound
PMSD	12	30	13	47
(% Minimum significant difference)	26	.1	22.	1

DISCUSSION

A failed test for this discharge occurs when there is an NOEL or IC₂₅ less than the IWC (Instream Waste Concentration) of 89%. The NOEL represents the highest effluent concentration at which no statistically significant effect is observed. The IC₂₅ represents an estimate of the effluent concentration that would cause a 25 percent reduction of a non-quantal biological measurement. A violation for this discharge occurs when both the NOEL and the IC₂₅ are less than the IWC. Since neither test species demonstrated statistically significant differences meeting these criteria, the discharge passes WET testing requirements for this sampling period.

REFERENCES

- 1. **Hach Chemical Company.** 2008. *Hach's Water Analysis Handbook*. Fifth Edition. Hach Chemical Company, Loveland, Colorado. Digital Medium.
- 2. **APHA/AWWA/WEF.** 1998. Standard Methods for the Examination of Water and Wastewater. 20th Edition. American Public Health Association, Washington, D.C.
- 3. **USEPA.** 2002. Short Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms. EPA-821-R-02-013. 335 pp.
- 4. **CDPHE** (Colorado Department of Public Health and Environment). 1998. *Laboratory Guidelines for Conducting Whole Effluent Toxicity Tests*. Water Quality Control Division.
- 5. **USEPA.** 2000. *Method of Guidance and Recommendations for Whole Effluent Toxicity* (WET) Testing (40 CFR Part 136). EPA/821/B-00/004.
- 6. **USEPA**. 2000. Understanding and Accounting for Method Variability in Whole Effluent Toxicity Applications under the National Pollutant Discharge Elimination System Program. EPA/833/R-00/003.

Appendix 1 – Chain of Custody with Sample Receipt Forms

SCG Project No.: 524110.B Project: Quarterly WET CO-0000003 Site: 002A

						,	ewnje	oV letoT	~			T				3				160	
	r				uers			əquin	K		+				48	— Selov					ne 7.17
	r								<u> </u>		+-	1	-		1 1	List					Date/Time
	-	_			-						-	-	-	100		her ((2)	0
	-										-		-		100	Other (List Below)	1			d By	
e)	-			(MO	ole8 ta	siJ) si	Malys	Other A								DIE MODE	010			Received By (2)	
cabl						ircle)	o) ac	BOD/CC								nia p				N.	-
ldde		(əjə	niO)	(iloD-	3/lea	tal/Fe	oT) n	Coliforr						2		Daphnia pulex					ure
all						əs	Grea	bns liO													Signature
heck				((Sircle) I//I	ıı wn	Chromi								lagna					
Analysis (Check all applicable)					(/	woləg	tsiJ)	snoinA								Daphnia magna					Time
alys				(elɔɹ	ıi) (ci	ST\SC	JT\2T) sbilo2								Daph				2)	Date/Time
A					(/	wolea	tsiJ)	Metals												By (
																nia				Relinquished By (2)	
		(N	oləs	cate E	ibnl)	38T\	3IT/IT	WET: P								dap				indui	
		(^	olə8	eate E	ibn f)	rated	ələss	A :T3W								Cerio daphnia				Rel	
			(M	Belov	etegil	pul) ɔ	hroni	WET: C	X							X		Y		-	nre
			((wol9	B e	oibnl)	cute	A :T3W								Mon	ents:	rela			Signature
					wosa.			0 %	# 0							Αğ	mmc	E			
						50.		Lab ID (LAB Use Only)	524110.B#I							thea	ns/C	~			Date/Time
					hoph	76			52								uctio	19/0		-	Date,
					701) Eterso		Grab/ Comp	Good							Test Species: Teathead Minnow	Special Instructions/Comments:	Pinephales Pronelus	-	Received By (1)	
65					13	0		& S								t Spe	cial	Z.		ived	
276		-			2	5	~	a	29		- 40.7	60-T			-	Tes	Spe			Rece	
Lesoure					3	.:	F¥	Time	9:16am								6-9 Day	Day			:
Z			5	1	E-Mail: () Clearen CL	Sampler:			0								6-9	_ 1-2 Day		1	Signature
C			1,6/26/50,	101	E-	Saı	ш	بو	52							nts					Sign
MOCIO			260	1+1			□ PDF	Date	2							Turnaround Requirements		1			Date/Time
3			J	Main St	2294		Ш		3							around Requirem	(1)	Date/Time
1	-		1	Mai	10		=	₽								nd Re	days		.: :	By (Dat
me:		nber	1	0	3/1		Mail	on or	_							aroui	1 (10		t Dat	shed	
Client/Project Name:	;	P. O./Project Number:	1	1900	970 316		Ш	Sample Location or ID	DF-002 A							Turn	Standard (10 days)	3-5 Day	Requested Report Date:	Relinquished By (1)	
roje		oject	,:		1		By:	ole Lc	3								Star	3-5	ted R	Reli	
ent/F	,	J./Pr	Contact:	Address:	Phone #	Fax #	Report By:	Samp	10										quest		Signature
=	,	۳.	S	Ad	Ph	Fa)	Re	٥,											Se		Sign

Client: Thorin Resources Site: 002A

SCG Project No.: 524110.B Project: Quarterly WET

SeaCrest Group Louisville, CO	Sample Receip	t Form	Effective	Form #: 42 January 2024
Project # 524 10.8 Date: 03 1274 Samples Were: 1. FedEx UPS	Courier	Sample #: Initials: MK Hand Delivery	(circle c	one)
Notes: 2. Chilled to Ship		Ambien	t Chilled	
Cooler Received Broken or Leakii Notes:	ng	Y	N	NA
Sample Received Broken or Leak Notes:	ing	Υ	N	
5. Received Within 36hr Holding Tim Notes:	ne	Ŷ	N	
6. Aeration necessary		Υ	\bigcirc N	
7. pH adjustment necessary		Υ	N	
8. Sample Received at Temperature Notes:	between 0-6° C .	Y	N	NA
9. Description of Sample (Color, Odo Effluent: NO VISTBLE PM Receiving: N/A	or, and/or Presence	of Particulate Matter):	\sim	

Temp	D.O.	pН	Cond
3.7	7.8	7.7	512
	3.7	Temp D.O. 3.7 7.8	7.8 7.7 7.8 7.7

Presence of native species:

Custody Seals:

Custody Seals.			
1. Present on Outer Package	Υ	(N)	
2. Unbroken on Outer Package	Υ	N	NA
3. Present on Sample	Υ	N	_
4. Unbroken on Sample	Υ	N	(NA)

Custody Documentation (Chain of Custody):

Present Upon Receipt of Sample
 Y
 N

Client: Thorin Resources Site: 002A

CO-0000003

SCG Project No.: 524110.B

Project: Quarterly WET

500 S. Arthur Avenue, Unit 450 - Louisville, CO 80027 (303) 661.9324 - FAX (303) 661.9325 **Total Volume** Other (List Below) Date/Time 051427 0830 ✓ Number of Containers Received By (2) Daphnia pulex Other Analysis (List Below) Analysis (Check all applicable) BOD/COD (Circle) Coliform (Total/Fecal/E-Coli) (Circle) Daphnia magna Oil and Grease Chromium III/VI (Circle) (wolad tziJ) znoinA Solids (TS/TDS/TSS) (Circle) Relinquished By (2) Metals (List Below) K Cerio daphnia WET: PTI/TIE/TRE (Indicate Below) CHAIN OF CUSTODY WET: Accelerated (Indicate Below) WET: Chronic (Indigate Below) Test Species: YFathead Minnow Special Instructions/Comments: WET: Acute (Indicate Below) 52,110.B #2 E-Mail: codichetrone Humbres Lab ID (0 8141 icherm Date/Time Received By (1) Grab/ Comp Oway, Time FAX 6-9 Day 1-2 Day Client/Project Name: Therin Resure Sampler: ,900 Marros charl **Turnaround Requirements** cs Orbers Date PDF 975 316 WY (Analytical Testing Only) Relinquished By (1) Standard (10 days) Sample Location or ID Requested Report Date: Mail P. O./Project Number 3-5 Day

SeaCrest Group 13

Report By:

Phone # Address: Contact:

Fax#

CO-0000003 SCG Project No.: 524110.B **Site: 002A Project: Quarterly WET**

> SeaCrest Group Louisville, CO

Sample Receipt Form

Form #: 42 Effective: January 2024

524 110 B Date: 031424 Initials: Samples Were: 1. FedEx **UPS** Courier Hand Delivery (circle one) 2. Chilled to Ship Chilled Ambient 3. Cooler Received Broken or Leaking Notes: 4. Sample Received Broken or Leaking Notes: 5. Received Within 36hr Holding Time Notes: 6. Aeration necessary 7. pH adjustment necessary 8. Sample Received at Temperature between 0-6° C. NA Notes:

9. Description of Sample (Color, Odor, and/or Presence of Particulate Matter):

Effluent: clear, no visible pm

Receiving: N/A

Presence of native species:

1		•	
	Y		

Lab#	Temp	D.O.	pН	Cond
524110.B	0.4	8.4	7.5	545
#2				

Custody Seals:

1. Present on Outer Package 2. Unbroken on Outer Package

3. Present on Sample 4. Unbroken on Sample

Custody Documentation (Chain of Custody):

1. Present Upon Receipt of Sample

SCG Project No.: 524110.B Project: Quarterly WET **Client: Thorin Resources** CO-0000003 Site: 002A

80027						ə	unjo	V lstoT	18	P				1	low)					224
ville, CO (303) 661					siners	stno) ło 1	Mumbe	W						Other (List Below)				(2	Date/Time 031524
500 S. Arthur Avenue, Unit 450 - Louisville, CO 80027 (303) 661.9324 - FAX (303) 661.9325	_			/MOI	150 151	212 (51	:Aipiik	Other A						+	_				Received By (2)	
Unit 661.9	Analysis (Check all applicable)			(MO)				BOD/C	\vdash		+	-	+	-	Daphnia magna Daphnia pulex				Re	3
nue, 303)	pplic	(ə)) (Circ	[[0]-				Colifor				+		+	aphr					, S
Ave.	alla		.07	., 0 -	-,,,			ons liO				+		1	Ö					Signature
rthur	eck			(;	Sircle		_	Сһгош				+		+	agua					U)
S. A	s (CF			. House				snoinA				1			nia m					ime
200	alysi			ircle)				sbilo2							Daph				73	Date/Time
	An				- 0		- 0	Metals						\top					Relinquished By (2)	
															nnia				ished	
<u>~</u>		(/	Nole8	eteoi	ibnl) 3	18T\3	IIT/IT	WET: P							Cerio daphnia				ingu	
<u> </u>		(/	Belov	əteəi	pui) p	ster	eleccele	≯:T∃W							Ceric				Re	0
ŝ			(M	ole8 e	afeate	nl) ɔi	hron	WET: C	×											ture ()
OF.			(wolas	1		cnte	WET:	6/1						woul	ents				Signature
CHAIN OF CUSTODY					E-Mail: c) dichesone Horin Cosan	Son		Lab ID	524 110.18#						Test Species: 🗡 Eathead Minnow	Special Instructions/Comments:				Date/Time
					esach	cJ Dicheron		Grab/ Comp	7						st Species:	ecial Instru			Received By (1)	V
	Ses			_	ill: c) dieb	Sampler:	L FAX	Time	10:304						<u>ĕ</u>	6-9 Day Sp	1-2 Day		Rece	ure
D _R v	in Resources		Dicheron	t. Cani		Samp	✓ PDF	Date	12/41	,					ements					Signature
BORAT	Therin		5	5	199		X		3						quir ting Or	15-220				Date/Time 3/14/24
SLACALS I (A) UNC	1	iber:	7	1900 Main St	3/6 22		Mail	n or ID	_						Turnaround Requirements (Analytical Testing Only)	Standard (10 days)		: Date:	Relinquished By (1)	Date 3/1
SEACKES I A GROOM ENVIRONMENTAL SERVICES LABORATORY	Client/Project Name:	P. O./Project Number:	Contact:	Address: 1900	Phone # 970 316 2294	Fax #	Report By:	Sample Location or ID	A 5007 A	•					Turna	Standard	3-5 Day	Requested Report Date:	Relinquis	Signatur

Site: 002A

SCG Project No.: 524110.B **Project: Quarterly WET**

SeaCrest Group Louisville, CO	Sample Receipt	Form	Effective	Form #: 42 e: January 2024
Project # 524 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Sample #:	3 CM	_
1. FedEx Notes:	Courier	Hand Delivery	(circle	one)
2. Chilled to Ship		Ambie	ent Chilled	
Cooler Received Broken or Leakin Notes:	ng	Y	N	NA
Sample Received Broken or Leak Notes:	ing	Υ	N	
5. Received Within 36hr Holding Tim Notes:	ne	Y	N	
6. Aeration necessary		Υ	N	
7. pH adjustment necessary		Υ	N	
Sample Received at Temperature Notes:	between 0-6° C .	Ň	N	NA
9. Description of Sample (Color, Odd Effluent: (1) (COLOR) NO			·):	
Receiving: N/A Presence of native species	s:	Υ	N	

Lab #	Temp	D.O.	pН	Cond
110.B#3	3.1	8.6	7.6	455

Custody Seals:

1. Present on Outer Package	Υ	(N)	
2. Unbroken on Outer Package	Υ	N	NA
3. Present on Sample	Υ	N	
4. Unbroken on Sample	Υ	N	NA

Custody Documentation (Chain of Custody):

1. Present Upon Receipt of Sample Ν

Appendix 2 – Data Sheets for the Ceriodaphnia dubia Test

CO-0000003 SCG Project No.: 524110.B Site: 002A **Project: Quarterly WET**

WET TEST REPORT FORM – CHRONIC

Permittee: Thorin Resources **Permit No.:** CO-0000003

Outfall: 002A - IWC: 89%

Test Type: Routine 🖂 Accelerated Screen

Test Species: Ceriodaphnia dubia

Test Start Time	Test Start Date	Test End Time	Test End Date
1100	03-12-2024	1030	03-18-2024

Test Results	Lethality/TCP3B	Reproduction/TKP3B
S code: NOEL	100%	100%
	PASS	PASS
P code: LC ₂₅ /IC ₂₅	>100%	>100%
	PASS	PASS
T code:	>100%	>100%

Test Summary

Measurements	Control (0%)	23%	45%	89%	95%	100%
Exposed organisms	10	10	10	10	10	10
Survival for day 1	10	10	10	10	10	10
Survival for day 2	10	10	10	10	10	10
Survival for day 3	10	10	10	10	10	10
Survival for day 4	10	10	10	10	10	10
Survival for day 5	10	10	10	10	10	10
Survival for day 6	10	10	10	10	10	10
Mean 3 Brood Total	26.6	27.5	26.4	28.1	28.2	28.6

Hardness (mg/L) – Receiving Water: N/A Effluent: 267/206/167 Recon Water: 85 Alkalinity (mg/L) – Receiving Water: N/A Effluent: 68/86/71 Recon Water: 57

Chlorine (mg/L) – Effluent: <0.01/<0.01/0.02 pH (initial/final) – Control: 7.9/7.8 100%: 7.6/7.6

Total Ammonia as NH₃ (mg/L) - Effluent: <0.03

Were all Test Conditions in Conformance with Division Guidelines? YES NO

If **NO**, list deviations from test specifications: N/A

Laboratory: SeaCrest Group

Comments:

Analyst's Name: Daniela Thornton, Mia Kohler, and Catherine McDonald

Date March 28, 2024

Site: 002A

SeaCrest Group Louisville, CO

Form #: 101a Effective: March 2023

SCG Project No.: 524110.B Project: Quarterly WET

Permittee		rin Resi	ovrces		Lab #: <u>52</u> 4	110.В	Site:	AZ00	
IWC %:	8	Tem	plate #:5	Dilution	Water: MHZ	4-006	Sample Date:	031124	
Age & So	urce:	031224	4163	Tes	t Start: 03127	4 1100	Test End:	031824	1030
Test Cond					-	•	-		
	-	1	2	1 2	4	-		7	T-4-1
(0)	0			3	4	5	6	7	Total
(C)	0	0	0	10	7	12	11		25
	0	0	0	2	8	13	11 .		31
	0	0	0	0	8	9	13 .		30
	0	0	0	0	9	17	16		34
\cap	0	0	0	0	8	9	13 .		33
'	0	0	0	5	(0	0	10		15
	0	0	0	8		11	11 .		30
	0	0	0	, ,	\$		14		
	0	0	0	8	8	9	10		22
DO	77.1	74168	7.1 7.1	7.3 7.2	8.0 7.6	7.3 6.9	8.1		6.7
Temp	24.6	25.0 74.1	25.4 24.2	254 25.0		24.4 24.1		 	
Hq	7.9	7.8 8.0	7.6 7.9	77 79		7.8 7.8	7.8		26.4
Cond	355	323	376	371	308	330	1.0		
(1)	0	0	0	4	900	1	10		24
, · ·	0	0	0	Ö	4	12	iŽ		24
	0	0	Ö	0	10	13	11		30
	0	0	0	8	Ğ	14	18		30 36
	0	0	0	10	10	11	18		23
23	0	0	0	ñ	8	11	0		19
00	0	0	0	Ŭ	8	9	Ĭ		22
	0	0	0	0	Ü	12	15		33
	0	0	0	ň	ie	iō	16		32
	0	0	0	Ö	(O	13	9		28
DO	7.4	74 7.2	7. 7.4	7.3 7.5	8.0 17.8	7.3 7.2	8.1		00
DO Temp	77.7 24.6	7.4 7.2	7.1 7.5 25.4 24.2	7.3 7.5	8.0 17.8	7.3 7.2	8.1 24.5		
	24.6 7.8	25.0 24.1 7.8 7.8	7.6 7.8 25.4 242 7.6 7.8	7.3 7.5 25.4 25.0 7.7 7.8	80 7.8 248 74.1 7.9 7.9	7.3 7.2	8.1 24.5 7.8		27.5
Temp pH Cond	24.6 7.8 390	25.0 24.1 7.8 7.8 364	25.4 242 7.6 7.8 414	25.4 25.0 7.7 7.8 419	24.8 74.1	7.3 7.2	74.5 7.8		11.5
Temp pH	24.6 7.8 310 0	25.0 24.1 73.8 73.8 364 0	25.4 242 7.6 7.8 414 0	25.4 25.0 7.7 7.8	80 7.8 248 741 79 7.9 345	7.3 7.2 24.5 24.2 7.8 7.8 364 0	24.5 7.8		11.5
Temp pH Cond	24.6 7.8 390 0	25.0 24.1 7.8 7.8 364 0	25.4 242 7.6 7.8 414 0	25.4.25.0 7.7.7.8 419 4	248741 79.79 345 7	7.3 7.2 24.5 24.2 7.8 7.8 364 0	24.5 7.8 12 12		21.5
Temp pH Cond	24.8 21.8 0 0 0	25.0 24.1 73.8 73.8 364 0 0	25.4 242 7.6 7.8 414 0 0	25.4 25.0 7.7 7.8 419	80 7.8 248 741 79 7.9 345	7.3 7.2 24.5 74.2 7.8 7.8 364 0 13	12 12 12 13		23 29 28
Temp pH Cond (2)	74.8 74.8 0 0 0	25.0 24.1 73.8 73.8 364 0 0 0	25.4 242 7.6 7.8 414 0 0 0	25.4.25.0 7.7.7.8 419 4	80 7.8 248 741 7.9 7.9 345 7 4	7.3 7.2 24.5 24.2 7.8 7.8 364 0 3 10 14	12 12 12 13 14		23 29 28 34
Temp pH Cond (2)	24.6 年.8 810 0 0 0	25.0 ; 24.1 7.8 ; 7.8 364 0 0 0	25.4 242 7.6 7.8 414 0 0 0 0	25.4 25.0 7.7 7.8 419 4	80 78 248 741 79 79 345 7 4	7.3 7.2 24.5 74.2 7.8 7.8 364 0 13	12 12 13 14 14		11.5 23 29 28 34 32
Temp pH Cond	24.6 74.8 310 0 0 0 0	25.0 ; 24.1 7.8 ; 7.8 364 0 0 0 0	25.4 242 7.6 7.8 414 0 0 0 0 0	254:25.0 7.7:7.8 419 4 0 0	80 7.8 248 741 7.9 7.9 345 7 4	7.3 7.2 24.5 24.2 7.8 7.8 364 0 3 10 14	12 12 12 13 14		23 29 28 34 32
Temp pH Cond (2)	74.6 74.8 74.8 0 0 0 0 0	25.0 24.1 7.8 7.8 364 0 0 0 0 0 0	25.4 242 7.6 7.8 414 0 0 0 0 0 0	254:25.0 7.7:7.8 419 4 0 0	80 18 248 741 79 79 345 7 4 5	7.3 7.2 24.5 24.2 7.8 7.8 364 0 13 10 14	12 12 12 13 14 14 10		23 29 28 34 32 14
Temp pH Cond (2)	24.6 7.8 310 0 0 0 0 0	25.0 ; 24.1 17.8 ; 17.8 0 0 0 0 0 0 0	25.4 i 24.2 7.6 i 7.8 414 0 0 0 0 0 0	254:25.0 7.7:7.8 419 4 0 0	80 7 8 248 741 7 9 1 7 9 345 7 4 5	7.3 7.2 24.5 74.2 7.8 7.8 364 0 10 10 14 12 10 0	12 12 13 14 14 0 11		7.5 23 29 28 34 32 14 23 29
Temp pH Cond (2)	24.6 年.8 0 0 0 0 0 0	25.0 24.1 17.8 17.8 364 0 0 0 0 0 0 0 0 0 0	25.4 124.2 7.6 17.8 414 0 0 0 0 0 0 0 0	254:25.0 7.7:7.8 419 4 0 0	80 7 8 248 741 79 79 345 7 4 5 0	73.5 7.2 74.5 74.2 7.5 74.8 764 0 13 10 14 12 10 0	12 12 12 13 14 14 0 11 13 10		7.5 23 29 28 34 32 14 23 29 23
Temp pH Cond (2)	24.60 0 0 0 0 0 0	25.0 24.1 17.8 17.8 364 0 0 0 0 0 0 0 0 0	25.4 1242 7.6 17.8 414 0 0 0 0 0 0 0 0 0	254:25.0 7.7:78 419 9 0 0 0 0 0	80 7 8 248 741 79 179 345 77 90 90 90 90 90 90 90 90 90 90 90 90 90	73. 73. 2 74.5 24.2 7.5 78 364 0 13 10 14 12 10 0	12 12 13 14 14 14 0 11 13 10		7.5 23 29 28 34 32 14 23 29
Temp pH Cond (2)	24.60 0 0 0 0 0 0	25.0 24.1 17.8 17.8 364 0 0 0 0 0 0 0 0 0 0 0 0 0	25.4 124.2 7.6 17.8 414 0 0 0 0 0 0 0 0 0 0 0 0 0	254 25.0 7.7 7.8 419 4 0 0 0 0 0 0 0 0 0	80 178 248 741 79 179 345 77 4 5 0	7.3 7.2 74.5 74.2 7.8 7.8 364 0 13 10 14 12 10 0 11 10	12 12 13 14 14 14 0 11 13 10 13		7.5 23 29 28 34 32 14 23 29 23
Temp pH Cond (2)	24.6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25.0 24.1 7.8 7.8 7.8 7.8 7.8 7.8 0 0 0 0 0 0 0 0 0	25.4 1242 7.6 17.8 414 0 0 0 0 0 0 0 0 0 0 0 0 0	254 25.0 7.7 7.8 419 0 0 0 0 0 0 0 0 0 0 0 0 7.3 7.8 259 25.0	80 178 248 741 79 179 345 77 4 5 0 4 4 6 80 80 248 841	73. 73. 2 74.5 74.2 78 78 364 0 13 10 14 12 10 0 11 0 0 11 12 10 0 11 10 10 11 10 10 11 10 10	12 12 13 14 14 16 0 11 13 10 13 10 13 8.1		7.5 23 29 28 34 32 14 23 23 29 23 29
Temp pH Cond (2)	24.80 250 0 0 0 0 0 0 0 0 0 0 0 0 0	25.0 24.1 7.8 7.8 7.8 7.8 7.8 0 0 0 0 0 0 0 0 0	254 1242 7.6 17.8 414 0 0 0 0 0 0 0 0 0 0 0 0 0	254 25.0 7.7 7.8 419 4 0 0 0 0 0 0 0 0 0 0 0 7.3 7.8 254 25.0 7.7 7.7	80 178 248 741 79 179 345 77 4 5 0 4 4 6 5 7 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	7.3 7.2 7.5 7.2 7.5 7.8 7.6 4 0 0 13 10 14 12 10 0 11 0 0 10 7.3 7.5 7.8 7.7	12 12 13 14 14 16 0 11 13 10 13 10 13 8.1		7.5 23 29 28 34 32 14 23 29 23
Temp pH Cond (2) 45 DO Temp pH Cond	24.6 1.8 210 0 0 0 0 0 0 0 0 0 0 0 0 0	25.0 24.1 7.8 17.8 364 0 0 0 0 0 0 0 0 0 0 0 0 0	254 242 7.6 7.8 414 0 0 0 0 0 0 0 0 0 0 0 0 0	254 25.0 7.7 7.8 419 4 0 0 0 0 0 0 0 0 0 0 0 0 0	80 178 248 741 79 179 345 77 4 5 0 4 4 6 80 80 248 841	7.3 7.2 7.5 7.2 7.5 7.8 7.6 4 0 13 10 14 12 10 0 11 0 10 7.3 7.5 74.6 74.3 7.8 7.7 407	12 12 13 14 14 0 11 13 10 13 10 13 17 17 17		7.5 23 29 28 34 37 14 23 29 23 29 29
Temp pH Cond (2)	24.6 1.8 30 0 0 0 0 0 0 0 0 0 0 0 0 0	25.0 24.1 7.8 7.8 364 0 0 0 0 0 0 0 0 0 0 0 0 0	254 1242 7.6 17.8 414 0 0 0 0 0 0 0 0 0 0 0 0 0	254 25.0 7.1 7.8 419 4 0 0 0 0 0 0 0 0 0 7.3 7.8 254 25.0 77 7.7 7	80 7 8 248 741 79 79 345 74 50 80 44 7 8 37 8 37 8 37 8 37 8 37 8 37 8 37 8	7.3 7.2 7.5 7.2 7.5 7.8 7.6 4 0 0 13 10 14 12 10 0 11 0 0 10 7.3 7.5 7.8 7.7	12 12 13 14 14 0 11 13 10 13 8.1 74.5		7.5 23 29 28 34 32 14 23 23 23 29 28
Temp pH Cond (2) 45 DO Temp pH Cond	24.6 14.8 0 0 0 0 0 0 0 0 0 0 0 0 0	25.0 24.1 7.8 7.8 364 0 0 0 0 0 0 0 0 0 0 0 0 0	254 1242 7.6 17.8 414 0 0 0 0 0 0 0 0 0 0 0 0 0	254 25.0 7.7 7.8 419 4 0 0 0 0 0 4 0 7.3 7.8 254 25.0 7.7 7.7 7.7 4 0	80 7 8 248 174 7 9 17 9 17 9 17 9 17 9 17 9 17 9 1	7.3 7.2 74.5 74.2 7.8 7.8 364 0 13 10 14 12 10 0 11 0 10 7.3 7.5 7.8 7.5 7.8 7.7	12 12 13 14 14 0 11 13 10 13 10 13 17 17 17		7.5 23 29 28 34 32 14 23 29 23 29 23 29 23 29 23 29
Temp pH Cond (2) 45 DO Temp pH Cond	27.80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25.0 24.1 7.8 7.8 7.8 7.8 7.8 0 0 0 0 0 0 0 0 0	254 1242 7.6 17.8 414 0 0 0 0 0 0 0 0 0 0 0 0 0	254 25.0 7.7 7.8 419 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7.3 7.8 254 25.0 7.7 17.7 44.0	80 7 8 248 174 7 9 17 9 17 9 17 9 17 9 17 9 17 9 1	7.3 7.2 74.5 74.2 7.8 7.8 364 0 13 10 14 12 10 0 11 0 10 7.3 7.5 7.8 7.5 7.8 7.7	12 12 13 14 14 10 13 8.1 24.5 7.7		7.5 23 29 28 34 32 14 23 29 23 29 23 29 23 29 23 29
DO Temp pH Cond (3)	マー・	25.0 24.1 17.8 17.8 364 0 0 0 0 0 0 0 0 0 0 0 0 0	25.4 1242 7.6 17.8 414 0 0 0 0 0 0 0 0 0 0 0 0 0	254 25.0 7.7 7.8 419 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7.3 7.8 254 25.0 7.7 17.7 44.0 4	80:13 248:741 19:79 345 77 45 00:80 48:77 378:77 378:77	7.3 7.2 7.5 7.2 7.5 7.8 7.6 4 0 13 10 11 12 10 0 11 0 10 7.3 7.5 74.6 74.3 7.8 7.7 10 0	12 12 13 14 14 10 13 8.1 24.5 7.7		7.5 23 29 28 34 32 14 23 29 23 29 23 29 23 29 23 29
Temp pH Cond (2) 45 DO Temp pH Cond	7.80 00 00 00 00 00 00 00 00 00 00 00 00 0	25.0 24.1 7.8 7.8 7.8 7.8 7.8 7.8 0 0 0 0 0 0 0 0 0	25.4 1242 7.6 17.8 414 0 0 0 0 0 0 0 0 0 0 0 0 0	254 25.0 7.7 7.8 419 0 0 0 0 0 0 0 0 0 0 0 0 0	80 7 8 248 174 7 9 17 9 17 9 17 9 17 9 17 9 17 9 1	7.3 7.2 74.5 74.6 7.8 7.6 4 0 0 13 10 10 11 0 0 10 7.3 7.5 74.6 74.3 7.8 7.7 10 0 11 0 0 10 7.3 7.8 7.7 10 0 11 0 0 0 11 0 0 0 11 0 0 0 11 0 0 0 11 0 0 0 11 0 0 0 0 11 0	12 12 13 14 14 0 11 13 10 13 8.1 74.5 7.7		23 29 28 34 32 14 23 29 23 29 28 30 33 33
DO Temp pH Cond (3)	24.6 7.8 310 0 0 0 0 0 0 0 0 0 0 0 0 0	25.0 24.1 17.8 17.8 0 0 0 0 0 0 0 0 0 0 0 0 0	254 1242 7.6 17.8 414 0 0 0 0 0 0 0 0 0 0 0 0 0	254 25.0 7.1 7.8 419 0 0 0 0 0 0 13 7.8 254 25.0 71 7.7 40 0	80 7 8 248 7 4 7 9 345 7 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7.3 7.2 7.5 7.2 7.5 7.8 364 0 13 10 11 12 10 0 11 0 10 7.3 7.5 7.6 7.4 0 11 0 10 10 10 10 10 10 10 10 10 10 10	12 12 13 14 14 0 13 14 15 17 17 17 17 17 17 17		23 29 28 34 32 14 23 29 23 29 23 29 28 30 33 33 33
DO Temp pH Cond (3)	24.6 1.8 0 0 0 0 0 0 0 0 0 0 0 0 0	25.0 24.1 7.8 7.8 364 0 0 0 0 0 0 0 0 0 0 0 0 0	254 1242 7.6 17.8 414 0 0 0 0 0 0 0 0 0 0 0 0 0	254 25.0 7.1 7.8 419 0 0 0 0 0 0 13 7.8 254 25.0 71 7.7 40 0	80 178 248 1241 179 179 345 74 50 80 44 177 378 178 177 378 90 90 90 90 90 90 90 90 90 90 90 90 90	7.3 7.2 7.5 7.2 7.5 7.8 364 0 13 10 14 12 10 0 10 10 7.3 7.5 7.8 7.5 7.8 7.7 407 0 11	12 12 13 14 14 0 11 13 10 13 8.1 24.5 7.7		23 29 28 34 32 19 23 29 23 29 23 29 28 30 33 33 32 20 20
DO Temp pH Cond (3)	24.6 0 0 0 0 0 0 0 0 0 0 0 0 0	25.0 24.1 7.8 7.8 7.8 7.8 7.8 0 0 0 0 0 0 0 0 0	254 1242 7.6 17.8 414 0 0 0 0 0 0 0 0 0 0 0 0 0	254 25.0 7.7 7.8 419 4 0 0 0 0 4 0 7.3 7.8 254 25.0 77 7.7 4 0 0 0 4	80 7 8 248 7 4 7 9 345 7 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7.3 7.2 7.5 7.2 7.5 7.8 364 0 13 10 14 12 10 0 10 10 7.3 7.5 7.8 7.5 7.8 7.7 402 0 11 13 12	12 12 13 14 14 10 13 8.1 7.7 14 17 14 0		23 29 28 34 32 19 23 29 23 29 23 29 28 30 33 33 32 20 20
DO Temp pH Cond (3)	24.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25.0 24.1 7.8	254 242 7.6 7.8 414 0 0 0 0 0 0 0 0 0 0 0 0 0	254 25.0 7.7 7.8 419 0 0 0 0 0 0 0 0 0 0 0 0 0	80 13 14 17 17 17 17 17 17 17 17 17 17 17 17 17	7.3 7.2 74.5 74.2 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8	12 12 13 14 14 10 13 8.1 77.5 7.7		23 29 28 34 32 19 23 29 23 29 23 29 28 30 33 33 32 20 20
DO Temp pH Cond (3)	マー・	25.0 24.1 7.8 7.8 7.8 7.8 7.8 7.8 0 0 0 0 0 0 0 0 0	254 1242 7.6 17.8 414 0 0 0 0 0 0 0 0 0 0 0 0 0	254 25.0 7.7 7.8 419 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2481719 2481719 345 745 0181719 0181719 0181719 0181719 0181719	7.3 7.2 74.5 74.0 74.8 764 0 0 13 10 10 11 0 10 12 10 10 10 10 12 10 10 10 10 10 10 10 10 10 10 10 10 10	12 12 13 14 14 15 17 14 17 17 17 17 17 17		23 29 28 34 32 14 23 29 23 29 23 29 28 30 33 33 33 36 20
Temp pH Cond (2) 45 DO Temp pH Cond (3)	24.8 310 0 0 0 0 0 0 0 0 0 0 0 0 0	25.0 24.1 7.8 7.8 364 0 0 0 0 0 0 0 0 0 0 0 0 0	254 1242 7.6 17.8 414 0 0 0 0 0 0 0 0 0 0 0 0 0	254 25.0 7.7 7.8 419 0 0 0 0 0 0 0 0 0 0 0 0 0	80 13 8 24 8 17 9 34 5 7 9 8 9 8 9 17 1 3 1 3 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	7.3 7.2 7.5 7.2 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	74.5: 77.8: 12. 12. 13. 14. 14. 0. 13. 10. 13. 8.1: 24.5: 7.7: 16. 13. 14. 0. 11. 17. 17. 19. 0. 11. 19. 0. 11. 19. 0. 10. 10. 10. 10. 10. 10. 10. 10. 10.		23 29 28 34 32 14 23 29 23 29 23 29 23 29 20 20 20 21 31
DO Temp PH Cond (3)	24.6 7.8 310 0 0 0 0 0 0 0 0 0 0 0 0 0	25.0 24.1 7.8 7.8 7.8 7.8 7.8 0 0 0 0 0 0 0 0 0	254 242 7.6 7.8 414 0 0 0 0 0 0 0 0 0 7.1 7.7 254 242 7.6 7.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	254 25.0 7.7 7.8 419 0 0 0 0 0 13 7.8 254 25.0 7.7 17.0 14 0 0 0 13 7.8 254 25.0 7.7 17.0 14 0 0 0 15 0 17 17.0 17 17.0 17 17.0 18 17.0 19 17.0 10 17.0 10 17.0 10 17.0 10 17.0 10 17.0 10 17.0 10 17.0 10	80 13 8 24 8 17 9 34 5 7 9 8 9 8 9 17 1 3 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	7.3 7.2 7.2 7.5 7.2 7.5 7.8 7.8 7.6 9 0 13 10 11 0 10 10 7.3 7.5 7.6 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	12 12 13 14 14 15 17 17 17 17 17 17 17		23 29 28 34 32 19 23 29 23 29 23 29 28 30 33 33 32 20 20
DO Temp pH Cond (3)	24.6 7.8 310 0 0 0 0 0 0 0 0 0 0 0 0 0	25.0 24.1 7.8 7.8 364 0 0 0 0 0 0 0 0 0 0 0 0 0	254 1242 7.6 17.8 414 0 0 0 0 0 0 0 0 0 0 0 0 0	254 25.0 7.7 7.8 419 0 0 0 0 0 0 0 0 0 0 0 0 0	80 13 8 24 8 17 9 34 5 7 9 8 9 8 9 17 1 3 1 3 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	7.3 7.2 7.5 7.2 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	74.5: 77.8: 12. 12. 13. 14. 14. 0. 13. 10. 13. 8.1: 24.5: 7.7: 16. 13. 14. 0. 11. 17. 17. 19. 0. 11. 19. 0. 11. 19. 0. 10. 10. 10. 10. 10. 10. 10. 10. 10.		23 29 28 34 32 14 23 29 23 29 23 29 23 29 20 20 21 31 29 29 20 20 20 20 20 20 20 20 20 20

th

SCG Project No.: 524110.B **Site: 002A Project: Quarterly WET**

SeaCres Louisvill				Effectiv	Form #: 10 /e: March 20				
	0	1	2	3	4	5	6	7	Total
(4)	0	0	0	7	8	1	12		28
	0	0	0	0	6	12	16		34
	0	0	0	0	8	13	14		35
	0	0	0	4	0	9	14		27
95	0	0	0	0	4	- 11	14		2 7 29
47	0	0	0	Ö	Ü	11	0		17
	0	0	0	Ÿ	10	0	12		27
	0	0	0	Ö	5	14	13		3Z
	0	0	0	4	12	0	16		32
	0	0	0	0,	4	Ŋ	11	†	26
DO	8.6	7.4 18.4	7.0 8.3	7.318.5	8.018.4	7.3 8.3	8.2		
Temp	24.3	25.0 24.1	25.4 24.2	25.4 25.0		24.7 24.6			18.2
рН	77.(0	7.7 7.7	7.7 7.5	7.7 7.6	77 7.6		77.(0		760.4
Cond	516	493	536	555	449	487	1.01		
5)	0	0	0	10	12	10	0		7.8
	0	0	0	0	7	12	15		34
	0	0	0	Ô	7	1)	16		34
	0	0	0	ŏ	5	12	13		39
INA	0	0	0	D	7	10	12		29
100	0	0	0	Ŏ	10	13	0		19
	0	0	0	6	5	7	6		18
	0	0	0	0	Ü	12	14		32
	0	0	0	G	12	0	16		34
	0	0	0	0	8	7	13		28
DO	8.9	7.4 : 8.8	70 8.4	7.3 18.8	8.0 8.6	7.3 8.5	8.2		
Temp	24.3	25.0! 24.1	25.4 24.2	25.4 25.0	248 24.4	24.7 24.6	24.6		10/10
рН	7.60	7.7 17.6	7.7 7.5	7.7 7.6	7776	77176	7.0		28.4
Cond	527	501	545	564	455	496			
Algae	ABS	ABS	AB5	ABS	ABS	28A			
YCT	2403	2403	2403	2403	2403	2403			
H ₂ O	1	1	2	2	3	3			
Initials	MK	MK	DT	cm	CM	MK	MK		
		Eff #1		#2		#3		econ	
Hardness Alkalinity		18	206		167		85 57		_
					71				

Exposure Chamber: Total Capacity: 30mL Total Solution Volume: 15ml

Ammonia

40.01

Feeding Schedule: Fed daily Food used: YCT, Algae

40.01

Units:

DO: mg/L Temp: °C pH: N/A Hardness: mg/L Alkalinity: mg/L Chlorine: mg/L Cond: µS/cm3 Ammonia: mg/L

Comments:

40.03

9000 0.0Z

x:y:z = board #:row:column

1	2	3	4	5	6	7	8	9	10
AZ	A3	A4	FA	84	A9	A10	83	B5	B6

SCG Project No.: 524110.B **Site: 002A Project: Quarterly WET**

CETIS Ana	lyti	cal Repo	rt								eport	Date: ode/ID:				26 (p 1 of 1) 2-3862-9749	
Ceriodaphnia	7-d	Survival and	Rep	roduc	tion Te	est									SeaC	rest Group	
Analysis ID: Analyzed: Edit Date:	26 N	3053-6996 Mar-24 11:25 Mar-24 0:00		Analysis: P			Reproduction Parametric-Control vs Treatments 6F0E33E8805B542B311132BF063A519F				CETIS Version: Status Level: F Editor ID:			CETIS v2. 1 008-269-8			
Batch ID: Start Date: Ending Date: Test Length:	12 M			Protocol: El Species: Ce			Reproduction-Survival (7d) EPA/821/R-02-013 (2002) Ceriodaphnia dubia Branchiopoda				Brine: Not A		Not Ap	constituted Water Applicable House Culture		Age:	
Sample ID: Sample Date: Receipt Date: Sample Age:	11 M	/lar-24		Code Mate CAS Clier	rial: (PC):	PO	110.B TW Effluent rin Resource	es			Proje Sour Stati	ce:		Quarterly C S Permit #		nce Test (1Q) 999999)	
Data Transfor	m		Alt H	Нур					NOEL	LO	EL	TOEL		Tox Units	MSDu	PMSD	
Untransformed			C > 1	Г				88	100	>10	0			1	5.888	22.14%	
Dunnett Multi	ple (Comparison	Test					-									
Control	vs	Conc-%	000	df	Test S	Stat	Critical	MSD	P-Type	P-V	alue	Decis	ion(α:	5%)			
Dilution Water		23		18 -0.34		99	2.289	5.888	CDF	0.9	0.9168 Non-Significant Effe		ant Effect				
		45		18	0.077	76	2.289	5.888	CDF	0.80	092	Non-S	Signific	ant Effect			
		89		18	-0.583	32	2.289	5.888	CDF	0.95	516	Non-S	Signific	ant Effect			
		95		18	-0.622	21	2.289	5.888	CDF	0.95	561	Non-S	Signific	ant Effect			
		100		18	-0.777	76	2.289	5.888	CDF	0.97	707	Non-S	Signific	ant Effect			
ANOVA Table																	
Source		Sum Squa	res		Mean	Squ	are	DF	F Stat	P-V	alue	Decis	ion(α:	5%)			
Between		40.5333			8.106	67		5	0.2451	0.94	105	Non-S	Signific	ant Effect			
Error		1786.2			33.07	78		54	_								
Total		1826.73						59									
ANOVA Assur	npti	ons Tests															
Attribute		Test						Test Stat			alue		ion(α:				
Variance		Bartlett Eq						0.1296	15.09	0.99		0.000	Variar				
Distribution		Shapiro-W	ilk W I	Norma	ality Te	st		0.947	0.9459	0.0	113	Norma	al Disti	ribution			
Reproduction	Sur	nmary															
Conc-%		Code	Cour	nt	Mean		95% LCL	95% UCL	Median	Min		Max		Std Err	CV%	%Effect	
0		D	10		26.6		22.27	30.93	27.5	15		34		1.916	22.78%	0.00%	
23			10		27.5		23.62	31.38	28	19		36		1.714	19.71%	-3.38%	
45			10		26.4		22.27	30.53	28.5	14		34		1.827	21.88%	0.75%	
89			10		28.1		23.94	32.26	29.5	20		36		1.841	20.71%	-5.64%	
95			10		28.2		24.21	32.19	28.5	17		35		1.763	19.77%	-6.02%	
100			10		28.6		24.43	32.77	29.5	18		34	î	1.845	20.40%	-7.52%	

Convergent Rounding (4 sf)

CETIS™ v2.1.5.5 (008-269-892-1)

Analyst: CM QA:

Site: 002A

SCG Project No.: 524110.B CO-0000003 **Project: Quarterly WET**

CETIS Analytical Report									Report Test Co			11:26 (p 1 of 1) 0 / 02-3862-9749	
Ceriod	aphnia	7-d Survival and	d Reprodu	ction Test	:						Sea	Crest Group	
Analyzed: 26 Mar-24 11:26				Iysis: L	Reproduction Linear Interpolation (ICPIN) : 6F0E33E8805B542B311132BF063A519F					IS Version: us Level: or ID:	CETIS v2.1.5 1 008-269-892-1		
Batch	ID:	20-8307-9182	Tes	Type: R	eproduction-S	urvival (7d)			Anal	yst:			
Start D	ate:	12 Mar-24	Pro	tocol: E	PA/821/R-02-0	013 (2002)			Dilu	ent: Rec	onstituted Water		
Ending	Date:	18 Mar-24	Spe	cies: C	eriodaphnia du	ubia			Brin	e: Not	Applicable		
Test Le	ength:	6d 0h	Tax	on: B	ranchiopoda				Soul	rce: In-H	ouse Culture	Age:	
Sample	e ID:	05-3830-6766	Cod	e: 5	24110.B				Proj	ect: WE	T Quarterly Complian	nce Test (1Q)	
Sample	e Date:	11 Mar-24	Mat	erial: P	OTW Effluent				Soul	rce: NPD	DES Permit # (XX999	99999)	
Receip	t Date:	12 Mar-24	CAS	(PC):					Stati	on: 002/	A		
Sample	e Age:	24h	Clie	nt: T	horin Resource	es							
Linear	Interpo	olation Options											
X Tran	sform	Y Transform	See	d	Resamples	Exp 95%	CL	Method		1			
Linear	Linear Linear 142		142	3661	1000 Yes Two-P				nt Interp	olation			
Point E	stimat	es											
Level	%	95% LCL	95% UCL	Tox Uni	ts 95% LCL	95% UCL							
IC5	>100			<1									
IC10	>100			<1									
IC15	>100			<1									
IC20	>100			<1									
IC25	>100			<1									
IC40	>100			<1									
IC50	>100			<1									
Repro	duction	Summary				Calculat	ted V				Isot	onic Variate	
Conc-9	6	Code	Count	Mean	Median	Min	Max		V%	%Effect	Mean	%Effect	
0		D	10	26.6	27.5	15	34	_	2.78%	0.00%	27.57	0.00%	
23			10	27.5	28	19	36		9.71%	-3.38%	27.57	0.00%	
45			10	26.4	28.5	14	34	2	.88%	0.75%	27.57	0.00%	
89			10	28.1	29.5	20	36	20	0.71%	-5.64%	27.57	0.00%	
95			10	28.2	28.5	17	35	19	9.77%	-6.02%	27.57	0.00%	
100			10	28.6	29.5	18	34	20	0.40%	-7.52%	27.57	0.00%	

Analyst: _____ QA:_____

Convergent Rounding (4 sf)

CETIS™ v2.1.5.5 (008-269-892-1)

Appendix 3 – Data Sheets for the Fathead Minnow Test

CO-0000003

SCG Project No.: 524110.B Site: 002A **Project: Quarterly WET**

WET TEST REPORT FORM – CHRONIC

Permittee: Thorin Resources **Permit No.:** CO-0000003

Outfall: 002A - IWC: 89%

Screen **Test Type:** Routine 🖂 Accelerated

Test Species: fathead minnow

Test Start Time	Test Start Date	Test End Time	Test End Date
1100	03-12-2024	1200	03-19-2024

Test Results	Lethality/TCP6C	Growth/TKP6C
S code: NOEL	100%	100%
	PASS	PASS
P code: LC ₂₅ /IC ₂₅	>100%	>100%
	PASS	PASS
T code:	>100%	>100%

Test Summary

Measurements	Control (0%)	23%	45%	89%	95%	100%
Exposed organisms	40	40	40	40	40	40
Survival for day 1	40	38	40	40	40	40
Survival for day 2	40	38	40	40	40	40
Survival for day 3	40	38	39	40	39	40
Survival for day 4	40	38	39	40	39	40
Survival for day 5	40	38	38	39	39	40
Survival for day 6	40	38	38	39	39	40
Survival for day 7	40	37	38	38	38	40
Mean Dry Wt. (mg)	0.253	0.248	0.251	0.259	0.255	0.253

Hardness (mg/L) – Receiving Water: N/A Recon Water: 83 Effluent: 267/206/167 Alkalinity (mg/L) – Receiving Water: N/A Effluent: 68/86/71 Recon Water: 61

Chlorine (mg/L) – Effluent: <0.01/<0.01/0.02 pH (initial/final) – Control: 8.0/7.7 100%: 7.7/7.5

Total Ammonia as NH₃ (mg/L) - Effluent: <0.03

Were all Test Conditions in Conformance with Division Guidelines? YES NO

If NO, list deviations from test specifications: N/A

Laboratory: SeaCrest Group

Comments:

Analyst's Name: Lindsey Muniz, Mia Kohler, and Aurora Nelson

Date March 28, 2024

Site: 002A

CETIS Analytical Report									2000	ort Date: Code/ID		24 Mar-24 12:29 (p 1 of 3) 524110fhm / 12-4728-8265			
Fathead Minn	ow 7	d Larval Si	urvival a	nd Growt	h Tes	st							Sea	rest Group	
Analysis ID:	11-28	393-9763	Е	ndpoint:	7d S	urvival Rat	e			CET	IS Version	n: CETISV	1.9.6		
Analyzed:	24 M	ar-24 12:28	Α	nalysis:	Non	parametric	-Control	vs T	reatments	Stati	us Level:	1			
Batch ID:	01-1	185-4928	Te	est Type:	Grov	vth-Surviva	l (7d)			Anal	yst: L	ab Tech			
Start Date:	12 M	ar-24	Р	rotocol:	EPA	/821/R-02-	013 (20	02)		Dilue	ent: R	econstituted	Water		
Ending Date:	19 M	ar-24	S	pecies:	Pime	ephales pro	melas			Brin	e: N	lot Applicable	1		
Test Length:	7d 0	h	Ta	axon:	Actin	nopterygii				Soul	rce: Ir	n-House Culti	ure	Age:	
Sample ID:	16-92	242-3399	С	ode:	5241	10.B				Proje	ect: V	VET Quarterly	y Complianc	e Test (1Q)	
Sample Date:	11 M	ar-24	M	aterial:	POT	W Effluent				Soul	rce: N	IPDES Permi	t#(XX9999	9999)	
Receipt Date:	12 M	ar-24	C	AS (PC):						Stati	on: 0	02A	*		
Sample Age:	24h		С	lient:	Thor	in Resourc	es								
Data Transfor	m		Alt Hyp)						NOEL	LOEL	TOEL	TU	PMSD	
Angular (Corrected) C > T								100	>100	n/a	1	12.52%			
Steel Many-O	ne Ra	nk Sum Te	st												
Control	vs	Conc-%		Test \$	Stat	Critical	Ties	DF	P-Type	P-Value	Decisio	on(α:5%)			
Dilution Water		23		16		10	1	6	CDF	0.6105	Non-Sig	gnificant Effe	SeaC J.9.6 Vater re Compliance # (XX99998)		
		45		14		10	1	6	CDF	0.3451	Non-Sig	gnificant Effe	ct		
		89		14		10	1	6	CDF	0.3451	Non-Sig	gnificant Effe	ct		
		95		16		10	1	6	CDF	0.6105	Non-Sig	gnificant Effec	ct		
		100		18		10	1	6	CDF	0.8333	Non-Sig	gnificant Effe	ct		
ANOVA Table															
Source		Sum Squa	res	Mean	Squa	are	DF		F Stat	P-Value	Decisio	on(α:5%)			
Between		0.0415602		0.008	3120		5		0.5852	0.7112	Non-Sig	gnificant Effec	ct		
Error		0.255669		0.014	2038		18								
Total		0.297229					23		-						
ANOVA Assur	nptio	ns Tests													
Attribute		Test					Test S	tat	Critical	P-Value	Decisio	on(α:1%)			
Variance		Bartlett Eq	uality of \	/ariance T	est						Indeter	minate			
Distribution		Shapiro-W	ilk W No	mality Te	st		0.8173	3	0.884	5.7E-04	Non-No	rmal Distribu	tion		
7d Survival Ra															
	ate Su	ımmary													
Conc-%	ate Su	ımmary Code	Count	Mean		95% LCL	95% U	ICL	Median	Min	Max	Std Err	CV%	%Effect	
	ate Su	-	Count 4	Mean		95% LCL 1.0000	95% U	_	Median 1.0000	Min 1.0000	Max 1.0000	Std Err		%Effect 0.00%	
0	ate Su	Code			0)					0.00%		
0 23	ate Su	Code	4	1.000	0	1.0000	1.0000)	1.0000	1.0000	1.0000	0.0000	0.00% 16.22%	0.00%	
0 23 45	ate Su	Code	4	1.000	0 0 0	1.0000 0.6863	1.0000)))	1.0000 1.0000	1.0000 0.7000	1.0000 1.0000	0.0000 0.0750	0.00% 16.22% 6.08%	0.00% 7.50%	
0 23 45 89	ate Su	Code	4 4 4	1.000 0.925 0.950	0	1.0000 0.6863 0.8581	1.0000 1.0000 1.0000)))	1.0000 1.0000 0.9500	1.0000 0.7000 0.9000	1.0000 1.0000 1.0000	0.0000 0.0750 0.0289	0.00% 16.22% 6.08% 6.08%	0.00% 7.50% 5.00%	
0 23 45 89 95	ate Su	Code	4 4 4 4	1.000 0.925 0.950 0.950	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.0000 0.6863 0.8581 0.8581	1.0000 1.0000 1.0000))))	1.0000 1.0000 0.9500 0.9500	1.0000 0.7000 0.9000 0.9000	1.0000 1.0000 1.0000 1.0000	0.0000 0.0750 0.0289 0.0289	0.00% 16.22% 6.08% 6.08% 10.53%	0.00% 7.50% 5.00% 5.00%	
0 23 45 89 95 100		Code D	4 4 4 4 4	1.0000 0.9250 0.9500 0.9500 0.9500 1.0000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.0000 0.6863 0.8581 0.8581 0.7909	1.0000 1.0000 1.0000 1.0000))))	1.0000 1.0000 0.9500 0.9500 1.0000	1.0000 0.7000 0.9000 0.9000 0.8000	1.0000 1.0000 1.0000 1.0000 1.0000	0.0000 0.0750 0.0289 0.0289 0.0500	0.00% 16.22% 6.08% 6.08% 10.53%	0.00% 7.50% 5.00% 5.00%	
0 23 45 89 95 100 Angular (Cor n		Code D	4 4 4 4 4	1.0000 0.9250 0.9500 0.9500 0.9500 1.0000	000000000000000000000000000000000000000	1.0000 0.6863 0.8581 0.8581 0.7909	1.0000 1.0000 1.0000 1.0000))))	1.0000 1.0000 0.9500 0.9500 1.0000	1.0000 0.7000 0.9000 0.9000 0.8000	1.0000 1.0000 1.0000 1.0000 1.0000	0.0000 0.0750 0.0289 0.0289 0.0500	0.00% 16.22% 6.08% 6.08% 10.53% 0.00%	0.00% 7.50% 5.00% 5.00% 5.00%	
0 23 45 89 95 100 Angular (Corn		Code D	4 4 4 4 4 4 4	1.0000 0.925 0.9500 0.9500 0.9500 1.0000	000000000000000000000000000000000000000	1.0000 0.6863 0.8581 0.8581 0.7909 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000))))	1.0000 1.0000 0.9500 0.9500 1.0000	1.0000 0.7000 0.9000 0.9000 0.8000 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	0.0000 0.0750 0.0289 0.0289 0.0500 0.0000	0.00% 16.22% 6.08% 6.08% 10.53% 0.00%	0.00% 7.50% 5.00% 5.00% 5.00% 0.00%	
0 23 45 89 95 100 Angular (Corn Conc-%		Code D Transform Code	4 4 4 4 4 4 med Sum	1.0000 0.925 0.9500 0.9500 0.9500 1.0000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.0000 0.6863 0.8581 0.8581 0.7909 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000))))	1.0000 1.0000 0.9500 0.9500 1.0000 1.0000	1.0000 0.7000 0.9000 0.9000 0.8000 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	0.0000 0.0750 0.0289 0.0289 0.0500 0.0000	0.00% 16.22% 6.08% 6.08% 10.53% 0.00%	0.00% 7.50% 5.00% 5.00% 5.00% 0.00%	
0 23 45 89 95 100 Angular (Corn Conc-% 0 23		Code D Transform Code	4 4 4 4 4 4 Count	1.0000 0.9250 0.9500 0.9500 1.0000 mary Mean 1.412	000000000000000000000000000000000000000	1.0000 0.6863 0.8581 0.8581 0.7909 1.0000 95% LCL	1.0000 1.0000 1.0000 1.0000 1.0000 95% U))))	1.0000 1.0000 0.9500 0.9500 1.0000 1.0000 Median	1.0000 0.7000 0.9000 0.9000 0.8000 1.0000 Min	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Max 1.412	0.0000 0.0750 0.0289 0.0289 0.0500 0.0000 Std Err	0.00% 16.22% 6.08% 6.08% 10.53% 0.00% CV% 0.00% 16.10%	0.00% 7.50% 5.00% 5.00% 5.00% 0.00%	
0 23 45 89 95 100 Angular (Corn Conc-% 0 23		Code D Transform Code	4 4 4 4 4 4 4 Count 4	1.0000 0.9250 0.9500 0.9500 1.0000 mary Mean 1.412 1.307	000000000000000000000000000000000000000	1.0000 0.6863 0.8581 0.8581 0.7909 1.0000 95% LCL 1.412 0.972	1.0000 1.0000 1.0000 1.0000 1.0000 95% U 1.412 1.642))))	1.0000 1.0000 0.9500 0.9500 1.0000 1.0000 Median 1.412 1.412	1.0000 0.7000 0.9000 0.9000 0.8000 1.0000 Min 1.412 0.9912	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Max 1.412 1.412	0.0000 0.0750 0.0289 0.0289 0.0500 0.0000 Std Err 0 0.1052	0.00% 16.22% 6.08% 6.08% 10.53% 0.00% CV% 0.00% 16.10% 7.07%	0.00% 7.50% 5.00% 5.00% 5.00% 0.00% %Effect 0.00% 7.45%	
Conc-% 0 23 45 89 95 100 Angular (Corn Conc-% 0 23 45 89 95		Code D Transform Code	4 4 4 4 4 4 4 Count 4 4	1.0000 0.9250 0.9500 0.9500 1.0000 mary Mean 1.412 1.307	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.0000 0.6863 0.8581 0.8581 0.7909 1.0000 95% LCL 1.412 0.972 1.181	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 95% U 1.412 1.642 1.48))))	1.0000 1.0000 0.9500 0.9500 1.0000 1.0000 Median 1.412 1.412 1.331	1.0000 0.7000 0.9000 0.9000 0.8000 1.0000 Min 1.412 0.9912 1.249	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Max 1.412 1.412 1.412	0.0000 0.0750 0.0289 0.0289 0.0500 0.0000 Std Err 0 0.1052 0.04705	0.00% 16.22% 6.08% 6.08% 10.53% 0.00% CV% 0.00% 16.10% 7.07%	0.00% 7.50% 5.00% 5.00% 5.00% 0.00% %Effect 0.00% 7.45% 5.77%	

003-715-114-2 CETIS™ v1.9.6.14

Analyst: CM QA: HW

SCG Project No.: 524110.B Project: Quarterly WET

100

Site: 002A

CETIS	S Ana	lytical Repo	ort						port Date: st Code/ID			::29 (p 1 of 2 12-4728-826		
Fathea	d Minn	now 7-d Larval S	urvival a	nd Growt	h Test						Sea	Crest Group		
Analys	is ID:	13-0034-4710	Eı	ndpoint:	7d Survival Rat	te		CE	TIS Version	n: CETIS	v1.9.6			
Analyz	ed:	24 Mar-24 12:29) Aı	nalysis:	Linear Interpola	ation (ICPIN	1)	Sta	atus Level:	1	1			
Batch	ID:	01-1185-4928	Te	est Type:	Growth-Surviva	al (7d)		An	alyst: L	ab Tech				
Start D	Start Date: 12 Mar-24				EPA/821/R-02-013 (2002)				uent: R	Reconstituted	Water			
Ending	Date:	19 Mar-24	S	pecies:	Pimephales pro	omelas		Br	ine: N	lot Applicable	olicable			
Test Le	ength:	7d 0h	Та	axon:	Actinopterygii			So	urce: Ir	n-House Cult	ure	Age:		
Sample	e ID:	16-9242-3399	C	ode:	524110.B			Pr	oject: V	VET Quarterl	terly Compliance Test			
Sample	e Date:	11 Mar-24	M	aterial:	POTW Effluent	:		So	urce: N	IPDES Perm	it # (XX999	99999)		
Receip	t Date:	12 Mar-24	C	AS (PC):				Sta	ation: 0	02A				
Sample Age: 24h			CI	lient:	Thorin Resource	es								
Linear	Interpo	olation Options												
X Tran	sform	Y Transform	s Se	eed	Resamples	Exp 95%	CL Met	nod						
Linear		Linear	98	3928	1000	Yes	Two	Point Inte	rpolation					
Point E	Estimat	es												
Level	%	95% LCL	95% UC	L TU	95% LCL	95% UCL								
LC5	>100	n/a	n/a	<1	n/a	n/a								
LC10	>100	n/a	n/a	<1	n/a	n/a								
LC15	>100		n/a	<1	n/a	n/a								
LC20	>100	n/a	n/a	<1	n/a	n/a								
LC25	>100	n/a	n/a	<1	n/a	n/a								
LC40	>100	n/a	n/a	<1	n/a	n/a								
LC50	>100	n/a	n/a	<1	n/a	n/a								
7d Sur	vival R	ate Summary				Calcu	ulated Varia	ite(A/B)			Isotonic Variate			
Conc-9	6	Code	Count	Mean	Min	Max	Std Dev	CV%	%Effec	t A/B	Mean	%Effect		
0		D	4	1.000	0 1.0000	1.0000	0.0000	0.00%	0.0%	40/40	1	0.0%		
23			4	0.925	0 0.7000	1.0000	0.1500	16.22%	7.5%	37/40	0.955	4.5%		
45			4	0.950	0.9000	1.0000	0.0577	6.08%	5.0%	38/40	0.955	4.5%		
89			4	0.950	0.9000	1.0000	0.0577	6.08%	5.0%	38/40	0.955	4.5%		
95			4	0.950	0.8000	1.0000	0.1000	10.53%	5.0%	38/40	0.955	4.5%		
100			4	1.000	0 1.0000	1.0000	0.0000	0.00%	0.0%	40/40	0.955	4.5%		
7d Sur	vival R	ate Detail												
Conc-9	6	Code	Rep 1	Rep 2	Rep 3	Rep 4								
0		D	1.0000	1.000	0 1.0000	1.0000								
23			1.0000	0.700	0 1.0000	1.0000								
45			0.9000	1.000	0 1.0000	0.9000								
89			1.0000	1.000	0 0.9000	0.9000								
95			1.0000	0.800		1.0000								
				0.000	0 1.0000	1.0000								

003-715-114-2 CETIS™ v1.9.6.14

1.0000

1.0000

1.0000

1.0000

Analyst: CM QA

SCG Project No.: 524110.B Project: Quarterly WET

Site: 002A

CETIS Ana	alytical F	Report								ort Date				51 (p 1 of 1 2-4728-826
Fathead Minn	now 7-d Lar	val Surviva	al and Growt	h Te	st									rest Group
Analysis ID:	16-7257-82	227	Endpoint:	Mea	an Dry Bion	nass-mg			CET	IS Versi	on:	CETISv1	.9.6	
Analyzed:	25 Mar-24	16:50	Analysis:	Par	ametric-Co	ntrol vs	Гrea	tments	Stat	us Leve	1:	1		
Batch ID:	01-1185-49	928	Test Type:	Gro	wth-Surviva	al (7d)			Anal	yst:	Lab	Tech		
Start Date:	12 Mar-24		Protocol:	EP/	A/821/R-02-	013 (20	02)		Dilu	ent:	Reco	onstituted V	/ater	
Ending Date:	19 Mar-24		Species:	Pim	ephales pro	omelas			Brin	e:	Not A	Applicable		
Test Length:	7d 0h		Taxon:	Acti	nopterygii				Sou	rce:	In-Ho	ouse Cultur	е	Age:
Sample ID:	16-9242-33	399	Code:	524	110.B				Proj	ect:	WET	Quarterly	Complianc	e Test (1Q)
Sample Date:	11 Mar-24		Material:	PO	TW Effluent				Sou	rce:	NPD	ES Permit	# (XX9999	9999)
Receipt Date:	12 Mar-24		CAS (PC):						Stati	ion:	002A	١		
Sample Age:	24h		Client:	Tho	rin Resourc	ces								
Data Transfor	rm	Alt I	Нур						NOEL	LOEL		TOEL	TU	PMSD
Untransformed	d	C > .	Т						100	>100		n/a	1	26.10%
Dunnett Multi	iple Compa	rison Test												
Control	vs Con	c-%	Test	Stat	Critical	MSD	DF	P-Type	P-Value	Decis	ion(d	a:5%)		
Dilution Water	23		0.191	3	2.407	0.066	6	CDF	0.7709	Non-S	ignif	icant Effect		
	45		0.090	88	2.407	0.066	6	CDF	0.8052	Non-S	ignifi	icant Effect		
	89		-0.218	37	2.407	0.066	6	CDF	0.8896	Non-S	ignifi	icant Effect		
	95		-0.082	22	2.407	0.066	6	CDF	0.8564	Non-S	ignifi	icant Effect		
	100		-0.009	9344	2.407	0.066	6	CDF	0.8361	Non-S	ignif	icant Effect		
ANOVA Table														
Source		Squares	Mean	_		DF		F Stat	P-Value	Decis				
Between		2993	5.986			5		0.03976	0.9990	Non-S	ignifi	icant Effect		
Error	0.027		0.001	5055		18		_						
Total	0.027	73975				23								
ANOVA Assur	mptions Te	sts												
Attribute	Test					Test S	tat		P-Value	Decis				
Variance			of Variance 1			3.204		15.09	0.6686	Equal				
Distribution	Shap	iro-Wilk W	Normality Te	st		0.9859)	0.884	0.9755	Norma	al Dis	stribution		
Mean Dry Bio	mass-mg S	ummary												
Conc-%	Code				95% LCL		_	Median	Min	Max		Std Err	CV%	%Effect
0	D	4	0.253		0.2283	0.2777		0.255	0.234	0.268		0.007757	6.13%	0.00%
23		4	0.247		0.1767	0.3188		0.24	0.202	0.309		0.02233	18.02%	2.07%
45		4	0.250		0.1929	0.3081		0.2545	0.21	0.283		0.01809	14.44%	0.99%
89		4	0.259		0.1987	0.3193		0.266	0.21	0.294		0.01893	14.62%	-2.37%
95		4	0.255		0.1754	0.3351		0.2675	0.184	0.302		0.0251	19.67%	-0.89%
		4	0.253	3	0.1909	0.3156	i	0.244	0.22	0.305		0.01958	15.47%	-0.10%
100	mass-mg D													
100 Mean Dry Bio Conc-%	Code	etail Rep			Rep 3	Rep 4								
Mean Dry Bio Conc-%		e Rep	3 0.247		0.268	0.234								
Mean Dry Bio Conc-%	Code	etail Rep	3 0.247											
Mean Dry Bion Conc-% 0 23 45	Code	e Rep	3 0.247 9 0.202		0.268	0.234								
Mean Dry Biol Conc-% 0 23	Code	Petail Rep 0.265 0.309	3 0.247 9 0.202 9 0.283		0.268 0.243	0.234 0.237								
Mean Dry Bion Conc-% 0 23 45	Code	Rep 0.26 0.309 0.279	0.247 0.202 0.283 4 0.283		0.268 0.243 0.23	0.234 0.237 0.21				. 1				

003-715-114-2

CETIS™ v1.9.6.14

Analyst: CM QA:

SCG Project No.: 524110.B Project: Quarterly WET

SCG Project No.: 524110.B Project: Quarterly WET **Site: 002A**

CETIS	S Ana	llytical Repo	ort						port Date: st Code/ID:			51 (p 1 of 1)
Fathea	d Minn	ow 7-d Larval S	urvival an	d Growl	th Test						Sea	Crest Group
Analys Analyz		12-5238-8481 25 Mar-24 16:51		dpoint: alysis:	Mean Dry Bion Linear Interpola)		TIS Version	: CETISv1	1.9.6	
Batch	ID:	01-1185-4928	Tes	st Type:	Growth-Surviva	al (7d)		An	alyst: Lal	b Tech		
Start D		12 Mar-24		tocol:	EPA/821/R-02-					constituted V	Vater	
Ending	Date:	19 Mar-24	Sp	ecies:	Pimephales pro					t Applicable		
Test Le	ength:	7d 0h	Ta	con:	Actinopterygii			So	urce: In-	House Cultu	re	Age:
Sample	e ID:	16-9242-3399	Co	de:	524110.B			Pr	oject: Wi	ET Quarterly	Compliano	e Test (1Q)
Sample	Date:	11 Mar-24	Ma	terial:	POTW Effluent	:		So	urce: NP	DES Permit	# (XX9999	9999)
Receip	t Date:	12 Mar-24	CA	S (PC):				Sta	ation: 002	2A		
Sample	e Age:	24h	Cli	ent:	Thorin Resource	ces						
Linear	Interpo	olation Options										
X Trans	sform	Y Transform	n Se	ed	Resamples	Exp 95%	CL Met	hod				
Linear		Linear	191	13651	1000	Yes	Two	-Point Inte	rpolation			
Point E	stimat	es										
Level	%	95% LCL	95% UCI	C	95% LCL	95% UCL						
IC5	>100		n/a	<1	n/a	n/a						
IC10	>100		n/a	<1	n/a	n/a						
IC15	>100		n/a	<1	n/a	n/a						
IC20	>100		n/a	<1	n/a	n/a						
IC25	>100		n/a	<1	n/a	n/a						
IC40 IC50	>100 >100		n/a n/a	<1 <1	n/a n/a	n/a n/a						
	26. 91000	25.090=021	2000,000	~1	II/a						1	-1-14-1-1-1
		mass-mg Summ					Iculated Va		0/ 5%			nic Variate
Conc-9	6	Code	Count 4	Mean 0.253	10-11-11-1	Max 0.268	O.01551	6.13%	%Effect 0.0%		Mean 0.2531	%Effect 0.0%
23		D	4	0.253		0.309	0.01551	18.02%			0.2531	0.0%
45			4	0.250		0.303	0.03618	14.44%			0.2531	0.0%
89			4	0.259		0.294	0.03787	14.62%			0.2531	0.0%
95			4	0.255		0.302	0.05021	19.67%			0.2531	0.0%
100			4	0.253		0.305	0.03917	15.47%	-0.1%		0.2531	0.0%
Mean [ry Bio	mass-mg Detail										
Conc-%	6	Code	Rep 1	Rep 2	Rep 3	Rep 4						
0		D	0.263	0.247	0.268	0.234						
23			0.309	0.202		0.237						
45			0.279	0.283	0.23	0.21						
89			0.294	0.283	0.21	0.249						
95			0.302	0.267	0.268	0.184						
100			0.305	0.262	0.22	0.226						

CETIS™ v1.9.6.14 003-715-114-2

Analyst: CM QA:

Appendix 4 – QA/QC and Reference Toxicant Test Chart

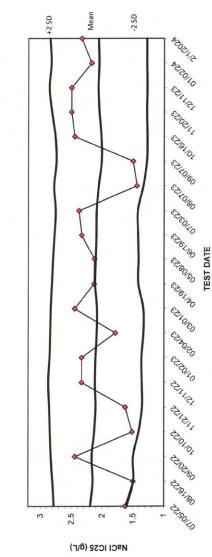
Client: Thorin Resources Site: 002A

SCG Project No.: 524110.B Project: Quarterly WET

Quality Assurance Check List – Chronic Whole Effluent Toxicity Test

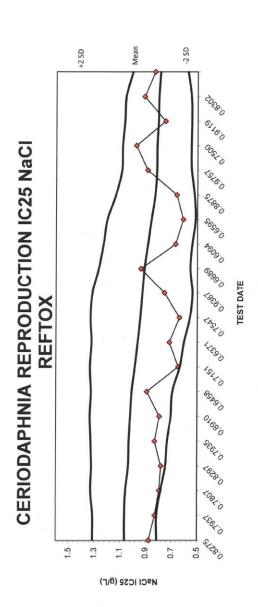
Client:	Thorin Resources	
SeaCrest Sample No:	524110.B	
Species Tested:	Ceriodaphnia dubia	and fathead minnow
Sample Dates	Start Date of Test (Ceriodaphnia dubia)	Start Date of Test (fathead minnow)
03-11-2024 03-13-2024	(Conompiniu unom)	(14011044 1111111041)
03-14-2024	03-12-2024	03-12-2024
Sample received in lab properly	y preserved (0-6°C)?	Y
Sample received at laboratory	within 36 hours of collection?	Y
Sample delivered on ice or equ	ivalent?	Y
Test initiated within 36-hours of	Y	
Test protocol conforms to CDF	Y	
Test protocol conforms to CDF	Y	
Average test temp. ±1°C (Ceric	Y	
Average test temp. ±1°C (father	Y	
DO level ≥4.0mg/L; no super-s	Y	
DO level ≥4.0mg/L; no super-s	Y	
Survival in control ≥80% (Cert	Y	
Survival in control ≥80% (fath	Y	
Ceriodaphnia dubia neonates «	<24-hours old?	Y
Fathead minnow larvae <24-ho	ours old?	Y
Appropriate reference toxicity	test conducted?	Y
Reference toxicity test results v	within the confidence limits for the lab?	Y

Author Cast March 28, 2024


Position: Laboratory Manager

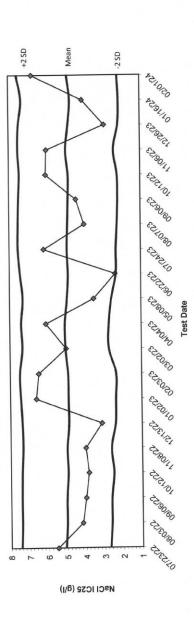
Quality Control Date March 28, 2024

QC LIMITS	± 5.00%	± 5.00%	± 5.00%	± 10.00%	± 10.00%	± 10.00%	± 10.00%	± 5.00, ± 20.00%	± 5.00%	± 5.00%	± 5.00%	± 5.00%	QC Limits	± 5.00%	± 5.00%	± 5.00%	± 5.00%	QC Limits	± 15%	± 15%	Cat my od	March 1,2024
%RPD	0.82%	4.29%	1.82%	-4.06%	-4.69%	%00.0	-3.61%	%00.0	0.72%	-1.38%	%00.0	%00.0	%REC M2	95.71%	98.53%	98.55%	98.57%	%RPD	%00.0	%00.0	Signature:	Date:
%REC	96.14%	104.76%	104.41%	104.91%	101.84%	%00.96	102.41%	105.71%	103.51%	%00'.26	100.00%	101.12%	%REC M1	97.10%	98.53%	95.59%	98.57%	%REC MR S	109.00%	93.55%		
LCS (rec)	104.80%	104.40%	104.00%	100.40%	102.60%	105.00%	%00.56	%88.96	100.00%	%09.96	102.00%	103.51%	LCS (rec)	N/A	N/A	A/A	N/A	Blank	100.00%	100.00%		
Date	2/1/2024	2/15/2024	2/22/2024	2/1/2024	2/8/2024	2/14/2024	2/21/2024	2/28/2024	2/3/2024	2/6/2024	2/13/2024	2/20/2024		2/1/2024	2/6/2024	2/13/2024	2/20/2024		2/13/2024	2/13/2024	, 	M0
Analyte	Alkalinity - Total	Alkalinity - Total	Alkalinity - Total	Ammonia	Ammonia	Ammonia	Ammonia	Chlorine	Hardness - Total	Hardness - Total	Hardness - Total	Hardness - Total		DO - Winkler	DO - Winkler	DO - Winkler	DO - Winkler		Suspended Solids (TTL)	Dissolved Solids (TTL)	Kaller 11 h	March 1, 20
Method	2320 B	2320 B	2320 B	4500 NH ₃ D	4500 CI D	2340 B	2340 B	2340 B	2340 B		4500 O	4500 O	4500 O	4500 O		0,	2540 C	Signature:	Date:			

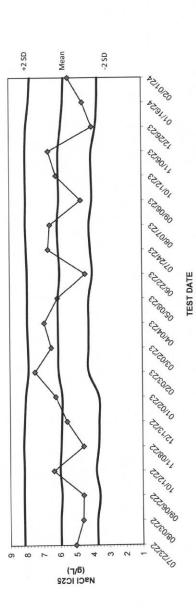

SeaCrest Group 500 S Arthur Ave. Suite 450 Louisville, CO 80027 (303) 661.9324 FAX (303) 661.9325

CERIODAPHNIA SURVIVAL LC25 NaCI REFTOX

+2 SD	2.7828	2.8054	2.8328	2.8465	2.8578	2.8742	2.8527	2.8430	2.8352	2.8158	2.7988	2.7755	2.7571	2.7824	2.7441	2.7613	2.8168	2.8592	2.8269	2.8460
-2 SD	1.6031	1.4959	1.4989	1.4070	1.3533	1.3566	1.3622	1.3307	1.3336	1.4129	1.4102	1.4176	1.4243	1.3336	1.2766	1.2703	1.2784	1.2717	1.2767	1.2774
Mean	2.1930	2.1506	2.1658	2.1268	2.1055	2.1154	2.1075	2.0869	2.0844	2.1144	2.1045	2.0965	2.0907	2.0580	2.0104	2.0158	2.0476	2.0655	2.0518	2.0617
IC25	1.6250	1.5000	2.4440	1.5130	1.6250	2.3330	2.3330	1.7860	2.4480	2.1300	2.1250	2.3330	2.3780	1.4375	1.5000	2.4480	2.5000	2.5000	2.1720	2.3330
Date	07/05/22	08/16/22	09/20/22	10/10/22	11/21/22	12/11/22	01/02/23	02/04/23	03/01/23	04/19/23	05/08/23	06/19/23	07/03/23	08/07/23	09/07/23	10/16/23	11/20/23	12/11/23	01/02/24	2/1/2024


Client: Thorin Resources Site: 002A

+2 SD	1.3129	1.312256302	1.3279	1.3223	1.3275	1.3353	1.3258	1.3342	1.3221	1.3300	1.3165	1.2670	1.2302	1.2014	1.1353	1.0878	1.0826	1.0658	1.0560	1.0040
-2 SD	0.8126	0.813773698	0.7830	0.7456	0.7328	0.7041	0.6912	0.6340	0.6021	0.5562	0.5369	0.5540	0.5384	0.5136	0.5226	0.5450	0.5474	0.5440	0.5477	0.5736
Mean	1.0628	1.063015	1.0554	1.0340	1.0301	1.0197	1.0085	0.9841	0.9621	0.9431	0.9267	0.9105	0.8843	0.8575	0.8290	0.8164	0.8150	0.8049	0.8019	0.7888
IC25	0.8750	0.8275	0.7937	0.7807	0.8297	0.7935	0.8910	0.6458	0.7151	0.6371	0.7547	0.9387	0.6689	0.6094	0.6595	0.8875	0.9757	0.7500	0.9119	0.8302
Date	07/05/22	8/16/2022	09/20/22	10/10/22	11/21/22	12/11/22	01/02/23	02/04/23	03/01/23	04/19/23	05/08/23	06/19/23	07/03/23	08/07/23	09/07/23	10/16/23	11/20/23	12/11/23	01/02/24	02/01/24


FHM SURVIVAL LC25 NaCI REFTOX

Site: 002A

Data	10.25	Mean	-2 SD	+2 SD
200	5 5000	5.0819	2.7150	7.4488
77/0	7 1820	5 0220	2.6328	7.4112
77/8	4.1020	5,0185	2 6233	7.4137
77/0	4.0000	4 9507	2.5089	7.3925
27.72	3.8420	4 9848	2 6228	7.3468
3/22	4.0000	7.0040	23996	7,3690
37.75	3.1230	2,000	2 2687	7 4415
2/23	6.6150	4.9051	2.3087	1 2000
3/23	6.4800	4.9171	2.3524	7.4818
5/03	5.0000	5.0364	2.7367	7.3361
4/23	6.0800	5.0628	2.7278	7.3978
8/23	3 5230	4.9385	2.5790	7.2979
200	2.3600	4.8775	2.3230	7.4321
2772	6 1696	4.9250	2.3130	7.5370
4/20	4 0000	4 8853	2.2436	7.5269
00/06/23	4 4240	4.8500	2.2052	7.4948
0,73	0350 8	4 8354	2.2221	7.4487
2/23	0000	4 9627	2.4111	7.5142
6/23	20000	4 8223	2.1721	7.4725
670	4 0800	4 7287	2.1284	7.3289
11/10/24	0000:1	4 8732	2.1868	7.5596

FHM GROWTH IC25 NaCI REFTOX

Date	IC25	Mean	-2 SD	+2 SD
22	5.0500	5.9498	3.7409	8.1587
22	4 6040	5.9482	3.7354	8.1611
22	4.5630	5.8716	3.5812	8.1620
22	6.3570	5.9716	3.7966	8.1465
1 2	4 5530	5.9137	3.6531	8.1744
20	5.5530	5.8673	3.6196	8.1150
23	6 2350	5.8373	3.6291	8.0455
23	7.4870	6.0624	4.2424	7.8824
23	6.5000	6.0758	4.2468	7.9047
23	6.9180	6.0931	4.2384	7.9479
23	6.1200	6.0879	4.2341	7.9416
23	4.4340	5.9816	4.0146	7.9487
23	6.6760	6.0591	4.1185	7.9998
23 62	6.5670	6.1170	4.1925	8.0415
23	4.6810	6.0194	4.0192	8.0196
23	6 1750	6.0363	4.0372	8.0354
23	6 6360	6.0352	4.0375	8.0330
23	4 0036	5.8797	3.7796	7.9799
01/16/24	4.5690	5.7497	3.6808	7.8186
701101	5 4310	5.6958	3.6572	7.7345

July 5, 2024

CJ Dickerson Thorin Resources 6208 County Road 26 Ouray, CO 81427

Dear CJ:

Enclosed is the report for chronic biomonitoring tests performed for Thorin Resources on effluent from the Wastewater Treatment Plant 002A outfall. There was no statistically significant toxicity to either test species at any effluent concentration. The effluent passes WET (Whole Effluent Toxicity) testing requirements for this sampling period.

If you have any questions or concerns, please do not hesitate to contact me at (303) 661-9324.

Best regards,

Catherine McDonald Laboratory Manager

(of my

REPORT OF CHRONIC BIOMONITORING TESTS CONDUCTED FOR THORIN RESOURCES ON EFFLUENT FROM THE WWTP 002A OUTFALL

Prepared for:

CJ Dickerson **Thorin Resources** 6208 County Road 26 Ouray, CO 81427

Prepared by:

Catherine McDonald
SeaCrest Group
500 S Arthur Ave. Suite 450
Louisville, Colorado 80027-3065
(303) 661-9324

July 5, 2024

Site: 002A

TABLE OF CONTENTS

SCG Project No.: 524290.B Project: Quarterly WET

CHRONIC TOXICITY TEST SUMMARY	3
ABSTRACT WITH RESULTS	4
INTRODUCTION	5
MATERIALS AND METHODS	5
SAMPLE COLLECTION DILUTION WATER TEST ORGANISMS TEST PROCEDURE DATA ANALYSIS RESULTS	5 6
CERIODAPHNIA DUBIA TEST RESULTS	8
DISCUSSION	9
REFERENCES	9
APPENDIX 1 – CHAIN OF CUSTODY WITH SAMPLE RECEIPT FORMS	10
APPENDIX 2 – DATA SHEETS FOR THE CERIODAPHNIA DUBIA TEST	17
WET TEST REPORT FORM – CHRONIC	18
APPENDIX 3 – DATA SHEETS FOR THE FATHEAD MINNOW TEST	25
WET TEST REPORT FORM – CHRONIC	26
APPENDIX 4 – QA/QC AND REFERENCE TOXICANT TEST CHARTS	32
LIST OF TABLES	
TABLE 1: STATISTICAL METHODS USED IN TESTING	7
TABLE 2: SUMMARY OF CERIODAPHNIA DUBIA TEST RESULTS	7
ΓABLE 3: SUMMARY OF FATHEAD MINNOW TEST RESULTS	8
TABLE 4: PMSD FOR CHRONIC TEST PARAMETERS	8

SCG Project No.: 524290.B Project: Quarterly WET **Client: Thorin Resources** CO-0000003 Site: 002A

Chronic Toxicity Test Summary

	7-day static renewal using <i>Ceriodaphnia dubia</i>
Test:	7-day static renewal using fathead minnow (<i>Pimephales promelas</i>)
Client:	Thorin Resources
Test Procedure	Ceriodaphnia dubia: EPA/821/R-02-013. Method 1002.0 (2002)
Followed:	fathead minnow: EPA/821/R-02-013. Method 1000.0 (2002)
Sample Number:	524290.B
Dilution Water:	moderately hard laboratory reconstituted water
Test Organism Source:	SeaCrest Group
Reference Toxicant:	Sodium Chloride

Sample	Time of Collection	Date of Collection	Time of Receipt	Date of Receipt
Effluent 1	1030	06-24-2024	0845	06-25-2024
Effluent 2	1340	06-26-2024	0854	06-27-2024
Effluent 3	1200	06-27-2024	0845	06-28-2024

	Ceriodaphnia dubia	fathead minnow
Test Initiation Time	1530	1145
Test Initiation Date	06-25-2024	06-25-2024
Test Completion Time	1500	1200
Test Completion Date	07-01-2024	07-02-2024

CO-0000003 SCG Project No.: 524290.B **Project: Quarterly WET**

Abstract with Results

Test Concentrations: Control (0%), 23%, 45%, 89%, 95%, 100%

10 for Ceriodaphnia dubia

40 for fathead minnow **Number of Organisms/Concentration:**

10 for Ceriodaphnia dubia

Replicates at each Concentration: 4 for fathead minnow

	Ceriodaphnia dubia	fathead minnow
Test vessel size/Exposure volume	30ml/15ml	500ml/200ml
Sub-lethal NOEL/IC25	100%/>100%	100%/>100%
Pass/Fail Status	PASS	PASS
Temperature Range (°C)	24.3 – 25.9	24.1 – 25.9
Dissolved Oxygen Range (mg/L)	6.7 - 8.1	4.1 - 8.5
pH Range	7.7 - 8.0	7.3 - 8.1
	Control (<i>Cerio</i> /FHM)	Effluent Sample
Hardness (mg/L as CaCO ₃)	80/87	97/99/130
Alkalinity (mg/L as CaCO ₃)	57/60	70/53/55
Total residual chlorine (mg/L)	< 0.01	< 0.01
Total ammonia (mg/L as NH ₃)	< 0.03	< 0.03

INTRODUCTION

Biomonitoring provides an effective means by which the toxicity of discharges from municipal, industrial, and mining operations can be tested. Among the advantages of biomonitoring is the ability to test complex effluents containing a broad range of contaminants. Biomonitoring, when used in conjunction with chemical analyses, can generate data capable of identifying a much wider range of contaminants.

The Colorado Water Quality Control Division requires certain NPDES permittees to perform acute and/or chronic biomonitoring tests. The chronic test measures significant differences in lethality and in reproduction (*Ceriodaphnia dubia*) or growth (fathead minnow – *Pimephales promelas*) between control and effluent-exposed organisms.

The present report discusses the results of chronic biomonitoring tests conducted on effluent from the Thorin Resources WWTP 002A discharge. These tests were conducted in accordance with EPA and State of Colorado procedures in June and July 2024.

MATERIALS AND METHODS

Sample Collection

Three gallons of the effluent were collected on three separate dates as specified in Permit CO-0000003. Samples were delivered chilled to the SeaCrest lab where they were held at 0-6°C. Chain of custody forms showing sample collection and laboratory arrival times are included (Appendix 1).

Dilution Water

Laboratory reconstituted water was used as both the dilution water source and the control for the tests. Reconstituted water for the *Ceriodaphnia dubia* test was produced by adding sodium bicarbonate, calcium sulfate, magnesium sulfate, potassium chloride, and sodium selenate to deionized water. Reconstituted water for the fathead minnow test was produced by adding sodium bicarbonate, calcium sulfate, magnesium sulfate, and potassium chloride to deionized water.

Test Organisms

The biomonitoring test used *Ceriodaphnia dubia*, cultured in the SeaCrest laboratory. The organisms are cultured in brood culture boards from which individual females are monitored for survival and reproduction for periods of up to two weeks. Neonates less than 24-hours old, released from third or subsequent broods of eight or more within an 8-hour period, are collected from the brood chambers and used in tests. The animals are fed daily with a mixture of Yeast, Cereal Leaves, and Trout Chow (YCT), produced in-house. This is supplemented with cultured green algae (*Selenastrum capricornutum*) provided by Aquatic Biosystems.

Less than one-day-old fathead minnow, cultured in the laboratory, were also used in the test. Adult fish are maintained in 10-gallon aquaria where females deposit their eggs on the under-surface of split PVC pipe sections. The eggs are collected daily and transferred to aerated containers where they hatch after three to four days. The larval fish are fed newly hatched brine shrimp (*Artemia* sp.) at least twice per day.

In-house organisms are tested monthly in a reference toxicant test using sodium chloride to monitor overall health and test reproducibility (Appendix 4).

Test Procedures

Upon receipt at the lab, samples were analyzed for alkalinity, ammonia, chlorine, conductivity, dissolved oxygen, hardness, and pH.

Methods used in chemical analysis

Alkalinity	EPA 310.2	Hach 8203	I-2030-85.2
Ammonia	SM4500-NH ₃ , C-E1997	ASTM D1426-08	
Chlorine	SM4500-C1 D	Hach 10026	
Conductivity	SM2510		
Dissolved Oxygen	SM4500-O	Electrode: G-2001	Winkler (QC): B-F-2001
Hardness	SM2340 B or C	Hach 8213	
pН	SM4500-H+ B-2000		

The test followed procedures in EPA³ and CDPHE⁴ guidelines. Exposure concentrations included control (0%), 23%, 45%, 89%, 95%, and 100% mixtures, diluted with moderately hard laboratory reconstituted water.

Individual *Ceriodaphnia dubia* were placed in 30ml plastic containers containing approximately 15ml of exposure medium. Ten replicates at each concentration were used. The animals were fed daily with the YCT mixture and an equal volume of the green algae (*Selenastrum capricornutum*). The exposure medium was changed daily in each container and the number of young released overnight were counted and recorded. Young were removed from the containers daily and discarded. Routine measurements were made each day of temperature, dissolved oxygen, and pH before and after the water changes.

Fathead minnow were exposed in 500ml plastic cups to which 250ml of media was replaced daily. Four replicates were used at each concentration. Ten fish, less than 24-hours old, were placed in each cup. The fish were monitored daily for survival and fed live brine shrimp at least twice per day. After seven days, the fish were removed from the cups, euthanized with isopropyl alcohol, and then placed in aluminum pans and dried in an oven for a minimum of six hours at 100°C. The pans were then weighed on a five-place analytical balance to determine the average dry weight of the fish from each replicate.

Data Analysis

Data from the tests were analyzed on a personal computer using the CETIS program (developed by Tidepool Scientific Software). Statistical tests used in the analyses are shown in Table 1. Test acceptability was determined using control survival and reproduction/growth criteria, concentration-response relationships, and percent minimum significant differences (USEPA ^{5,6}).

Table 1. Statistical methods used in testing for significant differences in test parameters.

Va	nriance	I	Distribution	
Bartlett Equali	ty of Variance Test	Shapiro-W	ilk W Normality Test	
	Statistical	Difference		
Species	Survival	Growth	Reproduction	IC ₂₅
Ceriodaphnia dubia	Fisher Exact/Bonferroni Holm Test	N/A	Steel Many-One Rank Sum Test	ICp
fathead minnow	Steel Many-One Rank Sum Test	Dunnett Multiple Comparison Test	N/A	ICp

RESULTS

Ceriodaphnia dubia Test Results

Test results for the *Ceriodaphnia dubia* are summarized in Table 2 and provided on the data sheets located in Appendix 2. Survival was 100% in the 100% effluent and ranged from 90% - 100% in the remaining effluent concentrations. Control survival was 80%. No statistically significant lethality was measured in any effluent concentration when compared to the control. The NOEL (No Observed Effect Level) for lethality was 100% and the LC₂₅ (Lethal Concentration 25) for lethality was >100%.

Average number of neonates was 31.3 in the 100% effluent concentration and ranged from 26.0-29.8 in the remaining effluent concentrations. The average number of neonates in the control was 21.9 for statistical analyses and test acceptability criteria. No statistically significant differences in the number of neonates were found between the control and any effluent concentration. The NOEL for reproduction was 100% and the IC₂₅ (Inhibition Concentration 25) for reproduction was >100%.

Table 2. Summary of *Ceriodaphnia dubia* test results. An asterisk (*) denotes a statistically significant difference from the control.

	D 4	N.T.			Significan	t Difference
Concentration	Percent Survival	Mean Neonates	Min.	Max.	Lethality	Reprod.
Control (0%)	80	21.9	5	30		
23%	90	27.1	6	36		
45%	100	29.8	16	41		
89%	90	26.0	0	36		
95%	90	28.6	3	38		
100%	100	31.3	24	37		

Fathead Minnow Test Results

Fathead minnow results are summarized in Table 3 and are provided on data sheets in Appendix 3. Survival was 95% in the 100% effluent concentration and ranged from 90% - 98% in the remaining effluent concentrations. Control survival was 98%. No statistically significant lethality was measured in any effluent concentration when compared to the control. The NOEL for lethality was 100% and the LC_{25} for lethality was >100%.

Average weight in the 100% effluent concentration was 0.353mg and ranged from 0.334mg - 0.362mg per individual in the remaining effluent concentrations. The average weight for the control fish was 0.345mg for statistical analyses and test acceptability criteria. No statistically significant differences for growth were measured in any effluent concentration when compared to the control. The NOEL for growth was 100% and the IC₂₅ for growth was >100%.

Table 3. Summary of fathead minnow test results. An asterisk (*) denotes a statistically significant difference from the control.

significant unic	rence ii oin	the control				
	Percent	Average			Significant	Difference
Concentration	Survival	Weight (mg)	Min.	Max.	Lethality	Growth
Control (0%)	98	0.345	0.306	0.374		
23%	98	0.362	0.339	0.400		
45%	98	0.358	0.294	0.387		
89%	98	0.360	0.341	0.370		
95%	90	0.334	0.274	0.377		
100%	95	0.353	0.344	0.368		

Test Acceptability

Acceptable control survival (80%) was achieved in both tests. Similarly, *Ceriodaphnia dubia* reproduction (average 15 neonates/organism) and fathead minnow growth (average 0.250mg/test container) in control organisms met required levels. PMSD was within the required limits for an acceptable test (Table 4).

Table 4. PMSD for chronic test parameters.

Table 4. I MISD for	chi onic test paran	neters.		
	fathead min	now growth	C. dubia rep	oroduction
	Lower bound	Upper bound	Lower bound	Upper bound
PMSD	12	30	13	47
(% Minimum significant difference)	15	.2	38.	9

DISCUSSION

A failed test for this discharge occurs when there is an NOEL or IC₂₅ less than the IWC (Instream Waste Concentration) of 89%. The NOEL represents the highest effluent concentration at which no statistically significant effect is observed. The IC₂₅ represents an estimate of the effluent concentration that would cause a 25 percent reduction of a non-quantal biological measurement. A violation for this discharge occurs when both the NOEL and the IC₂₅ are less than the IWC. Since neither test species demonstrated statistically significant differences meeting these criteria, the discharge passes WET testing requirements for this sampling period.

REFERENCES

- 1. **Hach Chemical Company.** 2008. *Hach's Water Analysis Handbook*. Fifth Edition. Hach Chemical Company, Loveland, Colorado. Digital Medium.
- 2. **APHA/AWWA/WEF.** 1998. Standard Methods for the Examination of Water and Wastewater. 20th Edition. American Public Health Association, Washington, D.C.
- 3. **USEPA.** 2002. Short Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms. EPA-821-R-02-013. 335 pp.
- 4. **CDPHE** (Colorado Department of Public Health and Environment). 1998. *Laboratory Guidelines for Conducting Whole Effluent Toxicity Tests*. Water Quality Control Division.
- 5. **USEPA.** 2000. *Method of Guidance and Recommendations for Whole Effluent Toxicity* (WET) Testing (40 CFR Part 136). EPA/821/B-00/004.
- 6. **USEPA**. 2000. Understanding and Accounting for Method Variability in Whole Effluent Toxicity Applications under the National Pollutant Discharge Elimination System Program. EPA/833/R-00/003.

Appendix 1 – Chain of Custody with Sample Receipt Forms

500 S. Arthur Avenue, Unit 450 - Louisville, CO 80027 (303) 661.9324 - FAX (303) 661.9325 0675W 0845 **Total Volume** Other (List Below) Number of Containers Received By (2) Daphnia magna Daphnia pulex Other Analysis (List Below) Analysis (Check all applicable) BOD/COD (Circle) Coliform (Total/Fecal/E-Coli) (Circle) Oil and Grease Chromium III/VI (Circle) Date/Time (wol98 tziJ) znoinA Solids (TS/TDS/TSS) (Circle) Relinquished By (2) (woled tziJ) slateM Pinephales Cerio daphnia WET: PTI/TIE/TRE (Indicate Below) CHAIN OF CUSTODY WET: Accelerated (Indicate Below) WET: Chronic (Indicate Below) Special Instructions/Comments: Test Species: X Fathead Minnow WET: Acute (Indicate Below) S24299 eson extravola Lab ID 42 0 Received By (1) D.ch. Grab/ Comp 0 Time FAX 6-9 Day 1-2 Day Sampler: 0 E-Mail: Turnaround Requirements (Analytical Testing Only) Date PDF X Relinquished By (1) Standard (10 days) Main Sample Location or ID Requested Report Date: Mail Client/Project Name: P. O./Project Number: 900 Phone # (602 3-5 Day DF007A Report By: Contact: Address: Fax#

CO-0000003 SCG Project No.: 524290.B **Site: 002A Project: Quarterly WET**

SeaCrest Group Louisville, CO	Sa	ample Receipt	Form	Effective:	Form #: 4 January 202
Project # 524 / Date: Samples Were:	190.B 2524		Sample #: Initials: +W		
1. FedEx Notes:	UPS)	Courier	Hand Delivery	(circle c	ne)
2. Chilled to Ship		all	Ambier	nt Chilled)
Cooler Received I Notes:	Broken or Leaking		Υ	N	NA
4. Sample Received Notes:	Broken or Leaking	J	Υ	\bigcirc N	
5. Received Within 3 Notes:	36hr Holding Time		Y	N	
6. Aeration necessar	у		Υ	N	
7. pH adjustment ned	cessary		Y	N	
8. Sample Received Notes:	at Temperature be	etween 0-6° C .	Y	N	NA
9. Description of San Effluent: (Receiving:	lear, minin		of Particulate Matter):		

Temp	D.O.	рН	Cond
5.7°C	8.5	79	2010
	Temp 5.7℃	Temp D.O. 5.7°C 8.5	Temp D.O. pH 5.7℃ 8.5 7.9

Presence of native species:

Custody Seals:

.,		_	
1. Present on Outer Package	Υ	N	
Unbroken on Outer Package	Υ	N	NA
Present on Sample	Υ	N	
4. Unbroken on Sample	Υ	N	(NA)

Custody Documentation (Chain of Custody):

1. Present Upon Receipt of Sample

N

SeaCrest Group **12**

MK

Analysis (Check all applicable) Analysis (List Below)	Analysis (Check all applicable) Sampler: CD O, Ch.C. Toward (Colifore) Sampler: CD O, Ch.C. Toward (Chromium III/VI) (Clrcle) Time Grab/ (Table) Solids (TaylDS/TSS) (Clrcle) ANET: Accelerated (Indicate Below) Chromium III/VI (Clrcle) Anet: Accelerated (Indicate Below) ANET: Accelerated (Indicate Below) Chromium III/VI (Clrcle) Coliform (Inticate Below) Anet: Accelerated (Indicate Below) Anet: Accelerated (Indicate Below) Coliform (Inticate Below) Anet: Accelerated (Indicate Below) Anet: Accelerated (Indicate Below) Coliform (Inticate Below) Anet: Accelerated (Indicate Below) Anet:	Analysis (Check all applicable Sample: Caray Co 8422 With Lab id Control Composite Below) Sample: Caray Co 8422 With Lab id Composite Below) Sample: Caray Co 8422 With Lab id Composite Below) Met: PTI/TIE/TRE (Indicate Below) WET: Accelerated (Indicate Below) Wet: Accelerate Below) Wet: Accelerated (Indicate Below) Wet: Accelerated (Indicate Below) Wet: Accelerated (Indicate Below) Wet: Accelerated (Indicate Below) Wet: Ac	Analysis (Check all applicable) Sample: CD of Acron Check all applicable) Sample: CD of Acron Check all applicable Below) Time Comp	SEACREST ENVIRONMENTAL SERVICE	SEACREST & GROUENVIRONMENTAL SERVICES LABORATORY			CHAIN OF CUSTODY	P -	CUS	гору		20	0 S. A	rthur	Aven (3	ue, U 03) 6(nit 45(51.932	500 S. Arthur Avenue, Unit 450 - Louisville, CO 80027 (303) 661.9324 - FAX (303) 661.9325	lle, CO .03) 66	3002
ate Time Grab/ Comp Chromium III/VI (Circle) Solids (TS/TDS/TSS) (Circle) Anions (List Below) WET: Accelerated (Indicate Below) WET: Accelerated (Indicate Below) WET: Accelerated (Indicate Below) WET: Accelerated (Indicate Below) AWET: Accelerated (Indicate Below) Metals (List Below) AWET: Accelerated (Indicate Below) Chromium III/VI (Circle) Comp Anions (List Below) Chromium III/VI (Circle) Coliform (Total/Fecal/E-Coli) (Circle)	Test Species:	Colliform (Total Relow) Colliform (Total Relow)	Compositions Conference Compositions Conference Compositions Conference Compositions Conference Compositions Conference Confe	/ hacin	C		50						Analy	sis (C	eck :	all ap	plica	ple)		ŀ	-
Sample: Colifornic (Indicate Below) Metals (List Below) Metals (List Below) Metals (List Below) Anions (List Below) Anions (List Below) Comp Grab Metals (List Below) Anions (List Below) Comp Grab Anions (List Below) Anions (List Below) Coliforn (Indicate Below) Comp Grab Anions (List Below) Coliforn (Indicate Below) Anions (List Below) Coliforn (Indicate Below) Anions (List Below) Coliforn (Indicate Below) Anions (List Below)	Cario daphnia magena Cappun Cappu	Composition	Coliform (Just Below) Coli													(Alai)	/avaus				
Sample: CANALY CO 8/427 WET: Accelerated (Indicate Below) Metals (List Below) Comp (Circle) Amonora (List Below) Coliform (Indicate Below)	F-Mail: Collections Compound	Control Composition Confidence Confi	Contract	2	20					2000			(ו!) (נ	2) /11			_	
Sampler: CA Order Source for Composite (Indicate Composite Composi	F-Mail: C. A. C. A. C. Sampler: C. O. C. A. C. Sampler: C. C. C. Sampler: C. C. C. Sampler: C. C. C. Sampler: C. C. C. C. Sampler: C. C. C. Sampler: C. C. C. Sampler: C. C. C. C. Sampler: C. C. C. C. C. C. C. Sampler: C.	E-Mail: Collectone than area are Time Grab/ Lab ID Collectone than area are Time Grab/ Lab ID Collectone than area Comp Collectone to the collectone to	F-Mail: CA Co. Ch. Crow Carbo Chromosome Carbo Chromosome Chromic (Indicate Chromic (Indicat	1900 Main St	4	Unit I	Ouray, (10 8/42					Circle		(ə)	OD-3/		(wol9		5.1	
Time Grab/ Lab ID Comp Comp (List Belo Chromic (Ind Metals (List Belo Chromium III/VI) Amona (List Belo Chromium III/VI) Oil and Grease Coliform (Total/I) Other Analysis (I)	Time Grab/ Lab ID WET: Accelerate (Ind WET: Accelerate Anions (List Belof Collidorm (Total/F) BOD/COD (Circle Collidorm (Total/F) Test Species: X Fathead Minnow Cerio daphnia magna Daphnia pulex	Time Grab/ Lab iD Comp Collidorm (Totally Collidorm (Time Grab/ (List Belon Comp Conformation	hone # (970) 316-2294	_	E-Mail: Col	chessoneth	anosavin				(///		(M	(Circl	JE29				ianis	
Time Grab/ Comp Lab ID Comp (Lab ID) WET: AVET: Chron WET: PTI/TII WET: PTI/TII Metals (List Solids (TS/TI Anions (List Chromium II Oil and Gree Coliform (To BOD/COD (C) Other Analy	Time Grab/ Lab ID (Sab) (Lab ID (Composite Composite Com	Time Grab/ Lab ID Subsequent Comp Comp	Time Grab/ Lab ID Comp Continue on Comp Continue on Comp Continue on Comp Continue on Cont			Sampler: C	J Dich	- con				ojoa		Belo						tuoj	
Time Grab/ Lab ID (Aumber Comp Grab) Lab ID (Aumber Comp Grab) MeT: A WET: A WE	Time Grab/ Lab ID Time Comp (Lab ID) WET: P WET: P Metals Solids (Comp Chrom C	Time Grab/ Lab ID Fig. 17 Secretary States of Minnow [Cerio daphnia magna Daphnia pulex [1-2 Day)	Time Grab/ Lab ID To grab Syly0. B #C To grap Solid solors Special Instructions/Comments: 1.40 grab Syly0. B #C F F F F F F F F F	Ø	PDF				cute			+3:1)		tsiJ)) 10 T	
1:40 gab 524100.B #Z ×	: 40 grab 574100.B #2 ×	1: 40 grab SHMO.B.#2 X	: 40 grab 52/100.B #Z ×		Date			Lab ID (MB Use Only)	√:T∃W			3104014		snoinA						Mumbe	
	Test Species: Stathead Minnow Cerio daphnia magna Daphnia pulex [Test Species: Stathead Minnow Cerio daphnia Cerio daphnia magna Daphnia pulex [6-9 Day Special Instructions/Comments: 1-2 Day	Test Species: Fathead Minnow Cerio daphnia Daphnia magna Daphnia pulex 1-2 Day Special Instructions/Comments:	9	126			5241290.B#Z		×										6 ,	N
	Test Species: Est Fathead Minnow Cerio daphnia Daphnia magna Daphnia pulex [Test Species: Seciel Instructions/Comments:	1-2 Day Received By (1) Relinquished By (2) Receiver																		1
	Test Species: Stathead Minnow Cerio daphnia Daphnia pulex [Test Species: Fathead Minnow Terio daphnia Daphnia pulex Pacial Instructions/Comments:	Test Species: Secretary Special Instructions/Comments: 1-2 Day Received By (1) Relinquished By (2) Received By (3) Received By (2) Received By (3) Received By (4) Received By (5) Received By (7) Received By (8) Received B									_									
	Test Species: Stathead Minnow Cerio daphnia Daphnia magna Daphnia pulex [Test Species: Stathead Minnow Cerio daphnia Daphnia magna Daphnia pulex [6-9 Day Special Instructions/Comments:	Test Species: Seciel Instructions/Comments: 1-2 Day Received By (1) Relinquished By (2) Received	+		+															
	Test Species: Fathead Minnow Cerio daphnia Daphnia magna Daphnia pulex [6-9 Day Special Instructions/Comments:	Test Species: Secies: Fathead Minnow Cerio daphnia Daphnia magna Daphnia pulex [6-9 Day Special Instructions/Comments:	Test Species: Stathead Minnow Cerio daphnia Daphnia magna Daphnia pulex [6-9 Day Special Instructions/Comments: 1-2 Day Received By (1) Relinquished By (2) Received	-							+		+			+	+			+	+
	Test Species: Secretary Fathead Minnow Waterio daphnia Daphnia magna Daphnia pulex [6-9 Day Special Instructions/Comments:	Test Species: Secies: Eathead Minnow Cerio daphnia Daphnia magna Daphnia pulex 6-9 Day Special Instructions/Comments:	Test Species: Stathead Minnow UCerio daphnia Daphnia magna Daphnia pulex [6-9 Day Special Instructions/Comments: 1-2 Day Received By (1) Relinquished By (2) Receive	-							+		+		+	+	-				-
	Test Species: El Fathead Minnow La Cerio daphnia Daphnia magna Daphnia pulex [6-9 Day Special Instructions/Comments:	Test Species: ☑ Fathead Minnow ☑ Cerio daphnia ☐ Daphnia magna ☐ Daphnia pulex ☐ 6-9 Day Special Instructions/Comments:	Test Species: Secies: Pathead Minnow Cerio daphnia Daphnia magna Daphnia pulex [Seciel Instructions/Comments: 1-2 Day Received By (1) Relinquished By (2) Received By (2) Received By (2)																		
	6-9 Day Special Instructions/Comments:	6-9 Day Special Instructions/Comments: 1-2 Day	6-9 Day Special Instructions/Comments: 1-2 Day Received By (1) Relinquished By (2) Receive	around Requirem	.men	ıts	Test Species:	∑ Fathead Min	wour		Cerio dap			hnia m	agua		aphnia	a pulex		r (List B	- elow)
Test Species:			1-2 Day Received By (1) Relinquished By (2)	Standard (10 days)		6-9 Day	Special Instr	uctions/Comn	ents:												
Test Species: Secies: Fathead Minnow Language Daphnia magna Daphnia pulex Daphnia pule				Relinquished By (1)			Received By (1	0			Reling	uished	3y (2)					Recei	ved By (2)		
Test Species: Stathead Minnow UCerio daphnia Daphnia magna Daphnia pulex [6-9 Day Special Instructions/Comments: 1-2 Day Received By (1) Relinquished By (2) Receive (1) Signature	Received By (1) Relinquished By (2) Received By (2) Received By (2) Received By (2) Signature UPS Signature UPS Signature UPS	Received By (1) Relinquished By (2) Received By (2) Received By (2) Date/Time Signature UPS A A			-								_)		3	7

CO-0000003

Site: 002A

SCG Project No.: 524290.B **Project: Quarterly WET**

SeaCrest Gro Louisville, CC		Sample Receipt	Form	Form #: 42 Effective: January 2024
Project # Date: (X) Samples W 1. FedEx	3010	Courier	Sample #: 2- Initials: Mand Delivery	(circle one)
2. Chilled to	o Ship		Ambier	nt Chilled
	eceived Broken or Leakir lotes:	ng	Υ	N NA
	Received Broken or Leak lotes:	ing	Υ	N
	d Within 36hr Holding Tim lotes:	ne	Y	N
6. Aeration	necessary		Υ	N
7. pH adjust	tment necessary		Y	N
	Received at Temperature otes:	between 0-6° C .	(Y)	N NA
Ef Re	on of Sample (Color, Odo ffluent: \i\h\ pm eceiving: \i\A resence of native species		of Particulate Matter):	N

ond	Con	рН	D.O.	Temp	Lab#
73	273	8-1	7.8	5.9	5242910.BHZ
,	1	0-1	7.0). 1	JC 10 10.000

Custody Seals:

E-3 (American Control 40.0 -) - 2004 (190			
1. Present on Outer Package	Y	N	
2. Unbroken on Outer Package	Υ	N	CNA
3. Present on Sample	Υ	N	
4. Unbroken on Sample	Υ	N	(NA)

Custody Documentation (Chain of Custody):

1. Present Upon Receipt of Sample

Ν

500 S. Arthur Avenue, Unit 450 - Louisville, CO 80027 (303) 661.9324 - FAX (303) 661.9325						istno	O fo	edmuM	3 3991					ex Other (List Below)				Received By (2)	Date/Time
Avenue, Unit 4 (303) 661.9	Analysis (Check all applicable)	(a	(Circl			ial/Fe	10T) n	Coliforn BOD/CC						Daphnia magna Daphnia pulex				Rec	Signature
S. Arthur	s (Check a			() IV/I	III wn	Anions Chromi						nia magna [
200	Analysi			(elɔː	s) (Cir	SST\SC	JT\ZT	Metals olids (ļ□				led By (2)	UPS Date/Time
STODY								WET: P						Cerio daphnia				Relinquished By (2)	M
CHAIN OF CUSTODY					ate B	oibnl)		WET: C	X	-				_	nments:				Signature
CH∕					Cherrales	Oches,		Lab ID	SAYAGO. P3					Test Species: X Eathead Minnow	Special Instructions/Comments:			0	Date/Time
	san				acron 6	200		Grab/ Comp	nogas					est Species:	pecial Instr			Received By (1)	
	Resources			TTinx	E-Mail: CiOlicherson Change Cosau	Sampler:	FAX	Time	(2:00pm					1=	_ 6-9 Day S	1-2 Day		Rec	Signature (1785)
GROUP ABORATORY	Thorin		Lerson	7			KD PDF	Date	06/27					quirements					36
SEACKES AGROU	Client/Project Name:	P. O./Project Number:	Contact: (5 Dicherson	Address: 1900 Main St	Phone # (970) 316-2294	Fax#	Report By:	Sample Location or ID	DF-00ZA					Turnaround Requirements (Analytical Testing Only)	Standard (10 days)	3-5 Day	Requested Report Date:	Relinquished By (1)	ignature Date/Time

CO-0000003 SCG Project No.: 524290.B **Site: 002A Project: Quarterly WET**

SeaCrest	Group
Louisville	CO

Sample Receipt Form

Form #: 42 Effective: January 2024

Project #	\$ 524 290, b		Sample #	: 3		
Date:	NEBENO		Initials:	KM		
Samples	Were:					-
1. FedEx	(UPS)	Courier	Hand Del	ivery	(circle on	e)
	Notes:					
2. Chilled	I to Ship			Ambie	nt (Chilled)	
3. Cooler	Received Broken or Leaking			Υ	(N)	NA
	Notes:					
4. Sample	e Received Broken or Leaking			Υ	(N)	
	Notes:					
5. Receiv	red Within 36hr Holding Time		/	Ŷ	N	
	Notes:				_	
6. Aeratio	on necessary			Υ	N	
7 nH adii	ustment necessary			.,		
7. pri auju	ustifient fiecessary			Y	N	
8. Sample	e Received at Temperature bet Notes:	ween 0-6° C .		Y	N	NA
9. Descrip	otion of Sample (Color, Odor, a Effluent: ∀ℓγ∪ (ໝ ρ⋅m.)	nd/or Presence of F	articulate	Matter)	:	
	Receiving: N (A					
	Presence of native species:			Υ	$\left(N\right)$	

Lab #	Temp	D.O.	pН	Cond
5a4a90.133	3.1	7,3	7,9	259

Custody Seals:

,			
Present on Outer Package	Y	(N)	
2. Unbroken on Outer Package	Υ	N	(NA)
3. Present on Sample	Υ	(N)	
4. Unbroken on Sample	Υ	N	(NA)

Custody Documentation (Chain of Custody):

1. Present Upon Receipt of Sample

Ν

Appendix 2 – Data Sheets for the Ceriodaphnia dubia Test

Site: 002A

urces CO

CO-0000003 SCG Project No.: 524290.B Project: Quarterly WET

WET TEST REPORT FORM – CHRONIC

Permittee: Thorin Resources
Permit No.: CO-0000003

Outfall: 002A – IWC: 89%

Test Type: Routine ⊠ Accelerated □ Screen □

Test Species: Ceriodaphnia dubia

Test Start Time	Test Start Date	Test End Time	Test End Date
1530	06-25-2024	1500	07-01-2024

Test Results	Lethality/TCP3B	Reproduction/TKP3B
S code: NOEL	100%	100%
	PASS	PASS
P code: LC ₂₅ /IC ₂₅	>100%	>100%
	PASS	PASS
T code:	>100%	>100%

Test Summary

Measurements	Control (0%)	23%	45%	89%	95%	100%
Wieasurements	(0 /0)	23 /0	43 /0	07/0	93 /0	100 /0
Exposed organisms	10	10	10	10	10	10
Survival for day 1	10	10	10	10	10	10
Survival for day 2	10	10	10	10	10	10
Survival for day 3	10	10	10	9	10	10
Survival for day 4	10	10	10	9	9	10
Survival for day 5	8	9	10	9	9	10
Survival for day 6	8	9	10	9	9	10
Mean 3 Brood Total	21.9	27.1	29.8	26.0	28.6	31.3

Hardness (mg/L) – Receiving Water: N/A Effluent: 97/99/130 Recon Water: 80 Alkalinity (mg/L) – Receiving Water: N/A Effluent: 70/53/55 Recon Water: 57 Chlorine (mg/L) – Effluent: <0.01 pH (initial/final) – Control: 8.0/7.9 100%: 8.0/7.7

Total Ammonia as NH₃ (mg/L) - Effluent: <0.03

Were all Test Conditions in Conformance with Division Guidelines? YES NO

If NO, list deviations from test specifications: N/A

Laboratory: SeaCrest Group

Comments:

Analyst's Name: Haley West, Lisa Sibrell, Mia Kohler, and Katie Maranowski

Signature Date July 5, 2024

SCG Project No.: 524290.B Project: Quarterly WET **Site: 002A**

SeaCre Louisvil	st Group le, CO)	(Ceriodaphni	a Chronic B	enchsheet		Effective	Form #: 1 e: March 2	
Permittee	e: Th	orin Resi	ources		_Lab #: 52 ^L	1290.B	Site:	OOZA		
IWC %:		A -	plate #: 5	Dilutio	n Water: MH	14-013	Sample Date	06242	754	
Age & Sc		002524		– Te	est Start: 062	574 530	Test End	07012	LICAR	_
1904		0000	6111		31 Otal 1. <u>002</u>	36 1 1330	_ rest Ella	01010	1 1500	2
Test Con	_									=
(0)	0	1	2	3	4	5	6	7	Total	1
(C)	0	0	0	1 9	U	6	13		23	4
1	0	0	0	13	5	9			100	1
l	0	0	0	1 2	1	0 0-			- Ø 10	
_	0	0	0	2	1	0 D			195	D
()	0	0	0	3	13	10	15	-	121	-
_	0	0	0	13	18	8	10	-	128	-
	0	0	0	T Ü	18	10	110		30	┨
1	0	0	0	5	18	10	18	+	27	1
	0	0	0	5	10	8	13	 	28	1
DO	(0.8)	6.8 6.8	6.9 6.8	7,006.8	7,1 16,4		10.91		- 60	1
Temp	75.8	25.4 25.9	25.3 25.9	25,5,245	525,524.2	25.4 25.9	15.2		1,0	1
pH	8.0	7,9 17.8	7.7 7.8	7,918,0		7.8 7.9	7.9		10/.,	1
Cond	324	307	313	305	388	296			U.	
(1)	0	0	0	3	0	9	15		27]
	0	0	0	5		2	17		24]
	0	0	0	1 4	9	1	18		32	
	0	0	0	5	10	0	15		30	1
23	0	0	0	1 1/2	5	0	110		25	1
LU	0	0	0	18	1 2	10	13		29	1
	0	0	0	13	10	10	18		33	1
	0	Ö	0	1 5	18	15	17		36	1
	0	Ö	0	6	18	0 0	15		29	
DO	6.0	6.8 16.8	6.9 7.0	7,0 6,9	7,16,8	6.9 16.8	691		- 84	D
Temp	25.8	25.4 25.9	25.3 25.9		a5,5a4.0		25.2		/ ^ \	1
pН	8.0	7.9 7.9	7.7 7.8	7,9 7,9	7,98.0	1.8 7.9	7.9		10.1.	
Cond	311	296	296	2960	377	280			V	
(2)	0	0	0	3	10	0	15		28	1
	0	0	0	U	IT	0	1)		26	1
	0	0	0	d	7	0	16		25	1
	0	0	0	5	9	0	14		28]
45	0	0	0	9	H	2	.20		39	l
10	0	0	0	3	1	13	1/		33	ı
	0	0	0	5+1	2	0	8		14	
	0	Ö	0	5+1	10	15	70		41	
	0	Ö	Ö	a	1	11	12		20	
DO	6.8	6.8 168	6.9 17.2	0,9 7,0	7.1710	6.9 6.9	18		33	
Temp	25.8	25.4 25.9	25.3 25.9		25, 624,9		25.2		29.56	
pН		7.9 7.9	7.7 7.9	7.9 7.9	7,98,0	7.8 7.9	1.8		0.00	
Cond	299	285	285	287	2009	275			V	
(3)	0	0	0	0	3	9	18		30	
	0	0	0	3	9	0	ile		28	
- 1	0	0	0	5	8	ı	14		28	
00	0	0	0	3		0	18		33	
89	0	0	0	3	9	0	12		24	
~ j	0	0	0	(0	9	8	9		1	
ŀ	0	0	0	G	3	0	18		25	
ı	Ö	Ö	0	G	8	13	18		25	
	0	0	0	0' n-		14	10		24	n
DO	6.7	6.7 6.8	6.8 7.5	0.917.1	7,217,2	6.8 7.0	0.8		0	V
Temp	25.8	25.4 25.9		15,425,4	25/6/25/3		25.2		0, .	
pH Cond	2744	7,9 7,9	7.7 7.9		1.9 13.0	7.8 7.9	1.8		NOS	
CACHICI	677	7.30	L lad	A 171 7	751	204		Name and Address of the Owner, where the Owner, which is the Ow		

Client: Thorin Resources Site: 002A

SCG Project No.: 524290.B **Project: Quarterly WET**

SeaCrest	Group
Louisville,	CO

Ceriodaphnia Chronic Benchsheet

Form #: 101a Effective: March 2023

	0	1	2	3	4	5	6	7	Total
(4)	0	0	0	3	(0	0	19		28
	Ö	0	0	U	8	0	20		32
	0	0	0	U	(0	0	110		We
	0	0	0	5	19	0	18		34
	0	0	0	7	a	0	20		36
95	0	0	0	(0		13	17		36
10	0	0	0	オ	6	0	15		124
	0	0	0	(0	0	13	19		38
	0	0	0	3	O D				- X3
	0	0	0	3	0	12	14		29
DO	6.7	6.7 6.8	6.8 7.8	10.8 112	7.07.4	6.7 7.1	68		
Temp	25.8	25.9 25.9	25.3 25.9	25,4125,6	26:7125.0		25.2		015
На	8.0	7.9 7.8	7.7 7.9	7.8.7.9	7.918,0	7.8 7.9	12		- Ai
Cond	271	257	261	263	aya	251			, No
(5)	0	0	0	5	3	G	110		24
	0	0	0	1/1	13	0	70		37
	0	0	0	3	7	10	15		78
	0	0	0	5	4	0	19		31
16.4	0	0	0	(6	8	2	19		35
100	0	0	0	5	O	14	13		32
.00	0	0	0	Ú	A		16		29
	0	0	0	3	R	7	16		210
	0	0	0	5	8	13	17		35
	0	0	0	3	8	15	18		1360
DO	6.7	6.3	6.8 3.1	6,817,3	7,2710	6.7 7.2	10.8		
Temp	25.8	25.4 25.9	25.3 25.9	25.4 25.7	25,7 25,9	25.4 25.9	15.2		一、 か
pН	8.0	7.9 7.9	7.7 8.0	7,8179	7.98.0	7.8 7.9	7.1		33.9
Cond	267	253	259	259	200	249			J'
Algae	ABS	A 85	A BS	ABS	ABS	A BT			
YCT	2405	2405	2405	2405	3405	2405			
H ₂ O	1	1	2	3	a	3			
Initials	MK	72	LS	KM	KM	LS	HW		
		Eff #1		#2	Eff	#3	Rec	on	
Hardness		97		19	13	0	8	0	7
Alkalinity		70		53	5:		5	7	
Chlorine		40.01		0.01	<0.		40	.01	
Ammonia	_ <	0.03	<0	.03	۷٥.	03	70	.03	

Exposure Chamber: Total Capacity: 30mL
Total Solution Volume: 15mL

Feeding Schedule: Fed daily
Food used: YCT, Algae

DO: mg/L Temp: °C pH: N/A Hardness: mg/L Alkalinity: mg/L Chlorine: mg/L Ammonia: mg/L

Cond: µS/cm³

Comments:

x:y:z = board #:row:column

1	2	3	4	5	6	7	8	9	10
A١	AY	A5	A6	A9	BI	BZ	B6	B7	(8)

Site: 002A

CETIS Ana	lyti	cal Repo	ort								rt Dat					27 (p 1 of 1) 8-1622-9617
Ceriodaphnia	7-d	Survival and	d Repr	oductio	n Test										SeaC	rest Group
Analysis ID:	14-5	804-7006		Endpoi	nt: 7d	7d Survival Rate				CETIS Version: CETISv1.9.6			1.9.6			
Analyzed:	01 J	ul-24 15:26		Analysi	s: ST	P 2xK Contir	ngency Tabl	es		Statu	s Lev	el:	1			
Batch ID:	16-5	295-8672	Test Type: F			oroduction-S	urvival (7d)			Analy	/st:	Lab 1	Гесh			
Start Date:	25 J	un-24		Protoco	ol: EP	A/821/R-02-	013 (2002)			Dilue	nt:	Reco	nstituted	Wate		
Ending Date:	01 J	ul-24		Species	s: Cer	riodaphnia d	ubia			Brine):	Not A	Applicable	•		
Test Length:	6d	0h		Taxon:	Bra	Branchiopoda			Sour	ce:	In-Ho	use Cult	ure		Age:	
Sample ID:	14-5781-3114 Code:			524	524290.B				Proje	ct:	WET	Quarterl	y Com	mpliance Test (2Q)		
Sample Date:	25 J	un-24		Materia	I: PO	POTW Effluent				Source: NPDES Permit # (X			t # (X	(9999	9999)	
Receipt Date:	25 J	un-24		CAS (P	C):					Stati	on:	002A				
Sample Age:	n/a			Client:	Tho	orin Resourc	es									
Data Transfor	rm		Alt H	łур					NOE	L	LOE	L	TOEL	TL	l.	
Untransformed	d		C > T					N	100		>100		n/a	1		
Fisher Exact/	Bonf	erroni-Holm	Test													
	vs	Group				P-Type	P-Value	Decision(,							
Dilution Water		23		100	8947	Exact	1.0000	Non-Signif								
		45			.0000	Exact	1.0000	Non-Signif								
		89			8947	Exact	1.0000	Non-Signif								
		95			8947	Exact	1.0000	Non-Signif								
		100		1.	0000	Exact	1.0000	Non-Signit	ficant	Effect						
Data Summar	ry															
Conc-%		Code	NR	R		NR + R	Prop NR	Prop R	%Ef							
0		D	8	2		10	0.8	0.2	0.0%	6						
23			9	1		10	0.9	0.1	-12.5							
45			10	0		10	1	0	-25.0							
89			9	1		10	0.9	0.1	-12.5	5%						
95			9	1		10	0.9	0.1	-12.5							
100			10	0		10	1	0	-25.0	0%						

003-715-114-2

CETIS™ v1.9.6.14

Analyst: CM QA: HW

SCG Project No.: 524290.B

Project: Quarterly WET

Site: 002A

CETIS	S Ana	lytical Repo	ort						Report Da Test Code					27 (p 1 of 2) 3-1622-9617
Ceriod	aphnia	7-d Survival and	d Reprodu	ction Te	est								SeaC	rest Group
Analys	is ID:	11-2294-3323	End	point:	7d Survival Rat	е)	CETIS Ver	sion:	CETIS	Sv1.9.6		
Analyz	ed:	01 Jul-24 15:26	Ana	lysis:	Linear Interpola	ation (ICPIN)	,	Status Lev	/el:	1			
Batch	ID:	16-5295-8672	Tes	t Type:	Reproduction-S	Survival (7d)			Analyst:	Lab	Tech			
Start D	ate:	25 Jun-24	Pro	tocol:	EPA/821/R-02-	013 (2002)			Diluent:	Rec	onstitute	d Water		
Ending	Date:	01 Jul-24	Spe	cies:	Ceriodaphnia d	ubia			Brine:	Not	Applicab	le		
Test Le	ength:	6d 0h	Tax	on:	Branchiopoda				Source:	In-H	ouse Cu	lture		Age:
Sample	e ID:	14-5781-3114	Cod	e:	524290.B				Project:	WE	T Quarte	rly Com	pliance	Test (2Q)
Sample	e Date:	25 Jun-24	Mat	erial:	POTW Effluent				Source:	NPD	DES Perr	nit # (XX	(99999	999)
Receip	t Date:	25 Jun-24	CAS	(PC):					Station:	002	A			
Sample	e Age:	n/a	Clie	nt:	Thorin Resource	es								
Linear	Interpo	olation Options												
X Tran	sform	Y Transform	See	d	Resamples	Exp 95%	CL Me	thod						
Linear		Linear	208	9930	1000	Yes	Two	o-Point Ir	nterpolation	1				
Point E	Estimat	es												
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL								
LC5	>100		n/a	<1	n/a	n/a								
LC10	>100		n/a	<1	n/a	n/a								
LC15	>100		n/a	<1	n/a	n/a								
LC20	>100		n/a	<1	n/a	n/a								
LC25	>100		n/a	<1	n/a	n/a								
LC40	>100		n/a	<1	n/a	n/a								
LC50	>100	n/a	n/a	<1	n/a	n/a								
7d Sur	vival R	ate Summary				Calcu	lated Vari	iate(A/B)					Isoton	ic Variate
Conc-9	6	Code	Count	Mean		Max	Std Dev			fect	A/B		an	%Effect
0		D	10	0.800		1.0000	0.4216	52.70		S 13 17 17	8/10	0.700	167	0.0%
23			10	0.900		1.0000	0.3162	35.14			9/10	0.9	167	0.0%
45			10	1.000		1.0000	0.0000	0.00%			10/10		167	0.0%
89			10	0.900	0.0000	1.0000	0.3162	35.14			9/10	0.9	167	0.0%
95			10	0.900	0.0000	1.0000	0.3162	35.14	% -12.	5%	9/10	0.9	167	0.0%

003-715-114-2

100

10

1.0000

1.0000

1.0000

0.0000 0.00%

-25.0%

10/10

0.9167 0.0%

CETIS™ v1.9.6.14

Analyst: CM QA: HW

SCG Project No.: 524290.B

Project: Quarterly WET

CETIS Analytical Report

SCG Project No.: 524290.B **Site: 002A Project: Quarterly WET**

on the final field in the port									Tes	Test Code/ID:			524290cd / 08-1622-961			
Ceriodaphnia	7-d Surviv	al and Rep	production T	est									Sea	Crest Grou		
Analysis ID:	11-4723-44	79	Endpoint:	Repr	oduction				CE.	TIS Versi	ion:	CETISv1	1.9.6			
Analyzed:	01 Jul-24 1	5:26	Analysis:	Nonp	arametric-	Control	vs T	reatments	Sta	tus Leve	d:	1				
Batch ID:	16-5295-86	572	Test Type:	Repr	eproduction-Survival (7d)			Ana	alyst:	Lab T	ech					
Start Date:	25 Jun-24	Protocol:		821/R-02-		5353				Recor	nstituted V	Vater				
Ending Date:	01 Jul-24		Species:	Cerio	daphnia d	ubia	- 6		Brit	ne:	Not A	pplicable				
Test Length:			Taxon:		chiopoda				Sou			use Cultu	re	Age:		
Sample ID: 14-5781-3114			Code:	5242	90.B				Pro	ject:	WET	Quarterly	Compliano	e Test (2Q		
Sample Date:	25 Jun-24		Material:	POT	W Effluent				Sou	ırce:	NPDE	S Permit	# (XX9999	9999)		
Receipt Date:	25 Jun-24		CAS (PC):						Sta	tion:	002A					
Sample Age:	n/a		Client:	Thori	n Resourc	es										
Data Transfor	m	Alt	Нур						NOEL	LOEL		TOEL	TU	PMSD		
Untransformed	d	C >	Т						100	>100		n/a	1	38.91%		
Steel Many-O	ne Rank Su	m Test														
Control	vs Con	c-%	Test	Stat	Critical	Ties	DF	P-Type	P-Value	Decis	ion(a	:5%)				
Dilution Water	23		131.5		75	3	18	CDF	0.9996	Non-S	Signific	ant Effec	t			
	45		134		75	1	18	CDF	0.9999	Non-S	Signific	ant Effec	t			
	89		124.5		75	4	18	CDF	0.9970	Non-S	Signific	cant Effec	t			
	95		133.5		75	2	18	CDF	0.9998	Non-S	Signific	ant Effec	t			
	100		143.5	i	75	2	18	CDF	1.0000	Non-S	Signific	cant Effec	t			
ANOVA Table																
Source	Sum	Squares	Mean	Squa	re	DF		F Stat	P-Value	Decis	ion(a	:5%)				
Between	546.9	95	109.3	9		5		1.579	0.1818	Non-S	Signific	ant Effec	t			
Error	3741	.9	69.29	44		54										
Total	4288	.85				59										
ANOVA Assur	nptions Te	sts														
Attribute	Test					Test S	Stat	Critical	P-Value	Decis	ion(a	:1%)				
Variance	Bartle	ett Equality	of Variance	Test		6.61		15.09	0.2513	Equal	Varia	nces				
Distribution	Shap	iro-Wilk W	Normality Te	st		0.863	7	0.9459	7.9E-06	Non-N	lorma	Distributi	ion			
Reproduction	Summary															
Conc-%	Code		ınt Mean		95% LCL	95% L	JCL	Median	Min	Max		Std Err	CV%	%Effect		
0	D	10	21.9		16.05	27.75		23.5	5	30		2.584	37.31%	0.00%		
23		10	27.1		21.2	33		29	6	36		2.61	30.45%	-23.74%		
45		10	29.8		24.65	34.95		28.5	16	41		2.274	24.14%	-36.07%		
89		10	26		18.61	33.39		28	0	36		3.266	39.72%	-18.72%		
95		10	28.6		21.36	35.84		30.5	3	38		3.201	35.40%	-30.59%		
100		10	31.3		28.1	34.5		31.5	24	37		1.415	14.29%	-42.92%		

003-715-114-2 CETIS™ v1.9.6.14 Analyst: ______ QA:____

01 Jul-24 15:27 (p 1 of 1)

Report Date:

Site: 002A

CETI	S Ana	lytical Rep	ort						eport Date est Code/I				27 (p 2 of 2 8-1622-961
Ceriod	aphnia	7-d Survival an	d Reprod	uction T	est							SeaC	rest Group
	nalysis ID: 10-0270-2315 Endpoint: nalyzed: 01 Jul-24 15:27 Analysis:				Reproduction Linear Interpola					ion: el:	CETISv1.9.6 1		
Batch	D:	16-5295-8672	Te	st Type:	Reproduction-S	Survival (7d)		A	nalyst:	Lab T	ech		
Start D	ate:	25 Jun-24	Pro	otocol:	EPA/821/R-02-	013 (2002)		D	iluent:	Reco	nstituted Wate	r	
Ending	Date:	01 Jul-24	Sp	ecies:	Ceriodaphnia d	ubia		В	rine:	Not A	pplicable		
Test Le	ength:	6d 0h	Та	kon:	Branchiopoda			S	ource:	In-Ho	use Culture		Age:
Sample	e ID:	14-5781-3114	Co	de:	524290.B			P	roject:	WET	Quarterly Com	plianc	e Test (2Q)
Sample	Date:	25 Jun-24	Ma	terial:	POTW Effluent			S	ource:	NPDE	ES Permit # (X	X9999	9999)
Receip	t Date:	25 Jun-24	CA	S (PC):				St	tation:	002A			
Sample	Age:	n/a	Cli	ent:	Thorin Resource	es							
Linear	Interpo	olation Options											
X Tran	sform	Y Transforn	n Se	ed	Resamples	Exp 95%	CL Me	ethod					
Linear		Linear	98	2871	1000	Yes	Tw	o-Point Inte	erpolation				
Point E	stimat	es											
Level	%	95% LCL	95% UC	. TU	95% LCL	95% UCL							
IC5	>100	n/a	n/a	<1	n/a	n/a							
IC10	>100	n/a	n/a	<1	n/a	n/a							
IC15	>100	n/a	n/a	<1	n/a	n/a							
IC20	>100	n/a	n/a	<1	n/a	n/a							
IC25	>100	n/a	n/a	<1	n/a	n/a							
IC40	>100	n/a	n/a	<1	n/a	n/a							
IC50	>100	n/a	n/a	<1	n/a	n/a							
Reproc	luction	Summary				Cal	culated V	/ariate				Isotor	nic Variate
Conc-%	6	Code	Count	Mean	Min	Max	Std Dev	CV%	%Effe	ect	Me	an	%Effect
0		D	10	21.9	5	30	8.171	37.31%	0.0%		27	.45	0.0%
23			10	27.1	6	36	8.252	30.45%	-23.74	4%	27	.45	0.0%
45			10	29.8	16	41	7.193	24.14%		1000		.45	0.0%
			10	26	0	36	10.33	39.72%			1700	.45	0.0%
89													
89 95			10	28.6	3	38	10.12	35.40%			177	.45	0.0%

003-715-114-2 CETIS™ v1.9.6.14 Analyst: W. QA: HW

SCG Project No.: 524290.B

Project: Quarterly WET

Appendix 3 – Data Sheets for the Fathead Minnow Test

Site: 002A

CO-0000003

SCG Project No.: 524290.B **Project: Quarterly WET**

WET TEST REPORT FORM – CHRONIC

Permittee: Thorin Resources **Permit No.:** CO-0000003

Outfall: 002A - IWC: 89%

Test Type: Routine 🖂 Accelerated Screen

Test Species: fathead minnow

Test Start Time	Test Start Date	Test End Time	Test End Date
1145	06-25-2024	1200	07-02-2024

Test Results	Lethality/TCP6C	Growth/TKP6C
S code: NOEL	100%	100%
	PASS	PASS
P code: LC ₂₅ /IC ₂₅	>100%	>100%
	PASS	PASS
T code:	>100%	>100%

Test Summary

Measurements	Control (0%)	23%	45%	89%	95%	100%
TVICUSUI CITICITES	(0 / 0)	2570	4270	0270	7570	100 / 0
Exposed organisms	40	40	40	40	40	40
Survival for day 1	40	40	40	40	40	39
Survival for day 2	40	40	40	40	40	39
Survival for day 3	40	40	40	40	40	38
Survival for day 4	40	40	40	40	40	38
Survival for day 5	40	40	39	40	38	38
Survival for day 6	39	40	39	40	37	38
Survival for day 7	39	39	39	39	36	38
Mean Dry Wt. (mg)	0.345	0.362	0.358	0.360	0.334	0.353

Recon Water: 87 Hardness (mg/L) – Receiving Water: N/A Effluent: 97/99/130 Alkalinity (mg/L) – Receiving Water: N/A Effluent: 70/53/55 Recon Water: 60 Chlorine (mg/L) – Effluent: <0.01 pH (initial/final) – Control: 7.9/7.7 100%: 7.9/7.6

Total Ammonia as NH₃ (mg/L) - Effluent: <0.03

Were all Test Conditions in Conformance with Division Guidelines? YES NO

If **NO**, list deviations from test specifications: N/A

Laboratory: SeaCrest Group

Comments:

Analyst's Name: Mia Kohler and Aurora Nelson

Signature *Date* July 5, 2024

Form #: 103a Effective: March 2022	1	¥		_	_		>		_	-			_) .			Τ,	<		_	2		_	_		_		Т	Т			$\overline{}$	Т	П	$\overline{}$	_	П
Form e: Mar		Ave wt	7	ϵ	0	<	2	5	5	4	3	2	5	0	1	3	ċ	ľ	\lesssim	3	つ	5	Ş	5														П
Effectiv	029	Fish Wt mg	300	350	.341	370	.339	904	340	387	372	794	378	175.	12107	707	1270	147	277	340	344	308.	344	.357	10/10										70	•		
	MH24-029	Tare Fi	06 4990,	100 min 80	092200	083380	,080490	1.092370	04894D	CH6790.	195760	080010	85120	J9536C	19755F	OZMZO.	NAOGA	1.10951 C	17808	.0878C) 19999 C	.093210C	0013400	08893C	308140 C			+	STONON	000								
	I		274	-			8 1.0			-	-	5 %	010	4	_	-	1	1-	7	8	-		-	_	-	+	+	+		_								П
	Dilution H ₂ O:	Fish & Tare	08801	108823	109561	1.087.09	1.08 388	1096371	1.09434	8/017	109948	108895	108890 1.08512	10987	FINDU!	18+01	11000	11323	1015821.17308	1.09128	410333	1,09694	109684	1.09250	h8h801				11000	2010								
	JIIO .	#	# 2	#3	#4	9#	9#	2#	8#	6#	#10	#11	#12	#13	#14	#15	#16	#17	#18	#19	#20	#21	#25	#23	#24	#	#	# #			ents:							П
	us:	7	6 ×	10	0 10	0	99	010	010	01 (01 (6	0	01 (01	0	0	10	¢	0	0		0	œ,	91	4	4	+	protoct		Comments							
	IWC: 89 Test Conditions:	5 6	5		5110	1) () [[) I ((0110	611) I (c	1		=	#	(X		=		210	80) I (\dashv	+	+	200		۲		Ц		1			П
	est Col	4	9	20			0 11)!! ()	0 11	0 11	11 (0	0 11()1I ()					2	6	0			2	1	\exists	+	+	1			Hard: mg/L	Alk: mg/L	Chlor: mg/L NH ₃ : mg/L				П
neet	∑ - -	က	04	20	0	6	0	0	0	0	110	0	0		C	100	<	200	C	C	0	2	Q	8	0	Н	1	\dagger	1		ان	Hard	¥;	등 로				П
chsl	242r	2	00	20	0	0	0	0	0	0	101	101	10	0		9	1	35	5	2	0	0	0	0	0			T	1		Units:	_	()	Em.				П
Sen	ate:	-	0	20	9	0	10	2	0	Q	0	0	2	0	9	2	9	20	5	2	9	0	0	σ	01						l	DO: mg/L	Temp: °C	pH: N/A Cond: uS/cm ³				П
nic	Date: O	0	10	9 0	10	10	10	10	10	10	10	10	10	10	10	10	10	9	10	10	10	10	10	10	10	10	10	9 9	2		L	ă	Te	g C				Ц
Chro	Sample Date: 002424 IWC: Template: FHM Test	7	4.9	になった		4.9	24.9	けた		4.9	25.0	4.4		3.7	151	17 CO	2	44	757	15		8.6	2.52	7.60					CHIL	1		ш	mL	E CH		ye.	mia	
NO.	=	Γ	0.0	5 a	-	6.9	5	200	~	0.4	07.17	90	0	7.	15	000		7	co	300	0	7.5	26.5	8.0					Ţ		1	500 mL	250 mL	50.2 cm		2x per day	<24hr artemia	
Fathead Minnow Chronic Benchsheet	Lab #: 5242910, B Species Info: 002524	9	5.2 (++	0	5	24.87	ナナ	300	5.07	74.9	シナナ	362	49	7507	5 3	-12	70.	1-	- 0	177	4.0	25.2	7-10	774				1	N. S.	mber			1	Feeding Schedule	22	<24	
ead	242 nfo: 6	T	0	500	ŧ,	-	0	-	10	ú	BURG		1	5.	100	-		1	3	9-	2	4.5	348	-	\	Г			T		Exposure Chamber			.ea:	ding §			-
ath	Lab #: 524 Species Info:	2	0	17	212	10	15825	7.8	200	0	3	4	0.	8	V	200	1	18	27	10	723	5	1 1	0	X	-				Z/	Insodx		ne:	ice Ari	Fee			
	Lab	L	N, K	3 -	-	3	250	17	_	5	73	57	4	2	200	1	1	1/2	- V	34		5	25.7	-	7	H		+	+	-	l ^û		Volur	Surfa			Food Used:	-
	V.	_	ナナナ	Z X	200	7.0	20	8.C	5	7,	25	80	4	4,4	760	30	4	200	12/12/	30,0	38	4.6	200	0.4	273					1		apaci	plution	olution		Fed:	F000	
	2007		800	27		5,63	0	7.7 18.	22	2.6	28.6	4	3	4.8	2	1	3/5	N	1	26.	3	7	18.1	0	19				ŀ	A A	1	Total Capacity:	Test Solution Volume:	Test Solution Surface Area:	7		¥	
	Site:	ŀ	-	. 4	+		-	-		7	3		_		1200	0	+	V	いれていないよ	200		1	2.0		E	Г			1	Ť	MR	Ť	П	T	9	3	N.	75
	H		76	7,8 2,6	202	6.613.	58201	3.8	28	7	15878	8 8	326	24.25	10	4	-10	2 5	0	17	X	C	567	8	ht2				ŀ	25	Rcv 3	-	H	+	2	П		
	0±0		ا في	757	+	ف	-)	er	36.4	175	4		0	アクス	36		7 7	7	31		7	1	an .		H	L	+	4	1			Н	+	F	1	\$	73
	S E	2	0.0	200	24	T	549	ø	360	Ľ,	.25	8	8	ナ	1/2	jo	5	2	2	30c	5	4	5/20	00	5	<u>.</u>				4	Re.	L	Ц	_	4		P	× 3
	JUYCCS Test End:		43	24		4.3	24.1	コセ	C	7.77	24.2	てな	3	27	7110	シな	F	Z	116	77	1	5	245	らけ	3				ľ		Rcv 1				က		2	A
	RESOUR 1145 Test		17	30	3	-	9.K	0.0	0		4.4	8.0	5	73	プログ	000	2	72	0	000		5.5	8.17	7.9	_						Secon	to	9	<0.01	2		MK.	× M
9		ľ	いいない	0,5	34	t	2572024	00	328	24 45	156777	ナナ	31	5.8.734	7.27	なりつからか	100	スタイプ	15 2110 211	10/1	780	5007	5.2	0)	457	-			-	<u>-</u>	Eff 3 Recon Rcv 1 Rcv 2	30	22	0.0	-	\Box	N N	1
st Grou	VIN 525	1	70%	がらいる。	0	10 TI	0,	0	2				200	8.3 5	7.75	10			2	2 L	7	X 7 6	3	49 76 49 4	0)	H	\vdash	+		4	Eff 2 E		3	V V)	H	2	+
SeaCrest Group Louisville, CO	hovin	0 P	4.1	34	340	Ċ	0.57 d	5.5	52E P	г	D 25.1	O.F.	308	-		35		7 2	1	3 4	75/ 0	1	\$2 d	4	0162 P	L	d	-	4	Z Z	1		0	200	0	Н	1,	ΤĶ
ΣΣ	H#	Conc Read	8	Ha Ha	Cond	8	Temp	H	Cond	8	Temp	표	Cond	8	Temp			00			Cond	8	Temp	표	Cond	90	Temp	H	00	Water #	Eff 1		7	Chlor (0,0) (0,0) (0.0) <0.01	Feeding	AM	Initials	Initials
	Client: Test St	ပိ		0)	L	2	3			N	2			00	5			5	5		L	3	₹					ľ	5		Hard	¥	ğ Z	1	П.		

SCG Project No.: 524290.B **Site: 002A Project: Quarterly WET**

CETIS Ana	lyti	cal Repo	ort								ort Date: Code/ID:			38 (p 1 of 3) 5-3983-8022
Fathead Minn	ow 7	-d Larval S	urviva	l and Grov	th Te	st							SeaC	rest Group
Analysis ID: Analyzed:		394-2097 ul-24 11:38		Endpoint Analysis:		Survival Rat		vs T	reatments		IS Versior us Level:	n: CETISv1	.9.6	
Batch ID:	15-7	293-8396		Test Type	: Gro	wth-Surviva	al (7d)			Anal	yst: La	b Tech		
Start Date:	25 J	un-24		Protocol:	EP	A/821/R-02-	-013 (20	02)		Dilu	ent: Re	econstituted V	Vater	
Ending Date:	02 J	ul-24		Species:	Pin	nephales pro	omelas			Brin	e: No	ot Applicable		
Test Length:	7d ()h		Taxon:	Act	inopterygii				Sou	rce: In-	-House Cultu	re	Age:
Sample ID:	05-8	158-2230		Code:		290.B				Proj		ET Quarterly		
Sample Date:	24 J	un-24		Material:	PO	TW Effluent	t			Sou	rce: N	PDES Permit	# (XX99999	9999)
Receipt Date:	25 J	un-24		CAS (PC)						Stati	ion: 00	12A		
Sample Age:	24h			Client:	Tho	orin Resourc	ces							
Data Transfor	m		Alt I	lур						NOEL	LOEL	TOEL	TU	PMSD
Angular (Corre	ected)		C > 1							100	>100	n/a	1	13.52%
Steel Many-O	ne R	ank Sum Te	st											
Control	vs	Conc-%		Test	Stat	Critical	Ties	DF	P-Type	P-Value	Decisio	n(α:5%)		
Dilution Water	95	23		18		10	2	6	CDF	0.8333	Non-Sig	nificant Effec	t	
		45		18		10	2	6	CDF	0.8333	Non-Sig	nificant Effec	t	
		89		18		10	2	6	CDF	0.8333	Non-Sig	nificant Effec	t	
		95		15.5		10	2	6	CDF	0.5438	Non-Sig	nificant Effec	t	
		100		17.5		10	1	6	CDF	0.7867	Non-Sig	nificant Effec	t	
ANOVA Table														
Source		Sum Squa	ares	Mea	n Sqı	ıare	DF		F Stat	P-Value	Decisio	n(α:5%)		
Between		0.0361188		0.00	72238	3	5		0.4854	0.7827	Non-Sig	nificant Effec	t	
Error		0.267854		0.01	48808	3	18		_					
Total		0.303973					23							
ANOVA Assur	mptio	ons Tests												
Attribute		Test					Test S	Stat	Critical	P-Value	Decisio	n(α:1%)		
Variance		Bartlett Eq	uality	of Variance	Test		4.797		15.09	0.4411	Equal V	ariances		
Distribution		Shapiro-W	ilk W I	Normality T	est		0.812	1	0.884	4.7E-04	Non-No	rmal Distribut	ion	
7d Survival R	ate S	ummary												
Conc-%		Code	Cour	nt Mea	n	95% LCL	95% l	JCL	Median	Min	Max	Std Err	CV%	%Effect
0		D	4	0.97		0.8954	1.000		1.0000	0.9000	1.0000	0.0250	5.13%	0.00%
23			4	0.97	50	0.8954	1.000	0	1.0000	0.9000	1.0000	0.0250	5.13%	0.00%
45			4	0.97		0.8954	1.000		1.0000	0.9000	1.0000	0.0250	5.13%	0.00%
89			4	0.97		0.8954	1.000		1.0000	0.9000	1.0000	0.0250	5.13%	0.00%
95			4	0.90		0.6750	1.000		0.9500	0.7000	1.0000	0.0707	15.71%	7.69%
100			4	0.95	00	0.7909	1.000	0	1.0000	0.8000	1.0000	0.0500	10.53%	2.56%
Angular (Corr	ecte	d) Transform	ned S	ummary										
Conc-%		Code	Cour	nt Mea	n	95% LCL	95% l	JCL	Median	Min	Max	Std Err	CV%	%Effect
0		D	4	1.37	1	1.242	1.501		1.412	1.249	1.412	0.04074	5.94%	0.00%
23			4	1.37	1	1.242	1.501		1.412	1.249	1.412	0.04074	5.94%	0.00%
45			4	1.37	1	1.242	1.501		1.412	1.249	1.412	0.04074	5.94%	0.00%
89			4	1.37		1.242	1.501		1.412	1.249	1.412	0.04074	5.94%	0.00%
95			4	1.26	6	0.9499	1.582		1.331	0.9912	1.412	0.09936	15.70%	7.67%
100			4	1.33	6	1.093	1.578		1.412	1.107	1.412	0.07622	11.41%	2.59%

003-715-114-2 CETIS™ v1.9.6.14 Analyst: M QA: HW

SCG Project No.: 524290.B **Site: 002A Project: Quarterly WET**

CETIS	S Ana	lytical Repo	ort						eport Date				1:38 (p 1 of 15-3983-80
Fathea	d Minn	ow 7-d Larval Si	urvival and	Growt	h Test							Sea	Crest Grou
Analys	is ID:	17-8364-9329	End	point:	7d Survival Rate	е		C	ETIS Vers	ion:	CETIS	1.9.6	
Analyz	ed:	03 Jul-24 11:38	Ana	lysis:	Linear Interpola	tion (ICPIN)	S	tatus Leve	el:	1		
Batch	ID:	15-7293-8396	Tes	t Type:	Growth-Surviva	l (7d)		A	nalyst:	Lab T	ech		
Start D	ate:	25 Jun-24	Pro	tocol:	EPA/821/R-02-0	013 (2002)			iluent:	Reco	nstituted	Water	
Ending	Date:	02 Jul-24	Spe	cies:	Pimephales pro	melas		Е	rine:	Not A	pplicable	•	
Test Le	ength:	7d 0h	Tax	on:	Actinopterygii			S	ource:	In-Ho	use Culti	ure	Age:
Sample	e ID:	05-8158-2230	Cod	e:	524290.B			P	roject:	WET	Quarterly	y Compliar	nce Test (2Q
Sample	e Date:	24 Jun-24	Mat	erial:	POTW Effluent			S	ource:	NPD	ES Permi	t # (XX999	99999)
Receip	t Date:	25 Jun-24	CAS	(PC):				S	tation:	002A			
Sample	e Age:	24h	Clie	nt:	Thorin Resource	es							
Linear	Interpo	olation Options											
X Tran	sform	Y Transform	See	d	Resamples	Exp 95%	CL Met	hod					
Linear		Linear	210	4037	1000	Yes	Two	-Point In	erpolation				
Point E	Estimat	es											
_evel	%	95% LCL	95% UCL	TU	95% LCL	95% UCL							
LC5	94.85	81.97	n/a	1.054	n/a	1.22							
LC10	>100		n/a	<1	n/a	n/a							
LC15	>100		n/a	<1	n/a	n/a							
LC20	>100		n/a	<1	n/a	n/a							
LC25	>100		n/a	<1	n/a	n/a							
LC40	>100		n/a	<1	n/a	n/a							
LC50	>100	n/a	n/a	<1	n/a	n/a	or an incase over the	300 Manager and				to see and	
7d Sur	vival R	ate Summary				Calcu	lated Varia	ate(A/B)	71/7-12-12-12-12-12-12-12-12-12-12-12-12-12-		Director .	Isot	onic Variate
Conc-9	6	Code	Count	Mean		Max	Std Dev	CV%	%Effe	ect	A/B	Mean	%Effect
)		D	4	0.975		1.0000	0.0500	5.13%			39/40	0.975	0.0%
23			4	0.975	6	1.0000	0.0500	5.13%			39/40	0.975	0.0%
45			4	0.975		1.0000	0.0500	5.13%			39/40	0.975	0.0%
89 95			4	0.975		1.0000	0.0500	5.13%		,	39/40 36/40	0.975 0.925	0.0%
100			4	0.950		1.0000	0.1414 0.1000	15.719			38/40	0.925	5.13% 5.13%
			4	0.950	0 0.8000	1.0000	0.1000	10.55	76 Z.56%	0	30/40	0.925	5.13%
		ate Detail	D4			D /							
Conc-9	/o	Code	Rep 1	Rep 2		Rep 4							
-		D	0.9000	1.000		1.0000							
23			1.0000	0.900		1.0000							
45			1.0000	1.000		1.0000							
89			1.0000	1.000		0.9000							
95			1.0000	0.700	0.9000	1.0000							

003-715-114-2

100

1.0000

1.0000

0.8000

1.0000

CETIS™ v1.9.6.14

Analyst: M QA:

Site: 002A

CETIS Ana	alytical	Report								ort Dat t Code				38 (p 3 of 3) 5-3983-8022
Fathead Minn	now 7-d L	arval Survi	al and	Growth T	est								SeaC	rest Group
Analysis ID:	11-9080-	2991	End	point: M	ean Dry Bion	nass-mg			CET	IS Ver	sion:	CETISv1	.9.6	
Analyzed:	03 Jul-24	11:37	Ana	lysis: Pa	arametric-Co	ntrol vs	Trea	tments	Stat	us Lev	el:	1		
Batch ID:	15-7293-	8396	Test	Type: G	rowth-Surviva	ıl (7d)			Ana	lyst:	Lab	Tech		
Start Date:	25 Jun-2	4	Prot	ocol: El	PA/821/R-02-	013 (20	02)		Dilu	ent:	Rec	onstituted W	/ater	
Ending Date:	02 Jul-24	ı	Spe	cies: Pi	mephales pro	omelas			Brir	ie:	Not	Applicable		
Test Length:	7d 0h		Taxo	on: Ad	ctinopterygii				Sou	rce:	In-H	ouse Culture	е	Age:
Sample ID:	05-8158-	2230	Cod	e: 52	24290.B				Pro	ect:	WE	T Quarterly	Complianc	e Test (2Q)
Sample Date:	24 Jun-2	4	Mate	erial: Po	OTW Effluent	:			Sou	rce:	NPD	ES Permit	# (XX9999	9999)
Receipt Date:	25 Jun-2	4	CAS	(PC):					Stat	ion:	002/	A		
Sample Age:	24h		Clie	nt: Th	orin Resourc	es								
Data Transfor	rm		Нур						NOEL	LOE	L	TOEL	TU	PMSD
Untransformed	d t	C >	·T						100	>100)	n/a	1	15.22%
Dunnett Multi	iple Comp	parison Tes	t											
Control	vs Co	onc-%		Test Sta	t Critical	MSD	DF	P-Type	P-Value	Dec	ision(α:5%)		
Dilution Water	23	3		-0.7907	2.407	0.053	6	CDF	0.9701	Non-	-Signi	ficant Effect		
	45			-0.5845	2.407	0.053	6	CDF	0.9504	Non-	-Signif	ficant Effect		
	89			-0.6876	2.407	0.053	6	CDF	0.9613			ficant Effect		
	95			0.5158	2.407	0.053	6	CDF	0.6406			ficant Effect		
	10	00		-0.3779	2.407	0.053	6	CDF	0.9208	Non-	-Signit	ficant Effect		
ANOVA Table														
Source		m Squares		Mean So		DF		F Stat	P-Value			α:5%)		
Between		023431		0.000468		5		0.4924	0.7777	Non-	-Signit	ficant Effect		
Error	0.000	171296		0.000951	6	18		-						
Total	0.0	194726				23								
ANOVA Assur	mptions 1	Tests												
Attribute	Tes					Test S	tat	Critical	P-Value		-	α:1%)		
Variance		tlett Equalit			t	6.822		15.09	0.2342	10000		ances		
Distribution	Sha	apiro-Wilk W	/ Norma	ality Test		0.9369	9	0.884	0.1393	Norn	nal Di	stribution		
Mean Dry Bio	mass-mg	Summary												
Conc-%	Co	de Co	unt	Mean	95% LCL	95% U	ICL	Median	Min	Max		Std Err	CV%	%Effect
0	D	4		0.345	0.2984	0.3916	3	0.35	0.306	0.37	4	0.01464	8.49%	0.00%
23		4		0.3622	0.3161	0.4084		0.355	0.339	0.4		0.01449	8.00%	-5.00%
45		4		0.3578	0.2894	0.4261		0.375	0.294	0.38		0.02148	12.01%	-3.70%
89		4		0.36	0.3392	0.3808		0.3645	0.341	0.37		0.006544	3.64%	-4.35%
95 100		4		0.3337	0.2651	0.4024		0.342	0.274	0.37		0.02157	12.93%	3.26%
and the market		4		0.3532	0.3348	0.3717		0.3505	0.344	0.36	8	0.005793	3.28%	-2.39%
Mean Dry Bio	mass-mg	Detail												
Conc-%	Co			Rep 2	Rep 3	Rep 4								
0	D	0.3		0.374	0.359	0.341								
23		0.3		0.339	0.4	0.34								
45		0.3		0.372	0.294	0.378								
89		0.3		0.362	0.367	0.37								
95		0.3		0.274	0.34	0.344								
100		0.3	86	0.344	0.357	0.344								

003-715-114-2

CETIS™ v1.9.6.14

Analyst: M QA: HW

SCG Project No.: 524290.B Project: Quarterly WET

CETIS Analytical Report

Site: 002A

CO-0000003 SCG Project No.: 524290.B Project: Quarterly WET

Report Date:

03 Jul-24 11:38 (p 2 of 2)

			***************************************					Т	est Code	ID:	524	290fhm /	15-3983-802
Fathea	d Minn	ow 7-d Larval S	urvival and	Growt	h Test							Sea	Crest Group
Analys	is ID:	11-6796-5740	End	point:	Mean Dry Biom	ass-mg		C	ETIS Ver	sion:	CETISv1	.9.6	
Analyz	ed:	03 Jul-24 11:38	Ana	lysis:	Linear Interpola	ation (ICPIN)	S	tatus Lev	el:	1		
Batch	ID:	15-7293-8396	Tes	t Type:	Growth-Surviva	ıl (7d)		Α	nalyst:	Lab	Tech		
Start D	ate:	25 Jun-24	Pro	tocol:	EPA/821/R-02-	013 (2002)			iluent:	Reco	onstituted V	Vater	
Ending	Date:	02 Jul-24	Spe	cies:	Pimephales pro	omelas		Е	Brine:	Not A	Applicable		
Test Le	ength:	7d 0h	Tax	on:	Actinopterygii			S	ource:	In-Ho	ouse Cultu	re	Age:
Sample	e ID:	05-8158-2230	Cod	le:	524290.B			Р	roject:	WET	Quarterly	Complian	ce Test (2Q
Sample	e Date:	24 Jun-24	Mat	erial:	POTW Effluent			S	ource:	NPD	ES Permit	# (XX999	99999)
Receip	t Date:	25 Jun-24	CAS	(PC):				S	tation:	002A			
Sample	e Age:	24h	Clie	nt:	Thorin Resource	es							
inear	Interpo	lation Options											
K Tran	sform	Y Transform	See	d	Resamples	Exp 95%	CL Meth	nod					
Linear		Linear	180	23	1000	Yes	Two-	Point Int	terpolation	ı			
oint E	stimat	es											
_evel	%	95% LCL	95% UCL	TU	95% LCL	95% UCL	1						
C5	>100	n/a	n/a	<1	n/a	n/a							
C10	>100	n/a	n/a	<1	n/a	n/a							
C15	>100	n/a	n/a	<1	n/a	n/a							
C20	>100	n/a	n/a	<1	n/a	n/a							
C25	>100	n/a	n/a	<1	n/a	n/a							
C40	>100	n/a	n/a	<1	n/a	n/a							
C50	>100	n/a	n/a		-1-	n/a							
			II/a	<1	n/a	11/4							
Vlean [Ory Bio	mass-mg Summ		<1	n/a		culated Va	riate	V			Isoto	onic Variate
		mass-mg Summ		Mean	705550		culated Va	riate CV%	%Eff	fect		lsoto Mean	2.46.500
Conc-%			ary		Min	Cal							2.46.500
Conc-%		Code	ary Count	Mean	Min 0.306	Cal	Std Dev	CV%	0.0%	5		Mean	%Effect 0.0% 0.0%
Conc-%) 23		Code	Count	Mean 0.345	Min 0.306 2 0.339	Cal Max 0.374	Std Dev 0.02929	CV% 8.49%	0.0% -5.0%	%		Mean 0.3563	%Effect
Mean E Conc-% 0 23 45		Code	Count 4	Mean 0.345 0.362	Min 0.306 2 0.339	Max 0.374 0.4	Std Dev 0.02929 0.02899	CV% 8.49% 8.00%	0.0% -5.0% -3.7%	% % %		Mean 0.3563 0.3563	%Effect 0.0% 0.0%
Conc-% 23 45 39		Code	Count 4 4 4 4 4	Mean 0.345 0.362 0.357	Min 0.306 2 0.339 8 0.294 0.341	Max 0.374 0.4 0.387	Std Dev 0.02929 0.02899 0.04295	8.49% 8.00% 12.019	0.0% -5.0% -3.7% -4.35	% % % 5%		Mean 0.3563 0.3563 0.3563	%Effect 0.0% 0.0% 0.0%
Conc-% 23 45 39		Code	Count 4 4 4	Mean 0.345 0.362 0.357 0.36	Min 0.306 2 0.339 8 0.294 0.341 7 0.274	0.374 0.4 0.387 0.37	Std Dev 0.02929 0.02899 0.04295 0.01309	CV% 8.49% 8.00% 12.019 3.64%	0.0% -5.0% -3.7% -4.35 % 3.26	6 % % 5% %		Mean 0.3563 0.3563 0.3563 0.3563	%Effect 0.0% 0.0% 0.0% 0.0%
Conc-% 23 45 39 95	6	Code	Count 4 4 4 4 4	Mean 0.345 0.362 0.357 0.36 0.333	Min 0.306 2 0.339 8 0.294 0.341 7 0.274	Cal Max 0.374 0.4 0.387 0.37	Std Dev 0.02929 0.02899 0.04295 0.01309 0.04315	8.49% 8.00% 12.019 3.64% 12.939	0.0% -5.0% -3.7% -4.35 % 3.26	6 % % 5% %		Mean 0.3563 0.3563 0.3563 0.3563 0.3435	%Effect 0.0% 0.0% 0.0% 0.0% 3.58%
Conc-% 0 23 45 89 95 100 Mean E	% Ory Bio	Code D nass-mg Detail Code	Count 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Mean 0.345 0.362 0.357 0.36 0.333 0.353 Rep 2	Min 0.306 2 0.339 8 0.294 0.341 7 0.274 2 0.344	Cal Max 0.374 0.4 0.387 0.37	Std Dev 0.02929 0.02899 0.04295 0.01309 0.04315	8.49% 8.00% 12.019 3.64% 12.939	0.0% -5.0% -3.7% -4.35 % 3.26	6 % % 5% %		Mean 0.3563 0.3563 0.3563 0.3563 0.3435	%Effect 0.0% 0.0% 0.0% 0.0% 3.58%
Conc-% 23 45 39 95 100 Wean E	% Ory Bio	Code D	Count 4 4 4 4 4 4 4 4 4 4 1 0.306	Mean 0.345 0.362 0.357 0.36 0.333 0.353	Min 0.306 2 0.339 8 0.294 0.341 7 0.274 2 0.344	Cal Max 0.374 0.4 0.387 0.37 0.377 0.368 Rep 4 0.341	Std Dev 0.02929 0.02899 0.04295 0.01309 0.04315	8.49% 8.00% 12.019 3.64% 12.939	0.0% -5.0% -3.7% -4.35 % 3.26	6 % % 5% %		Mean 0.3563 0.3563 0.3563 0.3563 0.3435	%Effect 0.0% 0.0% 0.0% 0.0% 3.58%
Conc-% 23 45 39 95 100 Mean E Conc-%)	% Ory Bio	Code D nass-mg Detail Code	Count 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Mean 0.345 0.362 0.357 0.36 0.333 0.353 Rep 2	Min 0.306 2 0.339 8 0.294 0.341 7 0.274 2 0.344	Cal Max 0.374 0.4 0.387 0.37 0.377 0.368	Std Dev 0.02929 0.02899 0.04295 0.01309 0.04315	8.49% 8.00% 12.019 3.64% 12.939	0.0% -5.0% -3.7% -4.35 % 3.26	6 % % 5% %		Mean 0.3563 0.3563 0.3563 0.3563 0.3435	%Effect 0.0% 0.0% 0.0% 0.0% 3.58%
Conc-% 23 45 39 95 100 Mean E Conc-% 23	% Ory Bio	Code D nass-mg Detail Code	Count 4 4 4 4 4 4 4 4 4 4 1 0.306	Mean 0.345 0.362 0.357 0.36 0.333 0.353	Min 0.306 2 0.339 8 0.294 0.341 7 0.274 2 0.344 2 Rep 3 0.359 0.4	Cal Max 0.374 0.4 0.387 0.37 0.377 0.368 Rep 4 0.341	Std Dev 0.02929 0.02899 0.04295 0.01309 0.04315	8.49% 8.00% 12.019 3.64% 12.939	0.0% -5.0% -3.7% -4.35 % 3.26	6 % % 5% %		Mean 0.3563 0.3563 0.3563 0.3563 0.3435	%Effect 0.0% 0.0% 0.0% 0.0% 3.58%
Conc-% 0 23 45 39 95 100 Mean D	% Ory Bio	Code D nass-mg Detail Code	Count 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Mean 0.345 0.362 0.357 0.36 0.333 0.3533 Rep 2 0.374 0.339	Min 0.306 2 0.339 8 0.294 0.341 7 0.274 2 0.344 2 Rep 3 0.359 0.4	Cal Max 0.374 0.4 0.387 0.37 0.377 0.368 Rep 4 0.341 0.34	Std Dev 0.02929 0.02899 0.04295 0.01309 0.04315	8.49% 8.00% 12.019 3.64% 12.939	0.0% -5.0% -3.7% -4.35 % 3.26	6 % % 5% %		Mean 0.3563 0.3563 0.3563 0.3563 0.3435	%Effect 0.0% 0.0% 0.0% 0.0% 3.58%

003-715-114-2

100

0.368

0.344

0.357

0.344

CETIS™ v1.9.6.14

Analyst: M QA: HW

Appendix 4 – QA/QC and Reference Toxicant Test Chart

CO-0000003 SCG Project No.: 524290.B **Site: 002A Project: Quarterly WET**

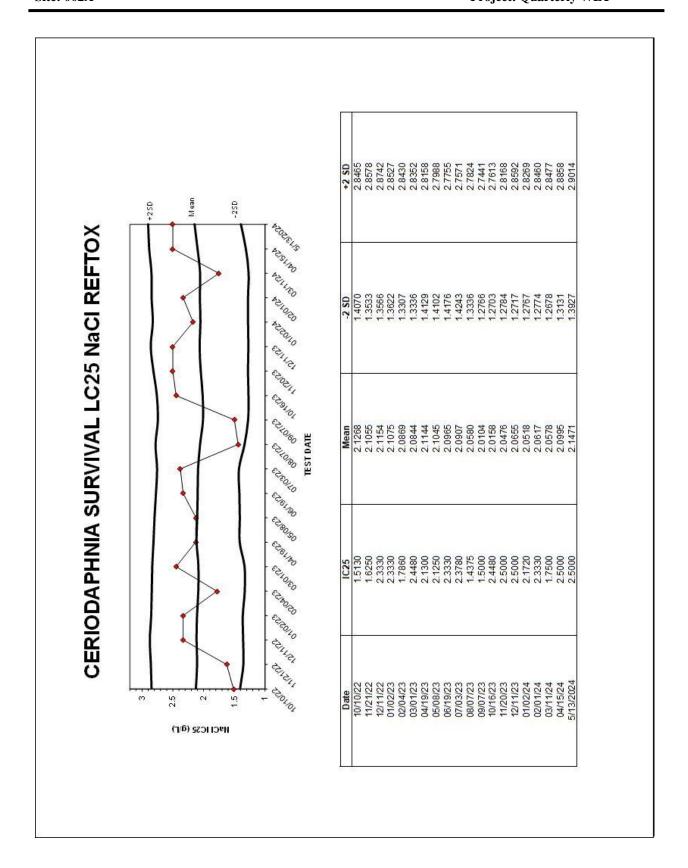
Quality Assurance Check List – Chronic Whole Effluent Toxicity Test

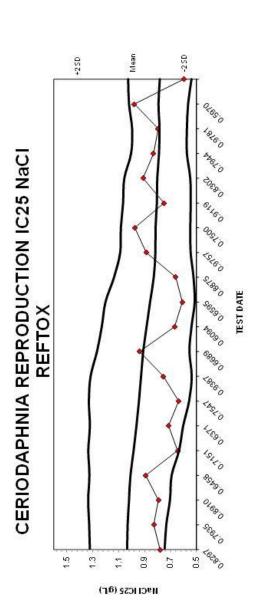
Client:	Thorin Resources	
SeaCrest Sample No:	524290.B	
Species Tested:	Ceriodaphnia dubia	and fathead minnow
Sample Dates	Start Date of Test (Ceriodaphnia dubia)	Start Date of Test (fathead minnow)
06-24-2024 06-26-2024	·	
06-27-2024	06-25-2024	06-25-2024
Sample received in lab proper	• •	Y
•	within 36 hours of collection?	Y
Sample delivered on ice or eq		Y
Test initiated within 36-hours	of collection?	Y
Test protocol conforms to CD	PHE guidelines (Ceriodaphnia dubia)?	Y
Test protocol conforms to CD	PHE guidelines (fathead minnow)?	Y
Average test temp. ±1°C (Cer	iodaphnia dubia)?	\mathbf{Y}
Average test temp. ±1°C (fath	ead minnow)?	Y
DO level ≥4.0mg/L; no super	-saturation (Ceriodaphnia dubia)?	Y
DO level ≥4.0mg/L; no super	-saturation (fathead minnow)?	Y
Survival in control ≥80% (Ce	riodaphnia dubia)?	Y
Survival in control ≥80% (fat	head minnow)?	Y
Ceriodaphnia dubia neonates	<24-hours old?	Y
Fathead minnow larvae <24-h	nours old?	Y
Appropriate reference toxicity	test conducted?	\mathbf{Y}
Reference toxicity test results	within the confidence limits for the lab	? Y

Date July 5, 2024

Position: Laboratory Manager

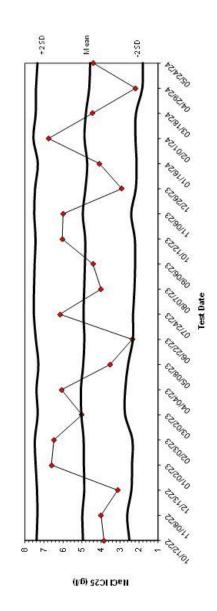
МЕТНОВ ОС

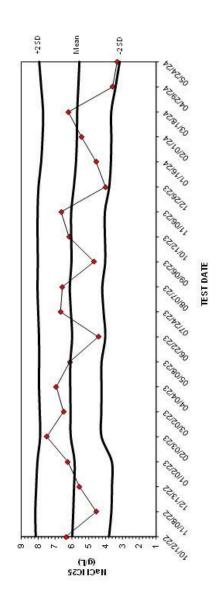

0	
5	
ō	XX.
~	TO
9	BOR
	STA
-	VICE
ES	SER
~	ITAL
0	(ME)
-	TROP
S	×


ı															l					ſ			I	
QC LIMITS	± 5.00%	± 5.00%	± 5.00%	± 5.00%	± 10.00%	± 10.00%	± 10.00%	± 10.00%	± 5.00, ± 20.00%	± 5.00%	± 5.00%	± 5.00%	± 5.00%	QC Limits	± 5.00%	± 5.00%	± 5.00%	± 5.00%	QC Limits	± 15%	± 15%	Kall Bur IN 10-1	James Common	June 3, 2024
%RPD	2.90%	-3.36%	-0.77%	-1.69%	1.04%	4.80%	4.88%	-4.44%	%00.0	-1.61%	0.49%	-1.03%	%00.0	%REC M2	100.00%	98.59%	%26.96	98.57%	%RPD	%00.0	%00.0	i	signature:	Date:
%REC	104.28%	98.89%	104.97%	95.83%	104.76%	95.02%	102.00%	95.36%	%21.96	97.83%	101.00%	101.00%	101.53%	%REC M1	98.59%	100.00%	%26.96	98.57%	%REC MR S	100.94%	105.85%			
LCS (rec)	100.00%	102.40%	99.20%	104.00%	95.20%	95.20%	102.00%	102.20%	%88.96	101.75%	102.00%	104.00%	101.75%	LCS (rec)	N/A	N/A	N/A	N/A	Blank	100.00%	100.00%			
Date	5/8/2024	5/15/2024	5/23/2024	5/29/2024	5/9/2024	5/16/2024	5/22/2024	5/28/2024	5/31/2024	5/9/2024	5/15/2024	5/22/2024	5/30/2024		5/9/2024	5/17/2024	5/24/2024	5/31/2024		5/27/2024	5/27/2024	O Cha	100	2024
Analyte	Alkalinity - Total	Alkalinity - Total	Alkalinity - Total	Alkalinity - Total	Ammonia	Ammonia	Ammonia	Ammonia	Chlorine	Hardness - Total	Hardness - Total	Hardness - Total	Hardness - Total		DO - Winkler	DO - Winkler	DO - Winkler	DO - Winkler		Suspended Solids (TTL)	Dissolved Solids (TTL)	M Sty	190	June 3
Method	2320 B	2320 B	2320 B	2320 B	4500 NH ₃ D	4500 CI D	2340 B	2340 B	2340 B	2340 B		4500 O	4500 O	4500 O	4500 O		2540 D	2540 C	Č	signature:	Date:			

SeaCrest Group 500 S Arthur Ave. Suite 450 Louisville, CO 80027 (303) 661.9324 FAX (303) 661.9325

SCG Project No.: 524290.B Project: Quarterly WET


SCG Project No.: 524290.B Project: Quarterly WET


Client: Thorin Resources Site: 002A

FHM SURVIVAL LC25 NaCI REFTOX

+2 SD	7.3925	7.3468	7.3690	7.4415	7.4818	7.3361	7.3978	7.2979	7.4321	7.5370	7.5269	7.4948	7.4487	7.5142	7.4725	7.3289	7.5596	7.4374	7.4222	7.3461
-2 SD	2.5089	2.6228	2.3996	2.3687	2.3524	2.7367	2.7278	2.5790	2.3230	2.3130	2.2436	2.2052	2.2221	2.4111	2.1721	2.1284	2.1868	2.1625	1.8268	1.8037
Mean	4.9507	4.9848	4.8843	4.9051	4.9171	5.0364	5.0628	4.9385	4.8775	4.9250	4.8853	4.8500	4.8354	4.9627	4.8223	4.7287	4.8732	4.7999	4.6245	4.5749
IC25	3.8420	4.0000	3.1230	6.6150	6.4800	5.0000	6.0800	3.5230	2.3600	6.1696	4.0000	4.4240	6.0360	6.0000	2.9120	4.0800	6.7670	4.4550	2.1900	4.4090
Date	10/12/22	11/08/22	12/13/22	01/02/23	02/03/23	03/02/23	04/04/23	05/08/23	06/22/23	07/24/23	08/07/23	09/06/23	10/12/23	11/06/23	12/26/23	01/16/24	02/01/24	03/18/24	04/29/24	05/24/24

FHM GROWTH IC25 NaCI REFTOX

+2 SD	8.1465	8.1744	8.1150	8.0455	7.8824	7.9047	7.9479	7.9416	7.9487	7.9998	8.0415	8.0196	8.0354	8.0330	7.9799	7.8186	7.7345	7.7017	7.8170	7.9377
-2 SD	3.7966	3.6531	3.6196	3.6291	4.2424	4.2468	4.2384	4.2341	4.0146	4.1185	4.1925	4.0192	4.0372	4.0375	3.7796	3.6808	3.6572	3.6624	3.4072	3.1637
Mean	5.9716	5.9137	5.8673	5.8373	6.0624	6.0758	6.0931	6.0879	5.9816	6.0591	6.1170	6.0194	6.0363	6.0352	5.8797	5.7497	5.6958	5.6820	5.6121	5.5507
IC25	6.3570	4.5530	5.5530	6.2350	7.4870	6.5000	6.9180	6.1200	4.4340	6,6760	6.5670	4.6810	6.1750	6.6360	4.0036	4.5690	5.4310	6.2100	3.5807	3.3150
Date	10/12/22	11/08/22	12/13/22	01/02/23	02/03/23	03/02/23	04/04/23	05/08/23	06/22/23	07/24/23	08/07/23	09/06/23	10/12/23	11/06/23	12/26/23	01/16/24	02/01/24	03/18/24	04/29/24	05/24/24

September 19, 2024

CJ Dickerson **Thorin Resources** 6208 County Road 26 Ouray, CO 81427

Dear CJ:

Enclosed is the report for chronic biomonitoring tests performed for Thorin Resources on effluent from the Wastewater Treatment Plant 002A outfall. There was no statistically significant toxicity to either test species at any effluent concentration. The effluent passes WET (Whole Effluent Toxicity) testing requirements for this sampling period.

If you have any questions or concerns, please do not hesitate to contact me at (303) 661-9324.

Best regards,

Catherine McDonald Laboratory Manager

REPORT OF CHRONIC BIOMONITORING TESTS CONDUCTED FOR THORIN RESOURCES ON EFFLUENT FROM THE WWTP 002A OUTFALL

Prepared for:

CJ Dickerson **Thorin Resources** 6208 County Road 26 Ouray, CO 81427

Prepared by:

Catherine McDonald
SeaCrest Group
500 S Arthur Ave. Suite 450
Louisville, Colorado 80027-3065
(303) 661-9324

September 19, 2024

Site: 002A

TABLE OF CONTENTS

SCG Project No.: 524423.B Project: Quarterly WET

CHRONIC TOXICITY TEST SUMMARY	3
ABSTRACT WITH RESULTS	4
INTRODUCTION	5
MATERIALS AND METHODS	5
SAMPLE COLLECTIONDILUTION WATER	
TEST ORGANISMS TEST PROCEDURE DATA ANALYSIS	5 6
RESULTS	
CERIODAPHNIA DUBIA TEST RESULTSFATHEAD MINNOW TEST RESULTSTEST ACCEPTABILITY	7 8
DISCUSSION	9
REFERENCES	9
APPENDIX 1 – CHAIN OF CUSTODY WITH SAMPLE RECEIPT FORMS	10
APPENDIX 2 – DATA SHEETS FOR THE CERIODAPHNIA DUBIA TEST	17
WET TEST REPORT FORM – CHRONIC	18
APPENDIX 3 – DATA SHEETS FOR THE FATHEAD MINNOW TEST	23
WET TEST REPORT FORM – CHRONIC	24
APPENDIX 4 – QA/QC AND REFERENCE TOXICANT TEST CHARTS	30
LIST OF TABLES	
FABLE 1: STATISTICAL METHODS USED IN TESTING	7
TABLE 2: SUMMARY OF CERIODAPHNIA DUBIA TEST RESULTS	7
TABLE 3: SUMMARY OF FATHEAD MINNOW TEST RESULTS	8
TABLE 4: PMSD FOR CHRONIC TEST PARAMETERS	8

SCG Project No.: 524423.B Project: Quarterly WET CO-0000003 Site: 002A

Chronic Toxicity Test Summary

	7-day static renewal using <i>Ceriodaphnia dubia</i>
Test:	7-day static renewal using fathead minnow (<i>Pimephales promelas</i>)
Client:	Thorin Resources
Test Procedure	Ceriodaphnia dubia: EPA/821/R-02-013. Method 1002.0 (2002)
Followed:	fathead minnow: EPA/821/R-02-013. Method 1000.0 (2002)
Sample Number:	524423.B
Dilution Water:	moderately hard laboratory reconstituted water
Test Organism Source:	SeaCrest Group
Reference Toxicant:	Sodium Chloride

Sample	Time of Collection	Date of Collection	Time of Receipt	Date of Receipt
Effluent 1	1145	09-09-2024	0900	09-10-2024
Effluent 2	1130	09-11-2024	0850	09-12-2024
Effluent 3	1330	09-12-2024	0800	09-13-2024

	Ceriodaphnia dubia	fathead minnow
Test Initiation Time	1410	1430
Test Initiation Date	09-10-2024	09-10-2024
Test Completion Time	1345	1330
Test Completion Date	09-16-2024	09-17-2024

CO-0000003 SCG Project No.: 524423.B **Site: 002A Project: Quarterly WET**

Abstract with Results

Test Concentrations: Control (0%), 23%, 45%, 89%, 95%, 100%

10 for Ceriodaphnia dubia

40 for fathead minnow **Number of Organisms/Concentration:**

10 for Ceriodaphnia dubia

Replicates at each Concentration: 4 for fathead minnow

	Ceriodaphnia dubia	fathead minnow
Test vessel size/Exposure volume	30ml/15ml	500ml/200ml
Sub-lethal NOEL/IC25	100%/>100%	100%/>100%
Pass/Fail Status	PASS	PASS
Temperature Range (°C)	24.1 - 25.9	24.1 – 25.9
Dissolved Oxygen Range (mg/L)	6.8 - 8.1	4.1 - 8.3
pH Range	7.5 - 8.1	7.3 - 8.2
	Control (Cerio/FHM)	Effluent Sample
Hardness (mg/L as CaCO ₃)	83/81	127/139/135
Alkalinity (mg/L as CaCO ₃)	57/62	73/61/72
Total residual chlorine (mg/L)	< 0.01	< 0.01
Total ammonia (mg/L as NH ₃)	< 0.03	< 0.03

INTRODUCTION

Biomonitoring provides an effective means by which the toxicity of discharges from municipal, industrial, and mining operations can be tested. Among the advantages of biomonitoring is the ability to test complex effluents containing a broad range of contaminants. Biomonitoring, when used in conjunction with chemical analyses, can generate data capable of identifying a much wider range of contaminants.

The Colorado Water Quality Control Division requires certain NPDES permittees to perform acute and/or chronic biomonitoring tests. The chronic test measures significant differences in lethality and in reproduction (*Ceriodaphnia dubia*) or growth (fathead minnow – *Pimephales promelas*) between control and effluent-exposed organisms.

The present report discusses the results of chronic biomonitoring tests conducted on effluent from the Thorin Resources WWTP 002A discharge. These tests were conducted in accordance with EPA and State of Colorado procedures in June and July 2024.

MATERIALS AND METHODS

Sample Collection

Three gallons of the effluent were collected on three separate dates as specified in Permit CO-0000003. Samples were delivered chilled to the SeaCrest lab where they were held at 0-6°C. Chain of custody forms showing sample collection and laboratory arrival times are included (Appendix 1).

Dilution Water

Laboratory reconstituted water was used as both the dilution water source and the control for the tests. Reconstituted water for the *Ceriodaphnia dubia* test was produced by adding sodium bicarbonate, calcium sulfate, magnesium sulfate, potassium chloride, and sodium selenate to deionized water. Reconstituted water for the fathead minnow test was produced by adding sodium bicarbonate, calcium sulfate, magnesium sulfate, and potassium chloride to deionized water.

Test Organisms

The biomonitoring test used *Ceriodaphnia dubia*, cultured in the SeaCrest laboratory. The organisms are cultured in brood culture boards from which individual females are monitored for survival and reproduction for periods of up to two weeks. Neonates less than 24-hours old, released from third or subsequent broods of eight or more within an 8-hour period, are collected from the brood chambers and used in tests. The animals are fed daily with a mixture of Yeast, Cereal Leaves, and Trout Chow (YCT), produced in-house. This is supplemented with cultured green algae (*Selenastrum capricornutum*) provided by Aquatic Biosystems.

Less than one-day-old fathead minnow, cultured in the laboratory, were also used in the test. Adult fish are maintained in 10-gallon aquaria where females deposit their eggs on the under-surface of split PVC pipe sections. The eggs are collected daily and transferred to aerated containers where they hatch after three to four days. The larval fish are fed newly hatched brine shrimp (*Artemia* sp.) at least twice per day.

In-house organisms are tested monthly in a reference toxicant test using sodium chloride to monitor overall health and test reproducibility (Appendix 4).

Test Procedures

Upon receipt at the lab, samples were analyzed for alkalinity, ammonia, chlorine, conductivity, dissolved oxygen, hardness, and pH.

Methods used in chemical analysis

Alkalinity	EPA 310.2	Hach 8203	I-2030-85.2
Ammonia	SM4500-NH ₃ , C-E1997	ASTM D1426-08	
Chlorine	SM4500-Cl D	Hach 10026	
Conductivity	SM2510		
Dissolved Oxygen	SM4500-O	Electrode: G-2001	Winkler (QC): B-F-2001
Hardness	SM2340 B or C	Hach 8213	
pH	SM4500-H+ B-2000		

The test followed procedures in EPA³ and CDPHE⁴ guidelines. Exposure concentrations included control (0%), 23%, 45%, 89%, 95%, and 100% mixtures, diluted with moderately hard laboratory reconstituted water.

Individual *Ceriodaphnia dubia* were placed in 30ml plastic containers containing approximately 15ml of exposure medium. Ten replicates at each concentration were used. The animals were fed daily with the YCT mixture and an equal volume of the green algae (*Selenastrum capricornutum*). The exposure medium was changed daily in each container and the number of young released overnight were counted and recorded. Young were removed from the containers daily and discarded. Routine measurements were made each day of temperature, dissolved oxygen, and pH before and after the water changes.

Fathead minnow were exposed in 500ml plastic cups to which 250ml of media was replaced daily. Four replicates were used at each concentration. Ten fish, less than 24-hours old, were placed in each cup. The fish were monitored daily for survival and fed live brine shrimp at least twice per day. After seven days, the fish were removed from the cups, euthanized with isopropyl alcohol, and then placed in aluminum pans and dried in an oven for a minimum of six hours at 100°C. The pans were then weighed on a five-place analytical balance to determine the average dry weight of the fish from each replicate.

Data Analysis

Data from the tests were analyzed on a personal computer using the CETIS program (developed by Tidepool Scientific Software). Statistical tests used in the analyses are shown in Table 1. Test acceptability was determined using control survival and reproduction/growth criteria, concentration-response relationships, and percent minimum significant differences (USEPA ^{5,6}).

Site: 002A **Project: Quarterly WET**

Table 1. Statistical methods used in testing for significant differences in test parameters.

Va	nriance	Distribution			
Bartlett Equali	ty of Variance Test	Shapiro-Wilk W Normality Test			
	Statistical	Difference			
Species	Survival	Growth	Reproduction	IC ₂₅	
Ceriodaphnia dubia	N/A	N/A	Steel Many-One Rank Sum Test	ICp	
fathead minnow	Steel Many-One Rank Sum Test	Dunnett Multiple Comparison Test	N/A	ICp	

RESULTS

Ceriodaphnia dubia Test Results

Test results for the *Ceriodaphnia dubia* are summarized in Table 2 and provided on the data sheets located in Appendix 2. Survival was 100% in the 100% effluent and was 100% in the remaining effluent concentrations. Control survival was 100%. No statistically significant lethality was measured in any effluent concentration when compared to the control. The NOEL (No Observed Effect Level) for lethality was 100% and the LC₂₅ (Lethal Concentration 25) for lethality was >100%.

Average number of neonates was 31.5 in the 100% effluent concentration and ranged from 24.2 - 30.9 in the remaining effluent concentrations. The average number of neonates in the control was 29.9 for statistical analyses and test acceptability criteria. No statistically significant differences in the number of neonates were found between the control and any effluent concentration. The NOEL for reproduction was 100% and the IC₂₅ (Inhibition Concentration 25) for reproduction was >100%.

Table 2. Summary of *Ceriodaphnia dubia* test results. An asterisk (*) denotes a statistically significant difference from the control.

	D 4	N/L			Significant	Difference
Concentration	Percent Survival	Mean Neonates	Min.	Max.	Lethality	Reprod.
Control (0%)	100	29.9	26	37		
23%	100	25.7	0	32		
45%	100	30.3	18	38		
89%	100	24.2	17	32		
95%	100	30.9	16	37		
100%	100	31.5	27	38		

Fathead Minnow Test Results

Fathead minnow results are summarized in Table 3 and are provided on data sheets in Appendix 3. Survival was 95% in the 100% effluent concentration and ranged from 95% - 100% in the remaining effluent concentrations. Control survival was 100%. No statistically significant lethality was measured in any effluent concentration when compared to the control. The NOEL for lethality was 100% and the LC_{25} for lethality was >100%.

Average weight in the 100% effluent concentration was 0.484mg and ranged from 0.476mg - 0.512mg per individual in the remaining effluent concentrations. The average weight for the control fish was 0.463mg for statistical analyses and test acceptability criteria. No statistically significant differences for growth were measured in any effluent concentration when compared to the control. The NOEL for growth was 100% and the IC_{25} for growth was >100%.

Table 3. Summary of fathead minnow test results. An asterisk (*) denotes a statistically significant difference from the control.

	Percent	Average			Significant	Difference
Concentration	Survival	Weight (mg)	Min.	Max.	Lethality	Growth
Control (0%)	100	0.463	0.403	0.518		
23%	95	0.476	0.428	0.519		
45%	100	0.510	0.481	0.564		
89%	100	0.512	0.483	0.580		
95%	95	0.497	0.439	0.578		
100%	95	0.484	0.462	0.501		

Test Acceptability

Acceptable control survival (80%) was achieved in both tests. Similarly, *Ceriodaphnia dubia* reproduction (average 15 neonates/organism) and fathead minnow growth (average 0.250mg/test container) in control organisms met required levels. PMSD was within the required limits for an acceptable test (Table 4).

Table 4. PMSD for chronic test parameters.

Table 7. I MISD for	chi onic test parai	neters.		
	fathead min	now growth	C. dubia rep	oroduction
	Lower bound	Upper bound	Lower bound	Upper bound
PMSD	12	30	13	47
(% Minimum significant difference)	16	.0	21.	0

DISCUSSION

A failed test for this discharge occurs when there is an NOEL or IC_{25} less than the IWC (Instream Waste Concentration) of 89%. The NOEL represents the highest effluent concentration at which no statistically significant effect is observed. The IC_{25} represents an estimate of the effluent concentration that would cause a 25 percent reduction of a non-quantal biological measurement. A violation for this discharge occurs when both the NOEL and the IC_{25} are less than the IWC. Since neither test species demonstrated statistically significant differences meeting these criteria, the discharge passes WET testing requirements for this sampling period.

REFERENCES

- 1. **Hach Chemical Company.** 2008. *Hach's Water Analysis Handbook*. Fifth Edition. Hach Chemical Company, Loveland, Colorado. Digital Medium.
- 2. **APHA/AWWA/WEF.** 1998. Standard Methods for the Examination of Water and Wastewater. 20th Edition. American Public Health Association, Washington, D.C.
- 3. **USEPA.** 2002. Short Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms. EPA-821-R-02-013. 335 pp.
- 4. **CDPHE** (Colorado Department of Public Health and Environment). 1998. *Laboratory Guidelines for Conducting Whole Effluent Toxicity Tests*. Water Quality Control Division.
- 5. **USEPA.** 2000. *Method of Guidance and Recommendations for Whole Effluent Toxicity* (WET) Testing (40 CFR Part 136). EPA/821/B-00/004.
- 6. **USEPA**. 2000. Understanding and Accounting for Method Variability in Whole Effluent Toxicity Applications under the National Pollutant Discharge Elimination System Program. EPA/833/R-00/003.

Appendix 1 – Chain of Custody with Sample Receipt Forms

SEACKES \$\inf\$ GRO \$\inf\$ environmental services laboratory	S GROUMBORATORY	<u>م</u>			CHAIN OF CUSTODY	OF CL	JSTO	Dγ		200 S	. Arth	ur Ave (303)	Unit 4. 561.93	500 S. Arthur Avenue, Unit 450 - Louisville, CO 80027 (303) 661.9324 - FAX (303) 661.9325	ville, CC (303) 6	51.93	27
lient/Project Name:	Ther	in Resources	200						Ā	Analysis (Check all applicable)	(Chec	k all a	pplic	able)				
ect Number:							(MC	(MC					rcle)					
ontact: () U i	Sicres	200				_		ole8					:D) (
ddress: 1900 Marn St	· 5	(hail 1						este		rcle)	(iloD-	(wo				
hone # (607) 773-132	1351	E-Mail:C)	Licherson	e the	E-Mail: C) dichersone thorn resources.	8 æ		ipul)	(^								Iuers	
ax #		Sampler: ((1 F)	Dicheron	1500			3AT\3	Belov			əs		200				
eport By:	PDF PDF	FAX	×					ПТ/ІТ	tsiJ)	-		Grea		98				
Sample Location or ID	Date	e Time		Grab/ Comp	Lab ID	WET: C	A :T3W	MET: P	slateM) sbilo2 snoinA	Chromi	bns liO	Colifor	Ofher A			edmuM V IstoT	
420070	6/6	54:11 42	. 5	Gas	524423.3#1	X	. /										3 3901	18
	,																	1
							-				-		\vdash	+			+	Т
											-						-	T
			+	1			_				_							
			+								-							
							_				_		+	-			+	
Turnaround Requirements (Analytical Testing Only)	equiremen	ıts	Test Spe	cies:	Test Species: 🔀 Fathead Minnow		Ceri	Cerio daphnia		Daphnia magna Daphnia pulex	- magr		Daphr	ia pule	_	Other (List Below)	Below)	
Standard (10 days)		6-9 Day	-	Instru	Special Instructions/Comments:	ents:												Т
3-5 Day	l	1-2 Day																
equested Report Date:			1															
Relinquished By (1)	1)		Received By (1)	By (1)			- R	linguis	Relinquished By (2)	(2)				Rece	Received By (2)	2)		Т
gnature	Date/Time	Signature			Date/Time	Signature				Date/Time	a	Signature	ure			Date/Time	me	Т
16 A	1/24:459	WPS	S				UPS					9	F	J. Thornban	20	9:00/	9:00	

Site: 002A

SCG Project No.: 524423.B **Project: Quarterly WET**

SeaCrest Group Louisville, CO	Sample Receipt	Form	Form #: 42 Effective: January 2024
Project # 524 423.3 Date: 99 1024		Sample #:	OT
Samples Were: 1. FedEx Notes:	Courier	Hand Delivery	(circle one)
2. Chilled to Ship		Ambie	ent Chilled
Cooler Received Broken or Le Notes:	aking	Υ	N NA
Sample Received Broken or L Notes:	eaking	Υ	N
5. Received Within 36hr Holding Notes:	Time	(A)	N
6. Aeration necessary		Υ	\overline{N}
7. pH adjustment necessary		Υ	N
Sample Received at Tempera Notes:	iture between 0-6° C .	Y	N NA
9. Description of Sample (Color, Effluent: light pm, Receiving: W/A Presence of native sp	clear	of Particulate Matte	er):

Lab#	Temp	D.O.	рН	Cond
423.8#1	4.2	0.8	7.9	312

Custody Seals:

-			
 Present on Outer Package 	Υ	(N)	
2. Unbroken on Outer Package	Υ	N	(NA)
3. Present on Sample	Υ	(N)	
4. Unbroken on Sample	Υ	N	(NA)

Custody Documentation (Chain of Custody):

1. Present Upon Receipt of Sample

N

CO-0000003

SCG Project No.: 524423.B Project: Quarterly WET **Client: Thorin Resources** Site: 002A

le, CO 80027 33) 661.9325					sıəni	_		odmuN V lstoT	8					Other (List Below)					Date/Time 09/1724 0850
500 S. Arthur Avenue, Unit 450 - Louisville, CO 80027 (303) 661.9324 - FAX (303) 661.9325	Analysis (Check all applicable)	(ə):) (Circ			et Jircle)	oT) m	Oil and Colifor BOD/C						Daphnia magna Daphnia pulex Other				Received By (2)	Signature
500 S. Arthi	Analysis (Chec				^) (C!	ST/SC	T\ZT) teiJ)	Metals Solids AnionA					4-0	Daphnia magr				By (2)	Date/Time
CHAIN OF CUSTODY			m)	Belo cate	ezgoik ibni) i	or() oi beter BAT\E	hron.	WET: A WET: C	X					ow 🛚 Cerio daphnia	ints:			Relinquished By (2)	Signature Signature
CHAIN					c) dickersone than 1000			Lab ID	524423.B#2					Test Species: X Fathead Minnow	Special Instructions/Comments:			1)	Date/Time
					dickers	65 D.		Grab/ Comp	7 Gas					Test Species:	Special Instr			Received By (1)	5
a	Zesources			Mil	E-Mail: (C)	Sampler: (FAX	Time	11:307					C	6-9 Day	1-2 Day			Signature
T & GROU	Thick		Dickerson	_	-1321		A PDF	D Date	4/16					around Requirements (Analytical Testing Only)	ays)			y (1)	Date/Time 9/11 1/2: 10 P
SEACREST & GROUP	Client/Project Name:	P. O./Project Number:	Contact: (5 D)	Address: 1900 Main St	Phone # (602) 793-1321	Fax #	Report By:	Sample Location or ID	0 FU02A					Turnaround Requirem (Analytical Testing Only)	Standard (10 days)	3-5 Day	Requested Report Date:	Relinquished By (1)	Signature

Site: 002A

SCG Project No.: 524423.B Project: Quarterly WET

SeaCrest Group Louisville, CO	ample Recei	pt Form	Form #: 42 Effective: January 2024
Project # 524 423.B Date: 09/12/24 Samples Were: 1. FedEx Notes: UPS	Courier	Sample #: 2 Initials: EE Hand Delivery	(circle one)
2. Chilled to Ship		Ambient	Chilled
Cooler Received Broken or Leaking Notes:	i	Υ (NA NA
Sample Received Broken or Leaking Notes:	g	Υ (N
5. Received Within 36hr Holding Time Notes:		Ŷ	N
6. Aeration necessary		Υ	N
7. pH adjustment necessary		Υ	N
8. Sample Received at Temperature b Notes:	etween 0-6° C .	Y	N NA
9. Description of Sample (Color, Odor, Effluent: July PM Receiving: W/A Presence of native species:	and/or Presend	ce of Particulate Matter):	N

Lab#	Temp	D.O.	pН	Cond
524423.费	4.9	7.6	7.5	332

Custody Seals:

custody Seals.			
1. Present on Outer Package	Y	(\widehat{N})	
2. Unbroken on Outer Package	Υ	N	NA
3. Present on Sample	Υ	(\hat{N})	
4. Unbroken on Sample	Υ	N	(NA)

Custody Documentation (Chain of Custody):

Present Upon Receipt of Sample

Y

Ν

An

SEACREST & GROUNE ENVIRONMENTAL SERVICES LABORATORY		d.		CHAIN	CHAIN OF CUSTODY	JSTO	ρ		200	S. Art	ıur Av	enue, (303)	Unit 661.	500 S. Arthur Avenue, Unit 450 - Louisville, CO 80027 (303) 661.9324 - FAX (303) 661.9325	ville, CC (303) 66	8000	27
Client/Project Name:	Thati	, Resources	65					A	Analysis (Check all applicable)	(Che	ck all	appli	cable	(
O./Project Number:						(^	(^					(əj:					
Contact: CT D	ches	0				2	wolas				_	(Circ					
Address: (900 Mais	St	Cm.T.					este l		rcle)	((ilo⊃-		(MO			
Topone # (602) 793-137	1221-	E-Mail: C/Dichesone Honheson	chesone	Hornesores	8 ete		ibul)	(^	80.00			3/lese		18g 1s	3404	SIZUU	
Fax #		Sampler:	QV				3AT\3	Belov				tal/Fe	27	IT) SIS			
Report By:	A PDF	- FAX					ПТ/ІТ	tsiJ)				oT) m		γιεπΑ	, ,0 40		
Sample Location or ID	Date	Time	Grab/ Comp	Lab ID (LAB Use Only)	WET: C	MET: ₽	WET: P	Metals	sbilo2	snoinA mo1dD	bns liO	Colifor	BOD\C	Other A	Mumbe	V latoT	
0 F007A	21/12	1:307	Gras	524423.B#3	7										117	5	399
	-		v														5
										-	-					-	Т
						-				-	_					-	Т
										-						-	T
						-				+						-	
						-				\dashv						+	
						+				+						+	
Turnaround Requirements (Analytical Testing Only)	 around Requiremen (Analytical Testing Only)	- SI	Test Species:	Test Species: Fathead Minnow		Geri	Cerio daphnia		Daphnia magna Daphnia pulex	ia mag	_ L	Daph	nia pu		Other (List Below)	3elow)	Τ_
Standard (10 days)	(S)	6-9 Day	Special Inst	Special Instructions/Comments:	nents:												T
3-5 Day	1	1-2 Day															
Requested Report Date:																	
Relinquished By (1)	(1)		Received By (1)	(1)		Re	Relinquished By (2)	ned By	(2)				æ	Received By (2)	(2)		Т
ignature Da	Date/Time	Signature WRS		Date/Time	Signature	uPS	S		Date/Time	те	Signature	ature)	hor	J. Thoruton	Date/Time	/Time 13.24 8:00	
//											_				•		_

Site: 002A

SCG Project No.: 524423.B Project: Quarterly WET

SeaCrest Group Louisville, CO	Sample Receipt	Form	Effective	Form #: 42 e: January 2024
Project # 524 4 23 . 3 Date: ๑ๆเ32 น		Sample #:	3 0T	_
Samples Were: 1. FedEx Notes:	Courier	Hand Delivery	(circle	one)
2. Chilled to Ship		Ambi	ent Chilled	
Cooler Received Broken or L Notes:	eaking	Υ	N	NA
Sample Received Broken or Notes:	Leaking	Υ	\overline{N}	
5. Received Within 36hr Holding Notes:	g Time	Y	N	
6. Aeration necessary		Υ	\overline{N}	
7. pH adjustment necessary		Υ	$\widetilde{\mathbb{N}}$	
Sample Received at Tempera Notes:	ature between 0-6° C .	Y	N	NA
9. Description of Sample (Color	, Odor, and/or Presence o	of Particulate Matte	er):	

Lab#	Temp	D.O.	рН	Cond
123.B#3	5.1	7.7	7.9	347

Effluent: low pm / clear

Presence of native species:

Receiving: N/A

Custody Seals:

Y	N	
Υ	N	(NA)
Υ	N	
Υ	N	NA
	Y	Y

Custody Documentation (Chain of Custody):

Present Upon Receipt of Sample
 Y
 N

Appendix 2 – Data Sheets for the Ceriodaphnia dubia Test

CO-0000003 SCG Project No.: 524423.B Site: 002A **Project: Quarterly WET**

WET TEST REPORT FORM – CHRONIC

Permittee: Thorin Resources Permit No.: CO-000003

002A - IWC: 89% **Outfall:**

Test Type: Routine 🖂 Accelerated Screen

Test Species: Ceriodaphnia dubia

Test Start Time	Test Start Date	Test End Time	Test End Date
1410	09-10-2024	1345	09-16-2024

Test Results	Lethality/TCP3B	Reproduction/TKP3B
S code: NOEL	100%	100%
	PASS	PASS
P code: LC ₂₅ /IC ₂₅	>100%	>100%
	PASS	PASS
T code:	>100%	>100%

Test Summary

Measurements	Control (0%)	23%	45%	89%	95%	100%
Exposed organisms	10	10	10	10	10	10
Survival for day 1	10	10	10	10	10	10
Survival for day 2	10	10	10	10	10	10
Survival for day 3	10	10	10	10	10	10
Survival for day 4	10	10	10	10	10	10
Survival for day 5	10	10	10	10	10	10
Survival for day 6	10	10	10	10	10	10
Mean 3 Brood Total	29.9	25.7	30.3	24.2	30.9	31.5

Hardness (mg/L) – Receiving Water: N/A Effluent: 127/139/135 Recon Water: 83 Alkalinity (mg/L) – Receiving Water: N/A Effluent: 73/61/72 Recon Water: 57 Chlorine (mg/L) – Effluent: <0.01pH (initial/final) – Control: 7.8/8.0 100%: 7.9/7.9

Total Ammonia as NH₃ (mg/L) - Effluent: <0.03

Were all Test Conditions in Conformance with Division Guidelines? YES NO

If **NO**, list deviations from test specifications: N/A

Laboratory: SeaCrest Group

Comments:

Analyst's Name: Lisa Sibrell, Ryan Belmont, and Daniela Thornton

Date September 19, 2024

Site: 002A

SCG Project No.: 524423.B **Project: Quarterly WET**

SeaCrest Group Louisville, CO

Ceriodaphnia Chronic Benchsheet

Form #: 101a Effective: March 2023

Permittee	: Th	orin Reso	urces		Lab #: 521	4423.B	Site:	Site: OD2A			
IWC %:	89		plate #: 5				Sample Date:				
Age & So	urce:	0910294	1176			0241410		091624 13			
Test Cond	ditions:					300 A					
	0	1	2	3	4	5	6	7	Total		
(C)	0	0	0	Ц	0	12	15		31		
	0	0	0	4	0	11	15		30		
	0	0	0	0	8	12	17		37		
0	0	0	0	4	0	13	15		32		
"	0	0	0	0	4	1)	14		29		
	0	0	0	4	8	0	15		27		
	0	0	0	4	7	0	15		26		
	0	0	0	4	8	0	14		26		
	0	0	0	4	0	12	16		32		
	0	0	0	5	0	9	15		29		
DO	7.2	7.4 7.1	7,4 6.9	7.2 6.8		7.1 7.0	7.4	2.	-0 -		
Temp	24.1	25.7 25.9	25.7 25.0	25.5 24.6	25.6 25.3	256 25.2	254		199 a		
pН	7.8	7.9 7.9	7.2 7.9	8.0 8.0	7.9 8.0	7.9 8.1	8.0		01.1		
Cond	302	313	327	342	313	310					
(1)	0	0	0 .	- 3	0	10	14		27		
	0	0	0	4	0	13	15		32		
	0	0	0	4+1	0	11	16		32		
	0	0	0	4	0	11	14		29		
23	0	0	0	0	6	11	15		32		
23	0	0	0	5	5+2	۵	14		26		
	0	0	0	5	8	0	14		27		
	0	0	0	4	8 +1	0	14		27		
	0	0	0	5	6+1	0	13		25		
	0	0	07.0	0	0	0	0		0		
DO	7.3	7.4 7.2	7.4	7.2 7.0	7.1 6.9	7.1 17.2	24				
Temp pH	7.8	25.7 25.9	7.2 7.7	25.5 24.8	25.6 25.4		25.4		25.7		
Cond	304	315	329	340	7.9 7.9	309	8.0		00		
(2)	0	0	0	4	0		17		21		
_/	0	Ö	Ö	4	0	7	14		31 25		
	0	0	Ö	4	0	6	14		18		
110	0	Ö	Ö	4	0	12	20		36		
45	0	0	Ö	0	6	9	16		31		
1 1	0	0		0 5		12	21		38		
	0	0	0 5		0	0	17		33		
1 1	0	0	0	5	10	0	16		31		
1 1	0	0	0	0	7	/3	15		35		
	0	0	0	4	O	9	12		25		
	٦.4	7.4 17.3	7.4 17-2	7.2 7.3	7.1 7.1	7.1 7.4	7.4				
			25.7 25.0	25.5 25.1	25.6 25.4	25.6 25.2	25.4		30.3		
рН	7.8	7.9 7.8	7.2 17.6	8.0 7.8	7.9 7.9	79 18.0	6.8				
Cond	308	313	336	341	312	309					
(3)	0	0	0	4	6	0	7		17		
	0	0	0	4	0	10	8		22		
	0	0	0 4		0	12	14		30		
I., -	0	0	0 4		0	15	13		32		
89	0	0	0 0		5	12	0		17		
	0	0	0 4		0 14		5 12		23		
	0	0	^		8	0			28		
	0	0	0	^		0	6		18		
	0	0	0	4	0	9	16		32		
DO	7.9		7,4 7,4	7.2 7.6		-	10		23		
						7.1 7.7 25.6 25.2	7.4		0112		
рН	7.8			8.0 7.8		7.8 7.9	7.9		24.2		
Cond	309	326	333	342	311	309					
The Real Property lies and the Persons lies and the				11.10	~ 11			The second secon			

SeaCrest Group

Louisville, CO

Site: 002A

Ceriodaphnia Chronic Benchsheet

Form #: 101a Effective: March 2023

SCG Project No.: 524423.B

Project: Quarterly WET

	0		1	2		3		4		5	. (6	7	Total
(4)	0		0	0	-	4		7		0	1	20		31
	Ō		0	0	2			0		12		6		30
	0		0	0 4		6 0		19			29			
95	0	0		0 5				//		20			36	
	0	0		0 0		5	-	1	4	18			37	
	0	0		0		1	0)	1	1	18			33
	0	0		0	5	7	9			0	17			31
	0		0	0	6	f	7	_	0)	18			29
	0		0	0	L	ſ	0	7	1	1	22	_		37
	0		0	0)	0)	//		5			16
DO	7.9	7.4	7.8	7,4 7.5	7.2	17.7	7.1	7.6	71	7.7	7.4			
Temp	24.1	75.7	125.9	25.7 25.0	25.5	25.5	25.6	25.5	25.6	25.2	25.4			30.6
рН	7.8	7.8	7.9	7.2 7.5	80	7.9	79	7.8	7.8	7.9	7.9			JV.
Cond	311	1	328	333	3	43	3	51(3	309				
(5)	0		0	0		f	(9	1	г	16			32
	0	0		0	3		0		13		20			36
	0	0		0	0 4		0		11		17			32
	0	0		0			0 12		2	/		38		
100	0	0		0			5		12	12				28
	0	0		0 4		f	5 0)	21			30	
	0	0				4		11		0		'		29
	0	0				5		10		0				27
	0	0		0 4			0		14		18			36
	0		0	0	4		()	11	2	12			27
DO	8.0	7.4	7.9	7.4 7.6	7.2	7.7	7.1	7.6	7.1	1.8	7,4			
Temp	24.1	25.7	25.9	25,7281		25.5	25.6	25.5	25.6	25.2	25.4			31.5
pН	7.9	7.1	7.8	7.8 7.5		7.9	7.9	7.8	7.8	7.9	7.9			21.0
Cond	312		29	332	3	47		312	30	9				
Algae	ABS		185	ABO		B5	/	B5		ABI				
YCT	2407		107	2407		07		07	2	704				
H ₂ O	- 1	_	ı	2	3			2		3				11305
Initials	23		23	RB		DT		T		2.	L-			
Uardassa	Eff #1			ff #2				f#3			Rec	on		
Hardness Alkalinity	1//-		1.39		135			83			_			
Chlorine	73			[0]		12			51			⊣		
Ammonia	(0.01		10.01		W.01			40.01			_			
Ammonia	10.03			\mathcal{U} .	03			10.	03			10.D	3	

Exposure Chamber: Total Capacity: 30mL Total Solution Volume: 15mL

Feeding Schedule: Fed daily Food used: YCT, Algae Units

DO: mg/L Hardness: mg/L
Temp: °C Alkalinity: mg/L
pH: N/A Chlorine: mg/L
Cond: µS/cm³ Ammonia: mg/L

Comments:

x:v:z = board #:row:column

_			x.y.z = board #.row.colullin						
1	2	3	4	5	6	7	8	9	10
А3	ΑЧ	A5	A9	AIO	B1	в3	ß5	B7	BA

SeaCrest Group 20

WH

Site: 002A

Report Date: 16 Sep-24 13:36 (p 1 of 1) **CETIS Analytical Report** Test Code/ID: 524423CD / 15-0672-0790 Ceriodaphnia 7-d Survival and Reproduction Test SeaCrest Group Analysis ID: 13-1065-0207 Endpoint: Reproduction **CETIS Version: CETIS v2.1.5** Analyzed: 16 Sep-24 13:35 Analysis: Nonparametric-Control vs Treatments Status Level: Edit Date: 16 Sep-24 0:00 MD5 Hash: F0A457B8B73867ACDAF1B967060E0E5C 008-269-892-1 Editor ID: Batch ID: 06-7096-9128 Test Type: Reproduction-Survival (7d) Analyst: Start Date: 10 Sep-24 EPA/821/R-02-013 (2002) Diluent: Reconstituted Water Ending Date: 16 Sep-24 Ceriodaphnia dubia Brine: Not Applicable Species: Test Length: 6d 0h Branchiopoda Source: In-House Culture Taxon: Age: Sample ID: 09-8569-9965 Code: 524423.B Project: WET Quarterly Compliance Test (3Q) Sample Date: 09 Sep-24 Material: POTW Effluent Source: NPDES Permit # (XX99999999) Receipt Date: 10 Sep-24 CAS (PC): Station: Client: Thorin Resources Sample Age: 24h **Data Transform** Alt Hyp NOEL LOEL TOEL Tox Units MSDu PMSD Untransformed C > T 20.97% 100 >100 6.271 Steel Many-One Rank Sum Test Control vs Conc-% df Test Stat Critical Ties P-Type P-Value Decision(a:5%) Dilution Water 23 18 91.5 CDF 0.4046 Non-Significant Effect 75 4 45 18 111.5 75 CDF 0.9403 Non-Significant Effect 89 18 79.5 75 2 CDF 0.0977 Non-Significant Effect 95 18 118.5 75 CDF 0.9860 Non-Significant Effect 100 18 116.5 75 CDF 0.9780 Non-Significant Effect **Test Acceptability Criteria TAC Limits** Attribute Test Stat Lower Upper Overlap Decision Control Resp 29.9 15 Passes Criteria Yes **PMSD** 0.2097 0.47 0.13 Yes Passes Criteria **ANOVA Table** Source Sum Squares Mean Square DF F Stat P-Value Decision(a:5%) Between 459.15 91.83 5 2.447 0.0453 Significant Effect Error 2026.1 37.5204 54 Total 2485.25 59 **ANOVA Assumptions Tests** Attribute Test Test Stat Critical P-Value Decision(a:1%) Variance Bartlett Equality of Variance Test 11.09 15.09 0.0497 **Equal Variances** Distribution Shapiro-Wilk W Normality Test 0.8747 0.9459 1.8E-05 Non-Normal Distribution Reproduction Summary Conc-% Code Count Mean 95% LCL 95% UCL Median Min Std Err CV% %Effect 0 10 29.9 27.5 32.3 29.5 26 37 1.059 11.20% 0.00% 23 10 25.7 18.97 32.43 27 0 32 2.974 36.60% 14.05% 45 10 30.3 25.97 34.63 31 18 38 1.915 19.99% -1.34% 89 10 24.2 19.94 28.46 23 17 32 1.884 24.62% 19.06% 95 10 30.9 26.54 35.26 31 16 37 1 929 19.74% -3.34% 100 10 31.5 28.63 34.37 31 27 38 1.267 12.72% -5.35%

Convergent Rounding (4 sf)

CETIS™ v2.1.5.6 x64 (008-269-892-1)

SCG Project No.: 524423.B

Project: Quarterly WET

SCG Project No.: 524423.B **Site: 002A Project: Quarterly WET**

CETIS An	alytical Repo	ort						Report Date est Code/I			1 13:36 (p 1 D / 15-0672	
Ceriodaphni	a 7-d Survival an	d Reproduc	tion Test								SeaCrest G	iroup
Analysis ID: Analyzed: Edit Date:	14-0900-1254 16 Sep-24 13:36 16 Sep-24 0:00			Reproduction Linear Interpolation (ICPIN) : F0A457B8B73867ACDAF1B967060E0E5			060E0E5C	CETIS Ve Status Le Editor ID	evel:	CETIS v2.1.5 1 008-269-892-1		
Batch ID: 06-7096-9128 Start Date: 10 Sep-24 Ending Date: 16 Sep-24 Test Length: 6d 0h		Prot	ocol: EP					Analyst: Diluent: Reconstituted Water Brine: Not Applicable Source: In-House Culture			Age:	:
Sample ID: Sample Date Receipt Date Sample Age	e: 10 Sep-24		erial: PO (PC):	1423.B TW Effluent orin Resourc				Project: Source: Station:		Quarterly Comp ES Permit # (XXS		(3Q)
X Transform		See	d	Resamples	Exp 95% (CL	Method					
Linear	Linear	1908	3571	1000 Yes Two-Point Interpolation					n			
Attribute Control Resp	200000	TAC Li Lower 15	mits Upper >>	Overlap Yes	Decision Passes Cri	teria						
Level %	95% LCL	95% UCL	Toy Unite	95% LCL	95% UCL							
IC15 >10 IC20 >10 IC25 >10 IC40 >10 IC50 >10	0	 	<1 <1 <1 <1 <1 <1 <1	 	 							
Reproductio	n Summary				Calculate	d Va	riate			Is	otonic Var	iate
Conc-%	Code	Count	Mean	Median	Min	Max	CV	% %E	ffect	Mea	n %Ef	ffect
0 23 45 89 95 100	D	10 10 10 10 10 10	29.9 25.7 30.3 24.2 30.9 31.5	29.5 27 31 23 31 31	0 18 17 16	37 32 38 32 37 38		99% -1.3 62% 19. 74% -3.3	0% 05% 34% 06% 34%	29.9 28.5 28.5 28.5 28.5 28.5	2 4.62 2 4.62 2 4.62 2 4.62	2% 2% 2% 2%

Convergent Rounding (4 sf)

CETIS™ v2.1.5.6 x64 (008-269-892-1)

Appendix 3 – Data Sheets for the Fathead Minnow Test

CO-0000003 SCG Project No.: 524423.B Site: 002A **Project: Quarterly WET**

WET TEST REPORT FORM – CHRONIC

Permittee: Thorin Resources **Permit No.:** CO-0000003

Outfall: 002A - IWC: 89%

Screen **Test Type:** Routine 🖂 Accelerated

Test Species: fathead minnow

Test Start Time	Test Start Date	Test End Time	Test End Date
1430	09-10-2024	1330	09-17-2024

Test Results	Lethality/TCP6C	Growth/TKP6C
S code: NOEL	100%	100%
	PASS	PASS
P code: LC ₂₅ /IC ₂₅	>100%	>100%
	PASS	PASS
T code:	>100%	>100%

Test Summary

	Control		-			
Measurements	(0%)	23%	45%	89%	95%	100%
Exposed organisms	40	40	40	40	40	40
Survival for day 1	40	40	40	40	40	40
Survival for day 2	40	40	40	40	40	40
Survival for day 3	40	39	40	40	40	39
Survival for day 4	40	38	40	40	40	39
Survival for day 5	40	38	40	40	40	39
Survival for day 6	40	38	40	40	40	38
Survival for day 7	40	38	40	40	38	38
Mean Dry Wt. (mg)	0.463	0.476	0.510	0.512	0.497	0.484

Effluent: 127/139/135 Recon Water: 81 Hardness (mg/L) – Receiving Water: N/A Alkalinity (mg/L) – Receiving Water: N/A Effluent: 73/61/72 Recon Water: 62 Chlorine (mg/L) – Effluent: <0.01 pH (initial/final) – Control: 8.1/7.6 100%: 8.0/7.5

Total Ammonia as NH₃ (mg/L) - Effluent: <0.03

Were all Test Conditions in Conformance with Division Guidelines? YES NO

If **NO**, list deviations from test specifications: N/A

Laboratory: SeaCrest Group

Comments:

Analyst's Name: Evelyn Esparza and Aurora Nelson

Signature Date September 19, 2024

Site:	Site: Test End: Oq 724 - 13 5.4 6.4 8.5 8.9 7.5 8.2 4.1 8.5 8.9 7.5 8.4 7.0 8.5 2.0 7.5 8.4 7.0 8.5 2.0 7.5 8.4 7.0 8.5 2.0 7.5 8.4 7.0 8.5 2.0 7.5 8.4 7.0 8.5 2.0 7.5 8.4 7.0 8.5 2.0 7.5 8.4 7.0 8.5 2.0 7.5 8.4 7.0 8.5 2.0 7.5 8.4 7.0 8.5 2.0 7.6 7.7 1.9 8.5 2.0 7.7 7.9 8.5 8.0 7.7 7.0 8.0 7.7	Stee: 1430 Test End: OY 1724—13 41. 1435 Test End: OY 1724—13 42. 172. 5.4 12.4 125. 124 43. 17. 15. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12	Form # 1038 Form # 1038 Effective: March 2022	Lab #: 524423, B. Sample Date: 09092/wc: 89 Dilution H ₂ 0: MHZ ⁴	747	1.5 4.8 6.9 5.2 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 24.124.124.124.2 10 10 10 10 10 10 10 10 10 #2 106 102 1	8.17.6 10 10 10 10 10 10 10 10 10 490 1.04481 0.5K	2 10 10 10 10 10 10 10 Mark 1.0679911	7.7 4.7 7.1 5.1 10 10 10 10 10 10 10 10 15 1.0 249 1. N. 821 10. 428	C 25.22.24.31.24.01.24.01.10 10 10 10 10 10 10 10 10 10 10 10 10 1	7 5 9 7 6 9 1 1 10 10 10 10 10 10 10 10 10 10 10 10		5170 4 CTW 8.1 10 IC	25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.4 X X X X X X X X X X X X X X X X X X X	PEITO 21#01 01 01 01 01 01 00 00 00 00 00 00 00 0	1 L/230 18 # 01 01 01 01 01 01 01 01 02 13 10 26 17 19	24.504.5 24.1049 10 11 11 11 11 11 11 11 11 11 11 11 11	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C 42 87 17 40 10 10 10 10 10 10 10 10 10 10 10 10 10	25.124.7 24.624.1249 10 10 10 10 10 10 #18 10 5C.121 MIND 10 10 10 10 10 10 10 10 10 10 10 10 10	7.7 0 7 4 6 7 7 6 10 10 10 10 10 419 10 35 10 10 10 10 10 10 10 10 10 10 10 10 10	300 10 10 10 10 10 10 10 10 20 10 520	20128148 10 10 10 10 10 10 10 10 421 06 305 105843 01 01 01 01 10 10 10 10 10 10 10 10 10	24.824.124.9 10 10 10 10 10 9 9 9 #22 1.06.191 1.05.9510.490	125 60 6 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6					32	5 10581	Units:	500 mL DO: mg/L	250 mL Temp: °C	rea: 50.2 cm pH: N/A	eding Schedule		Used:	
Table Sald	Fathead Min Test End: 09 1724 - 1330 Species Info: 140 Style 155 24 24 24 24 24 24 24	Fathead Min Test End: 09 1724 - 1330 Species Info: 140 15. 19. 2 S. 2 4 B. 1 17.5 4.8 24.3 24.1 25.2 24.1 24.1 24.3 24.1 25.2 24.1 24.1 24.3 24.1 25.2 24.1 24.1 24.3 24.1 25.2 24.1 24.1 24.3 24.1 25.2 24.1 24.1 24.3 24.1 25.2 24.1 24.1 24.3 24.1 25.2 24.1 24.1 24.3 24.1 25.2 24.1 24.1 24.3 24.1 25.2 24.1 24.1 25.6 7.1 24.1 25.2 24.1 25.6 7.1 24.1 25.2 24.1 25.6 7.1 24.1 24.1 25.6 7.1 24.1 25.2 24.1 25.6 7.2 44.2 25.2 24.1 26.7 7.4 25.2 24.1 26.7 7.4 25.2 24.1 27.1 7.4 25.2 24.1 27.2 24.1 24.1 27.3 24.1 25.2 24.1 27.4 27.1 24.1 27.5 24.1 24.1 27.7 24.2 25.1 27.7 24.2 25.1 27.7 24.2 25.1 27.7 24.3 24.1 27.7 24.3 25	hsheet	3924IMC: &	ω H	0 0	01 01 01 0	01 0 010	01 (1) (1)	01 11 01 0	64							01 010							0 0 0 0	010	01 01 01 0	01 01 01 0	2 2							Hard: mg/L	Alk: mg/L		ı			
Table Salut Salu	Fathead Min Test End: 09 1724 - 1330 Species Info: 140 Style 155 24 24 24 24 24 24 24	Fathead Min Test End: 09 1724 - 1330 Species Info: 140 15. 19. 2 S. 2 4 B. 1 17.5 4.8 24.3 24.1 25.2 24.1 24.1 24.3 24.1 25.2 24.1 24.1 24.3 24.1 25.2 24.1 24.1 24.3 24.1 25.2 24.1 24.1 24.3 24.1 25.2 24.1 24.1 24.3 24.1 25.2 24.1 24.1 24.3 24.1 25.2 24.1 24.1 24.3 24.1 25.2 24.1 24.1 24.3 24.1 25.2 24.1 24.1 25.6 7.1 24.1 25.2 24.1 25.6 7.1 24.1 25.2 24.1 25.6 7.1 24.1 24.1 25.6 7.1 24.1 25.2 24.1 25.6 7.2 44.2 25.2 24.1 26.7 7.4 25.2 24.1 26.7 7.4 25.2 24.1 27.1 7.4 25.2 24.1 27.2 24.1 24.1 27.3 24.1 25.2 24.1 27.4 27.1 24.1 27.5 24.1 24.1 27.7 24.2 25.1 27.7 24.2 25.1 27.7 24.2 25.1 27.7 24.3 24.1 27.7 24.3 25	onic Benc	ole Date: 09 (\vdash	9	_	10 JN 1		10 (()					10 10	10 10	10 10	⊢	\perp	1	10 0	t	0	10 10	10 01	10 (1)		_	10 01	10 10	10	10	┺		1	DO: mg/L	Temp: °C	PH: N/A	Cond: µs/cm			
Site: 0024 La Spie: 0024 La Sp	26.5 Site: 06.24 La Test End. 09/1724 – 1330 5.4 6.4 5.5 5.9 4/6 7.4 4 7.5 8.4 7.5 5.4 4.5 5.4 1.7	26.5 Site: 06.24 La Test End. 09/1724 – 1330 5.4 (6.4 5.5 5.9 M 6 7.1 M 7.5 (8.4 1.25.27 M 1.	Minnow Chr	R		1.8 16.9 5.2	74.1.22	8.	12	4.717.15	DC 17 12	1	1-	777	1 hc	0	000	E 7 K	24.1	0	- 6	d 17.7 d	2	74 RO7 E	306	2.8	24.1	0,0	200	-		-			nber	500 mL	250 mL	50.2 cm		2x per day	<24hr artemia	
Ste. S.	Site: Test End: Oq TZU - 13 5.4 6.4 5.5 5.9 7.5 8.4 7.7 7.9 7.5 8.4 7.5 7.9 7.5 8.4 7.5 7.9 7.5 8.4 7.0 5.7 7.6 8.0 7.0 7.9 7.6 8.0 7.0 7.9 7.6 8.0 7.0 7.9 7.6 8.0 7.0 7.9 7.6 8.0 7.0 7.9 7.6 8.0 7.0 7.9 7.6 8.0 7.0 7.9 7.6 8.0 7.0 7.9 7.7 7.9 7.9 7.9 7.7 7.9 7.9 7.9 7.7 7.9 7.9 7.9 7.7 7.9 7.9 7.9 7.7 7.9 7.9 7.9 7.7 7.9 7.9 7.9 7.7 7.9 7.9 7.9 7.7 7.9 7.9 7.9 7.7 7.9 7.9 7.9 7.7 7.9 7.9 7.9 7.7 7.9 7.9 7.9 7.7 7.9 7.9 7.9 7.8 7.9 7.9 7.9 7.9 7.9	Site: Test End: Oq TZU - 13 5.4 6.4 5.5 5.9 7.5 8.4 7.7 7.9 7.5 8.4 7.5 7.9 7.5 8.4 7.5 7.9 7.5 8.4 7.0 5.7 7.6 8.0 7.0 7.9 7.6 8.0 7.0 7.9 7.6 8.0 7.0 7.9 7.6 8.0 7.0 7.9 7.6 8.0 7.0 7.9 7.6 8.0 7.0 7.9 7.6 8.0 7.0 7.9 7.6 8.0 7.0 7.9 7.7 7.9 7.9 7.9 7.7 7.9 7.9 7.9 7.7 7.9 7.9 7.9 7.7 7.9 7.9 7.9 7.7 7.9 7.9 7.9 7.7 7.9 7.9 7.9 7.7 7.9 7.9 7.9 7.7 7.9 7.9 7.9 7.7 7.9 7.9 7.9 7.7 7.9 7.9 7.9 7.7 7.9 7.9 7.9 7.7 7.9 7.9 7.9 7.8 7.9 7.9 7.9 7.9 7.9	Fathead	- 1	Species Info:	7.5	1.47	80	310	14.6.7.7	-	7.501		110	25.7.244	7.0	-10	9.0.80	24.5	0		42 621	-	7.2 0 7	316	4.18.3	24.9	120	2			e/	3.6	30	Exposure Char		Volume:	Surface Area:	constant): Feeding St	-	Used:	
	26.5 24.7 (2.4) 172.4 24.3 (2.4) 172.4 24.3 (2.4) 172.4 24.3 (2.4) 172.7 24.3 (2.4) 172.7 24.3 (2.4) 172.7 24.3 (2.4) 172.7 24.3 (2.4) 173.7 24.3 (2.4) 173.7 24.3 (2.4) 173.7 24.3 (2.4) 173.7 24.3 (2.4) 174.7 24.3 (2.4) 174.7 25.4 (2.4) 174.7 26.5 (2.4) 174.7 27.7 (26.5 24.7 (2.4) 172.4 24.3 (2.4) 172.4 24.3 (2.4) 172.4 24.3 (2.4) 172.7 24.3 (2.4) 172.7 24.3 (2.4) 172.7 24.3 (2.4) 172.7 24.3 (2.4) 173.7 24.3 (2.4) 173.7 24.3 (2.4) 173.7 24.3 (2.4) 173.7 24.3 (2.4) 174.7 24.3 (2.4) 174.7 25.4 (2.4) 174.7 26.5 (2.4) 174.7 27.7 (550	146 13,1	15557M	15 90	3301	アドナルの	475 CM	207	277	アトトゥ	50	1	22	1-	15475	F	4002	7 7 7 N	2757750	271 78	455	917	525725.7		187	-	_		AN	3		Total Capacit	Test Solution	Test Solution	water Depth	Fed	23	
	P. C.	1		i i	3	18.560	1327	18472	341	0 5.3 HC		ri	-	N	2000 2000	(10.		19718	7127	257	シスタロン	1250 75.	778 79	250	3 4777 S		35 35 T	200	-		-	AN	7	Rcv 3				+	ľ	23	10

Site: 002A

CETIS Ana	lytic	al Repo	ort								ort Date				03 (p 1 of 3) 15-9197-0090
Fathead Minn	ow 7-c	Larval S	urviva	and Grov	vth Te	est								Sea	Crest Group
Analysis ID: Analyzed:		14-6027 p-24 9:03	Ţ.	Endpoint Analysis:		Survival Ra		vs T	Freatments		IS Vers		CETISV 1	1.9.6	
Batch ID: Start Date: Ending Date: Test Length:	10 Se 17 Se	p-24		Test Type Protocol: Species: Taxon:	EP.	owth-Surviva A/821/R-02 nephales pr	-013 (20	02)		Dilu Brin	ent: ie:	Reco	Tech onstituted \ Applicable ouse Cultu		Age:
Sample ID: Sample Date: Receipt Date: Sample Age:	00-50- 09 Se 10 Se	48-5176 p-24		Code: Material: CAS (PC) Client:	524 PO	4423.B TW Effluen				Proj Sou	ect: rce:	WET	Γ Quarterly ES Permit		e Test (3Q)
Data Transfor	m		Alt H	lур						NOEL	LOEL		TOEL	TU	PMSD
Angular (Corre	ected)		C > 1							100	>100		n/a	1	8.70%
Steel Many-O	ne Ran	k Sum Te	est												
Control	vs	Conc-%			Stat	11074 1107	Ties		P-Type	P-Value	Decis	sion(α:5%)		
Dilution Water		23 45 89 95 100		16 18 18 14		10 10 10 10	1 1 1 1	6 6 6 6	CDF CDF CDF CDF	0.6105 0.8333 0.8333 0.3451 0.3451	Non-S Non-S Non-S	Signif Signif Signif	icant Effecticant	t t t	
ANOVA Table	ő					10		0	CDI	0.5451	NOTIFIC	olgilli	icant Effec		
Source		Sum Squ	ares	Mea	n Sqı	ıare	DF		F Stat	P-Value	Decis	ion(d	a:5%)		
Between		0.0382144	1		76429		5		1.12	0.3849	Non-S	Signif	icant Effec	t	
Error Total		0.122827		0.00	68237	7	18								
10000000		0.161041					23								
ANOVA Assur															
Attribute		Test					Test S	tat	Critical	P-Value	Decis	ion(c	x:1%)		
Variance Distribution				of Variance Iormality T			0.8118	3	0.884	4.6E-04	Indete Non-N		ate al Distribut	ion	
7d Survival Ra	ate Sur	nmary													
Conc-%	(Code	Coun	t Mea	n	95% LCL	95% U	CL	Median	Min	Max		Std Err	CV%	%Effect
0)	4	1.00	00	1.0000	1.0000)	1.0000	1.0000	1.0000	0	0.0000	0.00%	0.00%
23			4	0.95	00	0.7909	1.0000)	1.0000	0.8000	1.0000	0	0.0500	10.53%	5.00%
45			4	1.00	00	1.0000	1.0000)	1.0000	1.0000	1.0000)	0.0000	0.00%	0.00%
89			4	1.000		1.0000	1.0000)	1.0000	1.0000	1.0000)	0.0000	0.00%	0.00%
95			4	0.950		0.8581	1.0000		0.9500	0.9000	1.0000)	0.0289	6.08%	5.00%
100			4	0.950	00	0.8581	1.0000	1	0.9500	0.9000	1.0000)	0.0289	6.08%	5.00%
Angular (Corre															
Conc-%		ode	Coun			95% LCL	95% U	CL	Median	Min	Max		Std Err	CV%	%Effect
0 23)	4	1.412		1.412	1.412		1.412	1.412	1.412		0	0.00%	0.00%
23 45			4	1.336		1.093	1.578		1.412	1.107	1.412		0.07622	11.41%	5.40%
45 89			4	1.412		1.412	1.412		1.412	1.412	1.412		0	0.00%	0.00%
95			4	1.412		1.412	1.412		1.412	1.412	1.412		0	0.00%	0.00%
100			4	1.331		1.181 1.181	1.48 1.48		1.331 1.331	1.249 1.249	1.412 1.412		0.04705 0.04705	7.07% 7.07%	5.77% 5.77%
							-423 C00008		100 TO TO D						0.7770

003-715-114-2

CETIS™ v1.9.6.14

Analyst: _____ QA:_____

SCG Project No.: 524423.B Project: Quarterly WET

SCG Project No.: 524423.B **Site: 002A Project: Quarterly WET**

CETIS	Ana	lytical Repo	ort							oort Date st Code/II				9:03 (p 1 of 2)
Fathea	d Minn	ow 7-d Larval S	urvival an	d Growt	h Test								Se	aCrest Group
Analysi	is ID:	01-9125-2993	En	dpoint:	7d Survival Rat	te			CE	TIS Versi	on:	CETIS	1.9.6	
Analyze	ed:	18 Sep-24 9:03	An	alysis:	Linear Interpola	ation (ICPIN	1)		Sta	tus Leve	l:	1		
Batch I	D:	04-0005-9987	Te	st Type:	Growth-Surviva	al (7d)			Ana	alyst:	Lab	Tech		
Start Da	ate:	10 Sep-24	Pre	otocol:	EPA/821/R-02-	013 (2002)					Reco	onstituted	Water	
Ending	Date:	17 Sep-24	Sp	ecies:	Pimephales pro	omelas			Brit	ne:	Not A	Applicable	•	
Test Le	ngth:	7d 0h	Та	kon:	Actinopterygii				Sou	urce:	In-H	ouse Cult	ure	Age:
Sample	D:	00-5048-5176	Co	de:	524423.B				Pro	ject:	WET	Quarterl	y Complia	nce Test (3Q)
Sample	Date:	09 Sep-24	Ma	terial:	POTW Effluent	1							it # (XX999	
Receipt	t Date:	10 Sep-24	CA	S (PC):					Sta	tion:	002A	4		
Sample	Age:	24h	Cli	ent:	Thorin Resource	es								
Linear	Interpo	lation Options												
X Trans	sform	Y Transform	n Se	ed	Resamples	Exp 95%	6 CL I	Method						
Linear		Linear	13	37278	1000	Yes			nt Inter	polation				
Point E	stimate	es												
Level	%	95% LCL	95% UC	. TU	95% LCL	95% UCL								
LC5	100	86.24	n/a	1	n/a	1.16								
LC10	>100	n/a	n/a	<1	n/a	n/a								
LC15	>100	n/a	n/a	<1	n/a	n/a								
LC20	>100	n/a	n/a	<1	n/a	n/a								
LC25 LC40	>100		n/a	<1	n/a	n/a								
LC50	>100	n/a n/a	n/a n/a	<1 <1	n/a	n/a								
2011-20170			II/a	×1	n/a	n/a								
		te Summary				Calcu	ulated V	ariate(A	/B)				Isot	onic Variate
Conc-%)	Code	Count	Mean		Max	Std D		/%	%Effe	ct	A/B	Mean	%Effect
0 23		D	4	1.000		1.0000	0.000		00%	0.0%		40/40	1	0.0%
45			4	0.950		1.0000	0.1000		.53%	5.0%		38/40	0.9833	1.67%
89			4	1.000		1.0000	0.0000		00%	0.0%		40/40	0.9833	1.67%
95			4	0.950		1.0000	0.0000		00%	0.0%		40/40	0.9833	1.67%
100			4	0.9500		1.0000	0.0577)8%)8%	5.0% 5.0%		38/40	0.95 0.95	5.0% 5.0%
7d Surv	ival Ra	te Detail			3 330 334		0.0017	0.0	70 70	3.076		30/40	0.95	5.0%
Conc-%	0	Code	Rep 1	Rep 2	Rep 3	Rep 4								
0		D	1.0000	1.0000	1.0000	1.0000								
23			1.0000	0.8000	1.0000	1.0000								
45			1.0000	1.0000	1.0000	1.0000								
89			1.0000	1.0000	1.0000	1.0000								
95			0.9000	1.0000	0.9000	1.0000								
100			1.0000	0.9000	1.0000	0.9000								

003-715-114-2

CETIS™ v1.9.6.14

Analyst: QA:

SCG Project No.: 524423.B **Site: 002A Project: Quarterly WET**

								Test			- 1 120.0 7 1	5-9197-00
Fathead Minn	ow 7-d Larva	al Survival	and Growth	Test							SeaC	rest Grou
Analysis ID: Analyzed:	18-8211-892 18 Sep-24 9			Mean Dry Bion Parametric-Co		reat	tments		IS Versio us Level:	n: CETISv1 1	.9.6	
Batch ID:	04-0005-998	7	Test Type:	Growth-Surviva	al (7d)			Anal	lyst: La	ab Tech		
Start Date:	10 Sep-24		Protocol:	EPA/821/R-02-	-013 (200	2)		Dilu	ent: R	econstituted V	Vater	
Ending Date:	17 Sep-24		Species:	Pimephales pro	omelas			Brin	e: N	ot Applicable		
Test Length:	7d 0h		Taxon:	Actinopterygii				Soul	rce: In	-House Cultur	e	Age:
Sample ID:	00-5048-517	6	Code:	524423.B				Proj	ect: V	/ET Quarterly	Complianc	e Test (30
Sample Date:	09 Sep-24		Material:	POTW Effluent	t			Soul	rce: N	PDES Permit	# (XX9999	9999)
Receipt Date:	10 Sep-24		CAS (PC):					Stati	ion: 00	02A		
Sample Age:	24h		Client:	Thorin Resource	ces							
Data Transfor	m	Alt H	ур					NOEL	LOEL	TOEL	TU	PMSD
Untransformed	t	C > T						100	>100	n/a	1	16.00%
Dunnett Multi	ple Compari	son Test										
Control	vs Conc	-%	Test St	at Critical	MSD	DF	P-Type	P-Value	Decisio	on(α:5%)		
Dilution Water	23		-0.4223	2.407	0.074	6	CDF	0.9281	Non-Sig	gnificant Effect		
	45		-1.502	2.407	0.074	6	CDF	0.9959	Non-Sig	gnificant Effect		
	89		-1.575	2.407	0.074	6	CDF	0.9967	Non-Sig	gnificant Effect		
	95		-1.096	2.407	0.074	6	CDF	0.9867	Non-Sig	nificant Effect		
	100		-0.6821	2.407	0.074	6	CDF	0.9608	Non-Sig	nificant Effect		
ANOVA Table												
Source		quares	Mean S	quare	DF		F Stat	P-Value	Decisio	on(α:5%)		
Between	0.0073	574	0.00147	715	5		0.776	0.5796	Non-Sig	nificant Effect		
Error	0.0341		0.00189	962	18		_					
Total	0.0414	892			23							
ANOVA Assur	nptions Test	s										
Attribute	Test				Test St	tat	Critical	P-Value	Decisio	n(α:1%)		
Variance	Bartlet	Equality o	f Variance Te	st	3.299		15.09	0.6539	Equal V	ariances		
Distribution	Shapir	o-Wilk W N	lormality Test		0.9468		0.884	0.2310	Normal	Distribution		
	mace ma Su	mmary										
Mean Dry Bio	iliass-iliy Su									04.4.5	CV%	%Effect
	Code	Count	t Mean	95% LCL	95% U	CL	Median	Min	Max	Std Err		
Conc-%	250	Count 4	t Mean 0.4633	95% LCL 0.3868	95% U 0.5397	CL	Median 0.466	Min 0.403	Max 0.518	0.02403	10.37%	0.00%
Conc-%	Code					CL						0.00%
Conc-% 0 23	Code	4	0.4633	0.3868	0.5397	CL	0.466	0.403	0.518	0.02403	10.37% 8.93%	-2.81%
Conc-% 0 23 45	Code	4	0.4633 0.4763	0.3868 0.4086	0.5397 0.5439	CL	0.466 0.479	0.403 0.428	0.518 0.519	0.02403 0.02125	10.37%	-2.81% -9.98%
Conc-% 0 23 45 89	Code	4 4 4	0.4633 0.4763 0.5095	0.3868 0.4086 0.4502	0.5397 0.5439 0.5688	CL	0.466 0.479 0.4965	0.403 0.428 0.481	0.518 0.519 0.564	0.02403 0.02125 0.01862	10.37% 8.93% 7.31%	-2.81% -9.98% -10.47%
Conc-% 0 23 45 89	Code	4 4 4 4	0.4633 0.4763 0.5095 0.5118	0.3868 0.4086 0.4502 0.4383	0.5397 0.5439 0.5688 0.5852	CL	0.466 0.479 0.4965 0.492	0.403 0.428 0.481 0.483	0.518 0.519 0.564 0.58	0.02403 0.02125 0.01862 0.02308	10.37% 8.93% 7.31% 9.02%	-2.81% -9.98%
Conc-% 0 23 45 89 95	Code D	4 4 4 4 4	0.4633 0.4763 0.5095 0.5118 0.497	0.3868 0.4086 0.4502 0.4383 0.4039	0.5397 0.5439 0.5688 0.5852 0.5901	CL	0.466 0.479 0.4965 0.492 0.4855	0.403 0.428 0.481 0.483 0.439	0.518 0.519 0.564 0.58 0.578	0.02403 0.02125 0.01862 0.02308 0.02926	10.37% 8.93% 7.31% 9.02% 11.77%	-2.81% -9.98% -10.47% -7.29%
Conc-% 0 23 45 89 95 100 Mean Dry Bior Conc-%	Code D mass-mg Del	4 4 4 4 4	0.4633 0.4763 0.5095 0.5118 0.497	0.3868 0.4086 0.4502 0.4383 0.4039	0.5397 0.5439 0.5688 0.5852 0.5901	CL	0.466 0.479 0.4965 0.492 0.4855	0.403 0.428 0.481 0.483 0.439	0.518 0.519 0.564 0.58 0.578	0.02403 0.02125 0.01862 0.02308 0.02926	10.37% 8.93% 7.31% 9.02% 11.77%	-2.81% -9.98% -10.47% -7.29%
Conc-% 0 23 45 89 95 100 Mean Dry Bior Conc-% 0	Code D	4 4 4 4 4 4	0.4633 0.4763 0.5095 0.5118 0.497 0.4843	0.3868 0.4086 0.4502 0.4383 0.4039 0.4559	0.5397 0.5439 0.5688 0.5852 0.5901 0.5126	CL	0.466 0.479 0.4965 0.492 0.4855	0.403 0.428 0.481 0.483 0.439	0.518 0.519 0.564 0.58 0.578	0.02403 0.02125 0.01862 0.02308 0.02926	10.37% 8.93% 7.31% 9.02% 11.77%	-2.81% -9.98% -10.47% -7.29%
Conc-% 0 23 45 89 95 100 Mean Dry Bior Conc-% 0	Code D mass-mg Del	4 4 4 4 4 4 tail	0.4633 0.4763 0.5095 0.5118 0.497 0.4843	0.3868 0.4086 0.4502 0.4383 0.4039 0.4559	0.5397 0.5439 0.5688 0.5852 0.5901 0.5126	CL	0.466 0.479 0.4965 0.492 0.4855	0.403 0.428 0.481 0.483 0.439	0.518 0.519 0.564 0.58 0.578	0.02403 0.02125 0.01862 0.02308 0.02926	10.37% 8.93% 7.31% 9.02% 11.77%	-2.81% -9.98% -10.47% -7.29%
Conc-% 0 23 45 89 95 100 Mean Dry Bior Conc-% 0 23	Code D mass-mg Del	4 4 4 4 4 4 tail Rep 1	0.4633 0.4763 0.5095 0.5118 0.497 0.4843 Rep 2	0.3868 0.4086 0.4502 0.4383 0.4039 0.4559 Rep 3	0.5397 0.5439 0.5688 0.5852 0.5901 0.5126 Rep 4 0.403	CL	0.466 0.479 0.4965 0.492 0.4855	0.403 0.428 0.481 0.483 0.439	0.518 0.519 0.564 0.58 0.578	0.02403 0.02125 0.01862 0.02308 0.02926	10.37% 8.93% 7.31% 9.02% 11.77%	-2.81% -9.98% -10.47% -7.29%
Mean Dry Bion Conc-% 0 23 45 89 95 100 Mean Dry Bion Conc-% 0 23 45 89	Code D mass-mg Del	4 4 4 4 4 4 tail Rep 1 0.454 0.428	0.4633 0.4763 0.5095 0.5118 0.497 0.4843 Rep 2 0.478 0.504	0.3868 0.4086 0.4502 0.4383 0.4039 0.4559 Rep 3 0.518	0.5397 0.5439 0.5688 0.5852 0.5901 0.5126 Rep 4 0.403 0.519	CL	0.466 0.479 0.4965 0.492 0.4855	0.403 0.428 0.481 0.483 0.439	0.518 0.519 0.564 0.58 0.578	0.02403 0.02125 0.01862 0.02308 0.02926	10.37% 8.93% 7.31% 9.02% 11.77%	-2.81% -9.98% -10.47% -7.29%
Conc-% 0 23 45 89 95 100 Mean Dry Bior Conc-% 0 23 45	Code D mass-mg Del	4 4 4 4 4 4 tail Rep 1 0.454 0.428	0.4633 0.4763 0.5095 0.5118 0.497 0.4843 Rep 2 0.478 0.504 0.481	0.3868 0.4086 0.4502 0.4383 0.4039 0.4559 Rep 3 0.518 0.454 0.501	0.5397 0.5439 0.5688 0.5852 0.5901 0.5126 Rep 4 0.403 0.519 0.564	CL	0.466 0.479 0.4965 0.492 0.4855	0.403 0.428 0.481 0.483 0.439	0.518 0.519 0.564 0.58 0.578	0.02403 0.02125 0.01862 0.02308 0.02926	10.37% 8.93% 7.31% 9.02% 11.77%	-2.81% -9.98% -10.47% -7.29%

003-715-114-2

CETIS™ v1.9.6.14

Analyst: OM QA:

Site: 002A

CETIS	S Ana	lytical Repo	ort							Report D				0:03 (p 2 of 2 15-9197-009
Fathea	d Minn	ow 7-d Larval S	urvival	and G	Growt	n Test							Sea	Crest Group
Analys	is ID:	15-5341-9047	E	Endp	oint:	Mean Dry Bion	nass-mg	93		CETIS V	ersion:	CETIS	1.9.6	
Analyz	ed:	18 Sep-24 9:03	-	Analy	sis:	Linear Interpola	ation (ICPIN	I)		Status L	.evel:	1		
Batch	ID:	04-0005-9987	1	Test 1	уре:	Growth-Surviva	al (7d)			Analyst:	Lab [*]	Tech		
Start D	ate:	10 Sep-24	F	Proto	col:	EPA/821/R-02-	-013 (2002)			Diluent:	Reco	onstituted	Water	
Ending	Date:	17 Sep-24	5	Speci	es:	Pimephales pro	omelas			Brine:	Not A	Applicable		
Test L	ength:	7d 0h	1	Taxor	1:	Actinopterygii				Source:	In-Ho	ouse Culti	ure	Age:
Sampl	e ID:	00-5048-5176	(Code:		524423.B				Project:	WET	Quarterly	y Complian	ce Test (3Q
Sampl	e Date:	09 Sep-24		Mater	ial:	POTW Effluent	t			Source:	NPD	ES Permi	t # (XX999	99999)
Receip	t Date:	10 Sep-24	(CAS (PC):					Station:	002A	4		
Sampl	e Age:	24h	(Client	::	Thorin Resource	ces							
Linear	Interpo	lation Options												
X Tran	sform	Y Transform	1 5	Seed		Resamples	Exp 95%	CL Me	thod					
Linear		Linear	1	14745	9	1000	Yes	Twe	o-Point I	nterpolati	ion			
Point E	stimat	es												
Level	%	95% LCL	95% U	CL '	TU	95% LCL	95% UCL							
IC5	>100	n/a	n/a		<1	n/a	n/a							
IC10	>100	n/a	n/a		<1	n/a	n/a							
IC15	>100	n/a	n/a	1	<1	n/a	n/a							
IC20	>100	n/a	n/a		<1	n/a	n/a							
IC25	>100	n/a	n/a		<1	n/a	n/a							
IC40	>100	n/a	n/a		<1	n/a	n/a							
IC50	>100	n/a	n/a	•	<1	n/a	n/a							
Mean [Ory Bio	mass-mg Summ	ary				Ca	Iculated V	ariate				Isoto	nic Variate
Conc-%	6	Code	Count	ı	Mean	Min	Max	Std Dev	CV%	%	Effect		Mean	%Effect
0		D	4	(0.4633	0.403	0.518	0.04806	10.3	7% 0.0	0%		0.4916	0.0%
23			4	(0.4763	0.428	0.519	0.04251	8.93	% -2.	.81%		0.4916	0.0%
45			4	(0.5095	0.481	0.564	0.03724	7.319	% -9.	98%		0.4916	0.0%
89			4	(0.5118	0.483	0.58	0.04616	9.029	% -10	0.47%		0.4916	0.0%
95			4	(0.497	0.439	0.578	0.05852	11.77	7% -7.	29%		0.4916	0.0%
100			4	C	0.4843	0.462	0.501	0.01782	3.689	/ 6 -4 .	53%		0.4843	1.49%
Vlean D	ry Bior	mass-mg Detail												
Conc-%	ó	Code	Rep 1	F	Rep 2	Rep 3	Rep 4							
)		D	0.454	C	.478	0.518	0.403							
23			0.428	0	.504	0.454	0.519							
1 5			0.492	0	.481	0.501	0.564							
39			0.483	0	.5	0.58	0.484							
95			0.439	0	.479	0.492	0.578							
100			0 400	_										

003-715-114-2

0.462

0.496

0.501

0.478

CETIS™ v1.9.6.14

Analyst: CM QA:

SCG Project No.: 524423.B

Project: Quarterly WET

Appendix 4 – QA/QC and Reference Toxicant Test Chart

Client: Thorin Resources Site: 002A

SCG Project No.: 524423.B **Project: Quarterly WET**

Quality Assurance Check List – Chronic Whole Effluent Toxicity Test

Client:	Thorin Resources	
SeaCrest Sample No:	524423.B	
-		10.1 1 :
Species Tested:	Ceriodaphnia dubia	and fathead minnow
Sample Dates	Start Date of Test (Ceriodaphnia dubia)	Start Date of Test (fathead minnow)
09-09-2024 09-11-2024	· · · · · · · · · · · · · · · · · · ·	
09-12-2024	09-10-2024	09-10-2024
Sample received in lab proper	ly preserved (0-6°C)?	Y
Sample received at laboratory	within 36 hours of collection?	Y
Sample delivered on ice or equ	uivalent?	Y
Test initiated within 36-hours	of collection?	Y
Test protocol conforms to CD	PHE guidelines (Ceriodaphnia dubia)?	Y
Test protocol conforms to CD	PHE guidelines (fathead minnow)?	Y
Average test temp. ±1°C (Ceri	odaphnia dubia)?	Y
Average test temp. ±1°C (father	ead minnow)?	Y
DO level ≥4.0mg/L; no super-	saturation (Ceriodaphnia dubia)?	Y
DO level ≥4.0mg/L; no super-	saturation (fathead minnow)?	Y
Survival in control ≥80% (<i>Cer</i>	riodaphnia dubia)?	Y
Survival in control ≥80% (fath	nead minnow)?	Y
Ceriodaphnia dubia neonates	<24-hours old?	Y
Fathead minnow larvae <24-h	ours old?	Y
Appropriate reference toxicity	test conducted?	Y
Reference toxicity test results	within the confidence limits for the lab	Y

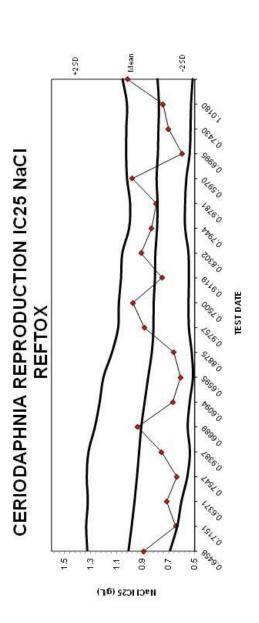
Author Position: Laboratory Manager Date September 19, 2024

September 19, 2024

	2
c	٦
≥	_
⊐	С
Ξ	_
_	_
Ц	ш
=	=
2	2
_	_

SEACREST & GROUP

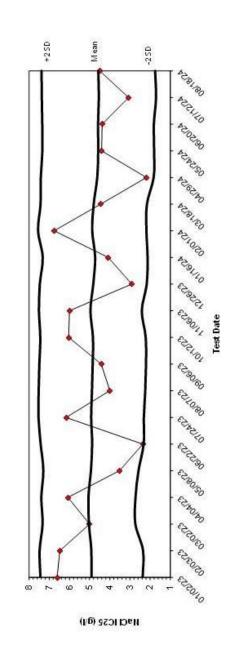
oc


Method	Analyte	Date	LCS (rec)	%REC	%RPD	QC LIMITS
2320 B	Alkalinity - Total	8/8/2024	%09.76	96.48%	-1.75%	± 2.00%
2320 B	Alkalinity - Total	8/15/2024	101.60%	89.86	4.33%	± 5.00%
2320 B	Alkalinity - Total	8/22/2024	104.80%	97.87%	-1.00%	± 5.00%
2320 B	Alkalinity - Total	8/28/2024	100.80%	97.01%	-1.02%	± 5.00%
4500 NH ₃ D	Ammonia	8/7/2024	103.00%	100.44%	%69.0-	± 10.00%
4500 NH ₃ D		8/15/2024	104.00%	105.00%	-3.13%	± 10.00%
4500 NH ₃ D		8/23/2024	103.40%	%05.96	-3.57%	± 10.00%
4500 NH ₃ D	Ammonia	8/28/2024	95.40%	104.91%	1.98%	± 10.00%
4500 CI D	Chlorine	8/23/2024	103.45%	103.33%	%00.0	± 5.00, ± 20.00%
2340 B	Hardness - Total	8/8/2024	98.25%	102.48%	1.23%	± 5.00%
2340 B	Hardness - Total	8/15/2024	105.00%	103.00%	-3.39%	± 5.00%
2340 B	Hardness - Total	8/22/2024	102.00%	101.00%	-2.41%	± 5.00%
2340 B	Hardness - Total	8/28/2024	101.75%	104.40%	1.63%	± 5.00%
						;
			CS (rec)	%REC M1	%REC M2	QC Limits
4500 O	DO - Winkler	8/8/2024	N/A	98.55%	98.55%	± 2.00%
4500 O	DO - Winkler	8/15/2024	N/A	98.55%	101.50%	± 5.00%
4500 O	DO - Winkler	8/21/2024	N/A	100.00%	97.14%	± 5.00%
4500 O	DO - Winkler	8/29/2024	N/A	101.45%	102.94%	± 5.00%
			Blank	%REC MR S	%RPD	QC Limits
2540 D	Suspended Solids (TTL)	8/28/2024	100.00%	89.00%	%00.0	+ 15%
2540 C	Dissolved Solids (TTL)	8/28/2024	100.00%	110.50%	%00.0	± 15%
	1100	7				
Signature:	The state of the s	1			Signature:	Tollar West
1		1				
Date:	JepternBer 1"	1024			Date:	September 1, 2024

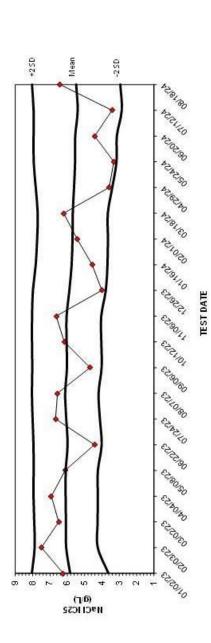
SeaCrest Group 500 S Arthur Ave. Suite 450 Louisville, CO 80027 (303) 661.9324 FAX (303) 661.9325

Mean **CERIODAPHNIA SURVIVAL LC25 NaCI REFTOX** *Callo 12/12/00 PELSO ATSUMO PORORO Scool o **IEST DATE** Edou, Edalor ECHORO ESHORO Ed Follo ECTON DO Ed Ross EZELJAD EZIOEO COMODO Eddolo 5

N9CHC52 (B/F)


-2 SD	1.3622	1.3307	1.3336	1.4129	1.4102	1.4176	1.4243	1.3336	1.2766	1.2703	1.2784	1.2717	1.2767	1.2774	1.2678	1.3131	1.3927	1.3941	1.4215	1,4885
Mean	2.1075	2.0869	2.0844	2.1144	2.1045	2.0965	2.0907	2.0580	2.0104	2.0158	2.0476	2.0655	2.0518	2.0617	2.0578	2.0995	2.1471	2.1378	2.1444	2 1860
IC25	2.3330	1.7860	2.4480	2.1300	2.1250	2.3330	2.3780	1.4375	1.5000	2.4480	2.5000	2.5000	2.1720	2.3330	1.7500	2.5000	2.5000	2.2500	1.6500	2.5000
Date	01/02/23	02/04/23	03/01/23	04/19/23	05/08/23	06/19/23	07/03/23	08/07/23	09/07/23	10/16/23	11/20/23	12/11/23	01/02/24	02/01/24	03/11/24	04/15/24	05/13/24	06/21/24	07/12/24	8/25/2024

Date	IC25	Mean	.2 SD	+2 SD
13	0.8910	1.0085	0.6912	1.3258
33	0.6458	0.98411255	0.634012766	1.334212334
33	0.7151	0.9621	0.6021	1.3221
33	0.6371	0.9431	0.5562	1.3300
33	0.7547	0.9267	0.5369	1.3165
33	0.9387	0.9105	0.5540	1.2670
33	0.6689	0.8843	0.5384	1.2302
13	0.6094	0.8575	0.5136	1.2014
33	0.6595	0.8290	0.5226	1.1353
10/16/23	0.8875	0.8164	0.5450	1.0878
33	0.9757	0.8150	0.5474	1.0826
33	0.7500	0.8049	0.5440	1.0658
24	0.9119	0.8019	0.5477	1.0560
54	0.8302	0.7888	0.5736	1.0040
24	0.7944	0.7848	0.5734	0.9962
24	0.9781	0.7923	0.5644	1.0202
54	0.5970	0.7824	0.5384	1.0265
24	0.6995	0.7784	0.5315	1.0252
14	0.7430	0.7741	0.5279	1.0202
08/25/24	1.0180	0.7853	0.5160	1.0545


Client: Thorin Resources Site: 002A

FHM SURVIVAL LC25 NaCI REFTOX

-2 SD +2 SD	2.3687	2.3524	2.7367	2.7278	2.5790	2.3230	2.3130	2.2436	2.2052	2.2221	2.4111	2.1721	2.1284	2.1868	2.1625	1.8268	1.8037	9 1.8168 7.3510	1.7090	4 75.6n
IC25 Mean	6.6150 4.9051						6.1696 4.9250				6.0000 4.9627					2.1900 4.6245	4	4	3.0670 4.5415	A 5000
Date	01/02/23	02/03/23	03/02/23	04/04/23	05/08/23	06/22/23	07/24/23	08/07/23	09/06/23	10/12/23	11/06/23	12/26/23	01/16/24	02/01/24	03/18/24	04/29/24	05/24/24	06/20/24	07/12/24	08/18/24

FHM GROWTH IC25 NaCI REFTOX

+2 SD	8.0455	7.8824	7.9047	7.9479	7.9416	7.9487	7.9998	8.0415	8.0196	8.0354	8.0330	7.9799	7.8186	7.7345	7.7017	7.8170	7.9377	7.9437	7.9433	8.0376
-2 SD	3.6291	4.2424	4.2468	4.2384	4.2341	4.0146	4.1185	4.1925	4.0192	4.0372	4.0375	3.7796	3.6808	3.6572	3.6624	3.4072	3.1637	3.1435	2.8641	2 9474
Mean	5.8373	6.0624	6.0758	6.0931	6.0879	5.9816	6.0591	6.1170	6.0194	6.0363	6.0352	5.8797	5.7497	5.6958	5.6820	5.6121	5.5507	5.5436	5.4037	5.4925
IC25	6.2350	7.4870	6.5000	6.9180	6.1200	4.4340	6.6760	6.5670	4.6810	6.1750	6.6360	4.0036	4.5690	5.4310	6.2100	3.5807	3.3150	4.4150	3.4180	6.4180
Date	01/02/23	02/03/23	03/02/23	04/04/23	05/08/23	06/22/23	07/24/23	08/07/23	09/06/23	10/12/23	11/06/23	12/26/23	01/16/24	02/01/24	03/18/24	04/29/24	05/24/24	06/20/24	07/12/24	08/18/24

December 20, 2024

CJ Dickerson **Thorin Resources** 6208 County Road 26 Ouray, CO 81427

Dear CJ:

Enclosed is the report for chronic biomonitoring tests performed for Thorin Resources on effluent from the Wastewater Treatment Plant 002A outfall. There was no statistically significant toxicity to either test species at any effluent concentration. The effluent passes WET (Whole Effluent Toxicity) testing requirements for this sampling period.

If you have any questions or concerns, please do not hesitate to contact me at (303) 661-9324.

Best regards,

Haley West

Senior Laboratory Manager

Halug West

REPORT OF CHRONIC BIOMONITORING TESTS CONDUCTED FOR THORIN RESOURCES ON EFFLUENT FROM THE WWTP 002A OUTFALL

Prepared for:

CJ Dickerson **Thorin Resources** 6208 County Road 26 Ouray, CO 81427

Prepared by:

Haley West
SeaCrest Group
500 S Arthur Ave. Suite 450
Louisville, Colorado 80027-3065
(303) 661-9324

December 20, 2024

SCG Project No.: 524575.B Project: Quarterly WET

TABLE OF CONTENTS

CHRONIC TOXICITY TEST SUMMARY	3
ABSTRACT WITH RESULTS	4
INTRODUCTION	5
MATERIALS AND METHODS	5
SAMPLE COLLECTION	5
DILUTION WATER	
TEST ORGANISMS	
TEST PROCEDURE	
DATA ANALYSIS	
RESULTS	
CERIODAPHNIA DUBIA TEST RESULTS	
FATHEAD MINNOW TEST RESULTS	
TEST ACCEPTABILITY	
DISCUSSION	9
REFERENCES	9
APPENDIX 1 – CHAIN OF CUSTODY WITH SAMPLE RECEIPT FORMS	10
APPENDIX 2 – DATA SHEETS FOR THE CERIODAPHNIA DUBIA TEST	17
WET TEST REPORT FORM – CHRONIC	18
APPENDIX 3 – DATA SHEETS FOR THE FATHEAD MINNOW TEST	25
WET TEST REPORT FORM – CHRONIC	26
APPENDIX 4 – QA/QC AND REFERENCE TOXICANT TEST CHARTS	32
LIST OF TABLES	
TABLE 1: STATISTICAL METHODS USED IN TESTING	7
TABLE 2: SUMMARY OF CERIODAPHNIA DUBIA TEST RESULTS	7
TABLE 3: SUMMARY OF FATHEAD MINNOW TEST RESULTS	8
TABLE 4: PMSD FOR CHRONIC TEST PARAMETERS	8

SCG Project No.: 524575.B Project: Quarterly WET CO-0000003 **Site: 002A**

Chronic Toxicity Test Summary

	7-day static renewal using <i>Ceriodaphnia dubia</i>
Test:	7-day static renewal using fathead minnow (<i>Pimephales promelas</i>)
Client:	Thorin Resources
Test Procedure	Ceriodaphnia dubia: EPA/821/R-02-013. Method 1002.0 (2002)
Followed:	fathead minnow: EPA/821/R-02-013. Method 1000.0 (2002)
Sample Number:	524575.B
Dilution Water:	moderately hard laboratory reconstituted water
Test Organism Source:	SeaCrest Group
Reference Toxicant:	Sodium Chloride

Sample	Time of Collection	Date of Collection	Time of Receipt	Date of Receipt
Effluent 1	1100	12-10-2024	0920	12-11-2024
Effluent 2	1030	12-11-2024	1000	12-12-2024
Effluent 3	1300	12-12-2024	0935	12-13-2024

	Ceriodaphnia dubia	fathead minnow
Test Initiation Time	1330	1100
Test Initiation Date	12-11-2024	12-11-2024
Test Completion Time	1340	1130
Test Completion Date	12-17-2024	12-18-2024

CO-0000003 SCG Project No.: 524575.B **Site: 002A Project: Quarterly WET**

Abstract with Results

Test Concentrations: Control (0%), 23%, 45%, 89%, 95%, 100%

10 for Ceriodaphnia dubia

40 for fathead minnow **Number of Organisms/Concentration:**

10 for Ceriodaphnia dubia

Replicates at each Concentration: 4 for fathead minnow

	Ceriodaphnia dubia	fathead minnow
Test vessel size/Exposure volume	30ml/15ml	500ml/200ml
Sub-lethal NOEL/IC25	100%/>100%	100%/>100%
Pass/Fail Status	PASS	PASS
Temperature Range (°C)	24.1 - 25.3	24.1 – 24.9
Dissolved Oxygen Range (mg/L)	6.8 - 8.9	3.8 - 8.8
pH Range	7.6 - 8.1	7.3 - 8.1
	Control (<i>Cerio</i> /FHM)	Effluent Sample
Hardness (mg/L as CaCO ₃)	82/90	178/181/136
Alkalinity (mg/L as CaCO ₃)	59/57	65/69/68
Total residual chlorine (mg/L)	< 0.01	< 0.01
Total ammonia (mg/L as NH ₃)	< 0.03	< 0.03

INTRODUCTION

Biomonitoring provides an effective means by which the toxicity of discharges from municipal, industrial, and mining operations can be tested. Among the advantages of biomonitoring is the ability to test complex effluents containing a broad range of contaminants. Biomonitoring, when used in conjunction with chemical analyses, can generate data capable of identifying a much wider range of contaminants.

The Colorado Water Quality Control Division requires certain NPDES permittees to perform acute and/or chronic biomonitoring tests. The chronic test measures significant differences in lethality and in reproduction (*Ceriodaphnia dubia*) or growth (fathead minnow – *Pimephales promelas*) between control and effluent-exposed organisms.

The present report discusses the results of chronic biomonitoring tests conducted on effluent from the Thorin Resources WWTP 002A discharge. These tests were conducted in accordance with EPA and State of Colorado procedures in December 2024.

MATERIALS AND METHODS

Sample Collection

Two or three gallons of the effluent were collected on three separate dates as specified in Permit CO-0000003. Samples were delivered chilled to the SeaCrest lab where they were held at 0-6°C. Chain of custody forms showing sample collection and laboratory arrival times are included (Appendix 1).

Dilution Water

Laboratory reconstituted water was used as both the dilution water source and the control for the tests. Reconstituted water for the *Ceriodaphnia dubia* test was produced by adding sodium bicarbonate, calcium sulfate, magnesium sulfate, potassium chloride, and sodium selenate to deionized water. Reconstituted water for the fathead minnow test was produced by adding sodium bicarbonate, calcium sulfate, magnesium sulfate, and potassium chloride to deionized water.

Test Organisms

The biomonitoring test used *Ceriodaphnia dubia*, cultured in the SeaCrest laboratory. The organisms are cultured in brood culture boards from which individual females are monitored for survival and reproduction for periods of up to two weeks. Neonates less than 24-hours old, released from third or subsequent broods of eight or more within an 8-hour period, are collected from the brood chambers and used in tests. The animals are fed daily with a mixture of Yeast, Cereal Leaves, and Trout Chow (YCT), produced in-house. This is supplemented with cultured green algae (*Selenastrum capricornutum*) provided by Aquatic Biosystems.

Less than one-day-old fathead minnow, cultured in the laboratory, were also used in the test. Adult fish are maintained in 10-gallon aquaria where females deposit their eggs on the under-surface of split PVC pipe sections. The eggs are collected daily and transferred to aerated containers where they hatch after three to four days. The larval fish are fed newly hatched brine shrimp (*Artemia* sp.) at least twice per day.

In-house organisms are tested monthly in a reference toxicant test using sodium chloride to monitor overall health and test reproducibility (Appendix 4).

Test Procedures

Upon receipt at the lab, samples were analyzed for alkalinity, ammonia, chlorine, conductivity, dissolved oxygen, hardness, and pH.

Methods used in chemical analysis

Alkalinity	EPA 310.2	Hach 8203	I-2030-85.2
Ammonia	SM4500-NH ₃ , C-E1997	ASTM D1426-08	
Chlorine	SM4500-Cl D	Hach 10026	
Conductivity	SM2510		
Dissolved Oxygen	SM4500-O	Electrode: G-2001	Winkler (QC): B-F-2001
Hardness	SM2340 B or C	Hach 8213	
pН	SM4500-H+ B-2000		

The test followed procedures in EPA³ and CDPHE⁴ guidelines. Exposure concentrations included control (0%), 23%, 45%, 89%, 95%, and 100% mixtures, diluted with moderately hard laboratory reconstituted water.

Individual *Ceriodaphnia dubia* were placed in 30ml plastic containers containing approximately 15ml of exposure medium. Ten replicates at each concentration were used. The animals were fed daily with the YCT mixture and an equal volume of the green algae (*Selenastrum capricornutum*). The exposure medium was changed daily in each container and the number of young released overnight were counted and recorded. Young were removed from the containers daily and discarded. Routine measurements were made each day of temperature, dissolved oxygen, and pH before and after the water changes.

Fathead minnow were exposed in 500ml plastic cups to which 250ml of media was replaced daily. Four replicates were used at each concentration. Ten fish, less than 24-hours old, were placed in each cup. The fish were monitored daily for survival and fed live brine shrimp at least twice per day. After seven days, the fish were removed from the cups, euthanized with isopropyl alcohol, and then placed in aluminum pans and dried in an oven for a minimum of six hours at 100°C. The pans were then weighed on a five-place analytical balance to determine the average dry weight of the fish from each replicate.

Data Analysis

Data from the tests were analyzed on a personal computer using the CETIS program (developed by Tidepool Scientific Software). Statistical tests used in the analyses are shown in Table 1. Test acceptability was determined using control survival and reproduction/growth criteria, concentration-response relationships, and percent minimum significant differences (USEPA ^{5,6}).

Table 1. Statistical methods used in testing for significant differences in test parameters.

	e	8	-				
Va	ariance	Distribution					
Bartlett Equali	ty of Variance Test	Shapiro-W	ilk W Normality Test				
	Statistical	Difference					
Species	Survival	Growth	Reproduction	IC ₂₅			
Ceriodaphnia dubia	Fisher Exact/Bonferroni-Holm Test	N/A	Steel Many-One Rank Sum Test	ICp			
fathead minnow	Steel Many-One Rank Sum Test	Dunnett Multiple Comparison Test	N/A	ICp			

RESULTS

Ceriodaphnia dubia Test Results

Test results for the *Ceriodaphnia dubia* are summarized in Table 2 and provided on the data sheets located in Appendix 2. Survival was 90% in the 100% effluent and was 100% in the remaining effluent concentrations. Control survival was 80%. No statistically significant lethality was measured in any effluent concentration when compared to the control. The NOEL (No Observed Effect Level) for lethality was 100% and the LC_{25} (Lethal Concentration 25) for lethality was >100%.

Average number of neonates was 20.3 in the 100% effluent concentration and ranged from 21.3-22.6 in the remaining effluent concentrations. The average number of neonates in the control was 18.4 for statistical analyses and test acceptability criteria. No statistically significant differences in the number of neonates were found between the control and any effluent concentration. The NOEL for reproduction was 100% and the IC_{25} (Inhibition Concentration 25) for reproduction was >100%.

Table 2. Summary of *Ceriodaphnia dubia* test results. An asterisk (*) denotes a statistically significant difference from the control.

Significant anne.				=		-
	Domoont	Maan			Significant	t Difference
Concentration	Percent Survival	Mean Neonates	Min.	Max.	Lethality	Reprod.
Control (0%)	80	18.4	4	27		
23%	100	21.3	17	25		
45%	100	22.2	14	31		
89%	100	22.5	11	30		
95%	100	22.6	12	31		
100%	90	20.3	4	26		

Fathead Minnow Test Results

Fathead minnow results are summarized in Table 3 and are provided on data sheets in Appendix 3. Survival was 95% in the 100% effluent concentration and ranged from 95% - 100% in the remaining effluent concentrations. Control survival was 100%. No statistically significant lethality was measured in any effluent concentration when compared to the control. The NOEL for lethality was 100% and the LC_{25} for lethality was >100%.

Average weight in the 100% effluent concentration was 0.547mg and ranged from 0.465mg - 0.530mg per individual in the remaining effluent concentrations. The average weight for the control fish was 0.521mg for statistical analyses and test acceptability criteria. No statistically significant differences for growth were measured in any effluent concentration when compared to the control. The NOEL for growth was 100% and the IC_{25} for growth was >100%.

Table 3. Summary of fathead minnow test results. An asterisk (*) denotes a statistically significant difference from the control.

Significant units					C'	D'cc
	Percent	Average			Significant	Difference
Concentration	Survival	Weight (mg)	Min.	Max.	Lethality	Growth
Control (0%)	100	0.521	0.463	0.605		
23%	100	0.465	0.394	0.531		
45%	100	0.502	0.414	0.582		
89%	95	0.530	0.509	0.543		
95%	100	0.511	0.435	0.579		
100%	95	0.547	0.493	0.587		

Test Acceptability

Acceptable control survival (80%) was achieved in both tests. Similarly, *Ceriodaphnia dubia* reproduction (average 15 neonates/organism) and fathead minnow growth (average 0.250mg/test container) in control organisms met required levels. PMSD was within the required limits for an acceptable test (Table 4).

Table 4. PMSD for chronic test parameters.

Table 4. I MISD for	chi onic test paran	neters.		
	fathead min	now growth	C. dubia rep	oroduction
	Lower bound	Upper bound	Lower bound	Upper bound
PMSD	12	30	13	47
(% Minimum significant difference)	18	.4	31.	8

DISCUSSION

A failed test for this discharge occurs when there is an NOEL or IC₂₅ less than the IWC (Instream Waste Concentration) of 89%. The NOEL represents the highest effluent concentration at which no statistically significant effect is observed. The IC₂₅ represents an estimate of the effluent concentration that would cause a 25 percent reduction of a non-quantal biological measurement. A violation for this discharge occurs when both the NOEL and the IC₂₅ are less than the IWC. Since neither test species demonstrated statistically significant differences meeting these criteria, the discharge passes WET testing requirements for this sampling period.

REFERENCES

- 1. **Hach Chemical Company.** 2008. *Hach's Water Analysis Handbook*. Fifth Edition. Hach Chemical Company, Loveland, Colorado. Digital Medium.
- 2. **APHA/AWWA/WEF.** 1998. *Standard Methods for the Examination of Water and Wastewater*. 20th Edition. American Public Health Association, Washington, D.C.
- 3. **USEPA.** 2002. Short Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms. EPA-821-R-02-013. 335 pp.
- 4. **CDPHE** (Colorado Department of Public Health and Environment). 1998. *Laboratory Guidelines for Conducting Whole Effluent Toxicity Tests.* Water Quality Control Division.
- 5. **USEPA.** 2000. *Method of Guidance and Recommendations for Whole Effluent Toxicity* (WET) Testing (40 CFR Part 136). EPA/821/B-00/004.
- 6. **USEPA**. 2000. Understanding and Accounting for Method Variability in Whole Effluent Toxicity Applications under the National Pollutant Discharge Elimination System Program. EPA/833/R-00/003.

Appendix 1 – Chain of Custody with Sample Receipt Forms

CO-0000003 SCG Project No.: 524575.B Project: Quarterly WET

SLACKES I A UROOF ENVIRONMENTAL SERVICES LABORATORY	ABORATORY			CHAIN	10FC	CHAIN OF CUSTODY	λ		200 2	. Arth	ır Ave (nue, 303) (Jnit 4 561.9	500 S. Arthur Avenue, Unit 450 - Louisville, CO 80027 (303) 661.9324 - FAX (303) 661.9325	lle, CO 8 03) 661.	9325
lient/Project Name:	Thech F	Resources	5 0 2			-		Ā	Analysis (Check all applicable)	(Chec	k all a	pplic	able)			
O./Project Number:	100						Below)					(Circle)				
Adress: (900 Main hone # (602) 793 - 13 ax #	57	Unit- all: c) dic	E-Mail: c) & Cherron e than	HW1, 1850	Indica & Belov	c (Indic y te Belo ated (Indicate	eteoibnI) 38T\	(woles	(SZT\2) (Circle) (wol98	، /V۱ (Circle)		al/Fecal/E-Col	(woled teil) si	/word real of	snenistno	1
eport By:	PDF PDF	FAX					31 T /IT	B tsiJ)							O fo 19	əшnjo
Sample Location or ID	Date	Time	Grab/ Comp	Lab ID (UAB USE Only)			WET: P	Metals	sbilo2 snoinA		bns liO		BOD/C		Mumbe	V lstoT
女290日	4 12/10	11:00	P	52456.84		×									0	100
Turnaround Requirements (Analytical Testing Only) Standard (10 days)	quirements	6-9 Day 11-2 Day	lest Species: [Test Species: Afathead Minnow Special Instructions/Comments:		Rerio daphnia	o daphni		Daphnia magna 🔲 Daphnia pulex	a magr		Daphin	ja puk	ex Other (List Below)	(List Be	(wo
equested Report Date:			Received Rv (1)	_		9	Polinguiched By (2)	3	5				6			
Date	//Time Signatur	(r) ka nakian	Date/Time	Signature		Induis	lea by	Date/Time	ē	Signature	a.i	Kec	Received By (2)	Date/Time	
Diduction 12/10	4.55/2 8	1				Som					0	5	16	2	124	

CO-0000003

Site: 002A

SCG Project No.: 524575.B **Project: Quarterly WET**

SeaCrest Group Louisville, CO	mple Receipt F	orm	Effective: J	Form #: anuary 20
Project # 524575.8 Date: 171124 Samples Were:		Sample #: \\ Initials: \(\begin{align*} \text{EW} \\ \end{align*}		-
1. FedEx UPS Notes:	Courier	Hand Delivery	(circle or	ne)
2. Chilled to Ship		Ambien	t Chilled)
Cooler Received Broken or Leaking Notes:		Υ	N	NA
Sample Received Broken or Leaking Notes:		Υ	N	
5. Received Within 36hr Holding Time Notes:		Ŷ	N	
6. Aeration necessary		Υ	N	
7. pH adjustment necessary		Υ	N	
Sample Received at Temperature bet Notes:	tween 0-6° C .	Y	N	NA
3/ 4	and/or Presence of P. M.	Particulate Matter):		
Receiving: N/A Presence of native species:		Υ	$\binom{N}{N}$	

Lab#	Temp	D.O.	рН	Cond
575.B	1.7	7.1	7.8	432

Custody Seals:

Present on Outer Package	Y	N	
2. Unbroken on Outer Package	Υ	N	(NA)
3. Present on Sample	Υ	N	
4. Unbroken on Sample	Υ	N	NA

Custody Documentation (Chain of Custody):

1. Present Upon Receipt of Sample

SeaCrest Group 12

Ν

CO-0000003 SCG Project No.: 524575.B Project: Quarterly WET

80027								V IstoT	3aal)					1	elow)					# Z	
500 S. Arthur Avenue, Unit 450 - Louisville, CO 80027 (303) 661.9324 - FAX (303) 661.9325					iners	etno	O fo 1	Mumbe	2				1			Other (List Below)				(2	Date/Time	
) - Louis 4 - FAX (Received By (2)		
it 450	(e)			(wo	lə8 ta	il) είε	sylen/	Other								Daphnia magna Daphnia pulex				Recei	1	
, Uni) 661	Analysis (Check all applicable)					ircle)	ob (c	BOD\C								hnia				-	1	
enne (303	lage	(ə	(Circ	(ilo⊃-	3/leo	tal/Fe	Coliform (Tota									Dap					e J	
r Av	all					əs	Grea	bns liO													Signature	
rthu	heck			(Sircle) I / /I	II wn	Chromi								nagu						
v.	is (C				(^	vole8	tsiJ)	snoinA	N-10-							nian			rime			
200	alys			rcle)	(C!	ST/SC	JT/ST) sbilo2								Daph				2	Date/Time	
	An				(^	volea	l tsiJ)	Metals												Relinquished By (2)		
					3											nia				shed		
-		(wolas	eate E	ibn#	3AT\:	3IT/IT	WET: P							\top	daph				ndni		
2					1			A :T3W				T				erio				Reli	L	
3					7			WET: C	X							X						ē (
5					-10		_	A :T3W				\top				NO.	ints:				Signature	
					3				X							Min	mme					
5					李			Lab ID	524575.842							head	s/Co				ime	
					0			La a	5245							Fat	tion				Date/Time	
	,				dichesonething			~ d				\top	\top	1		Test Species: A Fathead Minnow C Cerio daphnia	Special Instructions/Comments:			(1)		
	3				2			Grab/ Comp	0							pecie	la lu			Received By (1)		
	3				ري		-		~							Fest S	peci			ceiv		
	Zesomes			-	5	-	FAX	Time	10:304									ay		Re	V	
	0			-7	=	oler:		=	10								6-9 Day	1-2 Day			e –	
				72	E-Mail:	Sampler:			2		\forall	\top									Signature	
	7.7		20	_			JQ.	Date	7							ents					-	
RATOR	2		2	5	32		D PDF		11/1	2						iren Only)		*			ne .	
ES LABO	1		Dickerso	Main St	793-1321				4		1	+	+			Requ Testing	(s)			(1)	Date/Time	
SERVICI		::	0	2	79.		Mail	Sample Location or ID								Turnaround Requiremen (Analytical Testing Only)	Standard (10 days)		ate:	Relinquished By (1)	0	
4ENTAL	Client/Project Name:	? O./Project Number:	5	0	5			tion	OFOOZA							naro (Ana	rd (1)	_	equested Report Date:	ishe	\	
ENVIRONMENTAL SERVICES LABORATORY	ject l	ct N	0	1900	60			Loca	ည							Ţ	anda	3-5 Day	Repo	ling	1.	
<u>a</u>	/Proj	Proje	t:	:SS:	109)# enough		Report By:	nple	3F								St	7,	sted	Re ,		
A	ient	0./	Contact:	Address:	nor	# xe-	pod	San	7										dne		ignatur	

Site: 002A

SCG Project No.: 524575.B Project: Quarterly WET

(N)

SeaCrest Group Louisville, CO	Sample Receip	ot Form	Effective	Form #: 42 : January 2024
Project # 524575. \(\) Date: \(\frac{121224}{2} \) Samples \(\text{Were:} \)		Sample #: 2 Initials: Ew)	_
1. FedEx UPS Notes:	Courier	Hand Delivery	(circle	one)
2. Chilled to Ship		Ambier	nt Chilled	\supset
3. Cooler Received Broken or Lea Notes:	ıking	Y	N	NA
Sample Received Broken or Le Notes:	aking	Y	N	
5. Received Within 36hr Holding 1 Notes:	「ime	Ŷ	N	
6. Aeration necessary		Υ	N	
7. pH adjustment necessary		Υ	N	
8. Sample Received at Temperatu Notes:	ıre between 0-6° C .	Y	N	NA
9. Description of Sample (Color, C	odor, and/or Presence	e of Particulate Matter)	1	

Lab#	Temp	D.O.	pН	Cond
575#2	2.2	8.8	7.6	460

Presence of native species:

Receiving: N/A

Custody Seals:

1. Present on Outer Package	Υ	· N	
2. Unbroken on Outer Package	Υ	N	(NA)
3. Present on Sample	Υ	N	
4. Unbroken on Sample	Y	N	NA

Custody Documentation (Chain of Custody):

Present Upon Receipt of Sample

500 S. Arthur Avenue, Unit 450 - Louisville, CO 80027 (303) 661.9324 - FAX (303) 661.9325 **Second Apply 1** Other (List Below) 0935 Number of Containers Received By (2) Daphnia magna Daphnia pulex Other Analysis (List Below) Analysis (Check all applicable) BOD/COD (Circle) Coliform (Total/Fecal/E-Coli) (Circle) Oil and Grease Chromium III/VI (Circle) Date/Time Anions (List Below) Solids (TS/TDS/TSS) (Circle) Relinquished By (2) Metals (List Below) Cerio daphnia WET: PTI/TIE/TRE (Indicate Below) UPS CHAIN OF CUSTODY WET: Accelerated (Indicate Below) WET: Chronic (Indigate Below) X Test Species: A Fathead Minnow Special Instructions/Comments: WET: Acute (Indicate Below) therone than 524575.3#3 Lab ID Date/Time Received By (1) Grab/ Comp Resources 13:00 Time FAX 6-9 Day E-Mail: C 1-2 Day Jich 55 in Sampler: anil 12/12 Therin **Turnaround Requirements** Date Main ST 93-1321 (Analytical Testing Only) K Relinquished By (1) Standard (10 days) Sample Location or ID Requested Report Date: Mail Client/Project Name: P. O./Project Number: 0F002A 006 20 3-5 Day Report By: Address: Phone # Contact:

Site: 002A

CO-0000003 SCG Project No.: 524575.B Project: Quarterly WET

(N)

SeaCrest Group Louisville, CO	Sample Receip	t Form	Effective	Form #: 42 e: January 2024
Project # 524 575 . B Date: 121324 Samples Were:		Sample #: 3	3	
1. FedEx Notes:	Courier	Hand Delivery	(circle	one)
2. Chilled to Ship		Ambier	nt Chilled	ð
Cooler Received Broken or Leakin Notes:	g	Y	N	NA
Sample Received Broken or Leaki Notes:	ng	Υ	N	
5. Received Within 36hr Holding Time Notes:	е	Y	N	
6. Aeration necessary		Υ	A	
7. pH adjustment necessary		Υ	N	
8. Sample Received at Temperature Notes:	between 0-6° C .	Y	N	NA
9. Description of Sample (Color, Odo Effluent: clear, light pm	r, and/or Presence	of Particulate Matter)	:	

Lab#	Temp	D.O.	pН	Cond
575.3#3	2.9	8.9	7.7	450

Presence of native species:

Receiving: N/A

Custody Seals:

1. Present on Outer Package	Y	N	
2. Unbroken on Outer Package	Υ	N	(NA)
3. Present on Sample	Υ	N	
4. Unbroken on Sample	Υ	N	NA

Custody Documentation (Chain of Custody):

Present Upon Receipt of Sample

Appendix 2 – Data Sheets for the Ceriodaphnia dubia Test

WET TEST REPORT FORM – CHRONIC

Permittee: Thorin Resources Permit No.: CO-0000003

Outfall: 002A - IWC: 89%

Test Type: Routine 🖂 Accelerated Screen

Test Species: Ceriodaphnia dubia

Test Start Time	Test Start Date	Test End Time	Test End Date
1330	12-11-2024	1340	12-17-2024

Test Results	Lethality/TCP3B	Reproduction/TKP3B
S code: NOEL	100%	100%
	PASS	PASS
P code: LC ₂₅ /IC ₂₅	>100%	>100%
	PASS	PASS
T code:	>100%	>100%

Test Summary

			Julilia			
Measurements	Control (0%)	23%	45%	89%	95%	100%
Exposed organisms	10	10	10	10	10	10
Survival for day 1	10	10	10	10	10	10
Survival for day 2	10	10	10	10	10	10
Survival for day 3	10	10	10	10	10	10
Survival for day 4	9	10	10	10	10	9
Survival for day 5	9	10	10	10	10	9
Survival for day 6	8	10	10	10	10	9
Mean 3 Brood Total	18.4	21.3	22.2	22.5	22.6	20.3

Hardness (mg/L) – Receiving Water: N/A Effluent: 178/181/136 Recon Water: 82 Alkalinity (mg/L) – Receiving Water: N/A Effluent: 65/69/68 Recon Water: 59 Chlorine (mg/L) – Effluent: <0.01pH (initial/final) – Control: 7.9/7.8 100%: 7.8/7.8

Total Ammonia as NH₃ (mg/L) - Effluent: <0.03

Were all Test Conditions in Conformance with Division Guidelines? YES NO

If **NO**, list deviations from test specifications: N/A

Laboratory: SeaCrest Group

Comments:

Analyst's Name: Ethan White, Daniela Thornton, and Hannah Tiede

Date December 20, 2024

Site: 002A

SCG Project No.: 524575.B **Project: Quarterly WET**

SeaCrest Group Form #: 101a Ceriodaphnia Chronic Benchsheet Louisville, CO Effective: March 2023 Resources Permittee: Thorin Lab #: 524 575.B Site: OOIA Template #: 5 Dilution Water: MH24-025 Sample Date: 121024 121124 - 2183 Test Start: 121124 - 1330 Age & Source: Test End: 12 17 24 **Test Conditions:** Total (C) Ω B OD 7.6 6.8 7.1 72 8.1 7.0 8.1 7.4 8.4 24.4 24.1 24.6 24.1 25.3 24.1 24.5 7.8 8.0 8.0 8.1 8.0 7.9 7.9 DO 18.4 24.1 Temp 7.9 8.0 7.9 7.8 7.8 рН Cond (1) a (e W 25 7.6 17. 7.4 8.1 7.48.1 7.6 24.3 24.6 24.1 25.3 24.1 7.9 8.0 8.0 8.0 7.8 7.1 7.9 21. 24.6 24.1 24.4 7.9 7.9 7.8 7.8 25.0 Temp рΗ 7.8 Cond (2) to ie O 7.6 7.2 7.1 7.9 8 24.6 24.1 24.4 24.5 24 7.9 7.8 7.8 7.8 7 3.27.88.1 24.624.225 7.97.98.0 385 3 DO 8.4 7.9 7.9 12.2 24.1 Temp 253 241 24.5 24.1 7.8 рН 17.8 7.8 Cond (3) le 8. Z 8, 1 8.2 7.8 24.7 24.2 25.3 24.1 DO 8.6 8.0 22.5 24.1 24.6 24.1 7.8 7.8 7.8 Temp 24.4 7.9 7.7 7.9 7.8 7.9 7.7 uuz 431 420 7.9 7.7 pН

HW

SeaCrest Group

SCG Project No.: 524575.B **Site: 002A Project: Quarterly WET**

SeaCrest	Group
Louisville,	CO

Ceriodaphnia Chronic Benchsheet

Form #: 101a Effective: March 2023

	0	1	2	3	4	5	6	7	Total
(4)	0	0	0	0	9	8	1)		25
	0	0	0	6	9	0	13		28
	0	0	0	7	8	0	14		29
95	0	0	0	4	6	0	15		25
	0 0		0	5	11	0	15		3)
	0	0	0	Ö	5	7	0		12
	0	0	0	0	4	10	6		20
	0	0	0	0	5	8	7		20
	0	0	0	6	6	O	9		21
	0	0	0	0	9	6	0		15
DO	7.5	7.7 7.5	7.2 8.7	8.3 8.5	8.2 7.9	8.4 8.3	8.0		
Temp	24.1	24.6 24.1	24.4 25.1	24.7 24.3	25.3 741	24.5 24.1	25.0		121
рН	7.8	7.8 7.8	7.9 7.6	7.87.8	79 77	7.9 7.6	7.8		ULY
Cond	425	431	451	441	433	417	1		100
(5)	0	0	0	0	7	10	9		Ue
	0	0	0	4	Ч	0	N		19
	0	0	0	6	Ч	0	14		74
Inn	0	0	0	4	G	0	12		12
100	0	0	0	4	8	0	13		15
	0	0	0	0	7	le	9		22
	0	0	0	0	Ť	5	6		18
	0	0	0	0	6	7	5		18
	0	0	0	7	(0	0	12		25
	0	0	0	0	D 4 -				- 4
DO	7.7	7.7 7.7	7.2 8.8	8.3 8.9	8.2 8.1	8.4 8.5	80		
Temp	24.1	24.6 24.1	244 25.2	24.7 24.3	253 241	24.5 24.1	25.0		70.3
рН	7.8	7.8.7.7	7.9 7.6	7.8 7.7	7.9 7.7	7.9 7.6	7.8		700.
Cond	432	441	460	450	440	425			
Algae	ABS	ABS	A35	ABS	ABS	ABS			
YCT	2409	2409	2409	2409	2409	2400			
H ₂ O	i	ì	2	3	2	3			
Initials	EW	EW	DT	EW	HT	HT	HT		
		Eff #1		#2		#3		Recon	
Hardness		18	18		130	e	8	3	
Alkalinity		45	Le		68	5	5	9	_
Chlorine		0.01		01	10.		u	10.0	_
Ammonia	V	0.03	10.	0.3	10.1)3	W	0.0.3	

Exposure Chamber: Total Capacity: 30mL Total Solution Volume: 15ml

Feeding Schedule: Fed daily Food used: YCT, Algae

Units:

Hardness: mg/L Alkalinity: mg/L Chlorine: mg/L

Cond: µS/cm³

DO: mg/L Temp: °C pH: N/A Ammonia: mg/L

Comments:

x:y:z = board #:row:column

1	2	3	4	5	6	7	8	9	10
A8	A9	BZ	B5	B6	B9	CZ	C5	C8	C10

SCG Project No.: 524575.B **Site: 002A Project: Quarterly WET**

CETIS Ana	lytic	al Repo	ort							ort Date			Dec-24 11:	
Ceriodaphnia	7-d S	urvival and	d Renr	oduction T	est				ies	Code/i	D.	52		rest Group
		27 (CO. S.) (CO. S.) (CO. S.)	и пері		COCASIA.	NICONOCO POR CONTRA LOS COMOS DE								
Analysis ID: 03-9628-7235			Endpoint: 7d Survival Rate						ETIS V		CETIS v	2.1.5		
Analyzed:		ec-24 11:33		Analysis:			ngency Tabl			tatus Le		1		
Edit Date:	18 De	ec-24 0:00		MD5 Hash	: 77E	E0E3A2EA	0C9467327	2DC47EE9	C2EB E	ditor ID	:	008-269	-892-1	
Sample ID:	10-09	79-7762		Code:	524	575.B			Р	roject:	WET	Quarterly	Compliano	e Test (4Q
Sample Date:	10 De	ec-24		Material:	PO	TW Effluent			S	ource:	NPD	ES Permit	# (XX9999	9999)
Receipt Date:	11 De	ec-24		CAS (PC):					s	tation:	001A	4		
Sample Age:	24h			Client:	Tho	rin Resourc	es							
Data Transfor	m		Alt H	lvp				NOEL	LOEL	тс	EL	Tox Unit	s	
Untransformed			C > T	Maria .				100	>100			1		
Fisher Exact/I	Bonfe	rroni-Holm	Test	7										
Control	vs	Conc-%		Test	Stat	P-Type	P-Value	Decision	ı(α:5%)					
Dilution Water		23		1.000	00	Exact	1.0000	Non-Sigr	ificant Ef	fect				
		45		1.000	0	Exact	1.0000	Non-Sign	ificant Ef	fect				
		89		1.000	0	Exact	1.0000	Non-Sign	ificant Ef	fect				
		95		1.000	0	Exact	1.0000	Non-Sign						
		100		0.894	7	Exact	1.0000	Non-Sigr	ificant Ef	fect				
Test Acceptat	oility (Criteria	т.	AC Limits										
Attribute		Test Stat			r	Overlap	Decision							
Control Resp		0.8	0.8	>>		Yes	Passes C	riteria						
7d Survival R	ate Fr	equencies					000000000000000000000000000000000000000							
Conc-%		Code	NR	R		NR + R	Prop NR	Prop R	%Effe	ct				
0		D	8	2		10	0.8000	0.2000	0.00%					
23			10	0		10	1.0000	0.0000	-25.00	%				
45			10	0		10	1.0000	0.0000	-25.00					
89			10	0		10	1.0000	0.0000	-25.00	207				
95			10	0		10	1.0000	0.0000	-25.00					
100			9	1		10	0.9000	0.1000	-12.50					
7d Survival Ra	ate Su	ımmary												
Conc-%		Code	Coun	t Mean		95% LCL	95% UCL	Median	Min	Ma	x	Std Err	CV%	%Effect
0		D	10	0.800	0	0.4984	1.0000	1.0000	0.0000		000	0.1333	52.70%	0.00%
23			10	1.000	0	1.0000	1.0000	1.0000	1.0000		000	0.0000	0.00%	-25.00%
45			10	1.000	0	1.0000	1.0000	1.0000	1.0000	1000	000	0.0000	0.00%	-25.00%
89			10	1.000	0	1.0000	1.0000	1.0000	1.0000		000	0.0000	0.00%	-25.00%
95			10	1.000		1.0000	1.0000	1.0000	1.0000		000	0.0000	0.00%	-25.00%
			10	0.900		0.6738	1.0000	1.0000	0.0000		000	0.1000	35.14%	-25.00%

Convergent Rounding (4 sf)

CETIS™ v2.1.5.6 x64 (008-269-892-1)

Analyst: W QA: DT

sources **CO-0000003**

Client: Thorin Resources Site: 002A

CETIS Analytical Report									eport Da est Code		18 Dec-24 11:33 (p 1 of 2) 524575CD / 14-3629-3788			
Ceriod	aphnia	7-d Survival and	d Reproduc	tion Test								SeaC	rest Group	
Analysis ID: 01-5790-4326 Endp					Survival Rate					/ersion:	CETIS	/2.1.5		
Analyz	ed:	18 Dec-24 11:33		•	near Interpola		500		Status I		1			
Edit Da	Edit Date: 18 Dec-24 0:00 MD5 Hash: 77EE0E3A2EA0C94673272DC47EE90							EE9C2EB	Editor I	D:	008-269	-892-1		
Sample ID: 10-0979-7762 Cod			Cod	e: 52	24575.B				Project	WE	T Quarterly	Compliance	e Test (4Q)	
Sample Date: 10 Dec-24		Mate	erial: Po	OTW Effluent				Source:	: NPE	ES Permi	t # (XX99999	999)		
Receip	t Date:	11 Dec-24	CAS	(PC):					Station:	001/	A			
Sample Age: 24h Cli				nt: Th	norin Resource	es								
Linear	Interpo	olation Options												
X Trans	sform	Y Transform	See	t	Resamples	Exp 95%	CL	Method						
Linear		Linear	9418	19	1000	Yes		Two-Point	Interpolation					
Test Ad	ceptal	oility Criteria	TAC L	mits										
Attribu	te	Test Stat	Lower	Upper	Overlap	Decision								
Control	Resp	0.8	0.8	>>	Yes	Passes C	riteria							
Point E	stimat	es												
Level	%	95% LCL	95% UCL	Tox Unit	s 95% LCL	95% UCL								
LC15	>100			<1										
LC20	>100			<1										
LC25	>100	ii .		<1										
LC40	>100			<1										
LC50	>100			<1										
7d Sur	vival R	ate Summary				Calculated	l Variat	te(A/B)				Isoton	ic Variate	
Conc-%	6	Code	Count	Mean	Median	Min	Max	CV	% %	Effect	ΣΑ/ΣΒ	Mean	%Effect	
0		D	10	0.8000	1.0000	0.0000	1.000	0 52.7	70% 0	.00%	8/10	0.9600	0.00%	
23			10	1.0000	1.0000	1.0000	1.000	0.00)% -2	25.00%	10/10	0.9600	0.00%	
45			10	1.0000	1.0000	1.0000	1.000	0.00)% -2	25.00%	10/10	0.9600	0.00%	
89			10	1.0000	1.0000	1.0000	1.000	0.00)% -2	25.00%	10/10	0.9600	0.00%	
95			10	1.0000	1.0000	1.0000	1.000	0.00)% -2	25.00%	10/10	0.9600	0.00%	

Convergent Rounding (4 sf)

100

10

0.9000

1.0000

0.0000

1.0000

35.14% -12.50% 9/10

CETIS™ v2.1.5.6 x64 (008-269-892-1)

0.9000

6.25%

SCG Project No.: 524575.B

Project: Quarterly WET

Client: Thorin Resources

Site: 002A

CO-0000003 SCG Project No.: 524575.B **Project: Quarterly WET**

CETIS Ana	lytic	al Repo	ort									Date: ode/ID:			33 (p 1 of 1) 14-3629-3788
Ceriodaphnia	7-d S	urvival an	d Repr	oduc	tion Te	st								Sea	Crest Group
Analysis ID: Analyzed: Edit Date:	18 De	388-9663 ec-24 11:33 ec-24 0:00		Anal	ooint: ysis: Hash:	Non		-Control vs		1DE6	Statu	S Version: us Level: or ID:	: CETIS v2 1 008-269-8		
Sample ID: Sample Date: Receipt Date: Sample Age:	10 De			Code Mate CAS Clier	erial: (PC):	POT	575.B TW Effluent				Proje Sour Stati	ce: NP	ET Quarterly (DES Permit #		
Data Transfor	m		Alt H	lyp					NOEL	LOE	L	TOEL	Tox Units	MSDu	PMSD
Untransformed			C > T						100	>100	0		1	5.843	31.76%
Steel Many-Or	ne Ra	nk Sum Te	st						The state of the s						The second second
Control	vs	Conc-%		df	Test S	tat	Critical	Ties	P-Type	P-Va	alue	Decision	(a:5%)		
Dilution Water		23 45 89 95 100		18 18 18 18	114 119.5 123 120.5 115		75 75 75 75 75	2 1 3 1 3	CDF CDF CDF CDF	0.96 0.98 0.99 0.99	29 89 55 13	Non-Sign Non-Sign Non-Sign Non-Sign	ificant Effect ificant Effect ificant Effect ificant Effect ificant Effect		
Test Acceptab	ility (Criteria	TA	AC Li	mits		30,000		3/03/05/3		500				
Attribute		Test Stat	Lowe	r	Upper	e .	Overlap	Decision							
Control Resp		18.4	15		>>		Yes	Passes C							
PMSD		0.3176	0.13		0.47		Yes	Passes C	riteria						
ANOVA Table															
Source		Sum Squa	ires		Mean	Squa	are	DF	F Stat	P-Va	alue	Decision	(a:5%)		
Between Error		133.083			26.616			5	0.8171	0.54	28	Non-Sign	ificant Effect		
Total		1759.1 1892.18			32.575	9		54 59	20 30						
		2500						59							
ANOVA Assum Attribute		Test													
Variance		Bartlett Eq	ualitu a	£ \ / = =:	-			Test Stat	Critical	P-Va		Decision			
Distribution		Shapiro-W						7.593 0.9432	15.09 0.9459	0.18		Equal Var	riances nal Distributio	_	
Reproduction				-				0.0402	0.3433	0.00	75	NOII-NOIII	iai Distributio	n	
Conc-%		Code	Count		Mean		95% LCL	DEW LICE							
0		D	10		18.4		13.34	95% UCL 23.46	Median 19.5	Min 4		Max	Std Err	CV%	%Effect
23		-	10		21.3		19.3	23.46	21	17		27 25	2.237 0.8825	38.45%	0.00%
45			10		22.2		18.78	25.62	22.5	14		31	1.511	13.10% 21.53%	-15.76%
89			10		22.5		18.23	26.77	24	11		30	1.887	26.52%	-20.65%
95			10		22.6		18.21	26.99	23	12		31	1.939	26.52%	-22.28% -22.83%
100			10		20.3		15.69	24.91	22	4		26	2.039	31.76%	-22.83% -10.33%

Convergent Rounding (4 sf)

CETIS™ v2.1.5.6 x64 (008-269-892-1)

Analyst: W QA: DT

Client: Thorin Resources

SCG Project No.: 524575.B **Site: 002A Project: Quarterly WET**

CETI	S Ana	lytical Repo	ort						eport Date		18 Dec-24 11 524575CD /	
Cerioo	laphnia	7-d Survival and	d Reprodu	ction Test							Sea	Crest Group
Analys	is ID:	21-0013-8729	End	lpoint: Re	eproduction				CETIS Ve	rsion:	CETIS v2.1.5	
Analyz	ed:	18 Dec-24 11:33	Ana	lysis: Li	near Interpola	tion (ICPIN)			Status Le	vel:	1	
Edit D	ate:	18 Dec-24 0:00	MD	5 Hash: 50	C86008FBC	730BB19429I	EBC	897D1DE6	Editor ID:		008-269-892-1	
Sampl	e ID:	10-0979-7762	Cod	le: 52	4575.B				Project:	WET	Quarterly Complian	ce Test (4Q)
Sampl	e Date:	10 Dec-24	Mat	erial: Po	OTW Effluent				Source:	NPD	ES Permit # (XX9999	99999)
Receip	ot Date:	11 Dec-24	CAS	S (PC):					Station:	001A		50,5515363 5
Sampl	e Age:	24h	Clie	ent: Th	orin Resourc	es						
Linear	Interpo	olation Options										
X Tran	sform	Y Transform	See	d	Resamples	Exp 95% C	L	Method				
Linear		Linear	459	592	1000	Yes		Two-Point	Interpolatio	n		
Test A	cceptal	oility Criteria	TAC L	imite								
Attribu	ite	Test Stat		Upper	Overlap	Decision						
Contro	Resp	18.4	15	>>	Yes	Passes Crit	eria					
Point I	Estimat	es										
Level	%	95% LCL	95% UCL	Tox Unit	s 95% LCL	95% UCL						
IC15	>100			<1								
IC20	>100			<1								
IC25	>100			<1								
IC40	>100			<1								
IC50	>100			<1								
Repro	duction	Summary				Calculated	d Va	riate			Isoto	nic Variate
Conc-9	6	Code	Count	Mean	Median	Min I	Max	CV%	% %E1	fect	Mean	%Effect
0		D	10	18.4	19.5	4 2	27	38.4	5% 0.00)%	21.4	0.00%
23			10	21.3	21	17 2	25	13.1		76%	21.4	0.00%
45			10	22.2	22.5		31	21.5			21.4	0.00%
89			10	22.5	24		30	26.5			21.4	0.00%
95			10	22.6	23		31	27.1			21.4	
100			10	20.3			6	31.7			7.7	0.00%
			ALTERNATION OF THE PARTY OF THE			7 2	.0	31.7	070 -10.	33%	20.3	5.14%

Convergent Rounding (4 sf)

CETIS™ v2.1.5.6 x64 (008-269-892-1)

Analyst: W QA: DT

Client: Thorin Resources CO-0000003 SCG Project No.: 524575.B Site: 002A Project: Quarterly WET

Appendix 3 – Data Sheets for the Fathead Minnow Test

CO-0000003

SCG Project No.: 524575.B Site: 002A **Project: Quarterly WET**

WET TEST REPORT FORM – CHRONIC

Permittee: Thorin Resources **Permit No.:** CO-0000003

Outfall: 002A - IWC: 89%

Test Type: Routine | Accelerated Screen

Test Species: fathead minnow

Test Start Time	Test Start Date	Test End Time	Test End Date
1100	12-11-2024	1130	12-18-2024

Test Results	Lethality/TCP6C	Growth/TKP6C
S code: NOEL	100%	100%
	PASS	PASS
P code: LC ₂₅ /IC ₂₅	>100%	>100%
	PASS	PASS
T code:	>100%	>100%

Test Summary

	Control					
Measurements	(0%)	23%	45%	89%	95%	100%
Exposed organisms	40	40	40	40	40	40
Survival for day 1	40	40	40	40	40	40
Survival for day 2	40	40	40	40	40	40
Survival for day 3	40	40	40	40	40	40
Survival for day 4	40	40	40	39	40	40
Survival for day 5	40	40	40	39	40	40
Survival for day 6	40	40	40	38	40	38
Survival for day 7	40	40	40	38	40	38
Mean Dry Wt. (mg)	0.521	0.465	0.502	0.530	0.511	0.547

Effluent: 178/181/136 Recon Water: 90 Hardness (mg/L) – Receiving Water: N/A Alkalinity (mg/L) – Receiving Water: N/A Effluent: 65/69/68 Recon Water: 57 Chlorine (mg/L) – Effluent: <0.01pH (initial/final) – Control: 8.0/7.7 100%: 7.6/7.4

Total Ammonia as NH₃ (mg/L) - Effluent: <0.03

Were all Test Conditions in Conformance with Division Guidelines? YES NO

If **NO**, list deviations from test specifications: Dissolved oxygen fell below 4.0mg/L in effluent test chambers overnight.

Laboratory: SeaCrest Group

Comments:

Analyst's Name: Ryan Belmont, Daniela Thornton, and Aurora Nelson

Signature Date December 20, 2024

CO-0000003 SCG Project No.: 524575.B Project: Quarterly WET

Form #: 103a Effective: March 2022 2 Dilution H₂O: MH24-065 1.07554 191601 108134 Alk: mg/L Chlor: mg/L NH₃: mg/L Hard: mg/L Fathead Minnow Chronic Benchsheet DO: mg/L Temp: °C pH: N/A 10 10 10 500 mL 250 mL 50.2 cm 6.5 cm 2x per day Lab #: 524575, Test Solution Volume: Test Solution Surface Area: Food Used: otal Capacity 200 Site: 7.41.14.2 SeaCrest Group Louisville, CO Тетр Temp 45 95 S

Client: Thorin Resources

Site: 002A

Client: Thorin Resources CO-0000003 SCG Project No.: 524575.B Site: 002A Project: Quarterly WET

CETIS Analy	tical Repo	ort						rt Date: Code/ID:			57 (p 1 of 3 6-2598-727
Fathead Minnow	7-d Larval S	urvival and	Growth Te	est						SeaC	rest Group
Analyzed: 19	-5491-9743 Dec-24 11:57 Dec-24 0:00	7 Ana	lysis: No		te -Control vs 1 DCD0AD45		Sta	TIS Version: tus Level: tor ID:	CETIS v2 1 008-269-8		
Sample ID: 04- Sample Date: 10	-7318-0134 Dec-24	Cod		4575.B TW Effluent				50	T Quarterly (DES Permit #		
Receipt Date: 11 Sample Age: 24		CAS Clie	(PC): nt: The	orin Resourc	ces		Sta	tion: 002	A		
Data Transform		Alt Hyp				NOEL	LOEL	TOEL	Tox Units	MSDu	PMSD
Angular (Correcte	d)	C > T			-	100	>100		1	0.06181	6.18%
Steel Many-One I	Rank Sum Te	est									
Control vs	Conc-%	df	Test Stat	Critical	Ties	P-Type	P-Value	Decision(α:5%)		
Dilution Water	23	6	18	10	1	CDF	0.8333	Non-Signi	ficant Effect		
	45	6	18	10	1	CDF	0.8333	Non-Signi	ficant Effect		
	89	6	14	10	1	CDF	0.3451		ficant Effect		
	95	6	18	10	1	CDF	0.8333		ficant Effect		
	100	6	14	10	1	CDF	0.3451	Non-Signi	ficant Effect		
Test Acceptabilit		TAC L	imits								
Attribute	Test Stat	A STATE OF THE STA	Upper	Overlap	Decision	***************************************					
Control Resp	1	0.8	>>	Yes	Passes Ci	riteria					
ANOVA Table											
Source	Sum Squa	ares	Mean Squ	uare	DF	F Stat	P-Value	Decision(α:5%)		
Between	0.0354124	Į.	0.0070825	5	5	2.4	0.0780	Non-Signi	ficant Effect		
Error	0.0531187		0.0029510)	18	_					
Total	0.0885311				23						
ANOVA Assumpt											
Attribute	Test				Test Stat	Critical	P-Value	Decision(α:1%)		
Variance		uality of Va			0.7500	0.004	0.05.05	Indetermin			
Distribution		ilk W Norm	ality rest		0.7563	0.884	6.2E-05	Non-Norm	al Distributio	on	
7d Survival Rate											
Conc-%	Code	Count	Mean	95% LCL	95% UCL		Min	Max	Std Err	CV%	%Effect
0	D	4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
23		4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
45		4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
89		4	0.9500	0.8581	1.0000	0.9500	0.9000	1.0000	0.0289	6.08%	5.00%
95 100		4	1.0000	1.0000 0.8581	1.0000	1.0000 0.9500	1.0000	1.0000	0.0000 0.0289	0.00%	0.00% 5.00%
				0.0001	1.0000	0.3300	0.3000	1.0000	0.0203	0.0070	3.0078
Angular (Correcte			55-0	050/ 1 01	050/ 1101				0.15	0.497	
Conc-%	D	Count 4	Mean	95% LCL	000000000000000000000000000000000000000	Median	Min	Max	Std Err	CV%	%Effect
	D	4	1.4120 1.4120	1.4120 1.4120	1.4120 1.4120	1.4120 1.4120	1.4120 1.4120	1.4120 1.4120	0.0000	0.00%	0.00%
0			1.4120			1.4120	1.4120	1.4120	0.0000	0.00%	0.00%
0 23			1 4120	1 4120	1 /1120			1.4120			U.UU70
0 23 45		4	1.4120	1.4120	1.4120			1 4120			
0 23			1.4120 1.3310 1.4120	1.4120 1.1810 1.4120	1.4120 1.4800 1.4120	1.3310	1.2490	1.4120 1.4120	0.0471	7.07% 0.00%	5.77%

Convergent Rounding (4 sf)

CETIS™ v2.1.5.6 x64 (008-269-892-1)

Analyst: W QA: DT

Client: Thorin Resources

Site: 002A

Report Date: 19 Dec-24 11:57 (p 1 of 2) **CETIS Analytical Report** 524575FHM / 06-2598-7278 Test Code/ID: Fathead Minnow 7-d Larval Survival and Growth Test SeaCrest Group Analysis ID: 05-0230-2205 Endpoint: 7d Survival Rate **CETIS Version: CETIS v2.1.5** Analyzed: 19 Dec-24 11:57 Analysis: Linear Interpolation (ICPIN) Status Level: Edit Date: 19 Dec-24 0:00 MD5 Hash: 2AD87E95DA9DCD0AD45C8CE393141FF Editor ID: 008-269-892-1 Sample ID: 04-7318-0134 Code: 524575.B Project: WET Quarterly Compliance Test (4Q) Sample Date: 10 Dec-24 Material: POTW Effluent NPDES Permit # (XX99999999) Source: Receipt Date: 11 Dec-24 CAS (PC): Station: Sample Age: 24h Client: Thorin Resources **Linear Interpolation Options** X Transform Y Transform Seed Resamples Exp 95% CL Method Linear Linear 1238688 1000 Two-Point Interpolation Yes **Test Acceptability Criteria TAC Limits** Attribute Test Stat Lower Upper Overlap Decision Control Resp 1 0.8 Passes Criteria >> Yes Point Estimates Level 95% LCL 95% UCL Tox Units 95% LCL LC15 >100 <1 LC20 >100 <1 LC25 >100 <1 LC40 >100 <1 LC50 >100 <1 7d Survival Rate Summary Calculated Variate(A/B) Isotonic Variate Conc-% Code Count Mean Median Min %Effect ΣΑ/ΣΒ Mean %Effect 0 D 1.0000 1.0000 1.0000 1.0000 0.00% 0.00% 40/40 1.0000 0.00% 23 1.0000 1.0000 1.0000 1.0000 0.00% 0.00% 40/40 1.0000 0.00% 45 1.0000 1.0000 1.0000 1.0000 0.00% 0.00% 40/40 1.0000 0.00% 89 0.9500 0.9500 0.9000 1.0000 6.08% 5.00% 38/40 0.9750 2.50% 95 1.0000 1.0000 1.0000 1.0000 0.00% 0.00% 40/40 0.9750 2.50% 100 0.9500 0.9500 0.9000 1.0000 6.08% 5.00% 38/40 0.9500 5.00% 7d Survival Rate Detail Conc-% Code Rep 1 Rep 2 Rep 3 Rep 4 0 1.0000 1.0000 1.0000 1.0000 23 1.0000 1.0000 1.0000 1.0000 45 1.0000 1.0000 1.0000 1.0000 89 0.9000 1.0000 0.9000 1.0000 95 1.0000 1.0000 1.0000 1.0000

Convergent Rounding (4 sf)

100

0.9000

0.9000

1.0000

1.0000

CETIS™ v2.1.5.6 x64 (008-269-892-1)

Analyst: W QA: DT

SCG Project No.: 524575.B

Project: Quarterly WET

Client: Thorin Resources

Site: 002A

									Test C			7 01 1 1101 7 0	6-2598-72
Fathead Minn	ow 7	'-d Larval S	Surviva	l and	Growth Te	est						SeaC	rest Grou
Analysis ID: Analyzed: Edit Date:	19 [3620-5213 Dec-24 11:5 Dec-24 0:00	7	Ana	l ysis : Pa		nass-mg ntrol vs Trea D94F0E8B0		Stat	IS Version us Level: or ID:	1 008-269-		
Sample ID: Sample Date: Receipt Date: Sample Age:	10 E				erial: PO (PC):	4575.B TW Effluent orin Resource			Proj Sou Stat	rce: NF	ET Quarterly PDES Permit : 2A		
Data Transfor	m		Alt I	łур				NOEL	LOEL	TOEL	Tox Units	MSDu	PMSD
Untransformed	1		C > 1	-				100	>100		1	0.09574	18.38%
Dunnett Multip	ple C	Comparisor	Test							1999			
A CONTRACTOR OF THE PARTY OF TH	vs	Conc-%		df	Test Stat	Critical	MSD	P-Type	P-Value	Decisio	n(α:5%)		
Dilution Water		23		6	1.408	2.407	0.09574	CDF	0.2587		nificant Effect		
		45		6	0.4713	2.407	0.09574	CDF	0.6599		nificant Effect		
		89		6	-0.2262	2.407	0.09574	CDF	0.8913	Non-Sig	nificant Effect		
		95		6	0.2514	2.407	0.09574	CDF	0.7488	71.7	nificant Effect		
		100		6	-0.6474	2.407	0.09574	CDF	0.9573	Non-Sig	nificant Effect		
Test Acceptab	ility			AC Li									
Attribute		Test Stat		er	Upper	Overlap	Decision						
Control Resp		0.521	0.25		>>	Yes	Passes C						
PMSD ANOVA Table		0.1838	0.12		0.3	Yes	Passes C	riteria					
Source		Sum Squa	aroc		Moon Sau		DE	F 64-4	D.Veles				
Between		0.0156581			Mean Squ 0.0031316		DF 5	F Stat	P-Value	Decision			
Error		0.0569456			0.0031316		18	0.9899	0.4512	Non-Sigi	nificant Effect		
Total		0.0726037					23	-					
ANOVA Assum	nptio	ns Tests											
Attribute		Test					Test Stat	Critical	P-Value	Decision	n(α:1%)		
/ariance		Bartlett Eq	uality o	f Var	ance Test		5.5	15.09	0.3580	Equal Va			
Distribution		Shapiro-W	ilk W N	lorma	lity Test		0.9678	0.884	0.6122	100 miles	Distribution		
Mean Dry Bion	nass	-mg Summ	ary										
		C											%Effect
		Code	Coun	t	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	
)		D	4	t	0.521	0.4131	0.6289	0.508	Min 0.463	Max 0.605	0.03391	CV% 13.02%	0.00%
) ?3			4	t	0.521 0.465	0.4131 0.3752	0.6289 0.5548	0.508 0.4675		VII. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
) 23 15			4 4 4	t	0.521 0.465 0.5023	0.4131 0.3752 0.3923	0.6289 0.5548 0.6122	0.508 0.4675 0.5065	0.463 0.394 0.414	0.605 0.531 0.582	0.03391	13.02%	0.00%
) 23 45 89			4 4 4 4	t	0.521 0.465 0.5023 0.53	0.4131 0.3752 0.3923 0.5067	0.6289 0.5548 0.6122 0.5533	0.508 0.4675 0.5065 0.534	0.463 0.394 0.414 0.509	0.605 0.531 0.582 0.543	0.03391 0.02822 0.03456 0.007325	13.02% 12.14% 13.76% 2.76%	0.00% 10.75% 3.60% -1.73%
) 23 45 99			4 4 4 4 4	t	0.521 0.465 0.5023 0.53 0.511	0.4131 0.3752 0.3923 0.5067 0.4078	0.6289 0.5548 0.6122 0.5533 0.6142	0.508 0.4675 0.5065 0.534 0.515	0.463 0.394 0.414 0.509 0.435	0.605 0.531 0.582 0.543 0.579	0.03391 0.02822 0.03456 0.007325 0.03242	13.02% 12.14% 13.76% 2.76% 12.69%	0.00% 10.75% 3.60% -1.73% 1.92%
23 45 49 95 00		D	4 4 4 4	t	0.521 0.465 0.5023 0.53	0.4131 0.3752 0.3923 0.5067	0.6289 0.5548 0.6122 0.5533	0.508 0.4675 0.5065 0.534	0.463 0.394 0.414 0.509	0.605 0.531 0.582 0.543	0.03391 0.02822 0.03456 0.007325	13.02% 12.14% 13.76% 2.76%	0.00% 10.75% 3.60% -1.73%
0 23 45 39 95 00 Mean Dry Bion	nass	D -mg Detail	4 4 4 4 4	t	0.521 0.465 0.5023 0.53 0.511 0.5467	0.4131 0.3752 0.3923 0.5067 0.4078 0.4756	0.6289 0.5548 0.6122 0.5533 0.6142 0.6179	0.508 0.4675 0.5065 0.534 0.515	0.463 0.394 0.414 0.509 0.435	0.605 0.531 0.582 0.543 0.579	0.03391 0.02822 0.03456 0.007325 0.03242	13.02% 12.14% 13.76% 2.76% 12.69%	0.00% 10.75% 3.60% -1.73% 1.92%
0 23 45 99 95 00 Mean Dry Biom Conc-%	nass	-mg Detail Code	4 4 4 4 4 4 Rep 1	t	0.521 0.465 0.5023 0.53 0.511 0.5467	0.4131 0.3752 0.3923 0.5067 0.4078 0.4756	0.6289 0.5548 0.6122 0.5533 0.6142 0.6179	0.508 0.4675 0.5065 0.534 0.515	0.463 0.394 0.414 0.509 0.435	0.605 0.531 0.582 0.543 0.579	0.03391 0.02822 0.03456 0.007325 0.03242	13.02% 12.14% 13.76% 2.76% 12.69%	0.00% 10.75% 3.60% -1.73% 1.92%
23 25 29 25 25 20 20 20 20 20 20 20 20 20 20 20 20 20	nass	D -mg Detail	4 4 4 4 4 4 7 Rep 1		0.521 0.465 0.5023 0.53 0.511 0.5467 Rep 2	0.4131 0.3752 0.3923 0.5067 0.4078 0.4756 Rep 3	0.6289 0.5548 0.6122 0.5533 0.6142 0.6179 Rep 4	0.508 0.4675 0.5065 0.534 0.515	0.463 0.394 0.414 0.509 0.435	0.605 0.531 0.582 0.543 0.579	0.03391 0.02822 0.03456 0.007325 0.03242	13.02% 12.14% 13.76% 2.76% 12.69%	0.00% 10.75% 3.60% -1.73% 1.92%
23 15 15 19 15 10 10 Mean Dry Biom Conc-%	nass	-mg Detail Code	4 4 4 4 4 4 0.463 0.531		0.521 0.465 0.5023 0.53 0.511 0.5467 Rep 2 0.547 0.476	0.4131 0.3752 0.3923 0.5067 0.4078 0.4756 Rep 3 0.605 0.459	0.6289 0.5548 0.6122 0.5533 0.6142 0.6179 Rep 4 0.469 0.394	0.508 0.4675 0.5065 0.534 0.515	0.463 0.394 0.414 0.509 0.435	0.605 0.531 0.582 0.543 0.579	0.03391 0.02822 0.03456 0.007325 0.03242	13.02% 12.14% 13.76% 2.76% 12.69%	0.00% 10.75% 3.60% -1.73% 1.92%
Conc-% 23 45 39 95 100 Mean Dry Biom Conc-% 23 25 25 26 27 28 29 29 29 20 20 20 20 20 20 20	nass	-mg Detail Code	4 4 4 4 4 4 Rep 1 0.463 0.531 0.498		0.521 0.465 0.5023 0.53 0.511 0.5467 Rep 2 0.547 0.476 0.515	0.4131 0.3752 0.3923 0.5067 0.4078 0.4756 Rep 3 0.605 0.459 0.582	0.6289 0.5548 0.6122 0.5533 0.6142 0.6179 Rep 4 0.469 0.394 0.414	0.508 0.4675 0.5065 0.534 0.515	0.463 0.394 0.414 0.509 0.435	0.605 0.531 0.582 0.543 0.579	0.03391 0.02822 0.03456 0.007325 0.03242	13.02% 12.14% 13.76% 2.76% 12.69%	0.00% 10.75% 3.60% -1.73% 1.92%
23 45 39 95 50 00 Wean Dry Biom Conc-%	nass	-mg Detail Code	4 4 4 4 4 4 0.463 0.531		0.521 0.465 0.5023 0.53 0.511 0.5467 Rep 2 0.547 0.476	0.4131 0.3752 0.3923 0.5067 0.4078 0.4756 Rep 3 0.605 0.459	0.6289 0.5548 0.6122 0.5533 0.6142 0.6179 Rep 4 0.469 0.394	0.508 0.4675 0.5065 0.534 0.515	0.463 0.394 0.414 0.509 0.435	0.605 0.531 0.582 0.543 0.579	0.03391 0.02822 0.03456 0.007325 0.03242	13.02% 12.14% 13.76% 2.76% 12.69%	0.00% 10.75% 3.60% -1.73% 1.92%

Convergent Rounding (4 sf)

CETIS™ v2.1.5.6 x64 (008-269-892-1)

Analyst: W QA: DT

SCG Project No.: 524575.B

Project: Quarterly WET

Site: 002A

CO-0000003 SCG Project No.: 524575.B **Project: Quarterly WET**

CETIS	S Ana	lytical Repo	ort						Report Test Co				57 (p 2 of 2) 6-2598-7278
Fathea	d Minn	ow 7-d Larval S	urvival and	Growt	h Test							SeaC	rest Group
Analysi	is ID:	04-1873-3433	End	point:	Mean Dry Biom	ass-mg			CETI	S Version:	CETIS v2.1.	5	
Analyz	ed:	19 Dec-24 11:57	7 Ana	ysis:	Linear Interpola	tion (ICPI	N)		Statu	is Level:	1		
Edit Da	ite:	19 Dec-24 0:00	MD	Hash:	DC8BE5DC78D	94F0E8E	071A7	10B3EBF	Edito	or ID:	008-269-892	!-1	
Sample	D:	04-7318-0134	Cod	e:	524575.B				Proje	ect: WET	Quarterly Cor	npliano	e Test (4Q)
Sample	Date:	10 Dec-24	Mate	erial:	POTW Effluent				Sour	ce: NPD	ES Permit # ()	(X9999	9999)
Receip	t Date:	11 Dec-24	CAS	(PC):					Stati	on: 002A	\		
Sample	Age:	24h	Clie	nt:	Thorin Resourc	es							
inear	Interpo	olation Options											
K Trans	sform	Y Transform	See	d	Resamples	Exp 95	% CL	Method					
Linear		Linear	3280	82	1000	Yes		Two-Poi	nt Interp	olation			
est Ac	ceptal	oility Criteria	TAC L	mite									
Attribu	te	Test Stat		Upper	r Overlap	Decisio	n						
Control		0.521	0.25	>>	Yes	Passes		1					
Point E	stimat	es											
_evel	%	95% LCL	95% UCL	Tox U	nits 95% LCL	95% UC	L						
C15	>100			<1									
C20	>100			<1									
C25	>100			<1									
C40	>100			<1									
C50	>100			<1									
lean E	ry Bio	mass-mg Summ	nary			Calcul	ated V	ariate				Isotor	nic Variate
Conc-%	6	Code	Count	Mean	Median	Min	Ma	x C	V%	%Effect	N	lean	%Effect
)		D	4	0.521	0.508	0.463	0.6	05 13	3.02%	0.00%	0	.521	0.00%
23			4	0.465	0.4675	0.394	0.5	31 12	2.14%	10.75%	0	.511	1.92%
15			4	0.5023	3 0.5065	0.414	0.5	82 13	3.76%	3.60%	0	511	1.92%
39			4	0.53	0.534	0.509	0.5	43 2.	76%	-1.73%	0	511	1.92%
95			4	0.511	0.515	0.435	0.5		2.69%	1.92%		.511	1.92%
00			4	0.546	7 0.5535	0.493	0.5	87 8.	18%	-4.94%	0	.511	1.92%
Vlean D	ry Bio	mass-mg Detail											
Conc-%	6	Code	Rep 1	Rep 2	Rep 3	Rep 4							
)		D	0.463	0.547	0.605	0.469							
23			0.531	0.476	0.459	0.394							
15			0.498	0.515	0.582	0.414							
39			0.543	0.535	0.509	0.533							
95			0.548	0.579	0.435	0.482							

Convergent Rounding (4 sf)

100

0.527

0.58

0.587

0.493

CETIS™ v2.1.5.6 x64 (008-269-892-1)

Analyst: M QA: DT

Client: Thorin Resources CO-0000003 SCG Project No.: 524575.B Site: 002A Project: Quarterly WET

Appendix 4 – QA/QC and Reference Toxicant Test Chart

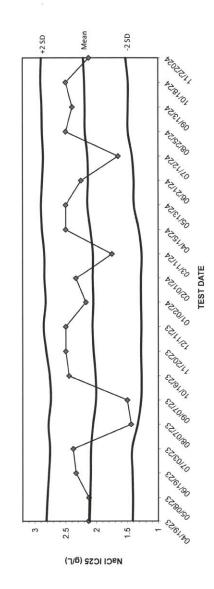
Client: Thorin Resources Site: 002A

SCG Project No.: 524575.B Project: Quarterly WET

Quality Assurance Check List – Chronic Whole Effluent Toxicity Test

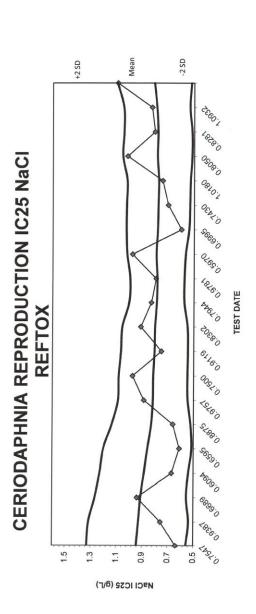
Client:	Thorin Resources	
SeaCrest Sample No:	524575.B	
Species Tested:	Ceriodaphnia dubia	and fathead minnow
Sample Dates	Start Date of Test (Ceriodaphnia dubia)	Start Date of Test (fathead minnow)
12-10-2024 12-11-2024	(00.00	(
12-12-2024	12-11-2024	12-11-2024
Sample received in lab proper	• •	Y
•	within 36 hours of collection?	Y
Sample delivered on ice or eq		Y
Test initiated within 36-hours	of collection?	Y
Test protocol conforms to CD	PHE guidelines (Ceriodaphnia dubia)?	Y
Test protocol conforms to CD	PHE guidelines (fathead minnow)?	Y
Average test temp. ±1°C (Cer	iodaphnia dubia)?	Y
Average test temp. ±1°C (fath	ead minnow)?	Y
DO level \geq 4.0mg/L; no super	-saturation (Ceriodaphnia dubia)?	Y
DO level ≥4.0mg/L; no super	-saturation (fathead minnow)?	Y
Survival in control ≥80% (Ce	riodaphnia dubia)?	Y
Survival in control ≥80% (fat	head minnow)?	Y
Ceriodaphnia dubia neonates	<24-hours old?	Y
Fathead minnow larvae <24-l	nours old?	Y
Appropriate reference toxicity	y test conducted?	Y
Reference toxicity test results	within the confidence limits for the lab	? Y

Author Wally W M Date December 20, 2024

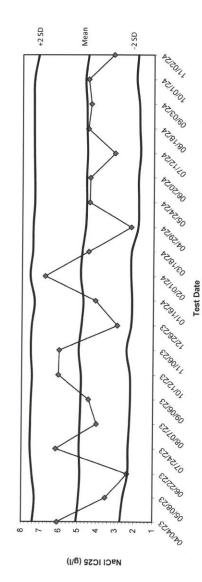

Position: Senior Laboratory Manager

Quality Control U. Workey Date December 20, 2024

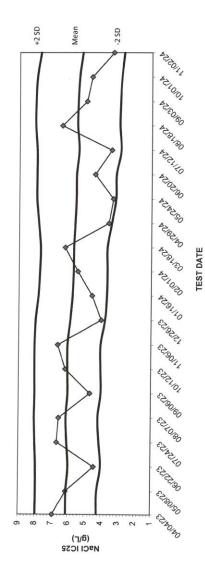
S	SEACREST & GROUP					МЕТНОВ QC
Method	Analyte	Date	LCS (rec)	%REC	%RPD	QC LIMITS
2320 B	Alkalinitv - Total	11/7/2024	99.20%	102.52%	1.96%	± 5.00%
2320 B		11/15/2024	%00.96	102.73%	1.40%	± 5.00%
2320 B		11/22/2024	103.50%	104.50%	1.20%	± 5.00%
2320 B	Alkalinity - Total	11/27/2024	99.20%	101.20%	%00.0	± 5.00%
4500 NH ₃ D	Ammonia	11/8/2024	96.40%	95.09%	-1.44%	± 10.00%
4500 NH ₃ D	Ammonia	11/15/2024	96.40%	100.18%	-4.37%	± 10.00%
4500 NH ₃ D	Ammonia	11/22/2024	95.80%	102.00%	-4.26%	± 10.00%
4500 NH ₃ D	Ammonia	10/30/2024	95.40%	96.43%	-4.29%	± 10.00%
4500 CI D	Chlorine	11/27/2024	103.77%	103.03%	%00.0	\pm 5.00, \pm 20.00%
2340 B	Hardness - Total	11/7/2024	103.51%	101.19%	-0.73%	± 2.00%
2340 B	Hardness - Total	11/14/2024	100.00%	%08.36	%00.0	± 5.00%
2340 B	Hardness - Total	11/22/2024	95.00%	102.00%	%00.0	± 5.00%
2340 B	Hardness - Total	11/26/2024	%09.86	100.35%	0.55%	± 5.00%
			LCS (rec)	%REC M1	%REC M2	QC Limits
4500 O	DO - Winkler	11/9/2024	N/A	98.61%	100.00%	¥ 2.00%
4500 O	DO - Winkler	11/15/2024	N/A	95.77%	95.77%	± 2.00%
4500 O	DO - Winkler	11/22/2024	N/A	98.55%	101.49%	± 2.00%
4500 O	DO - Winkler	11/27/2024	N/A	98.57%	98.57%	± 5.00%
			Blank	%REC MR S	%RPD	QC Limits
2540 D	Suspended Solids (TTL)	11/20/2024	100.00%	97.20%	%00.0	± 15%
2540 C	Dissolved Solids (TTL)	11/27/2024	100.00%	114.00%	%00.0	± 15%
Signafilia.	Less to				Signature:	Haller What
Signature.		2				
Date:	December 3,	3, 2024			Date:	DECEMBER 3, 2024


SeaCrest Group 500 S Arthur Ave. Suite 450 Louisville, CO 80027 (303) 661.9324 FAX (303) 661.9325

CERIODAPHNIA SURVIVAL LC25 NaCI REFTOX


+2 SD	2.8158	2.7988	2.7755	2.7571	2.7824	2.7441	2.7613	2.8168	2.8592	2.8269	2.8460	2.8477	2.8858	2.9014	2.8816	2.8672	2.8836	2.8895	2.9080	2 8999
-2 SD	1.4129	1.4102	1.4176	1.4243	1.3336	1.2766	1.2703	1.2784	1.2717	1.2767	1.2774	1.2678	1.3131	1.3927	1.3941	1.4215	1.4885	1.4883	1.4857	1 5260
Mean	2.1144	2.1045	2.0965	2.0907	2.0580	2.0104	2.0158	2.0476	2.0655	2.0518	2.0617	2.0578	2.0995	2.1471	2.1378	2.1444	2.1860	2.1889	2.1968	2 2130
LC25	2.1300	2.1250	2.3330	2.3780	1.4375	1.5000	2.4480	2.5000	2.5000	2.1720	2.3330	1.7500	2.5000	2.5000	2.2500	1.6500	2.5000	2.3930	2.5000	2 1250
Date	04/19/23	05/08/23	06/19/23	07/03/23	08/07/23	09/07/23	10/16/23	11/20/23	12/11/23	01/02/24	02/01/24	03/11/24	04/15/24	05/13/24	06/21/24	07/12/24	08/25/24	09/13/24	10/18/24	11/2/2024

SCG Project No.: 524575.B Project: Quarterly WET **Client: Thorin Resources** CO-0000003 **Site: 002A**


-2 SD +2 SD	0.5562 1.3300	398 1.3				0.5226	200								37.200	0.5279				
Mean	0.9431	0.92670755	0.9105	0.8843	0.8575	0.8290	0.8164	0.8150	0.8049	0.8019	0.7888	0.7848	0.7923	0.7824	0.7784	0.7741	0.7853	0.7810	0.7901	
IC25	0.6371	0.7547	0.9387	0.6689	0.6094	0.6595	0.8875	0.9757	0.7500	0.9119	0.8302	0.7944	0.9781	0.5970	0.6995	0.7430	1.0180	0.8050	0.8281	0000
Date	04/19/23	5/8/2023	06/19/23	07/03/23	08/07/23	09/07/23	10/16/23	11/20/23	12/11/23	01/02/24	02/01/24	03/11/24	04/15/24	05/13/24	06/21/24	07/12/24	08/25/24	09/13/24	10/18/24	100001

FHM SURVIVAL LC25 NaCI REFTOX

Г	Т																			
+2 SD	7.3978	7 2979	7.4321	7 5370	7 5269	7 4948	7.4487	7.5142	7 4725	7 3289	7 5596	7 4374	7 4222	7 3461	7.3510	7 3739	7 3867	7 3926	7 3779	7.1450
-2 SD	2.7278	2.5790	2.3230	2.3130	2.2436	2.2052	2.2221	2.4111	2.1721	2 1284	2.1868	2.1625	1.8268	1.8037	1.8168	1.7090	1 7560	1.7805	1.9181	1.8336
Mean	5.0628	4.9385	4.8775	4.9250	4.8853	4.8500	4.8354	4.9627	4.8223	4.7287	4.8732	4.7999	4.6245	4.5749	4.5839	4.5415	4.5714	4.5865	4.6480	4.4893
IC25	6.0800	3.5230	2.3600	6.1696	4.0000	4.4240	6.0360	6.0000	2.9120	4.0800	6.7670	4.4550	2.1900	4.4090	4.3800	3.0670	4.5000	4.3333	4.4760	3.1230
Date	04/04/23	05/08/23	06/22/23	07/24/23	08/07/23	09/06/23	10/12/23	11/06/23	12/26/23	01/16/24	02/01/24	03/18/24	04/29/24	05/24/24	06/20/24	07/12/24	08/18/24	09/03/24	10/01/24	11/02/24

FHM GROWTH IC25 NaCI REFTOX

_	_							51												
+2 SD	7.9479	7 9416	7 9487	8666 2	8 0415	8.0196	8.0354	8.0330	2 9799	7 8186	7 7345	7.7017	7 8170	7 9377	7 9437	7 9433	8 0376	8 0194	7 9423	7.7066
-2 SD	4.2384	4.2341	4.0146	4 1185	4.1925	4.0192	4.0372	4.0375	3.7796	3.6808	3.6572	3.6624	3 4072	3.1637	3.1435	2.8641	2 9474	2 9061	2.8281	2.6657
Mean	6.0931	6.0879	5.9816	6.0591	6.1170	6.0194	6.0363	6.0352	5.8797	5.7497	5.6958	5.6820	5.6121	5.5507	5.5436	5.4037	5.4925	5.4628	5.3852	5.1862
IC25	6.9180	6.1200	4.4340	6.6760	6.5670	4.6810	6.1750	6.6360	4.0036	4.5690	5.4310	6.2100	3.5807	3.3150	4.4150	3.4180	6.4180	4.9290	4.6060	3.3070
Date	04/04/23	05/08/23	06/22/23	07/24/23	08/07/23	09/06/23	10/12/23	11/06/23	12/26/23	01/16/24	02/01/24	03/18/24	04/29/24	05/24/24	06/20/24	07/12/24	08/18/24	09/03/24	10/01/24	11/02/24

Attachment B

GW-1A - Last 5 Quarters

Analyte	Min of Results	Max of Results	Avg of Results	Test Count	Not - Detect Count
Aluminum Dissolved	0.001	0.001	0.001		1 0
Antimony Dissolved	0	0	ND		1 1
Arsenic Dissolved	0	0	ND		1 1
Barium Dissolved	0.0341	0.0341	0.0341		1 0
Beryllium Dissolved	0	0	ND		1 1
Bicarbonate	37.6	37.6	37.6		1 (
Boron Dissolved	0	0	ND		1 1
Cadmium Dissolved	0.0001	0.0001	0.0001		1 0
Calcium Dissolved	23.1	23.1	23.1		1 0
Calcium Total	24	24	24		1 (
Carbonate	0	0	ND		1
Chloride	0.19	0.19	0.19		1 0
Chromium Dissolved	0	0	ND		1 1
Copper Dissolved	0	0	ND		1
Cyanide-Total	0	0	ND		1 1
Fluoride	0.19	0.19			1 0
Hydroxide	0		ND		1 1
Iron Dissolved	0		ND		1
Lead Dissolved	0		ND		1 1
Magnesium Dissolved	1.82	1.82			11 (
Magnesium Total	1.9	1.9			11 (
Manganese Dissolved	0		ND		11
Mercury Dissolved	1 0		ND		11 1
Molybdenum Dissolved	0.001	0.001	0.001		11 (
Nickel Dissolved	0.001		ND		 1
Nitrate Nitrogen	0.18	0.18			11 (
Nitrate/ Nitrite Nitrogen	0.18	0.18			11 (
Nitrite Nitrogen	0		ND		11
pH	6.7	6.7	6.7		1
Phosphorus - Total	0		ND		
Potassium Dissolved	0.4	0.4	0.4		1
Selenium Dissolved	0.1		ND		
Silica (as Si) Dissolved	2.1	2.1	2.1		
Silver Dissolved	0		ND 2.1		
Sodium Dissolved	1.7	1.7	1.7		
Specific Conductance	148	148			
Sulfate	36.6	36.6	36.6		: 1
Thallium Dissolved	0.0		ND		
Total Alkalinity	37.6	37.6	37.6		່. 1
Total Dissolved Solids	84	84	84		11 ·
Total Hardness Total	67.7	67.7	67.7		1
Total Suspended Solids	07.7		ND		1
Uranium Dissolved	0		ND		:
Vanadium Dissolved	-		ND		:
Zinc Dissolved	0.058	0.058			1
ORP (field)	108	108	108.000		1
Water Temperature (field)	8	8	8.000		1
		 140			1
Conductivity (field)	140		140.000		1
DO (field) pH (field)	59.9 7.1	59.9 7.1	59.900 7.100		1 (1 (

GW-1B - Last 5 Quarters

Analyte	Min of Results	Max of Results	Avg of Results	Test Count	Not - Detect Count
Aluminum Dissolved	0.001	0.001	0.001	3	2
Antimony Dissolved	0.00079	0.00079	0.00079	3	2
Arsenic Dissolved	0.00048	0.00048	0.00048	3	2
Barium Dissolved	0.0351	0.0577	0.0474	3	0
Beryllium Dissolved	0	0	ND	3	3
Bicarbonate	31	36	33.5	2	0
Boron Dissolved	0	0	ND	3	3
Cadmium Dissolved	0.0001	36.5	9.1250915	4	0
Calcium Dissolved	23.4	31.2	27.3	2	0
Calcium Total	23.8	31.6	27.7	2	0
Carbonate	0	0	ND	3	3
Chloride	0.19	0.26	0.225	3	1
Chromium Dissolved	0.00139	0.00139	0.00139	3	2
Copper Dissolved	0	0	ND	3	3
Cyanide-Total	0	0	ND	3	3
Fluoride	0.17	0.19	0.176666667	3	0
Hydroxide	0	0	ND	3	3
Iron Dissolved	0	0	ND	3	3
Lead Dissolved	0.0001	0.0002	0.000166667	3	0
Magnesium Dissolved	1.88	3.07	2.556666667	3	0
Magnesium Total	1.92	2.73	2.325	2	0
Manganese Dissolved	0	0	ND	3	3
Mercury Dissolved	0	0	ND	3	3
Molybdenum Dissolved	0.00083	0.0012	0.001043333	3	0
Nickel Dissolved	0		ND	3	3
Nitrate Nitrogen	0.07	0.19	0.13	2	0
Nitrate/ Nitrite Nitrogen	0.07	0.19	0.111333333	3	0
Nitrite Nitrogen	0	0	ND	2	2
pH	6.69	7.8	7.07	3	0
Phosphorus - Total	0	0	ND	2	2
Potassium Dissolved	0.4	0.57	0.49	3	0
Selenium Dissolved	0.00038	0.00038	0.00038	3	2
Silica (as Si) Dissolved	2.2	4.5	3.033333333	3	0
Silver Dissolved	0	0	ND	3	3
Sodium Dissolved	1.7	2.52	2.04	3	0
Specific Conductance	149	188	168.5	2	0
Sulfate	37.4	63.5	51.66666667	3	0
Thallium Dissolved	0	0	ND	3	3
Total Alkalinity	31	43.5	36.83333333	3	0
Total Dissolved Solids	84	119		2	0
Total Hardness Total	67.4	104		3	0
Total Suspended Solids	0		ND	2	2
Uranium Dissolved	0	0	ND	3	3
Vanadium Dissolved	0		ND	3	3
Zinc Dissolved	0.052	0.075	0.062	3	0
ORP (field)	134.8	305.4	210.867	3	1 0
Water Temperature (field)	1.7	7.3	5.400	3	0
Conductivity (field)	103.4	551	265.000	3	†
DO (field)	10.2	62	44.533	3	l
pH (field)	7.09	7.2	7.133	3	10

GW-2A - Last 5 Quarters

Analyte	Min of Results	Max of Results	Avg of Results	Test Count	Not - Detect Count
Aluminum Dissolved	0.001	0.001	0.001	3	1
Antimony Dissolved	0.00101	0.00101	0.00101	3	2
Arsenic Dissolved	0.00034	0.00034	0.00034	3	2
Barium Dissolved	0.036	0.0513	0.044966667	3	0
Beryllium Dissolved	0	0	ND	3	3
Bicarbonate	25.2	33.7	28.7	3	0
Boron Dissolved	0	0	ND	3	3
Cadmium Dissolved	0.0004	28.6	7.1503965	4	0
Calcium Dissolved	25.2	33.5	29.35	2	0
Calcium Total	25.2	34.1	29.65	2	0
Carbonate	0	0	ND	3	3
Chloride	0.15	0.16	0.155	3	1
Chromium Dissolved	0	0	ND	3	3
Copper Dissolved	0		ND	3	3
Cyanide-Total	0	0	ND	3	3
Fluoride	0.19	0.25		3	0
Hydroxide	0		ND	3	3
Iron Dissolved	0		ND	3	3
Lead Dissolved	0.0001	0.0003		3	0
Magnesium Dissolved	1.9	2.62		3	0
Magnesium Total	1.92	2.63		2	0
Manganese Dissolved	0		ND	3	3
Mercury Dissolved	0		ND	3	3
Molybdenum Dissolved	0.0009	0.00101	0.00097	3	0
Nickel Dissolved	0.0000		ND	3	3
Nitrate Nitrogen	0.19	0.2	0.195	2	0
Nitrate/ Nitrite Nitrogen	0.138	0.2	0.176	3	0
Nitrite Nitrogen	0.100		ND	2	2
pH	6.28	7.55	7.11	3	0
Phosphorus - Total	0.12	0.12	0.12	2	1
Potassium Dissolved	0.5	0.6	0.56	3	
Selenium Dissolved	0.00032	0.00032	0.00032	3	2
Silica (as Si) Dissolved	2.1	5.5		3	0
Silver Dissolved			ND	3	3
Sodium Dissolved	1.7	2.4	2.13	3	0
Specific Conductance	160	198	-	2	0
Sulfate	48.5	61.9			<u> </u>
Thallium Dissolved	0		ND	3	3
Total Alkalinity	25.2	33.7	28.7	3	0
Total Dissolved Solids	98	138		2	0
Total Hardness Total	70.8	95.9		2	0
Total Suspended Solids	70.0		ND		2
Uranium Dissolved	0		ND	2	2
Vanadium Dissolved	0		ND	ა) ၁
	0.318	0.465		ა	<u>ى</u>
Zinc Dissolved				ა ე	0
ORP (field)	130.7	352.2	219.667	ა	0
Water Temperature (field)	4.2	6.4	5.667	າ	0
Conductivity (field)	151	424	256.200	3	0
DO (field)	8.2	49.4	34.567	3	0
pH (field)	6.62	6.76	6.667	3	0

GW-2B - Last 5 Quarters

Analyte	Min of Results	Max of Results	Avg of Results	Test Count	Not - Detect Count
Aluminum Dissolved	0.001	0.001	0.001	3	2
Antimony Dissolved	0.00084	0.00084	0.00084	3	2
Arsenic Dissolved	0.00034	0.00034	0.00034	3	2
Barium Dissolved	0.0483	0.0578	0.0543	3	0
Beryllium Dissolved	0	0	ND	3	3
Bicarbonate	29.8	39.2	33.13333333	3	0
Boron Dissolved	0		ND	3	3
Cadmium Dissolved	0.0002	27.8	6.95016125	4	0
Calcium Dissolved	32.9	33.7	33.3	2	0
Calcium Total	33.1	35	34.05	2	0
Carbonate	0	0	ND	3	3
Chloride	0.14	0.31	0.225	3	1
Chromium Dissolved	0		ND	3	3
Copper Dissolved	0		ND	3	3
Cyanide-Total	0		ND	3	3
Fluoride	0.21	0.23		3	0
Hydroxide	0		ND	3	3
Iron Dissolved	0		ND	3	3
Lead Dissolved	0.00013	0.00013		3	2
Magnesium Dissolved	2.26	2.71	2.543333333	3	0
Magnesium Total	2.74	2.75		2	10
Manganese Dissolved	0		ND	3	3
Mercury Dissolved	10		ND	3	3
Molybdenum Dissolved	0.00088	0.0009	0.000893333	3	10
Nickel Dissolved	0.0000		ND	3	3
Nitrate Nitrogen	0.15	0.23		2	1
Nitrate/ Nitrite Nitrogen	0.138	0.23	0.172666667		1
Nitrite Nitrogen	0.100		ND	2	2
pH	6.34	7.6	6.816666667	3	0
Phosphorus - Total	0.04		ND	2	2
Potassium Dissolved	0.5	0.56	0.52		0
Selenium Dissolved	0.00032	0.00032	0.00032	3	
	2.5	5.7	3.833333333		1
Silica (as Si) Dissolved Silver Dissolved	2.5		ND	3	3
Sodium Dissolved	1.9	2	1.936666667	3	1
Specific Conductance	192	216		2	1
Sulfate	46.7	77	59.93333333	2	1
Thallium Dissolved	0		ND	3	3
Total Alkalinity	29.8	39.2		3	1
Total Dissolved Solids	125	131	128	2	0
Total Hardness Total	79	98.7	90.53333333	2	1
Total Suspended Solids	0		ND	ა	2
Uranium Dissolved	0		ND	2	2
Vanadium Dissolved	0		ND	ა	3
Zinc Dissolved	0.248	0.285		ა)
ORP (field)	137.2			ა	ļ
	4.4	325.7 5.6	217.867 5.133	ა	-
Water Temperature (field)				3	ļ
Conductivity (field)	188.6	419		3	1 0
DO (field)	7.4	48.9	33.400	3	0 1 0
pH (field)	6.62	6.78	6.707	3	0

GW-3B - Last 5 Quarters

Analyte	Min of Results	Max of Results	Avg of Results	Test Count	Not - Detect Count
Aluminum Dissolved	0.003	0.003	0.003	4	3
Antimony Dissolved	0.00084	0.00084	0.00084	4	3
Arsenic Dissolved	0.00031	0.00031	0.00031	4	3
Barium Dissolved	0.0445	0.0557	0.05155	4	0
Beryllium Dissolved	0	0	ND	4	4
Bicarbonate	29.4	35.4	31.65	4	0
Boron Dissolved	0	0	ND	4	4
Cadmium Dissolved	0.000094	36.1	12.033398	5	2
Calcium Dissolved	30	37.8	34.16666667	3	0
Calcium Total	30.5	39.7	35.6	3	0
Carbonate	0	0	ND	4	4
Chloride	0.19	0.24	0.215	4	2
Chromium Dissolved	0	0	ND	4	4
Copper Dissolved	0.0012	0.0012	0.0012	4	3
Cyanide-Total	0	0	ND	4	4
Fluoride	0.21	0.26	0.2325	4	0
Hydroxide	0		ND	4	4
Iron Dissolved	0	0	ND	4	4
Lead Dissolved	0.00016	0.0005	0.00033	4	2
Magnesium Dissolved	2.09	2.57	2.4025	4	0
Magnesium Total	2.14	2.69	2.496666667	3	0
Manganese Dissolved	0.0045	0.0045	0.0045	4	3
Mercury Dissolved	0.00021	0.00021	0.00021	4	3
Molybdenum Dissolved	0.0007	0.0008	0.00073	4	0
Nickel Dissolved	0		ND	4	4
Nitrate Nitrogen	0.15	0.3	0.24	3	0
Nitrate/ Nitrite Nitrogen	0.15	0.3	0.23125	4	0
Nitrite Nitrogen	0		ND	3	3
pН	6.2	7.6	6.7175	4	0
Phosphorus - Total	0		ND	3	3
Potassium Dissolved	0.5	0.66	0.565	4	0
Selenium Dissolved	0.00034	0.00034	0.00034	4	3
Silica (as Si) Dissolved	2	5.7	3.175	4	0
Silver Dissolved		0	ND	4	4
Sodium Dissolved	2.2	2.9	2.475	4	
Specific Conductance	199	247	220	3	0
Sulfate	64.9	73.7	67.575	4	0
Thallium Dissolved	0		ND	4	4
Total Alkalinity	29.4	35.4	31.65	4	
Total Dissolved Solids	83	137	115.6666667	3	0
Total Hardness Total	84.9	110.3		4	0
Total Suspended Solids	0		ND		3
Uranium Dissolved			ND	Δ	14
Vanadium Dissolved	0		ND		
Zinc Dissolved	0.106	0.122	0.115		†
ORP (field)	112	311.5	191.700		1
Water Temperature (field)	4.2	5.2	4.625	л	1
Conductivity (field)	188.44	508	274.760		
DO (field)	6.5	59.9	41.700		
pH (field)	6.62	6.8	6.668	4 	0

GW-3R - Last 5 Quarters

Animorn Dissolved	Analyte	Min of Results	Max of Results	Avg of Results	Test Count	Not - Detect Count
Arsenic Dissolved	Aluminum Dissolved	0.002	0.037	0.013666667	4	1
Barium Dissolved 0.0311	Antimony Dissolved	0.00106	0.00106	0.00106	4	3
Beryllium Dissolved 0	Arsenic Dissolved	0.00053	0.00053	0.00053	4	3
Beryllium Dissolved 0	Barium Dissolved	0.0311	0.0414	0.0368	4	0
Blearbonate 29.6 33.1 31.675 4		0	0	ND	4	4
Cadmium Dissolved 0.0003 39.7 7.9402676 5 Calcium Dissolved 35.3 40.6 37.6666667 3 Carbonate 0 0 ND 4 Chroride 0.2 0.2 0.2 4 Chroride 0.2 0.0 ND 4 Copper Dissolved 0 0.0 ND 4 Cyanide-Total 0 0.0 ND 4 Fluoride 0.14 0.25 0.1925 4 Hydroxide 0 0.0 ND 4 Iron Dissolved 0.0002 0.0002 0.0002 4 Iron Dissolved 0.0002 0.0002 0.0002 4 Magnesium Dissolved 1.98 2.24 2.1425 4 Magnesium Dissolved 0.00027 0.0002 0.0002 4 Mercury Dissolved 0.0007 0.0016 0.0006 4 Mickel Dissolved 0.0007 0.0016 0.0006 4 <		29.6	33.1	31.675	4	0
Calcium Dissolved 35.3 40.6 37.66666667 3 3 Calcium Total 33.3 43.6 39.2 3 3 Carbonate 0 0 0 ND 4 4 Chloride 0.2 0.2 0.2 0.2 4 Chromium Dissolved 0 0 ND ND 4 Copper Dissolved 0 ND ND 4 Copper Dissolved 0 ND ND 4 Copper Dissolved 0 ND	Boron Dissolved	0	0	ND	4	4
Calcium Total 35.3 43.6 39.2 3 Carbonate 0 0 ND 4 Chloride 0.2 0.2 0.2 4 Chromium Dissolved 0 0 ND 4 Copper Dissolved 0 0 ND 4 Copper Dissolved 0 0 ND 4 Houride 0.14 0.25 0.1925 4 Hydroxide 0 0 ND 4 Hydroxide 0 0 ND 4 Iron Dissolved 0.0002 0.0002 0.0002 4 Magnesium Dissolved 1.98 2.24 2.1425 4 Magnesium Total 1.96 2.39 2.186666667 3 Manganese Dissolved 0 0 ND 4 Mercury Dissolved 0.00027 0.00027 0.00027 4 Molybdenum Dissolved 0.0007 0.0016 0.00096 4 Nikrate Ni	Cadmium Dissolved	0.0003	39.7	7.9402676	5	0
Calcium Total 35.3 43.6 39.2 3 Carbonate 0 0 ND 4 Chloride 0.2 0.2 0.2 4 Chromium Dissolved 0 0 ND 4 Copper Dissolved 0 0 ND 4 Copper Dissolved 0 0 ND 4 Hydroxide 0.14 0.25 0.1925 4 Hydroxide 0 0 ND 4 Iron Dissolved 0.0002 0.0002 4 Iron Dissolved 0.0002 0.0002 0.0002 4 Magnesium Dissolved 1.96 2.39 2.186666667 3 Magnesium Total 1.96 2.39 2.186666667 3 Marcury Dissolved 0.00027 0.00027 0.00027 4 Molybdenum Dissolved 0.0007 0.0016 0.0009 4 Mickel Dissolved 0 0.007 0.0027 0.0027 4	Calcium Dissolved	A			3	0
Chloride 0.2 0.2 0.2 4 Chromium Dissolved 0 0 ND 4 Copper Dissolved 0 0 ND 4 Cyanide-Total 0 0 ND 4 Fluoride 0.14 0.25 0.1925 4 Hydroxide 0 0 ND 4 Iron Dissolved 0.0002 0.0002 4 Iron Dissolved 0.0002 0.0002 4 Magnesium Dissolved 1.98 2.24 2.1425 4 Magnesium Total 1.96 2.39 2.186666667 3 Manganese Dissolved 0.00027 0.00027 0.00027 4 Mercury Dissolved 0.00027 0.00027 0.00027 4 Molybdenum Dissolved 0.0007 0.0016 0.00027 4 Molybdenum Dissolved 0.0007 0.0016 0.00096 4 Nitrate Nitrie Nitrogen 0.17 0.46 0.291 4	Calcium Total	35.3	43.6		3	0
Chloride 0.2 0.2 0.2 4 Chromium Dissolved 0 0 ND 4 Copper Dissolved 0 0 ND 4 Cyanide-Total 0 0 ND 4 Fluoride 0.14 0.25 0.1925 4 Hydroxide 0 0 ND 4 Iron Dissolved 0.0002 0.0002 4 Iron Dissolved 0.0002 0.0002 4 Magnesium Dissolved 1.98 2.24 2.1425 4 Magnesium Total 1.96 2.39 2.186666667 3 Manganese Dissolved 0.00027 0.00027 0.00027 4 Mercury Dissolved 0.00027 0.00027 0.00027 4 Molybdenum Dissolved 0.0007 0.0016 0.00027 4 Molybdenum Dissolved 0.0007 0.0016 0.00096 4 Nitrate Nitrie Nitrogen 0.17 0.46 0.291 4		+			4	4
Chromium Dissolved		0.2			4	3
Copper Dissolved 0 0 ND 4 Cyanide-Total 0 0 ND 4 Fluoride 0.14 0.25 0.1925 4 Hydroxide 0 0 ND 4 Iron Dissolved 0 0 ND 4 Iron Dissolved 0.0002 0.0002 0.0002 4 Magnesium Dissolved 1.98 2.24 2.1425 4 Magnesium Dissolved 0 0 ND 4 Marganesum Dissolved 0 0 ND 4 Mercury Dissolved 0.00027 0.00027 0.00027 4 Molydenum Dissolved 0.0007 0.0016 0.00096 4 Nikrate Nitrogen 0.17 0.46 0.303333333 3 Nitrate Nitrogen 0.17 0.46 0.291 4 Nitrite Nitrogen 0.17 0.46 0.291 4 Phosphorus - Total 0.07 0.07 0.07 3		0			4	4
Cyanide-Total 0 0 ND 4 Fluoride 0.14 0.25 0.1925 4 Hydroxide 0 0 ND 4 Iron Dissolved 0 0 ND 4 Lead Dissolved 0.0002 0.0002 0.0002 4 Magnesium Dissolved 1.98 2.24 2.1425 4 Magnesium Total 1.96 2.39 2.186666667 3 Manganese Dissolved 0 0 ND 4 Mercury Dissolved 0.00027 0.00027 0.00027 4 Molybdenum Dissolved 0.0007 0.0016 0.00027 4 Mickel Dissolved 0 0 ND 4 Nikrate Nitrogen 0.17 0.46 0.303333333 3 Nitrate Nitrogen 0.17 0.46 0.291 4 Nitrate Nitrogen 0.17 0.46 0.291 4 Nitrate Nitrice Nitrogen 0.17 0.07 0.07		0			4	4
Fluoride		0			4	4
Hydroxide		0.14			4	0
Iron Dissolved		0			4	4
Lead Dissolved 0.0002 0.0002 0.0002 4 Magnesium Dissolved 1.98 2.24 2.1425 4 Magnesium Total 1.96 2.39 2.186666667 3 Manganese Dissolved 0 0 ND 4 Mercury Dissolved 0.00027 0.00027 4 Molybdenum Dissolved 0 0.0016 0.00096 4 Nickel Dissolved 0 0 ND 4 Nickel Dissolved 0 0 ND 4 Nitrale Nitrogen 0.17 0.46 0.303333333 3 Nitrate Nitrogen 0.17 0.46 0.291 4 Nitrate Nitrogen 0 0 ND 3 Ph 6.53 7.8 6.8975 4 Phosphorus - Total 0.07 0.07 0.07 3 Potassium Dissolved 0.4 0.63 0.4575 4 Selenium Dissolved 0.00021 0.00021 0.00021 4<		0			4	4
Magnesium Dissolved 1.98 2.24 2.1425 4 Magnesium Total 1.96 2.39 2.186666667 3 Manganese Dissolved 0 0 ND 4 Mercury Dissolved 0.00027 0.00027 0.00027 4 Molybdenum Dissolved 0.0007 0.0016 0.00096 4 Nickel Dissolved 0 0 ND 4 Nikrate Nitrogen 0.17 0.46 0.303333333 3 Nitrate Nitrogen 0.17 0.46 0.291 4 Nitrate Nitrogen 0.17 0.46 0.291 4 Nitrate Nitrogen 0 0 ND 3 PH 6.53 7.8 6.8975 4 Phosphorus - Total 0.07 0.07 0.07 3 Potassium Dissolved 0.4 0.63 0.4575 4 Selenium Dissolved 0.00021 0.00021 4 Silica (as Si) Dissolved 0 0 ND		0.0002			4	3
Magnesium Total 1.96 2.39 2.186666667 3 Manganese Dissolved 0 0 ND 4 Mercury Dissolved 0.00027 0.00027 0.00027 4 Molybdenum Dissolved 0 0.0007 0.016 0.00096 4 Nickel Dissolved 0 0 ND 4 Nitrate Nitrogen 0.17 0.46 0.303333333 3 Nitrate Nitrogen 0.17 0.46 0.291 4 Nitrite Nitrogen 0 0 ND 3 Ph 6.53 7.8 6.8975 4 Phosphorus - Total 0.07 0.07 0.07 0.07 3 Phosphorus - Total 0.07 0.07 0.07 0.07 3 Phosphorus - Total 0.07 0.07 0.07 0.07 3 Phosphorus - Total 0.00 0.0021 0.00021 4 Selenium Dissolved 0.00021 0.00021 4 Silica					4	10
Manganese Dissolved 0 0 ND 4 Mercury Dissolved 0.00027 0.00027 0.00027 4 Molybdenum Dissolved 0.0007 0.0016 0.00096 4 Nickel Dissolved 0 0 ND 4 Nitrate Nitrogen 0.17 0.46 0.303333333333333333333333333333333333	Magnesium Total					10
Mercury Dissolved 0.00027 0.00027 0.00027 4 Molybdenum Dissolved 0.0007 0.0016 0.00096 4 Nickel Dissolved 0 0 ND 4 Nitrate Nitrogen 0.17 0.46 0.3033333333 3 Nitrate/ Nitrite Nitrogen 0.17 0.46 0.291 4 Nitrite Nitrogen 0 0 ND 3 pH 6.53 7.8 6.8975 4 Phosphorus - Total 0.07 0.07 0.07 3 Potassium Dissolved 0.4 0.63 0.4575 4 Selenium Dissolved 0.00021 0.00021 0.00021 4 Silica (as Si) Dissolved 1.9 5 2.8775 4 Silica (as Si) Dissolved 0 0 ND 4 Sodium Dissolved 2.3 3.26 2.765 4 Specific Conductance 22.1 253 231.666667 3 Sulfate 64.8 76.5 70.75 4					4	4
Molybdenum Dissolved 0.0007 0.0016 0.00096 4 Nickel Dissolved 0 0 ND 4 Nitrate Nitrogen 0.17 0.46 0.3033333333 3 Nitrate/ Nitrite Nitrogen 0.17 0.46 0.291 4 Nitrite Nitrogen 0 0 ND 3 pH 6.53 7.8 6.8975 4 Phosphorus - Total 0.07 0.07 0.07 3 Potassium Dissolved 0.4 0.63 0.4575 4 Selenium Dissolved 0.00021 0.00021 0.00021 4 Selica (as Si) Dissolved 1.9 5 2.8775 4 Silver Dissolved 0 0 ND 4 Sodium Dissolved 2.3 3.26 2.765 4 Specific Conductance 221 253 231.6666667 3 Sulfate 64.8 76.5 70.75 4 Thallium Dissolved 0 0 N					4	
Nickel Dissolved 0 ND 4 Nitrate Nitrogen 0.17 0.46 0.3033333333 3 Nitrate/ Nitrite Nitrogen 0.17 0.46 0.291 4 Nitrite Nitrogen 0 0 ND 3 pH 6.53 7.8 6.8975 4 Phosphorus - Total 0.07 0.07 0.07 3 Potassium Dissolved 0.4 0.63 0.4575 4 Selenium Dissolved 0.00021 0.00021 0.00021 4 Silica (as Si) Dissolved 1.9 5 2.8775 4 Silver Dissolved 0 0 ND 4 Sodium Dissolved 0 0 ND 4 Specific Conductance 221 253 231.6666667 3 Sulfate 64.8 76.5 70.75 4 Thallium Dissolved 0 0 ND 4 Total Alkalinity 29.6 33.1 31.675 4 Total Hardness Total 96.1					4	10
Nitrate Nitrogen 0.17 0.46 0.303333333 3 Nitrate/ Nitrite Nitrogen 0.17 0.46 0.291 4 Nitrite Nitrogen 0 0 ND 3 pH 6.53 7.8 6.8975 4 Phosphorus - Total 0.07 0.07 0.07 3 Potassium Dissolved 0.4 0.63 0.4575 4 Selenium Dissolved 0.00021 0.00021 0.00021 4 Silica (as Si) Dissolved 1.9 5 2.8775 4 Silver Dissolved 0 0 ND 4 Sodium Dissolved 2.3 3.26 2.765 4 Specific Conductance 221 253 231.666667 3 Sulfate 64.8 76.5 70.75 4 Thallium Dissolved 0 ND 4 Total Alkalinity 2.9.6 33.1 31.675 4 Total Dissolved Solids 105 135 123.666667					4	4
Nitrate/ Nitrite Nitrogen 0.17 0.46 0.291 4 Nitrite Nitrogen 0 0 ND 3 pH 6.53 7.8 6.8975 4 Phosphorus - Total 0.07 0.07 0.07 3 Potassium Dissolved 0.4 0.63 0.4575 4 Selenium Dissolved 0.00021 0.00021 0.00021 4 Selenium Dissolved 1.9 5 2.8775 4 Silver Dissolved 0 0 ND 4 Sodium Dissolved 2.3 3.26 2.765 4 Specific Conductance 221 253 231.6666667 3 Sulfate 64.8 76.5 70.75 4 Thallium Dissolved 0 0 ND 4 Total Alkalinity 29.6 33.1 31.675 4 Total Dissolved Solids 105 135 123.6666667 3 Total Hardness Total 96.1 118.6 10						1
Nitrite Nitrogen 0 0 ND 3 pH 6.53 7.8 6.8975 4 Phosphorus - Total 0.07 0.07 0.07 3 Potassium Dissolved 0.4 0.63 0.4575 4 Selenium Dissolved 0.00021 0.00021 0.00021 4 Selenium Dissolved 1.9 5 2.8775 4 Silica (as Si) Dissolved 0 0 ND 4 Solium Dissolved 0 0 ND 4 Sodium Dissolved 2.3 3.26 2.765 4 Specific Conductance 221 253 231.6666667 3 Sulfate 64.8 76.5 70.75 4 Thallium Dissolved 0 0 ND 4 Total Alkalinity 29.6 33.1 31.675 4 Total Dissolved Solids 105 135 123.6666667 3 Total Hardness Total 96.1 118.6 107.1					4	1 0
pH 6.53 7.8 6.8975 4 Phosphorus - Total 0.07 0.07 0.07 3 Potassium Dissolved 0.4 0.63 0.4575 4 Selenium Dissolved 0.00021 0.00021 0.00021 4 Selenium Dissolved 1.9 5 2.8775 4 Silica (as Si) Dissolved 0 0 ND 4 Solium Dissolved 0 0 ND 4 Sodium Dissolved 2.3 3.26 2.765 4 Specific Conductance 221 253 231.6666667 3 Sulfate 64.8 76.5 70.75 4 Thallium Dissolved 0 0 ND 4 Total Alkalinity 29.6 33.1 31.675 4 Total Dissolved Solids 105 135 123.666667 3 Total Hardness Total 96.1 118.6 107.1 4 Total Suspended Solids 8 8 8 <td></td> <td>0</td> <td></td> <td></td> <td></td> <td>3</td>		0				3
Phosphorus - Total 0.07 0.07 0.07 3 Potassium Dissolved 0.4 0.63 0.4575 4 Selenium Dissolved 0.00021 0.00021 0.00021 4 Silica (as Si) Dissolved 1.9 5 2.8775 4 Silver Dissolved 0 0 ND 4 Sodium Dissolved 2.3 3.26 2.765 4 Specific Conductance 221 253 231.6666667 3 Sulfate 64.8 76.5 70.75 4 Thallium Dissolved 0 ND 4 Total Alkalinity 29.6 33.1 31.675 4 Total Dissolved Solids 105 135 123.6666667 3 Total Hardness Total 96.1 118.6 107.1 4 Total Suspended Solids 8 8 8 3 Uranium Dissolved 0 0 ND 4 Vanadium Dissolved 0 0 ND <		6 53			4	10
Potassium Dissolved 0.4 0.63 0.4575 4 Selenium Dissolved 0.00021 0.00021 0.00021 4 Silica (as Si) Dissolved 1.9 5 2.8775 4 Silver Dissolved 0 0 ND 4 Sodium Dissolved 2.3 3.26 2.765 4 Specific Conductance 221 253 231.6666667 3 Sulfate 64.8 76.5 70.75 4 Thallium Dissolved 0 0 ND 4 Total Alkalinity 29.6 33.1 31.675 4 Total Dissolved Solids 105 135 123.6666667 3 Total Hardness Total 96.1 118.6 107.1 4 Total Suspended Solids 8 8 8 3 Uranium Dissolved 0 0 ND 4 Vanadium Dissolved 0 0 ND 4 Zinc Dissolved 0.15 0.225 0.1	<u> </u>					2
Selenium Dissolved 0.00021 0.00021 0.00021 4 Silica (as Si) Dissolved 1.9 5 2.8775 4 Silver Dissolved 0 0 ND 4 Sodium Dissolved 2.3 3.26 2.765 4 Specific Conductance 221 253 231.6666667 3 Sulfate 64.8 76.5 70.75 4 Thallium Dissolved 0 0 ND 4 Total Alkalinity 29.6 33.1 31.675 4 Total Dissolved Solids 105 135 123.6666667 3 Total Hardness Total 96.1 118.6 107.1 4 Total Suspended Solids 8 8 8 3 Uranium Dissolved 0 0 ND 4 Vanadium Dissolved 0 0 ND 4 Zinc Dissolved 0.15 0.225 0.180 4 ORP (field) 154.4 335.8 223.275 </td <td></td> <td></td> <td></td> <td></td> <td>Δ</td> <td>1</td>					Δ	1
Silica (as Si) Dissolved 1.9 5 2.8775 4 Silver Dissolved 0 0 ND 4 Sodium Dissolved 2.3 3.26 2.765 4 Specific Conductance 221 253 231.6666667 3 Sulfate 64.8 76.5 70.75 4 Thallium Dissolved 0 0 ND 4 Total Alkalinity 29.6 33.1 31.675 4 Total Dissolved Solids 105 135 123.6666667 3 Total Hardness Total 96.1 118.6 107.1 4 Total Suspended Solids 8 8 8 3 Uranium Dissolved 0 0 ND 4 Vanadium Dissolved 0 0 ND 4 Zinc Dissolved 0.15 0.225 0.180 4 ORP (field) 154.4 335.8 223.275 4 Water Temperature (field) 3.3 5.6 4.375 4					4	3
Silver Dissolved 0 0 ND 4 Sodium Dissolved 2.3 3.26 2.765 4 Specific Conductance 221 253 231.6666667 3 Sulfate 64.8 76.5 70.75 4 Thallium Dissolved 0 0 ND 4 Total Alkalinity 29.6 33.1 31.675 4 Total Dissolved Solids 105 135 123.6666667 3 Total Hardness Total 96.1 118.6 107.1 4 Total Suspended Solids 8 8 8 3 Uranium Dissolved 0 0 ND 4 Vanadium Dissolved 0 0 ND 4 Zinc Dissolved 0.15 0.225 0.180 4 ORP (field) 154.4 335.8 223.275 4 Water Temperature (field) 3.3 5.6 4.375 4 Conductivity (field) 202 551 294.325 4						1
Sodium Dissolved 2.3 3.26 2.765 4 Specific Conductance 221 253 231.6666667 3 Sulfate 64.8 76.5 70.75 4 Thallium Dissolved 0 0 ND 4 Total Alkalinity 29.6 33.1 31.675 4 Total Dissolved Solids 105 135 123.6666667 3 Total Hardness Total 96.1 118.6 107.1 4 Total Suspended Solids 8 8 8 3 Uranium Dissolved 0 0 ND 4 Vanadium Dissolved 0 0 ND 4 Zinc Dissolved 0.15 0.225 0.180 4 ORP (field) 154.4 335.8 223.275 4 Water Temperature (field) 3.3 5.6 4.375 4 Conductivity (field) 202 551 294.325 4	Silver Dissolved	1	0			4
Specific Conductance 221 253 231.6666667 3 Sulfate 64.8 76.5 70.75 4 Thallium Dissolved 0 0 ND 4 Total Alkalinity 29.6 33.1 31.675 4 Total Dissolved Solids 105 135 123.6666667 3 Total Hardness Total 96.1 118.6 107.1 4 Total Suspended Solids 8 8 8 3 Uranium Dissolved 0 0 ND 4 Vanadium Dissolved 0 0 ND 4 Zinc Dissolved 0.15 0.225 0.180 4 ORP (field) 154.4 335.8 223.275 4 Water Temperature (field) 3.3 5.6 4.375 4 Conductivity (field) 202 551 294.325 4		2 3				ļ
Sulfate 64.8 76.5 70.75 4 Thallium Dissolved 0 0 ND 4 Total Alkalinity 29.6 33.1 31.675 4 Total Dissolved Solids 105 135 123.6666667 3 Total Hardness Total 96.1 118.6 107.1 4 Total Suspended Solids 8 8 8 3 Uranium Dissolved 0 0 ND 4 Vanadium Dissolved 0 0 ND 4 Zinc Dissolved 0.15 0.225 0.180 4 ORP (field) 154.4 335.8 223.275 4 Water Temperature (field) 3.3 5.6 4.375 4 Conductivity (field) 202 551 294.325 4						10
Thallium Dissolved 0 0 ND 4 Total Alkalinity 29.6 33.1 31.675 4 Total Dissolved Solids 105 135 123.6666667 3 Total Hardness Total 96.1 118.6 107.1 4 Total Suspended Solids 8 8 8 3 Uranium Dissolved 0 0 ND 4 Vanadium Dissolved 0 0 ND 4 Zinc Dissolved 0.15 0.225 0.180 4 ORP (field) 154.4 335.8 223.275 4 Water Temperature (field) 3.3 5.6 4.375 4 Conductivity (field) 202 551 294.325 4					Δ	1
Total Alkalinity 29.6 33.1 31.675 4 Total Dissolved Solids 105 135 123.6666667 3 Total Hardness Total 96.1 118.6 107.1 4 Total Suspended Solids 8 8 8 3 Uranium Dissolved 0 0 ND 4 Vanadium Dissolved 0 0 ND 4 Zinc Dissolved 0.15 0.225 0.180 4 ORP (field) 154.4 335.8 223.275 4 Water Temperature (field) 3.3 5.6 4.375 4 Conductivity (field) 202 551 294.325 4		·····				ΙΔ
Total Dissolved Solids 105 135 123.6666667 3 Total Hardness Total 96.1 118.6 107.1 4 Total Suspended Solids 8 8 8 3 Uranium Dissolved 0 0 ND 4 Vanadium Dissolved 0 0 ND 4 Zinc Dissolved 0.15 0.225 0.180 4 ORP (field) 154.4 335.8 223.275 4 Water Temperature (field) 3.3 5.6 4.375 4 Conductivity (field) 202 551 294.325 4						1
Total Hardness Total 96.1 118.6 107.1 4 Total Suspended Solids 8 8 8 3 Uranium Dissolved 0 0 ND 4 Vanadium Dissolved 0 0 ND 4 Zinc Dissolved 0.15 0.225 0.180 4 ORP (field) 154.4 335.8 223.275 4 Water Temperature (field) 3.3 5.6 4.375 4 Conductivity (field) 202 551 294.325 4						1
Total Suspended Solids 8 8 8 3 Uranium Dissolved 0 0 ND 4 Vanadium Dissolved 0 0 ND 4 Zinc Dissolved 0.15 0.225 0.180 4 ORP (field) 154.4 335.8 223.275 4 Water Temperature (field) 3.3 5.6 4.375 4 Conductivity (field) 202 551 294.325 4					Δ	1
Uranium Dissolved 0 0 ND 4 Vanadium Dissolved 0 0 ND 4 Zinc Dissolved 0.15 0.225 0.180 4 ORP (field) 154.4 335.8 223.275 4 Water Temperature (field) 3.3 5.6 4.375 4 Conductivity (field) 202 551 294.325 4				107.1	3	2
Vanadium Dissolved 0 0 ND 4 Zinc Dissolved 0.15 0.225 0.180 4 ORP (field) 154.4 335.8 223.275 4 Water Temperature (field) 3.3 5.6 4.375 4 Conductivity (field) 202 551 294.325 4				ND	<i>.</i>	
Zinc Dissolved 0.15 0.225 0.180 4 ORP (field) 154.4 335.8 223.275 4 Water Temperature (field) 3.3 5.6 4.375 4 Conductivity (field) 202 551 294.325 4		······				
ORP (field) 154.4 335.8 223.275 4 Water Temperature (field) 3.3 5.6 4.375 4 Conductivity (field) 202 551 294.325 4					<i>+</i>	†
Water Temperature (field) 3.3 5.6 4.375 4 Conductivity (field) 202 551 294.325 4					4 	†
Conductivity (field) 202 551 294.325 4					4 	
• ` `						†
ID() (told) 931 6141 4400£1 41	DO (field)	8.3	61.1	41.825		ļ
pH (field) 6.51 6.84 6.670 4					л	0

GW-99 - Last 5 Quarters GW-3R Duplicate

GW-99 - Last 5 Quarters	GW-3R Duplicate				
Analyte	Min of Results	Max of Results	Avg of Results	Test Count	Not - Detect Count
Aluminum Dissolved	0.002	0.036	0.019	4	2
Antimony Dissolved	0.00107	0.00107	0.00107	4	3
Arsenic Dissolved	0.00055	0.0006	0.000575	4	2
Barium Dissolved	0.0318	0.0375	0.03505	4	0
Beryllium Dissolved	0	0	ND	4	4
Bicarbonate	29.7	33.7	31.75	4	0
Boron Dissolved	0	0	ND	4	4
Cadmium Dissolved	0.0003	36.8	7.3602686	5	C
Calcium Dissolved	34.5	40.2	37.2	3	C
Calcium Total	34.2	42.9	38.43333333	3	C
Carbonate	0	0	ND	4	4
Chloride	0.21	0.21	0.21	4	3
Chromium Dissolved	0	0	ND	4	4
Copper Dissolved	0	0	ND	4	4
Cyanide-Total	0	0	ND	4	4
Fluoride	0.14	0.25	0.206666667	4	1
Hydroxide	0	0	ND	4	4
Iron Dissolved	0	0	ND	4	4
Lead Dissolved	0.0001	0.0001	0.0001	4	3
Magnesium Dissolved	1.91	2.22	2.095	4	C
Magnesium Total	1.93	2.36	2.17	3	(
Manganese Dissolved	0		ND	4	4
Mercury Dissolved	0	0	ND	4	4
Molybdenum Dissolved	0.0006	0.0018	0.000955	4	0
Nickel Dissolved	0		ND	4	4
Nitrate Nitrogen	0.17	0.46	0.31	3	0
Nitrate/ Nitrite Nitrogen	0.17	0.46	0.2965	4	0
Nitrite Nitrogen	0		ND	3	3
pH	6.37	7.5	6.7075	4	(
Phosphorus - Total	0		ND	3	3
Potassium Dissolved	0.4	0.51	0.4525	4	
Selenium Dissolved	0.00022	0.00022	0.00022	4	3
Silica (as Si) Dissolved	2.2	4.8		4	
Silver Dissolved	0		ND	4	4
Sodium Dissolved	2.2	2.9	2.6425	4	
Specific Conductance	218	256			
Sulfate	64.1	77.8	71.625	Δ	
Thallium Dissolved	0		ND	Δ	
Total Alkalinity	29.7	33.7	31.75		
Total Dissolved Solids	112	132	124	3	
Total Hardness Total	93.3	116.8	103.925	<i>1</i>	
Total Suspended Solids	95.5		ND	2	3
Uranium Dissolved	0		ND	ى 	
Vanadium Dissolved			ND	4 	
Zinc Dissolved	0.152	0.214	0.176	4 1	
ORP (field)	154.4	335.8	223.275	4 	
	3.3		4.375	4 	
Water Temperature (field)		5.6	L	4 	
Conductivity (field)	202	551	294.325	4	
DO (field) pH (field)	8.3 6.51	61.1 6.84	41.825 6.670	4	C

Attachment C

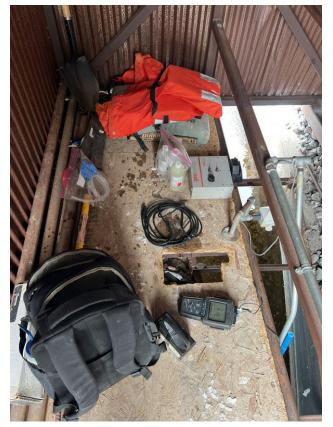
2024-01-04, 11:43, OF002A

Created	2024-01-04 10:31:48 MST by Environmental Department
Updated	2024-01-10 09:23:35 MST by Environmental Department
Location	,
Outfall Field Data	
Sample ID	OF002A
Date	2024-01-04
Time	11:43

Observations

Color and Clarity	Clear
Oil and Grease observation	Absent

Field Chemistry


equipment calibrated?	Yes
pH analysis time	11:43
Field pH	7.96
Field Water's Temperature (C)	2.9

Flow Information

Staff Gauge Height (feet)	0.17
Flow (CFS)	0.27
Continuous Monitor download?	Yes

CJ Dickerson

Photos

Signature

4

Signed 2024-01-04 10:34:49 MST

2024-01-30, 09:49, OF002A

Created	2024-01-30 09:49:29 MST by Environmental Department
Updated	2024-01-30 10:05:39 MST by Environmental Department
Location	,
Outfall Field Data	
Sample ID	OF002A
Date	2024-01-30
Time	09:49

Observations

Color and Clarity	Clear
Oil and Grease observation	Absent

Field Chemistry

equipment calibrated?	Yes
pH analysis time	09:49
Field pH	8.3
Field Water's Temperature (C)	2.1

Flow Information

Staff Gauge Height (feet)	0.125
Flow (CFS)	0.1793
Continuous Monitor download?	No

Photos

Samp	ler's N	Name	
------	---------	------	--

Signature

gh

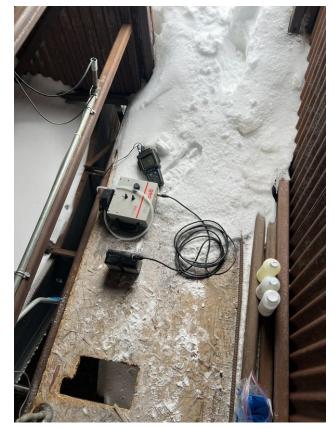
Signed 2024-01-30 09:51:37 MST

2024-02-15, 09:50, OF002A

Created	2024-02-15 09:15:17 MST by Environmental Department
Updated	2024-02-15 09:25:31 MST by Environmental Department
Location	,
Outfall Field Data	
Sample ID	OF002A
Date	2024-02-15
Time	09:50

Observations

Color and Clarity	Clear
Oil and Grease observation	Absent


Field Chemistry

equipment calibrated?	Yes
pH analysis time	09:15
Field pH	7.59
Field Water's Temperature (C)	1.7

Flow Information

Staff Gauge Height (feet)	0.125
Flow (CFS)	0.1793
Continuous Monitor download?	No

Photos

Signature

9

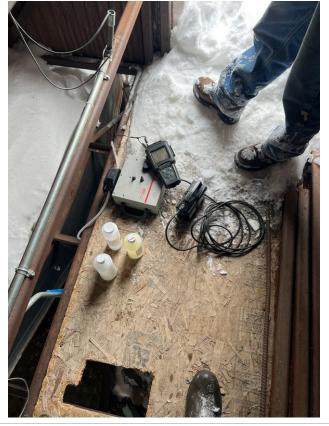
Signed 2024-02-15 09:16:19 MST

2024-02-26, 14:02, OF002A

Created	2024-02-26 14:02:10 MST by Environmental Department
Updated	2024-02-26 14:10:07 MST by Environmental Department
Location	,
Outfall Field Data	
Sample ID	OF002A
Date	2024-02-26
Time	14:02

Observations

Color and Clarity	Clear
Oil and Grease observation	Absent


Field Chemistry

equipment calibrated?	Yes
pH analysis time	14:02
Field pH	7.35
Field Water's Temperature (C)	2

Flow Information

Staff Gauge Height (feet)	0.17
Flow (CFS)	0.27
Continuous Monitor download?	No

Photos

Sampler's Name

CJ Dickerson

Signature

4

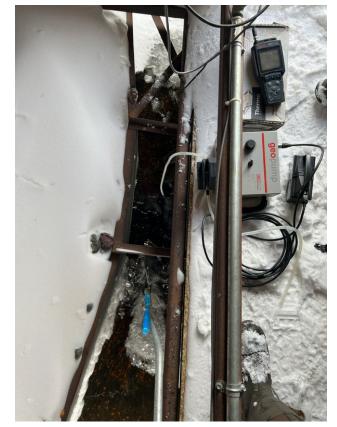
Signed 2024-02-26 14:04:06 MST

2024-03-06, 13:00, OF002A

Created	2024-03-06 14:20:16 MST by Environmental Department
Updated	2024-03-06 14:25:15 MST by Environmental Department
Location	,
Outfall Field Data	
Sample ID	OF002A
Date	2024-03-06
Time	13:00

Observations

Color and Clarity	Clear
Oil and Grease observation	Absent


Field Chemistry

equipment calibrated?	Yes
pH analysis time	13:00
Field pH	7.23
Field Water's Temperature (C)	1.8

Flow Information

Staff Gauge Height (feet)	0.17
Flow (CFS)	0.27
Continuous Monitor download?	Yes

Photos

Signature

Signed 2024-03-06 14:24:50 MST

2024-03-19, 09:00, OF002A

Created	2024-03-19 09:08:07 MDT by Environmental Department
Updated	2024-03-19 09:09:20 MDT by Environmental Department
Location	•
Outfall Field Data	
Sample ID	OF002A
Date	2024-03-19
Time	09:00

Observations

Color and Clarity	Clear
Oil and Grease observation	Absent

Field Chemistry

equipment calibrated?	Yes
pH analysis time	09:00
Field pH	7.71
Field Water's Temperature (C)	1.9

Flow Information

Staff Gauge Height (feet)	0.15
Flow (CFS)	0.233
Continuous Monitor download?	No

Photos

Notes	В	i mont	hl	y
-------	---	--------	----	---

Sampler's Name CJ Dickerson

Signature

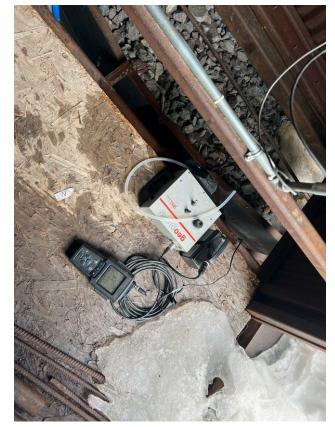
Signed 2024-03-19 09:09:19 MDT

2024-04-23, 11:34, OF002A

Created	2024-04-23 11:34:22 MDT by Environmental Department
Updated	2024-04-23 11:42:26 MDT by Environmental Department
Location	,
Outfall Field Data	
Sample ID	OF002A
Date	2024-04-23
Time	11:34

Observations

Color and Clarity	Clear
Oil and Grease observation	Absent


Field Chemistry

equipment calibrated?	Yes
pH analysis time	11:34
Field pH	8.07
Field Water's Temperature (C)	3.5

Flow Information

Staff Gauge Height (feet)	1.9
Flow (CFS)	0.319
Continuous Monitor download?	Yes

Photos

Notes Moss present in outfall

Sampler's Name CJ Dickerson

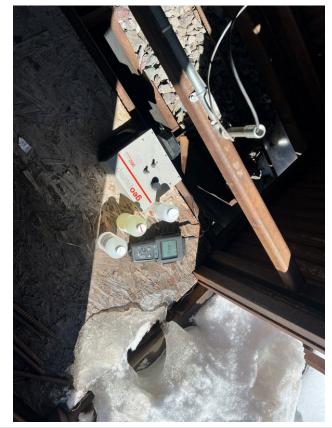
Signature

Signed 2024-04-23 11:36:35 MDT

2024-04-30, 12:00, OF002A

Created	2024-04-30 10:22:41 MDT by Environmental Department
Updated	2024-04-30 10:27:14 MDT by Environmental Department
Location	,
Outfall Field Data	
Sample ID	OF002A
Date	2024-04-30
Time	12:00

Observations


Color and Clarity	Clear
Oil and Grease observation	Absent

Field Chemistry

equipment calibrated?	Yes
pH analysis time	12:00
Field pH	8.3
Field Water's Temperature (C)	3.5

Flow Information

Staff Gauge Height (feet)	0.25
Flow (CFS)	0.48

Notes	Water level/flow increasing
Sampler's Name	CJ Dickerson

9

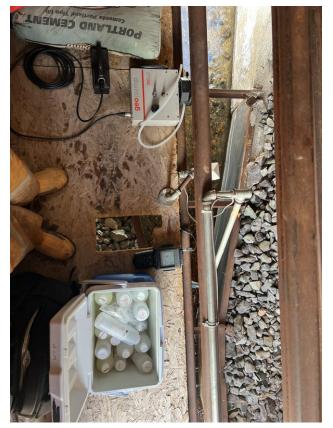
Signed 2024-04-30 10:26:14 MDT

2024-05-22, 12:30, OF002A

Created	2024-05-22 11:44:17 MDT by Environmental Department
Updated	2024-05-22 11:46:59 MDT by Environmental Department
Location	,
Outfall Field Data	
Sample ID	OF002A
Date	2024-05-22
Time	12:30

Observations

Color and Clarity	Clear
Oil and Grease observation	Absent


Field Chemistry

equipment calibrated?	Yes
pH analysis time	12:30
Field pH	8.11
Field Water's Temperature (C)	3.8

Flow Information

Staff Gauge Height (feet)	0.25
Flow (CFS)	0.485
Continuous Monitor download?	No

Photos

Notes Water flow increasing

Sampler's Name	CJ Dickerson
Signature	
	Signed 2024-05-22 11:46:30 MDT

2024-06-17, 11:00, OF002A

Created	2024-06-17 11:20:48 MDT by Environmental Department
Updated	2024-06-17 11:34:24 MDT by Environmental Department
Location	,
Outfall Field Data	
Sample ID	OF002A
Date	2024-06-17
Time	11:00

Observations

Color and Clarity	Clear
Oil and Grease observation	Absent

Field Chemistry

equipment calibrated?	Yes
pH analysis time	11:00
Field pH	7.54
Field Water's Temperature (C)	9

Flow Information

Staff Gauge Height (feet)	0.5
Flow (CFS)	1.39
Continuous Monitor download?	Yes

Photos

Sampler's Name CJ Dickerson

 \mathcal{A}

Signed 2024-06-17 11:34:23 MDT

2024-06-24, 10:12, OF002A

Created	2024-06-24 10:12:41 MDT by Environmental Department
Updated	2024-06-24 10:15:26 MDT by Environmental Department
Location	,
Outfall Field Data	
Sample ID	OF002A
Date	2024-06-24
Time	10:12

Observations

Color and Clarity	Clear
Oil and Grease observation	Absent

Field Chemistry

equipment calibrated?	Yes
pH analysis time	10:00
Field pH	8.1
Field Water's Temperature (C)	10

Flow Information

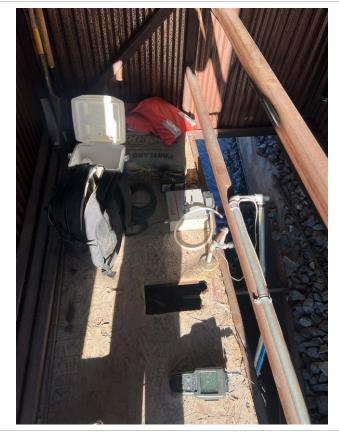
Staff Gauge Height (feet)	0.5
Flow (CFS)	1.39
Continuous Monitor download?	No

Signed 2024-06-24 10:15:25 MDT

2024-07-17, 07:33, OF002A

Created	2024-07-17 07:33:20 MDT by Environmental Department
Updated	2024-07-17 07:37:01 MDT by Environmental Department
Location	,
Outfall Field Data	
Sample ID	OF002A
Date	2024-07-17
Time	07:33

Observations


Color and Clarity	Clear
Oil and Grease observation	Absent

Field Chemistry

equipment calibrated?	Yes
pH analysis time	07:33
Field pH	7.65
Field Water's Temperature (C)	9.4

Flow Information

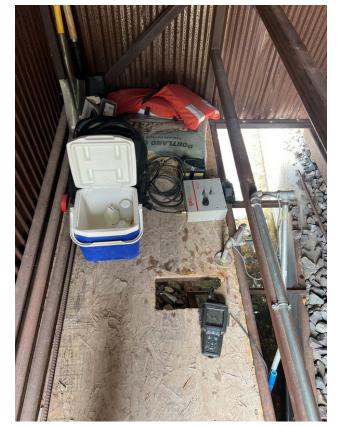
Staff Gauge Height (feet)	0.42
Flow (CFS)	1.068
Continuous Monitor download?	Yes

Signed 2024-07-17 07:36:07 MDT

2024-07-29, 11:00, OF002A

Created	2024-07-29 14:51:12 MDT by Environmental Department
Updated	2024-07-29 14:55:23 MDT by Environmental Department
Location	,
Outfall Field Data	
Sample ID	OF002A
Date	2024-07-29
Time	11:00

Observations


Color and Clarity	Clear
Oil and Grease observation	Absent

Field Chemistry

equipment calibrated?	Yes
pH analysis time	11:00
Field pH	8.02
Field Water's Temperature (C)	8.02

Flow Information

Staff Gauge Height (feet)	0.42
Flow (CFS)	1.068
Continuous Monitor download?	No

Sampler's Name CJ Dickerson

Signature

4

Signed 2024-07-29 14:55:21 MDT

2024-08-22, 11:00, OF002A

Created	2024-08-22 11:29:43 MDT by Environmental Department
Updated	2024-08-22 11:32:02 MDT by Environmental Department
Location	,
Outfall Field Data	
Sample ID	OF002A
Date	2024-08-22
Time	11:00

Observations

Color and Clarity	Clear
Oil and Grease observation	Absent

Field Chemistry

equipment calibrated?	Yes
pH analysis time	11:00
Field pH	7.52
Field Water's Temperature (C)	11

Flow Information

Staff Gauge Height (feet)	0.33
Flow (CFS)	0.74
Continuous Monitor download?	No

Photos

Notes

Continuous monitor not connecting or showing battery charge on data logger

Sampler's Name CJ Dickerson

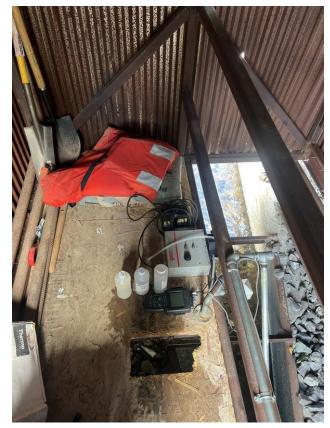
Signature

Signed 2024-08-22 11:32:01 MDT

2024-08-29, 10:00, OF002A

Created	2024-08-29 11:46:40 MDT by Environmental Department
Updated	2024-08-29 11:49:15 MDT by Environmental Department
Location	,
Outfall Field Data	
Sample ID	OF002A
Date	2024-08-29
Time	10:00

Observations


Color and Clarity	Clear
Oil and Grease observation	Absent

Field Chemistry

equipment calibrated?	Yes
pH analysis time	10:00
Field pH	7.43
Field Water's Temperature (C)	11.6

Flow Information

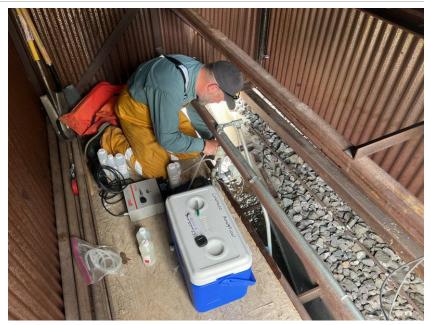
Staff Gauge Height (feet)	0.33
Flow (CFS)	0.74
Continuous Monitor download?	No

Sampler's Name	CJ Dickerson
Signature	
	Signed 2024-08-29 11:49:14 MDT

2024-09-16, 14:41, OF002A

Created	2024-09-16 14:41:28 MDT by Environmental Department
Updated	2024-09-16 14:43:29 MDT by Environmental Department
Location	•
Outfall Field Data	
Sample ID	OF002A
Date	2024-09-16
Time	14:41

Observations


Color and Clarity	Clear
Oil and Grease observation	Absent

Field Chemistry

equipment calibrated?	Yes	
pH analysis time	14:41	
Field pH	7.7	
Field Water's Temperature (C)	10.1	

Flow Information

Staff Gauge Height (feet)	0.3
Flow (CFS)	0.64
Continuous Monitor download?	No

Notes	Bi-Monthly & Quarterly Continuous monitor not working. Working to replace solar panel and battery
Sampler's Name	CJ Dickerson

Signed 2024-09-16 14:43:28 MDT

2024-10-22, 11:00, OF002A

Created	2024-10-22 13:40:55 MDT by Environmental Department
Updated	2024-10-22 13:42:53 MDT by Environmental Department
Location	,
Outfall Field Data	
Sample ID	OF002A
Date	2024-10-22
Time	11:00

Observations

Color and Clarity	Clear
Oil and Grease observation	Absent

Field Chemistry

equipment calibrated?	Yes
pH analysis time	11:00
Field pH	7.14
Field Water's Temperature (C)	7

Flow Information

Staff Gauge Height (feet)	0.25
Flow (CFS)	0.485
Continuous Monitor download?	No

Notes	Flow data for continuous monitor is not reporting correctly
Sampler's Name	CJ Dickerson

Signed 2024-10-22 13:42:53 MDT

2024-10-31, 11:30, OF002A

Created	2024-10-31 13:27:15 MDT by Environmental Department
Updated	2024-10-31 13:29:55 MDT by Environmental Department
Location	,
Outfall Field Data	
Sample ID	OF002A
Date	2024-10-31
Time	11:30

Observations

Color and Clarity	Clear
Oil and Grease observation	Absent

Field Chemistry

equipment calibrated?	Yes	
pH analysis time	11:30	
Field pH	7.5	
Field Water's Temperature (C)	6.9	

Flow Information

Staff Gauge Height (feet)	0.25
Flow (CFS)	0.485
Continuous Monitor download?	No

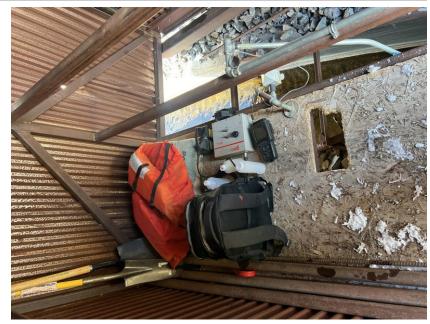
Notes	Continuous monitor needs calibration, not reporting accurate data
Sampler's Name	CJ Dickerson

Signed 2024-10-31 13:29:51 MDT

2024-11-18, 11:00, OF002A

Created	2024-11-18 12:17:42 MST by Environmental Department
Updated	2024-11-18 12:19:40 MST by Environmental Department
Location	•
Outfall Field Data	
Sample ID	OF002A
Date	2024-11-18
Time	11:00

Observations


Color and Clarity	Clear
Oil and Grease observation	Absent

Field Chemistry

equipment calibrated?	Yes
pH analysis time	11:00
Field pH	7.68
Field Water's Temperature (C)	6.8

Flow Information

Staff Gauge Height (feet)	0.25
Flow (CFS)	0.485
Continuous Monitor download?	No

Notes	Continuous monitor not collecting accurate data, needs work/calibration
Sampler's Name	CJ Dickerson

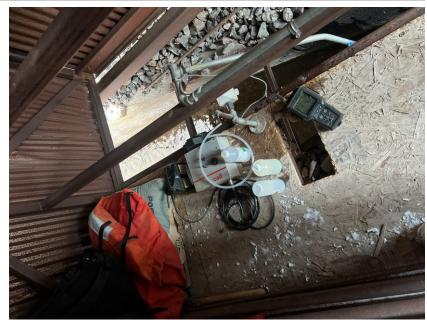
S

Signed 2024-11-18 12:19:39 MST

2024-11-25, 09:21, OF002A

Created	2024-11-25 07:21:46 MST by Environmental Department
Updated	2024-11-25 07:23:32 MST by Environmental Department
Location	,
Outfall Field Data	
Sample ID	OF002A
Date	2024-11-25
Time	09:21

Observations


Color and Clarity	Clear
Oil and Grease observation	Absent

Field Chemistry

equipment calibrated?	Yes
pH analysis time	09:21
Field pH	7.21
Field Water's Temperature (C)	5

Flow Information

Staff Gauge Height (feet)	0.25
Flow (CFS)	0.485
Continuous Monitor download?	No

Notes	Continuous monitor not recording reliable data. Working with supplier to trouble shoot, will purchase new unit if unsuccessful.
Sampler's Name	CJ Dickerson

Signed 2024-11-25 07:23:31 MST

2024-12-09, 11:45, OF002A

2024-12-09 12:09:19 MST by Environmental Department
2024-12-09 13:48:32 MST by Environmental Department
37.97432976654625, -107.75018571393925
OF002A
2024-12-09
11:45

Observations

Color and Clarity	Clear
Oil and Grease observation	Absent

Field Chemistry

equipment calibrated?	Yes
pH analysis time	11:45
Field pH	6.99
Field Water's Temperature (C)	6

Flow Information

Staff Gauge Height (feet)	0.183
Flow (CFS)	0.28
Continuous Monitor download?	No

Photos

Sampler's Name Andrew Skibo

AAA

Signed 2024-12-09 12:11:38 MST

2024-12-18, 12:00, OF002A

Created	2024-12-18 13:08:24 MST by Environmental Department
Updated	2024-12-18 13:10:25 MST by Environmental Department
Location	,
Outfall Field Data	
Sample ID	OF002A
Date	2024-12-18
Time	12:00

Observations

Color and Clarity	Clear
Oil and Grease observation	Absent

Field Chemistry

equipment calibrated?	Yes
pH analysis time	12:00
Field pH	7.37
Field Water's Temperature (C)	6

Flow Information

Staff Gauge Height (feet)	0.2
Flow (CFS)	0.319
Continuous Monitor download?	No

Notes	Continuous monitor still not working correctly. Working to remedy.
Sampler's Name	CJ Dickerson

Signed 2024-12-18 13:10:24 MST

2024-03-18, 11:00, OF002A

Created	2024-03-18 11:29:11 MDT by Environmental Department
Updated	2024-03-18 11:37:58 MDT by Environmental Department
Location	,
Outfall Field Data	
Sample ID	OF002A
Date	2024-03-18
Time	11:00

Observations

Color and Clarity	Clear
Oil and Grease observation	Absent

Field Chemistry

equipment calibrated?	Yes
pH analysis time	11:00
Field pH	7.63
Field Water's Temperature (C)	2

Flow Information

Staff Gauge Height (feet)	0.15
Flow (CFS)	0.233
Continuous Monitor download?	No

Notes	Quarterly & bi-monthly
Notes	Quarterly & bi-monthly

Sampler's Name	CI Dickerson

0)

Signed 2024-03-18 11:37:57 MDT

2024-05-22, 12:30, OF002A

Created	2024-05-22 11:44:17 MDT by Environmental Department
Updated	2024-05-22 11:46:59 MDT by Environmental Department
Location	ı
Outfall Field Data	
Sample ID	OF002A
Date	2024-05-22
Time	12:30

Observations

Color and Clarity	Clear
Oil and Grease observation	Absent

Field Chemistry

equipment calibrated?	Yes	
pH analysis time	12:30	
Field pH	8.11	
Field Water's Temperature (C)	3.8	

Flow Information

Staff Gauge Height (feet)	0.25
Flow (CFS)	0.485
Continuous Monitor download?	No

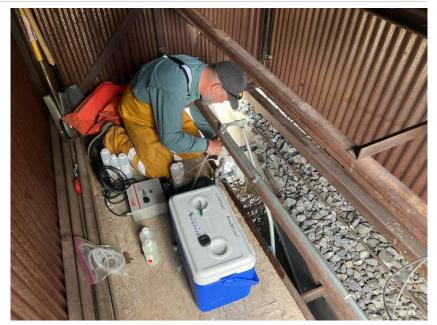
Samp l er's Name	CJ Dickerson
Signature	
	Signed 2024-05-22 11:46:30 MDT

2024-09-16, 14:41, OF002A

Created	2024-09-16 14:41:28 MDT by Environmental Department
Updated	2024-09-16 14:43:29 MDT by Environmental Department
Location	ı
Outfall Field Data	
Sample ID	OF002A
Date	2024-09-16
Time	14:41

Observations

Color and Clarity	Clear
Oil and Grease observation	Absent


Field Chemistry

equipment calibrated?	Yes
pH analysis time	14:41
Field pH	7.7
Field Water's Temperature (C)	10.1

Flow Information

Staff Gauge Height (feet)	0.3
Flow (CFS)	0.64
Continuous Monitor download?	No

Photos

Notes	Bi-Monthly & Quarterly Continuous monitor not working. Working to replace solar panel and battery
Sampler's Name	CJ Dickerson

Signature

A)

Signed 2024-09-16 14:43:28 MDT

2024-12-09, 11:45, OF002A

Created	2024-12-09 12:09:19 MST by Environmental Department
Updated	2024-12-09 13:48:32 MST by Environmental Department
Location	37.97432976654625, -107.75018571393925
Outfall Field Data	
Sample ID	OF002A
Date	2024-12-09
Time	11:45

Observations

Color and Clarity	Clear
Oil and Grease observation	Absent

Field Chemistry

equipment calibrated?	Yes
pH analysis time	11:45
Field pH	6.99
Field Water's Temperature (C)	6

Flow Information

Staff Gauge Height (feet)	0.183
Flow (CFS)	0.28
Continuous Monitor download?	No

Photos

Sampler's Name Andrew Skibo

Signature

alt All

Signed 2024-12-09 12:11:38 MST

20	2	00	21
Zυ	<i>1</i> 24	-03	-Z I

2024-03-21	
Created	2024-03-21 12:20:19 MDT by Environmental Department
Updated	2024-03-21 12:55:05 MDT by Environmental Department
Location	,
Groundwater 2021 Field Data	
Well ID	GW-3B
Date	2024-03-21
Time	11:40
Observations	
Weather Conditions	Sunny
Weather Conditions	Juniy
Well Information	
Stick Up (inches from ground surface)	37.2
Depth to Water (inches from top of collar)	204
Depth to Bottom (inches from top of collar)	594
Cubic feet of water in well	0.7086809184
Gallons of water in well	5.30130178370957
Pumping Notes	D12 F18
Purge Time (minutes)	35
Purge Volume (Gallons)	3.5
Field Chemistry	
Water Temperature (C) 1	4.7
Conductivity (uS/cm) 1	190.1
Field DO (%) 1	53.9
Field pH 1	6.71
Water Temperature (C) 2	4.6
Conductivity (uS/cm) 2	191.1
Field DO (%) 2	51.5
Field pH 2	6.64
Water Temperature (C) 3	4.6
Conductivity (uS/cm) 3	191.2
Field DO (%) 3	50.7
Field pH 3	6.63
Sample method	Bladder Pump
SampleTime	11:40
Field ORP (mV)	171.9
Water Temperature (C)	4.2
Conductivity (uS/cm)	191.6
Field DO (%)	59.9
Field pH	6.62
color and clarity	Clear

Photos

Sampler Name

CJ Dickerson

Signature

Y

Signed 2024-03-21 12:45:50 MDT

20	~ 4	00	1 7 4
Z U	174	-() -	-21

2024-03-21	
Created	2024-03-21 11:04:04 MDT by Environmental Department
Updated	2024-03-21 11:47:03 MDT by Environmental Department
Location	,
Groundwater 2021 Field Data	
Well ID	GW-3R
Date	2024-03-21
Time	11:04
Observations	
Weather Conditions	Sunny
Wedner Conditions	Juniy
Well Information	
Stick Up (inches from ground surface)	8.4
Depth to Water (inches from top of collar)	270
Depth to Bottom (inches from top of collar)	408
Cubic feet of water in well	0.25076401728
Gallons of water in well	1.87584524654339
Pumping Notes	D20 F12
Purge Time (minutes)	25
Purge Volume (Gallons)	2.5
Field Chemistry	
Water Temperature (C) 1	3.5
Conductivity (uS/cm) 1	202.5
Field DO (%) 1	49.9
Field pH 1	6.87
Water Temperature (C) 2	3.8
Conductivity (uS/cm) 2	201.5
Field DO (%) 2	50
Field pH 2	6.75
Water Temperature (C) 3	3.5
Conductivity (uS/cm) 3	202.5
Field DO (%) 3	49.3
Field pH 3	6.69
Sample method	Bladder pump
SampleTime	11:04
Field ORP (mV)	154.4
Water Temperature (C)	3.3
Conductivity (uS/cm)	202
Field DO (%)	48.4
Field pH	6.68
color and clarity	Clear

Photos

Sampler Name

CJ Dickerson

Signature

Signed 2024-03-21 11:21:12 MDT

20	~ 4	00	1 7 4
Z U	174	-() -	-21

2024-03-21	
Created	2025-01-27 12:20:04 MST by Environmental Department
Updated	2025-01-27 12:20:04 MST by Environmental Department
Location	,
Groundwater 2021 Field Data	
Well ID	GW-99
Duplicated Well	GW-3R
Date	2024-03-21
Time	11:04
Observations	
Weather Conditions	Sunny
Well Information	
Stick Up (inches from ground surface)	8.4
Depth to Water (inches from top of collar)	270
Depth to Bottom (inches from top of collar)	408
Cubic feet of water in well	0.25076401728000003
Gallons of water in well	1.875845246543386
Pumping Notes	D20 F12
Purge Time (minutes)	25
Purge Volume (Gallons)	2.5
Field Chemistry	
Water Temperature (C) 1	3.5
Conductivity (uS/cm) 1	202.5
Field DO (%) 1	49.9
Field pH 1	6.87
Water Temperature (C) 2	3.8
Conductivity (uS/cm) 2	202.5
Field DO (%) 2	49.3
Field pH 2	6.75
Ticid pi i 2	0.75
Water Temperature (C) 3	3.5
Conductivity (uS/cm) 3	202.5
Field DO (%) 3	49.3
Field pH 3	6.69
Sample method	Bladder Pump
SampleTime	11:04
Field ORP (mV)	154.4
Water Temperature (C)	3.3
Conductivity (uS/cm)	202
Field DO (%)	48.4
Field pH	6.68

color and clarity	Clear
Final Depth to Water (inches from top of collar)	270
Sampler Name	CJ Dickerson

Signature

C

Signed 2025-01-27 12:19:53 MST

20	~ 4	α	27
70	174.	-06-	-//

Created	2024-06-27 12:21:40 MDT by Environmental Department
Updated	2024-06-27 12:53:24 MDT by Environmental Department
Location	
Groundwater 2021 Field Data	
Well ID	GW-3R
Date	2024-06-27
Time	12:21

Observations Weather Conditions

Well Information	
Stick Up (inches from ground surface)	10.5
Depth to Water (inches from top of collar)	252
Depth to Bottom (inches from top of collar)	408
Cubic feet of water in well	0.28347236736
Gallons of water in well	2.12052071348383
Pumping Notes	D20 F12
Purge Time (minutes)	25

Cloudy

25

Field Chemistry

Purge Volume (Gallons)

Water Temperature (C) 1	5.9	
Conductivity (uS/cm) 1	207.3	
Field DO (%) 1	63.5	
Field pH 1	6.48	
Water Temperature (C) 2	6	
Conductivity (uS/cm) 2	206.5	
Field DO (%) 2	62.6	
Field pH 2	6.48	
Water Temperature (C) 3	5.5	
Conductivity (uS/cm) 3	205.7	
Field DO (%) 3	62	
Field pH 3	6.48	
Sample method	Bladder	
SampleTime	12:21	
Field ORP (mV)	203.3	
Water Temperature (C)	5.6	
Conductivity (uS/cm)	205.4	
Field DO (%)	61.1	
Field pH	6.51	
color and clarity	Clear	

Photos

Sampler Name

CJ Dickerson

Signature

Signed 2024-06-27 12:48:35 MDT

Notes

Turbidity - 200 ntu

20	24-	06	-27

Created	2025-01-27 12:28:45 MST by Environmental Department
Updated	2025-01-27 12:28:45 MST by Environmental Department
Location	,
Groundwater 2021 Field Data	
Well ID	GW-99
Duplicated Well	GW-3R
Date	2024-06-27
Time	12:21

Observations Weather Conditions

Well Information	
Stick Up (inches from ground surface)	10.5
Depth to Water (inches from top of collar)	252
Depth to Bottom (inches from top of collar)	408
Cubic feet of water in well	0.28347236736000003
Gallons of water in well	2.1205207134838275
Pumping Notes	D20 F12
Purge Time (minutes)	25

Cloudy

2.5

Field Chemistry

Purge Volume (Gallons)

Water Temperature (C) 1	5.9
Conductivity (uS/cm) 1	207.3
Field DO (%) 1	63.5
Field pH 1	6.48
Water Temperature (C) 2	6
Conductivity (uS/cm) 2	206.5
Field DO (%) 2	62.6
Field pH 2	6.48
Water Temperature (C) 3	5.5
Conductivity (uS/cm) 3	205.7
Field DO (%) 3	62
Field pH 3	6.48
Sample method	Bladder Pump
SampleTime	12:21
Field ORP (mV)	203.3
Water Temperature (C)	5.6
Conductivity (uS/cm)	205.4
Field DO (%)	61.1
Field pH	6.51

color and clarity	Clear
Final Depth to Water (inches from top of collar)	252
Sampler Name	CJ Dickerson

Signature

C

Signed 2025-01-27 12:28:12 MST

20	1	α	20
ZU	Z4 -	-06	٠∠ŏ

Created	2024-06-28 11:39:19 MDT by Environmental Department
Updated	2024-06-28 12:32:09 MDT by Environmental Department
Location	,
Groundwater 2021 Field Data	
Well ID	GW-1A
Date	2024-06-28
Time	11:39

Weather Conditions	Cloudy	
Well Information		
Stick Up (inches from ground surface)	60	

Depth to Water (inches from top of collar)	72
Depth to Bottom (inches from top of collar)	108.6
Cubic feet of water in well	0.066506978496
Gallons of water in well	0.497506782778898
Pumping Notes	D12 F20
Purge Time (minutes)	20

2

Field Chemistry

Purge Volume (Gallons)

Water Temperature (C) 1	8.5	
Conductivity (uS/cm) 1	140.5	
Field DO (%) 1	61.8	
Field pH 1	7.11	
Water Temperature (C) 2	7.8	
Conductivity (uS/cm) 2	139.6	
Field DO (%) 2	60.1	
Field pH 2	7.09	
Water Temperature (C) 3	7.2	
Conductivity (uS/cm) 3	139.5	
Field DO (%) 3	58.5	
Field pH 3	7.09	
Sample method	Bladder pump	
SampleTime	11:39	
Field ORP (mV)	108	
Water Temperature (C)	8	
Conductivity (uS/cm)	140	
Field DO (%)	59.9	
Field pH	7.1	
color and clarity	Clear	

72

Photos

Sampler Name

CJ Dickerson

Signature

Signed 2024-06-28 12:12:33 MDT

Notes Turbidity 30 ntu

Created	2024-06-28 12:40:41 MDT by Environmental Department	
Updated	2024-06-28 13:31:10 MDT by Environmental Department	
Location	,	
Groundwater 2021 Field Data		
Well ID	GW-1B	
Date	2024-06-28	
Time	12:40	

Observations Weather Conditions

Well Information			
Stick Up (inches from ground surface)	53.4		
Depth to Water (inches from top of collar)	60		
Depth to Bottom (inches from top of collar)	205.5		
Cubic feet of water in well	0.26439249648		
Gallons of water in well	1.97779335776857		
Pumping Notes	D13 F20		
Purge Time (minutes)	25		

Partly Cloudy

2

Field Chemistry

Purge Volume (Gallons)

Water Temperature (C) 1	7.7
Conductivity (uS/cm) 1	137.7
Field DO (%) 1	61.3
Field pH 1	7.12
Water Temperature (C) 2	7.1
Conductivity (uS/cm) 2	138.8
Field DO (%) 2	59.9
Field pH 2	7.11
Water Temperature (C) 3	6.9
Conductivity (uS/cm) 3	139.2
Field DO (%) 3	60.9
Field pH 3	7.11
Sample method	Bladder pump
SampleTime	12:40
Field ORP (mV)	134.8
Water Temperature (C)	7.3
Conductivity (uS/cm)	140.6
Field DO (%)	61.4
Field pH	7.11
color and clarity	Clear

Photos

Sampler Name

CJ Dickerson

Signature

Signed 2024-06-28 13:08:26 MDT

Notes Turbidity 6.8 NTU

20	24	α	വ
ZU	24-	UD:	-Zŏ

Created	2024-06-28 09:04:54 MDT by Environmental Department	
Updated	2024-06-28 10:05:48 MDT by Environmental Department	
Location	,	
Groundwater 2021 Field Data		
Well ID	GW-2A	
Date	2024-06-28	
Time	09:04	

Observations Weather Conditions

Well Information	
Stick Up (inches from ground surface)	12
Depth to Water (inches from top of collar)	107
Depth to Bottom (inches from top of collar)	174
Cubic feet of water in well	0.12174774752
Gallons of water in well	0.91073646027831
Pumping Notes	D20 F18
Purge Time (minutes)	20

Partly cloudy

2

Field Chemistry

Purge Volume (Gallons)

Water Temperature (C) 1	6.8	
Conductivity (uS/cm) 1	155.1	
Field DO (%) 1	51.7	
Field pH 1	6.79	
Water Temperature (C) 2	6.5	
Conductivity (uS/cm) 2	153.5	
Field DO (%) 2	50.6	
Field pH 2	6.78	
Water Temperature (C) 3	6.3	
Conductivity (uS/cm) 3	151.2	
Field DO (%) 3	49.6	
Field pH 3	6.77	
Sample method	Bladder	
SampleTime	09:04	
Field ORP (mV)	130.7	
Water Temperature (C)	6.4	
Conductivity (uS/cm)	151	
Field DO (%)	49.4	
Field pH	6.76	
color and clarity	Clear	

Final Depth to Water (inches from top of collar)

107

Photos

Sampler Name

CJ Dickerson

Signature

Signed 2024-06-28 09:39:04 MDT

Notes Turbidity 8.7NTU

\sim	~ 4	\sim	20
71	1 //	-06	_ /X
~~	~~	-00	-20

Created	2024-06-28 10:11:43 MDT by Environmental Department	
Updated	2024-06-28 10:42:36 MDT by Environmental Department	
Location	,	
Groundwater 2021 Field Data		
Well ID	GW-2B	
Date	2024-06-28	
Time	10:11	

Observations Weather Conditions

Well Information	
Stick Up (inches from ground surface)	12
Depth to Water (inches from top of collar)	114
Depth to Bottom (inches from top of collar)	346.8
Cubic feet of water in well	0.423027994368
Gallons of water in well	3.16446937242971
Pumping Notes	D10 F20
Purge Time (minutes)	25

Partly cloudy, windy

2.5

Field Chemistry

Purge Volume (Gallons)

ricia chemistry		
Water Temperature (C) 1	6.2	
Conductivity (uS/cm) 1	199	
Field DO (%) 1	49.9	
Field pH 1	6.82	
Water Temperature (C) 2	5.9	
Conductivity (uS/cm) 2	201.1	
Field DO (%) 2	49.6	
Field pH 2	6.8	
Water Temperature (C) 3	5.9	
Conductivity (uS/cm) 3	203.3	
Field DO (%) 3	49.7	
Field pH 3	6.78	
Sample method	Bladder	
SampleTime	10:11	
Field ORP (mV)	137.2	
Water Temperature (C)	5.4	
Conductivity (uS/cm)	202.9	
Field DO (%)	48.9	
Field pH	6.78	
color and clarity	Clear	

Final Depth to Water (inches from top of collar)

114

Photos

Sampler Name

CJ Dickerson

Signature

Signed 2024-06-28 10:30:19 MDT

20	17	1 ^	_	1	0
71	124	1-()	n-	_	X

color and clarity

2024-06-28	
Created	2024-06-28 07:40:34 MDT by Environmental Department
Updated	2024-06-28 08:20:56 MDT by Environmental Department
Location	,
Groundwater 2021 Field Data	
Well ID	GW-3B
Date	2024-06-28
Time	07:40
Observations	
Weather Conditions	Raining
Well Information	
Stick Up (inches from ground surface)	37.2
Depth to Water (inches from top of collar)	192
Depth to Bottom (inches from top of collar)	594
Cubic feet of water in well	0.73048648512
Gallons of water in well	5.46441876166986
Pumping Notes	D12 F18
Purge Time (minutes)	35
Purge Volume (Gallons)	5
Field Chemistry	
Water Temperature (C) 1	5.2
Conductivity (uS/cm) 1	189.7
Field DO (%) 1	59.4
Field pH 1	6.85
Water Temperature (C) 2	4.9
Conductivity (uS/cm) 2	189.1
Field DO (%) 2	57.7
Field pH 2	6.82
- · · · · ·	
Water Temperature (C) 3	4.6
Conductivity (uS/cm) 3	188.6
Field DO (%) 3	56.6
Field pH 3	6.8
Sample method	Bladder
SampleTime	07:40
Field ORP (mV)	112
Water Temperature (C)	4.5
Conductivity (uS/cm)	188.44
Field DO (%)	56
Field pH	6.8

Clear

192

Photos

Sampler Name

CJ Dickerson

Signature

9

Signed 2024-06-28 08:18:02 MDT

Notes

Turbidity 111.9 NTU

21	11	1 0	\sim	1	7
71	1/4	1- 0	9-		

Conductivity (uS/cm)

Field DO (%)

Field pH

2024-09-17	
Created	2024-09-17 14:08:59 MDT by Environmental Department
Updated	2024-09-17 15:47:51 MDT by Environmental Department
Location	,
Groundwater 2021 Field Data	
Well ID	GW-3B
Date	2024-09-17
Time	14:08
Observations	
Weather Conditions	Rainy
Well Information	
Stick Up (inches from ground surface)	37.2
Depth to Water (inches from top of collar)	201.6
Depth to Bottom (inches from top of collar)	594
Cubic feet of water in well	0.713042031744
Gallons of water in well	5.33392517930163
Pumping Notes	D18F12
Purge Time (minutes)	35
Purge Volume (Gallons)	5
Field Chemistry	
Water Temperature (C) 1	6.7
Conductivity (uS/cm) 1	190.8
Field DO (%) 1	55.3
Field pH 1	6.67
Water Temperature (C) 2	6.5
Conductivity (uS/cm) 2	188.5
Field DO (%) 2	54.4
Field pH 2	6.65
Water Temperature (C) 3	5.6
Conductivity (uS/cm) 3	199.4
Field DO (%) 3	50.1
Field pH 3	6.63
Sample method	Bladder
SampleTime	14:08
Field ORP (mV)	311.5
Water Temperature (C)	5.2
Field TDS (mg/L)	5.64

211

44.4

6.63

color and clarity Clear
Final Depth to Water (inches from top of collar) 201.6

Photos

Sampler Name CJ Dickerson

Signature

Signed 2024-09-17 14:53:09 MDT

20	~ 4	\sim	47
71	124-	·UY.	- 1 /

color and clarity

2024-09-17		
Created	2024-09-17 12:25:41 MDT by Environmental Department	
Updated	2024-09-17 12:56:06 MDT by Environmental Department	
Location	,	
Groundwater 2021 Field Data		
Well ID	GW-3R	
Date	2024-09-17	
Time	12:25	
Observations		
Weather Conditions	Rainy	
Wall Information		
Well Information	0.4	
Stick Up (inches from ground surface)	8.4	
Depth to Water (inches from top of collar)	276	
Depth to Bottom (inches from top of collar)	408	
Cubic feet of water in well	0.23986123392	
Gallons of water in well	1.79428675756324	
Pumping Notes	D20 F12	
Purge Time (minutes)	25	
Purge Volume (Gallons)	3	
Field Chemistry		
Water Temperature (C) 1	6.2	
Conductivity (uS/cm) 1	219.8	
Field DO (%) 1	50	
Field pH 1	6.82	
Water Temperature (C) 2	5	
Conductivity (uS/cm) 2	219.3	
Field DO (%) 2	49.1	
Field pH 2	6.8	
Water Temperature (C) 3	4.9	
Conductivity (uS/cm) 3	219.2	
Field DO (%) 3	49.1	
Field pH 3	6.8	
Sample method	Bladder	
SampleTime	12:25	
Field ORP (mV)	335.8	
Water Temperature (C)	4.9	
Conductivity (uS/cm)	218.9	
Field DO (%)	49.5	
Field pH	6.84	
color and clarity	Class	

Clear

Photos

Sampler Name

CJ Dickerson

Signature

Signed 2024-09-17 12:55:40 MDT

Created	2025-01-27 12:41:29 MST by Environmental Department	
Updated	2025-01-27 12:41:29 MST by Environmental Department	
Location	,	
Groundwater 2021 Field Data		
Well ID	GW-99	
Duplicated Well	GW-3R	
Date	2024-09-17	
Time	12:25	

Observations Weather Conditions

Well Information	
Stick Up (inches from ground surface)	8.4
Depth to Water (inches from top of collar)	276
Depth to Bottom (inches from top of collar)	408

Rainy

Cubic feet of water in well	0.23986123392
Gallons of water in well	1.7942867575632384
Pumping Notes	D20 F12
Purge Time (minutes)	25

Purge Volume (Gallons) 3

Field Chemistry

Field pH

rield Chemistry	
Water Temperature (C) 1	6.2
Conductivity (uS/cm) 1	219.8
Field DO (%) 1	50
Field pH 1	6.82
Water Temperature (C) 2	5
Conductivity (uS/cm) 2	219.3
Field DO (%) 2	49.1
Field pH 2	6.8
Water Temperature (C) 3	4.9
Conductivity (uS/cm) 3	219.3
Field DO (%) 3	49.1
Field pH 3	6.8
Sample method	Bladder Pump
SampleTime	12:29
Field ORP (mV)	335.8
Water Temperature (C)	4.9
Conductivity (uS/cm)	218.9
Field DO (%)	49.5

6.84

color and clarity	Clear
Final Depth to Water (inches from top of collar)	276
Sampler Name	CJ Dickerson

Signature

C

Signed 2025-01-27 12:41:27 MST

2024-09-18

2024-09-18 09:57:19 MDT by Environmental Department	
2024-09-18 10:00:32 MDT by Environmental Department	
,	
GW-1A	
2024-09-18	
09:57	
Sunny	
53.4	
108	
108	
0	
0	

Field Chemistry

Purge Volume (Gallons)

Pumping Notes
Purge Time (minutes)

<i>y</i>	
Sample method	Bladder
SampleTime	09:57
Field ORP (mV)	-99
Water Temperature (C)	-99
Conductivity (uS/cm)	-99
Field DO (%)	-99
Field pH	-99
color and clarity	-99
Final Depth to Water (inches from top of collar)	-99

D13 F20

25

2

Photos

Sampler Name

CJ Dickerson

Signature

Signed 2024-09-18 10:00:22 MDT

Notes No water in well

γ)24-	\sim	10
71	174-	U9-	אוי

2024-09-18	
Created	2024-09-18 10:00:33 MDT by Environmental Department
Updated	2024-09-18 10:24:34 MDT by Environmental Department
Location	,
Groundwater 2021 Field Data	
Well ID	GW-1B
Date	2024-09-18
Time	10:00
Observations	
Weather Conditions	Sunny
Well Information	
Stick Up (inches from ground surface)	53.4
Depth to Water (inches from top of collar)	90
Depth to Bottom (inches from top of collar)	205.5
Cubic feet of water in well	0.20987857968
Gallons of water in well	1.57000091286783
Pumping Notes	D13 F12
Purge Time (minutes)	25
Purge Volume (Gallons)	2
Field Chemistry	
Water Temperature (C) 1	7.2
Conductivity (uS/cm) 1	179.3
Field DO (%) 1	61.4
Field pH 1	7.14
Water Temperature (C) 2	7.1
Conductivity (uS/cm) 2	182
Field DO (%) 2	61.5
Field pH 2	7.14
Water Temperature (C) 3	7.1
Conductivity (uS/cm) 3	183.8
Field DO (%) 3	61.6
Field pH 3	7.15
Sample method	Bladder
SampleTime	10:00
Field ORP (mV)	305.4
Water Temperature (C)	7.2
Field TDS (mg/L)	169
Conductivity (uS/cm)	103.4
Field DO (%)	62
Field pH	7.2
•	

color and clarity Clear 90

Final Depth to Water (inches from top of collar)

Photos

Sampler Name

CJ Dickerson

Signature

Signed 2024-09-18 10:23:40 MDT

Created	2024-09-18 08:36:37 MDT by Environmental Department
Updated	2024-09-18 09:01:26 MDT by Environmental Department
Location	,
Groundwater 2021 Field Data	
Well ID	GW-2A
Date	2024-09-18
Time	08:36

Observations Weather Conditions

Well Information		
Stick Up (inches from ground surface)	12	
Depth to Water (inches from top of collar)	126	
Depth to Bottom (inches from top of collar)	174	
Cubic feet of water in well	0.08722226688	

Gallons of water in well	0.652467911841178		
Pumping Notes	D20 F18		
Purge Time (minutes)	20		

2

Sunny and cold

Field Chemistry

Purge Volume (Gallons)

Water Temperature (C) 1	6.3	
Conductivity (uS/cm) 1	193.6	
Field DO (%) 1	46.1	
Field pH 1	6.6	
Water Temperature (C) 2	6.5	
Conductivity (uS/cm) 2	193.6	
Field DO (%) 2	46	
Field pH 2	6.6	
Water Temperature (C) 3	6.4	
Conductivity (uS/cm) 3	193.6	
Field DO (%) 3	45.9	
Field pH 3	6.59	
Sample method	Bladder	
SampleTime	08:36	
Field ORP (mV)	352.2	
Water Temperature (C)	6.4	
Field TDS (mg/L)	165	
Conductivity (uS/cm)	193.6	
Field DO (%)	46.1	
Field pH	6.62	

color and clarity Clear
Final Depth to Water (inches from top of collar) 126

Photos

Sampler Name CJ Dickerson

Signature

Signed 2024-09-18 09:01:25 MDT

20	\sim	1	n	1	1	0
71	1/	4-1	u	ч	- 1	ואו

Sample method

SampleTime

Field ORP (mV)

Field TDS (mg/L)

Field DO (%)

Field pH

Water Temperature (C)

Conductivity (uS/cm)

2024-09-18	
Created	2024-09-18 07:40:22 MDT by Environmental Department
Updated	2024-09-18 08:23:38 MDT by Environmental Department
Location	ı
Groundwater 2021 Field Data	
Well ID	GW-2B
Date	2024-09-18
Time	07:40
Observations	
Weather Conditions	Sunny and cold
Well Information	
Stick Up (inches from ground surface)	12
Depth to Water (inches from top of collar)	128
Depth to Bottom (inches from top of collar)	364.8
Cubic feet of water in well	0.430296516608
Gallons of water in well	3.21884169841648
Pumping Notes	D10 F20
Purge Time (minutes)	25
Purge Volume (Gallons)	2.5
Field Chemistry	
Water Temperature (C) 1	5.5
Conductivity (uS/cm) 1	188.9
Field DO (%) 1	44.7
Field pH 1	6.73
Water Temperature (C) 2	5.5
Conductivity (uS/cm) 2	188.7
Field DO (%) 2	44
Field pH 2	6.71
Water Temperature (C) 3	5.8
Conductivity (uS/cm) 3	188.6
Field DO (%) 3	43.8
Field pH 3	6.7
· .	

Bladder

07:40

325.7

5.6

153

188.6

43.9

6.72

color and clarity Clear
Final Depth to Water (inches from top of collar) 128

Photos

Sampler Name CJ Dickerson

Signature

Signed 2024-09-18 08:23:35 MDT

2024-03-13, 10.41, 00-2	
Created	2024-03-19 10:41:21 MDT by Environmental Department
Updated	2025-01-28 12:05:27 MST by Environmental Department
Location	ı
Surface Water Field Data	
Sample ID	UG-2
Date	2024-03-19
Time	10:41
Observations	
Outdoor Weather Conditions	Cloudy
Color and Clarity	Clear
Oil and Grease observation	Absent
Field Chemistry	
Sample Time	10:41
QuickCal?	No
Field pH	7.78
Field Water's Temperature (C)	2.2
Flow Information	
Channel Height (feet)	0.32
Interval Spacing (feet)	3.33
Width at Water's Edge (feet)	2.96
Flow (CFS)	0.79

Notes Flow data collected separately, will upload with calculations later

Sampler's Name CJ Dickerson

Signed 2024-03-19 10:42:49 MDT

2024-03-13, 10.10, 00-3	
Created	2024-03-19 10:19:06 MDT by Environmental Department
Updated	2025-01-28 12:04:46 MST by Environmental Department
Location	,
Surface Water Field Data	
Sample ID	UG-5
Date	2024-03-19
Time	10:10
Observations	
Outdoor Weather Conditions	Cloudy
Color and Clarity	Clear
Oil and Grease observation	Absent
Field Chemistry	
Sample Time	10:10
QuickCal?	No
Field pH	7.59
Field Water's Temperature (C)	2.5
Flow Information	
Channel Height (feet)	0.19
Interval Spacing (feet)	3.33
Width at Water's Edge (feet)	1.83
Flow (CFS)	0.67

Notes Flow notes taken separately for calculation

Sampler's Name CJ Dickerson

Signed 2024-03-19 10:20:14 MDT

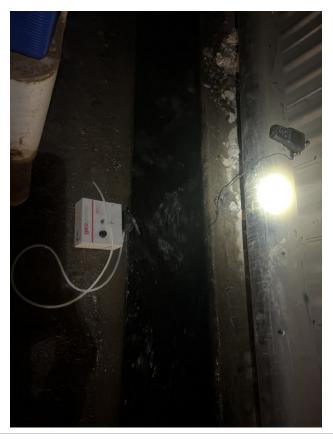
2024-03-13, 11.13, 00-0	
Created	2024-03-19 11:13:25 MDT by Environmental Department
Updated	2025-01-28 12:06:02 MST by Environmental Department
Location	,
Surface Water Field Data	
Sample ID	UG-8
Date	2024-03-19
Time	11:13
Observations	
Outdoor Weather Conditions	Cloudy
Color and Clarity	Clear
Oil and Grease observation	Absent
Field Chemistry	
Sample Time	11:13
QuickCal?	No
Field pH	7.65
Field Water's Temperature (C)	2.1
Flow Information	
Channel Height (feet)	0.19
Interval Spacing (feet)	3.33
Width at Water's Edge (feet)	3.42
Flow (CFS)	0.23



Notes	Water extremely low, trying best to not get solids Flow data collected separately, will upload later with calculations
Sampler's Name	CJ Dickerson

Signed 2024-03-19 11:15:11 MDT

2024 00 24, 11.30, 00 2	
Created	2024-06-24 12:01:54 MDT by Environmental Department
Updated	2025-01-28 12:06:53 MST by Environmental Department
Location	,
Surface Water Field Data	
Sample ID	UG-2
Date	2024-06-24
Time	11:30
Observations	
Outdoor Weather Conditions	Sunny
Color and Clarity	Clear
Oil and Grease observation	Absent
Field Chemistry	
Sample Time	11:30
QuickCal?	No
Field pH	7.95
Field Water's Temperature (C)	6.9
Flow Information	
Channel Height (feet)	0.75
Interval Spacing (feet)	2
Width at Water's Edge (feet)	3.33
Flow (CFS)	1.54



Sampler's Name

CJ Dickerson

Signed 2024-06-24 12:08:18 MDT

2024-00-24, 11.00, UG-5	
Created	2024-06-24 11:40:04 MDT by Environmental Department
Updated	2025-01-28 12:06:43 MST by Environmental Department
Location	,
Surface Water Field Data	
Sample ID	UG-5
Date	2024-06-24
Time	11:00
Observations	
Outdoor Weather Conditions	Sunny
Color and Clarity	Clear
Oil and Grease observation	Absent
Field Chemistry	
Sample Time	11:00
QuickCal?	No
Field pH	8.02
Field Water's Temperature (C)	7
Flow Information	
Channel Height (feet)	0.66
Interval Spacing (feet)	2
Width at Water's Edge (feet)	1.83
Flow (CFS)	2.54

Sampler's Name

CJ Dickerson

Signed 2024-06-24 11:45:58 MDT

2024-00-24, 11.30, 00-0	
Created	2024-06-24 12:24:58 MDT by Environmental Department
Updated	2025-01-28 12:07:01 MST by Environmental Department
Location	
Surface Water Field Data	
Sample ID	UG-8
Date	2024-06-24
Time	11:50
Observations	
Outdoor Weather Conditions	Sunny
Color and Clarity	Clear
Oil and Grease observation	Absent
Field Chemistry	
Sample Time	11:50
QuickCal?	No
Field pH	7.87
Field Water's Temperature (C)	7.3
Flow Information	
Channel Height (feet)	0.33
Interval Spacing (feet)	2
Width at Water's Edge (feet)	3.5
Flow (CFS)	1.3

Sampler's Name

CJ Dickerson

Signed 2024-06-24 12:26:23 MDT

2024-09-17, 08:27, UG-2

Created	2024-09-17 08:27:38 MDT by Environmental Department
Updated	2025-01-28 12:07:48 MST by Environmental Department
Location	ı
Surface Water Field Data	
Sample ID	UG-2
Date	2024-09-17
Time	08:27

Observations

Outdoor Weather Conditions	Rainy	
Color and Clarity	Clear	
Oil and Grease observation	Absent	


Field Chemistry

Sample Time	08:27
QuickCal?	No
Field pH	7.11
Field Water's Temperature (C)	7.71

Flow Information

Channel Height (feet)	0.5
Interval Spacing (feet)	3
Width at Water's Edge (feet)	3.45
Flow (CFS)	1.22

Photos

Signed 2024-09-17 08:32:24 MDT

2024-09-17, 07:57, UG-5

Created	2024-09-17 07:57:56 MDT by Environmental Department	
Updated	2025-01-28 12:07:35 MST by Environmental Department	
Location	,	
Surface Water Field Data		
Sample ID	UG-5	
Date	2024-09-17	
Time	07:57	

Observations

Outdoor Weather Conditions	Rainy	
Color and Clarity	Clear	
Oil and Grease observation	Absent	

Field Chemistry

Sample Time	07:57	
QuickCal?	No	
Field pH	6.94	
Field Water's Temperature (C)	7.5	

Flow Information

Channel Height (feet)	0.5	
Interval Spacing (feet)	3	
Width at Water's Edge (feet)	1.75	
Flow (CFS)	1.63	

Photos

Signed 2024-09-17 08:07:17 MDT

2024-09-17, 08:55, UG-8

Created	2024-09-17 08:55:52 MDT by Environmental Department	
Updated	2025-01-28 12:07:59 MST by Environmental Department	
Location	,	
Surface Water Field Data		
Sample ID	UG-8	
Date	2024-09-17	
Time	08:55	

Observations

Outdoor Weather Conditions	Rainy
Color and Clarity	Clear
Oil and Grease observation	Absent

Field Chemistry

Sample Time	08:55	
QuickCal?	No	
Field pH	7.3	
Field Water's Temperature (C)	10.1	

Flow Information

Channel Height (feet)	0.128	
Interval Spacing (feet)	3	
Width at Water's Edge (feet)	3.42	
Flow (CFS)	0.41	

Photos

D

Signed 2024-09-17 09:00:27 MDT

2024-12-09, 10:52, UG-2

Created	2024-12-09 10:52:08 MST by Environmental Department	
Updated	2025-01-28 12:08:24 MST by Environmental Department	
Location	•	
Surface Water Field Data		
Sample ID	UG-2	
Date	2024-12-09	
Time	10:52	

Observations

Outdoor Weather Conditions	Snowing
Color and Clarity	Clear
Oil and Grease observation	Absent

Field Chemistry

Sample Time	10:52
QuickCal?	No
Field pH	7.43
Field Water's Temperature (C)	6

Flow Information

Channel Height (feet)	0.66	
Interval Spacing (feet)	3.33	
Width at Water's Edge (feet)	4	
Flow (CFS)	0.66	

Photos

W

Signed 2024-12-09 10:54:37 MST

2024-12-09, 10:28, UG-5

Created	2024-12-09 10:28:28 MST by Environmental Department
Updated	2025-01-28 12:08:12 MST by Environmental Department
Location	,
Surface Water Field Data	
Sample ID	UG-5
Date	2024-12-09
Time	10:28

Observations

Outdoor Weather Conditions	Snowing
Color and Clarity	Clear
Oil and Grease observation	Absent

Field Chemistry

Sample Time	10:28
QuickCal?	No
Field pH	7.31
Field Water's Temperature (C)	6

Flow Information

Channel Height (feet)	0.25	
Interval Spacing (feet)	3.33	
Width at Water's Edge (feet)	1.66	
Flow (CFS)	1.05	

Photos

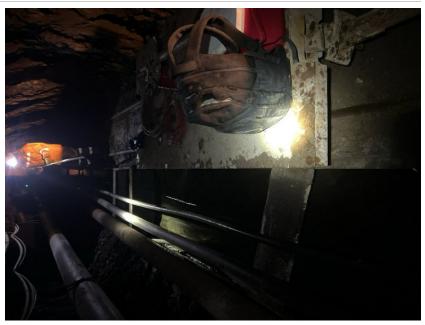
Signed 2024-12-09 10:37:58 MST

2024-12-09, 11:18, UG-8

Created	2024-12-09 11:18:14 MST by Environmental Department
Updated	2025-01-28 12:08:32 MST by Environmental Department
Location	,
Surface Water Field Data	
Sample ID	UG-8
Date	2024-12-09
Time	11:18

Observations

Outdoor Weather Conditions	Snowy
Color and Clarity	Clear
Oil and Grease observation	Absent


Field Chemistry

Sample Time	11:18
QuickCal?	No
Field pH	7.55
Field Water's Temperature (C)	6

Flow Information

Channel Height (feet)	0.198
Interval Spacing (feet)	3.33
Width at Water's Edge (feet)	3.7
Flow (CFS)	0.25

Photos

4

Signed 2024-12-09 11:20:00 MST

2024-01-04

Created	2024-01-04 07:39:23 MST by Environmental Department
Updated	2024-01-04 07:39:46 MST by Environmental Department
Location	,

Equipment Calibration

Calibration Date	2024-01-04
Equipment	Thermo Scientific pH meter
Sampler's name	Cj dickerson

Signature

Signed 2024-01-04 07:39:33 MST

Photos

2024-01-23

Created	2024-01-23 09:40:27 MST by Environmental Department
Updated	2024-01-23 09:40:53 MST by Environmental Department
Location	,

Equipment Calibration

Calibration Date	2024-01-23
Equipment	Thermo Scientific pH meter
Sampler's name	CJ Dickerson

Signature

Signed 2024-01-23 09:40:40 MST

Photos

2024-01-30

Created	2024-01-30 07:33:22 MST by Environmental Department
Updated	2024-01-30 07:33:45 MST by Environmental Department
Location	,

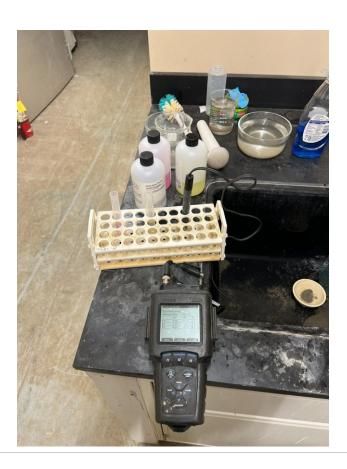
Equipment Calibration

Calibration Date	2024-01-30
Equipment	Thermo Scientific pH meter
Sampler's name	CJ Dickerson

Signature

Signed 2024-01-30 07:33:44 MST

2024-02-15


Created	2024-02-15 07:36:32 MST by Environmental Department
Updated	2024-02-15 07:37:08 MST by Environmental Department
Location	,

Equipment Calibration

Calibration Date	2024-02-15	
Equipment	Thermo Scientific pH meter	
Notes	Outfall Sampling	
Sampler's name	Cj Dickerson	

Signed 2024-02-15 07:36:54 MST

2024-02-26

Created	2024-02-26 08:07:48 MST by Environmental Department
Updated	2024-02-26 08:08:20 MST by Environmental Department
Location	,

Equipment Calibration

Calibration Date	2024-02-26
Equipment	Thermo Scientific pH meter
Sampler's name	Cj Dickerson

Signature

Signed 2024-02-26 08:08:05 MST

2024-03-06

Created	2024-03-06 07:47:03 MST by Environmental Department
Updated	2024-03-06 07:47:55 MST by Environmental Department
Location	,

Equipment Calibration

Calibration Date	2024-03-06
Equipment	Thermo Scientific pH meter
Sampler's name	CJ Dickerson

Signature

Signed 2024-03-06 07:47:21 MST

Photos

Created	2024-03-11 08:08:42 MDT by Environmental Department
Updated	2024-03-11 08:09:17 MDT by Environmental Department
Location	,

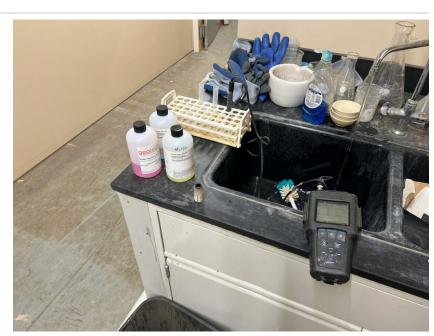
Equipment Calibration

Calibration Date	2024-03-11
Equipment	Thermo Scientific pH meter
Notes	Calibration for WET testing
Sampler's name	Cj Dickerson

Signature

Signed 2024-03-11 08:09:07 MDT

Created	2024-03-18 09:34:34 MDT by Environmental Department
Updated	2024-03-18 09:35:34 MDT by Environmental Department
Location	,


Equipment Calibration

Calibration Date	2024-03-18
Equipment	Thermo Scientific pH meter
Notes	Bi-Month & Quarterly
Sampler's name	CJ Dickerson

Signature

Signed 2024-03-18 09:35:22 MDT

Created	2024-03-19 08:03:24 MDT by Environmental Department
Updated	2024-03-19 08:04:03 MDT by Environmental Department
Location	,

Equipment Calibration

Calibration Date	2024-03-19
Equipment	Thermo Scientific pH meter
Notes	Bi-monthly & Underground
Sampler's name	Cj Dickerson

Signature

Signed 2024-03-19 08:04:02 MDT

Created	2024-03-20 09:24:08 MDT by Environmental Department
Updated	2024-03-20 09:24:53 MDT by Environmental Department
Location	,

Equipment Calibration

Calibration Date	2024-03-20
Equipment	YSI pro DSS
Notes	Groundwater sampling
Sampler's name	Cj Dickerson

Signature

Signed 2024-03-20 09:24:43 MDT

Created	2024-03-26 08:47:44 MDT by Environmental Department
Updated	2024-03-26 08:48:29 MDT by Environmental Department
Location	,

Equipment Calibration

Calibration Date	2024-03-26
Equipment	Ysi Pro Dss
Notes	Calibration for GW sampling
Sampler's name	Cj dickerson

Signature

Signed 2024-03-26 08:48:15 MDT

2024-04-23

Created	2024-04-23 10:09:26 MDT by Environmental Department
Updated	2024-04-23 10:09:46 MDT by Environmental Department
Location	,

Equipment Calibration

Calibration Date	2024-04-23
Equipment	Thermo Scientific pH meter
Sampler's name	Cj Dickerson

Signature

Signed 2024-04-23 10:09:38 MDT

2024-05-06

Created	2024-05-06 09:56:11 MDT by Environmental Department
Updated	2024-05-06 09:56:29 MDT by Environmental Department
Location	ı

Equipment Calibration

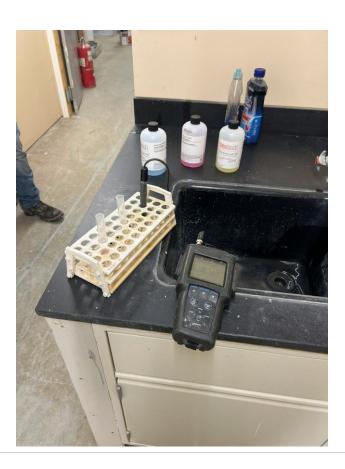
Calibration Date	2024-05-06
Equipment	Thermo Scientific pH meter
Sampler's name	CJ Dickerson

Signature

Signed 2024-05-06 09:56:28 MDT

2024-05-22

Created	2024-05-22 07:34:11 MDT by Environmental Department
Updated	2024-05-22 07:34:52 MDT by Environmental Department
Location	


Equipment Calibration

Calibration Date	2024-05-22
Equipment	Thermo Scientific pH meter
Sampler's name	CJ Dickerson

Signature

Signed 2024-05-22 07:34:40 MDT

2024-06-17

Created	2024-06-17 08:46:42 MDT by Environmental Department
Updated	2024-06-17 08:47:05 MDT by Environmental Department
Location	,

Equipment Calibration

Calibration Date	2024-06-17
Equipment	Thermo Scientific pH meter
Sampler's name	Cj Dickerson

Signature

Signed 2024-06-17 08:46:55 MDT

2024-06-24

Created	2024-06-24 09:08:04 MDT by Environmental Department
Updated	2024-06-24 09:08:56 MDT by Environmental Department
Location	,

Equipment Calibration

Calibration Date	2024-06-24
Equipment	Thermo Scientific pH meter
Sampler's name	Cj Dickerson

Signature

Signed 2024-06-24 09:08:16 MDT

2024-07-17

Created	2024-07-17 06:24:10 MDT by Environmental Department
Updated	2024-07-17 06:24:31 MDT by Environmental Department
Location	,

Equipment Calibration

Calibration Date	2024-07-17
Equipment	Thermo Scientific pH meter
Sampler's name	Cj Dickerson

Signature

Signed 2024-07-17 06:24:22 MDT

2024-07-29

Created	2024-07-29 06:38:36 MDT by Environmental Department
Updated	2024-07-29 06:38:56 MDT by Environmental Department
Location	,

Equipment Calibration

Calibration Date	2024-07-29
Equipment	Thermo Scientific pH meter
Sampler's name	Cj Dickerson

Signature

Signed 2024-07-29 06:38:48 MDT

2024-08-22

Created	2024-08-22 07:57:44 MDT by Environmental Department
Updated	2024-08-22 07:58:09 MDT by Environmental Department
Location	,

Equipment Calibration

Calibration Date	2024-08-22
Equipment	Thermo Scientific pH meter
Sampler's name	Cj Dickerson

Signature

Signed 2024-08-22 07:58:00 MDT

2024-08-29

Created	2024-08-29 06:56:17 MDT by Environmental Department
Updated	2024-08-29 06:56:56 MDT by Environmental Department
Location	,

Equipment Calibration

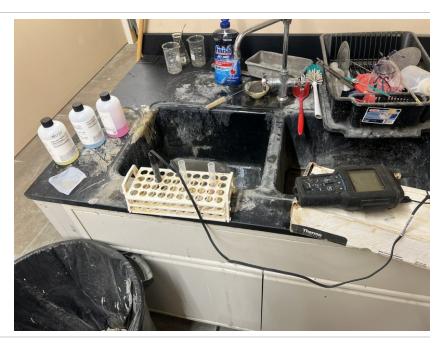
Calibration Date	2024-08-29
Equipment	Thermo Scientific pH meter
Sampler's name	Cj dickerson

Signature

Signed 2024-08-29 06:56:40 MDT

2024-09-16

Created	2024-09-16 13:35:36 MDT by Environmental Department
Updated	2024-09-16 13:36:08 MDT by Environmental Department
Location	,


Equipment Calibration

Calibration Date	2024-09-16
Equipment	Thermo Scientific pH meter
Sampler's name	Cj Dickerson

Signature

Signed 2024-09-16 13:35:59 MDT

2024-09-23

Created	2024-09-23 07:59:00 MDT by Environmental Department
Updated	2024-09-23 07:59:20 MDT by Environmental Department
Location	,

Equipment Calibration

Calibration Date	2024-09-23
Equipment	Thermo Scientific pH meter
Sampler's name	CJ Dickerson

Signature

Signed 2024-09-23 07:59:12 MDT

2024-10-31

Created	2024-10-31 07:07:47 MDT by Environmental Department
Updated	2024-10-31 07:08:33 MDT by Environmental Department
Location	ı

Equipment Calibration

Calibration Date	2024-10-31
Equipment	Thermo Scientific pH meter
Sampler's name	Cj Dickerson

Signature

Signed 2024-10-31 07:08:01 MDT

2024-11-25

Created	2024-11-25 07:23:41 MST by Environmental Department
Updated	2024-11-25 07:24:03 MST by Environmental Department
Location	,

Equipment Calibration

Calibration Date	2024-11-25
Equipment	Thermo Scientific pH meter
Sampler's name	Cj Dickerson

Signature

Signed 2024-11-25 07:23:59 MST

2024-12-10

Created	2024-12-10 14:11:05 MST by Environmental Department
Updated	2024-12-10 14:11:47 MST by Environmental Department
Location	,

Equipment Calibration

Calibration Date	2024-12-10
Equipment	InSitu Probe
Sampler's name	CJ Dickerson

Signature

Signed 2024-12-10 14:11:35 MST

2024-12-18

Created	2024-12-18 07:14:08 MST by Environmental Department
Updated	2024-12-18 07:14:50 MST by Environmental Department
Location	,

Equipment Calibration

Calibration Date	2024-12-18
Equipment	Thermo Scientific pH meter
Sampler's name	CJ Dickerson

Signature

Signed 2024-12-18 07:14:31 MST

Attachment D

Part Inspection 02/28 Storm water Inspection -> No Water present Pon J # 2 Remaining troppedy Venther Conditions Diversion Ditar # - Snow Covered Pequired -> Cloudy / Windy, Snow covered - No Maint 1crg. -> No Maint Req. -> All Snow conved iversion D:44#2 3 All Snow covered No Munt Peg. Main Required 02/280 - Suray & Windy Pond Inspection 04/25 swo vater present Pow Inspector 05/ -> No leadinge / water present -> Sunny Couced -> Cloudy. Pond -> No water present Pand Inspection Inspection 06/14 Kainy

Storm Vater Ingention 6/14/02 -> All OK Collection Dich Divusion Ditch 1# BUD Pond #2 -> Uattles Ok Pon8 #3 -> No Mant Require -> Ramok -> Bernok -> Emering Spillury OK -> Walles Ok -> Bern OK -> OFWOIA OK -> No Dischage -> Spillung OK ~ Dather OK Hay Bakes New Peplaced Dischase to Paul #3 Required

All Other Wattles & Wellands OK

Rite in the Rain

Pond #1 > Bon OK Divusion Ditch Collection Ditch -> No Maint Reg. Pond #2 -> No Maint Required Pord Inpution -> Spillway OK -> No Water Pagent - No water present - No Water Present - Bur Ok SUMP Inspection -> Outtak ok -> Wattles Ok 09/30 9/30 Q3

(9/30) Sump Inspection Cont. 11/5/24/Qu SWMP Inspection Loto. Q3 Pond#1
-> Wo maint Required (Snow Covered) Pond #3 -> Ben Ok -> Waltles Ok Pond #2 -> No Main Required (Snow Covered) -> Spillway Outton Ok - May Bales need replacing Pond #3 -> No Mant Requier (Snow Covered) Rev. Seep, Snelly Willands Seep Wetlands - Vattles Oh -> No Maint Require -> Snow Covered Roward Bune Ineffles Wedlerds -> OK - No Maint Required - Snow Covered Pond Inspection 11/5/24 Berns -> No Moint Regund -> No Water Fresent -) Snow Covered SWMP Inspection 11/5/24 Q4 Port Inspection 12/9 Diten #1 (Diversion Ditch) -> Snow covered. -> No Maint Required - Snow Covered -> We maintenance Required D. ten #2 (Collection) -> No Munt Regard - Snow Covered

Rete in the Rain

2024-01-31

Created	2024-01-31 12:15:01 MST by Environmental Department
Updated	2024-01-31 12:17:58 MST by Environmental Department
Location	,

SPCC C-1 Diesel and Gas Storage & Filling Station

Date of Inspection	2024-01-31
Inspection Frequency	Monthly

Gas Tank & Containment (smaller tank)

Do gas tank surfaces show signs of leakage?	No	
Is gas tank damaged, rusted or otherwise deteriorating?	No	
Are gas tank supports damaged, rusted or otherwise deteriorating?	No	
Are gas tank foundations eroded or settled?	No	
Gas tank fill level gauge functional?	No	
Note gas fill level (inches)	-99	
Are gas vents free of obstruction?	Yes	
ls gas secondary containment damaged?	No	
Is any maintenance required for gas tank?	No	

Gas Piping & Transfer Connections

Are gas pipelines or supports damaged, rusted or otherwise deteriorating?	No
Do gas joints, valves, valve seals, gaskets or other appurtenances show signs of leakage?	No
Loading/unloading gas connections are capped or blank flanged?	Yes
Is any maintenance required on gas connections?	No
Note corrective action needed for gas transfer and connections	NA

Diesel Tank & Containment (larger tank)

Do diesel tank surfaces show signs of leakage?	No
Is diesel tank damaged, rusted or otherwise deteriorating?	No
Are diesel tank supports damaged, rusted or otherwise deteriorating?	No
Are deisel tank foundations eroded or settled?	No
Diesel fill level gauge functional?	Yes
Note diesel fill level (inches)	-99
Are diesel tank vents free of obstruction?	Yes
Is diesel secondary containment damaged?	No
Is any maintenance required for diesel tank?	No
Note corrective action needed for diesel tank	Fill gauge covered in snow

Diesel Piping & Transfer Connections

Are diesel pipelines or supports damaged, rusted or otherwise deteriorating?	No
Do diesel joints, valves, valve seals, gaskets or other appurtenances show signs of leakage?	No
Loading/unloading deisel connections are capped or blank flanged?	Yes
Is any maintenance required on diesel connections?	No
Note corrective action needed for diesel transfer and connections	NA

Security

Are fencing, gates or lighting functional?	Yes
Are pumps & valves locked when not in use?	Yes
Is any maintenance required for security?	No
Note corrective action needed for security	NA

Response Equipment

ls a spill kit present?	Yes
Is equipment inventory complete?	Yes
ls any maintenance required for response equipment?	No
Note corrective action needed for response equipment	NA

Tank photos (both tanks)

Inspector's name CJ Dickerson

Signature

Signed 2024-01-31 12:17:55 MST

Created	2024-03-07 13:19:04 MST by Environmental Department
Updated	2024-03-07 13:21:55 MST by Environmental Department
Location	,

SPCC C-1 Diesel and Gas Storage & Filling Station

Date of Inspection	2024-03-07
Inspection Frequency	Monthly

Gas Tank & Containment (smaller tank)

Do gas tank surfaces show signs of leakage?	No
Is gas tank damaged, rusted or otherwise deteriorating?	No
Are gas tank supports damaged, rusted or otherwise deteriorating?	No
Are gas tank foundations eroded or settled?	No
Gas tank fill level gauge functional?	No
Note gas fill level (inches)	-99
Are gas vents free of obstruction?	Yes
ls gas secondary containment damaged?	No
Is any maintenance required for gas tank?	No

Gas Piping & Transfer Connections

Are gas pipelines or supports damaged, rusted or otherwise deteriorating?	No
Do gas joints, valves, valve seals, gaskets or other appurtenances show signs of leakage?	No
Loading/unloading gas connections are capped or blank flanged?	Yes
Is any maintenance required on gas connections?	No
Note corrective action needed for gas transfer and connections	NA

Diesel Tank & Containment (larger tank)

Do diesel tank surfaces show signs of leakage?	No
Is diesel tank damaged, rusted or otherwise deteriorating?	No
Are diesel tank supports damaged, rusted or otherwise deteriorating?	No
Are deisel tank foundations eroded or settled?	No
Diesel fill level gauge functional?	Yes
Note diesel fill level (inches)	-99
Are diesel tank vents free of obstruction?	Yes
Is diesel secondary containment damaged?	No
Is any maintenance required for diesel tank?	No
Note corrective action needed for diesel tank	Fill gauge covered with snow

Diesel Piping & Transfer Connections

Are diesel pipelines or supports damaged, rusted or otherwise deteriorating?	No
Do diesel joints, valves, valve seals, gaskets or other appurtenances show signs of leakage?	No
Loading/unloading deisel connections are capped or blank flanged?	Yes
Is any maintenance required on diesel connections?	No
Note corrective action needed for diesel transfer and connections	Clear snow from fill gauge

Security

Are fencing, gates or lighting functional?	Yes
Are pumps & valves locked when not in use?	Yes
Is any maintenance required for security?	No
Note corrective action needed for security	NA

Response Equipment

Is a spill kit present?	Yes
Is equipment inventory complete?	Yes
ls any maintenance required for response equipment?	No
Note corrective action needed for response equipment	NA

Tank photos (both tanks)

Inspector's name	CJ Dickerson

Signature

4

Signed 2024-03-07 13:21:54 MST

2024-04-30

Created	2024-04-30 11:06:29 MDT by Environmental Department
Updated	2024-04-30 11:10:34 MDT by Environmental Department
Location	,

SPCC C-1 Diesel and Gas Storage & Filling Station

Date of Inspection	2024-04-30
Inspection Frequency	Monthly

Gas Tank & Containment (smaller tank)

No No
No
No
No
-99
Yes
No
No

Gas Piping & Transfer Connections

Are gas pipelines or supports damaged, rusted or otherwise deteriorating?	No
Do gas joints, valves, valve seals, gaskets or other appurtenances show signs of leakage?	No
Loading/unloading gas connections are capped or blank flanged?	Yes
Is any maintenance required on gas connections?	No
Note corrective action needed for gas transfer and connections	NA

Diesel Tank & Containment (larger tank)

Do diesel tank surfaces show signs of leakage?	No
Is diesel tank damaged, rusted or otherwise deteriorating?	No
Are diesel tank supports damaged, rusted or otherwise deteriorating?	No
Are deisel tank foundations eroded or settled?	No
Diesel fill level gauge functional?	Yes
Note diesel fill level (inches)	60
Are diesel tank vents free of obstruction?	Yes
Is diesel secondary containment damaged?	No
Is any maintenance required for diesel tank?	No
Note corrective action needed for diesel tank	NA

Diesel Piping & Transfer Connections

No
No
Yes
No
NA

Security

Are fencing, gates or lighting functional?	Yes
Are pumps & valves locked when not in use?	Yes
Is any maintenance required for security?	No
Note corrective action needed for security	NA

Response Equipment

ls a spill kit present?	Yes
Is equipment inventory complete?	Yes
Is any maintenance required for response equipment?	No
Note corrective action needed for response equipment	NA

Tank photos (both tanks)

Inspector's name	Cj Dickerson
•	,

Signature

Signed 2024-04-30 11:10:10 MDT

2024-05-14

Created	2024-05-14 08:26:43 MDT by Environmental Department
Updated	2024-05-14 08:30:41 MDT by Environmental Department
Location	,

SPCC C-1 Diesel and Gas Storage & Filling Station

Date of Inspection	2024-05-14
Inspection Frequency	Monthly

Gas Tank & Containment (smaller tank)

No No
No
NI-
No
No
-99
Yes
No
No

Gas Piping & Transfer Connections

Are gas pipelines or supports damaged, rusted or otherwise deteriorating?	No
Do gas joints, valves, valve seals, gaskets or other appurtenances show signs of leakage?	No
Loading/unloading gas connections are capped or blank flanged?	Yes
Is any maintenance required on gas connections?	No
Note corrective action needed for gas transfer and connections	NA

Diesel Tank & Containment (larger tank)

Do diesel tank surfaces show signs of leakage?	No	
Is diesel tank damaged, rusted or otherwise deteriorating?	No	
Are diesel tank supports damaged, rusted or otherwise deteriorating?	No	
Are deisel tank foundations eroded or settled?	No	
Diesel fill level gauge functional?	Yes	
Note diesel fill level (inches)	60	
Are diesel tank vents free of obstruction?	Yes	
Is diesel secondary containment damaged?	No	
Is any maintenance required for diesel tank?	No	
Note corrective action needed for diesel tank	NA	

Diesel Piping & Transfer Connections

No
No
Yes
No
NA

Security

Are fencing, gates or lighting functional?	Yes
Are pumps & valves locked when not in use?	Yes
Is any maintenance required for security?	No
Note corrective action needed for security	NA

Response Equipment

ls a spill kit present?	Yes
Is equipment inventory complete?	Yes
ls any maintenance required for response equipment?	No
Note corrective action needed for response equipment	NA

Tank photos (both tanks)

Inspector's name CJ Dickerson

Signed 2024-05-14 08:30:12 MDT

2024-06-27

Created	2024-06-27 13:48:35 MDT by Environmental Department
Updated	2024-06-27 13:53:35 MDT by Environmental Department
Location	,

SPCC C-1 Diesel and Gas Storage & Filling Station

Date of Inspection	2024-06-27
Inspection Frequency	Monthly

Gas Tank & Containment (smaller tank)

No No
No
No
No
-99
Yes
No
No

Gas Piping & Transfer Connections

Are gas pipelines or supports damaged, rusted or otherwise deteriorating?	No
Do gas joints, valves, valve seals, gaskets or other appurtenances show signs of leakage?	No
Loading/unloading gas connections are capped or blank flanged?	Yes
Is any maintenance required on gas connections?	No
Note corrective action needed for gas transfer and connections	NA

Diesel Tank & Containment (larger tank)

Do diesel tank surfaces show signs of leakage?	No
Is diesel tank damaged, rusted or otherwise deteriorating?	No
Are diesel tank supports damaged, rusted or otherwise deteriorating?	No
Are deisel tank foundations eroded or settled?	No
Diesel fill level gauge functional?	Yes
Note diesel fill level (inches)	60
Are diesel tank vents free of obstruction?	Yes
Is diesel secondary containment damaged?	No
Is any maintenance required for diesel tank?	No
Note corrective action needed for diesel tank	NA

Diesel Piping & Transfer Connections

Are diesel pipelines or supports damaged, rusted or otherwise deteriorating?	No
Do diesel joints, valves, valve seals, gaskets or other appurtenances show signs of leakage?	No
Loading/unloading deisel connections are capped or blank flanged?	Yes
Is any maintenance required on diesel connections?	No
Note corrective action needed for diesel transfer and connections	NA

Security

Are fencing, gates or lighting functional?	Yes
Are pumps & valves locked when not in use?	Yes
Is any maintenance required for security?	No
Note corrective action needed for security	NA

Response Equipment

Is a spill kit present?	Yes
Is equipment inventory complete?	Yes
Is any maintenance required for response equipment?	No
Note corrective action needed for response equipment	NA

Tank photos (both tanks)

Signed 2024-06-27 13:53:17 MDT

2024-08-29

Created	2024-08-29 11:58:26 MDT by Environmental Department
Updated	2024-08-29 12:01:19 MDT by Environmental Department
Location	,

SPCC C-1 Diesel and Gas Storage & Filling Station

Date of Inspection	2024-08-29
Inspection Frequency	Monthly

Gas Tank & Containment (smaller tank)

Do gas tank surfaces show signs of leakage?	No
Is gas tank damaged, rusted or otherwise deteriorating?	No
Are gas tank supports damaged, rusted or otherwise deteriorating?	No
Are gas tank foundations eroded or settled?	No
Gas tank fill level gauge functional?	No
Note gas fill level (inches)	-99
Are gas vents free of obstruction?	Yes
ls gas secondary containment damaged?	No
Is any maintenance required for gas tank?	No

Gas Piping & Transfer Connections

Are gas pipelines or supports damaged, rusted or otherwise deteriorating?	No
Do gas joints, valves, valve seals, gaskets or other appurtenances show signs of leakage?	No
Loading/unloading gas connections are capped or blank flanged?	Yes
Is any maintenance required on gas connections?	No
Note corrective action needed for gas transfer and connections	NA

Diesel Tank & Containment (larger tank)

· · · · · · · · · · · · · · · · · · ·	
Do diesel tank surfaces show signs of leakage?	No
Is diesel tank damaged, rusted or otherwise deteriorating?	No
Are diesel tank supports damaged, rusted or otherwise deteriorating?	No
Are deisel tank foundations eroded or settled?	No
Diesel fill level gauge functional?	Yes
Note diesel fill level (inches)	60
Are diesel tank vents free of obstruction?	Yes
Is diesel secondary containment damaged?	No
Is any maintenance required for diesel tank?	No
Note corrective action needed for diesel tank	NA
Note corrective action needed for diesei tank	NA

Diesel Piping & Transfer Connections

Are diesel pipelines or supports damaged, rusted or otherwise deteriorating?	No
Do diesel joints, valves, valve seals, gaskets or other appurtenances show signs of leakage?	No
Loading/unloading deisel connections are capped or blank flanged?	Yes
ls any maintenance required on diesel connections?	No
Note corrective action needed for diesel transfer and connections	NA

Security

Are fencing, gates or lighting functional?	Yes
Are pumps & valves locked when not in use?	Yes
Is any maintenance required for security?	No
Note corrective action needed for security	NA

Response Equipment

Is a spill kit present?	Yes
Is equipment inventory complete?	Yes
ls any maintenance required for response equipment?	No
Note corrective action needed for response equipment	NA

Tank photos (both tanks)

Inspector's name	Cj Dickerson
·	

Signature

Signed 2024-08-29 12:01:19 MDT

2024-01-31

Created	2024-01-31 12:27:23 MST by Environmental Department
Updated	2024-01-31 12:28:08 MST by Environmental Department
Location	,

SPCC C-3 Materials Storage Warehouse

Date of Inspection	2024-01-31
Inspection Frequency	Monthly

Containers & Containment

Are containers located within the designated storage area?	Yes	
Is debris, spills or other fire hazards present in secondary containment?	No	
Is water present in secondary containment?	No	
Are drain valves functional?	Yes	
Are drain valves in closed position?	Yes	
Are gates/doors functional?	Yes	
Is isle space adequate?	Yes	
Are containers in good condition?	Yes	
Are containers closed at time of inspection?	Yes	
Are containers labeled correctly?	Yes	
Are there any indications of leakage around containers or storage area?	No	
Is any maintenance required?	No	

Is a spill kit present?	Yes
Is equipment inventory complete?	Yes
Is any maintenance for response equipment required?	No
Note corrective action needed for response equipment	NA

Oil storage photo

Inspector's name

Cj Dickerson

Signed 2024-01-31 12:28:08 MST

2024-03-07

Created	2024-03-07 13:32:23 MST by Environmental Department
Updated	2024-03-07 13:33:22 MST by Environmental Department
Location	

SPCC C-3 Materials Storage Warehouse

Date of Inspection	2024-03-07
Inspection Freqency	Monthly

Containers & Containment

Are containers located within the designated storage area?	Yes
Is debris, spills or other fire hazards present in secondary containment?	No
Is water present in secondary containment?	No
Are drain valves functional?	Yes
Are drain valves in closed position?	Yes
Are gates/doors functional?	Yes
Is isle space adequate?	Yes
Are containers in good condition?	Yes
Are containers closed at time of inspection?	Yes
Are containers labeled correctly?	Yes
Are there any indications of leakage around containers or storage area?	No
Is any maintenance required?	No

Response Equipment	
Is a spill kit present?	Yes
Is equipment inventory complete?	Yes
ls any maintenance for response equipment required?	No
Note corrective action needed for response equipment	NA - snow covered, can't reach

Oil storage photo

Inspector's name

Cj Dickerson

Signed 2024-03-07 13:33:21 MST

2024-04-30

Created	2024-04-30 10:45:17 MDT by Environmental Department
Updated	2024-04-30 10:46:44 MDT by Environmental Department
Location	

SPCC C-3 Materials Storage Warehouse

Date of Inspection	2024-04-30
Inspection Freqency	Monthly

Containers & Containment

Are containers located within the designated storage area?	Yes	
Is debris, spills or other fire hazards present in secondary containment?	No	
ls water present in secondary containment?	No	
Are drain valves functional?	Yes	
Are drain valves in closed position?	Yes	
Are gates/doors functional?	Yes	
ls isle space adequate?	Yes	
Are containers in good condition?	Yes	
Are containers closed at time of inspection?	No	
Are containers labeled correctly?	Yes	
Are there any indications of leakage around containers or storage area?	No	
s any maintenance required?	No	

Is a spill kit present?	Yes
Is equipment inventory complete?	Yes
ls any maintenance for response equipment required?	No
Note corrective action needed for response equipment	NA

Oil storage photo

Inspector's name

CJ Dickerson

Signed 2024-04-30 10:46:44 MDT

2024-05-14

Created	2024-05-14 09:11:10 MDT by Environmental Department
Updated	2024-05-14 09:12:29 MDT by Environmental Department
Location	

SPCC C-3 Materials Storage Warehouse

Date of Inspection	2024-05-14
Inspection Frequency	Monthly

Containers & Containment

Are containers located within the designated storage area?	Yes
Is debris, spills or other fire hazards present in secondary containment?	No
Is water present in secondary containment?	No
Are drain valves functional?	Yes
Are drain valves in closed position?	Yes
Are gates/doors functional?	Yes
Is isle space adequate?	Yes
Are containers in good condition?	Yes
Are containers closed at time of inspection?	Yes
Are containers labeled correctly?	Yes
Are there any indications of leakage around containers or storage area?	No
Is any maintenance required?	No
Note corrective action needed	NA

ls a spill kit present?	Yes
Is equipment inventory complete?	Yes
Is any maintenance for response equipment required?	No
Note corrective action needed for response equipment	NA

Oil storage photo

Inspector's name

CJ Dickerson

Signature

8/

Signed 2024-05-14 09:12:29 MDT

2024-06-28

Created	2024-06-28 14:14:08 MDT by Environmental Department
Updated	2024-06-28 14:14:53 MDT by Environmental Department
Location	

SPCC C-3 Materials Storage Warehouse

Date of Inspection	2024-06-28
Inspection Frequency	Monthly

Containers & Containment

Are containers located within the designated storage area?	Yes	
Is debris, spills or other fire hazards present in secondary containment?	No	
Is water present in secondary containment?	No	
Are drain valves functional?	Yes	
Are drain valves in closed position?	Yes	
Are gates/doors functional?	Yes	
Is isle space adequate?	Yes	
Are containers in good condition?	Yes	
Are containers closed at time of inspection?	Yes	
Are containers labeled correctly?	Yes	
Are there any indications of leakage around containers or storage area?	No	
Is any maintenance required?	No	

Is a spill kit present?	Yes
Is equipment inventory complete?	Yes
Is any maintenance for response equipment required?	No
Note corrective action needed for response equipment	NA

Oil storage photo

Inspector's name

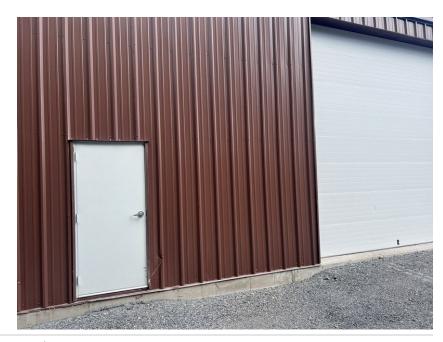
Cj Dickerson

Signed 2024-06-28 14:14:52 MDT

2024-08-29

Created	2024-08-29 12:07:52 MDT by Environmental Department
Updated	2024-08-29 12:09:42 MDT by Environmental Department
Location	,

SPCC C-3 Materials Storage Warehouse


Date of Inspection	2024-08-29
Inspection Freqency	Monthly

Containers & Containment

Are containers located within the designated storage area?	Yes
Is debris, spills or other fire hazards present in secondary containment?	No
Is water present in secondary containment?	No
Are drain valves functional?	Yes
Are drain valves in closed position?	Yes
Are gates/doors functional?	Yes
ls isle space adequate?	Yes
Are containers in good condition?	Yes
Are containers closed at time of inspection?	Yes
Are containers labeled correctly?	Yes
Are there any indications of leakage around containers or storage area?	No
Is any maintenance required?	No

Is a spill kit present?	Yes
Is equipment inventory complete?	Yes
Is any maintenance for response equipment required?	No
Note corrective action needed for response equipment	NA

Oil storage photo

Inspector's name

Cj Dickerson

Signed 2024-08-29 12:09:41 MDT

2024-01-31

2024-01-31		
Created	2024-01-31 12:23:44 MST by Environmental Department	
Updated	2024-01-31 12:24:54 MST by Environmental Department	
Location	,	
SPCC C-4 Waste Storage Pad		
Date of inspection	2024-01-31	
Inspection Frequency	Monthly	
Containers & Containment		
Are containers located within the designated storage area?	Yes	
Is debris, spills or other fire hazards present in secondary containment?	No	
Is water present in secondary containment?	No	
Are drain valves functional?	Yes	
Are drain valves in closed position?	Yes	
Are gates/doors functional?	Yes	
Is isle space adequate?	Yes	
Are containers in good condition?	Yes	
Are containers closed at time of inspection?	Yes	
Are containers labeled correctly?	Yes	
Are there any indications of leakage around containers or storage area?	No	
Is any maintenance required?	No	

Kesponse Equipment	
Is a spill kit present?	Yes
Is equipment inventory complete?	Yes
ls any maintenance required for response equipment?	No
Note corrective action needed for response equipment	Covered in snow, could not reach door to storage area

Waste storage photo

Inspector's name

Cj dickerson

Signed 2024-01-31 12:24:53 MST

2024-03-07

Created	2024-03-07 13:28:53 MST by Environmental Department
Updated	2024-03-07 13:29:50 MST by Environmental Department
Location	,

SPCC C-4 Waste Storage Pad

Date of inspection	2024-03-07
Inspection Frequency	Monthly

Containers & Containment

Are containers located within the designated storage area?	Yes	
Is debris, spills or other fire hazards present in secondary containment?	No	
Is water present in secondary containment?	Yes	
Are drain valves functional?	Yes	
Are drain valves in closed position?	Yes	
Are gates/doors functional?	Yes	
Is isle space adequate?	Yes	
Are containers in good condition?	Yes	
Are containers closed at time of inspection?	Yes	
Are containers labeled correctly?	Yes	
Are there any indications of leakage around containers or storage area?	No	
Is any maintenance required?	No	

Kesponse Equipment	
Is a spill kit present?	Yes
Is equipment inventory complete?	Yes
ls any maintenance required for response equipment?	No
Note corrective action needed for response equipment	NA - covered in snow, can't reach

Waste storage photo

Inspector's name

Cj Dickerson

Signed 2024-03-07 13:29:49 MST

2024-04-30

Created	2024-04-30 10:39:25 MDT by Environmental Department
Updated	2024-04-30 10:41:15 MDT by Environmental Department
Location	,

SPCC C-4 Waste Storage Pad

Date of inspection	2024-04-30
Inspection Frequency	Monthly

Containers & Containment

ls a spill kit present?	Yes
Is equipment inventory complete?	Yes
Is any maintenance required for response equipment?	No
Note corrective action needed for response equipment	NA

Waste storage photo

Inspector's name

Cj Dickerson

Signature

A

Signed 2024-04-30 10:41:14 MDT

2	n	ว	4-	n	5	_1	1/
_	.,	_	4-	u	, ,	-	-

Created	2024-05-14 08:54:23 MDT by Environmental Department
Updated	2024-05-14 08:57:19 MDT by Environmental Department
Location	,
SPCC C-4 Waste Storage Pad	
Date of inspection	2024-05-14
Inspection Frequency	Monthly
Containers & Containment	
Are containers located within the designated storage area?	Yes
Is debris, spills or other fire hazards present in secondary containment?	No
Is water present in secondary containment?	Yes
Are drain valves functional?	Yes
Are drain valves in closed position?	Yes
Are gates/doors functional?	Yes
Is isle space adequate?	Yes
Are containers in good condition?	Yes

Yes

Yes

No

Yes

Response Equipment

Note corrective action needed

containers or storage area?

Is any maintenance required?

Are containers closed at time of inspection?

Are there any indications of leakage around

Are containers labeled correctly?

Is a spill kit present?	Yes
Is equipment inventory complete?	Yes
Is any maintenance required for response equipment?	No
Note corrective action needed for response equipment	NA

Remove water in secondary containment

Waste storage photo

Inspector's name

CJ Dickerson

Signed 2024-05-14 08:57:18 MDT

2024-06-28

Created	2024-06-28 13:58:01 MDT by Environmental Department
Updated	2024-06-28 13:58:56 MDT by Environmental Department
Location	,

SPCC C-4 Waste Storage Pad

Date of inspection	2024-06-28
Inspection Frequency	Monthly

Containers & Containment

Are containers located within the designated storage area?	Yes	
Is debris, spills or other fire hazards present in secondary containment?	No	
Is water present in secondary containment?	No	
Are drain valves functional?	Yes	
Are drain valves in closed position?	Yes	
Are gates/doors functional?	Yes	
Is isle space adequate?	Yes	
Are containers in good condition?	Yes	
Are containers closed at time of inspection?	Yes	
Are containers labeled correctly?	Yes	
Are there any indications of leakage around containers or storage area?	No	
Is any maintenance required?	No	

Is a spill kit present?	Yes
Is equipment inventory complete?	Yes
Is any maintenance required for response equipment?	No
Note corrective action needed for response equipment	NA

Waste storage photo

Inspector's name

CJ Dickerson

Signed 2024-06-28 13:58:54 MDT

2024-08-29

Created	2024-08-29 12:04:47 MDT by Environmental Department
Updated	2024-08-29 12:05:48 MDT by Environmental Department
Location	,

SPCC C-4 Waste Storage Pad

Date of inspection	2024-08-29
Inspection Frequency	Monthly

Containers & Containment

Are containers located within the designated storage area?	Yes
Is debris, spills or other fire hazards present in secondary containment?	No
Is water present in secondary containment?	Yes
Are drain valves functional?	Yes
Are drain valves in closed position?	Yes
Are gates/doors functional?	Yes
Is isle space adequate?	Yes
Are containers in good condition?	Yes
Are containers closed at time of inspection?	Yes
Are containers labeled correctly?	Yes
Are there any indications of leakage around containers or storage area?	No
Is any maintenance required?	No

·	
Is a spill kit present?	Yes
Is equipment inventory complete?	Yes
ls any maintenance required for response equipment?	No
Note corrective action needed for response equipment	NA

Waste storage photo

Inspector's name

Cj Dickerson

Signed 2024-08-29 12:05:47 MDT

2024-01-31

Created	2024-01-31 12:21:34 MST by Environmental Department
Updated	2024-01-31 12:22:27 MST by Environmental Department
Location	ı

SPCC C-7 Underground Shop

Date of inspection	2024-01-31
Inspection Frequency	Monthly

Containers & Containment

Are containers located within the designated storage area?	Yes	
Is debris, spills or other fire hazards present in secondary containment?	No	
Is water present in secondary containment?	Yes	
Are drain valves functional?	Yes	
Are drain valves in closed position?	Yes	
Are gates/doors functional?	Yes	
Is isle space adequate?	Yes	
Are containers in good condition?	Yes	
Are containers closed at time of inspection?	Yes	
Are containers labeled correctly?	Yes	
Are there any indications of leakage around containers or storage area?	No	
Is any maintenance required?	No	

Is a spill kit present?	Yes
Is equipment inventory complete?	Yes
Is any maintenance required for response equipment?	No
Note corrective action needed for response equipment	NA

Location photo

Inspector's name

Cj dickerson

Signed 2024-01-31 12:22:26 MST

2024-03-07

Created	2024-03-07 13:24:15 MST by Environmental Department
Updated	2024-03-07 13:25:21 MST by Environmental Department
Location	,

SPCC C-7 Underground Shop

Date of inspection	2024-03-07
Inspection Frequency	Monthly

Containers & Containment

Are containers located within the designated storage area?	Yes
Is debris, spills or other fire hazards present in secondary containment?	No
Is water present in secondary containment?	Yes
Are drain valves functional?	Yes
Are drain valves in closed position?	Yes
Are gates/doors functional?	Yes
Is isle space adequate?	Yes
Are containers in good condition?	Yes
Are containers closed at time of inspection?	Yes
Are containers labeled correctly?	Yes
Are there any indications of leakage around containers or storage area?	No
Is any maintenance required?	No

Is a spill kit present?	Yes
Is equipment inventory complete?	Yes
Is any maintenance required for response equipment?	No
Note corrective action needed for response equipment	NA

Location photo

Inspector's name

Cj Dickerson

Signature

Signed 2024-03-07 13:25:20 MST

2024-04-30

Created	2024-04-30 10:35:58 MDT by Environmental Department
Updated	2024-04-30 10:38:29 MDT by Environmental Department
Location	,

SPCC C-7 Underground Shop

Date of inspection	2024-04-30
Inspection Frequency	Monthly

Containers & Containment

Are containers located within the designated storage area?	Yes
Is debris, spills or other fire hazards present in secondary containment?	No
Is water present in secondary containment?	Yes
Are drain valves functional?	Yes
Are drain valves in closed position?	Yes
Are gates/doors functional?	Yes
Is isle space adequate?	Yes
Are containers in good condition?	Yes
Are containers closed at time of inspection?	Yes
Are containers labeled correctly?	Yes
Are there any indications of leakage around containers or storage area?	No
Is any maintenance required?	No

Is a spill kit present?	Yes
Is equipment inventory complete?	No
Is any maintenance required for response equipment?	No
Note corrective action needed for response equipment	Take inventory of spill kit and replace missing

Inspector's name

Cj Dickerson

Signed 2024-04-30 10:38:28 MDT

2024-05-14

Created	2024-05-14 08:48:05 MDT by Environmental Department
Updated	2024-05-14 08:51:56 MDT by Environmental Department
Location	,

SPCC C-7 Underground Shop

Date of inspection	2024-05-14
Inspection Frequency	Monthly

Containers & Containment

Are containers located within the designated storage area?	Yes
Is debris, spills or other fire hazards present in secondary containment?	No
Is water present in secondary containment?	Yes
Are drain valves functional?	Yes
Are drain valves in closed position?	Yes
Are gates/doors functional?	Yes
Is isle space adequate?	Yes
Are containers in good condition?	Yes
Are containers closed at time of inspection?	Yes
Are containers labeled correctly?	Yes
Are there any indications of leakage around containers or storage area?	No
ls any maintenance required?	Yes
Note corrective action needed	Remove and collected water collected in secondary containment

Is a spill kit present?	Yes
Is equipment inventory complete?	Yes
ls any maintenance required for response equipment?	No
Note corrective action needed for response equipment	NA

Inspector's name

Cj Dickerson

Signed 2024-05-14 08:51:55 MDT

2024-06-28

Created	2024-06-28 13:54:06 MDT by Environmental Department
Updated	2024-06-28 13:55:10 MDT by Environmental Department
Location	,

SPCC C-7 Underground Shop

Date of inspection	2024-06-28
Inspection Frequency	Monthly

Containers & Containment

Are containers located within the designated storage area?	Yes
Is debris, spills or other fire hazards present in secondary containment?	No
Is water present in secondary containment?	Yes
Are drain valves functional?	Yes
Are drain valves in closed position?	Yes
Are gates/doors functional?	Yes
Is isle space adequate?	Yes
Are containers in good condition?	Yes
Are containers closed at time of inspection?	Yes
Are containers labeled correctly?	Yes
Are there any indications of leakage around containers or storage area?	No
Is any maintenance required?	No

Is a spill kit present?	Yes
Is equipment inventory complete?	Yes
Is any maintenance required for response equipment?	No
Note corrective action needed for response equipment	NA

Inspector's name

Cj Dickerson

Signed 2024-06-28 13:55:10 MDT

2024-08-29

Created	2024-08-29 12:03:08 MDT by Environmental Department
Updated	2024-08-29 12:04:01 MDT by Environmental Department
Location	,

SPCC C-7 Underground Shop

Date of inspection	2024-08-29
Inspection Frequency	Monthly

Containers & Containment

Are containers located within the designated storage area?	Yes
Is debris, spills or other fire hazards present in secondary containment?	No
Is water present in secondary containment?	Yes
Are drain valves functional?	Yes
Are drain valves in closed position?	Yes
Are gates/doors functional?	Yes
Is isle space adequate?	Yes
Are containers in good condition?	Yes
Are containers closed at time of inspection?	Yes
Are containers labeled correctly?	Yes
Are there any indications of leakage around containers or storage area?	No
Is any maintenance required?	No

Is a spill kit present?	Yes
Is equipment inventory complete?	Yes
Is any maintenance required for response equipment?	No
Note corrective action needed for response equipment	NA

Inspector's name

Cj Dickerson

Signed 2024-08-29 12:04:00 MDT

2024-01-31

required?

equipment

Note corrective action needed for response

2024-01-31	
Created	2024-01-31 12:25:07 MST by Environmental Department
Updated	2024-01-31 12:26:14 MST by Environmental Department
Location	,
SPCC C-8 Reagent Room	
Date of Inspection	2024-01-31
Inspection Freqency	Monthly
Containers & Containment	
Are containers located within the designated storage area?	Yes
Is debris, spills or other fire hazards present in secondary containment?	No
Is water present in secondary containment?	No
Are drain valves functional?	Yes
Are drain valves in closed position?	Yes
Are gates/doors functional?	Yes
Is isle space adequate?	Yes
Are containers in good condition?	Yes
Are containers closed at time of inspection?	Yes
Are containers labeled correctly?	Yes
Are there any indications of leakage around containers or storage area?	No
ls any maintenance required?	No
Response Equipment	
Is a spill kit present?	Yes
Is equipment inventory complete?	Yes
Is any maintenance for response equipment	No

Snow too deep to reach entrance to reagent room

Inspector's name

Cj Dickerson

Signature

Signed 2024-01-31 12:26:13 MST

2024-03-07

Created	2024-03-07 13:30:08 MST by Environmental Department
Updated	2024-03-07 13:31:13 MST by Environmental Department
Location	,
SPCC C-8 Reagent Room	
Date of Inspection	2024-03-07
Inspection Freqency	Monthly
Containers & Containment	
Are containers located within the designated storage area?	Yes
Is debris, spills or other fire hazards present in secondary containment?	No
Is water present in secondary containment?	No
Are drain valves functional?	Yes
Are drain valves in closed position?	Yes
Are gates/doors functional?	Yes
Is isle space adequate?	Yes
Are containers in good condition?	Yes
Are containers closed at time of inspection?	Yes
Are containers labeled correctly?	Yes

Response Equipment

containers or storage area?

Is any maintenance required?

Are there any indications of leakage around

Yes
Yes
No
NA - Can't reach, covered in snow

No

No

Inspector's name

Cj Dickerson

Signature

M

Signed 2024-03-07 13:31:12 MST

Is any maintenance for response equipment

Note corrective action needed for response

required?

equipment

2024-04-30	
Created	2024-04-30 10:41:56 MDT by Environmental Department
Updated	2024-04-30 10:43:11 MDT by Environmental Department
Location	,
SPCC C-8 Reagent Room	
Date of Inspection	2024-04-30
Inspection Freqency	Monthly
Containers & Containment	
Are containers located within the designated storage area?	Yes
Is debris, spills or other fire hazards present in secondary containment?	No
Is water present in secondary containment?	Yes
Are drain valves functional?	Yes
Are drain valves in closed position?	Yes
Are gates/doors functional?	Yes
Is isle space adequate?	Yes
Are containers in good condition?	Yes
Are containers closed at time of inspection?	Yes
Are containers labeled correctly?	Yes
Are there any indications of leakage around containers or storage area?	No
ls any maintenance required?	No
Response Equipment	
Is a spill kit present?	Yes
Is equipment inventory complete?	Yes

No access to reagent room. No reagent or milling chemicals on site

No

Inspector's name

Cj Dickerson

Signed 2024-04-30 10:43:10 MDT

20	174	$^{\circ}$	1 1
71)24-	いつ-	14

Note corrective action needed for response

equipment

2024-05-14	
Created	2024-05-14 09:01:51 MDT by Environmental Department
Updated	2024-05-14 09:03:18 MDT by Environmental Department
Location	,
SPCC C-8 Reagent Room	
Date of Inspection	2024-05-14
Inspection Freqency	Monthly
Containers & Containment	
Are containers located within the designated storage area?	Yes
Is debris, spills or other fire hazards present in secondary containment?	No
Is water present in secondary containment?	Yes
Are drain valves functional?	Yes
Are drain valves in closed position?	Yes
Are gates/doors functional?	Yes
Is isle space adequate?	Yes
Are containers in good condition?	Yes
Are containers closed at time of inspection?	Yes
Are containers labeled correctly?	Yes
Are there any indications of leakage around containers or storage area?	No
Is any maintenance required?	No
Note corrective action needed	Nothing being stored in reagent building
Response Equipment	
Is a spill kit present?	No
Is equipment inventory complete?	Yes
Is any maintenance for response equipment	No

No waste oil or reagents being stored in reagent building

Inspector's name

Cj Dickerson

Signed 2024-05-14 09:03:18 MDT

2024-06-28

Created	2024-06-28 14:00:04 MDT by Environmental Department
Updated	2024-06-28 14:02:10 MDT by Environmental Department
Location	,

SPCC C-8 Reagent Room

Date of Inspection	2024-06-28
Inspection Frequency	Monthly

Containers & Containment

Are containers located within the designated storage area?	Yes
ls debris, spills or other fire hazards present in secondary containment?	No
Is water present in secondary containment?	Yes
Are drain valves functional?	Yes
Are drain valves in closed position?	Yes
Are gates/doors functional?	Yes
Is isle space adequate?	Yes
Are containers in good condition?	Yes
Are containers closed at time of inspection?	Yes
Are containers labeled correctly?	Yes
Are there any indications of leakage around containers or storage area?	No
ls any maintenance required?	No
Note corrective action needed	Nothing being stored since entering TC

ls a spill kit present?	Yes
Is equipment inventory complete?	Yes
Is any maintenance for response equipment required?	No
Note corrective action needed for response equipment	NA

Inspector's name

CJ Dickerson

Signed 2024-06-28 14:02:09 MDT

2024-08-29	
Created	2024-08-29 12:06:19 MDT by Environmental Department
Updated	2024-08-29 12:07:28 MDT by Environmental Department
Location	,
SPCC C-8 Reagent Room	
Date of Inspection	2024-08-29
Inspection Freqency	Monthly
Containers & Containment	
Are containers located within the designated storage area?	Yes
Is debris, spills or other fire hazards present in secondary containment?	No
Is water present in secondary containment?	Yes
Are drain valves functional?	Yes
Are drain valves in closed position?	Yes
Are gates/doors functional?	Yes
Is isle space adequate?	Yes
Are containers in good condition?	Yes
Are containers closed at time of inspection?	Yes
Are containers labeled correctly?	Yes
Are there any indications of leakage around containers or storage area?	No
ls any maintenance required?	No
Response Equipment	
Is a spill kit present?	No
Is equipment inventory complete?	No

response Equipment	
Is a spill kit present?	No
Is equipment inventory complete?	No
ls any maintenance for response equipment required?	No
Note corrective action needed for response equipment	NA nothing being stored requiring spill kit

Inspector's name

Cj Dickerson

Signed 2024-08-29 12:07:28 MDT

2024-01-31

2024-01-31	
Created	2024-01-31 12:30:49 MST by Environmental Department
Updated	2024-01-31 12:31:32 MST by Environmental Department
Location	·
SPCC C-11 Mill Tunnel	
Date of inspection	2024-01-31
Inspection Frequency	Monthly
Containers & Containment	
Are containers located within the designated storage area?	Yes
Is debris, spills or other fire hazards present in secondary containment?	No
Is water present in secondary containment?	No
Are drain valves functional?	Yes
Are drain valves in closed position?	Yes
Are gates/doors functional?	Yes
Is isle space adequate?	Yes
Are containers in good condition?	Yes
Are containers closed at time of inspection?	Yes
Are containers labeled correctly?	Yes
Are there any indications of leakage around containers or storage area?	No
Is any maintenance required?	No

Is a spill kit present?	Yes
Is equipment inventory complete?	Yes
Is any maintenance required for response equipment?	No
Note corrective action needed for response equipment	NA

Inspector's name

Cj Dickerson

Signed 2024-01-31 12:31:30 MST

2024-03-07

2024-05-07	
Created	2024-03-07 13:27:03 MST by Environmental Department
Updated	2024-03-07 13:27:56 MST by Environmental Department
Location	,
SPCC C-11 Mill Tunnel	
Date of inspection	2024-03-07
Inspection Frequency	Monthly
Containers & Containment	
Are containers located within the designated storage area?	Yes
Is debris, spills or other fire hazards present in secondary containment?	No
Is water present in secondary containment?	No
Are drain valves functional?	Yes
Are drain valves in closed position?	Yes
Are gates/doors functional?	Yes
ls isle space adequate?	Yes
Are containers in good condition?	Yes
Are containers closed at time of inspection?	Yes
Are containers labeled correctly?	Yes
Are there any indications of leakage around containers or storage area?	No
ls any maintenance required?	No

kesponse Equipment	
Is a spill kit present?	Yes
Is equipment inventory complete?	Yes
ls any maintenance required for response equipment?	No
Note corrective action needed for response equipment	NA - nothing in mill

Inspector's name

Cj Dickerson

Signed 2024-03-07 13:27:54 MST

2024-05-14

Created	2024-05-14 09:19:28 MDT by Environmental Department
Updated	2024-05-14 09:20:27 MDT by Environmental Department
Location	,
SPCC C-11 Mill Tunnel	
Date of inspection	2024-05-14
Inspection Frequency	Monthly
Containers & Containment	
Are containers located within the designated storage area?	Yes
Is debris, spills or other fire hazards present in secondary containment?	No
Is water present in secondary containment?	No
Are drain valves functional?	Yes
Are drain valves in closed position?	Yes
Are gates/doors functional?	Yes
Is isle space adequate?	Yes
Are containers in good condition?	Yes

Yes

Yes

No

No

Response Equipment

Note corrective action needed

containers or storage area?

Is any maintenance required?

Are containers closed at time of inspection?

Are there any indications of leakage around

Are containers labeled correctly?

ls a spill kit present?	Yes
Is equipment inventory complete?	Yes
Is any maintenance required for response equipment?	No
Note corrective action needed for response equipment	NA

Nothing being stored or used in Mill Tunnel

Inspector's name

CJ Dickerson

Signed 2024-05-14 09:20:26 MDT

2024-06-28

Created	2024-06-28 14:06:42 MDT by Environmental Department
Updated	2024-06-28 14:08:27 MDT by Environmental Department
Location	,

SPCC C-11 Mill Tunnel

Date of inspection	2024-06-28
Inspection Frequency	Monthly

Containers & Containment

Are containers located within the designated storage area?	Yes
ls debris, spills or other fire hazards present in secondary containment?	No
Is water present in secondary containment?	Yes
Are drain valves functional?	Yes
Are drain valves in closed position?	Yes
Are gates/doors functional?	Yes
Is isle space adequate?	Yes
Are containers in good condition?	Yes
Are containers closed at time of inspection?	Yes
Are containers labeled correctly?	Yes
Are there any indications of leakage around containers or storage area?	No
Is any maintenance required?	No
Note corrective action needed	Nothing stored here currently

Is a spill kit present?	Yes
Is equipment inventory complete?	Yes
ls any maintenance required for response equipment?	No
Note corrective action needed for response equipment	NA

Inspector's name

CJ Dickerson

Signed 2024-06-28 14:08:10 MDT

2024-08-29

Created	2024-08-29 12:09:51 MDT by Environmental Department
Updated	2024-08-29 12:12:06 MDT by Environmental Department
Location	,
SPCC C-11 Mill Tunnel	
Date of inspection	2024-08-29
Inspection Frequency	Monthly
Containers & Containment	
Are containers located within the designated storage area?	Yes
ls debris, spills or other fire hazards present in secondary containment?	Yes
Is water present in secondary containment?	No
Are drain valves functional?	Yes
Are drain valves in closed position?	Yes
Are gates/doors functional?	Yes
ls isle space adequate?	Yes
Are containers in good condition?	Yes
Are containers closed at time of inspection?	Yes
Are containers labeled correctly?	Yes

Response Equipment

Note corrective action needed

containers or storage area?

Is any maintenance required?

Are there any indications of leakage around

Is a spill kit present?	Yes
Is equipment inventory complete?	Yes
ls any maintenance required for response equipment?	No
Note corrective action needed for response equipment	NA

Nothing being stored in mill tunnel

No

No

Inspector's name

Cj Dickerson

Signed 2024-08-29 12:12:05 MDT