

CRIPPLE CREEK & VICTOR <u>PO Box 191</u> <u>100 N. 3rd Street</u> <u>Victor CO 80860</u>

Cripple Creek and Victor Water Monitoring Quality Assurance Project Plan and Field Sampling Guidance for Grassy Valley Monthly Monitoring

October 24, 2024 February 27, 2023

Department		OLLED IN HARD COPY FORMAT	Doc Id:	
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 1 of 94	

Contents

1. Introduction7
1.1. Program Organization
1.2. Program Objectives
1.3. SAMPLING PLAN
2.0 Surface Water9
3.0 Groundwater 15
4.0 EMPs
5.0 Seeps
6.0 Field Technician Duties
6.1 Tasks
6.2 Site Inspection
6.3 Quality Control
6.4 Training
6.5 Calibration
7.0 Monthly Grassy Sampling Report
7.1 Monthly Sampling Report
8.0 CC&V Monthly Grassy Sample Types
8.1 Duplicate Samples 29
8.2 Rinse Blanks
9.0 Documentation and Records
9.1 Field Data
9.2 Calibration
10.0 Collection and Preservation of Samples
10.1 General Guidelines 32
10.2 Sample Field Sheets 34
10.3 Sample Identification
10.4 Sample Collection
10.5 Well Sampling
10.6 Stream Sampling
10.7 Filtering Samples

Department	THIS DOCUMENT IS UNCONTR	OLLED IN HARD COPY FORMAT	Doc Id:
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 2 of 94

10.8 Sample Preservation and Storage 40
10.9 Sample Handling and Custody 40
10.10 Chain of Custody Procedures
10.11 Sampling Field Sheets 41
10.12 Chain of Custody Record
10.13 Shipping Papers
10.14 Delivery to Laboratory
10.15 Data Receipt and Review
11.0 Well Sampling Equipment42
11.1 Dedicated Electric Powered Sampling Pump
11.2 Field Deployable Submersible Pump
<u>11.3 Bailer</u>
11.4 Water Quality Meters

1. Introduction5
1.1Program Organization5
1.2Program Objectives
2.0 SAMPLING PLAN
2.1-Surface water sampling locations7
3.0 Monthly Grassy Valley Monitoring Groundwater Monitoring Locations9
4. Field Technician Duties
4.1Tasks
4.2. Quality Control
4.3. Training
4.4. Calibration
5.—Monthly Grassy Sampling Frequency14
5.1. Sample Frequency
6. CC&V Monthly Grassy Sample Types
6.1. Duplicate Samples
6.2. Rinse Blanks
7.—Documentation and Records
7.1. Field Notes / Field Log Book16
Department THIS DOCUMENT IS UNCONTROLLED IN HARD COPY FORMAT Doc Id:
SER Date of This Issue-10/24/2024 Date of Next Review: 10/24/2025 Page 3 of 94

7.2. Field Data	16
7.3. Calibration	17
8. Collection and Preservation of Samples	17
8.1. General Guidelines	17
8.2. Field Book and Sample Field Sheets	18
8.3. Sample Identification	19
8.4. Sample Collection	<u>20</u>
8.5. Well Sampling	20
8.6. Stream Sampling	21
8.7. Filtering Samples	22
8.8. Sample Preservation and Storage	<u>22</u>
8.9. Sample Handling and Custody	<u>23</u>
8.10. Chain of Custody Procedures	<u>23</u>
8.11. Field Log Book	23
8.12. Chain of Custody Record	<u>23</u>
8.13. Shipping Papers	24
8.14. Delivery to Laboratory	24
8.15. Data Receipt and Review	24
9. Well Sampling Equipment	2 5
9.1. Dedicated Electric Powered Sampling Pump	2 5
9.2. Field Deployable Submersible Pump	2 5
9.3. Bailer	26
PURPOSE	64
SCOPE	64
Myron L II Calibration	64
Specific Conductance Calibration64	
Total Dissolved Solids Calibration64	
PH Calibration	

Department	THIS DOCUMENT IS UNCONTR	OLLED IN HARD COPY FORMAT	Doc Id:
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 4 of 94

Appendices

Appendix A - Example Chain of Custody Record

Appendix B - Field Sampling Bottle Requirements and Holding Times

Appendix C - Example Groundwater Field Sample Record Form

Appendix D -Reagent Water Specifications

Appendix E - Well Evacuation Calculation

Appendix F – <u>Low Flow Purge Volume Calculations</u> Meter Calibration Instructions

Appendix G - <u>YSI Pro Water Quality Meter Calibration Instructions</u> Grassy Valley Sample Locations Identified Sample Names

Department	THIS DOCUMENT IS UNCONTR	OLLED IN HARD COPY FORMAT	Doc Id:
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 5 of 94

Department		OLLED IN HARD COPY FORMAT	Doc Id:	
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 6 of 94	

1. Introduction

This Quality Assurance Project Plan (QAPP) for Grassy Valley monthly monitoringdescribes the quality assurance and quality control (QA/QC) procedures and practices for this location at Newmont's Cripple Creek and Victor Mine (CC&V). Included are standard operating procedures (SOP) for the various stages of sample collection, shipping and analyses. Sample schedules, location maps and analytical requirements are also included. This is a "living" document and is intended as guidance for site personnel; the QAPP is updated as needed to reflect changes to CC&V's water monitoring program and regulatory requirements. If a change to the QAPP is required, it will be implemented immediately and revised accordingly based on regulatory consultation as needed.

Accurate water quality data are critical to ensure permit compliance and demonstrate that water resources are not impacted by operations. The generation of reliable data begins with the collection of the sample. Adherence to the SOPs will ensure that samples are representative, and collected in accordance with standard water sampling methods and QA/QC protocols. To produce data of defensible quality, this quality control program will be strictly adhered to during sample collection.

The water-sampling program includes collecting samples, recording field data, submitting samples for analyses, reviewing and recording analytical results.

1.1. Program Organization

Duties of key program personnel are listed in Table 1 below:

Formatted: Indent: Left: 0.13", Right: 0.13"

Formatted: Indent: Left: -0.05"

Formatted: Indent: Left: 0.2"

Formatted: Indent: Left: 0.2"

Table 1. Summary of Key Personnel

Name	Role	Contact Info	
Department	THIS DOCUMENT IS UNC	ONTROLLED IN HARD COPY FORMAT	Doc Id:
SER	Date of This Issue-10/24/202	4 Date of Next Review:10/24/2025	Page 7 of 94

	Senior Environmental	Katie.blake@Newmont.com		
Katie Blake	Manager	(719) 851-4048		
<u>Josh</u>		Joshua.Adams@newmont.comAntonio.matarrese@		
<u>Adams</u> Antonio		Newmont.com		
Matarrese	Site Water Coordinator	(719) <u>323-0438</u> 851-4185		
Trenton	Senior Environmental			
Reed TBD	<u>Technician</u> technician	Trenton.Reed@newmont.comTBD		
<u>Jordan</u>	Environmental			
<u>Cranford</u>	<u>Technician</u>	Jordan.Cranford@newmont.com		
SVL	Contract Laboratory	TBD	•	Formatted Table
Heather	Contract Laboratory	heather@svl.net		
Lapierre	Director	(208) 783-1286		

- Senior Environmental Manager: The Senior Environmental Manager ensurest the overall QA/QC program development and implementation. The Senior Environmental Manager allocates resources to ensure QA/QC and compliance criteria are met.
- **Site Water Coordinator:** The Site Water Coordinator is the program technical expert. The Site Water Coordinator oversees resource allocation, program implementation, coordinates field efforts, ensures sampling schedules are met and manages laboratory sub-contracts.
- **Senior** Environmental <u>Technicians</u> Technician: The <u>Senior</u> Environmental <u>Technicians</u> Technician executes the QAPP as the sampler in the field, ensuring program adherence during sample collection and shipment.
 - Contract Laboratory Manager: Ensure analyses of environmental samples are conducted in adherence with regulatory, industry and program QA/QC requirements.

1.2. Program Objectives

The general objectives of the environmental monitoring and sampling program are:

- Collect, whenever possible, representative samples and document instances
 when sampling conditions are not ideal
- Ensure environmental samples are collected and analyzed according to regulatory and program QA/QC requirements
- Provide a record and insight of natural variability in environmental data as a*

Department	THIS DOCUMENT IS UNCONTROLLED IN HARD COPY FORMAT		Doc Id:
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 8 of 94

Formatted: Indent: Left: 0"

Formatted: Justified, Indent: Left: 0", Bulleted + Level: 1 + Aligned at: 0.75" + Indent at: 1", No widow/orphan control

Formatted: Indent: Left: 0.2"

Formatted: Indent: Left: 0.4"

Formatted: Indent: Left: 0.4", Keep with next

function of seasonal meteoric changes and site evolution as influenced by historic mining practices

- Document and record environmental data history
- Identify potential environmental impacts from site activities

2.0 SAMPLING PLAN

1.3.

Monitoring within Grassy Valley consists of the following: The following locationsare recognized as Grassy Valley Monthly surface monitoring locations: one location on the southern toe of the ECOSA facility (SEEP 1), one location on the toe of the ECOSA Facility mid-way between the northern and southern extents of the facility (SEEP 2) and one location on Grassy Creek in Lower Grassy Valley (GV-06). Samples collected at the surface water monitoring stations, shown in Table 2.1. A list of surface water parameters is provided below in Table 2.2. This program monitors water quality at the toe of the ECOSA facility and downgradient surface water quality below the ECOSA facility.

- Monthly sampling/monitoring of 5 surface water locations
- Monthly sampling/monitoring of 34 groundwater locations
- Monthly sampling/monitoring of 5 stormwater detention ponds (i.e. EMP's)
- Monthly sampling/monitoring of seepage locations

Reporting frequencies and monitoring frequencies, locations, and parameters may be modified with the approval of the Colorado Division of Reclamation Mining and Safety (DRMS). If the monitoring or reporting requirements are modified, CC&V will update this QAPP accordingly.

2.0 Surface Water

2.1 Surface water sampling locations

CC&V collects surface water samples from <u>five</u> locations within Grassy Valley. Table 2.1 below presents the Grassy Valley Monthly monitoring compliance surface water monitoring locations. <u>The GV-06 location is considered the point-of-compliance</u>. , and

Department	THIS DOCUMENT IS UNCONTROLLED IN HARD COPY FORMAT		Doc Id:	
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 9 of 94	

Formatted: Font: 12 pt, Not Bold

Formatted: Font: Not Bold

Formatted: Heading 2,Heading 2 - Subhead, Justified, Indent: Left: 0", Hanging: 0.5", Space Before: Auto, After: Auto, Outline numbered + Level: 2 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0.75" + Indent at: 1.05", No widow/orphan control

Formatted: Justified, Indent: Left: 0.2"

Formatted: List Paragraph, Justified, Bulleted + Level: 1 + Aligned at: 0.45" + Indent at: 0.7"

<u>CRIPPLE CREEK & VICTOR</u> <u>PO Box 191</u> <u>100 N. 3rd Street</u> Victor CO 80860

Table 2.2 below depicts surface water compliance monitoring location water monitoring parameters. Table 2.3 below presents compliance limitations as specified in Colorado Regulation 32, and Figure 2.1 presents a map of the Grassy Valley monthly surface water monitoring locations.

Table 2.1 Surface Water Monitoring Locations Grassy Valley Monthly surface water

Site Number	Location	Monitoring Frequency
GV-06	Grassy Creek - Lower Grassy Valley	Monthly
<u>GV-4.5</u>	Grassy Creek - Lower Grassy Valley beyond affected lands boundary	Monthly
GV- <u>05</u> 06	Grassy CreekLower Grassy Valle <u>y upstream of</u> the confluence with Beaver <u>Creek</u>	Monthly
<u>GV-02</u>	<u>Grassy Creek - Upper</u> <u>Grassy Valley</u>	Monthly
<u>GV-03</u>	<u>Grassy Creek - Middle</u> <u>Grassy Valley</u>	<u>Monthly</u>

Formatted: Indent: Left: 0.2"

Formatted: Font: Bold, Italic Formatted: Centered

Formatted: Font: Bold, Italic

Formatted Table

Table 2.2 Monthly Grassy Valley Surface Water Monitoring Parameters

	Parameters	
pH (Field)	Barium (mg/L) Total Recoverable	Temperature (°C)
Ammonia (mg/L as N) Total	Beryllium (mg/L) Total Recoverable	Manganese (mg/L) Total Recoverable
Cyanide [FREE] (Dissolved)	Cadmium (mg/L) Dissolved	Manganese (mg/L) Dissolved

1	Formatted: Font: Bold, Italic
\top	Formatted: Font: Bold, Italic
ľ	Formatted: Centered
Ϊ	Formatted Table
1	Formatted: Font: 10 pt
-	Formatted: Font: 10 pt
-	Formatted: Font: 10 pt

Department	THIS DOCUMENT IS UNCONTROLLED IN HARD COPY FORMAT		Doc Id:
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 10 of 94

CRIPPLE CREEK & VICTOR <u>PO Box 191</u> <u>100 N. 3rd Street</u> <u>Victor CO 80860</u>

Formatted: Font: 10 pt

Formatted: Font: 10 pt Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Fluoride (mg/L)	Cadmium (mg/L) Total Recoverable	Mercury (mg/L) Total Recoverable
Nitrate (mg/L as N)	Chlorine (mg/L)	Molybdenum (mg/L) Total Recoverable
Nitrite (mg/L as N)	Chromium (mg/L) Dissolved	Nickel (mg/L) Dissolved
Boron (mg/L)	Chromium III (mg/L) Dissolved	Nickel (mg/L) Total
Chloride (mg/L)	Chromium III (mg/L) Total	Phosphorus (mg/L)
Sulfate (mg/L)	Chromium VI (mg/L) Dissolved	Selenium (mg/L) Dissolved
Aluminum (mg/L) Dissolved	Copper (mg/L) Dissolved	Silver (mg/L) Dissolved
Cyanide [WAD]	Iron (mg/L) Total Recoverable	Sulfide (mg/L)
Dissolved Oxygen (mg/L)	Iron (mg/L) Dissolved	Thallium (mg/L) Dissolved
Antimony (mg/L) Total Recoverable	Total Lead (mg/L) Total Recoverable Uranium (mg/L) Dissolved	
Arsenic (mg/L) Total Recoverable	Lead (mg/L) Dissolved	Zinc (mg/L) Dissolved
Arsenic (mg/L) Dissolved		

Table 2.3 Grassy Valley Surface Water Standards water standards

Formatted: Font: Bold, Italic Formatted: Font: Bold, Italic Formatted: Centered

Department	THIS DOCUMENT IS UNCONTROLLED IN HARD COPY FORMAT	Doc Id:
SER	Date of This Issue-10/24/2024 Date of Next Review:10/24/2025	Page 11 of 94

COARUA24	Classifications	Physical and	Physical and Biological			Metals (ug/L)		
Designation	Agriculture		DM	MWAT		acute	chronic	
Reviewable	Aq Life Cold 1	Temperature °C	CS-II	CS-II	Arsenic	340		
	Recreation E		acute	chronic	Arsenic(T)		0.02	
	Water Supply			6.0	Codmium	TVS	TVS	
Qualifiers:		D.O. (spawning)		7.0	Cadmium(T)	5.0		
Other:		pН	6.5 - 9.0		Chromium III		TVS	
Temporary M	odification(s):	chlorophyll a (mg/m ²)		150	Chromium III(T)	50		
Arsenic(chron	1 A A	E. coli (per 100 mL)		126	Chromium VI	TVS	TVS	
Expiration Dat	e of 12/31/2024				Copper	TVS	TVS	
*1		Inorgan	ic (mg/L)		Iron		WS	
*Uranium(acute) = See 32.5(3) for details. *Uranium(chronic) = See 32.5(3) for details.			acute	chronic	Iron(T)		1000	
Oranium(crin	nic) - 3ee 32.5(3) for details.	Ammonia	TVS	TVS	Lead	TVS	TVS	
		Boron		0.75	Lead(T)	50		
		Chloride		250	Manganese	TVS	TVS/WS	
		Chlorine	0.019	0.011	Mercury(T)		0.01	
		Cyanide	0.005		Molybdenum(T)		150	
		Nitrate	10		Nickel	TVS	TVS	
		Nitrite		0.05	Nickel(T)		100	
		Phosphorus		0.11	Selenium	TVS	TVS	
		Sulfate		WS	Silver	TVS	TVS(tr)	
		Sulfide		0.002	Uranium	varies*	varies*	
					Zinc	TVS	TVS	

COARUA24	Classifications	Physical and	Physical and Biological			Metals (ug/L)		
Designation	Agriculture		DM	MWAT		acute	chronic	
Reviewable	Aq Life Cold 1	Temperature °C	CS-II	CS-II	Arsenic	340		
	Recreation E		acute	chronic	Arsenic(T)		0.02	
	Water Supply	D.O. (mg/L)		6.0	Cadmium	TVS	TVS	
Qualifiers:		D.O. (spawning)		7.0	Cadmium(T)	5.0		
Other:		pН	6.5 - 9.0		Chromium III		TVS	
Temporary M	lodification(s):	chlorophyll a (mg/m ²)		150	Chromium III(T)	50		
Arsenic(chron		E. coli (per 100 mL)		126	Chromium VI	TVS	TVS	
Expiration Dat	te of 12/31/2024				Copper	TVS	TVS	
*1	4-) - C 22 5(2) f d-t-il-	Inorgan	ic (mg/L)		Iron		WS	
*Uranium(acute) = See 32.5(3) for details. *Uranium(chronic) = See 32.5(3) for details.			acute	chronic	Iron(T)		1000	
oranium(cm	onic) = 366 32.3(3) for details.	Ammonia	TVS	TVS	Lead	TVS	TVS	
		Boron		0.75	Lead(T)	50		
		Chloride		250	Manganese	TVS	TVS/WS	
		Chlorine	0.019	0.011	Mercury(T)		0.01	
		Cyanide	0.005		Molybdenum(T)		150	
		Nitrate	10		Nickel	TVS	TVS	
		Nitrite		0.05	Nickel(T)		100	
		Phosphorus		0.11	Selenium	TVS	TVS	
		Sulfate		WS	Silver	TVS	TVS(tr)	
		Sulfide		0.002	Uranium	varies*	varies*	
					Zinc	TVS	TVS	

Department	THIS DOCUMENT IS UNCONTROLLED IN HARD COPY FORMAT				Doc Id:
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 12 of 94		

Figure 2.1 Surface <u>Water Monitoring Locations</u>water monitoring locations

Formatted: Font: Bold, Italic

Department	THIS DOCUMENT IS UNCONTR	OLLED IN HARD COPY FORMAT	Doc Id:
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 13 of 94

<u>CRIPPLE CREEK & VICTOR</u> <u>PO Box 191</u> <u>100 N. 3rd Street</u> Victor CO 80860

Formatted:	Font: Bold, Italic
Formatted:	Centered

Formatted: Tab stops: 0.88", Left

Department	THIS DOCUMENT IS UNCONTR	OLLED IN HARD COPY FORMAT	Doc Id:	
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 14 of 94	

3.0____Monthly Grassy Valley Monitoring Groundwater Monitoring Locations

Department	THIS DOCUMENT IS UNCONTR	OLLED IN HARD COPY FORMAT	Doc Id:	
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 15 of 94	

CRIPPLE CREEK & VICTOF <u>PO Box 191</u> <u>100 N. 3rd Street</u> Victor CO 80860

Monthly Grassy Valley groundwater monitoring locations within Grassy Valley evaluatefor water quality downgradient of CC&V's ECOSA facility. The GVMW-26A and GVMW-26B are considered the points-of-compliance. Table 3.1 below presents the groundwater monitoring locationslocation for the monthly Grassy Valley monitoringgrassy valley sampling, Table 3.2 presents the constituents which this location is sampled for, Table 3.3 presents the standards to which this groundwater monitoring location is evaluated against, and Figure 3.1 shows where the groundwater monitoring location is in Grassy Valley.

Table 3.1.	Groundwater	Monitoring	<mark>z Locations</mark> g	3roundwater	monitoring
		location			

	el	cations			
Site Numbe	Longitude (Dec.	Latitude (Dec.		toring uency	
	Deg)Location -105.13	<u>Deg)</u>	38.7505	Monthly	
GVMW-4A				Monthly	
<u>GVMW-7A</u>	<u>-105.12</u>		<u>38.7477</u>	Monthly	
GVMW-7B	<u>-105.12</u>		<u>38.7477</u>	Monthly	
<u>GVMW-8A</u>	<u>-105.12</u>		<u>38.7413</u>		
<u>GVMW-8B</u>	<u>-105.12</u>		<u>38.7413</u>	Monthly	
<u>GVMW-10</u>	<u>-105.12</u>	<u>.52</u>	<u>38.7444</u>	Monthly	
<u>GVMW-15A</u>	<u>-105.13</u>	<u>-105.1358</u>		Monthly	
<u>GVMW-15B</u>	<u>-105.13</u>	<u>57</u>	<u>38.7494</u>	Monthly	
<u>GVMW-15C</u>	<u>-105.13</u>	<u>59</u>	<u>38.7495</u>	<u>Monthly</u>	
GVMW-22A	<u>-105.11</u>	<u>10</u>	<u>38.7408</u>	<u>Monthly</u>	
GVMW-22B	<u>-105.11</u>	<u>11</u>	<u>38.7408</u>	<u>Monthly</u>	
GVMW-24A	<u>-105.11</u>	87	<u>38.7378</u>	<u>Monthly</u>	
GVMW-24B	<u>-105.11</u>	<u>87</u>	<u>38.7378</u>	Monthly	
GVMW-25	MW-25 $\frac{-105.1196Grassy}{Valley-}$ Downgradient of ECOSA		Mo	nthly	
GVMW- <u>26A</u> 2	26-105.1110Grassy Valley	<u>38.7396</u>	Monthly		
ment	THIS DOCUMENT IS UNCO	NTROLLED IN HARD	COPY FORMAT	Doc Id:	
R	Date of This Issue-10/24/2024	Date of Ne	xt Review:10/24/202	5 Page	

Formatted: Justified, Indent: Left: 0

-	Formatted: Font: Bold, Italic
	Formatted: Centered
	Formatted: Font: Bold, Italic
-	Formatted Table

Formatted: Font: Font color: Auto

Formatted Table

<u>GVMW-</u> 26B Seep 1	<u>-105.1111</u> South toe of ECOSA	<u>38.7396</u>	Mo	onthly
<u>GVMW-27</u> Seep 2	<u>-105.1217</u> Toe of ECOSA	<u>38.7412</u>	Mo	onthly
GVMW-28	<u>-105.12</u>	30	<u>38.7422</u>	<u>Monthly</u>
<u>GVMW-29</u>	<u>-105.12</u>	14	<u>38.7389</u>	<u>Monthly</u>
<u>GVMW-30</u>	<u>-105.12</u>	17	<u>38.7395</u>	<u>Monthly</u>
<u>GVMW-31</u>	<u>-105.12</u>	21	<u>38.7401</u>	<u>Monthly</u>
GVMW-32	<u>-105.12</u>	<u>25</u>	<u>38.7406</u>	<u>Monthly</u>
GVMW-33	<u>-105.12</u>	<u>30</u>	<u>38.7411</u>	<u>Monthly</u>
GVMW-34	<u>-105.12</u>	<u>92</u>	<u>38.7471</u>	<u>Monthly</u>
GVMW-35A	-105.13	01	<u>38.7473</u>	<u>Monthly</u>
GVMW-35B	<u>-105.13</u>	05	<u>38.7475</u>	<u>Monthly</u>
<u>GVMW-36</u>	<u>-105.13</u>	37	<u>38.7486</u>	<u>Monthly</u>
GVMW-37A	<u>-105.11</u>	<u>81</u>	<u>38.7401</u>	<u>Monthly</u>
<u>GVMW-37B</u>	<u>-105.11</u>	<u>81</u>	<u>38.7402</u>	<u>Monthly</u>
OSABH-12	<u>-105.11</u>	<u>87</u>	<u>38.7377</u>	<u>Monthly</u>
OSABH-14	<u>-105.12</u>	.03	<u>38.7414</u>	<u>Monthly</u>
OSABH-16	<u>-105.12</u>	<u>54</u>	<u>38.7445</u>	<u>Monthly</u>
OSABH-17	<u>-105.13</u>	28	<u>38.7483</u>	<u>Monthly</u>
OSABH-18	<u>-105.13</u>	<u>59</u>	<u>38.7495</u>	<u>Monthly</u>

Department	THIS DOCUMENT IS UNCONTR	OLLED IN HARD COPY FORMAT	Doc Id:
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 17 of 94

.

CRIPPLE CREEK & VICTOR <u>PO Box 191</u> <u>100 N. 3rd Street</u> <u>Victor CO 80860</u>

	Parameters	
Aluminum (dissolved)	Cyanide [FREE]	Nitrite (NO2)
Antimony (dissolved)	Fluoride (dissolved)	рН
Arsenic (dissolved)	Iron (dissolved)	Selenium (dissolved)
Barium (dissolved)	Lead (dissolved)	Silver (dissolved)
Beryllium (dissolved)	Lithium (dissolved)	Sulfate (dissolved)
Boron (dissolved)	Manganese (dissolved)	Thallium (dissolved)
Cadmium (dissolved)	Mercury (inorganic) (dissolved)	Total Nitrate + Nitrite (NO ₂ +NO ₃ -N)
Chloride (dissolved)	Molybdenum (dissolved)	Uranium (dissolved)
Chromium (dissolved)	Nickel (dissolved)	Vanadium (dissolved)
Cobalt (dissolved)	Nitrate (NO3)	Zinc (dissolved)
Copper (dissolved)	Cyanide [WAD] ¹	-

Formatted Table	
Formatted: Centered	
Formatted: Font: Bold, Italic	
Formatted: Font: Bold, Italic	

Formatted: Centered

Formatted: Superscript
Formatted: Indent: Left: 0", First line: 0.5"

Department	THIS DOCUMENT IS UNCONTR	OLLED IN HARD COPY FORMAT	Doc Id:
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 18 of 94

<u>CRIPPLE_CREEK & VICTOR</u> <u>PO Box 191</u> 100 N. 3rd Street Victor CO_80860

		Groundwat				 	Formatted:
Parameter	mg/L	_	ameter		g/L		
Aluminum	7	Manganes	e		3		
untimony	0.006	Mercury)02		
vrsenic	0.01	Molybden	m.		21		
larium	2	Nickel		0	.2		
Beryllium	0.004	Nitrate as I	N	1	.		
Boron	0.75	Nitrite + Ni	itrate as N	4	.1		
Cadmium	0.005	Nitrite as N	4	4	1		
Chloride	250	₽Ħ		6.0	- 8.5		
Chromium	0.1	Selenium		0.0)24		
Cobalt	0.05	Silver		0. 0	05		
Copper	0.2	Sulfate (GV	/MW-8A)	25	50		
Cyanide [FREE]	0.2	Sulfate	,	25	50		
Cyanide [WAD]	0.2	Thallium			002		
Fluoride	2	Uranium		A	03		
Iron	14	Vanadium		0			
Lead	0.05	Zinc		-	2		
Lithium	2.5	2			-		
Cells Highlighted in blue	_	otoction Limit					
Cells Highlighted in whit			2				
cens Figningnted in whit	e are rapie valu	e standards				• 1	Form
			1	Sitewide	Reg. 41	\sim	
	Description		GVMW-	NPL	Table Value	l	Forn
	Description		<u>8A</u>	(Existing)			
Aluminum (d	tis) (mg/L)			7	5		
Antimony (d				<u> </u>	0.006		
Arsenic (dis)					0.01		

\mathbf{D} = mix matrix $(-1, -1)$ (matrix $(-1, -1)$)	1	I	2
Barium (dis) (mg/L)	-	-	2
Beryllium (dis) (mg/L)		-	0.004
<u>Boron (dis) (mg/L)</u>	_	_	<u>0.75</u>
<u>Cadmium (dis) (mg/L)</u>	_	<u>0.005</u>	<u>0.005</u>
<u>Chloride (dis) (mg/L)</u>	_	_	<u>250</u>
<u>Chromium (dis) (mg/L)</u>	_	_	<u>0.1</u>
<u>Cobalt (dis) (mg/L)</u>	_	_	0.05
<u>Copper (dis) (mg/L)</u>	_	<u>0.2</u>	<u>0.2</u>
Cyanide [Free] (mg/L)	_	_	<u>0.2</u>
Cyanide [WAD] (mg/L)	_	<u>0.2</u>	
<u>Fluoride (mg/L)</u>	_	<u>2</u>	<u>2</u>
Iron (dis) (mg/L)	_	<u>14</u>	<u>0.3</u>
<u>Lead (dis) (mg/L)</u>	_	_	0.05
<u>Lithium (dis) (mg/L)</u>	_	_	2.5
Manganese (dis) (mg/L)	<u>1</u>	<u>3</u>	<u>0.05</u>
Mercury (dis) (mg/L)	_	0.002	0.002
Molybdenum (dis) (mg/L)	_	_	0.21
<u>Nickel (dis) (mg/L)</u>	_	0.2	<u>0.1</u>
Nitrate as Nitrogen (mg/L)	_	<u>10</u>	<u>10</u>
Nitrite as Nitrogen (mg/L)	_	<u>1</u>	<u>1</u>
Nitrate + Nitrite as Nitrogen (mg/L)	_	<u>11</u>	<u>10</u>
<u>pH Field - Upper</u>	<u>8.5</u>	<u>8.5</u>	<u>8.5</u>
<u>pH Field - Lower</u>	<u>6.5</u>	<u>6</u>	<u>6.5</u>
<u>Selenium (dis) (mg/L)</u>	_	0.024	0.02
<u>Silver (dis) (mg/L)</u>	_	_	<u>0.05</u>
Sulfate (mg/L)	<u>250</u>	_	<u>250</u>
<u>Thallium (dis) (mg/L)</u>	_		0.002
<u>Uranium (dis) (mg/L)</u>	_	_	0.03
Vanadium (dis) (mg/L)	_	_	<u>0.1</u>
Zinc (dis) (mg/L)	_	2	2

Note:

If no NPL exists (Sitewide or well-specific) for that parameter the most stringent value from
 <u>Colorado Regulation 41 Tables 1, 2, or 3 is applied</u>

• dis – dissolved

mg/L – milligram per liter

Formatted: List Paragraph, Right: 0.3", Bulleted + Level: 1 + Aligned at: 1" + Indent at: 1.25"

Department	THIS DOCUMENT IS UNCONTR	Doc Id:		
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 20 of 94	

CRIPPLE CREEK & VICTOR <u>PO Box 191</u> <u>100 N. 3rd Street</u> <u>Victor CO 80860</u>

Figure 3.1 Groundwater Monitoring Locations

Formatted: Font: Bold, Italic

.

Formatted: Font: Bold, Italic, Dutch (Netherlands)
Formatted: Centered

Department	THIS DOCUMENT IS UNCON	TROLLED IN HARD COPY FORMAT	Doc Id:
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 21 of 94

Newmont... CRIPPLE CREEK & VICTOR

CRIPPLE CREEK & VICTOR <u>PO Box 191</u> <u>100 N. 3rd Street</u> <u>Victor CO 80860</u>

Formatted: Centered, Indent: Left: -0.3"

Department	THIS DOCUMENT IS UNCONTR	Doc Id:		
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 22 of 94	

Newmont... CRIPPLE CREEK & VICTOR

CRIPPLE CREEK & VICTOR <u>PO Box 191</u> <u>100 N. 3rd Street</u> Victor CO 80850

Department	THIS DOCUMENT IS UNCONTR	ROLLED IN HARD COPY FORMAT	Doc Id:	
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 23 of 94	

CRIPPLE CREEK & VICTOR <u>PO Box 191</u> <u>100 N. 3rd Street</u> <u>Victor CO 80860</u>

4.0 EMPs

Enhanced Management Practices (EMPs) are stormwater collection/detention ponds that periodically have standing water. Table 4.1 below presents the EMP monitoring locations for the monthly monitoring. EMPs are sampled for the same constituents as the groundwater locations and compared to the same standards as the groundwater locations. Figure 4.1 shows the locations of the EMPs within Grassy Valley. EMPs will be sampled monthly given that they can be safely accessed, there is an adequate amount of water to be sampled, and the water is not frozen.

<u>Table 4.1. EMP Locations</u>		
<u>Site Number</u>	Monitoring Frequency	
<u>EMP-16</u>	Monthly	
<u>EMP-17</u>	<u>Monthly</u>	
<u>EMP-17A</u>	Monthly	
<u>EMP-17B</u>	Monthly	
<u>EMP-20</u>	<u>Monthly</u>	

Table 4.1. EMP Locations

Department	THIS DOCUMENT IS UNCONTR	OLLED IN HARD COPY FORMAT	Doc Id:
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 24 of 94

CRIPPLE CREEK & VICTOR PO Box 191 100 N. 3rd Street Victor CO 80860

Figure 4.1 EMP Monitoring Locations

Department	THIS DOCUMENT IS UNCONTR	Doc Id:		
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 25 of 94	

5.0 Seeps

Figure 5.1 shows the locations of the Seeps within Grassy Valley. Field parameters (pH, temperature, and conductivity) will be collected from the seep locations monthly. Samples will be collected on a quarterly basis from the seep locations and analyzed for the same parameters as the groundwater locations and compared to the same standards as the groundwater locations. Quarterly sampling of the seep locations will only occur if they can be safely accessed, there is an adequate amount of water to be sampled, and the water is not frozen.

Figure 5.1 Seep Locations

Department	THIS DOCUMENT IS UNCONTROLLED IN HARD COPY FORMAT	Doc Id:
SER	Date of This Issue-10/24/2024 Date of Next Review:10/24/2025	Page 26 of 94

4.<u>6.0</u> Field Technician Duties

Collection of reliable data and maintenance of analytical data are the foundation of compliance activities. Thus, the duties performed by the sampler provide the most critical element of the Environmental Department's efforts. Although this document primarily is focused on sample collection and handling methods, the generation of water data can be envisioned as a loop that includes more than simply sample collection. For any given sample, the sampler's duties have not been completed until this loop is closed. In general, a complete loop includes the collection of the sample, transmittal of the sample to a lab, receipt, review and, storage of analytical data.

4.1.<u>6.1</u> Tasks

Each of these steps includes several tasks, each of which must be conducted in accordance with the procedures outlined in this document. Specific duties include the following:

- Collection of samples;
- Collection of duplicate and control samples;
- Collection of field data;
- Maintenance of equipment;
- Calibration of equipment used to collect field data;
- Tracking sample status;
- Data review and management;
- Review of invoices and coding for payment;
- Updating sample schedules, maps and other documents as needed;
- Conducting periodic inventory of equipment;

Site Inspection

Department	THIS DOCUMENT IS UNCONT	ROLLED IN HARD COPY FORMAT	Doc Id:	
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 27 of 94	

Formatted: Outline numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 6 + Alignment: Left + Aligned at: 0" + Indent at: 0.5"

Formatted: Indent: Left: 0.19"

Formatted: Outline numbered + Level: 2 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0.5" + Indent at: 1"

Newmont. CRIPPLE CREEK & VICTOR		CRIPPLE CREEK & VICTOR PO Box 191 100 N. 3 rd Street Victor CO 80860		
<u>be observant of</u> of circumstance <u>Leaks or damp</u> the vicinity of p	nction of a sampler is to collect samples. Sample f environmental conditions while in the field and es or occurrences, which are unusual or different areas, materials stored in possibly unauthorized onds or tailing impoundments are examples of t noted should be promptly brought to the atte coordinator.	d should be aware t from past events. d places, wildlife in hings to be noted.	Formatted: Heading 2,Heading Before: Auto, After: Auto, Outli + Numbering Style: 1, 2, 3, + Left + Aligned at: 0.5" + Indent widow/orphan control	ne numbered + Level: 2 Start at: 1 + Alignment:
competence, ut meters, equipm	 Quality Control ality control program consists of the following e tilization of standards, field blanks and duplica ment maintenance and routine auditing of sam lts of control samples will not be used to m rs.	ites, calibration of pling procedures.	Formatted: Indent: Left: 0" Formatted: Outline numbered Style: 1, 2, 3, + Start at: 1 + Al at: 0.5" + Indent at: 1" Formatted: Indent: Left: 0.19"	
and regulatory are knowledgea will be familiar v and Health Adm	 Training ples are collected and managed accordingly, th requirements, samplers are trained by departme able and experienced in Newmont's monitoring p with site history and conditions and will maintain ninistration (MSHA) certifications. The contracted intain appropriate certifications as needed.	ent personnel who program. Samplers active Mine Safety	Formatted: Outline numbered Style: 1, 2, 3, + Start at: 1 + Al at: 0.5" + Indent at: 1" Formatted: Indent: Left: 0.19"	-
All calibration a All field equipm Calibration proc check will be	Calibration nd calibration check data will be documented.in the twill be calibrated prior to field use <u>on daily</u> cedures shall follow the manufacturers' specificat performed after all samples have been collec cks will not be used to correct pH readings taken	<u>calibration forms</u> tions. A calibration cted for the day.	Formatted: Outline numbered Style: 1, 2, 3, + Start at: 1 + Al at: 0.5" + Indent at: 1" Formatted: List Paragraph, Inde	ignment: Left + Aligned
Department SER	THIS DOCUMENT IS UNCONTROLLED IN HARD COPY FORMAT Date of This Issue-10/24/2024 Date of Next Review:10/24/2025	Doc ld: Page 28 of 94		

5.-Monthly Grassy Sampling Report Frequency

5.1.Sample Frequency

Per Technical Revision-132, surface water and groundwater samples are collected and reported to the Colorado Division of Reclamation and Mining Safety (DRMS). CC&V collects and submits surface and groundwater samples, duplicates and rinse blanks to our contracted laboratory for analysis.

Surface water, groundwater and QA/QC samples are collected monthly.

<u>7.0</u>

7.1 5.2 Monthly Sampling Report

Monthly sampling reports are to be submitted to DRMS no later than 28 days after the last day of the preceding month. For example, reports are due on March 28 for February sampling event.

6.8.0 CC&V Monthly Grassy Sample Types

6.1.8.1 Duplicate Samples

Duplicate samples are two or more samples collected at the same time from the same location and are used to check the analyzing laboratory's accuracy. For CC&V's monthly Grassy sampling, <u>two duplicates one duplicate</u> will be collected monthly.

6.2.8.2 Rinse Blanks

A rinse blank is a sample of <u>distilledanalyte free</u> water poured over or through a decontaminated field sampling equipment prior to the collection of environmental samples. Rinse blanks should be completed periodically to confirm that field sampling equipment is decontaminated. The field sampling technician will collect 1 rinse blank per month for laboratory analysis for the monthly Grassy sampling.

 Department
 THIS DOCUMENT IS UNCONTROLLED IN HARD COPY FORMAT
 Doc Id: -----

 SER
 Date of This Issue-10/24/2024
 Date of Next Review:10/24/2025
 Page 29 of 94

Formatted: Font: 14 pt, Bold

Formatted: Heading 1, Space Before: Auto, After: 6 pt, Outline numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 6 + Alignment: Left + Aligned at: 0" + Indent at: 0.5", No widow/orphan control, Tab stops: 0.5", Left

Formatted: Font: (Default) +Body (Open Sans), 12 pt

Formatted: Indent: Left: 0.19"

Formatted: Outline numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 6 + Alignment: Left + Aligned at: 0" + Indent at: 0.5"

Formatted: Heading 2,Heading 2 - Subhead, Space After: Auto, Outline numbered + Level: 2 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0.5" + Indent at: 1", Tab stops: Not at 0.5"

Formatted: Indent: Left: 0.19"

Formatted: Heading 2,Heading 2 - Subhead, Space After: Auto, Outline numbered + Level: 2 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0.5" + Indent at: 1", Tab stops: Not at 0.5"

CRIPPLE CREEK & VICT PO Box 191 100 N. 3rd Street Victor CO 80860

7. Documentation and Records

<u>9.0</u>

Field data is at least as important as the analytical data received from the outside laboratory. Because field data includes an evaluation of the specific instantaneous conditions at the site, this information cannot be reproduced by a later trip to the site.

The field data is often the first indication that there may be a concern with water quality at a given location. Therefore it is critical that any conditions observed are recorded in the field book.

7.1. Field Notes / Field Log Book

Any necessary field notes will be recorded in a permanently bound, "waterproof" notebook. The year and area will be neatly written in permanent ink on the spine and front cover of each book. Xerox or electronic copies of all field notes will be maintained in the Victor Admin building and will be updated quarterly. This system ensures that the field data will be preserved in the event of fire or other unusual circumstance, as well as provide convenient access to this data by all department staff.

6.1

The field book contains compliance data, and therefore can be used in any compliance related proceedings (ie. inspections, NOAV hearings, trials, etc.).

The field technician should strive to keep these notes suitably neat and well organized. Field notes shall be taken in pen with no erasures. Errors will be crossed out with a single line and corrected. The sampler will initial such corrections at the time they are made.

Field data recorded at each sampling site will include, at a minimum, pH, temperature, and sampling conditions (weather, etc.). Additional data that may be recorded, depending on the specific site are dissolved oxygen, conductivity, turbidity, flow, and depth to water. In many instances, careful recording of field observations has provided clues to questionable analytical

Department	THIS DOCUMENT IS UNCONTR	Doc Id:	
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 30 of 94

Formatted: Font: 14 pt, Bold

Formatted: Heading 1, Space Before: Auto, After: 6 pt, Outline numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 6 + Alignment: Left + Aligned at: 0" + Indent at: 0.5", No widow/orphan control, Tab stops: 0.5", Left

Formatted: Indent: Left: 0.19"

Formatted: Heading 2,Heading 2 - Subhead, Space Before: Auto, After: Auto, Outline numbered + Level: 2 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0.5" + Indent at: 1", No widow/orphan control

results, thus saving considerable time and money. These observations may include water color, appearance, presence of floating matter or unusual amounts of suspended material, evidence of recent activity in the area or recent access by other persons, wildlife or stock, pumping rates (for monitor well-samples), or any conditions that could conceivably impact water quality.

7.2.9.1 Field Data

The field data is often the first indication that there may be a concern with water quality at a given location. Therefore, it is critical that any conditions observed are recorded on the field sheets.

Field data recorded at each surface, and groundwater monitoring location shall be recorded on the applicable field sheet (surface,<u>or</u> groundwater<u>or</u> <u>low</u> <u>flow</u> <u>sampling report</u>) and will also be entered into the electronic data collection section for the Monitor Pro 5 Database Management System currently used by CC&V. <u>Examples of the various field sheets are included in Appendix C.</u> All field parameters collected and recorded on the completed field sheet will be entered into the electronic data entry for storage in our database. Each compliance sampling location has an associated electronic data entry form which is used to enter data.

Field data recorded at each sampling site will include, at a minimum, pH, temperature, and sampling conditions (weather, etc.). Additional data that may be recorded, depending on the specific site are dissolved oxygen, conductivity, turbidity, flow, and depth to water. In many instances, careful recording of field observations has provided clues to questionable analytical results, thus saving considerable time and money. These observations may include water color, appearance, presence of floating matter or unusual amounts of suspended material, evidence of recent activity in the area or recent access by other persons, wildlife or stock, pumping rates (for monitor well samples), or any conditions that could conceivably impact water quality. Pertinent observations during the sampling events will be recorded on the field sheets.

Formatted: Heading 2,Heading 2 - Subhead, Space After: Auto, Outline numbered + Level: 2 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0.5" + Indent at: 1", Tab stops: Not at 0.5"

7.3. Calibration

9.2

All field instruments will be calibrated. The calibration and calibration check shalls be documented <u>on calibrations logs.in the field book</u>. Calibration data will not be used to alter any readings taken during the day. Calibration procedures shall follow the manufacturer's specifications.

Formatted: Heading 2, Heading 2 - Subhead, Justified, Space Before: Auto, After: Auto, Outline numbered + Level: 2 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0.5" + Indent at: 1", No widow/orphan control

Formatted: Indent: Left: 0.19"

8.<u>10.0</u>Collection and Preservation of Samples

The objective of sampling is to collect a representative sample that ensures the analytical results accurately represent the material being sampled. Following surface and groundwater sampling SOPs ensure that this is achieved. When alternative sampling methods are necessary due to unusual circumstances, the sampler will state plainly the nature of the modification in the field <u>sheetslog book</u>.

8.1.10.1 General Guidelines

A sampling event (day) should be scheduled to collect background samples first, and samples such as process solutions last, to avoid cross contamination of wells or streams. In general sampling should begin with locations that have the lowest Formatted: Outline numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 6 + Alignment: Left + Aligned at: 0" + Indent at: 0.5"

Formatted: Indent: Left: 0.19"

Formatted: Heading 2,Heading 2 - Subhead, Space After: Auto, Outline numbered + Level: 2 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0.5" + Indent at: 1", Tab stops: Not at 0.5"

Department	THIS DOCUMENT IS UNCONTROLLED IN HARD COPY FORMAT		Doc Id:
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 32 of 94

concentrations of constituents and move to higher concentrations throughout the <u>day.</u>

Samples will be collected in new sample bottles of material consistent with the parameters to be analyzed. DO NOT touch the inside of sample vessel or cap or allow these surfaces to contact any material other than the sample media. Sample containers that are known, or suspected, to be contaminated will be discarded or clearly marked with an "X" or other designation to prevent their use. Holding times, minimum required sample bottles/volume, and necessary preservative types are contained within attachment I.

Table 108.1.1 below contains the required sample bottle, bottle volume, and preservative for the various analysis suites CC&V uses for our water monitoring program.

Table 10.1.1 - Sample Bottle Requirements by Analysis Suite

Table 8.1.1 - Sample Bottle Requirements by Analysis Suite Surface Water Analysis Suite Formatted Table 1 - 500 mL HDPENDPE unpreserved sample (grab sample) Black Label 1 - 250 mL HDPE unfiltered sample (grab sample) preserved with 1.25 mL H2SO4 (Sulfuric Acid, yellow label) 1 - 250 mL HDPE unfiltered sample (grab sample) preserved with 1.25 mL HNO3 (Nitric Acid, red label) 1 - 250 mL HDPE filtered sample (grab sample) preserved with 1.25 mL HNO3 (Nitric Acid, red label) 1 - 250 mL Amber HDPE unfilteredunpreserved sample (grab sample) preserved with 1.25 mL NaOH (Pre-**Formatted Table** preserved bottle or Sodium Hydroxide, green label) 1 - Hexavalent Chromium Kit (pre-preserved) adjust pH as needed with NaOH (Sodium Hydroxide, Green Label) to achieve pH between 9.3 - 9.7. (All preservatives included in kit, along with instructions and pH strips).

Department	THIS DOCUMENT IS UNCONTROLLED IN HARD COPY FORMAT		Doc Id:	
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 33 of 94	

SER Date of This Issue-10/24/2024 Date of Next Review:10/24/2025 Page 34 of 94

time of sample collection, sample location, sample identification (ID#), name of sample collector, whether the sample was filtered, and type of preservative used. The labels must be attached to the appropriate sample bottle. In the absence of labels, write the above information directly on the sample bottle with a permanent marker.

Care must be exercised to ensure that the sample ID# is the same as the official designation for each sample location. Failure to use the same ID# as specified in the applicable permit may result in analytical results being questioned. Officially designated sample ID's for compliance sampling locations are specified in appendix G. Non-compliance samples to be collected shall be collected as necessary, with all necessary information being recorded within the sampler's field notebook. It is extremely important that sample identification and recorded notes be sufficient to identify precisely where the samples came from.

Duplicate and control samples will be identified with an ID# which will not bias the laboratory by indicating the origin of the sample. At CC&V duplicate samples are identified by increasing the numerical component of the monitor well identifier by 100, and offsetting the position nomenclature by positive 5 (Increasing the letter count by 5). For example the duplicate for monitoring well VIN-2A would be VIN-102F, the duplicate for monitoring well GVMW-22B would be GVMW-122G. It is also necessary that all pertinent field data for the duplicate sample be recorded as any sample, and that the sample ID is identified as a duplicate, and which well it is a duplicate for is identified.

Blank samples will be identified with an ID# which will not bias the laboratory by indicating the origin of the sample. At CC&V Blank samples are identified by using the prefix CCVB and then following it by the month numerical value and the day numerical value (two digit). For example the blank sample collected on March 25 would be identified as CCVB-0325. It is also necessary that field data be collected for the blank sample (pH, DO, EC, temp). The field data needs to be recorded on a field sample sheet.

Formatted: Justified, Indent: Left: 0.19"

Department	THIS DOCUMENT IS UNCONTROLLED IN HARD COPY FORMAT		Doc Id:	
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 35 of 94	

<u>100 N. 3rd Street</u> <u>Victor CO 80860</u>

8.4.10.4 Sample Collection

Decontaminate all non-dedicated sampling equipment and meters, as appropriate, before and after use with deionized water (Type III reagent grade). Decontamination procedures include cleaning of equipment with a dilute phosphate free detergent solution (i.e. Alconox or Liquinox), followed by a fresh water rinse.

To assure an undiluted sample is collected, field cups, filter vessels, or other reusable equipment should be triple rinsed with sample solution if sufficient quantities are available.

Field readings will be measured from a separate container collected at the same time as the sample, and will not be taken from the actual sample bottle which will be analyzed. If a field sample was taken from a lined facility, it must be returned to a lined facility. Minimum field readings will be pH, conductivity, and temperature.

Sample collection from well, stream, pond, reservoir, & waste rock discussed below.

8.5.10.5 Well Sampling

To begin each sampling event, measure depth, to the nearest one-tenth of a foot, to static water level from the top of casing (TOC) with a water level indicator (Solinst). Rinse the level indicator with deionized water (type III reagent grade) before and after use.

A dry well will be recorded as "Dry at X feet" to assure that the Solinst did not hang up in the well.

Water standing in a well prior to sampling is not representative of in-situ ground water quality. Therefore, the stagnant water must be removed and replaced by fresh formation water. EPA protocol dictates that one to ten volumes of water standing in the well casing should be removed prior to collection of the sample. At CC&V the standard well sample collection method is the EPA Low Flow

Department	THIS DOCUMENT IS UNCONTROLLED IN HARD COPY FORMAT		Doc Id:
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 36 of 94

Formatted: Heading 2, Heading 2 - Subhead, Space After: Auto, Outline numbered + Level: 2 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0.5" + Indent at: 1", Tab stops: Not at 0.5"

Formatted: Indent: Left: 0.19"

Formatted: Heading 2,Heading 2 - Subhead, Space After: Auto, Outline numbered + Level: 2 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0.5" + Indent at: 1", Tab stops: Not at 0.5"

methodology (Low-Flow (minimal drawdown) Ground-water sampling procedures).

When sampling using EPA Low-Flow methodology, start the pump at low speed and slowly increase the speed until the discharge occurs. Record the pumping rate for future sampling and try to match the pumping rate used during previous sampling events. Otherwise adjust the speed until there is little to no water level drawdown. If the minimal drawdown exceeds 0.3 feet, but remains stable, continue purging. Monitor and record the water level and pumping rate at least every five minutes during purging. Record any pumping rate adjustments (both time and flow rate). Pumping rates should, as needed, be reduced to the minimum capabilities of the pump to ensure stabilization of the water level. Adjustments are best made in the first fifteen minutes of pumping in order to help minimize purging time. During pump start-up, drawdown may exceed the 0.3 feet target and then "recover" somewhat as pump flow adjustments are made. Purge volume calculations should utilize stabilized drawdown value, not the initial drawdown. If the initial water level is above the top of the screen do not allow the water level to fall into the well screen. The final purge volume must be greater than the stabilized drawdown volume plus the pump's tubing volume. If the drawdown has exceeded 0.3 feet and stabilizes, calculate the volume of water between the initial water level and the stabilized water level. Add the volume of the water which occupies the pump's tubing to this calculation. This combined volume of water needs to be purged from the well after the water level has stabilized before samples are collected. During purging monitor field parameters (pH, temperature, & conductivity). Purging is considered complete and sampling may begin when all the indicator field parameters (below) have stabilized. Achievement of turbidity levels of less than 5 NTU, and stable drawdowns of less than 0.3 feet, while desirable, are not mandatory.

The EPA sampling method is designed for ideal conditions and wells. Wells and conditions at CC&V can be variable and it should always be the goal of this sampling program to collect meaningful data. If deviations are made from the standard procedure, they will be documented and done so in the interest of collecting data that is useful.

Department	THIS DOCUMENT IS UNCONTR	OLLED IN HARD COPY FORMAT	Doc Id:	
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 37 of 94	

<u>SomeHowever, some</u> wells yield such low volumes of water that this protocol cannot be followed. <u>Wells containing less than 5 feet of water column will be considered insufficient and no samples will be collected.</u> When sampling a low yield well evacuate the well to dryness once. Within 24 hours of this purge, <u>if the well has recovered at least 90% of the original volume</u> collect, preserve, and handle the sample(s) according to normal procedures. <u>This procedure described mimics that described by the United States Geologic Survey's National Field Manual for the Collection of Water-Quality Data.</u>

Another exception would be dedicated low flow pumping technologies (see section 9.1).

Standard/Well-Volume Method may also be utilized forWhen sampling monitoring wells, for this methoda high yield well, three casing volumes will be evacuated prior to sampling. Measure <u>the stabilization criteria outlined</u> <u>belowpH</u>, temperature, and conductivity after each well volume is evacuated (<u>i.e.,ie</u>, if the well volume is 5 gallons, take measurements after evacuation of 5, 10, and 15 gallons). <u>OnIn</u> the field <u>formbook</u>, record the volume of water evacuated, <u>all stabilization parameters</u>the pH, temperature, conductivity, and time that the measurements were made. After three well volumes have been purged (appendix E, well evacuation calculation) check the last two sets of measurements to determine if the field parameters have stabilized. If the field readings have not stabilized

purge another well volume and take field measurements. Repeat until stabilized. -

Stabilization criteria are <u>achieved</u> when the following parameters are met over three consecutive readings.

•;-,Temperature - <u>±3%,</u>	Formatted: Font: Bold
• Specific Conductivity _= ±3 <u>%</u>	Formatted: Font: Bold
<u>●_%, pH _= ± 0.1</u>	Formatted: Font: Bold
• <u>Dissolved Oxygen</u> - (10% for values greater than 0.5 mg/L, if three	 Formatted: Font: Bold
Dissolved Oxygen values are less than 0.5 mg/L, consider the values as	
<u>stabilized)</u>	

Department	THIS DOCUMENT IS UNCONTROLLED IN HARD COPY FORMAT	Doc Id:
SER	Date of This Issue-10/24/2024 Date of Next Review:10/24/2025	

Formatted: Indent: Left: 0.19"

• **Turbidity** - (10% for values greater than 5 NTU; if three Turbidity values are less than 5 NTU, consider the values as stabilized)

Oxidation/Reduction Potential - ±10 millivolts

If the field values indicate stable conditions, collect, preserve, and handle the samples according to the procedures outlined in this document. An example of a well purging calculation is included in Appendix E.

8.6.10.6 Stream Sampling

Sampling results will vary with depth, stream flow, and distance from shore. When rinsing the field cup or bottles, discard the rinsate downstream from the sampling point. A grab sample should be collected at mid-depth from the middle of the stream, in an actively flowing section of the stream. In shallow streams, care should be taken not to disturb the bottom and put sediments into suspension, as these will affect the analytical results. If a stream has no visible flow, it will be recorded as dry or stagnant and will not be sampled. If a stream sampling location has visible water, but not enough water to allow collection of a representative sample, it will be recorded as "too low to sample". Sampling data will be recorded on An estimate of the flow rate of water at each stream sampling logs. location should be recorded in the field book, along with the general appearance of the water (turbidity, color, etc.).

8.7.10.7 Filtering Samples

A ground water sample to be analyzed for dissolved metals must be passed through a 0.45 micron membrane filter prior to preservation. For the determination of total metals, the sample is not filtered. As a general guideline, ground water (wells) samples requiring a metals analysis should be filtered and analyzed for dissolved metals, while surface water samples requiring a metals analysis should be unfiltered and analyzed for total metals. Samples requiring analysis for organics should not be filtered. Specify on the Newmont chain of custody whether or not the samples have been filtered. Formatted: Indent: Left: 0.2"

Formatted: Heading 2,Heading 2 - Subhead, Space After: Auto, Outline numbered + Level: 2 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0.5" + Indent at: 1", Tab stops: Not at 0.5"

Formatted: Indent: Left: 0.19"

Formatted: Heading 2,Heading 2 - Subhead, Space After: Auto, Outline numbered + Level: 2 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0.5" + Indent at: 1", Tab stops: Not at 0.5"

Department	THIS DOCUMENT IS UNCONTROLLED IN HARD COPY FORMAT	Doc Id:
SER	Date of This Issue-10/24/2024 Date of Next Review:10/24/2025	Page 39 of 94

8.8.10.8 Sample Preservation and Storage

Sample preservation is intended to retard breakdown of the constituents within the sample. Preservation methods include pH control, chemical control, temperature control, and protection from light. Common sample preservation measures include the following:

To avoid changes in the concentration or physical state of the constituent to be analyzed, preserve accordingly, and pack samples in <u>icelce</u> in the field and when shipping. Samples should be stored in a locked refrigerator and shipped to the laboratory as soon as possible. As samples are transferred to the storage refrigerator, a double check that the lids are securely tightened is conducted.

8.9.10.9 Sample Handling and Custody

The contracted laboratory will provide necessary coolers, sample bottles, chain-ofcustody (COC) forms and shipping labels. After sample collection, samples will be stored in a refrigerator and shipped to the laboratory as soon as possible and within allowable holding times. Samples will be cooled to <u>temperature acceptable</u> to the contracted labratory≤4°±2°C. Sample containers will be packed to prevent breakage or contamination during shipment.

8.10.10 Chain of Custody Procedures

Chain of custody procedures will allow for the tracking of individual samples fromthe time of collection through laboratory analysis. All records relating to chain of custody documentation are to be made in ink. If errors are made on any of these documents, corrections are to be made by crossing a single line through the mistake and entering the correct information. All corrections are to be initialed and dated by the individual making the error, if possible, or by the investigator. All paperwork completed in the course of collecting and shipping samples must be correct, accurate, and defensible in a court of law.

The complete COC will accompany the sample from the site, through delivery to the contracted laboratory. To ensure complete documentation of sample

Department	THIS DOCUMENT IS UNCONTR	OLLED IN HARD COPY FORMAT	Doc Id:
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 40 of 94

Formatted: Heading 2, Heading 2 - Subhead, Space After: Auto, Outline numbered + Level: 2 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0.5" + Indent at: 1", Tab stops: Not at 0.5"

Formatted: Indent: Left: 0.19"

Formatted: Heading 2,Heading 2 - Subhead, Space After: Auto, Outline numbered + Level: 2 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0.5" + Indent at: 1", Tab stops: Not at 0.5"

Formatted: Indent: Left: 0.19"

Formatted: Heading 2, Heading 2 - Subhead, Space After: Auto, Outline numbered + Level: 2 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0.5" + Indent at: 1", Tab stops: Not at 0.5"

Department		OLLED IN HARD COPY FORMAT	Doc Id:
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 41 of 94

9.11.0

8.14.10.14 Delivery to Laboratory

Planning is required to ship the samples, so the lab personnel are available toreceive them, especially if shipping over the weekend. If a rush analysis is requested, notify the laboratory ahead of time. To ship samples, fill out a shipping paper for each cooler (see Appendix C) and deliver the coolers and shipping papers to the shipper. Make a copy of the shipping paper, COC and file in the Chain of Custody folder (see Tracking System section below). Note: For water quality samples there must be enough ice in the cooler to ensure the sample temperature is maintained at <u>a temperature that is acceptable to the laboratory</u>. $\leq 4^{\circ}\pm 2^{\circ}C$.

8.15.10.15 Data Receipt and Review

Well Sampling Equipment

Analysis reports are received with the invoices. The data should be reviewed. relative to the applicable standards., and invoices filed appropriately. Should any analytical results deviate from expectation or exceed the applicable standards the coordinator should be informed.

If possible, dedicated sampling devices should be used in water quality monitoring.

When non-dedicated equipment is used, equipment will decontaminated using the procedures detailed above, before and after use to avoid cross contamination of wells. Equipment should be used according to manufacturers' guidelines. A brief summary of guidelines for various types of equipment used by CC&V follows:

When possible, use the dedicated electric powered sampling pump to purge-

sampling wells. If the electrical connection coming from the dedicated sampling

pump is a 240 volt connection, connect directly to the 240 volt input on the

Formatted: Heading 2, Heading 2 - Subhead, Space After: Auto, Outline numbered + Level: 2 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0.5" + Indent at: 1", Tab stops: Not at 0.5"

Formatted: Indent: Left: 0.19"

Formatted: Heading 2, Heading 2 - Subhead, Space After: Auto, Outline numbered + Level: 2 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0.5" + Indent at: 1", Tab stops: Not at 0.69"

Formatted: Indent: Left: 0.19"

Formatted: Indent: Left: 0"

Formatted: Outline numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 6 + Alignment: Left + Aligned at: 0" + Indent at: 0.5"

Formatted: Indent: Left: 0.19"

Formatted: Heading 2, Heading 2 - Subhead, Space After: Auto, Outline numbered + Level: 2 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0.5" + Indent at: 1", Tab stops: Not at 0.69" Formatted: Indent: Left: 0.19"

Department	THIS DOCUMENT IS UNCONTR	OLLED IN HARD COPY FORMAT	Doc Id:
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 42 of 94

9.1.11.1 Dedicated Electric Powered Sampling Pump

CRIPPLE CREEK & VICTOR <u>PO Box 191</u> 100 N. 3rd Street Victor CO 80860

generator. If a four prong electrical connection comes from the dedicated sampling pump, connect the four prong connection from the sampling pump to the four prong connection on the control box. Then connect the 240 volt connection on the flow control box with the 240 volt input on the generator. Once the electrical connections are made pull out the choke on the generator, ensure the gas valve is open and start the generator. Once the generator is started push in the choke, if the control box is connected, adjust the flow rate using the nob on the control box. The optimum flow rate should allow at least three well volumes to be purged without purging the well dry.

After sampling turn off the generator and close the gas valve. Disconnect the electrical connections from the sample pump, control

box, and generator. Ensure the sampling pump's electric connection and wiring isinside the well casing and secured below the well cap.

9.2.11.2 Field Deployable Submersible Pump

When a dedicated electric powered sampling pump is not available for use at themonitoring well to be sampled, a field deployable submersible pump is to be used. Currently CC&V uses a Geotech Environmetnal SS Geosub <u>or a Grunfos Redi-Flo 2</u> portable submersible pump for sample collection. This submersible pump has an external controller to manage the pump. To use the pump follow the instructions and training provided to you, if you have not received the necessary or adequate instruction contact your supervisor to receive the necessary training. Insure that all electrical connections are solid, and that the necessary grounding is in place. Operate the necessary power equipment (generator or inverter) to power the controller to collect the sample.

After sampling turn off the generator and close the gas valve (if used). Disconnect the electrical connections from the sample pump, control

box, and generator.

Formatted: Indent: Left: 0.19"

Formatted: Heading 2,Heading 2 - Subhead, Space After: Auto, Outline numbered + Level: 2 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0.5" + Indent at: 1", Tab stops: Not at 0.5"

Formatted: Indent: Left: 0.19"

Department	THIS DOCUMENT IS UNCONTROLLED IN HARD CO	PY FORMAT Doc Id:	
SER	Date of This Issue-10/24/2024 Date of Next Re	view:10/24/2025 Page 43 of 94	

APPENDIX A CHAIN OF CUSTODY RECORD

Department	THIS DOCUMENT IS UNCONTR	OLLED IN HARD COPY FORMAT	Doc Id:
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 45 of 94

CRIPPLE CREEK & VICTOR <u>PO Box 191</u> <u>100 N. 3rd Street</u> Victor CO 20250

 Department
 THIS DOCUMENT IS UNCONTROLLED IN HARD COPY FORMAT
 Doc Id: ----

 SER
 Date of This Issue-10/24/2024
 Date of Next Review:10/24/2025
 Page 46 of 94

Formatted: Left, Indent: Left: 0"

APPENDIX B Field Sampling Bottle Requirements and Holding Times

Department	THIS DOCUMENT IS UNCONTR	COLLED IN HARD COPY FORMAT	Doc Id:
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 47 of 94

<u>CRIPPLE CREEK & VICTOR</u> <u>PO Box 191</u> <u>100 N. 3rd Street</u> Victor CO 80860

	Holding Times	and Containers fe	or Water/Aqueou	s Samples	
General Chemistry / Metals	Method	Holding Time (days)	Min Volume (mls)	Container	Preservation
Alkalinity	SM 2320 B	14	100	250-mL HDPE	4°C
Biochemical Oxygen Demand (BOD)	SM 5210 B	48 hours	300	1-L HDPE	4°C
Bromide	EPA 300.0	28	20	125-mL HDPE	4'C
Carbon Dioxide	SM 4500-CO2 D	24 hours	250	250-mL amber glass	4°C (no headspace)
Carbon Dioxide	RSK 175(M) SM 5220 D	7	40	2 × 40-mL VOA vials 250-mL glass	4°C (no headspace) H.SO, & 4°C
Chemical Oxygen Demand (COD) Chloride	SM 6220 D EPA 300.0 / SM 4500-CF C	28	20	250-mL glass 125-mL HDPE	H,SO, & 4°C
Chlorine, Total Residual	EPA 300.0 / SM 4500-CF C SM 4500-CI F	15 minutes	100	500-mL HDPE	4°C
Chromium VI (Hexavalent Chromium)	EPA 218.6 / 7196A / 7199	24 hours	200	250-mL HDPE	4°C
Cyanide, Amenable	SM 4500-CN G	24 hours 14	500	1-L HDPE	NaOH & 4°C
Cyanide, Total	SM4500-CN° C/E	14	500	1-L HDPE	NaOH & 4°C
Dissolved Oxygen	SM 4500-0 G	15 minutes	300	500-mL amber glass	4°C (no headspace)
Ferrous Iron	SM 3500-Fe B	24 hours	50	250-mL amber glass	4°C (no headspace)
Ferrous Iron	SM 3500-Fe B	24 hours	50	250-mL amber glass	HCI & 4°C (no headspace; field filtered)
Fluoride	SM 4500-F" C	28	100	250-mL HDPE	4°C
Formaldehyde	ASTM D6303-98	24 hours	150	500-mL amber glass	4°C
Hardness, Total / Calcium	SM 2340 C / SM 3500-Ca B	180	100	250-mL HDPE	HNO ₂
Hexane Ext. Material (HEM/SGT-HEM)	EPA 1664A	28	1000	1-L amber glass	H,SO, & 4°C
Ignitability (Flashpoint)	EPA 1010A	14	250	250-mL HDPE	4°C
Mercaptans	LACSD 258	48 hours	50	125-mL HDPE	4°C
Mercury	EPA 7470A / 245.1	28	100	250-mL HDPE	HNO ₂
Metals (ICP)	EPA 60 10 B / 200.7	180	100	250-mL HDPE	HNO ₅
Metals (ICP/MS)	EPA 6020 / 200.8	180	100	250-mL HDPE	Ultra HNO ₂
Nitrogen, Ammonia (NH ₃)	SM 4500-NH ₂ B/C	28	500	1-L amber glass	H250, & 4'C
Nitrogen, Nitrate (NO ₃)	EPA 300.0 / SM 4500-NO3 E	48 hours	50	125-mL HDPE	4°C
Nitrogen, Nitrite (NO ₂)	EPA 300.0 / SM 4500-NO2 B	48 hours	50	126-mL HDPE	4°C
Nitrogen, Nitrate+Nitrite (NO ₂ +NO ₂)	SM 4500-NO2 E / SM 4500-NO2 B	28	50	125-mL HDPE	H2502 & 4°C
Nitrogen, Total Kjeldahl (TKN)	SM 4500-N _{ep} B	28	600	1-L amber glass	H ₂ SO ₆ & 4°C
Nitrogen, Total	TKN / NO ₃ + NO ₂	28	500	1-L amber glass	H ₂ SO ₂ & 4°C
Nitrogen, Total Inorganic	NH ₃ / NO ₃ + NO ₂	28	500	1-L amber glass	H250, & 4*C
Nitrogen, Total Organic	TKN - NH ₂	28	1000	1-L amber glass	H2504 & 4°C
Oil and Grease	SM 6620 B	28	1000	1-L amber glass	H.SO. & 4*C
Oil and Grease	EPA 413.2	28	500	500-mL amber glass	H2502 & 4°C
Organic Lead	DHS LUFT	7	100	500-mL amber glass	4°C
Perchlorate	EPA 314.0 / 331.0(M)	28	50	125-mL / 100-mL sterile HDPE	4°C
pH	SM 4500-H' B	15 minutes	50	125-mL HDPE	4°C
Phenolics, Total Phosphate, Ortho	EPA 420.1 EPA 300.0 / SM4500-P B/E	28	200	500-mL amber glass 125-mL HDPE	H2SO4 & 4°C
	EPA 300.0 / SM4500-P B/E SM 4500-P B/E	48 hours 28	50		4°C
Phosphate, Total Phosphorus, Dissolved	SM 4500-P B/E SM 4500-P B/E	28	100	250-mL glass 250-mL glass	H2SO & 4'C
	SM 4500-P B/E SM 4500-P B/E	28	100		
Phosphorus, Total Redox Potential	SM 4500-P B/E ASTM D-1498	28 24 hours	50	250-mL glass 125-mL HDPE	H2SO2 & 4°C 4°C
Salinity	SM 2520 B	24 hours 28	100	120-ML HDPE	4.0
Solids, Total Dissolved (TDS)	SM 2520 B SM 2540 C	26	1000	1-L HDPE	4°C
Solids, Total Suspended (TSS)	SM 2540 C	7	1000	1.L HOPE	4°C
Solids, Total Suspended (155) Solids, Total (TS)	SM 2540 D SM 2540 B	7	200	500-mL HDPE	410
Solids, Lotal (15) Solids, Volatile (VS)	SM 2540 E / EPA 160.4	4	200	500-mL HDPE	4°C
Solids, Settleable (SS)	SM 2540 E 7 EPR 100.4	48 hours	1000	1-L HDPE	4°C
Solids, Volatile Suspended (VSS)	SM 2540 D / EPA 160.4	7	1000	1-L HDPE	4°C
Specific Conductance	SM 2610 B	28	50	125-mL HDPE	4°C
Sulfate	EPA 300.0 / ASTM D516-02	28	50	125-mL HDPE	4°C
Sulfide, Seluble	SM4500-52" D	15 minutes	50	126-mL HDPE	410
Sulfide, Total	SM 4500-S ²⁻ D	7	50	125-mL HDPE	ZnAc ₂ & NaOH & 4°C
Surfactants (MBAS)	SM 5540 C	48 hours	200	500-mL HDPE	4'C
Thiosulfate	LACSD 253A	48 hours	200	500-mL HDPE	4°C
Tetal Organic Carbon (TOC)	SM 6310 D	28	150	250-mL glass	H.SO. & 4"C
Turbidity	SM 2130 B	48 hours	100	125-mL HDPE	4'C
96-Hour Aquatic Toxicity, Haz Waste	CA Dept. Fish & Game	28	100	250-mL HDPE	4'C
Volatile / Semi-Volatile Organics	Method	Holding Time (days)	Min Volume (mls)	Container	Preservation
EDB/DBCP	EPA 504.1	14	40	3 = 40-mL VOA vials	Na25201 & 4"C
Ethanol (low level)	EPA 524.2(M) SIM / 8260B(M) SIM	14	40	3 × 40-mL VOA vials	HCI & 4°C (no headspace)
EPH	EPA 8015B(M)	14"	500	500-mL amber glass	H.SO. & 4'C
Herbicides, Chlorinated	EPA 8151A	7*	1000	I-L amber glass	4°C
Methane in Water	RSK 175(M)	14	40	2 × 40-mL VOA vials	HCI & 4°C (ne headspace)
Methanol / Ethanol	EPA 8015B	14	40	2 × 40-mL VOA vials	4°C (no headspace)
NDMA	EPA 1625C(M)	7-	1000	1-L amber glass	4°C
Organotins	Krone et al	7*	1000	I-L amber glass	4°C
PCBs	EPA 8082 / 608	7*	1000	I-L amber glass	4°C
Pesticides, Organochlorine	EPA 8081A / 608	7-	1000	I-L amber glass	4°C
Pesticides, Organophosphorus	EPA 8141B	7-	1000	I-L amber glass	4°C
SVOCs (BNAs)	EPA 8270C / 625	7*	1000	I-L amber glass	4°C
TPH-CC / TPH(d) / DRO	EPA 8015B(M) / 8015B	7-	600	500-mL amber glass	4°C
TPH(g) / GRO / BTEX / MTBE	EPA 8015B(M) / 8015B / 8021B / 602	14	40	3 × 40 mL VOA vials	HCI & 4°C (no headspace)
TRPH	EPA 418.1	28	500	500-mL amber glass	H2504 & 4°C
VOCs / TPPH	EPA 8260B / 624 / LUFT GC/MS	14	40	3 × 40-mL VOA vials	HCI & 4°C (no headspace)
VOCs (drinking water)	EPA 624.2	14	40	3 = 40-mL VOA vials	Ascorbic Acid / HCI & 4°C (no headspace
Volatile Fatty Acids (Organic Acids)	HPLC/UV	28	40	2 × 40-mL VOA vials	H ₁ PO ₄ & 4 °C (no headspace)
VPH	EPA 8260B	14	40	3 × 40-mL VOA vials	HCI & 4°C (no headspace)
1,2,3-TCP	SRL-524M-TCP	14	40	3 × 40-mL VOA vials	HCI & 4°C (no headspace)
1,4-Dioxane	GC/MS Isotope Dilution	7*	1000	1-L amber glass	4°C
* days for extraction; 40 days after extract					
🔅 eurofins	Laboratory Location: 7440 Lincoln Way		For information, please o	ontact Sales Department at (714) 8	95-6494,
Catscience	7440 Lincoln Way Garden Grove, CA 92841-1427		124. (/ 14) 094-/001 of e-n	nail: us26_sales@eurofinsus.com	2014-08-07 Revision
	Cardenation of the store in the				2014-00-07 Revision

 Department
 THIS DOCUMENT IS UNCONTROLLED IN HARD COPY FORMAT
 Doc Id: ----

 SER
 Date of This Issue-10/24/2024
 Date of Next Review:10/24/2025
 Page 48 of 94

	Holding Time	es and Container	s for Soil/Solid S	amples	
Seneral Chemistry / Metals	Method	Holding Time (days)		Container	Preservation
likalinity	SM 2320 B	14	20	4-oz glass jar w/Teflon lid	4"C
Siechemical Oxygen Demand (BOD)	SM 5210 B(M)	48 hours	30	4-oz glass jar w/Teflon lid	4°C
Iromide	EPA 300.0(M)	28	10	4.oz glass jar w/Teflon lid	4°C
hemical Oxygen Demand (COD)	SM 5220 D(M)	28	10	4-oz glass jar w/Teflon lid	4°C
hloride	EPA 300.0(M)	28	10	4-oz glass jar w/Teflon lid	4°C
hromium VI (Hexavalent Chromium)	EPA 7196A / 7199 / 3060A	30	10	4-oz glass jar w/Teflon lid	4°C
hromium VI (Hexavalent Chromium)	EPA 7199 / 3060A	30	10	4-oz glass jar w/Teflon lid	4°C
Cyanide, Amenable	EPA 9010C / 9014	14	20	4-oz glass jar w/Teflon lid	4'C
yanide, Reactive	SW 846 Ch. 7	14	20	4-oz glass jar w/Teflon lid	4°C
vanide. Total	EPA 9010C / 9014	14	10	4-oz glass jar w/Teflon lid	4°C
errous Iron	SM 3500-Fe B(M)	24 hours	10	4-oz glass jar w/Teflon lid	4°C
luoride	SM 4500-F C(M)	28	20	4-oz glass jar w/Teflon lid	4'C
iexane Ext. Material (HEM/SGT-HEM)	EPA 1664A(M)	28	30	4-oz glass jar w/Teflon lid	410
gnitability	EPA 1030	14	100	4-oz glass jar w/Teffon lid	4'C
fercure	EPA 74714	28	1	4-oz glass jar w/Teffon lid	None
Aetals	EPA 6010B / 6020	180	2	4-oz glass jar w/Teffon lid	None
	ASTM D2216				
foisture Content		10	20	4-oz glass jar w/Teflon lid	4°C
litrogen, Ammonia	SM 4500-HN3 B/C(M)	28	10	4-oz glass jar w/Teflon lid	4°C
litrogen, Nitrate	EPA 300.0(M)	7	10	4-oz glass jar w/Teflon lid	4°C
litrogen, Nitrite	EPA 300.0(M)	7	10	4-oz glass jar w/Teflon lid	4°C
litrogen, Nitrate+Nitrite (NO ₂ +NO ₂)	SM 4500-NO2 E(M) / SM 4500-NO2 B(M)	7	10	4-oz glass jar w/Teflon lid	4°C
litrogen, Organic	SM 4500-NH ₃ / 4500-N _{org} B	28	10	4-oz glass jar w/Teflon lid	4°C
litrogen, Total Kjeldahl (TKN)	SM 4500-Norg B(M)	28	10	4-oz glass jar w/Teflon lid	4°C
litrogen, Total	TKN / NO ₂ + NO ₂	7	30	4-oz glass jar w/Teflon lid	4°C
Dil and Grease	SM 5520 B(M)	28	30	4-oz glass jar w/Teflon lid	4°C
Organic Lead	DHS LUFT	14	10	4-oz glass jar w/Teflon lid	4"C
erchlorate	EPA 314.0 (M) / 6850	28	20	4-oz glass jar w/Teflon lid	4"C
н	EPA 9045D	ASAP (24 hours)	20	4-oz glass jar w/Teflon lid	4'C
henolics, Total	EPA 9065	28	20	4-oz glass jar w/Teflon lid	4°C
hosphate. Ortho	EPA 300.0(M)	7	10	4-oz glass jar w/Teflon lid	4°C
hosphate, Total	SM 4500-P B/E (M)	28	20	4-oz glass jar w/Teflon lid	4°C
hospherus, Total	SM 4500-P B/E (M)	28	20	4-oz glass jar w/Teflon lid	4'C
ipecific Conductance	EPA 90504	28	20	4-oz glass jar w/Teffon lid	4°C
iulfate	EPA 300.0 (M / 9038	28	20	4-oz glass jar w/Teflon lid	4°C
	SW 846 Ch. 7	7	20		4°C
ulfide, Reactive			20	4-oz glass jar w/Teflon lid	
iulfide, Total	SM 4500-S2- D	7		4-oz glass jar w/Teflon lid	4°C
iurfactants (MBAS)	SM 5540 C(M)	48 hours	20	4-oz glass jar w/Teflon lid	4°C
otal Organic Carbon (TOC)	EPA 9050A	28	2	4-oz glass jar w/Teflon lid	4°C
6-Hour Aquatic Toxicity, Haz Waste	CA Dept. Fish & Game	28	100	4-oz glass jar w/Teflon lid	4°C
Iolatile / Semi-Volatile Organics	Method	Holding Time (days)	Minimum Mass (g)	Container	Preservation
PH	EPA 8015B(M)	14"	10	4-oz glass jar w/Teflon lid	4°C
lerbicides, Chlorinated	EPA 8151A	14"	50	4-oz glass jar w/Teflon lid	4°C
Aethanol / Ethanol	EPA 8015B	14	50	4-oz glass jar w/Teflon lid	4°C
Oil and Grease	EPA 413.2(M)	28	5	4-oz glass jar w/Teflon lid	4°C
Organotins	Krone et al	14"	20	4-oz glass jar w/Teflon lid	4°C
Atts	EPA 8310	14"	20	4-oz glass jar w/Teflon lid	4'C
CBs	EPA 8082	14"	20	4-oz glass jar w/Teflon lid	4°C
esticides, Organochlorine	EPA 8081A	14"	20	4-oz glass jar w/Teflon lid	4°C
esticides, Organophosphorus	EPA 8141B	7*	20	4-oz glass jar w/Teflon lid	4°C
VOCs (BNAs)	FPA 8270C	14"	20	4.oz glass jar w/Teflon lid	4'C
PH-CC / TPH(d) / DRO	EPA 8015B(M) / 8015B	14"	10	4-oz glass jar w/Teflon lid	4'C
PH(g) / GRO / BTEX / MTBE	EPA 8015B(M) / 8015B / 8021B	14	5	4-oz glass jar w/Teffon lid	4'C
	EPA 5035 / 8015B(M) / 8015B	48 hours**	2/sample	4-oz grass jar w/letton lid 2 EnCores	410
PH(g) / GRO (5g EnCore Sampler)	EPA 5035 / 8015B(M) / 8015B EPA 5035 / 8015B(M) / 8015B	48 hours**		2 EnCores 2 TerraCores	4°C 4°C
'PH(g) / GRO (5g TerraCore Sampler) 'RPH		14	2/sample 6		4°C
	EPA 418.1(M)	28	5 10	4-oz glass jar w/Teflon lid	4°C 4°C
OCs / TPPH	EPA 8260B / LUFT GC/MS			4-oz glass jar w/Teflon lid	
OCs (5g EnCore Sampler)	EPA 5035 / 8260B	48 hours"	3/sample	3 EnCores	4°C
OCs (5g TerraCore Sampler)	EPA 5035 / 8260B	14	3/sample	3 TerraCores	4°C
PH	EPA 8260B	14	5	4-oz glass jar w/Teflon lid	4°C
PH (5g EnCore Sampler)	EPA 5035 / 8260B	48 hours**	3/sample	3 EnCores	4"C
PH (6g TerraCore Sampler)	EPA 5035 / 8260B	14	3/sample	3 TerraCores	4'C
days for extraction; 40 days after extracti					
hours for extraction; 14 days for analysis					
			STLC / TCLP or SPLP		Holding Time
TLC/TCLP/SPLP	Method	Holding Time (days)	Minimum Mass (a)	Method Ext. After	After Ext. (days)
Aeroury	CCR T22.11.5.A-II / EPA 1311/1312	28	50 / 100	NA	28
Aetals	CCR T22.11.5.A-II / EPA 1311/1312	180	50 / 100	NA	180
VOCs	CCR T22.11.5 A-II / EPA 1311/1312	14	50 / 100	7	40
PH(d) / DRO	CCR 122.11.5.A-II / EPA 1311/1312	14	50 / 100	7	40
PH(a) / GRO	CCR 122.11.5 A-II / EPA 1311/1312	14	50/25	NA	7
PH(g) / GHU /OCs	CCR 122.11.5.A-II / EPA 1311/1312 CCR 122.11.5.A-II / EPA 1311/1312	14	50/25	NA	7
SAME.					
		es and Container		amples	
Inalvsis	Method	Holding Time (days)	Minimum Volume (L)	Container	Preservation
	ASTM D1946	3/30	1	Tedlar Bag / Summa Canister	Keep out of sunlight
ixed Gases		3/30	1	Tedlar Bag / Summa Canister	Keep out of sunlight
ixed Gases	ASTM D2820				trach our at soundflitt
ixed Gases lydrocarbon Speciation			2	Tedlar Bag / Siling Conjugat	Keen out of sumlishe
ixed Gases Iydrocarbon Speciation Iydrogen Sulfide (H ₂ S)	GC/FPD	24 hours	1	Tedlar Bag / Silica Canister	Keep out of sunlight
ixed Gases Aydrocarbon Speciation Aydrogen Sulfide (H₂S) andfill Gases (NMOCs)	GC/FPD SCAQMD 25.1(M)	24 hours 3 / 30	1	Tedlar Bag / Summa Canister	Keep out of sunlight
ixed Gases Iydrocarbon Speciation Iydrogen Sulfide (H ₂ S)	GC/FPD	24 hours	1 1 1		

Department		OLLED IN HARD COPY FORMAT	Doc Id:
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 49 of 94

Formatted: Indent: Left: 0"

APPENDIX C Example Field Sample Record Sheets

Department	THIS DOCUMENT IS UNCONTR	OLLED IN HARD COPY FORMAT	Doc Id:
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 50 of 94

			Grou	ndwater San	npling Log			
Location :				_		Date:		
Technician:						Quarter:		
Static Water Level	(0.04)			-		Well ID:		
Static water Level	(DIW):							
Is well Dry?			_	If so Dry at:		Well Depth (TD): feet		
Time	Depth to Water (ft)	Drawdown (ft)	рН (S.U.)	Cond. (uS/cm)	Temp. (°C)		Notes	
	↓		L					
	┨───┤							
			1			1		
	↓							
	Final Parameters	Stabili	ization Guidanc		Met?	Co	omments	
	рН	Stabili	ization Guidanc		Met? Y/N	Co	omments	
	pH Conductivity Temp (deg C)	Stabili	ization Guidanc	e ±0.1 3% 3%	Met? Y / N Y / N Y / N	Cc	omments	
	pH Conductivity Temp (deg C) Dissolved Oxygen	Stabili	ization Guidanc	e ±0.1 3% 3% 10%	Met? Y / N Y / N Y / N Y / N Y / N	Cc	omments	-
	pH Conductivity Temp (deg C) Dissolved Oxygen Turbidity Oxidation/Reducti	Stabili	ization Guidanc	c ±0.1 3% 3% 10% 10%	Met? Y / N Y / N Y / N Y / N Y / N	Cc	omments	-
	pH Conductivity Temp (deg C) Dissolved Oxygen Turbidity Oxidation/Reducti on Potential	Stabili	ization Guidanc	2 <u>±0.1</u> 3% 3% 10% ±10	Met? Y / Y / Y / Y / Y / Y / Y / Y / Y / Y / Y / Y /	Cc	omments	-
	pH Conductivity Temp (deg C) Dissolved Oxygen Turbidity Oxidation/Reducti	Stabili	ization Guidanc	c ±0.1 3% 3% 10% 10%	Met? Y / N Y / N Y / N Y / N Y / N		omments	
If Low Flow Method: * See Field Volume Gu	pH Conductivity Temp (deg C) Dissolved Oxygen Turbidity Oxidation/Reducti on Potential DTW Stabilized Final H2O level Drawdown gre	Stabili ater than 0.33 ft?		e <u>±0.1</u> 3% 3% 10% ±10 feet feet If yes, required	Met? Y / Y / Y / Y / Y / Y / Y / Y / Y / Y / Y / Y / Y / Y / Y / Y / Oump vol (gsl): (gsl):		Actual vol. pumped (gal)	
* See Field Volume Gu	pH Conductivity Temp (deg C) Dissolved Oxygen Turbidity Oxidation/Reducti on Potential DTW Stabilized Final H2O level Drawdown gre	ater than 0.33 ft?		e 20.1 3% 3% 10% 10% ±10 feet feet following stabil	Met? Y /			
	pH Conductivity Temp (deg C) Dissolved Oxygen Turbidity Oxidation/Reducti on Potential DTW Stabilized Final H20 level Drawdown gre			e 20.1 3% 3% 10% 10% ±10 feet feet following stabil	Met? Y / Y / Y / Y / Y / Y / Y / Y / Y / Y / Y / Y / Y / Y / Y / Y / Oump vol (gsl): (gsl):			
* See Field Volume Gu O/G visible: Equipment Decontan	pH Conductivity Temp (deg C) Dissolved Oxygen Turbidity Oxidasion/Reducti on Potential DTW Stabilized Final H2O level Drawdown gre dde	ater than 0.33 ft? Y / N		e 20.1 3% 3% 10% 10% ±10 feet feet following stabil	Met? Y /			
* See Field Volume Gu O/G visible:	pH Conductivity Temp (deg C) Dissolved Oxygen Turbidity Oxidasion/Reducti on Potential DTW Stabilized Final H2O level Drawdown gre dde	ater than 0.33 ft? Y / N		e 20.1 3% 3% 10% 10% ±10 feet feet following stabil	Met? Y /			
* See Field Volume Gu O/G visible: Equipment Decontan Decontamination pro	pH Conductivity Temp (deg C) Dissolved Oxygen Turbidity Oxidasion/Reducti on Potential DTW Stabilized Final H2O level Drawdown gre dde	ater than 0.33 ft? Y / N		e 20.1 3% 3% 10% 10% ±10 feet feet following stabil	Met? Y /			
* See Field Volume Gu O/G visible: Equipment Decontan Decontamination pro Weather:	pH Conductivity Temp (deg C) Dissolved Oxygen Turbidity Oxidasion/Reducti on Potential DTW Stabilized Final H2O level Drawdown gre dde	ater than 0.33 ft? Y / N		e 20.1 3% 3% 10% 10% ±10 feet feet following stabil	Met? Y /			
* See Field Volume Gu O/G visible: Equipment Decontan Decontamination pro	pH Conductivity Temp (deg C) Dissolved Oxygen Turbidity Oxidasion/Reducti on Potential DTW Stabilized Final H2O level Drawdown gre dde	ater than 0.33 ft? Y / N		e 20.1 3% 3% 10% 10% ±10 feet feet following stabil	Met? Y /			
* See Field Volume Gu O/G visible: Equipment Decontan Decontamination pro Weather: Signature: Volume Calculations	PH Conductivity Temp (deg C) Dissolved Oxygen Turbidity Oxidation/Reducti on Postential DTW Stabilized Final H2O level Drawdown gre dde	ater than 0.33 ft? Y / N Y / N		2 10.1 3% 10% 10% 10% 10% 10% 10% 10% 10	Met? Y / N Y / N d pump vol (gal): ization Turbid?	Y / N	Actual vol. pumped (gal)	
* See Field Volume Gu O/G visible: Equipment Decontan Decontamination pro Weather: Signature: Volume Calculations For 2" Diameter Wel	PH Conductivity Temp (deg C) Dizsolved Oxygen Turbidity Oxidation/Reducti on Potential DTW Stabilized Final H2O level Drawdown gre de minated: cocedure used: (gal): V(gal) =	ater than 0.33 ft? Y / N Y / N Y / N 0.1632 + h(ft)	¥ / N	e 20.1 3% 10% 10% 10% 10% 10% 10% 10% 10	Met? Y / N Y / N d pump vol (gal): ization Turbid?		Actual vol. pumped (gal)	
* See Field Volume Gu O/G visible: Equipment Decontan Decontamination pro Weather: Signature: Volume Calculations For 2" Diameter Well Other Diameter Well	PH Conductivity Temp (deg C) Dissolved Oxygen Turbidity Oxidation/Reducti on Potential DTW Stabilized Final H2O level Drawdown gre dde ninated: coedure used:	ater than 0.33 ft? Y / N Y / N 0.1632 + h(fr) V(gal) = 0.1632	Y / N + (r(in)) ² + h(i	e 10.1 3% 10% 10% 10% 10% 10% 10% 10% 10	Met? Y / N Y / N d pump vol (gal): ization Turbid?	Y / N	Actual vol. pumped (gal)	
* See Field Volume Gu O/G visible: Equipment Decontan Decontamination pro Weather: Signature: Volume Calculations For 2" Diameter Well Other Diameter Well	pH Conductivity Temp (deg C) Dizsolved Oxygen Turbidity Didation/Reduction on Potential DTW Stabilized Final H2O level Drawdown gre dde ininated: scedure used: Igal): V(gal) = [16 Ba Tubing Vol (gal): lation: h(ft) = TC	ater than 0.33 ft? Y / N Y / N 0.1632 + h(ft) V(gal) = 0.1632 tal Depth(TD)(ft)	Y / N + (r(in)) ² + h(i	e 10.1 3% 10% 10% 10% 10% 10% 10% 10% 10	Met? Y / N Y / N d pump vol (gal): ization Turbid?	Y / N	Actual vol. pumped (gal)	
See Field Volume Gu O/G visible: Equipment Decontan Decontamination pro Weather: Signature: Volume Calculations For 2 Diameter Wel Other Diameter Wel Water Column Calcu Well Volume Pure 1 Gonversions:	pH Conductivity Temp (deg C) Dizsolved Oxygen Turbidity Didation/Reduction on Potential DTW Stabilized Final H2O level Drawdown gre dde ininated: scedure used: Igal): V(gal) = [16 Ba Tubing Vol (gal): lation: h(ft) = TC	ater than 0.33 ft? Y / N Y / N 0.1632 + h(ft) V(gal) = 0.1632 tal Depth(TD)(ft)	Y / N + (r(in)) ² + h(i	e 10.1 3% 10% 10% 10% 10% 10% 10% 10% 10	Met? Y / N Y / N d pump vol (gal): ization Turbid?	Y / N	Actual vol. pumped (gal)	
* See Field Volume Gu O/G visible: Equipment Decontan Decontamination pro Weather: Signature: Volume Calculations For 2 [°] Diameter Wei Other Diameter Wei Other Diameter Wei Other Diameter Wei Other Diameter Wei Other Diameter Wei Other Diameter Wei Diameter Diameter D	pH Conductivity Temp (deg C) Dizsolved Oxygen Turbidity Didation/Reduction on Potential DTW Stabilized Final H2O level Drawdown gre dde ininated: scedure used: Igal): V(gal) = [16 Ba Tubing Vol (gal): lation: h(ft) = TC	ater than 0.33 ft? Y / N Y / N 0.1632 • h(ft) V(gal) = 0.1632 v(J)(ft) - 0.1632 v(J	Y / N + (r(in)) ² + h(i	e 10.1 3% 10% 10% 10% 10% 10% 10% 10% 10	Met? Y / N Y / N d pump vol (gal): ization Turbid?	Y / N	Actual vol. pumped (gal)	
See Field Volume Gu O/G visible: Equipment Decontan Decontamination pro Weather: Signature: Volume Calculations For 2 Diameter Wel Other Diameter Wel Water Column Calcu Well Volume Pure 1 Gonversions:	pH Conductivity Temp (deg C) Dizsolved Oxygen Turbidity Didation/Reduction on Potential DTW Stabilized Final H2O level Drawdown gre dde ininated: scedure used: Igal): V(gal) = [16 Ba Tubing Vol (gal): lation: h(ft) = TC	ater than 0.33 ft? Y / N Y / N 0.1632 • h(ft) V(gal) = 0.1632 v(J)(ft) - 0.1632 v(J	Y / N + (r(in)) ² + h(i	e 10.1 3% 10% 10% 10% 10% 10% 10% 10% 10	Met? Y / N Y / N d pump vol (gal): ization Turbid?	Y / N	Actual vol. pumped (gal)	
* See Field Volume Gu O/G visible: Equipment Decontan Decontamination pro Weather: Signature: Volume Calculations For 2 [°] Diameter Wei Other Diameter Wei Other Diameter Wei Other Diameter Wei Other Diameter Wei Other Diameter Wei Other Diameter Wei Diameter Diameter D	pH Conductivity Temp (deg C) Dizsolved Oxygen Turbidity Didation/Reduction on Potential DTW Stabilized Final H2O level Drawdown gre dde ininated: scedure used: Igal): V(gal) = [16 Ba Tubing Vol (gal): lation: h(ft) = TC	ater than 0.33 ft? Y / N Y / N 0.1632 • h(ft) V(gal) = 0.1632 v(J)(ft) - 0.1632 v(J	Y / N + (r(in)) ² + h(i	e 10.1 3% 10% 10% 10% 10% 10% 10% 10% 10	Met? Y / N Y / N d pump vol (gal): ization Turbid?	Y / N	Actual vol. pumped (gal)	

CRIPPLE CREEK & VICTOR PO Box 191 100 N. 3rd Street Victor CO 80860

Newmont Minir	g Co					
Cripple Creek &	Victor	Gold Mining	Co			
		Surfa	ce Water :	Sampling	Log	
Location :					Date:	
Technician:					Quarter:	
т	me	рН (S.U.}	Cond. (uS/cm)	Temp. (°C)	Notes	
			(us/elli)			
Sample					,	
Method:			-			
Oil/Gas visible		[Y/N]				
Turbid		[Y/N]				
Clear		[Y/N]				
Weather:						
Signature:						
Comments:						
connents.						

		Groundwat	er Sampling	Log		
Location :				-	Date:	
Technician:					Quarter:	
Static Water Leve	l:			-	Well ID:	
Is well Dry?			If so Dry at:		feet	
			Cond.			
Time	Drawdown (ft)	pH (S.U.)	(uS/cm)	Temp. (°C)		Notes
						•
Sample Method:			Rate (gpm):		Time Start:	Time En
	Final Parameters	Stab	ilization Guio	dance	Met?	Commer
	pН			0.1	Y/N	
	Conductivity			3%	Y/N	
	Temp©			10%	Y/N	
	Final H2O level			feet		
O/G visible: Equipment Decont	Y/N taminated: procedure used:	Y/N		Turbid?	Y/N	

----of 94

Newmont Mining Co Cripple Creek & Victor Gold Mining Co	E CREEK & VICTOR					RIPPLE CREEK & VICT <u>) Box 191</u> <u>0 N. 3rd Street</u> :tor CO 80860			
Gripple Creek & Victor Gold Mining Co									
Gripple Creek & Victor Gold Mining Co									
Gripple Creek & Victor Gold Mining Co									
			g Co						
Location : Date: Technician: Quarter: Time pH (S.U.) Cond. Temp. Notes									
Location : Date: Technician: Quarter: Time pH (S.U.) Cond. Temp. Notes		Surface	e Wate	er Sampling	Log				
Time pH (5.U) Cond. (45%cm) Temp. (-C) Notes I				Date:					
Imme pri(s.v.) (usSem) ((C) Notes I I I I I Sample Imme Imme Imme Imme Method: Imme Imme Imme Imme Oil/Gas visible [Y/N] Imme Imme Imme Turbid [Y/N] Imme Imme Imme Weather: Imme Imme Imme Imme Signature: Imme Imme Imme Imme Comments: Imme Imme Imme Imme	Technician:								
Sample Method: Oil/Gas visible [¥/N] Turbid [¥/N] Glear [¥/N] Weather:	Tin				Notes				
Method:	-				-				
Method:									
Method:	Samplo								
Turbid [¥/N] Clear [¥/N] Weather:									
Turbid [¥/N] Clear [¥/N] Weather:	<u> Oil/Gas visible</u>	<u>LY / N 1</u>							
Clear [¥/N] Weather:		1							
Weather:	Turbid	[Y / N]							
Weather:	Class								
Signature: Comments:	Clear								
Comments:	-Weather:								
Comments:									
	Signature:								
Formatted: Right: 0.3", Tab stops: 6.25"	Comments:								
Formatted: Right: 0.3", Tab stops: 6.25"									
Formatted: Right: 0.3", Tab stops: 6.25"									
Formatted: Right: 0.3", Tab stops: 6.25"			-						
Formatted: Right: 0.3", Tab stops: 6.25"									
Formatted: Right: 0.3", Tab stops: 6.25"									
Formatted: Right: 0.3", Tab stops: 6.25"									
							For	matted: Right: 0	.3", Tab stops: 6.25

Low-Flow Test Report:

Test Date / Time: 3/20/2024 2:36:24 PM Project: Operator Name:

Location Name: Device Location Initial Depth to Water: 93.15 ft

Estimated Total Volume Pumped: 12.784 gal Flow Cell Volume: 130 ml Final Flow Rate: 0.34 gal/min Final Draw Down: 2.22 ft

Instrument Used: Aqua TROLL 600

Serial Number: 1109809

Test Notes: Grab sample, suspected broken casing

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow	
		+/- 0.1	+/- 3 %	+/- 3 %	+/- 10 %	+/- 10 %	+/- 10 %	+/- 0.33		
3/20/2024 2:36 PM	00:00	6.75 pH	7.85 °C	403.47 µS/cm	1.69 mg/L	43.88 NTU	9.1 mV	94.90 ft	0.34 gal/min	
3/20/2024 2:37 PM	01:22	6.75 pH	6.56 °C	416.97 µS/cm	0.40 mg/L	43.68 NTU	50.5 mV	94.92 ft	0.34 gal/min	•
3/20/2024 2:42 PM	06:22	6.61 pH	6.08 °C	418.16 µS/cm	0.25 mg/L	50.58 NTU	104.2 mV	95.04 ft	0.34 gal/min	
3/20/2024 2:47 PM	11:22	6.54 pH	6.25 °C	413.27 µS/cm	0.22 mg/L	59.01 NTU	95.7 mV	95.15 ft	0.34 gal/min	
3/20/2024 2:52 PM	16:22	6.52 pH	6.40 °C	407.51 µS/cm	0.18 mg/L	61.13 NTU	77.7 mV	95.18 ft	0.34 gal/min	
3/20/2024 2:54 PM	17:36	6.51 pH	6.37 °C	409.28 µS/cm	0.19 mg/L	59.00 NTU	83.9 mV	95.18 ft	0.34 gal/min	
3/20/2024 2:59 PM	22:36	6.51 pH	6.30 °C	406.32 µS/cm	0.16 mg/L	59.11 NTU	112.1 mV	95.28 ft	0.34 gal/min	
3/20/2024 3:04 PM	27:36	6.51 pH	6.39 °C	401.73 µS/cm	0.16 mg/L	60.35 NTU	83.7 mV	95.35 ft	0.34 gal/min	
3/20/2024 3:09 PM	32:36	6.52 pH	6.42 °C	395.79 µS/cm	0.14 mg/L	60.92 NTU	57.2 mV	95.37 ft	0.34 gal/min	
3/20/2024 3:14 PM	37:36	6.59 pH	7.44 °C	389.70 µS/cm	0.15 mg/L	67.32 NTU	79.1 mV	95.37 ft	0.34 gal/min	

Samples

Sample ID:	Description:
GVMW15A	

Created using VuSitu from In-Situ, Inc.

Department	THIS DOCUMENT IS UNCONTROLLED IN HARD COPY FORMAT	Doc Id:
SER	Date of This Issue-10/24/2024 Date of Next Review:10/24/2025	Page 55 of 94

Formatted: Centered, Indent: Left: 0", Right: 0.4"

Appendix D Reagent Water Specifications

Quality Parameter	Type I	Type II	Type III
Bacteria, CFU/MI	10	1000	NA
рН	NA	NA	8-May
Resistivity, megohm-cm at 250 C	> 10	> 1	0.11
Resistivity, megohm-cm at 25 ^[] C	> 10	> 1	0.1

Department	THIS DOCUMENT IS UNCONT	ROLLED IN HARD COPY FORMAT	Doc Id:
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 56 of 94

Conductivity, umho/cm at 25🛛 C	< 0.1	1	10
SiO ₂ , mg/L	< 0.05	< 0.1	< 1
Total Solids, mg/L	0.1	1	5
Total oxidizable organic carbon, mg/l	< 0.05	< 0.2	< 1

* NA = not applicable

Reference - Standard Methods for the

Examination of Water and Wastewater,

17th Edition, 1989.

Department	THIS DOCUMENT IS UNCONTR	Doc Id:	
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 57 of 94

APPENDIX E WELL EVACUATION CALCULATION

Department	THIS DOCUMENT IS UNCONTR	IS DOCUMENT IS UNCONTROLLED IN HARD COPY FORMAT Doc Id:			
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 58 of 94		

WELL EVACUATION CALCULATION - EXAMPLE

- 1. Measure depth to water from top of casing (TOC) prior to purging.
- 2. Begin purging well.
- 3. Determine well casing volume.

Total depth of well (TD) -depth to water (DTW) = total height of water in casing (H).

Example: TD = 66.60' DTW = <u>46.15'</u> H = 20.45'

Volume in cubic feet (Vc) = $3.14 \times (radius of well)^2 \times H$

Example: with a 4" casing, radius = 2" = 0.167'

Vc = 3.14 x (0.167')² x 20.45' Vc = 0.09 square feet x 20.45 feet Vc = 1.8 cubic feet

4. Convert cubic feet to gallons.Cubic feet x 7.48 = gallonsExample: Vg = 1.8 cubic feet x 7.48 = 13.5 gallons

5. Three well volumes must be evacuated: Example: $Vw_3 = 3 \times 13.5$ gallons = 40.4 gallons

6. Hence, to evacuate three well volumes in the above example, 40.4 gallons need to be purged before sampling.

Since all values in the above calculations are constant except for the height of water in casing (H), the constant values may be pre-calculated to simplify well volume determinations.

Thus:

For a 2" well, three well volumes $(Vw_3) = H \times 0.5$ For a 4" well, three well volumes $(Vw_3) = H \times 2$

Department	THIS DOCUMENT IS UNCONTR	OLLED IN HARD COPY FORMAT	Doc Id:
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 59 of 94

 Department	THIS DOCUMENT IS UNCONTROLLED IN HARD COPY FORMAT	Doc Id:
SER	Date of This Issue-10/24/2024 Date of Next Review:10/24/2025	Page 61 of 94

CRIPPLE CREEK & VICTOR PO Box 191 100 N. 3rd Street Victor CO 80860

				1 11 32		т			
	ne Equation: (Δ) (ft):		= 0.1632 + Stabilized			t) - Initia	l Depth to Water(ft)		
Delta	(4) (11).	4(1)-1	566511266	o opini io	W GEOT (e) – men	(Dependo Water () t)		
Requir	red Pumping Vo	olume:	Pumpin	ıg Volum	e (gal) =	: <u>AV (gal</u>)	+ Tubing Volume (gal)		
0.	(in)	,	(a)	n					
	ameter (in) 1"		/olume (ga = 0.0408		1				
	2"		= 0.1632		1				
	3"		= 0.3672						
	4"		= 0.6528						
	5"	V(gal)	= 1.02 + Δ	(]1)]				
	ΔV - Volum								
De	lta (Δ) (ft)		2" Well						
	0.1	0.0	0.0	0.0	0.1	0.1			
	0.5	0.0	0.1	0.2	0.3	0.5			
	0.7	0.0	0.1	0.3	0.5	0.7			
	1.1	0.0	0.1	0.5	0.6	1.1			
	1.3	0.1	0.2	0.5	0.8	1.3			
	1.5	0.1	0.2	0.6	1.0	1.5			
	1.7	0.1	0.3	0.6	1.1	1.7			
	2.1	0.1	0.3	0.8	1.4	2.1			
	2.3	0.1	0.4	0.8	1.5	2.3			
	2.7	0.1	0.4	1.0	1.8	2.8			
	2.9	0.1	0.5	1.1	1.9	3.0			
	3.1 3.3	0.1	0.5	1.1	2.0	3.2 3.4			
	3.5	0.1	0.5	1.3	2.2	3.4		*	
	3.7	0.2	0.6	1.4	2.4	3.8			
	3.9 4.1	0.2	0.6	1.4	2.5	4.0			
	4.3	0.2	0.7	1.6	2.8	4.4			
	4.5	0.2	0.7	1.7	2.9	4.6 4.8			
	4.7	0.2	0.8	1.7	3.1 3.2	4.8			
	5.1	0.2	0.8	1.9	3.3	5.2			
	5.3 5.5	0.2	0.9	1.9	3.5 3.6	5.4 5.6			
	5.7	0.2	0.9	2.0	3.7	5.8			
	5.9	0.2	1.0	2.2	3.9	6.0			
	6.1 6.3	0.2	1.0	2.2	4.0	6.2 6.4			
	6.5	0.3	1.1	2.4	4.2	6.6			
— I	6.7 6.9	0.3	1.1	2.5	4.4	6.8 7.0			
	7.1	0.3	1.1	2.5	4.5	7.0			
	7.3	0.3	1.2	2.7	4.8	7.4			
	7.5	0.3	1.2	2.8	4.9 5.0	7.7			
	7.9	0.3	1.3	2.9	5.2	8.1			
	8.1	0.3	1.3	3.0	5.3	8.3			
├──	8.3 8.5	0.3	1.4	3.0 3.1	5.4 5.5	8.5 8.7			
	8.7	0.4	1.4	3.2	5.7	8.9			
	8.9	0.4	1.5	3.3	5.8	9.1			
	9.1 9.3	0.4	1.5	3.3 3.4	5.9 6.1	9.3 9.5			
	9.5	0.4	1.6	3.5	6.2	9.7			
	9.7 9.9	0.4	1.6	3.6 3.6	6.3 6.5	9.9 10.1			
	10.1	0.4	1.6	3.7	6.6	10.1			
irtment			OCUMEN		CONTRO		IARD COPY FORMAT	Doc Id:	
								000101	

Formatted: Centered, Indent: Left: 0"

		CRIPPLE CREEK & VICTO PO Box 191 100 N. 3rd Street		
		<u>Victor CO 80860</u>		
PURPOSE		4	For	matted: Heading 7, Left, Indent: Left: 0"
CC&V uses the submitted to r	YSI Pro Plus water quality meter to collect egulatory agencies. It is the responsibility probe before each use and keep an	ty of the user to properly		matted: Indent: Left: 0.2"
SCOPE		•	For	matted: Heading 7, Left, Indent: Left: 0"
	us is to be calibrated prior to use for th to be recorded <u>on thein</u> calibration log <u>sh</u>	-	For	matted: Indent: Left: 0.2"
YSI CALIBRATIO	DN .	4	For	matted: Heading 7, Left, Indent: Left: 0"
Dissolved Oxygen	Calibration			
plastic storage sure there are Then install the or two threads sensors are approximately	astic cup by adding a small amount of cle cup or by moistening the sponge in the no water droplets on the DO membran e cup over the sensors screw it on the cabl to ensure atmospheric venting. Make sure not immersed in water. Turn the ir 5 to 15 minutes for the storage contain to allow the sensors to stabilize.	bottom of the cup. Make e or temperature sensor. e and then disengage one e the DO and temperature nstrument on and wait	For	matted: Indent: Left: 0.2"
	y to calibrate in both % and mg/L or ppm. Calibr nd ppm and vice versa.	ating in % will simultaneously		
Wait for the te	6 and press enter to confirm. mperature and DO% values under "Actua Accept Calibration and press enter to cali	-		
Specific Conducta		4	For	matted: Heading 8, Left, Indent: Left: 0"
Press 'Cal' High	ilight Probe ID.	4	For	matted: Indent: Left: 0.2"
Department	THIS DOCUMENT IS UNCONTROLLED IN HARD COPY FOR	MAT Doc Id:		

CRIPPLE CREEK & VICTOR <u>PO Box 191</u> 100 N. 3rd Street Victor CO 80860

After selecting the Probe ID, highlight Conductivity and press enter. Highlight the desired calibration method; Sp. Conductance. Remove sponge from cup. Place the sensor into a fresh, traceable conductivity calibration solution. The solution must cover the holes of the conductivity sensor that are closest to the cable. Ensure the entire conductivity sensor is submerged in the solution or the instrument will read approximately of half the expected value!

Choose the units in either SPC-us/cm and press enter.

Highlight Calibration value and press enter to input the value of the calibration standard. Then, once the temperature and conductivity readings stabilize, highlight Accept Calibration and press enter. Or, press Esc to cancel the calibration

pH Calibration

Press 'Cal'. Highlight Probe ID. After selecting your or Probe ID, highlight ISE (pH)and press enter. The message line will show the instrument is "Ready for point 1". The pH calibration allows up to six calibration points. Calibration for CCV purposes will be a 3 point calibration (4, 7, and 10). Place the sensor in a pH 7 buffer solution. The instrument should automatically recognize the buffer value and display it at the top of the calibration screen. If the calibration value is incorrect, the auto buffer recognition setting in the Sensor Setup menu may be incorrect. If necessary, highlight the Calibration Value and press enter to input the correct buffer value. Once the pH and temperature readings stabilize, highlight Accept Calibration and press enter to accept the first calibration point. The message line will then display "Ready for point 2".

To continue with the 2nd point, place the sensor in the second buffer solution (pH4). The instrument should automatically recognize the second buffer value (pH4) and display it at the top of the screen. If necessary, highlight the Calibration Value and press enter to input the correct buffer value. Once the pH and temperature readings stabilize, highlight Accept Calibration and press enter to confirm the second calibration point.

The message line will then display 'Ready for point 3" and you can continue with the 3rd calibration point (pH10) as detailed in previous steps for first and second calibration points.

Press 'Cal' to complete the calibration.

 Department
 THIS DOCUMENT IS UNCONTRULED IN HARD COPY FORMAT
 Doc Id: -----

 SER
 Date of This Issue-10/24/2024
 Date of Next Review: 10/24/2025
 Page 65 of 94

Formatted: Heading 7, Left, Indent: Left: 0" Formatted: Indent: Left: 0.2"

Sample ID	
Sample Location Area Name	ame
Sample LocationAreaNameGV-06Grassy ValleyGV-06	ame 5V-06
Sample Location Area Name	ame 5V-06 MW-25

APPENDIX H

Field Level Risk Assessment

Department	THIS DOCUMENT IS UNCONTR	OLLED IN HARD COPY FORMAT	Doc Id:	
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 68 of 94	

		NEWMONT. NORTH AMERICA ZERO HARMI
What could change/go wrong? (People or Planet)	What could change/go wrong? (People or Planet)	Field Level Risk Assessment
		Date: Name:
		Crew/Shift:
		Foreman:
		No Complacency: When I've done a task many times before, I will
		periodically review the steps and complete a risk assessment. No Assumptions: I will not proceed with work until I know and
What can I do about it? Is there a better way? SOS?	What can I do about it? Is there a better way? \$05?	understand the intent of everyone involved and ensure they know my intent. Stay Focused: When I mccapitze my mind is not on the task, I will stop, take a kneath, and fitz any hazards before returning to work.
		No Shortcuts: 1 will not allow myself to take the easy way by shortcutting procedures.
Foreman Comments?	Foreman Comments?	NEWMONT.
		- Salety Journey
		VITAL BEHAVIOR5
	Work Area 3: Yes or No or N/A	
	Describe corrective actions on page 2 W/A 1 W/A 2 W/A 3 Do I have the proper PPE?	
	W/A 1 W/A 2 W/A 3 Do I have the proper PPE? Vehicles secured from movement? Vehicles	
÷.	Vehicles secured from movement? Safe access to all areas?	
	W/A 1 W/A 2 W/A 3 Do I have the proper PPE? White the proper PPE? White the proper PPE? Vehicles second from movement? Second from movement? White the proper PPE? Sele access to all amon? Equipment (inspected?) White the proper PPE?	Work Notification:
	Vehicles secured from movement? Safe access to all areas?	Work Notification: Work Notification: Work Area 2: Corrective Actions
	boline de terreter d'acteur par de la constance de terreter d'acteur par par de la constance de terreter de la constance de la	
	Locate Careford Control Proceedings W/A 1 W/A 2 W/A 3 Do I have see proger PRE Voltacies cancer of the mnexement? Soft access to all areas? Soft access to all areas? Figure Software / Soc. Points? Fingungh Matter / Soc. Points?	
	WARD W/A 1 W/A 2 W/A 2 Do lines etca proper PEP: Vehicles scenario fram mounent? Sofe access trail aren? Equipment rispected? Energying Mutar/Size: Penist? <td< td=""><td></td></td<>	
	Work W/A 1 W/A 2 W/A 3 Do I lave the proger PRE? W/A 1 W/A 2 W/A 3 Do I lave the proger PRE? W/A 1 W/A 2 W/A 3 Soft access to all areas? W/A 1 W/A 2 W/A 3 Soft access to all areas? W/A 1 W/A 2 W/A 3 File staffighther W/A 3 W/A 3 W/A 3 File staffighther Kootsoffile W/A 3 W/A 3 File staffighther Kootsoffile W/A 3 W/A 3 File staffighther Kootsoffile W/A 3 W/A 3 File staffile staf	
	Watch Control of Control of Sector W/A 1 W/A 2 W/A 2 Do I have the proper PEC? W/A 1 W/A 2 W/A 2 Validics second from momental Impact Mathematic Second	
	booked careful of consideration of the second careful of the	Work Area 2: Corrective Actions
	Watch Control of Control of Sector W/A 1 W/A 2 W/A 2 Do I have the proper PEC? W/A 1 W/A 2 W/A 2 Validics second from momental Impact Mathematic Second	
	Locate care and a comparative with A 1 W/A 2 W/A 3 Do 1 have the proper PPE? W/A 1 W/A 2 W/A 3 Do 1 have the proper PPE? W/A 1 W/A 2 W/A 2 W/A 2 W/A 3 Do 1 have the proper PPE? Set a comparative for momentary of the comparative for the comparati	Work Area 2: Corrective Actions
	Works Construct According and the set of progen PRE? W/A 1 W/A 2 W/A 3 Do I lines the progen PRE? W/A 1 W/A 2 W/A 3 Soft access to all areas? W/A 1 W/A 2 W/A 3 Soft access to all areas? W/A 1 W/A 2 W/A 3 Soft access to all areas? W/A 3 W/A 3 W/A 3 Regeneration of the momental of the soft of	Work Area 2: Corrective Actions
	Baseline Control Consultance and Party W/A 1 W/A 2 W/A 3 Do Those step and page PPE? W/A 1 W/A 2 W/A 3 Do Those step and page PPE? W/A 1 W/A 2 W/A 3 Soft access to all area? En En En Equipment Encyclere? W/A 3 W/A 3 Encyclere/A Encogn south Control Route? Encogn south Control Route Route? Encogn south Control Route Rout	Work Area 2: Corrective Actions
	Works Construct According and the set of progen PRE? W/A 1 W/A 2 W/A 3 Do I lines the progen PRE? W/A 1 W/A 2 W/A 3 Soft access to all areas? W/A 1 W/A 2 W/A 3 Soft access to all areas? W/A 1 W/A 2 W/A 3 Soft access to all areas? W/A 3 W/A 3 W/A 3 Regeneration of the momental of the soft of	Work Area 2: Corrective Actions
	Board careful of consideration of the second seco	Work Area 2: Corrective Actions
	London Control of Control Program Work 1 W/A 2 W/A 3 W/A 2 W/A 3 W/A 2 W/A 3	Work Area 2: Corrective Actions
	Board careful of consideration of the second seco	Work Area 2: Corrective Actions
	London Control of Control Program Work 1 W/A 2 W/A 3 W/A 2 W/A 3 W/A 2 W/A 3	Work Area 2: Corrective Actions
	London Control of Control Program Work 1 W/A 2 W/A 3 W/A 2 W/A 3 W/A 2 W/A 3	Work Area 2: Corrective Actions
	London Control of Control Program Work 1 W/A 2 W/A 3 W/A 2 W/A 3 W/A 2 W/A 3	Work Area 2: Corrective Actions

CRIPPLE CREEK & VICTO PO Box 191 100 N. 3rd Street Victor CO 80860

PURPOSE

<u>Cripple Creek & Victor utilizes flumes and weirs to It is of utmost importance</u> to collect samples in a consistent and unbiased manner to characterize the actual quality of the water. This guide summarizes the current CC&V procedures that are established for water quality sampling, shipment, as well as the equipment used to collect samples and field parameters. The results from these samples are used to insure compliance with permits and regulatory agencies.

SCOPE

This SOP outlines and covers the following

- Monitor pro and field log sheets
- Decontamination of sampling equipment
- Surface water sampling
- Ground water sampling, using both dedicated and submersible pumps
- Stream flow measurements and equipment
- Chain of Custody and sample shipment protocols

Procedure

This procedure covers the sampling techniques that will be used to collect the monthly, bi-monthly, quarterly, and occasional spot sampling that will be required. Both surface water and ground water are outlined. Information that will assist in the sampling process is also located below, such as preparation, equipment information, decontamination, tablet based programs to assist in logging information, chain of custody and sample shipment protocol. The ground water sampling procedure outlined here is based on guideline outlined in the EPA low flow method.

For all field sampling procedures to occur both on and off mine site, property sampling technician should maintain safety as a priority when visiting sampling locations. At all times the technician should use their best judgement to determine if the sampling location is safe to perform the sampling task or inspection they are to perform. When visiting sampling locations there may be times when bad weather creates an unsafe condition for collecting samples or performing field inspections. When bad weather has caused a field location to be unsafe it is the technician's responsibility to not

Department	THIS DOCUMENT IS UNCONTR	ROLLED IN HARD COPY FORMAT	Doc Id:
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 71 of 94

Formatted: Indent: Left: 0"

Formatted: Indent: Left: 0"

Formatted: Font: Not Bold Formatted: Normal, Left

perform the task for that location. If a site is considered unsafe to collect a sample or perform an inspection the unsafe condition should be recorded on a field level risk assessment card, and if possible a picture taken with field equipment to be recorded within Monitor Pro 5 software.

Monitor pro

Tablets enabled with Monitor pro-allow field samplers to collect sampling and field data directly to the web based database. One limitation with the monitor pro-tablet configuration is that only the final parameter reading can be logged. It is suggested that a field log sheet is used to monitor the stabilization of parameters while sampling monitoring wells, to insure that stabilization has occurred.

Preparation

Prior to leaving office for field collect the needed pre-preserved bottles, sampling equipment, and decontamination equipment that will be needed for the planned sampling locations. By identifying and planning the sampling locations for the day you can minimize your vehicle load and maximize your potential sampling. Not all locations will require all equipment.

Decontamination Preparation

Three-phase decontamination is to be used. If decontamination solutions begin to appear dirty, the need to be changed out.

- 1. Prepare designated water containers with necessary water.
- 2.—Prepare rinse containers for decontamination use, note which container is for Liquinox, H₂O, and D.I. H₂O
- 3.—When ready to decontaminate fill rinse containers with appropriate H₂O
- Add a small amount of nonphosphate detergent to the rinse container labeled "Liquinox"
- 5. Decontaminate submersible pump by submerging into rinse H₂O first, then submerge into "Liquinox" rinse container then submerge pump into D.I. H₂O rinse container. Submersible pump should remain in each container for approximately 1 minute. To decontaminate peristaltic pump purge approximately 250 ml of H₂O first through the line, then approximately 250 ml of "liquinox" through the line, then approximately 250 ml of D.I. H₂O through the line. To Decontaminate sounder submerge

Department	THIS DOCUMENT IS UNCONTR	ROLLED IN HARD COPY FORMAT	Doc Id:
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 72 of 94

- into rinse H₂O, then submerge in "Liquinox", then submerge in D.I. H₂O. Sounder should remain in "liquinox" container for approximately 1 minute.
- 6. Properly dispose of H₂O used to decontaminate equipment

Surface Water Sampling

Prior to leaving for field identify the required parameters and analyses for planned sampling locations and collect equipment accordingly.

Surface Water Sampling Equipment List

- Field level risk assessment form (see section 4)
- YSI Professional Multi Meter, or Myron Ultrameter II
- Geo Peristaltic Pump
- D.I. water
- 100 ft. Tape measure surface water flow, this instruction is to aid in the inspections, and confirmation of
- Marsh McBirney 2000 portable Flow meter & Wadding Staff
- Wader Boots
- Monitor Pro compatible tablet
- Cooler with ice
- Sample Bottles
- 0.45 Micron Filters
- Sampling vessel
- Waterproof pen
- Pre preserved sample bottles
- Field sample log sheets

Stream Flow Measurements

Site inspection guidelines are as follows:

- 1. The channel should have as much straight run as possible.
- 2. Where the length of straight run is limited, the length up stream from the profile should be twice the downstream length.
- 3. The channel should be free of flow disturbances.
- The flow should be free of swirls, eddies, vortices, backward flow, or dead zones.

Department	THIS DOCUMENT IS UNCONTROLLED IN HARD COPY FORMAT	Doc Id:
SER	Date of This Issue-10/24/2024 Date of Next Review:10/24/2025	Page 73 of 94

	nont ek & Victor	CRIPPLE CREEK & VICTOR PO Box 191 100 N. 3 rd Street Victor CO 80860	
	 5. Avoid areas immediately downstream from obstructions. 6. If flume or weir is in place, use flow measurement insure the devices have been calibrated prior to leaved and the devices have been calibrated prior to leaved and the devices have been calibrated prior to leaved and the devices have been calibrated prior to leaved and the devices have been calibrated prior to leaved and the devices have been calibrated prior to leaved and the devices have been calibrated prior to leaved and the devices have been calibrated prior to leaved and the devices have been calibrated prior to leaved and the devices have been calibrated prior to leaved and the devices have been calibrated prior to leaved and the devices have been calibrated prior to leaved and the devices have been calibrated prior to leaved and the devices have been calibrated prior to leaved and the devices have been calibrated prior to leaved and the devices have been calibrated prior to be and the devices have been calibrated prio	nt from the device,	
	Marsh McBirney Flow Meter Technical guidance can be found in the Instruction Manual portable flow meter.	for the model 2000	
<u> </u>	 The method that is being used is the .4 method, or the 609 1. Upon arrival at field location perform field level determine location is safe to perform surface Document risk assessment with field level risk ass record image with field equipment to be uploaded to 2. Measure the width of the channel. Divide the width of the channel into a number of equipments increases the accuracy of the flumes and weirs.rest 	risk assessment to - water sampling, essment form, and o Monitor Pro 5. al segments (more+ ultant flow). If the	Formatted: No bullets or numbering, Widow/Orphan control
	ence in mean velocity between two adjacent segments is gr ents should be smaller. F	eater than 10%, the	Formatted: Indent: Left: 0"
Calibr	rationsWork from the downstream side of the flumes a uctedtape beginning on an annual basis and recorded in the		
<u>Safet</u> Hard	<u>y Toe boots</u> <u>y glasses</u> <u>hat</u> <u>visibility vest</u>		
Bucke	PMENT et vatch		

 Department
 THIS DOCUMENT IS UNCONT
 LED IN HARD COPY FORMAT
 Doc Id:

 SER
 Date of This Issue-10/24/2024
 Date of Next Review: 10/24/2025
 Page 74 of 94

Marsh-McBirney Flo-mate

<u>Level</u>

CRIPPLE CREEK & VICTOR PO Box 191 100 N. 3rd Street Victor CO 80860

Department	THIS DOCUMENT IS UNCONTR	Doc Id:	
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 75 of 94

<u>CRIPPLE CREEK & VICTOR</u> <u>PO Box 191</u> <u>100 N. 3rd Street</u> Victor CO 80860

Flume Calibration

To confirm flume is level, use a long enough level to span the support bracketsbank side of the flume length wise, and across the width at the inlet, and the outlet. Check level regardless of absent flow.

If flume is out of level use the adjustment all threads and adjust flume to level. There are four adjustment rods for adjusting level. Some excavating may be necessary to access the adjustments.

If flow through flume is greater than 0.3 you may use flo-mate to calibrate flume. If flow is less than 0.3 use bucket and stop watch method (See Weir Calibration)

<u>To calibrate flow through the flume, attach flo-mate reader to staff.</u> Notestream, putting the Top-Setting Wading rod into the stream. Set the depth of water on flume staff.

- 4. Place staff and flo-mate in flume with instrument at 30% total the wading staff's sliding rod lock to the depth from of the water which is read at the bottom. Instrument will provide a -of the rod.
- 5. Record the velocity and depth measurements.
- 6. Proceed to the next segments and make the depth measurement. adjustment ←

Calculate flow:

Depth x width x velocity = flow

7. <u>Compare instrument Record the segment units used .5 ft., 1 ft., etc. then</u> record the depth for that segment.

Flow is calculated with the continuity equation (Q= â x A)

Whereas Q is flow, â is mean velocity and A is cross-sectional area. The flow of the channel is the sum of all segment areas times the mean velocity across the channel. Remember to account for the bank measurements.

Surface Water Sampling Procedure

1. Prior to leaving office turn on and calibrate YSI Pro plus water quality

Department	THIS DOCUMENT IS UNCONTROLLED IN HARD COPY FORMAT	Doc Id:	
SER	Date of This Issue-10/24/2024 Date of Next Review:10/24/2025	Page 76 of 94	

Formatted: No bullets or numbering, Widow/Orphan control

meter, record in calibration log the pH buffer values, DO calibration value, and Specific Conductance Calibration Values (See YSI Calibration SOP).

- 2. Upon arrival at field location perform field level risk assessment to determine location is safe to perform surface water sampling. Document risk assessment with field level risk assessment form, and record image with field equipment to be uploaded to Monitor Pro 5.
- 3. When at sampling location, place YSI probe directly in stream, allow parameters to stabilized and record parameters.
- 4. Collect data to calculate flow rate
- a.——If location has a flume or weir, collect flow data from flume or weir and record
- b. If no flume or weir is present and sufficient flow is present collect flow data by the following stream flow measurement with known value attained from water depth in flume. Values procedure and the Marsh McBirney flow meter procedure. If insufficient flow is present to use Marsh McBirney flow meter estimate flow.
- 5. Collect a grab sample upstream from YSI probe by submerging a sampling vessel to mid depth of the stream, rinse the bottle 3 times with stream water and then collect sample.
- 6. Transfer sample into sample bottles that are labeled with the correct sample location, date, time, preservative and if filtration is required.
- a. To collect samples that do not require filtration, pour sample directly from sampling vessel.
- b. To collect samples that require filtration, use decontaminated peristaltic pump.
 - i. Attach 45 micron filter to peristaltic pump tubing.
 - ii. Allow sample to saturate and to flow through filter (approximately 200 mL).
 - iii. Discharge and discard approximately 100 mL of H₂O from filter
 - iv.—Collect filtered sample in appropriate sample bottle(s).
- 7. Place samples in cooler on ice for storage.
- 8. Decontaminate sampling equipment.
- 9. Clean up sampling site and move to next location.

Department	THIS DOCUMENT IS UNCONTR	Doc Id:	
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 77 of 94

Ground Water Sampling Prior to leaving for field identify the required parameters and analyses for planned sampling locations and collect equipment accordingly.

Monitoring Well Sampling Equipment List

- Field level risk assessment form (see section 4)
- YSI Professional Multi Meter, or Myron Ultrameter II
- Peristaltic Pump
- D.I. water
- Monitor pro compatible tablet
- Cooler with Ice
- Sample Bottles
- 0.45 Micron Filters
- Sample Bucket
- Water level meters (150ft and 500ft)
- Geo Sub pump and controller
- Generator
- Appropriate keys for locks on the well head
- Dedicated pump controller
- Waterproof pen
- Field sample log sheets

Monitoring Well Sampling Procedure, Submersible Pump

Prior to leaving for field identify the required parameters and analyses for planned sampling locations and collect equipment accordingly.

- Upon arrival at the well location, perform field level risk assessment to determine location is safe to perform surface water sampling. Document risk assessment with field level risk assessment form, and record image with field equipment to be uploaded to Monitor Pro 5.
- With well location determined to be safe, complete a visual inspection of well vault / monument, casing, site condition and if a dedicated pump is present
- 3. Measure the static water level in the well and record measurement listed as (depth to water). Water levels should be measured with-in 10% a precision of each other. Document values on *-0.01 foot.
- 4. Decontaminate water level meter after use.

Department		OLLED IN HARD COPY FORMAT	Doc Id:
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 78 of 94

- 5. You may calculate the <u>flume calibration log. If</u>volume of water in the well to aid in the purging process, there is no required purge volume for the EPA low flow <u>is</u> sampling standard, rather it is based on parameter stabilization.
- a. <u>2 in = 617 ml/ft</u>
- b.—__4 in = 2470 ml/ft
- 6. Insert decontaminated pump and tubing into the well descending slowly until pump is in the desired screened interval, avoid letting the pump come in contact with the well bottom.
- Attach the discharge tubing to the bottom port on the YSI water quality meter flow cell.
- 8. Connect the pump to the controller with the cord provided
- 9. Start generator, allow it to warm up.
- 10. Connect controller box to generator with power cord provided.
- 11. Turn pump controller on and begin to purge water.
 - a. When flow is present adjust flow rate by using the up and down arrow buttons.
 - b. Attempt to maintain a flow rate of to 0.1 to 0.5 L of water per minute and generally speaking not sufficient to use flo-mate, use calibrated bucketto exceed 1 L per minute.
- c. Use 1 L vessel and stop watch to measure flow-rate and record.
 - 12. Begin to record parameters and draw down to monitor stabilization every 3 to 5 minutes, including;
 - a. pH
 - b. Specific conductance

Dissolved Oxygen

Weir Calibration

- c.—Use calibrated bucket
- d.-<u>Temperature</u>
- 13. Continue to monitor purge flow rate.
- 14.—While the well is purging, compile and label sample bottles.
- 15. Three successive parameter readings must be within the following tolerances of each other in order to collect samples.
 - a. pH +/- 0.1
 - b. Specific Conductance +/- 3%
 - c. Dissolved Oxygen +/- 10%

Department	THIS DO	CUMENT IS UNCONTRO	OLLED IN HARD COPY FORMAT	Doc Id:	
SER	Date of Thi	s Issue-10/24/2024	Date of Next Review:10/24/2025	Page 79 of 94	

- Formatted: Font: Bold
- Formatted: No bullets or numbering, Widow/Orphan control, Tab stops: Not at 0.25"
- Formatted: Font: Bold

d. Temperature +/-10%

- 16. Upon stabilization of parameters collect samples in pre labeled and pre preserved bottles, when possible following this general order; samples should be collected without passing thought YSI flow cell.
 - a.--Total Metals (unfiltered)
 - b.—Dissolved Metals (filtered)
 - c.-Cyanide
 - d. TSS
 - e.-Nitrate/ Nitrites
- 17.—To collect filtered samples;
 - a. Attach 45 micron filter to peristaltic pump tubing.
 - b. Allow sample to saturate and to flow through filter (approximately 200 mL).
 - e. Discharge and discard approximately 100 mL of H₂O from filter
 - d. Collect filtered sample in appropriate sample bottle(s).
- 18. Place samples in cooler on ice.
- 19. Turn off pump at pump controller box, remove power cord from pump.
- 20. Pull pump and tubing from well, reeling pump cord back onto pump reel.
- 21. Decontaminate equipment (submersible pump, peristaltic pump)
- 22. Clean up sampling site and move to next location.

Monitoring Well Sampling, Dedicated Electric Pumps

The compliance well at the External Storage Pond (ESPMW) has a 240 volt dedicated pump. Grounding on all electrical driven pumps must be certified by CC&V's electrical department once per year. It is of utmost importance that the sampler inspects all electrical leads and connection prior to use. The Onan 4000 watt generator has adequate power to run this pump. After the generator has warmed up, plug the twist lock power lead into the generators 30 amp receptacle, and switch the voltage control to 240 volts. There is a short time delay before water, use is pumped up, and out the discharge hose. If the well is purged dry the flow controller will shut the pump off automatically.

There are two wells in Grassy Valley, four Wells in Squaw Gulch, and four wells in lower Arequa Gulch that are also dedicated electric pumps that require a generator, and either the BCD, or converter controller. Be familiar with the

Department		OLLED IN HARD COPY FORMAT	Doc Id:
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 80 of 94

CRIPPLE CREEK & VICTOR PO Box 191 100 N. 3rd Street Victor CO 80860

safety features with the generator, and have the electrical department approve all grounding requirements prior to use.

- Upon arrival at well location perform field level risk assessment to determine location is safe to perform surface water sampling. Document risk assessment with field level risk assessment form, and record image with field equipment to be uploaded to Monitor Pro 5.
- 2. With well location determined to be safe, complete a visual inspection of well vault / monument, casing, site condition and if a dedicated pump is present Upon arrive at the well site, complete a visual inspection of well vault / monument, casing, site condition and if a dedicated pump is present
- 3. Measure the static water level in the well and record measurement listed as (depth to water). Water levels should be measured with a precision of *-0.01 foot.
- 4. Decontaminate water level meter after use.
- 5. You may calculate the volume of water in the well to aid in the purging process, there is no required purge volume for the EPA low flow sampling standard, it is based on parameter stabilization.
- a. <u>2 in = 617 ml/ft</u>
- b. 4 in = 2470 ml/ft
- 6. Connect tubing to sampling port on monument/ well vault.
- Attach the discharge tubing to the bottom port on the YSI water quality meter flow cell.
- 8. Connect the pump to the controller with the cord provided
- 9. Start generator, allow it to warm up.
- 10. Connect controller box to generator with power cord provided.
- 11.— Turn pump controller on and begin to purge water.
- a. When flow is present adjust flow rate by using the up and down arrow buttons.
- b. Attempt to maintain a flow rate of to 0.1 to 0.5 L of water per minute and generally speaking not to exceed 1 L per minute.
- c. Use 1 L vessel and stop watch to time the collection of water to calculate flowmeasure flow rate and record.

Formatted: No bullets or numbering, Widow/Orphan control, Tab stops: Not at 0.25"

Volume of bucket / Collection time= flow x 60= GPM Ex. 1 gallon 5.0 seconds

Department	THIS DOCUMENT IS UNCONTR	OLLED IN HARD COPY FORMAT	Doc Id:
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 81 of 94

CRIPPLE CREEK & VICTOR PO Box 191 100 N. 3rd Street Victor CO 80860

<u>1/5 x60 =12 GPM</u>

- 12. <u>Compare calculated flow to flow reading from weir.</u> Begin to record parameters and draw down to monitor stabilization every 3 to 5 minutes, including;
 - a. pH
 - b.-Specific conductance
 - c.-Dissolved Oxygen
 - d.-Temperature
- 13. Continue to monitor purge flow rate.
- 14. While the well is purging, compile and label sample bottles.
- 15. Three successive parameter readings must be within the following tolerances of each other in order to collect samples.
 - a.--pH +/- 0.1
 - b. Specific Conductance +/- 3%
 - c. Dissolved Oxygen +/- 10%
 - d. Temperature +/-10%
- 16. Upon stabilization of parameters collect samples in pre labeled and pre preserved bottles, when possible following this general order; samples should be collected without passing thought YSI flow cell.
- 17. To collect filtered samples;
 - a. Attach filter to sample tube.
 - b. Allow sample to saturate and to flow through filter (approximately 200 mL).
 - c.--Collect filtered sample in sample bottle labeled for filtration.
- 18. Place samples in cooler on ice.
- 19. Turn off pump at pump controller box, remove power cord from pump, unplug controller from generator.
- 20. Clean-up site and move to next location

Chain-of-Custody and Sample Shipment

A chain-of-custody (COC) is a procedure designed to allow the operator to reconstruct how and to whom the sample is transferred.

Department	THIS DOCUMENT IS UNCONTR	OLLED IN HARD COPY FORMAT	Doc Id:
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 82 of 94

- Upon preparing samples for shipment, the sampler should complete a COC.
- Insure all bottles are labeled with the correct time, date, analyte, preservative, required filtration, and location of the sample by comparing to field notes.
- 3. List sample location, date, time, field parameters, number of containers, types of preservatives present and the requested analytes on the chain of custody form, print form (2 copies).
- 4. Double check the sample bottle labels against the chain of custody.
- 5. Print the pre filled ground water or surface water analytical request form, dependent on types of samples being submitted.
- Place COC and analytical request form in plastic bag inside the cooler to be shipped.
- 7. After inspection of samples and comparison to COC, place samples in cooler, along with adequate contained ice to keep samples with in the hold temperatures during shipment.
- If needed use packing material to fill spaces in cooler that contained ice too large to fill.
- Close cooler lid and use 2 inch clear packaging tape to secure both ends of cooler, wrap tape multiple times around the ends of cooler, followed by strapping tape.
- 10. Attach a preprinted shipping label to the top of cooler, place shipment identification sticker on copy of COC.
- 11. File copy of COC until lab returns results and original COC.

Department	THIS DOCUMENT IS UNCONTR	OLLED IN HARD COPY FORMAT	Doc Id:	
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 83 of 94	

CRIPPLE CREEK & VICTOR <u>PO Box 191</u> 100 N. 3rd Street Victor CO 80860

Department	THIS DOCUMENT IS UNCONT	ROLLED IN HARD COPY FORMAT	Doc Id:	
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 84 of 94	

CRIPPLE CREEK & VICTOR

Department	THIS DOCUMENT IS UNCONTR	Doc Id:	
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 86 of 94

CC&V – Sample Prep & Shipping SOP	Formatted: Indent: Left: 0.2"
SAMPLE PREP & SHIPPING SUMMARY	
The following inventory of prepared sample bottles must be continually kept up:	
1) — <u>Cyanide Bottles:</u> green labels, brown 125 ml bottles preserved with 0.2 ml of Sodium Hydroxide ~60 bottles	
2) — <u>Metals Bottles:</u> red labels, white 250 ml bottles preserved with 1.5 ml of Nitric Acid ~ 60 bottles	
3) — <u>Nitrogen Bottles</u> : yellow labels, white 250 ml bottles preserved with 0.5 ml of Sulfuric Acid ~40 bottles	
4) — <u>Mineral Bottles:</u> <u>blackwhite</u> labels, 500 ml bottles non-preserved ~ 60 bottles	
5) Hexavalent Chromium Kit: green labels, 250 mL bottles preserved with buffer, NaOH for pH adjustment, and pH strips ~ 20 bottles	
6) Sulfide Bottles: purple labels, 250 mL bottles preserved with Zinc Acetate NaOH ~ 20 bottles	
5) 5) Verify expiration dates on reagent used in bottle preservation	Formatted: Indent: Left: 0.2"
Before running too low on bottles or preservatives order from SVL <u>. Always confirm</u> sample supplies before each new quarter to ensure sufficient supply for quarterly compliance samplingAnalytical by emailing SVLSupplies@svl.net	

Departm	 CUMENT IS UNCONTROL	LED IN HARD COPY FORMAT	Doc Id:	
SER	lssue-10/24/2024	Date of Next Review:10/24/2025	Page 87 of 94	

c		vmont CREEK & VICTOR		с Р 1 У	RIPPLE CREEK & VICTOR O Box 191 00 N. 3 st Street ictor CO 80860		
		ALWAYS WEAR BOTTLES!!!!	NITRILE GLOVES AND) SAFETY GLASSES WH	IEN PRESERVING		
			f daily if there will be sa	mples ready to ship out the shipping instructions			
	1)	Match COC's to	bottles in the refrigerate	or	•	Formatted: Indent: Left: -0.3",	Tab stops: Not at 0.5"
	2)	Sign and date t	he COC's				
	3)		COC's, place original in Place copies in red file fo	plastic bag – these will g lder for reference.	o with the cooler		
	4)	Load up sample	es, COC's, and ice into "fiv	ve-day" cooler.			
	5)	Sign and date C	ustody seal and place ve	ertically across lid and co	oler.		
	6)	Tape up cooler	lengthwise and width wi	se			
	7)			e shipping label <u>up to</u> ar -CO no later than 4: <u>15 p.</u>			
	8)	Get mailing lab COC's	el sticker with the trackin	g number and place it on	the copies of the		
1	9)	Keep freezer st	ocked full of ice!!				
					4	Formatted: Indent: Left: 0.2"	
	Proc	edures for Wate	r Quality Sample Shipr	nents.			
	1)	Any water qua		from Monday thru Thu	rsday should be		
	a)	-	ality Samples are to be s therwise they must be s	shipped the day the sam hipped the next day.	ple was collected	Formatted: Indent: Left: -0.3",	Tab stops: Not at 0.5"
	b)	Ground & Surfa	ace Water Samples are to	be shipped either on th	e day the sample		
	c)	was collected o VLF Water Qua collected or wit	lity Samples are to be sl	nipped either on the day	/ the sample was		
	2)	Any water qual	-	Friday may sit in the refr	igerator until the•	Formatted: Indent: Left: -0.3"	
	a)	0	2 · · · · · · · · · · · · · · · · · · ·	efrigerator over a weeke	nd, without prior	Formatted: Indent: Left: -0.3",	Tab stops: Not at 0.5"
		Department		DLLED IN HARD COPY FORMAT	Doc Id:		
		SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 88 of 94		

Department	THIS DOCUMENT IS UNCONTR	Doc Id:	
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 90 of 94

Cripple Creek & Victor Mining Company P.O. Box 191 100 North 3rd Street Victor, Colorado 80860

P 719.689.2977 F 719.689.3254 newmont.com

TABLE OF CONTENTS

1	Purpose	
2 —	-Scope	
3	Mryon L ii Calibration	Error! Bookmark not defined.
3.1	-Specific Conductance Calibration	
3.2	-pH Calibration	
3.3	- Total Dissolved Solids Calibration	Error! Bookmark not defined.

Department	THIS DOCUMENT IS UNCONTR	OLLED IN HARD COPY FORMAT	Doc Id:	
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 91 of 94	

Cripple Creek & Victor Mining Company P.O. Box 191 100 North 3rd Street Victor, Colorado 80860 P 719.689.2977 F 719.689.3254 newmont.com

PH Calibration

- Push the PH button
- Remove the protective rubber cap from the PH sensor well.
- With the PH7 solution, fill the PH sensor well and the conductivity cell cup completely and dump it 2 times.
- With the PH7 solution, fill the PH sensor well and the conductivity cell cup completely a 3rd time and let it settle on a reading.
- Push the CAL button.
- Use the up or down buttons to make the display read 7.0.
- Hit the CAL button, to accept the calibration.
- If the display does not read 7.0, repeat steps 5-7 until it does.
- Repeat steps 3-8 with the PH4.0 and the PH10.0 solutions-

- Formatted: Heading 7, Indent: Left: 0", Space Before: 0 pt, After: 0 pt
 - Formatted: Indent: Left: 0.25", Bulleted + Level: 1 + Aligned at: 0.63" + Indent at: 0.88"

Department	THIS DOCUMENT IS UNCONTROLLED IN HARD COPY FORMAT Doc Id:			
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 93 of 94	

Cripple Creek & Victor Mining Company P.O. Box 191 100 North 3rd Street Victor, Colorado 80860

P 719.689.2977 F 719.689.3254 newmont.com

APPENDIX L Aqua Troll 600 Calibration procedure

Formatted: Left, Indent: Left: 0.25", Space After: 8 pt, Line spacing: 1.5 lines

Department	THIS DOCUMENT IS UNCONTROLLED IN HARD COPY FORMAT Doc Id:			
SER	Date of This Issue-10/24/2024	Date of Next Review:10/24/2025	Page 94 of 94	