September 3rd, 2024

Colorado Division of Reclamation, Mining and Safety 1313 Sherman Street, Room 215 Denver, Colorado 80203 Attention: Lucas West

Subject: Camp Bird Permit 1982-090, TR-08 Adequacy Review Response

Please see the following clarifications based on the feedback from the TR-08 Adequacy Review letter dated August 8th, 2024

- Please see attached table for "SPLP and ABA Testing" Results. Located under Attachment A are the updated tables that include Net Acid Forming vs Net Neutralizing Potential. Attachment B is the Laboratory Analysis to corroborate the provided tables.
- 2. We expect to export a maximum of 30,000 tons of surface material over a 3-year period.
- 3. We have discussed with the County permitting of the Road. As is known we do have a right to road access. We have worked with the County to develop an agreement to accommodate multi-use access. The permit approach was intended to document times of use with the goal of minimizing disruption to Tourism activities in the County. Documentation of the permit is located under **Attachment C**.
- 4. Export activity is expected to be over a range of 60-70 days per year. Export times will be intermittent and between the hours of 6am-9:30am. This is documented in the Permit.
- 5. Two samples each were taken from the representative mill feed "head-grade" material from the Camp Bird and Revenue, four samples total. Initially one of each sample for the two properties would be used for ABA and the other would be used for SPLP testing, it was then decided to conduct both ABA & SPLP testing on all of the samples for additional data points. RV indicates that the material came from the Revenue-Virginius and CB indicates material originated from the Camp Bird. A map of sample locations for the Camp Brid are provided under Attachment D. Sample material for laboratory testing was collected during bench top testing as it was fed through the crushing and grinding portion of the process. Material was collected on set intervals as to obtain an unbiased sample as it passed through the mini-jaw crusher prior to being fed into the impact mill for grinding.

6. Sample locations were taken across a range of areas within the Polygon identified in the original submission. Sample depths were up to 5 feet. The bulk material was mixed on a large scale using the front end loader before being collected for processing on the bench scale testing circuit. The goal was to provide a representative sample collection across the polygon.

Thank you for your attention to our adequacy review response.

Sincerely,

Chris Skrik

Chris Skerik Chief Operating Officer Caldera Mineral Resources <u>cskerik@thorinresources.com</u>

Attachment A – Updated Material Quality & Acid Generating Potential Tables

Updated Table 1: Summary of SPLP & ABA – Camp Bird Material

Analyte	Units	Minimum	Maximum	Average	Sample Count	Non- Detect Count	MDL
Acid Generation Potential (calc on Sulfur tota	t CaCO3/Kt	9.06	14.1	11.58000	2	-	0.31
Acid Neutralization Potential (calc)	t CaCO3/Kt	64	98	81	2	-	1
Acid-Base Potential (calculation)	t CaCO3/Kt	54.9	83.9	69.4	2	-	-
Aluminum (1312)	mg/L	0.45	0.52	0.485	2	-	0.05
Antimony (1312)	mg/L	0.00114	0.00157	0.001355	2	-	0.0004
Arsenic (1312)	mg/L	0.00655	0.00719	0.00687	2	-	0.0002
Barium (1312)	mg/L	0.0096	0.0154	0.0125	2	-	0.0005
Bervllium (1312)	mg/L	-	-	-	2	2	0.00008
Bicarbonate as CaCO3	mg/L	31.4	33.1	32.25	2	-	2
Boron (1312)	mg/L	-	-	-	2	2	0.03
Bromide (1312-DI)	mg/L	0.35	0.435	0.3925	2	-	0.05
Cadmium (1312)	mg/L	-	-	-	2	2	0.00005
Calcium (1312)	mg/L	8.97	10	9.485	2	-	0.1
Carbon, total organic (TOC) (1312-DI)	mg/L	1.7	1.8	1.75	2	-	1
Carbonate as CaCO3	mg/L	-	-	-	2	2	2
Chloride (1312-DI)	mg/L	-	-	-	2	2	0.4
Chromium (1312)	mg/L	-	-	-	2	2	0.0005
Cobalt (1312)	mg/L	0.000058	0.000082	0.00007	2	-	0.00005
Conductivity @25C (1312-DI)	umhos/cm	51	56	53.5	2	-	1
Copper (1312)	mg/L	0.00128	0.0013	0.00129	2	-	0.0008
Fluoride (1312 DI)	mg/L	0.37	0.38	0.375	2	-	0.15
Hardness as CaCO3 (1312)	mg/L	24	27	25.5	2	-	0.2
Hvdroxide as CaCO3	mg/L	-	-	-	2	2	2
Iron (1312)	mg/L	0.071	0.071	0.071	2	1	0.06
Lead (1312)	mg/L	0.00119	0.00273	0.00196	2	-	0.0001
Lithium (1312)	mg/L	-	-	-	2	2	0.008
Magnesium (1312)	mg/L	0.38	0.38	0.38	2	-	0.2
Manganese (1312)	mg/L	0.0251	0.0312	0.02815	2	-	0.0004
Mercury (1312)	mg/L	-	-	-	2	2	0.0002
Molvbdenum (1312)	mg/L	0.00357	0.00376	0.003665	2	-	0.0002
Neutralization Potential as CaCO3	%	6.4	9.8	8.1	2	-	0.1
Nickel (1312)	mg/L	-	-	-	2	2	0.0004
Nitrate (1312 DI)	mg/L	0.037	0.037	0.037	2	1	0.02
Nitrate/Nitrite as N (1312-DI)	mg/L	0.037	0.037	0.037	2	1	0.02
Nitrite as N (1312-DI)	mg/L	-	-	-	2	2	0.01
Nitrogen, ammonia (1312-DI)	mg/L	0.106	0.106	0.106	2	1	0.1
pH	Units	9	9	9	2	-	0.1
Phosphorus, ortho dissolved (1312-DI)	mg/L	0.011	0.011	0.011	2	1	0.01
Phosphorus, Total (1312-DI)	mg/L	0.011	0.012	0.0115	2	-	0.01
Potassium (1312)	mg/L	2.31	2.93	2.62	2	-	0.5
Residue, Filterable (TDS) @180C (1312)	mg/L	32	36	34	2	-	20
Residue, Non-Filter (TSS) @180C (1312-DI)	mg/L	-	-	-	2	2	5
Selenium (1312)	mg/L	0.00016	0.00034	0.00025	2	-	0.0001
Silica (1312)	mg/L	3.3	3.7	3.5	2	-	0.2
Silver (1312)	mg/L	-	-	-	2	2	0.0001
Sodium (1312)	mg/L	0.94	1.19	1.065	2	-	0.2
Strontium (1312)	mg/L	0.0857	0.133	0.10935	2	-	0.009
Sulfate (1312-DI)	mg/L	2.84	3.19	3.015	2	-	0.9
Temperature	Units	20.3	20.9	20.6	2	-	0.1
Thallium (1312)	mg/L	-	-	-	2	2	0.0001
Tin (1312)	mg/L	-	-	-	2	2	0.04
Total Alkalinity	mg/L	31.4	33.1	32.25	2	-	2
Uranium (1312)	mg/L	-	-	-	2	2	0.0001
Vanadium (1312)	mg/L	0.00185	0.00213	0.00199	2	-	0.0005
Zinc (1312)	mg/L	-	-	-	2	2	0.006

New Table: Acid Generation Vs Acid Neutralizing Potential – Camp Bird Material

Analyte	Units	Minimum	Maximum	Average	Sample Count	Non- Detect Count	MDL
Acid Generation Potential (calc on Sulfur total)	t CaCO3/Kt	9.06	14.1	11.58	2	0	0.31
Acid Neutralization Potential (calc)	t CaCO3/Kt	64	98	81	2	0	1
Acid-Base Potential (calculation)	t CaCO3/Kt	54.9	83.9	69.4	2	0	0
Neutralization Potential as CaCO3	%	6.4	9.8	8.1	2	0	0.1
Neutralization Potential Ratio				7.0	2	0	

Attachment B – Material Quality Laboratory Reports

Analytical Report

July 23, 2024

Report to: CJ Dickerson Thorin Resources 105 Meadow Estates Dr.

Ridgway, CO 81432

cc: Accounts Payable

Bill to: Accounts Payable Thorin Resources 1900 Main St Unit #1 Ouray, CO 81427

Project ID: ACZ Project ID: L86570

CJ Dickerson:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on March 13, 2024. This project has been assigned to ACZ's project number, L86570. Please reference this number in all future inquiries.

All analyses were performed according to ACZ's Quality Assurance Plan. The enclosed results relate only to the samples received under L86570. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after August 22, 2024. If the samples are determined to be hazardous, additional charges apply for disposal (typically \$11/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical raw data reports for ten years.

If you have any questions or other needs, please contact your Project Manager.

Mark Melleal

Mark McNeal has reviewed and approved this report.

July 23, 2024

Project ID: ACZ Project ID: L86570

Sample Receipt

ACZ Laboratories, Inc. (ACZ) received 4 miscellaneous samples from Thorin Resources on March 13, 2024. The samples were received in good condition. Upon receipt, the sample custodian removed the samples from the cooler, inspected the contents, and logged the samples into ACZ's computerized Laboratory Information Management System (LIMS). The samples were assigned ACZ LIMS project number L86570. The custodian verified the sample information entered into the computer against the chain of custody (COC) forms and sample bottle labels.

Holding Times

All analyses were performed within EPA recommended holding times.

Sample Analysis

These samples were analyzed for inorganic parameters. The individual methods are referenced on both, the ACZ invoice and the analytical reports.

This report is being reissued to include values for AGP and ANP.

Project ID:

Sample ID: RV ABA HGW HEADS-01

Inorganic Analytical Results

ACZ Sample ID: **L86570-01** Date Sampled: 03/04/24 09:40 Date Received: 03/13/24 Sample Matrix: Soil

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Phosphorus, Total (1312-DI)	EPA 365.1								03/25/24 10:37	mrd
Total Hot Plate Digestion (1312)	EPA 3010A								03/29/24 15:12	jrj
Total Hot Plate Digestion (1312)	EPA 3010A								03/22/24 12:50	aeh
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Aluminum (1312)	EPA 6010D	1	0.056	В	*	mg/L	0.05	0.25	03/26/24 18:04	brc
Antimony (1312)	EPA 6020B	1	0.0116			mg/L	0.0004	0.002	03/30/24 17:32	jrj
Arsenic (1312)	EPA 6020B	1	0.00222			mg/L	0.0002	0.001	03/30/24 17:32	jrj
Barium (1312)	EPA 6020B	1	0.0655			mg/L	0.0005	0.0025	03/30/24 17:32	jrj
Beryllium (1312)	EPA 6020B	1	<0.00008	U	*	mg/L	0.00008	0.00025	03/30/24 17:32	jrj
Boron (1312)	EPA 6010D	1	<0.03	U	*	mg/L	0.03	0.1	03/26/24 18:04	brc
Cadmium (1312)	EPA 6020B	1	<0.00005	U	*	mg/L	0.00005	0.00025	03/30/24 17:32	jrj
Calcium (1312)	EPA 6010D	1	22.8			mg/L	0.1	0.5	03/26/24 18:04	brc
Chromium (1312)	EPA 6020B	1	<0.0005	U	*	mg/L	0.0005	0.002	03/30/24 17:32	jrj
Cobalt (1312)	EPA 6020B	1	0.000104	В	*	mg/L	0.00005	0.00025	03/30/24 17:32	jrj
Copper (1312)	EPA 6020B	1	0.0101		*	mg/L	0.0008	0.002	04/02/24 14:24	aps
Iron (1312)	EPA 6010D	1	<0.06	U	*	mg/L	0.06	0.15	03/26/24 18:04	brc
Lead (1312)	EPA 6020B	1	0.0875			mg/L	0.0001	0.0005	03/30/24 17:32	jrj
Lithium (1312)	EPA 6010D	1	<0.008	U	*	mg/L	0.008	0.04	03/26/24 18:04	brc
Magnesium (1312)	EPA 6010D	1	0.89	В	*	mg/L	0.2	1	03/26/24 18:04	brc
Manganese (1312)	EPA 6020B	1	0.0768			mg/L	0.0004	0.002	03/30/24 17:32	jrj
Mercury (1312)	EPA 7470A	1	<0.0002	U	*	mg/L	0.0002	0.001	03/26/24 14:38	aeh
Molybdenum (1312)	EPA 6020B	1	0.0137		*	mg/L	0.0002	0.0005	03/30/24 17:32	jrj
Nickel (1312)	EPA 6020B	1	< 0.0004	U	*	mg/L	0.0004	0.001	03/30/24 17:32	jrj
Potassium (1312)	EPA 6010D	1	4.14		*	mg/L	0.5	1	03/26/24 18:04	brc
Selenium (1312)	EPA 6020B	1	0.00015	В	*	mg/L	0.0001	0.00025	03/30/24 17:32	jrj
Silica (1312)	EPA 6010D	1	2.5			mg/L	0.2	1	03/26/24 18:04	brc
Silver (1312)	EPA 6020B	1	<0.0001	U	*	mg/L	0.0001	0.0005	03/30/24 17:32	jrj
Sodium (1312)	EPA 6010D	1	0.79	В	*	mg/L	0.2	1	03/26/24 18:04	brc
Strontium (1312)	EPA 6010D	1	0.429		*	mg/L	0.009	0.045	03/26/24 18:04	brc
Thallium (1312)	EPA 6020B	1	0.00016	В	*	mg/L	0.0001	0.0005	03/30/24 17:32	jrj
Tin (1312)	EPA 6010D	1	<0.04	U	*	mg/L	0.04	0.2	03/26/24 18:04	brc
Uranium (1312)	EPA 6020B	1	<0.0001	U	*	mg/L	0.0001	0.0005	03/30/24 17:32	jrj
Vanadium (1312)	EPA 6020B	1	<0.0005	U	*	mg/L	0.0005	0.002	03/30/24 17:32	jrj
Zinc (1312)	EPA 6020B	1	0.0086	В	*	mg/L	0.006	0.015	03/30/24 17:32	jrj

Project ID: Sample ID: RV ABA HGW HEADS-01 ACZ Sample ID: **L86570-01** Date Sampled: 03/04/24 09:40 Date Received: 03/13/24 Sample Matrix: Soil

Soil Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Acid Generation Potential (calc on Sulfur total)	EPA 600/2-78-054 3.2.4		17.2			t CaCO3/Kt	0.31	3.1	07/23/24 0:00	calc
Acid Neutralization Potential (calc)	EPA 600/2-78-054 1.3		131			t CaCO3/Kt	1	5	07/23/24 0:00	calc
Acid-Base Potential (calculation)	EPA 600/2-78-054 1.3		114			t CaCO3/Kt			07/23/24 0:00	calc
Neutralization Potential as CaCO3	EPA 600/2-78-054 3.2.3	1	13.1		*	%	0.1	0.5	07/19/24 13:15	bdc
pH, (1312)	EPA 9045D/9040C									
рН			8.5			Units	0.1	0.1	07/23/24 0:00	LFP
Temperature			20.7			Units	0.1	0.1	07/23/24 0:00	LFP
Sulfur Forms	EPA 600/2-78-054 3.2.4 Modified									
Sulfur HCI Residue		1	0.51		*	%	0.01	0.1	07/23/24 0:00	kmb
Sulfur HNO3 Residue		1	<0.01	U	*	%	0.01	0.1	07/23/24 0:00	kmb
Sulfur Organic Residual		1	<0.01	U	*	%	0.01	0.1	07/23/24 0:00	kmb
Sulfur Pyritic Sulfide		1	0.51			%	0.01	0.1	07/23/24 0:00	kmb
Sulfur Sulfate		1	0.04	В	*	%	0.01	0.1	07/23/24 0:00	kmb
Sulfur Total		1	0.55		*	%	0.01	0.1	07/23/24 0:00	kmb
Total Sulfur minus Sulfate		1	0.51			%	0.01	0.1	07/23/24 0:00	kmb
Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Air Dry at 34 Degrees C	USDA No. 1, 1972								07/17/24 15:00	bdc
Crush and Pulverize	EPA 600/2-78-054 3.1.3								07/18/24 10:00	bdc

Crush and Pulverize (Ring & Puck)	EPA 600/2-78-054 3.1.3	07/18/24 10:00	bdc
Synthetic Precip. Leaching Procedure	EPA 1312	03/20/24 10:00	lfp
Synthetic Precip. Leaching Procedure	EPA 1312	03/20/24 21:52	lfp

Project ID: Sample ID: RV ABA HGW HEADS-01

Inorganic Analytical Results

ACZ Sample ID: **L86570-01** Date Sampled: 03/04/24 09:40 Date Received: 03/13/24 Sample Matrix: Soil

Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity (1312 DI)	SM 2320 B-2011									
Bicarbonate as CaCO3		1	30.7		*	mg/L	2	20	03/28/24 0:00	jck
Carbonate as CaCO3		1	<2	U	*	mg/L	2	20	03/28/24 0:00	jck
Hydroxide as CaCO3		1	<2	U	*	mg/L	2	20	03/28/24 0:00	jck
Total Alkalinity		1	30.7		*	mg/L	2	20	03/28/24 0:00	jck
Bromide (1312-DI)	EPA 300.0	1	<0.05	U	*	mg/L	0.05	0.25	03/26/24 20:29	bls
Carbon, total organic (TOC) (1312-DI)	SM 5310 B-2011/2014	1	2.9	В	*	mg/L	1	5	04/01/24 21:14	ems
Chloride (1312-DI)	EPA 300.0	1	0.63	В	*	mg/L	0.4	2	03/26/24 20:29	bls
Conductivity @25C (1312-DI)	SM 2510 B-2011	1	107		*	umhos/cm	1	10	03/28/24 17:17	jck
Fluoride (1312 DI)	SM 4500-F C-2011	1	<0.15	U	*	mg/L	0.15	0.35	03/28/24 12:30) jck
Hardness as CaCO3 (1312)	Calculation (SM 2340 B-2011)		61			mg/L	0.2	5	07/23/24 0:00	calc
Nitrate (1312 DI)	Calculation (NO3NO2-NO2)		1.83			mg/L	0.02	0.1	07/23/24 0:00	calc
Nitrate/Nitrite as N (1312-DI)	EPA 353.2	1	1.85		*	mg/L	0.02	0.1	03/22/24 0:46	pjb
Nitrite as N (1312-DI)	EPA 353.2	1	0.023	В	*	mg/L	0.01	0.05	03/22/24 0:46	pjb
Nitrogen, ammonia (1312-DI)	EPA 350.1	1	0.116	В	*	mg/L	0.1	0.2	04/02/24 11:39) jqr
Phosphorus, ortho dissolved (1312-DI)	EPA 365.1	1	<0.01	U	*	mg/L	0.01	0.05	03/22/24 1:17	pjb
Phosphorus, Total (1312-DI)	EPA 365.1	1	<0.01	U	*	mg/L	0.01	0.05	03/27/24 14:37	' mrd
Residue, Filterable (TDS) @180C (1312)	SM 2540 C-2011	1	76		*	mg/L	20	40	03/25/24 18:35	jck
Residue, Non-Filter (TSS) @180C (1312- DI)	SM 2540 D-2011/2015	1	<5	U	*	mg/L	5	20	03/27/24 21:36	i jck
Sulfate (1312-DI)	EPA 300.0	1	26.1		*	mg/L	0.9	2	03/26/24 20:29) bls

Project ID:

Sample ID: RV SPL HEADS-02

Inorganic Analytical Results

ACZ Sample ID: **L86570-02** Date Sampled: 03/04/24 09:40 Date Received: 03/13/24 Sample Matrix: Soil

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Phosphorus, Total (1312-DI)	EPA 365.1								03/25/24 11:42	mrd
Total Hot Plate Digestion (1312)	EPA 3010A								03/22/24 16:10	aeh
Total Hot Plate Digestion (1312)	EPA 3010A								03/29/24 15:34	jrj
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Aluminum (1312)	EPA 6010D	1	0.098	В	*	mg/L	0.05	0.25	03/26/24 18:18	brc
Antimony (1312)	EPA 6020B	1	0.0103			mg/L	0.0004	0.002	03/30/24 17:39	jrj
Arsenic (1312)	EPA 6020B	1	0.00153			mg/L	0.0002	0.001	03/30/24 17:39	jrj
Barium (1312)	EPA 6020B	1	0.0613			mg/L	0.0005	0.0025	03/30/24 17:39	jrj
Beryllium (1312)	EPA 6020B	1	<0.00008	U	*	mg/L	0.00008	0.00025	04/02/24 14:29	aps
Boron (1312)	EPA 6010D	1	<0.03	U	*	mg/L	0.03	0.1	03/26/24 18:18	brc
Cadmium (1312)	EPA 6020B	1	<0.00005	U	*	mg/L	0.00005	0.00025	03/30/24 17:39	jrj
Calcium (1312)	EPA 6010D	1	17.9			mg/L	0.1	0.5	03/26/24 18:18	brc
Chromium (1312)	EPA 6020B	1	<0.0005	U	*	mg/L	0.0005	0.002	03/30/24 17:39	jrj
Cobalt (1312)	EPA 6020B	1	0.000073	В	*	mg/L	0.00005	0.00025	03/30/24 17:39	jrj
Copper (1312)	EPA 6020B	1	0.00084	В	*	mg/L	0.0008	0.002	04/02/24 14:29	aps
Iron (1312)	EPA 6010D	1	<0.06	U	*	mg/L	0.06	0.15	03/26/24 18:18	brc
Lead (1312)	EPA 6020B	1	0.0676			mg/L	0.0001	0.0005	03/30/24 17:39	jrj
Lithium (1312)	EPA 6010D	1	<0.008	U	*	mg/L	0.008	0.04	03/26/24 18:18	brc
Magnesium (1312)	EPA 6010D	1	0.77	В	*	mg/L	0.2	1	03/26/24 18:18	brc
Manganese (1312)	EPA 6020B	1	0.0567			mg/L	0.0004	0.002	03/30/24 17:39	jrj
Mercury (1312)	EPA 7470A	1	<0.0002	U	*	mg/L	0.0002	0.001	03/26/24 14:42	aeh
Molybdenum (1312)	EPA 6020B	1	0.0218		*	mg/L	0.0002	0.0005	03/30/24 17:39	jrj
Nickel (1312)	EPA 6020B	1	<0.0004	U	*	mg/L	0.0004	0.001	03/30/24 17:39	jrj
Potassium (1312)	EPA 6010D	1	3.79		*	mg/L	0.5	1	03/26/24 18:18	brc
Selenium (1312)	EPA 6020B	1	0.00010	В	*	mg/L	0.0001	0.00025	03/30/24 17:39	jrj
Silica (1312)	EPA 6010D	1	2.1			mg/L	0.2	1	03/26/24 18:18	brc
Silver (1312)	EPA 6020B	1	<0.0001	U	*	mg/L	0.0001	0.0005	03/30/24 17:39	jrj
Sodium (1312)	EPA 6010D	1	0.53	В	*	mg/L	0.2	1	03/26/24 18:18	brc
Strontium (1312)	EPA 6010D	1	0.350		*	mg/L	0.009	0.045	03/26/24 18:18	brc
Thallium (1312)	EPA 6020B	1	<0.0001	U	*	mg/L	0.0001	0.0005	03/30/24 17:39	jrj
Tin (1312)	EPA 6010D	1	<0.04	U	*	mg/L	0.04	0.2	03/26/24 18:18	brc
Uranium (1312)	EPA 6020B	1	<0.0001	U	*	mg/L	0.0001	0.0005	03/30/24 17:39	jrj
Vanadium (1312)	EPA 6020B	1	<0.0005	U	*	mg/L	0.0005	0.002	03/30/24 17:39	jrj
Zinc (1312)	EPA 6020B	1	<0.006	U	*	mg/L	0.006	0.015	03/30/24 17:39	jrj

Project ID: Sample ID: RV SPL HEADS-02

Inorganic Analytical Results

ACZ Sample ID:	L86570-02
Date Sampled:	03/04/24 09:40
Date Received:	03/13/24
Sample Matrix:	Soil

Soil Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Acid Generation Potential (calc on Sulfur total)	EPA 600/2-78-054 3.2.4		68.8			t CaCO3/Kt	0.31	3.1	07/23/24 0:00	calc
Acid Neutralization Potential (calc)	EPA 600/2-78-054 1.3		105			t CaCO3/Kt	1	5	07/23/24 0:00	calc
Acid-Base Potential (calculation)	EPA 600/2-78-054 1.3		36.3			t CaCO3/Kt			07/23/24 0:00	calc
Neutralization Potential as CaCO3	EPA 600/2-78-054 3.2.3	1	10.5		*	%	0.1	0.5	07/19/24 13:42	bdc
pH, (1312)	EPA 9045D/9040C									
pН			8.8			Units	0.1	0.1	07/23/24 0:00	LFP
Temperature			20.1			Units	0.1	0.1	07/23/24 0:00	LFP
Sulfur Forms	EPA 600/2-78-054 3.2.4 Modified									
Sulfur HCI Residue		1	1.86		*	%	0.01	0.1	07/23/24 0:00	kmb
Sulfur HNO3 Residue		1	0.11		*	%	0.01	0.1	07/23/24 0:00	kmb
Sulfur Organic Residual		1	0.11		*	%	0.01	0.1	07/23/24 0:00	kmb
Sulfur Pyritic Sulfide		1	1.75			%	0.01	0.1	07/23/24 0:00	kmb
Sulfur Sulfate		1	0.34		*	%	0.01	0.1	07/23/24 0:00	kmb
Sulfur Total		1	2.20		*	%	0.01	0.1	07/23/24 0:00	kmb
Total Sulfur minus Sulfate		1	1.86			%	0.01	0.1	07/23/24 0:00	kmb
Soil Preparation										

Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Air Dry at 34 Degrees C	USDA No. 1, 1972								07/17/24 15:05	bdc
Crush and Pulverize (Ring & Puck)	EPA 600/2-78-054 3.1.3								07/18/24 10:08	bdc
Synthetic Precip. Leaching Procedure	EPA 1312								03/21/24 3:31	lfp
Synthetic Precip. Leaching Procedure	EPA 1312								03/20/24 15:00	lfp

Project ID: Sample ID: RV SPL HEADS-02

Inorganic Analytical Results

ACZ Sample ID: **L86570-02** Date Sampled: 03/04/24 09:40 Date Received: 03/13/24 Sample Matrix: Soil

Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity (1312 DI)	SM 2320 B-2011									
Bicarbonate as CaCO3		1	30.6		*	mg/L	2	20	03/28/24 0:00	jck
Carbonate as CaCO3		1	<2	U	*	mg/L	2	20	03/28/24 0:00	jck
Hydroxide as CaCO3		1	<2	U	*	mg/L	2	20	03/28/24 0:00	jck
Total Alkalinity		1	30.6		*	mg/L	2	20	03/28/24 0:00	jck
Bromide (1312-DI)	EPA 300.0	1	<0.05	U	*	mg/L	0.05	0.25	03/26/24 21:05	bls
Carbon, total organic (TOC) (1312-DI)	SM 5310 B-2011/2014	1	1.5	В	*	mg/L	1	5	04/01/24 21:40) ems
Chloride (1312-DI)	EPA 300.0	1	<0.4	U	*	mg/L	0.4	2	03/26/24 21:05	bls
Conductivity @25C (1312-DI)	SM 2510 B-2011	1	85		*	umhos/cm	1	10	03/28/24 17:26	i jck
Fluoride (1312 DI)	SM 4500-F C-2011	1	<0.15	U	*	mg/L	0.15	0.35	03/28/24 12:53	jck
Hardness as CaCO3 (1312)	Calculation (SM 2340 B-2011)		48			mg/L	0.2	5	07/23/24 0:00	calc
Nitrate (1312 DI)	Calculation (NO3NO2-NO2)		1.72			mg/L	0.02	0.1	07/23/24 0:00	calc
Nitrate/Nitrite as N (1312-DI)	EPA 353.2	1	1.74		*	mg/L	0.02	0.1	03/22/24 0:48	pjb
Nitrite as N (1312-DI)	EPA 353.2	1	0.016	В	*	mg/L	0.01	0.05	03/22/24 0:48	pjb
Nitrogen, ammonia (1312-DI)	EPA 350.1	1	<0.1	U	*	mg/L	0.1	0.2	04/02/24 11:42	2 jqr
Phosphorus, ortho dissolved (1312-DI)	EPA 365.1	1	<0.01	U	*	mg/L	0.01	0.05	03/22/24 1:19	pjb
Phosphorus, Total (1312-DI)	EPA 365.1	1	<0.01	U	*	mg/L	0.01	0.05	03/27/24 14:39) mrd
Residue, Filterable (TDS) @180C (1312)	SM 2540 C-2011	1	56		*	mg/L	20	40	03/25/24 18:42	2 jck
Residue, Non-Filter (TSS) @180C (1312- DI)	SM 2540 D-2011/2015	2	<10	U	*	mg/L	10	40	03/27/24 21:40) jck
Sulfate (1312-DI)	EPA 300.0	1	13.6		*	mg/L	0.9	2	03/26/24 21:05	bls

Project ID:

Sample ID: CBW ABA HEADS-03

ACZ Sample ID: **L86570-03** Date Sampled: 03/04/24 09:40 Date Received: 03/13/24 Sample Matrix: Soil

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Phosphorus, Total (1312-DI)	EPA 365.1								03/25/24 12:47	mrd
Total Hot Plate Digestion (1312)	EPA 3010A								03/22/24 17:00	aeh
Total Hot Plate Digestion (1312)	EPA 3010A								03/29/24 16:08	jrj
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Aluminum (1312)	EPA 6010D	1	0.520		*	mg/L	0.05	0.25	03/26/24 18:22	brc
Antimony (1312)	EPA 6020B	1	0.00114	В		mg/L	0.0004	0.002	03/30/24 17:45	jrj
Arsenic (1312)	EPA 6020B	1	0.00655			mg/L	0.0002	0.001	03/30/24 17:45	jrj
Barium (1312)	EPA 6020B	1	0.0154			mg/L	0.0005	0.0025	03/30/24 17:45	jrj
Beryllium (1312)	EPA 6020B	1	<0.00008	U	*	mg/L	0.00008	0.00025	04/02/24 14:36	aps
Boron (1312)	EPA 6010D	1	<0.03	U	*	mg/L	0.03	0.1	03/26/24 18:22	brc
Cadmium (1312)	EPA 6020B	1	<0.00005	U	*	mg/L	0.00005	0.00025	03/30/24 17:45	jrj
Calcium (1312)	EPA 6010D	1	8.97			mg/L	0.1	0.5	03/26/24 18:22	brc
Chromium (1312)	EPA 6020B	1	<0.0005	U	*	mg/L	0.0005	0.002	03/30/24 17:45	jrj
Cobalt (1312)	EPA 6020B	1	0.000082	В	*	mg/L	0.00005	0.00025	03/30/24 17:45	jrj
Copper (1312)	EPA 6020B	1	0.00130	В	*	mg/L	0.0008	0.002	04/02/24 14:36	aps
Iron (1312)	EPA 6010D	1	0.071	В	*	mg/L	0.06	0.15	03/26/24 18:22	brc
Lead (1312)	EPA 6020B	1	0.00273			mg/L	0.0001	0.0005	03/30/24 17:45	jrj
Lithium (1312)	EPA 6010D	1	<0.008	U	*	mg/L	0.008	0.04	03/26/24 18:22	brc
Magnesium (1312)	EPA 6010D	1	0.38	В	*	mg/L	0.2	1	03/26/24 18:22	brc
Manganese (1312)	EPA 6020B	1	0.0312			mg/L	0.0004	0.002	03/30/24 17:45	jrj
Mercury (1312)	EPA 7470A	1	<0.0002	U	*	mg/L	0.0002	0.001	03/26/24 14:43	aeh
Molybdenum (1312)	EPA 6020B	1	0.00376		*	mg/L	0.0002	0.0005	03/30/24 17:45	jrj
Nickel (1312)	EPA 6020B	1	<0.0004	U	*	mg/L	0.0004	0.001	03/30/24 17:45	jrj
Potassium (1312)	EPA 6010D	1	2.31		*	mg/L	0.5	1	03/26/24 18:22	brc
Selenium (1312)	EPA 6020B	1	0.00034		*	mg/L	0.0001	0.00025	03/30/24 17:45	jrj
Silica (1312)	EPA 6010D	1	3.7			mg/L	0.2	1	03/26/24 18:22	brc
Silver (1312)	EPA 6020B	1	<0.0001	U	*	mg/L	0.0001	0.0005	03/30/24 17:45	jrj
Sodium (1312)	EPA 6010D	1	1.19		*	mg/L	0.2	1	03/26/24 18:22	brc
Strontium (1312)	EPA 6010D	1	0.0857		*	mg/L	0.009	0.045	03/26/24 18:22	brc
Thallium (1312)	EPA 6020B	1	<0.0001	U	*	mg/L	0.0001	0.0005	03/30/24 17:45	jrj
Tin (1312)	EPA 6010D	1	<0.04	U	*	mg/L	0.04	0.2	03/26/24 18:22	brc
Uranium (1312)	EPA 6020B	1	<0.0001	U	*	mg/L	0.0001	0.0005	03/30/24 17:45	jrj
Vanadium (1312)	EPA 6020B	1	0.00185	В	*	mg/L	0.0005	0.002	03/30/24 17:45	jrj
Zinc (1312)	EPA 6020B	1	<0.006	U	*	mg/L	0.006	0.015	03/30/24 17:45	jrj

Project ID: Sample ID: CBW ABA HEADS-03 ACZ Sample ID: **L86570-03** Date Sampled: 03/04/24 09:40 Date Received: 03/13/24 Sample Matrix: Soil

Soil Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Acid Generation Potential (calc on Sulfur total)	EPA 600/2-78-054 3.2.4		9.06			t CaCO3/Kt	0.31	3.1	07/23/24 0:00	calc
Acid Neutralization Potential (calc)	EPA 600/2-78-054 1.3		64.0			t CaCO3/Kt	1	5	07/23/24 0:00	calc
Acid-Base Potential (calculation)	EPA 600/2-78-054 1.3		54.9			t CaCO3/Kt			07/23/24 0:00	calc
Neutralization Potential as CaCO3	EPA 600/2-78-054 3.2.3	1	6.4		*	%	0.1	0.5	07/19/24 15:05	bdc
pH, (1312)	EPA 9045D/9040C									
pН			9			Units	0.1	0.1	07/23/24 0:00	LFP
Temperature			20.9			Units	0.1	0.1	07/23/24 0:00	LFP
Sulfur Forms	EPA 600/2-78-054 3.2.4 Modified									
Sulfur HCI Residue		1	0.29		*	%	0.01	0.1	07/23/24 0:00	kmb
Sulfur HNO3 Residue		1	<0.01	U	*	%	0.01	0.1	07/23/24 0:00	kmb
Sulfur Organic Residual		1	<0.01	U	*	%	0.01	0.1	07/23/24 0:00	kmb
Sulfur Pyritic Sulfide		1	0.29			%	0.01	0.1	07/23/24 0:00	kmb
Sulfur Sulfate		1	<0.01	U	*	%	0.01	0.1	07/23/24 0:00	kmb
Sulfur Total		1	0.29		*	%	0.01	0.1	07/23/24 0:00	kmb
Total Sulfur minus Sulfate		1	0.29			%	0.01	0.1	07/23/24 0:00	kmb
Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Air Dry at 34 Degrees	USDA No. 1, 1972								07/17/24 15:10	bdc

i di di li cici		Bhadon	Result	Guun	Ad	Onito	I GL	Bute	Analyse
Air Dry at 34 Degrees C	USDA No. 1, 1972							07/17/24 15:10) bdc
Crush and Pulverize (Ring & Puck)	EPA 600/2-78-054 3.1.3							07/18/24 10:16	6 bdc
Synthetic Precip. Leaching Procedure	EPA 1312							03/21/24 9:10	lfp
Synthetic Precip. Leaching Procedure	EPA 1312							03/20/24 17:30) lfp

Project ID: Sample ID: CBW ABA HEADS-03

Inorganic Analytical Results

ACZ Sample ID: **L86570-03** Date Sampled: 03/04/24 09:40 Date Received: 03/13/24 Sample Matrix: Soil

Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity (1312 DI)	SM 2320 B-2011									
Bicarbonate as CaCO3		1	31.4		*	mg/L	2	20	03/28/24 0:00	jck
Carbonate as CaCO3		1	<2	U	*	mg/L	2	20	03/28/24 0:00	jck
Hydroxide as CaCO3		1	<2	U	*	mg/L	2	20	03/28/24 0:00	jck
Total Alkalinity		1	31.4		*	mg/L	2	20	03/28/24 0:00	jck
Bromide (1312-DI)	EPA 300.0	1	0.350		*	mg/L	0.05	0.25	03/26/24 21:41	bls
Carbon, total organic (TOC) (1312-DI)	SM 5310 B-2011/2014	1	1.7	В	*	mg/L	1	5	04/01/24 22:23	ems
Chloride (1312-DI)	EPA 300.0	1	<0.4	U	*	mg/L	0.4	2	03/26/24 21:41	bls
Conductivity @25C (1312-DI)	SM 2510 B-2011	1	51		*	umhos/cm	1	10	03/28/24 17:31	jck
Fluoride (1312 DI)	SM 4500-F C-2011	1	0.38		*	mg/L	0.15	0.35	03/28/24 12:58	jck
Hardness as CaCO3 (1312)	Calculation (SM 2340 B-2011)		24.0			mg/L	0.2	5	07/23/24 0:00	calc
Nitrate (1312 DI)	Calculation (NO3NO2-NO2)		<0.02	U		mg/L	0.02	0.1	07/23/24 0:00	calc
Nitrate/Nitrite as N (1312-DI)	EPA 353.2	1	<0.02	U	*	mg/L	0.02	0.1	03/22/24 0:51	pjb
Nitrite as N (1312-DI)	EPA 353.2	1	<0.01	U	*	mg/L	0.01	0.05	03/22/24 0:51	pjb
Nitrogen, ammonia (1312-DI)	EPA 350.1	1	<0.1	U	*	mg/L	0.1	0.2	04/02/24 11:45	jqr
Phosphorus, ortho dissolved (1312-DI)	EPA 365.1	1	0.011	В	*	mg/L	0.01	0.05	03/22/24 1:21	pjb
Phosphorus, Total (1312-DI)	EPA 365.1	1	0.011	В	*	mg/L	0.01	0.05	03/27/24 14:41	mrd
Residue, Filterable (TDS) @180C (1312)	SM 2540 C-2011	1	32	В	*	mg/L	20	40	03/25/24 18:46	jck
Residue, Non-Filter (TSS) @180C (1312- DI)	SM 2540 D-2011/2015	1	<5	U	*	mg/L	5	20	03/27/24 21:42	jck
Sulfate (1312-DI)	EPA 300.0	1	2.84		*	mg/L	0.9	2	03/26/24 21:41	bls

Project ID: Sample ID: CBW SPLP HEADS-04 ACZ Sample ID: **L86570-04** Date Sampled: 03/04/24 09:40 Date Received: 03/13/24 Sample Matrix: Soil

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Phosphorus, Total (1312-DI)	EPA 365.1								03/25/24 13:20	mrd
Total Hot Plate Digestion (1312)	EPA 3010A								03/22/24 17:50	aeh
Total Hot Plate Digestion (1312)	EPA 3010A								03/29/24 16:19	jrj
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Aluminum (1312)	EPA 6010D	1	0.450		*	mg/L	0.05	0.25	03/26/24 18:26	brc
Antimony (1312)	EPA 6020B	1	0.00157	В		mg/L	0.0004	0.002	03/30/24 17:47	jrj
Arsenic (1312)	EPA 6020B	1	0.00719			mg/L	0.0002	0.001	03/30/24 17:47	jrj
Barium (1312)	EPA 6020B	1	0.00960			mg/L	0.0005	0.0025	03/30/24 17:47	jrj
Beryllium (1312)	EPA 6020B	1	<0.00008	U	*	mg/L	0.00008	0.00025	04/02/24 14:38	aps
Boron (1312)	EPA 6010D	1	<0.03	U	*	mg/L	0.03	0.1	03/26/24 18:26	brc
Cadmium (1312)	EPA 6020B	1	<0.00005	U	*	mg/L	0.00005	0.00025	03/30/24 17:47	jrj
Calcium (1312)	EPA 6010D	1	10.00			mg/L	0.1	0.5	03/26/24 18:26	brc
Chromium (1312)	EPA 6020B	1	<0.0005	U	*	mg/L	0.0005	0.002	03/30/24 17:47	jrj
Cobalt (1312)	EPA 6020B	1	0.000058	В	*	mg/L	0.00005	0.00025	03/30/24 17:47	jrj
Copper (1312)	EPA 6020B	1	0.00128	В	*	mg/L	0.0008	0.002	04/02/24 14:38	aps
Iron (1312)	EPA 6010D	1	<0.06	U	*	mg/L	0.06	0.15	03/26/24 18:26	brc
Lead (1312)	EPA 6020B	1	0.00119			mg/L	0.0001	0.0005	03/30/24 17:47	jrj
Lithium (1312)	EPA 6010D	1	<0.008	U	*	mg/L	0.008	0.04	03/26/24 18:26	brc
Magnesium (1312)	EPA 6010D	1	0.38	В	*	mg/L	0.2	1	03/26/24 18:26	brc
Manganese (1312)	EPA 6020B	1	0.0251			mg/L	0.0004	0.002	03/30/24 17:47	jrj
Mercury (1312)	EPA 7470A	1	<0.0002	U	*	mg/L	0.0002	0.001	03/26/24 14:46	aeh
Molybdenum (1312)	EPA 6020B	1	0.00357		*	mg/L	0.0002	0.0005	03/30/24 17:47	jrj
Nickel (1312)	EPA 6020B	1	<0.0004	U	*	mg/L	0.0004	0.001	03/30/24 17:47	jrj
Potassium (1312)	EPA 6010D	1	2.93		*	mg/L	0.5	1	03/26/24 18:26	brc
Selenium (1312)	EPA 6020B	1	0.00016	В	*	mg/L	0.0001	0.00025	03/30/24 17:47	jrj
Silica (1312)	EPA 6010D	1	3.3			mg/L	0.2	1	03/26/24 18:26	brc
Silver (1312)	EPA 6020B	1	<0.0001	U	*	mg/L	0.0001	0.0005	03/30/24 17:47	jrj
Sodium (1312)	EPA 6010D	1	0.94	В	*	mg/L	0.2	1	03/26/24 18:26	brc
Strontium (1312)	EPA 6010D	1	0.133		*	mg/L	0.009	0.045	03/26/24 18:26	brc
Thallium (1312)	EPA 6020B	1	<0.0001	U	*	mg/L	0.0001	0.0005	03/30/24 17:47	jrj
Tin (1312)	EPA 6010D	1	<0.04	U	*	mg/L	0.04	0.2	03/26/24 18:26	brc
Uranium (1312)	EPA 6020B	1	<0.0001	U	*	mg/L	0.0001	0.0005	03/30/24 17:47	jri
Vanadium (1312)	EPA 6020B	1	0.00213		*	mg/L	0.0005	0.002	03/30/24 17:47	iri
Zinc (1312)	EPA 6020B	1	<0.006	U	*	mg/L	0.006	0.015	03/30/24 17:47	iri

Project ID: Sample ID: CBW SPLP HEADS-04 ACZ Sample ID: **L86570-04** Date Sampled: 03/04/24 09:40 Date Received: 03/13/24 Sample Matrix: Soil

Soil Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Acid Generation Potential (calc on Sulfur total)	EPA 600/2-78-054 3.2.4		14.1			t CaCO3/Kt	0.31	3.1	07/23/24 0:00	calc
Acid Neutralization Potential (calc)	EPA 600/2-78-054 1.3		98.0			t CaCO3/Kt	1	5	07/23/24 0:00	calc
Acid-Base Potential (calculation)	EPA 600/2-78-054 1.3		83.9			t CaCO3/Kt			07/23/24 0:00	calc
Neutralization Potential as CaCO3	EPA 600/2-78-054 3.2.3	1	9.8		*	%	0.1	0.5	07/19/24 15:32	? bdc
pH, (1312)	EPA 9045D/9040C									
рН			9			Units	0.1	0.1	07/23/24 0:00	LFP
Temperature			20.3			Units	0.1	0.1	07/23/24 0:00	LFP
Sulfur Forms	EPA 600/2-78-054 3.2.4 Modified									
Sulfur HCI Residue		1	0.48		*	%	0.01	0.1	07/23/24 0:00	kmb
Sulfur HNO3 Residue		1	<0.01	U	*	%	0.01	0.1	07/23/24 0:00	kmb
Sulfur Organic Residual		1	<0.01	U	*	%	0.01	0.1	07/23/24 0:00	kmb
Sulfur Pyritic Sulfide		1	0.48			%	0.01	0.1	07/23/24 0:00	kmb
Sulfur Sulfate		1	<0.01	U	*	%	0.01	0.1	07/23/24 0:00	kmb
Sulfur Total		1	0.45		*	%	0.01	0.1	07/23/24 0:00	kmb
Total Sulfur minus Sulfate		1	0.48			%	0.01	0.1	07/23/24 0:00	kmb
Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Air Dry at 24 Degrees	USDA No. 1, 1972								07/17/04 15:15	bdo

Air Dry at 34 Degrees C	USDA No. 1, 1972				07/17/24 15:1	5 bdc
Crush and Pulverize (Ring & Puck)	EPA 600/2-78-054 3.1.3				07/18/24 10:24	4 bdc
Synthetic Precip. Leaching Procedure	EPA 1312				03/21/24 10:3	5 lfp
Synthetic Precip. Leaching Procedure	EPA 1312				03/20/24 20:00) lfp

Project ID: Sample ID: CBW SPLP HEADS-04

Inorganic Analytical Results

ACZ Sample ID: **L86570-04** Date Sampled: 03/04/24 09:40 Date Received: 03/13/24 Sample Matrix: Soil

Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity (1312 DI)	SM 2320 B-2011									
Bicarbonate as CaCO3		1	33.1		*	mg/L	2	20	03/28/24 0:00	jck
Carbonate as CaCO3		1	<2	U	*	mg/L	2	20	03/28/24 0:00	jck
Hydroxide as CaCO3		1	<2	U	*	mg/L	2	20	03/28/24 0:00	jck
Total Alkalinity		1	33.1		*	mg/L	2	20	03/28/24 0:00	jck
Bromide (1312-DI)	EPA 300.0	1	0.435		*	mg/L	0.05	0.25	03/26/24 21:59	bls
Carbon, total organic (TOC) (1312-DI)	SM 5310 B-2011/2014	1	1.8	В	*	mg/L	1	5	04/01/24 22:49	ems
Chloride (1312-DI)	EPA 300.0	1	<0.4	U	*	mg/L	0.4	2	03/26/24 21:59	bls
Conductivity @25C (1312-DI)	SM 2510 B-2011	1	56		*	umhos/cm	1	10	03/28/24 17:36	ick j
Fluoride (1312 DI)	SM 4500-F C-2011	1	0.37		*	mg/L	0.15	0.35	03/28/24 13:04	jck
Hardness as CaCO3 (1312)	Calculation (SM 2340 B-2011)		27			mg/L	0.2	5	07/23/24 0:00	calc
Nitrate (1312 DI)	Calculation (NO3NO2-NO2)		0.037	В		mg/L	0.02	0.1	07/23/24 0:00	calc
Nitrate/Nitrite as N (1312-DI)	EPA 353.2	1	0.037	В	*	mg/L	0.02	0.1	03/22/24 0:52	pjb
Nitrite as N (1312-DI)	EPA 353.2	1	<0.01	U	*	mg/L	0.01	0.05	03/22/24 0:52	pjb
Nitrogen, ammonia (1312-DI)	EPA 350.1	1	0.106	В	*	mg/L	0.1	0.2	04/02/24 11:46	6 jqr
Phosphorus, ortho dissolved (1312-DI)	EPA 365.1	1	<0.01	U	*	mg/L	0.01	0.05	03/22/24 1:23	pjb
Phosphorus, Total (1312-DI)	EPA 365.1	1	0.012	В	*	mg/L	0.01	0.05	03/27/24 14:42	2 mrd
Residue, Filterable (TDS) @180C (1312)	SM 2540 C-2011	1	36	В	*	mg/L	20	40	03/25/24 18:49) jck
Residue, Non-Filter (TSS) @180C (1312- DI)	SM 2540 D-2011/2015	1	<5	U	*	mg/L	5	20	03/27/24 21:45	i jck
Sulfate (1312-DI)	EPA 300.0	1	3.19		*	mg/L	0.9	2	03/26/24 21:59) bls

Inorganic Reference

Report Header	Explanations		
Batch	A distinct set of samples analyzed at a specific time		
Found	Value of the QC Type of interest		
Limit	Upper limit for RPD, in %.		
Lower	Lower Recovery Limit, in % (except for LCSS, mg/Kg)		
MDL	Method Detection Limit. Same as Minimum Reporting Limit un	less omitted or eq	ual to the PQL (see comment #5).
	Allows for instrument and annual fluctuations.		
PCN/SCN	A number assigned to reagents/standards to trace to the manu	Ifacturer's certifica	ite of analysis
PQI	Practical Quantitation Limit Synonymous with the EPA term "r	minimum level"	······································
00	True Value of the Control Sample or the amount added to the S	Spike	
Rec	Recovered amount of the true value or spike added in % (exce	ept for LCSS_mg/	Ka)
RPD	Relative Percent Difference, calculation used for Duplicate QC	Types	
Unner	Upper Recovery Limit in % (except for LCSS_mg/Kg)	1,900	
Sample	Value of the Sample of interest		
Gample	value of the bample of interest		
QC Sample Typ	Des		
AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
ССВ	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calibration Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution
QC Sample Typ	be Explanations		
Blanks	Verifies that there is no or minimal co	ntamination in the	prep method or calibration procedure.
Control San	nples Verifies the accuracy of the method, i	ncluding the prep	procedure.
Duplicates	Verifies the precision of the instrumer	nt and/or method.	
Spikes/Forti	ified Matrix Determines sample matrix interference	ces, if any.	
Standard	Verifies the validity of the calibration.		
ACZ Qualifiors			
	Analyte concentration detected at a value between MDL and R		ad value is an estimated quantity
ы	Analysis exceeded method hold time. pH is a field test with an	immodiate hold ti	
11	Target analyte response was below the laboratory defined page	ativo throshold	
	The meterial was applyized for but was not detected above the	alive intestiold.	pieted volue
0	The appropriated value is either the sample quantitation limit or the	he comple detecti	
	The associated value is either the sample quantitation limit of th	ne sample delecti	
Method Refere	nces		
(1)	EPA 600/4-83-020. Methods for Chemical Analysis of Water a	nd Wastes, March	1983.
(2)	EPA 600/R-93-100. Methods for the Determination of Inorgani	c Substances in E	nvironmental Samples, August 1993.
(3)	EPA 600/R-94-111. Methods for the Determination of Metals ir	n Environmental S	amples - Supplement I, May 1994.
(4)	EPA SW-846. Test Methods for Evaluating Solid Waste.		
(5)	Standard Methods for the Examination of Water and Wastewat	ter.	
Comments			
(1)	QC results calculated from raw data. Results may vary slightly	if the rounded va	lues are used in the calculations.
(2)	Soil, Sludge, and Plant matrices for Inorganic analyses are rep	orted on a dry wei	ght basis.
(3)	Animal matrices for Inorganic analyses are reported on an "as	received" basis.	
(4)	An asterisk in the "XQ" column indicates there is an extended of	qualifier and/or cei	tification qualifier
	associated with the result.		
(5)	If the MDL equals the PQL or the MDL column is omitted, the F	PQL is the reportin	g limit.

https://acz.com/wp-content/uploads/2019/04/Ext-Qual-List.pdf

REP001.03.15.02

ACZ Project ID: L86570

Alkalinity as CaC	:03		SM2320	3 - Titration									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG586499													
WG586499PBW	PBW	03/28/24 16:55				31	ma/L		-20	20			
WG586499I CSW2	LCSW	03/28/24 17:04	WC240320-1	820 0001		765.1	mg/L	93	90	110			
WG585975PBS	PBS	03/28/24 17:10		020.000		5.4	mg/L		-20	20			
1 86570-01DUP		03/28/24 17:22			30.7	31.3	ma/L		20	20	2	20	
WG586499LCSW4	LCSW	03/28/24 17:44	WC240320-1	820.0001	••••	799.8	mg/L	98	90	110	_		
Aluminum (1312)		EPA 601	0D									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG586211	51	,											
WG500211	1017		11040000 4										
WG586211ICV	ICV	03/26/24 17:29	11240309-1	2		1.946	mg/L	97	90	110			
WG586211ICB	ICB	03/26/24 17:33				U	mg/L		-0.15	0.15			
WG585978PBS	PBS	03/26/24 17:56	11240206.2	4 004		0	mg/L	00	-0.15	0.15			
WG585978LFB1	LFB	03/26/24 18:00	11240306-3	1.001	050	.962	mg/L	96	80	120			
L86570-01MS	MS	03/26/24 18:07	11240306-3	1.001	.056	1.065	mg/L	101	75	125	0	00	
	MSD	03/26/24 18:11	11240306-3	1.001	.050	1.07	mg/L	101	75	125	0	20	
L86570-01DUP	DUP	03/26/24 18:14			.056	.072	mg/∟				25	20	RA
Antimony (1312)			EPA 602	0B									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG586576													
WG586576ICV	ICV	03/30/24 17:10	MS240109-5	.02002		.01899	mg/L	95	90	110			
WG586576ICB	ICB	03/30/24 17:12				U	mg/L		-0.0012	0.0012			
WG585978PBS	PBS	03/30/24 17:21				U	mg/L		-0.0012	0.0012			
WG586112PBS	PBS	03/30/24 17:23				U	mg/L		-0.0012	0.0012			
WG586354PBS	PBS	03/30/24 17:25				U	mg/L		-0.0012	0.0012			
WG585978LFB2	LFB	03/30/24 17:27	MS240321-2	.01		.00928	mg/L	93	80	120			
WG586112LFB2	LFB	03/30/24 17:28	MS240321-2	.01		.00951	mg/L	95	80	120			
WG586354LFB2	LFB	03/30/24 17:30	MS240321-2	.01		.00946	mg/L	95	80	120			
L86570-01DUP	DUP	03/30/24 17:38			.0116	.01115	mg/L				4	20	
L86570-02MS	MS	03/30/24 17:41	MS240321-2	.01	.0103	.02043	mg/L	101	75	125			
L86570-02MSD	MSD	03/30/24 17:43	MS240321-2	.01	.0103	.02026	mg/L	100	75	125	1	20	
Arsenic (1312)			EPA 602	0B									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG586576													
WG586576ICV	ICV	03/30/24 17:10	MS240109-5	.05		.05196	mg/L	104	90	110			
WG586576ICB	ICB	03/30/24 17:12				U	mg/L		-0.0006	0.0006			
WG585978PBS	PBS	03/30/24 17:21				U	mg/L		-0.0006	0.0006			
WG586112PBS	PBS	03/30/24 17:23				U	mg/L		-0.0006	0.0006			
WG586354PBS	PBS	03/30/24 17:25				U	mg/L		-0.0006	0.0006			
WG585978LFB2	LFB	03/30/24 17:27	MS240321-2	.0501		.04664	mg/L	93	80	120			
WG586112LFB2	LFB	03/30/24 17:28	MS240321-2	.0501		.04679	mg/L	93	80	120			
WG586354LFB2	LFB	03/30/24 17:30	MS240321-2	.0501		.04683	mg/L	93	80	120			
L86570-01DUP	DUP	03/30/24 17:38			.00222	.00245	mg/L			-	10	20	
L86570-02MS	MS	03/30/24 17:41	MS240321-2	.0501	.00153	.04972	mg/L	96	75	125	-	-	
L86570-02MSD	MSD	03/30/24 17:43	MS240321-2	.0501	.00153	.04948	mg/L	96	75	125	0	20	

ACZ Project ID: L86570

Barium (1312)			EPA 602	0B									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG586576													
WG586576ICV	ICV	03/30/24 17:10	MS240109-5	05		05218	ma/L	104	90	110			
WG586576ICB	ICB	03/30/24 17:12				U	mg/L		-0.0015	0.0015			
WG585978PBS	PBS	03/30/24 17:21				U	mg/L		-0.0015	0.0015			
WG586112PBS	PBS	03/30/24 17:23				U	mg/L		-0.0015	0.0015			
WG586354PBS	PBS	03/30/24 17:25				U	mg/L		-0.0015	0.0015			
WG585978LFB2	LFB	03/30/24 17:27	MS240321-2	.05005		.04558	mg/L	91	80	120			
WG586112LFB2	LFB	03/30/24 17:28	MS240321-2	.05005		.04496	mg/L	90	80	120			
WG586354LFB2	LFB	03/30/24 17:30	MS240321-2	.05005		.04582	mg/L	92	80	120			
L86570-01DUP	DUP	03/30/24 17:38			.0655	.0628	mg/L				4	20	
L86570-02MS	MS	03/30/24 17:41	MS240321-2	.05005	.0613	.10846	mg/L	94	75	125			
L86570-02MSD	MSD	03/30/24 17:43	MS240321-2	.05005	.0613	.10732	mg/L	92	75	125	1	20	
Beryllium (1312)			FPA 602	0B									
	Type	Analyzed	PCN/SCN	20	Sample	Found	Units	Rec%	Lower	Upper	RPD	l imit	Qual
	турс	Analyzeu		40	oumpie	Tound	onito	Nec //	Lower	Opper		Linin	Quui
WG586576													
WG586576ICV	ICV	03/30/24 17:10	MS240109-5	.05		.051105	mg/L	102	90	110			
WG586576ICB	ICB	03/30/24 17:12				U	mg/L		-0.00024	0.00024			
WG585978PBS	PBS	03/30/24 17:21				U	mg/L		-0.00024	0.00024			
WG586112PBS	PBS	03/30/24 17:23				U	mg/L		-0.00024	0.00024			
WG586354PBS	PBS	03/30/24 17:25				U	mg/L		-0.00024	0.00024			
WG585978LFB2	LFB	03/30/24 17:27	MS240321-2	.05005		.046064	mg/L	92	80	120			
WG586112LFB2	LFB	03/30/24 17:28	MS240321-2	.05005		.044718	mg/L	89	80	120			
WG586354LFB2	LFB	03/30/24 17:30	MS240321-2	.05005		.047159	mg/L	94	80	120			
L86570-01DUP	DUP	03/30/24 17:38			U	U	mg/L				0	20	RA
L86570-02MS	MS	03/30/24 17:41	MS240321-2	.05005	U	.047451	mg/L	95	75	125			
L86570-02MSD	MSD	03/30/24 17:43	MS240321-2	.05005	U	.047274	mg/L	94	75	125	0	20	
WG586646													
WG586646ICV	ICV	04/02/24 14:03	MS240109-5	.05		.052088	mg/L	104	90	110			
WG586646ICB	ICB	04/02/24 14:06				U	mg/L		-0.00024	0.00024			
WG585978PBS	PBS	04/02/24 14:20				U	mg/L		-0.00024	0.00024			
WG585978LFB2	LFB	04/02/24 14:22	MS240321-2	.05005		.047776	mg/L	95	80	120			
L86570-01DUP	DUP	04/02/24 14:27			U	U	mg/L				0	20	RA
L86570-02MS	MS	04/02/24 14:31	MS240321-2	.05005	U	.047325	mg/L	95	75	125			
L86570-02MSD	MSD	04/02/24 14:34	MS240321-2	.05005	U	.045864	mg/L	92	75	125	3	20	
WG586112PBS	PBS	04/02/24 14:48				U	mg/L		-0.00024	0.00024			
WG586112LFB2	LFB	04/02/24 14:50	MS240321-2	.05005		.046595	mg/L	93	80	120			
Boron (1312)			EPA 601	0D									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG586211													
WG586211ICV	ICV	03/26/24 17:29	II240309-1	2		1,997	mg/L	100	90	110			
WG586211ICB	ICB	03/26/24 17:33		-			mg/L		-0.09	0.09			
WG585978PBS	PBS	03/26/24 17:56				Ū	mg/L		-0.09	0.09			
WG585978LFB1	LFB	03/26/24 18:00	II240306-3	.5005		.485	- mg/L	97	80	120			
L86570-01MS	MS	03/26/24 18:07	II240306-3	.5005	U	.495	mg/L	99	75	125			
L86570-01MSD	MSD	03/26/24 18:11	II240306-3	.5005	U	.501	mg/L	100	75	125	1	20	
L86570-01DUP	DUP	03/26/24 18:14			U	U	mg/L				0	20	RA

ACZ Project ID: L86570

Bromide (1312-D	DI)		EPA 300	0.0									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG585845													
WG585845ICV	ICV	03/20/24 14:53	WI240315-8	4.016		3.946	mg/L	98	90	110			
WG585845ICB	ICB	03/20/24 15:11				U	mg/L		-0.05	0.05			
WG586304													
WG586304ICV	ICV	03/20/24 14:53	WI240315-8	4.016		3.946	mg/L	98	90	110			
WG586304ICB	ICB	03/20/24 15:11				U	mg/L		-0.05	0.05			
WG586304LFB	LFB	03/26/24 19:53	WI230714-6	1.5		1.352	mg/L	90	90	110			
WG585975PBS	PBS	03/26/24 20:11				U	mg/L		-0.05	0.05			
L86570-01DUP	DUP	03/26/24 20:47			U	U	mg/L				0	20	RA
L86570-02AS	AS	03/26/24 21:23	WI230714-6	1.5	U	1.253	mg/L	84	90	110			M2
Cadmium (1312))		EPA 602	0B									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG586576													
WG586576ICV		03/30/24 17:10	MS240109-5	05		052382	ma/l	105	00	110			
		03/30/24 17:10	103240109-5	.05		.052362	mg/L	105	90	0.00015			
WG585978PBS	PRS	03/30/24 17:12				0	mg/L		-0.00015	0.00015			
WG586112PBS	PBS	03/30/24 17:23				U U	ma/L		-0.00015	0.00015			
WG586354PBS	PBS	03/30/24 17:25				U	mg/L		-0.00015	0.00015			
WG585978LFB2	LFB	03/30/24 17:27	MS240321-2	.05005		.044942	mg/L	90	80	120			
WG586112LFB2	LFB	03/30/24 17:28	MS240321-2	.05005		.044837	mg/L	90	80	120			
WG586354LFB2	LFB	03/30/24 17:30	MS240321-2	.05005		.045903	mg/L	92	80	120			
L86570-01DUP	DUP	03/30/24 17:38			U	U	mg/L				0	20	RA
L86570-02MS	MS	03/30/24 17:41	MS240321-2	.05005	U	.044697	mg/L	89	75	125			
L86570-02MSD	MSD	03/30/24 17:43	MS240321-2	.05005	U	.045095	mg/L	90	75	125	1	20	
Calcium (1312)			EPA 601	0D									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG586211													
WG586211ICV	ICV	03/26/24 17:29	II240309-1	100		96.63	mg/L	97	90	110			
WG586211ICB	ICB	03/26/24 17:33				U	mg/L		-0.3	0.3			
WG585978PBS	PBS	03/26/24 17:56				U	mg/L		-0.3	0.3			
WG585978LFB1	LFB	03/26/24 18:00	II240306-3	67.94555		66.66	mg/L	98	80	120			
L86570-01MS	MS	03/26/24 18:07	II240306-3	67.94555	22.8	89.12	mg/L	98	75	125			
L86570-01MSD	MSD	03/26/24 18:11	II240306-3	67.94555	22.8	90.28	mg/L	99	75	125	1	20	
L86570-01DUP	DUP	03/26/24 18:14			22.8	20.19	mg/L				12	20	
Carbon, total or	ganic (T	OC) (1312-DI)	SM 5310	B-2011/20	14								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG584961													
WG584961ICV	ICV	03/02/24 9:02	WI240129-11	100		97.4	mg/L	97	90	110			
WG584961ICB	ICB	03/02/24 9:17				U	mg/L		-2.5	2.5			
WG586623													
WG586623ICB	ICB	04/01/24 20.12				U	mg/L		-2.5	2.5			
WG586623LFB	LFB	04/01/24 20:44	WI231227-9	49.6		49.4	mg/L	100	85	115			
WG585975PBS	PBS	04/01/24 20:59				1.2	mg/L		-2.5	2.5			
L86570-01DUP	DUP	04/01/24 21:27			2.9	3	mg/L		-	-	3	15	RA
L86570-04AS	AS	04/02/24 8:39	WI231227-9	49.6	1.8	57.7	mg/L	113	85	115			

ACZ Project ID: L86570

Chloride (1312-	DI)		EPA 300	.0									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG585845													
WG585845ICV	ICV	03/20/24 14:53	WI240315-8	20.02		19.9	mg/L	99	90	110			
WG585845ICB	ICB	03/20/24 15:11				U	mg/L		-0.4	0.4			
WG586304													
WG586304ICV	ICV	03/20/24 14:53	WI240315-8	20.02		19.9	mg/L	99	90	110			
WG586304ICB	ICB	03/20/24 15:11		20.02		U	mg/L		-0.4	0.4			
WG586304LFB	LFB	03/26/24 19:53	WI230714-6	30		28.29	mg/L	94	90	110			
WG585975PBS	PBS	03/26/24 20:11				U	mg/L		-0.4	0.4			
L86570-01DUP	DUP	03/26/24 20:47			.63	.59	mg/L				7	20	RA
L86570-02AS	AS	03/26/24 21:23	WI230714-6	30	U	29.56	mg/L	99	90	110			
Chromium (131	2)			08									
	2) Turno	Applyzod	EFA 002	00	Samplo	Found	Unite	Pac ⁰ /	Lower	Uppor	חפפ	Limit	Qual
	Type	Analyzeu	PCN/SCN	QU	Sample	Found	Units	Rec /	Lowei	Opper	RFD	LIIIII	Quai
WG586576													
WG586576ICV	ICV	03/30/24 17:10	MS240109-5	.05		.05283	mg/L	106	90	110			
WG586576ICB	ICB	03/30/24 17:12				U	mg/L		-0.0015	0.0015			
WG585978PBS	PBS	03/30/24 17:21				U	mg/L		-0.0015	0.0015			
WG586112PBS	PBS	03/30/24 17:23				U	mg/L		-0.0015	0.0015			
WG586354PBS	PBS	03/30/24 17:25				U	mg/L		-0.0015	0.0015			
WG585978LFB2	LFB	03/30/24 17:27	MS240321-2	.05005		.04676	mg/L	93	80	120			
WG586112LFB2	LFB	03/30/24 17:28	MS240321-2	.05005		.04689	mg/L	94	80	120			
WG586354LFB2	LFB	03/30/24 17:30	MS240321-2	.05005		.04698	mg/L	94	80	120			
L86570-01DUP	DUP	03/30/24 17:38			U	U	mg/L				0	20	RA
L86570-02MS	MS	03/30/24 17:41	MS240321-2	.05005	U	.04823	mg/L	96	75	125			
L86570-02MSD	MSD	03/30/24 17:43	MS240321-2	.05005	U	.04773	mg/L	95	75	125	1	20	
Cobalt (1312)			EPA 602	0B									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG586576													
WG586576ICV	ICV	03/30/24 17:10	MS240109-5	.05		.052814	mg/L	106	90	110			
WG586576ICB	ICB	03/30/24 17:12				U	mg/L		-0.00015	0.00015			
WG585978PBS	PBS	03/30/24 17:21				U	mg/L		-0.00015	0.00015			
WG586112PBS	PBS	03/30/24 17:23				U	mg/L		-0.00015	0.00015			
WG586354PBS	PBS	03/30/24 17:25				U	mg/L		-0.00015	0.00015			
WG585978LFB2	LFB	03/30/24 17:27	MS240321-2	.05005		.045978	mg/L	92	80	120			
WG586112LFB2	LFB	03/30/24 17:28	MS240321-2	.05005		.046142	mg/L	92	80	120			
WG586354LFB2	LFB	03/30/24 17:30	MS240321-2	.05005		.047238	mg/L	94	80	120			
L86570-01DUP	DUP	03/30/24 17:38			.000104	.000085	mg/L				20	20	RA
L86570-02MS	MS	03/30/24 17:41	MS240321-2	.05005	.000073	.045874	mg/L	92	75	125			
L86570-02MSD	MSD	03/30/24 17:43	MS240321-2	.05005	.000073	.045819	mg/L	91	75	125	0	20	

ACZ Project ID: L86570

Conductivity @2	5C (131	2-DI)	SM 2510	B-2011									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG586499													
WG586499PBW	PBW	03/28/24 16:55				31	umhos/cm		-10	10			
WG586499LCSW1	LCSW	03/28/24 17:01	PCN626495	1410		1454	umhos/cm	103	90	110			
WG585975PBS	PBS	03/28/24 17:10				10	umhos/cm		-4	4			
L86570-01DUP	DUP	03/28/24 17:22			107	118	umhos/cm				10	20	
WG586499LCSW3	LCSW	03/28/24 17:41	PCN626495	1410		1474	umhos/cm	105	90	110			
Copper (1312)			EPA 6020	ЭB									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG586646													
WG586646ICV	ICV	04/02/24 14:03	MS240109-5	.05		.05249	mg/L	105	90	110			
WG586646ICB	ICB	04/02/24 14:06				U	mg/L		-0.0024	0.0024			
WG585978PBS	PBS	04/02/24 14:20				.00105	mg/L		-0.0024	0.0024			
WG585978LFB2	LFB	04/02/24 14:22	MS240321-2	.05005		.04709	mg/L	94	80	120			
L86570-01DUP	DUP	04/02/24 14:27			.0101	U	mg/L				200	20	RD
L86570-02MS	MS	04/02/24 14:31	MS240321-2	.05005	.00084	.04581	mg/L	90	75	125			
L86570-02MSD	MSD	04/02/24 14:34	MS240321-2	.05005	.00084	.04413	mg/L	86	75	125	4	20	
WG586112PBS	PBS	04/02/24 14:48				U	mg/L		-0.0024	0.0024			
WG586112LFB2	LFB	04/02/24 14:50	MS240321-2	.05005		.04527	mg/L	90	80	120			
Fluoride (1312 D	I)		SM 4500-	-F C-2011									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG586467													
WG586467ICV	ICV	03/28/24 11:52	WC240322-2	2.002		2	mg/L	100	90	110			
WG586467ICB	ICB	03/28/24 12:00				U	mg/L		-0.3	0.3			
WG586467LFB	LFB	03/28/24 12:14	WC230825-1	5.005		5.37	mg/L	107	90	110			
WG585975PBS	PBS	03/28/24 12:22				U	mg/L		-0.3	0.3			
L86570-01AS	AS	03/28/24 12:37	WC230825-1	5.005	U	5.37	mg/L	107	90	110			
L86570-01DUP	DUP	03/28/24 12:45			U	.2	mg/L				200	20	RA
Iron (1312)			EPA 601	DD									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG586211													
WG586211ICV	ICV	03/26/24 17:29	II240309-1	2		1.905	mg/L	95	90	110			
WG586211ICB	ICB	03/26/24 17:33				U	mg/L		-0.18	0.18			
WG585978PBS	PBS	03/26/24 17:56				U	mg/L		-0.18	0.18			
WG585978LFB1	LFB	03/26/24 18:00	II240306-3	1.003		1	mg/L	100	80	120			
L86570-01MS	MS	03/26/24 18:07	II240306-3	1.003	U	.963	mg/L	96	75	125			
L86570-01MSD	MSD	03/26/24 18:11	II240306-3	1.003	U	.973	mg/L	97	75	125	1	20	
L86570-01DUP	DUP	03/26/24 18:14			U	U	mg/L				0	20	RA

ACZ Project ID: L86570

Lead (1312)			EPA 602	0B									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG586576													
WG586576ICV	ICV	03/30/24 17:10	MS240109-5	.05		.05186	mg/L	104	90	110			
WG586576ICB	ICB	03/30/24 17:12				U	mg/L		-0.0003	0.0003			
WG585978PBS	PBS	03/30/24 17:21				.00025	mg/L		-0.0003	0.0003			
WG586112PBS	PBS	03/30/24 17:23				U	mg/L		-0.0003	0.0003			
WG586354PBS	PBS	03/30/24 17:25				U	mg/L		-0.0003	0.0003			
WG585978LFB2	LFB	03/30/24 17:27	MS240321-2	.05005		.04504	mg/L	90	80	120			
WG586112LFB2	LFB	03/30/24 17:28	MS240321-2	.05005		.04491	mg/L	90	80	120			
WG586354LFB2	LFB	03/30/24 17:30	MS240321-2	.05005		.04583	mg/L	92	80	120			
L86570-01DUP	DUP	03/30/24 17:38			.0875	.08053	mg/L				8	20	
L86570-02MS	MS	03/30/24 17:41	MS240321-2	.05005	.0676	.11608	mg/L	97	75	125			
L86570-02MSD	MSD	03/30/24 17:43	MS240321-2	.05005	.0676	.11602	mg/L	97	75	125	0	20	
Lithium (1312)			FPA 601	0D									
ACZ ID	Type	Analvzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG586211	21.5												
WG586211ICV		03/26/24 17:20	11240309-1	2		1 036	ma/l	07	00	110			
WG586211IC8		03/20/24 17.29	11240303-1	2		1.950	mg/L	97	90	0.024			
WG585078DBS	DBS	03/20/24 17:55					mg/L		-0.024	0.024			
WG585078LEB1	F DO	03/20/24 17:50	11240306-3	1		0414	mg/L	04	-0.024 80	120			
186570-01MS	MS	03/26/24 18:00	11240306-3	1		0657	mg/L	94 07	75	120			
L86570-01MSD	MSD	03/26/24 18:01	11240306-3	1		9704	mg/L	97	75	125	0	20	
L86570-01DUP	DUP	03/26/24 18:14	112 10000 0	I	U	.5704	ma/L	51	70	120	0	20	RA
2000.00.20.	20.	00/20/21 10111			•	•	5				•		
Magnesium (131)	2)		EPA 601	0D									
Magnesium (131) ACZ ID	2) Type	Analyzed	EPA 601 PCN/SCN	0D QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
Magnesium (131) ACZ ID WG586211	2) Туре	Analyzed	EPA 601 PCN/SCN	0D QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
Magnesium (1312 ACZ ID WG586211 WG586211ICV	2) Type ICV	Analyzed 03/26/24 17:29	EPA 601 PCN/SCN	0D QC 100	Sample	Found 96.86	Units mg/L	Rec%	Lower 90	Upper 110	RPD	Limit	Qual
Wagnesium (131) ACZ ID WG586211 WG586211ICV WG586211ICV	2) Type ICV ICB	Analyzed 03/26/24 17:29 03/26/24 17:33	EPA 601 PCN/SCN	0D QC 100	Sample	Found 96.86 U	Units mg/L mg/L	Rec% 97	Lower 90 -0.6	Upper 110 0.6	RPD	Limit	Qual
Wagnesium (1312 ACZ ID WG586211 WG586211ICV WG586211ICB WG585978PBS	2) Type ICV ICB PBS	Analyzed 03/26/24 17:29 03/26/24 17:33 03/26/24 17:56	EPA 601 PCN/SCN II240309-1	0D QC 100	Sample	Found 96.86 U U	Units mg/L mg/L mg/L	Rec% 97	90 -0.6 -0.6	Upper 110 0.6 0.6	RPD	Limit	Qual
Wagnesium (1312 ACZ ID WG586211 WG586211ICV WG586211ICB WG585978PBS WG585978LFB1	2) Type ICV ICB PBS LFB	Analyzed 03/26/24 17:29 03/26/24 17:33 03/26/24 17:56 03/26/24 18:00	EPA 601 PCN/SCN II240309-1 II240306-3	0D QC 100 50.00453	Sample	Found 96.86 U U 48.71	Units mg/L mg/L mg/L mg/L	Rec% 97 97	90 -0.6 -0.6 80	Upper 110 0.6 0.6 120	RPD	Limit	Qual
Magnesium (1312) ACZ ID WG586211 WG586211ICV WG586211ICB WG585978PBS WG585978LFB1 L86570-01MS	2) Type ICV ICB PBS LFB MS	Analyzed 03/26/24 17:29 03/26/24 17:33 03/26/24 17:56 03/26/24 18:00 03/26/24 18:07	EPA 601 PCN/SCN II240309-1 II240306-3 II240306-3	0D QC 100 50.00453 50.00453	Sample	Found 96.86 U U 48.71 49.8	Units mg/L mg/L mg/L mg/L	Rec% 97 97 98	90 -0.6 -0.6 80 75	Upper 110 0.6 0.6 120 125	RPD	Limit	Qual
Wagnesium (1312) ACZ ID WG586211 WG586211ICV WG586211ICB WG586211ICB WG585978PBS WG585978LFB1 L86570-01MS L86570-01MSD	2) Type ICV ICB PBS LFB MS MSD	Analyzed 03/26/24 17:29 03/26/24 17:33 03/26/24 17:56 03/26/24 18:00 03/26/24 18:07 03/26/24 18:11	EPA 601 PCN/SCN II240309-1 II240306-3 II240306-3 II240306-3	0D QC 100 50.00453 50.00453 50.00453 50.00453	Sample .89 .89	Found 96.86 U U 48.71 49.8 50.2	Units mg/L mg/L mg/L mg/L mg/L	Rec% 97 97 98 99	90 -0.6 -0.6 80 75 75	Upper 110 0.6 0.6 120 125 125	RPD	Limit	Qual
Magnesium (1312 ACZ ID WG586211 WG586211ICV WG586211ICB WG585978PBS WG585978LFB1 L86570-01MS L86570-01MSD L86570-01DUP	2) Type ICV ICB PBS LFB MS MSD DUP	Analyzed 03/26/24 17:29 03/26/24 17:33 03/26/24 17:56 03/26/24 18:00 03/26/24 18:07 03/26/24 18:11 03/26/24 18:14	EPA 601 PCN/SCN II240309-1 II240306-3 II240306-3	0D QC 100 50.00453 50.00453 50.00453	Sample .89 .89 .89	Found 96.86 U U 48.71 49.8 50.2 .84	Units mg/L mg/L mg/L mg/L mg/L mg/L	Rec% 97 97 98 99	90 -0.6 -0.6 80 75 75	Upper 110 0.6 0.6 120 125 125	RPD 1 6	Limit 20 20	Qual
Magnesium (1312) ACZ ID WG586211 WG586211ICV WG586211ICB WG586211ICB WG585978PBS WG585978LFB1 L86570-01MS L86570-01DUP Manganese (1312)	2) Type ICV ICB PBS LFB MS MSD DUP 2)	Analyzed 03/26/24 17:29 03/26/24 17:33 03/26/24 17:56 03/26/24 18:00 03/26/24 18:07 03/26/24 18:11 03/26/24 18:14	EPA 601 PCN/SCN II240309-1 II240306-3 II240306-3 II240306-3 EPA 602	0D QC 100 50.00453 50.00453 50.00453 50.00453 0B	Sample .89 .89 .89 .89	Found 96.86 U U 48.71 49.8 50.2 .84	Units mg/L mg/L mg/L mg/L mg/L mg/L	Rec% 97 97 98 99	90 -0.6 -0.6 80 75 75	Upper 110 0.6 0.6 120 125 125	RPD 1 6	Limit 20 20	Qual
Magnesium (1312 ACZ ID WG586211 WG586211ICV WG586211ICB WG585978PBS WG585978LFB1 L86570-01MSD L86570-01DUP Manganese (1312 ACZ ID	2) Type ICV ICB PBS LFB MS MSD DUP 2) Type	Analyzed 03/26/24 17:29 03/26/24 17:33 03/26/24 17:56 03/26/24 18:00 03/26/24 18:07 03/26/24 18:11 03/26/24 18:11 03/26/24 18:14	EPA 601 PCN/SCN II240309-1 II240306-3 II240306-3 II240306-3 EPA 602 PCN/SCN	0D QC 100 50.00453 50.00453 50.00453 50.00453 0B QC	Sample .89 .89 .89 Sample	Found 96.86 U U 48.71 49.8 50.2 .84	Units mg/L mg/L mg/L mg/L mg/L mg/L	Rec% 97 97 98 99 Rec%	200 -0.6 -0.6 80 75 75 25	Upper 110 0.6 0.6 120 125 125 125	RPD 1 6 RPD	Limit 20 20 Limit	Qual
Magnesium (1312 ACZ ID WG586211 WG586211ICV WG586211ICB WG586211ICB WG585978PBS WG585978LFB1 L86570-01MS L86570-01MSD L86570-01DUP Manganese (1312 ACZ ID WG586576	2) Type ICV ICB PBS LFB MS MSD DUP 2) Type	Analyzed 03/26/24 17:29 03/26/24 17:33 03/26/24 17:56 03/26/24 18:00 03/26/24 18:07 03/26/24 18:11 03/26/24 18:14	EPA 601 PCN/SCN II240309-1 II240306-3 II240306-3 II240306-3 EPA 602 PCN/SCN	0D QC 100 50.00453 50.00453 50.00453 00B QC	Sample .89 .89 .89 .89 Sample	Found 96.86 U 48.71 49.8 50.2 .84	Units mg/L mg/L mg/L mg/L mg/L mg/L	Rec% 97 97 98 99 Rec%	Lower 90 -0.6 -0.6 80 75 75 75	Upper 110 0.6 0.6 120 125 125 125	RPD 1 6 RPD	Limit 20 20 Limit	Qual RA Qual
Magnesium (1312) ACZ ID WG586211 WG586211ICV WG586211ICB WG585978PBS WG585978LFB1 L86570-01MS L86570-01DUP Manganese (1312) ACZ ID WG586576 WG586576ICV	2) Type ICV ICB PBS LFB MS MSD DUP 2) Type ICV	Analyzed 03/26/24 17:29 03/26/24 17:33 03/26/24 17:56 03/26/24 18:00 03/26/24 18:07 03/26/24 18:11 03/26/24 18:14 Analyzed 03/30/24 17:10	EPA 601 PCN/SCN II240309-1 II240306-3 II240306-3 II240306-3 EPA 602 PCN/SCN MS240109-5	0D QC 100 50.00453 50.00453 50.00453 50.00453 00B QC .05	Sample .89 .89 .89 .89 Sample	Found 96.86 U U 48.71 49.8 50.2 .84 Found	Units mg/L mg/L mg/L mg/L mg/L Units	Rec% 97 97 98 99 Rec%	Lower 90 -0.6 -0.6 75 75	Upper 110 0.6 0.6 120 125 125 Upper 110	RPD 1 6 RPD	Limit 20 20 Limit	Qual RA Qual
Magnesium (1312) ACZ ID WG586211 WG586211ICV WG585978PBS WG585978LFB1 L86570-01MS L86570-01DUP Manganese (1312) ACZ ID WG586576ICV WG586576ICS	2) Type ICV ICB PBS LFB MS DUP 2) Type ICV ICB	Analyzed 03/26/24 17:29 03/26/24 17:33 03/26/24 17:56 03/26/24 18:00 03/26/24 18:07 03/26/24 18:11 03/26/24 18:14 Analyzed 03/30/24 17:10 03/30/24 17:12	EPA 601 PCN/SCN II240309-1 II240306-3 II240306-3 II240306-3 EPA 602 PCN/SCN MS240109-5	0D QC 100 50.00453 50.00453 50.00453 50.00453 00B QC .05	Sample .89 .89 .89 .89 .89	Found 96.86 U 48.71 49.8 50.2 .84 Found	Units mg/L mg/L mg/L mg/L mg/L Units mg/L	Rec% 97 97 98 99 Rec% 105	Lower 90 -0.6 -0.75 75 Lower 90 -0.0012	Upper 110 0.6 0.6 120 125 125 Upper 110 0.0012	RPD 1 6 RPD	Limit 20 20 Limit	Qual RA Qual
Magnesium (1312) ACZ ID WG586211 WG586211ICV WG586211ICB WG585978PBS WG585978LFB1 L86570-01MS L86570-01MSD L86570-01DUP Manganese (1312) ACZ ID WG586576ICV WG586576ICB WG585978PBS	2) Type ICV ICB PBS LFB MS DUP 2) Type ICV ICB PBS	Analyzed 03/26/24 17:29 03/26/24 17:33 03/26/24 17:56 03/26/24 18:07 03/26/24 18:11 03/26/24 18:11 03/26/24 18:14 Analyzed 03/30/24 17:10 03/30/24 17:21	EPA 601 PCN/SCN II240309-1 II240306-3 II240306-3 II240306-3 EPA 602 PCN/SCN MS240109-5	0D QC 100 50.00453 50.00453 50.00453 50.00453 0B QC .05	Sample .89 .89 .89 Sample	Found 96.86 U U 48.71 49.8 50.2 .84 Found .05227 U .0006	Units mg/L mg/L mg/L mg/L mg/L Units Mg/L mg/L	Rec% 97 97 98 99 Rec% 105	Lower 90 -0.6 -0.6 80 75 75 75 Lower 90 -0.0012 -0.0012	Upper 110 0.6 0.6 120 125 125 125 Upper 110 0.0012 0.0012	RPD 1 6 RPD	Limit 20 20 Limit	Qual RA Qual
Magnesium (1312) ACZ ID WG586211 WG586211ICV WG586211ICB WG585978PBS WG585978LFB1 L86570-01MSD L86570-01DUP Manganese (1312) ACZ ID WG586576ICV WG586576ICB WG585978PBS WG586576ICB WG586576ICB WG586112PBS	2) Type ICV ICB PBS LFB MS DUP 2) Type ICV ICB PBS PBS PBS	Analyzed 03/26/24 17:29 03/26/24 17:33 03/26/24 17:56 03/26/24 18:07 03/26/24 18:11 03/26/24 18:11 03/26/24 18:14 Analyzed 03/30/24 17:10 03/30/24 17:12 03/30/24 17:21 03/30/24 17:23	EPA 601 PCN/SCN II240309-1 II240306-3 II240306-3 II240306-3 EPA 602 PCN/SCN MS240109-5	0D QC 100 50.00453 50.00453 50.00453 50.00453 0B QC .05	Sample .89 .89 .89 Sample	Found 96.86 U U 48.71 49.8 50.2 .84 Found .05227 U .0006 U	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Rec% 97 97 98 99 Rec%	Lower 90 -0.6 -0.75 75 Cover 90 -0.0012 -0.0012 -0.0012 -0.0012 -0.0012	Upper 110 0.6 0.6 120 125 125 125 Upper 110 0.0012 0.0012 0.0012 0.0012	RPD 1 6 RPD	Limit 20 20 Limit	Qual RA Qual
Magnesium (1312) ACZ ID WG586211 WG586211ICV WG586211ICB WG585978PBS WG585978LFB1 L86570-01MS L86570-01MSD L86570-01DUP Manganese (1312) ACZ ID WG586576ICV WG586576ICS WG585978PBS WG586576ICB WG586576ICB WG586578LFB2	2) Type ICV ICB PBS LFB MSD DUP 2) Type ICV ICB PBS PBS LFB	Analyzed 03/26/24 17:29 03/26/24 17:33 03/26/24 17:33 03/26/24 18:00 03/26/24 18:07 03/26/24 18:11 03/26/24 18:11 03/26/24 18:11 03/20/24 17:12 03/30/24 17:12 03/30/24 17:21 03/30/24 17:23 03/30/24 17:27	EPA 601 PCN/SCN II240309-1 II240306-3 II240306-3 II240306-3 EPA 602 PCN/SCN MS240109-5	0D QC 100 50.00453 50.00453 50.00453 50.00453 0B QC .05 .0501	Sample .89 .89 .89 Sample	Found 96.86 U U 48.71 49.8 50.2 .84 Found .05227 U .0006 U .0006 U .04663	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Rec% 97 97 98 99 Rec% 105	200 -0.6 -0.6 80 75 75 25 20 20 -0.0012 -0.0012 -0.0012 -0.0012 -0.0012 80	Upper 110 0.6 0.6 120 125 125 Upper 110 0.0012 0.0012 0.0012 120	RPD 1 6 RPD	Limit 20 20 Limit	Qual RA Qual
Magnesium (1312) ACZ ID WG586211 WG586211ICV WG586211ICB WG586211ICB WG585978PBS WG585978LFB1 L86570-01MS L86570-01DUP Manganese (1312) ACZ ID WG586576ICV WG586576ICS WG586576ICS WG586576ICB WG586578LFB2 WG586578LFB2	2) Type ICV ICB PBS LFB MSD DUP 2) Type ICV ICB PBS PBS LFB LFB LFB	Analyzed 03/26/24 17:29 03/26/24 17:33 03/26/24 17:33 03/26/24 18:00 03/26/24 18:11 03/26/24 18:11 03/26/24 18:11 03/26/24 18:11 03/26/24 17:11 03/30/24 17:12 03/30/24 17:21 03/30/24 17:21 03/30/24 17:27 03/30/24 17:28	EPA 601 PCN/SCN II240309-1 II240306-3 II240306-3 II240306-3 II240306-3 EPA 602 PCN/SCN MS240109-5 MS240321-2 MS240321-2	0D QC 100 50.00453 50.00453 50.00453 50.00453 0B QC .055 .0501 .0501 .0501	Sample .89 .89 .89 .89 Sample	Found 96.86 U U 48.71 49.8 50.2 .84 Found 0.05227 U .0006 U .04663 .0467	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Rec% 97 97 98 99 99 105 105 93 93	Lower 90 -0.6 -0.6 80 75 75 75 Lower 90 -0.0012 -0.0012 -0.0012 80 80 80	Upper 110 0.6 120 125 125 125 Upper 110 0.0012 0.0012 0.0012 120 120	RPD 1 6 RPD	Limit 20 20 Limit	Qual RA Qual
Magnesium (1312) ACZ ID WG586211 WG586211ICV WG586211ICB WG586211ICB WG585978PBS WG585978PBS WG585978PBS WG585978LFB1 L86570-01MS L86570-01MSD L86570-01DUP Manganese (1312) ACZ ID WG586576ICV WG586576ICB WG585978PBS WG585978LFB2 WG585978LFB2 WG586112PBS WG586112LFB2 WG586354LFB2	2) Type ICV ICB PBS LFB MS MSD DUP 2) Type ICV ICB PBS PBS LFB LFB LFB LFB	Analyzed 03/26/24 17:29 03/26/24 17:33 03/26/24 17:56 03/26/24 18:00 03/26/24 18:07 03/26/24 18:11 03/26/24 18:14 Analyzed 03/30/24 17:10 03/30/24 17:21 03/30/24 17:23 03/30/24 17:23 03/30/24 17:28 03/30/24 17:30	EPA 601 PCN/SCN II240309-1 II240306-3 II240306-3 II240306-3 II240306-3 EPA 602 PCN/SCN MS240109-5 MS240109-5	0D QC 100 50.00453 50.00453 50.00453 50.00453 00B QC .055 .055 .05501 .0501 .0501 .0501	Sample .89 .89 .89 Sample	Found 96.86 U U 48.71 49.8 50.2 .84 Found .05227 U .0006 U .04663 .0467 .05051	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Rec% 97 97 98 99 99 105 93 93 101	Lower 90 -0.6 -0.6 80 75 75 75 0.0012 -0.0012 -0.0012 -0.0012 80 80 80 80 80	Upper 110 0.6 0.6 120 125 125 125 Upper 110 0.0012 0.0012 0.0012 120 120 120 120	RPD 1 6 RPD	Limit 20 20 Limit	Qual RA Qual
Magnesium (1312) ACZ ID WG586211 WG586211ICV WG586211ICB WG586211ICB WG585978PBS WG585978PBS WG585978LFB1 L86570-01MS L86570-01DUP Manganese (1312) ACZ ID WG586576 WG586576ICV WG5865778PBS WG586112PBS WG586112PBS WG586112LFB2 WG586354LFB2 L86570-01DUP	2) Type ICV ICB PBS LFB MS MSD DUP 2) Type ICV ICB PBS PBS LFB LFB LFB LFB DUP	Analyzed 03/26/24 17:29 03/26/24 17:33 03/26/24 17:56 03/26/24 18:00 03/26/24 18:07 03/26/24 18:11 03/26/24 18:14 Analyzed 03/30/24 17:10 03/30/24 17:21 03/30/24 17:21 03/30/24 17:23 03/30/24 17:28 03/30/24 17:30 03/30/24 17:38	EPA 601 PCN/SCN II240309-1 II240306-3 II240302-1 II24032-1 II2400-1 II2400-1 II2400-1 II2400-1 II2400-1 II2400-1 II2400-1 II2400-1 II2400-1 II2400-1 II2400-1 II240	0D QC 100 50.00453 50.00453 50.00453 50.00453 00 QC 05 .055 .05501 .05501 .05501 .05501	Sample .89 .89 .89 Sample	Found 96.86 U U 48.71 49.8 50.2 .84 Found .05227 U .0006 U .04663 .0467 .05051 .05051 .07544	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Rec% 97 97 98 99 Rec% 105 93 93 101	Lower 90 -0.6 -0.6 80 75 75 75 Lower 90 -0.0012 -0.0012 -0.0012 80 80 80 80	Upper 110 0.6 0.6 120 125 125 125 Upper 110 0.0012 0.0012 0.0012 120 120 120 120	RPD 1 6 RPD	Limit 20 20 Limit	Qual RA Qual
Magnesium (1312) ACZ ID WG586211 WG586211ICV WG586211ICB WG586211ICB WG585978PBS WG585978PBS WG585978LFB1 L86570-01MS L86570-01DUP Manganese (1312) ACZ ID WG586576 WG586576ICB WG585978PBS WG585978LFB2 WG586112PBS WG586354LFB2 L86570-01DUP L86570-01DUP	2) Type ICV ICB PBS LFB MS DUP 2) Type 2) Type ICV ICB PBS PBS LFB LFB LFB LFB MS	Analyzed 03/26/24 17:29 03/26/24 17:33 03/26/24 17:56 03/26/24 18:00 03/26/24 18:07 03/26/24 18:11 03/26/24 18:11 03/26/24 18:14 Analyzed 03/30/24 17:10 03/30/24 17:12 03/30/24 17:21 03/30/24 17:23 03/30/24 17:23 03/30/24 17:30 03/30/24 17:38 03/30/24 17:41	EPA 601 PCN/SCN II240309-1 II240306-3 II240321-2 II352400-2 II352400-2 II352400-2 II352400-2 II352400-2 II352400-2 II352400-2 II352400-2 II352400-2 II352400-2	0D QC 100 50.00453 50.00453 50.00453 50.00453 00 QC 05 .0551 .0501 .0501 .0501 .0501 .0501	Sample .89 .89 .89 .89 .0567	Found 96.86 U U 48.71 49.8 50.2 .84 Found .05227 U .0006 U .04663 .0467 .05051 .07544 .10518	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Rec% 97 97 98 99 Rec% 105 93 93 101 97	Lower 90 -0.6 -0.6 80 75 75 75 Lower 90 -0.0012 -0.0012 -0.0012 80 80 80 80 80 80	Upper 110 0.6 0.6 120 125 125 125 Upper 110 0.0012 0.0012 0.0012 120 120 120 120 120	RPD 1 6 RPD	Limit 20 20 Limit 20	Qual RA Qual

ACZ Project ID: L86570

Mercury (1312)			EPA 747	0A									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG586201													
WG586201ICV1	ICV	03/26/24 13:19	HG240226-3	.005		.00515	mg/L	103	95	105			
WG586201ICB	ICB	03/26/24 13:20				U	mg/L		-0.0002	0.0002			
WG586206													
WG586206LFB	LFB	03/26/24 14:35	HG240325-3	.002002		.00185	mg/L	92	85	115			
WG585978PBS	PBS	03/26/24 14:36				U	mg/L		-0.0006	0.0006			
WG585978LFB1	LFB	03/26/24 14:37	HG240325-3	.002002		.00175	mg/L	87	85	115			
L86570-01MS	MS	03/26/24 14:39	HG240325-3	.002002	U	.00178	mg/L	89	85	115			
L86570-01MSD	MSD	03/26/24 14:40	HG240325-3	.002002	U	.00178	mg/L	89	85	115	0	20	
L86570-01DUP	DUP	03/26/24 14:41			U	U	mg/L				0	20	RA
WG586112PBS	PBS	03/26/24 14:47				U	mg/L		-0.0006	0.0006			
WG586112LFB1	LFB	03/26/24 14:48	HG240325-3	.002002		.0018	mg/L	90	85	115			
Molybdenum (13	312)		EPA 602	0B									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG586576													
WG586576ICV	ICV	03/30/24 17:10	MS240109-5	.02		.02014	mg/L	101	90	110			
WG586576ICB	ICB	03/30/24 17:12				U	mg/L		-0.0006	0.0006			
WG585978PBS	PBS	03/30/24 17:21				U	mg/L		-0.0006	0.0006			
WG586112PBS	PBS	03/30/24 17:23				U	mg/L		-0.0006	0.0006			
WG586354PBS	PBS	03/30/24 17:25				U	mg/L		-0.0006	0.0006			
WG585978LFB2	LFB	03/30/24 17:27	MS240321-2	.05005		.04572	mg/L	91	80	120			
WG586112LFB2	LFB	03/30/24 17:28	MS240321-2	.05005		.04661	mg/L	93	80	120			
WG586354LFB2	LFB	03/30/24 17:30	MS240321-2	.05005		.04751	mg/L	95	80	120			
L86570-01DUP	DUP	03/30/24 17:38			.0137	.01697	mg/L				21	20	RD
L86570-02MS	MS	03/30/24 17:41	MS240321-2	.05005	.0218	.06929	mg/L	95	75	125			
L86570-02MSD	MSD	03/30/24 17:43	MS240321-2	.05005	.0218	.06799	mg/L	92	75	125	2	20	
Neutralization P	otential	as CaCO3	EPA 600	/2-78-054 3	3.2.3								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG593465													
WG593465PBS	PBS	07/19/24 12:20				U	%		-0.2	0.2			
WG593465LCSS	LCSS	07/19/24 12:47	PCN625358	99.8		97.5	%	98	80	120			
L86570-02DUP	DUP	07/19/24 14:10			10.5	10.6	%				1	20	
L86570-02MS	MS	07/19/24 14:37	SI230912-3	3	10.5	13.9	%	113	70	130			

ACZ Project ID: L86570

Nickel (1312)			EPA 6020E	3									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG586576													
WG586576ICV	ICV	03/30/24 17:10	MS240109-5	.05		.0517	mg/L	103	90	110			
WG586576ICB	ICB	03/30/24 17:12				U	mg/L		-0.0012	0.0012			
WG585978PBS	PBS	03/30/24 17:21				U	mg/L		-0.0012	0.0012			
WG586112PBS	PBS	03/30/24 17:23				U	mg/L		-0.0012	0.0012			
WG585978LFB2	LFB	03/30/24 17:27	MS240321-2	.0501		.04742	mg/L	95	80	120			
WG586112LFB2	LFB	03/30/24 17:28	MS240321-2	.0501		.04678	mg/L	93	80	120			
WG586354LFB2	LFB	03/30/24 17:30	MS240321-2	.0501		.04671	mg/L	93	80	120			
L86570-01DUP	DUP	03/30/24 17:38			U	U	mg/L				0	20	RA
L86570-02MS	MS	03/30/24 17:41	MS240321-2	.0501	U	.0468	mg/L	93	75	125			
L86570-02MSD	MSD	03/30/24 17:43	MS240321-2	.0501	U	.04637	mg/L	93	75	125	1	20	
Nitrate/Nitrite as	s N (131	2-DI)	EPA 353.2										
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG586121													
WG586121ICV	ICV	03/21/24 23:31	WI240103-7	2.416		2.326	mg/L	96	90	110			
WG586121ICB	ICB	03/21/24 23:32				U	mg/L		-0.02	0.02			
WG586123													
WG586123LFB	LFB	03/22/24 0:43	WI240228-17	2		1.947	mg/L	97	90	110			
WG585975PBS	PBS	03/22/24 0:45				U	mg/L		-0.02	0.02			
L86570-01DUP	DUP	03/22/24 0:47			1.85	1.828	mg/L				1	20	
L86570-02AS	AS	03/22/24 0:50	WI240228-17	2	1.74	3.727	mg/L	99	90	110			
Nitrite as N (131	2-DI)		EPA 353.2										
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG586121													
WG586121ICV	ICV	03/21/24 23:31	WI240103-7	.608		.596	mg/L	98	90	110			
WG586121ICB	ICB	03/21/24 23:32				U	mg/L		-0.01	0.01			
WG586123													
W/G5861231 EB	I FB	03/22/24 0.43	WI240228-17	1		1 014	ma/l	101	90	110			
WG585975PBS	PBS	03/22/24 0:45	112 10220 11			1.014	ma/l	101	-0.01	0.01			
1 86570-01DUP		03/22/24 0:47			023	014	ma/L		0.01	0.01	49	20	RA
L86570-02AS	AS	03/22/24 0:50	WI240228-17	1	.016	1.075	mg/L	106	90	110		20	
Nitrogen, ammo	onia (131	2-DI)	EPA 350.1										
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG586671													
WG586671ICV	ICV	04/02/24 10:25	WI240106-1	12		12 336	ma/L	103	90	110			
WG586671ICB	ICB	04/02/24 10:26		12		12.000	ma/L	100	-0.1	0.1			
WG586679	102	0 1102/2 1 10120				0	Ū		0	0.1			
WG586670LEB		04/02/24 11:26	WI231102-6	10		0 712	ma/l	07	90	110			
WC585075DPS	LFD DPC	04/02/24 11:30	¥VI231102-0	10		9./13	mg/L	91	90	0.4			
1 86570-01DLIP		04/02/24 11.3/			116	113	ma/l		-0.1	0.1	3	20	RA
1 86570-0245	AS	04/02/24 11:43	WI231102-6	10		10 679	ma/l	107	90	110	5	20	1.0.1
200010 02/10	,	5		.0	0	10.013		101	00				

ACZ Project ID: L86570

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Phosphorus, ortho dissolved (1312-DI) EPA 365.1

ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG586122													
WG586122ICV	ICV	03/22/24 0:52	WI240307-4	.65228		.66	mg/L	101	90	110			
WG586122ICB	ICB	03/22/24 0:53				U	mg/L		-0.01	0.01			
WG586125													
WG586125LFB	LFB	03/22/24 1:15	WI240315-2	.5		.49	mg/L	98	90	110			
WG585975PBS	PBS	03/22/24 1:16				U	mg/L		-0.01	0.01			
L86570-01DUP	DUP	03/22/24 1:18			U	U	mg/L				0	20	RA
L86570-02AS	AS	03/22/24 1:20	WI240315-2	.5	U	.489	mg/L	98	90	110			

Phosphorus, Total (1312-DI)

ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG586398													
WG586398ICV	ICV	03/27/24 14:32	WI240301-4	.6523		.694	mg/L	106	90	110			
WG586398ICB	ICB	03/27/24 14:35				U	mg/L		-0.01	0.01			
WG585975PBS	PBS	03/27/24 14:36				U	mg/L		-0.01	0.01			
L86570-01DUP	DUP	03/27/24 14:38			U	U	mg/L				0	20	RA
L86570-02MS	MS	03/27/24 14:40	WI240315-2	.5	U	.517	mg/L	103	90	110			
WG586190PBS	PBS	03/27/24 14:47				U	mg/L		-0.01	0.01			
WG586190LFB	LFB	03/27/24 14:50	WI240315-2	.5		.514	mg/L	103	90	110			

Potassium (1312)

EPA 6010D

EPA 365.1

ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG586211													
WG586211ICV	ICV	03/26/24 17:29	II240309-1	20		19.4	mg/L	97	90	110			
WG586211ICB	ICB	03/26/24 17:33				U	mg/L		-1.5	1.5			
WG585978PBS	PBS	03/26/24 17:56				U	mg/L		-1.5	1.5			
WG585978LFB1	LFB	03/26/24 18:00	II240306-3	100.0104		96.87	mg/L	97	80	120			
L86570-01MS	MS	03/26/24 18:07	II240306-3	100.0104	4.14	101.2	mg/L	97	75	125			
L86570-01MSD	MSD	03/26/24 18:11	II240306-3	100.0104	4.14	102.2	mg/L	98	75	125	1	20	
L86570-01DUP	DUP	03/26/24 18:14			4.14	3.97	mg/L				4	20	RA

Residue, Filterable (TDS) @180C (1312) SM 2540 C-2011

ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG586253													
WG586253PBW	PBW	03/25/24 18:25				U	mg/L		-20	20			
WG586253LCSW	LCSW	03/25/24 18:28	PCN626254	1000		986	mg/L	99	80	120			
WG585975PBS	PBS	03/25/24 18:32				U	mg/L		-40	40			
L86570-01DUP	DUP	03/25/24 18:39			76	86	mg/L				12	10	RA

Residue, Non-Filter (TSS) @180C (1312-DI) SM 2540 D-2011/2015

ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG586424													
WG586424PBW	PBW	03/27/24 21:30				5	mg/L		-5	5			BF
WG586424LCSW	LCSW	03/27/24 21:32	PCN626252	100		90	mg/L	90	80	120			
WG585975PBS	PBS	03/27/24 21:34				U	mg/L		-15	15			
L86570-01DUP	DUP	03/27/24 21:38			U	U	mg/L				0	10	RA

ACZ Project ID: L86570

Selenium (1312)			EPA 602	0B									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG586576													
WG586576ICV	ICV	03/30/24 17:10	MS240109-5	.05		.05265	mg/L	105	90	110			
WG586576ICB	ICB	03/30/24 17:12				U	mg/L		-0.0003	0.0003			
WG585978PBS	PBS	03/30/24 17:21				U	mg/L		-0.0003	0.0003			
WG586112PBS	PBS	03/30/24 17:23				U	mg/L		-0.0003	0.0003			
WG586354PBS	PBS	03/30/24 17:25				U	mg/L		-0.0003	0.0003			
WG585978LFB2	LFB	03/30/24 17:27	MS240321-2	.05005		.04607	mg/L	92	80	120			
WG586112LFB2	LFB	03/30/24 17:28	MS240321-2	.05005		.04669	mg/L	93	80	120			
WG586354LFB2	LFB	03/30/24 17:30	MS240321-2	.05005		.04669	mg/L	93	80	120			
L86570-01DUP	DUP	03/30/24 17:38			.00015	.00013	mg/L				14	20	RA
L86570-02MS	MS	03/30/24 17:41	MS240321-2	.05005	.0001	.04741	mg/L	95	75	125			
L86570-02MSD	MSD	03/30/24 17:43	MS240321-2	.05005	.0001	.04748	mg/L	95	75	125	0	20	
Silica (1312)			EPA 601	0D									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG586211													
WG586211ICV	ICV	03/26/24 17:29	II240309-1	42.8		42.13	mg/L	98	90	110			
WG586211ICB	ICB	03/26/24 17:33		12.0		U	mg/L		-0.6	0.6			
WG585978PBS	PBS	03/26/24 17:56				U	mg/L		-0.6	0.6			
WG585978LFB1	LFB	03/26/24 18:00	II240306-3	21,42782		20.24	mg/L	94	80	120			
L86570-01MS	MS	03/26/24 18:07	II240306-3	21.42782	2.5	22.45	mg/L	93	75	125			
L86570-01MSD	MSD	03/26/24 18:11	II240306-3	21.42782	2.5	23.05	mg/L	96	75	125	3	20	
L86570-01DUP	DUP	03/26/24 18:14			2.5	2.31	mg/L				8	20	
Silver (1312)			EPA 602	0B									
Silver (1312) ACZ ID	Туре	Analyzed	EPA 602 PCN/SCN	0B QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
Silver (1312) ACZ ID WG586576	Туре	Analyzed	EPA 602 PCN/SCN	0B QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
Silver (1312) ACZ ID WG586576 WG586576ICV	Type	Analyzed 03/30/24 17:10	EPA 602 PCN/SCN MS240109-5	0B QC .02	Sample	Found .02081	Units mg/L	Rec%	Lower 90	Upper 110	RPD	Limit	Qual
Silver (1312) AC2 ID WG586576 WG586576ICV WG586576ICB	Type ICV ICB	Analyzed 03/30/24 17:10 03/30/24 17:12	EPA 602 PCN/SCN MS240109-5	0B QC .02	Sample	Found .02081 U	Units mg/L mg/L	Rec%	Lower 90 -0.0003	Upper 110 0.0003	RPD	Limit	Qual
Silver (1312) ACZ ID WG586576 WG586576ICV WG586576ICB WG585978PBS	Type ICV ICB PBS	Analyzed 03/30/24 17:10 03/30/24 17:12 03/30/24 17:21	EPA 602 PCN/SCN MS240109-5	0B QC .02	Sample	Found .02081 U U	Units mg/L mg/L mg/L	Rec%	90 -0.0003 -0.0003	Upper 110 0.0003 0.0003	RPD	Limit	Qual
Silver (1312) ACZ ID WG586576 WG586576ICV WG586576ICB WG585978PBS WG586112PBS	Type ICV ICB PBS PBS	Analyzed 03/30/24 17:10 03/30/24 17:12 03/30/24 17:21 03/30/24 17:23	EPA 602 PCN/SCN MS240109-5	0B QC .02	Sample	Found .02081 U U U	Units mg/L mg/L mg/L mg/L	Rec%	90 -0.0003 -0.0003 -0.0003	Upper 110 0.0003 0.0003 0.0003	RPD	Limit	Qual
Silver (1312) ACZ ID WG586576 WG586576ICV WG586576ICB WG585978PBS WG586112PBS WG586354PBS	Type ICV ICB PBS PBS PBS	Analyzed 03/30/24 17:10 03/30/24 17:12 03/30/24 17:21 03/30/24 17:23 03/30/24 17:25	EPA 602 PCN/SCN MS240109-5	0B QC .02	Sample	Found .02081 U U U U	Units mg/L mg/L mg/L mg/L mg/L	Rec%	90 -0.0003 -0.0003 -0.0003 -0.0003	Upper 110 0.0003 0.0003 0.0003 0.0003	RPD	Limit	Qual
Silver (1312) ACZ ID WG586576 WG586576ICV WG586576ICB WG585978PBS WG586112PBS WG586354PBS WG586354PBS	Type ICV ICB PBS PBS LFB	Analyzed 03/30/24 17:10 03/30/24 17:12 03/30/24 17:21 03/30/24 17:23 03/30/24 17:25 03/30/24 17:27	EPA 602 PCN/SCN MS240109-5	0B QC .02 .01	Sample	Found .02081 U U U U .00932	Units mg/L mg/L mg/L mg/L mg/L	Rec% 104 93	90 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003 80	Upper 110 0.0003 0.0003 0.0003 0.0003 120	RPD	Limit	Qual
Silver (1312) AC2 ID WG586576 WG586576ICV WG586576ICB WG585978PBS WG586112PBS WG586354PBS WG585978LFB2 WG586112LFB2	Type ICV ICB PBS PBS LFB LFB	Analyzed 03/30/24 17:10 03/30/24 17:12 03/30/24 17:21 03/30/24 17:23 03/30/24 17:25 03/30/24 17:27 03/30/24 17:28	EPA 602 PCN/SCN MS240109-5 MS240321-2 MS240321-2	0B QC .02 .01 .01	Sample	Found .02081 U U U .00932 .00936	Units mg/L mg/L mg/L mg/L mg/L mg/L	Rec% 104 93 94	90 -0.0003 -0.0003 -0.0003 -0.0003 80 80 80	Upper 110 0.0003 0.0003 0.0003 0.0003 120 120	RPD '	Limit	Qual
Silver (1312) ACZ ID WG586576 WG586576ICV WG586576ICB WG585978PBS WG586112PBS WG586354PBS WG585978LFB2 WG586112LFB2 WG586112LFB2	Type ICV ICB PBS PBS LFB LFB LFB LFB	Analyzed 03/30/24 17:10 03/30/24 17:12 03/30/24 17:21 03/30/24 17:23 03/30/24 17:25 03/30/24 17:27 03/30/24 17:28 03/30/24 17:30	EPA 602 PCN/SCN MS240109-5 MS240321-2 MS240321-2 MS240321-2	0B QC .02 .01 .01 .01 .01	Sample	Found .02081 U U U .00932 .00936 .00953	Units mg/L mg/L mg/L mg/L mg/L mg/L	Rec% 104 93 94 95	90 -0.0003 -0.0003 -0.0003 -0.0003 80 80 80 80 80	Upper 110 0.0003 0.0003 0.0003 0.0003 120 120 120 120	RPD	Limit	Qual
Silver (1312) AC2 ID WG586576 WG586576ICV WG586576ICB WG586576ICB WG586112PBS WG586354PBS WG586354PBS WG586354PBS WG586354LFB2 WG586354LFB2 L86570-01DUP	Type ICV ICB PBS PBS LFB LFB LFB LFB DUP	Analyzed 03/30/24 17:10 03/30/24 17:12 03/30/24 17:21 03/30/24 17:23 03/30/24 17:25 03/30/24 17:27 03/30/24 17:28 03/30/24 17:30 03/30/24 17:38	EPA 602 PCN/SCN MS240109-5 MS240321-2 MS240321-2 MS240321-2	0B QC .02 .01 .01 .01 .01	Sample	Found .02081 U U U .00932 .00936 .00953 U	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Rec% 104 93 94 95	90 -0.0003 -0.0003 -0.0003 -0.0003 80 80 80 80	Upper 110 0.0003 0.0003 0.0003 120 120 120 120	RPD 0	Limit 20	Qual
Silver (1312) AC2 ID WG586576 WG586576ICV WG586576ICB WG586576ICB WG586112PBS WG586354PBS WG586354PBS WG586354PBS WG586354LFB2 WG586354LFB2 L86570-01DUP L86570-02MS	Type ICV ICB PBS PBS LFB LFB LFB DUP MS	Analyzed 03/30/24 17:10 03/30/24 17:12 03/30/24 17:21 03/30/24 17:23 03/30/24 17:25 03/30/24 17:27 03/30/24 17:28 03/30/24 17:30 03/30/24 17:38 03/30/24 17:41	EPA 602 PCN/SCN MS240109-5 MS240321-2 MS240321-2 MS240321-2 MS240321-2	0B QC .02 .01 .01 .01 .01 .01	Sample U U	Found .02081 U U U .00932 .00936 .00953 U .00954	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Rec% 104 93 94 95 95	90 -0.0003 -0.0003 -0.0003 -0.0003 80 80 80 80 80	Upper 110 0.0003 0.0003 0.0003 120 120 120 120 125	RPD 0	Limit 20	Qual
Silver (1312) ACZ ID WG586576 WG586576ICV WG586576ICB WG586576ICB WG586112PBS WG586354PBS WG586354PBS WG586354LFB2 UG586354LFB2 L86570-01DUP L86570-02MS L86570-02MS	Type ICV ICB PBS PBS LFB LFB LFB DUP MS MSD	Analyzed 03/30/24 17:10 03/30/24 17:12 03/30/24 17:21 03/30/24 17:23 03/30/24 17:25 03/30/24 17:28 03/30/24 17:30 03/30/24 17:38 03/30/24 17:41 03/30/24 17:41	EPA 602 PCN/SCN MS240109-5 MS240321-2 MS240321-2 MS240321-2 MS240321-2	0B QC .02 .01 .01 .01 .01 .01	Sample U U U	Found .02081 U U U .00932 .00936 .00953 U .00954 .0094	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Rec% 104 93 94 95 95 94	90 -0.0003 -0.0003 -0.0003 -0.0003 80 80 80 80 80 75 75	Upper 110 0.0003 0.0003 0.0003 120 120 120 125 125	RPD 0	Limit 20 20	Qual
Silver (1312) AC2 ID WG586576ICV WG586576ICV WG586576ICB WG586576ICB WG586112PBS WG586354PBS WG586354PBS WG586354LFB2 UG586354LFB2 L86570-01DUP L86570-02MS L86570-02MS L86570-02MSD Sodium (1312)	Type ICV ICB PBS PBS LFB LFB LFB DUP MS MSD	Analyzed 03/30/24 17:10 03/30/24 17:12 03/30/24 17:21 03/30/24 17:23 03/30/24 17:25 03/30/24 17:27 03/30/24 17:28 03/30/24 17:30 03/30/24 17:38 03/30/24 17:41 03/30/24 17:43	EPA 602 PCN/SCN MS240109-5 MS240321-2 MS240321-2 MS240321-2 MS240321-2 MS240321-2 EPA 601	0B QC .02 .01 .01 .01 .01 .01 .01 .01 .01	Sample U U U	Found .02081 U U U .00932 .00936 .00953 U .00954 .0094	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Rec% 104 93 94 95 95 95 94	90 -0.0003 -0.0003 -0.0003 -0.0003 80 80 80 80 75 75 75	Upper 110 0.0003 0.0003 0.0003 120 120 120 125 125	RPD 0 1	Limit 20 20	Qual
Silver (1312) AC2 ID WG586576 WG586576ICV WG586576ICB WG586576ICB WG586354PBS WG586354PBS WG586354PBS WG586354LFB2 L86570-01DUP L86570-02MS L86570-02MS L86570-02MSD Sodium (1312) AC2 ID	Type ICV ICB PBS PBS LFB LFB LFB DUP MS MSD	Analyzed 03/30/24 17:10 03/30/24 17:12 03/30/24 17:21 03/30/24 17:23 03/30/24 17:25 03/30/24 17:26 03/30/24 17:30 03/30/24 17:30 03/30/24 17:41 03/30/24 17:41	EPA 602 PCN/SCN MS240109-5 MS240321-2 MS240321-2 MS240321-2 MS240321-2 MS240321-2 MS240321-2 MS240321-2 MS240321-2 MS240321-2	0B QC .02 .01 .01 .01 .01 .01 .01 0D QC	Sample U U U Sample	Found .02081 U U .00932 .00936 .00953 U .00954 .0094	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Rec% 104 93 94 95 95 94 Rec%	90 -0.0003 -0.0003 -0.0003 -0.0003 80 80 80 80 80 75 75 75	Upper 110 0.0003 0.0003 0.0003 120 120 120 120 125 125	RPD 0 1	Limit 20 20 Limit	Qual
Silver (1312) AC2 ID WG586576 WG586576ICV WG586576ICB WG586576ICB WG586576ICB WG586354PBS WG586354PBS WG586354LFB2 UG586354LFB2 L86570-01DUP L86570-02MS L86570-02MS L86570-02MSD Sodium (1312) AC2 ID WG586211	Type ICV ICB PBS PBS LFB LFB LFB DUP MS MSD	Analyzed 03/30/24 17:10 03/30/24 17:12 03/30/24 17:21 03/30/24 17:23 03/30/24 17:25 03/30/24 17:27 03/30/24 17:28 03/30/24 17:30 03/30/24 17:41 03/30/24 17:43	EPA 602 PCN/SCN MS240109-5 MS240321-2 MS240321-2 MS240321-2 MS240321-2 EPA 601 PCN/SCN	0B QC .02 .01 .01 .01 .01 .01 .01 .01 .01	Sample U U U Sample	Found .02081 U U U .00932 .00936 .00953 U .00954 .0094	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Rec% 104 93 94 95 95 94 Rec%	Lower 90 -0.0003 -0.0003 -0.0003 80 80 80 80 75 75 75	Upper 110 0.0003 0.0003 0.0003 120 120 120 125 125 Upper	RPD 0 1 RPD	Limit 20 20 Limit	Qual RA Qual
Silver (1312) AC2 ID WG586576 WG586576ICV WG586576ICB WG586576ICB WG586576ICB WG586112PBS WG586354PBS WG586354PBS WG586354LFB2 L86570-01DUP L86570-02MS L86570-02MS L86570-02MSD Sodium (1312) AC2 ID WG586211 WG586211ICV	Type ICV ICB PBS PBS LFB LFB LFB DUP MS MSD	Analyzed 03/30/24 17:10 03/30/24 17:12 03/30/24 17:21 03/30/24 17:23 03/30/24 17:25 03/30/24 17:27 03/30/24 17:28 03/30/24 17:30 03/30/24 17:30 03/30/24 17:43 03/30/24 17:43 03/30/24 17:43	EPA 602 PCN/SCN MS240109-5 MS240321-2	0B QC .02 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01	Sample U U U Sample	Found .02081 U U U .00932 .00936 .00953 U .00954 .0094 Found	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Rec% 104 93 94 95 95 95 94 Rec% 97	Lower 90 -0.0003 -0.0003 -0.0003 80 80 80 80 75 75 75 	Upper 110 0.0003 0.0003 0.0003 120 120 120 125 125 125 125 125	RPD 0 1 RPD	Limit 20 20 Limit	Qual RA Qual
Silver (1312) AC2 ID WG586576 WG586576ICV WG586576ICB WG586576ICB WG586112PBS WG586112PBS WG586354PBS WG586354PBS WG586354LFB2 L86570-01DUP L86570-02MS L86570-02MS L86570-02MSD Sodium (1312) AC2 ID WG586211 WG586211ICV WG586211ICV	Type ICV ICB PBS PBS LFB LFB LFB DUP MS MSD Type	Analyzed 03/30/24 17:10 03/30/24 17:12 03/30/24 17:21 03/30/24 17:23 03/30/24 17:25 03/30/24 17:28 03/30/24 17:30 03/30/24 17:38 03/30/24 17:43 03/30/24 17:43 03/30/24 17:43 03/30/24 17:43	EPA 602 PCN/SCN MS240109-5 MS240321-2 MS240321-2 MS240321-2 MS240321-2 EPA 601 PCN/SCN II240309-1	0B QC .02 .01 .01 .01 .01 .01 .01 0D QC 100	Sample U U U Sample	Found .02081 U U U .00932 .00953 U .00954 .0094 Found 96.98 U	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L Units	Rec% 104 93 94 95 95 94 86 86 97	Lower 90 -0.0003 -0.0003 -0.0003 80 80 80 80 75 75 75 Lower 90 -0.6	Upper 110 0.0003 0.0003 0.0003 120 120 120 125 125 125 125 125 125	RPD 0 1 RPD	Limit 20 20 Limit	Qual RA Qual
Silver (1312) AC2 ID WG586576ICV WG586576ICB WG586576ICB WG586576ICB WG586112PBS WG586112PBS WG586354PBS WG586354PBS WG586354LFB2 L86570-01DUP L86570-02MS L86570-02MS L86570-02MSD Sodium (1312) AC2 ID WG586211ICV WG586211ICV WG586211ICV WG586211ICB WG585978PBS	Type ICV ICB PBS PBS LFB LFB LFB DUP MS MSD Type ICV ICB PBS	Analyzed 03/30/24 17:10 03/30/24 17:12 03/30/24 17:21 03/30/24 17:23 03/30/24 17:25 03/30/24 17:26 03/30/24 17:38 03/30/24 17:38 03/30/24 17:41 03/30/24 17:41 03/30/24 17:41 03/30/24 17:43 03/26/24 17:29 03/26/24 17:33 03/26/24 17:56	EPA 602 PCN/SCN MS240109-5 MS240321-2 MS240321-2 MS240321-2 MS240321-2 EPA 601 PCN/SCN II240309-1	0B QC .02 .01 .01 .01 .01 .01 .01 0D QC 100	Sample U U Sample	Found .02081 U U U .00932 .00953 U .00954 .0094 Found 96.98 U U	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Rec% 104 93 94 95 95 94 Rec% 97	Lower 90 -0.0003 -0.0003 -0.0003 80 80 80 80 80 75 75 75 Lower 90 -0.6 -0.6	Upper 110 0.0003 0.0003 0.0003 120 120 120 125 125 125 Upper 110 0.6 0.6	RPD 0 1 RPD	Limit 20 20 Limit	Qual RA Qual
Silver (1312) AC2 ID WG586576ICV WG586576ICB WG586576ICB WG586576ICB WG586354PBS WG586354PBS WG586354PBS WG586354LFB2 L86570-01DUP L86570-02MS L86570-02MS L86570-02MSD Sodium (1312) AC2 ID WG586211ICV WG586211ICV WG586211ICB WG585978LFB1	Type ICV ICB PBS PBS LFB LFB LFB DUP MS MSD Type ICV ICB PBS LFB	Analyzed 03/30/24 17:10 03/30/24 17:12 03/30/24 17:21 03/30/24 17:23 03/30/24 17:25 03/30/24 17:27 03/30/24 17:38 03/30/24 17:38 03/30/24 17:38 03/30/24 17:38 03/30/24 17:38 03/30/24 17:38 03/26/24 17:29 03/26/24 17:56 03/26/24 17:56 03/26/24 18:00	EPA 602 PCN/SCN MS240109-5 MS240321-2 MS240321-2 MS240321-2 MS240321-2 EPA 601 PCN/SCN II240309-1 II240306-3	0B QC .02 .01 .01 .01 .01 .01 .01 0D QC 100 99.96689	Sample U U U Sample	Found .02081 U U .00932 .00936 .00953 U .00954 .0094 Found 96.98 U U 96.67	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Rec% 104 93 94 95 95 94 85 94 87 97 97	90 -0.0003 -0.0003 -0.0003 -0.0003 80 80 80 80 75 75 75 20 Lower 90 -0.6 -0.6 80	Upper 110 0.0003 0.0003 0.0003 120 120 120 125 125 Upper 110 0.6 0.6 120	RPD 0 1 RPD	Limit 20 20 Limit	Qual RA Qual
Silver (1312) AC2 ID WG586576ICV WG586576ICB WG586576ICB WG586576ICB WG586354PBS WG586354PBS WG586354LFB2 UG586354LFB2 L86570-02MS L86570-02MS L86570-02MSD Sodium (1312) AC2 ID WG586211ICV WG586211ICB WG585978LFB1 L86570-01MS	Type ICV ICB PBS PBS LFB LFB LFB DUP MS MSD Type ICV ICB PBS LFB MS	Analyzed 03/30/24 17:10 03/30/24 17:12 03/30/24 17:21 03/30/24 17:23 03/30/24 17:25 03/30/24 17:25 03/30/24 17:28 03/30/24 17:30 03/30/24 17:38 03/30/24 17:30 03/30/24 17:41 03/30/24 17:41 03/26/24 17:29 03/26/24 17:56 03/26/24 18:00 03/26/24 18:07	EPA 602 PCN/SCN MS240109-5 MS240321-2 MS240321-2 MS240321-2 MS240321-2 MS240321-2 MS240321-2 II240306-3 II240309-1 II240306-3 II240306-3 II240306-3	0B QC .02 .01 .01 .01 .01 .01 0D QC 100 99.96689 99.96689	Sample U U U Sample	Found .02081 U U U .00932 .00953 U .00954 .00954 .0094 Found 96.98 U U 96.67 97.81	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Rec% 104 93 94 95 95 94 85 94 87 97 97 97	Lower 90 -0.0003 -0.0003 -0.0003 80 80 80 80 80 75 75 20 Lower 90 -0.6 -0.6 80 75	Upper 110 0.0003 0.0003 0.0003 120 120 120 120 125 125 Upper 110 0.6 0.6 120 125	RPD 0 1 RPD	Limit 20 20 Limit	Qual RA Qual
Silver (1312) AC2 ID WG586576ICV WG586576ICV WG586576ICB WG586576ICB WG586354PBS WG586354PBS WG586354LFB2 UG586354LFB2 L86570-01DUP L86570-02MS L86570-02MSD Sodium (1312) AC2 ID WG586211ICV WG586211ICV WG586211ICV WG586211ICB WG585978PBS WG585978LFB1 L86570-01MS L86570-01MSD	Type ICV ICB PBS PBS LFB LFB LFB DUP MS MSD Type ICV ICB PBS LFB MS MSD	Analyzed 03/30/24 17:10 03/30/24 17:12 03/30/24 17:21 03/30/24 17:23 03/30/24 17:25 03/30/24 17:25 03/30/24 17:28 03/30/24 17:30 03/30/24 17:38 03/30/24 17:38 03/30/24 17:38 03/30/24 17:38 03/26/24 17:33 03/26/24 17:56 03/26/24 18:07 03/26/24 18:11	EPA 602 PCN/SCN MS240109-5 MS240321-2 MS240321-2 MS240321-2 MS240321-2 MS240321-2 EPA 601 PCN/SCN II240306-3 II240306-3 II240306-3 II240306-3 II240306-3	0B QC .02 .01 .01 .01 .01 .01 .01 .01 0D QC 100 99.96689 99.96689 99.96689	Sample U U U Sample	Found 02081 U U U 00932 00936 00953 U .00954 .00954 .00954 .0094 Found 96.98 U U 96.67 97.81 98.81	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Rec% 104 93 94 95 95 94 Rec% 97 97 97 97 98	Lower 90 -0.0003 -0.0003 -0.0003 80 80 80 80 75 75 75 -0.6 80 -0.6 80 75 75 75	Upper 110 0.0003 0.0003 0.0003 120 120 120 120 125 125 Upper 110 0.6 0.6 120 125 125	RPD 0 1 RPD	Limit 20 20 Limit 20 20	Qual RA Qual

ACZ Project ID: L86570

Strontium (1312)			EPA 6010	D									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG586211													
WG586211ICV	ICV	03/26/24 17:29	II240309-1	2		1.915	mg/L	96	90	110			
WG586211ICB	ICB	03/26/24 17:33				U	mg/L		-0.027	0.027			
WG585978PBS	PBS	03/26/24 17:56				U	mg/L		-0.027	0.027			
WG585978LFB1	LFB	03/26/24 18:00	II240306-3	.501		.5072	mg/L	101	80	120			
L86570-01MS	MS	03/26/24 18:07	II240306-3	.501	.429	.9378	mg/L	102	75	125			
L86570-01MSD	MSD	03/26/24 18:11	II240306-3	.501	.429	.9525	mg/L	104	75	125	2	20	
L86570-01DUP	DUP	03/26/24 18:14			.429	.4686	mg/L				9	20	
Sulfate (1312-DI)			EPA 300.	0									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG585845													
WG585845ICV	ICV	03/20/24 14:53	WI240315-8	50		49.33	mg/L	99	90	110			
WG585845ICB	ICB	03/20/24 15:11				U	mg/L		-0.9	0.9			
WG586304													
WC596204ICV		02/20/24 14:52	WI240315-8	50		10.22	ma/l	00	00	110			
WG586304IC8	ICR	03/20/24 14:53	W1240313-0	50		49.55	mg/L	99	-0.9	0.0			
WG586304IEB	I EB	03/26/24 13:11	WI230714-6	30		28.08	mg/L	94	-0.9	110			
WG585975PBS	PBS	03/26/24 20:11		50		20.00	ma/L	34	-0.9	0.9			
1 86570-01DUP	DUP	03/26/24 20:47			26.1	30.09	mg/L		0.0	0.0	14	20	
L86570-02AS	AS	03/26/24 21:23	WI230714-6	30	13.6	42.46	mg/L	96	90	110		20	
				0 70 054		с. I.	-			-			
Sulfur Hcl Residu	ne		EPA 600/	2-78-054	3.2.4 Modi	fied							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG593362													
L86570-01DUP	DUP	07/23/24 13:01			.51	.47	%				8	20	
Sulfur Hno3 Resi	due		EPA 600/	2-78-054	3.2.4 Modi	fied							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG593362													
L86570-01DUP	DUP	07/23/24 13:46			U	U	%				0	20	RA
Sulfur Organia B	مانما			2 79 054	2.2.4 Madi	fied							
	Turno	Applyzed		2-70-034	Somple	Found	Unito	Boo%	Lower	Uppor	PDD	Limit	Qual
	туре	Analyzeo	PCN/SCN	QC	Sample	rouna	Units	Rec%	Lower	Upper	KPD	Limit	Quai
WG593362													
L86570-01DUP	DUP	07/23/24 13:46			U	U	%				0	20	RA
Sulfur Pyritic Sul	fide		EPA 600/	2-78-054	3.2.4 Modi	fied							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG593362													
L86570-01DUP	DUP	07/23/24 13:46			.51	.47	%				8	20	
	-			0 70 054		с I					-	-	
Sultur Sulfate			EPA 600/	2-78-054	3.2.4 Modi	nea							
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG593362													
L86570-01DUP	DUP	07/23/24 13:46			.04	.1	%				86	20	RA

ACZ Project ID: L86570

Sulfur Total			EPA 600/	2-78-054	3.2.4 Modi	fied							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG593362													
WG593362LCSS	LCSS	07/23/24 12:06	PCN625750	3.95		3.75	%	95	80	120			
L86570-01MS	MS	07/23/24 12:11	PCN625561	1.28	.55	1.95	%	109	80	120			
L86570-01DUP	DUP	07/23/24 12:15			.55	.57	%				4	20	
Thallium (1312)			EPA 6020)B									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG586576													
WG586576ICV	ICV	03/30/24 17:10	MS240109-5	.05		.05484	mg/L	110	90	110			
WG586576ICB	ICB	03/30/24 17:12				U	mg/L		-0.0003	0.0003			
WG585978PBS	PBS	03/30/24 17:21				U	mg/L		-0.0003	0.0003			
WG586112PBS	PBS	03/30/24 17:23				U	mg/L		-0.0003	0.0003			
WG586354PBS	PBS	03/30/24 17:25				U	mg/L		-0.0003	0.0003			
WG585978LFB2	LFB	03/30/24 17:27	MS240321-2	.0501		.04654	mg/L	93	80	120			
WG586112LFB2	LFB	03/30/24 17:28	MS240321-2	.0501		.04765	mg/L	95	80	120			
WG586354LFB2	LFB	03/30/24 17:30	MS240321-2	.0501		.04772	mg/L	95	80	120			
L86570-01DUP	DUP	03/30/24 17:38			.00016	.00011	mg/L				37	20	RA
L86570-02MS	MS	03/30/24 17:41	MS240321-2	.0501	U	.04825	mg/L	96	75	125			
L86570-02MSD	MSD	03/30/24 17:43	MS240321-2	.0501	U	.04765	mg/L	95	75	125	1	20	
Tin (1312)			EPA 6010	D									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG586211													
WG586211ICV	ICV	03/26/24 17:29	II240309-1	2		1.923	mg/L	96	90	110			
WG586211ICB	ICB	03/26/24 17:33				U	mg/L		-0.12	0.12			
WG585978PBS	PBS	03/26/24 17:56				U	mg/L		-0.12	0.12			
WG585978LFB1	LFB	03/26/24 18:00	II240306-3	1.001		.962	mg/L	96	80	120			
L86570-01MS	MS	03/26/24 18:07	II240306-3	1.001	U	.965	mg/L	96	75	125			
L86570-01MSD	MSD	03/26/24 18:11	II240306-3	1.001	U	.98	mg/L	98	75	125	2	20	
L86570-01DUP	DUP	03/26/24 18:14			U	U	mg/L				0	20	RA
Total Sulfur Min	nus Sulfa	ate	EPA 600/	2-78-054	3.2.4 Modi	fied							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG593362													
L86570-01DUP	DUP	07/23/24 13:46			.51	.47	%				8	20	

ACZ Project ID: L86570

Uranium (1312)			EPA 602	0B									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG586576													
WG586576ICV	ICV	03/30/24 17:10	MS240109-5	.05		.05406	mg/L	108	90	110			
WG586576ICB	ICB	03/30/24 17:12				U	mg/L		-0.0003	0.0003			
WG585978PBS	PBS	03/30/24 17:21				U	mg/L		-0.0003	0.0003			
WG586112PBS	PBS	03/30/24 17:23				U	mg/L		-0.0003	0.0003			
WG586354PBS	PBS	03/30/24 17:25				U	mg/L		-0.0003	0.0003			
WG585978LFB2	LFB	03/30/24 17:27	MS240321-2	.05		.04653	mg/L	93	80	120			
WG586112LFB2	LFB	03/30/24 17:28	MS240321-2	.05		.04646	mg/L	93	80	120			
WG586354LFB2	LFB	03/30/24 17:30	MS240321-2	.05		.04758	mg/L	95	80	120			
L86570-01DUP	DUP	03/30/24 17:38			U	U	mg/L				0	20	RA
L86570-02MS	MS	03/30/24 17:41	MS240321-2	.05	U	.04881	mg/L	98	75	125			
L86570-02MSD	MSD	03/30/24 17:43	MS240321-2	.05	U	.04789	mg/L	96	75	125	2	20	
Vanadium (1312)		EPA 602	0B									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG586576													
WG586576ICV	ICV	03/30/24 17:10	MS240109-5	.05		.05375	mg/L	108	90	110			
WG586576ICB	ICB	03/30/24 17:12				U	mg/L		-0.0015	0.0015			
WG585978PBS	PBS	03/30/24 17:21				U	mg/L		-0.0015	0.0015			
WG586112PBS	PBS	03/30/24 17:23				U	mg/L		-0.0015	0.0015			
WG586354PBS	PBS	03/30/24 17:25				U	mg/L		-0.0015	0.0015			
WG585978LFB2	LFB	03/30/24 17:27	MS240321-2	.05005		.04694	mg/L	94	80	120			
WG586112LFB2	LFB	03/30/24 17:28	MS240321-2	.05005		.04719	mg/L	94	80	120			
WG586354LFB2	LFB	03/30/24 17:30	MS240321-2	.05005		.0476	mg/L	95	80	120			
L86570-01DUP	DUP	03/30/24 17:38			U	U	mg/L				0	20	RA
L86570-02MS	MS	03/30/24 17:41	MS240321-2	.05005	U	.04933	mg/L	99	75	125			
L86570-02MSD	MSD	03/30/24 17:43	MS240321-2	.05005	U	.04864	mg/L	97	75	125	1	20	
Zinc (1312)			EPA 602	0B									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG586576													
WG586576ICV	ICV	03/30/24 17:10	MS240109-5	.05		.0516	mg/L	103	90	110			
WG586576ICB	ICB	03/30/24 17:12				U	mg/L		-0.018	0.018			
WG585978PBS	PBS	03/30/24 17:21				U	mg/L		-0.018	0.018			
WG586112PBS	PBS	03/30/24 17:23				U	mg/L		-0.018	0.018			
WG586354PBS	PBS	03/30/24 17:25				.0104	mg/L		-0.018	0.018			
WG585978LFB2	LFB	03/30/24 17:27	MS240321-2	.050015		.0483	mg/L	97	80	120			
WG586112LFB2	LFB	03/30/24 17:28	MS240321-2	.050015		.0475	mg/L	95	80	120			
WG586354LFB2	LFB	03/30/24 17:30	MS240321-2	.050015		.0568	mg/L	114	80	120			
L86570-01DUP	DUP	03/30/24 17:38			.0086	.0072	mg/L				18	20	RA
L86570-02MS	MS	03/30/24 17:41	MS240321-2	.050015	U	.0487	mg/L	97	75	125			
L86570-02MSD	MSD	03/30/24 17:43	MS240321-2	.050015	U	.0487	mg/L	97	75	125	0	20	

(800) 334-5493

Thorin Resources

ACZ Project ID:	L86570
-----------------	--------

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L86570-01	WG586211	Aluminum (1312)	EPA 6010D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			EPA 6010D	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG586576	Beryllium (1312)	EPA 6020B	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586499	Bicarbonate as CaCO3	SM 2320 B-2011	Q6	Sample was received above recommended temperature.
	WG586211	Boron (1312)	EPA 6010D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586304	Bromide (1312-DI)	EPA 300.0	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			EPA 300.0	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586576	Cadmium (1312)	EPA 6020B	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586623	Carbon, total organic (TOC) (1312-DI)	SM 5310 B-2011/2014	HD	Analysis is outside the intended scope of the method, which does not provide hold time information for soil extracts. No hold time is observed for collection to extraction. The referenced method hold time is observed for extraction-to-analysis.
			SM 5310 B-2011/2014	Q6	Sample was received above recommended temperature.
			SM 5310 B-2011/2014	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586499	Carbonate as CaCO3	SM 2320 B-2011	Q6	Sample was received above recommended temperature.
	WG586304	Chloride (1312-DI)	EPA 300.0	HD	Analysis is outside the intended scope of the method, which does not provide hold time information for soil extracts. No hold time is observed for collection to extraction. The referenced method hold time is observed for extraction-to-analysis.
			EPA 300.0	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586576	Chromium (1312)	EPA 6020B	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Cobalt (1312)	EPA 6020B	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586499	Conductivity @25C (1312-DI)	SM 2510 B-2011	Q6	Sample was received above recommended temperature.
	WG586646	Copper (1312)	EPA 6020B	RD	For a solid matrix, the duplicate RPD (spike or matrix) exceeded the control limit, which is attributable to the non-homogeneity of the sample.
	WG586467	Fluoride (1312 DI)	SM 4500-F C-2011	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586499	Hydroxide as CaCO3	SM 2320 B-2011	Q6	Sample was received above recommended temperature.
	WG586211	Iron (1312)	EPA 6010D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Lithium (1312)	EPA 6010D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Magnesium (1312)	EPA 6010D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586206	Mercury (1312)	EPA 7470A	Q6	Sample was received above recommended temperature.
			EPA 7470A	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated

REPAD.15.06.05.01

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487

Thorin Resources

(800) 334-5493

Inorganic Extended Qualifier Report

ACZ Project ID: L86570

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
					sample is too low for accurate evaluation (< 10x MDL).
	WG586576	Molybdenum (1312)	EPA 6020B	RD	For a solid matrix, the duplicate RPD (spike or matrix) exceeded the control limit, which is attributable to the non-homogeneity of the sample.
		Nickel (1312)	EPA 6020B	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586123	Nitrate/Nitrite as N (1312-DI)	EPA 353.2	HD	Analysis is outside the intended scope of the method, which does not provide hold time information for soil extracts. No hold time is observed for collection to extraction. The referenced method hold time is observed for extraction-to-analysis.
			EPA 353.2	Q6	Sample was received above recommended temperature.
		Nitrite as N (1312-DI)	EPA 353.2	HD	Analysis is outside the intended scope of the method, which does not provide hold time information for soil extracts. No hold time is observed for collection to extraction. The referenced method hold time is observed for extraction-to-analysis.
			EPA 353.2	Q6	Sample was received above recommended temperature.
			EPA 353.2	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL)
	WG586679	Nitrogen, ammonia (1312-DI)	EPA 350.1	Q6	Sample vas received above recommended temperature.
			EPA 350.1	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586125	Phosphorus, ortho dissolved (1312-DI)	EPA 365.1	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586398	Phosphorus, Total (1312-DI)	EPA 365.1	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586211	Potassium (1312)	EPA 6010D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586253	Residue, Filterable (TDS) @180C (1312)	SM 2540 C-2011	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586424	Residue, Non-Filter (TSS) @180C (1312-DI)	SM 2540 D-2011/2015	BF	Target analyte in prep / method blank at or above the acceptance criteria. Target analyte was not detected in the sample [< MDL].
			SM 2540 D-2011/2015	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			SM 2540 D-2011/2015	Z3	Sample volume yielded a residue less than 2.5 mg
	WG586576	Selenium (1312)	EPA 6020B	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Silver (1312)	EPA 6020B	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586211	Sodium (1312)	EPA 6010D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Strontium (1312)	EPA 6010D	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG586304	Sulfate (1312-DI)	EPA 300.0	HD	Analysis is outside the intended scope of the method, which does not provide hold time information for soil extracts. No hold time is observed for collection to extraction. The referenced method hold time is observed for extraction-to-analysis.
	WG593362	Sulfur HNO3 Residue	EPA 600/2-78-054 3.2.4 Modified	I RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur Organic Residual	EPA 600/2-78-054 3.2.4 Modified	I RA	Relative Percent Difference (RPD) was not used for data

REPAD.15.06.05.01

4C: **AGZ** Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487

(800) 334-5493

Inorganic Extended Qualifier Report

Thorin Resources

ACZ Project ID: L86570

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
					validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur Sulfate	EPA 600/2-78-054 3.2.4 Modified	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586576	Thallium (1312)	EPA 6020B	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586211	Tin (1312)	EPA 6010D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586499	Total Alkalinity	SM 2320 B-2011	Q6	Sample was received above recommended temperature.
	WG586576	Uranium (1312)	EPA 6020B	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Vanadium (1312)	EPA 6020B	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Zinc (1312)	EPA 6020B	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).

(800) 334-5493

Thorin Resources

ACZ Project ID: L86570

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L86570-02	WG586211	Aluminum (1312)	EPA 6010D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			EPA 6010D	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG586646	Beryllium (1312)	EPA 6020B	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586499	Bicarbonate as CaCO3	SM 2320 B-2011	Q6	Sample was received above recommended temperature.
	WG586211	Boron (1312)	EPA 6010D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586304	Bromide (1312-DI)	EPA 300.0	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			EPA 300.0	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586576	Cadmium (1312)	EPA 6020B	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586623	Carbon, total organic (TOC) (1312-DI)	SM 5310 B-2011/2014	HD	Analysis is outside the intended scope of the method, which does not provide hold time information for soil extracts. No hold time is observed for collection to extraction. The referenced method hold time is observed for extraction-to-analysis.
			SM 5310 B-2011/2014	Q6	Sample was received above recommended temperature.
			SM 5310 B-2011/2014	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586499	Carbonate as CaCO3	SM 2320 B-2011	Q6	Sample was received above recommended temperature.
	WG586304	Chloride (1312-DI)	EPA 300.0	HD	Analysis is outside the intended scope of the method, which does not provide hold time information for soil extracts. No hold time is observed for collection to extraction. The referenced method hold time is observed for extraction-to-analysis.
			EPA 300.0	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586576	Chromium (1312)	EPA 6020B	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Cobalt (1312)	EPA 6020B	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586499	Conductivity @25C (1312-DI)	SM 2510 B-2011	Q6	Sample was received above recommended temperature.
	WG586646	Copper (1312)	EPA 6020B	RD	For a solid matrix, the duplicate RPD (spike or matrix) exceeded the control limit, which is attributable to the non-homogeneity of the sample.
	WG586467	Fluoride (1312 DI)	SM 4500-F C-2011	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586499	Hydroxide as CaCO3	SM 2320 B-2011	Q6	Sample was received above recommended temperature.
	WG586211	Iron (1312)	EPA 6010D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Lithium (1312)	EPA 6010D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Magnesium (1312)	EPA 6010D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586206	Mercury (1312)	EPA 7470A	Q6	Sample was received above recommended temperature.
			EPA 7470A	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated

REPAD.15.06.05.01

4C: **AGZ** Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487

Thorin Resources

(800) 334-5493

Inorganic Extended Qualifier Report

ACZ Project ID: L86570

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
					sample is too low for accurate evaluation (< 10x MDL).
	WG586576	Molybdenum (1312)	EPA 6020B	RD	For a solid matrix, the duplicate RPD (spike or matrix) exceeded the control limit, which is attributable to the non-homogeneity of the sample.
		Nickel (1312)	EPA 6020B	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586123	Nitrate/Nitrite as N (1312-DI)	EPA 353.2	HD	Analysis is outside the intended scope of the method, which does not provide hold time information for soil extracts. No hold time is observed for collection to extraction. The referenced method hold time is observed for extraction-to-analysis.
			EPA 353.2	Q6	Sample was received above recommended temperature.
		Nitrite as N (1312-DI)	EPA 353.2	HD	Analysis is outside the intended scope of the method, which does not provide hold time information for soil extracts. No hold time is observed for collection to extraction. The referenced method hold time is observed for extraction-to-analysis.
			EPA 353.2	Q6	Sample was received above recommended temperature.
			EPA 353.2	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL)
	WG586679	Nitrogen, ammonia (1312-DI)	EPA 350.1	Q6	Sample was received above recommended temperature.
			EPA 350.1	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586125	Phosphorus, ortho dissolved (1312-DI)	EPA 365.1	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586398	Phosphorus, Total (1312-DI)	EPA 365.1	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586211	Potassium (1312)	EPA 6010D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586253	Residue, Filterable (TDS) @180C (1312)	SM 2540 C-2011	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586424	Residue, Non-Filter (TSS) @180C (1312-DI)	SM 2540 D-2011/2015	BF	Target analyte in prep / method blank at or above the acceptance criteria. Target analyte was not detected in the sample [< MDL].
			SM 2540 D-2011/2015	DJ	Sample dilution required due to insufficient sample.
			SM 2540 D-2011/2015	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			SM 2540 D-2011/2015	Z3	Sample volume yielded a residue less than 2.5 mg
	WG586576	Selenium (1312)	EPA 6020B	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Silver (1312)	EPA 6020B	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586211	Sodium (1312)	EPA 6010D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Strontium (1312)	EPA 6010D	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG586304	Sulfate (1312-DI)	EPA 300.0	HD	Analysis is outside the intended scope of the method, which does not provide hold time information for soil extracts. No hold time is observed for collection to extraction. The referenced method hold time is observed for extraction-to-analysis.
	WG593362	Sulfur HNO3 Residue	EPA 600/2-78-054 3.2.4 Modified	I RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL)

REPAD.15.06.05.01

ACZ 2773 Downhill Drive Laboratories, Inc. Steamboat Springs, CO 80487

(800) 334-5493

Inorganic Extended Qualifier Report

Thorin Resources

ACZ Project ID: L86570

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
		Sulfur Organic Residual	EPA 600/2-78-054 3.2.4 Modified	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur Sulfate	EPA 600/2-78-054 3.2.4 Modified	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586576	Thallium (1312)	EPA 6020B	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586211	Tin (1312)	EPA 6010D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586499	Total Alkalinity	SM 2320 B-2011	Q6	Sample was received above recommended temperature.
	WG586576	Uranium (1312)	EPA 6020B	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Vanadium (1312)	EPA 6020B	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Zinc (1312)	EPA 6020B	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).

(800) 334-5493

ACZ Project ID: L86570

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L86570-03	WG586211	Aluminum (1312)	EPA 6010D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			EPA 6010D	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG586646	Beryllium (1312)	EPA 6020B	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586499	Bicarbonate as CaCO3	SM 2320 B-2011	Q6	Sample was received above recommended temperature.
	WG586211	Boron (1312)	EPA 6010D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586304	Bromide (1312-DI)	EPA 300.0	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			EPA 300.0	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586576	Cadmium (1312)	EPA 6020B	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586623	Carbon, total organic (TOC) (1312-DI)	SM 5310 B-2011/2014	HD	Analysis is outside the intended scope of the method, which does not provide hold time information for soil extracts. No hold time is observed for collection to extraction. The referenced method hold time is observed for extraction-to-analysis.
			SM 5310 B-2011/2014	Q6	Sample was received above recommended temperature.
			SM 5310 B-2011/2014	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586499	Carbonate as CaCO3	SM 2320 B-2011	Q6	Sample was received above recommended temperature.
	WG586304	Chloride (1312-DI)	EPA 300.0	HD	Analysis is outside the intended scope of the method, which does not provide hold time information for soil extracts. No hold time is observed for collection to extraction. The referenced method hold time is observed for extraction-to-analysis.
			EPA 300.0	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586576	Chromium (1312)	EPA 6020B	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Cobalt (1312)	EPA 6020B	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586499	Conductivity @25C (1312-DI)	SM 2510 B-2011	Q6	Sample was received above recommended temperature.
	WG586646	Copper (1312)	EPA 6020B	RD	For a solid matrix, the duplicate RPD (spike or matrix) exceeded the control limit, which is attributable to the non-homogeneity of the sample.
	WG586467	Fluoride (1312 DI)	SM 4500-F C-2011	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586499	Hydroxide as CaCO3	SM 2320 B-2011	Q6	Sample was received above recommended temperature.
	WG586211	Iron (1312)	EPA 6010D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Lithium (1312)	EPA 6010D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Magnesium (1312)	EPA 6010D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586206	Mercury (1312)	EPA 7470A	Q6	Sample was received above recommended temperature.
			EPA 7470A	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated

REPAD.15.06.05.01

4C AGZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487

Thorin Resources

(800) 334-5493

ACZ Project ID: L86570

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
					sample is too low for accurate evaluation (< 10x MDL).
	WG586576	Molybdenum (1312)	EPA 6020B	RD	For a solid matrix, the duplicate RPD (spike or matrix) exceeded the control limit, which is attributable to the non-homogeneity of the sample.
		Nickel (1312)	EPA 6020B	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586123	Nitrate/Nitrite as N (1312-DI)	EPA 353.2	HD	Analysis is outside the intended scope of the method, which does not provide hold time information for soil extracts. No hold time is observed for collection to extraction. The referenced method hold time is observed for extraction-to-analysis.
			EPA 353.2	Q6	Sample was received above recommended temperature.
		Nitrite as N (1312-DI)	EPA 353.2	HD	Analysis is outside the intended scope of the method, which does not provide hold time information for soil extracts. No hold time is observed for collection to extraction. The referenced method hold time is observed for extraction-to-analysis.
			EPA 353.2	Q6	Sample was received above recommended temperature.
			EPA 353.2	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL)
	WG586679	Nitrogen, ammonia (1312-DI)	EPA 350.1	Q6	Sample was received above recommended temperature.
			EPA 350.1	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586125	Phosphorus, ortho dissolved (1312-DI)	EPA 365.1	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586398	Phosphorus, Total (1312-DI)	EPA 365.1	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586211	Potassium (1312)	EPA 6010D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586253	Residue, Filterable (TDS) @180C (1312)	SM 2540 C-2011	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			SM 2540 C-2011	Z3	Sample volume yielded a residue less than 2.5 mg
	WG586424	Residue, Non-Filter (TSS) @180C (1312-DI)	SM 2540 D-2011/2015	BF	Target analyte in prep / method blank at or above the acceptance criteria. Target analyte was not detected in the sample [< MDL].
			SM 2540 D-2011/2015	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			SM 2540 D-2011/2015	Z3	Sample volume yielded a residue less than 2.5 mg
	WG586576	Selenium (1312)	EPA 6020B	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Silver (1312)	EPA 6020B	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586211	Sodium (1312)	EPA 6010D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Strontium (1312)	EPA 6010D	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG586304	Sulfate (1312-DI)	EPA 300.0	HD	Analysis is outside the intended scope of the method, which does not provide hold time information for soil extracts. No hold time is observed for collection to extraction. The referenced method hold time is observed for extraction-to-analysis.
	WG593362	Sulfur HNO3 Residue	EPA 600/2-78-054 3.2.4 Modified	i RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).

REPAD.15.06.05.01

4C: **AGZ** Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487

(800) 334-5493

Inorganic Extended Qualifier Report

Thorin Resources

ACZ Project ID: L86570

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
		Sulfur Organic Residual	EPA 600/2-78-054 3.2.4 Modified	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur Sulfate	EPA 600/2-78-054 3.2.4 Modified	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586576	Thallium (1312)	EPA 6020B	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586211	Tin (1312)	EPA 6010D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586499	Total Alkalinity	SM 2320 B-2011	Q6	Sample was received above recommended temperature.
	WG586576	Uranium (1312)	EPA 6020B	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Vanadium (1312)	EPA 6020B	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Zinc (1312)	EPA 6020B	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).

(800) 334-5493

ACZ Project ID: L86570

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L86570-04	WG586211	Aluminum (1312)	EPA 6010D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			EPA 6010D	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG586646	Beryllium (1312)	EPA 6020B	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586499	Bicarbonate as CaCO3	SM 2320 B-2011	Q6	Sample was received above recommended temperature.
	WG586211	Boron (1312)	EPA 6010D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586304	Bromide (1312-DI)	EPA 300.0	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			EPA 300.0	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586576	Cadmium (1312)	EPA 6020B	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586623	Carbon, total organic (TOC) (1312-DI)	SM 5310 B-2011/2014	HD	Analysis is outside the intended scope of the method, which does not provide hold time information for soil extracts. No hold time is observed for collection to extraction. The referenced method hold time is observed for extraction-to-analysis.
			SM 5310 B-2011/2014	Q6	Sample was received above recommended temperature.
			SM 5310 B-2011/2014	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586499	Carbonate as CaCO3	SM 2320 B-2011	Q6	Sample was received above recommended temperature.
	WG586304	Chloride (1312-DI)	EPA 300.0	HD	Analysis is outside the intended scope of the method, which does not provide hold time information for soil extracts. No hold time is observed for collection to extraction. The referenced method hold time is observed for extraction-to-analysis.
			EPA 300.0	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586576	Chromium (1312)	EPA 6020B	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Cobalt (1312)	EPA 6020B	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586499	Conductivity @25C (1312-DI)	SM 2510 B-2011	Q6	Sample was received above recommended temperature.
	WG586646	Copper (1312)	EPA 6020B	RD	For a solid matrix, the duplicate RPD (spike or matrix) exceeded the control limit, which is attributable to the non-homogeneity of the sample.
	WG586467	Fluoride (1312 DI)	SM 4500-F C-2011	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586499	Hydroxide as CaCO3	SM 2320 B-2011	Q6	Sample was received above recommended temperature.
	WG586211	Iron (1312)	EPA 6010D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Lithium (1312)	EPA 6010D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Magnesium (1312)	EPA 6010D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586206	Mercury (1312)	EPA 7470A	Q6	Sample was received above recommended temperature.
			EPA 7470A	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated

REPAD.15.06.05.01

4C AGZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487

Thorin Resources

(800) 334-5493

ACZ Project ID: L86570

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
					sample is too low for accurate evaluation (< 10x MDL).
	WG586576	Molybdenum (1312)	EPA 6020B	RD	For a solid matrix, the duplicate RPD (spike or matrix) exceeded the control limit, which is attributable to the non-homogeneity of the sample.
		Nickel (1312)	EPA 6020B	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586123	Nitrate/Nitrite as N (1312-DI)	EPA 353.2	HD	Analysis is outside the intended scope of the method, which does not provide hold time information for soil extracts. No hold time is observed for collection to extraction. The referenced method hold time is observed for extraction-to-analysis.
			EPA 353.2	Q6	Sample was received above recommended temperature.
		Nitrite as N (1312-DI)	EPA 353.2	HD	Analysis is outside the intended scope of the method, which does not provide hold time information for soil extracts. No hold time is observed for collection to extraction. The referenced method hold time is observed for extraction-to-analysis.
			EPA 353.2	Q6	Sample was received above recommended temperature.
			EPA 353.2	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDI)
	WG586679	Nitrogen, ammonia (1312-DI)	EPA 350.1	Q6	Sample vas received above recommended temperature.
			EPA 350.1	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586125	Phosphorus, ortho dissolved (1312-DI)	EPA 365.1	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586398	Phosphorus, Total (1312-DI)	EPA 365.1	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586211	Potassium (1312)	EPA 6010D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586253	Residue, Filterable (TDS) @180C (1312)	SM 2540 C-2011	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			SM 2540 C-2011	Z3	Sample volume yielded a residue less than 2.5 mg
	WG586424	Residue, Non-Filter (TSS) @180C (1312-DI)	SM 2540 D-2011/2015	BF	Target analyte in prep / method blank at or above the acceptance criteria. Target analyte was not detected in the sample [< MDL].
			SM 2540 D-2011/2015	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			SM 2540 D-2011/2015	Z3	Sample volume yielded a residue less than 2.5 mg
	WG586576	Selenium (1312)	EPA 6020B	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Silver (1312)	EPA 6020B	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586211	Sodium (1312)	EPA 6010D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Strontium (1312)	EPA 6010D	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG586304	Sulfate (1312-DI)	EPA 300.0	HD	Analysis is outside the intended scope of the method, which does not provide hold time information for soil extracts. No hold time is observed for collection to extraction. The referenced method hold time is observed for extraction-to-analysis.
	WG593362	Sulfur HNO3 Residue	EPA 600/2-78-054 3.2.4 Modified	i RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).

REPAD.15.06.05.01

4C: **AGZ** Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487

(800) 334-5493

Inorganic Extended Qualifier Report

Thorin Resources

ACZ Project ID: L86570

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
		Sulfur Organic Residual	EPA 600/2-78-054 3.2.4 Modified	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur Sulfate	EPA 600/2-78-054 3.2.4 Modified	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586576	Thallium (1312)	EPA 6020B	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586211	Tin (1312)	EPA 6010D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG586499	Total Alkalinity	SM 2320 B-2011	Q6	Sample was received above recommended temperature.
	WG586576	Uranium (1312)	EPA 6020B	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Vanadium (1312)	EPA 6020B	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Zinc (1312)	EPA 6020B	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).

ACZ Project ID: L86570

Metals Analysis					
The following param	eters are not offered for certification or a	are not covered by NELAC certificate #ACZ.			
	Silver (1312)	EPA 6020B			
Soil Analysis					
The following param	eters are not offered for certification or a	are not covered by NELAC certificate #ACZ.			
	Neutralization Potential as CaCO3	EPA 600/2-78-054 3.2.3			
	Sulfur HCI Residue	EPA 600/2-78-054 3.2.4 Modified			
	Sulfur HNO3 Residue	EPA 600/2-78-054 3.2.4 Modified			
	Sulfur Total	EPA 600/2-78-054 3.2.4 Modified			
Wet Chemistry					
The following param	eters are not offered for certification or a	are not covered by NELAC certificate #ACZ.			
	Bicarbonate as CaCO3	SM 2320 B-2011			
	Bromide (1312-DI)	EPA 300.0			
	Carbonate as CaCO3	SM 2320 B-2011			
	Chloride (1312-DI)	EPA 300.0			
	Conductivity @25C (1312-DI)	SM 2510 B-2011			
	Fluoride (1312 DI)	SM 4500-F C-2011			
	Hydroxide as CaCO3	SM 2320 B-2011			
	Nitrate/Nitrite as N (1312-DI)	EPA 353.2			
	Nitrite as N (1312-DI)	EPA 353.2			
	Nitrogen, ammonia (1312-DI)	EPA 350.1			
	Phosphorus, ortho dissolved (1312-DI)	EPA 365.1			
	Phosphorus, Total (1312-DI)	EPA 365.1			
	Residue, Filterable (TDS) @180C (1312)	SM 2540 C-2011			
	Residue, Non-Filter (TSS) @180C (1312-DI)	SM 2540 D-2011/2015			
	Sulfate (1312-DI)	EPA 300.0			

SM 2320 B-2011

Total Alkalinity

ACZ	Laboratories, Inc.
2773 Downhill Drive	Steamboat Springs CO 80487 (800) 334-5493

Steamboat Springs, CO 80487 (800) 334-5493

Thorin Resources ACZ Proje			L86570
[Date Received:	03/13/20	24 15:43
	Received By:		
	Date Printed:	3,	/20/2024
Receipt Verification			
	YE	S NO	NA
1) Is a foreign soil permit included for applicable samples?			X
2) Is the Chain of Custody form or other directive shipping papers present?	X		
3) Does this project require special handling procedures such as CLP protocol?		Х	
4) Are any samples NRC licensable material?			Х
5) If samples are received past hold time, proceed with requested short hold time analy	/ses? X		
6) Is the Chain of Custody form complete and accurate?	Х		
7) Were any changes made to the Chain of Custody form prior to ACZ receiving the sa	mples?	Х	
Samples/Containers			
	YE	S NO	NA
8) Are all containers intact and with no leaks?	X		
9) Are all labels on containers and are they intact and legible?	Х		
10) Do the sample labels and Chain of Custody form match for Sample ID, Date, and T	īme? X		
11) For preserved bottle types, was the pH checked and within limits? $ ^{1}$			Х
12) Is there sufficient sample volume to perform all requested work?	Х		
13) Is the custody seal intact on all containers?			Х
14) Are samples that require zero headspace acceptable?			Х
15) Are all sample containers appropriate for analytical requirements?	Х		
16) Is there an Hg-1631 trip blank present?			Х
17) Is there a VOA trip blank present?			Х
18) Were all samples received within hold time?	Х		
	NA inc	licates Not A	pplicable

Chain of Custody Related Remarks

Client Contact Remarks

Sx ID's were entered per labels on bags

Shipping Containers

Cooler Id	Temp(°C)	Temp Criteria(°C)	Rad(µR/Hr)	Custody Seal Intact?
NA41420	12.1	NA	15	N/A

Was ice present in the shipment container(s)?

No - Wet or gel ice was not present in the shipment container(s).

Client must contact an ACZ Project Manager if analysis should not proceed for samples received outside of their thermal preservation acceptance criteria.

Sample Receipt

Thorin Resources

ACZ Project ID: L86570 Date Received: 03/13/2024 15:43 Received By: Date Printed: 3/20/2024

¹ The preservation of the following bottle types is not checked at sample receipt: Orange (oil and grease), Purple (total cyanide), Pink (dissolved cyanide), Brown (arsenic speciation), Sterile (fecal coliform), EDTA (sulfite), HCI preserved vial (organics), Na2S2O3 preserved vial (organics), and HG-1631 (total/dissolved mercury by method 1631).

ACCredited Environmenta Testing	2773 Downhill Drive I Steamboat Springs, CC (970) 879-6590	80487	869	570)	С	HAI	N of	cus	TOD	Y
Report to:			1								
Name: CJ Dickerson	_	Addre	_{ISS;} 190)0 Mai	n St L	init 1					
Company: Thorin Resources				y, Co 8	31427						
E-mail: cjdickerson@thorinre	sources.com		Telep	hone: 6	02793	1321					
Copy of Report to:											
Name:				il:							
Company:				hone:							
Invoice to:											
Name: CJ Dickerson			Addre	ss:							
Company:											
E-mail: cjdickerson@thorinre	sources.com		Telep	hone:							
Copy of Invoice to:											
Name:			Addre	ISS:						_	
Company:											
E-mail:			Telep	hone:							
f sample(s) received past holdin analysis before expiration, shall	ng time (HT), or if insufficier I ACZ proceed with request	nt HT rema ed short H	ains to d T analy	complet ses?	e				YES NO	\checkmark	
1 "Ho" then ACZ will contact client for further instru- Are samples for SDWA Complian	uction. If neither "YES" nor "NO" is indicate nce Monitoring?	ed, ACZ will proc	Yes	ie requested	analyses, d	No	s expired, a	nd data will	be qualified		
If yes, please include state form	s. Results will be reported t	to PQL for	Colora	do.				8			
Sampler's Name: CJ Dickerson	Sampler's Site Infon	mation	State_	со		Zip co	de_8142	27	Time Z	one_mst	
*Sampler's Signature: CJ Dickers	iOR Defet openan by C Disarcon "1 anto Disar 2024 St (1 or 3/22 - Struer Lamps	st to the authen ering with the sa	ticity and va Imple in any	alidity of this way, is care	sidered frau	understand id and pun	t that intenti Ishabia by S	onaliy misla Iale Law.	abeling the fli	na/dato/loca	tion or
PROJECT INFORMATION				ANAL	YSES RE	QUESTE	D (attach	list or use	e quote nu	mber}	
Quote #: SPLP/ABA			- S								
PO#:			tai		٩						
Reporting state for compliance tes	iting:		Log I								
Check box if samples include NRC SAMPLE IDENTIFICATION	DATE:TIME	Matrix	# of	AB	SPI						
RV HGW Heads	3/4/2024 09:40		1	\checkmark	\checkmark						
RV HGW Tails	3/4/2024 09:40		1	\checkmark	✓						
CB Heads	3/4/2024 09:40		1	\checkmark	√						
CB Tails	3/4/2024 09:40		1 	\checkmark	✓						
······			 								
		_	 								
			 								
		_									
		_					 		┠──┤		
Matrix Svv (Surface vvater)	Gw (Ground water) · ww (wast	e water) - D	W (Dhui	ung wate	sr) SL(3	sludge)	50 (501) · UL (U	nij · Otner	(Specity)	
DEMADIZ									-		
REMARKS											
REMARKS											
REMARKS											
REMARKS											
REMARKS	rafaa ka A.C.71- ka °	adition - 1					5 Hi - 0	.00			
REMARKS Please RELINOUISHEAR	refer to ACZ's terms & cor	nditions lo	ocated o	on the r	everse	side c	of this C	:OC.	D4	1271	15
REMARKS Please RELINQUISHED B C.I. Dickerson	refer to ACZ's terms & cor Y: DATE: x1 by CJ Dickerson 2/7/2024	nditions lo TIME	ocated o	on the r	everse	side c	of this C	OC.	DA ファルの	ATE:TIM	IE C il
Please RELINQUISHED B CJ Dickerson Deleter som Dale: 2024.03	refer to ACZ's terms & cor Y: DATE: M by CJ Dictorran a 13 09:54:37-0900' 3/7/2024	nditions lo TIME 5:10 pm	ocated (on the r	everse	side c /ED B	f this C 7:	:OC.	DA 3/ :4	ате:тім 129 г	1E Ç∶i{

86570 Chain of Custod

Attachment C – Special Use Permit – Hauling Material: Camp Bird to Revenue

The Right-of-Way Permit is for construction in or improvement to Ouray County rights-of-way. A permit is required to construct driveways, install telephone, electric, gas, sewer, water and other utility wires, pipelines, or the like, along, across, upon and under any road right-of-way which is owned or controlled by Ouray County.

<u>Permittee</u>	Contractor			
Name <u>Chris Skerik</u>	Name			
Company Thorin Resources, LLC	Company _			
Address 1900 Main St, Unit 1, PO Box 1030	Address		State Zin	
City <u>Ouray</u> State <u>CO Zip 81427</u>	City		_StateZip	
Eusiness Phone <u>9/(1-316-2294</u>	E Business Pr	ione		-
Fax No.	Fax No			-
Insurance Corrier Imperium Insurance Company	Email	ta: \$2,000,00	0 / \$5 000 000	-
Insurance Carrier <u>Imperium insurance Company</u>		15. <u>\$2,000,00</u>	07 \$5,000,000	_
Lacation/Description of Construction.				
CR 361 and 26 at the following location	ns. Camp B	rd and Revenue	Mine sites	
at the following location		ru and recvenue	Wille Sites	_
Address 4936 CR-361, Ouray, CO 81427 Subdivision		Legal Desc.		-
		_ c _		_
HOW MANY FEET ARE YOU DISTURBING IN T	THE RIGHT-	OF-WAY: <u>No</u>	disturbance required	
PLANS REQUIRED WITH APPLICATION				
Type of Work				
$\Box \mathbf{T} \mathbf{V} \mathbf{C} \mathbf{s} \mathbf{b} \mathbf{l}_{\mathbf{a}} \Box \mathbf{M} \mathbf{s} \mathbf{i} \mathbf{n} = \Box \mathbf{S} \mathbf{s} \mathbf{r} \mathbf{v} \mathbf{i} \mathbf{s} \mathbf{s}$	🗆 Dhono	🗆 Main	Sorvice	
$\Box \mathbf{f} \mathbf{v} \mathbf{C} \mathbf{a} \mathbf{p} \mathbf{e} \Box \mathbf{M} \mathbf{a} \mathbf{m} \Box \mathbf{S} \mathbf{e} \mathbf{v} \mathbf{c} \mathbf{e}$	□ F lione	🗆 Main		
$\Box Gas \qquad \Box Main \qquad \Box Service \qquad \Box Set Dole$		🗆 Main		
□ Electric □ Main □ Service □ Set Pole	□ Sewer	⊔ Main	□ Service	
$\Box \text{ Curvert} ____________________________________$	"compacted rc	ad base	iniulai enus.	
• Cover = 74	d to Revenue N	line. from 6:00A	M to 9:30AM. Monday throu	oh Fridav
Cut Pavement (Repair must be completed in 15 days	$\frac{a}{s}$		in to 9.001111, filonaay unoa	<u></u>
\square Include sketch showing excevation(s) with day	shed line in I	elation to roa	d house and driveway	_
□ Include sketch showing excavation(s) with das	sheu hite ili i		u, nouse and universay	
Construction Schedule and Submittal Questions	<u>s – All permi</u>	t holders must	t request inspection 24 h	<u>ours in</u>
advance of work commencing. Ple	ease call 970.	626.5391 for in	nspection request.	
Planned Start Date <u>IO BE DETERMINED</u>	Daily work	Hours <u>6:00AM</u>		
Plained Finish Date <u>OPEN-ENDED, INDEFINI</u> E		DIK HOUIS <u>NOI</u>	APPLICABLE	
If yes, a Revegetation and Weed Control Plan n	eeds to be sub	DANCE mitted with annl	ication	
in yes, a revegetation and weed control I fail in		initied with uppi	leation	
READ) CAREFUL	LY		
Job must be finished and right-of-way restored to i	its original co	ndition by expi	ration date. Failure to de	o so is a
violation of state and local regulations and new p	ermits may 1	not be issued u	ntil the job is complete.	Permit
extensions may be granted by calling the road inspec	ctor.			

Applicant shall be responsible for confirming all utility locations within public rights-of-way prior to any excavation. Call UNCC: 1.800.922.1987.

A minimum of three working days is required to process this application.

The owner of the private improvements under this permit shall promptly relocate or remove such improvements from the Ouray County right-of-way at his own expense upon written request from Ouray County. By requiring or approving this permit, Ouray County makes no warranty of title or interest in any property or right-of-way. By submitting this application, applicant agrees to indemnify Ouray County for all claims against Ouray County arising out of, caused by or related to the work contemplated by this application, including all reasonable attorney's fees. Nothing herein shall be construed as a waiver of any right by Ouray County or an admission that any use in the right-of-way is adverse.

APPLICANT GUARANTEES ALL WORK FOR TWO YEARS FROM FINAL INSPECTION DATE

By accepting this permit, the undersigned Permittee or agent, under penalty of perjury, verifies that they have received all pages of the permit application; they have read and understood all of the permit requirements and provisions set forth on all pages; that they have the authority to sign for and bind the Permittee; and that by virtue of their signature, the Permittee is bound by and agrees to comply with all said permit requirements and provisions, all Ouray County regulations, ordinances or state laws regarding facilities construction.

Chris Skrik

Permittee or agent signature

Date July 30th, 2024

Office Use Only:

- THIS PERMIT EXPIRES SIX MONTHS AFTER DATE APPROVED. MAY BE REISSUED.
- FEES WAIVED.
- WORK IN THE RIGHT-OF-WAY IS ONLY ALLOWED BETWEEN 6:00AM AND 9:30AM. WORK MAY NOT BE SCHEDULED DURING WEEKENDS (SATURDAY OR SUNDAY), STATE HOLIDAYS, OR WITHIN TWO DAYS OF A STATE HOLIDAY.
- PILOT CAR AND FLAGGERS REQUIRED FOR ALL MOVEMENTS.
- ANY MODIFICATIONS TO THE DESCRIBED ACTIVITY MUST BE COORDINATED IN ADVANCE WITH THE OURAY COUNTY ROAD & BRIDGE SUPERINTENDENT.

T. L. BARGER	7/30/2024		
Permit Approved – Ouray County	Date	Final Inspection Approval	Date
Approved for Construction	Date		

- 1. <u>Cost to Ouray County</u>. Permittee fully understands that all line installation and/or construction will be performed at no expense whatsoever to Ouray County.
- 2. <u>Stop Work</u>. Ouray County shall have the right to order Permittee to stop work anytime Ouray County believes that a violation of this permit has occurred or if there is a danger to the public safety if the work continues.
- 3. <u>**Revocability.**</u> Ouray County reserves the right to revoke this permit at any time should Permittee fail to comply with any of the requirements of this permit. Should this permit be revoked, Permittee must obtain a new permit and pay all required fees in order to continue with the project contemplated herein. Any lines or materials installed by Permittee prior to the revocation of the permit remain the responsibility of Permittee and shall be maintained or removed by Permittee at the discretion of Ouray County.
- 4. <u>Warranty of Right-of-Way</u>. Ouray County does not warrant the right-of-way by the issuance of this permit. Permittee is responsible for determining the ownership of properties traversed by its lines, the location of all property boundary lines, and the ownership of all rights-of way.
- 5. Commencement of construction prior to payment of fees and granting of approvals will result in applicable fees being doubled. Construction without inspection is subject to rejection.
- 6. Traffic shall be maintained on all rights-of-way. Flaggers shall be provided at any locations where the orderly flow of traffic is interrupted.
- 7. Permittee shall provide all necessary signs and barricades in accordance with the Manual on Uniform Traffic Control Devices and its latest Colorado Supplement in order to warn oncoming motorists of any installation or construction work.
- 8. In the event any changes are made in the future to the roadway or its appurtenances within the right-ofway contemplated herein that would necessitate removal or relocation of the lines installed or constructed herein, Permittee shall do so promptly at its own expense upon the written request from Ouray County, Colorado.
- 9. A copy of this permit shall be maintained on-site at all times until the work has been completed and inspected.
- 10. Permittee shall furnish all labor and materials, perform all work, and pay all costs in connection with the construction of the driveway(s) and its appurtenances on the right-of-way. All work shall be completed in an expeditious and safe manner and shall be finished within three months of the permit date.
- 11. This permit does not allow any damage to occur on the existing County right-of-way. If Permittee causes damage to the County road, Permittee shall repair road to the County's satisfaction.
- 12. This permit is valid only for the work described on page one. Any additional work shall require a separate application and permit.

Attachment D – Camp Bird Sample Locations