ф

J. E. STOVER & ASSOCIATES, INC.

2352 NORTH 7TH STREET, UNIT B GRAND JUNCTION, COLORADO 81501 PHONE: (970) 245-4101

MINE ENGINEERING MINE RECLAMATION

CIVIL ENGINEERING CONST. MANAGEMENT

September 25, 2024

Rob Zuber Division of Reclamation, Mining & Safety 1313 Sherman St., Room 215 Denver, CO 80203

Re: Bowie Resources, LLC, Bowie No. 1 Mine

MR-141, Sedimentation Control at the Loadout during

Removal a portion of the Farmers ditch culvert

Permit C-1981-038

Dear Mr. Zuber:

On behalf of Bowie Resources, LLC, (BRL), enclosed is an application for a minor revision for the design of the sedimentation control during the removal of the Farmers Culvert approved under Technical Revision No. 66. This revision will be followed up with a Technical Revision that will provide a design for the permanent sedimentation control that will be put in place after the removal of the first 300' if the Farmers Ditch Culvert.

Sedimentation control will be in place before removal of the culvert begins. Since this revision is part of reclamation, there is not an increase in the reclamation bond. The design incorporates 1) a small sediment basin with a berm that directs the flow into the basin, and 2) a silt fence or wattle to capture runoff from the lower ditch area.

Attachments for this revision include:

- ➤ Map-07B (Sedimentation control during Farmers Ditch Culvert Removal)
- SedCad design of Straw Wattle
- Sediment Basin Design

Please let me know if you have any questions.

Sincerely,

Tamme Bishop

Tamme Bishop, P.E. Consulting Engineer

Cc: Basil Bear

Temporary Sediment Control

PROTECTION OF THE HYDROLOGIC BALANCE

BOWIE NO.1 MINE Farmers Ditch Culvert Removal Area

Notes for Calculations:

- 1. Pages SAE 10 through 19 present a spread sheet calculation of the required capacity of the sediment basin based on the 10 year, 24-hour event as well as a SedCad design for the silt fence/straw wattle. Page SAE-16 is the SedCad structure summary for the sediment basin which verifies the runoff calculated on page SAE-12. The sediment basin shown on Figure-07B provides 0.3 acre-feet of water storage and 0.03 acre-feet of sediment storage for a total capacity of 0.33 acre-feet.
- 2. Design points are shown on Figure-07B.
- 3. Sediment Control structures (sediment basin and wattle/silt fence) will be installed before removal of the culvert begins.

ENGINEER'S CERTIFICATION

The calculations and information presented on the following pages were prepared by me during the month of September 2024 and the information presented is true and correct to the best of my knowledge and belief.

800

43402

merin K. Stove Bishop, P.E. Stered Protessional Engineer

State of Works To No. 43402

9-25-24

Date

PROTECTION OF THE HYDROLOGIC BALANCE TEMPORARY SEDIMENT BASIN BOWIE LOADOUT

STORM EVENTS

10 YEAR 24 HOUR EVENT1.8 INCHES25 YEAR 24 HOUR EVENT2.1 INCHES100 YEAR 24 HOUR EVENT2.6 INCHES

The runoff curve numbers are developed based upon vegetation and soil types. Vegetation data is shown in Volume 7, on Map-02, and Soils data are shown on Map-03.

CURVE NUMBERS

Undisturbed

Table 2-2d-Runoff curve numbers for arid and semiarid rangelands
Cover Type - Herbaceous-mixture of grass, weeds and brush
Hydrologic Condition Good
Soil Type - Loam C
Curve Number 74

Disturbed-Poor

Table 2-2d-Runoff curve numbers for urban areas Cover Type - Impervious, parking lots, roofs, driveways

Hydrologic Condition Poor Soil Type - Loam C Curve Number 98

Disturbed-Poor

Table 2-2d-Runoff curve numbers for urban areas

Cover Type - Herbaceous-mixture of grass, weeds and brush Hydrologic Condition Poor Soil Type - Loam C Curve Number 87

RUN-OF	FF VOLUME Pond D	(NRCS/SC	S Runoff E	quation)					
				Precip	Direct	Run-off			
	Area	Acres	Curve #	Amount	Run-off	Vol A-F *			
	Disturbed-Poor	3.78	87	1.8	0.75	0.24			
	Undisturbed-Good	0.05	74	1.8	0.26	0.00			
	Disturbed-Poor	0.47	98	1.8	1.58	0.06			
	TOTAL	4.30				0.30			
TOTAL	REQUIRED WATER VO	LUME A	F			0.30			
				*SedCad cald	culated	0.26			
SEDIME	Use the universal soil loss equation. A = R K L S C P								
	R = rainfall factor					30.00			
	K = soil erodibility fact	or				0.37			
	LS = combined length	slope facto	or 1300' - 49	6		0.89			
	C = cropping manage	ment factor				1.00			
	P = erosion control pr	actice facto	r			1.00			
	A = sediment, tons/ac	re/year				9.88			
Two Yea	ar Sediment Volume - A					0.03			
	4.30 ACRES - 1	15 #/CF							
Total	Required Sedime	nt Pond (Capacity	- Acre-F	eet	0.33			

MR-141

Temporary Sediment Control during removal of Farmers Ditch Culvert

Tamme Bishop

J.E. Stover & Associates, Inc. 2352 N. 7th Street, Unit B Grand Junction, CO 81501

Phone: 970-245-4101 Email: tamme.jestover@bresnan.net

General Information

Storm Information:

Storm Type:	NRCS Type II
Design Storm:	10 yr - 24 hr
Rainfall Depth:	1.800 inches

Structure Networking:

Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description
Pond	#1	==>	#2	0.000	0.000	Sediment Basin
Null	#2	==>	End	0.000	0.000	
Silt Fence	#3	==>	#2	0.000	0.000	Silt Fence/Straw Wattle

Printed 09-25-2024 Filename: Sed Basin.sc4

Structure Summary:

		Immediate Contributing Area	Total Contributing Area	Peak Discharge	Total Runoff Volume	
		(ac)	(ac)	(cfs)	(ac-ft)	
#2	In	6 200	6 200	4.50	0.40	
#3	Out	6.290	6.290	3.49	0.40	
π 4 *	In	2.020	2 020	2.76	0.26	
#1*	Out	3.830	3.830	0.00	0.00	
#2		0.000	10.120	5.51	0.40	

^{*}Denotes structures with incomplete design parameters. Results for these structures have not been evaluated, and may affect downstream structures.

Structure Detail:

Structure #3 (Silt Fence)

Silt Fence/Straw Wattle

Silt Fence Inputs:

Fence Flow Rate (gpm/sq ft)	Width along contour (ft)	Height (ft)	Land Slope (%)	Tie-back distance (ft)
10.0	100.0	3.5	3.00	116.7

Silt Fence Results:

Peak Fence Stage:	1.14 ft
Peak Water Stage:	1.14 ft
Dewater Time:	0.51 days

Dewatering time is calculated from peak stage to lowest spillway

Stage-Capacity-Discharge Table

Fence Stage (ft)	Water Stage (ft)	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
0.00	0.00	0.000	0.000	0.000	1000-00-1	Top of Sediment
0.00	0.00	0.000	0.000	0.000		
0.10	0.10	0.008	0.000	0.230	9.00	
0.20	0.20	0.015	0.001	0.475	2.05	
0.30	0.30	0.023	0.003	0.735	0.40	
0.40	0.40	0.031	0.006	1.010	0.15	
0.50	0.50	0.038	0.009	1.300	0.10	
0.60	0.60	0.046	0.014	1.604	0.10	
0.70	0.70	0.054	0.019	1.924	0.05	
0.80	0.80	0.061	0.024	2.258	0.10	
0.90	0.90	0.069	0.031	2.607	0.05	
1.00	1.00	0.077	0.038	2.971	0.05	
1.10	1.10	0.084	0.046	3.350	0.10	
1.14	1.14	0.087	0.049	3.491	0.01	Peak Stage
1.20	1.20	0.092	0.055	3.743		
1.30	1.30	0.099	0.064	4.152		
1.40	1.40	0.107	0.075	4.575		
1.50	1.50	0.115	0.086	5.013		
1.60	1.60	0.122	0.098	5.466		
1.70	1.70	0.130	0.110	5.934		

Fence Stage (ft)	Water Stage (ft)	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)
1.80	1.80	0.138	0.124	6.417	
1.90	1.90	0.145	0.138	6.915	
2.00	2.00	0.153	0.153	7.427	
2.10	2.10	0.161	0.169	7.955	
2.20	2.20	0.168	0.185	8.497	
2.30	2.30	0.176	0.202	9.054	
2.40	2.40	0.184	0.220	9.626	
2.50	2.50	0.191	0.239	10.212	
2.60	2.60	0.199	0.258	10.814	
2.70	2.70	0.207	0.279	11.430	
2.80	2.80	0.214	0.300	12.062	
2.90	2.90	0.222	0.322	12.708	
3.00	3.00	0.230	0.344	13.369	
3.10	3.10	0.237	0.367	14.045	
3.20	3.20	0.245	0.392	14.736	
3.30	3.30	0.253	0.416	15.441	
3.40	3.40	0.260	0.442	16.162	
3.50	3.50	0.268	0.468	16.897	

Structure #1 (Pond)

Sediment Basin

Structure design parameters are not specified. No results to show.

Structure #2 (Null)

Subwatershed Hydrology Detail:

Stru #	SWS #	SWS Area (ac)	Time of Conc (hrs)	Musk K (hrs)	Musk X	Curve Number	UHS	Peak Discharge (cfs)	Runoff Volume (ac-ft)
#3	1	5.500	0.246	0.000	0.000	87.000	TR55	3.86	0.343
	2	0.790	0.246	0.000	0.000	89.000	TR55	0.64	0.056
	Σ	6.290						4.50	0.399
#1	1	3.310	0.182	0.000	0.000	87.000	F	2.26	0.199
	2	0.050	0.100	0.000	0.000	74.000	F	0.01	0.000
	3	0.470	0.062	0.000	0.000	98.000	F	0.63	0.060
	Σ	3.830						2.76	0.259
#2	Σ	10.120						5.51	0.399

Subwatershed Time of Concentration Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	5. Nearly bare and untilled, and alluvial valley fans	4.18	56.00	1,339.00	2.040	0.182
#1	1	Time of Concentration:					0.182
#1	3	5. Nearly bare and untilled, and alluvial valley fans	4.55	22.00	483.00	2.130	0.062
#1	3	Time of Concentration:					0.062
#3	1	5. Nearly bare and untilled, and alluvial valley fans	2.73	40.00	1,465.04	1.650	0.246
#3	1	Time of Concentration:					0.246
#3	2	5. Nearly bare and untilled, and alluvial valley fans	2.73	40.00	1,465.04	1.650	0.246
#3	2	Time of Concentration:					0.246