Battle Mountain Resources, Inc.
San Luis Project
P.O. Box 310
San Luis, Colorado 81152-0310
(719) 379-0798

March 22, 2024

Mr. Lucas West
State of Colorado
Division of Reclamation, Mining and Safety
Room 215
1001 E 62nd Avenue
Denver, CO 80216

Re: Battle Mountain Resources, Inc.
San Luis Project - San Luis, Colorado
Annual Report and Fee 2023
CMLRB Permit No. M-1988-112

Dear Mr. West:

Please find included the Battle Mountain Resources, Inc. (BMRI) "San Luis Project" (Permit No. M-1988-112) Annual Report and a site map as requested in the February 22, 2024, email from the Colorado Division of Reclamation, Mining, and Safety (CDRMS) to Julio Madrid of BMRI/Newmont. The following summarizes the operation, reclamation, permitted area, dam inspections, and site monitoring activities performed, as well as any technical revisions and permit amendments made for the San Luis Project during 2023.

General Reclamation Activities

Reclamation activities and technical revisions during 2023 included:

- Completed Technical Revision 36 (TR-36) to convert Pond 2's lining from HDPE to concrete in 2022. In late April and early May 2023, backfill was placed and compacted between the concrete Ponds 2 and 3. In mid-May, the concrete slab was placed between concrete Ponds 2 and 3.
- Continued stormwater management on and adjacent to reclaimed and un-reclaimed mine land. Stormwater inspections were performed on June 8, 2023 and October 16, 2023, and any issues noted were corrected.
- Treatment of water from the West Pit and Rito Seco alluvial groundwater systems;
- Tailing facility storage pond, underdrain, and leak detection system management;
- Surface and ground water management.

Reclamation Areas

BMRI did not perform any additional reclamation in 2023. There are 78.7 acres of reclamation remaining, as summarized in Table 1.

Table 1 - Summary of San Luis Project Reclamation

Area	Actual Disturbance (Acres)	Reclamation Completed Through 2022 (Acres)	Reclamation Completed In 2023 (Acres)	Remaining Reclamation (Acres)
East Pit	20	20	0	0
West Pit	100	71.3	0	28.7
Waste Rock A	0	0	0	0
Waste Rock B	18	18	0	0
Waste Rock C	28	28	0	0
Waste Rock D	42	42	0	0
South Waste Rock	35	35	0	0
Mill Area	25.6	25.6	0	0
ESI Leach Pad	10	10	0	0
Borrow Area	5.5	0	0	5.5
Road Around Tailing Facility and Collection Pond	4	0	0	4
Tailing Facility Perimeter Road	12.9	0	0	12.9
Waste Rock C Access Road	3.7	3.7	0	0
Pink Gneiss Pit Haul Road	3.8	3.8	0	0
Tailing Facility	192	169.4	0	22.6
Tailing Collection Pond	5	0	0	5
Admin. Office Complex – Deeded lands to Costilla County Soil Conservation District (CCSCD)	3	3	0	0
Total Area	508.5	429.8	0	78.7

Permitted Areas

The current unreleased Permit Areas consist of both reclaimed and un-reclaimed land and disturbed and undisturbed land. BMRI did not receive a land release in 2023, therefore the 2023 Permit Area remaining is 428.22 acres. Table 2 summarizes the disturbed areas in the permit.

Table 2 - Summary of Permitted Areas

Area	Permitted Disturbance (Acres)	Actual Disturbance Areas (Acres)	Disturbance Areas Released from Permit Area (Acres)	Disturbance Areas Remaining in Permit Area (Acres)
East Pit	20	20	20	0
West Pit	110	100	8.9	91.1
Waste Rock A	0	0	0	0
Waste Rock B	18	18	18	0
Waste Rock C	30	28	25.8	2.2
Waste Rock D	42	42	42	0
South Waste Rock	50	35	33.6	1.4
Mill Area	25.6	25.6	15.6	10.0
ESI Leach Pad	10	10	10	0
Borrow Area	11	5.5	0	5.5
Roads	30	24.4	13.2	11.2
Tailing Facility	192	192	17.6	174.4
Tailing Collection Pond	5	5	0	5
Admin. Office Complex – Deeded lands to Costilla County Soil Conservation District (CCSCD)	3	3	3	0
Total Area	546.6	508.5	207.7	300.8

Dam Inspections

During 2023, quarterly dam inspections were performed as required in Technical Revision 33 (TR-33). The first, third, and fourth quarter dam inspections were performed by BMRI and the second quarter inspection was done by Engineering Analytics, Inc.'s (EA) Mark Abshire as well as the 2023 Annual Dam Inspection. The dam inspections were submitted previously to CDRMS and are also included in Appendix A of this report.

Site Monitoring

Water level data, laboratory analytical results, and flows were submitted to CDRMS as part of the Monthly Reports throughout 2023 and are also included in Appendix B of this report. During 2023, groundwater sampling and water level measurements were performed as required in Technical Revision 32 (TR-32). Sampling and laboratory analyses for groundwater monitoring well M-14 continued during 2023 under the CDRMS approved Response Plan. M-14 will continue to be sampled and results reported, as required in TR-32, in 2024.

The Lined Tailing Facility (LTF) collection pond leak detection system (underdrain) was monitored monthly and evacuated and pumped to the LTF. The monthly leak-detection flows for

2023 ranged from a low of 25.9 gallons per day (gpd) to a high of 31.4gpd. The average monthly leak-detection flow for 2023 was 28.8 gpd. The collection pond underdrain water was sampled and analyzed quarterly and the results and flows were submitted to CDRMS in the Monthly and Quarterly Sampling Reports and are also included in Appendix B of this report.

The LTF underdrain flows were monitored monthly at the base of the embankment and the flows for 2023 ranged from a low of 25.0 gallons per minute (gpm) to a high of 31.5 gpm. In 2023, the monthly average underdrain flow was 28.3 gpm. The monthly underdrain flows were submitted previously to CDRMS as part of the Monthly Reports and are also included in Appendix B of this report.

The LTF system lysimeters were monitored monthly. The lysimeters were dry or contained less than twelve inches of water and no groundwater was present for sampling or analysis in 2023.

There was no sludge transferred from the water treatment plant drying pads to the LTF in 2023. The monthly sludge management information was submitted previously to the CDRMS in the Monthly Reports, which are also included in Appendix B of this report.

During 2023, BMRI managed the Rito Seco and West Pit alluvial hydrologic systems, in compliance with Technical Revision 26 (TR-26). BMRI measured the West Pit backfill monitoring wells weekly and the monthly average groundwater elevations were maintained below the TR-26 required level of 8,582 feet above mean sea level (amsl). The groundwater table elevations and potentiometric surface maps, developed by EA, confirm the groundwater flow gradient was from the Rito Seco alluvium to the West Pit backfill during 2023. The groundwater elevations and potentiometric surface maps were previously submitted to CDPHE with the DMR's, BMP, and WET Testing Reports under permit number CO0045675 and are also included in Appendix C of this report. BMRI also performed monthly visual inspections for seepage in the historic seepage area along the Rito Seco Creek and no seeps were observed during 2023.

Additionally, the two groundwater capture wells, M-32 and M-33, were operated in conjunction with other groundwater table elevation control in the West Pit during 2023. Monthly average groundwater elevations were maintained equal to or lower than 8,540 feet amsl in wells M-32 and M-33, as required under TR-26. These elevations were also previously submitted to CDPHE with the DMR's, BMP, and WET Testing Reports under permit number CO0045675 and are also included in Appendix C of this report. Groundwater pumped from these wells was either treated at the West Pit Water Treatment Plant and discharged to the Rito Seco under the BMRI discharge permit, or pumped to the LTF for water management. In 2023, the West Pit water treatment plant treated and discharged a total of 88,749,900 gallons of water to the Rito Seco Creek. Additionally, a total of 5,116,700 gallons of water was transferred from the West Pit to the LTF.

Should additional information be required or if any clarifications are necessary, please contact me at (719) 379-0538.

Julio Madrid

Sr. Supervisor Legacy Sites Closure and Reclamation

Cc: Devon Horntvedt (electronic)

Lawrence Fiske, BMRI (electronic) Melissa Chalona, Engineering Analytics

BMRI File

Enclosures:

Appendix A – Dam Inspection Reports

Appendix B – Monthly Reports and Monthly and Quarterly Sampling Results

Appendix C – DMR's, BMP, and WET Testing Reports

Appendix D – Report Request

Appendix E – 2023 Site Map

APPENDIX A DAM INSPECTION REPORTS

BATTLE MOUNTAIN RESOURCES, INC.

April 13, 2023

Mr. Lucas West

Colorado Division of Reclamation, Mining and Safety

1313 Sherman Street, Room 215

Denver, CO 80203

RECEIVED

APR 18 2023

DIVISION OF RECLAMATION,
MAINING & SAFETY-MINERALS

Re: San Luis Project Tailing Dam Q1 2023 Inspection Report, Technical Revision No. 33, Permit No. M-1988-112

Dear Mr. West:

Battle Mountain Resources Inc. (BMRI) is pleased to provide the Q1 2023 San Luis Tailing Dam Inspection Report in accordance with Technical Revision No. 33 to BMRI's Reclamation Permit.

The Inspection was conducted by BMRI Site Manager Mr. David Carino and Site Supervisor Mr. Julio Madrid.

Enclosed with the inspection report are photos of the Tailing Impoundment facilities to include the drop structure and the under-drain discharge area. Also included are the Q1 2023 Piezometer Inspection results.

Respectfully,

Julio F. Madrid

Sr. Supervisor Colorado Legacy Sites

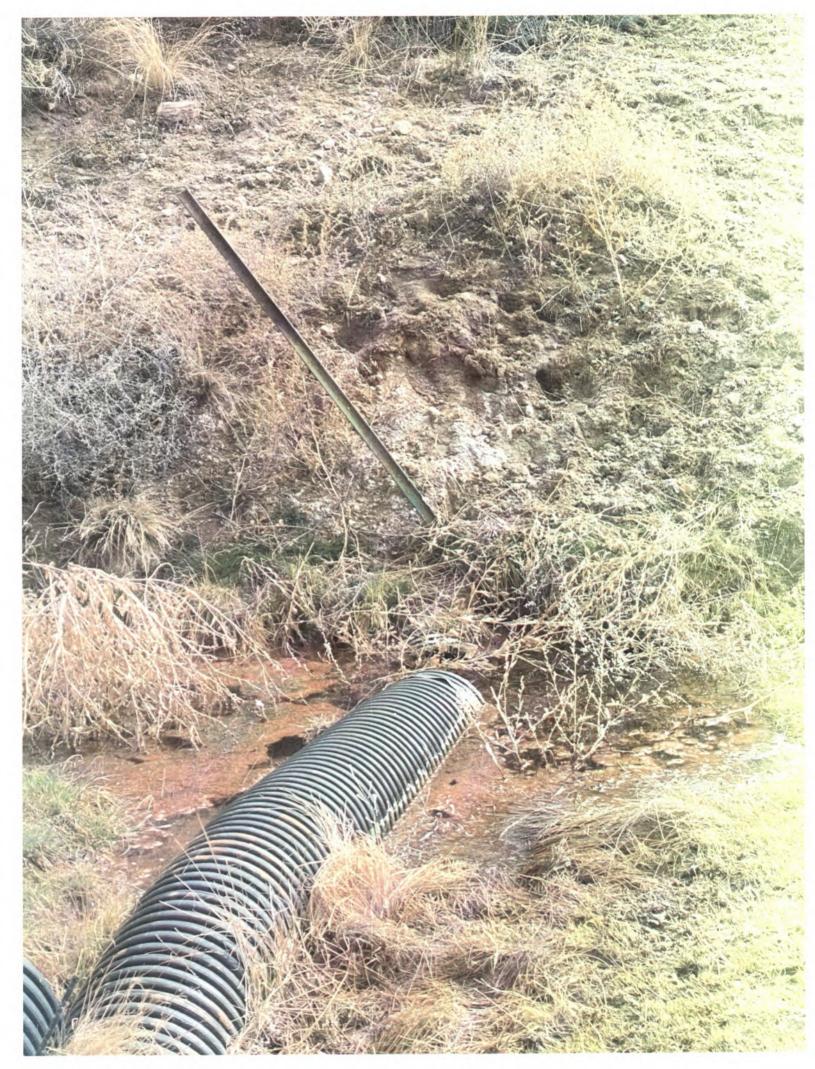
(719) 379-0538

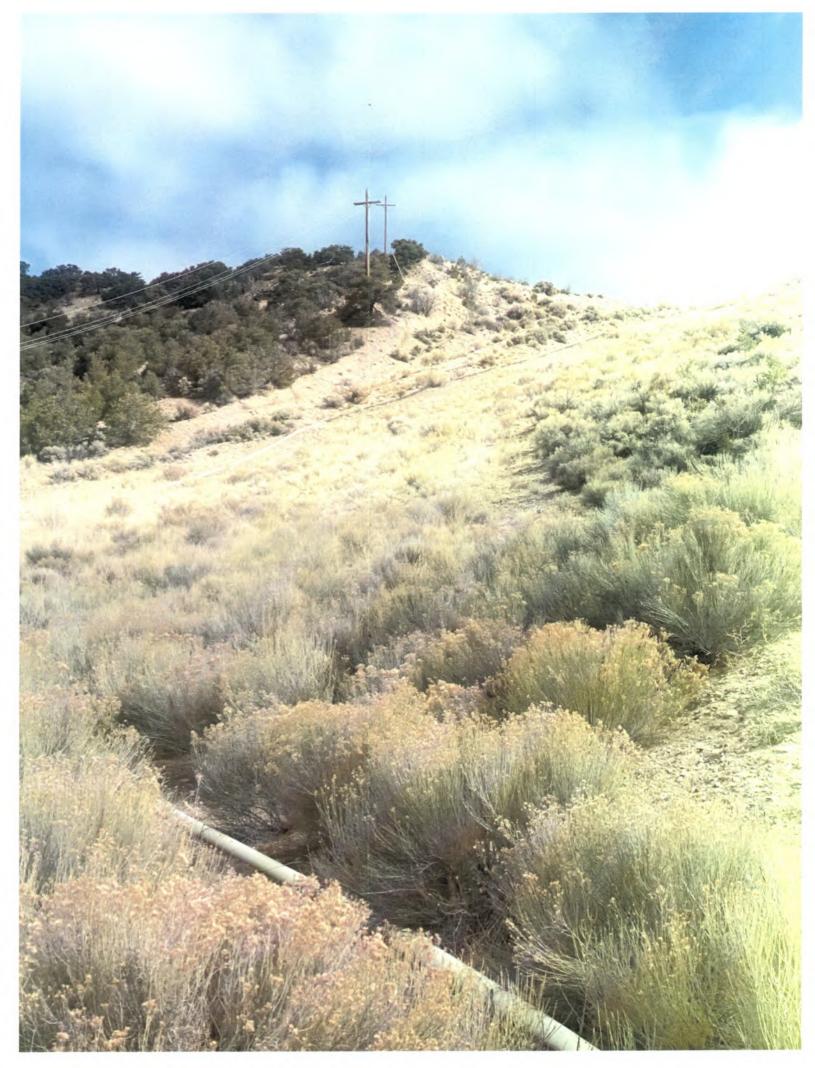
cc: Devon Horntvedt

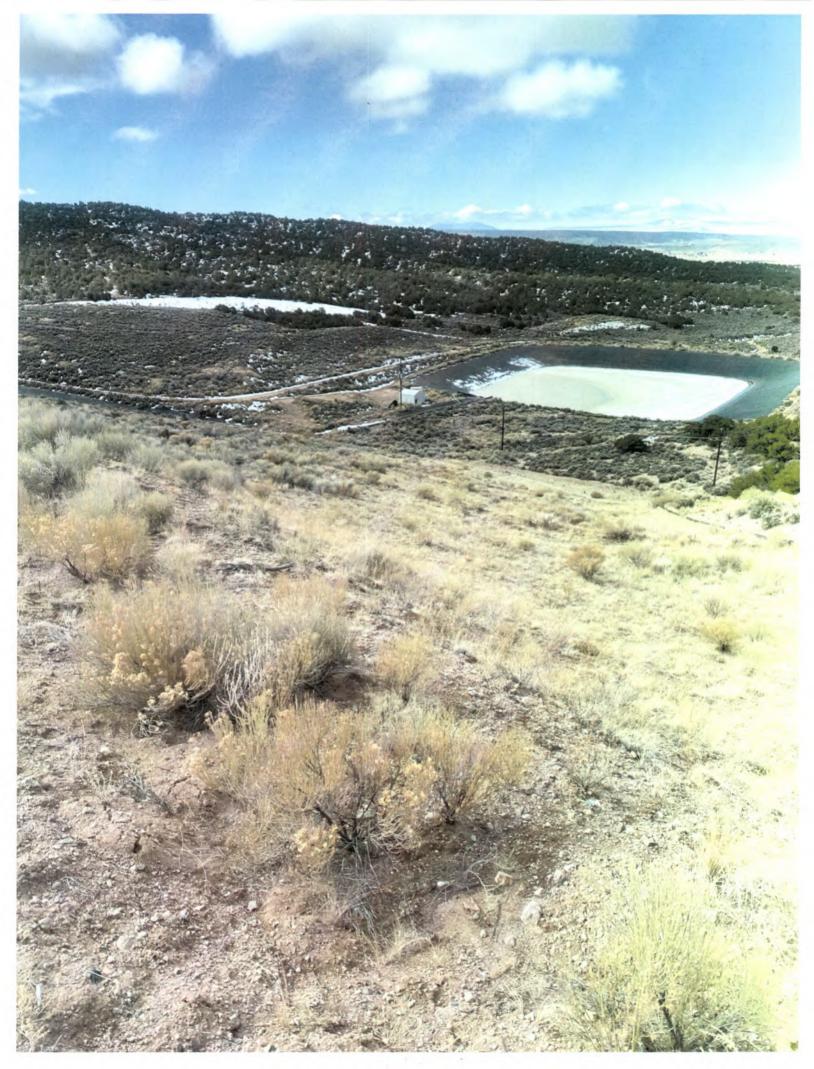
David Carino

DAM: SAW LUIS PROJECT TAILING DAM ED ANY SURFACE CRACKING? ANY SURFACE CRACKING? ANY HORIZONTAL OFFSET? ANY SURFACE STATION CONTROL? ANY SURFACE STATI	INSPECTION PERIOD: MALVAY TO thru MOUCLA 1977) INSPECTIOR: O. CAX WED TO WARD A VIA NISPECTOR: O. CAX WED TO WARD A VIA NISPECTOR: O. CAX WED TO WARD A VIA OL? OL? OL? OLP NISPECTOR: O. CAX WED TO WARD A VIA OBSERVATIONS OBSERVATIONS V ALDEPRESSIONS? V NITACTS? V ALDEPRESSIONS? V OR OBSTRUCTED? OR OBSTRUCTED? NISPROPERLY? NISPROPERLY? NISPROPERLY? NISPROPERLY?	INSPECTION PERIOD: MA LIALLY 27 thru WOUCL 1977 INSPECTIOR OF ALLEY 27 WOLD VID OL? OL? OL? OLP WAPS? AL DEPRESSIONS? AL DEPRESSIONS? VIDE MOVEMENT? CONTACTS? UDPE MOVEMENT? CITION POND? ING PROPERLY? WAS PROPERLY? VING PROPERLY VIN
INSPECTION PERIOD: MA LUQUU INSPECTOR: D. CALVANDO INSPECTOR: D. CAL	INSPECTION PERIOD: MAY UN HOULULA 1973 INSPECTOR D. ALWED + J. W.	NSPECTION PERIOD: MAY UNIT HOW WORK VOTONS VES NO OBSERVATIONS VES NO
D. Can war	OBSERVATIONS OBSERVATIONS	OBSERVATIONS OBSERVATIONS
D. Can war	OBSERVATIONS OBSERVATIONS	OBSERVATIONS OBSERVATIONS
D. Can war	OBSERVATIONS OBSERVATIONS	OBSERVATIONS OBSERVATIONS
	MONITOR P	MONITOR CHARGE PROPERTY OF THE

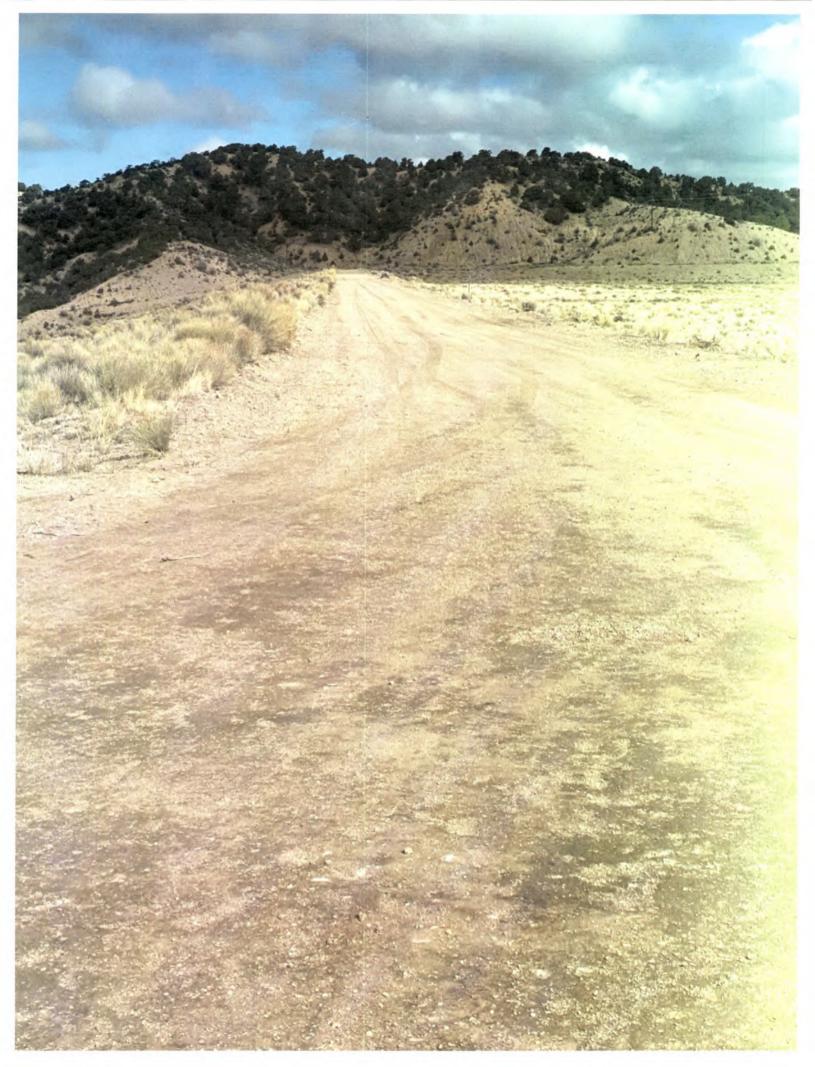
	51th Manatgar.	Comproper	non/Ithma	Davio Carris
ITLE/ROLE	TITLE	REPRESENTING	in/Idma	Two F. Wadne
	ORTING PERSONNEL	INSPECTION AND REPORTING PERSONNEL		
	NS/COMMENTS	RECOMMENDATIONS/COMMENTS		
Xes		x, wo 195 mg.	Channel deau, no issues	Diversion System Observations
s/k			Nove	Vetatation/Rodent/ Other Maintenance Obsarvations
of spilling standard.	Minor enosion on North grown area, also noth side of spillway standards.	had worth grow	Milyon enosion	Sepage/Erosion Observations
Yes		Exster working property	Systam wor	Punpback System Observations
V. No	when within report.	The reading are included in	The ready	Pizometer Levels
РНОТОЅ				INSPECTION ITEMS
	CO DRMS Permit #: M-1988-112 REPORT #:		San Luis Project Tailing Dam thru	PORTING PERIOD:

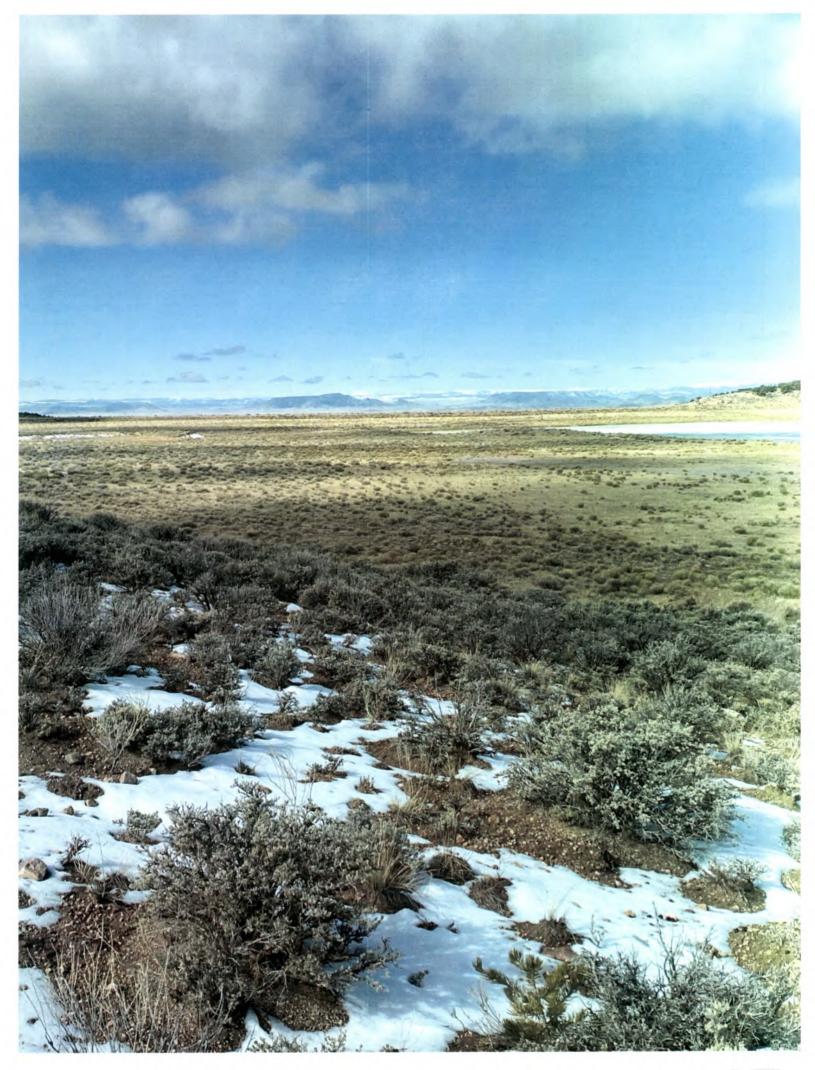

Q1 2023 Piezometer Readings

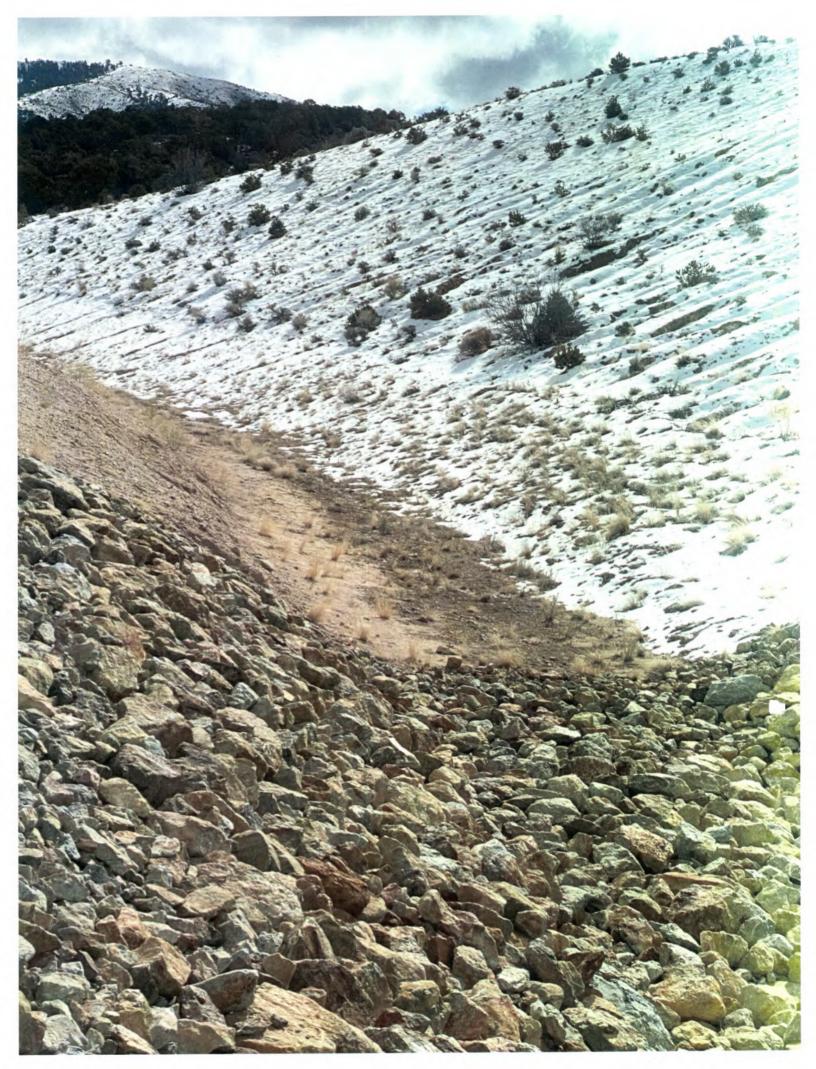

Monitoring Well Identification	Observation Date	Piezometer Depth (ft)	Depth to Water (ft)	Depth of Water (ft)
P6	01/31/2023	72.46	DŔY	N/A
P7	01/31/2023	92.50	DRY	N/A
P8	01/31/2023	97.51	96.66	0.85
P9	01/31/2023	72.30	71.95	0.35
P10	01/31/2023	58.30	57.48	0.82
P11	01/31/2023	41.80	41.41	0.39
P12	01/31/2023	41.71	41.63	0.08
P13	01/31/2023	41.34	41.03	0.31
P14	01/31/2023	41.24	DRY	N/A
P15	01/31/2023	41.10	40.84	0.26
Monitoring Well Identification	Observation Date	Piezometer Depth	Depth to Water (ft)	Depth of Water (ft)
P6	02/28/2023	(ft) 72.46	DRY	N/A
P7	02/28/2023	92.50	DRY	N/A
P8	02/28/2023	97.51	96.67	0.84
P9	02/28/2023	72.30	71.95	0.35
P10	02/28/2023	5 8 .30	57.47	0.83
P11	02/28/2023	41.80	41.40	0.40
P12	02/28/2023	41.71	41.64	0.07
P13	02/28/2023	41.34	41.00	0.34
P14	02/28/2023	41.24	DRY	N/A
P15	02/28/2023	41.10	40.80	0.30
Monitoring Well	Observation Date	Piezometer Depth	Depth to Water	Depth of Water
Identification		(ft)	(ft)	(ft)
P6	03/30/2023	72.46	DRY	N/A
P7	03/30/2023	92.50	DRY	N/A
P8	03/30/2023	97.51	96.67	0.84
P9	03/30/2023	72.30	71.95	0.35
P10	03/30/2023	58.30	57.47	0.83
P11	03/30/2023	41.80	41.40	0.40
P12	03/30/2023	41.71	41.63	0.08
P13	03/30/2023	41.34	41.02	0.32
P14	03/30/2023	41.24	DRY	N/A
P15	03/30/2023	41.10	40.85	0.25



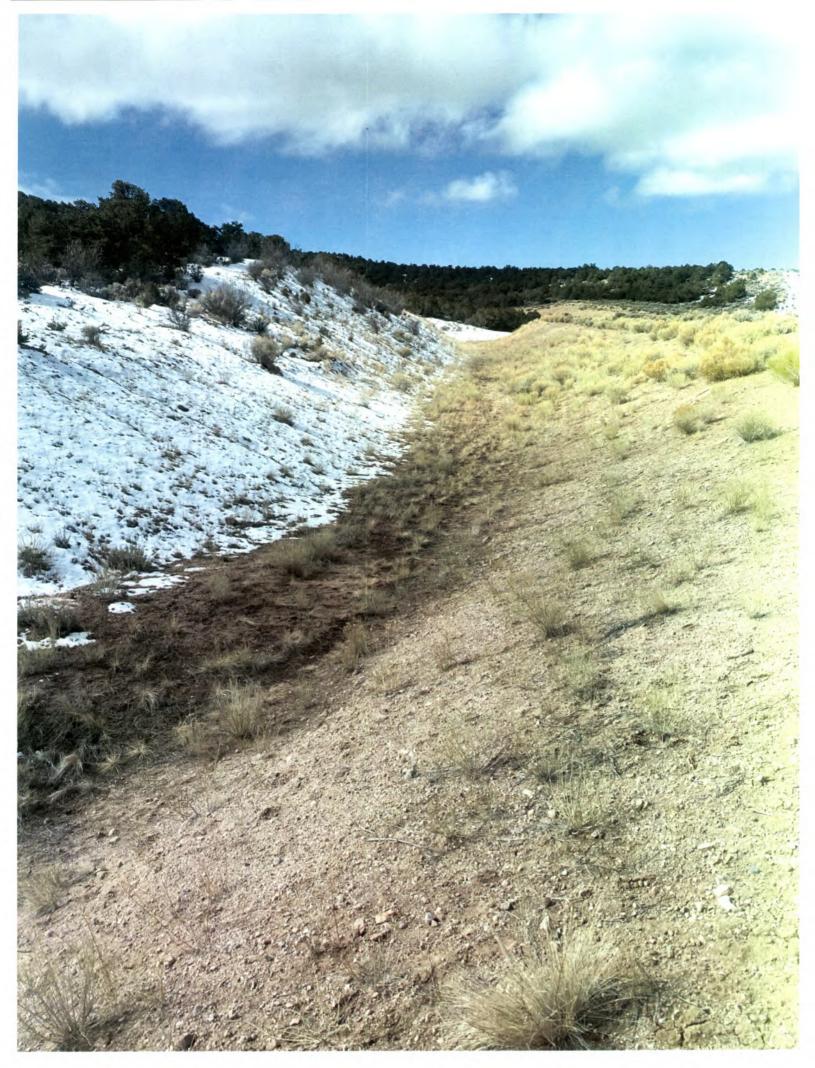


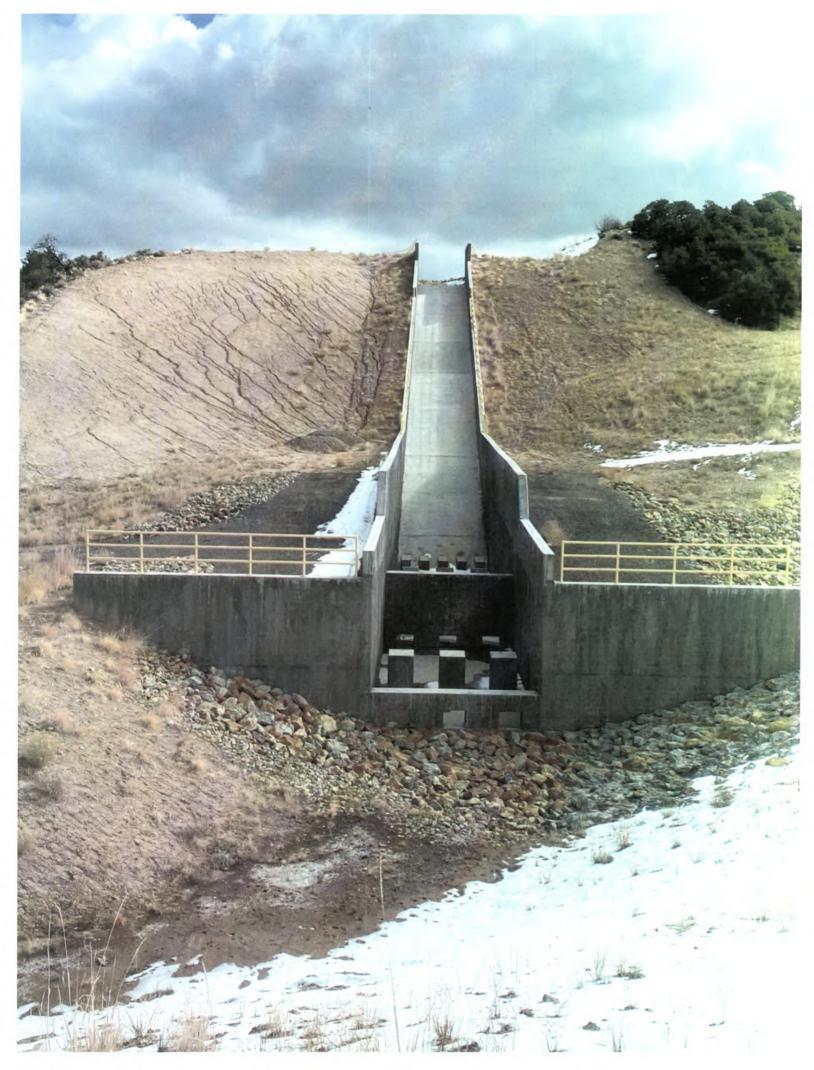












RECEIVED

July 26, 2023

JUL 28 2023

Mr. Lucas West Colorado Division of Reclamation, Mining and Safety 1313 Sherman Street, Room 215 Denver, CO 80203 Colorado Division of Reclamation, Mining and Saftey

RE: San Luis Project Tailings Dam

2023 Annual Inspection Report Technical Revision No. 33 Permit No. M-1988-112

Dear Mr. West:

Battle Mountain Resources Inc. (BMRI) is pleased to provide the 2023 Annual San Luis Tailings Dam Inspection Report in accordance with Technical Revision No. 33 to BMRI's Reclamation Permit. The inspection was conducted by Mark S. Abshire, PE of Engineering Analytics, Inc., and BMRI Site Manager David Carino. Enclosed with the inspection report are photos of the tailings impoundment facilities, including the drop structure and the underdrain discharge area.

Please let me know if you have any questions.

Respectfully,

Julio F. Madrid

Senior Supervisor Colorado Legacy Sites

Cc:

David Carino Devon Horntvedt Karen De Aguero

Jonathan Gillen

Enclosures:

2023 Annual Dam Safety Inspection Report: San Luis Tailings Dam,

CDRMS Permit No. M-1988-112

File Name: San Luis TSF_2023 Annual Dam Safety Inspection Report.pdf

July 14, 2023

Project No. 2101.05.15

Mr. David Carino
Battle Mountain Resources, Inc.
P.O. Box 310
San Luis, CO 81152-0310

RE: 2023 Annual Dam Safety Inspection Report

San Luis Tailings Dam

CDRMS Permit No. M-1988-112

Dear Mr. Carino,

At your request, Engineering Analytics, Inc. (EA) conducted the 2023 annual dam safety inspection for the San Luis Tailings Dam. The inspection was conducted on June 14 by Mark S. Abshire, P.E., in conformance with the Tailing Dam Safety Inspection and Reporting Program prepared by Miller Geotechnical Consultants, Inc. (MGC), dated March 12, 2013. Also present were Jonathan Gillen, PE (Newmont), yourself and Julio Madrid (BMRI).

EA's inspection included review of the 2022 TSF inspection report (August 5, 2022). An overall site plan of the San Luis TSF is presented on Figure 1. Specific inspection results are detailed on the Tailing Dam Inspection Form (Attachment 1), and findings are presented on Figure 2. Figures 3 and 4 present piezometer levels and underdrain flow measurements, respectively. Photographs taken during the inspection are included as Attachment 2.

PREVIOUS FINDINGS

The primary issues identified in the 2022 annual inspection included the potential for surface erosion in disturbed areas around the South Diversion Ditch Drop Structure (construction completed in 2019), and a blocked culvert at the lower end of the HDPE-lined runoff channel at the downstream toe.

INSTRUMENTATION

Piezometers: Piezometer readings from April 2022 through May 2023 are shown in Table 1, and readings from January 2021 through May 2023 are presented graphically on Figure 3. The piezometers all indicate dry conditions or minor amounts of water present at the bottom of the casings due to moisture condensation. This behavior is consistent with historic observations and indicates that the sub-drains are functioning, and low phreatic conditions are maintained within the dam embankment. No abnormalities are indicated in the measurements.

Table 1 San Luis TSF Piezometer Levels: April 2022 - May 2023

PIEZOMETER ID TOTAL DEPTH (ft)*	P6 72.46	P7 92.50	P8 97.51	P9 72.30	P10 58.30	P11 41.80	P12 41.71	P13 41.34	P14 41.24	P15 41.10
4/27/2022	72.46	92.29	96.58	71.93	57.47	41.40	41.66	41.02	41.24	40.87
5/31/2022	72.46	92.28	96.64	71.94	57.49	41.39	41.65	41.01	41.24	40.87
6/30/2022	72.46	92.30	96.62	71.93	57.48	41.41	41.65	41.01	41.24	40.87
7/28/2022	72.46	92.30	96.65	71.94	57.49	41.41	41.65	41.01	41.24	40.87
8/31/2022	72.46	92.50	96.65	71.93	57.49	41.40	41.65	41.00	41.24	40.86
9/29/2022	72.46	92.50	96.65	71.93	57.48	41.40	41.64	41.00	41.24	40.85
10/31/2022	72.46	92.50	96.64	71.92	57.48	41.39	41.65	41.00	41.24	40.86
11/30/2022	72.46	92.50	96.68	71.94	57.47	41.40	41.64	40.99	41.24	40.85
12/30/2022	72.46	92.50	96.67	71.94	57.48	41.40	41.65	41.00	41.24	40.85
1/31/2023	72.46	92.50	96.66	71.95	57.48	41.41	41.63	41.03	41.24	40.84
2/28/2023	72.46	92.50	96.67	71.95	57.47	41.40	41.64	41.00	41.24	40.80
3/30/2023	72.46	92.50	96.67	71.95	57.47	41.40	41.63	41.02	41.24	40.85
4/27/2023	72.46	92.50	96.65	71.95	57.48	41.39	41.63	41.03	41.24	40.86

^{*} Piezometer total depths measured from top of casing

Underdrain: Underdrain flow rates discharging to the seepage collection pond from April 2022 through May 2023 are shown in Table 2, and flow rates from 2016 to 2023 are presented graphically on Figure 4. Average underdrain flow measurements from 2020-23 (31.7 gpm) are slightly lower than from 2016-2023 (34.0 gpm).

The underdrain pipes were jet-cleaned in 2014 in conjunction with the first camera inspection of the accessible downstream ends of the pipes. A second video inspection of the pipe ends was done without jet cleaning in 2018. The 2018 videos showed some accumulation of sediment and precipitates in the pipes compared to the 2014 videos, but the pipes were all still flowing (not clogged). Thus, the observed slight reduction in underdrain flow in recent years is likely due to ongoing severe regional drought. The pipes were jet-cleaned again on October 5, 2020, and May 10, 2021, with no video inspections. It is recommended that jetting of the pipes and video inspections be conducted at least every 3 years unless a change in measured drainage flow rates warrants more frequent cleaning and inspection.

Table 2 San Luis TSF Underdrain Flow Measurements: April 2022 - May 2023

Date	Flow (gpm)
4/27/2022	32.0
5/31/2022	32.0
6/30/2022	32.0
7/28/2022	33.0
8/31/2022	32.5
9/29/2022	33.0
10/31/2022	32.5
11/30/2022	32.0
12/30/2022	32.0
1/31/2023	31.5
2/28/2023	31.5
3/30/2023	31.5

2022 INSPECTION FINDINGS

The overall surficial conditions of the tailings dam at the time of the inspection were generally satisfactory, except for minor issues discussed in more detail below.

Right Downstream Groin: Revegetation in this area following repairs has achieved full recovery and is in satisfactory condition. This area and also the cross-berms and rock-lined down-drains should be monitored periodically to make sure erosion does not recur.

South Diversion Ditch Drop Structure: Disturbed areas adjacent to the drop structure that are not protected by riprap were seeded in 2019. However, vegetation establishment is poor to date due to extended drought conditions, and erosional rilling is progressing in these areas. Erosion on the right (north) side of the drop structure has progressed to the point where repairs and mitigation are required. Mitigation will entail repair of eroded areas, cutting in shallow swales along the slopes to reduce runoff flow path lengths, followed by reseeding the slopes and installation of erosion control blankets or the application of mulch.

Seepage Underdrain Collection System: Continue the jetting and video inspection program to ensure the drain pipes do not become clogged.

Choked Runoff Diversion Ditch Culvert: Clear toe runoff channel culvert immediately south of underdrain outfall pipe

CONCLUSIONS

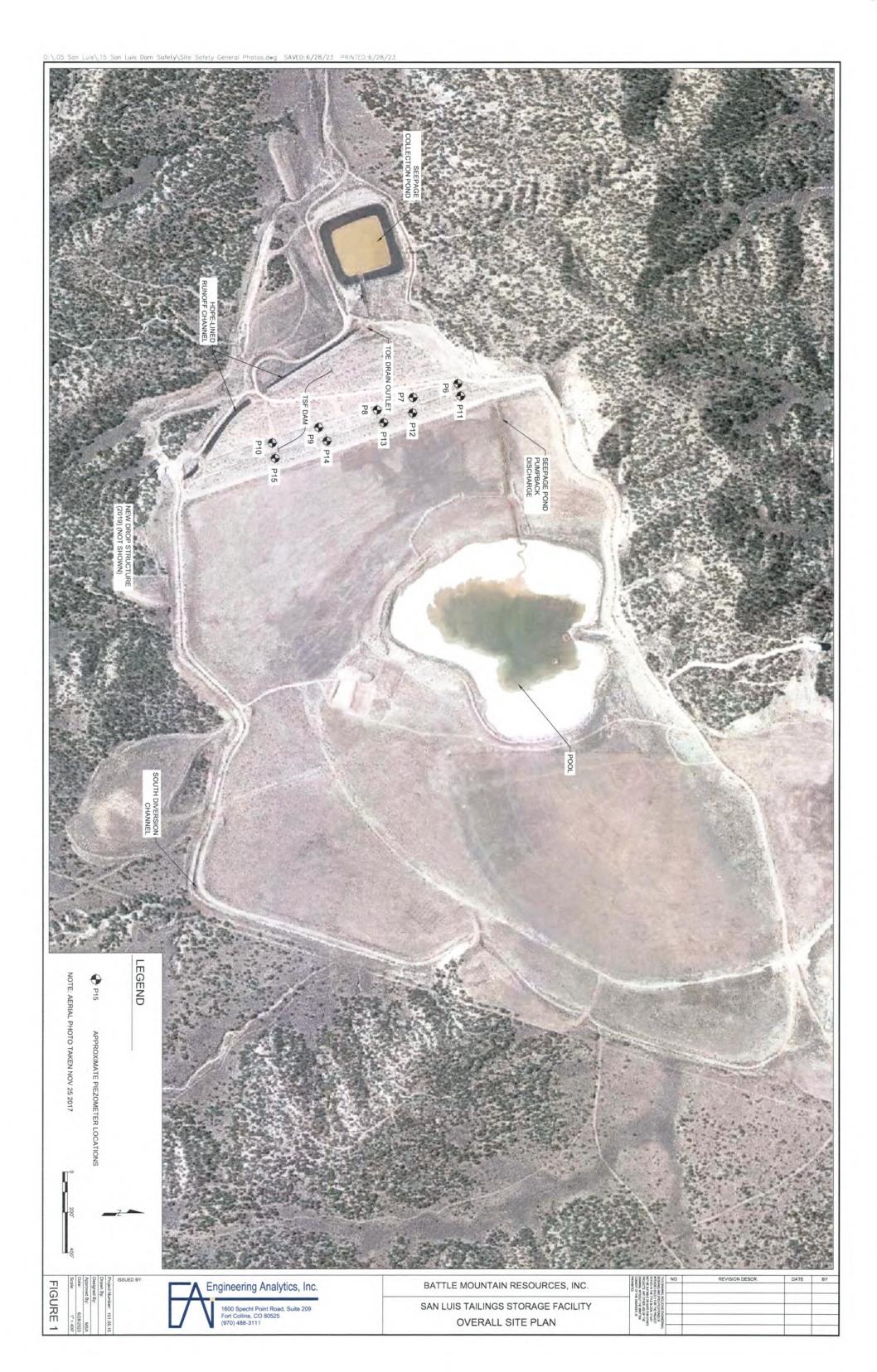
Based on the observations described above, the overall surficial condition of the dam is judged to be 'Conditionally Satisfactory' at this time. Please don't hesitate to call should you have questions or concerns regarding this inspection report.

Respectfully Submitted,

Engineering Analytics, Inc

Mark S. Abshire, P.E.

Senior Geotechnical Engineer


FIGURES

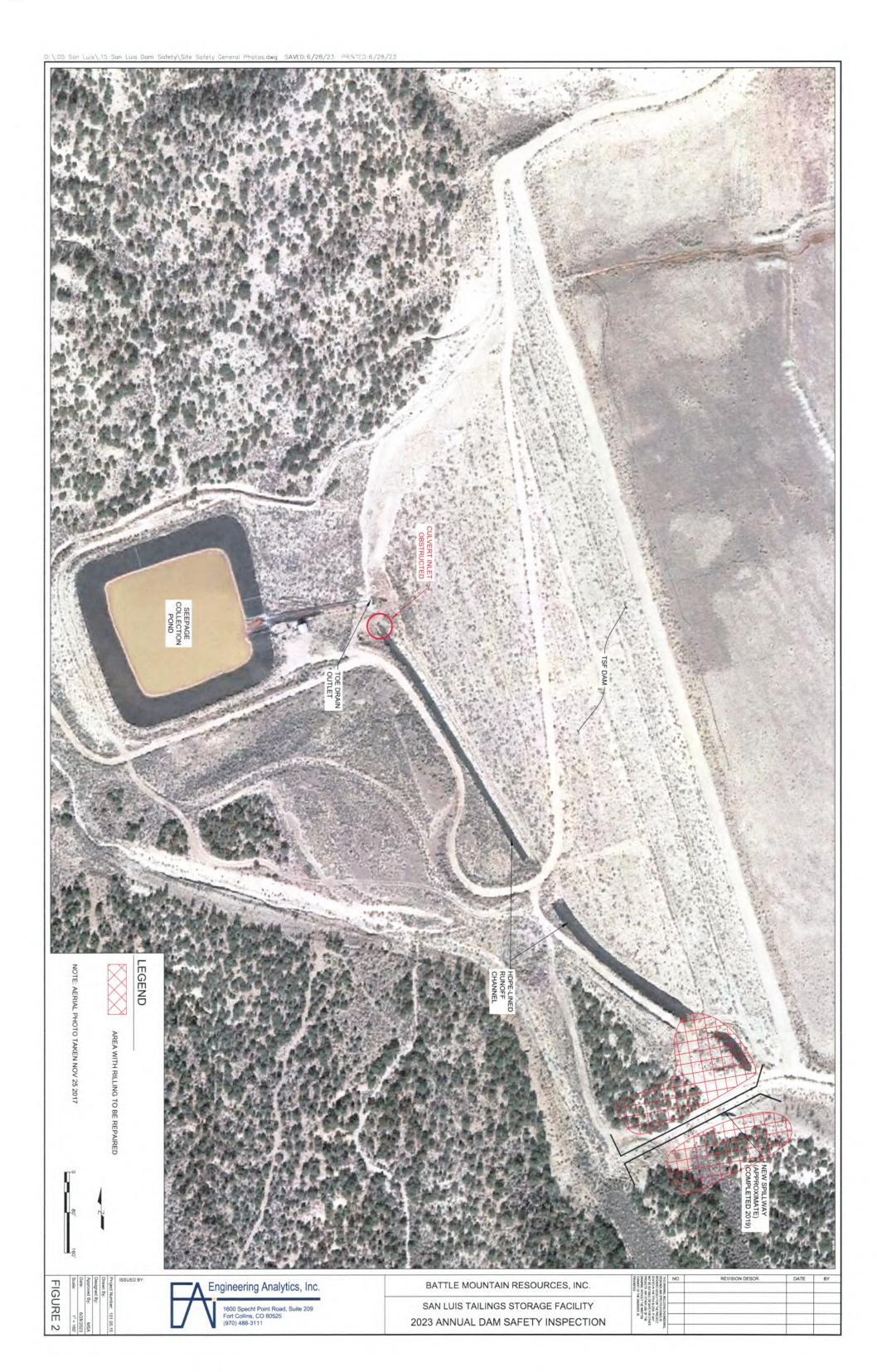

Figure	1	Overall	Site	Plan
TIEMIV	_	O / CI MII		W T-4-17

Figure 2 2023 Annual Dam Safety Inspection

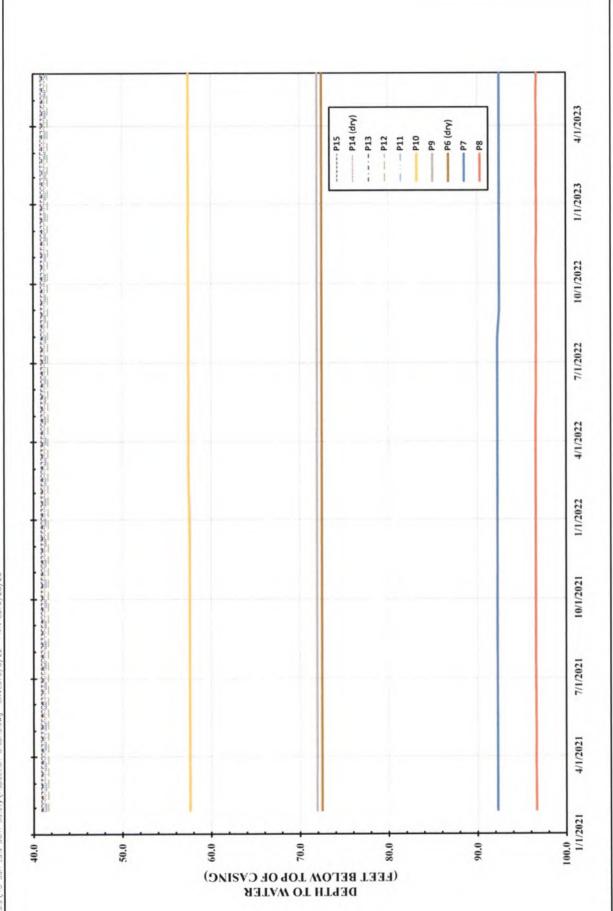

Figure 3 Piezometer Levels

Figure 4 Underdrain Flow

June 2023 FIGURE 3

Project No. 210105.15

TSE UNDERDRAIN FLOW (GPM)

50.0

45.0

Engineering Analytics, Inc.

12/1/2016

20.0

25.0

Project No. 210105.15

ATTACHMENT 1 SAN LUIS TAILINGS DAM 2023 ANNUAL DAM SAFETY INSPECTION FORM MAY 23, 2023 INSPECTION

DATE OF REPORT: July 5, 2023

DAM NAME: San Luis Tailings Dam

TAILINGS DAM INSPECTION FORM

Name of Professional Cond Mark S. Abshire, PE	ducting Inspection:					Colorado P.E 33319	. License No.:
Company Name and Addre					Phone Nos.:	1 (Office)	
Engineering Analytics, Inc. 1600 Specht Point Road,	Suite 209				970-488-311 970-692-426		
Fort Collins, Colorado 80					email: mabsl		llytics.com
INSPECTION PREPARATI		ed all per	tinent technic	al documentati	ion related to t	his dam and s	site in the Owner's files:
⊠ Yes □ No	Comment:		- 4 1				innala avanala d i -
STATEMENT OF EXPERIE the technical disciplines to	•			•	_	•	•
engineering may include ge						ios in addition	i to gonoral olvii
		, ,					
YR COMPL	T R		Sec	COUNTY	DATE OF INSI		
1993 Ph II, Raise 1	Not Applic			Costilla	May 23, 2023		
1995 Ph II, Raise 2	Sangre de Cris	to Land		11.45	DDE: #01:0 ***	DECTION:	
DAM HEIGHT (FT) ~ 155	DAM LENGTH (FT) ~ 1,900		CREST WIDT	H (FT)	PREVIOUS INS June 14, 2022		
					- Julie 74, 2022		
FREEBOARD (FT)	DRAINAGE AREA (AC)	CREST ELEV	(FT)	NORMAL STO		POOL SURFACE AREA (AC)
~ 12	741 total 537 diverted		~ 8620		1,105 at dam o	crest	136.7 at dam crest
BEACH LENGTH ABOVE POO				DIVERSION CH	ANNEL CAPAC	ITY (CFS): ~1,	500
OWNER:					OWNER REP	RESENTATIVE	/CONTACT:
Battle Mountain Resource	es, Inc.				David Carino	. <u> </u>	
OWNER ADDRESS:					OWNER CON		
P.O. Box 310 San Luis, Colorado 81152					/19-3/9-082/	7 (water treatm	ent plant)
FIELD CONDITIONS OBSERVED	WATER LEVEL BEI			FT			O. CO. C.
	GROUNDMOISTU			⊠ DRY	□WET	SNOWC	
	Directions: Mark						у
	·	UPSTR	EAM SLOP	E AND IMPO	UNDMENT	AREA	
PROBLEMS NOTED:							
⊠ (0) NONE		` '		FION - Missing/S			WAVE EROSION
☐ (3) CRACKS WITH DISPL		• •	IKHOLE		` '	PPEARS TOO	
☐ (6) DEPRESSIONS OR BU	JLGES I	□ (7)SLI	DES		□ (8) A	ANIMAL BURF	ROWS
☐ (9) OTHER							
CONDITIONS	BSERVED:	⊠ (SOOD	□ ACC	EPTABLE		POOR
			CR	EST			
PROBLEMS NOTED:							
⊠ (10) NONE		l (11) RU	TSOR PUDDL	.E\$	□ (12)	EROSION	
☐ (13)CRACKS WITH DISPL	ACEMENT [(14) SIN	IKHOLES		□ (15)	NOT WIDE E	NOUGH
☐ (16) LOW AREA		(1 7) M I	SALIGNMEN [*]	Γ	□ (18)	IMPROPER S	URFACE DRAINAGE
☐ (19) OTHER							
CONDITIONS OBSERV	ED: ⊠ G	OOD		ACCEPTABLE	=	□ POOR	
			DOWNSTR	EAM SLOPE			
PROBLEMS NOTED:							
☑ (20) NONE] (21) LIV	ESTOCK DAM	MAGE	(22)	EROSION OF	R GULLIES (R DS Groin)
☐ (23) CRACKS WITH] (24) SI	NKHOLE		□ (25)) APPEARS	TOO STEEP
☐ (26) DEPRESSIONS OR BI☐ (29) OTHER	ULGES] (27)SL	IDES		□ (28)	SOFT AREAS	3
CONDITIONS OBSERV	ED: ⊠ G	OOD		ACCEPTABLE	≣	□ POOR	

DATE OF REPORT: July 5, 2023

DAM NAME: San Luis Tailing Dam

TAILINGS DAM INSPECTION FORM

Directions: Mark and	X for condition	ns found and underline word	is that apply
SEEPA	GE AND TSF	UNDERDRAIN OUTFALL	
PROBLEMS NOTED:			
☐ (30) NONE	☐ (31) SAT	URATEDEMBANKMENT AREA	☐ (32)SEEPAGEEXITSONDAM
☐ (33) SEEPAGE EXITS ATPOINT SOURCE	⊠ (34) MINO ATTOE	OR PONDING OF PIPE SEEPAGE	•
DRAIN OUTFALLSEEN: ☑ YES ☐ NO			
☐ (35) FLOW ADJACENT TO DRAIN PIPE	☐ (36) DRA	IN OUTFLOW TURBID	☐ (37) DRAIN DRY/OBSTRUCTED
☐ (38) OTHER			
SHOW LOCATION OF DRAIN ON SKETCH AND INDICATE AMOUNT AND QUALITY OF SEEPAGE	See Figure 1 Minor clear seeps	age from underdrain outlet creates pu	iddle, attracting animals, but no pipe damage.
CONDITIONS OBSERVED:	□ GOOD	□ ACCEPTABLE	□ POOR
STOP	RMWATER MA	ANAGEMENT SYSTEM	
PROBLEMS NOTED:			
☐ (40) NONE	☐ (41) NO E	MERGENCY SPILLWAY	☑ (42) EROSION AT DROP STRUCTURE
☐ (43) CONCRETE DETERIORATED/UNDERMINED	☐ (45)STRI	UCTURE MAY BETOO SMALL	
☐ (46) DIVERSION CHANNEL EROSION	(47)INADE	QUATECHANNELFLOWCAPACITY	☐ (48) CHANNEL FLOW OBSTRUCTED
☑ (49) OTHER Rilling along both sides of drop stru	cture is advancir	ng- continue monitoring and begi	n planning mitigation strategy.
South diversion channel and downstream toe runoff drain (Photo 12). Mitigation of erosional rilling at dro	collection swales op structure is re	s are in good condition except for quired.	r choking of culvert south of toe
CONDITIONS OBSERVED:	□ GOOD	□ ACCEPTABLE	⊠ POOR
	MON	ITORING	
EXISTING INSTRUMENTATION FOUND:			
□ (50) NONE	□ (51) GAGEI	ROD IN POOL AREA	☑ (52) PIEZOMETERS
☐ (53) SEEPAGE WEIRS/FLUMES	☐ (54) SURVE	Y MONUMENTS	☑ (55) OTHER Underdrain flow
MONITORING OF INSTRUMENTATION:			
☐ (56) NO WEIRS/FLUMES	☑ (57) YES		
PERIODIC INSPECTIONS BY:			
☑ (58) OWNER	⊠ (59)ENGIN	EER	
Piezometers remain dry. Average underdrain flow mea Reduction is likely due to ongoing severe regional drou	asurements from a ught, but continue	2020-23 (31.7 gpm) are lower than jetting and video inspection progra	n from 2016-2023 (34.0 gpm). am.
CONDITIONS OBSERVED:	⊠ GOOD	☐ ACCEPTABLE	☐ POOR
	MAINTENAN	CE AND REPAIRS	
PROBLEMS NOTED:		***	
☐ (60) NONE	☐ (61) ACCES	S ROAD NEEDS MAINTENANCE	☐ (62) CATTLE DAMAGE
☐ (63) BRUSH ON: UPSTREAM SLOPE/BEACH, CR	EST, DOWNSTR	EAM SLOPE, TOE	
☐ (64) RODENT ACTIVITY ON: UPSTREAM SLOPE/	BEACH, CREST,	DOWNSTREAM SLOPE, TOE	
⋈ (65) OTHER #48: Clear toe runoff channel culvert immediately s #49: Disturbed areas adjacent to the South Diversic drought conditions vegetation establishment is poor that mitigation is required.	on Ditch Drop Str	ructure that are not protected by	riprap were seeded in 2019, but due to ng both sides of the structure to the point
	□ GOOD		⊠ POOR
		L CONDITIONS	
Based on this inspection and recent file review,	the overall surfi	cial condition is determined to	be:
☐ SATISFACTORY ☑ CO	NDITIONALLY S	SATISFACTORY	☐ UNSATISFACTORY

TAILING DAM INSPECTION FORM

	ITEMS REQUIRING ACTION BY OWNER TO IMPROVE THE SAFETY OF THE DAM
MAINTENANCE	
⊠ (1) PROVIDE AI	DDITIONAL EROSION PROTECTION: Per Item 49, begin preparing plans to repair and mitigate erosional rilling. Mitigation should include cutting in shallow swales along the slope to reduce runof flow path lengths, followed by reseeding and installation of erosion control blanket: between the swales.
(2) CLEAR BRU	SH FROM:
(3) INITIATE RE	DENT CONTROL PROGRAM AND PROPERLY BACKFILL EXISTING HOLES:
(4) GRADE CRE	EST TO A UNIFORM ELEVATION WITH DRAINAGE TO THE UPSTREAM SLOPE:
(5) PROVIDE SI	JRFACE DRAINAGE FOR:
(6) MONITOR:	
☑ (7) MONITOR:	Continue underdrain jetting cleanout and camera inspection of accessible lengths of underdrain pipes.
Ø (8) OTHER:	Per Item 48, clear toe runoff channel culvert immediately south of toe drain outfall pipe. Protect toe drain area from disturbance by cattle and wildlife.
☑ (9) OTHER:	Per 2020 inspection, consider installing a concrete structure for collection of drain discharges to keep the area dry, to protect the pipes, and to facilitate access for cleanout and monitoring of the drains.
ENGINEERING •	EMPLOY AN ENGINEER EXPERIENCED IN DESIGN AND CONSTRUCTION OF DAMS TO:
(Plans and specif	fications to be improved by CDRMS prior to construction.)
☐ (10) PREPARE F	PLANS AND SPECIFICATIONS FOR REHABILITATION OF THE DAM:
(11) PREPARE	AS-BUILT DRAWINGS OF:
(12) PERFORM	A GEOTECHNICAL INVESTIGATION TO EVALUATE THE STABILITY OF THE DAM:
☐ (13) PERFORM	A HYDROLOGIC STUDY TO DETERMINE REQUIRED SIZE OF FLOOD BYPASS/SPILLWAY:
☐ (14) PREPARE F	PLANS AND SPECIFICATIONS FOR AN ADEQUATE SPILLWAY:
☐ (15) SET UP OF	R IMPROVE MONITORING SYSTEM:
☐ (16) OTHER:	
□ (17) OTHER:	
Figure 2 2023 Ann Figure 3 Piezomet Figure 4 Underdra	
	hs (Photos 1-18) Attachments (Piecons and underdrain data)
	TRUCTION: Instructed owner on the safety-concerns with the should be in the interim period between the regulatory annual inspections. 33319
Professional Engine Reviewed by:	per's Signature: Date: 75/2023 Date: 7/17/2023

DAM NAME: San Luis Tailing Dam

DATE OF REPORT: July 5, 2023

G	UIDELINES FOR DETERMINING	CONDITIONS
CONDITIONS OF	SERVED - APPLIES TO UPSTREAM SLOP	E, CREST, DOWNSTREAM SLOPE
GOOD In general, this part of the structure has a good appearance, and conditions observed in this area do not appear to threaten the safety of the dam.	ACCEPTABLE Although general cross-section is maintained, surfaces may be irregular, eroded, rutted, spalled, or otherwise not in new condition. Conditions in this area do not currently appear to threaten the safety of the dam.	POOR Conditions observed in this area appear to threaten the safety of the dam.
	CONDITIONS OBSERVED - APPLIES T	O SEEPAGE
GOOD No evidence of uncontrolled seepage. No unexplained increase in flows from designed drains. All seepage is clear. Seepage conditions did not appear to threaten the safety of the dam.	ACCEPTABLE Some seepage exists at areas other than the drain outfalls, or other designed drams. No unexplained increase in seepage. All seepage is clear. Seepage conditions observed do not currently appear to threaten the safety of the dam.	POOR Seepage conditions observed appear to threaten the safety of the dam. Examples: 1) Designed drain or seepage flows have increased without increases in pool level. 2) Drain or seepage flows contain sediment, i.e., muddy water or particles in Jar samples. 3) Widespread seepage, concentrated seepage, or ponding appears to threaten the safety of the dam.
	CONDITIONS OBSERVED - APPLIES TO	MONITORING
GOOD Monitoring includes movement surveys, leakage measurements, and piezometer readings. Instrumentation is in reliable, working condition. A plan for monitoring the instrumentation and analyzing results by the owner's engineer is in effect. Periodic inspections by Owner's engineer.	ACCEPTABLE Monitoring includes movement surveys and leakage measurements. Instrumentation is in serviceable condition. A plan for monitoring instrumentation is in effect by owner. Periodic inspections by Owner or representative.	POOR Instrumentation and monitoring described under "ACCEPTABLE" here are not provided, or required periodic readings are not being made, or unexplained changes in readings are not reacted to by Owner.
	ITIONS OBSERVED - APPLIES TO MAINTE	NANCE AND REPAIR
GOOD Dam appears to receive effective on-going maintenance and repair, and only a few minor items may need to be addressed.	ACCEPTABLE Dam appears to receive maintenance, but some maintenance items need to be addressed. No major repairs are required.	POOR Dam does not appear to receive adequate maintenance. One or more items needing maintenance or repair has begun to threaten the safety of the dam.
	OVERALL CONDITIONS	
SATISFACTORY The safety inspection indicates no conditions that appear to threaten the safety of the dam, and the dam is expected to perform satisfactorily under all design loading conditions. Most of the required monitoring is being performed.	CONDITIONALLY SATISFACTORY The safety inspection indicates symptoms of structural distress (seepage, evidence of minor displacements, etc.) which, if conditions worsen, could lead to the failure of the dam. Essential monitoring, inspection, and maintenance must be performed as a requirement for continued full storage in the impoundment area.	UNSATISFACTORY The safety inspection indicates definite signs of structural distress (excessive seepage, cracks, slides, sinkholes, severe deterioration, etc.), which could lead to the failure of the dam if the reservoir is used to full capacity. The dam is judged unsafe for full storage of water.

ATTACHMENT 2 SAN LUIS TAILINGS STORAGE FACILITY 2023 ANNUAL DAM SAFETY INSPECTION MAY 23, 2023 INSPECTION PHOTOS

Photo 1 Looking north along the crest from the middle of the dam, showing good conditions of the impoundment.

Photo 2 Looking south along the crest from the middle of the dam, showing good conditions of the impoundment.

Photo 3 Looking east from the access road at the pool, showing good conditions.

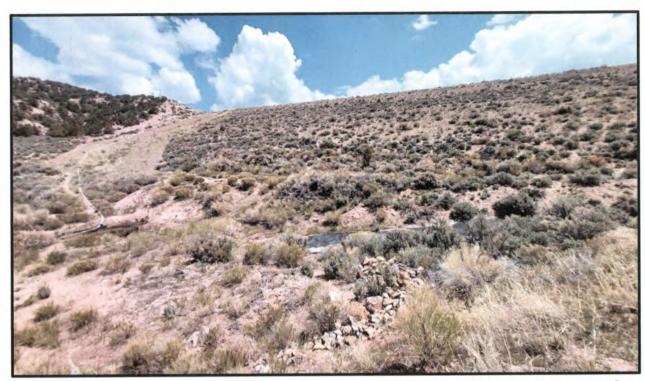

Photo 4 Looking south from the access road at the pool, showing good conditions.

Photo 5 Looking north along the dam crest, showing good conditions and straight alignment.

Photo 6 Looking south from the downstream face, showing good conditions.

Photo 7 Looking northeast from the center at the toe, showing good conditions of the downstream face. Note the underdrain outlet and the white pumpback line at the left center.

Photo 8 Looking southeast up the downstream face from near the underdrain outlet, showing good conditions.

Photo 9 Looking south over the right downstream groin, showing significantly improved revegetation conditions following 2013/2014 erosion repairs. Note the seepage collection pond at the upper right.

Photo 10 Looking northeast over the right downstream groin and rock drop channel, showing good conditions. Note the white pumpback line at the left.

Photo 11 Closeup of the underdrain outlet pipes, showing clear seepage, low flow, and generally good conditions.

Photo 12 Looking north at the lower end of the HDPE left downstream toe runoff channel, showing near complete blockage of the culvert (upper middle of photo) with sediment.

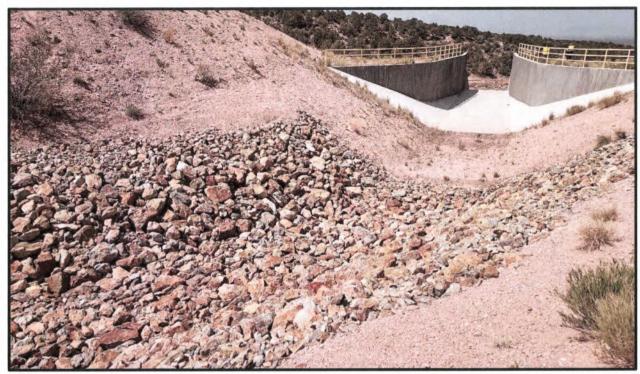
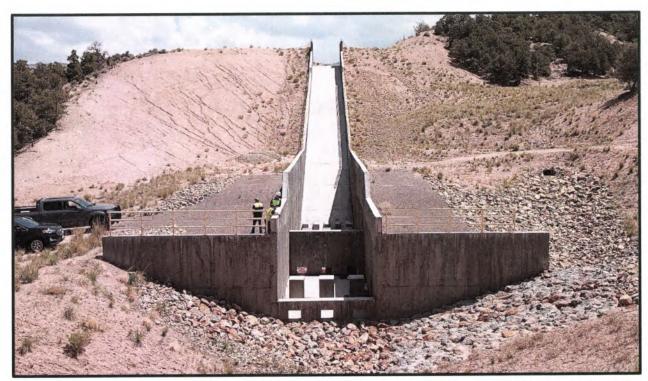



Photo 13 Looking southwest (downstream) into the drop structure from near the top, showing good conditions.

Photo 14 Looking northeast (upstream) into the drop structure inlet, showing good conditions.


Photo 15 Looking northeast at the drop structure from the bottom, showing good conditions except for the erosional rilling along the sides.

Photo 16 Looking north from the toe of the drop structure, showing generally good conditions.

Photo 17 Looking east along the lower left (south) side of the drop structure, showing good conditions.

Photo 18 Looking east along the right (north) side of the drop structure, showing progression of erosional rilling and gullying on the slope face.

BATTLE MOUNTAIN RESOURCES, INC.

October 14, 2023

RECEIVED

OCT 24 2023

Mr. Lucas West

Colorado Division of Reclamation, Mining and Safety

DIVISION OF RECLAMATION, MINING & SAFETY-MINERALS

1313 Sherman Street, Room 215

Denver, CO 80203

Re: San Luis Project Tailing Dam Q3 2023 Inspection Report, Technical Revision No. 33, Permit No. M-1988-112

Dear Mr. West:

Battle Mountain Resources Inc. (BMRI) is pleased to provide the Q3 2023 San Luis Tailing Dam Inspection Report in accordance with Technical Revision No. 33 to BMRI's Reclamation Permit.

The Inspection was conducted by BMRI Site Manager Mr. David Carino and Site Supervisor Mr. Julio Madrid.

Enclosed with the inspection report are photos of the Tailing Impoundment facilities to include the drop structure and the under-drain discharge area. Also included are the Q3 2023 Piezometer Inspection results.

Respectfully,

Julio F. Madrid

Sr. Supervisor Colorado Legacy Sites

(719) 379-0538

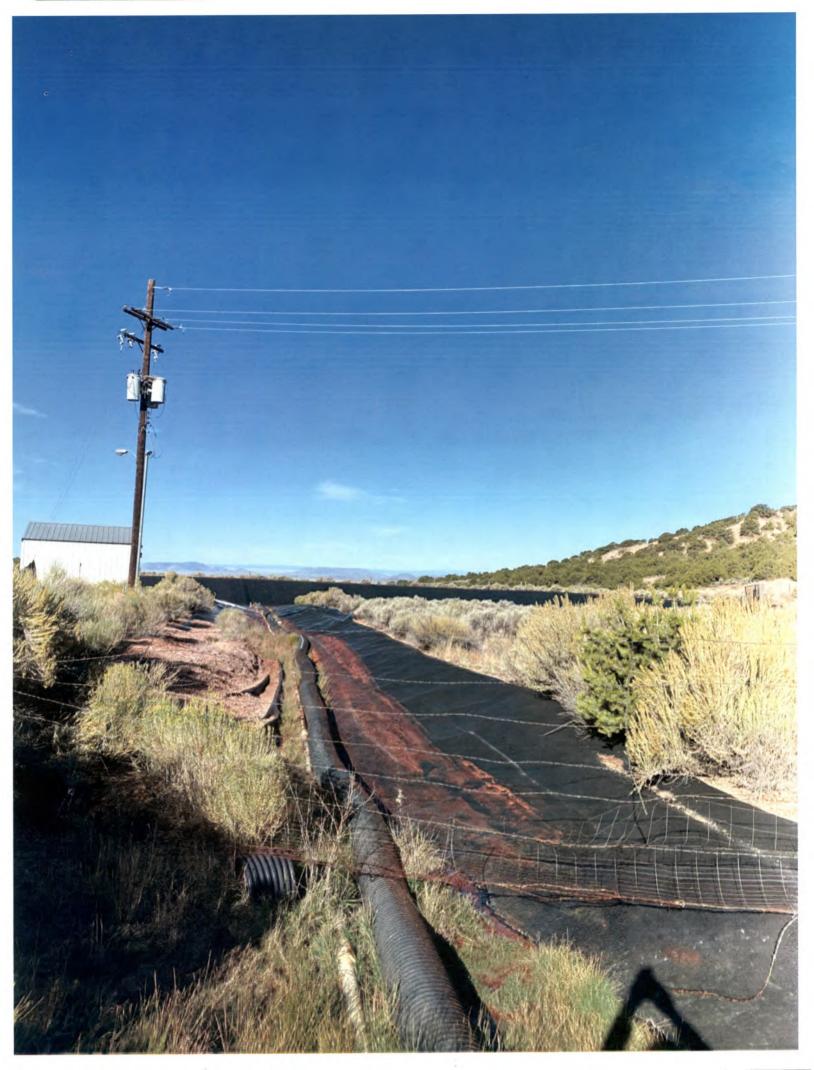
cc: Devon Horntvedt

David Carino

		INSPEC			July 2023 thru Sept 2023		page	1/
DAN	I-ISAN	LUIS PROJECT TAILING DAM	INSPE	CTOR:	David Carino	1		<u> </u>
JAN	ļ	TOO PROJECT TAILING DAW				1	ECK AC	
AREA INSPECTED	ITEM NO.	CONDITION	YES	NO	OBSERVATIONS	MONITOR	NVESTI- GATE	REPAIR
•	1	ANY SURFACE CRACKING?		1		+		┼──
	2	ANY UNUSUAL LOW AREAS?	_	1.7			+	┼
CREST	3	ANY RUTS OR PUDDLES?		17				├
	4	ANY HORIZONTAL OFFSET?				-	 	-
	5	NEED VEGETATION CONTROL?		1.7			 	├—
	6	ANY SLIDES, SLOUGHS, SCARPS?	_	1.7		+	 -	
UDOTDEAM	7	ANY SINKHOLES OR UNUSUAL DEPRESSIONS?		·/			 	ļ
UPSTREAM SLOPE &	8	ANY EROSION?		Y		 	<u> </u>	
BEACH AREA	9	CHANGES AT ABUTMENT CONTACTS?	 			 		
DEAD!! ANEA	10	NEED VEGETATION CONTROL?		7		 		
	11		 			 		
	12	ANY WET AREAS?	+					
	13	ANY SLIDES, SLOUGHS, SCARPS?	+			 	ll	
OOWNSTREAM	14	CHANGES AT DAM-ABUTMENT CONTACT?	 			 		
SLOPE	15	ANY EROSION?			miner erosion northside arein	1	 	
J	16	ANY UNUSUAL BULGING OR SLOPE MOVEMENT?	1		Print Crosson Horraside Gillin	Y		
	17	NEED VEGETATION CONTROL?	1		,			
	18							
SEEPAGE	19	IS DRAIN OUTLET CLOGGED OR OBSTRUCTED?			,			
COLLECTION	·20	ARE DRAIN FLOWS MUDDY OR TURBID?				ļ		
AND	21	IS EMBANKMENT WET AROUND DRAIN OUTLET?	7		Minor beakage armind since			
PUMPBACK	22	ANY PROBLEMS WITH COLLECTION POND?		7	minor leakage around piping	V		
SYSTEM	23	IS PUMPBACK SYSTEM WORKING PROPERLY?						
	24							
<u> </u>		ANY EROSION?		V				
DIVERSION	26	NEED VEGETATION CONTROL?		V				
HANNEL AND	27	ANY DEBRIS IN CHANNELS OR DROP STRUCTURE?						
DROP		ANY CRACKS OR DETERIORATION OF CONCRETE?						
TRUCTURE	29	ANY CORROSION OF PIPE?						
	30			<u> </u>				

•

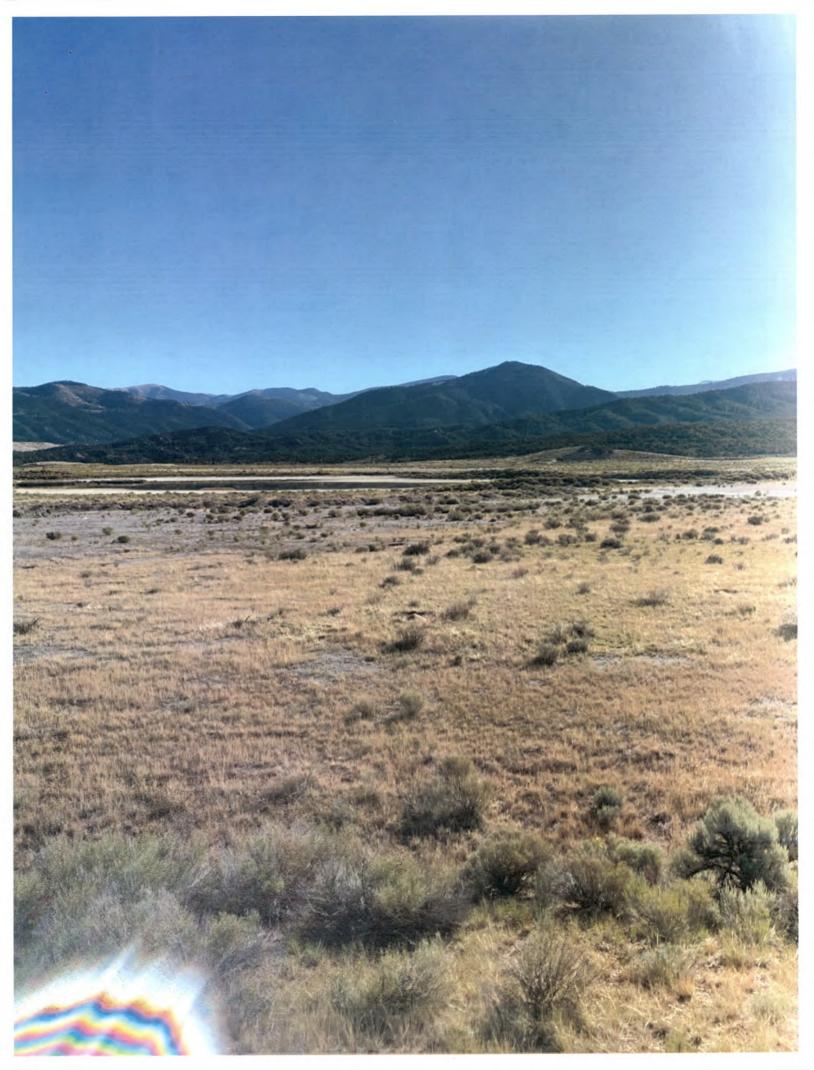
ME OF DAM:	San Luis Project Tailing Dam	CO DRMS Permit #: M-1988-112	
R: PORTING PERIOD		REPORT#:	
PECTION ITEMS			PHOTOS
⊃i≥zometer Levels	Included in repo	ort	No
Disin Collection and Punpback System Diservations	system working prof	perly	Yes
Sespage/Erosion Observations	Miner erosion on Ne	rth groin area (down stream).	yes
Vetetation/Rodent/ Other Maintenance Observations	None		No
Diversion System Observations	channel in good con	ndition, No issues	yes
		RECOMMENDATIONS/COMMENTS	
pulled tree	es around pond in ta	lings and sprayed weeds as recon	nmended by Lacas W
,			
Charles of the control of the contro	INS	PECTION AND REPORTING PERSONNEL	
NAME	REPRE	ESENTING TITLE/	ROLE
avid 5 Carin	O BMRI NEW MILE	site Manager	
Tulio Madris	, // ,		

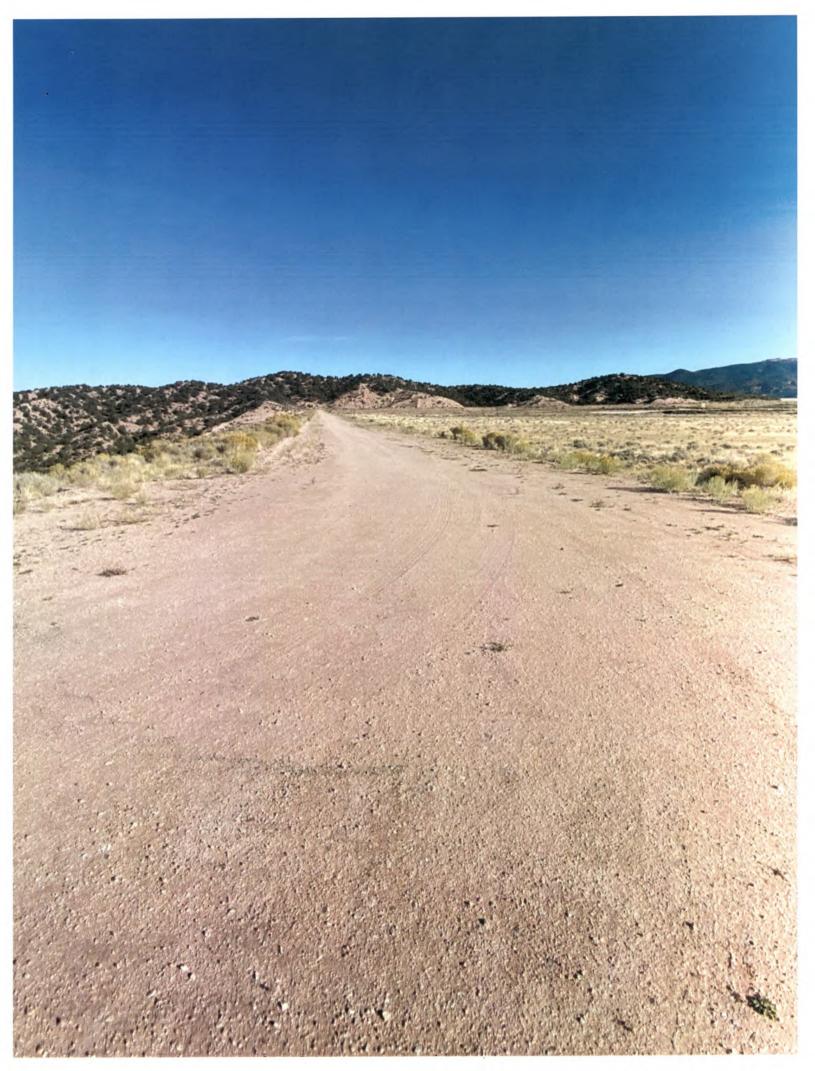

Battle Mountain, San Luis Piezometer Level Readings Q3, 2023

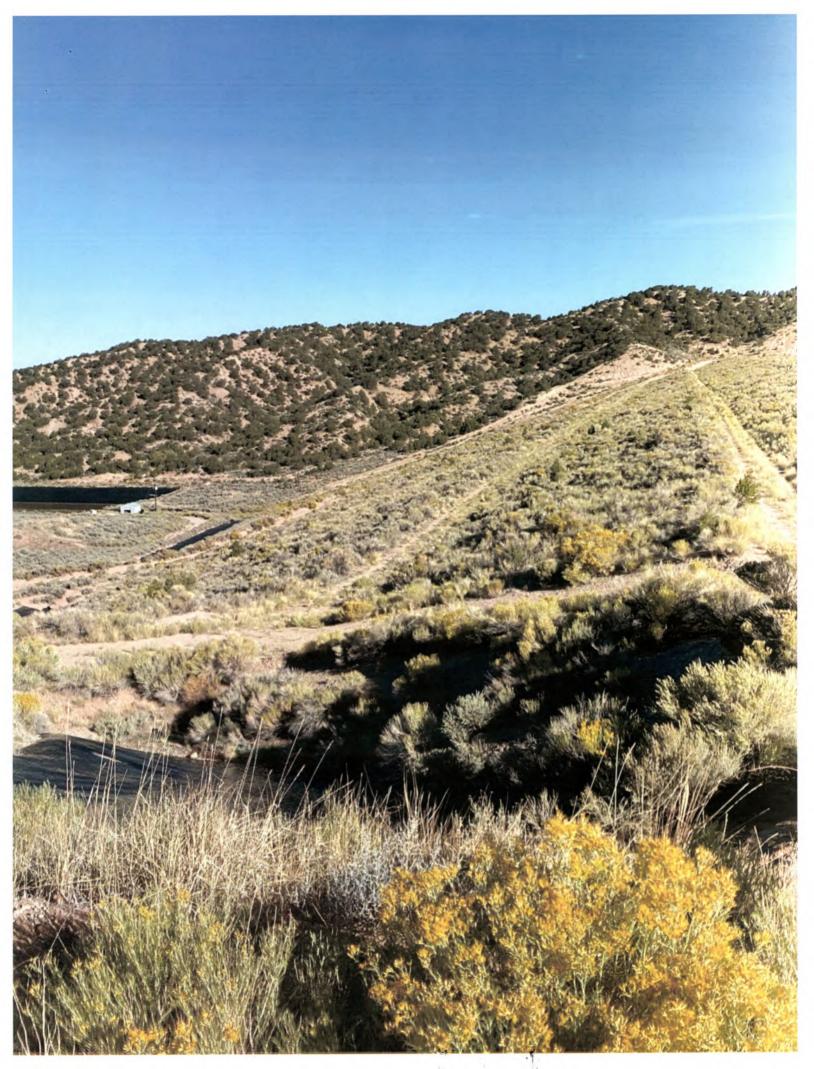
Monitoring Well Identification	Observation Date	Piczometer Depth (ft)	Depth to Water (ft)	Depth of Water (ft)
P6	07/31/2023	72.46	DRY	N/A
P7	07/31/2023	92.50	DRY	N/A
P8	07/31/2023	97.51	96.65	0.86
P9	07/31/2023	72.30	71.95	0.35
P10	07/31/2023	58.30	57.47	0.83
P11	07/31/2023	41.80	41.39	0.41
P12	07/31/2023	41.71	41.63	0.08
P13	07/31/2023	41.34	41.02	0.32
P14	07/31/2023	41.24	DRY	N/A
P15	07/31/2023	41.10	40.85	0.25

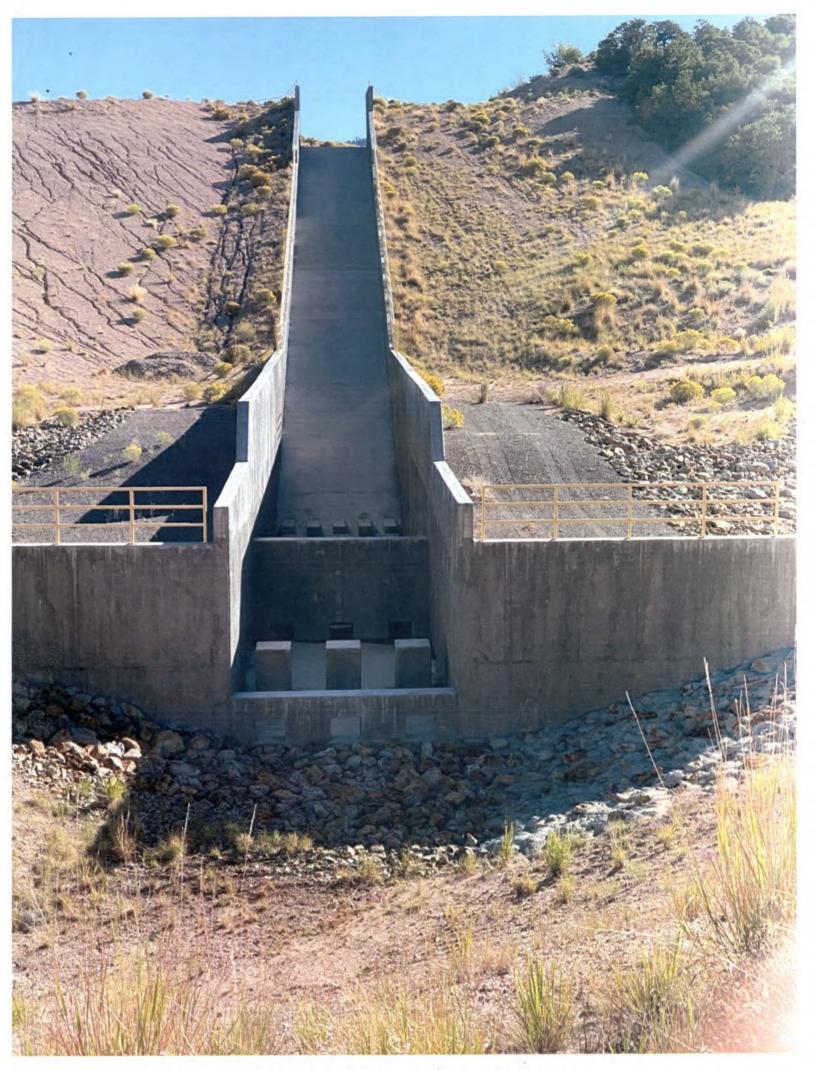
Monitoring Well Identification	Observation Date	Piezometer Depth (ft)	Depth to Water (ft)	Depth of Water (ft)
P6	08/29/2023	72.46	DRY	N/A
P7	08/29/2023	92.50	DRY	N/A
P8	08/29/2023	97.51	96.63	0.88
P9	08/29/2023	72.30	71.95	0.35
P10	08/29/2023	58.30	57.48	0.82
P11	08/29/2023	41.80	41.40	0.40
P12	08/29/2023	41.71	41.64	0.07
P13	08/29/2023	41.34	41.01	0.33
P14	08/29/2023	41.24	DRY	N/A
P15	08/29/2023	41.10	40.86	0.24


Monitoring Well Identification	Observation Date	Piczometer Depth (ft)	Depth to Water (ft)	Depth of Water (ft)
P6	9/28/2023	72.46	DRY	N/A
P7	9/28/2023	92.50	DRY	N/A
P8	9/28/2023	97.51	96.64	0.87
P9	9/28/2023	72.30	71.94	0.36
P10	9/28/2023	58.30	57.48	0.82
P11	9/28/2023	41.80	41.39	0.41
P12	9/28/2023	41.71	41.63	0.08
P13	9/28/2023	41.34	41.02	0.32
P14	9/28/2023	41.24	DRY	N/A
P15	9/28/2023	41.10	40.85	0.25











BATTLE MOUNTAIN RESOURCES, INC.

January 13, 2024

JAN 17 2024
DIVISION OF RECLAMATION
WHITE AND SAFTEY

Mr. Lucas West

Colorado Division of Reclamation, Mining and Safety

1313 Sherman Street, Room 215

Denver, CO 80203

RECEIVED

JAM 17 2024

DIVISION OF PECLAMATION
MINING AND SAFTEY

Re: San Luis Project Tailing Dam Q4 2023 Inspection Report, Technical Revision No. 33, Permit No. M-1988-112

Dear Mr. West:

Battle Mountain Resources Inc. (BMRI) is pleased to provide the Q4 2023 San Luis Tailing Dam Inspection Report in accordance with Technical Revision No. 33 to BMRI's Reclamation Permit.

The Inspection was conducted by BMRI Site Manager Mr. David Carino and Site Supervisor Mr. Julio Madrid.

Enclosed with the inspection report are photos of the Tailing Impoundment facilities to include the drop structure and the under-drain discharge area. Also included are the Q4 2023 Piezometer Inspection results.

Respectfully

Julio F. Madrid

St. Supervisor Colorado Legacy Sites

(719) 379-0538

cc: Devon Horntvedt

David Carino

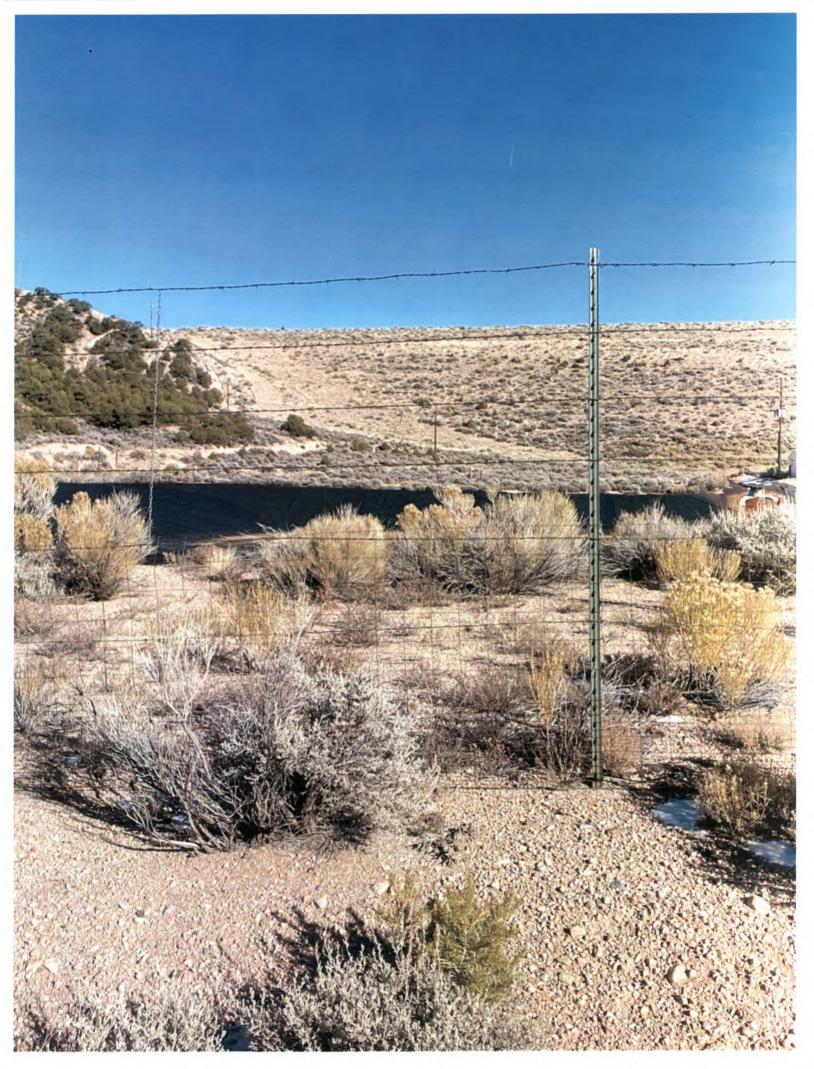
DAM:	SANL	DAM: SAN LUIS PROJECT TAILING DAM				CHEC	CHECK ACTION NEEDED	Ž.
AREA	ITEM NO.	CONDITION	YES	o O	OBSERVATIONS	MONITOR	INVESTI- GATE	REPAIR
	_	ANY SURFACE CRACKING?		<u> </u>				1
•	2	ANY UNUSUAL LOW AREAS?		<		T		1
CREST	ယ	ANY RUTS OR PUDDLES?		5				1
	4	ANY HORIZONTAL OFFSET?		<				1
***	61	NEED VEGETATION CONTROL?		<				
	o	ANY SLIDES, SLOUGHS, SCARPS?		<				
	7	ANY SINKHOLES OR UNUSUAL DEPRESSIONS?						1
UPSTREAM	œ	ANY EROSION?		<				
SLOPE &	မ	CHANGES AT ABUTMENT CONTACTS?		<				
BEACH AKEA	6	NEED VEGETATION CONTROL?		<				
	그							
	12	ANY WET AREAS?		K				
	ú	ANY SLIDES, SLOUGHS, SCARPS?		<u>\</u>				
	4	CHANGES AT DAM-ABUTMENT CONTACT?		>				
	댨	ANY EROSION?	<		Minor erosion northside grin	<		
1	16	ANY UNUSUAL BULGING OR SLOPE MOVEMENT?		<	alpa			
	17	NEED VEGETATION CONTROL?		1				
	à	IS DRAIN OUT FT OLOGGED OR OBSTRUCTED?		1				
SEEPAGE	20	ARE DRAIN FLOWS MUDDY OR TURBID?		1				
COLLECTION	27	IS EMBANKMENT WET AROUND DRAIN OUTLET?	<		minor leakage ground piping	7		
AND	22	ANY PROBLEMS WITH COLLECTION POND?		1	•			
SYSTEM	23	IS PUMPBACK SYSTEM WORKING PROPERLY?	<					
1111	24							
	25	ANY EROSION?		1				
DIVERSION	26	NEED VEGETATION CONTROL?						
CHANNEL AND	27	ANY DEBRIS IN CHANNELS OR DROP STRUCTURE?		1				
ſ	28	ANY CRACKS OR DETERIORATION OF CONCRETE?		7				
DROP	3	ANY CORROSION OF PIPE?		1				
DROP STRUCTURE	87		_		AND THE PROPERTY OF THE PROPER			

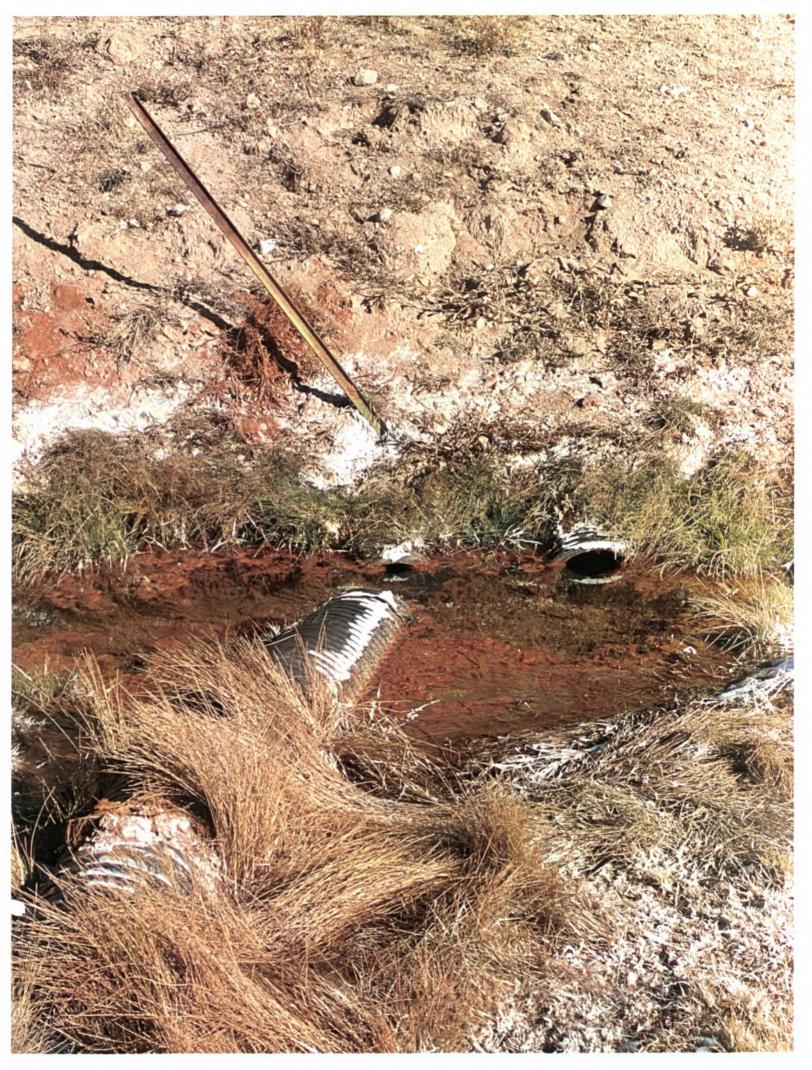
INSPECTION AND REPORTING PERSONNEL NAME NAME NAME REPRESENTING Site Mo Julio Madrid BMRT Newmont Site Su	Observations Channel in good Candition, No 122003 RECOMMENDATIONS/COMMENTS	0 <	Sexpage/Erosion minor erosion on north groin area (down	Drain Collection and Punpback System System working Properly Observations	17-ispection ITEMS Toluded in report.	ME OF DAM San Luis Project Tailing Dam CO DRMS Permit # M-1988-112 REPORTING PERIOD thru REPORT #
RTING PERSONNEL TITLE/ROLE Site Manager Site Supervisor		h issues Ves	Stream).	yes	No	# M-1988-112 # M-1988-112

.

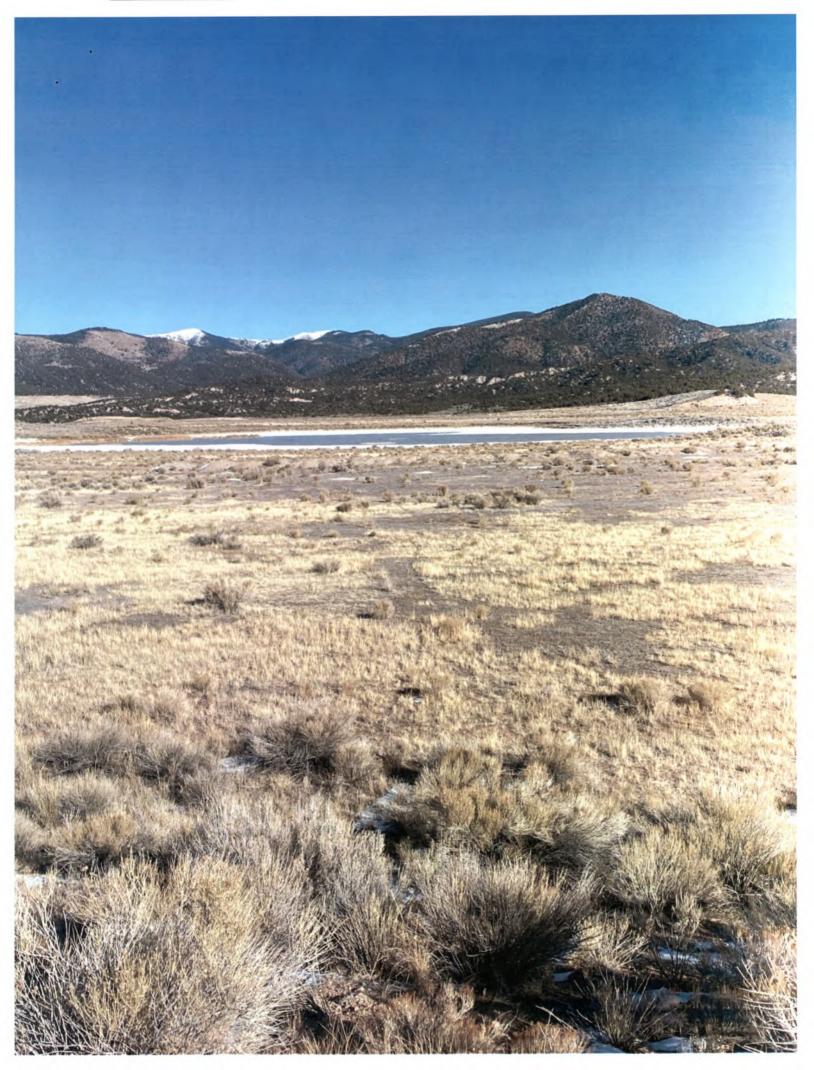
.

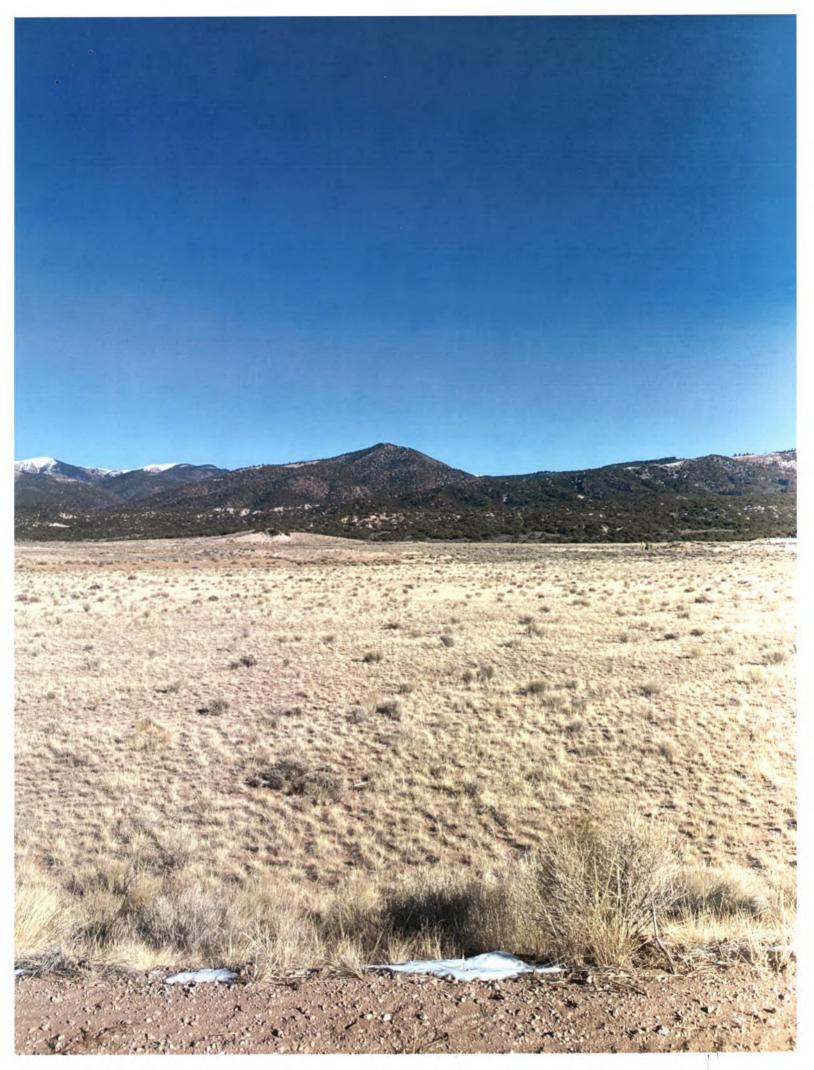
October 2023 Monthly Piezometer Elevations

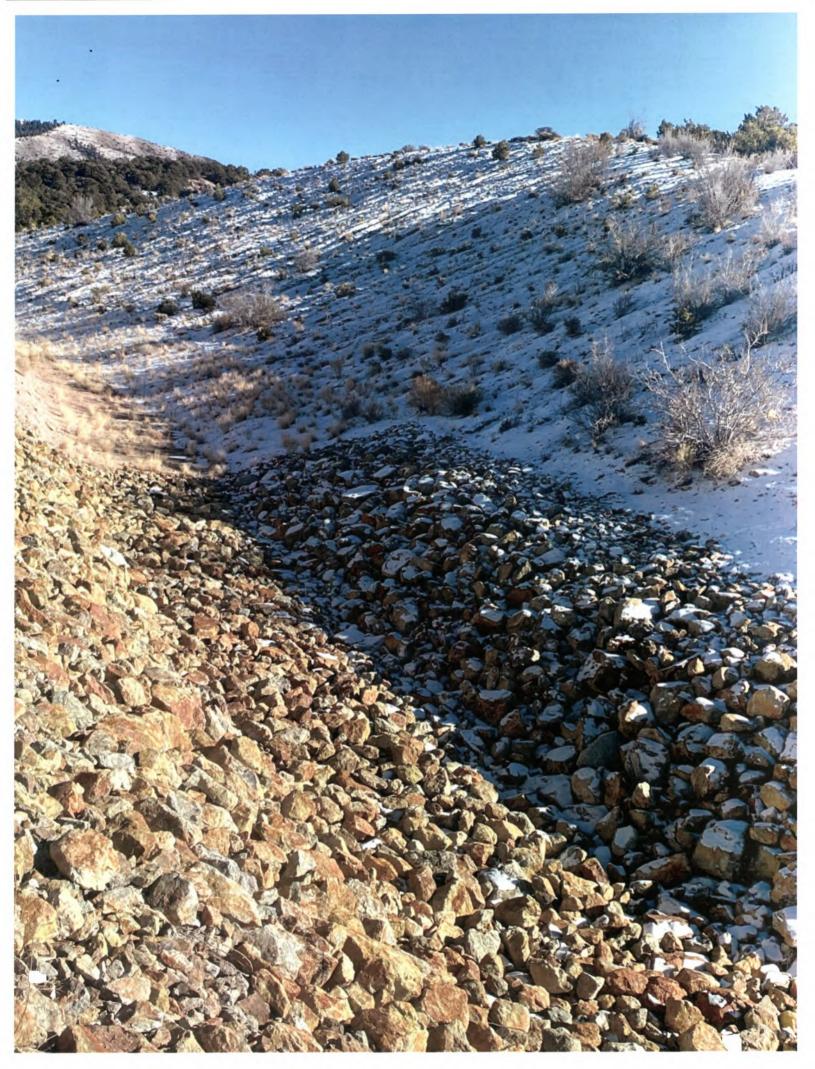

Monitoring Well Identification	Observation Date	Piezometer Depth (ft)	Depth to Water (ft)	Depth of Water (ft)
P6	10/31/2023	72.46	DRY	N/A
P7	10/31/2023	92.50	DRY	N/A
P8	10/31/2023	97.51	96.62	0.89
P9	10/31/2023	72.30	71.95	0.35
P10	10/31/2023	58.30	57.49	0.81
P11	10/31/2023	41.80	41.40	0.4
P12	10/31/2023	41.71	41.62	0.09
P13	10/31/2023	41.34	41.01	0.33
P14	10/31/2023	41.24	DRY	N/A
P15	10/31/2023	41.10	40.85	0.25


November 2023 Monthly Piezometer Elevations

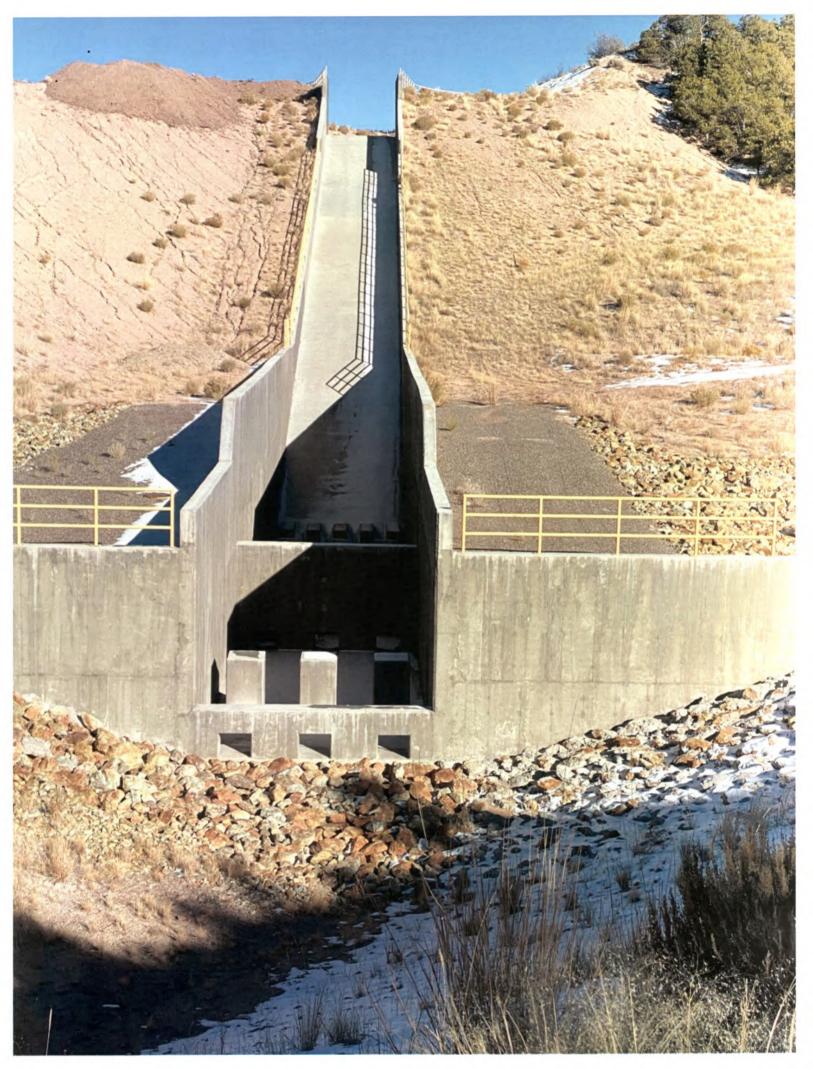
Monitoring Well Identification	Observation Date	Piezometer Depth (ft)	Depth to Water (ft)	Depth of Water (ft)
P6	11/30/2023	72.46	DRY	N/A
P7	11/30/2023	92.50	DRY	N/A
P8	11/30/2023	97.51	96.63	0.88
P9	11/30/2023	72.30	71.96	0.34
P10	11/30/2023	58.30	57.48	0.82
P11	11/30/2023	41.80	41.41	0.39
P12	11/30/2023	41.71	41.63	0.08
P13	11/30/2023	41.34	41.00	0.34
P14	11/30/2023	41.24	DRY	N/A
P15	11/30/2023	41.10	40.86	0.24

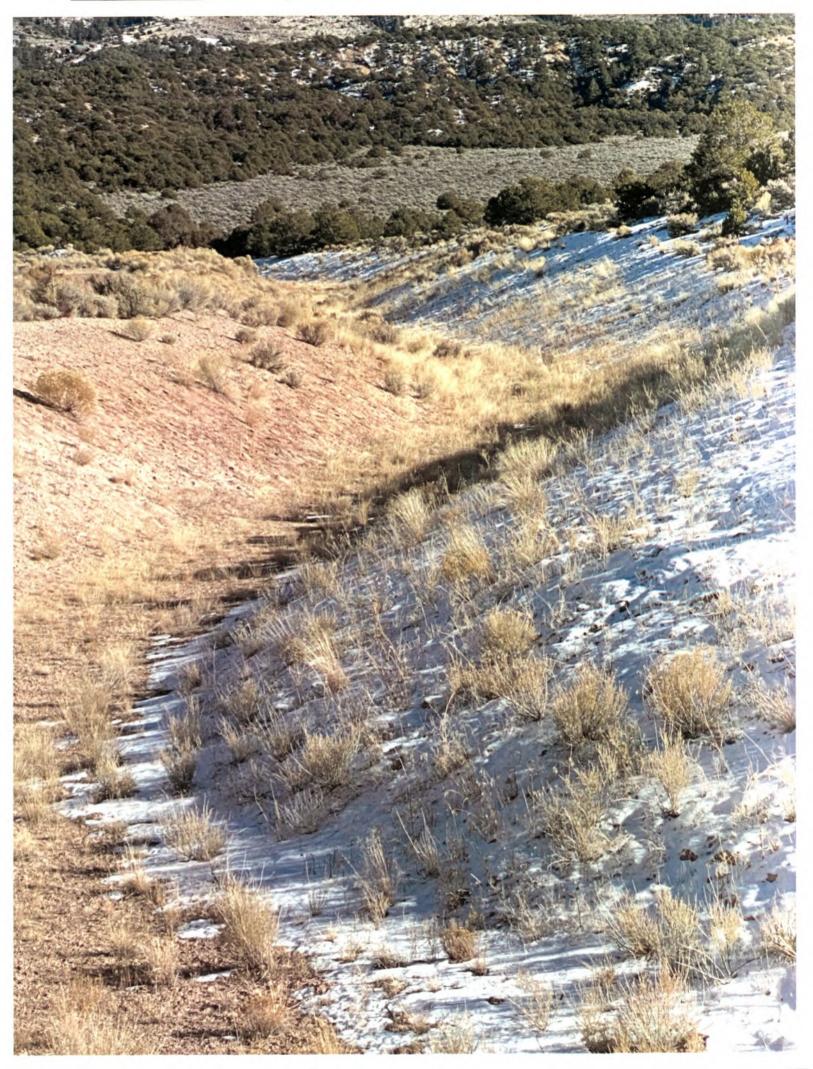

December 2023 Monthly Piezometer Elevations


Monitoring Well Identification	Observation Date	Piezometer Depth (ft)	Depth to Water (ft)	Depth of Water (ft)
P6	12/28/2023	72.46	DRY	N/A
P7	12/28/2023	92.50	DRY	N/A
P8	12/28/2023	97.51	96.65	0.86
P9	12/28/2023	72.30	71.96	0.34
P10	12/28/2023	58.30	57.46	0.84
P11	12/28/2023	41.80	41.42	0.38
P12	12/28/2023	41.71	41.64	0.07
P13	12/28/2023	41.34	41.01	0.33
P14	12/28/2023	41.24	DRY	N/A
P15	12/28/2023	41.10	40.87	0.23









APPENDIX B MONTHLY REPORTS & MONTHLY AND QUARTERLY SAMPLING RESULTS

San Luis Project P.O. Box 310 San Luis, Colorado 81152-0310 (719) 379-0798

February 8, 2023

Mr. Lucas J. West State of Colorado Colorado Department of Reclamation, Mining, & Safety 1313 Sherman Street, Room 215 Denver, CO 80203

Re: Battle Mountain Resources, Inc.

San Luis Project - M-88-112 January 2023 Monthly Report

Dear Mr. West:

The following summarizes monitoring and site activities at the Battle Mountain Resources Inc. (BMRI) "San Luis Project" (M-88-112) for the month of January 2023. Surface and groundwater monitoring and analysis were completed for all the required sites during the month as specified in the TR-32 Quality Assurance and Quality Control (QA/QC) Plan.

Tailing Facility / Leak Detection System

The six lysimeters which are a part of the Lined Tailing Facility (LTF) leak detection system were inspected and verified for proper vacuum and operation. As shown in Table 1, there was no pore space water found to be present in any of the six lysimeter collection pans, therefore, no sampling or laboratory analysis was required.

Table 1 – Monthly Lysimeter Monitoring

Lysimeter Identification	Observation Date	Depth to Water (feet)
LS1R2	01/31/2023	DRY
LS2R2	01/31/2023	DRY
LS3R	01/31/2023	DRY
LD1R2	01/31/2023	DRY
LD2R2	01/31/2023	DRY
LD3R	01/31/2023	DRY

Table 2 – Monthly Piezometer Elevations

Monitoring Well Identification	Observation Date	Piezometer Depth (ft)	Depth to Water (ft)	Depth of Water (ft)
P6	01/31/2023	72.46	DRY	N/A
P7	01/31/2023	92.50	DRY	N/A
P8	01/31/2023	97.51	96.66	0.85
P9	01/31/2023	72.30	71.95	0.35
P10	01/31/2023	58.30	57.48	0.82
P11	01/31/2023	41.80	41.41	0.39
P12	01/31/2023	41.71	41.63	0.08
P13	01/31/2023	41.34	41.03	0.31
P14	01/31/2023	41.24	DRY	N/A
P15	01/31/2023	41.10	40.84	0.26

The leak detection system at the LTF Collection Pond was inspected January 31, 2023 and 870 gallons were evacuated from the leak detection system and pumped to the LTF. The LTF underdrain system was visually inspected January 31, 2023 and the flow rate was measured to be approximately 31.5 gallons per minute (gpm).

West Pit Waste Water Treatment Plant

During the month of January 2023, the West Pit Waste Water Treatment Plant (WWTP) was operated intermittently (3 to 4 days per week) under Colorado Department of Public Health and Environment (CDPHE) CDPS Permit No. CO0045675 for discharge into the Rito Seco alluvial aquifer. During the month, 7,614,700 gallons (23.4 acre-feet) of treated water was discharged to the Rito Seco and 629,500 gallons (1.93 acre-feet) of water was transferred from the West Pit to the Lined Tailing Facility (LTF). Additionally, no water was reinfiltrated into the West Pit in January.

BMRI performed the monthly visual seepage expression inspections on January 31, 2023 in the historic seepage area identified in Figure 2 of the permit. No seepage expressions were observed in the historic seepage area.

Table 3 – Monthly and Quarterly Groundwater Depth to Water

Monitoring Well Identification	Observation Date	Depth to Water (ft)
BF-4	01/31/2023	24.91
BF-5R	01/31/2023	30.84
BF-6	01/31/2023	30.95
M-6	01/31/2023	DRY
M-7	01/31/2023	DRY
M-8	01/31/2023	DRY
M-9	01/31/2023	141.17
M-10	01/31/2023	24.30
M-11R	01/31/2023	39.03
M-12	01/31/2023	174.28
M-13R	01/31/2023	125.50
M-14	01/31/2023	130.38
M-16	01/31/2023	22.99
M-17	01/31/2023	30.06

Table 3 Continued - Monthly and Quarterly Groundwater Depth to Water

Monitoring Well Identification	Observation Date	Depth to Water (ft)
M-18	01/31/2023	26.87
M-19	01/31/2023	24.62
M-21	01/31/2023	18.19
M-22	01/31/2023	16.64
M-23	01/31/2023	43.23
M-24	01/31/2023	25.50
M-26	01/31/2023	14.65
M-31	01/31/2023	38.37
M-32	01/31/2023	37.44
M-33	01/31/2023	49.04
M-34	01/31/2023	20.81

Sincerely,

Julio Madrid Authorized Agent

Battle Mountain Resources, Inc.

Cc: BMRI File

San Luis Project P.O. Box 310 San Luis, Colorado 81152-0310 (719) 379-0798

March 8, 2023

Mr. Lucas J. West State of Colorado Colorado Department of Reclamation, Mining, & Safety 1313 Sherman Street, Room 215 Denver, CO 80203

Re: Battle Mountain Resources, Inc.

San Luis Project - M-88-112 February 2023 Monthly Report

Dear Mr. West:

The following summarizes monitoring and site activities at the Battle Mountain Resources Inc. (BMRI) "San Luis Project" (M-88-112) for the month of February 2023. Surface and groundwater monitoring and analysis were completed for all the required sites during the month as specified in the TR-32 Quality Assurance and Quality Control (QA/QC) Plan.

Tailing Facility / Leak Detection System

The six lysimeters which are a part of the Lined Tailing Facility (LTF) leak detection system were inspected and verified for proper vacuum and operation. As shown in Table 1, there was no pore space water found to be present in any of the six lysimeter collection pans, therefore, no sampling or laboratory analysis was required.

Table 1 – Monthly Lysimeter Monitoring

Lysimeter Identification	Observation Date	Depth to Water (feet)
LS1R2	02/28/2023	DRY
LS2R2	02/28/2023	DRY
LS3R	02/28/2023	DRY
LD1R2	02/28/2023	DRY
LD2R2	02/28/2023	DRY
LD3R	02/28/2023	DRY

Table 2 – Monthly Piezometer Elevations

Monitoring Well Identification	Observation Date	Piezometer Depth (ft)	Depth to Water (ft)	Depth of Water (ft)
P6	02/28/2023	72.46	DRY	N/A
P7	02/28/2023	92.50	DRY	N/A
P8	02/28/2023	97.51	96.67	0.84
P9	02/28/2023	72.30	71.95	0.35
P10	02/28/2023	58.30	57.47	0.83
P11	02/28/2023	41.80	41.40	0.40
P12	02/28/2023	41.71	41.64	0.07
P13	02/28/2023	41.34	41.00	0.34
P14	02/28/2023	41.24	DRY	N/A
P15	02/28/2023	41.10	40.80	0.30

The leak detection system at the LTF Collection Pond was inspected February 28, 2023 and 880 gallons were evacuated from the leak detection system and pumped to the LTF. The LTF underdrain system was visually inspected February 28, 2023 and the flow rate was measured to be approximately 31.5 gallons per minute (gpm).

West Pit Waste Water Treatment Plant

During the month of February 2023, the West Pit Waste Water Treatment Plant (WWTP) was operated intermittently (3 to 4 days per week) under Colorado Department of Public Health and Environment (CDPHE) CDPS Permit No. CO0045675 for discharge into the Rito Seco alluvial aquifer. During the month, 6,404,200 gallons (19.7 acre-feet) of treated water was discharged to the Rito Seco and 249,200 gallons (0.76 acre-feet) of water was transferred from the West Pit to the Lined Tailing Facility (LTF). Additionally, no water was reinfiltrated into the West Pit in February.

BMRI performed the monthly visual seepage expression inspections on February 28, 2023 in the historic seepage area identified in Figure 2 of the permit. No seepage expressions were observed in the historic seepage area.

Table 3 – Monthly and Quarterly Groundwater Depth to Water

Monitoring Well Identification	Observation Date	Depth to Water (ft)
BF-4	02/28/2023	24.90
BF-5R	02/28/2023	30.85
BF-6	02/28/2023	30.94
M-6	02/28/2023	DRY
M-7	02/28/2023	DRY
M-8	02/28/2023	DRY
M-9	02/28/2023	141.09
M-10	02/28/2023	24.37
M-11R	02/28/2023	39.62
M-12	02/28/2023	174.18
M-13R	02/28/2023	125.40
M-14	02/28/2023	130.28
M-16	02/28/2023	23.20
M-17	02/28/2023	30.17

Table 3 Continued - Monthly and Quarterly Groundwater Depth to Water

Monitoring Well Identification	Observation Date	Depth to Water (ft)
M-18	02/28/2023	26.88
M-19	02/28/2023	24.63
M-21	02/28/2023	18.58
M-22	02/28/2023	17.04
M-23	02/28/2023	43.55
M-24	02/28/2023	25.69
M-26	02/28/2023	15.29
M-31	02/28/2023	38.92
M-32	02/28/2023	43.90
M-33	02/28/2023	53.44
M-34	02/28/2023	20.94

Sincerely,

Julio Madrid Authorized Agent

Battle Mountain Resources, Inc.

Cc: BMRI File

San Luis Project P.O. Box 310 San Luis, Colorado 81152-0310 (719) 379-0798

April 7, 2023

Mr. Lucas J. West State of Colorado Colorado Department of Reclamation, Mining, & Safety 1313 Sherman Street, Room 215 Denver, CO 80203

Re: Battle Mountain Resources, Inc.

San Luis Project - M-88-112 March 2023 Monthly Report

Dear Mr. West:

The following summarizes monitoring and site activities at the Battle Mountain Resources Inc. (BMRI) "San Luis Project" (M-88-112) for the month of March 2023. Surface and groundwater monitoring and analysis were completed for all the required sites during the month as specified in the TR-32 Quality Assurance and Quality Control (QA/QC) Plan.

Tailing Facility / Leak Detection System

The six lysimeters which are a part of the Lined Tailing Facility (LTF) leak detection system were inspected and verified for proper vacuum and operation. As shown in Table 1, there was no pore space water found to be present in any of the six lysimeter collection pans, therefore, no sampling or laboratory analysis was required.

Table 1 – Monthly Lysimeter Monitoring

Lysimeter Identification	Observation Date	Depth to Water (feet)
LS1R2	03/30/2023	DRY
LS2R2	03/30/2023	DRY
LS3R	03/30/2023	DRY
LD1R2	03/30/2023	DRY
LD2R2	03/30/2023	DRY
LD3R	03/30/2023	DRY

Table 2 – Monthly Piezometer Elevations

Monitoring Well Identification	Observation Date	Piezometer Depth (ft)	Depth to Water (ft)	Depth of Water (ft)
P6	03/30/2023	72.46	DRY	N/A
P7	03/30/2023	92.50	DRY	N/A
P8	03/30/2023	97.51	96.67	0.84
P9	03/30/2023	72.30	71.95	0.35
P10	03/30/2023	58.30	57.47	0.83
P11	03/30/2023	41.80	41.40	0.40
P12	03/30/2023	41.71	41.63	0.08
P13	03/30/2023	41.34	41.02	0.32
P14	03/30/2023	41.24	DRY	N/A
P15	03/30/2023	41.10	40.85	0.25

The leak detection system at the LTF Collection Pond was inspected March 30, 2023 and 880 gallons were evacuated from the leak detection system and pumped to the LTF. The LTF underdrain system was visually inspected March 30, 2023 and the flow rate was measured to be approximately 31.5 gallons per minute (gpm).

West Pit Waste Water Treatment Plant

During the month of March 2023, the West Pit Waste Water Treatment Plant (WWTP) was operated intermittently (3 to 4 days per week) under Colorado Department of Public Health and Environment (CDPHE) CDPS Permit No. CO0045675 for discharge into the Rito Seco alluvial aquifer. During the month, 7,252,800 gallons (22.3 acre-feet) of treated water was discharged to the Rito Seco and 421,800 gallons (1.29 acre-feet) of water was transferred from the West Pit to the Lined Tailing Facility (LTF). Additionally, no water was reinfiltrated into the West Pit in March.

BMRI performed the monthly visual seepage expression inspections on March 22, 2023 in the historic seepage area identified in Figure 2 of the permit. No seepage expressions were observed in the historic seepage area.

Table 3 – Monthly and Quarterly Groundwater Depth to Water

Monitoring Well Identification	Observation Date	Depth to Water (ft)
BF-4	03/30/2023	24.89
BF-5R	03/30/2023	30.80
BF-6	03/30/2023	30.91
M-6	03/30/2023	DRY
M-7	03/30/2023	DRY
M-8	03/30/2023	DRY
M-9	03/30/2023	141.10
M-10	03/30/2023	24.35
M-11R	03/30/2023	39.81
M-12	03/30/2023	174.14
M-13R	03/30/2023	125.38
M-14	03/30/2023	130.23
M-16	03/30/2023	23.01
M-17	03/30/2023	30.18

Table 3 Continued - Monthly and Quarterly Groundwater Depth to Water

Monitoring Well Identification	Observation Date	Depth to Water (ft)
M-18	03/30/2023	26.59
M-19	03/30/2023	24.25
M-21	03/30/2023	18.47
M-22	03/30/2023	17.09
M-23	03/30/2023	43.80
M-24	03/30/2023	25.79
M-26	03/30/2023	15.30
M-31	03/30/2023	39.11
M-32	03/30/2023	43.78
M-33	03/30/2023	54.25
M-34	03/30/2023	20.78

Sincerely,

Julio Madrid Authorized Agent

Battle Mountain Resources, Inc.

Cc: BMRI File

San Luis Project P.O. Box 310 San Luis, Colorado 81152-0310 (719) 379-0798

May 8, 2023

Mr. Lucas J. West State of Colorado Colorado Department of Reclamation, Mining, & Safety 1313 Sherman Street, Room 215 Denver, CO 80203

Re: Battle Mountain Resources, Inc.

San Luis Project - M-88-112 April 2023 Monthly Report

Dear Mr. West:

The following summarizes monitoring and site activities at the Battle Mountain Resources Inc. (BMRI) "San Luis Project" (M-88-112) for the month of April 2023. Surface and groundwater monitoring and analysis were completed for all the required sites during the month as specified in the TR-32 Quality Assurance and Quality Control (QA/QC) Plan.

Tailing Facility / Leak Detection System

The six lysimeters which are a part of the Lined Tailing Facility (LTF) leak detection system were inspected and verified for proper vacuum and operation. As shown in Table 1, there was no pore space water found to be present in any of the six lysimeter collection pans, therefore, no sampling or laboratory analysis was required.

Table 1 – Monthly Lysimeter Monitoring

Lysimeter Identification	Observation Date	Depth to Water (feet)
LS1R2	04/27/2023	DRY
LS2R2	04/27/2023	DRY
LS3R	04/27/2023	DRY
LD1R2	04/27/2023	DRY
LD2R2	04/27/2023	DRY
LD3R	04/27/2023	DRY

Table 2 – Monthly Piezometer Elevations

Monitoring Well Identification	Observation Date	Piezometer Depth (ft)	Depth to Water (ft)	Depth of Water (ft)
P6	04/27/2023	72.46	DRY	N/A
P7	04/27/2023	92.50	DRY	N/A
P8	04/27/2023	97.51	96.65	0.86
P9	04/27/2023	72.30	71.95	0.35
P10	04/27/2023	58.30	57.48	0.82
P11	04/27/2023	41.80	41.39	0.41
P12	04/27/2023	41.71	41.63	0.08
P13	04/27/2023	41.34	41.03	0.31
P14	04/27/2023	41.24	DRY	N/A
P15	04/27/2023	41.10	40.86	0.24

The leak detection system at the LTF Collection Pond was inspected April 27, 2023 and 880 gallons were evacuated from the leak detection system and pumped to the LTF. The LTF underdrain system was visually inspected April 27, 2023 and the flow rate was measured to be approximately 31.0 gallons per minute (gpm).

West Pit Waste Water Treatment Plant

During the month of April 2023, the West Pit Waste Water Treatment Plant (WWTP) was operated intermittently (3 to 4 days per week) under Colorado Department of Public Health and Environment (CDPHE) CDPS Permit No. CO0045675 for discharge into the Rito Seco alluvial aquifer. During the month, 6,823,600 gallons (20.9 acre-feet) of treated water was discharged to the Rito Seco and 241,300 gallons (0.74 acre-feet) of water was transferred from the West Pit to the Lined Tailing Facility (LTF). Additionally, no water was reinfiltrated into the West Pit in April.

BMRI performed the monthly visual seepage expression inspections on April 27, 2023 in the historic seepage area identified in Figure 2 of the permit. No seepage expressions were observed in the historic seepage area.

Table 3 – Monthly and Quarterly Groundwater Depth to Water

Monitoring Well Identification	Observation Date	Depth to Water (ft)
BF-4	04/27/2023	24.81
BF-5R	04/27/2023	30.78
BF-6	04/27/2023	30.86
M-6	04/27/2023	DRY
M-7	04/27/2023	DRY
M-8	04/27/2023	DRY
M-9	04/27/2023	141.21
M-10	04/27/2023	24.20
M-11R	04/27/2023	39.84
M-12	04/27/2023	174.39
M-13R	04/27/2023	125.69
M-14	04/27/2023	130.51
M-16	04/27/2023	22.56
M-17	04/27/2023	29.89

Table 3 Continued - Monthly and Quarterly Groundwater Depth to Water

Monitoring Well Identification	Observation Date	Depth to Water (ft)
M-18	04/27/2023	25.50
M-19	04/27/2023	23.40
M-21	04/27/2023	17.87
M-22	04/27/2023	16.64
M-23	04/27/2023	43.78
M-24	04/27/2023	25.72
M-26	04/27/2023	15.09
M-31	04/27/2023	39.14
M-32	04/27/2023	44.00
M-33	04/27/2023	55.54
M-34	04/27/2023	20.33

Sincerely,

Julio Madrid Authorized Agent

Battle Mountain Resources, Inc.

Cc: BMRI File

San Luis Project P.O. Box 310 San Luis, Colorado 81152-0310 (719) 379-0798

June 8, 2023

Mr. Lucas J. West State of Colorado Colorado Department of Reclamation, Mining, & Safety 1313 Sherman Street, Room 215 Denver, CO 80203

Re: Battle Mountain Resources, Inc.

San Luis Project - M-88-112 May 2023 Monthly Report

Dear Mr. West:

The following summarizes monitoring and site activities at the Battle Mountain Resources Inc. (BMRI) "San Luis Project" (M-88-112) for the month of May 2023. Surface and groundwater monitoring and analysis were completed for all the required sites during the month as specified in the TR-32 Quality Assurance and Quality Control (QA/QC) Plan.

Tailing Facility / Leak Detection System

The six lysimeters which are a part of the Lined Tailing Facility (LTF) leak detection system were inspected and verified for proper vacuum and operation. As shown in Table 1, there was no pore space water found to be present in any of the six lysimeter collection pans, therefore, no sampling or laboratory analysis was required.

Table 1 – Monthly Lysimeter Monitoring

Lysimeter Identification	Observation Date	Depth to Water (feet)
LS1R2	05/31/2023	DRY
LS2R2	05/31/2023	DRY
LS3R	05/31/2023	DRY
LD1R2	05/31/2023	DRY
LD2R2	05/31/2023	DRY
LD3R	05/31/2023	DRY

Table 2 – Monthly Piezometer Elevations

Monitoring Well Identification	Observation Date	Piezometer Depth (ft)	Depth to Water (ft)	Depth of Water (ft)
P6	05/31/2023	72.46	DRY	N/A
P7	05/31/2023	92.50	DRY	N/A
P8	05/31/2023	97.51	96.67	0.84
P9	05/31/2023	72.30	71.95	0.35
P10	05/31/2023	58.30	57.47	0.83
P11	05/31/2023	41.80	41.40	0.40
P12	05/31/2023	41.71	41.62	0.09
P13	05/31/2023	41.34	41.02	0.32
P14	05/31/2023	41.24	DRY	N/A
P15	05/31/2023	41.10	40.85	0.25

The leak detection system at the LTF Collection Pond was inspected May 31, 2023 and 880 gallons were evacuated from the leak detection system and pumped to the LTF. The LTF underdrain system was visually inspected May 31, 2023 and the flow rate was measured to be approximately 29.5 gallons per minute (gpm).

West Pit Waste Water Treatment Plant

During the month of May 2023, the West Pit Waste Water Treatment Plant (WWTP) was operated intermittently (3 to 4 days per week) under Colorado Department of Public Health and Environment (CDPHE) CDPS Permit No. CO0045675 for discharge into the Rito Seco alluvial aquifer. During the month, 8,850,800 gallons (27.2 acre-feet) of treated water was discharged to the Rito Seco and 579,000 gallons (1.78 acre-feet) of water was transferred from the West Pit to the Lined Tailing Facility (LTF). Additionally, no water was reinfiltrated into the West Pit in May.

BMRI performed the monthly visual seepage expression inspections on May 31, 2023 in the historic seepage area identified in Figure 2 of the permit. No seepage expressions were observed in the historic seepage area.

Table 3 – Monthly and Quarterly Groundwater Depth to Water

Monitoring Well Identification	Observation Date	Depth to Water (ft)
BF-4	05/31/2023	24.84
BF-5R	05/31/2023	30.76
BF-6	05/31/2023	30.82
M-6	05/31/2023	DRY
M-7	05/31/2023	DRY
M-8	05/31/2023	DRY
M-9	05/31/2023	141.09
M-10	05/31/2023	23.96
M-11R	05/31/2023	39.25
M-12	05/31/2023	174.23
M-13R	05/31/2023	125.47
M-14	05/31/2023	130.34
M-16	05/31/2023	21.21
M-17	05/31/2023	28.49

Table 3 Continued - Monthly and Quarterly Groundwater Depth to Water

Monitoring Well Identification	Observation Date	Depth to Water (ft)
M-18	05/31/2023	24.47
M-19	05/31/2023	22.86
M-21	05/31/2023	17.02
M-22	05/31/2023	15.99
M-23	05/31/2023	43.30
M-24	05/31/2023	25.28
M-26	05/31/2023	14.30
M-31	05/31/2023	38.36
M-32	05/31/2023	43.28
M-33	05/31/2023	56.11
M-34	05/31/2023	19.89

Sincerely,

Julio Madrid Authorized Agent

Battle Mountain Resources, Inc.

Cc: BMRI File

San Luis Project P.O. Box 310 San Luis, Colorado 81152-0310 (719) 379-0798

July 7, 2023

Mr. Lucas J. West State of Colorado Colorado Department of Reclamation, Mining, & Safety 1313 Sherman Street, Room 215 Denver, CO 80203

Re: Battle Mountain Resources, Inc.

San Luis Project - M-88-112 June 2023 Monthly Report

Dear Mr. West:

The following summarizes monitoring and site activities at the Battle Mountain Resources Inc. (BMRI) "San Luis Project" (M-88-112) for the month of June 2023. Surface and groundwater monitoring and analysis were completed for all the required sites during the month as specified in the TR-32 Quality Assurance and Quality Control (QA/QC) Plan.

Tailing Facility / Leak Detection System

The six lysimeters which are a part of the Lined Tailing Facility (LTF) leak detection system were inspected and verified for proper vacuum and operation. As shown in Table 1, there was no pore space water found to be present in any of the six lysimeter collection pans, therefore, no sampling or laboratory analysis was required.

Table 1 – Monthly Lysimeter Monitoring

Lysimeter Identification	Observation Date	Depth to Water (feet)
LS1R2	06/29/2023	DRY
LS2R2	06/29/2023	DRY
LS3R	06/29/2023	DRY
LD1R2	06/29/2023	DRY
LD2R2	06/29/2023	DRY
LD3R	06/29/2023	DRY

Table 2 – Monthly Piezometer Elevations

Monitoring Well Identification	Observation Date	Piezometer Depth (ft)	Depth to Water (ft)	Depth of Water (ft)
P6	06/29/2023	72.46	DRY	N/A
P7	06/29/2023	92.50	DRY	N/A
P8	06/29/2023	97.51	96.66	0.85
P9	06/29/2023	72.30	71.94	0.36
P10	06/29/2023	58.30	57.48	0.82
P11	06/29/2023	41.80	41.40	0.40
P12	06/29/2023	41.71	41.64	0.07
P13	06/29/2023	41.34	41.02	0.32
P14	06/29/2023	41.24	DRY	N/A
P15	06/29/2023	41.10	40.84	0.26

The leak detection system at the LTF Collection Pond was inspected June 29, 2023 and 880 gallons were evacuated from the leak detection system and pumped to the LTF. The LTF underdrain system was visually inspected June 29, 2023 and the flow rate was measured to be approximately 29.0 gallons per minute (gpm).

West Pit Waste Water Treatment Plant

During the month of June 2023, the West Pit Waste Water Treatment Plant (WWTP) was operated intermittently (3 to 4 days per week) under Colorado Department of Public Health and Environment (CDPHE) CDPS Permit No. CO0045675 for discharge into the Rito Seco alluvial aquifer. During the month, 8,881,800 gallons (27.3 acre-feet) of treated water was discharged to the Rito Seco and 506,500 gallons (1.55 acre-feet) of water was transferred from the West Pit to the Lined Tailing Facility (LTF). Additionally, no water was reinfiltrated into the West Pit in June.

BMRI performed the monthly visual seepage expression inspections on June 29, 2023 in the historic seepage area identified in Figure 2 of the permit. No seepage expressions were observed in the historic seepage area.

Table 3 – Monthly and Quarterly Groundwater Depth to Water

Monitoring Well Identification	Observation Date	Depth to Water (ft)
BF-4	06/29/2023	24.85
BF-5R	06/29/2023	30.81
BF-6	06/29/2023	30.89
M-6	06/29/2023	DRY
M-7	06/29/2023	DRY
M-8	06/29/2023	DRY
M-9	06/29/2023	141.23
M-10	06/29/2023	24.28
M-11R	06/29/2023	39.19
M-12	06/29/2023	174.34
M-13R	06/29/2023	125.68
M-14	06/29/2023	130.49
M-16	06/29/2023	21.04
M-17	06/29/2023	28.62

Table 3 Continued - Monthly and Quarterly Groundwater Depth to Water

Monitoring Well Identification	Observation Date	Depth to Water (ft)
M-18	06/29/2023	25.59
M-19	06/29/2023	23.44
M-21	06/29/2023	17.87
M-22	06/29/2023	16.56
M-23	06/29/2023	43.07
M-24	06/29/2023	25.27
M-26	06/29/2023	15.11
M-31	06/29/2023	38.53
M-32	06/29/2023	49.20
M-33	06/29/2023	50.99
M-34	06/29/2023	20.17

Sincerely,

Julio Madrid Authorized Agent

Battle Mountain Resources, Inc.

Cc: BMRI File

San Luis Project P.O. Box 310 San Luis, Colorado 81152-0310 (719) 379-0798

August 3, 2023

Mr. Lucas J. West State of Colorado Colorado Department of Reclamation, Mining, & Safety 1313 Sherman Street, Room 215 Denver, CO 80203

Re: Battle Mountain Resources, Inc. San Luis Project - M-88-112 July 2023 Monthly Report

Dear Mr. West:

The following summarizes monitoring and site activities at the Battle Mountain Resources Inc. (BMRI) "San Luis Project" (M-88-112) for the month of July 2023. Surface and groundwater monitoring and analysis were completed for all the required sites during the month as specified in the TR-32 Quality Assurance and Quality Control (QA/QC) Plan.

Tailing Facility / Leak Detection System

The six lysimeters which are a part of the Lined Tailing Facility (LTF) leak detection system were inspected and verified for proper vacuum and operation. As shown in Table 1, there was no pore space water found to be present in any of the six lysimeter collection pans, therefore, no sampling or laboratory analysis was required.

Table 1 – Monthly Lysimeter Monitoring

Lysimeter Identification	Observation Date	Depth to Water (feet)
LS1R2	07/31/2023	DRY
LS2R2	07/31/2023	DRY
LS3R	07/31/2023	DRY
LD1R2	07/31/2023	DRY
LD2R2	07/31/2023	DRY
LD3R	07/31/2023	DRY

Table 2 – Monthly Piezometer Elevations

Monitoring Well Identification	Observation Date	Piezometer Depth (ft)	Depth to Water (ft)	Depth of Water (ft)
P6	07/31/2023	72.46	DRY	N/A
P7	07/31/2023	92.50	DRY	N/A
P8	07/31/2023	97.51	96.65	0.86
P9	07/31/2023	72.30	71.95	0.35
P10	07/31/2023	58.30	57.47	0.83
P11	07/31/2023	41.80	41.39	0.41
P12	07/31/2023	41.71	41.63	0.08
P13	07/31/2023	41.34	41.02	0.32
P14	07/31/2023	41.24	DRY	N/A
P15	07/31/2023	41.10	40.85	0.25

The leak detection system at the LTF Collection Pond was inspected July 31, 2023 and 890 gallons were evacuated from the leak detection system and pumped to the LTF. The LTF underdrain system was visually inspected July 31, 2023 and the flow rate was measured to be approximately 27.8 gallons per minute (gpm).

West Pit Waste Water Treatment Plant

During the month of July 2023, the West Pit Waste Water Treatment Plant (WWTP) was operated intermittently (3 to 4 days per week) under Colorado Department of Public Health and Environment (CDPHE) CDPS Permit No. CO0045675 for discharge into the Rito Seco alluvial aquifer. During the month, 7,885,800 gallons (24.20 acre-feet) of treated water was discharged to the Rito Seco and 421,700 gallons (1.29 acre-feet) of water was transferred from the West Pit to the Lined Tailing Facility (LTF). Additionally, no water was reinfiltrated into the West Pit in May.

BMRI performed the monthly visual seepage expression inspections on July 31, 2023, in the historic seepage area identified in Figure 2 of the permit. No seepage expressions were observed in the historic seepage area.

Table 3 – Monthly and Quarterly Groundwater Depth to Water

Monitoring Well Identification	Observation Date	Depth to Water (ft)
BF-4	7/31/2023	24.89
BF-5R	7/31/2023	30.83
BF-6	7/31/2023	30.92
M-6	7/31/2023	DRY
M-7	7/31/2023	DRY
M-8	7/31/2023	DRY
M-9	7/31/2023	141.28
M-10	7/31/2023	24.23
M-11R	7/31/2023	39.56
M-12	7/31/2023	174.33
M-13R	7/31/2023	125.67
M-14	7/31/2023	130.5
M-16	7/31/2023	22.04
M-17	7/31/2023	29.92

Table 3 Continued – Monthly and Quarterly Groundwater Depth to Water

Monitoring Well Identification	Observation Date	Depth to Water (ft)
M-18	7/31/2023	26.20
M-19	7/31/2023	23.85
M-21	7/31/2023	18.30
M-22	7/31/2023	17.07
M-23	7/31/2023	43.65
M-24	7/31/2023	25.74
M-26	7/31/2023	15.41
M-31	7/31/2023	38.91
M-32	7/31/2023	47.43
M-33	7/31/2023	48.47
M-34	7/31/2023	20.71

Should you have any questions or comments, please do not hesitate to call me at (719) 379-0538.

Sincerely,

Julio Madrid Authorized Agent

Battle Mountain Resources, Inc.

Cc: BMRI File

Devon Horntvedt, Newmont USA Limited Tim Runnells, Engineering Analytics, Inc.

Battle Mountain Resources, Inc.

San Luis Project P.O. Box 310 San Luis, Colorado 81152-0310 (719) 379-0798

September 5, 2023

Mr. Lucas J. West State of Colorado Colorado Department of Reclamation, Mining, & Safety 1313 Sherman Street, Room 215 Denver, CO 80203

Re: Battle Mountain Resources, Inc. San Luis Project - M-88-112 August 2023 Monthly Report

Dear Mr. West:

The following summarizes monitoring and site activities at the Battle Mountain Resources Inc. (BMRI) "San Luis Project" (M-88-112) for the month of August 2023. Surface and groundwater monitoring and analysis were completed for all the required sites during the month as specified in the TR-32 Quality Assurance and Quality Control (QA/QC) Plan.

Tailing Facility / Leak Detection System

The six lysimeters which are a part of the Lined Tailing Facility (LTF) leak detection system were inspected and verified for proper vacuum and operation. As shown in Table 1, there was no pore space water found to be present in any of the six lysimeter collection pans, therefore, no sampling or laboratory analysis was required.

Table 1 – Monthly Lysimeter Monitoring

Lysimeter Identification	Observation Date	Depth to Water (feet)
LS1R2	08/31/2023	DRY
LS2R2	08/31/2023	DRY
LS3R	08/31/2023	DRY
LD1R2	08/31/2023	DRY
LD2R2	08/31/2023	DRY
LD3R	08/31/2023	DRY

The ten piezometers located on the tailing impoundment main embankment were inspected and measured for depth to water. The depths to water found for each piezometer are shown in Table 2. All piezometers were either dry or contained less than 12 inches of water.

Table 2 – Monthly Piezometer Elevations

Monitoring Well Identification	Observation Date	Piezometer Depth (ft)	Depth to Water (ft)	Depth of Water (ft)
P6	08/29/2023	72.46	DRY	N/A
P7	08/29/2023	92.50	DRY	N/A
P8	08/29/2023	97.51	96.63	0.88
P9	08/29/2023	72.30	71.95	0.35
P10	08/29/2023	58.30	57.48	0.82
P11	08/29/2023	41.80	41.40	0.40
P12	08/29/2023	41.71	41.64	0.07
P13	08/29/2023	41.34	41.01	0.33
P14	08/29/2023	41.24	DRY	N/A
P15	08/29/2023	41.10	40.86	0.24

The leak detection system at the LTF Collection Pond was inspected August 31, 2023, and 870 gallons were evacuated from the leak detection system and pumped to the LTF. The LTF underdrain system was visually inspected August 31, 2023, and the flow rate was measured to be approximately 25.0 gallons per minute (gpm).

West Pit Waste Water Treatment Plant

During the month of August 2023, the West Pit Waste Water Treatment Plant (WWTP) was operated intermittently (3 to 4 days per week) under Colorado Department of Public Health and Environment (CDPHE) CDPS Permit No. CO0045675 for discharge into the Rito Seco alluvial aquifer. During the month, 8,195,000 gallons (25.15 acre-feet) of treated water was discharged to the Rito Seco and 394,500 gallons (1.21 acre-feet) of water was transferred from the West Pit to the Lined Tailing Facility (LTF). Additionally, no water was reinfiltrated into the West Pit in August.

BMRI performed the monthly visual seepage expression inspections on August 31, 2023, in the historic seepage area identified in Figure 2 of the permit. No seepage expressions were observed in the historic seepage area.

BMRI measured the monthly West Pit backfill, alluvial and monitoring wells as required under in the QA/QC Plan. Measurements obtained for the monthly wells are shown in Table 3.

Table 3 – Monthly and Quarterly Groundwater Depth to Water

Monitoring Well Identification	Observation Date	Depth to Water (ft)
BF-4	8/31/2023	24.90
BF-5R	8/31/2023	30.80
BF-6	8/31/2023	30.92
M-6	8/31/2023	DRY
M-7	8/31/2023	DRY
M-8	8/31/2023	DRY
M-9	8/31/2023	141.14
M-10	8/31/2023	24.22
M-11R	8/31/2023	39.79
M-12	8/31/2023	174.26
M-13R	8/31/2023	125.55
M-14	8/31/2023	130.42
M-16	8/31/2023	22.78
M-17	8/31/2023	30.16

Table 3 Continued – Monthly and Quarterly Groundwater Depth to Water

Monitoring Well Identification	Observation Date	Depth to Water (ft)
M-18	8/31/2023	26.26
M-19	8/31/2023	24.01
M-21	8/31/2023	18.18
M-22	8/31/2023	17.01
M-23	8/31/2023	44.08
M-24	8/31/2023	25.99
M-26	8/31/2023	15.16
M-31	8/31/2023	39.18
M-32	8/31/2023	47.78
M-33	8/31/2023	45.70
M-34	8/31/2023	20.92

Should you have any questions or comments, please do not hesitate to call me at (719) 379-0827. Sincerely,

Julio Madrid Authorized Agent

Battle Mountain Resources, Inc.

Cc: BMRI File

Devon Horntvedt, Newmont USA Limited Tim Runnells, Engineering Analytics, Inc.

Battle Mountain Resources, Inc.

San Luis Project P.O. Box 310 San Luis, Colorado 81152-0310 (719) 379-0798

October 3, 2023

Mr. Lucas J. West State of Colorado Colorado Department of Reclamation, Mining, & Safety 1313 Sherman Street, Room 215 Denver, CO 80203

Re: Battle Mountain Resources, Inc. San Luis Project - M-88-112

September 2023 Monthly Report

Dear Mr. West:

The following summarizes monitoring and site activities at the Battle Mountain Resources Inc. (BMRI) "San Luis Project" (M-88-112) for the month of September 2023. Surface and groundwater monitoring and analysis were completed for all the required sites during the month as specified in the TR-32 Quality Assurance and Quality Control (QA/QC) Plan.

Tailing Facility / Leak Detection System

The six lysimeters which are a part of the Lined Tailing Facility (LTF) leak detection system were inspected and verified for proper vacuum and operation. As shown in Table 1, there was no pore space water found to be present in any of the six lysimeter collection pans, therefore, no sampling or laboratory analysis was required.

Table 1 – Monthly Lysimeter Monitoring

Lysimeter Identification	Observation Date	Depth to Water (feet)
LS1R2	9/28/2023	DRY
LS2R2	9/28/2023	DRY
LS3R	9/28/2023	DRY
LD1R2	9/28/2023	DRY
LD2R2	9/28/2023	DRY
LD3R	9/28/2023	DRY

The ten piezometers located on the tailing impoundment main embankment were inspected and measured for depth to water. The depths to water found for each piezometer are shown in Table 2. All piezometers were either dry or contained less than 12 inches of water.

Table 2 – Monthly Piezometer Elevations

Monitoring Well Identification	Observation Date	Piezometer Depth (ft)	Depth to Water (ft)	Depth of Water (ft)
P6	9/28/2023	72.46	DRY	N/A
P7	9/28/2023	92.50	DRY	N/A
P8	9/28/2023	97.51	96.64	0.87
P9	9/28/2023	72.30	71.94	0.36
P10	9/28/2023	58.30	57.48	0.82
P11	9/28/2023	41.80	41.39	0.41
P12	9/28/2023	41.71	41.63	0.08
P13	9/28/2023	41.34	41.02	0.32
P14	9/28/2023	41.24	DRY	N/A
P15	9/28/2023	41.10	40.85	0.25

The leak detection system at the LTF Collection Pond was inspected September 28, 2023, and 860 gallons were evacuated from the leak detection system and pumped to the LTF. The LTF underdrain system was visually inspected September 28, 2023, and the flow rate was measured to be approximately 25.0 gallons per minute (gpm).

West Pit Waste Water Treatment Plant

During the month of September 2023, the West Pit Waste Water Treatment Plant (WWTP) was operated intermittently (3 to 4 days per week) under Colorado Department of Public Health and Environment (CDPHE) CDPS Permit No. CO0045675 for discharge into the Rito Seco alluvial aquifer. During the month, 6,430,800 gallons (19.74 acre-feet) of treated water was discharged to the Rito Seco and 460,800 gallons (1.41 acre-feet) of water was transferred from the West Pit to the Lined Tailing Facility (LTF). Additionally, no water was reinfiltrated into the West Pit in September.

BMRI performed the monthly visual seepage expression inspections on September 28, 2023, in the historic seepage area identified in Figure 2 of the permit. No seepage expressions were observed in the historic seepage area.

BMRI measured the monthly West Pit backfill, alluvial and monitoring wells as required under in the QA/QC Plan. Measurements obtained for the monthly wells are shown in Table 3.

Table 3 – Monthly and Quarterly Groundwater Depth to Water

Monitoring Well Identification	Observation Date	Depth to Water (ft)
BF-4	9/28/2023	24.92
BF-5R	9/28/2023	30.82
BF-6	9/28/2023	30.92
M-6	9/28/2023	DRY
M-7	9/28/2023	DRY
M-8	9/28/2023	DRY
M-9	9/28/2023	141.18
M-10	9/28/2023	24.35
M-11R	9/28/2023	40.01
M-12	9/28/2023	174.25
M-13R	9/28/2023	125.58
M-14	9/28/2023	130.18
M-16	9/28/2023	22.93
M-17	9/28/2023	30.25

Table 3 Continued – Monthly and Quarterly Groundwater Depth to Water

Monitoring Well Identification	Observation Date	Depth to Water (ft)
M-18	9/28/2023	26.47
M-19	9/28/2023	24.2
M-21	9/28/2023	18.22
M-22	9/28/2023	17.00
M-23	9/28/2023	44.21
M-24	9/28/2023	26.02
M-26	9/28/2023	15.71
M-31	9/28/2023	39.35
M-32	9/28/2023	47.78
M-33	9/28/2023	46.89
M-34	9/28/2023	21.04

Should you have any questions or comments, please do not hesitate to call me at (719) 379-0827. Sincerely,

Julio Madrid Authorized Agent

Battle Mountain Resources, Inc.

Cc: BMRI File

Devon Horntvedt, Newmont USA Limited Tim Runnells, Engineering Analytics, Inc.

Battle Mountain Resources, Inc.

San Luis Project P.O. Box 310 San Luis, Colorado 81152-0310 (719) 379-0798

November 6, 2023

Mr. Lucas J. West State of Colorado Colorado Department of Reclamation, Mining, & Safety 1313 Sherman Street, Room 215 Denver, CO 80203

Re: Battle Mountain Resources, Inc.

San Luis Project - M-88-112 October 2023 Monthly Report

Dear Mr. West:

The following summarizes monitoring and site activities at the Battle Mountain Resources Inc. (BMRI) "San Luis Project" (M-88-112) for the month of October 2023. Surface and groundwater monitoring and analysis were completed for all the required sites during the month as specified in the TR-32 Quality Assurance and Quality Control (QA/QC) Plan.

Tailing Facility / Leak Detection System

The six lysimeters which are a part of the Lined Tailing Facility (LTF) leak detection system were inspected and verified for proper vacuum and operation. As shown in Table 1, there was no pore space water found to be present in any of the six lysimeter collection pans, therefore, no sampling or laboratory analysis was required.

Table 1 – Monthly Lysimeter Monitoring

Lysimeter Identification	Observation Date	Depth to Water (feet)
LS1R2	10/31/2023	DRY
LS2R2	10/31/2023	DRY
LS3R	10/31/2023	DRY
LD1R2	10/31/2023	DRY
LD2R2	10/31/2023	DRY
LD3R	10/31/2023	DRY

The ten piezometers located on the tailing impoundment main embankment were inspected and measured for depth to water. The depths to water found for each piezometer are shown in Table 2. All piezometers were either dry or contained less than 12 inches of water.

Table 2 – Monthly Piezometer Elevations

Monitoring Well Identification	Observation Date	Piezometer Depth (ft)	Depth to Water (ft)	Depth of Water (ft)
P6	10/31/2023	72.46	DRY	N/A
P7	10/31/2023	92.50	DRY	N/A
P8	10/31/2023	97.51	96.62	0.89
P9	10/31/2023	72.30	71.95	0.35
P10	10/31/2023	58.30	57.49	0.81
P11	10/31/2023	41.80	41.40	0.4
P12	10/31/2023	41.71	41.62	0.09
P13	10/31/2023	41.34	41.01	0.33
P14	10/31/2023	41.24	DRY	N/A
P15	10/31/2023	41.10	40.85	0.25

The leak detection system at the LTF Collection Pond was inspected October 31, 2023, and 880 gallons were evacuated from the leak detection system and pumped to the LTF. The LTF underdrain system was visually inspected October 31, 2023, and the flow rate was measured to be approximately 26.6 gallons per minute (gpm).

West Pit Waste Water Treatment Plant

During the month of October 2023, the West Pit Waste Water Treatment Plant (WWTP) was operated intermittently (3 to 4 days per week) under Colorado Department of Public Health and Environment (CDPHE) CDPS Permit No. CO0045675 for discharge into the Rito Seco alluvial aquifer. During the month, 7,280,000 gallons (22.34 acre-feet) of treated water was discharged to the Rito Seco and 633,600 gallons (1.94 acre-feet) of water was transferred from the West Pit to the Lined Tailing Facility (LTF). Additionally, no water was reinfiltrated into the West Pit in October.

BMRI performed the monthly visual seepage expression inspections on October 31, 2023, in the historic seepage area identified in Figure 2 of the permit. No seepage expressions were observed in the historic seepage area.

BMRI measured the monthly West Pit backfill, alluvial and monitoring wells as required under in the QA/QC Plan. Measurements obtained for the monthly wells are shown in Table 3.

Table 3 – Monthly and Quarterly Groundwater Depth to Water

Monitoring Well Identification	Observation Date	Depth to Water (ft)
BF-4	10/31/2023	24.88
BF-5R	10/31/2023	30.81
BF-6	10/31/2023	30.93
M-6	10/31/2023	DRY
M-7	10/31/2023	DRY
M-8	10/31/2023	DRY
M-9	10/31/2023	141.33
M-10	10/31/2023	24.33
M-11R	10/31/2023	40.22
M-12	10/31/2023	174.59
M-13R	10/31/2023	125.79
M-14	10/31/2023	130.59
M-16	10/31/2023	22.78
M-17	10/31/2023	30.23

Table 3 Continued – Monthly and Quarterly Groundwater Depth to Water

Monitoring Well Identification	Observation Date	Depth to Water (ft)
M-18	10/31/2023	26.36
M-19	10/31/2023	24.22
M-21	10/31/2023	18.15
M-22	10/31/2023	16.75
M-23	10/31/2023	44.16
M-24	10/31/2023	25.90
M-26	10/31/2023	15.44
M-31	10/31/2023	39.52
M-32	10/31/2023	47.85
M-33	10/31/2023	55.94
M-34	10/31/2023	21.12

Should you have any questions or comments, please do not hesitate to call me at (719) 379-0827. Sincerely,

Julio Madrid Authorized Agent

Battle Mountain Resources, Inc.

Cc: BMRI File

Devon Horntvedt, Newmont USA Limited Tim Runnells, Engineering Analytics, Inc.

Battle Mountain Resources, Inc.

San Luis Project P.O. Box 310 San Luis, Colorado 81152-0310 (719) 379-0798

December 6, 2023

Mr. Lucas J. West State of Colorado Colorado Department of Reclamation, Mining, & Safety 1313 Sherman Street, Room 215 Denver, CO 80203

Re: Battle Mountain Resources, Inc. San Luis Project - M-88-112 November 2023 Monthly Report

Dear Mr. West:

The following summarizes monitoring and site activities at the Battle Mountain Resources Inc. (BMRI) "San Luis Project" (M-88-112) for the month of November 2023. Surface and groundwater monitoring and analysis were completed for all the required sites during the month as specified in the TR-32 Quality Assurance and Quality Control (QA/QC) Plan.

Tailing Facility / Leak Detection System

The six lysimeters which are a part of the Lined Tailing Facility (LTF) leak detection system were inspected and verified for proper vacuum and operation. As shown in Table 1, there was no pore space water found to be present in any of the six lysimeter collection pans, therefore, no sampling or laboratory analysis was required.

Table 1 – Monthly Lysimeter Monitoring

Lysimeter Identification	Observation Date	Depth to Water (feet)
LS1R2	11/30/2023	DRY
LS2R2	11/30/2023	DRY
LS3R	11/30/2023	DRY
LD1R2	11/30/2023	DRY
LD2R2	11/30/2023	DRY
LD3R	11/30/2023	DRY

The ten piezometers located on the tailing impoundment main embankment were inspected and measured for depth to water. The depths to water found for each piezometer are shown in Table 2. All piezometers were either dry or contained less than 12 inches of water.

Table 2 – Monthly Piezometer Elevations

Monitoring Well Identification	Observation Date	Piezometer Depth (ft)	Depth to Water (ft)	Depth of Water (ft)	
P6	11/30/2023	72.46	DRY	N/A	
P7	11/30/2023	92.50	DRY	N/A	
P8	11/30/2023	96.63	0.88		
P9	11/30/2023	72.30	71.96	0.34	
P10	11/30/2023	58.30	57.48	0.82	
P11	11/30/2023	11/30/2023 41.80 41.41			
P12	11/30/2023	41.71	41.63	0.08	
P13	11/30/2023	41.34	41.00	0.34	
P14	11/30/2023	41.24	DRY	N/A	
P15	11/30/2023	41.10	40.86	0.24	

The leak detection system at the LTF Collection Pond was inspected November 29, 2023, and 880 gallons were evacuated from the leak detection system and pumped to the LTF. The LTF underdrain system was visually inspected November 30, 2023, and the flow rate was measured to be approximately 26.0 gallons per minute (gpm).

West Pit Waste Water Treatment Plant

During the month of November 2023, the West Pit Waste Water Treatment Plant (WWTP) was operated intermittently (3 to 4 days per week) under Colorado Department of Public Health and Environment (CDPHE) CDPS Permit No. CO0045675 for discharge into the Rito Seco alluvial aquifer. During the month, 7,282,900 gallons (22.35 acre-feet) of treated water was discharged to the Rito Seco and 578,800 gallons (1.78 acre-feet) of water was transferred from the West Pit to the Lined Tailing Facility (LTF). Additionally, no water was reinfiltrated into the West Pit in November.

BMRI performed the monthly visual seepage expression inspections on November 30, 2023, in the historic seepage area identified in Figure 2 of the permit. No seepage expressions were observed in the historic seepage area.

BMRI measured the monthly West Pit backfill, alluvial and monitoring wells as required under in the QA/QC Plan. Measurements obtained for the monthly wells are shown in Table 3.

Table 3 – Monthly and Quarterly Groundwater Depth to Water

Monitoring Well Identification	Observation Date	Depth to Water (ft)
BF-4	11/30/2023	24.90
BF-5R	11/30/2023	30.81
BF-6	11/30/2023	30.91
M-6	11/30/2023	DRY
M-7	11/30/2023	DRY
M-8	11/30/2023	DRY
M-9	11/30/2023	140.89
M-10	11/30/2023	24.24
M-11R	11/30/2023	40.13
M-12	11/30/2023	173.94
M-13R	11/30/2023	125.23
M-14	11/30/2023	130.09
M-16	11/30/2023	22.78
M-17	11/30/2023	30.22

Table 3 Continued – Monthly and Quarterly Groundwater Depth to Water

Monitoring Well Identification	Observation Date	Depth to Water (ft)
M-18	11/30/2023	26.63
M-19	11/30/2023	24.39
M-21	11/30/2023	18.28
M-22	11/30/2023	16.73
M-23	11/30/2023	44.06
M-24	11/30/2023	25.86
M-26	11/30/2023	15.26
M-31	11/30/2023	39.41
M-32	11/30/2023	56.24
M-33	11/30/2023	45.69
M-34	11/30/2023	21.27

Should you have any questions or comments, please do not hesitate to call me at (719) 379-0827. Sincerely,

Julio Madrid Authorized Agent

Battle Mountain Resources, Inc.

Cc: BMRI File

Devon Horntvedt, Newmont USA Limited Tim Runnells, Engineering Analytics, Inc.

Battle Mountain Resources, Inc.

San Luis Project P.O. Box 310 San Luis, Colorado 81152-0310 (719) 379-0798

January 3, 2023

Mr. Lucas J. West State of Colorado Colorado Department of Reclamation, Mining, & Safety 1313 Sherman Street, Room 215 Denver, CO 80203

Re: Battle Mountain Resources, Inc. San Luis Project - M-88-112

December 2023 Monthly Report

Dear Mr. West:

The following summarizes monitoring and site activities at the Battle Mountain Resources Inc. (BMRI) "San Luis Project" (M-88-112) for the month of December 2023. Surface and groundwater monitoring and analysis were completed for all the required sites during the month as specified in the TR-32 Quality Assurance and Quality Control (QA/QC) Plan.

Tailing Facility / Leak Detection System

The six lysimeters which are a part of the Lined Tailing Facility (LTF) leak detection system were inspected and verified for proper vacuum and operation. As shown in Table 1, there was no pore space water found to be present in any of the six lysimeter collection pans, therefore, no sampling or laboratory analysis was required.

Table 1 – Monthly Lysimeter Monitoring

Lysimeter Identification	Observation Date	Depth to Water (feet)
LS1R2	12/28/2023	DRY
LS2R2	12/28/2023	DRY
LS3R	12/28/2023	DRY
LD1R2	12/28/2023	DRY
LD2R2	12/28/2023	DRY
LD3R	12/28/2023	DRY

The ten piezometers located on the tailing impoundment main embankment were inspected and measured for depth to water. The depths to water found for each piezometer are shown in Table 2. All piezometers were either dry or contained less than 12 inches of water.

Table 2 – Monthly Piezometer Elevations

Monitoring Well Identification	Observation Date	Piezometer Depth (ft)	Depth to Water (ft)	Depth of Water (ft)	
P6	12/28/2023	72.46	DRY	N/A	
P7	12/28/2023	92.50	DRY	N/A	
P8	12/28/2023	96.65	0.86		
P9	12/28/2023	72.30	71.96	0.34	
P10	12/28/2023	12/28/2023 58.30 57.46			
P11	12/28/2023	41.42	0.38		
P12	12/28/2023	41.71	41.64	0.07	
P13	12/28/2023	41.34	41.01	0.33	
P14	12/28/2023	41.24	DRY	N/A	
P15	12/28/2023	41.10	40.87	0.23	

The leak detection system at the LTF Collection Pond was inspected December 28, 2023, and 810 gallons were evacuated from the leak detection system and pumped to the LTF. The LTF underdrain system was visually inspected December 28, 2023, and the flow rate was measured to be approximately 25.5 gallons per minute (gpm).

West Pit Waste Water Treatment Plant

During the month of December 2023, the West Pit Waste Water Treatment Plant (WWTP) was operated intermittently (3 to 4 days per week) under Colorado Department of Public Health and Environment (CDPHE) CDPS Permit No. CO0045675 for discharge into the Rito Seco alluvial aquifer. During the month, 5,847,500 gallons (17.95 acre-feet) of treated water was discharged to the Rito Seco and 0 gallons (0 acre-feet) of water was transferred from the West Pit to the Lined Tailing Facility (LTF). Additionally, no water was reinfiltrated into the West Pit in December.

BMRI performed the monthly visual seepage expression inspections on December 28, 2023, in the historic seepage area identified in Figure 2 of the permit. No seepage expressions were observed in the historic seepage area.

BMRI measured the monthly West Pit backfill, alluvial and monitoring wells as required under in the QA/QC Plan. Measurements obtained for the monthly wells are shown in Table 3.

Table 3 – Monthly and Quarterly Groundwater Depth to Water

Monitoring Well Identification	Observation Date	Depth to Water (ft)
BF-4	12/28/2023	24.93
BF-5R	12/28/2023	30.82
BF-6	12/28/2023	30.96
M-6	12/28/2023	DRY
M-7	12/28/2023	DRY
M-8	12/28/2023	DRY
M-9	12/28/2023	141.23
M-10	12/28/2023	24.33
M-11R	12/28/2023	39.98
M-12	12/28/2023	174.39
M-13R	12/28/2023	125.68
M-14	12/28/2023	130.52
M-16	12/28/2023	23.18
M-17	12/28/2023	30.29

Table 3 Continued - Monthly and Quarterly Groundwater Depth to Water

Monitoring Well Identification	Observation Date	Depth to Water (ft)
M-18	12/28/2023	26.84
M-19	12/28/2023	24.58
M-21	12/28/2023	18.43
M-22	12/28/2023	16.88
M-23	12/28/2023	43.99
M-24	12/28/2023	25.80
M-26	12/28/2023	15.22
M-31	12/28/2023	39.27
M-32	12/28/2023	43.22 56.28
M-33	12/28/2023	56.28 43.22
M-34	12/28/2023	21.47

M-32 and M-33 Depth to Water values are transposed. Correct values are included

Should you have any questions or comments, please do not hesitate to call me at (719) 379-0827. Sincerely,

Julio Madrid Authorized Agent

Battle Mountain Resources, Inc.

Cc: BMRI File

Devon Horntvedt, Newmont USA Limited Tim Runnells, Engineering Analytics, Inc.

Monthly Water Qu	uality Data fo	or Tailing	5																	
2	.023																			
230131BMGTAILS	1/31/20	23 9:55	2/28/2023 9:20	3/29/20	23 8:50	4/27/202	23 10:05	5/31/2023 9:10	6/29/20	23 9:05	8/31/20	23 8:40	9/28/20	23 9:20	10/31/20	23 9:40	11/29/20	23 9:35	12/13/20	23 8:50
ANALYTE	RESULT	QUAL	RESULT QUAL	RESULT	QUAL	RESULT	QUAL	RESULT QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL
Arsenic, total	0.00086	В	0.00049 B	0.00062	В	0.00054	В	0.00141 B	0.00176		0.00108		0.0018		0.0011		0.00142		0.00092	В
Calcium, total	404					533					508				504					
Copper, total	0.031	В				0.074					0.363				0.242					
Iron, total	2.16					0.38					2.19				1.59					
Sodium, total	921					810					1160				1300					
Zinc, total	< 0.02	U				< 0.02	U				0.036	В			< 0.02	U				

- B Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time
- L Target analytte response was below the laboratory defined negative threshold
- U The material was analyzed for but was not detected above the level of the associated

Quarterly Wa	ater Qualit 2023	y Data for M-13R								
230111BMGM13R	2023		1/11/202	3 10:00	4/5/2023	3 10:40	7/12/202	3 10:10	10/30/2	023 10:00
ANALYTE	UNITS	METHOD	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL
Aluminum, dissolved	mg/L	M200.7 ICP	<0.05	U	<0.05	U	<0.05	U	<0.05	U
Arsenic, dissolved	mg/L	M200.8 ICP-MS	0.00042	В	0.00046	В	0.00051	В	0.00047	7 B
Barium, dissolved	mg/L	M200.7 ICP	0.131		0.126		0.129		0.125	5
Bicarbonate as CaCO3	mg/L	SM2320B - Titration	337		343		362		346	5
Cadmium, dissolved	mg/L	M200.8 ICP-MS	0.000184	В	0.000202	В	0.000189	В	0.000209) B
Calcium, total	mg/L	M200.7 ICP	85.3		90.7		89.2		92.2	<u> </u>
Carbonate as CaCO3	mg/L	SM2320B - Titration	<2	U	<2	U	<2	U	6.8	3 B
Chloride	mg/L	M300.0 - Ion Chromat	3.51		3.88		3.66		4.11	L
Chromium, dissolved	mg/L	M200.8 ICP-MS	<0.0005	U	<0.0005	U	<0.0005	U	<0.0005	U
Copper, dissolved	mg/L	M200.8 ICP-MS	<0.0008	U	0.00117	В	0.00092	В	0.00102	2 B
Cyanide, WAD	mg/L	SM4500-CN I,E-Colori	< 0.003	U						
Fluoride	mg/L	M300.0 - Ion Chromat	0.357		0.394		0.354		0.453	3
Gross Alpha	pCi/L	M900.0	28		35		20		40)
Gross Beta	pCi/L	M900.0	20		12		8		15	5
Hardness as CaCO3 (total)	mg/L	SM2340B - Calculatio	271		287		284		293	3
Hydroxide as CaCO3	mg/L	SM2320B - Titration	<2	U	<2	U	<2	U	<2	U
Iron, dissolved	mg/L	M200.7 ICP	<0.06	U	<0.06	U	<0.06	U	<0.06	U
Lead, dissolved	mg/L	M200.8 ICP-MS	0.00071		0.00074		0.00075		0.00072	
Magnesium, total	mg/L	M200.7 ICP	14.2		14.8		14.8		15.3	3
Manganese, dissolved	mg/L	M200.7 ICP	<0.01	U	< 0.01	U	< 0.01	U	< 0.01	U
Mercury, dissolved	mg/L	M245.1 CVAA	<0.0002	U	<0.0002	U	<0.0002	U	<0.0002	U
Nickel, dissolved	mg/L	M200.8 ICP-MS	<0.0004	U	<0.0004	U	<0.0004	U	<0.0004	U
Potassium, total	mg/L	M200.7 ICP	1.45		1.41		1.42		1.33	3
Residue, Filterable (TDS) @180C	mg/L	SM2540C	378		390		384		388	3
Selenium, dissolved	mg/L	M200.8 ICP-MS	0.0062		0.00648		0.00729		0.00669)
Silica, total	mg/L	M200.7 ICP	23.8		25		22.6		25.6	5
Silver, dissolved	mg/L	M200.8 ICP-MS	<0.0001	U	<0.0001	U	<0.0001	U	<0.0001	U
Sodium, total	mg/L	M200.7 ICP	29.9		31.8		31.4		32.3	3
Sulfate	mg/L	M300.0 - Ion Chromat	16.5		16.9		16.4		17.5	5
Total Alkalinity	mg/L	SM2320B - Titration	337		343		362		353	3
Zinc, dissolved	mg/L	M200.8 ICP-MS	0.529		0.572		0.543		0.527	7

- B Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity
- $\mbox{\ensuremath{\mathsf{H}}}\mbox{\ensuremath{\mathsf{A}}}\mbox{\ensuremath{\mathsf{A}}}\mbox{\ensuremath{\mathsf{n}}}\mbox{\ensuremath{\mathsf{l}}}\mbox{\ensuremath{\mathsf{b}}}\mbox{\ensuremath{\mathsf{l}}}\mbo$
- L Target analytte response was below the laboratory defined negative threshold
- U The material was analyzed for but was not detected above the level of the associated value

Quarterly W	ater Quali 2023	ty Data for M-12								
230111BMGM12			1/11/202	23 8:00	4/5/202	3 8:40	7/12/202	23 8:10	10/30/2023 8:10	
ANALYTE	UNITS	METHOD	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT QUAL	
Aluminum, dissolved	mg/L	M200.7 ICP	<0.05	U	<0.05	U	<0.05	U	<0.05 U	
Arsenic, dissolved	mg/L	M200.8 ICP-MS	< 0.0002	U	0.00023	В	0.0003	В	0.00024 B	
Barium, dissolved	mg/L	M200.7 ICP	0.157		0.15		0.157		0.154	
Bicarbonate as CaCO3	mg/L	SM2320B - Titration	147		154		156		150	
Cadmium, dissolved	mg/L	M200.8 ICP-MS	0.000287		0.000295		0.000326		0.00032	
Calcium, total	mg/L	M200.7 ICP	49.7		51.9		51.2		52.4	
Carbonate as CaCO3	mg/L	SM2320B - Titration	<2	U	<2	U	<2	U	5.8 B	
Chloride	mg/L	M300.0 - Ion Chromat	19.9		20.4		20.5		21.2	
Chromium, dissolved	mg/L	M200.8 ICP-MS	0.0007	В	0.0007	В	0.00099	В	0.00068 B	
Copper, dissolved	mg/L	M200.8 ICP-MS	<0.0008	U	<0.0008	U	<0.0008	U	<0.0008 U	
Cyanide, WAD	mg/L	SM4500-CN I,E-Colori	< 0.003	U	<0.003	U	< 0.003	U	<0.003 U	
Fluoride	mg/L	M300.0 - Ion Chromat	0.262		0.305		0.239	В	0.363	
Gross Alpha	pCi/L	M900.0	7.5		4.5		8		11	
Gross Beta	pCi/L	M900.0	5.1		11		5.5		5.1	
Hardness as CaCO3 (total)	mg/L	SM2340B - Calculatio	159		165		164		167	
Hydroxide as CaCO3	mg/L	SM2320B - Titration	<2	U	<2	U	<2	U	<2 U	
Iron, dissolved	mg/L	M200.7 ICP	<0.06	U	<0.06	U	<0.06	U	<0.06 U	
Lead, dissolved	mg/L	M200.8 ICP-MS	0.00103		0.00109		0.00117		0.00101	
Magnesium, total	mg/L	M200.7 ICP	8.53		8.7		8.66		8.8	
Manganese, dissolved	mg/L	M200.7 ICP	< 0.01	U	< 0.01	U	< 0.01	U	<0.01 U	
Mercury, dissolved	mg/L	M245.1 CVAA	< 0.0002	U	<0.0002	U	<0.0002	U	<0.0002 U	
Nickel, dissolved	mg/L	M200.8 ICP-MS	<0.0004	U	<0.0004	U	<0.0004	U	<0.0004 U	
Potassium, total	mg/L	M200.7 ICP	1.99		1.88		1.98		1.86	
Residue, Filterable (TDS) @180C	mg/L	SM2540C	228		238		226		224	
Selenium, dissolved	mg/L	M200.8 ICP-MS	0.00155		0.00167		0.00177		0.00157	
Silica, total	mg/L	M200.7 ICP	21		19.4		17.7		20.4	
Silver, dissolved	mg/L	M200.8 ICP-MS	<0.0001	U	<0.0001	U	<0.0001	U	<0.0001 U	
Sodium, total	mg/L	M200.7 ICP	13		13.5		13.3		13.4	
Sulfate	mg/L	M300.0 - Ion Chromat	11.9		10.9		10.4		12.3	
Total Alkalinity	mg/L	SM2320B - Titration	147		154		156		156	
Zinc, dissolved	mg/L	M200.8 ICP-MS	0.389		0.42		0.432		0.383	

- B Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time
- L Target analytte response was below the laboratory defined negative threshold
- U The material was analyzed for but was not detected above the level of the associated value

Monthly W	ater Quali 2023	ty Data for M-14																							
230112BMGM14	2023		1/12/20	23 9:48	2/23/20	23 9:55	3/27/2023	3 10:10	4/10/202	23 10:05	5/30/2023 10	0:00	6/14/2023	10:05	7/13/202	3 9:55	8/14/2023 10:05	9/27/202	3 10:05	10/17/202	23 10:00	11/7/2023	10:00	12/12/202	3 10:05
ANALYTE	UNITS	METHOD	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT QUA		RESULT	QUAL	RESULT	QUAL	., ,	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL
Aluminum, dissolved	mg/L	M200.7 ICP	< 0.05	U	<0.05	U	<0.05	U	<0.05	U	<0.05 U		<0.05	U	<0.05	U	<0.05 U	<0.05	U	<0.05	U	<0.05	U	<0.05	U
Arsenic, dissolved	mg/L	M200.8 ICP-MS	0.00061	В	0.0007	В	0.0006	В	0.0007	В	0.00059 B		0.0006	В	0.00072	В	0.0006 B	0.00086	В	0.00063	В	0.00076	В	0.00105	В
Barium, dissolved	mg/L	M200.7 ICP	0.386		0.372		0.38		0.397		0.379		0.384		0.373		0.388	0.373		0.392		0.374		0.372	
Bicarbonate as CaCO3	mg/L	SM2320B - Titration	646		674		674		665		670		669		631		644	616		658	Н	652		687	
Cadmium, dissolved	mg/L	M200.8 ICP-MS	< 0.00005	U	0.000152 B		0.000057	В	< 0.00005	U	0.0001 B	< 0.00005	U	< 0.00005	U	0.000069	В	< 0.00025	U						
Calcium, total	mg/L	M200.7 ICP	191		190		187		198		187		187		204		202	204		189		193		193	
Carbonate as CaCO3	mg/L	SM2320B - Titration	<2	U	<2	U	<2	U	<2	U	<2 U		<2	U	<2	U	<2 U	<2	U	<2	UH	<2	U	<2	U
Chloride	mg/L	M300.0 - Ion Chromat	9.66	В	9.12		9.23		9.31		8.84		8.97		8.78		9.08	9.61		9.62		9.36		9.4	
Chromium, dissolved	mg/L	M200.8 ICP-MS	0.00107	В	0.00087	В	0.00098	В	0.0006	В	0.00175 B		0.00085	В	0.00148	В	0.0016 B	0.00118	В	0.0007	В	0.00145	В	< 0.0025	U
Copper, dissolved	mg/L	M200.8 ICP-MS	0.00144	В	0.00116	В	0.00241		0.00128	В	0.00235		0.00175	В	0.00158	В	0.0023	0.00194	В	0.0012	В	0.00107	В	< 0.004	U
Cyanide, WAD	mg/L	SM4500-CN I,E-Colori	< 0.003	UH	< 0.003	U	< 0.003	U	< 0.003	U	<0.003 UH		< 0.003	U	< 0.003	U	<0.003 U	< 0.003	U	< 0.003	U	< 0.003	U	0.003	BH
Fluoride	mg/L	M300.0 - Ion Chromat	0.364		0.471		0.397		0.402		0.336		0.346		0.362		0.306	0.466		0.361		0.458		0.447	
Gross Alpha	pCi/L	M900.0	100		110		120		200		120		140		94		200	170		150		100		120	
Gross Beta	pCi/L	M900.0	80		41		35		52		28		40		27		56	41		57		49		33	
Hardness as CaCO3 (total)	mg/L	SM2340B - Calculatio	603		597		589		625		590		588		643		636	644		596		608		610	
Hydroxide as CaCO3	mg/L	SM2320B - Titration	<2	U	<2	U	<2	U	<2	U	<2 U		<2	U	<2	U	<2 U	<2	U	<2	UH	<2	U	<2	U
Iron, dissolved	mg/L	M200.7 ICP	<0.06	U	< 0.06	U	< 0.06	U	<0.06	U	<0.06 U		<0.06	U	< 0.06	U	<0.06 U	<0.06	U	<0.06	U	<0.06	U	<0.06	U
Lead, dissolved	mg/L	M200.8 ICP-MS	< 0.0001	U	0.00011	В	< 0.0001	U	< 0.0001	U	0.00014 B		0.0001	В	< 0.0001	U	0.0002 B	0.0001	В	< 0.0001	U	< 0.0001	U	<0.0005	U
Magnesium, total	mg/L	M200.7 ICP	30.6		29.8		29.6		31.8		29.8		29.5		32.5		32	32.7		30.1		30.7		31	
Manganese, dissolved	mg/L	M200.7 ICP	< 0.01	U	<0.01 U		< 0.01	U	0.027	В	<0.01 U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U						
Mercury, dissolved	mg/L	M245.1 CVAA	<0.0002	U	< 0.0002	U	<0.0002	U	<0.0002	U	<0.0002 U		<0.0002	U	<0.0002	U	<0.0002 U	<0.0002	U	< 0.0002	U	< 0.0002	U	<0.0002	U
Nickel, dissolved	mg/L	M200.8 ICP-MS	0.00193		0.00215		0.00132		0.00181		0.00342		0.00207		0.00387		0.0058	0.00243		0.00253		0.00454		0.00378	В
Potassium, total	mg/L	M200.7 ICP	1.99		2.03		2.14		2.18		1.9		1.98		2.12		2.19	2.28		2.04		2.14		2.07	
Residue, Filterable (TDS) @180C	mg/L	SM2540C	694		704		698		736		708		716		716	Н	710	728		716		710		706	
Selenium, dissolved	mg/L	M200.8 ICP-MS	0.00269		0.00284		0.00255		0.00253		0.00249		0.00247		0.003		0.0025	0.00214		0.00265		0.0026		0.00284	
Silica, total	mg/L	M200.7 ICP	27.6		27.2		26.5		30.3		28.3		26.8		25.1		29.9	31.6		28.6		30.1		30.4	
Silver, dissolved	mg/L	M200.8 ICP-MS	< 0.0001	U	<0.0001	U	<0.0001	U	<0.0001	U	<0.0001 U		<0.0001	U	<0.0001	U	<0.0001 U	<0.0001	U	< 0.0001	U	<0.0001	U	<0.0005	U
Sodium, total	mg/L	M200.7 ICP	30.3		31.5		30.1		31.6		29.8		29.7		32.6		32.2	32.4		29.7		30.7		31.7	
Sulfate	mg/L	M300.0 - Ion Chromat	28.6		29.5		29.5		30.2		29.3		29.7		28.3	Н	28.9	30.7		28.9		29.9		30.3	
Total Alkalinity	mg/L	SM2320B - Titration	646		674		674		665		670		669		631		644	616		658	Н	652		687	
Zinc, dissolved	mg/L	M200.8 ICP-MS	0.0082	В	<1.2	U	<0.006	U	<0.006	U	<0.006 U		<0.006	U	<0.006	U	<0.006 U	<0.006	U	<0.006	U	<0.006	U	< 0.03	U

- B Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity

 H Analysis exceeded method hold time. pH is a field test with an immediate hold time
- L Target analytte response was below the laboratory defined negative threshold
- U The material was analyzed for but was not detected above the level of the associated

Quarterly V	Vater Quali 2023	ity Data for M-9							
230111BMGM9			1/11/20	23 9:00	4/5/202	3 9:40	7/12/20	23 9:10	10/30/2023 9:00
ANALYTE	UNITS	METHOD	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT QUAL
Aluminum, dissolved	mg/L	M200.7 ICP	<0.05	U	<0.05	U	<0.05	U	<0.05 U
Arsenic, dissolved	mg/L	M200.8 ICP-MS	0.00102		0.00109		0.00115		0.00112
Barium, dissolved	mg/L	M200.7 ICP	0.124		0.118		0.125		0.119
Bicarbonate as CaCO3	mg/L	SM2320B - Titration	310		318		331		327
Cadmium, dissolved	mg/L	M200.8 ICP-MS	0.000215	В	0.000218	В	0.000231	В	0.000239 B
Calcium, total	mg/L	M200.7 ICP	82.7		87.5		86.8		88.4
Carbonate as CaCO3	mg/L	SM2320B - Titration	<2	U	<2	U	<2	U	<2 U
Chloride	mg/L	M300.0 - Ion Chromat	3.32		3.72		3.42		3.89
Chromium, dissolved	mg/L	M200.8 ICP-MS	<0.0005	U	<0.0005	U	<0.0005	U	<0.0005 U
Copper, dissolved	mg/L	M200.8 ICP-MS	0.00411		0.00405		0.00429		0.00401
Cyanide, WAD	mg/L	SM4500-CN I,E-Colori	<0.003	U	<0.003	U	< 0.003	U	<0.003 U
Fluoride	mg/L	M300.0 - Ion Chromat	0.229	В	0.244	В	0.226	В	0.301
Gross Alpha	pCi/L	M900.0	6.6		11		5.8		9.6
Gross Beta	pCi/L	M900.0	9.5		3.7		5		3.3
Hardness as CaCO3 (total)	mg/L	SM2340B - Calculatio	260		274		272		278
Hydroxide as CaCO3	mg/L	SM2320B - Titration	<2	U	<2	U	<2	U	<2 U
Iron, dissolved	mg/L	M200.7 ICP	<0.06	U	<0.06	U	<0.06	U	<0.06 U
Lead, dissolved	mg/L	M200.8 ICP-MS	0.00061		0.00058		0.00055		0.00056
Magnesium, total	mg/L	M200.7 ICP	12.9		13.4		13.5		13.8
Manganese, dissolved	mg/L	M200.7 ICP	< 0.01	U	< 0.01	U	< 0.01	U	<0.01 U
Mercury, dissolved	mg/L	M245.1 CVAA	<0.0002	U	<0.0002	U	<0.0002	U	<0.0002 U
Nickel, dissolved	mg/L	M200.8 ICP-MS	<0.0004	U	<0.0004	U	<0.0004	U	<0.0004 U
Potassium, total	mg/L	M200.7 ICP	1.79		1.72		1.73		1.83
Residue, Filterable (TDS) @180C	mg/L	SM2540C	344		364		354		340
Selenium, dissolved	mg/L	M200.8 ICP-MS	0.00377		0.00365		0.00421		0.00348
Silica, total	mg/L	M200.7 ICP	25.7		26.3		24.2		31.9
Silver, dissolved	mg/L	M200.8 ICP-MS	<0.0001	U	<0.0001	U	<0.0001	U	<0.0001 U
Sodium, total	mg/L	M200.7 ICP	24.5		25.9		25.6		25.9
Sulfate	mg/L	M300.0 - Ion Chromat	19.3		19.4		19.1		20.3
Total Alkalinity	mg/L	SM2320B - Titration	310		318		331		327
Zinc, dissolved	mg/L	M200.8 ICP-MS	0.339		0.35		0.342		0.356

- B Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time
- L Target analytte response was below the laboratory defined negative threshold
- U The material was analyzed for but was not detected above the level of the associated

Bi-Annual Water Q	uality Data	a for Ranch			
230221BMGSRW	2023	2/21/202	23 8:50	8/29/202	23 9:30
ANALYTE	UNITS	RESULT	QUAL	RESULT	QUAL
Aluminum, total	mg/L	<0.05	U	<0.05	U
Arsenic, total	mg/L	0.00027	В	<0.0002	U
Barium, total	mg/L	0.0668		0.0723	
Boron, total	mg/L	<0.03	U	<0.03	U
Cadmium, total	mg/L	<0.00005	U	<0.00005	U
Chromium, total	mg/L	<0.02	U	< 0.02	U
Copper, total	mg/L	< 0.01	U	< 0.01	U
Cyanide, WAD	mg/L	< 0.003	U	< 0.003	U
Fluoride	mg/L	0.437		0.312	
Iron, total	mg/L	0.064	В	<0.06	U
Lead, total	mg/L	<0.03	U	<0.03	U
Manganese, total	mg/L	<0.01	U	< 0.01	U
Mercury, total	mg/L	< 0.0002	U	<0.0002	U
Molybdenum, total	mg/L	<0.02	U	<0.02	U
Nickel, total	mg/L	<0.008	U	<0.008	U
Selenium, total	mg/L	0.00016	В	<0.0001	U
Silver, total	mg/L	< 0.0001	U	<0.0001	U
Zinc, total	mg/L	<0.02	U	0.039	В

- B Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time
- L Target analytte response was below the laboratory defined negative threshold
- U The material was analyzed for but was not detected above the level of the associated value

Bi-Annual Water Qu	uality Data	for San Luis			
Town \	Well 2023				
230221BMGSLTW		2/21/202	23 9:20	8/29/202	3 10:00
ANALYTE	UNITS	RESULT	QUAL	RESULT	QUAL
Aluminum, total	mg/L	<0.05	U	<0.05	U
Arsenic, total	mg/L	0.00022	В	0.0003	В
Barium, total	mg/L	0.0418		0.0367	
Boron, total	mg/L	< 0.03	U	<0.03	U
Cadmium, total	mg/L	<0.00005	U	<0.00005	U
Chromium, total	mg/L	<0.02	U	< 0.02	U
Copper, total	mg/L	< 0.01	U	< 0.01	U
Cyanide, WAD	mg/L	< 0.003	U	<0.003	U
Fluoride	mg/L	0.405		0.343	
Iron, total	mg/L	<0.06	U	<0.06	U
Lead, total	mg/L	< 0.03	U	<0.03	U
Manganese, total	mg/L	< 0.01	U	< 0.01	U
Mercury, total	mg/L	< 0.0002	U	<0.0002	U
Molybdenum, total	mg/L	< 0.02	U	< 0.02	U
Nickel, total	mg/L	<0.008	U	<0.008	U
Selenium, total	mg/L	0.00012	В	0.00017	В
Silver, total	mg/L	< 0.0001	U	< 0.0001	U
Zinc, total	mg/L	<0.02	U	<0.02	U

- B Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time
- L Target analytte response was below the laboratory defined negative threshold
- U The material was analyzed for but was not detected above the level of the associated value

Quarterly Water Qu	uality Data	a for WD-1							
20	23								
230221BMGWD1		2/21/202	23 8:10	5/2/202	3 8:50	8/29/20	23 8:25	11/28/20	23 8:20
ANALYTE	UNITS	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL
Arsenic, total	mg/L	0.00033	В	0.00028	В	0.00069	В	0.00026	В
Copper, total	mg/L	0.00129	В	0.00134	В	<0.0008	U	<0.0008	U
Cyanide, WAD	mg/L	< 0.003	U	<0.003	U	<0.003	U	0.0923	
Fluoride	mg/L	0.64		0.79		0.76		0.68	
Iron, total	mg/L	1.71		0.885		0.767		0.781	
Manganese, dissolved	mg/L	0.149		0.046	В	0.081		0.102	
Sulfate	mg/L	10.8		14.1		8.4		22.5	
Zinc, total	mg/L	< 0.02	U	< 0.02	U	< 0.02	U	<0.02	U

- B Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time
- L Target analytte response was below the laboratory defined negative threshold
- U The material was analyzed for but was not detected above the level of the associated value

Quarterly Water Quality Data 2023	a for RS1	1/9/2023	7:30	4/3/2023	7·15	7/10/2023	7:45	10/3/2023	7·10	
230109BMGRS1		1,5,2025	7.50	1,3,2023	,.13	7,10,2023	7.13	10, 3, 2023	7.10	
ANALYTE	UNITS	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	MDL
Aluminum, potentially dissolved	mg/L	0.0132	В	0.0325		0.0418		0.0334	-,-	0.005
Arsenic, total	mg/L	< 0.0002	U	<0.0002	U	< 0.0002	U	< 0.0002	U	0.0002
Bicarbonate as CaCO3	mg/L	57.1		62.4		46.3		59.8		2
Cadmium, potentially dissolved	mg/L	<0.00005	U	<0.00005	U	<0.00005	U	<0.00005	U	0.00005
Calcium, dissolved	mg/L	15.8		15.3		12.4		15.6		0.1
Carbonate as CaCO3	mg/L	<2	U	<2	U	<2	U	3.5	В	2
Chloride	mg/L	1.26	В	<1	U	<1	U	<1	U	1
Chromium, dissolved	mg/L	< 0.0005	U	<0.0005	U	<0.0005	U	< 0.0005	U	0.0005
Copper, potentially dissolved	mg/L	<0.0008	U	<0.0008	U	<0.0008	В	<0.0008	U	0.0008
Fluoride	mg/L	0.58		0.51		0.39		0.41		0.15
Gross Alpha	pCi/L	2.5		4.3		2		1.9		5.3
Gross Beta	pCi/L	1.1		3.8		1.3		0.81		9.2
Hardness as CaCO3 (dissolved)	mg/L	56		54		44		55		0.2
Hydroxide as CaCO3	mg/L	<2	U	<2	U	<2	U	<2	U	2
Iron, dissolved	mg/L	< 0.06	U	0.074	В	0.102	В	0.126	В	0.06
Iron, total recoverable	mg/L	0.215	В	0.339		0.326		0.325		0.06
Lead, potentially dissolved	mg/L	< 0.0001	U	0.0002	В	0.00014	В	0.00014	В	0.0001
Magnesium, dissolved	mg/L	4.04		3.89		3.26		3.9		0.2
Manganese, dissolved	mg/L	0.019	В	0.011	В	0.016	В	0.014	В	0.01
Manganese, total recoverable	mg/L	0.023	В	0.021	В	0.027	В	0.025	В	0.01
Mercury, total	mg/L	< 0.0002	U	< 0.0002	U	< 0.0002	U	< 0.0002	U	0.0002
Nickel, dissolved	mg/L	< 0.0004	U	< 0.0004	U	< 0.0004	U	< 0.0004	U	0.0004
Nitrogen, ammonia	mg/L	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	0.1
Oil and Grease	mg/L	<2	U	<2	U	<2	U	<2	U	2
Potassium, total	mg/L	1.06	В	0.94	В	0.72	В	1.14		0.5
Residue, Non-Filterable (TSS) @10	0! mg/L	<5	U	<5	U	5	U	5	U	5
Selenium, dissolved	mg/L	0.00016	В	< 0.0001	U	< 0.0001	U	< 0.0001	U	0.0001
Silica, total	mg/L	13		10.7		11.3		13.3		0.2
Silver, potentially dissolved	mg/L	,0.0001	U	< 0.0001	U	< 0.0001	U	< 0.0001	U	0.0001
Sodium, total	mg/L	3.16	В	3.14		2.88		3.26		0.2
Sulfate	mg/L	2.77		3.85		1.61	В	3.62		0.9
Total Alkalinity	mg/L	57.1		62.4		46.3		63.3		2
Zinc, potentially dissolved	mg/L	< 0.006	U	< 0.006	U	< 0.006	U	< 0.006	U	0.006

- B Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time
- L Target analytte response was below the laboratory defined negative threshold
- U The material was analyzed for but was not detected above the level of the associated value

Monthly Water Quality Data for 2023 Table 1/2	r RS2	2/8/2023	7:35	3/1/2023	7:30	5/3/2023	7:10	6/1/2023	7:40
ANALYTE	UNITS	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL
Aluminum, dissolved	mg/L	<0.05	U	0.068	В	<0.05	U	<0.05	U
Aluminum, total	mg/L	0.472	Ū	0.303	_	0.785	· ·	0.767	· ·
Arsenic, dissolved	mg/L	<0.0002	U	<0.0002	U	<0.0002	U	0.0002	В
Arsenic, total	mg/L	<0.0002	U	<0.0002	U	0.0003	В	0.00027	В
Barium, dissolved	mg/L	0.0203	В	0.0222	В	0.0211	В	0.00027	U
Barium, total	mg/L	0.0245	В	0.028	В	0.0294	В	0.0274	В
Bicarbonate as CaCO3	mg/L	47	_	58.6	_	56.5	_	40.9	_
Boron, dissolved	mg/L	<0.03	U	<0.03	U	<0.03	U	<0.03	U
Boron, total	mg/L	<0.03	U	<0.03	U	<0.03	U	<0.03	U
Cadmium, dissolved	mg/L	< 0.00005	U	<0.00005	U	<0.00005	U	0.000057	В
Cadmium, total	mg/L	< 0.00005	Ü	<0.00005	U	<0.0005	U	<0.00005	U
Calcium, dissolved	mg/L	15		15.7		15.5		9.79	
Calcium, total	mg/L	17.2		15.8		15.7		10.4	
Carbon, total organic (TOC)	mg/L	<1	U	<1	U	2.5	В	4.2	В
Carbonate as CaCO3	mg/L	<2	Ü	<2	U	<2	U	<2	U
Chloride	mg/L	3.7		1.81	В	1	В	0.48	В
Chromium, dissolved	mg/L	<0.0005	U	< 0.0005	U		U	<0.0005	U
Chromium, total	mg/L	<0.0005	U	<0.0005	U	0.00075	В	0.00055	В
Copper, dissolved	mg/L	<0.0008	Ü	<0.0008	U	0.00107	В	0.00119	В
Copper, total	mg/L	<0.0008	Ü	0.00112	В	0.00192	В	0.00199	В
Cyanide, total	mg/L	0.0209	Н	<0.003	U	< 0.003	U	<0.03	UH
Cyanide, WAD	mg/L	< 0.003	U	<0.003	U	< 0.003	U	<0.003	U
Fluoride	mg/L	0.91		0.72	Н	0.56		0.3	В
Hardness as CaCO3 (dissolved)	mg/L	54		58		56		36	
Hydroxide as CaCO3	mg/L	<2	U	<2	U	<2	U	<2	U
Iron, dissolved	mg/L	0.073	В	0.099	В	0.14	В	0.088	В
Iron, total	mg/L	0.785		0.494		1.06		0.921	
Lead, dissolved	mg/L	< 0.0001	U	<0.0001	U	<0.0001	U	0.00017	В
Lead, total	mg/L	0.00042	В	0.00026	В	0.00077		0.00063	
Magnesium, dissolved	mg/L	4.04		4.48		4.25		2.81	
Magnesium, total	mg/L	4.77		4.54		4.21		2.93	
Manganese, dissolved	mg/L	0.023	В	0.022	В	0.018	В		U
Manganese, total	mg/L	0.05		0.046	В	0.064		0.05	В
Mercury, dissolved	mg/L	<0.0002	U	< 0.0002	U	< 0.0002	U	<0.0002	U
Mercury, total	mg/L	< 0.0002	U	< 0.0002	U	< 0.0002	U	< 0.0002	U
Nickel, dissolved	mg/L	<0.008	U	< 0.008	U	< 0.008	U	<0.008	U
Nickel, total	mg/L	<0.008	U	< 0.008	U	< 0.008	U	<0.008	U
Nitrate/Nitrite as N	mg/L	0.073	В	0.109		0.038	В	0.091	В
Nitrogen, ammonia	mg/L	< 0.05	U	< 0.05	U	< 0.05	U	<0.1	U
Potassium, total	mg/L	1.01		1.04		1.21		0.91	В
Residue, Filterable (TDS) @180C	mg/L	102	Н	98		78		58	
Residue, Non-Filterable (TSS) @105C	mg/L	8	В	10	В	25		17	В
Selenium, dissolved	mg/L	0.00014	В	< 0.0001	U	< 0.0001	U	0.00018	В
Selenium, total	mg/L	< 0.0001	U	< 0.0001	U	0.00014	В	< 0.0001	U
Silica, total	mg/L	9.6		12.8		13.5		11.8	
Silver, dissolved	mg/L	< 0.0001	U	< 0.0001	U	< 0.0001	U	< 0.0001	U
Silver, total	mg/L	<0.0001	U	< 0.0001	U	< 0.0001	U	< 0.0001	U
Sodium, total	mg/L	9.97		5.89		4.43		2.54	
Sulfate	mg/L	24.3		12.3		4.91		2.41	
Total Alkalinity	mg/L	47		58.6		56.5		42.5	
Zinc, dissolved	-								
	mg/L	<0.02	U	<0.02	U	<0.02	U	< 0.02	U

- Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity
- $\mbox{\ensuremath{H}}$ Analysis exceeded method hold time. pH is a field test with an immediate hold time
- L Target analytte response was below the laboratory defined negative threshold
- U The material was analyzed for but was not detected above the level of the associated value

8/1/2023	6:35	9/11/202	3 7:25	11/1/2023	3 7:35	12/11/2023	7:25
RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL
<0.05	U	<0.05	U	<0.05	U	<0.05	U
0.427	· ·	1.11	· ·	<0.05	U	<0.05	U
<0.0002	U	< 0.0002	U	<0.0002	U	<0.0002	U
<0.0002	U	0.00047	В	<0.0002	U	<0.0002	U
0.024	В	0.0213	В	0.0235	В	0.0223	В
0.0297	В	0.0429		0.021	В	0.0206	В
61.7		69.8		46.5		66.8	
< 0.03	U	<0.03	U	<0.03	U	<0.03	U
< 0.03	U	< 0.03	U	<0.03	U	<0.03	U
< 0.00005	U	< 0.00005	U	< 0.00005	U	< 0.00005	U
< 0.00005	U	0.00008	В	< 0.00005	U	< 0.00005	U
14.8		16.7		14.9		18.5	
14.8		17		14.9		18.7	
2.3	В	3.4	В	1.4	В	1.3	В
<2	U	<2	U	3.4	В	<2	U
0.84	В	0.95	В	6.87		0.88	В
0.00051	В	0.00062	В	<0.0005	U	< 0.0005	U
<0.0005	U	0.00175	В	<0.0005	U	<0.0005	U
<0.0008	U	0.00086	В	<0.0008	U	<0.0008	U
<0.0008	U	0.00272		<0.0008	U	<0.0008	U
<0.003	U	< 0.003	U	<0.003	U	< 0.003	UH
<0.003	U	< 0.003	U	<0.003	U	< 0.003	U
0.72		0.52		1.02		0.59	
54		60		56		66	
<2	U	<2	U	<2	U	<2	U
0.314		0.432		0.14	В	0.089	В
0.815		2.2		0.225		0.228	
0.00014	В	0.00019	В	<0.0001	U	<0.0001	U
0.00049	В	0.00216	<0.0001	<0.0001	U	<0.0001	U
4.06		4.46		4.48		4.76	
4.07	_	4.66	_	4.42	_	4.74	_
0.027	В	0.032	В	0.019	В	0.016	В
0.059		0.214		0.029	В	0.02	В
<0.0002	U	<0.0002	U	<0.0002	U	<0.0002	U
<0.0002	U	<0.0002	U	<0.0002	U	<0.0002	U
<0.008	U U	<0.008 <0.008	U	<0.008 <0.008	U	<0.008	U U
<0.008 0.064	В	<0.008	U U	<0.008	U U	<0.008 0.054	В
<0.1	U	<0.02	U	<0.02	U	<0.1	U
0.97	В	1.42	O	1.35	U	0.86	В
94	ь	96		114		90	b
10	В	45		<5	U	<5	U
<0.0001	U	< 0.0001	U	<0.0001	U	<0.0001	U
< 0.0001	U	0.00031	Ü	<0.0001	U	<0.0001	U
12.5	· ·	14.8		11.9	· ·	12.3	· ·
<0.0001	U	<0.0001	U	<0.0001	U	<0.0001	U
<0.0001	U	<0.0001	U	<0.0001	U	<0.0001	U
4.47	-	4.26	-	13.3	-	4.64	ŭ
3.38		4.36		33.8		6.55	
61.7		69.8		50		66.8	
<0.02	U	<0.02	U	<0.02	U	<0.02	U
<0.02	U	<0.02	U	<0.02	U	<0.02	U

Quarterly Water Quality Data for 2023 Table 2/2	or M-9	1/9/2023	8:05	4/3/2023	7:15	7/10/2023	8:15	10/3/2023	7:40
230109BMGRS2 ANALYTE	UNITS	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL
Aluminum, dissolved	mg/L	<0.05	U	<0.05	U	<0.05	U	<0.05	U
Aluminum, potentially dissolved	mg/L	0.0132	В	0.175	Ü	0.139	Ü	0.0535	Ü
Aluminum, total	mg/L	0.066	В	1.44		0.676		0.223	В
Arsenic, dissolved	mg/L	<0.0002	U	<0.0002	U	<0.0002	U	<0.0002	Ū
Arsenic, total	mg/L	< 0.0004	Ü	0.00034	В	0.00025	В	< 0.0004	Ü
Arsenic, total	mg/L	<0.0002	Ü	0.00031	В	0.00026	В	<0.0002	Ü
Barium, dissolved	mg/L	0.0237	В	0.0224	В	0.0209	В	0.0247	В
Barium, total	mg/L	0.0263	В	0.0355		0.0284	В	0.0245	В
Bicarbonate as CaCO3	mg/L	62.1		65.3		50.3		54.9	
Bicarbonate as CaCO3	mg/L	61.7		62.9		50.4		55.8	
Boron, dissolved	mg/L	<0.03	U	<0.03	U	<0.03	U	<0.03	U
Boron, total	mg/L	<0.03	Ü	<0.03	Ü	<0.03	Ü	<0.03	Ü
Cadmium, dissolved	mg/L	< 0.00005	Ü	<0.00005	Ü	<0.00005	Ü	<0.00005	Ü
Cadmium, potentially dissolved	mg/L	<0.00005	Ü	<0.00005	Ü	<0.00005	Ü	<0.00005	Ü
Cadmium, total	mg/L	< 0.00005	Ü	<0.00005	Ü	0.000066	В	<0.00005	Ü
Calcium, dissolved	mg/L	17.4		15.6		13.7		15.1	
Calcium, dissolved	mg/L	16.7		15.6		13.8		14.8	
Calcium, total	mg/L	16.9		16.8		14.6		15.2	
Carbon, total organic (TOC)	mg/L	1.3	В	2.3	В	2.6	В	3	В
Carbonate as CaCO3	mg/L	<2	Ū	<2	Ū	<2	Ū	<2	Ū
Carbonate as CaCO3	mg/L	<2	U	<2	U	<2	U	<2	U
Chloride	mg/L	1.12	В	<1	Ü	<1	U	4.89	
Chloride	mg/L	1.03	В	0.8	В	< 0.4	U	5.54	
Chromium, dissolved	mg/L	< 0.0005	U	< 0.0005	U	< 0.0005	U	< 0.0005	U
Chromium, dissolved	mg/L	<0.0005	Ü	<0.0005	Ü	<0.0005	Ü	<0.0005	Ü
Chromium, total	mg/L	<0.0005	Ü	< 0.0005	Ü	0.00055	В	<0.0005	Ü
Copper, dissolved	mg/L	<0.0008	Ü	<0.0008	Ü	<0.0008	Ü	<0.0008	Ü
Copper, potentially dissolved	mg/L	<0.0008	Ü	0.00157	В	0.00142	В	0.0008	В
Copper, total	mg/L	0.00146	В	0.00157	В	0.00142	В	0.00096	В
Cyanide, total	mg/L	< 0.03	Ü	< 0.03	U	< 0.03	U	< 0.03	U
Cyanide, WAD	mg/L	<0.03	U	<0.003	U	<0.03	UH	<0.03	U
Fluoride	mg/L	0.59	U	0.52	U	0.42	OII	0.89	U
Fluoride	-	0.55		0.54		0.42		0.88	
Gross Alpha	mg/L pCi/L	1.7		3.3		0.41		2.4	
Gross Beta	pCi/L	2.4		1.7		2.8		3.3	
		62		56		49		5.5 57	
Hardness as CaCO3 (dissolved)	mg/L								
Hardness as CaCO3 (dissolved)	mg/L	60		56		49		56	
Hydroxide as CaCO3	mg/L	<2	U	<2	U	<2	U	<2	U
Hydroxide as CaCO3	mg/L	<2	U	<2	U	<2	U	<2	U
Iron, dissolved	mg/L	0.097	В	0.12	В	0.177		0.256	
Iron, dissolved Iron, total	mg/L	0.099	В	0.153		0.207		0.259	
Iron, total recoverable	mg/L	0.234		1.82		0.978		0.607	
Lead, dissolved	mg/L	0.201 <0.0001	U	1.76 <0.0001	U	1.07 <0.0001	U	0.522 <0.0001	U
	mg/L	<0.0001	U	0.0001	U	0.00059	U	0.0001	В
Lead, potentially dissolved	mg/L								
Lead, total	mg/L	<0.0001	U	0.00094		0.00062		0.00029	В
Magnesium, dissolved	mg/L	4.54		4.1		3.47		4.63	
Magnesium, dissolved	mg/L	4.33 4.48		4.05		3.5		4.53	
Magnesium, total	mg/L			4.8		3.87		4.74	
Manganese, dissolved	mg/L	0.021	В	0.02	В	0.016	В	0.017	В
Manganese, dissolved	mg/L	0.019	В	0.021	В	0.02	В	0.018	В
Manganese, total	mg/L	0.025	В	0.108		0.071		0.032	В
Manganese, total recoverable	mg/L	0.02	В	0.109		0.069		0.028	В
Mercury, dissolved	mg/L	<0.0002	U	<0.0002	U	<0.0002	U	<0.0002	U
Mercury, total	mg/L	<0.0002	U	<0.0002	U	<0.0002	U	<0.0002	U
Mercury, total	mg/L	<0.0002	U	<0.0002	U	<0.0002	U	<0.0002	U
Nickel, dissolved	mg/L	<0.0004	U	<0.0004	U	<0.0004	U	<0.0004	U
Nickel, dissolved	mg/L	<0.008	U	<0.008	U	<0.008	U	<0.008	U
Nickel, total	mg/L	<0.008	U	<0.008	U	<0.008	U	<0.008	U
Nitrate/Nitrite as N	mg/L	0.112		0.048	В	0.074	В		U
Nitrogen, ammonia	mg/L	<0.1	U	<0.1	U	<0.1	U	<0.1	U
Nitrogen, ammonia	mg/L	<0.1	U	<0.1	U	<0.1	U	<0.1	U
Oil and Grease	mg/L	<2	U	<2	U	<2	U	<2	U
Potassium, total	mg/L	0.79	В	1.35		0.94	В	1.65	
Potassium, total	mg/L	0.82	В	1.36		0.91	В	1.63	
Residue, Filterable (TDS) @180C	mg/L	76		88		72		118	_
Residue, Non-Filterable (TSS) @105C	mg/L	<5	U	32		21		8	В
Residue, Non-Filterable (TSS) @105C	mg/L	<5	U	33		21		5	В
Selenium, dissolved	mg/L	<0.0001	U	<0.0001	U	<0.0001	U	<0.0001	U
Selenium, dissolved	mg/L	<0.0001	U	<0.0001	U	<0.0001	U	<0.0001	U
Selenium, total	mg/L	<0.0001	U	<0.0001	U	<0.0001	U	<0.0001	U
Silica, total	mg/L	10.9		14.2		13.1		14	
Silica, total	mg/L	11.4		15.8		13.5		13.7	
Silver, dissolved	mg/L	<0.0001	U	<0.0001	U	<0.0001	U	<0.0001	U
Silver, potentially dissolved	mg/L	<0.0001	U	<0.0001	U	<0.0001	U	<0.0001	U
Silver, total	mg/L	<0.0001	U	<0.0001	U	<0.0001	U	<0.0001	U
Sodium, total	mg/L	4.06		4.19		3.25		13.9	
Sodium, total	mg/L	4.16		4.27		3.37		13.8	
Sulfate	mg/L	5.96		5.74		2.24		25.2	
Sulfate	mg/L	5.88		5.72		2.13		25.4	
Total Alkalinity	mg/L	62.1		65.3		50.3		54.9	
Total Alkalinity	mg/L	61.7		62.9		50.4		55.8	
Zinc, dissolved	mg/L	<0.02	U	<0.02	U	<0.02	U	<0.02	U
Zinc, potentially dissolved	mg/L	<0.006	U	<0.006	U	<0.006	U	<0.006	U
Zinc, total	mg/L	< 0.02	U	<0.02	U	<0.02	U	<0.02	U

- Definitions:

 B Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity

 H Analysis exceeded method hold time. DH is a field test with an immediate hold time.
 - L Target analytte response was below the laboratory defined negative threshold
 U The material was analyzed for but was not detected above the level of the associated value

Monthly Water Quality Data f 2023 Table 1/2	for RS5	2/8/2023 8:00		3/1/2023 8:00		5/3/2023 7:40		6/1/2023 8:10		8/1/202	23 7:05	9/11/2	023 8:00	11/1/20	23 8:00	12/11/2	2023 7:55
230109BMGRS5																	
ANALYTE	UNITS	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL
Cyanide, WAD	mg/L	<0.003	U	<0.003	U	<0.003	U	<0.003	U	<0.003	U	< 0.003	U	<0.003	U	<0.003	U
Iron, dissolved	mg/L	0.227		0.254		0.312	2	0.154	1	0.7		0.419)	0.518		0.444	1
Iron, total recoverable	mg/L	1.81		2.22		0.688	3	0.69	9	2.09		1.37	•	1.19		1.12	2
Manganese, dissolved	mg/L	0.194		0.206		0.06	5	0.03	7 B	0.112		0.15	;	0.142		0.195	5
Manganese, total recoverable	mg/L	0.262		0.258		0.07	7	0.063	l	0.163		0.165	;	0.155		0.203	3
Sulfate	mg/L	17.2		22.4		11	L	4.34	1	2.6		16.7	,	14.1		19.6	5

- B Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time
- L Target analytte response was below the laboratory defined negative threshold
- U The material was analyzed for but was not detected above the level of the associated value

Quarterly Water Quality Data for	or RS5								
2023 Table 2/2		1/9/20	23 8:40	4/3/20	023 8:30	7/10/20	023 8:45	10/3/	2023 8:10
230109BMGRS5									
ANALYTE	UNITS	RESUL							
Aluminum, potentially dissolved	mg/L		0424		0.076		0708		0.0711
Arsenic, total	mg/L		0021 B	0.0	0028 B	0.0	0055 B	0.	00053 B
Bicarbonate as CaCO3	mg/L		78.7		73.2		65.1		103
Cadmium, potentially dissolved	mg/L	<0.00005	U	<0.00005	U	<0.00005	U	<0.00005	U
Calcium, dissolved	mg/L		22.5	_	20.2	_	18.3	_	29.6
Carbonate as CaCO3	mg/L	<2	U	<2	U	<2	U	<2	U
Chloride	mg/L		2.67		3.36	<1	U		5.11
Chromium, dissolved	mg/L	<0.0005	U	<0.0005	U	<0.0005	U	<0.0005	U
Copper, potentially dissolved	mg/L	<0.0008	U	<0.0008	U		0123 B		00099 B
Cyanide, WAD	mg/L	<0.003	U	<0.003	U	<0.003	UH	<0.003	U
Fluoride	mg/L		0.67		0.67		0.53		0.89
Gross Alpha	pCi/L		-4.6		2.3		1.2		1.4
Gross Beta	pCi/L		-5.3		1	-	-0.23		7.5
Hardness as CaCO3 (dissolved)	mg/L		77		69		63		99
Hydroxide as CaCO3	mg/L	<2	U	<2	U	<2	U	<2	U
Iron, dissolved	mg/L		.364		0.361).543		0.337
Iron, dissolved	mg/L		.305	C).356	C).617		0.12 B
Iron, total recoverable	mg/L		0.85		1.28		1.25		1.16
Iron, total recoverable	mg/L		.799		1.21		1.11		1.13
Lead, potentially dissolved	mg/L		0017 B	0.0	0034 B	0.0	0036 B	0.	.00033 B
Magnesium, dissolved	mg/L		5.13		4.39		4.2		6.02
Manganese, dissolved	mg/L		.181).157		0.079		0.134
Manganese, dissolved	mg/L		.189		0.161		0.083		0.035 B
Manganese, total recoverable	mg/L		.193).183		0.106		0.135
Manganese, total recoverable	mg/L		.197).185		0.104		0.142
Mercury, total	mg/L	<0.0002	U	<0.0002	U	<0.0002	U	<0.0002	U
Nickel, dissolved	mg/L	<0.0004	U	<0.0004	U	<0.0004	U	<0.0004	U
Nitrogen, ammonia	mg/L	<0.05	U	<0.05	U	<0.1	U	<0.1	U
Oil and Grease	mg/L	<2	U			<2	U	<2	U
Potassium, total	mg/L		1.08		1.32		1.07		1.99
Residue, Non-Filterable (TSS) @105C	mg/L	<5	U		9 B	<5	U		8 B
Selenium, dissolved	mg/L	<0.0001	U	<0.0001	U	<0.0001	U	<0.0001	U
Silica, total	mg/L		12.6		12.4		14.2		18.9
Silver, potentially dissolved	mg/L	<0.0001	U	<0.0001	U	<0.0001	U	<0.0001	U
Sodium, total	mg/L		7.43		7.24		4.68		12.1
Sulfate	mg/L		13.5		13.7		2.49		18.5
Sulfate	mg/L		12.6		13.6		2.39		18.4
Total Alkalinity	mg/L		78.7		73.2		65.1		103
Zinc, potentially dissolved	mg/L	<0.006	U	<0.006	U	<0.006	U	<0.006	U

- B Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time
- L Target analytte response was below the laboratory defined negative threshold
- U The material was analyzed for but was not detected above the level of the associated value

Monthly Water Quality Data	a for M-19																
2023		2/8/202	23 8:40	3/1/202	23 9:00	5/3/202	23 8:10	6/1/202	3 8:50	8/1/202	23 7:40	9/11/20	23 8:40	11/1/20	23 8:40	12/11/20)23 8:40
230109BMGM19																	
ANALYTE	UNITS	RESULT	RESULT QUAL		QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL
Calcium, total	mg/L	22	22		21.3		19.8			17		18		20.6		21.2	
Copper, dissolved	mg/L	0.00085	В	0.00113	В	0.00108	В	0.00083	3	<0.0008	U	0.00108	В	<0.0008	U	<0.0008	U
Fluoride	mg/L	0.942		0.946		0.772		0.761		0.745		0.853		0.903		0.93	
Iron, dissolved	mg/L	<0.06	U	0.101	В	0.215		0.201		0.119	В	0.181		0.167		0.148	В
Manganese, dissolved	mg/L	0.131		0.154		0.094		0.043	3	0.046	В	0.044	В	0.049	В	0.085	
Residue, Filterable (TDS) @180	C mg/L	100	Н	112		90		82		100		104		112		114	
Sulfate	mg/L	5.98		6		10.5		8.15		6.66		7.34		6.99		8.32	

- B Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time
- L Target analytte response was below the laboratory defined negative threshold
- U The material was analyzed for but was not detected above the level of the associated value

Quarterly Water Quality Data for M-19										
2023		1/9/2023 9:30		4/3/2023 9:20		7/10/2023 9:50		10/3/2023 9:05		
230109BMGM19										
ANALYTE	UNITS	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	
Calcium, total	mg/L	20.8		22.3		16		19.3		
Calcium, total	mg/L	20.8		21.3		30.4		19.1		
Copper, dissolved	mg/L	0.00221		0.00132 B		0.00102 B		0.0035		
Copper, dissolved	mg/L	0.00252		0.00181 B		0.00111 B		0.00264		
Fluoride	mg/L	0.825		0.909		0.877		0.876		
Fluoride	mg/L	0.822		0.871		0.868		0.9		
Iron, dissolved	mg/L	0.095 B		0.108 B		0.1 B		0.248		
Iron, dissolved	mg/L	0.113 B		0.134 B		0.095 B		0.233		
Manganese, dissolved	mg/L	0.134		0.164		0.032 B		0.051		
Manganese, dissolved	mg/L	0.124		0.165		0.032 B		0.05 1	3	
Residue, Filterable (TDS) @180C	mg/L	96		102		82		90		
Residue, Filterable (TDS) @180C	mg/L	86		106		86		98		
Sulfate	mg/L	6.92		8.01		5.21		7.24		
Sulfate	mg/L	6.94		7.9		5.24		7.17		

Montly Water Quality Da 2023	ata for M-21	2/8/202	23 9:30	3/1/202	23 9:40	5/3/20	23 8:40	6/1/202	3 9:30	8/1/202	23 8:20	9/11/20	023 9:20	11/1/20	23 9:20	12/11/20	023 9:20
ANALYTE	UNITS	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL
Calcium, total	mg/L	30.5		31.6		18.8		29.3		30.6		29.7		31.8		32.3	
Copper, dissolved	mg/L	<0.0008	U	0.00087	В	<0.0008	U	0.00087	3	<0.0008	U	<0.0008	U	<0.0008	J	<0.0008	U
Fluoride	mg/L	1.36		1.48		1.32		1.2		1.31		1.46		1.49		1.49	
Iron, dissolved	mg/L	0.081	В	<0.06	U	0.076	В	<0.06	J	0.076	В	0.064	В	0.093	В	0.072	В
Manganese, dissolved	mg/L	0.361		0.369		0.357		0.303		0.359		0.37		0.37		0.386	
Residue, Filterable (TDS) @18	80C mg/L	136	Н	140		130		126		144	Н	142		144		136	
Sulfate	mg/L	8.68		9.05		9.03		10.1		8.18		8.99		9.08		9.26	

- B Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time
- L Target analytte response was below the laboratory defined negative threshold
- U The material was analyzed for but was not detected above the level of the associated value

Quarterly Water Quality Data	for M-21								
2023		1/9/2023 10:10		4/3/2023 10:00		7/10/2023 10:30		10/3/2023 9:45	
230109BMGM21									
ANALYTE	UNITS	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL
Calcium, total	mg/L	31.4		33.2	2	30.6	5	31	_
Calcium, total	mg/L	30.9		33.6	5	32.2	2	31.2	2
Copper, dissolved	mg/L	<0.0008 U	J	<0.0008	U	<0.0008	U	<0.0008	U
Copper, dissolved	mg/L	<0.0008 U	J	<0.0008	U	<0.0008	U	<0.0008	U
Fluoride	mg/L	1.31		1.46	5	1.48	3	1.49)
Fluoride	mg/L	1.31		1.46	5	1.37	7	1.44	ļ
Iron, dissolved	mg/L	0.073 E	3	<0.06	U	<0.06	U	0.063	3 B
Iron, dissolved	mg/L	0.073 E	3	<0.06	U	<0.06	U	0.061	В
Manganese, dissolved	mg/L	0.367		0.364	1	0.35	5	0.369)
Manganese, dissolved	mg/L	0.369		0.365	5	0.349)	0.371	L
Residue, Filterable (TDS) @180C	mg/L	130		140)	142	2	132	2
Residue, Filterable (TDS) @180C	mg/L	128		144	1	142	2	138	3
Sulfate	mg/L	8.85		9.42	L	8.36	5	9.22	2
Sulfate	mg/L	8.88		9.35	5	8.26	5	9.31	L

- B Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time
- L Target analytte response was below the laboratory defined negative threshold
- U The material was analyzed for but was not detected above the level of the associated value

Monthly Water Quality Da 2023	ta for M-24								
		2/8/2023 10:20	3/1/2023 10:30	5/3/2023 9:30	6/1/2023 10:10	8/1/2023 9:00	9/11/2023 10:00	11/1/2023 10:05	12/11/2023 10:00
ANALYTE	UNITS	RESULT QUAL	RESULT QUAL	RESULT QUAL	RESULT QUAL	RESULT QUAL	RESULT QUAL	RESULT QUAL	RESULT QUAL
Calcium, total	mg/L	76	78.5	31	79.3	77.1	74.6	76.5	77.2
Copper, dissolved	mg/L	<0.0008 U	<0.0008 U	<0.0008 U	<0.0008 U	<0.0008 U	<0.0008 U	<0.0008 U	<0.0008 U
Fluoride	mg/L	0.744 B	0.685 B	0.71 B	0.714	0.328 B	0.847	0.743 B	0.79
Iron, dissolved	mg/L	4.09	4.03	4.25	4.24	4.23	4.14	3.78	3.97
Manganese, dissolved	mg/L	0.847	0.861	0.853	0.842	0.835	0.831	0.79	0.828
Residue, Filterable (TDS) @18	OC mg/L	394 H	402	384	398	406	394	370	384
Sulfate	mg/L	129	147	128	136	127	124	121	130

- B Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time
- L Target analytte response was below the laboratory defined negative threshold
- U The material was analyzed for but was not detected above the level of the associated value

Quarterly Water Quality Data	for M-24					
2022		1/9/2023 10:	50 4/3/2023 10:40	7/10/2023 11:10	10/3/2023 10:25	
230109BMGM24						
ANALYTE	UNITS	RESULT QL	JAL RESULT QUAL	RESULT QUAL	RESULT QUAL	
Calcium, total	mg/L	78.7	84.8	77.7	75.1	
Calcium, total	mg/L	77.9	82.5	75.7	80.2	
Copper, dissolved	mg/L	<0.0008 U	<0.0008 U	<0.0008 U	<0.0008 U	
Copper, dissolved	mg/L	<0.0008 U	<0.0008 U	<0.0008 U	<0.0008 U	
Fluoride	mg/L	0.831	0.642 B	0.396 B	0.939	
Fluoride	mg/L	0.897	0.585 B	0.402 B	0.966	
Iron, dissolved	mg/L	4.06	4.09	4.08	4.18	
Iron, dissolved	mg/L	4.12	4.03	4.11	4.15	
Manganese, dissolved	mg/L	0.871	0.84	0.826	0.844	
Manganese, dissolved	mg/L	0.884	0.834	0.834	0.838	
Residue, Filterable (TDS) @180C	mg/L	392	400	388	388	
Residue, Filterable (TDS) @180C	mg/L	394	398	394	376	
Sulfate	mg/L	145	139	142	140	
Sulfate	mg/L	147	139	144	145	
D (1.11)						

- B Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time
- L Target analytte response was below the laboratory defined negative threshold
- U The material was analyzed for but was not detected above the level of the associated value

Monthly Water Quality Data	for M-11R																
2023		2/8/202	3 10:40	3/1/202	3 11:05	5/3/202	3 10:10	6/1/202	3 10:45	8/1/202	23 9:35	9/11/202	23 10:35	11/1/202	23 10:40	12/11/20	23 10:40
ANALYTE	UNITS	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL								
Calcium, total	mg/L	82		86.4		79.1		74.2		78		83.7		96.7		92.4	
Copper, dissolved	mg/L	0.00095	В	0.00121	В	0.00115	В	0.00101	В	<0.0008	U	0.00098	В	0.00083	В	0.00097	В
Fluoride	mg/L	0.886		0.694	В	0.739		0.738		0.72		0.852		0.929		0.898	
Iron, dissolved	mg/L	< 0.06	U	<0.06	U	<0.06	U	<0.06	U								
Manganese, dissolved	mg/L	0.122		0.18		0.238		0.15		0.151		0.164		0.19		0.211	
Residue, Filterable (TDS) @180	C mg/L	318	Н	384		384		328		352		384		424		418	
Sulfate	mg/L	85.5		138		139		101		107		119		152		155	

- B Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time
- L Target analytte response was below the laboratory defined negative threshold
- U The material was analyzed for but was not detected above the level of the associated value

Quarterly Water Quality	Data for I	M-11R							
2023 230109BMGM11R		1/9/202	2 11.20	4/3/202	3 11.20	7/10/202	2 11.40	10/3/202	22 11:05
ANALYTE	UNITS	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL
Aluminum, dissolved	mg/L	<0.05	U	<0.05	U	<0.05	U	<0.05	U
Arsenic, dissolved	mg/L	<0.0002	U	<0.0002	U	<0.0002	U	<0.0002	U
Barium, dissolved	mg/L	0.0439		0.0501	-	0.0399		0.0438	_
Bicarbonate as CaCO3	mg/L	167		184		158		161	
Cadmium, dissolved	mg/L	<0.008	U	<0.008	U	<0.008	U	<0.008	U
Calcium, total	mg/L	73.4		98.5		78.7		74.1	
Calcium, total	mg/L	73.1		97.5		77.5		75.3	
Carbonate as CaCO3	mg/L	<2	U	<2	U	<2	U	<2	U
Chloride	mg/L	2.69		4.62	В	2.35	В	3.06	В
Chromium, dissolved	mg/L	< 0.02	U	<0.02	U	<0.02	U	< 0.02	U
Copper, dissolved	mg/L	0.00092	В	< 0.01	U	0.00091	В	0.00094	В
Copper, dissolved	mg/L	< 0.01	U	0.00122	В	< 0.01	U	< 0.01	U
Cyanide, WAD	mg/L	0.0034	В	0.0065	В	< 0.003	U	< 0.003	U
Fluoride	mg/L	0.847		0.646	В	0.736		0.928	
Fluoride	mg/L	0.843		0.655	В	0.823		0.957	
Gross Alpha	pCi/L	1.6		2		0.6		1.9	
Gross Beta	pCi/L	3.2		8.3		1.9		5.8	
Hardness as CaCO3 (total)	mg/L	234		316		250		241	
Hydroxide as CaCO3	mg/L	<2	U	<2	U	<2	U	<2	U
Iron, dissolved	mg/L	< 0.06	U	< 0.06	U	<0.06	U	<0.06	U
Iron, dissolved	mg/L	< 0.06	U	<0.06	U	<0.06	U	<0.06	U
Lead, dissolved	mg/L	< 0.03	U	<0.03	U	< 0.03	U	<0.03	U
Magnesium, total	mg/L	12.5		17		13.8		12.8	
Manganese, dissolved	mg/L	0.119		0.248		0.167		0.105	
Manganese, dissolved	mg/L	0.118		0.244		0.168		0.106	
Mercury, dissolved	mg/L	<0.0002	U	<0.0002	U	<0.0002	U	<0.0002	U
Nickel, dissolved	mg/L	<0.0004	U	<0.0004	U	<0.0004	U	<0.0004	U
Potassium, total	mg/L	2.29		2.56		2.42		2.31	
Residue, Filterable (TDS) @180C	_	308		432		342		326	
Residue, Filterable (TDS) @180C	_	314		434		352		330	
Selenium, dissolved	mg/L	0.00023	В	0.00028		0.00021	В	0.0002	В
Silica, total	mg/L	17.1		17.3		15.1		17.7	
Silver, dissolved	mg/L	<0.0001	U	<0.0001	U	<0.0001	U	<0.0001	U
Sodium, total	mg/L	13.9		20.3		14.8		14.2	
Sulfate	mg/L	97.5		152		119		103	
Sulfate	mg/L	97.3		153		119		106	
Total Alkalinity	mg/L	167		184		158		161	
Zinc, dissolved	mg/L	<0.02	U	<0.02	U	<0.02	U	<0.02	U

- B Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time
- L Target analytte response was below the laboratory defined negative threshold
- U The material was analyzed for but was not detected above the level of the associated value

Quarterly Water Quality	Data for I	M-16							
2023									
230110BMGM16		1/10/20	23 8:05	4/4/202	23 7:20	7/11/20	23 7:35	10/16/20	23 7:30
ANALYTE	UNITS	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL
Calcium, total	mg/L	17.1		19.5		16.6		16.7	
Copper, dissolved	mg/L	<0.0008	U	0.00085	В	<0.0008	U	<0.0008	U
Fluoride	mg/L	0.564		0.626		0.555		0.699	
Iron, dissolved	mg/L	0.066	В	0.09	В	<0.06	U	<0.06	U
Manganese, dissolved	mg/L	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U
Residue, Filterable (TDS) @180C	mg/L	80		92		90	Н	88	
Sulfate	mg/L	7.68		10.2		7.07		11.9	

- B Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time
- L Target analytte response was below the laboratory defined negative threshold
- U The material was analyzed for but was not detected above the level of the associated value

Quarterly Water Quality	Data for N	И-26							
2023									
230110BMGM26		1/10/2	2023 9:40	4/4/2	023 9:00	7/11/2	2023 9:05	10/16/	2023 8:55
ANALYTE	UNITS	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL
Calcium, total	mg/L	31.	6	33.	4	32.	8	31.8	3
Copper, dissolved	mg/L	<0.0008	U	<0.0008	U	0.0035	2	<0.0008	U
Fluoride	mg/L	0.7	3	0.	8	0.72	4	0.695	5
Iron, dissolved	mg/L	0.42	9	0.43	1	0.43	5	0.387	7
Manganese, dissolved	mg/L	0.3	3	0.33	2	0.32	8	0.336	5
Residue, Filterable (TDS) @180C	mg/L	12	8	14	0	14	6	144	1
Sulfate	mg/L	7.6	2	7.7	7	9.7	7	9.9)

- B Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time
- L Target analytte response was below the laboratory defined negative threshold
- U The material was analyzed for but was not detected above the level of the associated value

Quarterly Water Quality	Data for N	M-22							
2023									
230110BMGM22		1/10/20	23 9:00	4/4/202	23 8:20	7/11/20	23 8:25	10/16/20	23 8:15
ANALYTE	UNITS	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL
Calcium, total	mg/L	40.1		44.6		41		39.7	
Copper, dissolved	mg/L	<0.0008	U	<0.0008	U	<0.0008	U	<0.0008	U
Fluoride	mg/L	1.33		1.43		1.34		1.38	
Iron, dissolved	mg/L	0.27		0.27		0.364		0.407	
Manganese, dissolved	mg/L	0.161		0.161		0.162		0.17	
Residue, Filterable (TDS) @180C	mg/L	166		178		184		182	
Sulfate	mg/L	25.8		29.1		26.7		28.8	

- B Analyte concentration detected at a value between MDL and
- PQL. The associated value is an estimated quantity

 H Analysis exceeded method hold time. pH is a field test with an immediate hold time
- L Target analytte response was below the laboratory defined negative threshold
- U The material was analyzed for but was not detected above the level of the associated value

Quarterly Water Quality	Data for N	M-34							
2023									
230110BMGM34		1/10/202		4/4/202		7/11/20		10/16/20	
ANALYTE	UNITS	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL
Aluminum, dissolved	mg/L	<0.05	U	<0.05	U	<0.05	U	<0.05	U
Arsenic, dissolved	mg/L	<0.0002	U	<0.0002	U	<0.0002	U	<0.0002	U
Barium, dissolved	mg/L	0.0436		0.0405		0.0484		0.0496	
Bicarbonate as CaCO3	mg/L	74.5		84.6		76.7		78.2	
Cadmium, dissolved	mg/L	<0.008	U	<0.008	U	<0.008	U	<0.008	U
Calcium, total	mg/L	22.3		23.8		24.2		24.3	
Carbonate as CaCO3	mg/L	<2	U	<2	U	<2	U	<2	U
Chloride	mg/L	2.21		2.64		2.57		3	
Chromium, dissolved	mg/L	<0.02	U	<0.02	U	<0.02	U	< 0.02	U
Copper, dissolved	mg/L	< 0.01	U						
Cyanide, WAD	mg/L	< 0.003	U	< 0.003	U	<0.003	U	< 0.003	U
Fluoride	mg/L	0.432		0.483		0.392		0.396	
Gross Alpha	pCi/L	2.7		0.04		0.16		1.1	
Gross Beta	pCi/L	3.2		3.7		1.2		0.33	
Hardness as CaCO3 (total)	mg/L	78		84		85		86	
Hydroxide as CaCO3	mg/L	<2	U	<2	U	<2	U	<2	U
Iron, dissolved	mg/L	< 0.06	U	<0.06	U	<0.06	U	<0.06	U
Lead, dissolved	mg/L	< 0.03	U						
Magnesium, total	mg/L	5.47		5.95		6.01		6.03	
Manganese, dissolved	mg/L	0.224		0.225		0.244		0.25	
Mercury, dissolved	mg/L	< 0.0002	U	<0.0002	U	<0.0002	U	<0.0002	U
Nickel, dissolved	mg/L	< 0.0004	U	< 0.0004	U	<0.0004	U	<0.0004	U
Potassium, total	mg/L	0.89	В	1.03		0.98	В	0.97	В
Residue, Filterable (TDS) @180C	mg/L	104		124		128		132	
Selenium, dissolved	mg/L	< 0.0001	U	<0.0001	U	<0.0001	U	0.0001	В
Silica, total	mg/L	15.4		14.3		14		15.4	
Silver, dissolved	mg/L	< 0.0001	U	<0.0001	U	< 0.0001	U	< 0.0001	U
Sodium, total	mg/L	7.58		8.08		7.98		7.52	
Sulfate	mg/L	17.7		21		24.3		26.5	
Total Alkalinity	mg/L	74.5		84.6		76.7		78.2	
Zinc, dissolved	mg/L	< 0.02	U	<0.02	U	< 0.02	U	<0.02	U

- Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time
- L Target analytte response was below the laboratory defined negative threshold
- U The material was analyzed for but was not detected above the level of the associated value

Quarterly Water Quality	Data for N	M-10							
2023									
230110BMGM10		1/10/202		4/4/202		7/11/202		10/16/20	
ANALYTE	UNITS	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL
Aluminum, dissolved	mg/L	<0.05	U	<0.05	U	<0.05	U	<0.05	U
Arsenic, dissolved	mg/L	<0.0002	U	<0.0002	U	<0.0002	U	<0.0002	U
Barium, dissolved	mg/L	0.128		0.127		0.131		0.115	
Bicarbonate as CaCO3	mg/L	244		238		235	Н	238	
Cadmium, dissolved	mg/L	<0.008	U	<0.008	U	<0.008	U	<0.008	U
Calcium, total	mg/L	73.2		74.7		78.2		76.5	
Carbonate as CaCO3	mg/L	<2	U	<2	U	<2	UH	<2	U
Chloride	mg/L	2.97		3.24		3.06		3.45	
Chromium, dissolved	mg/L	< 0.02	U						
Copper, dissolved	mg/L	< 0.01	U						
Cyanide, WAD	mg/L	< 0.003	U						
Fluoride	mg/L	0.868		0.975		0.9		0.876	
Gross Alpha	pCi/L	-1.2		3		0.43		5.9	
Gross Beta	pCi/L	2.1		7		3.9		4.2	
Hardness as CaCO3 (total)	mg/L	224		229		239		234	
Hydroxide as CaCO3	mg/L	<2	U	<2	U	<2	UH	<2	U
Iron, dissolved	mg/L	1.14		1.15		1.1		0.79	
Lead, dissolved	mg/L	< 0.03	U	0.033	В	< 0.03	U	0.043	В
Magnesium, total	mg/L	10		10.2		10.6		10.5	
Manganese, dissolved	mg/L	0.899		0.875		0.875		0.673	
Mercury, dissolved	mg/L	< 0.0002	U	<0.0002	U	<0.0002	U	<0.0002	U
Nickel, dissolved	mg/L	< 0.0004	U						
Potassium, total	mg/L	1.63		1.78		1.79		1.74	
Residue, Filterable (TDS) @180C	mg/L	300		312		318		322	
Selenium, dissolved	mg/L	< 0.0001	U	< 0.0001	U	<0.0001	U	<0.0001	U
Silica, total	mg/L	28.2		25.1		26.8		26	
Silver, dissolved	mg/L	< 0.0001	U	< 0.0001	U	<0.0001	U	<0.0001	U
Sodium, total	mg/L	20.7		21.4		20.9		19.8	
Sulfate	mg/L	34.9		36.5		39.8		39.9	
Total Alkalinity	mg/L	244		238		235	Н	238	
Zinc, dissolved	mg/L	< 0.02	U	<0.02	U	<0.02	U	< 0.02	U

- Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time
- L Target analytte response was below the laboratory defined negative threshold
- U The material was analyzed for but was not detected above the level of the associated value

Quarterly Water	er Quality I	Data for COL							
	2023								
230131BMGCOL		1/31/202	23 9:10	4/27/20	23 9:05	7/31/20	23 9:25	10/31/20	23 8:50
ANALYTE	UNITS	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL
Calcium, total	mg/L	515		469		510		492	
Copper, total	mg/L	<0.0008	U	<0.0008	U	<0.0008	U	<0.0008	U
Cyanide, WAD	mg/L	0.0032	В	<0.003	U	0.0041	В	< 0.003	UH
Iron, total	mg/L	29.2		30.1		30		33.1	
Sodium, total	mg/L	949		995		926		888	
Zinc, total	mg/L	< 0.02	U	< 0.02	U	< 0.02	U	< 0.02	U

- B Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time
- L Target analytte response was below the laboratory defined negative threshold
- U The material was analyzed for but was not detected above the level of the associated value

Quarterly Wa	ter Quali	ty Data for LD							
	2023								
230131BMGLD		1/31/2023	3 8:55	4/27/20	23 8:50	7/31/20	23 9:10	10/31/20	23 8:35
ANALYTE	UNITS	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL
Calcium, total	mg/L	480		504		466		482	
Copper, total	mg/L	0.0446		0.06		0.0401		0.054	
Cyanide, WAD	mg/L	< 0.003	U	< 0.003	U	< 0.003	U	0.004	ВН
Iron, total	mg/L	<0.06	U	<0.06	U	<0.06	U	<0.06	U
Sodium, total	mg/L	970		1050		927		975	
Zinc, total	mg/L	<0.02	U	< 0.02	U	< 0.02	U	< 0.02	U

- B Analyte concentration detected at a value between MDL and PQL.

 The associated value is an estimated quantity
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time
- L Target analytte response was below the laboratory defined negative threshold
- U The material was analyzed for but was not detected above the level of the associated value

APPENDIX C DMR's, BMP, and WET Testing Reports

Battle Mountain Resources, Inc.

San Luis Project P.O. Box 310 San Luis, Colorado 81152-0310 (719) 379-0798

April 26, 2023

Colorado Department of Public Health and Environment Water Quality Control Division Attn: WQDC-B2 – DMR Receipt 4300 Cherry Creek Drive Denver, CO 80246-1530

Re: Battle Mountain Resources, Inc.

San Luis Project - San Luis, Colorado

First Quarter 2023 – DMR's, BMP and WET Testing Reports

CDPHE CDPS Permit No. CO0045675

Dear Sir or Madame:

Please find the enclosed Battle Mountain Resources, Inc. "San Luis Project" (Permit No. CO0045675) Colorado Department of Public Health and Environment-Colorado Discharge Permit System (CDPS) Best Management Practices (BMP) report for permitted outfall 002 for the first quarter 2023. The quarterly BMP report provides the required data associated with groundwater well elevations, the quarterly potentiometric surface map and groundwater well chemistry.

In addition, the first quarter 2023 Discharge Monitoring Reports (DMRs) were submitted for each of the permitted water treatment plant discharges in the NetDMR System and the WET Testing Reports were attached to the appropriate DMR submittal in NetDMR. These permitted discharges consist of water treatment plant Discharge Numbers 001-A and 001-B. During the quarter, the maximum 30-day average flow was 0.23 million gallons of water discharged per day, therefore the applicable permit criteria for the reporting period is associated with discharge number 001-B.

Should any questions arise or if I can be of any assistance providing clarification, please call me at (719) 379-0538.

Sincerely,

Julio Madrid Authorized Agent

Battle Mountain Resources, Inc.

Cc: BMRI File

Devon Horntvedt, Newmont USA Limited Lawrence Fiske, Newmont USA Limited Tim Runnells, Engineering Analytics Alan Fosdick, Engineering Analytics

Battle Mountain Resources, Inc.

San Luis Project P.O. Box 310 San Luis, Colorado 81152-0310 (719) 379-0798

April 26, 2023

Colorado Department of Public Health and Environment Water Quality Control Division Attn: WQDC-B2 – DMR Receipt 4300 Cherry Creek Drive Denver, CO 80246-1530

Re: Battle Mountain Resources, Inc.

San Luis Project

First Quarter 2023 BMP Report

CDPHE CDPS Permit No. CO0045675

Dear Sir or Madame:

In accordance with and compliance of the permit limitations and permit terms and conditions contained in Part I, Section 5 <u>Discharge Point 002</u>: (Permit Limitations, Best Management Practices, and Schedule of Compliance of the State of Colorado Authorization to Discharge Under the Colorado Discharge Permit System, Battle Mountain Resources, Inc. submits the following *Quarterly Best Management Practices Report*.

In accordance with the Water Quality Control Commission Regulations for Effluent Limitations, Section 62.4, and the Colorado Discharge Permit System Regulations, Sections 61.8(2), 61.8(3)(n), and 61.8(3)(r), 5 C.C.R. 1002-61, the permittee shall continue to implement the following limitations, compliance schedules, and Best Management Practices (BMPs).

The attainment of applicable water quality standards will be implemented and evaluated through the application of the following limitations, compliance schedules, and BMPs that are designed to monitor and control the groundwater quality and quantity discharging from the West Pit to the Rito Seco alluvial aquifer.

Specifically, the limitations, compliance schedules, and BMPs are those activities that address contaminated groundwater that may flow into the Rito Seco. This includes: (1) the potential flow of the affected groundwater from the West Pit that, in the past, manifested itself in the formation of the surface seeps along the arroyo sidewall of the Rito Seco, and (2) the plume of affected groundwater within the Rito Seco alluvial aquifer downgradient of the West Pit that flows along the naturally occurring hydraulic gradient and that may flow into the Rito Seco. The activities will include the following specific requirements:

1) The elevation of the groundwater table in the vicinity of the West Pit shall be measured on a weekly basis at the following locations: (i) the West Pit backfill wells BF-4 and BF-5 and (ii) the Rito Seco alluvial wells M-16 and M-20, as shown in Figure 3 of the permit, for purposes of determining the performance of the "pump and treat" system that regulates the flow and quality of the groundwater in the seepage front. The permittee shall

also determine on a quarterly basis the elevations of the groundwater table at BF-3, BF-4, BF-5, BF-6, M-11R, M-16, M-17, M-18, M-19, M-20, M-21, M-22, M-23, M-24, M-25, M-26, M-27, M-28, M-29, M-30, M-31, M-32, and M-33 for the purpose of developing a groundwater potentiometric map as monitoring confirmation of the groundwater flow direction. The quarterly data regarding depth to groundwater and groundwater potentiometric surface map will be submitted to the WQCD with the BMP report as described.

Compliance Action Taken: Battle Mountain Resources, Inc. measured the weekly West Pit backfill and alluvial wells as required under Paragraph 1 of the specific requirements. Measurements obtained for the weekly West Pit backfill wells (BF-4 and BF-5R) and alluvial wells (M-16 and M-20) are shown in Table 1. The quarterly groundwater elevations required under Paragraph 1 were also measured and are shown in Table 2. A potentiometric surface map, developed by Engineering Analytics, is shown in Figure 1. The groundwater table elevations and potentiometric map confirm that the groundwater flow gradient during the first quarter of 2023 was from the Rito Seco to the West Pit. No corrective action is required under Paragraph 1 specific requirement and scheduled compliance monitoring will continue unchanged next quarter.

Table 1 – Weekly Groundwater Elevations

Monitoring Well Identification	Observation Date	Groundwater Elevation (ft amsl)
	01/04/2023	8579.33
	01/11/2023	8579.32
	01/18/2023	8579.29
	01/25/2023	8579.25
	02/01/2023	8579.27
	02/08/2023	8579.29
BF-4	02/15/2023	8579.38
	02/22/2023	8579.29
	03/01/2023	8579.28
	03/08/2023	8579.25
	03/15/2023	8579.25
	03/22/2023	8579.29
	03/29/2023	8579.29
	01/04/2023	8579.09
	01/11/2023	8579.06
	01/18/2023	8579.05
	01/25/2023	8579.02
	02/01/2023	8579.04
	02/08/2023	8579.07
BF-5R	02/15/2023	8579.12
	02/22/2023	8579.06
	03/01/2023	8579.03
	03/08/2023	8579.04
	03/15/2023	8579.03
	03/22/2023	8579.06
	03/29/2023	8579.08

Table 1 – Weekly Groundwater Elevations (continued)

Monitoring Well Identification	Observation Date	Groundwater Elevation (ft amsl)
	01/04/2023	8602.43
	01/11/2023	8602.05
	01/18/2023	8601.73
	01/25/2023	8601.50
	02/01/2023	8601.38
	02/08/2023	8601.29
M-16	02/15/2023	8601.18
	02/22/2023	8601.19
	03/01/2023	8601.17
	03/08/2023	8601.17
	03/15/2023	8601.23
	03/22/2023	8601.32
	03/29/2023	8601.36
	01/04/2023	8580.29
	01/11/2023	8580.32
	01/18/2023	8580.33
	01/25/2023	8580.29
	02/01/2023	8580.23
	02/08/2023	8580.07
M-20	02/15/2023	8580.10
	02/22/2023	8580.05
	03/01/2023	8580.04
	03/08/2023	8579.99
	03/15/2023	8580.00
	03/22/2023	8580.15
	03/29/2023	8580.21

Table 2 – Quarterly Groundwater Elevations

Monitoring Well Identification	Observation Date	Groundwater Elevation (ft amsl)
BF-3	01/31/2023	8578.04
BF-4	01/31/2023	8579.27
BF-5R	01/31/2023	8579.04
BF-6	01/31/2023	8578.99
M-11R	01/31/2023	8550.41
M-16	01/31/2023	8601.38
M-17	01/31/2023	8586.83
M-18	01/31/2023	8579.39
M-19	01/31/2023	8580.42
M-20	01/31/2023	8580.23
M-21	01/31/2023	8577.39
M-22	01/31/2023	8573.03
M-23	01/31/2023	8555.95
M-24	01/31/2023	8559.34
M-25	01/31/2023	DRY
M-26	01/31/2023	8543.86
M-27	01/31/2023	DRY
M-28	01/31/2023	8579.70
M-29	01/31/2023	8580.26
M-30	01/31/2023	8610.41
M-31	01/31/2023	8550.03
M-32	01/31/2023	8537.83
M-33	01/31/2023	8534.28

2) The weekly groundwater table elevation data shall be tabulated and reported on the quarterly BMP reports, and the data will be used to evaluate compliance with the following permit limitations.

The groundwater table elevation, based on the average of all measured values for each calendar month in the West Pit backfill groundwater monitoring wells BF-4 and BF-5, must be equal to or lower than an elevation of 8582 feet above sea level (ft. amsl).

Compliance Action Taken: Battle Mountain Resources, Inc. measured the West Pit backfill monitoring wells (BF-4 and BF-5R) weekly and the measurements are shown in Table 1. The groundwater measurements for wells BF-4 and BF-5R were averaged by calendar month and the results are shown in Table 3. The January, February, March 2023 averages were below the 8582 ft. amsl required in Paragraph 2. No corrective action is required under the Paragraph 2 requirement and schedule compliance monitoring will continue unchanged next quarter.

Table 3 – Quarter	ly West Pit Backfill Monthl	y Average Groundwater	Table Elevations

Monitoring Well Identification	Month (2023)	Number of Observations	Average Monthly Groundwater Elevation (ft amsl)
	January	4	8579.30
BF-4	February	4	8579.31
	March	5	8579.27
	January	4	8579.06
BF-5R	February	4	8579.07
	March	5	8579.05

3) If the average monthly groundwater table elevation in the West Pit backfill for any calendar month, measured as described in the above paragraph, is greater than 8582 ft. amsl or the quarterly determination of the groundwater potentiometric surface map indicates that the flow of the groundwater is from the West Pit to the Rito Seco alluvium, the permittee shall verbally communicate such condition to WQCD within 24 hours of the determination of the condition (elevated West Pit backfill table or groundwater flow from the West Pit as indicated by the quarterly groundwater potentiometric surface map) and initiate the following compliance schedule.

Compliance Action Taken: Battle Mountain Resources, Inc. measured the West Pit backfill monitoring wells (BF-4 and BF-5R) weekly and the calendar month average groundwater measurement elevations (Table 3) were below the 8582 ft. amsl required in Paragraph 2. The January 31, 2023, potentiometric surface map (Figure 1) shows the groundwater flow gradient was from the Rito Seco alluvium to the West Pit backfill. Therefore, site operations demonstrated the West Pit backfill groundwater level was maintained at or below an elevation of 8582 ft. amsl through the quarter. Therefore, no requirement(s) to initiate actions contained within the schedule of compliance for Section 5.3 is required.

4) The quality of groundwater in the vicinity of the West Pit shall be monitored on a monthly basis in the Rito Seco alluvial groundwater monitoring wells M-19, M-21, M-24 and M-11R for the purposes of monitoring the changes in the quality of the plume or affected groundwater in the Rito Seco alluvial aquifer. Groundwater quality in these monitoring wells will be analyzed for pH, temperature, total dissolved solids, calcium, sulfate, manganese, fluoride, copper, and iron for the purpose of evaluating the status of the groundwater quality in the downgradient groundwater plume. The groundwater quality data will be summarized and transmitted to the WQCD in the quarterly BMP report required under Part I, Section E.1 of this permit.

Compliance Action Taken: Battle Mountain Resources, Inc. collected monthly groundwater samples in the vicinity of the West Pit backfill area from Rito Seco alluvial monitoring wells M-19, M-21, M-24 and M-11R. No corrective action is required under the Paragraph 4 specific requirement and scheduled compliance monitoring will continue unchanged next quarter.

Table 4 – Rito Seco Alluvial Groundwater Quality Summary

Amalada	Reporting	Sample		Monitoring V	Vell Identifier	
Analyte	Units	Date	M-11R	M-19	M-21	M-24
		01/09/2023	7.15	6.49	6.78	6.93
рН	SU	02/08/2023	7.08	6.70	6.82	6.8
_		03/01/2023	6.96	6.45	6.69	6.8
		01/09/2023	9.3	10.6	8.1	8.3
Temperature	°C	02/08/2023	9.0	9.9	8.0	8.1
_		03/01/2023	8.8	9.4	7.5	7.5
		01/09/2023	73.1	20.8	30.9	77.9
Calcium, Total	mg/L	02/08/2023	82.0	22.0	30.5	76.0
		03/01/2023	86.4	21.3	31.6	78.5
		01/09/2023	LT 0.002	0.00221	LT 0.002	LT 0.002
Copper, Dissolved	mg/L	02/08/2023	LT 0.002	LT 0.002	LT 0.002	LT 0.002
		03/01/2023	LT 0.002	LT 0.002	LT 0.002	LT 0.002
	mg/L	01/09/2023	0.843	0.822	1.31	0.831
Fluoride		02/08/2023	0.886	0.942	1.36	LT 1.25
		03/01/2023	LT 1.25	0.946	1.48	LT 1.25
		01/09/2023	LT 0.15	LT 0.15	LT 0.15	4.06
Iron, Dissolved	mg/L	02/08/2023	LT 0.15	LT 0.15	LT 0.15	4.09
		03/01/2023	LT 0.15	LT 0.15	LT 0.15	4.03
		01/09/2023	0.118	0.124	0.367	0.871
Manganese, Dissolved	mg/L	02/08/2023	0.122	0.131	0.361	0.847
-		03/01/2023	0.180	0.154	0.369	0.861
		01/09/2023	97.3	6.92	8.85	145
Sulfate	mg/L	02/08/2023	85.5	5.98	8.68	129
		03/01/2023	138	6.00	9.05	147
		01/09/2023	308	86	128	392
Total Dissolved Solids	mg/L	02/08/2023	318 H	100 H	136 H	394 H
		03/01/2023	384	112	140	402

H = Sample was analyzed outside of analytical holding times by the laboratory. The subsequent month sample was already collected prior to the laboratory reporting, so the sample was not recollected. Results from the January and March sampling events were consistent with February results and previous historical results.

5) The historical seeps were caused by the plume of affected groundwater and may, in the future, also be caused by natural variation in the flow of groundwater in the vicinity of the area where the past seeps occurred. The permittee shall conduct a monthly visual inspection of the area of historical seeps and the permittee shall report any seepage flow that is associated with the area historic seepage expression, as is identified in Figure 2 of the permit. Results of the seep monitoring shall be tabulated and summarized in the quarterly BMP report.

If these inspections identified the occurrence of seeps, the permittee will be required to communicate verbally to the WQCD within 24 hours of the seepage observation, followed by written notification within 7 calendar days of the seepage observation. Verbal updates will then be provided to the WQCD every second day thereafter until the WQCD has made a determination regarding the status of the West Pit groundwater control system through the implementation of the following compliance schedule.

Compliance Action Taken: Battle Mountain Resources, Inc. performed monthly visual seepage expression inspections in the historic seepage area identified in Figure 2 of the permit. Visual observations during these inspections are shown in Table 5. No seepage expressions were observed in the historic seepage area during the first quarter of 2023. Therefore, no verbal or written notifications were required and the implementation of the compliance schedule was not required. No corrective action is required under the Paragraph 5 specific requirement and scheduled compliance monitoring will continue unchanged next quarter.

Table 5 – Monthly Seepage Expression Inspection Tabulation

Visual Inspection Date	Was Visual Observation of Seepage Determined in the Area of the Historic Seepage Expression	Comments
01/31/2023	No	All Dry
02/28/2023	No	All Dry
03/22/2023	No	All Dry

6) The BMP for the groundwater flow downgradient from the groundwater divide (see section VI.A.2 for the Rationale) that has been developed in the Rito Seco alluvial aquifer consists of a groundwater capture system in conjunction with groundwater table elevation control in the West Pit. The water management plan for the Rito Seco alluvial aquifer consists of pumping two groundwater capture wells (M-32 and M-33) located downgradient of the plume of affected groundwater. This action will allow flushing of constituents in the groundwater of the Rito Seco alluvial aquifer in that portion (plume) of the aquifer affected by previous flow of groundwater from the West Pit. Measurements of the groundwater table elevations will be taken on a weekly basis from M-32 and M-33. This data shall be tabulated and reported for outfall 002 on the quarterly BMP report, and the data will be used to evaluate compliance with the following permit limitation.

The groundwater table elevation, based on the average of all measured values for each calendar month at M-32 and M-33 in the Rito Seco alluvial aquifer, must be equal to or lower than an elevation of 8540 ft. amsl.

If the average monthly groundwater table elevations measured in the Rito Seco alluvial aquifer at M-32 and M-33 is greater than 8540 ft. amsl, the permitee shall initiate the following compliance schedule within 24 hours of the determination of groundwater table elevation exceedance.

Compliance Action Taken: Battle Mountain Resources, Inc. measured the alluvial aquifer monitoring wells (M-32 and M-33) weekly and the resulting elevations are presented in Table 6. The groundwater elevations for wells M-32 and M-33 were averaged by calendar month and the results are shown in Table 6. The January, February, March 2023 averages were below the 8540 ft. amsl required under Paragraph 6. Therefore, site operations were in full compliance of Part I, Section 5.5 and there were no requirements(s) to initiate actions contained within the schedule of compliance for Section 5.5. No corrective action is required under Paragraph 6 specific requirement and scheduled compliance monitoring will continue unchanged next quarter.

Table 6 – Weekly/Monthly Rito Seco Alluvial Aquifer Average Groundwater Table Elevations

Monitoring Well Identification	Observation Date	Groundwater Elevation (ft amsl)	Month (2023)	Average Monthly Groundwater Elevation (ft amsl)
	01/04/2023	8532.87		
	01/11/2023	8533.71	.71	
	01/18/2023 8533.63 January	January	8535.22	
	01/25/2023	8538.06		
M-32	01/31/2023	8537.83		
IVI-32	02/01/2023	8537.87		
	02/08/2023	8535.96		
	02/15/2023	8536.00	February	8533.68
	02/22/2023	8527.22	1	
	02/28/2023	8531.37		

Table 6 (Cont) – Weekly/Monthly Rito Seco Alluvial Aquifer Average Groundwater Table Elevations

Monitoring Well Identification	Observation Date	Groundwater Elevation (ft amsl)	Month (2023)	Average Monthly Groundwater Elevation (ft amsl)
	03/01/2023	8531.36		
03/08/2023 8529.41				
M-32	1-32 03/15/2023 8531.56 March 8531.1	8531.11		
W1-32	03/22/2023	8531.48	Maich	8331.11
	03/29/2023	8531.36		
	03/30/2023	8531.49		
	01/04/2023	8535.80		
	01/11/2023	8536.12		
	01/18/2023	8534.49	8534.49 January 8534.76	
	01/25/2023	8533.10		
	01/31/2023	8534.28		
	02/01/2023	8534.37		
	02/08/2023	8534.67		
M-33	02/15/2023	8529.92	February	8532.07
IVI-33	02/22/2023	8531.52		
	02/28/2023	8529.88		
	03/01/2023	8530.80		
	03/08/2023	8528.16		
	03/15/2023	8530.43	March	8529.24
	03/22/2023	8529.21	Iviaicii	0323.24
	03/29/2023	8527.77		
	03/30/2023	8529.07		

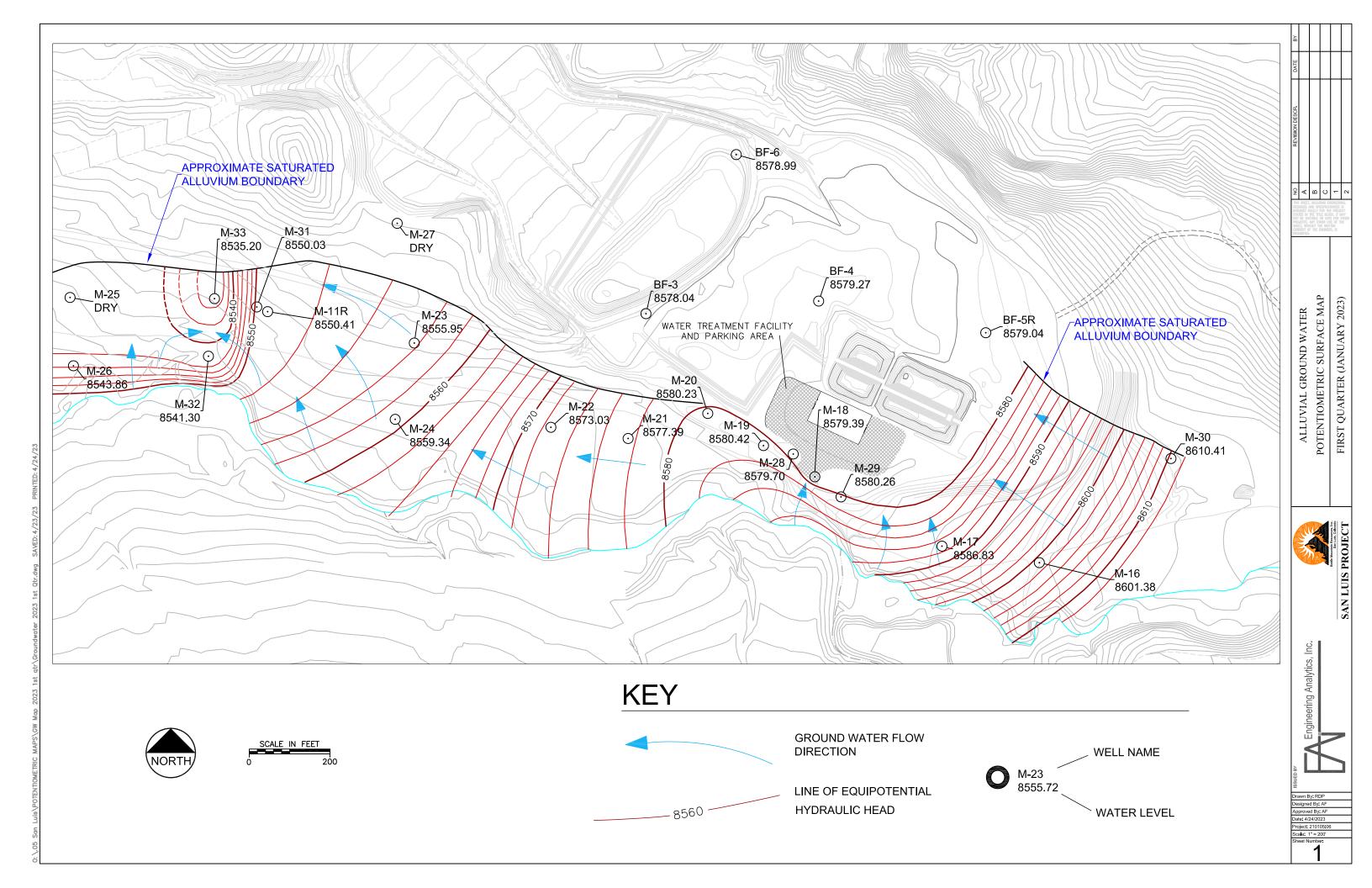
7) The water quality of the Rito Seco will be assessed using surface water quality collected at RS-2, as shown in Figure 3. Surface water monitoring in the Rito Seco shall be conducted at RS-2 on a monthly basis and the laboratory analytical results shall be submitted to the WQCD in the quarterly BMP report. Water quality samples collected at RS-2 shall be analyzed for the following constituents: calcium, magnesium, sodium, potassium, ammonia, total dissolved solids, total hardness, pH, total suspended solids, cyanide (WAD and total), bicarbonate, alkalinity, chloride, sulfate, nitrate-nitrite, fluoride and the total and dissolved concentrations of aluminum, arsenic, barium, boron, cadmium, copper, chromium, iron, lead, manganese, mercury, nickel, selenium, silica, silver and zinc. The following compliance schedule shall be implemented in the event that any constituent exceeds the applicable water quality standards for the Rito Seco.

Compliance Action Taken: Battle Mountain Resources, Inc. collected monthly surface water samples in January, February, March 2023 at location RS-2, as shown in Figure 3 of the permit. Results of analyses performed on these samples are shown in Table 7. The results of the laboratory analytical testing show that the applicable water quality standards were met for the Rito Seco during the months of January, February, March 2023. Site operations were in full compliance of Part I, Section 5.7 and there was no requirement(s) to initiate actions contained within the schedule of compliance for Section 5.7. Scheduled compliance monitoring will continue unchanged next quarter.

Table 7 – RS-2 Surface Water Quality Results

- RS-2 Surface water (Analyte	Reporting Units	01/09/2023	02/08/2023	03/01/2023
	•			
Alkalinity Aluminum, Dissolved	mg/L as CaCO ₃	61.7	47.0	58.6
	mg/L	LT 0.25	LT 0.25	LT 0.25
Aluminum, Total	mg/L	LT 0.25	0.472	0.303
Ammonia as N	mg/L	LT 0.2	LT 0.2	LT 0.2
Arsenic, Dissolved	mg/L	LT 0.001	LT 0.001	LT 0.001
Arsenic, Total	mg/L	LT 0.001	LT 0.001	LT 0.001
Barium, Dissolved	mg/L	LT 0.035	LT 0.035	LT 0.035
Barium, Total	mg/L	LT 0.035	LT 0.035	LT 0.035
Bicarbonate as CaCO3	mg/L	61.7	47.0	58.6
Boron, Dissolved	mg/L	LT 0.1	LT 0.1	LT 0.1
Boron, Total	mg/L	LT 0.1	LT 0.1	LT 0.1
Cadmium, Dissolved	mg/L	LT 0.00025	LT 0.00025	LT 0.00025
Cadmium, Total	mg/L	LT 0.00025	LT 0.00025	LT 0.00025
Calcium, Total	mg/L	16.9	17.2	15.8
Carbonate as CaCO3	mg/L	LT 20	LT 20	LT 20
Chloride	mg/L	LT 2	3.70	LT 2
Chromium, Dissolved	mg/L	LT 0.002	LT 0.002	LT 0.002
Chromium, Total	mg/L	LT 0.002	LT 0.002	LT 0.002
Copper, Dissolved	mg/L	LT 0.002	LT 0.002	LT 0.002
Copper, Total	mg/L	LT 0.002	LT 0.002	LT 0.002
Cyanide, Total	mg/L	LT 0.1	0.0209 H	LT 0.01
Cyanide, WAD	mg/L	LT 0.01	LT 0.01	LT 0.01
Fluoride	mg/L	0.50	0.91	0.72 H
Hardness as CaCO3	mg/L	60	54	58
Iron, Dissolved	mg/L	LT 0.15	LT 0.15	LT 0.15
Iron, Total	mg/L	0.234	0.785	0.494
Lead, Dissolved	mg/L	LT 0.0005	LT 0.0005	LT 0.0005
Lead, Total	mg/L	LT 0.0005	LT 0.0005	LT 0.0005
Magnesium, Total	mg/L	4.48	4.77	4.54
Manganese, Dissolved	mg/L	LT 0.05	LT 0.05	LT 0.05
Manganese, Total	mg/L	LT 0.05	LT 0.05	LT 0.05
Mercury, Dissolved	mg/L	LT 0.001	LT 0.001	LT 0.001
Mercury, Total	mg/L	LT 0.001	LT 0.001	LT 0.001
Nickel, Dissolved	mg/L	LT 0.001	LT 0.04	LT 0.04
Nickel, Total	mg/L	LT 0.04	LT 0.04	LT 0.04
Nitrate+Nitrite as N	mg/L	0.112	LT 0.1	0.109
рН	SU	7.06	7.38	6.49
Potassium, Total	mg/L	LT 1	1.01	1.04
Selenium, Dissolved	mg/L	LT 0.00025	LT 0.00025	LT 0.00025
Selenium, Total	mg/L	LT 0.00025	LT 0.00025	LT 0.00025
Silica, Total	mg/L	10.9	9.6	12.8
Silver, Dissolved	mg/L	LT 0.0005	LT 0.0005	LT 0.0005
Silver, Total	mg/L	LT 0.0005	LT 0.0005	LT 0.0005
Sodium, Total	mg/L	4.06	9.97	5.89
Sulfate	mg/L	5.88	24.3	12.3
Total Dissolved Solids	mg/L	76	102 H	98
Total Suspended Solids	mg/L	LT 20	LT 20	LT 20
Zinc, Dissolved	mg/L	LT 0.05	LT 0.05	LT 0.05
Zinc, Total	mg/L	LT 0.05	LT 0.05	LT 0.05

H = Sample was analyzed outside of analytical holding times by the laboratory. The subsequent month sample was already collected prior to the laboratory reporting, so the sample was not recollected.


8) If any component of the groundwater control system is not performing within the limits set forth in this permit, the permittee will be required to initiate appropriate compliance schedule activities, including the preparation of a response plan, for any and all components of the groundwater control system that do not meet the applicable requirements. The permittee shall also conduct weekly sampling at RS-2 until such time as the other compliance schedule activity(ies) have been completed.

Compliance Action Taken: As demonstrated by the information and data presented in this report, all components of the groundwater control system performed within the limits set forth in the permit. Therefore, site operations were in full compliance of Part I, Section 8 and there was no requirement(s) to initiate actions contained within the schedule of compliance for Section 8.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering information, the information submitted is to the best of my knowledge and belief, is true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

0

Name:	Julio Madrid	Signature:	Pulis Flat	
Date:	April 26, 2023	-		

January 27, 2023

Julio Madrid **Battle Mountain Resources, Inc.**P.O. Box 310
San Luis, CO 81152

Dear Julio:

Enclosed is the report for chronic biomonitoring tests performed for Battle Mountain Resources, Inc. on effluent from the 001B outfall. There was no statistically significant toxicity to either test species at any effluent concentration. The effluent passes WET (Whole Effluent Toxicity) testing requirements for this sampling period.

If you have any questions or concerns, please do not hesitate to contact me at (303) 661-9324.

Best regards,

Haley West

Laboratory Manager
Enclosure(s): Invoice
Report

REPORT OF CHRONIC BIOMONITORING TESTS CONDUCTED FOR BATTLE MOUNTAIN RESOURCES, INC. ON EFFLUENT FROM THE 001B OUTFALL

Prepared for:

Julio Madrid

Battle Mountain Resources, Inc.
P.O. box 310
San Luis, CO 81152

Prepared by:

Haley West
SeaCrest Group
500 S Arthur Ave. Suite 450
Louisville, Colorado 80027-3065
(303) 661-9324

January 27, 2023

TABLE OF CONTENTS

CHRONIC TOXICITY TEST SUMMARY	
ABSTRACT WITH RESULTS	4
INTRODUCTION	5
MATERIALS AND METHODS	5
SAMPLE COLLECTIONDILUTION WATERTEST ORGANISMS	5
TEST PROCEDUREDATA ANALYSIS	6
RESULTS	7
CERIODAPHNIA DUBIA TEST RESULTSFATHEAD MINNOW TEST RESULTSTEST ACCEPTABILITY	8
DISCUSSION	9
REFERENCES	9
APPENDIX 1 – CHAIN OF CUSTODY WITH SAMPLE RECEIPT FORMS	10
APPENDIX 2 – DATA SHEETS FOR THE CERIODAPHNIA DUBIA TEST	19
WET TEST REPORT FORM – CHRONIC	20
APPENDIX 3 – DATA SHEETS FOR THE FATHEAD MINNOW TEST	25
WET TEST REPORT FORM – CHRONIC	26
APPENDIX 4 – QA/QC AND REFERENCE TOXICANT TEST CHARTS	32
LIST OF TABLES	
TABLE 1: STATISTICAL METHODS USED IN TESTING	7
TABLE 2: SUMMARY OF CERIODAPHNIA DUBIA TEST RESULTS	7
TABLE 3: SUMMARY OF FATHEAD MINNOW TEST RESULTS	8
TABLE 4: PMSD FOR CHRONIC TEST PARAMETERS	8

Chronic Toxicity Test Summary

Test:	7-day static renewal using <i>Ceriodaphnia dubia</i> 7-day static renewal using fathead minnow (<i>Pimephales promelas</i>)
Client:	Battle Mountain Resources, Inc.
Test Procedure Followed:	Ceriodaphnia dubia: EPA/821/R-02-013. Method 1002.0 (2002) fathead minnow: EPA/821/R-02-013. Method 1000.0 (2002)
Sample Number:	423029.B
Dilution Water:	moderately hard laboratory reconstituted water
Test Organism Source:	SeaCrest Group
Reference Toxicant:	Sodium Chloride

Sample	Time of Collection	Date of Collection	Time of Receipt	Date of Receipt
Effluent 1	0600	01-16-2023	1135	01-16-2023
Effluent 2	0800	01-18-2023	0945	01-19-2023
Effluent 3	0600	01-20-2023	1050	01-20-2023

	Ceriodaphnia dubia	fathead minnow
Test Initiation Time	1315	1530
Test Initiation Date	01-16-2023	01-16-2023
Test Completion Time	1330	1500
Test Completion Date	01-22-2023	01-23-2023

Abstract wit	h R	esults
--------------	-----	--------

10 for Ceriodaphnia dubia

Number of Organisms/Concentration: 40 for fathead minnow

10 for Ceriodaphnia dubia

Replicates at each Concentration: 4 for fathead minnow

	Ceriodaphnia dubia	fathead minnow
Test vessel size/Exposure volume	30ml/15ml	500ml/200ml
Sub-lethal NOEL/IC25	100%/>100%	100%/>100%
Pass/Fail Status	PASS	PASS
Temperature Range (°C)	24.1 – 25.9	24.1 - 25.5
Dissolved Oxygen Range (mg/L)	6.9 - 8.2	4.0 - 8.4
pH Range	7.6 - 8.0	7.2 - 8.1
	Control (Cerio/FHM)	Effluent Sample
Hardness (mg/L as CaCO ₃)	88/93	54/47/31
Alkalinity (mg/L as CaCO ₃)	59/57	29/71/38
Total residual chlorine (mg/L)	< 0.01	< 0.01
Total ammonia (mg/L as NH ₃)	< 0.03	0.07/<0.03/0.03

Client: BMRI Site: 001B SCG Project No.: 423029.B Project: Quarterly WET

INTRODUCTION

Biomonitoring provides an effective means by which the toxicity of discharges from municipal, industrial, and mining operations can be tested. Among the advantages of biomonitoring is the ability to test complex effluents containing a broad range of contaminants. Biomonitoring, when used in conjunction with chemical analyses, can generate data capable of identifying a much wider range of contaminants.

The Colorado Water Quality Control Division requires certain NPDES permittees to perform acute and/or chronic biomonitoring tests. The chronic test measures significant differences in lethality and in reproduction (*Ceriodaphnia dubia*) or growth (fathead minnow – *Pimephales promelas*) between control and effluent-exposed organisms.

The present report discusses the results of chronic biomonitoring tests conducted on effluent from the Battle Mountain Resources, Inc. 001B discharge. These tests were conducted in accordance with EPA and State of Colorado procedures in January 2023.

MATERIALS AND METHODS

Sample Collection

Two gallons of the effluent were collected on three separate dates as specified in Permit CO-0045675. Samples were delivered chilled to the SeaCrest lab where they were held at 0-6°C. Chain of custody forms showing sample collection and laboratory arrival times are included (Appendix 1).

Dilution Water

Laboratory reconstituted water was used as both the dilution water source and the control for the tests. Reconstituted water for the *Ceriodaphnia dubia* test was produced by adding sodium bicarbonate, calcium sulfate, magnesium sulfate, potassium chloride, and sodium selenate to deionized water. Reconstituted water for the fathead minnow test was produced by adding sodium bicarbonate, calcium sulfate, magnesium sulfate, and potassium chloride to deionized water.

Test Organisms

The biomonitoring test used *Ceriodaphnia dubia*, cultured in the SeaCrest laboratory. The organisms are cultured in brood culture boards from which individual females are monitored for survival and reproduction for periods of up to two weeks. Neonates less than 24-hours old, released from third or subsequent broods of eight or more within an 8-hour period, are collected from the brood chambers and used in tests. The animals are fed daily with a mixture of Yeast, Cereal Leaves, and Trout Chow (YCT), produced in-house. This is supplemented with cultured green algae (*Selenastrum capricornutum*) provided by Aquatic Biosystems.

Less than one-day-old fathead minnow, cultured in the laboratory, were also used in the test. Adult fish are maintained in 10-gallon aquaria where females deposit their eggs on the under-surface of split PVC pipe sections. The eggs are collected daily and transferred to aerated containers where they hatch after three to four days. The larval fish are fed newly hatched brine shrimp (*Artemia* sp.) at least twice per day.

In-house organisms are tested monthly in a reference toxicant test using sodium chloride to monitor overall health and test reproducibility (Appendix 4).

Test Procedures

Upon receipt at the lab, samples were analyzed for alkalinity, ammonia, chlorine, conductivity, dissolved oxygen, hardness, and pH.

Methods used in chemical analysis

Alkalinity	EPA 310.2	Hach 8203	I-2030-85.2
Ammonia	SM4500-NH ₃ , C-E1997	ASTM D1426-08	
Chlorine	SM4500-CI D	Hach 10026	
Conductivity	SM2510		
Dissolved Oxygen	SM4500-O	Electrode: G-2001	Winkler (QC): B-F-2001
Hardness	SM2340 B or C	Hach 8213	
pH	SM4500-H+ B-2000		

The test followed procedures in EPA³ and CDPHE⁴ guidelines. Exposure concentrations included control (0%), 13%, 26%, 52%, 76%, and 100% mixtures, diluted with moderately hard laboratory reconstituted water.

Individual *Ceriodaphnia dubia* were placed in 30ml plastic containers containing approximately 15ml of exposure medium. Ten replicates at each concentration were used. The animals were fed daily with the YCT mixture and an equal volume of the green algae *(Selenastrum capricornutum)*. The exposure medium was changed daily in each container and the number of young released overnight were counted and recorded. Young were removed from the containers daily and discarded. Routine measurements were made each day of temperature, dissolved oxygen, and pH before and after the water changes.

Fathead minnow were exposed in 500ml plastic cups to which 250ml of media was replaced daily. Four replicates were used at each concentration. Ten fish, less than 24-hours old, were placed in each cup. The fish were monitored daily for survival and fed live brine shrimp at least twice per day. After seven days, the fish were removed from the cups, euthanized with isopropyl alcohol, and then placed in aluminum pans and dried in an oven for a minimum of six hours at 100°C. The pans were then weighed on a five-place analytical balance to determine the average dry weight of the fish from each replicate.

Data Analysis

Data from the tests were analyzed on a personal computer using the CETIS program (developed by Tidepool Scientific Software). Statistical tests used in the analyses are shown in Table 1. Test acceptability was determined using control survival and reproduction/growth criteria, concentration-response relationships, and percent minimum significant differences (USEPA ^{5,6}).

CO-0045675 SCG Project No.: 423029.B Site: 001B Project: Quarterly WET

Table 1. Statistical methods used in testing for significant differences in test parameters.

Variance	Distribution	
Bartlett Equality of Variance Test	Shapiro-Wilk W Normality Test	

Statistical Difference						
Species	Survival	Growth	Reproduction	IC ₂₅		
Ceriodaphnia dubia	N/A	N/A	Dunnett Multiple Comparison Test	ICp		
fathead minnow	Steel Many-One Rank Sum Test	Dunnett Multiple Comparison Test	N/A	ICp		

RESULTS

Ceriodaphnia dubia Test Results

Test results for the *Ceriodaphnia dubia* are summarized in Table 2 and provided on the data sheets located in Appendix 2. Survival was 100% in the 100% effluent and was 100% in the remaining effluent concentrations. Control survival was 100%. No statistically significant lethality was measured in any effluent concentration when compared to the control. The NOEL (No Observed Effect Level) for lethality was 100% and the LC25 (Lethal Concentration 25) for lethality was >100%.

Average number of neonates was 21.2 in the 100% effluent concentration and ranged from 22.6 – 24.6 in the remaining effluent concentrations. Average number of neonates in the control was 23.4 for statistical analyses and test acceptability criteria. No statistically significant differences in the number of neonates were found between the control and any effluent concentration. The NOEL for reproduction was 100% and the IC₂₅ (Inhibition Concentration 25) for reproduction was >100%.

Table 2. Summary of Ceriodaphnia dubia test results. An asterisk (*) denotes a statistically significant difference from the control.

Parca	Percent	Mean			Significant Difference	
Concentration	Survival	Neonates	Min.	Max.	Lethality	Reprod.
Control (0%)	100	23.4	10	30		
13%	100	23.7	17	30		
26%	100	23.5	18	29		
52%	100	24.6	20	28		
76%	100	22.6	16	31		
100%	100	21.2	15	26		

Fathead Minnow Test Results

Fathead minnow results are summarized in Table 3 and are provided on data sheets in Appendix 3. Survival was 98% in the 100% effluent concentration and was 100% in the remaining effluent concentrations. Control survival was 98%. No statistically significant lethality was measured in any effluent concentration when compared to the control. The NOEL for lethality was 100% and the LC_{25} for lethality was >100%.

Average weight in the 100% effluent concentration was 0.402mg and ranged from 0.349mg - 0.411mg per individual in the remaining effluent concentrations. Average weight for the control fish was 0.424mg for statistical analyses and test acceptability criteria. No statistically significant differences for growth were measured in any effluent concentration when compared to the control. The NOEL for growth was 100% and the IC₂₅ for growth was >100%.

Table 3. Summary of fathead minnow test results. An asterisk (*) denotes a statistically significant difference from the control.

	Percent	Average			Significant	Difference
Concentration	Survival	Weight (mg)	Min.	Max.	Lethality	Growth
Control (0%)	98	0.424	0.393	0.458		
13%	100	0.349	0.281	0.413		
26%	100	0.380	0.369	0.389		
52%	100	0.411	0.378	0.441		
76%	100	0.369	0.326	0.388		
100%	98	0.402	0.372	0.423		

Test Acceptability

Acceptable control survival (80%) was achieved in both tests. Similarly, *Ceriodaphnia dubia* reproduction (average 15 neonates/organism) and fathead minnow growth (average 0.250mg/test container) in control organisms met required levels. PMSD was within the required limits for an acceptable test (Table 4).

Table 4. PMSD for chronic test parameters.

	fathead min	now growth	C. dubia reproduction		
	Lower bound	Upper bound	Lower bound	Upper bound	
PMSD	12	30	13	47	
(% Minimum significant difference)			17	.8	

Client: BMRI CO-0045675 SCG Project No.: 423029.B Site: 001B Project: Quarterly WET

DISCUSSION

A failed test for this discharge occurs when there is an NOEL or IC₂₅ less than the IWC (Instream Waste Concentration) of 52%. The NOEL represents the highest effluent concentration at which no statistically significant effect is observed. The IC₂₅ represents an estimate of the effluent concentration that would cause a 25 percent reduction of a non-quantal biological measurement. A violation for this discharge occurs when both the NOEL and the IC₂₅ are less than the IWC. Since neither test species demonstrated statistically significant differences meeting these criteria, the discharge passes WET testing requirements for this sampling period.

REFERENCES

- 1. **Hach Chemical Company.** 2008. *Hach's Water Analysis Handbook.* Fifth Edition. Hach Chemical Company, Loveland, Colorado. Digital Medium.
- 2. APHA/AWWA/WEF. 1998. Standard Methods for the Examination of Water and Wastewater. 20th Edition. American Public Health Association, Washington, D.C.
- 3. **USEPA.** 2002. Short Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms. EPA-821-R-02-013. 335 pp.
- 4. CDPHE (Colorado Department of Public Health and Environment). 1998. Laboratory Guidelines for Conducting Whole Effluent Toxicity Tests. Water Quality Control Division.
- 5. USEPA. 2000. Method of Guidance and Recommendations for Whole Effluent Toxicity (WET) Testing (40 CFR Part 136). EPA/821/B-00/004.
- 6. **USEPA**. 2000. Understanding and Accounting for Method Variability in Whole Effluent Toxicity Applications under the National Pollutant Discharge Elimination System Program. EPA/833/R-00/003.

Client: BMRI Site: 001B CO-0045675

SCG Project No.: 423029.B Project: Quarterly WET

Appendix 1 - Chain of Custody with Sample Receipt Forms

CHAIN OF CUSTODY

500 S. Arthur Avenue, Unit 450 - Louisville, CO 80027

	C	h	
	100)	PANY
	7		S CON
(U		RVICE
•	0		AL SE
	6		NMEN
	1		VIKUR
1	1		
(1		1

(303) 661.9324 - FAX (303) 661.9325 Other (List Below) **Jotal Volume** Date/Time **Number of Containers** Received By (2) Daphnia magna 🔲 Daphnia pulex Other Analysis (List Below) Analysis (Check all applicable) BOD/COD (Circle) Coliform (Total/Fecal/E-Coli) (Circle) Signature Oil and Grease Chromium III/VI (Circle) (wolad tziJ) znoinA Solids (TS/TDS/TSS) (Circle) Relinquished By (2) Metals (List Below) Cerio daphnia WET: PTI/TIE/TRE (Indicate Below) WET: Accelerated (Indicate Below) Signature WET: Chronic (Indicate Below) Test Species: Teathead Minnow 6-9 Day | Special Instructions/Comments: WET: Acute (Indicate Below) 123029.元世 Phone # 719-379-0827 E-Mail: Duid. Carino @ Alpermon V16123 81152 Lab ID 1135 Date/Time Received By (1) Comp Comp Grab/ Sampler: //aux Address: P.O. BOX 310 San Luis 0090 Time ☐ FAX 1-2 Day Signature P. O./Project Number: San Luis Contact: Julio Madrid **Turnaround Requirements** Date BNRI ☐ PDF 0090 1/16/23 (Analytical Testing Only) Date/Time Relinquished By (1) Standard (10 days) Sample Location or ID Mail Requested Report Date: Client/Project Name: 3-5 Day W.E.T. Report By: Signature Fax #

Sample Receipt Form

Form #: 42 Effective: January 2023

Project #423 ೦೭೪. ਲਿ		Sample #:			
Date:	01/16/23		Initials:	LR	
Samples					
1. FedEx	UPS	Courier	Hand Delivery	(circle	one)
	Notes:				
2. Chilled	to Ship		Amb	ient Chilled	i
	Received Broken or Leaking Notes:		Υ	N	NA
	Received Broken or Leaking Notes:	9	- Y	(N)	
	ed Within 36hr Holding Time Notes:		Q	N	
6. Aeration	n necessary		Υ	N	
7. pH adju	stment necessary		Υ	N	
	Received at Temperature be Notes: Same day San		Υ	N	ÑÀ
9 Descrip	tion of Sample (Color, Odor,	and/or Presence	of Particulate Matt	er):	
o. Booonp	Effluent: des , vo.				
	Receiving: NA	4.44			
	Presence of native species:		Υ	(N)	

Lab #	Temp	D.O.	pН	Cond
029.84	8200	8.2	7.8	244
	2			

Custody Seals:

- 1. Present on Outer Package
- 2. Unbroken on Outer Package
- 3. Present on Sample
- 4. Unbroken on Sample

Custody Documentation (Chain of Custody):

1. Present Upon Receipt of Sample

N

CHAIN OF CUSTODY

Seatrest Group

(303) 661.9324 - FAX (303) 661.9325

500 S. Arthur Avenue, Unit 450 - Louisville, CO 80027

7.99 Total Volume Other (List Below) Date/Time N Number of Containers Received By (2) Daphnia magna 🔲 Daphnia pulex Other Analysis (List Below) Analysis (Check all applicable) BOD/COD (Circle) Signature Coliform (Total/Fecal/E-Coli) (Circle) Oil and Grease Chromium III/VI (Circle) Date/Time (wols8 tziJ) znoinA Solids (TS/TDS/TSS) (Circle) Relinquished By (2) (Wetals (List Below) Test Species: X Fathead Minnow X Cerio daphnia るう WET: PTI/TIE/TRE (Indicate Below) WET: Accelerated (Indicate Below) WET: Chronic (Indicate Below) Signature Special Instructions/Comments: WET: Acute (Indicate Below) 423029842 Phone # 719-379-0827 E-Mail: David Carino @ placemon Lab ID Date/Time Sampler: / Juid S (Grino COMO Received By (1) Comp Grab/ San Luis, lo 500 0800 Time FAX 6-9 Day 1-2 Day Signature P. O./Project Number: San Luis 118/23 Turnaround Requirements (Analytical Testing Only) PDF Date Contact: Julio Madrid Address: P.O. BOX 310 Client/Project Name: BMRI Date/Time 1/18/23 Relinquished By (1) Standard (10 days) Sample Location or ID 1254 Requested Report Date: Mail 3-5 Day Report By: W.E.T. Fax #

Sample Receipt Form

Form #: 42 Effective: January 2023

Project # 423 029, B Date: 423		Sample #: 7	·W
Samples Were: 1. FedEx Notes: UPS	Courier	Hand Delivery	(circle one)
2. Chilled to Ship		Amb	ient Chilled
Cooler Received Broken or Leaking Notes:		Υ	N NA
Sample Received Broken or Leaking Notes:		Υ	N
5. Received Within 36hr Holding Time Notes:		Y	N
6. Aeration necessary		Υ	N
7. pH adjustment necessary		Υ	N
Sample Received at Temperature bet Notes:	tween 0-6° C .	Y	N NA
9. Description of Sample (Color, Odor, a	and/or Presence o	of Particulate Matte	er):
Effluent: Receiving: N/A		clear, no	Visable pm
Presence of native species:		Υ	N

Temp	D.O.	pН	Cond
4.9	7.8	7-9	253
	Temp 4.9	Temp D.O. 4.9 7.8	Temp D.O. pH 4.9 7.8 7.9

Custody Seals:

- 1. Present on Outer Package
- 2. Unbroken on Outer Package

- 3. Present on Sample
- 4. Unbroken on Sample

N

NA NA

Custody Documentation (Chain of Custody):

1. Present Upon Receipt of Sample

N

Date 18-23 Circle One: M @F minutes 0 reatment System Flow Rate 490 GPM End Sample Program: Time Oboo Start Sample Program: Time ocoo 100 SCO Sampling Schedule

-3 Hour Time Ogoo Observation good maker flow, gowler onte Sampler Sample Contained one of Observation good water flow, power onto Sample Container anile ~6 Hour Time 1260 Observation good workey flow goods of onto Sample Container on to Observationgeod weter flow power on to Samplo Sample what as no son ice Observationgood weter they power onto Sample. Sample container on ile Observation good ux ter You power on to Soundle Sample Container on ice Observation good water flow, powser on to Sampler, Sample Container on ite gallons Sampling Personnel: R. Lucexo D. Coxing A. Toyler, S. Morestos Volume sent to lab Observation good water fow, some on to samples gallons Total Volume Collected + -24 Hour Time Debe Samples packed on ice -21 Hour Time 0300 ~18 Hour Time 24 00 ~15 Hour Time 2100 -12 Hour Time 1800 -9 Hour Time 1500

UPS Delivered ?

Completed COC

CHAIN OF CUSTODY

	(C	1
	1) 2
	(Ö) A
	1		
	(9	100
	-	L	SER
	1		Y L
	;	Ž	Z
	Ġ	J	NOX
	(G	> 2
1	6	T	z
1	-	Ž	1
14	9		4

80027					CIDI		_	nedmuV	1					1		Selow)					ne .
lle, CC	100				5200	.,0400	J ,0	aoquan,	110	+				+	+	Other (List Below)					Date/Time
500 S. Arthur Avenue, Unit 450 - Louisville, CO 80027													-			Othe				Received Bv (2)	
t 450	e)			(Mc	t Belo	siJ) si	sylen	A 19dtC												eceive	
e, Uni	all applicable)					ircle)) a	BOD/CC								Daphnia pulex				"	
enue/	appl	(6	Circle	(iloɔ	-3/leo	eal/le	toT) r	Coliforn								-					Signature
ur Av	kall					əs	Grea	bns liO		_											Signs
Arth	hec				(elɔɹiː) IV/	III wr	Chromiu								magn					
0 5.	Analysis (Check				(wol98	(List l	snoinA								Daphnia magna					Date/Time
20	naly			(əjɔ.	7) (Cir	ST\SC	JT/2T) sbilo2												(2)	Date
	4				(/	Molə8	(List l	Metals												Relinquished By (2)	
		_											_	_		phni				quish	
Ď								WET: PT	-			\dashv	+	+		rio da				Selino	
JSTC								A :T3W	J			-	-	+	-	Cerio daphnia				-	a.
F.C.		_					_	WET: CI	$\hat{}$			-	+	+				18			Signature
O N			Т	(wole	T	:	etuo	A :T3W	t,			+	+	+		Ainno	ımen	100		_	iš
CHAIN OF CUSTODY				8/152	(Mayor	COM		Lab ID	423029.843							Y Fathead Minnow	tions/Con	1			Date/Time 0/2023 1/050
					Parino	15 Ceri		Grab/ Comp	Comp							Test Species:	Special Instructions/Comments:	out fal		Received By (1)	4
				San Luis Co	E-Mail: Buil Carino	Sampler: Davids Gr	☐ FAX	Time	0600							Test	6-9 Day Spe	1-2 Day		Rece	Miles
9	H	K/X	10	Sai				Date	20/23							ents					Signature
Gro	BMRI	Juon	Yedr	310	0827		□ PDF	ă	1/20		4					Turnaround Requirements (Analytical Testing Only)	(s			(1)	Date/Time 1/20/13 0600
SER V	31	::		30 X	19-		lail	or ID	1							und R	0 day:		ate:	d By	8
MSea Great Group	Client/Project Name:	P. O./Project Number: Son Luis	Contact: Julio Madrid	Address: P.O. BOX 310	Phone # 719-379-0827	Fax # 1/19	Report By: X Mail	Sample Location or ID	W.E.T. Test							Turnaro	Standard (10 days)	3-5 Day	Requested Report Date:	Relinquished By (1)	Signature Joseph Signer

Sample Receipt Form

Form #: 42 Effective: January 2023

Project # 423 029 B		Sample #:	3	
Date: 012023		Initials:	IN,	
Samples Were:				
1. FedEx UPS Notes:	Courier	Hand Delivery	(circle	e one)
2. Chilled to Ship		Ambie	nt Chille	d
Cooler Received Broken or Leakin Notes:	g	Υ	N	NA
Sample Received Broken or Leaking Notes:	ng	Y	\hat{N}	
5. Received Within 36hr Holding Time Notes:	е	Ŷ	N	
6. Aeration necessary		Υ	N	
7. pH adjustment necessary		Υ	N	
8. Sample Received at Temperature Notes: sameday Sample	between 0-6° C .	Υ	N	NA
9. Description of Sample (Color, Odo Effluent: WWY, NO PM	r, and/or Presence	of Particulate Matter):	
Receiving:៷/A Presence of native species	:	Y	N	

Lab#	Temp	D.O.	рН	Cond
425029.BH	3 6.8	7.6	7.7	246

Custody Seals:

1. Present on Outer Package	Υ	(N)	0
2. Unbroken on Outer Package	Υ	N	NA
3. Present on Sample	Υ	N	6
4. Unbroken on Sample	Υ	N	NA

Custody Documentation (Chain of Custody):

1. Present Upon Receipt of Sample

N

Treatment System Flow Rate 480 GPM
ISCO Sampling Schedule 10c ml per 10 minutes
Start Sample Program: Time 0600 Date 1-20-23 Circle One: M W ©

-21 Hour Time 0300 Observation good worker Flow power ento Sampler, Sample Container and Ce Observation good water flow, power onto Sampler, Sample Containeron ice Observation good water Slow, sow we sample, Sample Container Drice -18 Hour Time 2400 Observation good water thous power onto Sampley, Sample Container on ico Observation good weter Yay, power on to Sample, Sample Contalher on 100 ~6 Hour Time 1200 Observation good we der flow, power on to Sample, Sample contained -3 Hour Time 0900 Observation good water flow y power on to Sample, Simple contained Volume sent to lab Observation goody, a ter flow power on to Sample. Sampling Personnel: S. Maestos, D. Cocino, R. Lucero, A. Taylor 4 gallons Samples packed on ice 🔀 Fotal Volume Collected ~15 Hour Time 2100 -24 Hour Time OLOO -9 Hour Time 1500 ~12 Hour Time 1800

BMRI Delivered B

Cooler Sealed

Client: BMRI Site: 001B

CO-0045675

SCG Project No.: 423029.B Project: Quarterly WET

Appendix 2 - Data Sheets for the Ceriodaphnia dubia Test

SeaCrest Group

SCG Project No.: 423029.B Project: Quarterly WET

WET TEST REPORT FORM - CHRO	NIC
-----------------------------	-----

Permittee:

Battle Mountain Resources, Inc.

Permit No .:

CO-0045675

Outfall:

001B - IWC: 52%

Test Type:

Routine

Accelerated

Screen

Test Species:

Ceriodaphnia dubia

Fest Start Time	Test Start Date	Test End Time	Test End Date
1315	01-16-2023	1330	
		1550	01-22-2023

Test Results	Lethality/TCP3B	Reproduction/TKP3B
S code: NOEL	100%	100%
	PASS	PASS
code: LC ₂₅ /IC ₂₅	>100%	>100%
	PASS	PASS
T code:	>100%	>100%

Test Summary

Measurements	Control		Summary			
	(0%)	13%	26%	52%	76%	100%
Exposed organisms	10	10	10	10	10	10
Survival for day 1	10	10	10	10	10	10
Survival for day 2	10	10	10	10	10	10
Survival for day 3	10	10	10	10	10	10
Survival for day 4	10	10	10	10	10	10
Survival for day 5	10	10	10	10	10	10
Survival for day 6	10	10	10	10	10	10
Mean 3 Brood Total s (mg/L) – Receivi	23.4	23.7	23.5	24.6	22.6	21.2

Hardness (mg/L) - Receiving Water: N/A Alkalinity (mg/L) - Receiving Water: N/A

Effluent: 54/47/31

Recon Water: 88 Recon Water: 59

Chlorine (mg/L) – Effluent: <0.01

Effluent: 29/71/38

100%: 7.8/7.8

pH (initial/final) - Control: 7.9/7.8 Total Ammonia as NH₃ (mg/L) - Effluent: 0.07/<0.03/0.03

Were all Test Conditions in Conformance with Division Guidelines? YES NO If NO, list deviations from test specifications: N/A

Laboratory: SeaCrest Group

Comments:

Analyst's Name: Lindsay Rutherford, Haley West, Julie McKenney, and Daniela Thornton

Signature

Hally West

Date January 27, 2023

Ceriodaphnia Chronic Benchsheet

Form #: 101a Effective: March 2023

30

Permittee: BMRI Lab#: 423029.B Site: _____00113 IWC %: 52 Dilution Water: MH 23 -001 Sample Date: 011623 Template #: 5 Age & Source: 011623 1133 Test Start: 011623 1315

Age & S	Source:	0116	23 113	3	Test Start:	11623 1				
Test Co	ndition	s:			_	THE CO I	310	Liid.	0122	23 13
	0	1	2	3	4	T -		_		
C)	0	0	0			5	6		7	Tot
	0	0	0	9	4	6	0			10
	0		0		8	0	12		(24
	0		0	0	6	10	13			2
	0		0	0	4	11	15			2,
•	0	0		0	5	6	13		\neg	2
0	0	0	0	0	4	8	il		-	23
	0		0	4	0	9	15		-	28
		0	0	0	0	8	11		-	
	0	0	0	0	0	10	13	_	-	19
DO	0	0	0	b	6	12	4	-	-	23
DO	7.2			7.1 7.3	7.5 6		1 7.1	_	-	24
Temp			6 25.5 25	1 14.5 174.	24.9 24.			_	-	-
рН	7.9	79 8.		0 7.9 8.0	7.8 8.			_	-	- 23.
Cond	303		195	303	299	795	9 7.8!	1000	-	
1)	0	0	0	0	4		12	676	E BUS	
	0	0	0	ч	7-	8		_	+-	24
	0	0	0	0	6	0	10		1	21
	0	0	0	0		8	16			30
	0	0	0		6	9	13			28
3	0	0	0	6	4	6	(1			21
13	0	0	0	0	4	7	12			23
	0	0	0	1	5	0	10			17
	0	0		5	0	7	10			22
	0	0	0	0	U	9	9			22
DO	1.4		0	0	4	10	15			29
emp		75 74			75 7.0					
pH	7.9				24.9 24.1	259 24.				-
Cond		7.9 7.9	- 0 0	7.9 8.0	7.8 7.9	7.8 7.9	7.8			23.7
	294		287	293	288	281	7.0	10.00	0.000	- 00. 1
	0	0	0	0	4	7	9	30300		20
- 1	0	0	0	2	8	Ö	9	+		20
- 1	0	0	0	0	5	9	15	+		19
1	0	0	0.	0	7	1		+		29
2)	0	0	0	0	5		14	+		28
ele E	0	0	0	0	3	5	15	\perp		25
	0	0	0	0	4-11	6	/1			20
	0	0	0	9		Ø	13			18
Г	0	0	0		9	6	13			24
	0	0	Ö	0		8	14			26
00	7.6	75 7.1		0	4	10	12			26
emp	24.6	248 246	25.5 25.1	7.1 7.5	7.6 7.2	7.0 17.0	7.1			
Н	7.9	7.9 7.9	7.8 8.0	24.5 24.4	24.9 24.1	25.9 24.8	24.1			23.5
ond	286	291	283	7-9 7-7	7.7 17.9	7.8 7.9	7.8			100.0
	0	0	0	286	281	271		5124	14.7/ JEIAN	
	0	0	0	0	4	8	13			25
	0	0		Ч	7+1	0	13			25
-	0		0	0	5	8	15			
-		0	0	0	6	9	10			28
2	0	0	0	0	2	7	12	+ +		25
2	0	0	0	0	4	8	13	+		21
	0	0	0	1	9			+		25
	0	0	0	5	0	10	14	+		24
	0	0	0	Ö		10	10			25
	0	0	Ö	0	5	8	15			28
0		7.6 7.7	1 . 1 7 . 1		7/10-		12			20
		A			7.6 7.3	7-1 7-7	7.2			
		1.0104.0	1001	675 1796	24.9 24.1	25.7 24.8				
_	7.9			79 79	7.7 7.9	7-7 7.9	7.8			24.6

Ceriodaphnia Chronic Benchsheet

Form #: 101a Effective: March 2023

	0	1	2	3	4	5	6	7	Total
(4)	0	0	0	O	G	11	14		31
	0	0	0	0	6	0	10	1	16
	0	0	0	0	5	7	13		25
	0	0	0	0	3	9	11		23
-71	0	0	0	0	4	7	12		23
76	0	0	0	0	5	8	13		26
	0	0	0	4	0	7	6		17
	0	0	0	4	0	7	10		21
	0	0	0	0	4	9	10		23
	0	0	0	0	3	7	- 11		21
DO	8.0	76 78	7.217.5	7.0 177	7.7 7.5	7-1 7-9	7.2		
Temp	24.6	24.8 24.6	25.5.25.1	24.5 24.7	24.9 24.1	259 248	24.1		226
pН	7.8	79 7.8	7.8 7.9	7.9 7.9	76 78	71 7-8	7.8		104
Cond	258	259	255	263	258	249 8BB	1		
(5)	0	0	0	O	4	8	9		21
	0	0	0	4	6	0	10		20
	0	0	0	0	4	41	11		26
	0	0	0	0	5	8	- 11		24
	0	0	0	6	5	3	9		19
100	0	0	0	0	5	5	12		22
.00	0	0	0	3	0	9	9		21
	0	0	0	0	4	6	5		15
	0	0	0	0	3	8	12		23
	0	0	0	0	4	8	9		2
DO	8.2	7.6 7.8	7.2 17.6	7.0 7.8	7.7 7.6	7.1 80	7.2		
Temp	24.6	248 24.6	25.5 25.1	24.5 24.8	24.9 24.1	259 248	24.1		21.2
pН	7.8	7.9 7.8	7.8 17.8	7.9 7.9	7.6 7.7	1-1 1-8	1.8		01.0
Cond	244	245	244	253	246	240			
Algae	ABS	ABS	ABS	AB3	AB5	AB5			
YCT	2209	2109	2209	2209	2209	2209			
H ₂ O	1	1,		2	3	2			
Initials	UR	ut	HW	M	DT	MC	LR		
		Eff #1		#2		#3		con	-
Hardness	- 5	şy	ч		.3		8	8	
Alkalinity		29	7		3		- 5		-
Chlorine	- 1	0.01	40	.01	<u> </u>	.01		2.01	4
Ammonia		0.07	U	0.03	0	.0.3	U	0.03	J

Exposure Chamber: Total Capacity: 30mL Total Solution Volume: 15ml Feeding Schedule:

Fed daily Food used: YCT, Algae

Units:

DO: mg/L Temp: °C pH: N/A Hardness: mg/L Alkalinity: mg/L

Chlorine: mg/L

Cond: µS/cm3

Ammonia: mg/L

Comments:

Active mobile

x:y:z = board #:row:column

1	2	3	4	5	6	7	8	9	10
e1	C2	сз	C4	c5	Clo	C8	C9	CID	DI

Report Date: Test Code/ID: 23 Jan-23 15:13 (p 1 of 1) 423029CD / 05-8876-0205

Ceriodaphnia	7-d S	urvival and R	eproduction T	est								Sea	Crest Grou
Analysis ID:		91-6752	Endpoint:		roduction			N. P. Sal		TIS Version		1.9.6	
Analyzed:	23 Ja	n-23 15:13	Analysis:	Para	ametric-Co	ntrol vs	Trea	atments	Sta	tus Level:	1		
Batch ID:	02-44	30-3640	Test Type:	Rep	roduction-	Survival	(7d)		Ana	lyst: La	b Tech		
Start Date:	16 Ja	n-23	Protocol:	EPA	V821/R-02	-013 (20	02)				constituted	Water	
Ending Date:	22 Ja	n-23	Species:	Ceri	odaphnia d	dubia			Brin	ne: No	t Applicable		
Test Length:	6d 0h	1	Taxon:	Brar	nchiopoda				Sou		House Cultu		Age:
Sample ID:	10-16	93-5936	Code:	4230	029.B				Pro	ject: W	ET Quarterly	Compliand	e Test (1Q
Sample Date:	16 Ja	n-23	Material:	POT	W Effluen	t			Sou	rce: NF	DES Permit	# (XX9999	9999)
Receipt Date:	16 Ja	n-23	CAS (PC):						Stat	ion: 00			
Sample Age:	n/a		Client:	BMF	RI								
Data Transfor	m	Al	t Hyp						NOEL	LOEL	TOEL	TU	PMSD
Untransformed	1	С	> T						100	>100	n/a	1	17.82%
Dunnett Multi	ple Co	mparison Te	st										
Control	vs	Conc-%	Test	Stat	Critical	MSD	DF	P-Type	P-Value	Decision	(a:5%)		
Dilution Water		13	-0.164	47	2.289	4.169	18	CDF	0.8777	Non-Sigr	ificant Effect	:t	
		26	-0.054	491 2.289		4.169	18	CDF	0.8491	Non-Sign	ificant Effec	t	
		52	-0.659	9	2.289	4.169	18	CDF	0.9600	Non-Sign	ificant Effect	t	
		76	0.439	3	2.289	4.169	18	CDF	0.6722	Non-Sign	ificant Effec	t	
		100	1.208		2.289	4.169	18	CDF	0.3263	Non-Sign	ificant Effec	t	
ANOVA Table													
Source		Sum Squares	Mean	Squa	ire	DF		F Stat	P-Value	Decision	(a:5%)		
Between	(66.9333	13.38	67		5		0.8073	0.5495	Non-Sign	ificant Effec	t	
Error	1	395.4	16.58	15		54							
Total	,	962.333				59							
ANOVA Assun	nption	s Tests											
Attribute	1	Test				Test S	tat	Critical	P-Value	Decision	(a:1%)		
/ariance	E	Bartlett Equalit	y of Variance T	est		6.91		15.09	0.2274	Equal Va	riances		
Distribution		Shapiro-Wilk V	V Normality Tes	st		0.9684		0.9459	0.1218	Normal D	istribution		
Reproduction	Summ	nary											
Conc-%	(Code Co	unt Mean		95% LCL	95% U	CL	Median	Min	Max	Std Err	CV%	%Effect
)	1) 10	23.4		19.29	27.51		24	10	30	1.815	24.52%	0.00%
3		10	23.7		20.76	26.64		22.5	17	30	1.3	17.35%	-1.28%
26		10	23.5		20.67	26.33		24.5	18	29	1.249	16.81%	-0.43%
52		10 10	24.6		22.78	26.42		25	20	28	0.8055	10.35%	-5.13%
76		22.6 19.51		0.505	25.69 23		23	16	31 1.368		19.14%	3.42%	
100		10	21.2		19.07	23.33		21	15	26	0.9404	14.03%	9.40%

Report Date: Test Code/ID: 23 Jan-23 15:13 (p 2 of 2)

423029CD /	05-8876-0205

								Test Code/	ID: 423029	9CD / 05-8876-0205
Ceriod	laphnia	7-d Survival an	d Repro	duction To	est					SeaCrest Group
Analys	is ID:	02-9574-7104		Endpoint:	Reproduction			CETIS Vers	sion: CETISv1.9.6	
Analyz	ed:	23 Jan-23 15:13	3	Analysis:	Linear Interpola	ation (ICPIN)		Status Lev	el: 1	
Batch	ID:	02-4430-3640	1	Test Type:	Reproduction-S	Survival (7d)		Analyst:	Lab Tech	
Start D	Date:	16 Jan-23	F	Protocol:	EPA/821/R-02-	-013 (2002)		Diluent:	Reconstituted Water	er
Ending	g Date:	22 Jan-23	5	Species:	Ceriodaphnia o	lubia		Brine:	Not Applicable	
Test L	ength:	6d 0h	1	Гахоп:	Branchiopoda			Source:	In-House Culture	Age:
Sampl	e ID:	10-1693-5936	(Code:	423029.B			Project:	WET Quarterly Con	npliance Test (1Q)
Sampl	e Date:	16 Jan-23		Material:	POTW Effluent	t		Source:	NPDES Permit # (X	(X99999999)
Receip	t Date:	16 Jan-23	(CAS (PC):				Station:	001B	
Sampl	e Age:	n/a	(Client:	BMRI					
Linear	Interpo	lation Options								
X Tran	sform	Y Transform	1 8	Seed	Resamples	Exp 95% CL	Method			
Linear		Linear	9	14859	1000	Yes	Two-Point In	terpolation		
Point E	Estimat	es								
Level	%	95% LCL	95% U	CL TU	95% LCL	95% UCL				
IC5	75.8	6.319	n/a	1.319	n/a	15.83				
IC10	96.23	12.64	n/a	1.039	n/a	7.913				
IC15	>100	n/a	n/a	<1	n/a	n/a				
IC20	>100	n/a	n/a	<1	n/a	n/a				
C25	>100	n/a	n/a	<1	n/a	n/a				
IC40	>100	n/a	n/a	<1	n/a	n/a				
IC50	>100	n/a	n/a	<1	n/a	n/a				
Reproc	luction	Summary				Calcula	ted Variate			Isotonic Variate

Reproduction	Summary					calculated va	riate		Isoto	nic Variate
Conc-%	Code	Count	Mean	Min	Max	Std Dev	CV%	%Effect	Mean	%Effect
0	D	10	23.4	10	30	5.739	24.52%	0.0%	23.8	0.0%
13		10	23.7	17	30	4.111	17.35%	-1.28%	23.8	0.0%
26		10	23.5	18	29	3.951	16.81%	-0.43%	23.8	0.0%
52		10	24.6	20	28	2.547	10.35%	-5.13%	23.8	0.0%
76		10	22.6	16	31	4.326	19.14%	3.42%	22.6	5.04%
100		10	21.2	15	26	2.974	14.03%	9.4%	21.2	10.92%

Analyst: W QA: CM

Client: BMRI Site: 001B CO-0045675

SCG Project No.: 423029.B Project: Quarterly WET

Appendix 3 – Data Sheets for the Fathead Minnow Test

SeaCrest Group 25

SCG Project No.: 423029.B Project: Quarterly WET

WET TEST	REPORT	FORM -	CHRONIC

Permittee:

Battle Mountain Resources, Inc.

Permit No.:

CO-0045675

Outfall:

001B - IWC: 52%

Test Type:

Routine 🖂

Accelerated

Screen

Test Species:

fathead minnow

Test Start Time	Test Start Date	Test End Time	Test End Date
1530	01-16-2023	1500	01-23-2023

Test Results	Lethality/TCP6C	Growth/TKP6C
S code: NOEL	100%	100%
	PASS	PASS
P code: LC ₂₅ /IC ₂₅	>100%	>100%
	PASS	PASS
T code:	>100%	>100%

Test Summary

		2 000 00	annina y			
Measurements	Control (0%)	13%	26%	52%	76%	100%
Exposed organisms	40	40	40	40	40	40
Survival for day 1	39	40	40	40	40	40
Survival for day 2	39	40	40	40	40	40
Survival for day 3	39	40	40	40	40	40
Survival for day 4	39	40	40	40	40	40
Survival for day 5	39	40	40	40	40	40
Survival for day 6	39	40	40	40	40	40
Survival for day 7	39	40	40	40	40	39
Mean Dry Wt. (mg)	0.424	0.349	0.380	0.411	0.369	0.402

Hardness (mg/L) – Receiving Water: N/A Effluent: 54/47/31 Recon Water: 93 Alkalinity (mg/L) – Receiving Water: N/A Effluent: 29/71/38 Recon Water: 57 Chlorine (mg/L) – Effluent: <0.01 pH (initial/final) – Control: 8.1/7.5 100%: 7.6/7.4 Total Ammonia as NH₃ (mg/L) - Effluent: 0.07/<0.03/0.03

Were all Test Conditions in Conformance with Division Guidelines? YES ☒ NO ☐

If **NO**, list deviations from test specifications: N/A

Laboratory: SeaCrest Group

Comments:

Analyst's Name: Shanna Wepman, Julie McKenney, and Lindsay Rutherford

Signature Kally Whit

Date January 27, 2023

Fathead Minnow Chronic Benchsheet

1	
5	0
5	$\ddot{\circ}$
í	a)
2	₹
9	S
;	Ξ
	4

S M R I			Ave wt		11011	370		Γ	0.0	20.0		Γ	3	280			MULL	15.0			21,9	7.0			s tho	0. 40C	T					T			-		1	T		
SM R 2 2 2 2 3 4 2 2 4 3 4 2 4 2 3 4 2 4 3 4 4 4 4 4 4 4 4	100-		ish Wt mg	1292	22	B	5.424	0.406	0. Ul3	0.281	6	1.277	0.389	0.384	0.269	744	5.318	0.417	20h.0	3.286	388.0	0.526	3	52h.0	6.419									8						
Section Color Co	MH23	1			15377	165531	-	1742	1		-	_	-	1	15460	, 40805.	$\tilde{}$.17982	17723	126801.	-	-	29500	22 102		+55m-	-11405				13094			MODEL						
SAM RITE State O O State O S			ish & Tare			-	-		-	cr.	18425 1	20097	10583	123012 1		_				1	182161	15808			0	_	1 ++++	T			1+	1		chve+						
### SAN RITE Series ON RITE Series ON	Dilut		VEIC	3	#	\$	#	#	1 9#	#7	8#	6#	#10	#11	#12	#13	-		#16		#18	-	#50		#25	#23	#24	# #	#	#				Ø				_		
Section Color Co		ns:	7								õ				C)	-			0			O.	0)					I	I	,			omme							
### Since O B Lab #: 423 0 2 4 B sample Date: O 623 B sample D	2	nditio	-	6	01	10		9 0	9	01 (010	0110	010	0110) 16	16	0	0	07	01 0	911	011	010	01 (0	97	0	+	1	H	bre	L	-		_	_	4			
### Since O B Lab #: 423 0 2 4 B sample Date: O 623 B sample D	NC:	est Co	-	9 6	0 10	30	0 (0	MC	2 0	3/ 0	0	0 110	0 110	0 110	6 lic	O 113	50	0	OII	0 1/0	0 10	0 10		0	D	3	3	$^{+}$	+	H				f: mg/L	mg/L	r. mg/L	Ď			
### SAM R.T. Sample Date: O			-		0)	101	10	n 01	1 9	10	7 0	10	10	10 1	101	10	0	9	0 1	10 1	10	16 11	101	9	10	9	9	t	T					Haro	¥ 5	S 2	2			
Sinta	(9	E	2	5	0)	Q	0	(1)	0	01	10	101	2	10	(0)	9	9	9	9	9	2	ĬĎ	(2)	9	9	9	9							4 5	٠,	A V				
Sinta	9	plate:	-	6		0	0	01	0	,-	2	per/per	2	9	0	9	Ö	2	0	0	2	0	0	9	9	9	9	\downarrow	_	Ц				.OC: mg	emp:	DH. N	2	П		
Shire O	le Date	Tem	0	\vdash	_		10	_			00.80	_			10	10	_	우	9	10			10	_	-	- 10	5 5	9 9	9	10		217 to			_	- 5		Ц	4	
SMR R_ Site: OO R Lab #: 473 O2 Q-2 Site: OO R Lab #: 473 O2 Q-2 Site: OV 623-1530 Species Info: 3H016 She	Samp	ľ	-	4.5	74.4	51		14	74.4	7.5		4.8	24.	7,5		2.0		7.4		5.1	14.	7.4		3.	24.4	1.1					8			긭	립	E E	5	ay	mia	
BM RIT Site: OO B Lab #: 473 O Start ON 623-1530 Species into: TH Read O C C C C C C C C C	8	679				8.0	2	7.2	24.3	8.0	3	4.7	24.7	8.0		2,6	2.42	2.5	7	8.0	11/2	2.8	6	3.4	1.62	7.7	7							200	220			p ber d	hr arte	
BM RIT Siec. OO B Lab #: 473 State. OO Cool	020	OH	٥	6		5	33		7,7	7.5	32		8.5	7.4	p-m-	ب	8.60			1.5	672	7.3	27	1.3	5.0		3	Τ			3	3	per				chedule	9	22	
BAN RIT Site: OO B Site: OO B Site: Ool 62 C C C C C C C C C	00	_	1	\neg	-	0				0.	3			0.		\neg		+		\neg	$\overline{}$	-			\neg	-	1	T					Chan		i	iris	ding Sc	'	1	
BAN RIT Site: OO B Site: OO B Site: Ool 62 C C C C C C C C C		Cles II	0	1	7		330	. 9	50	5	32				313				٠,١		2	1			3	1,		╁╌			JAM	2	posure		ne:	sof).	Fee			
SM R I	Lab P	eds -	4	2		1.				1-	4		6	1	4	j	IN	'	\neg	\neg	25	7.7	4	\neg	2	7	╀	-		Ц	4	4		. A.	Volun	Const			Used:	
SM R I	8	,	,	20	24.1	8.0	676	2.5	24.	80	23	1.0	24.	80	0	2	24.	5	22	2.8	14-1	1.8	2	5.3	24.	7.8	3	<u> </u>			٤	M	١.	apacit	olution	Denth	L	Fed:	Food	
SM R I	8	2		5.5	24.8	1.7	tri	7.4	8- 42		i,	5.3	24.9	2.5	4,	25	24.9	150		25	25.0	7.4	2	2.0	25.0	1.43	3				7			Total C	Toet C	Water	7	>	3	
B M R I	š		7	┪		8,0	2	\neg	\neg	\neg	1	\neg	\neg	Z.O.	7		1.52	5'	1	\neg	74.	8.7	٦	\neg	\neg	\neg	T						т	T	T	T	Т	>	3	35
Eart: Oil 623 - 1530 Test End: D Read Do 68 6.0 7.0 5.0 7.9 Temp 244 744 241 755 241 Do 6.9 5.0 7.0 5.0 7.4 Temp 24.3 74.9 74.1 75.0 74.1 Do 7.0 6.1 7.0 9.0 7.0 8.0 Temp 24.3 74.9 74.1 75.0 74.1 Do 7.0 6.1 7.0 1.0 1.0 7.0 Temp 24.3 74.9 74.1 7.2 1.0 1.0 7.0 Do 7.0 6.1 7.0 1.0 1.0 7.0 Do 7.0 6.1 7.0 1.0 1.0 7.0 Do 7.0 6.1 7.0 1.0 1.0 7.0 Temp 24.2 24.8 241 24.8 241 DH 7.9 7.6 7.0 1.8 27.1 Temp 24.2 24.8 241 24.8 241 DH 7.9 7.6 7.0 1.8 27.1 Temp 24.1 74.5 24.1 24.8 24.1 DO 7.1 6.2 7.0 1.8 27.1 Temp 24.1 74.5 24.1 24.8 24.1 DH 7.6 7.5 7.1 7.4 3.7 7.1 Temp 24.1 74.5 24.1 24.8 24.1 DH 7.6 7.5 7.1 7.4 3.7 7.1 Temp 24.1 74.5 24.1 24.8 24.1 DH 7.6 7.5 7.1 7.4 3.7 7.1 Temp 24.1 74.5 24.1 24.8 24.1 Temp 24.1 74.5 7.0 1.8 27.1 Temp 24.1 74.5 24.1 24.8 24.1 Temp 24.1 74.8 24.1 24.8 24.1 Temp 24.1 74.8 24.1 24.8 24.1 Temp 24.1 74.8 24.1 24.8 24.1 Temp 24.2 24.8 24.1 24.1 24.8 24.1 Temp 24.2 24.8 24.1 24.1 24.1 24.1 Temp 24.2 24.1 24.1 24.1 24.1 24.1 24.1 24.	200	3 6	,	1		O	33			ې	32			N	9				0	M	11.7	5.	\sim	2			9	1			35	4	cv 3	1	T	T	2		$\overline{}$, Wi
SAN RITE			т	\neg		\neg	+		$\overline{}$	\neg	+	$\overline{}$	$\overline{}$	0	7		_	_	7	_	$\overline{}$	\rightarrow	7	_	_	-	t	+	Н	\forall	+			$^{+}$	$^{+}$	-	4	Н	+	> \
B M R I Book	i i	2	4			0	3/8				33			1	1	2	2	19	×	2	8 24	3 7		8	7 8.	23.7	2	-			2	-	۲. چ	+	+	-	Н	Н	1	-
Start: O C 2 3 - 1 D C 6 8 C 0 D C 6 8 C 0 D C 6 8 C 0 D C 6 9 C 0 S C 0 0 D C 0 0			7	\neg	\neg		_	$\overline{}$	_	7	-	\neg	\neg	$\overline{}$	_						\neg	\neg	_	\neg		_	╀	\vdash	Н	\dashv	+	-	on RG	7	- 2	33		$\overline{}$	_	N W
Start: O C S S S S S S S S S				2.	174	8.0	351			8	338	7.0	24.	4	254	3.	74	00	2	2	24.	1-5	nL7	2	-47.5	170	3	ļ			3	_	Rec	i i	75	\$ 0°	2	^	7	> 5
	H	20	ļ	9	24.0	1		0.0	24.9	1.1		10.1	34.0	1.6		1-7	8.47	3	3	2.9	24.8	7.5		20	7	υ. L		-	Ц	\rfloor	4	-	-	n	-	1.7		1		*
	0/10	7	0	6.8	74.4	- 60	333	5.0	24.3	8.0	325	2,0	543	7.0	300	000	2112	5.00	243	7.1	21.62	28	275	212	1.67	7.6	3				35	-	Eff 2	5	25	500	0		-	>35
	t	Read	_			_	_	8	dwa			8	dwa			8	emb			8	dwa			8	emb			Temp	H	ъ	┪	#	E# 1	32	100			V	als	als
Client Conc Conc Conc Conc Conc Conc Conc Conc	Client:	Conc	2	-1			Ť	-1	13		Ť		10/			- 11			Ť		200		1	-17	2	-10	Ť	1	۳	Ť	Initial in	Wate	_	Tard NE			Feed	AN.	Initia	Initials

Report Date: Test Code/ID: 24 Jan-23 12:27 (p 1 of 3) 423029FHM / 02-2796-2913

Fathead Minn	now 7-d Larva	I Surviva	I and Grow	th Test							Sea	Crest Group
Analysis ID: Analyzed:	06-9667-414 24 Jan-23 12		Endpoint: Analysis:	7d Survival Ra Nonparametri		vs Tr	reatments		IS Versio tus Level:		1.9.6	
Batch ID:	17-6622-900	5	Test Type:	Growth-Surviv	al (7d)			Ana	lyst: L	ab Tech		
Start Date:	16 Jan-23		Protocol:	EPA/821/R-02	2-013 (200	02)		Dilu	ent: R	econstituted 1	Water	
Ending Date:	23 Jan-23		Species:	Pimephales p	romelas			Brin	ie: N	ot Applicable		
Test Length:	7d 0h		Taxon:	Actinopterygii				Sou	rce: Ir	-House Cultu	re	Age:
Sample ID:	07-6700-620	0	Code:	423029.B				Proj	ject: V	/ET Quarterly	Complian	ce Test (1Q
Sample Date:	16 Jan-23		Material:	POTW Effluer	nt			Sou	rce: N	PDES Permit	# (XX9999	99999)
Receipt Date:	16 Jan-23		CAS (PC):					Stat	ion: 0	01B		
Sample Age:	n/a		Client:	BMRI								
Data Transfor	m	Alt H	lyp					NOEL	LOEL	TOEL	TU	PMSD
Angular (Corre	ected)	C > T						100	>100	n/a	1	5.25%
Steel Many-O	ne Rank Sum	Test										
	vs Conc-	%	Test :	Stat Critical	Ties	DF	P-Type	P-Value	Decisio	on(α:5%)		
Dilution Water	13		20	10	1	6	CDF	0.9516	Non-Sig	nificant Effec	t	
	26		20	10	1	6	CDF	0.9516		nificant Effec		
	52		20	10	1	6	CDF	0.9516		nificant Effec		
	76		20	10	1	6	CDF	0.9516	Non-Sig	inificant Effect	t	
	100		18	10	2	6	CDF	0.8333	Non-Sig	nificant Effec	t	
ANOVA Table												
Source	Sum S	quares	Mean	Square	DF		F Stat	P-Value	Decisio	n(α:5%)		
Between	0.00885	531	0.001	7706	5		0.8	0.5640	Non-Sig	nificant Effec	t	
Error	0.03983	39	0.002	2133	18							
Total	0.04869	921			23							
ANOVA Assur	nptions Tests	3										
Attribute	Test				Test S	tat	Critical	P-Value	Decisio	n(a:1%)		
Variance	Bartlett	Equality o	f Variance T	est					Indetern	ninate		
Distribution	Shapiro	-Wilk W N	lormality Te	st	0.6154		0.884	9.2E-07	Non-No	rmal Distribut	ion	
7d Survival Ra	ate Summary											
Conc-%	Code	Coun	t Mean	95% LCL	95% U	CL	Median	Min	Max	Std Err	CV%	%Effect
0	D	4	0.975		1.0000		1.0000	0.9000	1.0000	0.0250	5.13%	0.00%
13		4	1.000		1.0000		1.0000	1.0000	1.0000	0.0000	0.00%	-2.56%
26		4	1.0000		1.0000		1.0000	1.0000	1.0000	0.0000	0.00%	-2.56%
52		4	1.0000		1.0000		1.0000	1.0000	1.0000	0.0000	0.00%	-2.56%
76		4	1.0000		1.0000		1.0000	1.0000	1.0000	0.0000	0.00%	-2.56%
100		4	0.9750	0.8954	1.0000		1.0000	0.9000	1.0000	0.0250	5.13%	0.00%
Angular (Corre	ected) Transf	ormed Su	ımmary									
Conc-%	Code	Coun		95% LCL			Median	Min	Max	Std Err	CV%	%Effect
0	D	4	1.371	1.242	1.501		1.412	1.249	1.412	0.04074	5.94%	0.00%
13		4	1.412	1.412	1.412		1.412	1.412	1.412	0	0.00%	-2.97%
26		4	1.412	1.412	1.412		1.412	1.412	1.412	0	0.00%	-2.97%
52		4	1.412	1.412	1.412		1.412	1.412	1.412	0	0.00%	-2.97%
76		4	1.412	1.412	1.412		1.412	1.412	1.412	0	0.00%	-2.97%
100		4	1.371	1.242	1.501		1.412	1.249	1.412	0.04074	5.94%	0.00%

Report Date: Test Code/ID: 24 Jan-23 12:27 (p 1 of 2) 423029FHM / 02-2796-2913

									Test Code/	ID:	42	23029FHM /	02-2796-29
Fathe	ad Minr	now 7-d Larval S	Survival	and Grow	th Test							Sea	Crest Group
Analys	sis ID:	01-7359-5902	E	Endpoint:	7d Survival Ra	ate			CETIS Vers	ion:	CETIS	v1.9.6	
Analyz	zed:	24 Jan-23 12:2	7	Analysis:	Linear Interpo	lation (ICPIN	1)		Status Leve		1		
Batch	ID:	17-6622-9005	1	Test Type	: Growth-Surviv	al (7d)			Analyst:	Lab	Tech		
Start D	Date:	16 Jan-23	F	Protocol:	EPA/821/R-02	-013 (2002)			Diluent:	Reco	nstituted	Water	
Ending	g Date:	23 Jan-23	8	Species:	Pimephales pr	romelas		E	Brine:	Not A	Applicable	е	
Test L	ength:	7d 0h	1	Taxon:	Actinopterygii			5	Source:		ouse Cult		Age:
Sampl	e ID:	07-6700-6200		Code:	423029.B			F	Project:	WET	Quarter	ly Complian	ice Test (1Q
Sampl	e Date:	16 Jan-23	N	Material:	POTW Effluen	t		5				it # (XX999	
Receip	t Date:	16 Jan-23	C	CAS (PC):				5		001B		,	
Sampl	e Age:	n/a	C	Client:	BMRI								
Linear	Interpo	lation Options											
X Tran	sform	Y Transform	n S	Seed	Resamples	Exp 95%	CL Me	thod					
Linear		Linear	1	081301	1000	Yes	Two	-Point In	terpolation				
Point E	Estimat	es											
_evel	%	95% LCL	95% U	CL TU	95% LCL	95% UCL							
_C5	>100	n/a	n/a	<1	n/a	n/a							
_C10	>100	n/a	n/a	<1	n/a	n/a							
_C15	>100	n/a	n/a	<1	n/a	n/a							
C20	>100	n/a	n/a	<1	n/a	n/a							
C25	>100	n/a	n/a	<1	n/a	n/a							
_C40	>100	n/a	n/a	<1	n/a	n/a							
_C50	>100	n/a	n/a	<1	n/a	n/a							
d Sur	vival Ra	ate Summary				Calcu	lated Vari	ate(A/B)				Isoto	nic Variate
Conc-%	6	Code	Count	Mean	Min	Max	Std Dev	CV%	%Effe	ct	A/B	Mean	%Effect
1		D	4	0.975	0.9000	1.0000	0.0500	5.13%	0.0%		39/40	0.995	0.0%
3			4	1.000	0 1.0000	1.0000	0.0000	0.00%	-2.56%	6	40/40	0.995	0.0%
6			4	1.000	0 1.0000	1.0000	0.0000	0.00%	-2.56%	6	40/40	0.995	0.0%
2			4	1.000		1.0000	0.0000	0.00%	-2.56%	6	40/40	0.995	0.0%
6			4	1.000		1.0000	0.0000	0.00%	-2.56%	6	40/40	0.995	0.0%
00			4	0.975	0 0.9000	1.0000	0.0500	5.13%	0.0%	1	39/40	0.975	2.01%
d Surv	vival Ra	te Detail											
Conc-%	ó	Code	Rep 1	Rep 2		Rep 4							
)		D	0.9000	1.000	0 1.0000	1.0000							
3			1.0000	1.000	0 1.0000	1.0000							
6			1.0000	1.000	0 1.0000	1.0000							
2			1.0000	1.000	0 1.0000	1.0000							
			4 0000	4 000									

76

100

1.0000

1.0000

1.0000

1.0000

1.0000

0.9000

1.0000

Report Date: Test Code/ID: 24 Jan-23 12:27 (p 3 of 3) 423029FHM / 02-2796-2913

Fathead Minn	now 7-d Larva	al Surviva	and Grow	th Test						Sea	Crest Grou
Analysis ID:	05-4326-771	13	Endpoint:	Mean Dry Bio	mass-mg		CET	TIS Version	n: CETISv	1.9.6	
Analyzed:	24 Jan-23 12	2:27	Analysis:	Parametric-C	ontrol vs Tre	atments	Stat	tus Level:	1		
Batch ID:	17-6622-900)5	Test Type:	Growth-Surviv	val (7d)		Ana	lyst: La	ab Tech		
Start Date:	16 Jan-23		Protocol:	EPA/821/R-02	2-013 (2002)				econstituted \	Vater	
Ending Date:	23 Jan-23		Species:	Pimephales p	romelas		Brir	ne: No	ot Applicable		
Test Length:	7d 0h		Taxon:	Actinopterygii			Sou	rce: In	-House Cultu	re	Age:
Sample ID:	07-6700-620	0	Code:	423029.B			Pro	ject: W	ET Quarterly	Compliand	ce Test (1Q
Sample Date:	16 Jan-23		Material:	POTW Effluer	nt		Sou	rce: N	PDES Permit	# (XX9999	9999)
Receipt Date:	16 Jan-23		CAS (PC):				Stat	ion: 00	1B		
Sample Age:	n/a		Client:	BMRI							
Data Transfor	m	Alt H	ур				NOEL	LOEL	TOEL	TU	PMSD
Untransformed	d	C > T					100	>100	n/a	1	14.47%
Dunnett Multi	ple Comparis	son Test	1								
Control	vs Contr	ol II	Test 5	Stat Critical	MSD D	F P-Type	P-Value	Decisio	n(a:5%)		
Dilution Water	13*		2.951	2.407	0.061 6	CDF	0.0170	Significa	nt Effect		
	26		1.745	2.407	0.061 6	CDF	0.1583	Non-Sig	nificant Effect	t	
	52		0.539	2.407	0.061 6	CDF	0.6305	Non-Sig	nificant Effect		
	76		2.167	2.407	0.061 6	CDF	0.0778	Non-Sig	nificant Effect		
	100		0.862	8 2.407	0.061 6	CDF	0.4835	Non-Sig	nificant Effect		
ANOVA Table											
Source	Sum S	quares	Mean	Square	DF	F Stat	P-Value	Decision	n(a:5%)		
Between	0.0158	636	0.003	1727	5	2.441	0.0742	Non-Sign	nificant Effect		
Error	0.0234	003	0.001	3000	18						
Total	0.0392	639			23						
ANOVA Assur	nptions Test	s									
Attribute	Test				Test Stat	Critical	P-Value	Decision	n(a:1%)		
Variance	Bartlett	Equality o	f Variance T	est	10.72	15.09	0.0573	Equal Va	ariances		
Distribution	Shapiro	o-Wilk W N	ormality Tes	st	0.9765	0.884	0.8235	Normal [Distribution		
Mean Dry Bior	mass-mg Sur	mmary									
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	D	4	0.4242	0.3819	0.4666	0.423	0.393	0.458	0.01329	6.27%	0.00%
13		4	0.349	0.2373	0.4607	0.351	0.281	0.413	0.03509	20.11%	17.74%
26		4	0.3798		0.3936	0.3805	0.369	0.389	0.004346	2.29%	10.49%
52		4	0.410		0.4521	0.4115	0.378	0.441	0.01307	6.37%	3.24%
76		4	0.369	0.3226	0.4154	0.381	0.326	0.388	0.01457	7.90%	13.02%
100		4	0.4022	0.3646	0.4399	0.407	0.372	0.423	0.01183	5.88%	5.18%
Mean Dry Bior	mass-mg Det	ail									
Conc-%	Code	Rep 1	Rep 2		Rep 4						
0	D	0.393	0.422	0.458	0.424						
13		0.406	0.413	0.281	0.296						
26		0.377	0.389	0.384	0.369						
52		0.441	0.378	0.417	0.406						
76		0.386	0.388	0.326	0.376						
100				2 2 2 2	247 75-34						

100

0.423

0.419

0.395

Report Date:

24 Jan-23 12:27 (p 2 of 2)

Test Code/ID: 423029FHM / 02-2796-2913

									or ooder		72002	01 1 1141 7	DE 2100 20
Fathe	ad Minn	ow 7-d Larval S	Survival a	nd Grow	th Test							Sea	Crest Grou
Analys Analyz	sis ID: zed:	08-5470-3419 24 Jan-23 12:2		ndpoint: nalysis:	Mean Dry Bion Linear Interpol)		ETIS Vers		CETISv1.9	0.6	
Batch	ID:	17-6622-9005	Te	st Type:	Growth-Surviva	al (7d)		A	nalyst:	Lab 1	Tech		
Start [Date:	16 Jan-23		otocol:	EPA/821/R-02				luent:		nstituted Wa	ter	
		23 Jan-23		ecies:	Pimephales pro				ine:		Applicable		
	ength:			xon:	Actinopterygii				ource:		use Culture		Age:
Sampl	le ID:	07-6700-6200	C	ode:	423029.B			D	oject:	WET	Quarterly Co	ompliano	
		16 Jan-23		aterial:	POTW Effluent				ojeci. ource:		ES Permit #		
		16 Jan-23		S (PC):	TOTAL Ellidell				ation:	001B		(^^3555	3333)
	e Age:			ient:	BMRI			31	auon.	0016			
Linear	Interno	lation Options			1200000								
	sform	Y Transforn	n Se	ed	Resamples	Exp 95%	CL Met	hod					
Linear		Linear		77121	1000	Yes		-Point Inte	rpolation				
Point E	Estimate	es							1				
Level	%	95% LCL	95% UC	L TU	95% LCL	95% UCL							
C5	6.543	2.583	n/a	15.28	n/a	38.72							
C10	>100	n/a	n/a	<1	n/a	n/a							
C15	>100	n/a	n/a	<1	n/a	n/a							
C20	>100	n/a	n/a	<1	n/a	n/a							
C25	>100	n/a	n/a	<1	n/a	n/a							
C40	>100	n/a	n/a	<1	n/a	n/a							
C50	>100	n/a	n/a	<1	n/a	n/a							
Mean [Dry Bior	nass-mg Summ	nary			Cal	culated Va	riate				Isotor	nic Variate
Conc-9	%	Code	Count	Mean	Min	Max	Std Dev	CV%	%Effe	ect		Mean	%Effect
)		D	4	0.424	2 0.393	0.458	0.02659	6.27%	0.0%			0.4242	0.0%
3			4	0.349	0.281	0.413	0.07018	20.11%	17.74	%		0.3821	9.93%
26			4	0.379	0.369	0.389	0.008691	2.29%	10.49	%	(0.3821	9.93%
52			4	0.410	5 0.378	0.441	0.02613	6.37%	3.24%	6		0.3821	9.93%
76			4	0.369	0.326	0.388	0.02914	7.90%	13.02	%	(0.3821	9.93%
100			4	0.402	2 0.372	0.423	0.02366	5.88%	5.19%	6	(0.3821	9.93%
Mean D	Ory Bion	nass-mg Detail								_			
Conc-%	6	Code	Rep 1	Rep 2	Rep 3	Rep 4							
)		D	0.393	0.422	0.458	0.424							
3			0.406	0.413	0.281	0.296							
26			0.377	0.389	0.384	0.369							
52			0.441	0.378	0.417	0.406							
6			0.386	0.388	0.326	0.376							
100													

100

0.423

0.419

0.395

Client: BMRI Site: 001B SCG Project No.: 423029.B Project: Quarterly WET

Appendix 4 - QA/QC and Reference Toxicant Test Chart

SeaCrest Group

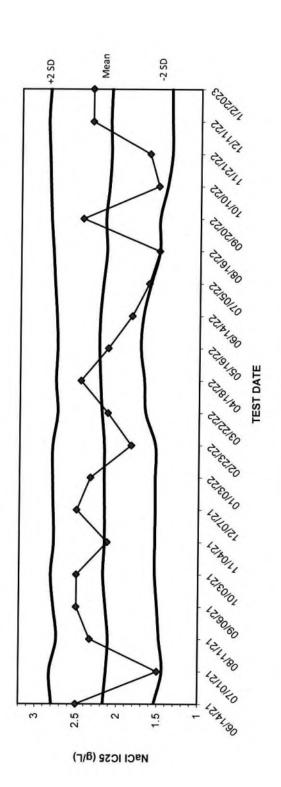
SCG Project No.: 423029.B Project: Quarterly WET

Quality Assurance Check List - Chronic Whole Effluent Toxicity Test

Client:	Battle Mountain Res	ources, Inc.
SeaCrest Sample No:	423029.B	
Species Tested:	Ceriodaphnia dubia	and fathead minnow
Sample Dates 01-16-2023 01-18-2023	Start Date of Test (Ceriodaphnia dubia)	Start Date of Test (fathead minnow)
01-20-2023	01-16-2023	01-16-2023
Sample received in lab properly	y preserved (0-6°C)?	N*
Sample received at laboratory v	within 36 hours of collection?	Y
Sample delivered on ice or equ	ivalent?	Y
Γest initiated within 36-hours of	Y	
Γest protocol conforms to CDP	Y	
Test protocol conforms to CDP	HE guidelines (fathead minnow)?	Y
Average test temp. ±1°C (Cerio	daphnia dubia)?	Y
Average test temp. ±1°C (fathea	nd minnow)?	Y
OO level ≥4.0mg/L; no super-s	aturation (Ceriodaphnia dubia)?	Y
OO level ≥4.0mg/L; no super-s	aturation (fathead minnow)?	Y
Survival in control ≥80% (<i>Ceri</i>	odaphnia dubia)?	Y
Survival in control ≥80% (fathe	ead minnow)?	Y
Ceriodaphnia dubia neonates <	Y	
Fathead minnow larvae <24-ho	urs old?	Y
Appropriate reference toxicity t	est conducted?	Y
Reference toxicity test results w	vithin the confidence limits for the lab?	Y

^{*} Samples #1 and #3 were received at 8.2°C and 6.8°C on the same day as sampling.

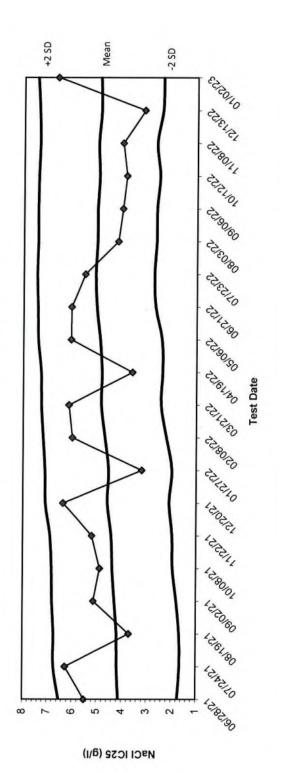
Author Hally Well Date Jaway 27, 2023


Position: Laboratory Manager

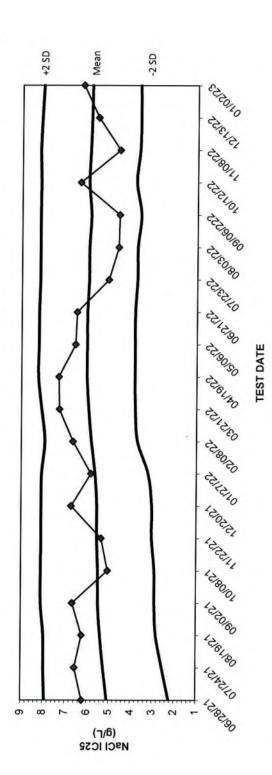
Quality Control Call My Date Jaway 27, 2023


Method	Analyte	Date	LCS (rec)	%REC	%RPD	QC LIMITS
2320 B	Alkalinity - Total	12/8/2022	99.20%	%92.66	-1 00%	7600
2320 B	Alkalinity - Total	12/15/2022	100.80%	98 83%	0.83%	± 3.00%
2320 B	Alkalinity - Total	12/21/2022	101.60%	100 57%	0.00%	± 5.00%
2320 B	Alkalinity - Total	12/30/2022	8/00:101	00.00	-0.00%	± 5.00%
EOO NILL D	American American	12/30/2022	95.60%	100.60%	0.62%	± 5.00%
4500 NH3 D	Ammonia	12/1/2022	102.80%	102.52%	%00.0	+ 10.00%
4500 NH3 D	Ammonia	12/9/2022	98.20%	100.01%	-0.39%	+ 10 00%
4500 NH ₃ D	Ammonia	12/16/2022	101.00%	102.00%	-0.19%	+ 10 00%
4500 NH ₃ D	Ammonia	12/21/2022	103.60%	104.88%	-0.99%	+ 10 00%
4500 CI D	Chlorine	12/20/2022	96.88%	100.00%	0.00%	+ 5 00 + 20 00%
2340 B	Hardness - Total	12/1/2022	104.39%	96.45%	1.88%	20:27 - 12:01
2340 B	Hardness - Total	12/6/2022	92.60%	101.00%	0.68%	% OC:5 + + 5 00%
2340 B	Hardness - Total	12/13/2022	102.00%	101.00%	0.00%	+ 1 5 00%
2340 B	Hardness - Total	12/27/2022	104.39%	96.55%	0.87%	± 5.00%
			LCS (rec)	%REC M1	%REC M2	4
4500 0	DO - Winkler	12/5/2022	N/A	%66.26	98 50%	C CIIIIIS
4500 O	DO - Winkler	12/14/2022	A/N	98.55%	98.53%	₹ 5.00%
45000	DO Minkler	40/00/00/00	47.4	8/00:00	00.00	± 5.00%
75000	OC Wilkiel	12/20/2022	A/N	100.00%	%90.76	± 5.00%
4300 0	DO - WINKIER	12/28/2022	N/A	100.00%	97.18%	¥ 2.00%
			Blank	%REC MR S	%RPD	OC Limits
2540 D	Suspended Solids (TTL)	12/29/2022	100.00%	100.09%	0.00%	+ 15%
2540 C	Dissolved Solids (TTL)	12/29/2022	100.00%	110.60%	%00.0	± 15%
Signature:	Kaley West				Signature:	AH man C
Date:	January 2, 2	2023			Date:	January 2 2022
nare:	JULIANN C, O	000			Date:	Janvary

CERIODAPHNIA SURVIVAL LC25 NaCI REFTOX


Г	Т		_	_	_	_	_	-	_		_	_	_		_	_	_	_	_	_	_	_
+2 SD	2 7966	2 0252	2.0202	2.1423	2.7816	2.8150	2.7797	2 7874	2 7982	2 7082	2.1302	2,7626	2.7050	2.7493	2.1.302	2.1020	2.8034	2.8328	2.8465	2.8578	28742	2.8527
-2 SD	1.5357	1 4386	1 4777	11111	1.5041	1.5342	1.5338	1.5310	1.5330	1 5330	16590	16774	1 7257	1 6951	1,6031	1 4060	1 4080	.4909	1.4070	1.3533	1.3566	1.3622
Mean	2.1661	2.1319	2 1101	2 1420	671.7	2.1/46	2.1568	2.1592	2.1656	2.1656	2.1982	2.2200	2.2355	2.2267	2.1930	2 1506	2 1658	2.1000	2.1268	2.1055	2.1154	2.1019
IC25	2.5000	1.5000	2.3330	2 5000	2000	2.5000	2.1250	2.5000	2.3330	1.8330	2.1250	2.4580	2.1250	1.8330	1.6250	1.5000	2 4440	1 6130	0.5130	1.6250	2.3330	2.3330
Date	06/14/21	07/01/21	08/11/21	09/06/21	10/03/21	14/04/21	11/04/21	12/07/21	01/03/22	02/23/22	03/22/22	04/18/22	05/16/22	06/14/22	07/05/22	08/16/22	09/20/22	10/10/22	14 104 100	11/21/22	12/11/22	1/2/2023

CERIODAPHNIA REPRODUCTION IC25 NaCI


_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_		_	_	_	_		_
12.30	1.3499	1 350882803	00000000	1.3375	1.3162	1 3367	13341	1.3311	1.3076	1.3284	1 3351	40000	1.5.154	1.3174	1 3025	0200.1	1.3033	1.3129	1.3123	1 3279	6120.1	1.3223	1.3275	1.3353	1 3258	2220
3272.0	0.7475	0.750807107	0 7546	0.7316	0.7574	0.7807	0.7830	202.0	0.7931	0.8016	0.8084	0 8480	00000	0.83/6	0.8293	0 8330	00000	0.8126	0.8138	0.7830	0.7456	0000	0.7328	0.7041	0.6912	
1 0487	1000	1.055345	1 0445	0000	1.0368	1.0587	1.0570	1 0503	2000	1.0650	1.0719	1.0821	1 0776	0.70.1	1.0659	1,0691	1 0628	200.	1.0630	1.0554	1.0340	1000	1000.1	1.0197	1.0085	
1.1340	1 1 5 5	1.133	1.0180	1 0820	1.0020	1.2630	1.1930	1.1450	1 2300	2,500	1.1390	1.0040	0.9527	2000	0.9/16	1.0920	0.8750	0.8275	0.027.0	0.7937	0.7807	0.8297	0.020.0	0.7935	0.8910	
06/14/21	7/1/2021	11202	08/11/21	12/08/06	10/03/34	10/03/21	11/04/21	12/07/21	01/03/22	20,00,00	02/23/22	03/22/22	04/18/22	05/16/22	03/10/22	06/14/22	07/05/22	08/16/22	20,00,00	03/20/22	10/10/22	11/21/22	42/44/02	7711/7	01/02/23	
	1.1340 1.0487	1.1340 1.0487 0.7475	1.1340 1.0487 0.7475 1.155 1.055345 0.750807107	1.1340 1.0487 0.7475 1.155 1.055345 0.750807107 1.3	1.1340 1.0487 0.7475 1.155 1.055345 0.750807107 1	1.1340 1.0487 0.7475 1.155 1.055345 0.750807107 1.0180 1.0445 0.7516 1.0820 1.0368 0.7574	1.1340 1.0487 0.7475 1.155 1.055345 0.750807107 1.0180 1.0445 0.7516 1.0820 1.0368 0.7574 1.2630 1.0587 0.7807	1.1340 1.0487 0.7475 1.155 1.055345 0.750807107 1.0180 1.0445 0.7516 1.0820 1.0368 0.7574 1.2630 1.0587 0.7807 1.1930 1.0570 0.7830	1.1340 1.0487 0.7475 1.155 1.055345 0.750807107 1.0180 1.0445 0.7516 1.0820 1.0368 0.7574 1.2630 1.0587 0.7807 1.1450 1.0570 0.7830	1.1340 1.0487 0.7475 1.155 1.055345 0.750807107 1 1.0180 1.0445 0.7516 1.0820 1.0368 0.7574 1.2630 1.0587 0.7807 1.1930 1.0570 0.7830 1.1450 1.0503 0.7931	1.1340 1.0487 0.7475 1.155 1.055345 0.750807107 1.0180 1.0445 0.7516 1.0820 1.0368 0.7574 1.2630 1.0587 0.7807 1.1930 1.0570 0.7830 1.1450 1.0503 0.7931 1.2300 1.0650 0.8016	1.1340 1.0487 0.7475 1.155 1.055345 0.750807107 1.0180 1.0445 0.7516 1.0820 1.0368 0.7574 1.2630 1.0587 0.7807 1.1450 1.0570 0.7830 1.2300 1.0650 0.8016 1.1390 1.0719 0.8084	1.1340 1.0487 0.7475 1.155 1.055345 0.750807107 1.0180 1.0445 0.7516 1.0820 1.0368 0.7574 1.2630 1.0587 0.7807 1.1450 1.0570 0.7830 1.2300 1.0503 0.7931 1.2300 1.0650 0.8016 1.1390 1.0719 0.8084 1.0040 1.0821 0.8480	1.1340 1.0487 0.7475 1.0180 1.055345 0.750807107 1.0180 1.0445 0.7516 1.0820 1.0368 0.7574 1.2630 1.0587 0.7807 1.1450 1.0570 0.7830 1.1390 1.0650 0.8016 1.0040 1.0821 0.8489 0.9527 0.6275	1.1340 1.0487 0.7475 1.0180 1.055345 0.750807107 1.0180 1.0445 0.7516 1.0820 1.0368 0.7574 1.2630 1.0587 0.7807 1.1450 1.0570 0.7830 1.1300 1.0650 0.8016 1.1390 1.0719 0.8084 1.0040 1.0775 0.8489 0.9527 1.0775 0.8376	1.1340 1.0487 0.7475 1.155 1.055345 0.750807107 1.0180 1.0445 0.7516 1.0820 1.0368 0.7574 1.2630 1.0587 0.7807 1.1930 1.0570 0.7830 1.1450 1.0503 0.7931 1.2300 1.0650 0.8016 1.1390 1.0719 0.8084 1.0040 1.0821 0.8489 0.9527 1.0775 0.8376 0.9716 1.0659 0.8293	1.1340 1.0487 0.7475 1.155 1.055345 0.750807107 1.0180 1.0445 0.7516 1.0820 1.0368 0.7574 1.2630 1.0587 0.7807 1.1930 1.0570 0.7830 1.1450 1.0503 0.7831 1.2300 1.0650 0.8016 1.1390 1.0719 0.8084 1.0040 1.0775 0.8489 0.9527 1.0775 0.8293 1.0920 1.0691 0.8293	1.1340 1.0487 0.7475 1.155 1.055345 0.750807107 1.0820 1.0445 0.7516 1.0820 1.0368 0.7574 1.2630 1.0587 0.7807 1.1930 1.0570 0.7830 1.1300 1.0503 0.7931 1.2300 1.0650 0.8016 1.1390 1.0719 0.8084 1.0040 1.0775 0.8489 0.9527 1.0775 0.8376 0.9716 1.0691 0.8330 1.0920 1.0694 0.8330 0.8750 1.0628 0.8330	1.1340 1.155 1.155 1.055345 0.750807107 1.0180 1.0445 0.7516 0.7516 1.0820 1.0820 1.0820 1.0530 1.0570 0.7830 1.1390 1.0570 0.8044 1.0040 1.075 0.9527 1.0659 0.8293 1.0920 0.8750	1.1340 1.0487 0.7475 1.0180 1.055345 0.750807107 1.0180 0.7516 1.0820 1.0445 0.7516 1.0820 1.0368 0.7574 1.2630 1.0587 0.7807 1.1450 1.0570 0.7830 1.1300 1.0650 0.8016 1.1390 1.0650 0.8084 1.0040 1.0775 0.8489 0.9527 1.0659 0.8376 0.9716 1.0659 0.8330 1.0920 1.0691 0.8330 0.8750 1.0628 0.8126 0.8126 0.8126	1.1340 1.0487 0.7475 1.0180 1.055345 0.750807107 1.0180 1.0445 0.7508 1.0820 1.0368 0.7574 1.2630 1.0587 0.7807 1.1930 1.0570 0.7830 1.1300 1.0650 0.8016 1.1390 1.0719 0.8084 1.0040 1.0821 0.8489 0.9527 1.0775 0.8336 0.9716 1.0659 0.8293 1.0920 1.0691 0.8126 0.8750 1.0628 0.8126 0.7937 1.0630 0.7830	1.1340 1.0487 0.7475 1.155 1.055345 0.750807107 1.0180 1.0445 0.7516 1.0820 1.0368 0.7574 1.2630 1.0587 0.7807 1.1930 1.0570 0.7830 1.1390 1.0503 0.7931 1.0300 1.0719 0.8084 1.0040 1.0821 0.8084 1.0040 1.0821 0.8489 0.9576 1.0659 0.8376 0.9716 1.0659 0.8293 1.0920 1.0628 0.8126 0.8750 1.0628 0.8126 0.7937 1.0554 0.7830 0.7867 1.0554 0.7850	1.1340 1.0487 0.7475 1.0180 1.055345 0.750807107 1.0180 1.0445 0.750807107 1.0820 1.0368 0.7574 1.2630 1.0587 0.7807 1.1450 1.0570 0.7830 1.2300 1.0503 0.7931 1.1390 1.0650 0.8016 1.1390 1.0719 0.8489 0.9527 1.0659 0.8376 0.9527 1.0659 0.8293 1.0821 0.8330 0.8750 1.0628 0.8126 0.8750 1.0628 0.8126 0.7837 1.0554 0.7830 0.7807 1.0554 0.7830	1.1340 1.0487 0.7475 1.155 1.055345 0.750807107 1.0180 1.0445 0.750807107 1.0820 1.0368 0.7574 1.2630 1.0587 0.7807 1.1450 1.0570 0.7830 1.1450 1.0560 0.7831 1.2300 1.0650 0.8016 1.1390 1.0650 0.8084 1.0040 1.0650 0.8489 0.9527 1.0621 0.8376 0.9716 1.0691 0.8330 0.8750 1.0659 0.8126 0.8750 1.0659 0.8138 0.7837 1.0630 0.7830 0.7837 1.0554 0.7830 0.7807 1.0340 0.7328	1.1340 1.0487 0.7475 1.155 1.055345 0.750807107 1.0180 1.0445 0.7516 1.0820 1.0368 0.7574 1.1830 1.0587 0.7837 1.1930 1.0570 0.7830 1.1390 1.0650 0.8016 1.040 1.0821 0.8084 1.040 1.0821 0.8489 0.9716 1.0659 0.8230 0.8750 1.0659 0.8330 0.8750 1.0659 0.8138 0.7807 1.0654 0.7830 0.7807 1.0340 0.7456 0.7835 1.0340 0.7328 0.7935 1.0197 0.7041	1.1340 1.0487 0.7475 1.0180 1.055345 0.750807107 1.0180 1.0445 0.750807107 1.0820 1.0368 0.7574 1.2630 1.0368 0.7830 1.1450 1.0570 0.7830 1.1300 1.0503 0.7931 1.2300 1.0560 0.8084 1.0040 1.0779 0.8489 0.9527 1.0775 0.8289 1.0920 1.0659 0.8230 0.8750 1.0659 0.8126 0.8750 1.0659 0.8136 0.7837 1.0659 0.7830 0.7837 1.0554 0.7830 0.7837 0.7830 0.7456 0.8297 1.0197 0.7041 0.8310 0.7935 1.0197 0.7041 0.8910 1.0085 0.6912

FHM SURVIVAL LC25 NaCI REFTOX

6.5101	6 7224	6 7226	6 7904	6.8135	68789	7 0713	0060 2	7 1688	7 2464	7 2622	7.3872	7 4081	7 4488	74112	7 4137	7 3925	7.3468	7.3690	7 4415
1.7345	1.6465	1.6644	1.7899	1.9442	1.9620	2.0849	1.9736	2.2009	2.4258	2.3657	2.3955	2.6626	2.7150	2.6328	2.6233	2.5089	2.6228	2.3996	2.3687
4.1223	4.1844	4.1935	4.2901	4.3788	4.4210	4.5781	4.5318	4.6848	4.8361	4.8140	4.8914	5.0353	5.0819	5.0220	5.0185	4.9507	4.9848	4.8843	4.9051
5.5000	6.2580	3.7000	5.1250	4.8750	5.2000	6.3570	3.2000	6.0000	6.1400	3.5870	6.0670	6.0500	5.5000	4.1820	4.0000	3.8420	4.0000	3.1230	6.6150
06/28/21	07/24/21	08/19/21	09/02/21	10/08/21	11/22/21	12/20/21	01/27/22	02/08/22	03/21/22	04/19/22	05/06/22	06/21/22	07/23/22	08/03/22	09/06/22	10/12/22	11/08/22	12/13/22	01/02/23
	5.5000 4.1223 1.7345	5.5000 4.1223 1.7345 6.2580 4.1844 1.6465	5.5000 4.1223 1.7345 6.2580 4.1844 1.6465 3.7000 4.1935 1.6644	5.5000 4.1223 1.7345 6.2580 4.1844 1.6465 3.7000 4.1935 1.6644 5.1250 4.2901 1.7899	5.5000 4.1223 1.7345 6.2580 4.1844 1.6465 3.7000 4.1935 1.6644 5.1250 4.2901 1.7899 4.8750 4.3788 1.9442	5.5000 4.1223 1.7345 6.2580 4.1844 1.6465 3.7000 4.1935 1.6644 5.1250 4.2901 1.7899 4.8750 4.3788 1.9442 5.2000 4.4210 1.9620	5.5000 4.1223 1.7345 6.2580 4.1844 1.6465 3.7000 4.1935 1.6644 5.1250 4.2901 1.7899 4.8750 4.3788 1.9442 5.2000 4.4210 1.9620 6.3570 4.5781 2.0849	5.5000 4.1223 1.7345 6.2580 4.1844 1.6465 3.7000 4.1935 1.6644 5.1250 4.2901 1.7899 4.8750 4.3788 1.9442 5.2000 4.4210 1.9620 6.3570 4.5781 2.0849 3.2000 4.5318 1.9736	5.5000 4.1223 1.7345 6.2580 4.1844 1.6465 3.7000 4.1935 1.6644 5.1250 4.2901 1.7899 4.8750 4.3788 1.942 5.2000 4.4210 1.9620 6.3570 4.5781 2.0849 3.2000 4.6318 1.9736 6.0000 4.6848 2.2009	5.5000 4.1223 1.7345 6.2580 4.1844 1.6465 3.7000 4.1935 1.6644 5.1250 4.2901 1.7899 4.8750 4.3788 1.942 5.2000 4.4210 1.9620 6.3570 4.5781 2.0849 3.2000 4.6318 1.9736 6.0000 4.6848 2.2009 6.1400 4.8361 2.4258	5.5000 4.1223 1.7345 6.2580 4.1844 1.6465 3.7000 4.1935 1.644 5.1250 4.2901 1.7899 4.8750 4.4210 1.942 6.3570 4.5781 2.0849 3.2000 4.6848 2.2009 6.0000 4.8361 2.4258 3.5870 4.8140 2.3657	5.5000 4.1223 1.7345 6.2580 4.1844 1.6465 3.7000 4.1935 1.644 5.1250 4.2901 1.7899 4.8750 4.4210 1.9620 6.3570 4.5781 2.0849 3.2000 4.6848 2.2009 6.0000 4.8361 2.4258 3.5870 4.8140 2.3657 6.0670 4.8914 2.3955	5.5000 4.1223 1.7345 6.2580 4.1844 1.6465 3.7000 4.1935 1.644 5.1250 4.2901 1.7899 4.8750 4.4210 1.9620 6.3570 4.5781 2.0849 3.2000 4.6848 2.2009 6.000 4.8361 2.4258 6.0670 4.8140 2.3657 6.0500 5.0353 2.6626	5.5000 4.1223 1.7345 6.2580 4.1844 1.6465 3.7000 4.1935 1.6644 5.1250 4.2901 1.7899 4.8750 4.3788 1.9620 6.3570 4.4210 1.9620 6.0000 4.6318 1.9736 6.0000 4.6848 2.2009 6.1400 4.8361 2.4258 3.5870 4.8140 2.3657 6.0670 4.8914 2.3955 6.0500 5.0353 2.6626 5.5000 5.0819 2.7150	5.5000 4.1223 1.7345 6.2580 4.1844 1.6445 3.7000 4.1935 1.6644 5.1250 4.2901 1.7899 4.8750 4.2788 1.9442 5.2000 4.4210 1.9620 6.3570 4.5781 2.0849 3.2000 4.6848 2.2009 6.1400 4.8361 2.4258 6.0670 4.8140 2.3657 6.0670 4.8914 2.3955 6.0500 5.0819 2.7150 5.5000 5.020 2.7150	5.5000 4.1223 1.7345 6.2580 4.1844 1.6465 3.7000 4.1935 1.6444 5.1250 4.2901 1.7899 4.8750 4.2901 1.942 5.2000 4.4210 1.942 6.3570 4.5781 2.0849 6.0000 4.6848 2.2009 6.1400 4.8361 2.4258 6.0670 4.8140 2.3657 6.0500 5.0353 2.6226 5.5000 5.0363 2.7150 4.1820 5.0220 2.6233 4.0000 5.0185 2.6233	5.5000 4.1223 1.7345 6.2580 4.1844 1.6465 3.7000 4.1935 1.6644 5.1250 4.2901 1.7899 4.8750 4.210 1.9620 6.3570 4.5781 2.0849 3.2000 4.6848 2.2009 6.0000 4.8361 2.4258 6.0670 4.8914 2.3657 6.0500 5.0353 2.6626 5.5000 5.0819 2.6238 4.0000 5.0185 2.6233 3.8420 4.9507 2.5089	5.5000 4.1223 1.7345 6.2580 4.1844 1.6465 3.7000 4.1935 1.6644 5.1250 4.2901 1.7899 4.8750 4.2901 1.9442 5.2000 4.6781 2.0849 6.3570 4.5781 2.0849 6.0000 4.6848 2.2009 6.1400 4.8361 2.4258 3.5870 4.8140 2.3657 6.0670 4.8914 2.3656 6.0500 5.0819 2.7150 4.1820 5.0220 2.6228 4.0000 4.9607 2.5089 4.0000 4.9848 2.5288	6.55000 4.1223 1.7345 6.2580 4.1844 1.6465 1.7000 4.1844 1.6445 1.7250 4.3788 1.7889 4.8750 4.3788 1.942 6.3570 4.5781 2.0849 2.2000 4.6348 2.2009 6.0000 4.8361 2.4258 2.2009 4.8361 2.3657 6.0570 4.8140 2.3657 6.0500 4.8914 2.3657 6.0500 5.0353 2.6626 5.0200 5.0219 2.6226 6.0500 5.0220 2.6328 7.000 5.0249 2.6233 8.3420 4.9848 2.6233 4.0000 4.8843 2.3966

FHM GROWTH IC25 NaCI REFTOX

T																			
7 9113	7 9582	7 9619	8 0895	8 0905	8 0771	8 0788	8 0692	7 9266	8 0729	8 2271	8 2074	8 2074	8 1587	8 1611	8 1620	8 1465	8 1744	8 1150	8 0455
2.2267	2.5384	2.8247	2.8982	2.9074	3.0315	3.0309	3.2082	3.7120	3.8121	3.8358	3.8376	3.8376	3.7409	3.7354	3 5812	3 7966	3 6531	3,6196	3.6291
5.0690	5.2483	5.3933	5.4939	5.4990	5.5543	5.5549	5.6387	5.8193	5.9425	6.0314	6.0225	6.0225	5.9498	5.9482	5.8716	5.9716	5.9137	5.8673	5.8373
6.2200	6.5530	6.2310	6.6650	5.0481	5.3520	6.7310	5.8200	6.6580	7.2690	7.2990	6.5630	6.5000	5.0500	4.6040	4.5630	6.3570	4.5530	5.5530	6.2350
06/28/21	07/24/21	08/19/21	09/02/21	10/08/21	11/22/21	12/20/21	01/27/22	02/08/22	03/21/22	04/19/22	05/06/22	06/21/22	07/23/22	08/03/22	09/06/222	10/12/22	11/08/22	12/13/22	01/02/23
	6.2200 5.0690 2.2267	6.2200 5.0690 2.2267 6.5530 5.2483 2.5384	6.2200 5.0690 2.2267 6.5530 5.2483 2.5384 6.2310 5.3933 2.8247	6.2200 5.0690 2.2267 6.5530 5.2483 2.5384 6.2310 5.3933 2.8247 6.6650 5.4939 2.8982	6.2200 5.0690 2.2267 6.5530 5.2483 2.5384 6.2310 5.3933 2.8247 6.6650 5.4939 2.8982 5.0481 5.4990 2.9074	6.2200 5.0690 2.2267 6.5530 5.2483 2.5384 6.2310 5.3933 2.8247 6.6650 5.4939 2.8982 5.0481 5.4990 2.9074 5.3520 5.5543 3.0315	6.2200 5.0690 2.2267 6.5530 5.2483 2.5384 6.2310 5.3933 2.8247 6.6650 5.4939 2.8982 5.0481 5.4990 2.9074 5.3520 5.5543 3.0315 6.7310 5.5549 3.0309	6.2200 5.0690 2.2267 6.530 5.2483 2.5384 6.2310 5.3933 2.8247 6.6550 5.4939 2.8982 5.0481 5.4990 2.9074 6.3520 5.5543 3.0315 6.7310 5.5549 3.0309 5.8200 5.6387 3.2082	6.2200 5.0690 2.2267 6.530 5.2483 2.5384 6.2310 5.3933 2.8247 6.6550 5.4939 2.8982 5.0481 5.4990 2.9074 6.7310 5.5543 3.0315 6.7310 5.5549 3.0309 5.8200 5.6387 3.2082 6.580 5.8193 3.7120	6.2200 5.0690 2.2267 6.530 5.2483 2.5384 6.2310 5.3933 2.8247 6.6650 5.4939 2.8982 5.0481 5.4990 2.9074 6.7310 5.5543 3.0315 6.7310 5.5549 3.0309 5.8200 5.6387 3.2082 6.6580 5.8193 3.7120 7.2690 5.9425 3.8121	6.2200 5.0690 2.2267 6.530 5.2483 2.5384 6.2310 5.3933 2.8247 6.6650 5.4939 2.8982 5.0481 5.4990 2.9074 6.7310 5.5543 3.0315 6.7310 5.5549 3.0309 5.8200 5.549 3.2082 6.6580 5.8193 3.7120 7.2690 6.0314 3.8358	6.2200 5.0690 2.2267 6.530 5.2483 2.5384 6.2310 5.3933 2.8247 6.6650 5.4939 2.8982 5.0481 5.4990 2.9074 5.3520 5.5543 3.0315 6.7310 5.5549 3.0309 5.8200 5.6387 3.2082 6.6580 5.8193 3.7120 7.2690 6.0314 3.8358 6.5630 6.025 3.8376	6.2200 5.0690 2.2267 6.530 5.2483 2.5384 6.2310 5.3933 2.8247 6.6650 5.4939 2.8982 5.0481 5.4990 2.9074 5.3520 5.5543 3.0315 6.7310 5.5549 3.0309 5.8200 5.6387 3.2082 6.6580 5.8193 3.7120 7.2690 6.0314 3.8358 6.5630 6.025 3.8376 6.5000 6.025 3.8376	6.2200 5.0690 2.2267 6.530 5.2483 2.5384 6.2310 5.3933 2.8247 6.6650 5.4939 2.8982 5.0481 5.4990 2.9074 5.3520 5.5543 3.0315 6.7310 5.5549 3.0309 5.8200 5.6387 3.2082 6.6580 5.8193 3.7120 7.2690 6.0314 3.8358 6.5630 6.0225 3.8376 6.5000 6.0225 3.8376 5.0500 5.9498 3.7409	6.2200 5.0690 2.2267 6.5530 5.2483 2.5384 6.6650 5.4939 2.8074 5.0481 5.4990 2.9074 5.3520 5.5543 3.0315 6.7310 5.5549 3.0309 5.8200 5.6387 3.2082 6.6580 5.8193 3.7120 7.2690 6.0314 3.8356 6.5630 6.0225 3.8376 6.5000 6.0225 3.8376 5.0500 5.9482 3.7409	6.2200 5.0690 2.2267 6.530 5.2483 2.5384 6.2310 5.3933 2.8247 6.650 5.4939 2.8982 5.0481 5.4990 2.9074 5.3520 5.5543 3.0315 6.7310 5.5549 3.0309 5.8200 5.6387 3.2082 6.580 5.8193 3.7120 7.290 6.0314 3.8358 6.500 6.0225 3.8376 6.500 6.0225 3.8376 6.5000 6.0225 3.7409 4.6040 5.9482 3.7354	6.2200 5.0690 2.2267 6.530 5.2483 2.5384 6.2310 5.3933 2.8247 6.650 5.4939 2.8082 5.0481 5.4990 2.9074 5.3520 5.5543 3.0315 6.7310 5.5549 3.0309 5.8200 5.549 3.0309 6.6580 5.8193 3.7120 7.2690 6.0314 3.8358 6.5630 6.0225 3.8376 6.5000 6.0225 3.8376 6.5000 5.9482 3.7409 4.6040 5.9482 3.7354 4.5630 5.9716 3.7364	6.2200 5.0690 2.2267 6.530 5.2483 2.5384 6.2310 5.3933 2.8247 6.6650 5.4939 2.8982 5.0481 5.4990 2.9074 5.3520 5.5543 3.0315 6.7310 5.5549 3.0309 5.8200 5.6387 3.2082 6.6580 5.8193 3.7120 7.2690 6.0314 3.8376 6.5630 6.0225 3.8376 6.5630 6.0225 3.8376 6.5000 6.0225 3.7409 4.6040 5.9482 3.7354 4.5630 5.9716 3.5812 6.3570 5.9137 3.6531	6.2200 5.0690 2.2267 6.5530 5.2483 2.5384 6.2310 5.3933 2.5384 6.6650 5.4939 2.8247 6.6650 5.4939 2.8082 6.7310 5.5543 3.0315 6.7310 5.5549 3.0315 6.6580 5.8193 3.72082 6.6580 6.0314 3.8356 6.5000 6.0225 3.8376 6.5000 6.0225 3.8376 6.5000 6.0225 3.8376 6.5000 6.0225 3.8376 6.5000 6.0225 3.8376 6.5000 6.0225 3.8376 6.5530 5.9482 3.7354 6.5530 5.9476 3.7966 6.5530 5.9476 3.6531

Battle Mountain Resources, Inc.

San Luis Project P.O. Box 310 San Luis, Colorado 81152-0310 (719) 379-0798

July 26, 2023

Colorado Department of Public Health and Environment Water Quality Control Division Attn: WQDC-B2 – DMR Receipt 4300 Cherry Creek Drive Denver, CO 80246-1530

Re: Battle Mountain Resources, Inc.

San Luis Project - San Luis, Colorado

Second Quarter 2023 – DMR's, BMP and WET Testing Reports

CDPHE CDPS Permit No. CO0045675

Dear Sir or Madame:

Please find the enclosed Battle Mountain Resources, Inc. "San Luis Project" (Permit No. CO0045675) Colorado Department of Public Health and Environment-Colorado Discharge Permit System (CDPS) Best Management Practices (BMP) report for permitted outfall 002 for the second quarter 2023. The quarterly BMP report provides the required data associated with groundwater well elevations, the quarterly potentiometric surface map and groundwater well chemistry.

In addition, the second quarter 2023 Discharge Monitoring Reports (DMRs) were submitted for each of the permitted water treatment plant discharges in the NetDMR System and the WET Testing Reports were attached to the appropriate DMR submittal in NetDMR. These permitted discharges consist of water treatment plant Discharge Numbers 001-A and 001-B. During the quarter, the maximum 30-day average flow was 0.30 million gallons of water discharged per day, therefore the applicable permit criteria for the reporting period is associated with discharge number 001-B.

Should any questions arise or if I can be of any assistance providing clarification, please call me at (719) 379-0538.

Sincerely,

Julio Madrid Authorized Agent

Battle Mountain Resources, Inc.

Cc: BMRI File

Devon Horntvedt, Newmont USA Limited Tim Runnells, Engineering Analytics

Battle Mountain Resources, Inc.

San Luis Project P.O. Box 310 San Luis, Colorado 81152-0310 (719) 379-0798

July 26, 2023

Colorado Department of Public Health and Environment Water Quality Control Division Attn: WQDC-B2 – DMR Receipt 4300 Cherry Creek Drive Denver, CO 80246-1530

Re: Battle Mountain Resources, Inc.

San Luis Project - San Luis, Colorado

Second Quarter 2023 – DMR's, BMP and WET Testing Reports

CDPHE CDPS Permit No. CO0045675

Dear Sir or Madame:

Please find the enclosed Battle Mountain Resources, Inc. "San Luis Project" (Permit No. CO0045675) Colorado Department of Public Health and Environment-Colorado Discharge Permit System (CDPS) Best Management Practices (BMP) report for permitted outfall 002 for the second quarter 2023. The quarterly BMP report provides the required data associated with groundwater well elevations, the quarterly potentiometric surface map and groundwater well chemistry.

In addition, the second quarter 2023 Discharge Monitoring Reports (DMRs) were submitted for each of the permitted water treatment plant discharges in the NetDMR System and the WET Testing Reports were attached to the appropriate DMR submittal in NetDMR. These permitted discharges consist of water treatment plant Discharge Numbers 001-A and 001-B. During the quarter, the maximum 30-day average flow was 0.30 million gallons of water discharged per day, therefore the applicable permit criteria for the reporting period is associated with discharge number 001-B.

Should any questions arise or if I can be of any assistance providing clarification, please call me at (719) 379-0538.

Sincerely,

Julio Madrid Authorized Agent

Battle Mountain Resources, Inc.

Cc: BMRI File

Devon Horntvedt, Newmont USA Limited Tim Runnells, Engineering Analytics

Battle Mountain Resources, Inc.

San Luis Project P.O. Box 310 San Luis, Colorado 81152-0310 (719) 379-0798

July 26, 2023

Colorado Department of Public Health and Environment Water Quality Control Division Attn: WQDC-B2 – DMR Receipt 4300 Cherry Creek Drive Denver, CO 80246-1530

Re: Battle Mountain Resources, Inc.

San Luis Project

Second Quarter 2023 BMP Report CDPHE CDPS Permit No. CO0045675

Dear Sir or Madame:

In accordance with and compliance of the permit limitations and permit terms and conditions contained in Part I, Section 5 <u>Discharge Point 002</u>: (Permit Limitations, Best Management Practices, and Schedule of Compliance of the State of Colorado Authorization to Discharge Under the Colorado Discharge Permit System, Battle Mountain Resources, Inc. submits the following Quarterly Best Management Practices Report.

In accordance with the Water Quality Control Commission Regulations for Effluent Limitations, Section 62.4, and the Colorado Discharge Permit System Regulations, Sections 61.8(2), 61.8(3)(n), and 61.8(3)(r), 5 C.C.R. 1002-61, the permittee shall continue to implement the following limitations, compliance schedules, and Best Management Practices (BMPs).

The attainment of applicable water quality standards will be implemented and evaluated through the application of the following limitations, compliance schedules, and BMPs that are designed to monitor and control the groundwater quality and quantity discharging from the West Pit to the Rito Seco alluvial aquifer.

Specifically, the limitations, compliance schedules, and BMPs are those activities that address contaminated groundwater that may flow into the Rito Seco. This includes: (1) the potential flow of the affected groundwater from the West Pit that, in the past, manifested itself in the formation of the surface seeps along the arroyo sidewall of the Rito Seco, and (2) the plume of affected groundwater within the Rito Seco alluvial aquifer downgradient of the West Pit that flows along the naturally occurring hydraulic gradient and that may flow into the Rito Seco. The activities will include the following specific requirements:

1) The elevation of the groundwater table in the vicinity of the West Pit shall be measured on a weekly basis at the following locations: (i) the West Pit backfill wells BF-4 and BF-5 and (ii) the Rito Seco alluvial wells M-16 and M-20, as shown in Figure 3 of the permit, for purposes of determining the performance of the "pump and treat" system that regulates the flow and quality of the groundwater in the seepage front. The permittee shall

also determine on a quarterly basis the elevations of the groundwater table at BF-3, BF-4, BF-5, BF-6, M-11R, M-16, M-17, M-18, M-19, M-20, M-21, M-22, M-23, M-24, M-25, M-26, M-27, M-28, M-29, M-30, M-31, M-32, and M-33 for the purpose of developing a groundwater potentiometric map as monitoring confirmation of the groundwater flow direction. The quarterly data regarding depth to groundwater and groundwater potentiometric surface map will be submitted to the WQCD with the BMP report as described.

Compliance Action Taken: Battle Mountain Resources, Inc. measured the weekly West Pit backfill and alluvial wells as required under Paragraph 1 of the specific requirements. Measurements obtained for the weekly West Pit backfill wells (BF-4 and BF-5R) and alluvial wells (M-16 and M-20) are shown in Table 1. The quarterly groundwater elevations required under Paragraph 1 were also measured and are shown in Table 2. A potentiometric surface map, developed by Engineering Analytics, is shown in Figure 1. The groundwater table elevations and potentiometric map confirm that the groundwater flow gradient during the second quarter of 2023 was from the Rito Seco to the West Pit. No corrective action is required under Paragraph 1 specific requirement and scheduled compliance monitoring will continue unchanged next quarter.

Table 1 – Weekly Groundwater Elevations

Monitoring Well Identification	Observation Date	Groundwater Elevation (ft amsl)
	04/05/2023	8579.33
	04/12/2023	8579.36
	04/20/2023	8579.35
	04/26/2023	8579.37
	05/03/2023	8579.34
DE 4	05/10/2023	8579.40
BF-4	05/17/2023	8579.34
	05/24/2023	8579.43
	05/31/2023	8579.34
	06/07/2023	8579.40
	06/14/2023	8579.36
	06/21/2023	8579.35
	06/28/2023	8579.33
	04/05/2023	8579.10
	04/12/2023	8579.12
	04/20/2023	8579.09
	04/26/2023	8579.11
	05/03/2023	8579.08
	05/10/2023	8579.10
BF-5R	05/17/2023	8579.07
	05/24/2023	8579.12
	05/31/2023	8579.07
	06/07/2023	8579.09
	06/14/2023	8579.09
	06/21/2023	8579.05
	06/28/2023	8579.07

Table 1 – Weekly Groundwater Elevations (continued)

Monitoring Well Identification	Observation Date	Groundwater Elevation (ft amsl)
	04/05/2023	8601.39
	04/12/2023	8601.47
	04/20/2023	8601.66
	04/26/2023	8601.81
	05/03/2023	8601.53
	05/10/2023	8602.26
M-16	05/17/2023	8602.55
	05/24/2023	8602.86
	05/31/2023	8603.16
	06/07/2023	8603.38
	06/14/2023	8603.48
	06/21/2023	8603.43
	06/28/2023	8603.33
	04/05/2023	8580.39
	04/12/2023	8580.57
	04/20/2023	8580.70
	04/26/2023	8580.69
	05/03/2023	8580.77
	05/10/2023	8580.89
M-20	05/17/2023	8580.72
	05/24/2023	8581.10
	05/31/2023	8581.15
	06/07/2023	8581.04
	06/14/2023	8580.80
	06/21/2023	8580.72
	06/28/2023	8580.61

Table 2 – Quarterly Groundwater Elevations

Monitoring Well Identification	Observation Date	Groundwater Elevation (ft amsl)
BF-3	04/27/2023	8578.01
BF-4	04/27/2023	8579.37
BF-5R	04/27/2023	8579.1
BF-6	04/27/2023	8579.08
M-11R	04/27/2023	8549.6
M-16	04/27/2023	8601.81
M-17	04/27/2023	8587
M-18	04/27/2023	8580.76
M-19	04/27/2023	8581.64
M-20	04/27/2023	8580.69
M-21	04/27/2023	8577.71
M-22	04/27/2023	8573.03
M-23	04/27/2023	8555.4
M-24	04/27/2023	8559.12
M-25	04/27/2023	Dry
M-26	04/27/2023	8543.42
M-27	04/27/2023	Dry
M-28	04/27/2023	8580.49
M-29	04/27/2023	8581.1
M-30	04/27/2023	8610.85
M-31	04/27/2023	8549.26
M-32	04/27/2023	8531.27
M-33	04/27/2023	8527.78

2) The weekly groundwater table elevation data shall be tabulated and reported on the quarterly BMP reports, and the data will be used to evaluate compliance with the following permit limitations.

The groundwater table elevation, based on the average of all measured values for each calendar month in the West Pit backfill groundwater monitoring wells BF-4 and BF-5, must be equal to or lower than an elevation of 8582 feet above sea level (ft. amsl).

Compliance Action Taken: Battle Mountain Resources, Inc. measured the West Pit backfill monitoring wells (BF-4 and BF-5R) weekly and the measurements are shown in Table 1. The groundwater measurements for wells BF-4 and BF-5R were averaged by calendar month and the results are shown in Table 3. The April, May, June 2023 averages were below the 8582 ft. amsl required in Paragraph 2. No corrective action is required under the Paragraph 2 requirement and schedule compliance monitoring will continue unchanged next quarter.

Table 3 – Quarter	ly West Pit Backfill Monthl	y Average Groundwater	Table Elevations

Monitoring Well Identification	Month (2023)	Number of Observations	Average Monthly Groundwater Elevation (ft amsl)
	April	4	8579.35
BF-4	May	5	8579.37
	June	4	8579.36
BF-5R	April	4	8579.11
	May	5	8579.09
	June	4	8579.08

3) If the average monthly groundwater table elevation in the West Pit backfill for any calendar month, measured as described in the above paragraph, is greater than 8582 ft. amsl or the quarterly determination of the groundwater potentiometric surface map indicates that the flow of the groundwater is from the West Pit to the Rito Seco alluvium, the permittee shall verbally communicate such condition to WQCD within 24 hours of the determination of the condition (elevated West Pit backfill table or groundwater flow from the West Pit as indicated by the quarterly groundwater potentiometric surface map) and initiate the following compliance schedule.

Compliance Action Taken: Battle Mountain Resources, Inc. measured the West Pit backfill monitoring wells (BF-4 and BF-5R) weekly and the calendar month average groundwater measurement elevations (Table 3) were below the 8582 ft. amsl required in Paragraph 2. The April 27, 2023, potentiometric surface map (Figure 1) shows the groundwater flow gradient was from the Rito Seco alluvium to the West Pit backfill. Therefore, site operations demonstrated the West Pit backfill groundwater level was maintained at or below an elevation of 8582 ft. amsl through the quarter. Therefore, no requirement(s) to initiate actions contained within the schedule of compliance for Section 5.3 is required.

4) The quality of groundwater in the vicinity of the West Pit shall be monitored on a monthly basis in the Rito Seco alluvial groundwater monitoring wells M-19, M-21, M-24 and M-11R for the purposes of monitoring the changes in the quality of the plume or affected groundwater in the Rito Seco alluvial aquifer. Groundwater quality in these monitoring wells will be analyzed for pH, temperature, total dissolved solids, calcium, sulfate, manganese, fluoride, copper, and iron for the purpose of evaluating the status of the groundwater quality in the downgradient groundwater plume. The groundwater quality data will be summarized and transmitted to the WQCD in the quarterly BMP report required under Part I, Section E.1 of this permit.

Compliance Action Taken: Battle Mountain Resources, Inc. collected monthly groundwater samples in the vicinity of the West Pit backfill area from Rito Seco alluvial monitoring wells M-19, M-21, M-24 and M-11R. No corrective action is required under the Paragraph 4 specific requirement and scheduled compliance monitoring will continue unchanged next quarter.

Table 4 – Rito Seco Alluvial Groundwater Quality Summary

Amaluta	Reporting	Sample	Monitoring Well Identifier			
Analyte	Units	Date	M-11R	M-19	M-21	M-24
		4/3/2023	7.03	6.61	6.72	6.83
pН	SU	5/3/2023	7.10	6.47	6.70	6.83
		6/1/2023	7.16	6.46	6.77	6.95
		4/3/2023	9.60	8.60	8.19	8.50
Temperature	°C	5/3/2023	9.80	7.30	8.60	8.50
		6/1/2023	9.69	6.60	8.69	8.50
C-1-: T-4-1	/T	4/3/2023	98.5	22.3	33.2	84.8
Calcium, Total	mg/L	5/3/2023	79.1	19.8	18.8	31.0
		6/1/2023	74.2	17.3	29.3	79.3
C D: 1 1	/7	4/3/2023	LT 0.05	LT 0.002	LT 0.002	LT 0.002
Copper, Dissolved	mg/L	5/3/2023	LT 0.002	LT 0.002	LT 0.002	LT 0.002
		6/1/2023	LT 0.002	LT 0.002	LT 0.002	LT 0.002
Fluoride	/7	4/3/2023	LT 1.25	0.90	1.46	LT 1.25
	mg/L	5/3/2023	0.739	0.772	1.32	LT 1.25
		6/1/2023	0.738	0.761	1.20	0.714
I Dild	/T	4/3/2023	LT 0.15	LT 0.15	LT 0.15	4.09
Iron, Dissolved	mg/L	5/3/2023	LT 0.15	0.215	LT 0.15	4.25
		6/1/2023	LT 0.15	0.201	LT 0.15	4.24
	/T	4/3/2023	0.244	0.165	0.364	0.840
Manganese, Dissolved	mg/L	5/3/2023	0.238	0.094	0.357	0.853
		6/1/2023	0.150	LT 0.05	0.303	0.842
Sulfate	ma/I	4/3/2023	153	8.01	9.41	139
Surrate	mg/L	5/3/2023	139	10.5	9.03	128
		6/1/2023	101	8.15	10.10	136
T (15) 1 10 11	ma/I	4/3/2023	434	102	140	400
Total Dissolved Solids	mg/L	5/3/2023	384	90	130	384
		6/1/2023	328	82	126	398

5) The historical seeps were caused by the plume of affected groundwater and may, in the future, also be caused by natural variation in the flow of groundwater in the vicinity of the area where the past seeps occurred. The permittee shall conduct a monthly visual inspection of the area of historical seeps and the permittee shall report any seepage flow that is associated with the area historic seepage expression, as is identified in Figure 2 of the permit. Results of the seep monitoring shall be tabulated and summarized in the quarterly BMP report.

If these inspections identified the occurrence of seeps, the permittee will be required to communicate verbally to the WQCD within 24 hours of the seepage observation, followed by written notification within 7 calendar days of the seepage observation. Verbal updates will then be provided to the WQCD every second day thereafter until the WQCD has made a determination regarding the status of the West Pit groundwater control system through the implementation of the following compliance schedule.

Compliance Action Taken: Battle Mountain Resources, Inc. performed monthly visual seepage expression inspections in the historic seepage area identified in Figure 2 of the permit. Visual observations during these inspections are shown in Table 5. No seepage expressions were observed in the historic seepage area during the second quarter of 2023. Therefore, no verbal or written notifications were required and the implementation of the compliance schedule was not required. No corrective action is required under the Paragraph 5 specific requirement and scheduled compliance monitoring will continue unchanged next quarter.

Table 5 – Monthly Seepage Expression Inspection Tabulation

Visual Inspection Date	Was Visual Observation of Seepage Determined in the Area of the Historic Seepage Expression	Comments
04/27/2023	No	All Dry
05/31/2023	No	All Dry
06/29/2023	No	All Dry

6) The BMP for the groundwater flow downgradient from the groundwater divide (see section VI.A.2 for the Rationale) that has been developed in the Rito Seco alluvial aquifer consists of a groundwater capture system in conjunction with groundwater table elevation control in the West Pit. The water management plan for the Rito Seco alluvial aquifer consists of pumping two groundwater capture wells (M-32 and M-33) located downgradient of the plume of affected groundwater. This action will allow flushing of constituents in the groundwater of the Rito Seco alluvial aquifer in that portion (plume) of the aquifer affected by previous flow of groundwater from the West Pit. Measurements of the groundwater table elevations will be taken on a weekly basis from M-32 and M-33. This data shall be tabulated and reported for outfall 002 on the quarterly BMP report, and the data will be used to evaluate compliance with the following permit limitation.

The groundwater table elevation, based on the average of all measured values for each calendar month at M-32 and M-33 in the Rito Seco alluvial aquifer, must be equal to or lower than an elevation of 8540 ft. amsl.

If the average monthly groundwater table elevations measured in the Rito Seco alluvial aquifer at M-32 and M-33 is greater than 8540 ft. amsl, the permitee shall initiate the following compliance schedule within 24 hours of the determination of groundwater table elevation exceedance.

Compliance Action Taken: Battle Mountain Resources, Inc. measured the alluvial aquifer monitoring wells (M-32 and M-33) weekly and the resulting elevations are presented in Table 6. The groundwater elevations for wells M-32 and M-33 were averaged by calendar month and the results are shown in Table 6. The April, May, June 2023 averages were below the 8540 ft. amsl required under Paragraph 6. Therefore, site operations were in full compliance of Part I, Section 5.5 and there were no requirements(s) to initiate actions contained within the schedule of compliance for Section 5.5. No corrective action is required under Paragraph 6 specific requirement and scheduled compliance monitoring will continue unchanged next quarter.

Table 6 – Weekly/Monthly Rito Seco Alluvial Aquifer Average Groundwater Table Elevations

Monitoring Well Identification	Observation Date	Groundwater Elevation (ft amsl)	Month (2023)	Average Monthly Groundwater Elevation (ft amsl)
	04/05/2023	8531.38		
	04/12/2023	8531.21	A mril	8531.26
	04/20/2023	8531.18	April	
	04/26/2023	8531.27		
M-32	05/03/2023	8531.27		8531.80
	05/10/2023	8531.23		
	05/17/2023	8531.14	May	
	05/24/2023	8532.73		
	05/31/2023	8532.64		

Table 6 (Cont) - Weekly/Monthly Rito Seco Alluvial Aquifer Average Groundwater Table Elevations

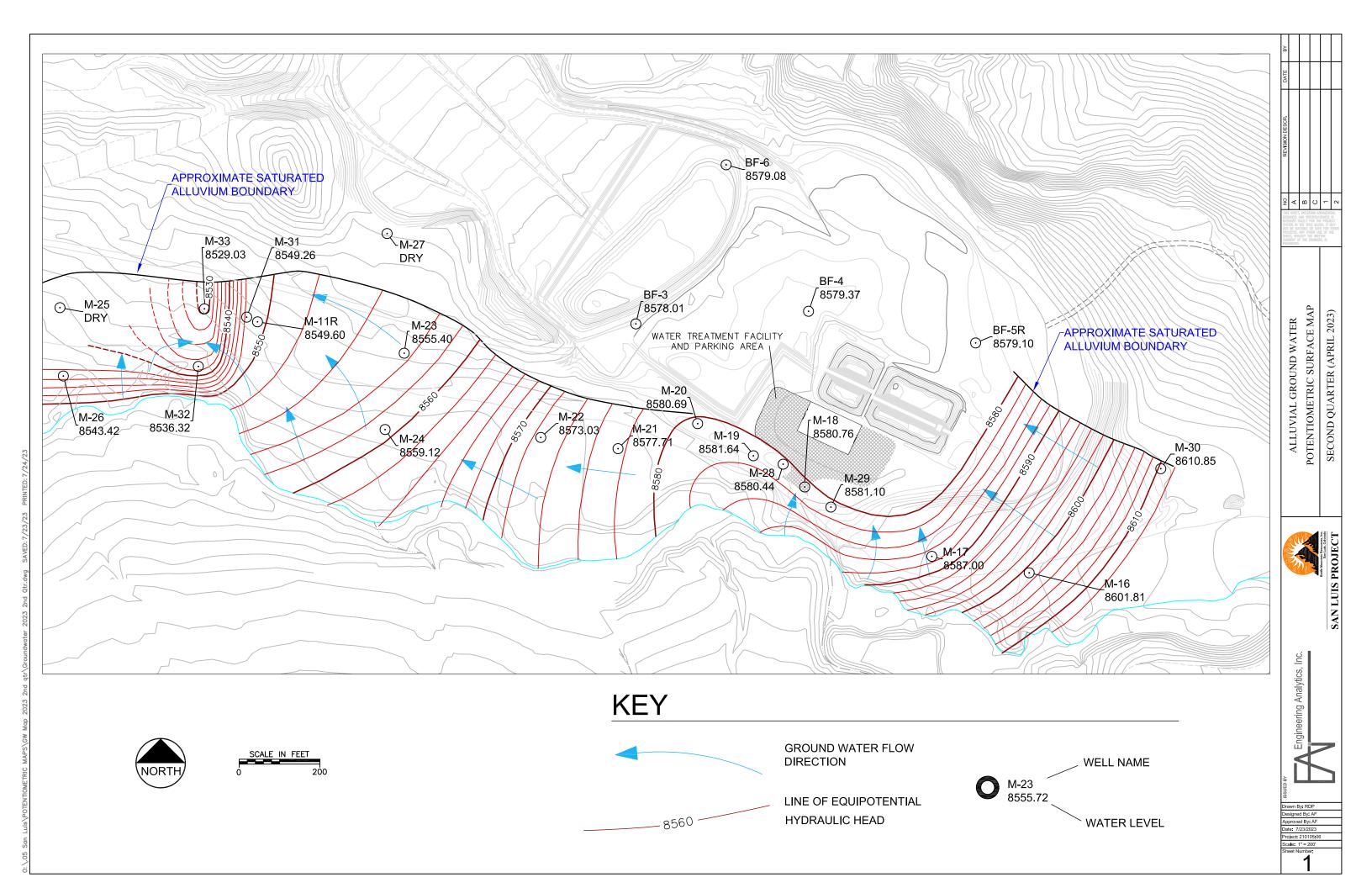
Monitoring Well Identification	Observation Date	Groundwater Elevation (ft amsl)	Month (2023)	Average Monthly Groundwater Elevation (ft amsl)	
	06/07/2023	8532.28			
25.22	06/14/2023	8532.14	June	8530.59	
M-32	06/21/2023	8532.03	Julie	8530.59	
	06/28/2023	8525.91			
	04/05/2023	8528.41			
	04/12/2023	8526.66	A:1	8527.51	
	04/20/2023	8526.82	April		
	04/26/2023	8528.16			
	05/03/2023	8528.22		8527.54	
	05/10/2023	8527.32			
M-33	05/17/2023	8528.14	May		
	05/24/2023	8527.12			
	05/31/2023	8526.90			
	06/07/2023	8526.50			
	06/14/2023	8528.02	June	8529.35	
	06/21/2023	8529.53	June	6329.33	
	06/28/2023	8533.33			

7) The water quality of the Rito Seco will be assessed using surface water quality collected at RS-2, as shown in Figure 3. Surface water monitoring in the Rito Seco shall be conducted at RS-2 on a monthly basis and the laboratory analytical results shall be submitted to the WQCD in the quarterly BMP report. Water quality samples collected at RS-2 shall be analyzed for the following constituents: calcium, magnesium, sodium, potassium, ammonia, total dissolved solids, total hardness, pH, total suspended solids, cyanide (WAD and total), bicarbonate, alkalinity, chloride, sulfate, nitrate-nitrite, fluoride and the total and dissolved concentrations of aluminum, arsenic, barium, boron, cadmium, copper, chromium, iron, lead, manganese, mercury, nickel, selenium, silica, silver and zinc. The following compliance schedule shall be implemented in the event that any constituent exceeds the applicable water quality standards for the Rito Seco.

Compliance Action Taken: Battle Mountain Resources, Inc. collected monthly surface water samples in April, May, June 2023 at location RS-2, as shown in Figure 3 of the permit. Results of analyses performed on these samples are shown in Table 7. The results of the laboratory analytical testing show that the applicable water quality standards were met for the Rito Seco during the months of April, May, June 2023. Site operations were in full compliance of Part I, Section 5.7 and there was no requirement(s) to initiate actions contained within the schedule of compliance for Section 5.7. Scheduled compliance monitoring will continue unchanged next quarter.

Table 7 – RS-2 Surface Water Quality Results

– RS-2 Surface Water (Analyte	Reporting Units	04/03/2023	05/03/2023	06/01/2023
Alkalinity	mg/L as CaCO ₃	62.9	56.5	42.5
Aluminum, Dissolved	mg/L	LT 0.25	LT 0.25	LT 0.25
Aluminum, Total	mg/L	1.44	0.785	0.767
Ammonia as N	mg/L	LT 0.2	LT 0.2	LT 0.2
Arsenic, Dissolved	mg/L	LT 0.001	LT 0.001	LT 0.001
Arsenic, Total	mg/L	LT 0.001	LT 0.001	LT 0.001
Barium, Dissolved	mg/L	LT 0.035	LT 0.035	LT 0.035
Barium, Total	mg/L	0.0355	LT 0.035	LT 0.035
Bicarbonate as CaCO3	mg/L	62.9	56.5	40.9
Boron, Dissolved	mg/L	LT 0.1	LT 0.1	LT 0.1
Boron, Total	mg/L	LT 0.1	LT 0.1	LT 0.1
Cadmium, Dissolved	mg/L	LT 0.00025	LT 0.00025	LT 0.00025
Cadmium, Total	mg/L	LT 0.00025	LT 0.00025	LT 0.00025
Calcium, Total	mg/L	16.8	15.7	10.4
Carbonate as CaCO3	mg/L	LT 20	LT 20	LT 20
	<u> </u>	LT 20		LT 20
Chloride Chromium, Dissolved	mg/L		LT 2.0	
Chromium, Dissolved Chromium, Total	mg/L	LT 0.002	LT 0.002	LT 0.002
	mg/L	LT 0.002	LT 0.002	LT 0.002
Copper, Dissolved	mg/L	LT 0.002	LT 0.002	LT 0.002
Copper, Total	mg/L	LT 0.002	LT 0.002	LT 0.002
Cyanide, Total	mg/L	LT 0.01	LT 0.01	LT 0.1H
Cyanide, WAD	mg/L	LT 0.01	LT 0.01	LT 0.01
Fluoride	mg/L	0.54	0.56	LT 0.35
Hardness as CaCO3	mg/L	56	56	36
Iron, Dissolved	mg/L	0.153	LT 0.15	LT 0.15
Iron, Total	mg/L	1.82	1.06	0.921
Lead, Dissolved	mg/L	LT 0.0005	LT 0.0005	LT 0.0005
Lead, Total	mg/L	0.00094	0.00077	0.00063
Magnesium, Total	mg/L	4.80	4.21	2.93
Manganese, Dissolved	mg/L	LT 0.05	LT 0.05	LT 0.05
Manganese, Total	mg/L	0.108	0.064	LT 0.05
Mercury, Dissolved	mg/L	LT 0.001	LT 0.001	LT 0.001
Mercury, Total	mg/L	LT 0.001	LT 0.001	LT 0.001
Nickel, Dissolved	mg/L	LT 0.04	LT 0.04	LT 0.04
Nickel, Total	mg/L	LT 0.04	LT 0.04	LT 0.04
Nitrate+Nitrite as N	mg/L	LT 0.1	LT 0.1	LT 0.1
pH	SU	7.35	6.33	7.30
Potassium, Total	mg/L	1.36	1.21	LT 1
Selenium, Dissolved	mg/L	LT 0.00025	LT 0.00025	LT 0.00025
Selenium, Total	mg/L	LT 0.00025	LT 0.00025	LT 0.00025
Silica, Total	mg/L	15.8	13.5	11.8
Silver, Dissolved	mg/L	LT 0.0005	LT 0.0005	LT 0.0005
Silver, Total	mg/L	LT 0.0005	LT 0.0005	LT 0.0005
Sodium, Total	mg/L	4.27	4.43	2.54
Sulfate	mg/L	5.72	4.91	2.41
Total Dissolved Solids	mg/L	88	78	58
Total Suspended Solids	mg/L	33.0	25.0	LT 20
Zinc, Dissolved	mg/L	LT 0.05	LT 0.05	LT 0.05
Zinc, Total	mg/L	LT 0.05	LT 0.05	LT 0.05


8) If any component of the groundwater control system is not performing within the limits set forth in this permit, the permittee will be required to initiate appropriate compliance schedule activities, including the preparation of a response plan, for any and all components of the groundwater control system that do not meet the applicable

requirements. The permittee shall also conduct weekly sampling at RS-2 until such time as the other compliance schedule activity(ies) have been completed.

Compliance Action Taken: As demonstrated by the information and data presented in this report, all components of the groundwater control system performed within the limits set forth in the permit. Therefore, site operations were in full compliance of Part I, Section 8 and there was no requirement(s) to initiate actions contained within the schedule of compliance for Section 8.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering information, the information submitted is to the best of my knowledge and belief, is true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Name:	Julio Madrid	Signature:	fulis Hu	
Date:	July 26, 2023	_		

May 2, 2023

Julio Madrid **Battle Mountain Resources, Inc.**P.O. Box 310
San Luis, CO 81152

Dear Julio:

Enclosed is the report for chronic biomonitoring tests performed for Battle Mountain Resources, Inc. on effluent from the 001B outfall. There was statistically significant toxicity to the *Ceriodaphnia dubia* test species resulting in a single endpoint failure. However, the effluent passes WET (Whole Effluent Toxicity) testing requirements for this sampling period.

If you have any questions or concerns, please do not hesitate to contact me at (303) 661-9324.

Best regards,

Haley West

Laboratory Manager
Enclosure(s): Invoice
Report

Hally Mut

REPORT OF CHRONIC BIOMONITORING TESTS CONDUCTED FOR BATTLE MOUNTAIN RESOURCES, INC. ON EFFLUENT FROM THE 001B OUTFALL

Prepared for:

Julio Madrid

Battle Mountain Resources, Inc.
P.O. box 310
San Luis, CO 81152

Prepared by:

Haley West
SeaCrest Group
500 S Arthur Ave. Suite 450
Louisville, Colorado 80027-3065
(303) 661-9324

May 2, 2023

TABLE OF CONTENTS

CHRONIC TOXICITY TEST SUMMARY	3
ABSTRACT WITH RESULTS	4
INTRODUCTION	5
MATERIALS AND METHODS	5
SAMPLE COLLECTION	5
DILUTION WATER	5
TEST ORGANISMS TEST PROCEDURE	
DATA ANALYSIS	
RESULTS	7
CERIODAPHNIA DUBIA TEST RESULTS	7
FATHEAD MINNOW TEST RESULTS	
TEST ACCEPTABILITY	
DISCUSSION	
REFERENCES	9
APPENDIX 1 – CHAIN OF CUSTODY WITH SAMPLE RECEIPT FORMS	10
APPENDIX 2 – DATA SHEETS FOR THE CERIODAPHNIA DUBIA TEST	20
WET TEST REPORT FORM - CHRONIC	21
APPENDIX 3 – DATA SHEETS FOR THE FATHEAD MINNOW TEST	28
WET TEST REPORT FORM – CHRONIC	29
APPENDIX 4 – QA/QC AND REFERENCE TOXICANT TEST CHARTS	35
LIST OF TABLES	
TABLE 1: STATISTICAL METHODS USED IN TESTING	7
TABLE 2: SUMMARY OF CERIODAPHNIA DUBIA TEST RESULTS	7
ΓABLE 3: SUMMARY OF FATHEAD MINNOW TEST RESULTS	8
TABLE 4: PMSD FOR CHRONIC TEST PARAMETERS	8

Client: BMRI Site: 001B

CO-0045675

SCG Project No.: 423188.B Project: Quarterly WET

3

Chronic Toxicity Test Summary

Test:	7-day static renewal using <i>Ceriodaphnia dubia</i> 7-day static renewal using fathead minnow (<i>Pimephales promelas</i>)
Client:	Battle Mountain Resources, Inc.
Chent;	Battle Mountain Resources, Inc.
Test Procedure	Ceriodaphnia dubia: EPA/821/R-02-013. Method 1002.0 (2002)
Followed:	fathead minnow: EPA/821/R-02-013. Method 1000.0 (2002)
Sample Number:	423188.B
Dilution Water:	moderately hard laboratory reconstituted water
Test Organism Source:	SeaCrest Group
Reference Toxicant:	Sodium Chloride

Sample	Time of Collection			Date of Receipt
Effluent 1	0600	04-17-2023	1305	04-17-2023
Effluent 2	0600	04-19-2023	1040	04-19-2023
Effluent 3	0600	04-21-2023	1020	04-21-2023

	Ceriodaphnia dubia	fathead minnow
Test Initiation Time	1400	1400
Test Initiation Date	04-17-2023	04-17-2023
Test Completion Time	1405	1300
Test Completion Date	04-24-2023	04-24-2023

Abstract with Results

Test Concentrations:	Control (0%), 13%, 26%, 52%, 76%, 100%

10 for Ceriodaphnia dubia

Number of Organisms/Concentration: 40 for fathead minnow

10 for Ceriodaphnia dubia

Replicates at each Concentration: 4 for fathead minnow

	Ceriodaphnia dubia	fathead minnow
Test vessel size/Exposure volume	30ml/15ml	500ml/200ml
Sub-lethal NOEL/IC25	52%/7.7%	100%/>100%
Pass/Fail Status	PASS*	PASS
Temperature Range (°C)	24.1 - 25.7	24.1 - 25.3
Dissolved Oxygen Range (mg/L)	6.8 - 8.9	5.0 - 8.9
pH Range	7.7 - 8.1	6.9 - 8.2
*Single endpoint failure	Control (<i>Cerio</i> /FHM)	Effluent Sample
Hardness (mg/L as CaCO ₃)	80/87	45/37/29
Alkalinity (mg/L as CaCO ₃)	60/57	33/31/21
Total residual chlorine (mg/L)	< 0.01	<0.01
Total ammonia (mg/L as NH ₃)	< 0.03	0.05/<0.03/0.04

INTRODUCTION

Biomonitoring provides an effective means by which the toxicity of discharges from municipal, industrial, and mining operations can be tested. Among the advantages of biomonitoring is the ability to test complex effluents containing a broad range of contaminants. Biomonitoring, when used in conjunction with chemical analyses, can generate data capable of identifying a much wider range of contaminants.

The Colorado Water Quality Control Division requires certain NPDES permittees to perform acute and/or chronic biomonitoring tests. The chronic test measures significant differences in lethality and in reproduction (*Ceriodaphnia dubia*) or growth (fathead minnow – *Pimephales promelas*) between control and effluent-exposed organisms.

The present report discusses the results of chronic biomonitoring tests conducted on effluent from the Battle Mountain Resources, Inc. 001B discharge. These tests were conducted in accordance with EPA and State of Colorado procedures in April 2023.

MATERIALS AND METHODS

Sample Collection

Two gallons of the effluent were collected on three separate dates as specified in Permit CO-0045675. Samples were delivered chilled to the SeaCrest lab where they were held at 0-6°C. Chain of custody forms showing sample collection and laboratory arrival times are included (Appendix 1).

Dilution Water

Laboratory reconstituted water was used as both the dilution water source and the control for the tests. Reconstituted water for the *Ceriodaphnia dubia* test was produced by adding sodium bicarbonate, calcium sulfate, magnesium sulfate, potassium chloride, and sodium selenate to deionized water. Reconstituted water for the fathead minnow test was produced by adding sodium bicarbonate, calcium sulfate, magnesium sulfate, and potassium chloride to deionized water.

Test Organisms

The biomonitoring test used *Ceriodaphnia dubia*, cultured in the SeaCrest laboratory. The organisms are cultured in brood culture boards from which individual females are monitored for survival and reproduction for periods of up to two weeks. Neonates less than 24-hours old, released from third or subsequent broods of eight or more within an 8-hour period, are collected from the brood chambers and used in tests. The animals are fed daily with a mixture of Yeast, Cereal Leaves, and Trout Chow (YCT), produced in-house. This is supplemented with cultured green algae (*Selenastrum capricornutum*) provided by Aquatic Biosystems.

Less than one-day-old fathead minnow, cultured in the laboratory, were also used in the test. Adult fish are maintained in 10-gallon aquaria where females deposit their eggs on the under-surface of split PVC pipe sections. The eggs are collected daily and transferred to aerated containers where they hatch after three to four days. The larval fish are fed newly hatched brine shrimp (*Artemia* sp.) at least twice per day.

In-house organisms are tested monthly in a reference toxicant test using sodium chloride to monitor overall health and test reproducibility (Appendix 4).

Test Procedures

Upon receipt at the lab, samples were analyzed for alkalinity, ammonia, chlorine, conductivity, dissolved oxygen, hardness, and pH.

Methods used in chemical analysis

Alkalinity	EPA 310.2	Hach 8203	I-2030-85.2
Ammonia	SM4500-NH ₃ , C-E1997	ASTM D1426-08	
Chlorine	SM4500-Cl D	Hach 10026	
Conductivity	SM2510		
Dissolved Oxygen	SM4500-O	Electrode: G-2001	Winkler (QC): B-F-2001
Hardness	SM2340 B or C	Hach 8213	
pH	SM4500-H+ B-2000		

The test followed procedures in EPA³ and CDPHE⁴ guidelines. Exposure concentrations included control (0%), 13%, 26%, 52%, 76%, and 100% mixtures, diluted with moderately hard laboratory reconstituted water.

Individual *Ceriodaphnia dubia* were placed in 30ml plastic containers containing approximately 15ml of exposure medium. Ten replicates at each concentration were used. The animals were fed daily with the YCT mixture and an equal volume of the green algae *(Selenastrum capricornutum)*. The exposure medium was changed daily in each container and the number of young released overnight were counted and recorded. Young were removed from the containers daily and discarded. Routine measurements were made each day of temperature, dissolved oxygen, and pH before and after the water changes.

Fathead minnow were exposed in 500ml plastic cups to which 250ml of media was replaced daily. Four replicates were used at each concentration. Ten fish, less than 24-hours old, were placed in each cup. The fish were monitored daily for survival and fed live brine shrimp at least twice per day. After seven days, the fish were removed from the cups, euthanized with isopropyl alcohol, and then placed in aluminum pans and dried in an oven for a minimum of six hours at 100°C. The pans were then weighed on a five-place analytical balance to determine the average dry weight of the fish from each replicate.

Data Analysis

Data from the tests were analyzed on a personal computer using the CETIS program (developed by Tidepool Scientific Software). Statistical tests used in the analyses are shown in Table 1. Test acceptability was determined using control survival and reproduction/growth criteria, concentration-response relationships, and percent minimum significant differences (USEPA 5,6).

Client: BMRI Site: 001B CO-0045675

SCG Project No.: 423188.B Project: Quarterly WET

Table 1. Statistical methods used in testing for significant differences in test parameters.

V	ariance	Distribution Shapiro-Wilk W Normality Test							
Bartlett Equali	ity of Variance Test								
	Statistical	Difference							
Species	Survival	Growth	Reproduction	IC ₂					
Ceriodaphnia dubia	Fisher Exact/Bonferroni- Holm Test	N/A	Dunnett Multiple Comparison Test	ICp					
fathead minnow	Steel Many-One Rank Sum Test	Dunnett Multiple Comparison Test	N/A	ICp					

RESULTS

Ceriodaphnia dubia Test Results

Test results for the *Ceriodaphnia dubia* are summarized in Table 2 and provided on the data sheets located in Appendix 2. Survival was 20% in the 100% effluent and ranged from 40% - 60% in the remaining effluent concentrations. Control survival was 90%. Statistically significant lethality was measured in the 100% effluent concentration when compared to the control. The NOEL (No Observed Effect Level) for lethality was 76% and the LC₂₅ (Lethal Concentration 25) for lethality was 7.3%.

Average number of neonates was 3.2 in the 100% effluent concentration and ranged from 6.2-10.5 in the remaining effluent concentrations. Average number of neonates in the control was 16.1 for statistical analyses and test acceptability criteria. Statistically significant differences in the number of neonates were found between the control and the 76% and 100% effluent concentrations. The NOEL for reproduction was 52% and the IC₂₅ (Inhibition Concentration 25) for reproduction was 7.7%.

Table 2. Summary of *Ceriodaphnia dubia* test results. An asterisk (*) denotes a statistically significant difference from the control.

Concentration	Percent	Mean			Significant Differen				
Concentration	Survival	Neonates	Min.	Max.	Lethality	Reprod.			
Control (0%)	90	16.1	0	24					
13%	40	7.1	0	22					
26%	60	10.5	0	23					
52%	50	10.3	0	29					
76%	50	6.2	0	18		*			
100%	20	3.2	0	21	*	*			

Client: BMRI Site: 001B CO-0045675

SCG Project No.: 423188.B Project: Quarterly WET

Fathead Minnow Test Results

Fathead minnow results are summarized in Table 3 and are provided on data sheets in Appendix 3. Survival was 100% in the 100% effluent concentration and ranged from 98% - 100% in the remaining effluent concentrations. Control survival was 100%. No statistically significant lethality was measured in any effluent concentration when compared to the control. The NOEL for lethality was 100% and the LC₂₅ for lethality was >100%.

Average weight in the 100% effluent concentration was 0.457mg and ranged from 0.410mg - 0.458mg per individual in the remaining effluent concentrations. Average weight for the control fish was 0.447mg for statistical analyses and test acceptability criteria. No statistically significant differences for growth were measured in any effluent concentration when compared to the control. The NOEL for growth was 100% and the IC_{25} for growth was >100%.

Table 3. Summary of fathead minnow test results. An asterisk (*) denotes a statistically significant difference from the control

	Percent	Average			Significant	t Difference	
Concentration	Survival	Weight (mg)	Min.	Max.	Lethality	Growth	
Control (0%)	100	0.447	0.394	0.477			
13%	98	0.410	0.291	0.473			
26%	98	0.435	0.300	0.540			
52%	100	0.453	0.403	0.494			
76%	100	0.458	0.405	0.479			
100%	100	0.457	0.438	0.488			

Test Acceptability

Acceptable control survival (80%) was achieved in both tests. Similarly, *Ceriodaphnia dubia* reproduction (average 15 neonates/organism) and fathead minnow growth (average 0.250mg/test container) in control organisms met required levels. PMSD for *Ceriodaphnia dubia* reproduction in effluent concentrations was not within the required limits for an acceptable test due to the presence of statistically significant toxicity in the 76% and 100% effluent dilutions (Table 4).

Table 4. PMSD for chronic test parameters.

	fathead min	now growth	C. dubia reproduction				
	Lower bound	Upper bound	Lower bound	Upper bound			
PMSD	12	30	13	47			
(% Minimum significant difference)	22	8	57.1				

Client: BMRI CO-0045675 SCG Project No.: 423188.B Site: 001B Project: Quarterly WET

DISCUSSION

A failed test for this discharge occurs when there is an NOEL or IC₂₅ less than the IWC (Instream Waste Concentration) of 52%. The NOEL represents the highest effluent concentration at which no statistically significant effect is observed. The IC₂₅ represents an estimate of the effluent concentration that would cause a 25 percent reduction of a non-quantal biological measurement. A violation for this discharge occurs when both the NOEL and the IC₂₅ are less than the IWC. Since neither test species demonstrated statistically significant differences meeting these criteria, the discharge passes WET testing requirements for this sampling period.

REFERENCES

- 1. **Hach Chemical Company.** 2008. *Hach's Water Analysis Handbook*. Fifth Edition. Hach Chemical Company, Loveland, Colorado. Digital Medium.
- 2. APHA/AWWA/WEF. 1998. Standard Methods for the Examination of Water and Wastewater. 20th Edition. American Public Health Association, Washington, D.C.
- 3. **USEPA.** 2002. Short Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms. EPA-821-R-02-013. 335 pp.
- 4. CDPHE (Colorado Department of Public Health and Environment). 1998. Laboratory Guidelines for Conducting Whole Effluent Toxicity Tests. Water Quality Control Division.
- 5. **USEPA.** 2000. Method of Guidance and Recommendations for Whole Effluent Toxicity (WET) Testing (40 CFR Part 136). EPA/821/B-00/004.
- 6. USEPA. 2000. Understanding and Accounting for Method Variability in Whole Effluent Toxicity Applications under the National Pollutant Discharge Elimination System Program. EPA/833/R-00/003.

Client: BMRI Site: 001B CO-0045675

SCG Project No.: 423188.B Project: Quarterly WET

Appendix 1 - Chain of Custody with Sample Receipt Forms

500 S. Arthur Avenue, Unit 450 - Louisville, CO 80027 (303) 661.9324 - FAX (303) 6€1.9325

CHAIN OF CUSTODY Seacrest Group

1				uers			iedmu <i>V</i> oV lstoT	1						Other (List Below)					Date/Time							
Analysis (Check all applicable)	Oil and Grease Coliform (Total/Fecal/E-Coli) (Circle) BOD/COD (Circle) Other Analysis (List Below)												Daphnia pulex				Received By (2)	Signature								
		Metals (List Below) Solids (TS/TDS/TSS) (Circle) Anions (List Below) Chromium III/VI (Circle)											Daphnia magna				l By (2)	Date/Time								
		WET: Chronic (Indicate Below) WET: Accelerated (Indicate Below) WET: PTI/TIE/TRE (Indicate Below)						X						ow X Cerio daphnia	nts:	8		Relinquished By (2)	Signature							
			152	10	12		Lab ID (Gas Use Only)	153185.6						Kathead Minnow	uctions/Comments:	11-0018			Date/Time S OUI723 1305							
						18 0	E-Mail Davide Carine Chewrent	id S Car	Grab/	Grab/ Comp	Comp	-						Special Instru	outfall		Received By (1)	West				
	5.		San Luis, Co	E-Mail: David	Sampler: David S Carino	□ FAX	Time	23 0600					_	s	6-9 Day	1-2 Day		~	Signature Holleyworth							
BMRI	San Lu	ladrid	birbal	Judrid	Judrid	Judrid	Jadrid	ladrid	Jadrid		X		□ PDF) Date	4/17/23						Turnaround Requirements (Analytical Testing Only)	ays)	1		y (1)	Date/Time 4/17/123 0600
Client/Project Name:	P. O./Project Number: San Luis	Contact: Julio Madrid	Address: P.O. BOX 310	Phone # 719-379-0827	Fax# N/A	Report By: Mail	Sample Location or ID	W.E.T. Test						Turnaround (Analytica	Standard (10 days)	3-5 Day	Requested Report Date:	Relinquished By (1)	Signature Carin							

Sample Receipt Form

Form #: 42 Effective: January 2023

Project # 423 88.15		Sample #:		
Date: 041725		Initials:		
Samples Were:	2002	(
1. FedEx UPS	Courier	Hand Delivery	(circle	one)
Notes:				
2. Chilled to Ship		Ambie	ent Chilled)
Cooler Received Broken or Leaking Notes:		Υ	N	NA
Sample Received Broken or Leaking Notes:		Y	N	
5. Received Within 36hr Holding Time Notes:		Y	N	
6. Aeration necessary		Υ	N	
7. pH adjustment necessary		Υ	N	
8. Sample Received at Temperature between Notes:		Y	N	NA
9. Description of Sample (Color, Odor, a Effluent: War, No PM Receiving: NA		f Particulate Matter):	
Presence of native species:		Υ	N	

Lab #	Temp	D.O.	pH	Cond
188#1	4.50	7.9	8.0	298

Custody Seals:

- 1. Present on Outer Package
- 2. Unbroken on Outer Package
- 3. Present on Sample
- 4. Unbroken on Sample

N

N

N)

NA

NA

Custody Documentation (Chain of Custody):

1. Present Upon Receipt of Sample

N

Date 4/17/23 Circle One; [M] W F 0 m per Treatment System Flow Rate 545 GPM End Sample Program: Time 0600 Start Sample Program: Time 0600 SCO Sampling Schedule

Observation good water flow, Power on to Sampler, Sample Container on ice Observation good water flow Power on to Sampler, Sample Conferner on ice Observation goo'd water Flow, Power on to Sample, Sample Container on ice Observation good water flow Power on to Sampler, Sample Container on ice Observation good weder than I a ver on to Sampler Sande Containe on gallons ~6 Hour Time 1200 Observationgood water flow former on to Sample, Sample -3 Hour Time 0900 Doservation good water Vow fower on to Sample, Sample Volume sent to lab Observationgood water flow four on to Samp A. Taylor R. Luceno, S. Maes Fas. ~24 Hour Time 0600 ~21 Hour Time 6300 -18 Hour Time 2400 -9 Hour Time 1500 ~15 Hour Time 2100 ~12 Hour Time 1800 Sampling Personnel:

Fotal Volume Collected 4 gallons Samples packed on ice []

Completed COC

Cooler Sealed UPS pick up on the BINRI Dellucred i

(Seatrest Group

CHAIN OF CUSTODY

500 S. Arthur Avenue, Unit 450 - Louisville, CO 80027

(303) 661.9324 - FAX (303) 661.9325 20 Total Volume Other (List Below) 10:40 Date/Time Number of Containers Received By (2) J. Thornton Daphnia magna Daphnia pulex Other Analysis (List Below) Analysis (Check all applicable) BOD/COD (Circle) Coliform (Total/Fecal/E-Coli) (Circle) Oil and Grease Chromium III/VI (Circle) Date/Time (wol98 tziJ) znoinA Solids (TS/TDS/TSS) (Circle) Relinquished By (2) (Wetals (List Below) Test Species: X Fathead Minnow WET: PTI/TIE/TRE (Indicate Below) WET: Accelerated (Indicate Below) WET: Chronic (Indicate Below) Signature Special Instructions/Comments: outfall - 0018 WET: Acute (Indicate Below) 423188.3#2 Phone #719-379-0827 E-Mail Durid Carino @ Newword Lab ID Date/Time Sampler: Lavid S lavino San Luis, Co 81152 Received By (1) Comp Grab/ Comp 0000 D FA Time 6-9 Day 1-2 Day Signature 4/19/23 P. O./Project Number: San Luis **Turnaround Requirements** PDF Date Client/Project Name: BMRI Contact: Julio Madrid 4/19/13 (Analytical Testing Only) Address: P.O. BOX 310 Relinquished By (1) Standard (10 days) Sample Location or ID Mail Requested Report Date: W.E.T. Test mid & Corner 3-5 Day Report By: Signature Fax #

Sample Receipt Form

Form #: 42 Effective: January 2023

Project #	#_ 423 (88 . B		Samp	ole #:	2	
Date:	041923		Initial	s:	DT	
Samples	Were:			7		
1. FedEx		Courier	Hand	Delivery	(circle	one)
	Notes:					
2. Chilled	to Ship			Ambie	ent Chille	d
3. Cooler	Received Broken or Leaking Notes:			Υ	N	NA
4. Sample	e Received Broken or Leaking Notes:			Υ	N	
5. Receiv	ved Within 36hr Holding Time Notes:			Y	N	
6. Aeratio	on necessary			Υ	N	
7. pH adj	ustment necessary			Υ	N	
8. Sample	e Received at Temperature be Notes: same day somple	tween 0-6° C .	٠	Υ	N	NA
9. Descrip	otion of Sample (Color, Odor, a Effluent: No pm / Clear Receiving: N/A	and/or Presence	of Particul	ate Matter	·):	
	Presence of native species:			Υ	N	

Lab #	Temp	D.O.	рН	Cond
188.B#2	6.5	7.9	8.0	311

Custody Seals:

- 1. Present on Outer Package
- 2. Unbroken on Outer Package
- 3. Present on Sample
- 4. Unbroken on Sample

N

Ν

N

ple

NA

Custody Documentation (Chain of Custody):

1. Present Upon Receipt of Sample

N

19/23 Circle One: M WF 0 End Sample Program: Time_0600_Date_41 GPM m per reatment System Flow Rate 550 Start Sample Program: Time 0600 SCO Sampling Schedule

-9 Hour Time 1500 Observationaged upoter flow, Power on to Sample, Sample sample container on ICC. Observation and wher flow, Power on to Sampler, Sample Container on ice Observation good water flow, former on to Samples, Sample container on ice Observation good water flow, Tower on to Sampler, Sangle Container on ice Observation good water Flow, Power on to Sampler, Sample Container on ice Observation good Water Flow, Power on to Sampler, Sample Container on ice -6 Hour Time 1200 Observation good water flow, buston to Sample toutalner or -3 Hour Time 0900 Observation good water you, for you to Sample, Sample contained O. Cariño, R. Lucen, S. Maest Volume sent to lab Total Volume Collected ~21 Hour Time 0300 ~18 Hour Time 2400 ~24 Hour Time 0600 -12 Hour Time 1800 Samples packed on ice ~15 Hour Time 2100 Sampling Personnel:

BARI Delivered A

Cooler Sealed

500 S. Arthur Avenue, Unit 450 - Louisville, CO 80027 (303) 661.9324 - FAX (303) 661.9325

CHAIN OF CUSTODY

SeatrestGroup

Jotal Volume Other (List Below) Date/Time Number of Containers N Received By (2) Daphnia magna 🔲 Daphnia pulex Other Analysis (List Below) Analysis (Check all applicable) BOD/COD (Circle) Coliform (Total/Fecal/E-Coli) (Circle) Signature Oil and Grease Chromium III/VI (Circle) Date/Time (wol98 tziJ) znoinA Solids (TS/TDS/TSS) (Circle) Relinquished By (2) Metals (List Below) Test Species: Kethead Minnow Kerio daphnia WET: PTI/TIE/TRE (Indicate Below) WET: Accelerated (Indicate Below) WET: Chronic (Indicate Below) Signature outfull-0018 Special Instructions/Comments: WET: Acute (Indicate Below) COMD 423 188.3#3 Phone # 719-379-0827 E-Mail David- Carino CAleumont. Lab ID 4/21/23 Date/Time Address: P.D. BOX 310 San Luis, Co 81152 Received By (1) Comp Grab/ Sampler()uvid S J. Thomps 0600 Time 6-9 Day FAX 1-2 Day P. O./Project Number: San Luis 4/21/23 **Turnaround Requirements** Contact: Julio Madrid D PDF Date Client/Project Name: BMRI (Marine 4/21/23 (Analytical Testing Only) Date/Time Relinquished By (1) Standard (10 days) Sample Location or ID Requested Report Date: Mail Mail W.ET. Test 4/2 3-5 Day Report By: Signature Fax #

Sample Receipt Form

Form #: 42 Effective: January 2023

Project # 423 188.3		Sample #:	3	
Date: 042123		Initials:	DT	
Samples Were:				
1. FedEx UPS Notes:	Courier	Hand Delivery	(circle	e one)
Notes.				
2. Chilled to Ship		Ambie	ent Chille	ed
Cooler Received Broken or Leaking Notes:		Υ	N	NA
Sample Received Broken or Leakin Notes:	g	Υ	N	
5. Received Within 36hr Holding Time Notes:		Y	N	
6. Aeration necessary		Υ	N	
7. pH adjustment necessary		Υ	(1)	
8. Sample Received at Temperature b Notes: same day sample	etween 0-6° C .	Υ	N	NA
9. Description of Sample (Color, Odor, Effluent: No Visible pm	and/or Presence o	of Particulate Matter):	
Receiving: W/A Presence of native species:		Υ	N	

Lab #	Temp	D.O.	рН	Cond
188.B#3	6.0	7.9	8-1	326

Custody Seals:

1.	Present	on	Outer	Package	
----	---------	----	-------	---------	--

2. Unbroken on Outer Package

3. Present on Sample

4. Unbroken on Sample

,	1	
(V)	
'	-	
100	1	

Y

Ν

(A)

Y

NA)

NA

Custody Documentation (Chain of Custody):

1. Present Upon Receipt of Sample

N

End Sample Program: Time 0600 Date 4/21/23 Circle One: M W (E) o minutes Freatment System Flow Rate 540 GPM Start Sample Program: Time 0600 SCO Sampling Schedule 100

Sampling Personnel: S. Maestas, O Carino, A. Taylor, Randy Lucero

Observation good water flow Power on to Sampler Sample Pontainer on ice Observation good wetruften fow ex onto surply Sample Container on ite Observation good weter flow Power onto Sampler, Sample Container onia Observation good water flow Power conto Sample, Sample Contained abite Observation goodwodonflow, Power ont & Sumpley, Sumple Containt on ice ~6 Hour Time 1200 Observation good wheler flow Power on to Sampler, Sample Container on ice -3 Hour Time 0900 Observation good Water Flow, Power on to Sampler, Sample Container on ice Observation good water flow Power on to Sampler Sample Contrainer on ice -21 Hour Time 0300 ~18 Hour Time 2400 -24 Hour Time ULUD ~15 Hour Time 2100 -9 Hour Time 1500 ~12 Hour Time 1800

Samples packed on ice W gallons
Completed COC
Cooler Sealed

Volume sent to lab

Client: BMRI CO-0045675 SCG Project No.: 423188.B Site: 001B Project: Quarterly WET

Appendix 2 - Data Sheets for the Ceriodaphnia dubia Test

WET	TEST	REPORT	FORM -	- CHRONI	(
***		INDI OILI	LOIVII		•

Permittee:

Battle Mountain Resources, Inc.

Permit No.:

CO-0045675

Outfall:

001B - IWC: 52%

Test Type:

Routine

Accelerated

Screen

Test Species:

Ceriodaphnia dubia

Test Start Time	Test Start Date	Test End Time	Test End Date
1400	04-17-2023	1405	04-24-2023

Test Results	Lethality/TCP3B	Reproduction/TKP3B
S code: NOEL	76%	52%
	PASS	PASS
P code: LC ₂₅ /IC ₂₅	7.3%	7.7%
	FAIL	FAIL
T code:	76%	52%

Test Summary

1 est Summary						
Measurements	Control (0%)	13%	26%	52%	76%	100%
Exposed organisms	10	10	10	10	10	10
Survival for day 1	10	10	10	10	10	10
Survival for day 2	9	7	9	8	9	6
Survival for day 3	9	5	6	5	6	2
Survival for day 4	9	4	6	5	5	2
Survival for day 5	9	4	6	5	5	2
Survival for day 6	9	4	6	5	5	2
Survival for day 7	9	4	6	5	5	2
Mean 3 Brood Total	16.1	7.1	10.5	10.3	6.2	3.2

Hardness (mg/L) – Receiving Water: N/A Alkalinity (mg/L) – Receiving Water: N/A Effluent: 45/37/29

Recon Water: 80 Recon Water: 60

Chlorine (mg/L) – Effluent: <0.01

:: N/A Effluent: 33/31/21 pH (initial/final) – Control: 8.1/8.0

100%: 8.0/8.0

Total Ammonia as NH₃ (mg/L) - Effluent: 0.05/<0.03/0.04

Were all Test Conditions in Conformance with Division Guidelines? YES NO

If NO, list deviations from test specifications: N/A

Laboratory: SeaCrest Group

Comments:

Analyst's Name: Olivia Montoya, Daniela Thornton, and Julie McKenney

Signature Kally Mut Date May 2, 2023

Ceriodaphnia Chronic Benchsheet

Form #: 101a Effective: March 2023

Permittee: BMRI Lab #: 423188.6 Site: 0018

IWC %: 52 Template #: 5 Dilution Water: mtt3-008 Sample Date: 0417よる

Age & Source: 041723 140 Test Start: 041723 1400 Test End: 042423 1405

Test Con	_	4	2	3	- 4			7	T +
(0)	0	1			4	5	6	7	Total
(C)	0	0	0	0	5	5	0	10	20
	0	0	0	O	3	8	10	U	21
	0	0	0	0	4	8	10	12	24
	0	0	0	0	ч	0	4	d	16
	0	0	0 0						0
0	0	0	0	0	5	8	6	10	19
1	0	0	0	0	2+2	0	4	0	8
	0	0	0	0	4	0	4	4	12
	0	0	0	5	0	2	5	12	24
	0	0	0	0	3+2	0	0	12	17
DO	6.21	7.4 7.0	7.2 70	7.8 16.8	1.7 6.8	7.3 6.9	7.8 1.8	7.4	1
Temp	24.1	24.5 24.1	24.7 24.1	24.4 24.1	24.4 24.1	24.9 24.1	24.7 24.1	24.5	
pH	3.1	3.0 8.0	7.9 8.1	8.0 8.0	7.9 81	8.0 8.1	8.0 3.1	8.0	16.1
Cond	330	334		324	328	313		0.0	1,6.1
	_	396	357 0 D	329	369	315	335	and a second	
1)	0				-	-			0
	0	0	0	0	5	7	0	10	22
	0	0	0	0	5	6	8	12	19
	0	0	0	OD					0
	0	0	0 0				-	-	0
13	0	0	0	OP					0
19	0	0	0	O	3	.5	6	0	14
	0	0	0 0	- 0	0				, ,
	0	Ö	0		0 0				0
		0		0			/ -	10	O
	0		0	O	0	0	0	10	16
DO	7.0	7.5 72	7.2 7.1	7-8 17-0	7.7 16.9	7.3 7.0	7.8 8.0	7.4	
Temp	24.1	24.5 24.1	24.7 243	24.4 74.2	24.4 [24.1	24.9 24.1	24.7 124.1	24.5	10.
pН	3.1	8.0 8.0	7.9 8.1	80 81	7.9 8.1	80 81	3.0 3.0	8.0	7.1
Cond	336	334	343	326	324	306	314		
2)	0	0	0 0						0
	0	0	0	0	2	8	0	10	20
	0	0	0	0 0					0
	0	0	0		2	4	1.	62	_
	0	0	0	0 0	-	9	6	_0	12
26			0	0 0					0
84	0		111	D	5	10	8	12	23
		0							
	0	0	0	0	1 +3	0	0	5	9
	0	0	0	0	1 +3	6	9		
	0	0	0	0				5	18
	0 0	0 0 0	0 0 0	0 0	4		В	0	18
DO	0 0 0	0 0 0	0 0 0	0 0 0 0	4	9	3	0	18
DO Temp	0 0 0 0	0 0 0 0 7.5 7.6	0 0 0 0 7.2 7.2	0 0 0 0 0 17 17 2	4	7.3 7.0	10 7.9 8.1	0	18
Temp	0 0 0 0 77 24.1	0 0 0 0 7.5 7.6	0 0 0 0 7.2 7.2 24.7 24.5	0 0 0 0 0 1.7 7.2 244 1143	4 7-6 7-0 244 24.2	9 7.3 7.0 24.2 24.1	10 7.9 8.1 24.7 24.1	0 7.4 24.5	18
Temp pH	0 0 0 0 77 24.1	0 0 0 0 7.5 7.6 34.1 8.0 8.0	0 0 0 0 7.2 7.2 24.7 24.5 7.8 8.1	0 0 0 0 17 172 244 243 8-0 181	4 7-6 70 244 242 19 81	7.3 70 24.1 24.1 7.9 8.1	10 7.9 8.1 24.7 24.1 8.0 8.0	0	18
Temp pH Cond	0 0 0 0 77 24.1 8.1	0 0 0 0 7.5 7.6 34.1 8.0 8.0	0 0 0 0 7.2 7.2 24.7 24.5 7.8 8.1 339	0 0 0 0 1.7 17.2 24.4 124.3 8.0 18.1 32.4	4 7-6 70 244 242 19 8 1 319	7.3 7.0 24.1 24.1 7.9 8.1 297	10 7.9 8.1 24.7 24.1 8.0 8.0 309	O 7.4 24.5 8.0	105
Temp pH Cond	0 0 0 0 77 24.1 8.1 33(0 0 0 0 7.5 7.6 34.1 8.0 8.0 330	0 0 0 0 7.2 7.2 24.7 24.5 7.8 9.1 339	0 0 0 0 17 172 244 243 8-0 181	4 7-6 70 244 24.2 19 81 319 5	9 7.3 70 24.1 24.1 7.9 8.1 297 7	10 7.9 8.1 24.7 24.1 8.0 8.0 309 12	O 7.4 24.5 8.0	18 0 23 105
Temp pH Cond	0 0 0 0 7 チ 2 寸 .1 8 .1 3 3 (0	0 0 0 0 7.5 7.6 24.1 8.0 8.0 330 0	0 0 0 0 7.2 7.2 24.7 24.5 7.8 3.1 331 0	0 0 0 0 1.7 1.2 244 1243 80 13:1 324 0	4 7-6 70 244 24.2 14 81 319 5	9 7.3 17.0 24.7 24.1 7.9 8.1 297 7	10 7.9 8.1 24.7 24.1 3.0 8.0 309 12	O 7.4 24.5 8.0	18 0 23 105
Temp pH Cond	0 0 0 0 7.7 24.1 8.1 33(0	0 0 0 7.5 7.6 34.1 8.0 8.0 330 0	0 0 0 0 7.2 7.2 24.7 24.5 7.8 8.1 331 0	0 0 0 0 1.7 1.2 244 143 8.0 13:1 32:4	4 7-12 7-10 24-4 24-2 1-4 8-1 319 5 4	9 7.3 70 24.1 24.1 7.9 8.1 297 7	10 7.9 8.1 24.7 24.1 8.0 8.0 309 12	O 7.4 24.5 8.0	18 0 23 105
Temp pH Cond	0 0 0 0 72 24.1 8.1 33(0 0	0 0 0 0 7.5 7.6 34.1 8.0 8.0 330 0 0	0 0 0 0 7.2 7.2 34.7 24.5 7.8 8.1 337 0 0	0 0 0 0 1.7 1.2 244 1243 80 13:1 324 0	4 7-6 70 244 24.2 14 81 319 5	9 7.3 17.0 24.7 24.1 7.9 8.1 297 7	10 7.9 8.1 24.7 24.1 3.0 8.0 309 12	0 7.4 24.5 8.0	18 0 23 105
Temp pH Cond	0 0 0 0 7.7 24.1 8.1 33(0	0 0 0 7.5 7.6 34.1 8.0 8.0 330 0	0 0 0 0 7.2 7.2 24.7 24.5 7.8 8.1 33.7 0 0	0 0 0 0 0 1.7 1.7 244 1243 8.0 18.1 324 0	4 7-12 7-10 24-4 24-2 1-4 8-1 319 5 4	9 7.3 17.0 24.7 24.1 7.9 8.1 297 7	10 7.9 8.1 24.7 24.1 5.0 8.0 309 12 0	0 7.4 24.5 8.0	18 0 23 /05 a4 20 a9
Temp pH Cond	0 0 0 0 72 24.1 8.1 33(0 0	0 0 0 0 7.5 7.6 34.1 8.0 8.0 530 0 0	0 0 0 0 7.2 7.2 34.7 24.5 7.8 8.1 337 0 0 0	0 0 0 0 0 1.7 1.7 244 1243 8.0 18.1 324 0	4 7-12 7-10 24-4 24-2 1-4 8-1 319 5 4	9 7.3 17.0 24.7 24.1 7.9 8.1 297 7	10 7.9 8.1 24.7 24.1 5.0 8.0 309 12 0	0 7.4 24.5 8.0	18 0 23 /05 24 20 29 10
Temp pH Cond	0 0 0 0 77 24.1 8.1 33.1 0 0 0	0 0 0 0 7.5 7.6 34.1 8.0 8.0 330 0 0 0	0 0 0 0 7.2 7.2 24.7 24.5 7.8 8.1 337 0 0 0	0 0 0 0 0 1.7 1.7 244 124.3 8.0 13.1 324 0 0	4 7-12 7-10 24-4 24-2 1-4 8-1 319 5 4	9 7.3 17.0 24.7 24.1 7.9 8.1 297 7	10 7.9 8.1 24.7 24.1 5.0 8.0 309 12 0	0 7.4 24.5 8.0	18 0 23 /05 24 20 29 10 0
Temp pH Cond	0 0 0 0 0 77 24.1 8.1 33.1 0 0 0	0 0 0 0 0 7.5 7.6 34.1 8.0 8.0 330 0 0 0	0 0 0 0 7.2 7.2 24.7 24.5 7.8 8.1 337 0 0 0 0 0	0 0 0 0 1.7 1.7 2 244 124.3 8.0 13.1 324 0 0	4 7 6 70 244 24.2 19 8 1 319 5 4	9 7.3 70 24.7 24.1 7.9 8.1 297 7 6	79 7.9 8.1 24.7 24.1 3.0 8.0 309 12 0	0 7.4 24.5 8.0 0 10 14	18 0 23 /05 24 20 29 10 0
Temp pH Cond	0 0 0 0 0 77 24.1 8.1 33.1 0 0 0 0	0 0 0 0 7.5 7.6 34.1 8.0 8.0 330 0 0 0 0	0 0 0 0 7.2 7.2 24.7 24.5 7.8 8.1 33.7 0 0 0 0 0 0 0	0 0 0 0 1.7 1.7 244 1243 8.0 13:1 324 0 0	4 7-12 7-10 24-4 24-2 1-4 8-1 319 5 4	9 7.3 17.0 24.7 24.1 7.9 8.1 297 7	10 7.9 8.1 24.7 24.1 5.0 8.0 309 12 0	0 7.4 24.5 8.0	18 0 23 105 29 10 0 0
Temp pH Cond	0 0 0 0 7 2 3 3 0 0 0 0 0 0 0	0 0 0 0 0 7.5 7.6 34.1 8.0 8.0 330 0 0 0 0	0 0 0 0 7.2 7.2 24.7 24.5 7.8 8.1 33.7 0 0 0 0 0 0 0	0 0 0 0 0 1.7 1.7 244 1243 8.0 13:1 324 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 7 6 70 244 24.2 19 8 1 319 5 4	9 7.3 70 24.7 24.1 7.9 8.1 297 7 6	79 7.9 8.1 24.7 24.1 3.0 8.0 309 12 0	0 7.4 24.5 8.0 0 10 14	18 0 23 105 20 20 20 0
Temp pH Cond 3)	0 0 0 0 7 2 3 3 0 0 0 0 0 0 0 0	0 0 0 0 0 7.5 7.6 34.1 8.0 8.0 330 0 0 0 0 0	0 0 0 0 7.2 7.2 337 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 1.7 1.7 2 244 1243 8.0 13:1 324 0 0 0 0	4 7-6 70 244 24.2 19 31 319 5 4 7	6 9 7.3 170 24.1 24.1 7.9 8.1 297 7 6 10 0	9 10 7.9 8.1 24.7 24.1 5.0 8.0 309 12 0	0 7.4 24.5 8.0 0 10 14	18 0 23 105 29 10 0 0
Temp pH Cond 3)	0 0 0 0 0 7.7 24.1 8.1 33(0 0 0 0 0 0 0	0 0 0 0 0 7.5 7.6 34.1 8.0 8.0 330 0 0 0 0	0 0 0 0 7.2 7.2 24.7 24.5 7.8 8.1 33.7 0 0 0 0 0 0 0	0 0 0 0 1.7 1.7 244 1243 8.0 13:1 324 0 0 0	4 7-12 7-10 24-4 24-2 1-4 3-1 319 5 4 7	9 7.3 70 24.7 24.1 7.9 8.1 297 7 6	79 7.9 8.1 24.7 24.1 3.0 8.0 309 12 0	0 7.4 24.5 8.0 0 10 14	18 0 23 105 20 20 20 0
Temp pH Cond 3)	0 0 0 0 7 2 3 3 0 0 0 0 0 0 0 0	0 0 0 0 0 7.5 7.6 34.1 8.0 8.0 330 0 0 0 0 0	0 0 0 0 7.2 7.2 337 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 1.7 1.7 2 244 1243 8.0 13:1 32:1 0 0 0 0 0	4 7-12 7-10 24-4 24-2 1-4 3-1 319 5 4 7	7.3 17.0 24.7 24.1 7.7 8.1 297 7 6 10 0	10 7.9 8.1 24.7 24.1 5.0 8.0 309 12 0 12-0	O 7.4 24.5 8.0 10 19 10	18 0 23 105 20 20 20 0 20
Temp pH Cond 3)	0 0 0 0 0 7.7 24.1 8.1 33(0 0 0 0 0 0 0	0 0 0 0 0 7.5 7.6 330 0 0 0 0 0 0	0 0 0 0 7.2 7.2 337 0 0 0 0 0 0 0 0	0 0 0 0 1.7 1.7 244 1243 8.0 13:1 324 0 0 0	4 7-6 70 244 24.2 19 31 319 5 4 7	6 9 7.3 170 24.1 24.1 7.9 8.1 297 7 6 10 0	9 10 7.9 8.1 24.7 24.1 5.0 8.0 309 12 0	0 7.4 24.5 8.0 0 10 14	18 0 23 105 20 20 20 0

th

Ceriodaphnia Chronic Benchsheet

Form #: 101a Effective: March 2023

	0	1	2	3	4	5	6	7	Total
(4)	0	0	0 0					-	0
	0	0	0	UD					0
	0	0	0	2	0	6	10	14	18
	0	0	0	0	3+1	0	6	0	16
	0	0	0	OP					0
76	0	0	0	0	4+3	0	.0	ч	11
	0	0	0	0 0					0
	0	0	0	0	4+2	0	Ч	0	10
	0	0	0	0	0 0				0
	0	0	0	0	5+2	0	0	6	13
DO	7.4	7.7 8.4	7.2 7.7	7.5 70	7.5 7.2	7.4 7.2	8.0 8.4	7.5	
Temp	24.1	24.5 24.1	24.7 25.3	24.4 24.5	24.4 24.4	24.2 24.1	24.7 24.1	34.5	62
pН	8.0	8.0 8.0	7.7 8.0	7.9 8.1	7.9 80	7.8 7.9	7.9 7.9	8.0	6.2
Cond	308	311	320	307	292	267	259		
(5)	0	0	0 0						0
	0	0	0	0 0					0
	0	0	0 0						0
	0	0	0	Q D					0
100	0	0	0	0 0					0
100	0	0	0	0 0					O
	0	0	0 0-						0
	0	0	0)						0
	0	0	0	0	1	0	4	6	11
	0	0	0	0	0	3	8	7 10	21
DO	7.9	7.8 8.9	7.2 7.9	7.4 7.8	7.5 7.3	7.4 7.3	8.0 8.5	7.5	
	24.1	24.5 24.1	24.7 25.7	24.4 24.6	24.4 24.4	24.9 24.1	24.7 24.1	24.5	20
pН	8.0	8.0 7.9	7.7 8.0	7.9 8.1	1.9 8.0	7.8 7.8	7.9 7.9	7580	3.2
Cond	298	301	311	300	218	253	277		•
Algae	ABS	ABS	ABS	ABS	A135	A35	ABS		
YCT	2302	2302	2302	2302	2302	2302	2362		
H ₂ O	1	١	2	2	3	3	2		
Initials	om	om	DT	JM	Mb	DT	om	om	130000
		Eff#1		#2		#3		con	
Hardness		15,	3		2	9	81		
Alkalinity		33	3		- ?	A.	Les		
Chlorine		0.01		0.01		0.01	10-1		
Ammonia		0.05	U	0.03	0	. 04	W.	0.5	

Exposure Chamber: Total Capacity: 30mL Total Solution Volume: 15ml

Feeding Schedule:

Fed daily Food used: YCT, Algae

DO: mg/L Temp: °C Hardness: mg/L Alkalinity: mg/L

pH: N/A

Chlorine: mg/L Cond: µS/cm3 Ammonia: mg/L

Comments:

detive

x:v:z = board #:row:column

							A.y.Z - Doard	u #.1044.00	/Iuiiiii
1	2	3	4	5	6	7	8	9	10
Al	A3	A7	A8	49	B2	37	38	Ca	010

Report Date: Test Code/ID: 25 Apr-23 13:55 (p 1 of 1) 423188CD / 12-4685-5554

Ceriodaphnia	7-d Survival and R	eproduction To	est				SeaCrest Group
Analysis ID: Analyzed:	05-9405-6854 25 Apr-23 13:55	Endpoint: Analysis:	7d Survival Rate STP 2xK Contingency Tables	CETIS Ver Status Lev		CETISv1.9.6 1	
Batch ID:	20-2296-4822	Test Type:	Reproduction-Survival (7d)	Analyst:	Lab 1	Гесh	
Start Date:	17 Apr-23	Protocol:	EPA/821/R-02-013 (2002)	Diluent:	Reco	nstituted Water	
Ending Date:	24 Apr-23	Species:	Ceriodaphnia dubia	Brine:	Not A	Applicable	
Test Length:	7d 0h	Taxon:	Branchiopoda	Source:	In-Ho	ouse Culture	Age:
Sample ID:	14-5145-3006	Code:	423188.B	Project:	WET	Quarterly Comp	oliance Test (2Q)
Sample Date:	17 Apr-23	Material:	POTW Effluent	Source:	NPD	ES Permit # (XX	(99999999)
Receipt Date:	17 Apr-23	CAS (PC):		Station:	001B		
Sample Age:	n/a	Client:	BMRI				

Data Transform	Alt Hyp	NOEL	LOEL	TOEL	TU
Untransformed	C > T	76	100	87.18	1.316
- The state of the				01.10	

Fisher Exact/Bonferroni-Holm Test

Control vs	Group	Test Stat	P-Type	P-Value	Decision(a:5%)
Dilution Water	13	0.0286	Exact	0.1146	Non-Significant Effect
	26	0.1517	Exact	0.1517	Non-Significant Effect
	52	0.0704	Exact	0.2113	Non-Significant Effect
	76	0.0704	Exact	0.2113	Non-Significant Effect
	100*	0.0027	Exact	0.0137	Significant Effect

Data Summary								
Conc-%	Code	NR	R	NR + R	Prop NR	Prop R	%Effect	
0	D	9	1	10	0.9	0.1	0.0%	
13		4	6	10	0.4	0.6	55.56%	
26		6	4	10	0.6	0.4	33.33%	
52		5	5	10	0.5	0.5	44.44%	
76		5	5	10	0.5	0.5	44.44%	
100		2	8	10	0.2	0.8	77.78%	

Report Date: Test Code/ID: 25 Apr-23 13:55 (p 1 of 1) 423188CD / 12-4685-5554

Ceriod	laphnia	7-d Survival an	d Reprodu	ction T	est						SeaC	rest Group
Analys	is ID:	10-3366-6213		point:	7d Survival Ra	te		CETIS Ver	sion:	CETISv1	.9.6	
Analyz	ed:	25 Apr-23 13:55	Ana	lysis:	Linear Interpola	ation (ICPIN)		Status Lev	rel:	1		
Batch	ID:	20-2296-4822	Tes	t Type:	Reproduction-S	Survival (7d)		Analyst:	Lab 7	Гесһ		
Start D	ate:	17 Apr-23	Pro	tocol:	EPA/821/R-02-	-013 (2002)		Diluent:	Reco	nstituted V	Vater	
Ending	Date:	24 Apr-23	Spe	cies:	Ceriodaphnia d	lubia		Brine:	Not A	Applicable		
Test Le	ength:	7d 0h	Tax	on:	Branchiopoda			Source:	In-Ho	use Cultur	е	Age:
Sample	e ID:	14-5145-3006	Cod	le:	423188.B			Project:	WET	Quarterly	Compliance	Test (2Q)
Sample	e Date:	17 Apr-23	Mat	erial:	POTW Effluent	1		Source:	NPD	ES Permit	# (XX99999	1999)
Receip	t Date:	17 Apr-23	CAS	(PC):				Station:	001B			
Sample	e Age:	n/a	Clie	nt:	BMRI							
Linear	Interpo	olation Options										
X Trans	sform	Y Transform	See	d	Resamples	Exp 95% CL	Method					
Linear		Linear	795	886	1000	Yes	Two-Point	Interpolation	6			
Point E	stimat	es										
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL						
LC5	1.462	1.083	5.85	68.38	17.09	92.31						
LC10	2.925	2.167	11.7	34.19	8.547	46.15						
LC15	4.387	3.25	32.72	22.79	3.057	30.77						
LC20	5.85	4.333	42.34	17.09	2.362	23.08						

7d Survival R	d Survival Rate Summary		Calculated Variate(A/B)							Isotonic Variate	
Conc-%	Code	Count	Mean	Min	Max	Std Dev	CV%	%Effect	A/B	Mean	%Effect
0	D	10	0.9000	0.0000	1.0000	0.3162	35.14%	0.0%	9/10	0.9	0.0%
13		10	0.4000	0.0000	1.0000	0.5164	129.10%	55.56%	4/10	0.5	44.44%
26		10	0.6000	0.0000	1.0000	0.5164	86.07%	33.33%	6/10	0.5	44.44%
52		10	0.5000	0.0000	1.0000	0.5270	105.40%	44.44%	5/10	0.5	44.44%
76		10	0.5000	0.0000	1.0000	0.5270	105.40%	44.44%	5/10	0.5	44.44%
100		10	0.2000	0.0000	1.0000	0.4216	210.80%	77.78%	2/10	0.2	77.78%

18.46

11.54

9.231

Analyst: W QA: CM

LC25

LC40

LC50

7.312

11.7

80

5.417

8.667

10.83

77

n/a

87.2

13.68

8.547

1.25

1.299

1.147

Report Date: Test Code/ID: 26 Apr-23 09:59 (p 1 of 1) 423188CD / 12-4685-5554

											C+ C
Ceriodaphnia	7-d Survival an	d Reproduction	Test							Sea	Crest Grou
Analysis ID:	20-3649-4811	Endpoint	Reprodu	uction			CET	IS Version	n: CETIS	v1.9.6	
Analyzed:	26 Apr-23 9:58	Analysis:	Parame	tric-Control vs	Trea	atments	Stat	us Level:	: 1		
Batch ID:	20-2296-4822	Test Type	: Reprodu	uction-Surviva	I (7d)):	Ana	lyst: L	ab Tech		
Start Date:	17 Apr-23	Protocol:	EPA/82	1/R-02-013 (2	002)			•	Reconstituted	Water	
Ending Date:	24 Apr-23	Species:	Cerioda	phnia dubia	,		Brin	ne: N	lot Applicable	9	
Test Length:	7d 0h	Taxon:	Branchi				Sou		n-House Cult		Age:
Sample ID:	14-5145-3006	Code:	423188.	В			Proj	iect: V	VET Quarterly	v Complian	ce Test (20
Sample Date:	17 Apr-23	Material:	POTWI	Effluent			Sou		IPDES Permi		
Receipt Date:		CAS (PC)					Stat		01B		
Sample Age:		Client:	BMRI								
Data Transfor	m	Alt Hyp					NOEL	LOEL	TOEL	TU	PMSD
							52	70	00.00	1.923	57.12%
Dunnett Multi	ple Comparison		Stat Cri	tical MSD	DF	P-Type		76 Decisio	62.86 on(a:5%)	1.923	37.127
Control	ple Comparison	Test	2.2 4 2.2 4 2.2 4 2.2	89 9.19 89 9.19 89 9.19	7 18 7 18 7 18 7 18	P-Type CDF CDF CDF	P-Value 0.0556 0.2540 0.2363 0.0337 0.0049	Decisio Non-Sig Non-Sig Non-Sig Signific	on(α:5%) gnificant Effer gnificant Effer ant Effect ant Effect	ct	31,127
Dunnett Multi Control Dilution Water	ple Comparison vs Conc-% 13 26 52 76* 100*	Test 2.24 1.39 1.44 2.46	2.2 4 2.2 4 2.2 4 2.2	89 9.19 89 9.19 89 9.19 89 9.19	7 18 7 18 7 18 7 18	CDF CDF CDF	P-Value 0.0556 0.2540 0.2363 0.0337	Decisio Non-Sig Non-Sig Non-Sig Signific	on(α:5%) gnificant Effe gnificant Effe gnificant Effe ant Effect	ct	31.127
Dunnett Multi Control Dilution Water	ple Comparison vs Conc-% 13 26 52 76* 100*	Test	2.2 4 2.2 4 2.2 4 2.2	89 9.19 89 9.19 89 9.19 89 9.19	7 18 7 18 7 18 7 18	CDF CDF CDF	P-Value 0.0556 0.2540 0.2363 0.0337	Decision Non-Sig Non-Sig Non-Sig Signific Signific	on(α:5%) gnificant Effe gnificant Effe gnificant Effe ant Effect	ct	31.127
Dunnett Multi Control Dilution Water ANOVA Table Source	ple Comparison vs Conc-% 13 26 52 76* 100*	Test	2.2 4 2.2 4 2.2 4 2.2 1 2.2	89 9.19' 89 9.19' 89 9.19' 89 9.19 89 9.19	7 18 7 18 7 18 7 18	CDF CDF CDF CDF	P-Value 0.0556 0.2540 0.2363 0.0337 0.0049	Decision Non-Sig Non-Sig Non-Sig Signific Signific	on(α:5%) gnificant Effe gnificant Effe gnificant Effect ant Effect	ct	St. IER
Dunnett Multi	ple Comparison vs Conc-% 13 26 52 76* 100*	Test	2.2 4 2.2 4 2.2 4 2.2 1 2.2 n Square	89 9.19' 89 9.19' 89 9.19' 89 9.19' 89 9.19'	7 18 7 18 7 18 7 18	CDF CDF CDF CDF CDF	P-Value 0.0556 0.2540 0.2363 0.0337 0.0049 P-Value	Decision Non-Sig Non-Sig Non-Sig Signific Signific	on(α:5%) gnificant Effer gnificant Effer gnificant Effect ant Effect ant Effect	ct	St. IER
Dunnett Multi Control Dilution Water ANOVA Table Source Between Error	ple Comparison vs Conc-% 13 26 52 76* 100* Sum Squa	Test	2.2 4 2.2 4 2.2 4 2.2 1 2.2 n Square	89 9.19 89 9.19 89 9.19 89 9.19 89 9.19 DF	7 18 7 18 7 18 7 18	CDF CDF CDF CDF CDF	P-Value 0.0556 0.2540 0.2363 0.0337 0.0049 P-Value	Decision Non-Sig Non-Sig Non-Sig Signific Signific	on(α:5%) gnificant Effer gnificant Effer gnificant Effect ant Effect ant Effect	ct	St. IER
Dunnett Multi Control Dilution Water ANOVA Table Source Between Error Total	ple Comparison vs Conc-% 13 26 52 76* 100* Sum Squa 993.8 4357.6	Test	2.2 4 2.2 4 2.2 4 2.2 1 2.2 n Square	89 9.19' 89 9.19' 89 9.19' 89 9.19' 89 9.19' DF 5 54	7 18 7 18 7 18 7 18	CDF CDF CDF CDF CDF	P-Value 0.0556 0.2540 0.2363 0.0337 0.0049 P-Value	Decision Non-Sig Non-Sig Non-Sig Signific Signific	on(α:5%) gnificant Effer gnificant Effer gnificant Effect ant Effect ant Effect	ct	
Dunnett Multi Control Dilution Water ANOVA Table Source Between Error Total ANOVA Assur	ple Comparison vs Conc-% 13 26 52 76* 100* Sum Squa 993.8 4357.6 5351.4	Test	2.2 4 2.2 4 2.2 4 2.2 1 2.2 n Square	89 9.19' 89 9.19' 89 9.19' 89 9.19' 89 9.19' DF 5 54 59	7 18 7 18 7 18 7 18 7 18	CDF CDF CDF CDF CDF	P-Value 0.0556 0.2540 0.2363 0.0337 0.0049 P-Value	Decision Non-Sig Non-Sig Non-Sig Signific Signific Signific	on(α:5%) gnificant Effer gnificant Effer gnificant Effect ant Effect ant Effect	ct	
Dunnett Multi Control Dilution Water ANOVA Table Source Between Error Total	ple Comparison vs Conc-% 13 26 52 76* 100* Sum Squa 993.8 4357.6 5351.4 mptions Tests Test	Test	2.2 4 2.2 4 2.2 1 2.2 n Square 76	89 9.19' 89 9.19' 89 9.19' 89 9.19' 89 9.19' DF 5 54 59	7 18 7 18 7 18 7 18 7 18 7 18 8	CDF CDF CDF CDF CDF CDF	P-Value 0.0556 0.2540 0.2363 0.0337 0.0049 P-Value 0.0441	Decision Non-Signon-Signific Signific Signific Decision Signific	on(α:5%) gnificant Effect gnificant Effect ant Effect ant Effect on(α:5%) ant Effect	ct	

95% LCL 95% UCL Median

18

0

5

5

0

10.5

21.51

13.81

17.67

18.75

11.14

8.312

Min

0

0

0

0

0

0

Max

24

22

23

29

18

21

CV%

46.98%

95.48%

114.70%

111.43%

Std Err

2.392

2.968

3.17

3.736

2.185

2.26

%Effect

0.00%

34.78%

36.02%

61.49%

132.20% 55.90%

223.32% 80.12%

Conc-%

0

13

26

52

76

100

Code

D

Count

10

10

10

10

10

10

Mean

16.1

7.1

10.5

10.3

6.2

3.2

10.69

3.329

1.849

1.258

-1.912

0.3855

Report Date: Tes

26 Apr-23 09:59 (p 1 of 1)

st Code/ID:	423188CD /	12-4685-5	5554
	The second secon		

Ceriodaphnia	7-d Survival and F	Reproduction To	est				SeaCrest Group
Analysis ID:	01-9341-8659	Endpoint:	Reproduction	CETIS Ver	sion:	CETISv1.9.6	
Analyzed:	26 Apr-23 9:58	Analysis:	Linear Interpolation (ICPIN)	Status Lev	/el:	1	
Batch ID:	20-2296-4822	Test Type:	Reproduction-Survival (7d)	Analyst:	Lab 7	Гесһ	
Start Date:	17 Apr-23	Protocol:	EPA/821/R-02-013 (2002)	Diluent:	Reco	nstituted Water	
Ending Date:	24 Apr-23	Species:	Ceriodaphnia dubia	Brine:	Not A	Applicable	
Test Length:	7d 0h	Taxon:	Branchiopoda	Source:	In-Ho	ouse Culture	Age:
Sample ID:	14-5145-3006	Code:	423188.B	Project:	WET	Quarterly Com	pliance Test (2Q)
Sample Date:	17 Apr-23	Material:	POTW Effluent	Source:	NPDI	ES Permit # (XX	(9999999)
Receipt Date:	17 Apr-23	CAS (PC):		Station:	001B		
Sample Age:	n/a	Client:	BMRI				

X Trans	sform	Y Transform	Seed	d	Resamples	Exp 95% CL	Method	
Linear		Linear	2065	5562	1000	Yes	Two-Point Interpolation	
Point E	stimates							
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL		
IC5	1.539	1.032	31.06	64.98	3.22	96.87		
IC10	3.078	2.065	54.28	32.49	1.842	48.43		
IC15	4.617	3.097	57.26	21.66	1.746	32.29		
IC20	6.156	4.129	60.02	16.24	1.666	24.22		
IC25	7.695	5.162	64.6	13	1.548	19.37		
IC40	12.31	8.259	80.43	8.122	1.243	12.11		
IC50	61 68	10.32	89.76	1 621	1 114	9 687		

Reproduction	Summary		Calculated Variate							nic Variate
Conc-%	Code	Count	Mean	Min	Max	Std Dev	CV%	%Effect	Mean	%Effect
0	D	10	16.1	0	24	7.564	46.98%	0.0%	16.1	0.0%
13		10	7.1	0	22	9.386	132.20%	55.9%	9.3	42.24%
26		10	10.5	0	23	10.02	95.48%	34.78%	9.3	42.24%
52		10	10.3	0	29	11.81	114.70%	36.02%	9.3	42.24%
76		10	6.2	0	18	6.909	111.40%	61.49%	6.2	61.49%
100		10	3.2	0	21	7.146	223.30%	80.12%	3.2	80.12%

Client: BMRI Site: 001B CO-0045675

SCG Project No.: 423188.B Project: Quarterly WET

Appendix 3 - Data Sheets for the Fathead Minnow Test

WE:	T TEST	REPORT	FORM -	- CHRONIC
* * •		TOTAL CITY	I OIVII	CHILOTTIC

Permittee:

Battle Mountain Resources, Inc.

Permit No.:

CO-0045675

Outfall:

001B - IWC: 52%

Test Type:

Routine |

Accelerated

Screen

Test Species:

fathead minnow

Test Start Time	Test Start Date	Test End Time	Test End Date
1400	04-17-2023	1300	04-24-2023

Test Results	Lethality/TCP6C	Growth/TKP6C
S code: NOEL	100%	100%
	PASS	PASS
P code: LC ₂₅ /IC ₂₅	>100%	>100%
	PASS	PASS
T code:	>100%	>100%

Test Summary

Measurements	Control (0%)	13%	26%	52%	76%	100%
Exposed organisms	40	40	40	40	40	40
Survival for day 1	40	40	40	40	40	40
Survival for day 2	40	39	39	40	40	40
Survival for day 3	40	39	39	40	40	40
Survival for day 4	40	39	39	40	40	40
Survival for day 5	40	39	39	40	40	40
Survival for day 6	40	39	39	40	40	40
Survival for day 7	40	39	39	40	40	40
Mean Dry Wt. (mg)	0.447	0.410	0.435	0.453	0.458	0.457

Hardness (mg/L) – Receiving Water: N/A Effluent: 45/37/29 Recon Water: 87 Alkalinity (mg/L) – Receiving Water: N/A Effluent: 33/31/21 Recon Water: 57 Chlorine (mg/L) – Effluent: <0.01 pH (initial/final) – Control: 8.1/7.6 100%: 7.8/7.2

Total Ammonia as NH₃ (mg/L) - Effluent: 0.05/<0.03/0.04

Were all Test Conditions in Conformance with Division Guidelines? YES NO

If NO, list deviations from test specifications: N/A

Laboratory: SeaCrest Group

Comments:

Analyst's Name: Haley West, Catherine McDonald, Olivia Montoya, Julie McKenney, and

Lindsay Rutherford

Signature Kally Wet Date May 2, 2023

Fathead Minnow Chronic Benchsheet

dno	
	8
5	C
ESI	ø
ď	₹
3	S
U	.2
S	9
-	_

7		Ave wt	_		Lhh.d			110	01/0		Ĺ	_	55.0			0163				07110	27.70			17.	154.0															
スオグル・ロコ		Fish Wt mg	0440	0.475	hbe 0	0.477	124.0	0.473	11h.0	0.241	16h.0	odun	0,540	0.300	65h.0	0.403	0.457	bph.o	LLHO	_	0.405		3hh-0	254.0		75h.0														
NAV	3	Tare	-	1.15347	287h1:1	102/11.1	118611	1.15489	858h11	1.13648	114477	1.14559	1.15750	1-16-107	586h11	1.14349	1.15/244	1.11,1095	1.170Su	1148718	1.15311	1.15055	1.15760	1.13596	1.15328	1.14519					1.1632			DOLL						
Dilution H ₂ O:		Fish & Tare	12896	15822	08051	15178	13768	15962	15255	130139	bobh!	.15025	16290	10701	185915	19752	10191	11189	1753	15357	115711	11/25	802011.	1403d	1581	Ilbh!					1.6357			MAY ST MODEL						
Dilut	1	# L	10 #1	#2	#3	0 #4 (S# 0!) 9# C	1 4 0	0 #8	6# 0	01# 0	0 #11 [9 #12	0 #13	0 #14 [0 #15	0 #16	1 414	0 #18	0 #19	(0 #50	10 #21	0 #22	0 #23	10 #24 1	#	#	#	#	t #		Comments:	OS						
52	Test Conditions:	9	2	9	5	0	1 01	1 01 2	01	9 6	101	1 0)	10	26	0	01 0) (0)	01 5	11011	01	5	1 01 0	1 01	07	01	101					pretest		Comi							
IWC:	Test Co	4 5	01 01	01	-	0101	21 (2)	2/ 01/0	OI OI	9	3101	1010	10 10	99	Q 01	d 10 [C	01 01	01 O1	0110110	10	01	1010		10 10	0	SOK					- 19			Hard: mg/L	AIK: mg/L	NH: mail	3			
7173	FHM	2 3	10 10	01 91	10 10	10 10	01 01	01 01	01 01	9	01 01	10 10	10 10	9	10 10	10 910	10 10	10 10	01 01	010)	10 10	01 01	0) 01	10 10	10 10	10 10							Units:				L			
Date:	Template:	0 1	10 01	10 10	0) 01	10 (1)	10 10	10 10	10 10	10 10	10 10	10 10	10 10	10 (0)	10 10	10 10	10 10	10 10	10 (1)	10 10	10 10	10 10	10 10	10 10	10 (0	10 10	10	10	10	10			1	DO: mg/L	lemp: 'C	Cond. S/om3	20.00			
Sample Date:			5.0	1.52.1	2.6		2.0	25.1	1.5.			.25.i	7.4	の変数が	5	125.0	7.3		1.2	3 25.0	7.6		1.6	3.25.0	2.6					の対象を	CNU	がある。		500 mL	250 mL	5.5 cm	5	day	temia	
88. R	2110	9	5.2 7.0	24.2 24.1		312	12 75	24.2 24.1	1.8 8.7	309	5.3 17.3	24.2 24.2	1.8.1	305	5.3 7.4	242 242	7.7 8.0	241	54 45	24.2, 243	7.0.7.9	162	24 77	24.21 24.3	8.L A.L	245					K	80		8 2	2 2	OC 9	nedule	2x per day	<24hr artemia	
423188	Species Info:工具の	2	1.3 5	24.1 2	1.8	313	5 1.1	3	8.1		_	S	1 8	307	1.1		8.0	20	286	6.42	8.0	295	5 62	35.0	7.9	5hd					(Ni)		Exposure Chamber			rea.	Feeding Schedule		1 1	
Lab#:	Specie	•	45	5 250		ic	5.4	3 25.0	7.0	311	9.21.6	24.9	1.5	30	5.5	2 24 8 247	2 7.5	2	36	1-14-1	h.L	2	3.6		7.4	2					7	2			Volume:	Contace /	F		Food Used:	
1018	8	4	0.10	52 5.42	28 6	392	5.5 7.1	24.5 15.	7-2 2-1	385	51 13	52 5.h2	7.6 8.2	374	3.3 7.5	245 25°	Š	359	5.2 7.7	245 25	18 HL	340		1.52 5 42	7.4 8-1	320					700	3		Total Capacity:	Test Solution Volume:	Motor Dorth (constant):	7 Fe		C/// Food	
Site:	123 E		0.7 5.0	24.12	177 7.8	10	5 60	24.120	8.17		7.15	34.1 21	711	9	7.4 3	34.1 Z	2.17	1	7.6	341 2	1	9	5 6'6		9.0 7						ON		MR	P	1	9 ×	9	>	14 0	1
	アナつ	3	4.8	24.1	7.7	375	8.8	34.1	777	371	3.6	34.1	2.6	371	v	24.1	7.0	37	8.8	1.461	7	350	6.0	34.1	7.5	342					00	y	2 Rcv 3	1	1	-	2	Ľ	NO I	1
	Test End:	2	7.8 6.7	24.2 24.1	E.8 6.0	363	6'0 8L	24.2 Buil	7.0 8.	302	7.7 7.1	24.234.1	7.0 8.7	358	7.7 7.2	24.2 St.	7.1 3.1	353	7.4 7.4	1.48 5, WE	1.8	349	7.617.5	24.2 24.1	7.2 8.6	345					CN	2	Rcv 1 Rcv 2	+	+	+	3 4,	ŀ	OM OM	/
	1400 T	1	111	25.18	1.8	312		9	8.11		רר	みこ	5.07	101 2	80	24.5	8.0	48	4.8	34.3	79	360	8.7	24.1	7.9	324					CW		Recon	1	2 5			>	DM.	1
R	123 1	1 (6123	.1 25.1	1.7.1	1 3	3 7.3	135.1	1.7	_	173	1 249	27.60	8	1 7.3	i 249	0 7.5	11 3	5 73	1 24.8	P. 9.	3 331	9 7.3	1 24.8	7					-		-	7	3	200	20.00	0 1	>	CAN.	1 . 1
DAR	art: 041	Read 0	6.0) oa	2 du	В 8.	Cond 34	00 7.	Temp 2	PH K	Cond 353	00 //	Temp 24.	PH 8.0	Cond 35	8.	Temp 24		Cond 380	00	Temp 24	1	Cond 333	DO 8.9	Temp 24.1		Cond 322	00	Temp	Hd	Cond	als HW	\dashv	-	22 2	22/2	25 V 2 V		┞	sls	
Client:	Test Start:	Conc Read	٦		о О	0	٦	2	_	J	J	710	_	J	-1		7	0	ט	710		J	J	9	_)	-1		4	J	Initials	Water #	_		AK			AM	Initials	MO

Report Date: Test Code/ID: 26 Apr-23 10:49 (p 1 of 3) 423188FHM / 09-0870-1247

Fathead Minn	now 7-d Larva	l Survival	and Growt	h Test							Sea	Crest Grou
Analysis ID: Analyzed:	18-6736-926 26 Apr-23 10		Endpoint: Analysis:	7d Survival Ra		vs T	Treatments	12019	'IS Versio us Level:		1.9.6	
Batch ID:	07-2130-562	4	Test Type:	Growth-Surviv	al (7d)			Ana	lyst: L	ab Tech		
Start Date:	17 Apr-23		Protocol:	EPA/821/R-02	-013 (200	(2)		Dilu	ent: R	Reconstituted '	Water	
Ending Date:			Species:	Pimephales pi		,		Brin	e: N	lot Applicable		
Test Length:			Taxon:	Actinopterygii				Sou		n-House Cultu		Age:
Sample ID:	13-3359-523	1	Code:	423188.B				Proj	ect. M	VET Quarterly	Complian	re Test (20
Sample Date:			Material:	POTW Effluer	t			Sou		IPDES Permit		
Receipt Date:			CAS (PC):	1 O I W Linder				Stat		01B	# (1113335	,5555)
Sample Age:			Client:	BMRI				Stat	ioii. 0	OID		
Data Transfor		Alt H	lyn					NOEL	LOEL	TOEL	TU	PMSD
Angular (Corre		C > T						100	>100	n/a	1	5.60%
										1/2.50		
Steel Many-O	vs Conc-		Test 5	Stat Critical	Ties	DE	P-Type	P-Value	Decision	on(α:5%)		
Dilution Water		70	16	10	1	6	CDF	0.6105		gnificant Effec	t	
Dilation Trater	26		16	10	1	6	CDF	0.6105		gnificant Effec		
	52		18	10	1	6	CDF	0.8333		gnificant Effec		
	76		18	10	1	6	CDF	0.8333		gnificant Effec		
	100		18	10	1	6	CDF	0.8333		gnificant Effec		
ANOVA Table												
Source	Sum S	nuares	Mean	Square	DF		F Stat	P-Value	Decisio	on(α:5%)		
Between	0.00885		0.001		5		0.8	0.5640		nificant Effec	t	
Error	0.03983		0.002		18		0.0	0.0040	14011 018	grimodrit Endo	,	
Total	0.04869	***	0.002		23		-					
ANOVA Assur	mptions Tests											
Attribute	Test				Test St	tat	Critical	P-Value	Decisio	on(a:1%)		
Variance	1000	Equality of	f Variance T	est				1 3,7000	Indeterr			
Distribution			lormality Tes		0.6154		0.884	9.2E-07		rmal Distribut	ion	
7d Survival Ra	ate Summary											
Conc-%	Code	Count	t Mean	95% LCL	95% U	CL	Median	Min	Max	Std Err	CV%	%Effect
0	D	4	1.0000		1.0000		1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
13		4	0.9750		1.0000		1.0000	0.9000	1.0000	0.0250	5.13%	2.50%
26		4	0.9750		1.0000		1.0000	0.9000	1.0000	0.0250	5.13%	2.50%
		4	1.0000		1.0000		1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
52							1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
		4	1.0000	1.0000	1.0000							0.00.0
52 76 100		4	1.0000		1.0000		1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
76 100	ected) Transf	4	1.0000							0.0000	0.00%	
76 100 Angular (Corre	ected) Transf Code	4	1.0000 mmary		1.0000	CL				0.0000 Std Err	0.00% CV%	
76 100 Angular (Corre Conc-% 0		4 ormed Su	1.0000 mmary t Mean 1.412	1.0000	1.0000	CL	1.0000	1.0000	1.0000			0.00% %Effect 0.00%
76 100 Angular (Corre Conc-% 0 13	Code	4 ormed Su Count	1.0000 mmary t Mean 1.412 1.371	95% LCL 1.412 1.242	95% UC 1.412 1.501	CL	1.0000 Median 1.412 1.412	1.0000 Min 1.412 1.249	1.0000 Max 1.412 1.412	Std Err	CV%	0.00% %Effect 0.00% 2.89%
76 100 Angular (Corre Conc-% 0 13 26	Code	4 ormed Su Count	1.0000 mmary t Mean 1.412 1.371 1.371	95% LCL 1.412 1.242 1.242	1.0000 95% U0 1.412 1.501 1.501	CL	1.0000 Median 1.412 1.412 1.412	1.0000 Min 1.412 1.249 1.249	1.0000 Max 1.412 1.412 1.412	Std Err	CV% 0.00%	0.00% %Effect 0.00% 2.89% 2.89%
76 100 Angular (Corre Conc-% 0 13 26 52	Code	4 ormed Su Count	1.0000 mmary t Mean 1.412 1.371 1.371 1.412	95% LCL 1.412 1.242 1.242 1.412	95% U0 1.412 1.501 1.501 1.412	CL	1.0000 Median 1.412 1.412 1.412 1.412	1.0000 Min 1.412 1.249 1.249 1.412	1.0000 Max 1.412 1.412 1.412 1.412	Std Err 0 0.04074	CV% 0.00% 5.94%	0.00% %Effect 0.00% 2.89%
76 100 Angular (Corre Conc-% 0 13 26	Code	ormed Su Count 4 4 4	1.0000 mmary t Mean 1.412 1.371 1.371	95% LCL 1.412 1.242 1.242	1.0000 95% U0 1.412 1.501 1.501	CL	1.0000 Median 1.412 1.412 1.412	1.0000 Min 1.412 1.249 1.249	1.0000 Max 1.412 1.412 1.412	Std Err 0 0.04074 0.04074	CV% 0.00% 5.94% 5.94%	0.00% %Effect 0.00% 2.89% 2.89%

Report Date: Test Code/ID:

26 Apr-23 10:49 (p 1 of 2) 423188FHM / 09-0870-1247

Fathea	ad Minn	ow 7-d Larval S	Survival an	d Grow	th Test							Sea	Crest Group
Analys	is ID:	15-6677-6320	En	dpoint:	7d Survival Ra	te			CETIS V	ersion	CETIS	v1.9.6)
Analyz	ed:	26 Apr-23 10:49) An	alysis:	Linear Interpol	ation (ICPIN	1)		Status I	_evel:	1		
Batch	ID:	07-2130-5624	Tes	st Type:	Growth-Surviva	al (7d)			Analyst	Lat	Tech		
Start D	Date:	17 Apr-23	Pro	otocol:	EPA/821/R-02-	-013 (2002)			Diluent:	Red	constituted	Water	
Ending	g Date:	24 Apr-23	Sp	ecies:	Pimephales pre	omelas			Brine:	Not	Applicable	е	
Test L	ength:	7d 0h	Tax	con:	Actinopterygii				Source:	In-l	House Cult	ure	Age:
Sampl	e ID:	13-3359-5231	Co	de:	423188.B				Project:	WE	T Quarterl	y Complian	ce Test (2Q
Sampl	e Date:	17 Apr-23	Ma	terial:	POTW Effluent	t			Source:			it # (XX9999	
Receip	t Date:	17 Apr-23	CA	S (PC):					Station:	001	В		
Sampl	e Age:	n/a	Cli	ent:	BMRI								
Linear	Interpo	lation Options											
X Tran	sform	Y Transform	n See	ed	Resamples	Exp 95%	CL N	Method					
Linear		Linear	984	1870	1000	Yes	T	wo-Point	Interpolat	ion			
Point E	Estimat	es				- 6.7							
Level	%	95% LCL	95% UCL	. TU	95% LCL	95% UCL							
LC5	>100	n/a	n/a	<1	n/a	n/a							
LC10	>100	n/a	n/a	<1	n/a	n/a							
LC15	>100	n/a	n/a	<1	n/a	n/a							
LC20	>100	n/a	n/a	<1	n/a	n/a							
LC25	>100	n/a	n/a	<1	n/a	n/a							
LC40	>100	n/a	n/a	<1	n/a	n/a							
LC50	>100	n/a	n/a	<1	n/a	n/a							
7d Sur	vival Ra	ate Summary				Calcu	lated V	ariate(A/B)			Isoto	nic Variate
Conc-%	6	Code	Count	Mean	Min	Max	Std D	ev CV%	%	Effect	A/B	Mean	%Effect
)		D	4	1.000	0 1.0000	1.0000	0.0000	0.00	% 0.	0%	40/40	1	0.0%
13			4	0.975	0.9000	1.0000	0.0500	5.13	% 2.	5%	39/40	0.99	1.0%
26			4	0.975	0.9000	1.0000	0.0500	5.13	% 2.	5%	39/40	0.99	1.0%
52			4	1.000	0 1.0000	1.0000	0.0000	0.00	% 0.	0%	40/40	0.99	1.0%
76			4	1.000	0 1.0000	1.0000	0.0000	0.00	% 0.	0%	40/40	0.99	1.0%
100			4	1.000	0 1.0000	1.0000	0.0000	0.00	% 0.	0%	40/40	0.99	1.0%
7d Sur	vival Ra	ate Detail											
Conc-%	6	Code	Rep 1	Rep 2		Rep 4							
0		D	1.0000	1.000	0 1.0000	1.0000							
13			1.0000	1.000	0 1.0000	0.9000							
26			1.0000	1.000	0 1.0000	0.9000							
52			1.0000	1.000	0 1.0000	1.0000							
76			1.0000	1.000	0 1.0000	1.0000							

100

1.0000

1.0000

1.0000

1.0000

Report Date: Test Code/ID: 26 Apr-23 10:49 (p 3 of 3) 423188FHM / 09-0870-1247

Fathead Minr	now 7	-d Larval S	urvival a	nd Growt	h Te	st								SeaC	rest Group
Analysis ID:	12-7	646-6764	E	ndpoint:	Me	an Dry Bion	nass-mg			CET	IS Versi	on:	CETISv1	.9.6	
Analyzed:	26 A	pr-23 10:49	A	nalysis:	Par	ametric-Co	ntrol vs 7	Freat	tments	Stat	us Level	l:	1		
Batch ID:	07-2	130-5624	Te	est Type:	Gro	wth-Surviva	al (7d)			Ana	lyst: I	Lab To	ech		
Start Date:	17 A	pr-23		rotocol:		A/821/R-02-		02)		Dilu	ent: F	Recor	stituted V	Vater	
Ending Date:	24 A	pr-23	S	oecies:		ephales pro				Brin	e: 1	Not A	plicable		
Test Length:				ixon:		inopterygii				Sou			se Cultur	e	Age:
Sample ID:	13-33	359-5231	C	ode:	423	188.B				Proj	ect: \	WET	Quarterly	Complianc	e Test (2Q)
Sample Date:	: 17 A	pr-23	M	aterial:	PO	TW Effluent				Sou				# (XX9999	
Receipt Date:	: 17 A	pr-23	C	AS (PC):						Stat	ion: (001B			
Sample Age:	n/a		CI	ient:	ВМ	RI									
Data Transfor	rm		Alt Hyp							NOEL	LOEL		TOEL	TU	PMSD
Untransformed	d		C > T							100	>100		n/a	1	22.83%
Dunnett Multi	iple C	omparison	Test												
Control	vs	Conc-%		Test S	stat	Critical	MSD	DF	P-Type	P-Value	Decisi	ion(α:	5%)		
Dilution Water	1	13		0.873	6	2.407	0.102	6	CDF	0.4786	Non-Si	ignific	ant Effect		
		26		0.2834	4	2.407	0.102	6	CDF	0.7367	Non-Si	ignific	ant Effect		
		52		-0.159	5	2.407	0.102	6	CDF	0.8760	Non-Si	ignific	ant Effect		
		76		-0.265	6	2.407	0.102	6	CDF	0.8996	Non-Si	ignific	ant Effect		
		100		-0.236	2	2.407	0.102	6	CDF	0.8934	Non-Si	ignific	ant Effect		
ANOVA Table	•														
Source		Sum Squa	ires	Mean	Squ	are	DF		F Stat	P-Value	Decisi	on(α:	5%)		
Between		0.006846		0.0013	3692		5		0.3817	0.8547	Non-Si	ignific	ant Effect		
Error		0.064561		0.003	5867		18								
Total		0.071407					23								
ANOVA Assur	mptio	ns Tests													
Attribute		Test					Test S	tat	Critical	P-Value	Decisi	on(α:	1%)		
Variance		Bartlett Eq	uality of V	ariance T	est		8.491		15.09	0.1312	Equal \	Variar	nces		
Distribution		Shapiro-W	ilk W Nor	mality Tes	t		0.9223		0.884	0.0658	Norma	l Distr	ibution		
Mean Dry Bio	mass-	mg Summ	ary												
Conc-%		Code	Count	Mean		95% LCL	95% U	CL	Median	Min	Max	5	Std Err	CV%	%Effect
)		D	4	0.4465	5	0.3846	0.5084		0.4575	0.394	0.477	(0.01945	8.71%	0.00%
13			4	0.4095	5	0.2783	0.5407		0.437	0.291	0.473	(0.04122	20.13%	8.29%
26			4	0.4345	5	0.2748	0.5942		0.449	0.3	0.54	(0.05018	23.10%	2.69%
52			4	0.4533	3	0.3935	0.513		0.458	0.403	0.494	(0.01878	8.29%	-1.51%
76			4	0.4577		0.4015	0.514		0.4735	0.405	0.479	(0.01769	7.73%	-2.52%
100			4	0.4565	5	0.4218	0.4912		0.45	0.438	0.488	(0.0109	4.78%	-2.24%
Mean Dry Bio	mass-	mg Detail													
Conc-%		Code	Rep 1	Rep 2		Rep 3	Rep 4								
		D	0.44	0.475		0.394	0.477								
)			0 457	0.472		0.417	0.291								
			0.457	0.473		0.111									
13			0.432	0.473		0.54	0.3								
13 26															
0 13 26 52 76			0.432	0.466		0.54	0.3								

Report Date: Test Code/ID: 26 Apr-23 10:49 (p 2 of 2) 423188FHM / 09-0870-1247

Fathea	d Minn	ow 7-d Larval	Survival a	nd Grow	th Test								Sea	Crest Grou
		01-0035-9332	7.0	2 - 2 - 3	75-20-20				CET	TIS Vers	lanı	CETIS		
Analys Analyz		26 Apr-23 10:4		ndpoint: nalysis:	Mean Dry Bior Linear Interpol		1)			tus Leve		1	71.9.6	
Batch	ID:	07-2130-5624	Te	st Type:	Growth-Surviv	al (7d)			Ana	lyst:	Lab T	ech		
Start D	Date:	17 Apr-23		otocol:	EPA/821/R-02				Dilu	ent:	Reco	nstituted	Water	
Ending	Date:	24 Apr-23	Sr	ecies:	Pimephales pr	omelas			Brir	ne:	Not A	pplicable)	
	ength:			xon:	Actinopterygii				Sou	rce:		use Cult		Age:
Sampl	e ID:	13-3359-5231	Co	de:	423188.B				Pro	ject:	WET	Quarterl	y Compliano	e Test (20
Sampl	e Date:	17 Apr-23	Ma	aterial:	POTW Effluen	t			Sou	rce:	NPDE	S Permi	t # (XX9999	9999)
		17 Apr-23	CA	S (PC):					Stat	ion:	001B			Contract.
	e Age:			ient:	BMRI									
Linear	Interpo	olation Options									11			
X Tran	sform	Y Transform	m Se	ed	Resamples	Exp 95%	CL I	Method						
Linear		Linear	13	35525	1000	Yes		wo-Poi	nt Interp	oolation				
Point E	Estimat	es												
Level	%	95% LCL	95% UC	L TU	95% LCL	95% UCL								
IC5	>100	n/a	n/a	<1	n/a	n/a								
IC10	>100	n/a	n/a	<1	n/a	n/a								
IC15	>100	n/a	n/a	<1	n/a	n/a								
IC20	>100	n/a	n/a	<1	n/a	n/a								
IC25	>100	n/a	n/a	<1	n/a	n/a								
IC40	>100	n/a	n/a	<1	n/a	n/a								
IC50	>100	n/a	n/a	<1	n/a	n/a								
Mean [Ory Bio	mass-mg Sumr	mary			Cal	lculated	l Variat	е				Isoto	nic Variate
Conc-9	%	Code	Count	Mean	Min	Max	Std D	ev C	V%	%Effe	ect		Mean	%Effec
0		D	4	0.446	5 0.394	0.477	0.038	9 8	71%	0.0%			0.4465	0.0%
13			4	0.409	5 0.291	0.473	0.082	44 2	0.13%	8.29%	6		0.4423	0.94%
26			4	0.434	5 0.3	0.54	0.100	4 2	3.10%	2.69%	6		0.4423	0.94%
52			4	0.453	3 0.403	0.494	0.037	56 8.	29%	-1.519	%		0.4423	0.94%
76			4	0.457	7 0.405	0.479	0.035	37 7.	73%	-2.52	%		0.4423	0.94%
100			4	0.456	5 0.438	0.488	0.021	81 4.	78%	-2.24	%		0.4423	0.94%
Mean [ory Bion	mass-mg Detail	ı											
Conc-%	6	Code	Rep 1	Rep 2	Rep 3	Rep 4								
0		D	0.44	0.475	0.394	0.477								
13			0.457	0.473	0.417	0.291								
26			0.432	0.466	0.54	0.3								
52			0.459	0.403		0.494								
76			0.477	0.479		0.47								
			0.477	0.413	0.400	0.41								

100

0.448

0.438

0.488

0.452

Client: BMRI Site: 001B CO-0045675

SCG Project No.: 423188.B Project: Quarterly WET

Appendix 4 - QA/QC and Reference Toxicant Test Chart

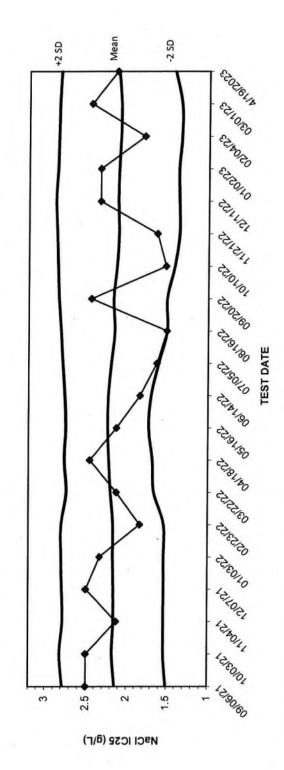
SCG Project No.: 423188.B Project: Quarterly WET

Quality Assurance Check List - Chronic Whole Effluent Toxicity Test

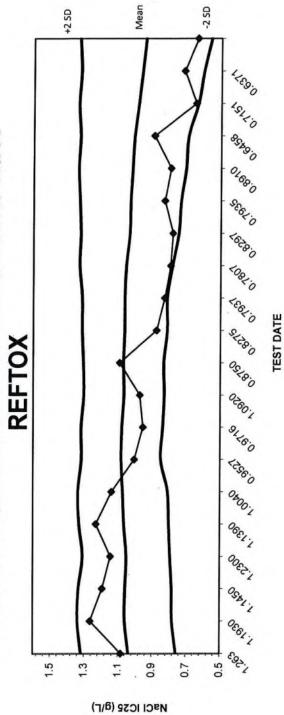
Client:	ources, Inc.				
SeaCrest Sample No:	423188.B				
Species Tested:	Ceriodaphnia dubia	and fathead minnow			
Sample Dates 04-17-2023 04-19-2023	Start Date of Test (Ceriodaphnia dubia)	Start Date of Test (fathead minnow)			
04-19-2023	04-17-2023	04-17-2023			
Sample received in lab properl	y preserved (0-6°C)?	N*			
Sample received at laboratory	within 36 hours of collection?	Y			
Sample delivered on ice or equ	ivalent?	Y			
Test initiated within 36-hours	of collection?	Y			
Test protocol conforms to CDF	PHE guidelines (Ceriodaphnia dubia)?	Y			
Test protocol conforms to CDI	PHE guidelines (fathead minnow)?	Y			
Average test temp. ±1°C (Ceric	odaphnia dubia)?	Y			
Average test temp. ±1°C (father	ad minnow)?	Y			
DO level ≥4.0mg/L; no super-s	saturation (Ceriodaphnia dubia)?	Y			
DO level ≥4.0mg/L; no super-s	saturation (fathead minnow)?	Y			
Survival in control ≥80% (Cert	iodaphnia dubia)?	Υ.			
Survival in control ≥80% (father	ead minnow)?	Y			
Ceriodaphnia dubia neonates <	24-hours old?	Y			
Fathead minnow larvae <24-ho	ours old?	Y			
Appropriate reference toxicity	test conducted?	Y			
Reference toxicity test results v	within the confidence limits for the lab?	Y			

^{*} Sample #2 was received at 6.5°C on the same day as sampling.

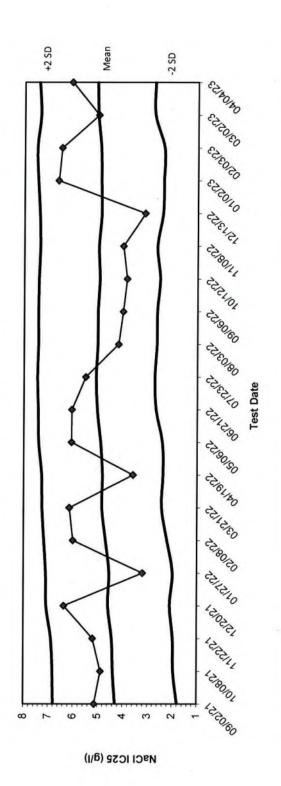
Position: Laboratory Manage


Date May 2, 2023

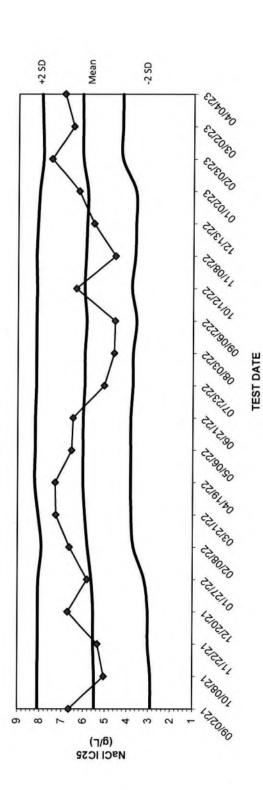
Date May 2, 2023


Method	Analyte	Date	LCS (rec)	%REC	%RPD	QC LIMITS
2320 B	Alkalinity - Total	3/2/2023	100.80%	100.14%	0.54%	***************************************
2320 B	Alkalinity - Total	3/9/2023	103.20%	%60.66	0.85%	%00.5 + +
2320 B	Alkalinity - Total	3/15/2023	101.60%	100.61%	1.95%	%00.5 + %00.5 +
2320 B	Alkalinity - Total	3/24/2023	100.00%	99.71%	-0.67%	%00.5 + +
4500 NH ₃ D	Ammonia	3/6/2023	104.00%	95.89%	0.79%	+ 10 00%
4500 NH ₃ D	Ammonia	3/13/2023	102.00%	100.58%	-2.47%	+ 10 00%
4500 NH ₃ D	Ammonia	3/20/2023	104.40%	95.45%	-1.33%	+ 10 00%
4500 NH ₃ D	Ammonia	3/28/2023	98.60%	96.47%	-4.72%	+ 10.00%
4500 CI D	Chlorine	3/21/2023	100.00%	87.50%	0.00%	± 5.00. ± 20.00%
2340 B	Hardness - Total	3/2/2023	100.00%	99.83%	0.65%	+ 5.00%
2340 B	Hardness - Total	3/9/2023	104.00%	89.50%	-1.48%	***************************************
2340 B	Hardness - Total	3/15/2023	100.00%	102.00%	0.59%	*2005+
2340 B	Hardness - Total	3/24/2023	101.75%	100.60%	-0.52%	± 5.00%
			LCS (rec)	%REC M1	%REC M2	oc imit
4500 O	DO - Winkler	3/1/2023	N/A	100.00%	102 90%	4 5 00%
4500 O	DO - Winkler	3/7/2023	N/A	101.42%	98.57%	%00.5 + + +
4500 O	DO - Winkler	3/14/2023	N/A	100.00%	97.06%	% CO: 5 + + + 5 OO%
4500 O	DO - Winkler	3/21/2023	N/A	98.51%	98.57%	+ 5.00%
			Blank	%REC MR S	%RPD	OC Limits
2540 D	Suspended Solids (TTL)	3/15/2023	100.00%	100.79%	0.00%	+ 15%
2540 C	Dissolved Solids (TTL)	3/15/2023	100.00%	95.70%	0.03%	± 15%
Signature:	Car man	B			Signature:	Malualist
Date:	April 1, 2023	E.			Date:	April 1,2023

CERIODAPHNIA SURVIVAL LC25 NaCI REFTOX


	T																			
+2 SD	2.7816	2 8150	2 7797	2 7874	2 7982	2 7982	2 7374	2.7626	2 7453	2.7582	2.7828	2.8054	2.8328	2.8465	2.8578	2 8742	2 8527	2 8430	2 8352	2,8158
-2 SD	1.5041	1.5342	1.5338	1.5310	1.5330	1.5330	1.6590	1.6774	1.7257	1.6951	1.6031	1.4959	1.4989	1.4070	1.3533	1.3566	1,3622	1.3307	1.3336	1.4129
Mean	2.1429	2.1746	2.1568	2.1592	2.1656	2.1656	2.1982	2.2200	2.2355	2.2267	2.1930	2.1506	2.1658	2.1268	2.1055	2.1154	2.1075	2.0869	2.0844	2.1144
IC25	2.5000	2.5000	2.1250	2.5000	2.3330	1.8330	2.1250	2.4580	2.1250	1.8330	1.6250	1.5000	2.4440	1.5130	1.6250	2.3330	2.3330	1.7860	2.4480	2.1300
Date	09/06/21	10/03/21	11/04/21	12/07/21	01/03/22	02/23/22	03/22/22	04/18/22	05/16/22	06/14/22	07/05/22	08/16/22	09/20/22	10/10/22	11/21/22	12/11/22	01/02/23	02/04/23	03/01/23	4/19/2023

CERIODAPHNIA REPRODUCTION IC25 NaCI


_	Т	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_		_
+2 SD	1.3162	1.336741096	1.3311	1.3076	1.3284	1.3354	1.3154	1.3174	1.3025	1.3053	1.3129	1.3123	1.3279	1.3223	1.3275	1.3353	1.3258	1.3342	1.3221	1.3300
-2 SD	0.7574	0.780748904	0.7830	0.7931	0.8016	0.8084	0.8489	0.8376	0.8293	0.8330	0.8126	0.8138	0.7830	0.7456	0.7328	0.7041	0.6912	0.6340	0.6021	0.5562
Mean	1.0368	1.058745	1.0570	1.0503	1.0650	1.0719	1.0821	1.0775	1.0659	1.0691	1.0628	1.0630	1.0554	1.0340	1.0301	1.0197	1.0085	0.9841	0.9621	0.9431
IC25	1.0820	1.263	1.1930	1.1450	1.2300	1.1390	1.0040	0.9527	0.9716	1.0920	0.8750	0.8275	0.7937	0.7807	0.8297	0.7935	0.8910	0.6458	0.7151	0.6371
Date	09/06/21	10/3/2021	11/04/21	12/07/21	01/03/22	02/23/22	03/22/22	04/18/22	05/16/22	06/14/22	07/05/22	08/16/22	09/20/22	10/10/22	11/21/22	12/11/22	01/02/23	02/04/23	03/01/23	04/19/23

FHM SURVIVAL LC25 NaCI REFTOX

+2 SD	6.7904	6.8135	6.8799	7.0713	7.0900	7.1688	7.2464	7.2622	7.3872	7.4081	7.4488	7.4112	7.4137	7.3925	7.3468	7.3690	7,4415	7.4818	7.3361	7.3978
-2 SD	1.7899	1.9442	1.9620	2.0849	1.9736	2.2009	2.4258	2.3657	2.3955	2.6626	2.7150	2.6328	2.6233	2.5089	2.6228	2.3996	2.3687	2.3524	2.7367	2.7278
Mean	4.2901	4.3788	4.4210	4.5781	4.5318	4.6848	4.8361	4.8140	4.8914	5.0353	5.0819	5.0220	5.0185	4.9507	4.9848	4.8843	4.9051	4.9171	5.0364	5.0628
IC25	5.1250	4.8750	5.2000	6.3570	3.2000	6.0000	6.1400	3.5870	6.0670	6.0500	5.5000	4.1820	4.0000	3.8420	4.0000	3.1230	6.6150	6.4800	5.0000	6.0800
Date	09/02/21	10/08/21	11/22/21	12/20/21	01/27/22	02/08/22	03/21/22	04/19/22	05/06/22	06/21/22	07/23/22	08/03/22	09/06/22	10/12/22	11/08/22	12/13/22	01/02/23	02/03/23	03/02/23	04/04/23

FHM GROWTH IC25 NaCI REFTOX

Ť																			
8.0895	8,0905	8.0771	8.0788	8.0692	7.9266	8.0729	8.2271	8.2074	8.2074	8.1587	8.1611	8.1620	8.1465	8.1744	8 1150	8.0455	7.8824	7.9047	7.9479
2.8982	2.9074	3.0315	3.0309	3.2082	3.7120	3.8121	3.8358	3.8376	3.8376	3.7409	3.7354	3.5812	3.7966	3.6531	3.6196	3.6291	4.2424	4.2468	4.2384
5.4939	5.4990	5.5543	5.5549	5.6387	5.8193	5.9425	6.0314	6.0225	6.0225	5.9498	5.9482	5.8716	5.9716	5.9137	5.8673	5.8373	6.0624	6.0758	6.0931
6.6650	5.0481	5.3520	6.7310	5.8200	6.6580	7.2690	7.2990	6.5630	6.5000	5.0500	4.6040	4.5630	6.3570	4.5530	5.5530	6.2350	7.4870	6.5000	6.9180
09/02/21	10/08/21	11/22/21	12/20/21	01/27/22	02/08/22	03/21/22	04/19/22	05/06/22	06/21/22	07/23/22	08/03/22	09/06/222	10/12/22	11/08/22	12/13/22	01/02/23	02/03/23	03/02/23	04/04/23
	6.6650 5.4939 2.8982	6.6650 5.4939 2.8982 5.0481 5.4990 2.9074	6.6650 5.4939 2.8982 5.0481 5.4990 2.9074 5.3520 5.5543 3.0315	6.6650 5.4939 2.8982 5.0481 5.4990 2.9074 5.3520 5.5543 3.0315 6.7310 5.5549 3.0309	6.6650 5.4939 2.8982 5.0481 5.4990 2.9074 5.3520 5.5543 3.0315 6.7310 5.5549 3.0309 5.8200 5.6387 3.2082	6.6650 5.4939 2.8982 5.0481 5.4990 2.9074 5.3520 5.5543 3.0315 6.7310 5.5549 3.0309 5.8200 5.6387 3.2082 6.6580 5.8193 3.7120	6.6650 5.4939 2.8982 5.0481 5.4990 2.9074 5.3520 5.5543 3.0315 6.7310 5.5549 3.0309 5.8200 5.6387 3.2082 6.6580 5.8193 3.7120 7.2690 5.9425 3.8121	6.6650 5.4939 2.8982 5.0481 5.4990 2.9074 5.3520 5.5543 3.0315 6.7310 5.5549 3.0309 5.8200 5.6387 3.2082 6.6580 5.8193 3.7120 7.2690 6.0314 3.8358	6.6650 5.4939 2.8982 5.0481 5.4990 2.9074 5.3520 5.5543 3.0315 6.7310 5.5549 3.0309 5.8200 5.6387 3.2082 6.6580 5.8193 3.7120 7.2690 6.0314 3.8358 6.5630 6.025 3.8376	6.6650 5.4939 2.8982 5.0481 5.4990 2.9074 6.3520 5.5543 3.0315 6.7310 5.6387 3.2082 6.6580 5.8193 3.7120 7.2690 6.0314 3.8358 6.5630 6.025 3.8376 6.5000 6.0225 3.8376	6.6650 5.4939 2.8982 5.0481 5.4990 2.9074 6.3520 5.5543 3.0315 6.7310 5.6387 3.2082 6.6580 5.8193 3.7120 7.2690 6.0314 3.8358 6.5630 6.025 3.8376 6.5000 6.0225 3.8376 5.0500 5.9498 3.7409	6.6650 5.4939 2.8982 5.0481 5.4990 2.9074 6.3520 5.5543 3.0315 6.7310 5.6387 3.2082 6.6580 5.8193 3.7120 7.2690 6.0314 3.8358 6.5630 6.025 3.8376 6.5000 6.0225 3.8376 4.6040 5.9482 3.7409	6.6650 5.4939 2.8982 5.0481 5.4990 2.9074 6.3520 5.5543 3.0315 6.7310 5.6387 3.2082 6.6580 5.8193 3.7120 7.2690 6.0314 3.8358 6.5630 6.0225 3.8376 6.5000 6.0225 3.8376 6.5000 6.9498 3.7409 4.6040 5.9482 3.7354 4.5630 5.8716 3.5812	6.6650 5.4939 2.8982 5.0481 5.4990 2.9074 6.7310 5.5543 3.0315 6.7310 5.6387 3.2082 6.6580 5.8193 3.7120 7.2690 6.0314 3.8358 6.5630 6.0225 3.8376 6.5000 6.0225 3.8376 6.5000 6.9482 3.7409 4.6040 5.9482 3.7354 4.5630 5.9716 3.7966	6.6650 5.4939 2.8982 5.0481 5.4990 2.9074 5.3520 5.5543 3.0315 6.7310 5.5549 3.0309 5.8200 5.8193 3.7120 7.2690 6.0314 3.8358 6.5000 6.0225 3.8376 6.5000 6.0225 3.8376 6.5000 6.0225 3.7409 4.6040 5.9482 3.7354 4.5630 5.9716 3.7966 6.3570 5.9716 3.7966	6.6650 5.4939 2.8982 5.0481 5.4990 2.9074 5.3520 5.5543 3.0315 6.7310 5.5549 3.0309 5.8200 5.6387 3.2082 6.6580 5.8193 3.7120 7.2990 6.0314 3.8358 6.5630 6.0225 3.8376 6.5000 6.0225 3.8376 6.5000 5.9482 3.7409 4.6040 5.9482 3.7354 4.5630 5.9482 3.7354 4.5530 5.9716 3.5812 6.3570 5.9137 3.6196	6.6650 5,4939 2.8982 5.0481 5,4990 2.9074 5.3520 5,5543 3.0315 6.7310 5,5549 3.0309 5.8200 5,8193 3.2082 6.6580 5,8193 3.7120 7.2690 6,0314 3.8358 6.5630 6,0225 3.8376 6.5000 6,0225 3.8376 6.5000 6,0225 3.7409 4.6040 5,9482 3.7354 4.5630 5,9716 3.7966 4.5530 5,9716 3.6531 5.5530 5,8673 3.6196 6.2350 5,8673 3.6291	6.6650 5.4939 2.8982 5.0481 5.4990 2.9074 5.3520 5.5549 3.0315 6.7310 5.5549 3.0309 5.8200 5.6387 3.2082 6.6580 5.8193 3.7120 7.2690 6.0314 3.8358 6.5630 6.0225 3.8376 6.5000 6.0225 3.8376 6.5000 6.0225 3.8376 6.5000 6.0225 3.8376 6.5000 5.9482 3.7409 4.6040 5.9482 3.7354 4.5530 5.9137 3.6531 6.2350 5.9137 3.6531 6.2350 5.873 3.6291 7.4870 6.0624 4.2424	6.6650 5.4939 2.8982 5.0481 5.4990 2.9074 5.3520 5.5543 3.0315 6.7310 5.5549 3.0309 5.8200 5.6387 3.0309 6.6580 5.6387 3.0309 7.2690 6.0314 3.8121 7.2990 6.0225 3.8376 6.5630 6.0225 3.8376 6.5630 6.0225 3.8376 6.5000 6.0225 3.7409 7.4690 5.9482 3.7354 7.5540 5.9482 3.7354 8.3750 5.9482 3.7364 8.3750 5.9482 3.7366 8.3750 5.9482 3.7364 8.3750 5.9482 3.7364 8.3750 5.9482 3.7366 8.3750 5.9482 3.7366 8.45530 5.917 3.6531 8.6230 5.8673 3.6531 8.6230 5.873 3.6291 8.6200 6.0024 4.2424 8.7468 4.2424

Battle Mountain Resources, Inc.

San Luis Project P.O. Box 310 San Luis, Colorado 81152-0310 (719) 379-0798

October 17, 2023

Colorado Department of Public Health and Environment Water Quality Control Division Attn: WQDC-B2 – DMR Receipt 4300 Cherry Creek Drive Denver, CO 80246-1530

Re: Battle Mountain Resources, Inc.

San Luis Project - San Luis, Colorado

Third Quarter 2023 – DMR's, BMP and WET Testing Reports

CDPHE CDPS Permit No. CO0045675

Dear Sir or Madame:

Please find the enclosed Battle Mountain Resources, Inc. "San Luis Project" (Permit No. CO0045675) Colorado Department of Public Health and Environment-Colorado Discharge Permit System (CDPS) Best Management Practices (BMP) report for permitted outfall 002 for the third quarter 2023. The quarterly BMP report provides the required data associated with groundwater well elevations, the quarterly potentiometric surface map and groundwater well chemistry.

In addition, the third quarter 2023 Discharge Monitoring Reports (DMRs) were submitted for each of the permitted water treatment plant discharges in the NetDMR System and the WET Testing Reports were attached to the appropriate DMR submittal in NetDMR. These permitted discharges consist of water treatment plant Discharge Numbers 001-A and 001-B. During the quarter, the maximum 30-day average flow was 0.26 million gallons of water discharged per day, therefore the applicable permit criteria for the reporting period is associated with discharge number 001-B.

Should any questions arise or if I can be of any assistance providing clarification, please call me at (719) 379-0538.

Sincerely,

Julio Madrid Authorized Agent

Battle Mountain Resources, Inc.

Cc: BMRI File

Devon Horntvedt, Newmont USA Limited Tim Runnells, Engineering Analytics

Battle Mountain Resources, Inc.

San Luis Project P.O. Box 310 San Luis, Colorado 81152-0310 (719) 379-0798

October 17, 2023

Colorado Department of Public Health and Environment Water Quality Control Division Attn: WQDC-B2 – DMR Receipt 4300 Cherry Creek Drive Denver, CO 80246-1530

Re: Battle Mountain Resources, Inc.

San Luis Project

Third Quarter 2023 BMP Report

CDPHE CDPS Permit No. CO0045675

Dear Sir or Madame:

In accordance with and compliance of the permit limitations and permit terms and conditions contained in Part I, Section 5 <u>Discharge Point 002</u>: (Permit Limitations, Best Management Practices, and Schedule of Compliance of the State of Colorado Authorization to Discharge Under the Colorado Discharge Permit System, Battle Mountain Resources, Inc. submits the following *Quarterly Best Management Practices Report*.

In accordance with the Water Quality Control Commission Regulations for Effluent Limitations, Section 62.4, and the Colorado Discharge Permit System Regulations, Sections 61.8(2), 61.8(3)(n), and 61.8(3)(r), 5 C.C.R. 1002-61, the permittee shall continue to implement the following limitations, compliance schedules, and Best Management Practices (BMPs).

The attainment of applicable water quality standards will be implemented and evaluated through the application of the following limitations, compliance schedules, and BMPs that are designed to monitor and control the groundwater quality and quantity discharging from the West Pit to the Rito Seco alluvial aquifer.

Specifically, the limitations, compliance schedules, and BMPs are those activities that address contaminated groundwater that may flow into the Rito Seco. This includes: (1) the potential flow of the affected groundwater from the West Pit that, in the past, manifested itself in the formation of the surface seeps along the arroyo sidewall of the Rito Seco, and (2) the plume of affected groundwater within the Rito Seco alluvial aquifer downgradient of the West Pit that flows along the naturally occurring hydraulic gradient and that may flow into the Rito Seco. The activities will include the following specific requirements:

1) The elevation of the groundwater table in the vicinity of the West Pit shall be measured on a weekly basis at the following locations: (i) the West Pit backfill wells BF-4 and BF-5 and (ii) the Rito Seco alluvial wells M-16 and M-20, as shown in Figure 3 of the permit, for purposes of determining the performance of the "pump and treat" system that regulates the flow and quality of the groundwater in the seepage front. The permittee shall

also determine on a quarterly basis the elevations of the groundwater table at BF-3, BF-4, BF-5, BF-6, M-11R, M-16, M-17, M-18, M-19, M-20, M-21, M-22, M-23, M-24, M-25, M-26, M-27, M-28, M-29, M-30, M-31, M-32, and M-33 for the purpose of developing a groundwater potentiometric map as monitoring confirmation of the groundwater flow direction. The quarterly data regarding depth to groundwater and groundwater potentiometric surface map will be submitted to the WQCD with the BMP report as described.

Compliance Action Taken: Battle Mountain Resources, Inc. measured the weekly West Pit backfill and alluvial wells as required under Paragraph 1 of the specific requirements. Measurements obtained for the weekly West Pit backfill wells (BF-4 and BF-5R) and alluvial wells (M-16 and M-20) are shown in Table 1. The quarterly groundwater elevations required under Paragraph 1 were also measured and are shown in Table 2. A potentiometric surface map, developed by Engineering Analytics, is shown in Figure 1. The groundwater table elevations and potentiometric map confirm that the groundwater flow gradient during the third quarter of 2023 was from the Rito Seco to the West Pit. No corrective action is required under Paragraph 1 specific requirement and scheduled compliance monitoring will continue unchanged next quarter.

Table 1 – Weekly Groundwater Elevations

Monitoring Well Identification	Observation Date	Groundwater Elevation (ft amsl)
	07/5/2023	8579.36
	07/12/2023	8579.30
	07/19/2023	8579.32
	07/26/2023	8579.29
	08/02/2023	8579.34
	08/09/2023	8579.30
BF-4	08/16/2023	8579.29
	08/23/2023	8579.29
	08/30/2023	8579.28
	09/06/2023	8579.31
	09/13/2023	8579.29
	09/20/2023	8579.29
	09/27/2023	8579.26
	07/5/2023	8579.06
	07/12/2023	8579.06
	07/19/2023	8579.04
	07/26/2023	8579.05
	08/02/2023	8579.05
	08/09/2023	8579.06
BF-5R	08/16/2023	8579.07
	08/23/2023	8579.03
	08/30/2023	8579.06
	09/06/2023	8579.08
	09/13/2023	8579.06
	09/20/2023	8579.08
	09/27/2023	8579.06

Table 1 – Weekly Groundwater Elevations (continued)

Monitoring Well Identification	Observation Date	Groundwater Elevation (ft amsl)
	07/5/2023	8603.16
	07/12/2023	8602.98
	07/19/2023	8602.74
	07/26/2023	8602.48
	08/02/2023	8602.25
	08/09/2023	8602.00
M-16	08/16/2023	8601.83
	08/23/2023	8601.65
	08/30/2023	8601.59
	09/06/2023	8601.54
	09/13/2023	8601.50
	09/20/2023	8601.47
	09/27/2023	8601.44
	07/5/2023	8580.44
	07/12/2023	8580.33
	07/19/2023	8580.34
	07/26/2023	8579.84
	08/02/2023	8580.33
	08/09/2023	8579.81
M-20	08/16/2023	8580.31
	08/23/2023	8580.20
	08/30/2023	8580.27
	09/06/2023	8580.15
	09/13/2023	8580.21
	09/20/2023	8580.16
	09/27/2023	8580.14

Table 2 – Quarterly Groundwater Elevations

Monitoring Well Identification	Observation Date	Groundwater Elevation (ft amsl)
BF-3	7/31/2023	8577.97
BF-4	7/31/2023	8579.29
BF-5R	7/31/2023	8579.05
BF-6	7/31/2023	8579.02
M-11R	7/31/2023	8549.88
M-16	7/31/2023	8602.33
M-17	7/31/2023	8586.97
M-18	7/31/2023	8580.06
M-19	7/31/2023	8581.19
M-20	7/31/2023	8580.33
M-21	7/31/2023	8577.28
M-22	7/31/2023	8572.60
M-23	7/31/2023	8555.53
M-24	7/31/2023	8559.10
M-25	7/31/2023	DRY
M-26	7/31/2023	8543.10
M-27	7/31/2023	DRY
M-28	7/31/2023	8580.33
M-29	7/31/2023	8580.63
M-30	7/31/2023	8611.69
M-31	7/31/2023	8549.49
M-32	7/31/2023	8533.71
M-33	7/31/2023	8535.75

2) The weekly groundwater table elevation data shall be tabulated and reported on the quarterly BMP reports, and the data will be used to evaluate compliance with the following permit limitations.

The groundwater table elevation, based on the average of all measured values for each calendar month in the West Pit backfill groundwater monitoring wells BF-4 and BF-5, must be equal to or lower than an elevation of 8582 feet above sea level (ft. amsl).

Compliance Action Taken: Battle Mountain Resources, Inc. measured the West Pit backfill monitoring wells (BF-4 and BF-5R) weekly and the measurements are shown in Table 1. The groundwater measurements for wells BF-4 and BF-5R were averaged by calendar month and the results are shown in Table 3. The July, August, and September 2023 averages were below the 8582 ft. amsl required in Paragraph 2. No corrective action is required under the Paragraph 2 requirement and schedule compliance monitoring will continue unchanged next quarter.

Table 3 – Quarterly West Pit Backfill Monthly Average Groundwater Table Elevations

Monitoring Well Identification	Month (2023)	Number of Observations	Average Monthly Groundwater Elevation (ft amsl)
	July	4	8579.32
BF-4	August	5	8579.30
	September	4	8579.29
	July	4	8579.05
BF-5R	August	5	8579.05
	September	4	8579.07

3) If the average monthly groundwater table elevation in the West Pit backfill for any calendar month, measured as described in the above paragraph, is greater than 8582 ft. amsl or the quarterly determination of the groundwater potentiometric surface map indicates that the flow of the groundwater is from the West Pit to the Rito Seco alluvium, the permittee shall verbally communicate such condition to WQCD within 24 hours of the determination of the condition (elevated West Pit backfill table or groundwater flow from the West Pit as indicated by the quarterly groundwater potentiometric surface map) and initiate the following compliance schedule.

Compliance Action Taken: Battle Mountain Resources, Inc. measured the West Pit backfill monitoring wells (BF-4 and BF-5R) weekly and the calendar month average groundwater measurement elevations (Table 3) were below the 8582 ft. amsl required in Paragraph 2. The July 31, 2023, potentiometric surface map (Figure 1) shows the groundwater flow gradient was from the Rito Seco alluvium to the West Pit backfill. Therefore, site operations demonstrated the West Pit backfill groundwater level was maintained at or below an elevation of 8582 ft. amsl through the quarter. Therefore, no requirement(s) to initiate actions contained within the schedule of compliance for Section 5.3 is required.

4) The quality of groundwater in the vicinity of the West Pit shall be monitored on a monthly basis in the Rito Seco alluvial groundwater monitoring wells M-19, M-21, M-24 and M-11R for the purposes of monitoring the changes in the quality of the plume or affected groundwater in the Rito Seco alluvial aquifer. Groundwater quality in these monitoring wells will be analyzed for pH, temperature, total dissolved solids, calcium, sulfate, manganese, fluoride, copper, and iron for the purpose of evaluating the status of the groundwater quality in the downgradient groundwater plume. The groundwater quality data will be summarized and transmitted to the WQCD in the quarterly BMP report required under Part I, Section E.1 of this permit.

Compliance Action Taken: Battle Mountain Resources, Inc. collected monthly groundwater samples in the vicinity of the West Pit backfill area from Rito Seco alluvial monitoring wells M-19, M-21, M-24 and M-11R. No corrective action is required under the Paragraph 4 specific requirement and scheduled compliance monitoring will continue unchanged next quarter.

Table 4 – Rito Seco Alluvial Groundwater Quality Summary

Analyte	Reporting	Sample		Monitoring V	Vell Identifier	
Allalyte	Units	Date	M-11R	M-19	M-21	M-24
		07/10/2023	7.45	6.94	7.28	7.48
pН	SU	08/01/2023	7.29	6.79	7.14	7.25
_		9/11/2023	7.37	6.79	7.22	7.33
		7/10/2023	10.9	7.4	9.1	9.3
Temperature	°C	08/01/2023	10.5	7.9	10.5	10.1
		9/11/2023	10.1	8.6	8.6	8.8
		07/10/2023	77.5	30.4	30.6	77.7
Calcium, Total	mg/L	08/01/2023	78	17	30.6	77.1
		9/11/2023	83.7	18	29.7	74.6
		07/10/2023	LT 0.002	LT 0.002	LT 0.002	LT 0.002
Copper, Dissolved	mg/L	08/01/2023	LT 0.002	LT 0.002	LT 0.002	LT 0.002
		9/11/2023	LT 0.002	LT 0.002	LT 0.002	LT 0.002
		07/10/2023	0.823	0.868	1.48	LT 1.25
Fluoride	mg/L	08/01/2023	0.72	0.745	1.31	LT 1.25
		9/11/2023	0.852	0.853	1.46	0.847
		07/10/2023	LT 0.15	LT 0.15	LT 0.15	4.08
Iron, Dissolved	mg/L	08/01/2023	LT 0.15	LT 0.15	LT 0.15	4.23
		9/11/2023	LT 0.15	0.181	LT 0.15	4.14
		07/10/2023	0.168	LT 0.05	0.350	0.826
Manganese, Dissolved	mg/L	08/01/2023	0.151	LT 0.05	0.359	0.835
		9/11/2023	0.164	LT 0.05	0.370	0.831
		07/10/2023	119	5.24	8.36	142
Sulfate	mg/L	08/01/2023	107	6.66	8.18	127
		9/11/2023	119	7.34	8.99	124
		07/10/2023	352	86	142	388
Total Dissolved Solids	mg/L	08/01/2023	352	100	LT 40	406
		9/11/2023	384	104	142	394

5) The historical seeps were caused by the plume of affected groundwater and may, in the future, also be caused by natural variation in the flow of groundwater in the vicinity of the area where the past seeps occurred. The permittee shall conduct a monthly visual inspection of the area of historical seeps and the permittee shall report any seepage flow that is associated with the area historic seepage expression, as is identified in Figure 2 of the permit. Results of the seep monitoring shall be tabulated and summarized in the quarterly BMP report.

If these inspections identified the occurrence of seeps, the permittee will be required to communicate verbally to the WQCD within 24 hours of the seepage observation, followed by written notification within 7 calendar days of the seepage observation. Verbal updates will then be provided to the WQCD every second day thereafter until the WQCD has made a determination regarding the status of the West Pit groundwater control system through the implementation of the following compliance schedule.

Compliance Action Taken: Battle Mountain Resources, Inc. performed monthly visual seepage expression inspections in the historic seepage area identified in Figure 2 of the permit. Visual observations during these inspections are shown in Table 5. No seepage expressions were observed in the historic seepage area during the third quarter of 2023. Therefore, no verbal or written notifications were required and the implementation of the compliance schedule was not required. No corrective action is required under the Paragraph 5 specific requirement and scheduled compliance monitoring will continue unchanged next quarter.

Table 5 – Monthly Seepage Expression Inspection Tabulation

Visual Inspection Date	Was Visual Observation of Seepage Determined in the Area of the Historic Seepage Expression	Comments
07/31/2023	No	All Dry
08/31/2023	No	All Dry
09/28/2023	No	All Dry

6) The BMP for the groundwater flow downgradient from the groundwater divide (see section VI.A.2 for the Rationale) that has been developed in the Rito Seco alluvial aquifer consists of a groundwater capture system in conjunction with groundwater table elevation control in the West Pit. The water management plan for the Rito Seco alluvial aquifer consists of pumping two groundwater capture wells (M-32 and M-33) located downgradient of the plume of affected groundwater. This action will allow flushing of constituents in the groundwater of the Rito Seco alluvial aquifer in that portion (plume) of the aquifer affected by previous flow of groundwater from the West Pit. Measurements of the groundwater table elevations will be taken on a weekly basis from M-32 and M-33. This data shall be tabulated and reported for outfall 002 on the quarterly BMP report, and the data will be used to evaluate compliance with the following permit limitation.

The groundwater table elevation, based on the average of all measured values for each calendar month at M-32 and M-33 in the Rito Seco alluvial aquifer, must be equal to or lower than an elevation of 8540 ft. amsl.

If the average monthly groundwater table elevations measured in the Rito Seco alluvial aquifer at M-32 and M-33 is greater than 8540 ft. amsl, the permitee shall initiate the following compliance schedule within 24 hours of the determination of groundwater table elevation exceedance.

Compliance Action Taken: Battle Mountain Resources, Inc. measured the alluvial aquifer monitoring wells (M-32 and M-33) weekly and the resulting elevations are presented in Table 6. The groundwater elevations for wells M-32 and M-33 were averaged by calendar month and the results are shown in Table 6. The July, August, and September 2023 averages were below the 8540 ft. amsl required under Paragraph 6. Therefore, site operations were in full compliance of Part I, Section 5.5 and there were no requirements(s) to initiate actions contained within the schedule of compliance for Section 5.5. No corrective action is required under Paragraph 6 specific requirement and scheduled compliance monitoring will continue unchanged next quarter.

Table 6 – Weekly/Monthly Rito Seco Alluvial Aquifer Average Groundwater Table Elevations

Monitoring Well Identification	Observation Date	Groundwater Elevation (ft amsl)	Month (2023)	Average Monthly Groundwater Elevation (ft amsl)
	07/5/2023	8526.32		
	07/12/2023	8526.43	July	8526.73
	07/19/2023	8526.15	July	
	07/26/2023	8528.02		
M-32	08/02/2023	8528.12		
	08/09/2023	8527.52		
	08/16/2023	8526.85	August	8527.07
	08/23/2023	8526.79		
	08/30/2023	8526.07		

Table 6 (Cont) – Weekly/Monthly Rito Seco Alluvial Aquifer Average Groundwater Table Elevations

Monitoring Well Identification	Observation Date	Groundwater Elevation (ft amsl)	Month (2023)	Average Monthly Groundwater Elevation (ft amsl)
	09/06/2023	8528.59		
M-32	09/13/2023	8528.37	Cantanahan	8528.09
N1-32	09/20/2023	8527.70	September	8328.09
	09/27/2023	8527.69		
	07/5/2023	8534.63		
	07/12/2023	8534.68		8534.85
	07/19/2023	8534.74	July	
	07/26/2023	8535.35		
	08/02/2023	8534.99		8535.33
	08/09/2023	8535.12		
M-33	08/16/2023	8536.12	August	
	08/23/2023	8536.24	1	
	08/30/2023	8534.18	1	
	09/06/2023	8526.35		
	09/13/2023	8535.52	0521.20	8521 20
	09/20/2023	8526.99	September	8531.29
	09/27/2023	8536.29		

7) The water quality of the Rito Seco will be assessed using surface water quality collected at RS-2, as shown in Figure 3. Surface water monitoring in the Rito Seco shall be conducted at RS-2 on a monthly basis and the laboratory analytical results shall be submitted to the WQCD in the quarterly BMP report. Water quality samples collected at RS-2 shall be analyzed for the following constituents: calcium, magnesium, sodium, potassium, ammonia, total dissolved solids, total hardness, pH, total suspended solids, cyanide (WAD and total), bicarbonate, alkalinity, chloride, sulfate, nitrate-nitrite, fluoride and the total and dissolved concentrations of aluminum, arsenic, barium, boron, cadmium, copper, chromium, iron, lead, manganese, mercury, nickel, selenium, silica, silver and zinc. The following compliance schedule shall be implemented in the event that any constituent exceeds the applicable water quality standards for the Rito Seco.

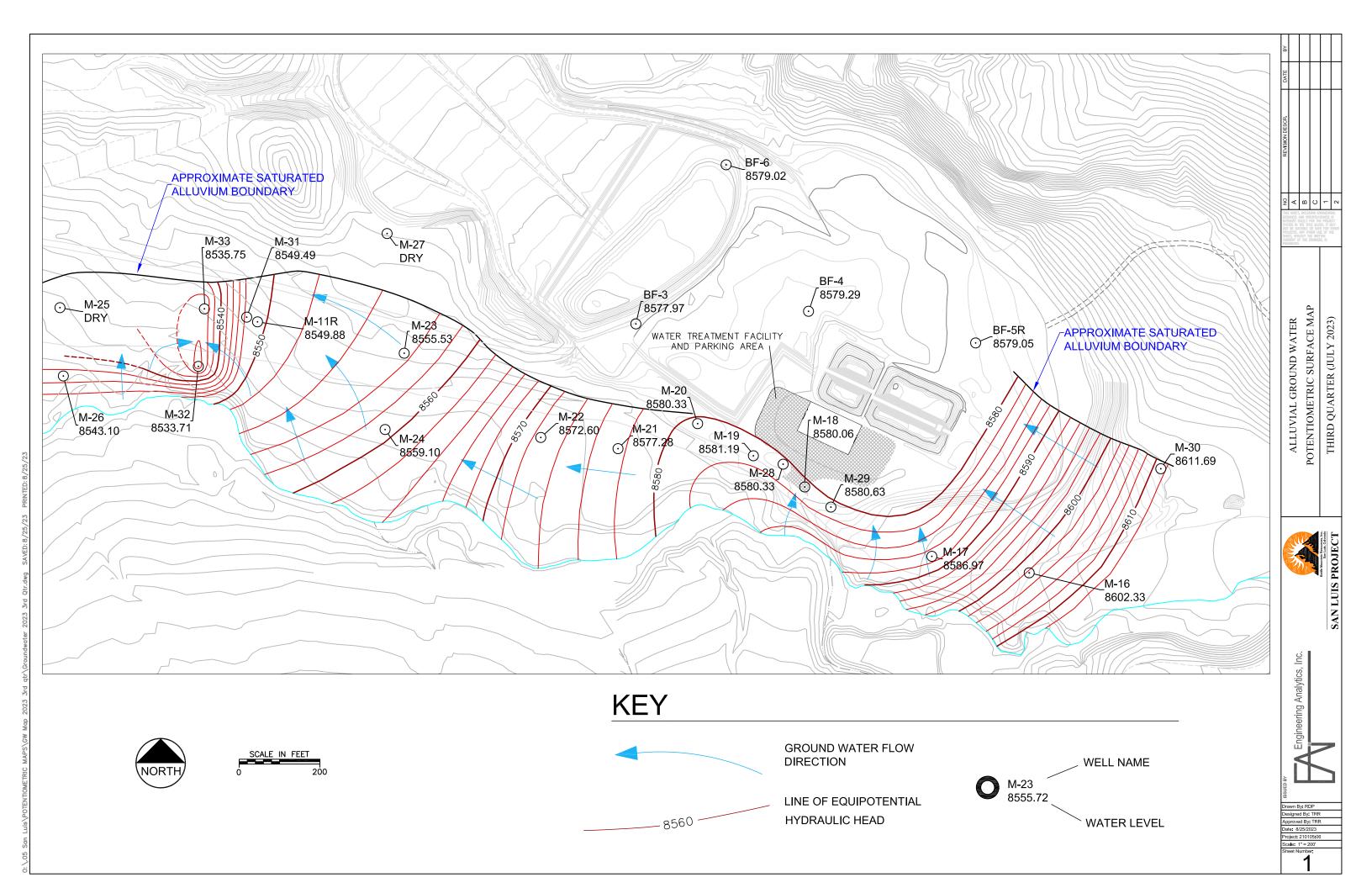
Compliance Action Taken: Battle Mountain Resources, Inc. collected monthly surface water samples in July, August, and September 2023 at location RS-2, as shown in Figure 3 of the permit. Results of analyses performed on these samples are shown in Table 7. The results of the laboratory analytical testing show that the applicable water quality standards were met for the Rito Seco during the months of July, August, and September 2023. Site operations were in full compliance of Part I, Section 5.7 and there was no requirement(s) to initiate actions contained within the schedule of compliance for Section 5.7. Scheduled compliance monitoring will continue unchanged next quarter.

Table 7 – RS-2 Surface Water Quality Results

- RS-2 Surface water (Reporting Units	07/10/2023	08/01/2023	09/11/2023
Alkalinity	mg/L as CaCO ₃	50.4	61.7	69.8
Aluminum, Dissolved	mg/L as CaCO3	LT 0.25	LT 0.25	LT 0.25
Aluminum, Total	mg/L	0.676	0.427	1.11
Ammonia as N	mg/L	LT 0.2	LT 0.2	LT 0.2
Arsenic, Dissolved	mg/L	LT 0.001	LT 0.001	LT 0.001
Arsenic, Total	mg/L	LT 0.001	LT 0.001	LT 0.001
Barium, Dissolved	mg/L	LT 0.035	LT 0.035	LT 0.035
Barium, Total	mg/L	LT 0.035	LT 0.035	0.0429
Bicarbonate as CaCO3	mg/L	50.4	61.7	69.8
Boron, Dissolved	mg/L	LT 0.1	LT 0.1	LT 0.1
Boron, Total	mg/L	LT 0.1	LT 0.1	LT 0.1
Cadmium, Dissolved	mg/L	LT 0.00025	LT 0.00025	LT 0.00025
Cadmium, Total	mg/L	LT 0.00025	LT 0.00025	LT 0.00025
Calcium, Total	mg/L	14.6	14.8	17.0
Carbonate as CaCO3	mg/L	LT 20	LT 20	LT 20
Chloride	mg/L	LT 20	LT 20	LT 20
Chromium, Dissolved	mg/L	LT 0.002	LT 0.002	LT 0.002
Chromium, Total	mg/L	LT 0.002	LT 0.002	LT 0.002
Copper, Dissolved				
Copper, Total	mg/L	LT 0.002	LT 0.002	LT 0.002
	mg/L	LT 0.002	LT 0.002	0.00272
Cyanide, Total	mg/L	LT 0.01	LT 0.01	LT 0.01
Cyanide, WAD	mg/L	LT 0.01H	LT 0.01	LT 0.01
Fluoride	mg/L	0.41	0.72	0.52
Hardness as CaCO3	mg/L	49	54	60
Iron, Dissolved	mg/L	0.207	0.314	0.432
Iron, Total	mg/L	0.978	0.815	2.20
Lead, Dissolved	mg/L	LT 0.0005	LT 0.0005	LT 0.0005
Lead, Total	mg/L	0.00062	LT 0.0005	0.00216
Magnesium, Total	mg/L	3.87	4.07	4.66
Manganese, Dissolved	mg/L	LT 0.05	LT 0.05	LT 0.05
Manganese, Total	mg/L	0.071	0.059	0.214
Mercury, Dissolved	mg/L	LT 0.001	LT 0.001	LT 0.001
Mercury, Total	mg/L	LT 0.001	LT 0.001	LT 0.001
Nickel, Dissolved	mg/L	LT 0.04	LT 0.04	LT 0.04
Nickel, Total	mg/L	LT 0.04	LT 0.04	LT 0.04
Nitrate+Nitrite as N	mg/L	LT 0.1	LT 0.1	LT 0.1
pH	SU	8.01	7.86	7.90
Potassium, Total	mg/L	LT 1	LT 1	1.42
Selenium, Dissolved	mg/L	LT 0.00025	LT 0.00025	LT 0.00025
Selenium, Total	mg/L	LT 0.00025	LT 0.00025	0.00031
Silica, Total	mg/L	13.5	12.5	14.8
Silver, Dissolved	mg/L	LT 0.0005	LT 0.0005	LT 0.0005
Silver, Total	mg/L	LT 0.0005	LT 0.0005	LT 0.0005
Sodium, Total	mg/L	3.37	4.47	4.26
Sulfate	mg/L	2.13	3.38	4.36
Total Dissolved Solids	mg/L	72	94	96
Total Suspended Solids	mg/L	21.0	LT 20	45.0
Zinc, Dissolved	mg/L	LT 0.05	LT 0.05	LT 0.05
Zinc, Total	mg/L	LT 0.05	LT 0.05	LT 0.05

8) If any component of the groundwater control system is not performing within the limits set forth in this permit, the permittee will be required to initiate appropriate compliance schedule activities, including the preparation of a response plan, for any and all components of the groundwater control system that do not meet the applicable

EA, Inc.


requirements. The permittee shall also conduct weekly sampling at RS-2 until such time as the other compliance schedule activity(ies) have been completed.

Compliance Action Taken: As demonstrated by the information and data presented in this report, all components of the groundwater control system performed within the limits set forth in the permit. Therefore, site operations were in full compliance of Part I, Section 8 and there was no requirement(s) to initiate actions contained within the schedule of compliance for Section 8.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering information, the information submitted is to the best of my knowledge and belief, is true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

 \cap

Name:	Julio Madrid	Signature:	Pulis Hu	
Date:	October 17, 2023			

August 17, 2023

Julio Madrid **Battle Mountain Resources, Inc.**P.O. Box 310
San Luis, CO 81152

Dear Julio:

Enclosed is the report for chronic biomonitoring tests performed for Battle Mountain Resources, Inc. on effluent from the 001B outfall. There was no statistically significant toxicity to either test species at any effluent concentration. The effluent passes WET (Whole Effluent Toxicity) testing requirements for this sampling period.

If you have any questions or concerns, please do not hesitate to contact me at (303) 661-9324.

Best regards,

Daniela Thornton

Laboratory Supervisor

D. Thornton

Enclosure(s): Invoice

Report

REPORT OF CHRONIC BIOMONITORING TESTS CONDUCTED FOR BATTLE MOUNTAIN RESOURCES, INC. ON EFFLUENT FROM THE 001B OUTFALL

Prepared for:

Julio Madrid

Battle Mountain Resources, Inc.
P.O. box 310
San Luis, CO 81152

Prepared by:

Daniela Thornton **SeaCrest Group** 500 S Arthur Ave. Suite 450 Louisville, Colorado 80027-3065 (303) 661-9324

August 17, 2023

SCG Project No.: 423379.B Project: Quarterly WET

TABLE OF CONTENTS

CHRONIC TOXICITY TEST SUMMARY	
ABSTRACT WITH RESULTS	4
INTRODUCTION	
MATERIALS AND METHODS	
SAMPLE COLLECTION	5 5
DATA ANALYSIS	
RESULTS	
CERIODAPHNIA DUBIA TEST RESULTSFATHEAD MINNOW TEST RESULTSTEST ACCEPTABILITY	7 8
DISCUSSION	9
REFERENCES	9
APPENDIX 1 – CHAIN OF CUSTODY WITH SAMPLE RECEIPT FORMS	10
APPENDIX 2 – DATA SHEETS FOR THE CERIODAPHNIA DUBIA TEST	20
WET TEST REPORT FORM - CHRONIC	21
APPENDIX 3 – DATA SHEETS FOR THE FATHEAD MINNOW TEST	28
WET TEST REPORT FORM - CHRONIC	
APPENDIX 4 – QA/QC AND REFERENCE TOXICANT TEST CHARTS	
LIST OF TABLES	
TABLE 1: STATISTICAL METHODS USED IN TESTING	7
TABLE 2: SUMMARY OF CERIODAPHNIA DUBIA TEST RESULTS	7
TABLE 3: SUMMARY OF FATHEAD MINNOW TEST RESULTS	8
TABLE 4: PMSD FOR CHRONIC TEST PARAMETERS	8

SCG Project No.: 423379.B Project: Quarterly WET

Chronic Toxicity Test Summary

Test:	7-day static renewal using <i>Ceriodaphnia dubia</i> 7-day static renewal using fathead minnow (<i>Pimephales promelas</i>)
Client:	Battle Mountain Resources, Inc.
Test Procedure Followed:	Ceriodaphnia dubia: EPA/821/R-02-013. Method 1002.0 (2002) fathead minnow: EPA/821/R-02-013. Method 1000.0 (2002)
Sample Number:	423379.B
Dilution Water:	moderately hard laboratory reconstituted water
Test Organism Source:	SeaCrest Group
Reference Toxicant:	Sodium Chloride

Sample	Time of Collection	Date of Collection	Time of Receipt	Date of Receipt
Effluent 1	0600	08-07-2023	1100	08-07-2023
Effluent 2	0600	08-09-2023	1120	08-09-2023
Effluent 3	0600	08-11-2023	1017	08-11-2023

	Ceriodaphnia dubia	fathead minnow
Test Initiation Time	1300	1430
Test Initiation Date	08-07-2023	08-07-2023
Test Completion Time	1400	1330
Test Completion Date	08-13-2023	08-14-2023

Client: BMRI Site: 001B CO-0045675

SCG Project No.: 423379.B Project: Quarterly WET

Abstract	with	Reculte	
ADSTRACT	with	Results	

Test Concentrations: Control (0%), 13%, 26%, 52%, 76%, 100%

10 for Ceriodaphnia dubia

Number of Organisms/Concentration: 40 for fathead minnow

10 for Ceriodaphnia dubia

Replicates at each Concentration: 4 for fathead minnow

	Ceriodaphnia dubia	fathead minnow
Test vessel size/Exposure volume	30ml/15ml	500ml/200ml
Sub-lethal NOEL/IC25	100%/>100%	100%/>100%
Pass/Fail Status	PASS	PASS
Temperature Range (°C)	24.2 - 25.9	24.1 - 25.9
Dissolved Oxygen Range (mg/L)	6.5 - 7.5	5.3 - 7.9
pH Range	7.6 - 8.3	7.1 - 8.3
*Single endpoint failure	Control (<i>Cerio</i> /FHM)	Effluent Sample
Hardness (mg/L as CaCO ₃)	84/95	44/36/37
Alkalinity (mg/L as CaCO ₃)	60/60	6/4/24
Total residual chlorine (mg/L)	< 0.01	<0.01
Total ammonia (mg/L as NH ₃)	< 0.03	< 0.03

SCG Project No.: 423379.B Project: Quarterly WET

INTRODUCTION

Biomonitoring provides an effective means by which the toxicity of discharges from municipal, industrial, and mining operations can be tested. Among the advantages of biomonitoring is the ability to test complex effluents containing a broad range of contaminants. Biomonitoring, when used in conjunction with chemical analyses, can generate data capable of identifying a much wider range of contaminants.

The Colorado Water Quality Control Division requires certain NPDES permittees to perform acute and/or chronic biomonitoring tests. The chronic test measures significant differences in lethality and in reproduction (*Ceriodaphnia dubia*) or growth (fathead minnow – *Pimephales promelas*) between control and effluent-exposed organisms.

The present report discusses the results of chronic biomonitoring tests conducted on effluent from the Battle Mountain Resources, Inc. 001B discharge. These tests were conducted in accordance with EPA and State of Colorado procedures in August 2023.

MATERIALS AND METHODS

Sample Collection

Two gallons of the effluent were collected on three separate dates as specified in Permit CO-0045675. Samples were delivered chilled to the SeaCrest lab where they were held at 0-6°C. Chain of custody forms showing sample collection and laboratory arrival times are included (Appendix 1).

Dilution Water

Laboratory reconstituted water was used as both the dilution water source and the control for the tests. Reconstituted water for the *Ceriodaphnia dubia* test was produced by adding sodium bicarbonate, calcium sulfate, magnesium sulfate, potassium chloride, and sodium selenate to deionized water. Reconstituted water for the fathead minnow test was produced by adding sodium bicarbonate, calcium sulfate, magnesium sulfate, and potassium chloride to deionized water.

Test Organisms

The biomonitoring test used *Ceriodaphnia dubia*, cultured in the SeaCrest laboratory. The organisms are cultured in brood culture boards from which individual females are monitored for survival and reproduction for periods of up to two weeks. Neonates less than 24-hours old, released from third or subsequent broods of eight or more within an 8-hour period, are collected from the brood chambers and used in tests. The animals are fed daily with a mixture of Yeast, Cereal Leaves, and Trout Chow (YCT), produced in-house. This is supplemented with cultured green algae (*Selenastrum capricornutum*) provided by Aquatic Biosystems.

Less than one-day-old fathead minnow, cultured in the laboratory, were also used in the test. Adult fish are maintained in 10-gallon aquaria where females deposit their eggs on the under-surface of split PVC pipe sections. The eggs are collected daily and transferred to aerated containers where they hatch after three to four days. The larval fish are fed newly hatched brine shrimp (*Artemia* sp.) at least twice per day.

SCG Project No.: 423379.B Project: Quarterly WET

In-house organisms are tested monthly in a reference toxicant test using sodium chloride to monitor overall health and test reproducibility (Appendix 4).

Test Procedures

Upon receipt at the lab, samples were analyzed for alkalinity, ammonia, chlorine, conductivity, dissolved oxygen, hardness, and pH.

Methods used in chemical analysis

Alkalinity	EPA 310.2	Hach 8203	I-2030-85.2
Ammonia	SM4500-NH ₃ , C-E1997	ASTM D1426-08	
Chlorine	SM4500-Cl D	Hach 10026	
Conductivity	SM2510		
Dissolved Oxygen	SM4500-O	Electrode: G-2001	Winkler (QC): B-F-2001
Hardness	SM2340 B or C	Hach 8213	
pH	SM4500-H+ B-2000		

The test followed procedures in EPA³ and CDPHE⁴ guidelines. Exposure concentrations included control (0%), 13%, 26%, 52%, 76%, and 100% mixtures, diluted with moderately hard laboratory reconstituted water.

Individual *Ceriodaphnia dubia* were placed in 30ml plastic containers containing approximately 15ml of exposure medium. Ten replicates at each concentration were used. The animals were fed daily with the YCT mixture and an equal volume of the green algae *(Selenastrum capricornutum)*. The exposure medium was changed daily in each container and the number of young released overnight were counted and recorded. Young were removed from the containers daily and discarded. Routine measurements were made each day of temperature, dissolved oxygen, and pH before and after the water changes.

Fathead minnow were exposed in 500ml plastic cups to which 250ml of media was replaced daily. Four replicates were used at each concentration. Ten fish, less than 24-hours old, were placed in each cup. The fish were monitored daily for survival and fed live brine shrimp at least twice per day. After seven days, the fish were removed from the cups, euthanized with isopropyl alcohol, and then placed in aluminum pans and dried in an oven for a minimum of six hours at 100°C. The pans were then weighed on a five-place analytical balance to determine the average dry weight of the fish from each replicate.

Data Analysis

Data from the tests were analyzed on a personal computer using the CETIS program (developed by Tidepool Scientific Software). Statistical tests used in the analyses are shown in Table 1. Test acceptability was determined using control survival and reproduction/growth criteria, concentration-response relationships, and percent minimum significant differences (USEPA 5,6).

Client: BMRI CO-0045675

SCG Project No.: 423379.B Site: 001B Project: Quarterly WET

Table 1. Statistical methods used in testing for significant differences in test parameters

V	ariance	D	Distribution	
Bartlett Equali	ty of Variance Test	Shapiro-Wi	lk W Normality Test	
	Statistical	Difference		
Species	Survival	Growth	Reproduction	IC ₂₅
Ceriodaphnia dubia	Fisher Exact/Bonferroni- Holm Test	N/A	Dunnett Multiple Comparison Test	ICp
fathead minnow	Steel Many-One Rank Sum Test	Dunnett Multiple Comparison Test	N/A	ICp

RESULTS

Ceriodaphnia dubia Test Results

Test results for the Ceriodaphnia dubia are summarized in Table 2 and provided on the data sheets located in Appendix 2. Survival was 90% in the 100% effluent and ranged from 90% - 100% in the remaining effluent concentrations. Control survival was 100%. No statistically significant lethality was measured in any effluent concentration when compared to the control. The NOEL (No Observed Effect Level) for lethality was 100% and the LC25 (Lethal Concentration 25) for lethality was >100%.

Average number of neonates was 15.4 in the 100% effluent concentration and ranged from 17.6 – 21.3 in the remaining effluent concentrations. Average number of neonates in the control was 20.0 for statistical analyses and test acceptability criteria. No statistically significant differences in the number of neonates were found between the control and any effluent concentrations. The NOEL for reproduction was 100% and the IC25 (Inhibition Concentration 25) for reproduction was >100%.

Table 2. Summary of Ceriodaphnia dubia test results. An asterisk (*) denotes a statistically significant difference from the control.

	Percent	Mean			Significant	Difference
Concentration	Survival	Neonates	Min.	Max.	Lethality	Reprod.
Control (0%)	100	20.0	18	26		
13%	100	19.8	15	24		
26%	90	17.6	4	25		
52%	100	21.3	11	27		
76%	100	19.5	11	27		
100%	90	15.4	4	24		

SCG Project No.: 423379.B Project: Quarterly WET

Fathead Minnow Test Results

Fathead minnow results are summarized in Table 3 and are provided on data sheets in Appendix 3. Survival was 100% in the 100% effluent concentration and ranged from 95% - 100% in the remaining effluent concentrations. Control survival was 98%. No statistically significant lethality was measured in any effluent concentration when compared to the control. The NOEL for lethality was 100% and the LC_{25} for lethality was >100%.

Average weight in the 100% effluent concentration was 0.486mg and ranged from 0.445mg - 0.466mg per individual in the remaining effluent concentrations. Average weight for the control fish was 0.424mg for statistical analyses and test acceptability criteria. No statistically significant differences for growth were measured in any effluent concentration when compared to the control. The NOEL for growth was 100% and the IC_{25} for growth was >100%.

Table 3. Summary of fathead minnow test results. An asterisk (*) denotes a statistically

significant difference from the control.

	Percent	Average			Significant	Difference
Concentration	Survival	Weight (mg)	Min.	Max.	Lethality	Growth
Control (0%)	98	0.424	0.356	0.490		
13%	100	0.456	0.321	0.589		
26%	100	0.457	0.369	0.527		
52%	100	0.445	0.392	0.496		
76%	95	0.466	0.409	0.521		
100%	100	0.486	0.462	0.499		

Test Acceptability

Acceptable control survival (80%) was achieved in both tests. Similarly, *Ceriodaphnia dubia* reproduction (average 15 neonates/organism) and fathead minnow growth (average 0.250mg/test container) in control organisms met required levels. PMSD for *Ceriodaphnia dubia* reproduction in effluent concentrations was not within the required limits for an acceptable test due to the presence of statistically significant toxicity in the 76% and 100% effluent dilutions (Table 4).

Table 4. PMSD for chronic test parameters.

	fathead min	now growth	C. dubia reproduction			
	Lower bound	Upper bound	Lower bound	Upper bound		
PMSD	12	30	13 47			
(% Minimum significant difference)	27	.6	25	.2		

Client: BMRI CO-0045675 SCG Project No.: 423379.B Site: 001B Project: Quarterly WET

DISCUSSION

A failed test for this discharge occurs when there is an NOEL or IC₂₅ less than the IWC (Instream Waste Concentration) of 52%. The NOEL represents the highest effluent concentration at which no statistically significant effect is observed. The IC₂₅ represents an estimate of the effluent concentration that would cause a 25 percent reduction of a non-quantal biological measurement. A violation for this discharge occurs when both the NOEL and the IC₂₅ are less than the IWC. Since neither test species demonstrated statistically significant differences meeting these criteria, the discharge passes WET testing requirements for this sampling period.

REFERENCES

- 1. **Hach Chemical Company.** 2008. *Hach's Water Analysis Handbook*. Fifth Edition. Hach Chemical Company, Loveland, Colorado. Digital Medium.
- 2. APHA/AWWA/WEF. 1998. Standard Methods for the Examination of Water and Wastewater. 20th Edition. American Public Health Association, Washington, D.C.
- 3. **USEPA.** 2002. Short Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms. EPA-821-R-02-013. 335 pp.
- 4. CDPHE (Colorado Department of Public Health and Environment). 1998. Laboratory Guidelines for Conducting Whole Effluent Toxicity Tests. Water Quality Control Division.
- 5. USEPA. 2000. Method of Guidance and Recommendations for Whole Effluent Toxicity (WET) Testing (40 CFR Part 136). EPA/821/B-00/004.
- 6. **USEPA**. 2000. Understanding and Accounting for Method Variability in Whole Effluent Toxicity Applications under the National Pollutant Discharge Elimination System Program. EPA/833/R-00/003.

Client: BMRI Site: 001B

CO-0045675

SCG Project No.: 423379.B Project: Quarterly WET

Appendix 1 - Chain of Custody with Sample Receipt Forms

Seacrest Group

CHAIN OF CUSTODY

500 S. Arthur Avenue, Unit 450 - Louisville, CO 80027 (303) 661.9324 - FAX (303) 661.9325

(303) 661.9323	•				ners			iedmul oV lsto	1	-				Other (List Below)				(2)	Date/Time	
(202) 001.3224 - FAX (303) 001.932	Analysis (Check all applicable)	(ə	(Circl			:al/Fe ircle)	n (Tot	Dil and Dilforr DOD/CODO A nəh‡C						Daphnia pulex				Received By	Signature	
	Analysis (Chec				(C!	ST\SC	JT\ZT I tziJ)	slataM) abilo2 anoinA imondO						Daphnia magna				ed By (2)	Date/Time	
			yelow	Belor	etsoib ibni) t	onl) o	inondi	WET: A WET: A WET: P						ow Cerio daphnia	ints:	89		Relinquished By (2)	Signature	
				10 81152	Parino Cheuroit	S Carino room		Grab/ Lab ID	Comp 423379.8#1					Test Species: Kathead Minnow	Special Instructions/Comments:	outfull - 001B		Received By (1)	200 817123 WWY 1100	
		5/2/	P	San Luis	E-Mail: David	Sampler: Duid		Тіте	3 0600						6-9 Day	1-2 Day		Re	Signature House	
E DO	BMRI	San 1	Julio Madria	1			il PDF	ID Date	- 8/7/23					Turnaround Requirements (Analytical Testing Only)	days)		e:	By (1)	Date/Time 8/7/23 6600	
	Client/Project Name:	P. O./Project Number:	Contact: Tulio	Address: P.O. BOX 310	Phone # 7/9-379-0827	Fax# N/A	Report By:	Sample Location or ID	W.E.T. Test					Turnarour (Analyti	Standard (10 days)	3-5 Day	Requested Report Date:	Relinquished By (1)	Signature Durid & Chrum	

			4
		a my	ne (M) W r
	minutes		Circle
	0	11	date 8/7/23 Circle One;
40 GPM	m per	1	Date
e 5 40	100	e 0600	ne 0600
Flow Rat	chedule	ram: Tim	am: Time
ent System Flow Rate 5	Sampling Schedule	Start Sample Program	ple Progr
Treatmen	ISCO SE	Start San	End Sample Pr

Observation good water flow, power onto Sumpley, Sumple Contourer on i a ~21 Hour Time 0300 Observation Goodwate flow, power onto Sample Contouner on ice Observationgood worker flow power on to Samples, Sample contained on ice Observation goodwater flow, somer onto Sampley, Sample Container anice ~6 Hour Time 1200 Observation good water flow source on to Sampler, Sample container on ite Observationgoodwooder on pourer on to Sampler, Sample con father on Tile Observation good wasterflow, power anto Sampler, Sample Container on ice -3 Hour Time 0900 Observation good water May power on to Sample 10 talines Volume sent to lab Sampling Personnel: A. Taylor, S. Marestas, R. Lucero, D. Cartho ~24 Hour Time 0600 ~18 Hour Time 2 400 ~9 Hour Time 1500 ~15 Hour Time 2100 ~12 Hour Time 1800

Samples packed on ice K
Completed COC
Cooper Sealed

BARI Delivered A

Sample Receipt Form

Form #: 42 Effective: January 2023

Project #	423 379.B		Sample #:	1	
Date:	080723		Initials:	un	
Samples \					
1. FedEx	UPS	Courier	Hand Delivery	(circle	one)
1	Notes:				
2. Chilled t	to Ship		Amb	ient Chille	d
	Received Broken or Leaking Notes:		Υ	N	NA
	Received Broken or Leaking Notes:		Υ		
	d Within 36hr Holding Time Notes:		(Y)	N	
6. Aeration	necessary		Υ	N	
7. pH adjus	stment necessary		Υ	\bigcirc N	
	Received at Temperature bet Notes: Same Day	ween 0-6° C .	Υ	N	NA
E	ion of Sample (Color, Odor, a Effluent: ທູງ ທ່າວເປັນ ຄ.m. Receiving: ພາກ	ind/or Presence of	Particulate Matte	er):	
	Presence of native species:		Υ	$\left(N\right)$	

Lab #	Temp	D.O.	pН	Cond
423379.8#1	13.0	7.2	7.8	199

Custody Seals:

Present on Outer Package	Y	(N)	
2. Unbroken on Outer Package	Υ	N	NA
3. Present on Sample	Y	N	
4. Unbroken on Sample	Y	N	(NA)

Custody Documentation (Chain of Custody):

1. Present Upon Receipt of Sample

N

500 S. Arthur Avenue, Unit 450 - Louisville, CO 80027 (303) 661.9324 - FAX (303) 661.9325 **CHAIN OF CUSTODY**

Gro	- N V A
tGro	4
t Gro	1
16r	
5	000
6	n
4	١
5	
	0
0	
U	
2	
_ U z	
-	

6756.100 (50c) NF			rs	ənistne		nadmul	1.	+				Other (List Below)				(2)		020825
Analysis (Check all applicable)	(alanamata)	(elrcle)	l/E-Coli) (al/Feca	tot) r	bns liC Coliform CO\CO	3					Daphnia pulex				Received Bv (2)	Signature	
Analysis (Chec			(Sircle)	(XZT\Z	OT\2T 8 ±2:1)	Metals Solids (T Anions i	,					Daphnia magna				d By (2)	Date/Time	1
		elow)	e Below) ate Belov ndicate B	c (Indica	hronio	WET: C	×					now Cerio daphnia	ents:	80		Relinquished By (2)	Signature	
			00	il S (acino		Grab/ Lab ID (comp (comp))	-					Test Species: X Fathead Minnow	Special Instructions/Comments:	outfall-0018		Received By (1)	Date/Time	
Ь		24,5	Sanlus	Sampler:		Е Тт	23 0600			-		nts	6-9 Day	1-2 Day		R	Signature	
Client/Project Name: BMRI	0	Contact: Julio Malria	Address: P.O. BOX 310	Fax # M/A	Report By: Mail PDF	Sample Location or ID Date	W.E.T. Test 819/23					Turnaround Requirements (Analytical Testing Only)	Standard (10 days)	3-5 Day	Requested Report Date:	Relinquished By (1)	000 S/9/2 2	and I form the

Date 8-9-23 Circle One; M.W.F minutes GPM Freatment System Flow Rate 570 Start Sample Program: Time Ocoo End Sample Program: Time O 600 SCO Sampling Schedule 100

-3 Hour Time 0900 Observation goodwater Flows power ento Saraple Container on ice ~21 Hour Time 6300 Observation good water flow Power on to Sampler, Sample Container on 162 ~6 Hour Time 1200 Observation good Water Flow, power onto Sampley, Sample Container on 1 Ce Observation good worker slow, punter ante sampley sample con bainer on i ce Observation good water flow power onto Sampley, Sample Container on i a Observation good Water Flow, Boner on to Sampler, Sample Container on Observation quid whater flow, Rower on to Sampler Sample Container on ice Observation good water flow Pervier onto Sampler Sample Contonar en ice Contacts Lab: 303-794-8976 (Henry Latimer) gallons Volume sent to lab 2 Sampling Personnel: R. Lucero, D. Carino, A. Taylor, S. Maestas Total Volume Collected 4 Samples packed on ice [4 ~24 Hour Time OGOO ~18 Hour Time 2400 -9 Hour Time 1500 ~15 Hour Time 2100 ~12 Hour Time 1806

BMRI Peliverd X

Cooler Sealed

Sample Receipt Form

Form #: 42 Effective: January 2023

Project #_	423 379		Sample #: 2	
Date:	X0923		Initials:)c	
Samples V	Nere:			
1. FedEx	UPS Notes:	Courier	Hand Delivery	(circle one)
2. Chilled to	o Ship		Ambier	t Chilled
	Received Broken or Leaking Notes:		Y	NA NA
	Received Broken or Leaking Notes:		Υ	N
	d Within 36hr Holding Time Notes:		Y	N
6. Aeration	necessary		Υ	P
7. pH adjus	stment necessary		Υ	(D)
	Received at Temperature be Notes: Same day	tween 0-6° C .	Υ	N NA
E	ion of Sample (Color, Odor, a Effluent:บอ พรรคโน ค.ศ. Receiving: N/A	and/or Presence of	Particulate Matter):	
	Presence of native species:		Υ	N

Lab #	Temp	D.O.	рН	Cond
379.6 1/2	12.09	7.1	8.0	215

Custody Seals:

1. Present on Outer Package	Y	(N)	
2. Unbroken on Outer Package	Y	N	(NA)
3. Present on Sample	Y	(N)	
4. Unbroken on Sample	Y	N	NA

Custody Documentation (Chain of Custody):

1. Present Upon Receipt of Sample

N

SeatrestGroup

CHAIN OF CUSTODY

500 S. Arthur Avenue, Unit 450 - Louisville, CO 80027

292 (303) 661.9324 - FAX (303) 661.9325 **Total Volume** Other (List Below) Date/Time **Number of Containers** Received By (2) Daphnia magna 🔲 Daphnia pulex Other Analysis (List Below) Analysis (Check all applicable) BOD/COD (Circle) Coliform (Total/Fecal/E-Coli) (Circle) Signature Oil and Grease Chromium III/VI (Circle) Date/Time (wol98 tziJ) znoinA Solids (TS/TDS/TSS) (Circle) Relinquished By (2) (Wetals (List Below) Test Species: X Fathead Minnow X Cerio daphnia WET: PTI/TIE/TRE (Indicate Below) WET: Accelerated (Indicate Below) WET: Chronic (Indicate Below) Signature Special Instructions/Comments: 1-2 Day | Outfall - 001B WET: Acute (Indicate Below) Comp 423379.8#3 Phone # 719-379-0827 E-Mail David, Grino Orlewmond Lab ID 8/11/23 Date/Time 81152 Received By (1) Comp Grab/ Sampler: / Surid S D. Thom by 0090 Address: P.O. BOX 310 San Luis Time 6-9 Day FAX P. O./Project Number: San Luis Signature Contact: Julio Madrid 8/11/23 **Turnaround Requirements** Date PDF Client/Project Name: BMRI 8/11/23 (Analytical Testing Only) Relinquished By (1) Standard (10 days) Sample Location or ID Requested Report Date: Mail Test 3-5 Day Report By: W.E.T. Signature Fax #

Date 8/11/23 Circle One: M WE 01 Treatment System Flow Rate 565. GPM in ber Start Sample Program: Time Oboo End Sample Program: Time 0600 00 SCO Sampling Schedule

ample, sample contained on Ter Observation good water flow, Power on to Sampler, Sample Contorney on ice Observation good wester you power as to Sample Sande contosher on 100 ~3 Hour Time 0900 Observation good whater flow, Power on to Sampler, Sample Container on ice Observation good water flow power on to Sample, Sumple container on ile Observation good water flow Power on to Sampler, Sample Container on ice ~6 Hour Time 1200 Observation good Water flow Power on to Sampler, Sample Container on Observation good worky your pour on to Sample, Sample whather on Sampling Personnel: A. Taylor, D. Cavino, R. Lucero, S.: Maestas Volume sent to lab Observation good water May pawer on ~24 Hour Time Oboo -18 Hour Time 2400 -21 Hour Time D3vD -9 Hour Time 1500 ~12 Hour Time 1800 ~15 Hour Time 2100

Samples packed on ice X Completed COC X Completed COC X X Cooler Sealed

BMRI Delivered

Sample Receipt Form

Form #: 42 Effective: January 2023

Project #	423 379. B		Sample #: 3		
Date:	081123		Initials: 07	_	
Samples	Were:				
1. FedEx	UPS	Courier	Hand Delivery	(circle	one)
	Notes:				
2. Chilled	d to Ship		Ambier	nt Chilled	É
3. Cooler	Received Broken or Leaking Notes:		Υ	N	NA
4. Sampl	e Received Broken or Leaking Notes:	3	Υ	N	
5. Receiv	ved Within 36hr Holding Time Notes:		Y	N	
6. Aeratio	on necessary		Υ	N	
7. pH adj	ustment necessary		Υ	N	
8. Sampl	e Received at Temperature be Notes: Same day Sample		Υ	N	NA
9. Descri	ption of Sample (Color, Odor, Effluent: ๔๒๑๔ ๒๐ พ่งป่อ Receiving: มไล		of Particulate Matter)	:	
	Presence of native species:		Υ	N	

Lab #	Temp	D.O.	рН	Cond
379.3#3	10.5	7.3	7.8	223

Custody Seals:

1.	Present	on	Outer	Package	
----	---------	----	-------	---------	--

2. Unbroken on Outer Package

3. Present on Sample

4. Unbroken on Sample

(Y	
(Y	

N

Υ

NA

(N

Custody Documentation (Chain of Custody):

1. Present Upon Receipt of Sample

N

Client: BMRI CO-0045675 SCG Project No.: 423379.B Site: 001B Project: Quarterly WET

Appendix 2 - Data Sheets for the Ceriodaphnia dubia Test

SeaCrest Group 20

Client: BMRI Site: 001B SCG Project No.: 423379.B Project: Quarterly WET

	WET T	EST	REPOR	Γ FORM -	CHRONIC
--	-------	-----	-------	----------	---------

Permittee:

Battle Mountain Resources, Inc.

Permit No.:

CO-0045675

Outfall:

001B - IWC: 52%

Test Type:

Routine

Accelerated ☐ Screen ☐

Test Species:

Ceriodaphnia dubia

Test Start Time	Test Start Date	Test End Time	Test End Date
1300	08-07-2023	1400	08-13-2023

Test Results	Lethality/TCP3B	Reproduction/TKP3B	
S code: NOEL	100%	100%	
	PASS	PASS	
P code: LC ₂₅ /IC ₂₅	>100%	>100%	
	PASS	PASS	
T code:	>100%	>100%	

Test Summary

Measurements	Control (0%)	13%	26%	52%	76%	100%
Exposed organisms	10	10	10	10	10	10
Survival for day 1	10	10	10	10	10	10
Survival for day 2	10	10	10	10	10	10
Survival for day 3	10	10	10	10	10	10
Survival for day 4	10	10	9	10	10	9
Survival for day 5	10	10	9	10	10	9
Survival for day 6	10	10	9	10	10	9
Mean 3 Brood Total	20.0	19.8	17.6	21.3	19.5	15.4

Hardness (mg/L) – Receiving Water: N/A Effluent: 44/36/37 Recon Water: 84
Alkalinity (mg/L) – Receiving Water: N/A Effluent: 6/4/24 Recon Water: 60
Chlorine (mg/L) – Effluent: <0.01 pH (initial/final) – Control: 8.3/8.1

Total Ammonia as NH₃ (mg/L) - Effluent: <0.03

Were all Test Conditions in Conformance with Division Guidelines? YES NO

If **NO**, list deviations from test specifications: N/A

Laboratory: SeaCrest Group

Comments:

Analyst's Name: Mia Kohler, Jordan Cashman, and Daniela Thornton

Signature D. Thornton Date August 17, 2023

Ceriodaphnia Chronic Benchsheet

Form #: 101a Effective: March 2023

n

Ceriodaphnia Chronic Benchsheet

Form #: 101a Effective: March 2023

	0	1	2	3	4	5	6	7	Total
(4)	0	0	0	3	0	3	12		18
	0	0	0	0	5	4	8		17
	0	0	0	5	8	0	14		27
	0	0	0	0	4	7	14		25 18
	0	0	0	5	8	5	0		
76	0	0	0	5	6	4	0		15
10	0	0	0	3	05	0	3		11
	0	0	0	5	0	8	11		24
	0	0	0	4	7	0	5		16
	0	0	0	0	4	5	15		24
DO	7.3	7.0 7.1	7.3 7.3	7.1 7.1	7.1 7.2	6.7 7.3	6.7		
Temp	24.9	25.5 25.4	25.6 25.5	24.9 25.4	25.6 25.8	25,5 25,4			101
pН	8.1	7.8 7.9	7.7 7.8	8.0 8.0	7.8 8.0	7.6 7.9	8.1		
Cond	711	213	231	233	239	243			
5)	0	0	0	4	4	0	12		20
	0	0	0	0	4 0				4
	0	0	0	5	6	2	0		13
	0	0	0	0	6	7	6		19
	0	0	0	ق	7	0	5		18
100	0	0	0	3	7	2	1		13
	0	0	0	4	0	5	12		21
	0	0	0	4	0	6	3		13
	0	0	0	5	5	0	14		24
	0	0	0	1	0	4	3		9
DO	7.3	7.0 7.1	7.3 7.4	7.1 7.1	7.1 7.3	6.7 7.5	6.7		
Temp	24.8	25.5 25.8	25.6 25.5	24.9 25.5	25.6 25.9	25.5 25.4	24.8		15.4
pH	8.0	7.8 7.8	7.6 7.6	8.0 8.0	7.7 7.8	7.6 7.8	8.1		1/2.1
Cond	189.6	194.2	214	215	223	227			
Algae	ABS	A85	ABS	A85	AB5	ARS			es tracete
YCT	2305	2305	2305	7305	2305	2305			
H ₂ O	1	1	2	Z	3	3			600 x 950 x 200
Initials	MK	WK	JC	MK	ЭT	JC	HK		
		Eff #1		#2		#3		con	
lardness		44		3le	3		84		
Alkalinity		a	L		2		60		_
Chlorine		0.01		.01	ζ.	.01	20.0		_
Ammonia	40	0.03	40.	.03	20.	03	ر٥.	03	

Exposure Chamber:
Total Capacity: 30mL
Total Solution Volume: 15ml

Feeding Schedule:

Fed daily Food used: YCT, Algae

Units:

Hardness: mg/L Alkalinity: mg/L Chlorine: mg/L DO: mg/L Temp: °C

pH: N/A

Cond: µS/cm3

Ammonia: mg/L

Comments:				
	-			

x:y:z = board #:row:column

1	2	3	4	5	6	7	8	9	10
Cı	c3	CG	C7	C9	DI	DZ	DY	05	D6

Report Date: Test Code/ID: 14 Aug-23 10:23 (p 1 of 1) 423379cd / 11-2432-8584

Ceriodaphnia	7-d Survival an	d Reproduction T	est						S	eaCrest Group
Analysis ID: Analyzed:	21-2440-6650 14 Aug-23 10:2	Endpoint: 3 Analysis:	7d Survival R STP 2xK Con		les		IS Versi us Leve		Sv1.9.6	
Batch ID:	00-0844-0264	Test Type:	Reproduction	-Survival (7d))	Anal	yst:	Lab Tech		
Start Date:	07 Aug-23	Protocol:	EPA/821/R-03	2-013 (2002)		Dilu	ent:	Reconstituted	d Water	
Ending Date:	13 Aug-23	Species:	Ceriodaphnia	dubia		Brin	e:	Not Applicable	le	
Test Length:	6d 0h	Taxon:	Branchiopoda	1		Sour	ce:	In-House Cul	ture	Age:
Sample ID:	15-6143-6749	Code:	423379.B			Proje	ect:	WET Quarter	ly Complia	ance Test (3Q)
Sample Date:	07 Aug-23	Material:	POTW Efflue	nt		Sour	ce:	NPDES Perm	nit # (XX99	999999)
Receipt Date:	07 Aug-23	CAS (PC):				Stati	on:	001B		
Sample Age:	n/a	Client:	BMRI							
Data Transfor	m	Alt Hyp				NOEL	LOEL	TOEL	TU	
Untransformed	I	C > T				100	>100	n/a	1	
Fisher Exact/l	Bonferroni-Holn	Test					-			
Control	vs Group	Test	Stat P-Type	P-Value	Decision(a	r:5%)				
Dilution Water	13	1.000	0 Exact	1.0000	Non-Signific	cant Effect				
	26	0.500	0 Exact	1.0000	Non-Signific	cant Effect				
	52	1.000	0 Exact	1.0000	Non-Signific	cant Effect				
	76	1.000	0 Exact	1.0000	Non-Signific	cant Effect				
	100	0.500	0 Exact	1.0000	Non-Signific	cant Effect				

Prop NR Prop R

0

0

0.1

0

0

0.1

%Effect

0.0%

0.0%

10.0%

0.0%

0.0%

10.0%

Data Summary Conc-%

0

13

26

52

76

100

Code

NR

10

10

9

10

10

9

R

0

0

1

0

0

1

NR+R

1

1

0.9

1

1

0.9

10

10

10

10

10

10

Report Date: Test Code/ID: 14 Aug-23 10:23 (p 1 of 2) 423379cd / 11-2432-8584

								rest code	iiD.	420010	W/11-2452-050
Ceriod	aphnia	7-d Survival an	d Reprod	uction T	est						SeaCrest Group
Analys	is ID:	02-3912-9351	Er	ndpoint:	7d Survival Rat	te		CETIS Vers	sion:	CETISv1.9.6	
Analyz	ed:	14 Aug-23 10:23	3 Ar	nalysis:	Linear Interpola	ation (ICPIN)		Status Lev	el:	1	
Batch	ID:	00-0844-0264	Te	st Type:	Reproduction-S	Survival (7d)		Analyst:	Lab 1	Гесh	
Start D	ate:	07 Aug-23	Pr	otocol:	EPA/821/R-02-	013 (2002)		Diluent:	Reco	nstituted Water	
Ending	Date:	13 Aug-23	Sp	ecies:	Ceriodaphnia d	ubia		Brine:	Not A	pplicable	
Test Le	ength:	6d 0h	Та	xon:	Branchiopoda			Source:	In-Ho	use Culture	Age:
Sample	e ID:	15-6143-6749	Co	de:	423379.B			Project:	WET	Quarterly Comp	liance Test (3Q)
Sample	e Date:	07 Aug-23	Ma	aterial:	POTW Effluent			Source:	NPDI	ES Permit # (XX	9999999)
Receip	t Date:	07 Aug-23	CA	S (PC):				Station:	001B		
Sample	e Age:	n/a	CI	ient:	BMRI						
Linear	Interpo	lation Options									
X Trans	sform	Y Transform	n Se	ed	Resamples	Exp 95% CL	Method				
Linear		Linear	26	7241	1000	Yes	Two-Point	Interpolation			
Point E	stimate	es									
Level	%	95% LCL	95% UC	L TU	95% LCL	95% UCL					
LC5	82	19.5	n/a	1.22	n/a	5.128					
LC10	100	79.43	n/a	1	n/a	1.259					
LC15	>100	n/a	n/a	<1	n/a	n/a					
LC20	>100	n/a	n/a	<1	n/a	n/a					
LC25	>100	/ n/a	n/a	<1	n/a	n/a					
LC40	>100	n/a	n/a	<1	n/a	n/a					

7d Survival R	ate Summary				Calc	ulated Varia	ite(A/B)			Isotor	ic Variate
Conc-%	Code	Count	Mean	Min	Max	Std Dev	CV%	%Effect	A/B	Mean	%Effect
0	D	10	1.0000	1.0000	1.0000	0.0000	0.00%	0.0%	10/10	1	0.0%
13		10	1.0000	1.0000	1.0000	0.0000	0.00%	0.0%	10/10	1	0.0%
26		10	0.9000	0.0000	1.0000	0.3162	35.14%	10.0%	9/10	0.9667	3.33%
52		10	1.0000	1.0000	1.0000	0.0000	0.00%	0.0%	10/10	0.9667	3.33%
76		10	1.0000	1.0000	1.0000	0.0000	0.00%	0.0%	10/10	0.9667	3.33%
100		10	0.9000	0.0000	1.0000	0.3162	35.14%	10.0%	9/10	0.9	10.0%

n/a

LC50

>100

n/a

n/a

<1

n/a

Report Date: Test Code/ID: 14 Aug-23 10:23 (p 1 of 1) 423379cd / 11-2432-8584

									15,50				
Ceriodaphnia	7-d Su	rvival and F	Reprodu	iction Te	st							SeaC	Crest Grou
Analysis ID:	17-234	7-5087	End	dpoint:	Reproduction				CET	IS Versio	n: CETISv	1.9.6	
Analyzed:	14 Aug	-23 10:22	Ana	alysis:	Parametric-C	ontrol vs	Trea	atments	Stat	tus Level:	1		
Batch ID:	00-084	4-0264	Tes	t Type:	Reproduction	-Survival	(7d)		Ana	lyst: La	ab Tech		
Start Date:	07 Aug	-23	Pro	tocol:	EPA/821/R-0	2-013 (20	002)		Dilu	ent: R	econstituted '	Water	
Ending Date:	13 Aug	-23			Ceriodaphnia	dubia			Brin	ne: N	ot Applicable		
Test Length:			Tax	on:	Branchiopoda	1			Sou	rce: In	-House Cultu	ire	Age:
Sample ID:	15-6143	3-6749	Cod	de:	423379.B				Pro	ject: W	ET Quarterly	Complianc	e Test (3C
Sample Date:	07 Aug	-23	Mat	terial:	POTW Efflue	nt			Sou		PDES Permit		
Receipt Date:			CAS	S (PC):					Stat)1B		
Sample Age:			Clie		BMRI								
Data Transform	m	A	lt Hyp						NOEL	LOEL	TOEL	TU	PMSD
Untransformed			> T						100	>100	n/a	1	25.24%
Dunnett Multip	ole Con	parison Te	st /										
2		Conc-%		Test S	tat Critical	MSD	DF	P-Type	P-Value	Decisio	n(a:5%)		
Dilution Water	1	3		0.0906	9 2.289	5.048	18	CDF	0.8050	Non-Sig	nificant Effect	t	
	2	26		1.088	2.289	5.048	18	CDF	0.3773	Non-Sig	nificant Effect	t	
	5	52		-0.5895	2.289	5.048	18	CDF	0.9524	Non-Sig	nificant Effect	t	
	7	6		0.2267	2.289	5.048	18	CDF	0.7574	Non-Sig	nificant Effect	t	
	1	00		2.086	2.289	5.048	18	CDF	0.0767	Non-Sig	nificant Effec	t	
ANOVA Table													
Source	S	um Squares	5	Mean S	Square	DF		F Stat	P-Value	Decisio	n(α:5%)		
Between	22	20.733		44.146	7	5		1.816	0.1253	Non-Sig	nificant Effec	t :t	
Error	13	313		24.314	8	54							
Total	15	533.73				59							
ANOVA Assum	ptions	Tests											
Attribute	Te	est				Test S	Stat	Critical	P-Value	Decisio	n(a:1%)		
Variance	Ва	artlett Equali	ity of Va	riance Te	est	9.802		15.09	0.0810	Equal V	ariances		
Distribution	SI	hapiro-Wilk \	W Norm	ality Test		0.960	1	0.9459	0.0474	Normal	Distribution		
Reproduction	Summa	ary											
Conc-%	C	ode Co	ount	Mean	95% LCI	95% L	JCL	Median	Min	Max	Std Err	CV%	%Effect
)	D	10)	20	18.15	21.85		19	18	26	0.8165	12.91%	0.00%
13		10)	19.8	17.57	22.03		20	15	24	0.9866	15.76%	1.00%
26		10		17.6	13.1	22.1		18.5	4	25	1.99	35.75%	12.00%
52		10		21.3	17.67	24.93		22	11	27	1.606	23.84%	-6.50%
76		10		19.5	15.79	23.21		18	11	27	1.641	26.62%	2.50%
100		40		45 4	44 04	40 70		45 5		24	4 000	20 500/	22 000/

100

10

15.4

11.04

19.76

15.5

4

24

1.928

39.58%

23.00%

Report Date:

0.0%

1.0%

12.0%

-6.5%

2.5%

23.0%

12.91%

15.76%

35.75%

23.84%

26.62%

39.58%

14 Aug-23 10:23 (p 2 of 2)

Test Code/ID:

423379cd / 11-2432-8584

								T	est Code/	ID:	42337	9cd / 1	1-2432-858
Ceriod	laphnia	7-d Survival ar	nd Reprod	uction T	est							SeaC	rest Group
Analys	is ID:	09-3696-7572	En	dpoint:	Reproduction			С	ETIS Vers	ion:	CETISv1.9.6		
Analyz	ed:	14 Aug-23 10:2	3 An	alysis:	Linear Interpol	lation (ICPIN)	S	tatus Leve	el:	1		
Batch	ID:	00-0844-0264	Te	st Type:	Reproduction-	Survival (7d)		А	nalyst:	Lab T	Tech		
Start D	ate:	07 Aug-23	Pro	otocol:	EPA/821/R-02	-013 (2002)		D	iluent:	Reco	nstituted Water	r	
Ending	Date:	13 Aug-23	Sp	ecies:	Ceriodaphnia o	dubia		В	rine:	Not A	pplicable		
Test Le	ength:	6d 0h	Ta	xon:	Branchiopoda			S	ource:	In-Ho	use Culture		Age:
Sample	e ID:	15-6143-6749	Co	de:	423379.B			P	roject:	WET	Quarterly Com	plianc	e Test (3Q)
Sample	e Date:	07 Aug-23	Ma	terial:	POTW Effluen	t		S	ource:	NPDE	ES Permit # (X)	K9999	9999)
Receip	t Date:	07 Aug-23	CA	S (PC):				S	tation:	001B			
Sample	e Age:	n/a	Cli	ent:	BMRI								
Linear	Interpo	olation Options											
X Trans	sform	Y Transform	n Se	ed	Resamples	Exp 95%	CL Met	hod					
Linear		Linear	288	3194	1000	Yes	Two	-Point Inte	erpolation				
Point E	stimat	es											
Level	%	95% LCL	95% UCL	. TU	95% LCL	95% UCL							
IC5	78.75	6.441	88.63	1.27	1.128	15.53							
IC10	84.66	12.88	n/a	1.181	n/a	7.763							
IC15	90.56	63.85	n/a	1.104	n/a	1.566							
IC20	96.46	78.84	n/a	1.037	n/a	1.268							
IC25	>100	n/a	n/a	<1	n/a	n/a							
C40	>100	n/a	n/a	<1	n/a	n/a							
IC50	>100	n/a	n/a	<1	n/a	n/a							
Reprod	luction	Summary				Cal	culated Va	ariate				Isoton	ic Variate
Conc-%	6	Code	Count	Mean	Min	Max	Std Dev	CV%	%Effe	ect	Me	an	%Effect

20

19.8

19.47

19.47

19.47

15.4

0.0%

1.0%

2.67%

2.67%

2.67%

23.0%

0

13

26

52

76

100

D

10

10

10

10

10

10

20

19.8

17.6

21.3

19.5

15.4

18

15

4

11

11

4

26

24

25

27

27

24

2.582

3.12

6.293

5.078

5.191

Client: BMRI Site: 001B

CO-0045675

SCG Project No.: 423379.B Project: Quarterly WET

Appendix 3 - Data Sheets for the Fathead Minnow Test

SeaCrest Group

SCG Project No.: 423379.B Project: Quarterly WET

WET TEST REPORT FORM – CHRONIC

Permittee:

Battle Mountain Resources, Inc.

Permit No .:

CO-0045675

Outfall:

001B - IWC: 52%

Test Type:

Routine

Accelerated

Screen

Test Species:

fathead minnow

Test Start Time	Test Start Date	Test End Time	Test End Date
1430	08-07-2023	1330	08-14-2023

Test Results	Lethality/TCP6C	Growth/TKP6C
S code: NOEL	100%	100%
	PASS	PASS
P code: LC ₂₅ /IC ₂₅	>100%	>100%
	PASS	PASS
T code:	>100%	>100%

Test Summary

Measurements	Control (0%)	13%	26%	52%	76%	100%
Exposed organisms	40	40	40	40	40	40
Survival for day 1	40	40	40	40	40	40
Survival for day 2	40	40	40	40	40	40
Survival for day 3	40	40	40	40	40	40
Survival for day 4	39	40	40	40	39	40
Survival for day 5	39	40	40	40	39	40
Survival for day 6	39	40	40	40	38	40
Survival for day 7	39	40	40	40	38	40
Mean Dry Wt. (mg)	0.424	0.456	0.457	0.445	0.466	0.486

Hardness (mg/L) - Receiving Water: N/A

Effluent: 44/36/37

Recon Water: 95

Alkalinity (mg/L) - Receiving Water: N/A Chlorine (mg/L) – Effluent: <0.01

Effluent: 6/4/24

Recon Water: 60

pH (initial/final) - Control: 8.2/7.8

100%: 7.8/7.6

Total Ammonia as NH₃ (mg/L) - Effluent: <0.03

Were all Test Conditions in Conformance with Division Guidelines? YES NO

If NO, list deviations from test specifications: N/A

Laboratory: SeaCrest Group

Comments:

Analyst's Name: Lindsey Muniz, Aurora Nelson, and Daniela Thornton

D. Thomason Signature

August 17, 2023 Date

	Ave w		1111	5.			DIV	5			500	2			Dho	5			DUI	3			25	3																١
030	Fish Wt mg	25	Z	5	140	2	183	289	120	bTK	$\overline{}$	5	221	201		アノア	yago.	いつか	118	Sic	25	201	100		700							9								ı
1	Fish \	6-(1)	0	0	0.0	0.32	0	0	2h.0	O	9	2.0	0.6	0	0.0	0	0	U	0.6	0	0	0.0	0	0	0	Ц						MODIC								ı
MH23	Tare	POLS	14308	3775	1.16579	14853	14193	15001	16397	13968	1.14511	15270	17305	3601	14785	וחווו	3248	116240	590	7030	15703	Pr279	5332	15958	16000					1 14505		N								ı
		-				-	-		-		-	-		-			-	_	7	-	-		-	0.	-	Н	-	-	-											ı
Dilution H ₂ O:	Fish & Tare	00001.	14079	14254	7009	7174	HUTI	5590	6820	14337	14950	57101	17832	3993	5204	4585	3744	PHODI.	7003	7546	4220	HOST	583	10443	7182	Н				14514		OCHINE								ı
oilutio	1207	30		-	-	-		1	1	90	=	=	-	=	=	-		-	-	-	1.1			3 1.1		(8)				-		- 1	1							ı
Ī	# 4	1D #1	10 #2	10 #3	#	10 #2	94 ()!	10 #	10 #8	6# ()1	(D #10	#11	D #12	10 #13	0 #14	10 #15	0 #16	1D #17	9 #18	419	0 #50	1D #21	0 #22	[] #23	0 #24	#	#	#	#	t #25		Comments:								ı
tions:	9	10 1	0	0	9	0	0	0	0	101	0	9	(0)	0	10	0	0	10		9 9	10	10	0	0	10	Н		1		pretest		Co	1							ı
IWC: 52 Test Conditions	5	10	10	0	6	10	0	0	0	0)	\rightarrow	0	(0)	(0	(0)	0	0	(0)	6	0	10	0	0	0	0	П						-	7 -	7 5	7 4	1				1
IWC:	4	0)	01	0	5	9)	0	0	9	0	0	10	2	0	0	0	0	91	6	10	10	Ō	0/	10	0								Hard: mg/L	Chlor mail	NH3: ma/L	,				١
123 FHM	3	01	10	01	0	0	5	5	0	0	9	9	10	0)	0)	2	0	01	io	0	10	0	0	0	10	Ц						Units:	ř <	1 6		П				1
807	2	0110	0)	0	01	0)(01	0	0)(0 ! 0	0	\neg	01	0	0	0	0)(011	0)	0110	010	0	0)	010	0)(0	Н							J/G) 4	Cond. uS/cm ³	5				١
Date: 08	1	91	01 (9	9	10	0	0	0) (0	9	\rightarrow	9	10	9	9	9	9	911	01	0110	01	01 0	01	0	0110		0	0	0			9	Tom: "C	DH. N/A	nd puc	5				1
Sample Date: 08072 3 Template: FH	0	10		9	10	10		10	10	\mathbf{H}	9	9	10	10	10	10	10	10	10	10	10	10	10 10	\vdash	10	10	10	10	10	_		_	_	_	T	+	L	H	_	┨
Samp	7	5.0	24.3	7.8		10.4	744	7.8			`	11		. o.	JH.S	7.		Q.O	24.1	7.6		5.9	24.	7.60					製品の	S			500 mL	250 mL	6.5 cm		ay	emia		١
B 0107		7.0	249	8.3	9	7.1	-	8.3	1	7.3	37.6	8.3		7.60	74.4	2.8	7	28	24.2	8.1	3	66	24.1	1.9	0					V		-	200	200	90.2		2x per day	<24hr artemia		1
379	9	8.0	SK	6.	336	10.0	14.6	6	32	7.9	5	00	314	~\		8	181	0.0	34.8	17	263	8.8	24.9	1.1	206					im	a	per				hedule	2	<24		1
Lab #: 473379 B Species Info: 14 08 01.0	H			2		7.0 (2			00	2		2	0	_		7.3 6		60			2	6.		Н				H		Exposure Chamber		,		Feeding Schedule		. 1		1
ies Ir	2	6.9		8.2	320			8.2	308	r i			398	+	125.	00	375				252	h't !		17.9	229					9	3	osnre		200	int).	Feed				ı
Lab #: Specie		5.8	75.4	7.8		5.8	25.4	7.7	,	5.8	25.Ÿ	4.0		5.7	25.4	7.5	18	5.7	25.4	7.4		5.3	25.4	7.3		Ц						-		Test Solution Surface Area:	Water Depth (constant)			Jsed:		ı
0		8.8	248	3.3	8	6.9	54.9	8.3	0	200	1.52	22	80	1:4	25.3	8.1	. 0	216	255	1.9	3	5.5	25.6	せた									apacity.	union	enth (Fed:	Food Used		
001	4	9		ナナ	30	t		3.6	30	6.8		3.5	7 8	0	7.52	5	261	1.	5.0	7.4	24	7.t	24,7	3	17					AA	7		Total Ca	Toct Soll	/ater D	7	5	1,00	T	٦
Site:	H	9 8		3		98	4	3	-		(C)	\neg		4	2	-	`	tt	25	0		L	4	7.87		Н		\forall	-	\forall		MR	T	T	- s	9		J. WY	1	L/W
.4	က	9	24	Ø	302	5 6	12 h	78.	99		1 25		287	16	22.8	80	997	98	5 25.	3 3	245	5.3 6.	125	+	213					AN		_	+	+	+	H	2		\neg	_
38.147	L	S	47	3,4	3	S	25	4	29	2.5	152	ri	0	5.4	54	7.4	u	S	24	+	.,		24.1	+	2	Ц				d		Rcv 3	4	1	1	5	7	9	7	6
		89	24.7	8.3	100	6.9	24.3	8.3	5	J.0	M.3	2.8	4	2+	2M.2	30	24	8't	222	77	4	7.5	24.1	たさ	7	7						Rcv 2				4	1	AN	>	2
Test End:	.,	69		19	38	6.9	5.5	788	29		5	4	25	80	25.2.2M.Z	00 00 00 00	2	6.3	1.57	15	21	49	49	1th 1th	19					AN	7	Rcv 1 Rcv 2				က	>	5	>	A
			24.42	8.3								3				8.2				. 1			5.8	6		П	П				П	c	32	250	0.0	2		AN	>	S,
3 1430	-	8.01 8.01	113	1.8	302	6.6 6.7	74.1 24.7	8.0 8.3	262	1.4 4.0		8.0.8	283	10.2 10.60	24.1 25.3	6 8	240	0.01 0.0	24.1.25.6	7.9 8.	240	5.9 6.5	24.1 25.8	7.8 7.9	204					Z	-	m	1	_	200	1	?	LM	1	Z.
1	L		1.4.1							_		8				1.9		(0)	02	7.		5	0 24			Н	-	-	_	_	-	-	Т	5	20.01 20.01 <0.01	1	,	7		
BMR	0	6.8	24.9	8.2	311	6.9	24	8.2	293	7.0	24.9	8.7	284	7.0	25.0	8.2	258	7.1	. 25	00	2310	7.2	25.0	7.8	199	Ц	_			Lm.	-	+	+		10.00	0	L	Ц	>	(M)
tart		00	Temp	Hd	Cond	00	Temp	Hd	Cond	00	Temp	Hd	Cond	8	Temp	Hd	Cond	00	Temp	Hd	Cond	00	Temp	Hd	Cond	8	Temp	Hd	Cond	Initials	Water #	-		9	9 5	Feeding	AM	Initials	PM.	Initials
Client: Test Start:	Conc		4	0			,	5				20	5		•	ンジン				2	-		-	2	2					i L	Wa		Hard	AK O	S E	Fee	1	Ē	-	Ē

Report Date: Test Code/ID: 15 Aug-23 12:52 (p 1 of 3) 423379FHM / 18-0189-9410

									ies	t Code/II	D:	423	3/9FHM/	18-0189-9410
Fathead Minn	ow 7-d Larva	al Survival	and Grow	th Te	est								Sea	Crest Group
Analysis ID:	11-3184-323	13	Endpoint:	7d	Survival Ra	te			CET	IS Versi	on:	CETISV	1.9.6	
Analyzed:	15 Aug-23 1	2:52	Analysis:	No	nparametric	-Contro	l vs T	Treatments	Stat	tus Leve	l:	1		
Batch ID:	09-2056-043	6	Test Type:	Gro	wth-Surviva	al (7d)			Ana	lyst:	Lab 1	Гесһ		
Start Date:	07 Aug-23		Protocol:	EP	A/821/R-02	-013 (20	002)		Dilu	ent:	Reco	nstituted \	Water	
Ending Date:	14 Aug-23		Species:		nephales pr				Brin	ie:	Not A	pplicable		
Test Length:	7d 0h		Taxon:	Act	inopterygii				Sou	rce:	In-Ho	use Cultu	re	Age:
Sample ID:	04-8512-418	1	Code:	423	379.B				Proj	ject:	WET	Quarterly	Complian	ce Test (3Q)
Sample Date:	07 Aug-23		Material:	PO	TW Effluen	t			Sou	rce:	NPDI	ES Permit	# (XX9999	99999)
Receipt Date:	07 Aug-23		CAS (PC):						Stat	ion:	001B			
Sample Age:	n/a		Client:	ВМ	RI									
Data Transfor	m	Alt H	ур						NOEL	LOEL		TOEL	TU	PMSD
Angular (Corre	cted)	C > T						17	100	>100		n/a	1	5.60%
Steel Many-O	ne Rank Sum	Test												
Control	vs Conc-	-%	Test	Stat	Critical	Ties	DF	P-Type	P-Value	Decisi	ion(a	:5%)		
Dilution Water	13		20		10	1	6	CDF	0.9516	Non-S	ignifi	cant Effec	t	
	26		20		10	1	6	CDF	0.9516	Non-S	ignifi	cant Effec	t	
	52		20		10	1	6	CDF	0.9516		-	cant Effec		
	76		16		10	2	6	CDF	0.6105		_	cant Effec		
	100		20		10	1	6	CDF	0.9516	Non-S	ignifi	cant Effec	t	
ANOVA Table														
Source		quares	Mean	_		DF		F Stat	P-Value	Decisi				
Between	0.0232		0.004			5		1.8	0.1637	Non-Si	ignific	cant Effec	t	
Error	0.0464	0,1415	0.002	5822		18		_						
Total	0.0697	182				23								
ANOVA Assur	nptions Test	S												
Attribute	Test					Test S	Stat	Critical	P-Value	Decisi	on(a	:1%)		
Variance	Bartlett	Equality of	f Variance T	est						Indeter	rmina	ite		
Distribution	Shapiro	-Wilk W N	ormality Te	st		0.772	1	0.884	1.1E-04	Non-No	orma	I Distributi	ion	
7d Survival Ra	ate Summary													
Conc-%	Code	Count			95% LCL	95% L		Median	Min	Max		Std Err	CV%	%Effect
0	D	4	0.975	-	0.8954	1.0000	7.00	1.0000	0.9000	1.0000		0.0250	5.13%	0.00%
13		4	1.000		1.0000	1.0000		1.0000	1.0000	1.0000		0.0000	0.00%	-2.56%
26		4	1.0000		1.0000	1.0000		1.0000	1.0000	1.0000		0.0000	0.00%	-2.56%
52		4	1.0000		1.0000	1.0000		1.0000	1.0000	1.0000		0.0000	0.00%	-2.56%
76		4	0.9500		0.8581	1.0000		0.9500	0.9000	1.0000		0.0289	6.08%	2.56%
100	75 77 12 7	4	1.0000)	1.0000	1.0000)	1.0000	1.0000	1.0000		0.0000	0.00%	-2.56%
Angular (Corre														
Conc-%	Code	Count			95% LCL	95% U	JCL	Median	Min	Max		Std Err	CV%	%Effect
0	D	4	1.371		1.242	1.501		1.412	1.249	1.412		0.04074	5.94%	0.00%
13		4	1.412		1.412	1.412		1.412	1.412	1.412		0	0.00%	-2.97%
26		4	1.412		1.412	1.412		1.412	1.412	1.412		0	0.00%	-2.97%
52 76		4	1.412		1.412	1.412		1.412	1.412	1.412		0 04705	0.00%	-2.97%
76		4	1.331		1.181	1.48		1.331	1.249	1.412		0.04705	7.07%	2.97%

0.00%

-2.97%

100

1.412

1.412

1.412

1.412

0

1.412

CETIS Analytical	Report
-------------------------	--------

Report Date: Test Code/ID: 15 Aug-23 12:53 (p 1 of 2) 423379FHM / 18-0189-9410

Fathea	d Minn	ow 7-d Larval S	Survival a	nd Grow	th Test							Sea	Crest Group
Analys Analyz		09-0095-8818 15 Aug-23 12:52		ndpoint: nalysis:	7d Survival Rai	The second second)		CETIS Ver Status Lev	7.00	CETISA 1	v1.9.6	
Batch	ID:	09-2056-0436	Te	est Type:	Growth-Surviva	al (7d)		-	Analyst:	Lab	Tech		
Start D		07 Aug-23		otocol:	EPA/821/R-02-				Diluent:	Reco	onstituted	Water	
		14 Aug-23		pecies:	Pimephales pro				Brine:		Applicable		
	ength:			ixon:	Actinopterygii				Source:		ouse Culti		Age:
Sampl		04-8512-4181		ode:	423379.B				Project:	WET	Quarterl	y Compliano	- 10 - 7 1 1 2
100		07 Aug-23		aterial:	POTW Effluent				Source:			it # (XX9999	the second second
		07 Aug-23		AS (PC):	POTVV Ellidelli				station:	001E		II # (XX3335	13333)
41.00	e Age:			ient:	BMRI				iauon.	0011	,		
Sampl	e Age.	11/4	- Ci	ient.	DIVINI								
		olation Options											
X Tran	sform	Y Transform		eed	Resamples	Exp 95%	57.00	thod					
Linear		Linear	95	0095	1000	Yes	Tw	o-Point In	terpolation	1			
Point E	Estimat	es											
Level	%	95% LCL			95% LCL								-
LC5	>100	n/a	n/a	<1	n/a	n/a							
LC10	>100	n/a	n/a	<1	n/a	n/a							
LC15	>100	n/a	n/a	<1	n/a	n/a							
LC20	>100	n/a	n/a	<1	n/a	n/a							
LC25	>100	n/a	n/a	<1	n/a	n/a							
LC40	>100	n/a	n/a	<1	n/a	n/a							
LC50	>100	n/a	n/a	<1	n/a	n/a							
7d Sur	vival R	ate Summary				Calcu	lated Vari	iate(A/B)				Isoto	nic Variate
Conc-%	6	Code	Count	Mean	Min	Max	Std Dev	CV%	%Ef	fect	A/B	Mean	%Effect
0		D	4	0.975	0.9000	1.0000	0.0500	5.13%	0.0%	ó	39/40	0.9937	0.0%
13			4	1.000	0 1.0000	1.0000	0.0000	0.00%	-2.56	6%	40/40	0.9937	0.0%
26			4	1.000	0 1.0000	1.0000	0.0000	0.00%	-2.56	6%	40/40	0.9937	0.0%
52			4	1.000	0 1.0000	1.0000	0.0000	0.00%	-2.56	5%	40/40	0.9937	0.0%
76			4	0.950	0.9000	1.0000	0.0577	6.08%	2.56	%	38/40	0.975	1.89%
100			4	1.000	0 1.0000	1.0000	0.0000	0.00%	-2.56	6%	40/40	0.975	1.89%
7d Sur	vival Ra	ate Detail											
Conc-%	6	Code	Rep 1	Rep 2	Rep 3	Rep 4							
0		D	1.0000	1.000	0 1.0000	0.9000							
13			1.0000	1.000	0 1.0000	1.0000							
26			1.0000	1.000	0 1.0000	1.0000							
52			1.0000	1.000	0 1.0000	1.0000							
76			1.0000	0.900		1.0000							

100

1.0000

1.0000

1.0000

Report Date: Test Code/ID: 15 Aug-23 12:52 (p 3 of 3) 423379FHM / 18-0189-9410

										CLOSE STATE			
Fathead Minn	now 7-d Larval	Surviva	I and Grow	th Tes	st							SeaC	Crest Grou
Analysis ID: Analyzed:	11-6634-9594 15 Aug-23 12		Endpoint: Analysis:		n Dry Bion ametric-Co			atments		IS Version	: CETISv1	.9.6	
Batch ID:	09-2056-0436		Test Type:	Grov	wth-Surviva	al (7d)			Ana	lyst: La	b Tech		
Start Date:	07 Aug-23		Protocol:		V821/R-02-		02)				constituted V	Vater	
Ending Date:			Species:		ephales pro		/		Brin		t Applicable		
Test Length:			Taxon:		nopterygii						House Cultur	е	Age:
Sample ID:	04-8512-4181		Code:	4233	379.B				Proj	ect: Wi	ET Quarterly	Complianc	e Test (30
Sample Date:	07 Aug-23		Material:	POT	W Effluent				Sou	rce: NF	DES Permit	# (XX9999	9999)
Receipt Date:	07 Aug-23		CAS (PC):						Stat	ion: 00	1B		
Sample Age:			Client:	BMR	RI								
Data Transfor	m	Alt F	lyp						NOEL	LOEL	TOEL	TU	PMSD
Untransformed	1	C > T	• •					_	100	>100	n/a	1 /	27.61%
Dunnett Multi	ple Comparis	on Test											
Control	vs Conc-%	6	Test	Stat	Critical	MSD	DF	P-Type	P-Value	Decision	n(a:5%)		
Dilution Water	13		-0.647	77	2.407	0.117	6	CDF	0.9573	Non-Sigr	ificant Effect		
	26		-0.668	82	2.407	0.117	6	CDF	0.9594	Non-Sign	ificant Effect		
	52		-0.43	7	2.407	0.117	6	CDF	0.9304	Non-Sign	ificant Effect		
	76		-0.863	35	2.407	0.117	6	CDF	0.9752	Non-Sigr	ificant Effect		
	100		-1.26	5	2.407	0.117	6	CDF	0.9918	Non-Sigr	ificant Effect		
ANOVA Table													
Source	Sum Sq		Mean		are	DF		F Stat	P-Value	Decision			
Between	0.00843		0.001	10000		5		0.3566	0.8713	Non-Sigr	ificant Effect		
Error	0.08515		0.004	7309		18		_					
Total	0.09359	12				23							
ANOVA Assur	nptions Tests												
Attribute	Test					Test S	tat	Critical	P-Value	Decision	(α:1%)		
Variance	Bartlett I	Equality of	of Variance 1	est		7.383		15.09	0.1937	Equal Va	riances		
Distribution	Shapiro-	Wilk W N	Iormality Te	st		0.9817		0.884	0.9257	Normal D	istribution		
Mean Dry Bior	mass-mg Sum	mary											
Conc-%	Code	Coun			95% LCL				Min	Max	Std Err	CV%	%Effec
0	D	4	0.424		0.3122	0.5358		0.425	0.356	0.49	0.03513	16.57%	0.00%
13		4	0.455		0.2779	0.6331		0.456	0.321	0.589	0.05581	24.50%	-7.43%
26		4	0.456		0.3473	0.5657		0.465	0.369	0.527	0.03431	15.03%	-7.66%
52		4	0.445		0.3688	0.5217		0.4465	0.392	0.496	0.02402	10.79%	-5.01%
76		4	0.466		0.3693	0.5627		0.467	0.409	0.521	0.03038	13.04%	-9.90%
100		4	0.485	5	0.4588	0.5122		0.4905	0.462	0.499	0.008393	3.46%	-14.51%
	mass-mg Deta												
Conc-%	Code	Rep 1			Rep 3	Rep 4							
0	D	0.356			0.479	0.49							
13		0.321	0.483		0.589	0.429							
26		0.369	0.439		0.491	0.527							

52

76

100

0.496

0.521

0.496

0.419

0.418

0.499

0.474

0.516

0.485

0.392

0.409

Report Date: Test Code/ID:

15 Aug-23 12:53 (p 2 of 2) 423379FHM / 18-0189-9410

Fathea	ad Minr	ow 7-d Larval S	Survival an	d Grow	th Test						SeaC	rest Grou
Analys		01-3675-4743		dpoint:	Mean Dry Bion	_			CETIS Ver	sion: CETI	Sv1.9.6	
Analyz	ed:	15 Aug-23 12:5	2 Ana	alysis:	Linear Interpola	ation (ICPIN	1)		Status Lev	rel: 1		
Batch	ID:	09-2056-0436	Tes	t Type:	Growth-Surviva	al (7d)			Analyst:	Lab Tech		
Start D	ate:	07 Aug-23	Pro	tocol:	EPA/821/R-02-	-013 (2002)			Diluent:	Reconstitute	ed Water	
Ending	Date:	14 Aug-23	Spe	cies:	Pimephales pre	omelas			Brine:	Not Applical	ble	
Test L	ength:	7d 0h	Tax	on:	Actinopterygii				Source:	In-House Cu	ulture	Age:
Sampl	e ID:	04-8512-4181	Cod	de:	423379.B				Project:	WET Quarte	erly Complianc	e Test (3Q
Sampl	e Date:	07 Aug-23	Mat	erial:	POTW Effluent	t			Source:		mit # (XX9999	
		07 Aug-23	CAS	(PC):					Station:	001B		
	e Age:		Clie		BMRI							
Linear	Interpo	olation Options										
X Tran		Y Transform	n See	d	Resamples	Exp 95%	CL Me	ethod				
Linear		Linear		8385	1000	Yes			nterpolation			
Point E	stimat	es										
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL						
IC5	>100	n/a	n/a	<1	n/a	n/a						
C10	>100	n/a	n/a	<1	n/a	n/a						
C15	>100	n/a	n/a	<1	n/a	n/a						
C20	>100	n/a	n/a	<1	n/a	n/a						
C25	>100	n/a	n/a	<1	n/a	n/a						
C40	>100	n/a	n/a	<1	n/a	n/a						
IC50	>100	n/a	n/a	<1	n/a	n/a						
Mean D	ry Bio	mass-mg Summ	ary			Cal	culated V	/ariate			Isotor	ic Variate
Conc-%	6	Code	Count	Mean	Min	Max	Std Dev	CV%	%Eff	ect	Mean	%Effect
0		D	4	0.424	0.356	0.49	0.07027	16.57	% 0.0%		0.4555	0.0%
13			4	0.455	0.321	0.589	0.1116	24.50	% -7.43	%	0.4555	0.0%
26			4	0.456	0.369	0.527	0.06861	15.03	-7.67	%	0.4555	0.0%
52			4	0.4453	0.392	0.496	0.04805	10.79	-5.01	%	0.4555	0.0%
76			4	0.466	0.409	0.521	0.06077	13.04	% -9.91	%	0.4555	0.0%

Mean Dry Bi	iomass-mg	Detail
-------------	-----------	--------

100

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	D	0.356	0.371	0.479	0.49
13		0.321	0.483	0.589	0.429
26		0.369	0.439	0.491	0.527
52		0.392	0.419	0.474	0.496
76		0.409	0.418	0.516	0.521
100		0.462	0.499	0.485	0.496

4

0.4855

0.462

0.499

0.01679

3.46%

-14.51%

0.4555

0.0%

Client: BMRI Site: 001B CO-0045675

SCG Project No.: 423379.B Project: Quarterly WET

Appendix 4 - QA/QC and Reference Toxicant Test Chart

SeaCrest Group 35

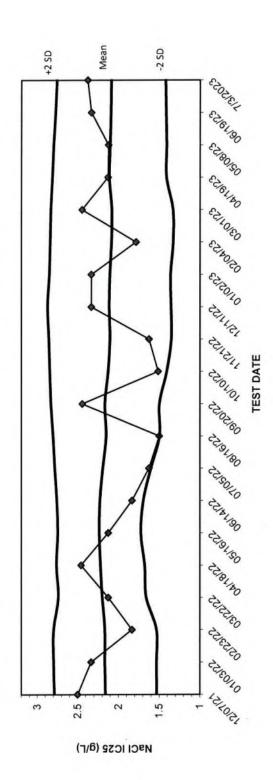
Client: BMRI Site: 001B

SCG Project No.: 423379.B Project: Quarterly WET

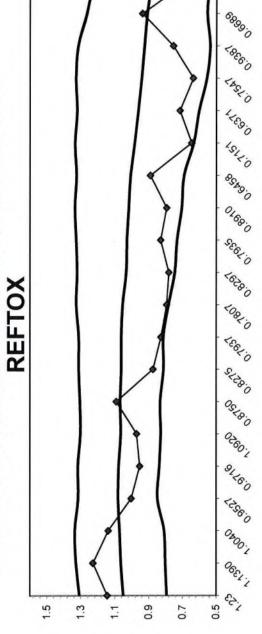
Quality Assurance Check List - Chronic Whole Effluent Toxicity Test

Client:	Battle Mountain Reso	ources, Inc.					
SeaCrest Sample No:	423379.B						
Species Tested:	Ceriodaphnia dubia a	and fathead minnow					
Sample Dates 08-07-2023 08-09-2023	Start Date of Test (Ceriodaphnia dubia)	Start Date of Test (fathead minnow)					
08-11-2023	08-07-2023	08-07-2023					
Sample received in lab properl	v preserved (0-6°C)?	N*					
Sample received at laboratory		Y					
Sample delivered on ice or equ		Y					
Test initiated within 36-hours		Y					
Test protocol conforms to CDI	PHE guidelines (Ceriodaphnia dubia)?	Y					
Test protocol conforms to CDI	PHE guidelines (fathead minnow)?	Y					
Average test temp. ±1°C (Ceric	odaphnia dubia)?	Y					
Average test temp. ±1°C (fathe	ad minnow)?	Y					
DO level ≥4.0mg/L; no super-s	saturation (Ceriodaphnia dubia)?	Y					
DO level ≥4.0mg/L; no super-s	saturation (fathead minnow)?	Y					
Survival in control ≥80% (<i>Cer</i>	iodaphnia dubia)?	Y					
Survival in control ≥80% (fath	ead minnow)?	Y					
Ceriodaphnia dubia neonates «	<24-hours old?	Y					
Fathead minnow larvae <24-ho	Y						
Appropriate reference toxicity test conducted?							
Reference toxicity test results within the confidence limits for the lab?							

^{*} Sample #1, #2, and #3 were received at 13.0°C, 12.1°C, and 10.5°C on the same day as sampling.


Position: Laboratory Supervisor

36 SeaCrest Group


Method	Analyte	Date	LCS (rec)	%REC	%RPD	QC LIMITS
2320 B	Alkalinity - Total	7/5/2023	102.40%	100.45%	-0.25%	***************************************
2320 B	Alkalinity - Total	7/11/2023	102.40%	101.06%	1.89%	%00°C+
2320 B	Alkalinity - Total	7/20/2023	101.20%	103.19%	0.73%	*2005 +
2320 B	Alkalinity - Total	7/27/2023	102.00%	103.70%	4.17%	%00°E+
4500 NH ₃ D	Ammonia	7/7/2023	%00.96	95.32%	-2.99%	+ 10.00*
4500 NH ₃ D	Ammonia	7/12/2023	%00'56	95.06%	-4.88%	+ 10.00%
4500 NH ₃ D	Ammonia	7/20/2023	%00'96	95.50%	-4.65%	+ 10 00%
4500 NH ₃ D	Ammonia	7/26/2023	%09:96	95.04%	-4.18%	+ 10 00%
4500 CI D	Chlorine	7/19/2023	103.13%	96.97%	0.00%	± 5.00, ± 20.00%
2340 B	Hardness - Total	7/6/2023	100.00%	101.47%	1.08%	+ 5.00%
2340 B	Hardness - Total	7/13/2023	98.20%	100.00%	-0.90%	%00°C +
2340 B	Hardness - Total	7/21/2023	102.00%	100.00%	-1.24%	*200 +
2340 B	Hardness - Total	7/27/2023	100.00%	99.55%	2.30%	± 5.00%
			LCS (rec)	%REC M1	%REC M2	OCLimits
4500 0	DO - Winkler	7/5/2023	N/A	98.55%	100.00%	+ 5 00%
4500 O	DO - Winkler	7/11/2023	N/A	97.14%	97.14%	%00°5 +
4500 O	DO - Winkler	7/19/2023	N/A	100.00%	100.00%	%00°5+
4500 O	DO - Winkler	7/26/2023	N/A	97.22%	97.22%	± 5.00%
			Blank	%REC MR S	%RPD	OC Limits
2540 D	Suspended Solids (TTL)	7/19/2023	100.00%	103.53%	0.00%	+ 15%
2540 C	Dissolved Solids (TTL)	7/19/2023	100.00%	107.70%	0.03%	± 15%
Signature:	Halley 11 Nex	ب		:	Signature	CA MM RA
Date:	ANOUST 1 2002	7			,	700 1 20101 8
					Date:	31/4/07 1, 1000

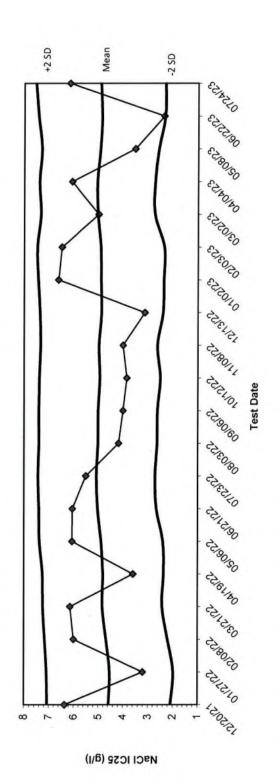
CERIODAPHNIA SURVIVAL LC25 NaCI REFTOX

2.7874	2.7982	2.7982	2.7374	2.7626	2.7453	2.7582	2.7828	2.8054	2.8328	2.8465	2.8578	2.8742	2.8527	2.8430	2.8352	2.8158	2.7988	2.7755	2.7571
1.5310	1.5330	1.5330	1.6590	1.6774	1.7257	1.6951	1.6031	1.4959	1.4989	1.4070	1.3533	1.3566	1.3622	1.3307	1.3336	1.4129	1.4102	1.4176	1.4243
2.1592	2.1656	2.1656	2.1982	2.2200	2.2355	2.2267	2.1930	2.1506	2.1658	2.1268	2.1055	2.1154	2.1075	2.0869	2.0844	2.1144	2.1045	2.0965	2.0907
2.5000	2.3330	1.8330	2.1250	2.4580	2.1250	1.8330	1.6250	1.5000	2.4440	1.5130	1.6250	2.3330	2.3330	1.7860	2.4480	2.1300	2.1250	2.3330	2.3780
12/07/21	01/03/22	02/23/22	03/22/22	04/18/22	05/16/22	06/14/22	07/05/22	08/16/22	09/20/22	10/10/22	11/21/22	12/11/22	01/02/23	02/04/23	03/01/23	04/19/23	05/08/23	06/19/23	7/3/2023
	2.5000 2.1592 1.5310	2.5000 2.1592 1.5310 2.3330 2.1656 1.5330	2.5000 2.1592 1.5310 2.3330 2.1656 1.5330 1.8330 2.1656 1.5330	2.5000 2.1592 1.5310 2.3330 2.1656 1.5330 1.8330 2.1656 1.5330 2.1250 2.1982 1.6590	2.5000 2.1592 1.5310 2.3330 2.1656 1.5330 1.8330 2.1656 1.5330 2.1250 2.1982 1.6590 2.4580 2.2200 1.6774	2.5000 2.1592 1.5310 2.3330 2.1656 1.5330 1.8330 2.1656 1.5330 2.1250 2.1982 1.6590 2.2200 1.6774 2.1250 2.2355 1.7257	2.5000 2.1592 1.5310 2.3330 2.1656 1.5330 1.8330 2.1656 1.5330 2.1250 2.1982 1.6590 2.4580 2.2200 1.6774 2.1250 2.2355 1.7257 1.8330 2.2267 1.6951	2.5000 2.1592 1.5310 2.3330 2.1656 1.5330 1.8330 2.1656 1.5330 2.4580 2.2200 1.6590 2.1250 2.2200 1.6774 2.1250 2.2355 1.7257 1.8330 2.2267 1.6951 1.6250 2.1930 1.6031	2.5000 2.1592 1.5310 2.3330 2.1656 1.5330 1.8330 2.1656 1.5330 2.4580 2.2200 1.6590 2.1250 2.2300 1.6774 2.1250 2.2355 1.7257 1.8330 2.2267 1.6951 1.6250 2.1930 1.6031 1.5000 2.1506 1.4959	2.5000 2.1592 1.5310 2.3330 2.1656 1.5330 1.8330 2.1982 1.6590 2.4580 2.2200 1.6774 2.1250 2.2355 1.7257 1.8330 2.2267 1.6951 1.6250 2.1930 1.6031 1.5000 2.1506 1.4959 2.4440 2.1658 1.4989	2.5000 2.1592 1.5310 2.3330 2.1656 1.5330 1.8330 2.1982 1.6590 2.4580 2.2200 1.6774 2.1250 2.2355 1.7257 1.8330 2.2267 1.6951 1.6250 2.1930 1.6951 1.5000 2.1506 1.4959 2.4440 2.1658 1.4989 1.5130 2.1268 1.4070	2.5000 2.1592 1.5310 2.3330 2.1656 1.5330 2.1250 2.1982 1.6590 2.4580 2.2200 1.6590 2.1250 2.2355 1.7257 1.8330 2.2267 1.6951 1.6250 2.1930 1.4959 2.4440 2.1658 1.4989 1.5130 2.1268 1.4070 1.6250 2.1055 1.3533	2.5000 2.1592 1.5310 2.3330 2.1656 1.5330 2.1250 2.1982 1.6590 2.4580 2.2200 1.6590 2.1250 2.2355 1.7257 1.6250 2.2267 1.6951 1.5000 2.1506 1.4959 2.4440 2.1658 1.4989 1.5130 2.1268 1.4070 2.3330 2.1164 1.3533	2.5000 2.1592 1.5310 2.3330 2.1656 1.5330 2.1250 2.1982 1.6590 2.4580 2.2200 1.6590 2.1250 2.2355 1.7257 1.6250 2.2267 1.6951 1.5000 2.1506 1.4959 2.4440 2.1658 1.4989 1.5130 2.168 1.4070 2.3330 2.1154 1.3533 2.3330 2.1154 1.3566 2.3330 2.1075 1.3622	2.5000 2.1592 1.5310 2.330 2.1656 1.5330 2.1250 2.1982 1.6590 2.4580 2.2200 1.6774 2.1250 2.2355 1.7257 1.8330 2.2267 1.6951 1.6250 2.1930 1.4959 2.4440 2.1658 1.4989 1.5130 2.168 1.4989 1.5130 2.1055 1.3533 2.3330 2.1154 1.3566 2.3330 2.1075 1.3622 1.7860 2.0869 1.3307	2.5000 2.1592 1.5310 2.3330 2.1656 1.5330 2.1250 2.1982 1.6590 2.4580 2.2200 1.6774 2.1250 2.2355 1.7257 1.6250 2.2267 1.6951 1.6250 2.1506 1.4959 2.4440 2.1658 1.4989 1.5130 2.1268 1.4989 1.6250 2.1055 1.3533 2.3330 2.1055 1.3566 2.3330 2.1075 1.3566 2.3330 2.0869 1.3307 2.4480 2.0844 1.3330	2.5000 2.1592 1.5310 2.3330 2.1656 1.5330 1.8330 2.1656 1.5330 2.1250 2.1982 1.6590 2.4580 2.2200 1.6774 2.1250 2.2355 1.7257 1.8330 2.2267 1.6951 1.5000 2.1930 1.4959 2.4440 2.1658 1.4969 1.5130 2.1658 1.4070 1.6250 2.1055 1.3533 2.3330 2.1154 1.366 2.3330 2.1055 1.3307 2.4480 2.0844 1.3336 2.1300 2.1144 1.4129	2.5000 2.1592 1.5310 2.3330 2.1656 1.5330 2.1250 2.1982 1.6590 2.4580 2.2200 1.6774 2.1250 2.2355 1.7257 1.6250 2.2267 1.6951 1.6250 2.1930 1.6951 2.4440 2.1658 1.4959 2.4440 2.1658 1.4959 1.5130 2.1055 1.3533 2.3330 2.1055 1.366 2.3330 2.1075 1.3622 2.1300 2.0869 1.3307 2.1300 2.1045 1.4129 2.1250 2.1045 1.4102	

CERIODAPHNIA REPRODUCTION IC25 NaCI

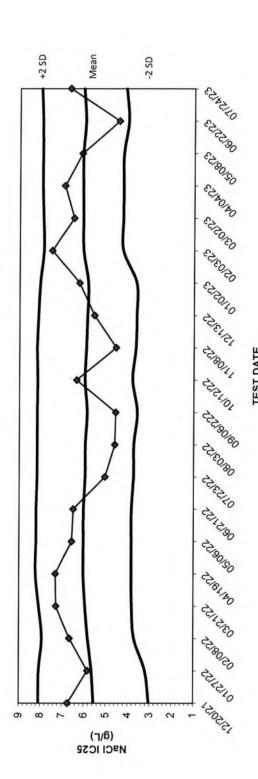
NgCI IC25 (9/L)

Mean


+2 SD

-2 SD

TEST DATE


1.3076	1.328382393	1.3354	1.3154	1.3174	1.3025	1.3053	1.3129	1.3123	1.3279	1.3223	1.3275	1.3353	1.3258	1.3342	1.3221	1.3300	1.3165	1.2670	1.2302
0.7931	0.801557607	0.8084	0.8489	0.8376	0.8293	0.8330	0.8126	0.8138	0.7830	0.7456	0.7328	0.7041	0.6912	0.6340	0.6021	0.5562	0.5369	0.5540	0.5384
1.0503	1.06497	1.0719	1.0821	1.0775	1.0659	1.0691	1.0628	1.0630	1.0554	1.0340	1.0301	1.0197	1.0085	0.9841	0.9621	0.9431	0.9267	0.9105	0.8843
1.1450	1.23	1.1390	1.0040	0.9527	0.9716	1.0920	0.8750	0.8275	0.7937	0.7807	0.8297	0.7935	0.8910	0.6458	0.7151	0.6371	0.7547	0.9387	0.6689
12/07/21	1/3/2022	02/23/22	03/22/22	04/18/22	05/16/22	06/14/22	07/05/22	08/16/22	09/20/22	10/10/22	11/21/22	12/11/22	01/02/23	02/04/23	03/01/23	04/19/23	05/08/23	06/19/23	07/03/23
	1.1450 1.0503 0.7931	1.1450 1.0503 0.7931 1.05497 0.801557607 1	1.1450 1.0503 0.7931 1.23 1.06497 0.801557607 1.1390 1.0719 0.8084	1.1450 1.0503 0.7931 1.23 1.06497 0.801557607 1.1390 1.0719 0.8084 1.0040 1.0821 0.8489	1.1450 1.0503 0.7931 1.23 1.06497 0.801557607 1 1.1390 1.0719 0.8084 1.0040 1.0821 0.8489 0.9527 1.0775 0.8376	1.1450 1.0503 0.7931 1.23 1.06497 0.801557607 1 1.1390 1.0719 0.8084 1.0040 1.0821 0.8489 0.9527 1.0775 0.8376 0.9716 1.0659 0.8293	1.1450 1.0503 0.7931 1.23 1.06497 0.801557607 1 1.1390 1.0719 0.8084 1.0040 1.0821 0.8489 0.9527 1.0775 0.8376 0.9716 1.0659 0.8293 1.0920 1.0691 0.8330	1.1450 1.0503 0.7931 1.23 1.06497 0.801557607 1 1.1390 1.0719 0.8084 1.0040 1.0821 0.8489 0.9527 1.0775 0.8376 0.9716 1.0659 0.8293 1.0920 1.0691 0.8330 0.8750 1.0628 0.8126	1.1450 1.0503 0.7931 1.23 1.06497 0.801557607 1 1.1390 1.0719 0.8084 1.0040 1.0821 0.8489 0.9527 1.0775 0.8376 0.9716 1.0659 0.8293 1.0920 1.0691 0.8330 0.8750 1.0628 0.8126 0.8275 1.0630 0.8138	1.1450 1.0503 0.7931 1.23 1.06497 0.801557607 1.1390 1.0719 0.8084 1.0040 1.0821 0.8489 0.9527 1.0775 0.8336 0.9716 1.0659 0.8293 1.0920 1.0691 0.8330 0.8750 1.0628 0.8126 0.8275 1.0630 0.8138 0.7937 1.0554 0.7830	1.1450 1.0503 0.7931 1.23 1.06497 0.801557607 1.1390 1.0719 0.8084 1.0040 1.0821 0.8489 0.9527 1.0775 0.8376 0.9716 1.0659 0.8293 1.0920 1.0691 0.8330 0.8750 1.0628 0.8126 0.8275 1.0630 0.8138 0.7937 1.054 0.7830 0.7807 1.0340 0.7456	1.1450 1.0503 0.7931 1.23 1.06497 0.801557607 1.1390 1.0719 0.8084 1.0040 1.0821 0.8489 0.9527 1.0775 0.8376 0.9716 1.0659 0.8293 1.0920 1.0691 0.8330 0.8750 1.0628 0.8126 0.8275 1.0630 0.8138 0.7837 1.0554 0.7830 0.7807 1.0340 0.7456 0.8297 1.0301 0.7328	1.1450 1.0503 0.7931 1.23 1.06497 0.801557607 1.1390 1.0719 0.8084 1.0040 1.0821 0.8489 0.9527 1.0775 0.8376 0.9716 1.0659 0.8293 1.0920 1.0691 0.8330 0.8750 1.0691 0.8330 0.8275 1.0630 0.8126 0.7837 1.0554 0.7830 0.7807 1.0340 0.7456 0.8297 1.0301 0.7328 0.7935 1.0197 0.7041	1.1450 1.0503 0.7931 1.23 1.06497 0.801557607 1.1390 1.0719 0.8084 1.0040 1.0821 0.8489 0.9527 1.0775 0.8376 0.9716 1.0659 0.8293 1.0920 1.0691 0.8293 0.8750 1.0691 0.8330 0.8275 1.0628 0.8126 0.7837 1.0630 0.7830 0.7807 1.0340 0.7456 0.7827 1.0301 0.7328 0.7935 1.0197 0.7041 0.8910 1.0085 0.6912	1.1450 1.0503 0.7931 1.23 1.06497 0.801557607 1.1390 1.0719 0.8084 1.0040 1.0821 0.8489 0.9527 1.0755 0.8376 0.9716 1.0659 0.8293 1.0628 0.8126 0.8750 1.0628 0.8126 0.8275 1.0628 0.8138 0.7937 1.0554 0.7830 0.8297 1.0340 0.7456 0.8297 1.0301 0.7328 0.7935 1.0197 0.7041 0.8910 0.9841 0.6912	1.1450 1.0503 0.7931 1.23 1.06497 0.801557607 1.1390 1.0719 0.8084 1.0040 1.0821 0.8489 0.9527 1.0775 0.8376 0.9716 1.0659 0.8293 1.0920 1.0691 0.8330 0.8750 1.0628 0.8126 0.8275 1.0630 0.8138 0.7807 1.0554 0.7830 0.7807 1.0340 0.7456 0.8297 1.0197 0.7041 0.8910 1.0085 0.6912 0.6458 0.9841 0.6021	1.1450 1.0503 0.7931 1.23 1.06497 0.801557607 1.1390 1.0719 0.8084 1.0040 1.0821 0.8489 0.9527 1.0775 0.8376 0.9716 1.0659 0.8293 1.0920 1.0691 0.8126 0.8750 1.0628 0.8126 0.8275 1.0630 0.8138 0.7807 1.0554 0.7830 0.7807 1.0340 0.7456 0.8297 1.0197 0.7041 0.8910 0.7935 1.0197 0.6912 0.6458 0.9841 0.6021 0.7151 0.9621 0.6021 0.6371 0.9431 0.5562	1.1450 1.0503 0.7931 1.23 1.06497 0.801557607 1.1390 1.0719 0.8084 1.0040 1.0821 0.8489 0.9527 1.0775 0.8376 0.9716 1.0659 0.8293 1.0920 1.0659 0.8293 0.8750 1.0628 0.8126 0.8275 1.0630 0.8138 0.7937 1.0554 0.7830 0.7897 1.0340 0.7456 0.7897 1.0340 0.7456 0.7891 0.0621 0.6458 0.9841 0.6340 0.7547 0.9621 0.6562 0.7547 0.9267 0.5369	1.1450 1.0503 0.7931 1.23 1.06497 0.801557607 1.1390 1.0719 0.801557607 1.1390 1.0719 0.8084 1.0040 1.0775 0.8489 0.9527 1.0775 0.8376 0.9716 1.0659 0.8376 0.8750 1.0691 0.8126 0.8275 1.0630 0.8138 0.7807 1.054 0.7830 0.7807 1.0340 0.7456 0.7807 1.0301 0.7328 0.6458 0.9841 0.6340 0.6458 0.9841 0.6340 0.6371 0.9621 0.6562 0.7547 0.9627 0.6562 0.9387 0.9105 0.6560

FHM SURVIVAL LC25 NaCI REFTOX

+2 SD	7.0713	0060	1688	2464	7.2622	3872	4081	4488	4112	4137	3925	3468	3690	4415	4818	3361	3978	7.2979	4321	7.5370
+5	7.0	7.0	7.	7.7	7.7	7.3	7.4	7.4	7.4	7.4	7.3	7.3	7.3	7.4	7.4	7.3	7.3	7.7	7.4	7.5
-2 SD	2.0849	1.9736	2.2009	2.4258	2.3657	2.3955	2.6626	2.7150	2.6328	2.6233	2.5089	2.6228	2.3996	2.3687	2.3524	2.7367	2.7278	2.5790	2.3230	2.3130
Mean	4.5781	4.5318	4.6848	4.8361	4.8140	4.8914	5.0353	5.0819	5.0220	5.0185	4.9507	4.9848	4.8843	4.9051	4.9171	5.0364	5.0628	4.9385	4.8775	4.9250
IC25	6.3570	3.2000	6.0000	6.1400	3.5870	6.0670	6.0500	5.5000	4.1820	4.0000	3.8420	4.0000	3.1230	6.6150	6.4800	5.0000	6.0800	3.5230	2.3600	6.1696
Date	12/20/21	01/27/22	02/08/22	03/21/22	04/19/22	05/06/22	06/21/22	07/23/22	08/03/22	09/06/22	10/12/22	11/08/22	12/13/22	01/02/23	02/03/23	03/02/23	04/04/23	05/08/23	06/22/23	0724/23

FHM GROWTH IC25 NaCI REFTOX

Г																			
8.0788	8.0692	7.9266	8.0729	8.2271	8.2074	8.2074	8.1587	8.1611	8.1620	8.1465	8.1744	8.1150	8.0455	7.8824	7.9047	7 9479	7.9416	7.9487	7.9998
3.0309	3.2082	3.7120	3.8121	3.8358	3.8376	3.8376	3.7409	3.7354	3.5812	3.7966	3.6531	3.6196	3.6291	4.2424	4.2468	4.2384	4.2341	4.0146	4.1185
5.5549	5.6387	5.8193	5.9425	6.0314	6.0225	6.0225	5.9498	5.9482	5.8716	5.9716	5.9137	5.8673	5.8373	6.0624	6.0758	6.0931	6.0879	5.9816	6.0591
6.7310	5.8200	6.6580	7.2690	7.2990	6.5630	6.5000	5.0500	4.6040	4.5630	6.3570	4.5530	5.5530	6.2350	7.4870	6.5000	6.9180	6.1200	4.4340	6.6760
12/20/21	01/27/22	02/08/22	03/21/22	04/19/22	05/06/22	06/21/22	07/23/22	08/03/22	09/06/222	10/12/22	11/08/22	12/13/22	01/02/23	02/03/23	03/02/23	04/04/23	05/08/23	06/22/23	07/24/23
	6.7310 5.5549 3.0309	6.7310 5.5549 3.0309 5.8200 5.6387 3.2082	6.7310 5.5549 3.0309 5.8200 5.6387 3.2082 6.6580 5.8193 3.7120	6.7310 5.5549 3.0309 5.8200 5.6387 3.2082 6.6580 5.8193 3.7120 7.2690 5.9425 3.8121	6.7310 5.5549 3.0309 5.8200 5.6387 3.2082 6.6580 5.8193 3.7120 7.2690 5.9425 3.8121 7.2990 6.0314 3.8358	6.7310 5.5549 3.0309 5.8200 5.6387 3.2082 6.6580 5.8193 3.7120 7.2690 5.9425 3.8121 7.2990 6.0314 3.8358 6.5630 6.0225 3.8376	6.7310 5.5549 3.0309 5.8200 5.6387 3.2082 6.6580 5.8193 3.7120 7.2690 6.0314 3.8358 6.5630 6.0225 3.8376 6.5000 6.0225 3.8376	6.7310 5.5549 3.0309 5.8200 5.6387 3.2082 6.6580 5.8193 3.7120 7.2690 6.0314 3.8358 6.5630 6.0225 3.8376 6.5000 6.0225 3.8376 5.0500 5.9498 3.7409	6.7310 5.5549 3.0309 5.8200 5.6387 3.2082 6.6580 5.8193 3.7120 7.2690 6.0314 3.8121 6.5630 6.0225 3.8376 6.5000 6.0225 3.8376 5.0500 5.9482 3.7409 4.6040 5.9482 3.7354	6.7310 5.5549 3.0309 5.8200 5.6387 3.2082 6.6580 5.8193 3.7120 7.2690 6.0314 3.8358 6.5630 6.0225 3.8376 6.5000 6.0225 3.8376 5.0500 5.9488 3.7409 4.6040 5.9482 3.7354 4.5630 5.8716 3.5812	6.7310 5.5549 3.0309 5.8200 5.6387 3.2082 6.6580 5.8193 3.7120 7.2690 6.0314 3.8358 6.5630 6.0225 3.8376 6.5000 6.0225 3.8376 5.0500 5.9498 3.7409 4.6040 5.9482 3.7354 4.5630 5.8716 3.5812 6.3570 5.9716 3.7966	6.7310 5.5549 3.0309 5.8200 5.6387 3.2082 6.6580 5.8193 3.7120 7.2690 6.0314 3.8358 6.5630 6.0225 3.8376 6.5000 6.0225 3.8376 4.6040 5.9488 3.7409 4.5630 5.9482 3.7354 4.5630 5.9716 3.7966 4.5530 5.9716 3.7966 4.5530 5.9137 3.6531	6.7310 5.5549 3.0309 5.8200 5.6387 3.2082 6.6580 5.8193 3.7120 7.2690 6.0314 3.8358 6.5630 6.0225 3.8376 6.5000 6.0225 3.8376 4.6040 5.9482 3.7354 4.5630 5.9482 3.7354 6.3570 5.9716 3.7966 4.5530 5.9137 3.6196 5.5530 5.8673 3.6196	6.7310 5.5549 3.0309 5.8200 5.6387 3.2082 6.6580 5.8193 3.7120 7.2690 6.0314 3.8358 6.5630 6.0225 3.8376 6.5000 6.0225 3.8376 6.5000 6.0225 3.8376 4.6040 5.9482 3.7409 4.5630 5.9716 3.7366 6.3570 5.9716 3.7966 4.5530 5.9137 3.6196 6.2350 5.8673 3.6291	6.7310 5.5549 3.0309 5.8200 5.6387 3.2082 6.6580 5.8193 3.7120 7.2690 6.0314 3.8358 6.5630 6.0225 3.8376 6.5000 6.0225 3.8376 6.5000 6.0225 3.8376 4.6040 5.9482 3.7409 4.5630 5.9716 3.7354 6.3570 5.9716 3.5812 6.2530 5.9137 3.6531 6.2350 5.8673 3.6196 6.2350 5.8373 3.6291 7.4870 6.0624 4.2424	6.7310 5.5549 3.0309 5.8200 5.6387 3.2082 6.6580 5.8425 3.2082 7.2690 6.0314 3.8121 7.2990 6.0225 3.8376 6.5000 6.0225 3.8376 6.5000 6.0225 3.8376 6.5000 5.9482 3.7409 4.6040 5.9482 3.7354 4.5630 5.9716 3.5812 6.3570 5.9716 3.6531 5.5530 5.9137 3.6196 6.2350 5.8373 3.6196 6.2350 6.0624 4.2424 6.5000 6.0758 4.2424	6.7310 5.5549 3.0309 5.8200 5.8193 3.2082 6.6580 5.9425 3.8121 7.2690 6.0314 3.8358 6.5630 6.0225 3.8376 6.5000 6.0225 3.8376 6.5000 5.9482 3.7409 4.6040 5.9482 3.7354 4.5630 5.9716 3.5812 6.3570 5.9716 3.5812 6.3570 5.9137 3.6196 6.2350 5.8673 3.6291 7.4870 6.0624 4.2468 6.5000 6.0758 4.2468 6.9180 6.0931 4.2384	6.7310 5.5549 3.0309 5.8200 5.6387 3.2082 6.6580 5.8193 3.7120 7.2690 6.0314 3.8358 6.5630 6.0225 3.8376 6.5630 6.0225 3.8376 6.5000 5.9498 3.7409 4.6040 5.9482 3.7354 6.3570 5.8716 3.5812 6.3570 5.9716 3.7966 6.2530 5.8776 3.6531 7.4870 6.0624 4.244 6.5000 6.0931 4.2384 6.1200 6.0879 4.2341	6.7310 5.5549 3.0309 5.8200 5.6387 3.2082 6.6580 5.8193 3.7120 7.2690 6.0245 3.8121 7.2990 6.0225 3.8358 6.5630 6.0225 3.8376 6.5000 6.0225 3.8376 7.6000 6.0225 3.8376 7.6000 6.9482 3.7364 7.8530 5.9716 3.7966 6.3570 5.9716 3.6531 6.2530 5.9137 3.6531 7.4870 6.0624 4.2424 6.1200 6.0758 4.2468 6.1200 6.0879 4.0146 4.4340 5.9816 4.0146

Battle Mountain Resources, Inc.

San Luis Project P.O. Box 310 San Luis, Colorado 81152-0310 (719) 379-0798

January 8, 2024

Colorado Department of Public Health and Environment Water Quality Control Division Attn: WQDC-B2 – DMR Receipt 4300 Cherry Creek Drive Denver, CO 80246-1530

Re: Battle Mountain Resources, Inc.

San Luis Project - San Luis, Colorado

Fourth Quarter 2023 – DMR's, BMP and WET Testing Reports

CDPHE CDPS Permit No. CO0045675

Dear Sir or Madame:

Please find the enclosed Battle Mountain Resources, Inc. "San Luis Project" (Permit No. CO0045675) Colorado Department of Public Health and Environment-Colorado Discharge Permit System (CDPS) Best Management Practices (BMP) report for permitted outfall 002 for the fourth quarter 2023. The quarterly BMP report provides the required data associated with groundwater well elevations, the quarterly potentiometric surface map and groundwater well chemistry.

In addition, the fourth quarter 2023 Discharge Monitoring Reports (DMRs) were submitted for each of the permitted water treatment plant discharges in the NetDMR System and the WET Testing Reports were attached to the appropriate DMR submittal in NetDMR. These permitted discharges consist of water treatment plant Discharge Numbers 001-A and 001-B. During the quarter, the maximum 30-day average flow was 0.24 million gallons of water discharged per day, therefore the applicable permit criteria for the reporting period is associated with discharge number 001-B.

Should any questions arise or if I can be of any assistance providing clarification, please call me at (719) 379-0538.

Sincerely,

Julio Madrid Authorized Agent

Battle Mountain Resources, Inc.

Cc: BMRI File

Devon Horntvedt, Newmont USA Limited Tim Runnells, Engineering Analytics

Battle Mountain Resources, Inc.

San Luis Project P.O. Box 310 San Luis, Colorado 81152-0310 (719) 379-0798

January 8, 2024

Colorado Department of Public Health and Environment Water Quality Control Division Attn: WQDC-B2 – DMR Receipt 4300 Cherry Creek Drive Denver, CO 80246-1530

Re: Battle Mountain Resources, Inc.

San Luis Project

Fourth Quarter 2023 BMP Report CDPHE CDPS Permit No. CO0045675

Dear Sir or Madame:

In accordance with and compliance of the permit limitations and permit terms and conditions contained in Part I, Section 5 <u>Discharge Point 002</u>: (Permit Limitations, Best Management Practices, and Schedule of Compliance of the State of Colorado Authorization to Discharge Under the Colorado Discharge Permit System, Battle Mountain Resources, Inc. submits the following *Quarterly Best Management Practices Report*.

In accordance with the Water Quality Control Commission Regulations for Effluent Limitations, Section 62.4, and the Colorado Discharge Permit System Regulations, Sections 61.8(2), 61.8(3)(n), and 61.8(3)(r), 5 C.C.R. 1002-61, the permittee shall continue to implement the following limitations, compliance schedules, and Best Management Practices (BMPs).

The attainment of applicable water quality standards will be implemented and evaluated through the application of the following limitations, compliance schedules, and BMPs that are designed to monitor and control the groundwater quality and quantity discharging from the West Pit to the Rito Seco alluvial aquifer.

Specifically, the limitations, compliance schedules, and BMPs are those activities that address contaminated groundwater that may flow into the Rito Seco. This includes: (1) the potential flow of the affected groundwater from the West Pit that, in the past, manifested itself in the formation of the surface seeps along the arroyo sidewall of the Rito Seco, and (2) the plume of affected groundwater within the Rito Seco alluvial aquifer downgradient of the West Pit that flows along the naturally occurring hydraulic gradient and that may flow into the Rito Seco. The activities will include the following specific requirements:

1) The elevation of the groundwater table in the vicinity of the West Pit shall be measured on a weekly basis at the following locations: (i) the West Pit backfill wells BF-4 and BF-5 and (ii) the Rito Seco alluvial wells M-16 and M-20, as shown in Figure 3 of the permit, for purposes of determining the performance of the "pump and treat" system that regulates the flow and quality of the groundwater in the seepage front. The permittee shall

also determine on a quarterly basis the elevations of the groundwater table at BF-3, BF-4, BF-5, BF-6, M-11R, M-16, M-17, M-18, M-19, M-20, M-21, M-22, M-23, M-24, M-25, M-26, M-27, M-28, M-29, M-30, M-31, M-32, and M-33 for the purpose of developing a groundwater potentiometric map as monitoring confirmation of the groundwater flow direction. The quarterly data regarding depth to groundwater and groundwater potentiometric surface map will be submitted to the WQCD with the BMP report as described.

Compliance Action Taken: Battle Mountain Resources, Inc. measured the weekly West Pit backfill and alluvial wells as required under Paragraph 1 of the specific requirements. Measurements obtained for the weekly West Pit backfill wells (BF-4 and BF-5R) and alluvial wells (M-16 and M-20) are shown in Table 1. The quarterly groundwater elevations required under Paragraph 1 were also measured and are shown in Table 2. A potentiometric surface map, developed by Engineering Analytics, is shown in Figure 1. The groundwater table elevations and potentiometric map confirm that the groundwater flow gradient during the fourth quarter of 2023 was from the Rito Seco to the West Pit. No corrective action is required under Paragraph 1 specific requirement and scheduled compliance monitoring will continue unchanged next quarter.

Table 1 – Weekly Groundwater Elevations

Monitoring Well Identification	Observation Date	Groundwater Elevation (ft amsl)
	10/04/2023	8579.25
	10/11/2023	8579.35
	10/18/2023	8579.29
	10/25/2023	8579.37
	11/01/2023	8579.30
	11/08/2023	8579.32
BF-4	11/15/2023	8579.27
	11/22/2023	8579.28
	11/29/2023	8579.28
	12/06/2023	8579.25
	12/13/2023	8579.28
	12/20/2023	8579.31
	12/27/2023	8579.25
	10/04/2023	8579.04
	10/11/2023	8579.08
	10/18/2023	8579.07
	10/25/2023	8579.11
	11/01/2023	8579.06
	11/08/2023	8579.06
BF-5R	11/15/2023	8579.05
	11/22/2023	8579.05
	11/29/2023	8579.06
	12/06/2023	8579.03
	12/13/2023	8579.06
	12/20/2023	8579.06
	12/27/2023	8579.05

Table 1 – Weekly Groundwater Elevations (continued)

Monitoring Well Identification	Observation Date	Groundwater Elevation (ft amsl)
	10/04/2023	8601.39
	10/11/2023	8601.42
	10/18/2023	8601.46
	10/25/2023	8601.52
	11/01/2023	8601.59
	11/08/2023	8601.65
M-16	11/15/2023	8601.65
	11/22/2023	8601.63
	11/29/2023	8601.59
	12/06/2023	8601.52
	12/13/2023	8601.42
	12/20/2023	8601.28
	12/27/2023	8601.19
	10/04/2023	8580.14
	10/11/2023	8580.16
	10/18/2023	8580.14
	10/25/2023	8580.15
	11/01/2023	8580.16
	11/08/2023	8580.13
M-20	11/15/2023	8579.63
	11/22/2023	8580.08
	11/29/2023	8580.05
	12/06/2023	8580.01
	12/13/2023	8579.99
	12/20/2023	8579.95
	12/27/2023	8579.95

Table 2 – Quarterly Groundwater Elevations

Monitoring Well Identification	Observation Date	Groundwater Elevation (ft amsl)
BF-3	10/31/2023	8577.94
BF-4	10/31/2023	8579.30
BF-5R	10/31/2023	8579.07
BF-6	10/31/2023	8579.01
M-11R	10/31/2023	8549.22
M-16	10/31/2023	8601.59
M-17	10/31/2023	8586.66
M-18	10/31/2023	8579.90
M-19	10/31/2023	8580.82
M-20	10/31/2023	8580.16
M-21	10/31/2023	8577.43
M-22	10/31/2023	8572.92
M-23	10/31/2023	8555.02
M-24	10/31/2023	8558.94
M-25	10/31/2023	DRY
M-26	10/31/2023	8543.07
M-27	10/31/2023	DRY
M-28	10/31/2023	8580.04
M-29	10/31/2023	8580.64
M-30	10/31/2023	8610.31
M-31	10/31/2023	8548.88
M-32	10/31/2023	8533.39
M-33	10/31/2023	8528.65

2) The weekly groundwater table elevation data shall be tabulated and reported on the quarterly BMP reports, and the data will be used to evaluate compliance with the following permit limitations.

The groundwater table elevation, based on the average of all measured values for each calendar month in the West Pit backfill groundwater monitoring wells BF-4 and BF-5, must be equal to or lower than an elevation of 8582 feet above sea level (ft. amsl).

Compliance Action Taken: Battle Mountain Resources, Inc. measured the West Pit backfill monitoring wells (BF-4 and BF-5R) weekly and the measurements are shown in Table 1. The groundwater measurements for wells BF-4 and BF-5R were averaged by calendar month and the results are shown in Table 3. The October, November, and December 2023 averages were below the 8582 ft. amsl required in Paragraph 2. No corrective action is required under the Paragraph 2 requirement and schedule compliance monitoring will continue unchanged next quarter.

Table 3 – Quarterly West Pit Backfill Monthly Average Groundwater Table Elevations

Monitoring Well Identification	Month (2023)	Number of Observations	Average Monthly Groundwater Elevation (ft amsl)
	October	4	8579.32
BF-4	November	5	8579.29
	December	4	8579.27
	October	4	8579.08
BF-5R	November	5	8579.06
	December	4	8579.05

3) If the average monthly groundwater table elevation in the West Pit backfill for any calendar month, measured as described in the above paragraph, is greater than 8582 ft. amsl or the quarterly determination of the groundwater potentiometric surface map indicates that the flow of the groundwater is from the West Pit to the Rito Seco alluvium, the permittee shall verbally communicate such condition to WQCD within 24 hours of the determination of the condition (elevated West Pit backfill table or groundwater flow from the West Pit as indicated by the quarterly groundwater potentiometric surface map) and initiate the following compliance schedule.

Compliance Action Taken: Battle Mountain Resources, Inc. measured the West Pit backfill monitoring wells (BF-4 and BF-5R) weekly and the calendar month average groundwater measurement elevations (Table 3) were below the 8582 ft. amsl required in Paragraph 2. The October 31, 2023, potentiometric surface map (Figure 1) shows the groundwater flow gradient was from the Rito Seco alluvium to the West Pit backfill. Therefore, site operations demonstrated the West Pit backfill groundwater level was maintained at or below an elevation of 8582 ft. amsl through the quarter. Therefore, no requirement(s) to initiate actions contained within the schedule of compliance for Section 5.3 is required.

4) The quality of groundwater in the vicinity of the West Pit shall be monitored on a monthly basis in the Rito Seco alluvial groundwater monitoring wells M-19, M-21, M-24 and M-11R for the purposes of monitoring the changes in the quality of the plume or affected groundwater in the Rito Seco alluvial aquifer. Groundwater quality in these monitoring wells will be analyzed for pH, temperature, total dissolved solids, calcium, sulfate, manganese, fluoride, copper, and iron for the purpose of evaluating the status of the groundwater quality in the downgradient groundwater plume. The groundwater quality data will be summarized and transmitted to the WQCD in the quarterly BMP report required under Part I, Section E.1 of this permit.

Compliance Action Taken: Battle Mountain Resources, Inc. collected monthly groundwater samples in the vicinity of the West Pit backfill area from Rito Seco alluvial monitoring wells M-19, M-21, M-24 and M-11R. No corrective action is required under the Paragraph 4 specific requirement and scheduled compliance monitoring will continue unchanged next quarter.

Table 4 – Rito Seco Alluvial Groundwater Quality Summary

Analyta	Reporting	Sample				
Analyte	Units	Date	M-11R	M-19	M-21	M-24
		10/03/2023	7.33	6.81	7.22	7.36
pН	SU	11/01/2023	7.41	6.83	7.21	7.36
		12/11/2023	7.36	6.78	7.22 7.36 7.21 7.36 7.21 7.36 7.17 7.33 8.5 8.8 8.4 8.8 7.6 8.7 30.0 75.1 31.8 76.5 32.3 77.2 LT 0.002 LT 0.00 LT 0.005 LT 0.00 1.49 0.939 1.49 LT 1.25 1.49 0.790 LT 0.15 4.18 LT 0.15 3.78 LT 0.15 3.97 0.369 0.844 0.370 0.790 0.386 0.828 9.22 140 9.08 121 9.26 130	7.33
		10/03/2023	10.00	8.5	8.5	8.8
Temperature	°C	11/01/2023	9.9	9.4	8.4	8.8
		12/11/2023	9.6	10.3	M-21 M-24 7.22 7.36 7.21 7.36 7.17 7.33 8.5 8.8 8.4 8.8 7.6 8.7 30.0 75.1 31.8 76.5 32.3 77.2 LT 0.002 LT 0.00 LT 0.002 LT 0.00 LT 0.002 LT 0.00 1.49 0.939 1.49 LT 1.2 1.49 0.790 LT 0.15 4.18 LT 0.15 3.78 LT 0.15 3.97 0.369 0.844 0.370 0.790 0.386 0.828 9.22 140 9.08 121 9.26 130 132 388 144 370	8.7
		10/03/2023	74.1	19.3	30.0	75.1
Calcium, Total	mg/L	11/01/2023	96.7	20.6	31.8	76.5
		12/11/2023	92.4	21.2	32.3	77.2
		10/03/2023	LT 0.002	0.0035	LT 0.002	LT 0.002
Copper, Dissolved	mg/L	11/01/2023	LT 0.002	LT 0.002	LT 0.002	LT 0.002
		12/11/2023	LT 0.002	LT 0.002	LT 0.002	LT 0.002
		10/03/2023	0.928	0.876	1.49	0.939
Fluoride	mg/L	11/01/2023	0.929	0.903	1.49	LT 1.25
		12/11/2023	0.898	0.930		0.790
		10/03/2023	LT 0.15	0.248	LT 0.15	4.18
Iron, Dissolved	mg/L	11/01/2023	LT 0.15	0.167	LT 0.15	3.78
		12/11/2023	LT 0.15	LT 0.15	LT 0.15	3.97
		10/03/2023	0.105	0.051	0.369	0.844
Manganese, Dissolved	mg/L	11/01/2023	0.190	LT 0.05	0.370	0.790
		12/11/2023	0.211	0.085	0.386	0.828
		10/03/2023	103	7.24	9.22	140
Sulfate	mg/L	11/01/2023	152	6.99	9.08	121
		12/11/2023	155	8.32	9.26	130
		10/03/2023	326	90	132	388
Total Dissolved Solids	mg/L	11/01/2023	424	112	144	370
		12/11/2023	418	114	136	384

5) The historical seeps were caused by the plume of affected groundwater and may, in the future, also be caused by natural variation in the flow of groundwater in the vicinity of the area where the past seeps occurred. The permittee shall conduct a monthly visual inspection of the area of historical seeps and the permittee shall report any seepage flow that is associated with the area historic seepage expression, as is identified in Figure 2 of the permit. Results of the seep monitoring shall be tabulated and summarized in the quarterly BMP report.

If these inspections identified the occurrence of seeps, the permittee will be required to communicate verbally to the WQCD within 24 hours of the seepage observation, followed by written notification within 7 calendar days of the seepage observation. Verbal updates will then be provided to the WQCD every second day thereafter until the WQCD has made a determination regarding the status of the West Pit groundwater control system through the implementation of the following compliance schedule.

Compliance Action Taken: Battle Mountain Resources, Inc. performed monthly visual seepage expression inspections in the historic seepage area identified in Figure 2 of the permit. Visual observations during these inspections are shown in Table 5. No seepage expressions were observed in the historic seepage area during the fourth quarter of 2023. Therefore, no verbal or written notifications were required and the implementation of the compliance schedule was not required. No corrective action is required under the Paragraph 5 specific requirement and scheduled compliance monitoring will continue unchanged next quarter.

Table 5 – Monthly Seepage Expression Inspection Tabulation

Visual Inspection Date	Was Visual Observation of Seepage Determined in the Area of the Historic Seepage Expression	Comments
10/31/2023	No	All Dry
11/30/2023	No	All Dry
12/28/2023	No	All Dry

6) The BMP for the groundwater flow downgradient from the groundwater divide (see section VI.A.2 for the Rationale) that has been developed in the Rito Seco alluvial aquifer consists of a groundwater capture system in conjunction with groundwater table elevation control in the West Pit. The water management plan for the Rito Seco alluvial aquifer consists of pumping two groundwater capture wells (M-32 and M-33) located downgradient of the plume of affected groundwater. This action will allow flushing of constituents in the groundwater of the Rito Seco alluvial aquifer in that portion (plume) of the aquifer affected by previous flow of groundwater from the West Pit. Measurements of the groundwater table elevations will be taken on a weekly basis from M-32 and M-33. This data shall be tabulated and reported for outfall 002 on the quarterly BMP report, and the data will be used to evaluate compliance with the following permit limitation.

The groundwater table elevation, based on the average of all measured values for each calendar month at M-32 and M-33 in the Rito Seco alluvial aquifer, must be equal to or lower than an elevation of 8540 ft. amsl.

If the average monthly groundwater table elevations measured in the Rito Seco alluvial aquifer at M-32 and M-33 is greater than 8540 ft. amsl, the permitee shall initiate the following compliance schedule within 24 hours of the determination of groundwater table elevation exceedance.

Compliance Action Taken: Battle Mountain Resources, Inc. measured the alluvial aquifer monitoring wells (M-32 and M-33) weekly and the resulting elevations are presented in Table 6. The groundwater elevations for wells M-32 and M-33 were averaged by calendar month and the results are shown in Table 6. The October, November, and December 2023 averages were below the 8540 ft. amsl required under Paragraph 6. Therefore, site operations were in full compliance of Part I, Section 5.5 and there were no requirements(s) to initiate actions contained within the schedule of compliance for Section 5.5. No corrective action is required under Paragraph 6 specific requirement and scheduled compliance monitoring will continue unchanged next quarter.

Table 6 – Weekly/Monthly Rito Seco Alluvial Aquifer Average Groundwater Table Elevations

Monitoring Well Identification	Observation Date	Groundwater Elevation (ft amsl)	Month (2023)	Average Monthly Groundwater Elevation (ft amsl)
	10/04/2023	8527.78		
	10/11/2023	8527.81	October	8527.83
	10/18/2023	8527.96	October	
	10/25/2023	8527.76		
M-32	11/01/2023	8527.38		8528.53
	11/08/2023	8528.53		
	11/15/2023	8528.03	November	
	11/22/2023	8529.18		
	11/29/2023	8529.55		

January 8, 2024

Table 6 (Cont) – Weekly/Monthly Rito Seco Alluvial Aquifer Average Groundwater Table Elevations

Monitoring Well Identification	Observation Date	Groundwater Elevation (ft amsl)	Month (2023)	Average Monthly Groundwater Elevation (ft amsl)	
	12/06/2023	8530.70			
M-32	12/13/2023	8531.15	December	8531.47	
N1-32	12/20/2023	8532.33	December	8331.47	
	12/27/2023	8531.69			
	10/04/2023	8537.57			
	10/11/2023	8536.52	0.41	8532.16	
	10/18/2023	8527.34	October		
	10/25/2023	8527.20			
	11/01/2023	8527.46		8528.75	
	11/08/2023	8536.54			
M-33	11/15/2023	8526.99	November		
	11/22/2023	8526.39			
	11/29/2023	8526.36			
	12/06/2023	8526.34			
	12/13/2023	8527.14	December	9526.66	
	12/20/2023	8526.32	December	8526.66	
	12/27/2023	8526.84			

7) The water quality of the Rito Seco will be assessed using surface water quality collected at RS-2, as shown in Figure 3. Surface water monitoring in the Rito Seco shall be conducted at RS-2 on a monthly basis and the laboratory analytical results shall be submitted to the WQCD in the quarterly BMP report. Water quality samples collected at RS-2 shall be analyzed for the following constituents: calcium, magnesium, sodium, potassium, ammonia, total dissolved solids, total hardness, pH, total suspended solids, cyanide (WAD and total), bicarbonate, alkalinity, chloride, sulfate, nitrate-nitrite, fluoride and the total and dissolved concentrations of aluminum, arsenic, barium, boron, cadmium, copper, chromium, iron, lead, manganese, mercury, nickel, selenium, silica, silver and zinc. The following compliance schedule shall be implemented in the event that any constituent exceeds the applicable water quality standards for the Rito Seco.

Compliance Action Taken: Battle Mountain Resources, Inc. collected monthly surface water samples in October, November, and December 2023 at location RS-2, as shown in Figure 3 of the permit. Results of analyses performed on these samples are shown in Table 7. The results of the laboratory analytical testing show that the applicable water quality standards were met for the Rito Seco during the months of October, November, and December 2023. Site operations were in full compliance of Part I, Section 5.7 and there was no requirement(s) to initiate actions contained within the schedule of compliance for Section 5.7. Scheduled compliance monitoring will continue unchanged next quarter.

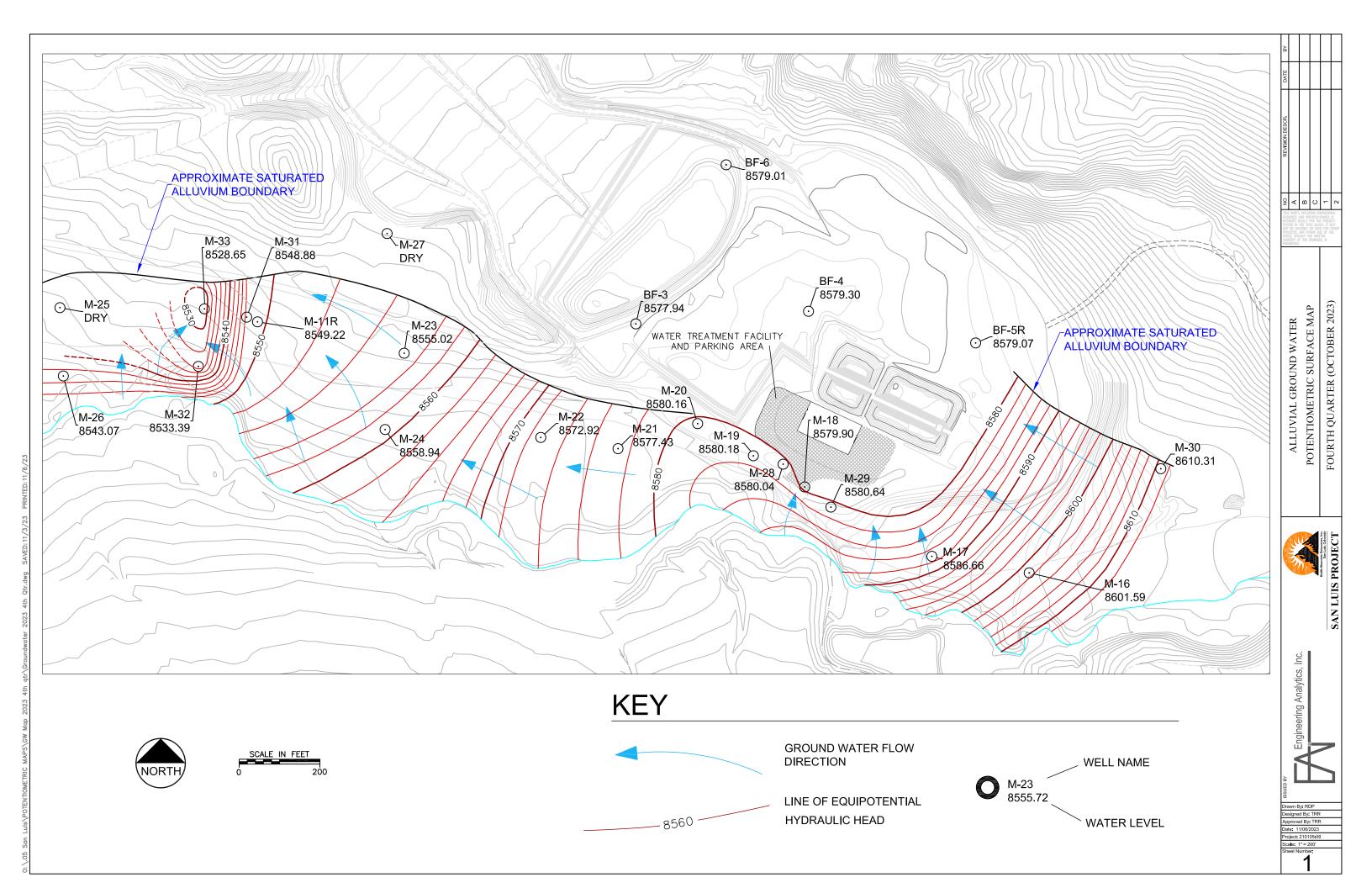
Table 7 – RS-2 Surface Water Quality Results

- RS-2 Surface Water (10/02/2022	11/01/2022	12/11/2022
Analyte	Reporting Units	10/03/2023	11/01/2023	12/11/2023
Alkalinity	mg/L as CaCO ₃	55.8	50	66.8
Aluminum, Dissolved	mg/L	LT 0.25	LT 0.25	LT 0.25
Aluminum, Total	mg/L	0.223	LT 0.25	LT 0.25
Ammonia as N	mg/L	LT 0.2	LT 0.2	LT 0.2
Arsenic, Dissolved	mg/L	LT 0.001	LT 0.001	LT 0.001
Arsenic, Total	mg/L	LT 0.001	LT 0.001	LT 0.001
Barium, Dissolved	mg/L	LT 0.035	LT 0.035	LT 0.035
Barium, Total	mg/L	LT 0.035	LT 0.035	LT 0.035
Bicarbonate as CaCO3	mg/L	55.8	46.5	66.8
Boron, Dissolved	mg/L	LT 0.1	LT 0.1	LT 0.1
Boron, Total	mg/L	LT 0.1	LT 0.1	LT 0.1
Cadmium, Dissolved	mg/L	LT 0.00025	LT 0.00025	LT 0.00025
Cadmium, Total	mg/L	LT 0.00025	LT 0.00025	LT 0.00025
Calcium, Total	mg/L	15.2	14.9	18.7
Carbonate as CaCO3	mg/L	LT 20	LT 20	LT 20
Chloride	mg/L	5.54	6.87	LT 2
Chromium, Dissolved	mg/L	LT 0.002	LT 0.002	LT 0.002
Chromium, Total	mg/L	LT 0.002	LT 0.002	LT 0.002
Copper, Dissolved	mg/L	LT 0.002	LT 0.002	LT 0.002
Copper, Total	mg/L	LT 0.002	LT 0.002	LT 0.002
Cyanide, Total	mg/L	LT 0.01	LT 0.01	LT 0.01H
Cyanide, WAD	mg/L	LT 0.01	LT 0.01	LT 0.01
Fluoride	mg/L	0.88	1.02	0.59
Hardness as CaCO3	mg/L	56	56	66
Iron, Dissolved	mg/L	0.259	LT 0.15	LT 0.15
Iron, Total	mg/L	0.607	0.225	0.228
Lead, Dissolved	mg/L	LT 0.0005	LT 0.0005	LT 0.0005
Lead, Total	mg/L	LT 0.0005	LT 0.0005	LT 0.0005
Magnesium, Total	mg/L	4.74	4.42	4.74
Manganese, Dissolved	mg/L	LT 0.05	LT 0.05	LT 0.05
Manganese, Total	mg/L	LT 0.05	LT 0.05	LT 0.05
Mercury, Dissolved	mg/L	LT 0.001	LT 0.001	LT 0.001
Mercury, Total	mg/L	LT 0.001	LT 0.001	LT 0.001
Nickel, Dissolved	mg/L	LT 0.04	LT 0.04	LT 0.04
Nickel, Total	mg/L	LT 0.04	LT 0.04	LT 0.04
Nitrate+Nitrite as N	mg/L	LT 0.1	LT 0.1	LT 0.1
pH	SU	7.83	7.77	7.85
Potassium, Total	mg/L	1.63	1.35	LT 1
Selenium, Dissolved	mg/L	LT 0.00025	LT 0.00025	LT 0.00025
Selenium, Total	mg/L	LT 0.00025	LT 0.00025	LT 0.00025
Silica, Total	mg/L	13.7	11.9	12.3
Silver, Dissolved		LT 0.0005	LT 0.0005	LT 0.0005
Silver, Total	mg/L	LT 0.0005	LT 0.0005	LT 0.0005
Sodium, Total	mg/L			
	mg/L	13.8	13.3	4.64
Sulfate Total Dissolved Solids	mg/L	25.4	33.8	6.55
	mg/L	118	114	90 LT 20
Total Suspended Solids	mg/L	LT 20	LT 20	LT 20
Zinc, Dissolved	mg/L	LT 0.05	LT 0.05	LT 0.05
Zinc, Total	mg/L	LT 0.05	LT 0.05	LT 0.05

8) If any component of the groundwater control system is not performing within the limits set forth in this permit, the permittee will be required to initiate appropriate compliance schedule activities, including the preparation of a response plan, for any and all components of the groundwater control system that do not meet the applicable

requirements. The permittee shall also conduct weekly sampling at RS-2 until such time as the other compliance schedule activity(ies) have been completed.

Compliance Action Taken: As demonstrated by the information and data presented in this report, all components of the groundwater control system performed within the limits set forth in the permit. Therefore, site operations were in full compliance of Part I, Section 8 and there was no requirement(s) to initiate actions contained within the schedule of compliance for Section 8.


I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering information, the information submitted is to the best of my knowledge and belief, is true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

 \cap

EA, Inc.

January 8, 2024

Name: _	Julio Madrid	Signature:	Julio Hul	
Date: _	January 8, 2023	_	•	

October 20, 2023

Julio Madrid **Battle Mountain Resources, Inc.**P.O. Box 310
San Luis, CO 81152

Dear Julio:

Enclosed is the report for chronic biomonitoring tests performed for Battle Mountain Resources, Inc. on effluent from the 001B outfall. There was no statistically significant toxicity to either test species at any effluent concentration. The effluent passes WET (Whole Effluent Toxicity) testing requirements for this sampling period.

If you have any questions or concerns, please do not hesitate to contact me at (303) 661-9324.

Best regards,

Haley West

Laboratory Manager Enclosure(s): Invoice

Report

Hally West

REPORT OF CHRONIC BIOMONITORING TESTS CONDUCTED FOR BATTLE MOUNTAIN RESOURCES, INC. ON EFFLUENT FROM THE 001B OUTFALL

Prepared for:

Julio Madrid

Battle Mountain Resources, Inc.
P.O. box 310
San Luis, CO 81152

Prepared by:

Haley West **SeaCrest Group** 500 S Arthur Ave. Suite 450 Louisville, Colorado 80027-3065 (303) 661-9324

October 20, 2023

TABLE OF CONTENTS

CHRONIC TOXICITY TEST SUMMARY	
ABSTRACT WITH RESULTS	
INTRODUCTION	
MATERIALS AND METHODS	
SAMPLE COLLECTION	
DILUTION WATER	
TEST ORGANISMS TEST PROCEDURE	
DATA ANALYSIS	
RESULTS	
CERIODAPHNIA DUBIA TEST RESULTS	
FATHEAD MINNOW TEST RESULTS	8
TEST ACCEPTABILITY	
DISCUSSION	
REFERENCES	9
APPENDIX 1 – CHAIN OF CUSTODY WITH SAMPLE RECEIPT FORMS	10
APPENDIX 2 – DATA SHEETS FOR THE CERIODAPHNIA DUBIA TEST	20
WET TEST REPORT FORM – CHRONIC	21
APPENDIX 3 – DATA SHEETS FOR THE FATHEAD MINNOW TEST	28
WET TEST REPORT FORM – CHRONIC	29
APPENDIX 4 – QA/QC AND REFERENCE TOXICANT TEST CHARTS	35
LIST OF TABLES	
TABLE 1: STATISTICAL METHODS USED IN TESTING	
TABLE 2: SUMMARY OF CERIODAPHNIA DUBIA TEST RESULTS	
TABLE 3: SUMMARY OF FATHEAD MINNOW TEST RESULTS	8
ΓABLE 4: PMSD FOR CHRONIC TEST PARAMETERS	8

Chronic Toxicity Test Summary

Test:	7-day static renewal using <i>Ceriodaphnia dubia</i> 7-day static renewal using fathead minnow (<i>Pimephales promelas</i>)		
Client:	Battle Mountain Resources, Inc.		
	Sum Mountain Resources, me.		
Test Procedure	Ceriodaphnia dubia: EPA/821/R-02-013. Method 1002.0 (2002)		
Followed:	fathead minnow: EPA/821/R-02-013. Method 1000.0 (2002)		
Sample Number:	423504.B		
Dilution Water:	moderately hard laboratory reconstituted water		
Test Organism Source:	SeaCrest Group		
Reference Toxicant:	Sodium Chloride		

Sample	nple Time of Date of Collection Time of Receipt		Time of Receipt	Date of Receipt	
Effluent 1	0600	10-09-2023	1230	10-09-2023	
Effluent 2	0600	10-11-2023	1049	10-11-2023	
Effluent 3	0600	10-13-2023	1155	10-13-2023	

	Ceriodaphnia dubia	fathead minnow
Test Initiation Time	1300	1500
Test Initiation Date	10-09-2023	10-09-2023
Test Completion Time	1300	1530
Test Completion Date	10-16-2023	10-16-2023

Abstract	with	Doculte	
ADSTract	with	Results	

Test Concentrations:	Control (0%), 13%, 26%, 52%, 76%, 100%	
	10 for Ceriodaphnia dubia	
Number of Organisms/Concentration:	40 for fathead minnow	

10 for *Ceriodaphnia dubia* 4 for fathead minnow

Replicates at each Concentration:

	Ceriodaphnia dubia	fathead minnow
Test vessel size/Exposure volume	30ml/15ml	500ml/200ml
Sub-lethal NOEL/IC25	100%/>100%	100%/>100%
Pass/Fail Status	PASS	PASS
Temperature Range (°C)	24.1 - 25.5	24.1 – 25.9
Dissolved Oxygen Range (mg/L)	6.8 - 8.4	4.0 - 8.0
pH Range	7.3 - 8.1	7.0 - 8.3
*Single endpoint failure	Control (Cerio/FHM)	Effluent Sample
Hardness (mg/L as CaCO ₃)	85/88	45/47/36
Alkalinity (mg/L as CaCO ₃)	60/57	5/0/8
Total residual chlorine (mg/L)	< 0.01	0.01/<0.01/<0.01
Total ammonia (mg/L as NH ₃)	< 0.03	< 0.03

Client: BMRI CO-0045675 SCG Project No.: 423504.B Site: 001B Project: Quarterly WET

INTRODUCTION

Biomonitoring provides an effective means by which the toxicity of discharges from municipal, industrial, and mining operations can be tested. Among the advantages of biomonitoring is the ability to test complex effluents containing a broad range of contaminants. Biomonitoring, when used in conjunction with chemical analyses, can generate data capable of identifying a much wider range of contaminants.

The Colorado Water Quality Control Division requires certain NPDES permittees to perform acute and/or chronic biomonitoring tests. The chronic test measures significant differences in lethality and in reproduction (*Ceriodaphnia dubia*) or growth (fathead minnow – *Pimephales promelas*) between control and effluent-exposed organisms.

The present report discusses the results of chronic biomonitoring tests conducted on effluent from the Battle Mountain Resources, Inc. 001B discharge. These tests were conducted in accordance with EPA and State of Colorado procedures in October 2023.

MATERIALS AND METHODS

Sample Collection

Two gallons of the effluent were collected on three separate dates as specified in Permit CO-0045675. Samples were delivered chilled to the SeaCrest lab where they were held at 0-6°C. Chain of custody forms showing sample collection and laboratory arrival times are included (Appendix 1).

Dilution Water

Laboratory reconstituted water was used as both the dilution water source and the control for the tests. Reconstituted water for the *Ceriodaphnia dubia* test was produced by adding sodium bicarbonate, calcium sulfate, magnesium sulfate, potassium chloride, and sodium selenate to deionized water. Reconstituted water for the fathead minnow test was produced by adding sodium bicarbonate, calcium sulfate, magnesium sulfate, and potassium chloride to deionized water.

Test Organisms

The biomonitoring test used *Ceriodaphnia dubia*, cultured in the SeaCrest laboratory. The organisms are cultured in brood culture boards from which individual females are monitored for survival and reproduction for periods of up to two weeks. Neonates less than 24-hours old, released from third or subsequent broods of eight or more within an 8-hour period, are collected from the brood chambers and used in tests. The animals are fed daily with a mixture of Yeast, Cereal Leaves, and Trout Chow (YCT), produced in-house. This is supplemented with cultured green algae (*Selenastrum capricornutum*) provided by Aquatic Biosystems.

Less than one-day-old fathead minnow, cultured in the laboratory, were also used in the test. Adult fish are maintained in 10-gallon aquaria where females deposit their eggs on the under-surface of split PVC pipe sections. The eggs are collected daily and transferred to aerated containers where they hatch after three to four days. The larval fish are fed newly hatched brine shrimp (*Artemia* sp.) at least twice per day.

In-house organisms are tested monthly in a reference toxicant test using sodium chloride to monitor overall health and test reproducibility (Appendix 4).

Test Procedures

Upon receipt at the lab, samples were analyzed for alkalinity, ammonia, chlorine, conductivity, dissolved oxygen, hardness, and pH.

Methods used in chemical analysis

Alkalinity	EPA 310.2	Hach 8203	I-2030-85.2
Ammonia	SM4500-NH ₃ , C-E1997	ASTM D1426-08	
Chlorine	SM4500-Cl D	Hach 10026	
Conductivity	SM2510		
Dissolved Oxygen	SM4500-O	Electrode: G-2001	Winkler (QC): B-F-2001
Hardness	SM2340 B or C	Hach 8213	
pH	SM4500-H+ B-2000		

The test followed procedures in EPA³ and CDPHE⁴ guidelines. Exposure concentrations included control (0%), 13%, 26%, 52%, 76%, and 100% mixtures, diluted with moderately hard laboratory reconstituted water.

Individual *Ceriodaphnia dubia* were placed in 30ml plastic containers containing approximately 15ml of exposure medium. Ten replicates at each concentration were used. The animals were fed daily with the YCT mixture and an equal volume of the green algae *(Selenastrum capricornutum)*. The exposure medium was changed daily in each container and the number of young released overnight were counted and recorded. Young were removed from the containers daily and discarded. Routine measurements were made each day of temperature, dissolved oxygen, and pH before and after the water changes.

Fathead minnow were exposed in 500ml plastic cups to which 250ml of media was replaced daily. Four replicates were used at each concentration. Ten fish, less than 24-hours old, were placed in each cup. The fish were monitored daily for survival and fed live brine shrimp at least twice per day. After seven days, the fish were removed from the cups, euthanized with isopropyl alcohol, and then placed in aluminum pans and dried in an oven for a minimum of six hours at 100°C. The pans were then weighed on a five-place analytical balance to determine the average dry weight of the fish from each replicate.

Data Analysis

Data from the tests were analyzed on a personal computer using the CETIS program (developed by Tidepool Scientific Software). Statistical tests used in the analyses are shown in Table 1. Test acceptability was determined using control survival and reproduction/growth criteria, concentration-response relationships, and percent minimum significant differences (USEPA 5,6).

Client: BMRI Site: 001B

CO-0045675

SCG Project No.: 423504.B Project: Quarterly WET

Table 1. Statistical methods used in testing for significant differences in test parameters.

Variance		Distribution			
Bartlett Equality of Variance Test		Shapiro-Wilk W Normality Test			
	Statistical	Difference			
Species	Survival	Growth	Reproduction		
Ceriodaphnia dubia Fisher Exact/Bonferroni- Holm Test		N/A	Steel Many-One Rank Sum Test	ICp	
fathead minnow	Steel Many-One Rank Sum Test	Dunnett Multiple Comparison Test	N/A	ICp	

RESULTS

Ceriodaphnia dubia Test Results

Test results for the *Ceriodaphnia dubia* are summarized in Table 2 and provided on the data sheets located in Appendix 2. Survival was 90% in the 100% effluent and ranged from 90% - 100% in the remaining effluent concentrations. Control survival was 100%. No statistically significant lethality was measured in any effluent concentration when compared to the control. The NOEL (No Observed Effect Level) for lethality was 100% and the LC_{25} (Lethal Concentration 25) for lethality was >100%.

Average number of neonates was 30.9 in the 100% effluent concentration and ranged from 26.4 - 32.6 in the remaining effluent concentrations. Average number of neonates in the control was 31.3 for statistical analyses and test acceptability criteria. No statistically significant differences in the number of neonates were found between the control and any effluent concentrations. The NOEL for reproduction was 100% and the IC₂₅ (Inhibition Concentration 25) for reproduction was >100%.

Table 2. Summary of *Ceriodaphnia dubia* test results. An asterisk (*) denotes a statistically significant difference from the control.

	Percent	Mean Neonates	Min.	Max.	Significant Differen	
Concentration	Survival				Lethality	Reprod.
Control (0%)	100	31.3	23	39	2	
13%	100	29.4	22	34		
26%	90	27.2	0	42		
52%	100	32.6	23	43		
76%	100	26.4	2	38		
100%	90	30.9	10	42		

Fathead Minnow Test Results

Fathead minnow results are summarized in Table 3 and are provided on data sheets in Appendix 3. Survival was 93% in the 100% effluent concentration and ranged from 85% - 98% in the remaining effluent concentrations. Control survival was 95%. No statistically significant lethality was measured in any effluent concentration when compared to the control. The NOEL for lethality was 100% and the LC₂₅ for lethality was >100%.

Average weight in the 100% effluent concentration was 0.549mg and ranged from 0.495mg - 0.529mg per individual in the remaining effluent concentrations. Average weight for the control fish was 0.540mg for statistical analyses and test acceptability criteria. No statistically significant differences for growth were measured in any effluent concentration when compared to the control. The NOEL for growth was 100% and the IC_{25} for growth was >100%.

Table 3. Summary of fathead minnow test results. An asterisk (*) denotes a statistically significant difference from the control.

	Percent	Average			Significant Differe	
Concentration	Survival	Weight (mg)	Min.	Max.	Lethality	Growth
Control (0%)	95	0.540	0.476	0.609		
13%	90	0.495	0.384	0.570		
26%	98	0.518	0.452	0.580		
52%	85	0.529	0.437	0.658		
76%	98	0.521	0.471	0.560		
100%	93	0.549	0.405	0.606		

Test Acceptability

Acceptable control survival (80%) was achieved in both tests. Similarly, *Ceriodaphnia dubia* reproduction (average 15 neonates/organism) and fathead minnow growth (average 0.250mg/test container) in control organisms met required levels. PMSD was within the required limits for an acceptable test (Table 4).

Table 4. PMSD for chronic test parameters.

	fathead min	now growth	C. dubia rej	production	
	Lower bound Upper bound		Lower bound	Upper bound	
PMSD	12	30	13	47	
(% Minimum significant difference)	23.5		26.2		

Client: BMRI CO-0045675 SCG Project No.: 423504.B Site: 001B Project: Quarterly WET

DISCUSSION

A failed test for this discharge occurs when there is an NOEL or IC₂₅ less than the IWC (Instream Waste Concentration) of 52%. The NOEL represents the highest effluent concentration at which no statistically significant effect is observed. The IC₂₅ represents an estimate of the effluent concentration that would cause a 25 percent reduction of a non-quantal biological measurement. A violation for this discharge occurs when both the NOEL and the IC₂₅ are less than the IWC. Since neither test species demonstrated statistically significant differences meeting these criteria, the discharge passes WET testing requirements for this sampling period.

REFERENCES

- 1. **Hach Chemical Company.** 2008. *Hach's Water Analysis Handbook*. Fifth Edition. Hach Chemical Company, Loveland, Colorado. Digital Medium.
- 2. APHA/AWWA/WEF. 1998. Standard Methods for the Examination of Water and Wastewater. 20th Edition. American Public Health Association, Washington, D.C.
- 3. **USEPA.** 2002. Short Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms. EPA-821-R-02-013. 335 pp.
- 4. CDPHE (Colorado Department of Public Health and Environment). 1998. Laboratory Guidelines for Conducting Whole Effluent Toxicity Tests. Water Quality Control Division.
- 5. USEPA. 2000. Method of Guidance and Recommendations for Whole Effluent Toxicity (WET) Testing (40 CFR Part 136). EPA/821/B-00/004.
- USEPA. 2000. Understanding and Accounting for Method Variability in Whole Effluent Toxicity Applications under the National Pollutant Discharge Elimination System Program. EPA/833/R-00/003.

Client: BMRI Site: 001B

CO-0045675

SCG Project No.: 423504.B Project: Quarterly WET

Appendix 1 - Chain of Custody with Sample Receipt Forms

Sea Grest Group

CHAIN OF CUSTODY

ville, CO 80027	6766:100 (000				ers	nistno		nedmu	1	3				Other (Liet Below)					100	1230
500 S. Arthur Avenue, Unit 450 - Louisville, CO 80027 (303) 661.9324 - FAX (303) 661.9325	Analysis (Check all applicable)	(Signal de	(əlɔɹiɔ̯			al/Fec	тот) (Тоt:	ons licorm ioliform ob/co	9					Daphnia pulex				Received By (2)	Signature My M	200
500 S. Arthu	nalysis (Checl			(ə :		(wol98	JsiJ	r) abilos) anoin/ Jimond	,					Daphnia magna				(2)	Date/Time	
CHAIN OF CUSTODY			(wol	selow	Gate E Solbul)	c (Indi sted (ironi seleccelei	WET: CH	×					Cerio daphnia		~		Relinquished By	Signature () Com I W	
CHAIN O				0/152	1	- 1		Grab/ Lab ID H: Comp State Comp	143204.641					Test Species: X Fathead Minnow	Special Instructions/Comments:	out fall -001B		By (1)	Date/Time	
<u>G</u>		,	21	Sullink P	7	Sampler:) avids (avinc)	- FAX		0000						6-9 Day Special			Received By (1)	Signature Dit Wil P.K	5 >>>
Seacrestgroup	Client/Project Name: BMRI		Contact: Tillo Mala	P.O. BOX 310	1 -		Report By: Mail PDF	Sample Location or ID Date	W. E.T. Test 10/9/23					Turnaround Requirements (Analytical Testing Only)	Standard (10 days)	3-5 Day	Requested Report Date:	Relinquished By (1)	-0	0000

Sample Receipt Form

Form #: 42 Effective: January 2023

Project #	423 564.B		Sample #:		
Date:	100923		Initials: MK		
Samples	Were:				
1. FedEx	UPS Notes:	Couries	Hand Delivery	(circle	one)
2. Chilled	to Ship		Ambier	nt Chille	d
3. Cooler	Received Broken or Leaking Notes:		Υ	N	NA
4. Sample	e Received Broken or Leaking Notes:		Υ	N	
5. Receiv	ed Within 36hr Holding Time Notes:		Ŷ	N	
6. Aeratio	on necessary		Υ	$\widehat{\mathbb{N}}$	
7. pH adju	ustment necessary		Υ	N	
8. Sample	e Received at Temperature bet Notes: SMML AM	ween 0-6° C .	Υ	N	NA
9. Descrip	etion of Sample (Color, Odor, a	nd/or Presence of	Particulate Matter)	:	
	Receiving: N/A Presence of native species:		Υ	(N)	

Lab #	Temp	D.O.	pН	Cond
423504.8#1	12.5	7.9	7.8	241

Custody Seals:

 Present on Outer Package 	Ŷ	N	
2. Unbroken on Outer Package	Y	N	NA
3. Present on Sample	Y	(N)	

4. Unbroken on Sample Y N

Custody Documentation (Chain of Custody):

1. Present Upon Receipt of Sample

N

Treatment System Flow Rate 550 GPM

18CO Sampling Schedule 100 ml per 10 minutes

Start Sample Program: Time 0600 Date 10/9/23 Circle One: W F

Observation good where flow, perver on to Sampler Sample Centainer on ice Observation good water Flow, Power on to Sampley, Sample Continuer on ice -24 Hour Time 0600 Observation and Water Flow, Power on to Sampler, Sample Contained on ice Observationgood water your power on to Sample, Sample container on Observation good was fer flow, Pawer on to Sampler, Sample Container an Observationgood waster flow, sower on to Sample, Sample container on Observationgood water flow, power on to Sample Container on -3 Hour Time 6900 Observation good water Dow souver on to Sample; Sample Container or Volume sent to lab Sampling Personnel: A. Taylor, R. Lucero, S. maestas, D. gallons Total Volume Collected 4 -21 Hour Time 0300 ~15 Hour Time 2100 ~6 Hour Time 1200 -9 Hour Time 1500 ~18 Hour Time 2400 ~12 Hour Time 1800

BARI Delivered

Samples packed on ice 🗴

Completed COC Cooler Sealed

500 S. Arthur Avenue, Unit 450 - Louisville, CO 80027	(303) 001.3324 - FAA (303) 001.9325				(m			oo ło	Other Arr Number		7					volume 11 months () volume 12]			Received Rv (2)	Date/Time 101173 1049
, Unit	Analysis (Check leads leads)	capie			1	-1-4			BOD/CO	1	-	1	\vdash	+		Danhnia pulex				Re	6
enne	COC)	app	(ə	(Circl	(ilo⊃	-3/le:	al/Fec	toT)	Coliform							Danh					J.
ır Av	=	6					Ð:	Sreas	bns liO												Signature
Arthu	hock					(elɔɹi	ΛΙ (C!	ʻlll wi	Chromiu							Jagna					
0 S. A	j.	2				(woles	List B) snoinA							Daphnia magna					Time
20	ovlet.	2			cle)	ا) (Cir	SST\S	at/s	r) sbilo2							Daph				(2)	Date/Time
	Ā	-				(wolas	list B	Metals											d By	
CHAIN OF CUSTODY				elow (v)	Vole8	eteci (Indio	bnl) ɔ	roni	WET: PO	×						w C Cerio daphnia		æ	\	Relinquished By (2)	Signature (OUN) PL
CHAIN					81152	Mon	ino		Lab ID (vas use only)	423504.8 #2						Test Species: X Fathead Minnow	Special Instructions/Comments:	11-0018			Date/Time Si
							,		Grab/ Comp	Comp						t Species:	ecial Instru	Out Col	3	Received By (1)	7
			5		, Luis Co	E-Malizavid Covino	Sampler: Javid	□ Æ	Тіте	0000						Tes	6-9 Day Sp	1-2 Day		Rece	COUNTEL
Froupany CES COMPANY	NRI	. ,	5/m 4	drid	310 San			□ PDF	Date	10/11/23						uirements 18 Only)					Date/Time Signature 10(11/23 0 600
Sea Crest Group	Client/Project Name: $BMRL$		P. O./Project Number:	Contact: Tulio Madrid	Address: P.O. BOX 310	Phone # 719-379-0827	Fax# 11/A	Report By: X Mail	Sample Location or ID	W.E.T. Test						Turnaround Requirements (Analytical Testing Only)	Standard (10 days)	3-5 Day	Requested Report Date:	Relinquished By (1)	Signature Date/Time

Sample Receipt Form

Form #: 42 Effective: January 2023

Project #423504.B	Sample #: Z		
Date: 101123	Initials: MK		
Samples Were:			
1. FedEx UPS Courier Notes:	Hand Delivery	(circle	one)
Notes.			
2. Chilled to Ship	Ambie	nt Chilled	t
Cooler Received Broken or Leaking Notes:	Υ	N	NA
Sample Received Broken or Leaking Notes:	Υ	N	
5. Received Within 36hr Holding Time Notes:	Œ	N	
6. Aeration necessary	Υ	(\hat{N})	
7. pH adjustment necessary	Υ	N	
8. Sample Received at Temperature between 0-6° C . Notes: Samℓ day	Υ	N	NA
9. Description of Sample (Color, Odor, and/or Presence of Effluent: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	f Particulate Matter)):	
Presence of native species:	Υ	N	

Lab #	Temp	D.O.	рН	Cond
423504.B	10.1	8.1	7.6	190

Custody Seals:

Present on Outer Package	Υ	N	
2. Unbroken on Outer Package	Y	N	(NA)
3. Present on Sample	Y	N	
4. Unbroken on Sample	Y	N	NA

Custody Documentation (Chain of Custody):

1. Present Upon Receipt of Sample

N

Date 10/11/23 Circle One: M @ F minutes 0 GPM m per Freatment System Flow Rate 520 End Sample Program: Time 0600 Start Sample Program: Time O 600 SCO Sampling Schedule

Observation and water flow Dowler on to Sampler Sample Container on ise ~6 Hour Time 1200 Observation good wester flow, prover on to Sampley, Sample Container on ice Observation good water flow, power onto Sampler, Sample Container on its Observation and water flow, Powler on to Sampler, Sample Container on 1 Ce ~3 Hour Time 0900 Observationgood water flow, power on to Sample, Sample container on Observation good Water Flow, Power on to Sampler, Sample Contriner on Observationgood water flow, power on to Sumpley, Sample container on Observationgood water How, power on to Sampler, Sample con fair Sampling Personnel: A. Taylor, D. Carpio, S. Marestas, R. Lucero Volume sent to lab gallons Total Volume Collected 4 -21 Hour Time 0300 ~24 Hour Time 0600 ~15 Hour Time 2100 ~18 Hour Time 2400 ~12 Hour Time 1800 -9 Hour Time 1500

BMRI Delivered A

Samples packed on ice X

Completed COC Cooler Sealed

Seatrest Group

CHAIN OF CUSTODY

500 S. Arthur Avenue, Unit 450 - Louisville, CO 80027

(303) 661.9324 - FAX (303) 661.9325 Total Volume N Other (List Below) Date/Time **Number of Containers** 2 1155 Received By (2) Daphnia magna 🔲 Daphnia pulex Other Analysis (List Below) Analysis (Check all applicable) BOD/COD (Circle) Coliform (Total/Fecal/E-Coli) (Circle) Signature Oil and Grease Chromium III/VI (Circle) Date/Time (woled tzil) anoinA Solids (TS/TDS/TSS) (Circle) Relinquished By (2) Metals (List Below) Test Species: X Fathead Minnow X Cerio daphnia WET: PTI/TIE/TRE (Indicate Below) WET: Accelerated (Indicate Below) WET: Chronic (Indicate Below) Signature outfull - 0018 Special Instructions/Comments: WET: Acute (Indicate Below) non 423504,673 E-Mail: Javidolarino ENEWMONT Lab ID Date/Time Sampler: / Buid S. (arino Received By (1) COMP Comp Grab/ San Luis 0000 Time 6-9 Day FAX 1-2 Day Signature P. O./Project Number: San Luis Contact: Julio Madrid 10/13/23 Turnaround Requirements (Analytical Testing Only) L POF Date 10/13/23 Client/Project Name: BMRI Address: P.O. BOX 310 0000 Phone # 719 - 379-0827 Relinquished By (1) Standard (10 days) Sample Location or ID Requested Report Date: Report By: Mail W.E.T. Test 3-5 Day Fax #

Sample Receipt Form

Form #: 42 Effective: January 2023

Project #_ 423504 . B	Sample #:		
Date: 10/323	Initials:	C	
Samples Were:			
1. FedEx UPS Courier Notes:	Hand Delivery	(circle	e one)
2. Chilled to Ship	Ambie	nt Chille	d
Cooler Received Broken or Leaking Notes:	Υ	N	NA
Sample Received Broken or Leaking Notes:	Υ	N	
5. Received Within 36hr Holding Time Notes:	Y	N	
6. Aeration necessary	Υ	N	
7. pH adjustment necessary	Υ	N	
8. Sample Received at Temperature between 0-6° C . Notes: ട്രൂപ ർവ	Υ	Ν	NA
9. Description of Sample (Color, Odor, and/or Presence of Effluent: Νο γιζαριο Ρ.γγγ. Receiving: Ν/Α	of Particulate Matter)	:	
Presence of native species:	Υ	N	

Temp	D.O.	pН	Cond
9.5	7.6	7.2	218
	9.5	00 70	00 70 70

Custody Seals:

 Present on Outer Package 	Υ	N	
2. Unbroken on Outer Package	Υ	N	NA
3. Present on Sample	Y	(N)	
4. Unbroken on Sample	Y	N	(NA)

Custody Documentation (Chain of Custody):

1. Present Upon Receipt of Sample

N

Start Sample Program: Time O600 Date 10-13-13 Circle One: M WE minutes GPM m per Freatment System Flow Rate 500 ISCO Sampling Schedule 100

Observation good water flow, rower anto Sampler, Sample Centralmer on ice Observation good whater flows, Pawser anto Soungley Sample Container on it ~3 Hour Time 0900 Observation good WAter Flaw, Power onto Sampler, Sample Continuer on ice Observation good water flow Power onto Sample Container onice Observation goodwater flow, Power on to Sampley Sam ple Container ania Observation good water flow Power on to Sampler, Sample Container on ice Observation good water flow Power on to Sample; Sample Container on Volume sent to lab 2 gallons Contacts Lab: 303-794-8976(Henry Latimer) -6 Hour Time 1200 Observation good water flow Power onto Sampler, Sample Cantainer on ice Volume sent to lab 2 Sampling Personnel: S. Maeshas, D. Carino, A. Taylor, B. Total Volume Collected 4 gallons Samples packed on ice 🗴 ~15 Hour Time 2100 -21 Hour Time 0300 ~24 Hour Time Obo ~18 Hour Time 2400 ~12 Hour Time 18UD -9 Hour Time 1500

BM PH Deliveredx

Completed COC

Client: BMRI Site: 001B CO-0045675

SCG Project No.: 423504.B Project: Quarterly WET

Appendix 2 - Data Sheets for the Ceriodaphnia dubia Test

W	ET	TEST	REP	ORT	FORM -	- CHRONIC

Permittee:

Battle Mountain Resources, Inc.

Permit No.:

CO-0045675

Outfall:

001B - IWC: 52%

Test Type:

Routine

Accelerated

Screen

Test Species:

Ceriodaphnia dubia

Test Start Time	Test Start Date	Test End Time	Test End Date
1300	10-09-2023	1300	10-16-2023

Test Results	Lethality/TCP3B	Reproduction/TKP3B
S code: NOEL	100%	100%
	PASS	PASS
P code: LC ₂₅ /IC ₂₅	>100%	>100%
	PASS	PASS
T code:	>100%	>100%

Test Summary

Measurements	Control (0%)	13%	26%	52%	76%	100%
Exposed organisms	10	10	10	10	10	10
Survival for day 1	10	10	10	10	10	10
Survival for day 2	10	10	10	10	10	10
Survival for day 3	10	10	9	10	10	10
Survival for day 4	10	10	9	10	10	10
Survival for day 5	10	10	9	10	10	10
Survival for day 6	10	10	9	10	10	9
Survival for day 7	10	10	9	10	10	9
Mean 3 Brood Total	31.3	29.4	27.2	32.6	26.4	30.9

Hardness (mg/L) – Receiving Water: N/A Effluent: 45/47/36
Alkalinity (mg/L) – Receiving Water: N/A Effluent: 5/0/8

Recon Water: 85 Recon Water: 60

Chlorine (mg/L) – Effluent:

pH (initial/final) – Control: 8.0/8.1

100%: 7.8/8.1

0.01/<0.01/<0.01

Total Ammonia as NH₃ (mg/L) - Effluent: <0.03

Were all Test Conditions in Conformance with Division Guidelines? YES NO

If **NO**, list deviations from test specifications: N/A

Laboratory: SeaCrest Group

Comments:

Analyst's Name: Mia Kohler and Jordan Cashman

Signature Kallyyllet

Date October 20, 2023

Ceriodaphnia Chronic Benchsheet

Form #: 101a Effective: March 2023

Permittee: BMR1 Lab #: 423504.B Site: 001B

IWC %: 52 Template #: 5 Dilution Water: M#23-020 Sample Date: 100923

Age & Source: 100923 5152 Test Start: 100923 1300 Test End: 101623 1300

	ditions:								
	0	1	2	3	4	5	6	7	Total
(C)	0	0	0	0	62	e	12	13	27
	0	0	0	0	3	0	13	15	31
	0	0	0	5	11	O	13	18	29
	0	0	0	7	10	O	17	17	34
^	0	0	0	(9	9	0	18	17	33
0	0	0	0	2	8	0	114	15	39
	0	0	0	Z	7	Ü	1 11	13	33
	0	0	0	4	6 +1	0	10	16	27
	0	0	0	0	5	ile	0		
	0	0	0	0	6	7	10	16	37
DO	7.0	7.9 7.0		-	7.5 68	7.4 7.0	7.8 7.2	8.2	Z3
Temp	24.1	24.2 24.1		24.9 24.1	25.0 24.4		24.1 24.1	24.6	1 2
pH	8.0	8.0 8.1	8.0 8.1	7.8 8.0	7.8 8.1	7.8 8.1	8.0 8.0	8.1	11/
Cond	308	321	348	329	333	319	315		1,7,
1)	0	0	0	0		0	11	liv	72
.,	Ö	0	0	Ö	8		0	14	33
	0	Ö	0	5		0		18	2Z 28
	0	Ö	0	5	10	0	13	13	31
	0	0	0	5 5	10	0	10	19	
13	0	0	0	2	11	6	13	14	29
15		0		6	8	O	13	16	27
	0		0	5	7	0	14	15	20
	0	0	0	3	4	0	12,	15	34
	0	0	. 0	0	5	14	0	14	33
DO.	0	0	0	0	٦	10	14	0	31
DO	7.1	7.9 7.2	7.7 7.1	7.5 7.6		7.4 17.2	7.8 7.7	8.2	
Temp	24.1	24.2 24.2	25.6 25.0	24.9 24.1	25.0 24.4		24.1 24.1	24.6	NA
pH	8.0	8.0 8.1	7.9 8.1	7.8 8.0	7.7 8.0	7.7 8.0	8.0 8.0	8.1	Var.
Cond	797	312	318	314	308	296	298	量為6000年	V
2)	0	0	0	٥	8	0	0	16	24
	0	0	0	0	7	10	0	17	34
	0	0	0	Ч	8	0	14	14	26
	0	0	0	4	9	0	17	5	30 25
	0	0	0	6	11	8	0	15	75
26	0	0	0	6	12	0	5	14	33
	0	0	0	0	8	4	0	20	32
	0	0	0	5	0	9	12	17	26
	0	0	0	0 D-					0
	0	0	0	0	0	13	18	- 11	42
DO	7.2	7.9 7.4	7.7 7.2	7.5 7.6	7.5 7.1	7.4 7.4	7.8 7.3	8.2	
Гетр	24.2	24.3 24.3	25.5 25.0	24.9 24.1	25.0 24.3	24.4 24.1	24.1 24.2	24.6	1
рН	8.0	8.0 8.0	7.8 8.0	7.8 8.0	7.6 8.0	7.6 8.0	8.0 8.0	8.1	11.0
Cond	285	304	303	Z97	294	287	284		V
)	0	0	0	0	. 9	12	0	15	36
	0	0	0	0	(0	0	16	16	38
[0	0	0	4	9	10	0	16	23
- [0	0	0	5	9 +2	0	Ö	18	34
- 1	0	0	0	7	II .	5	Ö	19	23
52	0	0	0		10	0	15	15	43
-	0	0	0	3	7	0	13	12	35
1	0	0	0	5	5	0	15	17	
- 1	Ö	0	0	0		12			25
	0	0	0	0	9	14	0	17	35
	77.4	7.9 17.4	7.8 7.4	7.6 7.7	7.6 7.3	7.5 7.6	20 17 -	2	34
DO	- T M	1. 1. 7.7	LX III	T. Wit. T	7.6 17.3	7.7:1:6	7.8 17.5	8.2	
DO									10
DO emp pH	Z4.72 8.0		25.5 25.0 7.7 7.9	74.8 Z4.1 77.7 8.0		7.5 7.9	24.1 24.2	24.0 8.\	31,0

M

Ceriodaphnia Chronic Benchsheet

Form #: 101a Effective: March 2023

	0	1	2	3	4	5	6	7	Total
(4)	0	0	0	0	0	0	13	12	25
	0	0	0	0	5	8	0	16	29
	0	0	0	2	9	0	13	17	27
	0	0	0	1	9	0	11	169	37
14.	0	0	0	ч	10	6	0	16	20
76	0	0	0	5	9	11	0	17	Z5
, -	0	0	0	5	10	0	12	11	27
	0	0	0	Ч	6	0	15	14	25
	0	0	0	0	5	14	0	15	34 38
	0	0	0	0	8	15	15	0	38
DO	7.6	79 7.6	7.8 7.6	7.6 7.7	7.6 7.4	7.5 8.8	7.8 7.6	8.3	
Temp	24.3	24.4 24.5	25.5 25.0	24.8 24.1	25.0 24.2	24.4 241	24.) 24.3	24.7	Noit
pН	7.9	7.9 7.9	7.7 7.8		7.4 7.60	7.5 7.8	8.0 7.9	8.1	J V).,
Cond	750	272	240	241	244	251	237		
(5)	0	0	0	0	6	9+1	0	19	35
	0	0	0	0	0	10	0 D-		- 10 D
	0	0	0	6	9	0	13	- 11	Z8
	0	0	0	5	11	0	10	16	32
100	0	0	0	5	9	0	15	18	29
10-	0	0	0	5	12	12	0	17	29
	0	0	0	3	9	0	12	15	39
	0	0	0	3	(0	0	14	19	42
	0	0	0	0	.5	10	0	18	33
	0	0	0	0	6	12	14	0	32
DO	7.9	7.9 7.8	7.8 8.1		7.6 7.6	7.5 8.4	7.8 7.6	8.3	F 44.5
Temp	24.3	24.4 24.6		24.8 24.1	25.0 24.	24.4 24.1	24.1 24.3	24.7	0
pН	7.8	7.9 7.8	7.6 7.6	7.7 7.8	7,3 7.4	7.4 7.5	8.0 7.8	8.1	10.
Cond	241	250	190	189.3	224	228	207	等的人。	5
Algae	ABS	ABS	ABS	ABS	ASS	ABS	ABS		
YCT	2306	2306	2306	2306	2307	2307	2307		
H ₂ O	. 1	1	2	Z	3	10,	3		
Initials	MK	MK	JC	MK	dc		MK	MK	
Hardnass		Eff#1		#2		#3	Red		-
Hardness Alkalinity		45		7		16	85		-
Chlorine	-	5 0.01	۷٥.	0			60		-
Ammonia		20.03		0.03	۷٥. ۷٥.		<u> </u>	72	-
Ammonia		_0.0_)	20	,.05	۷٠.	5	ζυ.(-3	

Exposure Chamber: Total Capacity: 30mL Total Solution Volume: 15ml

Feeding Schedule:

Fed daily Food used: YCT, Algae

DO: mg/L

Hardness: mg/L Alkalinity: mg/L

Temp: °C pH: N/A Cond: µS/cm3

Chlorine: mg/L Ammonia: mg/L

Comments:	
Comments.	

x:v:z = board #:row:column

							x.y.z - boai	u #.10W.CC	Julili
1	2	3	4	5	6	7	8	9	10
137	89	CZ	C5	C10	D3	D4	D5	707	EZ

Report Date: Test Code/ID: 17 Oct-23 09:37 (p 1 of 1) 423504.B / 10-3941-3462

Ceriodaphnia	7-d Survival an	d Reproduction To	est						SeaCrest Group
Analysis ID:	18-1464-2788	Endpoint:	7d Survival Rate	1000	TIS Versi	7	ETIS	v1.9.6	
Analyzed:	17 Oct-23 9:36	Analysis:	STP 2xK Contingency Tables	Sta	tus Leve	l: 1			
Batch ID:	06-0056-0192	Test Type:	Reproduction-Survival (7d)	Ana	alyst:	Lab Tec	h		
Start Date:	09 Oct-23	Protocol:	EPA/821/R-02-013 (2002)	Dile	uent:	Reconst	ituted	Water	
Ending Date:	15 Oct-23	Species:	Ceriodaphnia dubia	Bri	ne:	Not App	icabl	е	
Test Length:	6d 0h	Taxon:	Branchiopoda	Sou	ırce:	In-House	Cult	ure	Age:
Sample ID:	19-0317-1654	Code:	423504.B	Pro	ject:	WET Qu	arter	y Comp	oliance Test (4Q)
Sample Date:	09 Oct-23	Material:	POTW Effluent	Sou	irce:	NPDES	Perm	it # (XX	99999999)
Receipt Date:	09 Oct-23	CAS (PC):		Sta	tion:	001B			
Sample Age:	n/a (0 °C)	Client:	BMRI						
Data Transfor	m	Alt Hyp		NOEL	LOEL	тс	EL	TU	
Untransformed		C > T		100	>100	n/a	1	1	

Fisher Exact/Bonferroni-Holm Test

Control vs	Group	Test Stat	P-Type	P-Value	Decision(a:5%)	
Dilution Water	13	1.0000	Exact	1.0000	Non-Significant Effect	
	26	0.5000	Exact	1.0000	Non-Significant Effect	
	52	1.0000	Exact	1.0000	Non-Significant Effect	
	76	1.0000	Exact	1.0000	Non-Significant Effect	
	100	0.5000	Exact	1.0000	Non-Significant Effect	

Data Summary								
Conc-%	Code	NR	R	NR + R	Prop NR	Prop R	%Effect	
0	D	10	0	10	1	0	0.0%	
13		10	0	10	1	0	0.0%	
26		9	1	10	0.9	0.1	10.0%	
52		10	0	10	1	0	0.0%	
76		10	0	10	1	0	0.0%	
100		9	1	10	0.9	0.1	10.0%	

Report Date: Test Code/ID: 17 Oct-23 09:37 (p 1 of 2) 423504.B / 10-3941-3462

									rest Code	HU:		423504.D	7 10-3941-346
Ceriod	laphnia	7-d Survival a	nd Repr	oducti	on T	est						Se	eaCrest Group
Analys	is ID:	16-3696-5218		Endpo	oint:	7d Survival Ra	te		CETIS Ver	rsion:	CETIS	v1.9.6	
Analyz	ed:	17 Oct-23 9:36	6	Analys	sis:	Linear Interpola	ation (ICPIN)		Status Le	vel:	1		
Batch	ID:	06-0056-0192		Test T	ype:	Reproduction-S	Survival (7d)		Analyst:	Lab	Tech		
Start D	ate:	09 Oct-23		Protoc	col:	EPA/821/R-02-	013 (2002)		Diluent:	Reco	onstituted	Water	
Ending	Date:	15 Oct-23		Specie	es:	Ceriodaphnia d	lubia		Brine:	Not /	Applicable	9	
Test Le	ength:	6d 0h		Taxon	:	Branchiopoda			Source:		ouse Cult		Age:
Sample	e ID:	19-0317-1654		Code:		423504.B			Project:	WET	Quarterl	y Complia	ance Test (4Q)
Sample	e Date:	09 Oct-23		Materi	al:	POTW Effluent			Source:	NPD	ES Perm	it # (XX99	9999999)
Receip	t Date:	09 Oct-23		CAS (F	PC):				Station:	001E	3		
Sample	e Age:	n/a (0 °C)		Client	:	BMRI							
Linear	Interpo	lation Options											
X Trans	sform	Y Transfor	m :	Seed		Resamples	Exp 95% CL	Method					
Linear		Linear		395667	7	1000	Yes	Two-Point	Interpolation	1			
Point E	stimate	es											
Level	%	95% LCL	. 95% L	JCL T	U	95% LCL	95% UCL						
LC5	82	19.5	n/a	1	.22	n/a	5.128						
LC10	100	79.43	n/a	1		n/a	1.259						
LC15	>100	n/a	n/a	<	:1	n/a	n/a						
LC20	>100	n/a	n/a	<	:1	n/a	n/a						
LC25	>100	m/a	n/a	<	:1	n/a	n/a						
Visit Visit St.													

7d Surviv	al Rat	te Summary				Calc	ulated Varia	ite(A/B)			Isotonic Variate		
Conc-%		Code	Count	Mean	Min	Max	Std Dev	CV%	%Effect	A/B	Mean	%Effect	
0		D	10	1.0000	1.0000	1.0000	0.0000	0.00%	0.0%	10/10	1	0.0%	
13			10	1.0000	1.0000	1.0000	0.0000	0.00%	0.0%	10/10	1	0.0%	
26	3		10	0.9000	0.0000	1.0000	0.3162	35.14%	10.0%	9/10	0.9667	3.33%	
52			10	1.0000	1.0000	1.0000	0.0000	0.00%	0.0%	10/10	0.9667	3.33%	
76			10	1.0000	1.0000	1.0000	0.0000	0.00%	0.0%	10/10	0.9667	3.33%	
100			10	0.9000	0.0000	1.0000	0.3162	35.14%	10.0%	9/10	0.9	10.0%	

n/a

n/a

LC40

LC50

>100

>100

n/a

n/a

n/a

n/a

<1

<1

n/a

n/a

Report Date: Test Code/ID: 17 Oct-23 09:37 (p 1 of 1) 423504.B / 10-3941-3462

										162	t Code/IL		4	23504.B/	0-3941-34			
Ceriodaphnia	7-d	Survival an	d Repr	oduction To	est									SeaC	rest Grou			
Analysis ID:	01-3	270-6513		Endpoint:	Repr	oduction				CET	IS Version	on:	CETISV	1.9.6				
Analyzed:	17 C	Oct-23 9:36		Analysis:	Non	parametric	-Contro	l vs T	Treatments	Stat	us Level	:	1					
Batch ID:	06-0	056-0192		Test Type:	Repr	oduction-	Survival	(7d)		Ana	alyst: Lab Tech							
Start Date:	09 C	oct-23		Protocol:	EPA	/821/R-02	013 (20	02)		Dilu	ent: F	Recons	stituted \	Nater				
Ending Date:	15 C	ct-23		Species:	Cerio	odaphnia d	lubia			Brin	ie: N	lot Ap	plicable					
Test Length:	6d (Dh		Taxon:	Bran	chiopoda				Sou	rce: I	n-Hous	se Cultu	re	Age:			
Sample ID:	19-0	317-1654		Code:	4235	04.B				Proj	ect: V	VET Q	uarterly	Complianc	e Test (4Q			
Sample Date:	09 C	ct-23		Material:	POT	W Effluen	t			Source: NPDES Permit # (XX99999999)								
Receipt Date:	09 C	ct-23		CAS (PC):						Stat	ion: 0	01B						
Sample Age:	n/a (0 °C)		Client:	BMR	I												
Data Transfor	m		Alt H	ур						NOEL	LOEL	Т	OEL	TU	PMSD			
Untransformed	1		C > T							100	>100	n	/a	1	26.16%			
Steel Many-O	ne Ra	ank Sum Te	st															
Control	vs	Conc-%		Test S	Stat	Critical	Ties	DF	P-Type	P-Value	Decisio	on(a:5	5%)					
Dilution Water		13		93		75	5	18	CDF	0.4569	Non-Si	gnifica	nt Effec	t				
		26		91.5		75	2	18	CDF	0.4046	Non-Si	gnifica	nt Effec	t				
		52		115		75	2	18	CDF	0.9697	Non-Si	gnifica	nt Effec	t				
		76		89.5		75	4	18		0.3378	Non-Sig	gnifica	nt Effect	t				
		100		108.5	75		3	18	CDF	0.9005	Non-Sig	gnifica	nt Effect	t				
ANOVA Table																		
Source		Sum Squa	res	Mean	Squa	re	DF		F Stat	P-Value	Decisio	on(α:5	%)					
Between		296.133		59.226	67		5		0.926	0.4714	Non-Sig	gnifica	nt Effect					
Error		3453.8		63.959	93		54		_									
Total		3749.93					59							-				
ANOVA Assur	nptio	ns Tests																
Attribute		Test					Test S	tat	Critical	P-Value	Decisio	n(α:1	%)					
Variance		Bartlett Eq	uality of	Variance T	est		13.46		15.09	0.0194	Equal V	ariano	ces					
Distribution		Shapiro-W	ilk W N	ormality Tes	t		0.8886	6	0.9459	5.2E-05	Non-No	rmal D	Distributi	on				
Reproduction	Sum	mary																
Conc-%		Code	Count	Mean		95% LCL	95% U	CL	Median	Min	Max	St	d Err	CV%	%Effect			
)		D	10	31.3	:	27.79	34.81		32	23	39	1.	55	15.66%	0.00%			
13			10	29.4	:	26.72	32.08		30	22	34	1.	185	12.75%	6.07%			
26			10	27.2		19.34	35.06		28	0	42	3.	476	40.42%	13.10%			
52			10	32.6		27.79	37.41		34.5	23	43	2.	125	20.61%	-4.15%			
76			10	26.4		19.04	33.76		27	2	38	3.	253	38.97%	15.65%			

100

10

30.9

24.75

37.05

32

10

42

2.718

27.82%

1.28%

Report Date: Test Code/ID: 17 Oct-23 09:37 (p 2 of 2) 423504.B / 10-3941-3462

Ceriodaphnia 7-d Survival and	Reproduction Test	SeaCrest Group
A		

Analysis ID.	10-1301-3324	Enapoint.	Reproduction	CETIS Version:	CE115V1.9.6
Analyzed:	17 Oct-23 9:36	Analysis:	Linear Interpolation (ICPIN)	Status Level:	1

Ba	atch ID:	06-0056-0192	Test Type:	Reproduction-Survival (7d)	Analyst:	Lab Tech
St	art Date:	09 Oct-23	Protocol:	EPA/821/R-02-013 (2002)	Diluent:	Reconstituted Water
Er	nding Date:	15 Oct-23	Species:	Ceriodaphnia dubia	Brine:	Not Applicable

Test Length: 6d 0h Taxon: Branchiopoda Source: In-House Culture Age: Sample ID: 19-0317-1654 Code: 423504.B WET Quarterly Compliance Test (4Q) Project: Sample Date: 09 Oct-23 Material: **POTW Effluent** Source: NPDES Permit # (XX9999999)

Receipt Date: 09 Oct-23 CAS (PC): Station: 001B

Sample Age: n/a (0 °C) Client: **BMRI**

Linear Interpolation Options

X Transform	Y Transform	Transform Seed Resamples Exp 95% CL Method							
Linear	Linear	1453205	1000	Yes	Two-Point Interpolation				
4									

Point Estimates

Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL	
IC5	12.99	4.915	n/a	7.701	n/a	20.35	
IC10	>100	n/a	n/a	<1	n/a	n/a	
IC15	>100	n/a	n/a	<1	n/a	n/a	
C20	>100	n/a	n/a	<1	n/a	n/a	
C25	>100	n/a	n/a	<1	n/a	n/a	
C40	>100	n/a	n/a	<1	n/a	n/a	
C50	>100	n/a	n/a	<1	n/a	n/a	

Reproduction	Summary				Isotonic Varia					
Conc-%	Code	Count	Mean	Min	Max	Std Dev	CV%	%Effect	Mean	%Effect
0	D	10	31.3	23	39	4.9	15.66%	0.0%	31.3	0.0%
13		10	29.4	22	34	3.748	12.75%	6.07%	29.73	5.01%
26		10	27.2	0	42	10.99	40.42%	13.1%	29.73	5.01%
52		10	32.6	23	43	6.72	20.61%	-4.15%	29.73	5.01%
76		10	26.4	2	38	10.29	38.97%	15.65%	28.65	8.47%
100		10	30.9	10	42	8.595	27.82%	1.28%	28.65	8.47%

Client: BMRI Site: 001B CO-0045675

SCG Project No.: 423504.B Project: Quarterly WET

Appendix 3 - Data Sheets for the Fathead Minnow Test

WET TEST REPORT FORM	- CHRONIC
----------------------	-----------

Permittee:

Battle Mountain Resources, Inc.

Permit No.:

CO-0045675

Outfall:

001B - IWC: 52%

Test Type:

Routine |

Accelerated

Screen

Test Species:

fathead minnow

Test Start Time	Test Start Date	Test End Time	Test End Date
1500	10-09-2023	1530	10-16-2023

Test Results	Lethality/TCP6C	Growth/TKP6C
S code: NOEL	100%	100%
	PASS	PASS
P code: LC ₂₅ /IC ₂₅	>100%	>100%
	PASS	PASS
T code:	>100%	>100%

Test Summary

Measurements	Control (0%)	13%	26%	52%	76%	100%
Exposed organisms	40	40	40	40	40	40
Survival for day 1	39	37	40	37	39	39
Survival for day 2	38	36	40	35	39	38
Survival for day 3	38	36	40	35	39	38
Survival for day 4	38	36	40	35	39	38
Survival for day 5	38	36	40	35	39	38
Survival for day 6	38	36	39	34	39	38
Survival for day 7	38	36	39	34	39	37
Mean Dry Wt. (mg)	0.540	0.495	0.518	0.529	0.521	0.549

Hardness (mg/L) - Receiving Water: N/A

Effluent: 45/47/36

Recon Water: 88

Alkalinity (mg/L) – Receiving Water: N/A Chlorine (mg/L) – Effluent: pH (i

Effluent: 5/0/8

Recon Water: 57

0.01/ :0.01/ :0.01

pH (initial/final) – Control: 8.3/7.5

100%: 7.7/7.2

0.01/<0.01/<0.01

Total Ammonia as NH₃ (mg/L) - Effluent: <0.03

Were all Test Conditions in Conformance with Division Guidelines? YES NO

If NO, list deviations from test specifications: N/A

Laboratory: SeaCrest Group

Comments:

Analyst's Name: Lindsey Muniz, Aurora Nelson, Mia Kohler, and Daniela Thornton

Signature Willy-Wlit

Date October 20, 2023

040	Ave wt		200	*	T		0.405		T	200	C.018		T	0530	0,00		I	1000	25.0			200	5					1	T	T		I					1	T
Dilution H_2O : $MHZS - OU$	Fish Wt ma	0.1009	ALTO.O	0.202	2000	2007	0.70		2000	5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50	1 K2	503	0,027	0531	0 401	SUICE	2000	22.0	0.507	0.56D	0.883	Disolla	0.400	0.405						A A COLOR I L	3							
MHZ	Tare	8		1.10/05	2719111	010011	11.19600	1 1 10	116211	1.17198	1.17976			1-		1.1/79/72	1 19098	1.16601	1.17595	1.17011	1.17101	1.16484	1.18006	1.14434				100	1.10442	+	1							
ion H ₂ O:	Fish & Tare	18217	17869	00111	000001	17:17	171.67	7.80	110807	11113	8278	18767	ROOILI.	17468			191003	-1		17571.	17634	17090		14839				0000	#62 101 10d 25	SILIN	2							
Dilut	4 L	10 #1	#2	10		_		_	6#	0	0 #11		t #13	#14 !	#15	10 #16	1 417	0 #18	0 #19	0 #20	1 #24 1	1 #25		7 #24	#	#	# 3	Т	7	Comments:	1							
IWC: 52 Test Conditions:	9 9	0	9	5-5		9	2	2	0	9	0 0	0	サイ	0	8	0	6 6	10	01 0	10 10 10	101	01 01 0	0	8		+	+	prefect	200	Comr	_		Ц	4				
	3 4 6	01 O1 C	00	- 0	2	_	0	0	0.	0	2	01 01 01	8		8	2	6 6	0 10 10	01 07	10110	0	01010	9	8		+	+	1			Hard: mg/L	Alk: mg/L	Chlor: mg/L	NH ₃ : mg/L				
D0923	1 2 3		000	9	2	+-	9	2	9	01	01 01 01		8 8 1		8 8 8	0 10 10	6 6 6	0110110	0 10 11	0 10 10	0 0 0	01 01 0	$\overline{}$	7 8 7	+	+	+	1		Units:	ng/L			S/cm ³				
Sample Date: Template:	0	10	\$ \$	+	_	10	10	10 1/	1	10	10 11	10	10	10	10 8	10 11	10 9	10 10	10	proper a	10	\neg	9	5	9 9	2 5	0 0	6	20215		DO: mg/L	Temp: °C	pH: N/A	Cond: µS/cm³				
- 10	7		25.9 24.5	1	(09 4.2	1	17		6.9 4.3	25.2 24.4	7 44			24.8 24.3	8.1 7.3		D. H. G	47	9 7.2	\neg	7.2 4.6	24.1 24.1	7.6 4.7		+	+		XXX			500 mL	250 mL	50.2 cm	6.5 cm	Ov per dev	<24hr artemia		
423504.B	9	9 O. h	2/4 25	-12	4.0	5	13		n 0.h	24.62	7.5 8	388	0.7	74.7		332	$\overline{}$	24.8.24.9	М	S		1	7.4.7	2	+	1		-	3	amper			-1	Chodol	annama o	<24hr		
0	2	1-	2 24.1	100	891€		+	362		2 24.7	3 8.0	348			2 7.8	312	6.6.9	2 25.5		2		52	0 73	481	-	+	-	T.G.	3	Exposure Chamber		Je:	Surface Area:	Cailo	במבות			
		2	247 242		3 4	120		-	2	24.2 LMS	82 33		S	24.2 LM	8.1	+	7	24.1.24	8.0 7.	1		25	14-	1	+		+	+			pacity:	ution Volume:	ution Surfa	eptn (constant):	Fed	Food Used:		
001B	1	63	181	35	2.9	124214	_	34		24.2.	7.6	315	5.0	24.1	0	200	2.8	5	7.5	0	5.7	7	1	9	1	1		AN	2,		Total Capacity	Test Solution	Test Solution	water Depth	Ï	N M		
Site: 023 15	8		7.8 83	3910		21.2		380	1.6 J.h		7.7 8.3	7	4.8 7.2	24.124.	7.8 9.7	314	_	7. 27.	0.00	\sim		_,	578	-	+	-		8	2	Rcv 3 MR		-	+	4	ľ	DT Lm		JT 1cm
Test End: 101/023	\neg	Π.	7 28 7.7	_	6.9	245 W.2 2		349			\exists	Т	_	_	7.6 8.0 7	_	7.2 4	70.H	7.9.7	-	57	1	27.77	9				8		Rcv 2		1		,	1	AN		マヤ
		0.8 4.5		_	4.5	5.624.5	277	31	1.4 O.T	3	77	7	7.2 4.6 7.	1	\Box		3	ू,	7.6	4	7.70	9	16 15	1	+	-	-	1		Recon Rcv 1	80	-	<0.01	20.0	ľ	ANIM		LM LM
73 500	- 2	5.5	7.8	37	5.5 10.9	24.212	7.8.8		5.5 7	74.32	7.7.18	355	7.00.0	7677	7.1.8	275	5.6.7	452		\mathcal{O}	200	79.57	1.61	3	1			3			27.88		0%	45	>	LW A		- W
29	_	7	8.3	3		Temp 24.8		3		<u>a</u>	2.8	0	7.5	1emp 24.5	200	_	7.7	9		_	000	7.10 dula!	127	3	Temp		pu	W.			5	٦.	0.07 0.0	0	╀		Н	W.
Client: Test Start:	Conc Read	8 5	E E	Cond	8		(と 日	Cond	8	Te		8 8	3 ,	ر ق	, , ,	Cond	3 ,				3 5			2	3 4	H	Cond	Initials	Water #		Hard 20		S S S	- 2	AM	Initials	PM	Initials

Report Date: Test Code/ID: 17 Oct-23 10:49 (p 1 of 3) 423504FHM / 08-3946-6007

Fathead Minn	ow 7-d Larva	I Survival a	nd Grow	vth Tes	st							Sea	Crest Grou		
Analysis ID:	09-9416-0991	E	ndpoint:	7d S	Survival Ra	ite			CETIS Vei	sion:	CETIS v2	2.1.5			
Analyzed:	17 Oct-23 10:	48 A	nalysis:	Non	parametrio	-Control vs	Treatments	-	Status Le	vel:	1				
Edit Date:	17 Oct-23 0:0	0 M	D5 Hash	n: A77	C732B205	8EBF8099D	742EEF51	86DA	Editor ID:		008-269-	892-1			
Batch ID:	06-7341-7453	В Те	st Type	: Grov	wth-Surviv	al (7d)			Analyst:						
Start Date:	09 Oct-23	P	rotocol:	EPA	V821/R-02	-013 (2002)			Diluent:	Reco	onstituted W	/ater			
Ending Date:	16 Oct-23	S	pecies:	Pime	ephales pr	omelas			Brine:	Not /	Applicable				
Test Length:	7d 0h	Ta	axon:	Actin	nopterygii				Source:	In-He	ouse Culture	е	Age:		
Sample ID:	09-2174-4618	C	ode:	4235	504.B				Project:	WET	Quarterly	Compliand	e Test (40		
Sample Date:	09 Oct-23	М	aterial:	POT	W Effluen	t			Source:	NPD	ES Permit #	# (XX9999	9999)		
Receipt Date:	09 Oct-23	C	AS (PC):						Station:	001E	3				
Sample Age:		C	ient:	BMF	RI										
Data Transfor	m	Alt Hyp					NOEL	LOE	L TOE	L	Tox Units	MSDu	PMSD		
Angular (Corre	d: 17 Oct-23 10:48 te: 17 Oct-23 0:00 D: 06-7341-7453 te: 09 Oct-23 Date: 16 Oct-23 ngth: 7d 0h ID: 09-2174-4618 Date: 09 Oct-23 Date: 09 Oct-23 Age: Insform A (Corrected) C ID: Og-274-4618 Age: Insform A ID: Og-2174-4618 Date: 09 Oct-23 Age: ID: Og-294 ID: Og-2948 ID: Og-29948 ID:					-	100	>100)		1	0.2017	21.24%		
Steel Many-O	ne Rank Sum	Test							-						
Control	vs Conc-%	,	df Test	Stat	Critical	Ties	P-Type	P-Va	lue Dec	ision(d	a:5%)				
Dilution Water	13	(3 19		10	2	CDF	0.90	55 Non	-Signifi	icant Effect				
	26	(3 20		10	3	CDF	0.95	16 Non	-Signifi	icant Effect				
	52	(14		10	3	CDF	0.34		_	icant Effect				
	76	(3 20		10	3	CDF	0.95	16 Non	-Signifi	icant Effect				
	100	(5 19		10	2	CDF	0.90	55 Non	-Signifi	icant Effect	Err CV% Effect			
ANOVA Table											=				
Source	Sum Sq	uares	Mear	n Squa	are	DF	F Stat	P-Va	lue Dec	ision(c	x:5%)				
Between	0.09292	48	0.0185			5	0.6613	0.65	73 Non-	Signifi	cant Effect				
Error	0.50588		0.028	31044		18									
Total	0.59880	5				23									
ANOVA Assun	nptions Tests														
Attribute	Test					Test Stat	Critical	P-Va	lue Deci	sion(c	x:1%)				
Variance	Bartlett I	Equality of V	ariance	Test		6.702	15.09	0.243	38 Equa	al Varia	ances				
Distribution	Shapiro-	Wilk W Nor	mality Te	est		0.8809	0.884	0.008	Non-	Norma	al Distributio	n			
7d Survival Ra	te Summary														
Conc-%	Code	Count	Mear	1	95% LCL	95% UCL	Median	Min	Max		Std Err	CV%	%Effect		
0	D	4	0.950	00	0.8581	1.0000	0.9500	0.900	00 1.00	00	0.0289	6.08%	0.00%		
13		4	0.900	00	0.5818	1.0000	1.0000	0.600	00 1.00	00	0.1000	22.22%	5.26%		
26		4	0.975	50	0.8954	1.0000	1.0000	0.900	00 1.00	00	0.0250	5.13%	-2.63%		
52		4	0.850	00	0.6446	1.0000	0.8500	0.700	1.00	00	0.0646	15.19%	10.53%		
76		4	0.975	50	0.8954	1.0000	1.0000	0.900	00 1.00	00	0.0250	5.13%	-2.63%		
100		4	0.925	50	0.6863	1.0000	1.0000	0.700	00 1.000	00	0.0750	16.22%	2.63%		
Angular (Corre	ected) Transfo	rmed Sum	mary												
Conc-%	Code	Count	Mean	1	95% LCL	95% UCL	Median	Min	Max		Std Err	CV%	%Effect		
)	D	4	1.331		1.1810	1.4800	1.3310	1.249			0.0471		0.00%		
13		4	1.281		0.8621	1.6990	1.4120	0.886			0.1315		3.76%		
26		4	1.371		1.2420	1.5010	1.4120	1.249			0.0407		-3.06%		
52		4	1.190		0.9005	1.4790	1.1780	0.991			0.0909		10.57%		
76		4	1.371		1.2420	1.5010	1.4120	1.249			0.0407		-3.06%		
100		4	1.307	0	0.9720	1.6420	1.4120	0.991	2 1.412	20	0.1052	16.10%	1.78%		

Report Date: Test Code/ID: 17 Oct-23 10:49 (p 1 of 2) 423504FHM / 08-3946-6007

Fathea												
	ad Minn	ow 7-d Larval S	Survival an	d Growth	Test						Sea	Crest Grou
Analys	sis ID:	00-8977-6053	En	dpoint: 7	d Survival Rat	е			CETIS Versi	ion: CETIS	v2.1.5	
Analyz	zed:	17 Oct-23 10:49	9 Ana	alysis: Li	inear Interpola	tion (ICPIN	1)	:	Status Leve	l: 1		
Edit D	ate:	17 Oct-23 0:00	MD	5 Hash: A	77C732B2058	BEBF8099D	742EEF5	186DA	Editor ID:	008-26	9-892-1	
Batch	ID:	06-7341-7453	Tes	t Type: G	Frowth-Surviva	l (7d)		,	Analyst:			
Start D	Date:	09 Oct-23	Pro	tocol: E	PA/821/R-02-	013 (2002)		- 1	Diluent:	Reconstituted	Water	
Ending	g Date:	16 Oct-23	Spe	ecies: P	imephales pro	melas		1	Brine:	Not Applicable	е	
Test L	ength:	7d Oh	Tax	on: A	ctinopterygii				Source:	In-House Cult	ure	Age:
Sampl	e ID:	09-2174-4618	Cod	de: 4:	23504.B			1	Project:	WET Quarterl	y Compliand	e Test (4Q
Sampl	e Date:	09 Oct-23	Mat	terial: P	OTW Effluent				Source:	NPDES Perm	it # (XX9999	9999)
Receip	t Date:	09 Oct-23	CAS	S (PC):						001B		
Sampl	e Age:		Clie	ent: B	MRI							
Linear	Interpo	lation Options										
X Tran	sform	Y Transforn	n See	d	Resamples	Exp 95%	CL Me	thod				
Linear		Linear	162	0146	1000	Yes	Two	o-Point In	terpolation			
Point E	Estimate	es										
Level	%	95% LCL	95% UCL	Tox Unit	ts 95% LCL	95% UCL						
LC5	>100			<1								
LC10	>100			<1								
LC15	>100			<1								
_C20	>100			<1								
LC25	>100	MANA -		<1								
LC40	>100			<1								
LC50	>100			<1								
7d Sur	vival De											
u ou.	vivai Ra	ate Summary				 Calculated	l Variate(A	VB)			Isoto	nic Variate
		ate Summary Code	Count	Mean			l Variate(A Max	VB)	%Effe	ct ΣΑ/ΣΒ	Isotoi Mean	
Conc-%		A state of the sta	Count 4	Mean 0.9500		Calculated	1	-	7		-	
Conc-%) 13		Code		0.9500 0.9000	Median	Calculated Min	Max	CV%	0.00%	38/40	Mean	%Effect
Conc-%) 13 26		Code	4	0.9500 0.9000 0.9750	Median 0.9500 1.0000	Min 0.9000 0.6000 0.9000	Max 1.0000 1.0000 1.0000	CV%	0.00% 5.26%	38/40 36/40	Mean 0.9500	%Effect 0.00%
Conc-% 0 13 26 52		Code	4 4 4 4	0.9500 0.9000 0.9750 0.8500	Median 0.9500 1.0000 1.0000 0.8500	Min 0.9000 0.6000 0.9000 0.7000	Max 1.0000 1.0000 1.0000 1.0000	6.08% 22.229 5.13% 15.199	0.00% 5.26% -2.63% 10.53%	38/40 36/40 39/40 6 34/40	Mean 0.9500 0.9375 0.9375 0.9167	%Effect 0.00% 1.32% 1.32% 3.51%
Conc-% 0 13 26 52 76		Code	4 4 4 4	0.9500 0.9000 0.9750 0.8500 0.9750	Median 0.9500 1.0000 1.0000 0.8500 1.0000	Min 0.9000 0.6000 0.9000 0.7000 0.9000	Max 1.0000 1.0000 1.0000 1.0000 1.0000	CV% 6.08% 22.22° 5.13% 15.19° 5.13%	0.00% 5.26% -2.63% 10.53% -2.63%	38/40 36/40 39/40 6 34/40 39/40	Mean 0.9500 0.9375 0.9375	%Effect 0.00% 1.32% 1.32% 3.51% 3.51%
Conc-% 13 26 52 76		Code	4 4 4 4	0.9500 0.9000 0.9750 0.8500	Median 0.9500 1.0000 1.0000 0.8500	Min 0.9000 0.6000 0.9000 0.7000	Max 1.0000 1.0000 1.0000 1.0000	6.08% 22.229 5.13% 15.199	0.00% 5.26% -2.63% 10.53% -2.63%	38/40 36/40 39/40 6 34/40 39/40	Mean 0.9500 0.9375 0.9375 0.9167	%Effect 0.00% 1.32% 1.32% 3.51%
Conc-% 0 13 26 52 76 100	/6	Code	4 4 4 4	0.9500 0.9000 0.9750 0.8500 0.9750	Median 0.9500 1.0000 1.0000 0.8500 1.0000	Min 0.9000 0.6000 0.9000 0.7000 0.9000	Max 1.0000 1.0000 1.0000 1.0000 1.0000	CV% 6.08% 22.22° 5.13% 15.19° 5.13%	0.00% 5.26% -2.63% 10.53% -2.63%	38/40 36/40 39/40 6 34/40 39/40	Mean 0.9500 0.9375 0.9375 0.9167	%Effect 0.00% 1.32% 1.32% 3.51% 3.51%
Conc-% 13 26 52 76 100 7d Sun	% vival Ra	Code D ate Detail Code	4 4 4 4 4 4 Rep 1	0.9500 0.9000 0.9750 0.8500 0.9750 0.9250	Median 0.9500 1.0000 1.0000 0.8500 1.0000 1.0000	Min 0.9000 0.6000 0.9000 0.7000 0.9000 0.7000	Max 1.0000 1.0000 1.0000 1.0000 1.0000	CV% 6.08% 22.22° 5.13% 15.19° 5.13%	0.00% 5.26% -2.63% 10.53% -2.63%	38/40 36/40 39/40 6 34/40 39/40	Mean 0.9500 0.9375 0.9375 0.9167	%Effect 0.00% 1.32% 1.32% 3.51% 3.51%
Conc-% 13 26 52 76 100 7d Surr	% vival Ra	Code D	4 4 4 4 4	0.9500 0.9000 0.9750 0.8500 0.9750 0.9250	Median 0.9500 1.0000 1.0000 0.8500 1.0000	Min 0.9000 0.6000 0.9000 0.7000 0.9000 0.7000	Max 1.0000 1.0000 1.0000 1.0000 1.0000	CV% 6.08% 22.22° 5.13% 15.19° 5.13%	0.00% 5.26% -2.63% 10.53% -2.63%	38/40 36/40 39/40 6 34/40 39/40	Mean 0.9500 0.9375 0.9375 0.9167	%Effect 0.00% 1.32% 1.32% 3.51% 3.51%
Conc-% 0 13 26 52 76 100 7d Sur	% vival Ra	Code D ate Detail Code	4 4 4 4 4 4 Rep 1	0.9500 0.9000 0.9750 0.8500 0.9750 0.9250	Median 0.9500 1.0000 1.0000 0.8500 1.0000 1.0000	Min 0.9000 0.6000 0.9000 0.7000 0.9000 0.7000	Max 1.0000 1.0000 1.0000 1.0000 1.0000	CV% 6.08% 22.22° 5.13% 15.19° 5.13%	0.00% 5.26% -2.63% 10.53% -2.63%	38/40 36/40 39/40 6 34/40 39/40	Mean 0.9500 0.9375 0.9375 0.9167	%Effect 0.00% 1.32% 1.32% 3.51% 3.51%
Conc-% 0 13 26 52 76 100	% vival Ra	Code D ate Detail Code	4 4 4 4 4 4 1.0000	0.9500 0.9000 0.9750 0.8500 0.9750 0.9250 Rep 2	Median 0.9500 1.0000 1.0000 0.8500 1.0000 1.0000 Rep 3 0.9000	Min 0.9000 0.6000 0.7000 0.7000 0.7000 Rep 4 1.0000	Max 1.0000 1.0000 1.0000 1.0000 1.0000	CV% 6.08% 22.22° 5.13% 15.19° 5.13%	0.00% 5.26% -2.63% 10.53% -2.63%	38/40 36/40 39/40 6 34/40 39/40	Mean 0.9500 0.9375 0.9375 0.9167	%Effect 0.00% 1.32% 1.32% 3.51% 3.51%

0.9000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

0.7000

76

100

Report Date: Test Code/ID: 17 Oct-23 10:49 (p 3 of 3) 423504FHM / 08-3946-6007

Fathead Minn	now 7-d Larval S	Survival and	d Growth	Test						Sea	rest Group
Analysis ID:	03-2534-0600	End	point: N	Mean Dry Bior	nass-mg		CE	TIS Version	on: CETIS	2.1.5	
Analyzed:	17 Oct-23 10:4	8 Ana	lysis: F	Parametric-Co	ntrol vs Trea	atments	Sta	tus Level	: 1		
Edit Date:	17 Oct-23 0:00	MD	5 Hash: F	39B4A75EE	4C6005E00	CAA510F55	BB9F Edi	itor ID:	008-269	-892-1	
Batch ID:	06-7341-7453	Tes	t Type: (Growth-Surviv	al (7d)		Ana	alyst:			
Start Date:	09 Oct-23	Pro	tocol: E	PA/821/R-02	-013 (2002)		Dile	uent: F	Reconstituted 1	Water	
Ending Date:	16 Oct-23	Spe	cies: F	Pimephales pr	omelas		Bri	ne: N	Not Applicable		
Test Length:	7d 0h	Tax	on: A	ctinopterygii			Soi	urce: I	n-House Cultu	re	Age:
Sample ID:	09-2174-4618	Cod	le: 4	23504.B			Pro	ject: V	VET Quarterly	Compliano	e Test (4Q)
Sample Date:	09 Oct-23	Mat	erial: F	OTW Effluen	t		Sou	-	NPDES Permit		
Receipt Date:	09 Oct-23	CAS	(PC):				Sta	tion: 0	01B		
Sample Age:		Clie		BMRI							
Data Transfor	rm	Alt Hyp				NOEL	LOEL	TOEL	Tox Unit	s MSDu	PMSD
Untransformed	d	C > T				100	>100		1	0.1266	23.47%
Dunnett Multi	ple Comparison	Test									
_	vs Conc-%		Test Sta	at Critical	MSD	P-Type	P-Value	Decisio	on(a:5%)		
Dilution Water	de: 17 Oct-23 10:48 te: 17 Oct-23 0:00 D: 06-7341-7453 ate: 09 Oct-23 Date: 16 Oct-23 ngth: 7d 0h ID: 09-2174-4618 Date: 09 Oct-23 Date: 09 Oct-23 Age: ansform A formed C Water 13 26 52 76 100 Table Sum Square 0.0070561 0.0995982 0.106654 Assumptions Tests Descriptions		0.8507	2.407	0.1266	CDF	0.4890		gnificant Effec	t	
		6	0.4134	2.407	0.1266	CDF	0.6844		gnificant Effec		
	52	6	0.1948	2.407	0.1266	CDF	0.7696		gnificant Effec		
	76	6	0.3516	2.407	0.1266	CDF	0.7098		gnificant Effec		
	100	6	-0.1712	2.407	0.1266	CDF	0.8788	Non-Si	gnificant Effec	t	
ANOVA Table											
Source	Sum Squ	ares	Mean S	quare	DF	F Stat	P-Value	Decisio	on(a:5%)		
Between	0.007056	1	0.00141	12	5	0.255	0.9317	Non-Si	gnificant Effec	t	
Error	0.0995982	2	0.00553	32	18						
Total	0.106654				23	_					
ANOVA Assun	nptions Tests										
Attribute	Test				Test Stat	Critical	P-Value	Decisio	on(α:1%)		
Variance	Bartlett Ed	quality of Var	riance Tes	st	2.694	15.09	0.7470	Equal \	/ariances		
Distribution					0.976	0.884	0.8131		Distribution		
Mean Dry Bior	mass-mg Sumn	nary									
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
)	D	4	0.5395	0.4426	0.6364	0.5365	0.476	0.609	0.03045	11.29%	0.00%
13		4	0.4948	0.3653	0.6242	0.5125	0.384	0.57	0.04068	16.45%	8.29%
26		4	0.5178	0.4291	0.6064	0.5195	0.452	0.58	0.02785	10.76%	4.03%
52		4	0.5293	0.3795	0.679	0.511	0.437	0.658	0.04704	17.78%	1.90%
76		4	0.521	0.456	0.586	0.5265	0.471	0.56	0.02042	7.84%	3.43%
100		4	0.5485	0.3955	0.7015	0.5915	0.405	0.606	0.04808	17.53%	-1.67%
Mean Dry Bion	mass-mg Detail										
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4						
)	D	0.609	0.476	0.503	0.57						
,		0.004	0.487	0.538	0.57						
		0.384	0.407								
13		0.384	0.58	0.452	0.543						
13 26					0.543 0.658						
13 26 52 76		0.496	0.58	0.452							

Report Date: Test Code/ID: 17 Oct-23 10:49 (p 2 of 2) 423504FHM / 08-3946-6007

								est coderio.		4200041 1110	7 00-3340-000
Fathea	d Minn	ow 7-d Larval S	urvival an	d Growt	h Test					Se	eaCrest Group
Analys Analyz Edit Da	ed:	10-2893-0256 17 Oct-23 10:49 17 Oct-23 0:00	An	dpoint: alysis:)5 Hash:	Mean Dry Biom Linear Interpola F39B4A75EEA		10F55BB9F	CETIS Vers Status Lev Editor ID:		CETIS v2.1.5 1 008-269-892-1	
Batch	ID:	06-7341-7453	Te	st Type:	Growth-Surviva	l (7d)		Analyst:			
Start D	ate:	09 Oct-23	Pre	otocol:	EPA/821/R-02-	013 (2002)		Diluent:	Reco	onstituted Water	
Ending	Date:	16 Oct-23	Sp	ecies:	Pimephales pro	melas		Brine:	Not A	Applicable	
Test Le	ength:	7d 0h	Ta	xon:	Actinopterygii			Source:	In-Ho	ouse Culture	Age:
Sample	e ID:	09-2174-4618	Co	de:	423504.B			Project:	WET	Quarterly Complia	ance Test (4Q)
Sample	Date:	09 Oct-23	Ma	terial:	POTW Effluent			Source:	NPD	ES Permit # (XX99	999999)
Receip	t Date:	09 Oct-23	CA	S (PC):				Station:	001B		
Sample	e Age:		Cli	ent:	BMRI						
Linear	Interpo	lation Options									
X Trans	sform	Y Transform	Se	ed	Resamples	Exp 95% CL	Method				
Linear		Linear	199	95131	1000	Yes	Two-Point	Interpolation			
Point E	stimat	es						+			
Level	%	95% LCL	95% UCI	Tox U	nits 95% LCL	95% UCL					
IC5	>100			<1							
IC10	>100			<1							
IC15	>100			<1							
IC20	>100			<1							
C25	>100	AST		<1							
IC40	>100			<1							
C50	>100			<1							

Mean Dry Bio	mass-mg Sum	mary			Calcul	ated Variat	е		Isotor	ic Variate
Conc-%	Code	Count	Mean	Median	Min	Max	CV%	%Effect	Mean	%Effect
0	D	4	0.5395	0.5365	0.476	0.609	11.29%	0.00%	0.5395	0.00%
13		4	0.4948	0.5125	0.384	0.57	16.45%	8.29%	0.5223	3.20%
26		4	0.5178	0.5195	0.452	0.58	10.76%	4.03%	0.5223	3.20%
52		4	0.5293	0.511	0.437	0.658	17.78%	1.90%	0.5223	3.20%
76		4	0.521	0.5265	0.471	0.56	7.84%	3.43%	0.5223	3.20%
100		4	0.5485	0.5915	0.405	0.606	17.53%	-1.67%	0.5223	3.20%

Mean Dry Biomass-mg Deta

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	D	0.609	0.476	0.503	0.57	
13		0.384	0.487	0.538	0.57	
26		0.496	0.58	0.452	0.543	
52		0.437	0.531	0.491	0.658	
76		0.505	0.471	0.548	0.56	
100		0.583	0.606	0.6	0.405	

Client: BMRI Site: 001B CO-0045675

SCG Project No.: 423504.B Project: Quarterly WET

Appendix 4 - QA/QC and Reference Toxicant Test Chart

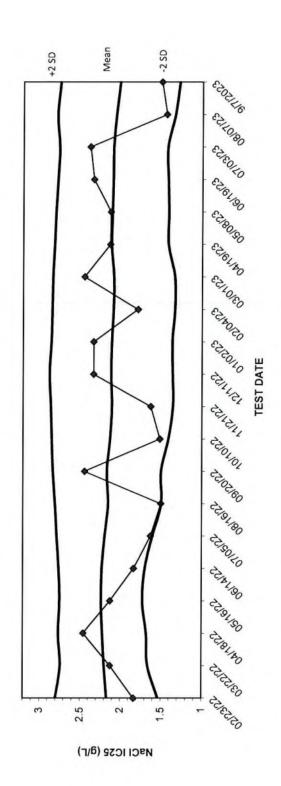
Quality Assurance Check List - Chronic Whole Effluent Toxicity Test

Client:	Battle Mountain Res	ources, Inc.
SeaCrest Sample No:	423504.B	
Species Tested:	Ceriodaphnia dubia	and fathead minnow
Sample Dates 10-09-2023 10-11-2023	Start Date of Test (Ceriodaphnia dubia)	Start Date of Test (fathead minnow)
10-13-2023	10-09-2023	10-09-2023
	1.00 (2.00)	
Sample received in lab properly		N*
Sample received at laboratory		Y
Sample delivered on ice or equ Test initiated within 36-hours o		Y
	PHE guidelines (<i>Ceriodaphnia dubia</i>)?	Y Y
	PHE guidelines (<i>Certodaphina duota)</i> ? PHE guidelines (fathead minnow)?	Y
Average test temp. ± 1 °C (<i>Cerio</i>		Y
Average test temp. $\pm 1^{\circ}$ C (father	1	Y
	aturation (Ceriodaphnia dubia)?	Y
DO level ≥4.0mg/L; no super-s	•	Y
Survival in control \geq 80% (<i>Ceri</i>		Y
Survival in control ≥80% (father	•	Y
Ceriodaphnia dubia neonates <		Y
Fathead minnow larvae <24-ho		Y
Appropriate reference toxicity		Y
a ppropriate reference toxicity		

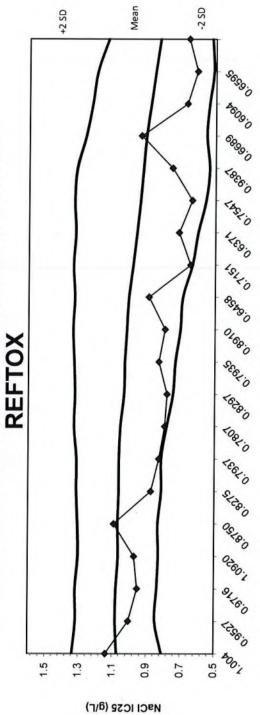
Reference toxicity test results within the confidence limits for the lab?

Author Muly What Date October 20, 2023
Position: Laboratory Manager

Quality Control Of Date October 20, 2023

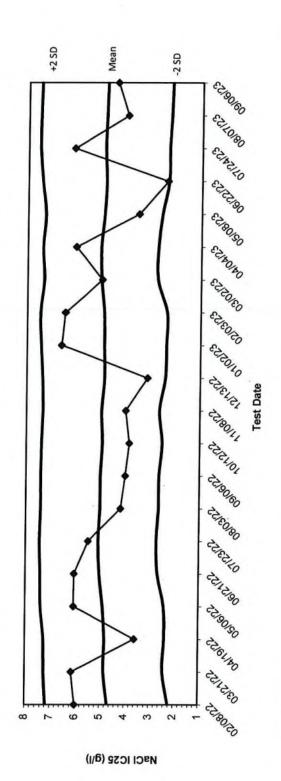

Y

^{*} The samples were received at 12.5°C, 10.1°C, and 9.5°C on the same day as sampling.


Method	Analyte	Date	LCS (rec)	%REC	%RPD	QC LIMITS
2320 B	Alkalinity - Total	9/5/2023	104 00%	05 61%	2000	1
2320 B	Alkalinity - Total	9/13/2023	104 80%	20.00	0.00%	± 5.00%
2320 B	Alkalinity - Total	0/04/2022	104.60%	88.40%	-3.43%	± 5.00%
2220	All aliant	9/2 1/2023	95.20%	104.44%	%96.0	+ 5 00%
2320 B	Alkalinity - I otal	9/27/2023	104.80%	101.15%	-4.03%	4 5 00%
4500 NH3 D	Ammonia	9/14/2023	110.00%	101.98%	-3.03%	1 10 00%
4500 NH ₃ D	Ammonia	9/14/2023	100.00%	107.38%	-8 44%	H 10.00%
4500 NH ₃ D	Ammonia	9/22/2023	104.00%	100 00%	0.10%	± 10.00%
4500 NH ₃ D	Ammonia	9/29/2023	110.00%	103 77%	0.10%	± 10.00%
4500 CI D	Chlorine	9/27/2023	103 13%	% de 07%	2000	± 10.00%
2340 B	Hardness - Total	9/6/2023	96 49%	103 75%	0.00%	± 5.00, ± 20.00%
2340 B	Hardness - Total	9/14/2023	104 00%	100.000	4.02%	¥ 2.00%
2340 B	Hardness - Total	9/21/2023	700.00	102.00%	3.21%	± 5.00%
2340 B	LotoT Goodback	07071070	102.00%	101.00%	-0.52%	± 5.00%
2010	naidiess - lotai	9/28/2023	101.75%	100.30%	0.83%	± 5.00%
			LCS (rec)	%REC M1	%REC M2	
4500 O	DO - Winkler	9/8/2023	N/A	98 17%	404 470/	STIMITS OF LIMITS
4500 O	DO - Winkler	9/15/2023	N/N	101 150	404 42%	± 5.00%
4500 O	DO - Winkler	0000000	77	0.43%	101.43%	± 5.00%
15000	Naminal Oct	9/22/2023	N/A	101.47%	100.00%	+ 5.00%
		9/29/2023	N/A	101.45%	101.47%	± 5.00%
0.00			Blank	%REC MR S	%RPD	i I JO
2540 D	Suspended Solids (TTL)	9/20/2023	100.00%	111.76%	0.00%	4 150/
2540 C	Dissolved Solids (TTL)	9/20/2023	100.00%	106.05%	-1.41%	± 15% ± 15%
Signature:	Oat mer	8			Signature:	talon noit
Date:	240ber 2, 2023				Date:	10

CERIODAPHNIA SURVIVAL LC25 NaCI REFTOX

Г	T			_						_	_	_		_						
+2 SD	2.7982	2.7374	2.7626	2.7453	2.7582	2.7828	2.8054	2.8328	2.8465	2.8578	2.8742	2.8527	2.8430	2.8352	2.8158	2.7988	2.7755	2.7571	2.7824	2.7441
-2 SD	1.5330	1.6590	1.6774	1.7257	1.6951	1.6031	1.4959	1.4989	1.4070	1.3533	1.3566	1.3622	1.3307	1.3336	1.4129	1.4102	1.4176	1.4243	1.3336	1.2766
Mean	2.1656	2.1982	2.2200	2.2355	2.2267	2.1930	2.1506	2.1658	2.1268	2.1055	2.1154	2.1075	2.0869	2.0844	2.1144	2.1045	2.0965	2.0907	2.0580	2.0104
IC25	1.8330	2.1250	2.4580	2.1250	1.8330	1.6250	1.5000	2.4440	1.5130	1.6250	2.3330	2.3330	1.7860	2.4480	2.1300	2.1250	2.3330	2.3780	1.4375	1.5000
Date	02/23/22	03/22/22	04/18/22	05/16/22	06/14/22	07/05/22	08/16/22	09/20/22	10/10/22	11/21/22	12/11/22	01/02/23	02/04/23	03/01/23	04/19/23	05/08/23	06/19/23	07/03/23	08/07/23	9/7/2023


CERIODAPHNIA REPRODUCTION IC25 NaCI

TEST DATE

г	Т	_	_	_				_	_	_	_	_	_	_	_	_	_			_
+2 SD	13354	1 315389238	1 3174	13025	1.3053	1.3129	1.3123	13279	1.3223	13275	13353	13258	1.3342	1.3221	1.3300	13165	1.2670	1 2302	12014	1.1353
-2 SD	0.8084	0.848850762	0.8376	0.8293	0.8330	0.8126	0.8138	0.7830	0.7456	0.7328	0.7041	0.6912	0.6340	0.6021	0.5562	0.5369	0.5540	0.5384	0.5136	0.5226
Mean	1.0719	1.08212	1.0775	1.0659	1.0691	1.0628	1.0630	1.0554	1.0340	1.0301	1.0197	1.0085	0.9841	0.9621	0.9431	0.9267	0.9105	0.8843	0.8575	0.8290
IC25	1.1390	1.004	0.9527	0.9716	1.0920	0.8750	0.8275	0.7937	0.7807	0.8297	0.7935	0.8910	0.6458	0.7151	0.6371	0.7547	0.9387	0.6689	0.6094	0.6595
Date	02/23/22	3/22/2022	04/18/22	05/16/22	06/14/22	07/05/22	08/16/22	09/20/22	10/10/22	11/21/22	12/11/22	01/02/23	02/04/23	03/01/23	04/19/23	05/08/23	06/19/23	07/03/23	08/07/23	09/07/23

FHM SURVIVAL LC25 NaCI REFTOX

7 1600	7 2404	1.2464	7.2622	7 3872	7 4004	7.4001	7 4440	7.417	7.413/	7.3923	7.3400	7,3090	7.4415	7.4818	7.3361	7 3978	0706.7	1.2373	7.4321	7.5370	7.5269	7 4948
2 2009	2 4258	2.4200	2.3657	2.3955	2 6626	2 7150	2 6328	2,6223	2 5089	2,5003	2 3006	23687	2.300	7.3524	2.7367	2.7278	2 5790	22220	2.3230	2.3130	2.2436	2.2052
4.6848	4.8361	7 07 70	4.8140	4.8914	5.0353	5.0819	5.0220	5.0185	4.9507	4 9848	4.8843	4 9051	7 0171	1,10.4	5.0364	5.0628	4.9385	4 8775	0300	4.9250	4.8853	4.8500
6.0000	6.1400	3 5870	0.000	6.0670	6.0500	5.5000	4.1820	4.0000	3.8420	4.0000	3.1230	6.6150	6 4800	0000	3.0000	6.0800	3.5230	2.3600	6 1806	0.1030	4.0000	4.4240
02/08/22	03/21/22	04/19/22	200000	77/90/60	06/21/22	07/23/22	08/03/22	09/06/22	10/12/22	11/08/22	12/13/22	01/02/23	02/03/23	03/02/23	02/20/20	04/04/23	05/08/23	06/22/23	07/24/23	0211210	08/07/23	09/06/23
	6.0000 4.6848 2.2009	6.0000 4.6848 2.2009 6.1400 4.8361 2.4758	6.0000 4.6848 2.2009 6.1400 4.8361 2.4258	6.0000 4.6848 2.2009 6.1400 4.8361 2.4258 3.5870 4.8140 2.3657	6.0000 4.6848 2.2009 6.1400 4.8361 2.4258 3.5870 4.8140 2.3657 6.0670 4.8914 2.3955	6.0000 4.6848 2.2009 6.1400 4.8361 2.4258 3.5870 4.8140 2.3657 6.0670 4.8914 2.3955 6.0500 5.0353 2.6626	6.0000 4.6848 2.2009 6.1400 4.8361 2.4258 3.5870 4.8140 2.3657 6.0670 4.8914 2.3955 6.0500 5.0819 2.160	6.0000 4.6848 2.2009 6.1400 4.8361 2.4258 3.5870 4.8140 2.3657 6.0670 4.8914 2.3955 6.0500 5.0353 2.6626 5.5000 5.0200 2.7150	6.0000 6.1400 6.1400 4.8361 2.2009 6.1400 4.8361 2.3657 6.0670 4.8914 2.3955 6.0500 5.0353 2.6626 5.5000 5.020 2.7150 4.0000 5.0185	6.0000 4.6848 2.2009 6.1400 4.8361 2.4258 3.5870 4.8140 2.3657 6.0670 4.8914 2.3955 6.0500 5.0353 2.6626 5.0819 5.020 2.7150 4.1820 5.0185 2.6233 3.8420 4.9507	6.0000 4.6848 2.2009 6.1400 4.8361 2.4258 3.5870 4.8140 2.3657 6.0670 4.8914 2.3955 6.0500 5.0353 2.6626 5.5000 5.0819 2.7150 4.1820 5.0220 2.6328 4.0000 5.0185 2.6233 3.8420 4.9507 2.5089 4.0000 4.9848 2.5028	6.0000 4.6848 2.2009 6.1400 4.8361 2.4258 3.5870 4.8140 2.3657 6.0670 4.8914 2.3955 6.0500 5.0353 2.6626 5.0200 5.0819 2.7150 2.6328 4.0000 4.9848 2.6228 3.1230 4.8843	6.0000 4.6848 2.2009 6.1400 4.8361 2.4258 3.5870 4.8140 2.3657 6.0670 4.8914 2.3955 6.0500 5.0353 2.6626 5.020 4.1820 5.020 5.020 5.020 4.9507 2.6089 4.0000 4.9848 2.6228 3.1230 4.8843	6.0000 6.1400 6.	6.0000 6.1400 6.1400 6.1400 4.8361 2.2009 6.1400 4.8140 2.3657 6.0670 6.0670 6.0670 6.089 4.1820 6.089 6.0000 6.0000 6.0000 6.0150 6.00000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.00000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.00000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.00000 6.00000 6.00000 6.00000 6.00000 6.00000 6.00000 6.00000 6.000000 6.00000 6.00000000	6.0000 4.6848 2.2009 6.1400 4.8361 2.4258 3.5870 4.8140 2.3657 6.0670 4.8914 2.3955 6.0500 5.0353 2.6626 5.5000 5.0819 2.7150 4.1820 5.0220 2.6328 4.0000 5.0185 2.633 4.0000 4.9607 2.5089 4.0000 4.9848 2.528 5.000 4.9051 2.3996 6.4800 4.9171 2.3524 5.0000 5.0364 2.7367	6.0000 4.6848 2.2009 6.1400 4.8361 2.4258 3.5870 4.8140 2.3657 6.0670 4.8914 2.3955 6.0500 5.0353 2.6626 5.5000 5.0819 2.7150 4.0000 5.0185 2.6228 4.0000 5.0185 2.5089 4.0000 4.9848 2.6228 3.1230 4.8843 2.3996 6.6150 4.9051 2.3687 6.4800 5.0364 2.7367 5.0000 5.0364 2.7278	6.0000 4.8848 2.2009 6.1400 4.8361 2.4258 3.5870 4.8140 2.3955 6.0570 4.8914 2.3955 6.0500 5.0819 2.7150 4.1820 5.0820 4.9507 2.6228 3.1230 4.9677 2.3996 6.6150 4.9051 2.3524 5.0000 5.0364 2.7367 6.0800 4.9385	6.0000 4.6848 2.2009 6.1400 4.8361 2.4258 3.5870 4.8140 2.3657 6.0670 4.8914 2.3955 6.0500 5.0353 2.6626 5.5000 5.0819 2.7150 4.1820 5.0819 2.7150 5.0000 5.0185 2.6233 4.0000 4.9848 2.6233 4.0000 4.9848 2.6228 4.8430 4.9843 2.3996 6.4800 4.9051 2.3524 6.0800 5.0364 2.7367 6.0800 5.0628 2.7278 2.3530 4.9385 2.5790	6.0000 6.0000 4.6848 2.2009 6.1400 4.8361 2.4258 3.5870 4.8140 2.3657 6.0670 4.8914 2.3955 6.0500 5.0353 5.0363 5.0363 5.0363 4.8914 2.3657 2.36626 5.0364 2.3657 2.36626 5.0364 2.3658 2.2628 2.3696 6.4800 6.08000 6.08000 6.08000 6.08000 6.08000 6.08000 6.08000 6.08000 6.08000 6.08000 6.08	6.0000 6.0000 4.6848 2.2009 6.1400 4.8361 2.4258 3.5870 6.0670 6.0670 4.8914 2.3657 6.0620 5.0353 5.0353 2.6626 5.0819 2.7150 2.6228 4.0000 5.0185 2.6228 3.1230 4.9051 6.6150 6.6150 6.0800 5.0364 6.9843 5.0220 2.3996 6.6150 6.4800 5.0364 7.3624 5.0360 6.0800 6.1696 6.1696 7.3230	2.2009 2.4258 2.3657 2.3955 2.6626 2.623 2.623 2.5089 2.5089 2.3524 2.7367 2.7367 2.3230 2.3130 2.2436

FHM GROWTH IC25 NaCI REFTOX

Т	_	_	_	_	_	_		_	_		_	_	_	_	_	_	_	_	_	_	_
7 0286	9 0220	6.0729	8.2271	8.2074	8 2074	8 1587	8 1611	9 101.0	9.165	9.1744	9 1150	0.1.30	6.0455	7.8824	7.9047	7.9479	7 9416	7 0407	7 0000	0.8880	6.0413
3.7120	3 8121	2000	3.0330	3.8376	3.8376	3.7409	3.7354	3 5812	3 7966	3 6531	3 6196	3 8201	1020.0	4242.4	4.2408	4.2384	4.2341	4 0146	4 1185	4 1025	2201.7
5.8193	5.9425	6.0314	1000	6.0225	6.0225	5.9498	5.9482	5.8716	5.9716	5.9137	5.8673	5 8373	6.0624	6.0758	2000	0.0931	6.0879	5.9816	6.0591	6 1170	0100
6.6580	7.2690	7.2990	00000	6.5630	6.5000	5.0500	4.6040	4.5630	6.3570	4.5530	5.5530	6.2350	7.4870	6 5000	6 6480	0.9180	6.1200	4.4340	6.6760	6.5670	4 6810
02/08/22	03/21/22	04/19/22	05/06/22	22/00/00	06/21/22	07/23/22	08/03/22	09/06/222	10/12/22	11/08/22	12/13/22	01/02/23	02/03/23	03/02/23	04/04/23	2000000	05/08/23	06/22/23	07/24/23	08/07/23	66/90/60
	6.6580 5.8193 3.7120	6.6580 5.8193 3.7120 7.2690 5.9425 3.8121	6.6580 5.8193 3.7120 7.2690 5.9425 3.8121 7.2990 6.0314	6.6580 5.8193 3.7120 7.2690 5.9425 3.8121 7.2990 6.0314 3.8358	6.6580 5.8193 3.7120 7.2690 5.9425 3.8121 7.2990 6.0214 3.8358 6.5630 6.0225 3.8376	6.6580 5.8193 3.7120 7.2690 5.9425 3.8121 7.2990 6.0225 3.8376 6.5630 6.0225 3.8376	6.6580 5.8193 3.7120 7.2690 5.9425 3.8121 7.2990 6.0314 3.8358 6.5630 6.0225 3.8376 6.5000 6.0225 3.8376 5.0500 5.9498 3.7409	6.6580 5.8193 3.7120 7.2690 5.9425 3.8121 7.2990 6.0314 3.8358 6.5630 6.0225 3.8376 5.0500 6.0225 3.8376 4.6040 5.9482 3.7409	6.6580 5.8193 3.7120 7.2690 5.9425 3.8121 7.2990 6.0314 3.8358 6.5630 6.0225 3.8376 5.0500 6.0225 3.8376 4.6040 5.9482 3.7409 4.5630 5.8716 3.5812	6.6580 5.8193 3.7120 7.2690 5.9425 3.8121 7.2990 6.0314 3.8358 6.5630 6.0225 3.8376 5.0500 6.0225 3.8376 4.6040 5.9488 3.7409 4.5630 5.8716 3.5812 6.3570 5.9716 3.7968	6.6580 5.8193 3.7120 7.2690 5.9425 3.8121 7.2990 6.0314 3.8358 6.5630 6.0225 3.8376 5.0500 6.0225 3.8376 4.6040 5.9488 3.7409 4.5630 5.9482 3.7354 4.5630 5.9716 3.5812 6.3570 5.9716 3.7966 4.5630 5.9137 3.6531	6.6580 5.8193 3.7120 7.2690 5.9425 3.8121 7.2990 6.0314 3.8358 6.5630 6.0225 3.8376 5.0500 6.0225 3.8376 4.6040 5.9482 3.7409 4.5630 5.9716 3.7966 4.5530 5.9716 3.7966 5.5530 5.8673 3.6196	6.6580 5.8193 3.7120 7.2690 5.9425 3.8121 7.2990 6.0314 3.8358 6.5630 6.0225 3.8376 5.0500 6.0225 3.8376 4.6040 5.9482 3.7409 4.5630 5.9716 3.7364 4.5530 5.9716 3.7966 6.2550 5.8673 3.6196 6.2350 5.8673 3.6231	6.6580 5.8193 3.7120 7.2690 5.9425 3.8121 7.2990 6.0314 3.8358 6.5630 6.0225 3.8376 5.0500 6.0225 3.8376 4.6040 5.9482 3.7409 4.5630 5.9716 3.7354 6.3570 5.9716 3.7966 4.5530 5.9137 3.6531 6.2350 5.8673 3.6196 6.2350 5.8373 3.6291	6.6580 5.8193 3.7120 7.2690 5.9425 3.8121 7.2990 6.0314 3.8358 6.5630 6.0225 3.8376 6.5000 6.0225 3.8376 6.5000 5.9482 3.7409 4.6040 5.9482 3.7354 4.5630 5.9716 3.7966 6.3570 5.9716 3.7966 6.2550 5.9137 3.6196 6.2350 5.8673 3.6291 7.4870 6.0624 4.2424	6.6580 5.8193 3.7120 7.2690 6.0314 3.8358 6.5630 6.0225 3.8376 6.5000 6.0225 3.8376 6.5000 5.9488 3.7409 4.6040 5.9482 3.7354 4.5630 5.9716 3.5812 6.3570 5.9716 3.5812 6.2530 5.9137 3.6531 6.2350 5.8673 3.6291 7.4870 6.0624 4.2424 6.5000 6.0758 4.2424	6.6580 5.8193 3.7120 7.2690 6.0314 3.8358 6.5630 6.0225 3.8376 6.5000 6.0225 3.8376 6.5000 6.0225 3.8376 4.6040 5.9482 3.7409 4.5630 5.8716 3.5812 6.3570 5.9716 3.7966 5.5530 5.9137 3.6196 6.2350 5.8673 3.6291 7.4870 6.0624 4.2424 6.5000 6.0758 4.2468 6.5180 6.0931 4.2384	6.6580 5.8193 3.7120 7.2890 6.0314 3.8358 6.5630 6.0225 3.8376 6.5000 6.0225 3.8376 6.5000 6.0225 3.8376 6.5000 5.9482 3.7409 4.6040 5.9482 3.7354 4.5630 5.9716 3.5812 6.3570 5.9716 3.6531 6.350 5.9137 3.6196 6.2350 5.8673 3.6196 6.2350 5.8373 4.2424 6.5000 6.0524 4.2424 6.5180 6.0931 4.2384 6.1200 6.0879 4.2384	6.6580 5.8193 3.7120 7.2690 6.0314 3.8358 6.5630 6.0225 3.8376 6.5000 6.0225 3.8376 6.5000 6.0225 3.8376 6.0500 5.9482 3.7409 4.6040 5.9482 3.7354 4.5630 5.8716 3.5812 6.3570 5.9716 3.5812 6.3570 5.9716 3.5812 6.2350 5.8673 3.6291 7.4870 6.0624 4.2424 6.5000 6.0758 4.2468 6.1200 6.0879 4.2341 4.4340 5.9816 4.0486	6.6580 6.6580 7.2690 6.0314 7.2690 6.0314 6.0225 6.0314 6.0225 6.0316 6.0225 6.0226 6.	6.6580 5.8193 3.7120 7.2690 6.0314 3.8358 6.5630 6.0225 3.8376 6.5000 6.0225 3.8376 6.5000 6.0225 3.8376 6.5000 6.9482 3.7409 4.5630 5.9716 3.7354 6.3570 5.9716 3.7966 6.3570 5.9776 3.6531 6.2350 5.8673 3.6291 7.4870 6.0624 4.2424 6.5000 6.0931 4.244 6.1200 6.0879 4.2341 6.4340 6.0879 4.2341 6.5760 6.0879 4.2341 6.5760 6.0879 4.2341 6.5760 6.0879 4.2341

APPENDIX D REPORT REQUEST

From: Julio Madrid < <u>Julio.Madrid@newmont.com</u>>

Sent: Thursday, February 22, 2024 9:43 AM

To: Melissa Chalona <<u>mchalona@enganalytics.com</u>>
Cc: Karen.DeAguero <<u>Karen.DeAguero@newmont.com</u>>
Subject: FW: [EXTERNAL] Annual Fee, Report, and Map Due

Importance: High

From: Division of Reclamation, Mining and Safety < dnr drms permitadmin@state.co.us>

Sent: Thursday, February 22, 2024 5:44 AM **To:** Julio Madrid < <u>Julio.Madrid@newmont.com</u>>

Subject: [EXTERNAL] Annual Fee, Report, and Map Due

Importance: High

02/22/24

Annual Fee, Report, and Map Due

Under the terms of your NOI or Permit and Colorado Statutes, you must submit an Annual Fee and Annual Report (including a map). You must pay the Annual Fee and submit an Annual Report each year until reclamation responsibility release is granted. The Annual Fee is not a renewal fee. The Fee and Report are for last year's exploration or mining and reclamation season, and must be paid even if your operation was inactive.

If you have requested reclamation responsibility release from the Division of Reclamation, Mining and Safety ("Division") but release has not been granted by the anniversary date listed below, the Annual Fee, Report and Map must be submitted. If the permit is released before the anniversary date, then by Statute, it is not necessary to pay an Annual Fee or submit an Annual Report for that year. The annual fee, report, and map are due on or before the Anniversary Date for the following operation:

Permit: M1988112

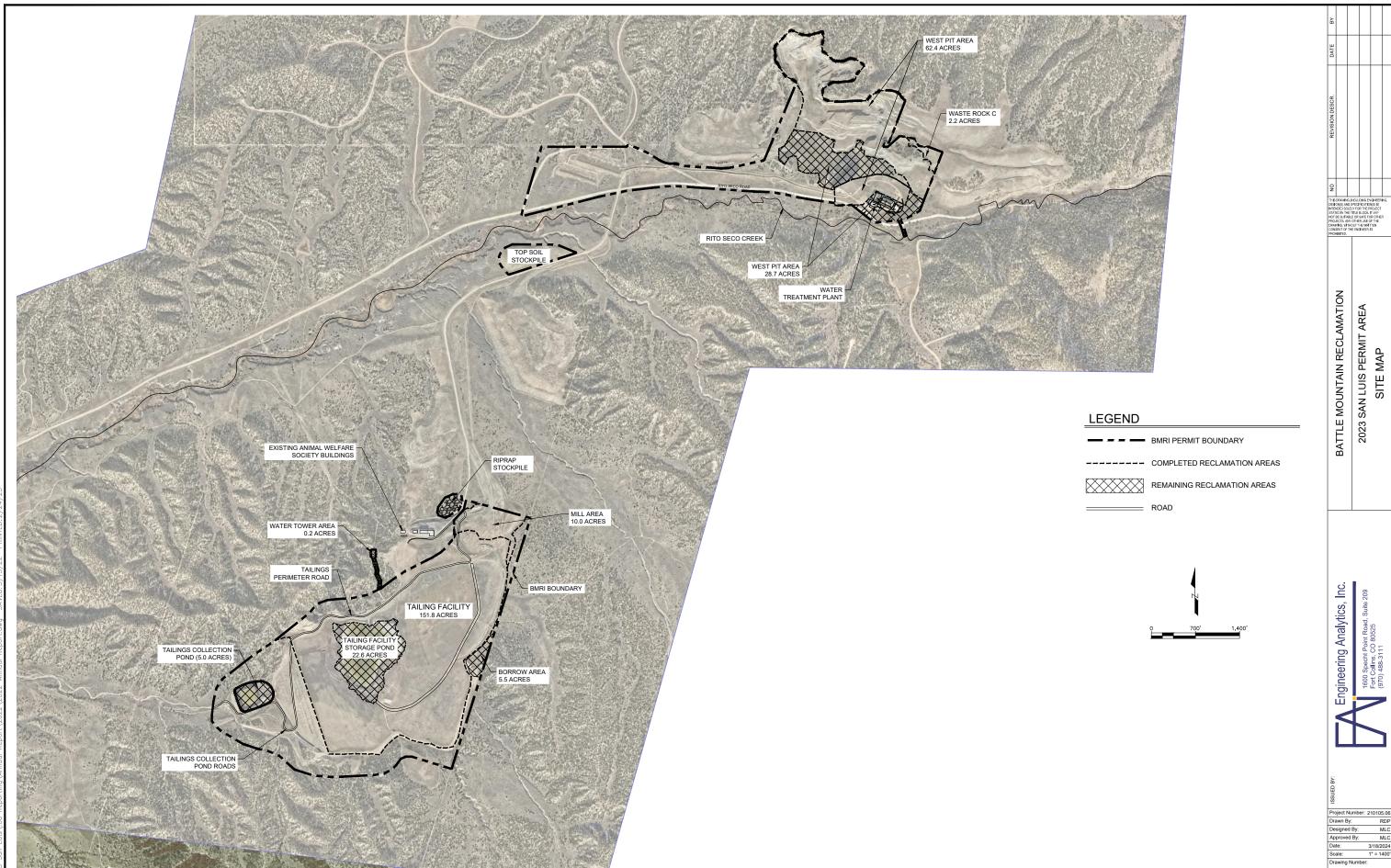
ePermit Number: 127925

Operation Name: San Luis Project

Anniversary Date: 03/23/24

Total Fee Due: \$1,150.00

As of January 1, 2018, all annual reports, maps and fees must be filed electronically. If you have not yet set up your ePermitting account, click on the link below to get started:


https://drms.colorado.gov/information/epermitting

If you have already established your ePermitting account, click on the link below to file your report, upload your map, and pay your fee online now.

https://dnrlaserfiche.state.co.us/Forms/DRMSeForms_LandingPage

If you need additional information or have any questions, please contact Lucas West at the Divisior
of Reclamation, Mining and Safety, 1313 Sherman Street, Room 215, Denver, CO 80203, by
telephone at (303) 866-3567 x8187, or by email at <u>lucas.west@state.co.us</u> .

APPENDIX E 2023 SITE MAP

1.0