

February 5, 2024

Mr. Zach Trujillo Environmental Protection Specialist Colorado Division of Reclamation, Mining & Safety Department of Natural Resources 1313 Sherman Street, Room 215 Denver, CO 80203

RE: Colowyo Coal Company L.P. Permit No. C-1981-019 Technical Revision 162 (TR-162) Mine Plan and PMT Revision

Dear Mr. Trujillo,

Tri-State Generation and Transmission Association Inc. (Tri-State), is the parent company to Axial Basin Coal Company, which is the general partner to Colowyo Coal Company L.P. (Colowyo). Therefore, Tri-State on behalf of Colowyo is submitting technical revision 162 (TR-162) to Permit No. C-1981-019.

TR-162 proposes a new channel (GD-3) to route surface water runoff from the intersection area of Haul Road A and the Collom Haul Road to the Gossard Pond. It is requested that the Division calculate the reclamation liability also with the addition of the channel.

Included in this technical revision is a change of index sheet to ease incorporation of this revision into the permit document, and a public notice for the Division's review. If you should have any additional questions or concerns, please feel free to contact Tony Tennyson at (970) 824-1232 or at <u>ttennyson@tristategt.org</u>.

Sincerely,

DocuSigned by: Chris Gilbreath -4BE980BE59E442F..

Chris Gilbreath Senior Manager Remediation and Reclamation

CG:TT

Enclosure

cc: Foster Beckett (BLM-LSFO) Tony Tennyson (via email) File: C. F. 1.1.2.150

P.O. BOX 33695 DENVER, CO 80233-0695 303-452-6111 WWW.TRISTATE.COOP

CHANGE SHEET FOR PERMIT REVISIONS, TECHNICAL REVISION, AND MINOR REVISIONS

Mine Company Name: Colowyo Coal Company L.P.

Date: February 1, 2024

Permit Number: C-1981-019 Revision Description: TR-162 GD-3 Channel

Volume Number	Page, Map or other Permit Entry to be REMOVED	Page, Map or other Permit Entry to be ADDED	Description of Change
1			No Change
2A			No Change
2B			No Change
2C			No Change
2D	Gossard Pond Pages 1 and 2 (2 pages), Figures 1 and 2 (2 pages), 100-Year SEDCAD Model (12 pages)	Apendix Exh. 7-14G Pages 1 and 2 (2 pages),Figures Exh 7-14G-1 and 2 (2 pages) 100-Year SEDCAD Model (14 pages),	Appendix Exh. 7-14G has been updated with the GD-3 Channel.
2E			No Change
3			No Change
4			No Change
5A			No Change
5B			No Change
6			No Change
7	Map 19A	Map 19A	Map 19A has been updated.
8	Map 28A	Map 28A	Map 28A has been updated.
9			No Change
10			No Change
12			No Change
13			No Change
14			No Change
15			No Change
16			No Change
17			No Change
18A			No Change
18B			No Change

CHANGE SHEET FOR PERMIT REVISIONS, TECHNICAL REVISION, AND MINOR REVISIONS

Mine Company Name: <u>Colowyo Coal Company L.P.</u> Date: February 1, 2024 Permit Number: C-1981-019 Revision Description: TR-162 GD-3 Channel

Volume Number	Page, Map or other Permit Entry to be REMOVED	Page, Map or other Permit Entry to be ADDED	Description of Change
18C			No Change
18D			No Change
19			No Change
20	Exhibit 13C Pages 5 and 7 (2 pages)	Exhibit 13C Pages 5 and 7 (2 pages)	Exhibit 13C has been updated with the GD-3 Channel.
20	Map 13C-1 Sheet 2	Map 13C-1 Sheet 2	Map 13C-1 Sheet 2 has been updated with GD-3 Channel.
21			No Change
22			No Change

Appendix Exh. 7-14G Gossard Pond

This sediment control plan addresses the watershed tributary to the Gossard Pond. The Gossard Pond receives water from the Gossard Loadout area, including several subwatersheds including the coal stockpiles and coal preparation areas, and some direct inflow from water used during wash down of the Gossard crushing facility, and from a ditch routing water from a small portion of Haul Road A. The Gossard Pond is a non-discharging structure that is designed to contain the 100-year, 24-hour storm event as demonstrated herein.

Please see Volume 2D, Exhibit 7 for the methodologies and assumptions utilized in the Gossard Pond SEDCAD model and the basis for utilization of the curve numbers in the models. A curve number of 74 was selected for the majority of the contributing subwatersheds. This is believe to be a more representative curve number than a disturbed curve number of 85 since the Gossard Loadout area subwatershed are broken up including ever changing loose unconsolidated coal stockpiles due to the shipping of coal. The subwatershed and corresponding acreages used in this SEDCAD model are presented on Figure 1, and Figure 2 provides the as-built configuration of the Gossard Pond.

Colowyo washes down the Gossard primary crusher on an as-needed basis. The water that is used during wash down is routed down to two concrete structures that capture the coal fines, and once full of water, discharge the water from the concrete structures directly into the pond. SEDCAD does not have the ability to model this additional inflow directly; therefore, the methodology suggested by SEDCAD's primary author, Pam Schwab, is to model the impact of a constant inflow into the Gossard Pond through a dummy structure.

In the current version of SEDCAD, a fixed flow can only be inputted by inserting a "dummy" upstream pond with a watershed large enough to produce a "tank" flow, and then setting the output of the dummy reservoir as a constant "User Defined" outflow curve, independent of pool elevation in the dummy pond. A flow of 0.223 cfs (100 gpm) was conservatively utilized, which is a volume of water well in excess of any wash down inflows that may be encountered in the Gossard Pond. The synthesized 100 gpm inflow was then dropped directly into Gossard Pond in the SEDCAD model. Further, Colowyo does not wash down the Gossard primary crusher daily, so the 100 gpm is very conservative estimate compared to actual activities occurring.

SEDCAD also allows the user to override the customary starting pool. In this case for the 100 year storm event, the starting pool is assumed to be at 6,388, to account for the 100 gpm already being in the pond when the storm event would commence.

The volume of the pond was inputted into the SEDCAD model, along with its spillway details. The model watersheds were inputted as a series of sub-watersheds, each with its own acreage, its own flow response parameters (slope, distance, time of concentration), and the specific runoff curve numbers noted above. The 100 year, 24 hour storm was then applied to the composite watershed, and routed down to the sediment pond.

The results of the runoff calculations and synthesized constant inflow are presented in the attached SEDCAD model outputs. As noted, the storm does not peak in the modeled storm event and the entire event is contained within the Gossard Pond.,.

Temporary Channels

Three temporary channels assist in routing water to the Gossard Pond. The design criteria for these three channels are as follows:

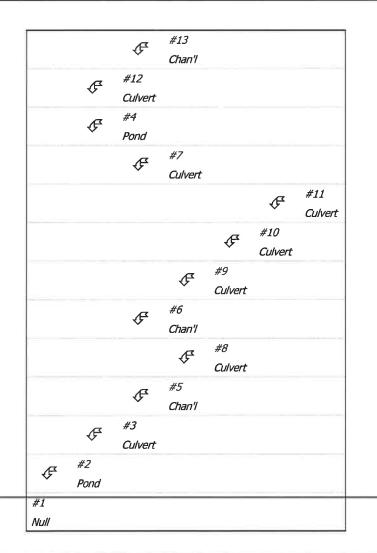
Channel	<u>Station</u>	Peak Flow (CFS)	<u>Average</u> <u>Slope (%)</u>	<u>Channel</u> <u>Type</u>	<u>Side</u> <u>Slopes</u>	Erosion Protection
GD-1	Not applicable	7.3	6	Trapezoidal 7' bottom	2:1	None
GD-2	Not applicable	7.86	4.5	Trapezoidal 2' bottom	2:1	None
GD-3	0+00 to 24+92	18.1	1.5	Trapezoidal 5' bottom	2:1	None

Gossard Pond

100 Year 24 Hour Storm Event Full Containment Demonstration with 100 GPM Inflow

Tony Tennyson

Filename: Gossard Pond 100 YR Event w-100 GPM Inflow.sc4


1

General Information

Storm Information:

Storm Type:	NRCS Type II
Design Storm:	100 yr - 24 hr
Rainfall Depth:	2.700 inches

Musk. K Stru (flows Stru Musk. X Description Туре into) # (hrs) # #1 0.000 0.000 Null Below Gossard Pond Null End ==> Pond #2 #1 0.000 0.000 Gossard Pond ==> #3 #2 0.000 0.000 C-1 Culvert Culvert ==> Pond #4 ==> #2 0.000 0.000 Simulated 100 gpm inflow #5 #3 0.000 0.000 GD-1 Ditch Channel ==> Channel #6 ==> #3 0.000 0.000 GD-2 Ditch Culvert #7 #3 0.000 0.000 C-2 Culvert ==> 0.000 0.000 C-3 Culvert Culvert #8 ==> #5 0.000 Culvert #9 #6 0.000 C-4 Culvert ==> Culvert #9 0.000 0.000 C-5 Culvert #10 ==> Culvert 0.000 0.000 C-6 Culvert #11 ==> #10 Culvert #12 ==> #2 0.000 0.000 C-7 Culvert Channel 0.000 0.000 GD-3 #13 ==> #12

Structure Networking:

		Immediate Contributing Area	Total Contributing Area	Peak Discharge	Total Runoff Volume
		(ac)	(ac)	(cfs)	(ac-ft)
#13		22.300	22.300	18.06	1.67
#12		0.000	22.300	18.06	1.67
#4	In	8 000	8.000	6.68	0.48
#4	Out	8.000	8.000	0.22	0.48
#7		1.500	1.500	1.25	0.09
#11		0.700	0.700	0.58	0.04
#10		1.000	1.700	1.18	0.10
#9		7.200	8.900	7.19	0.54
#6		0.800	9.700	7.86	0.58
#8		7.200	7.200	6.01	0.43
#5		1.200	8.400	7.13	0.51
#3		0.000	19.600	16.24	1.19
	In	5 200	FF 100	36.32	3.59
#2	Out	5.200	55.100	0.00	0.00
#1		0.000	55.100	0.00	0.00

Structure Summary:

Structure Detail:

Structure #13 (Erodible Channel)

GD-3

Trapezoidal Erodible Channel Inputs:

Material:	Shales	and	hard	pans
-----------	--------	-----	------	------

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Manning's n	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)	Limiting Velocity (fps)
5.00	2.0:1	2.0:1	1.5	0.0250	2.37			6.0

Erodible Channel Results:

	w/o Freeboard	w/ Freeboard
	w/o meeboard	w/ meeboard
Design Discharge:	18.06 cfs	
Depth:	0.63 ft	3.00 ft
Top Width:	7.51 ft	16.99 ft
Velocity:	4.61 fps	
X-Section Area:	3.92 sq ft	
Hydraulic Radius:	0.502 ft	
Froude Number:	1.12	

Structure #12 (Culvert)

C-7 Culvert

Culvert Inputs:

Length (ft)	Slope (%)	Manning's n	Max. Headwater (ft)	Tailwater (ft)	Entrance Loss Coef. (Ke)
100.00	2.00	0.0150	3.00	0.00	0.90

Culvert Results:

Design Discharge = 18.06 cfs

Minimum pipe diameter: 1 - 24 inch pipe(s) required

Structure #4 (Pond)

Simulated 100 gpm inflow

Pond Inputs:

	Initial Pool Elev:	90.01 ft
Initial Pool: 0.00 ac-ft	Initial Pool:	ft-2c 00 0

Convright 1998 2010 Damela I. Schwah

Pond Results:

Peak Elevation:	92.27 ft
Dewater Time:	0.67 days

Dewatering time is calculated from peak stage to lowest spillway

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
90.00	0.050	0.000	0.000		
90.01	0.051	0.001	0.000		
91.00	0.110	0.078	0.223		
92.00	0.190	0.226	0.223		
92.27	0.205	0.286	0.223	16.00	Peak Stage
93.00	0.260	0.450	0.223		
94.00	0.350	0.754	0.223		
95.00	0.440	1.148	0.223		
96.00	0.540	1.638	0.223		
97.00	0.650	2.232	0.223		
98.00	0.760	2.936	0.223		
99.00	0.880	3.755	0.223		
100.00	1.200	4.791	0.223		
101.00	1.240	6.011	0.223		
102.00	1.400	7.330	0.223		
103.00	1.600	8.829	0.223		

Elevation-Capacity-Discharge Table

Detailed Discharge Table

		Combined	
Elevation	User-	Total	
(ft)	input discharge (cfs)	Discharge	
	(0.5)	(cfs)	
90.00	0.000	0.000	
90.01	0.000	0.000	
91.00	0.223	0.223	
92.00	0.223	0.22	
93.00	0.223	0.223	
94.00	0.223	0.223	
95.00	0.223	0.223	
96.00	0.223	0.223	
97.00	0.223	0.223	
98.00	0.223	0.223	
99.00	0.223	0.223	
100.00	0.223	0.223	

Convright 1998, 2010 Pamela, I. Schwah

		Combined
Elevation (ft)	User-	Total
	input discharge (cfs)	Discharge
	(0.0)	(cfs)
101.00	0.223	0.223
102.00	0.223	0.223
103.00	0.223	0.223

Structure #7 (Culvert)

C-2 Culvert

Culvert Inputs:

Length (ft)	Slope (%)	Manning's n	Max. Headwater (ft)	Tailwater (ft)	Entrance Loss Coef, (Ke)
75.00	3.00	0.0150	1.00	0.00	0.90

Culvert Results:

Design Discharge = 1.25 cfs

Minimum pipe diameter: 1 - 8 inch pipe(s) required

Structure #11 (Culvert)

C-6 Culvert

Culvert Inputs:

Length (ft)	Slope (%)	Manning's n	Max. Headwater (ft)	Tailwater (ft)	Entrance Loss Coef. (Ke)
50.00	1.50	0.0150	1.00	1.00	0.90

Culvert Results:

Design Discharge = 0.58 cfs

Minimum pipe diameter: 1 - 8 inch pipe(s) required

Structure #10 (Culvert)

C-5 Culvert

Culvert Inputs:

Length (ft)	Slope (%)	Manning's n	Max. Headwater (ft)	Tailwater (ft)	Entrance Loss Coef. (Ke)
50.00	1.50	0.0150	1.00	0.00	0.90

Culvert Results:

Design Discharge = 1.18 cfs

Minimum pipe diameter: 1 - 8 inch pipe(s) required

Structure #9 (Culvert)

C-4 Culvert

Culvert Inputs:

Length (ft)	Slope (%)	Manning's n	Max. Headwater (ft)	Tailwater (ft)	Entrance Loss Coef, (Ke)
100.00	1.00	0.0150	2.00	0.00	0.90

Culvert Results:

Design Discharge = 7.19 cfs

Minimum pipe diameter: 1 - 18 inch pipe(s) required

Structure #6 (Vegetated Channel)

GD-2 Ditch

Triangular Vegetated Channel Inputs:

Material: Shales and hardpans

Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Retardance Classes	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)	Limiting Velocity (fps)
2.0:1	2.0:1	4.5	D, B				6.0

Vegetated Channel Results:

	Stability	Stability	Capacity	Capacity	
	Class D w/o Freeboard	Class D w/ Freeboard	Class B w/o Freeboard	Class B w, Freeboard	
Design Discharge:	7.86 cfs		7.86 cfs		
Depth:	1.02 ft		1.50 ft		
Top Width:	4.08 ft		6.01 ft		
Velocity:	3.78 fps		1.74 fps		
X-Section Area:	2.08 sq ft		4.52 sq ft		
Hydraulic Radius:	0.456 ft		0.672 ft		
Froude Number:	0.93		0.35		
Roughness Coefficient:	0.0494		0.1392		

Structure #8 (Culvert)

C-3 Culvert

Culvert Inputs:

Convright 1998_2010 Damela | Schwah

Length (ft)	Slope (%)	Manning's n	Max. Headwater (ft)	Headwater (ft)	
300.00	1.50	0.0150	2.00	0.00	0.90

Culvert Results:

Design Discharge = 6.01 cfs

Minimum pipe diameter: 1 - 15 inch pipe(s) required

Structure #5 (Vegetated Channel)

GD-1 Ditch

Trapezoidal Vegetated Channel Inputs:

Material: Smooth brome

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Retardance Classes	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)	Limiting Velocity (fps)
7.00	2.0:1	2.0:1	6.0	D, B				6.0

Vegetated Channel Results:

	Stability	Stability	Capacity	Capacity	
	Class D w/o Freeboard	Class D w/ Freeboard	Class B w/o Freeboard	Class B w, Freeboard	
Design Discharge:	7.13 cfs		7.13 cfs		
Depth:	0.34 ft		0.64 ft		
Top Width:	8.37 ft		9.56 ft		
Velocity:	2.70 fps		1.34 fps		
X-Section Area:	2.64 sq ft		5.31 sq ft		
Hydraulic Radius:	0.309 ft		0.538 ft		
Froude Number:	0.85		0.32		
Roughness Coefficient:	0.0616		0.1794		

Structure #3 (Culvert)

C-1 Culvert

Culvert Inputs:

Length (ft)	Slope (%)	Manning's n	Max. Headwater (ft)	Tailwater (ft)	Entrance Loss Coef. (Ke)
100.00	1.50	0.0150	2.00	0.00	0.90

Culvert Results:

Design Discharge = 16.24 cfs

Minimum pipe diameter: 1 - 36 inch pipe(s) required

wright 1008 2010 Damela I. Schwah

Structure #2 (Pond)

Gossard Pond

Pond Inputs:

		Initi	al Pool Elev:	6,387.00	ft	
		Initial Pool:		1.18 ac	-ft	
Straight Pipe						
Barrel	Barrel	Barrel	Manajada	Coillean	Entrance	Tailwater
Diameter	Length		Manning's	Spillway	Loss	Depth
(in)	(ft)	Slope (%)	n	Elev (ft)	Coefficient	(ft)
30.00	200.00	4.00	0.0150	6,392.70	0.90	0.00

Pond Results:

Peak Elevation:	6,392.13 ft
Dewater Time:	0.00 days

Dewatering time is calculated from peak stage to lowest spillway

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
6,384.00	0.195	0.000	0.000	• •	
6,385.00	0.338	0.263	0.000		
6,386.00	0.458	0.660	0.000		
6,387.00	0.580	1.178	0.000		
6,387.50	0.609	1.475	0.000		
6,388.00	0.638	1.786	0.000		
6,389.00	0.690	2.450	0.000		
6,390.00	0.724	3.157	0.000		
6,391.00	0.752	3.895	0.000		
6,392.00	0.778	4.660	0.000		
6,392.13	0.782	4.765	0.000	0.00	Peak Stage
6,392.70	0.797	5.212	0.000		Spillway #1
6,393.00	0.805	5.452	0.872		
6,394.00	0.831	6.270	7.760		
6,395.00	0.859	7.115	18.262		
6,396.00	0.887	7.988	29.895		
6,397.00	0.917	8.889	38.615		
6,398.00	0.949	9.822	45.680		
6,399.00	0.982	10.788	51.799		
6,400.00	1.061	11.809	57.269		

Elevation-Capacity-Discharge Table

Convright 1998 2010 Damela I. Schwah

Elevation (ft)	Straight Pipe (cfs)	Combined Total
	(0.0)	Discharge (cfs)
6,384.00	0.000	0.000
6,385.00	0.000	0.000
6,386.00	0.000	0.000
6,387.00	0.000	0.000
6,387.50	0.000	0.000
6,388.00	0.000	0.000
6,389.00	0.000	0.000
6,390.00	0.000	0.000
6,391.00	0.000	0.000
6,392.00	0.000	0.000
6,392.70	0.000	0.000
6,393.00	(3)>0.872	0.872
6,394.00	(3)>7.760	7.760
6,395.00	(3)>18.262	18.262
6,396.00	(5)>29.895	29.895
6,397.00	(5)>38.615	38.615
6,398.00	(5)>45.680	45.680
6,399.00	(5)>51.799	51.799
6,400.00	(5)>57.269	57.269

Detailed Discharge Table

Structure #1 (Null)

Null Below Gossard Pond

Conversibilit 1008 2010 Damela I. Schwah

Stru #	SWS #	SWS Area (ac)	Time of Conc	Musk K (hrs)	Musk X	Curve Number	UHS	Peak Discharge	Runoff Volume
(12)			(hrs)					(cfs)	(ac-ft)
#13	1	7.600	0.097	0.000	0.000	47.000	S	0.02	0.010
	2	3.100	0.003	0.000	0.000	85.000	F	4.40	0.346
	3 4	7.600 4.000	0.151	0.000	0.000	95.000 47.000	F	13.92 0.01	1.310
	Σ	22.300	0.515	0.000	0.000	47.000	5	18.06	1.672
#12	Σ	22.300						18.06	1.672
#4	1	8.000	0.000	0.000	0.000	74.000	М	6.68	0.482
	Σ	8.000						6.68	0.482
#7	1	1.500	0.069	0.004	0.430	74.000	М	1.25	0.090
	Σ	1.500						1.25	0.090
#11	1	0.700	0.024	0.027	0.227	74.000	М	0.58	0.042
	Σ	0.700						0.58	0.042
#10	1	1.000	0.062	0.180	0.156	74.000	М	0.83	0.060
	Σ	1.700						1.18	0.102
#9	1	7.200	0.112	0.028	0.395	74.000	М	6.01	0.434
	Σ	8.900						7.19	0.53
#6	1	0.800	0.001	0.000	0.000	74.000	м	0.67	0.048
	Σ	9.700						7.86	0.584
#8	1	0.600	0.046	0.000	0.000	74.000	м	0.50	0.03
	2	6.600	0.097	0.000	0.000	74.000	м	5.51	0.398
	Σ	7.200						6.01	0.434
#5	1	1.000	0.002	0.000	0.000	74.000	М	0.83	0.060
	2	0.200	0.033	0.000	0.000	85.000	м	0.28	0.018
	Σ	8.400						7.13	0.512
#3	Σ	19.600						16.24	1.186
#2	1	5.200	0.269	0.000	0.000	74.000	м	2.24	0.251
	Σ	55.100						36.32	3.589
#1	Σ	55.100						0.00	0.000

Subwatershed Hydrology Detail:

Subwatershed Time of Concentration Details:

Convight 1998 2010 Damela I. Schwah

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#2	1	 Nearly bare and untilled, and alluvial valley fans 	0.20	0.85	427.00	0.440	0.269
#2	1	Time of Concentration:					0.269
#5	1	3. Short grass pasture	58.00	37.70	65.00	6.090	0.002
#5	1	Time of Concentration:					0.002
#5	2	Paved area and small upland gullies	0.50	0.86	173.00	1.420	0.033
#5	2	Time of Concentration:					0.033
#6	1	3. Short grass pasture	71.00	21.30	30.00	6.740	0.00
#6	1	Time of Concentration:					0.00
#7	1	 Nearly bare and untilled, and alluvial valley fans 	1.10	2.86	260.00	1.040	0.069
#7	1	Time of Concentration:					0.06
#8	1	Nearly bare and untilled, and alluvial valley fans	0.70	0.97	140.00	0.830	0.04
#8	1	Time of Concentration:					0.04
#8	2	 Nearly bare and untilled, and alluvial valley fans 	3.60	23.90	664.00	1.890	0.09
#8	2	Time of Concentration:					0.09
#9	1	Nearly bare and untilled, and alluvial valley fans	1.30	5.97	460.00	1.140	0.112
#9	1	Time of Concentration:					0.11
#10	1	Nearly bare and untilled, and alluvial valley fans	2.10	6.84	326.00	1.440	0.06
#10	1	Time of Concentration:					0.06
#11	1	 Nearly bare and untilled, and alluvial valley fans 	13.00	5.20	40.00	3.600	0.003
		8. Large gullies, diversions, and low flowing streams	1.00	2.35	236.00	3.000	0.02
#11	1	Time of Concentration:					0.024
#13	1	3. Short grass pasture	11.00	102.19	929.00	2.650	0.092
#13	1	Time of Concentration:					0.097
#13	2	Nearly bare and untilled, and alluvial valley fans	36.00	24.48	68.00	6.000	0.00
#13	2	Time of Concentration:					0.003
#13	3	7. Paved area and small upland gullies	1.50	20.11	1,341.00	2.460	0.15
#13	3	Time of Concentration:					0.15
#13	4	3. Short grass pasture	2.00	25.53	1,276.50	1.130	0.313
#13	4	Time of Concentration:					0.313

Subwatershed Muskingum Routing Details:

S	Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
÷	#7	1	8. Large gullies, diversions, and low flowing streams	12.00	22.20	185.00	10.390	0.004
4	#7	1	Muskingum K:					0.004

Filename: Gossard Pond 100 YR Event w-100 GPM Inflow.sc4

13

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#9	1	8. Large gullies, diversions, and low flowing streams	4.50	29.70	660.00	6.360	0.028
#9	1	Muskingum K:					0.028
#10	1	 Nearly bare and untilled, and alluvial valley fans 	0.60	3.00	500.00	0.770	0.180
#10	1	Muskingum K:					0.180
#11	1	 Nearly bare and untilled, and alluvial valley fans 	2.00	2.80	140.00	1.410	0.027
#11	1	Muskingum K:					0.027

Culvert Name	Length (ft)	Diameter (in.)
1	197	36
2	164	36
5	217	144
6	74	24
6A	97	36
7	70	36
8	154	2 at 24
10	214	36
11	162	2 at 24
12	49	24
12A	49	24
12B	60	24
12C	111	24
13	338	60
16	143	36
20 (Abandoned)	201	36
24	193	36
26	167	36
28	200	36
30	158	36
32 (Abandoned)	199	36
34	286	36
34A		36" Half Culvert
35	269	36
36	244	36
36A		36" Half Culvert
38	193	36
40 (Abandoned)	327	36
40A	281	36" Half Culvert
44A	291	60
47	95	36
51	97	36
52	164	36
GD-3 Ditch Culvert	75	24

Table 13C-3 List of Culverts for the Collom Haul Road & Jubb Creek Access Road

Table 13C-6A Demolition of Country Road 51 Crossing					
Structure Name	Dimensions				
County Road 51 Haul Road	48'x24'217'				
Crossing (Circular Area)	70 727 217				

Note: Regrade requirements for this structure are contained in Table 13C-4 (stations 0+00 to 208+00). Topsoil requirements for this structure are contained in Table 13C-5 (stations 0+00 to

149+00), and revegetation requirements are contain in Table 13C-6.

Table 13C-6B Collom Haul Road Lighting				
9,617 Feet				

.

Name	Topsoil (Cubic	Riprap (Cubic	Revegetation
	Yards)	Yards)	(Acres)
C-1	1606	121	1.2
C-2	968	10	3.6
C-3	268	61	0.2
C-4	1,339	28	1.0
C-5	67	39	0.05
C-6	254	15	0.2
C-7	241	0	0.2
C-8	803	0	0.3
C-9	0	0	0.3
C-10	807	0	1.7
C-11	484	0	1.4
C-12 & C-13	3,227	0	10.5
C-14	3,549	0	4.5
C-15	1,613	0	1.0
GD-3	1,210	0	3.2

Table 13C-6C Collom Haul Road Channels