

January 17, 2024

Mr. Clayton Wein Environmental Protection Specialist Colorado Division of Reclamation, Mining and Safety 1313 Sherman Street, Room 215 Denver, CO 80203

RE: New Horizon Mine Permit No. C-1981-008 2023 Annual Reclamation Report

Dear Mr. Wein,

Tri-State Generation and Transmission Association, Inc. (Tri-State), is the parent company to Elk Ridge Mining and Reclamation, LLC New Horizon Mine. The New Horizon Mine operates under the Colorado Division of Reclamation, Mining, and Safety Permit No. C-1981-008.

In accordance with Rule 2.04.13(1), by February 15, or other such date as agreed on, each permittee shall file an annual reclamation report covering the previous calendar years for all areas under bond. New Horizon Mine by permit is required to submit the report annually by March 15. Therefore, enclosed please find the Annual Reclamation Report for the calendar year 2023 as required.

If you should have any additional questions or concerns, please feel free to contact Tony Tennyson at (970) 824-1232 at your convenience.

Sincerely,

-DocuSigned by: Chris Gilbreath -D250C711D0BF450...

Chris Gilbreath Senior Manager Remediation and Reclamation

CG:TT

Enclosure

Cc: Tony Tennyson (via email) C.F. 11.1

Elk Ridge Mining and Reclamation, LLC.

PERMIT NO. C-1981-008

NEW HORIZON MINE

2023 ANNUAL RECLAMATION REPORT JANUARY 1, 2023 to DECEMBER 31, 2023

Table of Contents

I. RULE REQUIREMENTS	1
A. PERMITTEE	1
B. DISTURBED AREAS	1
C. BACKFILLING AND GRADING	1
D. RECLAMATION ACTIVITIES	1
1. Spoil Quality	1
2. Topsoil	
3. Seeding	2
4. Soil Fertility Testing and Fertilizer Application	2
5. Grazing, Irrigation, and Irrigated Pasture Yields	2
6. Irrigation	
7. Irrigated Pasture Yields	
E. WILDLIFE MONITORING	
F. INTERIM REVEGETATION REPORT	3
G. WEED MANAGEMENT	
H. PEST MANAGMENT	4

List of Tables

Table 1 - Topsoil Stockpiled (End of Year 2023)	. 5
Table 2 – New Horizon Reclamation Table	

List of Figures

Figure 1 – Annual Reclamation Report Form	7
Figure 2 – Topsoil Fertility Testing Results	
Figure 3 – Topsoil Sampling Results	11

List of Maps

Map 1 – Annual Reclamation Report Map

I. RULE REQUIREMENTS

Rule 2.04.13(1)(a-f) states, by February 15, or such date agreed on (which is March 15 in Permit No. C-1981-008), each permitted shall file an annual reclamation report covering the previous calendar year for all areas under bond. The report shall include, but is not limited to, text, discussion and maps which address:

- the name and address of the permittee and permit number
- location and number of acres disturbed during that year
- location and number of acres backfilled and graded during that year
- location and number of acres topsoiled during that year
- the species, location and number of acres of vegetation planted during that year, including any augmented seeding or cultural practices
- location, number of acres and date of planting for all previously revegetated areas

A. PERMITTEE

Elk Ridge Mining & Reclamation, LLC New Horizon Mine Permit No. C-1981-008 PO Box 628 Nucla, CO 81424

B. DISTURBED AREAS

During 2023, 0.0 acres of additional disturbance occurred onsite. There are currently 10.4 acres in non-permanent long-term facilities at the end of the year 2023, and 8.9 acres of long-term permanent facilities. Please see Figure 1.

C. BACKFILLING AND GRADING

During 2023, 0.0 acres were backfilled and/or graded.

D. RECLAMATION ACTIVITIES

1. Spoil Quality

The spoil sampling and analysis program for the New Horizon Mine is described in Section 2.05.4(2)(d) of the approved permit. The New Horizon Mine has conducted all spoil quality analysis for the entire disturbed mine site in 2022. Please refer to the 2022 Annual Reclamation Report. No additional sampling will occur for spoil quality.

2. Topsoil

The New Horizon Mine placed topsoil on 75.0 acres in 2023. Please refer to Table 1 for the current volume of topsoil in stockpiles.

3. Seeding

The approved seed mixtures utilized at the New Horizon Mine are located in Section 2.05.4(2)(e) of the approved permit. During 2023, 75.0 acres of permanent seeding occurred at the New Horizon Mine, and 7.6 acres of temporary seeding occurred.

4. Soil Fertility Testing, Topsoil Sampling and Fertilizer Application

Soil fertility testing was performed within reclamation parcel IC-1 in 2023. The results are presented on Figure 2.

In 2023, during topsoil replacement activities topsoil sampling including topsoil replacement depths occurred on reclamation units DP-20, DP-21, and PF-1. Results of the topsoil samples and topsoil replacement depths are presented on Figure 3. The analytical results from the samples taken meet the sample criteria presented on Table 2.05.4(2)(d)-5.

Fertilizer was applied to reclamation units IP-8 through IP-11, IC-1, and the reference area. Fertilizer rates that were applied in 2023 are as follows:

<u>Fertilizer</u>	<u>Pounds/Acre</u> <u>Applied</u>
11-52-0 Phosphate	60
46-0-0 Urea	20

5. Grazing

Data presented below includes reclamation parcels within the permit boundary that were grazed in 2023.

- ERMR Benson West & Lloyd Property (25 acres):
 - 22 head of cattle grazed from January 1 to 22, 2023.
- IP-10 (2.9 acres)
 - 95 head of cattle grazed from January 14, 2023 to February 15, 2023
 - Note: There is not fencing between the IP-10 and the larger property that is outside the permit boundary. The landowner grazes the property as whole which includes IP-10.
- Reference Area (6.3 acres):
 - 22 head of cattle grazed from January 1 to 29, 2023.

6. Irrigation

The CCC Ditch Company commenced water deliveries on April 27, 2023, and New Horizon Mine began irrigation operations shortly thereafter. The CCC Ditch Company discontinued water delivery for the year on October 22, 2023.

7. Irrigated Pasture Yields

- ERMR IP-8 (12.2 acres)
 - First cutting 1,040 bales averaging 60 lbs
 - Second cutting 843 bales averaging 60 lbs
- ERMR -IP-9 (12.9 acres) & IP-11 (14.9 acres)
 - First cutting 1,775 bales averaging 60 lbs
 - Second cutting 1,040 bales averaging 60 lbs
- IP-10 (2.9 acres)
 - First cutting 11 3x3 bales averaging 876 lbs
 - Second cutting -4 3x3 bales averaging 736 lbs
- IC-1 (107.8 acres) including irrigated cropland reference area
 - First Cutting 166 bales averaging 1,543 lbs
 - Second Cutting 96 bales averaging 1,633 lbs
 - Third Cutting 88 bales averaging 1,640 lbs
- Reference Area (6.3 acres):
 - First cutting 421 bales averaging 60 pounds per bale
 - Second cutting Did not cut

E. WILDLIFE MONITORING

No wildlife monitoring occurred in 2023.

F. INTERIM REVEGETATION REPORT

New Horizon did not conduct any interim vegetation monitoring in 2023.

G. WEED MANAGEMENT

During 2023, various areas within the permit boundary were treated for noxious weeds by spot spraying and/or hand removal. The actual treatment sites were generally small and random and thus too small to accurately depict on a map.

Target species for noxious weeds included Knapweed(s), Thistle(s), White Top, Russianolive, saltceder/tamarisk, burdock, buffalo bur, mullein, halogeton, purple loosestrife, and Western whorled milkweed. Other target species are included in the Montrose County (2010) and San Miguel County (2002) Noxious Weed lists.

H. PEST MANAGMENT

The New Horizon Mine did not conduct any pest management in 2023.

Topsoil Pile Name	Type of Topsoil	Volume (CY)		
С	Lift B Topsoil	3,705		
D	Mixed Topsoil	3,242		
Н	Lift A Topsoil	2,363		
5	Mixed Topsoil	150		
14	Mixed Topsoil	2,063		
15	Mixed Topsoil	119		
16	Mixed Topsoil	1,685		
Sub Total		13,327		
11A	Lift A Topsoil (Morgan)	5,550		
11B	Lift B Topsoil (Morgan)	4,070		
Sub Total		9,620		
GRAND TOTAL		22,947		

 Table 1 - Topsoil Stockpiled (End of Year 2023)

Area	Reclaim	Year	Revegetat	Bond	Release Gra	anted	Notes:
	ed Acres	Seeded	ed Years	Phase 1	Phase 2	Phase 3	
	1.1	2006	12				
DP-5	1.1	2006	13	Approved	Approved	Approved	
DP-6	1.9	2007	12	Approved	Approved	Approved	
DP-9	6.5	2009	10	Approved	Approved	Approved	
DP-10	8.1	2011	13	Approved	Partial		
DP-11	1.7	2011	13	Partial	Partial		
DP-12	0.7	2012	12				
DP-13	0.4	2013	11				
DP-14	2.0	2013	11	Partial	Partial		
DP-15	2.3	2014	10	Approved	Approved		
DP-16	1.4	2016	8	Approved			
DP-17	3.5	2018	6				
DP-18	6.5	2012	12				Reduced by 1.0 in 2023 for unit DP-20
DP-19	3.7	2021	3				
DP-20	42.2	2023	1				
DP-21	32.8	2023	1				
IP-8	12.2	2014	10	Approved	Approved		
IP-9	12.9	2014	10	Approved	Approved		
IP-10	2.9	2016	8	Approved			

Table 2 – New Horizon Reclamation Table

IP-11	12.3	2020	4			Spring seeding in 2020; therefore, one full growing season in 2020. Reduced in 2023 for unit IP-12.
IP-12	2.6	2024	0			Spring seeding in 2024; therefore, one full growing season in 2024.
IC-1	107.8	2015	9	Approved	Approved	Spring seeding in 2015; therefore, one full growing season in 2015.
PF-1	5.0	2024	0			Spring seeding in 2024; therefore, one full growing season in 2024.

Please see Map 1 for locations of the reclamation units noted above.

Figure 1 - Annual Reclamation Report Form Colorado Division of Reclamation, Mining and Safety

Annual Reclamation Report for Calendar Year –	2023
---	------

		Elk Ridge Mining & Reclamation,
New Horizon Mine	C-1981-008	LLC.
Mine Name	Permit Number	Permittee
P.O Box 628 – 27646 W. 5 th S	treet Nucla, CO 81424	

Address

This report, required by Rule 2.04.13, is due by February 15 of each year, or other date, as agreed upon by the Division. It should include text, discussion, and maps, at a minimum, in addition to any other reclamation monitoring data as required by the approved permit. The location of the acreage reported under each land status category and year of seeding (if applicable) should be clearly identified on a map included with the report.

Land Catalant	Last Year's Cumulative Total	This Cale	endar Year		Commission Tatal	
Land Category	(from last year's ARR)	Acres Added (+)	Acres Subtracted (-)		Cumulative Total	
Acreage in Active Mining Areas ¹	0	0	0	=	0	

Land Catao and	Last Year's Cumulative Total	This Cale	endar Year		Convertations Tatal
Land Category	(from last year's ARR)	Acres Added (+)	Acres Subtracted (-)		Cumulative Total
Acres Disturbed ²	313.9	0.0	3.6	=	310.34
Acres Backfilled and Graded	268.6	0.0	3.6	=	265.0^4
Acres Topsoiled	191.5	75.0	3.6	=	261.5 ⁴

Acreage in Long-term	Last Year's Cumulative	This Cal	This Calendar Year		
Facilities ³	Total (from last year's ARR)	Acres Added (+)	Acres Subtracted (-)		Cumulative Total
Non-Permanent Facilities	38.2	0	27.8	=	10.4
Permanent Facilities (permitted)	7.1	1.8	0	=	8.9
Totals	45.3			=	19.3

Acres Seeded	Last Year's Cumulative Total	This Cale	endar Year		Cumulative Total
(permanent)	(from last year's ARR)	Acres Added (+)	Acres Subtracted (-)		Cumulative Total
9 Years and Less	164.0	43.8	0	=	207.8
10 Years and Greater	27.5	29.8	3.6	=	53.7 ⁴
Totals	191.5			=	261.5

D 101	Last Year's Cumulative Total	This Cal	endar Year				
Bond Release	(from last year's ARR)	Acres Added (+)	Acres Subtracted (-)		Cumulative Total		
Phase I Released	168.2	0	3.6	=	168.2^4		
Phase II Released	158.4	0	3.6	=	158.44		
Phase III Released	13.1	0	3.6	=	13.14		

¹Includes pits, topsoil stripped areas in advance of pits, and spoil not backfilled and graded

 2 Surface Mine Acres Disturbed = B&G + Long-Term Facilities + Active Mining Areas; Underground Mine Acres Disturbed = B&G + Long-Term Facilities; Separately-permitted Loadouts = B&G + Long-Term Facilities

³Includes haul, access and light-use roads, temporary dams and impoundments; permanent dams and impoundments; diversion and collector ditches, water and air monitoring sites; topsoil stockpiles; overburden stockpiles; repair, storage and construction areas; office area, repair shops, and parking; coal stockpiles, loading, and processing areas; railroads; coal conveyors; refuse piles and coal mine waste impoundments; head-of-hollow fills; valley fills; ventilation shafts and entryways; and non-coal waste disposal area (garbage dumps and coal combustion by-products disposal areas).

⁴Disturbance Acres in 2023 were reduced by 3.6 acres which was a grass filter area for IP-10 that was removed from the permit boundary under TR-106.

New Horizon Mine

Figure 2 – Topsoil Fertility Testing

1.12

1991119

SOIL ANALYSIS REPORT

CLIEN 183	393	RUITA (NUCLA C 95 MAIN PO BOX NUCLA, (COOP C N STRE 399	OUNTF		PRE		ser	h	w.servite	ch.com	1602 Park West D PO Box 169 Hastings; NE 689(800.557.7509 402.463.3522 Fax 402.463.8132		LAB NO: INVOICE NO: DATE RECEIVED: DATE REPORTED:			6002 03/1:	89321 - 893 600227 03/13/2023 03/17/2023	
	NALYSIS		TS FOR	R: ELK	RIDGE	MINE &	RECLAI	and the second second second				FIELD	DENTIF	ICATIO	N: MOR	GAN PF	ROPERT	Y	DTPA
	OD USED					,		Cd Rec		Mehlich 3			1		Zinc	- 1.c.	1		Sorbite
Lab Number	Sample ID	Sample Depth	Sail pH	Buffer pH		Excess Lime	% Organic Matter	N trate-	Nitrogen Ib. N/A	Phosphorus ppm P	Potassium ppm K	Calcium ppm Ca	Magnesium ppm Mg	Sodium ppm Na	ppm Zn	ppm Fe	Manganese ppm Mn	Copper ppm Cu	ppm
89321	MSS 1	0 - 8						5.3	13	22									0.3
89322	MSS 2	0 - 8						4.8	12	39									0.5
89323	MSS 3	0 - 8						5.9	14	47									0.6
89324	MSS 4	0 - 8						7.2	17	40									0.4
89325	MSS 5	0 - 8						5.5	13	38									0.4
89326	MSS 6	0 - 8						8.2	20	40									0.6
89327	MSS 7	0 - 8						7.6	18	33									0.5
89328	MSS 8	0 - 8						6.7	16	37									0.6
89329	MSS 9	0-8					1	5	12	33									0.5
89330	MSS 10	0 - 8						6.8	16	37									0.5
METHO	DD USED		1	Hg Thio	cyanate	KC	I Extr.	Bicarb P	KCI Extr.	c-Bray P1	c-Bray P2								
Lab Number	Sample ID	Sample Depth	Date Sampled	Chlo	Ib. CI/A	Ammoniu	im Nitrogen Ib. /A	Phosphorus ppm P	Aluminum ppm Al	Bray Phosphorus	Phosphorus ppm P		T				1		Γ
89321	MSS 1	0 - 8	03/07/23	Pending	21.6	2	5	9	<1	ppm P 19	55		-				1		
89322	MSS 2	0-8	10.20 C 10. 10. 10.	Pending	45.6	2	5	16	18	34	83								
89323	MSS 3	0-8		Pending	4.8	2	5	20	1	41	97								
89324	MSS 4	0-8		Pending	33.6	2	5	21	<1	36	86								
89325	MSS 5	0-8	100000000000000000000000000000000000000	Pending	4.8	2	5	17	<1	33	81								
89326	MSS 6	0 - 8		Pending	2.4	2	5	16	11	36	86								
89327	MSS 7	0 - 8	03/07/23	Pending	12	3	7	13	<1	29	73								
89328	MSS 8	0 - 8	03/07/23	Pending	2.4	2	5	16	<1	32	79								
89329	MSS 9	0 - 8	03/07/23	Pending	2.4	2	5	13	1	29	73								
	MSS 10	0.8	03/07/23	Pending	2.4	2	5	14	<1	32	79								

The reported analytical results apply only to the sample as it was supplied. The report may not be reproduced, except in full, without permission of ServiTech. Your opinion is valuable to us. Please let us know what you think about our services! Send an email to feedback@servitech.com.

2.41.25

New Horizon Mine

CLIEN 183	393	FRUITA CONSUMERS NUCLA COOP COUNT 395 MAIN STREET PO BOX 399 NUCLA, CO 81424				servi tech	www.s	ervitec	h.com	PC Ha 800 402	Box Box Box Box Box Box Box Box Box Box	, NE 68 7509	3902			CE NO	D: EIVED: DRTED		600 03/1	21 - 8 227 13/20 17/20	23
SOIL A	NALYSIS	RESULTS FOR: ELK	RIDGE MINE	& RECL	AIM												ORGAN	PRC	PER	ΓY	
		COMMENDATIONS:	and a second						POUN	DS AC	TUAL	_ NUTE	RIENT	PER	ACRE					on Ex	
Lab Number	Sample	Crop To Be Grown	Yield Goai		C Tens/A to r		N	P2D1	K:O	Z٦	s	Mo	Cu	MgQ	в	Ca	a	CEC		Capa	
	MSS 1	ALFALFA	· 5 tons	60	6.5	7.0		50							1			- Cec	107	an 3	bod
89321 89321	MSS 1 MSS 1	ALFALFA	6 tons					60							1			1-	+		-
89321	MSS 1 MSS 2	ALFALFA	5 tons					15							0.5				+	-+	+
89322	MSS 2	ALFALFA	6 tons					20							0.5				+-+		-
89323	MSS 3	ALFALFA	5 tons					0						-	0				++		-
89323	MSS 3	ALFALFA	6 tons					0							0			1-	+-		-
89324	MSS 4	ALFALFA	5 tons					0							1				-		-
89324	MSS 4	ALFALFA	6 tons					0							1		1		1		1
89325	MSS 5	ALFALFA	5 tons		1			10							1	-	-	1			-
89325	MSS 5	ALFALFA	6 tons					15							1	1	1				1
89326	MSS 6	ALFALFA	5 tons					15							0						-
89326	MSS 6	ALFALFA	6 tons					20	-						0						
89327	MSS 7	ALFALFA	5 tons					25							0.5						-
89327	MSS 7	ALFALFA	6 tons					35							0.5						
89328	MSS 8	ALFALFA	5 tons					15	1						0						
89328	MSS 8	ALFALFA	6 tons					20							0						
89329	MSS 9	ALFALFA	5 tons					25							0.5						
89329	MSS 9	ALFALFA	6 tons					35							0.5						
89330	MSS 10	ALFALFA	5 tons					20							0.5						
89330	MSS 10	ALFALFA	6 tons					30							0.5						
89330 SPEC Lab N PHO	IAL COM umber(s): DSPHOR	ALFALFA MENTS AND SUGGES 89321, 89322, 89323, 8 US: The Mehlich-3 pho esentative of the samples	TIONS: 39324, 89325 sphorus valu	e was u	used to	27, 8932 calcula retainec	ite the	29, 89 phosp	hale fe							alysis 1	terms a	are av	vallabl		n re

New Horizon Mine

CLIENT:	FRUITA CONSUMERS COOP			1602 Park West Dr.	LAB NO:	89321 - 89330
18393	NUCLA COOP COUNTRY STORE	and the second sec		PO Box 169 Hastings, NE 68902	INVOICE NO:	600227
10000	995 MAIN STREET PO BOX 399	ser		800.557.7509 402.463.3522	DATE RECEIVED:	03/13/2023
	NUCLA, CO 81424	2-	www.servitech.com	Fax 402.463.8132	DATE REPORTED:	
SOIL ANALY	SIS RESULTS FOR: ELK RIDGE MIN	IE & RECLAIM		FIELD IDE	NTIFICATION: MORGAN F	PROPERTY
Lab Number	(s):89321, 89322, 89323, 89324, 893: DRUS: The c-Bray-P1 equivalent was	25, 89326, 89327, 8	9328, 89329, 89330 Meblich-3 phosphorus (concentrations	~~~~~	
	(s):89321, 89322, 89323, 89324, 893					
PHOSPH	ORUS: The c-Bray-P2 equivalent was	calculated from the	Mehlich-3 phosphorus a	and calcium concentration	ons using the Louisiana N	RCS correlation.
-	, to fine of the experience outprinted	Samplas aro rota	inod 30 days after report o	of analysis Evaluation	ns of soil analysis ferms ar	e available unon request
- Analyses are	representative of the samples submitted		ined 30 days after report o		ons of scil analysis terms ar	
- Analyses are	representative of the samples submitted	Samples are reta Reviewed and Approved By:	incd 30 days after report o Hans Burken Lab Manager	of analysis Explanatic Have J		e available upon request Page 3 of 3 03/17/2023 4:52 pm

Figure	3	To	osoil	Sam	oling	Results
	•	10	00011	~~~~		results

Sample ID	Sample Date	Topsoil Replacement Depth (in)	рН (s.u.)	Electrical Conductivity (mmho/cm)	Saturation (%)	Sodium Absorption Ratio	USDA Soil Texture
TS104	9/12/23	17	7.9	0.42	42.9	<0.05	Sandy Clay Loam
TS105	9/12/23	17	7.6	0.55	46.3	<0.05	Sandy Clay Loam
TS106	9/12/23	24	7.5	2.30	49.8	0.22	Sandy Clay Loam
TS107	9/12/23	24	7.9	0.53	42.3	0.34	Sandy Clay Loam
TS108	9/12/23	13	7.9	0.53	41.6	0.34	Clay Loam
TS109	12/11/23	>24	7.1	2.76	41.4	0.33	Sandy Clay Loam
TS110	12/11/23	>24	7.2	2.90	42.3	0.25	Sandy Clay Loam
TS111	11/27/23	19	7.1	2.92	41.1	0.40	Sandy Clay Loam
TS112	11/27/23	12	7.2	2.52	41.9	0.47	Sandy Clay Loam
TS114	10/24/23	16	7.4	3.54	39.5	0.41	Sandy Clay Loam
TS115	11/27/23	18	7.1	2.59	41.8	0.31	Sandy Clay Loam
TS116	10/24/23	15	7.6	3.07	39.5	0.05	Sandy Clay Loam
TS117	10/24/23	16	7.5	4.19	40.8	0.36	Sandy Clay Loam
TS119	9/12/23	15	7.5	2.76	38.3	0.63	Sandy Clay Loam
TS120	11/27/23	17	7.3	2.50	42.3	0.74	Sandy Clay Loam
TS121	10/24/23	24	7.5	3.42	43.5	0.45	Sandy Clay Loam
TS124	9/12/23	12	7.3	3.22	39.2	0.49	Sandy Clay Loam
TS125	10/24/23	13	7.7	2.72	38.6	0.53	Sandy Clay Loam
TS128	9/12/23	19	7.6	2.40	40.2	0.53	Sandy Clay Loam
TS129	9/12/23	23	7.8	2.39	37.4	0.55	Sandy Clay Loam
TS130	11/27/23	24	7.5	3.04	37.3	0.38	Sandy Loam
TS131	11/27/23	>24	7.2	3.62	38.4	0.63	Sandy Loam
TS132	10/24/2023	14	7.7	2.35	40.3	0.56	Sandy Clay Loam
TS133	11/29/2023	24	7.5	2.92	36.9	0.94	Sandy Clay Loam