

Czapla - DNR, Dustin <dustin.czapla@state.co.us>

RE: La Plata Project, P-2023-012

1 message

Stephen E. Glass <sglass@gaultgroup.com>
To: "Czapla - DNR, Dustin" <dustin.czapla@state.co.us>
Cc: Jeff Cary <jcary@truepointex.com>, Scott Petsel <spetsel@mmgsilver.com>

Tue, Sep 19, 2023 at 7:13 AM

Good Morning Dustin

Per our telephone conversation, I have attached the results of two years of Metallic's water sampling activities in the La Platas. While the program resumed in 2023, we have yet to receive the lab results from the first round of sampling. We can provide the lab results to you upon our receipt, and then forward the full report(s) when received.

I reviewed Mr. Miller's letter dated September 7, 2023, and discussed his concerns with him via telephone on Thursday, September 14, 2023. As a means of addressing a portion Mr. Miller's concerns, Metallic offered to add Mr. Miller's well to their list of water quality sample locations. Metallic proposed a pre-drilling sample of his well to establish base-line, addition of his well to the twice-yearly sample gathering, and the continuation of well sampling for a year following cessation of drilling at Copper Hill. Mr. Hill found this offer acceptable.

With regard to the various other points in Mr. Miller's letter, we are standing by the points presented in Gault Group's letter of August 30, 2023 regarding the adequacy of the steps Metallic is taking to ensure the maintenance of local water quality and quantity.

Thank you, and please let me know what additional information you might need.

Regards,

Steve

Stephen E. Glass

President

Gault Group, LLC.

Phoenix, Arizona

(970) 565-1222

Cell (970) 739-8392

www.gaultgroup.com

February 12, 2020

Scott Petsel

Re: Water Sampling Report

Bedrock Creek

La Plata Canyon, Colorado 81301

Dear Mr. Petsel:

Please find enclosed are the results for the baseline water quality assessment performed in the vicinity of the Allard Mine within La Plata Canyon, Colorado. This assessment was performed on August 29, 2019 and consisted of five samples as shown on Figure 1. Sample 1 was collected directly

We appreciate this opportunity to assist you on this project. Please contact us at (970) 259-9595 if you have any questions or require additional information.

Respectfully,

Clinton Casey, EP

Clinton Casery

Staff Scientist

Figures

Figure 1. Topographic Location Map Figure 2 Sampling Location Map

Appendices

Appendix A Figures
Appendix B Tables

Appendix C Laboratory Results, Chains of Custody

1.0 INTRODUCTION

At the request of Scott Petsel SME Environmental, Inc. (SME) conducted field screening and water sample collection activities. Enclosed are the results for the baseline water quality assessment performed in the vicinity of the Allard Mine within La Plata Canyon, Colorado. This assessment was performed on August 29, 2019 and consisted of five samples.

The location of the site is depicted on <u>Figure 1</u> (Topographic Location Map), and the locations of samples within the TP are depicted in Figure 2 (Sample Location Map).

1.1 Purpose

The purpose of this investigation was to gather available information to characterize the baseline water quality within the immediate watershed of the potential project area.

2.0 SAMPLING

Field activities are described in the sections below.

2.1 Water Sampling and Observation Methods

Soil sampling was conducted on August 29, 2019 by SME personnel. Sample locations are presented in Figure 2, Appendix A.

Water Sampling

The surface water samples were collected in five locations to gather a representation of existing water chemistry and potential impacts to the La Plata River. Each sample was collected with new clean containers provided by green analytical and the sampler used new latex gloves at each sampling location.

All lab samples were labeled and placed in an insulated cooler with ice packs in preparation for lab submittal. The coolers containing the samples were transferred to Green Analytical Laboratory (Green) in Durango, Colorado under standard chain-of-custody procedures for laboratory analysis.

Non-disposable tools which came into contact with the samples, such as the shovel, were decontaminated between samples. Disposable sampling items such as nitrile gloves were placed in garbage bags and disposed of as municipal trash.

Field measurements were taken in situ at the time of sample collection for pH and temperature using an Oakton Handheld ECOTestr pH2+. Visual observation were also performed and noted at each sampling location at the time of site visit.

3.0 RESULTS

Sample locations are presented in <u>Figure 2</u>, <u>Appendix A</u>. For a summary of laboratory analytical results, please see <u>Table 1</u> Laboratory Results: Field Data, <u>Table 3</u> Laboratory Results: General Chemistry, Table 3 Laboratory Results: Metals, which are also attached in Appendix B.

4.0 DISCUSSION/CONCLUSION

Concentrations of potential contaminants were compared to the appropriate table within Regulation No. 34-Classification and numeric Standards for San Juan River and Doloros River Basins (5CCR 1002-34), which are utilized by the Colorado Department of Health and Environment (CDPHE) Water Quality Control Division (WQCD). These regulations establish classifications and numeric standards for the San Juan and the Dolores River Basins, including all tributaries and standing bodies of water south of the northern Dolores County lines, these numeric standards are assigned to determine the allowable concentrations of various parameters and many of the regulatory standards are calculated based upon the chemistry of the waters sampled. Due to the location of this study the results were compared to Table COSJLP01, which is described as the mainstream of the La Plata River, including all wetlands and tributaries from the source to the Hay Gulch diversion south of Hesperus.

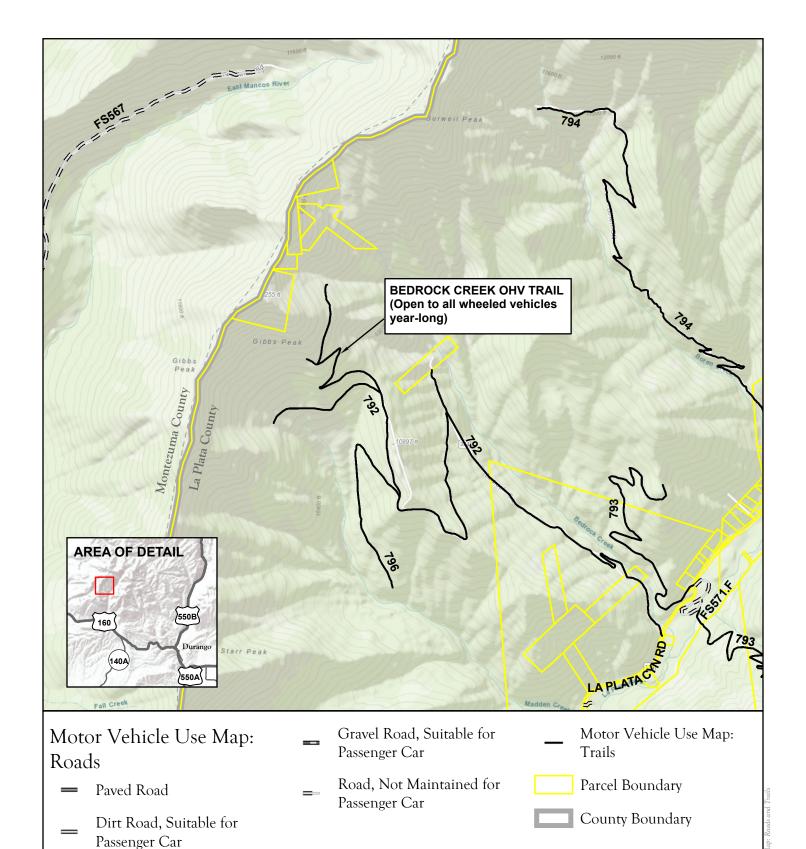
All of the parameters sampled were within regulatory standards for this waterway except for the pH above the waterfall (sample location 2), which had a pH of 4.2 and 6.5 is the minimum pH for this section of the La Plata River. Although this is above the level for the La Plata river this reading was taken fairly high in the watershed from the main drainage in Bedrock Creek and above the majority of known historical mining activities. Therefore, this low pH is not likely the result of mining activities. Other findings of note are a high concentration of dissolved solids and a high level of hardness being released from the Adit (sample location 1). In particular a high amount of sulfates and calcium carbonates were observed, which are likely increasing the pH of these waters below the confluence of waters from the adit. Mineral deposition within the streambed was also observed at the Adit and above the waterfall.

Note that this environmental sampling event represents only a snapshot into the water chemistry at these locations and within this basin. The process used in this investigation is an attempt to control the degree to which uncertainty in data affects the outcomes of decisions that are based on those data. It should also be emphasized that only a representative number of samples were

collected and analyzed, and SME considers it a possibility that there may be instances of water contamination at the site which may exceed regulatory limits.

5.0 LIMITATIONS

Variations in site conditions may occur and those not encountered during this investigation may be observed during future activities at the site. This investigation did not include an assessment of subsurface conditions or contaminants other than the areas that were investigated by the sampling effort. SME's conclusions and recommendations are based upon limited field screening, sampling, and analysis. This investigation does not guarantee the absence of contaminants throughout the target property or within the surface waters.

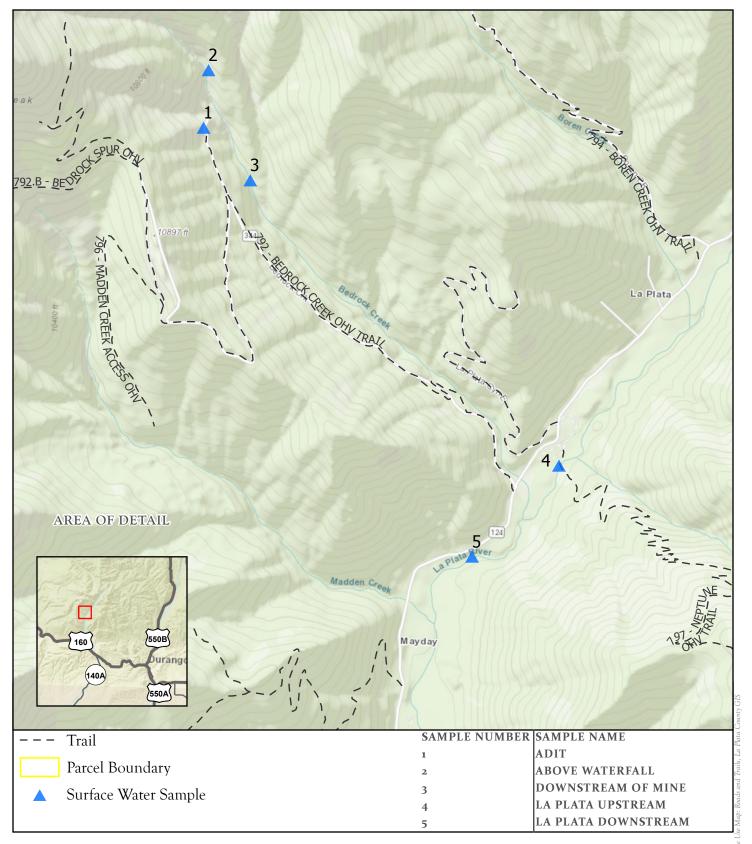

6.0 REFERENCES

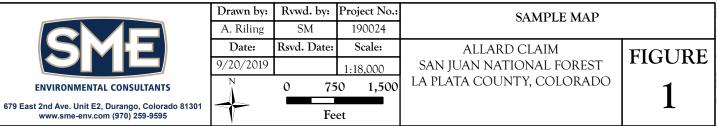
Colorado Department of Public Health and Environment (CDPHE) Water Quality Control Division. 2015. Regulation No. 34 - Classifications and Numeric Standards for San Juan River and Dolores River Basins (5 CCR 1002-34). CDPHE, Denver, Colorado.

7.0 APPENDICES

APPENDIX A.

Figures


Drawn by:	Rvwd. by:	Project No.:						
A. Riling	SM	xxxxxx						
Date:	Rsvd. Date:	Scale:						
6/11/2019		1:24,000						
N	0 1,00	0 2,000						
	Feet							


ALLARD PROJECT SAN JUAN NATIONAL FOREST LA PLATA COUNTY, COLORADO

PRELIMINARY ACCESS MAP

FIGURE 1

Ocument Path: S:\Business Development\Proposals (RFP)\2019\Allard Project\GIS\Allard Project\Allard Project.aprx; Coordinate System:

APPENDIX B.

Tables

Table 1. Field Data

				Temp	
Sample Number	Date	Sample Type	рН	(Celsius)	Visual Observations
					Significant Orange
Adit (1)	8/29/2019	Grab	7.6	10	Precipitates
					Minor Orange
Above Waterfall(2)	8/29/2019	Grab	4.2	13	Precipitates
Downstream of					No precipitates
Mine (3)	8/29/2019	Grab	6.4	11.3	observed
La Plata River-					No precipitates
Upstream (4)	8/29/2019	Grab	8	12.7	observed
La Plata River-					No precipitates
Downstream (5)	8/29/2019	Grab	7.7	11.1	observed
CDPHE: Regulatory					
Standards	NA	NA	6.5-9.0	17	NA

Table 2. Laboratory Results General Chemistry

			Analyte	Alkalinity, Bicarbonate as CaCO3	Alkalinity, Carbonate as CaCO3	Alkalinity, Hydroxide as CaCO3	Alkalinity, Total as CaCO3	Total Dissolved Solids	Total Suspended Solids	Sulfate
			Method		2320	В		EPA 160.1	EPA 160.2	EPA 300.0
Sample	Date	Sample Type								
Adit (1)	8/29/2019	Grab		105	ND	ND	105	445	18	232
Above Waterfall(2)	8/29/2019	Grab		ND	ND	ND	ND	99.9	4.4	46.9
Downstream of Mine (3)	8/29/2019	Grab		10	ND	ND	ND	150	ND	59.2
La Plata River- Upstream (4)	8/29/2019	Grab		39	ND	ND	39	75	ND	22
La Plata River- Downstream (5)	8/29/2019	Grab		40	ND	ND	40	85	ND	21.5
CDPHE: Regulatory Standards	NA	NA		NA	NA	NA	NA	NA	NA	250

NA = No regulatory standard.

ND = Analyte was not detected at method detection limit

^{*}EPA Regional Screening Level Summary Table - Residential Soil with Target Hazard Quotient of 01 (November 2018)

Table 3. Laboratory Results
Metals

			Analyte	Hardness as CaCO3	Aluminum	Calcium	Iron	Magnesium	Arsenic	Cadmium	Copper	Lead	Manganese	Zinc
			Method	2340 В	EPA 20	00.7	EP	A 200.7	EPA 200.8					
Sample	Date	Sample Type												
Adit (1)	8/29/2019	Grab		366.0	0.5	118.0	6.1	17.4	0.0162	ND	0.001	ND	0.600	0.104
CDPHE: Regulatory Standards-acute				NA	20220.6	NA	300.0	NA	NA	NA	45.600	NA	50.000	520.000
CDPHE: Regulatory Standards-chronic				NA	2886.7	NA	300.0	NA	0.02 (total)	NA	27.100	NA	50.000	394.400
Above Waterfall(2)	8/29/2019	Grab		37.2	2.8	12.8	1.0	1.3	ND	0.001	0.395	0.007	0.351	0.135
CDPHE: Regulatory Standards-acute				NA	883.0	NA	300.0	NA	NA	5.270	5.300	0.930	50.000	65.100
CDPHE: Regulatory Standards-chronic				NA	87.0	NA	300.0	NA	NA	3.200	3.800	0.980	50.000	14.200
Downstream of Mine (3)	8/29/2019	Grab		64.8	0.6	21.4	ND	2.8	ND	0.001	0.129	ND	0.018	0.083
CDPHE: Regulatory Standards-acute				NA	1888.2	NA	NA	NA	NA	6.400	8.900	NA	50.000	107.800
CDPHE: Regulatory Standards-chronic				NA	87.0	NA	NA	NA	NA	4.200	6.000	NA	50.000	46.600
La Plata River- Upstream (4)	8/29/2019	Grab		62.2	ND	20.8	ND	2.5	ND	ND	0.0012	ND	ND	ND
CDPHE: Regulatory Standards-acute				NA	NA	NA	NA	NA	NA	NA	8.6	NA	NA	NA
CDPHE: Regulatory Standards-chronic				NA	NA	NA	NA	NA	NA	NA	6	NA	NA	NA
La Plata River- Downstream (5)	8/29/2019	Grab		61.3	ND	20.5	ND	2.47	ND	ND	0.0021	ND	ND	ND

APPENDIX C. Lab Results, Chains of Custody

75 Suttle Street Durango, CO 81303 970.247.4220 Phone 970.247.4227 Fax www.greenanalytical.com

13 September 2019

Clinton Casey SME 679 E 2nd Ave, Ste E2 Durango, CO 81301

RE: Acid Mine Drainage

Enclosed are the results of analyses for samples received by the laboratory on 08/29/19 14:00. If you need any further assistance, please feel free to contact me.

Sincerely,

Debbie Zufelt

Reports Manager

Dellie Zufett

All accredited analytes contained in this report are denoted by an asterisk (*). For a complete list of accredited analytes please do not hesitate to contact us via any of the contact information contained in this report. All of our certifications can be viewed at http://greenanalytical.com/certifications/

Green Analytical Laboratories is NELAP accredited through the Texas Commission on Environmental Quality. Accreditation applies to drinking water and non-potable water matrices for trace metals and a variety of inorganic parameters. Green Analytical Laboratories is also accredited through the Colorado Department of Public Health and Environment and EPA region 8 for trace metals, Cyanide, Fluoride, Nitrate, and Nitrite in drinking water.

Our affiliate laboratory, Cardinal Laboratories, is also NELAP accredited through the Texas Commission on Environmental Quality for a variety of organic constituents in drinking water, non-potable water and solid matrices. Cardinal is also accredited for regulated VOCs, TTHM, and HAA-5 in drinking water through the Colorado Department of Public Health and Environment and EPA region 8.

www.GreenAnalytical.com

SME Project: Acid Mine Drainage 679 E 2nd Ave, Ste E2 Project Name / Number: Acid Mine Drainage Durango CO, 81301 Project Manager: Clinton Casey

Reported: 09/13/19 16:54

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received Notes
Adit (1)	1908328-01	Water	08/29/19 10:00	08/29/19 14:00
Above Waterfall (2)	1908328-02	Water	08/29/19 10:30	08/29/19 14:00
Downstream of Mine (3)	1908328-03	Water	08/29/19 11:20	08/29/19 14:00
La Plata Upstream (4)	1908328-04	Water	08/29/19 12:40	08/29/19 14:00
La Plata Downstream (5)	1908328-05	Water	08/29/19 13:00	08/29/19 14:00

Green Analytical Laboratories

Deldie Zufett

SME

Durango CO, 81301

dzufelt@greenanalytical.com p: 970.247.4220 f: 970.247.4227 75 Suttle Street Durango, CO 81303

www.GreenAnalytical.com

Project: Acid Mine Drainage 679 E 2nd Ave, Ste E2 Project Name / Number: Acid Mine Drainage

Reported: 09/13/19 16:54

Adit (1)

1908328-01 (Water)

Project Manager: Clinton Casey

			0520 01 (11						
Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analyst
General Chemistry									
Alkalinity, Bicarbonate as CaCO3*	105	10.0		mg/L	1	08/30/19 10:45	2320 B		VJL
Alkalinity, Carbonate as CaCO3*	<10.0	10.0		mg/L	1	08/30/19 10:45	2320 B		VJL
Alkalinity, Hydroxide as CaCO3*	<10.0	10.0		mg/L	1	08/30/19 10:45	2320 B		VJL
Alkalinity, Total as CaCO3*	105	10.0	3.06	mg/L	1	08/30/19 10:45	2320 B		VJL
Total Dissolved Solids*	445	10.0		mg/L	1	09/05/19 16:58	EPA160.1		VJL
Total Suspended Solids*	18.0	4.00		mg/L	1	09/05/19 15:55	EPA160.2		VJL
Sulfate*	232	5.00	1.07	mg/L	5	09/09/19 18:42	EPA300.0		AES
Total Recoverable Metals by ICP (E200.	7)								
Aluminum*	0.499	0.250	0.064	mg/L	5	09/09/19 15:41	EPA200.7		AES
Calcium*	118	0.500	0.071	mg/L	5	09/09/19 15:41	EPA200.7		AES
Hardness as CaCO3	366	3.31	0.644	mg/L	5	09/09/19 15:41	2340 B		AES
(ron*	6.06	0.250	0.087	mg/L	5	09/09/19 15:41	EPA200.7		AES
Magnesium*	17.4	0.500	0.113	mg/L	5	09/09/19 15:41	EPA200.7		AES
Total Recoverable Metals by ICPMS (E2	200.8)								
Arsenic*	0.0162	0.0010	0.0002	mg/L	1	09/05/19 21:49	EPA200.8		AES
Cadmium*	< 0.0005	0.0005	0.00004	mg/L	1	09/05/19 21:49	EPA200.8		AES
Copper*	0.0012	0.0005	0.0001	mg/L	1	09/05/19 21:49	EPA200.8		AES
Lead*	< 0.0005	0.0005	0.00009	mg/L	1	09/05/19 21:49	EPA200.8		AES
Manganese*	0.600	0.0020	0.00009	mg/L	1	09/05/19 21:49	EPA200.8		AES
Zinc*	0.104	0.0100	0.0004	mg/L	1	09/05/19 21:49	EPA200.8		AES
Total Mercury by CVAA									
Mercury*	< 0.0002	0.0002	0.00003	mg/L	1	09/13/19 08:33	EPA245.1		LLG

Green Analytical Laboratories

seldie Zufett

www.GreenAnalytical.com

SME Project: Acid Mine Drainage 679 E 2nd Ave, Ste E2 Project Name / Number: Acid Mine Drainage

679 E 2nd Ave, Ste E2Project Name / Number: Acid Mine DrainageReported:Durango CO, 81301Project Manager: Clinton Casey09/13/19 16:54

Above Waterfall (2)

1908328-02 (Water)

Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analyst
General Chemistry									
Alkalinity, Bicarbonate as CaCO3*	<10.0	10.0		mg/L	1	09/11/19 15:00	2320 B		VJL
Alkalinity, Carbonate as CaCO3*	<10.0	10.0		mg/L	1	09/11/19 15:00	2320 B		VJL
Alkalinity, Hydroxide as CaCO3*	<10.0	10.0		mg/L	1	09/11/19 15:00	2320 B		VJL
Alkalinity, Total as CaCO3*	<10.0	10.0	3.06	mg/L	1	09/11/19 15:00	2320 B		VJL
Total Dissolved Solids*	99.9	10.0		mg/L	1	09/05/19 16:58	EPA160.1		VJL
Total Suspended Solids*	4.40	4.00		mg/L	1	09/05/19 15:55	EPA160.2		VJL
Sulfate*	46.9	2.00	0.426	mg/L	2	09/10/19 09:37	EPA300.0		AES
Total Recoverable Metals by ICP (E200.	7)								
Aluminum*	2.80	0.050	0.013	mg/L	1	09/09/19 15:43	EPA200.7		AES
Calcium*	12.8	0.100	0.014	mg/L	1	09/09/19 15:43	EPA200.7		AES
Hardness as CaCO3	37.2	0.662	0.129	mg/L	1	09/09/19 15:43	2340 B		AES
Iron*	0.971	0.050	0.017	mg/L	1	09/09/19 15:43	EPA200.7		AES
Magnesium*	1.30	0.100	0.023	mg/L	1	09/09/19 15:43	EPA200.7		AES
Total Recoverable Metals by ICPMS (E2	200.8)								
Arsenic*	< 0.0010	0.0010	0.0002	mg/L	1	09/05/19 21:54	EPA200.8		AES
Cadmium*	0.0007	0.0005	0.00004	mg/L	1	09/05/19 21:54	EPA200.8		AES
Copper*	0.395	0.0005	0.0001	mg/L	1	09/05/19 21:54	EPA200.8		AES
Lead*	0.0069	0.0005	0.00009	mg/L	1	09/05/19 21:54	EPA200.8		AES
Manganese*	0.351	0.0020	0.00009	mg/L	1	09/05/19 21:54	EPA200.8		AES
Zinc*	0.135	0.0100	0.0004	mg/L	1	09/05/19 21:54	EPA200.8		AES
Total Mercury by CVAA									
Mercury*	< 0.0002	0.0002	0.00003	mg/L	1	09/13/19 08:33	EPA245.1		LLG

Green Analytical Laboratories

Dellie Zufett

www.GreenAnalytical.com

SME Project: Acid Mine Drainage

679 E 2nd Ave, Ste E2Project Name / Number: Acid Mine DrainageReported:Durango CO, 81301Project Manager: Clinton Casey09/13/19 16:54

Downstream of Mine (3)

1908328-03 (Water)

Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analyst
General Chemistry									
Alkalinity, Bicarbonate as CaCO3*	10.0	10.0		mg/L	1	09/11/19 15:00	2320 B		VJL
Alkalinity, Carbonate as CaCO3*	<10.0	10.0		mg/L	1	09/11/19 15:00	2320 B		VJL
Alkalinity, Hydroxide as CaCO3*	<10.0	10.0		mg/L	1	09/11/19 15:00	2320 B		VJL
Alkalinity, Total as CaCO3*	<10.0	10.0	3.06	mg/L	1	09/11/19 15:00	2320 B		VJL
Total Dissolved Solids*	150	10.0		mg/L	1	09/05/19 16:58	EPA160.1		VJL
Total Suspended Solids*	<4.00	4.00		mg/L	1	09/05/19 15:55	EPA160.2		VJL
Sulfate*	59.2	2.00	0.426	mg/L	2	09/10/19 10:31	EPA300.0		AES
Total Recoverable Metals by ICP (E200.	7)								
Aluminum*	0.555	0.050	0.013	mg/L	1	09/09/19 15:46	EPA200.7		AES
Calcium*	21.4	0.100	0.014	mg/L	1	09/09/19 15:46	EPA200.7		AES
Hardness as CaCO3	64.8	0.662	0.129	mg/L	1	09/09/19 15:46	2340 B		AES
Iron*	< 0.050	0.050	0.017	mg/L	1	09/09/19 15:46	EPA200.7		AES
Magnesium*	2.80	0.100	0.023	mg/L	1	09/09/19 15:46	EPA200.7		AES
Total Recoverable Metals by ICPMS (E.	200.8)								
Arsenic*	< 0.0010	0.0010	0.0002	mg/L	1	09/05/19 21:58	EPA200.8		AES
Cadmium*	0.0005	0.0005	0.00004	mg/L	1	09/05/19 21:58	EPA200.8		AES
Copper*	0.129	0.0005	0.0001	mg/L	1	09/05/19 21:58	EPA200.8		AES
Lead*	< 0.0005	0.0005	0.00009	mg/L	1	09/05/19 21:58	EPA200.8		AES
Manganese*	0.0177	0.0020	0.00009	mg/L	1	09/05/19 21:58	EPA200.8		AES
Zinc*	0.0830	0.0100	0.0004	mg/L	1	09/05/19 21:58	EPA200.8		AES
Total Mercury by CVAA									
Mercury*	< 0.0002	0.0002	0.00003	mg/L	1	09/13/19 08:33	EPA245.1		LLG

Green Analytical Laboratories

Deldin Zufett

www.GreenAnalytical.com

SME Project: Acid Mine Drainage

679 E 2nd Ave, Ste E2Project Name / Number: Acid Mine DrainageReported:Durango CO, 81301Project Manager: Clinton Casey09/13/19 16:54

La Plata Upstream (4)

1908328-04 (Water)

Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analyst
General Chemistry									
Alkalinity, Bicarbonate as CaCO3*	39.0	10.0		mg/L	1	09/11/19 15:00	2320 B		VJL
Alkalinity, Carbonate as CaCO3*	<10.0	10.0		mg/L	1	09/11/19 15:00	2320 B		VJL
Alkalinity, Hydroxide as CaCO3*	<10.0	10.0		mg/L	1	09/11/19 15:00	2320 B		VJL
Alkalinity, Total as CaCO3*	39.0	10.0	3.06	mg/L	1	09/11/19 15:00	2320 B		VJL
Total Dissolved Solids*	75.0	10.0		mg/L	1	09/05/19 16:58	EPA160.1		VJL
Total Suspended Solids*	<4.00	4.00		mg/L	1	09/05/19 15:55	EPA160.2		VJL
Sulfate*	22.0	1.00	0.213	mg/L	1	09/09/19 20:47	EPA300.0		AES
Total Recoverable Metals by ICP (E200	0.7)								
Aluminum*	< 0.050	0.050	0.013	mg/L	1	09/09/19 15:49	EPA200.7		AES
Calcium*	20.8	0.100	0.014	mg/L	1	09/09/19 15:48	EPA200.7		AES
Hardness as CaCO3	62.2	0.662	0.129	mg/L	1	09/09/19 15:49	2340 B		AES
Iron*	< 0.050	0.050	0.017	mg/L	1	09/09/19 15:49	EPA200.7		AES
Magnesium*	2.50	0.100	0.023	mg/L	1	09/09/19 15:49	EPA200.7		AES
Total Recoverable Metals by ICPMS (F	2200.8)								
Arsenic*	< 0.0010	0.0010	0.0002	mg/L	1	09/05/19 22:02	EPA200.8		AES
Cadmium*	< 0.0005	0.0005	0.00004	mg/L	1	09/05/19 22:02	EPA200.8		AES
Copper*	0.0012	0.0005	0.0001	mg/L	1	09/05/19 22:02	EPA200.8		AES
Lead*	< 0.0005	0.0005	0.00009	mg/L	1	09/05/19 22:02	EPA200.8		AES
Manganese*	< 0.0020	0.0020	0.00009	mg/L	1	09/05/19 22:02	EPA200.8		AES
Zinc*	< 0.0100	0.0100	0.0004	mg/L	1	09/05/19 22:02	EPA200.8		AES
Total Mercury by CVAA									
Mercury*	< 0.0002	0.0002	0.00003	mg/L	1	09/13/19 08:33	EPA245.1		LLG

Green Analytical Laboratories

Dellie Zufett

www.GreenAnalytical.com

SME Project: Acid Mine Drainage
679 F 2nd Ave Ste F2 Project Name / Number: Acid Mine Drainage

679 E 2nd Ave, Ste E2Project Name / Number: Acid Mine DrainageReported:Durango CO, 81301Project Manager: Clinton Casey09/13/19 16:54

La Plata Downstream (5)

1908328-05 (Water)

Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analyst
General Chemistry									
Alkalinity, Bicarbonate as CaCO3*	40.0	10.0		mg/L	1	09/11/19 15:00	2320 B		VJL
Alkalinity, Carbonate as CaCO3*	<10.0	10.0		mg/L	1	09/11/19 15:00	2320 B		VJL
Alkalinity, Hydroxide as CaCO3*	<10.0	10.0		mg/L	1	09/11/19 15:00	2320 B		VJL
Alkalinity, Total as CaCO3*	40.0	10.0	3.06	mg/L	1	09/11/19 15:00	2320 B		VJL
Total Dissolved Solids*	85.0	10.0		mg/L	1	09/05/19 16:58	EPA160.1		VJL
Total Suspended Solids*	<4.00	4.00		mg/L	1	09/05/19 15:55	EPA160.2		VJL
Sulfate*	21.5	1.00	0.213	mg/L	1	09/09/19 21:05	EPA300.0		AES
Total Recoverable Metals by ICP (E200.	7)								
Aluminum*	< 0.050	0.050	0.013	mg/L	1	09/09/19 14:18	EPA200.7		AES
Calcium*	20.5	0.100	0.014	mg/L	1	09/09/19 14:18	EPA200.7		AES
Hardness as CaCO3	61.3	0.662	0.129	mg/L	1	09/09/19 14:18	2340 B		AES
Iron*	< 0.050	0.050	0.017	mg/L	1	09/09/19 14:18	EPA200.7		AES
Magnesium*	2.47	0.100	0.023	mg/L	1	09/09/19 14:18	EPA200.7		AES
Total Recoverable Metals by ICPMS (E2	00.8)								
Arsenic*	< 0.0010	0.0010	0.0002	mg/L	1	09/05/19 19:49	EPA200.8		AES
Cadmium*	< 0.0005	0.0005	0.00004	mg/L	1	09/05/19 22:07	EPA200.8		AES
Copper*	0.0021	0.0005	0.0001	mg/L	1	09/05/19 22:07	EPA200.8		AES
Lead*	< 0.0005	0.0005	0.00009	mg/L	1	09/05/19 22:07	EPA200.8		AES
Manganese*	< 0.0020	0.0020	0.00009	mg/L	1	09/05/19 22:07	EPA200.8		AES
Zinc*	< 0.0100	0.0100	0.0004	mg/L	1	09/05/19 22:07	EPA200.8		AES
Total Mercury by CVAA									
Mercury*	< 0.0002	0.0002	0.00003	mg/L	1	09/13/19 08:33	EPA245.1		LLG

Green Analytical Laboratories

Deldie Zufett

www.GreenAnalytical.com

SME Project: Acid Mine Drainage 679 E 2nd Ave, Ste E2 Project Name / Number: Acid Mine Drainage Durango CO, 81301 Project Manager: Clinton Casey

Reported: 09/13/19 16:54

General Chemistry - Quality Control

	D. 1	Reporting	***	Spike	Source	0/855	%REC	DES	RPD	37
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B908309 - General Prep - Wet Chem										
Blank (B908309-BLK1)			Prep	ared & Anal	yzed: 08/30	0/19				
Alkalinity, Total as CaCO3	ND	10.0	mg/L							
LCS (B908309-BS1)			Prep	ared & Anal	yzed: 08/30	0/19				
Alkalinity, Total as CaCO3	98.0	10.0	mg/L	100		98.0	85-115			
LCS Dup (B908309-BSD1)			Prep	ared & Anal	yzed: 08/30	0/19				
Alkalinity, Total as CaCO3	97.0	10.0	mg/L	100		97.0	85-115	1.03	20	
Batch B909020 - General Prep - Wet Chem										
Blank (B909020-BLK1)			Prep	ared & Anal	yzed: 09/0:	5/19				
Total Dissolved Solids	ND	10.0	mg/L							
Duplicate (B909020-DUP1)	Sour	ce: 1908328-0	1 Prep	ared & Anal	yzed: 09/0:	5/19				
Total Dissolved Solids	485	10.0	mg/L		445			8.59	20	
Reference (B909020-SRM1)			Prep	ared & Anal	yzed: 09/0:	5/19				
Total Dissolved Solids	595	10.0	mg/L	600		99.2	85-115			
Batch B909021 - General Prep - Wet Chem										
Blank (B909021-BLK1)			Prep	ared & Anal	yzed: 09/0:	5/19				
Total Suspended Solids	ND	4.00	mg/L							
Duplicate (B909021-DUP1)	Sour	ce: 1908328-0	1 Prep	ared & Anal	yzed: 09/0:	5/19				
Total Suspended Solids	20.4	4.00	mg/L		18.0			12.5	20	
Reference (B909021-SRM1)			Prep	ared & Anal	yzed: 09/0:	5/19				
Total Suspended Solids	95.0	4.00	mg/L	100		95.0	85-115			
Batch B909058 - General Prep - Wet Chem										
Blank (B909058-BLK1)			Prep	ared & Anal	yzed: 09/09	9/19				
Sulfate	ND	1.00	mg/L							
LCS (B909058-BS1)			Prep	ared & Anal	yzed: 09/09	9/19				
Sulfate	24.8	1.00	mg/L	25.0		99.1	90-110			
LCS Dup (B909058-BSD1)			Prep	ared & Anal	yzed: 09/09	9/19				
Sulfate	24.9	1.00	mg/L	25.0		99.5	90-110	0.375	20	
Batch B909079 - General Prep - Wet Chem										
Blank (B909079-BLK1)			Prep	ared & Anal	yzed: 09/1	1/19				
Alkalinity, Total as CaCO3	ND	10.0	mg/L							
LCS (B909079-BS1)			Prep	ared & Anal	yzed: 09/1	1/19				
Alkalinity, Total as CaCO3	106	10.0	mg/L	100		106	85-115			

Green Analytical Laboratories

Deldie Zufett

www.GreenAnalytical.com

RPD

SME Project: Acid Mine Drainage 679 E 2nd Ave, Ste E2 Project Name / Number: Acid Mine Drainage Reported: Durango CO, 81301 Project Manager: Clinton Casey 09/13/19 16:54

General Chemistry - Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B909079 - General Prep - Wet Chem (Continued)

LCS Dup (B909079-BSD1)			Prepare	ed & Analyzed: 09/11/1	9			
Alkalinity, Total as CaCO3	104	10.0	mg/L	100	104	85-115	1.90	20

Total Recoverable Metals by ICP (E200.7) - Quality Control

Spike

4.00

20.0

Source

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B908325 - Total Rec. 200.7/20	00.8/200.2									
Blank (B908325-BLK1)			Prep	ared: 08/30/	19 Analyz	ed: 09/06/19	9			
Aluminum	ND	0.050	mg/L							
Calcium	ND	0.100	mg/L							
Iron	ND	0.050	mg/L							
Magnesium	ND	0.100	mg/L							
LCS (B908325-BS1)			Prep	ared: 08/30/	19 Analyz	ed: 09/06/19	9			
Aluminum	3.95	0.050	mg/L	4.00		98.8	85-115			
Calcium	3.85	0.100	mg/L	4.00		96.2	85-115			
Iron	3.89	0.050	mg/L	4.00		97.3	85-115			
Magnesium	19.2	0.100	mg/L	20.0		95.8	85-115			
LCS Dup (B908325-BSD1)			Prep	ared: 08/30/	19 Analyz	ed: 09/06/19	9			
Aluminum	3.90	0.050	mg/L	4.00		97.5	85-115	1.27	20	
Calcium	3.89	0.100	mg/L	4.00		97.2	85-115	1.01	20	

mg/L

mg/L

0.050

0.100

3.82

19.3

Green Analytical Laboratories

Magnesium

Iron

ie Zufett

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. In no event shall Green Analytical Laboratories be liable for incidental or consequential damages. GALs liability, and clients exclusive remedy for any claim arising, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever, shall be deemed waived unless made in writing and received within thirty days after completion of the applicable service.

%REC

85-115

85-115

95.4

96.7

1.92

0.928

20

20

www.GreenAnalytical.com

SME Project: Acid Mine Drainage 679 E 2nd Ave, Ste E2 Project Name / Number: Acid Mine Drainage Durango CO, 81301 Project Manager: Clinton Casey

Reported: 09/13/19 16:54

Total Recoverable Metals by ICPMS (E200.8) - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B908321 - Total Rec. 200.7/2	00.8/200.2									
Blank (B908321-BLK1)			Prep	pared: 08/30/1	9 Analyz	ed: 09/05/19)			
Arsenic	ND	0.0010	mg/L							
LCS (B908321-BS1)			Prep	pared: 08/30/1	9 Analyz	ed: 09/05/19)			
Arsenic	0.0502	0.0010	mg/L	0.0500		100	85-115			
LCS Dup (B908321-BSD1)			Prep	oared: 08/30/1	9 Analyz	ed: 09/05/19)			
Arsenic	0.0495	0.0010	mg/L	0.0500	-	99.0	85-115	1.33	20	
Batch B908324 - Total Rec. 200.7/2	00.8/200.2									
Blank (B908324-BLK1)			Prep	pared: 08/30/19	9 Analyz	ed: 09/05/19)			
Arsenic	ND	0.0010	mg/L							
Cadmium	ND	0.0005	mg/L							
Copper	ND	0.0005	mg/L							
Lead	ND	0.0005	mg/L							
Manganese	ND	0.0020	mg/L							
Zinc	ND	0.0100	mg/L							
LCS (B908324-BS1)			Prep	pared: 08/30/1	9 Analyz	ed: 09/05/19)			
Arsenic	0.0501	0.0010	mg/L	0.0500		100	85-115			
Cadmium	0.0508	0.0005	mg/L	0.0500		102	85-115			
Copper	0.0478	0.0005	mg/L	0.0500		95.6	85-115			
Lead	0.0502	0.0005	mg/L	0.0500		100	85-115			
Manganese	0.0484	0.0020	mg/L	0.0500		96.8	85-115			
Zinc	0.0505	0.0100	mg/L	0.0500		101	85-115			
LCS Dup (B908324-BSD1)			Prep	pared: 08/30/1	9 Analyz	ed: 09/05/19)			
Arsenic	0.0501	0.0010	mg/L	0.0500		100	85-115	0.0729	20	
Cadmium	0.0514	0.0005	mg/L	0.0500		103	85-115	1.14	20	
Copper	0.0480	0.0005	mg/L	0.0500		96.1	85-115	0.515	20	
Lead	0.0510	0.0005	mg/L	0.0500		102	85-115	1.62	20	
Manganese	0.0493	0.0020	mg/L	0.0500		98.6	85-115	1.91	20	
Zinc	0.0501	0.0100	mg/L	0.0500		100	85-115	0.903	20	

Green Analytical Laboratories

Dellie Zufett

www.GreenAnalytical.com

SME Project: Acid Mine Drainage
679 E 2nd Ave, Ste E2 Project Name / Number: Acid Mine Drainage
Durango CO, 81301 Project Manager: Clinton Casey

Reported: 09/13/19 16:54

Total Mercury by CVAA - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B909044 - EPA 245.1/7470										
Blank (B909044-BLK1)			Prep	oared: 09/09/	19 Analyz	ed: 09/13/19)			
Mercury	ND	0.0002	mg/L							
LCS (B909044-BS1)			Prep	oared: 09/09/	19 Analyz	ed: 09/13/19)			
Mercury	0.0053	0.0002	mg/L	0.00500		107	85-115			
LCS Dup (B909044-BSD1)			Prep	oared: 09/09/	19 Analyz	ed: 09/13/19)			
Mercury	0.0052	0.0002	mg/L	0.00500		104	85-115	2.58	20	

Green Analytical Laboratories

Deldie Zufett

www.GreenAnalytical.com

SME Project: Acid Mine Drainage

679 E 2nd Ave, Ste E2 Project Name / Number: Acid Mine Drainage Reported:

Durango CO, 81301 Project Manager: Clinton Casey 09/13/19 16:54

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

*Results reported on as received basis unless designated as dry.

RPD Relative Percent Difference

LCS Laboratory Control Sample (Blank Spike)

RL Report Limit

MDL Method Detection Limit

Green Analytical Laboratories

Deldie Zufett

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST FORM-006

COC - Revision 5.0

Page 13 of 14 1908328 GAL FINAL 09 13 19 1654 09/13/19 16:54:55

Laboratories	Fax:	(970) 247-4220 Fax: (970) 247-4227	servio	service@greenanalytical.com or dzufett@greenanalytical.com 75 Suttle St Durango, CO 81303	t@greenanalytical.co		COC - Revision 5.0	
Company or Client: SME				Bill to (if different):	ent):	ANA	ANALYSIS REQUEST	
Address:				P.O. #:				\dashv
City:	State:	Zip:		Company:				
Phone #:				Attn:				
Contact Person: Clinha Cale	Y			Address:				
Email Report to: Caley & Sme-	- CUL: COM			City:		0	_	_
Project Name(optional):				State: Zip:	7	7	Che a	
				Phone #:		-	Tax	
Sampler Name (Print):				Email:		7		
		Collected	cted	Matrix (check one) # of	of containers	- 5		
Lab Use	Sample Name or Location	Date	Time	OTHER: No preservation (general)				
11) +78 10.826.80W		8129/19	10:00	S .				
-02 Above unterfall	1 (2)	1/186/8	10:30	4				
Downstream	mine (5)		11:20	, ,				-
- [4	(com (4)	-	10170	(-
2	Pounstream (5)	8127/19	13:00	2				
								\vdash
PLEASE NOTE: GAL's liability and client's exclusive remedy for any claim arising whether based in contract or tort, shall be limited to the amount paid by the client for the analyses. All claims including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and receive by GAL within 30 days after completion. In no event shall GAL be liable for incident of consequential damages, including without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of services hereunder by GAL, regardless of whether such claim is based upon any of the above stated reasons or otherwise.	im arising whether based in contract for incidental or consequental dama we stated reasons or otherwise.	or tort, shall be limited to t ges, including without limit	he amount paid by ation, business into	r the client for the analyses. All claims including irruptions, loss of use, or loss of profits incurred t	those for negligence and any other caus by client, its subsidiaries, affliates or succ	other cause whatsoever shall be tes or successors arising out of	be deemed waived unless made in writing and for related to the performance of services he	id receive reunder
Clinton Casey	Time: 14:00			7/11			Yes No	
Relinquished Bv:	Date: Time:	Received By:	2	Sollow				
Relinquished By:	Date: Time:	Received By:			#	# On I co		
Relinquished By:	Date:	Received By:						
					メインメ	ンコンペ		

Analytical Services Quotation

Envirosource Corp. DBA Green Analytical Laboratories 75 Suttle St. Durango CO 81301 (970)247-4220 jeremy.allen@greenanalytical.com

Acid Mine Drainage

SME

Clinton Casey

Bid Date:

7/12/19

Bid Expires:

12/31/19

	_			TAT	Unit	Extended
Matrix	Parameters	Method	#	(days)	Price	Price
Water	Alkalinity as CaCO3	2320 B	1	10	\$15.00	\$15.00
Water	Bicarbonate as CaCO3	2320 B	1	10	\$0.00	\$0.00
Water	Carbonate as CaCO3	2320 B	1	10	\$0.00	\$0.00
Water	Hydroxide as CaCO3	2320 B	1	10	\$0.00	\$0.00
Water	pH di	EPA150.1	1	10	\$12.00	\$12.00
Water	Total Dissolved Solids-	EPA160.1	1	10	\$15.00	\$15.00
Water	Total Suspended Solids	EPA160.2	1	10	\$15.00	\$15.00
Water	Aluminum 200.2 by ICP	EPA200.7	1	10	\$13.00	\$13.00
Water	Calcium 200.2 by ICP	EPA200.7	1	10	\$13.00	\$13.00
Water	Iron 200.2 by ICP	EPA200.7	1	10	\$13.00	\$13.00
Water	Magnesium 200.2 by ICP	EPA200.7	1	10	\$13.00	\$13.00
Water	Hardness	EPA200.7/Calc	1	10	\$0.00	\$0.00
Water	Arsenic 200.2 by ICPMS	EPA200.8	1	10	\$18.00	\$18.00
Water	Cadmium 200.2 by ICPMS	EPA200.8	1	10	\$18.00	\$18.00
Water	Copper 200.2 by ICPMS	EPA200.8	1	10	\$18.00	\$18.00
Water	Lead 200.2 by ICPMS	EPA200.8	1	10	\$18.00	\$18.00
Water	Manganese 200.2 by ICPMS	EPA200.8	1	10	\$18.00	\$18.00
Water	Zinc 200.2 by ICPMS	EPA200.8	1	10	\$18.00	\$18.00
Water	Mercury Total by CVAA	EPA245.1	1	10	\$40.00	\$40.00
Water	Sulfate by IC	EPA300.0	1	10	\$15.00	\$15.00

\$272.00

200.2 Digest:

\$15.00

Estimated Cost per Sample:

\$287.00

5 x 250 openeral 250 openeral 250 metals 4NO3

April 27, 2021

Mr. Scott Petsel, Vice President, Exploration Metallic Minerals Corporation Suite 904 - 409 Granville Street Vancouver, BC V6C 1T2

Re: Water Quality Sampling Report for 2020 for the Allard Mine Site

Dear Mr. Petsel:

Please find enclosed our report for the 2020 baseline water quality assessment performed in the vicinity of the Allard Mine from Bedrock Creek (in La Plata Canyon) and the East Fork of the Mancos River, in La Plata and Montezuma Counites (respectively), Colorado. This assessment was performed in June and September of 2021 and consisted of nine samples as shown on Figure 2

We appreciate this opportunity to assist you on this project. Please contact us at (970) 259-9595 if you have any questions or require additional information.

Respectfully,

Clinton Casey, EP

Clinton Casery

Staff Scientist

Figures

Figure 1. Topographic Location Map Figure 2 Sampling Location Map

Appendices

Appendix A Figures
Appendix B Tables

Appendix C Laboratory Results, Chains of Custody

1.0 INTRODUCTION

At the request of Mr. Scott Petsel of Metallic Minerals Corporation, SME Environmental, Inc. (SME) conducted field screening and water sample collection activities in the spring and fall of 2020. Enclosed are the results for the baseline water quality assessment performed in the vicinity of the Allard Mine from Bedrock Creek within La Plata Canyon and the East Fork of the Mancos River in La Plata and Montezuma Counties (respectively) Colorado. This assessment was performed in the spring (June 11, 2020) and the fall (September 23, 2020). This assessment consisted of eight sample locations in the spring and nine sample locations in the fall.

The location of the project area is depicted on <u>Figure 1</u> (Topographic Location Map), and the locations of samples within the project area are depicted in Figure 2 (Sample Location Map).

1.1 Purpose

The purpose of this investigation was to gather available information to characterize the baseline water quality within the immediate watershed of the potential project area.

2.0 SAMPLING

Field activities are described in the sections below.

2.1 Water Sampling and Observation Methods

Water quality sampling was conducted on June 11, 2020 and September 23, 2020 by SME personnel. Sample locations are presented in <u>Figure 2</u>, <u>Appendix A</u>.

The surface water samples were collected at eight sample locations in the spring and nine sample locations in the fall to gather a representation of existing water chemistry and potential impacts to the La Plata and East Mancos Rivers. Each sample was collected with new, clean containers provided by green analytical and the sampler used new latex gloves at each sampling location.

All lab samples were labeled and placed in an insulated cooler with ice packs in preparation for lab submittal. The coolers containing the samples were transferred to Green Analytical Laboratory (Green) in Durango, Colorado under standard chain-of-custody procedures for laboratory analysis.

Non-disposable tools which came into contact with the sample water were decontaminated or disposed of between samples. Disposable sampling items such as nitrile gloves were placed in garbage bags and disposed of as municipal trash.

Field measurements were taken in situ at the time of sample collection for pH and temperature using an Oakton Handheld ECOTestr pH2+ device. Visual observations were also performed and noted at each sampling location at the time of each site visit.

3.0 RESULTS

Sample locations are presented in <u>Figure 2</u>, <u>Appendix A</u>. For a summary of laboratory analytical results, please see <u>Table 1</u> Laboratory Results: Field Data, <u>Table 3</u> Laboratory Results: General Chemistry, Table 3 Laboratory Results: Metals, which are also attached in Appendix B.

4.0 DISCUSSION/CONCLUSION

Concentrations of potential contaminants were compared to the appropriate table within Regulation No. 34-Classification and numeric Standards for San Juan River and Dolores River Basins (5CCR 1002-34), which are utilized by the Colorado Department of Health and Environment (CDPHE) Water Quality Control Division (WQCD). These regulations establish classifications and numeric standards for the San Juan and the Dolores River Basins, including all tributaries and standing bodies of water south of the northern Dolores County line, these numeric standards are assigned to determine the allowable concentrations of various parameters and many of the regulatory standards are calculated based upon the chemistry of the waters sampled. Due to the location of this study the results were compared to Table COSJLPO1, which is described as the mainstem of the La Plata River, including all wetlands and tributaries from the source to the Hay Gulch diversion south of Hesperus for samples 1-7 and 9. Table COSJLPO4A, which is describes as the mainstem of the Mancos River, including all wetlands and tributaries from the source to the East, West, and Middle Forks to the San Juan National Forest Boundary for sample 8.

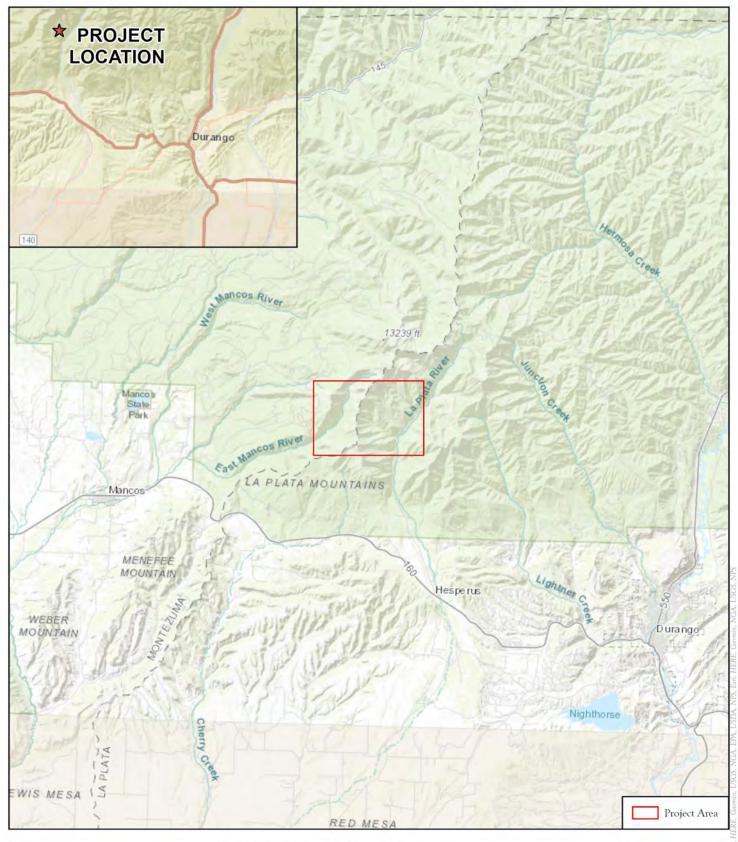
All of the parameters sampled were within regulatory standards for this waterway except for pH and sulfate. The pH above the waterfall (sample location 2) had a pH of 4.8 in the spring and 4.4 in the fall. Although this is above the level for the La Plata river these readings were collected fairly high in the watershed from the main drainage in Bedrock Creek and above the majority of known historical mining activities. Therefore, this low pH is not likely the result of mining activities. East Mancos Creek (sample location 8) had a pH of 6.1 in the spring and 4.4 in the fall and had 303 parts per million (ppm) sulfate; 250 ppm is the regulatory limit for sulfate and 6.5 is the minimum pH for this section of River. The low pH and high sulfate levels are likely a result of natural acid mine drainage with contributions from several small historical adits and mines within

this watershed. Other findings of note are a high concentration of dissolved solids and a high level of hardness being released from the adit (sample location 1 and 9). In particular a high amount of sulfates and calcium carbonates were observed, which are likely increasing the pH of these waters below the confluence of waters from the adit. High levels of aluminum and mineral deposition within the streambed was also observed at the adit, above the waterfall, and in the East Mancos River.

Please note that this environmental sampling event represents only a snapshot into the water chemistry at these locations and within this basin. The process used in this investigation is an attempt to control the degree to which uncertainty in data affects the outcomes of decisions that are based on those data. It should also be emphasized that only a representative number of samples were collected and analyzed, and SME considers it a possibility that there may be instances of water contamination at the site which may exceed regulatory limits.

5.0 LIMITATIONS

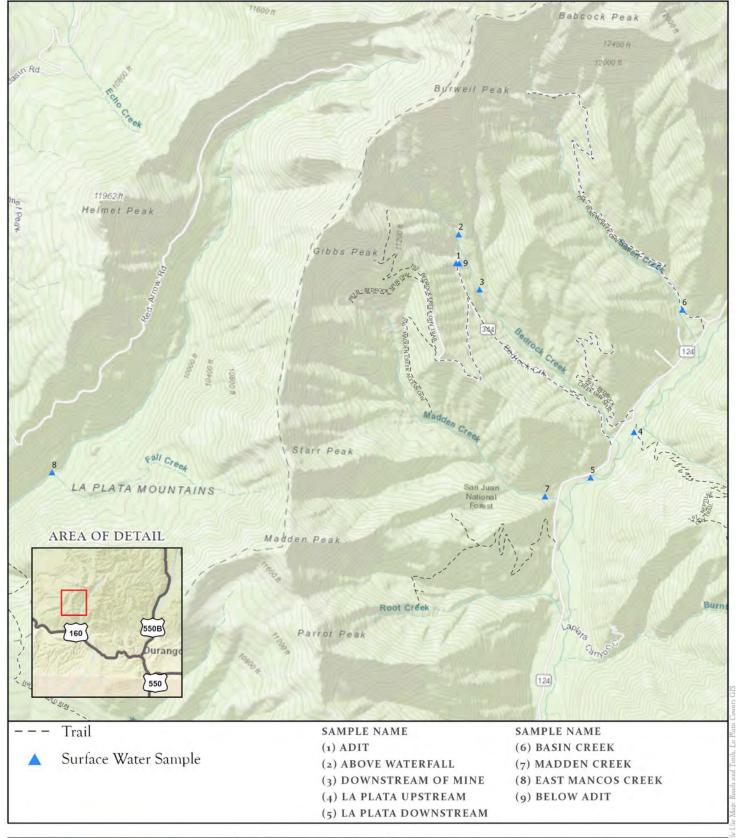
Variations in site conditions may occur and those not encountered during this investigation may be observed during future activities at the site. This investigation did not include an assessment of subsurface conditions or contaminants other than the areas that were investigated by the sampling effort. SME's conclusions and recommendations are based upon limited field screening, sampling, and analysis. This investigation does not guarantee the absence of contaminants throughout the target property or within the surface waters.

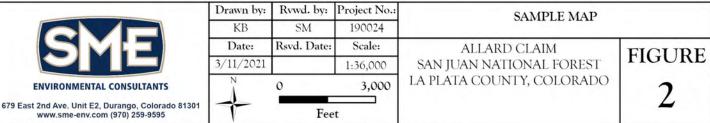

6.0 REFERENCES

Colorado Department of Public Health and Environment (CDPHE) Water Quality Control Division. 2015. Regulation No. 34 - Classifications and Numeric Standards for San Juan River and Dolores River Basins (5 CCR 1002-34). CDPHE, Denver, Colorado.

7.0 APPENDICES

APPENDIX A.


Figures



Drawn by:	Rvwd. by:	Project No.:	ROAD VICINITY MA	ND.
KB	KZ	190024	ROAD VICINITY MA	11
Date:	Rsvd. Date:	Scale:	ALLARD CLAIM	T
3/11/2021	NA	1:250,000	SAN JUAN NATIONAL FOREST	F
N	0 2	4	LA PLATA COUNTY, COLORADO	
+	Mile	s		

FIGURE

APPENDIX B.

Tables

Table 1. Field Data

Sample Number	Dat	:e	Sample Type	р	Н	Tem	p (Celsius)	Visual	Observations
				Spring	Fall	Spring	Fall	Spring	Fall
Adit (1)	Spring (6/11/20)	Fall (9/23/20)	Grab	7.8	8.3	9.2	8.7	Clear water. Significant red varnish.	Clear water. Significant red varnish.
Above Waterfall(2)	Spring (6/11/20)	Fall (9/23/20)	Grab	4.8	4.4	12.7	15.7	Clear water. Red varnish.	Clear water. Red varnish.
Downstream of Mine (3)	Spring (6/11/20)	Fall (9/23/20)	Grab	6.6	7.3	14.8	16.1	Clear water. Minimal varnish.	Clear water. Minimal red staining. White/purple staining and fine sediment observed that seems new.
La Plata River- Upstream (4)	Spring (6/11/20)	Fall (9/23/20)	Grab	8.6	8.3	11.5	11.8	Clear water. No varnish.	Clear water. Minimal staining.
La Plata River- Downstream (5)	Spring (6/11/20)	Fall (9/23/20)	Grab	8.2	8.2	10.6	13.2	Clear water. Significant red varnish.	Clear water. Minimal staining.
Basin Creek (6)	Spring (6/11/20)	Fall (9/23/20)	Grab	7.9	8.0	12.3	11.1	Clear water. No varnish.	Clear water. Minimal staining.
Madden Creek (7)	Spring (6/11/20)	Fall (9/23/20)	Grab	8.4	8.4	8.6	10.6	Clear water. Significant red varnish.	Clear water. No staining.
East Mancos Creek (8)	Spring (6/12/20)	Fall (9/24/20)	Grab	6.1	4.4	11.8	7.2	Clear water. Significant red varnish.	Clear water. Significant red and white staining.
Below Adit (9)	NA	Fall (9/29/20)	Grab	NA	7.4	NA	10.2	NA	Clear water. Significant red and white staining.
CDPHE: Regulatory Standards				6.5-9.0	6.5-9.0	17	17	NA	NA

Table 2. Laboratory Results
General Chemistry

			Analyte	Alkalinity, Bicarbo	nate as CaCO3	=	arbonate as	Alkalinity, H CaC	=	Alkalinity, Tot	tal as CaCO3	Total Disso	lved Solids	Total Susp	ended Solids	Sulfa	ate
			Method				2320 B					EPA 1	160.1	EPA	160.2	EPA 3	00.0
Sample	Date	e	Sample Type	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall
Adit (1)	Spring (6/11/20)	Fall (9/23/20)	Grab	93.0	109.0	ND	ND	ND	ND	93.0	109.0	460.0	460.0	15.0	7.7	215.0	196.0
Above Waterfall(2)	Spring (6/11/20)	Fall (9/23/20)	Grab	ND	ND	ND	ND	ND	ND	ND	ND	60.0	140.0	ND	ND	25.5	66.2
Downstream of Mine (3)	Spring (6/11/20)	Fall (9/23/20)	Grab	ND	12.0	ND	ND	ND	ND	ND	12.0	70.0	130.0	ND	5.3	29.9	79.4
La Plata River- Upstream (4)	Spring (6/11/20)	Fall (9/23/20)	Grab	34.0	48.0	ND	ND	ND	ND	34.0	48.0	45.0	99.9	ND	ND	11.7	32.9
La Plata River- Downstream (5)	Spring (6/11/20)	Fall (9/23/20)	Grab	29.0	44.0	ND	ND	ND	ND	29.0	44.0	45.0	135.0	ND	ND	12.7	33.9
Basin Creek (6)	Spring (6/11/20)	Fall (9/23/20)	Grab	18.0	34.0	ND	ND	ND	ND	18.0	34.0	95.0	90.0	ND	ND	9.2	19.5
Madden Creek (7)	Spring (6/11/20)	Fall (9/23/20)	Grab	31.0	46.0	ND	ND	ND	ND	31.0	46.0	90.0	180.0	ND	ND	12.9	27.2
East Mancos Creek (8)	Spring (6/12/20)	Fall (9/24/20)	Grab	ND	ND	ND	ND	ND	ND	ND	ND	110.0	300.0	ND	ND	84.6	303.0
Below Adit (9) (1A)	NA	Fall (9/29/20)	Grab	NA	108.0	NA	ND	NA	ND	NA	108.0	NA	480.0	NA	ND	NA	216.0
CDPHE: Regulatory Standards				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	250	250

NA = No regulatory standard.

ND = Analyte was not detected at reporting limit

^{*}EPA Regional Screening Level Summary Table - Residential Soil with Target Hazard Quotient of 01 (November 2018)

Table 3. Laboratory Results Metals

			Analyte	Hardness	as CaCO3	Alum	inum	Calc	ium	Iro	n	Magn	esium	Arse	enic	Cadr	mium	Сор	per	Lea	ad	Mang	anese	Zir	nc	Mer	rcury
			Method		10 B				EPA :										EPA 2								245.1
Famula	Comm	le Date	Sample Type	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall
Sample Adit (1)	Spring (6/11/20)		Grab	348.0	282.0	ND	0.097	113.0	91.3	0.069	ND Fall	16.2	13.0	0.0053	0.0047	ND	0.0001	ND	ND Fall	ND	ND	0.550	0.542	0.0755	0.1340	ND	ND Fall
CDPHE: Regulatory Standards-acute			•	NA	NA	NA	NA	NA	NA	300	NA	NA	NA	340	340	NA	4.1981	NA	NA	NA	NA	4523.17	4217.17	497.36	410.76	NA	NA
CDPHE: Regulatory Standards-chronic				NA	NA	NA	NA	NA	NA	300	NA	NA	NA	NA	NA	NA	0.8492	NA	NA	NA	NA	2499.06	2329.99	376.68	311.11	NA	NA
Above Waterfall(2)	Spring (6/11/20)	Fall (9/23/20)	Grab	20.0	39.8	1.240	3.540	6.790	13.7	0.584	0.474	0.735	1.38	ND	ND	0.0003	0.0011	0.2540	0.5590	0.0026	0.0237	0.1440	0.469	0.0753	0.2080	ND	ND
CDPHE: Regulatory Standards-acute				NA	NA	NA	NA	NA	NA	300	300	NA	NA	NA	340	0.4186	0.7633	2.9410	5.6414	10.7915	23.3796	1746.69	2196.67	37.02	69.23	NA	NA
CDPHE: Regulatory Standards-chronic				NA	NA	NA	NA	NA	NA	300	300	NA	NA	NA	NA	1.0855	1.0672	2.2638	4.0758	0.4205	0.9110	965.05	1213.66	28.04	52.43	NA	NA
Downstream of Mine (3)	Spring (6/11/20)	Fall (9/23/20)	Grab	31.8	81.8	0.820	0.467	10.700	27.0	0.078	ND	1.260	3.49	ND	ND	0.0003	0.0009	0.2300	0.2250	0.0011	0.0013	0.0928	0.126	0.0348	0.1410	ND	ND
CDPHE: Regulatory Standards-acute				NA	NA	NA	NA	NA	NA	300	NA	NA	NA	340	340	0.6275	1.4305	4.5663	11.1218	18.1911	51.8589	2038.46	2792.42	56.45	133.29	NA	NA
CDPHE: Regulatory Standards-chronic			•	NA	NA	NA	NA	NA	NA	300	NA	NA	NA	NA	NA	1.0746	1.0284	3.3646	7.5432	0.7088	2.0209	1126.25	1542.82	42.75	100.95	NA	NA
La Plata River-				IVA	IVA	IVA	IVA	IVA	IVA	300	IVA	IVA	IVA	IVA	IVA	1.0740	1.0204	3.3040	7.5452	0.7000	2.0203	1120.25	1342.02	42.73	100.55	IVA	IVA
Upstream (4)	Spring (6/11/20)	Fall (9/23/20)	Grab	52.6	76.0	ND	ND	17.600	25.0	ND	ND	2.090	3.29	ND	ND	ND	ND	0.0028	0.0015	ND	ND	0.0012	ND	0.0294	0.0032	ND	ND
CDPHE: Regulatory Standards-acute			-	NA	NA	NA	NA	NA	NA	300	NA	NA	NA	340	340	NA	NA	7.3366	10.3773	NA	NA	2410.48	2724.85	89.21	124.66	NA	NA
CDPHE: Regulatory Standards-chronic				NA	NA	NA	NA	NA	NA	300	NA	NA	NA	NA	NA	NA	NA	5.1724	7.0838	NA	NA	1331.79	1505.48	67.57	94.42	NA	NA
La Plata River- Downstream (5)	Spring (6/11/20)	Fall (9/23/20)	Grab	51.2	74.2	ND	ND	17.200	24.5	ND	ND	2.020	3.17	ND	ND	ND	ND	0.0052	0.0040	ND	ND	0.0017	0.002	0.0029	0.0095	ND	ND
CDPHE: Regulatory Standards-acute				NA	NA	NA	NA	NA	NA	300	NA	NA	NA	340	340	NA	NA	7.1524	10.1455	NA	NA	2388.92	2703.18	87.04	121.98	NA	NA
CDPHE: Regulatory																											
Standards-chronic Basin Creek (6)	Spring (6/11/20)	Fall (9/23/20)	Grab	33.2	47.6	NA ND	NA ND	NA 11.100	15.5	300 ND	NA ND	1.330	NA 2.15	NA ND	NA ND	NA ND	NA ND	5.0456 0.0017	6.9402 0.0014	NA ND	NA ND	0.0011	1493.51 0.001	65.93 0.0025	92.39 0.0025	NA ND	NA ND
CDPHE: Regulatory Standards-acute	opg (0/11/10/	1 a (5) 25) 25)	0.00	NA NA	NA	NA	NA	NA NA	NA NA	300	NA NA	NA	NA NA	340	340	NA	NA	4.7556	6.6676	NA NA	NA	2067.92	2331.60	58.70	81.46	NA	NA NA
CDPHE: Regulatory Standards-chronic			•	NA	NA	NA	NA	NA NA	NA	300	NA	NA	NΔ	NA	NA	NA	NA	3.4908	4.7493	NA	NA	1142.53	1288.21	44.46	61.70	NA	NA
Madden Creek (7)	Spring (6/11/20)	Fall (9/23/20)	Grab	53.6	61.7	ND	ND	18.300	20.4	ND	ND	1.940	2.59	ND	ND	ND	ND	0.0067	0.0055	ND	ND	0.0009	ND	0.0036	0.0042	ND	ND
CDPHE: Regulatory Standards-acute				NA	NA	NA	NA	NA	NA	300	NA	NA	NA	340	340	NA	NA	7.4680	8.5268	NA	NA	2425.65	2542.07	90.75	103.14	NA	NA
CDPHE: Regulatory Standards-chronic				NA	NA	NA	NA	NA	NA	300	NA	NA	NA	NA	NA	NA	NA	5.2563	5.9280	NA	NA	1340.17	1404.49	68.73	78.12	NA	NA
East Mancos Creek (8)	Spring (6/12/20)	Fall (9/24/20)	Grab	48.7	102.0	5.830	28.000	15.0	30.5	0.298	0.567	2.70	6.29	ND	ND	0.0009	0.0034	0.8520	2.80	ND	ND	0.333	1.510	0.1070	0.3630	ND	ND
CDPHE: Regulatory Standards-acute			•	NA	NA	NA	NA	NA	NA	300	300	NA	NA	340	340	0.9102	1.7336	6.8230	13.6925	NA	NA	2349.41	3005.44	83.17	162.91	NA	NA
CDPHE: Regulatory Standards-chronic				NA	NA	NA NA	NA NA	NA NA	NA NA	300	300	NA NA	NA	NA NA	NA NA	1.0590	1.0010	4.8429	9.1088	NA NA	NA	1298.05	1660.51	25.31	123.15	NA NA	NA
Below Adit (9)	NA	Fall (9/29/20)	Grab	NS	375.0	NS	0.400	NS	121.0	NS	5.790	NS	17.60	NS	0.0200	NS	ND	NS	ND ND	NS	ND	NS	0.615	NS	0.0863	NS	ND
CDPHE: Regulatory Standards-acute				NS	NA	NS	NA	NS	NA	NS	300	NS	NA	NS	340	NS	NA	NS	NA	NS	NA	NS	4367.17	NS	532.30	NS	NA
CDPHE: Regulatory Standards-chronic				NS	NA	NS	NA	NS	NA	NS	300	NS	NA	NS	NA	NS	NA	NS	NA	NS	NA	NS	2562.04	NS	40.32	NS	NA

NA = No regulatory standard.

NS = No sample was collected

ND = Analyte was not detected at reporting limit.

^{*}Regulatory Standards above assume that Sculpin and Trout exist in waterways.

APPENDIX C.

Lab Results, Waste Manifest, Chains of Custody

75 Suttle Street Durango, CO 81303 970.247.4220 Phone 970.247.4227 Fax www.greenanalytical.com

26 June 2020

Clinton Casey SME 679 E 2nd Ave, Ste E2 Durango, CO 81301

RE: Allard

Enclosed are the results of analyses for samples received by the laboratory on 06/12/20 17:00. If you need any further assistance, please feel free to contact me.

Sincerely,

Debbie Zufelt

Reports Manager

Dellie Zufett

All accredited analytes contained in this report are denoted by an asterisk (*). For a complete list of accredited analytes please do not hesitate to contact us via any of the contact information contained in this report. All of our certifications can be viewed at http://greenanalytical.com/certifications/

Green Analytical Laboratories is NELAP accredited through the Texas Commission on Environmental Quality. Accreditation applies to drinking water and non-potable water matrices for trace metals and a variety of inorganic parameters. Green Analytical Laboratories is also accredited through the Colorado Department of Public Health and Environment and EPA region 8 for trace metals, Cyanide, Fluoride, Nitrate, and Nitrite in drinking water.

Our affiliate laboratory, Cardinal Laboratories, is also NELAP accredited through the Texas Commission on Environmental Quality for a variety of organic constituents in drinking water, non-potable water and solid matrices. Cardinal is also accredited for regulated VOCs, TTHM, and HAA-5 in drinking water through the Colorado Department of Public Health and Environment and EPA region 8.

www.GreenAnalytical.com

SME Project: Allard

679 E 2nd Ave, Ste E2 Project Name / Number: Allard Reported:

Durango CO, 81301 Project Manager: Clinton Casey 06/26/20 16:51

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received Notes
1	2006116-01	Water	06/11/20 14:00	06/12/20 17:00
2	2006116-02	Water	06/11/20 13:00	06/12/20 17:00
3	2006116-03	Water	06/11/20 14:30	06/12/20 17:00
4	2006116-04	Water	06/11/20 16:30	06/12/20 17:00
5	2006116-05	Water	06/11/20 13:00	06/12/20 17:00
6	2006116-06	Water	06/11/20 16:00	06/12/20 17:00
7	2006116-07	Water	06/11/20 17:30	06/12/20 17:00
8	2006116-08	Water	06/12/20 14:30	06/12/20 17:00

Green Analytical Laboratories

Deldie Zufett

www.GreenAnalytical.com

SME Project: Allard 679 E 2nd Ave, Ste E2 Project Name / Number: Allard Durango CO, 81301

Reported:

Project Manager: Clinton Casey

06/26/20 16:51

1

2006116-01 (Surface Water)

			,						
Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analys
General Chemistry									
Alkalinity, Bicarbonate as CaCO3*	93.0	10.0	7.16	mg/L	1	06/22/20 14:25	2320 B		VJW
Alkalinity, Carbonate as CaCO3*	<10.0	10.0		mg/L	1	06/22/20 14:25	2320 B		VJW
Alkalinity, Hydroxide as CaCO3*	<10.0	10.0		mg/L	1	06/22/20 14:25	2320 B		VJW
Alkalinity, Total as CaCO3*	93.0	10.0	7.16	mg/L	1	06/22/20 14:25	2320 B		VJW
Ammonia as N	< 0.100	0.100	0.0251	mg NH3-N/L	1	06/16/20 15:26	EPA350.1		LLG
Chloride*	<1.00	1.00	0.0886	mg/L	1	06/19/20 19:02	EPA300.0		AES
Chlorine, Tot Resid	< 0.100	0.100		mg/L	1	06/12/20 17:15	HACH-DPD	H1	JDA
Conductivity*	653	5.00		umho/cm @ 25.0°C	1	06/13/20 12:40	2510 B		FGH
Cyanide, Total*	< 0.0100	0.0100	0.00122	mg/L	1	06/17/20 16:03	EPA335.4		LLG
Nitrate as N*	< 0.020	0.020	0.010	mg/L	1	06/12/20 17:57	EPA300.0		AES
Nitrate+Nitrite as N by IC	< 0.0400	0.0400	0.0155	mg/L	1	06/12/20 17:57	EPA300.0		AES
Nitrite as N*	< 0.020	0.020	0.005	mg/L	1	06/12/20 17:57	EPA300.0		AES
pH*	6.99			pH Units	1	06/13/20 12:40	EPA150.1		FGH
Phosphorus, Total	< 0.0500	0.0500	0.00904	mg P/L	1	06/19/20 16:05	EPA365.1		LLG
Total Dissolved Solids*	460	10.0		mg/L	1	06/16/20 14:25	EPA160.1		VJW
Total Suspended Solids*	15.0	4.00		mg/L	1	06/16/20 11:27	EPA160.2		VJW
Sulfate*	215	10.0	1.52	mg/L	10	06/22/20 11:18	EPA300.0		AES
Sulfide	< 0.0500	0.0500	0.0258	mg/L	1	06/18/20 14:00	4500S2-D		VJW
Total Recoverable Metals by ICP (E200.7)									
Boron	< 0.300	0.300	0.087	mg/L	1	06/22/20 10:44	EPA200.7		AES
Calcium*	113	0.100	0.027	mg/L	1	06/22/20 10:44	EPA200.7		AES
Hardness as CaCO3	348	0.662	0.286	mg/L	1	06/22/20 10:44	2340 B		AES
Magnesium*	16.2	0.100	0.053	mg/L	1	06/22/20 10:44	EPA200.7		AES
Dissolved Metals by ICP									
Aluminum*	< 0.050	0.050	0.012	mg/L	1	06/16/20 16:42	EPA200.7		AES
Iron*	0.069	0.050	0.018	mg/L	1	06/16/20 16:42	EPA200.7		AES

Green Analytical Laboratories

seldie Zufett

www.GreenAnalytical.com

SME Project: Allard

679 E 2nd Ave, Ste E2 Project Name / Number: Allard

Durango CO, 81301 Project Manager: Clinton Casey

Reported:

06/26/20 16:51

1

2006116-01 (Surface Water)

Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analyst
Dissolved Metals by ICPMS									
Arsenic*	0.0053	0.0005	0.0001	mg/L	1	06/17/20 14:05	EPA200.8		AES
Cadmium*	< 0.0001	0.0001	0.00007	mg/L	1	06/17/20 14:05	EPA200.8		AES
Chromium*	< 0.0020	0.0020	0.0004	mg/L	2	06/19/20 13:23	EPA200.8		AES
Copper*	< 0.0010	0.0010	0.0004	mg/L	2	06/19/20 13:23	EPA200.8		AES
Lead*	< 0.0005	0.0005	0.0001	mg/L	1	06/17/20 14:05	EPA200.8		AES
Manganese*	0.550	0.0010	0.0002	mg/L	2	06/19/20 13:23	EPA200.8		AES
Molybdenum*	0.0005	0.0005	0.0001	mg/L	1	06/17/20 14:05	EPA200.8		AES
Nickel*	0.0075	0.0010	0.0005	mg/L	2	06/19/20 13:23	EPA200.8		AES
Selenium*	< 0.0010	0.0010	0.0005	mg/L	1	06/17/20 14:05	EPA200.8		AES
Silver*	< 0.0002	0.0002	0.00007	mg/L	1	06/17/20 14:05	EPA200.8		AES
Uranium	0.0026	0.0005	0.0002	mg/L	1	06/17/20 14:05	EPA200.8		AES
Zinc*	0.0755	0.0040	0.0006	mg/L	2	06/19/20 13:23	EPA200.8		AES
Dissolved Mercury by CVAA									
Mercury*	< 0.0002	0.0002	0.00001	mg/L	1	06/16/20 12:45	EPA245.1		LLG

Green Analytical Laboratories

Deldie Zufett

Durango CO, 81301

dzufelt@greenanalytical.com p: 970.247.4220 f: 970.247.4227 75 Suttle Street Durango, CO 81303

www.GreenAnalytical.com

SME Project: Allard 679 E 2nd Ave, Ste E2 Project Name / Number: Allard

Project Manager: Clinton Casey

Reported: 06/26/20 16:51

2

2006116-02 (Surface Water)

Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analys
General Chemistry									
Alkalinity, Bicarbonate as CaCO3*	<10.0	10.0	7.16	mg/L	1	06/22/20 14:25	2320 B		VJW
Alkalinity, Carbonate as CaCO3*	<10.0	10.0		mg/L	1	06/22/20 14:25	2320 B		VJW
Alkalinity, Hydroxide as CaCO3*	<10.0	10.0		mg/L	1	06/22/20 14:25	2320 B		VJW
Alkalinity, Total as CaCO3*	<10.0	10.0	7.16	mg/L	1	06/22/20 14:25	2320 B		VJW
Ammonia as N	< 0.100	0.100	0.0251	mg NH3-N/L	1	06/16/20 15:27	EPA350.1		LLG
Chloride*	<1.00	1.00	0.0886	mg/L	1	06/19/20 19:21	EPA300.0		AES
Chlorine, Tot Resid	< 0.100	0.100		mg/L	1	06/12/20 17:15	HACH-DPD	H1	JDA
Conductivity*	73.4	5.00		umho/cm @ 25.0°C	1	06/13/20 12:40	2510 B		FGH
Cyanide, Total*	< 0.0100	0.0100	0.00122	mg/L	1	06/17/20 16:04	EPA335.4		LLG
Nitrate as N*	0.161	0.020	0.010	mg/L	1	06/12/20 18:15	EPA300.0		AES
Nitrate+Nitrite as N by IC	0.161	0.0400	0.0155	mg/L	1	06/12/20 18:15	EPA300.0		AES
Nitrite as N*	< 0.020	0.020	0.005	mg/L	1	06/12/20 18:15	EPA300.0		AES
pH*	4.34			pH Units	1	06/13/20 12:40	EPA150.1		FGH
Phosphorus, Total	< 0.0500	0.0500	0.00904	mg P/L	1	06/19/20 16:06	EPA365.1		LLG
Total Dissolved Solids*	60.0	10.0		mg/L	1	06/16/20 14:25	EPA160.1		VJW
Total Suspended Solids*	<4.00	4.00		mg/L	1	06/16/20 11:27	EPA160.2		VJW
Sulfate*	25.5	1.00	0.152	mg/L	1	06/19/20 19:21	EPA300.0		AES
Sulfide	< 0.0500	0.0500	0.0258	mg/L	1	06/18/20 14:00	4500S2-D		VJW
Total Recoverable Metals by ICP (E200.7)									
Boron	< 0.300	0.300	0.087	mg/L	1	06/22/20 10:48	EPA200.7		AES
Calcium*	6.79	0.100	0.027	mg/L	1	06/22/20 10:48	EPA200.7		AES
Hardness as CaCO3	20.0	0.662	0.286	mg/L	1	06/22/20 10:48	2340 B		AES
Magnesium*	0.735	0.100	0.053	mg/L	1	06/22/20 10:48	EPA200.7		AES
Dissolved Metals by ICP									
Aluminum*	1.24	0.050	0.012	mg/L	1	06/16/20 16:46	EPA200.7		AES
Iron*	0.584	0.050	0.018	mg/L	1	06/16/20 16:46	EPA200.7		AES

Green Analytical Laboratories

Deblie Zufett

www.GreenAnalytical.com

SME 679 E 2nd Ave, Ste E2 Durango CO, 81301 Project: Allard
Project Name / Number: Allard
Project Manager: Clinton Casey

Reported:

06/26/20 16:51

2

2006116-02 (Surface Water)

Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analyst
Dissolved Metals by ICPMS									
Arsenic*	< 0.0005	0.0005	0.0001	mg/L	1	06/17/20 14:09	EPA200.8		AES
Cadmium*	0.0003	0.0001	0.00007	mg/L	1	06/17/20 14:09	EPA200.8		AES
Chromium*	< 0.0010	0.0010	0.0002	mg/L	1	06/17/20 14:09	EPA200.8		AES
Copper*	0.254	0.0005	0.0002	mg/L	1	06/17/20 14:09	EPA200.8		AES
Lead*	0.0026	0.0005	0.0001	mg/L	1	06/17/20 14:09	EPA200.8		AES
Manganese*	0.144	0.0005	0.0001	mg/L	1	06/17/20 14:09	EPA200.8		AES
Molybdenum*	< 0.0005	0.0005	0.0001	mg/L	1	06/17/20 14:09	EPA200.8		AES
Nickel*	0.0027	0.0005	0.0003	mg/L	1	06/17/20 14:09	EPA200.8		AES
Selenium*	< 0.0010	0.0010	0.0005	mg/L	1	06/17/20 14:09	EPA200.8		AES
Silver*	< 0.0002	0.0002	0.00007	mg/L	1	06/17/20 14:09	EPA200.8		AES
Uranium	0.0005	0.0005	0.0002	mg/L	1	06/17/20 14:09	EPA200.8		AES
Zinc*	0.0753	0.0020	0.0003	mg/L	1	06/17/20 14:09	EPA200.8		AES
Dissolved Mercury by CVAA									
Mercury*	< 0.0002	0.0002	0.00001	mg/L	1	06/16/20 12:45	EPA245.1		LLG

Green Analytical Laboratories

Deldie Zufett

www.GreenAnalytical.com

SME Project: Allard

679 E 2nd Ave, Ste E2 Project Name / Number: Allard

Durango CO, 81301 Project Manager: Clinton Casey

Reported:

06/26/20 16:51

3

2006116-03 (Surface Water)

Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analyst
General Chemistry									
Alkalinity, Bicarbonate as CaCO3*	<10.0	10.0	7.16	mg/L	1	06/22/20 14:25	2320 B		VJW
Alkalinity, Carbonate as CaCO3*	<10.0	10.0		mg/L	1	06/22/20 14:25	2320 B		VJW
Alkalinity, Hydroxide as CaCO3*	<10.0	10.0		mg/L	1	06/22/20 14:25	2320 B		VJW
Alkalinity, Total as CaCO3*	<10.0	10.0	7.16	mg/L	1	06/22/20 14:25	2320 B		VJW
Ammonia as N	< 0.100	0.100	0.0251	mg NH3-N/L	1	06/16/20 15:28	EPA350.1		LLG
Chloride*	<1.00	1.00	0.0886	mg/L	1	06/19/20 20:20	EPA300.0		AES
Chlorine, Tot Resid	< 0.100	0.100		mg/L	1	06/12/20 17:15	HACH-DPD	H1	JDA
Conductivity*	86.2	5.00		umho/cm @ 25.0°C	1	06/13/20 12:40	2510 B		FGH
Cyanide, Total*	< 0.0100	0.0100	0.00122	mg/L	1	06/17/20 16:05	EPA335.4		LLG
Nitrate as N*	0.147	0.020	0.010	mg/L	1	06/12/20 18:34	EPA300.0		AES
Nitrate+Nitrite as N by IC	0.147	0.0400	0.0155	mg/L	1	06/12/20 18:34	EPA300.0		AES
Nitrite as N*	< 0.020	0.020	0.005	mg/L	1	06/12/20 18:34	EPA300.0		AES
pH*	5.15			pH Units	1	06/13/20 12:40	EPA150.1		FGH
Phosphorus, Total	< 0.0500	0.0500	0.00904	mg P/L	1	06/19/20 16:07	EPA365.1		LLG
Total Dissolved Solids*	70.0	10.0		mg/L	1	06/16/20 14:25	EPA160.1		VJW
Total Suspended Solids*	<4.00	4.00		mg/L	1	06/16/20 11:27	EPA160.2		VJW
Sulfate*	29.9	1.00	0.152	mg/L	1	06/19/20 20:20	EPA300.0		AES
Sulfide	< 0.0500	0.0500	0.0258	mg/L	1	06/18/20 14:00	4500S2-D		VJW
Total Recoverable Metals by ICP (E200.7)									
Boron	< 0.300	0.300	0.087	mg/L	1	06/22/20 10:55	EPA200.7		AES
Calcium*	10.7	0.100	0.027	mg/L	1	06/22/20 10:55	EPA200.7		AES
Hardness as CaCO3	31.8	0.662	0.286	mg/L	1	06/22/20 10:55	2340 B		AES
Magnesium*	1.26	0.100	0.053	mg/L	1	06/22/20 10:55	EPA200.7		AES
Dissolved Metals by ICP									
Aluminum*	0.820	0.050	0.012	mg/L	1	06/16/20 16:48	EPA200.7		AES
Iron*	0.078	0.050	0.018	mg/L	1	06/16/20 16:48	EPA200.7		AES

Green Analytical Laboratories

Deldie Zufett

www.GreenAnalytical.com

SME 679 E 2nd Ave, Ste E2 Durango CO, 81301 Project: Allard
Project Name / Number: Allard
Project Manager: Clinton Casey

Reported: 06/26/20 16:51

3

2006116-03 (Surface Water)

Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analyst
Dissolved Metals by ICPMS									
Arsenic*	< 0.0005	0.0005	0.0001	mg/L	1	06/17/20 14:26	EPA200.8		AES
Cadmium*	0.0003	0.0001	0.00007	mg/L	1	06/17/20 14:26	EPA200.8		AES
Chromium*	< 0.0010	0.0010	0.0002	mg/L	1	06/17/20 14:26	EPA200.8		AES
Copper*	0.230	0.0005	0.0002	mg/L	1	06/17/20 14:26	EPA200.8		AES
Lead*	0.0011	0.0005	0.0001	mg/L	1	06/17/20 14:26	EPA200.8		AES
Manganese*	0.0928	0.0005	0.0001	mg/L	1	06/17/20 14:26	EPA200.8		AES
Molybdenum*	< 0.0005	0.0005	0.0001	mg/L	1	06/17/20 14:26	EPA200.8		AES
Nickel*	0.0024	0.0005	0.0003	mg/L	1	06/17/20 14:26	EPA200.8		AES
Selenium*	< 0.0010	0.0010	0.0005	mg/L	1	06/17/20 14:26	EPA200.8		AES
Silver*	< 0.0002	0.0002	0.00007	mg/L	1	06/17/20 14:26	EPA200.8		AES
Uranium	< 0.0005	0.0005	0.0002	mg/L	1	06/17/20 14:26	EPA200.8		AES
Zinc*	0.0648	0.0020	0.0003	mg/L	1	06/17/20 14:26	EPA200.8		AES
Dissolved Mercury by CVAA									
Mercury*	< 0.0002	0.0002	0.00001	mg/L	1	06/16/20 12:45	EPA245.1		LLG

Green Analytical Laboratories

Deldie Zufett

Durango CO, 81301

dzufelt@greenanalytical.com p: 970.247.4220 f: 970.247.4227 75 Suttle Street Durango, CO 81303

www.GreenAnalytical.com

SME Project: Allard 679 E 2nd Ave, Ste E2 Project Name / Number: Allard

Project Manager: Clinton Casey

Reported: 06/26/20 16:51

4

2006116-04 (Surface Water)

			`						
Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analys
General Chemistry									
Alkalinity, Bicarbonate as CaCO3*	34.0	10.0	7.16	mg/L	1	06/22/20 14:25	2320 B		VJW
Alkalinity, Carbonate as CaCO3*	<10.0	10.0		mg/L	1	06/22/20 14:25	2320 B		VJW
Alkalinity, Hydroxide as CaCO3*	<10.0	10.0		mg/L	1	06/22/20 14:25	2320 B		VJW
Alkalinity, Total as CaCO3*	34.0	10.0	7.16	mg/L	1	06/22/20 14:25	2320 B		VJW
Ammonia as N	< 0.100	0.100	0.0251	mg NH3-N/L	1	06/16/20 15:30	EPA350.1		LLG
Chloride*	<1.00	1.00	0.0886	mg/L	1	06/19/20 21:18	EPA300.0		AES
Chlorine, Tot Resid	< 0.100	0.100		mg/L	1	06/12/20 17:15	HACH-DPD	H1	JDA
Conductivity*	100	5.00		umho/cm @ 25.0°C	1	06/13/20 12:40	2510 B		FGH
Cyanide, Total*	< 0.0100	0.0100	0.00122	mg/L	1	06/17/20 16:06	EPA335.4		LLG
Nitrate as N*	0.045	0.020	0.010	mg/L	1	06/12/20 18:52	EPA300.0		AES
Nitrate+Nitrite as N by IC	0.0450	0.0400	0.0155	mg/L	1	06/12/20 18:52	EPA300.0		AES
Nitrite as N*	< 0.020	0.020	0.005	mg/L	1	06/12/20 18:52	EPA300.0		AES
pH*	7.15			pH Units	1	06/13/20 12:40	EPA150.1		FGH
Phosphorus, Total	< 0.0500	0.0500	0.00904	mg P/L	1	06/19/20 16:08	EPA365.1		LLG
Total Dissolved Solids*	45.0	10.0		mg/L	1	06/16/20 14:25	EPA160.1		VJW
Total Suspended Solids*	<4.00	4.00		mg/L	1	06/16/20 11:27	EPA160.2		VJW
Sulfate*	11.7	1.00	0.152	mg/L	1	06/19/20 21:18	EPA300.0		AES
Sulfide	< 0.0500	0.0500	0.0258	mg/L	1	06/18/20 14:00	4500S2-D		VJW
Total Recoverable Metals by ICP (E200.7)									
Boron	< 0.300	0.300	0.087	mg/L	1	06/22/20 11:01	EPA200.7		AES
Calcium*	17.6	0.100	0.027	mg/L	1	06/22/20 11:01	EPA200.7		AES
Hardness as CaCO3	52.6	0.662	0.286	mg/L	1	06/22/20 11:01	2340 B		AES
Magnesium*	2.09	0.100	0.053	mg/L	1	06/22/20 11:01	EPA200.7		AES
Dissolved Metals by ICP									
Aluminum*	< 0.050	0.050	0.012	mg/L	1	06/16/20 16:50	EPA200.7		AES
Iron*	< 0.050	0.050	0.018	mg/L	1	06/16/20 16:50	EPA200.7		AES

Green Analytical Laboratories

Deldie Zufett

www.GreenAnalytical.com

SME 679 E 2nd Ave, Ste E2 Project Name / Number: Allard Durango CO, 81301

Reported: Project Manager: Clinton Casey 06/26/20 16:51

4

Project: Allard

2006116-04 (Surface Water)

Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analyst
Dissolved Metals by ICPMS									
Arsenic*	< 0.0005	0.0005	0.0001	mg/L	1	06/17/20 14:37	EPA200.8		AES
Cadmium*	< 0.0001	0.0001	0.00007	mg/L	1	06/17/20 14:37	EPA200.8		AES
Chromium*	< 0.0010	0.0010	0.0002	mg/L	1	06/17/20 14:37	EPA200.8		AES
Copper*	0.0028	0.0005	0.0002	mg/L	1	06/17/20 14:37	EPA200.8		AES
Lead*	< 0.0005	0.0005	0.0001	mg/L	1	06/17/20 14:37	EPA200.8		AES
Manganese*	0.0012	0.0005	0.0001	mg/L	1	06/17/20 14:37	EPA200.8		AES
Molybdenum*	0.0009	0.0005	0.0001	mg/L	1	06/17/20 14:37	EPA200.8		AES
Nickel*	0.0007	0.0005	0.0003	mg/L	1	06/17/20 14:37	EPA200.8		AES
Selenium*	< 0.0010	0.0010	0.0005	mg/L	1	06/17/20 14:37	EPA200.8		AES
Silver*	< 0.0002	0.0002	0.00007	mg/L	1	06/17/20 14:37	EPA200.8		AES
Uranium	< 0.0005	0.0005	0.0002	mg/L	1	06/17/20 14:37	EPA200.8		AES
Zinc*	0.0294	0.0020	0.0003	mg/L	1	06/17/20 14:37	EPA200.8		AES
Dissolved Mercury by CVAA									
Mercury*	< 0.0002	0.0002	0.00001	mg/L	1	06/16/20 12:45	EPA245.1		LLG

Green Analytical Laboratories

lie Zufett

Durango CO, 81301

dzufelt@greenanalytical.com p: 970.247.4220 f: 970.247.4227 75 Suttle Street Durango, CO 81303

www.GreenAnalytical.com

Reported:

SME Project: Allard 679 E 2nd Ave, Ste E2 Project Name / Number: Allard

Project Manager: Clinton Casey 06/26/20 16:51

2006116-05 (Surface Water)

5

Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analyst
General Chemistry									
Alkalinity, Bicarbonate as CaCO3*	29.0	10.0	7.16	mg/L	1	06/22/20 14:25	2320 B		VJW
Alkalinity, Carbonate as CaCO3*	<10.0	10.0		mg/L	1	06/22/20 14:25	2320 B		VJW
Alkalinity, Hydroxide as CaCO3*	<10.0	10.0		mg/L	1	06/22/20 14:25	2320 B		VJW
Alkalinity, Total as CaCO3*	29.0	10.0	7.16	mg/L	1	06/22/20 14:25	2320 B		VJW
Ammonia as N	< 0.100	0.100	0.0251	mg NH3-N/L	1	06/16/20 15:31	EPA350.1		LLG
Chloride*	<1.00	1.00	0.0886	mg/L	1	06/19/20 21:37	EPA300.0		AES
Chlorine, Tot Resid	< 0.100	0.100		mg/L	1	06/12/20 17:15	HACH-DPD	H1	JDA
Conductivity*	101	5.00		umho/cm @ 25.0°C	1	06/13/20 12:40	2510 B		FGH
Cyanide, Total*	< 0.0100	0.0100	0.00122	mg/L	1	06/17/20 16:07	EPA335.4		LLG
Nitrate as N*	0.049	0.020	0.010	mg/L	1	06/12/20 19:47	EPA300.0		AES
Nitrate+Nitrite as N by IC	0.0486	0.0400	0.0155	mg/L	1	06/12/20 19:47	EPA300.0		AES
Nitrite as N*	< 0.020	0.020	0.005	mg/L	1	06/12/20 19:47	EPA300.0		AES
pH*	7.15			pH Units	1	06/13/20 12:40	EPA150.1		FGH
Phosphorus, Total	< 0.0500	0.0500	0.00904	mg P/L	1	06/19/20 16:08	EPA365.1		LLG
Total Dissolved Solids*	45.0	10.0		mg/L	1	06/16/20 14:25	EPA160.1		VJW
Total Suspended Solids*	<4.00	4.00		mg/L	1	06/16/20 11:27	EPA160.2		VJW
Sulfate*	12.7	1.00	0.152	mg/L	1	06/19/20 21:37	EPA300.0		AES
Sulfide	< 0.0500	0.0500	0.0258	mg/L	1	06/18/20 14:00	4500S2-D		VJW
Total Recoverable Metals by ICP (E200.7)									
Boron	< 0.300	0.300	0.087	mg/L	1	06/22/20 11:04	EPA200.7		AES
Calcium*	17.2	0.100	0.027	mg/L	1	06/22/20 11:04	EPA200.7		AES
Hardness as CaCO3	51.2	0.662	0.286	mg/L	1	06/22/20 11:04	2340 B		AES
Magnesium*	2.02	0.100	0.053	mg/L	1	06/22/20 11:04	EPA200.7		AES
Dissolved Metals by ICP									
Aluminum*	< 0.050	0.050	0.012	mg/L	1	06/16/20 16:53	EPA200.7		AES
Iron*	< 0.050	0.050	0.018	mg/L	1	06/16/20 16:53	EPA200.7		AES

Green Analytical Laboratories

Deldie Zufett

www.GreenAnalytical.com

SME
679 E 2nd Ave, Ste E2
Project N
Durango CO, 81301
P.

Project: Allard
Project Name / Number: Allard
Project Manager: Clinton Casey

Reported: 06/26/20 16:51

5

2006116-05 (Surface Water)

Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analyst
Dissolved Metals by ICPMS									
Arsenic*	< 0.0005	0.0005	0.0001	mg/L	1	06/17/20 14:40	EPA200.8		AES
Cadmium*	< 0.0001	0.0001	0.00007	mg/L	1	06/17/20 14:40	EPA200.8		AES
Chromium*	< 0.0010	0.0010	0.0002	mg/L	1	06/17/20 14:40	EPA200.8		AES
Copper*	0.0052	0.0005	0.0002	mg/L	1	06/17/20 14:40	EPA200.8		AES
Lead*	< 0.0005	0.0005	0.0001	mg/L	1	06/17/20 14:40	EPA200.8		AES
Manganese*	0.0017	0.0005	0.0001	mg/L	1	06/17/20 14:40	EPA200.8		AES
Molybdenum*	0.0008	0.0005	0.0001	mg/L	1	06/17/20 14:40	EPA200.8		AES
Nickel*	0.0007	0.0005	0.0003	mg/L	1	06/17/20 14:40	EPA200.8		AES
Selenium*	< 0.0010	0.0010	0.0005	mg/L	1	06/17/20 14:40	EPA200.8		AES
Silver*	< 0.0002	0.0002	0.00007	mg/L	1	06/17/20 14:40	EPA200.8		AES
Uranium	< 0.0005	0.0005	0.0002	mg/L	1	06/17/20 14:40	EPA200.8		AES
Zinc*	0.0029	0.0020	0.0003	mg/L	1	06/17/20 14:40	EPA200.8		AES
Dissolved Mercury by CVAA									
Mercury*	< 0.0002	0.0002	0.00001	mg/L	1	06/16/20 12:45	EPA245.1	M5	LLG

Green Analytical Laboratories

Dellie Zufett

www.GreenAnalytical.com

SME Project: Allard

679 E 2nd Ave, Ste E2 Project Name / Number: Allard

Durango CO, 81301 Project Manager: Clinton Casey

Reported: 06/26/20 16:51

6

2006116-06 (Surface Water)

			`						
Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analys
General Chemistry									
Alkalinity, Bicarbonate as CaCO3*	18.0	10.0	7.16	mg/L	1	06/22/20 14:25	2320 B		VJW
Alkalinity, Carbonate as CaCO3*	<10.0	10.0		mg/L	1	06/22/20 14:25	2320 B		VJW
Alkalinity, Hydroxide as CaCO3*	<10.0	10.0		mg/L	1	06/22/20 14:25	2320 B		VJW
Alkalinity, Total as CaCO3*	18.0	10.0	7.16	mg/L	1	06/22/20 14:25	2320 B		VJW
Ammonia as N	< 0.100	0.100	0.0251	mg NH3-N/L	1	06/16/20 15:32	EPA350.1		LLG
Chloride*	<1.00	1.00	0.0886	mg/L	1	06/23/20 14:54	EPA300.0		AES
Chlorine, Tot Resid	< 0.100	0.100		mg/L	1	06/12/20 17:15	HACH-DPD	H1	JDA
Conductivity*	70.2	5.00		umho/cm @ 25.0°C	1	06/13/20 12:40	2510 B		FGH
Cyanide, Total*	< 0.0100	0.0100	0.00122	mg/L	1	06/17/20 16:08	EPA335.4		LLG
Nitrate as N*	0.041	0.020	0.010	mg/L	1	06/12/20 20:06	EPA300.0		AES
Nitrate+Nitrite as N by IC	0.0405	0.0400	0.0155	mg/L	1	06/12/20 20:06	EPA300.0		AES
Nitrite as N*	< 0.020	0.020	0.005	mg/L	1	06/12/20 20:06	EPA300.0		AES
pH*	7.04			pH Units	1	06/13/20 12:40	EPA150.1		FGH
Phosphorus, Total	< 0.0500	0.0500	0.00904	mg P/L	1	06/19/20 16:09	EPA365.1		LLG
Total Dissolved Solids*	95.0	10.0		mg/L	1	06/16/20 14:25	EPA160.1		VJW
Total Suspended Solids*	<4.00	4.00		mg/L	1	06/16/20 11:27	EPA160.2		VJW
Sulfate*	9.23	1.00	0.152	mg/L	1	06/23/20 14:54	EPA300.0		AES
Sulfide	< 0.0500	0.0500	0.0258	mg/L	1	06/18/20 14:00	4500S2-D		VJW
Total Recoverable Metals by ICP (E200.7)									
Boron	< 0.300	0.300	0.087	mg/L	1	06/22/20 11:06	EPA200.7		AES
Calcium*	11.1	0.100	0.027	mg/L	1	06/22/20 11:06	EPA200.7		AES
Hardness as CaCO3	33.2	0.662	0.286	mg/L	1	06/22/20 11:06	2340 B		AES
Magnesium*	1.33	0.100	0.053	mg/L	1	06/22/20 11:06	EPA200.7		AES
Dissolved Metals by ICP									
Aluminum*	< 0.050	0.050	0.012	mg/L	1	06/16/20 16:55	EPA200.7		AES
Iron*	< 0.050	0.050	0.018	mg/L	1	06/16/20 16:55	EPA200.7		AES

Green Analytical Laboratories

Deldie Zufett

www.GreenAnalytical.com

SME 679 E 2nd Ave, Ste E2 Durango CO, 81301 Project: Allard
Project Name / Number: Allard
Project Manager: Clinton Casey

Reported: 06/26/20 16:51

6

2006116-06 (Surface Water)

Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analyst
< 0.0005	0.0005	0.0001	mg/L	1	06/17/20 14:44	EPA200.8		AES
< 0.0001	0.0001	0.00007	mg/L	1	06/17/20 14:44	EPA200.8		AES
< 0.0010	0.0010	0.0002	mg/L	1	06/17/20 14:44	EPA200.8		AES
0.0017	0.0005	0.0002	mg/L	1	06/17/20 14:44	EPA200.8		AES
< 0.0005	0.0005	0.0001	mg/L	1	06/17/20 14:44	EPA200.8		AES
0.0011	0.0005	0.0001	mg/L	1	06/17/20 14:44	EPA200.8		AES
0.0009	0.0005	0.0001	mg/L	1	06/17/20 14:44	EPA200.8		AES
< 0.0005	0.0005	0.0003	mg/L	1	06/17/20 14:44	EPA200.8		AES
< 0.0010	0.0010	0.0005	mg/L	1	06/17/20 14:44	EPA200.8		AES
< 0.0002	0.0002	0.00007	mg/L	1	06/17/20 14:44	EPA200.8		AES
< 0.0005	0.0005	0.0002	mg/L	1	06/17/20 14:44	EPA200.8		AES
0.0025	0.0020	0.0003	mg/L	1	06/17/20 14:44	EPA200.8		AES
< 0.0002	0.0002	0.00001	mg/L	1	06/16/20 12:45	EPA245.1		LLG
	<0.0001 <0.0010 0.0017 <0.0005 0.0011 0.0009 <0.0005 <0.0010 <0.0002 <0.0005 0.0025	<0.0005	<0.0005 0.0005 0.0001 <0.0001 0.0001 0.00007 <0.0010 0.0010 0.0002 <0.0017 0.0005 0.0001 <0.0005 0.0001 0.0001 <0.0011 0.0005 0.0001 <0.0009 0.0005 0.0001 <0.0005 0.0005 0.0003 <0.0010 0.0010 0.0005 <0.0002 0.0002 0.00007 <0.0005 0.0005 0.0002 <0.0005 0.0002 0.0002 <0.0025 0.0020 0.0003	<0.0005 0.0005 0.0001 mg/L <0.0001 0.0001 0.00007 mg/L <0.0010 0.0010 0.0002 mg/L 0.0017 0.0005 0.0002 mg/L <0.0005 0.0001 mg/L 0.0011 0.0005 0.0001 mg/L <0.0009 0.0005 0.0001 mg/L <0.0005 0.0003 mg/L <0.0010 0.0010 0.0005 mg/L <0.0002 0.0002 0.00007 mg/L <0.0005 0.0005 0.0002 mg/L <0.0005 0.0002 0.0002 mg/L	<0.0005 0.0005 0.0001 mg/L 1 <0.0001 0.0001 0.00007 mg/L 1 <0.0010 0.0010 0.0002 mg/L 1 0.0017 0.0005 0.0002 mg/L 1 <0.0005 0.0001 mg/L 1 0.0011 0.0005 0.0001 mg/L 1 <0.0009 0.0005 0.0001 mg/L 1 <0.0005 0.0003 mg/L 1 <0.0010 0.0010 0.0003 mg/L 1 <0.0002 0.0002 0.00007 mg/L 1 <0.0005 0.0005 0.0002 mg/L 1	 <0.0005 0.0005 0.0001 mg/L 1 06/17/20 14:44 <0.0001 0.0001 0.0002 mg/L 1 06/17/20 14:44 <0.0017 0.0005 0.0002 mg/L 1 06/17/20 14:44 <0.0005 0.0001 mg/L 1 06/17/20 14:44 <0.0011 0.0005 0.0001 mg/L 1 06/17/20 14:44 <0.0009 0.0005 0.0001 mg/L 1 06/17/20 14:44 <0.0005 0.0001 mg/L 1 06/17/20 14:44 <0.0005 0.0003 mg/L 1 06/17/20 14:44 <0.0010 0.0010 0.0005 mg/L 1 06/17/20 14:44 <0.0002 0.0002 0.0007 mg/L 1 06/17/20 14:44 <0.0005 0.0005 0.0002 0.0002 0.0003 mg/L 1 06/17/20 14:44 <0.0005 0.0005 0.0002 0.0002 0.0003 mg/L 1 06/17/20 14:44 <0.0025 0.0020 0.0003 mg/L 1 06/17/20 14:44 <0.001/20 14:44 	 <0.0005	 <0.0005

Green Analytical Laboratories

Deldin Zufett

www.GreenAnalytical.com

SME Project: Allard

679 E 2nd Ave, Ste E2 Project Name / Number: Allard

Durango CO, 81301 Project Manager: Clinton Casey

Reported:

06/26/20 16:51

7

2006116-07 (Surface Water)

		200011		acc (facci)					
Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analyst
General Chemistry									
Alkalinity, Bicarbonate as CaCO3*	31.0	10.0	7.16	mg/L	1	06/22/20 14:25	2320 B		VJW
Alkalinity, Carbonate as CaCO3*	<10.0	10.0		mg/L	1	06/22/20 14:25	2320 B		VJW
Alkalinity, Hydroxide as CaCO3*	<10.0	10.0		mg/L	1	06/22/20 14:25	2320 B		VJW
Alkalinity, Total as CaCO3*	31.0	10.0	7.16	mg/L	1	06/22/20 14:25	2320 B		VJW
Ammonia as N	< 0.100	0.100	0.0251	mg NH3-N/L	1	06/16/20 15:38	EPA350.1		LLG
Chloride*	<1.00	1.00	0.0886	mg/L	1	06/23/20 15:52	EPA300.0		AES
Chlorine, Tot Resid	< 0.100	0.100		mg/L	1	06/12/20 17:15	HACH-DPD		JDA
Conductivity*	108	5.00		umho/cm @ 25.0°C	1	06/13/20 12:40	2510 B		FGH
Cyanide, Total*	< 0.0100	0.0100	0.00122	mg/L	1	06/17/20 16:11	EPA335.4		LLG
Nitrate as N*	0.046	0.020	0.010	mg/L	1	06/12/20 20:24	EPA300.0		AES
Nitrate+Nitrite as N by IC	0.0456	0.0400	0.0155	mg/L	1	06/12/20 20:24	EPA300.0		AES
Nitrite as N*	< 0.020	0.020	0.005	mg/L	1	06/12/20 20:24	EPA300.0		AES
pH*	7.20			pH Units	1	06/13/20 12:40	EPA150.1		FGH
Phosphorus, Total	< 0.0500	0.0500	0.00904	mg P/L	1	06/19/20 16:12	EPA365.1		LLG
Total Dissolved Solids*	90.0	10.0		mg/L	1	06/16/20 14:25	EPA160.1		VJW
Total Suspended Solids*	<4.00	4.00		mg/L	1	06/16/20 11:27	EPA160.2		VJW
Sulfate*	12.9	1.00	0.152	mg/L	1	06/23/20 15:52	EPA300.0		AES
Sulfide	< 0.0500	0.0500	0.0258	mg/L	1	06/18/20 14:00	4500S2-D		VJW
Total Recoverable Metals by ICP (E200.7)									
Boron	< 0.300	0.300	0.087	mg/L	1	06/22/20 11:13	EPA200.7		AES
Calcium*	18.3	0.100	0.027	mg/L	1	06/22/20 11:13	EPA200.7		AES
Hardness as CaCO3	53.6	0.662	0.286	mg/L	1	06/22/20 11:13	2340 B		AES
Magnesium*	1.94	0.100	0.053	mg/L	1	06/22/20 11:13	EPA200.7		AES
Dissolved Metals by ICP									
Aluminum*	< 0.050	0.050	0.012	mg/L	1	06/16/20 16:57	EPA200.7		AES
Iron*	< 0.050	0.050	0.018	mg/L	1	06/16/20 16:57	EPA200.7		AES

Green Analytical Laboratories

Debbie Zufett

www.GreenAnalytical.com

SME 679 E 2nd Ave, Ste E2 Durango CO, 81301 Project: Allard
Project Name / Number: Allard
Project Manager: Clinton Casey

Reported:

06/26/20 16:51

7

2006116-07 (Surface Water)

		DI) (D)	** **	D.11		36.1.1	37.	
Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analyst
Dissolved Metals by ICPMS									
Arsenic*	< 0.0005	0.0005	0.0001	mg/L	1	06/17/20 14:48	EPA200.8		AES
Cadmium*	< 0.0001	0.0001	0.00007	mg/L	1	06/17/20 14:48	EPA200.8		AES
Chromium*	< 0.0010	0.0010	0.0002	mg/L	1	06/17/20 14:48	EPA200.8		AES
Copper*	0.0067	0.0005	0.0002	mg/L	1	06/17/20 14:48	EPA200.8		AES
Lead*	< 0.0005	0.0005	0.0001	mg/L	1	06/17/20 14:48	EPA200.8		AES
Manganese*	0.0009	0.0005	0.0001	mg/L	1	06/17/20 14:48	EPA200.8		AES
Molybdenum*	< 0.0005	0.0005	0.0001	mg/L	1	06/17/20 14:48	EPA200.8		AES
Nickel*	0.0009	0.0005	0.0003	mg/L	1	06/17/20 14:48	EPA200.8		AES
Selenium*	< 0.0010	0.0010	0.0005	mg/L	1	06/17/20 14:48	EPA200.8		AES
Silver*	< 0.0002	0.0002	0.00007	mg/L	1	06/17/20 14:48	EPA200.8		AES
Uranium	< 0.0005	0.0005	0.0002	mg/L	1	06/17/20 14:48	EPA200.8		AES
Zinc*	0.0036	0.0020	0.0003	mg/L	1	06/17/20 14:48	EPA200.8		AES
Dissolved Mercury by CVAA									
Mercury*	< 0.0002	0.0002	0.00001	mg/L	1	06/16/20 12:45	EPA245.1		LLG

Green Analytical Laboratories

Deldie Zufett

www.GreenAnalytical.com

SME Project: Allard

679 E 2nd Ave, Ste E2 Project Name / Number: Allard

Durango CO, 81301 Project Manager: Clinton Casey

Reported: 06/26/20 16:51

8

2006116-08 (Surface Water)

Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analyst
General Chemistry									
Alkalinity, Bicarbonate as CaCO3*	<10.0	10.0	7.16	mg/L	1	06/22/20 14:25	2320 B		VJW
Alkalinity, Carbonate as CaCO3*	<10.0	10.0		mg/L	1	06/22/20 14:25	2320 B		VJW
Alkalinity, Hydroxide as CaCO3*	<10.0	10.0		mg/L	1	06/22/20 14:25	2320 B		VJW
Alkalinity, Total as CaCO3*	<10.0	10.0	7.16	mg/L	1	06/22/20 14:25	2320 B		VJW
Ammonia as N	< 0.100	0.100	0.0251	mg NH3-N/L	1	06/16/20 15:42	EPA350.1		LLG
Chloride*	<1.00	1.00	0.0886	mg/L	1	06/23/20 16:56	EPA300.0		AES
Chlorine, Tot Resid	< 0.100	0.100		mg/L	1	06/12/20 17:15	HACH-DPD		JDA
Conductivity*	152	5.00		umho/cm @ 25.0°C	1	06/13/20 12:40	2510 B		FGH
Cyanide, Total*	< 0.0100	0.0100	0.00122	mg/L	1	06/17/20 16:14	EPA335.4		LLG
Nitrate as N*	0.133	0.020	0.010	mg/L	1	06/12/20 20:43	EPA300.0		AES
Nitrate+Nitrite as N by IC	0.133	0.0400	0.0155	mg/L	1	06/12/20 20:43	EPA300.0		AES
Nitrite as N*	< 0.020	0.020	0.005	mg/L	1	06/12/20 20:43	EPA300.0		AES
pH*	3.71			pH Units	1	06/13/20 12:40	EPA150.1		FGH
Phosphorus, Total	< 0.0500	0.0500	0.00904	mg P/L	1	06/19/20 16:13	EPA365.1		LLG
Total Dissolved Solids*	110	10.0		mg/L	1	06/16/20 14:25	EPA160.1		VJW
Total Suspended Solids*	<4.00	4.00		mg/L	1	06/19/20 16:35	EPA160.2		VJW
Sulfate*	84.6	2.00	0.305	mg/L	2	06/25/20 09:49	EPA300.0		AES
Sulfide	< 0.0500	0.0500	0.0258	mg/L	1	06/18/20 14:00	4500S2-D		VJW
Total Recoverable Metals by ICP (E200.7)									
Boron	< 0.300	0.300	0.087	mg/L	1	06/22/20 11:15	EPA200.7		AES
Calcium*	15.0	0.100	0.027	mg/L	1	06/22/20 11:15	EPA200.7		AES
Hardness as CaCO3	48.7	0.662	0.286	mg/L	1	06/22/20 11:15	2340 B		AES
Magnesium*	2.70	0.100	0.053	mg/L	1	06/22/20 11:15	EPA200.7		AES
Dissolved Metals by ICP									
Aluminum*	5.83	0.050	0.012	mg/L	1	06/16/20 16:58	EPA200.7		AES
Iron*	0.298	0.050	0.018	mg/L	1	06/16/20 16:58	EPA200.7		AES

Green Analytical Laboratories

Deldie Zufett

www.GreenAnalytical.com

Reported:

SME 679 E 2nd Ave, Ste E2 Project Name / Number: Allard Durango CO, 81301

Project Manager: Clinton Casey 06/26/20 16:51

8

Project: Allard

2006116-08 (Surface Water)

Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analyst
Dissolved Metals by ICPMS									
Arsenic*	< 0.0025	0.0025	0.0005	mg/L	5	06/19/20 13:26	EPA200.8		AES
Cadmium*	0.0009	0.0001	0.00007	mg/L	1	06/17/20 14:51	EPA200.8		AES
Chromium*	< 0.0010	0.0010	0.0002	mg/L	1	06/17/20 14:51	EPA200.8		AES
Copper*	0.852	0.0005	0.0002	mg/L	1	06/17/20 14:51	EPA200.8		AES
Lead*	< 0.0005	0.0005	0.0001	mg/L	1	06/17/20 14:51	EPA200.8		AES
Manganese*	0.333	0.0005	0.0001	mg/L	1	06/17/20 14:51	EPA200.8		AES
Molybdenum*	< 0.0025	0.0025	0.0006	mg/L	5	06/19/20 13:26	EPA200.8		AES
Nickel*	0.0100	0.0005	0.0003	mg/L	1	06/17/20 14:51	EPA200.8		AES
Selenium*	< 0.0050	0.0050	0.0027	mg/L	5	06/19/20 13:26	EPA200.8		AES
Silver*	< 0.0002	0.0002	0.00007	mg/L	1	06/17/20 14:51	EPA200.8		AES
Uranium	0.0043	0.0005	0.0002	mg/L	1	06/17/20 14:51	EPA200.8		AES
Zinc*	0.107	0.0020	0.0003	mg/L	1	06/17/20 14:51	EPA200.8		AES
Dissolved Mercury by CVAA									
Mercury*	< 0.0002	0.0002	0.00001	mg/L	1	06/16/20 12:45	EPA245.1		LLG

Green Analytical Laboratories

seldie Zufett

www.GreenAnalytical.com

SME Project: Allard

679 E 2nd Ave, Ste E2 Project Name / Number: Allard Reported:

Durango CO, 81301 Project Manager: Clinton Casey 06/26/20 16:51

General Chemistry - Quality Control

Analysis	D 1/	Reporting	TTute	Spike	Source	0/PEC	%REC	DDD	RPD	NT /
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B201027 - General Prep - Wet Chem										
Blank (B201027-BLK1)			Prepa	ared & Ana	lyzed: 06/12	2/20				
Nitrate as N	ND	0.020	mg/L							
Nitrite as N	ND	0.020	mg/L							
LCS (B201027-BS1)			Prepa	ared & Ana	lyzed: 06/12	2/20				
Nitrate as N	0.953	0.020	mg/L	1.00		95.3	90-110			
Nitrite as N	1.08	0.020	mg/L	1.00		108	90-110			
LCS Dup (B201027-BSD1)			Prepa	ared & Ana	lyzed: 06/12	2/20				
Nitrate as N	0.956	0.020	mg/L	1.00		95.6	90-110	0.314	20	
Nitrite as N	1.06	0.020	mg/L	1.00		106	90-110	2.41	20	
Batch B201030 - General Prep - Wet Chem										
Blank (B201030-BLK1)			Prepa	ared: 06/12/	20 Analyz	ed: 06/16/2	0			
Ammonia as N	ND	0.100 n	ng NH3-N/L							
LCS (B201030-BS1)			Prepa	ared: 06/12/	20 Analyz	ed: 06/16/2	0			
Ammonia as N	2.73	0.100 n	ng NH3-N/L	2.50		109	90-110			
LCS Dup (B201030-BSD1)			Prepa	ared: 06/12/	20 Analyz	ed: 06/16/2	0			
Ammonia as N	2.73	0.100 n	ng NH3-N/L	2.50		109	90-110	0.0660	20	
Batch B201031 - General Prep - Wet Chem										
Blank (B201031-BLK1)			Prepa	ared & Ana	lyzed: 06/1	7/20				
Cyanide, Total	ND	0.0100	mg/L		•					
LCS (B201031-BS1)			Prepa	ared & Ana	lyzed: 06/1	7/20				
Cyanide, Total	0.0989	0.0100	mg/L	0.100	·	98.9	90-110			
LCS Dup (B201031-BSD1)			Prepa	ared & Ana	lyzed: 06/1	7/20				
Cyanide, Total	0.100	0.0100	mg/L	0.100	·	100	90-110	1.41	20	
Batch B201040 - General Prep - Wet Chem										
Blank (B201040-BLK1)			Prens	ared: 06/15/	20 Analyz	ed: 06/16/2	0			
Total Suspended Solids	ND	4.00	mg/L							
Batch B201042 - General Prep - Wet Chem			-							
Duplicate (B201042-DUP1)	Sou	rce: 2006116-0	01 Pren	ared & Ana	lyzed: 06/1	3/20				
Conductivity	662		ımho/cm @		653	5.20		1.37	20	
•			25.0°C						-	
Reference (B201042-SRM1)			Prepa	ared & Ana	lyzed: 06/1	3/20				
Conductivity	491	5.00 ı	ımho/cm @	488		101	90-110			
			25.0°C							

Green Analytical Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. In no event shall Green Analytical Laboratories be liable for incidental or consequential damages. GALs liability, and clients exclusive remedy for any claim arising, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever, shall be deemed waived unless made in writing and received within thirty days after completion of the applicable service.

Deldie Zufett

www.GreenAnalytical.com

SMEProject: Allard679 E 2nd Ave, Ste E2Project Name / Number: AllardReported:Durango CO, 81301Project Manager: Clinton Casey06/26/20 16:51

General Chemistry - Quality Control (Continued)

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B201044 - General Prep - Wet Chem (Linit		20,01	TOBUIT		Zimto		Liiiit	1,0003
Duplicate (B201044-DUP1)		·ce: 2006116-0	1 Drange	ead & Anal	lyzed: 06/1	3/20				
рН	6.96	ce. 2000110-0	pH Units	cu & Alla	6.99	3/20		0.430	20	
Reference (B201044-SRM1)			•	red & Anal	lyzed: 06/1	3/20				
pH	7.09		pH Units	7.00	1y2ca. 00/1.	101	98.5-101.4			
Batch B201046 - General Prep - Wet Chem	,,,,,		pri omio	7100		101	70.0 101			
Blank (B201046-BLK1)			Prepai	red & Anal	lyzed: 06/12	2/20				
Chlorine, Tot Resid	ND	0.100	mg/L		,					
Duplicate (B201046-DUP1)	Som	ce: 2006116-0	1 Prepar	red & Anal	lyzed: 06/12	2/20				
Chlorine, Tot Resid	ND	0.100	mg/L		ND				20	
Batch B201047 - General Prep - Wet Chem										
Blank (B201047-BLK1)			Prepai	red: 06/15/	20 Analyz	ed: 06/16/2	0			
Ammonia as N	ND	0.100 m	ng NH3-N/L							
LCS (B201047-BS1)			Prepai	red: 06/15/	20 Analyz	ed: 06/16/2	0.0			
Ammonia as N	2.73	0.100 m	g NH3-N/L	2.50		109	90-110			
LCS Dup (B201047-BSD1)			Prepai	red: 06/15/	20 Analyz	ed: 06/16/2	0			
Ammonia as N	2.73	0.100 m	ng NH3-N/L	2.50	20 mary2	109	90-110	0.0330	20	
Batch B201048 - General Prep - Wet Chem										
Blank (B201048-BLK1)			Prepai	red: 06/15/	20 Analyz	ed: 06/19/2	.0			
Chloride	ND	1.00	mg/L							
Sulfate	ND	1.00	mg/L							
LCS (B201048-BS1)			Prepai	red: 06/15/	20 Analyz	ed: 06/19/2	0.0			
Chloride	23.4	1.00	mg/L	25.0		93.6	90-110			
Sulfate	23.6	1.00	mg/L	25.0		94.3	90-110			
LCS Dup (B201048-BSD1)			Prepar	red: 06/15/	20 Analyz	ed: 06/19/2	.0			
Chloride	23.4	1.00	mg/L	25.0		93.6	90-110	0.0812	20	
Sulfate	23.6	1.00	mg/L	25.0		94.5	90-110	0.233	20	
Batch B201055 - General Prep - Wet Chem										
Blank (B201055-BLK1)			Prepai	red & Anal	lyzed: 06/1	6/20				
Total Dissolved Solids	ND	10.0	mg/L							
Duplicate (B201055-DUP1)	Sour	ce: 2006091-0	Prepai	red & Anal	lyzed: 06/1	6/20				
Total Dissolved Solids	130	10.0	mg/L		115			12.3	20	
Reference (B201055-SRM1)			Prepai	red & Anal	lyzed: 06/1	6/20				
Total Dissolved Solids	550	10.0	mg/L	570	-	96.5	85-115			

Green Analytical Laboratories

Deldie Zufett

www.GreenAnalytical.com

SME Project: Allard

679 E 2nd Ave, Ste E2 Project Name / Number: Allard Reported:

Durango CO, 81301 Project Manager: Clinton Casey 06/26/20 16:51

General Chemistry - Quality Control (Continued)

Analysis	D 1	Reporting	11'.	Spike	Source	0/PEC	%REC	DDD	RPD	NT 4
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B201068 - General Prep - Wet Chem										
Blank (B201068-BLK1)			Prep	ared: 06/17/	20 Analyz	ed: 06/19/2	0			
Phosphorus, Total	ND	0.0500	mg P/L							
LCS (B201068-BS1)			Prep	ared: 06/17/	20 Analyz	ed: 06/19/2	0			
Phosphorus, Total	2.68	0.0500	mg P/L	2.50		107	90-110			
LCS Dup (B201068-BSD1)			Prep	ared: 06/17/	20 Analyz	ed: 06/19/2	0			
Phosphorus, Total	2.72	0.0500	mg P/L	2.50		109	90-110	1.28	20	
Batch B201075 - General Prep - Wet Chem										
Blank (B201075-BLK1)			Prep	ared & Anal	lyzed: 06/1	8/20				
Sulfide	ND	0.0500	mg/L							
LCS (B201075-BS1)			Prep	ared & Anal	lyzed: 06/1	8/20				
Sulfide	0.286	0.0500	mg/L	0.250	-	114	85-115			
LCS Dup (B201075-BSD1)			Pren	ared & Anal	lyzed: 06/1	8/20				
Sulfide	0.283	0.0500	mg/L	0.250		113	85-115	1.05	20	
Batch B201084 - General Prep - Wet Chem										
Blank (B201084-BLK1)			Prep	ared & Anal	lyzed: 06/19	9/20				
Total Suspended Solids	ND	4.00	mg/L		-					
Duplicate (B201084-DUP1)	Sou	rce: 2006149-	01 Prep	ared & Anal	lyzed: 06/19	9/20				
Total Suspended Solids	88.6	4.00	mg/L		77.1			13.8	20	
Reference (B201084-SRM1)			Prep	ared & Anal	lyzed: 06/19	9/20				
Total Suspended Solids	97.0	4.00	mg/L	100		97.0	85-115			
Batch B201091 - General Prep - Wet Chem										
Blank (B201091-BLK1)			Prep	ared & Anal	lyzed: 06/2	2/20				
Alkalinity, Bicarbonate as CaCO3	ND	10.0	mg/L							
Alkalinity, Carbonate as CaCO3	ND	10.0	mg/L							
Alkalinity, Hydroxide as CaCO3	ND	10.0	mg/L							
Alkalinity, Total as CaCO3	ND	10.0	mg/L							
LCS (B201091-BS1)			Prep	ared & Anal	lyzed: 06/2	2/20				
Alkalinity, Bicarbonate as CaCO3	94.0	10.0	mg/L				85-115			
Alkalinity, Carbonate as CaCO3	ND	10.0	mg/L				85-115			
Alkalinity, Hydroxide as CaCO3	ND	10.0	mg/L				85-115			
Alkalinity, Total as CaCO3	94.0	10.0	mg/L	100		94.0	85-115			

Green Analytical Laboratories

Deldie Zufett

www.GreenAnalytical.com

SME Project: Allard 679 E 2nd Ave, Ste E2 Project Name / Number: Allard Reported: Durango CO, 81301 Project Manager: Clinton Casey 06/26/20 16:51

General Chemistry - Quality Control (Continued)

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B201091 - General Prep - Wet C	hem (Continued)									
LCS Dup (B201091-BSD1)			Prep	oared & Anal	lyzed: 06/22	2/20				
Alkalinity, Bicarbonate as CaCO3	94.0	10.0	mg/L				85-115	0.00	20	
Alkalinity, Carbonate as CaCO3	ND	10.0	mg/L				85-115		20	
Alkalinity, Hydroxide as CaCO3	ND	10.0	mg/L				85-115		20	
Alkalinity, Total as CaCO3	94.0	10.0	mg/L	100		94.0	85-115	0.00	20	
Batch B201110 - General Prep - Wet C	hem									
Blank (B201110-BLK1)			Prep	ared & Anal	lyzed: 06/23	3/20				
Chloride	ND	1.00	mg/L							
Sulfate	ND	1.00	mg/L							
LCS (B201110-BS1)			Prep	ared & Anal	lyzed: 06/23	3/20				
Chloride	24.1	1.00	mg/L	25.0		96.6	90-110			
Sulfate	24.2	1.00	mg/L	25.0		96.8	90-110			
LCS Dup (B201110-BSD1)			Prep	oared & Anal	lyzed: 06/23	3/20				
Chloride	24.0	1.00	mg/L	25.0		95.8	90-110	0.807	20	
Sulfate	24.0	1.00	mg/L	25.0		96.0	90-110	0.842	20	

Total Recoverable Metals by ICP (E200.7) - Quality Control

	D 1	Reporting	TT 1.	Spike	Source	N/DEG	%REC	DDD	RPD	NT .
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B201057 - Total Rec. 200.7/200.8/200.2										
Blank (B201057-BLK1)			Prep	ared: 06/16/	20 Analyze	ed: 06/22/2	0			
Boron	ND	0.300	mg/L							
Calcium	ND	0.100	mg/L							
Magnesium	ND	0.100	mg/L							
LCS (B201057-BS1)			Prep	ared: 06/16/	20 Analyze	ed: 06/22/2	0			
Boron	4.03	0.300	mg/L	4.00		101	85-115			
Calcium	4.22	0.100	mg/L	4.00		105	85-115			
Magnesium	20.6	0.100	mg/L	20.0		103	85-115			
LCS Dup (B201057-BSD1)			Prep	ared: 06/16/	20 Analyze	ed: 06/22/2	0			
Boron	4.06	0.300	mg/L	4.00		102	85-115	0.676	20	
Calcium	4.19	0.100	mg/L	4.00		105	85-115	0.587	20	
Magnesium	20.5	0.100	mg/L	20.0		102	85-115	0.529	20	

Green Analytical Laboratories

seldie Zufett

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. In no event shall Green Analytical Laboratories be liable for incidental or consequential damages. GALs liability, and clients exclusive remedy for any claim arising, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever, shall be deemed waived unless made in writing and received within thirty days after completion of the applicable service.

www.GreenAnalytical.com

SME Project: Allard

679 E 2nd Ave, Ste E2 Project Name / Number: Allard Reported:

Durango CO, 81301 Project Manager: Clinton Casey 06/26/20 16:51

Dissolved Metals by ICP - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B201059 - Diss. 200.7/200.8										
Blank (B201059-BLK1)			Prep	ared & Ana	lyzed: 06/16	6/20				
Aluminum	ND	0.050	mg/L							
Iron	ND	0.050	mg/L							
LCS (B201059-BS1)			Prep	ared & Ana	lyzed: 06/16	5/20				
Aluminum	4.89	0.050	mg/L	5.00		97.8	85-115			
Iron	4.78	0.050	mg/L	5.00		95.6	85-115			
LCS Dup (B201059-BSD1)			Prep	ared & Ana	lyzed: 06/16	6/20				
Aluminum	4.88	0.050	mg/L	5.00		97.6	85-115	0.212	20	
Iron	4.79	0.050	mg/L	5.00		95.9	85-115	0.232	20	

Green Analytical Laboratories

Deldie Zufett

www.GreenAnalytical.com

SME Project: Allard 679 E 2nd Ave, Ste E2 Project Name / Number: Allard Reported: Durango CO, 81301 Project Manager: Clinton Casey 06/26/20 16:51

Dissolved Metals by ICPMS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B201061 - Diss. 200.7/200.8										
Blank (B201061-BLK1)			Prep	oared: 06/16/2	20 Analyze	ed: 06/17/20	0			
Arsenic	ND	0.0005	mg/L							
Cadmium	ND	0.0001	mg/L							
Chromium	ND	0.0010	mg/L							
Copper	ND	0.0005	mg/L							
Lead	ND	0.0005	mg/L							
Manganese	ND	0.0005	mg/L							
Molybdenum	ND	0.0005	mg/L							
Nickel	ND	0.0005	mg/L							
Selenium	ND	0.0010	mg/L							
Silver	ND	0.0002	mg/L							
Uranium	ND	0.0005	mg/L							
Zinc	ND	0.0020	mg/L							
LCS (B201061-BS1)			Prep	oared: 06/16/2	20 Analyze	ed: 06/17/20	0			
Arsenic	0.0464	0.0005	mg/L	0.0500		92.8	85-115			
Cadmium	0.0481	0.0001	mg/L	0.0500		96.1	85-115			
Chromium	0.0470	0.0010	mg/L	0.0500		94.0	85-115			
Copper	0.0458	0.0005	mg/L	0.0500		91.7	85-115			
Lead	0.0482	0.0005	mg/L	0.0500		96.4	85-115			
Manganese	0.0477	0.0005	mg/L	0.0500		95.5	85-115			
Molybdenum	0.0478	0.0005	mg/L	0.0500		95.6	85-115			
Nickel	0.0461	0.0005	mg/L	0.0500		92.1	85-115			
Selenium	0.239	0.0010	mg/L	0.250		95.4	85-115			
Silver	0.0478	0.0002	mg/L	0.0500		95.7	85-115			
Uranium	0.0473	0.0005	mg/L	0.0500		94.5	85-115			
Zinc	0.0468	0.0020	mg/L	0.0500		93.5	85-115			
LCS Dup (B201061-BSD1)			Prep	oared: 06/16/2	20 Analyze	ed: 06/17/20	0			
Arsenic	0.0459	0.0005	mg/L	0.0500		91.7	85-115	1.18	20	
Cadmium	0.0469	0.0001	mg/L	0.0500		93.8	85-115	2.51	20	
Chromium	0.0457	0.0010	mg/L	0.0500		91.4	85-115	2.84	20	
Copper	0.0449	0.0005	mg/L	0.0500		89.7	85-115	2.12	20	
Lead	0.0476	0.0005	mg/L	0.0500		95.1	85-115	1.33	20	
Manganese	0.0466	0.0005	mg/L	0.0500		93.1	85-115	2.49	20	
Molybdenum	0.0475	0.0005	mg/L	0.0500		95.0	85-115	0.619	20	
Nickel	0.0447	0.0005	mg/L	0.0500		89.4	85-115	3.04	20	
Selenium	0.235	0.0010	mg/L	0.250		94.2	85-115	1.34	20	
Silver	0.0471	0.0002	mg/L	0.0500		94.2	85-115	1.49	20	
Uranium	0.0468	0.0005	mg/L	0.0500		93.6	85-115	0.985	20	
Zinc	0.0455	0.0020	mg/L	0.0500		90.9	85-115	2.81	20	

Green Analytical Laboratories

seldie Zufett

www.GreenAnalytical.com

SME Project: Allard

679 E 2nd Ave, Ste E2 Project Name / Number: Allard Reported:

Durango CO, 81301 Project Manager: Clinton Casey 06/26/20 16:51

Dissolved Mercury by CVAA - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B201034 - EPA 245.1/7470										
Blank (B201034-BLK1)			Prep	pared: 06/12/2	20 Analyz	ed: 06/16/20)			
Mercury	ND	0.0002	mg/L							
LCS (B201034-BS1)			Prep	oared: 06/12/2	20 Analyz	ed: 06/16/20)			
Mercury	0.0049	0.0002	mg/L	0.00500		98.3	85-115			
LCS Dup (B201034-BSD1)			Prep	oared: 06/12/2	20 Analyz	ed: 06/16/20)			
Mercury	0.0052	0.0002	mg/L	0.00500		104	85-115	5.81	20	

Green Analytical Laboratories

Deldie Zufett

www.GreenAnalytical.com

SME Project: Allard

679 E 2nd Ave, Ste E2 Project Name / Number: Allard Reported:

Durango CO, 81301 Project Manager: Clinton Casey 06/26/20 16:51

Notes and Definitions

M5 Sample was chosen for matrix spike. Spike recovery did not meet laboratory acceptance criteria, possible matrix interference in sample.

H1 Sample was received several days after collected and subsequently analyzed past hold time.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

*Results reported on as received basis unless designated as dry.

RPD Relative Percent Difference

LCS Laboratory Control Sample (Blank Spike)

RL Report Limit

MDL Method Detection Limit

Green Analytical Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. In no event shall Green Analytical Laboratories be liable for incidental or consequential damages. GALs liability, and clients exclusive remedy for any claim arising, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever, shall be deemed waived unless made in writing and received within thirty days after completion of the applicable service.

seldie Zufett

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

COC - Revision 6.0 FORM-006

Page 27 of 29 2006116 GAL FINAL 06 26 20 1651 06/26/20 16:52:05

(970) 247-4220 Fax: (970) 247-4227

jenna.emerick@greenanalytical.com or dzufelt@greenanalytical.com
75 Suttle St Durango, CO 81303

Company or Client: 5.	SME			Bill to (if different):	lifferent):		ANALYSIS REQUEST	UEST
7.	East and Are Unit	63		P.O. #:				7
City: Overso	State: CO	Zip: 8(30)	10	Company:				
Phone #: 970-2.	50-258-8545			Attn:				
Contact Person: Cl.	lint Casey			Address:				
Email Report to:	aser 6 sne-env .c	100%		City:				
Project Name(optional):	٥			State: Zip:		d		
				Phone #:		h.		
Sampler Name (Print):				Email:		ac		
		Collected	cted	rix (check one)	# of containers	Ho		
For Lab Use	Sample Name or Location	Date	Time	GROUNDWATER SURFACEWATER WASTEWATER PRODUCEDWATER SOIL DRINKING WATER OTHER:		SeeA		
10-011-9002	1	11/9	1400	4		X		
20-911	+	6/11	1300	<		×		
Co. 911	4	11/9	1430	<		× ,		
116-04	2	1119	1630	<		×		
10.01	` ` `	0/11	000			< >		
16-07	7	[]]	730	< <		× >		
30-911	8	6/12	143b	(4 4 4	×		
PLEASE NOTE: GAL's liability and client's e by GAL within 30 days after completion. In n by GAL regardless of whether such claim is	PLEASE NOTE: GAL's liability and client's exclusive remedy for any claim arising whether based in contract or fort, shall be limited to the amount paid by the client for the analyses. All claims including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and receive yellow the processors arising out of or registed to the performance of services hereunder by GAL, recordings of whether such claim is based upon any of the above standed reasons or otherwise.	or tort, shall be limited to ges, including without limi	the amount paid by	y the client for the analyses. All claims i	including those for negligence and sincurred by client, its subsidiaries, at	any other cause whats	ose for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received client, its subsidiaries, affiliates or successors arising out of or related to the performance of services hereunder	made in writing and received ance of services hereunder
Relinquished By: Chita Can	Time: 17:00	Received B	A W	1	ADDITIONAL REMARKS:	REMARKS:	Report to State? (Circle) Yes No	te? (Circle)
	Time:	No control of						
Relinquished By:	Dates	Received By:			lose #01	150 HO		
	Time:				8	100		
Relinquished By:	Date:	Received By:			5.5/5	2.6	D'T	
	Time				Temperature a	treceipt: CHI	CHECKED BY	

Project Information

SME

679 E 2nd Ave, Ste E2

Durango, CO 81301

Debbie Zufelt

Phone: (970) 259-9595

6/12/2020

Fax:-

Project Name:

Allard

Project Number:

Laboratory PM:

May 14, 2020

Client PM:

Clinton Casey

Comments:

Analysis

Comment

Alkalinity, Bicarbonate

Alkalinity, Carbonate

Alkalinity, Hydroxide

Alkalinity, Total

Aluminum Dissolved by ICP

Ammonia

Arsenic Dissolved by ICPMS

Boron 200.2 by ICP

Cadmium Dissolved by ICPMS

Chloride by IC

Chlorine, Total Residual

Chromium III, Dissolved by ICPMS Dun Only T-Ch per D.Z. & C.C. 06.12-20

Conductivity

Copper Dissolved by ICPMS

Cyanide, Total

Hardness, 200.2 Metals

Iron Dissolved by ICP

Lead Dissolved by ICPMS

Manganese Dissolved by ICPMS

Mercury Dissolved by CVAA

Molybdenum Dissolved by ICPMS

Nickel Dissolved by ICPMS

Nitrate/Nitrite as N by IC Package

pH

Phosphate as P, Total by Lachat

Selenium Dissolved by ICPMS

Silver Dissolved by ICPMS

Solids, Total Dissolved (TDS)

Solids, Total Suspended (TSS)

Sulfate by IC

Sulfide

Uranium Dissolved by ICPMS

Zinc Dissolved by ICPMS

Chromium III, Dissolved by ICPMS subanalyses:

Chromium Dissolved by ICPMS

Chromium, Hexavalent Dissolved

Project Information

SME

679 E 2nd Ave, Ste E2

Durango, CO 81301

Debbie Zufelt

Phone: (970) 259-9595

6/12/2020

Fax:-

Project Name:

Allard

Project Number:

Laboratory PM:

May 14, 2020

Client PM:

Clinton Casey

Comments:

Analysis

Comment

Hardness, 200.2 Metals subanalyses:

Calcium 200.2 by ICP

Magnesium 200.2 by ICP

Nitrate/Nitrite as N by IC Package subanalyses:

Nitrate as N by IC

Nitrite as N by IC

75 Suttle Street Durango, CO 81303 970.247.4220 Phone 970.247.4227 Fax www.greenanalytical.com

08 October 2020

Clinton Casey SME 679 E 2nd Ave, Ste E2 Durango, CO 81301

RE: Allard

Enclosed are the results of analyses for samples received by the laboratory on 09/24/20 15:30. If you need any further assistance, please feel free to contact me.

Sincerely,

Debbie Zufelt

Reports Manager

Dellie Zufett

All accredited analytes contained in this report are denoted by an asterisk (*). For a complete list of accredited analytes please do not hesitate to contact us via any of the contact information contained in this report. All of our certifications can be viewed at http://greenanalytical.com/certifications/

Green Analytical Laboratories is NELAP accredited through the Texas Commission on Environmental Quality. Accreditation applies to drinking water and non-potable water matrices for trace metals and a variety of inorganic parameters. Green Analytical Laboratories is also accredited through the Colorado Department of Public Health and Environment and EPA region 8 for trace metals, Cyanide, Fluoride, Nitrate, and Nitrite in drinking water.

Our affiliate laboratory, Cardinal Laboratories, is also NELAP accredited through the Texas Commission on Environmental Quality for a variety of organic constituents in drinking water, non-potable water and solid matrices. Cardinal is also accredited for regulated VOCs, TTHM, and HAA-5 in drinking water through the Colorado Department of Public Health and Environment and EPA region 8.

www.GreenAnalytical.com

SME Project: Allard

679 E 2nd Ave, Ste E2 Project Name / Number: Allard

Durango CO, 81301 Project Manager: Clinton Casey

Reported: 10/08/20 16:42

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received Notes
Allard 8	2009301-01	Water	09/24/20 12:00	09/24/20 15:30

Green Analytical Laboratories

Deldie Zufett

www.GreenAnalytical.com

SME Project: Allard

679 E 2nd Ave, Ste E2 Project Name / Number: Allard Reported:

Durango CO, 81301 Project Manager: Clinton Casey 10/08/20 16:42

Allard 8

2009301-01 (Surface Water)

		_00,00	I or (Suii	ucc mucci,					
Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analys
General Chemistry									
Alkalinity, Bicarbonate as CaCO3*	<10.0	10.0	7.16	mg/L	1	10/01/20 09:30	2320 B		VJW
Alkalinity, Carbonate as CaCO3*	<10.0	10.0		mg/L	1	10/01/20 09:30	2320 B		VJW
Alkalinity, Hydroxide as CaCO3*	<10.0	10.0		mg/L	1	10/01/20 09:30	2320 B		VJW
Alkalinity, Total as CaCO3*	<10.0	10.0	7.16	mg/L	1	10/01/20 09:30	2320 B		VJW
Ammonia as N	< 0.100	0.100	0.0251	mg NH3-N/L	1	10/01/20 15:12	EPA350.1		LLG
Chloride*	<1.00	1.00	0.0886	mg/L	1	10/07/20 22:49	EPA300.0		AES
Chlorine, Tot Resid	< 0.100	0.100		mg/L	1	09/25/20 10:00	HACH-DPD		JDA
Chromium VI, Dissolved	< 0.00800	0.00800	0.00423	mg/L	1	09/25/20 11:25	3500-Cr D		LLG
Conductivity*	494	1.00		umho/cm @ 25.0°C	1	09/25/20 09:15	2510 B		VJW
Cyanide, Total*	< 0.0100	0.0100	0.00122	mg/L	1	09/30/20 16:17	EPA335.4		LLG
Nitrate as N*	0.170	0.020	0.010	mg/L	1	09/24/20 22:08	EPA300.0		AES
Nitrate+Nitrite as N by IC	0.170	0.0400	0.0155	mg/L	1	09/24/20 22:08	EPA300.0		AES
Nitrite as N*	< 0.020	0.020	0.005	mg/L	1	09/24/20 22:08	EPA300.0	M5	AES
H*	3.78			pH Units	1	09/25/20 15:30	EPA150.1		VJW
Phosphorus, Total	< 0.0500	0.0500	0.00904	mg P/L	1	09/29/20 15:36	EPA365.1		LLG
otal Dissolved Solids*	300	10.0		mg/L	1	09/29/20 16:35	EPA160.1		VJW
Total Suspended Solids*	<4.00	4.00		mg/L	1	09/24/20 16:58	EPA160.2		VJW
Sulfate*	303	10.0	1.52	mg/L	10	10/08/20 11:17	EPA300.0		AES
ulfide	< 0.0500	0.0500	0.0258	mg/L	1	09/30/20 14:00	4500S2-D		VJW
Total Recoverable Metals by ICP (E20	0.7)								
Boron	< 0.300	0.300	0.087	mg/L	1	09/29/20 14:22	EPA200.7		JDA
Calcium*	30.5	0.100	0.027	mg/L	1	09/29/20 14:21	EPA200.7		JDA
Hardness as CaCO3	102	0.662	0.286	mg/L	1	09/29/20 14:22	2340 B		JDA
//agnesium*	6.29	0.100	0.053	mg/L	1	09/29/20 14:22	EPA200.7		JDA
Dissolved Metals by ICP									
Aluminum*	28.0	0.050	0.012	mg/L	1	10/07/20 13:27	EPA200.7		AES
ron*	0.567	0.050	0.018	mg/L	1	10/07/20 13:27	EPA200.7		AES
Total Recoverable Metals by ICPMS (I	E200.8)								
Chromium*	0.0137	0.0100	0.0033	mg/L	5	09/30/20 18:02	EPA200.8		JDA

Green Analytical Laboratories

Dellie Zufett

www.GreenAnalytical.com

SME 679 E 2nd Ave, Ste E2 Project Name / Number: Allard Durango CO, 81301 Project Manager: Clinton Casey

Reported:

10/08/20 16:42

Allard 8

Project: Allard

2009301-01 (Surface Water)

Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analyst
Dissolved Metals by ICPMS									
Arsenic*	<0.0200	0.0200	0.0044	mg/L	40	10/06/20 15:08	EPA200.8		AES
Cadmium*	0.0034	0.0200	0.0007	mg/L	1	10/06/20 12:21	EPA200.8		AES
Chromium*	0.0013	0.0010	0.0002	mg/L	1	10/06/20 12:21	EPA200.8		AES
Chromium III, Dissolved	< 0.00800	0.00800	0.00423	mg/L	1	10/06/20 12:21	Calculation		LLG
Copper*	2.80	0.0005	0.0002	mg/L	1	10/06/20 12:21	EPA200.8		AES
Lead*	< 0.0005	0.0005	0.0001	mg/L	1	10/06/20 12:21	EPA200.8		AES
Manganese*	1.51	0.0005	0.0001	mg/L	1	10/06/20 12:21	EPA200.8		AES
Molybdenum*	< 0.0200	0.0200	0.0045	mg/L	40	10/06/20 15:08	EPA200.8		AES
Nickel*	0.0374	0.0005	0.0003	mg/L	1	10/06/20 12:21	EPA200.8		AES
Selenium*	< 0.0400	0.0400	0.0213	mg/L	40	10/06/20 15:08	EPA200.8		AES
Silver*	< 0.0002	0.0002	0.00007	mg/L	1	10/06/20 12:21	EPA200.8		AES
Uranium	0.0216	0.0005	0.0002	mg/L	1	10/06/20 12:21	EPA200.8		AES
Zinc*	0.363	0.0020	0.0003	mg/L	1	10/06/20 12:21	EPA200.8		AES
Dissolved Mercury by CVAA									
Mercury*	< 0.0002	0.0002	0.00001	mg/L	1	10/02/20 14:39	EPA245.1		LLG

Green Analytical Laboratories

Deldie Zufett

www.GreenAnalytical.com

SME Project: Allard

679 E 2nd Ave, Ste E2 Project Name / Number: Allard Reported:

Durango CO, 81301 Project Manager: Clinton Casey 10/08/20 16:42

General Chemistry - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
·	resurt	Limit	- Cinto	Level	resuit	, under	Lillito	МЪ	- Dillit	1,0103	
Batch B202011 - General Prep - Wet Chem											
Blank (B202011-BLK1)			Prepa	ared & Ana	lyzed: 09/24	4/20					
Total Suspended Solids	ND	4.00	mg/L								
Duplicate (B202011-DUP1)	Sou	rce: 2009197-	01 Prepa	ared & Ana	lyzed: 09/24	4/20					
Total Suspended Solids	8.80	4.00	mg/L		8.00			9.52	20		
Reference (B202011-SRM1)			Prepa	ared & Anal	lyzed: 09/24	4/20					
Total Suspended Solids	102	4.00	mg/L	100		102	85-115				
Batch B202013 - General Prep - Wet Chem											
Blank (B202013-BLK1)			Prepa	ared: 09/24/	20 Analyz	ed: 09/26/2	20				
Nitrate as N	ND	0.020	mg/L								
Nitrite as N	ND	0.020	mg/L								
LCS (B202013-BS1)	Prepared & Analyzed: 09/24/20										
Nitrate as N	0.945	0.020	mg/L	1.00		94.5	90-110				
Nitrite as N	1.01	0.020	mg/L	1.00		101	90-110				
LCS Dup (B202013-BSD1)			Prepa	ared & Anal	lyzed: 09/24	4/20					
Nitrate as N	0.952	0.020	mg/L	1.00		95.2	90-110	0.748	20		
Nitrite as N	1.05	0.020	mg/L	1.00		105	90-110	3.27	20		
Batch B202014 - General Prep - Wet Chem											
Blank (B202014-BLK1)			Prepa	ared & Anal	lyzed: 09/2:	5/20					
Chromium VI, Dissolved	ND	0.00800	mg/L								
LCS (B202014-BS1)			Prepa	ared & Anal	lyzed: 09/2:	5/20					
Chromium VI, Dissolved	0.0232	0.00800	mg/L	0.0250		92.7	85-115				
LCS Dup (B202014-BSD1)			Prepa	ared & Anal	lyzed: 09/2:	5/20					
Chromium VI, Dissolved	0.0246	0.00800	mg/L	0.0250		98.3	85-115	5.91	20		
Batch B202028 - General Prep - Wet Chem											
Duplicate (B202028-DUP1)	Sou	rce: 2009301-	01 Prepa	ared & Anal	lyzed: 09/2:	5/20					
pН	3.81		pH Units		3.78			0.791	20		
Reference (B202028-SRM1)			Prepa	ared & Anal	lyzed: 09/2:	5/20					
рН	7.03		pH Units	7.00	-	100	98.5-101.4				
Batch B202030 - General Prep - Wet Chem											
Duplicate (B202030-DUP1)	Sou	rce: 2009301-	01 Prepa	ared & Anal	lyzed: 09/2:	5/20					
Conductivity	494	1.00 u	ımho/cm @		494			0.00	20		
			25.0°C								

Green Analytical Laboratories

Deldie Zufett

www.GreenAnalytical.com

SME Project: Allard

679 E 2nd Ave, Ste E2 Project Name / Number: Allard Reported:

Durango CO, 81301 Project Manager: Clinton Casey 10/08/20 16:42

General Chemistry - Quality Control (Continued)

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B202030 - General Prep - Wet Chem	(Continued)									
Reference (B202030-SRM1)			Prepa	ared & Anal	lyzed: 09/2:	5/20				
Conductivity	476	1.00	umho/cm @ 25.0°C	447		106	90-110			
Batch B202036 - General Prep - Wet Chem										
Blank (B202036-BLK1)			Prepa	ared: 09/28/	20 Analyz	ed: 09/29/20)			
Phosphorus, Total	ND	0.0500	mg P/L							
LCS (B202036-BS1)			Prepa	red: 09/28/	20 Analyz	ed: 09/29/20)			
Phosphorus, Total	2.55	0.0500	mg P/L	2.50		102	90-110			
LCS Dup (B202036-BSD1)			Prepa	red: 09/28/	20 Analyz	ed: 09/29/20)			
Phosphorus, Total	2.53	0.0500	mg P/L	2.50		101	90-110	0.852	20	
Batch B202043 - General Prep - Wet Chem										
Blank (B202043-BLK1)			Prepa	ared & Anal	lyzed: 09/29	9/20				
Total Dissolved Solids	ND	10.0	mg/L							
Duplicate (B202043-DUP1)	Sou	rce: 2009301-	01 Prepa	ared & Anal	lyzed: 09/29	9/20				
Total Dissolved Solids	320	10.0	mg/L		300			6.43	20	
Reference (B202043-SRM1)			Prepa	ared & Ana	lyzed: 09/29	9/20				
Total Dissolved Solids	370	10.0	mg/L	380		97.4	85-115			
Batch B202049 - General Prep - Wet Chem										
Blank (B202049-BLK1)			Prepa	ared: 09/29/	20 Analyz	ed: 09/30/20)			
Cyanide, Total	ND	0.0100	mg/L							
LCS (B202049-BS1)			Prepa	ared: 09/29/	20 Analyz	ed: 09/30/20)			
Cyanide, Total	0.106	0.0100	mg/L	0.100		106	90-110			
LCS Dup (B202049-BSD1)			Prepa	ared: 09/29/	20 Analyz	ed: 09/30/20)			
Cyanide, Total	0.0942	0.0100	mg/L	0.100		94.2	90-110	11.7	20	
Batch B202060 - General Prep - Wet Chem										
Blank (B202060-BLK1)			Prepa	nred & Ana	lyzed: 09/30	0/20				
Sulfide	ND	0.0500	mg/L							
LCS (B202060-BS1)			Prepa	ared & Ana	lyzed: 09/30	0/20				
Sulfide	0.286	0.0500	mg/L	0.250		114	85-115			
			Prepa	ared & Anal	lyzed: 09/30	0/20				
LCS Dup (B202060-BSD1)										

Green Analytical Laboratories

Dellie Zufett

www.GreenAnalytical.com

SMEProject: Allard679 E 2nd Ave, Ste E2Project Name / Number: AllardReported:Durango CO, 81301Project Manager: Clinton Casey10/08/20 16:42

General Chemistry - Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B202063 - General Prep - Wet Chem	(Continued)									
Blank (B202063-BLK1)			Prepar	red: 09/30/2	0 Analyze	ed: 10/01/20	0			
Ammonia as N	ND	0.100 m	g NH3-N/L							
LCS (B202063-BS1)			Prepar	red: 09/30/2	0 Analyze	ed: 10/01/20	0			
Ammonia as N	2.70	0.100 m	g NH3-N/L	2.50	•	108	90-110			
LCS Dup (B202063-BSD1)			Prepar	red: 09/30/2	0 Analyze	ed: 10/01/20	0			
Ammonia as N	2.66	0.100 m	g NH3-N/L	2.50		106	90-110	1.41	20	
Batch B202069 - General Prep - Wet Chem										
Blank (B202069-BLK1)			Prepai	red & Analy	zed: 09/24	1/20				
Chlorine, Tot Resid	ND	0.100	mg/L							
Duplicate (B202069-DUP2)	Sour	ce: 2009301-0	1 Prepar	red & Analy	zed: 09/25	5/20				
Chlorine, Tot Resid	ND	0.100	mg/L		ND	-			20	
Batch B202081 - General Prep - Wet Chem			Ü							
Blank (B202081-BLK1)			Prepar	red & Analy	zed: 10/01	/20				
Alkalinity, Bicarbonate as CaCO3	ND	10.0	mg/L							
Alkalinity, Carbonate as CaCO3	ND	10.0	mg/L							
Alkalinity, Hydroxide as CaCO3	ND	10.0	mg/L							
Alkalinity, Total as CaCO3	ND	10.0	mg/L							
LCS (B202081-BS1)			Prepar	red & Analy	zed: 10/01	/20				
Alkalinity, Bicarbonate as CaCO3	103	10.0	mg/L				85-115			
Alkalinity, Carbonate as CaCO3	ND	10.0	mg/L				85-115			
Alkalinity, Hydroxide as CaCO3	ND	10.0	mg/L				85-115			
Alkalinity, Total as CaCO3	103	10.0	mg/L	100		103	85-115			
LCS Dup (B202081-BSD1)			Prepar	red & Analy	zed: 10/01	/20				
Alkalinity, Bicarbonate as CaCO3	104	10.0	mg/L	<u> </u>			85-115	0.966	20	
Alkalinity, Carbonate as CaCO3	ND	10.0	mg/L				85-115		20	
Alkalinity, Hydroxide as CaCO3	ND	10.0	mg/L				85-115		20	
Alkalinity, Total as CaCO3	104	10.0	mg/L	100		104	85-115	0.966	20	
Batch B202105 - General Prep - Wet Chem										
Blank (B202105-BLK1)			Prepar	red: 10/06/2	0 Analyze	ed: 10/07/20	0			
Chloride	ND	1.00	mg/L							
Sulfate	ND	1.00	mg/L							
LCS (B202105-BS1)			Prepar	red: 10/06/2	0 Analyze	ed: 10/07/20	0			
Chloride	23.1	1.00	mg/L	25.0		92.4	90-110			
Sulfate	23.6	1.00	mg/L	25.0		94.3	90-110			

Green Analytical Laboratories

Deldie Zufett

Sulfate

dzufelt@greenanalytical.com p: 970.247.4220 f: 970.247.4227 75 Suttle Street Durango, CO 81303

www.GreenAnalytical.com

SME Project: Allard

679 E 2nd Ave, Ste E2 Project Name / Number: Allard Reported:

Durango CO, 81301 Project Manager: Clinton Casey 10/08/20 16:42

General Chemistry - Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B202105 - General Prep - We	et Chem (Continued)									
LCS Dup (B202105-BSD1)			Prep	ared: 10/06/	20 Analyz	ed: 10/07/20	0			
Chloride	23.2	1.00	mg/L	25.0		92.9	90-110	0.570	20	

Total Recoverable Metals by ICP (E200.7) - Quality Control

25.0

95.3

90-110

1.06

20

mg/L

1.00

23.8

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B202034 - Total Rec. 200.7/200.8/200.2										
Blank (B202034-BLK1)			Prep	ared: 09/28/	20 Analyz	ed: 09/29/2	0			
Boron	ND	0.300	mg/L		·	·			·	·
Calcium	ND	0.100	mg/L							
Magnesium	ND	0.100	mg/L							
LCS (B202034-BS1)			Prep	ared: 09/28/	20 Analyz	ed: 09/29/2	0			
Boron	3.66	0.300	mg/L	4.00		91.5	85-115			
Calcium	3.64	0.100	mg/L	4.00		91.0	85-115			
Magnesium	18.6	0.100	mg/L	20.0		93.1	85-115			
LCS Dup (B202034-BSD1)			Prep	ared: 09/28/	20 Analyz	ed: 09/29/2	0			
Boron	3.67	0.300	mg/L	4.00		91.6	85-115	0.132	20	
Calcium	3.63	0.100	mg/L	4.00		90.7	85-115	0.366	20	
Magnesium	18.6	0.100	mg/L	20.0		92.8	85-115	0.275	20	

Green Analytical Laboratories

Deldie Zufett

www.GreenAnalytical.com

SME Project: Allard

679 E 2nd Ave, Ste E2 Project Name / Number: Allard Reported:

Durango CO, 81301 Project Manager: Clinton Casey 10/08/20 16:42

Dissolved Metals by ICP - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B202104 - Diss. 200.7/200.8										
Blank (B202104-BLK1)			Prep	oared: 10/06/	20 Analyzo	ed: 10/07/20	0			
Aluminum	ND	0.050	mg/L							
Iron	ND	0.050	mg/L							
LCS (B202104-BS1)			Prep	ared: 10/06/	20 Analyz	ed: 10/07/20	0			
Aluminum	4.97	0.050	mg/L	5.00		99.4	85-115			
Iron	4.75	0.050	mg/L	5.00		95.0	85-115			
LCS Dup (B202104-BSD1)			Prep	oared: 10/06/	20 Analyz	ed: 10/07/20	0			
Aluminum	4.91	0.050	mg/L	5.00		98.2	85-115	1.21	20	
Iron	4.69	0.050	mg/L	5.00		93.7	85-115	1.35	20	

Total Recoverable Metals by ICPMS (E200.8) - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B202035 - Total Rec. 200.7/20	00.8/200.2									
Blank (B202035-BLK1)			Prep	oared: 09/28/	20 Analyz	ed: 09/30/20)			
Chromium	ND	0.0020	mg/L							
LCS (B202035-BS1)			Prep	oared: 09/28/	20 Analyz	ed: 09/30/20)			
Chromium	0.0534	0.0020	mg/L	0.0500		107	85-115			
LCS Dup (B202035-BSD1)			Prep	oared: 09/28/	20 Analyz	ed: 09/30/20)			
Chromium	0.0567	0.0020	mg/L	0.0500		113	85-115	5.94	20	

Green Analytical Laboratories

Deldie Zufett

www.GreenAnalytical.com

SME Project: Allard 679 E 2nd Ave, Ste E2 Project Name / Number: Allard Reported: 10/08/20 16:42 Durango CO, 81301 Project Manager: Clinton Casey

Dissolved Metals by ICPMS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Result	Limit	CIIIG	Lovei	resun	, victor	Limits	МЪ	Ziiiii	110103
Batch B202103 - Diss. 200.7/200.8										
Blank (B202103-BLK1)			Prep	ared & Ana	lyzed: 10/06	5/20				
Arsenic	ND	0.0005	mg/L							
Cadmium	ND	0.0001	mg/L							
Chromium	ND	0.0010	mg/L							
Copper	ND	0.0005	mg/L							
Lead	ND	0.0005	mg/L							
Manganese	ND	0.0005	mg/L							
Molybdenum	ND	0.0005	mg/L							
Nickel	ND	0.0005	mg/L							
Selenium	ND	0.0010	mg/L							
Silver	ND	0.0002	mg/L							
Uranium	ND	0.0005	mg/L							
Zinc	ND	0.0020	mg/L							
LCS (B202103-BS1)			Prep	ared & Ana	lyzed: 10/06	5/20				
Arsenic	0.0463	0.0005	mg/L	0.0500		92.7	85-115			
Cadmium	0.0477	0.0001	mg/L	0.0500		95.4	85-115			
Chromium	0.0476	0.0010	mg/L	0.0500		95.1	85-115			
Copper	0.0474	0.0005	mg/L	0.0500		94.7	85-115			
Lead	0.0481	0.0005	mg/L	0.0500		96.2	85-115			
Manganese	0.0496	0.0005	mg/L	0.0500		99.1	85-115			
Molybdenum	0.0473	0.0005	mg/L	0.0500		94.6	85-115			
Nickel	0.0464	0.0005	mg/L	0.0500		92.8	85-115			
Selenium	0.247	0.0010	mg/L	0.250		98.9	85-115			
Silver	0.0465	0.0002	mg/L	0.0500		93.0	85-115			
Uranium	0.0469	0.0005	mg/L	0.0500		93.9	85-115			
Zinc	0.0498	0.0020	mg/L	0.0500		99.7	85-115			
LCS Dup (B202103-BSD1)			Prep	ared & Ana	lyzed: 10/06	6/20				
Arsenic	0.0467	0.0005	mg/L	0.0500		93.4	85-115	0.753	20	
Cadmium	0.0463	0.0001	mg/L	0.0500		92.6	85-115	2.90	20	
Chromium	0.0462	0.0010	mg/L	0.0500		92.5	85-115	2.78	20	
Copper	0.0463	0.0005	mg/L	0.0500		92.5	85-115	2.37	20	
Lead	0.0477	0.0005	mg/L	0.0500		95.4	85-115	0.793	20	
Manganese	0.0474	0.0005	mg/L	0.0500		94.8	85-115	4.40	20	
Molybdenum	0.0454	0.0005	mg/L	0.0500		90.9	85-115	3.95	20	
Nickel	0.0457	0.0005	mg/L	0.0500		91.5	85-115	1.48	20	
Selenium	0.241	0.0010	mg/L	0.250		96.6	85-115	2.41	20	
Silver	0.0466	0.0002	mg/L	0.0500		93.3	85-115	0.357	20	
Uranium	0.0474	0.0005	mg/L	0.0500		94.8	85-115	0.966	20	
Zinc	0.0474	0.0020	mg/L	0.0500		94.9	85-115	4.93	20	

Green Analytical Laboratories

seldie Zufett

www.GreenAnalytical.com

SMEProject: Allard679 E 2nd Ave, Ste E2Project Name / Number: AllardReported:Durango CO, 81301Project Manager: Clinton Casey10/08/20 16:42

Dissolved Mercury by CVAA - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B202045 - EPA 245.1/7470										
Blank (B202045-BLK1)			Prep	oared: 09/30/2	20 Analyzo	ed: 10/02/20)			
Mercury	ND	0.0002	mg/L							
LCS (B202045-BS1)			Prep	oared: 09/30/2	20 Analyz	ed: 10/02/20)			
Mercury	0.0049	0.0002	mg/L	0.00500		97.6	85-115			
LCS Dup (B202045-BSD1)			Prep	oared: 09/30/2	20 Analyz	ed: 10/02/20)			
Mercury	0.0049	0.0002	mg/L	0.00500		97.0	85-115	0.596	20	

Green Analytical Laboratories

Deldie Zufett

www.GreenAnalytical.com

SME Project: Allard

679 E 2nd Ave, Ste E2 Project Name / Number: Allard Reported:

Durango CO, 81301 Project Manager: Clinton Casey 10/08/20 16:42

Notes and Definitions

M5 Sample was chosen for matrix spike. Spike recovery did not meet laboratory acceptance criteria, possible matrix interference in sample.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

*Results reported on as received basis unless designated as dry.

RPD Relative Percent Difference

LCS Laboratory Control Sample (Blank Spike)

RL Report Limit

MDL Method Detection Limit

Green Analytical Laboratories

Deldie Zufett

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

FORM-006

(970) 247-4220 Fax: (970) 247-4227 dzufelt@greenanalytical.com
75 Suttle St Durango, CO 81303

COC - Revision 6.0

0						Received by:	Date:		Relinquished by:
3		71.7							
T		500					Time:		
						Received by:	Date:		Relinquished by:
							illie.		
							Time:		
						Received by:	Date:	-	Relinquished by:
Yes No				Monday	M	N	Time: 15:30	m	Clerky C
Report to State? (Circle)		ADDITIONAL REMARKS:	1	7.	1	Received by	Date: 9/24	,	Completed by.
						5	Relinguished by:	in cidilities based apolit ally of	Relinguished by:
triose for regingence and any other cause whatsoever shall be deemed waived unless made in writing and rec by client, its subsidiaries, affiliates or successors arising out of or related to the performance of services hereun	ause whatsoever shall be duccessors arising out of or r	ts subsidiaries, affiliates or si	profits incurred by clien	btions, loss of use, or loss of profits	itation, business interrup	es, including without lim	by GAL within 30 days after completion. In no event shall GAL be liable for incidental or consequental damages, including without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of services hereur	etion. In no event shall GAL i	by GAL within 30 days after complete by GAL regardless of whether such
			olaima ingluding than	Client for the analysis All	the amount paid by the	r tort, shall be limited to	PLEASE NOTE: GAL's fability and client's exclusive remedy for any claim arising whether based in contract or tort, shall be limited to the amount read by the client for the	dient's exclusive remedy fo	PLEASE NOTE: GAL's liability and
		7		2	14.00	1//4	×	Milain	10-50-30-3
		0	N F	V		9/11/	0	111 1	7000-101-01
		HCI H ₂ SO ₄ Other: See	DRINKING WATER DTHER: to preservation (general) HNO ₃	GROUNDWATER SURFACEWATER WASTEWATER PRODUCEDWATER SOIL	Time	Date	Sample Name or Location	Sample	For Lab Use
		of containers	#	Matrix (check one)	Collected	Coll			
	. (//	1	Email:				nt):	Sampler Name (Print):
		9/		Phone #:					
		-1		State: Zip:				al): Allard	Project Name(optional):
				City:			sue-envicon	ccasey &	Email Report to:
				Address:			cx	Chat Casex	
				Attn:				Ch Ch - b(P-01.1)	0
				Company:		Zip:	State:		1
				F.O. #:			and how	- Chy	
							-	130	Address:
YSIS REDITEST	SISA IVNV		Bill to (if different):	Bill				3 2 ::	Company or Client:

No Ice

75 Suttle Street Durango, CO 81303 970.247.4220 Phone 970.247.4227 Fax www.greenanalytical.com

07 October 2020

Clinton Casey SME 679 E 2nd Ave, Ste E2 Durango, CO 81301

RE: Allard

Enclosed are the results of analyses for samples received by the laboratory on 09/23/20 16:00. If you need any further assistance, please feel free to contact me.

Sincerely,

Debbie Zufelt

Reports Manager

Dellie Zufett

All accredited analytes contained in this report are denoted by an asterisk (*). For a complete list of accredited analytes please do not hesitate to contact us via any of the contact information contained in this report. All of our certifications can be viewed at http://greenanalytical.com/certifications/

Green Analytical Laboratories is NELAP accredited through the Texas Commission on Environmental Quality. Accreditation applies to drinking water and non-potable water matrices for trace metals and a variety of inorganic parameters. Green Analytical Laboratories is also accredited through the Colorado Department of Public Health and Environment and EPA region 8 for trace metals, Cyanide, Fluoride, Nitrate, and Nitrite in drinking water.

Our affiliate laboratory, Cardinal Laboratories, is also NELAP accredited through the Texas Commission on Environmental Quality for a variety of organic constituents in drinking water, non-potable water and solid matrices. Cardinal is also accredited for regulated VOCs, TTHM, and HAA-5 in drinking water through the Colorado Department of Public Health and Environment and EPA region 8.

www.GreenAnalytical.com

SME Project: Allard

679 E 2nd Ave, Ste E2 Project Name / Number: Allard Reported:

Durango CO, 81301 Project Manager: Clinton Casey 10/07/20 12:57

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received Notes
Allard 1	2009273-01	Water	09/23/20 11:00	09/23/20 16:00
Allard 2	2009273-02	Water	09/23/20 11:30	09/23/20 16:00
Allard 3	2009273-03	Water	09/23/20 12:00	09/23/20 16:00
Allard 4	2009273-04	Water	09/23/20 14:00	09/23/20 16:00
Allard 5	2009273-05	Water	09/23/20 14:30	09/23/20 16:00
Allard 6	2009273-06	Water	09/23/20 13:30	09/23/20 16:00
Allard 7	2009273-07	Water	09/23/20 15:00	09/23/20 16:00

Green Analytical Laboratories

Deldie Zufett

www.GreenAnalytical.com

SME Project: Allard

679 E 2nd Ave, Ste E2 Project Name / Number: Allard Reported:

Durango CO, 81301 Project Manager: Clinton Casey 10/07/20 12:57

Allard 1

2009273-01 (Surface Water)

		200727	o or (Surr						
Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analyst
General Chemistry									
Alkalinity, Bicarbonate as CaCO3*	109	10.0	7.16	mg/L	1	09/28/20 14:40	2320 B		VJW
Alkalinity, Carbonate as CaCO3*	<10.0	10.0		mg/L	1	09/28/20 14:40	2320 B		VJW
Alkalinity, Hydroxide as CaCO3*	<10.0	10.0		mg/L	1	09/28/20 14:40	2320 B		VJW
Alkalinity, Total as CaCO3*	109	10.0	7.16	mg/L	1	09/28/20 14:40	2320 B		VJW
Ammonia as N	< 0.100	0.100	0.0251	mg NH3-N/L	1	10/01/20 14:45	EPA350.1		LLG
Chloride*	<1.00	1.00	0.0886	mg/L	1	10/05/20 17:56	EPA300.0		AES
Chlorine, Tot Resid	< 0.100	0.100		mg/L	1	09/24/20 10:30	HACH-DPD		JDA
Chromium VI, Dissolved	< 0.00800	0.00800	0.00423	mg/L	1	09/24/20 10:45	3500-Cr D		LLG
Conductivity*	675	1.00		umho/cm @ 25.0°C	1	09/24/20 14:00	2510 B		VJW
Cyanide, Total*	< 0.0100	0.0100	0.00122	mg/L	1	09/30/20 15:58	EPA335.4		LLG
Nitrate as N*	< 0.020	0.020	0.010	mg/L	1	09/24/20 17:50	EPA300.0		AES
Nitrate+Nitrite as N by IC	< 0.0400	0.0400	0.0155	mg/L	1	09/24/20 17:50	EPA300.0		AES
Nitrite as N*	< 0.020	0.020	0.005	mg/L	1	09/24/20 17:50	EPA300.0		AES
οH*	7.47			pH Units	1	09/24/20 14:00	EPA150.1		VJW
Phosphorus, Total	< 0.0500	0.0500	0.00904	mg P/L	1	09/29/20 15:24	EPA365.1		LLG
Total Dissolved Solids*	460	10.0		mg/L	1	09/25/20 14:35	EPA160.1		VJW
Total Suspended Solids*	7.73	4.00		mg/L	1	09/24/20 16:38	EPA160.2		VJW
Sulfate*	196	10.0	1.52	mg/L	10	10/06/20 13:00	EPA300.0		AES
Sulfide	< 0.0500	0.0500	0.0258	mg/L	1	09/30/20 14:00	4500S2-D		VJW
Total Recoverable Metals by ICP (E200.7)									
Boron	< 0.300	0.300	0.087	mg/L	1	09/29/20 13:26	EPA200.7		JDA
Calcium*	91.3	0.100	0.027	mg/L	1	09/29/20 13:26	EPA200.7		JDA
Hardness as CaCO3	282	0.662	0.286	mg/L	1	09/29/20 13:26	2340 B		JDA
Magnesium*	13.0	0.100	0.053	mg/L	1	09/29/20 13:26	EPA200.7		JDA
Dissolved Metals by ICP									
Aluminum*	0.097	0.050	0.012	mg/L	1	09/28/20 16:42	EPA200.7		JDA
fron*	< 0.050	0.050	0.018	mg/L	1	09/28/20 16:42	EPA200.7		JDA
Total Recoverable Metals by ICPMS (E20	0.8)								
Chromium*	< 0.0100	0.0100	0.0033	mg/L	5	09/30/20 14:02	EPA200.8		JDA

Green Analytical Laboratories

Dellie Zufett

www.GreenAnalytical.com

SME Project: Allard

679 E 2nd Ave, Ste E2 Project Name / Number: Allard

Durango CO, 81301 Project Manager: Clinton Casey

Reported:

10/07/20 12:57

Allard 1

2009273-01 (Surface Water)

Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analyst
Thatyte	Result	142	MDE	Cinto	Ditation	7 mary zea	Wichiod	110103	7 maryst
Dissolved Metals by ICPMS									
Arsenic*	0.0047	0.0005	0.0001	mg/L	1	10/02/20 14:30	EPA200.8		AES
Cadmium*	0.0001	0.0001	0.00007	mg/L	1	10/02/20 14:30	EPA200.8		AES
Chromium*	0.0019	0.0010	0.0002	mg/L	1	10/02/20 14:30	EPA200.8		AES
Chromium III, Dissolved	< 0.00800	0.00800	0.00423	mg/L	1	10/02/20 14:30	Calculation		LLG
Copper*	< 0.0005	0.0005	0.0002	mg/L	1	10/02/20 14:30	EPA200.8		AES
Lead*	< 0.0005	0.0005	0.0001	mg/L	1	10/02/20 14:30	EPA200.8		AES
Manganese*	0.542	0.0010	0.0001	mg/L	1	10/02/20 14:30	EPA200.8	В3	AES
Molybdenum*	0.0008	0.0005	0.0001	mg/L	1	10/02/20 14:30	EPA200.8		AES
Nickel*	0.0051	0.0005	0.0003	mg/L	1	10/02/20 14:30	EPA200.8		AES
Selenium*	< 0.0010	0.0010	0.0005	mg/L	1	10/02/20 14:30	EPA200.8		AES
Silver*	< 0.0002	0.0002	0.00007	mg/L	1	10/02/20 14:30	EPA200.8		AES
Uranium	0.0030	0.0005	0.0002	mg/L	1	10/02/20 14:30	EPA200.8		AES
Zinc*	0.134	0.0020	0.0003	mg/L	1	10/02/20 14:30	EPA200.8		AES
Dissolved Mercury by CVAA									
Mercury*	< 0.0002	0.0002	0.00001	mg/L	1	10/02/20 14:39	EPA245.1		LLG

Green Analytical Laboratories

Deldie Zufett

www.GreenAnalytical.com

SME Project: Allard

679 E 2nd Ave, Ste E2 Project Name / Number: Allard Reported:

Durango CO, 81301 Project Manager: Clinton Casey 10/07/20 12:57

Allard 2

2009273-02 (Surface Water)

Angleto	D!	DI	MDL	Linita	Dilution	Amalyzad	Mathad	Notes	A = 01
Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analys
General Chemistry									
Alkalinity, Bicarbonate as CaCO3*	<10.0	10.0	7.16	mg/L	1	09/28/20 14:40	2320 B		VJW
Alkalinity, Carbonate as CaCO3*	<10.0	10.0		mg/L	1	09/28/20 14:40	2320 B		VJW
Alkalinity, Hydroxide as CaCO3*	<10.0	10.0		mg/L	1	09/28/20 14:40	2320 B		VJW
Alkalinity, Total as CaCO3*	<10.0	10.0	7.16	mg/L	1	09/28/20 14:40	2320 B		VJW
Ammonia as N	< 0.100	0.100	0.0251	mg NH3-N/L	1	10/01/20 14:48	EPA350.1		LLG
Chloride*	<1.00	1.00	0.0886	mg/L	1	10/05/20 18:16	EPA300.0		AES
Chlorine, Tot Resid	< 0.100	0.100		mg/L	1	09/24/20 10:30	HACH-DPD		JDA
Chromium VI, Dissolved	< 0.00800	0.00800	0.00423	mg/L	1	09/24/20 10:45	3500-Cr D		LLG
Conductivity*	178	1.00		umho/cm @ 25.0°C	1	09/24/20 14:00	2510 B		VJW
Cyanide, Total*	< 0.0100	0.0100	0.00122	mg/L	1	09/30/20 15:59	EPA335.4		LLG
Nitrate as N*	0.166	0.020	0.010	mg/L	1	09/24/20 18:45	EPA300.0		AES
Nitrate+Nitrite as N by IC	0.166	0.0400	0.0155	mg/L	1	09/24/20 18:45	EPA300.0		AES
litrite as N*	< 0.020	0.020	0.005	mg/L	1	09/24/20 18:45	EPA300.0		AES
H*	4.07			pH Units	1	09/24/20 14:00	EPA150.1		VJW
Phosphorus, Total	< 0.0500	0.0500	0.00904	mg P/L	1	09/29/20 15:25	EPA365.1		LLG
Total Dissolved Solids*	140	10.0		mg/L	1	09/25/20 14:35	EPA160.1		VJW
Cotal Suspended Solids*	<4.00	4.00		mg/L	1	09/24/20 16:38	EPA160.2		VJW
ulfate*	66.2	2.00	0.305	mg/L	2	10/06/20 13:20	EPA300.0	M5	AES
ulfide	< 0.0500	0.0500	0.0258	mg/L	1	09/30/20 14:00	4500S2-D		VJW
Sotal Recoverable Metals by ICP (E200.7)									
Boron	< 0.300	0.300	0.087	mg/L	1	09/29/20 13:38	EPA200.7		JDA
Calcium*	13.7	0.100	0.027	mg/L	1	09/29/20 13:38	EPA200.7		JDA
Hardness as CaCO3	39.8	0.662	0.286	mg/L	1	09/29/20 13:38	2340 B		JDA
//agnesium*	1.38	0.100	0.053	mg/L	1	09/29/20 13:38	EPA200.7		JDA
Dissolved Metals by ICP									
Aluminum*	3.54	0.050	0.012	mg/L	1	09/28/20 16:46	EPA200.7		JDA
ron*	0.474	0.050	0.018	mg/L	1	09/28/20 16:46	EPA200.7		JDA
Total Recoverable Metals by ICPMS (E20	0.8)								
Chromium*	< 0.0100	0.0100	0.0033	mg/L	5	09/30/20 14:06	EPA200.8		JDA

Green Analytical Laboratories

Deldie Zufett

www.GreenAnalytical.com

SME 679 E 2nd Ave, Ste E2 Durango CO, 81301 Project: Allard
Project Name / Number: Allard
Project Manager: Clinton Casey

Reported:

10/07/20 12:57

Allard 2

2009273-02 (Surface Water)

Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analyst
Dissolved Metals by ICPMS									
Arsenic*	< 0.0010	0.0010	0.0002	mg/L	2	10/02/20 14:51	EPA200.8		AES
Cadmium*	0.0011	0.0001	0.00007	mg/L	1	10/02/20 14:40	EPA200.8		AES
Chromium*	< 0.0010	0.0010	0.0002	mg/L	1	10/02/20 14:40	EPA200.8		AES
Chromium III, Dissolved	< 0.00800	0.00800	0.00423	mg/L	1	10/02/20 14:40	Calculation		LLG
Copper*	0.559	0.0005	0.0002	mg/L	1	10/02/20 14:40	EPA200.8		AES
Lead*	0.0237	0.0005	0.0001	mg/L	1	10/02/20 14:40	EPA200.8		AES
Manganese*	0.469	0.0010	0.0001	mg/L	1	10/02/20 14:40	EPA200.8	В3	AES
Molybdenum*	< 0.0010	0.0010	0.0002	mg/L	2	10/02/20 14:51	EPA200.8		AES
Nickel*	0.0074	0.0005	0.0003	mg/L	1	10/02/20 14:40	EPA200.8		AES
Selenium*	< 0.0020	0.0020	0.0011	mg/L	2	10/02/20 14:51	EPA200.8		AES
Silver*	< 0.0002	0.0002	0.00007	mg/L	1	10/02/20 14:40	EPA200.8		AES
Uranium	0.0017	0.0005	0.0002	mg/L	1	10/02/20 14:40	EPA200.8		AES
Zinc*	0.208	0.0020	0.0003	mg/L	1	10/02/20 14:40	EPA200.8		AES
Dissolved Mercury by CVAA									
Mercury*	< 0.0002	0.0002	0.00001	mg/L	1	10/02/20 14:39	EPA245.1		LLG

Green Analytical Laboratories

Deldie Zufett

www.GreenAnalytical.com

SME Project: Allard

679 E 2nd Ave, Ste E2 Project Name / Number: Allard Reported:

Durango CO, 81301 Project Manager: Clinton Casey 10/07/20 12:57

Allard 3

2009273-03 (Surface Water)

Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analys
General Chemistry									
Alkalinity, Bicarbonate as CaCO3*	12.0	10.0	7.16	mg/L	1	09/28/20 14:40	2320 B		VJW
Alkalinity, Carbonate as CaCO3*	<10.0	10.0		mg/L	1	09/28/20 14:40	2320 B		VJW
Alkalinity, Hydroxide as CaCO3*	<10.0	10.0		mg/L	1	09/28/20 14:40	2320 B		VJW
Alkalinity, Total as CaCO3*	12.0	10.0	7.16	mg/L	1	09/28/20 14:40	2320 B		VJW
Ammonia as N	< 0.100	0.100	0.0251	mg NH3-N/L	1	10/01/20 14:49	EPA350.1		LLG
Chloride*	<1.00	1.00	0.0886	mg/L	1	10/05/20 19:53	EPA300.0		AES
Chlorine, Tot Resid	< 0.100	0.100		mg/L	1	09/24/20 10:30	HACH-DPD		JDA
hromium VI, Dissolved	< 0.00800	0.00800	0.00423	mg/L	1	09/24/20 10:45	3500-Cr D		LLC
Conductivity*	244	1.00		umho/cm @ 25.0°C	1	09/24/20 14:00	2510 B		VJW
yanide, Total*	< 0.0100	0.0100	0.00122	mg/L	1	09/30/20 16:00	EPA335.4		LLC
litrate as N*	0.244	0.020	0.010	mg/L	1	09/24/20 19:04	EPA300.0		AES
itrate+Nitrite as N by IC	0.244	0.0400	0.0155	mg/L	1	09/24/20 19:04	EPA300.0		AES
itrite as N*	< 0.020	0.020	0.005	mg/L	1	09/24/20 19:04	EPA300.0		AES
Н*	6.23			pH Units	1	09/24/20 14:00	EPA150.1		VJV
hosphorus, Total	< 0.0500	0.0500	0.00904	mg P/L	1	09/29/20 15:26	EPA365.1		LLC
otal Dissolved Solids*	130	10.0		mg/L	1	09/25/20 14:35	EPA160.1		VJV
otal Suspended Solids*	5.33	4.00		mg/L	1	09/24/20 16:38	EPA160.2		VJV
ulfate*	79.4	5.00	0.762	mg/L	5	10/06/20 14:18	EPA300.0	M5	AES
ulfide	< 0.0500	0.0500	0.0258	mg/L	1	09/30/20 14:00	4500S2-D		VJW
otal Recoverable Metals by ICP (E200.7)								
Soron	< 0.300	0.300	0.087	mg/L	1	09/29/20 13:40	EPA200.7		JDA
Calcium*	27.0	0.100	0.027	mg/L	1	09/29/20 13:40	EPA200.7		JDA
Iardness as CaCO3	81.8	0.662	0.286	mg/L	1	09/29/20 13:40	2340 B		JDA
1agnesium*	3.49	0.100	0.053	mg/L	1	09/29/20 13:40	EPA200.7		JDA
Dissolved Metals by ICP									
lluminum*	0.467	0.050	0.012	mg/L	1	09/28/20 16:48	EPA200.7		JDA
ron*	< 0.050	0.050	0.018	mg/L	1	09/28/20 16:48	EPA200.7		JDA
Total Recoverable Metals by ICPMS (E20	00.8)								
Chromium*	< 0.0100	0.0100	0.0033	mg/L	5	09/30/20 14:20	EPA200.8		JDA

Green Analytical Laboratories

Deldie Zufett

www.GreenAnalytical.com

SME 679 E 2nd Ave, Ste E2 Durango CO, 81301 Project: Allard
Project Name / Number: Allard
Project Manager: Clinton Casey

Reported: 10/07/20 12:57

Allard 3

2009273-03 (Surface Water)

Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analyst
Dissolved Metals by ICPMS									
Arsenic*	< 0.0005	0.0005	0.0001	mg/L	1	10/02/20 14:54	EPA200.8		AES
Cadmium*	0.0009	0.0001	0.00007	mg/L	1	10/02/20 14:54	EPA200.8		AES
Chromium*	< 0.0010	0.0010	0.0002	mg/L	1	10/02/20 14:54	EPA200.8		AES
Chromium III, Dissolved	< 0.00800	0.00800	0.00423	mg/L	1	10/02/20 14:54	Calculation		LLG
Copper*	0.225	0.0005	0.0002	mg/L	1	10/02/20 14:54	EPA200.8		AES
Lead*	0.0013	0.0005	0.0001	mg/L	1	10/02/20 14:54	EPA200.8		AES
Manganese*	0.126	0.0010	0.0001	mg/L	1	10/02/20 14:54	EPA200.8	В3	AES
Molybdenum*	< 0.0005	0.0005	0.0001	mg/L	1	10/02/20 14:54	EPA200.8		AES
Nickel*	0.0055	0.0005	0.0003	mg/L	1	10/02/20 14:54	EPA200.8		AES
Selenium*	< 0.0010	0.0010	0.0005	mg/L	1	10/02/20 14:54	EPA200.8		AES
Silver*	< 0.0002	0.0002	0.00007	mg/L	1	10/02/20 14:54	EPA200.8		AES
Uranium	0.0006	0.0005	0.0002	mg/L	1	10/02/20 14:54	EPA200.8		AES
Zinc*	0.141	0.0020	0.0003	mg/L	1	10/02/20 14:54	EPA200.8		AES
Dissolved Mercury by CVAA									
Mercury*	< 0.0002	0.0002	0.00001	mg/L	1	10/02/20 14:39	EPA245.1		LLG

Green Analytical Laboratories

Deldine Zufett

www.GreenAnalytical.com

SME Project: Allard

679 E 2nd Ave, Ste E2 Project Name / Number: Allard Reported:

Durango CO, 81301 Project Manager: Clinton Casey 10/07/20 12:57

Allard 4

2009273-04 (Surface Water)

			0.(5411	acc water)					
Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analys
General Chemistry									
Alkalinity, Bicarbonate as CaCO3*	48.0	10.0	7.16	mg/L	1	09/28/20 14:40	2320 B		VJW
Alkalinity, Carbonate as CaCO3*	<10.0	10.0		mg/L	1	09/28/20 14:40	2320 B		VJW
Alkalinity, Hydroxide as CaCO3*	<10.0	10.0		mg/L	1	09/28/20 14:40	2320 B		VJW
Alkalinity, Total as CaCO3*	48.0	10.0	7.16	mg/L	1	09/28/20 14:40	2320 B		VJW
Ammonia as N	< 0.100	0.100	0.0251	mg NH3-N/L	1	10/01/20 14:51	EPA350.1		LLG
Chloride*	<1.00	1.00	0.0886	mg/L	1	10/05/20 20:51	EPA300.0		AES
Chlorine, Tot Resid	< 0.100	0.100		mg/L	1	09/24/20 10:30	HACH-DPD		JDA
Chromium VI, Dissolved	< 0.00800	0.00800	0.00423	mg/L	1	09/24/20 10:45	3500-Cr D		LLG
Conductivity*	188	1.00		umho/cm @ 25.0°C	1	09/24/20 14:00	2510 B		VJW
Cyanide, Total*	< 0.0100	0.0100	0.00122	mg/L	1	09/30/20 16:02	EPA335.4		LLG
Nitrate as N*	0.123	0.020	0.010	mg/L	1	09/24/20 19:22	EPA300.0		AES
Nitrate+Nitrite as N by IC	0.123	0.0400	0.0155	mg/L	1	09/24/20 19:22	EPA300.0		AES
Nitrite as N*	< 0.020	0.020	0.005	mg/L	1	09/24/20 19:22	EPA300.0		AES
о Н*	7.47			pH Units	1	09/24/20 14:00	EPA150.1		VJW
Phosphorus, Total	< 0.0500	0.0500	0.00904	mg P/L	1	09/29/20 15:26	EPA365.1		LLG
Total Dissolved Solids*	99.9	10.0		mg/L	1	09/25/20 14:35	EPA160.1		VJW
Total Suspended Solids*	<4.00	4.00		mg/L	1	09/24/20 16:38	EPA160.2		VJW
Sulfate*	32.9	1.00	0.152	mg/L	1	10/05/20 20:51	EPA300.0		AES
Sulfide	< 0.0500	0.0500	0.0258	mg/L	1	09/30/20 14:00	4500S2-D		VJW
Total Recoverable Metals by ICP (E200).7)								
Boron	< 0.300	0.300	0.087	mg/L	1	09/29/20 13:47	EPA200.7		JDA
Calcium*	25.0	0.100	0.027	mg/L	1	09/29/20 13:47	EPA200.7		JDA
Hardness as CaCO3	76.0	0.662	0.286	mg/L	1	09/29/20 16:31	2340 B		JDA
Magnesium*	3.29	0.100	0.053	mg/L	1	09/29/20 16:31	EPA200.7		JDA
Dissolved Metals by ICP									
Aluminum*	< 0.050	0.050	0.012	mg/L	1	09/28/20 16:51	EPA200.7		JDA
ron*	< 0.050	0.050	0.018	mg/L	1	09/28/20 16:51	EPA200.7		JDA
Total Recoverable Metals by ICPMS (F	E200.8)								
Chromium*	< 0.0100	0.0100	0.0033	mg/L	5	09/30/20 14:31	EPA200.8		JDA

Green Analytical Laboratories

Deldie Zufett

www.GreenAnalytical.com

SME
679 E 2nd Ave, Ste E2
Pr
Durango CO, 81301

Project: Allard
Project Name / Number: Allard
Project Manager: Clinton Casey

Reported: 10/07/20 12:57

Allard 4

2009273-04 (Surface Water)

Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analyst
Dissolved Metals by ICPMS									
Arsenic*	< 0.0005	0.0005	0.0001	mg/L	1	10/02/20 14:58	EPA200.8		AES
Cadmium*	< 0.0001	0.0001	0.00007	mg/L	1	10/02/20 14:58	EPA200.8		AES
Chromium*	< 0.0010	0.0010	0.0002	mg/L	1	10/02/20 14:58	EPA200.8		AES
Chromium III, Dissolved	< 0.00800	0.00800	0.00423	mg/L	1	10/02/20 14:58	Calculation		LLG
Copper*	0.0015	0.0005	0.0002	mg/L	1	10/02/20 14:58	EPA200.8		AES
Lead*	< 0.0005	0.0005	0.0001	mg/L	1	10/02/20 14:58	EPA200.8		AES
Manganese*	< 0.0010	0.0010	0.0001	mg/L	1	10/02/20 14:58	EPA200.8	В3	AES
Molybdenum*	0.0011	0.0005	0.0001	mg/L	1	10/02/20 14:58	EPA200.8		AES
Nickel*	< 0.0005	0.0005	0.0003	mg/L	1	10/02/20 14:58	EPA200.8		AES
Selenium*	< 0.0010	0.0010	0.0005	mg/L	1	10/02/20 14:58	EPA200.8		AES
Silver*	< 0.0002	0.0002	0.00007	mg/L	1	10/02/20 14:58	EPA200.8		AES
Uranium	< 0.0005	0.0005	0.0002	mg/L	1	10/02/20 14:58	EPA200.8		AES
Zinc*	0.0032	0.0020	0.0003	mg/L	1	10/02/20 14:58	EPA200.8		AES
Dissolved Mercury by CVAA									
Mercury*	< 0.0002	0.0002	0.00001	mg/L	1	10/02/20 14:39	EPA245.1		LLG

Green Analytical Laboratories

Deldine Zufett

www.GreenAnalytical.com

SME Project: Allard

679 E 2nd Ave, Ste E2 Project Name / Number: Allard Reported:

Durango CO, 81301 Project Manager: Clinton Casey 10/07/20 12:57

Allard 5

2009273-05 (Surface Water)

				,					
Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analys
General Chemistry									
Alkalinity, Bicarbonate as CaCO3*	44.0	10.0	7.16	mg/L	1	09/28/20 14:40	2320 B		VJW
Alkalinity, Carbonate as CaCO3*	<10.0	10.0		mg/L	1	09/28/20 14:40	2320 B		VJW
Alkalinity, Hydroxide as CaCO3*	<10.0	10.0		mg/L	1	09/28/20 14:40	2320 B		VJW
Alkalinity, Total as CaCO3*	44.0	10.0	7.16	mg/L	1	09/28/20 14:40	2320 B		VJW
Ammonia as N	< 0.100	0.100	0.0251	mg NH3-N/L	1	10/01/20 14:52	EPA350.1		LLG
Chloride*	<1.00	1.00	0.0886	mg/L	1	10/05/20 21:11	EPA300.0		AES
Chlorine, Tot Resid	< 0.100	0.100		mg/L	1	09/24/20 10:30	HACH-DPD		JDA
Chromium VI, Dissolved	< 0.00800	0.00800	0.00423	mg/L	1	09/24/20 10:45	3500-Cr D		LLG
Conductivity*	187	1.00		umho/cm @ 25.0°C	1	09/24/20 14:00	2510 B		VJW
Cyanide, Total*	< 0.0100	0.0100	0.00122	mg/L	1	09/30/20 16:03	EPA335.4		LLG
Nitrate as N*	0.110	0.020	0.010	mg/L	1	09/24/20 19:41	EPA300.0		AES
litrate+Nitrite as N by IC	0.110	0.0400	0.0155	mg/L	1	09/24/20 19:41	EPA300.0		AES
litrite as N*	< 0.020	0.020	0.005	mg/L	1	09/24/20 19:41	EPA300.0		AES
H*	7.61			pH Units	1	09/24/20 14:00	EPA150.1		VJW
hosphorus, Total	< 0.0500	0.0500	0.00904	mg P/L	1	09/29/20 15:27	EPA365.1		LLG
otal Dissolved Solids*	135	10.0		mg/L	1	09/25/20 14:35	EPA160.1		VJW
otal Suspended Solids*	<4.00	4.00		mg/L	1	09/24/20 16:38	EPA160.2		VJW
ulfate*	33.9	1.00	0.152	mg/L	1	10/05/20 21:11	EPA300.0		AES
ulfide	< 0.0500	0.0500	0.0258	mg/L	1	09/30/20 14:00	4500S2-D		VJW
Sotal Recoverable Metals by ICP (E200.7	')								
Boron	< 0.300	0.300	0.087	mg/L	1	09/29/20 13:49	EPA200.7		JDA
Calcium*	24.5	0.100	0.027	mg/L	1	09/29/20 13:49	EPA200.7		JDA
Hardness as CaCO3	74.2	0.662	0.286	mg/L	1	09/29/20 16:33	2340 B		JDA
Aagnesium*	3.17	0.100	0.053	mg/L	1	09/29/20 16:33	EPA200.7		JDA
Dissolved Metals by ICP									
Aluminum*	< 0.050	0.050	0.012	mg/L	1	09/28/20 16:53	EPA200.7		JDA
ron*	< 0.050	0.050	0.018	mg/L	1	09/28/20 16:53	EPA200.7		JDA
Total Recoverable Metals by ICPMS (E2	00.8)								
Chromium*	< 0.0100	0.0100	0.0033	mg/L	5	09/30/20 14:41	EPA200.8		JDA

Green Analytical Laboratories

Deldie Zufett

www.GreenAnalytical.com

SME 679 E 2nd Ave, Ste E2 Durango CO, 81301

Project: Allard
Project Name / Number: Allard
Project Manager: Clinton Casey

Reported:

10/07/20 12:57

Allard 5

2009273-05 (Surface Water)

Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analyst
Dissolved Metals by ICDMS									
Dissolved Metals by ICPMS				_					
Arsenic*	< 0.0005	0.0005	0.0001	mg/L	1	10/02/20 15:01	EPA200.8		AES
Cadmium*	< 0.0001	0.0001	0.00007	mg/L	1	10/02/20 15:01	EPA200.8		AES
Chromium*	0.0012	0.0010	0.0002	mg/L	1	10/02/20 15:01	EPA200.8		AES
Chromium III, Dissolved	< 0.00800	0.00800	0.00423	mg/L	1	10/02/20 15:01	Calculation		LLG
Copper*	0.0040	0.0005	0.0002	mg/L	1	10/02/20 15:01	EPA200.8		AES
Lead*	< 0.0005	0.0005	0.0001	mg/L	1	10/02/20 15:01	EPA200.8		AES
Manganese*	0.0020	0.0010	0.0001	mg/L	1	10/02/20 15:01	EPA200.8	В3	AES
Molybdenum*	0.0012	0.0005	0.0001	mg/L	1	10/02/20 15:01	EPA200.8		AES
Nickel*	0.0007	0.0005	0.0003	mg/L	1	10/02/20 15:01	EPA200.8		AES
Selenium*	< 0.0010	0.0010	0.0005	mg/L	1	10/02/20 15:01	EPA200.8		AES
Silver*	< 0.0002	0.0002	0.00007	mg/L	1	10/02/20 15:01	EPA200.8		AES
Uranium	< 0.0005	0.0005	0.0002	mg/L	1	10/02/20 15:01	EPA200.8		AES
Zinc*	0.0095	0.0020	0.0003	mg/L	1	10/02/20 15:01	EPA200.8		AES
Dissolved Mercury by CVAA									
Mercury*	< 0.0002	0.0002	0.00001	mg/L	1	10/02/20 14:39	EPA245.1		LLG

Green Analytical Laboratories

Deldin Zufett

www.GreenAnalytical.com

SME Project: Allard

679 E 2nd Ave, Ste E2 Project Name / Number: Allard Reported:

Durango CO, 81301 Project Manager: Clinton Casey 10/07/20 12:57

Allard 6

2009273-06 (Surface Water)

			(acc mater)					
Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analys
General Chemistry									
Alkalinity, Bicarbonate as CaCO3*	34.0	10.0	7.16	mg/L	1	09/28/20 14:40	2320 B		VJW
Alkalinity, Carbonate as CaCO3*	<10.0	10.0		mg/L	1	09/28/20 14:40	2320 B		VJW
Alkalinity, Hydroxide as CaCO3*	<10.0	10.0		mg/L	1	09/28/20 14:40	2320 B		VJW
Alkalinity, Total as CaCO3*	34.0	10.0	7.16	mg/L	1	09/28/20 14:40	2320 B		VJW
Ammonia as N	< 0.100	0.100	0.0251	mg NH3-N/L	1	10/01/20 14:58	EPA350.1		LLG
Chloride*	<1.00	1.00	0.0886	mg/L	1	10/05/20 21:30	EPA300.0		AES
Chlorine, Tot Resid	< 0.100	0.100		mg/L	1	09/24/20 10:30	HACH-DPD		JDA
Chromium VI, Dissolved	< 0.00800	0.00800	0.00423	mg/L	1	09/24/20 10:45	3500-Cr D		LLG
Conductivity*	120	1.00		umho/cm @ 25.0°C	1	09/24/20 14:00	2510 B		VJW
Cyanide, Total*	< 0.0100	0.0100	0.00122	mg/L	1	09/30/20 16:04	EPA335.4		LLG
Nitrate as N*	< 0.020	0.020	0.010	mg/L	1	09/24/20 20:36	EPA300.0		AES
Nitrate+Nitrite as N by IC	< 0.0400	0.0400	0.0155	mg/L	1	09/24/20 20:36	EPA300.0		AES
Nitrite as N*	< 0.020	0.020	0.005	mg/L	1	09/24/20 20:36	EPA300.0		AES
Н*	7.50			pH Units	1	09/24/20 14:00	EPA150.1		VJW
hosphorus, Total	< 0.0500	0.0500	0.00904	mg P/L	1	09/29/20 15:28	EPA365.1		LLG
otal Dissolved Solids*	90.0	10.0		mg/L	1	09/25/20 14:35	EPA160.1		VJW
otal Suspended Solids*	<4.00	4.00		mg/L	1	09/24/20 16:38	EPA160.2		VJW
ulfate*	19.5	1.00	0.152	mg/L	1	10/05/20 21:30	EPA300.0		AES
ulfide	< 0.0500	0.0500	0.0258	mg/L	1	09/30/20 14:00	4500S2-D		VJW
Total Recoverable Metals by ICP (E200.7))								
Boron	< 0.300	0.300	0.087	mg/L	1	09/29/20 13:51	EPA200.7		JDA
Calcium*	15.5	0.100	0.027	mg/L	1	09/29/20 13:51	EPA200.7		JDA
Hardness as CaCO3	47.6	0.662	0.286	mg/L	1	09/29/20 16:35	2340 B		JDA
Magnesium*	2.15	0.100	0.053	mg/L	1	09/29/20 16:35	EPA200.7		JDA
Dissolved Metals by ICP									
Aluminum*	< 0.050	0.050	0.012	mg/L	1	09/28/20 16:55	EPA200.7		JDA
ron*	< 0.050	0.050	0.018	mg/L	1	09/28/20 16:55	EPA200.7		JDA
Total Recoverable Metals by ICPMS (E20	0.8)								
Chromium*	< 0.0100	0.0100	0.0033	mg/L	5	09/30/20 14:45	EPA200.8		JDA

Green Analytical Laboratories

Deldie Zufett

www.GreenAnalytical.com

SME Project: Allard

679 E 2nd Ave, Ste E2 Project Name / Number: Allard Reported:

Durango CO, 81301 Project Manager: Clinton Casey 10/07/20 12:57

Allard 6

2009273-06 (Surface Water)

Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analyst
Dissolved Metals by ICPMS									
Arsenic*	< 0.0005	0.0005	0.0001	mg/L	1	10/02/20 15:05	EPA200.8		AES
Cadmium*	< 0.0001	0.0001	0.00007	mg/L	1	10/02/20 15:05	EPA200.8		AES
Chromium*	< 0.0010	0.0010	0.0002	mg/L	1	10/02/20 15:05	EPA200.8		AES
Chromium III, Dissolved	< 0.00800	0.00800	0.00423	mg/L	1	10/02/20 15:05	Calculation		LLG
Copper*	0.0014	0.0005	0.0002	mg/L	1	10/02/20 15:05	EPA200.8		AES
Lead*	< 0.0005	0.0005	0.0001	mg/L	1	10/02/20 15:05	EPA200.8		AES
Manganese*	0.0010	0.0010	0.0001	mg/L	1	10/02/20 15:05	EPA200.8	В3	AES
Molybdenum*	0.0011	0.0005	0.0001	mg/L	1	10/02/20 15:05	EPA200.8		AES
Nickel*	< 0.0005	0.0005	0.0003	mg/L	1	10/02/20 15:05	EPA200.8		AES
Selenium*	< 0.0010	0.0010	0.0005	mg/L	1	10/02/20 15:05	EPA200.8		AES
Silver*	< 0.0002	0.0002	0.00007	mg/L	1	10/02/20 15:05	EPA200.8		AES
Uranium	< 0.0005	0.0005	0.0002	mg/L	1	10/02/20 15:05	EPA200.8		AES
Zinc*	0.0025	0.0020	0.0003	mg/L	1	10/02/20 15:05	EPA200.8		AES
Dissolved Mercury by CVAA									
Mercury*	< 0.0002	0.0002	0.00001	mg/L	1	10/02/20 14:39	EPA245.1		LLG

Green Analytical Laboratories

Deldie Zufett

www.GreenAnalytical.com

SME Project: Allard

679 E 2nd Ave, Ste E2 Project Name / Number: Allard Reported:

Durango CO, 81301 Project Manager: Clinton Casey 10/07/20 12:57

Allard 7

2009273-07 (Surface Water)

Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analys
· · ·						<u> </u>			
General Chemistry									
Alkalinity, Bicarbonate as CaCO3*	46.0	10.0	7.16	mg/L	1	09/28/20 14:40	2320 B		VJW
Alkalinity, Carbonate as CaCO3*	<10.0	10.0		mg/L	1	09/28/20 14:40	2320 B		VJW
Alkalinity, Hydroxide as CaCO3*	<10.0	10.0		mg/L	1	09/28/20 14:40	2320 B		VJW
Alkalinity, Total as CaCO3*	46.0	10.0	7.16	mg/L	1	09/28/20 14:40	2320 B		VJW
Ammonia as N	< 0.100	0.100	0.0251	mg NH3-N/L	1	10/01/20 15:02	EPA350.1		LLG
Chloride*	<1.00	1.00	0.0886	mg/L	1	10/05/20 21:50	EPA300.0		AES
Chlorine, Tot Resid	< 0.100	0.100		mg/L	1	09/24/20 10:30	HACH-DPD		JDA
Chromium VI, Dissolved	< 0.00800	0.00800	0.00423	mg/L	1	09/24/20 10:45	3500-Cr D		LLG
Conductivity*	161	1.00		umho/cm @ 25.0°C	1	09/24/20 14:00	2510 B		VJW
Cyanide, Total*	< 0.0100	0.0100	0.00122	mg/L	1	09/30/20 16:05	EPA335.4		LLG
Nitrate as N*	< 0.020	0.020	0.010	mg/L	1	09/24/20 20:54	EPA300.0		AES
Nitrate+Nitrite as N by IC	< 0.0400	0.0400	0.0155	mg/L	1	09/24/20 20:54	EPA300.0		AES
Nitrite as N*	< 0.020	0.020	0.005	mg/L	1	09/24/20 20:54	EPA300.0		AES
OH*	7.58			pH Units	1	09/24/20 14:00	EPA150.1		VJW
Phosphorus, Total	< 0.0500	0.0500	0.00904	mg P/L	1	09/29/20 15:28	EPA365.1		LLG
Total Dissolved Solids*	180	10.0		mg/L	1	09/25/20 14:35	EPA160.1		VJW
Total Suspended Solids*	<4.00	4.00		mg/L	1	09/24/20 16:38	EPA160.2		VJW
Sulfate*	27.2	1.00	0.152	mg/L	1	10/05/20 21:50	EPA300.0		AES
Sulfide	< 0.0500	0.0500	0.0258	mg/L	1	09/30/20 14:00	4500S2-D		VJW
Total Recoverable Metals by ICP (E200	.7)								
Boron	< 0.300	0.300	0.087	mg/L	1	09/29/20 13:53	EPA200.7		JDA
Calcium*	20.4	0.100	0.027	mg/L	1	09/29/20 13:53	EPA200.7		JDA
Hardness as CaCO3	61.7	0.662	0.286	mg/L	1	09/29/20 16:37	2340 B		JDA
Magnesium*	2.59	0.100	0.053	mg/L	1	09/29/20 16:37	EPA200.7		JDA
Dissolved Metals by ICP									
Aluminum*	< 0.050	0.050	0.012	mg/L	1	09/28/20 16:58	EPA200.7		JDA
ron*	< 0.050	0.050	0.018	mg/L	1	09/28/20 16:58	EPA200.7		JDA
Total Recoverable Metals by ICPMS (E	200.8)								
Chromium*	< 0.0100	0.0100	0.0033	mg/L	5	09/30/20 14:48	EPA200.8		JDA

Green Analytical Laboratories

Deldie Zufett

www.GreenAnalytical.com

SME Project: Allard

679 E 2nd Ave, Ste E2 Project Name / Number: Allard Reported:

Durango CO, 81301 Project Manager: Clinton Casey 10/07/20 12:57

Allard 7

2009273-07 (Surface Water)

Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analyst
Dissolved Metals by ICPMS									
Arsenic*	< 0.0005	0.0005	0.0001	mg/L	1	10/02/20 15:08	EPA200.8		AES
Cadmium*	< 0.0001	0.0001	0.00007	mg/L	1	10/02/20 15:08	EPA200.8		AES
Chromium*	< 0.0010	0.0010	0.0002	mg/L	1	10/02/20 15:08	EPA200.8		AES
Chromium III, Dissolved	< 0.00800	0.00800	0.00423	mg/L	1	10/02/20 15:08	Calculation		LLG
Copper*	0.0055	0.0005	0.0002	mg/L	1	10/02/20 15:08	EPA200.8		AES
Lead*	< 0.0005	0.0005	0.0001	mg/L	1	10/02/20 15:08	EPA200.8		AES
Manganese*	< 0.0010	0.0010	0.0001	mg/L	1	10/02/20 15:08	EPA200.8	В3	AES
Molybdenum*	< 0.0005	0.0005	0.0001	mg/L	1	10/02/20 15:08	EPA200.8		AES
Nickel*	0.0005	0.0005	0.0003	mg/L	1	10/02/20 15:08	EPA200.8		AES
Selenium*	< 0.0010	0.0010	0.0005	mg/L	1	10/02/20 15:08	EPA200.8		AES
Silver*	< 0.0002	0.0002	0.00007	mg/L	1	10/02/20 15:08	EPA200.8		AES
Uranium	< 0.0005	0.0005	0.0002	mg/L	1	10/02/20 15:08	EPA200.8		AES
Zinc*	0.0042	0.0020	0.0003	mg/L	1	10/02/20 15:08	EPA200.8		AES
Dissolved Mercury by CVAA									
Mercury*	< 0.0002	0.0002	0.00001	mg/L	1	10/02/20 14:39	EPA245.1		LLG

Green Analytical Laboratories

Deldie Zufett

www.GreenAnalytical.com

SME Project: Allard

679 E 2nd Ave, Ste E2 Project Name / Number: Allard Reported:

Durango CO, 81301 Project Manager: Clinton Casey 10/07/20 12:57

General Chemistry - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
•	resur	Diiiit	0.1110	20,01	- Cobuit	, sade	2			.10003
Batch B202006 - General Prep - Wet Chem										
Blank (B202006-BLK1)				pared & Anal	lyzed: 09/24	4/20				
Chromium VI, Dissolved	ND	0.00800	mg/L							
LCS (B202006-BS1)			Prep	pared & Anal	lyzed: 09/24	4/20				
Chromium VI, Dissolved	0.0246	0.00800	mg/L	0.0250		98.3	85-115			
LCS Dup (B202006-BSD1)			Prep	pared & Anal	lyzed: 09/24	4/20				
Chromium VI, Dissolved	0.0218	0.00800	mg/L	0.0250		87.0	85-115	12.2	20	
Batch B202011 - General Prep - Wet Chem										
Blank (B202011-BLK1)			Prep	oared & Anal	lyzed: 09/24	4/20				
Total Suspended Solids	ND	4.00	mg/L							
Duplicate (B202011-DUP1)	Sou	ırce: 2009197-0	01 Prep	ared & Anal	lyzed: 09/24	4/20				
Total Suspended Solids	8.80	4.00	mg/L		8.00			9.52	20	
Reference (B202011-SRM1)			Prep	oared & Ana	lyzed: 09/24	4/20				
Total Suspended Solids	102	4.00	mg/L	100	-	102	85-115			
Batch B202013 - General Prep - Wet Chem										
Blank (B202013-BLK1)			Prep	pared: 09/24/	20 Analyz	ed: 09/26/2	0			
Nitrate as N	ND	0.020	mg/L							
Nitrite as N	ND	0.020	mg/L							
LCS (B202013-BS1)			Prep	ared & Anal	lyzed: 09/24	4/20				
Nitrate as N	0.945	0.020	mg/L	1.00		94.5	90-110			
Nitrite as N	1.01	0.020	mg/L	1.00		101	90-110			
LCS Dup (B202013-BSD1)			Prep	ared & Anal	lyzed: 09/24	4/20				
Nitrate as N	0.952	0.020	mg/L	1.00	·	95.2	90-110	0.748	20	
Nitrite as N	1.05	0.020	mg/L	1.00		105	90-110	3.27	20	
Batch B202021 - General Prep - Wet Chem										
Blank (B202021-BLK1)			Prep	oared & Anal	lyzed: 09/2:	5/20				
Total Dissolved Solids	ND	10.0	mg/L							
Duplicate (B202021-DUP1)	Sou	ırce: 2009300-0	01 Prep	ared & Anal	lyzed: 09/25	5/20				
Total Dissolved Solids	125	10.0	mg/L		145			14.8	20	
Reference (B202021-SRM1)			Prep	oared & Anal	lyzed: 09/25	5/20				
Total Dissolved Solids	370	10.0	mg/L	380	-	97.4	85-115			
Batch B202024 - General Prep - Wet Chem										
Duplicate (B202024-DUP1)	Sou	ırce: 2009273-0	01 Prer	pared & Anal	lyzed: 09/24	4/20				
рН	7.52		pH Units		7.47	-		0.667	20	

Green Analytical Laboratories

Deldie Zufett

www.GreenAnalytical.com

SMEProject: Allard679 E 2nd Ave, Ste E2Project Name / Number: AllardReported:Durango CO, 81301Project Manager: Clinton Casey10/07/20 12:57

General Chemistry - Quality Control (Continued)

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B202024 - General Prep - Wet Chem (
Reference (B202024-SRM1)			Prepa	red & Anal	yzed: 09/24	1/20				
рН	6.93		pH Units	7.00	<i>y</i>	99.0	98.5-101.4			
Batch B202026 - General Prep - Wet Chem			•							
Duplicate (B202026-DUP1)	Sour	ce: 2009273-	01 Prepa	red & Anal	yzed: 09/24	1/20				
Conductivity	679	1.00 u	umho/cm @ 25.0°C		675			0.591	20	
Reference (B202026-SRM1)			Prepa	red & Anal	yzed: 09/24	1/20				
Conductivity	465	1.00 u	umho/cm @	447		104	90-110			
Batch B202032 - General Prep - Wet Chem										
Blank (B202032-BLK1)			Prepa	red & Anal	yzed: 09/28	3/20				
Alkalinity, Bicarbonate as CaCO3	ND	10.0	mg/L							
Alkalinity, Carbonate as CaCO3	ND	10.0	mg/L							
Alkalinity, Hydroxide as CaCO3	ND	10.0	mg/L							
Alkalinity, Total as CaCO3	ND	10.0	mg/L							
LCS (B202032-BS1)			Prepa	red & Anal	yzed: 09/28	3/20				
Alkalinity, Bicarbonate as CaCO3	104	10.0	mg/L				85-115			
Alkalinity, Carbonate as CaCO3	ND	10.0	mg/L				85-115			
Alkalinity, Hydroxide as CaCO3	ND	10.0	mg/L				85-115			
Alkalinity, Total as CaCO3	104	10.0	mg/L	100		104	85-115			
LCS Dup (B202032-BSD1)			Prepa	red & Anal	yzed: 09/28	3/20				
Alkalinity, Bicarbonate as CaCO3	103	10.0	mg/L				85-115	0.966	20	
Alkalinity, Carbonate as CaCO3	ND	10.0	mg/L				85-115		20	
Alkalinity, Hydroxide as CaCO3	ND	10.0	mg/L				85-115		20	
Alkalinity, Total as CaCO3	103	10.0	mg/L	100		103	85-115	0.966	20	
Batch B202036 - General Prep - Wet Chem										
Blank (B202036-BLK1)			Prepa	red: 09/28/	20 Analyzo	ed: 09/29/2	20			
Phosphorus, Total	ND	0.0500	mg P/L							
LCS (B202036-BS1)			Prepa	red: 09/28/	20 Analyz	ed: 09/29/2	20			
Phosphorus, Total	2.55	0.0500	mg P/L	2.50		102	90-110			
LCS Dup (B202036-BSD1)			Prepa	red: 09/28/	20 Analyz	ed: 09/29/2	20			
Phosphorus, Total	2.53	0.0500	mg P/L	2.50	-	101	90-110	0.852	20	
Batch B202049 - General Prep - Wet Chem										
Blank (B202049-BLK1)			Prepa	red: 09/29/	20 Analyz	ed: 09/30/2	20			
Cyanide, Total	ND	0.0100	mg/L							

Green Analytical Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. In no event shall Green Analytical Laboratories be liable for incidental or consequential damages. GALs liability, and clients exclusive remedy for any claim arising, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever, shall be deemed waived unless made in writing and received within thirty days after completion of the applicable service.

lie Zufett

www.GreenAnalytical.com

SMEProject: Allard679 E 2nd Ave, Ste E2Project Name / Number: AllardReported:Durango CO, 81301Project Manager: Clinton Casey10/07/20 12:57

General Chemistry - Quality Control (Continued)

		Dome :: time		C., !1	Corre		0/DEC		מתם	
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B202049 - General Prep - Wet Chem (Continued)									
LCS (B202049-BS1)			Prepa	ared: 09/29/	20 Analyz	ed: 09/30/20	0			
Cyanide, Total	0.106	0.0100	mg/L	0.100		106	90-110			
LCS Dup (B202049-BSD1)			Prepa	red: 09/29/	20 Analyz	ed: 09/30/20	0			
Cyanide, Total	0.0942	0.0100	mg/L	0.100		94.2	90-110	11.7	20	
Batch B202060 - General Prep - Wet Chem										
Blank (B202060-BLK1)			Prepa	ared & Anal	yzed: 09/30	0/20				
Sulfide	ND	0.0500	mg/L							
LCS (B202060-BS1)			Prepa	ared & Anal	yzed: 09/30	0/20				
Sulfide	0.286	0.0500	mg/L	0.250		114	85-115			
LCS Dup (B202060-BSD1)			Prepa	red & Anal	yzed: 09/30	0/20				
Sulfide	0.283	0.0500	mg/L	0.250		113	85-115	1.05	20	
Batch B202062 - General Prep - Wet Chem										
Blank (B202062-BLK1)			Prepa	ared: 09/30/	20 Analyz	ed: 10/01/20	0			
Ammonia as N	ND	0.100 n	ng NH3-N/L							
LCS (B202062-BS1)			Prepa	ared: 09/30/	20 Analyz	ed: 10/01/20	0			
Ammonia as N	2.68	0.100 n	ng NH3-N/L	2.50		107	90-110			
LCS Dup (B202062-BSD1)			Prepa	red: 09/30/	20 Analyz	ed: 10/01/20	0			
Ammonia as N	2.64	0.100 n	ng NH3-N/L	2.50		106	90-110	1.36	20	
Batch B202063 - General Prep - Wet Chem										
Blank (B202063-BLK1)			Prepa	ared: 09/30/	20 Analyz	ed: 10/01/20	0			
Ammonia as N	ND	0.100 n	ng NH3-N/L							
LCS (B202063-BS1)			Prepa	red: 09/30/	20 Analyz	ed: 10/01/20	0			
Ammonia as N	2.70	0.100 n	ng NH3-N/L	2.50		108	90-110			
LCS Dup (B202063-BSD1)			Prepa	ared: 09/30/	20 Analyz	ed: 10/01/20	0			
Ammonia as N	2.66	0.100 n	ng NH3-N/L	2.50		106	90-110	1.41	20	
Batch B202069 - General Prep - Wet Chem										
Blank (B202069-BLK1)			Prepa	ared & Anal	yzed: 09/2	4/20				
Chlorine, Tot Resid	ND	0.100	mg/L							
Duplicate (B202069-DUP1)	Sour	ce: 2009273-0	01 Prepa	red & Anal	yzed: 09/24	4/20				
Chlorine, Tot Resid	ND	0.100	mg/L		ND				20	
Duplicate (B202069-DUP2)	Sour	ce: 2009301-0	01 Prepa	ared & Anal	yzed: 09/2:	5/20				
Chlorine, Tot Resid	ND	0.100	mg/L		ND				20	

Green Analytical Laboratories

Deldie Zufett

LCS Dup (B202098-BSD1)

Sulfate

dzufelt@greenanalytical.com p: 970.247.4220 f: 970.247.4227 75 Suttle Street Durango, CO 81303

www.GreenAnalytical.com

SMEProject:Allard679 E 2nd Ave, Ste E2Project Name / Number:AllardReported:Durango CO, 81301Project Manager:Clinton Casey10/07/20 12:57

General Chemistry - Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B202069 - General Prep - Wet Chem (Continued)									
Duplicate (B202069-DUP3)	Sou	rce: 2009346-0	1 Prep	ared & Anal	lyzed: 09/30	0/20				
Chlorine, Tot Resid	ND	0.100	mg/L		ND				20	
Batch B202098 - General Prep - Wet Chem										
Blank (B202098-BLK1)			Prep	ared & Anal	lyzed: 10/0:	5/20				
Chloride	ND	1.00	mg/L							
Sulfate	ND	1.00	mg/L							
LCS (B202098-BS1)			Prep	ared & Anal	lyzed: 10/0:	5/20				
Chloride	23.0	1.00	mg/L	25.0		92.2	90-110			
Sulfate	23.6	1.00	mg/L	25.0		94.2	90-110			

Total Recoverable Metals by ICP (E200.7) - Quality Control

mg/L

mg/L

1.00

Reporting

22.9

Prepared & Analyzed: 10/05/20

91.6

90-110

%REC

0.605

1.70

20

RPD

25.0

Spike

Source

		reporting		Spike	Bource		/orche		KI D	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B202034 - Total Rec. 200.7/20	0.8/200.2									
Blank (B202034-BLK1)			Prep	ared: 09/28/	/20 Analyz	ed: 09/29/20)			
Boron	ND	0.300	mg/L							
Calcium	ND	0.100	mg/L							
Magnesium	ND	0.100	mg/L							
LCS (B202034-BS1)			Prep	ared: 09/28/	/20 Analyz	ed: 09/29/20)			
Boron	3.66	0.300	mg/L	4.00		91.5	85-115			
Calcium	3.64	0.100	mg/L	4.00		91.0	85-115			
Magnesium	18.6	0.100	mg/L	20.0		93.1	85-115			
LCS Dup (B202034-BSD1)			Prep	ared: 09/28/	/20 Analyz	ed: 09/29/20)			
Boron	3.67	0.300	mg/L	4.00		91.6	85-115	0.132	20	
Calcium	3.63	0.100	mg/L	4.00		90.7	85-115	0.366	20	
Magnesium	18.6	0.100	mg/L	20.0		92.8	85-115	0.275	20	

Green Analytical Laboratories

Dellie Zufett

www.GreenAnalytical.com

SME Project: Allard

679 E 2nd Ave, Ste E2 Project Name / Number: Allard Reported:

Durango CO, 81301 Project Manager: Clinton Casey 10/07/20 12:57

Dissolved Metals by ICP - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B202005 - Diss. 200.7/200.8										
Blank (B202005-BLK1)			Prep	oared: 09/24/	20 Analyz	ed: 09/28/20)			
Aluminum	ND	0.050	mg/L							
Iron	ND	0.050	mg/L							
LCS (B202005-BS1)			Prep	ared: 09/24/	20 Analyz	ed: 09/28/20)			
Aluminum	4.67	0.050	mg/L	5.00		93.3	85-115			
Iron	4.61	0.050	mg/L	5.00		92.1	85-115			
LCS Dup (B202005-BSD1)			Prep	ared: 09/24/	20 Analyz	ed: 09/28/20)			
Aluminum	4.67	0.050	mg/L	5.00		93.5	85-115	0.169	20	
Iron	4.66	0.050	mg/L	5.00		93.1	85-115	1.11	20	

Total Recoverable Metals by ICPMS (E200.8) - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B202035 - Total Rec. 200.7/20	00.8/200.2									
Blank (B202035-BLK1)			Prep	ared: 09/28/	20 Analyz	ed: 09/30/20	0			
Chromium	ND	0.0020	mg/L							
LCS (B202035-BS1)			Prep	ared: 09/28/	20 Analyz	ed: 09/30/20	0			
Chromium	0.0534	0.0020	mg/L	0.0500		107	85-115			
LCS Dup (B202035-BSD1)			Prep	ared: 09/28/	20 Analyz	ed: 09/30/20	0			
Chromium	0.0567	0.0020	mg/L	0.0500		113	85-115	5.94	20	

Green Analytical Laboratories

Deldie Zufett

www.GreenAnalytical.com

SME Project: Allard 679 E 2nd Ave, Ste E2 Project Name / Number: Allard Reported: 10/07/20 12:57 Durango CO, 81301 Project Manager: Clinton Casey

Dissolved Metals by ICPMS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B202008 - Diss. 200.7/200.8										
Blank (B202008-BLK1)			Prep	oared: 09/24/	20 Analyze	ed: 10/02/20)			
Arsenic	ND	0.0005	mg/L							
Cadmium	ND	0.0001	mg/L							
Chromium	ND	0.0010	mg/L							
Copper	ND	0.0005	mg/L							
Lead	ND	0.0005	mg/L							
Manganese	0.0005	0.0005	mg/L							B3
Molybdenum	ND	0.0005	mg/L							
Nickel	ND	0.0005	mg/L							
Selenium	ND	0.0010	mg/L							
Silver	ND	0.0002	mg/L							
Uranium	ND	0.0005	mg/L							
Zinc	ND	0.0020	mg/L							
LCS (B202008-BS1)			Prep	oared: 09/24/	20 Analyze	ed: 10/02/20)			
Arsenic	0.0539	0.0005	mg/L	0.0500		108	85-115			
Cadmium	0.0560	0.0001	mg/L	0.0500		112	85-115			
Chromium	0.0529	0.0010	mg/L	0.0500		106	85-115			
Copper	0.0526	0.0005	mg/L	0.0500		105	85-115			
Lead	0.0548	0.0005	mg/L	0.0500		110	85-115			
Manganese	0.0538	0.0005	mg/L	0.0500		108	85-115			
Molybdenum	0.0527	0.0005	mg/L	0.0500		105	85-115			
Nickel	0.0531	0.0005	mg/L	0.0500		106	85-115			
Selenium	0.272	0.0010	mg/L	0.250		109	85-115			
Silver	0.0529	0.0002	mg/L	0.0500		106	85-115			
Uranium	0.0540	0.0005	mg/L	0.0500		108	85-115			
Zinc	0.0535	0.0020	mg/L	0.0500		107	85-115			
LCS Dup (B202008-BSD1)			Prep	oared: 09/24/	20 Analyze	ed: 10/02/20)			
Arsenic	0.0539	0.0005	mg/L	0.0500		108	85-115	0.106	20	
Cadmium	0.0540	0.0001	mg/L	0.0500		108	85-115	3.67	20	
Chromium	0.0520	0.0010	mg/L	0.0500		104	85-115	1.70	20	
Copper	0.0515	0.0005	mg/L	0.0500		103	85-115	2.13	20	
Lead	0.0545	0.0005	mg/L	0.0500		109	85-115	0.417	20	
Manganese	0.0534	0.0005	mg/L	0.0500		107	85-115	0.785	20	
Molybdenum	0.0535	0.0005	mg/L	0.0500		107	85-115	1.56	20	
Nickel	0.0521	0.0005	mg/L	0.0500		104	85-115	1.97	20	
Selenium	0.272	0.0010	mg/L	0.250		109	85-115	0.216	20	
Silver	0.0522	0.0002	mg/L	0.0500		104	85-115	1.28	20	
Uranium	0.0537	0.0005	mg/L	0.0500		107	85-115	0.548	20	
Zinc	0.0531	0.0020	mg/L	0.0500		106	85-115	0.611	20	

Green Analytical Laboratories

seldie Zufett

www.GreenAnalytical.com

SME Project: Allard

679 E 2nd Ave, Ste E2 Project Name / Number: Allard Reported:

Durango CO, 81301 Project Manager: Clinton Casey 10/07/20 12:57

Dissolved Mercury by CVAA - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B202045 - EPA 245.1/7470										
Blank (B202045-BLK1)			Prep	oared: 09/30/2	20 Analyz	ed: 10/02/20)			
Mercury	ND	0.0002	mg/L							
LCS (B202045-BS1)			Prep	pared: 09/30/2	20 Analyz	ed: 10/02/20)			
Mercury	0.0049	0.0002	mg/L	0.00500		97.6	85-115			
LCS Dup (B202045-BSD1)			Prep	oared: 09/30/2	20 Analyz	ed: 10/02/20)			
Mercury	0.0049	0.0002	mg/L	0.00500		97.0	85-115	0.596	20	

Green Analytical Laboratories

Deldie Zufett

www.GreenAnalytical.com

SME Project: Allard

679 E 2nd Ave, Ste E2 Project Name / Number: Allard Reported:

Durango CO, 81301 Project Manager: Clinton Casey 10/07/20 12:57

Notes and Definitions

M5 Sample was chosen for matrix spike. Spike recovery did not meet laboratory acceptance criteria, possible matrix interference in sample.

B3 Target analyte detected in method blank or continuing calibration blank. Reporting limit elevated to account for blank result.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

*Results reported on as received basis unless designated as dry.

RPD Relative Percent Difference

LCS Laboratory Control Sample (Blank Spike)

RL Report Limit

MDL Method Detection Limit

Green Analytical Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. In no event shall Green Analytical Laboratories be liable for incidental or consequential damages. GALs liability, and clients exclusive remedy for any claim arising, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever, shall be deemed waived unless made in writing and received within thirty days after completion of the applicable service.

seldie Zufett

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

FORM-006

(970) 247-4220 Fax: (970) 247-4227 dzufelt@greenanalytical.com
75 Suttle St Durango, CO 81303 COC - Revision 6.0

Emplemen			Bill to (if di	ifferent).	AN	
and Ave Unit	62			Ş		
State:	Zip:		Company:			
5356-656			Attn:		f	
hat casey			Address:		e	
ccasex & sne-env. con			City:		3	
Allard					le	
					du	
			Email:		a	
	Collect		Matrix (check one)	# of containers	7	
Sample Name or Location	Date	Time	DRINKING WATER	HNO ₃ HCI H ₂ SO ₄ Other: S.K.de	Allard	
Illard 1	9123	100		1	K	
2	1/1	1130	<	_	KI	
3	11	1200	<		X-	
, H	11	1400	<		×	
5	1 n	430	<		× .	
9 11	11	R	<		X	
7	16 31	500	<	1	×	
+	-				-	
• 1 1 10 12 1861 1 1 10 12 1861 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	State: State: Accerv.con Accerv.con Accerv.con	State: Zip: State: Zip: Accenu.con Collect Gollect G	State: Zip: State: Zip: Collected Collected	State: Zip: Company: Address: Accended Matrix (che Collected Matrix (che Phone #: Email: Collected Matrix (che Phone #: Email: 11 130 Collected Matrix (che Phone #: Email: 11 130 Collected Matrix (che Phone #: Email: 11 130 Collected Matrix (che Phone #: Produced Matrix (che Collected Matrix (che Phone #: Produced Matrix (che Collected Matrix (che Phone #: 11 130 Collected Matrix (che Phone #: Produced Matrix (che Collected Matrix (che Phone #: Produced Matrix (che Collected Matrix (che Collected Matrix (che Phone #: Produced Matrix (che City: City: City: City: Phone #: Produced Matrix (che Collected Matrix (che Produced Matrix (che Collected Matrix (che City: City: City: City: Collected Matrix (che Phone #: Produced Matrix (che Collected Matrix (che City: City: City: Collected Matrix (che Phone #: Produced Matrix (che City: Collected Matrix (che City: City:	State: Zip: Company: Address: City: Company: Address: City: State: Zip: Company: Address: City: Phone #: Email: Email: Email: Matrix (check one) GROUNDWATER WASTEWATER PRODUCEDWATER PRODUCEDWATER SOIL DRINKING WATER SOIL DRINKING WATER No preservation (general)	State: Zip: Collected City: State: Zip: Company: Address: Address: Address: City: State: Zip: Company: Marrix (obeck one) Surfacewater PRODUCEDWATER SOIL DRINKING WATER OTHER OTHER HCI H2SO4 Other: Cynida Other: Cynida Address: Addres

† GAL cannot always accept verbal changes. Please fax or email written change requests.

* Chain of Custody must be signed in "Relinquished By:" as an acceptance of services and all applicable charges.

Temperature at receipt

On Ice

No Ice

Relinquished by:

Date:

Received by:

Date:

Received by:

Time:

Date:

Received by:

Time:

Time: 16:00

8/13

Yes

No

Relinquished by:

Relinquished by:

ZWE

Fhone:(970) 259-9595

8/53/5050

679 E 2nd Ave, Ste E2 Durango, CO 81301

Laboratory PM: Debbie Zufelt

Project Name: Allard
Project Number: May 14, 2020

Client PM: Clinton Casey

Comments:

Analysis Comment
Alkalinity, Bicarbonate

Alkalinity, Carbonate

Alkalinity, Hydroxide

Alkalinity, Total

Aluminum Dissolved by ICP

Arsenic Dissolved by ICPMS

Ammonia

Boron 200.2 by ICP Cadmium Dissolved by ICPMS

Chloride by IC

Chlorine, Total Residual

Chromium III, Dissolved by ICPMS

Conductivity

Copper Dissolved by ICPMS

Cyanide, Total

Hardness, 200.2 Metals

Iron Dissolved by ICP

Lead Dissolved by ICPMS

Manganese Dissolved by ICPMS

Mercury Dissolved by CVAA

Molybdenum Dissolved by ICPMS

Nickel Dissolved by ICPMS

Nitrate/Nitrite as N by IC Package

Hd

Phosphate as P, Total by Lachat

Selenium Dissolved by ICPMS

Silver Dissolved by ICPMS

Solids, Total Dissolved (TDS) Solids, Total Suspended (TSS)

Sulfate by IC

Sulfide

Uranium Dissolved by ICPMS

Zinc Dissolved by ICPMS

Chromium III, Dissolved by ICPMS subanalyses:

Chromium Dissolved by ICPMS

Chromium, Hexavalent Dissolved

Comment

SME

Fax:Phone:(970) 259-9595 9/23/2020

679 E 2nd Ave, Ste E2 Durango, CO 81301

Laboratory PM: Debbie Zufelt

Eaboratory Fig. Dendie Zuren

Project Name: Allard
Project Number: May 14, 2020

Clinton Casey

Client PM; Comments:

Analysis Hardness, 200.2 Metals subanalyses:

Calcium 200.2 by ICP

Magnesium 200.2 by ICP

Nitrate/Nitrite as N by IC Package subanalyses:
Nitrate as N by IC

Nitrite as N by IC