

CRIPPLE CREEK & VICTOR PO Box 191 100 N. 3rd Street Victor CO 80860

July 12, 2023

ELECTRONIC DELIVERY

Mr. Elliott Russell Environmental Protection Specialist Colorado Department of Natural Resources Division of Reclamation, Mining and Safety Office of Mined Land Reclamation 1313 Sherman Street, Room 215 Denver, Colorado 80203

Re: <u>Permit No. M-1980-244; Cripple Creek & Victor Gold Mining Company; Cresson Project;</u> <u>Technical Revision 137 – Second Adequacy Review Response</u>

Dear Mr. Russell:

On July 10, 2023, Newmont Corporation's Cripple Creek and Victor Gold Mining Company (CC&V) received the Division of Reclamation, Mining and Safety (DRMS) second adequacy review of Technical Revision (TR) 137 to Permit M-1980-244, regarding the WHEX Clay Borrow Source. Below are DRMS comments in bold and CC&V's response in *italics*.

4. Flow Path and Lag Time: The response was not adequate. A quick review of the lag time calculations shows the three down chute analyses have acceptable lag times between 11 and 16 minutes. Yet the single watershed WHEX Pond lag time is nearly 57 minutes for very little extra travel distance. An investigation of the WHEX Pond lag time calculation revealed 2.5 miles of total travel time distance. Referencing Figure 2, the total runoff travel distance is on the order of 3,200 feet. Please correct this error and resubmit.

The WHEX Pond hydrology calculations in our previous submittal double-counted the flow lengths and overestimated the estimated watershed lag time. Revised lag time calculations and HEC-HMS results are attached. The revised flow lengths correctly distinguish between the overland sheet flow length (calculated), the concentrated shallow flow along the hillside, and the channel flows (a) along the roadside, (b) within the rock chute, and (c) in the rock chute outlet. The total flow length is 3,250 feet and the calculated watershed lag time is 15.44 minutes. This value is in alignment with the lag times calculated for the down chute analyses, with variation due to the watershed lengths and slopes.

The HEC-HMS model for the WHEX pond was updated with the revised lag time, resulting in a greater peak flow. The total volume of runoff reporting to the WHEX pond is unchanged. Separate hydrologic and hydraulic calculations were used to size the three rock chutes and the recommended channel design has not been amended.

CRIPPLE CREEK & VICTOR PO Box 191 100 N. 3rd Street Victor CO 80860

Should you require further information, please do not hesitate to contact Johnna Gonzalez at (719)851-4190, Johnna.Gonzalez@Newmont.com, or myself at (719) 237-3442 or <u>Katie.Blake@newmont.com</u>.

Sincerely,

DocuSigned by: Katie Blake

5A3D013B629844B... Katie Blake Sustainability & External Relations Manager Cripple Creek & Victor Gold Mining Co

EC:

M. Cunningham – DRMS T. Cazier – DRMS N. Gagnon - DRMS D. Swallow – Teller County J. Gonzalez – CC&V K. Blake – CC&V N. Townley – CC&V

Attachments: Pond Sizing Calculations

File: S:\CrippleCreek\na.cc.admin\Environmental\New File Structure\2-Correspondence\DNR\DRMS\2023\July\Outgoing

NewFields			CALCU	LATION COVE	R SHEET	
Client	Cripple Creek & Vi	ctor Gold N	Aining Company	Preparer:	Roxanne Li	06/18/23
Project	VL	.F2 Phase 3		Checked:	Jay Moore	06/19/23
Title	Pond Siz	ing Calcul	ations	Revision	C	
			CULATION OBJEC			
1. Estimate	the peak runoff from up	pstream w	atersheds to design tl	he sediment	t pond.	
2. Determi	ne the required size of th	he diversio	n channels and erosio	on protectio	n (if necessary)	
			ASSUMPTIONS			
1. Composi	te SCS Curve numbers a	re calculat	ed based on ground t	ype.		
2. Storm ev	vents will be sized accord	ding to pre	vious meteorological	studies.		
	2-Year, 24-hour:	1.77	inches			
	25-Year, 24-hour:		inches			
	100-Year, 24-hour:		inches			
	500-Year, 24-hour:		inches			
			METHODOLOGY			
	l length measurements v			D Civil 3D.		
-	was calculated using the					
	S was used to model the		• · ·			
4. Results f	rom HEC-HMS were use	d in rock cl	hute calculations to v	erify that th	ey would function ac	equately.
			REFERENCES			
1. AutoCAE	Civil 3D version 2022.					
-	artment of Agriculture (ngineering Handbook."	-		ervation Ser	vice (NRCS). "Part 63	0 Hydrology
	tates Army Corps of Eng	ineers. Hyd	drologic Modeling Sys	stem (HEC-H	IMS) Version 4.10, Co	mputer
Program (A	pril 2023)					
CONCLUSIONS						
1. See atta	ched tables for channel a	and culvert	t sizing.			
Filename:						
	P:\Projects\0106.056 VLF2	Phase 3a CQA\F	I-CALCULATIONS\WHEX Pit Pond	[Whex Pond hydro	ology.xlsx]Hec Calc Cover	

Whex Pond Hydrology

Table 9–1 Runoff curve numbers for agricultural lands [⊥] — Continued

	Cover description		CN for hydrologic soil group			
covertype	treatment ^{2/}	hydrologic condition ⅔	Α	B	с	D
Pasture, grassland, or range-		Poor	68	79	86	89
continuous forage for		Fair	49	69	79	84
grazing ^{4/}		Good	39	61	74	80
Meadow-continuous grass, protected from grazing and generally mowed for hay		Good	30	58	71	78
Brush-brush-forbs-grass		Poor	48	67	77	83
mixture with brush the		Fair	35	56	70	77
major element≝∕		Good	30 <u>€</u> ⁄	48	65	73
Woods-grass combination		Poor	57	73	82	86
(orchard or tree farm) [™]		Fair	43	65	76	82
		Good	32	58	72	79
Woods ^{8/}		Poor	45	66	77	83
		Fair	36	60	73	79
		Good	30	55	70	77
Farmstead–buildings, lanes, driveways, and surrounding lots	3		59	74	82	86
Roads (including right-of-way):						
Dirt			72	82	87	89
Gravel			76	85	89	91

Soil Rating Polygons					
	А				
	A/D				
	в				
	B/D				
	с				
	C/D				
	D				
	Not rated or not available				

Group Asoils have low runoff potential and high infiltration rates even when thoroughly wetted. They consist chiefly of deep, well to excessively drained sand or gravel and have a high rate of water transmission (greater than 0.30 in/hr).

Group Bsoils have moderate infiltration rates when thoroughly wetted and consist chiefly of moderately deep to deep, moderately well to well drained soils with moderately fine to moderately coarse textures. These soils have a moderate rate of water transmission (0.15-0.30 in/hr).

Group Csoils have low infiltration rates when thoroughly wetted and consist chiefly of soils with a layer that impedes downward movement of water and soils with moderately fine to fine texture. These soils have a low rate of water transmission (0.05-0.15 in/hr).

Group Dsoils have high runoff potential. They have very low infiltration rates when thoroughly wetted and consist chiefly of clay soils with a high swelling potential, soils with a permanent high water table, soils with a claypan or clay layer at or near the surface, and shallow soils over nearly impervious material. These soils have a very low rate of water transmission (0-0.05 in/hr).

In exhibit A-1, some of the listed soils have an added modifier; for example, "Abrazo, gravelly." This refers to a gravelly phase of the Abrazo series that is found in SCS soil map legends. Table 2-2d Runoff curve numbers for arid and semiarid rangelands \mathcal{V}

Cover description			Curve numbers for hydrologic soil group			
Cover type	Hydrologic condition ⅔	A ¥	В	с	D	
Herbaceous—mixture of grass, weeds, and	Poor		80	87	93	
low-growing brush, with brush the	Fair		71	81	89	
minor element.	Good	C	62	74	85	
Oak-aspen—mountain brush mixture of oak brush,	Poor		66	74	79	
aspen, mountain mahogany, bitter brush, maple,	Fair		48	57	63	
and other brush.	Good		30	41	48	
Pinyon-juniper—pinyon, juniper, or both;	Poor		75	85	89	
grass understory.	Fair		58	73	80	
	Good		41	61	71	
Sagebrush with grass understory.	Poor		67	80	85	
	Fair		51	63	70	
	Good		35	47	55	
Desert shrub—major plants include saltbush,	Poor	63	77	85	88	
greasewood, creosotebush, blackbrush, bursage,	Fair	55	72	81	86	
palo verde, mesquite, and cactus.	Good	49	68	79	84	

 1 Average runoff condition, and $I_{\rm gs}$ = 0.28. For range in humid regions, use table 2-2c. 2 Poor: <30% ground cover (litter, grass, and brush overstory). Fair: 30 to 70% ground cover.

Good: > 70% ground cover.

³ Curve numbers for group A have been developed only for desert shrub.

Table 9-5 Runoff curve numbers for urban areas 1/ -- CN for hydrologic soil group --A B C D Cover description Average percent impervious area 2/ cover type and hydrologic condition Fully developed urban areas (vegetation established) Open space (lawns, parks, golf courses, cemeteries, etc.) 3/ Poor condition (grass cover < 50%) Fair condition (grass cover 50% to 75%) Good condition (grass cover > 75%) Impervious areas: Paved parking lots, roofs, driveways, etc. (excluding right-of-way) Streets and roads: Paved; curbs and storm sewers (excluding right-of-way) Paved; open ditches (including right-of-way) Gravel (including right-of-way) Dirt (including right-of-way) Western desert urban areas: Natural desert landscaping (pervious areas only) 4/ Artificial desert landscaping (impervious weed barrier, desert shrub with 1- to 2-inch sand or gravel mulch and basin borders) Urban districts: Commercial and business Industrial Residential districts by average lot size: 1/8 acre or less (town houses) 1/4 acre 1/3 acre 1/2 acre 1 acre 2 acres Developing urban areas Newly graded areas (pervious areas only, no vegetation)

1/ Average runoff condition, and I_a = 0.2S.

2/ The average percent impervious area shown was used to develop the composite CNs. Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas have a CN of 98, and pervious areas are considered equivalent to open space in good hydrologic condition.

3/ CNs shown are equivalent to those of pasture. Composite CNs may be computed for other combinations of open space type.

4/ Composite CNs for natural desert landscaping should be computed using figures 9–3 or 9–4 based on the impervious area percentage (CN=98) and the pervious area CN. The pervious area CNs are assumed equivalent to desert shrub in poor hydrologic condition.

Cripple Creek and Victor Gold Mining Company Whex Pond Hydrology Watershed Characteristics

Variables	
У	Avg. Watershed Slope (%)
CN	Composite Curve Number
S	1000/CN-10 (in.)
la	Initial Abstraction (0.2*S)
inputs	

Watershed Characteristics					
Watershed	Area (mi ²)	CN	у	S	la
Area 1	0.123	67	22.3%	4.94	0.99

Cripple Creek and Victor Gold Mining Company WHEX Pond Hydrology Lag Time Calculation **WHEX Pond**

Sheet Flow

1. Calculate length of sheet flow:

$$\ell = \frac{100\sqrt{S}}{n}$$

where:

I	=	sheet flow length, ft
S	=	slope of land surface, ft/ft
n	=	Manning's roughness coefficient (Table 15-1)
~	0.005	

S: 0.095 ft/ft n: 0.15

1: 205 ft

2. Calculate sheet flow travel time:

$$T_t = \frac{0.007 \left(n\ell\right)^{0.8}}{\left(P_2\right)^{0.5} S^{0.4}}$$

where:

P ₂ =	2-year, 24-hour rainfall, in
------------------	------------------------------

T _t	=	travel time, h

P ₂ :	1.77	in
T _t :	0.21	h

Table 15-1Manning's roughness coefficiflow (flow depth generally \leq	
Surface description	n ^{1/}
Smooth surface (concrete, asphalt, gravel, o	r
bare soil)	0.011
Fallow (no residue)	0.05
Cultivated soils:	
Residue cover ≤ 20%	0.06
Residue cover > 20%	0.17
Grass:	
Short-grass prairie	0.15
Dense grasses ²	0.24
Bermudagrass	
Range (natural)	0.13
Woods: 2	
Light underbrush	0.40
Dense underbrush	0.80

The Manni by Engman (1986).

by Engman (1986).
Includes species such as weeping lovegrass, bluegrass, buffalo grass, blue grama grass, and native grass mixtures.
When selecting n, consider cover to a height of about 0.1 ft. This is the only part of the plant cover that will obstruct sheet flow.

Shallow Concentrated Flow:

2. Calculate shallow concentrated flow travel time:

$$T_t = \frac{\ell}{3.600V}$$

1st Segment:

mer	nt:		2n
l:	151	ft	
T _t :	0.02	h	

nd Segme	nt:	
l:	522.8	ft
T _t :	0.08	h

Open Channel Flow:

1. Calculate hydraulic radius:

$$r = a/P_w$$

where:

r	=	hydraulic radius, ft
а	=	cross sectional flow area, ft ²
P _w	=	wetted perimeter, ft

1	Lst Segme	<u>ent</u>	<u>2</u>	nd Segm	<u>ent</u>	3	Brd Segme	<u>ent</u>
a:	60	ft ²	a:	43.2	ft ²	a:	43.2	ft ²
P_{w}	85	ft	Pw	48.9	ft	Pw	48.9	ft
r	0.7	ft	r	0.9	ft	r	0.9	ft

1. Calculate average flow velocity and travel time:

$$V = \frac{1.49r^{\frac{2}{3}}s^{\frac{1}{2}}}{n}$$

where:

V = average velocity, ft/s

s = channel slope, ft/ft

n = Manning's n for open channel flow

<u>1</u>	st Segme	<u>nt</u>	2	2nd Segme	<u>ent</u>		Brd Segme	<u>ent</u>
s:	0.057	ft/ft	s:	0.322	ft/ft	s:	0.008	ft/ft
n:	0.05		n:	0.05		n:	0.05	
V:	5.6	ft/s	V:	15.6	ft/s	V:	2.5	ft/s

2. Calculate open channel flow travel time:

$$T_t = \frac{\ell}{3,600V}$$

1	Lst Segmei	<u>nt</u>	2	2nd Segm	<u>ient</u>	<u>3</u>	Brd Segme	nt
l:	1,896	ft	l:	214	ft	l:	261	ft
T _t :	0.09	h	T _t :	0.00	h	T _t :	0.03	h

Time of Concentration:

 $T_{c} = T_{t(sheet)} + T_{t(shallow)} + T_{t(channel)}$

Lag Time:

$$\label{eq:L} \begin{array}{c} L = 0.6 T_c \\ \mbox{L:} & 0.26 \\ \hline 15.44 \\ \mbox{min} \end{array}$$

Cripple Creek & Victor Gold Mining Company Whex Pond Sizing Calculations Watershed Summary

Hydraulic Element	Drainage Area (Mi ²)	Peak Discharge (ft ³ /s)	Volume (acre-ft)
Area-1	0.123	152.8	18.4
Whex Pond	0.123	152.8	18.4

500 Year-24 Hour Hec-HMS Results

Cripple Creek & Victor Gold Mining Company Whex Pond Sizing Calculations Hec-HMS Overall View

Cripple Creek and Victor Gold Mining Company Whex Pond Inlet Channel Hydrology Watershed Characteristics

Variables	
У	Avg. Watershed Slope (%)
CN	Composite Curve Number
S	1000/CN-10 (in.)
la	Initial Abstraction (0.2*S)
inputs	

Watershed Characteristics					
Watershed	Area (mi ²)	CN	у	S	la
West WHEX Pond Channel	0.004	64	11.7%	5.72	1.14
East WHEX Pond Channel	0.011	76	23.7%	3.17	0.63
NW WHEX Pond Channel	0.059	75	16.0%	3.33	0.67

Cripple Creek and Victor Gold Mining Company WHEX Pond Hydrology Lag Time Calculation West WHEX Pond Channel

Sheet Flow

1. Calculate length of sheet flow:

 $\ell = \frac{100\sqrt{S}}{n}$

where:

Ι	=	sheet flow length, ft
S	=	slope of land surface, ft/ft
n	=	Manning's roughness coefficient (Table 15-1)
~	0.040	c. /c.

S:	0.018	ft/ft
n:	0.15	
l:	89	ft

2. Calculate sheet flow travel time:

$$\mathrm{T_{t}} = \frac{0.007 (n\ell)^{0.8}}{(\mathrm{P_{2}})^{0.5} \,\mathrm{S^{0.4}}}$$

where:

P ₂ =	2-year, 24-hour rainfall, in
------------------	------------------------------

P ₂ :	1.77	in
T _t :	0.21	h

Table 15–1	Manning's roughness coef flow (flow depth generally	
Surface descr	iption	n ¹
Smooth surfa	ce (concrete, asphalt, grave	l, or
bare soil)		0.011
Fallow (no re	sidue)	0.05
Cultivated soi	ls:	
Residue co	$ver \le 20\%$	
	ver > 20%	
Grass:		
Short-grass	prairie	0.15
Dense gras	ses ^{2/}	0.24
Bermudagr	ass	0.41
Range (natura	վ)	0.13
Woods: ³ ∕		
Light und	erbrush	0.40
Dense uno	lerbrush	0.80

1 The Manning's n values are a composite of information compiled by Engman (1986).

 Includes species such as weeping lovegrass, bluegrass, buffalo grass, blue grama grass, and native grass mixtures.

 When selecting n, consider cover to a height of about 0.1 ft. This is the only part of the plant cover that will obstruct sheet flow.

Shallow Concentrated Flow:

1. Estimate velocity from Figure 15-4

Figure 15-4 Velocity versus slope for shallow concentrated flow

2. Calculate shallow concentrated flow travel time:

	$T_t = \frac{\ell}{3,60}$	$\overline{0V}$		
<u>1</u>	Lst Segmen	<u>t:</u> 2	nd Segmen	<u>t:</u>
l:	305	ft I:	356	ft
T _t :	0.07	h T _t :	0.06	h

Open Channel Flow:

1. Calculate hydraulic radius:

$$r = a/P_w$$

where:

 $\begin{array}{lll} r & = & hydraulic radius, ft \\ a & = & cross sectional flow area, ft^2 \\ P_w & = & wetted perimeter, ft \end{array}$

<u>1st Segment</u>		<u>í</u>	2nd Seg	ment	
a:	32.4	ft ²	a:	3.1	ft ²
P_{w}	68	ft	Pw	6.3	3 ft
r	0.5	ft	r	0.5	i ft

1. Calculate average flow velocity and travel time:

$$V = \frac{1.49r^{\frac{2}{3}}s^{\frac{1}{2}}}{n}$$

where:

V = average velocity, ft/s

s = channel slope, ft/ft

n = Manning's n for open channel flow

<u>1st Segment</u>		2	nd Segmer	nt		
s:	0.034	ft/ft		s:	0.03	ft/ft
n:	0.03			n:	0.024	
V:	5.6	ft/s		V:	6.8	ft/s

2. Calculate open channel flow travel time:

$$T_t = \frac{\ell}{3,600V}$$

· 	1st Segmen	<u>t</u> 2	2nd Segment	
l:	315	ft I:	91	ft
T _t :	0.02	h T _t :	0.004	h

Time of Concentration:

 $T_c = T_{t(sheet)} + T_{t(shallow)} + T_{t(channel)}$

Lag Time:

$$L = 0.6T_{c}$$
L: 0.21 h
12.81 min

Cripple Creek and Victor Gold Mining Company WHEX Pond Hydrology Lag Time Calculation **East WHEX Pond Channel**

Sheet Flow

1. Calculate length of sheet flow:

$$\ell = \frac{100\sqrt{S}}{n}$$

where:

Ι	=	sheet flow length, ft
S	=	slope of land surface, ft/ft
n	=	Manning's roughness coefficient (Table 15-1)
		c. /c.

S:	0.042	ft/ft
n:	0.15	
1:	137	ft

2. Calculate sheet flow travel time:

$$\mathrm{T_{t}} = \frac{0.007 (n\ell)^{0.8}}{(\mathrm{P_{2}})^{0.5} \,\mathrm{S^{0.4}}}$$

where:

P ₂ =	2-year, 24-hour rainfall, in
------------------	------------------------------

T _t	=	travel time, h

P ₂ :	1.77	in
T _t :	0.21	h

Table 15-1 Manning's roughness coeffi flow (flow depth generally)	
Surface description	n ¹ /
Smooth surface (concrete, asphalt, gravel,	or
bare soil)	0.011
Fallow (no residue)	0.05
Cultivated soils:	
Residue cover ≤ 20%	0.06
Residue cover > 20%	0.17
Grass:	
Short-grass prairie	0.15
Dense grasses ² /	0.24
Bermudagrass	
Range (natural)	0.13
Woods: 2	
Light underbrush	0.40
Dense underbrush	0.80

1 The Manning's *n* values are a composite of information compiled by Engman (1986).

by Engman (1986).
Includes species such as weeping lovegrass, bluegrass, buffalo grass, blue grama grass, and native grass mixtures.
When selecting n, consider cover to a height of about 0.1 ft. This is the only part of the plant cover that will obstruct sheet flow.

Shallow Concentrated Flow:

1. Estimate velocity from Figure 15-4

117

0.01

ft

h

2. Calculate shallow concentrated flow travel time:

$$T_t = \frac{\ell}{3,600V}$$

1st Segment	<u>t</u>		<u>1st Segment</u>
l:	560	ft	l:
T _t :	0.05	h	T _t :

Open Channel Flow:

1. Calculate hydraulic radius:

$$r = a/P_w$$

where:

r	=	hydraulic radius, ft
а	=	cross sectional flow area, ft ²
P_{w}	=	wetted perimeter, ft

<u>1st Segment</u>		2	2nd Segment		
a:	3.9	ft ²	a:	3.1	ft ²
P_{w}	11.27	ft	Pw	6.3	ft
r	0.3	ft	r	0.5	ft

1. Calculate average flow velocity and travel time:

$$V = \frac{1.49r^{\frac{2}{3}}s^{\frac{1}{2}}}{n}$$

where:

V = average velocity, ft/s

s = channel slope, ft/ft

n = Manning's n for open channel flow

<u>1st Segment</u>		<u>2</u>	nd Segme	ent	
s:	0.03	ft/ft	s:	0.024	ft/ft
n:	0.05		n:	0.024	
V:	2.5	ft/s	V:	6.1	ft/s

2. Calculate open channel flow travel time:

$$T_t = \frac{\ell}{3,600V}$$

<u>1st Segment</u>		<u>t</u>	2nd Segmen	<u>it</u>
I:	354	ft l:	51	ft
T _t :	0.04	h T _t :	0.002	h

Time of Concentration:

$$T_c = T_{t(sheet)} + T_{t(shallow)} + T_{t(channel)}$$

Lag Time:

$$\label{eq:L} \begin{array}{c} L = 0.6 T_c \\ \text{L:} \\ \hline 0.19 \\ 11.12 \\ \text{min} \end{array}$$

Cripple Creek and Victor Gold Mining Company WHEX Pond Hydrology **Lag Time Calculation Northwest WHEX Pond Channel**

Sheet Flow

1. Calculate length of sheet flow:

 $\ell = \frac{100\sqrt{S}}{n}$

where:

Ι	=	sheet flow length, ft
S	=	slope of land surface, ft/ft
n	=	Manning's roughness coefficient
		(Table 15-1)
		6. / C

S:	0.095	ft/ft
n:	0.15	
l:	205	ft

2. Calculate sheet flow travel time:

$$T_{t} = \frac{0.007 (n\ell)^{0.8}}{(P_{2})^{0.5} S^{0.4}}$$

where:

P ₂ =	2-year, 24-hour rainfall, in
------------------	------------------------------

T _t = travel time,	h
-------------------------------	---

P ₂ :	1.77	in
T _t :	0.21	h

Table 15–1	Manning's roughness coeffi flow (flow depth generally s	
Surface desc	ription	n ^{1/}
Smooth surfa	ace (concrete, asphalt, gravel,	or
bare soil).		0.011
Fallow (no re	esidue)	0.05
Cultivated so	oils:	
Residue co	over ≤ 20%	0.06
Residue co	over > 20%	0.17
Grass:		
Short-gras	s prairie	0.15
Dense gras	sses [⊉]	0.24
	rass	
Range (natur	al)	0.13
Woods: ³ ∕		
Light und	lerbrush	0.40
	derbrush	

by Engman (1986).
Includes species such as weeping lovegrass, bluegrass, buffalo grass, blue grama grass, and native grass mixtures.
When selecting n, consider cover to a height of about 0.1 ft. This is the only part of the plant cover that will obstruct sheet flow.

Shallow Concentrated Flow:

1. Estimate velocity from Figure 15-4

2. Calculate shallow concentrated flow travel time:

ft

h

$$T_t = \frac{\ell}{3,600V}$$

760

0.08

1st Segment:

I:

T_t:

T _t :	0.10	
l:	685	
2nd Segme	2nd Segment:	

ft

h

Open Channel Flow:

1. Calculate hydraulic radius:

$$r = a/P_w$$

where:

r	=	hydraulic radius, ft
а	=	cross sectional flow area, ft ²
P_{w}	=	wetted perimeter, ft

<u>1st Segment</u>		<u>2</u>	2nd Segment			<u>3rd Segment</u>			
a:	3.1	ft ²	a:	24.3	ft ²	a:	3.1	ft ²	
P_{w}	6.3	ft	Pw	53.1	ft	Pw	6.3	ft	
r	0.5	ft	r	0.5	ft	r	0.5	ft	

1. Calculate average flow velocity and travel time:

$$V = \frac{1.49r^{\frac{2}{3}}s^{\frac{1}{2}}}{n}$$

where:

V = average velocity, ft/s

s = channel slope, ft/ft

n = Manning's n for open channel flow

<u>1</u>	st Segme	nt	2	nd Segme	<u>ent</u>		Brd Segme	<u>ent</u>
s:	0.036	ft/ft	s:	0.035	ft/ft	s:	0.033	ft/ft
n:	0.024		n:	0.03		n:	0.024	
V:	7.4	ft/s	V:	5.5	ft/s	V:	7.1	ft/s

2. Calculate open channel flow travel time:

$$T_t = \frac{\ell}{3,600V}$$

<u>1st Segment</u>			-	2nd Segment				<u>3rd Segment</u>		
l:	42	ft	l:		1,236	ft	l:		54	ft
T _t :	0.002	h	T _t :		0.06	h	T _t :		0.002	h

Time of Concentration:

$$T_{c} = T_{t(sheet)} + T_{t(shallow)} + T_{t(channel)}$$

Lag Time:

$$\label{eq:L} \begin{array}{c} L = 0.6 T_c \\ \mbox{L:} & 0.27 & \mbox{h} \\ \hline 16.44 & \mbox{min} \end{array}$$

Cripple Creek & Victor Gold Mining Company Whex Channel Sizing Calculations Watershed Summary

25 Year-24 Hour Hec-HMS Results

Hydraulic Element	Drainage Area (Mi ²)	Peak Discharge (ft ³ /s)	Volume (acre-ft)
East Channel	0.011	10.7	0.8
Northwest Channel	0.059	38.2	4.1
West Channel	0.004	1.6	0.2

100 Year-24 Hour Hec-HMS Results

Hydraulic Element	Drainage Area (Mi ²)	Peak Discharge (ft ³ /s)	Volume (acre-ft)	
East Channel	0.011	18.3	1.4	
Northwest Channel	0.059	66.9	6.9	
West Channel	0.004	3.5	0.3	

500 Year-24 Hour Hec-HMS Results

Hydraulic Element	Drainage Area (Mi ²)	Peak Discharge (ft ³ /s)	Volume (acre-ft)
East Channel	0.011	30.0	2.2
Northwest Channel	0.059	112.7	11.4
West Channel	0.004	6.9	0.6

Cripple Creek & Victor Gold Mining Company Whex Channel Sizing Calculations Hec-HMS Overall View

