

January 26, 2023

Report to: Jake Wilkinson CRG Mining, LLC 510 S Wisconsin St Gunnison, CO 80231 Bill to: Jake Wilkinson CRG Mining, LLC 510 S Wisconsin St Gunnison, CO 80231

Project ID: ACZ Project ID: L78031

Jake Wilkinson:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on January 05, 2023. This project has been assigned to ACZ's project number, L78031. Please reference this number in all future inquiries.

All analyses were performed according to ACZ's Quality Assurance Plan. The enclosed results relate only to the samples received under L78031. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after February 25, 2023. If the samples are determined to be hazardous, additional charges apply for disposal (typically \$11/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical raw data reports for ten years.

If you have any questions or other needs, please contact your Project Manager.

*Madeleine Murray* Madeleine Murray has reviewed and approved this report.







January 26, 2023

#### Project ID: ACZ Project ID: L78031

#### Sample Receipt

ACZ Laboratories, Inc. (ACZ) received 4 miscellaneous samples from CRG Mining, LLC on January 5, 2023. The samples were received in good condition. Upon receipt, the sample custodian removed the samples from the cooler, inspected the contents, and logged the samples into ACZ's computerized Laboratory Information Management System (LIMS). The samples were assigned ACZ LIMS project number L78031. The custodian verified the sample information entered into the computer against the chain of custody (COC) forms and sample bottle labels.

#### **Holding Times**

All analyses were performed within EPA recommended holding times except for parameters flagged with "H" flags (H3, HE), received either after the hold time expired or too close to the hold time.

#### Sample Analysis

These samples were analyzed for inorganic parameters. The individual methods are referenced on both, the ACZ invoice and the analytical reports. The following required further detail not provided by the Extended Qualifier Report:

1. The below is from WG558108, Qualifier: N1, Applies to: L78031-01 through -04/TOTAL DISSOLVED SOLIDS - Oven temperature on 1/11/23 was not recorded. It is believed that the samples were in the oven for the required minimum 1 hour. All quality controls passing. No further action taken.



Project ID: Sample ID: RM3

# Inorganic Analytical Results

ACZ Sample ID: **L78031-01** Date Sampled: 01/03/23 11:45 Date Received: 01/05/23 Sample Matrix: Surface Water

| Inorganic Prep                          |                              |          |          |         |       |         |         |                |         |
|-----------------------------------------|------------------------------|----------|----------|---------|-------|---------|---------|----------------|---------|
| Parameter                               | EPA Method                   | Dilution | Result   | Qual XQ | Units | MDL     | PQL     | Date           | Analyst |
| Cyanide, total                          | M335.4 - Manual Distillation |          |          |         |       |         |         | 01/06/23 9:00  | dfb/mrd |
| Lab Filtration (0.45um) & Acidification | M200.7/200.8/3005A           |          |          |         |       |         |         | 01/16/23 9:30  | mlh     |
| Metals Analysis                         |                              |          |          |         |       |         |         |                |         |
| Parameter                               | EPA Method                   | Dilution | Result   | Qual XQ | Units | MDL     | PQL     | Date           | Analyst |
| Aluminum, dissolved                     | M200.7 ICP                   | 1        | <0.05    | U       | mg/L  | 0.05    | 0.25    | 01/21/23 17:03 | wtc     |
| Antimony, dissolved                     | M200.8 ICP-MS                | 1        | <0.0004  | U       | mg/L  | 0.0004  | 0.002   | 01/17/23 20:27 | kja     |
| Arsenic, dissolved                      | M200.8 ICP-MS                | 1        | 0.00095  | В       | mg/L  | 0.0002  | 0.001   | 01/20/23 12:34 | kja     |
| Barium, dissolved                       | M200.7 ICP                   | 1        | 0.0091   | В       | mg/L  | 0.009   | 0.035   | 01/21/23 17:03 | wtc     |
| Beryllium, dissolved                    | M200.8 ICP-MS                | 1        | <0.00008 | U       | mg/L  | 0.00008 | 0.00025 | 01/17/23 20:27 | kja     |
| Cadmium, dissolved                      | M200.8 ICP-MS                | 1        | 0.000195 | В       | mg/L  | 0.00005 | 0.00025 | 01/17/23 20:27 | kja     |
| Calcium, dissolved                      | M200.7 ICP                   | 1        | 16.9     |         | mg/L  | 0.1     | 0.5     | 01/21/23 17:03 | wtc     |
| Chromium, dissolved                     | M200.8 ICP-MS                | 1        | <0.0005  | U       | mg/L  | 0.0005  | 0.002   | 01/17/23 20:27 | kja     |
| Cobalt, dissolved                       | M200.7 ICP                   | 1        | <0.02    | U       | mg/L  | 0.02    | 0.05    | 01/21/23 17:03 | wtc     |
| Copper, dissolved                       | M200.7 ICP                   | 1        | <0.01    | U       | mg/L  | 0.01    | 0.05    | 01/23/23 17:55 | aeh     |
| Iron, dissolved                         | M200.7 ICP                   | 1        | <0.06    | U       | mg/L  | 0.06    | 0.15    | 01/21/23 17:03 | wtc     |
| Lead, dissolved                         | M200.8 ICP-MS                | 1        | 0.00014  | В       | mg/L  | 0.0001  | 0.0005  | 01/17/23 20:27 | kja     |
| Magnesium, dissolved                    | M200.7 ICP                   | 1        | 5.29     |         | mg/L  | 0.2     | 1       | 01/23/23 17:55 | aeh     |
| Manganese, dissolved                    | M200.7 ICP                   | 1        | 0.213    |         | mg/L  | 0.01    | 0.05    | 01/21/23 17:03 | wtc     |
| Mercury, total                          | M245.1 CVAA                  | 1        | < 0.0002 | U       | mg/L  | 0.0002  | 0.001   | 01/09/23 14:52 | mlh     |
| Nickel, dissolved                       | M200.7 ICP                   | 1        | <0.008   | U       | mg/L  | 0.008   | 0.04    | 01/21/23 17:03 | wtc     |
| Potassium, dissolved                    | M200.7 ICP                   | 1        | 0.78     | В       | mg/L  | 0.2     | 1       | 01/21/23 17:03 | wtc     |
| Sodium, dissolved                       | M200.7 ICP                   | 1        | 2.20     |         | mg/L  | 0.2     | 1       | 01/21/23 17:03 | wtc     |
| Vanadium, dissolved                     | M200.7 ICP                   | 1        | <0.01    | U       | mg/L  | 0.01    | 0.025   | 01/21/23 17:03 | wtc     |
| Zinc, dissolved                         | M200.7 ICP                   | 1        | 0.292    |         | mg/L  | 0.02    | 0.05    | 01/21/23 17:03 | wtc     |



Project ID: Sample ID: RM3

# Inorganic Analytical Results

ACZ Sample ID: L78031-01 Date Sampled: 01/03/23 11:45 Date Received: 01/05/23 Sample Matrix: Surface Water

| Wet Chemistry                      |                                         |                |        |      |    |          |       |      |                |         |
|------------------------------------|-----------------------------------------|----------------|--------|------|----|----------|-------|------|----------------|---------|
| Parameter                          | EPA Method                              | Dilution       | Result | Qual | XQ | Units    | MDL   | PQL  | Date           | Analyst |
| Alkalinity as CaCO3                | SM2320B - Titration                     |                |        |      |    |          |       |      |                |         |
| Bicarbonate as<br>CaCO3            |                                         | 1              | 62.2   |      |    | mg/L     | 2     | 20   | 01/12/23 0:00  | jck     |
| Carbonate as CaCO3                 |                                         | 1              | <2     | U    |    | mg/L     | 2     | 20   | 01/12/23 0:00  | jck     |
| Hydroxide as CaCO3                 |                                         | 1              | <2     | U    |    | mg/L     | 2     | 20   | 01/12/23 0:00  | jck     |
| Total Alkalinity                   |                                         | 1              | 62.2   |      | *  | mg/L     | 2     | 20   | 01/12/23 0:00  | jck     |
| Cation-Anion Balance               | Calculation                             |                |        |      |    |          |       |      |                |         |
| Cation-Anion Balance               |                                         |                | 0.0    |      |    | %        |       |      | 01/26/23 0:00  | calc    |
| Sum of Anions                      |                                         |                | 1.4    |      |    | meq/L    |       |      | 01/26/23 0:00  | calc    |
| Sum of Cations                     |                                         |                | 1.4    |      |    | meq/L    |       |      | 01/26/23 0:00  | calc    |
| Chloride                           | SM4500CI-E                              | 1              | <1     | U    | *  | mg/L     | 1     | 2    | 01/16/23 12:54 | mrd     |
| Conductivity @25C                  | SM2510B                                 | 1              | 134    |      |    | umhos/cm | 1     | 10   | 01/12/23 22:27 | jck     |
| Cyanide, total                     | M335.4 - Colorimetric w/ distillation   | 0.5            | <0.003 | U    | *  | mg/L     | 0.003 | 0.01 | 01/06/23 15:00 | bls     |
| Hardness as CaCO3<br>(dissolved)   | SM2340B - Calculation                   |                | 64.0   |      |    | mg/L     | 0.2   | 5    | 01/26/23 0:00  | calc    |
| Lab Filtration (0.45um filter)     | SOPWC050                                | 1              |        |      |    |          |       |      | 01/11/23 7:39  | mlh     |
| Nitrate as N                       | Calculation: NO3NO2 minus NO2           |                | 0.214  | Н    |    | mg/L     | 0.02  | 0.1  | 01/26/23 0:00  | calc    |
| Nitrate/Nitrite as N               | M353.2 - Automated<br>Cadmium Reduction | 1              | 0.214  | н    | *  | mg/L     | 0.02  | 0.1  | 01/06/23 0:50  | pjb     |
| Nitrite as N                       | M353.2 - Automated<br>Cadmium Reduction | 1              | <0.01  | UH   | *  | mg/L     | 0.01  | 0.05 | 01/06/23 0:50  | pjb     |
| pH (lab)                           | SM4500H+ B                              |                |        |      |    |          |       |      |                |         |
| рН                                 |                                         | 1              | 6.9    | н    |    | units    | 0.1   | 0.1  | 01/12/23 0:00  | jck     |
| pH measured at                     |                                         | 1              | 21.7   |      |    | С        | 0.1   | 0.1  | 01/12/23 0:00  | jck     |
| Residue, Filterable<br>(TDS) @180C | SM2540C                                 | 1              | 82     |      | *  | mg/L     | 20    | 40   | 01/10/23 11:19 | svm     |
| Sulfate                            | D516-02/-07/-11 - TURBIDIMETRIC         | <sup>C</sup> 1 | 7.9    |      | *  | mg/L     | 1     | 5    | 01/19/23 21:55 | gkk     |



Project ID: Sample ID: CM1

# Inorganic Analytical Results

ACZ Sample ID: L78031-02 Date Sampled: 01/03/23 12:20 Date Received: 01/05/23 Sample Matrix: Surface Water

| Inorganic Prep                          |                              |          |          |         |       |         |         |                |         |
|-----------------------------------------|------------------------------|----------|----------|---------|-------|---------|---------|----------------|---------|
| Parameter                               | EPA Method                   | Dilution | Result   | Qual XQ | Units | MDL     | PQL     | Date           | Analyst |
| Cyanide, total                          | M335.4 - Manual Distillation |          |          |         |       |         |         | 01/06/23 9:10  | dfb/mrd |
| Lab Filtration (0.45um) & Acidification | M200.7/200.8/3005A           |          |          |         |       |         |         | 01/16/23 9:30  | mlh     |
| Metals Analysis                         |                              |          |          |         |       |         |         |                |         |
| Parameter                               | EPA Method                   | Dilution | Result   | Qual XQ | Units | MDL     | PQL     | Date           | Analyst |
| Aluminum, dissolved                     | M200.7 ICP                   | 1        | <0.05    | U       | mg/L  | 0.05    | 0.25    | 01/21/23 17:06 | wtc     |
| Antimony, dissolved                     | M200.8 ICP-MS                | 1        | <0.0004  | U       | mg/L  | 0.0004  | 0.002   | 01/17/23 20:36 | kja     |
| Arsenic, dissolved                      | M200.8 ICP-MS                | 1        | 0.00116  |         | mg/L  | 0.0002  | 0.001   | 01/20/23 12:40 | kja     |
| Barium, dissolved                       | M200.7 ICP                   | 1        | 0.0097   | В       | mg/L  | 0.009   | 0.035   | 01/21/23 17:06 | wtc     |
| Beryllium, dissolved                    | M200.8 ICP-MS                | 1        | <0.00008 | U       | mg/L  | 0.00008 | 0.00025 | 01/17/23 20:36 | kja     |
| Cadmium, dissolved                      | M200.8 ICP-MS                | 1        | 0.000164 | В       | mg/L  | 0.00005 | 0.00025 | 01/17/23 20:36 | kja     |
| Calcium, dissolved                      | M200.7 ICP                   | 1        | 16.7     |         | mg/L  | 0.1     | 0.5     | 01/21/23 17:06 | wtc     |
| Chromium, dissolved                     | M200.8 ICP-MS                | 1        | <0.0005  | U       | mg/L  | 0.0005  | 0.002   | 01/17/23 20:36 | kja     |
| Cobalt, dissolved                       | M200.7 ICP                   | 1        | <0.02    | U       | mg/L  | 0.02    | 0.05    | 01/21/23 17:06 | wtc     |
| Copper, dissolved                       | M200.7 ICP                   | 1        | <0.01    | U       | mg/L  | 0.01    | 0.05    | 01/23/23 17:58 | aeh     |
| Iron, dissolved                         | M200.7 ICP                   | 1        | <0.06    | U       | mg/L  | 0.06    | 0.15    | 01/21/23 17:06 | wtc     |
| Lead, dissolved                         | M200.8 ICP-MS                | 1        | 0.00027  | В       | mg/L  | 0.0001  | 0.0005  | 01/17/23 20:36 | kja     |
| Magnesium, dissolved                    | M200.7 ICP                   | 1        | 5.25     |         | mg/L  | 0.2     | 1       | 01/23/23 17:58 | aeh     |
| Manganese, dissolved                    | M200.7 ICP                   | 1        | 0.038    | В       | mg/L  | 0.01    | 0.05    | 01/21/23 17:06 | wtc     |
| Mercury, total                          | M245.1 CVAA                  | 1        | <0.0002  | U       | mg/L  | 0.0002  | 0.001   | 01/09/23 15:10 | mlh     |
| Nickel, dissolved                       | M200.7 ICP                   | 1        | <0.008   | U       | mg/L  | 0.008   | 0.04    | 01/21/23 17:06 | wtc     |
| Potassium, dissolved                    | M200.7 ICP                   | 1        | 0.84     | В       | mg/L  | 0.2     | 1       | 01/21/23 17:06 | wtc     |
| Sodium, dissolved                       | M200.7 ICP                   | 1        | 2.16     |         | mg/L  | 0.2     | 1       | 01/21/23 17:06 | wtc     |
| Vanadium, dissolved                     | M200.7 ICP                   | 1        | <0.01    | U       | mg/L  | 0.01    | 0.025   | 01/21/23 17:06 | wtc     |
| Zinc, dissolved                         | M200.7 ICP                   | 1        | 0.143    |         | mg/L  | 0.02    | 0.05    | 01/21/23 17:06 | wtc     |



Project ID: Sample ID: CM1

# Inorganic Analytical Results

ACZ Sample ID: L78031-02 Date Sampled: 01/03/23 12:20 Date Received: 01/05/23 Sample Matrix: Surface Water

| Wet Chemistry                      |                                         |                |        |      |    |          |       |      |                |         |
|------------------------------------|-----------------------------------------|----------------|--------|------|----|----------|-------|------|----------------|---------|
| Parameter                          | EPA Method                              | Dilution       | Result | Qual | XQ | Units    | MDL   | PQL  | Date           | Analyst |
| Alkalinity as CaCO3                | SM2320B - Titration                     |                |        |      |    |          |       |      |                |         |
| Bicarbonate as<br>CaCO3            |                                         | 1              | 77.1   |      |    | mg/L     | 2     | 20   | 01/12/23 0:00  | jck     |
| Carbonate as CaCO3                 |                                         | 1              | <2     | U    |    | mg/L     | 2     | 20   | 01/12/23 0:00  | jck     |
| Hydroxide as CaCO3                 |                                         | 1              | <2     | U    |    | mg/L     | 2     | 20   | 01/12/23 0:00  | jck     |
| Total Alkalinity                   |                                         | 1              | 77.1   |      | *  | mg/L     | 2     | 20   | 01/12/23 0:00  | jck     |
| Cation-Anion Balance               | Calculation                             |                |        |      |    |          |       |      |                |         |
| Cation-Anion Balance               |                                         |                | -9.7   |      |    | %        |       |      | 01/26/23 0:00  | calc    |
| Sum of Anions                      |                                         |                | 1.7    |      |    | meq/L    |       |      | 01/26/23 0:00  | calc    |
| Sum of Cations                     |                                         |                | 1.4    |      |    | meq/L    |       |      | 01/26/23 0:00  | calc    |
| Chloride                           | SM4500CI-E                              | 1              | <1     | U    | *  | mg/L     | 1     | 2    | 01/16/23 12:54 | mrd     |
| Conductivity @25C                  | SM2510B                                 | 1              | 135    |      |    | umhos/cm | 1     | 10   | 01/12/23 22:37 | jck     |
| Cyanide, total                     | M335.4 - Colorimetric w/ distillation   | 0.5            | <0.003 | U    | *  | mg/L     | 0.003 | 0.01 | 01/06/23 15:01 | bls     |
| Hardness as CaCO3<br>(dissolved)   | SM2340B - Calculation                   |                | 63     |      |    | mg/L     | 0.2   | 5    | 01/26/23 0:00  | calc    |
| Lab Filtration (0.45um filter)     | SOPWC050                                | 1              |        |      |    |          |       |      | 01/11/23 7:43  | mlh     |
| Nitrate as N                       | Calculation: NO3NO2 minus NO2           |                | 0.208  | Н    |    | mg/L     | 0.02  | 0.1  | 01/26/23 0:00  | calc    |
| Nitrate/Nitrite as N               | M353.2 - Automated<br>Cadmium Reduction | 1              | 0.208  | н    | *  | mg/L     | 0.02  | 0.1  | 01/06/23 0:52  | pjb     |
| Nitrite as N                       | M353.2 - Automated<br>Cadmium Reduction | 1              | <0.01  | UH   | *  | mg/L     | 0.01  | 0.05 | 01/06/23 0:52  | pjb     |
| pH (lab)                           | SM4500H+ B                              |                |        |      |    |          |       |      |                |         |
| pН                                 |                                         | 1              | 7.0    | н    |    | units    | 0.1   | 0.1  | 01/12/23 0:00  | jck     |
| pH measured at                     |                                         | 1              | 21.7   |      |    | С        | 0.1   | 0.1  | 01/12/23 0:00  | jck     |
| Residue, Filterable<br>(TDS) @180C | SM2540C                                 | 1              | 74     |      | *  | mg/L     | 20    | 40   | 01/10/23 11:22 | svm     |
| Sulfate                            | D516-02/-07/-11 - TURBIDIMETRIC         | <sup>C</sup> 1 | 8.5    |      | *  | mg/L     | 1     | 5    | 01/19/23 21:55 | gkk     |

REPIN.02.06.05.01



Project ID: Sample ID: CM2

# Inorganic Analytical Results

ACZ Sample ID: L78031-03 Date Sampled: 01/03/23 12:40 Date Received: 01/05/23 Sample Matrix: Surface Water

| Inorganic Prep                          |                              |          |          |         |       |         |         |                |         |
|-----------------------------------------|------------------------------|----------|----------|---------|-------|---------|---------|----------------|---------|
| Parameter                               | EPA Method                   | Dilution | Result   | Qual XQ | Units | MDL     | PQL     | Date           | Analyst |
| Cyanide, total                          | M335.4 - Manual Distillation |          |          |         |       |         |         | 01/06/23 9:21  | dfb/mrd |
| Lab Filtration (0.45um) & Acidification | M200.7/200.8/3005A           |          |          |         |       |         |         | 01/16/23 9:30  | mlh     |
| Metals Analysis                         |                              |          |          |         |       |         |         |                |         |
| Parameter                               | EPA Method                   | Dilution | Result   | Qual XQ | Units | MDL     | PQL     | Date           | Analyst |
| Aluminum, dissolved                     | M200.7 ICP                   | 1        | <0.05    | U       | mg/L  | 0.05    | 0.25    | 01/21/23 17:09 | wtc     |
| Antimony, dissolved                     | M200.8 ICP-MS                | 1        | <0.0004  | U       | mg/L  | 0.0004  | 0.002   | 01/17/23 20:38 | kja     |
| Arsenic, dissolved                      | M200.8 ICP-MS                | 1        | 0.00228  |         | mg/L  | 0.0002  | 0.001   | 01/20/23 12:41 | kja     |
| Barium, dissolved                       | M200.7 ICP                   | 1        | <0.009   | U       | mg/L  | 0.009   | 0.035   | 01/21/23 17:09 | wtc     |
| Beryllium, dissolved                    | M200.8 ICP-MS                | 1        | <0.00008 | U       | mg/L  | 0.00008 | 0.00025 | 01/17/23 20:38 | kja     |
| Cadmium, dissolved                      | M200.8 ICP-MS                | 1        | 0.000072 | В       | mg/L  | 0.00005 | 0.00025 | 01/17/23 20:38 | kja     |
| Calcium, dissolved                      | M200.7 ICP                   | 1        | 17.0     |         | mg/L  | 0.1     | 0.5     | 01/21/23 17:09 | wtc     |
| Chromium, dissolved                     | M200.8 ICP-MS                | 1        | <0.0005  | U       | mg/L  | 0.0005  | 0.002   | 01/17/23 20:38 | kja     |
| Cobalt, dissolved                       | M200.7 ICP                   | 1        | <0.02    | U       | mg/L  | 0.02    | 0.05    | 01/21/23 17:09 | wtc     |
| Copper, dissolved                       | M200.7 ICP                   | 1        | <0.01    | U       | mg/L  | 0.01    | 0.05    | 01/23/23 18:07 | aeh     |
| Iron, dissolved                         | M200.7 ICP                   | 1        | <0.06    | U       | mg/L  | 0.06    | 0.15    | 01/21/23 17:09 | wtc     |
| Lead, dissolved                         | M200.8 ICP-MS                | 1        | 0.00014  | В       | mg/L  | 0.0001  | 0.0005  | 01/17/23 20:38 | kja     |
| Magnesium, dissolved                    | M200.7 ICP                   | 1        | 3.21     |         | mg/L  | 0.2     | 1       | 01/23/23 18:07 | aeh     |
| Manganese, dissolved                    | M200.7 ICP                   | 1        | 0.010    | В       | mg/L  | 0.01    | 0.05    | 01/21/23 17:09 | wtc     |
| Mercury, total                          | M245.1 CVAA                  | 1        | < 0.0002 | U       | mg/L  | 0.0002  | 0.001   | 01/09/23 15:11 | mlh     |
| Nickel, dissolved                       | M200.7 ICP                   | 1        | <0.008   | U       | mg/L  | 0.008   | 0.04    | 01/21/23 17:09 | wtc     |
| Potassium, dissolved                    | M200.7 ICP                   | 1        | 0.73     | В       | mg/L  | 0.2     | 1       | 01/21/23 17:09 | wtc     |
| Sodium, dissolved                       | M200.7 ICP                   | 1        | 5.90     |         | mg/L  | 0.2     | 1       | 01/21/23 17:09 | wtc     |
| Vanadium, dissolved                     | M200.7 ICP                   | 1        | <0.01    | U       | mg/L  | 0.01    | 0.025   | 01/21/23 17:09 | wtc     |
| Zinc, dissolved                         | M200.7 ICP                   | 1        | <0.02    | U       | mg/L  | 0.02    | 0.05    | 01/21/23 17:09 | wtc     |



Project ID: Sample ID: CM2

# Inorganic Analytical Results

ACZ Sample ID: L78031-03 Date Sampled: 01/03/23 12:40 Date Received: 01/05/23 Sample Matrix: Surface Water

| Wet Chemistry                      |                                         |          |        |      |    |          |       |      |                |         |
|------------------------------------|-----------------------------------------|----------|--------|------|----|----------|-------|------|----------------|---------|
| Parameter                          | EPA Method                              | Dilution | Result | Qual | XQ | Units    | MDL   | PQL  | Date           | Analyst |
| Alkalinity as CaCO3                | SM2320B - Titration                     |          |        |      |    |          |       |      |                |         |
| Bicarbonate as<br>CaCO3            |                                         | 1        | 54.2   |      |    | mg/L     | 2     | 20   | 01/12/23 0:00  | jck     |
| Carbonate as CaCO3                 |                                         | 1        | <2     | U    |    | mg/L     | 2     | 20   | 01/12/23 0:00  | jck     |
| Hydroxide as CaCO3                 |                                         | 1        | <2     | U    |    | mg/L     | 2     | 20   | 01/12/23 0:00  | jck     |
| Total Alkalinity                   |                                         | 1        | 54.2   |      | *  | mg/L     | 2     | 20   | 01/12/23 0:00  | jck     |
| Cation-Anion Balance               | Calculation                             |          |        |      |    |          |       |      |                |         |
| Cation-Anion Balance               |                                         |          | -6.7   |      |    | %        |       |      | 01/26/23 0:00  | calc    |
| Sum of Anions                      |                                         |          | 1.6    |      |    | meq/L    |       |      | 01/26/23 0:00  | calc    |
| Sum of Cations                     |                                         |          | 1.4    |      |    | meq/L    |       |      | 01/26/23 0:00  | calc    |
| Chloride                           | SM4500CI-E                              | 1        | <1     | U    | *  | mg/L     | 1     | 2    | 01/16/23 12:55 | mrd     |
| Conductivity @25C                  | SM2510B                                 | 1        | 140    |      |    | umhos/cm | 1     | 10   | 01/12/23 22:45 | jck     |
| Cyanide, total                     | M335.4 - Colorimetric w/ distillation   | 0.5      | <0.003 | U    | *  | mg/L     | 0.003 | 0.01 | 01/06/23 15:02 | bls     |
| Hardness as CaCO3<br>(dissolved)   | SM2340B - Calculation                   |          | 56     |      |    | mg/L     | 0.2   | 5    | 01/26/23 0:00  | calc    |
| Lab Filtration (0.45um filter)     | SOPWC050                                | 1        |        |      |    |          |       |      | 01/11/23 7:47  | mlh     |
| Nitrate as N                       | Calculation: NO3NO2 minus NO2           |          | <0.02  | UH   |    | mg/L     | 0.02  | 0.1  | 01/26/23 0:00  | calc    |
| Nitrate/Nitrite as N               | M353.2 - Automated<br>Cadmium Reduction | 1        | <0.02  | UH   | *  | mg/L     | 0.02  | 0.1  | 01/06/23 23:46 | pjb     |
| Nitrite as N                       | M353.2 - Automated<br>Cadmium Reduction | 1        | <0.01  | UH   | *  | mg/L     | 0.01  | 0.05 | 01/06/23 23:46 | pjb     |
| pH (lab)                           | SM4500H+ B                              |          |        |      |    |          |       |      |                |         |
| рН                                 |                                         | 1        | 6.9    | н    |    | units    | 0.1   | 0.1  | 01/12/23 0:00  | jck     |
| pH measured at                     |                                         | 1        | 21.8   |      |    | С        | 0.1   | 0.1  | 01/12/23 0:00  | jck     |
| Residue, Filterable<br>(TDS) @180C | SM2540C                                 | 1        | 76     |      | *  | mg/L     | 20    | 40   | 01/10/23 11:24 | svm     |
| Sulfate                            | D516-02/-07/-11 - TURBIDIMETRIC         | ີ 1      | 25.0   |      | *  | mg/L     | 1     | 5    | 01/19/23 21:55 | gkk     |

REPIN.02.06.05.01



Project ID: Sample ID: CM3

# Inorganic Analytical Results

ACZ Sample ID: L78031-04 Date Sampled: 01/03/23 12:50 Date Received: 01/05/23 Sample Matrix: Surface Water

| Inorganic Prep                          |                              |          |          |      |    |       |         |         |                |         |
|-----------------------------------------|------------------------------|----------|----------|------|----|-------|---------|---------|----------------|---------|
| Parameter                               | EPA Method                   | Dilution | Result   | Qual | XQ | Units | MDL     | PQL     | Date           | Analyst |
| Cyanide, total                          | M335.4 - Manual Distillation |          |          |      |    |       |         |         | 01/06/23 9:32  | dfb/mrd |
| Lab Filtration (0.45um) & Acidification | M200.7/200.8/3005A           |          |          |      |    |       |         |         | 01/16/23 9:30  | mlh     |
| Metals Analysis                         |                              |          |          |      |    |       |         |         |                |         |
| Parameter                               | EPA Method                   | Dilution | Result   | Qual | XQ | Units | MDL     | PQL     | Date           | Analyst |
| Aluminum, dissolved                     | M200.7 ICP                   | 1        | <0.05    | U    |    | mg/L  | 0.05    | 0.25    | 01/21/23 17:19 | wtc     |
| Antimony, dissolved                     | M200.8 ICP-MS                | 1        | <0.0004  | U    |    | mg/L  | 0.0004  | 0.002   | 01/17/23 20:40 | kja     |
| Arsenic, dissolved                      | M200.8 ICP-MS                | 1        | 0.00125  |      |    | mg/L  | 0.0002  | 0.001   | 01/20/23 12:43 | kja     |
| Barium, dissolved                       | M200.7 ICP                   | 1        | <0.009   | U    |    | mg/L  | 0.009   | 0.035   | 01/21/23 17:19 | wtc     |
| Beryllium, dissolved                    | M200.8 ICP-MS                | 1        | <0.00008 | U    | *  | mg/L  | 0.00008 | 0.00025 | 01/17/23 20:40 | kja     |
| Cadmium, dissolved                      | M200.8 ICP-MS                | 1        | 0.000142 | В    |    | mg/L  | 0.00005 | 0.00025 | 01/17/23 20:40 | kja     |
| Calcium, dissolved                      | M200.7 ICP                   | 1        | 16.0     |      |    | mg/L  | 0.1     | 0.5     | 01/21/23 17:19 | wtc     |
| Chromium, dissolved                     | M200.8 ICP-MS                | 1        | <0.0005  | U    |    | mg/L  | 0.0005  | 0.002   | 01/17/23 20:40 | kja     |
| Cobalt, dissolved                       | M200.7 ICP                   | 1        | <0.02    | U    |    | mg/L  | 0.02    | 0.05    | 01/21/23 17:19 | wtc     |
| Copper, dissolved                       | M200.7 ICP                   | 1        | <0.01    | U    |    | mg/L  | 0.01    | 0.05    | 01/23/23 18:10 | aeh     |
| Iron, dissolved                         | M200.7 ICP                   | 1        | <0.06    | U    |    | mg/L  | 0.06    | 0.15    | 01/21/23 17:19 | wtc     |
| Lead, dissolved                         | M200.8 ICP-MS                | 1        | 0.00031  | В    |    | mg/L  | 0.0001  | 0.0005  | 01/17/23 20:40 | kja     |
| Magnesium, dissolved                    | M200.7 ICP                   | 1        | 5.07     |      |    | mg/L  | 0.2     | 1       | 01/23/23 18:10 | aeh     |
| Manganese, dissolved                    | M200.7 ICP                   | 1        | <0.01    | U    |    | mg/L  | 0.01    | 0.05    | 01/21/23 17:19 | wtc     |
| Mercury, total                          | M245.1 CVAA                  | 1        | <0.0002  | U    |    | mg/L  | 0.0002  | 0.001   | 01/09/23 15:14 | mlh     |
| Nickel, dissolved                       | M200.7 ICP                   | 1        | <0.008   | U    |    | mg/L  | 0.008   | 0.04    | 01/21/23 17:19 | wtc     |
| Potassium, dissolved                    | M200.7 ICP                   | 1        | 0.81     | В    |    | mg/L  | 0.2     | 1       | 01/21/23 17:19 | wtc     |
| Sodium, dissolved                       | M200.7 ICP                   | 1        | 2.32     |      |    | mg/L  | 0.2     | 1       | 01/21/23 17:19 | wtc     |
| Vanadium, dissolved                     | M200.7 ICP                   | 1        | <0.01    | U    |    | mg/L  | 0.01    | 0.025   | 01/21/23 17:19 | wtc     |
| Zinc, dissolved                         | M200.7 ICP                   | 1        | 0.035    | В    |    | mg/L  | 0.02    | 0.05    | 01/21/23 17:19 | wtc     |



Project ID: Sample ID: CM3

# Inorganic Analytical Results

ACZ Sample ID: L78031-04 Date Sampled: 01/03/23 12:50 Date Received: 01/05/23 Sample Matrix: Surface Water

| Wet Chemistry                      |                                         |                |        |      |    |          |       |      |                |         |
|------------------------------------|-----------------------------------------|----------------|--------|------|----|----------|-------|------|----------------|---------|
| Parameter                          | EPA Method                              | Dilution       | Result | Qual | XQ | Units    | MDL   | PQL  | Date           | Analyst |
| Alkalinity as CaCO3                | SM2320B - Titration                     |                |        |      |    |          |       |      |                |         |
| Bicarbonate as<br>CaCO3            |                                         | 1              | 63.9   |      |    | mg/L     | 2     | 20   | 01/12/23 0:00  | jck     |
| Carbonate as CaCO3                 |                                         | 1              | <2     | U    |    | mg/L     | 2     | 20   | 01/12/23 0:00  | jck     |
| Hydroxide as CaCO3                 |                                         | 1              | <2     | U    |    | mg/L     | 2     | 20   | 01/12/23 0:00  | jck     |
| Total Alkalinity                   |                                         | 1              | 63.9   |      |    | mg/L     | 2     | 20   | 01/12/23 0:00  | jck     |
| Cation-Anion Balance               | Calculation                             |                |        |      |    |          |       |      |                |         |
| Cation-Anion Balance               |                                         |                | -10.3  |      |    | %        |       |      | 01/26/23 0:00  | calc    |
| Sum of Anions                      |                                         |                | 1.6    |      |    | meq/L    |       |      | 01/26/23 0:00  | calc    |
| Sum of Cations                     |                                         |                | 1.3    |      |    | meq/L    |       |      | 01/26/23 0:00  | calc    |
| Chloride                           | SM4500CI-E                              | 1              | <1     | U    | *  | mg/L     | 1     | 2    | 01/16/23 12:55 | mrd     |
| Conductivity @25C                  | SM2510B                                 | 1              | 137    |      |    | umhos/cm | 1     | 10   | 01/12/23 22:53 | jck     |
| Cyanide, total                     | M335.4 - Colorimetric w/ distillation   | 0.5            | <0.003 | U    | *  | mg/L     | 0.003 | 0.01 | 01/06/23 15:03 | bls     |
| Hardness as CaCO3<br>(dissolved)   | SM2340B - Calculation                   |                | 61     |      |    | mg/L     | 0.2   | 5    | 01/26/23 0:00  | calc    |
| Lab Filtration (0.45um filter)     | SOPWC050                                | 1              |        |      |    |          |       |      | 01/11/23 7:50  | mlh     |
| Nitrate as N                       | Calculation: NO3NO2 minus NO2           |                | 0.181  | н    |    | mg/L     | 0.02  | 0.1  | 01/26/23 0:00  | calc    |
| Nitrate/Nitrite as N               | M353.2 - Automated<br>Cadmium Reduction | 1              | 0.181  | Н    | *  | mg/L     | 0.02  | 0.1  | 01/06/23 23:49 | pjb     |
| Nitrite as N                       | M353.2 - Automated<br>Cadmium Reduction | 1              | <0.01  | UH   | *  | mg/L     | 0.01  | 0.05 | 01/06/23 23:49 | pjb     |
| pH (lab)                           | SM4500H+ B                              |                |        |      |    |          |       |      |                |         |
| рН                                 |                                         | 1              | 7.0    | н    |    | units    | 0.1   | 0.1  | 01/12/23 0:00  | jck     |
| pH measured at                     |                                         | 1              | 22.0   |      |    | С        | 0.1   | 0.1  | 01/12/23 0:00  | jck     |
| Residue, Filterable<br>(TDS) @180C | SM2540C                                 | 1              | 66     |      | *  | mg/L     | 20    | 40   | 01/10/23 11:27 | svm     |
| Sulfate                            | D516-02/-07/-11 - TURBIDIMETRIC         | <sup>C</sup> 1 | 17.0   |      | *  | mg/L     | 1     | 5    | 01/19/23 21:55 | gkk     |

REPIN.02.06.05.01



Inorganic Reference

| Batch                                                                                                                                                                                                     | r Explanations<br>A distinct set of samples analyzed at a specific time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Found                                                                                                                                                                                                     | Value of the QC Type of interest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                |
| Limit                                                                                                                                                                                                     | Upper limit for RPD, in %.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                |
| Lower                                                                                                                                                                                                     | Lower Recovery Limit, in % (except for LCSS, mg/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                |
| MDL                                                                                                                                                                                                       | Method Detection Limit. Same as Minimum Reporting Limit ur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nless omitted or e                                                                                                                                                                                                                                                                                                                                | gual to the POL (see comment #5)                                                                                                                                                                                                                                                                               |
| MDL                                                                                                                                                                                                       | Allows for instrument and annual fluctuations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                |
| PCN/SCN                                                                                                                                                                                                   | A number assigned to reagents/standards to trace to the man                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ufacturer's certific                                                                                                                                                                                                                                                                                                                              | ate of analysis                                                                                                                                                                                                                                                                                                |
| PQL                                                                                                                                                                                                       | Practical Quantitation Limit. Synonymous with the EPA term "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                |
| QC                                                                                                                                                                                                        | True Value of the Control Sample or the amount added to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                |
| Rec                                                                                                                                                                                                       | Recovered amount of the true value or spike added, in % (exc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                   | /Kq)                                                                                                                                                                                                                                                                                                           |
| RPD                                                                                                                                                                                                       | Relative Percent Difference, calculation used for Duplicate QC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                |
| Upper                                                                                                                                                                                                     | Upper Recovery Limit, in % (except for LCSS, mg/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                |
| Sample                                                                                                                                                                                                    | Value of the Sample of interest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                |
| 0l- <b>T</b> -                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                |
| Sample Ty<br>AS                                                                                                                                                                                           | Analytical Spike (Post Digestion)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LCSWD                                                                                                                                                                                                                                                                                                                                             | Laboratory Control Sample - Water Duplicat                                                                                                                                                                                                                                                                     |
| ASD                                                                                                                                                                                                       | Analytical Spike (Post Digestion) Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LFB                                                                                                                                                                                                                                                                                                                                               | Laboratory Fortified Blank                                                                                                                                                                                                                                                                                     |
| CCB                                                                                                                                                                                                       | Continuing Calibration Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LFM                                                                                                                                                                                                                                                                                                                                               | Laboratory Fortified Matrix                                                                                                                                                                                                                                                                                    |
| CCV                                                                                                                                                                                                       | Continuing Calibration Verification standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LFMD                                                                                                                                                                                                                                                                                                                                              | Laboratory Fortified Matrix Duplicate                                                                                                                                                                                                                                                                          |
| DUP                                                                                                                                                                                                       | Sample Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LRB                                                                                                                                                                                                                                                                                                                                               | Laboratory Reagent Blank                                                                                                                                                                                                                                                                                       |
| ICB                                                                                                                                                                                                       | Initial Calibration Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MS                                                                                                                                                                                                                                                                                                                                                | Matrix Spike                                                                                                                                                                                                                                                                                                   |
| ICV                                                                                                                                                                                                       | Initial Calibration Verification standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MS<br>MSD                                                                                                                                                                                                                                                                                                                                         | Matrix Spike Duplicate                                                                                                                                                                                                                                                                                         |
| ICSAB                                                                                                                                                                                                     | Inter-element Correction Standard - A plus B solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PBS                                                                                                                                                                                                                                                                                                                                               | Prep Blank - Soil                                                                                                                                                                                                                                                                                              |
| LCSS                                                                                                                                                                                                      | Laboratory Control Sample - Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PBW                                                                                                                                                                                                                                                                                                                                               | Prep Blank - Water                                                                                                                                                                                                                                                                                             |
| LCSSD                                                                                                                                                                                                     | Laboratory Control Sample - Soil Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PQV                                                                                                                                                                                                                                                                                                                                               | •                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FUV                                                                                                                                                                                                                                                                                                                                               | Practical Quantitation Verification standard                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SDL                                                                                                                                                                                                                                                                                                                                               | Practical Quantitation Verification standard<br>Serial Dilution                                                                                                                                                                                                                                                |
| LCSW                                                                                                                                                                                                      | Laboratory Control Sample - Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                |
| <i>LCSW</i><br>Sample Ty                                                                                                                                                                                  | Laboratory Control Sample - Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SDL                                                                                                                                                                                                                                                                                                                                               | Serial Dilution                                                                                                                                                                                                                                                                                                |
| <i>LCSW</i><br>Sample Ty<br>Blanks                                                                                                                                                                        | Laboratory Control Sample - Water<br>ype Explanations<br>Verifies that there is no or minimal co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SDL                                                                                                                                                                                                                                                                                                                                               | Serial Dilution<br>e prep method or calibration procedure.                                                                                                                                                                                                                                                     |
| LCSW<br>Sample Ty<br>Blanks<br>Control Sa                                                                                                                                                                 | Laboratory Control Sample - Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SDL<br>ontamination in the<br>including the prep                                                                                                                                                                                                                                                                                                  | Serial Dilution<br>e prep method or calibration procedure.<br>o procedure.                                                                                                                                                                                                                                     |
| LCSW<br>Sample Ty<br>Blanks<br>Control Sa<br>Duplicates                                                                                                                                                   | Laboratory Control Sample - Water The Explanations The Explanations The Explanations The Verifies that there is no or minimal complete The Mathematical Structure Stru | SDL<br>ontamination in the<br>including the prep<br>nt and/or method                                                                                                                                                                                                                                                                              | Serial Dilution<br>e prep method or calibration procedure.<br>o procedure.                                                                                                                                                                                                                                     |
| LCSW<br>Sample Ty<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For                                                                                                                                     | Laboratory Control Sample - Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SDL<br>ontamination in the<br>including the prep<br>nt and/or method<br>ces, if any.                                                                                                                                                                                                                                                              | Serial Dilution<br>e prep method or calibration procedure.<br>o procedure.                                                                                                                                                                                                                                     |
| LCSW<br>Sample Ty<br>Blanks<br>Control Sa<br>Duplicates                                                                                                                                                   | Laboratory Control Sample - Water The Explanations The Explanations The Explanations The Verifies that there is no or minimal complete The Mathematical Structure Stru | SDL<br>ontamination in the<br>including the prep<br>nt and/or method<br>ces, if any.                                                                                                                                                                                                                                                              | Serial Dilution<br>e prep method or calibration procedure.<br>o procedure.                                                                                                                                                                                                                                     |
| LCSW<br>Sample Ty<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For                                                                                                                                     | Laboratory Control Sample - Water         rpe Explanations         weifies that there is no or minimal comples         Verifies the accuracy of the method,         Verifies the precision of the instrume         tified Matrix       Determines sample matrix interferen         Verifies the validity of the calibration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SDL<br>ontamination in the<br>including the prep<br>nt and/or method<br>ces, if any.                                                                                                                                                                                                                                                              | Serial Dilution<br>e prep method or calibration procedure.<br>o procedure.                                                                                                                                                                                                                                     |
| LCSW<br>Sample Ty<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard                                                                                                                         | Laboratory Control Sample - Water         rpe Explanations         weifies that there is no or minimal comples         Verifies the accuracy of the method,         Verifies the precision of the instrume         tified Matrix       Determines sample matrix interferen         Verifies the validity of the calibration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SDL<br>ontamination in the<br>including the prep<br>nt and/or method<br>ces, if any.                                                                                                                                                                                                                                                              | Serial Dilution<br>e prep method or calibration procedure.<br>o procedure.                                                                                                                                                                                                                                     |
| LCSW<br>Sample Ty<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>Z Qualifiers                                                                                                         | Laboratory Control Sample - Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SDL<br>ontamination in the<br>including the prep<br>nt and/or method<br>ces, if any.                                                                                                                                                                                                                                                              | Serial Dilution<br>e prep method or calibration procedure.<br>o procedure.<br>ted value is an estimated quantity.                                                                                                                                                                                              |
| LCSW<br>Sample Ty<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>Z Qualifiers<br>B                                                                                                    | Laboratory Control Sample - Water         rpe Explanations         weifies that there is no or minimal comples         Verifies the accuracy of the method,         Verifies the precision of the instrume         tified Matrix         Determines sample matrix interferen         Verifies the validity of the calibration.         s (Qual)         Analyte concentration detected at a value between MDL and F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SDL<br>ontamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>n immediate hold                                                                                                                                                                                                                      | Serial Dilution<br>e prep method or calibration procedure.<br>o procedure.<br>ted value is an estimated quantity.                                                                                                                                                                                              |
| LCSW<br>Sample Ty<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>Z Qualifiers<br>B<br>H                                                                                               | Laboratory Control Sample - Water         rpe Explanations         with the explanations         with explanations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SDL<br>ontamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>n immediate hold<br>gative threshold.                                                                                                                                                                                                 | Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time.                                                                                                                                                                                                 |
| LCSW<br>Sample Ty<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>Z Qualifiers<br>B<br>H<br>L                                                                                          | Laboratory Control Sample - Water         vpe Explanations         with the explanation of the explanation         with the explanation of the explanation         s (Qual)         Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined negative explanation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SDL<br>ontamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>n immediate hold<br>gative threshold.<br>e level of the assoc                                                                                                                                                                         | Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. pciated value.                                                                                                                                                                                  |
| LCSW<br>Sample Ty<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>Z Qualifiers<br>B<br>H<br>L                                                                                          | Laboratory Control Sample - Water         vpe Explanations         with the explanations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SDL<br>ontamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>n immediate hold<br>gative threshold.<br>e level of the assoc                                                                                                                                                                         | Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. pciated value.                                                                                                                                                                                  |
| LCSW<br>Sample Ty<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>Z Qualifiers<br>B<br>H<br>L<br>U                                                                                     | Laboratory Control Sample - Water         vpe Explanations         with the explanations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SDL<br>ontamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>n immediate hold<br>gative threshold.<br>e level of the associate<br>the sample detect                                                                                                                                                | Serial Dilution e prep method or calibration procedure. procedure. ted value is an estimated quantity. time. pociated value. tion limit.                                                                                                                                                                       |
| LCSW<br>Sample Ty<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>Z Qualifiers<br>B<br>H<br>L<br>U                                                                                     | Laboratory Control Sample - Water         rpe Explanations         mples       Verifies that there is no or minimal comples         tifies       Verifies the accuracy of the method, Verifies the precision of the instrume         tified Matrix       Determines sample matrix interferent         Verifies the validity of the calibration.         s (Qual)         Analyte concentration detected at a value between MDL and F         Analyte concentration detected at a value between MDL and F         Analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above the         The associated value is either the sample quantitation limit or the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SDL<br>ontamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>n immediate hold<br>gative threshold.<br>e level of the associate<br>the sample detection<br>and Wastes, Marc                                                                                                                         | Serial Dilution  e prep method or calibration procedure. p procedure. to procedure. ted value is an estimated quantity. time. botiated value. tion limit. ch 1983.                                                                                                                                             |
| LCSW<br>Sample Ty<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>Z Qualifiers<br>B<br>H<br>L<br>U                                                                                     | Laboratory Control Sample - Water         rpe Explanations         Werifies that there is no or minimal comples         Verifies the accuracy of the method,<br>Verifies the precision of the instrume         tified Matrix       Determines sample matrix interferent         Verifies the validity of the calibration.         s (Qual)         Analyte concentration detected at a value between MDL and F         Analyte concentration detected at a value between MDL and F         Analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above the         The associated value is either the sample quantitation limit or the         EPA 600/4-83-020. Methods for Chemical Analysis of Water and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SDL<br>ontamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>in immediate hold<br>gative threshold.<br>e level of the associa<br>the sample detect<br>and Wastes, Marc<br>in Substances in                                                                                                         | Serial Dilution e prep method or calibration procedure. procedure. ted value is an estimated quantity. time. bciated value. tion limit. ch 1983. Environmental Samples, August 1993.                                                                                                                           |
| LCSW<br>Sample Ty<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>Z Qualifiers<br>B<br>H<br>L<br>U<br>U<br>thod Refere<br>(1)<br>(2)                                                   | Laboratory Control Sample - Water         ype Explanations         with the explanation of the instrume         with the explanation of the instrume         with the explanation of the instrume         with the explanation of the exploration.         state         with the exploration of the exploration.         state         state         with the exploration of the exploration.         state         with the exploration of the exploration.         state         with the exploration of the exploration.         with the exploration. <t< td=""><td>SDL<br/>ontamination in the<br/>including the prep<br/>nt and/or method<br/>ces, if any.<br/>PQL. The associa<br/>in immediate hold<br/>gative threshold.<br/>e level of the associa<br/>the sample detect<br/>and Wastes, Marc<br/>in Substances in</td><td>Serial Dilution  e prep method or calibration procedure. p procedure. to procedure. ted value is an estimated quantity. time. bciated value. tion limit. bch 1983. Environmental Samples, August 1993.</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SDL<br>ontamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>in immediate hold<br>gative threshold.<br>e level of the associa<br>the sample detect<br>and Wastes, Marc<br>in Substances in                                                                                                         | Serial Dilution  e prep method or calibration procedure. p procedure. to procedure. ted value is an estimated quantity. time. bciated value. tion limit. bch 1983. Environmental Samples, August 1993.                                                                                                         |
| LCSW<br>Sample Ty<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>Z Qualifiers<br>B<br>H<br>L<br>U<br>U<br>thod Reference<br>(1)<br>(2)<br>(3)                                         | Laboratory Control Sample - Water <b>vpe Explanations</b> Werifies that there is no or minimal comples         Verifies the accuracy of the method,<br>Verifies the precision of the instrume         tified Matrix       Determines sample matrix interferent         Verifies the validity of the calibration.         s (Qual)         Analyte concentration detected at a value between MDL and F         Analyte sexceeded method hold time. pH is a field test with ar         Target analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above the         The associated value is either the sample quantitation limit or the         ences         EPA 600/R-83-020. Methods for Chemical Analysis of Water at         EPA 600/R-94-111. Methods for the Determination of Inorgan         EPA 600/R-94-111. Methods for the Determination of Metals in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SDL<br>ontamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>n immediate hold<br>gative threshold.<br>e level of the assoc<br>the sample detect<br>and Wastes, Marca<br>nic Substances in<br>in Environmental                                                                                      | Serial Dilution e prep method or calibration procedure. procedure. ted value is an estimated quantity. time. bciated value. tion limit. ch 1983. Environmental Samples, August 1993.                                                                                                                           |
| LCSW<br>Sample Ty<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>Z Qualifiers<br>B<br>H<br>L<br>U<br>U<br>thod Reference<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)                           | Laboratory Control Sample - Water         rpe Explanations         Imples       Verifies that there is no or minimal comples         Verifies the accuracy of the method, Verifies the precision of the instrume         tified Matrix       Determines sample matrix interferent         Verifies the validity of the calibration.         s (Qual)         Analyte concentration detected at a value between MDL and F         Analyte concentration detected at a value between MDL and F         Analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above the         The associated value is either the sample quantitation limit or the         ences         EPA 600/R-93-100. Methods for Chemical Analysis of Water at         EPA 600/R-94-111. Methods for the Determination of Inorgan         EPA 600/R-94-111. Methods for Evaluating Solid Waste.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SDL<br>ontamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>n immediate hold<br>gative threshold.<br>e level of the assoc<br>the sample detect<br>and Wastes, Marca<br>nic Substances in<br>in Environmental                                                                                      | Serial Dilution e prep method or calibration procedure. procedure. ted value is an estimated quantity. time. bciated value. tion limit. ch 1983. Environmental Samples, August 1993.                                                                                                                           |
| LCSW<br>Sample Ty<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>Z Qualifiers<br>B<br>H<br>L<br>U<br>thod Referent<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>mments                       | Laboratory Control Sample - Water         rpe Explanations         Werifies that there is no or minimal comples         Verifies the accuracy of the method, Verifies the precision of the instrume         tified Matrix       Determines sample matrix interferent         Verifies the validity of the calibration.         s (Qual)         Analyte concentration detected at a value between MDL and F         Analyte concentration detected at a value between MDL and F         Analysis exceeded method hold time. pH is a field test with and Target analyte response was below the laboratory defined negotime the associated value is either the sample quantitation limit or the associated value is either the sample quantitation limit or the associated value is either the sample quantitation limit or the EPA 600/R-93-100. Methods for Chemical Analysis of Water and EPA 600/R-94-111. Methods for the Determination of Inorganies EPA SW-846. Test Methods for Evaluating Solid Waste.         Standard Methods for the Examination of Water and Wasteward                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SDL<br>ontamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>in immediate hold<br>gative threshold.<br>e level of the associa<br>the sample detect<br>and Wastes, Marc<br>in Environmental<br>ater.                                                                                                | Serial Dilution e prep method or calibration procedure. procedure. to procedure. ted value is an estimated quantity. time. botated value. tion limit. ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994.                                                                           |
| LCSW<br>Sample Ty<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>Z Qualifiers<br>B<br>H<br>L<br>U<br>thod Reference<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>mments<br>(1)               | Laboratory Control Sample - Water         rpe Explanations         Werifies that there is no or minimal comples         Verifies the accuracy of the method, Verifies the precision of the instrume         tified Matrix       Determines sample matrix interferent         Verifies the validity of the calibration.         s (Qual)         Analyte concentration detected at a value between MDL and F         Analyte concentration detected at a value between MDL and F         Analysis exceeded method hold time. pH is a field test with and Target analyte response was below the laboratory defined negot The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the associated value is either the sample quantitation limit or the EPA 600/R-93-100. Methods for Chemical Analysis of Water and EPA 600/R-94-111. Methods for the Determination of Inorgan EPA 600/R-94-111. Methods for Evaluating Solid Waste.         Standard Methods for the Examination of Water and Wasteward         QC results calculated from raw data. Results may vary slightly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SDL<br>ontamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>n immediate hold<br>gative threshold.<br>e level of the association<br>the sample detection<br>and Wastes, Marco<br>nic Substances in<br>in Environmental<br>ater.                                                                    | Serial Dilution e prep method or calibration procedure. p procedure. to procedure. ted value is an estimated quantity. time. bciated value. tion limit. ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations.                                     |
| LCSW<br>Sample Ty<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>Z Qualifiers<br>B<br>H<br>L<br>U<br>thod Reference<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>mments<br>(1)<br>(2)        | Laboratory Control Sample - Water         rpe Explanations         Werifies that there is no or minimal comples         Verifies the accuracy of the method,<br>Verifies the precision of the instrume<br>tified Matrix         Determines sample matrix interferent<br>Verifies the validity of the calibration.         s (Qual)         Analyte concentration detected at a value between MDL and F<br>Analysis exceeded method hold time. pH is a field test with an<br>Target analyte response was below the laboratory defined neg<br>The material was analyzed for, but was not detected above the<br>The associated value is either the sample quantitation limit or the<br>ences         EPA 600/R-93-100.       Methods for Chemical Analysis of Water at<br>EPA 600/R-94-111.         EPA 600/R-94-111.       Methods for the Determination of Inorgan<br>EPA SW-846.         Cresults calculated from raw data.       Results may vary slightly<br>Soil, Sludge, and Plant matrices for Inorganic analyses are reported.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SDL<br>ontamination in the<br>including the prep<br>int and/or method<br>ces, if any.<br>PQL. The associa<br>in immediate hold<br>gative threshold.<br>e level of the associa<br>the sample detect<br>and Wastes, Marco<br>in Environmental<br>ater.                                                                                              | Serial Dilution e prep method or calibration procedure. p procedure. to procedure. ted value is an estimated quantity. time. bciated value. tion limit. ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations.                                     |
| LCSW<br>Sample Ty<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>Z Qualifiers<br>B<br>H<br>L<br>U<br>thod Reference<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>mments<br>(1)<br>(2)<br>(3) | Laboratory Control Sample - Water         rpe Explanations         Werifies that there is no or minimal comples         Verifies the accuracy of the method, Verifies the precision of the instrume         tified Matrix       Determines sample matrix interferent         Verifies the validity of the calibration.         s (Qual)         Analyte concentration detected at a value between MDL and F         Analyte concentration detected at a value between MDL and F         Analysis exceeded method hold time. pH is a field test with ar         Target analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above the         The associated value is either the sample quantitation limit or the         ences         EPA 600/R-93-100. Methods for the Determination of Inorganic         EPA 600/R-94-111. Methods for Evaluating Solid Waste.         Standard Methods for the Examination of Water and Wastewa         QC results calculated from raw data. Results may vary slightly         Soil, Sludge, and Plant matrices for Inorganic analyses are reported on an "as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SDL<br>ontamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>in immediate hold<br>gative threshold.<br>e level of the association<br>the sample detect<br>and Wastes, Marca<br>in Environmental<br>ater.                                                                                           | Serial Dilution e prep method or calibration procedure. procedure. to procedure. ted value is an estimated quantity. time. bciated value. tion limit. ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations. eight basis.                          |
| LCSW<br>Sample Ty<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>Z Qualifiers<br>B<br>H<br>L<br>U<br>thod Reference<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>mments<br>(1)<br>(2)        | Laboratory Control Sample - Water         rpe Explanations         Imples       Verifies that there is no or minimal comples         Verifies the accuracy of the method, Verifies the precision of the instrume tified Matrix       Determines sample matrix interferen Verifies the validity of the calibration.         s (Qual)       Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg. The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the associated value is either the sample quantitation limit or the EPA 600/R-93-100. Methods for Chemical Analysis of Water and EPA 600/R-93-100. Methods for the Determination of Inorgani EPA 600/R-94-111. Methods for the Determination of Metals is EPA SW-846. Test Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wasteward QC results calculated from raw data. Results may vary slightly Soil, Sludge, and Plant matrices for Inorganic analyses are reported on an "as An asterisk in the "XQ" column indicates there is an extended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SDL<br>ontamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>in immediate hold<br>gative threshold.<br>e level of the association<br>the sample detect<br>and Wastes, Marca<br>in Environmental<br>ater.                                                                                           | Serial Dilution e prep method or calibration procedure. p procedure. to procedure. ted value is an estimated quantity. time. bciated value. tion limit. ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations. eight basis.                        |
| LCSW<br>Sample Ty<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>Z Qualifiers<br>B<br>H<br>L<br>U<br>thod Reference<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>mments<br>(1)<br>(2)<br>(3) | Laboratory Control Sample - Water         rpe Explanations         Werifies that there is no or minimal comples         Verifies the accuracy of the method, Verifies the precision of the instrume         tified Matrix       Determines sample matrix interferent         Verifies the validity of the calibration.         s (Qual)         Analyte concentration detected at a value between MDL and F         Analyte concentration detected at a value between MDL and F         Analysis exceeded method hold time. pH is a field test with ar         Target analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above the         The associated value is either the sample quantitation limit or the         ences         EPA 600/R-93-100. Methods for the Determination of Inorganic         EPA 600/R-94-111. Methods for Evaluating Solid Waste.         Standard Methods for the Examination of Water and Wastewa         QC results calculated from raw data. Results may vary slightly         Soil, Sludge, and Plant matrices for Inorganic analyses are reported on an "as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SDL<br>ontamination in the<br>including the prep<br>int and/or method<br>ces, if any.<br>PQL. The associa<br>in immediate hold<br>gative threshold.<br>e level of the association<br>the sample detect<br>and Wastes, Marco<br>in Environmental<br>ater.<br>y if the rounded va-<br>ported on a dry we<br>received" basis.<br>qualifier and/or ca | Serial Dilution e prep method or calibration procedure. p procedure. to procedure. ted value is an estimated quantity. time. botated value. tion limit. ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations. eight basis. ertification qualifier |

https://acz.com/wp-content/uploads/2019/04/Ext-Qual-List.pdf

REP001.03.15.02

#### CRG

#### ACZ Project ID: L78031

| Alkalinity as CaC | 03   |                | SM2320                   | 3 - Titration |                  |        |       |      |          |         |     |       |      |
|-------------------|------|----------------|--------------------------|---------------|------------------|--------|-------|------|----------|---------|-----|-------|------|
| ACZ ID            | Туре | Analyzed       | PCN/SCN                  | QC            | Sample           | Found  | Units | Rec% | Lower    | Upper   | RPD | Limit | Qual |
| WG558377          |      |                |                          |               |                  |        |       |      |          |         |     |       |      |
| WG558377PBW1      | PBW  | 01/12/23 17:52 |                          |               |                  | 4.3    | mg/L  |      | -20      | 20      |     |       |      |
| WG558377LCSW3     | LCSW | 01/12/23 18:14 | WC230103-1               | 820.0001      |                  | 811.4  | mg/L  | 99   | 90       | 110     |     |       |      |
| WG558377LCSW6     | LCSW | 01/12/23 21:07 | WC230103-1               | 820.0001      |                  | 813.8  | mg/L  | 99   | 90       | 110     |     |       |      |
| WG558377PBW2      | PBW  | 01/12/23 21:15 |                          |               |                  | 8      | mg/L  |      | -20      | 20      |     |       |      |
| L78029-01DUP      | DUP  | 01/12/23 22:02 |                          |               | 4.4              | 3.5    | mg/L  |      |          |         | 23  | 20    | RA   |
| L78031-04DUP      | DUP  | 01/12/23 23:02 |                          |               | 63.9             | 62.5   | mg/L  |      |          |         | 2   | 20    |      |
| WG558377LCSW9     | LCSW | 01/13/23 0:51  | WC230103-1               | 820.0001      |                  | 822.5  | mg/L  | 100  | 90       | 110     |     |       |      |
| WG558377PBW3      | PBW  | 01/13/23 0:59  |                          |               |                  | 7.6    | mg/L  |      | -20      | 20      |     |       |      |
| WG558377LCSW12    |      | 01/13/23 4:37  | WC230103-1               | 820.0001      |                  | 828    | mg/L  | 101  | 90       | 110     |     |       |      |
| WG558377PBW4      | PBW  | 01/13/23 4:45  |                          |               |                  | 7.8    | mg/L  |      | -20      | 20      |     |       |      |
| WG558377LCSW15    |      | 01/13/23 8:33  | WC230103-1               | 820.0001      |                  | 819.9  | mg/L  | 100  | 90       | 110     |     |       |      |
| WG558377PBW5      | PBW  | 01/13/23 8:42  | WC230103-1               | 000 0004      |                  | 8.2    | mg/L  | 400  | -20      | 20      |     |       |      |
| WG558377LCSW18    | LCSW | 01/13/23 10:48 | WC230103-1               | 820.0001      |                  | 834    | mg/L  | 102  | 90       | 110     |     |       |      |
| Aluminum, disso   | lved |                | M200.7 I                 | СР            |                  |        |       |      |          |         |     |       |      |
| ACZ ID            | Туре | Analyzed       | PCN/SCN                  | QC            | Sample           | Found  | Units | Rec% | Lower    | Upper   | RPD | Limit | Qual |
| WG558967          |      |                |                          |               |                  |        |       |      |          |         |     |       |      |
| WG558967ICV       | ICV  | 01/21/23 15:48 | II230120-1               | 2             |                  | 2.012  | mg/L  | 101  | 95       | 105     |     |       |      |
| WG558967ICB       | ICB  | 01/21/23 15:54 |                          |               |                  | U      | mg/L  |      | -0.15    | 0.15    |     |       |      |
| WG558967LFB       | LFB  | 01/21/23 16:06 | II230120-4               | 1.0008        |                  | 1.05   | mg/L  | 105  | 85       | 115     |     |       |      |
| L78031-04AS       | AS   | 01/21/23 17:22 | II230120-4               | 1.0008        | U                | 1.038  | mg/L  | 104  | 85       | 115     |     |       |      |
| L78031-04ASD      | ASD  | 01/21/23 17:25 | II230120-4               | 1.0008        | U                | 1.015  | mg/L  | 101  | 85       | 115     | 2   | 20    |      |
| Antimony, dissol  | ved  |                | M200.8 I                 | CP-MS         |                  |        |       |      |          |         |     |       |      |
| ACZ ID            | Туре | Analyzed       | PCN/SCN                  | QC            | Sample           | Found  | Units | Rec% | Lower    | Upper   | RPD | Limit | Qual |
| WG558658          |      |                |                          |               |                  |        |       |      |          |         |     |       |      |
| WG558658ICV       | ICV  | 01/17/23 20:08 | MS221228-3               | .0201         |                  | .01879 | mg/L  | 93   | 90       | 110     |     |       |      |
| WG558658ICB       | ICB  | 01/17/23 20:10 |                          |               |                  | .00057 | mg/L  |      | -0.00088 | 0.00088 |     |       |      |
| WG558658LFB       | LFB  | 01/17/23 20:12 | MS230110-5               | .01           |                  | .00983 | mg/L  | 98   | 85       | 115     |     |       |      |
| L78031-01AS       | AS   | 01/17/23 20:29 | MS230110-5               | .01           | U                | .00858 | mg/L  | 86   | 70       | 130     |     |       |      |
| L78031-01ASD      | ASD  | 01/17/23 20:35 | MS230110-5               | .01           | U                | .00863 | mg/L  | 86   | 70       | 130     | 1   | 20    |      |
| L78033-03AS       | AS   | 01/17/23 21:01 | MS230110-5               | .01           | U                | .00968 | mg/L  | 97   | 70       | 130     |     |       |      |
| L78033-03ASD      | ASD  | 01/17/23 21:03 | MS230110-5               | .01           | U                | .0101  | mg/L  | 101  | 70       | 130     | 4   | 20    |      |
| Arsenic, dissolve | ed   |                | M200.8 I                 | CP-MS         |                  |        |       |      |          |         |     |       |      |
| ACZ ID            | Туре | Analyzed       | PCN/SCN                  | QC            | Sample           | Found  | Units | Rec% | Lower    | Upper   | RPD | Limit | Qual |
| WG558916          |      |                |                          |               |                  |        |       |      |          |         |     |       |      |
| WG558916ICV       | ICV  | 01/20/23 12:12 | MS221228-3               | .05           |                  | .05064 | mg/L  | 101  | 90       | 110     |     |       |      |
| WG558916ICB       | ICB  | 01/20/23 12:14 |                          |               |                  | U      | mg/L  |      | -0.00044 | 0.00044 |     |       |      |
| WG558916LFB       | LFB  | 01/20/23 12:16 | MS230110-5               | .0501         |                  | .0538  | mg/L  | 107  | 85       | 115     |     |       |      |
| L78031-01AS       | AS   | 01/20/23 12:36 | MS230110-5               | .0501         | .00095           | .0536  | mg/L  | 105  | 70       | 130     |     |       |      |
| 1 79021 01480     | ASD  | 01/20/23 12:38 | MS230110-5               | .0501         | .00095           | .05304 | mg/L  | 104  | 70       | 130     | 1   | 20    |      |
| L78031-01ASD      |      |                |                          |               |                  |        |       |      |          |         |     |       |      |
| L78060-02AS       | AS   | 01/20/23 13:05 | MS230110-5<br>MS230110-5 | .0501         | .00052<br>.00052 | .05378 | mg/L  | 106  | 70       | 130     |     |       |      |

Inorganic QC Summary

#### CRG

#### ACZ Project ID: L78031

| Barium, dissolv  | ed    |                | M200.7 I    | CP       |         |         |       |      |           |          |     |       |      |
|------------------|-------|----------------|-------------|----------|---------|---------|-------|------|-----------|----------|-----|-------|------|
| ACZ ID           | Туре  | Analyzed       | PCN/SCN     | QC       | Sample  | Found   | Units | Rec% | Lower     | Upper    | RPD | Limit | Qual |
| WG558967         |       |                |             |          |         |         |       |      |           |          |     |       |      |
| WG558967ICV      | ICV   | 01/21/23 15:48 | II230120-1  | 2        |         | 1.9915  | mg/L  | 100  | 95        | 105      |     |       |      |
| WG558967ICB      | ICB   | 01/21/23 15:54 |             |          |         | U       | mg/L  |      | -0.027    | 0.027    |     |       |      |
| WG558967LFB      | LFB   | 01/21/23 16:06 | II230120-4  | .502     |         | .5206   | mg/L  | 104  | 85        | 115      |     |       |      |
| L78031-04AS      | AS    | 01/21/23 17:22 | II230120-4  | .502     | U       | .5163   | mg/L  | 103  | 85        | 115      |     |       |      |
| L78031-04ASD     | ASD   | 01/21/23 17:25 | II230120-4  | .502     | U       | .5151   | mg/L  | 103  | 85        | 115      | 0   | 20    |      |
| Beryllium, disso | olved |                | M200.8 I    | CP-MS    |         |         |       |      |           |          |     |       |      |
| ACZ ID           | Туре  | Analyzed       | PCN/SCN     | QC       | Sample  | Found   | Units | Rec% | Lower     | Upper    | RPD | Limit | Qual |
| NG558658         |       |                |             |          |         |         |       |      |           |          |     |       |      |
| WG558658ICV      | ICV   | 01/17/23 20:08 | MS221228-3  | .05      |         | .051122 | mg/L  | 102  | 90        | 110      |     |       |      |
| VG558658ICB      | ICB   | 01/17/23 20:10 |             |          |         | U       | mg/L  |      | -0.000176 | 0.000176 |     |       |      |
| WG558658LFB      | LFB   | 01/17/23 20:12 | MS230110-5  | .05005   |         | .05297  | mg/L  | 106  | 85        | 115      |     |       |      |
| _78031-01AS      | AS    | 01/17/23 20:29 | MS230110-5  | .05005   | U       | .05642  | mg/L  | 113  | 70        | 130      |     |       |      |
| L78031-01ASD     | ASD   | 01/17/23 20:35 | MS230110-5  | .05005   | U       | .056729 | mg/L  | 113  | 70        | 130      | 1   | 20    |      |
| L78033-03AS      | AS    | 01/17/23 21:01 | MS230110-5  | .05005   |         | .015003 | mg/L  | 30   | 70        | 130      |     |       | M2   |
| L78033-03ASD     | ASD   | 01/17/23 21:03 | MS230110-5  | .05005   |         | .015534 | mg/L  | 31   | 70        | 130      | 3   | 20    | M2   |
| Cadmium, disso   | olved |                | M200.8 I    | CP-MS    |         |         |       |      |           |          |     |       |      |
| ACZ ID           | Туре  | Analyzed       | PCN/SCN     | QC       | Sample  | Found   | Units | Rec% | Lower     | Upper    | RPD | Limit | Qual |
| WG558658         |       |                |             |          |         |         |       |      |           |          |     |       |      |
| WG558658ICV      | ICV   | 01/17/23 20:08 | MS221228-3  | .05      |         | .049573 | mg/L  | 99   | 90        | 110      |     |       |      |
| NG558658ICB      | ICB   | 01/17/23 20:10 |             |          |         | U       | mg/L  |      | -0.00011  | 0.00011  |     |       |      |
| NG558658LFB      | LFB   | 01/17/23 20:12 | MS230110-5  | .05005   |         | .052159 | mg/L  | 104  | 85        | 115      |     |       |      |
| _78031-01AS      | AS    | 01/17/23 20:29 | MS230110-5  | .05005   | .000195 | .05233  | mg/L  | 104  | 70        | 130      |     |       |      |
| L78031-01ASD     | ASD   | 01/17/23 20:35 | MS230110-5  | .05005   | .000195 | .053073 | mg/L  | 106  | 70        | 130      | 1   | 20    |      |
| L78033-03AS      | AS    | 01/17/23 21:01 | MS230110-5  | .05005   | U       | .050651 | mg/L  | 101  | 70        | 130      |     |       |      |
| _78033-03ASD     | ASD   | 01/17/23 21:03 | MS230110-5  | .05005   | U       | .051135 | mg/L  | 102  | 70        | 130      | 1   | 20    |      |
| Calcium, dissol  | ved   |                | M200.7 I    | СР       |         |         |       |      |           |          |     |       |      |
| ACZ ID           | Туре  | Analyzed       | PCN/SCN     | QC       | Sample  | Found   | Units | Rec% | Lower     | Upper    | RPD | Limit | Qual |
| NG558967         |       |                |             |          |         |         |       |      |           |          |     |       |      |
| VG558967ICV      | ICV   | 01/21/23 15:48 | II230120-1  | 100      |         | 96.73   | mg/L  | 97   | 95        | 105      |     |       |      |
| WG558967ICB      | ICB   | 01/21/23 15:54 |             |          |         | U       | mg/L  |      | -0.3      | 0.3      |     |       |      |
| WG558967LFB      | LFB   | 01/21/23 16:06 | II230120-4  | 67.99353 |         | 68.58   | mg/L  | 101  | 85        | 115      |     |       |      |
| _78031-04AS      | AS    | 01/21/23 17:22 | II230120-4  | 67.99353 | 16      | 82.98   | mg/L  | 99   | 85        | 115      |     |       |      |
| _78031-04ASD     | ASD   | 01/21/23 17:25 | II230120-4  | 67.99353 | 16      | 82.04   | mg/L  | 97   | 85        | 115      | 1   | 20    |      |
| Chloride         |       |                | SM45000     | CI-E     |         |         |       |      |           |          |     |       |      |
| ACZ ID           | Туре  | Analyzed       | PCN/SCN     | QC       | Sample  | Found   | Units | Rec% | Lower     | Upper    | RPD | Limit | Qual |
| WG558540         |       |                |             |          |         |         |       |      |           |          |     |       |      |
| NG558540ICV      | ICV   | 01/16/23 12:50 | WI220502-12 | 54.945   |         | 54.48   | mg/L  | 99   | 90        | 110      |     |       |      |
| WG558540ICB      | ICB   | 01/16/23 12:51 |             |          |         | U       | mg/L  |      | -3        | 3        |     |       |      |
| NG558540LFB1     | LFB   | 01/16/23 12:51 | WI221025-9  | 30.03    |         | 30.14   | mg/L  | 100  | 90        | 110      |     |       |      |
| _78030-01AS      | AS    | 01/16/23 12:52 | WI221025-9  | 30.03    | 7.66    | 36.55   | mg/L  | 96   | 90        | 110      |     |       |      |
| _78030-02DUP     | DUP   | 01/16/23 12:53 |             |          | 7.33    | 7.23    | mg/L  |      |           |          | 1   | 20    | RA   |
| WG558540LFB2     | LFB   | 01/16/23 13:06 | WI221025-9  | 30.03    |         | 30.77   | mg/L  | 102  | 90        | 110      |     |       |      |

CRG

Inorganic QC Summary

#### ACZ Project ID: L78031

| Chromium, disso                           | lved       |                | M200.8 IC  | P-MS      |               |            |              |      |              |              |     |       |      |
|-------------------------------------------|------------|----------------|------------|-----------|---------------|------------|--------------|------|--------------|--------------|-----|-------|------|
| ACZ ID                                    | Туре       | Analyzed       | PCN/SCN    | QC        | Sample        | Found      | Units        | Rec% | Lower        | Upper        | RPD | Limit | Qual |
| WG558658                                  |            |                |            |           |               |            |              |      |              |              |     |       |      |
| NG558658ICV                               | ICV        | 01/17/23 20:08 | MS221228-3 | .05       |               | .05058     | mg/L         | 101  | 90           | 110          |     |       |      |
| NG558658ICB                               | ICB        | 01/17/23 20:10 |            |           |               | U          | mg/L         |      | -0.0011      | 0.0011       |     |       |      |
| NG558658LFB                               | LFB        | 01/17/23 20:12 | MS230110-5 | .0501     |               | .0522      | mg/L         | 104  | 85           | 115          |     |       |      |
| _78031-01AS                               | AS         | 01/17/23 20:29 | MS230110-5 | .0501     | U             | .05038     | mg/L         | 101  | 70           | 130          |     |       |      |
| _78031-01ASD                              | ASD        | 01/17/23 20:35 | MS230110-5 | .0501     | U             | .05082     | mg/L         | 101  | 70           | 130          | 1   | 20    |      |
| _78033-03AS                               | AS         | 01/17/23 21:01 | MS230110-5 | .0501     | U             | .0484      | mg/L         | 97   | 70           | 130          |     |       |      |
| -78033-03ASD                              | ASD        | 01/17/23 21:03 | MS230110-5 | .0501     | U             | .04926     | mg/L         | 98   | 70           | 130          | 2   | 20    |      |
| Cobalt, dissolved                         | ł          |                | M200.7 IC  | P         |               |            |              |      |              |              |     |       |      |
| ACZ ID                                    | Туре       | Analyzed       | PCN/SCN    | QC        | Sample        | Found      | Units        | Rec% | Lower        | Upper        | RPD | Limit | Qual |
| NG558967                                  |            |                |            |           |               |            |              |      |              |              |     |       |      |
| VG558967ICV                               | ICV        | 01/21/23 15:48 | II230120-1 | 2.006     |               | 1.969      | mg/L         | 98   | 95           | 105          |     |       |      |
| NG558967ICB                               | ICB        | 01/21/23 15:54 |            |           |               | U          | mg/L         |      | -0.06        | 0.06         |     |       |      |
| VG558967LFB                               | LFB        | 01/21/23 16:06 | II230120-4 | .5005     |               | .519       | mg/L         | 104  | 85           | 115          |     |       |      |
| _78031-04AS                               | AS         | 01/21/23 17:22 | II230120-4 | .5005     | U             | .483       | mg/L         | 97   | 85           | 115          |     |       |      |
| _78031-04ASD                              | ASD        | 01/21/23 17:25 | II230120-4 | .5005     | U             | .487       | mg/L         | 97   | 85           | 115          | 1   | 20    |      |
| Conductivity @2                           | 5C         |                | SM2510B    |           |               |            |              |      |              |              |     |       |      |
| ACZ ID                                    | Туре       | Analyzed       | PCN/SCN    | QC        | Sample        | Found      | Units        | Rec% | Lower        | Upper        | RPD | Limit | Qual |
| NG558377                                  |            |                |            |           |               |            |              |      |              |              |     |       |      |
| VG558377LCSW2                             | LCSW       | 01/12/23 17:59 | PCN623869  | 1410      |               | 1401       | umhos/cm     | 99   | 90           | 110          |     |       |      |
| VG558377LCSW5                             | LCSW       | 01/12/23 20:52 | PCN623869  | 1410      |               | 1396       | umhos/cm     | 99   | 90           | 110          |     |       |      |
| .78029-01DUP                              | DUP        | 01/12/23 22:02 |            |           | 2350          | 2360       | umhos/cm     |      |              |              | 0   | 20    |      |
| .78031-04DUP                              | DUP        | 01/12/23 23:02 |            |           | 137           | 138        | umhos/cm     |      |              |              | 1   | 20    |      |
| NG558377LCSW8                             | LCSW       | 01/13/23 0:36  | PCN623869  | 1410      |               | 1394       | umhos/cm     | 99   | 90           | 110          |     |       |      |
| NG558377LCSW11                            | LCSW       | 01/13/23 4:21  | PCN623869  | 1410      |               | 1389       | umhos/cm     | 99   | 90           | 110          |     |       |      |
| NG558377LCSW14                            | LCSW       | 01/13/23 8:19  | PCN623869  | 1410      |               | 1385       | umhos/cm     | 98   | 90           | 110          |     |       |      |
| WG558377LCSW17                            | LCSW       | 01/13/23 10:32 | PCN623869  | 1410      |               | 1376       | umhos/cm     | 98   | 90           | 110          |     |       |      |
| Copper, dissolve                          | d          |                | M200.7 IC  | P         |               |            |              |      |              |              |     |       |      |
| ACZ ID                                    | Туре       | Analyzed       | PCN/SCN    | QC        | Sample        | Found      | Units        | Rec% | Lower        | Upper        | RPD | Limit | Qual |
| NG559037                                  |            |                |            |           |               |            |              |      |              |              |     |       |      |
| VG559037ICV                               | ICV        | 01/23/23 17:13 | II230120-1 | 2         |               | 2.019      | mg/L         | 101  | 95           | 105          |     |       |      |
| VG559037ICB                               | ICB        | 01/23/23 17:18 |            |           |               | U          | mg/L         |      | -0.03        | 0.03         |     |       |      |
| VG559037LFB                               | LFB        | 01/23/23 17:31 | II230120-4 | .5005     |               | .512       | mg/L         | 102  | 85           | 115          |     |       |      |
| _78030-01AS                               | AS         | 01/23/23 17:46 | II230120-4 | .5005     | U             | .512       | mg/L         | 102  | 85           | 115          |     |       |      |
| _78030-01ASD                              | ASD        | 01/23/23 17:49 | II230120-4 | .5005     | U             | .507       | mg/L         | 101  | 85           | 115          | 1   | 20    |      |
| Cyanide, total                            |            |                | M335.4 - ( | Colorimet | ric w/ distil | ation      |              |      |              |              |     |       |      |
| ACZ ID                                    | Туре       | Analyzed       | PCN/SCN    | QC        | Sample        | Found      | Units        | Rec% | Lower        | Upper        | RPD | Limit | Qual |
| NG557967                                  |            |                |            |           |               |            |              |      |              |              |     |       |      |
| NG557967ICV                               | ICV        | 01/06/23 14:57 | WI221229-3 | .3003     |               | .2806      | mg/L         | 93   | 90           | 110          |     |       |      |
|                                           |            |                |            |           |               | U          | mg/L         |      | -0.003       | 0.003        |     |       |      |
|                                           | ICB        | 01/06/23 14:58 |            |           |               |            |              |      |              |              |     |       |      |
| NG557967ICB                               | ICB<br>LRB | 01/06/23 14:58 |            |           |               | U          | mg/L         |      | -0.003       | 0.003        |     |       |      |
| WG557967ICB<br>WG557904LRB<br>WG557904LFB |            |                | WI230104-1 | .2        |               | U<br>.1981 | mg/L<br>mg/L | 99   | -0.003<br>90 | 0.003<br>110 |     |       |      |
| NG557967ICB<br>NG557904LRB                | LRB        | 01/06/23 14:59 | WI230104-1 | .2        | U             |            |              | 99   |              |              | 0   | 20    | RA   |

CRG

#### ACZ Project ID: L78031

| Iron, dissolved |        |                | M200.7 I   | СР       |        |        |       |      |          |         |     |       |      |
|-----------------|--------|----------------|------------|----------|--------|--------|-------|------|----------|---------|-----|-------|------|
| ACZ ID          | Туре   | Analyzed       | PCN/SCN    | QC       | Sample | Found  | Units | Rec% | Lower    | Upper   | RPD | Limit | Qual |
| WG558967        |        |                |            |          |        |        |       |      |          |         |     |       |      |
| WG558967ICV     | ICV    | 01/21/23 15:48 | II230120-1 | 2        |        | 1.902  | mg/L  | 95   | 95       | 105     |     |       |      |
| WG558967ICB     | ICB    | 01/21/23 15:54 |            |          |        | U      | mg/L  |      | -0.18    | 0.18    |     |       |      |
| WG558967LFB     | LFB    | 01/21/23 16:06 | II230120-4 | 1.004    |        | 1.087  | mg/L  | 108  | 85       | 115     |     |       |      |
| L78031-04AS     | AS     | 01/21/23 17:22 | II230120-4 | 1.004    | U      | .955   | mg/L  | 95   | 85       | 115     |     |       |      |
| L78031-04ASD    | ASD    | 01/21/23 17:25 | II230120-4 | 1.004    | U      | .966   | mg/L  | 96   | 85       | 115     | 1   | 20    |      |
| Lead, dissolved |        |                | M200.8 I   | CP-MS    |        |        |       |      |          |         |     |       |      |
| ACZ ID          | Туре   | Analyzed       | PCN/SCN    | QC       | Sample | Found  | Units | Rec% | Lower    | Upper   | RPD | Limit | Qual |
| WG558658        |        |                |            |          |        |        |       |      |          |         |     |       |      |
| WG558658ICV     | ICV    | 01/17/23 20:08 | MS221228-3 | .05      |        | .04984 | mg/L  | 100  | 90       | 110     |     |       |      |
| WG558658ICB     | ICB    | 01/17/23 20:10 |            |          |        | U      | mg/L  |      | -0.00022 | 0.00022 |     |       |      |
| WG558658LFB     | LFB    | 01/17/23 20:12 | MS230110-5 | .0501    |        | .05093 | mg/L  | 102  | 85       | 115     |     |       |      |
| L78031-01AS     | AS     | 01/17/23 20:29 | MS230110-5 | .0501    | .00014 | .05009 | mg/L  | 100  | 70       | 130     |     |       |      |
| L78031-01ASD    | ASD    | 01/17/23 20:35 | MS230110-5 | .0501    | .00014 | .0505  | mg/L  | 101  | 70       | 130     | 1   | 20    |      |
| L78033-03AS     | AS     | 01/17/23 21:01 | MS230110-5 | .0501    | .00015 | .05408 | mg/L  | 108  | 70       | 130     |     |       |      |
| L78033-03ASD    | ASD    | 01/17/23 21:03 | MS230110-5 | .0501    | .00015 | .05489 | mg/L  | 109  | 70       | 130     | 1   | 20    |      |
| Magnesium, diss | solved |                | M200.7 I   | CP       |        |        |       |      |          |         |     |       |      |
| ACZ ID          | Туре   | Analyzed       | PCN/SCN    | QC       | Sample | Found  | Units | Rec% | Lower    | Upper   | RPD | Limit | Qual |
| WG559037        |        |                |            |          |        |        |       |      |          |         |     |       |      |
| WG559037ICV     | ICV    | 01/23/23 17:13 | II230120-1 | 100      |        | 97.77  | mg/L  | 98   | 95       | 105     |     |       |      |
| WG559037ICB     | ICB    | 01/23/23 17:18 |            |          |        | U      | mg/L  |      | -0.6     | 0.6     |     |       |      |
| WG559037LFB     | LFB    | 01/23/23 17:31 | II230120-4 | 49.99676 |        | 47.61  | mg/L  | 95   | 85       | 115     |     |       |      |
| L78030-01AS     | AS     | 01/23/23 17:46 | II230120-4 | 49.99676 | 5.2    | 51.89  | mg/L  | 93   | 85       | 115     |     |       |      |
| L78030-01ASD    | ASD    | 01/23/23 17:49 | II230120-4 | 49.99676 | 5.2    | 51.01  | mg/L  | 92   | 85       | 115     | 2   | 20    |      |
| Manganese, diss | olved  |                | M200.7 I   | СР       |        |        |       |      |          |         |     |       |      |
| ACZ ID          | Туре   | Analyzed       | PCN/SCN    | QC       | Sample | Found  | Units | Rec% | Lower    | Upper   | RPD | Limit | Qual |
| WG558967        |        |                |            |          |        |        |       |      |          |         |     |       |      |
| WG558967ICV     | ICV    | 01/21/23 15:48 | II230120-1 | 2        |        | 1.969  | mg/L  | 98   | 95       | 105     |     |       |      |
| WG558967ICB     | ICB    | 01/21/23 15:54 |            |          |        | U      | mg/L  |      | -0.03    | 0.03    |     |       |      |
| WG558967LFB     | LFB    | 01/21/23 16:06 | II230120-4 | .499     |        | .531   | mg/L  | 106  | 85       | 115     |     |       |      |
| L78031-04AS     | AS     | 01/21/23 17:22 | II230120-4 | .499     | U      | .501   | mg/L  | 100  | 85       | 115     |     |       |      |
| L78031-04ASD    | ASD    | 01/21/23 17:25 | II230120-4 | .499     | U      | .5     | mg/L  | 100  | 85       | 115     | 0   | 20    |      |

#### CRG

#### ACZ Project ID: L78031

| Mercury, total     |      |                | M245.1 C   | CVAA      |           |         |       |      |          |         |     |       |      |
|--------------------|------|----------------|------------|-----------|-----------|---------|-------|------|----------|---------|-----|-------|------|
| ACZ ID             | Туре | Analyzed       | PCN/SCN    | QC        | Sample    | Found   | Units | Rec% | Lower    | Upper   | RPD | Limit | Qual |
| WG558009           |      |                |            |           |           |         |       |      |          |         |     |       |      |
| NG558009ICV        | ICV  | 01/09/23 12:16 | HG230103-3 | .005005   |           | .0051   | mg/L  | 102  | 95       | 105     |     |       |      |
| WG558009ICB        | ICB  | 01/09/23 12:17 |            |           |           | U       | mg/L  |      | -0.0002  | 0.0002  |     |       |      |
| WG558030           |      |                |            |           |           |         |       |      |          |         |     |       |      |
| NG558030LRB        | LRB  | 01/09/23 14:25 |            |           |           | U       | mg/L  |      | -0.00044 | 0.00044 |     |       |      |
| NG558030LFB        | LFB  | 01/09/23 14:26 | HG230103-6 | .002002   |           | .00189  | mg/L  | 94   | 85       | 115     |     |       |      |
| _78023-03LFM       | LFM  | 01/09/23 14:41 | HG230103-6 | .002002   | U         | .00195  | mg/L  | 97   | 85       | 115     |     |       |      |
| .78023-03LFMD      | LFMD | 01/09/23 14:42 | HG230103-6 | .002002   | U         | .00191  | mg/L  | 95   | 85       | 115     | 2   | 20    |      |
| NG558031           |      |                |            |           |           |         |       |      |          |         |     |       |      |
| VG558031LRB        | LRB  | 01/09/23 15:08 |            |           |           | U       | mg/L  |      | -0.00044 | 0.00044 |     |       |      |
| WG558031LFB        | LFB  | 01/09/23 15:09 | HG230103-6 | .002002   |           | .00189  | mg/L  | 94   | 85       | 115     |     |       |      |
| L78031-03LFM       | LFM  | 01/09/23 15:12 | HG230103-6 | .002002   | U         | .00197  | mg/L  | 98   | 85       | 115     |     |       |      |
| _78031-03LFMD      | LFMD | 01/09/23 15:13 | HG230103-6 | .002002   | U         | .00185  | mg/L  | 92   | 85       | 115     | 6   | 20    |      |
| Nickel, dissolve   | d    |                | M200.7 I   | СР        |           |         |       |      |          |         |     |       |      |
| ACZ ID             | Туре | Analyzed       | PCN/SCN    | QC        | Sample    | Found   | Units | Rec% | Lower    | Upper   | RPD | Limit | Qual |
| NG558967           |      |                |            |           |           |         |       |      |          |         |     |       |      |
| VG558967ICV        | ICV  | 01/21/23 15:48 | II230120-1 | 2.002     |           | 1.9448  | mg/L  | 97   | 95       | 105     |     |       |      |
| VG558967ICB        | ICB  | 01/21/23 15:54 |            |           |           | U       | mg/L  |      | -0.024   | 0.024   |     |       |      |
| NG558967LFB        | LFB  | 01/21/23 16:06 | II230120-4 | .502      |           | .5239   | mg/L  | 104  | 85       | 115     |     |       |      |
| _78031-04AS        | AS   | 01/21/23 17:22 | II230120-4 | .502      | U         | .4939   | mg/L  | 98   | 85       | 115     |     |       |      |
| _78031-04ASD       | ASD  | 01/21/23 17:25 | II230120-4 | .502      | U         | .491    | mg/L  | 98   | 85       | 115     | 1   | 20    |      |
| Nitrate/Nitrite as | s N  |                | M353.2 -   | Automated | l Cadmiur | n Reduc | tion  |      |          |         |     |       |      |
| ACZ ID             | Туре | Analyzed       | PCN/SCN    | QC        | Sample    | Found   | Units | Rec% | Lower    | Upper   | RPD | Limit | Qual |
| NG557896           |      |                |            |           |           |         |       |      |          |         |     |       |      |
| VG557896ICV        | ICV  | 01/05/23 23:25 | WI221206-7 | 2.416     |           | 2.322   | mg/L  | 96   | 90       | 110     |     |       |      |
| VG557896ICB        | ICB  | 01/05/23 23:26 |            |           |           | U       | mg/L  |      | -0.02    | 0.02    |     |       |      |
| NG557898           |      |                |            |           |           |         |       |      |          |         |     |       |      |
| VG557898LFB        | LFB  | 01/06/23 0:43  | WI220826-7 | 2         |           | 2.067   | mg/L  | 103  | 90       | 110     |     |       |      |
| _77974-01AS        | AS   | 01/06/23 0:45  | WI220826-7 | 2         | 1.47      | 3.545   | mg/L  | 104  | 90       | 110     |     |       |      |
| .77974-02DUP       | DUP  | 01/06/23 0:48  |            |           | 1.62      | 1.604   | mg/L  |      |          |         | 1   | 20    |      |
| NG557981           |      |                |            |           |           |         |       |      |          |         |     |       |      |
| NG557981ICV        | ICV  | 01/06/23 23:38 | WI221206-7 | 2.416     |           | 2.36    | mg/L  | 98   | 90       | 110     |     |       |      |
| WG557981ICB        | ICB  | 01/06/23 23:39 |            |           |           | U       | mg/L  |      | -0.02    | 0.02    |     |       |      |
| WG557981LFB        | LFB  | 01/06/23 23:43 | WI220826-7 | 2         |           | 1.983   | mg/L  | 99   | 90       | 110     |     |       |      |
| _78031-03AS        | AS   | 01/06/23 23:48 | WI220826-7 | 2         | U         | 2.064   | mg/L  | 103  | 90       | 110     |     |       |      |
|                    |      |                |            |           |           |         |       |      |          |         |     |       |      |

#### CRG

#### ACZ Project ID: L78031

| Nitrite as N      |         |                | M353.2 -   | Automated | l Cadmiur | n Reduc | tion  |      |       |       |     |       |      |
|-------------------|---------|----------------|------------|-----------|-----------|---------|-------|------|-------|-------|-----|-------|------|
| ACZ ID            | Туре    | Analyzed       | PCN/SCN    | QC        | Sample    | Found   | Units | Rec% | Lower | Upper | RPD | Limit | Qual |
| WG557896          |         |                |            |           |           |         |       |      |       |       |     |       |      |
| WG557896ICV       | ICV     | 01/05/23 23:25 | WI221206-7 | .608      |           | .603    | mg/L  | 99   | 90    | 110   |     |       |      |
| WG557896ICB       | ICB     | 01/05/23 23:26 |            |           |           | U       | mg/L  |      | -0.01 | 0.01  |     |       |      |
| WG557898          |         |                |            |           |           |         |       |      |       |       |     |       |      |
| WG557898LFB       | LFB     | 01/06/23 0:43  | WI220826-7 | 1         |           | 1.017   | mg/L  | 102  | 90    | 110   |     |       |      |
| L77974-01AS       | AS      | 01/06/23 0:45  | WI220826-7 | 1         | U         | 1.07    | mg/L  | 107  | 90    | 110   |     |       |      |
| L77974-02DUP      | DUP     | 01/06/23 0:48  |            |           | U         | U       | mg/L  |      |       |       | 0   | 20    | RA   |
| WG557981          |         |                |            |           |           |         |       |      |       |       |     |       |      |
| WG557981ICV       | ICV     | 01/06/23 23:38 | WI221206-7 | .608      |           | .607    | mg/L  | 100  | 90    | 110   |     |       |      |
| WG557981ICB       | ICB     | 01/06/23 23:39 |            |           |           | U       | mg/L  |      | -0.01 | 0.01  |     |       |      |
| WG557981LFB       | LFB     | 01/06/23 23:43 | WI220826-7 | 1         |           | .973    | mg/L  | 97   | 90    | 110   |     |       |      |
| L78031-03AS       | AS      | 01/06/23 23:48 | WI220826-7 | 1         | U         | 1.017   | mg/L  | 102  | 90    | 110   |     |       |      |
| L78031-04DUP      | DUP     | 01/06/23 23:50 |            |           | U         | U       | mg/L  |      |       |       | 0   | 20    | RA   |
| pH (lab)          |         |                | SM4500     | H+ B      |           |         |       |      |       |       |     |       |      |
| ACZ ID            | Туре    | Analyzed       | PCN/SCN    | QC        | Sample    | Found   | Units | Rec% | Lower | Upper | RPD | Limit | Qual |
| WG558377          |         |                |            |           |           |         |       |      |       |       |     |       |      |
| WG558377LCSW1     | LCSW    | 01/12/23 17:57 | PCN65296   | 6         |           | 6       | units | 100  | 5.9   | 6.1   |     |       |      |
| WG558377LCSW4     | LCSW    | 01/12/23 20:50 | PCN65296   | 6         |           | 6       | units | 100  | 5.9   | 6.1   |     |       |      |
| L78029-01DUP      | DUP     | 01/12/23 22:02 |            |           | 6         | 5.9     | units |      |       |       | 2   | 20    |      |
| L78031-04DUP      | DUP     | 01/12/23 23:02 |            |           | 7         | 7       | units |      |       |       | 0   | 20    |      |
| WG558377LCSW7     | LCSW    | 01/13/23 0:34  | PCN65296   | 6         |           | 6       | units | 100  | 5.9   | 6.1   |     |       |      |
| WG558377LCSW10    | LCSW    | 01/13/23 4:19  | PCN65296   | 6         |           | 6       | units | 100  | 5.9   | 6.1   |     |       |      |
| WG558377LCSW13    | LCSW    | 01/13/23 8:17  | PCN65296   | 6         |           | 6       | units | 100  | 5.9   | 6.1   |     |       |      |
| WG558377LCSW16    | LCSW    | 01/13/23 10:31 | PCN65296   | 6         |           | 6       | units | 100  | 5.9   | 6.1   |     |       |      |
| Potassium, disso  | lved    |                | M200.7 I   | СР        |           |         |       |      |       |       |     |       |      |
| ACZ ID            | Туре    | Analyzed       | PCN/SCN    | QC        | Sample    | Found   | Units | Rec% | Lower | Upper | RPD | Limit | Qual |
| WG558967          |         |                |            |           |           |         |       |      |       |       |     |       |      |
| WG558967ICV       | ICV     | 01/21/23 15:48 | II230120-1 | 20        |           | 19.39   | mg/L  | 97   | 95    | 105   |     |       |      |
| WG558967ICB       | ICB     | 01/21/23 15:54 |            |           |           | .25     | mg/L  |      | -0.6  | 0.6   |     |       |      |
| WG558967LFB       | LFB     | 01/21/23 16:06 | II230120-4 | 99.95798  |           | 99.28   | mg/L  | 99   | 85    | 115   |     |       |      |
| L78031-04AS       | AS      | 01/21/23 17:22 | II230120-4 | 99.95798  | .81       | 100.6   | mg/L  | 100  | 85    | 115   |     |       |      |
| L78031-04ASD      | ASD     | 01/21/23 17:25 | II230120-4 | 99.95798  | .81       | 99.45   | mg/L  | 99   | 85    | 115   | 1   | 20    |      |
| Residue, Filterab | le (TDS | ) @180C        | SM2540     | С         |           |         |       |      |       |       |     |       |      |
| ACZ ID            | Туре    | Analyzed       | PCN/SCN    | QC        | Sample    | Found   | Units | Rec% | Lower | Upper | RPD | Limit | Qual |
| WG558108          |         |                |            |           |           |         |       |      |       |       |     |       |      |
| WG558108PBW       | PBW     | 01/10/23 10:30 |            |           |           | U       | mg/L  |      | -20   | 20    |     |       |      |
| WG558108LCSW      | LCSW    | 01/10/23 10:32 | PCN623965  | 1000      |           | 970     | mg/L  | 97   | 80    | 120   |     |       |      |
| L78031-04DUP      | DUP     | 01/10/23 11:30 |            |           | 66        | 68      | mg/L  |      |       |       | 3   | 10    | RA   |

CRG

(800) 334-5493

#### ACZ Project ID: L78031

| Sodium, dissolv                                                                                                                                 | ed                                            |                                                                                                                      | M200.7 I                                                                    | CP                                       |         |                                                   |                                               |                           |                                                  |                                                    |          |             |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------|---------|---------------------------------------------------|-----------------------------------------------|---------------------------|--------------------------------------------------|----------------------------------------------------|----------|-------------|------|
| ACZ ID                                                                                                                                          | Туре                                          | Analyzed                                                                                                             | PCN/SCN                                                                     | QC                                       | Sample  | Found                                             | Units                                         | Rec%                      | Lower                                            | Upper                                              | RPD      | Limit       | Qual |
| WG558967                                                                                                                                        |                                               |                                                                                                                      |                                                                             |                                          |         |                                                   |                                               |                           |                                                  |                                                    |          |             |      |
| WG558967ICV                                                                                                                                     | ICV                                           | 01/21/23 15:48                                                                                                       | II230120-1                                                                  | 100                                      |         | 96.59                                             | mg/L                                          | 97                        | 95                                               | 105                                                |          |             |      |
| WG558967ICB                                                                                                                                     | ICB                                           | 01/21/23 15:54                                                                                                       |                                                                             |                                          |         | U                                                 | mg/L                                          |                           | -0.6                                             | 0.6                                                |          |             |      |
| WG558967LFB                                                                                                                                     | LFB                                           | 01/21/23 16:06                                                                                                       | II230120-4                                                                  | 100.0023                                 |         | 98.67                                             | mg/L                                          | 99                        | 85                                               | 115                                                |          |             |      |
| L78031-04AS                                                                                                                                     | AS                                            | 01/21/23 17:22                                                                                                       | II230120-4                                                                  | 100.0023                                 | 2.32    | 101.9                                             | mg/L                                          | 100                       | 85                                               | 115                                                |          |             |      |
| L78031-04ASD                                                                                                                                    | ASD                                           | 01/21/23 17:25                                                                                                       | II230120-4                                                                  | 100.0023                                 | 2.32    | 100.6                                             | mg/L                                          | 98                        | 85                                               | 115                                                | 1        | 20          |      |
| Sulfate                                                                                                                                         |                                               |                                                                                                                      | D516-02                                                                     | /-07/-11 - Tl                            | JRBIDIM | ETRIC                                             |                                               |                           |                                                  |                                                    |          |             |      |
| ACZ ID                                                                                                                                          | Туре                                          | Analyzed                                                                                                             | PCN/SCN                                                                     | QC                                       | Sample  | Found                                             | Units                                         | Rec%                      | Lower                                            | Upper                                              | RPD      | Limit       | Qual |
| WG558792                                                                                                                                        |                                               |                                                                                                                      |                                                                             |                                          |         |                                                   |                                               |                           |                                                  |                                                    |          |             |      |
| WG558792ICB                                                                                                                                     | ICB                                           | 01/19/23 20:30                                                                                                       |                                                                             |                                          |         | U                                                 | mg/L                                          |                           | -3                                               | 3                                                  |          |             |      |
| WG558792ICV                                                                                                                                     | ICV                                           | 01/19/23 20:30                                                                                                       | WI230104-2                                                                  | 19.54                                    |         | 19.1                                              | mg/L                                          | 98                        | 90                                               | 110                                                |          |             |      |
| WG558792LFB                                                                                                                                     | LFB                                           | 01/19/23 21:54                                                                                                       | WI220830-3                                                                  | 10                                       |         | 10.2                                              | mg/L                                          | 102                       | 90                                               | 110                                                |          |             |      |
| L78031-01DUP                                                                                                                                    | DUP                                           | 01/19/23 21:55                                                                                                       |                                                                             |                                          | 7.9     | 7.9                                               | mg/L                                          |                           |                                                  |                                                    | 0        | 20          | RA   |
| L78031-02AS                                                                                                                                     | AS                                            | 01/19/23 21:55                                                                                                       | WI220830-3                                                                  | 10                                       | 8.5     | 19.6                                              | mg/L                                          | 111                       | 90                                               | 110                                                |          |             | M1   |
| Vanadium, disso                                                                                                                                 | olved                                         |                                                                                                                      | M200.7 I                                                                    | СР                                       |         |                                                   |                                               |                           |                                                  |                                                    |          |             |      |
| ACZ ID                                                                                                                                          | Туре                                          | Analyzed                                                                                                             | PCN/SCN                                                                     | QC                                       | Sample  | Found                                             | Units                                         | Rec%                      | Lower                                            | Upper                                              | RPD      | Limit       | Qual |
| W0550007                                                                                                                                        |                                               |                                                                                                                      |                                                                             |                                          |         |                                                   |                                               |                           |                                                  |                                                    |          |             |      |
| WG558967                                                                                                                                        |                                               |                                                                                                                      |                                                                             |                                          |         |                                                   |                                               |                           |                                                  |                                                    |          |             |      |
| WG558967<br>WG558967ICV                                                                                                                         | ICV                                           | 01/21/23 15:48                                                                                                       | II230120-1                                                                  | 2                                        |         | 2.062                                             | mg/L                                          | 103                       | 95                                               | 105                                                |          |             |      |
|                                                                                                                                                 | ICV<br>ICB                                    | 01/21/23 15:48<br>01/21/23 15:54                                                                                     | II230120-1                                                                  | 2                                        |         | 2.062<br>U                                        | mg/L<br>mg/L                                  | 103                       | 95<br>-0.015                                     | 105<br>0.015                                       |          |             |      |
| WG558967ICV                                                                                                                                     |                                               |                                                                                                                      | II230120-1<br>II230120-4                                                    | 2<br>.5005                               |         |                                                   | •                                             | 103<br>106                |                                                  |                                                    |          |             |      |
| WG558967ICV<br>WG558967ICB                                                                                                                      | ICB                                           | 01/21/23 15:54                                                                                                       |                                                                             |                                          | U       | U                                                 | mg/L                                          |                           | -0.015                                           | 0.015                                              |          |             |      |
| WG558967ICV<br>WG558967ICB<br>WG558967LFB                                                                                                       | ICB<br>LFB                                    | 01/21/23 15:54<br>01/21/23 16:06                                                                                     | II230120-4                                                                  | .5005                                    | U<br>U  | U<br>.5325                                        | mg/L<br>mg/L                                  | 106                       | -0.015<br>85                                     | 0.015<br>115                                       | 3        | 20          |      |
| WG558967ICV<br>WG558967ICB<br>WG558967LFB<br>L78031-04AS                                                                                        | ICB<br>LFB<br>AS                              | 01/21/23 15:54<br>01/21/23 16:06<br>01/21/23 17:22                                                                   | II230120-4<br>II230120-4                                                    | .5005<br>.5005<br>.5005                  |         | U<br>.5325<br>.531                                | mg/L<br>mg/L<br>mg/L                          | 106<br>106                | -0.015<br>85<br>85                               | 0.015<br>115<br>115                                | 3        | 20          |      |
| WG558967ICV<br>WG558967ICB<br>WG558967LFB<br>L78031-04AS<br>L78031-04ASD                                                                        | ICB<br>LFB<br>AS                              | 01/21/23 15:54<br>01/21/23 16:06<br>01/21/23 17:22                                                                   | II230120-4<br>II230120-4<br>II230120-4                                      | .5005<br>.5005<br>.5005                  |         | U<br>.5325<br>.531<br>.514                        | mg/L<br>mg/L<br>mg/L                          | 106<br>106                | -0.015<br>85<br>85                               | 0.015<br>115<br>115                                | 3<br>RPD | 20<br>Limit | Qual |
| WG558967ICV<br>WG558967ICB<br>WG558967LFB<br>L78031-04AS<br>L78031-04ASD<br>Zinc, dissolved                                                     | ICB<br>LFB<br>AS<br>ASD                       | 01/21/23 15:54<br>01/21/23 16:06<br>01/21/23 17:22<br>01/21/23 17:25                                                 | II230120-4<br>II230120-4<br>II230120-4<br>M200.7 I                          | .5005<br>.5005<br>.5005                  | U       | U<br>.5325<br>.531<br>.514                        | mg/L<br>mg/L<br>mg/L<br>mg/L                  | 106<br>106<br>103         | -0.015<br>85<br>85<br>85                         | 0.015<br>115<br>115<br>115<br>115                  |          |             | Qual |
| WG558967ICV<br>WG558967ICB<br>WG558967LFB<br>L78031-04AS<br>L78031-04ASD<br>Zinc, dissolved<br>ACZ ID                                           | ICB<br>LFB<br>AS<br>ASD                       | 01/21/23 15:54<br>01/21/23 16:06<br>01/21/23 17:22<br>01/21/23 17:25                                                 | II230120-4<br>II230120-4<br>II230120-4<br>M200.7 I                          | .5005<br>.5005<br>.5005                  | U       | U<br>.5325<br>.531<br>.514                        | mg/L<br>mg/L<br>mg/L<br>mg/L                  | 106<br>106<br>103         | -0.015<br>85<br>85<br>85                         | 0.015<br>115<br>115<br>115<br>115                  |          |             | Qual |
| WG558967ICV<br>WG558967ICB<br>WG558967LFB<br>L78031-04AS<br>L78031-04ASD<br>Zinc, dissolved<br>ACZ ID<br>WG558967                               | ICB<br>LFB<br>AS<br>ASD                       | 01/21/23 15:54<br>01/21/23 16:06<br>01/21/23 17:22<br>01/21/23 17:25<br>Analyzed                                     | II230120-4<br>II230120-4<br>II230120-4<br>M200.7 I<br>PCN/SCN               | .5005<br>.5005<br>.5005<br>CP<br>QC      | U       | U<br>.5325<br>.531<br>.514                        | mg/L<br>mg/L<br>mg/L<br>mg/L                  | 106<br>106<br>103<br>Rec% | -0.015<br>85<br>85<br>85<br>85                   | 0.015<br>115<br>115<br>115<br>115<br>Upper         |          |             | Qual |
| WG558967ICV<br>WG558967ICB<br>WG558967LFB<br>L78031-04AS<br>L78031-04ASD<br>Zinc, dissolved<br>ACZ ID<br>WG558967<br>WG558967ICV                | ICB<br>LFB<br>AS<br>ASD<br>Type               | 01/21/23 15:54<br>01/21/23 16:06<br>01/21/23 17:22<br>01/21/23 17:25<br>Analyzed<br>01/21/23 15:48                   | II230120-4<br>II230120-4<br>II230120-4<br>M200.7 I<br>PCN/SCN               | .5005<br>.5005<br>.5005<br>CP<br>QC      | U       | U<br>.5325<br>.531<br>.514<br>Found               | mg/L<br>mg/L<br>mg/L<br>mg/L<br>Units         | 106<br>106<br>103<br>Rec% | -0.015<br>85<br>85<br>85<br>Lower                | 0.015<br>115<br>115<br>115<br>Upper                |          |             | Qual |
| WG558967ICV<br>WG558967ICB<br>WG558967LFB<br>L78031-04AS<br>L78031-04ASD<br>Zinc, dissolved<br>ACZ ID<br>WG558967<br>WG558967ICV<br>WG558967ICB | ICB<br>LFB<br>AS<br>ASD<br>Type<br>ICV<br>ICB | 01/21/23 15:54<br>01/21/23 16:06<br>01/21/23 17:22<br>01/21/23 17:25<br>Analyzed<br>01/21/23 15:48<br>01/21/23 15:54 | II230120-4<br>II230120-4<br>II230120-4<br>M200.7 I<br>PCN/SCN<br>II230120-1 | .5005<br>.5005<br>.5005<br>CP<br>QC<br>2 | U       | U<br>.5325<br>.531<br>.514<br>Found<br>1.939<br>U | mg/L<br>mg/L<br>mg/L<br>Units<br>mg/L<br>mg/L | 106<br>106<br>103<br>Rec% | -0.015<br>85<br>85<br>85<br>Lower<br>95<br>-0.06 | 0.015<br>115<br>115<br>115<br>Upper<br>105<br>0.06 |          |             | Qual |

# 4C: **AGZ** Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487

(800) 334-5493

#### **CRG Mining, LLC**

| ACZ ID    | WORKNUM  | PARAMETER                       | METHOD                                   | QUAL | DESCRIPTION                                                                                                                                                           |
|-----------|----------|---------------------------------|------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L78031-01 | WG558540 | Chloride                        | SM4500CI-E                               | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL). |
|           | WG557967 | Cyanide, total                  | M335.4 - Colorimetric w/<br>distillation | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL). |
|           | WG557898 | Nitrate/Nitrite as N            | M353.2 - Automated Cadmium<br>Reduction  | H3   | Sample was received and analyzed past holding time.                                                                                                                   |
|           |          |                                 | M353.2 - Automated Cadmium<br>Reduction  | ZU   | Analysis date/time preceeds filter date/time. A portion of<br>sample was filtered and analyzed prior to the creation of a<br>Filter workgroup.                        |
|           |          | Nitrite as N                    | M353.2 - Automated Cadmium<br>Reduction  | H3   | Sample was received and analyzed past holding time.                                                                                                                   |
|           |          |                                 | M353.2 - Automated Cadmium Reduction     | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL). |
|           |          |                                 | M353.2 - Automated Cadmium Reduction     | ZU   | Analysis date/time preceeds filter date/time. A portion of<br>sample was filtered and analyzed prior to the creation of a<br>Filter workgroup.                        |
|           | WG558108 | Residue, Filterable (TDS) @180C | SM2540C                                  | N1   | See Case Narrative.                                                                                                                                                   |
|           |          |                                 | SM2540C                                  | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL). |
|           | WG558792 | Sulfate                         | D516-02/-07/-11 -<br>TURBIDIMETRIC       | M1   | Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.                                                            |
|           |          |                                 | D516-02/-07/-11 -<br>TURBIDIMETRIC       | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL). |
|           | WG558377 | Total Alkalinity                | SM2320B - Titration                      | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL). |

# **4C AGZ** Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487

(800) 334-5493

# Inorganic Extended Qualifier Report

#### **CRG Mining, LLC**

| ACZ ID    | WORKNUM  | PARAMETER                       | METHOD                                   | QUAL | DESCRIPTION                                                                                                                                                                                                                  |
|-----------|----------|---------------------------------|------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L78031-02 | WG558540 | Chloride                        | SM4500CI-E                               | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).                                                        |
|           | WG557967 | Cyanide, total                  | M335.4 - Colorimetric w/<br>distillation | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).                                                        |
|           | WG557898 | Nitrate/Nitrite as N            | M353.2 - Automated Cadmium<br>Reduction  | HE   | Analysis performed past holding time. Method holding time<br>is less than or equal to 7 days and sample was received<br>with less than half of the holding time remaining (refer to<br>item C5 of ACZ's Terms & Conditions). |
|           |          |                                 | M353.2 - Automated Cadmium<br>Reduction  | ZU   | Analysis date/time preceeds filter date/time. A portion of sample was filtered and analyzed prior to the creation of a Filter workgroup.                                                                                     |
|           |          | Nitrite as N                    | M353.2 - Automated Cadmium<br>Reduction  | HE   | Analysis performed past holding time. Method holding time<br>is less than or equal to 7 days and sample was received<br>with less than half of the holding time remaining (refer to<br>item C5 of ACZ's Terms & Conditions). |
|           |          |                                 | M353.2 - Automated Cadmium Reduction     | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).                                                        |
|           |          |                                 | M353.2 - Automated Cadmium<br>Reduction  | ZU   | Analysis date/time preceeds filter date/time. A portion of sample was filtered and analyzed prior to the creation of a Filter workgroup.                                                                                     |
|           | WG558108 | Residue, Filterable (TDS) @180C | SM2540C                                  | N1   | See Case Narrative.                                                                                                                                                                                                          |
|           |          |                                 | SM2540C                                  | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).                                                        |
|           | WG558792 | Sulfate                         | D516-02/-07/-11 -<br>TURBIDIMETRIC       | M1   | Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.                                                                                                                   |
|           |          |                                 | D516-02/-07/-11 -<br>TURBIDIMETRIC       | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).                                                        |
|           | WG558377 | Total Alkalinity                | SM2320B - Titration                      | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).                                                        |

# **4C AGZ** Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487

(800) 334-5493

# Inorganic Extended Qualifier Report

#### **CRG Mining, LLC**

| ACZ ID    | WORKNUM  | PARAMETER                       | METHOD                                   | QUAL | DESCRIPTION                                                                                                                                                                                                                  |
|-----------|----------|---------------------------------|------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L78031-03 | WG558540 | Chloride                        | SM4500CI-E                               | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).                                                        |
|           | WG557967 | Cyanide, total                  | M335.4 - Colorimetric w/<br>distillation | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).                                                        |
|           | WG557981 | Nitrate/Nitrite as N            | M353.2 - Automated Cadmium<br>Reduction  | HE   | Analysis performed past holding time. Method holding time<br>is less than or equal to 7 days and sample was received<br>with less than half of the holding time remaining (refer to<br>item C5 of ACZ's Terms & Conditions). |
|           |          |                                 | M353.2 - Automated Cadmium<br>Reduction  | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).                                                        |
|           |          |                                 | M353.2 - Automated Cadmium<br>Reduction  | ZU   | Analysis date/time preceeds filter date/time. A portion of sample was filtered and analyzed prior to the creation of a Filter workgroup.                                                                                     |
|           |          | Nitrite as N                    | M353.2 - Automated Cadmium<br>Reduction  | HE   | Analysis performed past holding time. Method holding time<br>is less than or equal to 7 days and sample was received<br>with less than half of the holding time remaining (refer to<br>item C5 of ACZ's Terms & Conditions). |
|           |          |                                 | M353.2 - Automated Cadmium<br>Reduction  | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).                                                        |
|           |          |                                 | M353.2 - Automated Cadmium Reduction     | ZU   | Analysis date/time preceeds filter date/time. A portion of sample was filtered and analyzed prior to the creation of a Filter workgroup.                                                                                     |
|           | WG558108 | Residue, Filterable (TDS) @180C | SM2540C                                  | N1   | See Case Narrative.                                                                                                                                                                                                          |
|           |          |                                 | SM2540C                                  | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).                                                        |
|           | WG558792 | Sulfate                         | D516-02/-07/-11 -<br>TURBIDIMETRIC       | M1   | Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.                                                                                                                   |
|           |          |                                 | D516-02/-07/-11 -<br>TURBIDIMETRIC       | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).                                                        |
|           | WG558377 | Total Alkalinity                | SM2320B - Titration                      | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).                                                        |

# **4C AGZ** Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487

(800) 334-5493

# Inorganic Extended Qualifier Report

#### **CRG Mining, LLC**

| ACZ ID    | WORKNUM  | PARAMETER                       | METHOD                                   | QUAL | DESCRIPTION                                                                                                                                                                                                                  |
|-----------|----------|---------------------------------|------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L78031-04 | NG558658 | Beryllium, dissolved            | M200.8 ICP-MS                            | M2   | Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.                                                                                                                    |
|           | WG558540 | Chloride                        | SM4500CI-E                               | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).                                                        |
|           | WG557967 | Cyanide, total                  | M335.4 - Colorimetric w/<br>distillation | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).                                                        |
|           | WG557981 | Nitrate/Nitrite as N            | M353.2 - Automated Cadmium<br>Reduction  | HE   | Analysis performed past holding time. Method holding time<br>is less than or equal to 7 days and sample was received<br>with less than half of the holding time remaining (refer to<br>item C5 of ACZ's Terms & Conditions). |
|           |          |                                 | M353.2 - Automated Cadmium<br>Reduction  | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).                                                        |
|           |          |                                 | M353.2 - Automated Cadmium<br>Reduction  | ZU   | Analysis date/time preceeds filter date/time. A portion of<br>sample was filtered and analyzed prior to the creation of a<br>Filter workgroup.                                                                               |
|           |          | Nitrite as N                    | M353.2 - Automated Cadmium<br>Reduction  | HE   | Analysis performed past holding time. Method holding time<br>is less than or equal to 7 days and sample was received<br>with less than half of the holding time remaining (refer to<br>item C5 of ACZ's Terms & Conditions). |
|           |          |                                 | M353.2 - Automated Cadmium Reduction     | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).                                                        |
|           |          |                                 | M353.2 - Automated Cadmium Reduction     | ZU   | Analysis date/time preceeds filter date/time. A portion of<br>sample was filtered and analyzed prior to the creation of a<br>Filter workgroup.                                                                               |
|           | WG558108 | Residue, Filterable (TDS) @180C | SM2540C                                  | N1   | See Case Narrative.                                                                                                                                                                                                          |
|           |          |                                 | SM2540C                                  | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).                                                        |
|           | WG558792 | Sulfate                         | D516-02/-07/-11 -<br>TURBIDIMETRIC       | M1   | Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.                                                                                                                   |
|           |          |                                 | D516-02/-07/-11 -<br>TURBIDIMETRIC       | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).                                                        |



ACZ Project ID: L78031

No certification qualifiers associated with this analysis

REPAD.05.06.05.01

| ACZ | Laboratories, Inc.                         |
|-----|--------------------------------------------|
|     | Steamboat Springs, CO 80487 (800) 334-5493 |

Sample Rec<u>eipt</u>

| CRG Mining, LLC                                                                        | ACZ Proje | ct ID:    |             | L78031   |
|----------------------------------------------------------------------------------------|-----------|-----------|-------------|----------|
|                                                                                        | Date Rece | eived: 0  | 1/05/202    | 23 11:46 |
|                                                                                        | Receive   | ed By:    |             |          |
|                                                                                        | Date Pr   | inted:    | 1           | /6/2023  |
| Receipt Verification                                                                   |           |           |             |          |
| 1) Is a foreign soil permit included for applicable samples?                           |           | YES       | NO          | NA<br>X  |
| 2) Is the Chain of Custody form or other directive shipping papers present?            |           | X         |             |          |
| 3) Does this project require special handling procedures such as CLP protocol?         |           |           | X           |          |
| 4) Are any samples NRC licensable material?                                            |           |           |             | X        |
| 5) If samples are received past hold time, proceed with requested short hold time anal | vses?     | X         |             |          |
| 6) Is the Chain of Custody form complete and accurate?                                 | ,         | X         |             |          |
| 7) Were any changes made to the Chain of Custody form prior to ACZ receiving the sa    | amples?   |           | X           |          |
| Samples/Containers                                                                     |           |           | •           |          |
|                                                                                        |           | YES       | NO          | NA       |
| 8) Are all containers intact and with no leaks?                                        |           | Х         |             |          |
| 9) Are all labels on containers and are they intact and legible?                       |           | Х         |             |          |
| 10) Do the sample labels and Chain of Custody form match for Sample ID, Date, and      | Time?     | Х         |             |          |
| 11) For preserved bottle types, was the pH checked and within limits? $^{1}$           |           | Х         |             |          |
| 12) Is there sufficient sample volume to perform all requested work?                   |           | Х         |             |          |
| 13) Is the custody seal intact on all containers?                                      |           |           |             | Х        |
| 14) Are samples that require zero headspace acceptable?                                |           |           |             | Х        |
| 15) Are all sample containers appropriate for analytical requirements?                 |           | Х         |             |          |
| 16) Is there an Hg-1631 trip blank present?                                            |           |           |             | Х        |
| 17) Is there a VOA trip blank present?                                                 |           |           |             | Х        |
| 18) Were all samples received within hold time?                                        |           | Х         |             |          |
|                                                                                        |           | NA indica | ites Not Ap | plicable |

#### Chain of Custody Related Remarks

**Client Contact Remarks** 

Shipping Containers

| Cooler Id | Temp(°C) | Temp<br>Criteria(°C) | Rad(µR/Hr) | Custody Seal<br>Intact? |
|-----------|----------|----------------------|------------|-------------------------|
|           |          |                      |            |                         |
| 6256      | 3.3      | <=6.0                | 15         | Yes                     |

#### Was ice present in the shipment container(s)?

Yes - Wet ice was present in the shipment container(s).

Client must contact an ACZ Project Manager if analysis should not proceed for samples received outside of their thermal preservation acceptance criteria.



Sample Receipt

CRG Mining, LLC

ACZ Project ID: L78031 Date Received: 01/05/2023 11:46 Received By: Date Printed: 1/6/2023

<sup>1</sup> The preservation of the following bottle types is not checked at sample receipt: Orange (oil and grease), Purple (total cyanide), Pink (dissolved cyanide), Brown (arsenic speciation), Sterile (fecal coliform), EDTA (sulfite), HCI preserved vial (organics), Na2S2O3 preserved vial (organics), and HG-1631 (total/dissolved mercury by method 1631).

| LABORATORIES                                                 | dited<br>onmental<br>g |                             | /nhill Drive<br>at Springs, CO<br>-6590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80487                       | 17                     | 'BC              | 3            |                   | СНА         | NN o          | f CU                  | STO         | DY        |
|--------------------------------------------------------------|------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------|------------------|--------------|-------------------|-------------|---------------|-----------------------|-------------|-----------|
| Report to:                                                   |                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |                        |                  |              |                   |             |               |                       |             |           |
| Name: Site W                                                 |                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             | Addr                   | ess:             | 510          | Ċ                 | لم          | isu           | or the                | 1 0         | F         |
| Company: CRGA                                                | Nini                   | NG                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7                           |                        |                  |              | <u>، ح</u><br>) د |             | 8123          | <u>シ / in</u>         | <u>J_</u> Z | <u> </u>  |
| E-mail: JWiLKIN                                              | 13000                  | 0(26,                       | mining.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | im                          |                        | phone            | ~~           | 5-4               | 17-7        | 2311          | <u> </u>              |             |           |
| Copy of Report to:                                           |                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |                        |                  |              |                   |             |               |                       |             | _         |
| Name: N                                                      |                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             | E-ma                   | ail <sup>.</sup> |              |                   |             |               |                       |             |           |
| Company:                                                     |                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1                          |                        | phone:           |              |                   |             |               |                       |             |           |
| nvoice to:                                                   |                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |                        |                  |              |                   |             |               |                       |             | _         |
| Name:                                                        |                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |                        |                  |              |                   |             |               |                       |             |           |
| Company: 1                                                   |                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                           | Addr                   | ess:             |              |                   |             |               |                       |             |           |
| E-mail: U                                                    |                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                           |                        | <u> </u>         |              |                   |             |               |                       |             |           |
|                                                              |                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             | lelep                  | phone:           |              |                   |             |               |                       |             |           |
| Copy of Invoice to:                                          |                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |                        |                  |              |                   |             |               |                       |             |           |
| Name:                                                        |                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                           | Addre                  | ess:             |              |                   |             |               |                       |             |           |
| Company:                                                     |                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                           | <u> </u>               |                  |              |                   |             |               |                       |             |           |
| -mail:                                                       | boldered               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                           |                        | hone:            |              |                   |             |               |                       |             |           |
| sample(s) received past<br>nalysis before expiration,        | , shall AC             | une (Hf), or<br>Z proceed v | r IT Insufficient<br>with requested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HT rema<br>short H          | ins to<br>Tanah        | comple           | ete          |                   |             |               | YES                   |             |           |
| NO" then ACZ will contact client for furt                    | ther instruction       | n. If neither "YES"         | nor "NO" is indicated,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ACZ will proc               | eed with t             | he request       | ed analyses  | even if HT        | is expired  | , and data w  | NO<br>ill be qualifie |             |           |
| re samples for SDWA Cor                                      | mpliance               | Monitoring                  | ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             | Yes                    |                  |              | No                |             | ]             |                       |             |           |
| yes, please include state                                    | Torms. R               |                             | be reported to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PQL for                     | Colora                 | do.              |              | _                 | ~           |               |                       |             | _         |
| ampler's Name: <b>Ske h</b><br>Sampler's Signature: <u>S</u> |                        | N Samplei                   | *l attest t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | to the authenti             | State_<br>icity and vi | alidity of th    | is sample.   | understan         | d that into | ntionally min | Time Z                |             | <u>.S</u> |
| ROJECT INFORMATIO                                            |                        |                             | tamperin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | g with the sar              | nple in any            | way, is co       | nsidered fra | ud and pur        | hishable by | State Law.    |                       |             | ation c   |
| uote #:                                                      |                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |                        |                  | LYSES RI     | EQUESTE           | ED (attac.  | h list or us  | e quote nu            | imber)      |           |
| D#:                                                          |                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             | of Containers          |                  |              |                   |             | 1             |                       |             |           |
| eporting state for compliance                                |                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             | ıtair                  |                  |              |                   |             |               |                       |             |           |
| neck box if samples include                                  |                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             | Col                    |                  |              |                   |             |               |                       |             |           |
| SAMPLE IDENTIFICA                                            |                        |                             | E:TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Matrix                      | to #                   |                  |              |                   |             |               |                       |             |           |
|                                                              |                        |                             | 3 11:45 AM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             | 5                      | 5                | +            |                   | +           | +             |                       |             |           |
| hnz -                                                        |                        |                             | ) // , / \ ///                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.2.1                       | د ي                    |                  | 1            |                   | í           |               |                       |             |           |
| <u>hm3</u><br>Cm1                                            |                        | 1-3-2                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cial                        | ]                      | 17 -             |              |                   |             |               |                       |             |           |
| <u>hm3</u><br><u>Cm1</u><br>(m2                              |                        | 1-3-2                       | 3 12:20pm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SW                          | 5                      | Ķ                | 80           |                   | <u> </u>    | <u> </u>      |                       |             |           |
| 4M3<br>CM1<br>CM2<br>(M2                                     |                        | 1-3-2                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SW                          | S                      | 5                | Bas          | elin              | ٤           | Qur           | ifer                  | Ly          |           |
| 4 <u>M3</u><br>CM <u>1</u><br>CM2<br>(M3                     |                        | 1-3-2<br>1-3-2<br>1-3-23    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SW<br>SW                    | 5555                   | 5                | ßæ           | elin              | Ł           | Qui           | i fen                 | Ly          |           |
| 4M3<br>CM1<br>CM2<br>(M3                                     |                        | 1-3-2<br>1-3-2<br>1-3-23    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SW<br>SW<br>SW              | S                      | 3                | B13          | elin              | Ł           | Qur           | 1+42                  | Ly          |           |
| hm3<br>CM1<br>CM2<br>(M3                                     |                        | 1-3-2<br>1-3-2<br>1-3-23    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SW<br>SW                    | S                      | 5                | <u>B</u> as  | elin              | Ł           | Qur           | ter.                  | Ly          |           |
| $n_3$<br>$m_1$<br>$m_2$<br>$m_3$                             |                        | 1-3-2<br>1-3-2<br>1-3-23    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SW<br>SW                    | S                      | <u>{</u> }       | B.AS         | elin              | Ě           | Qur           | 1. [ + 12             | Ly<br>      |           |
| hm3<br>Cm1<br>Cm2<br>Cm3                                     |                        | 1-3-2<br>1-3-2<br>1-3-2     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SW<br>SW                    | S                      | <u>{</u>         | <u>S</u> ag  | elin              |             | Qur           | 1. [ * 12             | Ly          |           |
| hm3<br>Cm1<br>Cm2<br>(M3                                     |                        | 1-3-2<br>1-3-2<br>1-3-23    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SW<br>SW<br>SW              | S                      | <u>{</u>         | <b>B</b> AB  | elin              |             |               |                       | Ly          |           |
| Matrix SW (Surface Wa                                        |                        | 1-3-2<br>1-3-2<br>1-3-23    | 3 12:20pm<br>5 12:30pm<br>12:50pm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SW<br>SW<br>SW              | 5                      |                  |              |                   |             |               |                       | Ly<br>      |           |
|                                                              | iter) · GW ((          | 1-3-2<br>1-3-2<br>1-3-23    | 3 12:20pm<br>5 12:30pm<br>12:50pm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SW<br>SW<br>SW              | 5                      | ng Wate          |              |                   |             |               |                       | (Specify)   |           |
|                                                              | iter) · GW (0          | 1-3-2<br>1-3-2<br>1-3-23    | 3 12:20pm<br>5 12:30pm<br>12:50pm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SW<br>SW<br>SW              | 5                      | ng Wate          |              |                   |             |               |                       | (Specify)   |           |
|                                                              | iter) GW ((            | 1-3-2<br>1-3-2<br>1-3-23    | 3 12:20pm<br>5 12:30pm<br>12:50pm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SW<br>SW<br>SW              | 5                      | ng Wate          |              |                   |             |               |                       | (Specify)   |           |
|                                                              | Iter) GW (0            | 1-3-2<br>1-3-2<br>1-3-23    | 3 12:20pm<br>5 12:30pm<br>12:50pm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SW<br>SW<br>SW              | 5                      | ng Wate          |              |                   |             |               |                       | (Specify)   |           |
|                                                              | tter) GW ((            | 1-3-2<br>1-3-2<br>1-3-23    | 3 12:20pm<br>5 12:30pm<br>12:50pm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SW<br>SW<br>SW<br>Vater) DW | 5                      | ng Wate          |              |                   |             |               |                       | (Specify)   |           |
| MARKS                                                        |                        | 1-3-2<br>1-3-23             | 3 12: 2084<br>> 12: 2084<br>> 12: 509:41<br>-) WW (Waste W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ·                           | S<br>5                 |                  | r) · SL (S   | ludge) ·          | SO (Soi     | I) OL (O)     |                       | (Specify)   |           |
| Pie                                                          | ease refer             | 1-3-2<br>1-3-23             | 3 12: 2000<br>> 12: 2000<br>> 12: 300000<br>> 12: 500000<br>> WW (Waste W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tions loca                  | S<br>5                 | n the r          | r) · SL (S   | side of           | SO (Soi     | I) OL (O)     | I) · Other            |             |           |
| EMARKS                                                       | ease refer             | 1-3-2<br>1-3-23<br>1-3-23   | 3 12: Zopm<br>> 12: Zopm<br>> 12: Sopm<br>> 12: | tions loca                  | S<br>5                 | n the r          | r) · SL (S   | side of           | SO (Soi     | I) OL (O)     | I) · Other            | TE:TIM      | E         |
| EMARKS                                                       | ease refer             | 1-3-2<br>1-3-23<br>1-3-23   | 3 12: 2000<br>> 12: 2000<br>> 12: 300000<br>> 12: 500000<br>> WW (Waste W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tions loca                  | S<br>5                 | n the r          | r) · SL (S   | side of           | SO (Soi     | I) OL (O)     | I) · Other            | TE:TIM      |           |

L78031 Chain of Custod L780?

White Yellow - Retain for your records. Return with sample.

ŝ

of 26