

October 31, 2022

Report to: Jake Wilkinson CRG Mining, LLC 510 S Wisconsin St Gunnison, CO 80231 Bill to: Jake Wilkinson CRG Mining, LLC 510 S Wisconsin St Gunnison, CO 80231

Project ID: ACZ Project ID: L76594

Jake Wilkinson:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on October 12, 2022. This project has been assigned to ACZ's project number, L76594. Please reference this number in all future inquiries.

All analyses were performed according to ACZ's Quality Assurance Plan. The enclosed results relate only to the samples received under L76594. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after November 30, 2022. If the samples are determined to be hazardous, additional charges apply for disposal (typically \$11/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical raw data reports for ten years.

If you have any questions or other needs, please contact your Project Manager.

Max janicele

Max Janicek has reviewed and approved this report.

Project ID: Sample ID: GL1

Inorganic Analytical Results

ACZ Sample ID: **L76594-01** Date Sampled: 10/10/22 12:25 Date Received: 10/12/22 Sample Matrix: Surface Water

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Cyanide, total	M335.4 - Manual Distillation								10/18/22 10:52	wgm
Lab Filtration (0.45um) & Acidification	M200.7/200.8/3005A								10/14/22 13:37	kja
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Aluminum, dissolved	M200.7 ICP	1	<0.05	U		mg/L	0.05	0.25	10/26/22 18:26	wtc
Antimony, dissolved	M200.8 ICP-MS	1	<0.0004	U		mg/L	0.0004	0.002	10/19/22 21:02	kja
Arsenic, dissolved	M200.8 ICP-MS	1	<0.0002	U		mg/L	0.0002	0.001	10/19/22 21:02	kja
Barium, dissolved	M200.7 ICP	1	0.0103	В		mg/L	0.009	0.035	10/27/22 13:57	wtc
Beryllium, dissolved	M200.8 ICP-MS	1	<0.00008	U		mg/L	0.00008	0.00025	10/20/22 13:34	kja
Cadmium, dissolved	M200.8 ICP-MS	1	<0.00005	U		mg/L	0.00005	0.00025	10/19/22 21:02	kja
Calcium, dissolved	M200.7 ICP	1	12.2			mg/L	0.1	0.5	10/26/22 18:26	wtc
Chromium, dissolved	M200.8 ICP-MS	1	<0.0005	U		mg/L	0.0005	0.002	10/19/22 21:02	kja
Cobalt, dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	10/26/22 18:26	wtc
Copper, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	10/26/22 18:26	wtc
Iron, dissolved	M200.7 ICP	1	<0.06	U		mg/L	0.06	0.15	10/26/22 18:26	wtc
Lead, dissolved	M200.8 ICP-MS	1	0.00011	В		mg/L	0.0001	0.0005	10/19/22 21:02	kja
Magnesium, dissolved	M200.7 ICP	1	4.48			mg/L	0.2	1	10/26/22 18:26	wtc
Manganese, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	10/26/22 18:26	wtc
Mercury, total	M245.1 CVAA	1	<0.0002	U		mg/L	0.0002	0.001	10/17/22 16:12	mlh
Nickel, dissolved	M200.7 ICP	1	<0.008	U		mg/L	0.008	0.04	10/26/22 18:26	wtc
Potassium, dissolved	M200.7 ICP	1	0.73	В		mg/L	0.2	1	10/26/22 18:26	wtc
Sodium, dissolved	M200.7 ICP	1	1.93			mg/L	0.2	1	10/26/22 18:26	wtc
Vanadium, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.025	10/27/22 13:57	wtc
Zinc. dissolved	M200.7 ICP	1	<0.02	U		ma/L	0.02	0.05	10/26/22 18:26	wtc

Project ID: Sample ID: GL1

Inorganic Analytical Results

ACZ Sample ID: **L76594-01** Date Sampled: 10/10/22 12:25 Date Received: 10/12/22 Sample Matrix: Surface Water

Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as CaCO3		1	67.3			mg/L	2	20	10/19/22 0:00	emk
Carbonate as CaCO3		1	8.4	В		mg/L	2	20	10/19/22 0:00	emk
Hydroxide as CaCO3		1	<2	U		mg/L	2	20	10/19/22 0:00	emk
Total Alkalinity		1	75.7			mg/L	2	20	10/19/22 0:00	emk
Cation-Anion Balance	Calculation									
Cation-Anion Balance			-21.4			%			10/31/22 0:00	calc
Sum of Anions			1.7			meq/L			10/31/22 0:00	calc
Sum of Cations			1.1			meq/L			10/31/22 0:00	calc
Chloride	SM4500CI-E	1	3.85			mg/L	1	2	10/22/22 11:39) gkk
Conductivity @25C	SM2510B	1	122			umhos/cm	1	10	10/19/22 9:25	emk
Cyanide, total	M335.4 - Colorimetric w/ distillation	0.5	<0.003	U	*	mg/L	0.003	0.01	10/18/22 16:40) bls
Hardness as CaCO3 (dissolved)	SM2340B - Calculation		49			mg/L	0.2	5	10/31/22 0:00	calc
Lab Filtration (0.45um filter)	SOPWC050	1							10/21/22 8:07	mlh
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2		0.131	н		mg/L	0.02	0.1	10/31/22 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	0.131	н	*	mg/L	0.02	0.1	10/14/22 22:25	; pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	<0.01	UH	*	mg/L	0.01	0.05	10/14/22 22:25	; pjb
pH (lab)	SM4500H+ B									
рН		1	8.5	н		units	0.1	0.1	10/19/22 0:00	emk
pH measured at		1	20.9			С	0.1	0.1	10/19/22 0:00	emk
Residue, Filterable (TDS) @180C	SM2540C	1	56		*	mg/L	20	40	10/13/22 16:36	; svm
Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	C 1	5.3		*	mg/L	1	5	10/22/22 19:55	j gkk

REPIN.02.06.05.01

Project ID: Sample ID: GL2

Inorganic Analytical Results

ACZ Sample ID:	L76594-02
Date Sampled:	10/10/22 12:36
Date Received:	10/12/22
Sample Matrix:	Surface Water

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Cyanide, total	M335.4 - Manual Distillation								10/18/22 11:05	wgm
Lab Filtration (0.45um) & Acidification	M200.7/200.8/3005A								10/14/22 13:37	kja
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Aluminum, dissolved	M200.7 ICP	1	<0.05	U		mg/L	0.05	0.25	10/26/22 18:35	wtc
Antimony, dissolved	M200.8 ICP-MS	1	<0.0004	U		mg/L	0.0004	0.002	10/19/22 21:04	kja
Arsenic, dissolved	M200.8 ICP-MS	1	<0.0002	U		mg/L	0.0002	0.001	10/19/22 21:04	kja
Barium, dissolved	M200.7 ICP	1	0.0109	В		mg/L	0.009	0.035	10/27/22 14:06	wtc
Beryllium, dissolved	M200.8 ICP-MS	1	<0.00008	U		mg/L	0.00008	0.00025	10/20/22 13:36	kja
Cadmium, dissolved	M200.8 ICP-MS	1	0.000132	В		mg/L	0.00005	0.00025	10/19/22 21:04	kja
Calcium, dissolved	M200.7 ICP	1	13.2			mg/L	0.1	0.5	10/26/22 18:35	wtc
Chromium, dissolved	M200.8 ICP-MS	1	<0.0005	U		mg/L	0.0005	0.002	10/19/22 21:04	kja
Cobalt, dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	10/26/22 18:35	wtc
Copper, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	10/26/22 18:35	wtc
Iron, dissolved	M200.7 ICP	1	<0.06	U		mg/L	0.06	0.15	10/26/22 18:35	wtc
Lead, dissolved	M200.8 ICP-MS	1	<0.0001	U		mg/L	0.0001	0.0005	10/19/22 21:04	kja
Magnesium, dissolved	M200.7 ICP	1	4.77			mg/L	0.2	1	10/26/22 18:35	wtc
Manganese, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	10/26/22 18:35	wtc
Mercury, total	M245.1 CVAA	1	<0.0002	U		mg/L	0.0002	0.001	10/17/22 16:13	mlh
Nickel, dissolved	M200.7 ICP	1	<0.008	U		mg/L	0.008	0.04	10/26/22 18:35	wtc
Potassium, dissolved	M200.7 ICP	1	0.76	В		mg/L	0.2	1	10/26/22 18:35	wtc
Sodium, dissolved	M200.7 ICP	1	2.01			mg/L	0.2	1	10/26/22 18:35	wtc
Vanadium, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.025	10/27/22 14:06	wtc
Zinc, dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	10/26/22 18:35	wtc

Project ID: Sample ID: GL2

Inorganic Analytical Results

ACZ Sample ID: **L76594-02** Date Sampled: 10/10/22 12:36 Date Received: 10/12/22 Sample Matrix: Surface Water

Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as CaCO3		1	58.6			mg/L	2	20	10/19/22 0:00	emk
Carbonate as CaCO3		1	<2	U		mg/L	2	20	10/19/22 0:00	emk
Hydroxide as CaCO3		1	<2	U		mg/L	2	20	10/19/22 0:00	emk
Total Alkalinity		1	58.6			mg/L	2	20	10/19/22 0:00	emk
Cation-Anion Balance	Calculation									
Cation-Anion Balance			-11.1			%			10/31/22 0:00	calc
Sum of Anions			1.5			meq/L			10/31/22 0:00	calc
Sum of Cations			1.2			meq/L			10/31/22 0:00	calc
Chloride	SM4500CI-E	1	5.24		*	mg/L	1	2	10/22/22 11:39) gkk
Conductivity @25C	SM2510B	1	132			umhos/cm	1	10	10/19/22 9:32	emk
Cyanide, total	M335.4 - Colorimetric w/ distillation	0.5	<0.003	U	*	mg/L	0.003	0.01	10/18/22 16:41	bls
Hardness as CaCO3 (dissolved)	SM2340B - Calculation		53			mg/L	0.2	5	10/31/22 0:00	calc
Lab Filtration (0.45um filter)	SOPWC050	1							10/21/22 8:09	mlh
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2		0.456	Н		mg/L	0.02	0.1	10/31/22 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	0.456	Н	*	mg/L	0.02	0.1	10/14/22 22:28	3 pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	<0.01	UH	*	mg/L	0.01	0.05	10/14/22 22:28	3 pjb
pH (lab)	SM4500H+ B									
рН		1	7.2	Н		units	0.1	0.1	10/19/22 0:00	emk
pH measured at		1	21.0			С	0.1	0.1	10/19/22 0:00	emk
Residue, Filterable (TDS) @180C	SM2540C	1	62		*	mg/L	20	40	10/13/22 16:38	8 svm
Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	C 1	6.8		*	mg/L	1	5	10/22/22 19:22	2 gkk

REPIN.02.06.05.01

Project ID: Sample ID: GL3

Inorganic Analytical Results

ACZ Sample ID: **L76594-03** Date Sampled: 10/10/22 12:47 Date Received: 10/12/22 Sample Matrix: Surface Water

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Cyanide, total	M335.4 - Manual Distillation								10/18/22 11:30	wgm
Lab Filtration (0.45um) & Acidification	M200.7/200.8/3005A								10/14/22 13:37	kja
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Aluminum, dissolved	M200.7 ICP	1	<0.05	U		mg/L	0.05	0.25	10/26/22 18:44	wtc
Antimony, dissolved	M200.8 ICP-MS	1	<0.0004	U		mg/L	0.0004	0.002	10/19/22 21:06	kja
Arsenic, dissolved	M200.8 ICP-MS	1	<0.0002	U		mg/L	0.0002	0.001	10/19/22 21:06	kja
Barium, dissolved	M200.7 ICP	1	0.0106	В		mg/L	0.009	0.035	10/27/22 14:10	wtc
Beryllium, dissolved	M200.8 ICP-MS	1	<0.00008	U		mg/L	0.00008	0.00025	10/20/22 13:38	kja
Cadmium, dissolved	M200.8 ICP-MS	1	0.000139	В		mg/L	0.00005	0.00025	10/19/22 21:06	kja
Calcium, dissolved	M200.7 ICP	1	14.5			mg/L	0.1	0.5	10/26/22 18:44	wtc
Chromium, dissolved	M200.8 ICP-MS	1	<0.0005	U		mg/L	0.0005	0.002	10/19/22 21:06	kja
Cobalt, dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	10/26/22 18:44	wtc
Copper, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	10/26/22 18:44	wtc
Iron, dissolved	M200.7 ICP	1	<0.06	U		mg/L	0.06	0.15	10/26/22 18:44	wtc
Lead, dissolved	M200.8 ICP-MS	1	<0.0001	U		mg/L	0.0001	0.0005	10/19/22 21:06	kja
Magnesium, dissolved	M200.7 ICP	1	5.23			mg/L	0.2	1	10/26/22 18:44	wtc
Manganese, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	10/26/22 18:44	wtc
Mercury, total	M245.1 CVAA	1	<0.0002	U		mg/L	0.0002	0.001	10/17/22 16:14	mlh
Nickel, dissolved	M200.7 ICP	1	<0.008	U		mg/L	0.008	0.04	10/26/22 18:44	wtc
Potassium, dissolved	M200.7 ICP	1	0.77	В		mg/L	0.2	1	10/26/22 18:44	wtc
Sodium, dissolved	M200.7 ICP	1	2.11			mg/L	0.2	1	10/26/22 18:44	wtc
Vanadium, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.025	10/27/22 14:10	wtc
Zinc. dissolved	M200.7 ICP	1	<0.02	U		ma/L	0.02	0.05	10/26/22 18:44	wtc

Project ID: Sample ID: GL3

Inorganic Analytical Results

ACZ Sample ID: **L76594-03** Date Sampled: 10/10/22 12:47 Date Received: 10/12/22 Sample Matrix: Surface Water

Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as CaCO3		1	58.5			mg/L	2	20	10/19/22 0:00	emk
Carbonate as CaCO3		1	<2	U		mg/L	2	20	10/19/22 0:00	emk
Hydroxide as CaCO3		1	<2	U		mg/L	2	20	10/19/22 0:00	emk
Total Alkalinity		1	58.5			mg/L	2	20	10/19/22 0:00	emk
Cation-Anion Balance	Calculation									
Cation-Anion Balance			-3.7			%			10/31/22 0:00	calc
Sum of Anions			1.4			meq/L			10/31/22 0:00	calc
Sum of Cations			1.3			meq/L			10/31/22 0:00	calc
Chloride	SM4500CI-E	1	2.96		*	mg/L	1	2	10/22/22 11:39) gkk
Conductivity @25C	SM2510B	1	133			umhos/cm	1	10	10/19/22 9:39	emk
Cyanide, total	M335.4 - Colorimetric w/ distillation	0.5	<0.003	U	*	mg/L	0.003	0.01	10/18/22 16:43	bls
Hardness as CaCO3 (dissolved)	SM2340B - Calculation		58			mg/L	0.2	5	10/31/22 0:00	calc
Lab Filtration (0.45um filter)	SOPWC050	1							10/21/22 8:11	mlh
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2		0.459	Н		mg/L	0.02	0.1	10/31/22 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	0.459	Н	*	mg/L	0.02	0.1	10/14/22 22:30) pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	<0.01	UH	*	mg/L	0.01	0.05	10/14/22 22:30) pjb
pH (lab)	SM4500H+ B									
рН		1	7.0	Н		units	0.1	0.1	10/19/22 0:00	emk
pH measured at		1	21.0			С	0.1	0.1	10/19/22 0:00	emk
Residue, Filterable (TDS) @180C	SM2540C	1	62		*	mg/L	20	40	10/13/22 16:44	svm
Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	C 1	7.2		*	mg/L	1	5	10/22/22 19:22	2 gkk

REPIN.02.06.05.01

Project ID: Sample ID: RM1

Inorganic Analytical Results

ACZ Sample ID: L76594-04 Date Sampled: 10/10/22 13:02 Date Received: 10/12/22 Sample Matrix: Surface Water

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Cyanide, total	M335.4 - Manual Distillation								10/18/22 11:42	wgm
Lab Filtration (0.45um) & Acidification	M200.7/200.8/3005A								10/14/22 13:37	kja
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Aluminum, dissolved	M200.7 ICP	1	<0.05	U		mg/L	0.05	0.25	10/26/22 18:47	wtc
Antimony, dissolved	M200.8 ICP-MS	1	<0.0004	U		mg/L	0.0004	0.002	10/19/22 21:08	kja
Arsenic, dissolved	M200.8 ICP-MS	1	<0.0002	U		mg/L	0.0002	0.001	10/19/22 21:08	kja
Barium, dissolved	M200.7 ICP	1	0.0110	В		mg/L	0.009	0.035	10/27/22 14:19	wtc
Beryllium, dissolved	M200.8 ICP-MS	1	<0.00008	U		mg/L	0.00008	0.00025	10/20/22 13:40	kja
Cadmium, dissolved	M200.8 ICP-MS	1	0.000122	В		mg/L	0.00005	0.00025	10/19/22 21:08	kja
Calcium, dissolved	M200.7 ICP	1	16.5			mg/L	0.1	0.5	10/26/22 18:47	wtc
Chromium, dissolved	M200.8 ICP-MS	1	<0.0005	U		mg/L	0.0005	0.002	10/19/22 21:08	kja
Cobalt, dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	10/26/22 18:47	wtc
Copper, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	10/26/22 18:47	wtc
Iron, dissolved	M200.7 ICP	1	<0.06	U		mg/L	0.06	0.15	10/26/22 18:47	wtc
Lead, dissolved	M200.8 ICP-MS	1	<0.0001	U		mg/L	0.0001	0.0005	10/19/22 21:08	kja
Magnesium, dissolved	M200.7 ICP	1	5.63			mg/L	0.2	1	10/26/22 18:47	wtc
Manganese, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	10/26/22 18:47	wtc
Mercury, total	M245.1 CVAA	1	<0.0002	U		mg/L	0.0002	0.001	10/17/22 16:15	mlh
Nickel, dissolved	M200.7 ICP	1	<0.008	U		mg/L	0.008	0.04	10/26/22 18:47	wtc
Potassium, dissolved	M200.7 ICP	1	0.83	В		mg/L	0.2	1	10/26/22 18:47	wtc
Sodium, dissolved	M200.7 ICP	1	1.98			mg/L	0.2	1	10/26/22 18:47	wtc
Vanadium, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.025	10/27/22 14:19	wtc
Zinc, dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	10/26/22 18:47	wtc

Project ID: Sample ID: RM1

Inorganic Analytical Results

ACZ Sample ID: L76594-04 Date Sampled: 10/10/22 13:02 Date Received: 10/12/22 Sample Matrix: Surface Water

Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as CaCO3		1	64.3			mg/L	2	20	10/19/22 0:00	emk
Carbonate as CaCO3		1	<2	U		mg/L	2	20	10/19/22 0:00	emk
Hydroxide as CaCO3		1	<2	U		mg/L	2	20	10/19/22 0:00	emk
Total Alkalinity		1	64.3			mg/L	2	20	10/19/22 0:00	emk
Cation-Anion Balance	Calculation									
Cation-Anion Balance			-3.4			%			10/31/22 0:00	calc
Sum of Anions			1.5			meq/L			10/31/22 0:00	calc
Sum of Cations			1.4			meq/L			10/31/22 0:00	calc
Chloride	SM4500CI-E	1	<1	U	*	mg/L	1	2	10/22/22 11:39) gkk
Conductivity @25C	SM2510B	1	148			umhos/cm	1	10	10/19/22 9:46	emk
Cyanide, total	M335.4 - Colorimetric w/ distillation	0.5	<0.003	U	*	mg/L	0.003	0.01	10/18/22 16:44	l bls
Hardness as CaCO3 (dissolved)	SM2340B - Calculation		64			mg/L	0.2	5	10/31/22 0:00	calc
Lab Filtration (0.45um filter)	SOPWC050	1							10/21/22 8:13	mlh
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2		0.409	Н		mg/L	0.02	0.1	10/31/22 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	0.409	Н	*	mg/L	0.02	0.1	10/14/22 22:31	pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	<0.01	UH	*	mg/L	0.01	0.05	10/14/22 22:31	pjb
pH (lab)	SM4500H+ B									
рН		1	7.0	Н		units	0.1	0.1	10/19/22 0:00	emk
pH measured at		1	21.2			С	0.1	0.1	10/19/22 0:00	emk
Residue, Filterable (TDS) @180C	SM2540C	1	78		*	mg/L	20	40	10/13/22 16:46	6 svm
Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	C 1	7.3		*	mg/L	1	5	10/22/22 19:22	2 gkk

Project ID: Sample ID: RM2

Inorganic Analytical Results

ACZ Sample ID:	L76594-05
Date Sampled:	10/10/22 13:15
Date Received:	10/12/22
Sample Matrix:	Surface Water

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Cyanide, total	M335.4 - Manual Distillation								10/18/22 11:55	wgm
Lab Filtration (0.45um) & Acidification	M200.7/200.8/3005A								10/14/22 13:37	kja
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Aluminum, dissolved	M200.7 ICP	1	<0.05	U		mg/L	0.05	0.25	10/26/22 18:50	wtc
Antimony, dissolved	M200.8 ICP-MS	1	<0.0004	U		mg/L	0.0004	0.002	10/19/22 21:13	kja
Arsenic, dissolved	M200.8 ICP-MS	1	0.00862			mg/L	0.0002	0.001	10/19/22 21:13	kja
Barium, dissolved	M200.7 ICP	1	<0.009	U		mg/L	0.009	0.035	10/27/22 14:22	wtc
Beryllium, dissolved	M200.8 ICP-MS	1	<0.00008	U		mg/L	0.00008	0.00025	10/20/22 13:45	kja
Cadmium, dissolved	M200.8 ICP-MS	1	0.000522			mg/L	0.00005	0.00025	10/19/22 21:13	kja
Calcium, dissolved	M200.7 ICP	1	14.1			mg/L	0.1	0.5	10/26/22 18:50	wtc
Chromium, dissolved	M200.8 ICP-MS	1	<0.0005	U		mg/L	0.0005	0.002	10/19/22 21:13	kja
Cobalt, dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	10/26/22 18:50	wtc
Copper, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	10/26/22 18:50	wtc
Iron, dissolved	M200.7 ICP	1	<0.06	U		mg/L	0.06	0.15	10/26/22 18:50	wtc
Lead, dissolved	M200.8 ICP-MS	1	<0.0001	U		mg/L	0.0001	0.0005	10/19/22 21:13	kja
Magnesium, dissolved	M200.7 ICP	1	3.30			mg/L	0.2	1	10/26/22 18:50	wtc
Manganese, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	10/26/22 18:50	wtc
Mercury, total	M245.1 CVAA	1	<0.0002	U		mg/L	0.0002	0.001	10/18/22 14:50	mlh
Nickel, dissolved	M200.7 ICP	1	<0.008	U		mg/L	0.008	0.04	10/26/22 18:50	wtc
Potassium, dissolved	M200.7 ICP	1	1.23			mg/L	0.2	1	10/26/22 18:50	wtc
Sodium, dissolved	M200.7 ICP	1	4.05			mg/L	0.2	1	10/26/22 18:50	wtc
Vanadium, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.025	10/27/22 14:22	wtc
Zinc, dissolved	M200.7 ICP	1	0.038	В		mg/L	0.02	0.05	10/26/22 18:50	wtc

Project ID: Sample ID: RM2

Inorganic Analytical Results

ACZ Sample ID: L76594-05 Date Sampled: 10/10/22 13:15 Date Received: 10/12/22 Sample Matrix: Surface Water

Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as CaCO3		1	45.2			mg/L	2	20	10/19/22 0:00	emk
Carbonate as CaCO3		1	<2	U		mg/L	2	20	10/19/22 0:00	emk
Hydroxide as CaCO3		1	<2	U		mg/L	2	20	10/19/22 0:00	emk
Total Alkalinity		1	45.2			mg/L	2	20	10/19/22 0:00	emk
Cation-Anion Balance	Calculation									
Cation-Anion Balance			-4.0			%			10/31/22 0:00	calc
Sum of Anions			1.3			meq/L			10/31/22 0:00	calc
Sum of Cations			1.2			meq/L			10/31/22 0:00	calc
Chloride	SM4500CI-E	1	<1	U	*	mg/L	1	2	10/22/22 11:39) gkk
Conductivity @25C	SM2510B	1	132			umhos/cm	1	10	10/19/22 9:53	emk
Cyanide, total	M335.4 - Colorimetric w/ distillation	0.5	<0.003	U	*	mg/L	0.003	0.01	10/18/22 16:45	5 bls
Hardness as CaCO3 (dissolved)	SM2340B - Calculation		49			mg/L	0.2	5	10/31/22 0:00	calc
Lab Filtration (0.45um filter)	SOPWC050	1							10/21/22 8:16	mlh
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2		0.043	BH		mg/L	0.02	0.1	10/31/22 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	0.043	BH	*	mg/L	0.02	0.1	10/14/22 22:33	B pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	<0.01	UH	*	mg/L	0.01	0.05	10/14/22 22:33	B pjb
pH (lab)	SM4500H+ B									
рН		1	6.7	Н		units	0.1	0.1	10/19/22 0:00	emk
pH measured at		1	21.3			С	0.1	0.1	10/19/22 0:00	emk
Residue, Filterable (TDS) @180C	SM2540C	1	72		*	mg/L	20	40	10/13/22 16:49) svm
Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	C 1	20.4		*	mg/L	1	5	10/22/22 19:22	2 gkk

REPIN.02.06.05.01

Project ID: Sample ID: RM3

Inorganic Analytical Results

ACZ Sample ID:	L76594-06
Date Sampled:	10/10/22 13:27
Date Received:	10/12/22
Sample Matrix:	Surface Water

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Cyanide, total	M335.4 - Manual Distillation								10/18/22 12:08	wgm
Lab Filtration (0.45um) & Acidification	M200.7/200.8/3005A								10/14/22 13:37	kja
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Aluminum, dissolved	M200.7 ICP	1	<0.05	U		mg/L	0.05	0.25	10/26/22 18:54	wtc
Antimony, dissolved	M200.8 ICP-MS	1	< 0.0004	U		mg/L	0.0004	0.002	10/19/22 21:19	kja
Arsenic, dissolved	M200.8 ICP-MS	1	0.00094	В		mg/L	0.0002	0.001	10/19/22 21:19	kja
Barium, dissolved	M200.7 ICP	1	0.0098	В		mg/L	0.009	0.035	10/27/22 14:25	wtc
Beryllium, dissolved	M200.8 ICP-MS	1	<0.00008	U		mg/L	0.00008	0.00025	10/20/22 13:51	kja
Cadmium, dissolved	M200.8 ICP-MS	1	0.000151	В		mg/L	0.00005	0.00025	10/19/22 21:19	kja
Calcium, dissolved	M200.7 ICP	1	16.2			mg/L	0.1	0.5	10/26/22 18:54	wtc
Chromium, dissolved	M200.8 ICP-MS	1	<0.0005	U		mg/L	0.0005	0.002	10/19/22 21:19	kja
Cobalt, dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	10/26/22 18:54	wtc
Copper, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	10/26/22 18:54	wtc
Iron, dissolved	M200.7 ICP	1	<0.06	U		mg/L	0.06	0.15	10/26/22 18:54	wtc
Lead, dissolved	M200.8 ICP-MS	1	0.00011	В		mg/L	0.0001	0.0005	10/19/22 21:19	kja
Magnesium, dissolved	M200.7 ICP	1	5.41			mg/L	0.2	1	10/26/22 18:54	wtc
Manganese, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	10/26/22 18:54	wtc
Mercury, total	M245.1 CVAA	1	<0.0002	U		mg/L	0.0002	0.001	10/18/22 14:52	mlh
Nickel, dissolved	M200.7 ICP	1	<0.008	U		mg/L	0.008	0.04	10/26/22 18:54	wtc
Potassium, dissolved	M200.7 ICP	1	0.87	В		mg/L	0.2	1	10/26/22 18:54	wtc
Sodium, dissolved	M200.7 ICP	1	2.02			mg/L	0.2	1	10/26/22 18:54	wtc
Vanadium, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.025	10/27/22 14:25	wtc
Zinc, dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	10/26/22 18:54	wtc

Project ID: Sample ID: RM3

Inorganic Analytical Results

ACZ Sample ID: **L76594-06** Date Sampled: 10/10/22 13:27 Date Received: 10/12/22 Sample Matrix: Surface Water

Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as CaCO3		1	64.4			mg/L	2	20	10/19/22 0:00	emk
Carbonate as CaCO3		1	<2	U		mg/L	2	20	10/19/22 0:00	emk
Hydroxide as CaCO3		1	<2	U		mg/L	2	20	10/19/22 0:00	emk
Total Alkalinity		1	64.4			mg/L	2	20	10/19/22 0:00	emk
Cation-Anion Balance	Calculation									
Cation-Anion Balance			-3.4			%			10/31/22 0:00	calc
Sum of Anions			1.5			meq/L			10/31/22 0:00	calc
Sum of Cations			1.4			meq/L			10/31/22 0:00	calc
Chloride	SM4500CI-E	1	<1	U	*	mg/L	1	2	10/22/22 11:39) gkk
Conductivity @25C	SM2510B	1	147			umhos/cm	1	10	10/19/22 10:35	5 emk
Cyanide, total	M335.4 - Colorimetric w/ distillation	0.5	<0.003	U	*	mg/L	0.003	0.01	10/18/22 16:46	bls
Hardness as CaCO3 (dissolved)	SM2340B - Calculation		63			mg/L	0.2	5	10/31/22 0:00	calc
Lab Filtration (0.45um filter)	SOPWC050	1							10/21/22 8:18	mlh
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2		0.389	н		mg/L	0.02	0.1	10/31/22 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	0.389	Н	*	mg/L	0.02	0.1	10/14/22 22:38	B pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	<0.01	UH	*	mg/L	0.01	0.05	10/14/22 22:38	B pjb
pH (lab)	SM4500H+ B									
рН		1	6.7	н		units	0.1	0.1	10/19/22 0:00	emk
pH measured at		1	22.0			С	0.1	0.1	10/19/22 0:00	emk
Residue, Filterable (TDS) @180C	SM2540C	1	76		*	mg/L	20	40	10/13/22 16:51	svm
Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	^C 1	8.5		*	mg/L	1	5	10/22/22 19:22	2 gkk

Project ID: Sample ID: CM1

Inorganic Analytical Results

ACZ Sample ID:	L76594-07
Date Sampled:	10/10/22 13:29
Date Received:	10/12/22
Sample Matrix:	Surface Water

Inorganic Prep									
Parameter	EPA Method	Dilution	Result	Qual X	Q Units	MDL	PQL	Date	Analyst
Cyanide, total	M335.4 - Manual Distillation							10/18/22 12:20	wgm
Lab Filtration (0.45um) & Acidification	M200.7/200.8/3005A							10/14/22 13:37	kja
Metals Analysis									
Parameter	EPA Method	Dilution	Result	Qual X	Q Units	MDL	PQL	Date	Analyst
Aluminum, dissolved	M200.7 ICP	1	<0.05	U	mg/L	0.05	0.25	10/26/22 18:57	wtc
Antimony, dissolved	M200.8 ICP-MS	1	<0.0004	U	mg/L	0.0004	0.002	10/19/22 21:21	kja
Arsenic, dissolved	M200.8 ICP-MS	1	0.00092	В	mg/L	0.0002	0.001	10/19/22 21:21	kja
Barium, dissolved	M200.7 ICP	1	0.0102	В	mg/L	0.009	0.035	10/27/22 14:28	wtc
Beryllium, dissolved	M200.8 ICP-MS	1	<0.00008	U	mg/L	0.00008	0.00025	10/20/22 13:52	kja
Cadmium, dissolved	M200.8 ICP-MS	1	0.000138	В	mg/L	0.00005	0.00025	10/19/22 21:21	kja
Calcium, dissolved	M200.7 ICP	1	16.5		mg/L	0.1	0.5	10/26/22 18:57	wtc
Chromium, dissolved	M200.8 ICP-MS	1	<0.0005	U	mg/L	0.0005	0.002	10/19/22 21:21	kja
Cobalt, dissolved	M200.7 ICP	1	<0.02	U	mg/L	0.02	0.05	10/26/22 18:57	wtc
Copper, dissolved	M200.7 ICP	1	<0.01	U	mg/L	0.01	0.05	10/26/22 18:57	wtc
Iron, dissolved	M200.7 ICP	1	<0.06	U	mg/L	0.06	0.15	10/26/22 18:57	wtc
Lead, dissolved	M200.8 ICP-MS	1	0.00011	В	mg/L	0.0001	0.0005	10/19/22 21:21	kja
Magnesium, dissolved	M200.7 ICP	1	5.53		mg/L	0.2	1	10/26/22 18:57	wtc
Manganese, dissolved	M200.7 ICP	1	<0.01	U	mg/L	0.01	0.05	10/26/22 18:57	wtc
Mercury, total	M245.1 CVAA	1	<0.0002	U	mg/L	0.0002	0.001	10/18/22 14:53	mlh
Nickel, dissolved	M200.7 ICP	1	<0.008	U	mg/L	0.008	0.04	10/26/22 18:57	wtc
Potassium, dissolved	M200.7 ICP	1	0.88	В	mg/L	0.2	1	10/26/22 18:57	wtc
Sodium, dissolved	M200.7 ICP	1	1.98		mg/L	0.2	1	10/26/22 18:57	wtc
Vanadium, dissolved	M200.7 ICP	1	<0.01	U	mg/L	0.01	0.025	10/27/22 14:28	wtc
Zinc, dissolved	M200.7 ICP	1	<0.02	U	mg/L	0.02	0.05	10/26/22 18:57	wtc

Project ID: Sample ID: CM1

Inorganic Analytical Results

ACZ Sample ID: L76594-07 Date Sampled: 10/10/22 13:29 Date Received: 10/12/22 Sample Matrix: Surface Water

Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as CaCO3		1	66.3			mg/L	2	20	10/19/22 0:00	emk
Carbonate as CaCO3		1	<2	U		mg/L	2	20	10/19/22 0:00	emk
Hydroxide as CaCO3		1	<2	U		mg/L	2	20	10/19/22 0:00	emk
Total Alkalinity		1	66.3			mg/L	2	20	10/19/22 0:00	emk
Cation-Anion Balance	Calculation									
Cation-Anion Balance			-3.4			%			10/31/22 0:00	calc
Sum of Anions			1.5			meq/L			10/31/22 0:00	calc
Sum of Cations			1.4			meq/L			10/31/22 0:00	calc
Chloride	SM4500CI-E	1	<1	U	*	mg/L	1	2	10/22/22 11:40) gkk
Conductivity @25C	SM2510B	1	150			umhos/cm	1	10	10/19/22 10:42	emk 2
Cyanide, total	M335.4 - Colorimetric w/ distillation	0.5	<0.003	U	*	mg/L	0.003	0.01	10/18/22 16:48	bls
Hardness as CaCO3 (dissolved)	SM2340B - Calculation		64.0			mg/L	0.2	5	10/31/22 0:00	calc
Lab Filtration (0.45um filter)	SOPWC050	1							10/21/22 8:20	mlh
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2		0.412	Н		mg/L	0.02	0.1	10/31/22 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	0.412	Н	*	mg/L	0.02	0.1	10/14/22 22:40) pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	<0.01	UH	*	mg/L	0.01	0.05	10/14/22 22:40) pjb
pH (lab)	SM4500H+ B									
рН		1	6.9	Н		units	0.1	0.1	10/19/22 0:00	emk
pH measured at		1	22.2			С	0.1	0.1	10/19/22 0:00	emk
Residue, Filterable (TDS) @180C	SM2540C	1	80		*	mg/L	20	40	10/13/22 16:54	svm
Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	C 1	9.0		*	mg/L	1	5	10/22/22 19:22	2 gkk

REPIN.02.06.05.01

Project ID: Sample ID: CM2

Inorganic Analytical Results

ACZ Sample ID:	L76594-08
Date Sampled:	10/10/22 13:54
Date Received:	10/12/22
Sample Matrix:	Surface Water

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Cyanide, total	M335.4 - Manual Distillation								10/18/22 12:45	wgm
Lab Filtration (0.45um) & Acidification	M200.7/200.8/3005A								10/14/22 13:37	kja
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Aluminum, dissolved	M200.7 ICP	1	<0.05	U		mg/L	0.05	0.25	10/27/22 23:39	wtc
Antimony, dissolved	M200.8 ICP-MS	1	<0.0004	U		mg/L	0.0004	0.002	10/19/22 21:22	kja
Arsenic, dissolved	M200.8 ICP-MS	1	0.00225			mg/L	0.0002	0.001	10/19/22 21:22	kja
Barium, dissolved	M200.7 ICP	1	0.0121	В		mg/L	0.009	0.035	10/28/22 22:02	keh1
Beryllium, dissolved	M200.8 ICP-MS	1	<0.00008	U		mg/L	0.00008	0.00025	10/20/22 13:54	kja
Cadmium, dissolved	M200.8 ICP-MS	1	0.000068	В		mg/L	0.00005	0.00025	10/19/22 21:22	kja
Calcium, dissolved	M200.7 ICP	1	17.6			mg/L	0.1	0.5	10/27/22 23:39	wtc
Chromium, dissolved	M200.8 ICP-MS	1	<0.0005	U		mg/L	0.0005	0.002	10/19/22 21:22	kja
Cobalt, dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	10/27/22 23:39	wtc
Copper, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	10/27/22 23:39	wtc
Iron, dissolved	M200.7 ICP	1	<0.06	U		mg/L	0.06	0.15	10/27/22 23:39	wtc
Lead, dissolved	M200.8 ICP-MS	1	<0.0001	U		mg/L	0.0001	0.0005	10/19/22 21:22	kja
Magnesium, dissolved	M200.7 ICP	1	3.51			mg/L	0.2	1	10/27/22 23:39	wtc
Manganese, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	10/27/22 23:39	wtc
Mercury, total	M245.1 CVAA	1	<0.0002	U		mg/L	0.0002	0.001	10/18/22 14:54	mlh
Nickel, dissolved	M200.7 ICP	1	<0.008	U		mg/L	0.008	0.04	10/28/22 22:02	keh1
Potassium, dissolved	M200.7 ICP	1	0.63	В		mg/L	0.2	1	10/27/22 23:39	wtc
Sodium, dissolved	M200.7 ICP	1	6.21			mg/L	0.2	1	10/27/22 23:39	wtc
Vanadium, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.025	10/28/22 22:02	keh1
Zinc, dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	10/27/22 23:39	wtc

Project ID: Sample ID: CM2

Inorganic Analytical Results

ACZ Sample ID: **L76594-08** Date Sampled: 10/10/22 13:54 Date Received: 10/12/22 Sample Matrix: Surface Water

Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as CaCO3		1	56.6			mg/L	2	20	10/19/22 0:00	emk
Carbonate as CaCO3		1	<2	U		mg/L	2	20	10/19/22 0:00	emk
Hydroxide as CaCO3		1	<2	U		mg/L	2	20	10/19/22 0:00	emk
Total Alkalinity		1	56.6			mg/L	2	20	10/19/22 0:00	emk
Cation-Anion Balance	Calculation									
Cation-Anion Balance			0.0			%			10/31/22 0:00	calc
Sum of Anions			1.5			meq/L			10/31/22 0:00	calc
Sum of Cations			1.5			meq/L			10/31/22 0:00	calc
Chloride	SM4500CI-E	1	<1	U	*	mg/L	1	2	10/22/22 11:40) gkk
Conductivity @25C	SM2510B	1	150			umhos/cm	1	10	10/19/22 10:49	emk
Cyanide, total	M335.4 - Colorimetric w/ distillation	0.5	<0.003	U	*	mg/L	0.003	0.01	10/18/22 16:50) bls
Hardness as CaCO3 (dissolved)	SM2340B - Calculation		58			mg/L	0.2	5	10/31/22 0:00	calc
Lab Filtration (0.45um filter)	SOPWC050	1							10/21/22 8:22	mlh
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2		0.085	BH		mg/L	0.02	0.1	10/31/22 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	0.085	BH	*	mg/L	0.02	0.1	10/14/22 22:41	pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	<0.01	UH	*	mg/L	0.01	0.05	10/14/22 22:41	pjb
pH (lab)	SM4500H+ B									
рН		1	6.9	н		units	0.1	0.1	10/19/22 0:00	emk
pH measured at		1	22.0			С	0.1	0.1	10/19/22 0:00	emk
Residue, Filterable (TDS) @180C	SM2540C	1	86		*	mg/L	20	40	10/13/22 16:57	svm
Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	^C 1	14.8		*	mg/L	1	5	10/22/22 19:22	2 gkk

Project ID: Sample ID: CM3

Inorganic Analytical Results

ACZ Sample ID: **L76594-09** Date Sampled: 10/10/22 14:04 Date Received: 10/12/22 Sample Matrix: Surface Water

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ L	Jnits	MDL	PQL	Date	Analyst
Cyanide, total	M335.4 - Manual Distillation								10/18/22 12:58	wgm
Lab Filtration (0.45um) & Acidification	M200.7/200.8/3005A								10/14/22 13:37	kja
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	χα ι	Jnits	MDL	PQL	Date	Analyst
Aluminum, dissolved	M200.7 ICP	1	<0.05	U	n	ng/L	0.05	0.25	10/27/22 23:42	wtc
Antimony, dissolved	M200.8 ICP-MS	1	<0.0004	U	n	ng/L	0.0004	0.002	10/19/22 21:24	kja
Arsenic, dissolved	M200.8 ICP-MS	1	0.00109		n	ng/L	0.0002	0.001	10/19/22 21:24	kja
Barium, dissolved	M200.7 ICP	1	0.0139	В	n	ng/L	0.009	0.035	10/28/22 22:05	keh1
Beryllium, dissolved	M200.8 ICP-MS	1	<0.00008	U	n	ng/L	0.00008	0.00025	10/20/22 13:56	kja
Cadmium, dissolved	M200.8 ICP-MS	1	0.000143	В	n	ng/L	0.00005	0.00025	10/19/22 21:24	kja
Calcium, dissolved	M200.7 ICP	1	17.7		n	ng/L	0.1	0.5	10/27/22 23:42	wtc
Chromium, dissolved	M200.8 ICP-MS	1	<0.0005	U	n	ng/L	0.0005	0.002	10/19/22 21:24	kja
Cobalt, dissolved	M200.7 ICP	1	<0.02	U	n	ng/L	0.02	0.05	10/27/22 23:42	wtc
Copper, dissolved	M200.7 ICP	1	<0.01	U	n	ng/L	0.01	0.05	10/27/22 23:42	wtc
Iron, dissolved	M200.7 ICP	1	<0.06	U	n	ng/L	0.06	0.15	10/27/22 23:42	wtc
Lead, dissolved	M200.8 ICP-MS	1	<0.0001	U	n	ng/L	0.0001	0.0005	10/19/22 21:24	kja
Magnesium, dissolved	M200.7 ICP	1	5.72		n	ng/L	0.2	1	10/27/22 23:42	wtc
Manganese, dissolved	M200.7 ICP	1	<0.01	U	n	ng/L	0.01	0.05	10/27/22 23:42	wtc
Mercury, total	M245.1 CVAA	1	<0.0002	U	n	ng/L	0.0002	0.001	10/18/22 14:55	mlh
Nickel, dissolved	M200.7 ICP	1	<0.008	U	n	ng/L	0.008	0.04	10/28/22 22:05	keh1
Potassium, dissolved	M200.7 ICP	1	0.78	В	n	ng/L	0.2	1	10/27/22 23:42	wtc
Sodium, dissolved	M200.7 ICP	1	2.44		n	ng/L	0.2	1	10/27/22 23:42	wtc
Vanadium, dissolved	M200.7 ICP	1	<0.01	U	n	ng/L	0.01	0.025	10/28/22 22:05	keh1
Zinc. dissolved	M200.7 ICP	1	<0.02	U	n	na/L	0.02	0.05	10/27/22 23:42	wtc

Project ID: Sample ID: CM3

Inorganic Analytical Results

ACZ Sample ID: **L76594-09** Date Sampled: 10/10/22 14:04 Date Received: 10/12/22 Sample Matrix: Surface Water

Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as CaCO3		1	63.1			mg/L	2	20	10/19/22 0:00	emk
Carbonate as CaCO3		1	<2	U		mg/L	2	20	10/19/22 0:00	emk
Hydroxide as CaCO3		1	<2	U		mg/L	2	20	10/19/22 0:00	emk
Total Alkalinity		1	63.1			mg/L	2	20	10/19/22 0:00	emk
Cation-Anion Balance	Calculation									
Cation-Anion Balance			0.0			%			10/31/22 0:00	calc
Sum of Anions			1.5			meq/L			10/31/22 0:00	calc
Sum of Cations			1.5			meq/L			10/31/22 0:00	calc
Chloride	SM4500CI-E	1	<1	U	*	mg/L	1	2	10/22/22 11:40) gkk
Conductivity @25C	SM2510B	1	151			umhos/cm	1	10	10/19/22 10:57	' emk
Cyanide, total	M335.4 - Colorimetric w/ distillation	0.5	<0.003	U	*	mg/L	0.003	0.01	10/18/22 16:51	bls
Hardness as CaCO3 (dissolved)	SM2340B - Calculation		68			mg/L	0.2	5	10/31/22 0:00	calc
Lab Filtration (0.45um filter)	SOPWC050	1							10/21/22 8:24	mlh
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2		0.359	Н		mg/L	0.02	0.1	10/31/22 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	0.359	Н	*	mg/L	0.02	0.1	10/14/22 22:42	ż pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	<0.01	UH	*	mg/L	0.01	0.05	10/14/22 22:42	ż pjb
pH (lab)	SM4500H+ B									
рН		1	6.9	Н		units	0.1	0.1	10/19/22 0:00	emk
pH measured at		1	22.1			С	0.1	0.1	10/19/22 0:00	emk
Residue, Filterable (TDS) @180C	SM2540C	1	80		*	mg/L	20	40	10/13/22 16:59	svm
Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	C 1	9.5		*	mg/L	1	5	10/22/22 19:23	d gkk

Inorganic Reference

Report Header	Explanations									
Batch	A distinct set of samples analyzed at a specific time									
Found	Value of the QC Type of interest									
Limit	Upper limit for RPD, in %.									
Lower	Lower Recovery Limit, in % (except for LCSS, mg/Kg)									
MDL	Method Detection Limit Same as Minimum Reporting Limit unless omitted or equal to the POL (see comment #5)									
	Allows for instrument and annual fluctuations.									
PCN/SCN	N/SCN A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis									
PQI	D/ Practical Quantitation Limit Synonymous with the EPA term "minimum level"									
00	True Value of the Control Sample or the amount added to the S	Spike								
Rec	Recovered amount of the true value or spike added in % (exce	ept for LCSS_mg/	Ka)							
RPD	Relative Percent Difference, calculation used for Duplicate QC	Types								
Unner	Upper Recovery Limit in % (except for LCSS_mg/Kg)	1,900								
Sample	Value of the Sample of interest									
Gample	value of the bample of interest									
QC Sample Typ	Des									
AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate							
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank							
ССВ	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix							
CCV	Continuing Calibration Verification standard	LFMD	Laboratory Fortified Matrix Duplicate							
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank							
ICB	Initial Calibration Blank	MS	Matrix Spike							
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate							
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil							
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water							
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard							
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution							
QC Sample Typ	be Explanations									
Blanks	Verifies that there is no or minimal co	ntamination in the	prep method or calibration procedure.							
Control San	nples Verifies the accuracy of the method, i	ncluding the prep	procedure.							
Duplicates	Verifies the precision of the instrumer	nt and/or method.								
Spikes/Forti	ified Matrix Determines sample matrix interference	ces, if any.								
Standard	Verifies the validity of the calibration.									
ACZ Qualifiors										
	Analyte concentration detected at a value between MDL and R		ad value is an estimated quantity							
ы	Analysis exceeded method hold time. pH is a field test with an	immodiate hold ti								
11	Target analyte response was below the laboratory defined nor	ativo throshold								
	The meterial was applyized for but was not detected above the	alive intestiolo.	pieted volue							
0	The appropriated value is either the sample quantitation limit or the	he comple detecti								
	The associated value is either the sample quantitation limit of th	ne sample delecti								
Method Refere	nces									
(1)	EPA 600/4-83-020. Methods for Chemical Analysis of Water a	nd Wastes, March	1983.							
(2)	EPA 600/R-93-100. Methods for the Determination of Inorgani	c Substances in E	nvironmental Samples, August 1993.							
(3)	EPA 600/R-94-111. Methods for the Determination of Metals ir	n Environmental S	amples - Supplement I, May 1994.							
(4)	EPA SW-846. Test Methods for Evaluating Solid Waste.									
(5)	Standard Methods for the Examination of Water and Wastewat	ter.								
Comments										
(1)	QC results calculated from raw data. Results may vary slightly	if the rounded va	lues are used in the calculations.							
(2) Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.										
(3)	Animal matrices for Inorganic analyses are reported on an "as	received" basis.								
(4)	An asterisk in the "XQ" column indicates there is an extended of	qualifier and/or cei	tification qualifier							
	associated with the result.									
(5)	If the MDL equals the PQL or the MDL column is omitted, the F	PQL is the reportin	g limit.							

https://acz.com/wp-content/uploads/2019/04/Ext-Qual-List.pdf

REP001.03.15.02

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

CRG

ACZ Project ID: L76594

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Alkalinity as CaC	03		SM23208	3 - Titration									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG553058													
WG553058PBW1	PBW	10/18/22 20:14				4.5	mg/L		-20	20			
WG553058LCSW3	LCSW	10/18/22 20:33	WC221018-7	820.0001		754.2	mg/L	92	90	110			
WG553058LCSW6	LCSW	10/19/22 0:03	WC221018-7	820.0001		769	mg/L	94	90	110			
WG553058PBW2	PBW	10/19/22 0:11				10	mg/L		-20	20			
WG553058LCSW9	LCSW	10/19/22 3:41	WC221018-7	820.0001		767.9	mg/L	94	90	110			
WG553058PBW3	PBW	10/19/22 3:49				8.6	mg/L		-20	20			
WG553058LCSW12	LCSW	10/19/22 6:53	WC221018-7	820.0001		773.1	mg/L	94	90	110			
WG553058PBW4	PBW	10/19/22 7:02				10.3	mg/L		-20	20			
L76594-05DUP	DUP	10/19/22 10:00			45.2	43.9	mg/L				3	20	
WG553058LCSW15	LCSW	10/19/22 10:20	WC221018-7	820.0001		782.6	mg/L	95	90	110			
WG553058PBW5	PBW	10/19/22 10:28				9.6	mg/L		-20	20			
L76605-02DUP	DUP	10/19/22 11:51			76.2	90.7	mg/L				17	20	
WG553058LCSW18	LCSW	10/19/22 12:10	WC221018-7	820.0001		769.7	mg/L	94	90	110			
Aluminum, disso	lved		M200.7 I	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG553689													
WG553689ICV	ICV	10/26/22 17:12	II221025-1	2		2.002	mg/L	100	95	105			
WG553689ICB	ICB	10/26/22 17:18				U	mg/L		-0.15	0.15			
WG553689LFB	LFB	10/26/22 17:30	II221013-2	1.0008		.95	mg/L	95	85	115			
L76594-01AS	AS	10/26/22 18:29	II221013-2	1.0008	U	.918	mg/L	92	85	115			
L76594-01ASD	ASD	10/26/22 18:32	II221013-2	1.0008	U	.99	mg/L	99	85	115	8	20	
WG553747													
WG553747ICV	ICV	10/27/22 22:17	II221025-1	2		1.998	mg/L	100	95	105			
WG553747ICB	ICB	10/27/22 22:23				U	mg/L		-0.15	0.15			
WG553747LFB	LFB	10/27/22 22:36	II221013-2	1.0008		1.009	mg/L	101	85	115			
L76596-02AS	AS	10/27/22 23:58	II221013-2	1.0008	U	1.09	mg/L	109	85	115			
L76596-02ASD	ASD	10/28/22 0:01	II221013-2	1.0008	U	.992	mg/L	99	85	115	9	20	
Antimony, dissol	ved		M200.8 I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG553167													
WG553167ICV	ICV	10/19/22 20:57	MS220930-3	.0201		.01933	mg/L	96	90	110			
WG553167ICB	ICB	10/19/22 20:59				U	mg/L		-0.00088	0.00088			
WG553167LFB	LFB	10/19/22 21:01	MS221012-7	.01		.00969	mg/L	97	85	115			
L76594-04AS	AS	10/19/22 21:10	MS221012-7	.01	U	.0094	mg/L	94	70	130			
L76594-04ASD	ASD	10/19/22 21:11	MS221012-7	.01	U	.00944	mg/L	94	70	130	0	20	
Arsenic, dissolve	d		M200.8 I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG553167													
WG553167ICV	ICV	10/19/22 20:57	MS220930-3	.05		.05046	mg/L	101	90	110			
WG553167ICB	ICB	10/19/22 20:59				U	mg/L		-0.00044	0.00044			
WG553167LFB	LFB	10/19/22 21:01	MS221012-7	.05005		.04971	mg/L	99	85	115			
L76594-04AS	AS	10/19/22 21:10	MS221012-7	.05005	U	.05346	mg/L	107	70	130			
L76594-04ASD	ASD	10/19/22 21:11	MS221012-7	.05005	U	.05389	mg/L	108	70	130	1	20	

4C 2773 Downhill Drive Steamboat Springs, CO 80487 ((800) 334-5493

Inorganic QC Summary

CRG

ACZ Project ID: L76594

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Barium, dissolve	d		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG553728													
WG553728ICV	ICV	10/27/22 12:45	II221025-1	2		2.0225	mg/L	101	95	105			
WG553728ICB	ICB	10/27/22 12:51				U	mg/L		-0.027	0.027			
WG553728LFB	LFB	10/27/22 13:03	II221013-2	.502		.5025	mg/L	100	85	115			
L76594-01AS	AS	10/27/22 14:00	II221013-2	.502	.0103	.5332	mg/L	104	85	115			
L76594-01ASD	ASD	10/27/22 14:03	II221013-2	.502	.0103	.516	mg/L	101	85	115	3	20	
WG553834													
WG553834ICV	ICV	10/28/22 20:46	II221025-1	2		1.962	mg/L	98	95	105			
WG553834ICB	ICB	10/28/22 20:52				U	mg/L		-0.027	0.027			
WG553834LFB	LFB	10/28/22 21:04	II221026-6	.502		.502	mg/L	100	85	115			
L76596-02AS	AS	10/28/22 22:21	II221026-6	.502	.0268	.5372	mg/L	102	85	115			
L76596-02ASD	ASD	10/28/22 22:24	II221026-6	.502	.0268	.5288	mg/L	100	85	115	2	20	
Beryllium, disso	lved		M200.8 I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG553237													
WG553237ICV	ICV	10/20/22 13:29	MS220930-3	.05		.050412	mg/L	101	90	110			
WG553237ICB	ICB	10/20/22 13:31				U	mg/L		-0.000176	0.000176			
WG553237LFB	LFB	10/20/22 13:33	MS221012-7	.05005		.050512	mg/L	101	85	115			
L76594-04AS	AS	10/20/22 13:42	MS221012-7	.05005	U	.053419	mg/L	107	70	130			
L76594-04ASD	ASD	10/20/22 13:43	MS221012-7	.05005	U	.053786	mg/L	107	70	130	1	20	
	lvod		M200.81	CP-MS									
Cadmium, disso	iveu		101200.01										
Cadmium, disso ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
Cadmium, disso ACZ ID WG553167	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
Cadmium, disso ACZ ID WG553167 WG553167ICV	Type	Analyzed	PCN/SCN MS220930-3	QC .05	Sample	Found	Units mg/L	Rec%	Lower 90	Upper 110	RPD	Limit	Qual
Cadmium, disso ACZ ID WG553167 WG553167ICV WG553167ICB	Type ICV ICB	Analyzed 10/19/22 20:57 10/19/22 20:59	M200.01 PCN/SCN MS220930-3	QC .05	Sample	Found .05051 U	Units mg/L mg/L	Rec%	Lower 90 -0.00011	Upper 110 0.00011	RPD	Limit	Qual
Cadmium, disso ACZ ID WG553167 WG553167ICV WG553167ICB WG553167LFB	Type ICV ICB LFB	Analyzed 10/19/22 20:57 10/19/22 20:59 10/19/22 21:01	M220031 PCN/SCN MS220930-3 MS221012-7	QC .05 .05005	Sample	Found .05051 U .048978	Units mg/L mg/L mg/L	Rec% 101 98	90 -0.00011 85	Upper 110 0.00011 115	RPD	Limit	Qual
Cadmium, disso ACZ ID WG553167 WG553167ICV WG553167ICB WG553167ICB L76594-04AS	Type ICV ICB LFB AS	Analyzed 10/19/22 20:57 10/19/22 20:59 10/19/22 21:01 10/19/22 21:10	M2200.01 PCN/SCN MS220930-3 MS221012-7 MS221012-7	QC .05 .05005 .05005	Sample .000122	Found .05051 U .048978 .053256	Units mg/L mg/L mg/L mg/L	Rec% 101 98 106	90 -0.00011 85 70	Upper 110 0.00011 115 130	RPD	Limit	Qual
Cadmium, disso ACZ ID WG553167 WG553167ICV WG553167ICB WG553167LFB L76594-04AS L76594-04ASD	Type ICV ICB LFB AS ASD	Analyzed 10/19/22 20:57 10/19/22 20:59 10/19/22 21:01 10/19/22 21:10 10/19/22 21:11	M2200.01 PCN/SCN MS220930-3 MS221012-7 MS221012-7 MS221012-7	QC .05 .05005 .05005 .05005	Sample .000122 .000122	Found .05051 U .048978 .053256 .052656	Units mg/L mg/L mg/L mg/L	Rec%	Lower 90 -0.00011 85 70 70 70	Upper 110 0.00011 115 130 130	RPD 1	Limit 20	Qual
Cadmium, disso ACZ ID WG553167 WG553167ICV WG553167ICB WG553167ICB U76594-04AS L76594-04AS Calcium, dissolv	Type ICV ICB LFB AS ASD	Analyzed 10/19/22 20:57 10/19/22 20:59 10/19/22 21:01 10/19/22 21:10 10/19/22 21:11	M2200.01 PCN/SCN MS220930-3 MS221012-7 MS221012-7 MS221012-7 MS221012-7	QC .05 .05005 .05005 .05005 CP	Sample .000122 .000122	Found .05051 U .048978 .053256 .052656	Units mg/L mg/L mg/L mg/L	Rec%	90 -0.00011 85 70 70	Upper 110 0.00011 115 130 130	RPD 1	Limit 20	Qual
Cadmium, disso ACZ ID WG553167 WG553167ICV WG553167ICB WG553167ICB UG553167LFB L76594-04AS L76594-04AS Calcium, dissolv ACZ ID	Type ICV ICB LFB AS ASD red	Analyzed 10/19/22 20:57 10/19/22 20:59 10/19/22 21:01 10/19/22 21:10 10/19/22 21:11 Analyzed	M200.01 PCN/SCN MS220930-3 MS221012-7 MS221012-7 MS221012-7 M200.7 I PCN/SCN	QC .05 .05005 .05005 .05005 CP QC	Sample .000122 .000122 Sample	Found .05051 U .048978 .053256 .052656	Units mg/L mg/L mg/L mg/L Units	Rec%	Lower 90 -0.00011 85 70 70 20	Upper 110 0.00011 115 130 130 Upper	RPD 1	Limit	Qual
Cadmium, disso ACZ ID WG553167 WG553167ICV WG553167ICB WG553167LFB L76594-04AS L76594-04ASD Calcium, dissolv ACZ ID WG553689	Type ICV ICB LFB AS ASD red Type	Analyzed 10/19/22 20:57 10/19/22 20:59 10/19/22 21:01 10/19/22 21:10 10/19/22 21:11 Analyzed	M2200.01 PCN/SCN MS220930-3 MS221012-7 MS221012-7 MS221012-7 MS221012-7 PCN/SCN	QC .05 .05005 .05005 .05005 CP QC	Sample .000122 .000122 Sample	Found .05051 U .048978 .053256 .052656	Units mg/L mg/L mg/L mg/L Units	Rec%	Lower 90 -0.00011 85 70 70 20	Upper 110 0.00011 115 130 130 Upper	RPD 1 RPD	Limit 20 Limit	Qual
Cadmium, disso ACZ ID WG553167 WG553167ICV WG553167ICB WG553167LFB L76594-04AS L76594-04AS Calcium, dissolv ACZ ID WG553689 WG553689	Type ICV ICB LFB AS ASD red Type	Analyzed 10/19/22 20:57 10/19/22 20:59 10/19/22 21:01 10/19/22 21:10 10/19/22 21:11 Analyzed 10/26/22 17:12	M200.01 PCN/SCN MS220930-3 MS221012-7 MS221012-7 MS221012-7 M200.7 I PCN/SCN II221025-1	QC .05 .05005 .05005 .05005 CP QC 100	Sample .000122 .000122 Sample	Found .05051 U .048978 .053256 .052656 Found 98.66	Units mg/L mg/L mg/L Units	Rec% 101 98 106 105 Rec% 99	Lower 90 -0.00011 85 70 70 20 Lower	Upper 110 0.00011 115 130 130 Upper 105	RPD 1 RPD	Limit 20 Limit	Qual
Cadmium, disso ACZ ID WG553167 WG553167ICV WG553167ICB WG553167LFB L76594-04AS L76594-04ASD Calcium, dissolv ACZ ID WG553689 WG553689ICV WG553689ICV	ICV ICB LFB AS ASD ed Type ICV ICB	Analyzed 10/19/22 20:57 10/19/22 20:59 10/19/22 21:01 10/19/22 21:10 10/19/22 21:11 Analyzed 10/26/22 17:12 10/26/22 17:18	M2200.01 PCN/SCN MS220930-3 MS221012-7 MS221012-7 MS221012-7 M200.7 I PCN/SCN II221025-1	QC .05 .05005 .05005 .05005 CP QC 100	Sample .000122 .000122 Sample	Found .05051 U .048978 .053256 .052656 Found 98.66 U	Units mg/L mg/L mg/L Units mg/L mg/L	Rec% 101 98 106 105 Rec% 99	Lower 90 -0.00011 85 70 70 70 Lower 95 -0.3	Upper 110 0.00011 115 130 130 Upper 105 0.3	RPD 1 RPD	Limit 20 Limit	Qual
Cadmium, disso ACZ ID WG553167 WG553167ICV WG553167ICB WG553167LFB L76594-04AS L76594-04AS Calcium, dissolv ACZ ID WG553689 WG553689ICV WG553689ICB WG553689LFB	Type ICV ICB LFB AS ASD red Type ICV ICB LFB	Analyzed 10/19/22 20:57 10/19/22 20:59 10/19/22 21:01 10/19/22 21:10 10/19/22 21:11 Analyzed 10/26/22 17:12 10/26/22 17:18 10/26/22 17:30	M2200.01 PCN/SCN MS220930-3 MS221012-7 MS221012-7 MS221012-7 M200.7 I PCN/SCN II221025-1 II221013-2	QC .05 .05005 .05005 .05005 CP QC 100 67.98862	Sample .000122 .000122 Sample	Found .05051 U .048978 .053256 .052656 .052656 Found 98.66 U 67.36	Units mg/L mg/L mg/L Units Units	Rec% 101 98 106 105 Rec% 99 99	Lower 90 -0.00011 85 70 70 70 Lower 95 -0.3 85	Upper 110 0.00011 115 130 130 Upper 105 0.3 115	RPD 1 RPD	Limit 20 Limit	Qual
Cadmium, disso ACZ ID WG553167 WG553167ICV WG553167ICB WG553167LFB L76594-04AS L76594-04AS Calcium, dissolv ACZ ID WG553689 WG553689ICV WG553689ICB WG553689LFB L76594-01AS	Type ICV ICB LFB AS ASD ed Type ICV ICB LFB AS	Analyzed 10/19/22 20:57 10/19/22 20:59 10/19/22 21:01 10/19/22 21:10 10/19/22 21:11 Analyzed 10/26/22 17:12 10/26/22 17:18 10/26/22 17:30 10/26/22 18:29	M200.01 PCN/SCN MS220930-3 MS221012-7 MS221012-7 MS221012-7 MS221012-7 M200.7 I PCN/SCN II221025-1 II221013-2 II221013-2	QC .05 .05005 .05005 .05005 CP QC 100 67.98862 67.98862	Sample .000122 .000122 Sample	Found .05051 U .048978 .053256 .052656 .052656 Found 98.66 U 67.36 75.78	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Rec% 101 98 106 105 Rec% 99 99 94	Lower 90 -0.00011 85 70 70 70 Lower 95 -0.3 85 85	Upper 110 0.00011 115 130 130 Upper 105 0.3 115 115	RPD 1 RPD	Limit 20 Limit	Qual
Cadmium, disso ACZ ID WG553167 WG553167ICV WG553167ICB WG553167LFB L76594-04AS L76594-04ASD Calcium, dissolv ACZ ID WG553689ICV WG553689ICV WG553689ICB WG553689LFB L76594-01AS L76594-01ASD	ICV ICB LFB AS ASD ed Type ICV ICB LFB AS ASD	Analyzed 10/19/22 20:57 10/19/22 20:59 10/19/22 21:01 10/19/22 21:10 10/19/22 21:11 0/26/22 17:12 10/26/22 17:12 10/26/22 17:30 10/26/22 18:29 10/26/22 18:32	M2200.01 PCN/SCN MS220930-3 MS221012-7 MS221012-7 MS221012-7 MS221012-7 M200.7 I PCN/SCN II221025-1 II221013-2 II221013-2 II221013-2 II221013-2	QC .05 .05005 .05005 .05005 CP QC 100 67.98862 67.98862 67.98862	Sample .000122 .000122 Sample	Found .05051 U .048978 .053256 .052656 .052656 .052656 .052656 .052656 .052656 .052656 .052656 .052656 .052656 .052656 .052651 .05251 .05351 .05351 .05351 .05351 .05351 .05351 .053256 .053556 .053556 .053556 .053556 .053556 .053556 .053556 .053556 .053556 .053556 .053556 .053556 .053556 .053556 .053556 .053556 .053556 .053556 .053556 .053566 .055566 .055666 .055666 .055666 .055666 .055666 .055666 .055666 .055666 .055666 .055666 .0556666 .055666 .055666 .0556666 .0556666666666	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Rec% 101 98 106 105 Rec% 99 99 94 101	Lower 90 -0.00011 85 70 70 70 Lower 95 -0.3 85 85 85 85	Upper 110 0.00011 115 130 130 Upper 105 0.3 115 115 115 115	RPD 1 RPD	Limit 20 Limit	Qual
Cadmium, disso ACZ ID WG553167 WG553167ICV WG553167ICB WG553167LFB L76594-04AS L76594-04AS Calcium, dissolv ACZ ID WG553689 WG553689ICV WG553689ICB WG553689LFB L76594-01AS L76594-01ASD WG553747	ICV ICB LFB AS ASD ed Type ICV ICB LFB AS ASD	Analyzed 10/19/22 20:57 10/19/22 20:59 10/19/22 21:01 10/19/22 21:10 10/19/22 21:11 Analyzed 10/26/22 17:12 10/26/22 17:18 10/26/22 17:30 10/26/22 18:29 10/26/22 18:32	PCN/SCN MS220930-3 MS221012-7 MS221012-7 MS221012-7 MS221012-7 M200.7 I PCN/SCN II221025-1 II221013-2 II221013-2 II221013-2 II221013-2	QC .05 .05005 .05005 .05005 CP QC 100 67.98862 67.98862 67.98862	Sample .000122 .000122 Sample 12.2 12.2	Found .05051 U .048978 .053256 .05266 .05266 .05666 .05666 .05666 .05666 .05666 .05666 .05666 .05666 .05666 .05666 .05666 .05666 .05666 .05666 .056666 .056666 .056666 .056666 .056666 .0566666 .0566666666 .056666666666	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Rec% 101 98 106 105 Rec% 99 99 94 101	Lower 90 -0.00011 85 70 70 20 20 20 20 20 20 20 20 20 2	Upper 110 0.00011 115 130 130 Upper 105 0.3 115 115 115 115	RPD 1 RPD	Limit 20 Limit 20	Qual
Cadmium, disso ACZ ID WG553167 WG553167ICV WG553167ICB WG553167LFB L76594-04AS L76594-04ASD Calcium, dissolv ACZ ID WG553689 WG553689ICV WG553689ICB WG553689LFB L76594-01AS L76594-01ASD WG553747 WG553747ICV	ICV ICB LFB AS ASD ed Type ICV ICB LFB AS ASD ICV	Analyzed 10/19/22 20:57 10/19/22 20:59 10/19/22 21:01 10/19/22 21:10 10/19/22 21:11 Analyzed 10/26/22 17:12 10/26/22 17:18 10/26/22 17:30 10/26/22 18:29 10/26/22 18:32 10/26/22 18:32	IN200.01 PCN/SCN MS220930-3 MS221012-7 MS221012-7 MS221012-7 MS221012-7 MS221012-7 II221012-7 II221025-1 II221013-2 II221013-2 II221013-2 II221025-1	QC .05 .05005 .05005 .05005 CP QC 100 67.98862 67.98862 67.98862 100	Sample .000122 .000122 Sample 12.2 12.2	Found .05051 U .048978 .053256 .052656 Found 98.66 U 67.36 75.78 81.18 99.63	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Rec% 101 98 106 105 Rec% 99 99 94 101 100	Lower 90 -0.00011 85 70 70 Lower 95 -0.3 85 85 85 85	Upper 110 0.00011 115 130 130 Upper 105 0.3 115 115 115 115 115 115	RPD 1 RPD	Limit 20 Limit 20	Qual
Cadmium, disso ACZ ID WG553167 WG553167ICV WG553167ICB WG553167LFB L76594-04AS L76594-04ASD Calcium, dissolv ACZ ID WG553689ICV WG553689ICV WG553689ICB WG553689LFB L76594-01AS L76594-01AS L76594-01ASD WG553747 WG553747ICV	ICV ICB LFB AS ASD ed Type ICV ICB LFB AS ASD ICV ICB	Analyzed 10/19/22 20:57 10/19/22 20:59 10/19/22 21:01 10/19/22 21:10 10/19/22 21:11 Analyzed 10/26/22 17:12 10/26/22 17:18 10/26/22 17:30 10/26/22 18:32 10/26/22 18:32 10/26/22 18:32	INIZO0.01 PCN/SCN MS220930-3 MS221012-7 MS221012-7 MS221012-7 MS221012-7 MS221012-7 II221025-1 II221013-2 II221013-2 II221025-1	QC .05 .05005 .05005 .05005 CP QC 100 67.98862 67.98862 67.98862 100	Sample .000122 .000122 Sample 12.2 12.2	Found .05051 U .048978 .053256 .052656 .052656 Found 98.66 U 67.36 75.78 81.18 99.63 U	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Rec% 101 98 106 105 Rec% 99 99 94 101 100	Lower 90 -0.00011 85 70 70 Lower 95 -0.3 85 85 85 85 85 95 -0.3	Upper 110 0.00011 115 130 130 Upper 105 0.3 115 115 115 115 115 105 0.3	RPD 1 RPD	Limit 20 Limit 20	Qual
Cadmium, disso ACZ ID WG553167 WG553167ICV WG553167ICB WG553167LFB L76594-04AS L76594-04ASD Calcium, dissolv ACZ ID WG553689ICV WG553689ICV WG553689ICB WG553689LFB L76594-01AS L76594-01AS L76594-01ASD WG553747ICV WG553747ICV WG553747ICB WG553747LFB	ICV ICB LFB AS ASD ed Type ICV ICB LFB AS ASD ICV ICB LFB	Analyzed 10/19/22 20:57 10/19/22 20:59 10/19/22 21:01 10/19/22 21:10 10/19/22 21:11 Analyzed 10/26/22 17:12 10/26/22 17:13 10/26/22 18:29 10/26/22 18:32 10/26/22 18:32 10/27/22 22:17 10/27/22 22:36	PCN/SCN MS220930-3 MS221012-7 MS221012-7 MS221012-7 MS221012-7 MS221012-7 MS221012-7 II221012-7 II221025-1 II221013-2 II221013-2 II221025-1 II221025-1 II221013-2 II221025-1 II221025-1	QC .05 .05005 .05005 .05005 CP QC 100 67.98862 67.98862 67.98862 100 67.98862	Sample .000122 .000122 Sample 12.2 12.2	Found .05051 U .048978 .053256 .052656 .052656 .052656 .0 .052656 .0 .052656 .0 .052656 .0 .052656 .0 .052656 .0 .052656 .0 .052656 .00 .052656 .00 .052656 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Rec% 101 98 106 105 Rec% 99 99 94 101 100 100	Lower 90 -0.00011 85 70 70 Lower 95 -0.3 85 85 85 95 -0.3 85 85 85 85 85 85 85 85 85 85	Upper 110 0.00011 115 130 130 Upper 105 0.3 115 115 115 115 115 115 115 11	RPD 1 RPD	Limit 20 Limit 20	Qual
Cadmium, disso AC2 ID WG553167 WG553167ICV WG553167ICB WG553167LFB L76594-04AS L76594-04ASD Calcium, dissolv AC2 ID WG553689ICV WG553689ICV WG553689ICB WG553689LFB L76594-01AS L76594-01AS L76594-01ASD WG553747ICV WG553747ICB WG553747LFB L76596-02AS	ICV ICB LFB AS ASD ICV ICB LFB AS ASD ICV ICB LFB AS	Analyzed 10/19/22 20:57 10/19/22 20:59 10/19/22 21:01 10/19/22 21:10 10/19/22 21:11 Analyzed 10/26/22 17:12 10/26/22 17:30 10/26/22 18:32 10/26/22 18:32 10/26/22 18:32 10/27/22 22:17 10/27/22 22:36 10/27/22 23:58	IN200.01 PCN/SCN MS220930-3 MS221012-7 MS221012-7 MS221012-7 MS221012-7 MS221012-7 MS221012-7 II221012-7 II221025-1 II221013-2 II221013-2 II221025-1 II221025-1 II221025-1 II221013-2 II221013-2 II221013-2 II221013-2 II221013-2	QC .05 .05005 .05005 .05005 CP QC 100 67.98862 67.98862 67.98862 100 67.98862 67.98862	Sample .000122 .000122 Sample 12.2 12.2 12.2	Found .05051 U .048978 .053256 .052656 .05666 .05666 .05666 .05666 .05766 .05666 .05766 .05666 .05766 .05666 .05766 .05666 .05666 .05766 .05666 .05666 .05666 .056666 .057666 .056666 .0576666 .0576666 .056666 .05766666 .057666666666666666666666666666666666666	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Rec% 101 98 106 105 Rec% 99 99 94 101 100 100 100 108	Lower 90 -0.00011 85 70 70 Lower 95 -0.3 85 85 85 85 85 85 85 85 85 85	Upper 110 0.00011 115 130 130 Upper 105 0.3 115 115 115 105 0.3 115 115 115 115 115 115 115 11	RPD 1 RPD	Limit 20 Limit	Qual

4C **AGZ** Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (

CRG

(800) 334-5493

ACZ Project ID: L76594

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Chloride			SM4500C	I-E									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG553378													
WG553378ICB	ICB	10/22/22 10:32				U	mg/L		-3	3			
WG553378ICV	ICV	10/22/22 10:32	WI220502-12	54.945		55.39	mg/L	101	90	110			
WG553378LFB	LFB	10/22/22 11:37	WI220328-1	29.97		30.7	mg/L	102	90	110			
L75995-02AS	AS	10/22/22 11:37	WI220328-1	29.97	14.3	46.08	mg/L	106	90	110			
L75995-03DUP	DUP	10/22/22 11:37			31.2	31.23	mg/L				0	20	
L76594-03AS	AS	10/22/22 11:39	WI220328-1	29.97	2.96	34.56	mg/L	105	90	110			
L76594-04DUP	DUP	10/22/22 11:39			U	U	mg/L				0	20	RA
Chromium, disso	lved		M200.8 IC	P-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG553167													
WG553167ICV	ICV	10/19/22 20:57	MS220930-3	.05		.05113	mg/L	102	90	110			
WG553167ICB	ICB	10/19/22 20:59				U	mg/L		-0.0011	0.0011			
WG553167LFB	LFB	10/19/22 21:01	MS221012-7	.0501		.04965	mg/L	99	85	115			
L76594-04AS	AS	10/19/22 21:10	MS221012-7	.0501	U	.05076	mg/L	101	70	130			
L76594-04ASD	ASD	10/19/22 21:11	MS221012-7	.0501	U	.05141	mg/L	103	70	130	1	20	
Cobalt, dissolved	1		M200.7 IC	P									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG553689													
WG553689ICV	ICV	10/26/22 17.12	II221025-1	2 006		2 001	ma/L	100	95	105			
WG553689ICB	ICB	10/26/22 17:18		2.000		U	mg/L		-0.06	0.06			
WG553689LFB	LFB	10/26/22 17:30	II221013-2	.5005		.476	mg/L	95	85	115			
L76594-01AS	AS	10/26/22 18:29	II221013-2	.5005	U	.48	mg/L	96	85	115			
L76594-01ASD	ASD	10/26/22 18:32	II221013-2	.5005	U	.467	mg/L	93	85	115	3	20	
WG553747													
WG553747ICV	ICV	10/27/22 22:17	II221025-1	2.006		1.967	mg/L	98	95	105			
WG553747ICB	ICB	10/27/22 22:23				U	mg/L		-0.06	0.06			
WG553747LFB	LFB	10/27/22 22:36	II221013-2	.5005		.504	mg/L	101	85	115			
L76596-02AS	AS	10/27/22 23:58	II221013-2	.5005	U	.497	mg/L	99	85	115			
L76596-02ASD	ASD	10/28/22 0:01	II221013-2	.5005	U	.518	mg/L	103	85	115	4	20	
Conductivity @2	5C		SM2510B										
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG553058													
WG553058LCSW2	LCSW	10/18/22 20:20	PCN623515	1409		1453	umhos/cm	103	90	110			
WG553058LCSW5	LCSW	10/18/22 23:49	PCN623515	1409		1459	umhos/cm	104	90	110			
WG553058LCSW8	LCSW	10/19/22 3:27	PCN623515	1409		1457	umhos/cm	103	90	110			
WG553058LCSW11	LCSW	10/19/22 6:39	PCN623515	1409		1443	umhos/cm	102	90	110			
L76594-05DUP	DUP	10/19/22 10:00			132	132	umhos/cm				0	20	
WG553058LCSW14	LCSW	10/19/22 10:06	PCN623515	1409		1431	umhos/cm	102	90	110			
L76605-02DUP	DUP	10/19/22 11:51			238	236	umhos/cm				1	20	
WG553058LCSW17	LCSW	10/19/22 11:56	PCN623515	1409		1422	umhos/cm	101	90	110			

4 Laboratories, Inc. Steamboat Springs, CO 80487 2773 Downhill Drive (800) 334-5493

Inorganic QC Summary

CRG

ACZ Project ID: L76594

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Copper, dissolv	/ed		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG553689													
WG553689ICV	ICV	10/26/22 17:12	II221025-1	2		2.041	mg/L	102	95	105			
WG553689ICB	ICB	10/26/22 17:18				U	mg/L		-0.03	0.03			
WG553689LFB	LFB	10/26/22 17:30	II221013-2	.5005		.492	mg/L	98	85	115			
L76594-01AS	AS	10/26/22 18:29	II221013-2	.5005	U	.498	mg/L	100	85	115			
L76594-01ASD	ASD	10/26/22 18:32	II221013-2	.5005	U	.486	mg/L	97	85	115	2	20	
WG553747													
WG553747ICV	ICV	10/27/22 22:17	II221025-1	2		1.98	mg/L	99	95	105			
WG553747ICB	ICB	10/27/22 22:23				U	mg/L		-0.03	0.03			
WG553747LFB	LFB	10/27/22 22:36	II221013-2	.5005		.507	mg/L	101	85	115			
L76596-02AS	AS	10/27/22 23:58	II221013-2	.5005	U	.517	mg/L	103	85	115			
L76596-02ASD	ASD	10/28/22 0:01	II221013-2	.5005	U	.533	mg/L	106	85	115	3	20	
Cyanide, total			M335.4 -	Colorimet	ric w/ distil	lation							

ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG553050													
WG553050ICV	ICV	10/18/22 16:01	WI221012-6	.3003		.2897	mg/L	96	90	110			
WG553050ICB	ICB	10/18/22 16:02				U	mg/L		-0.003	0.003			
WG553055													
WG552971LRB	LRB	10/18/22 16:38				U	mg/L		-0.003	0.003			
WG552971LFB	LFB	10/18/22 16:39	WI221011-7	.2		.2028	mg/L	101	90	110			
L76594-02DUP	DUP	10/18/22 16:42			U	U	mg/L				0	20	RA
L76594-07LFM	LFM	10/18/22 16:49	WI221011-7	.2	U	.2026	mg/L	101	90	110			

Iron, dissolved			M200.7 I	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG553689													
WG553689ICV	ICV	10/26/22 17:12	II221025-1	2		1.994	mg/L	100	95	105			
WG553689ICB	ICB	10/26/22 17:18				U	mg/L		-0.18	0.18			
WG553689LFB	LFB	10/26/22 17:30	II221013-2	1.0013		.942	mg/L	94	85	115			
L76594-01AS	AS	10/26/22 18:29	II221013-2	1.0013	U	.969	mg/L	97	85	115			
L76594-01ASD	ASD	10/26/22 18:32	II221013-2	1.0013	U	.954	mg/L	95	85	115	2	20	
WG553747													
WG553747ICV	ICV	10/27/22 22:17	II221025-1	2		1.987	mg/L	99	95	105			
WG553747ICB	ICB	10/27/22 22:23				U	mg/L		-0.18	0.18			
WG553747LFB	LFB	10/27/22 22:36	II221013-2	1.0013		1.01	mg/L	101	85	115			
L76596-02AS	AS	10/27/22 23:58	II221013-2	1.0013	U	1.012	mg/L	101	85	115			
L76596-02ASD	ASD	10/28/22 0:01	II221013-2	1.0013	U	1.042	mg/L	104	85	115	3	20	
Lead, dissolved	d		M200.8 I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG553167													
WG553167ICV	ICV	10/19/22 20:57	MS220930-3	.05		.05117	mg/L	102	90	110			
WG553167ICB	ICB	10/19/22 20:59				U	mg/L		-0.00022	0.00022			
WG553167LFB	LFB	10/19/22 21:01	MS221012-7	.0501		.04992	mg/L	100	85	115			

U

U

.05362

.05399

mg/L

mg/L

107

108

70

70

130

130

1

20

.0501

.0501

AS

ASD

L76594-04AS

L76594-04ASD

10/19/22 21:10 MS221012-7

10/19/22 21:11 MS221012-7

46 **AGZ** Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (

CRG

(800) 334-5493

ACZ Project ID: L76594

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Magnesium, di	ssolved		M200.7	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG553689													
WG553689ICV	ICV	10/26/22 17:12	II221025-1	100		97.5	mg/L	98	95	105			
WG553689ICB	ICB	10/26/22 17:18				U	mg/L		-0.6	0.6			
WG553689LFB	LFB	10/26/22 17:30	II221013-2	49.99809		48.61	mg/L	97	85	115			
L76594-01AS	AS	10/26/22 18:29	II221013-2	49.99809	4.48	50.5	mg/L	92	85	115			
L76594-01ASD	ASD	10/26/22 18:32	II221013-2	49.99809	4.48	54.12	mg/L	99	85	115	7	20	
WG553747													
WG553747ICV	ICV	10/27/22 22:17	II221025-1	100		98.95	mg/L	99	95	105			
WG553747ICB	ICB	10/27/22 22:23				U	mg/L		-0.6	0.6			
WG553747LFB	LFB	10/27/22 22:36	II221013-2	49.99809		49.2	mg/L	98	85	115			
L76596-02AS	AS	10/27/22 23:58	II221013-2	49.99809	2.2	55.23	mg/L	106	85	115			
L76596-02ASD	ASD	10/28/22 0:01	II221013-2	49.99809	2.2	50.19	mg/L	96	85	115	10	20	
Manganese, dis	ssolved		M200.7	ICP									

ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG553689													
WG553689ICV	ICV	10/26/22 17:12	II221025-1	2		1.998	mg/L	100	95	105			
WG553689ICB	ICB	10/26/22 17:18				U	mg/L		-0.03	0.03			
WG553689LFB	LFB	10/26/22 17:30	II221013-2	.499		.492	mg/L	99	85	115			
L76594-01AS	AS	10/26/22 18:29	II221013-2	.499	U	.494	mg/L	99	85	115			
L76594-01ASD	ASD	10/26/22 18:32	II221013-2	.499	U	.491	mg/L	98	85	115	1	20	
WG553747													
WG553747ICV	ICV	10/27/22 22:17	II221025-1	2		1.949	mg/L	97	95	105			
WG553747ICB	ICB	10/27/22 22:23				U	mg/L		-0.03	0.03			
WG553747LFB	LFB	10/27/22 22:36	II221013-2	.499		.511	mg/L	102	85	115			
L76596-02AS	AS	10/27/22 23:58	II221013-2	.499	U	.509	mg/L	102	85	115			
L76596-02ASD	ASD	10/28/22 0:01	II221013-2	.499	U	.521	mg/L	104	85	115	2	20	

PCN/SCN OC Sample Found Unite Rect/ Lower Upper PDD Limit Qual

M245.1 CVAA

Mercury, total

A02 ID	Type	Analyzeu		QU	Jampie	Tound	Units	Nec /	Lower	opper		Linne	Quai
WG552898													
WG552898ICV1	ICV	10/17/22 14:51	HG221017-3	.005005		.00506	mg/L	101	95	105			
WG552898ICB	ICB	10/17/22 14:52				U	mg/L		-0.0002	0.0002			
WG552899													
WG552899LRB	LRB	10/17/22 15:48				U	mg/L		-0.00044	0.00044			
WG552899LFB	LFB	10/17/22 15:49	HG221017-6	.002002		.00186	mg/L	93	85	115			
L76587-05LFM	LFM	10/17/22 16:04	HG221017-6	.002002	U	.00184	mg/L	92	85	115			
L76587-05LFMD	LFMD	10/17/22 16:05	HG221017-6	.002002	U	.00171	mg/L	85	85	115	7	20	
WG552921													
WG552921ICV1	ICV	10/18/22 14:09	HG221017-3	.005005		.00511	mg/L	102	95	105			
WG552921ICB	ICB	10/18/22 14:10				U	mg/L		-0.0002	0.0002			
WG552922													
WG552922LRB	LRB	10/18/22 14:48				U	mg/L		-0.00044	0.00044			
WG552922LFB	LFB	10/18/22 14:49	HG221017-6	.002002		.00198	mg/L	99	85	115			
L76594-05LFM	LFM	10/18/22 14:51	HG221017-6	.002002	U	.00198	mg/L	99	85	115			
L76594-05LFMD	LFMD	10/18/22 14:52	HG221017-6	.002002	U	.0019	mg/L	95	85	115	4	20	

Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

CRG

ACZ Project ID: L76594

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Nickel, dissolv	ed		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG553689													
WG553689ICV	ICV	10/26/22 17:12	II221025-1	2		1.9552	mg/L	98	95	105			
WG553689ICB	ICB	10/26/22 17:18				U	mg/L		-0.024	0.024			
WG553689LFB	LFB	10/26/22 17:30	II221013-2	.502		.4875	mg/L	97	85	115			
L76594-01AS	AS	10/26/22 18:29	II221013-2	.502	U	.4843	mg/L	96	85	115			
L76594-01ASD	ASD	10/26/22 18:32	II221013-2	.502	U	.4761	mg/L	95	85	115	2	20	
WG553834													
WG553834ICV	ICV	10/28/22 20:46	II221025-1	2		1.949	mg/L	97	95	105			
WG553834ICB	ICB	10/28/22 20:52				U	mg/L		-0.024	0.024			
WG553834LFB	LFB	10/28/22 21:04	II221026-6	.502		.5133	mg/L	102	85	115			
L76596-02AS	AS	10/28/22 22:21	II221026-6	.502	U	.5127	mg/L	102	85	115			
L76596-02ASD	ASD	10/28/22 22:24	II221026-6	.502	U	.4987	mg/L	99	85	115	3	20	

Nitrate/Nitrite as N, dissolved

Nitrite as N, dissolved

M353.2 - Automated Cadmium Reduction

ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG552854													
WG552854ICV	ICV	10/14/22 22:19	WI220903-1	2.416		2.342	mg/L	97	90	110			
WG552854ICB	ICB	10/14/22 22:20				U	mg/L		-0.02	0.02			
WG552854LFB	LFB	10/14/22 22:24	WI220826-7	2		2.012	mg/L	101	90	110			
L76594-01AS	AS	10/14/22 22:26	WI220826-7	2	.131	2.139	mg/L	100	90	110			
L76594-02DUP	DUP	10/14/22 22:29			.456	.468	mg/L				3	20	

M353.2 - Automated Cadmium Reduction

ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG552854													
WG552854ICV	ICV	10/14/22 22:19	WI220903-1	.608		.601	mg/L	99	90	110			
WG552854ICB	ICB	10/14/22 22:20				U	mg/L		-0.01	0.01			
WG552854LFB	LFB	10/14/22 22:24	WI220826-7	1		1.015	mg/L	102	90	110			
L76594-01AS	AS	10/14/22 22:26	WI220826-7	1	U	1.015	mg/L	102	90	110			
L76594-02DUP	DUP	10/14/22 22:29			U	U	mg/L				0	20	RA

pH (lab)			SM4500H+	В									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG553058													
WG553058LCSW1	LCSW	10/18/22 20:18	PCN65296	6		6	units	100	5.9	6.1			
WG553058LCSW4	LCSW	10/18/22 23:48	PCN65296	6		6	units	100	5.9	6.1			
WG553058LCSW10	LCSW	10/19/22 6:37	PCN65296	6		6.1	units	102	5.9	6.1			
L76594-05DUP	DUP	10/19/22 10:00			6.7	6.7	units				0	20	
WG553058LCSW13	LCSW	10/19/22 10:04	PCN65296	6		6	units	100	5.9	6.1			
L76605-02DUP	DUP	10/19/22 11:51			7.1	7.1	units				0	20	
WG553058LCSW16	LCSW	10/19/22 11:55	PCN65296	6		6	units	100	5.9	6.1			

4C 2773 Downhill Drive Steamboat Springs, CO 80487 ((800) 334-5493

Inorganic QC Summary

CRG

ACZ Project ID: L76594

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Potassium, diss	olved		M200.7	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG553689													
WG553689ICV	ICV	10/26/22 17:12	II221025-1	20		19.55	mg/L	98	95	105			
WG553689ICB	ICB	10/26/22 17:18				U	mg/L		-0.6	0.6			
WG553689LFB	LFB	10/26/22 17:30	II221013-2	99.95798		96.53	mg/L	97	85	115			
L76594-01AS	AS	10/26/22 18:29	II221013-2	99.95798	.73	93.16	mg/L	92	85	115			
L76594-01ASD	ASD	10/26/22 18:32	II221013-2	99.95798	.73	100.5	mg/L	100	85	115	8	20	
WG553747													
WG553747ICV	ICV	10/27/22 22:17	II221025-1	20		19.75	mg/L	99	95	105			
WG553747ICB	ICB	10/27/22 22:23				U	mg/L		-0.6	0.6			
WG553747LFB	LFB	10/27/22 22:36	II221013-2	99.95798		97.28	mg/L	97	85	115			
L76596-02AS	AS	10/27/22 23:58	II221013-2	99.95798	1.3	106	mg/L	105	85	115			
L76596-02ASD	ASD	10/28/22 0:01	II221013-2	99.95798	1.3	95.97	mg/L	95	85	115	10	20	
Residue, Filtera	ble (TDS) @180C	SM2540	С									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG552748													
WG552748PBW	PBW	10/13/22 16:10				U	mg/L		-20	20			
WG552748LCSW	LCSW	10/13/22 16:12	PCN623508	1000		982	mg/L	98	80	120			
L76594-02DUP	DUP	10/13/22 16:41			62	62	mg/L				0	10	RA
L76639-03DUP	DUP	10/13/22 17:10			9800	10100	mg/L				3	10	RA
Sodium, dissolv	ved		M200.7	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG553689													
WG553689ICV	ICV	10/26/22 17:12	II221025-1	100		97.56	mg/L	98	95	105			
WG553689ICB	ICB	10/26/22 17:18				U	mg/L		-0.6	0.6			
WG553689LFB	LFB	10/26/22 17:30	II221013-2	100.0023		95.69	mg/L	96	85	115			
L76594-01AS	AS	10/26/22 18:29	II221013-2	100.0023	1.93	94.17	mg/L	92	85	115			
L76594-01ASD	ASD	10/26/22 18:32	II221013-2	100.0023	1.93	101	mg/L	99	85	115	7	20	
WG553747													
WG553747ICV	ICV	10/27/22 22:17	II221025-1	100		98.52	mg/L	99	95	105			
WG553747ICB	ICB	10/27/22 22:23				U	mg/L		-0.6	0.6			
WG553747LFB	LFB	10/27/22 22:36	II221013-2	100.0023		96.47	mg/L	96	85	115			
L76596-02AS	AS	10/27/22 23:58	II221013-2	100.0023	8.86	113.4	mg/L	105	85	115			
L76596-02ASD	ASD	10/28/22 0:01	II221013-2	100.0023	8.86	103.2	mg/L	94	85	115	9	20	
Sulfate			D516-02	2/-07/-11 - TU	JRBIDIMI	ETRIC							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG553390													
WG553390ICB	ICB	10/22/22 14:34				U	mg/L		-3	3			
WG553390ICV	ICV	10/22/22 14:34	WI221017-1	19.54		19.7	mg/L	101	90	110			
WG553390LFB	LFB	10/22/22 19:20	WI220830-3	10		10	mg/L	100	90	110			
L76594-06AS		10/00/00 10 00			~ -				~~				M1
	AS	10/22/22 19:22	WI220830-3	10	8.5	20.3	mg/L	118	90	110			IVII
L76594-07DUP	AS DUP	10/22/22 19:22 10/22/22 19:22	WI220830-3	10	8.5 9	20.3 8.8	mg/L mg/L	118	90	110	2	20	RA
L76594-07DUP L76569-03AS	AS DUP AS	10/22/22 19:22 10/22/22 19:22 10/22/22 19:55	WI220830-3	10 10	8.5 9 5.1	20.3 8.8 16.5	mg/L mg/L mg/L	118 114	90 90	110 110	2	20	RA M1

4 2773 Downhill Drive Steamboat Springs, CO 80487 ((800) 334-5493

Inorganic QC Summary

CRG

ACZ Project ID: L76594

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Vanadium, disso	olved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG553728													
WG553728ICV	ICV	10/27/22 12:45	II221025-1	2		2.076	mg/L	104	95	105			
WG553728ICB	ICB	10/27/22 12:51				U	mg/L		-0.015	0.015			
WG553728LFB	LFB	10/27/22 13:03	II221013-2	.5005		.5222	mg/L	104	85	115			
L76594-01AS	AS	10/27/22 14:00	II221013-2	.5005	U	.5226	mg/L	104	85	115			
L76594-01ASD	ASD	10/27/22 14:03	II221013-2	.5005	U	.553	mg/L	110	85	115	6	20	
WG553834													
WG553834ICV	ICV	10/28/22 20:46	II221025-1	2		2.018	mg/L	101	95	105			
WG553834ICB	ICB	10/28/22 20:52				U	mg/L		-0.015	0.015			
WG553834LFB	LFB	10/28/22 21:04	II221026-6	.5005		.5133	mg/L	103	85	115			
L76596-02AS	AS	10/28/22 22:21	II221026-6	.5005	U	.5162	mg/L	103	85	115			
L76596-02ASD	ASD	10/28/22 22:24	II221026-6	.5005	U	.519	mg/L	104	85	115	1	20	
Zinc, dissolved			M200.7 I	CP									

nalyzed PCN/SCN	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
/26/22 17:12 II221025-1	17:12 II221025-1	2		1.95	mg/L	98	95	105			
/26/22 17:18	17:18			U	mg/L		-0.06	0.06			
/26/22 17:30 II221013-2	17:30 II221013-2	.50045		.506	mg/L	101	85	115			
/26/22 18:29 II221013-2	18:29 II221013-2	.50045	U	.485	mg/L	97	85	115			
/26/22 18:32 II221013-2	18:32 II221013-2	.50045	U	.528	mg/L	106	85	115	8	20	
/27/22 22:17 II221025-1	22:17 II221025-1	2		1.94	mg/L	97	95	105			
/27/22 22:23	22:23			U	mg/L		-0.06	0.06			
/27/22 22:36 II221013-2	22:36 II221013-2	.50045		.513	mg/L	103	85	115			
/27/22 23:58 II221013-2	23:58 II221013-2	.50045	U	.558	mg/L	111	85	115			
/28/22 0:01 II221013-2	n·∩1 ll221013-2	50045	U	548	mg/L	110	85	115	2	20	
/26 /26 /27 /27 /27	22 22 22 22 22 22	/22 18:29 II221013-2 /22 18:32 II221013-2 /22 22:17 II221025-1 /22 22:23 II221013-2 /22 23:58 II221013-2 /22 0:01 II221013-2	/22 18:29 II221013-2 .50045 /22 18:32 II221013-2 .50045 /22 22:17 II221025-1 2 /22 22:23 .22 22:36 II221013-2 .50045 /22 23:58 II221013-2 .50045 /22 20:10 .50045 .50045	/22 18:29 II221013-2 .50045 U /22 18:32 II221013-2 .50045 U /22 22:17 II221025-1 2 /22 22:23 .50045 U /22 23:58 II221013-2 .50045 /22 23:58 II221013-2 .50045 /22 20:10 II221013-2 .50045	/22 18:29 11221013-2 .50045 U .485 /22 18:32 11221013-2 .50045 U .528 /22 22:17 11221025-1 2 1.94 /22 22:23 U .50045 .513 /22 22:36 11221013-2 .50045 .513 /22 23:58 11221013-2 .50045 U /22 20:10 11221013-2 .50045 U /22 0:01 11221013-2 .50045 U 50045 U .558 /22 0:01 11221013-2 .50045 U 50045 U .548	/22 18:29 II221013-2 .50045 U .485 mg/L /22 18:32 II221013-2 .50045 U .528 mg/L /22 22:17 II221025-1 2 1.94 mg/L /22 22:23 U mg/L /22 22:36 II221013-2 .50045 .513 mg/L /22 23:58 II221013-2 .50045 U .558 mg/L /22 0:01 II221013-2 .50045 U .558 mg/L	/22 18:29 II221013-2 .50045 U .485 mg/L 97 /22 18:32 II221013-2 .50045 U .528 mg/L 106 /22 22:17 II221025-1 2 1.94 mg/L 97 /22 22:23 U mg/L 97 /22 22:36 II221013-2 .50045 .513 mg/L 103 /22 23:58 II221013-2 .50045 U .558 mg/L 111 /22 0:01 II221013-2 50045 U .548 mg/L 110	/22 18:29 II221013-2 .50045 U .485 IngrL 97 85 /22 18:32 II221013-2 .50045 U .528 mg/L 106 85 /22 22:17 II221025-1 2 1.94 mg/L 97 95 /22 22:23 U mg/L -0.06 /22 22:36 II221013-2 .50045 .513 mg/L 103 85 /22 23:58 II221013-2 .50045 U .558 mg/L 111 85 /22 0:01 II221013-2 .50045 U .5548 mg/L 110 85	/22 18:29 II221013-2 .50045 U .485 IIIg/L 97 85 115 /22 18:32 II221013-2 .50045 U .528 mg/L 106 85 115 /22 22:17 II221025-1 2 1.94 mg/L 97 95 105 /22 22:23 U mg/L -0.06 0.06 /22 22:36 II221013-2 .50045 .513 mg/L 103 85 115 /22 23:58 II221013-2 .50045 U .558 mg/L 111 85 115 /22 0:01 II221013-2 .50045 U .558 mg/L 111 85 115	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

(800) 334-5493

Inorganic Extended Qualifier Report

CRG Mining, LLC

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L76594-01	WG553055	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG552854	Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HE	Analysis performed past holding time. Method holding time is less than or equal to 7 days and sample was received with less than half of the holding time remaining (refer to item C5 of ACZ's Terms & Conditions).
			M353.2 - Automated Cadmium Reduction	ZU	Analysis date/time preceeds filter date/time. A portion of sample was filtered and analyzed prior to the creation of a Filter workgroup.
		Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HE	Analysis performed past holding time. Method holding time is less than or equal to 7 days and sample was received with less than half of the holding time remaining (refer to item C5 of ACZ's Terms & Conditions).
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M353.2 - Automated Cadmium Reduction	ZU	Analysis date/time preceeds filter date/time. A portion of sample was filtered and analyzed prior to the creation of a Filter workgroup.
	WG552748	Residue, Filterable (TDS) @180C	SM2540C	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG553390	Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
L76594-02	WG553378	Chloride	SM4500CI-E	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG553055	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG552854	Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HE	Analysis performed past holding time. Method holding time is less than or equal to 7 days and sample was received with less than half of the holding time remaining (refer to item C5 of ACZ's Terms & Conditions).
			M353.2 - Automated Cadmium Reduction	ZU	Analysis date/time preceeds filter date/time. A portion of sample was filtered and analyzed prior to the creation of a Filter workgroup.
		Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HE	Analysis performed past holding time. Method holding time is less than or equal to 7 days and sample was received with less than half of the holding time remaining (refer to item C5 of ACZ's Terms & Conditions).
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M353.2 - Automated Cadmium Reduction	ZU	Analysis date/time preceeds filter date/time. A portion of sample was filtered and analyzed prior to the creation of a Filter workgroup.
	WG552748	Residue, Filterable (TDS) @180C	SM2540C	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG553390	Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.

HGZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 4C

(800) 334-5493

CRG Mining, LLC

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L76594-03	WG553378	Chloride	SM4500CI-E	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG553055	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG552854	Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HE	Analysis performed past holding time. Method holding time is less than or equal to 7 days and sample was received with less than half of the holding time remaining (refer to item C5 of ACZ's Terms & Conditions).
			M353.2 - Automated Cadmium Reduction	ZU	Analysis date/time preceeds filter date/time. A portion of sample was filtered and analyzed prior to the creation of a Filter workgroup.
		Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HE	Analysis performed past holding time. Method holding time is less than or equal to 7 days and sample was received with less than half of the holding time remaining (refer to item C5 of ACZ's Terms & Conditions).
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M353.2 - Automated Cadmium Reduction	ZU	Analysis date/time preceeds filter date/time. A portion of sample was filtered and analyzed prior to the creation of a Filter workgroup.
	WG552748 Residue, Filterable (TDS) @180C		SM2540C	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG553390	Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
L76594-04	NG553378	Chloride	SM4500CI-E	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG553055	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG552854	Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HE	Analysis performed past holding time. Method holding time is less than or equal to 7 days and sample was received with less than half of the holding time remaining (refer to item C5 of ACZ's Terms & Conditions).
			M353.2 - Automated Cadmium Reduction	ZU	Analysis date/time preceeds filter date/time. A portion of sample was filtered and analyzed prior to the creation of a Filter workgroup.
		Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HE	Analysis performed past holding time. Method holding time is less than or equal to 7 days and sample was received with less than half of the holding time remaining (refer to item C5 of ACZ's Terms & Conditions).
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M353.2 - Automated Cadmium Reduction	ZU	Analysis date/time preceeds filter date/time. A portion of sample was filtered and analyzed prior to the creation of a Filter workgroup.
	WG552748	Residue, Filterable (TDS) @180C	SM2540C	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG553390	Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.

4C AGZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Inorganic Extended Qualifier Report

CRG Mining, LLC

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L76594-05	NG553378	Chloride	SM4500CI-E	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG553055	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG552854	Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HE	Analysis performed past holding time. Method holding time is less than or equal to 7 days and sample was received with less than half of the holding time remaining (refer to item C5 of ACZ's Terms & Conditions).
			M353.2 - Automated Cadmium Reduction	ZU	Analysis date/time preceeds filter date/time. A portion of sample was filtered and analyzed prior to the creation of a Filter workgroup.
		Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HE	Analysis performed past holding time. Method holding time is less than or equal to 7 days and sample was received with less than half of the holding time remaining (refer to item C5 of ACZ's Terms & Conditions).
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M353.2 - Automated Cadmium Reduction	ZU	Analysis date/time preceeds filter date/time. A portion of sample was filtered and analyzed prior to the creation of a Filter workgroup.
	WG552748	Residue, Filterable (TDS) @180C	SM2540C	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG553390	Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
			D516-02/-07/-11 - TURBIDIMETRIC	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
L76594-06	WG553378	Chloride	SM4500CI-E	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG553055	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG552854	Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HE	Analysis performed past holding time. Method holding time is less than or equal to 7 days and sample was received with less than half of the holding time remaining (refer to item C5 of ACZ's Terms & Conditions).
			M353.2 - Automated Cadmium Reduction	ZU	Analysis date/time preceeds filter date/time. A portion of sample was filtered and analyzed prior to the creation of a Filter workgroup.
		Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HE	Analysis performed past holding time. Method holding time is less than or equal to 7 days and sample was received with less than half of the holding time remaining (refer to item C5 of ACZ's Terms & Conditions).
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M353.2 - Automated Cadmium Reduction	ZU	Analysis date/time preceeds filter date/time. A portion of sample was filtered and analyzed prior to the creation of a Filter workgroup.
	WG552748	Residue, Filterable (TDS) @180C	SM2540C	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG553390	Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
			D516-02/-07/-11 - TURBIDIMETRIC	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).

4C AGZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487

(800) 334-5493

CRG Mining, LLC

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L76594-07	NG553378	Chloride	SM4500CI-E	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG553055	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG552854	Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HE	Analysis performed past holding time. Method holding time is less than or equal to 7 days and sample was received with less than half of the holding time remaining (refer to item C5 of ACZ's Terms & Conditions).
			M353.2 - Automated Cadmium Reduction	ZU	Analysis date/time preceeds filter date/time. A portion of sample was filtered and analyzed prior to the creation of a Filter workgroup.
		Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HE	Analysis performed past holding time. Method holding time is less than or equal to 7 days and sample was received with less than half of the holding time remaining (refer to item C5 of ACZ's Terms & Conditions).
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M353.2 - Automated Cadmium Reduction	ZU	Analysis date/time preceeds filter date/time. A portion of sample was filtered and analyzed prior to the creation of a Filter workgroup.
	WG552748	Residue, Filterable (TDS) @180C	SM2540C	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG553390	Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
			D516-02/-07/-11 - TURBIDIMETRIC	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
L76594-08	WG553378	Chloride	SM4500CI-E	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG553055	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG552854	Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HE	Analysis performed past holding time. Method holding time is less than or equal to 7 days and sample was received with less than half of the holding time remaining (refer to item C5 of ACZ's Terms & Conditions).
			M353.2 - Automated Cadmium Reduction	ZU	Analysis date/time preceeds filter date/time. A portion of sample was filtered and analyzed prior to the creation of a Filter workgroup.
		Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HE	Analysis performed past holding time. Method holding time is less than or equal to 7 days and sample was received with less than half of the holding time remaining (refer to item C5 of ACZ's Terms & Conditions).
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M353.2 - Automated Cadmium Reduction	ZU	Analysis date/time preceeds filter date/time. A portion of sample was filtered and analyzed prior to the creation of a Filter workgroup.
	WG552748	Residue, Filterable (TDS) @180C	SM2540C	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG553390	Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
			D516-02/-07/-11 - TURBIDIMETRIC	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).

40 **AGZ** Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487

(800) 334-5493

CRG Mining, LLC

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L76594-09	WG553378	Chloride	SM4500CI-E	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG553055	Cyanide, total	M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG552854	Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HE	Analysis performed past holding time. Method holding time is less than or equal to 7 days and sample was received with less than half of the holding time remaining (refer to item C5 of ACZ's Terms & Conditions).
			M353.2 - Automated Cadmium Reduction	ZU	Analysis date/time preceeds filter date/time. A portion of sample was filtered and analyzed prior to the creation of a Filter workgroup.
		Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HE	Analysis performed past holding time. Method holding time is less than or equal to 7 days and sample was received with less than half of the holding time remaining (refer to item C5 of ACZ's Terms & Conditions).
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M353.2 - Automated Cadmium Reduction	ZU	Analysis date/time preceeds filter date/time. A portion of sample was filtered and analyzed prior to the creation of a Filter workgroup.
	WG552748	Residue, Filterable (TDS) @180C	SM2540C	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG553390	Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
			D516-02/-07/-11 - TURBIDIMETRIC	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).

ACZ Project ID: L76594

No certification qualifiers associated with this analysis

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493		Sampl Receip	e ot
CRG Mining, LLC ACZ	Project ID:		L76594
Date	e Received:	10/12/2	022 11:16
R	eceived By:		
Da	ate Printed:	1	0/12/2022
Receipt Verification			
	YE	s no	NA
1) Is a foreign soil permit included for applicable samples?			Х
2) Is the Chain of Custody form or other directive shipping papers present?	Х		
3) Does this project require special handling procedures such as CLP protocol?		Х	
4) Are any samples NRC licensable material?			Х
5) If samples are received past hold time, proceed with requested short hold time analyses	? X		
6) Is the Chain of Custody form complete and accurate?	Х		

7) Were any changes made to the Chain of Custody form prior to ACZ receiving the samples?

Samples/Containers

	YES	NO	NA
8) Are all containers intact and with no leaks?	Х		
9) Are all labels on containers and are they intact and legible?	Х		
10) Do the sample labels and Chain of Custody form match for Sample ID, Date, and Time?	Х		
11) For preserved bottle types, was the pH checked and within limits? 1	Х		
12) Is there sufficient sample volume to perform all requested work?	Х		
13) Is the custody seal intact on all containers?			Х
14) Are samples that require zero headspace acceptable?			Х
15) Are all sample containers appropriate for analytical requirements?	Х		
16) Is there an Hg-1631 trip blank present?			Х
17) Is there a VOA trip blank present?			Х
18) Were all samples received within hold time?	Х		
	NA indica	tes Not Ap	plicable

Chain of Custody Related Remarks

Client Contact Remarks

Shipping Containers

Cooler Id	Temp(°C)	C) Temp Rad(µR Criteria(°C)		Custody Seal Intact?
6881	3.3	<=6.0	15	N/A
4330	4.8	<=6.0	15	N/A

Was ice present in the shipment container(s)?

Yes - Wet ice was present in the shipment container(s).

Client must contact an ACZ Project Manager if analysis should not proceed for samples received outside of their thermal preservation acceptance criteria.

Х

Sample Receipt

CRG Mining, LLC

ACZ Project ID: L76594 Date Received: 10/12/2022 11:16 Received By: Date Printed: 10/12/2022

¹ The preservation of the following bottle types is not checked at sample receipt: Orange (oil and grease), Purple (total cyanide), Pink (dissolved cyanide), Brown (arsenic speciation), Sterile (fecal coliform), EDTA (sulfite), HCI preserved vial (organics), Na2S2O3 preserved vial (organics), and HG-1631 (total/dissolved mercury by method 1631).

NING LLC ILKINSON CCR MINING COM		Address: روین Felephone	510 2110 970	N (0 - 417	2010111 8123 -3311	0				
ECELSMING.COM		Celephone	470	~ 417	-33in	<u> </u>				
		relephone		<u> 71 F</u>		Telephone: 470: 412-3311				
	E									
		E-mail:								
		i elepnone								
	-									
		Address:								
Jompany: E-mail:		Tolophono		<u> </u>						
		relephone								
	-									
	┥┟	Address								
	<u>ا ا</u>	Telenhono	•							
ing time (HT), or if insufficient	J Ľ HT remair	ns to comp	lete	··-	YE	sV				
II ACZ proceed with requested	I short HT	analyses?			NC					
ruction. If neither "YES" nor "NO" is indicated,	ACZ will procee	ed with the reque	sted analyses, eve	n If HT is expired, i	and data will be qual	ified				
ns. Results will be reported to	PQL for C	olorado.			1					
LFL Sampler's Site Informa	ation S to the authentici	State()(ity and validity of	this sample. I und	ip code <u>81</u> lerstand that inten	(<u>33</u>) Time tionally mislabeling #	B Zone_ <u>M</u> A				
The second secon	g with the samp	ple in anyway, is Al	ALYSES REQU	JESTED (attack	state Law. list or use quote	number)				
		S								
		iner								
sting:		onta								
C licensed material?		of C								
N DATE:TIME	Matrix	#								
10.10.23 12:25	GW	S								
10.10.22 12:34	26mi	┥┠╴	_		╉┯╉┯					
10.0.22 12:47	<u>[6w]</u>				╉╧╋╼	╉╌╋				
0.0721102				_	╉──╂──	╺╉──╂─				
10.10.023 1:15		┼┣━	╉╼╋		╂──╂──	╉╌╂				
- 10/10/3 3 1 3 0 1		┼┣━	╶╂──╂		╉━╂─	╉╌╂				
- 10/10/204 11/54 10/10/2011 . CL		┼┣━	╉╼╼╉		╂──╂──	╉╼╋				
10/10/06/157	towt		+-+		╈	+				
	+	~ -	╉╼╉							
GW (Ground Water) · WW (Waste '	Water) · DW	/ (Drinking W	/ater) · SL (Slu	dge) · SO (So	il) · OL (Oil) · Ot	ther (Specify)				
			·							
e refer to ACZ's terms & conc	ditions loc	ated on th	e reverse s	ide of this (COC.					
BY: DATE:T	IME		RECEIVE	D BY:		DATE:TIME				
10/10/22	235	Den -	111		10	1/1/22				
	ing time (HT), or if insufficient II ACZ proceed with requested fruction. If neither "YES" nor "NO" is indicated, ance Monitoring? Ins. Results will be reported to $LFL_Sampler's Site InformationMMMMMM_{1} inter-sting:C licensed material?N DATE: TIMEIO_IO_A_A_IA-IO_IO_A_A_IA-IO_IO_A_A_IA-IO_IO_A_A_IA-IO_IO_A_A_IA-IO_IO_A_A_IA-IO_IO_A_A_IA-IO_IO_A_A_IA-IO_IO_A_A_IA-IO_IO_A_A_IA-IO_IO_A_A_IA-IO_IO_A_A_IA-IO_IO_A_A_IA-IO_IO_A_A_IA-IO_IO_A_A_IA-IO_IO_A_A_IA-IO_IO_A_A_IA-GW (Ground Water) · WW (Wastee refer to ACZ's terms & conceBY: DATE: T$	ing time (HT), or if insufficient HT remain II ACZ proceed with requested short HT ruction. If netther "YES" nor "NO" is indicated, ACZ will proceed ince Monitoring? Ins. Results will be reported to PQL for O III Sampler's Site Information "lattest to the authentic tampering with the same "lattest to the authentic tampering with the same sting: C licensed material? N DATE:TIME Matrix IO.10. 3Q 12:3C GW IO.10. 3Q 12:3C	Address: Telephone Ing time (HT), or if insufficient HT remains to comp II ACZ proceed with requested short HT analyses? Fruction. If netter "YES" nor "NO" is indicated, AC2 will proceed with the reque nace Monitoring? Yes	Address: Ing time (HT), or if insufficient HT remains to complete II ACZ proceed with requested short HT analyses? matter "YES" nor "NO" is indicated. AC2 will proceed with the requested analyzes, even unce Monitoring? Yes N Ince Monitoring? Yes INCE Monitoring? Yes Ins. Results will be reported to PQL for Colorado. If Sampler's Site Information State_UD	Address: Ing time (HT), or if insufficient HT remains to complete IACZ proceed with requested short HT analyses? methor. If neither "YES" nor "No" is indicated. ACZ will proceed with the requested malyses, even If HT is expired. ince Monitoring? Yes IS. Results will be reported to PQL for Colorado. Left Sampler's Site Information Yes No Xite Colorado. Left Sampler's Site Information Yes No Xite Colorado. Left Sampler's Site Information Yes No Xite YSIS REQUESTED (ottract and publication of the sample in anyway, is considered fraid and publication by of Sting: Cilicensed material? N DATE:TIME Matrix Matrix IO.10, 32, 13:30 Site IO.10, 32, 13:30 Site </td <td>Address: Ing time (HT), or if insufficient HT remains to complete II ACZ proceed with requested short HT analyses? Ince Monitoring? rescent reduce "F8" nor "No" is bidded, ACZ will proceed with the requested analyses, even If HT is reported, and data will be reported to PQL for Colorado. VEL Sampler's Site Information State_COLO</td>	Address: Ing time (HT), or if insufficient HT remains to complete II ACZ proceed with requested short HT analyses? Ince Monitoring? rescent reduce "F8" nor "No" is bidded, ACZ will proceed with the requested analyses, even If HT is reported, and data will be reported to PQL for Colorado. VEL Sampler's Site Information State_COLO				

76594 Chain of Custod