Attachment 1

Technical Memo – WHEX Pond Design

TECHNICAL MEMORANDUM WHEX POND DESIGN

9540 Maroon Circle Suite 300 Englewood, CO 80112

T: 720.508.3300 F: 720.508.3339

То:	Jeff Gaul, Senior Engineer
From:	Roxanne Li, P.E.
	Jay Janney-Moore, P.E.
Project:	VLF2 Phase 3
Project No:	475.0106.060
Subject:	WHEX Sediment Pond Basis of Design
Date:	10 May 2023

The existing sediment pond (EMP-18) at the Mine owned by Cripple Creek and Victor Gold Mining Company (CC&V), located north of the Wild Horse Expansion (WHEX) Pit and south of Mollie Kathleen Road (County Road 82), is currently located on a valuable clay resource that CC&V intends to excavate and use for the Vertical Leach Facility 2 (VLF2) Phase 3 expansion project. This technical memo outlines the design basis for the replacement sediment pond EMP-18b as well as two channels designed to convey stormwater from culverts into the pond.

1.0 SEDIMENT POND EMP-18B

Sediment pond EMP-18b will remain open throughout closure of the Mine, and so has been sized to contain runoff from the 500-year, 24-hour storm event. The design storm volume was calculated using an SCS type II storm in HEC-HMS. The following inputs were used in the HEC-HMS model:

- > The Precipitation Frequency Data Server from the National Oceanic and Atmospheric Administration was used to obtain a 500-year, 24-hour storm event depth of 6.10 inches
- > The Web Soil Survey from the United States Department of Agriculture was used to obtain hydrologic soil groups, which were used to calculate a composite curve number (CN) of 67.
- Watershed area, average slope and length of the longest flow path were measured using AutoCAD Civil3D software.

A summary of the sediment pond hydrology calculations can be found in Attachment A.

Sediment loading calculations were completed using the EPA's online Pollutant Load Estimator Tool (PLET). The PLET utilizes the Universal Soil Loss Equation to calculate the total sediment

runoff from a given watershed. The soil and cover inputs used were the average values from Teller County, Colorado. A summary of inputs and calculations from the tool can be found in Attachment A.

The final pond has the capacity to store the 500-year, 24-hour storm event volume of 7.2 Mgal, 1 foot of sediment, or 27 years of storage with a volume of 0.24 Mgal, and 1 foot of freeboard. The crest of the pond is level with the closure surface around the WHEX Pit. Internal side slopes of the pond are constructed at 2.5H:1V. The filling curve for the pond can be found in Figure 1. Figure 2 shows the plan view of the proposed facility.

2.0 SEDIMENT POND INLET CHANNELS

There are three culverts numbered 1, 2 and 3, that convey stormwater under the access road south of CR82 to EMP-18b. Two of them, Culverts 1 and 3, will have rock chute channels at their outlets. These channels, the West and East EMP-18b inlet channels, are designed to convey stormwater runoff from the 100 year, 24 hour storm with a minimum 1 foot of freeboard. Stormwater runoff was calculated using HEC-HMS. Erosion protection was designed using the Rock Chute Design spreadsheet from the Natural Resources Conservation Service.

No channel was designed at the outlet of Culvert 2. This channel will discharge to a gently sloped road at a 10% grade that will convey water to EMP-18b without the need for additional erosion protection.

2.1 EMP-18b West Inlet Channel

The West Inlet Channel is located downstream of Culvert 1. The channel dimensions are 12 feet wide with 2.5H:1V side slopes, and a total depth of 2 feet. The West channel is designed as a rock chute with a chute slope of 27.4% and an outlet channel slope of 1%. A 1 foot thick layer of $D_{50} = 6$ inch riprap underlain by 10 oz/yd² geotextile will be used as erosion protection within the channel. Refer to Table 1 for a summary of channel dimensions and design criteria. A plan view of the proposed facility can be found on Figure 2.

2.2 EMP-18b East Inlet Channel

The East Inlet Channel is located downstream of Culvert 3. The channel dimensions are 12 feet wide with 2.5H:1V side slopes, and a total depth of 2 feet. The East channel is designed as a rock chute with a chute slope of 27.5% and an outlet channel slope of 1%. A 1 foot thick layer of $D_{50} = 6$ inch riprap underlain by 10 oz/yd² geotextile will be used as erosion protection within the channel. Refer to Table 1 for a summary of channel dimensions and design criteria. A plan view of the proposed facility can be found on Figure 2.

TABLES

Table 1: Channel Summary

LIST OF ATTACHMENTS

Attachment A: Hydrology, Sediment Loading and Rock Chute Calculations

Cripple Creek & Victor Gold Mining Company WHEX Channel Sizing Calculations Table 1 - Channel Summary

Station	Slope (ft/ft)	100yr, 24hr Flow (cfs)	500yr, 24hr Flow (cfs)	Erosion Protection (D ₅₀ , in)	Roughness Coefficient	Channel Width (ft)	Channel Side Slopes (X:1)	Velocity (ft/s, 100yr24hr storm)	100yr Flow Depth (ft)	500yr Flow Depth (ft)	Design Depth Including Freeboard (ft)
West Channel											
West Chute	0.274	15.3	27.9	6	0.05	12	2.5	5.51	0.2	0.3	2.0
West Chute Outlet Channel	0.010	15.3	27.9	6	0.05	12	2.5	1.93	0.6	0.8	2.0
East Channel											
East Chute	0.275	18.6	30.0	6	0.05	12	2.5	5.94	0.2	0.3	2.0
East Chute Outlet Channel	0.010	18.6	30.0	6	0.05	12	2.5	2.07	0.7	0.9	2.0

ATTACHMENT A: HYDROLOGY, SEDIMENT LOADING AND ROCK CHUTE CALCULATIONS

	NewFields	CALCU	LATION COVE	R SHEET
Client	Cripple Creek & Victor Gold Mining Company	Preparer:	Callie Urbas	04/21/23
Project	VLF2 Phase 3	Checked:	Roxanne Li	05/10/23
Title	Pond Sizing Calculations	Revision	В	
	CALCULATION OBJE			
1. Estimate	the peak runoff from upstream watersheds to design		oond.	
2. Determir	ne the required size of the diversion channels and eros	ion protection	(if necessary)	
	ASSUMPTION	S		
1. Composi	te SCS Curve numbers are calculated based on ground	type.		
2. Storm ev	ents will be sized according to previous meteorologica	al studies.		
	500-Year 6.10 inches			
	METHODOLOG	iΥ		
1. Area and	l length measurements were determined using AutoCA	AD Civil 3D.		
2. SCS Type	e II Storm event was modeled.			
3. HEC-HMS	S was used to model the storm events.			
	REFERENCES			
1. AutoCAD	Civil 3D version 2022.			
	artment of Agriculture (USDA), Natural Resources Con	servation Servi	ice (NRCS). "Part 63	0 Hydrology
National En	ngineering Handbook."210-vi, NEH, May 2010.			
3. United St	tates Army Corps of Engineers. Hydrologic Modeling Sv	ystem (HEC-HN	/IS) Version 4.10, Co	mputer
Program (A	pril 2023)			
	CONCLUSIONS	6		
1. See attac	ched tables for channel and culvert sizing.			
Filename:	-			
	Z:\Projects\0106.056 VLF2 Phase 3a COA\H-CALCULATIONS\[Wh	ex Pond hydrology xlsx	Hec Calc Cover	

Whex Pond Hydrology

Table 9–1 Runoff curve numbers for agricultural lands ^{1/} — Continued

Co	ver description		CN fe	or hydrolo	gic soil gro	oup
covertype	treatment ^{2/}	hydrologic condition [™]	Α	B	с	D
Pasture, grassland, or range-		Poor	68	79	86	89
continuous forage for		Fair	49	69	79	84
grazing ^{4/}		Good	39	61	74	80
Meadow-continuous grass, protected from grazing and generally mowed for hay		Good	30	58	71	78
Brush-brush-forbs-grass		Poor	48	67	77	83
mixture with brush the		Fair	35	56	70	77
major element ≦∕		Good	30 <u>€</u> ⁄	48	65	73
Woods-grass combination		Poor	57	73	82	86
(orchard or tree farm) ^{ℤ/}		Fair	43	65	76	82
		Good	32	58	72	79
Woods ^{8/}		Poor	45	66	77	83
		Fair	36	60	73	79
		Good	30	55	70	77
Farmstead-buildings, lanes, driveways, and surrounding lots			59	74	82	86
Roads (including right-of-way):						
Dirt			72	82	87	89
Gravel			76	85	89	91

Group Asoils have low runoff potential and high infiltration rates even when thoroughly wetted. They consist chiefly of deep, well to excessively drained sand or gravel and have a high rate of water transmission (greater than 0.30 in/hr).

Group Bsoils have moderate infiltration rates when thoroughly wetted and consist chiefly of moderately deep to deep, moderately well to well drained soils with moderately fine to moderately coarse textures. These soils have a moderate rate of water transmission (0.15-0.30 in/hr).

Group Csoils have low infiltration rates when thoroughly wetted and consist chiefly of soils with a layer that impedes downward movement of water and soils with moderately fine to fine texture. These soils have a low rate of water transmission (0.05-0.15 in/hr).

Group Dsoils have high runoff potential. They have very low infiltration rates when thoroughly wetted and consist chiefly of clay soils with a high swelling potential, soils with a permanent high water table, soils with a claypan or clay layer at or near the surface, and shallow soils over nearly impervious material. These soils have a very low rate of water transmission (0-0.05 in/hr).

In exhibit A-1, some of the listed soils have an added modifier; for example, "Abrazo, gravelly." This refers to a gravelly phase of the Abrazo series that is found in SCS soil map legends. Table 2-2d

Runoff curve numbers for arid and semiarid rangelands 1/

Cover description			Curve nu – hydrologi	nbers for c soil group	
Cover type	Hydrologic condition ^{2/}	А ¥	В	с	D
Herbaceous—mixture of grass, weeds, and	Poor		80	87	93
low-growing brush, with brush the	Fair	_	71	81	89
minor element.	Good		62	74	85
Oak-aspen—mountain brush mixture of oak brush,	Poor		66	74	79
aspen, mountain mahogany, bitter brush, maple,	Fair		48	57	63
and other brush.	Good		30	41	48
Pinyon-juniper—pinyon, juniper, or both;	Poor		75	85	89
grass understory.	Fair		58	73	80
	Good		41	61	71
Sagebrush with grass understory.	Poor		67	80	85
	Fair		51	63	70
	Good		35	47	55
Desert shrub—major plants include saltbush,	Poor	63	77	85	88
greasewood, creosotebush, blackbrush, bursage,	Fair	55	72	81	86
palo verde, mesquite, and cactus.	Good	49	68	79	84

 1 Average runoff condition, and $I_{\rm as}$ = 0.28. For range in humid regions, use table 2-2c. 2 Poor: <30% ground cover (litter, grass, and brush overstory). Fair: 30 to 70% ground cover.

Good: > 70% ground cover. ³ Curve numbers for group A have been developed only for desert shrub.

Cripple Creek and Victor Gold Mining Company Whex Pond Hydrology Lag Time Calculation

$$t_p = \frac{l^{0.8}(S+1)^{0.7}}{1900y^{0.5}}$$

- t_p Lag Time (hr.)
- I Length to Divide (ft)
- y Avg. Watershed Slope (%)
- CN Composite Curve Number
- S 1000/CN-10 (in.)
- la Initial Abstraction (0.2*S)

Input Values

	Lag Ti	ime and Wa	atershed C	haracteristi	cs			
Watershed ^{1, 2}	Area (mi ²)	l (ft)	CN	У	S	t _p (hr)	t _p (min)	la
Area 1	3,575,518.24	1,921	67	22.3%	4.87	0.16	9.8	0.97

Cripple Creek & Victor Gold Mining Company Whex Pond Sizing Calculations Watershed Summary

Hydraulic Element	Drainage Area (Mi ²)	Peak Discharge (ft ³ /s)	Volume (acre-ft)
Area-1	0.1283	263.8	22.0
Whex Pond	0.1283	263.8	22.0

500 Year-24 Hour Hec-HMS Results

Cripple Creek & Victor Gold Mining Company Whex Pond Sizing Calculations Hec-HMS Overall View

Cripple Creek and Victor Gold Mining Company Whex Pond Hydrology Lag Time Calculation

$$t_p = \frac{l^{0.8}(S+1)^{0.7}}{1900y^{0.5}}$$

- t_p Lag Time (hr.)
- I Length to Divide (ft)
- y Avg. Watershed Slope (%)
- CN Composite Curve Number
- S 1000/CN-10 (in.)
- la Initial Abstraction (0.2*S)

Input Values

	Lag Ti	me and Wa	atershed C	haracteristi	cs			
Watershed ^{1, 2}	Area (mi ²)	l (ft)	CN	У	s	t _p (hr)	t _p (min)	la
West WHEX Pond Channel	524,861.65	1,826	68	11.7%	4.69	0.21	12.7	0.94
East WHEX Pond Channel	309,069.64	1,565	78	23.7%	2.87	0.10	6.0	0.57

Cripple Creek & Victor Gold Mining Company Whex Channel Sizing Calculations Watershed Summary

25 Year-24 Hour Hec-HMS Results

Hydraulic Element	Drainage Area (Mi ²)	Peak Discharge (ft ³ /s)	Volume (acre-ft)
West Channel	0.0188	7.8	1.0
East Channel	0.0111	11.2	0.9

100 Year-24 Hour Hec-HMS Results

Hydraulic Element	Drainage Area (Mi ²)	Peak Discharge (ft ³ /s)	Volume (acre-ft)
West Channel	0.0188	15.3	1.8
East Channel	0.0111	18.6	1.5

500 Year-24 Hour Hec-HMS Results

Hydraulic Element	Drainage Area (Mi ²)	Peak Discharge (ft ³ /s)	Volume (acre-ft)
West Channel	0.0188	27.9	3.1
East Channel	0.0111	30.0	2.4

Cripple Creek & Victor Gold Mining Company Whex Channel Sizing Calculations Hec-HMS Overall View

Cripple Creek and Victor Gold Mining Company Whex Pond Hydrology Pollutant Load Estimation Tool

Inputs

	/ inputs re	elevant	to sedim	ent loadin	g are sho	own.												
 1. Wate 	ershed Land	Use Area	(ac) and Pro	ecipitation (ir	ר)													
ouble-click (on the "HSG" fi	ield to select o	a Hydrologic S	oil Group catego	ory [NOTE: ho	over over the "I	HSG" column header	for more informa	ition].									
۷	Watershed		HSG	Urban	Сгор	bland	Pastureland	Forest	User Defined	Feedlots	Tot	al	Feedlots Percent Paved		nnual ainfall	Rain Day		Average Rain/Event
Custo	om Watershed		в	11.3	3	0.00	0.00	9.36	61.39	0.0	00	82.08	0-2	4%	12.96		68.83	0.4712
	x x		ter Dischar	90														
 4. Perce 	ent Nutrient ersal Soil Lo	t in Soil	n	<u> </u>			Parturalan				Forrest					User Defined		
 4. Perce 5. Unive 	ent Nutrient ersal Soil Lo	t in Soil	n Cropland		P	R	Pasturelanı K LS		PR	к	Forest	c	P	R		User Defined		р
 4. Perce 	ent Nutrient	t in Soil	n	c	P 1.00000 3	R 30,00000 0	Pasturelan K LS 0.13576 3.56416	с	P R 1.00000 30.000	K 00 0.13576	Forest LS 3.56416	C 0.00300	P 1.00000	R 30.00000	к 0.13576	User Defined LS 3.56416	C 0,13065	P 1.00000

• 6. Reference Runoff Curve Nu	mber			
SHG	A	В	с	D
Urban	83.00	93.00	92.00	93.00
Cropland	67.00	78.00	85.00	89.00
Pastureland	49.00	62.00	79.00	84.00
Forest	39.00	70.00	73.00	79.00
User Defined	0.00	62.00	0.00	0.00

Cripple Creek and Victor Gold Mining Company Whex Pond Hydrology Pollutant Load Estimation Tool

								Outpu	ıts							
ïtle WHEX Pond				Stat Co		♥ Watersh	ed om Watershed]	þ	Q Lookup		County TELLER		٥	Weather S	
	Share Mo	odel 🛛 Copy N	/lodel Dele	te Model	Save/Exit						Rainfa 0.722	all Correction Fa	actor	Raindays Cor 0.2888	rection Factor	Rainfal 0
A	dd watershed		ſ	Delete watersh	eds		Gullies and	Streambanks		ι	Jrban BMP Too	I		Manure Ap	plication	
Inputs	BMPs	Total Loads	Additi	onal Referenc	e Tables											
Loads Calcu	lated															
	Gr	oundwater load	calculation		Treat all sub	watersheds as	part of a singl	e watershed								
1. Total I	load by sul	owatersh	ed(s)													
Watershed	N Load (No BMP) (Ibs/year)	P Load (No BMP) (Ibs/year)	BOD Load (No BMP) (Ibs/year)	Sediment Load (No BMP) (tons/year)	N Reduction (Ibs/year)	P Reduction (Ibs/year)	BOD Reduction (Ibs/year)	Sediment Reduction (tons/year)	N Load (With BMP) (Ibs/year)	P Load (With BMP) (Ibs/year)	BOD Load (With BMP) (Ibs/year)	Sediment Load (With BMP) (tons/year)	% N Reduction	% P Reduction	% BOD Reduction	% Sediment Reduction
Custom Watershed	217.30	80.49	459.71	63.75	0.00	0.00	0.00	0.00	217.30	80.49	459.71	63.75	0.00	0.00	0.00	0.00
TOTAL	217.30	80.49	459.71	63.75	0.00	0.00	0.00	0.00	217.30		459.71	63.75	0.00			

Total annual sediment load:

63.75 tons/year

Rock Chute Design Data

(Version 4.01 - 04/23/03, Based on Design of Rock Chutes by Robinson, Rice, Kadavy, ASAE, 1998)

Rock Chute Design Data

(Version 4.01 - 04/23/03, Based on Design of Rock Chutes by Robinson, Rice, Kadavy, ASAE, 1998)

Attachment 2

Figure 1 – WHEX Pit Clay Excavation

LEGEND:

EXISTING GROUND CONTOURS PROPOSED GROUND CONTOURS EXISTING ROADS/TRAILS × — × — EXISTING FENCE EXISTING CULVERT

Attachment 3

Figure 2 – WHEX Pit Excavation Reclamation

Attachment 4

TR-137 WHEX Clay Borrow Reclamation Costs

Table 1: TR-137 Additional WHEX Clay Borrow Reclamation									
Task	Unit	Unit Cost			Total Cost				
WHEX Clay Borrow Topsoil (CY)	6575.0	\$	1.64	\$	10,757.36				
WHEX Clay Borrow Revegetation (Acre)	8.2	\$	1,667.37	\$	13,589.07				
DRMS Indired	\$	6,938.73							
	\$	31,285.15							

Current Bond Held	\$ 209,491,188.00
Current Financial Warranty (TR-133 Update)	\$ 208,742,229.26
TR-137 Liability Amount	\$ 31,285.15
New Financial Warranty	\$ 208,773,514.42
Surplus Financial Warranty	\$ 717,673.58