

May 2, 2023

Ms. Amy Yeldell Environmental Protection Specialist Colorado Division of Reclamation, Mining and Safety 1313 Sherman Street, Room 215 Denver, CO 80203

Mr. Scott Hall Realty Specialist U.S. Bureau of Land Management, GJFO 2815 H Road Grand Junction, CO 81506

RE: Logan Wash Mine Retort Water Pipeline Release Report (Permit No. M-1977-424)

Dear Ms. Yeldell and Mr. Hall:

Western Water & Land, Inc. (WWL), as agent for Occidental Oil Shale, Inc., has prepared this report to describe the events associated with a discovered release from the Logan Wash Mine (Permit No. M-1977-424) retort pipeline on the morning of April 14th, 2023.

Background

Mine water at Logan Wash Mine originates as deep percolation of meteoric precipitation through the upper Parachute Creek Member of the Green River Formation. Some of this groundwater percolates through natural fractures and into the modified in-situ retorts within the mine. Retorting involved the combustion and high-temperature heating of oil shale in large rubblized areas. Percolation of groundwater through the retorts is captured in sumps and piped from the mine. The retore water is conveyed approximately 5 miles to an Evaporation Pond by way of a buried 4- to 6-inch polyvinyl chloride (PVC) pipe. The retort pipe is located underneath or immediately adjacent to Logan Wash Road at a depth of 6 to 7 feet below ground surface The pipe can be accessed by a number of vaults with cast iron manhole covers located in or adjacent to the road. In recent years, the discharge rate of the retort water has been approximately 2.2 gallons per minute (gpm).

Findings

WWL was conducting standard monitoring tasks at the mine facilities on April 13th, 2023 when it was found that no retort water was entering and passing through the Lower Manhole, near the Evaporation Pond. However, flow was observed at the Upper Manhole closer to the mine site. This observation indicated that there was a break or plug in the pipeline within the four-mile segment of the pipeline between the two manholes.

Applications in Earth Science

A commercial vacuum and pot-holing contractor was available to mobilize to the site on the same afternoon. The goal was to locate and access individual manholes along the pipeline progressively working upstream of the Lower Manhole in an effort to identify the plugged or broken section. One manhole (MH #7) was located quickly using pot-holing methods on Logan Wash Road near the intersection with Evaporation Pond Access Road; no flow was present at this manhole. Working up the pipeline, MH #8 was not found, and a large wash-out scour on the road prevented the vacuum truck from proceeding further up the pipeline alignment.

The retort pipeline was not shut-in overnight for the following reasons: 1) Logan Wash Road is currently snowed-in and the mine is not reachable by vehicle; 2) hiking into the mine would take several hours, 3) shutting in the mine retort water normally involves confined space procedures; and 4) shutting-in the retort pipeline presents an additional risk of an underground release. Such an event would require reopening the plugged portal, ventilating the mine, and addressing safe mine entry issues to investigate and remedy the situation. WWL arranged for a mini-excavator contractor to be on site the next morning, April 14th, to assist in locating pipeline manholes located further up the road.

The morning of Friday, April 14th saw moderate to heavy wet snowfall and sleet. Upon arrival at the site, WWL immediately inspected the large wash-out scour on Logan Wash Road. The scouring exposed the retort pipeline at its buried depth of approximately seven feet below the grade of the road. The retort pipeline was broken with complete displacement in one location and fractures in two other locations. It appeared that a large snow melt runoff event had flooded Logan Wash which then flooded onto Logan Wash Road causing deep erosion in the northern bar ditch. This water apparently began to scour toward the center of Logan Wash Road causing the large observed washout. It appeared that sloughing from the side of the washout fell on the side and top of the pipeline, causing it to break. Figure 1 shows the location of the release.

Retort water from the broken pipeline was flowing at an estimated rate of 2.2 gpm (measured the previous day at the Upper Manhole) into the scour and mixing with natural runoff (approximately 20 gpm). About 70 feet downstream of the pipeline break, the flow in the scour merged with flow in Logan Wash. Flow in Logan Wash was estimated at no more than 0.5 cubic feet per second (cfs) or approximately 224 gpm.

By phone message, WWL notified Mr. Scott Hall of the U.S. Bureau of Land Management (BLM) of the release at approximately 10:30 am and also by phone message, WWL notified the Colorado Division of Reclamation, Mining and Safety (DRMS) of the pipeline release at 10:36 am. Unfortunately, it was later determined that the call to Scott Hall, did not go through to him. However, DRMS had communicated the release to the BLM.

The excavator operator was instructed to remove sloughed soils on top of the broken pipe and prepare the area for pipeline repair. The pipeline was repaired and the water release was stopped at approximately 2:00 pm. To protect the pipeline from another break from sloughing material, the scour and pipeline was backfilled with approximately 3 feet of native soil and sediment materials from the road and runoff sediment deposits adjacent to the scour. This did not completely fill the scour; over three feet of vertical face remained. Safety cones were placed at the entrance to the washout to warn oncoming vehicles of the hazard.

Prior to partially backfilling the exposed pipeline, three samples were collected at the release site: two soil/sediment samples and one water sample of the released retort water. Soil and sediment sample "Release Channel" was collected approximately 40 feet downstream of the pipeline break and within the scour channel. Soil and sediment sample "Logan Wash Channel" was collected approximately 100

Page 3

feet upstream of the confluence with the scour channel in the main Logan Wash channel to serve as a background sediment sample. Both sediment samples consisted of a composite of approximately 6 subsamples collected immediately adjacent to and within the active flowing channel. The water sample "Retort Pipe 41423" was collected directly from the broken retort pipeline. Figure 2 shows the locations of the collected samples.

Photographs of the release site, pipeline repair, and the interim backfilled scour are shown in Attachment A.

Laboratory Analysis and Results

Site samples associated with the release were collected on a Friday, April 14th. To maintain sample preservation, WWL refrigerated the samples over the weekend and shipped them to Pace Laboratories in Mount Juliet, Tennessee on Monday, April 17th, 2023. A three-day turn-around was requested. Requested analytes included Total Petroleum Hydrocarbons (TPH, i.e., DRO and GRO), for both the soil/sediment and water samples, and the additional analytes for the retort water sample of alkalinity, alkalinity bicarbonate, alkalinity carbonate, total phosphorus, dissolved metals of arsenic, boron, calcium, iron, magnesium, potassium, selenium, and sodium; anions chloride, bromide, nitrate, nitrite, and sulfate; the volatile organic compounds (VOCs) benzene, toluene, ethylbenzene, and total xylenes (BTEX), pH, and specific conductance.

Preliminary results of the laboratory analysis were provided by Pace Laboratories on Friday, April 21st. However, the results indicated a suspected error in the wet chemistry analysis of alkalinity and pH. WWL requested that these parameters be reanalyzed. To support reanalysis, WWL shipped overnight on Monday, April 23rd, an additional sample volume that had been collected, refrigerated and saved on April 14th. WWL requested an extended metals analyses for this extra sample volume. On Friday April 28th, Pace submitted the results of the reanalysis of the initial submittal, as well as the results of the extended metals analyses.

Table 1 summarizes the preliminary and subsequent analytical results for sample Retort Pipe 41423, and Table 2 summarizes preliminary results for soil/sediment samples Release Channel and Logan Wash Channel. The complete laboratory analytical report for the soil analysis is in Attachment B.

The analytical results shown in Table 1 show that concentrations of the constituents of boron, molybdenum, and selenium exceeded one or more state water quality standards. The concentration of boron in retort water is within the historical range of biannual sampling results; boron concentrations are relatively high in groundwater in the Piceance Basin, especially in the Green River Formation. The selenium concentration of 6.77 μ g/L is also somewhat typical of retort water, whereas the second result of 16.4 μ g/L is uncharacteristically above most concentrations in historical data. No historical data for molybdenum concentration in retort water is available. It is likely these elements attenuated in concentration by dilution when mixing with stormwater runoff in Logan Wash and by adsorption to sediment downstream of the retort pipeline release. Note that six background soil samples collected between 5 to 7 and 8 to 10 feet below ground surface in 2018 to support soil sampling under the Evaporation Pond liner showed a selenium concentration ranging from 5.2 to 16 mg/Kg (dry).

Table 2 shows that the TPH parameters tested in both the background (Logan Wash Channel) and the release-site sample (Release Channel) differed in the concentration of DRO, showing 3.49 and 8.75 mg/L, respectively. However, the concentration of GRO was virtually the same between the two samples at 0.376 mg/Kg in the Logan Wash Channel and 0.380 mg/Kg in the Release Channel. The total TPH was well below the typical threshold level of 500 mg/Kg proposed by the Colorado Division of Oil and Public Safety (DOPS).

Page 4

Recommendations

On the basis of the analytical results of soil and retort water samples collected at the release location, WWL does not recommend remediation of the affected soils as TPH concentrations in the soils are well below the DOPS threshold limit, and potential metals contamination was likely minimal and within background soil concentrations for some metals.

The BLM visited the release site on Monday, April 17th, and the DRMS conducted an inspection of the site on April 21st.

If you wish to conduct further mutual inspections of the spill site or have questions, please contact me at (970) 242-0170.

Sincerely,

Bruce & Sant

Bruce D. Smith WESTERN WATER & LAND, INC.

cc: David Anderson, Sr. Project Manager, Glenn Springs Holdings, Inc.

Attachments

Legend Soil Sample Location	Garfield County, Colorado	Figure 2. Logan Wash Mine Retort Pipeline Release Sample Locations
 Release Water Sample Location Logan Wash Road 	= Western Water & Land, Inc.	0 75 150 300 Feet

Table 1. Logan Wash Mine Retort Water Spill Sample Analytical Results April 14, 2023

				Retort Pi	pe 41423	ł			lo Regulation # ds For Roan Cr		· .
Parameters	Units	Result 4/19/23 ²	Result 4/26/23 ³	Qualifier	MDL	RL	Dilution Factor	Units	Acute	Chronic	Basis
General Chemistry									r	1	
Alkalinity	µg/L	U	363000		8450	20000	1				
Alkalinity, Bicarbonate	µg/L	U	363000		8450	20000	1				
Alkalinity, Carbonate	µg/L	U	U	U	8450	20000	1				
Bromide	µg/L	36400	36400	J	35300	100000	100				
Chloride	µg/L	141000	141000		37900	100000	100	µg/L		250000	
Sulfate	µg/L	5160000	5160000		59400	500000	100	µg/L			WS
Nitrate (as N)	µg/L	4870	4870	J, T8	4800	10000	100	µg/L	10000		
Nitrite (as N)	µg/L	U	U	T8	4200	10000	100	µg/L		50	
рН	s.u.	2.21	8.09	T8			1	s.u.	6.5-9.0		
Phosphorus, total	μg/L	42.2	42.2	J	35.5	100	1	µg/L		170	
Total Dissolved Solids	µg/L	9960000				200000	1				
Specific Conducatance	µmhos/cm	9260	9260			10	1				
Metals											
Arsenic	µg/L	33.2	39.8		4.4	10	5/1	µg/L	340	20T	
Arsenic(T)	µg/L		28.2		4.4	10					
Boron	µg/L	13200			96.3	300	10	µg/L	750		
Cadmium	µg/L		1.1	J	0.479	2	1	µg/L	5.68	1.82	TVS
Cadmium(T)	µg/L		U		0.479	2	1	µg/L	5		
Calcium	µg/L	60800			468	5000	5				
Chromium III	µg/L		U		1.4	10	1	µg/L	1567	204	TVS
Chromium VI	µg/L		U	Т8	3	10	1	µg/L	16	11	
Copper	µg/L		U		3.68	10		µg/L	43	25.7	TVS
Iron	µg/L	U	34.8	BJ	18	100	1	µg/L		1000000	WS
Iron(T)	µg/L		53.3	J	18	100	1	µg/L		1000	
Lead	µg/L		U		2.99	6	1	µg/L	240	9.4	TVS
Lead(T)	μg/L		Ū		2.99	6	1	µg/L	50	-	TVS
Manganese	µg/L		20.3		0.934	10	1	µg/L	4506	2489	WS/TVS
Mercury(T)	µg/L		U		0.1	0.2	1	µg/L		0.01	TVS
Molybdenum(T)	μg/L		1910		1.16	5	1	µg/L		150	
Potassium	μg/L	1010000	1010		540	10000	5	-5-		100	
Nickel	μg/L	1010000	U		1.61	10	1	µg/L	1332	148	TVS
Nickel(T)	µg/L		Ŭ		1.61	10	1	µg/L	1552	100	TVS
Selenium	μg/L μg/L	6.77J	16.4		1.5/7.35	10	5/1	μg/L	18.4	4.6	195
Silver	μg/L	0.770	U		1.54	5	1	μg/L	17	0.63	TVS
Sodium	µg/L	1380000	0		1880	10000	5	P9/-	1/	0.05	145
Uranium	μg/L	100000	3.79	J	0.07	20	1	µg/L	9375	5856	TVS
Zinc	μg/L	l	3.79 U	J	6.52	20 50	1	μg/L	492	373	TVS
Volatile Organic Compounds - BTEX	P9/L		U		0.52	50	1		492 Iman Health-Based		
Benzene	µg/L	U	U		0.0941	1	1	µg/L	2.3 to 5M	i water sup	ріу
Ethylbenzene		U	U		0.0941		1		2.3 to Sivi 700M		
Toluene	μg/L μg/L	U	U		0.137	1 1	1	μg/L μg/L	560 to 1000M		
		-					-				
Xylenes, Total	µg/L	U	U		0.174	3	1	µg/L	1400 to10000M	I	
Total Petroleum Hydrocarbons		0040	0040		04.7	400			1		
DRO (C10-C28)	µg/L	2810	2810		24.7	100	1				
GRO (C6-C10)	µg/L	U	U		157	500	5	1			

Trip Blank Results

The Blank neodels					
Benzene	µg/L	U	0.0941	100	1
Ethylbenzene	µg/L	U	0.137	100	1
Toluene	µg/L	U	0.278	100	1
Xylenes, Total	µg/L	U	0.174	100	1
Total Petroleum Hydrocarbons					
GRO (C6-C10)	µg/L	U	31.4	100	1

¹ Colorado Department of Public Health and Environment Water Quality Control Commission

² Initial analysis conducted on 4/18-19/23. Suspect results for pH and alkalinity resulted in reanalysis on 4/26/23 which also included additional metals as shown.

A reanalysis of pH and alkalinity on 4/25-26/23 showed a pH of 7.78 and Total and Bicarbonate Alkalinity of 340000 $\mu g/L.$

³ Additional saved sample volume was analyzed for metals listed in CDPHE Colorado Regulation # 37 Water Quality Standards For Roan Creek Segment 14c

U = undetected

J = The identification of the analyte is acceptable; the reported value is an estimate.

T8 = Sample received past to or past holding time expiration.

WS = Water supply

D = Dissolved

T = Total

M = Drinking water maximum contaminant level

Regulation 31 and 37. 5 CCR 1002 -31 and 5 CCR 1002-37

Orange highlight = constituenent concentration exceeds a state standard

Table 2. Preliminary Logan Wash Mine Retort Water Spill Soil Sample Analytical Results April 14, 2023

			Sample ID								
			Rel	ease Chanr	nel			Loga	n Wash Chanr	nel	
		Result	0			Dilution	Result	o ""			Dilution
Parameters	Units	4/19/23	Qualifier	MDL	RL	Factor	4/19/23	Qualifier	MDL	RL	Factor
Petroleum Products											
DRO (C10-C28)	mg/Kg	8.75		0.937	4.87	1	3.49	J	0.907	4.72	1
GRO (C6-C10)	mg/Kg	0.38		0.0264	0.122	1	0.443		0.0256	0.118	1

J = The identification of the analyte is acceptable; the reported value is an estimate.

ATTACHMENT A

PHOTOGRAPHS

Photo 1. Washout on Logan Wash Road.

Photo 2. Washout on Logan Wash Road showing exposed Retort Pipeline

Photo 3. Washout on Logan Wash Road showing exposed Retort Pipeline

Photo 4. Washout on Logan Wash Road showing soil excavation near exposed Retort Pipeline.

Photo 5. Building soil ramp into washout.

Photo 6. Exposed broken Retort Pipe in bottom of washout.

Photo 7. Repaired Retort Pipeline.

Photo 8. Backfilling over repaired Retort Pipeline

Photo 9. Interim backfilling complete at washout.

Photo 10. Upstream view of Logan Wash; washout is to right.

Photo 11. Washout tributary to Logan Wash.

Photo 12. Downstream of confluence of washout tributary (left) to Logan Wash.

Photo 13. View looking upstream in Logan Wash channel plugged by sediment debris at crossing of Logan Wash Road.

Photo 14. Plugged culverts at crossing of Logan Wash Road and Logan Wash.

Photo 15. Scoured bar ditch on north side of Logan Wash Road that resulted in large eroded washout.

Photo 16. Final regraded washout location.

ATTACHMENT B

LABORATORY REPORTS

Note: the Preliminary report from Pace showing undetected alkalinity and a pH of 2.2 for the Retort Pipe 41423 sample was reissued by Pace after correct analysis was performed; the original report is no longer available.

Pace Analytical® ANALYTICAL REPORT April 28, 2023

GHD-Houston, TX-Glenn Springs Holdings

L1606161 Sample Delivery Group: Samples Received: 04/18/2023 Project Number: 14266DM Description: Logan Wash Mine Site: LOGAN WASH RETORT PIPELINE Report To: Sheri Finn;Bruce Smith 2055 Niagara Falls Blvd. #3 Niagara Falls, NY 14034

Entire Report Reviewed By:

Drittie Boyd

Brittnie L Boyd Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

ACCOUNT: GHD-Houston, TX-Glenn Springs Holdings PROJECT: 14266DM

SDG: L1606161

DATE/TIME: 04/28/23 11:43 PAGE: 1 of 31

Тс Ss Cn Sr ʹQc Gl AI Sc

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
LOGAN WASH CHANNEL L1606161-01	5
RELEASE CHANNEL L1606161-02	6
RETORT PIPE 41423 L1606161-03	7
TRIP BLANK L1606161-04	9
Qc: Quality Control Summary	10
Gravimetric Analysis by Method 2540 C-2011	10
Total Solids by Method 2540 G-2011	11
Wet Chemistry by Method 2320 B-2011	12
Wet Chemistry by Method 365.4	14
Wet Chemistry by Method 9040C	15
Wet Chemistry by Method 9050A	16
Wet Chemistry by Method 9056A	17
Metals (ICPMS) by Method 6020	19
Volatile Organic Compounds (GC) by Method 8015D/GRO	21
Volatile Organic Compounds (GC/MS) by Method 8260B	24
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	25
Semi-Volatile Organic Compounds (GC) by Method 8015	26
GI: Glossary of Terms	27
Al: Accreditations & Locations	28
Sc: Sample Chain of Custody	29

PROJECT: 14266DM SDG: L1606161 DATE/TIME: 04/28/23 11:43

ME: 11:43 PAGE: 2 of 31

SAMPLE SUMMARY

LOGAN WASH CHANNEL L1606161-01 Solid			Collected by Bruce Smith	Collected date/time 04/14/23 00:00	Received dat 04/18/23 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG2044473	1	04/19/23 07:38	04/19/23 07:54	СМК	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG2044255	1	04/18/23 16:51	04/19/23 12:28	NCC	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG2044023	1	04/18/23 15:55	04/18/23 21:33	KAP	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
RELEASE CHANNEL L1606161-02 Solid			Bruce Smith	04/14/23 00:00	04/18/23 09:	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG2044473	1	04/19/23 07:38	04/19/23 07:54	СМК	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG2044255	1	04/18/23 16:51	04/19/23 12:50	NCC	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG2044023	1	04/18/23 15:55	04/19/23 02:06	KAP	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
RETORT PIPE 41423 L1606161-03 GW			Bruce Smith	04/14/23 13:30	04/18/23 09:	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
/icrobiology by Method BART	WG2044095	1	04/28/23 08:25	04/28/23 08:25	TMP	Mt. Juliet, TN
Gravimetric Analysis by Method 2540 C-2011	WG2044865	1	04/19/23 20:22	04/20/23 00:53	ARD	Mt. Juliet, TN
Vet Chemistry by Method 2320 B-2011	WG2048264	1	04/26/23 10:37	04/26/23 10:37	ARD	Mt. Juliet, TN
Vet Chemistry by Method 365.4	WG2045036	1	04/19/23 09:38	04/19/23 17:22	UNP	Mt. Juliet, TN
Vet Chemistry by Method 9040C	WG2048489	1	04/25/23 18:44	04/25/23 18:44	KAD	Mt. Juliet, TN
Vet Chemistry by Method 9050A	WG2041510	1	04/19/23 17:33	04/19/23 17:33	NTG	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG2045531	100	04/21/23 02:01	04/21/23 02:01	GEB	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2045324	10	04/20/23 18:48	04/20/23 23:13	LD	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2045324	5	04/20/23 18:48	04/21/23 00:10	JPD	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG2044664	5	04/19/23 15:41	04/19/23 15:41	KSD	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2044188	1	04/18/23 18:16	04/18/23 18:16	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG2043578	1	04/18/23 20:36	04/19/23 15:24	TJD	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
TRIP BLANK L1606161-04 GW			Bruce Smith	04/14/23 00:00	04/18/23 09:	30
Method	Batch	Dilution	Preparation	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG2044316	1	date/time 04/19/23 02:30	04/19/23 02:30	ACG	Mt. Juliet, TN

PROJECT: 14266DM

SDG: L1606161

DATE/TIME: 04/28/23 11:43

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Drittine Boyd

Brittnie L Boyd Project Manager

Project Narrative

The following reactions were observed on one or more samples within this SDG.

- BR Brown Ring
- FO Foam
- GC Green Cloudy
- BB Blackened Base
- BT Blackening around Ball
- SR Slime Ring around Ball

SDG: L1606161 DATE/TIME: 04/28/23 11:43

LOGAN WASH CHANNEL Collected date/time: 04/14/23 00:00

SAMPLE RESULTS - 01 L1606161

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	84.8		1	04/19/2023 07:54	WG2044473	Тс

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
nalyte	mg/kg		mg/kg	mg/kg		date / time		
PH (GC/FID) Low Fraction	0.443		0.0256	0.118	1	04/19/2023 12:28	WG2044255	
(S) a,a,a-Trifluorotoluene(FID)	92.9			77.0-120		04/19/2023 12:28	WG2044255	

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) High Fraction	3.49	J	0.907	4.72	1	04/18/2023 21:33	WG2044023
(S) o-Terphenyl	65.5			18.0-148		04/18/2023 21:33	WG2044023

SDG: L1606161 Qc

GI

Â

RELEASE CHANNEL Collected date/time: 04/14/23 00:00

SAMPLE RESULTS - 02 L1606161

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		
Analyte	%			date / time		2	-
Total Solids	82.1		1	04/19/2023 07:54	WG2044473	Tc Tc	;

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
[PH (GC/FID) Low Fraction	0.380		0.0264	0.122	1	04/19/2023 12:50	WG2044255
(S) a,a,a-Trifluorotoluene(FID)	92.8			77.0-120		04/19/2023 12:50	WG2044255

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) High Fraction	8.75		0.937	4.87	1	04/19/2023 02:06	WG2044023
(S) o-Terphenyl	92.5			18.0-148		04/19/2023 02:06	<u>WG2044023</u>

Qc

GI

Â

RETORT PIPE 41423 Collected date/time: 04/14/23 13:30

SAMPLE RESULTS - 03

Microbiology by Method BART

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte				date / time		2
Iron Related Bacteria	Present		1	04/28/2023 08:25	WG2044095	2
Slime Forming Bacteria	Present		1	04/28/2023 08:25	WG2044095	L
Sulfate Reducing Bacteria	Present		1	04/28/2023 08:25	WG2044095	3

Sample Narrative:

L1606161-03 WG2044095: IRB Approximate Population=35,000 CFU/mL. Reactions=FO/BR/GC.

L1606161-03 WG2044095: SLYM Approximate Population=500 CFU/mL. Reactions=SR.

L1606161-03 WG2044095: SRB Approximate Population=115,000 CFU/mL. Reactions=BT/BB.

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	9960000		200000	1	04/20/2023 00:53	WG2044865

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Alkalinity	340000		8450	20000	1	04/26/2023 10:37	WG2048264	
Alkalinity,Bicarbonate	340000		8450	20000	1	04/26/2023 10:37	WG2048264	
Alkalinity,Carbonate	U		8450	20000	1	04/26/2023 10:37	WG2048264	

Sample Narrative:

L1606161-03 WG2048264: Endpoint pH 4.5 Headspace

Wet Chemistry by Method 365.4

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Phosphorus, Total	42.2	J	35.0	100	1	04/19/2023 17:22	WG2045036

Wet Chemistry by Method 9040C

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	su			date / time	
рН	7.78	<u>T8</u>	1	04/25/2023 18:44	WG2048489

Sample Narrative:

L1606161-03 WG2048489: 7.78 at 19.4C

Wet Chemistry by Method 9050A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	umhos/cm		umhos/cm		date / time	
Specific Conductance	9260		10.0	1	04/19/2023 17:33	WG2041510

Sample Narrative:

L1606161-03 WG2041510: at 25C

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Bromide	36400	J	35300	100000	100	04/21/2023 02:01	WG2045531	
Chloride	141000		37900	100000	100	04/21/2023 02:01	<u>WG2045531</u>	
Nitrate	4870	<u>J T8</u>	4800	10000	100	04/21/2023 02:01	WG2045531	
Nitrite	U	<u>T8</u>	4200	10000	100	04/21/2023 02:01	WG2045531	
Sulfate	5160000		59400	500000	100	04/21/2023 02:01	WG2045531	
	ACCOUNT:			PROJECT:		SDG:	DATE/TIME:	PAGE

GHD-Houston, TX-Glenn Springs Holdings

14266DM

L1606161

DATE/TIME: 04/28/23 11:43 PAGE: 7 of 31

RETORT PIPE 41423 Collected date/time: 04/14/23 13:30

SAMPLE RESULTS - 03

Metals (ICPMS) by Method 6020

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Arsenic,Dissolved	33.2		0.900	10.0	5	04/21/2023 00:10	<u>WG2045324</u>	
Boron,Dissolved	13200		96.3	300	10	04/20/2023 23:13	<u>WG2045324</u>	
Calcium,Dissolved	60800		468	5000	5	04/21/2023 00:10	<u>WG2045324</u>	
ron,Dissolved	U		140	500	5	04/21/2023 00:10	<u>WG2045324</u>	
Magnesium,Dissolved	46800		368	5000	5	04/21/2023 00:10	<u>WG2045324</u>	
Potassium,Dissolved	1010000		540	10000	5	04/21/2023 00:10	<u>WG2045324</u>	
Selenium,Dissolved	6.77	J	1.50	10.0	5	04/21/2023 00:10	<u>WG2045324</u>	
Sodium,Dissolved	1380000		1880	10000	5	04/21/2023 00:10	<u>WG2045324</u>	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Joinpound		Method	OUIDD/ORO				6
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	[°] Qc
Analyte	ug/l		ug/l	ug/l		date / time		
TPH (GC/FID) Low Fraction	U		157	500	5	04/19/2023 15:41	WG2044664	⁷ Gl
(S) a,a,a-Trifluorotoluene(FID)	114			78.0-120		04/19/2023 15:41	<u>WG2044664</u>	
								⁸ Al

Sample Narrative:

L1606161-03 WG2044664: Lowest possible dilution due to sample foaming.

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	04/18/2023 18:16	WG2044188
Toluene	U		0.278	1.00	1	04/18/2023 18:16	WG2044188
Ethylbenzene	U		0.137	1.00	1	04/18/2023 18:16	WG2044188
Total Xylenes	U		0.174	3.00	1	04/18/2023 18:16	WG2044188
(S) Toluene-d8	103			80.0-120		04/18/2023 18:16	WG2044188
(S) 4-Bromofluorobenzene	95.6			77.0-126		04/18/2023 18:16	WG2044188
(S) 1,2-Dichloroethane-d4	114			70.0-130		04/18/2023 18:16	WG2044188

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
TPH (GC/FID) High Fraction	2810		24.7	100	1	04/19/2023 15:24	WG2043578
(S) o-Terphenyl	123			31.0-160		04/19/2023 15:24	WG2043578

PROJECT: 14266DM SDG: L1606161 DATE/TIME: 04/28/23 11:43 PAGE: 8 of 31

SAMPLE RESULTS - 04

Volatile Organic Compounds (GC) by Method 8015D/GRO

0	1							1°Cn	н
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	Cp	l
Analyte	ug/l		ug/l	ug/l		date / time		2	ì
TPH (GC/FID) Low Fraction	U		31.4	100	1	04/19/2023 02:30	WG2044316	Tc	l
(S) a,a,a-Trifluorotoluene(FID)	117			78.0-120		04/19/2023 02:30	WG2044316	3	1
								SS	I

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
		Qualifier			Dilution	,	Daten	
Analyte	ug/l		ug/l	ug/l		date / time		
Benzene	U		0.0941	1.00	1	04/18/2023 17:33	WG2044188	
Toluene	U		0.278	1.00	1	04/18/2023 17:33	WG2044188	
Ethylbenzene	U		0.137	1.00	1	04/18/2023 17:33	<u>WG2044188</u>	
Total Xylenes	U		0.174	3.00	1	04/18/2023 17:33	<u>WG2044188</u>	
(S) Toluene-d8	103			80.0-120		04/18/2023 17:33	WG2044188	
(S) 4-Bromofluorobenzene	92.8			77.0-126		04/18/2023 17:33	WG2044188	
(S) 1,2-Dichloroethane-d4	114			70.0-130		04/18/2023 17:33	WG2044188	

A

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1606161-03

Method Blank (MB)

(MB) R3915897-1 04/20	0/23 00:53			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		10000	10000

L1605291-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1605291-03 04/20/2	23 00:53 • (DUF	P) R3915897-3	04/20/23	3 00:53		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	894000	962000	1	7.33	<u>J3</u>	5

L1605291-04 Original Sample (OS) • Duplicate (DUP)

L1605291-04 Orig	ginal Sample	(OS) • Dup	plicate ((DUP)			⁷ Gl
(OS) L1605291-04 04/2	0/23 00:53 • (DU	P) R3915897-4	4 04/20/2	3 00:53			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al
Analyte	ug/l	ug/l		%		%	
Dissolved Solids	744000	659000	1	12.2	<u>J3</u>	5	⁹ Sc

Laboratory Control Sample (LCS)

(LCS) R3915897-2 04	/20/23 00:53				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Dissolved Solids	8800000	8440000	95.9	77.3-123	

SDG: L1606161

DATE/TIME: 04/28/23 11:43

PAGE: 10 of 31 Тс

Ss

Cn

Sr

Qc

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

Method Blank (MB)

	/			
(MB) R3915253-1 04/1	9/23 07:54			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

L1606226-17 Original Sample (OS) • Duplicate (DUP)

(OS) L1606226-17 04/	19/23 07:54 • (D	UP) R3915253-3	3 04/19/23	07:54		
	Original Re	sult DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	81.7	80.6	1	1.38		10

Laboratory Control Sample (LCS)

(LCS) R3915253-2 04/	/19/23 07:54				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

DATE/TIME: 04/28/23 11:43 Тс

Ss

°Cn

Sr

Qc

Gl

Â

Wet Chemistry by Method 2320 B-2011

QUALITY CONTROL SUMMARY L1606161-03

Method Blank (MB)

(MB) R3917654-2 04/26/23 10:33	3	10:33	04/26/23	R3917654-2	(MB)
--------------------------------	---	-------	----------	------------	------

r MB MDL	MB RDL
ug/l	ug/l
8450	20000
8450	20000
0+30	20000
ei	ug/l 8450

Sample Narrative:

BLANK: Endpoint pH 4.5

L1607242-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1607242-01 04/26/2	3 11:03 • (DUP)	R3917654-3 (04/26/23	11:08		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Alkalinity	314000	320000	1	1.91		20
Alkalinity,Bicarbonate	314000	320000	1	1.91		20
Alkalinity,Carbonate	U	U	1	0.000		20

Sample Narrative:

OS: Endpoint pH 4.5 Headspace

DUP: Endpoint pH 4.5

L1606771-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1606771-01 04/26/2	23 12:32 • (DUP)	R3917654-4	04/26/23	12:37		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Alkalinity	294000	291000	1	1.02		20
Alkalinity,Bicarbonate	294000	291000	1	1.02		20
Alkalinity,Carbonate	U	U	1	0.000		20

Sample Narrative:

OS: Endpoint pH 4.5 Headspace DUP: Endpoint pH 4.5

SDG: L1606161

DATE/TIME: 04/28/23 11:43 Тс

Ss

Cn

Sr

Qc

GI

Â

Wet Chemistry by Method 2320 B-2011

QUALITY CONTROL SUMMARY

Laboratory Control Sample (LCS)

(LCS) R3917654-1 04/26/	/23 10:10				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Alkalinity	100000	100000	100	90.0-110	

Sample Narrative:

LCS: Endpoint pH 4.5

DATE/TIME: 04/28/23 11:43

PAGE: 13 of 31

Wet Chemistry by Method 365.4

QUALITY CONTROL SUMMARY L1606161-03

Method Blank (MB)

Method Blank (MB)				1
(MB) R3915109-1 04/	19/23 17:13				C
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	ug/l		ug/l	ug/l	To
Phosphorus,Total	U		35.0	100	
					³ Ss

L1606179-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1606179-01 04/19/2	23 17:33 • (DUP)	R3915109-6 C	04/19/23 17	:34		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Phosphorus, Total	1710	1720	1	0.583		20

⁴Cn

Sr

L1606035-01 Original Sample (OS) • Duplicate (DUP)

L1606035-01 Ori	iginal Sample	(OS) • Du	plicate	(DUP)			⁷ Gl
(OS) L1606035-01 04/1	'19/23 17:38 • (DUP)	R3915109-7	04/19/23 1	7:39			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al
Analyte	ug/l	ug/l		%		%	
Phosphorus,Total	5800	6100	2	5.04		20	⁹ Sc

Laboratory Control Sample (LCS)

(LCS) R3915109-2 04/19/2	23 17:15				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Phosphorus, Total	4660	4260	91.4	83.2-116	

L1606165-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1606165-01 04/19/2	3 17:24 • (MS) R	3915109-4 04/	/19/23 17:25 • (MSD) R3915109	9-5 04/19/231	7:29						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Phosphorus, Total	2500	47.3	2350	2390	92.1	93.7	1	90.0-110			1.69	20

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
GHD-Houston, TX-Glenn Springs Holdings	14266DM	L1606161	04/28/23 11:43	14 of 31

Wet Chemistry by Method 9040C

QUALITY CONTROL SUMMARY

L1606161-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1606161-03	04/25/23 18:44	(DUP) R3917227-2	04/25/23 18:44
------------------	----------------	------------------	----------------

	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	su		%		%
рН	7.78	7.82	1	0.513		1
Sample Narrative:						

OS: 7.78 at 19.4C

DUP: 7.82 at 20C

L1608738-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1608738-01 04/25/23 18:44 • (DUP) R3917227-3 04/25/23 18:44 DUP RPD Original Result DUP Result Dilution DUP RPD DUP Qualifier Limits % % Analyte su su pН 10.9 10.9 1 0.368 1 Sample Narrative:

OS: 10.85 at 20C

DUP: 10.89 at 18.9C

Laboratory Control Sample (LCS)

(LCS) R3917227-1 04/25/2	23 18:44				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	su	su	%	%	
На	10.0	9.99	99.9	99.0-101	

Sample Narrative:

LCS: 9.99 at 18.9C

SDG: L1606161 DATE/TIME: 04/28/23 11:43

Cn

Sr

Qc

GI

Â

Wet Chemistry by Method 9050A

QUALITY CONTROL SUMMARY L1606161-03

Method Blank (MB)

Method Blank (N	IB)				1 C D
(MB) R3915106-1 04/19	/23 17:33				Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	umhos/cm		umhos/cm	umhos/cm	Тс
Specific Conductance	U		10.0	10.0	
Comple Norrotive					³ Ss
Sample Narrative:					- I - I

Sample Narrative:

BLANK: at 25C

L1604826-01 Original Sample (OS) • Duplicate (DUP)

Original Result DUP Result DIIution DUP RPD <u>DUP Qualifier</u> DUP RPD Limits
Analyte umhos/cm umhos/cm % %
Specific Conductance 7470 7480 1 0.134 20

DUP: at 25C

L1605126-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1605126-05 04/19/23 17:33 • (DUP) R3915106-4 04/19/23 17:33								
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits		
Analyte	umhos/cm	umhos/cm		%		%		
Specific Conductance	341	340	1	0.294		20		

Sample Narrative:

OS: at 25C DUP: at 25C

Laboratory Control Sample (LCS)

Analita			LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	umhos/cm	umhos/cm	%	%	
Specific Conductance	1120	1170	104	85.0-115	
Sample Narrative:					
LCS: at 25C					

L1606161

04/28/23 11:43

Cn

Sr

Wet Chemistry by Method 9056A

100 1705 01 01/00/00 01 07

QUALITY CONTROL SUMMARY L1606161-03

Method Blank (MB)

(MB) R3915959-1	04/20/23 21:02

(INID) K2812828-1	04/20/25 21.02				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	ug/l		ug/l	ug/l	⁻Tc
Bromide	U		353	1000	
Chloride	U		379	1000	³ Ss
Nitrate	U		48.0	100	00
Nitrite	U		42.0	100	4
Sulfate	U		594	5000	Cn

L1604765-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1604/65-01 04/20/23	S) L1604765-01_04/20/23_21:27 • (DUP) R3915959-3_04/20/23_21:39												
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits							
Analyte	ug/l	ug/l		%		%							
Bromide	366	366	1	0.0820	J	15							
Chloride	13600	13600	1	0.204		15							
Nitrate	392	387	1	1.23		15							
Nitrite	U	U	1	0.000		15							
Sulfate	34600	34600	1	0.000867		15							

L1606583-08 Original Sample (OS) • Duplicate (DUP)

(OS) L1606583-08 04/21/23 03:40 • (DUP) R3915959-6 04/21/23 03:53

		,				
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Bromide	379	378	1	0.159	J	15
Chloride	14200	14300	1	0.562		15
Nitrate	7620	7650	1	0.456		15
Nitrite	U	U	1	0.000		15
Sulfate	39000	39100	1	0.190		15

Laboratory Control Sample (LCS)

(LCS) R3915959-2 04/	/20/23 21:14				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Bromide	40000	39800	99.5	80.0-120	
Chloride	40000	39700	99.2	80.0-120	
Nitrate	8000	7840	98.0	80.0-120	
Nitrite	8000	8140	102	80.0-120	

DATE/TIME: 04/28/23 11:43

PAGE: 17 of 31 Ср

Sr

Qc

GI

Â

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY

Laboratory Control Sample (LCS)

(LCS) R3915959-2 04/2	0/23 21:14				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
				80.0-120	

L1604765-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1604765-01 04/20/23 21:27 • (MS) R3915959-4 04/20/23 21:52 • (MSD) R3915959-5 04/20/23 22:04												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Bromide	50000	366	50500	50600	100	101	1	80.0-120			0.194	15
Chloride	50000	13600	62600	62700	98.0	98.1	1	80.0-120			0.0904	15
Nitrate	5000	392	5500	5520	102	103	1	80.0-120			0.412	15
Nitrite	5000	U	5160	5170	103	103	1	80.0-120			0.151	15
Sulfate	50000	34600	83100	83200	97.0	97.3	1	80.0-120			0.172	15

L1606583-08 Original Sample (OS) • Matrix Spike (MS)

(OS) L1606583-08 04/21/2	23 03:40 • (MS)	R3915959-7 (04/21/23 04:30)			
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	ug/l	ug/l	ug/l	%		%	
Bromide	50000	379	50800	101	1	80.0-120	
Chloride	50000	14200	63200	98.0	1	80.0-120	
Nitrate	5000	7620	12800	104	1	80.0-120	
Nitrite	5000	U	5130	103	1	80.0-120	
Sulfate	50000	39000	87600	97.2	1	80.0-120	

SDG: L1606161 DATE/TIME: 04/28/23 11:43

Metals (ICPMS) by Method 6020

QUALITY CONTROL SUMMARY L1606161-03

Method Blank (MB)

(1010) K3913046-1 04/20	J/2J 22.JI				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	ug/l		ug/l	ug/l	·
Arsenic, Dissolved	U		0.180	2.00	Ľ
Calcium, Dissolved	U		93.6	1000	3
Iron, Dissolved	29.1	J	28.1	100	Ľ
Magnesium, Dissolved	U		73.5	1000	4
Potassium, Dissolved	U		108	2000	(
Selenium, Dissolved	U		0.300	2.00	
Sodium, Dissolved	U		376	2000	5

Method Blank (MB)

(MB) R3915649-1 04/20/23 22:42				
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Boron, Dissolved	U		9.63	30.0

Laboratory Control Sample (LCS)

(LCS) R3915648-2 04/2	20/23 22:34				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Arsenic, Dissolved	50.0	46.7	93.3	80.0-120	
Calcium, Dissolved	5000	4700	94.0	80.0-120	
Iron, Dissolved	5000	4820	96.4	80.0-120	
Magnesium, Dissolved	5000	4630	92.6	80.0-120	
Potassium, Dissolved	5000	5170	103	80.0-120	
Selenium, Dissolved	50.0	50.1	100	80.0-120	
Sodium, Dissolved	5000	4820	96.5	80.0-120	

Laboratory Control Sample (LCS)

(LCS) R3915649-2 04/20/23 22:45					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Boron, Dissolved	50.0	46.5	92.9	80.0-120	

PROJECT: 14266DM

SDG: L1606161

DATE/TIME: 04/28/23 11:43

PAGE: 19 of 31 Ср

Тс

Ss

⁺Cn

Sr

Qc

GI

Â
Metals (ICPMS) by Method 6020

QUALITY CONTROL SUMMARY

L1606789-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1606789-01 04/20/23 22:39 • (MS) R3915648-4 04/20/23 22:45 • (MSD) R3915648-5 04/20/23 22:48

· · /	()			()								
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Arsenic, Dissolved	50.0	U	48.0	46.4	96.1	92.7	1	75.0-125			3.58	20
Calcium, Dissolved	5000	26800	31200	30800	88.9	79.7	1	75.0-125			1.47	20
Iron, Dissolved	5000	U	4890	4700	97.8	94.1	1	75.0-125			3.86	20
Magnesium, Dissolved	5000	15100	19700	19700	91.7	91.6	1	75.0-125			0.0323	20
Potassium, Dissolved	5000	6680	11400	11400	94.1	94.5	1	75.0-125			0.192	20
Selenium, Dissolved	50.0	U	51.2	50.4	102	101	1	75.0-125			1.39	20
Sodium, Dissolved	5000	137000	143000	142000	129	104	1	75.0-125	$\underline{\vee}$		0.871	20

L1606789-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1606789-01 04/20	/23 22:51 • (MS)	R3915649-4 0	4/20/23 22:58	8 • (MSD) R3915	5649-5 04/20/	23 23:01						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Boron, Dissolved	50.0	1070	1130	1150	118	169	1	75.0-125		V	2.24	20

DATE/TIME: 04/28/23 11:43

PAGE: 20 of 31

Тс

Ss

Cn

Sr

[°]Qc

GI

Â

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY L1606161-01,02

Method Blank (MB)

Method Blank (MB)				1 CD
(MB) R3914782-2 04/19/2	23 00:02				Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	Тс
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	96.6			77.0-120	³ Ss

Laboratory Control Sample (LCS)

(LCS) R3914782-1 04/18/2	23 22:28				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.82	106	72.0-127	
(S) a.a.a-Trifluorotoluene(FID)			105	77.0-120	

DATE/TIME: 04/28/23 11:43

PAGE: 21 of 31 ⁺Cn

Sr

ີQc

GI

Â

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY L1606161-04

Method Blank (MB)

Iviethod Blank (IVIE	3)				1 Cp
(MB) R3914762-2 04/18/2	23 23:41				Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	ug/l		ug/l	ug/l	Тс
TPH (GC/FID) Low Fraction	U		31.4	100	
(S) a,a,a-Trifluorotoluene(FID)	115			78.0-120	³ Ss

Laboratory Control Sample (LCS)

(LCS) R3914762-1 04/18/2	23 22:55				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
TPH (GC/FID) Low Fraction	5500	5740	104	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			113	78.0-120	

DATE/TIME: 04/28/23 11:43 PAGE: 22 of 31 °Cn

Sr

ີQc

GI

Â

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

Method Blank (MB)

N N	·				
(MB) R3915212-2 04/19/2	23 14:01				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
TPH (GC/FID) Low Fraction	U		31.4	100	
(S) a,a,a-Trifluorotoluene(FID)	117			78.0-120	

Laboratory Control Sample (LCS)

(LCS) R3915212-1 04/19/2	23 12:46				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
TPH (GC/FID) Low Fraction	5500	6160	112	72.0-127	
(S) a.a.a-Trifluorotoluene(FID)			113	78.0-120	

DATE/TIME: 04/28/23 11:43 Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3914742-3 04/18/23	3 15:20				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Benzene	U		0.0941	1.00	
Toluene	U		0.278	1.00	
Ethylbenzene	U		0.137	1.00	
Xylenes, Total	U		0.174	3.00	
(S) Toluene-d8	101			80.0-120	
(S) 4-Bromofluorobenzene	92.4			77.0-126	
(S) 1,2-Dichloroethane-d4	118			70.0-130	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3914742-1 04/18/2	23 14:17 • (LCSD)) R3914742-2	04/18/23 14:38								7
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	Í GI
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Benzene	5.00	5.20	5.04	104	101	70.0-123			3.12	20	8
Toluene	5.00	4.73	4.49	94.6	89.8	79.0-120			5.21	20	A
Ethylbenzene	5.00	4.20	4.11	84.0	82.2	79.0-123			2.17	20	9
Xylenes, Total	15.0	12.7	12.3	84.7	82.0	79.0-123			3.20	20	Sc
(S) Toluene-d8				98.4	97.2	80.0-120					
(S) 4-Bromofluorobenzene				95.7	94.9	77.0-126					
(S) 1,2-Dichloroethane-d4				112	110	70.0-130					

SDG: L1606161 DATE/TIME: 04/28/23 11:43

PAGE: 24 of 31

Тс

Ss

Cn

Sr

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

QUALITY CONTROL SUMMARY L1606161-03

Method Blank (MB)

	9				1 Cn
(MB) R3914841-1 04/19/23	3 06:17				CP
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	ug/l		ug/l	ug/l	⁻Tc
TPH (GC/FID) High Fraction	34.3	J	24.7	100	
(S) o-Terphenyl	132			31.0-160	³ Ss
					55

Laboratory Control Sample (LCS)

(LCS) R3914841-2 04/19/2	23 06:39					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	ug/l	ug/l	%	%		
TPH (GC/FID) High Fraction	1500	1800	120	50.0-150		
(S) o-Terphenyl			112	31.0-160		

L1605921-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1605921-04 04/20	/23 15:34 • (MS)	R3915192-1 04	4/20/23 15:55	• (MSD) R39151	92-2 04/20/23	3 16:17							⁸ Al
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	9
TPH (GC/FID) High Fraction	1430	U	18700	27300	1310	1910	10	50.0-150	<u>J5</u>	<u>J3 J5</u>	37.4	20	SC
(S) o-Terphenyl					149	135		31.0-160					

Sample Narrative:

OS: Dilution and surrogate failure due to matrix interference.

SDG: L1606161

DATE/TIME: 04/28/23 11:43 ⁺Cn

GI

Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY

Method Blank (MB)

	9			
MB) R3914661-1 04/18/23	3 20:28			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) High Fraction	U		0.769	4.00
(S) o-Terphenyl	66.7			18.0-148

Laboratory Control Sample (LCS)

-						
(LCS) R3914661-2 04/18/	23 20:41					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	ٌSr
Analyte	mg/kg	mg/kg	%	%		
TPH (GC/FID) High Fraction	50.0	37.1	74.2	50.0-150		⁶ Qc
(S) o-Terphenyl			91.0	18.0-148		

L1606140-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1606140-01 04/19/2	23 01:27 • (MS) F	23914661-3 04	/19/23 01:40 •	(MSD) R391466	61-4 04/19/23	01:53							 ⁸ AI
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	<i>·</i>
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	9
TPH (GC/FID) High Fraction	50.0	4.54	40.4	42.0	71.7	74.9	1	50.0-150			3.88	20	Sc
(S) o-Terphenyl					59.9	72.7		18.0-148					

SDG: L1606161 DATE/TIME: 04/28/23 11:43

¹Cn

GI

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.
Т8	Sample(s) received past/too close to holding time expiration.
V	The sample concentration is too high to evaluate accurate spike recoveries.

SDG: L1606161 Τс

Ss

Cn

Sr

Qc

GI

AI

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee ¹⁴	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA–Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1606161

(

PAGE: 28 of 31

¹ Cp ² Tc ³ Ss ⁴ Cn ⁵ Sr ⁶ Qc ⁷ Gl ⁸ Al ⁹ Sc

				Billing Inform		- 543X		A	Analysis	/ Conta	iner / Pre	eservati	ve	Test.	1.1	Chain of Custody	Page of			
					743 Hori	3 Horizon Court, Suite 330 and Junction, CO 81506						1417		Ļ		ang dita			Pace	Analytical*
			and the											3 anilor	Ĵ				National Ce	nter for Testing & Innovat
Report to: Bruce Smith	潮水海岸				Email To: bsmith@	westernwat	terandland.co	n				1		NO2, NO3				1. 19	12065 Lebanon Rd Mount Juliet, TN 37 Phone: 615-758-585	
Project Logan Wash Reto	ort Pipelii	ne	and the second			City/State De Collected:	Beque, CO					(L)		N N		4			Phone: 800-767-585 Fax: 615-758-5859	
_{Phone:} 970-242-0170 _{Fax:}	Client P	roject	t#			Lab Project # GHDGSH-1	4266DM					Dissolved Metals (Lab filter)		Spil.					L# ULO Table #	616 B103
Collected by (print): Bruce Smith	Site/Fac Logan			etort	Pipeline	P.O. #						als (L		alk,TDS,				1	Accti	JSH
Collected by (signature): Bruce Smith	Si Si	ame D	Day	_ Five D		Quote #			0	0		Meta	sn						Template: Prelogin:	
Immediately Packed on Ice N YX		wo Da	ay		(Rad Only) / (Rad Only)	Date Re Apr 21, 202	sults Needed	No. of	- GRO	I - DR	×	olved	Phosphorus	General (rH	RT .				TSR: PB:	
Sample ID	Comp/	Grab	Mat	trix *	Depth	Date	Time	Cntrs	TPH	TPH	BTEX	Diss	Pho	Gen	BART			a de la constante Constante de la constante de la Constante de la constante de la Constante de la constante de la	Shipped Via: Remarks	Sample # (lab only
Logan Wash Channel	Comp	-	SS	-	6in	4/14/23	No Time	2	×	×				and the second						-01
Release Channel	Comp	•	SS	•	6in	4/14/23	No Time	2	X	×							1			-02
Retort Pipe 41423	Grab	-] ОТ	-	surface	4/14/23	1330	12	X	×	×	×	×	X	×				12	-03
Trip Blank								2	X	×	×								Kall Free	-04
												14 ST 1			1 dese			12		
																	1 Carl			and the second se
t faithe					States.					9.34		di di				in the state		a Carto A L B	1.484	
	A Start Start		in the		Sec. 20	A Part of the				at the second				19.14	T.a.e.			42	1000	
						de la companya de la					-	13		a				1		
									14			2.4							A.C.	a Planaka an
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks: Retort Pipe 41423 source is oil shale m collected on 3/14/23 and stored at 8 deg						nine effluent water. Samples were egree celcius before shipping on 4/17/						1 4/17/23					Sample Receipt Checklist COC Seal Present/Intact:NPN COC Signed/Accurate: Bottles arrive intact:N		
DW - Drinking Water DT - Other	Samples UPS		rned via edEx _		ier	T	Tracking # 39	71	4-	334	0	698		Othe			Correct bottles used: Sufficient volume sent: <u>If Applicable</u>			
Relinquished by (Signature)			Date	4/1		me: F	Received by: (Signat	ture)				Trip Blank Received: Yes / No HCL / MeoH TBR					VOA Zero Headspace: Preservation Correct/Checked:			
Relinquished by : (Signature)			Date	2. 19. 2	Ti	me: F	Received by: (Signat	ture)				Temp/			tles Recei	ived:	If pres	ervatio	n required by Log	in: Date/Time
Relinquished by : (Signature)			Date	:	- Ti	me: F	Received for lab by:		ure) Ø			Date: 4.18	.25	Tim	ie: [,`3	0	Hold:		There are a	Condition: NCF OK

and the statement of the second

;	4	
	18	
	1	
	2	
	H	
	Ė.	
	16	
	0	
	616	
	Ħ.	
	2	
	DG	
	GSH	
	Ξ	

Members		
Hailey Melson (responsible) BB Brittnie Boyd		
Due on 21 April 2023 8:00 AM for target Done		
Login Clarification needed		
Chain of custody is incomplete		
Please specify Metals requested		
Please specify TCLP requested		
Received additional samples not listed on COC		
] Sample IDs on containers do not match IDs on COC		
Client did not "X" analysis		
Chain of Custody is missing		
] If no COC: Received by:		
] If no COC: Date/Time:		
] If no COC: Temp./Cont.Rec./pH:		
] If no COC: Carrier:		
] If no COC: Tracking #:		
Client informed by Email		
Client informed by Voicemail		
] Date/Time:		
PM initials:		
] Client Contact:		
Comments		
Hailey Melson	18 AJ	18 April 2023 11:25 AM
1) What Dissolved metals?		
2) Are any other anions needed other than the ones listed out on the COC?	out on the COC?	
4)Nitrate, Nitrite received out of hold.		
Stephanie Coble	18 Å	18 April 2023 4:15 PM
1) Dissolved Metals are: As, B, Ca, Fe, K, Mg, Na, and Se		
2) ALKBI,ALKCA, Bromide, Chloride, and Sulfate		
3) PT		
4) Please proceed to run Nitrate, Nitrite.		

1 of 2

Pace Analytical® ANALYTICAL REPORT April 28, 2023

GHD-Houston, TX-Glenn Springs Holdings

Sample Delivery Group:	L1608705
Samples Received:	04/25/2023
Project Number:	14266DM
Description:	Logan Wash Mine
Site:	LOGAN WASH MINE
Report To:	Sheri Finn;Bruce Smith
	2055 Niagara Falls Blvd. #3
	Niagara Falls, NY 14034

Entire Report Reviewed By:

Drittine Boyd

Brittnie L Boyd Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

ACCOUNT: GHD-Houston, TX-Glenn Springs Holdings PROJECT: 14266DM

SDG: L1608705

DATE/TIME: 04/28/23 16:33 PAGE: 1 of 18

Тс Ss Cn Śr ʹQc Gl A Sc

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
RETORT PIPE 41423 L1608705-01	5
Qc: Quality Control Summary	7
Wet Chemistry by Method 2320 B-2011	7
Wet Chemistry by Method 7196A	9
Wet Chemistry by Method 9040C	10
Mercury by Method 7470A	11
Metals (ICP) by Method 6010B	12
Metals (ICPMS) by Method 6020	15
GI: Glossary of Terms	16
Al: Accreditations & Locations	17
Sc: Sample Chain of Custody	18

¹Cp ²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

SDG: L1608705

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	te/time
RETORT PIPE 41423 L1608705-01 GW			BDS	04/14/23 13:30	04/25/23 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Calculated Results	WG2048545	1	04/26/23 14:16	04/26/23 14:16	SPL	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG2048908	1	04/26/23 13:16	04/26/23 13:16	ARD	Mt. Juliet, TN
Wet Chemistry by Method 7196A	WG2048621	1	04/26/23 03:59	04/26/23 03:59	CRB	Mt. Juliet, TN
Wet Chemistry by Method 9040C	WG2048489	1	04/25/23 18:44	04/25/23 18:44	KAD	Mt. Juliet, TN
Mercury by Method 7470A	WG2048546	1	04/26/23 11:19	04/26/23 15:08	AKB	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2048545	1	04/26/23 11:33	04/26/23 14:16	SPL	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2048550	1	04/26/23 12:25	04/26/23 19:40	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2048813	1	04/26/23 12:02	04/26/23 14:00	JPD	Mt. Juliet, TN

Ср

SDG: L1608705 DATE/TIME: 04/28/23 16:33

PAGE: 3 of 18

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Drittie Boyd

Brittnie L Boyd Project Manager

SDG: L1608705

SAMPLE RESULTS - 01

Calculated Results

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	 Ср
Analyte	ug/l		ug/l	ug/l		date / time		2
Chromium, Trivalent	U		1.40	10.0	1	04/26/2023 14:16	WG2048545	Tc

Wet Chemistry by Method 2320 B-2011

wet enemistry by		020 0 20						SS
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		4 Cn
Alkalinity	363000		8450	20000	1	04/26/2023 13:16	WG2048908	CII
Alkalinity,Bicarbonate	363000		8450	20000	1	04/26/2023 13:16	WG2048908	5
Alkalinity,Carbonate	U		8450	20000	1	04/26/2023 13:16	WG2048908	ँSr

Sample Narrative:

L1608705-01 WG2048908: Endpoint pH 4.5 Headspace

Wet Chemistry by Method 7196A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	L
	Result	Quanner	MDL	NDL	Dilution	Analysis	baten	8
Analyte	ug/l		ug/l	ug/l		date / time		
Chromium,Hexavalent	11	TS	3.00	10.0	1	04/26/2023 03:59	WG2048621	
Chronnun, inczavalent	0	10	5.00	10.0	i.	04/20/2023 03.33	W02040021	_

Wet Chemistry by Method 9040C

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	su			date / time	
рН	8.09	<u>T8</u>	1	04/25/2023 18:44	WG2048489

Sample Narrative:

L1608705-01 WG2048489: 8.09 at 18.3C

Mercury by Method 7470A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Mercury	U		0.100	0.200	1	04/26/2023 15:08	WG2048546

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Arsenic	28.2		4.40	10.0	1	04/26/2023 14:16	WG2048545
Arsenic, Dissolved	39.8		4.40	10.0	1	04/26/2023 19:40	WG2048550
Cadmium	U		0.479	2.00	1	04/26/2023 14:16	WG2048545
Cadmium, Dissolved	1.10	J	0.479	2.00	1	04/26/2023 19:40	WG2048550
Chromium	U		1.40	10.0	1	04/26/2023 14:16	WG2048545
Copper, Dissolved	U		3.68	10.0	1	04/26/2023 19:40	WG2048550
Iron	53.3	J	18.0	100	1	04/26/2023 14:16	WG2048545
Iron,Dissolved	34.8	<u>B J</u>	18.0	100	1	04/26/2023 19:40	WG2048550
Lead	U		2.99	6.00	1	04/26/2023 14:16	WG2048545
Lead, Dissolved	U		2.99	6.00	1	04/26/2023 19:40	WG2048550
Manganese,Dissolved	20.3		0.934	10.0	1	04/26/2023 19:40	WG2048550
Molybdenum	1910		1.16	5.00	1	04/26/2023 14:16	WG2048545
Nickel	U		1.61	10.0	1	04/26/2023 14:16	WG2048545
Nickel, Dissolved	U		1.61	10.0	1	04/26/2023 19:40	<u>WG2048550</u>
Selenium,Dissolved	16.4		7.35	10.0	1	04/26/2023 19:40	WG2048550
Silver, Dissolved	U		1.54	5.00	1	04/26/2023 19:40	<u>WG2048550</u>
Zinc,Dissolved	U		6.52	50.0	1	04/26/2023 19:40	WG2048550

SDG: L1608705 Qc

GI

RETORT PIPE 41423 Collected date/time: 04/14/23 13:30

SAMPLE RESULTS - 01

Metals (ICPMS) by Method 6020

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l	ug/l		date / time		
Uranium, Dissolved	3.79	Ţ	0.0700	20.0	1	04/26/2023 14:00	<u>WG2048813</u>	² Tc

Wet Chemistry by Method 2320 B-2011

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3917627-2	04/26/23 10:35

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Alkalinity	U		8450	20000
Alkalinity,Bicarbonate	U		8450	20000
Alkalinity,Carbonate	U		8450	20000

Sample Narrative:

BLANK: Endpoint pH 4.5

L1607789-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1607789-05 04/26/	23 11:53 • (DUP)	R3917627-3	04/26/23	11:59		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Alkalinity	283000	283000	1	0.0193		20
Alkalinity,Bicarbonate	283000	283000	1	0.0193		20
Alkalinity,Carbonate	U	U	1	0.000		20

Sample Narrative:

OS: Endpoint pH 4.5 Headspace

DUP: Endpoint pH 4.5

L1608034-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1608034-01 04/26/	23 12:24 • (DUP) R3917627-4	04/26/23	12:30		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Alkalinity	419000	423000	1	0.890		20
Alkalinity,Bicarbonate	419000	423000	1	0.890		20
Alkalinity,Carbonate	U	U	1	0.000		20

Sample Narrative:

OS: Endpoint pH 4.5 Headspace DUP: Endpoint pH 4.5 Тс

Ss

Cn

Sr

Qc

GI

Â

Wet Chemistry by Method 2320 B-2011

QUALITY CONTROL SUMMARY

Laboratory Control Sample (LCS)

(LCS) R3917627-1 04/26	5/23 10:18				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Alkalinity	100000	108000	108	90.0-110	

Sample Narrative:

LCS: Endpoint pH 4.5

DATE/TIME: 04/28/23 16:33 PAGE: 8 of 18

Wet Chemistry by Method 7196A

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3917317-1 04/26/2	23 03:57			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Chromium,Hexavalent	U		3.00	10.0

L1608705-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1608705-01 04/26	6/23 03:59 • (DU	P) R3917317-3	04/26/23	03:59		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chromium,Hexavalent	U	U	1	0.000		20

Laboratory Control Sample (LCS)

(LCS) R3917317-2 04/2	6/23 03:58				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chromium,Hexavalent	500	545	109	80.0-120	

L1608705-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1608705-01 04/26	6/23 03:59 • (MS)) R3917317-4 0	4/26/23 03:59) • (MSD) R3917	317-5 04/26/2	3 03:59						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chromium, Hexavalent	500	U	475	462	95.0	92.4	1	85.0-115			2.77	20

SDG: L1608705 DATE/TIME: 04/28/23 16:33

Ср

Тс

Ss

Cn

Sr

Qc

GI

Â

Wet Chemistry by Method 9040C

QUALITY CONTROL SUMMARY L1608705-01

L1606161-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1606161-03	04/25/23 18:44	(DUP) R3917227-2	04/25/23 18:44
------------------	----------------	------------------	----------------

	Original Result				DUP Qualifier	DUP RPD Limits
Analyte	su	SU		%		%
рН	7.78	7.82	1	0.513		1
Sample Narrative:						

OS: 7.78 at 19.4C

DUP: 7.82 at 20C

L1608738-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1608738-01 04/25/23 18:44 • (DUP) R3917227-3 04/25/23 18:44 DUP RPD Original Result DUP Result Dilution DUP RPD **DUP** Qualifier Limits % % Analyte su su pН 10.9 10.9 1 0.368 1 Sample Narrative:

OS: 10.85 at 20C

DUP: 10.89 at 18.9C

Laboratory Control Sample (LCS)

(LCS) R3917227-1 04/25/	/23 18:44				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	SU	SU	%	%	
рН	10.0	9.99	99.9	99.0-101	

Sample Narrative:

LCS: 9.99 at 18.9C

SDG: L1608705

DATE/TIME: 04/28/23 16:33

Mercury by Method 7470A

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3917646-1 04	4/26/23 14:58			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Mercury	U		0.100	0.200

Laboratory Control Sample (LCS)

(LCS) R3917646-2 0	04/26/23 15:00				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Mercury	3.00	2.81	93.6	80.0-120	

L1608738-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1608738-01 04/26/2	23 15:02 • (MS)	R3917646-3 0	4/26/23 15:04	• (MSD) R39176	646-4 04/26/2	3 15:06						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Mercury	3.00	U	3.00	3.01	100	100	1	75.0-125			0.253	20

DATE/TIME: 04/28/23 16:33 Тс

Ss

Cn

Sr

Qc

GI

Â

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY L1608705-01

Тс

Ss

Cn

Sr

ິQc

GI

Â

Sc

Method Blank (MB)

(MB) R3917688-1 04/26/23 14:10

(MB) R391/688-1 04/26	5/23 14:10			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Arsenic	U		4.40	10.0
Cadmium	U		0.479	2.00
Chromium	U		1.40	10.0
Iron	U		18.0	100
Lead	U		2.99	6.00
Molybdenum	U		1.16	5.00
Nickel	U		1.61	10.0

Laboratory Control Sample (LCS)

(LCS) R3917688-2 04/26/2	23 14:13				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Arsenic	1000	978	97.8	80.0-120	
Cadmium	1000	1000	100	80.0-120	
Chromium	1000	978	97.8	80.0-120	
Iron	10000	10300	103	80.0-120	
Lead	1000	963	96.3	80.0-120	
Molybdenum	1000	1040	104	80.0-120	
Nickel	1000	965	96.5	80.0-120	

L1608705-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1608705-01 04/26/	OS) L1608705-01 04/26/23 14:16 • (MS) R3917688-4 04/26/23 14:22 • (MSD) R3917688-5 04/26/23 14:24											
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Arsenic	1000	28.2	1080	1090	105	106	1	75.0-125			1.27	20
Cadmium	1000	U	1050	1070	105	107	1	75.0-125			1.90	20
Chromium	1000	U	887	908	88.7	90.8	1	75.0-125			2.34	20
Iron	10000	53.3	9800	10100	97.5	100	1	75.0-125			2.59	20
Lead	1000	U	955	979	95.5	97.9	1	75.0-125			2.46	20
Molybdenum	1000	1910	2800	2820	89.1	90.3	1	75.0-125			0.441	20
Nickel	1000	U	989	1010	98.9	101	1	75.0-125			1.90	20

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
GHD-Houston, TX-Glenn Springs Holdings	14266DM	L1608705	04/28/23 16:33	12 of 18

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

13 of 18

Method Blank (MB)

(MB) R3917802-1 04/26/23 18:19

	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Arsenic, Dissolved	U		4.40	10.0	
Cadmium, Dissolved	U		0.479	2.00	
Copper, Dissolved	U		3.68	10.0	
Iron, Dissolved	24.8	J	18.0	100	
Lead, Dissolved	U		2.99	6.00	
Manganese, Dissolved	U		0.934	10.0	
Nickel, Dissolved	U		1.61	10.0	
Selenium, Dissolved	U		7.35	10.0	
Silver, Dissolved	U		1.54	5.00	
Zinc, Dissolved	U		6.52	50.0	

Laboratory Control Sample (LCS)

GHD-Houston, TX-Glenn Springs Holdings

(LCS) R3917802-2 04/26/23 18:22

0/20 10:22				
Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
ug/l	ug/l	%	%	
1000	963	96.3	80.0-120	
1000	990	99.0	80.0-120	
1000	948	94.8	80.0-120	
10000	9650	96.5	80.0-120	
1000	974	97.4	80.0-120	
1000	929	92.9	80.0-120	
1000	978	97.8	80.0-120	
1000	1010	101	80.0-120	
200	172	85.9	80.0-120	
1000	974	97.4	80.0-120	
	Spike Amount ug/l 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 200	Spike Amount LCS Result ug/l ug/l 1000 963 1000 948 1000 948 1000 9650 1000 974 1000 929 1000 978 1000 1010 200 172	Spike Amount LCS Result LCS Rec. ug/l ug/l % 1000 963 96.3 1000 990 99.0 1000 948 94.8 10000 9650 96.5 10000 974 97.4 10000 929 92.9 1000 978 97.8 1000 1010 101 200 172 85.9	Spike Amount LCS Result LCS Rec. Rec. Limits ug/l ug/l % % 1000 963 96.3 80.0-120 1000 990 99.0 80.0-120 1000 948 94.8 80.0-120 1000 9650 96.5 80.0-120 1000 974 97.4 80.0-120 1000 929 92.9 80.0-120 1000 978 97.8 80.0-120 1000 1010 101 80.0-120 200 172 85.9 80.0-120

L1607288-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Arsenic, Dissolved	1000	8.02	1000	1000	99.6	99.7	1	75.0-125			0.0208	20	
Cadmium, Dissolved	1000	0.959	1020	1020	102	101	1	75.0-125			0.343	20	
Copper, Dissolved	1000	U	979	983	97.9	98.3	1	75.0-125			0.420	20	
Iron,Dissolved	10000	U	9390	9280	93.9	92.8	1	75.0-125			1.12	20	
Lead, Dissolved	1000	3.66	978	970	97.4	96.7	1	75.0-125			0.741	20	
Manganese, Dissolved	1000	45.7	942	938	89.7	89.3	1	75.0-125			0.428	20	
Nickel, Dissolved	1000	1.61	978	978	97.7	97.6	1	75.0-125			0.0576	20	
	ACCOUNT:			PRO	JECT:			SDG:		DATE/	TIME		PAGE:

L1608705

04/28/23 16:33

14266DM

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY

L1607288-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1607288-01 04/2	6/23 18:25 • (MS)	R3917802-4 0	4/26/23 18:31	• (MSD) R39178	302-5 04/26/	/23 18:34						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Selenium, Dissolved	1000	U	1070	1070	107	107	1	75.0-125			0.343	20
Silver, Dissolved	200	U	180	180	89.8	90.1	1	75.0-125			0.261	20
Zinc, Dissolved	1000	U	943	947	94.3	94.7	1	75.0-125			0.416	20

DATE/TIME: 04/28/23 16:33 PAGE: 14 of 18

Metals (ICPMS) by Method 6020

QUALITY CONTROL SUMMARY L1608705-01

Method Blank (MB)

ivietnod Blank (IV	(IB)						1
(MB) R3917639-1 04/2	6/23 13:53						
	MB Result	MB Qualifier	MB MDL	MB RDL			- r
Analyte	ug/l		ug/l	ug/l			
Uranium,Dissolved	U		0.0700	20.0			<u>L</u>

Laboratory Control Sample (LCS)

(LCS) R3917639-2 04/	(LCS) R3917639-2 04/26/23 13:56							
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	ug/l	ug/l	%	%				
Uranium, Dissolved	50.0	49.3	98.5	80.0-120				

L1608705-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1608705-01 04/26	6/23 14:00 • (MS)	R3917639-4 0	4/26/23 14:06	6 • (MSD) R3917	639-5 04/26	/23 14:09						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Uranium, Dissolved	50.0	3.79	54.5	52.3	101	97.1	1	75.0-125			4.02	20

DATE/TIME: 04/28/23 16:33 Cn

Sr

[°]Qc

GI

Â

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
Т8	Sample(s) received past/too close to holding time expiration.

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

SDG: L1608705

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05		
Alaska	17-026	Nevada	TN000032021-1		
Arizona	AZ0612	New Hampshire	2975		
Arkansas	88-0469	New Jersey–NELAP	TN002		
California	2932	New Mexico ¹	TN00003		
Colorado	TN00003	New York	11742		
Connecticut	PH-0197	North Carolina	Env375		
Florida	E87487	North Carolina 1	DW21704		
Georgia	NELAP	North Carolina ³	41		
Georgia ¹	923	North Dakota	R-140		
Idaho	TN00003	Ohio-VAP	CL0069		
Illinois	200008	Oklahoma	9915		
Indiana	C-TN-01	Oregon	TN200002		
lowa	364	Pennsylvania	68-02979		
Kansas	E-10277	Rhode Island	LAO00356		
Kentucky ¹⁶	KY90010	South Carolina	84004002		
Kentucky ²	16	South Dakota	n/a		
Louisiana	AI30792	Tennessee ¹⁴	2006		
Louisiana	LA018	Texas	T104704245-20-18		
Maine	TN00003	Texas ⁵	LAB0152		
Maryland	324	Utah	TN000032021-11		
Massachusetts	M-TN003	Vermont	VT2006		
Michigan	9958	Virginia	110033		
Minnesota	047-999-395	Washington	C847		
Mississippi	TN00003	West Virginia	233		
Missouri	340	Wisconsin	998093910		
Montana	CERT0086	Wyoming	A2LA		
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789		
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01		
Canada	1461.01	USDA	P330-15-00234		
EPA–Crypto	TN00003				

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1608705

Τс

Ss

Cn

Sr

Qc

Gl

AI

			Billing Information:				13.12	Analysis / Container / Preservative Chain of Cha							Chain of Custor	of Custody Page of	
														- Pace Netional	Pace Analytical* National Center for Testing & Innovatio		
	and a state of the second s	the states	Avertic.	ER CON	and the second		Mn,		ī	1. 1.		2.14		2			
Report to: Email To: Bruce Smith bsmith@ Project Description:		@westernwaterandland.com City/State Collected: Grand Junction, CC			0, N	Pb, N		te					12065 Lebanon Rd Mount Juliet, TN 37122				
					Fe, Pl	Fe, Pl	g, Mo	carbonate					Phone: 800-767-5	Phone: 615-758-5858 Phone: 800-767-5859 Fax: 615-758-5859			
Phone: 970-242-0170 Fax:	Client Project	:#		Lab Project # GHDGSH-14266DM			1, Cu,	E	Fe, Pb, Hg, Mo,							L# Tat 4108705	
Collected by (print): BDS	Site/Facility II Logan Wa			P.O.#		Nickey.	III, Cr	Ur, Zn	CrIII, Fo	l, bica					Accti Gi	Accti GHDGSH	
Collected by (signature): Rush? (Lab MUST Be f Burney Surft Same Day Five D Immediately Next Day 5 Day Packed on Ice N Y X		ay	Quote #			Cd, Cr III, Se,Aa, Ur	Se,Ag,	Cd,	Alkalinity, total, bicarb,					Template: Prelogin:			
		(Rad Only) y (Rad Only)	() Date Results Needed () April 26, 2023		No.	As,	Diss: Ni, S	As,	linity					TSR: PB:			
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	ntrs SSIQ		Total:	Ika	Hd	I			Shipped Via: Remarks		
Retort Pipe 41423	Grab	GW	1	4/14/23	13:30	12		X	X	X	X	a care a				-01	
	111.19																
								1					-				
		1						1					-		and the second second	4	
all the second sec			g and a second	a provide a second				-		1. (1.1) (2,1)			1.546				
	1 - 14 - 14													-	and the second		
and the second sec								-		1.1	0.2.0.0				and an and an an		
													-				
						15											
		-	1.00							1	and the				and the second second		
						J.A.										Internet Charge	
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Sample is NOT preserved with acid and has not been filtered.								COC Seal	Sample Receipt Checklist DC Seal Present/Intact: NP Y N DC Signed/Accurate: Dttles arrive intact:							
DW - Drinking Water OT - Other	Samples retur UPSFe	rned via: edEx Cou	'ier	74	Flow Other 43753 5199						Correct bottles used: Sufficient volume sent: If Applicable						
Relinquished by (Signature)	Б.,	Date: 4/24/	2023	ime: 1815	ture)	11/1				Trip Blank Received: Yes No HCL / MeoH			VOA Zero Headspace: Y N Preservation Correct/Checked: Y N				
Relinquished by : (Signature)	and a second	Date:	Time: Received by: (Signati			ture)	ure)			Temp://5/46°C Bottles Received:			If preservation required by Login: Date/Time				
Relinquished by : (Signature)		Date:	1	Time: Received for lab by: (nature)			Date: Time: 4.75.73 9.00			Hold:		Condition:		
		A State of the		9			10						G. A Street		NCF OK		