

March 15, 2023

Submitted Via Email

Amber Michels Division of Reclamation Mining and Safety 1313 Sherman St., Rm. 215 Denver, CO 80203

RE: GCC Rio Grande, Inc., Cedarwood Mine, Permit No. M-1977-317, Technical Revision 02, Response to DRMS Adequacy Review No. 2

Dear Ms. Michels:

GCC Rio Grande, Inc., Cedarwood Mine (GCC) received the Division of Reclamation, Mining and Safety's (DRMS) second adequacy review comments dated March 3, 2023, for Technical Revision 02 (TR-2) to permit No. M-1977-317. The purpose of TR-2 is to update the blasting plan for the Cedarwood Mine. This submittal responds to the comments and questions included in the second adequacy review. For convenience, the below response follows the numbering established in the adequacy review letter and includes the original DRMS comments in italicized text followed by GCC's response.

GCC Responses to the DRMS Preliminary Adequacy Review

1. The Permittee/Operator needs to commit to the following mitigation plan or propose their own mitigation plan for blasting at the site.

Mitigation Plan

If a structure owner contacts the Permittee/Operator notifying them of potential damage to their structure due to blasting at the site the Permittee/Operator will immediately notify the Division. A complaint may also be received directly by the Division. All blasting activities at the site will immediately cease until the complaint is resolved to the Division's satisfaction. A representative of the Permittee/Operator will visit the structure to start the investigation within 24 hours. During the investigation, the Division and Permittee/Operator will review the blast monitoring results prepared by the independent contractor. Other data and reports may be reviewed as necessary to help determine the cause of the damage.

If the damage is determined to have likely resulted from blasting, the Permittee/Operator will review the blasting log of the recent blasting activity and make modifications to future blasting as needed to reduce future damages from occurring. The Permittee/Operator and structure owner will determine the proper course of repairs to the structure. The Permittee/Operator will be responsible for all costs of repairs if it is determined that blasting was the cause of the damage to the structure.

If a well is determined to be damaged or "dry", or there is a change in water quality the Permittee/Operator, at their cost, will install a cistern and transport suitable replacement water from a local source to the property. The Permittee/Operator will begin this process upon notification of the

Ms. Amber Michels TR-02 – Updated Blasting Plan March 15, 2023

complaint and continue to transport water to the property for the duration of the investigation. If it is determined that the Permittee/Operator is at fault, a new well producing a similar or greater quantity and quality of water as the original well will be drilled at the Permittee/Operator's cost. If it is determined that the Permittee/Operator is not at fault, resolution of the issues will continue at the neighbor's expense. The Permittee/Operator will leave the temporary cistern and supply in place and available to the homeowner for 60 days or until the repairs/replacement are completed.

Please note the Division may also pursue enforcement actions as a result of affecting lands outside the permit boundary.

GCC Response: GCC accepts the proposed mitigation plan as DRMS has outlined above.

2. In Attachment 1, under the heading Potential Damage for Main Structures, the calculations for maximum charge weights at the site uses a minimum scaled distance of 54.49 ft/lb. However, in the preceding section it is stated that the Colorado Division of Labor blasting regulations require blasters to use a minimum scaled distance of 55 ft/lb when calculating maximum charge weights. Please clarify this discrepancy.

<u>GCC Response</u>: Please see enclosed Revised Blasting Plan that includes the Colorado Division of Labor's use of a minimum scaled distance of 55 ft/lb to calculate the maximum charge weights.

If you have any questions regarding this submittal or need any additional information, please contact me at (719) 647-6861.

Sincerely,

Sterne

Amy Veek Environmental Engineer GCC Rio Grande, Inc.

Enclosure:

1. Revised Blasting Plan

cc (via email)

P. Lennberg, DRMS D. Federico, GCC J. Rojo, GCC Buckley Powder Co. A Dyno Nobel Distributor

42 Inverness Drive East, Englewood, Colorado 80112 USA Telephone: 303-790-7007 Fax: 303-790-7033

Blast Plan GCC Cedarwood Quarry

Mine Location: Pickney Rd, Rye, CO GPS: 37.92722, -104.76118

Revision date: March 15, 2023

Blast design specifics

- Hole diameter- 5"
- Drill pattern 12'x12' •
- Drill depth 20-24' •
- Total number of holes in shot- ~180
- Charge weight per hole 156lb
- Charge weight per delay- 312 •
- Total weight of explosives- 30,000 lbs.
- Total volume produced- 24,000 cy
- Primer 3/4 lb. cast primer
- Detonator 40' EZ-Det NONEL
- Surface delay programming- 17,25 ms on spacing ; 42,67,91 ms on burden •
- Initiation – Nonel Remote
- Blasting agent Titan XL 1000 density- 1.15 •
- Stemming height- 8'
- Powder factor -1.3 tons/lb.
- Projected PPV at 500'-. .776 i.p.s. •
- Projected PPV at 1000'- .256 i.p.s.
- Nearest protected structure- 2,950 ft.

Blast Schedule

- Blasting will take place between 1 hour after sunrise to 30 minutes after sunset on weekdavs.
- No blasting will take place on weekends or holidays.
- Buckley Powder will notify GCC quarry management of blasting schedule.

Pre-blast surveys

See Attachment 1 for impact analysis of nearby structures that are within 1/2 of mining permit boundary.

Transport / Storage of Explosives

- At no time will explosives be left unattended.
- Pre and Post inventory checks will be done.
- Authorized Buckley Powder Co. personnel only will handle explosive material
- Blast area to be barricaded and signs posted to prevent unauthorized entry. •
- All explosives will be delivered in D.O.T. approved vehicle. Driver will be • licensed for transport of explosives.
- Any products not used in days blasting operation will be returned to storage magazines.

Drill Logs

- Drill log to be completed by driller for each hole drilled
- Drill log to be reviewed by blaster in charge prior to loading
- Any necessary changes to blast design/hole loads will be made after review of drill log

Ground Vibration and Air Blast

- All blasting events to be monitored and readings recorded in blast report to include: peak particle velocity transverse, vertical, and longitudinal. Also to include peak sound pressure, time, date, and location of monitor. PPV shall not exceed 2.0 in/sec.
- Over pressure (air blast) limitation. Air-over pressure at the nearest dwelling house, school, church, or otherwise occupied buildings shall not exceed 133 dB (0.0129 psi).
- Blast will be monitored in location nearest the closest structure to the blast location.

Blast Site Security/Safety

- Blasters checklist to be completed during the shot loading process.
- Prior to blasting all personnel will evacuate to muster point established by blaster in charge.
- All access roads will be blocked, and blaster in charge will maintain radio contact with blockers.
- Audible warning to be given prior to blast.
- Blaster in charge will check area to insure all persons and equipment are out of blast area.
- Blaster in charge will contact each blocker and get verbal confirmation that access is blocked, and area is clear prior to firing shot.
- After firing of shot, blast area is to remain evacuated until blaster in charge inspects the shot, deems it safe to re-enter and gives the "all clear".

Blast report and documentation

- All blasting events will be documented in blast report. See Attachment 2 for and example blast report that will be used.
- Blast report will contain all criteria listed in DRMS "Key Elements of a Blasting Plan"
- Blast reports to be completed within 24 hours of blasting event

Attachment 1 – Blasting Impacts on Structures Near the Cedarwood Mine

BLASTING IMPACTS ON STRUCTURES CLOSE TO THE CEDARWOOD MINE

All blasting work will be performed by an experienced contract blasting company, that will manage all explosive transportation and storage activities. Explosive transport vehicles will satisfy all stringent vehicle standards as required by the Federal Department of Transportation (DOT). After blasting, unused explosives are secured in approved explosive magazines.

Once explosives enter the mine site, their transportation and use are regulated by the Federal Mine Safety and Health Administration (MSHA) and by the Colorado Department of Labor.

All blasts will be controlled by a certified blaster who passed a written licensing examination and met the experience requirements set forth by the Colorado Department of Labor. Licensed blasters and contractors are required to be knowledgeable about and comply with all regulations governing explosives and blasting. When a regulation from one agency is more stringent than that of another, the more stringent of the two regulations will apply.

When explosive changes detonate in rock, most of the chemical energy is used in breaking and displacing the rock mass; however, some energy is kinetically released from of vibration, causing strain waves, airborne noise, concussion and flying rock.

In this section, GCC Rio Grande Inc. (GCC) evaluates the potentially damaging effects that blasting might have on people, animals, and property near the Cedarwood Mine. GCC also recommends specific measures that will be employed to mitigate blasting impacts.

Impacts of Blast-induced Ground Motion and Fracturing

The purpose of this section is to evaluate the relative potential for all forms of damage that might occur due to blast-induced ground motion or radial cracking. This section examines their effects on neighboring property and utility lines and pipes. A short review of blast vibration dynamics is also included at the beginning of the section to summarize the various ground motion measures that are used in structural damage evaluations.

Review of Blasting Vibration Phenomena

When explosive charges detonate in rock, nearly all of the available energy is used in breaking and displacing the rock mass; however, a small portion of the energy is released in the form of vibration waves, which radiate away from the blast charges. When these elastic strain-waves pass through rock or earth, they cause an oscillating motion in the ground particles.

Abbreviations:

- SH Shear wave, horizontal
- SV Shear wave, vertical
- R Rayleigh wave
- p Compressional wave

Vibration \Waves

Seismic waves decay with distance as they travel through the surrounding areas. These waves have different forms, such as body and surface waves. Their characteristics will vary somewhat with changes in the local geology, but the rate at which they dissipate is reasonably consistent, and allows controlled blasting operations by means of relationships between distance and the explosive charge quantities. Each time the distance is doubled, the vibration intensity drops to about 1/3" of its former value. The consistency of ground motion attenuation is supported by research done by the U.S. Bureau of Mines (Nichols et al., 1979). The researchers found that under widely varying conditions, if a sealed distance of 50-ft/lb¹¹² is used to limit charge weights, it is highly unlikely that ground motion would cause any damage. For the purposes of ground vibration assessments, scaled distance (SD) is distance from the blast divided by the square root of the maximum charge weight per delay. The log-log linear relationship between scaled distance and predicted peak particle velocity (ppv) is shown below:

ppy = K(SD)" and SD=D/ W

Where:

ppv =	Peak Particle Velocity (inch/sec.)
KandM=	Site Attenuation Constants
SD=	Scaled Distance (ft/lb1n)
D=	Distance (ft)
W=	Maximum charge weight per delay (lbs)

These ground vibrations are elastic waves, meaning that the ground particles move as the wave passes and quickly come to rest exactly as they were before the wave arrived. The average person is quite sensitive to ground motion, and can feel the vibration at levels several orders of magnitude lower than motion at damage threshold levels. Ground particle motion occurring at velocities as low as 0.50 mm/s (0.02 in/s) can be detected by the human body.

Particle Vibration Time History

Vibrating ground motion can be characterized by measuring particle displacement, velocity, and vibration frequency.

Displacement is a measure of ground particle travel distance or directional position with respect to time. Particle velocity measures the speed of the movement while acceleration is the rate of velocity change. Vibration frequency is a measure of how mane oscillations a ground particle makes in each second of time.

Both governmental agencies and private sector investigators have conducted considerable research to determine how ground motion might influence the stability of rock and soil structures, or cause damage to typical structures. For instance, from U.S. Bureau of Mines studies (Bulletin 656, 1979 and RI 8507, 1980) researchers have recommended conservative criterion that most government agencies, including Colorado, have adopted in commercial blasting regulations. To prevent blast-induced ground motion from even approaching damage thresholds, these regulations establish extremely cautious limits on peak particle velocity (ppv). Some damage prevention regulations also consider the frequency of ground motion. Other researchers have evaluated the effects of ground motion on people, buried pipelines, water wells, and many other structures. In this investigation, GCC has analyzed the potential risk of blast-induced vibration damage or disturbances to structures and/or persons located near the Cedarwood Mine.

Potential for Damage to Structures from Blast-Induced Ground Motion:

The United States Bureau of Mines, in RI8507 (1980) made the following conclusions regarding the potential for damage caused by blast-induced ground motion.

"Practical safe criteria for blasts that generate low frequency ground vibrations are 19 nm/s (0.75 in/s) for modern gypsum board houses and 12.7 nm/s (0.50 in/s) for plaster on lath interiors. For frequencies above 40 Hz, a safe particle velocity maximum of 51 nm/s (2.0 in/s) is recommended for all houses."

It should be noted that the USBM RI 8507 recommendations are designed to prevent even threshold damage in residences of lower-quality construction. Threshold damage was defined as follows:

"Threshold damage was defined as the occurrence of cosmetic damage; that is, the most superficial interior cracking of the type that develops in all homes independent of blasting."

In an earlier USBM study (Bulletin 656, Nichols et al., 1971), it was concluded that if at least 8 milliseconds of delay time separate charges, their effect on ground motion is not cumulative. The "8-millisecond rule" remains as industry and regulatory standard for defining "separate" delays.

Blasting researchers, over many years, have developed and verified the validity of using scaled relationships to predict vibration intensity at various distances. These relationships use scaling theory to define the relationship between ground vibration particle velocity, charge weight, and distance. Distance is scaled by the square root of charge weight to create a single dependent variable called scaled distance (SD). Various forms of this relationship are shown below:

 $ppy = K(SD)''' and SD=D/(W)^{1/2}$

Where:

ppv=	Peak Particle Velocity (inch/sec.)
KandM=	Site Attenuation Constants
SD=	Scaled Distance (ft/lb112)
D=	Distance (ft)
W=	Maximum charge weight per delay (lbs)

When plotted on a log-log graph, data points defined by scaled distance and measured particle velocity generally fall between boundaries defined by Oriard (1972), as shown in Figure below. The slope of plotted data (m) is usually around -1.6 and the K factor for predicting particle velocity in the upper limit of the normally confined charges is 242. For cautious predictions, GCC has used a K factor of 300 in all calculations for estimating particle velocities in the various analyses done in this report.

The Colorado Division of Labor blasting regulations require blasters to use a minimum scaled distance (SD) of 55 ft/lb¹¹² when calculating maximum charge weights with a distance from 301 to 5000 feet. Charges determined with this formula are designed to ensure that ground motion does not approach levels that might cause even cosmetic damage (0.5 in/sec.). GCC divided the structures into two categories: the main and the secondary. The main structures are the houses, wells and large structures. The secondary are roads, fences, pipe lines and power lines.

Potential Damage for Main Structures

The closest main structure is the well with DWR Permit No. 301604 located approximately 380 feet from the nearest boundary of Cedarwood Mine DRMS Permit No M1977-317. This well is the closest main structure to the blasting operations, therefore, it will be used as worst case scenario on the calculation for the maximum explosive weight delayed by 8 msec. Such explosive weight should not exceed a ppv of 0.5 in/sec.

SD=55 ft/lb

W=(380ft/55 ft/lb)^2=47.73 lbs (@380 ft)

W=(1000ft/55 ft/lb)^2=330.57 lbs (@1000 ft)

W=(1500ft/55 ft/lb)^2=743.80 lbs (@1500 ft)

W=(2000ft/55 ft/lb)^2=1 322.31 lbs (@2000 ft)

Base in this analysis, the mining permit has been divided in zones according to the max weight of explosives delayed 8 msec in order to avoid damage to any structures around the permit boundaries. See below for a simplified depiction of the nearest main structures to the permit boundary and for a more detailed depiction of the various structures located within 2 miles of the permit boundary see the attached map.

Since all other private property is located at greater distances than the well with DWR Permit No. 301604, vibration intensities will further attenuate to values less than .5 in/sec at the more distant structures; therefore, since blast induced ground motion at nearby structures will be an order of magnitude lower than the threshold of damage, GCC believes that the Cedarwood mine will cause no vibration damage to adjacent property.

Potential for Damage to Secondary Structures

When explosive charges detonate in rock, most of the energy is used to break and displace the blasted burden of rock between the charge and the nearest free face; however, other energy is released in the form of ground vibration, air overpressure (concussion), elastic strain waves and high-pressure gas pulses. When blasting occurs very close to buried utility lines (within about 10 ft), damage can occur in the line lies within ground that is physically ruptured by the blast.

Crushing usually occurs in the rock very near the charge. The extent of this compressive and shear failure zone is usually limited to one or two charge radii. Beyond the plastic crushing zone, the rock or ground is temporarily deformed by the elastic strain waves. For some distance, tangential strain intensity exceeds the rock's strength and new fractures are created. The magnitude of strain wave energy and induced particle motion decreases as distance from the charge increases. Rock damage is a result of the induced strain, which is generally proportional to the particle velocity.

Process of Radial Fracturing around Explosive Charges

Near-field damage can be estimated by applying the findings from several carefully controlled blastinduced rock damage studies. Researchers have used many different measuring techniques to predict the rock damage zone- Cracking Radius (CR) is based on the radius (Ro) of longitudinal explosive charges. These studies have used core loges, borehole periscopes, permeability tests and various other measures to determine the extent of blast damage.

Results from carefully controlled and documented blast damage studies by the U.S. Bureau of Mines (RI 7901, 1983) and Butkovitch & Hearst (1976) indicate that the extent of localized blast hole damage in the form of cracking is generally a function of radial charge diameter, explosive type, and rock characteristics. It is important to note that the damage findings in R1 790 I are consistent with those of other researchers. In light of this correlation, it is reasonable to conclude that their damage prediction formula (CR= 20 to $26 R_0$) can be used to predict the extent of rock rupture damage.

Assuming the highest rupturing ratio (CR $26 R_{0}$), the blasting at GCC using up to 6-inch diameter charges, maximum rupturing would not extend more than about 81 inches (6.8 ft) beyond the blast holes. To prevent any possibility of damage to the buried telephone lines, GCC will maintain a minimum distance of 50 ft between buried lines and the nearest blast hole. At this distance, it is extremely unlikely that blasting or any other normal mining activities would cause any damage to buried utility lines.

Regulations Governing Blasting and Explosive Use

A review of all Federal and Colorado agencies and regulations governing the security, transportation, and use of explosives follows.

Mine Safety & Health Administration

MSI-IA has enforcement authority over blasting and the use of explosives at all U.S. Mines. MSI-IA regulations governing all aspects of explosive use are fom1d in the Code of Federal Regulations (CFR 30). These extensive regulations govern all aspect of explosive handling and blasting activities.

Colorado State Division of Labor

The Colorado State Division of Labor administers regulations governing blast permitting, explosive storage, transportation, and explosive use.

Bureau of Alcohol, Tobacco, and Firearms (BATF)

Title 27, CFR Part 55, Commerce in Explosives, defines the authority of BATF as defined by Congress in the Organized Crime Control Act of 1970. In general, the regulations contained in this part relate to commerce in explosives and implement Title XI, Regulation of Explosives (18 U.S.C. Chapter 40; 84 Stat. 952), of the Organized Crime Control Act of 1970 (84 Stat. 922).

BATF regulates:

- (I) The interstate or foreign commerce in explosive materials;
 - (2) The licensing of manufacturers and importers of, and dealers
 - in, explosive materials;
 - (3) The issuance of user permits;
 - (4) The conduct of business by licensees and operations by permits;
 - (5) The storage of explosive materials;
 - (6) The records and reports required of licensees and permittees;
 - (7) Relief from disabilities under this part;
 - (8) Exemptions, unlawful acts, penalties, seizures, and forfeitures.

In summary, for most commercial explosive users, BATF regulates all of the storage of explosives and issues federal licenses to companies that manufacture explosives for use in their own operations.

Department of Transportation (DOT)

DOT has authority over all shipments of hazardous materials within or through the United States and its possessions. Shipments of hazardous materials by truck, plane, ship, or other modes are governed by the authority and regulations of the DOT. The enforcement branches of the DOT are: the Federal Highway Administration (FH:WA), the Federal Aviation Administration (FAA), the U.S. Coast Guard (USCG), and the Federal Railroad Administration (FRA).

Office of Hazardous Materials:

DOT's Office of Hazardous Materials (OHMT) is responsible for developing and publishing rules regarding classification and transportation of hazardous materials. These rules are published in the U.S. Code of Federal Regulations, Title 49 (49 CFR), primarily in Parts 106, 107, 171-179, 383, and 390-399.

Following is a listing of DOT regulations in 49 CFR, that govern explosives transportation:

Part 390	General
Part 391	Qualification of Drivers
Part 392	Driving of Motor Vehicles
Part 393	Parts and Accessories Necessary for Safe Operation
Part 394	Notification, Reporting, and Recording of Accidents
Part 395	Hours of Service and Drivers
Part 396	Inspection, Repair, and Maintenance
Part 397	Transportation of Hazardous Materials; Driving ruld Parking Rules
Part 399	Employee Safety and Health Standards

Mitigation Plan

If a structure owner contacts GCC notifying them of potential damage to their structure due to blasting at the site GCC will immediately notify the Division. A complaint may also be received directly by the Division. All blasting activities at the site will immediately cease until the complaint is resolved to the Division's satisfaction. A representative of the Permittee/Operator will visit the structure to start the investigation within 24 hours. During the investigation, the Division and Permittee/Operator will review the blast monitoring results prepared by the independent contractor. Other data and reports may be reviewed as necessary to help determine the cause of the damage.

If the damage is determined to have likely resulted from blasting, GCC will review the blasting log of the recent blasting activity and make modifications to future blasting as needed to reduce future damages from occurring. GCC and structure owner will determine the proper course of repairs to the structure. GCC will be responsible for all costs of repairs if it is determined that blasting was the cause of the damage to the structure.

If a well is determined to be damaged or "dry", or there is a change in water quality GCC, at their cost, will install a cistern and transport suitable replacement water from a local source to the property. GCC will begin this process upon notification of the complaint and continue to transport water to the property for the duration of the investigation. If it is determined that GCC is at fault, a new well producing a similar or greater quantity and quality of water as the original well will be drilled at GCC's cost. If it is determined that GCC is not at fault, resolution of the issues will continue at the neighbor's expense. GCC will leave the temporary cistern and supply in place and available to the homeowner for 60 days or until the repairs/replacement are completed.

The Division may also pursue enforcement actions as a result of affecting lands outside the permit boundary.

Attachment 2 – Example Blast Report

(the			BUCKL	EY POWDER	RCO		
		10	BILL OF LA	DING / DELIVERY TIC	CKET		
DALCHY INT	DYN	10	7800 N. M	OORE ROAD			SHIPPERS NO
DUCKLEY	Dyno Nol	oel Inc	LITTLETON	, CO 80125			EE09216
POWDER COMPANY			303-350-5	150			5508510
Shipper		Cu	stomer Nar	me	Date		Page Numbers
BUCKLEY POWDER CO.		GCC	C - Salt Cany	/on	10/21/20	22	
DELIVERY ADDRESS		CITY		STATE	COUNTY	1	CREDIT ISSUED
Hwy 115		Penrose		со	Fremon	t	
BPC FED. ATF PERMIT NUMBER	CUST	OMER FI	ED ATF PER	MIT NUMBER	DRIVER		VEHICLE & TRAILER #
5-CO-035-20-1E-00067			NA				
BPC STATE LICENSE #	CUST	OMER S	TATE LICEN	ISE PERMIT #	CUST JOB / NU	IMBER	CUSTOMER PO #
2-005-0106			N/A				
ATF DATE CODE	NO. PKGS	QTY		PRODUCT DESCR	IPTION	PRICE	AMOUNT
			yard	5	TONS		
			/		1.0		
2745 × 11×1:	2		1342	0×2,0=	26,840 x	1,018	total
						1.018:	27,323.12
- 27							
-							
				•			
			Ton	s shot	roch:		
					26,840		
					,		1000 41
				MOD F4	28		1900,
			15			up 1	18 872 17
	5	6st	4	0712027		Torul	20,003.12
	5	2000	1	0412020			
				р Напоснати станата станата станата станата с			
THIS IS TO CERTIFY THAT THE ABOVE-NAME MATERIAL	THIS IS TO CERTIFY THAT THE ABOVE-NAME MATERIALS WERE RECEIVED IN GOOD CONDITION. I HAVE REVIEWED THE TYPE AND AMOUNT AND I AGREETHAT IT MATCHES THE AMOUNTS ON THIS PAPERWORK. I HAVE RECEIVED A COPY OF THE PRODUCT SDS SHEETS FOR THESE						
RECEIVER - CONSIGNEE SI	GNATURE	Phil		THE FOLLOW INE		DATE 10	121/22
BUYER ASSUMES ALL RISK AND LIABILITY FOR RESULTS OF	BTAINED BY THE USE OF T	HE MATERIAL COV	ERED BY THIS ORDER. B	SUYER ACKNOWLEDGES THAT THEIR MAY BE MES FULL RESPONSIBILITY FOR COMPLIANCE	E FEDERAL AND/OR STATE LAWS REGULAT E WITH SAID LAWS	ING THE USE AND/OR POS	SESSIONS OF THE MATERIALS COVERED BY THIS
BILL to if different:			,	Address:			

Buc	kley	Pow	der Co	•	B	LAST	REPORT	н.		
SERVIO	CE SITE	LOCAT	ION: <u>Louv</u>	viers		ORDER	NO.: <u>D5508316</u>			FOR SERVICE AND
BLAST	NUMBE	R: 1021	2022	B	LAST TIME:	1:53 pm	BLAST DATE: 10/2	1/2022		
CUSTC	MER:	SCC			MINE:	GCC SAL	CANYON A	DDRESS: Penro	se, CO	
ROCK	TYPE:	Gypsum			Ton	s/Yd3:	2.00 EX	PECTED VIBRA	TION: 0.000	IPS
			the Arron and a second second second second		L	OCATION	OF BLAST	titer assess and	Alteripe Cold Carlot Continue to a second content	
LOCAT	ION OF	BLAST	IN MINE:	North		BENCH:	Bench 1			
BLAST	GPS PC	DINTS:	- N38.54182		& \	W-104.9707	78			
						WEAT	HER			anter a su con a constante a co
WEATH	HER: Cle	ar	CEILIN	IG: U	nlimited TE	MPERATUR	RE: 75 F WI	ND DIRECTION	& SPEED: V	lest 28 MPH
	ny est of a constant				NEAREST	NON-OW	NED STRUCTURE		and the second se	
NAME:	Cell Tov	ver				GPS F	Points: <u>N38.52853</u>	& W-104	.96889	
DISTAN	NCE: 4,8	82 (FT)			DIRECTIO	N: 173º				
					SE	ISMOGRA	PH DATA			
	LOCA	TION		[DISTANCE	GPS POIN	ITS		CALIBRAT	ION DATE
1	GCC	SALT CA	ANYON	1	,078 (FT)	N38.5411	7 & W-104.	96710	12/07	/2021
	L	(F)	T (F)	V (F)	AIR (db)	SEISMOGRAPH	SERIAL	OPER	ATOR
1	0.030	33.3	0.020 31.	3 0	0.030 16.1	124	VibraTech SSU 300	2607	Wright	, Jerry
		Anton manufacture and				BLAST	DATA			
NUMBE	ER OF H	OLES (E	EA)		183		EXPLOSIVES S	SIZE, TYPE & WE	EIGHT	
HOLEL		=R (IN)			4	SIZE	00407414050	TYPE		WEIGHT
HOLEL		(FT)			7 - 15	0.75	SPARIAN 350			137.25
		(FT)			15	DULK	TTAN 1000 XL			7,220
STEM F	ACF HC	(FI)			7					
STEM (OTHER I	HOLES	(FT)	-	7654					
BURDE			(i i) (FT)		11		1			
BURDE	N OTHE	RROW	(FT)		11					
SPACIN	IG FROM	NT ROW	/ (FT)		12					
SPACIN	IG OTHE	ER ROW	VS (FT)	2	12	1 (A.C. 1997)		TOTAL		7 357 25
DETONA	TORS USE	D IN BLAS	ST: Electronic		MATS US	ED: No STE	M TYPE: 3/8 CRUSHED STO			85 (FT)
	TYPE		MFG		DATE CODE	USED	TYPE	MFG	DATE CODE	USED
DIGISHOT	DETONA	FOR 100F1	Dyno Nobel (Global	10FE20	1 [DIGISHOT SURFACE WIRE	Dyno Nobel Global		1,000
EZDE	ET 25/350 3	BO FT	Dyno Nobel (Global	20SE21	59	EZDET 25/350 30 FT	Dyno Nobel Global	01NO21	125
EZT	1L 17MS 20		Dyno Nobel (Global	18NO19	10	EZTL 42MS 20FT	Dyno Nobel Global	02MY22	10
CUY			10 487				SPARTAN 350	Dyno Nobel Global	08AU22	184
тог		HOT:	20.974	30			UR: 411		% OF ANF	D: 0
MAX		Ι ΔΥ·	141			GE LBS/DEL		FUEL (UIL % (BULK	(): 0
POWDE	ER FACT	OR (TO	NS/I B)		2 85					
BLASTE	BLASTER'S NAME: Wright Jerry BLASTER'S NUMPER ACTOR POUNDS/YD3: 0.70									
BLASTE	ER'S SIG	NATUR	F Oa		5 h				1-035-3830	U Colorado
			Hr	ng	~ Mo			NNEL ON OTE		res
REMAR	KS : Dia	i box 01	FA. ESR dia	agran	n averaged	Drill log an	d dot sheet from Gone	BPC 11 V12	attorn All La	3
	Ent	ire patte	rn drilled at	15' c	lepth. Per G	CC request	, back filled 100 holes	. Ramp pattern	allern, 4° noi Rows 1-4 ko	es. nt at 15'
	Rov	v 5 at 11	depth. Ro	ow 6 a	at 10' depth.	Row 7 at 9	depth. Row 8 at 8' d	epth. Row 9 at 7	depth. Tita	n 1000
	XL	bulk. 1.1	5 cup dens	ity. L	oaded holes	, by weight	. Rows 1-4 @ 50 lbs.	per hole. Rows	5-6 @ 40 lbs	s. per
START		ENIC	5 7-8 @ 30	g .ea	er nole. Rov	v 9 @ 20 lb	s. per hole. Hole D19	double primed. S	Stuck primer.	
7:0	00	12	2:30	5:30		5130	IRUCK I	NUMBERS		

DIAGRAM BLAST DATE: 10/21/2022 BLAST NUMBER: 10212022

0 417 417 484 551

	392	0459	0 526	665 0	099	0	08	O	0
fundament enter a	367	0	0 ²	0 568	0 835	0702	0	0886	978
	342	0,09	0.476	543	0	0	0 769	0861	953
Service of the servic	0 317	0 Be	0 451	0	0 585	0 652	0 744	0 836	0
and the second	0	0 359	426	୍	095	0 627	012	0	005
	267	334	04	468	0 535	002	0	786	0 878
	242	309	376	443	02	0 577	099	о 761	0 883
And the second	O 217	284	0 351	418	0485	0 552	0	0.736	0828
	0	0	326	393	094	0 527	0	O	03
	0	234	0	368	0 435	0 502	0 594	088	0 778
a line of the second	0	0	276	0,843	0410	0.477	0	0	0.753
No. of Concession, Name	0	0	ں عدر	318	385	452	0 545	0 636	0 728
	0 92	153	0 226	0	360	0.427	0 519	0	0,703
	0 67	0	0201	0	SEE .	0402	0484	586	0
	0	0109	0 176	243	310	0 377	0.469	0 561	0
	on	್ಜ	0	0 218	285	352	0	0	0
	0°	0	134	0201	268	335	0.427	0 519	0
	°ss Ss	°26	0 est	0 226	0 293	09E	452	544	0
	05	0 TH	0	251	318) 382	0 477	269	0
>	0 75	142	502 0	0 276	0	0410	0 205	594	989

Page 2 of 2

Shot: 10212022

Bench: Bench 1

Customer: GCC

Load	Sheet	Report	
------	-------	--------	--

Site:	Louviers						
Mine:	GCC SALT CANYON	Shot:	10212022	Date:	10/21/2022	Time:	1:53PM
Blaster:	Wright, Jerry	License:	1-035-38300	Material:	Gypsum	Holes:	183
Diameter:	4 (IN)	Burden:	11 (FT)	Spacing:	12 (FT)	Primers:	183
Exp. Vibration:	0.00 IPS	Fr. Burden	::11 (FT)	Fr. Spacing:	12 (FT)	Total Exp.:	7,357 lb
Fuel:	0 lb	AN:	d lb	ANFO:	0 lb	Emulsion:	7,220 lb
Depth:	7 - 15 (FT) Y	/D3: 10,487	Tons: 20,974	Tons/Lb:	2.85 G	Sallons of Fuel:	0
Max Lbs/Delay:	141 в	Holes / 8ms:	3	Location:	N38.54182	& W-104.9	7078
Temperature:	75° F	Wind Dir:	West	Wind Speed:	28 мрн	Ceiling:	Unlimited
Conditions:	Clear			Method of	Detonation: Elec	ctronic	
Pre-Blast Insp	ection Performed: Yes	s / No			Initiation: Rer	note Electronic	
Load Started:	7:00	Load Er	nded: 12:30		Total Load Tin	ne: 5:30	
Comments: Digi box 01FA. ESR diagram averaged. Drill log and dot sheet from Gary/ BPC. 11' x12' pattern. 4" holes. Entire pattern drilled at 15' depth. Per GCC request, back filled 100 holes. Ramp pattern. Rows 1-4 kept at 15'. Row 5 at 11' depth. Row 6 at 10' depth. Row 7 at 9' depth. Row 8 at 8' depth. Row 9 at 7' depth. Titan 1000 XL bulk. 1.15 cup density. Loaded holes, by weight. Rows 1-4 @ 50 lbs. per hole. Rows 5-6 @ 40 lbs. per hole. Rows 7-8 @ 30 lbs. per hole. Row 9 @ 20 lbs. per hole. Hole D19 double primed. Stuck primer.							

Crew

Name	Hours	Name	Hours
Brad Jessee	5.5	Edson Holland	4
Jerry Wright	7		T
Trucks Used: 5130			

Inventory							
Description	Date Code	Out	Description	Date Code	Out		
DIGISHOT SURFACE WIRE		1,000	EZTL 17MS 20FT	18NO19	10		
EZTL 42MS 20FT	02MY22	10	EZTL 67MS 30 FT	07MA22	6		
SPARTAN 350	08AU22	184	EZDET 25/350 30 FT	20SE21	59		
EZDET 25/350 30 FT	01NO21	125	DIGISHOT DETONATOR 100FT	10FE20	1		

Services						
Service	Quantity Service	Quantity				
	Product Totals					
Product		Total				

Total ID
137.25
101.20
7,220.000

Row	Col	Depth	Rise	Stem	Wet?	Product	Hole Total ա
A	1	15	8	7	No	SPARTAN 350	0.75
A	1	15	8	7	No	TITAN 1000 XL	51.521
А	2	15	8	7	No	SPARTAN 350	0.75
А	2	15	8	7	No	TITAN 1000 XL	51.521
А	3	15	8	7	No	SPARTAN 350	0.75
А	3	15	8	7	No	TITAN 1000 XL	51.521
А	4	15	8	7	No	SPARTAN 350	0.75
A	4	15	8	7	No	TITAN 1000 XL	51.521
А	5	15	8	7	No	SPARTAN 350	0.75
A	5	15	8	7	No	TITAN 1000 XL	51.521
А	6	15	8	7	No	SPARTAN 350	0.75
A	6	15	8	7	No	TITAN 1000 XL	51.521
А	7	15	8	7	No	SPARTAN 350	0.75
A	7	15	8	7	No	TITAN 1000 XL	51.521
А	8	15	8	7	No	SPARTAN 350	0.75
А	8	15	8	7	No	TITAN 1000 XL	51.521
Α	9	15	8	7	No	SPARTAN 350	0.75
A	9	15	8	7	No	TITAN 1000 XL	51.521
A	10	15	8	7	No	SPARTAN 350	0.75
A	10	15	8	7	No	TITAN 1000 XL	51.521
Α	11	15	8	7	No	SPARTAN 350	0.75
A	11	15	8	7	No	TITAN 1000 XL	51.521
A	12	15	8	7	No	SPARTAN 350	0.75
A	12	15	8	7	No	TITAN 1000 XL	51.521
A	. 13	15	8	7	No	SPARTAN 350	0.75
A	13	15	8	7	No	TITAN 1000 XL	51.521
A	14	15	8	7	No	SPARTAN 350	0.75
A	14	15	8	7	No	TITAN 1000 XL	51.521
A	15	15	8	7	No	SPARTAN 350	0.75
A	15	15	8	7	No	TITAN 1000 XL	51.521
A	16	15	8	7	No	SPARTAN 350	0.75
A	16	15	8	7	No	TITAN 1000 XL	51.521
A	17	15	8	7	No	SPARTAN 350	0.75
A	17	15	8	7	No	TITAN 1000 XL	51.521
A	18	15	8	7	No	SPARTAN 350	0.75
A	18	15	8	7	No	TITAN 1000 XL	51.521
A	19	15	8	7	No	SPARTAN 350	0.75
A	19	15	8	7	No	TITAN 1000 XL	51.521
A	20	15	8	7	No	SPARTAN 350	0.75
A	20	15	8	7	No	TITAN 1000 XL	51.521

А	21	15	8	7	No	SPARTAN 350	0.75
A	21	15	8	7	No	TITAN 1000 XL	51.521
В	1	15	8	7	No	SPARTAN 350	0.75
В	1	15	8	7	No	TITAN 1000 XL	51.521
В	2	15	8	7	No	SPARTAN 350	0.75
В	2	15	8	7	No	TITAN 1000 XL	51.521
В	3	15	8	7	No	SPARTAN 350	0.75
В	3	15	8	7	No	TITAN 1000 XL	51.521
В	4	15	8	7	No	SPARTAN 350	0.75
В	4	15	8	7	No	TITAN 1000 XL	51.521
В	5	15	8	7	No	SPARTAN 350	0.75
В	5	15	8	7	No	TITAN 1000 XL	51.521
В	6	15	8	7	No	SPARTAN 350	0.75
В	6	15	8	7	No	TITAN 1000 XL	51.521
В	7	15	8	7	No	SPARTAN 350	0.75
В	7	15	8	7	No	TITAN 1000 XL	51.521
В	8	15	8	7	No	SPARTAN 350	0.75
В	8	15	8	7	No	TITAN 1000 XL	51.521
В	9	15	8	7	No	SPARTAN 350	0.75
В	9	15	8	7	No	TITAN 1000 XL	51.521
В	10	15	8	7	No	SPARTAN 350	0.75
В	10	15	8	7	No	TITAN 1000 XL	51.521
В	11	15	8	7	No	SPARTAN 350	0.75
В	11	15	8	7	No	TITAN 1000 XL	51.521
В	12	15	8	7	No	SPARTAN 350	0.75
В	12	15	8	7	No	TITAN 1000 XL	51.521
В	13	15	8	7	No	SPARTAN 350	0.75
В	13	15	8	7	No	TITAN 1000 XL	51.521
В	14	15	8	7	No	SPARTAN 350	0.75
В	14	15	8	7	No	TITAN 1000 XL	51.521
B	15	15	8	7	No	SPARTAN 350	0.75
В	15	15	8	7	No	TITAN 1000 XL	51.521
B	16	15	8	7	No	SPARTAN 350	0.75
В	16	15	8	7	No	TITAN 1000 XL	51.521
В	17	15	8	7	No	SPARTAN 350	0.75
В	17	15	8	7	No	TITAN 1000 XL	51.521
В	18	15	8	7	No	SPARTAN 350	0.75
В	18	15	8	7	No	TITAN 1000 XL	51.521
B	19	15	8	7	No	SPARTAN 350	0.75
В	19	15	8	7	No	TITAN 1000 XL	51.521
В	20	15	8	7	No	SPARTAN 350	0.75
В	20	15	8	7	No	TITAN 1000 XL	51.521

В	21	15	8	7	No	SPARTAN 350	0.75
В	21	15	8	7	No	TITAN 1000 XL	51.521
С	1	15	8	7	No	SPARTAN 350	0.75
С	1	15	8	7	No	TITAN 1000 XL	51.521
С	2	15	8	7	No	SPARTAN 350	0.75
С	2	15	8	7	No	TITAN 1000 XL	51.521
С	3	15	8	7	No	SPARTAN 350	0.75
С	3	15	8	7	No	TITAN 1000 XL	51.521
С	4	15	8	7	No	SPARTAN 350	0.75
С	4	15	8	7	No	TITAN 1000 XL	51.521
С	5	15	8	7	No	SPARTAN 350	0.75
С	5	15	8	7	No	TITAN 1000 XL	51.521
С	6	15	8	7	No	SPARTAN 350	0.75
С	6	15	8	7	No	TITAN 1000 XL	51.521
С	7	15	8	7	No	SPARTAN 350	0.75
С	7	15	8	7	No	TITAN 1000 XL	51.521
С	8	15	8	7	No	SPARTAN 350	0.75
С	8	15	8	7	No	TITAN 1000 XL	51.521
С	9	15	8	7	No	SPARTAN 350	0.75
С	9	15	8	7	No	TITAN 1000 XL	51.521
С	10	15	8	7	No	SPARTAN 350	0.75
С	10	15	8	7	No	TITAN 1000 XL	51.521
С	11	15	8	7	No	SPARTAN 350	0.75
С	11	15	8	7	No	TITAN 1000 XL	51.521
С	12	15	8	7	No	SPARTAN 350	0.75
С	12	15	8	7	No	TITAN 1000 XL	51.521
С	13	15	8	7	No	SPARTAN 350	0.75
С	13	15	8	7	No	TITAN 1000 XL	51.521
С	14	15	8	7	No	SPARTAN 350	0.75
С	14	15	8	7	No	TITAN 1000 XL	51.521
С	15	15	8	7	No	SPARTAN 350	0.75
С	15	15	8	7	No	TITAN 1000 XL	51.521
С	16	15	8	7	No	SPARTAN 350	0.75
С	16	15	8	7	No	TITAN 1000 XL	51.521
С	17	15	8	7	No	SPARTAN 350	0.75
С	17	15	8	7	No	TITAN 1000 XL	51.521
С	18	15	8	7	No	SPARTAN 350	0.75
С	18	15	8	7	No	TITAN 1000 XL	51.521
С	19	15	8	7	No	SPARTAN 350	0.75
С	19	15	8	7	No	TITAN 1000 XL	51.521
С	20	15	8	7	No	SPARTAN 350	0.75
С	20	15	8	7	No	TITAN 1000 XL	51.521

С	21	15	8	7	No	SPARTAN 350	0.75
С	21	15	8	7	No	TITAN 1000 XL	51.521
D	1	15	8	7	No	SPARTAN 350	0.75
D	1	15	8	7	No	TITAN 1000 XL	51.521
D	2	15	8	7	No	SPARTAN 350	0.75
D	2	15	8	7	No	TITAN 1000 XL	51.521
D	3	15	8	7	No	SPARTAN 350	0.75
D	3	15	8	7	No	TITAN 1000 XL	51.521
D	4	15	8	7	No	SPARTAN 350	0.75
D	4	15	8	7	No	TITAN 1000 XL	51.521
D	5	15	8	7	No	SPARTAN 350	0.75
D	5	15	8	7	No	TITAN 1000 XL	51.521
D	6	15	8	7	No	SPARTAN 350	0.75
D	6	15	8	7	No	TITAN 1000 XL	51.521
D	7	15	8	7	No	SPARTAN 350	0.75
D	7	15	8	7	No	TITAN 1000 XL	51.521
D	8	15	8	7	No	SPARTAN 350	0.75
D	8	15	8	7	No	TITAN 1000 XL	51.521
D	9	15	8	7	No	SPARTAN 350	0.75
D	9	15	8	7	No	TITAN 1000 XL	51.521
D	10	15	8	7	No	SPARTAN 350	0.75
D	10	15	8	7	No	TITAN 1000 XL	51.521
D	11	15	8	7	No	SPARTAN 350	0.75
D	11	15	8	7	No	TITAN 1000 XL	51.521
D	12	15	8	7	No	SPARTAN 350	0.75
D	12	15	8	7	No	TITAN 1000 XL	51.521
D	13	15	8	7	No	SPARTAN 350	0.75
D	13	15	8	7	No	TITAN 1000 XL	51.521
D	14	15	8	7	No	SPARTAN 350	0.75
D	14	15	8	7	No	TITAN 1000 XL	51.521
D	15	15	8	7	No	SPARTAN 350	0.75
D	15	15	8	7	No	TITAN 1000 XL	51.521
D	16	15	8	7	No	SPARTAN 350	0.75
D	16	15	8	7	No	TITAN 1000 XL	51.521
D	17	15	8	7	No	SPARTAN 350	0.75
D	17	15	8	7	No	TITAN 1000 XL	51.521
D	18	15	8	7	No	SPARTAN 350	0.75
D	18	15	8	7	No	TITAN 1000 XL	51.521
D	19	15	8	7	No	SPARTAN 350	0.75
D	19	15	8	7	No	TITAN 1000 XL	51.521
D	20	15	8	7	No	SPARTAN 350	0.75
D	20	15	8	7	No	TITAN 1000 XL	51.521

Е	1	11	5	6	No	SPARTAN 350	0.75
E	1	11	5	6	No	TITAN 1000 XL	35.045
Е	2	11	5	6	No	SPARTAN 350	0.75
E	2	11	5	6	No	TITAN 1000 XL	35.045
Е	3	11	5	6	No	SPARTAN 350	0.75
Е	3	11	5	6	No	TITAN 1000 XL	35.045
Е	4	11	5	6	No	SPARTAN 350	0.75
Е	4	11	5	6	No	TITAN 1000 XL	35.045
Е	5	11	5	6	No	SPARTAN 350	0.75
Е	5	11	5	6	No	TITAN 1000 XL	35.045
Е	6	11	5	6	No	SPARTAN 350	0.75
Е	6	11	5	6	No	TITAN 1000 XL	35.045
Е	7	11	5	6	No	SPARTAN 350	0.75
E	7	11	5	6	No	TITAN 1000 XL	35.045
Е	8	11	5	6	No	SPARTAN 350	0.75
E	8	11	5	6	No	TITAN 1000 XL	35.045
E	9	11	5	6	No	SPARTAN 350	0.75
E	9	11	5	6	No	TITAN 1000 XL	35.045
E	10	11	5	6	No	SPARTAN 350	0.75
E	10	11	5	6	No	TITAN 1000 XL	35.045
E	11	11	5	6	No	SPARTAN 350	0.75
E	11	11	5	6	No	TITAN 1000 XL	35.045
E	12	11	5	6	No	SPARTAN 350	0.75
E	12	11	5	6	No	TITAN 1000 XL	35.045
E	13	11	5	6	No	SPARTAN 350	0.75
E	13	11	5	6	No	TITAN 1000 XL	35.045
E	14	11	5	6	No	SPARTAN 350	0.75
Е	14	11	5	6	No	TITAN 1000 XL	35.045
E	15	11	5	6	No	SPARTAN 350	0.75
E	15	11	5	6	No	TITAN 1000 XL	35.045
E	16	11	5	6	No	SPARTAN 350	0.75
E	16	11	5	6	No	TITAN 1000 XL	35.045
E	17	11	5	6	No	SPARTAN 350	0.75
E	17	11	5	6	No	TITAN 1000 XL	35.045
E	18	11	5	6	No	SPARTAN 350	0.75
Е	18	11	5	6	No	TITAN 1000 XL	35.045
E	19	11	5	6	No	SPARTAN 350	0.75
E	19	11	5	6	No	TITAN 1000 XL	35.045
E	20	11	5	6	No	SPARTAN 350	0.75
E	20	11	5	6	No	TITAN 1000 XL	35.045
F	1	11	5	6	No	SPARTAN 350	0.75
F	1	11	5	6	No	TITAN 1000 XL	35.045

F	2	11	5	6	No	SPARTAN 350	0.75
F	2	11	5	6	No	TITAN 1000 XL	35.045
F	3	11	5	6	No	SPARTAN 350	0.75
F	3	11	5	6	No	TITAN 1000 XL	35.045
F	4	11	5	6	No	SPARTAN 350	0.75
F	4	11	5	6	No	TITAN 1000 XL	35.045
F	5	11	5	6	No	SPARTAN 350	0.75
F	5	. 11	5	6	No	TITAN 1000 XL	35.045
F	6	11	5	6	No	SPARTAN 350	0.75
F	6	11	5	6	No	TITAN 1000 XL	35.045
F	7	11	5	6	No	SPARTAN 350	0.75
F	7	11	5	6	No	TITAN 1000 XL	35.045
F	8	11	5	6	No	SPARTAN 350	0.75
F	8	11	5	6	No	TITAN 1000 XL	35.045
F	9	11	5	6	No	SPARTAN 350	0.75
F	9	11	5	6	No	TITAN 1000 XL	35.045
F	10	11	5	6	No	SPARTAN 350	0.75
F	10	11	5	6	No	TITAN 1000 XL	35.045
F	11	11	5	6	No	SPARTAN 350	0.75
F	11	11	5	6	No	TITAN 1000 XL	35.045
F	12	11	5	6	No	SPARTAN 350	0.75
F	12	11	5	6	No	TITAN 1000 XL	35.045
F	13	11	5	6	No	SPARTAN 350	0.75
F	13	11	5	6	No	TITAN 1000 XL	35.045
F	14	11	5	6	No	SPARTAN 350	0.75
F	14	11	5	6	No	TITAN 1000 XL	35.045
F	15	11	5	6	No	SPARTAN 350	0.75
F	15	11	5	6	No	TITAN 1000 XL	35.045
F	16	11	5	6	No	SPARTAN 350	0.75
F	16	11	5	6	No	TITAN 1000 XL	35.045
F	17	11	5	6	No	SPARTAN 350	0.75
F	17	11	5	6	No	TITAN 1000 XL	35.045
F	18	11	5	6	No	SPARTAN 350	0.75
F	18	11	5	6	No	TITAN 1000 XL	35.045
F	19	11	5	6	No	SPARTAN 350	0.75
F	19	11	5	6	No	TITAN 1000 XL	35.045
F	20	11	5	6	No	SPARTAN 350	0.75
F	20	11	5	6	No	TITAN 1000 XL	35.045
G	1	9	4	5	No	SPARTAN 350	0.75
G	1	9	4	5	No	TITAN 1000 XL	28.036
G	2	9	4	5	No	SPARTAN 350	0.75
G	2	9	4	5	No	TITAN 1000 XL	28.036

G	3	9	4	5	No	SPARTAN 350	0.75
G	3	9	4	5	No	TITAN 1000 XL	28.036
G	4	9	4	5	No	SPARTAN 350	0.75
G	4	9	4	5	No	TITAN 1000 XL	28.036
G	5	9	4	5	No	SPARTAN 350	0.75
G	5	9	4	5	No	TITAN 1000 XL	28.036
G	6	9	4	5	No	SPARTAN 350	0.75
G	6	9	4	5	No	TITAN 1000 XL	28.036
G	7	9	4	5	No	SPARTAN 350	0.75
G	7	9	4	5	No	TITAN 1000 XL	28.036
G	8	9	4	5	No	SPARTAN 350	0.75
G	8	9	4	5	No	TITAN 1000 XL	28.036
G	9	9	4	5	No	SPARTAN 350	0.75
G	9	9	4	5	No	TITAN 1000 XL	28.036
G	10	9	4	5	No	SPARTAN 350	0.75
G	10	9	4	5	No	TITAN 1000 XL	28.036
G	11	9	4	5	No	SPARTAN 350	0.75
G	11	9	4	5	No	TITAN 1000 XL	28.036
G	12	9	4	5	No	SPARTAN 350	0.75
G	12	9	4	5	No	TITAN 1000 XL	28.036
G	13	9	4	5	No	SPARTAN 350	0.75
G	13	9	4	5	No	TITAN 1000 XL	28.036
G	14	9	4	5	No	SPARTAN 350	0.75
G	14	9	4	5	No	TITAN 1000 XL	28.036
G	15	9	4	5	No	SPARTAN 350	0.75
G	15	9	4	5	No	TITAN 1000 XL	28.036
G	16	9	4	5	No	SPARTAN 350	0.75
G	16	9	4	5	No	TITAN 1000 XL	28.036
G	17	9	4	5	No	SPARTAN 350	0.75
G	17	9	4	5	No	TITAN 1000 XL	28.036
G	18	9	4	5	No	SPARTAN 350	0.75
G	18	9	4	5	No	TITAN 1000 XL	28.036
G	19	9	4	5	No	SPARTAN 350	0.75
G	19	9	4	5	No	TITAN 1000 XL	28.036
G	20	9	4	5	No	SPARTAN 350	0.75
G	20	9	4	5	No	TITAN 1000 XL	28.036
Η	1	9	4	5	No	SPARTAN 350	0.75
Н	1	9	4	5	No	TITAN 1000 XL	28.036
H	2	9	4	5	No	SPARTAN 350	0.75
Н	2	9	4	5	No	TITAN 1000 XL	28.036
Н	3	9	4	5	No	SPARTAN 350	0.75
Н	3	9	4	5	No	TITAN 1000 XL	28.036

H	4	9	4	5	No	SPARTAN 350	0.75
Н	4	9	4	5	No	TITAN 1000 XL	28.036
H	5	9	4	5	No	SPARTAN 350	0.75
Н	5	9	4	5	No	TITAN 1000 XL	28.036
H	6	9	4	5	No	SPARTAN 350	0.75
Н	6	9	4	5	No	TITAN 1000 XL	28.036
Η	7	9	4	5	No	SPARTAN 350	0.75
Η	7	9	4	5	No	TITAN 1000 XL	28.036
Η	8	9	4	5	No	SPARTAN 350	0.75
Н	8	9	4	5	No	TITAN 1000 XL	28.036
Η	9	9	4	5	No	SPARTAN 350	0.75
Н	9	9	4	5	No	TITAN 1000 XL	28.036
Н	10	9	4	5	No	SPARTAN 350	0.75
Н	10	9	4	5	No	TITAN 1000 XL	28.036
Н	11	9	4	5	No	SPARTAN 350	0.75
Н	11	9	4	5	No	TITAN 1000 XL	28.036
Н	12	9	4	5	No	SPARTAN 350	0.75
Η	12	9	4	5	No	TITAN 1000 XL	28.036
Н	13	9	4	5	No	SPARTAN 350	0.75
Н	13	9	4	5	No	TITAN 1000 XL	28.036
Н	14	9	4	5	No	SPARTAN 350	0.75
Н	14	9	4	5	No	TITAN 1000 XL	28.036
Н	15	9	4	5	No	SPARTAN 350	0.75
Н	15	9	4	5	No	TITAN 1000 XL	28.036
Η	16	9	4	5	No	SPARTAN 350	0.75
Н	16	9	4	5	No	TITAN 1000 XL	28.036
H	17	9	4	5	No	SPARTAN 350	0.75
Н	17	9	4	5	No	TITAN 1000 XL	28.036
Н	18	9	4	5	No	SPARTAN 350	0.75
Н	18	9	4	5	No	TITAN 1000 XL	28.036
Η	19	9	4	5	No	SPARTAN 350	0.75
Н	19	9	4	5	No	TITAN 1000 XL	28.036
Η	20	9	4	5	No	SPARTAN 350	0.75
Н	20	9	4	5	No	TITAN 1000 XL	28.036
	1	7	3	4	No	SPARTAN 350	0.75
I .	1	7	3	4	No	TITAN 1000 XL	21.027
l	2	7	3	4	No	SPARTAN 350	0.75
1	2	7	3	4	No	TITAN 1000 XL	21.027
	3	7	3	4	No	SPARTAN 350	0.75
I	3	7	3	4	No	TITAN 1000 XL	21.027
	4	7	3	4	No	SPARTAN 350	0.75
I	4	7	3	4	No	TITAN 1000 XL	0.75
							21.027

1	5	7	3	4	No	SPARTAN 350	0.75
1	5	7	3	4	No	TITAN 1000 XL	21.027
I	6	7	3	4	No	SPARTAN 350	0.75
	6	7	3	4	No	TITAN 1000 XL	21.027
1	7	7	3	4	No	SPARTAN 350	0.75
1	7	7	3	4	No	TITAN 1000 XL	21.027
I	8	7	3	4	No	SPARTAN 350	0.75
	8	7	3	4	No	TITAN 1000 XL	21.027
l	9	7	3	4	No	SPARTAN 350	0.75
I	9	7	3	4	No	TITAN 1000 XL	21.027
1	10	7	3	4	No	SPARTAN 350	0.75
1	10	7	3	4	No	TITAN 1000 XL	21.027
l	11	7	3	4	No	SPARTAN 350	0.75
1	11	7	3	4	No	TITAN 1000 XL	21.027
l	12	7	3	4	No	SPARTAN 350	0.75
1	12	7	3	4	No	TITAN 1000 XL	21.027
	13	7	3	4	No	SPARTAN 350	0.75
Γ	13	7	3	4	No	TITAN 1000 XL	21.027
l	14	7	3	4	No	SPARTAN 350	0.75
1	14	7	3	4	No	TITAN 1000 XL	21.027
ł	15	7	3	4	No	SPARTAN 350	0.75
1	15	7	3	4	No	TITAN 1000 XL	21.027
l Rolessacor	16	7	3	4	No	SPARTAN 350	0.75
1	16	7	3	4	No	TITAN 1000 XL	21.027
I spectra contractor	17	7	3	4	No	SPARTAN 350	0.75
1	17	7	3	4	No	TITAN 1000 XL	21.027
	18	7	3	4	No	SPARTAN 350	0.75
1	18	7	3	4	No	TITAN 1000 XL	21.027
l Internet	19	7	3	4	No	SPARTAN 350	0.75
I .	19	7	3	4	No	TITAN 1000 XL	21.027
1	20	7	3	4	No	SPARTAN 350	0.75
I	20	7	3	4	No	TITAN 1000 XL	21.027

WORKPLACE EXAMINATION/ PRE BLAST TAIL GATE MEETING

BPC Employee's and/or (Customer Employees Attending the Workplace Examination
Blaster	Attendees
- Jerry Wright	Brad Jesse
	Edson Holland
	Jarred marne
Date: 10/21/2024	7:00
Topics to be discussed: Chec	k mark topics discussed which may include the full
	Bur M
Danger Zone Designation (6' mark): Painted Tape Cones
Verify Employee PPE:	Hard hat High Visibility Fall protection
	arety toe boots Safety Glasses Other
Blast Site Segurity & Deele V	meet at gate
Blast Site Security & Barricading:	Sugar Cores byims
vveather conditions / concerns:	clas
High Wall Conditions:	
Ground / Floor Conditions:	
Loading Procedures (Gassing needs):	1.15 Cup Density
Specific Tie-in Instructions:	Norel
Stemming Requirements:	Varied - 12ading change DIFLCC Request
Density Requirements & Holes:	1.15 (m) 183 h.l.
Fall Protection Needs (highwall & trucke)	in cap in was
Blast Warning Procedures:	
Road Blockades	BDC
ather	ppc
Description of Adverse Conditions:	Date Corrected
Description	Date Corrected
Description of other Safet	y related items discussed (other than topics above)

APPENDIX N

BUCKLEY POWDER BLAST RESULTS EXPECTATIONS

The below-identified Owner/Operator does hereby acknowledge that BUCKLEY POWDER has specified for the reasons listed below why the results of this blast may not be optimum, desirable or normal. BUCKLEY POWDER by this document is informing The Owner/Operator of the expected outcome and the Owner/Operator therefore agrees to release, indemnify, save harmless and assume the defense on behalf of BUCKLEY POWDER or any one or more of BUCKLEY POWDER'S officers, directors, agents, and employees, arising in any way from the firing of the shot, including any claim for personal injury, loss of life or damage to or loss of property, loss of anticipate profits, consequential damages or incidental damages and this release and indemnity shall extend to all related costs, charges and expenses of BUCKLEY POWDER (including legal cost). It is further agreed that in the event of unacceptable results of the blast, the Owner/Operator shall be responsible for the full payment to BUCKLEY POWDER for the products and services rendered.

Expected outcome and reasons for the expected outcome:
GCS Requested 5 Row be back filled, tell
Hole depty 7' to 11 pop last 5 Rows
Because at pattern size may not move or get th
brakge desifer - possible oversize
Date $10/21/22$
Location Salt Conyon / GCC
Owner/Operator

Operation Name_____

Exmanted autoanes and uses are for

THE OWNER/OPERATOR AND BUCKLEY POWDER, ACKNOWLEDE THAT THEY HAVE READ AND UNDERSTAND THIS AGREEMENT, INCLUDING THE RELEASE AND INDEMITY PROVISIONS, AND AGREE TO BE BOUND BY ITS TERMS. THIS AGREEMENT SHALL SUPERSEDE ANY PRIOR AGREEMENT BETWEEN THE PARTIES WITH RESPECT TO THE SUBJECT MATTER CONTAINED HEREIN.

BUCKLEY POWDER

OWNER/OPERATOR

BY Jerry Wright TITLE Blaster

Dick Federics BY TITLE

GeoSonics Inc. Seismic Analysis Velocity Waveform Analysis

Printed: October 21, 2022 File: #069_028.EV3 (GeoSonics Inc. AnalysisNET v8.1.57)