

Cripple Creek & Victor Gold P 719.689.2977 P.O. Box 191 100 North 3rd Street Victor, Colorado 80860

F 719.689.3254

February 15, 2023

ELECTRONIC DELIVERY

Mr. Elliott Russell **Environmental Protection Specialist** Colorado Department of Natural Resources Division of Reclamation, Mining, and Safety Office of Mined Land Reclamation 1313 Sherman Street, Room 215 Denver, Colorado 80203

Re: Additional Information Required, Grassy Valley Surface and Groundwater Monitoring November 2022; Permit No. M-980-244

Dear Mr. Russell,

On December 27, 2022, Newmont Corporation's Cripple Creek & Victor Gold Mining Company (CC&V) received a request for additional information for Grassy Valley Surface and Groundwater monitoring from the Division of Reclamation, Mining, and Safety's (DRMS). This response addresses the questions submitted. Below are DRMS' comments in italics followed by CC&V's responses in bold.

1. Please provide a map that clearly shows each sample location. This is a requirement of all future monthly monitoring reports as described in item 2c of the Division's Corrective Action Required Letter Dated September 30, 2022.

Please see Attachment A for the requested map.

2. Please provide the field sheet(s) for each of the sample locations. This is a requirement of all future monthly monitoring reports as described in item 2c of the Division's Corrective Action Required Letter dated September 30, 2022.

CC&V was able to collect a water sample for analysis from monitoring well GVMW-25, however, the surface water monitoring locations were frozen as shown in the pictures submitted with the GVMW-25 data. Please see Attachment B for the requested field sheet.

3. It does not appear the Operator collected any QA/QC samples. Please provide the results of the QA/QC samples. If no QA/QC samples were collected, please provide an explanation.

CC&V did collect a duplicate and rinse blank sample during the sampling schedule, there was an oversight including them in the previous submission. The requested sample results have been included in Attachment C.

Cripple Creek & Victor Gold P 719.689.2977 P.O. Box 191 100 North 3rd Street Victor, Colorado 80860

F 719.689.3254

4. A review of the permit file it appears the Operator did not submit the monthly sampling results for the month of September 2022. Under a separate cover letter please submit the results of the September 2022 Grassy Valley monitoring.

CC&V submitted this to the Division on 1-24-2023.

Should you require further information please do not hesitate to contact Ronald Parratt at 719.689.4019 or ronald.parratt@newmont.com or myself at 719.851.4048 or katie.blake@newmont.com

Sincerely,

P.P. Pull Panto

Katie Blake Sustainability & External Relations Manager Cripple Creek & Victor Gold Mining Co

JR/rp

Ec: M. Cunningham - DRMS E. Russell – DRMS P. Lennberg - DRMS J. Raglin – CC&V R. Parratt – CC&V N. Townley - CC&V

Enc. (2)

File: S:\CrippleCreek\na.cc.admin\Environmental\New File Structure\2-Correspondence\DNR\DRMS\2021\Outgoing

Cripple Creek & Victor Gold P 719.689.2977 Mining Company F 719.689.3254 P.O. Box 101 newmont.com P.O. Box 191 100 North 3rd Street Victor, Colorado 80860

Attachment A

Cripple Creek & Victor Gold P 719.689.2977 Mining Company F 719.689.3254 P.O. Box 191 newmont.com P.O. Box 191 100 North 3rd Street Victor, Colorado 80860

Attachment B

Newmont Mining Co Cripple Creek & Victor Gold Mining Co

	D	Groundwat	er Sampling Lo	g		11-21-22
Location :	(A-6454 6	Wes			Date:	11-21 ==
Technician:	Docring	9			Quarter:	YH.
Static Water Level:		59.1			Well ID:	GUMB-25
Is well Dry?	NO	_	If so Dry at:		feet	

			Cond.		
Time	Drawdown (ft)	pH (S.U.)	(uS/cm)		Notes
Zilspa	1.2	4.83			4 L/min
2:20	1.7	4.67			
2:25	1.65	4.54		5.1	
2:30	1.7	4.49	2658	5.9	
2:35	1.7	4.42	2679	5.9	
2:40	1.7	4.40	2683	6.6	4 L/min
Sample Method:	Low Flow		Rate (gpm):	1	Time Start: 2:15 Time End: 2:40
	2:15 pm 2:20 2:25 2:30 2:35 2:40	2:15 pm 1.2 2:20 1.7 2:25 1.65 2:30 1.7 2:35 1.7 2:40 1.7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Time Drawdown (ft) pH (S.U.) (uS/cm) 2:15 /~ 1.2 4.83 3787 2:20 1.7 4.67 2680 2:25 1.65 4.54 2696 2:30 1.7 4.47 2658 2:30 1.7 4.49 2658 2:30 1.7 4.92 2679 2:30 1.7 4.92 2658 2:35 1.7 4.92 2683 2:40 1.7 4.90 2683 2:40 1.7 4.90 2683	TimeDrawdown (ft)pH (S.U.)(uS/cm)Temp. (°C) $2:1S h \sim$ 1.2 $4.8^\circ 3$ 3787 6.5 $2:2o$ 1.7 4.67 $268b$ $6.b$ $2:2S$ $1.6S$ 4.54 $269b$ 5.1 $2:3S$ 1.77 4.49 2658 5.9 $2:3S$ 1.77 4.42 2679 5.9 $2:40$ 1.77 $4.9b$ 2683 $6.b$ 4.95 $4.9b$ $4.9b$ $4.9b$ $4.9b$ 4.95 <td< td=""></td<>

•						
	Final Parameters	Stabilization Gu	idance	Met?	Comr	nents
	рН	4.4	0.1	(Y/N		
	Conductivity	2683	3%	()/N		
	Temp©	6	10%	(Y)N		
	Final H2O level		feet			
Tur	bid?	YN				
0/G \	visible:	Y/N)				
Equipment De	contaminated:	Y/N (Y)N				
Decontamination		Deployable	frag 1	insed	Acto	tibing
	and CI	Her used				
/eather:	Clear (211				
gnature:	JEL 3	2				
uplicate	and R.	ase Blank	Collecto	rd		
Q						

Cripple Creek & Victor Gold P 719.689.2977 Mining Company F 719.689.3254 P.O. Box 191 newmont com P.O. Box 191 100 North 3rd Street Victor, Colorado 80860

Attachment C

DIVISION OF RECLAMATION MINING AND SAFETY PERMIT: M-1980-244

SAMPLE LOCATION :

GVMW-25

Collar Elv (ft) : N/A Reporting Period 2022 4th Qtr

Results of Profile / Analyses

Description	Standards	4th Qtr
Name of Certified Lab	(mg/L)*	SVL Analytical, Inc.
Lab Reference #	-	X2K0377-02
Sample Date	-	11/21/2022
Lab Test Date	-	12/8/2022
Sampled By	-	BOD

Aluminium - Dissolved (mg/L)	7.0000	63.6
Ammonia (mg/L)		<0.030
Antimony - Dissolved (mg/L)	0.0060	<0.00100
Arsenic - Dissolved (mg/L)	0.0100	0.00570
Barium - Dissolved (mg/L)	2.0000	0.0096
Beryllium - Dissolved (mg/L)	0.0040	0.0793
Boron - Dissolved (mg/L)	0.7500	<0.0400
Cadmium - Dissolved (mg/L)	0.0050	0.206
Chloride - Total (mg/L)		20.2
Chromium - Dissolved (mg/L)	0.1000	<0.0060
Cobalt - Dissolved (mg/L)	0.0500	0.151
Copper - Dissolved (mg/L)	0.2000	0.157
Cyanide - Free (mg/L)	0.2000	<0.0050
Cyanide - Total (mg/L)		<0.0050
Cyanide - WAD (mg/L)	0.2000	<0.0050
Fluoride - Total F (mg/L)	2.0000	4.42
Iron - Dissolved (mg/L)	14.0000	<0.100
Lead - Dissolved (mg/L)	0.0500	<0.0075
Lithium - Dissolved (mg/L)	2.5000	0.070
Manganese - Dissolved (mg/L)	3.0000	27.0
Mercury - Dissolved (mg/L)	0.00200	<0.000200
Molybdenum - Dissolved (mg/L)	0.2100	<0.0080
Nickel - Dissolved (mg/L)	0.2000	0.362
Nitrate as Nitrogen (mg/L)	10.0000	1.54
Nitrite + Nitrate as Nitrogen (mg/L)	11.0000	1.54
Nitrite as Nitrogen (mg/L)	1.0000	<0.050
pH Field (pH unit)	6.00-8.50	4.4
Selenium - Dissolved (mg/L)	0.0240	0.188
Silver - Dissolved (mg/L)	0.0500	<0.0050
Sodium - Dissolved (mg/L)		32.3
Sulfate - Total (mg/L)	250.00	2000
Thallium - Dissolved (mg/L)	0.0020	<0.00100
Total Dissolved Solids (mg/L)		3320
Uranium - Dissolved (mg/L)	0.0300	0.170
Vanadium - Dissolved (mg/L)	0.1000	<0.0050
Zinc - Dissolved (mg/L)	2.0000	7.29
Conductivity (µS/cm)		2683

DIVISION OF RECLAMATION MINING AND SAFETY PERMIT:

SAMPLE LOCATION : GVMW-25 Duplicate

Collar Elv (ft) : N/A Reporting Period 2022 4th Qtr

Results of Profile / Analyses

Description	Standards	4th Qtr
Name of Certified Lab	(mg/L)*	SVL Analytical, Inc.
Lab Reference #	-	X2K0377-03
Sample Date	-	11/21/2022
Lab Test Date	-	12/8/2022
Sampled By	-	BOD

Aluminium - Dissolved (mg/L)	 66.3
Ammonia (mg/L)	 < 0.030
Antimony - Dissolved (mg/L)	 < 0.00100
Arsenic - Dissolved (mg/L)	 0.00595
Barium - Dissolved (mg/L)	 0.0106
Beryllium - Dissolved (mg/L)	 0.0831
Boron - Dissolved (mg/L)	 <0.0400
Cadmium - Dissolved (mg/L)	 0.210
Chloride - Total (mg/L)	 19.8
Chromium - Dissolved (mg/L)	 < 0.0060
Cobalt - Dissolved (mg/L)	 0.163
Copper - Dissolved (mg/L)	 0.164
Cyanide - Free (mg/L)	 <0.0050
Cyanide - Total (mg/L)	 <0.0050
Cyanide - WAD (mg/L)	 <0.0050
Fluoride - Total F (mg/L)	 3.98
Iron - Dissolved (mg/L)	 <0.100
Lead - Dissolved (mg/L)	 <0.0075
Lithium - Dissolved (mg/L)	 0.072
Manganese - Dissolved (mg/L)	 28.1
Mercury - Dissolved (mg/L)	 <0.000200
Molybdenum - Dissolved (mg/L)	 <0.0080
Nickel - Dissolved (mg/L)	 0.385
Nitrate as Nitrogen (mg/L)	 1.60
Nitrite + Nitrate as Nitrogen (mg/L)	 1.60
Nitrite as Nitrogen (mg/L)	 <0.050
Selenium - Dissolved (mg/L)	 0.0317
Silver - Dissolved (mg/L)	 <0.0050
Sodium - Dissolved (mg/L)	 33.9
Sulfate - Total (mg/L)	 1970
Thallium - Dissolved (mg/L)	 <0.00100
Total Dissolved Solids (mg/L)	 2690
Uranium - Dissolved (mg/L)	 0.180
Vanadium - Dissolved (mg/L)	 <0.0050
Zinc - Dissolved (mg/L)	 7.75

DIVISION OF RECLAMATION MINING AND SAFETY PERMIT: QA/QC

SAMP	LE L	OCAT	ION :

Rinse Blank

Collar Elv (ft) : N/A Reporting Period 2022 4th Qtr

Results of Profile / Analyses

Description	Standards	4th Qtr
Name of Certified Lab	(mg/L)*	SVL Analytical, Inc.
Lab Reference #	-	X2K0377-04
Sample Date	-	11/21/2022
Lab Test Date	-	12/8/2022
Sampled By	-	BOD

Aluminium - Dissolved (mg/L)	 0.114
Ammonia (mg/L)	 < 0.030
Antimony - Dissolved (mg/L)	 < 0.00100
Arsenic - Dissolved (mg/L)	 < 0.00100
Barium - Dissolved (mg/L)	 <0.0020
Beryllium - Dissolved (mg/L)	 <0.00200
Boron - Dissolved (mg/L)	 <0.0400
Cadmium - Dissolved (mg/L)	 <0.0020
Chloride - Total (mg/L)	 <0.20
Chromium - Dissolved (mg/L)	 <0.0060
Cobalt - Dissolved (mg/L)	 <0.0060
Copper - Dissolved (mg/L)	 <0.0100
Cyanide - Free (mg/L)	 <0.0050
Cyanide - Total (mg/L)	 <0.0050
Cyanide - WAD (mg/L)	 <0.0050
Fluoride - Total F (mg/L)	 <0.100
Iron - Dissolved (mg/L)	 <0.100
Lead - Dissolved (mg/L)	 <0.0075
Lithium - Dissolved (mg/L)	 <0.040
Manganese - Dissolved (mg/L)	 0.0456
Mercury - Dissolved (mg/L)	 <0.000200
Molybdenum - Dissolved (mg/L)	 <0.0080
Nickel - Dissolved (mg/L)	 <0.0100
Nitrate as Nitrogen (mg/L)	 < 0.050
Nitrite + Nitrate as Nitrogen (mg/L)	 <0.100
Nitrite as Nitrogen (mg/L)	 < 0.050
Selenium - Dissolved (mg/L)	 <0.00100
Silver - Dissolved (mg/L)	 <0.0050
Sodium - Dissolved (mg/L)	 <0.50
Sulfate - Total (mg/L)	 <0.30
Thallium - Dissolved (mg/L)	 <0.00100
Total Dissolved Solids (mg/L)	 <10
Uranium - Dissolved (mg/L)	 0.000493
Vanadium - Dissolved (mg/L)	 <0.0050
Zinc - Dissolved (mg/L)	 0.0116

Outstanding Items - Deadline Extended, Nov. Grassy Valley Data M1980244

Ronald Parratt <Ronald.Parratt@newmont.com>

Wed, Feb 15, 2023 at 7:05 AM

To: "Russell - DNR, Elliott" <elliott.russell@state.co.us>

Cc: Katie Blake <Katie.Blake@newmont.com>, Johnna Gonzalez <Johnna.Gonzalez@newmont.com>, Norma Townley <Norma.Townley2@newmont.com>

Good Morning Mr. Russell,

Please see the attached document pertaining the additional information requested for November 2022 monitoring.

If you have any questions please reach out to myself via email at ronald.parratt@newmont.com or via phone at 719.851.4019.

Best Regards,

Ron

Ronald Parratt

Site Water Coordinator

Water & Energy Specialist

100 North 3rd Street

Victor, Colorado 80860

0719.851.4019

M 719.429.8522

NEWMONT.COM

The content of this message may contain the private views and opinions of the sender and does not constitute a formal view and/or opinion of the company unless specifically stated.

The contents of this email and any attachments may contain confidential and/or proprietary information and are intended only for the person/entity to whom it was originally addressed. Any dissemination, distribution or copying of this communication is strictly prohibited.

If you have received this email in error please notify the sender immediately by return e-mail and delete this message and any attachments from your system.

[Quoted text hidden]
