

9.0 RULE 6.4.9: EXHIBIT I-SOILS INFORMATION

(1) In consultation with the Natural Resources Conservation Service (NRCS) or other qualified person, the Operator/Applicant shall indicate on a map (in Exhibit C) or by a statement, the general type, thickness and distribution of soil over the affected land. Such description will address suitability of topsoil (or other material) for establishment and maintenance of plant growth. If necessary, at its discretion, the Board may require additional information on soils or other growth media to be stockpiled and used in revegetation.

9.1 REGIONAL GEOLOGY

This section provides a brief discussion of geology and ore deposits typical of materials that may be processed at the Mill.

9.1.1 REGIONAL GEOLOGIC SETTING

The Mosquito Range, the study of whose geological structure formed a necessary basis for that of the ore deposits of the Leadville region, is the western boundary of the South Park, and has thus been considered from a topographical standpoint to form part of the Park Range. During Paleozoic times the boundaries of the depressions now known as the Parks were formed by the Archean land masses of the Colorado Range on the East and of the Sawatch and its continuation to the North, the Park Range on the West, and that the uplift of the Mosquito Range did not occur until the close of the Cretaceous.

Prior to this uplift the various porphyry bodies, which now form a prominent feature among the rock formations of the region, were intruded into the sedimentary beds deposited during Paleozoic and Mesozoic times, spreading out between the beds and sometimes crossing them, but being most uniformly distributed at the top of the Lower Carboniferous or Blue Limestone. It was in this limestone that the greater part of the ores (gold, silver, lead) were deposited, and the original deposition must have taken place after the intrusion of the porphyry and before the uplift of the range. In the uplift of the range both eruptive sheets and sedimentary beds, with the included ore deposits, were placated and faulted, and by subsequent erosion an immense thickness of rocks has been carried away, laying bare the very lowest rocks in the conformable series; the outcrops are, however, frequently buried beneath what is locally called "wash," a detrital formation of glacial origin. In the Leadville region, owing to the reduplication

overturned fold caused by faulting, a series of outcrops of easterly dipping beds of the Blue Limestone are exposed beneath the wash, of which all are metalliferous, and a considerable proportion carry pay mineralized ore.

The district is a highly faulted area; intruded with Tertiary quartz monzonite porphyries, on the East side of the Arkansas River graben, part of the Rio Grande Rift system.

The silver occurs associated with manganese and lead in veins, stock works, and mantotype deposits in the Mississippian Leadville Limestone (here a dolomite), the Devonian Dyer Dolomite, and the Ordovician Manitou Dolomite. Ore minerals are pyrite, sphalerite, and galena, in jasperoid and manganosiderite gangue. In upper levels, the ore minerals are oxidized to cerussite, anglesite, and smithsonite.

The site is located between the Mosquito Range to the East and the Sawatch Range to the West in Southern Rocky Mountain province. The province elevation ranges from 6,000ft to over 14,000ft. The rocks range in age from the Precambrian (950 to 1,800 million years old) consisting of igneous and metasediments largely granites, gneiss, and schist; and geologically recent Tertiary volcanic and intrusive rocks. The units are fractured crystalline aquifers that supply most of the domestic needs in the mountainous portion of the state. (Groundwater Atlas of Colorado, 2003).

9.1.2 ORE DEPOSITS

The principal ore deposits of Leadville occur, as summarized, in the Blue Limestone and at or near its contact with the overlying bodies of porphyry. The ores consist mainly of carbonate of lead, chloride of silver and argentiferous galena, in a gangue of silica and clay, with oxides of iron and manganese and some barite. These materials are mainly of secondary origin, and result from the alteration by surface waters of metallic sulfides. The study of these deposits has shown:

- Deposits were originally deposited as sulfides, and probably as a mixture, in varying proportions, of galena, and pyrite,
- Deposits were deposited from aqueous solutions,
- The process of deposition was a metasomatic interchanging between the materials brought in by the solutions and those forming the country rocks, consequently they do not fill pre-existing cavities,
- Ore currents from which they were deposited did not come directly from below, but were more probably descending currents, and
- Currents probably derived the material of which the ore deposits are formed mainly from the porphyry bodies, which occur at horizons above the Blue Limestone.

The geology is described in greater detail in USGS Professional Paper 148 by Emmons, Irving & Laughlin, 1927.

9.2 SOILS

The Mill sites soils shown in **Figure 3-5** and as described in the NRCS Soils Survey dated April 1990 by the USDA-Salida, Colorado District office is as follows.

9.2.1 LEADVILLE SERIES

The Leadville series consists of deep, well-drained soils on mountains. These soils formed in stony and cobbly, medium-textured glacial outwash. Slopes range from 3% to 35%. Elevation ranges from 8,200ft to 10,000ft. The plant cover is lodgepole pine, Engelmann spruce, and subalpine fir. The average annual precipitation is 16in to 20in. The average annual soil temperature is 38°F, and the average soil temperature in summer is 46°F. The frost-free season is 10 to 75 days.

In a representative profile, the surface layer is very dark brown sandy loam about 1 in thick. The sub-surface layer is reddish-brown sandy loam that contains about 10% stones and is about 7 in thick. The subsoil is yellowish-red and reddish-brown clay loam that contains 50% to 70% cobbles and stones and is about 32 in thick. The substratum is reddish-brown loam that contains 70% stones. It extends to a depth of 60 in. The soil is medium acidic in the surface and subsurface layers and slightly acidic or neutral in the subsoil.

Permeability in these soils is moderately slow, and the available water capacity is moderate. Effective rooting depth is 60in or more.

These soils are used for woodland, grazing, and recreation.

9.2.2 REPRESENTATIVE SOIL PROFILE

Representative profile of Leadville sandy loam, 3% to 35% slopes, in a forested area 1.2mi East of Highway 24 on Lake County Road No. 6, in the SW¹/₄ of Section 25, Township 9 South, Range 80 West, Lake County proximate to the local landfill facility.

02-0-0.5in, organic mat consisting mainly of charred organic matter.

- Al 0-1in, dark grayish-brown (l0YR 4/2) sandy loam; very dark brown (l0YR 2/2) moist; weak, fine, granular structure; soft, very friable, slightly sticky; many fine roots; medium acid; abrupt, smooth boundary.
- A2 1-8in, pink (7.5YR 7/3) stony sandy loam; reddish brown (7.5YR 5/4) moist; moderate, thin, platy structure parting to weak, fine, subangular blocky; slightly hard, very friable, slightly sticky; common fine and medium roots; 10% stones and gravel; medium acid; clear, wavy boundary.

- B&A 8-14in, reddish-brown (5YR 5/4) and pink (7.5YR 7/3) very stony sandy clay loam; reddish brown (5YR 4/4) and brown (7.5YR 5/4) moist; moderate, medium, subangular blocky structure; hard, friable, sticky; common coarse and medium roots; thin patchy clay films on faces of peds; 5% gravel; 15% stones, 10in to 30in in diameter; slightly acidic; gradual, wavy boundary.
- B21t 14-21in, yellowish-red (5YR 5/6) extremely stony clay loam; yellowish red (5YR 4/6) moist; moderate, medium, prismatic structure parting to moderate, medium, blocky; hard, friable, sticky; common fine and medium roots; thin continuous clay films on faces of peds; some pink (7.5YR 7 /3) coatings of A2 material on faces of peds; 60% stones, 10in to 30in in diameter; slightly acidic; clear, wavy boundary.
- B22t 21-30in, reddish-brown (5YR 5/4) extremely stony clay loam; reddish brown (5YR 4/4) moist; moderate, medium and fine, subangular blocky structure; hard, friable, sticky; few medium and coarse roots; thin nearly continuous clay films on faces of peds; 70% stones; neutral; gradual, wavy boundary.
- B3t 30-40in, reddish-brown (5YR 5/4) extremely stony clay loam; reddish brown (5YR 4/4) moist; weak, medium, subangular blocky structure; hard, friable, sticky; few fine and medium roots; few patchy clay films on faces of peds; 60% cobbles and stones, 6in to 30in in diameter; slightly acidic; gradual, wavy boundary.
- C 40-60in, reddish-brown (5YR 5/4) extremely stony loam; reddish brown (5YR 4/ 4) moist; massive; hard, very friable, slightly sticky; 70% stones and cobbles, 10in to 30in in diameter; neutral.

The A2 horizon is brown or reddish brown. Reaction is 5.6 to 6.5. The B2t horizon ranges from reddish brown to yellowish red or brown. It is sandy clay loam, clay loam, or clay loam modified by stones or cobbles. Content of coarse fragments exceeds 60%. Reaction is 6.1 to 7.3. Depth to the C horizon ranges from 30in to 45in. Uncomformable strata of cobbles and gravel can occur below a depth of 40in in places.

9.2.3 LEADVILLE SANDY LOAM (LeE)

This soil is on mountain slopes in the east-central part of Lake County. Included with it in mapping are small areas of Troutville gravelly sandy loam and small areas that have bedrock at a depth of less than 20in, although these features do not exist at the Mill site. Surface runoff is medium to rapid, and the hazard of erosion is moderate. Most of this soil, including the entire Mill site, is forested with lodgepole pine and some ponderosa pine. Engelmann spruce and subalpine fir are at the higher elevations. This soil is used as range in areas that have been logged or burned. (Capability unit VIe-4, nonirrigated; woodland suitability group 1).

Soil series and map symbols	Septic tank absorption fields	Sewage lagoons	Shallow Excavations	Dwellings without basements	Local roads and streets	Campsites
Leadville: LeE	Severe: moderately slow permeability	Severe: slope; high content of stones	Severe: high content of stones.	Severe: high content of stones; slopes of more than 15% in some places	Severe: high content of stones; slopes of more than 15% in some places.	Moderate where slopes are 3 to 15% Severe where slopes are more than 15% high content of stones.

	Suitability	as a source o	f	Soi	I features affecting-	
Road Fill	Sand	Gravel	Topsoil	Embankment, dikes, and levees	Drainage of cropland and pasture	Irrigation
Poor; high content of stones.	Unsuited	Unsuited	Fair: high content of stones	High content of stones: far compaction characteristics	Not Applicable	Not Applicable

9.2.4 SITE SPECIFIC SOIL SAMPLING

Onsite soil samples, shown in **Figure 9-1**, were collected, and analyzed. Soils are described in **Table 9-1**. Soil analysis was performed by ACZ Laboratories and is included in **Appendix 9-1**. Analysis tests are shown in **Table 9-2**. Analysis results are shown on **Table 9-3**.

TABLE 9-1: SOIL DESCRIPTION

Sample	0014	0018	002A	0028	003A 003B	0038	004	005	900	007	008
Location	ECS - between	ECS - between	SE-ECS & access road	SE-ECS & access road	SE-ECS	SE-ECS	SW-ECS	NE of Mill-North of	NE of Mill	NW of Mill	(North of Sample
	embankment &	embankment &						fenceline			007)
Date	26-Jun-22	26-Jun-22	26-Jun-22	26-Jun-22	26-Jun-22	26-Jun-22	26-Jun-22	26-Jun-22	26-Jun-22	26-Jun-22	26-Jun-22
Time	006	006	006	006	900-1200	900-1200	900-1200	900-1200	900-1200	900-1200	900-1200
Latitude	N39º13'47.56"	N39º13'45.56"	N39º13'49.26"	N39º13'49.26"	N39º13'45.18"	N39º13'45.18"	N39º13'45.29"	N39º13'53.69"	N39º13'56.05"	N39º13'53.93"	N39º13'57.91"
Longitude	W106º19'52.54"	W106º19'52.54"	W106º19'49.26"	W106º19'49.26"	W106º19'51.99"	W106º19'51.99"	W106º19'58.60"	W106º19'50.92"	W106º19'51.08"	W106º19'53.55"	W106º19'53.82"
Weather	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear
Temperature	40ºF	40ºF	40ºF	40ºF	40ºF	40ºF	40ºF	40ºF	40ºF	40ºF	40ºF
USCS Abbr.	Leadville Soil Series	Leadville Soil Series	Leadville Soil Series	Leadville Soil Series	Leadville Soil Series	Leadville Soil Series	Leadville Soil Series	Leadville Soil Series	Leadville Soil Series	Leadville Soil Series	Leadville Soil Series
	LeE	LeE	LeE	LeE	LeE	LeE	LeE	LeE	LeE	LeE	LeE
Depth	0.0" to 4.5"	4.5" to 10"	0.0" to 6.0"	6.0" to 10.0"	0.0" to 5.0"	5.0" - 10.0"	0.0" - 4.0"	0.0"-4.0"	0.0" - 4.0"	0.0"-2.5"	0.0"-2.0"
Sample Type	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab
Surface Cover	Surface Cover Short grasses,	Short grasses, poderosa Short grasses,	Short grasses,	Short grasses,	Short grasses - bare	Short grasses - bare	Short Grasses -	light brown sandy friable -	short grasses-bare -	short grasses-bare	short grasses-bare
	poderosa pine	pine	poderosa pine	poderosa pine			ponderosa pine	rocky below 4in - stones >4in	rocky below 4 inches - >2in stones		
Decembion	Dark to light reddich	Light reddich hrown cticky	I laht raddich hrown	Light raddich hrown	Dark hrown curfare.	Light howen clicky candy	Dark howen curfro-light	Light how of the condu. Dork how ourfee light how condu frighle	Light howen candy	Dark hmun curfare -	Drak hrown curface.
nescription			cticky candy friable	eticky candy friable -	light brown sticky sandy	friahle-more clavev at	bank brown sticky candy			light hrown candy	light hrown sticky
				clayey at depth	friable - more clayey at	depth	friable			pth	friable-more calvey at
					depth						depth
Color	Reddish brown	Reddish brown sandy	Reddish brown sandy	Reddish brown sandy Reddish brown sandy drak grayish brown	drak grayish brown	light brown very	reddish brown sandy dark to light		dark graysish brown	dark grayish brown	Dark grayish brown
		loam	loam	loam	sandy loam very dark friable	friable	loam very friable	orangebrown sndy	sandy loam very dark sandy loam very	sandy loam very	sandy loam very
					brown very friable			loam very friable	brown friable	dark brown very	dark brown very
										friable	friable
Staining											
Rooting	<4.5n - many fine roots	.4.5.n many fine roots <10in - many fine roots <50in - many fine roots <10in - many fine roots <3in - many fine roots <4in - many f	<6in - many fine roots	<10in-many fine roots	<3 in-many fine roots	<10in-many fine roots	<4 in-many fine roots	rooting depth < 2in	rooting depth < 2in	many fine roots	many fine roots
Moisture	moderate	low to moderate	moderate	moderate	low	low	moderdate	dry	dry	moist	moist
QA/QC	No	No	No	No	No	No	No	No	No	No	No
No. Containers	1	1	1	1	1	1	1	1	1	1	1
Preservatives	No	No	No	No	No	No	No	No	No	No	No
Comments	Slopes range from 1%-9%, Slopes range from 1%-9%, formed in calcaareous.		Slopes range from 1%- 9%, formed in	Slopes range from 1%- 9%, formed in	Slopes range from 1%- 9%, formed in	Slopes range from 1%- 9%, formed in	Slopes range from 1%- 9%, formed in	Slopes range from 1%- 9%, formed in	Slopes range from 1%- 9%, formed in	Slopes range from 1%- 9%, formed in	Slopes range from 1%- 9%, formed in
			calcaareous, gravellu,	calcaareous, gravellu,	calcaareous, gravellu,	calcaareous, gravellu,	'n	lu,	llu,	ravellu,	calcaareous, gravellu,
	coarse. Capability unit - Me-A monimizated	coarse. Capability unit -Vie- A nonimizated woodland	medratelsy coarse. Carebility unit _Vio_A	medratelsy coarse. Carability unit -VIa-A	medratelsy coarse.	medratelsy coarse. Carability unit -VIa-A	medratelsy coarse.	medratelsy coarse.	medratelsy coarse.	medratelsy coarse. Coophility unit_Vio_A	medratelsy coarse. Carebility unit -Via-A
	y group		nonirrigated, woodland	nonirrigated, woodland	nonirrigated, woodland	nonirrigated, woodland	land	land	land	land	nonimigated,
	 Lodgepole pine. 	Lodgepole pine.	suitability group 1. Lodgepole pine.	suitability group 1. Lodgepole pine.	suitability group 1. Lodgepole pine.	suitability group 1. Lodgepole pine.	suitability group 1. Lodgepole pine.	suitability group 1. Lodgepole pine.	suitability group 1. Lodgepole pine.	suitability group 1. Lodgepole pine.	woodland suitability group 1. Lodgepole
											pine.

January 2023

TABLE 9-2: SOIL PREPARATION

Parameter	EPA Method
AB-DTPA Extraction	ASA No. 9, 3-5.2.3
Air Dry @ 34ºC	USDA No. 1, 1972
Cation Exchnage Capacity Extraction	USDA No. 60 (19)
Staurated Paste Extraction	USDA No. 60 (2)
Sieve-2000um (2.0mm)	ASA No. 9, 15-4.2.2
Sieve-250um (60 mesh)	ASA No. 9, 15-4.4.4

TABLE 9-3: SOIL ANALYSIS

Parameter	EPA Method	Units	001A & 001B Composite	002A & 002B Composite	003A & 003B Composite	004	005	006	007	008
Metals Analysis										
Calcium, soluble (Sat. Paste)	M6010D ICP	meq/L	0.1680	0.5950	<0.025	0.1850	0.1070	0.0670	0.0356	0.1420
Cation Exchange Capacity (CEC)	USDA No. 60 (19)	meq/100g	7.85	5.86	9.42	8.39	8.08	4.75	13	20.3
Copper, extractable (AB-DTPA)	M6010D ICP	mg/kg	107	6.21	142	23.5	21.3	9.62	64.7	54.3
Iron, extractable (AB-DTPA)	M6010D ICP	mg/kg	71.5	111	85	122	113	89.8	167	180
Magnesium, soluble (Sat. Paste)	M6010D ICP	meq/L	0.11	0.37	<0.08	0.38	0.37	0.16	<0.08	0.13
Manganese, extractable (AB-DTPA)	M6010D ICP	mg/kg	2.99	1.71	4.82	15.1	7.99	6.33	19.6	21.1
Potasium extractable (AB-DTPA)	M6010D ICP	mg/kg	68.8	102.0	86.1	95.3	96.0	71.1	134.0	238.0
Sodium Adsorption Ratio	Calculation	-	0.22	0.10	<1	<1	<1	<1	7.9	<1
Sodium , soluble (Sat. Paste)	M6010D ICP	meq/100g	0.08	0.07	<0.04	<0.04	<0.04	<0.04	1.05	<0.04
Zinc, extractable (AB-DTPA)	M6010D ICP	mg/kg	5.61	126	38.6	68.1	61.9	41	78.8	181
Soil Analysis										
Conductivity @ 25C	SM2510B									
Conductivity	-	mmhos/cm	0.1200	0.0656	0.0418	0.0499	0.0268	0.0311	0.1380	0.0666
Max Particle Size	-	um	2000	2000	2000	2000	2000	2000	2000	2000
Temperature	-	С	21.8	21.6	21.3	21.0	20.6	21.0	21.1	22.0
Neutralization Potential as CaCO3	M600/2-78-054 3.2.3	%	0.1	0.2	<0.1	0.2	0.1	<0.1	0.3	0.4
Organic Matter (Iginiton @ 400)	EPA 600/2-78-054 M3.2.14	%	1.9	0.6	2.7	1.6	1.6	0.6	3.8	5.3
pH, Saturated Paste	EPA 600/2-78-054 Sec 3.2.2									
Max Particle Size	-	um	2000	2000	2000	2000	2000	2000	2000	2000
pH		-	3.9	5.4	4.4	4.8	5.2	4.8	4.9	4.6
Wet Chemistry										
Phosphorus, extractable (AB-DTPA)	M365.1 0 Automated Ascorbic Acid	mg/kg	3.83	9.34	4.81	2.36	1.81	<1	1.25	6.32

APPENDIX 9-1

SOILS ANALYSIS ACZ LABORATORIES

Analytical Report

July 05, 2022

Report to: George M.L. Robinson R Squared Inc. 3926 North State Hwy 67 Sedalia, CO 80135

cc: Nick Michael

Project ID: ACZ Project ID: L73720 Bill to: Stephanie Michael R Squared Incorporated 6200 S Vivian St. Littleton, CO 80127

George M.L. Robinson:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on June 07, 2022. This project has been assigned to ACZ's project number, L73720. Please reference this number in all future inquiries.

All analyses were performed according to ACZ's Quality Assurance Plan. The enclosed results relate only to the samples received under L73720. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after August 04, 2022. If the samples are determined to be hazardous, additional charges apply for disposal (typically \$11/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical raw data reports for ten years.

If you have any questions or other needs, please contact your Project Manager.

re gibli

Sue Webber has reviewed and approved this report.

Project ID:	
Sample ID:	001 SAMPLE A AND B

ACZ Sample ID:	L73720-01
Date Sampled:	05/26/22 00:00
Date Received:	06/07/22
Sample Matrix:	Soil

Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Calcium, soluble (Sat. Paste)	M6010D ICP	5	0.168		*	meq/L	0.025	0.125	06/29/22 18:11	keh1
Cation Exchange Capacity (CEC)	USDA No. 60 (19)	1	7.85		*	meq/100g	0.02	0.11	07/01/22 0:48	keh1
Copper, extractable (AB-DTPA)	M6010D ICP	100	107			mg/Kg	1	5	07/02/22 4:43	wtc
Iron, extractable (AB- DTPA)	M6010D ICP	100	71.5			mg/Kg	6	15	07/02/22 4:43	wtc
Magnesium, soluble (Sat. Paste)	M6010D ICP	5	0.11	В	*	meq/L	0.08	0.41	06/29/22 18:11	keh1
Manganese, extractable (AB-DTPA)	M6010D ICP	100	2.99	В	*	mg/Kg	1	5	07/02/22 4:43	wtc
Potassium, extractable (AB-DTPA)	M6010D ICP	100	68.8	В	*	mg/Kg	20	100	07/02/22 4:43	wtc
Sodium Adsorption Ratio	Calculation		0.22						07/05/22 0:00	calc
Sodium, soluble (Sat. Paste)	M6010D ICP	5	0.08	В	*	meq/L	0.04	0.22	06/29/22 18:11	keh1
Zinc, extractable (AB- DTPA)	M6010D ICP	100	5.61		*	mg/Kg	2	5	07/02/22 4:43	wtc

Soil	Ana	lvsis

Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Conductivity @25C	SM2510B									
Conductivity		1	0.120		*	mmhos/cm	0.001	0.01	06/21/22 0:00	scm
Max Particle Size		1	2000		*	um			06/21/22 0:00	scm
Temperature		1	21.8		*	С	0.1	0.1	06/21/22 0:00	scm
Neutralization Potential as CaCO3	M600/2-78-054 3.2.3	1	0.1	В	*	%	0.1	0.5	06/27/22 12:44	l mep
Organic Matter (Ignition @ 400)	EPA 600/2-78-054 M3.2.14	1	1.9		*	%	0.3	1	06/21/22 15:30) jpb
pH, Saturated Paste	EPA 600/2-78-054 section 3.2	.2								
Max Particle Size		1	2000		*	um			06/21/22 0:00	scm
рН		1	3.9		*	units	0.1	0.1	06/21/22 0:00	scm

Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
AB-DTPA Extraction	ASA No. 9, 3-5.2.3								06/20/22 10:19	jpb
Air Dry at 34 Degrees C	USDA No. 1, 1972								06/14/22 13:05	scm
Cation Exchange Capacity Extraction	USDA No. 60 (19)								06/20/22 17:50	zln/jpb
Saturated Paste Extraction	USDA No. 60 (2)								06/20/22 9:07	scm
Sieve-2000 um (2.0mm)	ASA No.9, 15-4.2.2								06/15/22 16:00	scm
Sieve-250 um (60 mesh)	ASA No.9, 15-4.2.2								06/21/22 14:30	jpb

Project ID: Sample ID: 001 SAMPLE A AND B ACZ Sample ID: **L73720-01** Date Sampled: 05/26/22 00:00 Date Received: 06/07/22 Sample Matrix: Soil

Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Phosphorus, extractable (AB-DTPA)	M365.1 - Automated Ascorbic Acid	100	3.83	В	*	mg/Kg	1	5	07/02/22 23:30	pjb

Project ID:	
Sample ID:	002 SAMPLE A AND B

ACZ Sample ID:	L73720-02
Date Sampled:	05/26/22 00:00
Date Received:	06/07/22
Sample Matrix:	Soil

Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Calcium, soluble (Sat. Paste)	M6010D ICP	5	0.595		*	meq/L	0.025	0.125	06/29/22 18:19	keh1
Cation Exchange Capacity (CEC)	USDA No. 60 (19)	1	5.86		*	meq/100g	0.02	0.11	06/29/22 19:50	keh1
Copper, extractable (AB-DTPA)	M6010D ICP	50	6.21			mg/Kg	0.5	2.5	07/02/22 4:50	wtc
Iron, extractable (AB- DTPA)	M6010D ICP	50	111			mg/Kg	3	7.5	07/02/22 4:50	wtc
Magnesium, soluble (Sat. Paste)	M6010D ICP	5	0.37	В	*	meq/L	0.08	0.41	06/29/22 18:19	keh1
Manganese, extractable (AB-DTPA)	M6010D ICP	50	1.71	В	*	mg/Kg	0.5	2.5	07/02/22 4:50	wtc
Potassium, extractable (AB-DTPA)	M6010D ICP	50	102		*	mg/Kg	10	50	07/02/22 4:50	wtc
Sodium Adsorption Ratio	Calculation		0.10						07/05/22 0:00	calc
Sodium, soluble (Sat. Paste)	M6010D ICP	5	0.07	В	*	meq/L	0.04	0.22	06/29/22 18:19	keh1
Zinc, extractable (AB- DTPA)	M6010D ICP	50	126		*	mg/Kg	1	2.5	07/02/22 4:50	wtc

Soil	Ana	lvsis

Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Conductivity @25C	SM2510B									
Conductivity		1	0.0656		*	mmhos/cm	0.001	0.01	06/21/22 0:00	scm
Max Particle Size		1	2000		*	um			06/21/22 0:00	scm
Temperature		1	21.6		*	С	0.1	0.1	06/21/22 0:00	scm
Neutralization Potential as CaCO3	M600/2-78-054 3.2.3	1	0.2	В	*	%	0.1	0.5	06/27/22 13:01	mep
Organic Matter (Ignition @ 400)	EPA 600/2-78-054 M3.2.14	1	0.6	В	*	%	0.3	1	06/21/22 18:32	2 jpb
pH, Saturated Paste	EPA 600/2-78-054 section 3.2	.2								
Max Particle Size		1	2000		*	um			06/21/22 0:00	scm
рН		1	5.4		*	units	0.1	0.1	06/21/22 0:00	scm

Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
AB-DTPA Extraction	ASA No. 9, 3-5.2.3								06/20/22 10:57	jpb
Air Dry at 34 Degrees C	USDA No. 1, 1972								06/14/22 13:13	scm
Cation Exchange Capacity Extraction	USDA No. 60 (19)								06/20/22 21:32	zln/jpb
Saturated Paste Extraction	USDA No. 60 (2)								06/20/22 9:12	scm
Sieve-2000 um (2.0mm)	ASA No.9, 15-4.2.2								06/15/22 16:04	scm
Sieve-250 um (60 mesh)	ASA No.9, 15-4.2.2								06/21/22 14:36	jpb

Project ID: Sample ID: 002 SAMPLE A AND B ACZ Sample ID: **L73720-02** Date Sampled: 05/26/22 00:00 Date Received: 06/07/22 Sample Matrix: Soil

Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Phosphorus, extractable (AB-DTPA)	M365.1 - Automated Ascorbic Acid	100	9.34		*	mg/Kg	1	5	07/02/22 23:32	2 pjb

Project ID:	
Sample ID:	003 SAMPLE A AND B

ACZ Sample ID:	L73720-03
Date Sampled:	05/26/22 00:00
Date Received:	06/07/22
Sample Matrix:	Soil

Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Calcium, soluble (Sat. Paste)	M6010D ICP	5	<0.025	U	*	meq/L	0.025	0.125	06/29/22 18:23	keh1
Cation Exchange Capacity (CEC)	USDA No. 60 (19)	1	9.42		*	meq/100g	0.02	0.11	06/29/22 19:53	keh1
Copper, extractable (AB-DTPA)	M6010D ICP	100	142			mg/Kg	1	5	07/02/22 5:01	wtc
Iron, extractable (AB- DTPA)	M6010D ICP	100	85.0			mg/Kg	6	15	07/02/22 5:01	wtc
Magnesium, soluble (Sat. Paste)	M6010D ICP	5	<0.08	U	*	meq/L	0.08	0.41	06/29/22 18:23	keh1
Manganese, extractable (AB-DTPA)	M6010D ICP	100	4.82	В	*	mg/Kg	1	5	07/02/22 5:01	wtc
Potassium, extractable (AB-DTPA)	M6010D ICP	100	86.1	В	*	mg/Kg	20	100	07/02/22 5:01	wtc
Sodium Adsorption Ratio	Calculation		<1						07/05/22 0:00	calc
Sodium, soluble (Sat. Paste)	M6010D ICP	5	<0.04	U	*	meq/L	0.04	0.22	06/29/22 18:23	keh1
Zinc, extractable (AB- DTPA)	M6010D ICP	100	38.6		*	mg/Kg	2	5	07/02/22 5:01	wtc

Coil	Anal	voic
SOIL	Alla	V 51 5

Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Conductivity @25C	SM2510B									
Conductivity		1	0.0418		*	mmhos/cm	0.001	0.01	06/21/22 0:00	scm
Max Particle Size		1	2000		*	um			06/21/22 0:00	scm
Temperature		1	21.3		*	С	0.1	0.1	06/21/22 0:00	scm
Neutralization Potential as CaCO3	M600/2-78-054 3.2.3	1	<0.1	U	*	%	0.1	0.5	06/27/22 13:18	3 mep
Organic Matter (Ignition @ 400)	EPA 600/2-78-054 M3.2.14	1	2.7		*	%	0.3	1	06/21/22 21:34	l jpb
pH, Saturated Paste	EPA 600/2-78-054 section 3.2.	.2								
Max Particle Size		1	2000		*	um			06/21/22 0:00	scm
рН		1	4.4		*	units	0.1	0.1	06/21/22 0:00	scm

Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
AB-DTPA Extraction	ASA No. 9, 3-5.2.3								06/20/22 11:17	jpb
Air Dry at 34 Degrees C	USDA No. 1, 1972								06/14/22 13:21	scm
Cation Exchange Capacity Extraction	USDA No. 60 (19)								06/20/22 23:23	zln/jpb
Saturated Paste Extraction	USDA No. 60 (2)								06/20/22 9:15	scm
Sieve-2000 um (2.0mm)	ASA No.9, 15-4.2.2								06/15/22 16:08	scm
Sieve-250 um (60 mesh)	ASA No.9, 15-4.2.2								06/21/22 14:42	jpb

Project ID: Sample ID: 003 SAMPLE A AND B ACZ Sample ID: L73720-03 Date Sampled: 05/26/22 00:00 Date Received: 06/07/22 Sample Matrix: Soil

Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Phosphorus, extractable (AB-DTPA)	M365.1 - Automated Ascorbic Acid	100	4.81	В	*	mg/Kg	1	5	07/02/22 23:34	l pjb

Project ID:	
Sample ID:	004 SAMPLE A AND B

ACZ Sample ID:	L73720-04
Date Sampled:	05/26/22 00:00
Date Received:	06/07/22
Sample Matrix:	Soil

Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Calcium, soluble (Sat. Paste)	M6010D ICP	5	0.185		*	meq/L	0.025	0.125	06/29/22 18:27	keh1
Cation Exchange Capacity (CEC)	USDA No. 60 (19)	25	8.39		*	meq/100g	0.54	2.72	07/01/22 0:56	keh1
Copper, extractable (AB-DTPA)	M6010D ICP	50	23.5			mg/Kg	0.5	2.5	07/02/22 5:05	wtc
Iron, extractable (AB- DTPA)	M6010D ICP	50	122			mg/Kg	3	7.5	07/02/22 5:05	wtc
Magnesium, soluble (Sat. Paste)	M6010D ICP	5	0.38	В	*	meq/L	0.08	0.41	06/29/22 18:27	keh1
Manganese, extractable (AB-DTPA)	M6010D ICP	50	15.1		*	mg/Kg	0.5	2.5	07/02/22 5:05	wtc
Potassium, extractable (AB-DTPA)	M6010D ICP	50	95.3		*	mg/Kg	10	50	07/02/22 5:05	wtc
Sodium Adsorption Ratio	Calculation		<1						07/05/22 0:00	calc
Sodium, soluble (Sat. Paste)	M6010D ICP	5	<0.04	U	*	meq/L	0.04	0.22	06/29/22 18:27	keh1
Zinc, extractable (AB- DTPA)	M6010D ICP	50	68.1		*	mg/Kg	1	2.5	07/02/22 5:05	wtc

Soil Analysis

Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Conductivity @25C	SM2510B									
Conductivity		1	0.0499		*	mmhos/cm	0.001	0.01	06/21/22 0:00	scm
Max Particle Size		1	2000		*	um			06/21/22 0:00	scm
Temperature		1	21.0		*	С	0.1	0.1	06/21/22 0:00	scm
Neutralization Potential as CaCO3	M600/2-78-054 3.2.3	1	0.2	В	*	%	0.1	0.5	06/27/22 14:11	mep
Organic Matter (Ignition @ 400)	EPA 600/2-78-054 M3.2.14	1	1.6		*	%	0.3	1	06/22/22 0:36	jpb
pH, Saturated Paste	EPA 600/2-78-054 section 3.2	2.2								
Max Particle Size		1	2000		*	um			06/21/22 0:00	scm
рН		1	4.8		*	units	0.1	0.1	06/21/22 0:00	scm
Soil Preparation										

Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
AB-DTPA Extraction	ASA No. 9, 3-5.2.3								06/20/22 11:36	jpb
Air Dry at 34 Degrees C	USDA No. 1, 1972								06/14/22 13:28	scm
Cation Exchange Capacity Extraction	USDA No. 60 (19)								06/21/22 1:13	zln/jpb
Saturated Paste Extraction	USDA No. 60 (2)								06/20/22 9:17	scm
Sieve-2000 um (2.0mm)	ASA No.9, 15-4.2.2								06/15/22 16:12	scm
Sieve-250 um (60 mesh)	ASA No.9, 15-4.2.2								06/21/22 14:49	jpb

Project ID: Sample ID: 004 SAMPLE A AND B ACZ Sample ID: L73720-04 Date Sampled: 05/26/22 00:00 Date Received: 06/07/22 Sample Matrix: Soil

Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Phosphorus, extractable (AB-DTPA)	M365.1 - Automated Ascorbic Acid	100	2.36	В	*	mg/Kg	1	5	07/02/22 23:35	5 pjb

Project ID:	
Sample ID:	005 SAMPLE A

Inorganic Analytical Results

ACZ Sample ID:	L73720-05
Date Sampled:	05/26/22 00:00
Date Received:	06/07/22
Sample Matrix:	Soil

Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Calcium, soluble (Sat. Paste)	M6010D ICP	5	0.107	В	*	meq/L	0.025	0.125	06/29/22 18:31	keh1
Cation Exchange Capacity (CEC)	USDA No. 60 (19)	1	8.08		*	meq/100g	0.02	0.11	06/29/22 20:05	keh1
Copper, extractable (AB-DTPA)	M6010D ICP	50	21.3			mg/Kg	0.5	2.5	07/02/22 5:09	wtc
Iron, extractable (AB- DTPA)	M6010D ICP	50	113			mg/Kg	3	7.5	07/02/22 5:09	wtc
Magnesium, soluble (Sat. Paste)	M6010D ICP	5	0.37	В	*	meq/L	0.08	0.41	06/29/22 18:31	keh1
Manganese, extractable (AB-DTPA)	M6010D ICP	50	7.99		*	mg/Kg	0.5	2.5	07/02/22 5:09	wtc
Potassium, extractable (AB-DTPA)	M6010D ICP	50	96.0		*	mg/Kg	10	50	07/02/22 5:09	wtc
Sodium Adsorption Ratio	Calculation		<1						07/05/22 0:00	calc
Sodium, soluble (Sat. Paste)	M6010D ICP	5	<0.04	U	*	meq/L	0.04	0.22	06/29/22 18:31	keh1
Zinc, extractable (AB- DTPA)	M6010D ICP	50	61.9		*	mg/Kg	1	2.5	07/02/22 5:09	wtc

Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Conductivity @25C	SM2510B									
Conductivity		1	0.0268		*	mmhos/cm	0.001	0.01	06/21/22 0:00	scm
Max Particle Size		1	2000		*	um			06/21/22 0:00	scm
Temperature		1	20.6		*	С	0.1	0.1	06/21/22 0:00	scm
Neutralization Potential as CaCO3	M600/2-78-054 3.2.3	1	0.1	В	*	%	0.1	0.5	06/27/22 14:28	8 mep
Organic Matter (Ignition @ 400)	EPA 600/2-78-054 M3.2.14	1	1.6		*	%	0.3	1	06/22/22 3:38	jpb
pH, Saturated Paste	EPA 600/2-78-054 section 3.2	.2								
Max Particle Size		1	2000		*	um			06/21/22 0:00	scm
рН		1	5.2		*	units	0.1	0.1	06/21/22 0:00	scm

Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
AB-DTPA Extraction	ASA No. 9, 3-5.2.3								06/20/22 11:55	jpb
Air Dry at 34 Degrees C	USDA No. 1, 1972								06/14/22 13:36	scm
Cation Exchange Capacity Extraction	USDA No. 60 (19)								06/21/22 3:04	zln/jpb
Saturated Paste Extraction	USDA No. 60 (2)								06/20/22 9:20	scm
Sieve-2000 um (2.0mm)	ASA No.9, 15-4.2.2								06/15/22 16:17	scm
Sieve-250 um (60 mesh)	ASA No.9, 15-4.2.2								06/21/22 14:55	jpb

Sample ID: 005 SAMPLE A

Inorganic Analytical Results

ACZ Sample ID: L73720-05 Date Sampled: 05/26/22 00:00 Date Received: 06/07/22 Sample Matrix: Soil

Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Phosphorus, extractable (AB-DTPA)	M365.1 - Automated Ascorbic Acid	100	1.81	В	*	mg/Kg	1	5	07/02/22 23:37	' pjb

Project ID:	
Sample ID:	006 SAMPLE A

ACZ Sample ID:	L73720-06
Date Sampled:	05/26/22 00:00
Date Received:	06/07/22
Sample Matrix:	Soil

Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Calcium, soluble (Sat. Paste)	M6010D ICP	5	0.0670	В	*	meq/L	0.025	0.125	06/29/22 18:35	keh1
Cation Exchange Capacity (CEC)	USDA No. 60 (19)	1	4.75		*	meq/100g	0.02	0.11	06/29/22 20:09	keh1
Copper, extractable (AB-DTPA)	M6010D ICP	50	9.62			mg/Kg	0.5	2.5	07/02/22 5:13	wtc
Iron, extractable (AB- DTPA)	M6010D ICP	50	89.8			mg/Kg	3	7.5	07/02/22 5:13	wtc
Magnesium, soluble (Sat. Paste)	M6010D ICP	5	0.16	В	*	meq/L	0.08	0.41	06/29/22 18:35	keh1
Manganese, extractable (AB-DTPA)	M6010D ICP	50	6.33		*	mg/Kg	0.5	2.5	07/02/22 5:13	wtc
Potassium, extractable (AB-DTPA)	M6010D ICP	50	71.1		*	mg/Kg	10	50	07/02/22 5:13	wtc
Sodium Adsorption Ratio	Calculation		<1						07/05/22 0:00	calc
Sodium, soluble (Sat. Paste)	M6010D ICP	5	<0.04	U	*	meq/L	0.04	0.22	06/29/22 18:35	keh1
Zinc, extractable (AB- DTPA)	M6010D ICP	50	41.0		*	mg/Kg	1	2.5	07/02/22 5:13	wtc

Soil Analysis

Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Conductivity @25C	SM2510B									
Conductivity		1	0.0311		*	mmhos/cm	0.001	0.01	06/21/22 0:00	scm
Max Particle Size		1	2000		*	um			06/21/22 0:00	scm
Temperature		1	21.0		*	С	0.1	0.1	06/21/22 0:00	scm
Neutralization Potential as CaCO3	M600/2-78-054 3.2.3	1	<0.1	U	*	%	0.1	0.5	06/27/22 14:45	5 mep
Organic Matter (Ignition @ 400)	EPA 600/2-78-054 M3.2.14	1	0.6	В	*	%	0.3	1	06/22/22 6:40	jpb
pH, Saturated Paste	EPA 600/2-78-054 section 3.2	.2								
Max Particle Size		1	2000		*	um			06/21/22 0:00	scm
рН		1	4.8		*	units	0.1	0.1	06/21/22 0:00	scm

Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
AB-DTPA Extraction	ASA No. 9, 3-5.2.3								06/20/22 12:14	jpb
Air Dry at 34 Degrees C	USDA No. 1, 1972								06/14/22 13:44	scm
Cation Exchange Capacity Extraction	USDA No. 60 (19)								06/21/22 4:55	zln/jpb
Saturated Paste Extraction	USDA No. 60 (2)								06/20/22 9:22	scm
Sieve-2000 um (2.0mm)	ASA No.9, 15-4.2.2								06/15/22 16:21	scm
Sieve-250 um (60 mesh)	ASA No.9, 15-4.2.2								06/21/22 15:02	jpb

Sample ID: 006 SAMPLE A

Inorganic Analytical Results

ACZ Sample ID: L73720-06 Date Sampled: 05/26/22 00:00 Date Received: 06/07/22 Sample Matrix: Soil

Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Phosphorus, extractable (AB-DTPA)	M365.1 - Automated Ascorbic Acid	100	<1	U	*	mg/Kg	1	5	07/02/22 23:38	B pjb

Project ID:	
Sample ID:	007 SAMPLE A

Inorganic Analytical Results

ACZ Sample ID:	L73720-07
Date Sampled:	05/26/22 00:00
Date Received:	06/07/22
Sample Matrix:	Soil

Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Calcium, soluble (Sat. Paste)	M6010D ICP	5	0.0356	В	*	meq/L	0.025	0.125	06/29/22 18:39	keh1
Cation Exchange Capacity (CEC)	USDA No. 60 (19)	25	13.0		*	meq/100g	0.54	2.72	07/01/22 1:08	keh1
Copper, extractable (AB-DTPA)	M6010D ICP	50	64.7			mg/Kg	0.5	2.5	07/02/22 5:28	wtc
Iron, extractable (AB- DTPA)	M6010D ICP	50	167			mg/Kg	3	7.5	07/02/22 5:28	wtc
Magnesium, soluble (Sat. Paste)	M6010D ICP	5	<0.08	U	*	meq/L	0.08	0.41	06/29/22 18:39	keh1
Manganese, extractable (AB-DTPA)	M6010D ICP	50	19.6		*	mg/Kg	0.5	2.5	07/02/22 5:28	wtc
Potassium, extractable (AB-DTPA)	M6010D ICP	50	134		*	mg/Kg	10	50	07/02/22 5:28	wtc
Sodium Adsorption Ratio	Calculation		7.9						07/05/22 0:00	calc
Sodium, soluble (Sat. Paste)	M6010D ICP	5	1.05		*	meq/L	0.04	0.22	06/29/22 18:39	keh1
Zinc, extractable (AB- DTPA)	M6010D ICP	50	78.8		*	mg/Kg	1	2.5	07/02/22 5:28	wtc

Soil Analysis

Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Conductivity @25C	SM2510B									
Conductivity		1	0.138		*	mmhos/cm	0.001	0.01	06/21/22 0:00	scm
Max Particle Size		1	2000		*	um			06/21/22 0:00	scm
Temperature		1	21.1		*	С	0.1	0.1	06/21/22 0:00	scm
Neutralization Potential as CaCO3	M600/2-78-054 3.2.3	1	0.3	В	*	%	0.1	0.5	06/27/22 15:20	mep
Organic Matter (Ignition @ 400)	EPA 600/2-78-054 M3.2.14	1	3.8		*	%	0.3	1	06/22/22 9:42	jpb
pH, Saturated Paste	EPA 600/2-78-054 section 3.2	2.2								
Max Particle Size		1	2000		*	um			06/21/22 0:00	scm
рН		1	4.9		*	units	0.1	0.1	06/21/22 0:00	scm
Soil Preparation										

Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
AB-DTPA Extraction	ASA No. 9, 3-5.2.3								06/20/22 12:34	jpb
Air Dry at 34 Degrees C	USDA No. 1, 1972								06/14/22 13:52	scm
Cation Exchange Capacity Extraction	USDA No. 60 (19)								06/21/22 6:46	zln/jpb
Saturated Paste Extraction	USDA No. 60 (2)								06/20/22 9:25	scm
Sieve-2000 um (2.0mm)	ASA No.9, 15-4.2.2								06/15/22 16:25	scm
Sieve-250 um (60 mesh)	ASA No.9, 15-4.2.2								06/21/22 15:08	jpb

Sample ID: 007 SAMPLE A

Inorganic Analytical Results

ACZ Sample ID: L73720-07 Date Sampled: 05/26/22 00:00 Date Received: 06/07/22 Sample Matrix: Soil

Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Phosphorus, extractable (AB-DTPA)	M365.1 - Automated Ascorbic Acid	100	1.25	В	*	mg/Kg	1	5	07/02/22 23:41	pjb

Project ID:	
Sample ID:	008 SAMPLE A

Inorganic Analytical Results

ACZ Sample ID:	L73720-08
Date Sampled:	05/26/22 00:00
Date Received:	06/07/22
Sample Matrix:	Soil

Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Calcium, soluble (Sat. Paste)	M6010D ICP	5	0.142		*	meq/L	0.025	0.125	06/29/22 18:43	keh1
Cation Exchange Capacity (CEC)	USDA No. 60 (19)	1	20.3		*	meq/100g	0.02	0.11	06/29/22 20:33	keh1
Copper, extractable (AB-DTPA)	M6010D ICP	50	54.3			mg/Kg	0.5	2.5	07/02/22 5:32	wtc
Iron, extractable (AB- DTPA)	M6010D ICP	50	180			mg/Kg	3	7.5	07/02/22 5:32	wtc
Magnesium, soluble (Sat. Paste)	M6010D ICP	5	0.13	В	*	meq/L	0.08	0.41	06/29/22 18:43	keh1
Manganese, extractable (AB-DTPA)	M6010D ICP	50	21.1		*	mg/Kg	0.5	2.5	07/02/22 5:32	wtc
Potassium, extractable (AB-DTPA)	M6010D ICP	50	238		*	mg/Kg	10	50	07/02/22 5:32	wtc
Sodium Adsorption Ratio	Calculation		<1						07/05/22 0:00	calc
Sodium, soluble (Sat. Paste)	M6010D ICP	5	<0.04	U	*	meq/L	0.04	0.22	06/29/22 18:43	keh1
Zinc, extractable (AB- DTPA)	M6010D ICP	50	181		*	mg/Kg	1	2.5	07/02/22 5:32	wtc

Soil	Ana	lucie
2011	Ana	IVSIS

Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Conductivity @25C	SM2510B									
Conductivity		1	0.0666		*	mmhos/cm	0.001	0.01	06/21/22 0:00	scm
Max Particle Size		1	2000		*	um			06/21/22 0:00	scm
Temperature		1	22.0		*	С	0.1	0.1	06/21/22 0:00	scm
Neutralization Potential as CaCO3	M600/2-78-054 3.2.3	1	0.4	В	*	%	0.1	0.5	06/27/22 15:37	mep
Organic Matter (Ignition @ 400)	EPA 600/2-78-054 M3.2.14	1	5.3		*	%	0.3	1	06/22/22 12:45	i jpb
pH, Saturated Paste	EPA 600/2-78-054 section 3.2	2.2								
Max Particle Size		1	2000		*	um			06/21/22 0:00	scm
рН		1	4.6		*	units	0.1	0.1	06/21/22 0:00	scm

Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
AB-DTPA Extraction	ASA No. 9, 3-5.2.3								06/20/22 12:53	jpb
Air Dry at 34 Degrees C	USDA No. 1, 1972								06/14/22 14:00	scm
Cation Exchange Capacity Extraction	USDA No. 60 (19)								06/21/22 8:36	zln/jpb
Saturated Paste Extraction	USDA No. 60 (2)								06/20/22 9:27	scm
Sieve-2000 um (2.0mm)	ASA No.9, 15-4.2.2								06/15/22 16:29	scm
Sieve-250 um (60 mesh)	ASA No.9, 15-4.2.2								06/21/22 15:15	jpb

Project ID: Sample ID: 008 SAMPLE A

ACZ Sample ID: L73720-08 Date Sampled: 05/26/22 00:00 Date Received: 06/07/22 Sample Matrix: Soil

Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Phosphorus, extractable (AB-DTPA)	M365.1 - Automated Ascorbic Acid	100	6.32		*	mg/Kg	1	5	07/02/22 23:42	2 pjb

Inorganic Reference

Batch	r Explanations A distinct set of samples analyzed at a specific time		
Found	Value of the QC Type of interest Upper limit for RPD, in %.		
Limit Lower	Lower Recovery Limit, in % (except for LCSS, mg/Kg)		
MDL		alogo omittad ar a	gual to the DOL (and commont #5)
NIDL	Method Detection Limit. Same as Minimum Reporting Limit ur Allows for instrument and annual fluctuations.	liess officied of e	qual to the FQL (see comment #5).
PCN/SCN		ufacturer's certific	ate of analysis
PQL	Practical Quantitation Limit. Synonymous with the EPA term "		
	True Value of the Control Sample or the amount added to the		
Rec	Recovered amount of the true value or spike added, in % (exc	•	/Ka)
RPD	Relative Percent Difference, calculation used for Duplicate QC		3,
Upper	Upper Recovery Limit, in % (except for LCSS, mg/Kg)	51	
Sample	Value of the Sample of interest		
Sample Ty	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
AS ASD	Analytical Spike (Post Digestion) Analytical Spike (Post Digestion) Duplicate	LESWD	Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calibration Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
	<u>,</u> , , , , , , , , , , , , , , , , , ,		
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution
	· · ·	SDL	Serial Dilution
Sample Ty	vpe Explanations		
Sample Ty Blanks	ype Explanations Verifies that there is no or minimal co	ontamination in the	e prep method or calibration procedure.
Sample Ty Blanks Control Sa	vpe Explanations Verifies that there is no or minimal co mples Verifies the accuracy of the method,	ontamination in the	e prep method or calibration procedure. o procedure.
Sample Ty Blanks Control Sa Duplicates	Vpe Explanations Verifies that there is no or minimal co umples Verifies the accuracy of the method, Verifies the precision of the instrume	ontamination in the including the prep nt and/or method	e prep method or calibration procedure. o procedure.
Sample Ty Blanks Control Sa Duplicates	vpe Explanations Verifies that there is no or minimal co mples Verifies the accuracy of the method,	ontamination in the including the prep nt and/or method ces, if any.	e prep method or calibration procedure. o procedure.
Sample Ty Blanks Control Sa Duplicates Spikes/For Standard	Verifies that there is no or minimal co Verifies the accuracy of the method, Verifies the precision of the instrume Determines sample matrix interferen Verifies the validity of the calibration.	ontamination in the including the prep nt and/or method ces, if any.	e prep method or calibration procedure. o procedure.
Sample Ty Blanks Control Sa Duplicates Spikes/For Standard	vpe Explanations Verifies that there is no or minimal co Verifies the accuracy of the method, Verifies the precision of the instrume Determines sample matrix interferen Verifies the validity of the calibration.	ontamination in the including the prep nt and/or method ces, if any.	e prep method or calibration procedure. o procedure.
Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B	ype Explanations Verifies that there is no or minimal completed by the securacy of the method, where the securacy of the method, where the securacy of the instrume of the method is the securacy of the method, where the securacy of the securacy of the method, where the securacy of t	ontamination in the including the prep nt and/or method ces, if any. PQL. The associa	e prep method or calibration procedure. o procedure. ted value is an estimated quantity.
Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H	ype Explanations ymples Verifies that there is no or minimal convertinges the accuracy of the method, verifies the precision of the instrume of the method, verifies the precision of the instrume of the method, verifies the precision of the instrume of the method, verifies the validity of the calibration. state Determines sample matrix interferent verifies the validity of the calibration. state Matrix Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an analysis exceeded method hold time.	ontamination in the including the prep nt and/or method ces, if any. PQL. The associa n immediate hold t	e prep method or calibration procedure. o procedure. ted value is an estimated quantity.
Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H L	ype Explanations wmples Verifies that there is no or minimal converting the accuracy of the method, verifies the precision of the instrume determines sample matrix interferent verifies the validity of the calibration. state Determines sample matrix interferent verifies the validity of the calibration. state Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined negotiation.	ontamination in the including the prep nt and/or method ces, if any. PQL. The associa n immediate hold f gative threshold.	e prep method or calibration procedure. o procedure. ted value is an estimated quantity. time.
Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H	ype Explanations ymples Verifies that there is no or minimal convertinges the accuracy of the method, verifies the precision of the instrume of the method, verifies the precision of the instrume of the method, verifies the precision of the instrume of the method, verifies the validity of the calibration. state Determines sample matrix interferent verifies the validity of the calibration. state Matrix Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an analysis exceeded method hold time.	ontamination in the including the prep nt and/or method ces, if any. PQL. The associa n immediate hold gative threshold. e level of the associa	e prep method or calibration procedure. o procedure. ted value is an estimated quantity. time.
Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H L U	ype Explanations umples Verifies that there is no or minimal convertinges trifles Verifies the accuracy of the method, verifies the precision of the instrume trifled Matrix Determines sample matrix interferent Verifies the validity of the calibration. Verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with ar Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the The sample quantitation limit or the	ontamination in the including the prep nt and/or method ces, if any. PQL. The associa n immediate hold gative threshold. e level of the associa	e prep method or calibration procedure. o procedure. ted value is an estimated quantity. time.
Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H L U	ype Explanations Verifies that there is no or minimal convertinges temples Verifies the accuracy of the method, Verifies the precision of the instrume rtified Matrix Determines sample matrix interferent verifies the validity of the calibration. Verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the second s	ontamination in the including the prep nt and/or method ces, if any. PQL. The associa n immediate hold to gative threshold. e level of the associate the sample detect	e prep method or calibration procedure. o procedure. ted value is an estimated quantity. time. pociated value. tion limit.
Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H L U	ype Explanations Verifies that there is no or minimal comples umples Verifies the accuracy of the method, Verifies the precision of the instrume trified Matrix Determines sample matrix interferent verifies the validity of the calibration. Second the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the material was analyzed for. ences EPA 600/4-83-020. Methods for Chemical Analysis of Water and the sample calibration of the sample calibration calibration of the sample calibration calibration of the sample calibration calibraticalibraticalibration calibration calibraticalibration ca	ontamination in the including the prep nt and/or method ces, if any. PQL. The associa n immediate hold f gative threshold. e level of the asso the sample detect and Wastes, Marc	e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. bociated value. tion limit.
Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H L U thod Refere (1) (2)	ype Explanations Verifies that there is no or minimal comples umples Verifies the accuracy of the method, verifies the precision of the instrume of the method, verifies the precision of the instrume of the method. trified Matrix Determines sample matrix interferent verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the ences EPA 600/4-83-020. Methods for Chemical Analysis of Water a EPA 600/R-93-100. Methods for the Determination of Inorgan	ontamination in the including the prep nt and/or method ces, if any. PQL. The associa n immediate hold to gative threshold. e level of the associa the sample detect and Wastes, Marc nic Substances in	e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. bciated value. tion limit. ch 1983. Environmental Samples, August 1993.
Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H L U thod Reference (1) (2) (3)	ype Explanations Verifies that there is no or minimal converting the precision of the method, werifies the precision of the instrume of the method. amples Verifies the precision of the instrume of the method. attribute Determines sample matrix interferent of the validity of the calibration. status Determines sample matrix interferent of the validity of the calibration. status Determines sample matrix interferent of the validity of the calibration. status Determines sample matrix interferent of the validity of the calibration. status Determines sample matrix interferent of the validity of the calibration. status Determines sample matrix interferent of the validity of the calibration. status Determines sample matrix interferent of the validity of the calibration. status Determines sample matrix interferent of the validity of the calibration. status Determines sample matrix interferent of the validity of the calibration. status Analyte concentration detected at a value between MDL and Fermination of the precision of the pre	ontamination in the including the prep nt and/or method ces, if any. PQL. The associa n immediate hold to gative threshold. e level of the associa the sample detect and Wastes, Marc nic Substances in	e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. bciated value. tion limit. ch 1983. Environmental Samples, August 1993.
Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H L U thod Refere (1) (2) (3) (4)	ype Explanations Verifies that there is no or minimal comples umples Verifies the accuracy of the method, verifies the precision of the instrume of the method, verifies the precision of the instrume of the method. trified Matrix Determines sample matrix interferent verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the ences EPA 600/4-83-020. Methods for Chemical Analysis of Water a EPA 600/R-93-100. Methods for the Determination of Inorgan	ontamination in the including the prep nt and/or method ces, if any. PQL. The associa n immediate hold to gative threshold. e level of the association the sample detect and Wastes, Marca nic Substances in in Environmental	e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. bciated value. tion limit. ch 1983. Environmental Samples, August 1993.
Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H L U thod Refere (1) (2) (3) (4) (5)	ype Explanations Verifies that there is no or minimal convertinges temples Verifies the accuracy of the method, Verifies the precision of the instrume rtified Matrix Determines sample matrix interferent verifies the validity of the calibration. Verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the ences EPA 600/A-83-020. Methods for Chemical Analysis of Water and EPA 600/R-93-100. Methods for the Determination of Inorgan EPA 600/R-94-111. Methods for the Determination of Metals is EPA SW-846. Test Methods for Evaluating Solid Waste.	ontamination in the including the prep nt and/or method ces, if any. PQL. The associa n immediate hold to gative threshold. e level of the association the sample detect and Wastes, Marca nic Substances in in Environmental	e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. bciated value. tion limit. ch 1983. Environmental Samples, August 1993.
Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H L U thod Refere (1) (2) (3) (4) (5)	ype Explanations Verifies that there is no or minimal converting the second of the method, werifies the accuracy of the method, werifies the precision of the instrume of the Matrix https://werifies.com/sample Determines sample matrix interferent of the calibration. trified Matrix Determines sample matrix interferent of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined nego. The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the ences EPA 600/4-83-020. Methods for Chemical Analysis of Water and EPA 600/R-93-100. Methods for the Determination of Inorgan EPA 600/R-94-111. Methods for the Determination of Metals is EPA SW-846. Test Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wasteward	ontamination in the including the prep nt and/or method ces, if any. PQL. The associa n immediate hold f gative threshold. e level of the associa the sample detect and Wastes, Marc nic Substances in in Environmental ater.	e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. bociated value. tion limit. ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994.
Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H L U thod Reference (1) (2) (3) (4) (5) mments (1)	ype Explanations Verifies that there is no or minimal comples umples Verifies the accuracy of the method, Verifies the precision of the instrume the precision of the calibration. state Determines sample matrix interferent Verifies the validity of the calibration. state Determines sample matrix interferent Verifies the validity of the calibration. state Analyte concentration detected at a value between MDL and Fe Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined nego. The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the ences EPA 600/R-83-020. Methods for Chemical Analysis of Water and EPA 600/R-93-100. Methods for the Determination of Inorgan EPA 600/R-94-111. Methods for the Determination of Metals is EPA SW-846. Test Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wasteward QC results calculated from raw data. Results may vary slightly	ontamination in the including the prep nt and/or method ces, if any. PQL. The associa n immediate hold to gative threshold. e level of the association the sample detect and Wastes, Marco in Environmental ater.	e prep method or calibration procedure. o procedure. ted value is an estimated quantity. time. bciated value. tion limit. ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994.
Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H L U thod Reference (1) (2) (3) (4) (5) mments (1) (2)	ype Explanations Verifies that there is no or minimal converting the precision of the method, werifies the precision of the instrume of the Matrix petermines sample matrix interferent verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and Fe Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg. The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the ences EPA 600/R-93-100. Methods for Chemical Analysis of Water and EPA 600/R-94-111. Methods for the Determination of Inorgant EPA 600/R-94-111. Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wasteward QC results calculated from raw data. Results may vary slightly Soil, Sludge, and Plant matrices for Inorganic analyses are reported.	ontamination in the including the prep nt and/or method ces, if any. PQL. The associa n immediate hold is pative threshold. e level of the associative threshold. the sample detect and Wastes, Marca in Environmental ater.	e prep method or calibration procedure. o procedure. ted value is an estimated quantity. time. bciated value. tion limit. ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994.
Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H L U thod Reference (1) (2) (3) (4) (5) mments (1) (2) (3)	ype Explanations umples Verifies that there is no or minimal convertinges rtified Matrix Verifies the precision of the instrume petermines sample matrix interferent Verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with and Target analyte response was below the laboratory defined negotime the material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the ences EPA 600/R-93-100. Methods for Chemical Analysis of Water at EPA 600/R-93-100. EPA 600/R-94-111. Methods for the Determination of Inorganic EPA 600/R-94-111. Methods for the Datermination of Metals is EPA SW-846. Test Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wasteward QC results calculated from raw data. Results may vary slightly Soil, Sludge, and Plant matrices for Inorganic analyses are reported on an "as	ontamination in the including the prep nt and/or method ces, if any. PQL. The associa n immediate hold is gative threshold. e level of the association the sample detect and Wastes, Marca ic Substances in in Environmental ater.	e prep method or calibration procedure. o procedure. ted value is an estimated quantity. time. bociated value. tion limit. ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994.
Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H L U thod Reference (1) (2) (3) (4) (5) mments (1) (2)	vpe Explanations Verifies that there is no or minimal converting the accuracy of the method, verifies the accuracy of the method, verifies the precision of the instrume Determines sample matrix interferent Verifies the validity of the calibration. status Determines sample matrix interferent Verifies the validity of the calibration. status Determines sample matrix interferent Verifies the validity of the calibration. status Determines sample matrix interferent Verifies the validity of the calibration. status Determines sample matrix interferent Verifies the validity of the calibration. status Determines sample matrix interferent Verifies the validity of the calibration. status Determines sample matrix interferent Verifies the validity of the calibration. status Analyte concentration detected at a value between MDL and P Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg. The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the associated value is either the sample quantitation limit or the ences EPA 600/R-93-100. Methods for Chemical Analysis of Water at EPA 600/R-93-100. EPA 600/R-93-100. Methods for the Determination of Inorganic EPA 600/R-94-111. Methods for the Examination of Water and Wasteward QC results calculated from raw data. QC results calculated from raw data. Results may vary slight	ontamination in the including the prep nt and/or method ces, if any. PQL. The associa n immediate hold is gative threshold. e level of the association the sample detect and Wastes, Marca ic Substances in in Environmental ater.	e prep method or calibration procedure. o procedure. ted value is an estimated quantity. time. bociated value. tion limit. ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994.
Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H L U thod Reference (1) (2) (3) (4) (5) mments (1) (2) (3)	ype Explanations umples Verifies that there is no or minimal convertinges rtified Matrix Verifies the precision of the instrume petermines sample matrix interferent Verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with and Target analyte response was below the laboratory defined negotime the material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the ences EPA 600/R-93-100. Methods for Chemical Analysis of Water at EPA 600/R-93-100. EPA 600/R-94-111. Methods for the Determination of Inorganic EPA 600/R-94-111. Methods for the Datermination of Metals is EPA SW-846. Test Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wasteward QC results calculated from raw data. Results may vary slightly Soil, Sludge, and Plant matrices for Inorganic analyses are reported on an "as	PQL. The associant in the including the preprint and/or method ces, if any. PQL. The associant immediate hold the pative threshold. In the elevel of the associate the sample detection of the sample	e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. bociated value. tion limit. ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations. eight basis. ertification qualifier

https://acz.com/wp-content/uploads/2019/04/Ext-Qual-List.pdf

REP001.03.15.02

4C AGZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487

(800) 334-5493

ACZ Project ID: L73720

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L73720-01	WG545417	Calcium, soluble (Sat. Paste)	M6010D ICP	RD	For a solid matrix, the duplicate RPD (spike or matrix) exceeded the control limit, which is attributable to the non-homogeneity of the sample.
		Magnesium, soluble (Sat. Paste)	M6010D ICP	DJ	Sample dilution required due to insufficient sample.
	WG545623	Manganese, extractable (AB-DTPA)	M6010D ICP	DD	Sample required dilution due to matrix color or odor.
			M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG545208	Neutralization Potential as CaCO3	M600/2-78-054 3.2.3	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG544866	Organic Matter (Ignition @ 400)	EPA 600/2-78-054 M3.2.14	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG545641	Phosphorus, extractable (AB-DTPA)	M365.1 - Automated Ascorbic	DD	Sample required dilution due to matrix color or odor.
			M365.1 - Automated Ascorbic	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG545623	Potassium, extractable (AB-DTPA)	M6010D ICP	DD	Sample required dilution due to matrix color or odor.
			M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG545417	Sodium, soluble (Sat. Paste)	M6010D ICP	DJ	Sample dilution required due to insufficient sample.
			M6010D ICP	RD	For a solid matrix, the duplicate RPD (spike or matrix) exceeded the control limit, which is attributable to the non-homogeneity of the sample.
	WG545623	Zinc, extractable (AB-DTPA)	M6010D ICP	RA	
L73720-02	WG545417	Calcium, soluble (Sat. Paste)	M6010D ICP	RD	For a solid matrix, the duplicate RPD (spike or matrix) exceeded the control limit, which is attributable to the non-homogeneity of the sample.
		Magnesium, soluble (Sat. Paste)	M6010D ICP	DJ	Sample dilution required due to insufficient sample.
	WG545623	Manganese, extractable (AB-DTPA)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG545208	Neutralization Potential as CaCO3	M600/2-78-054 3.2.3	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG544866	Organic Matter (Ignition @ 400)	EPA 600/2-78-054 M3.2.14	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG545641	Phosphorus, extractable (AB-DTPA)	M365.1 - Automated Ascorbic	DD	Sample required dilution due to matrix color or odor.
			M365.1 - Automated Ascorbic	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG545623	Potassium, extractable (AB-DTPA)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG545417	Sodium, soluble (Sat. Paste)	M6010D ICP	DJ	Sample dilution required due to insufficient sample.
			M6010D ICP	RD	For a solid matrix, the duplicate RPD (spike or matrix) exceeded the control limit, which is attributable to the non-homogeneity of the sample.
	WG545623	Zinc, extractable (AB-DTPA)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).

R Squared Incorporated

4C AGZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487

(800) 334-5493

R Squared Incorporated

ACZ Project ID: L73720

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L73720-03	WG545417	Calcium, soluble (Sat. Paste)	M6010D ICP	DJ	Sample dilution required due to insufficient sample.
			M6010D ICP	RD	For a solid matrix, the duplicate RPD (spike or matrix) exceeded the control limit, which is attributable to the non-homogeneity of the sample.
		Magnesium, soluble (Sat. Paste)	M6010D ICP	DJ	Sample dilution required due to insufficient sample.
	WG545623	Manganese, extractable (AB-DTPA)	M6010D ICP	DD	Sample required dilution due to matrix color or odor.
			M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG545208	Neutralization Potential as CaCO3	M600/2-78-054 3.2.3	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG544866	Organic Matter (Ignition @ 400)	EPA 600/2-78-054 M3.2.14	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG545641	Phosphorus, extractable (AB-DTPA)	M365.1 - Automated Ascorbic	DD	Sample required dilution due to matrix color or odor.
			M365.1 - Automated Ascorbic	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG545623	Potassium, extractable (AB-DTPA)	M6010D ICP	DD	Sample required dilution due to matrix color or odor.
			M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG545417	Sodium, soluble (Sat. Paste)	M6010D ICP	DJ	Sample dilution required due to insufficient sample.
			M6010D ICP	RD	For a solid matrix, the duplicate RPD (spike or matrix) exceeded the control limit, which is attributable to the non- homogeneity of the sample.
	WG545623	Zinc, extractable (AB-DTPA)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
L73720-04	WG545417	Calcium, soluble (Sat. Paste)	M6010D ICP	RD	For a solid matrix, the duplicate RPD (spike or matrix) exceeded the control limit, which is attributable to the non-homogeneity of the sample.
		Magnesium, soluble (Sat. Paste)	M6010D ICP	DJ	Sample dilution required due to insufficient sample.
	WG545623	Manganese, extractable (AB-DTPA)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG545208	Neutralization Potential as CaCO3	M600/2-78-054 3.2.3	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG544866	Organic Matter (Ignition @ 400)	EPA 600/2-78-054 M3.2.14	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG545641	Phosphorus, extractable (AB-DTPA)	M365.1 - Automated Ascorbic	DD	Sample required dilution due to matrix color or odor.
			M365.1 - Automated Ascorbic	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG545623	Potassium, extractable (AB-DTPA)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG545417	Sodium, soluble (Sat. Paste)	M6010D ICP	DJ	Sample dilution required due to insufficient sample.
			M6010D ICP	RD	For a solid matrix, the duplicate RPD (spike or matrix) exceeded the control limit, which is attributable to the non-homogeneity of the sample.
	WG545623	Zinc, extractable (AB-DTPA)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).

REPAD.15.06.05.01

4C AGZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487

(800) 334-5493

R Squared Incorporated

ACZ Project ID: L73720

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L73720-05	WG545417	Calcium, soluble (Sat. Paste)	M6010D ICP	DJ	Sample dilution required due to insufficient sample.
			M6010D ICP	RD	For a solid matrix, the duplicate RPD (spike or matrix) exceeded the control limit, which is attributable to the non-homogeneity of the sample.
		Magnesium, soluble (Sat. Paste)	M6010D ICP	DJ	Sample dilution required due to insufficient sample.
	WG545623	Manganese, extractable (AB-DTPA)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG545208	Neutralization Potential as CaCO3	M600/2-78-054 3.2.3	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG544866	Organic Matter (Ignition @ 400)	EPA 600/2-78-054 M3.2.14	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG545641	Phosphorus, extractable (AB-DTPA)	M365.1 - Automated Ascorbic	DD	Sample required dilution due to matrix color or odor.
			M365.1 - Automated Ascorbic	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG545623	Potassium, extractable (AB-DTPA)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG545417	Sodium, soluble (Sat. Paste)	M6010D ICP	DJ	Sample dilution required due to insufficient sample.
			M6010D ICP	RD	For a solid matrix, the duplicate RPD (spike or matrix) exceeded the control limit, which is attributable to the non-homogeneity of the sample.
	WG545623	Zinc, extractable (AB-DTPA)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
L73720-06	WG545417	Calcium, soluble (Sat. Paste)	M6010D ICP	DJ	Sample dilution required due to insufficient sample.
			M6010D ICP	RD	For a solid matrix, the duplicate RPD (spike or matrix) exceeded the control limit, which is attributable to the non-homogeneity of the sample.
		Magnesium, soluble (Sat. Paste)	M6010D ICP	DJ	Sample dilution required due to insufficient sample.
	WG545623	Manganese, extractable (AB-DTPA)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG545208	Neutralization Potential as CaCO3	M600/2-78-054 3.2.3	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG544866	Organic Matter (Ignition @ 400)	EPA 600/2-78-054 M3.2.14	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG545641	Phosphorus, extractable (AB-DTPA)	M365.1 - Automated Ascorbic	DD	Sample required dilution due to matrix color or odor.
			M365.1 - Automated Ascorbic	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG545623	Potassium, extractable (AB-DTPA)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG545417	Sodium, soluble (Sat. Paste)	M6010D ICP	DJ	Sample dilution required due to insufficient sample.
			M6010D ICP	RD	For a solid matrix, the duplicate RPD (spike or matrix) exceeded the control limit, which is attributable to the non-homogeneity of the sample.
	WG545623	Zinc, extractable (AB-DTPA)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).

40 **AGZ** Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487

(800) 334-5493

R Squared Incorporated

ACZ Project ID: L73720

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L73720-07	WG545417	Calcium, soluble (Sat. Paste)	M6010D ICP	DJ	Sample dilution required due to insufficient sample.
			M6010D ICP	RD	For a solid matrix, the duplicate RPD (spike or matrix) exceeded the control limit, which is attributable to the non-homogeneity of the sample.
		Magnesium, soluble (Sat. Paste)	M6010D ICP	DJ	Sample dilution required due to insufficient sample.
	WG545623	Manganese, extractable (AB-DTPA)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG545208	Neutralization Potential as CaCO3	M600/2-78-054 3.2.3	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG544866	Organic Matter (Ignition @ 400)	EPA 600/2-78-054 M3.2.14	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG545641	Phosphorus, extractable (AB-DTPA)	M365.1 - Automated Ascorbic	DD	Sample required dilution due to matrix color or odor.
			M365.1 - Automated Ascorbic	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG545623	Potassium, extractable (AB-DTPA)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG545417	Sodium, soluble (Sat. Paste)	M6010D ICP	DJ	Sample dilution required due to insufficient sample.
			M6010D ICP	RD	For a solid matrix, the duplicate RPD (spike or matrix) exceeded the control limit, which is attributable to the non-homogeneity of the sample.
	WG545623	Zinc, extractable (AB-DTPA)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
L73720-08	WG545417	Calcium, soluble (Sat. Paste)	M6010D ICP	RD	For a solid matrix, the duplicate RPD (spike or matrix) exceeded the control limit, which is attributable to the non-homogeneity of the sample.
		Magnesium, soluble (Sat. Paste)	M6010D ICP	DJ	Sample dilution required due to insufficient sample.
	WG545623	Manganese, extractable (AB-DTPA)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG545208	Neutralization Potential as CaCO3	M600/2-78-054 3.2.3	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG544866	Organic Matter (Ignition @ 400)	EPA 600/2-78-054 M3.2.14	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG545641	Phosphorus, extractable (AB-DTPA)	M365.1 - Automated Ascorbic	DD	Sample required dilution due to matrix color or odor.
			M365.1 - Automated Ascorbic	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG545623	Potassium, extractable (AB-DTPA)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG545417	Sodium, soluble (Sat. Paste)	M6010D ICP	DJ	Sample dilution required due to insufficient sample.
			M6010D ICP	RD	For a solid matrix, the duplicate RPD (spike or matrix) exceeded the control limit, which is attributable to the non-homogeneity of the sample.
	WG545623	Zinc, extractable (AB-DTPA)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).

ACZ Project ID: L73720

Metals Analysis

Cation Exchange Capacity (CEC) USDA No. 60 (19)

Soil Analysis

The following parameters are not offered for certification or are not covered by NELAC certificate #ACZ.							
Conductivity @25C SM2510B							
Neutralization Potential as CaCO3	M600/2-78-054 3.2.3						
Organic Matter (Ignition @ 400)	EPA 600/2-78-054 M3.2.14						
pH, Saturated Paste	EPA 600/2-78-054 section 3.2.2						

Wet Chemistry

The following parameters are not offered for certification or are not covered by NELAC certificate #ACZ.

Phosphorus, extractable (AB-DTPA) M365.1 - Automated Ascorbic Acid

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493			imple eceipt	
R Squared Incorporated	ACZ Proje	ect ID:		L73720
	Date Reco	eived: 0	6/07/202	22 12:13
	Receive	ed By:		
	Date Pr	inted:	6	6/8/2022
Receipt Verification				
		YES	NO	NA
1) Is a foreign soil permit included for applicable samples?				Х
2) Is the Chain of Custody form or other directive shipping papers present?		Х		
3) Does this project require special handling procedures such as CLP protocol?			Х	
4) Are any samples NRC licensable material?				Х
5) If samples are received past hold time, proceed with requested short hold time an	Х			

6) Is the Chain of Custody form complete and accurate?

7) Were any changes made to the Chain of Custody form prior to ACZ receiving the samples?

Samples/Containers

	YES	NO	NA
8) Are all containers intact and with no leaks?	Х		
9) Are all labels on containers and are they intact and legible?	Х		
10) Do the sample labels and Chain of Custody form match for Sample ID, Date, and Time?	Х		
11) For preserved bottle types, was the pH checked and within limits? 1			Х
12) Is there sufficient sample volume to perform all requested work?	Х		
13) Is the custody seal intact on all containers?			Х
14) Are samples that require zero headspace acceptable?			Х
15) Are all sample containers appropriate for analytical requirements?	Х		
16) Is there an Hg-1631 trip blank present?			Х
17) Is there a VOA trip blank present?			Х
18) Were all samples received within hold time?	Х		
	NA indica	tes Not Ap	plicable

Chain of Custody Related Remarks

Client Contact Remarks

Shipping Containers

Cooler Id	Temp(°C)	Temp Criteria(°C)	Rad(µR/Hr)	Custody Seal Intact?
NA37716	18.5	NA	15	N/A

Was ice present in the shipment container(s)?

No - Wet or gel ice was not present in the shipment container(s).

Client must contact an ACZ Project Manager if analysis should not proceed for samples received outside of their thermal preservation acceptance criteria.

Х

Х

ACZ Project ID: L73720 Date Received: 06/07/2022 12:13 Received By: Date Printed: 6/8/2022

¹ The preservation of the following bottle types is not checked at sample receipt: Orange (oil and grease), Purple (total cyanide), Pink (dissolved cyanide), Brown (arsenic speciation), Sterile (fecal coliform), EDTA (sulfite), HCI preserved vial (organics), Na2S2O3 preserved vial (organics), and HG-1631 (total/dissolved mercury by method 1631).

ACC ACCORDING	2773 Downhill Drive Steamboat Springs, CC (970) 879-6590	D 80487	L7	737	71	СНА	AIN o	f CUS ⁻	ΓΟΟΥ					
Report to:									_					
Name: George M.L. Robinso			Address: 3926 North State Hwy 67											
Company: Union Milling Cont				Sedalia, Colorado										
E-mail: grobinson@unionmilli	ng.com		Telep	hone:	720.641	.2534								
Copy of Report to:														
Name: Nick Michael						E-mail: nmichael @unionmilling.com								
Company: Union Milling Cont	ractors		Telep	hone: 3	303.947	.3499		-						
Invoice to:														
Name: Stephanie Michael			Addre	ess: 62	00 S V	ivianStree	t							
Company: Union Milling Cont	ractors					80127								
E-mail: smichael@unionmillir	ig.com	-	Telec	hone: 7	720.413	.5943								
Copy of Invoice to:		<u> </u>												
Name: George Robinson			Addre											
Company: (See Above)		-	Addre											
E-mail:		-	Tolor	hono										
If sample(s) received past holding	g time (HT), or if insufficier	I ntHT rem		hone:	te			YES						
analysis before expiration, shall	ACZ proceed with request	ed short l	IT analy	vses?					<u> </u>					
If "NO" then ACZ will contact client for further instru- Are samples for SDWA Complian		ed, ACZ will pr		he requester	d analyses, o		d, and data	will be qualified						
If yes, please include state forms		o PQL fo	Yes r Colora	do.	J	No 🗸								
Sampler's Name: G Robinson	Sampler's Site Inform			Colorado)	Zip code ⁸	0461	Time Zo	ne Mto					
*Sampler's Signature:	Ongrind yr Soffitiada. *1 atte	st to the authe	nticity and v	alidity of this	s sample. I		entionally m	islabeling the time						
PROJECT INFORMATION			ampre artan					use quote num	ber)					
Quote #:			ω	σ										
PO#:			ier –	he l										
Reporting state for compliance testi	ng: N/A		Containers	Attached										
Check box if samples include NRC			ŭ	∀										
SAMPLE IDENTIFICATION	DATE: TIME	Matri		See										
001 Sample A and B	5/26/2022 00:00	SO	2	$\overline{\mathbf{V}}$										
002 Sample A and B	5/26/2022 00:00	so	2	\checkmark										
003 Sample A and B	5/26/2022 00:00	so	2	\checkmark										
004 Sample A and B	5/26/2022 00:00	so	2	\checkmark										
005 Sample A	5/26/2022 00:00	so	1	\checkmark										
006 Sample A	5/26/2022 00:00	SO	1	\checkmark										
007 Sample A	5/26/2022 00:00	SO	1	\checkmark										
008 Sample A	5/26/2022 00:00	SO	1	\checkmark										
							T							
							1							
Matrix SW (Surface Water) · G	W (Ground Water) · WW (Wast	e Water) · I	DW (Drink	king Wate	er) · SL (S	ludge) · SO (Soil) · OL ((Oil) · Other (S	Specify)					
REMARKS														
Please r	efer to ACZ's terms & cor	nditions la	ocated of	on the r	everse	side of this	000							
RELINQUISHED BY	TIME	RECEIVED BY:					DATE:TIME							
2b6780er bc73-4495-9643-9579-b97b554 Digitally signed by 266 bc73-4495-9645-5529 Date: 2022.05.31 99.2	79092- 70970554 5:35-06007		0/6					617122						
Martin		2022	e a a a a a a a a a a a a a a a a a a a					1 1 7						
	<u>~~/#/</u>		1											
Qualtrax ID: 1984	Revision #: 2 Wh	ite - Retu	rn with	sample	. Ye	llow - Reta	in for vo	ur records						