

PO Box 191
100 N. 3rd Street
Victor CO 80860

January 19, 2023

ELECTRONIC DELIVERY

Mr. Elliott Russell
Environmental Protection Specialist
Colorado Department of Natural Resources
Division of Reclamation, Mining and Safety
Office of Mined Land Reclamation
1313 Sherman Street, Room 215
Denver, Colorado 80203

Re: Permit No. M-1980-244; Cripple Creek & Victor Gold Mining Company; Cresson Project; Technical Revision 130 – Fourth Adequacy Review Response

Dear Mr. Russell:

On August 25 2022 and January 4, 2023, Newmont Corporation's Cripple Creek and Victor Gold Mining Company (CC&V) received the Division of Reclamation, Mining and Safety (DRMS) fourth and supplemental adequacy reviews of Technical Revision (TR) 130 to Permit M-1980-244, proposing improvements to stormwater controls. Below are DRMS comments in bold and CC&V's response in *italics*.

- 1) <u>Purpose</u>: Part (b) of this original comment requires additional information related to AM-13 Second Adequacy Comment No. 56 (August 31, 2020):
 - b. <u>HGM Stormwater Storage</u>: Each successive response to DRMS concerns regarding stormwater storage at the HGM relies on significant storage on the dual liner below the HGM. During the review of AM-13 and the November 16, 2020 workshop (where representatives from the DRMS and CC&V discussed managing the HGM liner as an EPF), CC&V committed to "working with the Division on updating management policies and procedures for the HGM area as an EPF at this facility. The updates will be coordinated with the Division and formalized in a Technical Revision." Due to CC&V's proposed reliance on extended storage of impacted/contact water and the mill liner for stormwater management, the DRMS requires the six outstanding issues from AM-13 Comment No. 56 be addressed as part of the TR-130 review process. The six issues are as follows:
 - i. Provide As-Constructed drawings showing the layout and topography of the lined surface. This should show the storage volume, floor and sill elevations, and how it ties into adjacent lined areas,

Please see the attached.

CRIPPLE CREEK & VICTOR
PO Box 191
100 N. 3rd Street
Victor CO 80860

ii. Provide As-Constructed drawings showing how the sump system is integrated into the HGM liner (this should also identify new or proposed appurtenances required to manage stormwater as a results of TR-130,

As-Constructed drawings could not be obtained that show how the sump system is integrated into the HGM liner. This was discussed during a meeting with DRMS and CCV on January 3, 2023.

iii. Provide As-Constructed drawings showing the spatial relationship of the HGM liner and the fire suppression system water lines in the mill area,

As-Constructed drawings could not be obtained that show the fire suppression system water lines in the mill area.

iv. Provide water quality data (consistent with the full suite of parameters sampled elsewhere on site [i.e., the same as those sampled in site monitoring wells]) for water stored on the liner

Please see Attachment - Mill Sump Analysis

v. Provide a description of how water contained on the HGM liner is managed, including how the volume is determined and the ultimate disposition of water contained stored on the liner (*Notes: A*) *The DRMS* acknowledges the CC&V's November 7th TAR response partially addresses water management; B) The response will need to demonstrate how the currently proposed 21-day storage of impacted stormwater meets the intent of Rules 3.1.7, 6.4.7(2)(b), and 7.3.1)

The Mill Platform was installed with intent to manage infiltrated stormwater on the mill platform, as well as manage potential released material from or associated with mill operations. The impounded area is fitted with a designated sump and pumping system, and any material that reports to the sump is monitored and managed actively. If enough solution (process solution or stormwater) were to report to the sump to overwhelm the pump, the area is designed to allow overflow over the subterranean impoundment onto VLF 2, ultimately reporting to the VLF 2 PSSA.

The HGM sump currently has a high-level indicator that turns the pump on when the water level reaches 34 inches and low-level indicator that turns the pump off at 22 inches.

Once stormwater improvements are approved and implemented, this would help to divert non-contact water away from the lined areas of the High Grade

CRIPPLE CREEK & VICTOR
PO Box 191
100 N. 3rd Street
Victor CO 80860

Mill, thus reducing the contributary watershed for the High Grade Mill and would reroute the High Grade Mill contact water onto the VLF 2.

For runoff volume see response "A" below from the Supplemental AR, below.

vi. Does CC&V have a water balance method for the contained/stored water volume?

CC&V currently does not have a water balance method for the contained/stored water volume for the HGM platform. S&ER and the Process department will develop a water management plan for the HGM Platform and submit to DRMS by February 10, 2023.

New Comments

- A. New Sump Water management:
 - i. The response was considered adequate the DRMS accepts CC&V's intent to manage water in the New Sump as process water.

 Response was adequate
 - ii. The response was considered adequate the DRMS accepts CC&V's approach to hand excavate, for the purpose of facilitating infiltration, any area of ponded water in the New Sump area larger than 3 feet by 3 feet.

 Response was adequate

Supplemental Adequacy Review received from DRMS on January 4, 2023.

A) Runoff Volume Discrepancy: The June 14, 2022 response to our second adequacy stated the design storm (100-year, 24-hour) HGM runoff volume was estimated to be 7.68 acrefeet. The DRMS has estimated the runoff volume to be 8.12 ac-ft using the SCS method with 31.6 acres of contributing area (Figure 1 of the original TR-130 submittal); 4.07 inches of precipitation (original TR-130 submittal); and an SCS curve number (CN) of 91 (p. 5 of March 11, 2022 adequacy response). The November 7, 2022 response to our third adequacy stated the design storm (100-year, 24-hour) HGM runoff volume was estimated to be a considerably less 4.66 acre-feet. Please explain the discrepancy and why the runoff volume was reduced by 40 percent.

The 100-year, 24-hour design storm is expected to produce a 7.66 ac-ft of "runoff" at the HGM platform, originally provided in the March 11, 2022 response by CC&V.

CRIPPLE CREEK & VICTOR
PO Box 191
100 N. 3rd Street
Victor CO 80860

WATERSHED FLOW CALCULATIONS

WATERSHED	Area (ac)	Length (ft)	Slope (ft/ft)	Curve Number	Time of Conc. (min)	Lag Time (min)
Mill	28.2	2144	0.094	100*	7.78	4.67

^{*} Assuming 100% of runoff reports to sump

	Peak	Peak	Maximum	
JUNCTION/POND	Discharge	Storage	Storage	
	(cfs)	(ac-ft)	(ac-ft)	
Mill Storage	0.93	7.66	7.68†	

[†] Assuming porosity = 0.3

The numbers reported in the table above were calculated using HEC-HMS, using the following assumptions:

- A total watershed area of 28.2 ac (revised from the 31.6 ac; NewFields verified the modeled watershed is 28.2 ac; the 31.6 ac reported on Figure 1 of the CC&V comment response dated 11 March is incorrect)
- A CN of 100 (conservatively assuming all water reports to the HGM sump, either as surface runoff reporting to the HGM concrete sump, or as water infiltrating through the pore spaces of the pervious rock)
- Precipitation from the 100-year, 24-hour design storm event of 4.07 inches.

The peak storage of 7.66 ac-ft and Maximum Storage of 7.68 ac-ft were incorrectly reported as 4.66 ac-ft and 4.68 ac-ft in the DRMS adequacy review dated April 1, 2022, #1b: "HGM Stormwater Storage: The response indicates virtually all of the lined storage volume (4.66 ac-ft of the assumed 4.68 ac-ft) will be taken up with the storage of stormwater resulting from a 100-year, 24-hour design storm..."

Subsequent calculations by CC&V used the 4.66 ac-ft reported by DRMS. The correct number for the total volume of water anticipated to be stored in the pore spaces of the HGM platform fill is the original 7.66 ac-ft as reported in the table above and as referenced in the March 11,2022 response by CC&V.

It is important to note that the total calculated volume of water reporting to the HGM platform liner during the 100-year, 24-hour design storm event is 9.28 ac-ft: there is storage capacity in the pore spaces for 7.68 ac-ft of infiltration, and the HGM concrete sump will need to be pumped out at a rate of at least 0.93 cfs (approximately 420 gpm) for the duration of the storm to ensure contact water does not overtop the lined containment berm at the base of the HGM platform.

CRIPPLE CREEK & VICTOR
PO Box 191
100 N. 3rd Street
Victor CO 80860

B) Runoff vs. Infiltration: The DRMS is reviewing TR-130 in its current form with the understanding that stormwater runoff in the 31.6 acre area surrounding the HGM is to be temporarily stored in the pore volume of the fill above the HGM liner and below the surface grade. Using the 4.07-inch rainfall depth and a CN of 91, the estimated depth of runoff is 3.08 inches. Based on SCS CN methodology, this 3.08 inches is the amount of rain that does not infiltrate, get intercepted by vegetation or depression storage. Please explain how this volume of runoff is to infiltrate the HGM compacted structural fill subgrade in a meaningful timeframe to be stored temporarily in the pore space above the HGM liner.

As stated in the response to question (A), the HEC-HMS model assumed a CN of 100 to calculate the <u>total estimated volume</u> of water reporting to the HGM sump, either through surface water runoff or infiltration. No water was expected to be intercepted by vegetation, as the area is disturbed and no appreciable vegetation has been observed. To estimate the proportions of runoff vs infiltration, NewFields revised the HEC-HMS model to reflect a CN of 63 ("pervious natural desert landscaping" for Type A soils per SCS TR-55, best estimate for the HGM platform). This results in an estimated 2.25 ac-ft of estimated RUNOFF that will report to the HGM sump in the 24-hour period. The HGM sump is relatively small and cannot contain this 2.25 ac-ft of volume; during rainfall events, the HGM sump will be pumped down at a minimum of 0.93 cfs (or approximately 420 gpm) as reported in the response to question (A).

The remaining 7.03 ac-ft of water from the 9.28 ac-ft total estimated precipitation on the HGM watershed (9.28 ac-ft minus the 2.25 ac-ft of estimated runoff) is expected to infiltrate into the 7.68-ac-ft capacity in the pore spaces of the HGM fill, contained within the HGM liner system where it will be pumped out over an estimated 100-hour period at a pumping rate of 0.93 cfs (approximately 420 gpm).

Even at the minimum pumping rate of 420 gpm, the sump will likely exceed its capacity during peak storm intensity. If the HGM sump fills, water will divert to the VLF 2 access road, where it will dissipate into the ore, which is still on a geomembrane liner. Water from the HGM platform is expected to remain on containment (i.e. areas underlain with geomembrane liner) at all times. To ensure this runoff does not flow onto the narrow gap between VLF1 and VLF2 liner, minor improvements to berms on the south end of the HGM platform have been completed throughout 2022 to direct water into VLF2. CC&V will maintain this berm as part of normal maintenance activities.

C) <u>Potential Drawdown Limitations</u>: Part of the concerns expressed by the DRMS during yesterday's meeting relate to the contact time of stored stormwater in the pore space of potentially acid generating material. The DRMS would want this time to be minimized. CC&V has indicated the volume could be pumped down in 21 days using a 50 gpm pump, and could cut that in half using a second 50 gpm pump. Assuming Comment B above is adequately addressed, has CC&V analyzed, or performed a pump

CRIPPLE CREEK & VICTO
PO Box 191
100 N. 3rd Street
Victor CO 80860

test to assess the drawdown limitations of pumping out of HGM subgrade fill considering the hydraulic conductivity of the compacted structural fill. In other words, what is the highest pumping rate that could be utilized without cycling the pump on and off.

Actual pumping cycle times will depend on the specific pump selected for this service, which has not yet been determined based on the fact that this project has not yet been approved by DRMS. Pumping will likely include on/off cycles, to allow for the water stored in the pore spaces to percolate through the rock and report to the sump, where pumping will resume once an appreciable volume of water has collected for pumping to resume. At this point, the minimum estimated pumping capacity required is 420 gpm, as stated in responses to (A) and (B) above. Actual total dewatering times will depend highly on the draindown rate through the rock pore spaces, actual performance is difficult to quantify; an estimated porosity of 0.3 has been included in these evaluations, but the draindown rate will and total pumping capacity will need to be based on observed conditions. Since this is an active mine site, additional temporary pumps can be deployed to supplement the primary pump capacity if needed.

Should you require further information, please do not hesitate to contact Johnna Gonzalez at (719)851-4190, <u>Johnna.Gonzalez@Newmont.com</u>, or myself at (719) 237-3442 or <u>Katie.Blake@newmont.com</u>.

Sincerely,

—DocuSigned by: Katie Blake

5A3D013B629844B...
Katie Blake

Sustainability & External Relations Manager Cripple Creek & Victor Gold Mining Co

EC:

M. Cunningham - DRMS

T. Cazier - DRMS

M. Crepeau – Teller County

J. Gonzalez – CC&V

K. Blake - CC&V

N. Townley – CC&V

Attachments: As-built Mill Platform, Mill IFC Drawings 1&2, Geomembrane Panel Layout, Mill Sump Analysis.

Sampled: 13-Dec-22 12:50

www.svl.net

Newmont - Cripple Creek & Victor

 Post Office Box 191
 Work Order:
 X2L0210

 Victor, CO 80860
 Reported:
 16-Jan-23 13:05

Client Sample ID: MILL SUMP

SVL Sample ID: X2L0210-01 (Ground Water)

Sample Report Page 1 of 2

Received: 14-Dec-22
Sampled By: BOD

2 + 2 2 minpre					<u> </u>	age 1 01 2		Bampi	ed By: BOD	
Method	Analyte	Result	Units	RL	MDL	Dilution	Batch	Analyst	Analyzed	Notes
Metals (Total Rec	overablereportable as T	Total per 40 CF	R 136)							
EPA 200.7	Calcium	273	mg/L	0.100	0.035		X251259	JRR	01/03/23 10:30	
EPA 200.7	Magnesium	1090	mg/L	2.50	0.450	10	X251259	JRR	01/03/23 12:19	D2
EPA 200.7	Potassium	8.52	mg/L	0.50	0.09		X251259	JRR	01/03/23 10:30	
SM 2340 B	Hardness (as CaCO3)	5190	mg/L	20.8	3.88		N/A		01/03/23 12:19	
Metals (Dissolved))									
EPA 200.7	Aluminum	365	mg/L	0.080	0.054		X251220	AS	01/05/23 11:23	M3
EPA 200.7	Barium	0.0192	mg/L	0.0020	0.0019		X251220	AS	01/05/23 11:23	
EPA 200.7	Beryllium	0.0927	mg/L	0.00200	0.00080		X251220	AS	01/05/23 11:23	
EPA 200.7	Boron	< 0.0400	mg/L	0.0400	0.0078		X251220	AS	01/05/23 11:23	
EPA 200.7	Cadmium	0.532	mg/L	0.0020	0.0016		X251220	AS	01/05/23 11:23	
EPA 200.7	Calcium	285	mg/L	0.100	0.069		X251220	AS	01/05/23 11:23	
EPA 200.7	Chromium	0.0809	mg/L	0.0060	0.0020		X251220	AS	01/05/23 11:23	
EPA 200.7	Cobalt	3.62	mg/L	0.0060	0.0046		X251220	AS	01/05/23 11:23	
EPA 200.7	Copper	0.898	mg/L	0.0100	0.0027		X251220	AS	01/05/23 11:23	
EPA 200.7	Iron	46.9	mg/L	0.100	0.056		X251220	AS	01/05/23 11:23	
EPA 200.7	Lead	< 0.0075	mg/L	0.0075	0.0049		X251220	AS	01/05/23 11:23	
EPA 200.7	Lithium	< 0.040	mg/L	0.040	0.025		X251220	AS	01/05/23 11:23	
EPA 200.7	Magnesium	1090	mg/L	5.00	0.900	10	X251220	AS	01/05/23 11:54	D2,M4
EPA 200.7	Manganese	951	mg/L	0.800	0.340	100	X251220	AS	01/05/23 13:05	D2,M4
EPA 200.7	Molybdenum	0.0394	mg/L	0.0080	0.0034	100	X251220	AS	01/05/23 11:23	22,
PA 200.7	Nickel	2.01	mg/L	0.0100	0.0034		X251220	AS	01/05/23 11:23	
EPA 200.7	Potassium	8.20	mg/L	0.50	0.0048		X251220	AS	01/05/23 11:23	
EPA 200.7	Silver	< 0.0050	mg/L	0.0050	0.0019		X251220	AS	01/05/23 11:23	M2
EPA 200.7	Sodium	27.5	mg/L	0.0030	0.0019		X251220 X251220	AS	01/05/23 11:23	IVIZ
EPA 200.7	Vanadium	0.0057	mg/L				X251220 X251220	AS	01/05/23 11:23	
				0.0050	0.0019	10				D2 M4
EPA 200.7	Zinc	61.5	mg/L	0.100	0.0540	10	X251220	AS	01/05/23 11:54	D2,M4
EPA 200.8	Antimony	< 1.00	mg/L	1.00	0.720	1000	X251214	AS	01/13/23 13:21	D1,M4
EPA 200.8	Arsenic	< 1.00	mg/L	1.00	0.210	1000	X251214	AS	01/13/23 13:21	D1,M4
EPA 200.8	Selenium	< 1.00	mg/L	1.00	0.240	1000	X251214	AS	01/13/23 13:21	D1,M4
EPA 200.8	Thallium	< 0.200	mg/L	0.200	0.0800	1000	X251214	AS	01/13/23 13:21	D1,M4
EPA 200.8	Uranium	1.05	mg/L	0.100	0.0520	1000	X251214	AS	01/13/23 13:21	D1,M4
Metals (Filtered)										
EPA 245.1	Mercury	< 0.000200	mg/L	0.000200	0.000093		X252015	JRR	12/20/22 11:03	
Classical Chemist		2.2.								
ASTM D7237	Cyanide (free) @ pH 6 @20.0°C	< 0.0050	mg/L	0.0050	0.0048		X251255	HJL	12/27/22 11:59	M2,Q12
EPA 335.4	Cyanide (total)	< 0.0050	mg/L	0.0050	0.0038		X252036	KJR	12/23/22 15:55	
EPA 350.1	Ammonia as N	0.333	mg/L	0.030	0.013		X251209	KAG	12/21/22 14:12	
DIA 1677	Cyanide (WAD)	< 0.0050	mg/L	0.0050	0.0010		X251257	HJL	12/27/22 10:42	
SM 2310 B	Acidity to pH 8.3	3730	mg/L as CaCO3	10.0			X252186	MWD	12/23/22 13:29	
M 2320 B	Total Alkalinity	< 1.0	mg/L as CaCO3	1.0			X251153	MWD	12/19/22 16:45	
M 2320 B	Bicarbonate	< 1.0	mg/L as CaCO3	1.0			X251153	MWD	12/19/22 16:45	
M 2320 B	Carbonate	< 1.0	mg/L as CaCO3	1.0			X251153	MWD	12/19/22 16:45	
M 2320 B	Hydroxide	< 1.0	mg/L as CaCO3	1.0			X251153	MWD	12/19/22 16:45	
SM 2540 C	Total Diss. Solids	12200	mg/L	100			X252005	TJL	12/19/22 15:15	D2
SM 2540 D	Total Susp. Solids	55.0	mg/L	5.0			X252006	TJL	12/19/22 15:15	
	_		-							

(208) 784-1258 www.svl.net

Newmont - Cripple Creek & Victor

 Post Office Box 191
 Work Order:
 X2L0210

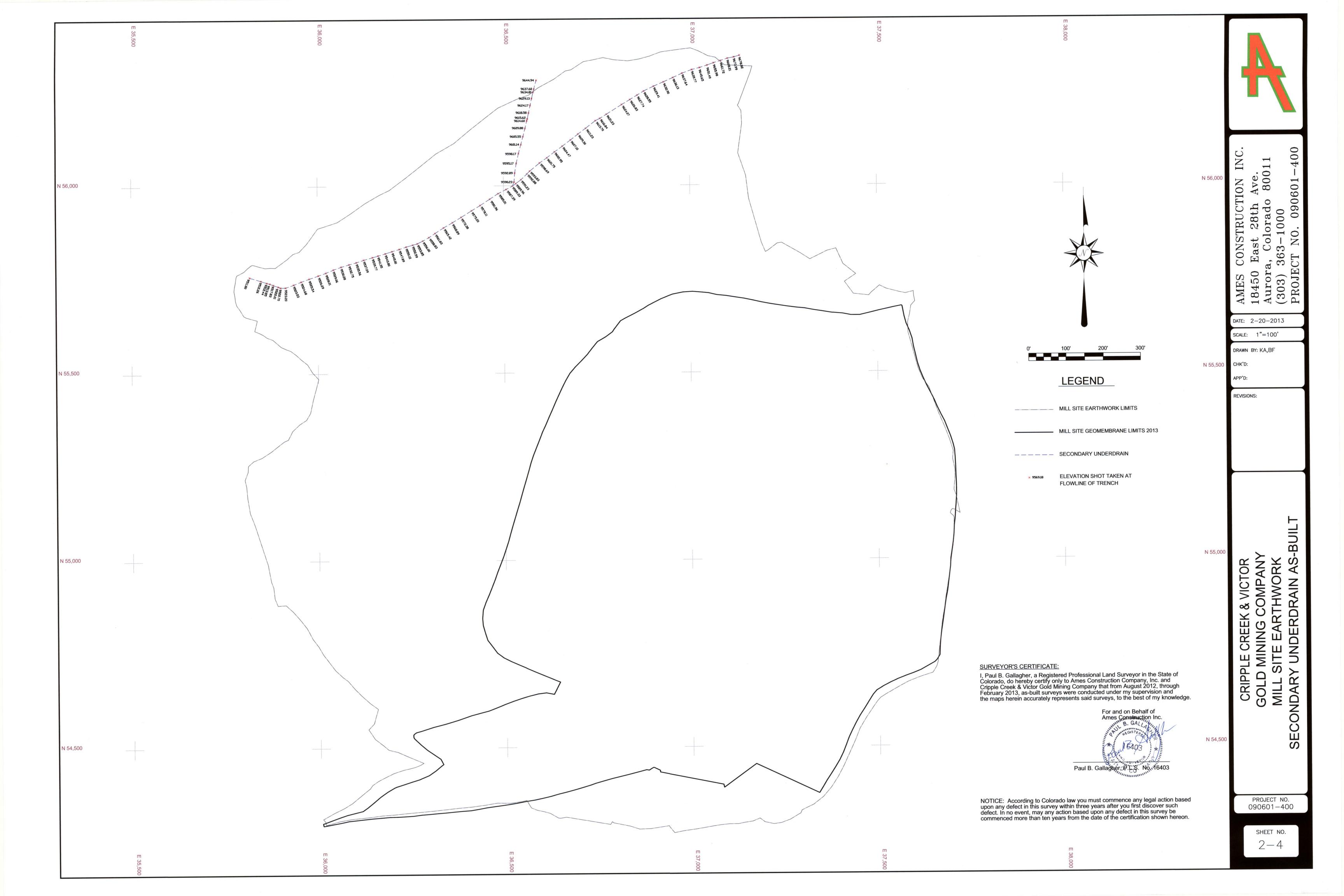
 Victor, CO 80860
 Reported:
 16-Jan-23 13:05

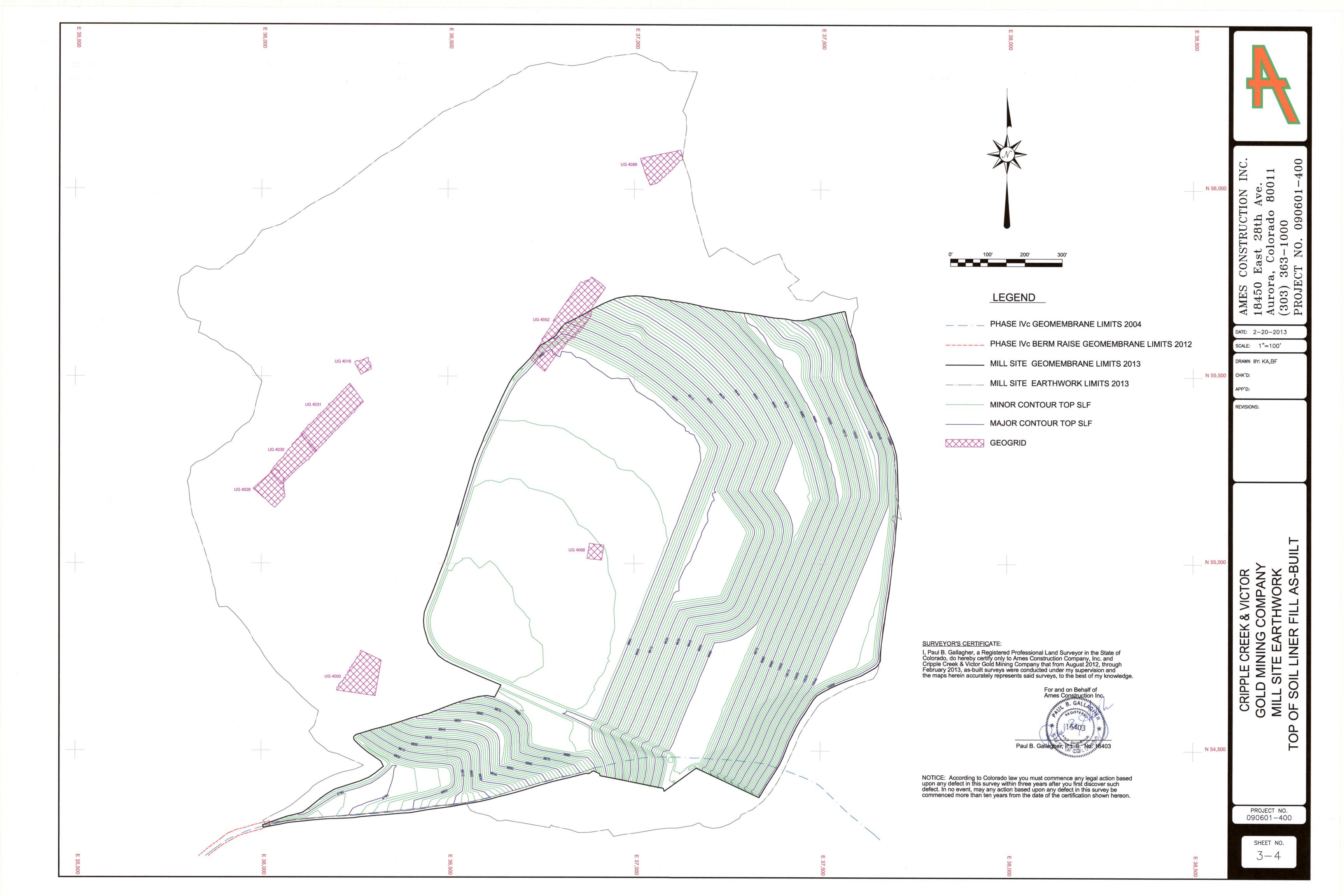
Client Sample ID: MILL SUMP

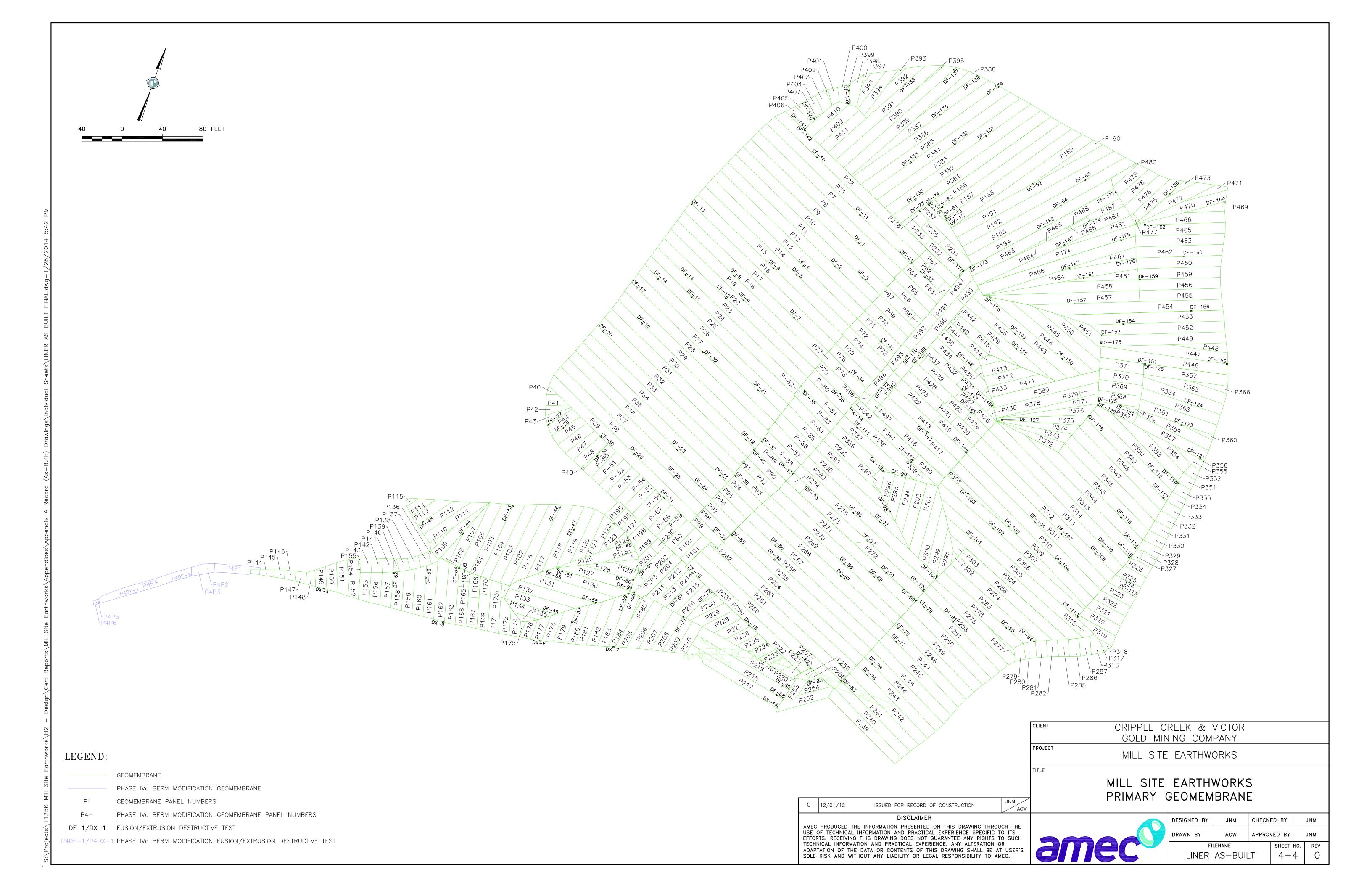
SVL Sample ID: X2L0210-01 (Ground Water)

Sample Report Page 2 of 2

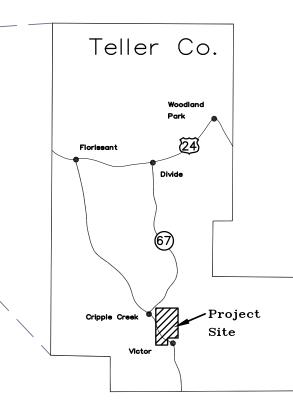
Sampled: 13-Dec-22 12:50 Received: 14-Dec-22 Sampled By: BOD


Method	Analyte	Result	Units	RL	MDL	Dilution	Batch	Analyst	Analyzed	Notes
Anions by Ion Chromatography										
EPA 300.0	Chloride	26.9	mg/L	2.00	0.22	10	X251144	RS	12/14/22 11:57	D2
EPA 300.0	Fluoride	457	mg/L	25.0	4.25	250	X251144	RS	12/14/22 12:14	D2
EPA 300.0	Nitrate as N	0.882	mg/L	0.500	0.130	10	X251144	RS	12/14/22 11:57	D1
EPA 300.0	Nitrate+Nitrite as N	< 1.00	mg/L	1.00	0.440	10	X251144	RS	12/14/22 11:57	D1
EPA 300.0	Nitrite as N	< 0.500	mg/L	0.500	0.310	10	X251144	RS	12/14/22 11:57	D1
EPA 300.0	Sulfate as SO4	8610	mg/L	75.0	45.0	250	X251144	RS	12/14/22 12:14	D2
Cation/Anion Balance and TDS Ratios										
Cation Sum: 184 meq/I	Anion Sum: 20	4 meq/L	C/A Balance: -5.30 %	⁄o	Calculated	TDS: 10499	TDS	/cTDS: 1.1	16	


This data has been reviewed for accuracy and has been authorized for release by the Laboratory Director or designee.


Tawnya M. Hall

Project Manager Assistant



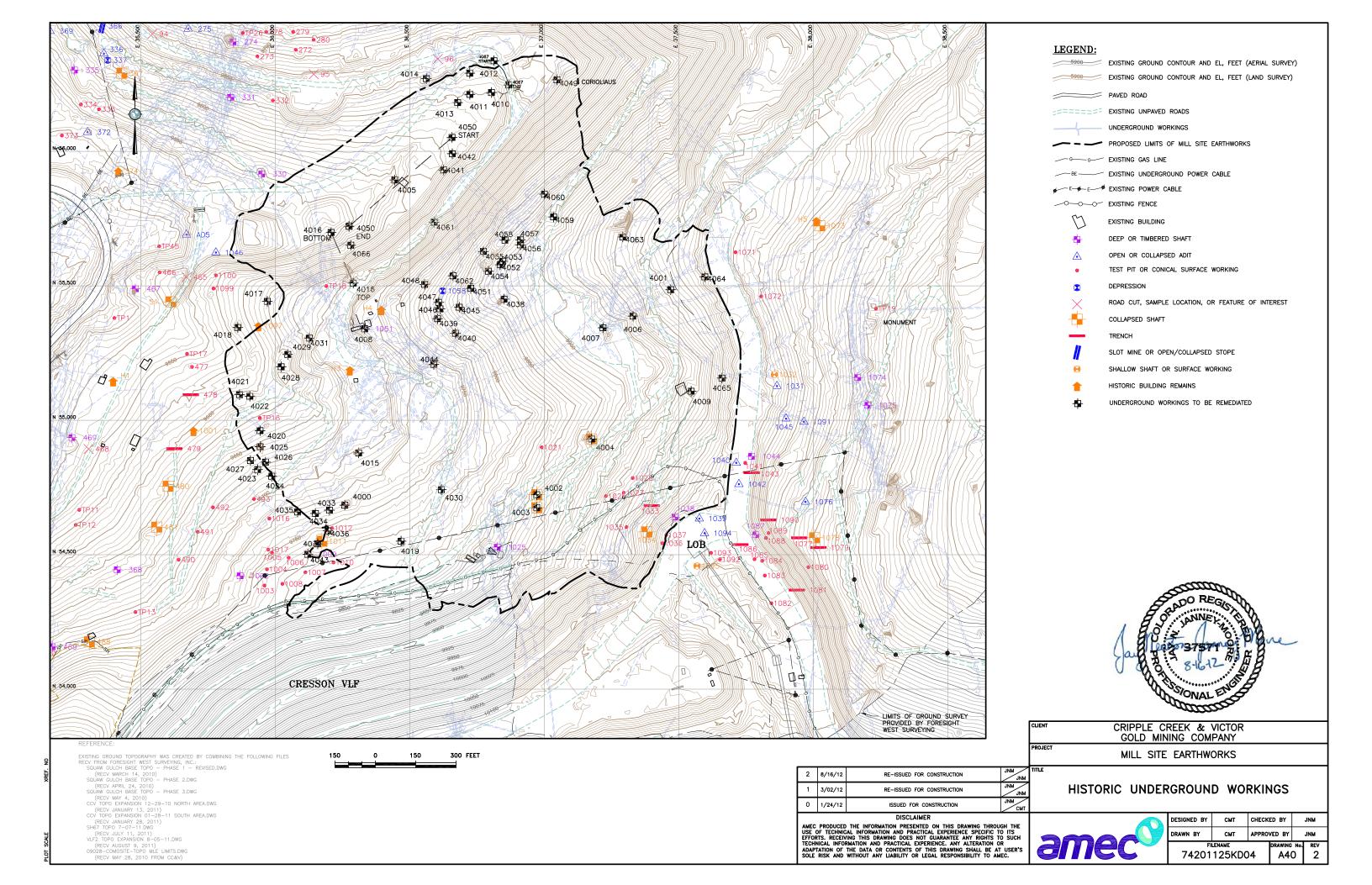
IFC Drawings

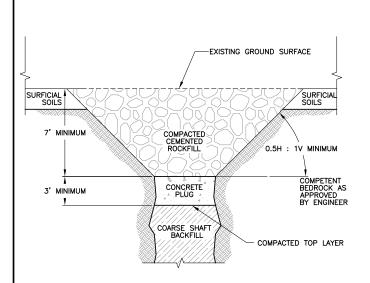
MILL SITE EARTHWORKS RE-ISSUED FOR CONSTRUCTION

August 16, 2012

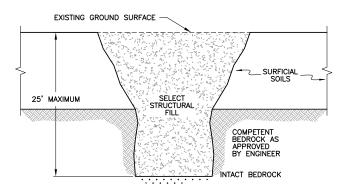
INDEX OF DRAWINGS				
TITLE	AUTOCAD FILENAME	DRAWING NO.	REV	DATE
MILL SITE EARTHWORKS TITLE SHEET	74201125GC01	-	3	8/16/12
HISTORIC UNDERGROUND WORKINGS	74201125KD04	A40	2	8/16/12
UNDERGROUND WORKING REMEDIATION TYPICAL DETAILS	74201125KD05	A45	1	3/02/12
STORMWATER CONTROL	74201125KM05	A50	1	8/16/12
OVERBURDEN STORAGE AREA TOP OF GEOMEMBRANE GRADING SURFACE PLAN VIEW	74201125KM01	A100	3	8/16/12
OVERBURDEN STORAGE AREA LIMITS OF SOIL LINER FILL PLACEMENT PLAN VIEW	74201125KM06	A120	2	8/16/12
OVERBURDEN STORAGE AREA TOP OF GEOMEMBRANE GRADING SURFACE ISOPACH PLAN VIEW	74201125KM02	A150	3	8/16/12
OVERBURDEN STORAGE AREA CONTAINMENT BERM PLAN AND PROFILE	74201125KP04	A160	2	8/16/12
OVERBURDEN STORAGE AREA PUMPBACK TUBE PLAN VIEW AND DETAILS	74201125KM08	A170	1	8/16/12
OVERBURDEN STORAGE AREA FINISHED GRADE SURFACE PLAN VIEW	74201125KM03	A200	2	8/16/12
OVERBURDEN STORAGE AREA FINISHED GRADE SURFACE ISOPACH PLAN VIEW	74201125KM04	A250	3	8/16/12
OVERBURDEN STORAGE AREA LIMITS OF GCL	74201125KM09	A270	0	8/16/12
OVERBURDEN STORAGE AREA & FUTURE MILL PLATFORM GRADING SECTIONS AND DETAILS SHEET 1 OF 3	74201125KD01	A300	3	8/16/12
OVERBURDEN STORAGE AREA & FUTURE MILL PLATFORM GRADING SECTIONS AND DETAILS SHEET 2 OF 3	74201125KD02	A310	3	8/16/12
OVERBURDEN STORAGE AREA & FUTURE MILL PLATFORM GRADING SECTIONS AND DETAILS SHEET 3 OF 3	74201125KD03	A320	3	8/16/12
OVERBURDEN STORAGE AREA ALIGNMENT PLAN VIEW	74201125KM07	A400	2	8/16/12
OVERBURDEN STORAGE AREA MILL ACCESS ROADS PLAN AND PROFILE	74201125KP01	A410	0	3/02/12
OVERBURDEN STORAGE AREA SOUTH PERIMETER ROAD PLAN AND PROFILE	74201125KP02	A420	1	8/16/12
OVERBURDEN STORAGE AREA SECTIONS AND DETAILS	74201125KP04	A425	0	8/16/12
OVERBURDEN STORAGE AREA CONSTRUCTION ROAD UM PLAN AND PROFILE	74201125KP03	A430	1	8/16/12
OVERBURDEN STORAGE AREA CONSTRUCTION ROAD HORIZONTAL ALIGNMENT DATA	74201125KD06	A440	0	3/02/12
CONCEPTUAL LOB HAUL ROAD STORMWATER MANAGEMENT	74201125KM10	A500	0	8/16/12

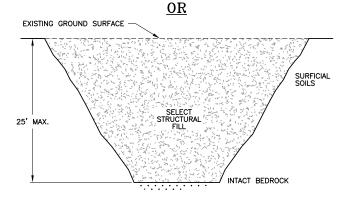
PREPARED FOR:




PREPARED BY:

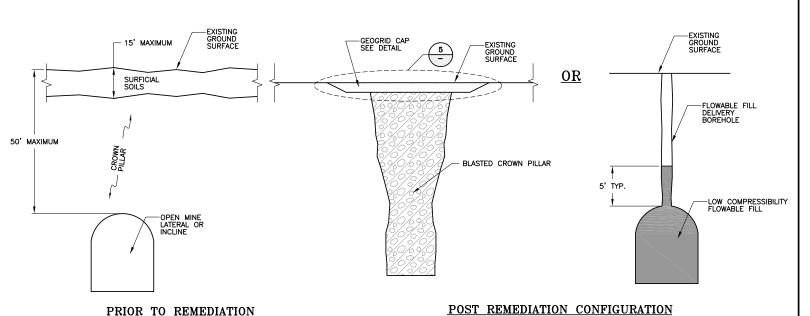
AUTOCAD FILENAME: 1125GC

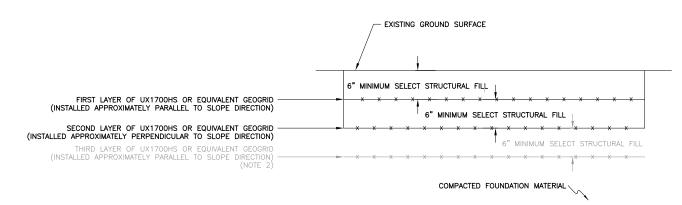




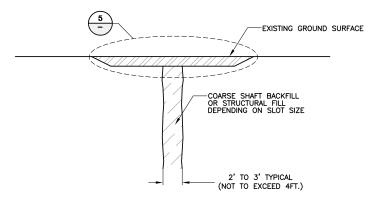
REMEDIATION NOTES:

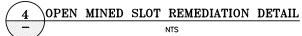
- ROCK SURFACE WITHIN SHAFT SHALL BE SCALED TO REMOVE LOOSE MATERIAL PRIOR TO CONCRETE PLUG AND CEMENTED ROCKFILL PLACEMENT.
- 2. CONTRACTOR TO CONSTRUCT 7' MINIMUM CEMENTED ROCKFILL IN EITHER COMPETENT BEDROCK OR SURFICIAL SOILS.
- CONTRACTOR TO EXCAVATE PREVIOUSLY COLLAPSED SHAFTS/STOPES TO APPROXIMATELY 25' BELOW EXISTING
- 4. COMPACTION OF TOP LAYER OF COARSE SHAFT BACKFILL TO BE METHOD SPECIFICATION APPROVED BY THE ENGINEER.




REMEDIATION NOTES:

- COMPACT SELECT STRUCTURAL FILL USING METHOD SPECIFICATION APPROVED BY THE ENGINEER.
- SELECT STRUCTURAL FILL MAY BE REPLACED WITH STRUCTURAL FILL PER THE PROJECT SPECIFICATIONS.

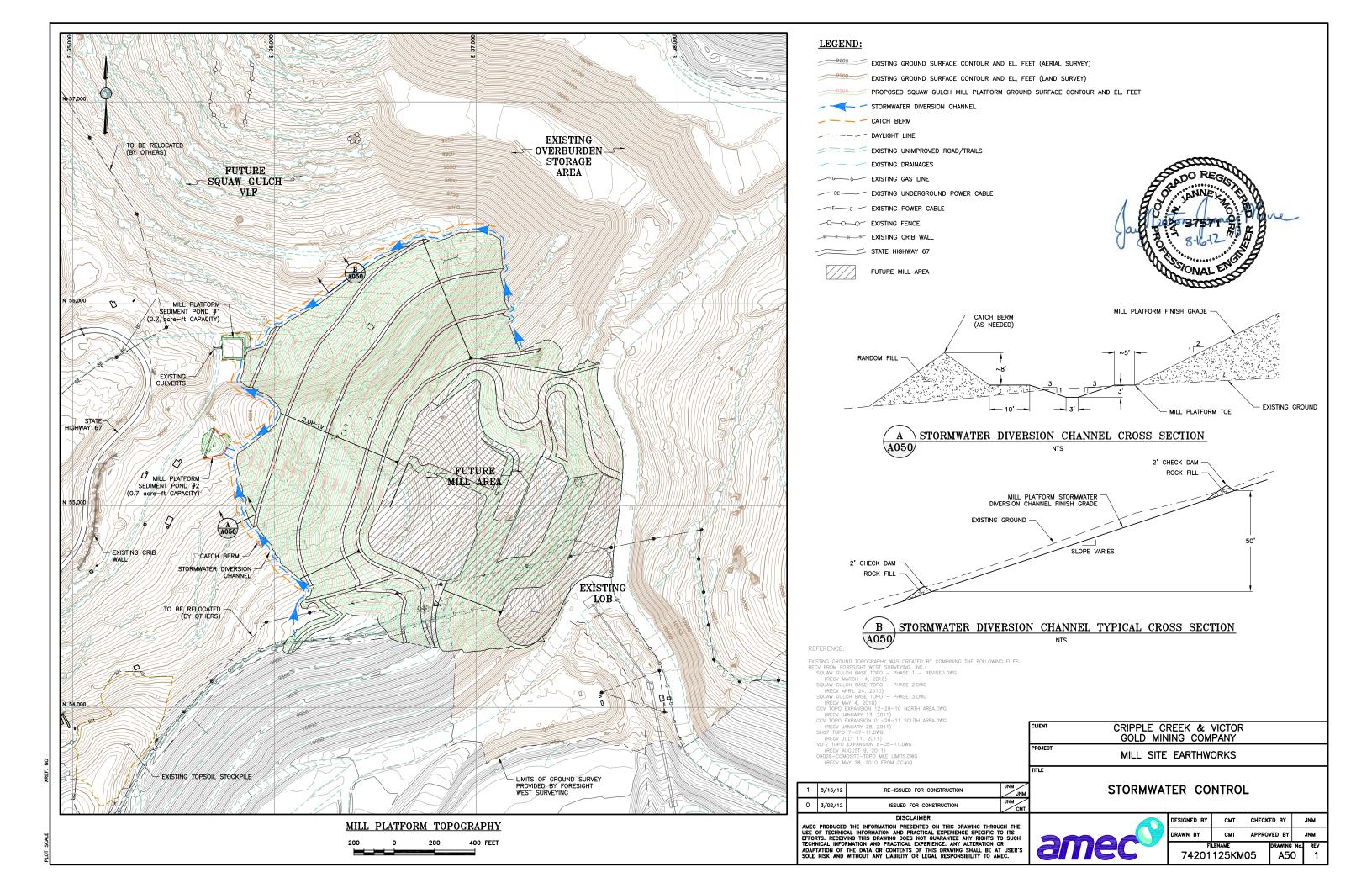


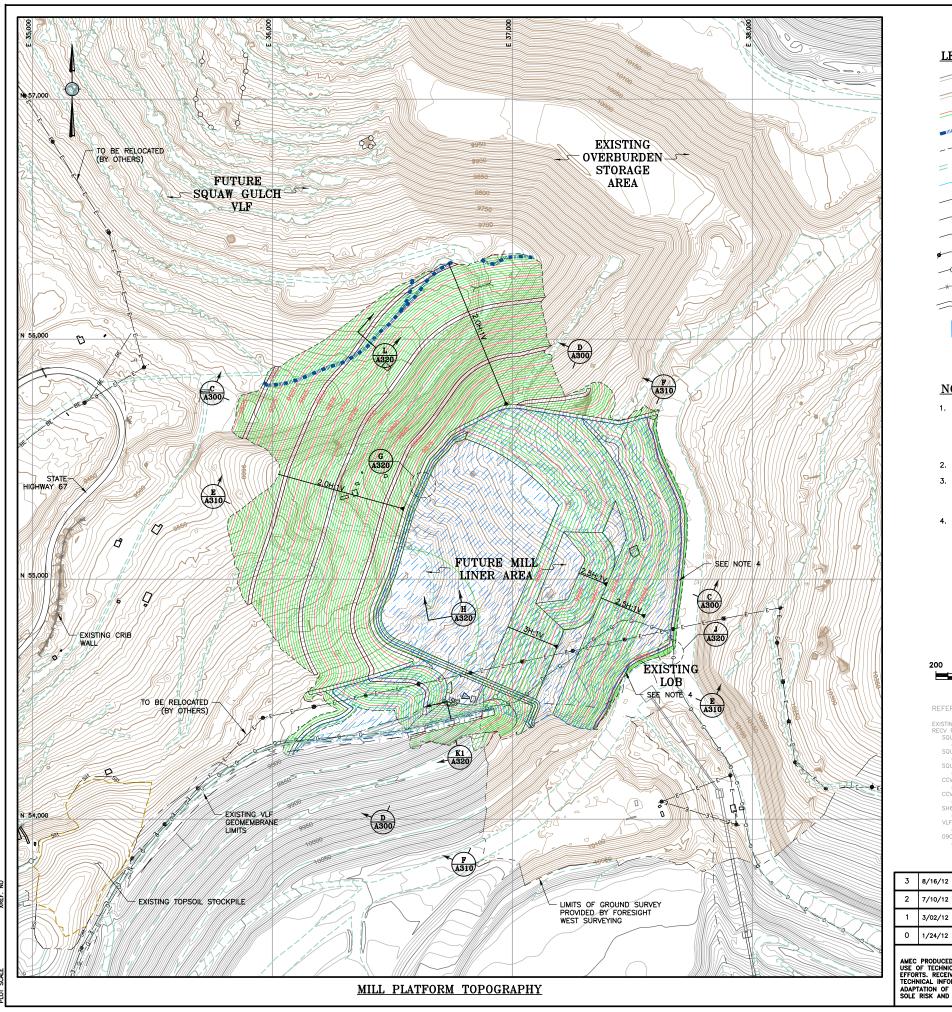

OPEN LATERAL REMEDIATION DETAIL

REMEDIATION NOTES:

- CONTRACTOR TO INSTALL DIRECTION OF MAXIMUM STRENGTH FOR THE SECOND LAYER OF UX1700HS OR EQUIVALENT HS
 GEOGRID TRANSVERSE TO THE DIRECTION OF MAXIMUM STRENGTH FOR THE FIRST LAYER OF UX1700HS GEOGRID.
- A THIRD GEOGRID LAYER MAY BE ADDED IN AREAS UNDER HIGH NORMAL LOAD. AREAS REQUIRING THIRD GEOGRID WILL BE DETERMINED DURING REMEDIATION.
- 3. GEOGRID CAP TO EXTEND MINIMUM 15 FEET BEYOND MINE WORKING LIMIT.

1	3/02/12	RE-ISSUED FOR CONSTRUCTION	JNM				
0	1/24/12	ISSUED FOR CONSTRUCTION	JNM				
DISCLAIMER							


AMEC PRODUCED THE INFORMATION PRESENTED ON THIS DRAWING THROUGH THE USE OF TECHNICAL INFORMATION AND PRACTICAL EXPERIENCE SPECIFIC TO ITS EFFORTS. RECEIVING THIS DRAWING DOES NOT GUARANTEE ANY RIGHTS TO SUCH TECHNICAL INFORMATION AND PRACTICAL EXPERIENCE. ANY ALTERATION OR ADAPTATION OF THE DATA OR CONTENTS OF THIS DRAWING SHALL BE AT USER'S SOLE RISK AND WITHOUT ANY LIABILITY OR LEGAL RESPONSIBILITY TO AMEC.


CLIENT	CRIPPLE CREEK & VICTOR GOLD MINING COMPANY	
PROJECT	MILL SITE EARTHWORKS	

UNDERGROUND WORKING REMEDIATION TYPICAL DETAILS

DESIGNED BY CMT CHECKED BY			ED BY	JNM		
DRAWN BY	CMT APPROVED BY			JNM		
FI		DRAWING N	o. REV			
74201	A45	1				

9200 EXISTING GROUND SURFACE CONTOUR AND EL, FEET (AERIAL SURVEY) 9200 EXISTING GROUND SURFACE CONTOUR AND EL, FEET (LAND SURVEY) PROPOSED SQUAW GULCH MILL PLATFORM LINER GROUND SURFACE CONTOUR AND EL. FEET SECONDARY UNDERDRAIN PIPE ____ DAYLIGHT LINE == EXISTING UNIMPROVED ROAD/TRAILS EXISTING DRAINAGES EXISTING GEOMEMBRANE LINER LIMITS EXISTING GAS LINE BE EXISTING UNDERGROUND POWER CABLE EXISTING POWER CABLE OOO EXISTING FENCE ** * * * EXISTING CRIB WALL STATE HIGHWAY 67 LIMITS OF 80 mil SINGLE-SIDED TEXTURED (TEXTURED FACE DOWN) LLDPE GEOMEMBRANE

NOTES:

- THE CONTOURS REPRESENT THE TOP OF THE SOIL LINER FILL SURFACE IN AREAS WHERE SOIL LINER FILL WILL BE REQUIRED AND FINISHED GRADE EVERYWHERE ELSE. SEE DRAWING A120 FOR THE LIMITS OF THE PROPOSED MILL SITE EARTHWORKS SOIL LINER FILL AND THE FUTURE SQUAW GULCH VLF SOIL LINER FILL.
- 2. SOIL LINER FILL HAS A MINIMUM DEPTH OF 1'.
- IN THE AREAS OF THE FUTURE SQUAW GULCH VLF SOIL LINER FILL, THE CONTRACTOR WILL FILL TO THE BOTTOM OF THE FUTURE SOIL LINER FILL AS PART OF THE MILL STE EASTHWARKS
- THE ALIGNMENT OF THE LINER ANCHOR TRENCH WILL BE ADJUSTED IN THE FIELD FIT AS REQUIRED ALONG THE CREST OF THE LOB AND EXISTING HAUL ROAD TO MINIMIZE THE IMPACTS TO OPERATIONS.

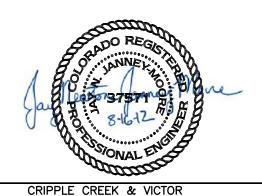
REFERENCE:

EXISTING GROUND TOPOGRAPHY WAS CREATED BY COMBINING THE FOLLOWING FILES RECV FROM FORESIGHT WEST SURVEYING, INC.:

SQUAW GULCH BASE TOPO — PHASE 1 — REVISED.DWG
(RECV MARCH 14, 2010)

SQUAW GULCH BASE TOPO — PHASE 2.DWG
(RECV APRIL 24, 2010)

SQUAW GULCH BASE TOPO — PHASE 3.DWG
(RECV MAY 4, 2010)

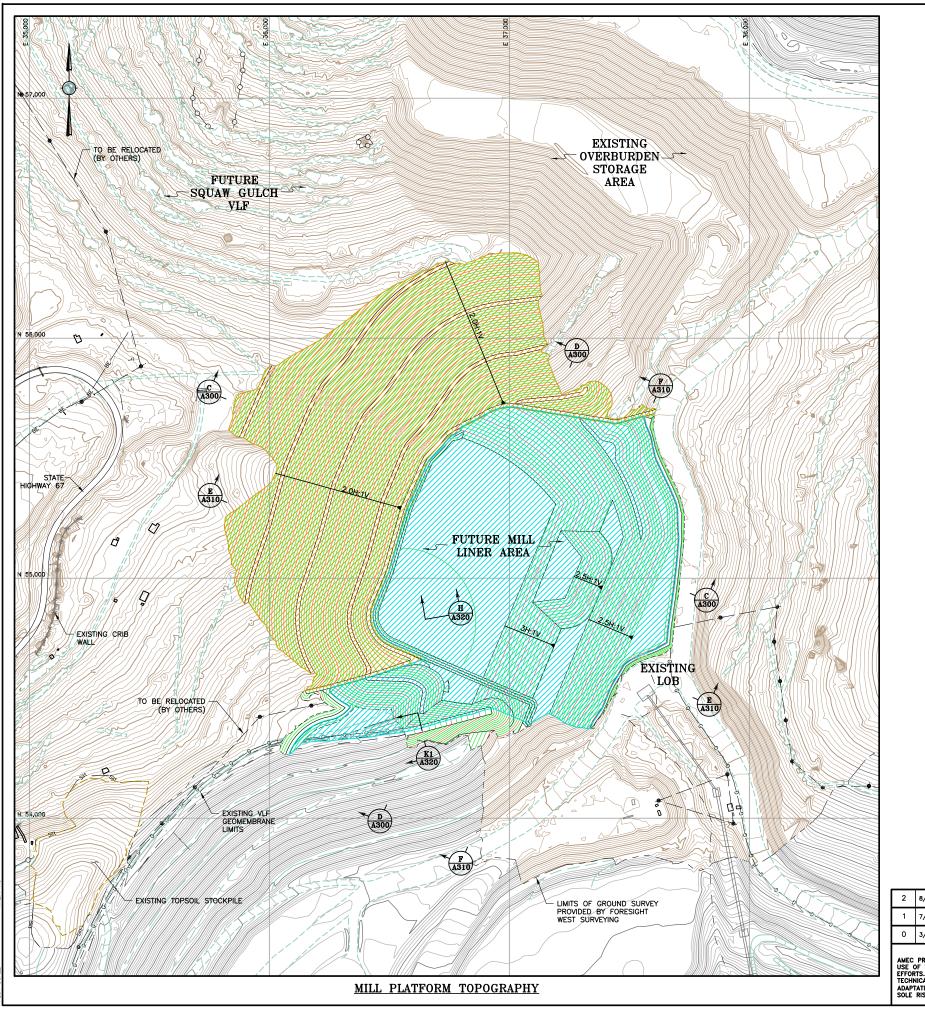

CCV TOPO EXPANSION 12—29—10 NORTH AREA.DWG
(RECV JANUARY 13, 2011)

CCV TOPO EXPANSION 01—28—11 SOUTH AREA.DWG
(RECV JANUARY 13, 2011)

SH67 TOPO 7—07—11.DWG
(RECV JULILY 11, 2011)

PROJECT			
	JNM	RE-ISSUED FOR CONSTRUCTION	
TITLE	JNM	RE-ISSUED FOR CONSTRUCTION	
T	JNM	RE-ISSUED FOR CONSTRUCTION	
	JNM	ISSUED FOR CONSTRUCTION	

DISCLAIMER AMEC PRODUCED THE INFORMATION PRESENTED ON THIS DRAWING THROUGH THE USE OF TECHNICAL INFORMATION AND PRACTICAL EXPERIENCE SPECIFIC TO ITS EFFORTS. RECEIVING THIS DRAWING DOES NOT GUARANTEE ANY RIGHTS TO SUCH TECHNICAL INFORMATION AND PRACTICAL EXPERIENCE. ANY ALTERATION OR ADAPTATION OF THE DATA OR CONTENTS OF THIS DRAWING SHALL BE AT USER'S SOLE RISK AND WITHOUT ANY LIABILITY OR LEGAL RESPONSIBILITY TO AMEC.



GOLD MINING COMPANY MILL SITE EARTHWORKS

OVERBURDEN STORAGE AREA TOP OF GEOMEMBRANE GRADING SURFACE **PLAN VIEW**

DESIGNED BY	CMT	CHECK	ED BY	JNM		
DRAWN BY	CMT APPROVED		VED BY	JNM		
FI	LENAME		DRAWING	No.	REV	
74201	A10	0	3			

9200 EXISTING GROUND SURFACE CONTOUR AND EL, FEET (AERIAL SURVEY) 9200 EXISTING GROUND SURFACE CONTOUR AND EL, FEET (LAND SURVEY) PROPOSED SQUAW GULCH MILL PLATFORM LINER GROUND SURFACE CONTOUR AND EL. FEET SECONDARY UNDERDRAIN PIPE ____ DAYLIGHT LINE === Existing Unimproved Road/Trails EXISTING DRAINAGES EXISTING GEOMEMBRANE LINER LIMITS EXISTING GAS LINE BE EXISTING UNDERGROUND POWER CABLE EXISTING POWER CABLE EXISTING FENCE ** * * * EXISTING CRIB WALL STATE HIGHWAY 67 LIMITS OF FUTURE SOIL LINER FILL
(TO BE CONSTRUCTED WITH SQUAW GULCH VLF)

LIMITS OF PROPOSED SOIL LINER FILL (TO BE CONTRUCTED WITH THE MILL SITE EARTHWORKS)

REFERENCE:

EXISTING GROUND TOPOGRAPHY WAS CREATED BY COMBINING THE FOLLOWING FILES RECV FROM FORESIGHT WEST SURVEYING, INC.:

SQUAW GULCH BASE TOPO — PHASE 1 — REVISED.DWG
(RECV MARCH 14, 2010)

SQUAW GULCH BASE TOPO — PHASE 2.DWG
(RECV APRIL 24, 2010)

SQUAW GULCH BASE TOPO — PHASE 3.DWG
(RECV MAY 4, 2010)

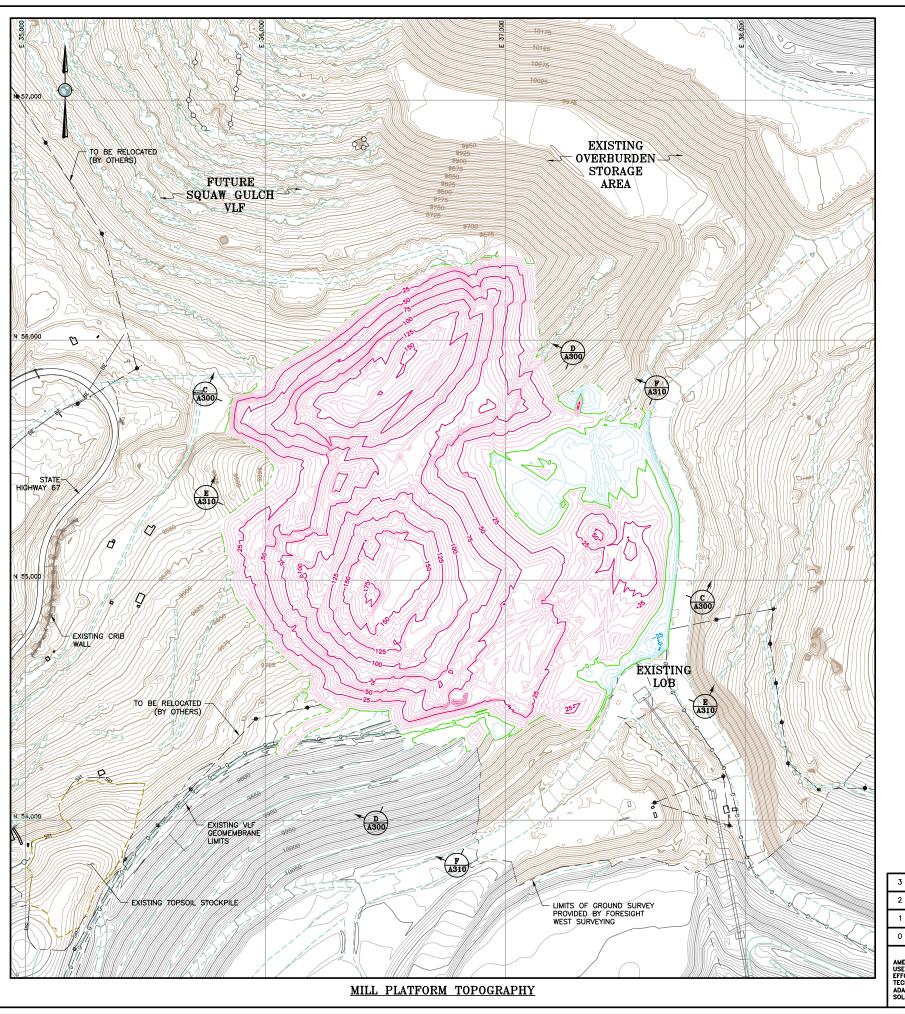
CCV TOPO EXPANSION 12—29—10 NORTH AREA.DWG
(RECV JANUARY 13, 2011)

CCV TOPO EXPANSION 01—28—11 SOUTH AREA.DWG
(RECV JANUARY 13, 2011)

SH67 TOPO 7—07—11.DWG
(RECV JULY 11, 2011)

CRIPPLE CREEK & VICTOR GOLD MINING COMPANY MILL SITE EARTHWORKS

2	8/16/12	RE-ISSUED FOR CONSTRUCTION	JAM JAM	ľ
1	7/10/12	RE-ISSUED FOR CONSTRUCTION	JNM	
0	3/02/12	ISSUED FOR CONSTRUCTION	JNM	


DISCLAIMER

AMEC PRODUCED THE INFORMATION PRESENTED ON THIS DRAWING THROUGH THE USE OF TECHNICAL INFORMATION AND PRACTICAL EXPERIENCE SPECIFIC TO ITS EFFORTS. RECEIVING THIS DRAWING DOES NOT GUARANTEE ANY RIGHTS TO SUCH TECHNICAL INFORMATION AND PRACTICAL EXPERIENCE. ANY ALTERATION OR ADAPTATION OF THE DATA OR CONTENTS OF THIS DRAWING SHALL BE AT USER'S SOLE RISK AND WITHOUT ANY LIABILITY OR LEGAL RESPONSIBILITY TO AMEC.

0	VER	BURD	EN STO	ORAGE	. AR	REA	
LIMITS	OF	SOIL	LINER	FILL	PLA	CEME	٦r
		Pl	LAN VI	EW			
							_

DESIGNED BY	СМТ	CHECK	ED BY		JNM
DRAWN BY	СМТ	APPRO	VED BY	JNM	
FI	LENAME		DRAWING	No.	REV
74201	A12	0	2		

9200 EXISTING GROUND SURFACE CONTOUR AND EL, FEET (AERIAL SURVEY) 9200 EXISTING GROUND SURFACE CONTOUR AND EL, FEET (LAND SURVEY) 25 ISOPACH CUT CONTOURS AND EL, FEET ISOPACH ZERO CUT/FILL AND EL, FEET 25 ISOPACH FILL CONTOURS AND EL, FEET ---- DAYLIGHT LINE == EXISTING UNIMPROVED ROAD/TRAILS EXISTING DRAINAGES EXISTING GEOMEMBRANE LINER LIMITS GEXISTING GAS LINE _____BE _____ EXISTING UNDERGROUND POWER CABLE EXISTING POWER CABLE EXISTING FENCE * * * * EXISTING CRIB WALL STATE HIGHWAY 67

NOTES:

- THE ISOPACH CONTOURS REPRESENT THE DEPTH OF FILL TO THE TOP OF THE SOIL LINER FILL SURFACE IN AREAS WHERE SOIL LINER FILL WILL BE REQUIRED AND FINISHED GRADE EVERYWHERE ELSE. SEE DRAWING A120 FOR THE LIMITS OF THE PROPOSED MILL SITE EARTHWORKS SOIL LINER FILL AND THE FUTURE SQUAW GULCH VLF SOIL LINER FILL LINER FILL.
- 2. SOIL LINER FILL HAS A MINIMUM DEPTH OF 1'.
- IN THE AREAS OF THE FUTURE SQUAW GULCH VLF SOIL LINER FILL, THE CONTRACTOR WILL FILL TO THE BOTTOM OF THE FUTURE SOIL LINER FILL AS PART OF THE MILL STE FARTHWOODE
- 4. THE ALIGNMENT OF THE LINER ANCHOR TRENCH WILL BE ADJUSTED IN THE FIELD FIT AS REQUIRED ALONG THE CREST OF THE LOB AND EXISTING HAUL ROAD TO MINIMIZE THE IMPACTS TO OPERATIONS.

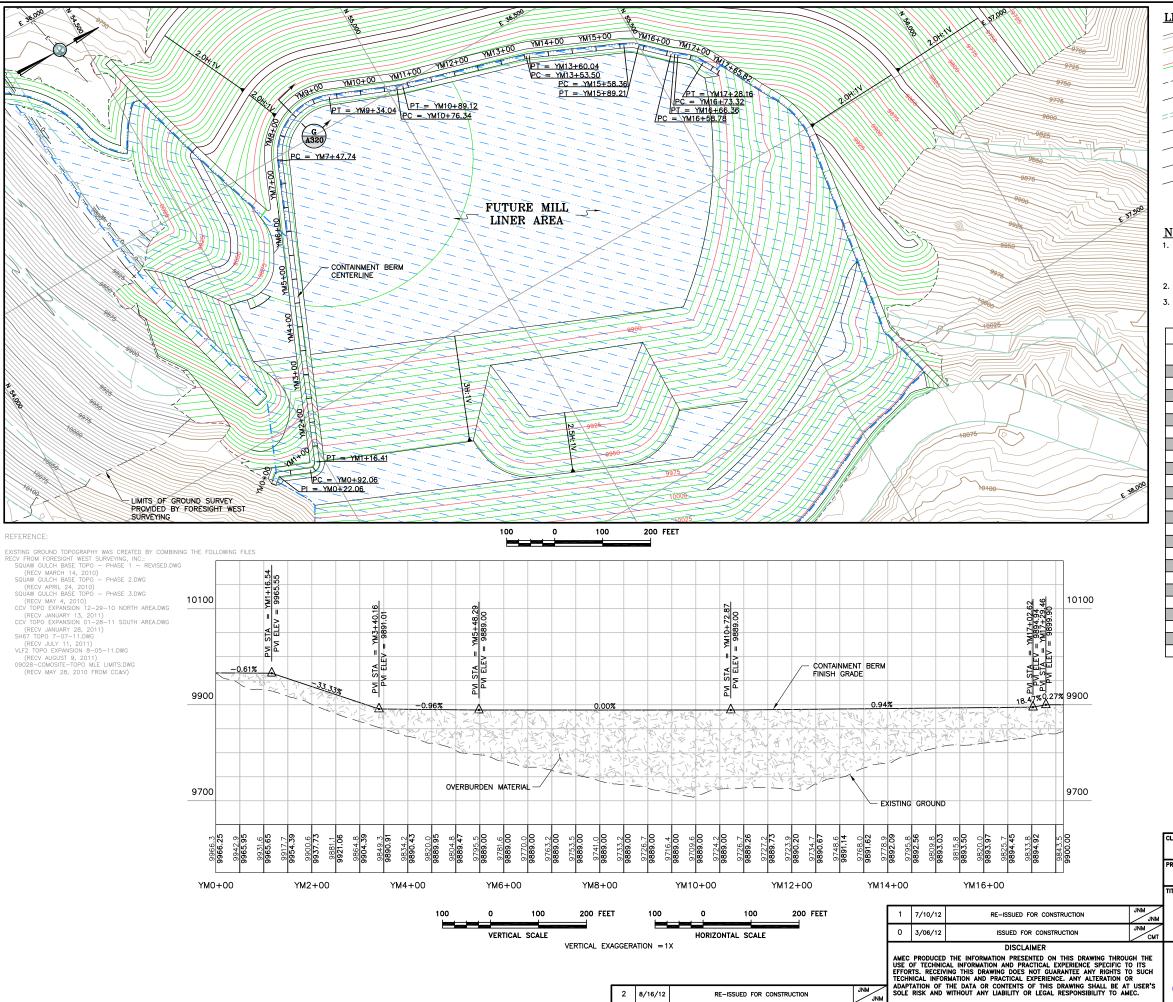
REFERENCE:

EXISTING GROUND TOPOGRAPHY WAS CREATED BY COMBINING THE FOLLOWING FILES RECV FROM FORESIGHT WEST SURVEYING, INC:
SOUMW GULCH BASE TOPO — PHASE 1 — REVISED.DWG
(RECV MARCH 14, 2010)
SOUMW GULCH BASE TOPO — PHASE 2.DWG
(RECV APRIL 24, 2010)
SOUMW GULCH BASE TOPO — PHASE 3.DWG
(RECV MAY 4, 2010)
CCV TOPO EXPANSION 12-29-10 NORTH AREA.DWG
(RECV JANUARY 13, 2011)
CCV TOPO EXPANSION 01-28-11 SOUTH AREA.DWG
(RECV JANUARY 13, 2011)
SH67 TOPO 7-07-11.DWG
(RECV JULY 11, 2011)

			ľ
3	8/16/12	RE-ISSUED FOR CONSTRUCTION JNM JNM	L
2	7/10/12	RE-ISSUED FOR CONSTRUCTION JNM JNM]"
1	3/02/12	RE-ISSUED FOR CONSTRUCTION JNM CMT]
0	1/24/12	ISSUED FOR CONSTRUCTION JNM CMT	1

DISCLAIMER

AMEC PRODUCED THE INFORMATION PRESENTED ON THIS DRAWING THROUGH THE USE OF TECHNICAL INFORMATION AND PRACTICAL EXPERIENCE SPECIFIC TO ITS EFFORTS. RECEIVING THIS DRAWING DOES NOT GUARANTEE ANY RIGHTS TO SUCH TECHNICAL INFORMATION AND PRACTICAL EXPERIENCE. ANY ALTERATION OR ADAPTATION OF THE DATA OR CONTENTS OF THIS DRAWING SHALL BE AT USER'S SOLE RISK AND WITHOUT ANY LIABILITY OR LEGAL RESPONSIBILITY TO AMEC.


CRIPPLE CREEK & VICTOR GOLD MINING COMPANY

MILL SITE EARTHWORKS

OVERBURDEN STORAGE AREA TOP OF GEOMEMBRANE GRADING SURFACE ISOPACH PLAN VIEW

DESIGNED BY	CMT	CHECK	ED BY	JNM		
DRAWN BY	СМТ	APPRO	VED BY		JNM	
74201	DRAWING A15					
			_			

9200 EXISTING GROUND SURFACE CONTOUR AND EL, FEET (AERIAL SURVEY) 9200 EXISTING GROUND SURFACE CONTOUR AND EL, FEET (LAND SURVEY) PROPOSED GROUND SURFACE CONTOUR AND EL. FEET

---- DAYLIGHT LINE

YM6+00 CONTAINMENT BERM CENTERLINE

====== EXISTING UNIMPROVED ROAD/TRAILS

EXISTING GEOMEMBRANE LINER LIMITS

___G___ EXISTING GAS LINE

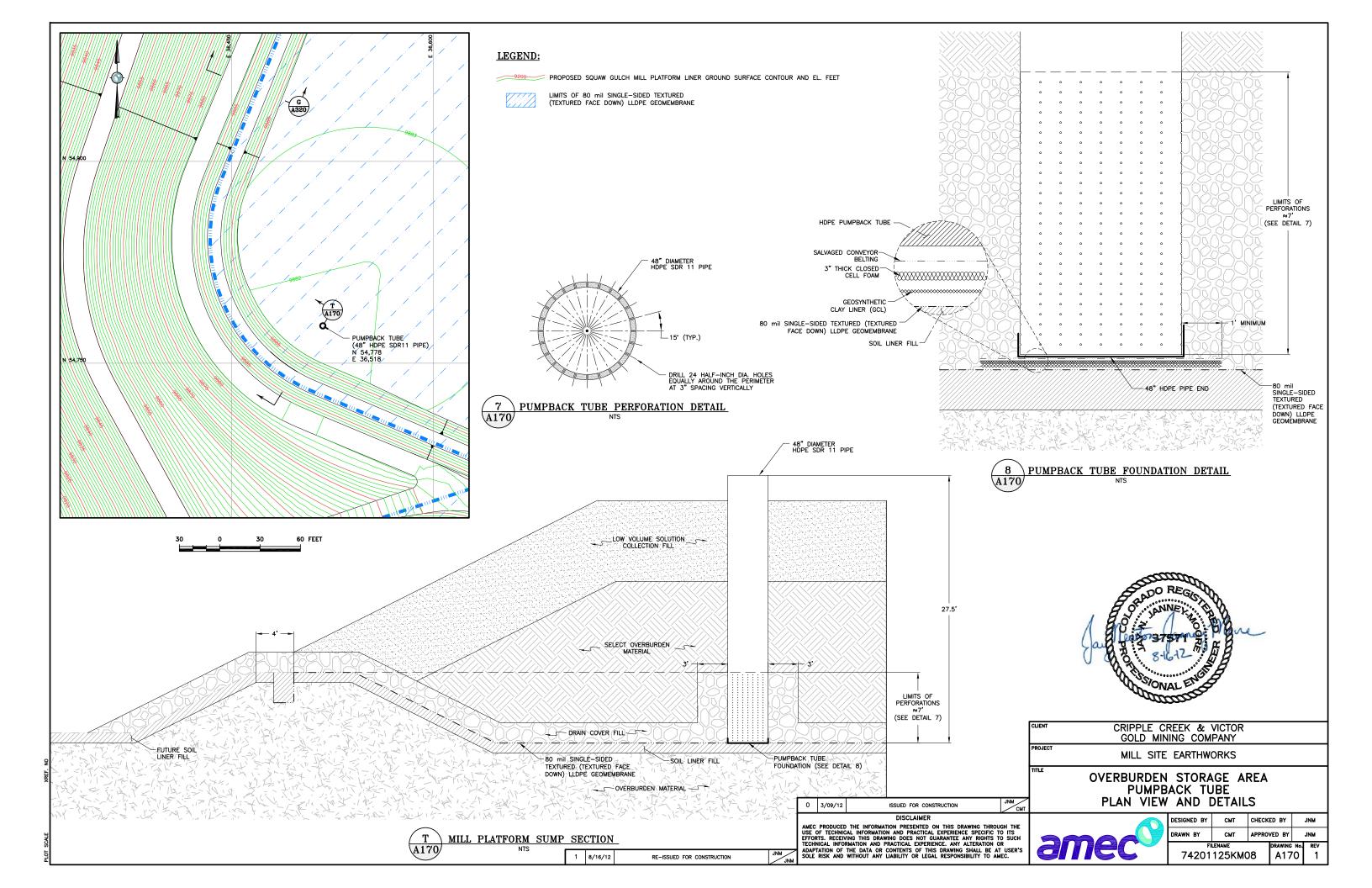
____E___EXISTING POWERLINES ____ EXISTING PIPELINE

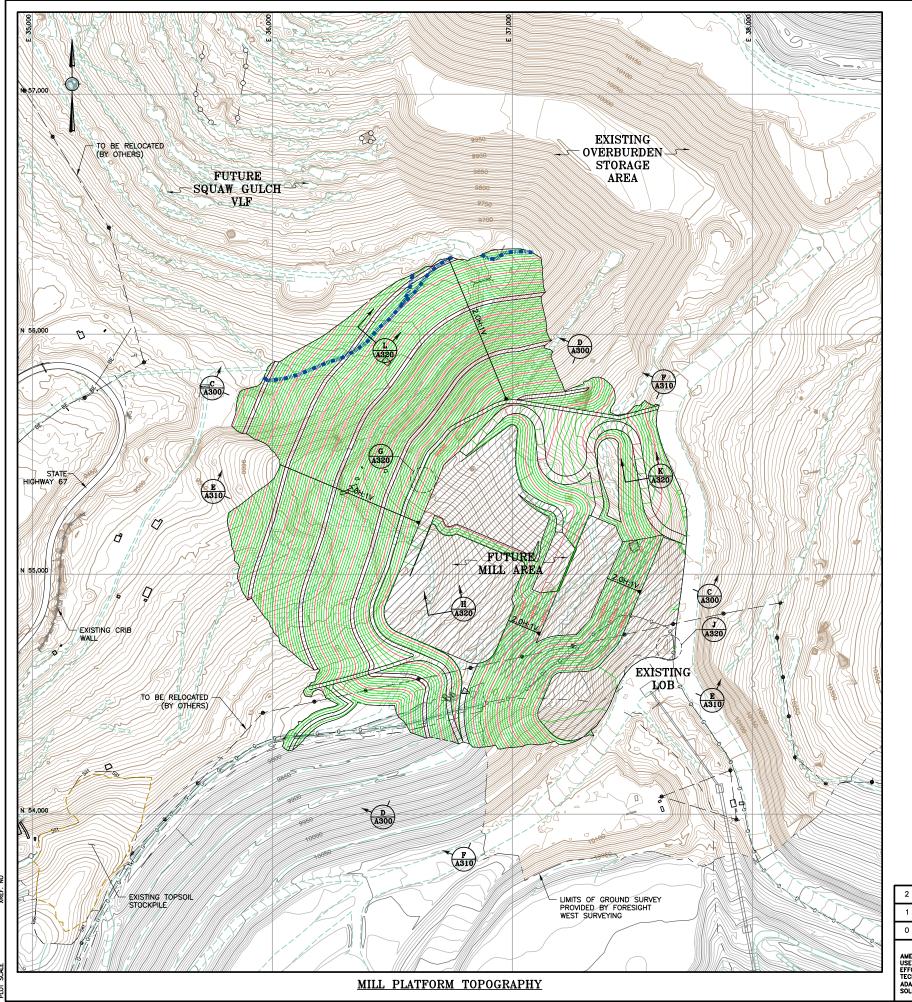
LIMITS OF 80 mil SINGLE-SIDED TEXTURED (TEXTURED FACE DOWN) LLDPE GEOMEMBRANE

NOTES:

- THE CONTOURS REPRESENT THE TOP OF THE SOIL LINER FILL SURFACE IN AREAS WHERE SOIL LINER FILL WILL BE REQUIRED AND FINISHED GRADE EVERYWHERE ELSE. SEE DRAWING A120 FOR THE LIMITS OF THE PROPOSED MILL SITE EARTHWORKS SOIL LINER FILL AND THE FUTURE SQUAW GULCH VLF SOIL LINER FILL.
- 2. SOIL LINER FILL HAS A MINIMUM DEPTH OF 1'.
- IN THE AREAS OF THE FUTURE SQUAW GULCH VLF SOIL LINER FILL, THE CONTRACTOR WILL FILL TO THE BOTTOM OF THE FUTURE SOIL LINER FILL AS PART OF THE MILL SITE EARTHWORKS.

	LINE					
	STATION	NORTHING	EASTING	DELTA (D-M-S)	RADIUS (FT)	LENGTH (FT)
PI	YM0+00	54383.91	37087.00			
PI	YM0+22.06	54400.77	37072.78			
PC	YM0+92.06	54465.34	37099.82			
				89-43-59	15.55	24.35
PT	YM1+16.41	54485.66	37091.55			
PC	YM7+47.74	54732.23	36510.37			
				88-57-11	120	186.3
PT	YM9+34.04	54887.54	36445.92			
PC	YM10+76.34	55019.53	36499.1			
				05-37-57	130	12.78
PT	YM10+89.12	55031.6	36503.28			
PC	YM13+53.50	55285.34	36577.52			
				07-29-50	50	6.54
PT	YM13+60.04	55291.48	36579.77			
PC	YM15+58.36	55472.92	36659.82			
				19-38-39	90	30.86
PT	YM15+89.21	55498.49	36676.82			
PC	YM16+58.78	55548.99	36724.67			
				08-40-39	50	7.57
PT	YM16+66.36	55554.86	36729.44			
PC	YM16+73.32	55560.59	36733.41			
				26-10-57	120	54.84
PT	YM17+28.16	55597.06	36773.72			
PI	YM17+65.82	55615.34	36806.65			


CRIPPLE CREEK & VICTOR GOLD MINING COMPANY


MILL SITE EARTHWORKS

OVERBURDEN STORAGE AREA CONTAINMENT BERM PLAN AND PROFILE

DESIGNED BY	СМТ	CHECK	ED BY		JNM
DRAWN BY	СМТ	APPRO	VED BY	JNM	
FI	LENAME		DRAWING	No.	REV
74201	A16	0	2		

9200 EXISTING GROUND SURFACE CONTOUR AND EL, FEET (AERIAL SURVEY) 9200 EXISTING GROUND SURFACE CONTOUR AND EL, FEET (LAND SURVEY) PROPOSED SQUAW GULCH MILL PLATFORM GROUND SURFACE CONTOUR AND EL. FEET PREVIOUSLY CONSTRUCTED GROUND SURFACE CONTOUR AND EL. FEET SECONDARY UNDERDRAIN PIPE ____ DAYLIGHT LINE == EXISTING UNIMPROVED ROAD/TRAILS EXISTING DRAINAGES EXISTING GEOMEMBRANE LINER LIMITS C EXISTING GAS LINE _____BE _____ EXISTING UNDERGROUND POWER CABLE EXISTING POWER CABLE EXISTING FENCE * * * * EXISTING CRIB WALL STATE HIGHWAY 67

NOTES:

1. PROPOSED CONTOURS REPRESENT SQUAW GULCH MILL PLATFORM FINISHED GRADE.

FUTURE MILL AREA

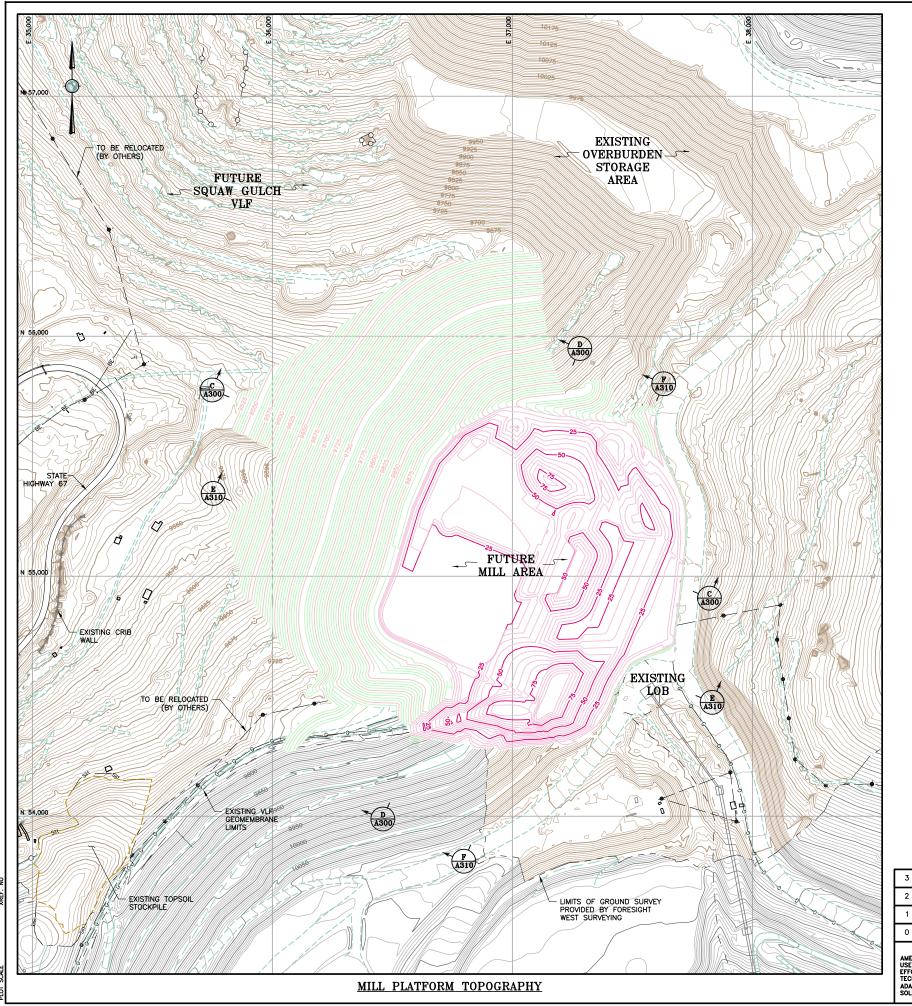
WITHIN THE FUTURE MILL AREA, FINAL GRADE IS BY OTHERS. THE CONTOURS WITHIN THE FUTURE MILL AREA REPRESENT A ROUGH GRADE.

REFERENCE:

EXISTING GROUND TOPOGRAPHY WAS CREATED BY COMBINING THE FOLLOWING FILES RECV FROM FORESIGHT WEST SURVEYING, INC.:
SOUAW GULCH BASE TOPO — PHASE 1 — REWISED.DWG
(RECV MARCH 14, 2010)
SOUAW GULCH BASE TOPO — PHASE 2.DWG
(RECV APRIL 24, 2010)
SOUAW GULCH BASE TOPO — PHASE 3.DWG
(RECV MAY 4, 2010)
CCV TOPO EXPANSION 12-29-10 NORTH AREA.DWG
(RECV JANUARY 13, 2011)
CCV TOPO EXPANSION 01-28-11 SOUTH AREA.DWG
(RECV JANUARY 13, 2011)
SH67 TOPO 7-07-11.DWG
(RECV JULY 11, 2011)

SONALE

CLIENT	CRIPPLE CREEK & VICTOR GOLD MINING COMPANY
PROJECT	MILL SITE FARTHWORKS


2	8/16/12	RE-ISSUED FOR CONSTRUCTION	JNM	1
1	3/02/12	RE-ISSUED FOR CONSTRUCTION	JNM	
0	1/24/12	ISSUED FOR CONSTRUCTION	JNM	
	1	1 3/02/12	1 3/02/12 RE-ISSUED FOR CONSTRUCTION	2 8/16/12 RE-ISSUED FOR CONSTRUCTION CMT 1 3/02/12 RE-ISSUED FOR CONSTRUCTION JNM CMT

DISCLAIMER

AMEC PRODUCED THE INFORMATION PRESENTED ON THIS DRAWING THROUGH THE USE OF TECHNICAL INFORMATION AND PRACTICAL EXPERIENCE SPECIFIC TO ITS EFFORTS. RECEIVING THIS DRAWING DOES NOT GUARANTEE ANY RIGHTS TO SUCH TECHNICAL INFORMATION AND PRACTICAL EXPERIENCE. ANY ALTERATION OR ADAPTATION OF THE DATA OR CONTENTS OF THIS DRAWING SHALL BE AT USER'S SOLE RISK AND WITHOUT ANY LIABILITY OR LEGAL RESPONSIBILITY TO AMEC.

OVERBURDEN STORAGE AREA FINISHED GRADE SURFACE PLAN VIEW								
	DESIGNED BY	СМТ	CHECKED BY			JNM		
	DRAWN BY	СМТ	APPROVED BY			JNM		
	FILENAME DRAWING			No.	REV			
	74201	1125KM03 A200			2			

9200 EXISTING GROUND SURFACE CONTOUR AND EL, FEET (AERIAL SURVEY) 9200 EXISTING GROUND SURFACE CONTOUR AND EL, FEET (LAND SURVEY) PREVIOUSLY CONSTRUCTED GROUND SURFACE CONTOUR AND EL. FEET 25 ISOPACH CUT CONTOURS AND EL, FEET ISOPACH ZERO CUT/FILL AND EL, FEET isopach fill contours and el, feet --- DAYLIGHT LINE == EXISTING UNIMPROVED ROAD/TRAILS EXISTING DRAINAGES EXISTING GEOMEMBRANE LINER LIMITS G—G EXISTING GAS LINE BE EXISTING UNDERGROUND POWER CABLE EXISTING POWER CABLE __O__O__O EXISTING FENCE * * * * EXISTING CRIB WALL STATE HIGHWAY 67

NOTES:

- 1. PROPOSED ISOPACH CONTOURS REPRESENT THE DEPTH OF FILL REQUIRED TO FINISHED GRADE.
- WITHIN THE FUTURE MILL AREA, FINAL GRADE IS BY OTHERS. THE CONTOURS WITHIN THE FUTURE MILL AREA REPRESENT A ROUGH GRADE.

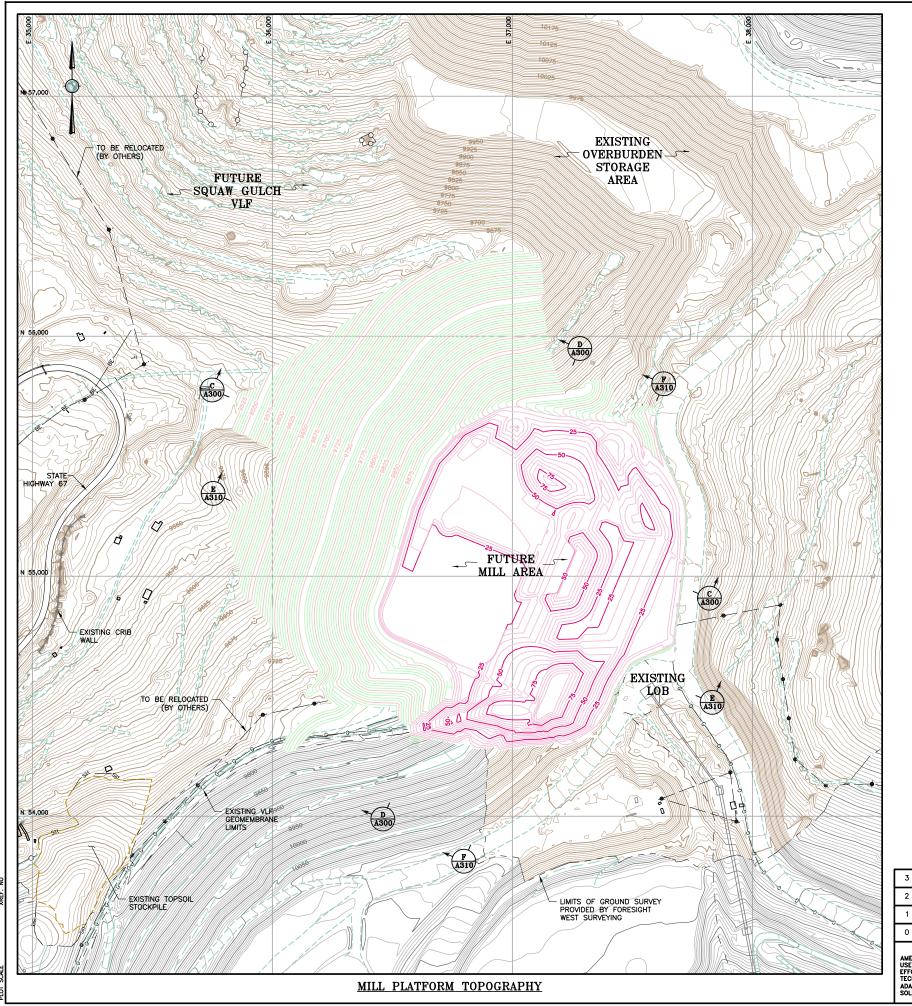
REFERENCE:

EXISTING GROUND TOPOGRAPHY WAS CREATED BY COMBINING THE FOLLOWING FILES RECV FROM FORESIGHT WEST SURVEYING, INC:
SOUMW GULCH BASE TOPO — PHASE 1 — REVISED.DWG
(RECV MARCH 14, 2010)
SOUMW GULCH BASE TOPO — PHASE 2.DWG
(RECV APRIL 24, 2010)
SOUMW GULCH BASE TOPO — PHASE 3.DWG
(RECV MAY 4, 2010)
CCV TOPO EXPANSION 12-29-10 NORTH AREA.DWG
(RECV JANUARY 13, 2011)
CCV TOPO EXPANSION 01-28-11 SOUTH AREA.DWG
(RECV JANUARY 13, 2011)
SH67 TOPO 7-07-11.DWG
(RECV JULY 11, 2011)

			PRO
3	8/16/12	RE-ISSUED FOR CONSTRUCTION JNM CMT	
2	7/10/12	RE-ISSUED FOR CONSTRUCTION JNM CMT	TITL
1	3/02/12	RE-ISSUED FOR CONSTRUCTION JNM CMT	
0	1/24/12	ISSUED FOR CONSTRUCTION JNM	

DISCLAIMER

AMEC PRODUCED THE INFORMATION PRESENTED ON THIS DRAWING THROUGH THE USE OF TECHNICAL INFORMATION AND PRACTICAL EXPERIENCE SPECIFIC TO ITS EFFORTS. RECEIVING THIS DRAWING DOES NOT GUARANTEE ANY RIGHTS TO SUCH TECHNICAL INFORMATION AND PRACTICAL EXPERIENCE. ANY ALTERATION OR ADAPTATION OF THE DATA OR CONTENTS OF THIS DRAWING SHALL BE AT USER'S SOLE RISK AND WITHOUT ANY LIABILITY OR LEGAL RESPONSIBILITY TO AMEC.


CRIPPLE CREEK & VICTOR GOLD MINING COMPANY

MILL SITE EARTHWORKS

OVERBURDEN STORAGE AREA FINISHED GRADE SURFACE ISOPACH PLAN VIEW

DESIGNED BY	СМТ	CHECK	ED BY	JNM	
DRAWN BY	СМТ	APPROVED BY		JNM	
FI		DRAWING	No.	REV	
74201	A25	0	3		

9200 EXISTING GROUND SURFACE CONTOUR AND EL, FEET (AERIAL SURVEY) 9200 EXISTING GROUND SURFACE CONTOUR AND EL, FEET (LAND SURVEY) PREVIOUSLY CONSTRUCTED GROUND SURFACE CONTOUR AND EL. FEET 25 ISOPACH CUT CONTOURS AND EL, FEET ISOPACH ZERO CUT/FILL AND EL, FEET isopach fill contours and el, feet --- DAYLIGHT LINE == EXISTING UNIMPROVED ROAD/TRAILS EXISTING DRAINAGES EXISTING GEOMEMBRANE LINER LIMITS G—G EXISTING GAS LINE BE EXISTING UNDERGROUND POWER CABLE EXISTING POWER CABLE __O__O__O EXISTING FENCE * * * * EXISTING CRIB WALL STATE HIGHWAY 67

NOTES:

- 1. PROPOSED ISOPACH CONTOURS REPRESENT THE DEPTH OF FILL REQUIRED TO FINISHED GRADE.
- WITHIN THE FUTURE MILL AREA, FINAL GRADE IS BY OTHERS. THE CONTOURS WITHIN THE FUTURE MILL AREA REPRESENT A ROUGH GRADE.

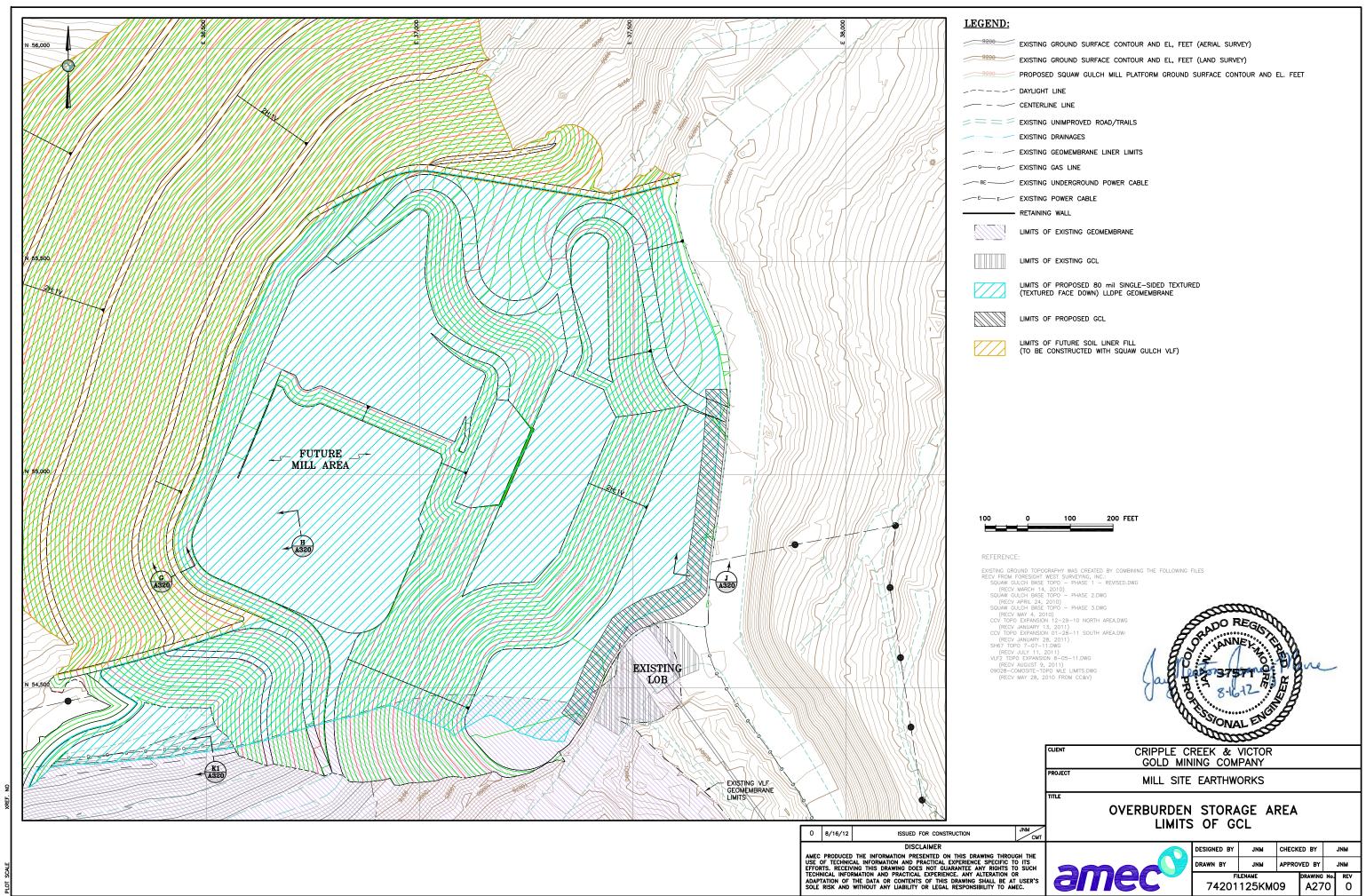
REFERENCE:

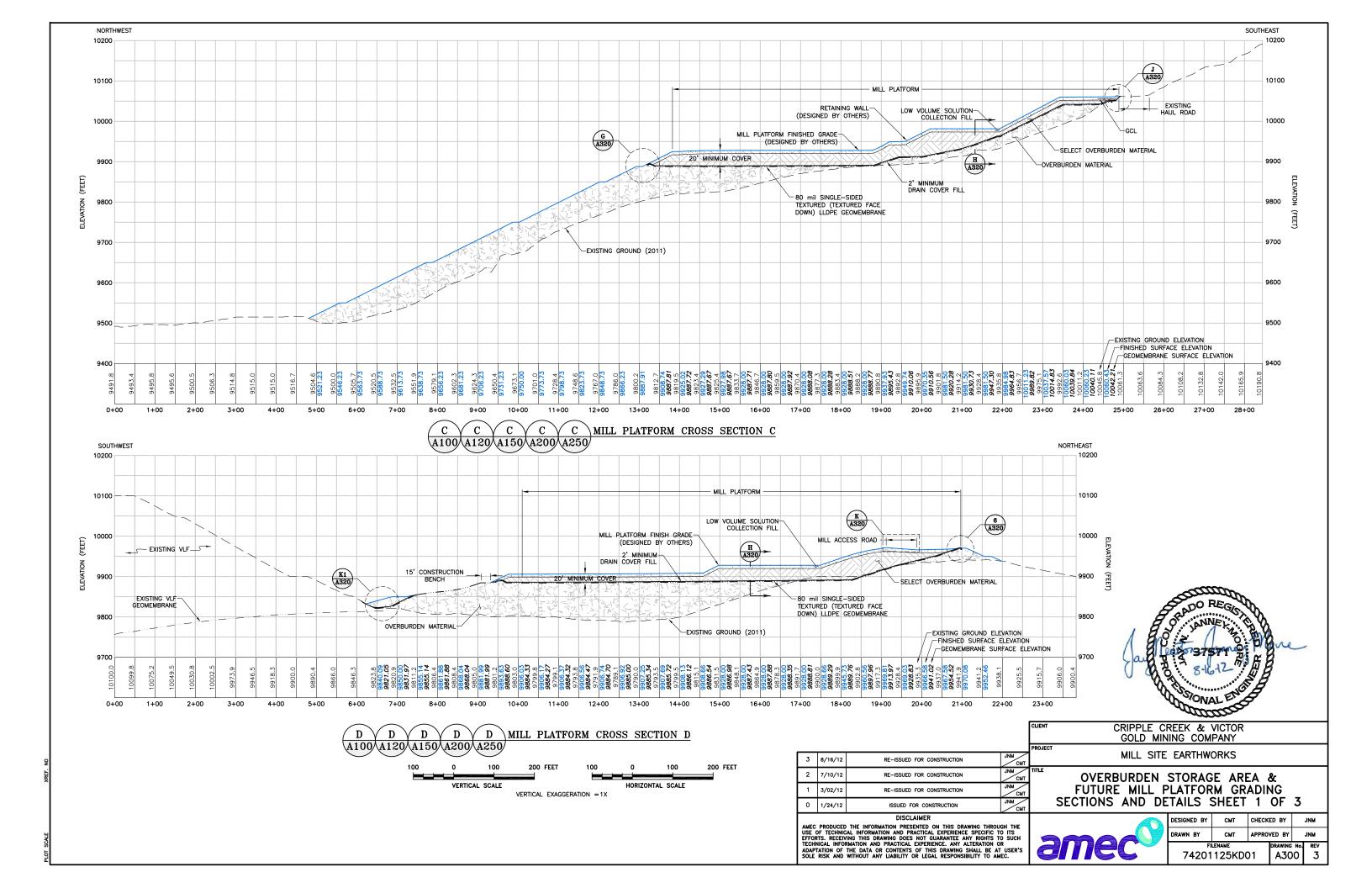
EXISTING GROUND TOPOGRAPHY WAS CREATED BY COMBINING THE FOLLOWING FILES RECV FROM FORESIGHT WEST SURVEYING, INC:
SOUMW GULCH BASE TOPO — PHASE 1 — REVISED.DWG
(RECV MARCH 14, 2010)
SOUMW GULCH BASE TOPO — PHASE 2.DWG
(RECV APRIL 24, 2010)
SOUMW GULCH BASE TOPO — PHASE 3.DWG
(RECV MAY 4, 2010)
CCV TOPO EXPANSION 12-29-10 NORTH AREA.DWG
(RECV JANUARY 13, 2011)
CCV TOPO EXPANSION 01-28-11 SOUTH AREA.DWG
(RECV JANUARY 13, 2011)
SH67 TOPO 7-07-11.DWG
(RECV JULY 11, 2011)

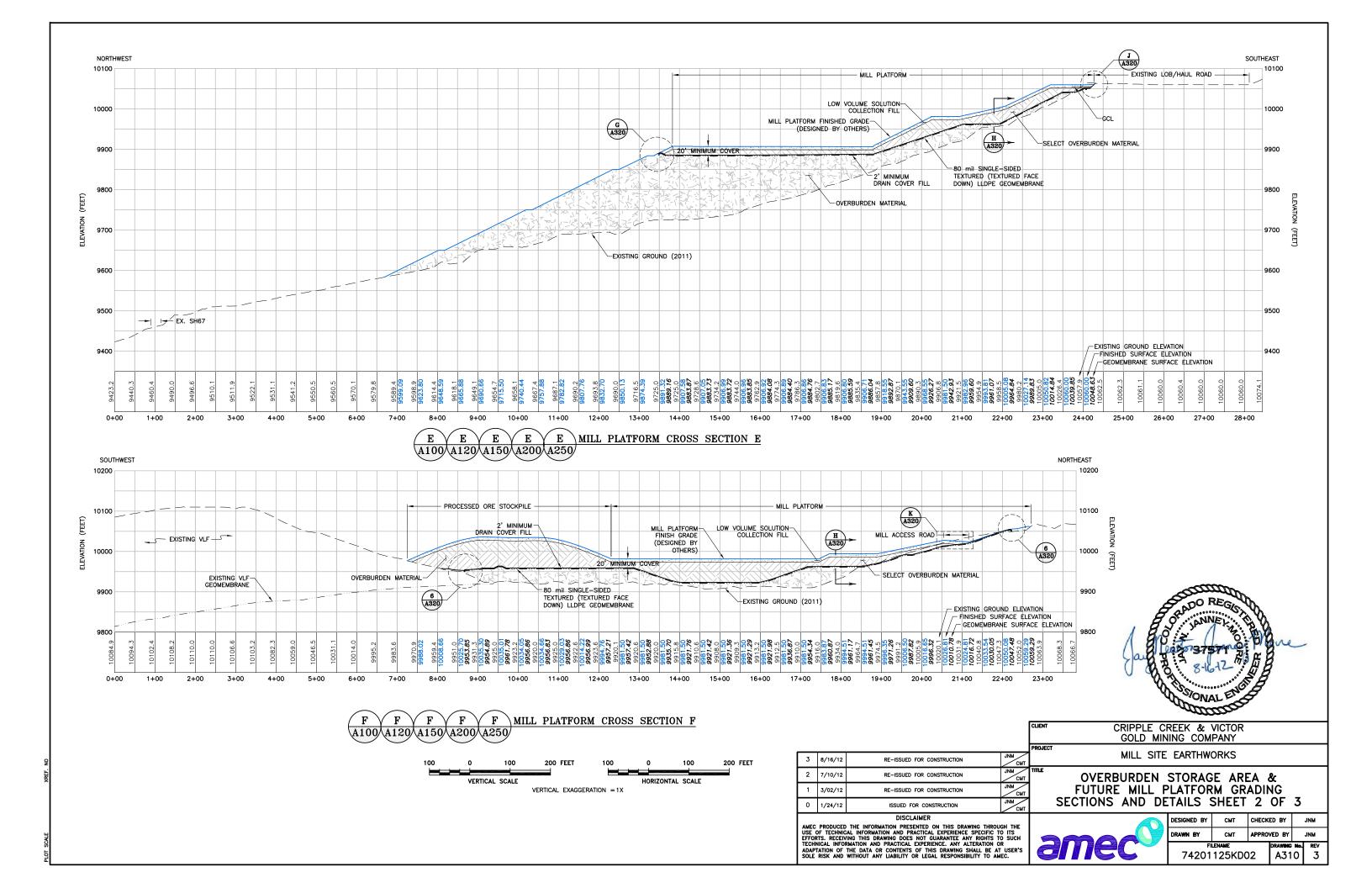
			PRO
3	8/16/12	RE-ISSUED FOR CONSTRUCTION JNM CMT	
2	7/10/12	RE-ISSUED FOR CONSTRUCTION JNM CMT	TITL
1	3/02/12	RE-ISSUED FOR CONSTRUCTION JNM CMT	
0	1/24/12	ISSUED FOR CONSTRUCTION JNM	

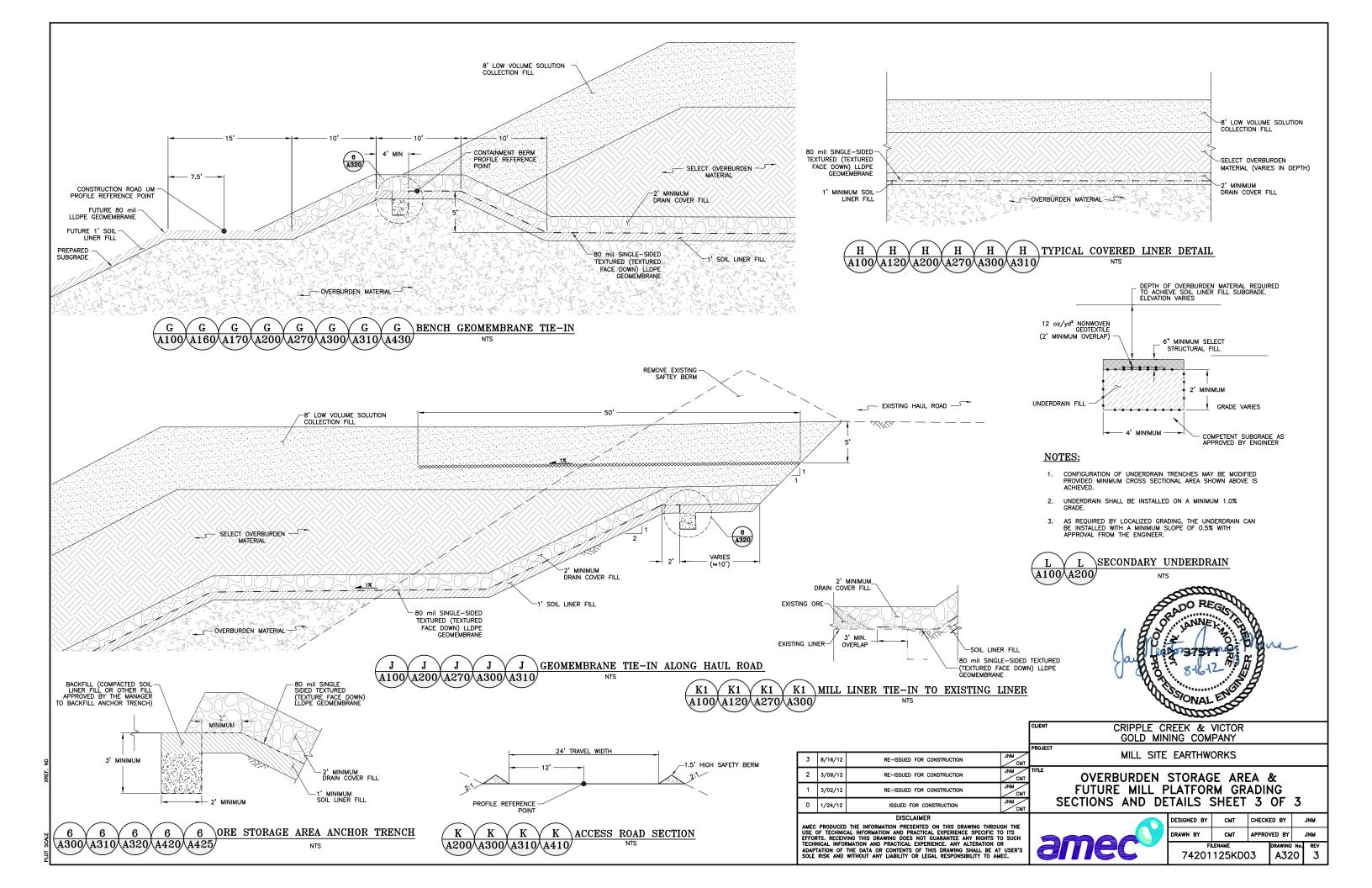
DISCLAIMER

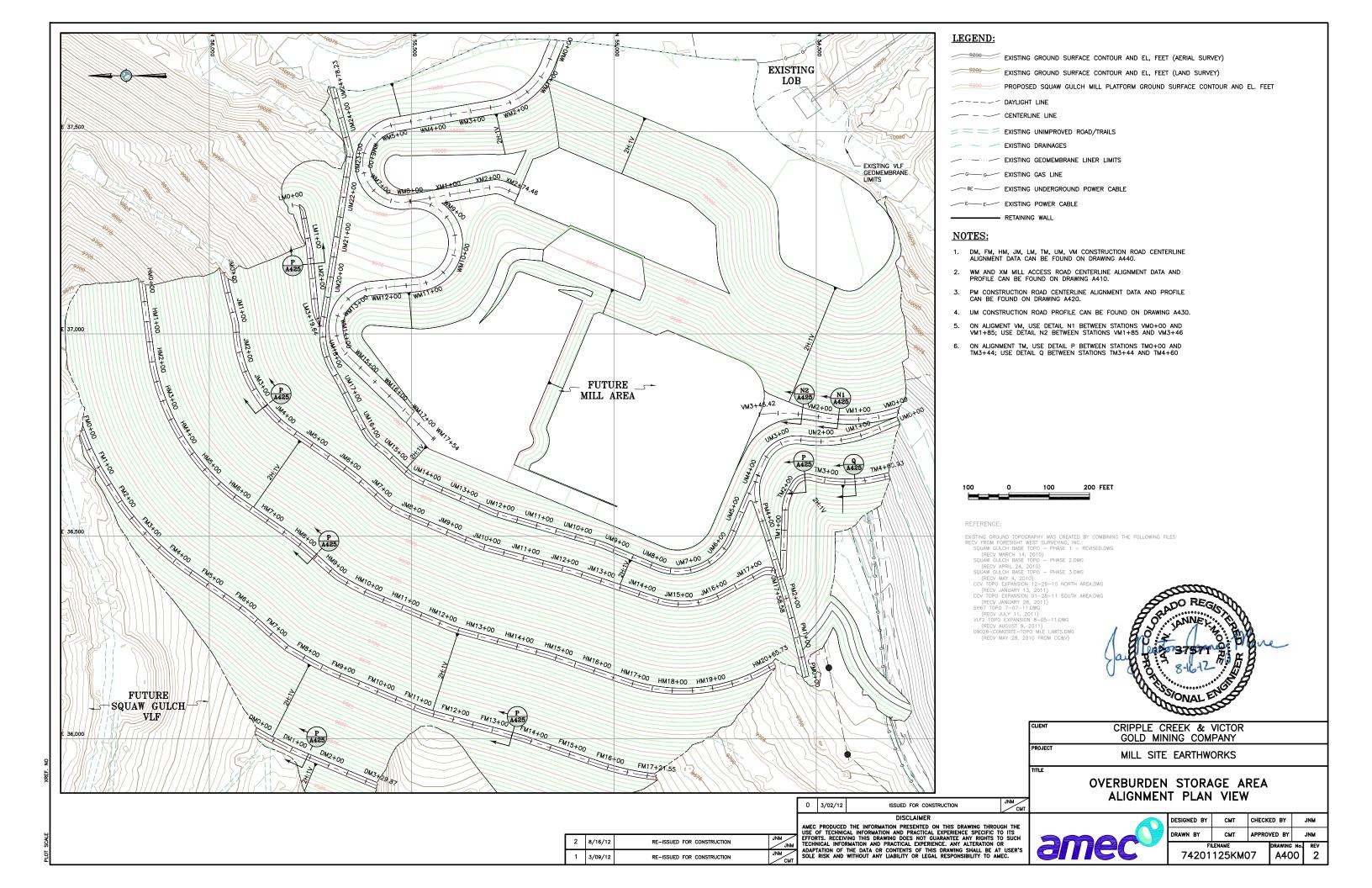
AMEC PRODUCED THE INFORMATION PRESENTED ON THIS DRAWING THROUGH THE USE OF TECHNICAL INFORMATION AND PRACTICAL EXPERIENCE SPECIFIC TO ITS EFFORTS. RECEIVING THIS DRAWING DOES NOT GUARANTEE ANY RIGHTS TO SUCH TECHNICAL INFORMATION AND PRACTICAL EXPERIENCE. ANY ALTERATION OR ADAPTATION OF THE DATA OR CONTENTS OF THIS DRAWING SHALL BE AT USER'S SOLE RISK AND WITHOUT ANY LIABILITY OR LEGAL RESPONSIBILITY TO AMEC.

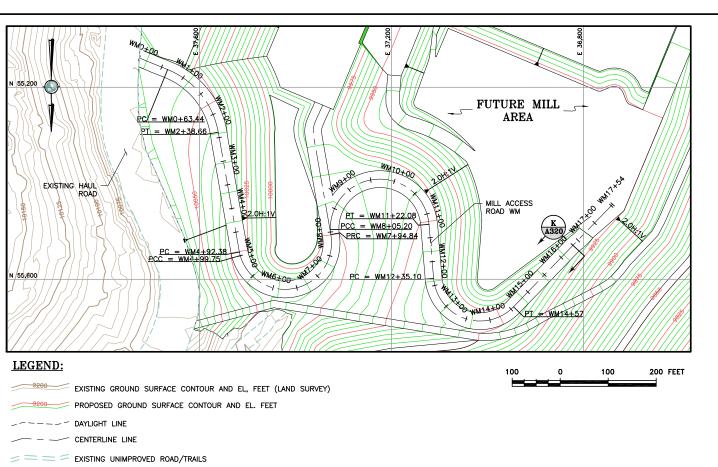

CRIPPLE CREEK & VICTOR GOLD MINING COMPANY

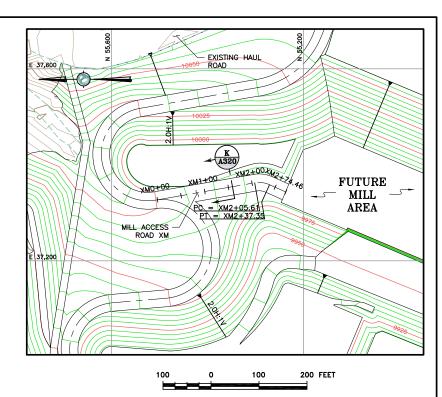

MILL SITE EARTHWORKS

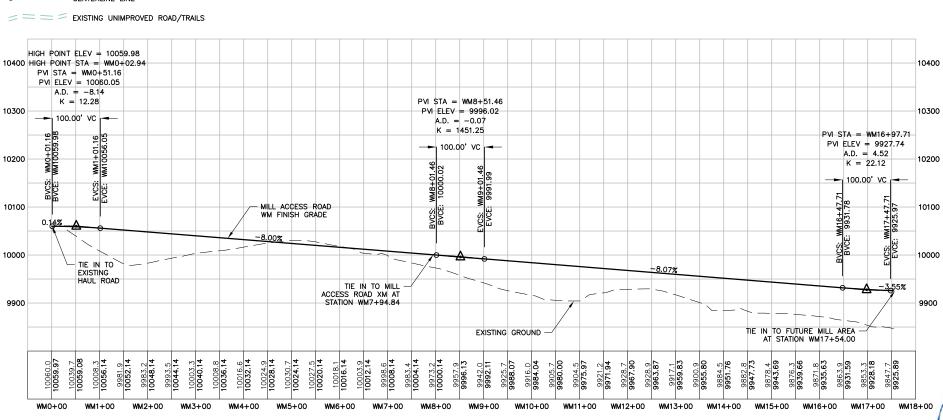

OVERBURDEN STORAGE AREA FINISHED GRADE SURFACE ISOPACH PLAN VIEW




DESIGNED BY	СМТ	CHECK	ED BY	JNM	
DRAWN BY	СМТ	APPROVED BY		JNM	
FI		DRAWING	No.	REV	
74201	A25	0	3		







	1	MILL AC	CESS R	OAD WM		
	STATION	NORTHING	EASTING	DELTA (D-M-S)	RADIUS (FT)	LENGTH (FT)
PI	WM0+00	55139.15	37725.4			
PC	WM0+63.44	55163.05	37666.63			
				57-51-45	173.5	175.22
PT	WM2+38.66	55293.6	37561.11			
PC	WM4+92.38	55543.46	37517			
				05-57-10	71	7.38
PCC	WM4+99.75	55550.64	37515.34			
				174-18-12	97	295.09
PRC	WM7+94.84	55506.67	37326.64			
				09-07-44	65	10.36
PCC	WM8+05.20	55496.38	37327.66			
				176-16-04	103	316.87
PT	WM11+22.08	55485.58	37122.06			
PC	WM12+35.10	55598.2	37112.46			
				131-04-16	97	221.9
PT	WM14+57	55657.41	36946.1			
PI	WM17+54	55443.97	36739.57			

]	MILL AC	CESS R	OAD XM		
	STATION	NORTHING	EASTING	DELTA (D-M-S)	RADIUS (FT)	LENGTH (FT)
PI	XM0+00	55504.08	37327.05			
PC	XM2+05.61	55301.55	37362.51			
				34-19-07	53	31.75
PT	XM2+37.35	55270.53	37358.57			
PI	XM2+74.46	55236.73	37343.25			
,					,	,

PVI STA = WM2+15.96PVI ELEV = 9982.41 10200 A.D. = 6.48 K = 15.43← 100.00' VC -10100 10100 ← MILL ACCESS ROAD 10000 10000 - TIE IN TO TIE IN TO FUTURE 9900 MILL AREA AT STATION WM2+74.46 MILL ACCESS ROAD WM 9900 EXISTING 9800 9800 9955.9 9991.72 9946.9 9987.71 9933.3 9984.06 9916.8 9973.6 **9999.75** 9964.2 **9995.74** XM0+00 XM1+00 XM2+00 XM3+00

100 200 FEET 100 100 VERTICAL SCALE HORIZONTAL SCALE VERTICAL EXAGGERATION = 1X

> CRIPPLE CREEK & VICTOR GOLD MINING COMPANY MILL SITE EARTHWORKS

> > OVERBURDEN STORAGE AREA MILL ACCESS ROADS PLAN AND PROFILE

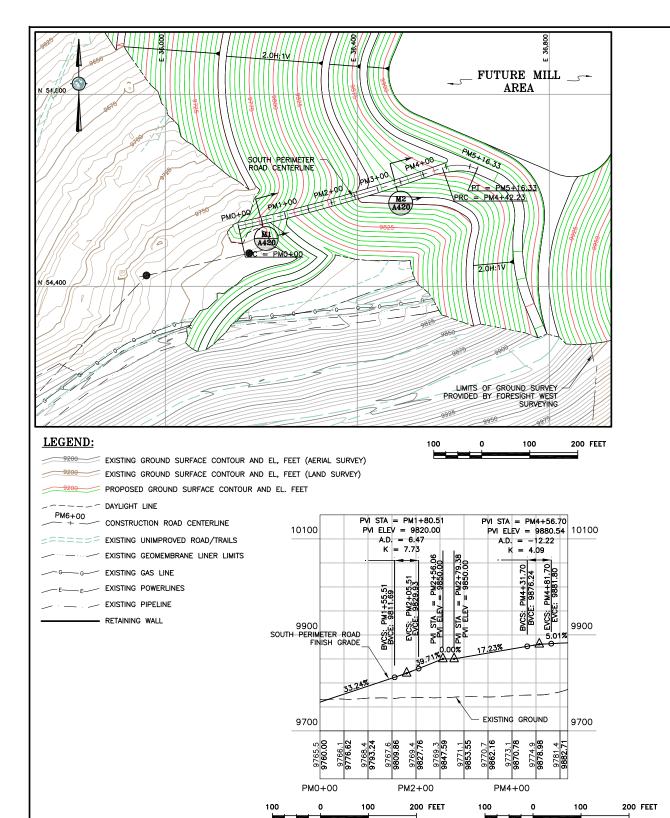
DESIGNED BY	DESIGNED BY CMT		CHECKED BY		
DRAWN BY	СМТ	APPROVED BY			JNM
FII	FILENAME			No.	REV
74201	74201125KP0			0	0

200 FEET

EXISTING GROUND TOPOGRAPHY WAS CREATED BY COMBINING THE FOLLOWING FILES RECV FROM FORESIGHT WEST SURVEYING, INC.:
SQUAW GULCH BASE TOPO — PHASE 1 — REVISED.DWG
(RECV MARCH 14, 2010)
SQUAW GULCH BASE TOPO — PHASE 2.DWG
(RECV APRIL 24, 2010)
SQUAW GULCH BASE TOPO — PHASE 3.DWG
(RECV MAY 4, 2010)
CCV TOPO EXPANSION 12—29—10 NORTH AREA.DWG
(RECV JANUARY 13, 2011)
CCV TOPO EXPANSION 01—28—11 SOUTH AREA.DWG
(RECV JANUARY 28, 2011)
SHOT TOPO — 70—71.DWG
(RECV JULY 11, 2011)

(RECV JULY 11, 2011)
VLF2 TOPO EXPANSION 8-05-11.DWG
(RECV AUGUST 9, 2011)
9028-COMOSITE-TOPO MLE LIMITS.DWG
(RECV MAY 28, 2010 FROM CC&V)

REFERENCE:


200 FEET 100 200 FEET VERTICAL SCALE HORIZONTAL SCALE VERTICAL EXAGGERATION = 1X

> 0 3/02/12 ISSUED FOR CONSTRUCTION DISCLAIMER

AMEC PRODUCED THE INFORMATION PRESENTED ON THIS DRAWING THROUGH THE USE OF TECHNICAL INFORMATION AND PRACTICAL EXPERIENCE SPECIFIC TO ITS EFFORTS. RECEIVING THIS DRAWING DOES NOT GUARANTEE ANY RIGHTS TO SUCH TECHNICAL INFORMATION AND PRACTICAL EXPERIENCE. ANY ALTERATION OR ADAPTATION OF THE DATA OR CONTENTS OF THIS DRAWING SHALL BE AT USER'S SOLE RISK AND WITHOUT ANY LIABILITY OR LEGAL RESPONSIBILITY TO AMEC.

162037574

SONAL EN

VERTICAL SCALE

NOTES:

HORIZONTAL SCALE

- COMPACTED SOIL LINER FILL OR OTHER FILL APPROVED BY THE MANAGER TO BACKFILL ANCHOR TRENCH. ANCHOR TRENCHES INTERNAL TO THE VLF WILL BE BACKFILLED WITH

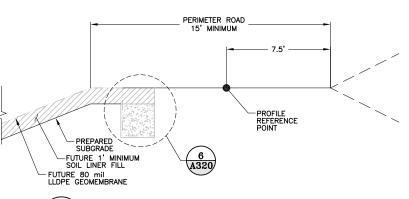
- SOIL LINER FILL FOR THE UPPER 1FT (MIN.).
- REFER TO PROJECT SPECIFICATIONS REGARDING MINIMUM DRAIN COVER FILL DEPTHS FOR WORKING OVER GEOSYNTHETICS AND PIPING WITH RUBBER TIRE OR TRACK MOUNTED EQUIPMENT.
- HAUL ROAD WIDTH IS 80ft AND CONSTRUCTION BENCH WIDTH IS 15FT.
- BEFORE TRAFFIC CAN ACCESS THE HAUL ROAD, ORE WILL BE PLACED ABOVE THE DRAIN COVER FILL TO A MINIMUM THICKNESS AS REQUIRED BY THE VEHICLE TYPE.
- 1 8/16/12 RE-ISSUED FOR CONSTRUCTION 0 3/02/12 ISSUED FOR CONSTRUCTION

DISCLAIMER AMEC PRODUCED THE INFORMATION PRESENTED ON THIS DRAWING THROUGH THE USE OF TECHNICAL INFORMATION AND PRACTICAL EXPERIENCE SPECIFIC TO ITS EFFORTS. RECEIVING THIS DRAWING DOES NOT GUARANTEE ANY RIGHTS TO SUCH TECHNICAL INFORMATION AND PRACTICAL EXPERIENCE. ANY ALTERATION OR ADAPTATION OF THE DATA OR CONTENTS OF THIS DRAWING SHALL BE AT USER'S SOLE RISK AND WITHOUT ANY LIABILITY OR LEGAL RESPONSIBILITY TO AMEC.

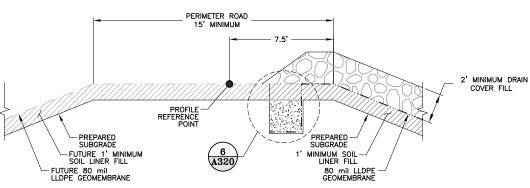

CRIPPLE CREEK & VICTOR GOLD MINING COMPANY MILL SITE EARTHWORKS

SONAL EN

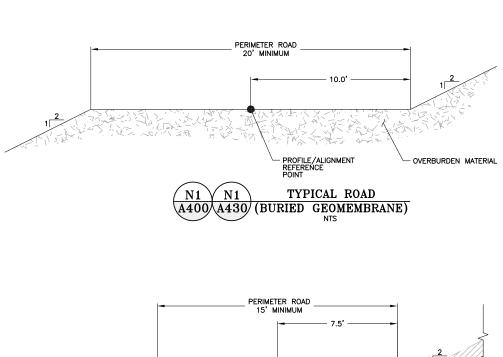
OVERBURDEN STORAGE AREA SOUTH PERIMETER ROAD PLAN AND PROFILE

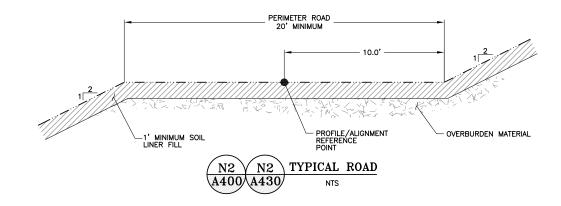


_	DESIGNED BY	СМТ	CHECK	ED BY		JNM
	DRAWN BY	СМТ	APPRO	VED BY		JNM
	FI	LENAME		DRAWING	No.	REV
	74201	125GPC)2	A42	0	1


PT/PI PM5+16.33 54644.34 36649.78

VERTICAL EXAGGERATION = 1X


TYPICAL SOUTH PERIMETER ROAD STATIONS PM1+09.20 - 5+16.33 NTS


A420



TYPICAL SOUTH PERIMETER ROAD A420 STATIONS PM0+00 - PM1+09.20 NTS

REFERENCE:

TYPICAL CONSTRUCTION ROAD A400 (FUTURE GEOMEMBRANE LINED) PERIMETER ROAD MILL PLATFORM 15' MINIMUM 2.0' - 80 mil LLDPE GEOMEMBRANE -1' MINIMUM SOIL LINER FILL FUTURE 2' MINIMUM DRAIN - PREPARED SUBGRADE $\begin{pmatrix} S \\ A430 \end{pmatrix}$ TYPICAL NORTH PERIMETER ROAD

REFERENCE:

EXISTING GROUND TOPOGRAPHY WAS CREATED BY COMBINING THE FOLLOWING FILES RECV FROM FORESIGHT WEST SURVEYING, INC.:
SOUAW GULCH BASE TOPO — PHASE 1 — REVISED.DWG
(RECV MARCH 14, 2010)
SOUAW GULCH BASE TOPO — PHASE 2.DWG
(RECV APRIL 24, 2010)
SOUAW GULCH BASE TOPO — PHASE 3.DWG
(RECV MAY 4, 2010)
CCV TOPO EXPANSION 12—29—10 NORTH AREA.DWG
(RECV JANUARY 13, 2011)
CCV TOPO EXPANSION 01—28—11 SOUTH AREA.DWG
(RECV JANUARY 28, 2011)
SH67 TOPO -7-07—11.DWG
(RECV JULY 11, 2011)
VLF2 TOPO EXPANSION 8—05—11.DWG
(RECV AUGUST 9, 2011)
09028—COMOSITE—TOPO MLE LIMITS.DWG
(RECV MAY 28, 2010 FROM CC&V)

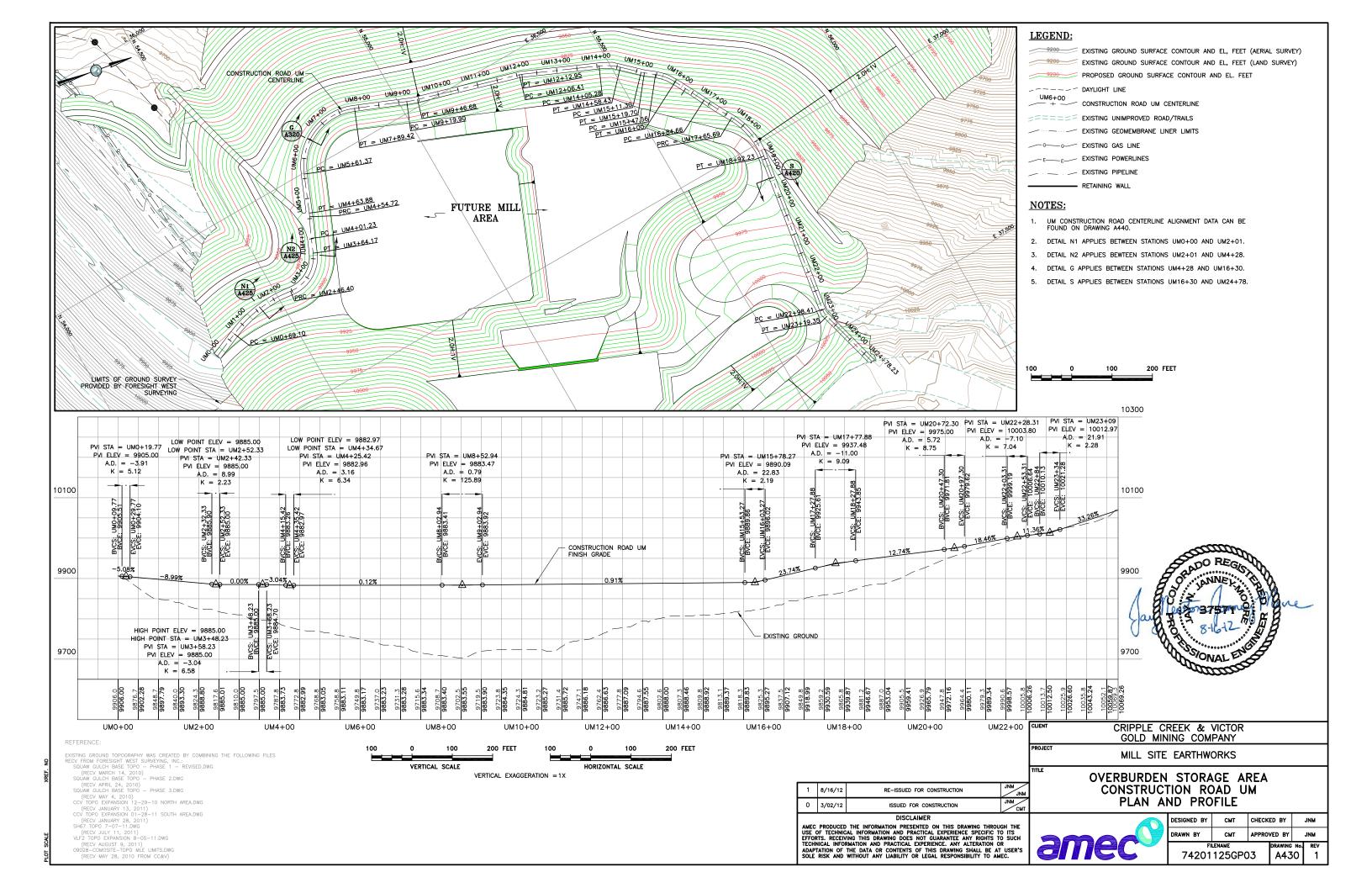
NOTES:

- COMPACTED SOIL LINER FILL OR OTHER FILL APPROVED BY THE MANAGER TO BACKFILL ANCHOR TRENCH. ANCHOR TRENCHES INTERNAL TO THE VLF WILL BE BACKFILLED WITH SOIL LINER FILL FOR THE UPPER 1FT (MIN.).
- REFER TO PROJECT SPECIFICATIONS REGARDING MINIMUM DRAIN COVER FILL DEPTHS FOR WORKING OVER GEOSYNTHETICS AND PIPING WITH RUBBER TIRE OR TRACK MOUNTED EQUIPMENT.
- HAUL ROAD WIDTH IS 80ft AND CONSTRUCTION BENCH WIDTH IS 15FT.
- BEFORE TRAFFIC CAN ACCESS THE HAUL ROAD, ORE WILL BE PLACED ABOVE THE DRAIN COVER FILL TO A MINIMUM THICKNESS AS REQUIRED BY THE VEHICLE TYPE.

0	8/16/12	ISSUED FOR CONSTRUCTION	JNM	
		DISCLAIMER		

AMEC PRODUCED THE INFORMATION PRESENTED ON THIS DRAWING THROUGH THE USE OF TECHNICAL INFORMATION AND PRACTICAL EXPERIENCE SPECIFIC TO ITS EFFORTS. RECEIVING THIS DRAWING DOES NOT GUARANTEE ANY RIGHTS TO SUCH TECHNICAL INFORMATION AND PRACTICAL EXPERIENCE. ANY ALTERATION OR ADAPTATION OF THE DATA OR CONTENTS OF THIS DRAWING SHALL BE AT USER'S SOLE RISK AND WITHOUT ANY LIABILITY OR LEGAL RESPONSIBILITY TO AMEC.

A400


(NO/BURIED GEOMEMBRANE)

CLIENT	CRIPPLE CREEK & VICTOR GOLD MINING COMPANY	
PROJECT	MILL SITE EARTHWORKS	

OVERBURDEN STORAGE AREA SECTIONS AND DETAILS

DESIGNED BY	СМТ	CHECK	ED BY		JNM
DRAWN BY	СМТ	APPRO	VED BY		JNM
FI	LENAME		DRAWING	No.	REV
74201	125GPC)4	A42	5	0

9550 ELEVATION CONSTRUCTION ROAD CENTERLINE (BENCH DM)

STATION	NORTHING	EASTING	DELTA (D-M-S)	RADIUS (FT)	LENGTH (FT)
DM0+00	55885.22	36019.87			
DM0+20.19	55867.76	36009.74			
			07-23-31	905	116.76
DM1+36.94	55763.27	35957.82			
DM3+29.87	55585.31	35883.29			
	DM0+00 DM0+20.19 DM1+36.94	DM0+00 55885.22 DM0+20.19 55867.76 DM1+36.94 55763.27	DM0+00 55885.22 36019.87 DM0+20.19 55867.76 36009.74 DM1+36.94 55763.27 35957.82	STATION NORTHING EASTING (D-M-S) DM0+00 55885.22 36019.87 DM0+20.19 55867.76 36009.74 DM1+36.94 55763.27 35957.82	STATION NORTHING EASTING (D-M-S) (FT) DM0+00 55885.22 36019.87 (DM0+20.19) 55867.76 36009.74 (DM0+20.19) 55763.27 35957.82 (DM0+23-31) 905 (DM0+23-31) (DM0+23-31) <t< td=""></t<>

9950 ELEVATION CONSTRUCTION ROAD CENTERLINE (BENCH LM)

	STATION	NORTHING	EASTING	DELTA (D-M-S)	RADIUS (FT)	LENGTH (FT)
PI/PC	LM0+00	55,794.57	37,317.93			
				89-32-02	22.5	35.16
PT	LM0+35.61	55,768.49	37,299.93			
PC	LM1+17.22	55,753.36	37,219.27			
				05-09-51	50	4.51
PT	LM1+21.73	55,752.73	37,214.81			
PC	LM2+63.84	55,739.22	37,073.34			
				14-31-57	220	55.80
PT/PI	LM3+19.64	55,726.96	37,019.06			

9906 ELEVATION CONSTRUCTION ROAD CENTERLINE (BENCH VM)

	STATION	NORTHING	EASTING	DELTA (D-M-S)	RADIUS (FT)	LENGTH (FT)
PI	VM0+00	54297.39	36807.8			
PC	VM0+12.17	54309.02	36804.2			
				25-24-20	365	161.85
PT	VM1+74.02	54469.05	36791.61			
PC	VM2+30.32	54524.78	36799.65			
				15-24-02	431.93	116.1
PT/PI	VM3+46.42	54640.52	36800.67			

9650 ELEVATION CONSTRUCTION ROAD CENTERLINE (BENCH FM)

	STATION	NORTHING	EASTING	DELTA (D-M-S)	RADIUS (FT)	LENGTH (FT)
PI	FM0+00	56315.75	36760.75			
PC	FM0+19.97	56308.42	36742.18			
				10-40-21	600	111.76
PT	FM1+31.73	56257.98	36642.63			
PC	FM1+75.23	56234.79	36605.82			
				22-52-30	675	269.49
PT	FM4+44.72	56050.02	36412.1			
PC	FM5+66.85	55949.88	36342.2			
				07-37-25	720	95.8
PT	FM6+62.65	55875.2	36282.31			
PC	FM6+90.77	55854.48	36263.3			
				02-16-23	50	1.98
PT	FM6+92.76	55852.99	36261.99			
PC	FM7+48.48	55810.46	36225.96			
				10-08-59	50	8.86
PT	FM7+57.34	55803.24	36220.87			
PC	FM8+06.85	55760.41	36196.03			
				07-23-18	700	90.27
PT	FM8+97.11	55679.63	36155.89			
PC	FM11+04.21	55488.62	36075.87			
				07-28-14	380	49.55
PT	FM11+53.76	55441.8	36059.76			
PC	FM13+74.03	55229.3	36001.79			
				03-31-18	50	3.07
PT	FM13+77.10	55226.36	36000.89			
PC	FM15+76.73	55037.36	35936.62			
				12-27-38	650	141.36
PT	FM17+18.09	54899.65	35905.97			
PI	FM17+21.55	54896.21	35905.59			

UM BENCH CONSTRUCTION ROAD CENTERLINE

			l	DELTA	RADIUS	LENGTH
	STATION	NORTHING	EASTING	(D-M-S)	(FT)	(FT)
PI	UM0+00	54296.76	36786.06			
PC	UM0+69.10	54360.54	36759.46			
				30-47-03	330	177.3
PRC	UM2+46.40	54534.32	36737.37			
				74-58-21	90	117.77
PT	UM3+64.17	54629.81	36683.7			
PC	UM4+01.23	54644.4	36649.63			
				04-32-24	675	53.49
PRC	UM4+54.72	54667.38	36601.35			
				05-15-09	100	9.17
PT	UM4+63.88	54671.26	36593.05			
PC	UM5+61.37	54708.51	36502.96			
				90-06-36	145	228.04
PT	UM7+89.42	54898.17	36424.47			
PC	UM9+19.90	55018.66	36474.56			
				06-15-50	245	26.78
PT	UM9+46.68	55043.9	36483.47			
PC	UM12+06.41	55293.18	36556.41			
				07-29-39	50	6.54
PT	UM12+12.95	55299.31	36558.65			
PC	UM14+05.28	55475.28	36636.28			
				19-38-50	155	53.15
PT	UM14+58.43	55519.32	36665.57			
PC	UM15+11.30	55557.7	36701.92			
				04-48-46	100	8.4
PT	UM15+19.70	55564.03	36707.44			
PC	UM15+47.56	55585.8	36724.84			
				24-02-20	125	52.44
PT	UM16+00	55618.8	36765.1			
PC	UM16+84.66	55657.66	36840.31			
				01-44-09	2675	81.04
PRC	UM17+65.69	55695.94	36911.73			
				38-09-28	190	126.54
PT	UM18+92.23	55717.46	37034.06			
PC	UM22+98.41	55653.22	37435.13			
				23-59-40	50	20.94
PT	UM23+19.35	55654.27	37455.89			
PI	UM24+78.23	55695.11	37609.44			

9750 ELEVATION CONSTRUCTION ROAD CENTERLINE (BENCH HM)

(BEITOH HM)									
	STATION	NORTHING	EASTING	DELTA (D-M-S)	RADIUS (FT)	LENGTH (FT)			
PI	HM0+00	56166.71	37129.19						
PC	HM1+73.65	56144.79	36956.92						
				47-50-18	540	450.86			
PT	HM6+24.52	55918.15	36582.25						
PC	HM7+21.40	55838.7	36526.81						
				07-37-16	1150	152.97			
PT	HM8+74.37	55719.45	36431.19						
PC	HM8+95.37	55703.97	36417						
				15-30-03	225	60.87			
PT	HM9+56.24	55654.13	36382.38						
PC	HM9+94.34	55620.19	36365.06						
				04-18-13	320	24.04			
PT	HM10+18.37	55598.39	36354.95						
PC	HM12+23.34	55409.34	36275.76						
				07-28-25	230	30			
PT	HM12+53.34	55380.99	36266.01						
PC	HM14+75.81	55166.36	36207.48						
				03-31-33	50	3.08			
PT	HM14+78.89	55163.42	36206.58						
PC	HM16+85.53	54967.77	36140.05						
				47-37-38	425	353.28			
PT	HM20+38.82	54625.9	36170.17						
PI	HM20+65.73	54602.32	36183.15						

9850 ELEVATION CONSTRUCTION ROAD CENTERLINE (BENCH JM)

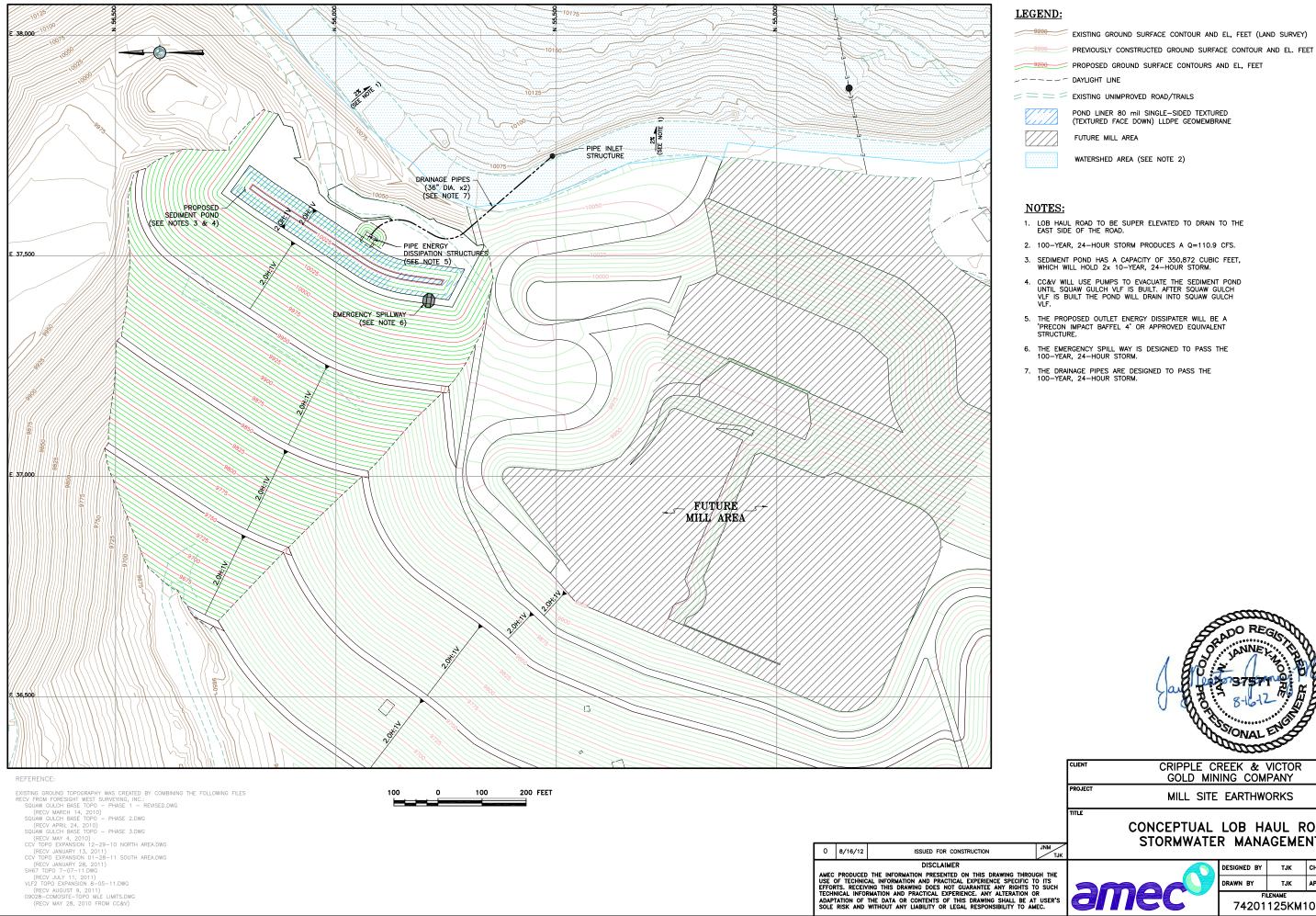
			DITIOIT 6			
	STATION	NORTHING	EASTING	DELTA (D-M-S)	RADIUS (FT)	LENGTH (FT)
PI	JM0+00	55964.4	37150.56			
PC	JM0+31.41	55958.36	37119.74			
				02-42-14	50	2.36
PT	JM0+33.77	55957.85	37117.43			
PC	JM1+25.82	55935.9	37028.03			
				11-37-02	50	10.14
PRC	JM1+35.96	55934.5	37018.01			
				52-52-37	335	309.16
PT	JM4+45.13	55791.64	36756.13			
PC	JM5+49.55	55706.05	36696.31			
				07-34-29	1210	159.97
PT	JM7+09.52	55581.36	36596.28			
PC	JM7+13.85	55578.17	36593.36			
				19-47-51	215	74.29
PT	JM7+88.14	55515.91	36553.5			
PC	JM9+88.78	55330.85	36475.99			
				07-28-51	95	12.4
PT	JM10+01.18	55319.13	36471.96			
PC	JM12+25.21	55102.99	36413.05			
				03-32-30	50	3.09
PT	JM12+28.30	55100.03	36412.14			
PC	JM14+42.09	54897.63	36343.29			
				47-35-58	207.5	172.38
PT	JM16+14.48	54730.8	36357.92			
PC	JM17+24.51	54634.39	36410.95			
				49-25-05	39.5	34.07
PT/PI	JM17+58.58	54601.45	36413.31			

9850 ELEVATION CONSTRUCTION ROAD CENTERLINE (BENCH TM)

	STATION	NORTHING	EASTING	DELTA (D-M-S)	RADIUS (FT)	LENGTH (FT)
PI	TM0+00	54587.03	36417.45			
PC	TM0+00	54587.03	36417.45			
				71-15-27	7.5	9.33
PT	TM0+09.33	54581.7	36424.38			
PC	TM1+48.24	54576.92	36563.21			
				28-42-34	107.5	53.87
PT	TM2+02.11	54561.93	36614.36			
PC	TM2+17.80	54553.93	36627.86			
				73-48-11	37.5	48.3
PRC	TM2+66.10	54512.29	36645.03			
				27-15-27	342.5	162.94
PT	TM4+29.04	54350.91	36642.62			
PI	TM4+60.93	54319.8	36649.67			

CRIPPLE CREEK & VICTOR GOLD MINING COMPANY MILL SITE EARTHWORKS

> OVERBURDEN STORAGE AREA CONSTRUCTION ROAD
> HORIZONTAL ALIGNMENT DATA


RIZUNTAL .	ALIGNM	ENI D	AIA	1		
	DESIGNED BY	СМТ	CHECK	ED BY		JNM
	DRAWN BY	СМТ	APPROVED BY		JNM	
	FI	DRAWING	No.	REV		
	74201	125KD0)6	A44	0	0

	STATION	NORTHING	EASTING	(D-M-S)	(FT)	(FT)
PI	UM0+00	54296.76	36786.06			
PC	UM0+69.10	54360.54	36759.46			
				30-47-03	330	177.3
PRC	UM2+46.40	54534.32	36737.37			
				74-58-21	90	117.77
PT	UM3+64.17	54629.81	36683.7			
PC	UM4+01.23	54644.4	36649.63			
				04-32-24	675	53.49
PRC	UM4+54.72	54667.38	36601.35			
				05-15-09	100	9.17
PT	UM4+63.88	54671.26	36593.05			
PC	UM5+61.37	54708.51	36502.96			
				90-06-36	145	228.04
PT	UM7+89.42	54898.17	36424.47			
PC	UM9+19.90	55018.66	36474.56			
				06-15-50	245	26.78
PT	UM9+46.68	55043.9	36483.47			
PC	UM12+06.41	55293.18	36556.41			
				07-29-39	50	6.54
PT	UM12+12.95	55299.31	36558.65			
PC	UM14+05.28	55475.28	36636.28			
				19-38-50	155	53.15
PT	UM14+58.43	55519.32	36665.57			
PC	UM15+11.30	55557.7	36701.92			
				04-48-46	100	8.4
PT	UM15+19.70	55564.03	36707.44			
PC	UM15+47.56	55585.8	36724.84			
				24-02-20	125	52.44
PT	UM16+00	55618.8	36765.1			
PC	UM16+84.66	55657.66	36840.31			
				01-44-09	2675	81.04
PRC	UM17+65.69	55695.94	36911.73			
				38-09-28	190	126.54
PT	UM18+92.23	55717.46	37034.06			
PC	UM22+98.41	55653.22	37435.13			
				23-59-40	50	20.94
PT	UM23+19.35	55654.27	37455.89			
PI	UM24+78.23	55695.11	37609.44			
	•					

0 3/02/12 ISSUED FOR CONSTRUCTION

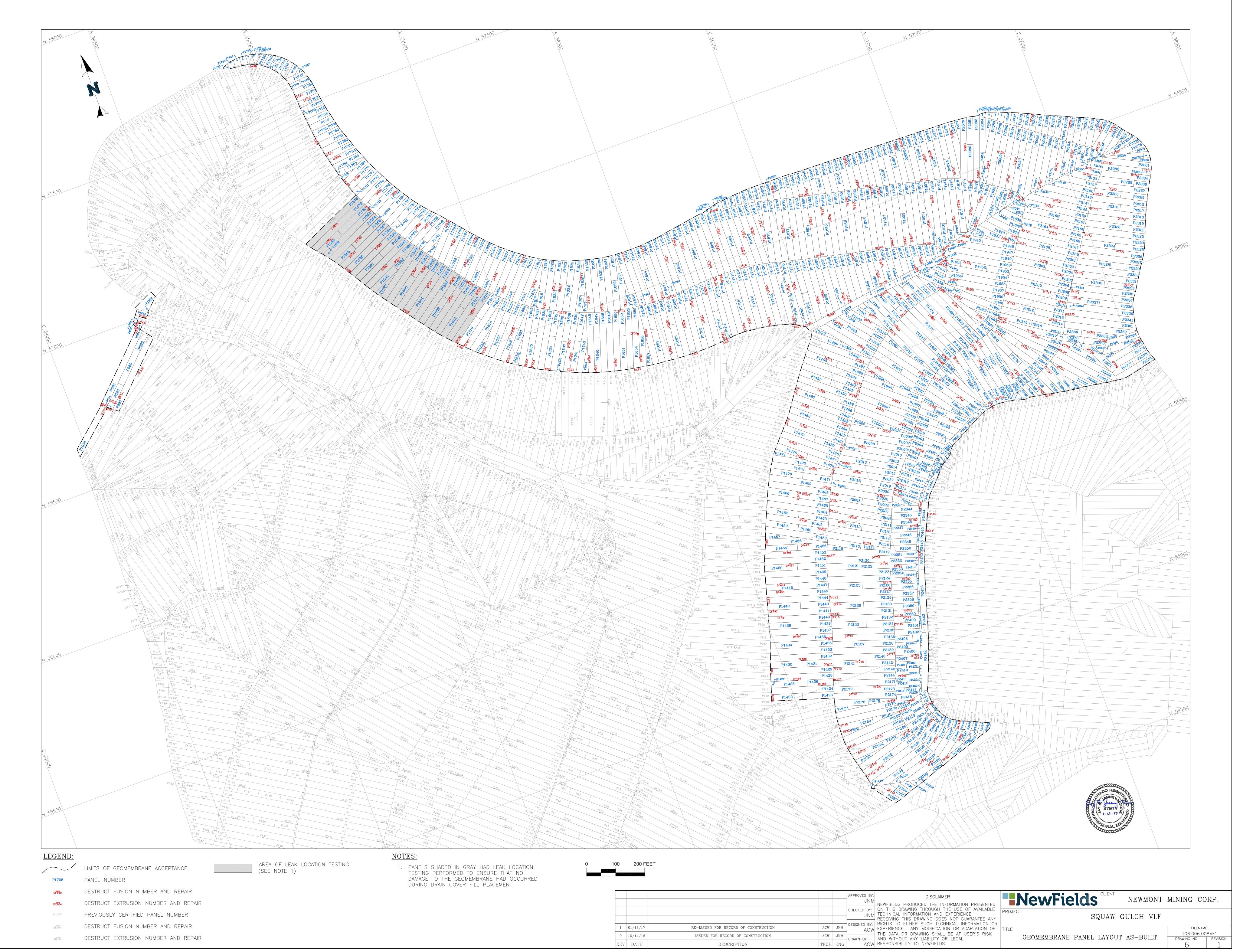
DISCLAIMER

AMEC PRODUCED THE INFORMATION PRESENTED ON THIS DRAWING THROUGH THE USE OF TECHNICAL INFORMATION AND PRACTICAL EXPERIENCE SPECIFIC TO ITS EFFORTS. RECEIVING THIS DRAWING DOES NOT GUARANTEE ANY RIGHTS TO SUCH TECHNICAL INFORMATION AND PRACTICAL EXPERIENCE. ANY ALTERATION OR ADAPTATION OF THE DATA OR CONTENTS OF THIS DRAWING SHALL BE AT USER'S SOLE RISK AND WITHOUT ANY LIABILITY OR LEGAL RESPONSIBILITY TO AMEC.

9200 EXISTING GROUND SURFACE CONTOUR AND EL, FEET (LAND SURVEY)

POND LINER 80 mil SINGLE-SIDED TEXTURED (TEXTURED FACE DOWN) LLDPE GEOMEMBRANE

- LOB HAUL ROAD TO BE SUPER ELEVATED TO DRAIN TO THE EAST SIDE OF THE ROAD.
- 2. 100-YEAR, 24-HOUR STORM PRODUCES A Q=110.9 CFS.
- 4. CC&V WILL USE PUMPS TO EVACUATE THE SEDIMENT POND UNTIL SQUAW GULCH VLF IS BUILT. AFTER SQUAW GULCH VLF IS BUILT THE POND WILL DRAIN INTO SQUAW GULCH
- 'PRECON IMPACT BAFFEL 4' OR APPROVED EQUIVALENT STRUCTURE.
- 6. THE EMERGENCY SPILL WAY IS DESIGNED TO PASS THE 100-YEAR, 24-HOUR STORM.


CRIPPLE CREEK & VICTOR GOLD MINING COMPANY MILL SITE EARTHWORKS

CONCEPTUAL LOB HAUL ROAD

STORMWATER MANAGEMENT

DESIGNED BY	TJK	CHECKED BY		JNM	
DRAWN BY	TJK	APPROVED BY		JNM	
FI		DRAWING	No.	REV	
74201	A50	00	0		

TR 130 - Fourth Adequacy Review Response

Norma Townley < Norma. Townley 2@newmont.com>

Thu, Jan 19, 2023 at 3:57 PM

To: Elliott Russell - DNR <elliott.russell@state.co.us>

Cc: "Cunningham - DNR, Michael" <Michaela.Cunningham@state.co.us>, "Cazier -, Tim" <Tim.Cazier@state.co.us>, "Crepeau, Michael" < CrepeauM@co.teller.co.us>, Johnna Gonzalez < Johnna.Gonzalez@newmont.com>, Katie Blake <Katie.Blake@newmont.com>, Norma Townley <Norma.Townley2@newmont.com>

Mr. Russell, attached is our TR 130 Fourth Adequacy Review Response along with attachments. If you have any questions or concerns please reach out to Johnna.Gonalez@Newmont.com or Katie.Blake@Newmont.com. Thank you.

Norma Townley

Business Assistant | Newmont | T 719-851-4255

Newmont

Cripple Creek & Victor Gold Mine

PO Box 191

100 N.3rd Street

Victor CO 80860

www.newmont.com

Email: Norma.Townley2@Newmont.com

Please consider the environment before printing this e-mail

6 attachments

2023Jan19_ARresposne_TR130_Final.docx.pdf 703K

Mill Sump Analysis.pdf 175K

- Mill IFC Drawings 1 of 2.pdf 8330K
- Mill IFC Drawings 2 of 2.pdf 6075K
- Geomembrane Panel Layout As Built Revision 1.pdf 1278K