EXHIBIT 10 WATER QUALITY ANALYSIS

MEMO

™ Mr. Ron Thompson New Elk Coal Company, LLC Copies Monica Heintz, ARCADIS ARCADIS U S , Inc 630 Plaza Drve Suite 200 Highlands Ranch Colorado 80129 Tel 720 344 3530 Fax 720 344 3535

From Jerry Koblitz ARCADIS US, Inc.

Date[.] February 27,2014

Subject

Assessment of the Influence of Mining Activities at New Elk Mine on Surface Water Quality in the Purgatoire River

1. Introduction

On behalf of New Elk Coal Company, LLC (NECC), ARCADIS U.S. Inc. (ARCADIS) presents this memorandum *Assessment of the Influence of Mining Activities at New Elk Mine on Surface Water Quality at the Purgatoire River* (memo). This memo summarizes geochemical data analysis and modeling conducted in support of assessing potential effects to surface water quality from mine dewatering activities at the New Elk underground coal mine and preparation plant (New Elk Mine). Background information presented here and the data used in analysis and modeling were previously reported in the New Elk Mine Annual Hydrologic Monitoring Report 2012 (NECC 2012).

ARCADIS Project No

CO001572.0003.00001

Production from the Allen Seam at the New Elk Mine occurred intermittently between 1952 and 1988. In 1988, the mine was temporally sealed and was allowed to flood. Between February 2001 and November 2008 depth to water in the mine and mine water quality were monitored. In December 2008, active dewatering of the mine began in order to prepare for mine rehabilitation. Mining activities were resumed in late 2011 with mining of the Blue Seam, and in January 2012 mining in the Allen Seam was resumed. Additional details regarding past and current facility operations, as well as environmental monitoring and compliance programs at the New Elk Mine are presented in the Annual Hydrogeologic Monitoring Report 2012 (NECC 2012) and in National Pollution Discharge Elimination System (NPDES) permit documentation.

The New Elk Mine is located at the Middle Fork of the Purgatoire River in Las Animas County, Colorado, approximately 1.5 miles upstream of the confluence of the North Fork, and on stream segment number COARLA05a of the Lower Arkansas River. Coal mining has historically been conducted in an area called the Picketwire Valley, underneath as well as north and south of the Purgatoire River. Following temporary mine closure and cessation of dewatering in 1988, lower areas of the mine gradually flooded. In 2008, dewatering activities were resumed (NECC 2012). The purpose of the geochemical analyses and modeling presented in this memo was to assess if mine dewatering activities have influenced or may be expected to influence surface water quality in the Purgatoire River.

Relevant geologic units in the area of the mine include recent alluvial deposits and the Raton Formation. Recent alluvium is deposited in channels that cut various geologic formations along the Purgatoire River, including the Raton Formation. Groundwater in recent alluvium is hydraulically connected with the Purgatoire River. The Raton Formation is characterized by very fine- to medium- grained sandstone interbedded with siltstone and shale, and is the formation in which mined coal is located (NECC 2012).

Surface water availability is related to precipitation in the drainage area, mean annual precipitation near the mine is estimated at approximately 16.92 inches. Discharge rates in the Purgatoire River have been historically measured at stations upstream and downstream of the mine. Between 1978 and 1981, discharge rates between 2.8 and 522 cubic feet per second (cfs) were measured upstream of the mine at United States Geologic Survey (USGS) station Stonewall (07124050). Between 1972 and 2011 the average annual discharge at downstream USGS station Madrid (07124200) was 69.5 cfs. Water quality of the Purgatoire River is controlled by the quantity of flow and the materials through which the water flows. At lower flow rates and further downstream higher electrical conductivity (EC) measurements are reported (NECC 2012; Tetra Tech Inc. [Tetra Tech] 2012).

Because water in the COARLA05a segment of the Lower Arkansas River is designated for beneficial use for agriculture, and as a result of high ionic strength of mine waters, and particularly the high proportion of sodium relative to calcium and magnesium (**Section 3**), discharge of mine waters requires consideration of the defined EC and sodium adsorption ratio (SAR) criteria protective of the most salt sensitive crop that may be irrigated with water from the Purgatoire River downstream of the mine – alfalfa (Water Quality Control Board [WQCB] 2008, Tetra Tech 2012). These considerations have been addressed with a simple geochemical mixing model, as discussed in **Section 5**.

2. Summary of Site Data Used Analysis

Surface and groundwater monitoring programs have been conducted at the mine since February 1984. The monitoring program at the mine has historically included sampling of surface water at the Purgatoire River, ponds and alluvial wells, springs and seeps, mine water, bedrock wells, and discharge points. For the purpose of this assessment, historical monitoring data from two surface water stations, four alluvial

wells, and two mine water stations were utilized (**Figure 1**). Data used in this assessment were collected from the following sampling stations:

- PRS-1: A surface water monitoring station on the Middle Fork of the Purgatoire River upstream of mining activities at the New Elk Mine facility. Data collected between 1984 and 2012 were included in the assessment of water quality at this station.
- PRS-4: A surface monitoring water station on the Purgatoire River downstream of the New Elk Mine surface facilities. Data collected between 1992 and 2011 were included in the assessment of water quality at this station
- PAW-1: An alluvial groundwater monitoring well located adjacent to PRS-1, upgradient of mining activities. Data collected between 1984 and 2012 were included in the assessment of water quality at this station.
- PAW-2: An alluvial groundwater monitoring well located north of the Purgatoire River, approximately 200 yards downstream of PAW-1 and downgradient of the underground coal development refuse pile. Data collected between 1984 and 2012 were included in the assessment of water quality at this station.
- PAW-8: An alluvial groundwater monitoring well located on the north bank of the Purgatoire River installed with the purpose of monitoring the Refuse Disposal Area. Data collected between 1994 and 2012 were included in the assessment of water quality at this station.
- PAW-9: An alluvial groundwater monitoring well installed on the south bank of the Purgatoire River, downgradient of mining activities, near surface water monitoring station PRS-4. Data collected between 1994 and 2012 were included in the assessment of water quality at this station.
- NEW-2: A mine water monitoring station located at the East Portal shaft of the New Elk Mine.
 Data collected between 1995 and 2012 were included in the assessment of water quality at this station.
- NEW-4: A mine water monitoring station located in a known flooded portion of the mine (near the conveyor belt). Data collected between 1995 and 2012 were included in the assessment of water quality at this station.

Water quality data from each of these stations was examined to determine if mining activities appear to influence water quality of the Purgatoire River.

3. Geochemical Characterization of Water Types

Piper diagrams were created to graphically classify waters based on their ionic compositions. These diagrams are a common tool used for comparing and classifying waters, and for assessing potential mixing between water types. Piper diagrams are created by: (1) calculating the ternary proportions of cations (calcium, magnesium, and sodium plus potassium) and anions (carbonate plus bicarbonate, sulfate and chloride) in millequivalents per liter; (2) plotting the resulting compositions on two ternary diagrams; and (3) projecting these compositions onto a diamond shaped chart. For this analysis, the

United States Geological Survey (USGS) Gw_Chart tool

(http://water.usgs.gov/nrp/gwsoftware/GW_Chart/GW_Chart.html) was used to create Piper diagrams. Because the Piper diagram method is based on the calculation of ternary ratios, exclusion of any ionic species from the calculation based on a lack of data during a single sampling event may result in a skewed result that is not representative of the water type. Therefore, at each monitoring location, data was selected from dates where analytical results were reported all relevant ionic species. Average concentrations of each ionic species over the full period of monitoring were used to determine the average water composition for each sampling location. In addition to comparing the ionic compositions of waters, historical average values of: pH, total dissolved solids (TDS), EC, total iron, total recoverable iron, dissolved iron, total manganese and dissolved manganese were compared between sampling stations.

The characteristics of surface water samples collected at upstream (PRS-1) and downstream (PRS-4) stations are similar to one another and are distinct from the composition of mine waters (NEW-2 and NEW-4) (Figure 2, Table 1). The concentration of TDS and EC values measured in surface water are lower than those measured in mine water (Table 1). Surface waters are characterized by a high average proportion of calcium (72.4 to 73.5 percent) and similar average proportions of magnesium (13.1 to 13.3 percent) and sodium plus potassium (13.3 to 14.5 percent). In contrast, mine waters are characterized by a high average proportion of sodium plus potassium (95.6 to 98.2 percent) with a dominant contribution from sodium - 279 to 619 mg/L sodium, compared to 6 to 6.4 mg/L potassium. Surface waters are also characterized by lower carbonate plus bicarbonate concentrations (140.6 to 140 mg/L) than mine waters (544 to 1,417 mg/L). As illustrated by clustering of data points in Figures 3 and 4 (surface waters) and Figures 5 and 6 (mine waters) the compositions of these waters show relatively little variability over time. At mine water station NEW-2 (Figure 9) two data points appear to be anomalous. These samples were collected in 1996 and 2008 and show a high proportion of calcium, a low proportion of sodium, a low concentration of TDS, and a low EC relative to other samples collected at this location. One data point at surface water station PRS-1 (Figure 3) appears to be anomalous, with a relatively low bicarbonate concentration.

As illustrated in **Figures 7 through 10**, the ionic composition of alluvial groundwater shows a greater degree of temporal variability than that of surface waters and mine waters. The EC values and average ionic compositions of alluvial groundwater samples are between those observed in surface waters and mine waters (**Table 1**). Alluvial groundwater has a lower average proportion of calcium than surface water (43.3 to 49.3 percent) and a lower average proportion of sodium plus potassium than mine water (33.0 to 48.1 percent). With the exception of upgradient alluvial well PAW-1, alluvial groundwater samples also have TDS and carbonate plus bicarbonate concentrations between those measured in surface water and mine water. The ionic composition of the upgradient alluvial well (PAW-1) is somewhat distinct from that of downgradient alluvial wells (PAW-2, PAW-8 and PAW-9), with a signature more similar to that of surface water with a higher proportion of calcium relative to sodium, lower concentrations of carbonate plus bicarbonate plus bicarbonate and TDS, and a lower EC. These results suggest that either mining activities or a change in lithology in the downgradient direction influence groundwater ionic compositions.

In addition to ionic compositions, pH and metals concentrations have the potential to elucidate potential influence of mining activities on surface water quality. Maximum, minimum and average pH and concentrations of total iron, total recoverable iron, dissolved iron, total manganese, and dissolved manganese are presented in **Table 2**. As shown, there is little variability in pH between surface water, alluvial groundwater, and mine water, with average values ranging between 7.6 and 8.1. Average concentrations of total iron, total recoverable iron, and total manganese are generally higher at alluvial wells, including upgradient well PAW-1, relative to surface water and mine water sampling stations. Because metals concentrations are elevated in the upgradient alluvial well, and are only slightly elevated in mine water relative to surface water, based on the available data presence of these constituents in groundwater and surface water cannot be directly attributed to mining activities.

4. Comparison of Upgradient and Downgradient Surface Water Quality

To evaluate the potential effect of mine dewatering activities on surface water quality in the Purgatoire River, three key water quality parameters were compared over time at upstream station PRS-1 and downstream station PRS-4: total recoverable iron, EC, and SAR (**Figures 11 through 13**).

Iron may serve as an important indicator parameter for the influence of mining activities, although as mentioned in the previous section, the presence of elevated iron concentrations in the upgradient alluvial well suggests that elevated iron concentrations cannot be fully attributed to mining activities. The chronic aquatic life standard for total recoverable iron is 1 mg/L. As shown in **Figure 11**, this concentration was exceeded during one sampling event at PRS-4 in 2008. With the exception of the period between 2006 and 2008, concentrations of total recoverable iron at the upstream and downstream stations show a similar temporal pattern and are similar in magnitude, and therefore do not indicate an influence of mine water discharge on surface water quality.

Waters of the Purgatoire River are designated for beneficial use in agriculture, and the salinity of irrigation water is an important control on rates of water infiltration. Waters with low values of EC (less than 200 to 500 µmhos/cm), and waters with waters with high EC values and with high sodium to calcium ratios, tend to reduce the infiltration capacity of soils (Colorado Water Quality Control Division [WQCD] 2008; Ayers and Westcot 1985). Therefore, both the EC and sodium content of waters that may be designated for beneficial use in agriculture must be considered. The SAR is a measure of the sodicity of water and is an expression of the relative concentration of sodium ions to calcium and magnesium ions (WQCD 2008). In cases where high concentrations of bicarbonate are also present (at concentrations exceeding approximately 150 mg/L), the adverse effect of a sodium imbalance may be worsened by the loss of calcium due to carbonate mineral precipitation. In these cases, an index known as the adjusted SAR is most appropriate (WQCD 2008; Lesch and Suarez 2009). The adjusted SAR was calculated for each monitoring event conducted at the upstream and downstream Purgatoire River stations based on the guidance outlined in Lesch and Suarez (2009).

Figures 12 and 13 present EC and SAR over time at upstream (PRS-1) and downstream (PRS-4) surface water stations. As shown in **Figure 12**, the EC of upstream and downstream waters are typically similar in magnitude, and with the exception of a few historical periods (e.g. 1994 through 1996, and 2004 through 2007) the temporal trends in EC at these two stations match well. Notably, in 2008 EC dropped significantly at both stations. As shown in **Figure 13**, the magnitude of and temporal trends in SAR were very similar at upstream and downstream stations until 2009, when the magnitude of the SAR at the downstream station (PRS-4) increased. This result suggests an influence of discharge of sodium-rich waters on downstream surface water quality.

5. Geochemical Mixing Model Results

A dilution model was used to assess the potential impact of mine water discharge on surface water quality in terms of total recoverable iron, EC, and SAR. The following equation was used to estimate the resultant concentrations of calcium, sodium, magnesium, bicarbonate and total recoverable iron as well as the EC of river water downstream from mine water discharge. From the concentrations of the ionic species, the adjusted SAR was calculated according to the guidance outlined in Lesch and Suarez (2008). This model assumes complete mixing.

$$CRiver_{Mixed} = [CRiver \times (\frac{QRiver}{[QRiver+QMine]})] + [CMine \times (\frac{QMine}{[QRiver+QMine]})]$$

Where:

CRiver_{Mixed} = Estimated resultant concentration from mine discharge and river mixing (mg/L or µmhos/cm)

CRiver = Average background concentration in river water (mg/L or µmhos/cm)

CMine = Average concentration in mine water (mg/L or µmhos/cm)

QMine = Estimated mine discharge rate (cfs)

QRiver = Estimated river discharge rate (cfs)

For each constituent, the average background concentration in river water was taken as the average concentration at upstream station PRS-1. The average concentration of each constituent in mine water was taken as the average of values measured at the two mine water monitoring stations NEW-2 and NEW-4. As shown in the equation, the magnitude of dilution calculated from this model is based on the relative proportions of mine water discharge and river discharge as components of the total discharge.

Maximum acceptable levels of EC and SAR in waters that may be used for irrigation are provided in the WQCD (2008) guidance for discharge permits. A maximum EC value of 1,300 µmhos/cm is protective of

alfalfa, the most salt sensitive crop grown in the region. Waters with EC values below this threshold are not expected to impact the 100 percent yield of alfalfa. The maximum allowable SAR is dependent on EC, with higher SAR permissible at higher EC levels, and is defined by the Ayers-Westcot relationship (Ayers and Westcot 1985). **Figure 14** presents this relationship as it is presented in WQCD (2008), with a maximum low-risk capacity value of SAR equal to nine, along with modeling results described below. As illustrated in **Figure 14**, the maximum allowable SAR at an EC of 1,300 µmhos/cm is 6.8, and at EC values below this threshold, the threshold value of SAR that will result in "no reduction in infiltration" decreases. Waters with EC values of approximately 350 µmhos/cm are expected to result in some reduction to infiltration regardless of the SAR.

Figure 14 shows the EC and SAR relationship of Purgatoire River water at PRS-1 (upstream of the mine) as well as the relationship for five modeling scenarios. The average discharge rates at upstream (PRS-1) and downstream (PRS-4) stations over the period of record are 45.9 cfs and 50.8 cfs, respectively. If the mine dewatering rate is assumed to be within the range of calculated mine inflow rates (142 to 468 gallons per minute; NECC 2012), the mine discharge rate is estimated to be between approximately 0.6 and 2 percent of the river discharge rate. Modeling scenarios A and B represent results from modeling with mine discharge equal to 0.6 percent and 2 percent of the total discharge. Model scenario C represents the result from modeling with mine discharge equal to 10 percent of total discharge. Model scenario D represents a back-calculation of the total proportion of mine discharge that would result in a SAR approximately equal to the 6.8 threshold established at an EC value of 1,300 µmhos/cm, and illustrates that the EC of the resulting mixture remains too low to meet the criteria for "no reduction in infiltration". Model scenario E represents a back-calculation of the total proportion of mine discharge that would result in an EC of approximately 1,300 µmhos/cm, and illustrates that the SAR of the resulting mixture is too high to meet the criteria for "no reduction in infiltration". Modeling results are summarized in Table 3.

As illustrated in **Figure 14**, Purgatoire river water does not meet the criteria for "no reduction to infiltration" at the upstream sampling location. In the dilution model, the initial characteristics of the river water and mine water dictate the mixing line, and modeling results indicate that the high proportions of sodium and bicarbonate in mine discharge water relative to the background EC of river water and the EC of mine water preclude the resultant mixture from meeting the standard for "no reduction in infiltration". To meet this standard, the EC of the mixture would need to be increased or the sodium concentration relative calcium and magnesium concentrations would need to be decreased. As shown in **Table 3**, all modeled scenarios meet the aquatic life standard for total recoverable iron (1 mg/L).

6. Conclusions

Surface water in the Purgatoire River and mine water from the New Elk Mine have distinct compositions, and the composition of water in alluvial wells both upgradient and downgradient is an intermediate type. Examination of temporal trends in total recoverable iron, EC, and SAR over time at upstream and downstream stations on the Purgatoire River reveals a change in the SAR at the downstream station that

may be attributed to the reinitiation of mine dewatering in 2008. An evaluation of surface water composition at the upstream Purgatoire River station reveals that river water does not meet the defined criteria for irrigation water for protection of 100 percent yield of alfalfa. Modeling results indicate that mixing of sodium-rich mine discharge waters with river water results in an increase in the SAR of the resultant mixture, but does not result in a sufficient increase in EC to meet the established criteria for protection of alfalfa yields. Although theoretical surface and mine water mixtures do not result in a composition that is protective of alfalfa yields, when the proportion of mine discharge is maintained below approximately 2 percent of the total discharge, little shift in the composition of surface water is expected.

7. References

Ayers, R.S. and D.S. Westcot. 1985. Water Quality for Agriculture. Food and Agriculture Organization of the United Nations. Paper 29.

Colorado Water Quality Control Division (WQCD). 2008. Implementing Narrative Standards in Discharge Permits for the Protection of Irrigated Crops. Water Quality Permits Policies and Procedures. March 10.

Lesch, S.M. and D.L. Suarez. 2009. Technical Note; A Short Note on Calculating the Adjusted SAR Index. Transactions of the American Society of Agricultural and Biological Engineers. Vol. 52(2): 493-496.

New Elk Coal Company (NECC), LLC. 2012. New Elk Mine Annual Hydrologic Monitoring Report. October 25.

Tetra Tech Inc. (Tetra Tech) 2012. Purgatoire River Watershed Monitoring Raton Basin, Colorado 2012 Monitoring Report. July.

United States Geological Survey (USGS) Gw_Chart tool (http://water.usgs.gov/nrp/gwsoftware/GW_Chart/GW_Chart.html) Table 1 - Average ionic composition and ion proportions New Elk Coal Company, LLC New Elk Mine

	Surface Water Alluvial Wells			Mine Water				
Constituent	PRS-1	PRS-4	PAW-1	PAW-2	PAW-8	PAW-9	NEW-2	NEW-4
Average TDS (mg/L)	179	193	122	410.2	580.2	461.8	709	1398
Average EC (µmhos/cm)	284	281.9	390 6	671	844.7	728.8	1075	1932
Average Ca ²⁺ Concentration (mg/L)	46	46.6	21 32	68.3	100	74.6	9.9	8
Ca ²⁺ Proportion of Cations (%)	73.5%	72 4%	49.3%	44.5%	45.8%	43.3%	3.3%	1 3%
Average Mg ²⁺ Concentration (mg/L)	8.3	8.4	7 63	13.2	20.5	14.8	3.1	3.6
Mg ²⁺ Proportion of Cations (%)	13 3%	13.1%	17.7%	8 6%	9.4%	8.6%	1 0%	0.6%
Average Na ⁺ Concentration (mg/L)	7.1	8.1	13.16	69.31	96.1	80.2	279	619
Average K [⁺] Concentration (mg/L)	1.21	1.24	1.11	2.78	1.9	26	6.4	6
Na [⁺] plus K [⁺] Proportion of Cations (%)	13.3%	14.5%	33.0%	46.9%	44.9%	48.1%	95.6%	98.2%
Average CO ₃ ² +HCO ₃ Concentration (mg/L)	140 61	139 75	108.56	341	423	350.1	543.5	1417
CO ₃ ² +HCO ₃ ⁻ Proportion of Anions (%)	79.6%	79.8%	83.3%	82.3%	78 9%	80.9%	90.7%	97.3%
Average CI ⁻ Concentration (mg/L)	2.1	2.31	67	5	15	24.3	7	8.08
Cl ⁻ Proportion of Anions (%)	1.2%	1.3%	5.1%	1.2%	2.8%	5.6%	1.2%	0.6%
Average SO ₄ ²⁻ Concentration (mg/L)	34	33	15	68.3	98.4	58.1	49	30.8
SO ₄ ²⁻ Proportion of Anions (%)	19.2%	18 9%	11.5%	16.5%	18.3%	13.4%	8.2%	2.1%

Notes:

mg/L = milligrams per liter µmhos/cm = micromho per centimeter % = percent TDS = Total dissolved solids EC = Electrical conductivity Ca^{2+} = Calcium ion Mg²⁺ = Magnesium ion Na⁺ = Sodium ion K⁺ = potassium ion $CO_3^{2^-}$ = carbonate ion HCO₃⁻ = bicarbonate ion CI⁻ = chlonde ion $SO_4^{2^-}$ = sulfate ion

Table 2 - Average ionic composition and ion proportionsNew Elk Coal Company, LLCNew Elk Mine

Constituent		Surface	e Water	er Alluvial Wells			Mine Water		
		PRS-1	PRS-4	PAW-1	PAW-2	PAW-8	PAW-9	NEW-2	NEW-4
Field pH	maximum	8.56	8.5	8.92	8.6	8.9	8.8	8.75	8.4
Field pH (standard)	minimum	7.38	7.3	7	6.8	6.62	7.32	7.3	7.3
(stanuaru)	average	7.96	8	8.1	7.6	7.6	7.9	8.13	7.85
Total Iron	maximum	0.64	0.73	65	608	30.2	8.99	2.15	0.62
	minimum	0.06	0.07	0.015	<0.03	0.43	0.39	0.14	0.07
(ing/c)	average	0.24	0.27	14.8	66	5.6	2.9	0.88	0.35
Total	maximum	0.64	1.02	60.7	99.4	29.4	8.16	3.12	0.72
Recoverable	minimum	0.03	0.11	4.48	5.9	0.12	0.4	0.14	0.01
Iron (mg/L)	average	0.21	0.28	26	47.7	4.4	2.4	1.08	0.29
Dissolved Iron	maximum	0.15 ⁽¹⁾	0.83	0.96	4	0.29	0.47	0.4	0.79
	minimum	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.0007	<0.01
(IIIg/L)	average	0.05	0.11	0.04	0.7	0.1	0.19	0.18	0.28
Total	maximum	0.072	0.078	0.65	2.53	0.8	0.286	0.582	4.1
Manganese	minimum	0.013	0.022	0.005	0.021	0.009	0.01	<0.005	<0.005
(mg/L)	average	0.034	0.043	0.14	1.27	0.2	0.1	0.09	0.36
Dissolved	maximum	0.036	0.042	0.198	1.73	0.101	0.173	0.024	3.8
Manganese	minimum	0.006	0.007	<0.005	0.012	<0.005	<0.005	0.005	<0.005
(mg/L)	average	0.017	0.021	0.046	0.984	0.03	0.1	0.01	0.55

Notes:

(1) Data flagged as questionable lab result excluded from statistics mg/L = milligrams per liter

Table 3 - Geochemical Modeling Results New Elk Coal Company, LLC New Elk Mine

	Mixing En
	PRS-1
Percent mine discharge contribution to total flow	0
Estimated Calcium Concentration (mg/L)	46
Estimated Magnesium Concentration (mg/L)	8.3
Estimated Sodium Concentration (mg/L)	7.1
Estimated Bicarbonate Concentration (mg/L)	141
EstimatedTotal Recoverable Iron Concentration (mg/L)	0.2
Estimated EC (µmhos/cm)	284
Estimated Adjusted SAR	0.27

Notes:

(1) Modeling scenarios described in text
 mg/L = milligrams per liter
 µmhos/cm = micromho per centimeter
 EC = Electrical Conductivity
 SAR = Sodium Adsorption Ratio
 NA = not applicable

COMMERCIAL TESTING & ENGINEERING CO.

GENERAL OFFICES: 228 HORTH LA SALLE STREET, CHICAGO, ILLINOIS 60601 - AREA CODE 312 726-8434

Reply to Instrumental Analysis Division 490 Orchard Street Golden, CO 80401

June 4, 1979

Phone: 303-278-9521

Mr. Jack Gillespie C F & I Steel Corporation P O Box 316 Pueblo, Colorado 81002

RE: IAD #97-C543-032-07 Purchase Order # M26144

Corrected Analytical Report

Apr Water samples were received for analyses on March 20, 1979. The samples were given our identification IAD #97-C543-032-07.

This report is to report values for boron after re-analyzing the samples.

The samples were prepared for analyses by filtering through 0.45u pore membrane filters. Barium, calcium, iron, magnesium, manganese and silicon were determined by flame atomic absorption, potassium and sodium by flame atomic emission spectrophotometry, and arsenic and selenium by hydride generation.

The remaining parameters were determined by the methods of U.S. Geological Survey Techniques of Water Resources Investigation, Chapter Al, Book 5.

The results of these analyses are presented in the following tables and are reported in mg/l unless otherwise indicated.

If you have any questions concerning these analyses, please call.

Ernest Appelhans, Analyst

M. L. Jacobs, Ph.D., Mngr.

Instrumental Analysis Div.

EA/as

Table No. 1 - Purgatoire River

Date of Sampling: April 19, 1979 Concentration in mg/l

	East
Parameter	of Allen
Boron, µg/1	<u><</u> 30
Calcium	35
Iron	<u><</u> 0.02
Magnesium	6.3
Manganese	<u><</u> 0.01
Potassium	1.2
Silica, SiO ₂	6.4
Sodium	49
Total Alkalinity	161
Bicarbonate, HCO3	190
Chloride	3.0
Specific Conductance,	
umhos/cm	397
Fluoride	0.4
Hardness (EDTA)	95
Noncarbonate Hardness	0
llitrate nitrogen	0.60
pH value	8.5
Total dissolved	
solids @ 180 ⁰ C	236
Sulfate, SO _A	44
Sodium absorption ratio	2.0

COMMERCIAL TESTING & ENGINEERING CO.

F 468

, **I**

(

Â

Table No. 2 - Purgatoire River

Date of Sampling: April 19, 1979 Concentration in mg/l

Parameter	Above <u>Maxwell</u>
Baron, µg/l	44
Calcium	38
Iron	<u><</u> 0.02
Magnesium	8.4
Manganese	<u><</u> 0.01
Potassium	1.1
Silica, SiO ₂	6.4
Sodium	8.1
Total Alkalinity	118
Bicarbonate, HCO ₃	144
Chloride	2.4
Specific Conductance,	
-µmhos∕cm	315
Fluoride	0.2
Hardness (EDTA)	120
Noncarbonate Hardness	0
Nitrate nitrogen	0.05
pH value	8.3
Total dissolved	
solids @ 180°C	166
Sulfate, SO ₄	28
Sodium absorption ratio	0.3

COMMERCIAL TESTING & ENGINEERING CO.

466

•

ļ

]

Table No. 3 - Purgatoire River

.

Date of Sampling: April 19, 1979 Concentration in mg/1

Parameter	Below <u>Maxwell</u>
Boron, ug/l	<u><</u> 30
Calcium	41
Iron	<u><</u> 0.02
Magnesium	8.9
Manganese	- <u><</u> 0.01
Potassium	1.1
Silica, SiO ₂	6.4
Sodium	11
Total Alkalinity	128
Bicarbonate, HCO ₃	156
Chloride	2.4
Specific Conductance,	
µmhos/cm	324
Fluoride	0.2
Hardness (EDTA)	120
Noncarbonate Hardness	0
Nitrate nitrogen	0.08
pH value	8.2
Total dissolved	
solids @ 180°C	174
Sulfate, SO ₄	30
Sodium absorption ratio	• 0.4

COMMERCIAL TESTING & ENGINEERING CO.

:

.

• •

(

F-466

(

<u> </u>

Table No. 4 - Purgatoire River

Date of Sampling: April 19, 1979 Concentration in mg/l

Parameter	Above West <u>Portal Allen</u>
Boron, µg/l	08
Calcium	33
Iron	<u><</u> 0.02
Magnesium	5.5
Manganese	<u><</u> 0.01
Potassium	1.0
Silica, SiO ₂	6.4
Sodium	4.5
Total Alkalinity	100
Bicarbonate, HCO ₃	122
Chloride	1.9
Specific Conductance	·
umhos/cm	256
Fluoride	0.2
Hardness (EDTA)	95
Noncarbonate Hardness	0
Nitrate nitrogen	0.08
pH value	8.1
Total dissolved	
solids @ 180 ⁰ C	126
Sulfate, SO ₄	22
Sodium absorption ratio	0.2

COMMERCIAL TESTING & ENGINEERING CO.

: •

Â

Table No. 5

Date of Sampling: April 19, 1979

Concentration in mg/1

Parameter	<u>Allen Discharge</u>
Arsenic	<u><</u> 0.002
Barium	0.23
Boron, µg/l	44
Calcium	15
Iron	<u><</u> 0.02
Magnesium	5.1
Manganese	<u><</u> 0.01
Potassium	5.2
Selenium	<u><</u> 0.001
Silica, SiO ₂	6.4
Sodium	320
Total Alkalinity	511
Bicarbonate, HCO3	610
Chloride .	9.1
Specific Conductance,	
umhos/cm	1400
Fluoride	1.3
Hardness (EDTA)	33
Noncarbonate Hardness	0
Nitrate nitrogen	4.6
pH value	8.5
Total dissolved	
solids @ 180 ⁰ C	870
Sulfate, SO ₁	190
Sodium absorption ratio	17.9

COMMERCIAL TESTING & ENGINEERING CO.

ШÇ

1

.....

(

Table No. 6

Date of Sampling: April 19, 1979

Concentration in mg/1

Parameter	Maxwell Discharge
Arsenic	<u><</u> 0.002
Barium	0.36
Boron, µg/l	44
Calcium	2.9
Iron	<u><</u> 0.02
Magnesium	1.2
Manganese	<u><</u> 0.01
Potassium	3.4
Selenium	<u><</u> 0.001
Silica, SiO ₂	11
Sodium	310
Total Alkalinity	577
Bicarbonate, HCO ₃	703
Chloride	33
Specific Conductance,	
µmhos/cm	1390
Fluoride	3.8
`Hardness (EDTA)	<u><</u> 3
Noncarbonate Hardness	0
Nitrate nitrogen	0.54
pH value	7.8
Total dissolved	
solids @ 180 ⁰ C	774
Sulfate, SO ₄	11
Sodium absorption ratio	39.0

COMMERCIAL TESTING & ENGINEERING CO.

,.,

GENERAL OFFICES: 228 NORTH LA SALLE STREET, CHICAGO, ILLINOIS 60601 - AREA CODE 312 728-8434 INSTRUMENTAL ANALYSIS DIVISION. 490 ORCHARD STREET, GOLDEN, COLORADO 80401, PHONE: 301-278-9521

Reply to

To: Mr. Jack Gillespie C F & I Steel Corp. P.O. Box 316 Pueblo, CO 81002

Analyst: J. 01dham

P. O. No.: M26144

Sample No.: Max discharge 12:30 4/19

IAD No.: 97-0543-032-07

CONCENTRATION IN µg/m]

	ELEMENT	CONC.	ELEMENT	CONC.	ELEMENT	CONC.	ELEMENT	CONC.
	Uranium	<u><</u> 0.007	Terbium		Ruthenium		Vanadium	0.007
	Thorium	<u><</u> 0.008	Gadolinium		Molybdenum	0.01	Titanium	0.5
	Bismuth		Europium		Niobium	0.002	Scandium	<u><</u> 0.001
	Lead	0.008	Samarium		Zirconium	0.006	Calcium	MC
	Thallium		Neodymium	<u><</u> 0.002	Yttrium	0.003	Potassium	MC
-	Mercury	NR	Praseodymium	0.001	Strontium	0.2	Chlorine	*MC
•	Gold		Cerium	0.01	Rubidium	0.008	Sulfur	0.3
	Platinum		Lanthanum	0.01	Bromine	0.008	Phosphorus	J.4
	Iridium		Barium	0.5	Selenium	0.005	Silicon	8
	Osmium		Cesium	<0.001	Arsenic	0.009	Aluminum	>0.9
	Rhenium		Iodine	0.002	Germanium	0.002	Magnesium	1
	Tungsten		Tellurium		Gallium	0.003	Sodium	>2
	Tantalum		Antimony	0.007	Zinc	0.03	Fluorine	~ 1
	Hafnium		Tin		Copper	0.01	Oxygen	NR
	Lutecium	-	Indium	STD	Nickel	<0.004	Nitrogen	NR
	Ytterbium	•-	Cadmium		Cobalt	<u><</u> 0.001	Carbon	NR
	Thulium		Silver		Iron	2	Boron	<0.001
	Erbium		Palladium		Manganese	0.005	Beryllium	
	Holmium		Rhodium		Chromium	0,005	Lithium	0.001

Hydrogen

NR.

STD - Internal Standard NR - Not Reported All elements not detected $< 0.001 \ \mu g/ml$ $MC = Major Component > 10 \mu g/m$ INT - Interference

Dysprosium

Approved: *Heterogeneous

_

Reply to

۰.

GENERAL OFFICES: 228 NORTH LA SALLE STREET, CHICAGO, ILLINOIS 60601 - AREA CODE 312 728-8434 INSTRUMENTAL ANALYSIS DIVISION. 490 ORCHARD STREET, GOLDEN, COLORADO 80401, PHONE: 303-278-9521

CONCENTRATION IN µg/m]

To: Mr. Jack Gillespie C F & I Steel Corp. P.O. Box 316 Pueblo, CO 81002

Date: April 24, 1979

Analyst: J. Oldham

P. O. No.: M25144

Sample No.: Purgatoire R Below Max 10:55 4/19/79

IAD No.: 97-C543-032-07

		·		·				
	ELEMENT	CONC.	ELEMENT	CONC.	ELEMENT	CONC.	ELEMENT	CONC.
	Uranium	<u><</u> 0.006	Terbium		Ruthenium		Vanadium	0.03
	Thorium	<u><</u> 0.008	Gadolinium		Molybdenum	0.005	Titanium	0.8
	Bismuth		Europium		Niobium	<u><</u> 0.005	Scandium	0.002
	Lead	0.02	Samarium		Zirconium	0.01	Calcium	MC
	Thallium		Neodymium		Yttrium	0.003	Potassium	MC
	Mercury	[•] NR	Praseodymium	0.001	Strontium	0.1	Chlorine	0.1
-	Gold		Cerium	0.01	Rubidium	0.02	Sulfur	2
	Platinum		Lanthanum	0.009	Bromine	0.008	Phosphorus	0.2
	Iridium		Barium	0.4	Selenium		Silicon	МС
	Osmium		Cesium	0.1	Arsenic	<u><</u> 0.002	Aluminum	>0.9
	Rhenium		Iodine	0.001	Germanium		Magnesium	4
	lungstan		Tellurium		Gallium	0.003	Sodium	>2
	Tantalum		Antimony	<u><</u> 0.002	Zinc	0.006	Fluorine	≃0.3
	Hafnium		Tin	0.004	Copper	0.01	Oxygen	NR
	Lutecium		Indium	STD	Nickel	0.004	Nitrogen	NR
	Ytterbium		Cadmium		Cobalt	<0.001	Carbon	NR
	Thulium		Silver		Iron	5	Boron	0.002
	Ērbium		Palladium		Manganese	0.1	Beryllium	
	Holmium		Rhodium		Chromium	0.008	Lithium	0.003

Dysprosium

Acc Approved:

Hydrogen

NR

GENERAL OFFICES: 228 NORTH LA SALLE STREET, CHICAGO, ILLINOIS 80601 - AREA CODE 313 728-8434 INSTRUMENTAL ANALYSIS DIVISION. 490 ORCHARD STREET, GOLDEN, COLORADO 80401, PHONE: 303-278-9521

Reply to

To: Mr. Jack Gillespie C F & I Steel Corp. P.O. Box 316 Pueblo, CO 81002

Date: April 26, 1979

Analyst: J. Oldham

IAD No.:

97-0543-032-07

P. O. No.: M26144

Sample No.: Allen discharge 1:00 PM

CONCENTRATION IN ug/m1

<u> </u>	FLEMENT	CONC	FLEMENT	CONC	FLEMENT	CONC	ELEMENT	CONC
_	Uranium	<u><</u> 0.007	Terbium		Ruthenium		Vanadium	0.02
	Thorium	<u><</u> 0.008	Gadolinium		Molybdenum	0.01	Titanium	0.3
	Bismuth		Europium		Niobium	0.002	Scandium	<u><</u> 0.001
	Lead	<u><</u> 0.004	Samarium		Zirconium	0.006	Calcium	МС
	Thallium		Neodymium		Yttrium	0.003	Potassium	МС
	Mercury	NR	Praseodymium	0.001	Strontium	0.4	Chlorine	2
-	Gold		Cerium	0.006	Rubidium	0.008	Sulfur	>6
	Platinum		Lanthanum	0.01	Bromine	0.008	Phosphorus	0.04
	Iridium		Barium	0.3	Selenium	0.009	Silicon	8
	Osmium		Cesium	<0.001	Arsenic	<0.001	Aluminum	>0.9
	Rhenium		Iodine	0.001	Germanium	<u><</u> 0.001	Magnesium	4
	Tungsten		Tellurium		Gallium	0.003	Sodium	>2
	Tantalum		Antimony		Zinc	0.06	Fluorine	≃0.8
	Hafnium		Tin		Copper	0.01	Oxygen	NR
	Lutecium		Indium	STD	Nickel	0.002	Nitrogen	NR
	Ytterbium		Cadmium		Cobalt	<u><</u> 0.001	Carbon	NR
	Thulium		Silver		Iron	1	Boron	<0.001
	Erbium		Palladium		Manganese	0.005	Beryllium	
	Holmium		Rhodium		Chromium	0.005	Lithium	

Dysprosium

STD — Internal Standard NR — Not Reported All elements not detected < 0.001 µg/m] MC — Major Component >10 µg/m] INT — Interference

Approved: M Alece

Hydrogen

NR

GENERAL OFFICES: 228 NORTH LA SALLE STREET, CHICAGO, ILLINOIS 60601 - AREA CODE 312 725-8434

Reply to Instrumental Analysis Division 490 Orchard Street Golden, CO 80401

June 4, 1980

Mr. Jack Gillespie CF&I Steel Corporation P.O. Box 316 Pueblo, Colorado 81002

RE: IAD #97-E364-032-08 Release No. R-26667 Purchase Order No. M26144

MINING DEPARTMENT

Eight water samples were received for analyses on April 24, 1980. The samples were given our identification IAD #97-E364-032-08.

ANALYTICAL REPORT

The samples were analyzed for calcium, iron, magnesium, manganese, and zinc by flame atomic absorption, for sodium and potassium by flame emission, and for selenium by hydride generation atomic absorption.

Boron was determined colorimetrically. Alkalinity, chloride, fluoride, hardness, pH, sulfate, specific conductance, suspended solids, oil & grease, and dissolved solids were determined by the procedures of <u>Standard Methods</u>, 14th edition. Ion balance and sodium absorption ratio were calculated.

The results of these analyses are presented in the following tables and are reported in mg/l unless otherwise noted.

The Allen Mine 4/22/80, 11:50 sample has an ion balance problem due to a lack of anions. Further work may be needed to make the ions balance.

Phone: 303-278-9521

Table_No. 1

Concentration in mg/1

	#	<i>≠2D</i>	#30
Parameter	Allen Mine	Allen Mine	Allen Mine
	4/22/00 - 11.23	4/22/00 - 11.45	4/22/60 - 11:46
Laicium	35	36	36
Iron, total	0.23	0.22	0.28
Magnesium	5.6	5.4	5.9
Manganese, total	0.02	0.02	0.02
Potasium	1.0	1.0	0.8
Selenium (µg/l)	<u><</u> 3	<u><</u> 3	<3
Sodium	3.0	4.3	4.4
Zinc, total	0.002	<u><</u> 0.002	<u><</u> 0.002
Boron, total (µg/l)	2	5	4
Alkalinity, as CaCO ₃	97	108	109
Bicarbonate,HCO ₃	118	131	133
Carbonate, CO ₃	0	0	0
Chloride	2.2	1.8	2.0
Fluoride	0.14	0.17	0.17
Hardness,EDTA, as	100		140
calu ₃	103	94	103
pH value	8.2	8.2	8.2
Sulfate	21	23	23
Specific Conductance		260	262
(pmnos/cm)	14007	260	260
Dissolved Solids	209	232	172
Suspended Solids	22	26	24
Oil and Grease	4	<u>< 4</u>	<u><</u> 4
Sodium Absorption Rat	io 0.1	0.2	0.2
Ion Balance (meg/l)	+0.4	+2.0	+1.6

(

(

<u>Table No.</u>	2
Concentration	in mg/1

ł

	#4	#5
Parameter	Allen Mine 4/22/80 - 11:55	Allen Mine 4/22/80 - 12:00
Calcium	8.1	36
Iron, total	0.15	0.37
Magnesium	2.4	5.7
Manganese, total	<u><</u> 0.003	0.03
Potassium	4.7	1.0
Selenium (µg/l)	<u><</u> 3	<u><</u> 3
Sodium	259	7.1
Zinc, total	0.005	<u><</u> 0.002
Boron, total (µg/l)	2	2
Alkalinity, as CaCO3	479	113
Bicarbonate, HCO ₃	578	138
Carbonate, CO ₃	3.4	. 0
Chloride	5.2	2.2
Fluoride	1.1	0.28
Hardness, EDTA, as CaCO3	9.4	98
pH value	8.4	8.3
Sulfate .	100	27
Specific Conductance (umhos/	cm) 1200	250
Dissolved Solids	753	150
Suspended Solids	. 4	24
Oil and Grease	<u><</u> 4	<u><4</u>
Sodium Absorption Ratio	21	0.3
Ion Balance (meg/l)	-0.5	+1.9

COMMERCIAL TESTING & ENGINEERING CO.

-466

3

-3-

- · · ·	Allen Mine
Parameter	<u>4/22/80 - 11:50</u>
Calcium	20
Iron, total	0.12
Magnesium	15
Manganese, total	0.005
Potassium	9.4
Selenium (µg/l)	8
Sodium	1070
Zinc, total	0.009
Boron, total (µg/l)	4
Alkalinity, as CaCO3	713
Bicarbonate, HCO ₃	825
Carbonate, CO ₃	59
Chloride	31.0
Fluoride	0.59
Hardness, EDTA, as CaCO ₃	100
pH value	8.9
Sulfate	1150
Specific Conductance (umhos/cm)	4800
Dissolved Solids	3570
Suspended Solids	24
Oil and Grease	4
Sodium Absorption Ratio	44
Ion Balance (meq/l)	-11.9

Table No. 3 Concentration in mg/l

-4-

COMMERCIAL TESTING & ENGINEERING CO.

L

i

•

(

Table No. 4 Concentration in mg/l

	#8	# 9
Parameter	Maxwell Mine 4/22/80	Maxwell Mine 4/22/80 - 1:25
Calcium	36	36
Iron, total	1.4	2.3
Magnesium	6.4	6.8
Manganese, total	0.10	0.08
Potassium	0.9	1.0
Selenium (µg/l)	<u><</u> 3	<u><</u> 3
Sodium	8.7	6.5
Zinc, total	0.008	0.005
Boron, total (ug/l)	3	2
Alkalinity, as CaCO3	120	117
Bicarbonate, HCO ₃	147	142
Carbonate, CO ₃	0	0
Chloride	2.5	2.5
Fluoride	0.22	0.19
Hardness, EDTA, as $CaCO_3$	100	105
pH value	8.2	8.2
Sulfate	25	25
Specific Conductance (umhos/cm) 280	280
Dissolved Solids	170	174
Suspended Solids	87	70
Oil and Grease		
Sodium Absorption Ratio	0.4	0.3
Ion Balance (meq/1)	+1.5	+0.9

If you have any questions regarding these analyses, please call.

~~

Bruce A. Hale Section Supervisor

M. L. Jacobs, Ph.D., Mngr. Instrumental Analysis Div.

M. C. J. Instrum

BAH/ams

Original Copy Wetermarked For Your Protection

F-466

- 1

COMMERCIAL TESTING & ENGINEERING CO.

GENERAL OFFICES: 228 NORTH LA SALLE STREET, CHICAGO, ILLINOIS 60601 ____ AREA CODE 317 726-8434

Reply to Instrumental Analysis Division 490 Orchard Street Golden, CO 80401

Phone: 303-278-9521

July 24, 1980

Mr. Jack Gillespie C F & I Steel Corp. P.O. Box 316 Pueblo, CO 81002

Re: IAD #97-E733-032-10 Release #R26675 Purchase Order #M26144

ANALYTICAL REPORT

Ten water samples were received for analyses on July 7, 1980. These samples were given our identification IAD #97-E733-032-10.

The samples were analyzed for total iron, manganese, zinc, magnesium, and calcium by flame atomic absorption for sodium and potassium by flame emission and for selenium by hydride generation atomic absorption.

Boron was determined colorimetrically, sulfate turbidimetrically, chloride and fluoride by specific ion electrode, and dissolved solids (TDS), suspended solids (TSS) and oil and grease (0 & G) were determined gravimetrically by the procedures of <u>Standard Methods</u>, 14th edition. pH, carbonate, bicarbonate, alkalinity and specific conductance were all done by <u>Standard Method's</u> procedures, Hardness, sodium absorption ratio, and ion balance were calculated.

Note: Ion Balance calculations are made using dissolved alkali metal numbers (Mg, Ca, Na, and K) and neglecting the use of total heavy metals (Fe, Mn, and Zinc) since they may be assumed to be negligible in the dissolved sample. If the ion balance ratio is high it may be due to small amounts of dissolved heavy metals in the sample, not accounted for. Furthermore, in samples of high pH, alkalinity, relationship calculations may include amounts of hydroxide ion that, although not called for in the analysis, needs to be considered when balancing ions.

Hardness calculations are based on the amounts of dissolved calcium and magnesium in the samples. Again, if hardness numbers are low, it would be due to small amounts of <u>dissolved</u> heavy metals in the samples that are not accounted for. Hardness calculations should not be made including total metals since a digestion puts into solution additional amounts of suspended solids.

The results of these analyses are presented in the following tables and are reported in mg/l unless otherwise noted.

Re: IAD #97-E733-032-10

.)

H.

July 24, 1980

TABLÉ	EJ	
Table	No.	I
(mg,	71)	_

Parameter	CF&I River Near AL-1-1 7/2/80, 6:00 PM	CF&I AL-1-1 7/2/80, 6:00 PM	CF&I River Near <u>AL-2-1,7/2/80</u>
Calcium, dissolved	28.0	37.4	30.0
. Sodium, dissolved	2.7	43.0	2.9
Magnesium, dissolved	4.2	13.1	4.2
Potassium, dissolved	1.12	2.5	1.3
Iron, total	0.88	205	- 0.88
Manganese, total	0.025	5.86	0.029
Zinc, total	<u><</u> 0.009	0.913	<u><</u> 0.009
Selenium, total	<u><</u> 0.002	<u><</u> 0.002	<u><</u> 0.002
_{i:} Boron, total	0.05	0.09	0.03
Alkalinity (as CaCO ₂)	72.5	186	70.4
. Bicarbonate	88.3	227	85.8
Carbonate	0	0	0
Chloride	3.3	11.7	2.9
luoride	0.12	0.20	0.16
Hardness (as CaCO ₃)	87.2	468	92.2
рн Г	7.9	7.3	7.3
^{]]} Sulfate	8.9	124	11.1
Conductivity (umhos/cm)	140	540	150
Total Dissolved Solids	169	602	121
Total Suspended Solids	17	4500	137
0il & Grease	16	94	14
Sodium Absorption Ratio	0.1	1.1	0.1
Ion Balance	-1.2	-3.5	-2.0

COMMERCIAL TESTING & ENGINEERING CO.

Original Copy Watermarked For Your Protection

F-466

Re: IAD #97-E733-032-10

ļ

July 24, 1980

TABLE El (continued)

Table No. II (mg/l)

-3-

Parameter	CF&I AL-2-1 7/2/80	CF&I AL-3-3 7/2/80, 4:30 PM	CF&I River Near AL-3-3 7/2/80, 4:30 PM	CF&I AL-4-2 7/2/80, 3:00 PM
Calcium, dissolved	55.2	74.9	29.7	38.3
[Sodium, dissolved	244	26.9	5.1	23.7
¹⁾ Magnesium, dissolved	13.2	15.6	4.8	7.6
1Potassium, dissolved	6.5	2.5	0.9	1.1
Iron, total	65.0	50.1	22.8	0.49
Manganese, total	0.88	4.98	0.40	0.27
Zinc, total	1.64	0.349	0.080	<u><</u> 0.009
Selenium, total	0.020	0.003	<u><</u> 0.002	<u><</u> 0.002
Boron, total	0.03	0.04	<u><</u> 0.02	0.03
Alkalinity (as CaCO3) 522	275	93.2	143
Bicarbonate	636	336	114	174
Carbonate	0	0	0	0
Chloride	14.0	10.2	5.5	6.8 -
.oride	0.18	0.60	0.20	0.28
"Hardness (as CaCO ₃)	192	251	93.9	127
рН	7.4	. 7.4	7.8	7
Sulfate	198	20.5	11.7	5.
Conductivity (umhos/	cm) 1200	480	170	280
Total dissolved soli	ds 951	404	219	223
Total suspended soli	ds 1090	156	844	5
Oil & Grease	19	21	<u><</u> 1	2
Sodium Absorption Ra	tio 7.7	0.7	0.2	0.9
,Ion Balance	1.0	0.	1.1	-2.8

COMMERCIAL TESTING & ENGINEERING CO.

466

ł

Re: IAD #97-E733-032-10

July 25, 1980

TABLE E2

-4-

-/	Table No. III (mg/l)		
Parameter	LA-218A 7/3/80, 4:00 PM	Well 221A 	LA-264 11:10 AM 7/3/80
Calcium, dissolved	20.2	1.3	3.3
Sodium, dissolved	244	251	294
Magnesium, dissolved	<u><</u> 0.2	0.7	1.4
Potassium, dissolved	3.1	2.1	2.3
Iron, total	117	25.9	0.27
Manganese, total	0.88	0.14	<u><</u> 0.01
Zinc, total	1.14	1.66	0.042
Selenium, total	<u><</u> 0.002	<u><</u> 0.002	<u><</u> 0.0 02
Boron, total	0.16	0.06	0.06
Alkalinity (as CaCO ₃)	579	596	615
Bicarbonate	0	606	749
Carbonate	225	59.6	0
Chloride	14.8	15.0	16.0
5° pride -	2.9	2.8	2.4
h⊶ dness (as CaCO ₃)	50.4	7.4	14.0
рН	11.4	8.8	8.2
Sulfate	33.7	15.0	· 8 8
Conductivity (umhos/cm)	1600	1000	1100
Total dissolved solids	891	775	. 846
Total suspended solids	6190	85	3
Oil & Greas e	9	8	4
Hydroxide	70	-	-
Sodium Absorption Ratio	15	40 ·	34
Ion Balance	3.9	5.5	4.7

If there are any questions concerning these analyses, please call.

Bruce A. Hale Section Supervisor

a-M. L. Jacobs, Ph.D., Mngr. Instrumental Analysis Div. :11 ι. -5 -

BH/jw

CC: David B. McWhorter

For Your Protection

COMMERCIAL TESTING & ENGINEERING CO.

AUG 6 1980

COMMERCIAL TESTING & ENGINEERING CO.

GENERAL OFFICES: 228 NORTH LA SALLE STREET, CHICAGO ILLINOIS 60601 AREA CODE 312 726-8434

Reply to Instrumental Analysis Division 490 Orchard Street Golden, CO 80401

1

5 1) 1) Phone: 303-278-9521

August 5, 1980

Mr. Jack Gillespie C F & I Steel Corp. P.O. Box 316 Pueblo, CO 81002

Re: IAD #97-E858-032-10 (formerly E733-032-10) Purchase Order #M26144 Release #R26675

UPDATED ANALYTICAL REPORT

The ten samples identified IAD #97-E733-032-10, for which the original report was sent from our office on July 24, 1980, were logged in again for dissolved metals analyses on July 31, 1980 as per our telephone conversation of July 29, 1980. Our identification for these analyses is IAD #97-E858-032-10.

The samples were filtered and analyzed for dissolved Iron, Manganese, and Zinc by flame atomic absorption spectrophotometry. The results of these analyses are presented in Table No. I below and are reported in milligrams per liter (mg/l).

Table No. I concentration in mg/1

Sample	Iron, dissolved	Manganese, dissolved	Zinc, dissolved
CF&I River Near AL-1-1 6:00 p.m. 7/2/80	<u><</u> 0.02	<u><</u> 0.009	<u><</u> 0.02
СҒ&І АL-1-1 6:00 р.m. 7/2/80	<u><</u> 0.02	0. 380	<u><</u> 0.01
CF&I River Near AL-2-1 7/12/80	<u><</u> 0.02	<u><</u> 0.009	<u><</u> 0.01
CF&I AL-2-1 7/2/80	<u><</u> 0.02	0.183	0.13
CF&I AL-3-3 7/2/80 4:30 p.m.	<u><</u> 0.02	2.06	<u><</u> 0.01
CF&I River Near AL-3-3 7/2/80 4:30 p.m.	<u><</u> 0.02	0.064	0.04

August 5, 1980

	Table No. I concentration	<pre>(cont.) in mg/l</pre>	
Sample	Iron, dissolved	Mangarese, dissolved	Zinc, dissolved
CF&I AL-4-2 7/2/80 3:00 p.m.	<u><</u> 0.02	0.220	<u><</u> 0.01
LA-218A 7/3/30 4:00 p.m.	0.02	<u><</u> 0.009	<u><</u> 0.01
Well 221 A 7/2/80	0.03	<u><</u> 0.009	0.03
LA-264 7/3/80 11:10 a.m.	<u><</u> 0.02	<u><</u> 0.009	<u><</u> 0.01

If there are any questions concerning these analyses, please call.

Bruce Hale

Section Supervisor

M. L. Jacobs PH.D., Mngr. Instrumental Analysis Div.

BH/jw

CC: Dave McWhorter

Â

GENERAL OFFICES. 228 NORTH LA SALLE STREET, CHICAGO, ILLINOIS 63601 AREA CODE 312 726-8434

Reply to Instrumental Analysis Division I-90 Orchard Street Solden, CO 80401

January 9, 1980

Phone: 303-278-9521

Mr. Jack Gillespie CF&I Steel Corp. P.O. Box 316 Pueblo, CO 81002

RE: IAD #97-D690-032-09 Release No. R 26649 Purchase Order No. M 26144

Analytical Report

Nine water samples were received for analyses on December 17, 1979. The samples were given our identification IAD #97-D690-032-09.

The samples were analyzed for calcium, magnesium, and zinc by flame atomic absorption, for selenium by hydride generation atomic absorption, and for potassium and sodium by flame atomic emission.

Bicarbonate, carbonate, sulfate, pH value, specific conductance, and total dissolved solids were determined by the procedures of <u>Standard</u> <u>Methods</u>, 14th edition. Chloride and fluoride were determined by selective ion electrode methods. Boron was determined colorimetrically. Ion balance and sodium absorption ratio were calculated.

The results of these analyses are presented in the following tables and are reported in mg/l unless otherwise indicated.

Table No. 1 Concentration in mg/1

	Allen Mine			
Parameter	Above 12/14/79	Discharge <u>12/13/79</u>	Below 12/14/79	
Boron	0.056	0.091	0.078	
Calcium	65	9	58	
Magnesium	14	3	12	
Potassium	1.5	4.4	3.4	
Selenium	<u><</u> 0.001	<u><</u> 0.001	<0.001	
Sodium	13	310	32	
Zinc	<u><</u> 0.01	<0.01	<u><</u> 0.01	
Alkalinity, total	179	569	198	
Bicarbonate	219	694	242	
Carbonate	0	0	0	
Chloride	2.0	4.0	3.0	
Fluoride	0.3	0.2	0.3	
Hardness (EDTA)	212	35	176	
Sulfate	76	170	70	
pH value	8.2	8.1	8.2	
Dissolved Solids	242	836	258	
Specific				
Conductance, µmhos/cm	595	1250	516	
Sodium Absorption				
Ratio	0.4	23	1.0	
Ion Balance	1.3	2.3	0.9	

COMMERCIAL TESTING & ENGINEERING CO.

ļ

Table No. 2 Concentration in mg/l

	<u>Maxwell Mine</u>		
Parameter	Above 12/14/79	Discharg e <u>12/13/79</u>	Below 12/14/79
Baran	0.060	0.174	0.094
Calcium	60	35	59
Magnesium	12	3	12
Potassium	1.9	8.7	1.3
Selenium	<u><</u> 0.001	<u><</u> 0.001	<u><</u> 0.001
Sodium	19	330	19
Zinc	<u><</u> 0.01	<u><</u> 0.01	<u><</u> 0.01
Alkalinity, total	189	715	191
Bicarbonate	230	872	233
Carbonate	0	0	0
Chloride	2.8	120	2.4
Fluoride	0.4	0.5	0.3
Hardness (EDTA)	187	80	135
Sulfate	60	19 .	56
pH value	8.2	8.0	8.2
Dissolved Solids	282	974	294
Specific			
Conductance, umhos/cm	570	1480	574
Sodium Absorption			
Ratio	0.6	14	0.6
Ion Balance	1.4	4.0	1.5

COMMERCIAL TESTING & ENGINEERING CO.

- ----

• •

(

ZA
Table No. 3 Concentration in mg/1

.

	Allen	Dump	
Parameter	Above 12/14/79	Below 12/14/79	Water Table 12/20/79
Boron	0.026	0.134	0.091
Calcium	62	62	45
Magnesium	13	13	10
Potassium	1.2	13	1.2
Selenium	<u><</u> 0.001	<u><</u> 0.001	<0.001
Sodium	13	10	6.1
Zinc	<u><</u> 0.01	<u><</u> 0.01	<0.01
Alkalinity, total	175	172	134
Bicarbon ate	213	210	164
Carbonate	0	0	0
Chloride	1.9	1.8	2.9
Fluoride	0.3	. 0.3	0.2
Hardness (EDTA)	210	201	152
Sulfate	64	70	52
pH value	8.1	8.1	7.2
Dissolved Solids	252	288	250
Specific			
Conductance, umhos/cm	563	570	477
Sodium Absorption			
Ratio	0.4	0.3	0.2
Ion Balan ce	0.8	0.2	2.7

If you have any questions concerning these analyses, please call.

Ernest AppelHans, Analyst

M. L. Jacobs, Ph.D., Mngr. Instrumental Analysis Div.

EA/bd

COMMERCIAL TESTING & ENGINEERING CO.

• . •

]

GENERAL OFFICES. 228 NORTH LA SALLE STREET, CHICAGO, ILLINOIS 80601 AREA CODE 312 726-8434

Reply to Instrumental Analysis Division 490 Orchard Street Golden, CO 80401

Phone: 303-278-9521

January 9, 1980

Mr. Jack Gillespie CF & I Steel Corp. P.O. Box 316 Pueblo, Co. 81002

RE: IAD #97~D690-032-09 Release No. R26649 Purchase Order No. M26144

Analytical Report

Nine water samples were received for analyses on December 17, 1979. The samples were given our identification (AD #97-D690-032-09.

The samples were analyzed for total zinc by flame atomic absorption spectrophotometry.

The results of these analyses are presented in Table No. 1 and are reported in mg/1.

	Table Ilo. 1	
Sample	<u></u>	Zinc.total.mo/l
Above 12/14/79 Discharge 12/13/79 Below 12/14/79		0.30 0.70 0.77
Maxwell Mine Above 12/14/79 Discharge 12/13/79 Below 12/14/79	y for	0.10 0.07 0.62
Allen Dump Above 12/14/79 Below 12/14/79		0.37 0.77
<u>Water Table</u> 12/20/79		0.36

If you have any questions concerning these analyses, please call.

Μ. Mnar. 'dacobs Ph.D. Instrumental Analysis Div.

EA/as

GENERAL OFFICES, 228 NORTH LA SALLE STREET, CHICAGO, ILLINOIS 50501 - AREA COCE 312 726-8434

Reply to Instrumental Analysis Division 490 Orchard Street Golden, CQ 80401

January 28, 1980

Phone: 303-278-9521

Mr. Jack Gillespie CF&I Steel Corporation P.O. Box 316 Pueblo, CO 81002

RE: IAD #97-D690-032-09 Release No.: R26649 Purchase Order No.: M26144

ANALYTICAL REPORT

At your request, the nine water samples were additionally analyzed for total iron and total manganese. The analyses were done by flame atomic absorption spectrophotometry.

The results of these analyses are presented in Table No. 1 and are reported in mg/l.

Table No. 1

Concentration in mg/1

Sample	<u>Iron,total</u>	<u>Manganese,total</u>
Allen Min e		
Above 12/14/79	0.14	0.02
Discharge 12/13/79	0.06	<0.01
Below 12/14/79	0.17	-0.04
Maxwell Mine		
Above 12/14/79	0.11	0.02
Discharge 12/13/79	1.08	0.02
Below 12/14/79	0.13	0.02
Allen Dump		
Above 12/14/79	0.03	0.01
Below 12/14/79	0.21	0.02
<u>Water Table 12/20/79</u>	1.89	0.29

If you have any questions concerning these analyses, please call.

Ernest Appelhans

.

Section Supervisor

M. L. Jácobs, Ph.D., Mngr. Instrumental Analysis Div.

GENERAL OFFICES. 228 NORTH LA SALLE STREET, CHICAGO, ILLINOIS 60601 - AREA CODE 312 728-8434

Reply to Instrumental Analysis Division 490 Orchard Street Golden, CO 80401

February 14, 1980

Phone: 303-278-9521

Mr. Jack Gillespie CF&I Steel Corp. P.O. Box 316 Pueblo, CO 81002

RE: IAD ∄97-D690-032-09 Release No. R 26649 Purchase Order No. M 26144

ANALYTICAL REPORT

This report is to replace that of January 9, 1980. The nine water samples were re-analyzed for zinc by atomic absorption three more times with separate sample preparations each time.

The best analytical value for each sample is presented in Table No. 1 and is reported in mg/l.

Table	<u>No. 1</u>
Sample	Zinc,total,mg/l
Allen Mine	
Above 12/14/79	<0.01
Discharge 12/13/79	<0.01
Below 12/14/79	<u><</u> 0.01
Maxwell Mine	
Above 12/14/79	0.02
Discharge 12/13/79	0.03
Below 12/14/79	0.03
Allen Dump	
Above 12/14/79	<0.01
Below 12/14/79	. 30.01
<u>Water Table</u> 12/20/79	0.01

If you have any questions concerning these analyses, please call.

ار و زمیرند

Ernest Appelbars Section Supervisor

, Ph.D., Angr. Jacobs Instrumental Analysis Div.

EA/bd

GENERAL OFFICES 228 NORTH LA SALLE STREET, CHICAGO, ILLINOIS 80801 - AREA CODE 312 728-8434

Reply to Instrumental Analysis Division 490 Orchard Street Golden, CO 80401

Phone: 303-278-9521

February 19, 1980

Mr. Jack Gillespie CF & I Steel Corporation P.O. Box 316 Pueblo, CO 81002

Re: 1AD #97-D826-032-09 Release #R26658 Purchase Order #M26144

Analytical Report

Nine water samples were received for analyses on January 17, 1980. The samples were given our identification IAD #97-D826-032-09.

The samples were analyzed for calcium, iron, magnesium, manganese, and zinc by flame atomic absorption, for selenium by hydride generation atomic absorption, and for sodium and potassium by flame atomic emission spectrophotometry.

The samples were analyzed for alkalinity, bicarbonate, carbonate, hardness, specific conductance, sulfate, pH value, dissolved solids, and suspended solids by the procedures of <u>Standard Methods</u>, 14th edition. Chloride and fluoride were determined by selective ion electrode methods, and boron colorimetrically. Sodium absorption ratio and the ion balance were calculated.

The results of these analyses are presented in the following tables and are reported in mg/l unless otherwise indicated.

Table No. 1 Concentration in mg/1

	Allen Mine - 1/16/80			
Parameter	Above	Discharge	Below	
Boron	<u><</u> 0.010	<u><</u> 0.010	<u><</u> 0.010	
Calcium	52	10	53	
Iron, total	0.22	0.13	0.21	
Magnesium	10	2.9	11	
Manganese, total	0.03	<u><</u> 0.01	0.03	

۳

]

--

]

]

][

]

•1

1

1

ŝ.

!|

Concentration in mg/l			
	A	llen Mine - 1/1	6/80
Parameter	Above	Discharge	Below
Potassium	1.1	4.8	1.1
Sodium	8.8	280	11
Alkalinity, as CaCO ₃	145	521	150
Bicarbonate, HCO ₃	177	619	183
Carbonate, CO3	0	8	0
Chloride	3.7	6.0	1.8
Fluoride	0.2	1.2	0.2
Hardness, (EDTA), as CaCO ₃	153	31	167
Sulfate	50	145	55
pH value	8.1	8.4	8.2
Specific Conductance, umhos/cm	511	1270	527
Dissolved Solids	240	850	236
Suspended Solids	8	4	2
Sodium Absorption Ratio	0.3	20.1	0.4
Ion Balance	1.4	2.0	0.9

Table No. 1 (Cont.) Concentration in mg/l

Table No. 2 Concentration in mg/l

	xwell Mine - 1/16/80		
Parameter	East of Mine	Discharge	West of Culvert
Boron	. <u><</u> 0.010	0.055	<u><</u> 0.010
Calcium	51	81	53
Iron, total	1.41	7.12	7.23
Magnesium	10	11	10
Manganese, total	0.05	0.08	0.14
Potassium	1.5	70	2.2
Sodium ,	13	340	13
Alkalinity, as CaCO ₃	155	750	159
Bicarbonate, HCO ₃	188	913	194
Carbonate, CO ₃	0	0	0
Chloride	1.6	110	1.6
Fluoride	0.3	3.8	0.2
Hardness (EDTA), as CaCO ₃	161	239	152

COMMERCIAL TESTING & ENGINEERING CO.

AYE

1

1

Table	No.	2	(Coi	nt.)	
Concer.	trat	ion	in	mq/	1

		axwell Mine - 1,	/16/80
Parameter	East of Mine	Discharge	West of Culvert
Sulfate	45	143	49
pH value	8.1	7.2	8.2
Specific Conductance, µmhos/cm	529	1850	529
Dissolved Solids	306	1740	300
Suspended Soldis	61	1140	200
Sodium Absorption Ratio	0.4	9.4	0.4
Ion Balance	0.6	-0.6	1.0

Table No. 3 Concentration in mg/l

Da came t en	Allen Dump -	1/16/80
	ADOVE	DETOW
Boron	<u><</u> 0.010 ·	<u><</u> 0.010
Calcium	54	55
Iron, total	0.20	0.21
Magnesium	10	10
Manganese, total	0.02	0.02
Potassium	1.2	1.2
Selenium	<u><</u> 0.002	<u><</u> 0.002
Sodium .	8.3	9.0
Alkalinity, as CaCO ₃ ·	146	148
Bicarbonate, HCO3	178	180
Carbonate, CO3	0	۵
Chloride	1.3	2.1
Fluoride	0.3	0.2
Hardness (EDTA), as CaCO ₃	165	157
Sulfate	50	51
pH value	8.2	8.2
Specific Conductance, umhos/cm	514	513
Dissolved Solids	224	220
Suspended Solids	3	3
Sodium Absorption Ratio	0.3	0.3
Ion Balance	0.6	0.5

COMMERCIAL TESTING & ENGINEERING CO.

A.

If you have any questions concerning these analyses, please call.

20 Mana Ernest Appelhans Section Supervisor

M. L. Jacobs Ph.D., Mngr. Instrumental Analysis Div.

EA/jw

(

(

COMMERCIAL TESTING & ENGINEERING CO.

GENERAL OFFICES: 228 NORTH LA SALLE STREET, CHICAGO, ILLINOIS 50801 - AREA CODE 312 728-8436

Reply to Instrumental Analysis Division 490 Orchard Street Golden, CO 80401

February 20, 1980

Phone: 303-278-9521

Mr. Jack Gillespie CF & I Steel Corp. P.O. Box 316 Pueblo, CO 81002

RE: IAD #97-0826-032-09 Release No. R26658 Purchase Order No. M26144

Analytical Report

Nine water samples were received for analyses on January 17, 1980. The samples were given our identification IAD #97-0826-032-09.

The samples were analyzed for dissolved and total zinc by flame atomic absorption spectrophotometry.

The results of these analyses are presented in Table No. 1 and are reported in mg/l.

Table No. 1

	Zinc, mg/l	
Sample	Dissolved	Total
<u> Allen Mine - 1/16/80</u>		
Above	<u><</u> 0.01	0.02
Discharge	<u><</u> 0.01	0.03
Below	<0.01	0.01
Maxwell Mine - 1/16/80	-	·
East of Mine	<0.01	0.05
Discharge	-0.07	0.10
East side of Culvert	<0.01	0.03
West side of Culvert	₹0.01	0.03
Allen Mine - 1/16/80		
Above	<0.01	0.02
Below	₹0.01	0.01

If you have any questions concerning these analyses, please call.

Ernest Appelkans Section Supervisor

ops, Ph.D., Mngr.

Instrumental Analysis Div.

EA/ams

7. LINDS, NT = BIRMINDHAM, AL = CHARLESTON, NV = CLARLESURG, NV = CLEVELAND, ON = DENVER, CD = DOLDEN, CD = HENDERSON, EV = JASPER, AL = MIDOLESEDRO, EV MOBILE, AL = NEW BETHLENEM, PA = NEW ORLEAME, LA = MORPOLE, VA = PALISADE, CD = PREVILLY, RV = FAIMA, CD = MIND

GENERAL OFFICES: 228 NORTH LA SALLE STREET, CHICAGO, ILLINGIS 60601 AREA CODE 312 728-8434

Reply to Instrumental Analysis Division 490 Orchard Street Golden, CO 80401

March 21, 1980

Phone: 303-278-9521

MINING DEPARTMENT

Mr. Jack Gillespie CF&I Steel Corporation P.O. Box 316 Pueblo, Colorado 81002

RE: IAD #97-E001-032-12 Release No. R26663 Purchase Order No. M26144

5127 0 1 1980

ANALYTICAL REPORT

Four water samples were received for analyses on February 21, 1980. The samples were given our identification IAD =97-E001-032-12.

The samples were analyzed for zinc by flame atomic absorption, and for suspended solids by the procedures of <u>Standard Methods</u>, 14th edition.

The results of these analyses are presented in Table No. 1 and are reported in mg/l.

<u>Table No. 1</u>

Concentration in mg/1

Depth Integrated Samples	Suspended Solids	<u>Zinc, total</u>
West of Allen - 2/20/80	57	0.012
Below Allen - 2/20/80	48	0.003
Maxwell Down Stream	32	<0.002
Maxwell Upstream [*]	48	₹0.002

If you have any questions concerning these analyses, please call.

nolana. Ernest Appelhags

Section Supervisor

EA/ams

Ph.D., Inor.

Instrumental Analysis Div.

GENERAL OFFICES 228 NORTH LA SALLE STREET, CHICAGO, ILLINOIS 60601 - AREA CODE 312 726-8434

Reply to Instrumental Analysis Division 490 Orchard Street Golden, CO 80401

March 21, 1980

Phone: 303-278-9521

MINING DEPARTMENT

Mr. Jack Gillespie CF&I Steel Corp. P.O. Box 316 Pueblo, CO 81002

MAR 2 4 1980

RE: IAD #97-E001-032-12 Release No. R 26663 Purchase Order No. M 26144

ANALYTICAL REPORT

Seven water samples were received for analyses on February 21, 1980. The samples were given our identification IAD #97-E001-032-12.

The samples were analyzed for calcium, iron, magnesium, manganese, and zinc by flame atomic absorption, for sodium and potassium by flame atomic emission, and for selenium by hydride generation atomic absorption.

Boron was determined colorimetrically. Alkalinity, cnloride, fluoride, hardness, pH, sulfate, specific conductance, suspended solids, oil and grease, and dissolved solids were determined by the procedures of <u>Standard Methods</u>, 14th edition. Ion balance and sodium absorption ratio were calculated.

The results of these analyses are presented in Table No. 1 and are reported in mg/l unless otherwise indicated.

Table	No.	1	
Concentrati	ion	iл	mg/l

1

]

ł

](

0 and the second	West of	Allen	Below
<u>raraineter</u>	_Allen_	Uischarge	Allen
Laicium	58	9.3	- 57
Iron, total	0.17	0.03	0.16
Magnesium	15	5.4	14
Manganese, total	0.02	<u><</u> 0.01	0.08
Potassium	2.3	4.8	2.4
Selenium	<u><</u> 0.003	<u><</u> 0.003	<u><</u> 0.003
Sodium	14	279	19
Zinc, total	<u><</u> 0.002	<u><</u> 0.002	0.014
Boron	0.047	<u><</u> 0.013	<u><</u> 0.013
Alkalinity, as CaCO3	143	520	158
Bicarbonate, HCO ₃	175	634	192
Carbonate,CO ₃	0	0	0
Chloride	3.4	6.6	3.9
Fluoride	0.1	0.8	9.2
Hardness, EDTA, as CaCO _B	192	41	181
pH value	7.9	8.1	3.2
Sulfate	83	147	74
Specific Conductance, umnos/cm	480	1200	4 30
Dissolved Solids	264	720	196
Suspended Solids	3	<u><</u> 1	5
Oil and Grease		9	
Sodium Absorption Ratic	0.4	18.1	0.6
Ion Balance	-0.5	ʻI.6	-3.4

COMMERCIAL TESTING & ENGINEERING CO.

	Aller	ի Օստը
Parameter	Above	Below
Calcium	58	57
Iron, total	0.12	0.13
Magnesium	15	15
Manganese, total	0.02	0.02
Potassium .	2.3	2.1
Selenium	<u><</u> 0.003	<u><</u> 0.003
Sodium	15	15
Zinc, total	<u><</u> 0.002	<u><</u> 0.002
Beron	<u><</u> 0.013	<u><</u> 0.013
Alkalinity, as CaCO3	141	164
Bicarbonate, HCO3	171	199
Carbonate, CO3	Э	0 .
Chioride	3.6	4.2
Fluoride	0.2	0.2
Hardness, EDTA, as CaCO3	191	194
þH value	3.2	3.2
Sulfate	37	79
Specific Conductance, umnos/cm	470	400
Dissolved Solids	276	208
Suspended Solids	6	1
Sodium Absorption Ratio	0.5	0.5
Ion Balance	-0.6	1.4

Table No. 2 Concentration in mg/1

COMMERCIAL TESTING & ENGINEERING CO.

. . .

	Maxwe	1 Mine
Parameter	Upstream	Downstream
Calcium	53	54
Iron, total	0.33	0.29
Magnesium	12	12
Manganese, total	0.03	0.04
Potassium	1.9	2.1
Selenium	<u>≺</u> 0.003	<u><</u> 0.003
Sodium	17	17
'Zinc, total	0.005	<u><</u> 0.002
Boron	0.020	<u><</u> 0.013
Alkalinity, as CaCO ₃	164	162
Sicarbonate, HCO ₃	200	198
Carbonate, CO ₃	o .	0
Chloride	3.9	3.4
Fluoride	0.4	0.2
Hardness, EDTA, as CaCO ₃	16 <u>1</u>	163
pH value	8.3	3.2
Sulfate	55	54
Specific Conductance, umhos/cm	420	440
Dissolved Salids	196	380
Suspended Solids	47	8
Sodium Absorption Ratio	0.5	0.5
Ion Balance	0.8	0.1

Table No. 3 Concentration in mo/1

If you have any questions concerning these analyses, please call.

than?

Ernest Appelbays Section Supervisor

1C

V. Z. Jacops, Ph.D., Mngr. Instrumenzal Analysis Div.

EA/ond

. . .

٦

1

1

(

COMMERCIAL TESTING & ENGINEERING CO.

GENERAL OFFICES 228 NORTH LA SALLE STREET CHICAGO UL NOIS (0501 - AREA CODE 012 728-8434

Reply to Instrumental Analysis Division 490 Orchard Street Golden, CO 80401

March 21, 1980

Phone: 303-278-9521

A GET GOET

155 L - 11

Mr. Jack Gillespie
CF&I Steel Corporation
P.O. Box 316
Pueblo, Colorado 81002

RE: IAD =97-E001-032-12 Release No. R26663 Purchase Order No. M26144

ANALYTICAL REPORT

One water sample was received for analyses on February 21, 1980. The sample was given our identification IAD =97-E001-032-12.

The sample was analyzed for calcium. iron, magnesium, manganese, and zinc by flame atomic absorption, for sodium and potassium by flame atomic emission, and for selenium by hydride generation atomic absorption.

Boron was determined colorimetrically. Alkalinity, chloride, fluoride, hardness, pH, sulfate, specific conductance, suspended solids, oil and grease, and dissolved solids were determined by the procedures of <u>Stanoard Methods</u>, 14th edition. Ion balance and sodium absorption ratio were calculated.

The results of these analyses are presented in Table No. 1 and are reported in mg/l unless otherwise indicated.

Table No. 1

Concentration in mg/1

Parameter	<pre>llaxwell Mine Dischargeat Return Shaft</pre>
Calcium	496
Iron, total	3.03
Magnesium	11
Nanganese, total	0.03

Table No. 1 (con't)

Concentration in mg/1

Parameter	Maxwell Mine Discharge
Potassium	- 38
Selenium	<u><</u> 0.003
Sodium	365
Zinc, total	0.032
Boron	0.127
Alkalinity, as CaCO ₃	600
Bicarbonate, HCO ₃	731
Carbonate, CO3	0
Chloride	1030
Fluoride	3.7
Hardness, EDTA, as CaCO ₃	1550
pH value	б.9
Sulfate	- 32
Specific Conductance, umhos/cm	4200
Dissolved Solids	267 0
Suspended Solids	477
Oil and Grease	7
Sodium Absorption Ratio	4.4
Ion Balance	-0.3

If you have any questions concerning these analyses, please call.

sodhans

Ernest Appelhans Section Supervisor

EA/ams

E

M. L. Jacobs, Ph.D., Mngr. Instrumental Analysis Div.

GENERAL OFFICES: 228 NORTH LA SALLE STREET, CHICAGO, ILLINOIS 60601 - AREA CODE 312 726-8436

Reply to Instrumental Analysis Division 490 Orchard Street Golden, CO 80401

May 28, 1980

Phone: 303-278-9521

Mr. Jack Gillespie CF&I Steel Corp. P.O. Box 316 Pueblo, CO 81002

RE: IAD #97-E385-032-03 Release No. R 26667 Purchase Order No. M 26144

ANALYTICAL REPORT

Three water samples were received for analyses on April 28, 1980. These samples were given our identification IAD #97-E385+032-03. The first of these samples was taken on April 23, 1980 and is reported separately from the second and third samples which were taken the following day.

The samples were analyzed for iron, manganese, calcium, magnesium, sodium, and potassium by flame atomic absorption, and for selenium by hydride generation atomic absorption.

Boron was determined colorimetrically. Alkalinity, chloride, fluoride, hardness, pH, sulfate, specific conductance, suspended solids, dissolved solids, and oil & grease were determined by the procedures of <u>Standard Methods</u>, 14th edition. Ion balance and sodium absorption ratio were calculated.

The results of these analyses are presented in the following tables and are reported in mg/l unless otherwise indicated.

Page 3

 \bigcirc

<u>Table No. II</u>

a.

	Parameter	Allen Mine Discharge West Portal Manway 1:20 P.M. 4/24/80	Maxwell Mine Discharge 1:44 P.H. 4/24/80
	pH Value	8.52	8.51
	Specific Conductance, umhos/cm	1400	900
	Suspended Solids, mg/l	66	1520
	Dissolved Solids, mg/l	934	960
	<pre>Iron, total, mg/l</pre>	1.3	16.3
	Manganese, total, mg/l	0.026	. 0.146
	Boron, total, mg/l	0.002	0.001
	Selenium, total, mg/l	0.030	0.011
	Oil & Grease, mg/l	<u><</u> 4	<4
	Sulfate, mg/l .	172 .	36
-	Hardness, mg/l	3 ·	86
C	Alkalinity (as CaCO ₃), mg/l	512	395
	Calcium, mg/l	7.2	7.3
	Magnesium, mg/l	2.2	1837
	Sodium, mg/l :	298	2.3
	Potassium, mg/l	4.7	9.7
1	Bicarbonate, mg/l	604	463
1	Carbonate, mg/l	10	9
i	Chloride, mg/l	5.7	30.2
ļ	Fluoride, mg/l	0.73	2.6
-	Sodium Absorption Ratio	25	15
	Ion Balance	1.0	0.5

COMMERCIAL TESTING & ENGINEERING CO.

466

1

÷

If there are any questions concerning these analyses, please call.

Bruce Hale Section Supervisor

8H/bnd

M.L. Juds by Pian In 05/20/80. M.L. Jacobs, Ph.D., Mhgr. Instrumental Analysis Div.

COMMERCIAL TESTING & ENGINEERING CO.

466

i

 \mathbf{D}

ر از م مراجعات

COMMERCIAL TESTING & ENGINEERING CO.

GENERAL OFFICES: 228 HOATH LA SALLE STREET, CHICAGO, ILLINOIS 60801 - AREA CODE 312 728-8434

Reply to Instrumental Analysis Division 490 Orchard Street Golden, CQ 80401

August 6, 1980

Mr. Jack Gillespie CF & I Steel Corporation P.O. Box 316 Pueblo, CO 81002

RE: IAD #97-E747-032-05 Release #R26675 Purchase Order #M26144

Phone: 303-278-9521

Analytical Report

Five water samples were received for analyses on July 9, 1980. These samples were given our identification IAD #97-E747-032-05.

The samples were analyzed for total Iron, Zinc, Manganese and dissolved Calcium, Magnesium, Iron, Zinc and Manganese by flame atomic absorption. The dissolved Sodium and Potassium were analyzed by flame emission. Total Selenium was analyzed by hydride generation atomic absorption. Samples for total metals were first digested in nitric and hydrochloric acids.

Boron was determined colorimetrically, Sulfate turbidimetrically, Chloride and Fluoride by specific ion electrode by the procedures of EPA Methods for Chemical Analysis of Water and Waste, 1979. Dissolved solids (TDS), Suspended Solids (TSS) and oil and grease were determined gravimetrically by the procedures of <u>Standard Methods</u>, <u>14th edition</u>. pH, Carbonate, Bicarbonate, Alkalinity and Specific Conductance were all done by Standard Method's Procedures. Hardness, Sodium Absorption Ratio, and Ion Balance were calculated.

The results of these analyses are presented in the following tables and are reported in milligrams per litre (mg/l) unless otherwise noted.

Re: IAD #97-E747-032-05

.

.

÷ •

.

-

]

• 1

E

; }

.

August 5, 1980

.

، . . . من

Table	No.	I
(mg/	71)	_

Parameter	Allen Mine Discharge 7/7/80 57 ⁰ F 12:20 PM	Purgatory Above Allen 7/7/80 57°F 11:50 A4	Purgatory Below Allen 7/7/80 59 ⁰ F 12:15 PM
Sodium, dissolved	234	4.17	2.9
Calcium, dissolved	15.0	32.2	31.4
Magnesium, dissolved	4.6	4.5	4.6
Potassium, dissolved	4.57	0.95	0.95
Iron, total	0.10	0.43	0.41
Iron, dissolved	<0.02	<u><</u> 0.02	<u><</u> 0.02
Zinc, total	0.05	<u><</u> 0.01	<0.01
Zinc, dissolved	0.03	<0.01	<0.01
Manganese, total	<u><</u> 0.009	0.018	0.022
Manganese, dissolved	<u><</u> 0.009	<u><</u> 0.009	<0.009
Selenium, total	0.011	0.002	<0.002
Boron, total	0.09	0.04	0.03
Alkalinity (as CaCO ₂)	434	6 2. 8 ·	84.9
Bicarbonate	528	101	103
Carbonate	0	0	0
Chloride	7.1	2.30	2.40
Fluoride	3.48	0.64	0.51
рH	8.0	7.9	8.0
Sulfate	158	11.7	11.1
Conductivity (umhos/c	m) 100	170	190
Total dissolved solid	s 807	135	103
Total suspended solid	s 4	21	16
Oil and grease	5	2	4
Hardness (as CaCO ₂)	56.4	98 .9	97.3
Sodium Absorption Rat	io 13.6	0.2	0.1
Ion Balance	3.0	-1.2	-0.6

COMMERCIAL TESTING & ENGINEERING CO.

÷

Driginal Copy Watermarked For Your Protection

466

	Re: IAD #97-#747-032-05	-3-	August 5, 1980
•		. <u>Table No. II</u> . (mg/l)	
		Purgatory Below Maxwell	Purgatory Above Maxwell
-	<u>Parameter</u>	777780 1:33 PM 60 F	
	Sodium, dissolved	2.9	3.2
	Calcium, dissolved	33.9	34.8
	Magnesium, dissolved	5.3	5.3
	Potassium, dissolved	0.95	0.87
•	Iron, total	0.78	0.63
	Iron, dissolved	<u><</u> 0.02	<u><</u> 0.02
	Zinc, total	<u><</u> 0.01	<u><</u> 0.01
	Zinc, dissolved	<u><</u> 0.02	<u><</u> 0.01
	Manganese, total	0.040	0.022
	Manganese, dissolved	<u><</u> 0.009	<u><</u> 0.009
	Selenium, total	<u><</u> 0.002	<u><</u> 0.002
	Boron, total	<u><</u> 0.02	<u><</u> 0.02
	Alkalinity (as CaCO ₃)	100	101
	Bicarbonate	117	. 124
	Carbonate	, O	0
/	Chloride	2.49	2.10
	-Fluoride	0.53	0.51
	рН	8.0	8.0
	Sulfate	9.4	10.6
	Conductivity (umhos/cm)	180	180
	Total dissolved solids	125	127
	Total suspended solids	34	30
	Oil and grease	2	4
	Hardness (as CaCO ₂)	106	109
	Sodium absorption ratio	0.1	0.1
	Ion balance	-0.5	0

-nai Copy Watermarked For Your Protection

56

10

ļ

4

i

.

1

Re: IAD #97-5747-032-05

If you have any questions concerning these analyses, please call.

ورو

4

Bruce Hale Section Supervisor

Approved:

M. L. Jacobs, Ph.D., Mngr. Instrumental Analysis

BH/ja

cc: David McWhorter

COMMERCIAL TESTING & ENGINEERING CO.

GEVERAL OFFICES 228 NORTH LA SALLE STREET, CHICAGO, ILLINDIS 60601 -- AREA CODE 312 726-8434

Reply to Instrumental Analysis Division 490 Orchard Street Golden, CO 80401

Phone: 303-278-9521

August 5, 1980

Mr. Jack Gillespie C F & I Steel Corp. P.O. Box 316 Pueblo, CO 31002

Re: IAD #97-E858-032-10 (formerly E733-032-10) Purchase Order #M26144 Release #R26675

AUG 7 1980 VING DEPARTME

UPDATED ANALYTICAL REPORT

The ten samples identified IAD #97-E733-032-10, for which the original report was sent from our office on July 24, 1980, were logged in again for dissolved metals analyses on July 31, 1980 as per our telephone conversation of July 29, 1980. Our identification for these analyses is IAD #97-E858-032-10.

The samples were filtered and analyzed for dissolved Iron, Manganese, and Zinc by flame atomic absorption spectrophotometry. The results of these analyses are presented in Table No. I below and are reported in milligrams per liter (mg/l).

Table No. I concentration in mg/1				
Sample	Iron, dissolved	Manganese, dissolved	Zinc, dissolved	
CF&I River Near AL-1-1 6:00 p.m. 7/2/80	<u><</u> 0.02	<u><</u> 0.009	<u><</u> 0.02	
CF3I AL-1-1 6:00 p.m. 7/2/80	<u><</u> 0.02	0.380	<u>≺</u> 0.01	
CF&I River Near AL-2-1 7/12/80	<u><</u> 0.02	<u><</u> 0.009	<u><</u> 0.01	
CF&I AL-2-1 7/2/80	<u><</u> 0.02	0.183	0.13	
CF&I AL-3-3 7/2/80 4:30 p.m.	<u><</u> 0.02	2.06	<u><</u> 0.01	
CF&I River Near AL-3-3 7/2/30 4:30 p.m.	<u><</u> 0.02	0.064	0.04	

`--

•

-

<u>Table No. I (cont.)</u> concentration in mg/l				
Sample	Iron, dissolved	Mangarese, dissolved	Zinc, dissolved	
CF&I AL-4-2 7/2/80 3:00 p.m.	<u><</u> 0.02	0.220	<u><</u> 0.01	
LA-218A 7/3/80 4:00 p.m.	0.02	<u><</u> 0.009	<u><</u> 0.01	
Well 221 A 7/2/80	0.03	<u><</u> 0.009	0.03	
LA-264 7/3/80 11:10 a.m.	<u><</u> 0.02	<u><</u> 0.009	<u><</u> 0.01	

If there are any questions concerning these analyses, please call.

 $\overline{\cdot}$

Bruce Hale Section Supervisor

M. L. Jacobs, Ph.D., Mngr. Instrumental Analysis Div.

BH/jw

CC: Dave McWhorter

.

COMMERCIAL TESTING & ENGINEERING CO.

ginal Copy Watermarked For Your Protection Ę

GENERAL OFFICES: 228 NORTH LA SALLE STREET, CHICAGO, ILLINOIS 60601 -- AREA CODE 312 726-8434

Reply to Instrumental Analysis Division 490 Orchard Street Golden, CO 80401

August 6, 1980

Mr. Jack Gillespie CF & I Steel Corporation P.O. Box 316 Pueblo, CO 81002

RE: IAD #97-E747-032-05 Release #R26675 Purchase Order #M26144 AUG 7 1980 MINING DEPARTMENT

Phone: 303-278-9521

Analytical Report

Five water samples were received for analyses on July 9, 1980. These samples were given our identification IAD #97-E747-032-05.

The samples were analyzed for total Iron, Zinc, Manganese and dissolved Calcium, Magnesium, Iron, Zinc and Manganese by flame atomic absorption. The dissolved Sodium and Potassium were analyzed by flame emission. Total Selenium was analyzed by hydride generation atomic absorption. Samples for total metals were first digested in nitric and hydrochloric acids.

Boron was determined colorimetrically, Sulfate turbidimetrically, Chloride and Fluoride by specific ion electrode by the procedures of EPA Methods for Chemical Analysis of Water and Waste, 1979. Dissolved solids (TDS), Suspended Solids (TSS) and oil and grease were determined gravimetrically by the procedures of <u>Standard Methods</u>, <u>14th edition</u>. pH, Carbonate, Bicarbonate, Alkalinity and Specific Conductance were all done by Standard Method's Procedures. Hardness, Sodium Absorption Ratio, and Ion Balance were calculated.

The results of these analyses are presented in the following tables and are reported in milligrams per litre (mg/l) unless otherwise noted.

Re: IAD #97-E747-032-05

.

-

August 5, 1980

.

- 、

د.

	· <u>Ta</u>	Table No. I (mg/l)		
Parameter	Allen Mine Discharge 7/7/80 _57°F_12:20 PM	Purgatory Above Allen 7/7/80 57 ⁰ F 11:50 AH	Purgatory Below Allen 7/7/80 59 ⁰ F 12:15 PM	
Sodium, dissolved	234	4.17	2.9	
Calcium, dissolved	15.0	32.2	31.4	
Magnesium, dissolved	4.6	4.5	4.6	
Potassium, dissolved	4.57	0.95	0.95	
Iron, total	0.10	0.43	0.41	
Iron, dissolved	<u><</u> 0.02	<u><</u> 0.02	<u><</u> 0.02	
Zinc, total	0.05	<u><</u> 0.01	<u><</u> 0.01	
Zinc, dissolved	0.03	<u><</u> 0.01	<0.01	
Manganese, total	<u><</u> 0.009	0.018	0.022	
Manganese, dissolved	<u><</u> 0.009	<u><</u> 0.009	<u><</u> 0.009	
Selenium, total	0.011	0.002	<u><</u> 0.002	
Boron, total	0.09	0.04	0.03	
Alkalinity (as CaCO ₃)	434	62.8	84.9	
Bicarbonate	528	101	103	
Carbonate	0	0	0	
Chloride	7.1	2.30	2.40	
Fluoride	3.48	0.64	0.51	
рН	8.0	7.9	8.0	
Sulfate	158	11.7	11.1	
Conductivity (µmhos/c	m) 100	170	190	
Total dissolved solid	s 807	135	103	
Total suspended solid	s 4	21	16	
Oil and grease	5	2	4	
Hardness (as CaCO ₃)	56.4 .	98.9	97.3	
Sodium Absorption Rat	io 13.6	0.2	0.1	
Ion Balance	3.0	-1.2	-0.6	

COMMERCIAL TESTING & ENGINEERING CO.

Re: IAD #97-#747-032-05

٠.

(

(

• ¬

	<u>Table No. II</u> (mg/l)	5
Parameter	Purgatory Below Maxwell 7/7/80 1:35 PM 60 ⁰ F	Purgatory Above Maxwell <u>7/7/80 60⁰F 1:20 PM</u>
Sodium, dissolved	2.9	3.2
Calcium, dissolved	33.9	34.8
Magnesium, dissolved	5.3	5.3
Potassium, dissolved	0.95	0.87
Iron, total	0.78	0.63
Iron, dissolved	<u><</u> 0.02	<u><</u> 0.02
Zinc, total	<u><</u> 0.01	<u><</u> 0.01
Zinc, dissolved	<u><</u> 0.02	<u><</u> 0.01
Manganese, total	0.040	0.022
Manganese, dissolved	<u><</u> 0.009	<u><</u> 0.009
Selenium, total	<u><</u> 0.002	<u><</u> 0.002
Boron, total	<u><</u> 0.02	<u><</u> 0.02
Alkalinity (as CaCO ₃)	100	101
Bicarbonate	117	124
Carbonate	0	0
Chloride .	2.49	2.10
Fluoride	0.53	0.51
рН	8.0	8.0
Sulfate	9.4	10.6
Conductivity (µmhos/cm)	180	180
Total dissolved solids	125	127
Total suspended solids	34	30
Oil and grease	2	4
Hardness (as CaCO ₃)	106	109
Sodium absorption ratio	0.1	0.1
Ion balance	-0.5	0

COMMERCIAL TESTING & ENGINEERING CO.

Re: IAD #97-E747-032-05

If you have any questions concerning these analyses, please call.

.

.-· .

•

Bruce Hale Section Supervisor

Approved:

M. L. Jacobs, Ph.D., Mngr. Instrumental Analysis

i

BH/ja

cc: David McWhorter

COMMERCIAL TESTING & ENGINEERING CO.

-100

GENERAL OFFICES. 228 NORTH LA SALLE STREET, CHICAGO, ILLINCIS 60601 -- AREA CODE 312 126-8434

Reply to Instrumental Analysis Division 490 Orchard Street Golden, CO 80401

Phone: 303-278-9521

July 24, 1980

Mr. Jack Gillespie C F & I Steel Corp. P.O. Box 316 Pueblo, CO 81002

Re: IAD #97-E733-032-10 Release #R26675 Purchase Order #M26144

ANALYTICAL REPORT

Ten water samples were received for analyses on July 7, 1980. These samples were given our identification IAD #97-E733-032-10.

The samples were analyzed for total iron, manganese, zinc, magnesium, and calcium by flame atomic absorption for sodium and potassium by flame emission and for selenium by hydride generation atomic absorption.

Boron was determined colorimetrically, sulfate turbidimetrically, chloride and fluoride by specific ion electrode, and dissolved solids (TDS), suspended solids (TSS) and oil and grease (0 & G) were determined gravimetrically by the procedures of <u>Standard Methods</u>, 14th edition. pH, carbonate, bicarbonate, alkalinity and specific conductance were all done by <u>Standard Method's</u> procedures, Hardness, sodium absorption ratio, and ion balance were calculated.

Note: Ion Balance calculations are made using dissolved alkali metal numbers (Mg, Ca, Na, and K) and neglecting the use of total heavy metals (Fe, Mn, and Zinc) since they may be assumed to be negligible in the dissolved sample. If the ion balance ratio is high it may be due to small amounts of dissolved heavy metals in the sample, not accounted for. Furthermore, in samples of high pH, alkalinity, relationship calculations may include amounts of hydroxide ion that, although not called for in the analysis, needs to be considered when balancing ions.

Hardness calculations are based on the amounts of dissolved calcium and magnesium in the samples. Again, if hardness numbers are low, it would be due to small amounts of <u>dissolved</u> heavy metals in the samples that are not accounted for. Hardness calculations should not be made including total metals since a digestion puts into solution additional amounts of suspended solids.

The results of these analyses are presented in the following tables and are reported in mg/l unless otherwise noted.

Re: IAD #97-E733-032-10

~

July 24, 1980

· ·

. –

- جات

	Table No. I (mg/l)	Waterlevel 7.33'	3
Parameter	CF&I River Near AL-1-1 7/2/80, 6:00 PM	CF&I AL-1-1 7/2/80, 6:00 PM	CF&I River Near AL-2-1,7/2/80
Calcium, dissolved	28.0	87.4	30.0
Sodium, dissolved	2.7	43.0	2.9
Magnesium, dissolved	4.2	13.1	4.2
Potassium, dissolved	1.12	2.5	1.3
Iron, total	0.88	205	0.88
Manganese, total	0.025	5.86	0.029
Zinc, total	<u><</u> 0.009	0.913	<u><</u> 0.009
Selenium, total	<u><</u> 0.002	<u><</u> 0.002	<u><</u> 0.002
Boron, total	0.05	0.09	0.03
Alkalinity (as CaCO ₃)	72.5	186	70.4
Bicarbonate	88.3	227	85.8
Carbonate	0	0	0
Chloride	3.3	11.7	2.9
Fluoride	0.12	0.20	0.16
Hardness (as CaCO ₃)	87.2	468	92.2
.)n	7.9	7.3	7.8
Sulfate	8.9	124	11.1
Conductivity (umhos/cm)	140	540	150
Total Dissolved Solids	169	602	121
Total Suspended Solids	17	4500	137
Oil & Grease	16	94	14
Sodium Absorption Ratio	0.1	1.1	0.1
lon Balance	-1.2	-3.5	-2.0

COMMERCIAL TESTING & ENGINEERING CO.

.

For Your Protection

.

-

Re: IAD #97-E733-032-10

٠.

-3-

- .

.

.

July 24, 1980

-

(<u>Table No.</u>	II	
-	u Parameter	Jater level 14.75' CF&I AL-2-1 7/2/80	(mg/l) <i>نعدی دیلا</i> CF&I AL-3-3 7/2/30, 4:30 PM	CF&I River Near AL-3-3 7/2/80, 4:30 PM	<i>من 7.71</i> CF&I AL-4-2 7/2/80, 3:00 PM
	Calcium, dissolved	55.2	74.9	29.7	38.3
	Sodium, dissolved	244	26.9	5.1	23.7
	Magnesium, dissolved	13.2	15.6	4.3	7.6
	Potassium, dissolved	6.5	2.5	0.9	1.1
	Iron, total	65.0	50.1	22.8	0.49
	Manganese, total	0.88	4.98	0.40	0.27
	linc, total	1.64	0.349	0.080	<0.009
	Selenium, total	0.020	0.003	<u><</u> 0.002	<0.002
	Eoron, total	0.03	0.04	<u><</u> 0.02	0.03
	Alkalinity (as CaCO ₃)) 522	275	93.2	143
	Bicarbonate	636	336	114	174
	Carbonate	0	0	0	0
1	Chloride	14.0	10.2	5.5	6.8
	Fluoride	0.18	0.60	0.20	0.28 -
	∺ardness (as CaCO ₃)	192	251	93.9	127
	рл	7.4	7.4	7.8	7.4
	Sulfate	198	20.5	11.7	5.0
	Conductivity (umhos/c	cm) 1200	480	170	280
	Total dissolved solid	is 951	404	219	223
	Total suspended solid	is 1090	156	844	5
	201 & Grease	19	21	<u><</u> 1	2
	Sodium Absorption Rat	io 7.7	0.7	0.2	0.9
	lon Balance	1.0	0	1.1	-2.8
			•		

COMMERCIAL TESTING & ENGINEERING CO.

400

I

Re: IAD #97-E733-C -10

.

)

Parameter	(mg/1) (ML. 275,131 LA-218A 7/3/80, 4:00 PM	Well 221A 7/2/80	<i>W.L. 50.93</i> LA-264 11:10 AM 7/3/80
Calcium, dissolved	20.2	1.8	3.3
Sodium, dissolved	244	251	294
Magnesium, dissolved	<u><</u> 0.2	0.7	1.4
Potassium, dissolved	3.1	2.1	2.3
Iron, total	117	25.9	0.27
Manganese, total	0.88	0.14	<u><</u> 0.01
Zinc, total	1.14	1.66	0.042
Selenium, total	<u><</u> 0.002	<u><</u> 0.002	<u><</u> 0.002
Boron, total	0.16	0.06	0.06
Alkalinity (as CaCO ₃)	579	596	615
Eicarbonate	0	606	749
Carbonate	225	59.6	0
Chloride	14.8	15.0	16.0
Fluoride	2.9	2.8	2.4
⊣ardness (as CaCO ₃)	50.4	7.4	14.0
рн С	11.4	8.8	8.2
Sulfate	33.7	15.0	88
Conductivity (umhos/cm)	1600	1000	1100
Total dissolved solids	891	775	846
Total suspended solids	6190	85	3
Jil & Grease	9	8	4
-ydroxide	70	-	-
Sodium Absorption Ratio	15	40	34
Icn Balance	3.9	5.5	4.7

If there are any questions concerning these analyses, please call.

Bruce A. Hale Section Supervisor

,

61. 1.5 1-2-1. 12, M. L. Jacobs, Ph.D., Mngr. Instrumental Analysis Div.

BH/jw

IC: David B. McWhorter

ginal Copy Watermarked For Your Protection COMMERCIAL TESTING & ENGINEERING CO.

0 2025- 7

MINING DEPARTMENT

Phone: 303-278-9521

COMMERCIAL TESTING & ENGINEERING CO.

GENERAL OFFICES 228 NORTH LA SALLE STREET, CHICAGO ILLINOIS 60601 AREA CODE 312 726-8434

Reply to Instrumental Analysis Division 490 Orchard Street Golden, CO 80401

November 11, 1980

Mr. Jack Gillespie C F & I Steel Corp. P.O. Box 36 Pueblo, CO 81002

RE: IAD #97-F142-032-01

Analytical Report

One water sample was received for analyses on September 18, 1980. This sample was given our identification IAD #97-F142-032-01.

The sample was analyzed for total Iron, Zinc and Manganese and dissolved Calcium, Magnesium, Iron, Zinc and Manganese by flame atomic absorption. The dissolved Sodium and Potassium were analyzed by flame emission. Total Selenium was analyzed by hydride generation atomic absorption. Samples for total metals were first digested in nitric and hydrochloric acids.

Boron was determined colorimetrically; Sulfate, turbidimetrically and Chloride and Fluoride by specific ion electrode using the procedures of EPA-Methods for Chemical Analysis of Water and Wastes, 1979. Dissolved solids (TDS) and Total Suspended Solids (TSS) were determined gravimetrically by the procedures of <u>Standard Methods</u>, 14th edition. pH, Carbonate, Bicarbonate, Alkalinity and Specific Conductance were all done by <u>Standard</u> Methods procedures. Sodium Absorption Ratio and Ion Balance were calculated.

The results of these analyses are presented in Table No. 1 and are reported in milligrams per litre (mg/1) except pH or otherwise noted.

Table No. (mg/l)	1		
	Maxwell	Mine	Discharge

-

Parameter	9/17/80 10:15 A	Ň
Sodium (dissolved) Calcium (dissolved) Magnesium (dissolved) Potassium (dissolved) Iron (total) Iron (total) Zinc (total) Zinc (total) Zinc (dissolved) Manganese (total) Manganese (dissolved) Selenium (total) Boron (total) Alkalinity (as CaCO ₃) Bicarbonate Carbonate Chloride Fluoride pH Sulfate Conductivity (umhos/cm) TDS	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	<u>11</u>
TSS Sodium Absorption Ratio Ion Balance *	6520 43.2 8.5	

* Note: Ion Balance calculations are based on dissolved anions and cations. The sample shows an excess of anions or a cation (s) that is not being accounted for. The sample was rechecked for Sodium, Calcium and Bicarbonate since these are the major constituents in this water. A qualitative scan (X-ray fluorescence) gave inconclusive results on the dissolved constituents in the water. A scan will be run on the salts to determined if there is an additional cation not accounted for. This data will be forthcoming should any contradictions to the data herein arise.

If there are any questions concerning these results, please call.

Bruce A. Hale Section Supervisor

as

J**≬¢oos,** Ph.D., Mng⊤.

Instrumental Analysis Div.

COMMERCIAL TESTING & ENGINEERING CO.

GENERAL OFFICES. 228 NORTH LA SALLE STREET, CHICAGO, ILLINOIS 60601 AREA CODE 312 726-8434

Reply to Instrumental Analysis Division 490 Orchard Street Golden, CO 80401

{

December 3, 1980

Phone: 303-278-9521

Mr. Jack Gillespie CF & I Steel Corporation P.O. Box 316 Pueblo, Colorado 81002

RE: IAD #97-F207-032-03 P.O. #M26144 Release #R26679

ANALYTICAL REPORT

Three water samples were received for analyses on October 2, 1980. These samples were given our identification IAD #97-F207-032-03.

All of the samples were analyzed for both dissolved (non-preserved in the field, then laboratory filtered with a 0.45 µm filter and then nitric acid preserved) and total (non-filtered and nitric acid preserved in the field) metals. Some discrepancies may be noted when comparing dissolved and total metals data. It should be kept in mind that as values approach the detection limit for any determination, the results may become inconclusive. This fact is based on instrumental conditions alone regardless of other analytical or sampling problems; i.e., contamination at the time of sampling, or contamination or loss during digestion, etc. The detection limit is defined as twice the standard deviation of the noise level. Results may be reported with 66% confidence, by definition, at one standard deviation of the detection limit. In practical application, results approaching the detection limit are only good (at 95% confidence level) to plus or minus two (2) times the detection limit. Samples with deviations that are found to exceed this (between totals and dissolved metals) are reprepared and reanalyzed in an attempt to eliminate analytical errors. If data still differs by more than twice the detection limit, problems other than analytical exist. Attention should then be directed to sampling and/or preservation procedures or other involved aspects. The same problems will arise if the detection limit is lowered by the use of alternative analytical methods. The same amount of material will exist in the sample, but the amount of deviation from that value is lowered.

All samples for dissolved metals to be analyzed by atomic absorption were first given a light acid digestion (to be sure 0.45 um filtered metals are in solution). All samples to be analyzed for total metals by atomic absorption were subjected to a rigorous digestion in hydrochloric and nitric acids and, if there was sediment undissolved, filtered before AA analysis.
,	$\underbrace{\Box} \qquad \underbrace{\frac{\text{Table No.}}{(mg/1)}}$	1	
Parameter	Above Allen Mine	Below Allen Mine	Allen Mine <u>N. Fork</u>
Aluminum, total Aluminum, dissolved Beryllium, total Beryllium, dissolved Cadmium, total Cadmium, dissolved Chromium, total Chromium, dissolved Chromium, (hexavalent) total	0.22 <0.08 <0.004 <0.004 <0.009 <0.009 0.013 <0.006 <0.006	0.11 <0.08 <0.004 <0.009 <0.009 <0.009 -0.21 <0.006 <0.006	<pre><0.08 <0.08 <0.004 <0.004 <0.009 <0.009 <0.009 <0.19 <0.006 <0.006</pre>
Chromium,(hexavalent) dissolved	<u><</u> 0.006	<u><</u> 0.006	<u><</u> 0.006
Copper, total Copper, dissolved Iron, total Iron, dissolved Lead, total Lead, dissolved Manganese, total Manganese, total Mercury, total Mercury, total Mercury, dissolved Nickel, total Nickel, dissolved Selenium, total Selenium, total Silver, total Silver, dissolved Uranium, total Uranium, dissolved Thallium, total Thallium, dissolved Zinc, total Zinc, dissolved Barium, dissolved Boron, total Boron, dissolved Arsenic, total	$< 0.005 \\ < 0.005 \\ 0.09 \\ 0.03 \\ < 0.05 \\ < 0.05 \\ < 0.022 \\ 0.007 \\ 0.0002 \\ 0.0001 \\ 0.02 \\ 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ < 0.000 \\ <$	$< 0.005 \\ < 0.005 \\ 0.09 \\ 0.02 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ 0.024 \\ 0.007 \\ 0.0003 \\ < 0.0001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002$	$\begin{array}{c} < 0.005 \\ < 0.005 \\ 0.13 \\ 0.02 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ 0.015 \\ 0.0008 \\ 0.00008 \\ 0.00005 \\ 0.0005 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.002 \\ < 0.002 \\ \end{array}$

Note: These samples will be reanalyzed for Lead, Cadmium, and Silver by graphite furnace atomic absorption to obtain a lower detection level, as per phone conversation - between Bruce Hale and J. Gillespie, November 24, 1980.

If there are any questions concerning these results, please call.

Bruce A. Hale Section Supervisor

M. L. Jacobs, Ph.D., Manager Instrumental Analysis Div.

COMMERCIAL TESTING & ENGINEERING CO.

Original Copy Watermarked For Your Protection

SAH/ams

Total and dissolved Aluminum, Beryllium, Cadmium, Chromium, Copper, Iron, Lead, Manganese, Nickel, Silver, Thallium, Zinc and Barium were all analyzed by flame atomic absorption and Selenium and Arsenic were determined by hydride generation atomic absorption from the above prepared solutions.

Mercury was analyzed by cold vapor flameless atomic absorption using a permangate/persulfate digestion of the original filtered and unfiltered samples as described in EPA - <u>Methods for Chemical Analysis of Waters and Wastes</u> 1979 (Method 245.1 - Manual Cold Vapor Techniques).

Uranium was determined by fluorimetry using the original filtered and unfiltered samples.

Boron was analyzed colorimetrically by the EPA <u>Methods for Chemical Analysis</u> of <u>Waters_and_Wastes</u>, 1979 (Method 212.3 - Curcumin).

Hexavalent Chromium was analyzed colorimetrically by the procedures of <u>Standard Methods</u>, 14th Edition. Total Hexavalent Chromium data is of little significance since to be colored the Chromium needs to be in solution. For all Chromium to be in solution requires an acid digestion which oxidizes all the Chromium to a hexavalent state. This data was determined on an unfiltered undigested sample.

The results of these analyses are presented in Table No. 1 and are reported in milligrams per litre (mg/l) on the following page.

COMMERCIAL TESTING & ENGINEERING CO.

Original Copy Watermarked For Your Protection

F-466

GENERAL OFFICES. 228 NORTH LA SALLE STREET, CHICAGO, ILLINOIS 60501 AREA CODE 312 726-8434

Reply to Instrumental Analysis Division 490 Orchard Street Golden, CO 80401

December 3, 1980

Mr. Jack Gillespie C F & I Steel Corp. P.O. Box 316 Pueblo, CO 81002

RE: IAD #97-F208-032-13 Release No: R26680 P.O. # M26144

Analytical Report

Thirteen water samples were received for analyses on October 2, 1980. These samples were given our identification IAD #97-F208-032-13.

The samples were analyzed for total Iron. Zinc, Manganese (on both the preserved and non-preserved portions) and dissolved Iron, Zinc, Manganese, Magnesium and Calcium by flame atomic absorption. Dissolved Sodium and Potassium were analyzed by flame emission. Total Selenium (on both the preserved and non-preserved portions) was determined by hydride generation atomic absorption. All samples to be analyzed for total metals were first subjected to a rigorous digestion in nitric and hydrochloric acids.

Boron was determined colorimetrically; Sulfate turbidimetrically and Chloride and Fluoride by specific ion electrode using the procedures of EPA -<u>Methods for Chemical Analyses of Water and Wastes</u>, 1979. Dissolved Solids (TDS) and Suspended Solids (TSS) and Oil and Grease were determined gravimetrically by the procedures of Standard Methods, 14th edition.

pH, Carbonate, Bicarbonate, Alkalinity, Hardness and Specific Conductance were all done by <u>Standard Methods</u> procedures. In addition, Hardness was calculated from the dissolved contributing species (Ca, Mg, Mn, etc.) and compared against the titrated value. Sodium absorption ratio and Ion balance were also calculated and compared against TDS and Specific Conductance data.

The results of these analyses are presented in the tables below and are reported in milligrams per litre (mg/1) except pH or as otherwise noted.

Phone: 303-278-9521

Note: For values near the detection limit:

- 1) The detection level is defined as twice the standard deviation of the noise level, or in practical application, twice the noise level.
- 2) Results may be reported with 66% confidence, by definition, at 1 standard deviation of the detection limit. In practical application, results approaching the detection limit are only good (95% confidence) plus or minus 2 times the detection limit. This is why values differ between dissolved and total metals or between preserved and non-preserved total metals when the values approach the detection limit. This is the limitation of the instrumentation alone, regardless of analytical problems with preservation, contamination, or loss in digestion, which can be assumed negated in order to get results to fall in this range.

Several samples have ion balance problems. The major anions and cations were reanalyzed to check for analytical errors. In an attempt to reconcile these problems, several other checks were made:

- Hardness values were checked between data calculated from dissolved Calcium, Magnesium and Manganese analyses, and data obtained by hardness titration;
- The total amount of dissolved solids was calculated from the values obtained in individual analyses and compared with the amount of dissolved solids determined gravimetrically.
- 3) The ratio of dissolved solids (in mg/l) to specific conductance (in µmhos/cm) was checked to see if it was in an acceptable range (0.55 0.70). Those samples with poor ion balances seem to check fairly well in these categories.

Bruce A. Hale Section Supervisor

M. L. Jacobs, Ph.D., Mngr. Instrumental Analysis Div.

as

COMMERCIAL TESTING & ENGINEERING CO.

- 	Table No. 1 (mg/l)	<u> </u>
Parameter	Dulin Wel 9/30/80 2:2	1 25 pm
Iron (total, preserved)	0.04	
<pre>!ron (total, non-preserved)</pre>	0.06	
lron (dissolved)	0.04	
Manganese (total, preserved)	0.008	3 [.]
Manganese (total, non-preserved)	0.012	2
Manganese (dissolved)	<u><</u> 0.002	2
Zinc (total, preserved)	0.025	;
<pre>linc (total, non-preserved)</pre>	0.016	;
Zinc (dissolved)	0.021	
Selenium (total, preserved)	<u><</u> 0.002	-
Selenium (total, non-preserved)	0,003	ł
Calcium (dissolved)	50	
Magnesium (dissolved)	7.5	
Fotassium (dissolved)	1.5	
Ecdium (dissolved)	2.2	
Boron (total)	0.14	
Alkalinity (as CaCO ₃) (dissolved)	157	
Bicarbonate	192	
Carbonate	0	
Chloride	5.4	
Fluoride	0.25	
Haroness (tit) as CaCO ₃	152	
Hardness (calc) as CaCO ₃	156	
5 ⁴	8.0	
Sulfate	9.0	
Specific Conductance (Lmhos/cm)	300	
TDS (gravimetrically) .	129	
TDS (calc)	172	
TSS	21	
Oil and Grease		
Sodium Absorption Ratio	0.1	
Ion Balance	1.6	

.

-

ŹĨŁ

.

),

	Table No (mg/	5.11 1)	•••	
11 TOB. Water Level	8.4/°	/⊀.⊘Z* A1_2_1	6.30'	3.78
Parameter	10/1/30	10/1/80	$\frac{10/1}{30}$	10/1/80
Iron (total, preserved)	124	123	105	25
Iron (total, non-preserved)	104	142	115	25
lron (dissolved)	0.03	0.02	0.65	0.02
Manganese (total, preserved)	1.95	1.73	5.0	1.09
Manganese (total, non-preserved)	1.57	1.66	4.6	1.09
Manganese (dissolved)	0.57	0.73	3.6	0.74
Zinc (total, preserved)	0.31	0.38	0.28	0.17
Zinc (total, non-preserved)	0.25	0.40	0.28	0.11
Zinc (dissolved)	0.025	<u><</u> 0.003	0.003	0.005
Selenium (total, preserved)	<u><</u> 0.002	0.012	0.003	<u><</u> 0.002
Selenium (total, non-preserved)	0.003	0.014	0.004	<u><</u> 0.002
Calcium (dissolved)	74	59	45	77
Hagnesium (dissolved)	13.0	11.1	11.4	15.4
Potassium (dissolved)	2.3	3,1	4.5	3.1
Sodium (dissolved)	12.7	153	11.0	52
Boron (total)	0.17	0.25	0.20	0.30
Alkalinity (as CaCO ₃) (dissolved)	180	331	225	286
Sicarbonate	220	404	274	348
Carbonate	0	6	0	0
Chloride	10	19	28	12
Fluoride	0.28	0.35	0.47	0.35
Hardness (tit) as CaCO ₃	237	212	200	231
Hardness (calc) as CaCO ₃	239	193	159	257
cH	7.9	8.2	7.3	7.8
Sulfate	77	125	2.5	78
Specific Conductance (µmhos/cm)	460	900	480	650
TDS (gravimetrically)	280	470	252	368
TDS (calc)	341	580	246	412
TSS	1530	1730	682	447 .
Oil and Grease				
Sodium Absorption Ratio	0.5	4.8	0.4	1.4
Ion Balance	0.4	-2.3	7.2	0.9

460

~

(

(

.

· · · · · ·	Table No. 111	
·-	······································	3
Paramete <u>r</u>	P.R. Upstream Allen Dump 10/1/80	P.R. Downstream All Dump 10/1/80
iron (total, preserved)	0.10	
lion (total, non-preserved)	0.09	0.43
Iron (dissolved)	0.02	0.02
Manganese (total, preserved)	0.025	0.025
Manganese (total, non-preserved)	0.020	0.023
Manganese (dissolved)	0.008	0.008
Zinc (total, preserved)	<u><</u> 0.004	<0.007
Zinc (total, non-preserved)	<u><</u> 0.004	<0.004
Zinc (dissolved)	<u><</u> 0.003	 <0.003
Selenium (total, preserved)	<u><</u> 0.002	<0.002
Selenium (total, non-preserved)	<u><</u> 0.002	<0.002
Calcium (dissolved)	53	42
Magnesium (dissolved)	9.4	8.9
Potassium (dissolved)	1.4	1.5
Sodium (dissolved)	5.5	5.6
Boron (total)	0.25	0.15
Alkalinity (as CaCO ₃) (dissolved)	129	124
Bicarbonate	152	151
Carbonate	3	0
Chloride	3.8	4.3
Fluoride	0.31	0.26
Hardness (tit) as CaCO ₃	150	154
Hardness (calc) as CaCO ₃	171	142
o∺	8.5	8.4
Sulfate	37	38
Specific Conductance (µmhos/cm)	. 310	310
TDS (gravimetrically)	138	175
TDS (calc)	190	176
TSS	9	12
Oil and Grease		
Sodium Absorption Ratio	0.2	0.2
ion Balance	-1.3	1.8

.

⊷e é

.

١,

· ·	Table No. 1V (mg/l)		
-	(-	11
Parameter	Allen Discharge 10/1/80	P.R. Upstream Allen-10/1/80	P.R. Dov Allen-1
Iron (total, preserved)	2.0	0.16	0.89
Iron (total, non-preserved)	1.3	0.20	0.34
Iron (dissolved)	0.04	0.02	0.02
Manganese (total, preserved)	0.014	0.031	0.029
Manganese (total, non-preserved)	0.014	0.021	0.022
Manganese (dissolved)	<u><</u> 0.004	0.011	0.011
Zinc (total, preserved)	0.25	0.016	0.014
Zinc (total, non-preserved)	0.03	<u><</u> 0.004	<u><</u> 0.004
Zinc (dissolved)	0.020	<u><</u> 0.003	<u><</u> 0.003
Selenium (total, preserved)	0.020	<u><</u> 0.002	<u><</u> 0.002
Selenium (total, non-preserved)	0.024	<u><</u> 0.002	<u><</u> 0.002
Calcium (dissolved)	12	52	52
Magnesium (dissolved)	4.0	8.8	9.3
Potassium (dissolved)	5.0	1.4	1.5
Sodium (dissolved)	279	5.4	10.2
Soron (total)	0.19	0.14	0.18
Alkalinity (as CaCO ₃) (dissolved)	487	129	136 _ 🛑
Bicarbonate	524	152	148
Carbonate	34	3	9
Chloride	12	3.8	3.8
Fluoride	1.40	0.26	0.26
Harcness (tit) as CaCO ₃	52	153	150
Hardness (calc) as CaCO ₃	46	166	168
рн	8.6	8.5	8.5
Sulfate	218	39	40
Specific Conductance (umhos/cm)	• 1400	310	320
TDS (gravimetrically)	820	192	219
TDS (calc)	828	190	200
TSS	29	20	9
Oil and Grease	<u><</u> 2	<u><</u> 2	<u><</u> 2
Sodium Absorption Ratio	17.8	0.2	0.3
Ion Balance	5.5	-0.4	-1.0

COMMERCIAL TESTING & ENGINEERING CO.

,

(

(

ł

	Table No. V (mg/l		
-		···	Ç
Parameter	Maxwell Discharge 10/1/80	P.R.Upstream <u>Maxwe]]</u> -10/1/80	P.R.Downstream Maxwell-10/1/
Iron (total, preserved)	0.18	0.11	0.39
Iron (total, non-preserved)	0.08	0.09	0.35
Iron (dissolved)	0.02	0.01	0.03
Manganese (total, preserved)	<u><</u> 0.007	0.018	0.023
Manganese (total, non-preserved)	<u><</u> 0.007	0.013	0.014
Manganese (dissolved)	<u><</u> 0.004	<u><</u> 0.004	0.011
Zinc (total, preserved)	<u><</u> 0.004	0.008	0.044
linc (total, non-preserved)	<u><</u> 0.004	<u><</u> 0.004	<u><</u> 0.004
Zinc (dissolved)	<u><</u> 0.004	<u><</u> 0.003	0.003
Selenium (total, preserved)	<u><</u> 0.002	<u><</u> 0.002	<u><</u> 0.002
Selenium (total, non-preserved)	<u><</u> 0.002	<u><</u> 0.002	<u><</u> 0.002
Calcium (dissolved)	4.2	49	50
Magnesium (dissolved)	2.1	9.1	9.4
Potassium (dissolved)	2.3	1.7	1.5
Sodium (dissolved)	285	14.3	9.5
Soron (total)	0.34	0.22	0.33
Alkalinity (as CaCO ₃) (dissolved)	699	143	131
Sicarbonate	776	156	148
Carbonate	38	9	6
Chloride	36	6.0	5.4
Fluoride	6.8	0.35	0.35
<i>i</i> .			

•

linc (total, non-preserved)	<u><</u> 0.004	<u><</u> 0.004	<u><</u> 0.004
Zinc (dissolved)	<u><</u> 0.004	<u><</u> 0.003	0.003
Selenium (total, preserved)	<u><</u> 0.002	<u><</u> 0.002	<u><</u> 0.002
Selenium (total, non-preserved)	<u><</u> 0.002	<u><</u> 0.002	<u><</u> 0.002
Calcium (dissolved)	4.2	49	50
Magnesium (dissolved)	2.1	9.1	9.4
Potassium (dissolved)	2.3	1.7	1.5
Scdium (dissolved)	285	14.3	9.5
Soron (total)	0.34	0.22	0.33
Alkalinity (as CaCO ₃) (dissolved)	699	143	131
Bicarbonate	776	156	148
Carbonate	38	9	6
Chloride	36	6.0	5.4
Fluoride	6.8	0.35	0.35
Hardness (tit) as CaCO ₃	23	136	136
Hardness (calc) as CaCO ₃	19	160	164
- Hc	8.9	8.5	8.4
Sulfate	13	47	33
Specific Conductance (µmhos/cm)	1300	320	310
TDS (gravimetrically)	793	169	166
TDS (calc)	775	215	190
TSS	7	11	4
Oil and Grease	<u><</u> 2	<u><</u> 2	<u><</u> 2
Sodium Absorption Ratio	28.4	0.5	0.3
Ion Balance	8.0	1.0	-1.5

COMMERCIAL TESTING & ENGINEERING CO.

4.00

.

÷...

GENERAL OFFICES. 228 NORTH LA SALLE STREET, CHICAGO, ILLINCIS 60601 AREA CODE 312 726-8434

Reply to Instrumental Analysis Division 490 Orchard Street Golden, CO 80401

April 6, 1981

Mr. Jack Gillespie C F & I Steel Corporation P.O. Box 316 Pueblo, CO 91002

RE: IAD #97-G017-032-12 P.O. #M26144 Release #26689

Phone: 303-278-9521

ADDENDUM TO ANALYTICAL REPORT

Our report sent March 31, 1981, for our batch number IAD #97-G017-032-12 was lacking data for Chlorine determinations on twelve water samples. As stated in that report, Chloride was determined by specific ion electrode methods. The results of these determinations (which were included in the ion balance calculations on the March 31 report) are presented in Table No. I below, and are reported in milligrams per litre (mg/1).

Tabl	le_	No.	I
(m	3/1)	

Sample	<u>Chloride</u>
Purgatorie R Upstream Allen Mine Dump	2.6
Allen Upstream	2.8
Purgatorie R Downstream Allen Mine Dump	2.5
Purgatorie R Below Allen Mine	4.2
Allen Mine Discharge	8.5
Allen Mine Well Below Dump	6.9
Allen Mine Well Upstream Dump	6.9

\sim	->.
	~
<u>Sample</u>	Chloride
Purgatorie R Above Maxwell	3.2
Purgatorie R Below Maxwell	4.0
Maxwell Mine Discharge	29
AL-4-2	17
AL-3-3	4.4

If there are any questions concerning these results, please call.

Bruce A. Hale

.

Section Supervisor

cc: David McWhorter

as

. . .

M. L. Jacobs, Ph.D., Mngr. Instrumenta, Analysis Div.

- -

.

COMMERCIAL TESTING & ENGINEERING CO.

.

F-466

GENERAL OFFICES, 228 NORTH LA SALLE STREET, CHICAGO, ILLINOIS 60601 - AREA CODE 312 726-8434

Reply to Instrumental Analysis Division 490 Orchard Street Golden, CO 80401

March 31, 1981

Mr. Jack Gillespie C F & I Steel Corporation P.O. Box 316 Pueblo, CO 81002

RE: IAD #97-G017-032-12 P.O. # M26144 Release # 26689

DIECIENT

Phone: 303-278-9521

Analytical Report

Twelve samples were received for analyses on February 23, 1981. These samples were given our identification IAD #97-G017-032-12.

A portion of each sample was first filtered for analyses of dissolved constituents. Part of this filtrate was lightly digested for dissolved metals. Also, a non-filtered portion of each sample was given a rigorous digestion in hydrochloric and nitric acids. The digested solutions were then analyzed for Total and Dissolved Iron, Manganese, and Zinč and for Dissolved Calcium and Magnesium by flame atomic absorption. The Dissolved solution was also analyzed for Sodium and Potassium by flame emission. Selenium was analyzed on the total preparation by hydride generation atomic absorption.

Boron was determined colorimetrically by the curcumin method. Sulfate was determined turbidimetrically using the procedures of <u>Standard Methods</u>, 14th edition.

Conductivity, pH, Chloride and Fluoride were determined by specific ion electrode methods.

Total Suspended Solids (TSS) and Total Dissolved Solids (TDS) were found gravimetrically by <u>Standard Methods</u>.

Hardness was found by Titration as was Total Alkalinity. Carbonate and Bicarbonate were found from the Alkalinity calculation.

In addition, TDS, Hardness, Ion Balance and Sodium Absorption Ratio (SAR) were calculated from the dissolved constituents as a check of the analyses.

The results of these analyses are presented in the following tables and are reported in milligrams per litre (mg/l) except pH or as noted.

Table No. I (mg/l) ____

 \bigcirc

.

. .

),

	Purgatorie R Upstream Allen	Allen	Purgatorie R Downstream Allen	Purgatorie R Below Allen
Parameter	Mine Dump	Upstream	Mine Dump	Mine
Sodium(dissolved)	9.33	9.02	9.23	57.2
Calcium "	51.1	50.0	52.4	44.2
Magnesium "	11.1	10.7	11.2	10.0
Potassium "	1.17	1.18	1.16	1.74
Iron (total)	0.11	0.13	0.09	0.19
Iron (dissolved)	0.04	0.02	<u><</u> 0.01	<u><</u> 0.01
Zinc (total)	<u><</u> 0.008	<u><</u> 0.008	<u><</u> 0.008	<u><</u> 0.008
Zinc (dissolved)	0.051*	0.051*	300.0 <u>></u>	<u><</u> 0.008
Manganese (total)	0.03	0.04	0.02	0.03
Manganese (dissolve	d) 0.02	0.03	0.02	0.03
Selenium (total)	<u><</u> 0.001	< 0.001	<u><</u> 0.001	0.005
Boron	0.10	0.08	0.04	0.09
Total Alkalinity				
(as CaCO ₃)	140	143	140	201
Bicarbonate	171	174	171	245
Carbonate	0	0	0	0
Fluoride Chloride	0.11	0.40	0.40	0.61
рН	7.9	8.0	8.1	8.0
Sulfate	55	54	55	77
Conductance (µmhos/	cm) 241	337	354	505
TDS	203	222	209	252
TDS (calc)	216	215	217	317
TSS	12	15	14	20
Hardness (titr)	176	175	176	159
Hardness (calc)	173	• 169	177	152
SAR	0.3	0.3	0.3	2.0
Ion Balance	0.9	1.6	0.4	1.0
Anions (meg/l)	4.0	4.1	4.0	5.8
Cations (meg/l)	3.9	3.8	4.0	5.6

COMMERCIAL TESTING & ENGINEERING CO.

.

Original Copy Watermarked For Your Protection

		Table No. II	
		(mg/1) 12/2, 14 -5	W.L. 8.50 "
	<u>. 1</u> 07 · · ·	A1-2-1 10-11	Al-1-1 10011
Parameter	Allen Mine Discharge	Allen Mine Well Below Dump	Allen Mine Well Upstream Dump
Sodium (dissolved)	308	79.9	13.9
Calcium "	8.7	50.1	58.8
Magnesium "	3.55	10.2	11.4
Potassium "	6.18	1.95	1.60
Iron (total)	0.87	14.1	28.1
lron (dissolved)	0.06	<u><</u> 0.01	<u><</u> 0.01
Zinc (total)	<u><</u> 0.008	0.020	0.021
Zinc (dissolved)	<u><</u> 0.008	<u><</u> 0.008	<u><</u> 0.008
Manganese (total)	0.006	1.09	0.678
Manganese (dissolved)	<u><</u> 0.006	1.07	0.513
Selenium (total)	0.026	0.003	<u><</u> 0.001
Boron	0.06	0.07	0.12
Total Alkalinity			
(as CaCO ₃)	492	289	166
Bicarbonate	574	353	203
Carbonate	13	0	0
Fluoride	1.95	0.40	0.35
рН	8.6	8.0	7.7
Sulfate	204	52	62
Conductance(µmhos/cm)	1320	587	422
TDS	799	345	296
TDS (calc)	838	379	257
TSS	28	145	172
Hardness (titr)	35	169	213
Hardness (calc)	36	167	194
SAR	22	2.7	0.4
Ion Balance	0.4	0.7	1.6
Anions (meg/l)	14.4	7.1	4.8
Cations (meg/l)	14.3	6.9	4.5

...

COMMERCIAL TESTING & ENGINEERING CO.

••.

·

•

(

(

Т

ł

I

1

-

 \bigcirc

1

ł

r

F 466

Table No. III (mg/l)

_.·

1 : ·

1

.

 \mathbf{O}

Parameter	Purgatorie R Above Maxwell	Purgatorie R <u>Below Maxwell</u>	Maxwell Hine <u>Discharge</u>
Sodium (dissolved)	19.8	19.0	308
Calcium "	46.9	46.7	6.9
Magnesium "	10.4	10.5	11.6
Potassium "	1.28	1.28	2.49
Iron (total)	0.10	0.09	0.55
Iron (dissolved)	<u><</u> 0.01	<u><</u> 0.01	<u><</u> 0.01
Zinc (total)	<u><</u> 0.008	<u><</u> 0.008	<u><</u> 0.008
Zinc (dissolved)	0.032*	0.016*	< 0.008
Manganese (total)	0.03	0.03	0.006
Manganese (dissolved)) <u><</u> 0.01	0.02	0.006
Selenium (total)	0.002	<u><</u> 0.003	<u><</u> 0.004
Boron	0.09	0.10	0.13
Total Alkalinity (as CaCO)	149	158	704
Ricarbonate	182	192	790
Carbonate	0	0	34
Fluoride	0.37	0.37	5.1
На	8.1	8.2	8,8
Sulfate	59	55	14
Conductance (µmhos/cm	n) 368	379	1250
TDS	234	206	729
TDS (calc)	232	233	806
TSS	8	13	46
Hardness (titr)	173	170	12
Hardness (calc)	160 ·	160	65
SAR	. 0.7	0.7	16.6
Ion Balance	1.3	2.1	2.0
Anions (meg/l)	4.3	4.4	15.5
Cations (meg/l)	4.1	4.1	14.8

COMMERCIAL TESTING & ENGINEERING CO.

.

.

Original Copy Watermarked For Your Protection

F-466

	Table No. I	V
	(
	11.1.9.50	1111.16
Parameter	A1-4-2	A1-3-3
Sodium (dissolved)	70.9	16.4
Calcium (dissolved)	78.9	61.9
Magnesium (dissolved)	19.4	14.7
Potassium (dissolved)	2.00	2.39
Iron (total)	40.8	54.6
Iron (dissolved)	_< 0.01	0.13
Zinc (total)	0.124	0.134
Zinc (dissolved)	_< 0.008	_< 0.008
Manganese (total)	0.98	6.14
Manganese (dissolved)	0.77	5.09
Selenium (total)	_< 0.001	0.002
Boron	0.09	0.09
Total Alkalinity	220	210
(as cacu ₃)	330	240
Bicarbonate	403	292
Carbonate	0	0
Fluoride	0.38	0.53
рН	8.0	7.9
Sulfate	90	34
Conductance (µmhos/cm)	730	472
TƏS	368	143
TDS (calc)		
TSS	318	668
Hardness (titr)	131	229
Hardness (calc)	278	224
SAR	1.9	0.5
Ion Balance	1.1	1.5
Anions (meg/l)	9.0	5.6
Cations (meg/l)	8.7	5.4

. . .

٦.

۰.

.

* There seems to be some Zinc contamination in some of the field filtered splits. This problem did not arise with laboratory filtered splits of samples that had been received raw.

COMMERCIAL TESTING & ENGINEERING CO.

Original Copy Watermarked For Your Protection

{

, any questions concerning these results, please call.

- **)**

Bruce A. Hale Section Supervisor

M. L. Jacobs, Ph.D., Mngr. Instrumental Analysis Div.

.

cc: David McWhorter Ft. Collins

25

COMMERCIAL TESTING & ENGINEERING CO.

.:

.

GENERAL OFFICES: 228 NORTH LA SALLE STREET, CHICAGO, ILLINCIS 60501 -- AREA CODE 312 728-8434

Reply to Instrument Analysis Division 490 Orchard Street Golden, CO 80401

Phone: 303-278-9521

June 17, 1981

Mr. Jack Gillespie C F & I Steel Corp. P.O. Box 316 Pueblo, CO 81002

Re: IAD #97-G374-032-12 P.O. #M26144 Release #R26694

Analytical Report

Twelve water samples were received for analyses on April 14, 1981. These samples were given our identification #97-G374-O32-12.

Several discrepancies were discovered in our June 9, 1981, report. The data herein is an updated version and this report is to be substituted for the June 9 report.

For your edification the changes are as follows: Full sample identification including temperatures and water levels are used herein; pH values were rechecked for the "Allen Mine Discharge" and for the "P River above the Maxwell Discharge" and those values are included herein; a typographical error was made on the hardness data for the "P River below Allen Refuse", and the correct values are included herein. We regret any problems this may have caused and that these discrepancies were not noticed sooner.

Two litre bottles of water were received for each of the twelve sampling sites. The contents of one bottle from each site were filtered and aliquots were digested and analyzed for dissolved constituents. Unfiltered aliquots from the remaining twelve bottles were subjected to a rigorous digestion in nitric and hydrochloric acids and then analyzed for total metals.

The samples were analyzed for total and dissolved Iron, Zinc, and Manganese by flame atomic absorption. Dissolved Calcium and Magnesium were also analyzed by flame atomic absorption. Dissolved Sodium and Potassium were analyzed by flame emission. Total Selenium was determined by hydride generation atomic absorption.

Boron was determined colorimetrically, Sulfate turbidimetrically, and Chloride and Fluoride by specific ion electrode using the procedures of EPA Methods for Chemical Analyses of Water and Wastes, 1979. Total Dissolved Solids (TDS) and Total Suspended Solids (TSS) were determined gravimetrically by the procedures of <u>Standard Methods</u>, 14th edition. TDS is also calculated using the weights of constituents found in individual analyses. Alkalinity, Bicarbonate, Carbonate and Hardness were determined titrimetrically according to procedures of Standard Methods, 14th edition. Hardness was calculated from the dissolved parameters and compared with the titrated values. Specific Conductance and pH were determined by electrode response. Sodium Absorption Ratio and Ion Balance were also calculated and compared against TDS and Specific Conductance data.

The results of these analyses are presented in the tables and are reported in milligrams per litre (mg/l) except pH or otherwise noted. (Regrettably, both bottles for "P River below Allen Refuse" were filtered, so no analyses can be reported on the total metals.)

Section Supervisor

M. L. Jacobs, Ph.D., Mngr. Instrumental Analysis Div.

as

COMMERCIAL TESTING & ENGINEERING CO.

•	72N	-3-		
	<u></u> `	TABLE No. I (mg/l)		
(
Parameter	AL 3-3 Maxwell 4-13-81]:40PM Temp. 43 ⁰ F H ₂ 0 Level 6.10'	AL 4-2 4-13-81 2:00PM Temp. 48 ⁰ F H ₂ 0 Level 8.77'	AL-1-1 4-13-81 11:30 Temp. 46 ⁰ F H ₂ 0 Level 8.55'	Allen Mine AL-2-1 4-13-81 11:45 Temp. 50 ⁰ F H ₂ 0 Level 14.37'
Iron, total	6.31	3.40	4.77	1.34
Zinc, total	0.131	0.133	*0.052	0.019
Manganese, total	5.65	1.08	1.00	1.05
Selenium, total	<0.003	<0.003	<0.003	<0.003
Boron, total		<0.05	<0.05	
Chloride	5.4	19	4.6	3.4
Fluoride	0.31	0.28	0.20	0.24
pН	7.3	7.8	7.6	7.3
Sulfate	29	60	65	54
Conductance, (umhos/c	m) 440	750	400	580
TDS	300	400	292	394
TDS calculated	282	391	253	374
TSS	134	424	880	170
🕻 ium, dissolved	20	61	15	68 -
Calcium, dissolved	67	72	61	61
Potassium, dissolved	5.2	3.7	3.3	3.9
Magnesium, dissolved	12.4	14.3	9.69	9.60
Iron, dissolved	0.565	0.03	0.03	0.04
Zinc, dissolved	<u><</u> 0.005	0.086	0.103	<u><</u> 0.005
Manganese, dissolved	0.802	0.688	0.657	1.04
Alkalinity (as CaCO ₃)	233	295	152	283
Hardness, (titr. as C	aCO ₃)217	220	186	173
Hardness, (calc, as C	aCO ₃)221	. 240	194	193
Bicarbonate	284	359	187	345
Carbonate	0	0	0	0
Ion Balance	0	0.6	-0.4	-0.2
SAR	0.6	1.7	0.5	2.1

-

?

* Note: The discrepancy between Total and Dissolved Zinc values was not resolved even when the samples were reprepared

COMMERCIAL TESTING & ENGINEERING CO.

.

-.

- .-

.

-4-

-

•

•

.

.

<u>``</u>

ì

TABLE	No.	I	1
(mg/	/]	-	-

	Parameter	Allen Mine Water Discharge 4-13-81 <u>11:04AM Temp 59⁰F</u>	Maxwell Discharge 4-13-81 12:30PM Temp 55°F	P. River-Above Max- well Mine 4-13-81 1:20 Temp 60 ⁰ F	P. River-Belov Allen Mine 4-1 12:10PM Temp H
ł	Iron, total	0.310	0.60	0.08	0.10
:	Zinc, total	<u><</u> 0.005	<u><</u> 0.005	<u><</u> 0.005	<u><</u> 0.005
`	Manganese, total	<u><</u> 0.005	<u><</u> 0.005	0.023	0.028
	Selenium, total	0.024	<u><</u> 0.003	<u><</u> 0.003	<u><</u> 0.003
	Boron, total	<u><</u> 0.05	<u><</u> 0.05	<u><</u> 0.05	<u><</u> 0.05
	Chloride	13	3.0	4.6	4.6
	Fluoride	1.2	4.2	0.27	0.24
	рН	8.2	8.5	7.9	7.9
	Sulfate	215	8	49	45
١	Conductance, (µmhos/cm)	1400	1200	320	300
	TDS	925	716	227	249
ì	TDS calculated	854	683	212	204
	TSS	6	61	3	10
	Sodium, dissolved	320	292	16	20
	cium, dissolved	9.0	5.7	45	43
	Potassium, dissolved	6.6	6.0	3.9 -	2.9
	Magnesium, dissolved	2.81	1.40	8.67	8.10
	Iron, dissolved	0.03	<u><</u> 0.01	≤0.01	0.02
	Zinc, dissolved	_<0.005	<u><</u> 0.005	<u><</u> 0.005	≦0.005
	Manganese, dissolved	_0.005	0.014	0.014	≤0.005
	Alkalinity, (as CaCO ₃)	502	651	146	140
	Hardness, (titr. as CaCO	3) 36	30	158	143
	Hardness, (calc, as CaCO	3) 34	20	148	141
	Bicarbonate	602 .	739	178	170
	Carbonate	<u>,</u> 5	27	0	0
	Ion Balance	0.5	0.7	1.9	0.7
	SAR	23.9	28.4	0.6	0.7

COMMERCIAL TESTING & ENGINEERING CO.

.

- 2

F-486

-5-TABLE No. III (mg/l)

 $\left(\cdot \right)$

Parameter	P. River-Below Allen Refuse 4-13-81 12:00 Temp. 56 F	P. River-Below Maxwell Mine 4-13-81 2:00PM Temp. 58°F	P. River-Upstream Allen Mine 4-13-81 11:00AM Temp. 50°F	P. River-Upstream Allen Mine≁ 4-13-81 11:30 Temp. 54 ⁰ F
Iron, total		0.08	0.15	0.10
Zinc, total		<u><</u> 0.005	<u><</u> 0.005	<0.005
Manganese, total		0.028	0.018	0.009
Selenium, total		<u><</u> 0.003	<u><</u> 0.003	<0.003
Boron, total	<u><</u> 0.05	<u><</u> 0.05	<u><</u> 0.05	
Cilloride	4.6	5.1	4.1	4.6
Fluoride	0.23	0.29	0.21	0.24
ρН		8.1	8.3	7.8
Sulfate	38	48	38	39
Conductance, (umhos/cr	n) 280	340	300	290
TDS	246	224	181	200
TDS calculated	185	223	174	205
TSS		2	5	8
Squium, dissolved	7.5	20	7.9	7.3 _
Carcium, dissolved	43	52	42	59
Potassium, dissolved	2,6	3.1	3.7	2.6
Magnesium, dissolved	8.77	7.77	7.61	7.95
Iron, dissolved	<u><</u> 0.01	0.03	0.03	0.09
Zinc, dissolved	<u><</u> 0.005	<u><</u> 0.005	0.014	<u><</u> 0.005
Manganese, dissolved	0,009	0.023	0.014	0.014
Alkalinity (as CaCO ₃)	123	149	123	147
Hardness, (titr. as Ca	aCO ₃)135	144	143	145
Hardness, (calc, as Ca	aCO ₃)143	162	136	180
Bicarbonate	159	• 182	150	179
Carbonate	0	0	0	0
Ion Balance	1.7	-0.3	1.4	-0.5
SAR	0.3	0.7	0.3	0.2

If there are any questions concerning these results, please call.

Original Copy Watermarked For Your Protection

٠,

COMMERCIAL TESTING & ENGINEERING CO.

~

F-468

ł

EPA Fem 3320-1410-72

ORIGINAL

f٦

í

0141

0.5.77

٤.

۲. ۲

OF

1.

1

` a r - 1

CF&I CORP (ALLEN MINE)

PO BOX 316- CZO MATHESON

PUEBLO

Γ

Ċ0 81002

64-197 °. 6-1 0000906 PERHIT HUNDER

1 62-873

117-181

SIC

dt

10

щQ

(3 card only)

REPORTING PERIOD: FROM 80 YEAR

INSTRUCTIONS -

OMB NO. 150-R0073

цС П

57 11

· . ·

- Provide dates for period covered by this report is spaces marked "REPORTING PERIOD".
 Enter reported minimum, average and maximum values under "QUARTATY" and "CONCENTRATION" in the units specified for each parameter as appropriate. Do not enter values in bases containing saterinks "A VERAGE" is average computed over actual time disclores is operating. "MAXDUM" and "MINIMUL" are extreme values observed during the reporting period.
 Specify the number of analyzed samples that access the maximum (and/or shalmum as appropriate) permit conditions in the columns likeled "No. Ex." If mone, anter "O".
 Specify Irequency of analysis for each parameter as No. santyas/No. days. (e.g., "J/7" is equivariated to a languar date in the conditioned avera of date. If continue actes "ONT "
- tent to 3 analyses parlomed avery 7 days.) If continuous enter "CONT." 5. Specify sample type ("grab" at "..... hr. composite") as applicable. If frequency was continuous,
- enter "NA".

6. Appropriate signature is required on bottom of this form.

(4 card only)

7. Remove carbon and relain copy for your records.

8. Fold along dotted lines, steple and mail Original to office specified in penalt. 104-001 169-162

			(3 cord only) (31 - 031	QUANT	1TY (8+4.0		182-83	(4 card only) (38-a8i	CONCENTS (44-84)	ATION		102-43	FREQUENCY	SANPLE
			мунин	AVERAGE	махімци	UNITS	NQ. EX	MINIMUM	AVERAGE	MAXIMUM	UNITS	NO. EX	ANALYSIA	TYPE
	FLOW IN CONDUIT	AEPORTED	0.0076	0.027	0.040			-n U J #		* * * *		C	1/2	_/N
	50050	PERMIT CONDITION			• a • u	(455)		* 4 0 0			MGD		1/7	IN
ļ	BOD+ 5-DAY+	REPORTED			****				2	3		0	1/30	<u>co</u>
	20 DEG. C. 00310	PEANIT CANOLTION			* • • •	KU/GAY		4444	30	45	HG/L		1/30	<u></u>
U.	INFLUENT BOD	REPORTED						2	6	9		0	1/30	co
	A0005	PENHIT CONDITION			ن به نه کا	KGZDAY	<u> </u>	<u>404.9</u>	0 0 0	* • * *	MG/L	·	1/30	<u> </u>
ا	SOLIDS. TOTAL SUSP	REPORTED			4 a a 4			<1	3	7		C	130	<u></u>
	(SUSPENDED) 00530	PERMIT CONDITION			<u></u>	KGZDAY		a a a	30	45	HG/L		1/30	<u></u>
Ú	INFLAT SUSP SOLIDS	REPORTED			* • * *				6	9		-	1/30	<u>co</u>
	TOTAL 	PERMIT CONDITION			• • • •	KG/DAY					HG/L		1/30	co
	COLIFORM+ FECAL	REPORTED			***		Ĺ	<2	53	9180	_	0	1/30	co
	31616	PERMIT CONDITION			44 cs 44 44				6000	12000	#/100H		1/30	<u>co</u>
	CHLORINE. TOTAL	AEPONTED	* * • •		* * * * *			_0.05	0.10	0.15		0	1/7	GR
•	50060	PERMIT CONDITION			4 (2 (3 4)	KUZUAY				0.5	MG/L		1/7	GR
	PH+FIELD	REPORTED			<u> </u>		ļ	7.4		7.9		0	1/2	GR
•	00400	CONDITION	• • • •			50		<u></u>		9.0	SU		J17	<u> </u>
	HANE OF PRINCIPAL EXECUTIVE	OFFICER		THE OFFICER		DATE	I cen	ity that from famil	lier with the infor	nation contained	in shie 🔪 🛰	14	Aunte	un .
	TAKUCH FRANK	<u> </u>	TRESH	TITLE		1 1 -	nepos metio	r and thei to the bi n is true, complete	est of my knowledg s, and accurate,	is and belief such	Si	CHATUS	OF PRINCIPAL	ED AGENT
.,	A Form 33 20-1 (10-72)		· · · · ·							<u> </u>	ORIGINA		PAGE	OF

February 28, 2022

Jared Ebert Division of Reclamation, Mining and Safety 1313 Sherman St., Rm. 215 Denver, Colorado 80203

Re: New Elk Mine Permit C-1981-012 2021 Annual Hydrology Report

Dear Mr. Ebert:

The New Elk Mine annual Hydrologic Monitoring Requirements are summarized in Table 27 Hydrologic Monitoring Frequency Requirements and Table 28 Water Quality Laboratory Analysis attached to this letter report.

In general weather conditions at New Elk Mine were dry. There were only a couple snowstorms at the beginning of the year. There were substantial precipitation events during the spring and early summer. The end of the year did not have very many

There were no discharges throughout the year as detailed below. All required monitoring of refuse, surface, and groundwater wells and rain water was completed in 2021. Monitoring of NE-5-10a and NE-5-10b also begun this year, as mining in the Blue Seam again has started.

New Elk staff revised Table 27 to include Discharge Monitoring Site 010 and remove NPDES Station 080 as it is outdated, as part of a Permit Revision to be submitted this year.

NPDES Discharge Monitoring

All NPDES discharges were monitored and reported to CDPHE on Discharge Monitoring Report forms (DMRs). Copies of these reports have already been submitted to the Division (DRMS) and are not duplicated herein. **Discharge Monitoring Site 001** did not discharge during 2021. Water flow to/from is managed by a system of pumps with a gravity flow discharge through the primary if the water level exceeds the discharge elevation of the primary decant spillway. Water has been pumped to pond 001. And there was some withdrawal in the pond by pumping the water to the mine water tank to be reused. These volumes and evaporation losses are tracked and reported to the Pueblo District of the Colorado Division of Water Resources. These losses were compensated to the stream by water New Elk has under lease from the Hill Ranch.

Discharge Monitoring of Site 004 (Pond 4) is no longer a requirement of the NPDES permit. Throughout the year water levels were minimal and no discharges occurred.

Discharge Monitoring of Site 007 (Pond 7) held water throughout most of 2021. The pond did not have any discharges throughout the year.

Discharge Monitoring of Site 008 (Pond 8) held minimal water throughout 2021. There were no discharges throughout the year. The pond has held minimal water in it and has little sediment build up since it was last cleaned in 2018.

Discharge Monitoring of Site 010 (SAE south of Pond 7) with minimal rainfall throughout the year with no discharges. The outfall was monitored carefully throughout the year and maintenance on the SAE was done. The maintenance included minor fixes to a silt fence, cleaning of ditches, and a check dams.

RDA Monitoring Wells

Three monitoring wells, **Th-201**, **TH-202**, and **TH-203**, area located on the three lower reclaimed benches of the mine's Refuse Disposal Area. These wells penetrate the compacted refuse down to the contact with the basal bedrock of the disposal area.

The intent is to monitor ground water at the refuse/bedrock contact and alert the operator to potential problems that could arise from accumulation of ground water. The monitoring plan calls for recording depths to water for these sites on a quarterly basis.

Readings were taken March 2, June 6, September 23, and December 21, 2021. This data is summarized in Table 1 RDA Monitoring Wells following this report. No significant changes were noted for any of the wells.

Surface and Groundwater Monitoring

Field data was taken in the second and fourth quarter for the Surface Water, Groundwater, and Mine Water monitoring wells. The field data is compiled in Table 2 Field Data and notes for the field data are shown in **Appendix A Field Notes**. This data is summarized in Table 3 Lab Analysis following this report. For PRS-1 and PRS-4 there were no major changes in 2021 compared to 2020. Ground water wells Paw-1, Paw-2, Paw-8, and Paw-9 had similar field data from 2020 to 2021. Mine water wells New-2, New-4, NE-1-10, and New-3 also had similar field data from 2020 to 2020.

Laboratory Analysis was done on July 8 for Paw-1 and Paw-9 for the semi-annual test. Laboratory Analysis was also completed on Paw-1, Paw-2, Paw-8, and Paw-9 on November 17. On December 1 NEW-4 and NE-1-10 were sampled. On December 16 NEW-2, NE-5-10a, and NE-5-10b were sampled. The lab analysis and field notes accidently added mislabeled these samples as NE-6-10a and NE-6-10b. Finally on December 20 PRS-1 and PRS-4 were sampled. The analytical results for these samples are shown in **Appendix B Lab Analytics**. This data was compared to the historical information available in previous AHRs (see 2008 for best tabulation): All observed data fell within the historical range of each parameter.

Analysis of Alluvial Groundwater Data

The groundwater wells did not show much change from 2020 to 2021. All data for Paw-1, Paw-2, Paw-8 and Paw-9 were consistent with previous year's data.

Rain Water Monitoring

2021 was a dry year. Snowfall was minimal throughout the first part of the year, followed by a wet spring and early Summer seasons. There were only six events of over an inch of rainfall in a 24-hour period; the last occurrence was July 24. The rest of the year was dry until snowfall began in December.

<u>Comments</u>

New Elk worked with DRMS in revising the water monitoring program in 2021 that amended Table 27.

Please advise me if any additional information is needed.

Regards

Nicholes Mason

Nicholas Mason

Table 1 RDA Monitoring Wells										
		Depth to Water in Feet								
Quarter	Q1	Q2	Q3	Q4						
Date	2-Mar	6-Jun	23-Sep	21-Dec						
Th-01	42.9	43	42.7	43.1						
Th-02	70.7	71	71.1	71.1						
Th-03	93.5	93.8	93.9	93.6						

Table 2 Field Data												
Second Quarter 2020	Surface	Water		Groundwa	ater Wells				Mine	e Water		
	PRS-1	PRS-4	PAW-1	PAW-2	PAW-8	PAW-9	NEW-2	NEW-4	NE-5-10a	NE-5-10b	NEW-1-10	NEW-3
Date	22-Jun	22-Jun	8-Jul	22-Jun	22-Jun	8-Jul	4-Jun	4-Jun			15-Apr	9-Apr
Field Measurments												
Depth to Water (ft)	-	-	7.7	16.3	33.9	15.2	346.5	353			305.3	421.6
Flow Rate (cfs)	79.380	76.430	-	-	-	-	-	-			-	-
Ph (S.U.)	9.10	8.78	8.93	7.77	7.60	8.05	-	-			-	-
Conductivity (µohms/cm ²)	194	195	257	894	1165	1026	-	-			-	-
Temperature (°C)	15.1	16.4	12.0	11.6	14.8	11.4	-	-			-	-
Fourth Quarter 2020	Surface	Water		Groundwa	ater Wells				Mine	e Water		
Fourth Quarter 2020	Surface PRS-1	Water PRS-4	PAW-1	Groundw PAW-2	ater Wells PAW-8	PAW-9	NEW-2	NEW-4	Mine NE-5-10a	e Water NE-5-10b	NEW-1-10	NEW-3
Fourth Quarter 2020 Date	Surface PRS-1 20-Dec	Water PRS-4 20-Dec	PAW-1 17-Nov	Groundw PAW-2 17-Nov	ater Wells PAW-8 17-Nov	PAW-9 17-Nov	NEW-2 16-Dec	NEW-4 1-Dec	Mine NE-5-10a 16-Dec	Water NE-5-10b 16-Dec	NEW-1-10 1-Dec	NEW-3 16-Dec
Fourth Quarter 2020 Date Field Measurments	Surface PRS-1 20-Dec	Water PRS-4 20-Dec	PAW-1 17-Nov	Groundwa PAW-2 17-Nov	ater Wells PAW-8 17-Nov	PAW-9 17-Nov	NEW-2 16-Dec	NEW-4 1-Dec	Mine NE-5-10a 16-Dec	Water NE-5-10b 16-Dec	NEW-1-10 1-Dec	NEW-3 16-Dec
Fourth Quarter 2020 Date <u>Field Measurments</u> Depth to Water (ft)	Surface PRS-1 20-Dec	Water PRS-4 20-Dec	PAW-1 17-Nov 8	Groundw PAW-2 17-Nov 17.8	Ater Wells PAW-8 17-Nov 33.5	PAW-9 17-Nov 15.5	NEW-2 16-Dec 341.7	NEW-4 1-Dec 348.7	Mine NE-5-10a 16-Dec 663.85	Water NE-5-10b 16-Dec 370.4	NEW-1-10 1-Dec 304.9	NEW-3 16-Dec 421.6
Fourth Quarter 2020 Date <u>Field Measurments</u> Depth to Water (ft) Flow Rate (cfs)	Surface PRS-1 20-Dec - 9.860	Water PRS-4 20-Dec - 12.350	PAW-1 17-Nov 8 -	Groundwa PAW-2 17-Nov 17.8	ater Wells PAW-8 17-Nov 33.5	PAW-9 17-Nov 15.5	NEW-2 16-Dec 341.7	NEW-4 1-Dec 348.7	Mine NE-5-10a 16-Dec 663.85	Water NE-5-10b 16-Dec 370.4	NEW-1-10 1-Dec 304.9	NEW-3 16-Dec 421.6
Fourth Quarter 2020 Date Field Measurments Depth to Water (ft) Flow Rate (cfs) Ph (S.U.)	Surface PRS-1 20-Dec - 9.860 8.85	Water PRS-4 20-Dec - 12.350 8.67	PAW-1 17-Nov 8 - 8.90	Groundw PAW-2 17-Nov 17.8 - 7.40	ater Wells PAW-8 17-Nov 33.5 - 7.23	PAW-9 17-Nov 15.5 - 7.96	NEW-2 16-Dec 341.7 - 8.16	NEW-4 1-Dec 348.7 - 8.25	Mine NE-5-10a 16-Dec 663.85 - 9.11	Water NE-5-10b 16-Dec 370.4 - 8.35	NEW-1-10 1-Dec 304.9 - 10.98	NEW-3 16-Dec 421.6 -
Fourth Quarter 2020 Date Field Measurments Depth to Water (ft) Flow Rate (cfs) Ph (S.U.) Conductivity (µohms/cm ²)	Surface PRS-1 20-Dec - 9.860 8.85 382	Water PRS-4 20-Dec - 12.350 8.67 403	PAW-1 17-Nov 8 - 8.90 276	Groundw. PAW-2 17-Nov 17.8 - 7.40 7	ater Wells PAW-8 17-Nov 33.5 - 7.23 1302	PAW-9 17-Nov 15.5 - 7.96 1052	NEW-2 16-Dec 341.7 - 8.16 2.16	NEW-4 1-Dec 348.7 - 8.25 2.18	Mine NE-5-10a 16-Dec 663.85 - 9.11 1733	Water NE-5-10b 16-Dec 370.4 - 8.35 836	NEW-1-10 1-Dec 304.9 - 10.98 1408	NEW-3 16-Dec 421.6 - - -

				Table	e 3 Lab Ana	lysis							
	Surface	Water			Groundwa	ater Wells					Mine Wate	r	
	PRS-1	PRS-4	PAW-1	PAW-9	PAW-1	PAW-2	PAW-8	PAW-9	NEW-2	NEW-4	NE-5-10a	NE-5-10b	NEW-1-10
Date	20-Dec	20-Dec	8-Jul	8-Jul	17-Nov	17-Nov	17-Nov	17-Nov	16-Dec	1-Dec	16-Dec	16-Dec	1-Dec
Laboratory Analysis													
Total Suspended Solids (TSS) (mg/l)	<5	5	59.0	6.0	23.0	340.0	96.0	14.0	<5	<5	13.0	26.0	5.0
Carbonate (mg/l)	<2	4.3	<2	<2	<2	<2	<2	<2	54	89.5	136	17.7	323
Bicarbonate (mg/l)	136	137	102	417	116	414	487	442	1070	1180	938	458	404
Chloride (mg/l)	2.19	2.31	14.20	20.60	11.90	18.70	35.30	17.90	9.07	11.50	5.47	5.29	7.14
Sulfate (mg/l)	40.2	41.2	3.6	85.8	3.1	52.3	135.0	77.0	143.0	19.0	1.8	13.3	21.0
Manganese total (Mn) (mg/l)	0.023	0.034	0.091	0.011	0.084	1.710	1.200	1.100	0.052	0.011	0.013	0.034	<0.01
Manganese dissolved (Mn) (mg/l)	<0.01	0.011	< 0.01	< 0.01	0.058	1.080	0.049	< 0.01	0.017	< 0.01	<0.01	0.017	< 0.01
Calcium (Ca) (mg/l)	48.3	49	14.7	69.5	18.9	89.6	103.0	68.7	11.4	5.4	2.6	<0.008	2.3
Magnesium (Mg) (mg/l)	8.00	8.15	8.12	19.30	9.15	17.40	22.80	18.30	5.01	2.75	0.82	0.31	2.54
Potassium (K) (mg/l)	1.54	1.50	1.74	2.35	1.51	2.75	1.79	2.44	6.98	5.32	2.89	1.42	4.12
Sodium (Na) (mg/l)	6.99	7.55	18.6	111.0	17.9	76.8	149.0	123.0	487	526	417	189	304
Iron (Fe) (mg/l), Total Dissolved	<0.06	<0.06	0.196	0.06	<0.06	0.816	<0.06	<0.06	0.13	<0.06	<0.06	0.161	<0.06
Iron (Fe) (mg/I), Total Recoverable	0.165	0.259	25.60	0.33	10.20	83.30	5.63	0.84	0.88	0.13	0.43	1.79	0.22
Sodium Absorption Rate (SAR)	0.25	0.27	0.98	3.10	0.86	2.00	3.50	3.40	31	47	59	31	33
Total Dissolved Solids (TDS) (mg/l)	216	216	130	592	124	480	754	578	1360	1400	1100	510	826
Hardness (Calculated) (mg/l)	154	156	70	253	85	295	351	247	49	25	10	7	16

			1	Fable 4 New Elk	Rain Gauge Data	1			
Date	Rain Fall(in)	Date	Rain Fall(in)	Date	Rain Fall(in)	Date	Rain Fall(in)	Date	Rain Fall(in)
1-Apr	0.0	9-May	0.0	16-Jun	0.0	24-Jul	0.1	31-Aug	0.0
2-Apr	0.0	10-May	0.2	17-Jun	0.0	25-Jul	0.1	1-Sep	0.4
3-Apr	0.0	11-May	0.2	18-Jun	0.0	26-Jul	0.4	2-Sep	0.0
4-Apr	0.0	12-May	0.5	19-Jun	0.0	27-Jul	0.0	3-Sep	0.0
5-Apr	0.0	13-May	0.0	20-Jun	0.0	28-Jul	0.0	4-Sep	0.0
6-Apr	0.0	14-May	0.0	21-Jun	0.0	29-Jul	0.0	5-Sep	0.0
7-Apr	2.0	15-May	0.0	22-Jun	0.0	30-Jul	0.0	6-Sep	0.0
8-Apr	0.0	16-May	0.0	23-Jun	0.0	31-Jul	0.0	7-Sep	0.0
9-Apr	0.0	17-May	0.0	24-Jun	0.0	1-Aug	0.0	8-Sep	0.0
10-Apr	0.0	18-May	2.0	25-Jun	0.0	2-Aug	0.7	9-Sep	0.0
11-Apr	0.0	19-May	0.4	26-Jun	0.0	3-Aug	0.0	10-Sep	0.0
12-Apr	0.0	20-May	0.1	27-Jun	0.0	4-Aug	0.4	11-Sep	0.0
13-Apr	0.0	21-May	0.0	28-Jun	0.7	5-Aug	0.0	12-Sep	0.0
14-Apr	0.0	22-May	0.2	29-Jun	0.1	6-Aug	0.0	13-Sep	0.0
15-Apr	0.0	23-May	0.0	30-Jun	0.2	7-Aug	0.0	14-Sep	0.0
16-Apr	0.0	24-May	0.0	1-Jul	0.2	8-Aug	0.0	15-Sep	0.5
17-Apr	1.5	25-May	0.0	2-Jul	0.1	9-Aug	0.0	16-Sep	0.0
18-Apr	0.0	26-May	0.0	3-Jul	0.1	10-Aug	0.0	17-Sep	0.0
19-Apr	0.0	27-May	0.0	4-Jul	0.5	11-Aug	0.0	18-Sep	0.0
20-Apr	0.0	28-May	0.0	5-Jul	0.3	12-Aug	0.0	19-Sep	0.0
21-Apr	0.0	29-May	0.0	6-Jul	0.0	13-Aug	0.0	20-Sep	0.0
22-Apr	3.0	30-May	0.0	7-Jul	0.0	14-Aug	0.0	21-Sep	0.0
23-Apr	0.0	31-May	0.0	8-Jul	0.0	15-Aug	0.0	22-Sep	0.0
24-Apr	0.0	1-Jun	1.1	9-Jul	0.0	16-Aug	0.4	23-Sep	0.0
25-Apr	0.0	2-Jun	0.0	10-Jul	0.0	17-Aug	0.0	24-Sep	0.0
26-Apr	0.0	3-Jun	0.0	11-Jul	0.0	18-Aug	0.0	25-Sep	0.0
27-Apr	0.0	4-Jun	0.8	12-Jul	0.0	19-Aug	0.0	26-Sep	0.0
28-Apr	0.0	5-Jun	0.0	13-Jul	0.0	20-Aug	0.0	27-Sep	0.0
29-Apr	0.0	6-Jun	0.0	14-Jul	0.0	21-Aug	0.0	28-Sep	0.2
30-Apr	0.0	7-Jun	0.1	15-Jul	0.4	22-Aug	0.0	29-Sep	0.0
1-May	0.0	8-Jun	0.1	16-Jul	0.0	23-Aug	0.0	30-Sep	0.5
2-May	0.0	9-Jun	0.0	17-Jul	0.0	24-Aug	0.0		
3-May	0.0	10-Jun	0.0	18-Jul	0.0	25-Aug	0.0		
4-May	0.2	11-Jun	0.0	19-Jul	0.0	26-Aug	0.0		
5-May	0.0	12-Jun	0.0	20-Jul	0.0	27-Aug	0.1		
6-May	0.0	13-Jun	0.0	21-Jul	0.0	28-Aug	0.0		
7-May	0.0	14-Jun	0.0	22-Jul	0.0	29-Aug	0.0		
8-May	0.0	15-Jun	0.0	23-Jul	1.4	30-Aug	0.0		

Table 27 Hydr	ologic Monitorii	ng Frequency Re	quirements	-
Site	Water level or flow	Field Measurements	Laboratory Analysis	NPDES List
			, , , , , , , , , , , , , , , , , , , ,	
PRS-1	S	S	А	
PRS-1a**	Q	Q	Q	
PRS-4 (aka NE080)	S	S	А	
PRS-4a**	Q (then S)	Q (then S)	Q (then A)	
TH-201	0			
TH-202	0			
TH-203	0			
PAW-1	S	S	S	
PAW-1a**	O (then s)	O (then s)	O (then s)	
PAW-2	S	S	Α	
PAW-8	S	S	A	
PAW-9	S	S	S	
NEW-2	S	A	А	
NEW-3	S			
NEW-4	S	А	А	
NE-1-10	S	A	А	
NE-6-10a *	Q	Q	Q	
NE-6-10b *	Q	Q	Q	
NM-20 *	Q	Q	Q	
NM-21 *	Q	Q	Q	
NM-22 *	Q	Q	Q	
NM-23 *	Q	Q	Q	
SF-2 *	Q	Q	Q	
NDDES Stations				
NF 001 (Pond 1)				
NE 004 (Pond 4)				
NE 007 (Pond 7)				
NE 008 (Pond 8)				
NE 010 (Outfall 10)				+
NE 010 (Outrail 10)				+
NF 012				
KEV S-Somi annually	(2nd and 4th quarters)		A-Annually/Ath awart	or)
* Monitoring of the v resumed prior to any	vells is suspended whil vells is suspended whil vesumption of mining	e the mine remians inac	tive, but the full monit	oring program will be
NPDES permit for fre	equency and required a	nalysis		Note: If

the coal shipping faciliteis become active, the Division will be notified in writing and the frequency of monitoring reviewed and increased, if operational parameters warrant.

Table 28 Water Quality Analysis Parameters				
Field Measurments	Units			
Flow rate/water level	cfs/feet below top of casing			
рН				
Conductivity				
Temperature				
Laboratory Analysis (both Surface and FW unless noted)	Units			
Total Suspended Solids (TSS)	mg/l			
Total Dissolved Solids (TDS)	mg/l			
Carbonate	mg/l			
Bicarbonate	mg/l			
Chloride	mg/l			
Sulfate	mg/l			
Manganese (Mn)	mg/I total and dissovled			
Potassium (K)	mg/l			
Sodium (Na)	mg/l			
Calcium (Ca)	mg/l			
Magnesium (Mg)	mg/l			
Iron (fe)	mg/l total, diss, total recoverable ¹			
Hardness (calculated)	calculated			
Sodium Absorption Ratio	unit			
Sediment Ponds				
Frequency and analysis in accordance with NPDES permit				
¹ surface water only				

Appendix A

(Field Notes)

) Infell	?		11				
0.0 " 19		Reading	0				
NEW ELK MINE HYDROLOGIC "ONITORING FIELD REPORT DATE: $O4/o9/2c_{21}$ WEATHER: $C/e_{21}c_{47}c_{7}r_{7}$	NOTES	Annuel				-	
		Sem					
	SAMPLED BY	begano					
	SAMPLE (Y/N)	02					
	TEMPERATURE	N O					
	CONDUCTIVITY	0 Z					
	Ηd	No No					
\bigcirc	DEPTH	421,6					
	TIME	10:20					
	SITE ID	NFW					
John		1	-	 1			
--------------------------	--------------	-----------	---	-------	--	--	
00 20	DTES	iel test					
Inudu 45	N	seni-annu					
DRING FIELD REPU	SAMPLED BY	Begano					
LOG MONITO	SAMPLE (Y/N)	No					
MINE HYDRO DATE: 4-74	TEMPERATURE	No					
NEW ELK	CONDUCTIVITY	N N					
	Hd	No					
	DEPTH	305.3					
	TIME	14:45					
\cup	SITE ID	NF.					

 \sim

NEW ELK MINE HYDROLOGIC MONITORING FIELD REPORT

Date: 6/4/1-1

Weather: Clear, O.8" RainFall /24 Hours, 48°F

	Anniel	three			
Notes	Senn -	Semi-A			
Sampled By	NICK	NICK			
Laboratory Sample (Y/N)	No	No			
Temperature Degrees C	No	No			
Conductivity	No	No			
Hd	сM	No			
Depth	346. 5	353.0			
Time	8:36	24:6			
Site ID	New Z	New 4			

2⁴⁴

	I aiviai	Tes t	test	Test	Test				
Lo Lo	NOTES	Annual	Annuel -	Annuel	Annua	2			
8T 200	01 12	Sem	Semi	Sem	Semi	12 12			
RING FIELD REPO	SAMPLED BY	Tim Begano	Jim Begano	Jim Bepeno	Tim Begzno				
GIC MONITO	SAMPLE (Y/N)	No	No	No	No				
INE HYDR	TEMPERATURE	15°1°C	16.4°C	14,8°C	2.911	×			
D/ New elk m	CONDUCTIVITY	Som 1.461	195.3	116.5 205	894 NVS				
	Hd	9.1	0.70	9:1	41.77				
	DEPTH	593.76 gel/sec	571.77 gal/sec	33.9'	16.3'		a 1		
	TIME	12:51	13:13	13:45	14,01				
\bigcirc	SITE ID	PRS 1	PRS4	PAW B	PAW,				

1) /24 Hrs	- 			1	 _	
TO RAPE C 3" Confo	Notes	Semples sent to ACZ Lebs. Semi annual test.	Samples sent to ACZ Labs. Semi annual test			
SING FIELD REPOF VEATHER: ハー。	SAMPLED BY	Jim Begano	Jim	the second		
DGIC MONITO	SAMPLE (Y/N)	Kes	Yes			
	TEMPERATURE	12°C	D.+.11			
NEW ELK MI DA	CONDUCTIVITY	257MS	Smgzal			
	Ηd	0.93	8.05			
	DEPTH	16.2	15.2			
	TIME	21:51	13:45			
	SITE ID	PAW 1	MHG 6			

NEW ELK MINE HYDROLOGIC MONITORING FIELD REPORT

Date: 11/17/21 Weather: Clear, 0.0" RainFall last 24 hours, 63°F

lotes	Sumple sut to	Sonple sent to	ALE LADS	ALE LUSS uple sut to	ACZ Labs		
Sampled By	NICK	NICK	Nick S Nick S	NICK S	NARN		
Laboratory Sample (Y/N)	>	Y	>	>-			-
Temperature Degrees C	9.2	12,0	11.7	12.6	ų		
Conductivity	276	1064	1302	1052			
Ha	8.90	oh.t	7.23	7.96			
Depth	0.0	17.8	33.5	15.5	÷		
Time	54:21	1:00	52:1	1:50			
Site ID	Par -	Paw 2	00 30 6	Pau 9			

 $|\mathbf{r}_{\mathbf{r}}|$

	NOTES	Samples Sent to ACZ Labs	Samples sent to ACZ Labs			
VEATHER:	SAMPLED BY	VINCE Messerati	Vince Massell			
N 12-10	SAMPLE (Y/N)	Yes	Yes			
AIE: 1 2 - 6	TEMPERATURE	18.80	12.10			
	CONDUCTIVITY	2.18	1408 2115			
	Hd	8,25	10.98			
	DEPTH	348.7	304.9			
	IIME	12:36	13,10			
01 LL 1	SHEIU	NEW	NE-1-10			

NEW ELK MINE HYDROLOGIC MONITORING FIELD REPORT

700 × NNI	NOTES		Samples sent to ACZ Labs	Samples sent to	Samples sent to ACZ Lebs		
RING FIELD REPOR	SAMPLED BY		Vince Massaroffi	Vince Massaroff	Vince Messoroff		
DGIC MONITOR	SAMPLE (Y/N)	No	Yes	Yes	Yes		
INE HYDROLO	TEMPERATURE	No	2470	21.71	15,700		
D/ D/	CONDUCTIVITY	N _C	173345	E3645	2.16 mS		
	Hd	No	9.11	8.35	8.16		
	DEPTH	421,6	663,85	370.4	341.7		
	TIME	11:15	12:30	13:04	13,46		
s.	SITE ID	NEW	NE-6- 10-A	NE-6- 10-B	New Z		

PRS 14:32 92.38 8.67 403 1.78 Yes Wassoroft, to ACZ Lebs SAMPLE Scatt to ACZ Labs SUNNY 62°F NOTES NEW ELK MINE HYDROLOGIC MONITORING FIELD REPORT Messervett Vinee SAMPLED BY DATE: 12-20-2021 WEATHER: Yes SAMPLE (Y/N) PRS 14:00 73.74 8.85 382 1.2°C CONDUCTIVITY TEMPERATURE Hd DEPTH TIME SITE ID

Appendix B

(Lab Analytics)

August 02, 2021

Report to: Jim Begano New Elk Coal Co. , LLC 12250 Hwy. 12 Weston, CO 81091

cc: Nick Mason

Bill to: Accounts Payable New Elk Coal Co. , LLC 12250 Highway 12 Weston, CO 81091

Project ID: ACZ Project ID: L67040

Jim Begano:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on July 12, 2021. This project has been assigned to ACZ's project number, L67040. Please reference this number in all future inquiries.

All analyses were performed according to ACZ's Quality Assurance Plan. The enclosed results relate only to the samples received under L67040. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after September 01, 2021. If the samples are determined to be hazardous, additional charges apply for disposal (typically \$11/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical raw data reports for ten years.

If you have any questions or other needs, please contact your Project Manager.

S. Habermehl

Scott Habermehl has reviewed and approved this report.

Project ID: Sample ID: PAW 1

ACZ Sample ID:	L67040-01
Date Sampled:	07/08/21 13:15
Date Received:	07/12/21
Sample Matrix:	Groundwater

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Acidify and filter	Colorado 5 CCR 1002-								07/14/21 11:09	ssr
Lab Filtration (0.45um) & Acidification	M200.7/200.8/3005A								07/18/21 14:43	kja
Total Hot Plate Digestion	M200.2 ICP								07/18/21 14:48	kja
Total Recoverable Digestion	M200.2 ICP-MS								07/19/21 16:00	mfm
Total Recoverable Digestion	M200.2 ICP								07/20/21 13:31	kja
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Arsenic, total recoverable	M200.8 ICP-MS	1	0.00123			mg/L	0.0002	0.001	07/21/21 16:49	mfm
Boron, total	M200.7 ICP	1	<0.03	U		mg/L	0.03	0.1	07/20/21 3:37	kja
Codmium potentially		1	<0.008			ma/l	0 008	0.025	07/18/21 12.14	ihaz

boron, lotai	W200.7 ICP	1	<0.03	U		mg/∟	0.05	0.1	07/20/21 3.37	кја
Cadmium, potentially dissolved	M200.7 ICP	1	<0.008	U		mg/L	0.008	0.025	07/18/21 12:14	jlw
Calcium, dissolved	M200.7 ICP	1	14.7			mg/L	0.1	0.5	07/20/21 17:23	kja
Chromium, total recoverable	M200.8 ICP-MS	1	0.00083	В		mg/L	0.0005	0.002	07/21/21 16:49	mfm
Copper, potentially dissolved	M200.7 ICP	1	0.430			mg/L	0.01	0.05	07/18/21 12:14	jlw
Iron, dissolved	M200.7 ICP	1	0.196			mg/L	0.06	0.15	07/20/21 17:23	kja
Iron, total	M200.7 ICP	1	20.9		*	mg/L	0.06	0.15	07/20/21 3:37	kja
Iron, total recoverable	M200.7 ICP	1	25.6		*	mg/L	0.06	0.15	07/21/21 11:16	kja
Magnesium, dissolved	M200.7 ICP	1	8.12			mg/L	0.2	1	07/20/21 17:23	kja
Manganese, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	07/20/21 17:23	kja
Manganese, potentially dissolved	M200.7 ICP	1	0.045	В		mg/L	0.01	0.05	07/18/21 12:14	jlw
Manganese, total	M200.7 ICP	1	0.091			mg/L	0.01	0.05	07/20/21 3:37	kja
Mercury, total	M245.1 CVAA	1	<0.0002	U		mg/L	0.0002	0.001	07/27/21 10:12	mlh
Potassium, dissolved	M200.7 ICP	1	1.74			mg/L	0.2	1	07/20/21 17:23	kja
Sodium, dissolved	M200.7 ICP	1	18.6			mg/L	0.2	1	07/20/21 17:23	kja
Zinc, potentially dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	07/18/21 12:14	jlw

Project ID: Sample ID: PAW 1

Inorganic Analytical Results

ACZ Sample ID: **L67040-01** Date Sampled: 07/08/21 13:15 Date Received: 07/12/21 Sample Matrix: Groundwater

Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as CaCO3		1	102		*	mg/L	2	20	07/22/21 0:00	eep
Carbonate as CaCO3		1	<2	U	*	mg/L	2	20	07/22/21 0:00	eep
Hydroxide as CaCO3		1	<2	U	*	mg/L	2	20	07/22/21 0:00	eep
Total Alkalinity		1	102		*	mg/L	2	20	07/22/21 0:00	еер
Cation-Anion Balance	Calculation									
Cation-Anion Balance	9		-4.2			%			08/02/21 0:00	calc
Sum of Anions			2.5			meq/L			08/02/21 0:00	calc
Sum of Cations			2.3			meq/L			08/02/21 0:00	calc
Chloride	SM4500CI-E	1	14.2		*	mg/L	0.5	2	07/29/21 9:59	syw
Hardness as CaCO3 (dissolved)	SM2340B - Calculation		70			mg/L	0.2	5	08/02/21 0:00	calc
Lab Filtration (0.45um filter)	SOPWC050	1							07/19/21 13:48	s cgm
Residue, Filterable (TDS) @180C	SM2540C	1	130		*	mg/L	20	40	07/14/21 16:11	jck
Residue, Non- Filterable (TSS) @105C	SM2540D	1	59.0		*	mg/L	5	20	07/13/21 14:41	cgm
Sodium Adsorption Ratio in Water	USGS - 11738-78		0.98						08/02/21 0:00	calc
Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	C 1	3.6	В	*	mg/L	1	5	07/26/21 11:06	syw

Project ID: Sample ID: PAW 9

Inorganic Analytical Results

ACZ Sample ID:	L67040-02					
Date Sampled:	07/08/21 13:45					
Date Received:	07/12/21					
Sample Matrix:	Groundwater					

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Acidify and filter (Potentially Dissolved)	Colorado 5 CCR 1002- 31.5.31 (2009)								07/14/21 11:28	ssr
Lab Filtration (0.45um) & Acidification	M200.7/200.8/3005A								07/18/21 14:43	kja
Total Hot Plate Digestion	M200.2 ICP								07/18/21 16:08	kja
Total Recoverable Digestion	M200.2 ICP-MS								07/19/21 16:00	mfm
Total Recoverable Digestion	M200.2 ICP								07/20/21 14:13	kja
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Arsenic, total recoverable	M200.8 ICP-MS	1	<0.0002	U		mg/L	0.0002	0.001	07/21/21 16:51	mfm
Boron, total	M200.7 ICP	1	0.034	В		mg/L	0.03	0.1	07/20/21 3:46	kja
Cadmium, potentially dissolved	M200.7 ICP	1	<0.008	U		mg/L	0.008	0.025	07/18/21 12:17	jlw
Calcium, dissolved	M200.7 ICP	1	69.5			mg/L	0.1	0.5	07/20/21 17:32	kja
Chromium, total recoverable	M200.8 ICP-MS	1	<0.0005	U		mg/L	0.0005	0.002	07/21/21 16:51	mfm
Copper, potentially dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	07/18/21 12:17	jlw
Iron, dissolved	M200.7 ICP	1	0.060	В		mg/L	0.06	0.15	07/20/21 17:32	kja
Iron, total	M200.7 ICP	1	0.295		*	mg/L	0.06	0.15	07/20/21 3:46	kja
Iron, total recoverable	M200.7 ICP	1	0.330			mg/L	0.06	0.15	07/21/21 11:25	kja
Magnesium, dissolved	M200.7 ICP	1	19.3			mg/L	0.2	1	07/20/21 17:32	kja
Manganese, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	07/20/21 17:32	kja
Manganese, potentially dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	07/18/21 12:17	jlw

0.011

< 0.0002

2.35

111

0.022

В

U

В

mg/L

mg/L

mg/L

mg/L

mg/L

0.01

0.0002

0.2

0.2

0.02

0.05

0.001

1

1

0.05

07/20/21 3:46

07/27/21 10:15

07/20/21 17:32

07/20/21 17:32

07/18/21 12:17

kja

mlh

kja

kja

jlw

1

1

1

1

1

Manganese, total

Potassium, dissolved

Sodium, dissolved

Zinc, potentially

dissolved

Mercury, total

M200.7 ICP

M200.7 ICP

M200.7 ICP

M200.7 ICP

M245.1 CVAA

Project ID: Sample ID: PAW 9

Inorganic Analytical Results

ACZ Sample ID: **L67040-02** Date Sampled: 07/08/21 13:45 Date Received: 07/12/21 Sample Matrix: *Groundwater*

Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as CaCO3		1	417		*	mg/L	2	20	07/22/21 0:00	eep
Carbonate as CaCO3		1	<2	U	*	mg/L	2	20	07/22/21 0:00	eep
Hydroxide as CaCO3		1	<2	U	*	mg/L	2	20	07/22/21 0:00	eep
Total Alkalinity		1	417		*	mg/L	2	20	07/22/21 0:00	eep
Cation-Anion Balance	Calculation									
Cation-Anion Balance	9		-4.8			%			08/02/21 0:00	calc
Sum of Anions			11			meq/L			08/02/21 0:00	calc
Sum of Cations			10.0			meq/L			08/02/21 0:00	calc
Chloride	SM4500CI-E	1	20.6		*	mg/L	0.5	2	07/29/21 9:59	syw
Hardness as CaCO3 (dissolved)	SM2340B - Calculation		253			mg/L	0.2	5	08/02/21 0:00	calc
Lab Filtration (0.45um filter)	SOPWC050	1							07/19/21 13:50) cgm
Residue, Filterable (TDS) @180C	SM2540C	1	592		*	mg/L	20	40	07/14/21 16:14	jck
Residue, Non- Filterable (TSS) @105C	SM2540D	1	6.0	В	*	mg/L	5	20	07/13/21 14:44	cgm
Sodium Adsorption Ratio in Water	USGS - 11738-78		3.1						08/02/21 0:00	calc
Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	5	85.8		*	mg/L	5	25	07/26/21 11:14	syw

Inorganic Reference

Report Header	Explanations									
Batch	A distinct set of samples analyzed at a specific time									
Found	Value of the QC Type of interest									
Limit	Upper limit for RPD, in %.									
Lower	Lower Recovery Limit, in % (except for LCSS, mg/Kg)									
MDL	Method Detection Limit. Same as Minimum Reporting Limit unless omitted or equal to the PQL (see comment #5).									
	Allows for instrument and annual fluctuations.									
PCN/SCN	A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis									
PQI	Practical Quantitation Limit. Synonymous with the EPA term "minimum level".									
00	True Value of the Control Sample or the amount added to the Spike									
Rec	Recovered amount of the true value or spike added in % (ever	ent for LCSS_ma/	Ka)							
RPD	Relative Percent Difference, calculation used for Duplicate OC	Types								
Upper	Linner Recovery Limit in % (except for LCSS, ma/Ka)	Турез								
Somelo	Volue of the Sample of interest									
Sample	value of the Sample of Interest									
QC Sample Typ	Des									
AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate							
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank							
ССВ	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix							
CCV	Continuing Calibration Verification standard	LFMD	Laboratory Fortified Matrix Duplicate							
DUP	Sample Duplicate	I RB	Laboratory Reagent Blank							
ICB	Initial Calibration Blank	MS	Matrix Spike							
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate							
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Pren Blank - Soil							
LCSS	Laboratory Control Sample - Soil	PBW/	Pren Blank - Water							
LCSS	Laboratory Control Sample - Soil Duplicato	POV	Practical Quantitation Varification standard							
LCSSD		FQV								
LUSW	Laboratory Control Sample - Water	SDL	Senal Dilution							
QC Sample Typ	be Explanations									
Blanks	Verifies that there is no or minimal co	ntamination in the	prep method or calibration procedure.							
Control Sam	ples Verifies the accuracy of the method, i	ncluding the prep	procedure.							
Duplicates	Verifies the precision of the instrumer	nt and/or method.								
Spikes/Forti	fied Matrix Determines sample matrix interference	es, if any.								
Standard	Verifies the validity of the calibration.									
ACZ Qualifiers	(Qual)									
В	Analyte concentration detected at a value between MDL and P	QL. The associate	ed value is an estimated quantity.							
Н	Analysis exceeded method hold time. pH is a field test with an	immediate hold ti	me.							
L	Target analyte response was below the laboratory defined neg	ative threshold.								
U	The material was analyzed for, but was not detected above the	level of the asso	ciated value.							
	The associated value is either the sample quantitation limit or the	he sample detecti	on limit.							
Mothod Poferer	100									
(1)	EPA 600/4-83-020 Methods for Chemical Apolycic of Water a	nd Wastes Marek	1083							
(1)	EPA 600/4-03-020. Methods for the Determination of Increase	a Substances, Marci	Environmental Semples, August 1002							
(2)	EPA 600/R-93-100. Methods for the Determination of Motels in		environmental Samples, August 1993.							
(3)	EPA 600/R-94-111. Methods for the Determination of Metals in	1 Environmental S	samples - Supplement I, May 1994.							
(4)	EPA SW-846. Test Methods for Evaluating Solid Waste.									
(5)	Standard Methods for the Examination of Water and Wastewal	er.								
Comments										
(1)	QC results calculated from raw data. Results may vary slightly	if the rounded va	lues are used in the calculations.							
(2)	Soil, Sludge, and Plant matrices for Inorganic analyses are rep	orted on a dry wei	ght basis.							
(3)	Animal matrices for Inorganic analyses are reported on an "as	received" basis.	-							
(4)	An asterisk in the "XQ" column indicates there is an extended of	ualifier and/or cei	rtification gualifier							
	associated with the result.	,								
(5)	If the MDL equals the PQL or the MDL column is omitted the F	QL is the reportin	a limit.							
(-)			5							
For a compl	ete list of ACZ's Extended Qualifiers. please click:									

https://acz.com/wp-content/uploads/2019/04/Ext-Qual-List.pdf

REP001.03.15.02

ACZ Project ID: L67040

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L67040-01	WG523769	Bicarbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
		Carbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG524205	Chloride	SM4500CI-E	Q6	Sample was received above recommended temperature.
			SM4500CI-E	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG523769	Hydroxide as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG523559	Iron, total	M200.7 ICP	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG523690	Iron, total recoverable	M200.7 ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG523232	Residue, Filterable (TDS) @180C	SM2540C	Q6	Sample was received above recommended temperature.
			SM2540C	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG523109	Residue, Non-Filterable (TSS) @105C	SM2540D	Q6	Sample was received above recommended temperature.
			SM2540D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG523976	Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
			D516-02/-07/-11 - TURBIDIMETRIC	Q6	Sample was received above recommended temperature.
	WG523769	Total Alkalinity	SM2320B - Titration	Q6	Sample was received above recommended temperature.
			SM2320B - Titration	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).

ACZ Project ID: L67040

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L67040-02	WG523769	Bicarbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
		Carbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG524205	Chloride	SM4500CI-E	Q6	Sample was received above recommended temperature.
			SM4500CI-E	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG523769	Hydroxide as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG523559	Iron, total	M200.7 ICP	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG523232	Residue, Filterable (TDS) @180C	SM2540C	Q6	Sample was received above recommended temperature.
			SM2540C	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG523109	Residue, Non-Filterable (TSS) @105C	SM2540D	Q6	Sample was received above recommended temperature.
			SM2540D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			SM2540D	Z3	Sample volume yielded a residue less than 2.5 mg
	WG523976	Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
			D516-02/-07/-11 - TURBIDIMETRIC	Q6	Sample was received above recommended temperature.
	WG523769	Total Alkalinity	SM2320B - Titration	Q6	Sample was received above recommended temperature.
			SM2320B - Titration	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).

ACZ Project ID: L67040

No certification qualifiers associated with this analysis

ACZ	Laboratories, Inc.
2773 Downhill Drive	Steamboat Springs, CO 80487 (800) 334-5493

ACZ Project ID: L67040 New Elk Coal Co., LLC Date Received: 07/12/2021 12:55 Received By: Date Printed: 7/13/2021 **Receipt Verification** YES NO NA 1) Is a foreign soil permit included for applicable samples? Х 2) Is the Chain of Custody form or other directive shipping papers present? Х 3) Does this project require special handling procedures such as CLP protocol? Х 4) Are any samples NRC licensable material? х 5) If samples are received past hold time, proceed with requested short hold time analyses? Х 6) Is the Chain of Custody form complete and accurate? Х 7) Were any changes made to the Chain of Custody form prior to ACZ receiving the samples? Х Samples/Containers YES NO NA 8) Are all containers intact and with no leaks? Х 9) Are all labels on containers and are they intact and legible? Х Х 10) Do the sample labels and Chain of Custody form match for Sample ID, Date, and Time? 11) For preserved bottle types, was the pH checked and within limits? 1 Х 12) Is there sufficient sample volume to perform all requested work? Х 13) Is the custody seal intact on all containers? Х 14) Are samples that require zero headspace acceptable? Х 15) Are all sample containers appropriate for analytical requirements? Х 16) Is there an Hg-1631 trip blank present? Х 17) Is there a VOA trip blank present? Х 18) Were all samples received within hold time? Х NA indicates Not Applicable

Chain of Custody Related Remarks

Client Contact Remarks

Shipping Containers

Cooler Id	er Id Temp(°C) Temp Criteria(°C)		Rad(µR/Hr)	Custody Seal Intact?	
6863	17.1	<=6.0	15	Yes	

Was ice present in the shipment container(s)?

Yes - Wet ice was present in the shipment container(s) but was thawed by receipt at ACZ.

Client must contact an ACZ Project Manager if analysis should not proceed for samples received outside of their thermal preservation acceptance criteria.

Sample Receipt

New Elk Coal Co., LLC

ACZ Project ID: L67040 Date Received: 07/12/2021 12:55 Received By: Date Printed: 7/13/2021

¹ The preservation of the following bottle types is not checked at sample receipt: Orange (oil and grease), Purple (total cyanide), Pink (dissolved cyanide), Brown (arsenic speciation), Sterile (fecal coliform), EDTA (sulfite), HCI preserved vial (organics), Na2S2O3 preserved vial (organics), and HG-1631 (total/dissolved mercury by method 1631).

2773 Downhill Drive Steambo	aboratories, In pat Springs, CO 80487 (800)	C. (.(334-5493	01	ωų	C	(CHAI	N of C	USTO
Report to:									
Name: Tim	Begano		Add	ress:	12	25	0	n la L	
Company: New	EIK COST CO			Ne	510	n		81	noi
<u>E-mail: jim b</u>	@ newelkcoold	no	Tele	phone:	71	9-	631	-61	43
Copy of Report to:									15
Name: Nick	nason		E-ma	ail:	n m	25) nev 14	alldo
Company: NewE	Elk Coal Co.		Tele	phone:	71	<u>2-50</u> 7 - 1	53) -	14 14	10
Invoice to:						<u>/u</u>			
Name: Mary	Sznaoval		Addr	ess.	177	50			
Company: New E	IK Coal Co.		N	las	122 tor	$\overline{}$			<u>091</u>
E-mail: Mary@N	ew elkcool, com	7	Telep	phone:	71	9-1	631-	614	12
If sample(s) received past ho	Iding time (HT), or if insuffic	ient HT re	mains	to com	nplete		<u>«</u> У1_	<u> </u>	ES X
If "NO" then ACZ will contact client for further	instruction. If neither "YES" nor "NO" is indi	sted shor	t HT ar	nalyses	;? uested anal-		if LiT in'	1	NO 🚞
Are samples for SDWA Com	bliance Monitoring?		Yes			No		eu, ano data wil	ve qualified
ri yes, please include state fo	rms. Results will be reported	d to PQL	for Col	orado.					
Sampler's Name:	CARCE Tratter	nation	State_		Dis samele		ode <u>810</u>	2 <u>91</u> Ti	me Zone <u>/</u>
	m manund tampe	ring with the sa	imple in an	yway, is co	insidered fra	ud and pu	nishable by s	State Law.	ing the time/dat
Quote #: 7510	28- GW-0	T12		ANA	LYSES RE	QUESTE	D (attach	list or use que	ote number)
PO#:	xo-Gw-q	IR	ners						
Reporting state for compliance	estina		ntai		-	١	00		
Check box if samples include N	RC licensed material?	T	ပို		120	le	48	-GV	V†G
SAMPLE IDENTIFICATIO	N DATE:TIME	Matrix	0 #						
PAW 1	7/8/21 13:15	GW	6						
PAW 9	1/8/21 13:45	<u>6W</u>	6						
									_
		<u> </u>					-+		
		┼──┤							
		+-							
Matrix SW (Surface Water)	GW (Ground Water) · WW (Waste)	Water) · DV	V (Drinki	ng Wate					
REMARKS							30 (301)		other (Specir
Place D.	non Anler								
llease key	UPD COOTES		11.(-					
	Semple	e Be	T	es					
	Mape	r u	100	Г С					
		CIOT	1.16	2					
Please	ィーク マーク Prefer to ACZ's terms & cond	ditions lo	cated of	on the	reverse	sider	of this 🔿	:OC	
Please RELINQUISHED E	refer to ACZ's terms & con Y: DATE:T	ditions lo	cated o	on the R	reverse ECEIV	side d ED BY	of this C	OC.	DATE:TI
Please RELINQUISHED E Jim Begano	refer to ACZ's terms & con Y: DATE:T	ditions lo IME	cated of	on the R	ECEIV	side d ED BY	of this C	oc. 7/12	DATE:TI

December 07, 2021

Report to: Jim Begano New Elk Coal Co. , LLC 12250 Hwy. 12 Weston, CO 81091

cc: Nick Mason

Bill to: Accounts Payable New Elk Coal Co. , LLC 12250 Highway 12 Weston, CO 81091

Project ID: ACZ Project ID: L69988

Jim Begano:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on November 18, 2021. This project has been assigned to ACZ's project number, L69988. Please reference this number in all future inquiries.

All analyses were performed according to ACZ's Quality Assurance Plan. The enclosed results relate only to the samples received under L69988. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after January 06, 2022. If the samples are determined to be hazardous, additional charges apply for disposal (typically \$11/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical raw data reports for ten years.

If you have any questions or other needs, please contact your Project Manager.

ne Wellin

Sue Webber has reviewed and approved this report.

December 07, 2021

Project ID:

ACZ Project ID: L69988

Sample Receipt

ACZ Laboratories, Inc. (ACZ) received 4 groundwater samples from New Elk Coal Co., LLC on November 18, 2021. The samples were received in good condition. Upon receipt, the sample custodian removed the samples from the cooler, inspected the contents, and logged the samples into ACZ's computerized Laboratory Information Management System (LIMS). The samples were assigned ACZ LIMS project number L69988. The custodian verified the sample information entered into the computer against the chain of custody (COC) forms and sample bottle labels.

Holding Times

All analyses were performed within EPA recommended holding times.

Sample Analysis

These samples were analyzed for inorganic parameters. The individual methods are referenced on both, the ACZ invoice and the analytical reports. The following required further explanation not provided by the Extended Qualifier Report:

1. TDS (N1) - Oven range is 80 C to 91 C. Over the weekend, the oven had a minor low temperature out of range. When the oven temperature was checked on Monday 11/29/21, the minimum temperature read at 69.7 C. The WG was removed from the oven on 11/29/21 when the oven was back in range.

Project ID: Sample ID: PAW 1

Inorganic Analytical Results

ACZ Sample ID:	L69988-01					
Date Sampled:	11/17/21 12:45					
Date Received:	11/18/21					
Sample Matrix:	Groundwater					

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Acidify and filter (Potentially Dissolved)	Colorado 5 CCR 1002- 31.5.31 (2009)								10/20/21 9:49	ssr
Lab Filtration (0.45um) & Acidification	M200.7/200.8/3005A								11/23/21 12:51	kja
Total Hot Plate Digestion	M200.2 ICP				*				12/01/21 14:23	8 kja
Total Recoverable Digestion	M200.2 ICP-MS								11/24/21 9:00	mfm
Total Recoverable Digestion	M200.2 ICP								12/01/21 17:47	′ kja

Metal	s A	nal	ysis

Parameter	EPA Method	Dilution	Result	Qual XC) Units	MDL	PQL	Date	Analyst
Arsenic, total recoverable	M200.8 ICP-MS	1	0.00051	В	mg/L	0.0002	0.001	11/30/21 18:16	bsu
Boron, total	M200.7 ICP	2	<0.06	U	mg/L	0.06	0.2	12/02/21 20:12	kja
Cadmium, potentially dissolved	M200.7 ICP	1	<0.008	U	mg/L	0.008	0.025	11/22/21 15:13	kja
Calcium, dissolved	M200.7 ICP	1	18.9		mg/L	0.1	0.5	11/29/21 16:29	kja
Chromium, total recoverable	M200.8 ICP-MS	1	0.00113	В	mg/L	0.0005	0.002	11/30/21 18:16	bsu
Copper, potentially dissolved	M200.7 ICP	1	<0.01	U	mg/L	0.01	0.05	11/22/21 15:13	kja
Iron, dissolved	M200.7 ICP	1	<0.06	U	mg/L	0.06	0.15	11/29/21 16:29	kja
Iron, total	M200.7 ICP	2	10.9		mg/L	0.12	0.3	12/02/21 20:12	kja
Iron, total recoverable	M200.7 ICP	1	10.2		mg/L	0.06	0.15	12/02/21 17:27	kja
Magnesium, dissolved	M200.7 ICP	1	9.15		mg/L	0.2	1	11/29/21 16:29	kja
Manganese, dissolved	M200.7 ICP	1	0.012	В	mg/L	0.01	0.05	11/29/21 16:29	kja
Manganese, potentially dissolved	M200.7 ICP	1	0.058		mg/L	0.01	0.05	11/22/21 15:13	kja
Manganese, total	M200.7 ICP	2	0.084	В	mg/L	0.02	0.1	12/02/21 20:12	kja
Mercury, total	M245.1 CVAA	1	<0.0002	U	mg/L	0.0002	0.001	11/23/21 15:04	mlh
Potassium, dissolved	M200.7 ICP	1	1.51		mg/L	0.2	1	11/29/21 16:29	kja
Sodium, dissolved	M200.7 ICP	1	17.9		mg/L	0.2	1	11/29/21 16:29	kja
Zinc, potentially dissolved	M200.7 ICP	1	<0.02	U	mg/L	0.02	0.05	11/22/21 15:13	kja

Project ID: Sample ID: PAW 1

Inorganic Analytical Results

ACZ Sample ID: **L69988-01** Date Sampled: 11/17/21 12:45 Date Received: 11/18/21 Sample Matrix: Groundwater

Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as		1	116			mg/L	2	20	11/24/21 0:00	eep
CaCO3										
Carbonate as CaCO3		1	<2	U		mg/L	2	20	11/24/21 0:00	еер
Hydroxide as CaCO3		1	<2	U		mg/L	2	20	11/24/21 0:00	eep
Total Alkalinity		1	116			mg/L	2	20	11/24/21 0:00	eep
Cation-Anion Balance	Calculation									
Cation-Anion Balance			-3.8			%			12/07/21 0:00	calc
Sum of Anions			2.7			meq/L			12/07/21 0:00	calc
Sum of Cations			2.5			meq/L			12/07/21 0:00	calc
Chloride	SM4500CI-E	1	11.9		*	mg/L	0.5	2	12/01/21 14:30) md
Hardness as CaCO3 (dissolved)	SM2340B - Calculation		85			mg/L	0.2	5	12/07/21 0:00	calc
Lab Filtration (0.45um filter)	SOPWC050	1							11/30/21 7:06	mlh
Residue, Filterable (TDS) @180C	SM2540C	1	124			mg/L	20	40	11/22/21 16:13	anc anc
Residue, Non- Filterable (TSS) @105C	SM2540D	1	23.0		*	mg/L	5	20	11/22/21 16:20) scd
Sodium Adsorption Ratio in Water	USGS - 11738-78		0.86						12/07/21 0:00	calc
Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	^C 1	3.1	В	*	mg/L	1	5	12/03/21 12:32	2 wtc

Project ID:

Sample ID: PAW 2

Inorganic Analytical Results

ACZ Sample ID:	L69988-02
Date Sampled:	11/17/21 13:00
Date Received:	11/18/21
Sample Matrix:	Groundwater

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Acidify and filter (Potentially Dissolved)	Colorado 5 CCR 1002- 31.5.31 (2009)								10/20/21 9:5	55 ssr
Lab Filtration (0.45um) & Acidification	M200.7/200.8/3005A								11/23/21 12:	51 kja
Total Hot Plate Digestion	M200.2 ICP								12/01/21 14:	36 kja
Total Recoverable Digestion	M200.2 ICP-MS								11/24/21 9:0)0 mfm
Total Recoverable Digestion	M200.2 ICP								12/01/21 18:	28 kja

Metals	Ana	lysis
--------	-----	-------

Parameter	EPA Method	Dilution	Result	Qual X	Q Units	MDL	PQL	Date	Analyst
Arsenic, total recoverable	M200.8 ICP-MS	1	0.00641		mg/L	0.0002	0.001	11/30/21 18:18	bsu
Boron, total	M200.7 ICP	1	< 0.03	U	mg/L	0.03	0.1	12/02/21 20:16	kja
Cadmium, potentially dissolved	M200.7 ICP	1	<0.008	U	mg/L	0.008	0.025	11/22/21 15:29	kja
Calcium, dissolved	M200.7 ICP	1	89.6		mg/L	0.1	0.5	11/29/21 16:32	kja
Chromium, total recoverable	M200.8 ICP-MS	1	0.0156		mg/L	0.0005	0.002	11/30/21 18:18	bsu
Copper, potentially dissolved	M200.7 ICP	1	<0.01	U	mg/L	0.01	0.05	11/22/21 15:29	kja
Iron, dissolved	M200.7 ICP	1	0.816		mg/L	0.06	0.15	11/29/21 16:32	kja
Iron, total	M200.7 ICP	1	91.3		mg/L	0.06	0.15	12/02/21 20:16	kja
Iron, total recoverable	M200.7 ICP	1	83.3		mg/L	0.06	0.15	12/02/21 17:42	kja
Magnesium, dissolved	M200.7 ICP	1	17.4		mg/L	0.2	1	11/29/21 16:32	kja
Manganese, dissolved	M200.7 ICP	1	1.08		mg/L	0.01	0.05	11/29/21 16:32	kja
Manganese, potentially dissolved	M200.7 ICP	1	1.39		mg/L	0.01	0.05	11/22/21 15:29	kja
Manganese, total	M200.7 ICP	1	1.71		mg/L	0.01	0.05	12/02/21 20:16	kja
Mercury, total	M245.1 CVAA	1	<0.0002	U	mg/L	0.0002	0.001	11/23/21 15:05	mlh
Potassium, dissolved	M200.7 ICP	1	2.75		mg/L	0.2	1	11/29/21 16:32	kja
Sodium, dissolved	M200.7 ICP	1	76.8		mg/L	0.2	1	11/29/21 16:32	kja
Zinc, potentially dissolved	M200.7 ICP	1	0.042	В	mg/L	0.02	0.05	11/22/21 15:29	kja

Project ID: Sample ID: PAW 2

Inorganic Analytical Results

ACZ Sample ID: **L69988-02** Date Sampled: 11/17/21 13:00 Date Received: 11/18/21 Sample Matrix: Groundwater

Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as		1	414			mg/L	2	20	11/24/21 0:00	еер
CaCO3										
Carbonate as CaCO3		1	<2	U		mg/L	2	20	11/24/21 0:00	eep
Hydroxide as CaCO3		1	<2	U		mg/L	2	20	11/24/21 0:00	еер
Total Alkalinity		1	414		*	mg/L	2	20	11/24/21 0:00	еер
Cation-Anion Balance	Calculation									
Cation-Anion Balance			-2.1			%			12/07/21 0:00	calc
Sum of Anions			9.9			meq/L			12/07/21 0:00	calc
Sum of Cations			9.5			meq/L			12/07/21 0:00	calc
Chloride	SM4500CI-E	1	18.7		*	mg/L	0.5	2	12/01/21 14:30	md
Hardness as CaCO3 (dissolved)	SM2340B - Calculation		295			mg/L	0.2	5	12/07/21 0:00	calc
Lab Filtration (0.45um filter)	SOPWC050	1							11/30/21 7:09	mlh
Residue, Filterable (TDS) @180C	SM2540C	2	480		*	mg/L	40	80	11/24/21 11:11	anc
Residue, Non- Filterable (TSS) @105C	SM2540D	2	340		*	mg/L	10	40	11/22/21 16:22	scd
Sodium Adsorption Ratio in Water	USGS - 11738-78		2.0						12/07/21 0:00	calc
Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	5	52.3		*	mg/L	5	25	12/03/21 12:59	wtc

Project ID:

Sample ID: PAW 8

Inorganic Analytical Results

ACZ Sample ID:	L69988-03						
Date Sampled:	11/17/21 13:25						
Date Received:	11/18/21						
Sample Matrix:	Groundwater						

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Acidify and filter (Potentially Dissolved)	Colorado 5 CCR 1002- 31.5.31 (2009)								10/20/21 10:01	ssr
Lab Filtration (0.45um) & Acidification	M200.7/200.8/3005A								11/23/21 12:51	kja
Total Hot Plate Digestion	M200.2 ICP								12/01/21 14:50	kja
Total Recoverable Digestion	M200.2 ICP-MS								11/24/21 9:00	mfm
Total Recoverable Digestion	M200.2 ICP								12/01/21 18:41	kja

Metals	Analysis
--------	----------

Parameter	EPA Method	Dilution	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Arsenic, total recoverable	M200.8 ICP-MS	1	0.00044	В	mg/L	0.0002	0.001	11/30/21 18:20	bsu
Boron, total	M200.7 ICP	1	<0.03	U	mg/L	0.03	0.1	12/02/21 20:19	kja
Cadmium, potentially dissolved	M200.7 ICP	1	<0.008	U	mg/L	0.008	0.025	11/22/21 15:32	kja
Calcium, dissolved	M200.7 ICP	1	103		mg/L	0.1	0.5	11/29/21 16:35	kja
Chromium, total recoverable	M200.8 ICP-MS	1	0.00487		mg/L	0.0005	0.002	11/30/21 18:20	bsu
Copper, potentially dissolved	M200.7 ICP	1	<0.01	U	mg/L	0.01	0.05	11/22/21 15:32	kja
Iron, dissolved	M200.7 ICP	1	<0.06	U	mg/L	0.06	0.15	11/29/21 16:35	kja
Iron, total	M200.7 ICP	1	5.79		mg/L	0.06	0.15	12/02/21 20:19	kja
Iron, total recoverable	M200.7 ICP	1	5.63		mg/L	0.06	0.15	12/02/21 17:45	kja
Magnesium, dissolved	M200.7 ICP	1	22.8		mg/L	0.2	1	11/29/21 16:35	kja
Manganese, dissolved	M200.7 ICP	1	0.049	В	mg/L	0.01	0.05	11/29/21 16:35	kja
Manganese, potentially dissolved	M200.7 ICP	1	0.848		mg/L	0.01	0.05	11/22/21 15:32	kja
Manganese, total	M200.7 ICP	1	1.20		mg/L	0.01	0.05	12/02/21 20:19	kja
Mercury, total	M245.1 CVAA	1	<0.0002	U	mg/L	0.0002	0.001	11/23/21 15:06	mlh
Potassium, dissolved	M200.7 ICP	1	1.79		mg/L	0.2	1	11/29/21 16:35	kja
Sodium, dissolved	M200.7 ICP	1	149		mg/L	0.2	1	11/29/21 16:35	kja
Zinc, potentially dissolved	M200.7 ICP	1	<0.02	U	mg/L	0.02	0.05	11/22/21 15:32	kja

Project ID: Sample ID: PAW 8

Inorganic Analytical Results

ACZ Sample ID: *L69988-03* Date Sampled: *11/17/21 13:25* Date Received: *11/18/21* Sample Matrix: *Groundwater*

Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as		1	487			mg/L	2	20	11/24/21 0:00	eep
CaCO3										
Carbonate as CaCO3		1	<2	U		mg/L	2	20	11/24/21 0:00	eep
Hydroxide as CaCO3		1	<2	U		mg/L	2	20	11/24/21 0:00	eep
Total Alkalinity		1	487			mg/L	2	20	11/24/21 0:00	eep
Cation-Anion Balance	Calculation									
Cation-Anion Balance			0.0			%			12/07/21 0:00	calc
Sum of Anions			14			meq/L			12/07/21 0:00	calc
Sum of Cations			14			meq/L			12/07/21 0:00	calc
Chloride	SM4500CI-E	1	35.3		*	mg/L	0.5	2	12/01/21 14:30) md
Hardness as CaCO3 (dissolved)	SM2340B - Calculation		351			mg/L	0.2	5	12/07/21 0:00	calc
Lab Filtration (0.45um filter)	SOPWC050	1							11/30/21 7:12	mlh
Residue, Filterable (TDS) @180C	SM2540C	1	754		*	mg/L	20	40	11/24/21 11:13	8 anc
Residue, Non- Filterable (TSS) @105C	SM2540D	1	96.0		*	mg/L	5	20	11/22/21 16:24	l scd
Sodium Adsorption Ratio in Water	USGS - 11738-78		3.5						12/07/21 0:00	calc
Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	5	135		*	mg/L	5	25	12/03/21 12:59) wtc

Project ID:

Sample ID: PAW 9

Inorganic Analytical Results

ACZ Sample ID:	L69988-04						
Date Sampled:	11/17/21 13:50						
Date Received:	11/18/21						
Sample Matrix:	Groundwater						

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Acidify and filter (Potentially Dissolved)	Colorado 5 CCR 1002- 31.5.31 (2009)								10/20/21 10:06	ssr
Lab Filtration (0.45um) & Acidification	M200.7/200.8/3005A								11/23/21 12:51	kja
Total Hot Plate Digestion	M200.2 ICP								12/01/21 15:04	kja
Total Recoverable Digestion	M200.2 ICP-MS								11/24/21 9:00	mfm
Total Recoverable Digestion	M200.2 ICP								12/01/21 18:55	kja

Metals	Analysis
--------	----------

Parameter	EPA Method	Dilution	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Arsenic, total recoverable	M200.8 ICP-MS	1	<0.0002	U	mg/L	0.0002	0.001	11/30/21 18:21	bsu
Boron, total	M200.7 ICP	1	0.030	В	mg/L	0.03	0.1	12/02/21 20:22	kja
Cadmium, potentially dissolved	M200.7 ICP	1	<0.008	U	mg/L	0.008	0.025	11/22/21 15:36	kja
Calcium, dissolved	M200.7 ICP	1	68.7		mg/L	0.1	0.5	11/29/21 16:38	kja
Chromium, total recoverable	M200.8 ICP-MS	1	0.00189	В	mg/L	0.0005	0.002	11/30/21 18:21	bsu
Copper, potentially dissolved	M200.7 ICP	1	<0.01	U	mg/L	0.01	0.05	11/22/21 15:36	kja
Iron, dissolved	M200.7 ICP	1	<0.06	U	mg/L	0.06	0.15	11/29/21 16:38	kja
Iron, total	M200.7 ICP	1	0.903		mg/L	0.06	0.15	12/02/21 20:22	kja
Iron, total recoverable	M200.7 ICP	1	0.840		mg/L	0.06	0.15	12/02/21 17:48	kja
Magnesium, dissolved	M200.7 ICP	1	18.3		mg/L	0.2	1	11/29/21 16:38	kja
Manganese, dissolved	M200.7 ICP	1	<0.01	U	mg/L	0.01	0.05	11/29/21 16:38	kja
Manganese, potentially dissolved	M200.7 ICP	1	0.491		mg/L	0.01	0.05	11/22/21 15:36	kja
Manganese, total	M200.7 ICP	1	1.10		mg/L	0.01	0.05	12/02/21 20:22	kja
Mercury, total	M245.1 CVAA	1	<0.0002	U	mg/L	0.0002	0.001	11/23/21 15:08	mlh
Potassium, dissolved	M200.7 ICP	1	2.44		mg/L	0.2	1	11/29/21 16:38	kja
Sodium, dissolved	M200.7 ICP	1	123		mg/L	0.2	1	11/29/21 16:38	kja
Zinc, potentially dissolved	M200.7 ICP	1	<0.02	U	mg/L	0.02	0.05	11/22/21 15:36	kja

Project ID: Sample ID: PAW 9

Inorganic Analytical Results

ACZ Sample ID: **L69988-04** Date Sampled: 11/17/21 13:50 Date Received: 11/18/21 Sample Matrix: Groundwater

Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as		1	442			mg/L	2	20	11/24/21 0:00	еер
CaCO3										
Carbonate as CaCO3		1	<2	U		mg/L	2	20	11/24/21 0:00	еер
Hydroxide as CaCO3		1	<2	U		mg/L	2	20	11/24/21 0:00	eep
Total Alkalinity		1	442			mg/L	2	20	11/24/21 0:00	eep
Cation-Anion Balance	Calculation									
Cation-Anion Balance			-4.8			%			12/07/21 0:00	calc
Sum of Anions			11.0			meq/L			12/07/21 0:00	calc
Sum of Cations			10			meq/L			12/07/21 0:00	calc
Chloride	SM4500CI-E	1	17.9		*	mg/L	0.5	2	12/01/21 14:31	md
Hardness as CaCO3 (dissolved)	SM2340B - Calculation		247			mg/L	0.2	5	12/07/21 0:00	calc
Lab Filtration (0.45um filter)	SOPWC050	1							11/30/21 7:14	mlh
Residue, Filterable (TDS) @180C	SM2540C	1	578		*	mg/L	20	40	11/24/21 11:16	anc anc
Residue, Non- Filterable (TSS) @105C	SM2540D	1	14.0	В	*	mg/L	5	20	11/22/21 16:26	scd
Sodium Adsorption Ratio in Water	USGS - 11738-78		3.4						12/07/21 0:00	calc
Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	5	77.0		*	mg/L	5	25	12/03/21 13:01	wtc

Inorganic Reference

Report Header	Explanations								
Batch	A distinct set of samples analyzed at a specific time								
Found	Value of the QC Type of interest								
Limit	Upper limit for RPD, in %.								
Lower	Lower Recovery Limit, in % (except for LCSS, mg/Kg)								
MDL	Method Detection Limit. Same as Minimum Reporting Limit un	less omitted or eq	ual to the PQL (see comment #5).						
	Allows for instrument and annual fluctuations.								
PCN/SCN	A number assigned to reagents/standards to trace to the manu	Ifacturer's certifica	ate of analysis						
PQI	Practical Quantitation Limit Synonymous with the EPA term "r	ninimum level"							
00	True Value of the Control Sample or the amount added to the S	Spike							
Rec	Recovered amount of the true value or spike added, in % (except for LCSS, mg/Kg)								
RPD	Relative Percent Difference, calculation used for Dunlicate OC Types								
Unner	Relative Percent Difference, calculation used for Duplicate QC Types								
Sample	Value of the Sample of interest								
Gample	value of the bample of interest								
QC Sample Typ	Des								
AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate						
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank						
ССВ	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix						
CCV	Continuing Calibration Verification standard	LFMD	Laboratory Fortified Matrix Duplicate						
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank						
ICB	Initial Calibration Blank	MS	Matrix Spike						
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate						
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil						
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water						
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard						
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution						
QC Sample Typ	be Explanations								
Blanks	Verifies that there is no or minimal co	ntamination in the	prep method or calibration procedure.						
Control San	nples Verifies the accuracy of the method, i	ncluding the prep	procedure.						
Duplicates	Verifies the precision of the instrumer	nt and/or method.							
Spikes/Forti	fied Matrix Determines sample matrix interference	es, if any.							
Standard	Verifies the validity of the calibration.								
ACZ Qualifiors									
	Applyte concentration detected at a value between MDL and P	OL The associate	ad value is an estimated quantity						
ы	Analysis exceeded method hold time. pH is a field test with an	immodiate hold ti							
11	Target analyte response was below the laboratory defined nor	ativo throshold							
	The meterial was applyized for but was not detected above the		eieted volue						
0	The appropriated value is either the sample quantitation limit or the								
	The associated value is either the sample quantitation limit of th	le sample detecti	on innit.						
Method Refere	nces								
(1)	EPA 600/4-83-020. Methods for Chemical Analysis of Water a	nd Wastes, March	n 1983.						
(2)	EPA 600/R-93-100. Methods for the Determination of Inorgani	c Substances in E	Environmental Samples, August 1993.						
(3)	EPA 600/R-94-111. Methods for the Determination of Metals ir	n Environmental S	Samples - Supplement I, May 1994.						
(4)	EPA SW-846. Test Methods for Evaluating Solid Waste.								
(5)	Standard Methods for the Examination of Water and Wastewat	er.							
Comments									
(1)	QC results calculated from raw data. Results may vary slightly	if the rounded va	lues are used in the calculations.						
(2)	Soil, Sludge, and Plant matrices for Inorganic analyses are rep	orted on a dry wei	ight basis.						
(3)	Animal matrices for Inorganic analyses are reported on an "as	received" basis.							
(4)	An asterisk in the "XQ" column indicates there is an extended of	qualifier and/or cei	rtification qualifier						
	associated with the result.								
(5)	If the MDL equals the PQL or the MDL column is omitted, the F	QL is the reportin	ıg limit.						

https://acz.com/wp-content/uploads/2019/04/Ext-Qual-List.pdf

REP001.03.15.02

4C AGZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

New Elk Coal Co. , LLC

ACZ Project ID: L69988

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L69988-01	NG532680	Chloride	SM4500CI-E	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG532278	Residue, Non-Filterable (TSS) @105C	SM2540D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			SM2540D	Z3	Sample volume yielded a residue less than 2.5 mg
	WG532877	Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
			D516-02/-07/-11 - TURBIDIMETRIC	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG532696	Total Hot Plate Digestion	M200.2 ICP	DJ	Sample dilution required due to insufficient sample.
L69988-02	NG532680	Chloride	SM4500CI-E	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG532405	Residue, Filterable (TDS) @180C	SM2540C	N1	See Case Narrative.
	WG532278	Residue, Non-Filterable (TSS) @105C	SM2540D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG532877	Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
			D516-02/-07/-11 - TURBIDIMETRIC	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG532365	Total Alkalinity	SM2320B - Titration	ZW	Method deviation. The sample was centrifuged prior to analysis due to high solid content.
L69988-03	WG532680	Chloride	SM4500CI-E	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG532405	Residue, Filterable (TDS) @180C	SM2540C	N1	See Case Narrative.
	WG532278	Residue, Non-Filterable (TSS) @105C	SM2540D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG532877	Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
			D516-02/-07/-11 - TURBIDIMETRIC	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
L69988-04	WG532680	Chloride	SM4500CI-E	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG532405	Residue, Filterable (TDS) @180C	SM2540C	N1	See Case Narrative.
	WG532278	Residue, Non-Filterable (TSS) @105C	SM2540D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			SM2540D	Z3	Sample volume yielded a residue less than 2.5 mg
	WG532877	Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
			D516-02/-07/-11 - TURBIDIMETRIC	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).

ACZ Project ID: L69988

No certification qualifiers associated with this analysis

ACZ	Laboratories, Ir	IC.
2773 Downhill Drive	Steamboat Springs, CO 80487	(800) 334-5493

Sample **Receipt**

NO

Х

ACZ Project ID: L69988 Date Received: 11/18/2021 10:42 Received By: Date Printed: 11/19/2021

YES

Х

Х

Х

Х

NA

Х

Х

Receipt Verification

1) Is a foreign soil permit included for applicable samples?

- 2) Is the Chain of Custody form or other directive shipping papers present?
- 3) Does this project require special handling procedures such as CLP protocol?
- 4) Are any samples NRC licensable material?
- 5) If samples are received past hold time, proceed with requested short hold time analyses?
- 6) Is the Chain of Custody form complete and accurate?
- 7) Were any changes made to the Chain of Custody form prior to ACZ receiving the samples?

A change was made in the PO# and # of Containers section prior to ACZ custody.

A change was made in the PO# and # of Containers section prior to ACZ custody.

A change was made in the PO# and # of Containers section prior to ACZ custody.

A change was made in the PO# and # of Containers section prior to ACZ custody.

A change was made in the PO# and # of Containers section prior to ACZ custody.

Samples/Containers

	YES	NO	NA
8) Are all containers intact and with no leaks?	Х		
9) Are all labels on containers and are they intact and legible?	Х		
10) Do the sample labels and Chain of Custody form match for Sample ID, Date, and Time?	Х		
11) For preserved bottle types, was the pH checked and within limits? 1	Х		
12) Is there sufficient sample volume to perform all requested work?	Х		
13) Is the custody seal intact on all containers?			Х
14) Are samples that require zero headspace acceptable?			Х
15) Are all sample containers appropriate for analytical requirements?	Х		
16) Is there an Hg-1631 trip blank present?			Х
17) Is there a VOA trip blank present?			Х
18) Were all samples received within hold time?	Х		
	NA indica	tes Not Ap	plicable

Chain of Custody Related Remarks

Client Contact Remarks

REPAD LPII 2012-03

L69988-2112071110

Shipping Cont

(Co., LLC				ACZ Project ID:	L69988
					Date Received:	11/18/2021 10:42
					Received By:	
					Date Printed:	11/19/2021
2	iners					
	Cooler Id	Temp(°C)	Temp Criteria(°C)	Rad(µR/Hr)	Custody Seal Intact?	
	6511	4.7	<=6.0	 15	Yes	

Was ice present in the shipment container(s)?

Yes - Wet ice was present in the shipment container(s).

Client must contact an ACZ Project Manager if analysis should not proceed for samples received outside of their thermal preservation acceptance criteria.

¹ The preservation of the following bottle types is not checked at sample receipt: Orange (oil and grease), Purple (total cyanide), Pink (dissolved cyanide), Brown (arsenic speciation), Sterile (fecal coliform), EDTA (sulfite), HCI preserved vial (organics), Na2S2O3 preserved vial (organics), and HG-1631 (total/dissolved mercury by method 1631).
	AC	Z Lab	oratories, l	nc.)	190			С	HAI	N of	CUS	TODY
	2773 Downhi Report to:	ll Drive Steamboat S	Springs, CO 80487 (800	0) 334-5493								
	Name: Company:	James New El	F Begen K Coal Co	2	Addre	ess: N	122	50 ton	st: CC	pte 1	4wy 316	91
	E-mail:	jimber	rewelkcool.co	m	Telep	hone:	,Z	19-	63	1-6	-14	3
	Copy of Re	port to:			_							
	Name: Company:	New Elk	Corl Co,		E-ma Telep	il: hone:	nm: 71	<u>230</u> 9 - 1	n© 6 <u>31</u>	<u>nen</u> - 6	<u>elk</u> 141	cost con
	Invoice to:							•				
	Name: Company:	Mary He New Elk	-2d 1021 Co.		Addre	ess: W	122 ヒち	50 State Hwy 12 ton. CD 81091				
	E-mail: V	hàny @_ne eceived past holdir	welk cod, co	m	Telep	hone:	7	19-	631	-6	14	2
	analysis befo	re expiration, shall	ACZ proceed with req	uested sho	hort HT analyses?							
	Are samples	for SDWA Complia	uction. If neither "YES" nor "NO" is nce Monitoring?	indicated, ACZ wil	1 proceed wi Yes	ith the requ	ested analy	ses, even if No	HT is expire	ed, and data	a will be qual	lfied
	lf yes, please	include state form	s. Results will be repor	ted to PQL	for Cold	prado.	J					
	Sampler's Na *Sampler's Si	me:	_ Sampler's Site Infe	Ormation	State_ nticity and va	Lo lalidity of th	O I	Zip coo	de <u> & li</u> 1 that intent	091	Time Zo	ne <u>MDT</u>
	PROJECT IN	FORMATION	- <u></u> tan	npering with the s	ample in any	way, is co ANA	nsidered fra	ud and puni	shable by S) <i>(attach l</i>	tate Law. ist or use	auote pun	ther)
	Quote	28-GW	- Qtr.		S						quote nun	
	PO#:	GWGB			aine							
	Reporting state	e for compliance test	ing:		Cont				7		~ . h	A
T	Check box if samples include NRC licensed material? SAMPLE IDENTIFICATION DATE: TIME Ma				t of (1	24	PIE	~4) - (7 W	- G(R)
sto.	PAU	21	1/17/21 12:4	45 GW	X	B	5					
	PAU	1 2				<u>^</u>						
° c	TAU	56	<u>14/17/21 13:0</u>	DOGW	XX A	Ø.5						
Chai	PAN	18	1/17/21 13:2	25 GW	X	R5						
888 888					Ý							
	PAN	9	417/21 13:3	50 GW	le l		└──┤					
	· · · · ·	······										
[
	Matrix SW	(Surface Water) · GW	(Ground Water) · WW (Was	te Water) · DV	V (Drinkir	ng Water) · SL (SI	udge) · S	O (Soil)	OL (Oil)	· Other (S	Specify)
	REMARKS											
	Please	e Return	s: Coole	r _								
			SAMP	LEB	oĦk	25						
			Ice	Bot	Hle	S I						
L		Please refe	۲۵Ре er to ACZ's terms & co	シア U onditions lo	ノの「 cated o	on the i	- reverse	side of	f this C	00		
	REL	INQUISHED BY:	DATE	TIME		R	ECEIVE	ED BY:			DAT	E:TIME
┟	James	F Depa	no 1/17/21	15:15			/]]		h	18/2:	1942
┟	<u> </u>	/					0				,	
F	RMAD050.06.1	4.14	White - Return with some		W Bata	in fee						

 $\overline{}$

L69988-2112071110

White - Return with sample. Yellow - Retain for your records.

Page 16 of 16

Analytical Report

December 15, 2021

Report to: Jim Begano New Elk Coal Co. , LLC 12250 Hwy. 12 Weston, CO 81091

cc: Nick Mason

Bill to: Mary Head New Elk Coal Co. , LLC 12250 US HWY 12 Weston, CO 81091

Project ID: ACZ Project ID: L70198

Jim Begano:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on December 02, 2021. This project has been assigned to ACZ's project number, L70198. Please reference this number in all future inquiries.

All analyses were performed according to ACZ's Quality Assurance Plan. The enclosed results relate only to the samples received under L70198. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after January 14, 2022. If the samples are determined to be hazardous, additional charges apply for disposal (typically \$11/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical raw data reports for ten years.

If you have any questions or other needs, please contact your Project Manager.

re Well.

Sue Webber has reviewed and approved this report.

Project ID: Sample ID: NEW 4

ACZ Sample ID:	L70198-01					
Date Sampled:	12/01/21 12:36					
Date Received:	12/02/21					
Sample Matrix:	Groundwater					

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Acidify and filter (Potentially Dissolved)	Colorado 5 CCR 1002- 31.5.31 (2009)								12/05/21 9:13	ssr
Lab Filtration (0.45um) & Acidification	M200.7/200.8/3005A								12/08/21 12:09	mlh
Total Hot Plate Digestion	M200.2 ICP								12/09/21 16:21	aeh
Total Recoverable Digestion	M200.2 ICP-MS								12/08/21 18:00	mfm
Total Recoverable Digestion	M200.2 ICP								12/08/21 19:37	kja

Metals	Analysis
--------	----------

Parameter	EPA Method	Dilution	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Arsenic, total recoverable	M200.8 ICP-MS	1	<0.0002	U	mg/L	0.0002	0.001	12/10/21 14:35	mfm
Boron, total	M200.7 ICP	1	<0.03	U	mg/L	0.03	0.1	12/11/21 0:14	kja
Cadmium, potentially dissolved	M200.7 ICP	1	<0.008	U	mg/L	0.008	0.025	12/06/21 18:57	jlw
Calcium, dissolved	M200.7 ICP	1	5.39		mg/L	0.1	0.5	12/09/21 16:00	kja
Chromium, total recoverable	M200.8 ICP-MS	1	0.00123	В	mg/L	0.0005	0.002	12/10/21 14:35	mfm
Copper, potentially dissolved	M200.7 ICP	1	<0.01	U	mg/L	0.01	0.05	12/06/21 18:57	jlw
Iron, dissolved	M200.7 ICP	1	<0.06	U	mg/L	0.06	0.15	12/09/21 16:00	kja
Iron, total	M200.7 ICP	1	<0.06	U	mg/L	0.06	0.15	12/11/21 0:14	kja
Iron, total recoverable	M200.7 ICP	1	0.129	В	mg/L	0.06	0.15	12/09/21 21:03	kja
Magnesium, dissolved	M200.7 ICP	1	2.75		mg/L	0.2	1	12/09/21 16:00	kja
Manganese, dissolved	M200.7 ICP	1	<0.01	U	mg/L	0.01	0.05	12/09/21 16:00	kja
Manganese, potentially dissolved	M200.7 ICP	1	<0.01	U	mg/L	0.01	0.05	12/06/21 18:57	jlw
Manganese, total	M200.7 ICP	1	0.011	В	mg/L	0.01	0.05	12/11/21 0:14	kja
Mercury, total	M245.1 CVAA	1	<0.0002	U	mg/L	0.0002	0.001	12/07/21 15:48	mlh
Potassium, dissolved	M200.7 ICP	1	5.32		mg/L	0.2	1	12/09/21 16:00	kja
Sodium, dissolved	M200.7 ICP	1	526		mg/L	0.2	1	12/09/21 16:00	kja
Zinc, potentially dissolved	M200.7 ICP	1	<0.02	U	mg/L	0.02	0.05	12/06/21 18:57	jlw

Project ID: Sample ID: NEW 4

Inorganic Analytical Results

ACZ Sample ID: L70198-01 Date Sampled: 12/01/21 12:36 Date Received: 12/02/21 Sample Matrix: Groundwater

Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as		1	1180			mg/L	2	20	12/07/21 0:00	jck
CaCO3										
Carbonate as CaCO3		1	89.5			mg/L	2	20	12/07/21 0:00	jck
Hydroxide as CaCO3		1	<2	U		mg/L	2	20	12/07/21 0:00	jck
Total Alkalinity		1	1270			mg/L	2	20	12/07/21 0:00	jck
Cation-Anion Balance	Calculation									
Cation-Anion Balance			-4.0			%			12/15/21 0:00	calc
Sum of Anions			26			meq/L			12/15/21 0:00	calc
Sum of Cations			24			meq/L			12/15/21 0:00	calc
Chloride	SM4500CI-E	1	11.5		*	mg/L	0.5	2	12/13/21 14:57	′ md
Hardness as CaCO3 (dissolved)	SM2340B - Calculation		25			mg/L	0.2	5	12/15/21 0:00	calc
Lab Filtration (0.45um filter)	SOPWC050	1							12/06/21 12:16	6 mlh
Residue, Filterable (TDS) @180C	SM2540C	1	1400			mg/L	20	40	12/03/21 11:21	scd
Residue, Non- Filterable (TSS) @105C	SM2540D	1	<5	U	*	mg/L	5	20	12/07/21 13:17	' anc
Sodium Adsorption Ratio in Water	USGS - 11738-78		47						12/15/21 0:00	calc
Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	C 1	19.0		*	mg/L	1	5	12/08/21 21:31	mjj1

Project ID:

Sample ID: NE-1-10

ACZ Sample ID:	L70198-02					
Date Sampled:	12/01/21 13:10					
Date Received:	12/02/21					
Sample Matrix:	Groundwater					

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Acidify and filter (Potentially Dissolved)	Colorado 5 CCR 1002- 31.5.31 (2009)								12/05/21 9:21	l ssr
Lab Filtration (0.45um) & Acidification	M200.7/200.8/3005A								12/08/21 12:0	9 mlh
Total Hot Plate Digestion	M200.2 ICP								12/09/21 16:3	5 aeh
Total Recoverable Digestion	M200.2 ICP-MS								12/08/21 18:0	0 mfm
Total Recoverable Digestion	M200.2 ICP								12/08/21 20:1	9 kja

Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Arsenic, total recoverable	M200.8 ICP-MS	1	0.0117			mg/L	0.0002	0.001	12/10/21 14:37	mfm
Boron, total	M200.7 ICP	1	<0.03	U		mg/L	0.03	0.1	12/11/21 0:17	kja
Cadmium, potentially dissolved	M200.7 ICP	1	<0.008	U		mg/L	0.008	0.025	12/06/21 19:01	jlw
Calcium, dissolved	M200.7 ICP	1	2.32			mg/L	0.1	0.5	12/09/21 16:09	kja
Chromium, total recoverable	M200.8 ICP-MS	1	0.00261			mg/L	0.0005	0.002	12/10/21 14:37	mfm
Copper, potentially dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	12/06/21 19:01	jlw
Iron, dissolved	M200.7 ICP	1	<0.06	U		mg/L	0.06	0.15	12/09/21 16:09	kja
Iron, total	M200.7 ICP	1	0.178			mg/L	0.06	0.15	12/11/21 0:17	kja
Iron, total recoverable	M200.7 ICP	1	0.220			mg/L	0.06	0.15	12/09/21 21:13	kja
Magnesium, dissolved	M200.7 ICP	1	2.54			mg/L	0.2	1	12/09/21 16:09	kja
Manganese, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	12/09/21 16:09	kja
Manganese, potentially dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	12/06/21 19:01	jlw
Manganese, total	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	12/11/21 0:17	kja
Mercury, total	M245.1 CVAA	1	<0.0002	U		mg/L	0.0002	0.001	12/07/21 15:49	mlh
Potassium, dissolved	M200.7 ICP	1	4.12			mg/L	0.2	1	12/09/21 16:09	kja
Sodium, dissolved	M200.7 ICP	1	304			mg/L	0.2	1	12/09/21 16:09	kja
Zinc, potentially dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	12/06/21 19:01	jlw

Project ID: Sample ID: NE-1-10

Inorganic Analytical Results

ACZ Sample ID: L70198-02 Date Sampled: 12/01/21 13:10 Date Received: 12/02/21 Sample Matrix: Groundwater

Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as		1	404			mg/L	2	20	12/07/21 0:00	jck
CaCO3										
Carbonate as CaCO3		1	323			mg/L	2	20	12/07/21 0:00	jck
Hydroxide as CaCO3		1	<2	U		mg/L	2	20	12/07/21 0:00	jck
Total Alkalinity		1	727			mg/L	2	20	12/07/21 0:00	jck
Cation-Anion Balance	Calculation									
Cation-Anion Balance			-3.4			%			12/15/21 0:00	calc
Sum of Anions			15			meq/L			12/15/21 0:00	calc
Sum of Cations			14			meq/L			12/15/21 0:00	calc
Chloride	SM4500CI-E	1	7.14		*	mg/L	0.5	2	12/13/21 14:57	′ md
Hardness as CaCO3 (dissolved)	SM2340B - Calculation		16			mg/L	0.2	5	12/15/21 0:00	calc
Lab Filtration (0.45um filter)	SOPWC050	1							12/06/21 12:28	s mlh
Residue, Filterable (TDS) @180C	SM2540C	1	826			mg/L	20	40	12/03/21 11:22	scd
Residue, Non- Filterable (TSS) @105C	SM2540D	1	5.0	В	*	mg/L	5	20	12/07/21 13:20) anc
Sodium Adsorption Ratio in Water	USGS - 11738-78		33						12/15/21 0:00	calc
Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	^C 1	21.0		*	mg/L	1	5	12/08/21 21:33	8 mjj1

Inorganic Reference

Report Header	Explanations									
Batch	A distinct set of samples analyzed at a specific time									
Found	Value of the QC Type of interest									
Limit	Upper limit for RPD, in %.									
Lower	Lower Recovery Limit, in % (except for LCSS, mg/Kg)									
MDL	Method Detection Limit. Same as Minimum Reporting Limit un	less omitted or eq	ual to the PQL (see comment #5).							
	Allows for instrument and annual fluctuations.									
PCN/SCN	A number assigned to reagents/standards to trace to the manu	Ifacturer's certifica	te of analysis							
PQI	Practical Quantitation Limit Synonymous with the EPA term "r	ninimum level"	······································							
00	True Value of the Control Sample or the amount added to the S	Snike								
Rec	Pocovered amount of the true value or spike added in % (except for LCSS, ma/Ka)									
RPD	Relative Percent Difference, calculation used for Duplicate OC	Types								
Upper	Linner Receivery Limit in % (excent for LCSS, ma/Ka)	Турез								
Somelo	Volue of the Sample of interest									
Sample	value of the Sample of Interest									
QC Sample Typ	Des									
AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate							
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank							
ССВ	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix							
CCV	Continuing Calibration Verification standard	LFMD	Laboratory Fortified Matrix Duplicate							
DUP	Sample Duplicate	I RB	Laboratory Reagent Blank							
ICB	Initial Calibration Blank	MS	Matrix Spike							
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate							
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Pren Blank - Soil							
LCSS	Inter-element Control Sandard - A plus & solutions PBS Prep Blank - Soll									
LCSS	Laboratory Control Sample - Soil Duplicato	POV	Practical Quantitation Varification standard							
LCSSD		FQV								
LUSW	Laboratory Control Sample - Water	SDL	Senal Dilution							
QC Sample Typ	be Explanations									
Blanks	Verifies that there is no or minimal co	ntamination in the	prep method or calibration procedure.							
Control Sam	ples Verifies the accuracy of the method, i	ncluding the prep	procedure.							
Duplicates	Verifies the precision of the instrumer	nt and/or method.								
Spikes/Forti	fied Matrix Determines sample matrix interference	es, if any.								
Standard	Verifies the validity of the calibration.									
ACZ Qualifiers	(Qual)									
В	Analyte concentration detected at a value between MDL and P	QL. The associate	ed value is an estimated quantity.							
Н	Analysis exceeded method hold time. pH is a field test with an	immediate hold ti	me.							
L	Target analyte response was below the laboratory defined neg	ative threshold.								
U	The material was analyzed for, but was not detected above the	level of the asso	ciated value.							
	The associated value is either the sample quantitation limit or the	he sample detecti	on limit.							
Mothod Poferer	100									
(1)	EPA 600/4-83-020 Methods for Chemical Apolycic of Water a	nd Wastes Marek	1083							
(1)	EPA 600/4-03-020. Methods for the Determination of Increase	a Substances, Marci	Environmental Semples, August 1002							
(2)	EPA 600/R-93-100. Methods for the Determination of Motels in		environmental Samples, August 1993.							
(3)	EPA 600/R-94-111. Methods for the Determination of Metals in	1 Environmental S	samples - Supplement I, May 1994.							
(4)	EPA SW-846. Test Methods for Evaluating Solid Waste.									
(5)	Standard Methods for the Examination of Water and Wastewal	er.								
Comments										
(1)	QC results calculated from raw data. Results may vary slightly	if the rounded va	lues are used in the calculations.							
(2)	Soil, Sludge, and Plant matrices for Inorganic analyses are rep	orted on a dry wei	ght basis.							
(3)	Animal matrices for Inorganic analyses are reported on an "as	received" basis.	-							
(4)	An asterisk in the "XQ" column indicates there is an extended of	ualifier and/or cei	rtification gualifier							
	associated with the result.	,								
(5)	(5) If the MDL equals the PQL or the MDL column is omitted, the PQL is the reporting limit									
(-)			5							
For a complete list of ACZ's Extended Qualifiers, please click:										

https://acz.com/wp-content/uploads/2019/04/Ext-Qual-List.pdf

REP001.03.15.02

4C AGZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487

(800) 334-5493

New Elk Coal Co., LLC

ACZ Project ID: L70198

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L70198-01	WG533446	Chloride	SM4500CI-E	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG533080	Residue, Non-Filterable (TSS) @105C	SM2540D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			SM2540D	Z3	Sample volume yielded a residue less than 2.5 mg
	WG533214	Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
L70198-02	WG533446	Chloride	SM4500CI-E	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG533080	Residue, Non-Filterable (TSS) @105C	SM2540D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			SM2540D	Z3	Sample volume yielded a residue less than 2.5 mg
	WG533214	Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.

ACZ Project ID: L70198

No certification qualifiers associated with this analysis

AGZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493	Sa Re	imple eceipt	
New Elk Coal Co., LLC ACZ Pro	oject ID:		L70198
Date Re	eceived: 12	1 11:58	
Rece	ived By:		
Date	Printed:	12	/3/2021
Receipt Verification	VEO	NO	N 10
1) Is a foreign soil permit included for applicable samples?	TES	NO	X
2) Is the Chain of Custody form or other directive shipping papers present?	Х		
3) Does this project require special handling procedures such as CLP protocol?		Х	
4) Are any samples NRC licensable material?			Х
5) If samples are received past hold time, proceed with requested short hold time analyses?	Х		
6) Is the Chain of Custody form complete and accurate?	Х		
7) Were any changes made to the Chain of Custody form prior to ACZ receiving the samples?		Х	
Samples/Containers			
	YES	NO	NA
8) Are all containers intact and with no leaks?	Х		
9) Are all labels on containers and are they intact and legible?	Х		
10) Do the sample labels and Chain of Custody form match for Sample ID, Date, and Time?	Х		
11) For preserved bottle types, was the pH checked and within limits? ¹	Х		
12) Is there sufficient sample volume to perform all requested work?	Х		
13) Is the custody seal intact on all containers?			Х
14) Are samples that require zero headspace acceptable?			Х
15) Are all sample containers appropriate for analytical requirements?	Х		
16) Is there an Hg-1631 trip blank present?			Х
17) Is there a VOA trip blank present?			Х
18) Were all samples received within hold time?	Х		
	NA indica	tes Not Ap	plicable

Chain of Custody Related Remarks

Client Contact Remarks

Shipping Containers

Cooler Id	Temp(°C)	Temp Criteria(°C)	Rad(µR/Hr)	Custody Seal Intact?		
5316	1	<=6.0	15	Yes		

Was ice present in the shipment container(s)?

Yes - Wet ice was present in the shipment container(s).

Client must contact an ACZ Project Manager if analysis should not proceed for samples received outside of their thermal preservation acceptance criteria.

Sample Receipt

New Elk Coal Co., LLC

ACZ Project ID: L70198 Date Received: 12/02/2021 11:58 Received By: Date Printed: 12/3/2021

¹ The preservation of the following bottle types is not checked at sample receipt: Orange (oil and grease), Purple (total cyanide), Pink (dissolved cyanide), Brown (arsenic speciation), Sterile (fecal coliform), EDTA (sulfite), HCI preserved vial (organics), Na2S2O3 preserved vial (organics), and HG-1631 (total/dissolved mercury by method 1631).

		aborator	ries, Inc	- (,	10	19	8	С	HAI	N of	CUS	STO	DY
	2773 Downhill Drive Steam	nboat Springs, CO	80487 (800) 33	4-5493			•						
	Report to:	P		1					- (7			
	Name: Aim	Degano		-	Addre	ess:	122	<u>50</u>	<u>Sta</u>	<u>te /</u>	4 n y	12	
	Company: New 2	<u> IK ('02 </u>	10/	-	W	est	on,	<u>('a</u>	10,	8	10	<u>91</u>	
	E-mail: /mb@	newerkco	el.com		Telep	hone:		9-0	031	-6	5/4:	3	
	Copy of Report to:												
	Name: Nick	M2501	1		E-mai	il: 🖌	<u>n ma</u>	Sor	00	ne	ocl	6002	l.con
an a	Company: New E	Elk Coel	('0.		Telep	hone:	719	<u>1 - 6</u>	31-	- 6	144	, ,	
	Invoice to:				•								
	Name: Mary	Head			Addre	ess:	122	50	-St	2 te	Hw	v 12	
	Company: New E	Elk Coal	Co.]	И	les	for		210	5	ŝi e	571	
	E-mail: MONYO	Pnewelk	ccel.com	m Telephone: 7/9-631-6/42									
	If sample(s) received past	holding time (HT)	, or if insufficie	ent HT rei	nains	to com	plete				YES	X	
	analysis before expiration	, shall ACZ procee	ed with request	ed short	HT an	alyses?	>				NO]
	Are samples for SDWA Co	mpliance Monitor	ing?	ted, ACZ WIII j	Yes	th the reque	ested analys	NO	HT is expir	red, and dat	a will be qu	alified	
	If yes, please include state	e forms. Results w	ill be reported	to PQL fe	or Colo	brado.	1			J .			
	Sampler's Name: Jim	Begang Sample	er's Site Informa	ation	State_	Colo	2	Zip co	de 81	091	Time Z	ZoneM	DT
	*Sampler's Signature: 🔔	im Bagan	2 *I attest t tamperin	o the authenti g with the san	city and va uple in any	alidity of thi way, is con	s sample. I sidered frau	understan Id and pun	d that inten ishable by 1	tionally mis State Law.	labeling the	e time/date/	ocation or
	PROJECT INFORMATIC	DN				ANAL	YSES RE	QUESTE	D (attach	list or us	e quote nu	ımber)	
	Quote #: Table	28-GW	V- Q7	-R	ſS					_			
	PO#:				aine								
	Reporting state for complian	ce testing:			onta	-		1	20		L	,	-b
	Check box if samples includ	e NRC licensed ma	terial?		of C	1	2 <i>b</i>	1e	20	1-6	$\flat W$	-(' _\	[7.K]
	SAMPLE IDENTIFICA	TION DAT	E:TIME	Matrix	¥								T I
	NEW 4	+ 12-1-2	1 12:36	Gw	6							1. A.	
	NE-1-10	12-1-2	13:10	GW	6								
												· · · · ·	
	Matrix SW (Surface Wate	er) · GW (Ground Wate	er) · WW (Waste W	/ater) · DW	/ (Drinkii	ng Water) · SL (Sl	udge) · S	SO (Soil)	· OL (Oi	l) · Other	(Specify)
po	REMARKS				_				. ,			(,
	DIA	June 1	10000									-	
	Llesse Ke	Jurn, (Samala	· R	~:{//	be							
, e			Sampr			ل سا							
			roper		or								
్	Plac	no refer to ACZ's	Ice	DON	10	5							
80	RELINOUISHE		ierms & cond	nuons loo	cated o	on the i	reverse	side c	ot this (COC.			
					1	R	ECEIV	ED BY	:		DA		/IE
·	fames the	<u>mano</u>	1/1/21 15	5:10	11	261	- 		···-		11/2	121	
	· · · · · · · · · · · · · · · · · · ·										[2	ාරි	
					_								

L70498-25912915415419

Page 11 of 11

.

Analytical Report

January 10, 2022

Report to: Jim Begano New Elk Coal Co. , LLC 12250 Hwy. 12 Weston, CO 81091

cc: Nick Mason

Bill to: Mary Head New Elk Coal Co. , LLC 12250 US HWY 12 Weston, CO 81091

Project ID: ACZ Project ID: L70567

Jim Begano:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on December 17, 2021. This project has been assigned to ACZ's project number, L70567. Please reference this number in all future inquiries.

All analyses were performed according to ACZ's Quality Assurance Plan. The enclosed results relate only to the samples received under L70567. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after February 09, 2022. If the samples are determined to be hazardous, additional charges apply for disposal (typically \$11/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical raw data reports for ten years.

If you have any questions or other needs, please contact your Project Manager.

Lue well

Sue Webber has reviewed and approved this report.

Project ID:

Sample ID: NE-6-10-A

ACZ Sample ID:	L70567-01						
Date Sampled:	12/16/21 12:30						
Date Received:	12/17/21						
Sample Matrix:	Groundwater						

Inorganic Prep	iorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst	
Acidify and filter (Potentially Dissolved)	Colorado 5 CCR 1002- 31.5.31 (2009)								12/19/21 9:58	ssr	
Lab Filtration (0.45um) & Acidification	M200.7/200.8/3005A								12/21/21 8:20	mlh	
Total Hot Plate Digestion	M200.2 ICP								12/29/21 12:57	kja	
Total Recoverable Digestion	M200.2 ICP-MS								12/30/21 10:40	mfm/sc p	
Total Recoverable Digestion	M200.2 ICP								12/21/21 17:49	kja	

Metals /	Analysis
----------	----------

Parameter	EPA Method	Dilution	Result	Qual X	Q Units	MDL	PQL	Date	Analyst
Arsenic, total recoverable	M200.8 ICP-MS	1	0.00043	В	mg/L	0.0002	0.001	01/05/22 16:44	scp
Boron, total	M200.7 ICP	1	0.081	В	mg/L	0.03	0.1	12/22/21 15:18	jlw
Cadmium, potentially dissolved	M200.7 ICP	1	<0.008	U	mg/L	0.008	0.025	12/20/21 18:32	kja
Calcium, dissolved	M200.7 ICP	1	2.55		mg/L	0.1	0.5	12/30/21 13:12	jlw
Chromium, total recoverable	M200.8 ICP-MS	1	0.00110	В	mg/L	0.0005	0.002	01/05/22 16:44	scp
Copper, potentially dissolved	M200.7 ICP	1	<0.01	U	mg/L	0.01	0.05	12/20/21 18:32	kja
Iron, dissolved	M200.7 ICP	1	<0.06	U	mg/L	0.06	0.15	12/30/21 13:12	jlw
Iron, total	M200.7 ICP	1	0.393		mg/L	0.06	0.15	12/30/21 10:21	kja
Iron, total recoverable	M200.7 ICP	1	0.426		mg/L	0.06	0.15	12/22/21 18:00	kja
Magnesium, dissolved	M200.7 ICP	1	0.82	В	mg/L	0.2	1	12/30/21 13:12	jlw
Manganese, dissolved	M200.7 ICP	1	<0.01	U	mg/L	0.01	0.05	12/30/21 13:12	jlw
Manganese, potentially dissolved	M200.7 ICP	1	0.019	В	mg/L	0.01	0.05	12/20/21 18:32	kja
Manganese, total	M200.7 ICP	1	0.013	В	mg/L	0.01	0.05	12/22/21 15:18	jlw
Mercury, total	M245.1 CVAA	1	<0.0002	U	mg/L	0.0002	0.001	12/31/21 11:02	mlh
Potassium, dissolved	M200.7 ICP	1	2.89		mg/L	0.2	1	12/30/21 13:12	jlw
Sodium, dissolved	M200.7 ICP	1	417	*	mg/L	0.2	1	12/30/21 13:12	jlw
Zinc, potentially dissolved	M200.7 ICP	1	<0.02	U	mg/L	0.02	0.05	12/20/21 18:32	kja

Project ID: Sample ID: NE-6-10-A

Inorganic Analytical Results

ACZ Sample ID: L70567-01 Date Sampled: 12/16/21 12:30 Date Received: 12/17/21 Sample Matrix: Groundwater

Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as		1	938			mg/L	2	20	12/30/21 0:00	emk
CaCO3										
Carbonate as CaCO3		1	136			mg/L	2	20	12/30/21 0:00	emk
Hydroxide as CaCO3		1	<2	U		mg/L	2	20	12/30/21 0:00	emk
Total Alkalinity		1	1070			mg/L	2	20	12/30/21 0:00	emk
Cation-Anion Balance	Calculation									
Cation-Anion Balance			-7.3			%			01/10/22 0:00	calc
Sum of Anions			22			meq/L			01/10/22 0:00	calc
Sum of Cations			19			meq/L			01/10/22 0:00	calc
Chloride	SM4500CI-E	1	5.47			mg/L	0.5	2	01/07/22 12:54	md
Hardness as CaCO3 (dissolved)	SM2340B - Calculation		9.7			mg/L	0.2	5	01/10/22 0:00	calc
Lab Filtration (0.45um filter)	SOPWC050	1							12/30/21 15:45	i emk
Residue, Filterable (TDS) @180C	SM2540C	2	1100			mg/L	40	80	12/21/21 19:20) jck
Residue, Non- Filterable (TSS) @105C	SM2540D	1	13.0	В	*	mg/L	5	20	12/20/21 15:17	′ scd
Sodium Adsorption Ratio in Water	USGS - 11738-78		59						01/10/22 0:00	calc
Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	^C 1	1.8	В	*	mg/L	1	5	01/07/22 19:03	syw

Project ID:

Sample ID: NE-6-10-B

ACZ Sample ID:	L70567-02						
Date Sampled:	12/16/21 13:04						
Date Received:	12/17/21						
Sample Matrix:	Groundwater						

Inorganic Prep											
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date		Analyst
Acidify and filter (Potentially Dissolved)	Colorado 5 CCR 1002- 31.5.31 (2009)								12/19/21	10:08	ssr
Lab Filtration (0.45um) & Acidification	M200.7/200.8/3005A								12/21/21	8:20	mlh
Total Hot Plate Digestion	M200.2 ICP				*				12/29/21	13:10	kja
Total Recoverable Digestion	M200.2 ICP								12/21/21	18:14	kja
Total Recoverable Digestion	M200.2 ICP-MS								12/30/21	10:51	mfm/sc p

Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Arsenic, total recoverable	M200.8 ICP-MS	1	0.00065	В		mg/L	0.0002	0.001	01/05/22 16:46	6 scp
Boron, total	M200.7 ICP	1	0.062	В		mg/L	0.03	0.1	12/22/21 15:27	l jlw
Cadmium, potentially dissolved	M200.7 ICP	1	<0.008	U		mg/L	0.008	0.025	12/20/21 18:47	7 kja
Calcium, dissolved	M200.7 ICP	1	2.43			mg/L	0.1	0.5	12/30/21 13:15	5 jlw
Chromium, total recoverable	M200.8 ICP-MS	1	0.0162			mg/L	0.0005	0.002	01/05/22 16:46	6 scp
Copper, potentially dissolved	M200.7 ICP	1	0.018	В		mg/L	0.01	0.05	12/20/21 18:47	7 kja
Iron, dissolved	M200.7 ICP	1	0.161			mg/L	0.06	0.15	12/30/21 13:15	5 jlw
Iron, total	M200.7 ICP	2	1.81			mg/L	0.12	0.3	12/30/21 10:25	5 kja
Iron, total recoverable	M200.7 ICP	1	1.79			mg/L	0.06	0.15	12/22/21 18:03	3 kja
Magnesium, dissolved	M200.7 ICP	1	0.31	В		mg/L	0.2	1	12/30/21 13:15	5 jlw
Manganese, dissolved	M200.7 ICP	1	0.017	В		mg/L	0.01	0.05	12/30/21 13:15	5 jlw
Manganese, potentially dissolved	M200.7 ICP	1	0.030	В		mg/L	0.01	0.05	12/20/21 18:47	r kja
Manganese, total	M200.7 ICP	1	0.034	В		mg/L	0.01	0.05	12/22/21 15:27	l jlw
Mercury, total	M245.1 CVAA	1	<0.0002	U		mg/L	0.0002	0.001	12/31/21 11:02	2 mlh
Potassium, dissolved	M200.7 ICP	1	1.42			mg/L	0.2	1	12/30/21 13:15	5 jlw
Sodium, dissolved	M200.7 ICP	1	189		*	mg/L	0.2	1	12/30/21 13:15	5 jlw
Zinc, potentially dissolved	M200.7 ICP	1	0.031	В		mg/L	0.02	0.05	12/20/21 18:47	7 kja

Project ID: Sample ID: NE-6-10-B

Inorganic Analytical Results

ACZ Sample ID: L70567-02 Date Sampled: 12/16/21 13:04 Date Received: 12/17/21 Sample Matrix: Groundwater

Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as		1	458			mg/L	2	20	12/30/21 0:00	emk
CaCO3										
Carbonate as CaCO3		1	17.7	В		mg/L	2	20	12/30/21 0:00	emk
Hydroxide as CaCO3		1	<2	U		mg/L	2	20	12/30/21 0:00	emk
Total Alkalinity		1	476			mg/L	2	20	12/30/21 0:00	emk
Cation-Anion Balance	Calculation									
Cation-Anion Balance			-7.6			%			01/10/22 0:00	calc
Sum of Anions			9.9			meq/L			01/10/22 0:00	calc
Sum of Cations			8.5			meq/L			01/10/22 0:00	calc
Chloride	SM4500CI-E	1	5.29			mg/L	0.5	2	01/07/22 12:55	i md
Hardness as CaCO3 (dissolved)	SM2340B - Calculation		7.3			mg/L	0.2	5	01/10/22 0:00	calc
Lab Filtration (0.45um filter)	SOPWC050	1							12/30/21 15:46	i emk
Residue, Filterable (TDS) @180C	SM2540C	1	510			mg/L	20	40	12/21/21 19:23	ick j
Residue, Non- Filterable (TSS) @105C	SM2540D	1	26.0		*	mg/L	5	20	12/20/21 15:19) scd
Sodium Adsorption Ratio in Water	USGS - 11738-78		31						01/10/22 0:00	calc
Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	C 1	13.3		*	mg/L	1	5	01/07/22 19:06	syw

Project ID: Sample ID: NEW 2

ACZ Sample ID:	L70567-03					
Date Sampled:	12/16/21 13:46					
Date Received:	12/17/21					
Sample Matrix:	Groundwater					

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Acidify and filter (Potentially Dissolved)	Colorado 5 CCR 1002- 31.5.31 (2009)								12/19/21 10:19	ssr
Lab Filtration (0.45um) & Acidification	M200.7/200.8/3005A								12/28/21 18:38	kja
Total Hot Plate Digestion	M200.2 ICP								12/29/21 13:52	kja
Total Recoverable Digestion	M200.2 ICP-MS								12/30/21 11:02	mfm/sc p
Total Recoverable Digestion	M200.2 ICP								12/21/21 18:39	kja

Metals	Analysis
--------	----------

Parameter	EPA Method	Dilution	Result	Qual X	(Q Un	its MDL	PQL	Date	Analyst
Arsenic, total recoverable	M200.8 ICP-MS	1	0.00052	В	mg	/L 0.0002	0.001	01/05/22 16:48	scp
Boron, total	M200.7 ICP	1	0.047	В	mg	/L 0.03	0.1	12/22/21 15:25	jlw
Cadmium, potentially dissolved	M200.7 ICP	1	<0.008	U	mg	/L 0.008	0.025	12/20/21 18:51	kja
Calcium, dissolved	M200.7 ICP	1	11.4		mg	/L 0.1	0.5	12/30/21 13:18	jlw
Chromium, total recoverable	M200.8 ICP-MS	1	0.00084	В	mg	/L 0.0005	0.002	01/05/22 16:48	scp
Copper, potentially dissolved	M200.7 ICP	1	0.029	В	mg	/L 0.01	0.05	12/20/21 18:51	kja
Iron, dissolved	M200.7 ICP	1	0.130	В	mg	/L 0.06	0.15	12/30/21 13:18	jlw
Iron, total	M200.7 ICP	1	0.939		mg	/L 0.06	0.15	12/30/21 10:34	kja
Iron, total recoverable	M200.7 ICP	1	0.879		mg	/L 0.06	0.15	12/22/21 18:06	i kja
Magnesium, dissolved	M200.7 ICP	1	5.01		mg	/L 0.2	1	12/30/21 13:18	jlw
Manganese, dissolved	M200.7 ICP	1	0.017	В	mg	/L 0.01	0.05	12/30/21 13:18	jlw
Manganese, potentially dissolved	M200.7 ICP	1	0.054		mg	/L 0.01	0.05	12/20/21 18:51	kja
Manganese, total	M200.7 ICP	1	0.052		mg	/L 0.01	0.05	12/22/21 15:25	jlw
Mercury, total	M245.1 CVAA	1	<0.0002	U	mg	/L 0.0002	0.001	12/31/21 11:03	mlh
Potassium, dissolved	M200.7 ICP	1	6.98		mg	/L 0.2	1	12/30/21 13:18	jlw
Sodium, dissolved	M200.7 ICP	1	487		* mg	/L 0.2	1	12/30/21 13:18	jlw
Zinc, potentially dissolved	M200.7 ICP	1	0.035	В	mg	/L 0.02	0.05	12/20/21 18:51	kja

Project ID: Sample ID: NEW 2

Inorganic Analytical Results

ACZ Sample ID: L70567-03 Date Sampled: 12/16/21 13:46 Date Received: 12/17/21 Sample Matrix: Groundwater

Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as		1	1070			mg/L	2	20	12/30/21 0:00	emk
CaCO3										
Carbonate as CaCO3		1	54.0			mg/L	2	20	12/30/21 0:00	emk
Hydroxide as CaCO3		1	<2	U		mg/L	2	20	12/30/21 0:00	emk
Total Alkalinity		1	1130			mg/L	2	20	12/30/21 0:00	emk
Cation-Anion Balance	Calculation									
Cation-Anion Balance			-6.1			%			01/10/22 0:00	calc
Sum of Anions			26			meq/L			01/10/22 0:00	calc
Sum of Cations			23			meq/L			01/10/22 0:00	calc
Chloride	SM4500CI-E	1	9.07			mg/L	0.5	2	01/07/22 12:55	md
Hardness as CaCO3 (dissolved)	SM2340B - Calculation		49			mg/L	0.2	5	01/10/22 0:00	calc
Lab Filtration (0.45um filter)	SOPWC050	1							12/30/21 15:48	emk
Residue, Filterable (TDS) @180C	SM2540C	1	1360			mg/L	20	40	12/21/21 19:25	jck
Residue, Non- Filterable (TSS) @105C	SM2540D	1	<5	U	*	mg/L	5	20	12/20/21 15:21	scd
Sodium Adsorption Ratio in Water	USGS - 11738-78		31						01/10/22 0:00	calc
Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	5	143		*	mg/L	5	25	01/07/22 19:13	syw

Inorganic Reference

Report Header	Explanations								
Batch	A distinct set of samples analyzed at a specific time								
Found	Value of the QC Type of interest								
Limit	Upper limit for RPD, in %.								
Lower	Lower Recovery Limit, in % (except for LCSS, mg/Kg)								
MDL	Method Detection Limit. Same as Minimum Reporting Limit unless omitted or equal to the PQL (see comment #5).								
	Allows for instrument and annual fluctuations.								
PCN/SCN	A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis								
PQI	Practical Quantitation Limit Synonymous with the EPA term "minimum level"								
00	True Value of the Control Sample or the amount added to the Spike								
Rec	Recovered amount of the true value or spike added in % (exce	ept for LCSS_mg/	Ka)						
RPD	Relative Percent Difference, calculation used for Duplicate QC	Types							
Unner	Upper Recovery Limit in % (except for LCSS_mg/Kg)	1,9000							
Sample	Value of the Sample of interest								
Gample	value of the bample of interest								
QC Sample Typ	Des								
AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate						
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank						
ССВ	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix						
CCV	Continuing Calibration Verification standard	LFMD	Laboratory Fortified Matrix Duplicate						
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank						
ICB	Initial Calibration Blank	MS	Matrix Spike						
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate						
ICSAB	Inter-element Correction Standard - A plus B solutions PBS Prep Blank - Soil								
LCSS	Laboratory Control Sample - Soil PRW Pren Blank - Water								
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard						
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution						
QC Sample Typ	be Explanations								
Blanks	Verifies that there is no or minimal co	ntamination in the	prep method or calibration procedure.						
Control San	nples Verifies the accuracy of the method, i	ncluding the prep	procedure.						
Duplicates	Verifies the precision of the instrumer	nt and/or method.							
Spikes/Forti	ified Matrix Determines sample matrix interference	ces, if any.							
Standard	Verifies the validity of the calibration.								
ACZ Qualifiors									
	Analyte concentration detected at a value between MDL and R		ad value is an estimated quantity						
ы	Analysis exceeded method hold time. pH is a field test with an	immodiate hold ti							
11	Target analyte response was below the laboratory defined page	ativo throshold							
	The meterial was applyized for but was not detected above the	alive intestiolo.	pieted volue						
0	The appropriated value is either the sample quantitation limit or the	he comple detecti							
	The associated value is either the sample quantitation limit of th	ne sample delecti							
Method Refere	nces								
(1)	EPA 600/4-83-020. Methods for Chemical Analysis of Water a	nd Wastes, March	1983.						
(2)	EPA 600/R-93-100. Methods for the Determination of Inorgani	c Substances in E	nvironmental Samples, August 1993.						
(3)	EPA 600/R-94-111. Methods for the Determination of Metals ir	n Environmental S	amples - Supplement I, May 1994.						
(4)	EPA SW-846. Test Methods for Evaluating Solid Waste.								
(5)	Standard Methods for the Examination of Water and Wastewat	ter.							
Comments									
(1)	QC results calculated from raw data. Results may vary slightly	if the rounded va	lues are used in the calculations.						
(2)	Soil, Sludge, and Plant matrices for Inorganic analyses are rep	orted on a dry wei	ght basis.						
(3)	Animal matrices for Inorganic analyses are reported on an "as	received" basis.							
(4)	An asterisk in the "XQ" column indicates there is an extended of	qualifier and/or cei	tification qualifier						
	associated with the result.								
(5)	(5) If the MDL equals the PQL or the MDL column is omitted, the PQL is the reporting limit.								

https://acz.com/wp-content/uploads/2019/04/Ext-Qual-List.pdf

REP001.03.15.02

4C AGZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487

(800) 334-5493

New Elk Coal Co., LLC

ACZ Project ID: L70567

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L70567-01	WG533936	Residue, Non-Filterable (TSS) @105C	SM2540D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			SM2540D	Z3	Sample volume yielded a residue less than 2.5 mg
	WG534283	Sodium, dissolved	M200.7 ICP	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG534631	Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
L70567-02	WG533936	Residue, Non-Filterable (TSS) @105C	SM2540D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG534283	Sodium, dissolved	M200.7 ICP	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG534631	Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG534202	Total Hot Plate Digestion	M200.2 ICP	DJ	Sample dilution required due to insufficient sample.
L70567-03	WG533936	Residue, Non-Filterable (TSS) @105C	SM2540D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			SM2540D	Z3	Sample volume yielded a residue less than 2.5 mg
	WG534283	Sodium, dissolved	M200.7 ICP	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG534631	Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.

ACZ Project ID: L70567

No certification qualifiers associated with this analysis

AGZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493		Sample Receipt			
New Elk Coal Co., LLC ACZ	Project II):		L70567	
Date	Received	d: 12	2/17/202	1 13:10	
Re	ceived By	y:			
Da	te Printeo	d:	12/2	20/2021	
Receipt Verification		50	NO	ΝΔ	
1) Is a foreign soil permit included for applicable samples?		_5	NO	X	
2) Is the Chain of Custody form or other directive shipping papers present?		X			
3) Does this project require special handling procedures such as CLP protocol?			Х		
4) Are any samples NRC licensable material?				Х	
5) If samples are received past hold time, proceed with requested short hold time analyses?	2	x			
6) Is the Chain of Custody form complete and accurate?		Х			
7) Were any changes made to the Chain of Custody form prior to ACZ receiving the sample	s?		Х		
Samples/Containers					
	Y	ES	NO	NA	
8) Are all containers intact and with no leaks?		X			
9) Are all labels on containers and are they intact and legible?		X			
10) Do the sample labels and Chain of Custody form match for Sample ID, Date, and Time?	, ,	Х			
11) For preserved bottle types, was the pH checked and within limits? 1		X			
12) Is there sufficient sample volume to perform all requested work?		X			
13) Is the custody seal intact on all containers?				Х	
14) Are samples that require zero headspace acceptable?				Х	
15) Are all sample containers appropriate for analytical requirements?		Х			
16) Is there an Hg-1631 trip blank present?				Х	
17) Is there a VOA trip blank present?				Х	
18) Were all samples received within hold time?		Х			
	NA i	ndicat	tes Not Ap	plicable	

Chain of Custody Related Remarks

Client Contact Remarks

Shipping Containers

Cooler Id	Temp(°C)	Temp Criteria(°C)	Rad(µR/Hr)	Custody Seal Intact?			
7044	1.1	<=6.0	15	Yes			

Was ice present in the shipment container(s)?

Yes - Wet ice was present in the shipment container(s).

Client must contact an ACZ Project Manager if analysis should not proceed for samples received outside of their thermal preservation acceptance criteria.

Sample Receipt

New Elk Coal Co., LLC

ACZ Project ID: L70567 Date Received: 12/17/2021 13:10 Received By: Date Printed: 12/20/2021

¹ The preservation of the following bottle types is not checked at sample receipt: Orange (oil and grease), Purple (total cyanide), Pink (dissolved cyanide), Brown (arsenic speciation), Sterile (fecal coliform), EDTA (sulfite), HCI preserved vial (organics), Na2S2O3 preserved vial (organics), and HG-1631 (total/dissolved mercury by method 1631).

ACZ 2773 Downhill Drive	Lak Steamboat	Springs, CO	ries, Inc.	C. []	70	56	7		СНА	IN o	fCU	STC	D
Report to:		oprings, 00		534-5493									
Name: Jam	es F	F. Rec	えみれる		Addr		17-	D.E.F		57.	11.	1	2
Company: NE	EN E	IK Co	el Ca		1	1/	12/		$\frac{\gamma \gamma}{\gamma \gamma}$	<u>e 7C</u> D	HW	Y, / -	<u>_</u>
E-mail: / im	ben	ervelk	Toal, con	1	Telei	phone:	- <u>-0</u> - 71	G -		21-		$\frac{1}{5}$	
Copy of Report to:									<u>V :</u>		41-	7.7	
Name: Nicl	< W	12501	`		Emo		D 10			6			
Company: Ne	w EI	K Coal	Co	-1	Teler	hone:	<u>ין וי</u> יודי	<u>105</u>	<u>601</u> 621	- 4	<u>) en e</u>	eike	03
Invoice to:								<u> </u>			1-74		
Name: Mar	Y H	ead			Addr		10	2	_	cl.	/ /		
Company: No	NEI	KCOD	1 Co.	-1	V	$\frac{1}{1}$		<u> </u>	$\frac{0}{0}$	<u>7727</u>	<u>10 17</u> Q11	wy	
E-mail: M20	Y @	newel	K Coplica	m	Telen	bone:	<u>2 fc</u> 71	$\frac{n}{q}$	63		$\frac{\mathcal{O}}{\mathcal{O}}$		
If sample(s) received	past holdi	ng time (HT),	or if insuffici	ent HT r	emains	to com	//		00	7=0	Z T T		Т
analysis before expira If "NO" then ACZ will contact clien	ition, shall	I ACZ procee		ted sho	rt HT an	alyses	?				NO		
Are samples for SDW	A Complia	ince Monitori	ng?	alou, ACZ WI	Yes	ith the requ	Jested anal	vses, even NO	If HT is ex	pired, and d	ata will be q	ualified	
f yes, please include	state form	s. Results wi	II be reported	to PQL	for Cold	orado.	J		<u> </u>				
Sampler's Name:	<u>H</u> am	_ Sample	r's Site Inform	ation	State_	<u> </u>	2	_ Zip c	ode <u>Ø</u>	109	/ Time a	Zone /	NE
		2 Segu	tamperin	ng with the s	ample in any	/way, is co	es sample. Insidered fra	l understa aud and pu	nd that inte nishable b	entionally m y State Law	islabeling th	e time/date	/locat
	10-76	8 - 6 4	1-0F	- <u></u>	1	ANA	LYSES R	EQUEST	ED (attaci	h list or u	se quote n	umber)	Ļ
20#:	<u>re-20</u>	<u>2 GW</u>	$-\alpha_{1}$	<u> </u>	ners								
Reporting state for com	pliance tes	tina [.]			ntai			tre	-	0-	hu	1 0	h
Check box if samples in	clude NRC	licensed mat	erial?		Ŝ		113	bh	47	0	t s n	ψ-e	¥7
SAMPLE IDENTIFI	CATION	DAT	E:TIME	Matrix	ю #								
NE-6-1	0-A	12/16/2	1 12:30	6W	5		<u> </u>		+	-		<u> </u>	\vdash
										\uparrow			┢─
<u>NE-6-10-</u>	<u>. R</u>	1-116/2	1 13:04	GW	5								
ALEMA D				L									
NEW L	<u> </u>	1/16/2	13:46	4	6				L				
		┼────						Ļ	<u> </u>	ļ			L
-		┢────							 	<u> </u>			
		<u> </u>											
		<u> </u>											
Matrix SW (Surface)	Water) · GW	Ground Water) · WW (Waste W	/ater) · DV	I	u Water		ludae) ·			il). Other	(0if	<u> </u>
EMARKS) 01 (0	ladge)) 02 (0		(Specily	/)
Ploses	O.L.	0	poler					_					
INCOSE I	16 INI			.t.	ine	201							
		t t		00019 1010	nk	· • • • •							
		۲ ۲	Samol	0 .F	3.1	10	Ċ						
F	vlease refe	er to ACZ's t	erms & cond	itions lo	cated o	n the r	≥. everse	e side d	of this	COC.			
RELINQUIS	HED BY:		DATE:TI	ME		R	ECEIV	ED BY	(:		DA	TE:TI	ИE
James 7	Beja	NO .	12/16/21 1	5.20			Q	1			12/17/2	.1 1	3:11

L70567-2201101145

Analytical Report

January 10, 2022

Report to: Jim Begano New Elk Coal Co. , LLC 12250 Hwy. 12 Weston, CO 81091

cc: Nick Mason

Bill to: Mary Head New Elk Coal Co. , LLC 12250 US HWY 12 Weston, CO 81091

Project ID: ACZ Project ID: L70608

Jim Begano:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on December 21, 2021. This project has been assigned to ACZ's project number, L70608. Please reference this number in all future inquiries.

All analyses were performed according to ACZ's Quality Assurance Plan. The enclosed results relate only to the samples received under L70608. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after February 09, 2022. If the samples are determined to be hazardous, additional charges apply for disposal (typically \$11/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical raw data reports for ten years.

If you have any questions or other needs, please contact your Project Manager.

re gible

Sue Webber has reviewed and approved this report.

Project ID:

Sample ID: PRS-1

ACZ Sample ID:	L70608-01						
Date Sampled:	12/20/21 14:00						
Date Received:	12/21/21						
Sample Matrix:	Surface Water						

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Lab Filtration (0.45um) & Acidification	M200.7/200.8/3005A								12/28/21 18:38	kja
Total Hot Plate Digestion	M200.2 ICP								12/28/21 14:39	jlw
Total Recoverable Digestion	M200.2 ICP								12/22/21 19:11	kja
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Calcium, dissolved	M200.7 ICP	1	48.3			mg/L	0.1	0.5	12/30/21 13:40	jlw
Iron, dissolved	M200.7 ICP	1	<0.06	U		mg/L	0.06	0.15	12/30/21 13:40	jlw
Iron, total	M200.7 ICP	1	0.161			mg/L	0.06	0.15	12/29/21 10:26	jlw
Iron, total recoverable	M200.7 ICP	1	0.165			mg/L	0.06	0.15	12/29/21 1:07	kja
Magnesium, dissolved	M200.7 ICP	1	8.00			mg/L	0.2	1	12/30/21 13:40	jĺw
Manganese, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	12/30/21 13:40	jlw
Manganese, total	M200.7 ICP	1	0.023	В		mg/L	0.01	0.05	12/29/21 10:26	jlw
Potassium, dissolved	M200.7 ICP	1	1.54			mg/L	0.2	1	12/30/21 13:40	jlw
Sodium, dissolved	M200.7 ICP	1	6.99		*	mg/L	0.2	1	12/30/21 13:40	jlw
Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as CaCO3		1	136			mg/L	2	20	12/30/21 0:00	emk
0										
Carbonate as CaCO3		1	<2	U		mg/L	2	20	12/30/21 0:00	emk
Hydroxide as CaCO3		1 1	<2 <2	U U		mg/L mg/L	2 2	20 20	12/30/21 0:00 12/30/21 0:00	emk emk
Hydroxide as CaCO3 Total Alkalinity		1 1 1	<2 <2 136	U U		mg/L mg/L mg/L	2 2 2	20 20 20	12/30/21 0:00 12/30/21 0:00 12/30/21 0:00	emk emk emk
Carbonate as CaCO3 Hydroxide as CaCO3 Total Alkalinity Chloride	SM4500CI-E	1 1 1 1	<2 <2 136 2.19	U U	*	mg/L mg/L mg/L mg/L	2 2 2 0.5	20 20 20 2	12/30/21 0:00 12/30/21 0:00 12/30/21 0:00 01/10/22 9:34	emk emk emk md
Carbonate as CaCO3 Hydroxide as CaCO3 Total Alkalinity Chloride Hardness as CaCO3 (dissolved)	SM4500CI-E SM2340B - Calculation	1 1 1 1	<2 <2 136 2.19 154	U U	*	mg/L mg/L mg/L mg/L mg/L	2 2 0.5 0.2	20 20 20 2 5	12/30/21 0:00 12/30/21 0:00 12/30/21 0:00 01/10/22 9:34 01/10/22 0:00	emk emk emk md calc
Hydroxide as CaCO3 Total Alkalinity Chloride Hardness as CaCO3 (dissolved) Lab Filtration (0.45um filter)	SM4500CI-E SM2340B - Calculation SOPWC050	1 1 1 1	<2 <2 136 2.19 154	U U	*	mg/L mg/L mg/L mg/L mg/L	2 2 0.5 0.2	20 20 20 2 5	12/30/21 0:00 12/30/21 0:00 12/30/21 0:00 01/10/22 9:34 01/10/22 0:00 12/30/21 16:30	emk emk emk md calc emk
Carbonate as CaCO3 Hydroxide as CaCO3 Total Alkalinity Chloride Hardness as CaCO3 (dissolved) Lab Filtration (0.45um filter) Residue, Filterable (TDS) @180C	SM4500CI-E SM2340B - Calculation SOPWC050 SM2540C	1 1 1 1 1	<2 <2 136 2.19 154 216	UU	*	mg/L mg/L mg/L mg/L mg/L	2 2 0.5 0.2	20 20 2 5 40	12/30/21 0:00 12/30/21 0:00 12/30/21 0:00 01/10/22 9:34 01/10/22 0:00 12/30/21 16:30 12/22/21 13:48	emk emk md calc emk anc
Carbonate as CaCO3 Hydroxide as CaCO3 Total Alkalinity Chloride Hardness as CaCO3 (dissolved) Lab Filtration (0.45um filter) Residue, Filterable (TDS) @180C Residue, Non- Filterable (TSS) @105C	SM4500CI-E SM2340B - Calculation SOPWC050 SM2540C SM2540D	1 1 1 1 1 1	<2 <2 136 2.19 154 216 <5	U U U	*	mg/L mg/L mg/L mg/L mg/L mg/L	2 2 0.5 0.2 20 5	20 20 2 5 40 20	12/30/21 0:00 12/30/21 0:00 12/30/21 0:00 01/10/22 9:34 01/10/22 0:00 12/30/21 16:30 12/22/21 13:48 12/22/21 19:24	emk emk md calc emk anc jck
Hydroxide as CaCO3 Hydroxide as CaCO3 Total Alkalinity Chloride Hardness as CaCO3 (dissolved) Lab Filtration (0.45um filter) Residue, Filterable (TDS) @180C Residue, Non- Filterable (TSS) @105C Sodium Adsorption Ratio in Water	SM4500CI-E SM2340B - Calculation SOPWC050 SM2540C SM2540D USGS - 11738-78	1 1 1 1 1	<2 <2 136 2.19 154 216 <5 0.25	U U U	*	mg/L mg/L mg/L mg/L mg/L	2 2 0.5 0.2 20 5	20 20 2 5 40 20	12/30/21 0:00 12/30/21 0:00 12/30/21 0:00 01/10/22 9:34 01/10/22 0:00 12/30/21 16:30 12/22/21 13:48 12/22/21 19:24 01/10/22 0:00	emk emk md calc emk anc jck

Project ID:

Sample ID: PRS-4A

ACZ Sample ID:	L70608-02
Date Sampled:	12/20/21 14:32
Date Received:	12/21/21
Sample Matrix:	Surface Water

Inorganic Prep									
Parameter	EPA Method	Dilution	Result	Qual X	Q Units	MDL	PQL	Date	Analyst
Lab Filtration (0.45um) & Acidification	M200.7/200.8/3005A							12/28/21 18:38	kja
Total Hot Plate Digestion	M200.2 ICP							12/28/21 14:53	jlw
Total Recoverable Digestion	M200.2 ICP							12/22/21 19:57	kja
Metals Analysis									
Parameter	EPA Method	Dilution	Result	Qual X	Q Units	MDL	PQL	Date	Analyst
Calcium, dissolved	M200.7 ICP	1	49.0		mg/L	0.1	0.5	12/30/21 13:43	jlw
Iron, dissolved	M200.7 ICP	1	<0.06	U	mg/L	0.06	0.15	12/30/21 13:43	jlw
Iron, total	M200.7 ICP	1	0.313		mg/L	0.06	0.15	12/29/21 10:29	jlw
Iron, total recoverable	M200.7 ICP	1	0.259		mg/L	0.06	0.15	12/29/21 1:16	kja
Magnesium, dissolved	M200.7 ICP	1	8.15		mg/L	0.2	1	12/30/21 13:43	jĺw
Manganese, dissolved	M200.7 ICP	1	0.011	В	mg/L	0.01	0.05	12/30/21 13:43	jlw
Manganese, total	M200.7 ICP	1	0.034	В	mg/L	0.01	0.05	12/29/21 10:29	jlw
Potassium, dissolved	M200.7 ICP	1	1.50		mg/L	0.2	1	12/30/21 13:43	jlw
Sodium, dissolved	M200.7 ICP	1	7.55	*	mg/L	0.2	1	12/30/21 13:43	jlw
Wet Chemistry									
Wet Chemistry Parameter	EPA Method	Dilution	Result	Qual X	Q Units	MDL	PQL	Date	Analyst
Wet Chemistry Parameter Alkalinity as CaCO3	EPA Method SM2320B - Titration	Dilution	Result	Qual X	Q Units	MDL	PQL	Date	Analyst
Wet Chemistry Parameter Alkalinity as CaCO3 Bicarbonate as CaCO3	EPA Method SM2320B - Titration	Dilution 1	Result 137	Qual X	Q Units mg/L	MDL 2	PQL 20	Date 12/30/21 0:00	Analyst emk
Wet Chemistry Parameter Alkalinity as CaCO3 Bicarbonate as CaCO3 Carbonate as CaCO3	EPA Method SM2320B - Titration	Dilution 1 1	Result 137 4.3	Qual X	Q Units mg/L mg/L	MDL 2 2	PQL 20 20	Date 12/30/21 0:00 12/30/21 0:00	Analyst emk emk
Wet Chemistry Parameter Alkalinity as CaCO3 Bicarbonate as CaCO3 Carbonate as CaCO3 Hydroxide as CaCO3	EPA Method SM2320B - Titration	Dilution 1 1 1	Result 137 4.3 <2	Qual X B U	Q Units mg/L mg/L mg/L	MDL 2 2 2	PQL 20 20 20	Date 12/30/21 0:00 12/30/21 0:00 12/30/21 0:00	Analyst emk emk emk
Wet Chemistry Parameter Alkalinity as CaCO3 Bicarbonate as CaCO3 Carbonate as CaCO3 Hydroxide as CaCO3 Total Alkalinity	EPA Method SM2320B - Titration	Dilution 1 1 1 1	Result 137 4.3 <2 141	Qual X B U	Q Units mg/L mg/L mg/L mg/L	MDL 2 2 2 2 2	PQL 20 20 20 20 20	Date 12/30/21 0:00 12/30/21 0:00 12/30/21 0:00 12/30/21 0:00	Analyst emk emk emk emk
Wet Chemistry Parameter Alkalinity as CaCO3 Bicarbonate as CaCO3 Carbonate as CaCO3 Hydroxide as CaCO3 Total Alkalinity Chloride	EPA Method SM2320B - Titration SM4500CI-E	Dilution 1 1 1 1 1 1	Result 137 4.3 <2 141 2.31	Qual X B U	Q Units mg/L mg/L mg/L mg/L mg/L	MDL 2 2 2 2 2 0.5	PQL 20 20 20 20 20 20 20 2	Date 12/30/21 0:00 12/30/21 0:00 12/30/21 0:00 12/30/21 0:00 01/10/22 9:35	Analyst emk emk emk emk md
Wet Chemistry Parameter Alkalinity as CaCO3 Bicarbonate as CaCO3 Carbonate as CaCO3 Hydroxide as CaCO3 Total Alkalinity Chloride Hardness as CaCO3 (dissolved)	EPA Method SM2320B - Titration SM4500CI-E SM2340B - Calculation	Dilution	Result 137 4.3 <2 141 2.31 156	Qual X B U	Q Units mg/L mg/L mg/L mg/L mg/L mg/L	MDL 2 2 2 2 0.5 0.2	PQL 20 20 20 20 20 20 2 5	Date 12/30/21 0:00 12/30/21 0:00 12/30/21 0:00 12/30/21 0:00 01/10/22 9:35 01/10/22 0:00	Analyst emk emk emk emk md calc
Wet Chemistry Parameter Alkalinity as CaCO3 Bicarbonate as CaCO3 Carbonate as CaCO3 Aydroxide as CaCO3 Total Alkalinity Chloride Hardness as CaCO3 (dissolved) Lab Filtration (0.45um filter)	EPA Method SM2320B - Titration SM4500CI-E SM2340B - Calculation SOPWC050	Dilution 1 1 1 1 1 1	Result 137 4.3 <2 141 2.31 156	Qual X B U	Q Units mg/L mg/L mg/L mg/L mg/L	MDL 2 2 2 2 0.5 0.2	PQL 20 20 20 20 20 2 5	Date 12/30/21 0:00 12/30/21 0:00 12/30/21 0:00 12/30/21 0:00 01/10/22 9:35 01/10/22 0:00 12/30/21 16:32	Analyst emk emk emk emk calc emk
Wet Chemistry Parameter Alkalinity as CaCO3 Bicarbonate as CaCO3 Carbonate as CaCO3 Total Alkalinity Chloride Hardness as CaCO3 (dissolved) Lab Filtration (0.45um filter) Residue, Filterable (TDS) @180C	EPA Method SM2320B - Titration SM4500CI-E SM2340B - Calculation SOPWC050 SM2540C	Dilution 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Result 137 4.3 <2 141 2.31 156 216	Qual X B U	Q Units mg/L mg/L mg/L mg/L mg/L mg/L	MDL 2 2 2 2 0.5 0.2 20	PQL 20 20 20 20 2 5 5	Date 12/30/21 0:00 12/30/21 0:00 12/30/21 0:00 12/30/21 0:00 01/10/22 9:35 01/10/22 0:00 12/30/21 16:32 12/22/21 13:50	Analyst emk emk emk emk calc emk anc
Wet Chemistry Parameter Alkalinity as CaCO3 Bicarbonate as CaCO3 Carbonate as CaCO3 Total Alkalinity Chloride Hardness as CaCO3 (dissolved) Lab Filtration (0.45um filter) Residue, Filterable (TDS) @180C Residue, Non- Filterable (TSS) @105C	EPA Method SM2320B - Titration SM4500CI-E SM2340B - Calculation SOPWC050 SM2540C SM2540D	Dilution 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Result 137 4.3 <2 141 2.31 156 216 5.0	Qual X B U *	Q Units mg/L mg/L mg/L mg/L mg/L mg/L	MDL 2 2 2 2 0.5 0.2 20 5	PQL 20 20 20 20 2 5 40 20	Date 12/30/21 0:00 12/30/21 0:00 12/30/21 0:00 12/30/21 0:00 01/10/22 9:35 01/10/22 0:00 12/30/21 16:32 12/22/21 13:50 12/22/21 19:26	Analyst emk emk emk emk calc emk anc jck
Wet Chemistry Parameter Alkalinity as CaCO3 Bicarbonate as CaCO3 Carbonate as CaCO3 Total Alkalinity Chloride Hardness as CaCO3 (dissolved) Lab Filtration (0.45um filter) Residue, Filterable (TDS) @180C Residue, Non- Filterable (TSS) @105C Sodium Adsorption Ratio in Water	EPA Method SM2320B - Titration SM4500CI-E SM2340B - Calculation SOPWC050 SM2540C SM2540D USGS - 11738-78	Dilution 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Result 137 4.3 <2 141 2.31 156 216 5.0 0.27	Qual X	Q Units mg/L mg/L mg/L mg/L mg/L mg/L	MDL 2 2 2 2 0.5 0.2 20 5	PQL 20 20 20 20 2 5 40 20	Date 12/30/21 0:00 12/30/21 0:00 12/30/21 0:00 12/30/21 0:00 01/10/22 9:35 01/10/22 0:00 12/30/21 16:32 12/22/21 13:50 12/22/21 19:26 01/10/22 0:00	Analyst emk emk emk calc emk anc jck calc

Inorganic Reference

Rep	ort Header E	Explanations			
	Batch	A distinct set of sample	s analyzed at a specific time		
	Found	Value of the QC Type of	of interest		
l	Limit	Upper limit for RPD, in	%.		
l	Lower	Lower Recovery Limit,	in % (except for LCSS, mg/Kg)		
1	MDL	Method Detection Limit	. Same as Minimum Reporting Limit	unless omitted or equ	ual to the PQL (see comment #5).
		Allows for instrument a	nd annual fluctuations.		
I	PCN/SCN	A number assigned to	reagents/standards to trace to the ma	anufacturer's certificat	te of analysis
	PQL	Practical Quantitation L	imit. Synonymous with the EPA term	n "minimum level".	
(QC	True Value of the Cont	rol Sample or the amount added to th	ne Spike	
1	Rec	Recovered amount of t	he true value or spike added, in % (e	except for LCSS, mg/ł	<g)< td=""></g)<>
1	RPD	Relative Percent Different	ence, calculation used for Duplicate G	QC Types	
	Upper	Upper Recovery Limit,	in % (except for LCSS, mg/Kg)		
	Sample	Value of the Sample of	interest		
QC S	Sample Typ	es			
,	AS	Analytical Spike (Post	Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
,	ASD	Analytical Spike (Post I	Digestion) Duplicate	LFB	Laboratory Fortified Blank
	ССВ	Continuing Calibration	Blank	LFM	Laboratory Fortified Matrix
(CCV	Continuing Calibration	Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
l	DUP	Sample Duplicate		LRB	Laboratory Reagent Blank
	ICB	Initial Calibration Blank		MS	Matrix Spike
	ICV	Initial Calibration Verific	ation standard	MSD	Matrix Spike Duplicate
	ICSAB	Inter-element Correctio	n Standard - A plus B solutions	PBS	Prep Blank - Soil
l	LCSS	Laboratory Control Sar	nple - Soil	PBW	Prep Blank - Water
l	LCSSD	Laboratory Control Sar	nple - Soil Duplicate	PQV	Practical Quantitation Verification standard
l	LCSW	Laboratory Control Sar	nple - Water	SDL	Serial Dilution
003	Sample Typ	e Explanations			
	Blanks	o Explanationo	Verifies that there is no or minimal	contamination in the	prep method or calibration procedure
	Control Sam	nles	Verifies the accuracy of the method	d including the prepu	
Ì	Dunlicates	pico	Verifies the precision of the instrum	nent and/or method	
	Snikes/Fortif	ied Matrix	Determines sample matrix interfere	ences if any	
:	Standard		Verifies the validity of the calibratio	n.	
AC7	Qualifiors (
AUZ		Analyte concentration (detected at a value between MDL and	d ROL. The associate	d value is an estimated quantity
	ы ц	Analysis exceeded met	thed hold time. pH is a field test with	an immediate hold tin	a value is all estimated quantity.
	· ·	Target analyte rospons	e was below the laboratory defined a		iic.
	∟ 	The material was apply	ized for but was not detected above	the level of the access	isted value
	0	The associated value is	s either the sample quantitation limit of	or the sample detection	n limit
					// m/m.
Meth	nod Referen	ces			1000
((1)	EPA 600/4-83-020. Me	ethods for Chemical Analysis of Wate	er and Wastes, March	1983.
((2)	EPA 600/R-93-100. M	ethods for the Determination of Inorg	anic Substances in E	nvironmental Samples, August 1993.
((3) (1)	EPA 600/R-94-111. M	etnods for the Determination of Metal	is in Environmental S	ampies - Supplement I, May 1994.
((4)	EPA SW-846. Test Me	etnods for Evaluating Solid Waste.		
((5)	Standard Methods for t	he Examination of Water and Waster	water.	
Com	nments				
((1)	QC results calculated f	rom raw data. Results may vary sligh	ntly if the rounded valu	ues are used in the calculations.
((2)	Soil, Sludge, and Plant	matrices for Inorganic analyses are r	eported on a dry weig	ght basis.
((3)	Animal matrices for Ino	rganic analyses are reported on an "a	as received" basis.	
(
	(4)	An asterisk in the "XQ"	column indicates there is an extende	ed qualifier and/or cer	tification qualifier
	(4)	An asterisk in the "XQ" associated with the res	column indicates there is an extende ult.	ed qualifier and/or cer	tification qualifier
((4) (5)	An asterisk in the "XQ" associated with the res If the MDL equals the F	column indicates there is an extende ult. PQL or the MDL column is omitted, th	ed qualifier and/or cert e PQL is the reporting	g limit.
((4) (5)	An asterisk in the "XQ" associated with the res If the MDL equals the F	column indicates there is an extende ult. PQL or the MDL column is omitted, th	ed qualifier and/or cer e PQL is the reportin્	uffication qualifier

https://acz.com/wp-content/uploads/2019/04/Ext-Qual-List.pdf

REP001.03.15.02

4C: **AGZ** Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487

(800) 334-5493

New Elk Coal Co., LLC

ACZ Project ID: L70608

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L70608-01	NG534672	Chloride	SM4500CI-E	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG534119	Residue, Non-Filterable (TSS) @105C	SM2540D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			SM2540D	Z3	Sample volume yielded a residue less than 2.5 mg
	WG534283	Sodium, dissolved	M200.7 ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG534633	Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			D516-02/-07/-11 - TURBIDIMETRIC	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
L70608-02	WG534672	Chloride	SM4500CI-E	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG534119	Residue, Non-Filterable (TSS) @105C	SM2540D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			SM2540D	Z3	Sample volume yielded a residue less than 2.5 mg
	WG534283	Sodium, dissolved	M200.7 ICP	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG534633	Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			D516-02/-07/-11 - TURBIDIMETRIC	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).

ACZ Project ID: L70608

No certification qualifiers associated with this analysis

AGZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493	S: R	ample eceipt	
New Elk Coal Co. , LLC ACZ F	vroject ID:		L70608
Date I	Received: 1	2/21/202	21 11:38
Rec	eived By:		
Dat	e Printed:	12/2	22/2021
Receipt Verification	VEC	NO	NIA
1) Is a foreign soil permit included for applicable samples?	TES	NU	X
2) Is the Chain of Custody form or other directive shipping papers present?	X	1	
3) Does this project require special handling procedures such as CLP protocol?		X	
4) Are any samples NRC licensable material?			Х
5) If samples are received past hold time, proceed with requested short hold time analyses?	Х		
6) Is the Chain of Custody form complete and accurate?	Х		
7) Were any changes made to the Chain of Custody form prior to ACZ receiving the samples	;?	Х	
Samples/Containers			
	YES	NO	NA
8) Are all containers intact and with no leaks?	X		
9) Are all labels on containers and are they intact and legible?	Х		
10) Do the sample labels and Chain of Custody form match for Sample ID, Date, and Time?	Х		
11) For preserved bottle types, was the pH checked and within limits? $ ^{1}$	Х		
12) Is there sufficient sample volume to perform all requested work?	Х		
13) Is the custody seal intact on all containers?			Х
14) Are samples that require zero headspace acceptable?			Х
15) Are all sample containers appropriate for analytical requirements?	Х		
16) Is there an Hg-1631 trip blank present?			Х
17) Is there a VOA trip blank present?			Х
18) Were all samples received within hold time?	Х		
	NA indica	ates Not Ap	plicable

Chain of Custody Related Remarks

Client Contact Remarks

Shipping Containers

Cooler Id	Temp(°C)	Temp Criteria(°C)	Rad(µR/Hr)	Custody Seal Intact?
6624	3.3	<=6.0	15	Yes

Was ice present in the shipment container(s)?

Yes - Wet ice was present in the shipment container(s).

Client must contact an ACZ Project Manager if analysis should not proceed for samples received outside of their thermal preservation acceptance criteria.

Sample Receipt

New Elk Coal Co., LLC

ACZ Project ID: L70608 Date Received: 12/21/2021 11:38 Received By: Date Printed: 12/22/2021

¹ The preservation of the following bottle types is not checked at sample receipt: Orange (oil and grease), Purple (total cyanide), Pink (dissolved cyanide), Brown (arsenic speciation), Sterile (fecal coliform), EDTA (sulfite), HCI preserved vial (organics), Na2S2O3 preserved vial (organics), and HG-1631 (total/dissolved mercury by method 1631).

		2		ratori	oc Inc	1 -	160	08	2	C	ΗΔΙΙ	N of	cus	тог)Y
	2772 Down	hill Drive Steel		inge CO 80	ES, IIIC.	6102			J						
	2773 Down	inili Drive Stear	mboat Spri	ings, CO 80	407 (000) 334	-0493									
	Report to		P			_	Aulaina		<u>ר הי</u>	- ^	-/-			17	
	Name:	-lim	<u>pegg</u>	<u>no</u>	Addre	$\frac{ss}{1}$	<u> 2 2 2 2</u>	SU.	<u>573</u>	<u>10 11</u>	$\frac{w}{2}$	14			
	Company	New		<u>. ('001</u>	101		``	NC	<u>sto</u>	n.	$\frac{\bigcirc}{2}$		10-	7	
	E-mail:	Jimbe	Telepł	none:	71	7-6	031	1-6	17	5					
	Copy of F	Report to:													
	- Name:	Nick	Mas	ion			E-mail	1: n	ma	son	O.	new	elk(Isor	Con
	Company	New	EIK	Coel	Co.		Telepł	hone:	71	7-6	31	- le ,	146	2	
	Invoice to														
		Mani	Lí 🚽]			Addro		177	EI		stat	n Ali		7
	Name:	<u>Inery</u>		Ant	0-		Addre	<u>ss.</u>		<u>ر م</u>	$\frac{1}{2}$		$\overline{\mathbf{C}}$	d a	1
	Company	New		021				VVC	570	2.1	121		$\frac{\mathcal{P}^{\iota}}{\mathcal{P}^{\iota}}$	<u> </u>	1
	⊫-mail:	Mary		<u>cwelk</u>	<u></u>	/ \		none:	<u>//`</u>	1 - 6	521	@1-			
	analvsis b	 received pase efore expiration 	st noiding on, shall A	ume (HI), d CZ proceed	with request	ed short	mains t HT ana	o com alyses?)))				NO		
	If "NO" then ACZ	will contact client for f	further instruct	ion. If neither "YE	S" nor "NO" is indicat	ed, ACZ will	proceed wit	th the requ	ested analys	ses, even if	HT is expi	red, and data	a will be qua	alified	
	Are sampl	es for SDWA C	Complianc	e Monitorin	ig?		Yes			No	ĽX]			
	lf yes, plea	ise include sta	te forms.	Results wil	be reported t	o PQL f	or Colo	orado.						•	<u> </u>
	Sampler's	Name: Mine /	Mossauff	Sampler	's Site Informa	tion	State_			Zip co	de 💋	1091	Time Z	one <u>P</u>	<u>15</u>
	*Sampler's	s Signature: 🗍	milmi	70	tampering	y with the sa	nple in any	way, is cor	sidered fra	ud and pun	ishable by	State Law.			
	PROJEC	T INFORMAT	ION					ANAI	YSES RE	QUESTE	D <u>(</u> attach	list or use	e quote nu	mber)	
	Quote #:	Ta	ble	<u>-28</u>	<u>-sw</u>		ers								
	PO#:						aine]							
	Reporting s	state for complia	ance testin	g:			ont	-		1.1		5	Ь	CI	1
ß	Check box	if samples inclu	ude NRC li	censed mate	erial?		of C		12	bl)1e '	128-12		24	W
ust	SAMPL	E IDENTIFIC/	ATION	DATI	E:TIME	Matrix	*		Ľ				l		
Ū	Pr	25-1		12/20/21	2:000m	SW	4								
5					• •1										
	PR	5-4		12/20/21	2:32pm	5W	4								
Ŝ				, ,	- /										
80															
706															
<u> </u>															
								<u> </u>							
	Motrix	SW (Surface W)	(ater) (GW (Ground Water	-) . MMV (Maste V	Vater) · DI	N (Drinki	ing Wate			<u> </u>		l il) ∈ Other	(Specify	ـــــــــــــــــــــــــــــــــــــ
		SW (Sunace W		Ground Water		valei) D		ing wate	a) OC (C	luuge)	00 (00	i) OL (O		(Opecily	,
		.S 	ſ				כז	111							
	Ple	ASE R	ptur	N	Sampt	e	90	h/e	5						
			•		Coo le	\mathcal{C}	11								
					Ice	Þо	# 16	25,							
					PADE	20	w	o rt							
		PI	lease refe	er to ACZ's	terms & cond	ditions lo	ocated	on the	revers	e side	of this	COC.			
		RELINQUIS	HED BY:		DATE:T	ME		ł	RECEIN	/ED B	Y:		D/	ATE:TI	ME
	Vin	Maserith			5/20/21 2:	Dom	¥.	UC.	1				12/1	21/21	
	1/4144	Maren Hr			12/20/21 2:	50 om								11:	38
	- Varia	- VI	<u></u>		· ~ / 0 ···										